Previsione del prezzo di DRAC (Ordinals) DRAC
Previsione del prezzo di DRAC (Ordinals) fino a $0.006378 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.002136 | $0.006378 |
| 2027 | $0.002056 | $0.0054036 |
| 2028 | $0.003712 | $0.009092 |
| 2029 | $0.008154 | $0.026825 |
| 2030 | $0.006935 | $0.020051 |
| 2031 | $0.008199 | $0.0183048 |
| 2032 | $0.012515 | $0.033954 |
| 2033 | $0.029084 | $0.090442 |
| 2034 | $0.023382 | $0.052379 |
| 2035 | $0.027645 | $0.061716 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su DRAC (Ordinals) oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,955.77, con un rendimento del 39.56% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di DRAC (Ordinals) per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DRAC (Ordinals)'
'name_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_lang' => 'DRAC (Ordinals)'
'name_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_with_lang' => 'DRAC (Ordinals)'
'name_with_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'image' => '/uploads/coins/drac-ordinals.png?1717128736'
'price_for_sd' => 0.006184
'ticker' => 'DRAC'
'marketcap' => '$660.64K'
'low24h' => '$0.005956'
'high24h' => '$0.006314'
'volume24h' => '$15.06K'
'current_supply' => '106.82M'
'max_supply' => '106.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006184'
'change_24h_pct' => '2.9065%'
'ath_price' => '$0.03978'
'ath_days' => 752
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 dic 2023'
'ath_pct' => '-84.46%'
'fdv' => '$660.64K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.304933'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006237'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005465'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002136'
'current_year_max_price_prediction' => '$0.006378'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006935'
'grand_prediction_max_price' => '$0.020051'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063016013165003
107 => 0.0063251292083349
108 => 0.006378138750002
109 => 0.0059251780203657
110 => 0.0061285440897441
111 => 0.0062480026026801
112 => 0.0057082846952973
113 => 0.0062373341149765
114 => 0.0059172929818094
115 => 0.005808666214356
116 => 0.0059549178462436
117 => 0.0058979234430627
118 => 0.0058489230020313
119 => 0.0058215799140013
120 => 0.005928970971256
121 => 0.005923961050075
122 => 0.0057482484367003
123 => 0.0055190384955154
124 => 0.0055959688753369
125 => 0.0055680193471216
126 => 0.0054667266513085
127 => 0.0055349856981598
128 => 0.0052344074009396
129 => 0.0047172780632725
130 => 0.0050589095438354
131 => 0.0050457571034572
201 => 0.0050391250466029
202 => 0.0052958516622453
203 => 0.005271173321842
204 => 0.0052263818923591
205 => 0.0054659040215801
206 => 0.0053784752223872
207 => 0.0056479101806841
208 => 0.0058253774701789
209 => 0.0057803660250976
210 => 0.0059472748686413
211 => 0.0055977411959105
212 => 0.0057138422611348
213 => 0.0057377705297684
214 => 0.0054629483556856
215 => 0.0052752110035342
216 => 0.0052626910625082
217 => 0.0049371803656783
218 => 0.0051110655524943
219 => 0.0052640773210344
220 => 0.0051907965580966
221 => 0.005167598057751
222 => 0.0052861141648758
223 => 0.0052953238814212
224 => 0.0050853413681839
225 => 0.0051290033819673
226 => 0.00531108123765
227 => 0.0051244154871677
228 => 0.004761754425658
301 => 0.0046718094682221
302 => 0.0046598091528857
303 => 0.0044158712946951
304 => 0.0046778200203666
305 => 0.0045634723818216
306 => 0.0049246952018901
307 => 0.0047183666643438
308 => 0.0047094722534738
309 => 0.0046960270469174
310 => 0.0044860596554267
311 => 0.0045320291700393
312 => 0.0046848388379664
313 => 0.0047393630490069
314 => 0.0047336757270917
315 => 0.0046840899872286
316 => 0.0047067900850178
317 => 0.0046336651608002
318 => 0.0046078432280953
319 => 0.0045263421055964
320 => 0.0044065579707828
321 => 0.0044232146894074
322 => 0.0041858909751178
323 => 0.0040565844198499
324 => 0.0040207940695848
325 => 0.0039729337174286
326 => 0.0040262000237124
327 => 0.0041852186668533
328 => 0.0039934084455382
329 => 0.0036645632750162
330 => 0.0036843274300894
331 => 0.0037287316185088
401 => 0.0036459847071524
402 => 0.0035676716999755
403 => 0.0036357585059807
404 => 0.0034964224721412
405 => 0.0037455697125125
406 => 0.0037388309778876
407 => 0.003831697661936
408 => 0.0038897691052877
409 => 0.0037559332292151
410 => 0.0037222738683135
411 => 0.0037414477700157
412 => 0.0034245458852724
413 => 0.0038058000170542
414 => 0.0038090971186178
415 => 0.0037808653333021
416 => 0.0039838713885752
417 => 0.0044122774843779
418 => 0.0042510938785416
419 => 0.0041886787145616
420 => 0.0040700274422102
421 => 0.0042281232178029
422 => 0.0042159839289157
423 => 0.0041610854608791
424 => 0.0041278826961168
425 => 0.0041890598082436
426 => 0.0041203021749072
427 => 0.0041079514146266
428 => 0.0040331192450858
429 => 0.0040064075652065
430 => 0.0039866313008465
501 => 0.0039648595769617
502 => 0.0040128825746759
503 => 0.003904056143904
504 => 0.0037728221367795
505 => 0.0037619114490588
506 => 0.0037920368171333
507 => 0.0037787085843302
508 => 0.0037618476386078
509 => 0.0037296555014186
510 => 0.0037201047819907
511 => 0.0037511399867809
512 => 0.0037161030500376
513 => 0.0037678019587631
514 => 0.0037537427162209
515 => 0.0036752089302503
516 => 0.0035773267559994
517 => 0.0035764553993338
518 => 0.0035553668454503
519 => 0.0035285074013945
520 => 0.003521035718519
521 => 0.0036300244250885
522 => 0.0038556277859299
523 => 0.0038113364479658
524 => 0.0038433414788038
525 => 0.004000774553983
526 => 0.0040508177944048
527 => 0.0040152982876925
528 => 0.003966676996157
529 => 0.0039688160862274
530 => 0.00413496975807
531 => 0.0041453325587746
601 => 0.0041715160129888
602 => 0.0042051691510974
603 => 0.0040210295626327
604 => 0.0039601431281701
605 => 0.0039312917576709
606 => 0.003842440703419
607 => 0.003938258947916
608 => 0.0038824297601939
609 => 0.0038899630250143
610 => 0.0038850569764174
611 => 0.0038877360106968
612 => 0.0037455000707812
613 => 0.0037973233715856
614 => 0.0037111570827039
615 => 0.0035957900945111
616 => 0.0035954033439138
617 => 0.0036236392508337
618 => 0.0036068434285266
619 => 0.0035616463025583
620 => 0.0035680663409777
621 => 0.003511820048942
622 => 0.0035748956592028
623 => 0.0035767044420097
624 => 0.0035524168963076
625 => 0.0036495935766712
626 => 0.0036894069419048
627 => 0.003673420359034
628 => 0.0036882852806336
629 => 0.0038131769530217
630 => 0.0038335397450266
701 => 0.0038425835521447
702 => 0.0038304660486813
703 => 0.003690568071138
704 => 0.0036967731413341
705 => 0.0036512444533633
706 => 0.0036127775097229
707 => 0.003614315985736
708 => 0.0036340929951198
709 => 0.0037204603550052
710 => 0.00390221537225
711 => 0.0039091128422932
712 => 0.003917472777199
713 => 0.0038834687205704
714 => 0.0038732127717162
715 => 0.0038867430155399
716 => 0.0039550006437923
717 => 0.0041305777954226
718 => 0.0040685171036328
719 => 0.0040180607951754
720 => 0.0040623245806156
721 => 0.0040555105177981
722 => 0.003997992970188
723 => 0.0039963786441947
724 => 0.0038859840808585
725 => 0.0038451737243557
726 => 0.0038110695358598
727 => 0.0037738286523345
728 => 0.0037517510082551
729 => 0.0037856723036709
730 => 0.0037934305052775
731 => 0.003719261000008
801 => 0.0037091519705055
802 => 0.0037697203895685
803 => 0.0037430664865571
804 => 0.0037704806867894
805 => 0.0037768410163979
806 => 0.0037758168568401
807 => 0.0037479871209149
808 => 0.003765724964699
809 => 0.003723769676244
810 => 0.0036781496015298
811 => 0.0036490468360932
812 => 0.0036236508133282
813 => 0.0036377420027837
814 => 0.0035875094853242
815 => 0.003571439092008
816 => 0.0037597157823391
817 => 0.0038987977978021
818 => 0.0038967754902147
819 => 0.003884465212872
820 => 0.0038661746377892
821 => 0.0039536625743
822 => 0.0039231835265962
823 => 0.0039453595804104
824 => 0.0039510043168321
825 => 0.0039680892338949
826 => 0.0039741956232467
827 => 0.0039557378734657
828 => 0.0038937914107764
829 => 0.0037394267154477
830 => 0.0036675695330726
831 => 0.0036438554660128
901 => 0.003644717427311
902 => 0.003620940686742
903 => 0.0036279440024383
904 => 0.0036185052193462
905 => 0.0036006304476565
906 => 0.0036366382860017
907 => 0.0036407878539347
908 => 0.0036323831942034
909 => 0.0036343627958232
910 => 0.0035647758029245
911 => 0.0035700663508596
912 => 0.0035406079076667
913 => 0.0035350848046949
914 => 0.0034606164255434
915 => 0.0033286848975123
916 => 0.0034017877709448
917 => 0.0033134897796579
918 => 0.0032800499924246
919 => 0.003438348744233
920 => 0.0034224599400754
921 => 0.0033952652140546
922 => 0.0033550385463924
923 => 0.0033401180840567
924 => 0.0032494660781489
925 => 0.0032441098740302
926 => 0.0032890394559682
927 => 0.0032683059998363
928 => 0.0032391883750534
929 => 0.0031337272896957
930 => 0.0030151541127883
1001 => 0.0030187330916747
1002 => 0.0030564490131166
1003 => 0.0031661131413938
1004 => 0.0031232654692672
1005 => 0.003092178991519
1006 => 0.0030863574286928
1007 => 0.0031592264757294
1008 => 0.0032623514438235
1009 => 0.0033107353715622
1010 => 0.0032627883686149
1011 => 0.0032077094332791
1012 => 0.0032110618328617
1013 => 0.0032333638453838
1014 => 0.0032357074715664
1015 => 0.0031998567468688
1016 => 0.0032099485158744
1017 => 0.0031946181959443
1018 => 0.0031005360508306
1019 => 0.0030988344031632
1020 => 0.0030757451274728
1021 => 0.0030750459933811
1022 => 0.003035765375542
1023 => 0.0030302697455722
1024 => 0.0029522756946895
1025 => 0.0030036116151682
1026 => 0.0029691781749679
1027 => 0.0029172788585585
1028 => 0.0029083313968475
1029 => 0.0029080624253441
1030 => 0.0029613514188217
1031 => 0.0030029889022531
1101 => 0.0029697771594024
1102 => 0.0029622154893379
1103 => 0.0030429543426848
1104 => 0.0030326795876454
1105 => 0.0030237817160463
1106 => 0.0032531177340152
1107 => 0.0030715803804802
1108 => 0.0029924197325491
1109 => 0.0028944433985349
1110 => 0.0029263449869295
1111 => 0.0029330671203361
1112 => 0.0026974516985937
1113 => 0.0026018625513369
1114 => 0.0025690599581993
1115 => 0.0025501816020881
1116 => 0.0025587847060275
1117 => 0.0024727432620076
1118 => 0.0025305645353831
1119 => 0.0024560599177641
1120 => 0.0024435689761613
1121 => 0.0025767924618151
1122 => 0.0025953297315635
1123 => 0.0025162439797385
1124 => 0.0025670298352303
1125 => 0.0025486141780528
1126 => 0.002457337085592
1127 => 0.0024538509720488
1128 => 0.0024080513355969
1129 => 0.0023363837731068
1130 => 0.0023036297739514
1201 => 0.002286571206808
1202 => 0.0022936099040763
1203 => 0.0022900509233498
1204 => 0.002266826166722
1205 => 0.0022913821392137
1206 => 0.0022286517767259
1207 => 0.0022036720409303
1208 => 0.0021923892737969
1209 => 0.002136712466464
1210 => 0.0022253190265193
1211 => 0.0022427756350862
1212 => 0.0022602666385646
1213 => 0.0024125138822291
1214 => 0.0024049080401818
1215 => 0.0024736611480935
1216 => 0.0024709895287489
1217 => 0.002451380028646
1218 => 0.002368650773318
1219 => 0.0024016251799846
1220 => 0.0023001350816255
1221 => 0.002376178363972
1222 => 0.0023414753855524
1223 => 0.0023644452520603
1224 => 0.0023231433609698
1225 => 0.0023460015328126
1226 => 0.0022469152445749
1227 => 0.0021543898628003
1228 => 0.0021916247774107
1229 => 0.0022321033879212
1230 => 0.002319871329266
1231 => 0.0022675974674708
]
'min_raw' => 0.002136712466464
'max_raw' => 0.006378138750002
'avg_raw' => 0.004257425608233
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002136'
'max' => '$0.006378'
'avg' => '$0.004257'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.004047697533536
'max_diff' => 0.00019372875000202
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022863971248659
102 => 0.0022234214196169
103 => 0.0020934845515674
104 => 0.0020942199801295
105 => 0.0020742320238086
106 => 0.002056959511258
107 => 0.0022736017493214
108 => 0.0022466588624113
109 => 0.0022037288983178
110 => 0.0022611923612259
111 => 0.0022763866128866
112 => 0.0022768191718708
113 => 0.0023187430310618
114 => 0.0023411178022274
115 => 0.0023450614526231
116 => 0.0024110295508852
117 => 0.0024331411872824
118 => 0.0025242158882466
119 => 0.0023392194592178
120 => 0.0023354095795023
121 => 0.0022620009899919
122 => 0.0022154441019805
123 => 0.0022651887799451
124 => 0.0023092557737961
125 => 0.0022633702743271
126 => 0.002269361951862
127 => 0.0022077644178078
128 => 0.0022297826377988
129 => 0.0022487476950296
130 => 0.0022382763051413
131 => 0.0022226001276575
201 => 0.0023056427828337
202 => 0.0023009571907819
203 => 0.0023782884204244
204 => 0.00243857364394
205 => 0.0025466155417528
206 => 0.0024338681890337
207 => 0.0024297592273704
208 => 0.0024699249867266
209 => 0.002433135038114
210 => 0.0024563850156913
211 => 0.0025428696109218
212 => 0.0025446968941384
213 => 0.0025140875459392
214 => 0.0025122249643195
215 => 0.0025181038244707
216 => 0.0025525364919993
217 => 0.0025405046599558
218 => 0.0025544282006053
219 => 0.0025718398013922
220 => 0.0026438615646128
221 => 0.0026612257678968
222 => 0.002619039756224
223 => 0.0026228486807413
224 => 0.0026070699543437
225 => 0.0025918279023505
226 => 0.0026260898093083
227 => 0.002688704117693
228 => 0.0026883145973302
301 => 0.0027028398998272
302 => 0.0027118890429487
303 => 0.0026730434962935
304 => 0.0026477564738112
305 => 0.002657453127286
306 => 0.0026729582873577
307 => 0.002652425012848
308 => 0.0025256841306362
309 => 0.0025641292180604
310 => 0.0025577300756443
311 => 0.0025486169186814
312 => 0.0025872737513735
313 => 0.0025835452055564
314 => 0.0024718607826369
315 => 0.002479010457033
316 => 0.0024722955780174
317 => 0.0024939927258518
318 => 0.0024319633209269
319 => 0.0024510431481074
320 => 0.0024630098368527
321 => 0.0024700583084561
322 => 0.0024955222210699
323 => 0.0024925343248281
324 => 0.0024953364892443
325 => 0.0025330927494269
326 => 0.0027240509570465
327 => 0.0027344443909617
328 => 0.0026832633211434
329 => 0.0027037091490338
330 => 0.0026644576304952
331 => 0.0026908074378525
401 => 0.0027088353068338
402 => 0.0026273708334671
403 => 0.0026225470360544
404 => 0.0025831335125362
405 => 0.0026043121075788
406 => 0.0025706154400712
407 => 0.0025788834236181
408 => 0.0025557654208309
409 => 0.0025973732230995
410 => 0.0026438972112345
411 => 0.0026556510079253
412 => 0.0026247318291593
413 => 0.0026023443060595
414 => 0.0025630391904048
415 => 0.0026284044737102
416 => 0.0026475192745196
417 => 0.002628304071799
418 => 0.0026238514894681
419 => 0.0026154138539968
420 => 0.0026256415737206
421 => 0.0026474151712093
422 => 0.0026371471447288
423 => 0.0026439293571185
424 => 0.0026180825572761
425 => 0.0026730563557858
426 => 0.0027603679779842
427 => 0.0027606486991264
428 => 0.0027503806172975
429 => 0.002746179139442
430 => 0.0027567148145178
501 => 0.0027624299860504
502 => 0.0027965004273331
503 => 0.0028330593682556
504 => 0.0030036639936257
505 => 0.0029557588975072
506 => 0.0031071294704501
507 => 0.003226843940639
508 => 0.0032627410757694
509 => 0.0032297174005402
510 => 0.003116745191485
511 => 0.0031112022359464
512 => 0.0032800304119112
513 => 0.0032323287193808
514 => 0.0032266547548398
515 => 0.0031662933584384
516 => 0.003201974419616
517 => 0.0031941704481269
518 => 0.0031818514973479
519 => 0.0032499284765106
520 => 0.0033773625042292
521 => 0.0033575007159405
522 => 0.0033426748123449
523 => 0.0032777120185443
524 => 0.0033168341303775
525 => 0.0033029034956884
526 => 0.0033627583429121
527 => 0.003327301657364
528 => 0.003231967332144
529 => 0.0032471496376613
530 => 0.0032448548627249
531 => 0.0032920811683062
601 => 0.0032779050035997
602 => 0.0032420867390466
603 => 0.0033769269485763
604 => 0.0033681711753901
605 => 0.0033805848599198
606 => 0.0033860497477556
607 => 0.0034681246071454
608 => 0.0035017480509348
609 => 0.0035093811613362
610 => 0.0035413208324057
611 => 0.0035085864732236
612 => 0.0036395472491543
613 => 0.0037266285233752
614 => 0.003827777904544
615 => 0.0039755843368223
616 => 0.0040311609226449
617 => 0.0040211215098628
618 => 0.0041331866599247
619 => 0.0043345652435176
620 => 0.004061825879241
621 => 0.0043490210920872
622 => 0.0042580984035283
623 => 0.0040425223445843
624 => 0.0040286417878631
625 => 0.0041746323978695
626 => 0.004498425519788
627 => 0.0044173190151786
628 => 0.004498558180974
629 => 0.0044037883788013
630 => 0.0043990822593409
701 => 0.0044939554232126
702 => 0.0047156317418658
703 => 0.0046103216322862
704 => 0.0044593337671056
705 => 0.0045708208571236
706 => 0.0044742404221069
707 => 0.0042566176708526
