Previsione del prezzo di DRAC (Ordinals) DRAC
Previsione del prezzo di DRAC (Ordinals) fino a $0.006392 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.002141 | $0.006392 |
| 2027 | $0.002061 | $0.005416 |
| 2028 | $0.00372 | $0.009113 |
| 2029 | $0.008173 | $0.026886 |
| 2030 | $0.006951 | $0.020097 |
| 2031 | $0.008218 | $0.018346 |
| 2032 | $0.012544 | $0.034032 |
| 2033 | $0.029151 | $0.09065 |
| 2034 | $0.023436 | $0.052499 |
| 2035 | $0.0277088 | $0.061857 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su DRAC (Ordinals) oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,955.11, con un rendimento del 39.55% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di DRAC (Ordinals) per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DRAC (Ordinals)'
'name_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_lang' => 'DRAC (Ordinals)'
'name_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_with_lang' => 'DRAC (Ordinals)'
'name_with_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'image' => '/uploads/coins/drac-ordinals.png?1717128736'
'price_for_sd' => 0.006198
'ticker' => 'DRAC'
'marketcap' => '$662.14K'
'low24h' => '$0.005956'
'high24h' => '$0.006314'
'volume24h' => '$15.1K'
'current_supply' => '106.82M'
'max_supply' => '106.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006198'
'change_24h_pct' => '3.5024%'
'ath_price' => '$0.03978'
'ath_days' => 752
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 dic 2023'
'ath_pct' => '-84.42%'
'fdv' => '$662.14K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.305634'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006251'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005478'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002141'
'current_year_max_price_prediction' => '$0.006392'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006951'
'grand_prediction_max_price' => '$0.020097'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063160805885259
107 => 0.0063396625407062
108 => 0.0063927938830927
109 => 0.0059387923796448
110 => 0.0061426257259091
111 => 0.0062623587202376
112 => 0.0057214006959377
113 => 0.0062516657194099
114 => 0.005930889223532
115 => 0.0058220128629298
116 => 0.0059686005391109
117 => 0.0059114751791419
118 => 0.0058623621491543
119 => 0.0058349562345522
120 => 0.0059425940456482
121 => 0.0059375726131056
122 => 0.0057614562625537
123 => 0.0055317196626795
124 => 0.0056088268064441
125 => 0.0055808130582311
126 => 0.0054792876208618
127 => 0.0055477035074207
128 => 0.0052464345675031
129 => 0.0047281170149719
130 => 0.00507053346667
131 => 0.0050573508057571
201 => 0.0050507035103387
202 => 0.0053080200100942
203 => 0.0052832849659444
204 => 0.0052383906186063
205 => 0.0054784631009663
206 => 0.0053908334154744
207 => 0.00566088745801
208 => 0.0058387625164244
209 => 0.0057936476479552
210 => 0.0059609400001387
211 => 0.0056106031993019
212 => 0.0057269710314671
213 => 0.0057509542803975
214 => 0.0054755006437995
215 => 0.0052873319250708
216 => 0.005274783216812
217 => 0.0049485245897832
218 => 0.0051228093148744
219 => 0.0052761726605627
220 => 0.0052027235194544
221 => 0.0051794717156102
222 => 0.0052982601387493
223 => 0.0053074910165812
224 => 0.0050970260237682
225 => 0.0051407883603335
226 => 0.0053232845786941
227 => 0.0051361899238679
228 => 0.0047726955712788
301 => 0.0046825439461341
302 => 0.0046705160575157
303 => 0.0044260177001077
304 => 0.004688568308803
305 => 0.0045739579321887
306 => 0.0049360107386703
307 => 0.0047292081173361
308 => 0.0047202932696616
309 => 0.0047068171698777
310 => 0.0044963673335567
311 => 0.0045424424729262
312 => 0.0046956032536322
313 => 0.0047502527456678
314 => 0.0047445523559184
315 => 0.0046948526822501
316 => 0.004717604938352
317 => 0.0046443119940365
318 => 0.004618430729938
319 => 0.0045367423412406
320 => 0.0044166829768488
321 => 0.0044333779678343
322 => 0.0041955089517326
323 => 0.0040659052870961
324 => 0.0040300327008736
325 => 0.0039820623793583
326 => 0.0040354510763329
327 => 0.0041948350986966
328 => 0.0040025841525194
329 => 0.0036729833901343
330 => 0.003692792957566
331 => 0.0037372991740717
401 => 0.0036543621340515
402 => 0.0035758691860504
403 => 0.0036441124360032
404 => 0.0035044562479305
405 => 0.003754175957185
406 => 0.0037474217388811
407 => 0.0038405018039279
408 => 0.0038987066787969
409 => 0.0037645632862759
410 => 0.0037308265858191
411 => 0.0037500445436468
412 => 0.0034324145092849
413 => 0.0038145446536877
414 => 0.0038178493310448
415 => 0.0037895526771855
416 => 0.0039930251821354
417 => 0.0044224156322454
418 => 0.0042608616727231
419 => 0.0041983030966019
420 => 0.0040793791976653
421 => 0.0042378382319959
422 => 0.0042256710505053
423 => 0.0041706464415383
424 => 0.0041373673863479
425 => 0.0041986850659278
426 => 0.0041297694472752
427 => 0.0041173903084907
428 => 0.004042386196092
429 => 0.0040156131404354
430 => 0.0039957914358933
501 => 0.0039739696868329
502 => 0.0040221030276191
503 => 0.0039130265449293
504 => 0.0037814909997048
505 => 0.0037705552423537
506 => 0.0038007498298817
507 => 0.0037873909726232
508 => 0.0037704912852847
509 => 0.0037382251797994
510 => 0.0037286525155582
511 => 0.0037597590303457
512 => 0.003724641588773
513 => 0.0037764592867595
514 => 0.0037623677401112
515 => 0.0036836535060302
516 => 0.0035855464266232
517 => 0.0035846730678299
518 => 0.0035635360584996
519 => 0.0035366148991467
520 => 0.0035291260484875
521 => 0.003638365179838
522 => 0.0038644869124817
523 => 0.0038200938057292
524 => 0.0038521723749464
525 => 0.0040099671861682
526 => 0.0040601254116
527 => 0.0040245242912512
528 => 0.0039757912819362
529 => 0.0039779352870218
530 => 0.0041444707323363
531 => 0.004154857343784
601 => 0.0041811009600645
602 => 0.0042148314234301
603 => 0.004030268735017
604 => 0.003969242400995
605 => 0.0039403247383233
606 => 0.0038512695298383
607 => 0.0039473079371728
608 => 0.0038913504699936
609 => 0.0038989010440954
610 => 0.0038939837228063
611 => 0.0038966689127379
612 => 0.0037541061554369
613 => 0.0038060485313195
614 => 0.0037196842570253
615 => 0.0036040521885901
616 => 0.0036036645493508
617 => 0.0036319653342845
618 => 0.0036151309199961
619 => 0.0035698299439985
620 => 0.0035762647338244
621 => 0.0035198892039455
622 => 0.0035831097438636
623 => 0.0035849226827345
624 => 0.0035605793312199
625 => 0.003657979295717
626 => 0.0036978841406423
627 => 0.0036818608251903
628 => 0.0036967599021153
629 => 0.0038219385397377
630 => 0.003842348119597
701 => 0.0038514127067893
702 => 0.0038392673607793
703 => 0.0036990479378174
704 => 0.0037052672654848
705 => 0.0036596339656502
706 => 0.0036210786360087
707 => 0.0036226206469983
708 => 0.003642443098276
709 => 0.0037290089055774
710 => 0.0039111815437101
711 => 0.0039180948621607
712 => 0.0039264740057987
713 => 0.003892391817603
714 => 0.0038821123035206
715 => 0.003895673635963
716 => 0.0039640881006634
717 => 0.0041400686782187
718 => 0.004077865388763
719 => 0.0040272931461837
720 => 0.0040716586371045
721 => 0.0040648289175254
722 => 0.0040071792110915
723 => 0.0040055611758402
724 => 0.0038949129574675
725 => 0.0038540088304731
726 => 0.0038198262803357
727 => 0.0037824998279438
728 => 0.0037603714557719
729 => 0.0037943706925933
730 => 0.0038021467203215
731 => 0.0037278067948065
801 => 0.0037176745376543
802 => 0.0037783821255685
803 => 0.0037516669795345
804 => 0.0037791441697342
805 => 0.0037855191135556
806 => 0.0037844926007729
807 => 0.0037565989200984
808 => 0.0037743775203588
809 => 0.0037323258306871
810 => 0.0036866009341287
811 => 0.0036574312988861
812 => 0.0036319769233463
813 => 0.0036461004903128
814 => 0.0035957525529388
815 => 0.0035796452344691
816 => 0.0037683545306217
817 => 0.0039077561166566
818 => 0.0039057291623865
819 => 0.003893390599558
820 => 0.0038750579979809
821 => 0.0039627469566713
822 => 0.0039321978768596
823 => 0.0039544248848836
824 => 0.0039600825912903
825 => 0.0039772067645913
826 => 0.0039833271846739
827 => 0.0039648270242791
828 => 0.0039027382263897
829 => 0.0037480188452752
830 => 0.0036759965557093
831 => 0.0036522280005265
901 => 0.0036530919423645
902 => 0.0036292605696667
903 => 0.0036362799769734
904 => 0.0036268195062655
905 => 0.0036089036634784
906 => 0.0036449942375062
907 => 0.0036491533399559
908 => 0.0036407293687276
909 => 0.0036427135189041
910 => 0.0035729666350588
911 => 0.0035782693391553
912 => 0.003548743208911
913 => 0.003543207415433
914 => 0.0034685679293096
915 => 0.0033363332604756
916 => 0.0034096041033395
917 => 0.0033211032285995
918 => 0.0032875866063284
919 => 0.0034462490832557
920 => 0.0034303237711843
921 => 0.0034030665594848
922 => 0.0033627474624805
923 => 0.0033477927172027
924 => 0.0032569324189915
925 => 0.0032515639078524
926 => 0.0032965967250802
927 => 0.0032758156294142
928 => 0.0032466311006827
929 => 0.0031409276960055
930 => 0.0030220820719538
1001 => 0.003025669274307
1002 => 0.0030634718561164
1003 => 0.0031733879611
1004 => 0.003130441837315
1005 => 0.0030992839317589
1006 => 0.0030934489926515
1007 => 0.0031664854718536
1008 => 0.0032698473915399
1009 => 0.0033183424916641
1010 => 0.0032702853202591
1011 => 0.0032150798293309
1012 => 0.0032184399317661
1013 => 0.003240793187915
1014 => 0.0032431421990782
1015 => 0.0032072090997001
1016 => 0.0032173240566957
1017 => 0.0032019585120883
1018 => 0.0031076601931954
1019 => 0.0031059546356298
1020 => 0.0030828123074077
1021 => 0.0030821115669065
1022 => 0.0030427406934763
1023 => 0.0030372324361255
1024 => 0.0029590591772887
1025 => 0.0030105130529855
1026 => 0.0029760004946178
1027 => 0.0029239819284682
1028 => 0.002915013908057
1029 => 0.0029147443185343
1030 => 0.0029681557548313
1031 => 0.0030098889092547
1101 => 0.0029766008553467
1102 => 0.0029690218107337
1103 => 0.0030499461788033
1104 => 0.0030396478153244
1105 => 0.003030729498969
1106 => 0.0032605924653155
1107 => 0.0030786379910213
1108 => 0.0029992954546308
1109 => 0.0029010939991085
1110 => 0.0029330688882013
1111 => 0.002939806467142
1112 => 0.0027036496687537
1113 => 0.002607840885059
1114 => 0.0025749629209728
1115 => 0.002556041187815
1116 => 0.0025646640592192
1117 => 0.0024784249166445
1118 => 0.0025363790467185
1119 => 0.0024617032388621
1120 => 0.0024491835966588
1121 => 0.0025827131916636
1122 => 0.0026012930547399
1123 => 0.0025220255865453
1124 => 0.0025729281333636
1125 => 0.002554470162289
1126 => 0.0024629833412552
1127 => 0.0024594892176232
1128 => 0.0024135843467457
1129 => 0.002341752112757
1130 => 0.002308922854308
1201 => 0.002291825091471
1202 => 0.0022988799616463
1203 => 0.0022953128034031
1204 => 0.0022720346829474
1205 => 0.0022966470780192
1206 => 0.0022337725791544
1207 => 0.0022087354470922
1208 => 0.0021974267553967
1209 => 0.0021416220187331
1210 => 0.002230432171244
1211 => 0.0022479288900895
1212 => 0.0022654600828761
1213 => 0.0024180571470298
1214 => 0.0024104338289395
1215 => 0.0024793449117693
1216 => 0.0024766671538099
1217 => 0.0024570125967013
1218 => 0.0023740932532779
1219 => 0.0024071434256713
1220 => 0.0023054201321816
1221 => 0.0023816381401757
1222 => 0.0023468554242673
1223 => 0.0023698780689388
1224 => 0.0023284812779513
1225 => 0.0023513919713154
1226 => 0.0022520780112132
1227 => 0.0021593400326549
1228 => 0.0021966605024171
1229 => 0.0022372321211621
1230 => 0.0023252017280573
1231 => 0.002272807755924
]
'min_raw' => 0.0021416220187331
'max_raw' => 0.0063927938830927
'avg_raw' => 0.0042672079509129
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002141'
'max' => '$0.006392'
'avg' => '$0.004267'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040569979812669
'max_diff' => 0.00019417388309273
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022916506095386
102 => 0.0022285302041854
103 => 0.0020982947784893
104 => 0.0020990318968552
105 => 0.0020789980139448
106 => 0.0020616858141155
107 => 0.0022788258338918
108 => 0.0022518210399569
109 => 0.0022087924351216
110 => 0.0022663879325824
111 => 0.0022816170962745
112 => 0.0022820506491551
113 => 0.0023240708373475
114 => 0.0023464970193184
115 => 0.0023504497310914
116 => 0.0024165694051184
117 => 0.0024387318477127
118 => 0.0025300158122122
119 => 0.0023445943144612
120 => 0.002340775680735
121 => 0.0022671984193453
122 => 0.0022205345569615
123 => 0.0022703935339254
124 => 0.0023145617810864
125 => 0.0022685708499031
126 => 0.0022745762945941
127 => 0.0022128372270777
128 => 0.0022349060386217
129 => 0.0022539146721133
130 => 0.0022434192219751
131 => 0.0022277070251326
201 => 0.0023109404885072
202 => 0.002306244130309
203 => 0.0023837530449325
204 => 0.0024441767865972
205 => 0.0025524669336961
206 => 0.0024394605199054
207 => 0.002435342117027
208 => 0.0024756001657754
209 => 0.0024387256844152
210 => 0.002462029083771
211 => 0.0025487123957907
212 => 0.0025505438775799
213 => 0.0025198641978798
214 => 0.0025179973365819
215 => 0.0025238897046672
216 => 0.0025584014885877
217 => 0.0025463420108459
218 => 0.0025602975437974
219 => 0.0025777491514479
220 => 0.0026499364000188
221 => 0.0026673405012605
222 => 0.0026250575582351
223 => 0.0026288752345683
224 => 0.0026130602531841
225 => 0.002597783179328
226 => 0.0026321238103189
227 => 0.0026948819884215
228 => 0.0026944915730527
301 => 0.0027090502505278
302 => 0.0027181201859843
303 => 0.0026791853834068
304 => 0.0026538402586012
305 => 0.0026635591922038
306 => 0.0026790999786853
307 => 0.0026585195246014
308 => 0.0025314874282016
309 => 0.0025700208514076
310 => 0.002563607005598
311 => 0.0025544729092148
312 => 0.0025932185642185
313 => 0.0025894814512728
314 => 0.0024775404095894
315 => 0.0024847065118861
316 => 0.0024779762040049
317 => 0.0024997232056606
318 => 0.0024375512749582
319 => 0.0024566749421079
320 => 0.0024686691268709
321 => 0.0024757337938401
322 => 0.00250125621522
323 => 0.0024982614536497
324 => 0.0025010700566359
325 => 0.0025389130698729
326 => 0.0027303100446716
327 => 0.0027407273597162
328 => 0.0026894286904823
329 => 0.0027099214970198
330 => 0.002670579789752
331 => 0.0026969901414074
401 => 0.0027150594332598
402 => 0.0026334077779037
403 => 0.0026285728967884
404 => 0.0025890688123001
405 => 0.0026102960696784
406 => 0.0025765219768958
407 => 0.002584808957897
408 => 0.0025616378365715
409 => 0.0026033412416332
410 => 0.0026499721285462
411 => 0.0026617529320899
412 => 0.0026307627099211
413 => 0.0026083237467158
414 => 0.0025689283191812
415 => 0.0026344437931556
416 => 0.0026536025142936
417 => 0.0026343431605496
418 => 0.0026298803474619
419 => 0.0026214233247249
420 => 0.0026316745448145
421 => 0.0026534981717837
422 => 0.0026432065523242
423 => 0.0026500043482922
424 => 0.0026240981599187
425 => 0.0026791982724465
426 => 0.0027667105117048
427 => 0.0027669918778637
428 => 0.0027567002029284
429 => 0.0027524890712822
430 => 0.0027630489543168
501 => 0.002768777257674
502 => 0.0028029259830566
503 => 0.0028395689259374
504 => 0.0030105655517936
505 => 0.0029625503835073
506 => 0.0031142687626017
507 => 0.0032342583022995
508 => 0.0032702379187482
509 => 0.0032371383645871
510 => 0.003123906577805
511 => 0.0031183508861447
512 => 0.0032875669808245
513 => 0.0032397556834893
514 => 0.0032340686818056
515 => 0.0031735685922317
516 => 0.0032093316382517
517 => 0.0032015097354749
518 => 0.0031891624792811
519 => 0.003257395879812
520 => 0.0033851227143681
521 => 0.0033652152893879
522 => 0.003350355320119
523 => 0.0032852432604548
524 => 0.0033244552636777
525 => 0.0033104926203864
526 => 0.0033704849968779
527 => 0.0033349468420382
528 => 0.0032393934658883
529 => 0.0032546106559882
530 => 0.0032523106083173
531 => 0.0032996454264006
601 => 0.0032854366889344
602 => 0.003249536124285
603 => 0.0033846861579333
604 => 0.0033759102664922
605 => 0.0033883524741076
606 => 0.003393829918688
607 => 0.003476093362559
608 => 0.0035097940633763
609 => 0.0035174447124757
610 => 0.0035494577717464
611 => 0.0035166481983978
612 => 0.0036479098846217
613 => 0.0037351912466288
614 => 0.0038365730400579
615 => 0.003984719089115
616 => 0.004040423373988
617 => 0.0040303608935154
618 => 0.004142683537143
619 => 0.0043445248309496
620 => 0.0040711587898572
621 => 0.0043590138949121
622 => 0.0042678822920987
623 => 0.0040518109012157
624 => 0.0040378984509572
625 => 0.0041842245055036
626 => 0.0045087616111268
627 => 0.0044274687470375
628 => 0.00450889457713
629 => 0.0044139070211395
630 => 0.0044091900883666
701 => 0.0045042812435518
702 => 0.0047264669107909
703 => 0.0046209148287908
704 => 0.0044695800368113
705 => 0.0045813232921788
706 => 0.0044845209430294
707 => 0.0042663981571242
