Previsione del prezzo di DRAC (Ordinals) DRAC
Previsione del prezzo di DRAC (Ordinals) fino a $0.006377 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.002136 | $0.006377 |
| 2027 | $0.002056 | $0.0054032 |
| 2028 | $0.003711 | $0.009091 |
| 2029 | $0.008154 | $0.026823 |
| 2030 | $0.006934 | $0.02005 |
| 2031 | $0.008198 | $0.0183036 |
| 2032 | $0.012515 | $0.033952 |
| 2033 | $0.029082 | $0.090436 |
| 2034 | $0.02338 | $0.052375 |
| 2035 | $0.027643 | $0.061711 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su DRAC (Ordinals) oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,955.35, con un rendimento del 39.55% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di DRAC (Ordinals) per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DRAC (Ordinals)'
'name_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_lang' => 'DRAC (Ordinals)'
'name_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_with_lang' => 'DRAC (Ordinals)'
'name_with_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'image' => '/uploads/coins/drac-ordinals.png?1717128736'
'price_for_sd' => 0.006183
'ticker' => 'DRAC'
'marketcap' => '$662.09K'
'low24h' => '$0.005956'
'high24h' => '$0.006314'
'volume24h' => '$15.15K'
'current_supply' => '106.82M'
'max_supply' => '106.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006183'
'change_24h_pct' => '3.2541%'
'ath_price' => '$0.03978'
'ath_days' => 752
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 dic 2023'
'ath_pct' => '-84.46%'
'fdv' => '$662.09K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.304912'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006236'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005465'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002136'
'current_year_max_price_prediction' => '$0.006377'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006934'
'grand_prediction_max_price' => '$0.02005'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063011631682265
107 => 0.0063246894241744
108 => 0.0063776952801055
109 => 0.0059247660446803
110 => 0.0061281179740825
111 => 0.0062475681811073
112 => 0.0057078878001337
113 => 0.0062369004351801
114 => 0.0059168815543681
115 => 0.0058082623396982
116 => 0.0059545038027579
117 => 0.005897513362379
118 => 0.0058485163283323
119 => 0.0058211751414583
120 => 0.005928558731848
121 => 0.0059235491590051
122 => 0.0057478487628709
123 => 0.005518654758578
124 => 0.0055955797894554
125 => 0.0055676322045617
126 => 0.0054663465515964
127 => 0.0055346008524186
128 => 0.0052340434543089
129 => 0.0047169500724751
130 => 0.0050585577995131
131 => 0.0050454062736199
201 => 0.0050387746778903
202 => 0.0052954834434152
203 => 0.0052708068188889
204 => 0.0052260185037394
205 => 0.0054655239790653
206 => 0.0053781012587681
207 => 0.0056475174833406
208 => 0.005824972433593
209 => 0.0057799641181427
210 => 0.0059468613565693
211 => 0.0055973519868001
212 => 0.0057134449795554
213 => 0.0057373715844643
214 => 0.0054625685186772
215 => 0.0052748442198424
216 => 0.0052623251493238
217 => 0.004936837085146
218 => 0.0051107101817819
219 => 0.0052637113114639
220 => 0.0051904356437135
221 => 0.005167238756352
222 => 0.0052857466230907
223 => 0.0052949556992876
224 => 0.0050849877860656
225 => 0.0051286467640435
226 => 0.0053107119599125
227 => 0.0051240591882388
228 => 0.0047614233424337
301 => 0.0046714846388413
302 => 0.0046594851578829
303 => 0.0044155642606116
304 => 0.004677494773074
305 => 0.0045631550850828
306 => 0.0049243527894471
307 => 0.0047180385978564
308 => 0.0047091448054118
309 => 0.0046957005336962
310 => 0.0044857477411695
311 => 0.0045317140595368
312 => 0.0046845131026577
313 => 0.0047390335226477
314 => 0.0047333465961701
315 => 0.0046837643039872
316 => 0.0047064628234461
317 => 0.0046333429835805
318 => 0.0046075228462661
319 => 0.0045260273905136
320 => 0.0044062515842516
321 => 0.00442290714474
322 => 0.0041855999314904
323 => 0.004056302366865
324 => 0.0040205145050912
325 => 0.0039726574806496
326 => 0.0040259200833446
327 => 0.0041849276699714
328 => 0.0039931307851581
329 => 0.0036643084791329
330 => 0.003684071260011
331 => 0.0037284723610217
401 => 0.0036457312030309
402 => 0.0035674236409317
403 => 0.0036355057128836
404 => 0.0034961793670329
405 => 0.0037453092842783
406 => 0.0037385710181953
407 => 0.0038314312452536
408 => 0.0038894986509169
409 => 0.0037556720804089
410 => 0.0037220150598317
411 => 0.0037411876283787
412 => 0.0034243077777195
413 => 0.0038055354010266
414 => 0.0038088322733438
415 => 0.0037806024509748
416 => 0.0039835943913035
417 => 0.0044119707001708
418 => 0.0042507983013778
419 => 0.0041883874771036
420 => 0.0040697444545363
421 => 0.0042278292377816
422 => 0.0042156907929352
423 => 0.004160796141971
424 => 0.0041275956857861
425 => 0.0041887685442883
426 => 0.0041200156916477
427 => 0.0041076657901114
428 => 0.0040328388236268
429 => 0.0040061290010018
430 => 0.003986354111679
501 => 0.003964583901575
502 => 0.004012603560266
503 => 0.0039037846961601
504 => 0.0037725598136931
505 => 0.0037616498845889
506 => 0.0037917731580564
507 => 0.003778445851961
508 => 0.0037615860785747
509 => 0.0037293961796941
510 => 0.0037198461243247
511 => 0.0037508791712473
512 => 0.0037158446706107
513 => 0.003767539984728
514 => 0.0037534817197203
515 => 0.0036749533941781
516 => 0.0035770780256427
517 => 0.0035762067295622
518 => 0.0035551196419591
519 => 0.0035282620654316
520 => 0.0035207909020597
521 => 0.0036297720306802
522 => 0.0038553597053938
523 => 0.003811071446992
524 => 0.0038430742525306
525 => 0.0040004963814398
526 => 0.0040505361423714
527 => 0.0040150191053188
528 => 0.0039664011944058
529 => 0.0039685401357459
530 => 0.0041346822549782
531 => 0.0041450443351606
601 => 0.0041712259688479
602 => 0.0042048767670648
603 => 0.0040207499817653
604 => 0.0039598677807165
605 => 0.0039310184162437
606 => 0.0038421735397765
607 => 0.0039379851220623
608 => 0.0038821598161254
609 => 0.0038896925571603
610 => 0.0038847868496794
611 => 0.0038874656976864
612 => 0.0037452396473891
613 => 0.0037970593449363
614 => 0.0037108990471684
615 => 0.0035955400804046
616 => 0.0035951533566979
617 => 0.0036233873003844
618 => 0.0036065926458853
619 => 0.0035613986624584
620 => 0.0035678182544946
621 => 0.0035115758732452
622 => 0.0035746470978795
623 => 0.0035764557549223
624 => 0.0035521698979253
625 => 0.0036493398216261
626 => 0.0036891504186495
627 => 0.0036731649473206
628 => 0.0036880288353671
629 => 0.0038129118240781
630 => 0.0038332732002648
701 => 0.0038423163785699
702 => 0.0038301997176326
703 => 0.0036903114671498
704 => 0.0036965161059095
705 => 0.0036509905835334
706 => 0.0036125263144869
707 => 0.0036140646835303
708 => 0.0036338403178251
709 => 0.0037202016726163
710 => 0.0039019440524943
711 => 0.0039088410429587
712 => 0.003917200396601
713 => 0.0038831987042633
714 => 0.0038729434685019
715 => 0.0038864727715722
716 => 0.003954725653894
717 => 0.0041302905977025
718 => 0.0040682342209722
719 => 0.0040177814207255
720 => 0.0040620421285192
721 => 0.0040552285394812
722 => 0.0039977149910473
723 => 0.0039961007772976
724 => 0.0038857138896593
725 => 0.0038449063706872
726 => 0.0038108045534442
727 => 0.0037735662592654
728 => 0.0037514901502373
729 => 0.0037854090871166
730 => 0.003793166749298
731 => 0.0037190024010098
801 => 0.0037088940743848
802 => 0.0037694582821456
803 => 0.0037428062323713
804 => 0.0037702185265032
805 => 0.0037765784138801
806 => 0.0037755543255318
807 => 0.003747726524599
808 => 0.0037654631350766
809 => 0.0037235107637591
810 => 0.0036778938609937
811 => 0.0036487931190629
812 => 0.003623398862075
813 => 0.0036374890717748
814 => 0.0035872600469657
815 => 0.0035711907710187
816 => 0.0037594543705332
817 => 0.0038985267156693
818 => 0.0038965045486923
819 => 0.0038841951272791
820 => 0.003865905823934
821 => 0.0039533876774373
822 => 0.0039229107489316
823 => 0.0039450852608521
824 => 0.0039507296047971
825 => 0.0039678133339513
826 => 0.0039739192987278
827 => 0.0039554628323081
828 => 0.003893520676736
829 => 0.0037391667143339
830 => 0.0036673145281652
831 => 0.0036436021099367
901 => 0.003644464011303
902 => 0.003620688923923
903 => 0.0036276917526811
904 => 0.0036182536258645
905 => 0.0036003800970018
906 => 0.0036363854317338
907 => 0.0036405347111487
908 => 0.0036321306357906
909 => 0.0036341100997694
910 => 0.0035645279452315
911 => 0.0035698181253165
912 => 0.0035403617303595
913 => 0.0035348390114072
914 => 0.0034603758100177
915 => 0.0033284534551426
916 => 0.0034015512457563
917 => 0.0033132593937997
918 => 0.0032798219316239
919 => 0.0034381096769719
920 => 0.0034222219775576
921 => 0.0033950291423773
922 => 0.0033548052716621
923 => 0.0033398858467412
924 => 0.0032492401438377
925 => 0.0032438843121341
926 => 0.003288810770133
927 => 0.0032680787555916
928 => 0.0032389631553475
929 => 0.0031335094026645
930 => 0.0030149444701112
1001 => 0.0030185232001524
1002 => 0.0030562364992186
1003 => 0.0031658930025849
1004 => 0.0031230483096429
1005 => 0.0030919639933273
1006 => 0.0030861428352725
1007 => 0.0031590068157482
1008 => 0.0032621246135971
1009 => 0.0033105051772171
1010 => 0.0032625615080092
1011 => 0.0032074864022937
1012 => 0.0032108385687851
1013 => 0.0032331390306556
1014 => 0.0032354824938866
1015 => 0.0031996342618782
1016 => 0.0032097253292063
1017 => 0.0031943960751883
1018 => 0.0031003204715754
1019 => 0.003098618942223
1020 => 0.0030755312719223
1021 => 0.0030748321864412
1022 => 0.0030355542997706
1023 => 0.0030300590519101
1024 => 0.0029520704239282
1025 => 0.0030034027750372
1026 => 0.0029689717289827
1027 => 0.0029170760211158
1028 => 0.0029081291815189
1029 => 0.002907860228717
1030 => 0.0029611455170283
1031 => 0.0030027801054191
1101 => 0.00296957067177
1102 => 0.0029620095274659
1103 => 0.0030427427670668
1104 => 0.0030324687264278
1105 => 0.0030235714734948
1106 => 0.0032528915458056
1107 => 0.0030713668145032
1108 => 0.002992211670586
1109 => 0.0028942421488343
1110 => 0.0029261415191218
1111 => 0.0029328631851407
1112 => 0.0026972641456613
1113 => 0.0026016816446866
1114 => 0.0025688813323026
1115 => 0.0025500042887973
1116 => 0.0025586067945656
1117 => 0.0024725713329792
1118 => 0.0025303885860605
1119 => 0.0024558891487231
1120 => 0.0024433990756114
1121 => 0.0025766132982799
1122 => 0.002595149279138
1123 => 0.0025160690261194
1124 => 0.0025668513504874
1125 => 0.0025484369737444
1126 => 0.0024571662277499
1127 => 0.0024536803565951
1128 => 0.0024078839045769
1129 => 0.002336221325109
1130 => 0.0023034696033284
1201 => 0.0022864122222616
1202 => 0.0022934504301315
1203 => 0.0022898916968598
1204 => 0.0022666685550418
1205 => 0.0022912228201647
1206 => 0.0022284968192984
1207 => 0.0022035188203357
1208 => 0.0021922368376894
1209 => 0.0021365639015466
1210 => 0.0022251643008168
1211 => 0.0022426196956315
1212 => 0.0022601094829662
1213 => 0.0024123461409297
1214 => 0.0024047408277142
1215 => 0.0024734891552448
1216 => 0.002470817721657
1217 => 0.0024512095849962
1218 => 0.0023684860818062
1219 => 0.0024014581957731
1220 => 0.0022999751539873
1221 => 0.0023760131490693
1222 => 0.0023413125835364
1223 => 0.002364280852957
1224 => 0.0023229818335735
1225 => 0.002345838416095
1226 => 0.0022467590172945
1227 => 0.0021542400687794
1228 => 0.0021914723944583
1229 => 0.0022319481905043
1230 => 0.0023197100293729
1231 => 0.0022674398021622
]
'min_raw' => 0.0021365639015466
'max_raw' => 0.0063776952801055
'avg_raw' => 0.0042571295908261
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002136'
'max' => '$0.006377'
'avg' => '$0.004257'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040474160984534
'max_diff' => 0.00019371528010554
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022862381524233
102 => 0.0022232668258545
103 => 0.0020933389922728
104 => 0.0020940743697008
105 => 0.0020740878031359
106 => 0.0020568164915374
107 => 0.0022734436665371
108 => 0.0022465026529571
109 => 0.0022035756737699
110 => 0.0022610351412622
111 => 0.0022762283364716
112 => 0.0022766608653801
113 => 0.002318581809619
114 => 0.002340955025074
115 => 0.0023448984012691
116 => 0.0024108619127909
117 => 0.0024329720117733
118 => 0.0025240403803434
119 => 0.0023390568140556
120 => 0.0023352471992398
121 => 0.0022618437138045
122 => 0.0022152900628783
123 => 0.0022650312821118
124 => 0.0023090952119992
125 => 0.0022632129029338
126 => 0.0022692041638694
127 => 0.0022076109126715
128 => 0.0022296276017429
129 => 0.0022485913403395
130 => 0.0022381206785235
131 => 0.0022224455909992
201 => 0.0023054824722469
202 => 0.0023007972059827
203 => 0.0023781230588102
204 => 0.002438404090714
205 => 0.0025464384764089
206 => 0.0024336989629763
207 => 0.0024295902870079
208 => 0.002469753253652
209 => 0.0024329658630324
210 => 0.0024562142240464
211 => 0.0025426928060313
212 => 0.0025445199621975
213 => 0.0025139127422563
214 => 0.0025120502901413
215 => 0.0025179287415373
216 => 0.0025523590149738
217 => 0.0025403280194996
218 => 0.0025542505920499
219 => 0.0025716609822139
220 => 0.0026436777377849
221 => 0.0026610407337415
222 => 0.0026188576552482
223 => 0.0026226663149323
224 => 0.0026068886856244
225 => 0.0025916476934061
226 => 0.0026259072181447
227 => 0.002688517172977
228 => 0.0026881276796975
301 => 0.002702651972255
302 => 0.0027117004861926
303 => 0.0026728576404554
304 => 0.0026475723761716
305 => 0.0026572683554412
306 => 0.0026727724374442
307 => 0.0026522405906064
308 => 0.0025255085206466
309 => 0.0025639509349964
310 => 0.0025575522375106
311 => 0.0025484397141825
312 => 0.0025870938590777
313 => 0.0025833655725051
314 => 0.002471688914967
315 => 0.0024788380922485
316 => 0.0024721236801163
317 => 0.0024938193193551
318 => 0.0024317942273144
319 => 0.0024508727278808
320 => 0.0024628385845861
321 => 0.0024698865661116
322 => 0.002495348708228
323 => 0.0024923610197335
324 => 0.0024951629893162
325 => 0.0025329166243184
326 => 0.0027238615546764
327 => 0.0027342542659395
328 => 0.0026830767547242
329 => 0.002703521161023
330 => 0.0026642723716296
331 => 0.0026906203468934
401 => 0.0027086469624029
402 => 0.0026271881532343
403 => 0.0026223646912186
404 => 0.0025829539081098
405 => 0.0026041310306116
406 => 0.0025704367060223
407 => 0.0025787041146991
408 => 0.002555587719299
409 => 0.0025971926285907
410 => 0.0026437133819281
411 => 0.0026554663613813
412 => 0.0026245493324156
413 => 0.002602163365913
414 => 0.0025628609831301
415 => 0.0026282217216087
416 => 0.0026473351933723
417 => 0.0026281213266784
418 => 0.0026236690539342
419 => 0.0026152320051289
420 => 0.0026254590137227
421 => 0.0026472310973002
422 => 0.0026369637847523
423 => 0.002643745525577
424 => 0.0026179005228541
425 => 0.0026728704990536
426 => 0.0027601760505035
427 => 0.0027604567521273
428 => 0.0027501893842348
429 => 0.0027459881985067
430 => 0.0027565231410404
501 => 0.002762237915199
502 => 0.0027963059875751
503 => 0.0028328623865665
504 => 0.0030034551498528
505 => 0.00295555338456
506 => 0.0031069134327566
507 => 0.0032266195792376
508 => 0.0032625142184519
509 => 0.003229492839348
510 => 0.0031165284852136
511 => 0.0031109859150748
512 => 0.0032798023524718
513 => 0.0032321039766245
514 => 0.0032264304065924
515 => 0.0031660732070991
516 => 0.0032017517873843
517 => 0.0031939483585027
518 => 0.0031816302642564
519 => 0.003249702510049
520 => 0.0033771276773214
521 => 0.0033572672700164
522 => 0.0033424423972609
523 => 0.0032774841203021
524 => 0.0033166035119877
525 => 0.0033026738458911
526 => 0.0033625245314269
527 => 0.0033270703111705
528 => 0.0032317426145148
529 => 0.0032469238644114
530 => 0.00324462924903
531 => 0.0032918522709818
601 => 0.0032776770919393
602 => 0.0032418613178185
603 => 0.0033766921519526
604 => 0.0033679369875524
605 => 0.0033803498089626
606 => 0.0033858143168267
607 => 0.0034678834695783
608 => 0.0035015045755407
609 => 0.0035091371552144
610 => 0.0035410746055291
611 => 0.0035083425223563
612 => 0.0036392941926272
613 => 0.0037263694121155
614 => 0.0038275117604011
615 => 0.0039753079157466
616 => 0.0040308806373474
617 => 0.0040208419226024
618 => 0.0041328992808111
619 => 0.0043342638626171
620 => 0.0040615434618191
621 => 0.0043487187060763
622 => 0.0042578023393421
623 => 0.0040422412693309
624 => 0.0040283616777202
625 => 0.0041743421370473
626 => 0.0044981127457362
627 => 0.0044170118804355
628 => 0.0044982453976983
629 => 0.0044034821848389
630 => 0.0043987763925934
701 => 0.0044936429599652
702 => 0.0047153038655367
703 => 0.0046100010781344
704 => 0.0044590237110906
705 => 0.0045705030494478
706 => 0.004473929329637