708 => 0.0044172569945631
709 => 0.0043098420535425
710 => 0.0043411914438246
711 => 0.0045669616730834
712 => 0.004539796401785
713 => 0.0045749507782815
714 => 0.0045129042239155
715 => 0.004454942958294
716 => 0.0043467539517515
717 => 0.0043147245205679
718 => 0.0043235763030488
719 => 0.0043147201340641
720 => 0.0042541893792118
721 => 0.0042411177684647
722 => 0.0042193311778724
723 => 0.0042260837532961
724 => 0.0041851185890906
725 => 0.0042624283177812
726 => 0.0042767776846771
727 => 0.0043330372581218
728 => 0.0043388783136708
729 => 0.0044955604249091
730 => 0.004409262550975
731 => 0.00446715861541
801 => 0.004461979846468
802 => 0.0040471945314654
803 => 0.004104348288191
804 => 0.004193261597819
805 => 0.0041532062723507
806 => 0.0040965774136412
807 => 0.004050846573986
808 => 0.0039815596756899
809 => 0.0040790796545046
810 => 0.0042073080565525
811 => 0.0043421303975558
812 => 0.0045041106063615
813 => 0.0044679585094136
814 => 0.0043391022902232
815 => 0.0043448826860866
816 => 0.0043806148188119
817 => 0.004334338460326
818 => 0.0043206906587867
819 => 0.0043787398204566
820 => 0.0043791395731298
821 => 0.0043258930300071
822 => 0.0042667192413407
823 => 0.0042664713010055
824 => 0.0042559418968634
825 => 0.004405661536407
826 => 0.0044879921997931
827 => 0.0044974312776678
828 => 0.0044873568746455
829 => 0.0044912341125301
830 => 0.0044433277135381
831 => 0.0045528275354324
901 => 0.0046533154004127
902 => 0.0046263825059879
903 => 0.0045860062685086
904 => 0.0045538446505732
905 => 0.0046188062509133
906 => 0.0046159136131092
907 => 0.0046524377265758
908 => 0.0046507807818155
909 => 0.004638499096198
910 => 0.0046263829446056
911 => 0.004674422116122
912 => 0.0046605876062107
913 => 0.0046467316074844
914 => 0.0046189412807915
915 => 0.0046227184477375
916 => 0.0045823491817848
917 => 0.0045636725121832
918 => 0.0042828202129708
919 => 0.0042077673015076
920 => 0.0042313804752968
921 => 0.004239154545224
922 => 0.0042064914219723
923 => 0.0042533219502473
924 => 0.0042460234620215
925 => 0.0042744176102355
926 => 0.004256678179162
927 => 0.004257406211601
928 => 0.0043095740959427
929 => 0.0043247186547051
930 => 0.004317016009887
1001 => 0.0043224106782864
1002 => 0.0044467285346039
1003 => 0.0044290545108968
1004 => 0.0044196655380587
1005 => 0.0044222663477003
1006 => 0.0044540322253943
1007 => 0.004462924936796
1008 => 0.0044252458937072
1009 => 0.0044430155482478
1010 => 0.0045186764819768
1011 => 0.004545153526744
1012 => 0.0046296555439383
1013 => 0.0045937575851306
1014 => 0.0046596498421495
1015 => 0.0048621801758997
1016 => 0.0050239754205325
1017 => 0.0048751818270969
1018 => 0.0051722981893648
1019 => 0.0054036458962013
1020 => 0.0053947663858831
1021 => 0.0053544255620273
1022 => 0.0050910423484911
1023 => 0.0048486731885725
1024 => 0.0050514252823825
1025 => 0.005051942139166
1026 => 0.0050345255544958
1027 => 0.0049263526429191
1028 => 0.0050307613716513
1029 => 0.0050390489573812
1030 => 0.0050344101132194
1031 => 0.0049514741955384
1101 => 0.0048248463783591
1102 => 0.0048495891507318
1103 => 0.0048901183166171
1104 => 0.0048133881503265
1105 => 0.004788868212952
1106 => 0.0048344554416402
1107 => 0.0049813469909501
1108 => 0.0049535779944379
1109 => 0.0049528528337156
1110 => 0.0050716603766821
1111 => 0.0049866198161906
1112 => 0.0048499012363287
1113 => 0.0048153779918171
1114 => 0.0046928437314449
1115 => 0.004777478581536
1116 => 0.0047805244391183
1117 => 0.0047341707966706
1118 => 0.0048536625789439
1119 => 0.0048525614411341
1120 => 0.0049660011043979
1121 => 0.0051828551345665
1122 => 0.0051187207271069
1123 => 0.0050441393890351
1124 => 0.0050522484483997
1125 => 0.0051411848147653
1126 => 0.0050874118574409
1127 => 0.0051067489878131
1128 => 0.0051411555457026
1129 => 0.005161913876344
1130 => 0.0050492616440729
1201 => 0.0050229970199514
1202 => 0.0049692688166291
1203 => 0.0049552521312667
1204 => 0.004999012631797
1205 => 0.0049874832859886
1206 => 0.0047802684465827
1207 => 0.0047586133429323
1208 => 0.0047592774740449
1209 => 0.0047048246862719
1210 => 0.0046217711147516
1211 => 0.0048400309418358
1212 => 0.0048225016231767
1213 => 0.0048031506120384
1214 => 0.0048055210004875
1215 => 0.0049002601939129
1216 => 0.0048453066772822
1217 => 0.0049914096079491
1218 => 0.0049613752376601
1219 => 0.0049305705991032
1220 => 0.0049263124597224
1221 => 0.0049144553020063
1222 => 0.0048737926963436
1223 => 0.0048246901565622
1224 => 0.0047922684066093
1225 => 0.0044206142867475
1226 => 0.0044895911295813
1227 => 0.0045689426998245
1228 => 0.004596334543891
1229 => 0.0045494788991574
1230 => 0.0048756428427862
1231 => 0.0049352361382812
]
'min_raw' => 0.002056959511258
'max_raw' => 0.0054036458962013
'avg_raw' => 0.0037303027037296
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002056'
'max' => '$0.0054036'
'avg' => '$0.00373'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9752955206009E-5
'max_diff' => -0.00097449285380077
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047547241590525
102 => 0.0047209577379943
103 => 0.0048778565637293
104 => 0.0047832273917097
105 => 0.0048258389020759
106 => 0.0047337361239142
107 => 0.0049208818584918
108 => 0.0049194561215492
109 => 0.0048466522039204
110 => 0.0049081855765606
111 => 0.0048974926388024
112 => 0.0048152971951076
113 => 0.0049234876006663
114 => 0.0049235412617577
115 => 0.0048534690739336
116 => 0.0047716400993295
117 => 0.0047570110113844
118 => 0.0047459899587592
119 => 0.0048231283987329
120 => 0.0048922904828078
121 => 0.0050209839745364
122 => 0.0050533405760389
123 => 0.0051796305458041
124 => 0.0051044310177559
125 => 0.0051377659945428
126 => 0.0051739558273652
127 => 0.0051913065640574
128 => 0.0051630344697094
129 => 0.0053592147757802
130 => 0.0053757784044218
131 => 0.0053813320458305
201 => 0.0053151811504195
202 => 0.0053739386283544
203 => 0.0053464479502718
204 => 0.0054179710575123
205 => 0.0054291867939805
206 => 0.0054196874642033
207 => 0.0054232475159867
208 => 0.0052558422333328
209 => 0.005247161386294
210 => 0.0051287974209548
211 => 0.0051770316117328
212 => 0.0050868601039983
213 => 0.0051154544179704
214 => 0.0051280585191126
215 => 0.0051214748519523
216 => 0.0051797587005094
217 => 0.0051302055226323
218 => 0.004999426538918
219 => 0.004868611924557
220 => 0.004866969653633
221 => 0.0048325284747415
222 => 0.0048076338106195
223 => 0.004812429406115
224 => 0.0048293297101407
225 => 0.0048066515342264
226 => 0.0048114910728704
227 => 0.0048918596600384
228 => 0.0049079770070324
229 => 0.0048532039644928
301 => 0.004633282294984
302 => 0.0045793129656548
303 => 0.0046181050493183
304 => 0.0045995649318573
305 => 0.0037122078813332
306 => 0.0039206792580007
307 => 0.0037968126450039
308 => 0.0038538960791016
309 => 0.0037274603423359
310 => 0.0037878021029852
311 => 0.0037766591831216
312 => 0.0041118749876863
313 => 0.0041066410539723
314 => 0.0041091462610676
315 => 0.003989566199127
316 => 0.0041800604847509
317 => 0.0042739048198022
318 => 0.0042565367309703
319 => 0.0042609079047485
320 => 0.0041857966568474
321 => 0.0041098735021324
322 => 0.0040256630390637
323 => 0.0041821156707175
324 => 0.0041647208088131
325 => 0.004204618363548
326 => 0.0043060890786406
327 => 0.0043210310268878
328 => 0.0043411131568582
329 => 0.0043339151428072
330 => 0.0045054010400516
331 => 0.0044846329663949
401 => 0.0045346780485249
402 => 0.0044317315176539
403 => 0.004315237746199
404 => 0.0043373794036843
405 => 0.0043352469840165
406 => 0.0043080988341681
407 => 0.0042835906983608
408 => 0.004242791557366
409 => 0.0043718860766102
410 => 0.0043666450748831
411 => 0.0044514908008458
412 => 0.0044364934946345
413 => 0.004336337813292
414 => 0.0043399148930449
415 => 0.0043639724734689
416 => 0.0044472360340013
417 => 0.0044719543277827
418 => 0.0044605038292495
419 => 0.0044876063099479
420 => 0.0045090270056348
421 => 0.0044902964195273
422 => 0.0047554820194982
423 => 0.0046453584697148
424 => 0.0046990319216445
425 => 0.0047118327236674
426 => 0.0046790437384576
427 => 0.0046861544952641
428 => 0.0046969253542606
429 => 0.0047623239009373
430 => 0.0049339486106388
501 => 0.0050099600262766
502 => 0.0052386441205604
503 => 0.0050036483363379
504 => 0.0049897046590114
505 => 0.0050308975699899
506 => 0.0051651593420043
507 => 0.0052739658976549
508 => 0.005310063309365
509 => 0.0053148341782258
510 => 0.0053825553223045
511 => 0.0054213718191659
512 => 0.0053743321941705
513 => 0.0053344710372409
514 => 0.005191693320868
515 => 0.005208220230309
516 => 0.0053220742474098
517 => 0.0054828997525328
518 => 0.0056209047669702
519 => 0.0055725802208745
520 => 0.0059412623957714
521 => 0.0059778157274808
522 => 0.0059727652389493
523 => 0.0060560391684484
524 => 0.0058907573768335
525 => 0.0058200962087343
526 => 0.0053430894718124
527 => 0.0054771089080355
528 => 0.0056719140292713
529 => 0.005646130840994
530 => 0.0055046581547968
531 => 0.0056207974472515
601 => 0.0055823981651545
602 => 0.0055521110581769
603 => 0.0056908621666859
604 => 0.0055382996232989
605 => 0.0056703921011967
606 => 0.0055009821319711
607 => 0.0055728009633306
608 => 0.0055320331211649
609 => 0.0055584149113649
610 => 0.0054041875049243
611 => 0.005487404869781
612 => 0.0054007253889529
613 => 0.005400684291593
614 => 0.0053987708372495
615 => 0.0055007488620481
616 => 0.0055040743617756
617 => 0.0054287124473692
618 => 0.0054178516181289
619 => 0.0054580097962214
620 => 0.0054109950871186
621 => 0.0054329929736008
622 => 0.0054116613806906
623 => 0.0054068591898144
624 => 0.0053685945158876
625 => 0.0053521090422508
626 => 0.0053585734212421
627 => 0.005336507163129
628 => 0.0053232114444444
629 => 0.0053961259841548
630 => 0.0053571706869517
701 => 0.0053901555261608
702 => 0.0053525651388634
703 => 0.0052222604791386
704 => 0.0051473208913841
705 => 0.0049011874684123
706 => 0.0049709906018395
707 => 0.0050172701515183
708 => 0.0050019747606256
709 => 0.0050348351787938
710 => 0.0050368525415881
711 => 0.0050261692846693
712 => 0.0050137994417673
713 => 0.0050077784863378
714 => 0.0050526537552328
715 => 0.0050787053592585
716 => 0.0050219149234691
717 => 0.0050086097189463
718 => 0.0050660279850153
719 => 0.0051010530941479
720 => 0.0053596588210743
721 => 0.0053405004735381
722 => 0.0053885841662181
723 => 0.0053831706803268
724 => 0.0054335700505884
725 => 0.0055159517206031
726 => 0.005348446751186
727 => 0.0053775198219908
728 => 0.0053703917764247
729 => 0.0054482139088412
730 => 0.005448456861044
731 => 0.0054017986051565
801 => 0.0054270928026169
802 => 0.0054129742755045
803 => 0.00543848836223
804 => 0.0053402446021265
805 => 0.005459894897174
806 => 0.0055277289043712
807 => 0.0055286707796269
808 => 0.0055608235606745
809 => 0.0055934926483822
810 => 0.0056561981173594
811 => 0.0055917438268859
812 => 0.0054757968328228
813 => 0.0054841678312876
814 => 0.0054161881510918
815 => 0.0054173309017974
816 => 0.0054112308089718
817 => 0.005429537646735
818 => 0.0053442619235327
819 => 0.0053642759653216
820 => 0.0053362561896151
821 => 0.0053774589124706
822 => 0.0053331315937321
823 => 0.0053703883390653
824 => 0.0053864671152704
825 => 0.0054457981456187
826 => 0.0053243683523091
827 => 0.0050767647836766
828 => 0.0051288140557063
829 => 0.0050518290939924
830 => 0.0050589543453014
831 => 0.005073348486921
901 => 0.0050266923644618
902 => 0.0050355928823236
903 => 0.0050352748931936
904 => 0.0050325346346629
905 => 0.0050203975752663
906 => 0.0050027964378972
907 => 0.0050729139518312
908 => 0.005084828283778
909 => 0.0051113123678223
910 => 0.0051901110376123
911 => 0.0051822371922997
912 => 0.0051950797606873
913 => 0.0051670445060051
914 => 0.005060254820359
915 => 0.0050660540140703
916 => 0.0049937379755651
917 => 0.0051094630841291
918 => 0.0050820578509243
919 => 0.0050643895187957
920 => 0.0050595685506784
921 => 0.0051385625471294
922 => 0.0051621987889468
923 => 0.0051474702692154
924 => 0.0051172616455468
925 => 0.0051752711333684
926 => 0.0051907920250857
927 => 0.0051942665803527
928 => 0.0052970482705567
929 => 0.005200010935073
930 => 0.0052233687861921
1001 => 0.0054056000728305
1002 => 0.005240341442048
1003 => 0.0053278826244808
1004 => 0.005323597939143
1005 => 0.0053683810458435
1006 => 0.0053199244172726
1007 => 0.0053205250952585
1008 => 0.0053602894601381
1009 => 0.0053044475812057
1010 => 0.0052906203466759
1011 => 0.0052715181212056
1012 => 0.0053132271316792
1013 => 0.0053382297971218
1014 => 0.0055397329181551
1015 => 0.0056699131240013
1016 => 0.0056642616579397
1017 => 0.005715905478642
1018 => 0.0056926394644124
1019 => 0.0056175073672007
1020 => 0.005745748695758
1021 => 0.0057051677735574
1022 => 0.0057085132154778
1023 => 0.0057083886979624
1024 => 0.00573537146358
1025 => 0.0057162517012058
1026 => 0.0056785646869628
1027 => 0.0057035830857966
1028 => 0.0057778787860918
1029 => 0.0060084949194783
1030 => 0.0061375507629788
1031 => 0.0060007255956523
1101 => 0.0060951057639121
1102 => 0.0060385112940487
1103 => 0.0060282263953349
1104 => 0.0060875041156417
1105 => 0.0061468855937508
1106 => 0.0061431032503085
1107 => 0.0060999953464739
1108 => 0.0060756447854203
1109 => 0.0062600353917545
1110 => 0.0063958912494896
1111 => 0.0063866267907813
1112 => 0.0064275170985564
1113 => 0.0065475723068737
1114 => 0.0065585486505413
1115 => 0.0065571658835276
1116 => 0.0065299598704842
1117 => 0.0066481698142114
1118 => 0.0067467826289747
1119 => 0.006523662464522
1120 => 0.0066086237022882
1121 => 0.0066467655392015
1122 => 0.0067027690719634
1123 => 0.0067972564190146
1124 => 0.0068998947394432
1125 => 0.0069144089233237
1126 => 0.0069041104152929
1127 => 0.006836417683904
1128 => 0.0069487257588469
1129 => 0.0070145131951999
1130 => 0.0070536881080295
1201 => 0.0071530291688813
1202 => 0.0066470010902012
1203 => 0.0062888092648842
1204 => 0.0062328724390082
1205 => 0.006346622174034
1206 => 0.0063766170720231
1207 => 0.0063645261662541
1208 => 0.0059613487014837
1209 => 0.0062307497930957
1210 => 0.0065206027157831
1211 => 0.0065317371470067
1212 => 0.0066768435806428
1213 => 0.0067240961835484
1214 => 0.0068409258821605
1215 => 0.006833618152703
1216 => 0.0068620643251485
1217 => 0.0068555250427223
1218 => 0.0070719274580057
1219 => 0.007310651458133
1220 => 0.0073023852051044
1221 => 0.0072680658056319
1222 => 0.0073190359661757
1223 => 0.0075654247175256
1224 => 0.0075427411896006
1225 => 0.0075647763048015
1226 => 0.0078552825285045
1227 => 0.0082329819433469
1228 => 0.0080575026447514
1229 => 0.0084382422298958
1230 => 0.008677897616606
1231 => 0.0090923568270918
]
'min_raw' => 0.0037122078813332
'max_raw' => 0.0090923568270918
'avg_raw' => 0.0064022823542125
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003712'
'max' => '$0.009092'
'avg' => '$0.0064022'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016552483700752
'max_diff' => 0.0036887109308906
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090404644926844
102 => 0.0092018104218843
103 => 0.008947566383838
104 => 0.0083637706812859
105 => 0.0082713827766769
106 => 0.0084563457013385
107 => 0.008911059003201
108 => 0.0084420251612756
109 => 0.0085369100966262
110 => 0.008509583228862
111 => 0.0085081270962105
112 => 0.0085637017569966
113 => 0.008483087812947
114 => 0.0081546521027174
115 => 0.0083051722532318
116 => 0.0082470491945469
117 => 0.0083115410615189
118 => 0.0086595770690977
119 => 0.0085057020540049
120 => 0.0083436072253959
121 => 0.0085469101121937
122 => 0.0088057845495387
123 => 0.0087895846524917
124 => 0.0087581500811889
125 => 0.008935345113762
126 => 0.0092280193942993
127 => 0.0093071280762681
128 => 0.0093655244879916
129 => 0.0093735763665528
130 => 0.009456515719948
131 => 0.009010529913334
201 => 0.0097183208421582
202 => 0.0098405367832364
203 => 0.0098175652516454
204 => 0.0099534031265208
205 => 0.0099134361778582
206 => 0.0098555303398682
207 => 0.01007086226509
208 => 0.0098240015892135
209 => 0.0094736139387014
210 => 0.0092813843437486
211 => 0.0095345277811016
212 => 0.0096891136448045
213 => 0.0097912850672047
214 => 0.0098222020778893
215 => 0.0090451505219427
216 => 0.0086263628305425
217 => 0.0088948009393194
218 => 0.0092223139586358
219 => 0.0090087105619752
220 => 0.0090170834107196
221 => 0.0087125411010667
222 => 0.009249259195488
223 => 0.0091710638836405
224 => 0.0095767412998303
225 => 0.0094799231286919
226 => 0.0098107373132882
227 => 0.0097236228516934
228 => 0.010085230111269
301 => 0.01022948503724
302 => 0.010471711509431
303 => 0.010649894288414
304 => 0.010754526624326