708 => 0.0044274065839164
709 => 0.0043197448341765
710 => 0.004351166256364
711 => 0.0045774552408408
712 => 0.0045502275515421
713 => 0.0045854627027107
714 => 0.0045232735831626
715 => 0.0044651791391807
716 => 0.0043567415453384
717 => 0.0043246385197104
718 => 0.0043335106410481
719 => 0.0043246341231277
720 => 0.0042639642859659
721 => 0.0042508626404072
722 => 0.0042290259904798
723 => 0.0042357940813847
724 => 0.0041947347909839
725 => 0.0042722221552524
726 => 0.004286604492877
727 => 0.0043429933346817
728 => 0.0043488478113006
729 => 0.0045058899330818
730 => 0.0044193937713904
731 => 0.0044774228643723
801 => 0.004472232196105
802 => 0.0040564938234419
803 => 0.0041137789031042
804 => 0.0042028965100103
805 => 0.0041627491488952
806 => 0.004105990173314
807 => 0.0040601542573085
808 => 0.0039907081575971
809 => 0.0040884522093467
810 => 0.0042169752434763
811 => 0.0043521073675415
812 => 0.0045144597603983
813 => 0.0044782245963028
814 => 0.004349072302487
815 => 0.0043548659800418
816 => 0.0043906802149572
817 => 0.0043442975266753
818 => 0.0043306183664033
819 => 0.0043888009083937
820 => 0.0043892015795838
821 => 0.0043358326911803
822 => 0.0042765229381233
823 => 0.0042762744280924
824 => 0.0042657208304002
825 => 0.004415784482724
826 => 0.0044983043183556
827 => 0.0045077650845234
828 => 0.0044976675334131
829 => 0.004501553680078
830 => 0.0044535372059245
831 => 0.0045632886269963
901 => 0.0046640073842624
902 => 0.0046370126057727
903 => 0.0045965435952827
904 => 0.0045643080791758
905 => 0.0046294189426374
906 => 0.0046265196583814
907 => 0.0046631276937828
908 => 0.0046614669418388
909 => 0.0046491570364311
910 => 0.0046370130453982
911 => 0.0046851625971493
912 => 0.0046712962995031
913 => 0.0046574084636667
914 => 0.0046295542827756
915 => 0.0046333401285676
916 => 0.0045928781056229
917 => 0.0045741585223924
918 => 0.0042926609051672
919 => 0.0042174355436446
920 => 0.004241102973733
921 => 0.0042488949062427
922 => 0.0042161567325042
923 => 0.0042630948638984
924 => 0.0042557796058404
925 => 0.0042842389956613
926 => 0.0042664588044643
927 => 0.004267188509713
928 => 0.004319476260887
929 => 0.0043346556175008
930 => 0.0043269352742146
1001 => 0.0043323423380144
1002 => 0.0044569458411015
1003 => 0.0044392312075582
1004 => 0.0044298206615541
1005 => 0.00443242744711
1006 => 0.004464266313678
1007 => 0.0044731794579794
1008 => 0.004435413839259
1009 => 0.004453224323368
1010 => 0.0045290591042171
1011 => 0.0045555969856374
1012 => 0.0046402931642254
1013 => 0.0046043127222067
1014 => 0.004670356380729
1015 => 0.0048733520710844
1016 => 0.0050355190747737
1017 => 0.0048863835963462
1018 => 0.0051841826467781
1019 => 0.0054160619242759
1020 => 0.0054071620113904
1021 => 0.0053667284958943
1022 => 0.0051027401032926
1023 => 0.0048598140485753
1024 => 0.0050630320085314
1025 => 0.0050635500529035
1026 => 0.0050460934499182
1027 => 0.0049376719880233
1028 => 0.0050423206180614
1029 => 0.0050506272462858
1030 => 0.0050459777433909
1031 => 0.0049628512627636
1101 => 0.0048359324911874
1102 => 0.0048607321153528
1103 => 0.0049013544056343
1104 => 0.0048244479354339
1105 => 0.0047998716582775
1106 => 0.0048455636333393
1107 => 0.0049927926972893
1108 => 0.0049649598955895
1109 => 0.0049642330686559
1110 => 0.0050833135972727
1111 => 0.0049980776379696
1112 => 0.0048610449180329
1113 => 0.0048264423490094
1114 => 0.0047036265400594
1115 => 0.0047884558567561
1116 => 0.0047915087128453
1117 => 0.0047450485630251
1118 => 0.0048648149031343
1119 => 0.0048637112352258
1120 => 0.0049774115502923
1121 => 0.0051947638488112
1122 => 0.0051304820788821
1123 => 0.0050557293742913
1124 => 0.0050638570659479
1125 => 0.0051529977825695
1126 => 0.0050991012704155
1127 => 0.0051184828319659
1128 => 0.0051529684462548
1129 => 0.005173774473585
1130 => 0.0050608633988017
1201 => 0.0050345384261087
1202 => 0.0049806867707887
1203 => 0.0049666378791045
1204 => 0.005010498928711
1205 => 0.0049989430917734
1206 => 0.0047912521321122
1207 => 0.0047695472712461
1208 => 0.0047702129283414
1209 => 0.0047156350236835
1210 => 0.0046323906188822
1211 => 0.0048511519444349
1212 => 0.0048335823484302
1213 => 0.0048141868742198
1214 => 0.0048165627091415
1215 => 0.0049115195860547
1216 => 0.0048564398020078
1217 => 0.0050028784352955
1218 => 0.0049727750546398
1219 => 0.0049418996358607
1220 => 0.0049376317124972
1221 => 0.0049257473104342
1222 => 0.004884991273769
1223 => 0.0048357759104376
1224 => 0.0048032796646044
1225 => 0.0044307715901952
1226 => 0.0044999069220258
1227 => 0.0045794408194131
1228 => 0.0046068956020791
1229 => 0.0045599322965157
1230 => 0.0048868456713173
1231 => 0.0049465758951092
]
'min_raw' => 0.0020616858141155
'max_raw' => 0.0054160619242759
'avg_raw' => 0.0037388738691957
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002061'
'max' => '$0.005416'
'avg' => '$0.003738'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.993620461759E-5
'max_diff' => -0.00097673195881685
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047656491511374
102 => 0.0047318051445306
103 => 0.0048890644787561
104 => 0.0047942178760464
105 => 0.004836927295439
106 => 0.0047446128915155
107 => 0.0049321886333029
108 => 0.0049307596204258
109 => 0.0048577884202802
110 => 0.004919463178958
111 => 0.0049087456718965
112 => 0.0048263613666523
113 => 0.0049348003627253
114 => 0.0049348541471145
115 => 0.0048646209535051
116 => 0.0047826039593924
117 => 0.0047679412579999
118 => 0.0047568948821575
119 => 0.0048342105641369
120 => 0.0049035315628398
121 => 0.0050325207552928
122 => 0.0050649517029831
123 => 0.0051915318508689
124 => 0.0051161595358785
125 => 0.0051495711068788
126 => 0.005185844093555
127 => 0.0052032346972625
128 => 0.0051748976417524
129 => 0.0053715287138865
130 => 0.005388130400995
131 => 0.0053936968030784
201 => 0.005327393911887
202 => 0.0053862863976499
203 => 0.0053587325538756
204 => 0.005430420000698
205 => 0.0054416615077111
206 => 0.0054321403511992
207 => 0.0054357085829603
208 => 0.005267918650992
209 => 0.005259217857857
210 => 0.0051405819260817
211 => 0.0051889269451927
212 => 0.0050985482492018
213 => 0.0051272082647042
214 => 0.005139841326455
215 => 0.0051332425319164
216 => 0.0051916603000369
217 => 0.0051419932631729
218 => 0.0050109137868718
219 => 0.004879798598055
220 => 0.0048781525536636
221 => 0.0048436322388234
222 => 0.004818680373905
223 => 0.0048234869883033
224 => 0.0048404261243793
225 => 0.0048176958405226
226 => 0.0048225464990381
227 => 0.0049030997501633
228 => 0.0049192541301969
229 => 0.0048643552349189
301 => 0.0046439282485045
302 => 0.0045898349131392
303 => 0.0046287161298823
304 => 0.0046101334125502
305 => 0.0037207374700884
306 => 0.0039296878541733
307 => 0.0038055366312347
308 => 0.0038627512266879
309 => 0.0037360249768709
310 => 0.0037965053855754
311 => 0.0037853368624785
312 => 0.0041213228967957
313 => 0.0041160769370035
314 => 0.004118587900346
315 => 0.0039987330777282
316 => 0.0041896650645715
317 => 0.0042837250269827
318 => 0.0042663170312652
319 => 0.0042706982487468
320 => 0.0041954144167459
321 => 0.0041193168124021
322 => 0.0040349128578475
323 => 0.0041917249727658
324 => 0.004174290142459
325 => 0.004214279370329
326 => 0.004315983236015
327 => 0.0043309595165727
328 => 0.0043510877895166
329 => 0.0043438732364942
330 => 0.0045157531591347
331 => 0.0044949373664027
401 => 0.0045450974377746
402 => 0.0044419143653089
403 => 0.0043251529245869
404 => 0.004347345457249
405 => 0.0043452081378926
406 => 0.0043179976093841
407 => 0.0042934331609116
408 => 0.0042525402751952
409 => 0.0043819314166101
410 => 0.0043766783725646
411 => 0.004461719049665
412 => 0.0044466872839465
413 => 0.0043463014735808
414 => 0.0043498867724368
415 => 0.004373999630279
416 => 0.0044574545065869
417 => 0.0044822295959163
418 => 0.0044707527874223
419 => 0.0044979175418462
420 => 0.0045193874561466
421 => 0.0045006138325257
422 => 0.0047664087529291
423 => 0.0046560321708204
424 => 0.0047098289489448
425 => 0.0047226591635385
426 => 0.0046897948386472
427 => 0.0046969219339329
428 => 0.0047077175412735
429 => 0.0047732663550489
430 => 0.0049452854090977
501 => 0.0050214714771626
502 => 0.0052506810218902
503 => 0.005015145284771
504 => 0.0050011695688742
505 => 0.0050424571293447
506 => 0.0051770273963942
507 => 0.0052860839582954
508 => 0.005322264311502
509 => 0.0053270461424508
510 => 0.0053949228902908
511 => 0.0054338285763263
512 => 0.0053866808677673
513 => 0.0053467281213345
514 => 0.0052036223427294
515 => 0.005220187226267
516 => 0.0053343028472367
517 => 0.005495497883233
518 => 0.0056338199936028
519 => 0.0055853844115635
520 => 0.005954913712331
521 => 0.0059915510331102
522 => 0.0059864889400049
523 => 0.0060699542091045
524 => 0.0059042926473484
525 => 0.0058334691201561
526 => 0.0053553663585962
527 => 0.0054896937330363
528 => 0.0056849464605551
529 => 0.0056591040299078
530 => 0.0055173062800633
531 => 0.0056337124272942
601 => 0.0055952249146629
602 => 0.0055648682166022
603 => 0.0057039381353536
604 => 0.005551025047009
605 => 0.0056834210355264
606 => 0.0055136218107917
607 => 0.0055856056612223
608 => 0.0055447441462508
609 => 0.0055711865542363
610 => 0.0054166047774604
611 => 0.0055000133519482
612 => 0.0054131347065397
613 => 0.0054130935147499
614 => 0.0054111756638372
615 => 0.0055133880048814
616 => 0.0055167211456533
617 => 0.0054411860711874
618 => 0.0054303002868772
619 => 0.0054705507369424
620 => 0.0054234280015256
621 => 0.0054454764328402
622 => 0.0054240958260491
623 => 0.0054192826011159
624 => 0.0053809300059458
625 => 0.0053644066534199
626 => 0.0053708858856997
627 => 0.0053487689256558
628 => 0.0053354426572239
629 => 0.0054085247336288
630 => 0.0053694799283282
701 => 0.0054025405572352
702 => 0.0053648637980117
703 => 0.0052342597355606
704 => 0.005159147958132
705 => 0.0049124489911648
706 => 0.0049824125121676
707 => 0.0050287983989749
708 => 0.0050134678636618
709 => 0.005046403785644
710 => 0.0050484257837592
711 => 0.0050377179797809
712 => 0.0050253197145285
713 => 0.0050192849246708
714 => 0.0050642633040599
715 => 0.005090374767198
716 => 0.0050334538432792
717 => 0.0050201180672133
718 => 0.0050776682639856
719 => 0.005112773850771
720 => 0.0053719737794693
721 => 0.0053527714115466
722 => 0.0054009655867582
723 => 0.0053955396622292
724 => 0.0054460548357852
725 => 0.005528625795244
726 => 0.0053607359474609
727 => 0.0053898758198419
728 => 0.005382731396072
729 => 0.0054607323414232
730 => 0.0054609758518605
731 => 0.0054142103886863
801 => 0.005439562704956
802 => 0.0054254117375187
803 => 0.0054509844482959
804 => 0.0053525149522158
805 => 0.0054724401693161
806 => 0.0055404300396017
807 => 0.0055413740790166
808 => 0.005573600737931
809 => 0.0056063448898303
810 => 0.0056691944379862
811 => 0.0056045920500438
812 => 0.0054883786430511
813 => 0.005496768875669
814 => 0.00542863299767
815 => 0.0054297783740889
816 => 0.005423664265
817 => 0.0054420131666245
818 => 0.0053565415042742
819 => 0.0053766015325895
820 => 0.0053485173754767
821 => 0.0053898147703691
822 => 0.0053453856001688
823 => 0.0053827279508145
824 => 0.0053988436714347
825 => 0.0054583110274698
826 => 0.005336602223331
827 => 0.0050884297327301
828 => 0.005140598599055
829 => 0.0050634367479845
830 => 0.005070578371077
831 => 0.0050850055863046
901 => 0.0050382422614607
902 => 0.0050471632301592
903 => 0.0050468445103814
904 => 0.0050440979555226
905 => 0.0050319330086455
906 => 0.0050142914289121
907 => 0.0050845700527778
908 => 0.0050965117604415
909 => 0.0051230566973132
910 => 0.0052020364238407
911 => 0.0051941444866904
912 => 0.0052070165636158
913 => 0.0051789168919612
914 => 0.0050718818342532
915 => 0.005077694352848
916 => 0.0050052121528323
917 => 0.0051212031644966
918 => 0.0050937349619279
919 => 0.0050760260330407
920 => 0.0050711939877217
921 => 0.0051503694897149
922 => 0.0051740600408352
923 => 0.0051592976791907
924 => 0.0051290196447712
925 => 0.0051871624217541
926 => 0.0052027189760279
927 => 0.0052062015148261
928 => 0.0053092193678682
929 => 0.0052119590684256
930 => 0.0052353705891857
1001 => 0.0054180205910424
1002 => 0.0052523822433357
1003 => 0.0053401245702919
1004 => 0.0053358300399764
1005 => 0.0053807160454087
1006 => 0.0053321480774066
1007 => 0.0053327501355782
1008 => 0.0053726058675607
1009 => 0.0053166356800104
1010 => 0.0053027766744624
1011 => 0.005283630557558
1012 => 0.0053254354033722
1013 => 0.0053504955177673
1014 => 0.0055524616351656
1015 => 0.0056829409577789
1016 => 0.0056772765062695
1017 => 0.0057290389896563
1018 => 0.0057057195168005
1019 => 0.0056304147875832
1020 => 0.0057589507779238
1021 => 0.0057182766124057
1022 => 0.0057216297411919
1023 => 0.005721504937571
1024 => 0.0057485497018433
1025 => 0.0057293860077401
1026 => 0.0056916123995501
1027 => 0.0057166882834871
1028 => 0.0057911546939876
1029 => 0.0060223007170897
1030 => 0.0061516530938951
1031 => 0.0060145135415864
1101 => 0.0061091105683971
1102 => 0.0060523860606777
1103 => 0.0060420775302172
1104 => 0.0061014914537197
1105 => 0.0061610093734302
1106 => 0.0061572183392477
1107 => 0.0061140113858169
1108 => 0.0060896048741597
1109 => 0.0062744191572094
1110 => 0.0064105871727313
1111 => 0.0064013014269547
1112 => 0.0064422856889264
1113 => 0.0065626167496711
1114 => 0.0065736183138276
1115 => 0.0065722323696119
1116 => 0.0065449638449555
1117 => 0.0066634454012213
1118 => 0.0067622847999429
1119 => 0.0065386519693609
1120 => 0.0066238084236778
1121 => 0.0066620378995903
1122 => 0.0067181701124042
1123 => 0.0068128745642724
1124 => 0.0069157487181166
1125 => 0.0069302962514278
1126 => 0.0069199740803799
1127 => 0.006852125810514
1128 => 0.0069646919371942
1129 => 0.007030630534203
1130 => 0.0070698954597437
1201 => 0.0071694647778544
1202 => 0.0066622739918187
1203 => 0.0063032591444449
1204 => 0.0062471937917902
1205 => 0.0063612048910746
1206 => 0.0063912687087344
1207 => 0.0063791500215325
1208 => 0.0059750461706114
1209 => 0.0062450662686463
1210 => 0.0065355851901972
1211 => 0.0065467452051495
1212 => 0.0066921850517421
1213 => 0.0067395462275733
1214 => 0.0068566443673168
1215 => 0.0068493198467934
1216 => 0.0068778313803826
1217 => 0.0068712770725614
1218 => 0.0070881767185137
1219 => 0.0073274492379083
1220 => 0.0073191639914016
1221 => 0.0072847657357947
1222 => 0.0073358530111452
1223 => 0.0075828078931618
1224 => 0.007560072244997
1225 => 0.0075821579905712
1226 => 0.007873331714236
1227 => 0.0082518989739796
1228 => 0.0080760164742973
1229 => 0.008457630889782
1230 => 0.0086978369358187
1231 => 0.0091132484546704
]
'min_raw' => 0.0037207374700884
'max_raw' => 0.0091132484546704
'avg_raw' => 0.0064169929623794
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00372'
'max' => '$0.009113'
'avg' => '$0.006416'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001659051655973
'max_diff' => 0.0036971865303945
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090612368865653
102 => 0.0092229535424237
103 => 0.0089681253245153
104 => 0.0083829882269178
105 => 0.0082903880414081
106 => 0.0084757759578086
107 => 0.0089315340603908
108 => 0.0084614225132529
109 => 0.0085565254669643
110 => 0.0085291358098975
111 => 0.008527676331471
112 => 0.0085833786868843
113 => 0.0085025795151178
114 => 0.0081733891538475
115 => 0.0083242551564867
116 => 0.0082659985476872
117 => 0.0083306385984681
118 => 0.008679474292948
119 => 0.0085252457172141
120 => 0.0083627784411906
121 => 0.0085665484596988
122 => 0.0088260177162351
123 => 0.0088097805964721
124 => 0.0087782737975424
125 => 0.0089558759734667
126 => 0.0092492227355385
127 => 0.0093285131865638
128 => 0.0093870437764887
129 => 0.0093951141559569
130 => 0.0094782440801926
131 => 0.0090312335261392
201 => 0.0097406507554672
202 => 0.0098631475137167
203 => 0.0098401232001362
204 => 0.0099762731914789
205 => 0.009936214410234
206 => 0.0098781755212403
207 => 0.010094002217452
208 => 0.0098465743265615
209 => 0.0094953815857476
210 => 0.0093027103023323
211 => 0.0095564353906827
212 => 0.0097113764483529
213 => 0.0098137826313709
214 => 0.0098447706804766
215 => 0.0090659336829745
216 => 0.008646183737601
217 => 0.0089152386401425
218 => 0.0092435041904206
219 => 0.0090294099944329
220 => 0.0090378020815817
221 => 0.0087325600210681
222 => 0.009270511339697
223 => 0.0091921363574555
224 => 0.0095987459039672
225 => 0.0095017052724467
226 => 0.0098332795731354
227 => 0.0097459649474992
228 => 0.01010840307682
301 => 0.010252989459227
302 => 0.010495772498361
303 => 0.010674364690253
304 => 0.010779237441257
305 => 0.010772941274654
306 => 0.011188499361526
