Previsione del prezzo di DRAC (Ordinals) DRAC
Previsione del prezzo di DRAC (Ordinals) fino a $0.006348 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.002126 | $0.006348 |
| 2027 | $0.002047 | $0.005378 |
| 2028 | $0.003695 | $0.00905 |
| 2029 | $0.008117 | $0.0267024 |
| 2030 | $0.0069034 | $0.019959 |
| 2031 | $0.008162 | $0.018221 |
| 2032 | $0.012458 | $0.033799 |
| 2033 | $0.028951 | $0.090029 |
| 2034 | $0.023275 | $0.05214 |
| 2035 | $0.027518 | $0.061433 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su DRAC (Ordinals) oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,955.62, con un rendimento del 39.56% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di DRAC (Ordinals) per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DRAC (Ordinals)'
'name_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_lang' => 'DRAC (Ordinals)'
'name_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_with_lang' => 'DRAC (Ordinals)'
'name_with_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'image' => '/uploads/coins/drac-ordinals.png?1717128736'
'price_for_sd' => 0.006156
'ticker' => 'DRAC'
'marketcap' => '$651.32K'
'low24h' => '$0.005956'
'high24h' => '$0.006314'
'volume24h' => '$15.18K'
'current_supply' => '106.82M'
'max_supply' => '106.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006156'
'change_24h_pct' => '2.4354%'
'ath_price' => '$0.03978'
'ath_days' => 752
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 dic 2023'
'ath_pct' => '-84.44%'
'fdv' => '$651.32K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.303539'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006208'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00544'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002126'
'current_year_max_price_prediction' => '$0.006348'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0069034'
'grand_prediction_max_price' => '$0.019959'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062727854253756
107 => 0.0062962057291329
108 => 0.0063489728693683
109 => 0.005898083433426
110 => 0.0061005195527457
111 => 0.0062194318071468
112 => 0.0056821819156978
113 => 0.006208812104183
114 => 0.0058902344514847
115 => 0.0057821044112831
116 => 0.005927687265365
117 => 0.0058709534855453
118 => 0.0058221771131757
119 => 0.005794959059309
120 => 0.0059018590399534
121 => 0.0058968720280833
122 => 0.0057219629113568
123 => 0.0054938010987948
124 => 0.0055703796922468
125 => 0.0055425579713175
126 => 0.0054417284655965
127 => 0.0055096753782515
128 => 0.0052104715620643
129 => 0.0046957069475752
130 => 0.0050357762195733
131 => 0.0050226839225255
201 => 0.0050160821926657
202 => 0.0052716348517479
203 => 0.0052470693601801
204 => 0.0052024827524386
205 => 0.0054409095975801
206 => 0.0053538805918098
207 => 0.0056220834809811
208 => 0.0057987392500647
209 => 0.0057539336328096
210 => 0.0059200792374841
211 => 0.0055721439083729
212 => 0.0056877140679612
213 => 0.005711532917679
214 => 0.0054379674473211
215 => 0.0052510885784071
216 => 0.0052386258884257
217 => 0.0049146036832234
218 => 0.0050876937298266
219 => 0.0052400058078846
220 => 0.0051670601423895
221 => 0.0051439677238836
222 => 0.005261941881896
223 => 0.005271109484354
224 => 0.0050620871767748
225 => 0.0051055495333961
226 => 0.0052867947855227
227 => 0.00510098261807
228 => 0.0047399799289546
301 => 0.0046504462708013
302 => 0.004638500830371
303 => 0.0043956784484553
304 => 0.004656429337961
305 => 0.0045426045870024
306 => 0.0049021756114507
307 => 0.0046967905707039
308 => 0.0046879368320952
309 => 0.004674553107627
310 => 0.004465545852646
311 => 0.0045113051583828
312 => 0.0046634160599912
313 => 0.004717690943337
314 => 0.0047120296283431
315 => 0.0046626706335895
316 => 0.0046852669286287
317 => 0.0046124763892363
318 => 0.0045867725347728
319 => 0.0045056440996837
320 => 0.004386407712405
321 => 0.0044029882633754
322 => 0.0041667497802784
323 => 0.0040380345165619
324 => 0.0040024078280051
325 => 0.0039547663311251
326 => 0.0040077890618469
327 => 0.0041660805463376
328 => 0.00397514743263
329 => 0.003647806001579
330 => 0.0036674797793478
331 => 0.0037116809167973
401 => 0.00362931238958
402 => 0.0035513574912352
403 => 0.0036191329506652
404 => 0.003480434071063
405 => 0.0037284420137555
406 => 0.0037217340939399
407 => 0.0038141761182674
408 => 0.0038719820131807
409 => 0.0037387581402863
410 => 0.003705252696529
411 => 0.0037243389200307
412 => 0.0034088861606365
413 => 0.0037883968978428
414 => 0.0037916789224577
415 => 0.0037635762351301
416 => 0.003965653986613
417 => 0.0043921010718732
418 => 0.0042316545246041
419 => 0.0041695247719789
420 => 0.0040514160668218
421 => 0.0042087889038426
422 => 0.0041967051253581
423 => 0.0041420576964143
424 => 0.0041090067608787
425 => 0.004169904123
426 => 0.0041014609037906
427 => 0.0040891666209267
428 => 0.0040146766430832
429 => 0.0039880871100711
430 => 0.0039684012783887
501 => 0.0039467291119963
502 => 0.0039945325106906
503 => 0.0038862037201886
504 => 0.0037555698184455
505 => 0.003744709022994
506 => 0.0037746966341266
507 => 0.0037614293485155
508 => 0.0037446455043347
509 => 0.0037126005749858
510 => 0.0037030935289795
511 => 0.0037339868163368
512 => 0.003699110096101
513 => 0.0037505725966422
514 => 0.0037365776440451
515 => 0.0036584029764815
516 => 0.0035609683967283
517 => 0.0035601010245926
518 => 0.0035391089042095
519 => 0.0035123722827152
520 => 0.0035049347662665
521 => 0.0036134250905131
522 => 0.0038379968148613
523 => 0.0037939080118259
524 => 0.0038257666904213
525 => 0.0039824798574175
526 => 0.0040322942606763
527 => 0.003996937177162
528 => 0.0039485382205178
529 => 0.0039506675289812
530 => 0.0041160614151952
531 => 0.0041263768290021
601 => 0.0041524405518135
602 => 0.0041859398012333
603 => 0.0040026422441931
604 => 0.0039420342305283
605 => 0.0039133147912494
606 => 0.003824870034092
607 => 0.0039202501220058
608 => 0.003864676229361
609 => 0.0038721750461533
610 => 0.0038672914318799
611 => 0.0038699582155017
612 => 0.0037283726904811
613 => 0.0037799590142825
614 => 0.0036941867456306
615 => 0.0035793473062948
616 => 0.0035789623242262
617 => 0.0036070691143108
618 => 0.0035903500957497
619 => 0.0035453596466871
620 => 0.0035517503276275
621 => 0.003495761237999
622 => 0.0035585484168236
623 => 0.0035603489284489
624 => 0.0035361724445607
625 => 0.003632904756501
626 => 0.003672536063629
627 => 0.0036566225840234
628 => 0.0036714195314778
629 => 0.003795740100641
630 => 0.0038160097779013
701 => 0.0038250122296006
702 => 0.0038129501369198
703 => 0.0036736918832636
704 => 0.0036798685789851
705 => 0.003634548084083
706 => 0.0035962570416467
707 => 0.0035977884825341
708 => 0.0036174750558334
709 => 0.0037034474760337
710 => 0.0038843713659944
711 => 0.0038912372953647
712 => 0.0038995590020549
713 => 0.0038657104387913
714 => 0.0038555013882239
715 => 0.0038689697611018
716 => 0.0039369152616448
717 => 0.0041116895360649
718 => 0.0040499126347035
719 => 0.003999687052282
720 => 0.0040437484287854
721 => 0.0040369655252372
722 => 0.0039797109932173
723 => 0.0039781040491957
724 => 0.0038682142968684
725 => 0.0038275905575015
726 => 0.0037936423202524
727 => 0.0037565717314176
728 => 0.0037345950437389
729 => 0.0037683612242393
730 => 0.0037760839492294
731 => 0.0037022536054335
801 => 0.0036921908023866
802 => 0.003752482254869
803 => 0.0037259502345234
804 => 0.0037532390754113
805 => 0.0037595703205767
806 => 0.0037585508442841
807 => 0.0037308483678602
808 => 0.003748505100233
809 => 0.0037067416644459
810 => 0.0036613302006927
811 => 0.0036323605160522
812 => 0.0036070806239324
813 => 0.0036211073773564
814 => 0.0035711045625838
815 => 0.0035551076557802
816 => 0.0037425233965942
817 => 0.0038809694193922
818 => 0.0038789563593901
819 => 0.0038667023743441
820 => 0.003848495438196
821 => 0.0039355833108616
822 => 0.0039052436374019
823 => 0.0039273182848083
824 => 0.0039329372090433
825 => 0.0039499440003909
826 => 0.0039560224665146
827 => 0.0039376491201227
828 => 0.0038759859255164
829 => 0.003722327107318
830 => 0.0036507985126527
831 => 0.0036271928850101
901 => 0.0036280509047414
902 => 0.0036043828901824
903 => 0.003611354181196
904 => 0.0036019585596643
905 => 0.0035841655255282
906 => 0.003620008707638
907 => 0.0036241393004738
908 => 0.0036157730734752
909 => 0.0036177436227952
910 => 0.0035484748365095
911 => 0.0035537411918869
912 => 0.0035244174559294
913 => 0.0035189196089403
914 => 0.0034447917579495
915 => 0.0033134635249155
916 => 0.0033862321143564
917 => 0.0032983378911239
918 => 0.0032650510169709
919 => 0.00342262590204
920 => 0.003406809754026
921 => 0.0033797393837404
922 => 0.0033396966641285
923 => 0.0033248444299139
924 => 0.003234606956472
925 => 0.0032292752451428
926 => 0.0032739993735974
927 => 0.0032533607271789
928 => 0.0032243762511407
929 => 0.0031193974170397
930 => 0.0030013664502126
1001 => 0.0030049290631849
1002 => 0.0030424725176884
1003 => 0.0031516351750819
1004 => 0.0031089834363051
1005 => 0.0030780391104503
1006 => 0.0030722441684007
1007 => 0.0031447800006843
1008 => 0.0032474334000924
1009 => 0.0032955960783543
1010 => 0.003247868326919
1011 => 0.0031930412559148
1012 => 0.0031963783256827
1013 => 0.0032185783558145
1014 => 0.0032209112650898
1015 => 0.0031852244781801
1016 => 0.0031952700996586
1017 => 0.0031800098820418
1018 => 0.0030863579546957
1019 => 0.0030846640883035
1020 => 0.0030616803949914
1021 => 0.0030609844578922
1022 => 0.0030218834620174
1023 => 0.0030164129624021
1024 => 0.0029387755618319
1025 => 0.0029898767339949
1026 => 0.0029556007506399
1027 => 0.0029039387588368
1028 => 0.0028950322119774
1029 => 0.0028947644704238
1030 => 0.0029478097845956
1031 => 0.0029892568686143
1101 => 0.0029561969960452
1102 => 0.0029486699038999
1103 => 0.0030290395555327
1104 => 0.0030188117847768
1105 => 0.0030099546012642
1106 => 0.0032382419140877
1107 => 0.0030575346925067
1108 => 0.0029787360294898
1109 => 0.0028812077205462
1110 => 0.0029129634297186
1111 => 0.0029196548242297
1112 => 0.0026851168220192
1113 => 0.0025899647837322
1114 => 0.002557312189921
1115 => 0.0025385201605428
1116 => 0.0025470839243059
1117 => 0.0024614359296267
1118 => 0.0025189927985382
1119 => 0.0024448288747908
1120 => 0.0024323950516243
1121 => 0.0025650093344318
1122 => 0.0025834618371631
1123 => 0.0025047377277683
1124 => 0.0025552913502754
1125 => 0.0025369599040064
1126 => 0.0024461002024001
1127 => 0.0024426300301175
1128 => 0.0023970398257244
1129 => 0.0023256999838523
1130 => 0.0022930957618133
1201 => 0.0022761151998925
1202 => 0.0022831217106856
1203 => 0.0022795790044258
1204 => 0.0022564604497022
1205 => 0.002280904132921
1206 => 0.0022184606231242
1207 => 0.0021935951143815
1208 => 0.0021823639409579
1209 => 0.0021269417318989
1210 => 0.00221514311288
1211 => 0.002232519896065
1212 => 0.0022499309168808
1213 => 0.0024014819660739
1214 => 0.002393910903935
1215 => 0.0024623496184135
1216 => 0.0024596902158196
1217 => 0.0024401703858167
1218 => 0.0023578194338904
1219 => 0.0023906430555636
1220 => 0.0022896170499768
1221 => 0.0023653126024631
1222 => 0.0023307683134302
1223 => 0.0023536331435927
1224 => 0.002312520117322
1225 => 0.0023352737635754
1226 => 0.0022366405759943
1227 => 0.0021445382932375
1228 => 0.0021816029404521
1229 => 0.0022218964508309
1230 => 0.0023092630479277
1231 => 0.0022572282234556
]
'min_raw' => 0.0021269417318989
'max_raw' => 0.0063489728693683
'avg_raw' => 0.0042379573006336
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002126'
'max' => '$0.006348'
'avg' => '$0.004237'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040291882681011
'max_diff' => 0.00019284286936829
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022759419139903
102 => 0.002213254183333
103 => 0.002083911489122
104 => 0.0020846435547246
105 => 0.002064746999104
106 => 0.0020475534701031
107 => 0.0022632050489942
108 => 0.0022363853662121
109 => 0.0021936517117722
110 => 0.002250852406408
111 => 0.0022659771779668
112 => 0.0022664077589501
113 => 0.0023081399091927
114 => 0.0023304123652581
115 => 0.002334337982174
116 => 0.0024000044222636
117 => 0.0024220149468203
118 => 0.0025126731824235
119 => 0.00232852270297
120 => 0.0023247302450292
121 => 0.0022516573374855
122 => 0.0022053133442843
123 => 0.002254830550349
124 => 0.0022986960351496
125 => 0.0022530203603728
126 => 0.0022589846392325
127 => 0.0021976687776844
128 => 0.0022195863130084
129 => 0.0022384646470403
130 => 0.0022280411406051
131 => 0.0022124366469681
201 => 0.0022950995656314
202 => 0.0022904353998018
203 => 0.0023674130100733
204 => 0.0024274225620016
205 => 0.0025349704070478
206 => 0.0024227386241462
207 => 0.0024186484518963
208 => 0.002458630541723
209 => 0.0024220088257707
210 => 0.0024451524861139
211 => 0.0025312416055669
212 => 0.0025330605330035
213 => 0.0025025911548851
214 => 0.0025007370904575
215 => 0.0025065890678236
216 => 0.0025408642820401
217 => 0.0025288874690219
218 => 0.0025427473402624
219 => 0.0025600793214785
220 => 0.002631771744396
221 => 0.0026490565448478
222 => 0.0026070634408914
223 => 0.0026108549480018
224 => 0.0025951483743856
225 => 0.0025799760210751
226 => 0.0026140812555728
227 => 0.0026764092419573
228 => 0.0026760215027888
301 => 0.0026904803841471
302 => 0.0026994881474495
303 => 0.00266082023327
304 => 0.0026356488429977
305 => 0.0026453011557253
306 => 0.0026607354139767
307 => 0.0026402960337921
308 => 0.0025141347108509
309 => 0.0025524039970148
310 => 0.0025460341165246
311 => 0.0025369626321027
312 => 0.0025754426952681
313 => 0.0025717311993031
314 => 0.0024605574856477
315 => 0.0024676744660937
316 => 0.0024609902928008
317 => 0.0024825882241633
318 => 0.0024208424665987
319 => 0.0024398350457616
320 => 0.0024517470133681
321 => 0.0024587632538005
322 => 0.0024841107253231
323 => 0.0024811364920993
324 => 0.0024839258428099
325 => 0.0025215094515935
326 => 0.0027115944476842
327 => 0.0027219403546225
328 => 0.0026709933250206
329 => 0.0026913456584608
330 => 0.0026522736288216
331 => 0.0026785029440782
401 => 0.0026964483754245
402 => 0.0026153564218788
403 => 0.0026105546826723
404 => 0.0025713213888681
405 => 0.0025924031386711
406 => 0.002558860558903
407 => 0.0025670907347085
408 => 0.0025440784456626
409 => 0.0025854959842441
410 => 0.0026318072280132
411 => 0.0026435072770757
412 => 0.0026127294851801
413 => 0.0025904443354923
414 => 0.0025513189538253
415 => 0.0026163853355035
416 => 0.0026354127283683
417 => 0.002616285392709
418 => 0.0026118531710962
419 => 0.0026034541191489
420 => 0.0026136350696718
421 => 0.0026353091011004
422 => 0.0026250880281352
423 => 0.0026318392269009
424 => 0.0026061106190121
425 => 0.0026608330339585
426 => 0.0027477453985599
427 => 0.0027480248360237
428 => 0.002737803707963
429 => 0.0027336214425779
430 => 0.002744108940238
501 => 0.002749797977499
502 => 0.0027837126218536
503 => 0.0028201043864653
504 => 0.0029899288729368
505 => 0.0029422428366992
506 => 0.0030929212240007
507 => 0.0032120882652163
508 => 0.0032478212503337
509 => 0.0032149485853925
510 => 0.0031024929743754
511 => 0.003096975365601
512 => 0.003265031525995
513 => 0.0032175479632239
514 => 0.0032118999445238
515 => 0.0031518145680321
516 => 0.0031873324672573
517 => 0.0031795641816806
518 => 0.0031673015628603
519 => 0.0032350672403837
520 => 0.0033619185392237
521 => 0.0033421475746956
522 => 0.0033273894668239
523 => 0.0032627237341511
524 => 0.0033016669488344
525 => 0.0032878000159938
526 => 0.0033473811596501
527 => 0.003312086610032
528 => 0.0032171882285346
529 => 0.0032323011085772
530 => 0.0032300168271616
531 => 0.0032770271768277
601 => 0.0032629158367266
602 => 0.003227261361528
603 => 0.0033614849752748
604 => 0.0033527692403891
605 => 0.0033651261597627
606 => 0.0033705660578214
607 => 0.0034522656062237
608 => 0.0034857352971102
609 => 0.0034933335029108
610 => 0.0035251271206142
611 => 0.003492542448739
612 => 0.0036229043687169
613 => 0.0037095874386733
614 => 0.0038102742850976
615 => 0.0039574048297965
616 => 0.004012727275637
617 => 0.0040027337709679
618 => 0.0041142864707809
619 => 0.0043147441926677
620 => 0.0040432520078668
621 => 0.0043291339376967
622 => 0.0042386270193782
623 => 0.0040240367441948
624 => 0.0040102196603262
625 => 0.0041555426861247
626 => 0.0044778551705228
627 => 0.004397119548819
628 => 0.0044779872250771
629 => 0.0043836507851825
630 => 0.0043789661858118
701 => 0.0044734055147543
702 => 0.0046940681544485
703 => 0.0045892396057451
704 => 0.0044389421761642
705 => 0.0045499194592798
706 => 0.0044537806661824
707 => 0.0042371530577801
708 => 0.0043970578118106