305 => 0.010748244891344
306 => 0.011162850333851
307 => 0.010918371989616
308 => 0.010611249570134
309 => 0.010605694694525
310 => 0.010764757747532
311 => 0.011098110269819
312 => 0.011184543728766
313 => 0.011232848240848
314 => 0.011158868199103
315 => 0.010893504478356
316 => 0.010778921769162
317 => 0.010876549557176
318 => 0.010757159161686
319 => 0.010963260479329
320 => 0.01124628160932
321 => 0.011187838865164
322 => 0.011383204196652
323 => 0.01158538676171
324 => 0.01187451691033
325 => 0.011950106237637
326 => 0.012075052521272
327 => 0.012203663289849
328 => 0.012244969602558
329 => 0.012323836170116
330 => 0.012323420504376
331 => 0.012561090214045
401 => 0.012823247263828
402 => 0.012922205481171
403 => 0.013149754445364
404 => 0.01276008481845
405 => 0.013055653706667
406 => 0.013322264242407
407 => 0.013004400170635
408 => 0.013442501740743
409 => 0.013459512231951
410 => 0.013716350453403
411 => 0.013455995711711
412 => 0.013301397897177
413 => 0.013747715995033
414 => 0.013963675263698
415 => 0.013898626574441
416 => 0.013403602837349
417 => 0.013115477789795
418 => 0.012361398965174
419 => 0.013254637906718
420 => 0.013689708539008
421 => 0.013402476109517
422 => 0.013547339439639
423 => 0.014337666796695
424 => 0.014638572284355
425 => 0.01457598604641
426 => 0.014586562090365
427 => 0.014748925229686
428 => 0.015468932804446
429 => 0.015037487576005
430 => 0.015367311287204
501 => 0.015542248594356
502 => 0.015704740114601
503 => 0.015305712296852
504 => 0.014786582968843
505 => 0.014622152919095
506 => 0.013373916505136
507 => 0.013308940378974
508 => 0.013272467310381
509 => 0.013042509772119
510 => 0.012861826137716
511 => 0.012718139803285
512 => 0.012341063953368
513 => 0.012468315983538
514 => 0.011867335780616
515 => 0.012251821617015
516 => 0.011292642701977
517 => 0.012091475404576
518 => 0.011656707083017
519 => 0.011948642317887
520 => 0.011947623783355
521 => 0.011410078457809
522 => 0.011100033532318
523 => 0.01129760622597
524 => 0.011509419836904
525 => 0.011543785882652
526 => 0.011818407758129
527 => 0.011895048820597
528 => 0.011662822823289
529 => 0.011272765850942
530 => 0.011363367189366
531 => 0.011098197499087
601 => 0.010633497816479
602 => 0.010967253241406
603 => 0.011081212017666
604 => 0.011131542705351
605 => 0.010674563938625
606 => 0.010530971288628
607 => 0.010454523766629
608 => 0.011213775630651
609 => 0.011255369161676
610 => 0.011042570776218
611 => 0.01200443965686
612 => 0.011786739105269
613 => 0.012029963959326
614 => 0.011355146067542
615 => 0.011380925019771
616 => 0.011061455415364
617 => 0.011240337046865
618 => 0.011113909275344
619 => 0.011225885178783
620 => 0.01129300307361
621 => 0.011612420256198
622 => 0.012095122635714
623 => 0.011564709980744
624 => 0.011333601591324
625 => 0.011476979936317
626 => 0.011858815363211
627 => 0.012437315580751
628 => 0.012094831808565
629 => 0.01224682029091
630 => 0.012280023012805
701 => 0.012027488158634
702 => 0.012446626901036
703 => 0.012671246758166
704 => 0.012901660253052
705 => 0.013101721834622
706 => 0.012809628036293
707 => 0.013122210270506
708 => 0.012870324167923
709 => 0.012644356294399
710 => 0.012644698994388
711 => 0.012502946046463
712 => 0.012228281847836
713 => 0.012177629555505
714 => 0.012441129176893
715 => 0.012652430919739
716 => 0.012669834743347
717 => 0.012786822245262
718 => 0.012856054243828
719 => 0.013534621946115
720 => 0.013807547489382
721 => 0.014141275677472
722 => 0.014271281614623
723 => 0.01466255287574
724 => 0.01434656955489
725 => 0.014278204575796
726 => 0.01332910848018
727 => 0.013484522912668
728 => 0.013733356414343
729 => 0.013333211652972
730 => 0.013587011403434
731 => 0.013637116850389
801 => 0.013319614887097
802 => 0.013489206404141
803 => 0.013038821615253
804 => 0.012104939793352
805 => 0.012447666578468
806 => 0.012700028852902
807 => 0.012339876771241
808 => 0.012985435437808
809 => 0.012608313391835
810 => 0.012488783808313
811 => 0.012022456287617
812 => 0.012242544926793
813 => 0.012540217962644
814 => 0.012356290634693
815 => 0.012737967457019
816 => 0.013278523626923
817 => 0.013663756144273
818 => 0.013693329513504
819 => 0.013445650813422
820 => 0.013842557510968
821 => 0.013845448542947
822 => 0.013397736166704
823 => 0.013123514829128
824 => 0.013061211164264
825 => 0.013216857934447
826 => 0.013405841847428
827 => 0.013703816805414
828 => 0.013883876831873
829 => 0.014353377884422
830 => 0.014480411407591
831 => 0.014619982735397
901 => 0.014806493071548
902 => 0.015030446550367
903 => 0.01454044908839
904 => 0.014559917601024
905 => 0.014103638748908
906 => 0.013616039358416
907 => 0.013986066515677
908 => 0.014469827801147
909 => 0.014358852427752
910 => 0.014346365431223
911 => 0.01436736509578
912 => 0.014283693288356
913 => 0.013905248804403
914 => 0.013715196353749
915 => 0.013960412502644
916 => 0.014090733972466
917 => 0.014292851206934
918 => 0.014267935991608
919 => 0.014788568281791
920 => 0.014990870246653
921 => 0.014939112747052
922 => 0.014948637372592
923 => 0.015314895416773
924 => 0.015722249688615
925 => 0.016103790719324
926 => 0.016491910643331
927 => 0.016024016926362
928 => 0.015786449352558
929 => 0.016031558447753
930 => 0.015901500111683
1001 => 0.016648853888554
1002 => 0.016700599042554
1003 => 0.01744789877724
1004 => 0.018157175212255
1005 => 0.017711691391429
1006 => 0.018131762569436
1007 => 0.018586103797355
1008 => 0.01946260174022
1009 => 0.019167428068632
1010 => 0.018941329662158
1011 => 0.018727667760539
1012 => 0.019172264259936
1013 => 0.019744230553809
1014 => 0.019867426615284
1015 => 0.020067051299391
1016 => 0.019857170352997
1017 => 0.020109948835301
1018 => 0.021002367954325
1019 => 0.020761228430763
1020 => 0.020418771542193
1021 => 0.021123250727819
1022 => 0.021378199006504
1023 => 0.023167559543763
1024 => 0.02542670113685
1025 => 0.024491401682989
1026 => 0.023910831130052
1027 => 0.02404727898131
1028 => 0.024872241014336
1029 => 0.025137192636358
1030 => 0.024416962793402
1031 => 0.024671360149877
1101 => 0.02607311459585
1102 => 0.026825110882448
1103 => 0.025803798918672
1104 => 0.022986039716436
1105 => 0.020387937046279
1106 => 0.021077070868492
1107 => 0.020998944479366
1108 => 0.022504954759136
1109 => 0.020755477332876
1110 => 0.02078493404595
1111 => 0.022322087023413
1112 => 0.021912000962499
1113 => 0.021247714063674
1114 => 0.020392787075784
1115 => 0.018812375467496
1116 => 0.017412560832996
1117 => 0.020157919689307
1118 => 0.020039534823311
1119 => 0.019868095993696
1120 => 0.020249614557386
1121 => 0.022102160406731
1122 => 0.022059453228798
1123 => 0.021787771952181
1124 => 0.021993839806006
1125 => 0.021211589372575
1126 => 0.021413193120781
1127 => 0.020387525493542
1128 => 0.020851170096718
1129 => 0.021246288802335
1130 => 0.02132561473232
1201 => 0.021504340103059
1202 => 0.019977151378382
1203 => 0.020662814279857
1204 => 0.021065576996547
1205 => 0.019245880389906
1206 => 0.021029607445405
1207 => 0.019950566420374
1208 => 0.019584323689826
1209 => 0.020077421277698
1210 => 0.019885260668151
1211 => 0.019720052260112
1212 => 0.019627863129786
1213 => 0.019989939577124
1214 => 0.019973048278081
1215 => 0.019380620934225
1216 => 0.018607823614593
1217 => 0.018867199761269
1218 => 0.018772965975517
1219 => 0.018431450579553
1220 => 0.018661590721707
1221 => 0.017648170006922
1222 => 0.01590463234016
1223 => 0.017056466728826
1224 => 0.017012122357817
1225 => 0.016989761915097
1226 => 0.017855333623816
1227 => 0.017772128876159
1228 => 0.01762111144442
1229 => 0.01842867702599
1230 => 0.018133904725427
1231 => 0.019042323498673
]
'min_raw' => 0.0081546521027174
'max_raw' => 0.026825110882448
'avg_raw' => 0.017489881492583
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008154'
'max' => '$0.026825'
'avg' => '$0.017489'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044424442213842
'max_diff' => 0.017732754055356
'year' => 2029
]
4 => [
'items' => [
101 => 0.019640666855575
102 => 0.019488907625885
103 => 0.020051652445096
104 => 0.018873175263822
105 => 0.019264618111143
106 => 0.01934529393946
107 => 0.018418711792068
108 => 0.017785742201886
109 => 0.017743530346603
110 => 0.01664604830581
111 => 0.017232314353436
112 => 0.01774820421401
113 => 0.017501133005465
114 => 0.017422917641883
115 => 0.017822502971584
116 => 0.017853554173919
117 => 0.017145583470028
118 => 0.017292792997883
119 => 0.017906681200588
120 => 0.01727732459025
121 => 0.016054587501183
122 => 0.015751331797432
123 => 0.01571087189644
124 => 0.014888418376353
125 => 0.01577159679363
126 => 0.015386065746779
127 => 0.016603953704412
128 => 0.015908302634676
129 => 0.01587831450744
130 => 0.01583298305482
131 => 0.015125063334954
201 => 0.01528005276296
202 => 0.015795261227206
203 => 0.015979093411488
204 => 0.015959918208575
205 => 0.015792736424661
206 => 0.015869271389227
207 => 0.015622725601808
208 => 0.015535665152864
209 => 0.015260878428132
210 => 0.014857017854547
211 => 0.014913177144325
212 => 0.014113023672185
213 => 0.013677057593204
214 => 0.013556387928483
215 => 0.013395023409685
216 => 0.013574614480255
217 => 0.014110756937932
218 => 0.013464055385006
219 => 0.012355330933355
220 => 0.012421967162073
221 => 0.012571678983531
222 => 0.012292691994688
223 => 0.012028654223351
224 => 0.012258213643467
225 => 0.011788432477246
226 => 0.012628449793062
227 => 0.012605729678791
228 => 0.012918836187805
301 => 0.013114628113484
302 => 0.012663391113183
303 => 0.012549906227882
304 => 0.01261455237615
305 => 0.011546095546354
306 => 0.01283152046997
307 => 0.012842636878088
308 => 0.012747451442816
309 => 0.013431900531599
310 => 0.014876301593957
311 => 0.0143328598134
312 => 0.014122422730353
313 => 0.013722381681653
314 => 0.014255412626959
315 => 0.014214484166937
316 => 0.014029390149063
317 => 0.013917444709524
318 => 0.014123707614309
319 => 0.013891886453011
320 => 0.013850245002422
321 => 0.0135979431182
322 => 0.013507882824537
323 => 0.013441205768513
324 => 0.013367800881382
325 => 0.013529713771034
326 => 0.013162797861668
327 => 0.012720333244182
328 => 0.012683547098772
329 => 0.012785116880521
330 => 0.012740179813078
331 => 0.012683331957381
401 => 0.012574793919264
402 => 0.012542593001903
403 => 0.012647230361662
404 => 0.012529100883231
405 => 0.012703407363502
406 => 0.012656005645686
407 => 0.012391223503232
408 => 0.01206120691883
409 => 0.012058269078996
410 => 0.011987167547222
411 => 0.011896609056321
412 => 0.01187141775585
413 => 0.012238880789398
414 => 0.012999518271598
415 => 0.01285018693333
416 => 0.01295809412932
417 => 0.013488890733913
418 => 0.013657615012903
419 => 0.013537858516129
420 => 0.013373928437087
421 => 0.013381140528606
422 => 0.013941339233702
423 => 0.013976278139785
424 => 0.014064557483739
425 => 0.014178021388459
426 => 0.013557181909735
427 => 0.013351899044989
428 => 0.013254624635013
429 => 0.01295505710222
430 => 0.013278115003358
501 => 0.013089882999084
502 => 0.013115281927381
503 => 0.013098740842007
504 => 0.013107773393125
505 => 0.012628214991103
506 => 0.012802940867952
507 => 0.012512425209049
508 => 0.012123457353692
509 => 0.012122153397051
510 => 0.012217352728599
511 => 0.012160724441044
512 => 0.012008339175279
513 => 0.012029984783043
514 => 0.011840346482454
515 => 0.012053010306247
516 => 0.012059108743765
517 => 0.011977221587728
518 => 0.012304859550233
519 => 0.012439093090799
520 => 0.012385193210502
521 => 0.012435311331511
522 => 0.012856392324626
523 => 0.012925046899555
524 => 0.012955538726672
525 => 0.012914683717728
526 => 0.012443007919076
527 => 0.012463928746467
528 => 0.012310425596261
529 => 0.012180731610102
530 => 0.012185918689393
531 => 0.012252598257317
601 => 0.012543791841147
602 => 0.013156591571518
603 => 0.013179846873335
604 => 0.013208032977542
605 => 0.013093385926531
606 => 0.013058807278922
607 => 0.013104425440624
608 => 0.013334560799873
609 => 0.013926531425
610 => 0.013717289469691
611 => 0.01354717250298
612 => 0.01369641094599
613 => 0.013673436857459
614 => 0.013479512429944
615 => 0.013474069617149
616 => 0.013101866639359
617 => 0.012964271673122
618 => 0.012849287020529
619 => 0.012723726781648
620 => 0.012649290463223
621 => 0.012763658479026
622 => 0.012789815797403
623 => 0.012539748132038
624 => 0.01250566483328
625 => 0.012709875486903
626 => 0.012620009991984
627 => 0.012712438882065
628 => 0.012733883177405
629 => 0.012730430151951
630 => 0.012636600254269
701 => 0.012696404633004
702 => 0.012554949448753
703 => 0.012401138181762
704 => 0.012303016176203
705 => 0.012217391712357
706 => 0.012264901141421
707 => 0.012095538701684
708 => 0.01204135624862
709 => 0.01267614425513
710 => 0.013145068980659
711 => 0.013138250629436
712 => 0.013096745669898
713 => 0.013035077719
714 => 0.013330049405158
715 => 0.013227287167846
716 => 0.013302055281563
717 => 0.013321086904512
718 => 0.01337868989522
719 => 0.013399278013254
720 => 0.013337046421188
721 => 0.013128189597268
722 => 0.012607738249568
723 => 0.012365466742282
724 => 0.012285513109527
725 => 0.012288419272224
726 => 0.012208254331356
727 => 0.012231866499182
728 => 0.012200042982992
729 => 0.012139776942264
730 => 0.012261179883232
731 => 0.012275170441232
801 => 0.012246833544153
802 => 0.012253507909225
803 => 0.012018890504259
804 => 0.012036727955996
805 => 0.011937406758048
806 => 0.011918785230768
807 => 0.011667709891243
808 => 0.011222893533321
809 => 0.011469364974978
810 => 0.011171662132585
811 => 0.011058917555237
812 => 0.011592632849025
813 => 0.011539062636487
814 => 0.011447373719032
815 => 0.011311746700473
816 => 0.011261441319995
817 => 0.010955801752956
818 => 0.010937742936811
819 => 0.011089226159198
820 => 0.011019321864286
821 => 0.010921149759403
822 => 0.010565580347062
823 => 0.010165802602603
824 => 0.010177869379795
825 => 0.010305031242178
826 => 0.01067477150717
827 => 0.010530307589066
828 => 0.010425497358949
829 => 0.010405869553432
830 => 0.010651552633071
831 => 0.010999245662955
901 => 0.011162375453384
902 => 0.011000718785394
903 => 0.010815016309421
904 => 0.010826319158671
905 => 0.010901511950966
906 => 0.010909413650268
907 => 0.010788540428932
908 => 0.010822565532719
909 => 0.010770878288746
910 => 0.01045367376789
911 => 0.010447936543974
912 => 0.010370089438942
913 => 0.01036773225954
914 => 0.01023529491401
915 => 0.010216766013874
916 => 0.0099538036259523
917 => 0.010126886266006
918 => 0.010010791518304
919 => 0.0098358093495357
920 => 0.0098056423576853
921 => 0.0098047355014825
922 => 0.0099844030635109
923 => 0.010124786745936
924 => 0.010012811036145
925 => 0.0099873163375837
926 => 0.010259533018649
927 => 0.010224890964674
928 => 0.010194891169348
929 => 0.01096811356566
930 => 0.010356047703683
1001 => 0.010089152052363
1002 => 0.0097588180017453
1003 => 0.0098663764343153
1004 => 0.00988904057642
1005 => 0.0090946467318721
1006 => 0.0087723612480745
1007 => 0.0086617650151074
1008 => 0.0085981153194337
1009 => 0.0086271212850148
1010 => 0.0083370265492801
1011 => 0.0085319750094179
1012 => 0.0082807774893692
1013 => 0.0082386634076656
1014 => 0.008687835690914
1015 => 0.0087503353901016
1016 => 0.0084836922562328
1017 => 0.0086549203137788
1018 => 0.0085928306398646
1019 => 0.0082850835498698
1020 => 0.0082733298746664
1021 => 0.0081189132027403
1022 => 0.0078772810121356
1023 => 0.007766848617172
1024 => 0.0077093344670569
1025 => 0.0077330659263228
1026 => 0.0077210665743234
1027 => 0.0076427626858523
1028 => 0.0077255548615513
1029 => 0.0075140550647293
1030 => 0.0074298341414652
1031 => 0.0073917935043373
1101 => 0.0072040752611838
1102 => 0.0075028184647227
1103 => 0.0075616746392876
1104 => 0.007620646778698
1105 => 0.0081339589902757
1106 => 0.0081083153627906
1107 => 0.0083401212663034
1108 => 0.0083311137151566
1109 => 0.0082649989164681
1110 => 0.0079860714561576
1111 => 0.0080972469704335
1112 => 0.0077550660180034
1113 => 0.0080114512536071
1114 => 0.007894447738981
1115 => 0.007971892247617
1116 => 0.0078326400381996
1117 => 0.007909707960474
1118 => 0.0075756316216971
1119 => 0.0072636758371281
1120 => 0.0073892159513957
1121 => 0.0075256924128581
1122 => 0.0078216081548642
1123 => 0.0076453631801772
1124 => 0.007708747537635
1125 => 0.0074964205505648
1126 => 0.0070583293280334
1127 => 0.0070608088767764
1128 => 0.006993418086526
1129 => 0.0069351826045332
1130 => 0.0076656070356423
1201 => 0.0075747672113323
1202 => 0.0074300258401168
1203 => 0.0076237679172823
1204 => 0.007674996397585
1205 => 0.0076764548004005
1206 => 0.0078178040186936
1207 => 0.0078932421218349