307 => 0.010943459276192
308 => 0.010635631177497
309 => 0.010630063538377
310 => 0.010789492072649
311 => 0.0111236105434
312 => 0.011210242601639
313 => 0.011258658103633
314 => 0.011184508076974
315 => 0.010918534626525
316 => 0.010803688639136
317 => 0.0109015407478
318 => 0.010781876027432
319 => 0.010988450906777
320 => 0.011272122338131
321 => 0.011213545309315
322 => 0.011409359534288
323 => 0.011612006656879
324 => 0.011901801143635
325 => 0.011977564153532
326 => 0.012102797527882
327 => 0.012231703807109
328 => 0.012273105029875
329 => 0.01235215281018
330 => 0.012351736189359
331 => 0.012589951995838
401 => 0.012852711407314
402 => 0.012951897002252
403 => 0.013179968808686
404 => 0.012789403832757
405 => 0.013085651853486
406 => 0.013352874983753
407 => 0.013034280551532
408 => 0.013473388753366
409 => 0.013490438329802
410 => 0.013747866691806
411 => 0.013486913729609
412 => 0.013331960693647
413 => 0.013779304302453
414 => 0.013995759783563
415 => 0.013930561631079
416 => 0.013434400471451
417 => 0.013145613395195
418 => 0.012389801913764
419 => 0.013285093262145
420 => 0.013721163561934
421 => 0.013433271154722
422 => 0.013578467339219
423 => 0.014370610641812
424 => 0.014672207523959
425 => 0.014609477480794
426 => 0.014620077825464
427 => 0.0147828140287
428 => 0.015504475974312
429 => 0.015072039408508
430 => 0.015402620959976
501 => 0.015577960222874
502 => 0.015740825102017
503 => 0.015340880432816
504 => 0.014820558294539
505 => 0.014655750431709
506 => 0.013404645928564
507 => 0.013339520505904
508 => 0.013302963632662
509 => 0.013072477717947
510 => 0.012891378924387
511 => 0.012747362439981
512 => 0.012369420177936
513 => 0.012496964596764
514 => 0.011894603513745
515 => 0.012279972788295
516 => 0.011318589955279
517 => 0.01211925814626
518 => 0.011683490851825
519 => 0.011976096870114
520 => 0.011975075995281
521 => 0.011436295544788
522 => 0.011125538225004
523 => 0.011323564884026
524 => 0.011535865181873
525 => 0.011570310190935
526 => 0.011845563068699
527 => 0.011922380230342
528 => 0.011689620644313
529 => 0.011298667432942
530 => 0.01138947694725
531 => 0.011123697973095
601 => 0.010657930543929
602 => 0.010992452843075
603 => 0.011106673463911
604 => 0.011157119797078
605 => 0.010699091024243
606 => 0.01055516843953
607 => 0.010478545263056
608 => 0.011239541670049
609 => 0.011281230771076
610 => 0.011067943435975
611 => 0.012032022415365
612 => 0.011813821650359
613 => 0.012057605365355
614 => 0.011381236935647
615 => 0.011407075120513
616 => 0.011086871466604
617 => 0.011266164116777
618 => 0.011139445850507
619 => 0.011251679042448
620 => 0.011318951154942
621 => 0.011639102266582
622 => 0.012122913757689
623 => 0.011591282366602
624 => 0.011359642956404
625 => 0.011503350743701
626 => 0.011886063518865
627 => 0.012465892963945
628 => 0.012122622262303
629 => 0.012274959970577
630 => 0.012308238982802
701 => 0.012055123875983
702 => 0.012475225678973
703 => 0.012700361648097
704 => 0.012931304567093
705 => 0.013131825832783
706 => 0.012839060886702
707 => 0.013152361345215
708 => 0.012899896480629
709 => 0.012673409397758
710 => 0.012673752885173
711 => 0.012531674229639
712 => 0.01225637893148
713 => 0.012205610254712
714 => 0.012469715322637
715 => 0.01268150257627
716 => 0.012698946388872
717 => 0.012816202694505
718 => 0.012885593768343
719 => 0.013565720624543
720 => 0.013839273272411
721 => 0.014173768272138
722 => 0.014304072925636
723 => 0.014696243215864
724 => 0.014379533855991
725 => 0.014311011793788
726 => 0.01335973494762
727 => 0.013515506477889
728 => 0.013764911727565
729 => 0.013363847548326
730 => 0.013618230457805
731 => 0.013668451032703
801 => 0.013350219540984
802 => 0.013520200730682
803 => 0.013068781086755
804 => 0.012132753472339
805 => 0.012476267745286
806 => 0.012729209875829
807 => 0.012368230268004
808 => 0.01301527224319
809 => 0.012637283678944
810 => 0.012517479450729
811 => 0.012050080443171
812 => 0.0122706747829
813 => 0.012569031785992
814 => 0.012384681845806
815 => 0.012767235651974
816 => 0.013309033864883
817 => 0.013695151536042
818 => 0.013724792856392
819 => 0.013476545061711
820 => 0.013874363736983
821 => 0.013877261411724
822 => 0.01342852032088
823 => 0.013153668901339
824 => 0.013091222080527
825 => 0.013247226482336
826 => 0.013436644626133
827 => 0.013735304245089
828 => 0.013915777997834
829 => 0.014386357829111
830 => 0.014513683238874
831 => 0.01465357526155
901 => 0.014840514144948
902 => 0.015064982204614
903 => 0.01457385886904
904 => 0.014593372114731
905 => 0.014136044864709
906 => 0.0136473251107
907 => 0.014018202484216
908 => 0.014503075314338
909 => 0.014391844951371
910 => 0.014379329263307
911 => 0.014400377179068
912 => 0.014316513117835
913 => 0.013937199077025
914 => 0.013746709940362
915 => 0.013992489525619
916 => 0.014123110436793
917 => 0.014325692078682
918 => 0.01430071961534
919 => 0.014822548169167
920 => 0.015025314965907
921 => 0.014973438542421
922 => 0.014982985052818
923 => 0.015350084652913
924 => 0.015758374908009
925 => 0.016140792610551
926 => 0.016529804322799
927 => 0.016060835520298
928 => 0.015822722084363
929 => 0.016068394369942
930 => 0.015938037197126
1001 => 0.016687108178576
1002 => 0.016738972228095
1003 => 0.017487989043187
1004 => 0.018198895191973
1005 => 0.017752387777127
1006 => 0.018173424158191
1007 => 0.018628809331911
1008 => 0.019507321215599
1009 => 0.019211469319593
1010 => 0.018984851403844
1011 => 0.01877069856847
1012 => 0.019216316623077
1013 => 0.019789597131408
1014 => 0.01991307626209
1015 => 0.020113159626453
1016 => 0.019902796433855
1017 => 0.020156155728594
1018 => 0.021050625370737
1019 => 0.020808931777728
1020 => 0.020465688021471
1021 => 0.021171785898165
1022 => 0.021427319974855
1023 => 0.023220791949299
1024 => 0.025485124401665
1025 => 0.024547675897977
1026 => 0.023965771360464
1027 => 0.024102532729739
1028 => 0.024929390288853
1029 => 0.025194950693693
1030 => 0.024473065969176
1031 => 0.024728047857795
1101 => 0.026133023133351
1102 => 0.026886747291683
1103 => 0.025863088646008
1104 => 0.023038855041482
1105 => 0.020434782676731
1106 => 0.02112549993077
1107 => 0.021047194029614
1108 => 0.022556664688964
1109 => 0.020803167465468
1110 => 0.020832691861617
1111 => 0.022373376775645
1112 => 0.021962348454609
1113 => 0.02129653521506
1114 => 0.020439643850213
1115 => 0.018855600909436
1116 => 0.017452569902485
1117 => 0.02020423680586
1118 => 0.020085579925405
1119 => 0.019913747178542
1120 => 0.020296142362441
1121 => 0.02215294483069
1122 => 0.022110139523914
1123 => 0.021837834001663
1124 => 0.0220443753403
1125 => 0.021260327519784
1126 => 0.021462394495568
1127 => 0.020434370178364
1128 => 0.020899080103828
1129 => 0.02129510667888
1130 => 0.021374614877095
1201 => 0.021553750907463
1202 => 0.020023053141216
1203 => 0.020710291499335
1204 => 0.021113979649205
1205 => 0.019290101901794
1206 => 0.021077927450353
1207 => 0.0199964070986
1208 => 0.019629322847325
1209 => 0.020123553431995
1210 => 0.019930951292494
1211 => 0.019765363282928
1212 => 0.019672962328428
1213 => 0.02003587072357
1214 => 0.020018940613167
1215 => 0.01942515204123
1216 => 0.018650579055058
1217 => 0.018910551173709
1218 => 0.018816100865751
1219 => 0.018473800765381
1220 => 0.018704469703559
1221 => 0.017688720438701
1222 => 0.015941176622566
1223 => 0.01709565759622
1224 => 0.017051211334568
1225 => 0.017028799513965
1226 => 0.017896360058155
1227 => 0.017812964129859
1228 => 0.017661599703385
1229 => 0.018471020838987
1230 => 0.018175571236242
1231 => 0.019086077295222
]
'min_raw' => 0.0081733891538475
'max_raw' => 0.026886747291683
'avg_raw' => 0.017530068222765
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008173'
'max' => '$0.026886'
'avg' => '$0.01753'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.004452651683759
'max_diff' => 0.017773498837013
'year' => 2029
]
4 => [
'items' => [
101 => 0.019685795473506
102 => 0.019533687544642
103 => 0.020097725390008
104 => 0.018916540406253
105 => 0.01930888267694
106 => 0.019389743875166
107 => 0.018461032707817
108 => 0.017826608735103
109 => 0.017784299889086
110 => 0.016684296149408
111 => 0.017271909268224
112 => 0.017788984495699
113 => 0.017541345588397
114 => 0.017462950508347
115 => 0.017863453970503
116 => 0.017894576519593
117 => 0.017184979102127
118 => 0.017332526875246
119 => 0.017947825616928
120 => 0.01731702292565
121 => 0.01609147633753
122 => 0.015787523839169
123 => 0.015746970972932
124 => 0.014922627690601
125 => 0.015807835398515
126 => 0.015421418511919
127 => 0.016642104826692
128 => 0.015944855350366
129 => 0.015914798319016
130 => 0.015869362707723
131 => 0.015159816391429
201 => 0.015315161940676
202 => 0.015831554206171
203 => 0.016015808784075
204 => 0.015996589522046
205 => 0.015829023602353
206 => 0.015905734422312
207 => 0.015658622143403
208 => 0.015571361654523
209 => 0.015295943548728
210 => 0.014891155019404
211 => 0.014947443347119
212 => 0.014145451351847
213 => 0.013708483547887
214 => 0.013587536618893
215 => 0.013425801330724
216 => 0.013605805050053
217 => 0.01414317940929
218 => 0.013494991921721
219 => 0.012383719939349
220 => 0.012450509279005
221 => 0.012600565095279
222 => 0.012320937074371
223 => 0.012056292619983
224 => 0.01228637950179
225 => 0.01181551891322
226 => 0.012657466347844
227 => 0.012634694029268
228 => 0.012948519967216
301 => 0.013144761766572
302 => 0.012692487953094
303 => 0.012578742312083
304 => 0.012643536998654
305 => 0.011572625161583
306 => 0.012861003622911
307 => 0.012872145573346
308 => 0.01277674142925
309 => 0.013462763185685
310 => 0.014910483067315
311 => 0.014365792613448
312 => 0.014154872006355
313 => 0.013753911778089
314 => 0.014288167475591
315 => 0.01424714497371
316 => 0.014061625662882
317 => 0.013949423004838
318 => 0.014156159842606
319 => 0.013923806022784
320 => 0.013882068892088
321 => 0.013629187290516
322 => 0.013538920064134
323 => 0.013472089803364
324 => 0.013398516252861
325 => 0.013560801171884
326 => 0.013193042195018
327 => 0.012749560920775
328 => 0.012712690251356
329 => 0.012814493411325
330 => 0.012769453091393
331 => 0.012712474615632
401 => 0.012603687188241
402 => 0.01257141228241
403 => 0.012676290068803
404 => 0.01255788916272
405 => 0.012732596149277
406 => 0.012685085515912
407 => 0.012419694980056
408 => 0.012088920112218
409 => 0.01208597552207
410 => 0.012014710619374
411 => 0.01192394405104
412 => 0.011898694868188
413 => 0.012267002226369
414 => 0.013029387435292
415 => 0.012879712976449
416 => 0.012987868112219
417 => 0.013519884335134
418 => 0.013688996294113
419 => 0.013568964631266
420 => 0.013404657887931
421 => 0.013411886550767
422 => 0.013973372431778
423 => 0.014008391617444
424 => 0.014096873802005
425 => 0.014210598414228
426 => 0.013588332424487
427 => 0.01338257787861
428 => 0.013285079959945
429 => 0.012984824106902
430 => 0.013308624302418
501 => 0.013119959794997
502 => 0.013145417082746
503 => 0.013128837990703
504 => 0.013137891296032
505 => 0.012657231006377
506 => 0.012832358353166
507 => 0.012541175172622
508 => 0.01215131358072
509 => 0.012150006627961
510 => 0.012245424700262
511 => 0.012188666297148
512 => 0.012035930893759
513 => 0.012057626236919
514 => 0.011867552201919
515 => 0.01208070466617
516 => 0.012086817116148
517 => 0.012004741806918
518 => 0.012333132587469
519 => 0.012467674558202
520 => 0.012413650831443
521 => 0.012463884109516
522 => 0.012885932625953
523 => 0.0129547449494
524 => 0.012985306837988
525 => 0.012944357955955
526 => 0.012471598381631
527 => 0.012492567279081
528 => 0.012338711422674
529 => 0.01220871943694
530 => 0.012213918434651
531 => 0.012280751213094
601 => 0.012572613876242
602 => 0.013186821644594
603 => 0.013210130380423
604 => 0.013238381248211
605 => 0.013123470771167
606 => 0.013088812671745
607 => 0.013134535650897
608 => 0.01336519979518
609 => 0.013958530598979
610 => 0.013748807865684
611 => 0.013578300018987
612 => 0.013727881369126
613 => 0.013704854492729
614 => 0.013510484482513
615 => 0.013505029163696
616 => 0.01313197097024
617 => 0.012994059850244
618 => 0.012878810995906
619 => 0.012752962255617
620 => 0.012678354903886
621 => 0.01279298570458
622 => 0.012819203124971
623 => 0.012568560875849
624 => 0.012534399263449
625 => 0.01273907913457
626 => 0.012649007154524
627 => 0.012741648419679
628 => 0.012763141987857
629 => 0.012759681028342
630 => 0.012665635536473
701 => 0.012725577328513
702 => 0.01258379712083
703 => 0.012429632439673
704 => 0.012331284977893
705 => 0.012245463773593
706 => 0.012293082365697
707 => 0.012123330779659
708 => 0.012069023830862
709 => 0.012705270398103
710 => 0.013175272578127
711 => 0.013168438560288
712 => 0.013126838234261
713 => 0.013065028588102
714 => 0.013360678034575
715 => 0.013257679679121
716 => 0.013332619588514
717 => 0.013351694940673
718 => 0.013409430286528
719 => 0.013430065710151
720 => 0.01336769112774
721 => 0.013158354410755
722 => 0.012636707215165
723 => 0.012393879037458
724 => 0.012313741694191
725 => 0.012316654534417
726 => 0.012236305397513
727 => 0.012259971819327
728 => 0.012228075181826
729 => 0.012167670667025
730 => 0.012289352557123
731 => 0.012303375261412
801 => 0.012274973254272
802 => 0.012281662955121
803 => 0.012046506466665
804 => 0.012064384903749
805 => 0.011964835494182
806 => 0.011946171179974
807 => 0.011694518941347
808 => 0.011248680523043
809 => 0.011495718285366
810 => 0.011197331407246
811 => 0.011084327775203
812 => 0.011619269393624
813 => 0.011565576092105
814 => 0.011473676499823
815 => 0.011337737849283
816 => 0.011287316881472
817 => 0.01098097504239
818 => 0.010962874732267
819 => 0.011114706019641
820 => 0.011044641104714
821 => 0.010946243428497
822 => 0.010589857019652
823 => 0.010189160700625
824 => 0.010201255203809
825 => 0.010328709247671
826 => 0.010699299069721
827 => 0.010554503214977
828 => 0.010449452161019
829 => 0.010429779256436
830 => 0.01067602684531
831 => 0.011024518774031
901 => 0.01118802338992
902 => 0.011025995281283
903 => 0.010839866114295
904 => 0.01085119493425
905 => 0.01092656049801
906 => 0.01093448035315
907 => 0.010813329399828
908 => 0.010847432683542
909 => 0.01079562667711
910 => 0.010477693311264
911 => 0.010471942904854
912 => 0.010393916929507
913 => 0.010391554333983
914 => 0.010258812685427
915 => 0.010240241211194
916 => 0.0099766746111432
917 => 0.01015015494545
918 => 0.010033793445323
919 => 0.0098584092177296
920 => 0.0098281729107862
921 => 0.009827263970888
922 => 0.010007344357431
923 => 0.010148050601285
924 => 0.010035817603437
925 => 0.010010264325372
926 => 0.010283106482277
927 => 0.0102483848308
928 => 0.010218316104551
929 => 0.010993315144107
930 => 0.010379842930369
1001 => 0.010112334029409
1002 => 0.0097812409659092
1003 => 0.009889046536901
1004 => 0.0099117627547023
1005 => 0.0091155436209949
1006 => 0.0087925176176127
1007 => 0.00868166726623
1008 => 0.0086178713218154
1009 => 0.0086469439347842
1010 => 0.0083561826445689
1011 => 0.0085515790403414
1012 => 0.0082998043404551
1013 => 0.0082575934926734
1014 => 0.0087077978449704
1015 => 0.0087704411505369
1016 => 0.0085031853472408
1017 => 0.0086748068377413
1018 => 0.0086125744995687
1019 => 0.0083041202950474
1020 => 0.0082923396132702
1021 => 0.008137568136131
1022 => 0.0078953807440716
1023 => 0.0077846946071452
1024 => 0.0077270483060128
1025 => 0.007750834293364
1026 => 0.007738807370296
1027 => 0.007660323561953
1028 => 0.0077433059703204
1029 => 0.0075313202076403
1030 => 0.0074469057688557
1031 => 0.0074087777252568
1101 => 0.007220628159433
1102 => 0.0075200577891504
1103 => 0.0075790491983198
1104 => 0.0076381568387887
1105 => 0.0081526484945699
1106 => 0.0081269459453854
1107 => 0.0083592844723642
1108 => 0.0083502562244489
1109 => 0.00828398951292
1110 => 0.0080044211573243
1111 => 0.008115852121038
1112 => 0.0077728849349439
1113 => 0.0080298592702673
1114 => 0.0079125869151305
1115 => 0.0079902093690302
1116 => 0.0078506371979841
1117 => 0.0079278822002347
1118 => 0.0075930382498709
1119 => 0.0072803656804027
1120 => 0.007406194249838
1121 => 0.0075429842950565
1122 => 0.0078395799665457
1123 => 0.0076629300314679
1124 => 0.0077264600279954
1125 => 0.0075136451744211
1126 => 0.0070745473439398
1127 => 0.0070770325899744
1128 => 0.0070094869550211
1129 => 0.0069511176645972
1130 => 0.0076832204015052
1201 => 0.0075921718533391
1202 => 0.0074470979079758
1203 => 0.007641285148854
1204 => 0.0076926313375081
1205 => 0.0076940930913149
1206 => 0.0078357670895615
1207 => 0.0079113785278222
1208 => 0.0079247053715343
1209 => 0.0081476324688447
