Previsione del prezzo di DRAC (Ordinals) DRAC
Previsione del prezzo di DRAC (Ordinals) fino a $0.006377 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.002136 | $0.006377 |
| 2027 | $0.002056 | $0.0054033 |
| 2028 | $0.003712 | $0.009091 |
| 2029 | $0.008154 | $0.026823 |
| 2030 | $0.006934 | $0.02005 |
| 2031 | $0.008199 | $0.0183039 |
| 2032 | $0.012515 | $0.033952 |
| 2033 | $0.029082 | $0.090438 |
| 2034 | $0.023381 | $0.052376 |
| 2035 | $0.027643 | $0.061712 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su DRAC (Ordinals) oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,955.46, con un rendimento del 39.55% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di DRAC (Ordinals) per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DRAC (Ordinals)'
'name_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_lang' => 'DRAC (Ordinals)'
'name_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_with_lang' => 'DRAC (Ordinals)'
'name_with_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'image' => '/uploads/coins/drac-ordinals.png?1717128736'
'price_for_sd' => 0.006184
'ticker' => 'DRAC'
'marketcap' => '$660.61K'
'low24h' => '$0.005956'
'high24h' => '$0.006314'
'volume24h' => '$14.9K'
'current_supply' => '106.82M'
'max_supply' => '106.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006184'
'change_24h_pct' => '1.459%'
'ath_price' => '$0.03978'
'ath_days' => 752
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 dic 2023'
'ath_pct' => '-84.46%'
'fdv' => '$660.61K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.304918'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006237'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005465'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002136'
'current_year_max_price_prediction' => '$0.006377'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006934'
'grand_prediction_max_price' => '$0.02005'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063012752526687
107 => 0.0063248019270992
108 => 0.006377808725893
109 => 0.0059248714338091
110 => 0.0061282269804145
111 => 0.0062476793122073
112 => 0.0057079893314546
113 => 0.0062370113765234
114 => 0.0059169868032485
115 => 0.0058083656564712
116 => 0.0059546097208589
117 => 0.00589761826674
118 => 0.005848620361139
119 => 0.0058212786879228
120 => 0.0059286641884407
121 => 0.0059236545264881
122 => 0.0057479510050133
123 => 0.0055187529238411
124 => 0.005595679323053
125 => 0.0055677312410305
126 => 0.0054664437864065
127 => 0.0055346993013292
128 => 0.0052341365569353
129 => 0.0047170339770977
130 => 0.0050586477806188
131 => 0.0050454960207876
201 => 0.0050388643070958
202 => 0.0052955776389299
203 => 0.0052709005754583
204 => 0.0052261114636188
205 => 0.0054656211992435
206 => 0.00537819692388
207 => 0.0056476179408006
208 => 0.0058250760476034
209 => 0.0057800669315498
210 => 0.0059469671387273
211 => 0.0055974515519214
212 => 0.0057135466097269
213 => 0.0057374736402398
214 => 0.005462665686284
215 => 0.0052749380482286
216 => 0.0052624187550221
217 => 0.0049369249010961
218 => 0.0051108010905688
219 => 0.0052638049418191
220 => 0.0051905279706487
221 => 0.0051673306706634
222 => 0.0052858406454078
223 => 0.0052950498854148
224 => 0.0050850782373051
225 => 0.0051287379918845
226 => 0.0053108064263105
227 => 0.0051241503344764
228 => 0.0047615080381423
301 => 0.0046715677347294
302 => 0.0046595680403255
303 => 0.0044156428042143
304 => 0.0046775779758698
305 => 0.004563236254016
306 => 0.0049244403833279
307 => 0.0047181225218415
308 => 0.0047092285711951
309 => 0.0046957840603342
310 => 0.0044858275331888
311 => 0.0045317946692002
312 => 0.0046845964302948
313 => 0.0047391178200884
314 => 0.0047334307924524
315 => 0.0046838476183048
316 => 0.0047065465415226
317 => 0.0046334254010088
318 => 0.0046076048044085
319 => 0.0045261078990231
320 => 0.0044063299622014
321 => 0.0044229858189572
322 => 0.0041856743845114
323 => 0.0040563745199542
324 => 0.0040205860215896
325 => 0.0039727281458721
326 => 0.0040259916959968
327 => 0.0041850021110342
328 => 0.0039932018145577
329 => 0.0036643736594751
330 => 0.0036841367918915
331 => 0.0037285386827044
401 => 0.0036457960529225
402 => 0.0035674870978964
403 => 0.0036355703808852
404 => 0.0034962415567118
405 => 0.0037453759054545
406 => 0.0037386375195119
407 => 0.0038314993983584
408 => 0.0038895678369187
409 => 0.0037557388859175
410 => 0.0037220812666526
411 => 0.0037412541762394
412 => 0.003424368688954
413 => 0.0038056030934988
414 => 0.0038089000244604
415 => 0.0037806696999423
416 => 0.0039836652510706
417 => 0.0044120491798517
418 => 0.0042508739141406
419 => 0.0041884619797091