709 => 0.0042901340566156
710 => 0.004321340092761
711 => 0.0045460779224726
712 => 0.0045190368722192
713 => 0.0045540304951809
714 => 0.004492267666596
715 => 0.0044345714455935
716 => 0.0043268771645147
717 => 0.0042949941971511
718 => 0.0043038055023014
719 => 0.0042949898307059
720 => 0.0042347358702039
721 => 0.0042217240331703
722 => 0.0042000370680526
723 => 0.004206758765376
724 => 0.0041659809262094
725 => 0.0042429371338482
726 => 0.0042572208841218
727 => 0.0043132231944262
728 => 0.0043190375400625
729 => 0.0044750031771173
730 => 0.0043890999251236
731 => 0.0044467312430909
801 => 0.0044415761555649
802 => 0.0040286875661527
803 => 0.0040855799708268
804 => 0.0041740866986797
805 => 0.00413421453775
806 => 0.0040778446308442
807 => 0.0040323229086546
808 => 0.0039633528447022
809 => 0.0040604268852624
810 => 0.0041880689259257
811 => 0.0043222747528552
812 => 0.0044835142603968
813 => 0.0044475274793483
814 => 0.0043192604924175
815 => 0.0043250144557522
816 => 0.0043605831929857
817 => 0.0043145184465077
818 => 0.0043009330534807
819 => 0.0043587167686017
820 => 0.0043591146932903
821 => 0.0043061116353569
822 => 0.0042472084359211
823 => 0.0042469616293647
824 => 0.0042364803739625
825 => 0.0043855153772343
826 => 0.0044674695598954
827 => 0.0044768654748617
828 => 0.0044668371399554
829 => 0.0044706966480505
830 => 0.0044230093148972
831 => 0.0045320084172462
901 => 0.0046320367724557
902 => 0.0046052270364655
903 => 0.0045650354309875
904 => 0.0045330208813344
905 => 0.0045976854260042
906 => 0.0045948060156215
907 => 0.0046311631120358
908 => 0.0046295137441337
909 => 0.0046172882200691
910 => 0.0046052274730774
911 => 0.0046530469716144
912 => 0.0046392757239934
913 => 0.0046254830858211
914 => 0.0045978198384194
915 => 0.0046015797331792
916 => 0.0045613950673486
917 => 0.0045428038022101
918 => 0.0042632357812105
919 => 0.0041885260708508
920 => 0.0042120312665863
921 => 0.0042197697873346
922 => 0.0041872560256429
923 => 0.0042338724078087
924 => 0.0042266072940271
925 => 0.0042548716018018
926 => 0.0042372132893978
927 => 0.0042379379926983
928 => 0.0042898673243294
929 => 0.004304942630225
930 => 0.0042972752079739
1001 => 0.0043026452076947
1002 => 0.0044263945847269
1003 => 0.0044088013805953
1004 => 0.0043994553415459
1005 => 0.0044020442582345
1006 => 0.0044336648772828
1007 => 0.0044425169241945
1008 => 0.0044050101794072
1009 => 0.0044226985770728
1010 => 0.004498013529341
1011 => 0.0045243695001778
1012 => 0.004608485107505
1013 => 0.0045727513024767
1014 => 0.004638342248129
1015 => 0.004839946453463
1016 => 0.0050010018426338
1017 => 0.0048528886508569
1018 => 0.0051486463627888
1019 => 0.0053789361654518
1020 => 0.0053700972592578
1021 => 0.0053299409054644
1022 => 0.0050677620877038
1023 => 0.0048265012307345
1024 => 0.0050283261820664
1025 => 0.0050288406753731
1026 => 0.005011503733064
1027 => 0.0049038254733521
1028 => 0.0050077567630321
1029 => 0.0050160064513839
1030 => 0.0050113888196761
1031 => 0.0049288321504201
1101 => 0.004802783375489
1102 => 0.0048274130043924
1103 => 0.004867756838967
1104 => 0.0047913775435118
1105 => 0.0047669697306291
1106 => 0.0048123484985544
1107 => 0.0049585683438514
1108 => 0.0049309263290918
1109 => 0.0049302044843763
1110 => 0.005048468745556
1111 => 0.0049638170575763
1112 => 0.0048277236628879
1113 => 0.0047933582858777
1114 => 0.0046713843487835
1115 => 0.0047556321815907
1116 => 0.00475866411111
1117 => 0.0047125224340734
1118 => 0.0048314678056781
1119 => 0.0048303717031389
1120 => 0.0049432926307954
1121 => 0.005159155033311
1122 => 0.0050953138989434
1123 => 0.0050210736055696
1124 => 0.0050291455839194
1125 => 0.0051176752630763
1126 => 0.005064148198122
1127 => 0.0050833969038835
1128 => 0.0051176461278547
1129 => 0.0051383095350369
1130 => 0.0050261724376176
1201 => 0.0050000279160718
1202 => 0.0049465454004691
1203 => 0.0049325928104468
1204 => 0.0049761532034559
1205 => 0.0049646765789094
1206 => 0.0047584092891741
1207 => 0.0047368532097364
1208 => 0.0047375143039177
1209 => 0.0046833105172359
1210 => 0.0046006367321468
1211 => 0.0048178985031659
1212 => 0.0048004493423765
1213 => 0.0047811868193228
1214 => 0.0047835463684864
1215 => 0.0048778523396012
1216 => 0.0048231501137889
1217 => 0.0049685849466293
1218 => 0.0049386879171686
1219 => 0.004908024141714
1220 => 0.0049037854739047
1221 => 0.0048919825364651
1222 => 0.004851505872305
1223 => 0.0048026278680613
1224 => 0.0047703543759194
1225 => 0.0044003997518074
1226 => 0.0044690611781155
1227 => 0.0045480498903971
1228 => 0.0045753164773493
1229 => 0.0045286750935772
1230 => 0.0048533475584189
1231 => 0.0049126683463672
]
'min_raw' => 0.0020475534701031
'max_raw' => 0.0053789361654518
'avg_raw' => 0.0037132448177774
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002047'
'max' => '$0.005378'
'avg' => '$0.003713'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.938826179577E-5
'max_diff' => -0.00097003670391653
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047329818102726
102 => 0.0046993697959222
103 => 0.004855551156484
104 => 0.0047613547036704
105 => 0.0048037713606046
106 => 0.0047120897489837
107 => 0.0048983797056659
108 => 0.004896960488317
109 => 0.0048244894876182
110 => 0.0048857414811489
111 => 0.0048750974399354
112 => 0.0047932778586345
113 => 0.0049009735323321
114 => 0.0049010269480426
115 => 0.0048312751855254
116 => 0.0047498203975295
117 => 0.004735258205312
118 => 0.0047242875496314
119 => 0.0048010732518206
120 => 0.0048699190723008
121 => 0.004998024075888
122 => 0.0050302327174897
123 => 0.0051559451899116
124 => 0.0050810895334135
125 => 0.0051142720763961
126 => 0.0051502964207609
127 => 0.0051675678162008
128 => 0.0051394250041657
129 => 0.0053347082191549
130 => 0.0053511961058231
131 => 0.0053567243516033
201 => 0.0052908759502575
202 => 0.0053493647426628
203 => 0.0053219997736416
204 => 0.0053931958208274
205 => 0.0054043602701029
206 => 0.0053949043787534
207 => 0.0053984481511723
208 => 0.0052318083774988
209 => 0.0052231672261389
210 => 0.0051053445141998
211 => 0.0051533581402165
212 => 0.0050635989677313
213 => 0.0050920625259483
214 => 0.0051046089911996
215 => 0.005098055429758
216 => 0.0051560727585925
217 => 0.0051067461769259
218 => 0.0049765652178671
219 => 0.004846348791093
220 => 0.0048447140299268
221 => 0.004810430343268
222 => 0.0047856495171842
223 => 0.004790423183435
224 => 0.0048072462059418
225 => 0.0047846717325335
226 => 0.00478948914099
227 => 0.0048694902195929
228 => 0.0048855338653651
229 => 0.004831011288374
301 => 0.0046120952741846
302 => 0.0045583727351933
303 => 0.004596987430856
304 => 0.0045785320934341
305 => 0.0036952327391799
306 => 0.0039027508202974
307 => 0.0037794506231456
308 => 0.0038362730267625
309 => 0.0037104154539017
310 => 0.0037704812844314
311 => 0.0037593893187855
312 => 0.004093072252316
313 => 0.0040878622522748
314 => 0.0040903560035875
315 => 0.0039713227559997
316 => 0.0041609459515119
317 => 0.0042543611562508
318 => 0.0042370724880188
319 => 0.004241423673343
320 => 0.0041666558933056
321 => 0.0040910799191325
322 => 0.0040072545327155
323 => 0.0041629917395474
324 => 0.0041456764206704
325 => 0.004185391532319
326 => 0.004286398243275
327 => 0.0043012718651504
328 => 0.0043212621637844
329 => 0.0043140970647304
330 => 0.0044847987932063
331 => 0.0044641256875616
401 => 0.0045139419241068
402 => 0.0044114661459662
403 => 0.00429550507591
404 => 0.0043175454842747
405 => 0.0043154228157114
406 => 0.0042883988086151
407 => 0.0042640027433336
408 => 0.0042233901681887
409 => 0.0043518943654774
410 => 0.0043466773297437
411 => 0.0044311350741318
412 => 0.0044162063474324
413 => 0.0043165086568551
414 => 0.0043200693793782
415 => 0.004344016949571
416 => 0.0044268997634368
417 => 0.0044515050256845
418 => 0.0044401068878612
419 => 0.0044670854346428
420 => 0.0044884081780151
421 => 0.0044697632429197
422 => 0.0047337362051827
423 => 0.0046241162271203
424 => 0.004677544241697
425 => 0.0046902865083574
426 => 0.0046576474602478
427 => 0.0046647257010661
428 => 0.0046754473072006
429 => 0.0047405468001438
430 => 0.0049113867063166
501 => 0.004987050537814
502 => 0.0052146889080616
503 => 0.0049807677098996
504 => 0.0049668877940628
505 => 0.0050078923385646
506 => 0.0051415401598686
507 => 0.0052498491661339
508 => 0.0052857815120086
509 => 0.0052905305646943
510 => 0.0053579420342925
511 => 0.0053965810315166
512 => 0.0053497565087856
513 => 0.0053100776285029
514 => 0.0051679528044543
515 => 0.005184404139831
516 => 0.0052977375265719
517 => 0.0054578276106467
518 => 0.0055952015573172
519 => 0.0055470979891586
520 => 0.0059140942583821
521 => 0.0059504804394302
522 => 0.0059454530457155
523 => 0.006028346181133
524 => 0.0058638201882227
525 => 0.0057934821387126
526 => 0.0053186566527945
527 => 0.0054520632464576
528 => 0.0056459775650414
529 => 0.0056203122778355
530 => 0.0054794865163353
531 => 0.005595094728349
601 => 0.0055568710380542
602 => 0.0055267224276164
603 => 0.0056648390566279
604 => 0.0055129741495113
605 => 0.0056444625964223
606 => 0.0054758273031851
607 => 0.005547317722206
608 => 0.0055067363027673
609 => 0.0055329974546159
610 => 0.0053794752975125
611 => 0.0054623121269458
612 => 0.0053760290130659
613 => 0.0053759881036355
614 => 0.0053740833991144
615 => 0.0054755950999562
616 => 0.0054789053928762
617 => 0.0054038880925785
618 => 0.0053930769276151
619 => 0.0054330514708457
620 => 0.0053862517500721
621 => 0.0054081490448681
622 => 0.0053869149968244
623 => 0.0053821347653523
624 => 0.005344045067693
625 => 0.0053276349786433
626 => 0.0053340697973956
627 => 0.0053121044436177
628 => 0.0052988695234449
629 => 0.0053714506403739
630 => 0.0053326734775126
701 => 0.0053655074840226
702 => 0.0053280889896225
703 => 0.0051983801855698
704 => 0.0051237832807133
705 => 0.0048787753738702
706 => 0.0049482593123196
707 => 0.0049943272353978
708 => 0.0049791017870953
709 => 0.0050118119415155
710 => 0.005013820079336
711 => 0.0050031856746935
712 => 0.004990872396469
713 => 0.0049848789735963
714 => 0.00502954903737
715 => 0.0050554815129159
716 => 0.004998950767788
717 => 0.0049857064051538
718 => 0.005042862109626
719 => 0.0050777270563363
720 => 0.0053351502339237
721 => 0.0053160794934621
722 => 0.0053639433095769
723 => 0.0053585545784125
724 => 0.0054087234830047
725 => 0.0054907284390518
726 => 0.0053239894344616
727 => 0.0053529295602575
728 => 0.0053458341097375
729 => 0.0054233003779883
730 => 0.0054235422192221
731 => 0.0053770973216786
801 => 0.0054022758541193
802 => 0.0053882218880478
803 => 0.0054136193042465
804 => 0.0053158247920964
805 => 0.0054349279516299
806 => 0.0055024517682474
807 => 0.0055033893365066
808 => 0.0055353950896811
809 => 0.0055679147885547
810 => 0.0056303335186736
811 => 0.0055661739640495
812 => 0.0054507571710875
813 => 0.0054590898907454
814 => 0.0053914210672612
815 => 0.0053925585924093
816 => 0.0053864863940191
817 => 0.0054047095184819
818 => 0.0053198237431408
819 => 0.0053397462649461
820 => 0.0053118546177526
821 => 0.0053528689292637
822 => 0.0053087443099863
823 => 0.0053458306880964
824 => 0.0053618359394558
825 => 0.0054208956615405
826 => 0.0053000211410144
827 => 0.0050535498111761
828 => 0.0051053610728841
829 => 0.0050287281471311
830 => 0.0050358208161717
831 => 0.0050501491364235
901 => 0.0050037063625526
902 => 0.0050125661802272
903 => 0.0050122496451943
904 => 0.0050095219172867
905 => 0.0049974403580979
906 => 0.0049799197070104
907 => 0.0050497165883708
908 => 0.0050615764385955
909 => 0.0050879394165202
910 => 0.0051663777566456
911 => 0.0051585399167636
912 => 0.0051713237587999
913 => 0.0051434167034128
914 => 0.0050371153444317
915 => 0.0050428880196557
916 => 0.0049709026671123
917 => 0.0050860985892106
918 => 0.0050588186743458
919 => 0.0050412311357662
920 => 0.0050364322129173
921 => 0.0051150649865161
922 => 0.0051385931447946
923 => 0.0051239319754714
924 => 0.0050938614894549
925 => 0.0051516057121477
926 => 0.0051670556301071
927 => 0.0051705142969672
928 => 0.0052728259882223
929 => 0.0051762323839672
930 => 0.0051994834245693
1001 => 0.0053808814060443
1002 => 0.0052163784680568
1003 => 0.0053035193431621
1004 => 0.0052992542507849
1005 => 0.0053438325738023
1006 => 0.0052955975271537
1007 => 0.0052961954583661
1008 => 0.0053357779892084
1009 => 0.0052801914633874
1010 => 0.0052664274578791
1011 => 0.005247412582849
1012 => 0.0052889308668319
1013 => 0.0053138192003692
1014 => 0.005514400890213
1015 => 0.0056439858094885
1016 => 0.0056383601863868
1017 => 0.0056897678508108
1018 => 0.0056666082271475
1019 => 0.0055918196931389
1020 => 0.0057194746012015
1021 => 0.0056790792469823
1022 => 0.0056824093909038
1023 => 0.0056822854427807
1024 => 0.0057091448219133
1025 => 0.0056901124901719
1026 => 0.0056525978106808
1027 => 0.0056775018056638
1028 => 0.0057514577674221
1029 => 0.005981019341966
1030 => 0.0061094850403671
1031 => 0.005973285545616
1101 => 0.0060672341333114
1102 => 0.0060108984579987
1103 => 0.0060006605899533
1104 => 0.0060596672457721
1105 => 0.0061187771849307
1106 => 0.0061150121373456
1107 => 0.0060721013568454
1108 => 0.0060478621457616
1109 => 0.0062314095728197
1110 => 0.0063666441904273
1111 => 0.0063574220961309
1112 => 0.0063981254211697
1113 => 0.0065176316423902
1114 => 0.0065285577935579
1115 => 0.0065271813496454
1116 => 0.0065000997439504
1117 => 0.0066177691385858
1118 => 0.0067159310177867
1119 => 0.0064938311346948
1120 => 0.0065784038626752
1121 => 0.0066163712850288
1122 => 0.0066721187254703
1123 => 0.0067661740018512
1124 => 0.0068683429789307
1125 => 0.0068827907925155
1126 => 0.0068725393773855
1127 => 0.0068051561905521
1128 => 0.0069169507044019
1129 => 0.0069824373087111
1130 => 0.007021433082943
1201 => 0.0071203198781169
1202 => 0.0066166057589035
1203 => 0.0062600518691082
1204 => 0.0062043708305161
1205 => 0.0063176004120419
1206 => 0.0063474581497012
1207 => 0.0063354225330892
1208 => 0.0059340887136631
1209 => 0.0062022578910147
1210 => 0.0064907853775403
1211 => 0.0065018688933629
1212 => 0.0066463117859428
1213 => 0.0066933483126811
1214 => 0.0068096437737706
1215 => 0.0068023694610156
1216 => 0.006830685555126
1217 => 0.0068241761754564
1218 => 0.0070395890282263
1219 => 0.0072772213939497
1220 => 0.0072689929407493
1221 => 0.007234830476638
1222 => 0.007285567561409
1223 => 0.0075308296290675
1224 => 0.007508249828122
1225 => 0.0075301841813977
1226 => 0.0078193619815314
1227 => 0.0081953342567677
1228 => 0.0080206573879211
1229 => 0.0083996559314031
1230 => 0.0086382154246754
1231 => 0.0090507794007779
]
'min_raw' => 0.0036952327391799
'max_raw' => 0.0090507794007779
'avg_raw' => 0.0063730060699789
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003695'
'max' => '$0.00905'
'avg' => '$0.006373'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016476792690768
'max_diff' => 0.0036718432353262
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089991243590495
102 => 0.0091597324874119
103 => 0.008906651053623
104 => 0.0083255249254472
105 => 0.0082335594912019
106 => 0.0084176766194967
107 => 0.0088703106135227
108 => 0.0084034215642372
109 => 0.00849787261083
110 => 0.0084706707030572
111 => 0.0084692212289927
112 => 0.0085245417585994
113 => 0.0084442964450801
114 => 0.0081173626019461
115 => 0.0082671944556212
116 => 0.0082093371814006
117 => 0.0082735341406938
118 => 0.0086199786531592
119 => 0.0084668072759926
120 => 0.0083054536727798
121 => 0.0085078268984396
122 => 0.0087655175576897
123 => 0.0087493917393484
124 => 0.0087181009116973
125 => 0.0088944856688324
126 => 0.0091858216117347
127 => 0.0092645685464186
128 => 0.009322697923692
129 => 0.0093307129827141
130 => 0.0094132730719735
131 => 0.0089693266642045
201 => 0.0096738810146862
202 => 0.0097955380880933
203 => 0.0097726716004618
204 => 0.0099078883174415
205 => 0.009868104129189
206 => 0.0098104630823591
207 => 0.010024810340192
208 => 0.0097790785060183
209 => 0.0094302931041858
210 => 0.0092389425345475
211 => 0.0094909284004574
212 => 0.0096448073756738
213 => 0.0097465115897508
214 => 0.0097772872234792
215 => 0.0090037889600863
216 => 0.0085869162962979
217 => 0.0088541268943314
218 => 0.0091801422658227
219 => 0.008967515632355
220 => 0.0089758501938314
221 => 0.0086727004918027
222 => 0.009206964287801
223 => 0.0091291265465898
224 => 0.0095329488856859
225 => 0.0094365734435838
226 => 0.0097658748848237
227 => 0.0096791587792522
228 => 0.010039112485247
301 => 0.010182707763927
302 => 0.010423826585649
303 => 0.010601194572439
304 => 0.01070534844679
305 => 0.010699095438846
306 => 0.011111804978281