1210 => 0.0082223546913836
1211 => 0.0085301249509366
1212 => 0.0079049634255535
1213 => 0.0078920886353372
1214 => 0.0076440177615615
1215 => 0.0074866872915676
1216 => 0.0076547903134441
1217 => 0.0078037066424758
1218 => 0.0076486450070072
1219 => 0.0076688927830696
1220 => 0.0074607352064541
1221 => 0.0075351417453698
1222 => 0.0075992306803272
1223 => 0.0075638445374172
1224 => 0.0075108697687723
1225 => 0.0077914972017146
1226 => 0.0077756631021602
1227 => 0.0080369898193129
1228 => 0.0082407126829863
1229 => 0.0086058204745068
1230 => 0.0082248114605555
1231 => 0.0082109259777135
]
'min_raw' => 0.0069511176645972
'max_raw' => 0.020097725390008
'avg_raw' => 0.013524421527303
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006951'
'max' => '$0.020097'
'avg' => '$0.013524'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012222714892502
'max_diff' => -0.0067890219016751
'year' => 2030
]
5 => [
'items' => [
101 => 0.008346658799796
102 => 0.0082223339113957
103 => 0.0083009029493154
104 => 0.0085931617878254
105 => 0.0085993367565476
106 => 0.0084958980744518
107 => 0.0084896038212458
108 => 0.0085094703516375
109 => 0.0086258292406614
110 => 0.0085851698694889
111 => 0.008632221923179
112 => 0.0086910612368051
113 => 0.0089344455853147
114 => 0.0089931247277665
115 => 0.0088505648332558
116 => 0.0088634363955546
117 => 0.008810115081651
118 => 0.0087586073605342
119 => 0.0088743891955062
120 => 0.0090859827746152
121 => 0.0090846664619413
122 => 0.0091337520595031
123 => 0.0091643319801371
124 => 0.009033060574906
125 => 0.0089476077170839
126 => 0.0089803757802795
127 => 0.0090327726269249
128 => 0.0089633841890995
129 => 0.0085350866069899
130 => 0.0086650047336465
131 => 0.008643380004699
201 => 0.0086125837610209
202 => 0.0087432174420012
203 => 0.0087306175047877
204 => 0.0083532004672783
205 => 0.008377361481493
206 => 0.0083546697785764
207 => 0.0084279913129856
208 => 0.0082183743079169
209 => 0.0082828510868839
210 => 0.0083232903182198
211 => 0.0083471093361455
212 => 0.0084331599617464
213 => 0.0084230629140247
214 => 0.0084325323150831
215 => 0.0085601226763264
216 => 0.0092054309397702
217 => 0.009240553644757
218 => 0.0090675965998761
219 => 0.0091366895278791
220 => 0.0090040462150756
221 => 0.0090930905595936
222 => 0.0091540124386317
223 => 0.0088787181818622
224 => 0.0088624170426213
225 => 0.0087292262636819
226 => 0.0088007954439726
227 => 0.008686923732124
228 => 0.0087148638671482
301 => 0.0086367408138432
302 => 0.0087773467556475
303 => 0.0089345660465392
304 => 0.0089742858481964
305 => 0.0088698001504861
306 => 0.0087941456194009
307 => 0.008661321184967
308 => 0.0088822111796161
309 => 0.0089468061455521
310 => 0.008881871889759
311 => 0.0088668252038502
312 => 0.0088383117612418
313 => 0.0088728744654913
314 => 0.0089464543474952
315 => 0.0089117554339492
316 => 0.0089346746776625
317 => 0.008847330154849
318 => 0.0090331040312033
319 => 0.0093281576557721
320 => 0.0093291063014212
321 => 0.0092944072008352
322 => 0.0092802090764779
323 => 0.0093158124593967
324 => 0.0093351258341029
325 => 0.0094502606459183
326 => 0.0095738048861695
327 => 0.010150331948847
328 => 0.0099884454566573
329 => 0.010499974564413
330 => 0.010904527674906
331 => 0.01102583546378
401 => 0.010914238005989
402 => 0.010532469131262
403 => 0.010513737728943
404 => 0.011084261606447
405 => 0.010923062479403
406 => 0.010903888356172
407 => 0.010699908080193
408 => 0.010820485686745
409 => 0.010794113595425
410 => 0.01075248395911
411 => 0.010982537632904
412 => 0.011413177573213
413 => 0.0113460583
414 => 0.01129595687612
415 => 0.011076427020983
416 => 0.011208633027544
417 => 0.011161557000847
418 => 0.011363825486722
419 => 0.011244006116485
420 => 0.010921841237472
421 => 0.010973147056324
422 => 0.010965392285017
423 => 0.011124984928997
424 => 0.011077079178607
425 => 0.010956037918394
426 => 0.011411705692713
427 => 0.011382117162006
428 => 0.011424066933669
429 => 0.011442534520495
430 => 0.011719891464956
501 => 0.01183351573067
502 => 0.011859310428259
503 => 0.011967244692671
504 => 0.011856624925435
505 => 0.012299182864937
506 => 0.012593458070734
507 => 0.012935273865531
508 => 0.013434758613154
509 => 0.013622569498752
510 => 0.013588643143299
511 => 0.013967346778406
512 => 0.014647868792584
513 => 0.013726196099233
514 => 0.014696719683328
515 => 0.014389463121837
516 => 0.013660963341852
517 => 0.013614056544469
518 => 0.014107405053532
519 => 0.015201604563597
520 => 0.014927519996634
521 => 0.01520205286776
522 => 0.014881795690919
523 => 0.01486589222275
524 => 0.015186498691509
525 => 0.015935613181113
526 => 0.015579736967239
527 => 0.015069501150222
528 => 0.015446251337359
529 => 0.015119875458677
530 => 0.014384459257152
531 => 0.014927310409331
601 => 0.014564321303379
602 => 0.014670260822058
603 => 0.015433209932214
604 => 0.015341409876767
605 => 0.015460207648972
606 => 0.01525053269051
607 => 0.0150546632166
608 => 0.014689058298089
609 => 0.014580820705823
610 => 0.014610733682345
611 => 0.014580805882438
612 => 0.014376253290614
613 => 0.014332080177885
614 => 0.014258456388068
615 => 0.014281275479087
616 => 0.014142841214833
617 => 0.014404095273459
618 => 0.014452586328903
619 => 0.014642705245991
620 => 0.014662444022658
621 => 0.015191922500574
622 => 0.014900294652463
623 => 0.015095943790913
624 => 0.015078443090449
625 => 0.013676752141089
626 => 0.013869892786687
627 => 0.014170359020364
628 => 0.014034999389365
629 => 0.013843632540408
630 => 0.013689093549433
701 => 0.013454951175685
702 => 0.01378450207043
703 => 0.01421782645319
704 => 0.014673433844099
705 => 0.015220816271698
706 => 0.015098646886092
707 => 0.014663200910367
708 => 0.014682734698744
709 => 0.014803484892232
710 => 0.014647102420353
711 => 0.014600982176448
712 => 0.014797148678944
713 => 0.014798499569835
714 => 0.014618562636486
715 => 0.01441859566318
716 => 0.01441775779426
717 => 0.014382175602812
718 => 0.014888125683731
719 => 0.015166347070914
720 => 0.015198244704579
721 => 0.015164200106022
722 => 0.015177302520824
723 => 0.015015411625813
724 => 0.015385446204556
725 => 0.015725026526638
726 => 0.015634011746244
727 => 0.015497567651921
728 => 0.015388883358755
729 => 0.015608409180811
730 => 0.01559863404152
731 => 0.015722060588768
801 => 0.015716461247638
802 => 0.015674957542106
803 => 0.015634013228472
804 => 0.015796352803895
805 => 0.015749601613267
806 => 0.015702777805127
807 => 0.015608865489536
808 => 0.015621629732943
809 => 0.015485209197617
810 => 0.015422094815796
811 => 0.014473005945785
812 => 0.014219378387344
813 => 0.014299174780295
814 => 0.014325445824767
815 => 0.014215066786301
816 => 0.014373321973412
817 => 0.014348658070135
818 => 0.014444610889887
819 => 0.014384663733893
820 => 0.014387123986085
821 => 0.014563415789783
822 => 0.014614594050395
823 => 0.014588564373988
824 => 0.014606794667098
825 => 0.015026904077295
826 => 0.014967177953508
827 => 0.014935449640632
828 => 0.014944238600134
829 => 0.015051585561686
830 => 0.015081636849994
831 => 0.014954307429767
901 => 0.015014356720429
902 => 0.015270038978677
903 => 0.015359513298701
904 => 0.015645072378109
905 => 0.015523761805769
906 => 0.015746432611498
907 => 0.016430846754237
908 => 0.016977604129314
909 => 0.016474783451489
910 => 0.017478833741686
911 => 0.018260630915064
912 => 0.018230624237399
913 => 0.018094299816926
914 => 0.017204244520188
915 => 0.016385202366153
916 => 0.01707036590637
917 => 0.017072112529139
918 => 0.017013256373393
919 => 0.01664770584487
920 => 0.017000536007377
921 => 0.017028542384386
922 => 0.017012866260758
923 => 0.016732599527618
924 => 0.016304684028063
925 => 0.016388297692391
926 => 0.016525258580233
927 => 0.016265963046514
928 => 0.01618310241222
929 => 0.016337156096253
930 => 0.016833549164565
1001 => 0.01673970893041
1002 => 0.016737258382658
1003 => 0.017138746698827
1004 => 0.016851367711052
1005 => 0.016389352328466
1006 => 0.016272687351129
1007 => 0.015858605276528
1008 => 0.016144613240365
1009 => 0.016154906157813
1010 => 0.015998262518951
1011 => 0.016402063096448
1012 => 0.016398342003038
1013 => 0.016781690553587
1014 => 0.017514509003097
1015 => 0.017297778527771
1016 => 0.017045744565176
1017 => 0.017073147645054
1018 => 0.017373691794749
1019 => 0.017191975941088
1020 => 0.017257322229032
1021 => 0.017373592885316
1022 => 0.01744374185909
1023 => 0.017063054287259
1024 => 0.016974297803874
1025 => 0.01679273318816
1026 => 0.016745366368984
1027 => 0.016893246960013
1028 => 0.016854285648975
1029 => 0.016154041077958
1030 => 0.016080861624163
1031 => 0.016083105933534
1101 => 0.015899092717473
1102 => 0.015618428394746
1103 => 0.016355997477275
1104 => 0.016296760357675
1105 => 0.016231367162226
1106 => 0.01623937745554
1107 => 0.01655953119573
1108 => 0.016373825858269
1109 => 0.016867553934417
1110 => 0.016766058284785
1111 => 0.016661959654719
1112 => 0.016647570053122
1113 => 0.016607500961824
1114 => 0.016470089138711
1115 => 0.016304156105133
1116 => 0.016194592743491
1117 => 0.014938655762937
1118 => 0.015171750361078
1119 => 0.015439904448999
1120 => 0.015532470165589
1121 => 0.015374130102009
1122 => 0.016476341369516
1123 => 0.016677725989261
1124 => 0.016067718840058
1125 => 0.01595361140887
1126 => 0.016483822233708
1127 => 0.016164040290693
1128 => 0.016308038080052
1129 => 0.015996793622038
1130 => 0.016629218331594
1201 => 0.016624400314909
1202 => 0.016378372818932
1203 => 0.016586313573808
1204 => 0.016550178750478
1205 => 0.016272414313458
1206 => 0.016638023959687
1207 => 0.016638205297511
1208 => 0.016401409181732
1209 => 0.016124883159837
1210 => 0.016075446838375
1211 => 0.016038203210989
1212 => 0.016298878430791
1213 => 0.016532599017755
1214 => 0.016967495085849
1215 => 0.017076838290243
1216 => 0.017503612096384
1217 => 0.017249489074066
1218 => 0.017362138518416
1219 => 0.017484435425493
1220 => 0.017543069060066
1221 => 0.017447528698984
1222 => 0.018110484087027
1223 => 0.018166457834206
1224 => 0.018185225347464
1225 => 0.017961680520692
1226 => 0.018160240648184
1227 => 0.018067340940151
1228 => 0.01830904017217
1229 => 0.018346941697922
1230 => 0.018314840453996
1231 => 0.018326870996505
]
'min_raw' => 0.0082183743079169
'max_raw' => 0.018346941697922
'avg_raw' => 0.013282658002919
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008218'
'max' => '$0.018346'
'avg' => '$0.013282'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012672566433197
'max_diff' => -0.0017507836920863
'year' => 2031
]
6 => [
'items' => [
101 => 0.017761155526155
102 => 0.01773182019463
103 => 0.017331830867753
104 => 0.017494829475027
105 => 0.017190111391455
106 => 0.0172867406347
107 => 0.017329333884405
108 => 0.017307085587905
109 => 0.017504045171722
110 => 0.017336589289293
111 => 0.016894645683267
112 => 0.016452581670001
113 => 0.016447031916412
114 => 0.016330644264797
115 => 0.016246517310141
116 => 0.016262723146172
117 => 0.016319834626105
118 => 0.016243197887104
119 => 0.016259552220951
120 => 0.016531143131168
121 => 0.016585608751315
122 => 0.016400513292966
123 => 0.015657328318549
124 => 0.015474948861689
125 => 0.015606039598539
126 => 0.015543386669649
127 => 0.012544726153998
128 => 0.01324921696239
129 => 0.012830632446291
130 => 0.013023535449457
131 => 0.012596269050454
201 => 0.012800182971009
202 => 0.012762527515627
203 => 0.013895327888123
204 => 0.013877640768422
205 => 0.013886106656641
206 => 0.013482007754189
207 => 0.014125748278277
208 => 0.014442878008603
209 => 0.014384185735654
210 => 0.01439895731628
211 => 0.014145132620539
212 => 0.013888564234529
213 => 0.013603990408853
214 => 0.014132693402572
215 => 0.014073910654932
216 => 0.014208737128654
217 => 0.014551638812551
218 => 0.014602132388062
219 => 0.014669996265604
220 => 0.014645671896385
221 => 0.01522517705584
222 => 0.015154995157332
223 => 0.015324113340027
224 => 0.014976224407197
225 => 0.014582555057779
226 => 0.014657378731082
227 => 0.014650172609649
228 => 0.014558430413004
229 => 0.014475609659944
301 => 0.014337736440702
302 => 0.014773987707783
303 => 0.014756276703027
304 => 0.015042997283222
305 => 0.014992316635618
306 => 0.014653858867256
307 => 0.014665946952667
308 => 0.014747245136388
309 => 0.015028619078493
310 => 0.015112150021909
311 => 0.015073455160786
312 => 0.015165043026909
313 => 0.015237430341954
314 => 0.015174133759184
315 => 0.016070279890533
316 => 0.015698137537706
317 => 0.015879517131124
318 => 0.015922775095403
319 => 0.015811970729519
320 => 0.015836000228872
321 => 0.015872398372746
322 => 0.016093400774862
323 => 0.016673375025574
324 => 0.016930241673197
325 => 0.017703037656145
326 => 0.016908912473868
327 => 0.016861792371968
328 => 0.0170009962647
329 => 0.017454709315454
330 => 0.017822401127989
331 => 0.017944385714857
401 => 0.017960507991758
402 => 0.018189359186103
403 => 0.01832053242288
404 => 0.018161570631726
405 => 0.018026867157716
406 => 0.017544376033822
407 => 0.017600225695193
408 => 0.01798497447859
409 => 0.01852845479673
410 => 0.018994817449183
411 => 0.018831513502673
412 => 0.020077407339923
413 => 0.020200932624866
414 => 0.020183865424537
415 => 0.020465274406665
416 => 0.019906734885084
417 => 0.019667948418414
418 => 0.018055991577746
419 => 0.018508885699109
420 => 0.019167193902049
421 => 0.01908006434286
422 => 0.018601983329257
423 => 0.018994454781863
424 => 0.018864691445915
425 => 0.018762341718966
426 => 0.019231225659588
427 => 0.018715668506183
428 => 0.019162050825063
429 => 0.018589560883866
430 => 0.018832259461345
501 => 0.018694492010759
502 => 0.018783644435432
503 => 0.018262461182477
504 => 0.018543679014763
505 => 0.018250761596095
506 => 0.0182506227151
507 => 0.018244156546848
508 => 0.018588772590916
509 => 0.018600010507741
510 => 0.018345338730488
511 => 0.018308636548665
512 => 0.018444343751257
513 => 0.018285466158795
514 => 0.018359803984344
515 => 0.018287717775802
516 => 0.018271489651891
517 => 0.018142181199582
518 => 0.018086471562918
519 => 0.018108316746914
520 => 0.018033747871969
521 => 0.017988817427541
522 => 0.018235218750568
523 => 0.018103576463476
524 => 0.018215042682055
525 => 0.018088012857826
526 => 0.017647672142787
527 => 0.01739442754105
528 => 0.016562664749948
529 => 0.016798551645706
530 => 0.016954944901636
531 => 0.016903256931484
601 => 0.01701430269196
602 => 0.017021119999777
603 => 0.016985017891069
604 => 0.016943216274151
605 => 0.01692286955881
606 => 0.017074517305211
607 => 0.017162553926225
608 => 0.016970641057141
609 => 0.016925678557061
610 => 0.017119713063505
611 => 0.017238074000346
612 => 0.018111984656713
613 => 0.018047242532595
614 => 0.018209732559131
615 => 0.018191438675756
616 => 0.018361754110256
617 => 0.018640147864992
618 => 0.018074095521496
619 => 0.01817234263571
620 => 0.018148254712162
621 => 0.018411240345266
622 => 0.018412061357706
623 => 0.018254388333554
624 => 0.0183398654379
625 => 0.018292154463196
626 => 0.018378374643011
627 => 0.018046377862056
628 => 0.018450714104421
629 => 0.01867994669899
630 => 0.018683129593788
701 => 0.018791784024311
702 => 0.018902183218563
703 => 0.019114084858187
704 => 0.018896273396844
705 => 0.018504451781407
706 => 0.018532740036466
707 => 0.018303015166697
708 => 0.018306876883261
709 => 0.018286262737594
710 => 0.018348127340501
711 => 0.018059953663446
712 => 0.018127587449457
713 => 0.018032899752978
714 => 0.01817213680315
715 => 0.018022340753874
716 => 0.018148243096236
717 => 0.01820257837347
718 => 0.018403076716221
719 => 0.017992726985629
720 => 0.017155996106719
721 => 0.017331887081847
722 => 0.017071730513694
723 => 0.017095808994563
724 => 0.017144451357979
725 => 0.016986785543356
726 => 0.017016863212166
727 => 0.017015788626182
728 => 0.017006528424718
729 => 0.016965513456992
730 => 0.016906033639225
731 => 0.017142982926285
801 => 0.017183245227417
802 => 0.017272743335388
803 => 0.017539028997564
804 => 0.017512420780464
805 => 0.017555819886518
806 => 0.017461079881678
807 => 0.017100203711666
808 => 0.017119801023926
809 => 0.016875422226027
810 => 0.017266494020087
811 => 0.017173883057358
812 => 0.017114176167217
813 => 0.017097884589062
814 => 0.017364830321888
815 => 0.017444704669012
816 => 0.017394932336053
817 => 0.017292847829062
818 => 0.017488880261059
819 => 0.017541330269917
820 => 0.017553071892619
821 => 0.017900403776627
822 => 0.017572483886559
823 => 0.017651417463342
824 => 0.018267234696817
825 => 0.017708773443024
826 => 0.018004602824331
827 => 0.017990123515537
828 => 0.018141459816693
829 => 0.017977709521667
830 => 0.017979739402827