420 => 0.004069816846732
421 => 0.0042279044419731
422 => 0.0042157657812093
423 => 0.0041608701537847
424 => 0.0041276691070335
425 => 0.0041888430536722
426 => 0.0041200889780629
427 => 0.0041077388568478
428 => 0.0040329105593488
429 => 0.0040062002616123
430 => 0.0039864250205358
501 => 0.0039646544231856
502 => 0.0040126749360453
503 => 0.0039038541362806
504 => 0.0037726269195989
505 => 0.00376171679643
506 => 0.0037918406057272
507 => 0.0037785130625671
508 => 0.0037616529892808
509 => 0.0037294625178097
510 => 0.0037199122925648
511 => 0.0037509458915001
512 => 0.0037159107676734
513 => 0.0037676070013416
514 => 0.003753548486267
515 => 0.003675018763871
516 => 0.0035771416543386
517 => 0.0035762703427596
518 => 0.0035551828800615
519 => 0.0035283248257942
520 => 0.0035208535295261
521 => 0.0036298365966916
522 => 0.0038554282841356
523 => 0.0038111392379388
524 => 0.00384314261274
525 => 0.0040005675418578
526 => 0.0040506081928916
527 => 0.0040150905240656
528 => 0.0039664717483422
529 => 0.0039686107277295
530 => 0.0041347558022807
531 => 0.0041451180667828
601 => 0.0041713001661863
602 => 0.0042049515629802
603 => 0.0040208215024523
604 => 0.0039599382184372
605 => 0.0039310883407949
606 => 0.0038422418839641
607 => 0.0039380551705365
608 => 0.0038822288715848
609 => 0.0038897617466113
610 => 0.0038848559518682
611 => 0.0038875348475263
612 => 0.0037453062673266
613 => 0.0037971268866373
614 => 0.0037109650562589
615 => 0.0035956040375016
616 => 0.0035952173069159
617 => 0.0036234517528249
618 => 0.0036066567995843
619 => 0.0035614620122514
620 => 0.0035678817184786
621 => 0.0035116383367955
622 => 0.0035747106833343
623 => 0.0035765193725493
624 => 0.0035522330835579
625 => 0.0036494047357074
626 => 0.0036892160408776
627 => 0.0036732302852008
628 => 0.0036880944376445
629 => 0.0038129796477613
630 => 0.0038333413861341
701 => 0.0038423847252983
702 => 0.0038302678488311
703 => 0.0036903771100305
704 => 0.0036965818591576
705 => 0.0036510555269782
706 => 0.0036125905737333
707 => 0.003614128970141
708 => 0.0036339049562028
709 => 0.0037202678471809
710 => 0.0039020134598737
711 => 0.003908910573021
712 => 0.0039172700753586
713 => 0.0038832677782023
714 => 0.0038730123600218
715 => 0.0038865419037499
716 => 0.003954796000147
717 => 0.0041303640668867
718 => 0.004068306586304
719 => 0.004017852888608
720 => 0.0040621143837066
721 => 0.0040553006734692
722 => 0.0039977861019903
723 => 0.0039961718595271
724 => 0.0038857830083381
725 => 0.0038449747634861
726 => 0.0038108723396436
727 => 0.0037736333830738
728 => 0.0037515568813581
729 => 0.003785476421584
730 => 0.0037932342217579
731 => 0.0037190685542419
801 => 0.003708960047811
802 => 0.0037695253328817
803 => 0.0037428728090235
804 => 0.0037702855907624
805 => 0.0037766455912684
806 => 0.0037756214847037
807 => 0.0037477931887729
808 => 0.0037655301147474
809 => 0.0037235769971855
810 => 0.0036779592829913
811 => 0.0036488580234195
812 => 0.0036234633147211
813 => 0.0036375537750561
814 => 0.0035873238567783
815 => 0.0035712542949927
816 => 0.0037595212433207
817 => 0.0038985960622614
818 => 0.0038965738593143
819 => 0.0038842642189424
820 => 0.0038659745902691
821 => 0.0039534579998905
822 => 0.0039229805292644
823 => 0.0039451554356228
824 => 0.0039507998799689
825 => 0.0039678839130066
826 => 0.0039739899863954
827 => 0.003955533191674
828 => 0.0038935899342812
829 => 0.0037392332262468
830 => 0.0036673797619787
831 => 0.0036436669219562
901 => 0.0036445288386539
902 => 0.0036207533283651
903 => 0.0036277562816888
904 => 0.0036183179869877
905 => 0.0036004441401926
906 => 0.0036364501153837
907 => 0.0036405994686056
908 => 0.0036321952437566
909 => 0.0036341747429459
910 => 0.0035645913506878
911 => 0.003569881624874
912 => 0.0035404247059497
913 => 0.0035349018887599
914 => 0.0034604373628266
915 => 0.0033285126613302
916 => 0.0034016117521998
917 => 0.0033133183297169
918 => 0.003279880272759
919 => 0.0034381708337131
920 => 0.0034222828516901
921 => 0.0033950895328064
922 => 0.0033548649465931
923 => 0.003339945256287
924 => 0.0032492979409871
925 => 0.0032439420140145
926 => 0.0032888692711606
927 => 0.0032681368878402
928 => 0.0032390207696908
929 => 0.0031335651412074
930 => 0.0030149980996333
1001 => 0.0030185768933325
1002 => 0.003056290863239
1003 => 0.0031659493171639
1004 => 0.003123103862105
1005 => 0.0030920189928647
1006 => 0.0030861977312638
1007 => 0.0031590630078364
1008 => 0.0032621826399341
1009 => 0.0033105640641426
1010 => 0.0032626195421176
1011 => 0.0032075434567318
1012 => 0.0032108956828512
1013 => 0.0032331965414
1014 => 0.0032355400463163
1015 => 0.0031996911766432