307 => 0.010868444581849
308 => 0.010562726568289
309 => 0.010557197093951
310 => 0.010715532785232
311 => 0.011047360956881
312 => 0.011133399173886
313 => 0.011181482799642
314 => 0.011107841052993
315 => 0.010843690784463
316 => 0.010729632037784
317 => 0.010826813394554
318 => 0.010707968946113
319 => 0.010913127805985
320 => 0.011194854740158
321 => 0.011136679242321
322 => 0.011331151209434
323 => 0.011532409236348
324 => 0.011820217253899
325 => 0.011895460927187
326 => 0.012019835857872
327 => 0.012147858516582
328 => 0.012188975944253
329 => 0.012267481871664
330 => 0.012267068106675
331 => 0.012503651002988
401 => 0.012764609263983
402 => 0.012863114966311
403 => 0.013089623397178
404 => 0.01270173564712
405 => 0.012995952961272
406 => 0.013261344343375
407 => 0.01294493379683
408 => 0.01338103202104
409 => 0.013397964726866
410 => 0.013653628481408
411 => 0.013394464286931
412 => 0.013240573415532
413 => 0.013684850595045
414 => 0.013899822327612
415 => 0.013835071092265
416 => 0.013342310994111
417 => 0.013055503481511
418 => 0.012304872899998
419 => 0.013194027248628
420 => 0.013627108394857
421 => 0.013341189418567
422 => 0.013485390319294
423 => 0.014272103676363
424 => 0.014571633186817
425 => 0.014509333142512
426 => 0.014519860824454
427 => 0.01468148151145
428 => 0.015398196643727
429 => 0.01496872432314
430 => 0.015297039820208
501 => 0.015471177176024
502 => 0.015632925656885
503 => 0.015235722509021
504 => 0.014718967049724
505 => 0.014555288903845
506 => 0.013312760411222
507 => 0.013248081407153
508 => 0.013211775122195
509 => 0.012982869131159
510 => 0.012803011724833
511 => 0.012659982437646
512 => 0.012284630875904
513 => 0.012411301009431
514 => 0.011813068961974
515 => 0.012195796625895
516 => 0.011241003833336
517 => 0.0120361836428
518 => 0.011603403424898
519 => 0.011894003701633
520 => 0.011892989824643
521 => 0.011357902580274
522 => 0.011049275424707
523 => 0.011245944660183
524 => 0.011456789692236
525 => 0.011490998589319
526 => 0.011764364676994
527 => 0.01184065527608
528 => 0.011609491199182
529 => 0.01122121787494
530 => 0.01131140491259
531 => 0.011047447787267
601 => 0.010584873078104
602 => 0.010917102310005
603 => 0.011030539976864
604 => 0.01108064051295
605 => 0.010625751413552
606 => 0.010482815382399
607 => 0.010406717438762
608 => 0.01116249740446
609 => 0.011203900737058
610 => 0.010992075433647
611 => 0.011949545891166
612 => 0.011732840838191
613 => 0.011974953476391
614 => 0.011303221384219
615 => 0.011328882454747
616 => 0.011010873717329
617 => 0.011188937360931
618 => 0.011063087716892
619 => 0.011174551578187
620 => 0.011241362557065
621 => 0.011559319112379
622 => 0.012039814195921
623 => 0.011511827005932
624 => 0.011281775426338
625 => 0.011424498132459
626 => 0.011804587506637
627 => 0.012380442364935
628 => 0.012039524698664
629 => 0.012190818169797
630 => 0.012223869062662
701 => 0.011972488997012
702 => 0.01238971110652
703 => 0.012613303824512
704 => 0.012842663687178
705 => 0.013041810429414
706 => 0.012751052314298
707 => 0.01306220517601
708 => 0.012811470895344
709 => 0.012586536325153
710 => 0.012586877458047
711 => 0.012445772716396
712 => 0.012172364499107
713 => 0.012121943829004
714 => 0.012384238522308
715 => 0.012594574026937
716 => 0.012611898266538
717 => 0.012728350809329
718 => 0.012797266224596
719 => 0.013472730980181
720 => 0.013744408492614
721 => 0.014076610612226
722 => 0.0142060220597
723 => 0.014595504120026
724 => 0.014280965724126
725 => 0.014212913363634
726 => 0.013268157283895
727 => 0.013422861039026
728 => 0.013670556677683
729 => 0.013272241693744
730 => 0.013524880871582
731 => 0.013574757196917
801 => 0.013258707103007
802 => 0.013427523113883
803 => 0.012979197839456
804 => 0.012049586461772
805 => 0.012390746029727
806 => 0.012641954304811
807 => 0.012283449122509
808 => 0.012926055785718
809 => 0.012550658239166
810 => 0.012431675239169
811 => 0.011967480135678
812 => 0.012186562356018
813 => 0.012482874195982
814 => 0.012299787928833
815 => 0.012679719423709
816 => 0.013217803744482
817 => 0.01360127467494
818 => 0.013630712811403
819 => 0.013384166693675
820 => 0.01377925842077
821 => 0.013782136232671
822 => 0.013336471150511
823 => 0.013063503769161
824 => 0.01300148500579
825 => 0.013156420036186
826 => 0.01334453976567
827 => 0.013641152147143
828 => 0.013820388797153
829 => 0.014287742920606
830 => 0.01441419554632
831 => 0.014553128643938
901 => 0.014738786107737
902 => 0.014961715494625
903 => 0.014473958687492
904 => 0.014493338174732
905 => 0.014039145789383
906 => 0.01355377608786
907 => 0.013922111189128
908 => 0.014403660336471
909 => 0.014293192430006
910 => 0.014280762533874
911 => 0.014301666171402
912 => 0.014218376977472
913 => 0.013841663040168
914 => 0.013652479659208
915 => 0.013896574486475
916 => 0.014026300023756
917 => 0.014227493018823
918 => 0.014202691735512
919 => 0.014720943284256
920 => 0.014922320164984
921 => 0.014870799341491
922 => 0.014880280412932
923 => 0.015244863636477
924 => 0.015650355163317
925 => 0.016030151487523
926 => 0.016416496621137
927 => 0.015950742483258
928 => 0.015714261255765
929 => 0.015958249518866
930 => 0.015828785912081
1001 => 0.016572722198066
1002 => 0.016624230732412
1003 => 0.017368113223336
1004 => 0.018074146287102
1005 => 0.017630699569647
1006 => 0.018048849850928
1007 => 0.018501113472427
1008 => 0.019373603375426
1009 => 0.019079779470661
1010 => 0.018854714964418
1011 => 0.018642030093523
1012 => 0.019084593547084
1013 => 0.019653944359966
1014 => 0.019776577071887
1015 => 0.0199752889145
1016 => 0.01976636770932
1017 => 0.020017990289043
1018 => 0.020906328564028
1019 => 0.020666291720548
1020 => 0.020325400814959
1021 => 0.021026658566144
1022 => 0.021280441020228
1023 => 0.02306161918989
1024 => 0.025310430205889
1025 => 0.024379407678776
1026 => 0.023801491952288
1027 => 0.023937315856357
1028 => 0.024758505512343
1029 => 0.025022245566588
1030 => 0.0243053091825
1031 => 0.024558543233625
1101 => 0.025953887752744
1102 => 0.02670244531924
1103 => 0.025685803599245
1104 => 0.022880929414373
1105 => 0.020294707318678
1106 => 0.020980689877555
1107 => 0.020902920743896
1108 => 0.022402044356917
1109 => 0.020660566921217
1110 => 0.020689888934966
1111 => 0.022220012836704
1112 => 0.021811802012685
1113 => 0.021150552757466
1114 => 0.020299535170024
1115 => 0.018726350450037
1116 => 0.017332936872043
1117 => 0.020065741782471
1118 => 0.01994789826545
1119 => 0.019777243389373
1120 => 0.020157017349296
1121 => 0.022001091897964
1122 => 0.021958580010931
1123 => 0.021688141075378
1124 => 0.021893266624455
1125 => 0.021114593256946
1126 => 0.021315275113816
1127 => 0.020294297647885
1128 => 0.020755822102271
1129 => 0.021149134013547
1130 => 0.021228097202818
1201 => 0.021406005300206
1202 => 0.019885800086831
1203 => 0.020568327596756
1204 => 0.020969248564658
1205 => 0.019157873046048
1206 => 0.020933443494671
1207 => 0.019859336696217
1208 => 0.01949476871628
1209 => 0.019985611473087
1210 => 0.019794329573399
1211 => 0.019629876628497
1212 => 0.019538109059582
1213 => 0.019898529807843
1214 => 0.01988171574914
1215 => 0.019291997450333
1216 => 0.018522733969531
1217 => 0.018780924043901
1218 => 0.018687121169337
1219 => 0.018347167451107
1220 => 0.018576255211026
1221 => 0.017567468655007
1222 => 0.01583190381754
1223 => 0.016978471110959
1224 => 0.016934329517388
1225 => 0.016912071324247
1226 => 0.01777368495646
1227 => 0.017690860686531
1228 => 0.017540533825593
1229 => 0.018344406580419
1230 => 0.018050982211293
1231 => 0.018955246977462
]
'min_raw' => 0.0081173626019461
'max_raw' => 0.02670244531924
'avg_raw' => 0.017409903960593
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008117'
'max' => '$0.0267024'
'avg' => '$0.0174099'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044221298627662
'max_diff' => 0.017651665918463
'year' => 2029
]
4 => [
'items' => [
101 => 0.019550854236639
102 => 0.019399788969835
103 => 0.019959960475911
104 => 0.018786872221744
105 => 0.019176525083646
106 => 0.019256831998449
107 => 0.018334486915406
108 => 0.017704411761397
109 => 0.017662392932007
110 => 0.016569929444659
111 => 0.017153514621543
112 => 0.017667045426806
113 => 0.017421104022685
114 => 0.017343246321431
115 => 0.017741004431863
116 => 0.017771913643611
117 => 0.017067180340137
118 => 0.01721371670993
119 => 0.017824797731614
120 => 0.017198319036056
121 => 0.015981173265301
122 => 0.015679304285797
123 => 0.015639029399382
124 => 0.014820336785436
125 => 0.01569947661445
126 => 0.015315708519603
127 => 0.016528027332978
128 => 0.015835557328574
129 => 0.015805706330707
130 => 0.01576058216924
131 => 0.015055899616651
201 => 0.015210180310756
202 => 0.015723032835572
203 => 0.015906024394124
204 => 0.015886936875362
205 => 0.015720519578415
206 => 0.015796704564763
207 => 0.015551286179128
208 => 0.015464623839218
209 => 0.015191093656109
210 => 0.01478907985158
211 => 0.014844982336794
212 => 0.014048487797388
213 => 0.013614515299156
214 => 0.01349439743131
215 => 0.013333770798356
216 => 0.013512540636914
217 => 0.014046231428433
218 => 0.013402487105043
219 => 0.012298832616006
220 => 0.012365164131333
221 => 0.012514191352268
222 => 0.012236480111968
223 => 0.011973649729562
224 => 0.012202159422961
225 => 0.011734526466736
226 => 0.012570702560885
227 => 0.012548086340895
228 => 0.012859761080011
301 => 0.01305465769059
302 => 0.012605484101733
303 => 0.01249251815883
304 => 0.012556868693923
305 => 0.011493297691417
306 => 0.012772844638502
307 => 0.012783910213635
308 => 0.012689160041243
309 => 0.013370479288985
310 => 0.014808275410525
311 => 0.014267318674387
312 => 0.01405784387565
313 => 0.013659632130127
314 => 0.014190225637563
315 => 0.01414948433474
316 => 0.013965236712694
317 => 0.013853803175993
318 => 0.014059122884103
319 => 0.013828361791986
320 => 0.013786910758951
321 => 0.013535762597927
322 => 0.013446114130955
323 => 0.013379741975017
324 => 0.013306672752923
325 => 0.013467845249147
326 => 0.013102607168695
327 => 0.0126621658484
328 => 0.012625547918259
329 => 0.012726653242861
330 => 0.012681921663131
331 => 0.012625333760665
401 => 0.012517292044059
402 => 0.012485238374688
403 => 0.012589397249914
404 => 0.012471807952624
405 => 0.012645317366196
406 => 0.012598132406418
407 => 0.012334561056746
408 => 0.012006053568444
409 => 0.01200312916273
410 => 0.011932352763235
411 => 0.011842208377176
412 => 0.011817132271199
413 => 0.012182914973948
414 => 0.012940074221686
415 => 0.01279142574407
416 => 0.012898839503256
417 => 0.013427208887148
418 => 0.013595161625665
419 => 0.013475952750044
420 => 0.013312772288611
421 => 0.013319951400759
422 => 0.013877588435562
423 => 0.013912367573411
424 => 0.01400024323458
425 => 0.014113188292842
426 => 0.013495187781854
427 => 0.013290843632267
428 => 0.013194014037611
429 => 0.012895816363839
430 => 0.013217396989466
501 => 0.013030025730369
502 => 0.013055308514734
503 => 0.013038843068249
504 => 0.013047834315418
505 => 0.012570468832626
506 => 0.012744395724964
507 => 0.012455208532776
508 => 0.012068019345221
509 => 0.012066721351299
510 => 0.012161485356422
511 => 0.012105116018059
512 => 0.011953427577911
513 => 0.011974974204885
514 => 0.011786203080169
515 => 0.011997894437237
516 => 0.01200396498789
517 => 0.011922452284513
518 => 0.012248592027854
519 => 0.012382211746805
520 => 0.012328558339271
521 => 0.012378447280704
522 => 0.012797602759422
523 => 0.012865943391489
524 => 0.012896295785924
525 => 0.012855627598303
526 => 0.0123861086734
527 => 0.012406933834268
528 => 0.01225413262153
529 => 0.012125031698561
530 => 0.012130195058434
531 => 0.012196569714785
601 => 0.012486431731894
602 => 0.013096429258598
603 => 0.013119578218834
604 => 0.013147635433943
605 => 0.013033512639669
606 => 0.012999092112908
607 => 0.013044501672397
608 => 0.013273584671282
609 => 0.013862848339839
610 => 0.013654563203774
611 => 0.013485224146001
612 => 0.01363378015315
613 => 0.01361091112027
614 => 0.013417873468181
615 => 0.013412455544219
616 => 0.01304195457199
617 => 0.012904988798455
618 => 0.01279052994638
619 => 0.012665543867937
620 => 0.012591447931065
621 => 0.012705292966102
622 => 0.012731330672589
623 => 0.012482406513811
624 => 0.012448479070776
625 => 0.012651755912236
626 => 0.012562301353234
627 => 0.012654307585533
628 => 0.012675653820642
629 => 0.012672216585144
630 => 0.012578815751755
701 => 0.012638346657704
702 => 0.012497538318118
703 => 0.012344430397547
704 => 0.012246757083183
705 => 0.012161524161915
706 => 0.012208816340401
707 => 0.01204022835931
708 => 0.011986293671153
709 => 0.012618178926257
710 => 0.013084959358113
711 => 0.013078172185768
712 => 0.01303685701964
713 => 0.012975471063249
714 => 0.013269093906222
715 => 0.013166801578904
716 => 0.013241227793838
717 => 0.013260172389197
718 => 0.013317511973602
719 => 0.013338005946522
720 => 0.013276058926376
721 => 0.013068157160574
722 => 0.012550085726902
723 => 0.012308922076021
724 => 0.012229334054332
725 => 0.012232226927761
726 => 0.012152428564227
727 => 0.0121759327586
728 => 0.012144254764624
729 => 0.012084264307764
730 => 0.012205112098738
731 => 0.012219038680873
801 => 0.012190831362436
802 => 0.012197475207048
803 => 0.011963930657893
804 => 0.011981686542733
805 => 0.011882819519635
806 => 0.011864283144664
807 => 0.011614355919607
808 => 0.011171573612888
809 => 0.011416917992729
810 => 0.011120576482522
811 => 0.0110083474623
812 => 0.011539622188837
813 => 0.01148629694156
814 => 0.011395027298149
815 => 0.011260020473284
816 => 0.01120994512868
817 => 0.010905703186791
818 => 0.010887726949797
819 => 0.01103851747142
820 => 0.010968932834076
821 => 0.010871209649482
822 => 0.010517266180922
823 => 0.010119316535606
824 => 0.010131328133976
825 => 0.010257908512034
826 => 0.01062595803293
827 => 0.010482154717795
828 => 0.010377823762711
829 => 0.010358285711001
830 => 0.010602845333835
831 => 0.010948948436971
901 => 0.011111332269342
902 => 0.010950414823133
903 => 0.010765561525338
904 => 0.010776812689047
905 => 0.010851661640593
906 => 0.010859527207094
907 => 0.010739206713456
908 => 0.010773076227633
909 => 0.010721625338504
910 => 0.010405871326888
911 => 0.010400160338084
912 => 0.010322669211413
913 => 0.010320322810894
914 => 0.010188491073358
915 => 0.010170046901967
916 => 0.0099082869854737
917 => 0.010080578155191
918 => 0.0099650142842372
919 => 0.0097908322719479
920 => 0.0097608032273761
921 => 0.0097599005180351
922 => 0.0099387464982709
923 => 0.010078488235783
924 => 0.0099670245672496
925 => 0.009941646450557
926 => 0.010212618342267
927 => 0.010178134699083
928 => 0.010148272086482
929 => 0.010917958700177
930 => 0.010308691686042
1001 => 0.010043016492133
1002 => 0.0097141929893206
1003 => 0.0098212595799084
1004 => 0.0098438200836808
1005 => 0.0090530588343076
1006 => 0.0087322470939199
1007 => 0.0086221565941543
1008 => 0.0085587979550879
1009 => 0.0085876712825182
1010 => 0.0082989030887052
1011 => 0.0084929600907326
1012 => 0.0082429112438584
1013 => 0.0082009897409506
1014 => 0.0086481080542698
1015 => 0.0087103219555409
1016 => 0.0084448981243744
1017 => 0.0086153431921983
1018 => 0.0085535374412417
1019 => 0.0082471976136544
1020 => 0.0082354976855238
1021 => 0.0080817871284061
1022 => 0.0078412598707457
1023 => 0.007731332459787
1024 => 0.0076740813097261
1025 => 0.0076977042500439
1026 => 0.0076857597685453
1027 => 0.0076078139472086
1028 => 0.0076902275317842
1029 => 0.0074796948788377
1030 => 0.0073958590800575
1031 => 0.0073579923947242
1101 => 0.0071711325474267
1102 => 0.0074685096614283
1103 => 0.0075270966991448
1104 => 0.007585799171424
1105 => 0.0080967641147347
1106 => 0.0080712377501388
1107 => 0.0083019836542416
1108 => 0.0082930172927227
1109 => 0.0082272048230368
1110 => 0.0079495528390575
1111 => 0.0080602199712009
1112 => 0.0077196037399544
1113 => 0.0079748165800567
1114 => 0.007858348097777
1115 => 0.0079354384690412
1116 => 0.0077968230305497
1117 => 0.007873538537502
1118 => 0.0075409898592231
1119 => 0.0072304605825324
1120 => 0.0073554266283875
1121 => 0.0074912790118327
1122 => 0.0077858415936855
1123 => 0.0076104025500225
1124 => 0.0076734970642084
1125 => 0.0074621410035797
1126 => 0.0070260530796287
1127 => 0.0070285212899192
1128 => 0.0069614386635112
1129 => 0.0069034694800709
1130 => 0.0076305538346145
1201 => 0.0075401294016243
1202 => 0.0073960499021116
1203 => 0.0075889060377011
1204 => 0.0076399002609894
1205 => 0.007641351994837
1206 => 0.0077820548530257
1207 => 0.0078571479936634
1208 => 0.0078703834851731
1209 => 0.0080917824726195