707 => 0.0042563217096213
708 => 0.0044169498641323
709 => 0.0043095423916373
710 => 0.0043408896022066
711 => 0.0045666441337353
712 => 0.0045394807512294
713 => 0.0045746326834536
714 => 0.0045125904431641
715 => 0.0044546332075705
716 => 0.0043464517233742
717 => 0.0043144245191863
718 => 0.0043232756862058
719 => 0.0043144201329875
720 => 0.0042538935868189
721 => 0.0042408228849365
722 => 0.0042190378091587
723 => 0.0042257899150781
724 => 0.0041848275991671
725 => 0.0042621319525375
726 => 0.0042764803217267
727 => 0.0043327359834616
728 => 0.0043385766328839
729 => 0.0044952478500665
730 => 0.0044089559763952
731 => 0.0044668480153358
801 => 0.004461669606472
802 => 0.0040469131313564
803 => 0.0041040629141999
804 => 0.0041929700417147
805 => 0.0041529175012801
806 => 0.0040962925799566
807 => 0.0040505649199516
808 => 0.0039812828391508
809 => 0.0040787960374334
810 => 0.0042070155238025
811 => 0.0043418284906526
812 => 0.0045037974370275
813 => 0.004467647853723
814 => 0.0043388005938634
815 => 0.0043445805878177
816 => 0.0043803102360995
817 => 0.0043340370951937
818 => 0.0043203902425816
819 => 0.0043784353681123
820 => 0.0043788350929908
821 => 0.0043255922520828
822 => 0.0042664225777505
823 => 0.0042661746546546
824 => 0.0042556459826184
825 => 0.0044053552122046
826 => 0.0044876801511667
827 => 0.0044971185727454
828 => 0.004487044870193
829 => 0.0044909218384945
830 => 0.0044430187704187
831 => 0.0045525109788264
901 => 0.0046529918569183
902 => 0.0046260608351288
903 => 0.004585687404996
904 => 0.0045535280232474
905 => 0.0046184851068287
906 => 0.0046155926701488
907 => 0.0046521142441058
908 => 0.0046504574145523
909 => 0.0046381765828764
910 => 0.004626061273716
911 => 0.0046740971050845
912 => 0.0046602635570822
913 => 0.004646408521759
914 => 0.0046186201273184
915 => 0.0046223970316392
916 => 0.0045820305725484
917 => 0.0045633552015294
918 => 0.0042825224298853
919 => 0.0042074747368265
920 => 0.0042310862687995
921 => 0.0042388597981981
922 => 0.0042061989460027
923 => 0.0042530262181664
924 => 0.004245728237402
925 => 0.0042741204113802
926 => 0.0042563822137236
927 => 0.0042571101955427
928 => 0.0043092744526685
929 => 0.0043244179584348
930 => 0.004316715849179
1001 => 0.0043221101424889
1002 => 0.0044464193550265
1003 => 0.0044287465601885
1004 => 0.0044193582401627
1005 => 0.0044219588689708
1006 => 0.0044537225379937
1007 => 0.0044626146310881
1008 => 0.0044249382078109
1009 => 0.0044427066268332
1010 => 0.0045183622998823
1011 => 0.0045448375037092
1012 => 0.004629333645506
1013 => 0.0045934381826716
1014 => 0.0046593258582234
1015 => 0.0048618421101059
1016 => 0.0050236261051684
1017 => 0.0048748428573026
1018 => 0.0051719385611673
1019 => 0.0054032701824735
1020 => 0.0053943912895447
1021 => 0.0053540532705732
1022 => 0.0050906883699855
1023 => 0.0048483360619152
1024 => 0.0050510740584385
1025 => 0.0050515908792851
1026 => 0.0050341755055843
1027 => 0.0049260101152347
1028 => 0.0050304115844622
1029 => 0.0050386985939591
1030 => 0.0050340600723345
1031 => 0.0049511299211607
1101 => 0.0048245109083721
1102 => 0.0048492519603879
1103 => 0.0048897783082936
1104 => 0.0048130534770263
1105 => 0.0047885352445149
1106 => 0.0048341193035381
1107 => 0.0049810006395267
1108 => 0.0049532335737837
1109 => 0.0049525084634817
1110 => 0.0050713077457986
1111 => 0.0049862730981494
1112 => 0.0048495640242856
1113 => 0.0048150431801639
1114 => 0.0046925174395586
1115 => 0.0047771464050164
1116 => 0.0047801920508212
1117 => 0.004733841631327
1118 => 0.0048533251053758
1119 => 0.0048522240441278
1120 => 0.004965655819969
1121 => 0.0051824947723479
1122 => 0.0051183648241327
1123 => 0.0050437886716769
1124 => 0.0050518971672212
1125 => 0.0051408273498705
1126 => 0.0050870581313621
1127 => 0.00510639391723
1128 => 0.0051407980828428
1129 => 0.0051615549701643
1130 => 0.005048910570566
1201 => 0.0050226477726152
1202 => 0.0049689233049972
1203 => 0.0049549075942104
1204 => 0.0049986650520874
1205 => 0.0049871365079106
1206 => 0.0047799360760846
1207 => 0.0047582824781064
1208 => 0.0047589465630422
1209 => 0.0047044975613537
1210 => 0.004621449764521
1211 => 0.0048396944160711
1212 => 0.0048221663162196
1213 => 0.0048028166505509
1214 => 0.0048051868741876
1215 => 0.004899919480428
1216 => 0.0048449697846973
1217 => 0.0049910625568753
1218 => 0.0049610302748662
1219 => 0.0049302277781458
1220 => 0.004925969934832
1221 => 0.0049141136015402
1222 => 0.0048734538231351
1223 => 0.0048243546974371
1224 => 0.0047919352017579
1225 => 0.0044203069228853
1226 => 0.0044892789697818
1227 => 0.0045686250227363
1228 => 0.0045960149622569
1229 => 0.0045491625753809
1230 => 0.0048753038409376
1231 => 0.0049348929929303
]
'min_raw' => 0.0020568164915374
'max_raw' => 0.0054032701824735
'avg_raw' => 0.0037300433370054
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002056'
'max' => '$0.0054032'
'avg' => '$0.00373'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9747410009178E-5
'max_diff' => -0.00097442509763209
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047543935646403
102 => 0.0047206294913504
103 => 0.0048775174079614
104 => 0.0047828948154772
105 => 0.004825503363079
106 => 0.0047334069887933
107 => 0.0049205397111893
108 => 0.0049191140733777
109 => 0.0048463152177814
110 => 0.0049078443120264
111 => 0.0048971521177447
112 => 0.0048149623890721
113 => 0.0049231452721874
114 => 0.0049231989295477
115 => 0.0048531316138199
116 => 0.0047713083287576
117 => 0.0047566802579681
118 => 0.0047456599716331
119 => 0.0048227930481964
120 => 0.0048919503234542
121 => 0.0050206348671665
122 => 0.0050529892189251
123 => 0.0051792704077902
124 => 0.0051040761083405
125 => 0.0051374087673574
126 => 0.0051735960839126
127 => 0.0051909456142137
128 => 0.0051626754856152
129 => 0.0053588421513336
130 => 0.0053754046283116
131 => 0.0053809578835774
201 => 0.0053148115876165
202 => 0.0053735649801631
203 => 0.0053460762134984
204 => 0.0054175943477607
205 => 0.0054288093044024
206 => 0.0054193106351106
207 => 0.0054228704393647
208 => 0.0052554767963452
209 => 0.0052467965528828
210 => 0.0051284408173514
211 => 0.0051766716544219
212 => 0.0050865064162828
213 => 0.0051150987421016
214 => 0.0051277019668848
215 => 0.0051211187574847
216 => 0.0051793985535849
217 => 0.005129848821124
218 => 0.0049990789304296
219 => 0.0048682734115659
220 => 0.0048666312548284
221 => 0.0048321924706208
222 => 0.0048072995374166
223 => 0.004812094799476
224 => 0.0048289939284291
225 => 0.0048063173293209
226 => 0.0048111565314734
227 => 0.0048915195306398
228 => 0.004907635757
229 => 0.0048528665228121
301 => 0.0046329601443849
302 => 0.0045789945675255
303 => 0.0046177839539881
304 => 0.0045992451256154
305 => 0.0037119497727361
306 => 0.0039204066544571
307 => 0.0037965486538653
308 => 0.0038536281189706
309 => 0.0037272011732401
310 => 0.0037875387383467
311 => 0.0037763965932466
312 => 0.0041115890903664
313 => 0.004106355520566
314 => 0.0041088605534751
315 => 0.003989288805897
316 => 0.0041797698465156
317 => 0.0042736076566011
318 => 0.0042562407753667
319 => 0.0042606116452186
320 => 0.004185505619778
321 => 0.004109587743975
322 => 0.0040253831360322
323 => 0.0041818248895858
324 => 0.0041644312371405
325 => 0.0042043260178115
326 => 0.0043057896776786
327 => 0.0043207305870169
328 => 0.0043408113206835
329 => 0.004333613807108
330 => 0.0045050877809941
331 => 0.0044843211513348
401 => 0.0045343627538467
402 => 0.0044314233808143
403 => 0.0043149377091331
404 => 0.0043370778271162
405 => 0.0043349455557148
406 => 0.0043077992934684
407 => 0.0042832928617037
408 => 0.0042424965574599
409 => 0.0043715821008044
410 => 0.0043663414634825
411 => 0.0044511812901497
412 => 0.0044361850266961
413 => 0.0043360363091453
414 => 0.004339613140185
415 => 0.0043636690478934
416 => 0.0044469268191376
417 => 0.0044716433942643
418 => 0.0044601936918804
419 => 0.0044872942881522
420 => 0.0045087134944651
421 => 0.0044899842106892
422 => 0.0047551513723923
423 => 0.0046450354794632
424 => 0.0046987051994954
425 => 0.0047115051114827
426 => 0.0046787184060803
427 => 0.0046858286684782
428 => 0.0046965987785804
429 => 0.0047619927781176
430 => 0.0049336055548092
501 => 0.0050096116853983
502 => 0.0052382798793519
503 => 0.0050033004343093
504 => 0.0049893577264821
505 => 0.005030547773331
506 => 0.0051648002101684
507 => 0.0052735992005349
508 => 0.0053096941024038
509 => 0.0053144646395476
510 => 0.0053821810749974
511 => 0.0054209948729605
512 => 0.0053739585186147
513 => 0.0053341001332183
514 => 0.0051913323441333
515 => 0.0052078581044637
516 => 0.005321704205332
517 => 0.0054825185283103
518 => 0.0056205139473043
519 => 0.0055721927611985
520 => 0.0059408493017447
521 => 0.0059774000919129
522 => 0.0059723499545402
523 => 0.0060556180940302
524 => 0.0058903477944041
525 => 0.0058196915393527
526 => 0.0053427179685529
527 => 0.0054767280864485
528 => 0.0056715196629481
529 => 0.0056457382673675
530 => 0.0055042754177197
531 => 0.0056204066350476
601 => 0.0055820100228401
602 => 0.0055517250217151
603 => 0.0056904664829049
604 => 0.0055379145471416
605 => 0.0056699978406927
606 => 0.0055005996504867
607 => 0.0055724134883064
608 => 0.0055316484807154
609 => 0.0055580284365982
610 => 0.0054038117535386
611 => 0.0054870233323192
612 => 0.005400349878287
613 => 0.0054003087837846
614 => 0.005398395462483
615 => 0.0055003663967829
616 => 0.0055036916652895
617 => 0.0054283349907723
618 => 0.0054174749166819
619 => 0.0054576303025895
620 => 0.005410618862404
621 => 0.0054326152193803
622 => 0.0054112851096487
623 => 0.0054064832526673
624 => 0.0053682212392708
625 => 0.0053517369118636
626 => 0.0053582008413887
627 => 0.0053361361175353
628 => 0.0053228413232977
629 => 0.005395750793284
630 => 0.0053567982046299
701 => 0.005389780750414
702 => 0.0053521929767639
703 => 0.0052218973770794
704 => 0.0051469629998498
705 => 0.0049008466904542
706 => 0.0049706449704925
707 => 0.0050169213023694
708 => 0.0050016269749601
709 => 0.0050344851083542
710 => 0.0050365023308819
711 => 0.0050258198167665
712 => 0.0050134508339356
713 => 0.0050074302971412
714 => 0.0050523024458735
715 => 0.0050783522385397
716 => 0.0050215657513707
717 => 0.0050082614719544
718 => 0.0050656757457501
719 => 0.0051006984195984
720 => 0.0053592861657534
721 => 0.0053401291502908
722 => 0.0053882094997275
723 => 0.005382796390234
724 => 0.005433192256244
725 => 0.0055155681982881
726 => 0.0053480748754367
727 => 0.0053771459248003
728 => 0.0053700183748449
729 => 0.0054478350963141
730 => 0.0054480780316245
731 => 0.0054014230198703
801 => 0.0054267154586334
802 => 0.0054125979131776
803 => 0.0054381102259169
804 => 0.0053398732966698
805 => 0.0054595152724716
806 => 0.0055273445631925
807 => 0.00552828637296
808 => 0.0055604369184352
809 => 0.005593103734672
810 => 0.0056558048437585
811 => 0.0055913550347706
812 => 0.005475416102464
813 => 0.0054837865188961
814 => 0.0054158115653051
815 => 0.0054169542365556
816 => 0.0054108545678675
817 => 0.0054291601327622
818 => 0.005343890338753
819 => 0.0053639029889722
820 => 0.0053358851614715
821 => 0.0053770850195151
822 => 0.0053327607828407
823 => 0.0053700149377245
824 => 0.0053860925959776
825 => 0.0054454195010588
826 => 0.0053239981507229
827 => 0.0050764117978854
828 => 0.0051284574509462
829 => 0.0050514778419715
830 => 0.0050586025978641
831 => 0.0050729957386638
901 => 0.0050263428601895
902 => 0.0050352427592012
903 => 0.0050349247921809
904 => 0.0050321847241794
905 => 0.0050200485086686
906 => 0.0050024485951008
907 => 0.005072561233787
908 => 0.0050844747373343
909 => 0.0051109569799489
910 => 0.0051897501708932
911 => 0.0051818768730465
912 => 0.0051947185484945
913 => 0.0051666852430944
914 => 0.0050599029825002
915 => 0.0050657017729954
916 => 0.0049933907626007
917 => 0.0051091078248358
918 => 0.0050817044971079
919 => 0.0050640373934526
920 => 0.0050592167605356
921 => 0.00513820526456
922 => 0.0051618398629572
923 => 0.005147112367295
924 => 0.005116905844022
925 => 0.005174911298463
926 => 0.0051904311110178
927 => 0.0051939054247001
928 => 0.0052966799685268
929 => 0.0051996493800173
930 => 0.0052230056070726
1001 => 0.0054052242232294
1002 => 0.0052399770828254
1003 => 0.0053275121785484
1004 => 0.0053232277911234
1005 => 0.0053680077840692
1006 => 0.0053195545246718
1007 => 0.0053201551608927
1008 => 0.0053599167609691
1009 => 0.0053040787647042
1010 => 0.0052902524915775
1011 => 0.0052711515942786
1012 => 0.0053128577047384
1013 => 0.0053378586317539
1014 => 0.0055393477423413
1015 => 0.0056695188968005
1016 => 0.0056638678236834
1017 => 0.0057155080536078
1018 => 0.0056922436570566
1019 => 0.0056171167837549
1020 => 0.0057453491957347
1021 => 0.0057047710951123
1022 => 0.0057081163044252
1023 => 0.0057079917955675
1024 => 0.0057349726850823
1025 => 0.0057158542520988
1026 => 0.0056781698582216
1027 => 0.0057031865175343
1028 => 0.0057774770520738
1029 => 0.0060080771507962
1030 => 0.0061371240210862
1031 => 0.0060003083671687
1101 => 0.0060946819732064
1102 => 0.0060380914383379
1103 => 0.0060278072547297
1104 => 0.006087080853476
1105 => 0.0061464582028105
1106 => 0.0061426761223532
1107 => 0.006099571215797
1108 => 0.00607522234783
1109 => 0.0062596001335458
1110 => 0.0063954465452677
1111 => 0.0063861827307141
1112 => 0.0064270701953995
1113 => 0.0065471170563175
1114 => 0.0065580926368036
1115 => 0.0065567099659332
1116 => 0.006529505844515
1117 => 0.0066477075691435
1118 => 0.0067463135273901
1119 => 0.0065232088764093
1120 => 0.0066081642068485
1121 => 0.0066463033917724
1122 => 0.006702303030627
1123 => 0.0067967838080039
1124 => 0.0068994149920238
1125 => 0.0069139281667379
1126 => 0.0069036303747589
1127 => 0.0068359423500235
1128 => 0.0069482426162227
1129 => 0.0070140254783969
1130 => 0.0070531976674076
1201 => 0.007152531821108
1202 => 0.0066465389263944
1203 => 0.0062883720060375
1204 => 0.0062324390694307
1205 => 0.0063461808954747
1206 => 0.0063761737079284
1207 => 0.0063640836428361
1208 => 0.0059609342108627
1209 => 0.0062303165711051
1210 => 0.0065201493404138
1211 => 0.006531282997464
1212 => 0.0066763793418973
1213 => 0.006723628659345
1214 => 0.0068404502348264
1215 => 0.0068331430134729
1216 => 0.0068615872080654
1217 => 0.0068550483803134
1218 => 0.0070714357492078
1219 => 0.0073101431509336
1220 => 0.0073018774726549
1221 => 0.007267560459399
1222 => 0.0073185270760042
1223 => 0.007564898696025
1224 => 0.0075422167452783
1225 => 0.0075642503283848
1226 => 0.0078547363532853
1227 => 0.0082324095068112
1228 => 0.0080569424092338
1229 => 0.0084376555216796
1230 => 0.0086772942452294
1231 => 0.0090917246385022
]
'min_raw' => 0.0037119497727361
'max_raw' => 0.0090917246385022
'avg_raw' => 0.0064018372056191
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003711'
'max' => '$0.009091'
'avg' => '$0.0064018'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016551332811987
'max_diff' => 0.0036884544560287
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090398359121517
102 => 0.0092011706230221
103 => 0.0089469442624804
104 => 0.0083631891510521
105 => 0.0082708076701438
106 => 0.008455757734394
107 => 0.0089104394201896
108 => 0.0084414381900335
109 => 0.0085363165280656
110 => 0.0085089915603295
111 => 0.0085075355289225
112 => 0.0085631063256207
113 => 0.0084824979866322
114 => 0.0081540851124298
115 => 0.0083045947973275
116 => 0.0082464757799198
117 => 0.0083109631627934
118 => 0.0086589749715427
119 => 0.0085051106553293
120 => 0.0083430270971206
121 => 0.0085463158483353
122 => 0.0088051722862255
123 => 0.0087889735155521
124 => 0.0087575411298848
125 => 0.0089347238421453
126 => 0.0092273777731359
127 => 0.0093064809547039
128 => 0.0093648733061441
129 => 0.0093729246248608
130 => 0.0094558582115099
131 => 0.0090099034141428
201 => 0.0097176451304958
202 => 0.0098398525739396
203 => 0.0098168826395517
204 => 0.0099527110696642
205 => 0.0099127468998904
206 => 0.0098548450880743
207 => 0.010070162041338
208 => 0.0098233185296033
209 => 0.0094729552414297
210 => 0.0092807390121376
211 => 0.0095338648485104
212 => 0.009688439963909
213 => 0.0097906042823636
214 => 0.0098215191433986
215 => 0.0090445216155919
216 => 0.0086257630423626
217 => 0.0088941824867258
218 => 0.0092216727341694
219 => 0.0090080841892829
220 => 0.0090164564558659
221 => 0.0087119353209399
222 => 0.0092486160975281
223 => 0.009170426222575
224 => 0.009576075432147
225 => 0.0094792639927444
226 => 0.0098100551759388
227 => 0.0097229467713839
228 => 0.010084528888526
301 => 0.010228773784499
302 => 0.010470983414763
303 => 0.010649153804755