1016 => 0.0032097824234703
1017 => 0.003194452896777
1018 => 0.0031003756197569
1019 => 0.0030986740601379
1020 => 0.0030755859791562
1021 => 0.0030748868812398
1022 => 0.0030356082958981
1023 => 0.0030301129502888
1024 => 0.0029521229350532
1025 => 0.0030034561992568
1026 => 0.0029690245407463
1027 => 0.0029171279097639
1028 => 0.0029081809110215
1029 => 0.0029079119534355
1030 => 0.0029611981895801
1031 => 0.0030028335185627
1101 => 0.0029696234941876
1102 => 0.0029620622153867
1103 => 0.0030427968910621
1104 => 0.0030325226676695
1105 => 0.0030236252564731
1106 => 0.0032529494079057
1107 => 0.0030714214476601
1108 => 0.0029922648957393
1109 => 0.0028942936313158
1110 => 0.0029261935690261
1111 => 0.0029329153546093
1112 => 0.0026973121243185
1113 => 0.002601727923132
1114 => 0.0025689270272994
1115 => 0.0025500496480112
1116 => 0.0025586523068001
1117 => 0.0024726153148237
1118 => 0.0025304335963523
1119 => 0.0024559328338266
1120 => 0.0024434425385428
1121 => 0.0025766591308121
1122 => 0.0025951954413864
1123 => 0.0025161137816964
1124 => 0.0025668970093751
1125 => 0.0025484823050791
1126 => 0.00245720993557
1127 => 0.0024537240024088
1128 => 0.0024079267357681
1129 => 0.0023362628815735
1130 => 0.0023035105772087
1201 => 0.002286452892727
1202 => 0.0022934912257918
1203 => 0.0022899324292177
1204 => 0.0022667088743088
1205 => 0.0022912635762005
1206 => 0.0022285364595705
1207 => 0.0022035580163017
1208 => 0.0021922758329727
1209 => 0.0021366019065255
1210 => 0.0022252038818105
1211 => 0.0022426595871199
1212 => 0.0022601496855611
1213 => 0.0024123890514946
1214 => 0.0024047836029966
1215 => 0.0024735331534154
1216 => 0.0024708616723084
1217 => 0.0024512531868601
1218 => 0.002368528212193
1219 => 0.0024015009126644
1220 => 0.0023000160657087
1221 => 0.0023760554133467
1222 => 0.0023413542305638
1223 => 0.0023643229085415
1224 => 0.0023230231545353
1225 => 0.0023458801436274
1226 => 0.0022467989824128
1227 => 0.0021542783881801
1228 => 0.0021915113761438
1229 => 0.0022319878921691
1230 => 0.0023197512921363
1231 => 0.0022674801351481
]
'min_raw' => 0.0021366019065255
'max_raw' => 0.006377808725893
'avg_raw' => 0.0042572053162092
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002136'
'max' => '$0.006377'
'avg' => '$0.004257'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040474880934745
'max_diff' => 0.00019371872589301
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022862788197924
102 => 0.002223306373096
103 => 0.0020933762283714
104 => 0.0020941116188802
105 => 0.0020741246967964
106 => 0.0020568530779776
107 => 0.0022734841063192
108 => 0.0022465426135151
109 => 0.0022036148707473
110 => 0.0022610753603227
111 => 0.0022762688257871
112 => 0.0022767013623893
113 => 0.0023186230523137
114 => 0.0023409966657412
115 => 0.0023449401120806
116 => 0.0024109047969546
117 => 0.0024330152892291
118 => 0.002524085277714
119 => 0.0023390984209576
120 => 0.0023352887383767
121 => 0.0022618839472478
122 => 0.00221532946823
123 => 0.0022650715722552
124 => 0.0023091362859472
125 => 0.0022632531607321
126 => 0.0022692445282396
127 => 0.0022076501814273
128 => 0.0022296672621293
129 => 0.0022486313380509
130 => 0.0022381604899839
131 => 0.0022224851236327
201 => 0.0023055234819319
202 => 0.0023008381323267
203 => 0.0023781653606185
204 => 0.002438447464795
205 => 0.0025464837721946
206 => 0.0024337422533631
207 => 0.0024296335043099
208 => 0.0024697971853687
209 => 0.0024330091403788
210 => 0.0024562579149323
211 => 0.0025427380351893
212 => 0.0025445652238568
213 => 0.0025139574594775
214 => 0.0025120949742334
215 => 0.0025179735301947
216 => 0.0025524044160733
217 => 0.0025403732065931
218 => 0.0025542960267966
219 => 0.0025717067266549
220 => 0.0026437247632525
221 => 0.0026610880680603
222 => 0.0026189042392188
223 => 0.0026227129666509
224 => 0.0026069350566921
225 => 0.0025916937933686
226 => 0.0026259539275121
227 => 0.0026885649960439
228 => 0.0026881754958361
301 => 0.0027027000467502
302 => 0.0027117487216418
303 => 0.0026729051849721
304 => 0.0026476194709166
305 => 0.0026573156226573
306 => 0.0026728199804453
307 => 0.0026522877683891
308 => 0.0025255534441323
309 => 0.0025639965422918
310 => 0.0025575977309866
311 => 0.002548485045566
312 => 0.0025871398780371
313 => 0.0025834115251462
314 => 0.0024717328811151
315 => 0.0024788821855655
316 => 0.002472167653998
317 => 0.0024938636791566
318 => 0.00243183748382
319 => 0.0024509163237527
320 => 0.0024628823933055
321 => 0.0024699305001998
322 => 0.002495393095234
323 => 0.0024924053535949
324 => 0.0024952073730188
325 => 0.0025329616795787
326 => 0.0027239100064455
327 => 0.0027343029025731