831 => 0.018114115785844
901 => 0.017925408390805
902 => 0.017878681785995
903 => 0.017814129316112
904 => 0.017955077272496
905 => 0.01803956919782
906 => 0.018720512063453
907 => 0.019160432209419
908 => 0.019141334115676
909 => 0.019315854942355
910 => 0.019237231711508
911 => 0.018983336559344
912 => 0.019416704624873
913 => 0.01927956883605
914 => 0.019290874143861
915 => 0.019290453359739
916 => 0.019381636670688
917 => 0.019317024938053
918 => 0.019189668580771
919 => 0.019274213674207
920 => 0.019525282376288
921 => 0.020304607331277
922 => 0.020740727900771
923 => 0.020278352325384
924 => 0.02059729280583
925 => 0.020406042167676
926 => 0.020371286237509
927 => 0.020571604428746
928 => 0.020772273250458
929 => 0.02075949151403
930 => 0.020613816253925
1001 => 0.020531527995865
1002 => 0.021154642254488
1003 => 0.021613742225767
1004 => 0.021582434685571
1005 => 0.021720615986239
1006 => 0.022126320558786
1007 => 0.022163413100444
1008 => 0.022158740292758
1009 => 0.022066802558051
1010 => 0.022466271397119
1011 => 0.022799515330656
1012 => 0.022045521628803
1013 => 0.022332632559966
1014 => 0.022461525907102
1015 => 0.02265077958163
1016 => 0.022970082253157
1017 => 0.023316929645287
1018 => 0.023365977669522
1019 => 0.023331175749163
1020 => 0.023102420570295
1021 => 0.023481945125513
1022 => 0.023704261709014
1023 => 0.023836646146864
1024 => 0.024172351054582
1025 => 0.022462321908533
1026 => 0.021251878284996
1027 => 0.021062850034163
1028 => 0.021447246415401
1029 => 0.02154860867563
1030 => 0.021507749675629
1031 => 0.020145285328618
1101 => 0.021055676941344
1102 => 0.022035181768736
1103 => 0.022072808538316
1104 => 0.022563169135388
1105 => 0.022722850646355
1106 => 0.023117655200031
1107 => 0.023092960067705
1108 => 0.023189088693813
1109 => 0.023166990387386
1110 => 0.023898282687164
1111 => 0.024705006691777
1112 => 0.024677072404722
1113 => 0.024561096284334
1114 => 0.024733340599978
1115 => 0.025565966226536
1116 => 0.025489311401396
1117 => 0.025563775034577
1118 => 0.026545487573013
1119 => 0.027821853519961
1120 => 0.027228853392558
1121 => 0.028515493037832
1122 => 0.029325364492695
1123 => 0.03072595343161
1124 => 0.030550592798412
1125 => 0.031095831794335
1126 => 0.030236660666119
1127 => 0.028263830088601
1128 => 0.027951622098017
1129 => 0.028576670401532
1130 => 0.030113290664403
1201 => 0.028528276761087
1202 => 0.028848923009401
1203 => 0.028756576868316
1204 => 0.028751656134903
1205 => 0.028939460515193
1206 => 0.028667040466364
1207 => 0.027557152180005
1208 => 0.028065807441031
1209 => 0.027869391217117
1210 => 0.028087329661349
1211 => 0.029263453560218
1212 => 0.028743461149236
1213 => 0.02819569138502
1214 => 0.028882716229189
1215 => 0.029757534943165
1216 => 0.029702790360245
1217 => 0.029596562987919
1218 => 0.030195361123836
1219 => 0.031184400212978
1220 => 0.031451733504492
1221 => 0.031649073474899
1222 => 0.031676283322732
1223 => 0.031956561666239
1224 => 0.030449434373968
1225 => 0.032841284092576
1226 => 0.033254290465465
1227 => 0.033176662384722
1228 => 0.033635701586223
1229 => 0.033500640608441
1230 => 0.033304958442053
1231 => 0.03403263321687
]
'min_raw' => 0.012544726153998
'max_raw' => 0.03403263321687
'avg_raw' => 0.023288679685434
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012544'
'max' => '$0.034032'
'avg' => '$0.023288'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043263518460809
'max_diff' => 0.015685691518948
'year' => 2032
]
7 => [
'items' => [
101 => 0.033198412807868
102 => 0.03201434196272
103 => 0.031364737278806
104 => 0.032220189128699
105 => 0.032742583722274
106 => 0.03308785331809
107 => 0.033192331689167
108 => 0.030566428375425
109 => 0.029151212128593
110 => 0.030058349517325
111 => 0.031165119738857
112 => 0.030443286209505
113 => 0.030471580717244
114 => 0.029442435798902
115 => 0.031256176228221
116 => 0.030991929503628
117 => 0.032362841978264
118 => 0.032035662713932
119 => 0.033153588618482
120 => 0.032859201262037
121 => 0.034081186719665
122 => 0.034568669802648
123 => 0.03538722976966
124 => 0.035989365813533
125 => 0.036342951615522
126 => 0.036321723650238
127 => 0.037722806753466
128 => 0.036896636997608
129 => 0.035858773070988
130 => 0.035840001386975
131 => 0.036377525821216
201 => 0.03750402957276
202 => 0.037796115605572
203 => 0.037959351850805
204 => 0.037709349858937
205 => 0.036812601801072
206 => 0.036425390536302
207 => 0.036755305752476
208 => 0.036351847793033
209 => 0.037048329421342
210 => 0.038004747457459
211 => 0.037807250915088
212 => 0.038467452245899
213 => 0.039150691168083
214 => 0.040127753512986
215 => 0.040383193790457
216 => 0.040805426855594
217 => 0.041240043375956
218 => 0.041379630489053
219 => 0.041646145599292
220 => 0.041644740933105
221 => 0.042447902156347
222 => 0.043333813857414
223 => 0.043668225015664
224 => 0.044437185034521
225 => 0.043120367949802
226 => 0.044119188835066
227 => 0.045020150275683
228 => 0.043945986903899
301 => 0.045426470863936
302 => 0.045483954701256
303 => 0.046351892396824
304 => 0.045472071265622
305 => 0.044949636286403
306 => 0.046457886496026
307 => 0.047187681263025
308 => 0.046967861139938
309 => 0.045295019149387
310 => 0.044321353359318
311 => 0.041773082180603
312 => 0.044791619468914
313 => 0.04626186093011
314 => 0.045291211579187
315 => 0.045780750652492
316 => 0.048451517102864
317 => 0.049468372047845
318 => 0.049256873327642
319 => 0.049292613129791
320 => 0.049841289600879
321 => 0.052274423235338
322 => 0.050816433161974
323 => 0.051931011943215
324 => 0.052522180509872
325 => 0.053071290820766
326 => 0.051722849445307
327 => 0.049968547028374
328 => 0.049412885812325
329 => 0.045194699630645
330 => 0.044975124721235
331 => 0.044851870670782
401 => 0.044074771317308
402 => 0.043464184090906
403 => 0.04297862245882
404 => 0.041704363735249
405 => 0.042134388648197
406 => 0.04010348620129
407 => 0.041402785616057
408 => 0.038161416272939
409 => 0.040860924979698
410 => 0.039391705122209
411 => 0.040378246741972
412 => 0.040374804791198
413 => 0.03855826888591
414 => 0.037510528885876
415 => 0.038178189592548
416 => 0.038893974869074
417 => 0.039010108621999
418 => 0.039938142916921
419 => 0.040197137340604
420 => 0.039412372145553
421 => 0.038094246097935
422 => 0.038400416715542
423 => 0.037504324348083
424 => 0.035933956941805
425 => 0.037061822228978
426 => 0.037446925026755
427 => 0.037617008361076
428 => 0.036072732374917
429 => 0.035587487332203
430 => 0.035329146943063
501 => 0.037894899460309
502 => 0.038035457175063
503 => 0.037316344033525
504 => 0.040566803622381
505 => 0.039831124508875
506 => 0.04065305832442
507 => 0.038372634941123
508 => 0.038459750185362
509 => 0.037380161210304
510 => 0.037984658898175
511 => 0.037557419416257
512 => 0.037935821458758
513 => 0.038162634082822
514 => 0.039242045907953
515 => 0.040873250128858
516 => 0.039080817776491
517 => 0.03829982933246
518 => 0.038784350170691
519 => 0.040074693012309
520 => 0.042029628468795
521 => 0.040872267331813
522 => 0.041385884551139
523 => 0.041498087064322
524 => 0.040644691809749
525 => 0.042061094369102
526 => 0.042820156007492
527 => 0.043598796182807
528 => 0.04427486763003
529 => 0.043287790174122
530 => 0.044344104543939
531 => 0.043492901626454
601 => 0.042729284613729
602 => 0.04273044270553
603 => 0.042251414598784
604 => 0.041323237280536
605 => 0.041152067142257
606 => 0.042042515817993
607 => 0.042756571330131
608 => 0.042815384362205
609 => 0.043210722183222
610 => 0.043444679033395
611 => 0.045737774214015
612 => 0.046660076065138
613 => 0.047787849310411
614 => 0.048227180547263
615 => 0.04954941006122
616 => 0.048481602342469
617 => 0.048250575425692
618 => 0.04504327912281
619 => 0.045568473712731
620 => 0.046409360924934
621 => 0.045057145043221
622 => 0.045914814782977
623 => 0.046084136957533
624 => 0.045011197264993
625 => 0.045584300713766
626 => 0.044062307867154
627 => 0.040906425413788
628 => 0.042064607768429
629 => 0.04291741982141
630 => 0.041700351870838
701 => 0.043881899065205
702 => 0.042607484230531
703 => 0.042203555910639
704 => 0.0406276875239
705 => 0.041371436741704
706 => 0.042377368208247
707 => 0.041755819514009
708 => 0.04304562638056
709 => 0.044872336882523
710 => 0.046174159568713
711 => 0.046274097349762
712 => 0.045437112577888
713 => 0.046778386016382
714 => 0.04678815572908
715 => 0.045275193811196
716 => 0.044348513060699
717 => 0.044137969244434
718 => 0.044663948977012
719 => 0.045302585473578
720 => 0.046309537230637
721 => 0.046918017088292
722 => 0.048504609844277
723 => 0.048933896352867
724 => 0.049405552074271
725 => 0.050035829571304
726 => 0.050792639306325
727 => 0.049136782691301
728 => 0.049202572961518
729 => 0.047660662208503
730 => 0.046012909436537
731 => 0.047263348395177
801 => 0.048898130994674
802 => 0.048523110060075
803 => 0.04848091254395
804 => 0.048551877061458
805 => 0.048269123523809
806 => 0.046990239752357
807 => 0.046347992328571
808 => 0.047176655360048
809 => 0.04761705288173
810 => 0.048300071031158
811 => 0.048215874627477
812 => 0.049975256029611
813 => 0.050658898441548
814 => 0.050483993457867
815 => 0.050516180184188
816 => 0.051753882115982
817 => 0.053130461216954
818 => 0.054419809200626
819 => 0.055731389348401
820 => 0.054150228288414
821 => 0.053347412214609
822 => 0.054175713477729
823 => 0.053736205168333
824 => 0.056261750280757
825 => 0.056436613544744
826 => 0.05896197603151
827 => 0.061358845746022
828 => 0.059853414822719
829 => 0.061272968377296
830 => 0.062808331284471
831 => 0.065770295436066
901 => 0.064772810112964
902 => 0.064008751988056
903 => 0.06328672075192
904 => 0.064789153135088
905 => 0.066722008394092
906 => 0.067138326904223
907 => 0.067812921936548
908 => 0.067103667745615
909 => 0.067957886296807
910 => 0.070973653145169
911 => 0.070158766321832
912 => 0.069001496033098
913 => 0.071382154322553
914 => 0.072243705302932
915 => 0.078290521280983
916 => 0.085924876234781
917 => 0.082764203154031
918 => 0.080802271378527
919 => 0.081263371883414
920 => 0.084051179873317
921 => 0.084946535319071
922 => 0.082512650569981
923 => 0.083372339809726
924 => 0.088109312043504
925 => 0.090650545666661
926 => 0.087199209073204
927 => 0.077677108293851
928 => 0.068897296505566
929 => 0.071226097951897
930 => 0.070962084139006
1001 => 0.076051369854879
1002 => 0.070139331540596
1003 => 0.070238875103541
1004 => 0.075433401858371
1005 => 0.074047591176916
1006 => 0.071802755354181
1007 => 0.068913686291356
1008 => 0.063572974922181
1009 => 0.058842557925748
1010 => 0.068119995005726
1011 => 0.067719935048912
1012 => 0.067140588945883
1013 => 0.068429861006379
1014 => 0.07469020016589
1015 => 0.074545879085523
1016 => 0.07362778200549
1017 => 0.074324150548959
1018 => 0.071680678581619
1019 => 0.07236196149834
1020 => 0.068895905738522
1021 => 0.070462707697234
1022 => 0.071797938944713
1023 => 0.072066006386081
1024 => 0.072669976019345
1025 => 0.067509121630537
1026 => 0.069826193736387
1027 => 0.071187256518278
1028 => 0.065037925353806
1029 => 0.071065704012764
1030 => 0.067419282637492
1031 => 0.066181632455314
1101 => 0.067847965377604
1102 => 0.067198593817226
1103 => 0.06664030228199
1104 => 0.066328766012662
1105 => 0.067552337004339
1106 => 0.067495255955093
1107 => 0.065493256327815
1108 => 0.062881729425974
1109 => 0.06375824357468
1110 => 0.063439797767091
1111 => 0.062285709080063
1112 => 0.063063425509921
1113 => 0.059638755946104
1114 => 0.053746789960392
1115 => 0.057639203166352
1116 => 0.057489349492054
1117 => 0.057413786474149
1118 => 0.060338827420029
1119 => 0.060057652225259
1120 => 0.059547316493476
1121 => 0.062276336364138
1122 => 0.061280207400849
1123 => 0.064350042148204
1124 => 0.066372033857275
1125 => 0.065859191355275
1126 => 0.06776088433079
1127 => 0.063778436690357
1128 => 0.065101246048442
1129 => 0.065373875223809
1130 => 0.062242660682549
1201 => 0.060103655964476
1202 => 0.059961008736219
1203 => 0.056252269328088
1204 => 0.058233447984013
1205 => 0.059976803214484
1206 => 0.05914187134892
1207 => 0.058877556863162
1208 => 0.060227882248081
1209 => 0.060332814095244
1210 => 0.057940356859748
1211 => 0.058437824478275
1212 => 0.060512347144642
1213 => 0.058385551829759
1214 => 0.054253535942985
1215 => 0.053228738873475
1216 => 0.053092012053645
1217 => 0.050312681123456
1218 => 0.053297220713918
1219 => 0.051994389201993
1220 => 0.056110018337846
1221 => 0.053759193048008
1222 => 0.053657853668298
1223 => 0.053504664332612
1224 => 0.051112379388283
1225 => 0.051636137753451
1226 => 0.053377190329923
1227 => 0.053998417503569
1228 => 0.053933618419794
1229 => 0.05336865822247
1230 => 0.053627294107741
1231 => 0.052794137806569
]
'min_raw' => 0.029151212128593
'max_raw' => 0.090650545666661
'avg_raw' => 0.059900878897627
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029151'
'max' => '$0.09065'
'avg' => '$0.05990087'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016606485974596
'max_diff' => 0.056617912449791
'year' => 2033
]
8 => [
'items' => [
101 => 0.052499932975977
102 => 0.051571341603212
103 => 0.050206568815163
104 => 0.050396348841979
105 => 0.047692376836629
106 => 0.046219109377457
107 => 0.045811328362112
108 => 0.04526602654605
109 => 0.045872921653229
110 => 0.047684716823674
111 => 0.045499307454329
112 => 0.041752576379232
113 => 0.041977761300964
114 => 0.042483684962094
115 => 0.041540899566599
116 => 0.040648632311743
117 => 0.04142438629791
118 => 0.039836846949108
119 => 0.042675531507838
120 => 0.042598753045845
121 => 0.043656839106264
122 => 0.044318482033956
123 => 0.042793609295068
124 => 0.042410107924932
125 => 0.042628567734527
126 => 0.039017913707163
127 => 0.043361771641243
128 => 0.04339933750504
129 => 0.043077675772316
130 => 0.045390646020647
131 => 0.050271734678136
201 => 0.048435272783852
202 => 0.047724139231031
203 => 0.046372273827282
204 => 0.048173554211952
205 => 0.048035243982761
206 => 0.047409752673761
207 => 0.047031453578426
208 => 0.047728481260864
209 => 0.046945084134908
210 => 0.046804364484773
211 => 0.045951756509444
212 => 0.045647414253443
213 => 0.045422091363314
214 => 0.045174033001051
215 => 0.045721187935909
216 => 0.044481262869295
217 => 0.042986034790312
218 => 0.042861722754136
219 => 0.043204959215643
220 => 0.043053102632375
221 => 0.042860995723239
222 => 0.042494211316494
223 => 0.042385394218122
224 => 0.042738996997281
225 => 0.042339800075933
226 => 0.042928836878763
227 => 0.042768651461286
228 => 0.041873868740671
301 => 0.040758638179791
302 => 0.040748710288524
303 => 0.040508435693527
304 => 0.040202409871272
305 => 0.040117280488442
306 => 0.041359054460948
307 => 0.043929489420868
308 => 0.043424851532941
309 => 0.043789504124339
310 => 0.045583233964087
311 => 0.046153406740805
312 => 0.045748711609173
313 => 0.045194739952487
314 => 0.045219111893927
315 => 0.047112200743448
316 => 0.047230270372883
317 => 0.047528594235758
318 => 0.047912024705866
319 => 0.045814011476232
320 => 0.045120295659482
321 => 0.044791574619618
322 => 0.043779241047888
323 => 0.044870956014078
324 => 0.044234860455175
325 => 0.04432069147819
326 => 0.044264793911852
327 => 0.044295317762849
328 => 0.042674738037651
329 => 0.04326519211435
330 => 0.042283447691386
331 => 0.040969002115019
401 => 0.040964595632543
402 => 0.041286304325185
403 => 0.041094939406339
404 => 0.040579981330167
405 => 0.040653128694354
406 => 0.040012280814805
407 => 0.040730939229857
408 => 0.040751547781717
409 => 0.040474825146334
410 => 0.041582017590471
411 => 0.042035635238217
412 => 0.041853490471635
413 => 0.042022855475833
414 => 0.043445821515487
415 => 0.043677827068312
416 => 0.04378086860945
417 => 0.043642806594713
418 => 0.042048864682862
419 => 0.042119562784617
420 => 0.041600827022867
421 => 0.041162549967216
422 => 0.041180078750981
423 => 0.041405410129615
424 => 0.04238944547562
425 => 0.044460289849234
426 => 0.044538876879446
427 => 0.044634126652607
428 => 0.044246697956459
429 => 0.044129845754508
430 => 0.044284003970994
501 => 0.0450617042379
502 => 0.047062160467943
503 => 0.046355065630266
504 => 0.045780186520648
505 => 0.046284510486078
506 => 0.046206873764622
507 => 0.045551541704698
508 => 0.045533148716427
509 => 0.0442753569711
510 => 0.043810380001385
511 => 0.043421810442568
512 => 0.042997502628205
513 => 0.042745958732924
514 => 0.043132444480732
515 => 0.04322083834402
516 => 0.042375780501824
517 => 0.042260602240529
518 => 0.042950694716306
519 => 0.042647010746957
520 => 0.042959357240433
521 => 0.043031824306178
522 => 0.043020155439535
523 => 0.042703074497653