304 => 0.010753778865616
305 => 0.0107474975694
306 => 0.011162074184527
307 => 0.01091761283879
308 => 0.01061051177343
309 => 0.010604957284049
310 => 0.010764009277455
311 => 0.01109733862185
312 => 0.011183766071107
313 => 0.011232067224592
314 => 0.011158092326655
315 => 0.01089274705656
316 => 0.010778172314265
317 => 0.01087579331425
318 => 0.010756411219936
319 => 0.010962498207422
320 => 0.011245499659046
321 => 0.011187060978395
322 => 0.011382412726195
323 => 0.011584581233566
324 => 0.011873691279061
325 => 0.011949275350668
326 => 0.012074212946829
327 => 0.012202814773141
328 => 0.012244118213836
329 => 0.012322979297827
330 => 0.012322563660988
331 => 0.01256021684556
401 => 0.012822355667649
402 => 0.01292130700446
403 => 0.013148840147248
404 => 0.012759197613935
405 => 0.013054745951344
406 => 0.013321337949741
407 => 0.013003495978954
408 => 0.013441567088003
409 => 0.013458576396477
410 => 0.013715396760052
411 => 0.013455060120741
412 => 0.013300473055341
413 => 0.013746760120847
414 => 0.013962704373934
415 => 0.013897660207492
416 => 0.013402670889238
417 => 0.013114565874923
418 => 0.012360539481156
419 => 0.01325371631609
420 => 0.01368875669806
421 => 0.013401544239746
422 => 0.013546397497569
423 => 0.014336669903422
424 => 0.014637554469222
425 => 0.014574972582878
426 => 0.014585547891485
427 => 0.014747899741749
428 => 0.015467857254619
429 => 0.015036442024423
430 => 0.015366242803087
501 => 0.015541167946906
502 => 0.015703648169169
503 => 0.015304648095693
504 => 0.014785554862576
505 => 0.014621136245596
506 => 0.013372986621106
507 => 0.013308015012712
508 => 0.013271544480079
509 => 0.01304160293069
510 => 0.012860931859161
511 => 0.012717255515194
512 => 0.012340205883237
513 => 0.012467449065614
514 => 0.011866510648649
515 => 0.012250969751874
516 => 0.011291857528232
517 => 0.012090634688254
518 => 0.011655896595995
519 => 0.011947811532704
520 => 0.011946793068989
521 => 0.011409285118794
522 => 0.011099261750626
523 => 0.011296820707112
524 => 0.011508619590716
525 => 0.011542983247003
526 => 0.011817586028111
527 => 0.011894221761752
528 => 0.011662011911041
529 => 0.011271982059227
530 => 0.01136257709817
531 => 0.011097425845053
601 => 0.010632758472861
602 => 0.010966490691883
603 => 0.011080441544627
604 => 0.011130768732836
605 => 0.010673821739694
606 => 0.010530239073646
607 => 0.010453796867018
608 => 0.011212995940507
609 => 0.011254586579548
610 => 0.011041802989892
611 => 0.012003604992106
612 => 0.011785919577162
613 => 0.012029127519876
614 => 0.011354356547958
615 => 0.011380133707785
616 => 0.011060686315995
617 => 0.011239555509915
618 => 0.011113136528875
619 => 0.011225104646666
620 => 0.011292217874808
621 => 0.011611612848424
622 => 0.012094281665802
623 => 0.01156390589025
624 => 0.011332813569721
625 => 0.011476181945664
626 => 0.011857990823666
627 => 0.012436450818275
628 => 0.012093990858874
629 => 0.012245968773509
630 => 0.01227916918683
701 => 0.012026651891325
702 => 0.012445761491148
703 => 0.012670365730533
704 => 0.012900763204844
705 => 0.013100810876197
706 => 0.012808737387055
707 => 0.013121297887527
708 => 0.012869429298502
709 => 0.012643477136451
710 => 0.012643819812612
711 => 0.012502076720722
712 => 0.012227431619408
713 => 0.012176782848914
714 => 0.012440264149259
715 => 0.012651551200364
716 => 0.01266895381389
717 => 0.012785933181703
718 => 0.012855160366591
719 => 0.013533680888288
720 => 0.013806587455131
721 => 0.01414029243921
722 => 0.014270289337091
723 => 0.014661533393245
724 => 0.014345572042612
725 => 0.014277211816912
726 => 0.013328181711637
727 => 0.01348358533821
728 => 0.013732401538573
729 => 0.013332284599136
730 => 0.013586066702985
731 => 0.013636168666124
801 => 0.013318688778641
802 => 0.013488268504042
803 => 0.013037915030261
804 => 0.012104098140856
805 => 0.012446801096291
806 => 0.012699145824059
807 => 0.012339018783654
808 => 0.012984532564739
809 => 0.012607436739938
810 => 0.012487915467268
811 => 0.012021620370172
812 => 0.012241693706657
813 => 0.0125393460454
814 => 0.012355431505856
815 => 0.012737081790317
816 => 0.013277600375528
817 => 0.013662806107788
818 => 0.013692377420792
819 => 0.013444715941729
820 => 0.013841595042482
821 => 0.013844485873448
822 => 0.0133968046265
823 => 0.013122602355444
824 => 0.013060303022533
825 => 0.013215938970647
826 => 0.013404909743639
827 => 0.013702863983523
828 => 0.013882911490468
829 => 0.014352379898762
830 => 0.014479404589333
831 => 0.01461896621279
901 => 0.014805463580939
902 => 0.015029401488345
903 => 0.014539438095732
904 => 0.014558905254726
905 => 0.014102658127529
906 => 0.013615092639663
907 => 0.013985094069057
908 => 0.014468821718763
909 => 0.014357854061449
910 => 0.014345367933138
911 => 0.014366366137594
912 => 0.014282700147844
913 => 0.013904281977012
914 => 0.013714242740642
915 => 0.013959441839739
916 => 0.014089754248352
917 => 0.014291857429675
918 => 0.014266943946696
919 => 0.014787540037486
920 => 0.014989827936359
921 => 0.01493807403544
922 => 0.014947597998736
923 => 0.015313830577115
924 => 0.015721156525748
925 => 0.016102671028034
926 => 0.01649076396619
927 => 0.016022902781718
928 => 0.01578535172591
929 => 0.01603044377875
930 => 0.015900394485593
1001 => 0.0166476962992
1002 => 0.016699437855377
1003 => 0.017446685630558
1004 => 0.018155912749814
1005 => 0.017710459903333
1006 => 0.018130501873928
1007 => 0.018584811511651
1008 => 0.019461248511901
1009 => 0.019166095363642
1010 => 0.018940012677715
1011 => 0.018726365631938
1012 => 0.019170931218687
1013 => 0.019742857743931
1014 => 0.019866045239624
1015 => 0.020065656043892
1016 => 0.019855789690452
1017 => 0.02010855059715
1018 => 0.021000907666566
1019 => 0.020759784909356
1020 => 0.020417351831701
1021 => 0.02112178203512
1022 => 0.021376712587335
1023 => 0.023165948710943
1024 => 0.025424933226655
1025 => 0.024489698803858
1026 => 0.023909168617802
1027 => 0.024045606981885
1028 => 0.024870511655572
1029 => 0.025135444855594
1030 => 0.024415265089983
1031 => 0.024669644758293
1101 => 0.026071301740739
1102 => 0.026823245741282
1103 => 0.025802004788992
1104 => 0.022984441504629
1105 => 0.020386519479699
1106 => 0.021075605386664
1107 => 0.02099748442964
1108 => 0.022503389997009
1109 => 0.020754034211341
1110 => 0.020783488876299
1111 => 0.022320534976019
1112 => 0.021910477428255
1113 => 0.02124623671708
1114 => 0.020391369171984
1115 => 0.018811067449196
1116 => 0.01741135014335
1117 => 0.020156518115759
1118 => 0.020038141481024
1119 => 0.019866714571495
1120 => 0.020248206608324
1121 => 0.022100623650763
1122 => 0.022057919442246
1123 => 0.021786257055539
1124 => 0.021992310581534
1125 => 0.021210114537719
1126 => 0.021411704268483
1127 => 0.020386107955577
1128 => 0.020849720321696
1129 => 0.021244811554839
1130 => 0.021324131969318
1201 => 0.021502844913341
1202 => 0.019975762373595
1203 => 0.020661377601153
1204 => 0.021064112313884
1205 => 0.019244542230151
1206 => 0.021028145263693
1207 => 0.01994917926403
1208 => 0.019582961998219
1209 => 0.020076025301178
1210 => 0.019883878052495
1211 => 0.019718681131343
1212 => 0.019626498410896
1213 => 0.019988549683178
1214 => 0.019971659558581
1215 => 0.019379273406005
1216 => 0.018606529818717
1217 => 0.018865887931054
1218 => 0.018771660697347
1219 => 0.018430169046836
1220 => 0.018660293187421
1221 => 0.017646942935447
1222 => 0.015903526496287
1223 => 0.017055280798286
1224 => 0.017010939510526
1225 => 0.016988580622521
1226 => 0.017854092148322
1227 => 0.017770893185864
1228 => 0.017619886254318
1229 => 0.018427395686117
1230 => 0.018132643880976
1231 => 0.019040999492162
]
'min_raw' => 0.0081540851124298
'max_raw' => 0.026823245741282
'avg_raw' => 0.017488665426856
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008154'
'max' => '$0.026823'
'avg' => '$0.017488'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0044421353396937
'max_diff' => 0.017731521102779
'year' => 2029
]
4 => [
'items' => [
101 => 0.019639301246447
102 => 0.019487552568526
103 => 0.020050258260274
104 => 0.018871863018133
105 => 0.019263278648561
106 => 0.019343948867514
107 => 0.018417431145075
108 => 0.017784505565061
109 => 0.017742296644754
110 => 0.016644890911528
111 => 0.017231116196268
112 => 0.017746970187188
113 => 0.017499916157424
114 => 0.01742170623213
115 => 0.017821263778795
116 => 0.01785231282215
117 => 0.01714439134323
118 => 0.017291590635655
119 => 0.017905436154914
120 => 0.017276123303535
121 => 0.016053471230977
122 => 0.015750236612496
123 => 0.015709779524667
124 => 0.014887383189504
125 => 0.015770500199675
126 => 0.015384995958671
127 => 0.016602799236953
128 => 0.015907196535608
129 => 0.015877210493437
130 => 0.015831882192699
131 => 0.015124011694259
201 => 0.0152789903459
202 => 0.015794162987871
203 => 0.015977982390361
204 => 0.015958808520694
205 => 0.015791638360874
206 => 0.01586816800399
207 => 0.015621639358819
208 => 0.015534584963159
209 => 0.015259817344258
210 => 0.014855984850966
211 => 0.014912140236007
212 => 0.014112042398275
213 => 0.013676106631873
214 => 0.013555445357274
215 => 0.013394092058098
216 => 0.01357367064176
217 => 0.014109775821628
218 => 0.013463119233649
219 => 0.012354471871245
220 => 0.012421103466769
221 => 0.012570804878812
222 => 0.012291837287843
223 => 0.012027817874966
224 => 0.012257361333891
225 => 0.0117876128314
226 => 0.012627571741088
227 => 0.012604853206539
228 => 0.01291793794536
301 => 0.01311371625769
302 => 0.01266251063175
303 => 0.012549033637015
304 => 0.012613675290458
305 => 0.011545292750116
306 => 0.012830628298558
307 => 0.012841743933756
308 => 0.012746565116696
309 => 0.013430966615958
310 => 0.014875267249583
311 => 0.014331863254355
312 => 0.01412144080293
313 => 0.013721427568953
314 => 0.014254421452792
315 => 0.014213495838513
316 => 0.014028414690165
317 => 0.013916477034156
318 => 0.014122725597549
319 => 0.0138909205547
320 => 0.013849281999428
321 => 0.013596997657673
322 => 0.013506943625873
323 => 0.013440271205882
324 => 0.013366871422569
325 => 0.013528773054471
326 => 0.013161882656647
327 => 0.012719448803581
328 => 0.0126826652159
329 => 0.012784227935535
330 => 0.012739293992552
331 => 0.012682450089468
401 => 0.012573919597965
402 => 0.012541720919523
403 => 0.012646351003881
404 => 0.012528229738954
405 => 0.012702524099752
406 => 0.012655125677762
407 => 0.012390361945524
408 => 0.012060368307067
409 => 0.0120574306715
410 => 0.011986334083392
411 => 0.011895781888993
412 => 0.011870592340065
413 => 0.012238029824029
414 => 0.012998614419354
415 => 0.012849293464045
416 => 0.012957193157283
417 => 0.013487952855762
418 => 0.013656665403408
419 => 0.013536917233265
420 => 0.013372998552227
421 => 0.013380210142292
422 => 0.013940369896955
423 => 0.013975306373748
424 => 0.014063579579668
425 => 0.01417703559528
426 => 0.013556239283321
427 => 0.013350970691826
428 => 0.013253703045307
429 => 0.012954156341347
430 => 0.013277191780374
501 => 0.01308897286381
502 => 0.013114370026128
503 => 0.01309783009085
504 => 0.013106862013938
505 => 0.012627336955454
506 => 0.012802050683671
507 => 0.012511555224226
508 => 0.012122614413676
509 => 0.012121310547699
510 => 0.012216503260069
511 => 0.01215987890986
512 => 0.012007504239393
513 => 0.012029148342144
514 => 0.011839523227044
515 => 0.012052172264391
516 => 0.012058270277887
517 => 0.011976388815438
518 => 0.012304003997382
519 => 0.012438228204734
520 => 0.012384332072078
521 => 0.012434446708391
522 => 0.012855498423882
523 => 0.012924148225281
524 => 0.012954637932311
525 => 0.012913785764003
526 => 0.012442142760814
527 => 0.012463062133587
528 => 0.012309569656405
529 => 0.012179884687826
530 => 0.012185071406461
531 => 0.012251746338177
601 => 0.012542919675412
602 => 0.013155676798019
603 => 0.013178930482902
604 => 0.013207114627338
605 => 0.013092475547699
606 => 0.013057899304332
607 => 0.013103514294219
608 => 0.013333633652231
609 => 0.013925563117835
610 => 0.013716335711051
611 => 0.013546230572517
612 => 0.013695458639027
613 => 0.013672486147876
614 => 0.013478575203864
615 => 0.013473132769506
616 => 0.013100955670867
617 => 0.012963370271562
618 => 0.012848393613815
619 => 0.012722842105096
620 => 0.012648410962203
621 => 0.012762771026036
622 => 0.012788926525704
623 => 0.012538876247461
624 => 0.012504795318504
625 => 0.012708991773427
626 => 0.012619132526826
627 => 0.012711554990357
628 => 0.012732997794681
629 => 0.012729545009316
630 => 0.012635721635596
701 => 0.012695521856152
702 => 0.012554076507234
703 => 0.01240027593469
704 => 0.012302160751521
705 => 0.012216542241116
706 => 0.012264048366866
707 => 0.012094697702843
708 => 0.012040519017067
709 => 0.012675262886975
710 => 0.013144155008322
711 => 0.013137337131176
712 => 0.013095835057465
713 => 0.013034171394319
714 => 0.013329122571193
715 => 0.013226367478905
716 => 0.01330113039402
717 => 0.013320160693706
718 => 0.013377759679297
719 => 0.013398346365846
720 => 0.013336119100723
721 => 0.013127276798548
722 => 0.01260686163766
723 => 0.012364606975433
724 => 0.012284658901827
725 => 0.01228756486246
726 => 0.012207405495435
727 => 0.012231016021514
728 => 0.012199194718003
729 => 0.012138932867553
730 => 0.012260327367414
731 => 0.012274316952655
801 => 0.012245982025831
802 => 0.012252655926837
803 => 0.012018054834742
804 => 0.012035891046247
805 => 0.01193657675407
806 => 0.011917956521538
807 => 0.011666898639199
808 => 0.011222113209212
809 => 0.011468567513791
810 => 0.011170885370579
811 => 0.011058148632325
812 => 0.011591826817063
813 => 0.011538260329244
814 => 0.01144657778689
815 => 0.011310960198433
816 => 0.011260658315671
817 => 0.010955039999651
818 => 0.010936982439131
819 => 0.011088455128939
820 => 0.011018555694449
821 => 0.01092039041544
822 => 0.010564845725724
823 => 0.010165095777681
824 => 0.010177161715874
825 => 0.010304314736734
826 => 0.010674029293806
827 => 0.010529575420231
828 => 0.010424772477535
829 => 0.010405146036733
830 => 0.010650812034108
831 => 0.01099848088901
901 => 0.011161599337078
902 => 0.010999953909023
903 => 0.010814264344882
904 => 0.010825566408249
905 => 0.010900753972414
906 => 0.010908655122313
907 => 0.010787790305253
908 => 0.010821813043285
909 => 0.010770129393109
910 => 0.010452946927379
911 => 0.010447210102371
912 => 0.010369368410022
913 => 0.010367011394514
914 => 0.01023458325731
915 => 0.010216055645482
916 => 0.0099531115412491
917 => 0.010126182146923
918 => 0.010010095471252
919 => 0.0098351254689359
920 => 0.0098049605745865
921 => 0.0098040537814372
922 => 0.0099837088512389
923 => 0.010124082772833
924 => 0.010012114848676
925 => 0.0099866219227526
926 => 0.010258819676682
927 => 0.010224180031357
928 => 0.010194182321907
929 => 0.010967350956319
930 => 0.010355327651081
1001 => 0.010088450556928
1002 => 0.0097581394743286
1003 => 0.0098656904283961
1004 => 0.0098883529946704
1005 => 0.0090940143840662
1006 => 0.0087717513086726
1007 => 0.0086611627654253
1008 => 0.0085975174952941
1009 => 0.0086265214440999
1010 => 0.008336446878557
1011 => 0.0085313817839923
1012 => 0.0082802017296249
1013 => 0.0082380905760996
1014 => 0.0086872316285464
1015 => 0.0087497269821504
1016 => 0.0084831023878912
1017 => 0.0086543185400065
1018 => 0.008592233183167
1019 => 0.0082845074907265
1020 => 0.0082727546327523
1021 => 0.0081183486973668
1022 => 0.0078767333073691
1023 => 0.0077663085907337
1024 => 0.0077087984395586
1025 => 0.007732528248784
1026 => 0.0077205297310955
1027 => 0.0076422312870681
1028 => 0.0077250177062543
1029 => 0.0075135326149439
1030 => 0.0074293175475329
1031 => 0.0073912795553581
1101 => 0.0072035743641924
1102 => 0.0075022967962144
1103 => 0.0075611488785287
1104 => 0.0076201169176256
1105 => 0.0081333934387735
1106 => 0.0081077515942814
1107 => 0.0083395413804057
1108 => 0.008330534455551
1109 => 0.0082644242538028
1110 => 0.0079855161872272
1111 => 0.008096683971506
1112 => 0.0077545268108054
1113 => 0.0080108942200276
1114 => 0.0078938988406176
1115 => 0.0079713379645623
1116 => 0.0078320954373054
1117 => 0.0079091580010724
1118 => 0.0075751048905138
1119 => 0.0072631707961282
1120 => 0.0073887021816329
1121 => 0.0075251691539316
1122 => 0.0078210643210132
1123 => 0.0076448316005815
1124 => 0.0077082115509457
1125 => 0.0074958993269013
1126 => 0.007057838564709
1127 => 0.0070603179410498
1128 => 0.006992931836459
1129 => 0.0069347004035601
1130 => 0.0076650740484979
1201 => 0.0075742405402512
1202 => 0.0074295092328557
1203 => 0.0076232378391981
1204 => 0.0076744627576015
1205 => 0.0076759210590147
1206 => 0.007817260449343