328 => 0.0026831244810175
329 => 0.0027035692509792
330 => 0.0026643197634324
331 => 0.0026906682073713
401 => 0.0027086951435364
402 => 0.0026272348853869
403 => 0.002622411337572
404 => 0.0025829998534282
405 => 0.0026041773526265
406 => 0.0025704824286859
407 => 0.0025787499844225
408 => 0.0025556331778304
409 => 0.002597238827186
410 => 0.0026437604080297
411 => 0.0026555135965437
412 => 0.0026245960176291
413 => 0.0026022096529272
414 => 0.0025629065710376
415 => 0.0026282684721463
416 => 0.0026473822838983
417 => 0.0026281680754302
418 => 0.0026237157234894
419 => 0.0026152785246067
420 => 0.0026255057151175
421 => 0.0026472781859746
422 => 0.0026370106907928
423 => 0.0026437925522504
424 => 0.0026179470897993
425 => 0.002672918043799
426 => 0.0027602251482311
427 => 0.002760505854848
428 => 0.0027502383043206
429 => 0.0027460370438622
430 => 0.0027565721737904
501 => 0.0027622870496028
502 => 0.0027963557279783
503 => 0.0028329127772311
504 => 0.003003508575004
505 => 0.0029556059576395
506 => 0.003106968698213
507 => 0.0032266769740147
508 => 0.0032625722517192
509 => 0.0032295502852344
510 => 0.0031165839217016
511 => 0.0031110412529722
512 => 0.0032798606932586
513 => 0.0032321614689575
514 => 0.0032264877980046
515 => 0.0031661295248836
516 => 0.0032018087398156
517 => 0.0031940051721275
518 => 0.0031816868587682
519 => 0.0032497603154229
520 => 0.0033771877493211
521 => 0.0033573269887412
522 => 0.0033425018522824
523 => 0.0032775424198524
524 => 0.0033166625073898
525 => 0.0033027325935137
526 => 0.0033625843436673
527 => 0.0033271294927549
528 => 0.0032318001004199
529 => 0.0032469816203591
530 => 0.0032446869641612
531 => 0.0032919108261113
601 => 0.0032777353949222
602 => 0.003241918983714
603 => 0.0033767522162052
604 => 0.003367996896069
605 => 0.0033804099382772
606 => 0.0033858745433434
607 => 0.0034679451559327
608 => 0.0035015668599438
609 => 0.0035091995753851
610 => 0.0035411375937998
611 => 0.0035084049283921
612 => 0.0036393589280179
613 => 0.0037264356963913
614 => 0.0038275798437865
615 => 0.0039753786281148
616 => 0.0040309523382375
617 => 0.0040209134449248
618 => 0.0041329727963983
619 => 0.0043343409600568
620 => 0.0040616157081363
621 => 0.0043487960606372
622 => 0.0042578780766921
623 => 0.0040423131723027
624 => 0.0040284333338033
625 => 0.0041744163898158
626 => 0.004498192757703
627 => 0.0044170904497884
628 => 0.0044983254120246
629 => 0.004403560513527
630 => 0.0043988546375753
701 => 0.0044937228924238
702 => 0.0047153877408767
703 => 0.0046100830803593
704 => 0.0044591030277456
705 => 0.0045705843490858
706 => 0.0044740089114317
707 => 0.004256397420634
708 => 0.004417028432382
709 => 0.0043096190493339
710 => 0.0043409668175042
711 => 0.0045667253647313
712 => 0.0045395614990459
713 => 0.0045747140565491
714 => 0.0045126707126587
715 => 0.0044547124461277
716 => 0.0043465290376102
717 => 0.0043145012637258
718 => 0.0043233525881889
719 => 0.004314496877449
720 => 0.0042539692546403
721 => 0.0042408983202577
722 => 0.0042191128569692
723 => 0.0042258650829943
724 => 0.0041849020384498
725 => 0.0042622077669022
726 => 0.0042765563913187
727 => 0.0043328130537235
728 => 0.0043386538070387
729 => 0.0044953278110727
730 => 0.0044090344024505
731 => 0.0044669274711687
801 => 0.0044617489701919
802 => 0.0040469851174308
803 => 0.0041041359168488
804 => 0.0041930446258344
805 => 0.0041529913729493
806 => 0.0040963654443875
807 => 0.0040506369709837
808 => 0.0039813536578004
809 => 0.0040788685906377
810 => 0.0042070903577618
811 => 0.0043419057226511
812 => 0.004503877550113
813 => 0.0044677273237834
814 => 0.0043388777720019
815 => 0.0043446578687702
816 => 0.0043803881526073
817 => 0.0043341141885996
818 => 0.0043204670932387
819 => 0.0043785132512701
820 => 0.0043789129832589
821 => 0.0043256691952727
822 => 0.0042664984684363
823 => 0.0042662505409304
824 => 0.0042557216816113
825 => 0.0044054335742099
826 => 0.0044877599775595
827 => 0.0044971985670279
828 => 0.0044871246852855
829 => 0.0044910017225501
830 => 0.0044430978023795
831 => 0.0045525919584233
901 => 0.0046530746238588
902 => 0.004626143123023
903 => 0.0045857689747318
904 => 0.0045536090209354
905 => 0.0046185672599666
906 => 0.0046156747718363
907 => 0.0046521969954353
908 => 0.0046505401364103
909 => 0.0046382590862843
910 => 0.004626143561618
911 => 0.0046741802474429
912 => 0.0046603464533709
913 => 0.0046464911715957
914 => 0.004618702282858
915 => 0.0046224792543621
916 => 0.0045821120772368
917 => 0.0045634363740223
918 => 0.0042825986069537
919 => 0.0042075495789542
920 => 0.0042311615309267
921 => 0.0042389351986001
922 => 0.0042062737654368