524 => 0.042905172434519
525 => 0.042427150565536
526 => 0.041907373579581
527 => 0.041575788245791
528 => 0.041286436063648
529 => 0.041446985471549
530 => 0.040874656147547
531 => 0.040691556478086
601 => 0.042836706200856
602 => 0.044421351365312
603 => 0.044398309997033
604 => 0.04425805159339
605 => 0.044049656055954
606 => 0.04504645880632
607 => 0.044699192659793
608 => 0.044951857796449
609 => 0.045016171678051
610 => 0.045210830427556
611 => 0.04528040419902
612 => 0.045070103939566
613 => 0.044364310582827
614 => 0.042605540642651
615 => 0.041786828487791
616 => 0.041516639839957
617 => 0.041526460684145
618 => 0.041255557959276
619 => 0.041335350952758
620 => 0.041227809212473
621 => 0.041024151173513
622 => 0.041434410161537
623 => 0.041481688688079
624 => 0.041385929338045
625 => 0.041408484131517
626 => 0.040615637612585
627 => 0.040675916011447
628 => 0.040340278226773
629 => 0.040277350188321
630 => 0.03942888709599
701 => 0.037925711741235
702 => 0.038758616804531
703 => 0.037752584612244
704 => 0.03737158497715
705 => 0.039175177992087
706 => 0.038994147277271
707 => 0.038684301385665
708 => 0.038225974734438
709 => 0.038055976921183
710 => 0.037023124022613
711 => 0.036962097563309
712 => 0.037474007349215
713 => 0.03723777859676
714 => 0.036906023961488
715 => 0.035704442301962
716 => 0.034353466686639
717 => 0.034394244148536
718 => 0.034823964355975
719 => 0.03607343381477
720 => 0.035585244481178
721 => 0.035231057518329
722 => 0.035164728947009
723 => 0.035994969885355
724 => 0.037169934753968
725 => 0.037721201981964
726 => 0.037174912901255
727 => 0.036547365419628
728 => 0.03658556132706
729 => 0.036839661587134
730 => 0.036866363931684
731 => 0.036457895034068
801 => 0.036572876636127
802 => 0.036398209068462
803 => 0.035326274528114
804 => 0.03530688663142
805 => 0.03504381660794
806 => 0.035035850952179
807 => 0.034588303216346
808 => 0.034525688194351
809 => 0.033637055000647
810 => 0.034221956059772
811 => 0.033829635137995
812 => 0.033238314969727
813 => 0.033136371149836
814 => 0.033133306595509
815 => 0.03374046019155
816 => 0.0342148611165
817 => 0.033836459728397
818 => 0.033750305067328
819 => 0.034670211448566
820 => 0.034553144976421
821 => 0.034451766166541
822 => 0.037064729537111
823 => 0.03499636513723
824 => 0.034094440200769
825 => 0.032978136820999
826 => 0.033341610830343
827 => 0.033418200144656
828 => 0.030733691745117
829 => 0.029644587021758
830 => 0.029270847322747
831 => 0.029055754842062
901 => 0.029153775186472
902 => 0.028173453196206
903 => 0.028832245786694
904 => 0.027983369807679
905 => 0.027841052987315
906 => 0.029358948393349
907 => 0.029570154671682
908 => 0.028669083071665
909 => 0.029247716909117
910 => 0.029037896236045
911 => 0.027997921349917
912 => 0.027958201958804
913 => 0.02743637911783
914 => 0.026619827416518
915 => 0.026246641378011
916 => 0.026052282849007
917 => 0.026132478966046
918 => 0.02609192935523
919 => 0.025827315715837
920 => 0.026107096699294
921 => 0.025392371900045
922 => 0.025107762726055
923 => 0.024979211365046
924 => 0.024344851967688
925 => 0.025354399869789
926 => 0.025553293524453
927 => 0.025752579061057
928 => 0.027487223599184
929 => 0.027400565660113
930 => 0.02818391122518
1001 => 0.028153471857002
1002 => 0.027930049012488
1003 => 0.026987464782758
1004 => 0.02736316205678
1005 => 0.02620682424366
1006 => 0.027073231156578
1007 => 0.02667783922354
1008 => 0.026939548746289
1009 => 0.026468971426989
1010 => 0.026729408345151
1011 => 0.025600458588441
1012 => 0.024546261190378
1013 => 0.024970500997299
1014 => 0.025431698185129
1015 => 0.026431691199203
1016 => 0.025836103609784
1017 => 0.026050299428599
1018 => 0.025332779291515
1019 => 0.023852330299216
1020 => 0.023860709479736
1021 => 0.023632974655605
1022 => 0.023436178517727
1023 => 0.025904514008993
1024 => 0.025597537472045
1025 => 0.025108410536513
1026 => 0.025763126376854
1027 => 0.025936243636778
1028 => 0.025941172041793
1029 => 0.026418835818245
1030 => 0.026673765061362
1031 => 0.026718697445389
1101 => 0.027470311718243
1102 => 0.027722242908472
1103 => 0.028759911826389
1104 => 0.026652136096175
1105 => 0.026608727842072
1106 => 0.025772339571382
1107 => 0.025241888907335
1108 => 0.02580865998217
1109 => 0.026310741782506
1110 => 0.025787940652466
1111 => 0.025856207443115
1112 => 0.025154389640458
1113 => 0.025405256481311
1114 => 0.025621336800067
1115 => 0.025502029948664
1116 => 0.025323421817597
1117 => 0.026269576800544
1118 => 0.026216191028395
1119 => 0.027097272300524
1120 => 0.027784138158875
1121 => 0.029015124568998
1122 => 0.027730526077261
1123 => 0.027683710202406
1124 => 0.02814134288862
1125 => 0.027722172847292
1126 => 0.027987073844154
1127 => 0.02897244492305
1128 => 0.02899326426122
1129 => 0.028644513522676
1130 => 0.028623292008541
1201 => 0.028690273402793
1202 => 0.029082585521056
1203 => 0.028945499612401
1204 => 0.029104138896487
1205 => 0.029302519750407
1206 => 0.03012310707396
1207 => 0.030320947899583
1208 => 0.029840297262026
1209 => 0.02988369463298
1210 => 0.029703918100379
1211 => 0.029530256222479
1212 => 0.029920622762717
1213 => 0.030634025287675
1214 => 0.030629587247593
1215 => 0.030795082766819
1216 => 0.030898185104259
1217 => 0.030455594396445
1218 => 0.03016748412017
1219 => 0.030277963933027
1220 => 0.030454623559723
1221 => 0.030220675597049
1222 => 0.028776640396184
1223 => 0.029214668430801
1224 => 0.029141759147364
1225 => 0.029037927461678
1226 => 0.029478368037656
1227 => 0.029435886469641
1228 => 0.028163398577261
1229 => 0.028244859123555
1230 => 0.028168352462887
1231 => 0.028415561135294
]
'min_raw' => 0.023436178517727
'max_raw' => 0.052499932975977
'avg_raw' => 0.037968055746852
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023436'
'max' => '$0.052499'
'avg' => '$0.037968'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0057150336108663
'max_diff' => -0.038150612690684
'year' => 2034
]
9 => [
'items' => [
101 => 0.027708822767713
102 => 0.027926210729625
103 => 0.028062554421451
104 => 0.028142861903378
105 => 0.028432987595454
106 => 0.028398944694107
107 => 0.028430871440908
108 => 0.028861051251914
109 => 0.031036753116099
110 => 0.031155171768151
111 => 0.03057203501586
112 => 0.030804986646537
113 => 0.030357770456559
114 => 0.030657989680979
115 => 0.030863392049586
116 => 0.029935218242456
117 => 0.029880257813396
118 => 0.029431195803119
119 => 0.02967249629127
120 => 0.029288569864503
121 => 0.029382771980455
122 => 0.02911937465186
123 => 0.029593437401447
124 => 0.030123513217388
125 => 0.030257431301823
126 => 0.029905150477035
127 => 0.02965007594345
128 => 0.029202249089251
129 => 0.029946995128257
130 => 0.030164781565787
131 => 0.029945851188815
201 => 0.029895120236748
202 => 0.029798985174249
203 => 0.029915515744717
204 => 0.030163595454076
205 => 0.030046605644455
206 => 0.030123879474805
207 => 0.029829391317939
208 => 0.030455740912386
209 => 0.031450534807606
210 => 0.031453733232644
211 => 0.031336742792404
212 => 0.031288872824852
213 => 0.031408912116112
214 => 0.031474028507351
215 => 0.031862213563842
216 => 0.032278751595432
217 => 0.034222552839083
218 => 0.033676741228112
219 => 0.035401397328733
220 => 0.036765376385757
221 => 0.037174374065383
222 => 0.036798115444955
223 => 0.035510955029562
224 => 0.035447800798859
225 => 0.037371361884567
226 => 0.036827867773176
227 => 0.036763220878009
228 => 0.036075487136095
301 => 0.036482022955048
302 => 0.036393107607922
303 => 0.036252750382597
304 => 0.037028392405627
305 => 0.038480325030699
306 => 0.038254027714944
307 => 0.038085107266363
308 => 0.037344947032684
309 => 0.037790688814132
310 => 0.03763196870338
311 => 0.038313931025442
312 => 0.037909951653167
313 => 0.036823750270741
314 => 0.036996731421059
315 => 0.036970585668178
316 => 0.037508663409757
317 => 0.037347145827645
318 => 0.036939046768006
319 => 0.038475362482832
320 => 0.038375602685748
321 => 0.038517039269748
322 => 0.038579304028097
323 => 0.039514432330791
324 => 0.039897524475637
325 => 0.039984493099489
326 => 0.040348401007683
327 => 0.039975438739221
328 => 0.041467553730661
329 => 0.042459723132645
330 => 0.04361217894962
331 => 0.045296226649141
401 => 0.045929444162473
402 => 0.0458150590864
403 => 0.047091884832406
404 => 0.049386312315738
405 => 0.046278828480974
406 => 0.049551016504541
407 => 0.048515079555507
408 => 0.046058891685057
409 => 0.045900742142753
410 => 0.047564101085549
411 => 0.051253271128305
412 => 0.050329175874815
413 => 0.051254782617092
414 => 0.050175013185729
415 => 0.050121393532451
416 => 0.051202340625901
417 => 0.053728032429107
418 => 0.052528170927546
419 => 0.050807875246947
420 => 0.052078114806736
421 => 0.050977715744925
422 => 0.048498208676361
423 => 0.050328469236591
424 => 0.049104626122785
425 => 0.049461808606472
426 => 0.052034144798768
427 => 0.051724634502553
428 => 0.052125169485736
429 => 0.051418235724244
430 => 0.050757848117787
501 => 0.049525185609309
502 => 0.049160255010076
503 => 0.049261108698876
504 => 0.049160205031996
505 => 0.048470541687256
506 => 0.048321608953623
507 => 0.048073381206008
508 => 0.048150317364556
509 => 0.047683576577451
510 => 0.048564412876286
511 => 0.048727903855252
512 => 0.049368903057892
513 => 0.049435453721544
514 => 0.051220627376844
515 => 0.050237383726129
516 => 0.050897028456201
517 => 0.050838023622727
518 => 0.046112124724023
519 => 0.046763311895305
520 => 0.047776354780029
521 => 0.047319980333608
522 => 0.046674773641543
523 => 0.046153734643906
524 => 0.045364307283513
525 => 0.046475411133657
526 => 0.047936394543873
527 => 0.049472506671816
528 => 0.051318044743487
529 => 0.050906142130321
530 => 0.049438005621296
531 => 0.049503865152617
601 => 0.049910982860469
602 => 0.049383728438256
603 => 0.049228230815916
604 => 0.049889619874988
605 => 0.049894174497945
606 => 0.049287504564363
607 => 0.048613301952612
608 => 0.048610477019052
609 => 0.048490509176315
610 => 0.050196355198442
611 => 0.051134398030126
612 => 0.051241943129047
613 => 0.051127159388094
614 => 0.051171335094383
615 => 0.05062550863899
616 => 0.051873106056212
617 => 0.053018024820852
618 => 0.052711162134306
619 => 0.052251131344074
620 => 0.051884694661569
621 => 0.052624841297433
622 => 0.052591883732837
623 => 0.053008024954248
624 => 0.052989146384696
625 => 0.052849213743799
626 => 0.052711167131742
627 => 0.053258506344468
628 => 0.053100881441201
629 => 0.052943011702923
630 => 0.052626379774158
701 => 0.052669415311977
702 => 0.052209463952546
703 => 0.051996669407731
704 => 0.048796750019221
705 => 0.047941626998228
706 => 0.048210666108267
707 => 0.048299240768889
708 => 0.047927090134283
709 => 0.048460658546653
710 => 0.048377502474774
711 => 0.048701014105781
712 => 0.04849889808397
713 => 0.048507192996006
714 => 0.049101573120473
715 => 0.049274124199279
716 => 0.04918636332794
717 => 0.04924782803396
718 => 0.05066425624154
719 => 0.050462885445247
720 => 0.050355911223184
721 => 0.050385543813771
722 => 0.050747471589371
723 => 0.050848791606015
724 => 0.050419491575862
725 => 0.050621951951836
726 => 0.051484002536685
727 => 0.051785671453545
728 => 0.052748453826866
729 => 0.052339446762587
730 => 0.053090196930482
731 => 0.055397746996998
801 => 0.057241177660451
802 => 0.055545882639346
803 => 0.058931108293297
804 => 0.061566992046677
805 => 0.061465822437928
806 => 0.061006195136437
807 => 0.058005311561809
808 => 0.055243853755783
809 => 0.057553930468216
810 => 0.057559819328827
811 => 0.057361381690524
812 => 0.056128902561685
813 => 0.057318494088394
814 => 0.057412919543822
815 => 0.057360066398537
816 => 0.056415127540156
817 => 0.054972380557301
818 => 0.055254289864303
819 => 0.055716063059966
820 => 0.054841830064596
821 => 0.05456245965093
822 => 0.055081862402331
823 => 0.056755486289204
824 => 0.056439097388034
825 => 0.056430835195196
826 => 0.057784481084177
827 => 0.056815562762733
828 => 0.055257845643463
829 => 0.054864501527083
830 => 0.053468394902279
831 => 0.054432690720792
901 => 0.054467394010598
902 => 0.053939259045662
903 => 0.055300700885149
904 => 0.055288154958921
905 => 0.056580641361639
906 => 0.05905138992791
907 => 0.058320667998711
908 => 0.057470917897372
909 => 0.057563309294402
910 => 0.058576614878423
911 => 0.057963947190808
912 => 0.058184266762945
913 => 0.058576281398364
914 => 0.058812793561088
915 => 0.057529278833901
916 => 0.057230030153388
917 => 0.056617872375072
918 => 0.056458171837175
919 => 0.056956761574523
920 => 0.056825400794167
921 => 0.054464477333467
922 => 0.05421774769577
923 => 0.054225314541509
924 => 0.053604901136165
925 => 0.052658621776736
926 => 0.05514538743391
927 => 0.054945665349376
928 => 0.054725187625312
929 => 0.054752194888481
930 => 0.055831615575953
1001 => 0.055205497065168
1002 => 0.056870135744895
1003 => 0.056527936075962
1004 => 0.056176960276759
1005 => 0.056128444730325
1006 => 0.055993348991479
1007 => 0.055530055436069
1008 => 0.054970600628284
1009 => 0.054601200105038
1010 => 0.050366720888381
1011 => 0.05115261560016
1012 => 0.052056715829505
1013 => 0.052368807605721
1014 => 0.05183495302641
1015 => 0.055551135268742
1016 => 0.056230117574439
1017 => 0.054173435881562
1018 => 0.053788714710585
1019 => 0.055576357524662
1020 => 0.054498190377328
1021 => 0.054983688977755
1022 => 0.053934306557167
1023 => 0.056066570619919
1024 => 0.05605032634028
1025 => 0.055220827460502
1026 => 0.055921914233527
1027 => 0.055800083153816
1028 => 0.054863580961512
1029 => 0.056096259409824
1030 => 0.056096870802955
1031 => 0.055298496166029
1101 => 0.054366169376781
1102 => 0.054199491367439
1103 => 0.05407392187744
1104 => 0.054952806580765
1105 => 0.055740811857566
1106 => 0.057207094314616
1107 => 0.05757575256233
1108 => 0.059014650246129
1109 => 0.058157856734083
1110 => 0.05853766220064
1111 => 0.05894999476135
1112 => 0.059147682153982
1113 => 0.058825561156178
1114 => 0.061060761533032
1115 => 0.061249480929609
1116 => 0.061312756910864
1117 => 0.060559059920002
1118 => 0.061228519252865
1119 => 0.060915301401181
1120 => 0.061730207236837
1121 => 0.061857994877108
1122 => 0.061749763291975
1123 => 0.061790325105988
1124 => 0.05988297590071
1125 => 0.059784069782347
1126 => 0.05843547784042
1127 => 0.058985039025043
1128 => 0.057957660731542
1129 => 0.05828345297158
1130 => 0.058427059086727
1201 => 0.05835204740175
1202 => 0.059016110389867
1203 => 0.058451521190862
1204 => 0.056961477467628
1205 => 0.055471027782979
1206 => 0.055452316401282
1207 => 0.055059907307936
1208 => 0.054776267406757
1209 => 0.05483090651439
1210 => 0.05502346185638
1211 => 0.054765075740234
1212 => 0.054820215518622
1213 => 0.055735903234291
1214 => 0.055919537875282
1215 => 0.055295475614508
1216 => 0.052789775585744
1217 => 0.052174870513613
1218 => 0.052616852085363
1219 => 0.052405613361325
1220 => 0.042295420073014
1221 => 0.044670660019486
1222 => 0.04325937309882
1223 => 0.043909759042052
1224 => 0.042469200547028
1225 => 0.043156710566993
1226 => 0.043029752570151
1227 => 0.046849068115619
1228 => 0.046789434756673
1229 => 0.046817978089873
1230 => 0.045455530426969
1231 => 0.04762594654846
]
'min_raw' => 0.027708822767713
'max_raw' => 0.061857994877108
'avg_raw' => 0.04478340882241
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0277088'
'max' => '$0.061857'
'avg' => '$0.044783'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042726442499856
'max_diff' => 0.009358061901131
'year' => 2035
]
10 => [
'items' => [
101 => 0.048695171575546
102 => 0.048497286479535
103 => 0.048547089894934
104 => 0.047691302211771
105 => 0.046826263985305
106 => 0.045866803463726
107 => 0.047649362519915
108 => 0.047451172382165
109 => 0.047905749251604
110 => 0.049061866219495
111 => 0.049232108834679
112 => 0.049460916635915
113 => 0.04937890532682
114 => 0.051332747431682
115 => 0.051096124260918
116 => 0.051666318021327
117 => 0.050493386195461
118 => 0.049166102498782
119 => 0.049418375737348
120 => 0.049394079795821
121 => 0.049084764574597
122 => 0.048805528623294
123 => 0.048340679438617
124 => 0.049811531043672
125 => 0.049751817154597
126 => 0.050718515608915
127 => 0.050547642267106
128 => 0.049406508270709
129 => 0.049447264094634
130 => 0.049721366597108
131 => 0.050670038487817
201 => 0.050951668895487
202 => 0.050821206469623
203 => 0.051130001354716
204 => 0.051374060241313
205 => 0.051160651393276
206 => 0.054182070642043
207 => 0.05292736671734
208 => 0.053538900680066
209 => 0.053684747926809
210 => 0.053311163271115
211 => 0.053392180405871
212 => 0.05351489928918
213 => 0.054260024317808
214 => 0.056215447996594