1208 => 0.007906538414481
1209 => 0.0081289544635173
1210 => 0.0082035053894156
1211 => 0.0085105701023489
1212 => 0.0078868417258401
1213 => 0.0078739964503817
1214 => 0.0076264942656234
1215 => 0.0074695244671949
1216 => 0.0076372421220153
1217 => 0.0077858170684432
1218 => 0.00763111090336
1219 => 0.0076513122624944
1220 => 0.0074436318758283
1221 => 0.007517867841791
1222 => 0.0075818098563426
1223 => 0.0075465048342451
1224 => 0.0074936515073827
1225 => 0.0077736356171625
1226 => 0.0077578378164221
1227 => 0.0080185654562559
1228 => 0.0082218212963187
1229 => 0.0085860920980387
1230 => 0.0082059565265775
1231 => 0.0081921028754514
]
'min_raw' => 0.0069351826045332
'max_raw' => 0.020051652445096
'avg_raw' => 0.013493417524815
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006935'
'max' => '$0.020051'
'avg' => '$0.013493'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012194694981841
'max_diff' => -0.006773458437352
'year' => 2030
]
5 => [
'items' => [
101 => 0.0083275245374045
102 => 0.0082034846570647
103 => 0.0082818735797283
104 => 0.0085734624307096
105 => 0.0085796232436511
106 => 0.0084764216891212
107 => 0.0084701418651491
108 => 0.0084899628525979
109 => 0.0086060549951826
110 => 0.0085654888334122
111 => 0.0086124330228224
112 => 0.0086711374505148
113 => 0.0089139638536119
114 => 0.0089725084773137
115 => 0.0088302753936255
116 => 0.0088431174485663
117 => 0.0087899183708814
118 => 0.0087385287284204
119 => 0.0088540451398183
120 => 0.0090651536521287
121 => 0.0090638403570301
122 => 0.0091128134285231
123 => 0.0091433232463483
124 => 0.0090123527736906
125 => 0.0089270958119082
126 => 0.008959788756097
127 => 0.0090120654858146
128 => 0.0089428361172178
129 => 0.0085155203840749
130 => 0.0086451406804757
131 => 0.008623565525046
201 => 0.0085928398800855
202 => 0.0087231740904406
203 => 0.0087106030378994
204 => 0.008334051208469
205 => 0.0083581568348697
206 => 0.0083355171514508
207 => 0.0084086706002208
208 => 0.008199534130762
209 => 0.0082638631002119
210 => 0.0083042096268043
211 => 0.0083279740409238
212 => 0.0084138274001348
213 => 0.0084037534993472
214 => 0.0084132011923175
215 => 0.0085404990595809
216 => 0.0091843279888465
217 => 0.009219370176938
218 => 0.0090468096266975
219 => 0.0091157441629122
220 => 0.0089834049277058
221 => 0.0090722451428957
222 => 0.0091330273618318
223 => 0.008858364202208
224 => 0.0088421004324442
225 => 0.0087092149861384
226 => 0.0087806200979667
227 => 0.0086670094308386
228 => 0.0086948855146194
301 => 0.0086169415541749
302 => 0.0087572251644873
303 => 0.0089140840386856
304 => 0.0089537127848527
305 => 0.0088494666149349
306 => 0.008773985517757
307 => 0.0086414655761317
308 => 0.0088618491924541
309 => 0.0089262960779357
310 => 0.0088615106804005
311 => 0.0088464984882027
312 => 0.0088180504111143
313 => 0.0088525338822397
314 => 0.0089259450863567
315 => 0.0088913257181872
316 => 0.0089141924207779
317 => 0.0088270481305435
318 => 0.0090123961303668
319 => 0.0093067733605114
320 => 0.0093077198314419
321 => 0.0092731002766611
322 => 0.0092589347007335
323 => 0.0092944564648288
324 => 0.0093137255646715
325 => 0.0094285964361783
326 => 0.0095518574579625
327 => 0.010127062863632
328 => 0.0099655474874417
329 => 0.010475903942475
330 => 0.010879529636914
331 => 0.011000559334264
401 => 0.010889217707589
402 => 0.010508324017292
403 => 0.010489635555697
404 => 0.011058851538169
405 => 0.010898021951377
406 => 0.010878891783783
407 => 0.010675379121518
408 => 0.01079568031045
409 => 0.010769368675719
410 => 0.010727834473086
411 => 0.010957360761316
412 => 0.011387013482929
413 => 0.011320048077008
414 => 0.011270061507923
415 => 0.011051034913067
416 => 0.011182937844532
417 => 0.011135969737072
418 => 0.011337774533418
419 => 0.011218229842586
420 => 0.010896803509077
421 => 0.010947991712123
422 => 0.010940254718209
423 => 0.011099481504712
424 => 0.011051685575655
425 => 0.010930921795963
426 => 0.011385544976636
427 => 0.01135602427603
428 => 0.011397877880117
429 => 0.011416303131002
430 => 0.011693024249718
501 => 0.011806388037968
502 => 0.011832123602613
503 => 0.011939810433581
504 => 0.011829444256158
505 => 0.012270987655598
506 => 0.012564588251454
507 => 0.012905620452089
508 => 0.013403960158031
509 => 0.013591340497365
510 => 0.013557491916241
511 => 0.013935327393814
512 => 0.014614289348201
513 => 0.013694729539488
514 => 0.014663028250928
515 => 0.014356476058432
516 => 0.013629646324663
517 => 0.013582847058568
518 => 0.014075064592943
519 => 0.015166755710006
520 => 0.01489329946704
521 => 0.015167202986456
522 => 0.014847679981815
523 => 0.014831812971483
524 => 0.015151684467309
525 => 0.015899081652595
526 => 0.01554402126563
527 => 0.015034955136538
528 => 0.015410841644314
529 => 0.015085213964624
530 => 0.014351483664835
531 => 0.014893090360204
601 => 0.014530933387082
602 => 0.014636630045162
603 => 0.015397830135882
604 => 0.015306240527081
605 => 0.015424765961839
606 => 0.015215571671842
607 => 0.015020151218073
608 => 0.014655384429
609 => 0.014547394965541
610 => 0.014577239368187
611 => 0.014547380176137
612 => 0.01434329651003
613 => 0.014299224661765
614 => 0.014225769650492
615 => 0.014248536429983
616 => 0.014110419518768
617 => 0.014371074666641
618 => 0.014419454558972
619 => 0.014609137638758
620 => 0.014628831165351
621 => 0.015157095842587
622 => 0.014866136535493
623 => 0.015061337158909
624 => 0.015043876577852
625 => 0.013645398928934
626 => 0.013838096810082
627 => 0.014137874241222
628 => 0.014002824914833
629 => 0.013811896763993
630 => 0.01365771204527
701 => 0.013424106430208
702 => 0.013752901847409
703 => 0.014185232857535
704 => 0.014639795793223
705 => 0.015185923376308
706 => 0.015064034057389
707 => 0.014629586317935
708 => 0.014649075326163
709 => 0.014769548706384
710 => 0.014613524732837
711 => 0.014567510217088
712 => 0.014763227018521
713 => 0.014764574812569
714 => 0.014585050374875
715 => 0.014385541815005
716 => 0.014384705866854
717 => 0.014349205245649
718 => 0.014853995463462
719 => 0.015131579043212
720 => 0.015163403553282
721 => 0.01512943700012
722 => 0.015142509378347
723 => 0.014980989609428
724 => 0.015350175903978
725 => 0.015688977756598
726 => 0.01559817162265
727 => 0.015462040319009
728 => 0.015353605178688
729 => 0.015572627749709
730 => 0.015562875019395
731 => 0.01568601861798
801 => 0.015680432113036
802 => 0.015639023552497
803 => 0.01559817310148
804 => 0.015760140522235
805 => 0.015713496506175
806 => 0.015666780039074
807 => 0.015573083012371
808 => 0.015585817994443
809 => 0.015449710195791
810 => 0.015386740500266
811 => 0.01443982736499
812 => 0.014186781233964
813 => 0.014266394698014
814 => 0.014292605517542
815 => 0.014182479517032
816 => 0.014340371912714
817 => 0.014315764550097
818 => 0.014411497403216
819 => 0.014351687672825
820 => 0.014354142285022
821 => 0.014530029949326
822 => 0.014581090886553
823 => 0.014555120881767
824 => 0.014573309382919
825 => 0.014992455715089
826 => 0.0149328665102
827 => 0.014901210932759
828 => 0.014909979744048
829 => 0.015017080618516
830 => 0.015047063015876
831 => 0.014920025491436
901 => 0.014979937122357
902 => 0.015235033242902
903 => 0.015324302447903
904 => 0.015609206898616
905 => 0.01548817442418
906 => 0.01571033476917
907 => 0.016393179929625
908 => 0.016938683893088
909 => 0.016437015904383
910 => 0.017438764463771
911 => 0.018218769409551
912 => 0.018188831520566
913 => 0.01805281961643
914 => 0.017164804723164
915 => 0.016347640178824
916 => 0.017031233018803
917 => 0.017032975637535
918 => 0.016974254406332
919 => 0.01660954188256
920 => 0.016961563201065
921 => 0.016989505374974
922 => 0.016973865188009
923 => 0.016694240951146
924 => 0.016267306424655
925 => 0.016350728409194
926 => 0.016487375321633
927 => 0.016228674208855
928 => 0.016146003528069
929 => 0.01629970405239
930 => 0.016794959166529
1001 => 0.016701334056019
1002 => 0.016698889126014
1003 => 0.017099457052004
1004 => 0.016812736864964
1005 => 0.016351780627574
1006 => 0.016235383098367
1007 => 0.015822250284453
1008 => 0.016107602590552
1009 => 0.016117871912045
1010 => 0.015961587370225
1011 => 0.016364462256809
1012 => 0.016360749693804
1013 => 0.016743219438603
1014 => 0.017474357941581
1015 => 0.01725812430911
1016 => 0.017006668120698
1017 => 0.017034008380502
1018 => 0.017333863549043
1019 => 0.017152564269115
1020 => 0.017217760754241
1021 => 0.017333764866354
1022 => 0.017403753027412
1023 => 0.017023938161182
1024 => 0.016935385147219
1025 => 0.016754236758535
1026 => 0.016706978525222
1027 => 0.01685452010802
1028 => 0.016815648113674
1029 => 0.016117008815339
1030 => 0.01604399712147
1031 => 0.016046236285884
1101 => 0.015862644910136
1102 => 0.01558262399514
1103 => 0.016318502240569
1104 => 0.016259400918851
1105 => 0.016194157633754
1106 => 0.016202149563906
1107 => 0.016521569369019
1108 => 0.016336289750966
1109 => 0.016828885982291
1110 => 0.016727623005929
1111 => 0.016623763016323
1112 => 0.016609406402107
1113 => 0.016569429167026
1114 => 0.016432332353062
1115 => 0.016266779711959
1116 => 0.016157467518379
1117 => 0.014904409705203
1118 => 0.015136969946626
1119 => 0.015404509305851
1120 => 0.015496862820559
1121 => 0.015338885742983
1122 => 0.016438570250967
1123 => 0.016639493207399
1124 => 0.016030884466485
1125 => 0.015917038620392
1126 => 0.016446033965683
1127 => 0.016126985105421
1128 => 0.016270652787662
1129 => 0.015960121840679
1130 => 0.016591096750905
1201 => 0.016586289779261
1202 => 0.016340826287969
1203 => 0.016548290349948
1204 => 0.016512238363739
1205 => 0.01623511068662
1206 => 0.016599882192574
1207 => 0.01660006311469
1208 => 0.016363809841157
1209 => 0.016087917740162
1210 => 0.016038594748785
1211 => 0.016001436500394
1212 => 0.016261514136399
1213 => 0.0164946989316
1214 => 0.016928598024056
1215 => 0.017037690565087
1216 => 0.017463486015435
1217 => 0.017209945556357
1218 => 0.017322336757968
1219 => 0.017444353306022
1220 => 0.017502852526169
1221 => 0.017407531186181
1222 => 0.01806896678497
1223 => 0.018124812215371
1224 => 0.018143536705123
1225 => 0.017920504342737
1226 => 0.01811860928191
1227 => 0.018025922541417
1228 => 0.018267067691062
1229 => 0.018304882329623
1230 => 0.018272854676057
1231 => 0.018284857639199
]
'min_raw' => 0.008199534130762
'max_raw' => 0.018304882329623
'avg_raw' => 0.013252208230192
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008199'
'max' => '$0.0183048'
'avg' => '$0.013252'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012643515262288
'max_diff' => -0.0017467701154734
'year' => 2031
]
6 => [
'items' => [
101 => 0.017720439040868
102 => 0.017691170958999
103 => 0.01729209858595
104 => 0.017454723527762
105 => 0.017150703993861
106 => 0.017247111719809
107 => 0.017289607326801
108 => 0.017267410033313
109 => 0.017463918097971
110 => 0.017296846099066
111 => 0.016855915624776
112 => 0.016414865019274
113 => 0.016409327988194
114 => 0.016293207148955
115 => 0.016209273050777
116 => 0.016225441735808
117 => 0.016282422290773
118 => 0.016205961237338
119 => 0.016222278079762
120 => 0.016493246382554
121 => 0.016547587143222
122 => 0.016362916006168
123 => 0.015621434742978
124 => 0.015439473381127
125 => 0.015570263599575
126 => 0.015507754299126
127 => 0.012515968049993
128 => 0.013218843851434
129 => 0.012801218917624
130 => 0.012993679701123
131 => 0.012567392787156
201 => 0.012770839246112
202 => 0.012733270113818
203 => 0.013863473602929
204 => 0.01384582702999
205 => 0.01385427351062
206 => 0.013451100982974
207 => 0.014093365766841
208 => 0.014409768494469
209 => 0.014351210770371
210 => 0.014365948487949
211 => 0.014112705671551
212 => 0.013856725454644
213 => 0.013572803999021
214 => 0.014100294969816
215 => 0.014041646978435
216 => 0.014176164369782
217 => 0.014518279970176
218 => 0.014568657791904
219 => 0.014636366095189
220 => 0.014612097488267
221 => 0.015190274163589
222 => 0.015120253153275
223 => 0.015288983641713
224 => 0.014941892225384
225 => 0.014549125341588
226 => 0.014623777485681
227 => 0.01461658788389
228 => 0.014525056001253
229 => 0.014442425110275
301 => 0.014304867957907
302 => 0.01474011914263
303 => 0.014722448739392
304 => 0.015008512028215
305 => 0.014957947563245
306 => 0.014620265690952
307 => 0.014632326065083
308 => 0.014713437877129
309 => 0.01499416678474
310 => 0.015077506238
311 => 0.015038900082747
312 => 0.015130277988656
313 => 0.01520249935971
314 => 0.015139347880921
315 => 0.01603343964589
316 => 0.015662150409215
317 => 0.015843114199756
318 => 0.0158862729975
319 => 0.015775722644611
320 => 0.015799697057642
321 => 0.015836011760746
322 => 0.016056507526847
323 => 0.01663515221806
324 => 0.016891430012831
325 => 0.017662454402922
326 => 0.016870149709534
327 => 0.016823137627911
328 => 0.016962022403273
329 => 0.017414695341477
330 => 0.017781544240484
331 => 0.017903249184305
401 => 0.017919334501761
402 => 0.018147661067162
403 => 0.018278533596411
404 => 0.018119936216537
405 => 0.017985541542932
406 => 0.017504156503759
407 => 0.017559878132811
408 => 0.0179437449005
409 => 0.018485979319501
410 => 0.018951272860879
411 => 0.018788343279805
412 => 0.020031380973038
413 => 0.020154623082968
414 => 0.02013759500827
415 => 0.020418358875576
416 => 0.019861099775541
417 => 0.019622860713889
418 => 0.01801459919681
419 => 0.018466455082974
420 => 0.01912325415008
421 => 0.019036324330678
422 => 0.018559339291857
423 => 0.018950911024954
424 => 0.018821445164412
425 => 0.018719330068659
426 => 0.01918713911829
427 => 0.018672763851684
428 => 0.019118122863319
429 => 0.018546945324248
430 => 0.018789087528407
501 => 0.018651635902226
502 => 0.018740583949803
503 => 0.018220595481175
504 => 0.01850116863684
505 => 0.01820892271546
506 => 0.018208784152842
507 => 0.01820233280793
508 => 0.018546158838416
509 => 0.018557370992927
510 => 0.018303283036905
511 => 0.018266664992842
512 => 0.018402061094036
513 => 0.018243547719833
514 => 0.018317715129951
515 => 0.01824579417513
516 => 0.018229603253313
517 => 0.018100591233615
518 => 0.018045009308269
519 => 0.018066804413367
520 => 0.017992406483522
521 => 0.017947579039699
522 => 0.018193415501063
523 => 0.018062074996771
524 => 0.018173285685092
525 => 0.018046547069842
526 => 0.017607215811999
527 => 0.01735455175977
528 => 0.016524695739734
529 => 0.016760041877583
530 => 0.01691607661046
531 => 0.016864507132175
601 => 0.01697529832627
602 => 0.016982100005779
603 => 0.016946080659196
604 => 0.016904374870217
605 => 0.016884074798617
606 => 0.017035374900787
607 => 0.017123209702625
608 => 0.016931736783379
609 => 0.016886877357391
610 => 0.017080467050258
611 => 0.017198556651074
612 => 0.018070463914681
613 => 0.01800587020837
614 => 0.018167987735337
615 => 0.018149735789697
616 => 0.018319660785305
617 => 0.018597416337464
618 => 0.018032661638251
619 => 0.018130683526286
620 => 0.018106650822996
621 => 0.018369033575806
622 => 0.01836985270612
623 => 0.01821254113882
624 => 0.018297822291542
625 => 0.018250220691659
626 => 0.01833624321639
627 => 0.018005007520041
628 => 0.018408416843511
629 => 0.018637123934795
630 => 0.01864029953298
701 => 0.018748704879117
702 => 0.018858850989206
703 => 0.019070266855819
704 => 0.018852954715433
705 => 0.018462031329788
706 => 0.018490254735557
707 => 0.018261056497587
708 => 0.018264909361375
709 => 0.018244342472519
710 => 0.01830606525418
711 => 0.018018552199643
712 => 0.01808603093887
713 => 0.017991560308797
714 => 0.018130478165586
715 => 0.017981025515625
716 => 0.018106639233699
717 => 0.018160849950259
718 => 0.018360888661438
719 => 0.017951479635338
720 => 0.017116666916564
721 => 0.017292154671176
722 => 0.017032594497839
723 => 0.017056617780097
724 => 0.017105148633534
725 => 0.016947844259237
726 => 0.016977852976622
727 => 0.016976780854069
728 => 0.016967541881114
729 => 0.016926620937976
730 => 0.016867277474464
731 => 0.017103683568141
801 => 0.017143853570131
802 => 0.017233146508546
803 => 0.017498821725291
804 => 0.017472274506085
805 => 0.017515574122043
806 => 0.017421051303523
807 => 0.01706100242255
808 => 0.017080554809034
809 => 0.016836736236269
810 => 0.017226911519462
811 => 0.01713451286234
812 => 0.017074942847004
813 => 0.017058688616408
814 => 0.017325022390627
815 => 0.017404713630144
816 => 0.017355055397557
817 => 0.01725320491376
818 => 0.017448787952044
819 => 0.017501117722102
820 => 0.017512832427771
821 => 0.017859368072282
822 => 0.017532199920768
823 => 0.017610952546609
824 => 0.018225358052493
825 => 0.017668177040821
826 => 0.017963328249323
827 => 0.017948882133559