923 => 0.0042531018705592
924 => 0.0042458037599791
925 => 0.0042741964389944
926 => 0.0042564579258124
927 => 0.0042571859205809
928 => 0.0043093511055991
929 => 0.0043244948807365
930 => 0.0043167926344764
1001 => 0.0043221870237394
1002 => 0.0044464984474765
1003 => 0.0044288253382767
1004 => 0.0044194368512524
1005 => 0.0044220375263202
1006 => 0.004453801760352
1007 => 0.004462694011618
1008 => 0.0044250169181564
1009 => 0.0044427856532416
1010 => 0.004518442672046
1011 => 0.0045449183468111
1012 => 0.0046294159916166
1013 => 0.0045935198902774
1014 => 0.0046594087378324
1015 => 0.0048619285920532
1016 => 0.0050237154649127
1017 => 0.0048749295705058
1018 => 0.0051720305590783
1019 => 0.0054033662952875
1020 => 0.005394487244422
1021 => 0.0053541485079219
1022 => 0.0050907789226264
1023 => 0.0048484223036182
1024 => 0.0050511639064242
1025 => 0.0050516807364639
1026 => 0.0050342650529803
1027 => 0.0049260977385959
1028 => 0.0050305010649059
1029 => 0.0050387882218112
1030 => 0.0050341496176772
1031 => 0.0049512179913503
1101 => 0.0048245967262757
1102 => 0.0048493382183828
1103 => 0.004889865287167
1104 => 0.0048131390911263
1105 => 0.0047886204224872
1106 => 0.0048342052923549
1107 => 0.0049810892410536
1108 => 0.0049533216813929
1109 => 0.0049525965581927
1110 => 0.005071397953699
1111 => 0.0049863617934623
1112 => 0.0048496502878315
1113 => 0.0048151288296565
1114 => 0.004692600909576
1115 => 0.0047772313804051
1116 => 0.0047802770803855
1117 => 0.0047339258364149
1118 => 0.0048534114358235
1119 => 0.0048523103549899
1120 => 0.0049657441485438
1121 => 0.0051825869580317
1122 => 0.0051184558690796
1123 => 0.0050438783900708
1124 => 0.0050519870298483
1125 => 0.0051409187943785
1126 => 0.0050871486194288
1127 => 0.0051064847492397
1128 => 0.0051408895268302
1129 => 0.0051616467833731
1130 => 0.0050490003800678
1201 => 0.005022737114957
1202 => 0.0049690116916938
1203 => 0.0049549957315969
1204 => 0.0049987539678271
1205 => 0.0049872252185817
1206 => 0.0047800211010957
1207 => 0.0047583671179456
1208 => 0.004759031214694
1209 => 0.0047045812444723
1210 => 0.004621531970394
1211 => 0.0048397805040574
1212 => 0.0048222520924179
1213 => 0.0048029020825593
1214 => 0.0048052723483574
1215 => 0.0049000066396915
1216 => 0.0048450559665213
1217 => 0.0049911513373826
1218 => 0.0049611185211623
1219 => 0.0049303154765302
1220 => 0.0049260575574784
1221 => 0.0049142010132873
1222 => 0.0048735405116303
1223 => 0.0048244405125621
1224 => 0.0047920204402083
1225 => 0.00442038555085
1226 => 0.0044893588246142
1227 => 0.0045687062889682
1228 => 0.0045960967156982
1229 => 0.0045492434954167
1230 => 0.0048753905623408
1231 => 0.0049349807742991
]
'min_raw' => 0.0020568530779776
'max_raw' => 0.0054033662952875
'avg_raw' => 0.0037301096866326
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002056'
'max' => '$0.0054033'
'avg' => '$0.00373'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9748828547901E-5
'max_diff' => -0.00097444243060548
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047544781353039
102 => 0.0047207134614221
103 => 0.0048776041687393
104 => 0.0047829798931181
105 => 0.0048255891986364
106 => 0.0047334911861498
107 => 0.0049206272372434
108 => 0.0049192015740727
109 => 0.0048464014235379
110 => 0.004907931612256
111 => 0.0048972392277827
112 => 0.0048150480371277
113 => 0.004923232844589
114 => 0.0049232865029038
115 => 0.0048532179408257
116 => 0.0047713932002992
117 => 0.0047567648693072
118 => 0.0047457443869444
119 => 0.004822878835543
120 => 0.0048920373409633
121 => 0.005020724173703
122 => 0.0050530791009775
123 => 0.0051793625361193
124 => 0.0051041668991212
125 => 0.0051375001510559
126 => 0.0051736881113075
127 => 0.0051910379502202
128 => 0.0051627673187556
129 => 0.0053589374738665
130 => 0.0053755002454561
131 => 0.0053810535995026
201 => 0.0053149061269382
202 => 0.0053736605645841
203 => 0.005346171308952
204 => 0.0054176907153716
205 => 0.0054289058715038
206 => 0.0054194070332506
207 => 0.0054229669008261
208 => 0.0052555702802257
209 => 0.0052468898823601
210 => 0.005128532041529
211 => 0.0051767637365247
212 => 0.0050865968945356
213 => 0.0051151897289517
214 => 0.0051277931779198
215 => 0.0051212098514183
216 => 0.0051794906841935
217 => 0.0051299400703471
218 => 0.0049991678535313
219 => 0.0048683600079124
220 => 0.0048667178219644
221 => 0.0048322784251633
222 => 0.0048073850491662
223 => 0.0048121803965232
224 => 0.0048290798260762
225 => 0.0048064028235991
226 => 0.0048112421118308
227 => 0.004891606540486
228 => 0.0049077230535199
229 => 0.0048529528451025
301 => 0.0046330425550033
302 => 0.0045790760182097
303 => 0.004617866094654