215 => 0.057081491832909
216 => 0.059687027444313
217 => 0.057009578948215
218 => 0.05685071023484
219 => 0.057320045878091
220 => 0.05884977110594
221 => 0.060089469723327
222 => 0.060500749274643
223 => 0.060555106656835
224 => 0.061326694436452
225 => 0.061768954162468
226 => 0.061233003385233
227 => 0.060778841217912
228 => 0.059152088707251
229 => 0.05934038973986
301 => 0.060637597125387
302 => 0.062469978962578
303 => 0.064042353205724
304 => 0.063491762548549
305 => 0.067692380606366
306 => 0.068108854728812
307 => 0.068051311471311
308 => 0.069000101501903
309 => 0.067116946508907
310 => 0.066311861264991
311 => 0.060877036233446
312 => 0.062404000383678
313 => 0.064623532451501
314 => 0.064329769059506
315 => 0.062717885543591
316 => 0.064041130447536
317 => 0.063603624300598
318 => 0.063258545050361
319 => 0.0648394199926
320 => 0.063101183054845
321 => 0.064606192208365
322 => 0.06267600240165
323 => 0.063494277600293
324 => 0.063029785022025
325 => 0.063330368646234
326 => 0.061573162921043
327 => 0.062521308476598
328 => 0.061533716948718
329 => 0.061533248701746
330 => 0.061511447564031
331 => 0.06267334461693
401 => 0.062711234038111
402 => 0.06185259036049
403 => 0.061728846392009
404 => 0.062186392700321
405 => 0.061650725804856
406 => 0.061901360973797
407 => 0.061658317288797
408 => 0.061603603036021
409 => 0.061167630561034
410 => 0.060979801631497
411 => 0.061053454194524
412 => 0.060802040026414
413 => 0.060650553896081
414 => 0.061481313159857
415 => 0.061037471997954
416 => 0.061413288136217
417 => 0.060984998214889
418 => 0.05950035875053
419 => 0.058646526894799
420 => 0.055842180572776
421 => 0.056637489710921
422 => 0.057164780492318
423 => 0.056990510892212
424 => 0.057364909426623
425 => 0.057387894455897
426 => 0.057266173675818
427 => 0.057125236605885
428 => 0.057056636234551
429 => 0.057567927199248
430 => 0.057864748813518
501 => 0.057217701176472
502 => 0.05706610696827
503 => 0.057720307853803
504 => 0.058119370016059
505 => 0.061065820808495
506 => 0.06084753821688
507 => 0.061395384686037
508 => 0.061333705580999
509 => 0.061907935959462
510 => 0.062846559940385
511 => 0.060938074943777
512 => 0.061269321948742
513 => 0.061188107832735
514 => 0.062074782255815
515 => 0.06207755035658
516 => 0.061545944747271
517 => 0.061834136772394
518 => 0.061673275890105
519 => 0.061963973246053
520 => 0.060844622919789
521 => 0.062207870790777
522 => 0.062980744487875
523 => 0.062991475839909
524 => 0.063357811838429
525 => 0.063730030429675
526 => 0.064444471602165
527 => 0.063710105053138
528 => 0.062389051120581
529 => 0.062484426947534
530 => 0.06170989351023
531 => 0.061722913557242
601 => 0.061653411525893
602 => 0.061861992353841
603 => 0.060890394682006
604 => 0.061118426713584
605 => 0.060799180534021
606 => 0.061268627969895
607 => 0.060763580131336
608 => 0.061188068668829
609 => 0.061371263849594
610 => 0.062047258010525
611 => 0.060663735244132
612 => 0.0578426386672
613 => 0.058435667370161
614 => 0.057558531337083
615 => 0.057639713616436
616 => 0.057803714740795
617 => 0.05727213343892
618 => 0.057373542399266
619 => 0.057369919357598
620 => 0.057338697941834
621 => 0.057200413114572
622 => 0.056999872756224
623 => 0.057798763820818
624 => 0.057934510980106
625 => 0.058236260099689
626 => 0.059134060801187
627 => 0.059044349339509
628 => 0.059190672455598
629 => 0.058871249914744
630 => 0.057654530711981
701 => 0.057720604418503
702 => 0.056896664239406
703 => 0.05821519009684
704 => 0.057902945770109
705 => 0.057701639821395
706 => 0.057646711628202
707 => 0.058546737803984
708 => 0.05881603974196
709 => 0.058648228846394
710 => 0.058304043803763
711 => 0.058964980834788
712 => 0.059141819701596
713 => 0.059181407402308
714 => 0.060352461099179
715 => 0.059246856295179
716 => 0.059512986360269
717 => 0.061589257157919
718 => 0.059706366050235
719 => 0.060703775463458
720 => 0.060654957462948
721 => 0.061165198368259
722 => 0.060613102815897
723 => 0.060619946701949
724 => 0.061073006059152
725 => 0.060436765901646
726 => 0.060279223891182
727 => 0.060061580732064
728 => 0.060536796607683
729 => 0.060821667032952
730 => 0.063117513446345
731 => 0.064600734932713
801 => 0.064536344376271
802 => 0.065124753528077
803 => 0.064859669815978
804 => 0.064003644584062
805 => 0.065464775273787
806 => 0.065002412387253
807 => 0.065040529021848
808 => 0.065039110318805
809 => 0.065346541217885
810 => 0.065128698250259
811 => 0.064699307399946
812 => 0.064984357085215
813 => 0.065830852743339
814 => 0.068458401239814
815 => 0.069928812188828
816 => 0.068369880654381
817 => 0.069445210751918
818 => 0.068800395872686
819 => 0.068683213827549
820 => 0.069358600595072
821 => 0.070035169537726
822 => 0.069992075020967
823 => 0.0695009207108
824 => 0.069223480103566
825 => 0.071324353330963
826 => 0.072872240937468
827 => 0.072766685379874
828 => 0.073232573282586
829 => 0.074600434574316
830 => 0.074725494668236
831 => 0.074709739970875
901 => 0.074399765479423
902 => 0.075746602560366
903 => 0.076870157748633
904 => 0.074328015340676
905 => 0.075296029890538
906 => 0.075730602809452
907 => 0.076368684786393
908 => 0.077445236036449
909 => 0.078614656235125
910 => 0.078780025073258
911 => 0.078662687968975
912 => 0.077891423912246
913 => 0.079171017447723
914 => 0.079920573330644
915 => 0.080366916705642
916 => 0.081498769240182
917 => 0.075733286583853
918 => 0.071652191396624
919 => 0.071014869451409
920 => 0.072310888688451
921 => 0.072652638625699
922 => 0.072514879654512
923 => 0.067921235984344
924 => 0.070990684868162
925 => 0.074293153780557
926 => 0.074420015061211
927 => 0.076073300050124
928 => 0.076611677412956
929 => 0.077942788530049
930 => 0.077859527167252
1001 => 0.07818363154166
1002 => 0.078109125558689
1003 => 0.080574728604589
1004 => 0.083294654909811
1005 => 0.083200472510697
1006 => 0.082809450923614
1007 => 0.083390184659521
1008 => 0.086197440091527
1009 => 0.085938992996699
1010 => 0.086190052334853
1011 => 0.089499964699172
1012 => 0.09380332160233
1013 => 0.091803980270844
1014 => 0.096141975665198
1015 => 0.098872513818689
1016 => 0.10359469721224
1017 => 0.10300345659412
1018 => 0.10484176793625
1019 => 0.10194501249205
1020 => 0.095293476461319
1021 => 0.094240845423399
1022 => 0.096348239418179
1023 => 0.10152906191785
1024 => 0.096185076880683
1025 => 0.09726615809368
1026 => 0.096954806631609
1027 => 0.096938216035353
1028 => 0.097571411615586
1029 => 0.096652928401198
1030 => 0.09291086255381
1031 => 0.094625829279536
1101 => 0.093963598267267
1102 => 0.094698392947972
1103 => 0.098663776787358
1104 => 0.096910586069021
1105 => 0.095063742064902
1106 => 0.097380094293561
1107 => 0.10032960666563
1108 => 0.10014503148217
1109 => 0.099786878479811
1110 => 0.1018057682018
1111 => 0.10514038254335
1112 => 0.10604171540031
1113 => 0.10670706088837
1114 => 0.10679880079007
1115 => 0.10774377879361
1116 => 0.10266239390345
1117 => 0.11072668222335
1118 => 0.11211916204473
1119 => 0.11185743355069
1120 => 0.11340511626764
1121 => 0.11294974875139
1122 => 0.11228999266532
1123 => 0.11474339897325
1124 => 0.11193076662089
1125 => 0.10793858909729
1126 => 0.10574840155152
1127 => 0.10863261718918
1128 => 0.11039390703384
1129 => 0.11155800758209
1130 => 0.11191026370462
1201 => 0.10305684734763
1202 => 0.098285346964189
1203 => 0.10134382400461
1204 => 0.10507537707873
1205 => 0.10264166493771
1206 => 0.10273706184601
1207 => 0.099267227901223
1208 => 0.10538238038998
1209 => 0.1044914541089
1210 => 0.10911358123119
1211 => 0.10801047349857
1212 => 0.11177963873685
1213 => 0.11078709121113
1214 => 0.11490710049782
1215 => 0.11655068374708
1216 => 0.11931051582589
1217 => 0.12134065953761
1218 => 0.12253279875559
1219 => 0.12246122718854
1220 => 0.12718507669157
1221 => 0.12439958767837
1222 => 0.12090035698842
1223 => 0.12083706694517
1224 => 0.12264936810398
1225 => 0.12644745415229
1226 => 0.12743224260471
1227 => 0.1279826050023
1228 => 0.12713970583214
1229 => 0.1241162571461
1230 => 0.1228107473327
1231 => 0.12392307951797
]
'min_raw' => 0.045866803463726
'max_raw' => 0.1279826050023
'avg_raw' => 0.086924704233014
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045866'
'max' => '$0.127982'
'avg' => '$0.086924'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018157980696014
'max_diff' => 0.066124610125195
'year' => 2036
]
11 => [
'items' => [
101 => 0.12256279283917
102 => 0.12491102927581
103 => 0.12813565945956
104 => 0.12746978607818
105 => 0.1296957009588
106 => 0.13199928868716
107 => 0.13529352259931
108 => 0.13615475732908
109 => 0.13757834558756
110 => 0.13904368552992
111 => 0.13951431322738
112 => 0.14041288752905
113 => 0.14040815159893
114 => 0.14311606573801
115 => 0.14610297889054
116 => 0.14723046945842
117 => 0.14982307184907
118 => 0.14538333111071
119 => 0.14875092546082
120 => 0.15178857986098
121 => 0.14816696305732
122 => 0.15315851809268
123 => 0.15335232886359
124 => 0.15627864140168
125 => 0.15331226303068
126 => 0.151550837023
127 => 0.1566360079074
128 => 0.15909656191699
129 => 0.15835542302465
130 => 0.15271531945941
131 => 0.14943253726902
201 => 0.14084086307537
202 => 0.15101807229045
203 => 0.15597509402585
204 => 0.15270248197064
205 => 0.15435299713481
206 => 0.16335767268921
207 => 0.16678607013075
208 => 0.16607298742922
209 => 0.16619348666744
210 => 0.16804338769708
211 => 0.17624686762162
212 => 0.17133115229566
213 => 0.17508903247402
214 => 0.17708219857058
215 => 0.17893356232141
216 => 0.17438719807888
217 => 0.16847244499871
218 => 0.16659899441377
219 => 0.15237708519788
220 => 0.15163677306058
221 => 0.15122121342415
222 => 0.14860116869857
223 => 0.14654253123492
224 => 0.14490542629151
225 => 0.14060917403909
226 => 0.14205903305647
227 => 0.13521170366364
228 => 0.13959238235472
301 => 0.12866387930922
302 => 0.13776546138773
303 => 0.13281188406055
304 => 0.13613807800972
305 => 0.13612647323238
306 => 0.13000189560121
307 => 0.12646936704023
308 => 0.12872043172735
309 => 0.13113375176169
310 => 0.13152530481788
311 => 0.13465423723649
312 => 0.13552745501835
313 => 0.13288156437268
314 => 0.12843741037452
315 => 0.12946968598793
316 => 0.12644844800787
317 => 0.12115384465805
318 => 0.1249565212188
319 => 0.12625492218852
320 => 0.12682837002502
321 => 0.12162173571978
322 => 0.11998569817954
323 => 0.11911468552081
324 => 0.12776529926782
325 => 0.12823919941654
326 => 0.12581465925297
327 => 0.13677381069664
328 => 0.13429341720198
329 => 0.13706462444668
330 => 0.12937601779581
331 => 0.12966973292396
401 => 0.12602982332005
402 => 0.12806792947939
403 => 0.1266274617372
404 => 0.12790327064268
405 => 0.12866798524026
406 => 0.13230729757082
407 => 0.13780701648864
408 => 0.131763705669
409 => 0.12913054860308
410 => 0.13076414443734
411 => 0.13511462541672
412 => 0.1417058267975
413 => 0.13780370291978
414 => 0.13953539923435
415 => 0.13991369784128
416 => 0.13703641615833
417 => 0.14181191627726
418 => 0.14437114558708
419 => 0.14699638530108
420 => 0.14927580738719
421 => 0.14594780682905
422 => 0.1495092444764
423 => 0.14663935441101
424 => 0.14406476633857
425 => 0.14406867092593
426 => 0.14245359421936
427 => 0.13932417958762
428 => 0.1387470675157
429 => 0.14174927739508
430 => 0.14415676540802
501 => 0.14435505765185
502 => 0.14568796671701
503 => 0.14647676857172
504 => 0.15420809907197
505 => 0.15731770415609
506 => 0.16112007039115
507 => 0.16260130632932
508 => 0.16705929545074
509 => 0.16345910717502
510 => 0.16268018379532
511 => 0.15186656038388
512 => 0.15363729061171
513 => 0.15647240055652
514 => 0.15191331030263
515 => 0.1548050037108
516 => 0.15537588524402
517 => 0.15175839416036
518 => 0.15369065245071
519 => 0.14855914730621
520 => 0.137918869278
521 => 0.14182376194839
522 => 0.14469907732645
523 => 0.14059564775813
524 => 0.14795088643469
525 => 0.14365410784279
526 => 0.1422922353109
527 => 0.13697908502139
528 => 0.13948668743613
529 => 0.14287825560747
530 => 0.1407826607897
531 => 0.14513133469172
601 => 0.15129021668594
602 => 0.15567940276279
603 => 0.15601634996903
604 => 0.15319439737425
605 => 0.15771659441685
606 => 0.15774953368531
607 => 0.15264847694754
608 => 0.14952410809845
609 => 0.14881424492221
610 => 0.15058762231333
611 => 0.15274082984968
612 => 0.15613583800173
613 => 0.15818737032452
614 => 0.1635366785737
615 => 0.16498404800923
616 => 0.1665742682039
617 => 0.16869929278971
618 => 0.17125092965011
619 => 0.16566809346433
620 => 0.1658899099537
621 => 0.16069125019714
622 => 0.15513573668403
623 => 0.15935167893595
624 => 0.16486346260703
625 => 0.1635990533429
626 => 0.16345678147115
627 => 0.16369604329651
628 => 0.16274272000311
629 => 0.15843087407885
630 => 0.15626549204926
701 => 0.1590593873153
702 => 0.16054421830722
703 => 0.16284706168482
704 => 0.16256318763141
705 => 0.16849506486479
706 => 0.17080001298702
707 => 0.17021030862306
708 => 0.17031882841806
709 => 0.1744918268947
710 => 0.17913305944331
711 => 0.18348018618966
712 => 0.18790227022948
713 => 0.18257127532259
714 => 0.17986452487893
715 => 0.18265720041769
716 => 0.18117536746707
717 => 0.18969041914154
718 => 0.19027998284463
719 => 0.19879441878394
720 => 0.20687563237052
721 => 0.20179996690677
722 => 0.20658609082609
723 => 0.21176267406325
724 => 0.22174914299809
725 => 0.21838605158905
726 => 0.21580997627608
727 => 0.21337559755284
728 => 0.21844115322917
729 => 0.22495790968255
730 => 0.22636155660588
731 => 0.22863600085609
801 => 0.22624470083281
802 => 0.22912475831779
803 => 0.23929262680116
804 => 0.2365451789827
805 => 0.2326433614062
806 => 0.24066991704135
807 => 0.24357469632327
808 => 0.26396195856848
809 => 0.28970171930885
810 => 0.27904528934595
811 => 0.27243049938714
812 => 0.27398513193237
813 => 0.28338442120887
814 => 0.28640317460595
815 => 0.27819716224599
816 => 0.28109566453937
817 => 0.2970666971504
818 => 0.30563464373414
819 => 0.29399822144467
820 => 0.26189379385523
821 => 0.23229204542415
822 => 0.24014376209218
823 => 0.23925362108916
824 => 0.25641250320281
825 => 0.23647965326087
826 => 0.23681527133325
827 => 0.25432898095743
828 => 0.2496566234907
829 => 0.24208800278491
830 => 0.23234730473124
831 => 0.2143407234735
901 => 0.19839179230286
902 => 0.22967131914798
903 => 0.22832248907229
904 => 0.22636918323727
905 => 0.23071605400333
906 => 0.25182322456255
907 => 0.25133663596391
908 => 0.24824120755909
909 => 0.2505890627223
910 => 0.24167641242309
911 => 0.24397340534247
912 => 0.23228735635596
913 => 0.23756993855038
914 => 0.24207176392412
915 => 0.24297557201856
916 => 0.24501189780493
917 => 0.22761171691371
918 => 0.2354238872914
919 => 0.24001280548691
920 => 0.2192799061333
921 => 0.23960298272804
922 => 0.2273088184763
923 => 0.22313599447711
924 => 0.22875415226427
925 => 0.22656475071077
926 => 0.22468243182106
927 => 0.22363206553825
928 => 0.22775742056369
929 => 0.22756496782088
930 => 0.22081508630236
1001 => 0.21201014102182
1002 => 0.21496536967045
1003 => 0.21389170739699
1004 => 0.21000061681277
1005 => 0.21262274205446
1006 => 0.20107622951726
1007 => 0.1812110548325
1008 => 0.19433459771601
1009 => 0.19382935559066
1010 => 0.19357458960016
1011 => 0.20343656936903
1012 => 0.20248856756884
1013 => 0.20076793501863
1014 => 0.20996901604665
1015 => 0.20661049769942
1016 => 0.21696065987914
1017 => 0.22377794609723
1018 => 0.22204886179621
1019 => 0.22846055243513
1020 => 0.21503345216979
1021 => 0.21949339627617
1022 => 0.22041258457528
1023 => 0.20985547613501
1024 => 0.20264367238749
1025 => 0.20216272729811
1026 => 0.18965845344767
1027 => 0.1963381356076
1028 => 0.20221597948431
1029 => 0.19940094840648
1030 => 0.1985097936639
1031 => 0.20306250997586
1101 => 0.20341629502468
1102 => 0.19534995841918
1103 => 0.19702720522712
1104 => 0.20402160323532
1105 => 0.19685096434309
1106 => 0.18291958429269
1107 => 0.17946440942379
1108 => 0.17900342540478
1109 => 0.16963271712695
1110 => 0.1796953007301
1111 => 0.17530271332685
1112 => 0.18917884430243
1113 => 0.18125287270836
1114 => 0.18091119991438
1115 => 0.18039471137377
1116 => 0.17232895565997
1117 => 0.17409484355577
1118 => 0.17996492387376
1119 => 0.1820594346624
1120 => 0.18184096002732
1121 => 0.17993615727779
1122 => 0.18080816622236
1123 => 0.17799912158384
1124 => 0.17700718945677
1125 => 0.17387637881132
1126 => 0.16927495207102
1127 => 0.16991480868145
1128 => 0.16079817828011
1129 => 0.15583095418127
1130 => 0.15445609201767
1201 => 0.15261756887306
1202 => 0.15466375809897
1203 => 0.16077235201163
1204 => 0.15340409174247
1205 => 0.14077172633437
1206 => 0.1415309530199
1207 => 0.14323670996586