1207 => 0.0078926933072977
1208 => 0.0079059886754569
1209 => 0.0081283892599782
1210 => 0.0082029350023751
1211 => 0.0085099783651995
1212 => 0.0078862933563203
1213 => 0.0078734489739897
1214 => 0.0076259639979771
1215 => 0.0074690051136073
1216 => 0.0076367111070741
1217 => 0.0077852757231347
1218 => 0.0076305803147204
1219 => 0.007650780269261
1220 => 0.007443114322544
1221 => 0.0075173451269044
1222 => 0.0075812826955887
1223 => 0.0075459801282378
1224 => 0.0074931304762499
1225 => 0.0077730951188263
1226 => 0.0077572984165018
1227 => 0.0080180079280283
1228 => 0.0082212496357792
1229 => 0.0085854951098697
1230 => 0.0082053859691102
1231 => 0.0081915332812239
]
'min_raw' => 0.0069347004035601
'max_raw' => 0.020050258260274
'avg_raw' => 0.013492479331917
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006934'
'max' => '$0.02005'
'avg' => '$0.013492'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012193847088697
'max_diff' => -0.0067729874810072
'year' => 2030
]
5 => [
'items' => [
101 => 0.0083269455273533
102 => 0.0082029142714657
103 => 0.0082812977437732
104 => 0.0085728663206772
105 => 0.0085790267052595
106 => 0.0084758323262998
107 => 0.0084695529389618
108 => 0.0084893725482638
109 => 0.0086054566189999
110 => 0.0085648932777815
111 => 0.0086118342031776
112 => 0.0086705345491703
113 => 0.0089133440686273
114 => 0.0089718846217406
115 => 0.0088296614274721
116 => 0.0088425025895089
117 => 0.0087893072107385
118 => 0.0087379211413824
119 => 0.0088534295209621
120 => 0.0090645233549669
121 => 0.0090632101511813
122 => 0.0091121798175926
123 => 0.0091426875140803
124 => 0.0090117261477566
125 => 0.0089264751138628
126 => 0.0089591657849219
127 => 0.0090114388798556
128 => 0.0089422143247541
129 => 0.0085149283027341
130 => 0.0086445395866782
131 => 0.0086229659313619
201 => 0.0085922424227454
202 => 0.0087225675710056
203 => 0.0087099973925256
204 => 0.0083334717446205
205 => 0.0083575756949649
206 => 0.0083349375856757
207 => 0.0084080859481105
208 => 0.0081989640198418
209 => 0.0082632885165196
210 => 0.0083036322378311
211 => 0.0083273949996187
212 => 0.0084132423894738
213 => 0.0084031691891212
214 => 0.0084126162251965
215 => 0.008539905241481
216 => 0.0091836894055322
217 => 0.0092187291571518
218 => 0.0090461806049898
219 => 0.0091151103482088
220 => 0.008982780314506
221 => 0.0090716143526649
222 => 0.0091323923454332
223 => 0.0088577482830489
224 => 0.0088414856440997
225 => 0.0087086094372754
226 => 0.0087800095843297
227 => 0.008666406816514
228 => 0.0086942809620798
301 => 0.0086163424210534
302 => 0.0087566162774923
303 => 0.0089134642453445
304 => 0.0089530902361379
305 => 0.0088488513144221
306 => 0.0087733754654202
307 => 0.008640864737863
308 => 0.0088612330309847
309 => 0.0089256754354955
310 => 0.0088608945424678
311 => 0.0088458833940628
312 => 0.0088174372949599
313 => 0.0088519183684608
314 => 0.0089253244683209
315 => 0.0088907075072247
316 => 0.0089135726199011
317 => 0.0088264343887805
318 => 0.0090117695014182
319 => 0.0093061262636105
320 => 0.0093070726687332
321 => 0.0092724555210387
322 => 0.0092582909300389
323 => 0.0092938102243177
324 => 0.0093130779843861
325 => 0.0094279408689589
326 => 0.0095511933204446
327 => 0.010126358732271
328 => 0.0099648545861917
329 => 0.010475175556308
330 => 0.010878773186785
331 => 0.010999794468979
401 => 0.010888460583852
402 => 0.010507593376968
403 => 0.010488906214775
404 => 0.011058082619847
405 => 0.010897264215483
406 => 0.010878135378004
407 => 0.010674636865907
408 => 0.010794929690337
409 => 0.010768619885045
410 => 0.010727088570272
411 => 0.010956598899614
412 => 0.011386221747614
413 => 0.011319260997776
414 => 0.011269277904241
415 => 0.011050266538233
416 => 0.011182160298529
417 => 0.011135195456746
418 => 0.011336986221672
419 => 0.011217449842743
420 => 0.010896045857901
421 => 0.010947230501848
422 => 0.010939494045885
423 => 0.011098709761401
424 => 0.01105091715558
425 => 0.010930161772554
426 => 0.011384753343426
427 => 0.011355234695384
428 => 0.011397085389405
429 => 0.011415509359188
430 => 0.011692211237575
501 => 0.011805567143678
502 => 0.011831300918938
503 => 0.011938980262475
504 => 0.011828621758777
505 => 0.012270134457849
506 => 0.012563714639752
507 => 0.01290472312853
508 => 0.013403028185075
509 => 0.013590395495916
510 => 0.013556549268272
511 => 0.013934358475068
512 => 0.014613273221453
513 => 0.013693777349432
514 => 0.014662008735381
515 => 0.014355477857358
516 => 0.013628698659822
517 => 0.013581902647665
518 => 0.014074085958316
519 => 0.015165701170453
520 => 0.01489226394081
521 => 0.015166148415804
522 => 0.014846647627493
523 => 0.014830781720389
524 => 0.015150630975655
525 => 0.01589797619466
526 => 0.015542940494927
527 => 0.015033909761036
528 => 0.015409770133546
529 => 0.015084165094642
530 => 0.01435048581088
531 => 0.014892054848514
601 => 0.014529923056047
602 => 0.014635612365073
603 => 0.015396759529801
604 => 0.015305176289195
605 => 0.015423693482918
606 => 0.015214513738132
607 => 0.015019106871883
608 => 0.014654365444925
609 => 0.014546383489937
610 => 0.014576225817512
611 => 0.014546368701562
612 => 0.014342299225326
613 => 0.014298230441362
614 => 0.014224780537392
615 => 0.014247545733916
616 => 0.014109438425924
617 => 0.01437007545053
618 => 0.014418451979023
619 => 0.014608121870207
620 => 0.014627814027516
621 => 0.015156041974682
622 => 0.014865102897893
623 => 0.015060289949074
624 => 0.015042830582045
625 => 0.01364445016882
626 => 0.013837134651748
627 => 0.014136891239461
628 => 0.014001851303007
629 => 0.013810936427339
630 => 0.013656762429029
701 => 0.013423173056488
702 => 0.013751945612652
703 => 0.014184246562944
704 => 0.01463877789302
705 => 0.015184867504034
706 => 0.01506298666004
707 => 0.014628569127594
708 => 0.014648056780758
709 => 0.014768521784504
710 => 0.014612508659253
711 => 0.014566497342878
712 => 0.014762200536186
713 => 0.014763548236522
714 => 0.014584036281104
715 => 0.014384541592998
716 => 0.014383705702971
717 => 0.014348207550112
718 => 0.014852962670027
719 => 0.015130526949481
720 => 0.015162349246803
721 => 0.015128385055325
722 => 0.015141456524634
723 => 0.014979947986131
724 => 0.01534910861128
725 => 0.015687886907118
726 => 0.01559708708689
727 => 0.015460965248415
728 => 0.015352537647553
729 => 0.015571544990006
730 => 0.015561792937796
731 => 0.015684927974247
801 => 0.015679341857731
802 => 0.015637936176316
803 => 0.015597088565618
804 => 0.015759044724831
805 => 0.015712403951914
806 => 0.015665690732994
807 => 0.015572000221014
808 => 0.015584734317627
809 => 0.015448635982506
810 => 0.015385670665242
811 => 0.014438823368526
812 => 0.014185794831716
813 => 0.014265402760267
814 => 0.014291611757365
815 => 0.01418149341388
816 => 0.014339374831356
817 => 0.01431476917968
818 => 0.014410495376526
819 => 0.014350689804685
820 => 0.014353144246215
821 => 0.014529019681106
822 => 0.014580077068083
823 => 0.014554108868983
824 => 0.014572296105495
825 => 0.014991413294558
826 => 0.014931828232886
827 => 0.014900174856448
828 => 0.014908943058044
829 => 0.015016036485824
830 => 0.015046016798518
831 => 0.014918988106954
901 => 0.01497889557224
902 => 0.015233973956035
903 => 0.015323236954177
904 => 0.015608121595577
905 => 0.01548709753649
906 => 0.015709242434743
907 => 0.016392040117199
908 => 0.016937506151949
909 => 0.016435873044055
910 => 0.017437551952195
911 => 0.018217502664487
912 => 0.018187566857073
913 => 0.0180515644098
914 => 0.017163611259918
915 => 0.016346503532761
916 => 0.017030048842755
917 => 0.017031791340322
918 => 0.016973074191987
919 => 0.016608387026557
920 => 0.016960383869136
921 => 0.016988324100235
922 => 0.016972685000726
923 => 0.016693080206046
924 => 0.016266175364172
925 => 0.016349591548408
926 => 0.016486228959831
927 => 0.016227545834457
928 => 0.016144880901737
929 => 0.016298570739311
930 => 0.016793791418524
1001 => 0.016700172817737
1002 => 0.016697728057728
1003 => 0.01709826813236
1004 => 0.016811567880881
1005 => 0.016350643693627
1006 => 0.016234254257502
1007 => 0.015821150168577
1008 => 0.016106482634224
1009 => 0.016116751241695
1010 => 0.015960477566287
1011 => 0.016363324441113
1012 => 0.016359612136241
1013 => 0.016742055288044
1014 => 0.017473142955201
1015 => 0.017256924357384
1016 => 0.017005485652638
1017 => 0.017032824011483
1018 => 0.017332658331192
1019 => 0.017151371656944
1020 => 0.017216563608979
1021 => 0.017332559655365
1022 => 0.017402542950169
1023 => 0.017022754492343
1024 => 0.016934207635441
1025 => 0.016753071841945
1026 => 0.016705816894481
1027 => 0.016853348218762
1028 => 0.016814478927173
1029 => 0.016115888204999
1030 => 0.01604288158761
1031 => 0.016045120596336
1101 => 0.015861541985635
1102 => 0.015581540540401
1103 => 0.016317367620457
1104 => 0.016258270408035
1105 => 0.016193031659283
1106 => 0.016201023033758
1107 => 0.016520420629716
1108 => 0.016335153894095
1109 => 0.016827715875365
1110 => 0.016726459939784
1111 => 0.01662260717153
1112 => 0.016608251555524
1113 => 0.016568277100048
1114 => 0.01643118981838
1115 => 0.016265648688098
1116 => 0.016156344094959
1117 => 0.014903373406482
1118 => 0.015135917478068
1119 => 0.015403438235369
1120 => 0.015495785328767
1121 => 0.015337819235285
1122 => 0.016437427282566
1123 => 0.016638336268891
1124 => 0.016029769844343
1125 => 0.015915931913914
1126 => 0.016444890478333
1127 => 0.016125863801434
1128 => 0.016269521494507
1129 => 0.015959012138639
1130 => 0.016589943177387
1201 => 0.01658513653997
1202 => 0.016339690115674
1203 => 0.016547139752744
1204 => 0.016511090273219
1205 => 0.016233981864696
1206 => 0.016598728008206
1207 => 0.016598908917743
1208 => 0.016362672070823
1209 => 0.016086799152516
1210 => 0.01603747959055
1211 => 0.01600032392576
1212 => 0.016260383478652
1213 => 0.016493552060591
1214 => 0.016927420984185
1215 => 0.017036505940047
1216 => 0.017462271784977
1217 => 0.017208748954484
1218 => 0.017321132341571
1219 => 0.017443140405855
1220 => 0.017501635558571
1221 => 0.017406320846244
1222 => 0.018067710455633
1223 => 0.018123552003119
1224 => 0.018142275190964
1225 => 0.017919258335944
1226 => 0.018117349500946
1227 => 0.018024669204932
1228 => 0.018265797587834
1229 => 0.018303609597155
1230 => 0.018271584170461
1231 => 0.018283586299042
]
'min_raw' => 0.0081989640198418
'max_raw' => 0.018303609597155
'avg_raw' => 0.013251286808498
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008198'
'max' => '$0.0183036'
'avg' => '$0.013251'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012642636162817
'max_diff' => -0.0017466486631198
'year' => 2031
]
6 => [
'items' => [
101 => 0.01771920694455
102 => 0.017689940897682
103 => 0.017290896272004
104 => 0.017453509906557
105 => 0.017149511511035
106 => 0.017245912533785
107 => 0.017288405186071
108 => 0.017266209435954
109 => 0.017462703837471
110 => 0.017295643455027
111 => 0.016854743638489
112 => 0.01641372369909
113 => 0.016408187052998
114 => 0.016292074287603
115 => 0.016208146025336
116 => 0.016224313586163
117 => 0.016281290179288
118 => 0.016204834442165
119 => 0.016221150150085
120 => 0.01649209961254
121 => 0.016546436594912
122 => 0.016361778297982
123 => 0.015620348589742
124 => 0.015438399879604
125 => 0.015569181004251
126 => 0.015506676050053
127 => 0.012515097818837
128 => 0.013217924749554
129 => 0.012800328853069
130 => 0.012992776254833
131 => 0.012566518980455
201 => 0.012769951293846
202 => 0.012732384773721
203 => 0.013862509680153
204 => 0.013844864334176
205 => 0.013853310227524
206 => 0.013450165732332
207 => 0.014092385859739
208 => 0.014408766587989
209 => 0.01435021293539
210 => 0.01436494962826
211 => 0.014111724419752
212 => 0.013855762001065
213 => 0.013571860286408
214 => 0.014099314580929
215 => 0.014040670667323
216 => 0.01417517870572
217 => 0.014517270518929
218 => 0.014567644837904
219 => 0.014635348433453
220 => 0.014611081513919
221 => 0.015189217988806
222 => 0.01511920184703
223 => 0.015287920603692
224 => 0.014940853320516
225 => 0.014548113745673
226 => 0.014622760699226
227 => 0.014615571597326
228 => 0.014524046078871
229 => 0.014441420933192
301 => 0.014303873345127
302 => 0.014739094266978
303 => 0.014721425092357
304 => 0.015007468491293
305 => 0.014956907542054
306 => 0.014619249148671
307 => 0.014631308684248
308 => 0.014712414856617
309 => 0.014993124245238
310 => 0.015076457903934
311 => 0.015037854432954
312 => 0.015129225985388
313 => 0.015201442334913
314 => 0.015138295247026
315 => 0.016032324846088
316 => 0.015661061425031
317 => 0.01584201263322
318 => 0.015885168430146
319 => 0.015774625763787
320 => 0.015798598509885
321 => 0.015834910688039
322 => 0.016055391123142
323 => 0.016633995581379
324 => 0.016890255557239
325 => 0.017661226338257
326 => 0.016868976733555
327 => 0.016821967920667
328 => 0.016960843039415
329 => 0.017413484503418
330 => 0.017780307895542
331 => 0.017902004377258
401 => 0.017918088576307
402 => 0.018146399266237
403 => 0.018277262695962
404 => 0.018118676343312
405 => 0.017984291014124
406 => 0.017502939445495
407 => 0.017558657200241
408 => 0.017942497277799
409 => 0.018484693995418
410 => 0.018949955185089
411 => 0.018787036932456
412 => 0.020029988197685
413 => 0.020153221738632
414 => 0.02013619484789
415 => 0.020416939193777
416 => 0.019859718839784
417 => 0.019621496342816
418 => 0.018013346647633
419 => 0.018465171116406
420 => 0.019121924516488
421 => 0.019035000741288
422 => 0.01855804886708
423 => 0.018949593374323
424 => 0.0188201365155
425 => 0.018718028519776
426 => 0.019185805042797
427 => 0.018671465540535
428 => 0.019116793586503
429 => 0.01854565576122
430 => 0.018787781129311
501 => 0.018650339060096
502 => 0.018739280923144
503 => 0.018219328609144
504 => 0.01849988225665
505 => 0.018207656655033
506 => 0.018207518102049
507 => 0.018201067205697
508 => 0.018544869330072
509 => 0.018556080705005
510 => 0.018302010415635
511 => 0.018265394917613
512 => 0.01840078160476
513 => 0.018242279251941
514 => 0.018316441505223
515 => 0.018244525551042
516 => 0.018228335754975
517 => 0.01809933270544
518 => 0.018043754644687
519 => 0.018065548234378
520 => 0.017991155477397
521 => 0.017946331150412
522 => 0.018192150518847
523 => 0.018060819146617
524 => 0.018172022102496
525 => 0.01804529229934
526 => 0.017605991588056
527 => 0.017353345103475
528 => 0.016523546783056
529 => 0.016758876557365
530 => 0.016914900441198
531 => 0.016863334548522
601 => 0.016974118039342
602 => 0.016980919245932
603 => 0.016944902403763
604 => 0.016903199514573
605 => 0.016882900854431
606 => 0.017034190436755
607 => 0.017122019131467
608 => 0.016930559525271
609 => 0.016885703218344
610 => 0.017079279450983
611 => 0.017197360841067
612 => 0.018069207481249
613 => 0.018004618266117
614 => 0.018166724521105
615 => 0.018148473844517
616 => 0.018318387025296
617 => 0.018596123265203
618 => 0.018031407833199
619 => 0.018129422905804
620 => 0.0181053918735
621 => 0.018367756382923
622 => 0.018368575456284
623 => 0.018211274826805
624 => 0.018296550049957
625 => 0.018248951759797
626 => 0.01833496830341
627 => 0.01800375563777
628 => 0.018407136912322
629 => 0.018635828101677
630 => 0.018639003479064
701 => 0.018747401287813
702 => 0.018857539739479
703 => 0.019068940906416
704 => 0.018851643875672
705 => 0.018460747670802
706 => 0.018488969114206
707 => 0.018259786812315
708 => 0.018263639408215
709 => 0.018243073949367
710 => 0.018304792439464
711 => 0.018017299375615
712 => 0.018084773423067
713 => 0.017990309361506
714 => 0.018129217559383
715 => 0.017979775300815
716 => 0.018105380285009
717 => 0.018159587232315
718 => 0.018359612034868
719 => 0.017950231474843
720 => 0.017115476800324
721 => 0.01729095235333
722 => 0.017031410227127
723 => 0.017055431839054
724 => 0.017103959318157
725 => 0.016946665881181
726 => 0.01697667251207
727 => 0.016975600464061
728 => 0.016966362133489
729 => 0.016925444035571
730 => 0.01686610469819
731 => 0.017102494354629
801 => 0.017142661563613
802 => 0.017231948293519
803 => 0.017497605037953
804 => 0.017471059664566
805 => 0.017514356269916
806 => 0.017419840023537
807 => 0.017059816176644
808 => 0.017079367203658
809 => 0.016835565583518
810 => 0.017225713737951
811 => 0.017133321505277
812 => 0.017073755631826
813 => 0.01705750253138
814 => 0.0173238177875
815 => 0.017403503486111
816 => 0.017353848706245
817 => 0.017252005304078
818 => 0.017447574743537
819 => 0.017499900875124
820 => 0.017511614766273
821 => 0.017858126316274
822 => 0.017530980912655
823 => 0.017609728062852
824 => 0.018224090849322
825 => 0.017666948578263
826 => 0.017962079264998