828 => 0.018099871504457
829 => 0.017936496598096
830 => 0.017938521825864
831 => 0.018072590158315
901 => 0.017884315364739
902 => 0.017837695878135
903 => 0.017773291391287
904 => 0.017913916232128
905 => 0.017998214464299
906 => 0.018677596305361
907 => 0.019116507958263
908 => 0.019097453645864
909 => 0.019271574393018
910 => 0.019193131401662
911 => 0.018939818290357
912 => 0.019372192883112
913 => 0.019235371470643
914 => 0.019246650861649
915 => 0.019246231042152
916 => 0.019337205320308
917 => 0.019272741706564
918 => 0.019145677306821
919 => 0.019230028585218
920 => 0.019480521725923
921 => 0.02025806012074
922 => 0.020693180907493
923 => 0.020231865303024
924 => 0.020550074629725
925 => 0.02035926242328
926 => 0.020324586169198
927 => 0.020524445141851
928 => 0.020724653941178
929 => 0.020711901506188
930 => 0.020566560198711
1001 => 0.020484460582017
1002 => 0.021106146385014
1003 => 0.021564193894521
1004 => 0.021532958125162
1005 => 0.021670822652696
1006 => 0.022075597169525
1007 => 0.022112604678544
1008 => 0.022107942583016
1009 => 0.022016215610577
1010 => 0.022414768689008
1011 => 0.022747248678909
1012 => 0.021994983466704
1013 => 0.022281436211637
1014 => 0.022410034077769
1015 => 0.022598853898517
1016 => 0.022917424585996
1017 => 0.0232634768493
1018 => 0.023312412433601
1019 => 0.023277690294756
1020 => 0.023049459524723
1021 => 0.023428114040492
1022 => 0.023649920975289
1023 => 0.023782001928999
1024 => 0.024116937251432
1025 => 0.02241082825441
1026 => 0.021203159507199
1027 => 0.021014564593373
1028 => 0.021398079766766
1029 => 0.021499209659513
1030 => 0.021458444326553
1031 => 0.020099103355128
1101 => 0.021007407944481
1102 => 0.021984667310206
1103 => 0.022022207822458
1104 => 0.02251144429447
1105 => 0.022670759744237
1106 => 0.023064659229897
1107 => 0.023040020709822
1108 => 0.02313592896627
1109 => 0.023113881319012
1110 => 0.023843497170874
1111 => 0.024648371804481
1112 => 0.024620501555263
1113 => 0.024504791303838
1114 => 0.024676640758734
1115 => 0.025507357636224
1116 => 0.025430878538111
1117 => 0.025505171467454
1118 => 0.026484633483165
1119 => 0.027758073430438
1120 => 0.027166432723649
1121 => 0.028450122817353
1122 => 0.029258137685851
1123 => 0.030655515850622
1124 => 0.03048055722216
1125 => 0.031024546287271
1126 => 0.030167344762246
1127 => 0.028199036791777
1128 => 0.02788754452107
1129 => 0.028511159935266
1130 => 0.030044257579564
1201 => 0.028462877234616
1202 => 0.028782788418805
1203 => 0.028690653976237
1204 => 0.028685744523338
1205 => 0.028873118372277
1206 => 0.028601322831628
1207 => 0.02749397890394
1208 => 0.028001468100381
1209 => 0.027805502150002
1210 => 0.028022940982177
1211 => 0.029196368680827
1212 => 0.028677568324231
1213 => 0.028131054292476
1214 => 0.028816504169469
1215 => 0.029689317409014
1216 => 0.029634698325079
1217 => 0.02952871447324
1218 => 0.030126139896922
1219 => 0.03111291166762
1220 => 0.031379632112069
1221 => 0.031576519691303
1222 => 0.031603667162036
1223 => 0.031883302982648
1224 => 0.030379630697915
1225 => 0.03276599723083
1226 => 0.03317805680902
1227 => 0.03310060668644
1228 => 0.033558593565479
1229 => 0.03342384220766
1230 => 0.03322860863202
1231 => 0.033954615251901
]
'min_raw' => 0.012515968049993
'max_raw' => 0.033954615251901
'avg_raw' => 0.023235291650947
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012515'
'max' => '$0.033954'
'avg' => '$0.023235'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043164339192306
'max_diff' => 0.015649732922279
'year' => 2032
]
7 => [
'items' => [
101 => 0.033122307247921
102 => 0.031940950820935
103 => 0.03129283532051
104 => 0.032146326093456
105 => 0.032667523125771
106 => 0.033012001209774
107 => 0.033116240069854
108 => 0.030496356496973
109 => 0.029084384556594
110 => 0.029989442382085
111 => 0.03109367539294
112 => 0.030373496627785
113 => 0.030401726271901
114 => 0.029374940612441
115 => 0.031184523140243
116 => 0.030920882186927
117 => 0.032288651919104
118 => 0.031962222695482
119 => 0.033077585815557
120 => 0.032783873326152
121 => 0.034003057448426
122 => 0.034489423002893
123 => 0.035306106465598
124 => 0.035906862145263
125 => 0.036259637370988
126 => 0.036238458069662
127 => 0.037636329265902
128 => 0.036812053459379
129 => 0.035776568779494
130 => 0.035757840128548
131 => 0.036294132317191
201 => 0.037418053620011
202 => 0.037709470061442
203 => 0.03787233209644
204 => 0.037622903220572
205 => 0.036728210908971
206 => 0.036341887305015
207 => 0.036671046208458
208 => 0.036268513154494
209 => 0.036963398136463
210 => 0.037917623636129
211 => 0.037720579843865
212 => 0.038379267698949
213 => 0.039060940332978
214 => 0.040035762815472
215 => 0.040290617509969
216 => 0.040711882628715
217 => 0.041145502814287
218 => 0.041284769931501
219 => 0.041550674070312
220 => 0.041549272624246
221 => 0.042350592643964
222 => 0.043234473440529
223 => 0.043568117979344
224 => 0.044335315199083
225 => 0.043021516846077
226 => 0.04401804798866
227 => 0.044916944024062
228 => 0.043845243113522
301 => 0.045322333144415
302 => 0.045379685203157
303 => 0.046245633198654
304 => 0.045367829009655
305 => 0.044846591684277
306 => 0.046351384312135
307 => 0.047079506064231
308 => 0.046860189866848
309 => 0.045191182775789
310 => 0.04421974906171
311 => 0.041677319656398
312 => 0.044688937111767
313 => 0.046155808124192
314 => 0.045187383934237
315 => 0.045675800765779
316 => 0.048340444628986
317 => 0.049354968489182
318 => 0.049143954618318
319 => 0.04917961248891
320 => 0.049727031148961
321 => 0.052154586956589
322 => 0.050699939246355
323 => 0.051811962916219
324 => 0.052401776261016
325 => 0.052949627766317
326 => 0.051604277619543
327 => 0.049853996845708
328 => 0.049299609452846
329 => 0.0450910932341
330 => 0.044872021688255
331 => 0.044749050191025
401 => 0.043973732295652
402 => 0.043364544807334
403 => 0.042880096298942
404 => 0.041608758744351
405 => 0.04203779784852
406 => 0.040011551135272
407 => 0.041307871976634
408 => 0.038073933296851
409 => 0.040767253526381
410 => 0.039301401775692
411 => 0.040285681802323
412 => 0.040282247742035
413 => 0.03846987614674
414 => 0.037424538033805
415 => 0.038090668164535
416 => 0.038804812542154
417 => 0.038920680064753
418 => 0.039846586891411
419 => 0.04010498758443
420 => 0.039322021421006
421 => 0.038006917105828
422 => 0.038312385843908
423 => 0.037418347719577
424 => 0.035851580295367
425 => 0.03697686001257
426 => 0.037361079983079
427 => 0.037530773410585
428 => 0.035990037593329
429 => 0.035505904948545
430 => 0.035248156790728
501 => 0.037808027459552
502 => 0.037948262953372
503 => 0.037230798339691
504 => 0.040473806426315
505 => 0.039739813817258
506 => 0.04055986339413
507 => 0.038284667757699
508 => 0.038371583294968
509 => 0.037294469219054
510 => 0.037897581128777
511 => 0.037471321070189
512 => 0.03784885564654
513 => 0.038075148314971
514 => 0.039152085647064
515 => 0.040779550420805
516 => 0.038991227122344
517 => 0.038212029051944
518 => 0.038695439152444
519 => 0.039982823953114
520 => 0.041933277826145
521 => 0.040778569876769
522 => 0.041291009656489
523 => 0.041402954951499
524 => 0.040551516059241
525 => 0.041964671592583
526 => 0.042721993123356
527 => 0.043498848308319
528 => 0.044173369898435
529 => 0.043188555264033
530 => 0.044242448090475
531 => 0.04339319650949
601 => 0.042631330047332
602 => 0.04263248548427
603 => 0.042154555523465
604 => 0.041228506001355
605 => 0.04105772826133
606 => 0.041946135631795
607 => 0.042658554210416
608 => 0.042717232416807
609 => 0.04311166394732
610 => 0.04334508446411
611 => 0.045632922848456
612 => 0.046553110372632
613 => 0.047678298258935
614 => 0.048116622352765
615 => 0.049435820727308
616 => 0.048370460899811
617 => 0.048139963599705
618 => 0.044940019849563
619 => 0.045464010459384
620 => 0.046302969983282
621 => 0.044953853983104
622 => 0.04580955756152
623 => 0.045978491574179
624 => 0.044908011537664
625 => 0.045479801177878
626 => 0.043961297417281
627 => 0.040812649653194
628 => 0.041968176937633
629 => 0.042819033965258
630 => 0.041604756076922
701 => 0.04378130219272
702 => 0.042509808884903
703 => 0.042106806548767
704 => 0.040534550754794
705 => 0.041276594967874
706 => 0.042280220391114
707 => 0.04166009656353
708 => 0.042946946617827
709 => 0.044769469485086
710 => 0.046068307813407
711 => 0.046168016492516
712 => 0.045332950462815
713 => 0.046671149104731
714 => 0.046680896420893
715 => 0.04517140288611
716 => 0.04424684650095
717 => 0.044036785344958
718 => 0.044561559297541
719 => 0.045198731754592
720 => 0.046203375129388
721 => 0.046810460079986
722 => 0.04839341565817
723 => 0.048821718050733
724 => 0.049292292526988
725 => 0.049921125147059
726 => 0.050676199936829
727 => 0.049024139283245
728 => 0.049089778732838
729 => 0.047551402726556
730 => 0.045907427338409
731 => 0.047154999733588
801 => 0.048786034682683
802 => 0.048411873463227
803 => 0.048369772682618
804 => 0.04844057451782
805 => 0.048158469177313
806 => 0.046882517177513
807 => 0.046241742071095
808 => 0.047068505437538
809 => 0.047507893371798
810 => 0.048189345739181
811 => 0.048105342351187
812 => 0.049860690466924
813 => 0.050542765665728
814 => 0.050368261642231
815 => 0.050400374582228
816 => 0.051635239149504
817 => 0.053008662517583
818 => 0.054295054740965
819 => 0.055603628162421
820 => 0.054026091828366
821 => 0.053225116166848
822 => 0.054051518594268
823 => 0.053613017833823
824 => 0.056132773271118
825 => 0.05630723567056
826 => 0.058826808900857
827 => 0.061218183921608
828 => 0.059716204117008
829 => 0.061132503422089
830 => 0.062664346593112
831 => 0.065619520602611
901 => 0.064624321960487
902 => 0.063862015397371
903 => 0.063141639378665
904 => 0.06464062751712
905 => 0.066569051810323
906 => 0.06698441593286
907 => 0.067657464492678
908 => 0.066949836228492
909 => 0.067802096530008
910 => 0.070810949896512
911 => 0.069997931156999
912 => 0.068843313847607
913 => 0.071218514607112
914 => 0.072078090528618
915 => 0.078111044509152
916 => 0.085727898118474
917 => 0.082574470709257
918 => 0.08061703655589
919 => 0.08107708001289
920 => 0.083858497104248
921 => 0.084751799996227
922 => 0.082323494795857
923 => 0.083181213244668
924 => 0.087907326226638
925 => 0.090442734209607
926 => 0.086999309618013
927 => 0.077499037738008
928 => 0.068739353191837
929 => 0.071062815987218
930 => 0.070799407411667
1001 => 0.075877026216191
1002 => 0.069978540928945
1003 => 0.070077856293673
1004 => 0.075260474877784
1005 => 0.073877841092119
1006 => 0.071638151433698
1007 => 0.068755705404933
1008 => 0.063427237326773
1009 => 0.058707664554622
1010 => 0.067963833613507
1011 => 0.067564690772437
1012 => 0.066986672788912
1013 => 0.068272989263168
1014 => 0.074518976934855
1015 => 0.074374986702733
1016 => 0.073458994310438
1017 => 0.074153766466808
1018 => 0.071516354515513
1019 => 0.072196075628115
1020 => 0.068737965613051
1021 => 0.070301175763291
1022 => 0.071633346065587
1023 => 0.071900798976891
1024 => 0.072503384042544
1025 => 0.067354360632384
1026 => 0.069666120976161
1027 => 0.071024063595478
1028 => 0.064888829439025
1029 => 0.070902789742487
1030 => 0.067264727590356
1031 => 0.066029914654063
1101 => 0.067692427598548
1102 => 0.067044544687235
1103 => 0.066487533005049
1104 => 0.066176710915714
1105 => 0.067397476937286
1106 => 0.067340526743249
1107 => 0.065343116591483
1108 => 0.062737576473358
1109 => 0.06361208126094
1110 => 0.063294365473085
1111 => 0.062142922471748
1112 => 0.062918856028891
1113 => 0.05950203733422
1114 => 0.05362357836082
1115 => 0.057507068420716
1116 => 0.057357558277834
1117 => 0.057282168484048
1118 => 0.060200503932279
1119 => 0.059919973316385
1120 => 0.059410807501576
1121 => 0.062133571242267
1122 => 0.061139725850574
1123 => 0.064202523168346
1124 => 0.066219879571141
1125 => 0.065708212732749
1126 => 0.067605546180308
1127 => 0.063632228084994
1128 => 0.064952004974404
1129 => 0.06522400916218
1130 => 0.06209997276035
1201 => 0.059965871594526
1202 => 0.0598235513773
1203 => 0.056123314053018
1204 => 0.058099950964377
1205 => 0.059839309647581
1206 => 0.059006291818013
1207 => 0.058742583258871
1208 => 0.060089813096117
1209 => 0.060194504392714
1210 => 0.057807531735611
1211 => 0.058303858936616
1212 => 0.060373625872338
1213 => 0.058251706120311
1214 => 0.054129162655745
1215 => 0.05310671487791
1216 => 0.052970301496895
1217 => 0.05019734203205
1218 => 0.053175039727449
1219 => 0.051875194886071
1220 => 0.055981389165452
1221 => 0.053635953015031
1222 => 0.05353484595035
1223 => 0.053382007792903
1224 => 0.050995207031999
1225 => 0.051517764709535
1226 => 0.053254826017449
1227 => 0.053874629061508
1228 => 0.053809978526116
1229 => 0.053246313469389
1230 => 0.053504356445927
1231 => 0.052673110110367
]
'min_raw' => 0.029084384556594
'max_raw' => 0.090442734209607
'avg_raw' => 0.0597635593831
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029084'
'max' => '$0.090442'
'avg' => '$0.059763'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016568416506601
'max_diff' => 0.056488118957705
'year' => 2033
]
8 => [
'items' => [
101 => 0.052379579728384
102 => 0.051453117100955
103 => 0.050091472980467
104 => 0.05028081794687
105 => 0.047583044650618
106 => 0.046113154577154
107 => 0.045706308377659
108 => 0.045162256636422
109 => 0.045767760469499
110 => 0.047575402197827
111 => 0.045395002760877
112 => 0.041656860863464
113 => 0.041881529560982
114 => 0.042386293419571
115 => 0.041445669308438
116 => 0.040555447527848
117 => 0.041329423140095
118 => 0.039745523139107
119 => 0.042577700167519
120 => 0.042501097715984
121 => 0.043556758171524
122 => 0.044216884318706
123 => 0.042695507267829
124 => 0.042312885053775
125 => 0.04253084405611
126 => 0.038928467257182
127 => 0.043262367132655
128 => 0.043299846878747
129 => 0.042978922538092
130 => 0.045286590427635
131 => 0.050156489454235
201 => 0.048324237549193
202 => 0.047614734231454
203 => 0.046265967905789
204 => 0.048063118952918
205 => 0.047925125792422
206 => 0.047301068388308
207 => 0.046923636523121
208 => 0.04761906630742
209 => 0.046837465076866
210 => 0.046697068018893
211 => 0.045846414601084
212 => 0.04554277003319
213 => 0.04531796368356
214 => 0.045070473981633
215 => 0.045616374593493
216 => 0.044379291987813
217 => 0.042887491638066
218 => 0.042763464580488
219 => 0.043105914191031
220 => 0.042954405730741
221 => 0.04276273921627
222 => 0.042396795642875
223 => 0.042288228001796
224 => 0.042641020165771
225 => 0.042242738381704
226 => 0.042830424849626
227 => 0.042670606648527
228 => 0.041777875168746
301 => 0.040665201213412
302 => 0.040655296081297
303 => 0.040415572302771
304 => 0.040110248028108
305 => 0.040025313799769
306 => 0.041264241072825
307 => 0.043828783450076
308 => 0.043325302417124
309 => 0.043689119062244
310 => 0.045478736873665
311 => 0.046047602560231
312 => 0.045643835170229
313 => 0.045091133463506
314 => 0.045115449533593
315 => 0.04700419857965
316 => 0.047121997540865
317 => 0.047419637512473
318 => 0.047802188989034
319 => 0.045708985340886
320 => 0.045016859830004
321 => 0.044688892365286
322 => 0.043678879513339
323 => 0.044768091782207
324 => 0.044133454437857
325 => 0.044219088697908
326 => 0.044163319273709
327 => 0.044193773150434
328 => 0.042576908516319
329 => 0.043166009009087
330 => 0.042186515181941
331 => 0.040875082900734
401 => 0.04087068651988
402 => 0.0411916577128
403 => 0.041000731487647
404 => 0.040486953924922
405 => 0.040559933602745
406 => 0.039920554832186
407 => 0.040637565761817
408 => 0.040658127069691
409 => 0.040382038805933
410 => 0.041486693071471
411 => 0.041939270825374
412 => 0.041757543615785
413 => 0.041926520359902
414 => 0.043346224327124
415 => 0.043577698019807
416 => 0.043680503343804
417 => 0.043542757828744
418 => 0.041952469942235
419 => 0.042023005972428
420 => 0.041505459384264
421 => 0.041068187054981
422 => 0.041085675654961
423 => 0.041310490473636
424 => 0.042292269972006
425 => 0.044358367047263
426 => 0.044436773920971
427 => 0.044531805339196
428 => 0.044145264802312
429 => 0.044028680477693
430 => 0.044182485294833
501 => 0.044958402726076
502 => 0.04695427301876
503 => 0.046248799157631
504 => 0.045675237927177
505 => 0.046178405757282
506 => 0.046100947013797
507 => 0.045447117267061
508 => 0.045428766443718
509 => 0.044173858117716
510 => 0.043709947082474
511 => 0.043322268298286
512 => 0.042898933186563
513 => 0.042647965942013
514 => 0.043033565692215
515 => 0.043121756917369
516 => 0.042278636324421
517 => 0.04216372210304
518 => 0.042852232579263
519 => 0.042549244788935
520 => 0.042860875245023
521 => 0.042933176183952