1208 => 0.14005804318178
1209 => 0.13704970183592
1210 => 0.1396652105617
1211 => 0.13431271080875
1212 => 0.14388353398914
1213 => 0.14362467004403
1214 => 0.14719208106994
1215 => 0.14942285639509
1216 => 0.14428164149271
1217 => 0.14298863984809
1218 => 0.14372519234851
1219 => 0.13155162020744
1220 => 0.14619724051067
1221 => 0.14632389644322
1222 => 0.14523939145364
1223 => 0.15303773213231
1224 => 0.16949466332777
1225 => 0.16330290383351
1226 => 0.16090526741042
1227 => 0.15634735881745
1228 => 0.16242050139575
1229 => 0.16195417880152
1230 => 0.15984529118281
1231 => 0.15856982937089
]
'min_raw' => 0.11911468552081
'max_raw' => 0.30563464373414
'avg_raw' => 0.21237466462747
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.119114'
'max' => '$0.305634'
'avg' => '$0.212374'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.073247882057081
'max_diff' => 0.17765203873183
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037388738691957
]
1 => [
'year' => 2028
'avg' => 0.0064169929623794
]
2 => [
'year' => 2029
'avg' => 0.017530068222765
]
3 => [
'year' => 2030
'avg' => 0.013524421527303
]
4 => [
'year' => 2031
'avg' => 0.013282658002919
]
5 => [
'year' => 2032
'avg' => 0.023288679685434
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037388738691957
'min' => '$0.003738'
'max_raw' => 0.023288679685434
'max' => '$0.023288'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023288679685434
]
1 => [
'year' => 2033
'avg' => 0.059900878897627
]
2 => [
'year' => 2034
'avg' => 0.037968055746852
]
3 => [
'year' => 2035
'avg' => 0.04478340882241
]
4 => [
'year' => 2036
'avg' => 0.086924704233014
]
5 => [
'year' => 2037
'avg' => 0.21237466462747
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023288679685434
'min' => '$0.023288'
'max_raw' => 0.21237466462747
'max' => '$0.212374'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21237466462747
]
]
]
]
'prediction_2025_max_price' => '$0.006392'
'last_price' => 0.00619862
'sma_50day_nextmonth' => '$0.005568'
'sma_200day_nextmonth' => '$0.006533'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.006085'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005894'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005541'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00537'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005499'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006038'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006057'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00591'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00568'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005522'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005621'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006001'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006346'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006379'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006462'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005442'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00594'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005833'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005891'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.006235'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006188'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.006068'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00387'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.42'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 111.03
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005587'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006262'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 208.63
'cci_20_action' => 'SELL'
'adx_14' => 15.45
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000485'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.39
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000420'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 28
'sell_pct' => 17.65
'buy_pct' => 82.35
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767694243
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di DRAC (Ordinals) per l'anno 2026
La previsione del prezzo di DRAC (Ordinals) per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.002141 come limite inferiore e $0.006392 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3.13% entro il 2026 se DRAC raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di DRAC (Ordinals) 2027-2032
La previsione del prezzo di DRAC per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.003738 come limite inferiore e $0.023288 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se DRAC (Ordinals) raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.002061 | $0.003738 | $0.005416 |
| 2028 | $0.00372 | $0.006416 | $0.009113 |
| 2029 | $0.008173 | $0.01753 | $0.026886 |
| 2030 | $0.006951 | $0.013524 | $0.020097 |
| 2031 | $0.008218 | $0.013282 | $0.018346 |
| 2032 | $0.012544 | $0.023288 | $0.034032 |
Previsione del prezzo di DRAC (Ordinals) 2032-2037
La previsione del prezzo di DRAC (Ordinals) per gli anni 2032-2037 è attualmente stimata tra $0.023288 come limite inferiore e $0.212374 come limite superiore. Rispetto al prezzo attuale, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.012544 | $0.023288 | $0.034032 |
| 2033 | $0.029151 | $0.05990087 | $0.09065 |
| 2034 | $0.023436 | $0.037968 | $0.052499 |
| 2035 | $0.0277088 | $0.044783 | $0.061857 |
| 2036 | $0.045866 | $0.086924 | $0.127982 |
| 2037 | $0.119114 | $0.212374 | $0.305634 |
DRAC (Ordinals) Istogramma dei prezzi potenziali
Previsione del prezzo di DRAC (Ordinals) basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per DRAC (Ordinals) è Rialzista, con 28 indicatori tecnici che mostrano segnali rialzisti e 6 indicando segnali ribassisti. La previsione del prezzo di DRAC è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di DRAC (Ordinals)
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di DRAC (Ordinals) è previsto aumentare nel corso del prossimo mese, raggiungendo $0.006533 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per DRAC (Ordinals) dovrebbe raggiungere $0.005568 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 67.42, suggerendo che il mercato di DRAC è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di DRAC per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.006085 | BUY |
| SMA 5 | $0.005894 | BUY |
| SMA 10 | $0.005541 | BUY |
| SMA 21 | $0.00537 | BUY |
| SMA 50 | $0.005499 | BUY |
| SMA 100 | $0.006038 | BUY |
| SMA 200 | $0.006851 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.006057 | BUY |
| EMA 5 | $0.00591 | BUY |
| EMA 10 | $0.00568 | BUY |
| EMA 21 | $0.005522 | BUY |
| EMA 50 | $0.005621 | BUY |
| EMA 100 | $0.006001 | BUY |
| EMA 200 | $0.006346 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.006379 | SELL |
| SMA 50 | $0.006462 | SELL |
| SMA 100 | $0.005442 | BUY |
| SMA 200 | — | — |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.006235 | SELL |
| EMA 50 | $0.006188 | BUY |
| EMA 100 | $0.006068 | BUY |
| EMA 200 | $0.00387 | BUY |
Oscillatori di DRAC (Ordinals)
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 67.42 | NEUTRAL |
| Stoch RSI (14) | 111.03 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 208.63 | SELL |
| Indice Direzionale Medio (14) | 15.45 | NEUTRAL |
| Oscillatore Awesome (5, 34) | 0.000485 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 79.39 | SELL |
| VWMA (10) | 0.005587 | BUY |
| Media Mobile di Hull (9) | 0.006262 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000420 | NEUTRAL |
Previsione del prezzo di DRAC (Ordinals) sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di DRAC (Ordinals)
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di DRAC (Ordinals) sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.00871 | $0.012239 | $0.017198 | $0.024166 | $0.033957 | $0.047715 |
| Azioni Amazon.com | $0.012933 | $0.026987 | $0.05631 | $0.117494 | $0.245159 | $0.511539 |
| Azioni Apple | $0.008792 | $0.012471 | $0.017689 | $0.025091 | $0.035589 | $0.050481 |
| Azioni Netflix | $0.00978 | $0.015432 | $0.024349 | $0.038419 | $0.060619 | $0.095648 |
| Azioni Google | $0.008027 | $0.010395 | $0.013461 | $0.017432 | $0.022575 | $0.029235 |
| Azioni Tesla | $0.014051 | $0.031854 | $0.072211 | $0.163697 | $0.37109 | $0.841234 |
| Azioni Kodak | $0.004648 | $0.003485 | $0.002613 | $0.00196 | $0.001469 | $0.0011022 |
| Azioni Nokia | $0.0041063 | $0.00272 | $0.001802 | $0.001193 | $0.00079 | $0.000523 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per DRAC (Ordinals)
Potresti avere domande come: "Dovrei investire su DRAC (Ordinals) in questo momento?", "Dovrei acquistare DRAC oggi?", "DRAC (Ordinals) sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su DRAC (Ordinals) con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come DRAC (Ordinals) con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su DRAC (Ordinals) per prendere decisioni responsabili.
Il prezzo odierno di DRAC (Ordinals) è di $0.006198 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di DRAC (Ordinals) sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DRAC (Ordinals) ha 1% della precedente crescita media annua di Bitcoin | $0.006359 | $0.006525 | $0.006694 | $0.006868 |
| Se DRAC (Ordinals) ha 2% della precedente crescita media annua di Bitcoin | $0.00652 | $0.006859 | $0.007216 | $0.007591 |
| Se DRAC (Ordinals) ha 5% della precedente crescita media annua di Bitcoin | $0.0070042 | $0.007914 | $0.008943 | $0.0101054 |
| Se DRAC (Ordinals) ha 10% della precedente crescita media annua di Bitcoin | $0.0078098 | $0.009839 | $0.012397 | $0.01562 |
| Se DRAC (Ordinals) ha 20% della precedente crescita media annua di Bitcoin | $0.009421 | $0.014318 | $0.021762 | $0.033076 |
| Se DRAC (Ordinals) ha 50% della precedente crescita media annua di Bitcoin | $0.014254 | $0.032781 | $0.075385 | $0.17336 |
| Se DRAC (Ordinals) ha 100% della precedente crescita media annua di Bitcoin | $0.02231 | $0.0803038 | $0.289039 | $1.04 |
Area domande
È DRAC un buon investimento?
La decisione di procurarsi DRAC (Ordinals) dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di DRAC (Ordinals) ha subito un aumento del 3.5024% nelle precedenti 24 ore, e DRAC (Ordinals) ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in DRAC (Ordinals) dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può DRAC (Ordinals) salire?
Sembra che il valore medio di DRAC (Ordinals) possa potenzialmente salire fino a $0.006392 entro la fine di quest'anno. Guardando le prospettive di DRAC (Ordinals) su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.020097. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di DRAC (Ordinals) la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) aumenterà del 0.86% nella prossima settimana e raggiungerà $0.006251 entro 13 gennaio 2026.
Quale sarà il prezzo di DRAC (Ordinals) il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) diminuirà del -11.62% nel prossimo mese e raggiungerà $0.005478 entro 5 febbraio 2026.
Quanto può salire il prezzo di DRAC (Ordinals) quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di DRAC (Ordinals) in 2026, DRAC dovrebbe fluttuare all'interno dell'intervallo di $0.002141 e $0.006392. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di DRAC (Ordinals) non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà DRAC (Ordinals) tra 5 anni?
Il futuro di DRAC (Ordinals) sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.020097 prevista dopo un periodo di cinque anni. Basato sulla previsione di DRAC (Ordinals) per 2030, il valore di DRAC (Ordinals) potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.020097, mentre il suo picco più basso è previsto intorno a $0.006951.
Quanto varrà DRAC (Ordinals) in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2026 aumenti del 3.13% fino a $0.006392 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.006392 e $0.002141 durante 2026.
Quanto varrà DRAC (Ordinals) in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di DRAC (Ordinals), il valore di DRAC potrebbe diminuire del -12.62% fino a $0.005416 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.005416 e $0.002061 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.009113 nello scenario migliore. Il prezzo è previsto oscillare tra $0.009113 e $0.00372 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di DRAC (Ordinals) potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.026886 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.026886 e $0.008173.
Quanto varrà DRAC (Ordinals) in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2030 aumenti del 224.23%, raggiungendo $0.020097 nello scenario migliore. Il prezzo è previsto oscillare tra $0.020097 e $0.006951 nel corso di 2030.
Quanto varrà DRAC (Ordinals) in 2031?
La nostra simulazione sperimentale indica che il prezzo di DRAC (Ordinals) potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.018346 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.018346 e $0.008218 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di DRAC (Ordinals), DRAC potrebbe subire una 449.04% aumento in valore, raggiungendo $0.034032 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.034032 e $0.012544 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2033?
Secondo la nostra previsione sperimentale dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.09065. Durante l'anno, il prezzo di DRAC potrebbe oscillare tra $0.09065 e $0.029151.
Quanto varrà DRAC (Ordinals) in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di DRAC (Ordinals) suggeriscono che DRAC potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.052499 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.052499 e $0.023436.
Quanto varrà DRAC (Ordinals) in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di DRAC (Ordinals), DRAC potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.061857 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.061857 e $0.0277088.
Quanto varrà DRAC (Ordinals) in 2036?
La nostra recente simulazione di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.127982 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.127982 e $0.045866.
Quanto varrà DRAC (Ordinals) in 2037?
Secondo la simulazione sperimentale, il valore di DRAC (Ordinals) potrebbe aumentare del 4830.69% in 2037, con un picco di $0.305634 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.305634 e $0.119114 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di TE-FOOD
Previsione del prezzo di TrustFi Network Token
Previsione del prezzo di RetroCraft
Previsione del prezzo di CrossWallet
Previsione del prezzo di İstanbul Başakşehir Fan Token
Previsione del prezzo di Trisolaris
Previsione del prezzo di DogeCola
Previsione del prezzo di Unistake
Previsione del prezzo di Forest Knight
Previsione del prezzo di AirCoin
Previsione del prezzo di Changer
Previsione del prezzo di RIKU
Previsione del prezzo di Glitch Protocol
Previsione del prezzo di Position
Previsione del prezzo di Primate
Previsione del prezzo di PlotX
Previsione del prezzo di Nyxia AI
Previsione del prezzo di Spartan Protocol Token
Previsione del prezzo di Playermon
Previsione del prezzo di Solrise Finance
Previsione del prezzo di AllianceBlock
Previsione del prezzo di Metaverse Face
Previsione del prezzo di Furucombo
Previsione del prezzo di Coinzix Token
Previsione del prezzo di Tranche Finance
Come leggere e prevedere i movimenti di prezzo di DRAC (Ordinals)?
I trader di DRAC (Ordinals) utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di DRAC (Ordinals)
Le medie mobili sono strumenti popolari per la previsione del prezzo di DRAC (Ordinals). Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di DRAC su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di DRAC al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di DRAC.
Come leggere i grafici di DRAC (Ordinals) e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di DRAC (Ordinals) in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di DRAC all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di DRAC (Ordinals)?
L'azione del prezzo di DRAC (Ordinals) è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di DRAC. La capitalizzazione di mercato di DRAC (Ordinals) può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di DRAC, grandi detentori di DRAC (Ordinals), poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di DRAC (Ordinals).
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