304 => 0.0045993269365145
305 => 0.0037120158005167
306 => 0.0039204763902473
307 => 0.0037966161864821
308 => 0.0038536966669111
309 => 0.0037272674723111
310 => 0.0037876061106961
311 => 0.0037764637674006
312 => 0.0041116622268901
313 => 0.0041064285639956
314 => 0.0041089336414639
315 => 0.0039893597669559
316 => 0.0041798441958316
317 => 0.0042736836750944
318 => 0.0042563164849397
319 => 0.0042606874325402
320 => 0.0041855800711213
321 => 0.004109660844899
322 => 0.0040254547391333
323 => 0.0041818992754567
324 => 0.0041645053136148
325 => 0.0042044008039302
326 => 0.0043058662686223
327 => 0.0043208074437281
328 => 0.0043408885345886
329 => 0.0043336908929845
330 => 0.0045051679170321
331 => 0.0044844009179781
401 => 0.0045344434106248
402 => 0.0044315022065174
403 => 0.0043150144628011
404 => 0.0043371549746103
405 => 0.0043350226652804
406 => 0.004307875920159
407 => 0.0042833690524765
408 => 0.0042425720225521
409 => 0.0043716598620571
410 => 0.0043664191315152
411 => 0.0044512604673045
412 => 0.004436263937099
413 => 0.0043361134381131
414 => 0.0043396903327771
415 => 0.0043637466683895
416 => 0.0044470059206144
417 => 0.0044717229353969
418 => 0.0044602730293469
419 => 0.0044873741076813
420 => 0.0045087936949969
421 => 0.0044900640780664
422 => 0.0047552359565357
423 => 0.0046451181048764
424 => 0.00469878877958
425 => 0.0047115889192509
426 => 0.0046788016306419
427 => 0.0046859120195164
428 => 0.0046966823211963
429 => 0.0047620774839552
430 => 0.0049336933132773
501 => 0.0050097007958556
502 => 0.0052383730573355
503 => 0.0050033894325027
504 => 0.004989446476664
505 => 0.0050306372561973
506 => 0.0051648920811032
507 => 0.0052736930067749
508 => 0.0053097885506962
509 => 0.0053145591726979
510 => 0.0053822768126806
511 => 0.0054210913010595
512 => 0.005374054110036
513 => 0.0053341950156427
514 => 0.0051914246870189
515 => 0.0052079507413078
516 => 0.0053217988672589
517 => 0.0054826160507858
518 => 0.0056206139244282
519 => 0.0055722918787901
520 => 0.0059409549769608
521 => 0.0059775064172907
522 => 0.0059724561900867
523 => 0.0060557258107419
524 => 0.0058904525713047
525 => 0.0058197950594271
526 => 0.0053428130042705
527 => 0.0054768255059243
528 => 0.0056716205473564
529 => 0.0056458386931789
530 => 0.0055043733272046
531 => 0.0056205066102625
601 => 0.00558210931506
602 => 0.0055518237752286
603 => 0.0056905677043373
604 => 0.0055380130549958
605 => 0.005670098698031
606 => 0.0055006974945873
607 => 0.0055725126098242
608 => 0.0055317468771095
609 => 0.0055581273022362
610 => 0.0054039078759861
611 => 0.0054871209349257
612 => 0.0054004459391551
613 => 0.0054004048439216
614 => 0.005398491488586
615 => 0.0055004642367344
616 => 0.0055037895643906
617 => 0.0054284315494367
618 => 0.0054175712821684
619 => 0.0054577273823558
620 => 0.0054107151059356
621 => 0.0054327118541809
622 => 0.0054113813650315
623 => 0.0054065794226352
624 => 0.0053683167286379
625 => 0.0053518321080091
626 => 0.005358296152514
627 => 0.0053362310361756
628 => 0.0053229360054515
629 => 0.005395846772344
630 => 0.0053568934908053
701 => 0.0053898766232794
702 => 0.0053522881810219
703 => 0.0052219902636527
704 => 0.0051470545534981
705 => 0.0049009338662109
706 => 0.0049707333878138
707 => 0.0050170105428494
708 => 0.0050017159433862
709 => 0.0050345746612574
710 => 0.0050365919196672
711 => 0.0050259092155323
712 => 0.0050135400126833
713 => 0.0050075193687962
714 => 0.0050523923157096
715 => 0.0050784425717468
716 => 0.0050216550744656
717 => 0.0050083505583942
718 => 0.0050657658534691
719 => 0.0051007891502971
720 => 0.0053593814961843
721 => 0.0053402241399587
722 => 0.0053883053446437
723 => 0.0053828921388624
724 => 0.0054332889013088
725 => 0.0055156663086478
726 => 0.0053481700064423
727 => 0.0053772415729188
728 => 0.0053701138961793
729 => 0.0054479320018443
730 => 0.005448174941476
731 => 0.0054015190998272
801 => 0.0054268119884896
802 => 0.0054126941919124
803 => 0.0054382069584621
804 => 0.0053399682817867
805 => 0.0054596123857675
806 => 0.0055274428830289
807 => 0.0055283847095492
808 => 0.005560535826915
809 => 0.0055932032242258
810 => 0.0056559054486331
811 => 0.0055914544932187
812 => 0.0054755134986023
813 => 0.0054838840639265
814 => 0.005415907901204
815 => 0.0054170505927802
816 => 0.0054109508155918
817 => 0.0054292567061041
818 => 0.0053439853953246
819 => 0.0053639984015267
820 => 0.0053359800756477
821 => 0.0053771806665502
822 => 0.0053328556414408
823 => 0.0053701104589978
824 => 0.0053861884032386
825 => 0.0054455163636206
826 => 0.0053240928534543
827 => 0.0050765020965762
828 => 0.0051285486754197
829 => 0.0050515676971396