522 => 0.042921534067553
523 => 0.042605180016524
524 => 0.042806814654836
525 => 0.04232988862505
526 => 0.04181130319963
527 => 0.041480478007226
528 => 0.04119178914926
529 => 0.041351970506355
530 => 0.040780953216273
531 => 0.040598273292868
601 => 0.042738505376299
602 => 0.044319517827702
603 => 0.044296529280509
604 => 0.044156592411645
605 => 0.043948674609672
606 => 0.044943192243821
607 => 0.044596722186091
608 => 0.044848808101632
609 => 0.044912974547149
610 => 0.045107187052034
611 => 0.045176601329402
612 => 0.044966783171882
613 => 0.044262607808115
614 => 0.042507869752593
615 => 0.041691034450922
616 => 0.041421465195903
617 => 0.041431263526338
618 => 0.041160981831266
619 => 0.041240591903641
620 => 0.041133296696959
621 => 0.040930105533003
622 => 0.041339424024558
623 => 0.041386594167644
624 => 0.041291054340724
625 => 0.041313557428556
626 => 0.040522528467246
627 => 0.04058266868115
628 => 0.040247800327885
629 => 0.040185016548546
630 => 0.039338498511816
701 => 0.037838769104996
702 => 0.03866976477863
703 => 0.037666038860554
704 => 0.037285912646449
705 => 0.039085371022266
706 => 0.038904755310541
707 => 0.038595619723828
708 => 0.03813834376158
709 => 0.037968735659087
710 => 0.036938250519742
711 => 0.036877363960285
712 => 0.037388100220784
713 => 0.037152413009926
714 => 0.036821418904153
715 => 0.035622591805382
716 => 0.03427471322835
717 => 0.034315397210128
718 => 0.034744132307309
719 => 0.035990737425169
720 => 0.035503667239134
721 => 0.035150292230679
722 => 0.035084115714009
723 => 0.035912453370054
724 => 0.037084724695462
725 => 0.037634728173251
726 => 0.037089691430616
727 => 0.03646358256754
728 => 0.036501690912926
729 => 0.036755208661942
730 => 0.036781849792816
731 => 0.036374317287984
801 => 0.036489035300959
802 => 0.036314768149215
803 => 0.035245290960635
804 => 0.035225947509643
805 => 0.034963480559916
806 => 0.034955533164989
807 => 0.034509011408055
808 => 0.034446539927601
809 => 0.033559943877275
810 => 0.034143504082459
811 => 0.033752082535107
812 => 0.033162117936239
813 => 0.033060407817023
814 => 0.033057350288021
815 => 0.033663112017388
816 => 0.03413642540396
817 => 0.033758891480506
818 => 0.033672934324323
819 => 0.034590731870098
820 => 0.034473933766488
821 => 0.034372787362028
822 => 0.036979760655856
823 => 0.034916137869128
824 => 0.034016280546644
825 => 0.032902536231799
826 => 0.033265176996699
827 => 0.033341590734165
828 => 0.030663236424465
829 => 0.029576628414587
830 => 0.029203745493556
831 => 0.028989146100712
901 => 0.029086941738801
902 => 0.028108867083503
903 => 0.028766149427725
904 => 0.02791921945083
905 => 0.027777228884055
906 => 0.029291644597235
907 => 0.029502366696635
908 => 0.028603360754367
909 => 0.029180668105145
910 => 0.02897132843458
911 => 0.027933737634447
912 => 0.027894109297884
913 => 0.027373482707457
914 => 0.026558802906613
915 => 0.026186472376849
916 => 0.025992559404227
917 => 0.026072571676019
918 => 0.026032115022985
919 => 0.025768107996002
920 => 0.026047247596736
921 => 0.025334161265307
922 => 0.025050204542404
923 => 0.024921947878415
924 => 0.024289042715554
925 => 0.02529627628387
926 => 0.025494713985622
927 => 0.025693542670948
928 => 0.027424210630596
929 => 0.027337751350149
930 => 0.028119301138014
1001 => 0.028088931550435
1002 => 0.027866020890669
1003 => 0.026925597484139
1004 => 0.027300433492547
1005 => 0.026146746521118
1006 => 0.027011167243201
1007 => 0.026616681724714
1008 => 0.026877791292584
1009 => 0.026408292746254
1010 => 0.026668132626913
1011 => 0.025541770926261
1012 => 0.02448999021853
1013 => 0.024913257478714
1014 => 0.025373397397016
1015 => 0.026371097981367
1016 => 0.025776875744179
1017 => 0.025990580530702
1018 => 0.025274705269598
1019 => 0.023797650126281
1020 => 0.023806010097985
1021 => 0.023578797343581
1022 => 0.023382452350171
1023 => 0.02584512931626
1024 => 0.025538856506365
1025 => 0.025050850867792
1026 => 0.025704065807596
1027 => 0.025876786205595
1028 => 0.025881703312509
1029 => 0.026358272070672
1030 => 0.026612616902333
1031 => 0.026657446281307
1101 => 0.027407337519225
1102 => 0.027658691170871
1103 => 0.028693981289099
1104 => 0.026591037520375
1105 => 0.026547728777339
1106 => 0.025713257881375
1107 => 0.025184023246692
1108 => 0.025749495029592
1109 => 0.026250425834645
1110 => 0.025728823197827
1111 => 0.025796933490563
1112 => 0.025096724567137
1113 => 0.025347016309369
1114 => 0.025562601275719
1115 => 0.025443567928799
1116 => 0.025265369247182
1117 => 0.02620935522117
1118 => 0.026156091833007
1119 => 0.027035153274129
1120 => 0.02772044452977
1121 => 0.028948608970345
1122 => 0.027666955350945
1123 => 0.027620246798943
1124 => 0.028076830387056
1125 => 0.027658621270302
1126 => 0.027922914996003
1127 => 0.028906027165169
1128 => 0.028926798776136
1129 => 0.028578847529736
1130 => 0.02855767466477
1201 => 0.028624502507811
1202 => 0.02901591527183
1203 => 0.028879143625183
1204 => 0.029037419237318
1205 => 0.029235345313895
1206 => 0.030054051485535
1207 => 0.0302514387718
1208 => 0.029771889999749
1209 => 0.029815187884585
1210 => 0.02963582347993
1211 => 0.029462559712462
1212 => 0.029852031358588
1213 => 0.030563798446969
1214 => 0.030559370580852
1215 => 0.030724486710582
1216 => 0.030827352691507
1217 => 0.030385776598875
1218 => 0.030098326799775
1219 => 0.030208553343656
1220 => 0.030384807987743
1221 => 0.030151396338079
1222 => 0.028710671509556
1223 => 0.029147695388671
1224 => 0.029074953245811
1225 => 0.02897135958863
1226 => 0.029410790478487
1227 => 0.029368406297161
1228 => 0.028098835514227
1229 => 0.028180109316638
1230 => 0.028103778043339
1231 => 0.028350420003278
]
'min_raw' => 0.023382452350171
'max_raw' => 0.052379579728384
'avg_raw' => 0.037881016039278
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023382'
'max' => '$0.052379'
'avg' => '$0.037881'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.005701932206423
'max_diff' => -0.038063154481222
'year' => 2034
]
9 => [
'items' => [
101 => 0.027645301795056
102 => 0.027862191406861
103 => 0.027998222538172
104 => 0.028078345919554
105 => 0.028367806514225
106 => 0.028333841654382
107 => 0.028365695210848
108 => 0.02879488885798
109 => 0.030965603043699
110 => 0.031083750227417
111 => 0.030501950284488
112 => 0.030734367886192
113 => 0.030288176915063
114 => 0.030587707903202
115 => 0.030792639398024
116 => 0.029866593378983
117 => 0.029811758943724
118 => 0.029363726383738
119 => 0.029604473703613
120 => 0.029221427407347
121 => 0.02931541357006
122 => 0.029052620065548
123 => 0.029525596052005
124 => 0.030054456697902
125 => 0.030188067782395
126 => 0.029836594542282
127 => 0.029582104753224
128 => 0.029135304517788
129 => 0.029878343266911
130 => 0.030095630440851
131 => 0.029877201949889
201 => 0.029826587295776
202 => 0.029730672617691
203 => 0.02984693604815
204 => 0.030094447048237
205 => 0.029977725431406
206 => 0.030054822115693
207 => 0.029761009056947
208 => 0.030385922778936
209 => 0.03137843616313
210 => 0.031381627255953
211 => 0.031264905009949
212 => 0.031217144781701
213 => 0.031336908889398
214 => 0.031401876004843
215 => 0.031789171168157
216 => 0.032204754308912
217 => 0.034144099493686
218 => 0.033599539126217
219 => 0.03532024154631
220 => 0.036681093755358
221 => 0.037089153829997
222 => 0.036713757762039
223 => 0.035429548092054
224 => 0.035366538638999
225 => 0.037285690065294
226 => 0.036743441884662
227 => 0.036678943188995
228 => 0.035992786039366
301 => 0.036398389897013
302 => 0.036309678383496
303 => 0.036169642919494
304 => 0.036943506825274
305 => 0.038392110973588
306 => 0.03816633243215
307 => 0.037997799224531
308 => 0.037259335768026
309 => 0.037704055710626
310 => 0.037545699457116
311 => 0.038226098417559
312 => 0.037823045146075
313 => 0.036739333821378
314 => 0.036911918421795
315 => 0.036885832606634
316 => 0.037422676834187
317 => 0.037261529522369
318 => 0.036854366007679
319 => 0.038387159802093
320 => 0.03828762869893
321 => 0.038428741047236
322 => 0.038490863067005
323 => 0.039423847638808
324 => 0.039806061565699
325 => 0.0398928308187
326 => 0.040255904487761
327 => 0.039883797215062
328 => 0.041372491613849
329 => 0.042362386521316
330 => 0.043512200395865
331 => 0.045192387507415
401 => 0.045824153403958
402 => 0.045710030549464
403 => 0.046983929241731
404 => 0.049273096874558
405 => 0.046172736777866
406 => 0.049437423487945
407 => 0.048403861368155
408 => 0.04595330417512
409 => 0.04579551718206
410 => 0.047455062964737
411 => 0.051135775785352
412 => 0.050213798970088
413 => 0.051137283809133
414 => 0.050059989690601
415 => 0.050006492957468
416 => 0.051084962038362
417 => 0.053604863830158
418 => 0.052407752945981
419 => 0.050691400949884
420 => 0.051958728554407
421 => 0.050860852097736
422 => 0.048387029164584
423 => 0.050213093951793
424 => 0.048992056431917
425 => 0.049348420094141
426 => 0.051914859345297
427 => 0.051606058584642
428 => 0.05200567536311
429 => 0.051300362208906
430 => 0.050641488505203
501 => 0.049411651808639
502 => 0.049047557793003
503 => 0.049148180280194
504 => 0.049047507929495
505 => 0.04835942560055
506 => 0.048210834287127
507 => 0.047963175588154
508 => 0.048039935374734
509 => 0.047574264565557
510 => 0.048453081594972
511 => 0.048616197779741
512 => 0.049255727526491
513 => 0.049322125626357
514 => 0.05110320686792
515 => 0.050122217249921
516 => 0.050780349780244
517 => 0.050721480212148
518 => 0.046006415180233
519 => 0.04665610954026
520 => 0.04766683007914
521 => 0.047211501846374
522 => 0.04656777425564
523 => 0.046047929711632
524 => 0.045260312070627
525 => 0.046368868775485
526 => 0.04782650296051
527 => 0.049359093634752
528 => 0.051200400910536
529 => 0.05078944256176
530 => 0.049324671676018
531 => 0.049390380227937
601 => 0.049796564640535
602 => 0.049270518920475
603 => 0.049115377767996
604 => 0.049775250628539
605 => 0.04977979481027
606 => 0.049174515634591
607 => 0.048501858595744
608 => 0.048499040138191
609 => 0.048379347315224
610 => 0.050081282777908
611 => 0.0510171751973
612 => 0.051124473754918
613 => 0.051009953149462
614 => 0.051054027585342
615 => 0.05050945240748
616 => 0.05175418977532
617 => 0.052896483875818
618 => 0.05259032465533
619 => 0.052131348460722
620 => 0.051765751814428
621 => 0.052504201704292
622 => 0.052471319693124
623 => 0.052886506933365
624 => 0.05286767164191
625 => 0.052728059788999
626 => 0.052590329641309
627 => 0.05313641410859
628 => 0.052979150551861
629 => 0.052821642721392
630 => 0.052505736654143
701 => 0.052548673535326
702 => 0.052089776589429
703 => 0.051877469864561
704 => 0.048684886117614
705 => 0.047831723419747
706 => 0.048100145772224
707 => 0.048188517380243
708 => 0.047817219880773
709 => 0.048349565116511
710 => 0.048266599675414
711 => 0.048589369673562
712 => 0.048387716991763
713 => 0.048395992888164
714 => 0.048989010428447
715 => 0.049161165943268
716 => 0.049073606258965
717 => 0.049134930060481
718 => 0.050548111183254
719 => 0.050347202018584
720 => 0.050240473029121
721 => 0.050270037688601
722 => 0.050631135764415
723 => 0.050732223510419
724 => 0.050303907627291
725 => 0.050505903873839
726 => 0.051365978254498
727 => 0.051666955611735
728 => 0.052627530858708
729 => 0.052219461420931
730 => 0.052968490534803
731 => 0.055270750668004
801 => 0.057109955366689
802 => 0.05541854671743
803 => 0.058796011925259
804 => 0.061425853058162
805 => 0.061324915375252
806 => 0.060866341744409
807 => 0.057872337532542
808 => 0.055117210218694
809 => 0.057421991205613
810 => 0.057427866566331
811 => 0.057229883835546
812 => 0.056000230098232
813 => 0.057187094550916
814 => 0.057281303541112
815 => 0.057228571558795
816 => 0.056285798921472
817 => 0.054846359357789
818 => 0.055127622403001
819 => 0.05558833700867
820 => 0.054716108145004
821 => 0.054437378172853
822 => 0.05495559022163
823 => 0.056625377416556
824 => 0.056309713819774
825 => 0.056301470567565
826 => 0.057652013296797
827 => 0.05668531616803
828 => 0.05513117003073
829 => 0.054738727634393
830 => 0.053345821508271
831 => 0.054307906730945
901 => 0.054342530465342
902 => 0.053815606221156
903 => 0.055173927029101
904 => 0.055161409863728
905 => 0.0564509333115
906 => 0.058916017820751
907 => 0.058186971031924
908 => 0.057339168936583
909 => 0.057431348531349
910 => 0.058442331167303
911 => 0.057831067987116
912 => 0.05805088248859
913 => 0.058441998451728
914 => 0.058677968423153
915 => 0.057397396083833
916 => 0.057098833414681
917 => 0.056488078974855
918 => 0.056328744541776
919 => 0.056826191289205
920 => 0.05669513164631
921 => 0.054339620474536
922 => 0.054093456451145
923 => 0.054101005950301
924 => 0.053482014809023
925 => 0.052537904743678
926 => 0.055018969625521
927 => 0.054819705393028
928 => 0.054599733102183
929 => 0.054626678452667
930 => 0.055703624626784
1001 => 0.055078941458711
1002 => 0.056739764044591
1003 => 0.056398348849831
1004 => 0.056048177643603
1005 => 0.055999773316426
1006 => 0.055864987277231
1007 => 0.055402755797157
1008 => 0.054844583509162
1009 => 0.054476029816572
1010 => 0.050251257913747
1011 => 0.051035351004543
1012 => 0.051937378633171
1013 => 0.052248754955924
1014 => 0.051716124209269
1015 => 0.055423787305458
1016 => 0.056101213081062
1017 => 0.054049246219367
1018 => 0.053665407000798
1019 => 0.055448951740725
1020 => 0.054373256233072
1021 => 0.054857641854302
1022 => 0.053810665085972
1023 => 0.055938041049061
1024 => 0.055921834008552
1025 => 0.055094236709945
1026 => 0.055793716279586
1027 => 0.055672164491014
1028 => 0.054737809179169
1029 => 0.055967661779026
1030 => 0.055968271770572
1031 => 0.055171727364179
1101 => 0.054241537883505
1102 => 0.054075241974456
1103 => 0.053949960345699
1104 => 0.054826830253532
1105 => 0.055613029070994
1106 => 0.057075950155075
1107 => 0.057443763273761
1108 => 0.058879362362697
1109 => 0.058024533003286
1110 => 0.058403467786419
1111 => 0.058814855097108
1112 => 0.05901208930212
1113 => 0.058690706749224
1114 => 0.060920783050501
1115 => 0.061109069818101
1116 => 0.061172200742603
1117 => 0.060420231561195
1118 => 0.061088156194864
1119 => 0.060775656378109
1120 => 0.061588694086355
1121 => 0.061716188780395
1122 => 0.061608205310299
1123 => 0.061648674138554
1124 => 0.059745697427832
1125 => 0.059647018046379
1126 => 0.0583015176783
1127 => 0.058849819023729
1128 => 0.057824795939218
1129 => 0.058149841318224
1130 => 0.058293118224144
1201 => 0.058218278499384
1202 => 0.058880819159135
1203 => 0.058317524250232
1204 => 0.056830896371381
1205 => 0.055343863461759
1206 => 0.055325194974889
1207 => 0.054933685458097
1208 => 0.054650695786001
1209 => 0.054705209636444
1210 => 0.054897323555761
1211 => 0.054639529775766
1212 => 0.054694543149204
1213 => 0.055608131700472
1214 => 0.055791345369013
1215 => 0.055168713737108
1216 => 0.052668757889696
1217 => 0.052055262454077
1218 => 0.052496230807057
1219 => 0.052285476336332
1220 => 0.042198460117534
1221 => 0.044568254955314
1222 => 0.043160203333334
1223 => 0.043809098302083
1224 => 0.042371842209241
1225 => 0.043057776149791
1226 => 0.042931109197268
1227 => 0.046741669169091
1228 => 0.046682172516385
1229 => 0.046710650415542
1230 => 0.045351326089977
1231 => 0.04751676665028
]
'min_raw' => 0.027645301795056
'max_raw' => 0.061716188780395
'avg_raw' => 0.044680745287725
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027645'
'max' => '$0.061716'
'avg' => '$0.04468'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.004262849444885
'max_diff' => 0.0093366090520104
'year' => 2035
]
10 => [
'items' => [
101 => 0.04858354053701
102 => 0.048386109081844
103 => 0.048435798325615
104 => 0.047581972489279
105 => 0.046718917316009
106 => 0.045761656305613
107 => 0.047540128941892
108 => 0.047342393144278
109 => 0.04779592792091
110 => 0.048949394553386
111 => 0.049119246896611
112 => 0.049347530168379
113 => 0.04926570686576
114 => 0.051215069893616
115 => 0.050978989168631
116 => 0.051547875790785
117 => 0.050377632847484
118 => 0.049053391876659
119 => 0.049305086792513
120 => 0.049280846548114
121 => 0.048972240415251
122 => 0.048693644597215
123 => 0.048229861054069
124 => 0.049697340811631
125 => 0.049637763813406
126 => 0.050602246163973
127 => 0.050431764540029
128 => 0.049293246531398
129 => 0.049333908924808
130 => 0.049607383062168
131 => 0.050553880174045
201 => 0.050834864959287
202 => 0.050704701611455
203 => 0.051012788601031
204 => 0.051256287995873
205 => 0.05104336837604
206 => 0.054057861185127
207 => 0.052806033601089
208 => 0.053416165655389
209 => 0.053561678555233
210 => 0.05318895032209
211 => 0.053269781729461