827 => 0.017947634153669
828 => 0.018098613026324
829 => 0.017935249479368
830 => 0.017937274566322
831 => 0.018071333577045
901 => 0.017883071874154
902 => 0.017836455628988
903 => 0.017772055620162
904 => 0.017912670683405
905 => 0.017996963054347
906 => 0.018676297658213
907 => 0.019115178793732
908 => 0.019096125806172
909 => 0.019270234446768
910 => 0.019191796909527
911 => 0.018938501411
912 => 0.019370845940891
913 => 0.01923403404157
914 => 0.019245312648323
915 => 0.019244892858017
916 => 0.019335860810761
917 => 0.019271401679151
918 => 0.019144346114154
919 => 0.019228691527634
920 => 0.019479167251633
921 => 0.020256651584461
922 => 0.020691742117408
923 => 0.020230458588061
924 => 0.020548645789772
925 => 0.020357846850438
926 => 0.020323173007384
927 => 0.020523018083908
928 => 0.020723212962783
929 => 0.020710461414465
930 => 0.020565130212523
1001 => 0.020483036304188
1002 => 0.021104678881575
1003 => 0.021562694543189
1004 => 0.021531460945643
1005 => 0.021669315887501
1006 => 0.02207406226049
1007 => 0.02211106719639
1008 => 0.022106405425015
1009 => 0.022014684830323
1010 => 0.022413210197489
1011 => 0.022745667070165
1012 => 0.021993454162714
1013 => 0.022279886990681
1014 => 0.022408475915445
1015 => 0.022597282607613
1016 => 0.022915831144977
1017 => 0.02326185934738
1018 => 0.023310791529206
1019 => 0.02327607180458
1020 => 0.023047856903358
1021 => 0.023426485091403
1022 => 0.023648276604036
1023 => 0.0237803483742
1024 => 0.02411526040869
1025 => 0.022409270036868
1026 => 0.021201685258469
1027 => 0.021013103457586
1028 => 0.021396591965294
1029 => 0.021497714826513
1030 => 0.021456952327953
1031 => 0.02009770587106
1101 => 0.021005947306293
1102 => 0.021983138723495
1103 => 0.022020676625567
1104 => 0.022509879081127
1105 => 0.022669183453744
1106 => 0.023063055551701
1107 => 0.023038418744734
1108 => 0.023134320332713
1109 => 0.023112274218421
1110 => 0.023841839340332
1111 => 0.024646658011269
1112 => 0.024618789699861
1113 => 0.024503087493732
1114 => 0.024674924999992
1115 => 0.025505584118009
1116 => 0.025429110337463
1117 => 0.025503398101242
1118 => 0.026482792015281
1119 => 0.027756143420691
1120 => 0.027164543850487
1121 => 0.028448144689639
1122 => 0.029256103377129
1123 => 0.030653384382654
1124 => 0.030478437919008
1125 => 0.031022389160737
1126 => 0.030165247236653
1127 => 0.028197076121993
1128 => 0.027885605509241
1129 => 0.028509177563662
1130 => 0.030042168612183
1201 => 0.028460898220092
1202 => 0.028780787160961
1203 => 0.028688659124471
1204 => 0.028683750012925
1205 => 0.028871110833822
1206 => 0.028599334191028
1207 => 0.0274920672566
1208 => 0.027999521167483
1209 => 0.027803568842553
1210 => 0.028020992556276
1211 => 0.029194338666883
1212 => 0.028675574382306
1213 => 0.028129098349493
1214 => 0.028814500567381
1215 => 0.029687253120507
1216 => 0.029632637834219
1217 => 0.029526661351403
1218 => 0.030124045236291
1219 => 0.031110748397071
1220 => 0.031377450296535
1221 => 0.031574324186239
1222 => 0.031601469769418
1223 => 0.031881086147044
1224 => 0.030377518412151
1225 => 0.032763719021784
1226 => 0.033175749949606
1227 => 0.033098305212107
1228 => 0.03355626024747
1229 => 0.033421518258868
1230 => 0.033226298257755
1231 => 0.033952254398633
]
'min_raw' => 0.012515097818837
'max_raw' => 0.033952254398633
'avg_raw' => 0.023233676108735
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012515'
'max' => '$0.033952'
'avg' => '$0.023233'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043161337989951
'max_diff' => 0.015648644801479
'year' => 2032
]
7 => [
'items' => [
101 => 0.033120004264756
102 => 0.031938729977095
103 => 0.031290659539928
104 => 0.03214409096994
105 => 0.032665251763597
106 => 0.033009705896151
107 => 0.033113937508538
108 => 0.030494236095302
109 => 0.02908236232887
110 => 0.029987357225987
111 => 0.031091513459882
112 => 0.030371384768521
113 => 0.030399612449839
114 => 0.029372898182449
115 => 0.031182354890572
116 => 0.030918732268124
117 => 0.03228640689972
118 => 0.031960000372615
119 => 0.033075285941858
120 => 0.032781593874187
121 => 0.034000693226988
122 => 0.034487024964618
123 => 0.035303651643589
124 => 0.035904365552909
125 => 0.036257116250287
126 => 0.036235938421551
127 => 0.037633712424265
128 => 0.036809493929369
129 => 0.035774081246395
130 => 0.035755353897645
131 => 0.036291608798069
201 => 0.037415451955009
202 => 0.03770684813435
203 => 0.037869698845604
204 => 0.037620287312445
205 => 0.036725657208506
206 => 0.036339360465504
207 => 0.036668496482636
208 => 0.036265991416663
209 => 0.036960828083507
210 => 0.037914987236187
211 => 0.037717957144313
212 => 0.038376599201047
213 => 0.039058224438601
214 => 0.040032979142008
215 => 0.040287816116541
216 => 0.040709051944861
217 => 0.041142641980964
218 => 0.041281899414981
219 => 0.041547785065564
220 => 0.041546383716941
221 => 0.042347648021141
222 => 0.043231467361763
223 => 0.043565088702383
224 => 0.044332232579151
225 => 0.043018525574114
226 => 0.044014987428213
227 => 0.044913820963669
228 => 0.043842194568141
301 => 0.045319181897449
302 => 0.04537652996852
303 => 0.046242417754938
304 => 0.045364674599376
305 => 0.044843473515459
306 => 0.046348161515578
307 => 0.047076232641608
308 => 0.046856931693208
309 => 0.045188040647664
310 => 0.044216674477054
311 => 0.041674421846024
312 => 0.044685829904619
313 => 0.046152598925983
314 => 0.045184242070244
315 => 0.045672624942325
316 => 0.048337083533717
317 => 0.049351536854401
318 => 0.049140537655263
319 => 0.049176193046575
320 => 0.049723573644786
321 => 0.052150960665255
322 => 0.050696414096199
323 => 0.051808360447422
324 => 0.05239813278269
325 => 0.052945946196056
326 => 0.051600689591036
327 => 0.04985053051365
328 => 0.049296181667162
329 => 0.045087958065169
330 => 0.044868901751296
331 => 0.044745938804234
401 => 0.04397067481646
402 => 0.043361529684749
403 => 0.042877114859903
404 => 0.041605865700995
405 => 0.042034874974216
406 => 0.040008769145237
407 => 0.041304999853836
408 => 0.03807128602875
409 => 0.040764418992607
410 => 0.03929866916211
411 => 0.040282880752073
412 => 0.040279446930554
413 => 0.038467201348863
414 => 0.037421935917943
415 => 0.038088019732864
416 => 0.038802114456259
417 => 0.038917973922626
418 => 0.039843816371286
419 => 0.04010219909779
420 => 0.039319287373747
421 => 0.038004274497341
422 => 0.038309721996279
423 => 0.037415746034126
424 => 0.035849087546742
425 => 0.036974289023614
426 => 0.037358482279435
427 => 0.037528163908213
428 => 0.035987535217813
429 => 0.035503436234613
430 => 0.035245705997941
501 => 0.037805398679797
502 => 0.037945624423088
503 => 0.037228209694487
504 => 0.040470992295822
505 => 0.03973705072103
506 => 0.040557043280124
507 => 0.0382820058373
508 => 0.03836891533136
509 => 0.037291876146835
510 => 0.037894946122385
511 => 0.037468715701519
512 => 0.037846224028014
513 => 0.03807250096239
514 => 0.039149363415383
515 => 0.040776715032032
516 => 0.038988516075104
517 => 0.03820937218209
518 => 0.038692748671244
519 => 0.039980043960471
520 => 0.041930362219084
521 => 0.040775734556173
522 => 0.041288138706124
523 => 0.041400076217614
524 => 0.040548696525622
525 => 0.041961753802723
526 => 0.042719022677178
527 => 0.043495823847655
528 => 0.044170298538506
529 => 0.043185552377943
530 => 0.044239371927563
531 => 0.043390179394762
601 => 0.042628365904929
602 => 0.04262952126153
603 => 0.042151624531038
604 => 0.041225639396848
605 => 0.041054873530943
606 => 0.041943219130734
607 => 0.042655588175126
608 => 0.04271426230164
609 => 0.043108666407458
610 => 0.043342070694596
611 => 0.045629750006289
612 => 0.046549873550128
613 => 0.047674983202487
614 => 0.048113276819786
615 => 0.049432383470898
616 => 0.048367097717521
617 => 0.048136616443816
618 => 0.044936895184714
619 => 0.045460849361641
620 => 0.046299750552958
621 => 0.044950728356373
622 => 0.045806372437999
623 => 0.045975294704732
624 => 0.044904889098342
625 => 0.045476638982211
626 => 0.043958240802682
627 => 0.040809811963042
628 => 0.041965258904048
629 => 0.042816056771863
630 => 0.04160186331187
701 => 0.043778258093131
702 => 0.042506853191826
703 => 0.04210387887631
704 => 0.040531732400768
705 => 0.041273725019757
706 => 0.04227728066125
707 => 0.041657199950673
708 => 0.042943960530707
709 => 0.044766356678548
710 => 0.046065104699067
711 => 0.046164806445464
712 => 0.04532979847763
713 => 0.046667904075033
714 => 0.046677650713467
715 => 0.045168262133274
716 => 0.044243770032217
717 => 0.044033723481709
718 => 0.04455846094693
719 => 0.045195589101589
720 => 0.046200162623861
721 => 0.046807205364042
722 => 0.048390050879843
723 => 0.048818323492681
724 => 0.049288865250047
725 => 0.049917654147592
726 => 0.05067267643726
727 => 0.049020730650911
728 => 0.049086365536615
729 => 0.047548096493113
730 => 0.045904235410035
731 => 0.047151721061914
801 => 0.048782642605684
802 => 0.048408507401535
803 => 0.04836640954818
804 => 0.048437206460553
805 => 0.048155120734738
806 => 0.046879257451462
807 => 0.046238526897928
808 => 0.047065232779784
809 => 0.047504590163546
810 => 0.048185995149769
811 => 0.048101997602503
812 => 0.049857223669461
813 => 0.0505392514438
814 => 0.05036475955351
815 => 0.050396870260705
816 => 0.051631648968253
817 => 0.053004976842655
818 => 0.054291279623607
819 => 0.055599762060382
820 => 0.054022335411911
821 => 0.053221415441968
822 => 0.054047760409899
823 => 0.053609290138268
824 => 0.056128870377793
825 => 0.056303320646922
826 => 0.058822718692118
827 => 0.061213927441348
828 => 0.059712052068911
829 => 0.061128252899166
830 => 0.062659989561635
831 => 0.065614958098855
901 => 0.064619828652566
902 => 0.063857575092375
903 => 0.063137249161177
904 => 0.064636133075478
905 => 0.066564423285972
906 => 0.066979758528378
907 => 0.067652760291351
908 => 0.066945181228326
909 => 0.067797382272462
910 => 0.070806026434378
911 => 0.069993064223791
912 => 0.068838527194562
913 => 0.071213562807138
914 => 0.072073078962612
915 => 0.078105613473833
916 => 0.08572193748582
917 => 0.082568729333378
918 => 0.080611431279765
919 => 0.081071442750095
920 => 0.083852666450434
921 => 0.084745907231356
922 => 0.08231777087025
923 => 0.083175429682179
924 => 0.087901214059062
925 => 0.090436445755945
926 => 0.086993260584535
927 => 0.077493649255319
928 => 0.068734573767143
929 => 0.071057875012917
930 => 0.070794484752078
1001 => 0.075871750511432
1002 => 0.069973675343934
1003 => 0.070072983803297
1004 => 0.075255242041637
1005 => 0.073872704390046
1006 => 0.071633170456513
1007 => 0.068750924843275
1008 => 0.063422827251754
1009 => 0.058703582629951
1010 => 0.067959108110435
1011 => 0.067559993021636
1012 => 0.066982015227512
1013 => 0.068268242264605
1014 => 0.074513795654817
1015 => 0.074369815434289
1016 => 0.073453886730644
1017 => 0.074148610579733
1018 => 0.071511382006827
1019 => 0.072191055858643
1020 => 0.068733186284835
1021 => 0.070296287745586
1022 => 0.071628365422517
1023 => 0.071895799737908
1024 => 0.072498342906019
1025 => 0.067349677505768
1026 => 0.069661277113606
1027 => 0.071019125315619
1028 => 0.064884317739986
1029 => 0.070897859894759
1030 => 0.067260050695897
1031 => 0.066025323615742
1101 => 0.067687720966247
1102 => 0.067039883102021
1103 => 0.066482910148675
1104 => 0.066172109670698
1105 => 0.067392790812808
1106 => 0.067335844578499
1107 => 0.065338573306007
1108 => 0.062733214350232
1109 => 0.063607658333782
1110 => 0.063289964636602
1111 => 0.06213860169472
1112 => 0.062914481301457
1113 => 0.05949790017707
1114 => 0.053619849930995
1115 => 0.0575030699731
1116 => 0.05735357022561
1117 => 0.057278185673651
1118 => 0.060196318210974
1119 => 0.059915807100283
1120 => 0.059406676687605
1121 => 0.062129251115426
1122 => 0.061135474825478
1123 => 0.064198059187957
1124 => 0.066215275324622
1125 => 0.065703644062258
1126 => 0.067600845588844
1127 => 0.063627803757035
1128 => 0.06494748888279
1129 => 0.065219474158204
1130 => 0.062095654969601
1201 => 0.059961702187132
1202 => 0.059819391865384
1203 => 0.056119411817389
1204 => 0.058095911293833
1205 => 0.059835149039997
1206 => 0.059002189129885
1207 => 0.058738498906314
1208 => 0.06008563507111
1209 => 0.060190319088556
1210 => 0.057803512396879
1211 => 0.058299805088417
1212 => 0.060369428113923
1213 => 0.05824765589828
1214 => 0.054125399072809
1215 => 0.053103022385433
1216 => 0.052966618489196
1217 => 0.050193851827314
1218 => 0.053171342484368
1219 => 0.051871588020775
1220 => 0.055977496797815
1221 => 0.0536322237248
1222 => 0.05353112369006
1223 => 0.053378296159401
1224 => 0.050991661351971
1225 => 0.051514182696243
1226 => 0.053251123226853
1227 => 0.05387088317621
1228 => 0.053806237135949
1229 => 0.053242611270668
1230 => 0.053500636305562
1231 => 0.052669447766288
]
'min_raw' => 0.02908236232887
'max_raw' => 0.090436445755945
'avg_raw' => 0.059759404042407
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029082'
'max' => '$0.090436'
'avg' => '$0.059759'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016567264510033
'max_diff' => 0.056484191357312
'year' => 2033
]
8 => [
'items' => [
101 => 0.052375937793376
102 => 0.05144953958259
103 => 0.050087990136771
104 => 0.05027732193808
105 => 0.047579736217122
106 => 0.046109948344633
107 => 0.045703130433021
108 => 0.045159116519522
109 => 0.045764578252116
110 => 0.047572094295708
111 => 0.045391846461216
112 => 0.041653964475583
113 => 0.041878617551961
114 => 0.042383346314484
115 => 0.041442787604637
116 => 0.040552627720875
117 => 0.041326549518852
118 => 0.039742759645912
119 => 0.042574739753983
120 => 0.042498142628592
121 => 0.043553729684406
122 => 0.044213809933234
123 => 0.042692538663205
124 => 0.042309943052747
125 => 0.042527886900465
126 => 0.038925760573614
127 => 0.04325935911445
128 => 0.043296836254588
129 => 0.042975934227697
130 => 0.045283441665848
131 => 0.050153002089965
201 => 0.048320877580798
202 => 0.047611423594592
203 => 0.046262751048207
204 => 0.048059777140013
205 => 0.047921793574136
206 => 0.047297779560528
207 => 0.046920373938056
208 => 0.047615755369349
209 => 0.046834208483273
210 => 0.046693821187062
211 => 0.045843226914905
212 => 0.045539603459319
213 => 0.045314812740401
214 => 0.045067340246352
215 => 0.045613202901921
216 => 0.044376206310189
217 => 0.042884509684831
218 => 0.042760491250814
219 => 0.043102917050948
220 => 0.042951419124991
221 => 0.04275976593703
222 => 0.042393847807572
223 => 0.042285287715165
224 => 0.042638055349617
225 => 0.042239801257952
226 => 0.042827446864227
227 => 0.042667639775234
228 => 0.04177497036678
301 => 0.040662373775302
302 => 0.040652469331888
303 => 0.040412762221278
304 => 0.040107459175711
305 => 0.040022530852822
306 => 0.04126137198367
307 => 0.04382573604913
308 => 0.043322290023049
309 => 0.043686081372117
310 => 0.045475574751999
311 => 0.04604440088552
312 => 0.045640661569332
313 => 0.045087998291777
314 => 0.045112312671176
315 => 0.047000930393131
316 => 0.047118721163823
317 => 0.047416340440621
318 => 0.047798865318503
319 => 0.045705807210119
320 => 0.045013729822497
321 => 0.04468578516125
322 => 0.043675842535164
323 => 0.04476497907146
324 => 0.044130385853237
325 => 0.044216014159167
326 => 0.044160248612597
327 => 0.044190700371874
328 => 0.042573948157827
329 => 0.043163007690631
330 => 0.042183581967369
331 => 0.040872240869619
401 => 0.040867844794444
402 => 0.041188793670342
403 => 0.040997880720227
404 => 0.040484138880287
405 => 0.040557113483858
406 => 0.039917779169095
407 => 0.040634740245191
408 => 0.040655300123444
409 => 0.040379231056013
410 => 0.041483808515302
411 => 0.041936354801622
412 => 0.041754640227466
413 => 0.041923605222685
414 => 0.043343210478355
415 => 0.043574668076749
416 => 0.043677466252725
417 => 0.043539730315066
418 => 0.041949553000753
419 => 0.042020084126598
420 => 0.041502573523279
421 => 0.041065331597398
422 => 0.041082818981401
423 => 0.041307618168776
424 => 0.042289329404339
425 => 0.044355282824543
426 => 0.044433684246647
427 => 0.044528709057369
428 => 0.044142195396521
429 => 0.044025619177972
430 => 0.044179413301113
501 => 0.044955276783072
502 => 0.046951008303549
503 => 0.046245583493786
504 => 0.045672062142857
505 => 0.046175194987868
506 => 0.046097741630064
507 => 0.045443957343896
508 => 0.045425607796479
509 => 0.044170786723842
510 => 0.043706907944182
511 => 0.043319256115172
512 => 0.042895950437802
513 => 0.042645000642922
514 => 0.043030573582499
515 => 0.043118758675746
516 => 0.042275696704697
517 => 0.042160790473264
518 => 0.042849253077579
519 => 0.042546286353893