1210 => 0.0081659924928883
1211 => 0.0084716530637802
1212 => 0.0078507768653269
1213 => 0.0078379903285986
1214 => 0.0075916199190274
1215 => 0.0074353679103152
1216 => 0.0076023186277433
1217 => 0.0077502141723391
1218 => 0.0075962154458552
1219 => 0.0076163244284435
1220 => 0.0074095937202971
1221 => 0.0074834902208755
1222 => 0.0075471398421073
1223 => 0.0075119962624149
1224 => 0.007459384622647
1225 => 0.0077380884242608
1226 => 0.0077223628635247
1227 => 0.0079818982509602
1228 => 0.0081842246450197
1229 => 0.0085468297133436
1230 => 0.0081684324215179
1231 => 0.0081546421202108
]
'min_raw' => 0.0069034694800709
'max_raw' => 0.019959960475911
'avg_raw' => 0.013431714977991
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0069034'
'max' => '$0.019959'
'avg' => '$0.013431'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012138931218752
'max_diff' => -0.0067424848433296
'year' => 2030
]
5 => [
'items' => [
101 => 0.008289444527522
102 => 0.0081659718553421
103 => 0.008244002322028
104 => 0.0085342577988141
105 => 0.00854039043966
106 => 0.0084376608040298
107 => 0.0084314096963656
108 => 0.0084511400466275
109 => 0.0085667013243775
110 => 0.0085263206630922
111 => 0.0085730501866448
112 => 0.0086314861713951
113 => 0.0088732021806666
114 => 0.0089314790921762
115 => 0.0087898964103221
116 => 0.0088026797412595
117 => 0.0087497239317145
118 => 0.0086985692832284
119 => 0.0088135574624887
120 => 0.0090237006201851
121 => 0.0090223933305075
122 => 0.0090711424584938
123 => 0.0091015127613697
124 => 0.0089711411890059
125 => 0.0088862740892927
126 => 0.0089188175355566
127 => 0.0089708552148367
128 => 0.0089019424175124
129 => 0.0084765807089141
130 => 0.0086056082790917
131 => 0.0085841317822883
201 => 0.008553546639209
202 => 0.0086832848587633
203 => 0.0086707712909888
204 => 0.008295941353499
205 => 0.0083199367499643
206 => 0.0082974005930332
207 => 0.0083702195265414
208 => 0.0081620393939613
209 => 0.0082260742006283
210 => 0.0082662362310809
211 => 0.0082898919755567
212 => 0.0083753527454991
213 => 0.0083653249105309
214 => 0.0083747294011978
215 => 0.0085014451622156
216 => 0.0091423299978459
217 => 0.0091772119454165
218 => 0.0090054404781056
219 => 0.009074059791254
220 => 0.0089423257154033
221 => 0.0090307596830635
222 => 0.0090912639577573
223 => 0.0088178567747188
224 => 0.0088016673757372
225 => 0.0086693895864951
226 => 0.0087404681778369
227 => 0.0086273770282805
228 => 0.0086551256406212
301 => 0.0085775381014362
302 => 0.0087171802244442
303 => 0.0088733218161593
304 => 0.0089127693484448
305 => 0.008808999874232
306 => 0.0087338639361604
307 => 0.0086019499802232
308 => 0.008821325828841
309 => 0.0088854780123346
310 => 0.0088209888647315
311 => 0.0088060453201161
312 => 0.0087777273300724
313 => 0.0088120531155717
314 => 0.0088851286257659
315 => 0.0088506675646511
316 => 0.0088734297026432
317 => 0.0087866839048321
318 => 0.0089711843474212
319 => 0.0092642154527021
320 => 0.009265157595621
321 => 0.0092306963487482
322 => 0.0092165955490058
323 => 0.0092519548795806
324 => 0.0092711358659017
325 => 0.0093854814571884
326 => 0.0095081788323683
327 => 0.010080753945274
328 => 0.0099199771447664
329 => 0.010427999847582
330 => 0.010829779847018
331 => 0.010950256101138
401 => 0.010839423616193
402 => 0.010460271672249
403 => 0.010441668669039
404 => 0.011008281747114
405 => 0.010848187600035
406 => 0.010829144910655
407 => 0.010626562868786
408 => 0.010746313945805
409 => 0.010720122628618
410 => 0.010678778353117
411 => 0.010907255066136
412 => 0.01133494307665
413 => 0.011268283889378
414 => 0.011218525898311
415 => 0.011000500865787
416 => 0.01113180063302
417 => 0.01108504730079
418 => 0.01128592928645
419 => 0.011166931248226
420 => 0.010846974729413
421 => 0.010897928859625
422 => 0.010890227245349
423 => 0.011048725921406
424 => 0.011001148553033
425 => 0.010880937000584
426 => 0.011333481285525
427 => 0.011304095576845
428 => 0.011345757793246
429 => 0.011364098789352
430 => 0.011639554520871
501 => 0.011752399920474
502 => 0.01177801780182
503 => 0.011885212203667
504 => 0.011775350707451
505 => 0.012214875022235
506 => 0.012507133044611
507 => 0.012846605777062
508 => 0.013342666680841
509 => 0.013529190169482
510 => 0.013495496370766
511 => 0.013871604086546
512 => 0.014547461291399
513 => 0.013632106435364
514 => 0.014595977321424
515 => 0.014290826927322
516 => 0.013567320832327
517 => 0.013520735569385
518 => 0.014010702296995
519 => 0.015097401341282
520 => 0.014825195555926
521 => 0.015097846572432
522 => 0.014779784678967
523 => 0.01476399022512
524 => 0.015082399016194
525 => 0.015826378512096
526 => 0.015472941741247
527 => 0.014966203463984
528 => 0.015340371122194
529 => 0.01501623246907
530 => 0.014285857362885
531 => 0.014824987405292
601 => 0.014464486499474
602 => 0.014569699829074
603 => 0.015327419112641
604 => 0.015236248323766
605 => 0.015354231766758
606 => 0.015145994078041
607 => 0.01495146724071
608 => 0.014588368453078
609 => 0.014480872802614
610 => 0.014510580733114
611 => 0.014480858080839
612 => 0.014277707646209
613 => 0.014233837329193
614 => 0.014160718212163
615 => 0.014183380883983
616 => 0.014045895552215
617 => 0.01430535877918
618 => 0.014353517440487
619 => 0.014542333139635
620 => 0.014561936611892
621 => 0.015087785646396
622 => 0.014798156834725
623 => 0.014992464846942
624 => 0.014975084109432
625 => 0.013583001403268
626 => 0.013774818117727
627 => 0.014073224730026
628 => 0.013938792955666
629 => 0.013748737878912
630 => 0.013595258214324
701 => 0.013362720828373
702 => 0.013690012733614
703 => 0.014120366785393
704 => 0.014572851100838
705 => 0.015116481357897
706 => 0.014995149413075
707 => 0.014562688311323
708 => 0.014582088200435
709 => 0.014702010681348
710 => 0.014546700172459
711 => 0.014500896071367
712 => 0.014695717901227
713 => 0.014697059532097
714 => 0.014518356021719
715 => 0.014319759772332
716 => 0.014318927646795
717 => 0.014283589362429
718 => 0.014786071281251
719 => 0.015062385529951
720 => 0.015094064513262
721 => 0.01506025328197
722 => 0.015073265882974
723 => 0.014912484709825
724 => 0.015279982793469
725 => 0.015617235376815
726 => 0.015526844480127
727 => 0.01539133567617
728 => 0.01528339638683
729 => 0.015501417413919
730 => 0.015491709280779
731 => 0.015614289769712
801 => 0.015608728810675
802 => 0.015567509602732
803 => 0.015526845952195
804 => 0.015688072730163
805 => 0.015641642007331
806 => 0.015595139164762
807 => 0.015501870594761
808 => 0.015514547342451
809 => 0.015379061935999
810 => 0.015316380187585
811 => 0.014373797085968
812 => 0.014121908081425
813 => 0.014201157489928
814 => 0.014227248452917
815 => 0.014117626035335
816 => 0.014274796422459
817 => 0.01425030158411
818 => 0.014345596671123
819 => 0.014286060437989
820 => 0.014288503825764
821 => 0.014463587192949
822 => 0.0145144146393
823 => 0.014488563389858
824 => 0.014506668718838
825 => 0.014923898383408
826 => 0.01486458166736
827 => 0.014833070844185
828 => 0.014841799557553
829 => 0.014948410682356
830 => 0.014978255976549
831 => 0.014851799367861
901 => 0.014911437035555
902 => 0.015165366655449
903 => 0.015254227651241
904 => 0.015537829294109
905 => 0.015417350275601
906 => 0.015638494728281
907 => 0.016318217382121
908 => 0.016861226871238
909 => 0.01636185290423
910 => 0.017359020679152
911 => 0.018135458827151
912 => 0.018105657837805
913 => 0.017970267887364
914 => 0.017086313698544
915 => 0.016272885874976
916 => 0.01695335278936
917 => 0.016955087439464
918 => 0.016896634728042
919 => 0.016533589957568
920 => 0.016884001556975
921 => 0.016911815957228
922 => 0.016896247289532
923 => 0.016617901715213
924 => 0.016192919470088
925 => 0.016275959983522
926 => 0.016411982038507
927 => 0.016154463911247
928 => 0.016072171266014
929 => 0.016225168950319
930 => 0.016718159367481
1001 => 0.016624962384816
1002 => 0.01662252863496
1003 => 0.017021264848474
1004 => 0.016735855772258
1005 => 0.016277007390329
1006 => 0.016161142122425
1007 => 0.015749898477564
1008 => 0.016033945927869
1009 => 0.016044168289926
1010 => 0.015888598404288
1011 => 0.016289631029154
1012 => 0.016285935442915
1013 => 0.016666656234397
1014 => 0.01739445139551
1015 => 0.017179206553744
1016 => 0.016928900221342
1017 => 0.016956115459916
1018 => 0.017254599454138
1019 => 0.017074129217505
1020 => 0.017139027572881
1021 => 0.017254501222705
1022 => 0.017324169342693
1023 => 0.016946091289581
1024 => 0.016857943209837
1025 => 0.016677623174453
1026 => 0.016630581043054
1027 => 0.016777447949373
1028 => 0.016738753708443
1029 => 0.016043309139978
1030 => 0.015970631313156
1031 => 0.015972860238345
1101 => 0.015790108387159
1102 => 0.015511367948632
1103 => 0.016243881178355
1104 => 0.016185050114493
1105 => 0.016120105173151
1106 => 0.016128060557894
1107 => 0.01644601972374
1108 => 0.016261587350227
1109 => 0.016751931043084
1110 => 0.016651131120913
1111 => 0.016547746061092
1112 => 0.016533455096638
1113 => 0.016493660669006
1114 => 0.0163571907698
1115 => 0.016192395165939
1116 => 0.016083582833919
1117 => 0.014836254989318
1118 => 0.015067751781904
1119 => 0.015334067740177
1120 => 0.015425998941779
1121 => 0.015268744259994
1122 => 0.016363400143115
1123 => 0.016563404321328
1124 => 0.015957578619572
1125 => 0.015844253366473
1126 => 0.016370829727842
1127 => 0.016053239810594
1128 => 0.016196250530885
1129 => 0.015887139576299
1130 => 0.016515229171603
1201 => 0.016510444181224
1202 => 0.016266103142604
1203 => 0.016472618515271
1204 => 0.016436731387176
1205 => 0.01616087095636
1206 => 0.016523974439303
1207 => 0.0165241545341
1208 => 0.016288981596861
1209 => 0.016014351092141
1210 => 0.01596525364438
1211 => 0.015928265312806
1212 => 0.016187153668743
1213 => 0.016419272159154
1214 => 0.016851187122754
1215 => 0.01695978080665
1216 => 0.017383629184385
1217 => 0.017131248112246
1218 => 0.017243125372643
1219 => 0.017364583964809
1220 => 0.017422815680385
1221 => 0.01732793022474
1222 => 0.017986341218315
1223 => 0.018041931279364
1224 => 0.018060570145982
1225 => 0.017838557663456
1226 => 0.018035756710607
1227 => 0.017943493806991
1228 => 0.018183536250827
1229 => 0.018221177971037
1230 => 0.018189296773162
1231 => 0.018201244849291
]
'min_raw' => 0.0081620393939613
'max_raw' => 0.018221177971037
'avg_raw' => 0.013191608682499
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008162'
'max' => '$0.018221'
'avg' => '$0.013191'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012585699138904
'max_diff' => -0.0017387825048742
'year' => 2031
]
6 => [
'items' => [
101 => 0.017639407217933
102 => 0.017610272972818
103 => 0.017213025473396
104 => 0.017374906765716
105 => 0.017072277448896
106 => 0.017168244322687
107 => 0.017210545606248
108 => 0.017188449816293
109 => 0.017384059291099
110 => 0.017217751277138
111 => 0.016778837084727
112 => 0.016339803310437
113 => 0.01633429159903
114 => 0.01621870175585
115 => 0.016135151470566
116 => 0.016151246219617
117 => 0.016207966214545
118 => 0.016131854801349
119 => 0.016148097030301
120 => 0.016417826252308
121 => 0.01647191852416
122 => 0.01628809184919
123 => 0.015550001223123
124 => 0.015368871932125
125 => 0.015499064074544
126 => 0.015436840615916
127 => 0.012458735173056
128 => 0.013158396871994
129 => 0.012742681648751
130 => 0.012934262349759
131 => 0.012509924755764
201 => 0.012712440897057
202 => 0.012675043560466
203 => 0.013800078867862
204 => 0.013782512988973
205 => 0.013790920845632
206 => 0.013389591940753
207 => 0.014028919783492
208 => 0.01434387566831
209 => 0.01428558571631
210 => 0.01430025604142
211 => 0.014048171250904
212 => 0.013793361577434
213 => 0.013510738434627
214 => 0.014035817300686
215 => 0.013977437494175
216 => 0.014111339765919
217 => 0.01445189094397
218 => 0.014502038398566
219 => 0.014569437086089
220 => 0.014545279454377
221 => 0.015120812249947
222 => 0.015051111430916
223 => 0.015219070350487
224 => 0.014873566109856
225 => 0.014482595266018
226 => 0.014556906041631
227 => 0.01454974931637
228 => 0.014458635989689
229 => 0.014376382952314
301 => 0.014239454819733
302 => 0.014672715692769
303 => 0.014655126092551
304 => 0.014939881274407
305 => 0.014889548030049
306 => 0.014553410305598
307 => 0.014565415530186
308 => 0.014646156435057
309 => 0.014925601628699
310 => 0.015008559988251
311 => 0.014970130370787
312 => 0.015061090424844
313 => 0.01513298154283
314 => 0.015070118842408
315 => 0.015960122114681
316 => 0.015590530705221
317 => 0.015770666986592
318 => 0.015813628428274
319 => 0.015703583598787
320 => 0.015727448381892
321 => 0.015763597025534
322 => 0.015983084511093
323 => 0.016559083182416
324 => 0.01681418907299
325 => 0.017581687731483
326 => 0.016793006080023
327 => 0.016746208974714
328 => 0.016884458659348
329 => 0.017335061619867
330 => 0.017700232996385
331 => 0.017821381409217
401 => 0.017837393171915
402 => 0.018064675648184
403 => 0.018194949725014
404 => 0.018037077577442
405 => 0.017903297462278
406 => 0.01742411369516
407 => 0.017479580520978
408 => 0.01786169194706
409 => 0.018401446842651
410 => 0.018864612694993
411 => 0.018702428156462
412 => 0.01993978170101
413 => 0.020062460250816
414 => 0.020045510041906
415 => 0.02032499003538
416 => 0.019770279163445
417 => 0.019533129518675
418 => 0.017932222241646
419 => 0.018382011886332
420 => 0.019035807550103
421 => 0.018949275242395
422 => 0.018474471355356
423 => 0.018864252513668
424 => 0.018735378673146
425 => 0.018633730528146
426 => 0.019099400385854
427 => 0.018587377248641
428 => 0.019030699727632
429 => 0.018462134062742
430 => 0.018703169001773
501 => 0.018566345912831
502 => 0.018654887219783
503 => 0.018137276548535
504 => 0.018416566702452
505 => 0.018125657159911
506 => 0.01812551923091
507 => 0.018119097386635
508 => 0.018461351173344
509 => 0.018472512057041
510 => 0.018219585991547
511 => 0.018183135394061
512 => 0.018317912357497
513 => 0.018160123831456
514 => 0.018233952089681
515 => 0.018162360014188
516 => 0.018146243130035
517 => 0.018017821055039
518 => 0.017962493294092
519 => 0.01798418873478
520 => 0.017910131010946
521 => 0.01786550855355
522 => 0.018110220856728
523 => 0.017979480944806
524 => 0.018090183090152
525 => 0.017964024023806
526 => 0.017526701734963
527 => 0.01727519306205
528 => 0.016449131798223
529 => 0.016683401747918
530 => 0.016838722966936
531 => 0.016787389304977
601 => 0.016897673874355
602 => 0.016904444451221
603 => 0.016868589813498
604 => 0.016827074736278
605 => 0.016806867492616
606 => 0.016957475731393
607 => 0.017044908883244
608 => 0.016854311529194
609 => 0.016809657235881
610 => 0.017002361683993
611 => 0.01711991128602
612 => 0.017987831501968
613 => 0.017923533169025
614 => 0.018084909366801
615 => 0.018066740883451
616 => 0.018235888847965
617 => 0.018512374282681
618 => 0.01795020208736
619 => 0.018047775742015
620 => 0.018023852935199
621 => 0.018285035867128
622 => 0.018285851251733
623 => 0.018129259036986
624 => 0.018214150217019
625 => 0.018166766289192
626 => 0.018252395451097
627 => 0.017922674425588
628 => 0.018324239043472
629 => 0.01855190030556
630 => 0.018555061382405
701 => 0.018662971013804
702 => 0.018772613449009
703 => 0.018983062555541
704 => 0.018766744137649
705 => 0.018377608362034
706 => 0.018405702708133
707 => 0.018177552545269
708 => 0.018181387790726
709 => 0.018160914949906
710 => 0.01822235548633
711 => 0.017936157168232
712 => 0.018003327341445
713 => 0.017909288705599
714 => 0.018047571320387
715 => 0.01789880208581
716 => 0.018023841398897
717 => 0.018077804221306
718 => 0.018276928197733
719 => 0.017869391312589
720 => 0.017038396015961
721 => 0.017213081302156
722 => 0.01695470804264
723 => 0.016978621471505
724 => 0.017026930403605
725 => 0.016870345348968
726 => 0.016900216842831
727 => 0.016899149622868
728 => 0.016889952897783
729 => 0.016849219077471
730 => 0.016790146979076
731 => 0.017025472037646
801 => 0.017065458350706
802 => 0.017154342971384
803 => 0.017418803311507
804 => 0.017392377487124
805 => 0.017435479103089
806 => 0.017341388517443
807 => 0.016982986063914
808 => 0.017002449041467
809 => 0.01675974539951
810 => 0.017148136493587
811 => 0.017056160355998
812 => 0.016996862741754
813 => 0.016980682838319
814 => 0.017245798724472
815 => 0.017325125552792
816 => 0.017275694396808
817 => 0.017174309653749
818 => 0.017368998332131
819 => 0.01742108880921
820 => 0.017432749946005
821 => 0.017777700956246
822 => 0.01745202887555
823 => 0.017530421382275
824 => 0.018142017341621
825 => 0.017587384200968
826 => 0.017881185745367
827 => 0.017866805688638
828 => 0.01801710461705
829 => 0.017854476789611
830 => 0.01785649275644