212 => 0.053392219286389
213 => 0.054135636156321
214 => 0.056086577132428
215 => 0.056950635610242
216 => 0.059550198172638
217 => 0.056878887581934
218 => 0.056720383066464
219 => 0.05718864278322
220 => 0.05871486119899
221 => 0.059951717874565
222 => 0.060362054589827
223 => 0.06041628736067
224 => 0.06118610631717
225 => 0.061627352186762
226 => 0.061092630047602
227 => 0.060639509022406
228 => 0.059016485753604
229 => 0.059204355116314
301 => 0.060498588724299
302 => 0.062326769925557
303 => 0.063895539586071
304 => 0.063346211128101
305 => 0.067537199496954
306 => 0.067952718875074
307 => 0.067895307532368
308 => 0.068841922513298
309 => 0.06696308455094
310 => 0.06615984492126
311 => 0.060737478931195
312 => 0.062260942598969
313 => 0.064475386509962
314 => 0.064182296554604
315 => 0.062574108194185
316 => 0.06389431963099
317 => 0.063457816443153
318 => 0.063113528268373
319 => 0.064690779140588
320 => 0.062956527016693
321 => 0.064458086018393
322 => 0.062532321067074
323 => 0.063348720414225
324 => 0.062885292659989
325 => 0.063185187212549
326 => 0.061432009786134
327 => 0.062377981769451
328 => 0.06139265424156
329 => 0.061392187068019
330 => 0.061370435908229
331 => 0.062529669375181
401 => 0.062567471936921
402 => 0.061710796653338
403 => 0.061587336361191
404 => 0.062043833769418
405 => 0.061509394861245
406 => 0.061759455462661
407 => 0.061516968942121
408 => 0.0614623801188
409 => 0.061027407087055
410 => 0.060840008745147
411 => 0.060913492463669
412 => 0.060662654648898
413 => 0.060511515792299
414 => 0.061340370585541
415 => 0.060897546905419
416 => 0.061272501505577
417 => 0.060845193415654
418 => 0.059363957406707
419 => 0.058512082914175
420 => 0.055714165403925
421 => 0.056507651339026
422 => 0.057033733334919
423 => 0.056859863238415
424 => 0.057233403484501
425 => 0.057256335821842
426 => 0.057134894080048
427 => 0.0569942801007
428 => 0.056925836991994
429 => 0.057435955849899
430 => 0.057732097016724
501 => 0.057086532701276
502 => 0.056935286014571
503 => 0.057587987180072
504 => 0.057986134513974
505 => 0.060925830727849
506 => 0.060708048537232
507 => 0.061254639098085
508 => 0.061193101389049
509 => 0.061766015375528
510 => 0.062702487611906
511 => 0.060798377713595
512 => 0.061128865352775
513 => 0.061047837415722
514 => 0.0619324791858
515 => 0.061935240940844
516 => 0.061404854008549
517 => 0.061692385369091
518 => 0.061531893251647
519 => 0.06182192419968
520 => 0.0607051399233
521 => 0.062065262622517
522 => 0.062836364548603
523 => 0.062847071299594
524 => 0.063212567492716
525 => 0.063583932793039
526 => 0.064296736147908
527 => 0.063564053094346
528 => 0.062246027606246
529 => 0.062341184789291
530 => 0.061568426927865
531 => 0.061581417127125
601 => 0.061512074425412
602 => 0.06172017709313
603 => 0.060750806756236
604 => 0.060978316036755
605 => 0.060659801711736
606 => 0.061128172964837
607 => 0.060624282921042
608 => 0.061047798341597
609 => 0.06123057355735
610 => 0.061905018038348
611 => 0.060524666922825
612 => 0.057710037556717
613 => 0.058301706773555
614 => 0.057426581527238
615 => 0.057507577700621
616 => 0.057671202861301
617 => 0.057140840180716
618 => 0.057242016666523
619 => 0.057238401930482
620 => 0.057207252088119
621 => 0.05706928427132
622 => 0.056869203640861
623 => 0.057666263291039
624 => 0.057801699257331
625 => 0.058102756633431
626 => 0.058998499175536
627 => 0.058908993372516
628 => 0.059054981050802
629 => 0.05873629076879
630 => 0.057522360828778
701 => 0.057588283064914
702 => 0.056766231723968
703 => 0.05808173493242
704 => 0.057770206408864
705 => 0.057569361943115
706 => 0.057514559669825
707 => 0.058412522584436
708 => 0.058681207162332
709 => 0.058513780964138
710 => 0.058170384947041
711 => 0.058829806815787
712 => 0.059006240289088
713 => 0.059045737237144
714 => 0.060214106356959
715 => 0.05911103609198
716 => 0.059376556068336
717 => 0.061448067127845
718 => 0.059569492445856
719 => 0.06056461535212
720 => 0.060515909264228
721 => 0.06102498046995
722 => 0.060474150566684
723 => 0.060480978763499
724 => 0.060932999506709
725 => 0.060298217895241
726 => 0.060141037041287
727 => 0.059923892817301
728 => 0.060398019286312
729 => 0.060682236661589
730 => 0.062972819971656
731 => 0.06445264125325
801 => 0.064388398308665
802 => 0.064975458564418
803 => 0.064710982542345
804 => 0.063856919701824
805 => 0.065314700828726
806 => 0.064853397884021
807 => 0.0648914271383
808 => 0.064890011687556
809 => 0.065196737817982
810 => 0.064979394243538
811 => 0.06455098774845
812 => 0.064835383972783
813 => 0.065679939085544
814 => 0.068301464069666
815 => 0.069768504181368
816 => 0.068213146412872
817 => 0.06928601137451
818 => 0.0686426746984
819 => 0.068525761286743
820 => 0.06919959976675
821 => 0.069874617711814
822 => 0.069831621986896
823 => 0.069341593621334
824 => 0.069064789031638
825 => 0.071160846121159
826 => 0.072705185279318
827 => 0.072599871702112
828 => 0.073064691582086
829 => 0.074429417126029
830 => 0.074554190526469
831 => 0.074538471945898
901 => 0.074229208054147
902 => 0.075572957584164
903 => 0.076693937083128
904 => 0.0741576223987
905 => 0.075123417827733
906 => 0.075556994511811
907 => 0.076193613720444
908 => 0.077267697035174
909 => 0.0784344364015
910 => 0.078599426140545
911 => 0.078482358025207
912 => 0.077712862049477
913 => 0.078989522186207
914 => 0.079737359752939
915 => 0.08018267990997
916 => 0.081311937733991
917 => 0.075559672133805
918 => 0.071487932635843
919 => 0.070852071716605
920 => 0.072145119899871
921 => 0.072486086393932
922 => 0.072348643227712
923 => 0.067765530236397
924 => 0.070827942575203
925 => 0.074122840756816
926 => 0.074249411214867
927 => 0.075898906137654
928 => 0.076436049299595
929 => 0.077764108916681
930 => 0.077681038426041
1001 => 0.078004399808757
1002 => 0.077930064626709
1003 => 0.080390015411414
1004 => 0.083103706433171
1005 => 0.083009739942096
1006 => 0.082619614750784
1007 => 0.083199017186113
1008 => 0.085999837137369
1009 => 0.085741982518482
1010 => 0.085992466316726
1011 => 0.089294790886552
1012 => 0.093588282577519
1013 => 0.091593524627547
1014 => 0.095921575402848
1015 => 0.098645853945787
1016 => 0.10335721199014
1017 => 0.10276732675906
1018 => 0.10460142387218
1019 => 0.10171130908266
1020 => 0.095075021337353
1021 => 0.094024803398969
1022 => 0.096127366307368
1023 => 0.10129631205258
1024 => 0.095964577811135
1025 => 0.097043180704114
1026 => 0.096732542998374
1027 => 0.096715990435161
1028 => 0.097347734448884
1029 => 0.096431356807427
1030 => 0.092697869442942
1031 => 0.094408904700506
1101 => 0.093748191816899
1102 => 0.094481302020669
1103 => 0.098437595432774
1104 => 0.096688423809027
1105 => 0.094845813594574
1106 => 0.097156855711438
1107 => 0.10009960648644
1108 => 0.09991545443157
1109 => 0.099558122475538
1110 => 0.10157238400239
1111 => 0.10489935392151
1112 => 0.10579862052179
1113 => 0.10646244074143
1114 => 0.10655397033438
1115 => 0.10749678202713
1116 => 0.1024270459361
1117 => 0.11047284731262
1118 => 0.11186213494956
1119 => 0.11160100645389
1120 => 0.1131451411922
1121 => 0.11269081758127
1122 => 0.11203257395023
1123 => 0.11448035595732
1124 => 0.11167417141201
1125 => 0.10769114573875
1126 => 0.10550597907909
1127 => 0.1083835828089
1128 => 0.11014083499217
1129 => 0.11130226690307
1130 => 0.11165371549756
1201 => 0.10282059511716
1202 => 0.09806003313944
1203 => 0.1011114987872
1204 => 0.10483449747839
1205 => 0.10240636449039
1206 => 0.10250154270646
1207 => 0.099039663167705
1208 => 0.10514079700121
1209 => 0.10425191312028
1210 => 0.10886344426694
1211 => 0.10776286534894
1212 => 0.11152338998044
1213 => 0.11053311781606
1214 => 0.11464368220503
1215 => 0.11628349762887
1216 => 0.1190370029424
1217 => 0.12106249265981
1218 => 0.12225189896332
1219 => 0.12218049147021
1220 => 0.12689351180458
1221 => 0.12411440837379
1222 => 0.12062319948033
1223 => 0.12056005452607
1224 => 0.12236820108281
1225 => 0.12615758022494
1226 => 0.12714011110328
1227 => 0.12768921182494
1228 => 0.12684824495538
1229 => 0.12383172736139
1230 => 0.1225292103584
1231 => 0.1236389925825
]
'min_raw' => 0.045761656305613
'max_raw' => 0.12768921182494
'avg_raw' => 0.086725434065275
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045761'
'max' => '$0.127689'
'avg' => '$0.086725'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018116354510558
'max_diff' => 0.065973023044541
'year' => 2036
]
11 => [
'items' => [
101 => 0.1222818242871
102 => 0.12462467751913
103 => 0.12784191541315
104 => 0.12717756851037
105 => 0.12939838060191
106 => 0.1316966874804
107 => 0.13498336954006
108 => 0.13584262993594
109 => 0.13726295469559
110 => 0.13872493542564
111 => 0.13919448423465
112 => 0.14009099860348
113 => 0.14008627353022
114 => 0.14278797992308
115 => 0.14576804573928
116 => 0.14689295159622
117 => 0.14947961058657
118 => 0.14505004771294
119 => 0.14840992203574
120 => 0.15144061277801
121 => 0.14782729833436
122 => 0.15280741050065
123 => 0.15300077697089
124 => 0.15592038109627
125 => 0.15296080298672
126 => 0.15120341495258
127 => 0.15627692835867
128 => 0.1587318416817
129 => 0.15799240181006
130 => 0.1523652278762
131 => 0.14908997128585
201 => 0.14051799303908
202 => 0.15067187155428
203 => 0.15561752958633
204 => 0.15235241981668
205 => 0.1539991512644
206 => 0.16298318408869
207 => 0.16640372211514
208 => 0.165692274117
209 => 0.16581249711725
210 => 0.16765815734917
211 => 0.17584283124112
212 => 0.17093838492581
213 => 0.17468765036777
214 => 0.1766762472392
215 => 0.17852336683909
216 => 0.1739874248899
217 => 0.16808623106021
218 => 0.16621707525909
219 => 0.15202776899836
220 => 0.15128915398646
221 => 0.15087454699795
222 => 0.14826050858274
223 => 0.14620659043376
224 => 0.1445732384646
225 => 0.14028683513735
226 => 0.14173337043161
227 => 0.13490173816986
228 => 0.13927237439274
301 => 0.12836892434747
302 => 0.13744964154294
303 => 0.13250742002299
304 => 0.13582598885302
305 => 0.135814410679
306 => 0.12970387330972
307 => 0.12617944287878
308 => 0.12842534712226
309 => 0.13083313475137
310 => 0.13122379019342
311 => 0.13434554970425
312 => 0.13521676568172
313 => 0.13257694059679
314 => 0.12814297458051
315 => 0.1291728837581
316 => 0.12615857180217
317 => 0.12087610604323
318 => 0.1246700651743
319 => 0.12596548963026
320 => 0.12653762286871
321 => 0.12134292449009
322 => 0.11971063747714
323 => 0.11884162156766
324 => 0.12747240425206
325 => 0.1279452180104
326 => 0.1255262359736
327 => 0.13646026415725
328 => 0.13398555683008
329 => 0.13675041123254
330 => 0.12907943029523
331 => 0.12937247209738
401 => 0.12574090678873
402 => 0.12777434070029
403 => 0.12633717515224
404 => 0.12761005933502
405 => 0.12837302086589
406 => 0.1320039902704
407 => 0.13749110138103
408 => 0.13146164452353
409 => 0.1288345238273
410 => 0.13046437473175
411 => 0.13480488246955
412 => 0.14138097387881
413 => 0.13748779540836
414 => 0.13921552190309
415 => 0.13959295328098
416 => 0.13672226761017
417 => 0.1414868201542
418 => 0.1440401825697
419 => 0.1466594040641
420 => 0.14893360069877
421 => 0.14561322940132
422 => 0.14916650264612
423 => 0.14630319164798
424 => 0.14373450567899
425 => 0.1437384013153
426 => 0.14212702708444
427 => 0.13900478646594
428 => 0.13842899739212
429 => 0.14142432486826
430 => 0.14382629384556
501 => 0.14402413151519
502 => 0.14535398495865
503 => 0.1461409785279
504 => 0.1538545853725
505 => 0.1569570618557
506 => 0.16075071137248
507 => 0.16222855165764
508 => 0.1666763210809
509 => 0.16308438604145
510 => 0.16230724830133
511 => 0.15151841453479
512 => 0.15328508545966
513 => 0.15611369606876
514 => 0.15156505728189
515 => 0.15445012163984
516 => 0.15501969445811
517 => 0.15141049627647
518 => 0.15333832496954
519 => 0.14821858352213
520 => 0.13760269775395
521 => 0.14149863866977
522 => 0.14436736254335
523 => 0.14027333986465
524 => 0.14761171705566
525 => 0.14332478859553
526 => 0.14196603808252
527 => 0.13666506790175
528 => 0.13916692177402
529 => 0.14255071495936
530 => 0.140459924179
531 => 0.14479862898207
601 => 0.15094339207351
602 => 0.15532251617944
603 => 0.1556586909525
604 => 0.15284320753091
605 => 0.15735503768218
606 => 0.15738790143915
607 => 0.15229853859716
608 => 0.14918133219412
609 => 0.1484730963407
610 => 0.15024240836038
611 => 0.15239067978528
612 => 0.15577790506537
613 => 0.15782473436163
614 => 0.1631617796119
615 => 0.16460583103155
616 => 0.16619240573271
617 => 0.16831255881497
618 => 0.17085834618631
619 => 0.16528830834956
620 => 0.16550961633667
621 => 0.1603228742255
622 => 0.15478009642567
623 => 0.15898637385874
624 => 0.16448552206484
625 => 0.16322401139034
626 => 0.16308206566913
627 => 0.16332077899974
628 => 0.16236964114826
629 => 0.15806767989681
630 => 0.15590726188803
701 => 0.15869475230077
702 => 0.16017617939821
703 => 0.16247374363233
704 => 0.16219052034478
705 => 0.16810879907148
706 => 0.17040846322521
707 => 0.16982011072651
708 => 0.16992838174576
709 => 0.17409181384983
710 => 0.17872240662466
711 => 0.18305956781883
712 => 0.18747151447095
713 => 0.18215274058061
714 => 0.17945219521547
715 => 0.18223846869709
716 => 0.18076003276811
717 => 0.18925556414865
718 => 0.18984377630895
719 => 0.19833869336588
720 => 0.20640138120881
721 => 0.20133735143272
722 => 0.20611250342267
723 => 0.21127721962364
724 => 0.22124079512033
725 => 0.21788541341586
726 => 0.21531524361577
727 => 0.21288644557365
728 => 0.21794038873846
729 => 0.22444220588128
730 => 0.22584263502021
731 => 0.22811186523039
801 => 0.22572604713266
802 => 0.22859950224213
803 => 0.23874406143873
804 => 0.23600291199531
805 => 0.23211003912389
806 => 0.24011819431578
807 => 0.24301631454881
808 => 0.26335684010158
809 => 0.28903759383715
810 => 0.2784055931617
811 => 0.27180596724994
812 => 0.27335703588442
813 => 0.28273477780027
814 => 0.285746610869
815 => 0.27755941034709
816 => 0.28045126798125
817 => 0.29638568786663
818 => 0.30493399289774
819 => 0.29332424647496
820 => 0.26129341654372
821 => 0.23175952851466
822 => 0.23959324554828
823 => 0.23870514514521
824 => 0.25582469145269
825 => 0.23593753648764
826 => 0.2362723851738
827 => 0.25374594556901
828 => 0.24908429922823
829 => 0.24153302917473
830 => 0.23181466114279
831 => 0.21384935899551
901 => 0.19793698988416
902 => 0.22914481011127
903 => 0.22779907215534
904 => 0.22585024416796
905 => 0.23018714996866
906 => 0.25124593348469
907 => 0.25076046036401
908 => 0.24767212806084
909 => 0.25001460089349
910 => 0.24112238236147
911 => 0.24341410954923
912 => 0.2317548501959
913 => 0.23702532235729
914 => 0.24151682754064
915 => 0.24241856370407
916 => 0.24445022132406
917 => 0.22708992940337
918 => 0.23488419080437
919 => 0.23946258915392
920 => 0.21877721884707
921 => 0.23905370589149
922 => 0.22678772534419
923 => 0.2226244673176
924 => 0.22822974578287
925 => 0.22604536331364
926 => 0.22416735953784
927 => 0.22311940116274
928 => 0.22723529903563
929 => 0.2270432874803
930 => 0.2203088796989
1001 => 0.21152411927764
1002 => 0.21447257322494
1003 => 0.21340137226399
1004 => 0.20951920179379
1005 => 0.21213531595565
1006 => 0.20061527317191
1007 => 0.18079563832219
1008 => 0.19388909619575
1009 => 0.19338501231056
1010 => 0.19313083035726
1011 => 0.20297020207264
1012 => 0.20202437351514
1013 => 0.20030768542168
1014 => 0.20948767347072
1015 => 0.20613685434455
1016 => 0.2164632893391
1017 => 0.22326494729845
1018 => 0.22153982682938
1019 => 0.22793681901541
1020 => 0.21454049964885
1021 => 0.21899021957538
1022 => 0.21990730068519
1023 => 0.20937439384316
1024 => 0.2021791227644
1025 => 0.20169928021554
1026 => 0.18922367173441
1027 => 0.19588804108544
1028 => 0.201752410324
1029 => 0.19894383255217
1030 => 0.19805472073348
1031 => 0.20259700019033
1101 => 0.20294997420612
1102 => 0.19490212923959
1103 => 0.19657553105024
1104 => 0.20355389478054
1105 => 0.19639969418887
1106 => 0.1825002510713
1107 => 0.1790529970033
1108 => 0.17859306976513
1109 => 0.16924384332756
1110 => 0.17928335900381
1111 => 0.17490084136883
1112 => 0.1887451620671
1113 => 0.18083736033283
1114 => 0.18049647080519
1115 => 0.17998116628654
1116 => 0.17193390088004
1117 => 0.17369574057367
1118 => 0.17955236405105
1119 => 0.18164207328736
1120 => 0.18142409949353
1121 => 0.17952366340094
1122 => 0.18039367331232
1123 => 0.17759106825621
1124 => 0.17660141007972
1125 => 0.17347777664779
1126 => 0.16888689842861
1127 => 0.16952528820248
1128 => 0.16042955718165
1129 => 0.15547372017452
1130 => 0.15410200980782
1201 => 0.15226770137776
1202 => 0.15430919982591
1203 => 0.16040379011848
1204 => 0.15305242118618