520 => 0.042857895142417
521 => 0.042930191054286
522 => 0.042918549747359
523 => 0.042602217692324
524 => 0.042803838311046
525 => 0.04232694544177
526 => 0.041808396073425
527 => 0.041477593883188
528 => 0.041188925097664
529 => 0.041349095317401
530 => 0.040778117729964
531 => 0.040595450508234
601 => 0.04273553378203
602 => 0.044316436306156
603 => 0.044293449357349
604 => 0.04415352221825
605 => 0.043945618872733
606 => 0.044940067358397
607 => 0.044593621390617
608 => 0.044845689778706
609 => 0.044909851762752
610 => 0.045104050764105
611 => 0.045173460215121
612 => 0.044963656646188
613 => 0.044259530243504
614 => 0.042504914194343
615 => 0.041688135686964
616 => 0.041418585175006
617 => 0.041428382824167
618 => 0.041158119921692
619 => 0.041237724458805
620 => 0.041130436712324
621 => 0.040927259676183
622 => 0.041336549707957
623 => 0.041383716571319
624 => 0.041288183387251
625 => 0.041310684910451
626 => 0.040519710949126
627 => 0.0405798469815
628 => 0.040245001911522
629 => 0.040182222497519
630 => 0.03933576331891
701 => 0.037836138187784
702 => 0.038667076082561
703 => 0.037663419953219
704 => 0.037283320169165
705 => 0.039082653429232
706 => 0.038902050275657
707 => 0.038592936183041
708 => 0.03813569201504
709 => 0.037966095705343
710 => 0.036935682215292
711 => 0.036874799889258
712 => 0.037385500638432
713 => 0.037149829814828
714 => 0.036818858722967
715 => 0.035620114978251
716 => 0.034272330118775
717 => 0.034313011271809
718 => 0.034741716559179
719 => 0.035988235000994
720 => 0.035501198680789
721 => 0.035147848242382
722 => 0.035081676326944
723 => 0.035909956388944
724 => 0.037082146206711
725 => 0.037632111442938
726 => 0.037087112596529
727 => 0.036461047266597
728 => 0.036499152962322
729 => 0.036752653084332
730 => 0.036779292362857
731 => 0.036371788193627
801 => 0.036486498230296
802 => 0.03631224319529
803 => 0.035242840367108
804 => 0.03522349826106
805 => 0.034961049560574
806 => 0.034953102718227
807 => 0.034506612007804
808 => 0.034444144870972
809 => 0.033557610465378
810 => 0.034141130095813
811 => 0.033749735763873
812 => 0.03315981218505
813 => 0.033058109137705
814 => 0.033055051821292
815 => 0.033660771432245
816 => 0.034134051909492
817 => 0.033756544235847
818 => 0.033670593056237
819 => 0.03458832678785
820 => 0.034471536805174
821 => 0.034370397433391
822 => 0.03697718946522
823 => 0.034913710161508
824 => 0.034013915405809
825 => 0.032900248529241
826 => 0.033262864079847
827 => 0.033339272504291
828 => 0.030661104419688
829 => 0.029574571961309
830 => 0.029201714966705
831 => 0.028987130494887
901 => 0.029084919333277
902 => 0.02810691268319
903 => 0.028764149326785
904 => 0.027917278236654
905 => 0.027775297542436
906 => 0.029289607958788
907 => 0.02950031540675
908 => 0.028601371972071
909 => 0.029178639182857
910 => 0.028969314067611
911 => 0.027931795410827
912 => 0.027892169829608
913 => 0.027371579438178
914 => 0.026556956281753
915 => 0.026184651640009
916 => 0.025990752150092
917 => 0.026070758858657
918 => 0.026030305018561
919 => 0.0257663163479
920 => 0.026045436540149
921 => 0.025332399789379
922 => 0.025048462809894
923 => 0.024920215063549
924 => 0.024287353906376
925 => 0.025294517442072
926 => 0.025492941346516
927 => 0.025691756207348
928 => 0.027422303834221
929 => 0.027335850565259
930 => 0.028117346012224
1001 => 0.028086978536233
1002 => 0.027864083375371
1003 => 0.026923725356173
1004 => 0.027298535302355
1005 => 0.026144928546403
1006 => 0.027009289165597
1007 => 0.026614831075559
1008 => 0.026875922488566
1009 => 0.026406456586316
1010 => 0.026666278400393
1011 => 0.025539995015302
1012 => 0.024488287437538
1013 => 0.024911525268088
1014 => 0.025371633193013
1015 => 0.026369264407569
1016 => 0.025775083486458
1017 => 0.025988773414158
1018 => 0.025272947927626
1019 => 0.023795995483469
1020 => 0.023804354873907
1021 => 0.023577157917531
1022 => 0.023380826575924
1023 => 0.025843332312891
1024 => 0.025537080798044
1025 => 0.025049109090343
1026 => 0.025702278612326
1027 => 0.025874987001132
1028 => 0.025879903766162
1029 => 0.026356439388655
1030 => 0.026610766535804
1031 => 0.026655592797806
1101 => 0.027405431896032
1102 => 0.027656768071141
1103 => 0.028691986205986
1104 => 0.026589188654253
1105 => 0.026545882922459
1106 => 0.025711470046984
1107 => 0.025182272209811
1108 => 0.025747704675643
1109 => 0.026248600651142
1110 => 0.025727034281185
1111 => 0.025795139838234
1112 => 0.025094979600104
1113 => 0.025345253939635
1114 => 0.025560823916432
1115 => 0.025441798845862
1116 => 0.02526361255434
1117 => 0.026207532893293
1118 => 0.026154273208516
1119 => 0.027033273528784
1120 => 0.027718517136349
1121 => 0.028946596183053
1122 => 0.027665031676609
1123 => 0.027618326372237
1124 => 0.028074878214243
1125 => 0.027656698175432
1126 => 0.027920973524876
1127 => 0.028904017338576
1128 => 0.028924787505299
1129 => 0.028576860451835
1130 => 0.028555689059013
1201 => 0.028622512255535
1202 => 0.029013897804753
1203 => 0.028877135667793
1204 => 0.029035400275077
1205 => 0.029233312589919
1206 => 0.030051961837187
1207 => 0.030249335399179
1208 => 0.029769819969997
1209 => 0.029813114844345
1210 => 0.029633762910838
1211 => 0.029460511190343
1212 => 0.029849955756634
1213 => 0.030561673356082
1214 => 0.030557245797834
1215 => 0.030722350447092
1216 => 0.03082520927578
1217 => 0.030383663885789
1218 => 0.030096234072979
1219 => 0.030206452952844
1220 => 0.030382695342004
1221 => 0.030149299921375
1222 => 0.028708675265978
1223 => 0.029145668758966
1224 => 0.029072931673843
1225 => 0.028969345219495
1226 => 0.029408745555866
1227 => 0.029366364321499
1228 => 0.028096881811405
1229 => 0.028178149962875
1230 => 0.028101823996865
1231 => 0.028348448807869
]
'min_raw' => 0.023380826575924
'max_raw' => 0.052375937793376
'avg_raw' => 0.03787838218465
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02338'
'max' => '$0.052375'
'avg' => '$0.037878'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0057015357529458
'max_diff' => -0.038060507962569
'year' => 2034
]
9 => [
'items' => [
101 => 0.027643379626284
102 => 0.027860254157826
103 => 0.027996275830937
104 => 0.028076393641367
105 => 0.028365834109937
106 => 0.02833187161166
107 => 0.028363722953358
108 => 0.028792886758797
109 => 0.030963450015471
110 => 0.031081588984453
111 => 0.030499829493884
112 => 0.030732230935668
113 => 0.030286070988051
114 => 0.030585581149898
115 => 0.030790498395901
116 => 0.029864516764535
117 => 0.029809686141897
118 => 0.029361684733468
119 => 0.029602415314261
120 => 0.029219395651079
121 => 0.029313375278965
122 => 0.029050600046399
123 => 0.02952354314699
124 => 0.03005236702138
125 => 0.030185968815938
126 => 0.029834520013644
127 => 0.029580047919178
128 => 0.029133278749616
129 => 0.029876265835499
130 => 0.030093537901532
131 => 0.029875124597831
201 => 0.029824513462939
202 => 0.02972860545377
203 => 0.02984486080047
204 => 0.030092354591199
205 => 0.029975641089984
206 => 0.030052732413763
207 => 0.029758939783744
208 => 0.030383810055686
209 => 0.03137625443075
210 => 0.031379445301697
211 => 0.031262731171353
212 => 0.031214974263857
213 => 0.031334730044396
214 => 0.031399692642699
215 => 0.031786960877506
216 => 0.032202515122902
217 => 0.034141725465641
218 => 0.033597202961275
219 => 0.035317785741493
220 => 0.036678543330934
221 => 0.037086575033289
222 => 0.036711205066497
223 => 0.03542708468719
224 => 0.035364079615161
225 => 0.037283097603487
226 => 0.036740887125193
227 => 0.036676392914099
228 => 0.035990283472752
301 => 0.036395859128895
302 => 0.036307153783461
303 => 0.036167128056079
304 => 0.036940938155355
305 => 0.038389441582697
306 => 0.038163678739567
307 => 0.037995157250007
308 => 0.037256745138624
309 => 0.037701434159992
310 => 0.03754308891694
311 => 0.038223440569467
312 => 0.037820415322144
313 => 0.036736779347541
314 => 0.036909351948207
315 => 0.036883267946784
316 => 0.037420074847735
317 => 0.037258938740436
318 => 0.036851803535692
319 => 0.038384490755455
320 => 0.038284966572658
321 => 0.038426069109469
322 => 0.038488186809914
323 => 0.039421106511605
324 => 0.039803293863288
325 => 0.039890057083251
326 => 0.040253105507918
327 => 0.039881024107715
328 => 0.041369614998069
329 => 0.042359441078468
330 => 0.043509175006835
331 => 0.045189245295526
401 => 0.045820967265593
402 => 0.045706852346025
403 => 0.046980662464533
404 => 0.049269670932285
405 => 0.046169526402614
406 => 0.049433986120096
407 => 0.048400495863541
408 => 0.045950109056945
409 => 0.045792333034763
410 => 0.047451763429766
411 => 0.051132220331625
412 => 0.050210307621106
413 => 0.051133728250553
414 => 0.050056509035928
415 => 0.050003016022406
416 => 0.051081410117697
417 => 0.053601136701548
418 => 0.052404109052099
419 => 0.050687876393393
420 => 0.051955115881044
421 => 0.050857315759362
422 => 0.048383664830308
423 => 0.050209602651831
424 => 0.048988650030293
425 => 0.049344988914669
426 => 0.051911249722145
427 => 0.051602470432305
428 => 0.05200205942555
429 => 0.051296795311538
430 => 0.050637967419108
501 => 0.049408216232686
502 => 0.049044147532388
503 => 0.049144763023331
504 => 0.049044097672347
505 => 0.048356063185541
506 => 0.048207482203623
507 => 0.047959840724279
508 => 0.048036595173775
509 => 0.047570956742537
510 => 0.048449712668093
511 => 0.048612817511446
512 => 0.049252302791903
513 => 0.049318696275131
514 => 0.051099653678699
515 => 0.050118732268587
516 => 0.05077681903917
517 => 0.050717953564256
518 => 0.046003216369267
519 => 0.046652865556258
520 => 0.04766351582007
521 => 0.047208219246127
522 => 0.046564536413561
523 => 0.046044728014174
524 => 0.045257165135966
525 => 0.046365644763239
526 => 0.047823177599437
527 => 0.049355661713152
528 => 0.051196840963444
529 => 0.050785911188468
530 => 0.049321242147765
531 => 0.04938694613099
601 => 0.049793102301719
602 => 0.049267093157445
603 => 0.049111962791881
604 => 0.04977178977168
605 => 0.049776333637455
606 => 0.049171096546639
607 => 0.048498486277415
608 => 0.048495668015828
609 => 0.048375983515064
610 => 0.050077800642733
611 => 0.051013627989833
612 => 0.051120919087017
613 => 0.051006406444142
614 => 0.05105047781554
615 => 0.050505940501811
616 => 0.051750591323471
617 => 0.052892806000634
618 => 0.052586668067297
619 => 0.052127723785153
620 => 0.051762152558674
621 => 0.052500551104359
622 => 0.052467671379467
623 => 0.052882829751875
624 => 0.052863995770032
625 => 0.052724393624287
626 => 0.052586673052929
627 => 0.053132719551136
628 => 0.052975466928891
629 => 0.052817970049889
630 => 0.052502085947485
701 => 0.052545019843281
702 => 0.052086154804338
703 => 0.051873862841088
704 => 0.048681501073442
705 => 0.047828397695697
706 => 0.048096801384856
707 => 0.048185166848426
708 => 0.04781389516515
709 => 0.048346203387098
710 => 0.048263243714561
711 => 0.048585991270616
712 => 0.048384352609663
713 => 0.048392627930643
714 => 0.048985604238611
715 => 0.049157747783516
716 => 0.049070194187209
717 => 0.049131513724901
718 => 0.050544596589654
719 => 0.050343701394132
720 => 0.050236979825501
721 => 0.05026654242936
722 => 0.050627615398143
723 => 0.050728696115549
724 => 0.050300410013084
725 => 0.050502392214899
726 => 0.051362406794869
727 => 0.051663363225249
728 => 0.052623871683739
729 => 0.052215830618896
730 => 0.05296480765302
731 => 0.055266907710829
801 => 0.057105984530214
802 => 0.055414693484043
803 => 0.058791923857824
804 => 0.061421582138735
805 => 0.061320651473989
806 => 0.06086210972762
807 => 0.057868313687885
808 => 0.055113377937136
809 => 0.057417998673388
810 => 0.057423873625594
811 => 0.057225904660483
812 => 0.055996336420591
813 => 0.057183118350979
814 => 0.057277320790854
815 => 0.057224592474974
816 => 0.056281885388324
817 => 0.054842545908402
818 => 0.055123789397487
819 => 0.05558447196982
820 => 0.054712303751942
821 => 0.054433593159794
822 => 0.054951769177456
823 => 0.056621440272627
824 => 0.056305798623831
825 => 0.056297555944773
826 => 0.057648004771212
827 => 0.056681374856579
828 => 0.055127336778551
829 => 0.054734921668605
830 => 0.053342112390789
831 => 0.054304130719993
901 => 0.054338752047013
902 => 0.053811864439697
903 => 0.055170090804041
904 => 0.055157574508983
905 => 0.056447008296612
906 => 0.058911921409345
907 => 0.058182925310902
908 => 0.057335182162963
909 => 0.057427355348512
910 => 0.058438267691175
911 => 0.057827047011917
912 => 0.05804684622976
913 => 0.058437934998734
914 => 0.058673888563244
915 => 0.057393405261698
916 => 0.057094863351512
917 => 0.056484151377241
918 => 0.056324828022633
919 => 0.056822240182753
920 => 0.056691189652392
921 => 0.054335842258537
922 => 0.05408969535085
923 => 0.054097244325092
924 => 0.053478296222065
925 => 0.052534251800384
926 => 0.055015144174599
927 => 0.054815893796883
928 => 0.054595936800639
929 => 0.054622880277621
930 => 0.055699751572024
1001 => 0.055075111837967
1002 => 0.056735818947397
1003 => 0.056394427491123
1004 => 0.056044280632184
1005 => 0.055995879670545
1006 => 0.055861103002979
1007 => 0.055398903661708
1008 => 0.054840770183249
1009 => 0.054472242116077
1010 => 0.050247763960257
1011 => 0.051031802533318
1012 => 0.05193376744426
1013 => 0.05224512211712
1014 => 0.051712528404106
1015 => 0.055419933707695
1016 => 0.056097312382107
1017 => 0.054045488192995
1018 => 0.053661675662642
1019 => 0.055445096393287
1020 => 0.054369475678391
1021 => 0.054853827620447
1022 => 0.053806923648068
1023 => 0.055934151695404
1024 => 0.055917945781765
1025 => 0.055090406025727
1026 => 0.055789836960783
1027 => 0.055668293623667
1028 => 0.05473400327724
1029 => 0.055963770365849
1030 => 0.055964380314983
1031 => 0.055167891292062
1101 => 0.054237766487157
1102 => 0.054071482140608
1103 => 0.053946209222641
1104 => 0.054823018161997
1105 => 0.055609162315313
1106 => 0.057071981682971
1107 => 0.057439769227731
1108 => 0.058875268499933
1109 => 0.058020498576528
1110 => 0.058399407012449
1111 => 0.058810765719513
1112 => 0.059007986210895
1113 => 0.058686626003623
1114 => 0.060916547248426
1115 => 0.061104820924509
1116 => 0.061167947459539
1117 => 0.060416030562301
1118 => 0.061083908755389
1119 => 0.060771430666644
1120 => 0.061584411844645
1121 => 0.06171189767402
1122 => 0.061603921711979
1123 => 0.06164438772645
1124 => 0.059741543329075
1125 => 0.059642870808767
1126 => 0.058297463992888
1127 => 0.058845727215104
1128 => 0.057820775400112
1129 => 0.058145798178819
1130 => 0.058289065122743
1201 => 0.058214230601565
1202 => 0.05887672519508
1203 => 0.058313469451888
1204 => 0.056826944937786
1205 => 0.055340015421075
1206 => 0.055321348232219
1207 => 0.054929865936955
1208 => 0.054646895941038
1209 => 0.054701406001151
1210 => 0.05489350656285
1211 => 0.054635730707172
1212 => 0.054690740255549
1213 => 0.055604265285303
1214 => 0.055787466215058
1215 => 0.055164877874527
1216 => 0.052665095848226
1217 => 0.052051643068743
1218 => 0.052492580761338
1219 => 0.052281840944302
1220 => 0.042195526072435
1221 => 0.044565156139157
1222 => 0.043157202418545
1223 => 0.043806052269839
1224 => 0.042368896108942
1225 => 0.04305478235673
1226 => 0.042928124211319
1227 => 0.046738419236156
1228 => 0.046678926720233
1229 => 0.046707402639331
1230 => 0.045348172827141
1231 => 0.047513462825072
]
'min_raw' => 0.027643379626284
'max_raw' => 0.06171189767402
'avg_raw' => 0.044677638650152
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027643'
'max' => '$0.061711'
'avg' => '$0.044677'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042625530503606
'max_diff' => 0.0093359598806438
'year' => 2035
]
10 => [
'items' => [
101 => 0.048580162539362
102 => 0.048382744811541
103 => 0.048432430600435
104 => 0.04757866413033
105 => 0.046715668965003
106 => 0.045758474512652
107 => 0.04753682349231
108 => 0.047339101443202
109 => 0.047792604685709
110 => 0.048945991118028
111 => 0.049115831651476
112 => 0.049344099050783
113 => 0.049262281437312
114 => 0.051211508926595
115 => 0.050975444616226
116 => 0.051544291683879
117 => 0.050374130107186
118 => 0.049049981210402
119 => 0.049301658625991
120 => 0.049277420067008
121 => 0.048968835391428
122 => 0.048690258944068
123 => 0.04822650764764
124 => 0.049693885371815
125 => 0.04963431251596
126 => 0.050598727806385
127 => 0.050428258035972
128 => 0.049289819188126
129 => 0.049330478754293
130 => 0.049603933877086
131 => 0.050550365179328
201 => 0.050831330427791
202 => 0.050701176130174
203 => 0.051009241698562
204 => 0.051252724162971
205 => 0.051039819347369
206 => 0.05405410255976
207 => 0.052802362014883
208 => 0.053412451646901
209 => 0.053557954429281