831 => 0.017989948022739
901 => 0.017802534170006
902 => 0.017756127864463
903 => 0.017692017885723
904 => 0.017831999678885
905 => 0.017915912433054
906 => 0.018592187604529
907 => 0.019029092207196
908 => 0.01901012502614
909 => 0.019183449555914
910 => 0.01910536526778
911 => 0.018853210503801
912 => 0.019283607938916
913 => 0.019147412181852
914 => 0.019158639994586
915 => 0.019158222094836
916 => 0.019248780366843
917 => 0.019184611531582
918 => 0.019058128170487
919 => 0.019142093728313
920 => 0.019391441416822
921 => 0.020165424292874
922 => 0.020598555364222
923 => 0.020139349258523
924 => 0.020456103481219
925 => 0.020266163818671
926 => 0.020231646131771
927 => 0.020430591191577
928 => 0.020629884478375
929 => 0.020617190357574
930 => 0.020472513665183
1001 => 0.020390789472686
1002 => 0.021009632437885
1003 => 0.021465585392928
1004 => 0.021434492458142
1005 => 0.021571726560326
1006 => 0.021974650128828
1007 => 0.02201148841033
1008 => 0.022006847633579
1009 => 0.0219155401092
1010 => 0.022312270688629
1011 => 0.022643230317798
1012 => 0.021894405055435
1013 => 0.0221795479125
1014 => 0.022307557727766
1015 => 0.022495514115377
1016 => 0.022812628046424
1017 => 0.023157097885858
1018 => 0.023205809698074
1019 => 0.023171246336232
1020 => 0.022944059217279
1021 => 0.023320982225967
1022 => 0.023541774884525
1023 => 0.023673251859946
1024 => 0.02400665559393
1025 => 0.022308348272805
1026 => 0.021106201939563
1027 => 0.020918469430423
1028 => 0.021300230869974
1029 => 0.021400898317094
1030 => 0.021360319395386
1031 => 0.020007194402959
1101 => 0.020911345507374
1102 => 0.021884136072541
1103 => 0.021921504919963
1104 => 0.022408504216977
1105 => 0.02256709115086
1106 => 0.022959189417413
1107 => 0.022934663564084
1108 => 0.023030133252343
1109 => 0.023008186424317
1110 => 0.023734465897076
1111 => 0.024535660009074
1112 => 0.024507917204617
1113 => 0.024392736071719
1114 => 0.024563799695374
1115 => 0.025390717880135
1116 => 0.025314588504776
1117 => 0.025388541708253
1118 => 0.026363524851153
1119 => 0.027631141626658
1120 => 0.027042206367792
1121 => 0.028320026417975
1122 => 0.029124346405235
1123 => 0.030515334654961
1124 => 0.030341176075334
1125 => 0.030882677593409
1126 => 0.030029395869809
1127 => 0.028070088555733
1128 => 0.027760020673354
1129 => 0.028380784426047
1130 => 0.029906871538802
1201 => 0.028332722511983
1202 => 0.028651170809933
1203 => 0.0285594576787
1204 => 0.028554570675692
1205 => 0.028741087703617
1206 => 0.028470535026538
1207 => 0.02736825474862
1208 => 0.027873423304211
1209 => 0.027678353464711
1210 => 0.027894797995057
1211 => 0.029062859856817
1212 => 0.028546431864616
1213 => 0.028002416926035
1214 => 0.028684732385595
1215 => 0.029553554434643
1216 => 0.029499185112237
1217 => 0.029393685902155
1218 => 0.029988379425627
1219 => 0.030970638897548
1220 => 0.03123613968577
1221 => 0.031432126939711
1222 => 0.031459150270798
1223 => 0.031737507375897
1224 => 0.030240711066756
1225 => 0.032616165249819
1226 => 0.033026340566636
1227 => 0.032949244607099
1228 => 0.033405137208926
1229 => 0.03327100204059
1230 => 0.033076661226833
1231 => 0.033799347971866
]
'min_raw' => 0.012458735173056
'max_raw' => 0.033799347971866
'avg_raw' => 0.023129041572461
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012458'
'max' => '$0.033799'
'avg' => '$0.023129'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.004296695779095
'max_diff' => 0.015578170000829
'year' => 2032
]
7 => [
'items' => [
101 => 0.032970845936499
102 => 0.031794891602802
103 => 0.031149739797596
104 => 0.031999327737603
105 => 0.032518141446031
106 => 0.032861044304554
107 => 0.032964806502355
108 => 0.030356903103402
109 => 0.028951387812319
110 => 0.029852306999637
111 => 0.030951490586287
112 => 0.030234605046433
113 => 0.030262705602351
114 => 0.029240615216725
115 => 0.03104192290604
116 => 0.030779487527089
117 => 0.032141002737327
118 => 0.031816066205561
119 => 0.032926329005794
120 => 0.032633959601534
121 => 0.033847568652463
122 => 0.034331710160032
123 => 0.035144659101848
124 => 0.035742667652746
125 => 0.036093829711914
126 => 0.036072747259057
127 => 0.037464226285724
128 => 0.036643719718273
129 => 0.035612970091005
130 => 0.035594327082221
131 => 0.036128166920018
201 => 0.037246948768235
202 => 0.037537032623863
203 => 0.037699149925192
204 => 0.037450861634863
205 => 0.03656026056213
206 => 0.036175703534374
207 => 0.036503357263712
208 => 0.036102664908338
209 => 0.036794372328132
210 => 0.037744234356242
211 => 0.037548091603599
212 => 0.038203767418319
213 => 0.038882322907448
214 => 0.039852687732737
215 => 0.040106377030572
216 => 0.040525715792955
217 => 0.040957353125054
218 => 0.041095983403172
219 => 0.041360671618549
220 => 0.041359276581
221 => 0.042156932333608
222 => 0.043036771330077
223 => 0.043368890182925
224 => 0.044132579171907
225 => 0.042824788541129
226 => 0.04381676275739
227 => 0.044711548331183
228 => 0.043644748082428
301 => 0.045115083692758
302 => 0.045172173492655
303 => 0.046034161690967
304 => 0.04516037151502
305 => 0.04464151769778
306 => 0.046139429226953
307 => 0.046864221432149
308 => 0.046645908121389
309 => 0.044984533047052
310 => 0.044017541494058
311 => 0.041486738081133
312 => 0.044484584046314
313 => 0.045944747367588
314 => 0.044980751576799
315 => 0.045466934981386
316 => 0.048119393991317
317 => 0.049129278648296
318 => 0.048919229699271
319 => 0.048954724513956
320 => 0.049499639944158
321 => 0.051916095052086
322 => 0.050468099138425
323 => 0.051575037759047
324 => 0.05216215401206
325 => 0.052707500308204
326 => 0.051368302163342
327 => 0.049626025053606
328 => 0.049074172757134
329 => 0.044884901193686
330 => 0.044666831415724
331 => 0.044544422241163
401 => 0.043772649710681
402 => 0.043166247908009
403 => 0.042684014680269
404 => 0.041418490683648
405 => 0.041845567882661
406 => 0.039828586767433
407 => 0.041118979807534
408 => 0.037899829245918
409 => 0.040580833491207
410 => 0.039121684770801
411 => 0.040101463892875
412 => 0.040098045535819
413 => 0.038293961532827
414 => 0.037253403530174
415 => 0.037916487588588
416 => 0.038627366334886
417 => 0.038742704019789
418 => 0.039664376870198
419 => 0.039921595951455
420 => 0.039142210126835
421 => 0.037833119505774
422 => 0.038137191399868
423 => 0.037247241522946
424 => 0.035687638595067
425 => 0.036807772645924
426 => 0.037190235659705
427 => 0.037359153115027
428 => 0.035825462757065
429 => 0.035343543948556
430 => 0.035086974418596
501 => 0.03763513933982
502 => 0.037774733566361
503 => 0.037060549766739
504 => 0.040288728262717
505 => 0.039558092046749
506 => 0.040374391710205
507 => 0.03810960006261
508 => 0.038196118153494
509 => 0.037123929492627
510 => 0.03772428349904
511 => 0.03729997263762
512 => 0.037675780828136
513 => 0.037901038708016
514 => 0.038973051433275
515 => 0.040593074154532
516 => 0.038812928480595
517 => 0.038037293518305
518 => 0.038518493086573
519 => 0.039799990948609
520 => 0.041741525808261
521 => 0.040592098094316
522 => 0.041102194595217
523 => 0.04121362798805
524 => 0.040366082545914
525 => 0.041772776017639
526 => 0.042526634477094
527 => 0.043299937267466
528 => 0.043971374412895
529 => 0.042991063127699
530 => 0.044040136724961
531 => 0.043194768591987
601 => 0.042436385984157
602 => 0.042437536137527
603 => 0.041961791649433
604 => 0.041039976756089
605 => 0.040869979946578
606 => 0.041754324817882
607 => 0.042463485656897
608 => 0.04252189554025
609 => 0.042914523418728
610 => 0.043146876552822
611 => 0.045424253135718
612 => 0.046340232836806
613 => 0.047460275476687
614 => 0.047896595207065
615 => 0.049209761166223
616 => 0.048149273004079
617 => 0.047919829719415
618 => 0.04473451863581
619 => 0.045256113147306
620 => 0.046091236286595
621 => 0.044748289508782
622 => 0.045600080135566
623 => 0.045768241648686
624 => 0.044702656691157
625 => 0.045271831658181
626 => 0.043760271694381
627 => 0.040626022031126
628 => 0.041776265333487
629 => 0.042623231571733
630 => 0.041414506319572
701 => 0.043581099549944
702 => 0.042315420512323
703 => 0.041914261020705
704 => 0.040349194820219
705 => 0.041087845821926
706 => 0.042086881878198
707 => 0.04146959374583
708 => 0.042750559306774
709 => 0.044564748162108
710 => 0.045857647177233
711 => 0.045956899909623
712 => 0.045125652460405
713 => 0.046457731802728
714 => 0.046467434546473
715 => 0.044964843606628
716 => 0.044044515022434
717 => 0.043835414431718
718 => 0.044357788703914
719 => 0.04499204750597
720 => 0.045992096858921
721 => 0.046596405738333
722 => 0.048172122795178
723 => 0.048598466651412
724 => 0.049066889290032
725 => 0.049692846391421
726 => 0.050444468383744
727 => 0.048799962254404
728 => 0.048865301548666
729 => 0.047333960210762
730 => 0.045697502374649
731 => 0.046939369884909
801 => 0.048562946455863
802 => 0.048190496196594
803 => 0.048148587933958
804 => 0.048219066007329
805 => 0.047938250674928
806 => 0.046668133333981
807 => 0.046030288356712
808 => 0.046853271108997
809 => 0.047290649815088
810 => 0.047968986044804
811 => 0.047885366786551
812 => 0.049632688066306
813 => 0.050311644279367
814 => 0.050137938225891
815 => 0.050169904320201
816 => 0.05139912211277
817 => 0.052766265106028
818 => 0.054046774929621
819 => 0.055349364521356
820 => 0.053779041927582
821 => 0.052981728958497
822 => 0.053804352422257
823 => 0.053367856833123
824 => 0.055876089961294
825 => 0.056049754581052
826 => 0.05855780633542
827 => 0.060938246103562
828 => 0.0594431345352
829 => 0.060852957402861
830 => 0.062377795778781
831 => 0.065319456402042
901 => 0.064328808592997
902 => 0.063569987896698
903 => 0.06285290600529
904 => 0.064345039587765
905 => 0.066264645604202
906 => 0.066678110354384
907 => 0.067348081205371
908 => 0.066643688775697
909 => 0.067492051870959
910 => 0.070487146386868
911 => 0.069677845410239
912 => 0.068528507921801
913 => 0.070892847390177
914 => 0.071748492652645
915 => 0.077753859209549
916 => 0.085335882556959
917 => 0.082196875104882
918 => 0.08024839188424
919 => 0.080706331659731
920 => 0.083475029918517
921 => 0.084364247925149
922 => 0.081947046851295
923 => 0.082800843134899
924 => 0.087505344600955
925 => 0.090029158699017
926 => 0.086601480160394
927 => 0.077144651016036
928 => 0.068425022656141
929 => 0.070737860747168
930 => 0.070475656683367
1001 => 0.075530056610135
1002 => 0.0696585438496
1003 => 0.069757405066154
1004 => 0.074916324630704
1005 => 0.073540013337154
1006 => 0.071310565306235
1007 => 0.068441300094022
1008 => 0.063137197974337
1009 => 0.058439206811102
1010 => 0.067653049364955
1011 => 0.067255731719747
1012 => 0.06668035689031
1013 => 0.067960791311163
1014 => 0.07417821740117
1015 => 0.074034885605951
1016 => 0.073123081853292
1017 => 0.073814676963414
1018 => 0.071189325339617
1019 => 0.071865938231215
1020 => 0.068423641422459
1021 => 0.06997970334303
1022 => 0.071305781912057
1023 => 0.071572011817718
1024 => 0.072171841389207
1025 => 0.067046363374976
1026 => 0.069347552527237
1027 => 0.070699285561926
1028 => 0.064592106534733
1029 => 0.070578566268636
1030 => 0.066957140205908
1031 => 0.065727973808224
1101 => 0.067382884432346
1102 => 0.066737964152672
1103 => 0.066183499567198
1104 => 0.065874098801593
1105 => 0.067089282518128
1106 => 0.067032592745293
1107 => 0.065044316328045
1108 => 0.062450690794261
1109 => 0.063321196656255
1110 => 0.063004933715557
1111 => 0.061858756019734
1112 => 0.062631141396696
1113 => 0.059229947091851
1114 => 0.053378369069062
1115 => 0.057244100749598
1116 => 0.057095274285005
1117 => 0.057020229232814
1118 => 0.059925219749761
1119 => 0.059645971941091
1120 => 0.059139134433952
1121 => 0.061849447551449
1122 => 0.060860146804707
1123 => 0.063908938597595
1124 => 0.065917070055881
1125 => 0.065407742961812
1126 => 0.067296400304472
1127 => 0.063341251353141
1128 => 0.064654993181739
1129 => 0.064925753551846
1130 => 0.06181600270829
1201 => 0.059691660336105
1202 => 0.059549990919156
1203 => 0.055866673998199
1204 => 0.057834272166679
1205 => 0.059565677130197
1206 => 0.058736468515125
1207 => 0.058473965839496
1208 => 0.059815035079401
1209 => 0.059919247644823
1210 => 0.05754319010925
1211 => 0.058037247710852
1212 => 0.060097550039774
1213 => 0.057985333378354
1214 => 0.053881641433849
1215 => 0.052863869093632
1216 => 0.052728079502181
1217 => 0.049967800194969
1218 => 0.052931881508073
1219 => 0.051637980582462
1220 => 0.055725398103152
1221 => 0.053390687136594
1222 => 0.053290042413153
1223 => 0.053137903152302
1224 => 0.050762016726882
1225 => 0.05128218485859
1226 => 0.053011302952229
1227 => 0.053628271767949
1228 => 0.053563916865793
1229 => 0.053002829330253
1230 => 0.05325969233079
1231 => 0.052432247109059
]
'min_raw' => 0.028951387812319
'max_raw' => 0.090029158699017
'avg_raw' => 0.059490273255668
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028951'
'max' => '$0.090029'
'avg' => '$0.05949'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016492652639263
'max_diff' => 0.056229810727151
'year' => 2033
]
8 => [
'items' => [
101 => 0.052140058979482
102 => 0.051217832869862
103 => 0.049862415260185
104 => 0.05005089439207
105 => 0.047365457442991
106 => 0.045902288866207
107 => 0.045497303088405
108 => 0.044955739180807
109 => 0.045558474172814
110 => 0.047357849937522
111 => 0.045187421006421
112 => 0.041466372841936
113 => 0.041690014176979
114 => 0.042192469857112
115 => 0.04125614702126
116 => 0.040369996036745
117 => 0.041140432422079
118 => 0.039563775261076
119 => 0.042383001342451
120 => 0.042306749177739
121 => 0.043357582321105
122 => 0.044014689850918
123 => 0.042500269735788
124 => 0.04211939717226
125 => 0.042336359494138
126 => 0.038750455603033
127 => 0.043064537470244
128 => 0.043101845829378
129 => 0.042782389007913
130 => 0.045079504419868
131 => 0.049927134427358
201 => 0.048103261023075
202 => 0.047397002114071
203 => 0.046054403411783
204 => 0.047843336466959
205 => 0.047705974320025
206 => 0.047084770598539
207 => 0.046709064649511
208 => 0.047401314380369
209 => 0.04662328724707
210 => 0.046483532195173
211 => 0.045636768635677
212 => 0.045334512570225
213 => 0.045110734212524
214 => 0.044864376228703
215 => 0.045407780552428
216 => 0.044176354864075
217 => 0.042691376202071
218 => 0.042567916294017
219 => 0.04290879995486
220 => 0.042757984310741
221 => 0.042567194246736
222 => 0.042202924055968
223 => 0.042094852871769
224 => 0.042446031791732
225 => 0.042049571266096
226 => 0.042634570367995
227 => 0.042475482981755
228 => 0.041586833774373
301 => 0.0404792478419
302 => 0.040469388003861
303 => 0.040230760431514
304 => 0.039926832340235
305 => 0.039842286498174
306 => 0.041075548418628
307 => 0.043628363685545
308 => 0.043127184964957
309 => 0.043489337953443
310 => 0.045270772220806
311 => 0.045837036604804
312 => 0.045435115557749
313 => 0.044884941239131
314 => 0.044909146116968
315 => 0.04678925831278
316 => 0.04690651860424
317 => 0.047202797531156
318 => 0.047583599680658
319 => 0.045499967810444
320 => 0.044811007243259
321 => 0.044484539504449
322 => 0.043479145227831
323 => 0.044563376759173
324 => 0.043931641477283
325 => 0.04401688414996
326 => 0.043961369747552
327 => 0.043991684365134
328 => 0.042382213311305
329 => 0.042968619972012
330 => 0.041993605163144
331 => 0.040688169784619
401 => 0.040683793507485
402 => 0.04100329696697
403 => 0.040813243807097
404 => 0.040301815640591
405 => 0.04037446159777
406 => 0.039738006571212
407 => 0.040451738761385
408 => 0.040472206046743
409 => 0.040197380276271
410 => 0.041296983191295
411 => 0.041747491402771
412 => 0.041566595193308
413 => 0.041734799242483
414 => 0.043148011203483
415 => 0.043378426415887
416 => 0.043480761632863
417 => 0.043343645998934
418 => 0.04176063016286
419 => 0.041830843646693
420 => 0.041315663689705
421 => 0.040880390914377
422 => 0.040897799542685
423 => 0.041121586330704
424 => 0.042098876358903
425 => 0.044155525608856
426 => 0.044233573944501
427 => 0.044328170804133
428 => 0.043943397835437
429 => 0.043827346626297
430 => 0.043980448126511
501 => 0.044752817451313
502 => 0.04673956105093
503 => 0.046037313172682
504 => 0.045466374716527
505 => 0.045967241666477
506 => 0.045890137125457
507 => 0.045239297203981
508 => 0.045221030295075
509 => 0.043971860399653
510 => 0.043510070731538
511 => 0.043124164720503
512 => 0.042702765430785
513 => 0.042452945806408
514 => 0.04283678229044
515 => 0.042924570235758
516 => 0.042085305055108
517 => 0.041970916312177
518 => 0.042656278375492
519 => 0.0423546760843
520 => 0.042664881520168
521 => 0.042736851842183
522 => 0.042725262962721
523 => 0.042410355531914
524 => 0.042611068137636