1205 => 0.14044901479032
1206 => 0.14120650098987
1207 => 0.14290834758059
1208 => 0.13973696771762
1209 => 0.13673552283106
1210 => 0.13934503564501
1211 => 0.13400480620731
1212 => 0.14355368879489
1213 => 0.14329541828133
1214 => 0.14685465121104
1215 => 0.1490803126048
1216 => 0.14395088365861
1217 => 0.1426608461501
1218 => 0.14339571014388
1219 => 0.13125004525638
1220 => 0.14586209126976
1221 => 0.14598845685047
1222 => 0.14490643802973
1223 => 0.15268690143555
1224 => 0.16910610600922
1225 => 0.16292854078763
1226 => 0.16053640081593
1227 => 0.15598894098109
1228 => 0.16204816120957
1229 => 0.16158290763458
1230 => 0.15947885452631
1231 => 0.15820631664139
]
'min_raw' => 0.11884162156766
'max_raw' => 0.30493399289774
'avg_raw' => 0.2118878072327
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118841'
'max' => '$0.304933'
'avg' => '$0.211887'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.073079965262047
'max_diff' => 0.17724478107281
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037303027037296
]
1 => [
'year' => 2028
'avg' => 0.0064022823542125
]
2 => [
'year' => 2029
'avg' => 0.017489881492583
]
3 => [
'year' => 2030
'avg' => 0.013493417524815
]
4 => [
'year' => 2031
'avg' => 0.013252208230192
]
5 => [
'year' => 2032
'avg' => 0.023235291650947
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037303027037296
'min' => '$0.00373'
'max_raw' => 0.023235291650947
'max' => '$0.023235'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023235291650947
]
1 => [
'year' => 2033
'avg' => 0.0597635593831
]
2 => [
'year' => 2034
'avg' => 0.037881016039278
]
3 => [
'year' => 2035
'avg' => 0.044680745287725
]
4 => [
'year' => 2036
'avg' => 0.086725434065275
]
5 => [
'year' => 2037
'avg' => 0.2118878072327
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023235291650947
'min' => '$0.023235'
'max_raw' => 0.2118878072327
'max' => '$0.211887'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.2118878072327
]
]
]
]
'prediction_2025_max_price' => '$0.006378'
'last_price' => 0.00618441
'sma_50day_nextmonth' => '$0.00556'
'sma_200day_nextmonth' => '$0.006531'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.00608'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005892'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00554'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005369'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005499'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006038'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00605'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0059054'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005678'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005521'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00562'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00600078'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006346'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006378'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006461'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005442'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005933'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005829'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005889'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.006234'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006188'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006067'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00387'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.20'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 110.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005585'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006257'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 206.01
'cci_20_action' => 'SELL'
'adx_14' => 15.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000483'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.23
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000420'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767695355
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di DRAC (Ordinals) per l'anno 2026
La previsione del prezzo di DRAC (Ordinals) per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.002136 come limite inferiore e $0.006378 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3.13% entro il 2026 se DRAC raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di DRAC (Ordinals) 2027-2032
La previsione del prezzo di DRAC per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.00373 come limite inferiore e $0.023235 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se DRAC (Ordinals) raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.002056 | $0.00373 | $0.0054036 |
| 2028 | $0.003712 | $0.0064022 | $0.009092 |
| 2029 | $0.008154 | $0.017489 | $0.026825 |
| 2030 | $0.006935 | $0.013493 | $0.020051 |
| 2031 | $0.008199 | $0.013252 | $0.0183048 |
| 2032 | $0.012515 | $0.023235 | $0.033954 |
Previsione del prezzo di DRAC (Ordinals) 2032-2037
La previsione del prezzo di DRAC (Ordinals) per gli anni 2032-2037 è attualmente stimata tra $0.023235 come limite inferiore e $0.211887 come limite superiore. Rispetto al prezzo attuale, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.012515 | $0.023235 | $0.033954 |
| 2033 | $0.029084 | $0.059763 | $0.090442 |
| 2034 | $0.023382 | $0.037881 | $0.052379 |
| 2035 | $0.027645 | $0.04468 | $0.061716 |
| 2036 | $0.045761 | $0.086725 | $0.127689 |
| 2037 | $0.118841 | $0.211887 | $0.304933 |
DRAC (Ordinals) Istogramma dei prezzi potenziali
Previsione del prezzo di DRAC (Ordinals) basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per DRAC (Ordinals) è Rialzista, con 27 indicatori tecnici che mostrano segnali rialzisti e 7 indicando segnali ribassisti. La previsione del prezzo di DRAC è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di DRAC (Ordinals)
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di DRAC (Ordinals) è previsto aumentare nel corso del prossimo mese, raggiungendo $0.006531 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per DRAC (Ordinals) dovrebbe raggiungere $0.00556 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 67.20, suggerendo che il mercato di DRAC è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di DRAC per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.00608 | BUY |
| SMA 5 | $0.005892 | BUY |
| SMA 10 | $0.00554 | BUY |
| SMA 21 | $0.005369 | BUY |
| SMA 50 | $0.005499 | BUY |
| SMA 100 | $0.006038 | BUY |
| SMA 200 | $0.006851 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.00605 | BUY |
| EMA 5 | $0.0059054 | BUY |
| EMA 10 | $0.005678 | BUY |
| EMA 21 | $0.005521 | BUY |
| EMA 50 | $0.00562 | BUY |
| EMA 100 | $0.00600078 | BUY |
| EMA 200 | $0.006346 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.006378 | SELL |
| SMA 50 | $0.006461 | SELL |
| SMA 100 | $0.005442 | BUY |
| SMA 200 | — | — |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.006234 | SELL |
| EMA 50 | $0.006188 | SELL |
| EMA 100 | $0.006067 | BUY |
| EMA 200 | $0.00387 | BUY |
Oscillatori di DRAC (Ordinals)
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 67.20 | NEUTRAL |
| Stoch RSI (14) | 110.74 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 206.01 | SELL |
| Indice Direzionale Medio (14) | 15.42 | NEUTRAL |
| Oscillatore Awesome (5, 34) | 0.000483 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 79.23 | SELL |
| VWMA (10) | 0.005585 | BUY |
| Media Mobile di Hull (9) | 0.006257 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000420 | NEUTRAL |
Previsione del prezzo di DRAC (Ordinals) sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di DRAC (Ordinals)
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di DRAC (Ordinals) sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.00869 | $0.012211 | $0.017158 | $0.02411 | $0.033879 | $0.0476064 |
| Azioni Amazon.com | $0.0129041 | $0.026925 | $0.056181 | $0.117225 | $0.244597 | $0.510367 |
| Azioni Apple | $0.008772 | $0.012442 | $0.017648 | $0.025033 | $0.0355081 | $0.050365 |
| Azioni Netflix | $0.009758 | $0.015396 | $0.024293 | $0.038331 | $0.06048 | $0.095429 |
| Azioni Google | $0.0080087 | $0.010371 | $0.01343 | $0.017392 | $0.022523 | $0.029168 |
| Azioni Tesla | $0.014019 | $0.031781 | $0.072045 | $0.163322 | $0.37024 | $0.8393063 |
| Azioni Kodak | $0.004637 | $0.003477 | $0.0026079 | $0.001955 | $0.001466 | $0.001099 |
| Azioni Nokia | $0.004096 | $0.002714 | $0.001797 | $0.001191 | $0.000789 | $0.000522 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per DRAC (Ordinals)
Potresti avere domande come: "Dovrei investire su DRAC (Ordinals) in questo momento?", "Dovrei acquistare DRAC oggi?", "DRAC (Ordinals) sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su DRAC (Ordinals) con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come DRAC (Ordinals) con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su DRAC (Ordinals) per prendere decisioni responsabili.
Il prezzo odierno di DRAC (Ordinals) è di $0.006184 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di DRAC (Ordinals) sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DRAC (Ordinals) ha 1% della precedente crescita media annua di Bitcoin | $0.006345 | $0.00651 | $0.006679 | $0.006852 |
| Se DRAC (Ordinals) ha 2% della precedente crescita media annua di Bitcoin | $0.0065059 | $0.006844 | $0.007199 | $0.007574 |
| Se DRAC (Ordinals) ha 5% della precedente crescita media annua di Bitcoin | $0.006988 | $0.007896 | $0.008922 | $0.010082 |
| Se DRAC (Ordinals) ha 10% della precedente crescita media annua di Bitcoin | $0.007791 | $0.009817 | $0.012369 | $0.015584 |
| Se DRAC (Ordinals) ha 20% della precedente crescita media annua di Bitcoin | $0.009399 | $0.014285 | $0.021712 | $0.03300026 |
| Se DRAC (Ordinals) ha 50% della precedente crescita media annua di Bitcoin | $0.014222 | $0.0327058 | $0.075212 | $0.172963 |
| Se DRAC (Ordinals) ha 100% della precedente crescita media annua di Bitcoin | $0.022259 | $0.080119 | $0.288376 | $1.03 |
Area domande
È DRAC un buon investimento?
La decisione di procurarsi DRAC (Ordinals) dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di DRAC (Ordinals) ha subito un aumento del 2.9065% nelle precedenti 24 ore, e DRAC (Ordinals) ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in DRAC (Ordinals) dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può DRAC (Ordinals) salire?
Sembra che il valore medio di DRAC (Ordinals) possa potenzialmente salire fino a $0.006378 entro la fine di quest'anno. Guardando le prospettive di DRAC (Ordinals) su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.020051. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di DRAC (Ordinals) la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) aumenterà del 0.86% nella prossima settimana e raggiungerà $0.006237 entro 13 gennaio 2026.
Quale sarà il prezzo di DRAC (Ordinals) il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) diminuirà del -11.62% nel prossimo mese e raggiungerà $0.005465 entro 5 febbraio 2026.
Quanto può salire il prezzo di DRAC (Ordinals) quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di DRAC (Ordinals) in 2026, DRAC dovrebbe fluttuare all'interno dell'intervallo di $0.002136 e $0.006378. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di DRAC (Ordinals) non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà DRAC (Ordinals) tra 5 anni?
Il futuro di DRAC (Ordinals) sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.020051 prevista dopo un periodo di cinque anni. Basato sulla previsione di DRAC (Ordinals) per 2030, il valore di DRAC (Ordinals) potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.020051, mentre il suo picco più basso è previsto intorno a $0.006935.
Quanto varrà DRAC (Ordinals) in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2026 aumenti del 3.13% fino a $0.006378 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.006378 e $0.002136 durante 2026.
Quanto varrà DRAC (Ordinals) in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di DRAC (Ordinals), il valore di DRAC potrebbe diminuire del -12.62% fino a $0.0054036 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.0054036 e $0.002056 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.009092 nello scenario migliore. Il prezzo è previsto oscillare tra $0.009092 e $0.003712 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di DRAC (Ordinals) potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.026825 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.026825 e $0.008154.
Quanto varrà DRAC (Ordinals) in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2030 aumenti del 224.23%, raggiungendo $0.020051 nello scenario migliore. Il prezzo è previsto oscillare tra $0.020051 e $0.006935 nel corso di 2030.
Quanto varrà DRAC (Ordinals) in 2031?
La nostra simulazione sperimentale indica che il prezzo di DRAC (Ordinals) potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.0183048 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.0183048 e $0.008199 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di DRAC (Ordinals), DRAC potrebbe subire una 449.04% aumento in valore, raggiungendo $0.033954 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.033954 e $0.012515 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2033?
Secondo la nostra previsione sperimentale dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.090442. Durante l'anno, il prezzo di DRAC potrebbe oscillare tra $0.090442 e $0.029084.
Quanto varrà DRAC (Ordinals) in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di DRAC (Ordinals) suggeriscono che DRAC potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.052379 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.052379 e $0.023382.
Quanto varrà DRAC (Ordinals) in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di DRAC (Ordinals), DRAC potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.061716 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.061716 e $0.027645.
Quanto varrà DRAC (Ordinals) in 2036?
La nostra recente simulazione di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.127689 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.127689 e $0.045761.
Quanto varrà DRAC (Ordinals) in 2037?
Secondo la simulazione sperimentale, il valore di DRAC (Ordinals) potrebbe aumentare del 4830.69% in 2037, con un picco di $0.304933 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.304933 e $0.118841 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di TE-FOOD
Previsione del prezzo di TrustFi Network Token
Previsione del prezzo di RetroCraft
Previsione del prezzo di CrossWallet
Previsione del prezzo di İstanbul Başakşehir Fan Token
Previsione del prezzo di Trisolaris
Previsione del prezzo di DogeCola
Previsione del prezzo di Unistake
Previsione del prezzo di Forest Knight
Previsione del prezzo di AirCoin
Previsione del prezzo di Changer
Previsione del prezzo di RIKU
Previsione del prezzo di Glitch Protocol
Previsione del prezzo di Position
Previsione del prezzo di Primate
Previsione del prezzo di PlotX
Previsione del prezzo di Nyxia AI
Previsione del prezzo di Spartan Protocol Token
Previsione del prezzo di Playermon
Previsione del prezzo di Solrise Finance
Previsione del prezzo di AllianceBlock
Previsione del prezzo di Metaverse Face
Previsione del prezzo di Furucombo
Previsione del prezzo di Coinzix Token
Previsione del prezzo di Tranche Finance
Come leggere e prevedere i movimenti di prezzo di DRAC (Ordinals)?
I trader di DRAC (Ordinals) utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di DRAC (Ordinals)
Le medie mobili sono strumenti popolari per la previsione del prezzo di DRAC (Ordinals). Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di DRAC su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di DRAC al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di DRAC.
Come leggere i grafici di DRAC (Ordinals) e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di DRAC (Ordinals) in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di DRAC all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di DRAC (Ordinals)?
L'azione del prezzo di DRAC (Ordinals) è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di DRAC. La capitalizzazione di mercato di DRAC (Ordinals) può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di DRAC, grandi detentori di DRAC (Ordinals), poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di DRAC (Ordinals).
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