210 => 0.05318525211181
211 => 0.053266077899
212 => 0.053388506942884
213 => 0.054131872123285
214 => 0.056082677451106
215 => 0.056946675851217
216 => 0.059546057666881
217 => 0.056874932811526
218 => 0.056716439316823
219 => 0.057184666475634
220 => 0.058710778773938
221 => 0.059947549451274
222 => 0.060357857635959
223 => 0.060412086636015
224 => 0.061181852067255
225 => 0.061623067257167
226 => 0.061088382297062
227 => 0.060635292777222
228 => 0.059012382356696
229 => 0.05920023865691
301 => 0.060494382277257
302 => 0.062322436365675
303 => 0.063891096950149
304 => 0.063341806686807
305 => 0.067532503657613
306 => 0.067947994144806
307 => 0.067890586793892
308 => 0.068837135956993
309 => 0.066958428629622
310 => 0.066155244848931
311 => 0.060733255874196
312 => 0.06225661361604
313 => 0.064470903557474
314 => 0.064177833980564
315 => 0.062569757436955
316 => 0.063889877079891
317 => 0.063453404241978
318 => 0.063109140005442
319 => 0.064686281211921
320 => 0.062952149670007
321 => 0.064453604268802
322 => 0.062527973215289
323 => 0.063344315798461
324 => 0.062880920266205
325 => 0.063180793967195
326 => 0.061427738438631
327 => 0.062373644648827
328 => 0.061388385630436
329 => 0.061387918489377
330 => 0.061366168841938
331 => 0.062525321707767
401 => 0.062563121641107
402 => 0.061706505921876
403 => 0.061583054213883
404 => 0.062039519881995
405 => 0.061505118133183
406 => 0.061755161347968
407 => 0.061512691687436
408 => 0.061458106659658
409 => 0.061023163871446
410 => 0.060835778559283
411 => 0.060909257168507
412 => 0.060658436794406
413 => 0.060507308446442
414 => 0.061336105609682
415 => 0.060893312718945
416 => 0.061268241248633
417 => 0.060840962869301
418 => 0.059359829850208
419 => 0.058508014588231
420 => 0.055710291616269
421 => 0.056503722380552
422 => 0.057029767798136
423 => 0.056855909790763
424 => 0.057229424064718
425 => 0.057252354807582
426 => 0.057130921509592
427 => 0.056990317307088
428 => 0.056921878957209
429 => 0.057431962346717
430 => 0.057728082922944
501 => 0.057082563493371
502 => 0.056931327322798
503 => 0.057583983106201
504 => 0.05798210275705
505 => 0.060921594574811
506 => 0.060703827526518
507 => 0.061250380083109
508 => 0.061188846652769
509 => 0.061761720804727
510 => 0.062698127928497
511 => 0.060794150422323
512 => 0.061124615082806
513 => 0.061043592779599
514 => 0.061928173040824
515 => 0.061930934603845
516 => 0.061400584549179
517 => 0.06168809591776
518 => 0.06152761495928
519 => 0.061817625741556
520 => 0.060700919114821
521 => 0.062060947245153
522 => 0.062831995556774
523 => 0.062842701563329
524 => 0.063208172343619
525 => 0.063579511823035
526 => 0.06429226561692
527 => 0.063559633506571
528 => 0.062241699660352
529 => 0.062336850227148
530 => 0.061564146095323
531 => 0.061577135391379
601 => 0.061507797511041
602 => 0.061715885709449
603 => 0.060746582772557
604 => 0.060974076234431
605 => 0.060655584055608
606 => 0.061123922743009
607 => 0.060620067734524
608 => 0.061043553708191
609 => 0.061226316215643
610 => 0.061900713802737
611 => 0.060520458662574
612 => 0.057706024996724
613 => 0.058297653074995
614 => 0.057422588675849
615 => 0.057503579217595
616 => 0.057667193001471
617 => 0.057136867196829
618 => 0.057238036647868
619 => 0.057234422163159
620 => 0.057203274486634
621 => 0.057065316262693
622 => 0.056865249543774
623 => 0.057662253774656
624 => 0.057797680324129
625 => 0.058098716767809
626 => 0.058994397029229
627 => 0.058904897449518
628 => 0.059050874977329
629 => 0.058732206853747
630 => 0.057518361317886
701 => 0.05758427897047
702 => 0.056762284786485
703 => 0.05807769652843
704 => 0.05776618966535
705 => 0.057565359164251
706 => 0.057510560701345
707 => 0.058408461180889
708 => 0.058677127077234
709 => 0.058509712520129
710 => 0.058166340379245
711 => 0.058825716398604
712 => 0.059002137604543
713 => 0.05904163180639
714 => 0.060209919689883
715 => 0.059106926121017
716 => 0.059372427635856
717 => 0.061443794663881
718 => 0.059565350598574
719 => 0.060560404314268
720 => 0.060511701612895
721 => 0.061020737423062
722 => 0.060469945818819
723 => 0.060476773540871
724 => 0.060928762855228
725 => 0.060294025379917
726 => 0.060136855454697
727 => 0.059919726328677
728 => 0.06039381983183
729 => 0.060678017445566
730 => 0.062968441492127
731 => 0.064448159882231
801 => 0.064383921404437
802 => 0.064970940842083
803 => 0.064706483208942
804 => 0.06385247975113
805 => 0.065310159518989
806 => 0.064848888648526
807 => 0.064886915258643
808 => 0.064885499906315
809 => 0.065192204710173
810 => 0.064974876247557
811 => 0.064546499539432
812 => 0.064830875989789
813 => 0.065675372380909
814 => 0.068296715091259
815 => 0.069763653200143
816 => 0.068208403575163
817 => 0.069281193940852
818 => 0.06863790199573
819 => 0.068520996713024
820 => 0.069194788341262
821 => 0.06986975935255
822 => 0.069826766617111
823 => 0.069336772323061
824 => 0.069059986979497
825 => 0.071155898330856
826 => 0.072700130111619
827 => 0.072594823856832
828 => 0.073059611418032
829 => 0.074424242073055
830 => 0.074549006798042
831 => 0.074533289310378
901 => 0.074224046921644
902 => 0.075567703021197
903 => 0.076688604578824
904 => 0.074152466243524
905 => 0.075118194521118
906 => 0.075551741058751
907 => 0.076188316003459
908 => 0.077262324637528
909 => 0.078428982880849
910 => 0.078593961148211
911 => 0.078476901172581
912 => 0.077707458699654
913 => 0.078984030070623
914 => 0.079731815640454
915 => 0.08017710483452
916 => 0.081306284141615
917 => 0.075554418494571
918 => 0.071482962103321
919 => 0.070847145395285
920 => 0.072140103673334
921 => 0.072481046460107
922 => 0.072343612850265
923 => 0.067760818521293
924 => 0.070823017931574
925 => 0.074117687019996
926 => 0.074244248677645
927 => 0.075893628911591
928 => 0.076430734726144
929 => 0.07775870200368
930 => 0.077675637288903
1001 => 0.077998976188409
1002 => 0.077924646174862
1003 => 0.080384425919995
1004 => 0.083097928259705
1005 => 0.08300396830209
1006 => 0.082613870236054
1007 => 0.083193232385721
1008 => 0.085993857596884
1009 => 0.085736020906545
1010 => 0.085986487288733
1011 => 0.089288582249014
1012 => 0.09358177541491
1013 => 0.091587156159805
1014 => 0.095914906007154
1015 => 0.098638995131899
1016 => 0.10335002559707
1017 => 0.10276018138052
1018 => 0.10459415096947
1019 => 0.10170423712868
1020 => 0.095068410802286
1021 => 0.094018265885211
1022 => 0.0961206826031
1023 => 0.10128926895321
1024 => 0.095957905425498
1025 => 0.097036433323571
1026 => 0.09672581721637
1027 => 0.09670926580405
1028 => 0.097340965892819
1029 => 0.096424651966799
1030 => 0.092691424190466
1031 => 0.09440234048031
1101 => 0.093741673535853
1102 => 0.094474732766712
1103 => 0.098430751099032
1104 => 0.096681701094615
1105 => 0.094839218996246
1106 => 0.09715010042711
1107 => 0.10009264659361
1108 => 0.099908507342776
1109 => 0.099551200231919
1110 => 0.10156532170783
1111 => 0.10489206030381
1112 => 0.10579126437839
1113 => 0.10645503844282
1114 => 0.10654656167176
1115 => 0.10748930781111
1116 => 0.10241992421717
1117 => 0.11046516617176
1118 => 0.11185435721199
1119 => 0.1115932468725
1120 => 0.11313727424762
1121 => 0.11268298222566
1122 => 0.11202478436208
1123 => 0.1144723961757
1124 => 0.11166640674348
1125 => 0.10768365800869
1126 => 0.10549864328295
1127 => 0.10837604693392
1128 => 0.11013317693601
1129 => 0.11129452809294
1130 => 0.11164595225132
1201 => 0.10281344603489
1202 => 0.098053215057481
1203 => 0.10110446853784
1204 => 0.10482720837014
1205 => 0.10239924420944
1206 => 0.1024944158078
1207 => 0.099032776972391
1208 => 0.10513348659606
1209 => 0.10424466451893
1210 => 0.10885587502735
1211 => 0.10775537263224
1212 => 0.1115156357957
1213 => 0.11052543248462
1214 => 0.11463571106738
1215 => 0.1162754124754
1216 => 0.11902872633861
1217 => 0.12105407522438
1218 => 0.12224339882886
1219 => 0.12217199630069
1220 => 0.1268846889403
1221 => 0.12410577873966
1222 => 0.12061481258881
1223 => 0.120551672025
1224 => 0.1223596928619
1225 => 0.12614880852975
1226 => 0.12713127109303
1227 => 0.1276803336359
1228 => 0.12683942523849
1229 => 0.12382311738198
1230 => 0.12252069094257
1231 => 0.12363039600388
]
'min_raw' => 0.045758474512652
'max_raw' => 0.1276803336359
'avg_raw' => 0.086719404074274
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045758'
'max' => '$0.12768'
'avg' => '$0.086719'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018115094886367
'max_diff' => 0.065968435961876
'year' => 2036
]
11 => [
'items' => [
101 => 0.12227332207194
102 => 0.12461601240616
103 => 0.12783302660668
104 => 0.12716872589573
105 => 0.12938938357492
106 => 0.13168753065289
107 => 0.13497398419063
108 => 0.13583318484241
109 => 0.13725341084734
110 => 0.13871528992635
111 => 0.13918480608779
112 => 0.14008125812227
113 => 0.14007653337755
114 => 0.14277805192164
115 => 0.14575791053485
116 => 0.14688273817745
117 => 0.14946921731825
118 => 0.14503996243067
119 => 0.14839960314251
120 => 0.15143008316185
121 => 0.14781701995076
122 => 0.15279678585149
123 => 0.15299013887702
124 => 0.15590954000328
125 => 0.15295016767223
126 => 0.15119290182871
127 => 0.15626606247507
128 => 0.15872080510878
129 => 0.15798141665015
130 => 0.15235463397185
131 => 0.14907960510901
201 => 0.14050822286909
202 => 0.15066139538844
203 => 0.15560670955051
204 => 0.15234182680287
205 => 0.15398844375389
206 => 0.16297185192133
207 => 0.16639215211889
208 => 0.1656807535875
209 => 0.16580096822869
210 => 0.16764650013245
211 => 0.17583060494671
212 => 0.17092649963594
213 => 0.1746755043927
214 => 0.17666396299765
215 => 0.17851095416792
216 => 0.17397532760128
217 => 0.16807454407967
218 => 0.16620551824033
219 => 0.15201719855742
220 => 0.15127863490118
221 => 0.15086405674016
222 => 0.14825020007818
223 => 0.14619642473746
224 => 0.14456318633472
225 => 0.14027708103969
226 => 0.14172351575682
227 => 0.13489235849623
228 => 0.13926269083021
301 => 0.12835999889824
302 => 0.13744008471442
303 => 0.13249820682552
304 => 0.13581654491654
305 => 0.13580496754754
306 => 0.12969485504192
307 => 0.12617066966348
308 => 0.12841641774997
309 => 0.1308240379664
310 => 0.1312146662463
311 => 0.13433620870222
312 => 0.13520736410433
313 => 0.13256772256557
314 => 0.1281340648415
315 => 0.12916390240983
316 => 0.12614980003802
317 => 0.1208677015672
318 => 0.12466139690554
319 => 0.12595673129106
320 => 0.12652882474927
321 => 0.12133448755633
322 => 0.11970231403576
323 => 0.11883335854867
324 => 0.12746354113758
325 => 0.12793632202134
326 => 0.12551750817556
327 => 0.13645077611981
328 => 0.13397624085824
329 => 0.13674090302128
330 => 0.12907045544475
331 => 0.1293634768718
401 => 0.1257321640647
402 => 0.12776545659227
403 => 0.12632839096986
404 => 0.12760118664943
405 => 0.12836409513183
406 => 0.13199481207623
407 => 0.13748154166983
408 => 0.13145250403848
409 => 0.12882556600509
410 => 0.13045530358654
411 => 0.13479550953026
412 => 0.14137114370605
413 => 0.13747823592701
414 => 0.13920584229349
415 => 0.1395832474287
416 => 0.13671276135572
417 => 0.14147698262198
418 => 0.14403016750303
419 => 0.14664920688381
420 => 0.14892324539434
421 => 0.14560310496122
422 => 0.14915613114809
423 => 0.14629301923502
424 => 0.14372451186593
425 => 0.14372840723138
426 => 0.14211714503884
427 => 0.1389951215087
428 => 0.13841937246931
429 => 0.14141449168132
430 => 0.1438162936505
501 => 0.14401411756454
502 => 0.14534387854372
503 => 0.14613081739357
504 => 0.15384388791361
505 => 0.15694614868264
506 => 0.16073953442822
507 => 0.16221727195962
508 => 0.16666473213094
509 => 0.16307304683755
510 => 0.16229596313156
511 => 0.1515078795091
512 => 0.15327442759792
513 => 0.15610284153465
514 => 0.15155451901314
515 => 0.15443938277351
516 => 0.15500891598958
517 => 0.1513999687543
518 => 0.15332766340607
519 => 0.14820827793261
520 => 0.13759313028348
521 => 0.14148880031581
522 => 0.14435732472796
523 => 0.14026358670531
524 => 0.14760145366136
525 => 0.14331482326996
526 => 0.14195616723043
527 => 0.13665556562438
528 => 0.13915724554357
529 => 0.14254080345488
530 => 0.14045015804652
531 => 0.14478856118086
601 => 0.15093289702894
602 => 0.15531171665581
603 => 0.15564786805474
604 => 0.15283258039279
605 => 0.15734409683799
606 => 0.15737695830996
607 => 0.15228794932969
608 => 0.149170959665
609 => 0.14846277305498
610 => 0.15023196205497
611 => 0.15238008411127
612 => 0.1557670738787
613 => 0.15781376085959
614 => 0.16315043502685
615 => 0.16459438604208
616 => 0.16618085042921
617 => 0.16830085609793
618 => 0.17084646646151
619 => 0.16527681590767
620 => 0.1654981085073
621 => 0.16031172702862
622 => 0.1547693346163
623 => 0.15897531958828
624 => 0.16447408544041
625 => 0.16321266247833
626 => 0.16307072662657
627 => 0.16330942335952
628 => 0.16235835164033
629 => 0.15805668950284
630 => 0.15589642170722
701 => 0.15868371830666
702 => 0.16016504240097
703 => 0.16246244688619
704 => 0.16217924329106
705 => 0.16809711052178
706 => 0.17039661478063
707 => 0.16980830318988
708 => 0.16991656668109
709 => 0.17407970930308
710 => 0.17870998011432
711 => 0.18304683974709
712 => 0.187458479638
713 => 0.18214007556027
714 => 0.17943971796316
715 => 0.1822257977161
716 => 0.18074746458228
717 => 0.18924240527132
718 => 0.18983057653341
719 => 0.19832490294155
720 => 0.20638703018844
721 => 0.20132335251268
722 => 0.20609817248787
723 => 0.21126252958782
724 => 0.22122541232037
725 => 0.21787026391449
726 => 0.21530027281746
727 => 0.21287164364888
728 => 0.21792523541468
729 => 0.22442660048828
730 => 0.22582693225583
731 => 0.22809600468718
801 => 0.2257103524746
802 => 0.22858360779368
803 => 0.2387274616424
804 => 0.2359865027902
805 => 0.23209390058896
806 => 0.24010149897645
807 => 0.24299941770413
808 => 0.26333852898682
809 => 0.289017497148
810 => 0.27838623571207
811 => 0.27178706867013
812 => 0.27333802945932
813 => 0.28271511934386
814 => 0.28572674300081
815 => 0.27754011173228
816 => 0.28043176829652
817 => 0.29636508026691
818 => 0.30491279093718
819 => 0.29330385173626
820 => 0.26127524889812
821 => 0.23174341435062
822 => 0.23957658670846
823 => 0.23868854805472
824 => 0.25580690404575
825 => 0.23592113182807
826 => 0.23625595723231
827 => 0.25372830269659
828 => 0.24906698047856
829 => 0.24151623546238
830 => 0.23179854314539
831 => 0.21383449011968
901 => 0.19792322739013
902 => 0.22912887774774
903 => 0.22778323336053
904 => 0.22583454087452
905 => 0.23017114513158
906 => 0.25122846443729
907 => 0.25074302507141
908 => 0.24765490749897
909 => 0.24999721746024
910 => 0.24110561720127
911 => 0.24339718504598
912 => 0.23173873635714
913 => 0.23700884206432
914 => 0.24150003495479
915 => 0.2424017084208
916 => 0.24443322478031
917 => 0.22707413991502
918 => 0.23486785938358
919 => 0.2394459393986
920 => 0.21876200733876
921 => 0.23903708456569
922 => 0.22677195686799
923 => 0.22260898831136
924 => 0.22821387704347
925 => 0.22602964645363
926 => 0.22415177325482
927 => 0.22310388774392
928 => 0.22721949943978
929 => 0.22702750123495
930 => 0.22029356169471
1001 => 0.21150941207497
1002 => 0.21445766101724
1003 => 0.21338653453653
1004 => 0.20950463399238
1005 => 0.21212056625668
1006 => 0.20060132445773
1007 => 0.18078306766072
1008 => 0.19387561515045
1009 => 0.19337156631404
1010 => 0.19311740203393
1011 => 0.20295608962103
1012 => 0.20201032682667
1013 => 0.20029375809398
1014 => 0.20947310786145
1015 => 0.20612252171665
1016 => 0.21644823871755
1017 => 0.22324942375986
1018 => 0.22152442323784
1019 => 0.22792097064311
1020 => 0.21452558271824
1021 => 0.2189749932572
1022 => 0.21989201060266
1023 => 0.20935983611019
1024 => 0.20216506531627
1025 => 0.20168525613071
1026 => 0.18921051507454
1027 => 0.19587442105415
1028 => 0.20173838254505
1029 => 0.19893000005271
1030 => 0.19804095005367
1031 => 0.20258291368732
1101 => 0.20293586316095
1102 => 0.19488857775844
1103 => 0.19656186321801
1104 => 0.20353974174496
1105 => 0.19638603858252
1106 => 0.18248756188866
1107 => 0.17904054750711
1108 => 0.17858065224754
1109 => 0.16923207585861
1110 => 0.17927089349063
1111 => 0.17488868057067
1112 => 0.18873203867785
1113 => 0.18082478677045
1114 => 0.18048392094474
1115 => 0.17996865225505
1116 => 0.17192194637228
1117 => 0.17368366356577
1118 => 0.17953987983403
1119 => 0.18162944377355
1120 => 0.18141148513536
1121 => 0.17951118117947
1122 => 0.18038113059935
1123 => 0.17757872040745
1124 => 0.17658913104157
1125 => 0.17346571479485
1126 => 0.16887515577792
1127 => 0.16951350116476
1128 => 0.16041840256713
1129 => 0.15546291013772
1130 => 0.1540912951456
1201 => 0.1522571142544