525 => 0.042136322989796
526 => 0.041620108945937
527 => 0.041290796547226
528 => 0.041003427802399
529 => 0.041162876683998
530 => 0.040594470535313
531 => 0.040412625968593
601 => 0.042543071222994
602 => 0.044116854038566
603 => 0.044093970613141
604 => 0.043954673646007
605 => 0.043747706608203
606 => 0.04473767652338
607 => 0.044392790800006
608 => 0.044643723979927
609 => 0.044707597005849
610 => 0.044900921417991
611 => 0.044970018278538
612 => 0.044761159575112
613 => 0.044060204256473
614 => 0.042313490247255
615 => 0.0415003901608
616 => 0.041232053589017
617 => 0.041241807113758
618 => 0.04097276135976
619 => 0.041052007392097
620 => 0.040945202823722
621 => 0.040742940810019
622 => 0.041150387574612
623 => 0.041197342018602
624 => 0.041102239075119
625 => 0.041124639261086
626 => 0.040337227508052
627 => 0.040397092713466
628 => 0.040063755642414
629 => 0.040001258960031
630 => 0.03915861187139
701 => 0.037665740410215
702 => 0.038492936116245
703 => 0.037493800024679
704 => 0.03711541204742
705 => 0.038906641880358
706 => 0.038726852086113
707 => 0.03841913011111
708 => 0.037963945175203
709 => 0.03779511265472
710 => 0.036769339706148
711 => 0.036708731568061
712 => 0.037217132339572
713 => 0.036982522876522
714 => 0.036653042336848
715 => 0.035459697221055
716 => 0.034117982207914
717 => 0.03415848015044
718 => 0.034585254732625
719 => 0.035826159388722
720 => 0.035341316471716
721 => 0.034989557372498
722 => 0.034923683467054
723 => 0.035748233310048
724 => 0.036915144086417
725 => 0.037462632514532
726 => 0.03692008810974
727 => 0.036296842310181
728 => 0.036334776394158
729 => 0.036587134860082
730 => 0.036613654166694
731 => 0.036207985221885
801 => 0.036322178653629
802 => 0.036148708388743
803 => 0.035084121693338
804 => 0.035064866695859
805 => 0.034803599952027
806 => 0.034795688898858
807 => 0.034351208991556
808 => 0.03428902317998
809 => 0.033406481346031
810 => 0.033987373053719
811 => 0.033597741394385
812 => 0.033010474578952
813 => 0.032909229558618
814 => 0.032906186011049
815 => 0.033509177720042
816 => 0.033980326744521
817 => 0.033604519203915
818 => 0.033518955111643
819 => 0.034432555763196
820 => 0.034316291752631
821 => 0.034215607869304
822 => 0.036810660025182
823 => 0.03475647374936
824 => 0.033860731284248
825 => 0.032752079886791
826 => 0.033113062372108
827 => 0.033189126685701
828 => 0.030523019924252
829 => 0.029441380743174
830 => 0.029070202936941
831 => 0.02885658486177
901 => 0.028953933301072
902 => 0.02798033117448
903 => 0.028634607905443
904 => 0.027791550760354
905 => 0.027650209486434
906 => 0.029157700096594
907 => 0.029367458608365
908 => 0.028472563630287
909 => 0.02904723107655
910 => 0.02883884867206
911 => 0.027806002555385
912 => 0.02776655543083
913 => 0.02724830955578
914 => 0.026437355113501
915 => 0.026066727172567
916 => 0.025873700922989
917 => 0.025953347315571
918 => 0.025913075662262
919 => 0.025650275883621
920 => 0.025928139037951
921 => 0.025218313499621
922 => 0.024935655250805
923 => 0.024807985077437
924 => 0.024177974056135
925 => 0.025180601758199
926 => 0.025378132046276
927 => 0.025576051530041
928 => 0.027298805510846
929 => 0.027212741590417
930 => 0.027990717516265
1001 => 0.027960486802392
1002 => 0.027738595465966
1003 => 0.026802472416938
1004 => 0.027175594379492
1005 => 0.026027182974778
1006 => 0.026887650883574
1007 => 0.026494969263999
1008 => 0.026754884832994
1009 => 0.026287533204299
1010 => 0.026546184892094
1011 => 0.02542497380547
1012 => 0.024378002668645
1013 => 0.024799334417096
1014 => 0.025257370212792
1015 => 0.026250508523212
1016 => 0.025659003538739
1017 => 0.025871731098435
1018 => 0.025159129383617
1019 => 0.023688828501329
1020 => 0.023697150244649
1021 => 0.023470976486155
1022 => 0.023275529336906
1023 => 0.025726945001659
1024 => 0.0254220727126
1025 => 0.024936298620684
1026 => 0.025586526546609
1027 => 0.025758457130728
1028 => 0.025763351752752
1029 => 0.026237741262695
1030 => 0.026490923029191
1031 => 0.026535547412889
1101 => 0.027282009556648
1102 => 0.027532213821162
1103 => 0.028562769776464
1104 => 0.026469442325187
1105 => 0.02642633162388
1106 => 0.025595676586978
1107 => 0.025068862030438
1108 => 0.025631748030373
1109 => 0.026130388184715
1110 => 0.025611170726527
1111 => 0.025678969565288
1112 => 0.024981962549295
1113 => 0.025231109760284
1114 => 0.025445708902142
1115 => 0.025327219869562
1116 => 0.025149836052857
1117 => 0.026089505378476
1118 => 0.026036485552531
1119 => 0.026911527231452
1120 => 0.027593684795002
1121 => 0.028816233099133
1122 => 0.027540440210887
1123 => 0.027493945247222
1124 => 0.027948440975075
1125 => 0.027532144240234
1126 => 0.027795229406579
1127 => 0.028773846011554
1128 => 0.028794522638333
1129 => 0.028448162499451
1130 => 0.028427086453523
1201 => 0.02849360870696
1202 => 0.028883231623125
1203 => 0.028747085404314
1204 => 0.028904637255523
1205 => 0.029101658257979
1206 => 0.02991662065931
1207 => 0.030113105335229
1208 => 0.029635749438371
1209 => 0.02967884933113
1210 => 0.029500305121992
1211 => 0.029327833653118
1212 => 0.029715524327712
1213 => 0.030424036655613
1214 => 0.030419629037193
1215 => 0.030583990125754
1216 => 0.030686385722287
1217 => 0.03024682886381
1218 => 0.029960693511895
1219 => 0.030070416013085
1220 => 0.030245864681932
1221 => 0.030013520374415
1222 => 0.02857938367607
1223 => 0.029014409137341
1224 => 0.028941999628927
1225 => 0.028838879683649
1226 => 0.029276301148909
1227 => 0.029234110781488
1228 => 0.027970345477451
1229 => 0.028051247631939
1230 => 0.027975265405421
1231 => 0.0282207795238
]
'min_raw' => 0.023275529336906
'max_raw' => 0.052140058979482
'avg_raw' => 0.037707794158194
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023275'
'max' => '$0.05214'
'avg' => '$0.0377077'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056758584754126
'max_diff' => -0.037889099719535
'year' => 2034
]
9 => [
'items' => [
101 => 0.027518885672133
102 => 0.027734783493579
103 => 0.027870192583273
104 => 0.027949949577364
105 => 0.028238086529906
106 => 0.028204276984189
107 => 0.028235984881073
108 => 0.028663215916357
109 => 0.030824003884834
110 => 0.030941610806449
111 => 0.030362471311709
112 => 0.030593826116836
113 => 0.030149675482726
114 => 0.030447836778955
115 => 0.030651831165359
116 => 0.029730019759065
117 => 0.02967543607009
118 => 0.02922945226832
119 => 0.029469098701578
120 => 0.029087803995077
121 => 0.029181360378929
122 => 0.028919768573578
123 => 0.029390581740802
124 => 0.029917024018727
125 => 0.030050024127966
126 => 0.029700158100704
127 => 0.029446832039672
128 => 0.029002074927292
129 => 0.029741715917239
130 => 0.02995800948285
131 => 0.029740579819218
201 => 0.029690196615222
202 => 0.029594720534691
203 => 0.029710452317051
204 => 0.029956831501641
205 => 0.029840643628098
206 => 0.02991738776554
207 => 0.029624918251821
208 => 0.03024697437542
209 => 0.031234949205653
210 => 0.031238125706282
211 => 0.031121937206443
212 => 0.031074395375625
213 => 0.031193611827368
214 => 0.031258281861923
215 => 0.031643806006301
216 => 0.032057488773177
217 => 0.033987965742256
218 => 0.033445895534267
219 => 0.035158729545823
220 => 0.036513358865304
221 => 0.036919552967455
222 => 0.036545873506385
223 => 0.035267536255833
224 => 0.035204814931691
225 => 0.037115190484082
226 => 0.036575421889788
227 => 0.036511218133026
228 => 0.03582819863504
301 => 0.03623194775196
302 => 0.036143641897448
303 => 0.036004246786029
304 => 0.036774571975706
305 => 0.038216551963378
306 => 0.037991805859497
307 => 0.037824043318621
308 => 0.037088956699445
309 => 0.037531643031729
310 => 0.037374010907901
311 => 0.038051298547685
312 => 0.037650088353635
313 => 0.036571332611809
314 => 0.03674312801932
315 => 0.036717161489079
316 => 0.03725155084143
317 => 0.037091140422213
318 => 0.036685838780232
319 => 0.038211623432544
320 => 0.038112547464083
321 => 0.038253014535441
322 => 0.038314852484341
323 => 0.039243570714861
324 => 0.039624036858237
325 => 0.039710409333781
326 => 0.04007182274368
327 => 0.039701417038902
328 => 0.041183303952804
329 => 0.042168672280051
330 => 0.043313228298738
331 => 0.044985732269695
401 => 0.045614609234302
402 => 0.045501008239505
403 => 0.046769081662261
404 => 0.049047781415264
405 => 0.045961598610106
406 => 0.049211356597775
407 => 0.048182520739139
408 => 0.045743169426281
409 => 0.045586103959795
410 => 0.047238060990314
411 => 0.050901942689033
412 => 0.049984181878906
413 => 0.05090344381694
414 => 0.049831075936751
415 => 0.049777823832873
416 => 0.050851361302569
417 => 0.053359740115993
418 => 0.052168103366909
419 => 0.050459599885779
420 => 0.051721132268987
421 => 0.050628276169341
422 => 0.048165765505678
423 => 0.049983480084511
424 => 0.048768026111176
425 => 0.049122760197682
426 => 0.051677463664499
427 => 0.051370074984464
428 => 0.051767864399854
429 => 0.051065776493653
430 => 0.05040991568016
501 => 0.049185702766912
502 => 0.048823273676266
503 => 0.048923436038088
504 => 0.048823224040774
505 => 0.048138288166909
506 => 0.047990376330161
507 => 0.047743850122082
508 => 0.047820258902379
509 => 0.047356717507404
510 => 0.048231515892261
511 => 0.048393886181188
512 => 0.049030491493555
513 => 0.049096585968942
514 => 0.050869522702377
515 => 0.049893018942593
516 => 0.050548141971934
517 => 0.050489541601933
518 => 0.04579603756599
519 => 0.046442761011007
520 => 0.047448859738455
521 => 0.046995613625474
522 => 0.046354829664976
523 => 0.045837362260211
524 => 0.045053346228234
525 => 0.046156833737547
526 => 0.047607802469481
527 => 0.049133384930447
528 => 0.050966272297176
529 => 0.050557193174083
530 => 0.049099120376056
531 => 0.049164528456653
601 => 0.04956885547377
602 => 0.04904521524962
603 => 0.048890783524846
604 => 0.049547638926247
605 => 0.049552162328395
606 => 0.048949650966475
607 => 0.048280069846116
608 => 0.048277264276773
609 => 0.048158118783792
610 => 0.049852271655269
611 => 0.050783884436407
612 => 0.050890692340395
613 => 0.050776695413467
614 => 0.050820568306266
615 => 0.050278483355608
616 => 0.051517528802512
617 => 0.052654599433485
618 => 0.052349840214413
619 => 0.051892962820949
620 => 0.051529037970858
621 => 0.05226411108543
622 => 0.05223137943675
623 => 0.052644668113482
624 => 0.052625918951834
625 => 0.052486945514423
626 => 0.052349845177592
627 => 0.052893432516006
628 => 0.052736888092289
629 => 0.052580100511842
630 => 0.052265639016279
701 => 0.052308379556179
702 => 0.051851581049038
703 => 0.051640245157957
704 => 0.048462260421807
705 => 0.047612999056661
706 => 0.047880193970445
707 => 0.047968161473776
708 => 0.047598561839306
709 => 0.04812847277278
710 => 0.048045886715113
711 => 0.048367180754268
712 => 0.048166450187569
713 => 0.048174688240044
714 => 0.048764994036436
715 => 0.048936362320469
716 => 0.048849203028099
717 => 0.048910246408829
718 => 0.050316965352971
719 => 0.050116974903454
720 => 0.050010733963105
721 => 0.050040163429645
722 => 0.050399610280267
723 => 0.050500235773371
724 => 0.050073878488262
725 => 0.050274951048662
726 => 0.051131092490935
727 => 0.051430693542322
728 => 0.052386876281686
729 => 0.051980672859211
730 => 0.052726276821236
731 => 0.055018009205377
801 => 0.056848803609647
802 => 0.055165129414701
803 => 0.058527150187883
804 => 0.061144965613041
805 => 0.061044489496824
806 => 0.060588012826286
807 => 0.057607699562967
808 => 0.054865170864094
809 => 0.057159412574621
810 => 0.057165261068556
811 => 0.056968183670959
812 => 0.055744152880328
813 => 0.056925590052686
814 => 0.057019368245078
815 => 0.056966877394973
816 => 0.056028415857688
817 => 0.054595558546938
818 => 0.054875535435683
819 => 0.05533414329082
820 => 0.054465902945423
821 => 0.054188447546532
822 => 0.054704289921121
823 => 0.056366441532076
824 => 0.056052221398213
825 => 0.056044015840655
826 => 0.057388382823392
827 => 0.056426106196305
828 => 0.05487906684086
829 => 0.054488419000668
830 => 0.053101882339902
831 => 0.054059568150167
901 => 0.054094033557543
902 => 0.053569518826573
903 => 0.054921628320512
904 => 0.054909168393491
905 => 0.056192795123047
906 => 0.058646607321776
907 => 0.057920894309847
908 => 0.057076969034325
909 => 0.057168727111284
910 => 0.058175086737291
911 => 0.057566618734451
912 => 0.057785428070662
913 => 0.058174755543154
914 => 0.058409646473766
915 => 0.057134929921135
916 => 0.056837732515975
917 => 0.056229770927134
918 => 0.056071165096746
919 => 0.056566337125322
920 => 0.056435876790478
921 => 0.05409113687351
922 => 0.053846098506177
923 => 0.053853613483069
924 => 0.053237452857471
925 => 0.05229766000794
926 => 0.054767379504392
927 => 0.054569026465125
928 => 0.05435006006108
929 => 0.05437688219617
930 => 0.05544890372302
1001 => 0.054827077099063
1002 => 0.056480305094234
1003 => 0.056140451119009
1004 => 0.055791881171706
1005 => 0.055743698187289
1006 => 0.055609528496168
1007 => 0.05514941070297
1008 => 0.054593790818891
1009 => 0.054226922444452
1010 => 0.050021469530732
1011 => 0.050801977129524
1012 => 0.051699879976428
1013 => 0.05200983244106
1014 => 0.05147963730225
1015 => 0.055170346038628
1016 => 0.055844674089318
1017 => 0.053802090438446
1018 => 0.053420006435509
1019 => 0.05519539540225
1020 => 0.054124618822831
1021 => 0.054606789450979
1022 => 0.053564600286156
1023 => 0.055682248208537
1024 => 0.055666115279399
1025 => 0.054842302408345
1026 => 0.055538583405733
1027 => 0.055417587447803
1028 => 0.054487504745345
1029 => 0.055711733489163
1030 => 0.055712340691347
1031 => 0.054919438714194
1101 => 0.053993502793441
1102 => 0.053827967320441
1103 => 0.053703258578097
1104 => 0.054576118745147
1105 => 0.055358722441562
1106 => 0.056814953896679
1107 => 0.057181085083702
1108 => 0.058610119481384
1109 => 0.057759199075986
1110 => 0.058136401070435
1111 => 0.058545907193889
1112 => 0.058742239488562
1113 => 0.058422326550165
1114 => 0.06064220518379
1115 => 0.060829630955792
1116 => 0.060892473195917
1117 => 0.060143942610665
1118 => 0.060808812966134
1119 => 0.060497742145002
1120 => 0.061307062003624
1121 => 0.061433973691371
1122 => 0.061326484006864
1123 => 0.061366767779719
1124 => 0.059472492979346
1125 => 0.059374264837851
1126 => 0.058034917158616
1127 => 0.058580711237863
1128 => 0.057560375367302
1129 => 0.057883934382481
1130 => 0.058026556113388
1201 => 0.057952058614874
1202 => 0.0586115696162
1203 => 0.058050850535877
1204 => 0.056571020692152
1205 => 0.055090787669776
1206 => 0.055072204549952
1207 => 0.054682485323443
1208 => 0.054400789703314
1209 => 0.05445505427344
1210 => 0.054646289696403
1211 => 0.054389674752884
1212 => 0.054444436561792
1213 => 0.05535384746568
1214 => 0.055536223336833
1215 => 0.054916438867802
1216 => 0.052427914790173
1217 => 0.051817224739533
1218 => 0.052256176637423
1219 => 0.052046385902355
1220 => 0.042005495477072
1221 => 0.044364453743859
1222 => 0.042962840844387
1223 => 0.043608768553573
1224 => 0.042178084729113
1225 => 0.042860882038709
1226 => 0.042734794307392
1227 => 0.046527929393736
1228 => 0.04646870480665
1229 => 0.046497052482393
1230 => 0.045143944059707
1231 => 0.047299482517943
]
'min_raw' => 0.027518885672133
'max_raw' => 0.061433973691371
'avg_raw' => 0.044476429681752
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027518'
'max' => '$0.061433'
'avg' => '$0.044476'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042433563352269
'max_diff' => 0.009293914711889
'year' => 2035
]
10 => [
'items' => [
101 => 0.048361378273126
102 => 0.048164849630282
103 => 0.048214311655642
104 => 0.04736439018442
105 => 0.04650528158007
106 => 0.045552397921981
107 => 0.047322737978732
108 => 0.047125906385134
109 => 0.047577367243076
110 => 0.0487255593164
111 => 0.048894634960754
112 => 0.049121874341362
113 => 0.049040425199415
114 => 0.050980874202097
115 => 0.050745873024377
116 => 0.051312158248228
117 => 0.050147266578603
118 => 0.048829081081891
119 => 0.049079625050085
120 => 0.049055495651201
121 => 0.048748300708966
122 => 0.048470978850731
123 => 0.048009316091719
124 => 0.049470085374467
125 => 0.049410780809265
126 => 0.050370852785863
127 => 0.050201150738358
128 => 0.049067838931982
129 => 0.04910831538486
130 => 0.049380538982782
131 => 0.050322707963386
201 => 0.050602407864585
202 => 0.050472839726235
203 => 0.050779517899115
204 => 0.051021903822682
205 => 0.050809957839275
206 => 0.053810666009789
207 => 0.052564562768748
208 => 0.053171904818101
209 => 0.053316752318204
210 => 0.052945728492504
211 => 0.053026190274931
212 => 0.053148067950785
213 => 0.053888085332475
214 => 0.055830105067784
215 => 0.056690212388777