830 => 0.0050586925797667
831 => 0.00507308597659
901 => 0.0050264322682591
902 => 0.0050353323255814
903 => 0.0050350143529051
904 => 0.0050322742361635
905 => 0.005020137804775
906 => 0.0050025375781418
907 => 0.0050726514639844
908 => 0.0050845651794478
909 => 0.0051110478931258
910 => 0.0051898424856353
911 => 0.0051819690477392
912 => 0.0051948109516136
913 => 0.0051667771475599
914 => 0.0050599929875338
915 => 0.0050657918811774
916 => 0.0049934795845218
917 => 0.0051091987051201
918 => 0.0050817948899447
919 => 0.0050641274720287
920 => 0.0050593067533628
921 => 0.0051382966624266
922 => 0.0051619316812336
923 => 0.0051472039236002
924 => 0.0051169968630167
925 => 0.0051750033492528
926 => 0.0051905234378723
927 => 0.0051939978133554
928 => 0.0052967741853251
929 => 0.0051997418708455
930 => 0.005223098513359
1001 => 0.0054053203708018
1002 => 0.0052400702909986
1003 => 0.0053276069437869
1004 => 0.0053233224801517
1005 => 0.0053681032696393
1006 => 0.0053196491483604
1007 => 0.0053202497952654
1008 => 0.005360012102617
1009 => 0.0053041731131116
1010 => 0.0052903465940445
1011 => 0.0052712453569809
1012 => 0.0053129522093046
1013 => 0.0053379535810341
1014 => 0.005539446275689
1015 => 0.0056696197456193
1016 => 0.0056639685719815
1017 => 0.005715609720477
1018 => 0.0056923449101011
1019 => 0.0056172167004503
1020 => 0.0057454513934151
1021 => 0.0057048725709936
1022 => 0.0057082178398107
1023 => 0.0057080933287383
1024 => 0.0057350746981863
1025 => 0.0057159559251262
1026 => 0.0056782708609228
1027 => 0.0057032879652293
1028 => 0.0057775798212412
1029 => 0.0060081840218544
1030 => 0.0061372331876168
1031 => 0.0060004151000366
1101 => 0.0060947903847823
1102 => 0.0060381988432871
1103 => 0.006027914476745
1104 => 0.006087189129844
1105 => 0.0061465675353766
1106 => 0.0061427853876441
1107 => 0.0060996797143423
1108 => 0.00607533041326
1109 => 0.006259711478669
1110 => 0.0063955603068128
1111 => 0.0063862963274755
1112 => 0.0064271845194629
1113 => 0.0065472335157621
1114 => 0.0065582092914807
1115 => 0.0065568265960155
1116 => 0.0065296219906932
1117 => 0.0066478258178818
1118 => 0.0067464335301211
1119 => 0.0065233249105777
1120 => 0.0066082817521935
1121 => 0.0066464216155333
1122 => 0.0067024222505038
1123 => 0.006796904708495
1124 => 0.0068995377181078
1125 => 0.0069140511509808
1126 => 0.0069037531758257
1127 => 0.0068360639470627
1128 => 0.0069483662108475
1129 => 0.0070141502431605
1130 => 0.007053323128962
1201 => 0.0071526590496081
1202 => 0.006646657154345
1203 => 0.0062884838629518
1204 => 0.0062325499314157
1205 => 0.0063462937806875
1206 => 0.0063762871266503
1207 => 0.0063641968465012
1208 => 0.0059610402433471
1209 => 0.0062304273953353
1210 => 0.0065202653201594
1211 => 0.006531399175254
1212 => 0.0066764981006462
1213 => 0.0067237482585598
1214 => 0.0068405719120514
1215 => 0.0068332645607178
1216 => 0.0068617092612727
1217 => 0.0068551703172087
1218 => 0.0070715615351794
1219 => 0.0073102731830078
1220 => 0.0073020073577001
1221 => 0.0072676897340167
1222 => 0.0073186572572109
1223 => 0.0075650332596647
1224 => 0.0075423509054538
1225 => 0.0075643848804914
1226 => 0.0078548760725274
1227 => 0.0082325559440646
1228 => 0.0080570857252964
1229 => 0.008437805609828
1230 => 0.0086774485960467
1231 => 0.0090918863611647
]
'min_raw' => 0.0037120158005167
'max_raw' => 0.0090918863611647
'avg_raw' => 0.0064019510808407
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003712'
'max' => '$0.009091'
'avg' => '$0.0064019'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016551627225392
'max_diff' => 0.0036885200658771
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090399967118229
102 => 0.0092013342924985
103 => 0.0089471034098044
104 => 0.0083633379146003
105 => 0.0082709547904197
106 => 0.0084559081445426
107 => 0.0089105979181693
108 => 0.0084415883454676
109 => 0.0085364683711857
110 => 0.008509142917396
111 => 0.0085076868600892
112 => 0.008563258645275
113 => 0.0084826488724337
114 => 0.0081542301564568
115 => 0.0083047425186054
116 => 0.0082466224673825
117 => 0.0083111109973511
118 => 0.0086591289964987
119 => 0.0085052619433626
120 => 0.0083431755020282
121 => 0.0085464678693223
122 => 0.0088053289117242
123 => 0.0087891298529087
124 => 0.0087576969081254
125 => 0.0089348827720937
126 => 0.0092275419087823
127 => 0.0093066464974296
128 => 0.0093650398875469
129 => 0.0093730913494797
130 => 0.0094560264113429
131 => 0.0090100636813778
201 => 0.0097178179869676
202 => 0.0098400276042248
203 => 0.0098170572612501
204 => 0.0099528881074647
205 => 0.0099129232268124
206 => 0.0098550203850449
207 => 0.010070341168344
208 => 0.0098234932657827