1202 => 0.15429847075783
1203 => 0.16039263729554
1204 => 0.15304177950151
1205 => 0.14043924941636
1206 => 0.14119668294814
1207 => 0.14289841121003
1208 => 0.13972725185206
1209 => 0.13672601565499
1210 => 0.13933534703036
1211 => 0.13399548889706
1212 => 0.14354370755396
1213 => 0.14328545499787
1214 => 0.14684444045528
1215 => 0.14906994709953
1216 => 0.14394087480086
1217 => 0.14265092698823
1218 => 0.14338573988716
1219 => 0.13124091948376
1220 => 0.14585194952637
1221 => 0.14597830632092
1222 => 0.14489636273259
1223 => 0.15267628516534
1224 => 0.1690943481171
1225 => 0.1629172124196
1226 => 0.16052523877261
1227 => 0.15597809512116
1228 => 0.16203689405404
1229 => 0.16157167282798
1230 => 0.15946776601384
1231 => 0.15819531660805
]
'min_raw' => 0.11883335854867
'max_raw' => 0.30491279093718
'avg_raw' => 0.21187307474292
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118833'
'max' => '$0.304912'
'avg' => '$0.211873'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.073074884036018
'max_diff' => 0.17723245730128
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037300433370054
]
1 => [
'year' => 2028
'avg' => 0.0064018372056191
]
2 => [
'year' => 2029
'avg' => 0.017488665426856
]
3 => [
'year' => 2030
'avg' => 0.013492479331917
]
4 => [
'year' => 2031
'avg' => 0.013251286808498
]
5 => [
'year' => 2032
'avg' => 0.023233676108735
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037300433370054
'min' => '$0.00373'
'max_raw' => 0.023233676108735
'max' => '$0.023233'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023233676108735
]
1 => [
'year' => 2033
'avg' => 0.059759404042407
]
2 => [
'year' => 2034
'avg' => 0.03787838218465
]
3 => [
'year' => 2035
'avg' => 0.044677638650152
]
4 => [
'year' => 2036
'avg' => 0.086719404074274
]
5 => [
'year' => 2037
'avg' => 0.21187307474292
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023233676108735
'min' => '$0.023233'
'max_raw' => 0.21187307474292
'max' => '$0.211873'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21187307474292
]
]
]
]
'prediction_2025_max_price' => '$0.006377'
'last_price' => 0.00618398
'sma_50day_nextmonth' => '$0.005559'
'sma_200day_nextmonth' => '$0.006531'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.00608'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005891'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00554'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005369'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005499'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006038'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006049'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0059053'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005678'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005521'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00562'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00600077'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006346'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006378'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006461'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005442'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005932'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005829'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005889'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.006234'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006188'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006067'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00387'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 110.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005585'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006257'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 205.93
'cci_20_action' => 'SELL'
'adx_14' => 15.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000483'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.22
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000420'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767692326
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di DRAC (Ordinals) per l'anno 2026
La previsione del prezzo di DRAC (Ordinals) per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.002136 come limite inferiore e $0.006377 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3.13% entro il 2026 se DRAC raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di DRAC (Ordinals) 2027-2032
La previsione del prezzo di DRAC per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.00373 come limite inferiore e $0.023233 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se DRAC (Ordinals) raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.002056 | $0.00373 | $0.0054032 |
| 2028 | $0.003711 | $0.0064018 | $0.009091 |
| 2029 | $0.008154 | $0.017488 | $0.026823 |
| 2030 | $0.006934 | $0.013492 | $0.02005 |
| 2031 | $0.008198 | $0.013251 | $0.0183036 |
| 2032 | $0.012515 | $0.023233 | $0.033952 |
Previsione del prezzo di DRAC (Ordinals) 2032-2037
La previsione del prezzo di DRAC (Ordinals) per gli anni 2032-2037 è attualmente stimata tra $0.023233 come limite inferiore e $0.211873 come limite superiore. Rispetto al prezzo attuale, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.012515 | $0.023233 | $0.033952 |
| 2033 | $0.029082 | $0.059759 | $0.090436 |
| 2034 | $0.02338 | $0.037878 | $0.052375 |
| 2035 | $0.027643 | $0.044677 | $0.061711 |
| 2036 | $0.045758 | $0.086719 | $0.12768 |
| 2037 | $0.118833 | $0.211873 | $0.304912 |
DRAC (Ordinals) Istogramma dei prezzi potenziali
Previsione del prezzo di DRAC (Ordinals) basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per DRAC (Ordinals) è Rialzista, con 27 indicatori tecnici che mostrano segnali rialzisti e 7 indicando segnali ribassisti. La previsione del prezzo di DRAC è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di DRAC (Ordinals)
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di DRAC (Ordinals) è previsto aumentare nel corso del prossimo mese, raggiungendo $0.006531 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per DRAC (Ordinals) dovrebbe raggiungere $0.005559 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 67.19, suggerendo che il mercato di DRAC è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di DRAC per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.00608 | BUY |
| SMA 5 | $0.005891 | BUY |
| SMA 10 | $0.00554 | BUY |
| SMA 21 | $0.005369 | BUY |
| SMA 50 | $0.005499 | BUY |
| SMA 100 | $0.006038 | BUY |
| SMA 200 | $0.006851 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.006049 | BUY |
| EMA 5 | $0.0059053 | BUY |
| EMA 10 | $0.005678 | BUY |
| EMA 21 | $0.005521 | BUY |
| EMA 50 | $0.00562 | BUY |
| EMA 100 | $0.00600077 | BUY |
| EMA 200 | $0.006346 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.006378 | SELL |
| SMA 50 | $0.006461 | SELL |
| SMA 100 | $0.005442 | BUY |
| SMA 200 | — | — |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.006234 | SELL |
| EMA 50 | $0.006188 | SELL |
| EMA 100 | $0.006067 | BUY |
| EMA 200 | $0.00387 | BUY |
Oscillatori di DRAC (Ordinals)
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 67.19 | NEUTRAL |
| Stoch RSI (14) | 110.73 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 205.93 | SELL |
| Indice Direzionale Medio (14) | 15.42 | NEUTRAL |
| Oscillatore Awesome (5, 34) | 0.000483 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 79.22 | SELL |
| VWMA (10) | 0.005585 | BUY |
| Media Mobile di Hull (9) | 0.006257 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000420 | NEUTRAL |
Previsione del prezzo di DRAC (Ordinals) sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di DRAC (Ordinals)
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di DRAC (Ordinals) sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.008689 | $0.01221 | $0.017157 | $0.024109 | $0.033877 | $0.0476031 |
| Azioni Amazon.com | $0.0129032 | $0.026923 | $0.056177 | $0.117217 | $0.24458 | $0.510331 |
| Azioni Apple | $0.008771 | $0.012441 | $0.017647 | $0.025031 | $0.0355056 | $0.050362 |
| Azioni Netflix | $0.009757 | $0.015395 | $0.024291 | $0.038328 | $0.060476 | $0.095422 |
| Azioni Google | $0.0080082 | $0.01037 | $0.013429 | $0.017391 | $0.022522 | $0.029166 |
| Azioni Tesla | $0.014018 | $0.031779 | $0.07204 | $0.163311 | $0.370214 | $0.839247 |
| Azioni Kodak | $0.004637 | $0.003477 | $0.0026077 | $0.001955 | $0.001466 | $0.001099 |
| Azioni Nokia | $0.004096 | $0.002713 | $0.001797 | $0.00119 | $0.000788 | $0.000522 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per DRAC (Ordinals)
Potresti avere domande come: "Dovrei investire su DRAC (Ordinals) in questo momento?", "Dovrei acquistare DRAC oggi?", "DRAC (Ordinals) sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su DRAC (Ordinals) con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come DRAC (Ordinals) con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su DRAC (Ordinals) per prendere decisioni responsabili.
Il prezzo odierno di DRAC (Ordinals) è di $0.006183 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di DRAC (Ordinals) sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DRAC (Ordinals) ha 1% della precedente crescita media annua di Bitcoin | $0.006344 | $0.0065096 | $0.006678 | $0.006852 |
| Se DRAC (Ordinals) ha 2% della precedente crescita media annua di Bitcoin | $0.0065054 | $0.006843 | $0.007199 | $0.007573 |
| Se DRAC (Ordinals) ha 5% della precedente crescita media annua di Bitcoin | $0.006987 | $0.007895 | $0.008922 | $0.010081 |
| Se DRAC (Ordinals) ha 10% della precedente crescita media annua di Bitcoin | $0.007791 | $0.009816 | $0.012368 | $0.015583 |
| Se DRAC (Ordinals) ha 20% della precedente crescita media annua di Bitcoin | $0.009398 | $0.014284 | $0.021711 | $0.032997 |
| Se DRAC (Ordinals) ha 50% della precedente crescita media annua di Bitcoin | $0.014221 | $0.0327036 | $0.0752071 | $0.172951 |
| Se DRAC (Ordinals) ha 100% della precedente crescita media annua di Bitcoin | $0.022258 | $0.080114 | $0.288356 | $1.03 |
Area domande
È DRAC un buon investimento?
La decisione di procurarsi DRAC (Ordinals) dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di DRAC (Ordinals) ha subito un aumento del 3.2541% nelle precedenti 24 ore, e DRAC (Ordinals) ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in DRAC (Ordinals) dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può DRAC (Ordinals) salire?
Sembra che il valore medio di DRAC (Ordinals) possa potenzialmente salire fino a $0.006377 entro la fine di quest'anno. Guardando le prospettive di DRAC (Ordinals) su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.02005. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di DRAC (Ordinals) la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) aumenterà del 0.86% nella prossima settimana e raggiungerà $0.006236 entro 13 gennaio 2026.
Quale sarà il prezzo di DRAC (Ordinals) il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) diminuirà del -11.62% nel prossimo mese e raggiungerà $0.005465 entro 5 febbraio 2026.
Quanto può salire il prezzo di DRAC (Ordinals) quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di DRAC (Ordinals) in 2026, DRAC dovrebbe fluttuare all'interno dell'intervallo di $0.002136 e $0.006377. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di DRAC (Ordinals) non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà DRAC (Ordinals) tra 5 anni?
Il futuro di DRAC (Ordinals) sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.02005 prevista dopo un periodo di cinque anni. Basato sulla previsione di DRAC (Ordinals) per 2030, il valore di DRAC (Ordinals) potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.02005, mentre il suo picco più basso è previsto intorno a $0.006934.
Quanto varrà DRAC (Ordinals) in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2026 aumenti del 3.13% fino a $0.006377 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.006377 e $0.002136 durante 2026.
Quanto varrà DRAC (Ordinals) in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di DRAC (Ordinals), il valore di DRAC potrebbe diminuire del -12.62% fino a $0.0054032 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.0054032 e $0.002056 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.009091 nello scenario migliore. Il prezzo è previsto oscillare tra $0.009091 e $0.003711 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di DRAC (Ordinals) potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.026823 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.026823 e $0.008154.
Quanto varrà DRAC (Ordinals) in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2030 aumenti del 224.23%, raggiungendo $0.02005 nello scenario migliore. Il prezzo è previsto oscillare tra $0.02005 e $0.006934 nel corso di 2030.
Quanto varrà DRAC (Ordinals) in 2031?
La nostra simulazione sperimentale indica che il prezzo di DRAC (Ordinals) potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.0183036 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.0183036 e $0.008198 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di DRAC (Ordinals), DRAC potrebbe subire una 449.04% aumento in valore, raggiungendo $0.033952 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.033952 e $0.012515 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2033?
Secondo la nostra previsione sperimentale dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.090436. Durante l'anno, il prezzo di DRAC potrebbe oscillare tra $0.090436 e $0.029082.
Quanto varrà DRAC (Ordinals) in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di DRAC (Ordinals) suggeriscono che DRAC potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.052375 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.052375 e $0.02338.
Quanto varrà DRAC (Ordinals) in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di DRAC (Ordinals), DRAC potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.061711 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.061711 e $0.027643.
Quanto varrà DRAC (Ordinals) in 2036?
La nostra recente simulazione di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.12768 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.12768 e $0.045758.
Quanto varrà DRAC (Ordinals) in 2037?
Secondo la simulazione sperimentale, il valore di DRAC (Ordinals) potrebbe aumentare del 4830.69% in 2037, con un picco di $0.304912 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.304912 e $0.118833 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di TE-FOOD
Previsione del prezzo di TrustFi Network Token
Previsione del prezzo di RetroCraft
Previsione del prezzo di CrossWallet
Previsione del prezzo di İstanbul Başakşehir Fan Token
Previsione del prezzo di Trisolaris
Previsione del prezzo di DogeCola
Previsione del prezzo di Unistake
Previsione del prezzo di Forest Knight
Previsione del prezzo di AirCoin
Previsione del prezzo di Changer
Previsione del prezzo di RIKU
Previsione del prezzo di Glitch Protocol
Previsione del prezzo di Position
Previsione del prezzo di Primate
Previsione del prezzo di PlotX
Previsione del prezzo di Nyxia AI
Previsione del prezzo di Spartan Protocol Token
Previsione del prezzo di Playermon
Previsione del prezzo di Solrise Finance
Previsione del prezzo di AllianceBlock
Previsione del prezzo di Metaverse Face
Previsione del prezzo di Furucombo
Previsione del prezzo di Coinzix Token
Previsione del prezzo di Tranche Finance
Come leggere e prevedere i movimenti di prezzo di DRAC (Ordinals)?
I trader di DRAC (Ordinals) utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di DRAC (Ordinals)
Le medie mobili sono strumenti popolari per la previsione del prezzo di DRAC (Ordinals). Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di DRAC su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di DRAC al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di DRAC.
Come leggere i grafici di DRAC (Ordinals) e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di DRAC (Ordinals) in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di DRAC all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di DRAC (Ordinals)?
L'azione del prezzo di DRAC (Ordinals) è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di DRAC. La capitalizzazione di mercato di DRAC (Ordinals) può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di DRAC, grandi detentori di DRAC (Ordinals), poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di DRAC (Ordinals).
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