216 => 0.059277887700933
217 => 0.056618792449041
218 => 0.056461012741224
219 => 0.056927131205251
220 => 0.058446370546736
221 => 0.059677571338115
222 => 0.060086031670292
223 => 0.060140016446135
224 => 0.06090631518323
225 => 0.061345543328708
226 => 0.060813266360889
227 => 0.060362217362384
228 => 0.058746615836003
229 => 0.058933626111819
301 => 0.06022194146302
302 => 0.062041762777988
303 => 0.063603358786368
304 => 0.063056542291348
305 => 0.067228366156058
306 => 0.067641985451872
307 => 0.067584836639103
308 => 0.068527122949771
309 => 0.066656876516366
310 => 0.065857309931767
311 => 0.060459739275485
312 => 0.061976236465854
313 => 0.064180554192813
314 => 0.063888804475883
315 => 0.062287970020983
316 => 0.063602144409883
317 => 0.06316763725888
318 => 0.062824923441166
319 => 0.064394961878457
320 => 0.062668640123031
321 => 0.064163332812735
322 => 0.062246373977574
323 => 0.063059040103037
324 => 0.062597731505987
325 => 0.062896254704134
326 => 0.061151094187596
327 => 0.062092740440943
328 => 0.061111918607611
329 => 0.061111453570356
330 => 0.061089801874023
331 => 0.062243734411308
401 => 0.062281364109921
402 => 0.061428606221372
403 => 0.06130571048705
404 => 0.0617601204291
405 => 0.061228125397112
406 => 0.061477042524242
407 => 0.061235664843317
408 => 0.061181325643149
409 => 0.060748341651157
410 => 0.060561800242264
411 => 0.060634947935271
412 => 0.060385257148818
413 => 0.06023480941827
414 => 0.061059874033702
415 => 0.060619075292689
416 => 0.060992315304698
417 => 0.060566961204368
418 => 0.059092498574666
419 => 0.058244519524165
420 => 0.055459396299415
421 => 0.05624925379102
422 => 0.05677293012512
423 => 0.056599855099824
424 => 0.056971687225304
425 => 0.056994514697913
426 => 0.05687362828354
427 => 0.056733657302204
428 => 0.056665527169371
429 => 0.05717331336154
430 => 0.057468100337392
501 => 0.056825488051133
502 => 0.056674932983564
503 => 0.057324649484568
504 => 0.057720976174852
505 => 0.060647229779176
506 => 0.060430443460493
507 => 0.060974534578221
508 => 0.060913278268124
509 => 0.061483572440015
510 => 0.062415762386757
511 => 0.060520359580622
512 => 0.060849335969669
513 => 0.060768678556249
514 => 0.06164927504646
515 => 0.061652024172582
516 => 0.061124062587644
517 => 0.061410279128037
518 => 0.06125052090713
519 => 0.061539225604928
520 => 0.060427548147039
521 => 0.061781451292582
522 => 0.062549027132514
523 => 0.062559684923796
524 => 0.062923509780065
525 => 0.063293176905349
526 => 0.06400272076111
527 => 0.063273388112317
528 => 0.061961389676241
529 => 0.062056111725597
530 => 0.061286887522567
531 => 0.061299818320391
601 => 0.061230792708199
602 => 0.061437943766395
603 => 0.060473006155198
604 => 0.060699475083856
605 => 0.060382417257535
606 => 0.060848646747875
607 => 0.060347060886765
608 => 0.060768639660802
609 => 0.060950579084118
610 => 0.061621939473033
611 => 0.060247900411456
612 => 0.057446141750633
613 => 0.058035105389178
614 => 0.057163981905675
615 => 0.057244607700674
616 => 0.057407484638073
617 => 0.056879547193946
618 => 0.056980261021065
619 => 0.056976662814447
620 => 0.056945655413731
621 => 0.056808318494602
622 => 0.056609152790584
623 => 0.057402567655421
624 => 0.057537384301661
625 => 0.057837065006001
626 => 0.058728711506756
627 => 0.058639614994858
628 => 0.058784935102342
629 => 0.058467702123642
630 => 0.05725932322871
701 => 0.057324944016391
702 => 0.056506651742506
703 => 0.057816139432786
704 => 0.057506035463335
705 => 0.057306109416884
706 => 0.057251557742808
707 => 0.058145414462774
708 => 0.058412870402875
709 => 0.058246209809305
710 => 0.057904384069625
711 => 0.058560790541518
712 => 0.058736417221831
713 => 0.05877573355869
714 => 0.059938759973428
715 => 0.058840733815662
716 => 0.059105039625278
717 => 0.061167078102477
718 => 0.059297093745516
719 => 0.060287666165026
720 => 0.060239182799781
721 => 0.060745926130459
722 => 0.060197615055936
723 => 0.06020441202885
724 => 0.060654365776725
725 => 0.06002248688742
726 => 0.059866024788295
727 => 0.059649873518957
728 => 0.060121831907821
729 => 0.060404749617103
730 => 0.062684858573755
731 => 0.064157912945353
801 => 0.064093963770177
802 => 0.064678339523442
803 => 0.064415072894328
804 => 0.06356491550269
805 => 0.065016030504567
806 => 0.064556837000742
807 => 0.064594692355278
808 => 0.064593283377091
809 => 0.064898606913741
810 => 0.064682257205534
811 => 0.064255809722814
812 => 0.064538905463314
813 => 0.06537959860402
814 => 0.067989135908388
815 => 0.069449467555684
816 => 0.067901222109575
817 => 0.068969181086468
818 => 0.068328786253024
819 => 0.068212407461691
820 => 0.068883164620729
821 => 0.069555095851379
822 => 0.069512296736826
823 => 0.069024509167424
824 => 0.06874897034662
825 => 0.070835442610023
826 => 0.072372719831571
827 => 0.072267887831099
828 => 0.072730582187991
829 => 0.074089067130423
830 => 0.074213269968471
831 => 0.074197623265647
901 => 0.073889773572318
902 => 0.075227378419704
903 => 0.076343231916312
904 => 0.073818515262945
905 => 0.074779894313579
906 => 0.075211488343108
907 => 0.075845196426633
908 => 0.076914368185348
909 => 0.078075772299115
910 => 0.07824000757495
911 => 0.078123474787364
912 => 0.077357497554116
913 => 0.078628319793833
914 => 0.07937273765741
915 => 0.07981602145947
916 => 0.080940115426104
917 => 0.075214153720902
918 => 0.071161033427197
919 => 0.070528080165569
920 => 0.071815215512748
921 => 0.072154622839087
922 => 0.072017808171421
923 => 0.067455652787281
924 => 0.070504061361631
925 => 0.073783892670159
926 => 0.073909884348253
927 => 0.075551836479341
928 => 0.076086523399115
929 => 0.077408510080226
930 => 0.077325819453384
1001 => 0.077647702172832
1002 => 0.077573706909863
1003 => 0.080022408859482
1004 => 0.082723690745671
1005 => 0.082630153943503
1006 => 0.082241812712247
1007 => 0.082818565662682
1008 => 0.085606578056188
1009 => 0.085349902551983
1010 => 0.085599240940751
1011 => 0.088886464678188
1012 => 0.093160323138981
1013 => 0.091174686795569
1014 => 0.095482946309306
1015 => 0.09819476730218
1016 => 0.10288458130183
1017 => 0.10229739349125
1018 => 0.10412310366587
1019 => 0.10124620476053
1020 => 0.094640263356654
1021 => 0.093594847842963
1022 => 0.095687796175509
1023 => 0.10083310542416
1024 => 0.095525752076668
1025 => 0.096599422746554
1026 => 0.096290205521397
1027 => 0.096273728649557
1028 => 0.09690258383141
1029 => 0.095990396591252
1030 => 0.0922739816755
1031 => 0.093977192730419
1101 => 0.093319501147202
1102 => 0.094049258992936
1103 => 0.097987461111337
1104 => 0.096246288079779
1105 => 0.094412103732444
1106 => 0.096712577942093
1107 => 0.099641872139679
1108 => 0.099458562173242
1109 => 0.099102864220732
1110 => 0.10110791495529
1111 => 0.10441967134404
1112 => 0.1053148257882
1113 => 0.10597561049826
1114 => 0.10606672154573
1115 => 0.10700522195984
1116 => 0.10195866870059
1117 => 0.1099676783277
1118 => 0.11135061304588
1119 => 0.11109067863563
1120 => 0.1126277523721
1121 => 0.11217550628703
1122 => 0.11152027266501
1123 => 0.11395686148226
1124 => 0.11116350902586
1125 => 0.10719869688729
1126 => 0.10502352253298
1127 => 0.10788796758905
1128 => 0.10963718422943
1129 => 0.11079330515765
1130 => 0.11114314665198
1201 => 0.10235041826441
1202 => 0.097611625330582
1203 => 0.10064913727079
1204 => 0.10435511147573
1205 => 0.10193808182676
1206 => 0.10203282481296
1207 => 0.098586775717749
1208 => 0.10466001035556
1209 => 0.10377519115278
1210 => 0.10836563474205
1211 => 0.10727008853886
1212 => 0.11101341708591
1213 => 0.11002767322687
1214 => 0.11411944087356
1215 => 0.11575175776801
1216 => 0.11849267188362
1217 => 0.1205088994646
1218 => 0.12169286686444
1219 => 0.1216217859027
1220 => 0.12631325459107
1221 => 0.12354685941297
1222 => 0.12007161507999
1223 => 0.12000875887426
1224 => 0.12180863715891
1225 => 0.12558068827102
1226 => 0.12655872624328
1227 => 0.12710531604338
1228 => 0.1262681947376
1229 => 0.1232654710411
1230 => 0.12196891017311
1231 => 0.12307361759762
]
'min_raw' => 0.045552397921981
'max_raw' => 0.12710531604338
'avg_raw' => 0.086328856982681
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045552'
'max' => '$0.1271053'
'avg' => '$0.086328'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018033512249847
'max_diff' => 0.06567134235201
'year' => 2036
]
11 => [
'items' => [
101 => 0.12172265534603
102 => 0.12405479520534
103 => 0.12725732135036
104 => 0.12659601236557
105 => 0.12880666915273
106 => 0.13109446635956
107 => 0.13436611911673
108 => 0.1352214502964
109 => 0.13663528021107
110 => 0.1380905756122
111 => 0.13855797727373
112 => 0.13945039207181
113 => 0.13944568860532
114 => 0.14213504066578
115 => 0.14510147927078
116 => 0.14622124117095
117 => 0.14879607191637
118 => 0.14438676449767
119 => 0.14773127482522
120 => 0.1507481068592
121 => 0.14715131533891
122 => 0.15210865450469
123 => 0.15230113675093
124 => 0.15520739014363
125 => 0.15226134555934
126 => 0.1505119936893
127 => 0.15556230699075
128 => 0.15800599451394
129 => 0.15726993594457
130 => 0.15166849388794
131 => 0.14840821435382
201 => 0.1398754339521
202 => 0.14998288092662
203 => 0.15490592350965
204 => 0.15165574439697
205 => 0.15329494568977
206 => 0.16223789643053
207 => 0.16564279305943
208 => 0.16493459836264
209 => 0.16505427160852
210 => 0.16689149202623
211 => 0.17503873913411
212 => 0.17015671981536
213 => 0.17388884065877
214 => 0.17586834409696
215 => 0.17770701720927
216 => 0.17319181716404
217 => 0.16731760824666
218 => 0.16545699970001
219 => 0.15133257813824
220 => 0.1505973406567
221 => 0.15018462957833
222 => 0.14758254460837
223 => 0.14553801859304
224 => 0.14391213559727
225 => 0.1396453330866
226 => 0.14108525368065
227 => 0.13428486102953
228 => 0.1386355112566
301 => 0.12778192038419
302 => 0.13682111337892
303 => 0.13190149159356
304 => 0.13520488530963
305 => 0.13519336008015
306 => 0.12911076490694
307 => 0.12560245095156
308 => 0.12783808514955
309 => 0.13023486247466
310 => 0.13062373153194
311 => 0.13373121589623
312 => 0.13459844798715
313 => 0.13197069426446
314 => 0.12755700383777
315 => 0.12858220345833
316 => 0.12558167531397
317 => 0.12032336515463
318 => 0.12409997531235
319 => 0.12538947606603
320 => 0.12595899306009
321 => 0.12078804893938
322 => 0.11916322602999
323 => 0.11829818394662
324 => 0.12688949988572
325 => 0.12736015156666
326 => 0.12495223102352
327 => 0.13583626020693
328 => 0.1333728691934
329 => 0.13612508050097
330 => 0.1284891773384
331 => 0.12878087912232
401 => 0.12516592019438
402 => 0.12719005564238
403 => 0.12575946194866
404 => 0.12702652550108
405 => 0.1277859981701
406 => 0.13140036391884
407 => 0.13686238362994
408 => 0.13086049820446
409 => 0.12824539077599
410 => 0.12986778871669
411 => 0.13418844822987
412 => 0.14073446856282
413 => 0.13685909277477
414 => 0.13857891874136
415 => 0.13895462420533
416 => 0.13609706557343
417 => 0.14083983082556
418 => 0.14338151725433
419 => 0.14598876160234
420 => 0.1482525588164
421 => 0.14494737087521
422 => 0.14848439575236
423 => 0.14563417807032
424 => 0.14307723815944
425 => 0.14308111598183
426 => 0.1414771102248
427 => 0.13836914695283
428 => 0.13779599084077
429 => 0.14077762131736
430 => 0.14316860659812
501 => 0.14336553959789
502 => 0.14468931190259
503 => 0.14547270671656
504 => 0.15315104086715
505 => 0.15623933038103
506 => 0.16001563234027
507 => 0.16148671477411
508 => 0.16591414548773
509 => 0.16233863560814
510 => 0.16156505155468
511 => 0.15082555284499
512 => 0.15258414515706
513 => 0.15539982112761
514 => 0.15087198230466
515 => 0.15374385387299
516 => 0.15431082215513
517 => 0.15071812807406
518 => 0.15263714121391
519 => 0.14754081126221
520 => 0.13697346969622
521 => 0.14085159529755
522 => 0.1437072011031
523 => 0.13963189952493
524 => 0.14693671986784
525 => 0.14266939462561
526 => 0.14131685739156
527 => 0.13604012742719
528 => 0.13853054085041
529 => 0.1418988606646
530 => 0.13981763062864
531 => 0.14413649545152
601 => 0.1502531598399
602 => 0.15461225913673
603 => 0.15494689665358
604 => 0.1521442878427
605 => 0.15663548634815
606 => 0.15666819982611
607 => 0.15160210956488
608 => 0.14849915748798
609 => 0.14779416024744
610 => 0.14955538157715
611 => 0.15169382941082
612 => 0.15506556562551
613 => 0.15710303520395
614 => 0.16241567527415
615 => 0.16385312335182
616 => 0.16543244298216
617 => 0.16754290105242
618 => 0.17007704707611
619 => 0.16453247984529
620 => 0.16475277583773
621 => 0.15958975160215
622 => 0.15407231975386
623 => 0.15825936276912
624 => 0.16373336453259
625 => 0.16247762247982
626 => 0.1623363258464
627 => 0.16257394759139
628 => 0.1616271590923
629 => 0.15734486980054
630 => 0.15519433092676
701 => 0.15796907473491
702 => 0.1594437275793
703 => 0.16173078553771
704 => 0.1614488573704
705 => 0.16734007305917
706 => 0.16962922133472
707 => 0.16904355924765
708 => 0.16915133516642
709 => 0.17329572877531
710 => 0.17790514682796
711 => 0.18222247510054
712 => 0.18661424685298
713 => 0.18131979459165
714 => 0.17863159824976
715 => 0.18140513069157
716 => 0.17993345533765
717 => 0.18839013844852
718 => 0.18897566083892
719 => 0.19743173243535
720 => 0.20545755131064
721 => 0.20041667827255
722 => 0.20516999450156
723 => 0.21031109354679
724 => 0.2202291077183
725 => 0.21688906946528
726 => 0.21433065250854
727 => 0.2119129608466
728 => 0.21694379339735
729 => 0.22341587910438
730 => 0.22480990437681
731 => 0.22706875787678
801 => 0.22469384962103
802 => 0.22755416502752
803 => 0.23765233529873
804 => 0.23492372055244
805 => 0.23104864896599
806 => 0.23902018455653
807 => 0.24190505229818
808 => 0.26215256492609
809 => 0.28771588600185
810 => 0.27713250321867
811 => 0.27056305600152
812 => 0.27210703192692
813 => 0.28144189141076
814 => 0.28443995200334
815 => 0.27629018981925
816 => 0.27916882359957
817 => 0.29503037875018
818 => 0.30353959418887
819 => 0.29198293668303
820 => 0.2600985769681
821 => 0.2306997411677
822 => 0.2384976362688
823 => 0.23761359696119
824 => 0.25465485920122
825 => 0.23485864399315
826 => 0.23519196148703
827 => 0.25258561898317
828 => 0.24794528936598
829 => 0.24042854967465
830 => 0.23075462168597
831 => 0.21287147106887
901 => 0.19703186585876
902 => 0.22809697931902
903 => 0.22675739513837
904 => 0.22481747872953
905 => 0.22913455277651
906 => 0.2500970389258
907 => 0.24961378577111
908 => 0.24653957575892
909 => 0.24887133695832
910 => 0.24001978066249
911 => 0.24230102826612
912 => 0.23069508424191
913 => 0.23594145564789
914 => 0.24041242212721
915 => 0.24131003484173
916 => 0.24333240212077
917 => 0.22605149514634
918 => 0.23381011503708
919 => 0.23836757733852
920 => 0.21777679685872
921 => 0.23796056381285
922 => 0.22575067300246
923 => 0.22160645267501
924 => 0.22718609938641
925 => 0.2250117056366
926 => 0.22314228957519
927 => 0.22209912329228
928 => 0.22619620003399
929 => 0.22600506650693
930 => 0.21930145374915
1001 => 0.21055686418084
1002 => 0.21349183547134
1003 => 0.212425532886
1004 => 0.20856111476096
1005 => 0.21116526598561
1006 => 0.19969790192302
1007 => 0.17996889807506
1008 => 0.19300248233276
1009 => 0.19250070351665
1010 => 0.19224768388371
1011 => 0.20204206223155
1012 => 0.20110055874816
1013 => 0.19939172070658
1014 => 0.20852973061024
1015 => 0.20519423407183
1016 => 0.2154734484614
1017 => 0.22224400387627
1018 => 0.22052677201853
1019 => 0.22689451211116
1020 => 0.21355945128206
1021 => 0.21798882357971
1022 => 0.21890171107141
1023 => 0.20841696898649
1024 => 0.20125460036182
1025 => 0.20077695203153
1026 => 0.18835839187155
1027 => 0.1949922864699
1028 => 0.20082983918723
1029 => 0.19803410444802
1030 => 0.19714905834978
1031 => 0.20167056692259
1101 => 0.2020219268628
1102 => 0.19401088299057
1103 => 0.19567663268838
1104 => 0.20262308583605
1105 => 0.19550159989182
1106 => 0.18166571599029
1107 => 0.17823422548666
1108 => 0.17777640139855
1109 => 0.16846992699774
1110 => 0.17846353409042
1111 => 0.17410105678245
1112 => 0.18788207032783
1113 => 0.18001042929976
1114 => 0.17967109858789
1115 => 0.17915815044791
1116 => 0.17114768348552
1117 => 0.17290146665855
1118 => 0.17873130903442
1119 => 0.18081146247201
1120 => 0.18059448542627
1121 => 0.17870273962632
1122 => 0.17956877116623
1123 => 0.17677898183078
1124 => 0.17579384915199
1125 => 0.17268449943564
1126 => 0.16811461433238
1127 => 0.16875008488472
1128 => 0.15969594671968
1129 => 0.15476277170788
1130 => 0.15339733388282
1201 => 0.15157141335757
1202 => 0.15360357646473
1203 => 0.15967029748385
1204 => 0.15235254480813
1205 => 0.13980677112629
1206 => 0.14056079350152
1207 => 0.14225485790743
1208 => 0.13909798009438
1209 => 0.136110260181
1210 => 0.13870784024431
1211 => 0.1333920305473
1212 => 0.14289724811273
1213 => 0.14264015861565
1214 => 0.14618311592533
1215 => 0.14839859983988
1216 => 0.14329262668828
1217 => 0.14200848824868
1218 => 0.14273999186471
1219 => 0.13064986653604
1220 => 0.14519509475092
1221 => 0.14532088248853
1222 => 0.14424381151119
1223 => 0.15198869650208
1224 => 0.16833281952305
1225 => 0.16218350300173
1226 => 0.1598023017806
1227 => 0.15527563651859
1228 => 0.16130714921344
1229 => 0.16084402314473
1230 => 0.15874959142668
1231 => 0.15748287258858
]
'min_raw' => 0.11829818394662
'max_raw' => 0.30353959418887
'avg_raw' => 0.21091888906775
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118298'
'max' => '$0.303539'
'avg' => '$0.210918'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.07274578602464
'max_diff' => 0.17643427814549
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037132448177774
]
1 => [
'year' => 2028
'avg' => 0.0063730060699789
]
2 => [
'year' => 2029
'avg' => 0.017409903960593
]
3 => [
'year' => 2030
'avg' => 0.013431714977991
]
4 => [
'year' => 2031
'avg' => 0.013191608682499
]
5 => [
'year' => 2032
'avg' => 0.023129041572461
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037132448177774
'min' => '$0.003713'
'max_raw' => 0.023129041572461
'max' => '$0.023129'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023129041572461
]
1 => [
'year' => 2033
'avg' => 0.059490273255668
]
2 => [
'year' => 2034
'avg' => 0.037707794158194
]
3 => [
'year' => 2035
'avg' => 0.044476429681752
]
4 => [
'year' => 2036
'avg' => 0.086328856982681
]
5 => [
'year' => 2037
'avg' => 0.21091888906775
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023129041572461
'min' => '$0.023129'
'max_raw' => 0.21091888906775
'max' => '$0.210918'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21091888906775
]
]
]
]
'prediction_2025_max_price' => '$0.006348'
'last_price' => 0.00615613
'sma_50day_nextmonth' => '$0.005544'
'sma_200day_nextmonth' => '$0.006527'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.006071'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005886'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005537'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005368'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005498'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006038'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006036'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005896'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005673'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005519'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005619'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00600022'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006346'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006377'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006461'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005442'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005918'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005819'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005884'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.006231'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006187'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006067'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00387'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '66.75'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 110.13
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.005583'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006249'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 200.74
'cci_20_action' => 'SELL'
'adx_14' => 15.35
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000478'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 78.89
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000420'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 8
'buy_signals' => 26
'sell_pct' => 23.53
'buy_pct' => 76.47
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767685462
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di DRAC (Ordinals) per l'anno 2026
La previsione del prezzo di DRAC (Ordinals) per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.002126 come limite inferiore e $0.006348 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3.13% entro il 2026 se DRAC raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di DRAC (Ordinals) 2027-2032
La previsione del prezzo di DRAC per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.003713 come limite inferiore e $0.023129 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se DRAC (Ordinals) raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.002047 | $0.003713 | $0.005378 |
| 2028 | $0.003695 | $0.006373 | $0.00905 |
| 2029 | $0.008117 | $0.0174099 | $0.0267024 |
| 2030 | $0.0069034 | $0.013431 | $0.019959 |
| 2031 | $0.008162 | $0.013191 | $0.018221 |
| 2032 | $0.012458 | $0.023129 | $0.033799 |
Previsione del prezzo di DRAC (Ordinals) 2032-2037
La previsione del prezzo di DRAC (Ordinals) per gli anni 2032-2037 è attualmente stimata tra $0.023129 come limite inferiore e $0.210918 come limite superiore. Rispetto al prezzo attuale, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.012458 | $0.023129 | $0.033799 |
| 2033 | $0.028951 | $0.05949 | $0.090029 |
| 2034 | $0.023275 | $0.0377077 | $0.05214 |
| 2035 | $0.027518 | $0.044476 | $0.061433 |
| 2036 | $0.045552 | $0.086328 | $0.1271053 |
| 2037 | $0.118298 | $0.210918 | $0.303539 |
DRAC (Ordinals) Istogramma dei prezzi potenziali
Previsione del prezzo di DRAC (Ordinals) basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per DRAC (Ordinals) è Rialzista, con 26 indicatori tecnici che mostrano segnali rialzisti e 8 indicando segnali ribassisti. La previsione del prezzo di DRAC è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di DRAC (Ordinals)
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di DRAC (Ordinals) è previsto aumentare nel corso del prossimo mese, raggiungendo $0.006527 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per DRAC (Ordinals) dovrebbe raggiungere $0.005544 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 66.75, suggerendo che il mercato di DRAC è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di DRAC per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.006071 | BUY |
| SMA 5 | $0.005886 | BUY |
| SMA 10 | $0.005537 | BUY |
| SMA 21 | $0.005368 | BUY |
| SMA 50 | $0.005498 | BUY |
| SMA 100 | $0.006038 | BUY |
| SMA 200 | $0.006851 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.006036 | BUY |
| EMA 5 | $0.005896 | BUY |
| EMA 10 | $0.005673 | BUY |
| EMA 21 | $0.005519 | BUY |
| EMA 50 | $0.005619 | BUY |
| EMA 100 | $0.00600022 | BUY |
| EMA 200 | $0.006346 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.006377 | SELL |
| SMA 50 | $0.006461 | SELL |
| SMA 100 | $0.005442 | BUY |
| SMA 200 | — | — |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.006231 | SELL |
| EMA 50 | $0.006187 | SELL |
| EMA 100 | $0.006067 | BUY |
| EMA 200 | $0.00387 | BUY |
Oscillatori di DRAC (Ordinals)
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 66.75 | NEUTRAL |
| Stoch RSI (14) | 110.13 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 200.74 | SELL |
| Indice Direzionale Medio (14) | 15.35 | NEUTRAL |
| Oscillatore Awesome (5, 34) | 0.000478 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 78.89 | SELL |
| VWMA (10) | 0.005583 | BUY |
| Media Mobile di Hull (9) | 0.006249 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000420 | NEUTRAL |
Previsione del prezzo di DRAC (Ordinals) sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di DRAC (Ordinals)
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di DRAC (Ordinals) sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.00865 | $0.012155 | $0.01708 | $0.02400045 | $0.033724 | $0.047388 |
| Azioni Amazon.com | $0.012845 | $0.0268021 | $0.055924 | $0.116689 | $0.243479 | $0.508033 |
| Azioni Apple | $0.008732 | $0.012385 | $0.017568 | $0.024919 | $0.035345 | $0.050135 |
| Azioni Netflix | $0.009713 | $0.015326 | $0.024182 | $0.038156 | $0.0602042 | $0.094992 |
| Azioni Google | $0.007972 | $0.010323 | $0.013369 | $0.017313 | $0.02242 | $0.029034 |
| Azioni Tesla | $0.013955 | $0.031636 | $0.071716 | $0.162575 | $0.368547 | $0.835468 |
| Azioni Kodak | $0.004616 | $0.003461 | $0.002596 | $0.001946 | $0.001459 | $0.001094 |
| Azioni Nokia | $0.004078 | $0.0027016 | $0.001789 | $0.001185 | $0.000785 | $0.00052 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per DRAC (Ordinals)
Potresti avere domande come: "Dovrei investire su DRAC (Ordinals) in questo momento?", "Dovrei acquistare DRAC oggi?", "DRAC (Ordinals) sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su DRAC (Ordinals) con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come DRAC (Ordinals) con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su DRAC (Ordinals) per prendere decisioni responsabili.
Il prezzo odierno di DRAC (Ordinals) è di $0.006156 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di DRAC (Ordinals) sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DRAC (Ordinals) ha 1% della precedente crescita media annua di Bitcoin | $0.006316 | $0.00648 | $0.006648 | $0.006821 |
| Se DRAC (Ordinals) ha 2% della precedente crescita media annua di Bitcoin | $0.006476 | $0.006812 | $0.007167 | $0.007539 |
| Se DRAC (Ordinals) ha 5% della precedente crescita media annua di Bitcoin | $0.006956 | $0.00786 | $0.008881 | $0.010036 |
| Se DRAC (Ordinals) ha 10% della precedente crescita media annua di Bitcoin | $0.007756 | $0.009772 | $0.012312 | $0.015513 |
| Se DRAC (Ordinals) ha 20% della precedente crescita media annua di Bitcoin | $0.009356 | $0.01422 | $0.021613 | $0.032849 |
| Se DRAC (Ordinals) ha 50% della precedente crescita media annua di Bitcoin | $0.014157 | $0.032556 | $0.074868 | $0.172172 |
| Se DRAC (Ordinals) ha 100% della precedente crescita media annua di Bitcoin | $0.022157 | $0.079753 | $0.287057 | $1.03 |
Area domande
È DRAC un buon investimento?
La decisione di procurarsi DRAC (Ordinals) dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di DRAC (Ordinals) ha subito un aumento del 2.4354% nelle precedenti 24 ore, e DRAC (Ordinals) ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in DRAC (Ordinals) dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può DRAC (Ordinals) salire?
Sembra che il valore medio di DRAC (Ordinals) possa potenzialmente salire fino a $0.006348 entro la fine di quest'anno. Guardando le prospettive di DRAC (Ordinals) su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.019959. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di DRAC (Ordinals) la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) aumenterà del 0.86% nella prossima settimana e raggiungerà $0.006208 entro 13 gennaio 2026.
Quale sarà il prezzo di DRAC (Ordinals) il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) diminuirà del -11.62% nel prossimo mese e raggiungerà $0.00544 entro 5 febbraio 2026.
Quanto può salire il prezzo di DRAC (Ordinals) quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di DRAC (Ordinals) in 2026, DRAC dovrebbe fluttuare all'interno dell'intervallo di $0.002126 e $0.006348. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di DRAC (Ordinals) non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà DRAC (Ordinals) tra 5 anni?
Il futuro di DRAC (Ordinals) sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.019959 prevista dopo un periodo di cinque anni. Basato sulla previsione di DRAC (Ordinals) per 2030, il valore di DRAC (Ordinals) potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.019959, mentre il suo picco più basso è previsto intorno a $0.0069034.
Quanto varrà DRAC (Ordinals) in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2026 aumenti del 3.13% fino a $0.006348 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.006348 e $0.002126 durante 2026.
Quanto varrà DRAC (Ordinals) in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di DRAC (Ordinals), il valore di DRAC potrebbe diminuire del -12.62% fino a $0.005378 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.005378 e $0.002047 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.00905 nello scenario migliore. Il prezzo è previsto oscillare tra $0.00905 e $0.003695 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di DRAC (Ordinals) potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.0267024 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.0267024 e $0.008117.
Quanto varrà DRAC (Ordinals) in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2030 aumenti del 224.23%, raggiungendo $0.019959 nello scenario migliore. Il prezzo è previsto oscillare tra $0.019959 e $0.0069034 nel corso di 2030.
Quanto varrà DRAC (Ordinals) in 2031?
La nostra simulazione sperimentale indica che il prezzo di DRAC (Ordinals) potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.018221 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.018221 e $0.008162 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di DRAC (Ordinals), DRAC potrebbe subire una 449.04% aumento in valore, raggiungendo $0.033799 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.033799 e $0.012458 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2033?
Secondo la nostra previsione sperimentale dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.090029. Durante l'anno, il prezzo di DRAC potrebbe oscillare tra $0.090029 e $0.028951.
Quanto varrà DRAC (Ordinals) in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di DRAC (Ordinals) suggeriscono che DRAC potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.05214 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.05214 e $0.023275.
Quanto varrà DRAC (Ordinals) in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di DRAC (Ordinals), DRAC potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.061433 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.061433 e $0.027518.
Quanto varrà DRAC (Ordinals) in 2036?
La nostra recente simulazione di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.1271053 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.1271053 e $0.045552.
Quanto varrà DRAC (Ordinals) in 2037?
Secondo la simulazione sperimentale, il valore di DRAC (Ordinals) potrebbe aumentare del 4830.69% in 2037, con un picco di $0.303539 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.303539 e $0.118298 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di TE-FOOD
Previsione del prezzo di TrustFi Network Token
Previsione del prezzo di RetroCraft
Previsione del prezzo di CrossWallet
Previsione del prezzo di İstanbul Başakşehir Fan Token
Previsione del prezzo di Trisolaris
Previsione del prezzo di DogeCola
Previsione del prezzo di Unistake
Previsione del prezzo di Forest Knight
Previsione del prezzo di AirCoin
Previsione del prezzo di Changer
Previsione del prezzo di RIKU
Previsione del prezzo di Glitch Protocol
Previsione del prezzo di Position
Previsione del prezzo di Primate
Previsione del prezzo di PlotX
Previsione del prezzo di Nyxia AI
Previsione del prezzo di Spartan Protocol Token
Previsione del prezzo di Playermon
Previsione del prezzo di Solrise Finance
Previsione del prezzo di AllianceBlock
Previsione del prezzo di Metaverse Face
Previsione del prezzo di Furucombo
Previsione del prezzo di Coinzix Token
Previsione del prezzo di Tranche Finance
Come leggere e prevedere i movimenti di prezzo di DRAC (Ordinals)?
I trader di DRAC (Ordinals) utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di DRAC (Ordinals)
Le medie mobili sono strumenti popolari per la previsione del prezzo di DRAC (Ordinals). Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di DRAC su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di DRAC al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di DRAC.
Come leggere i grafici di DRAC (Ordinals) e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di DRAC (Ordinals) in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di DRAC all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di DRAC (Ordinals)?
L'azione del prezzo di DRAC (Ordinals) è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di DRAC. La capitalizzazione di mercato di DRAC (Ordinals) può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di DRAC, grandi detentori di DRAC (Ordinals), poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di DRAC (Ordinals).
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