209 => 0.009473123745383
210 => 0.0092809040969683
211 => 0.0095340344359175
212 => 0.0096886123008823
213 => 0.0097907784366253
214 => 0.0098216938475707
215 => 0.0090446824986119
216 => 0.0086259164765482
217 => 0.0088943406955288
218 => 0.0092218367683352
219 => 0.0090082444241577
220 => 0.0090166168396656
221 => 0.0087120902879491
222 => 0.0092487806109597
223 => 0.0091705893451731
224 => 0.0095762457703916
225 => 0.009479432608917
226 => 0.009810229676191
227 => 0.0097231197221608
228 => 0.010084708271088
301 => 0.010228955732874
302 => 0.010471169671538
303 => 0.010649343230808
304 => 0.010753970152728
305 => 0.010747688744781
306 => 0.011162272734354
307 => 0.010917807040164
308 => 0.010610700512122
309 => 0.010605145923938
310 => 0.010764200746545
311 => 0.011097536020168
312 => 0.011183965006787
313 => 0.011232267019449
314 => 0.011158290805653
315 => 0.010892940815624
316 => 0.010778364035285
317 => 0.010875986771743
318 => 0.010756602553872
319 => 0.010962693207212
320 => 0.011245699692837
321 => 0.011187259972684
322 => 0.011382615195382
323 => 0.011584787298905
324 => 0.01187390248706
325 => 0.011949487903149
326 => 0.012074427721686
327 => 0.012203031835554
328 => 0.012244336010951
329 => 0.012323198497715
330 => 0.012322782853482
331 => 0.012560440265405
401 => 0.012822583750392
402 => 0.01292153684734
403 => 0.013149074037464
404 => 0.01275942457323
405 => 0.013054978167822
406 => 0.01332157490833
407 => 0.013003727283803
408 => 0.013441806185216
409 => 0.013458815796249
410 => 0.013715640728118
411 => 0.013455299457966
412 => 0.013300709642788
413 => 0.013747004646802
414 => 0.013962952741083
415 => 0.013897907417642
416 => 0.013402909294569
417 => 0.013114799155472
418 => 0.01236075934916
419 => 0.013253952071832
420 => 0.013689000192256
421 => 0.013401782625037
422 => 0.013546638459494
423 => 0.014336924922632
424 => 0.014637814840535
425 => 0.014575231840991
426 => 0.01458580733771
427 => 0.014748162075872
428 => 0.015468132395272
429 => 0.015036709491107
430 => 0.015366516136234
501 => 0.015541444391603
502 => 0.015703927504047
503 => 0.015304920333199
504 => 0.014785817866505
505 => 0.014621396324863
506 => 0.013373224498416
507 => 0.013308251734314
508 => 0.013271780552947
509 => 0.013041834913381
510 => 0.012861160628093
511 => 0.012717481728427
512 => 0.01234042538955
513 => 0.012467670835316
514 => 0.01186672172892
515 => 0.012251187670863
516 => 0.011292058386632
517 => 0.01209084975522
518 => 0.011656103929884
519 => 0.011948024059146
520 => 0.011947005577315
521 => 0.011409488065984
522 => 0.011099459183152
523 => 0.011297021653797
524 => 0.011508824304857
525 => 0.011543188572402
526 => 0.011817796238116
527 => 0.011894433334945
528 => 0.011662219353709
529 => 0.011272182564084
530 => 0.011362779214522
531 => 0.011097623244922
601 => 0.010632947607275
602 => 0.010966685762691
603 => 0.011080638642381
604 => 0.011130966725805
605 => 0.010674011604536
606 => 0.010530426384456
607 => 0.010453982818081
608 => 0.011213195396125
609 => 0.011254786774976
610 => 0.011041999400347
611 => 0.012003818510996
612 => 0.011786129223887
613 => 0.012029341492758
614 => 0.011354558518084
615 => 0.011380336136433
616 => 0.011060883062345
617 => 0.011239755437972
618 => 0.011113334208205
619 => 0.011225304317673
620 => 0.011292418739618
621 => 0.011611819394599
622 => 0.01209449679764
623 => 0.011564111587818
624 => 0.011333015156643
625 => 0.011476386082808
626 => 0.011858201752387
627 => 0.012436672036583
628 => 0.012094205985539
629 => 0.012246186603542
630 => 0.012279387607428
701 => 0.012026865820171
702 => 0.012445982875073
703 => 0.012670591109695
704 => 0.012900992682293
705 => 0.013101043912073
706 => 0.012808965227558
707 => 0.013121531287824
708 => 0.012869658218587
709 => 0.012643702037321
710 => 0.012644044719578
711 => 0.012502299106377
712 => 0.012227649119704
713 => 0.012176999448274
714 => 0.012440485435398
715 => 0.012651776244855
716 => 0.012669179167937
717 => 0.012786160616566
718 => 0.012855389032861
719 => 0.013533921624011
720 => 0.013806833045288
721 => 0.014140543965277
722 => 0.014270543175529
723 => 0.014661794191093
724 => 0.014345827220171
725 => 0.014277465778487
726 => 0.013328418791962
727 => 0.013483825182839
728 => 0.013732645809119
729 => 0.013332521752443
730 => 0.013586308370541
731 => 0.01363641122489
801 => 0.013318925690106
802 => 0.013488508431974
803 => 0.013038146947352
804 => 0.012104313447309
805 => 0.012447022498709
806 => 0.012699371715158
807 => 0.012339238268851
808 => 0.012984763532268
809 => 0.012607660999726
810 => 0.012488137601024
811 => 0.012021834209519
812 => 0.012241911460646
813 => 0.012539569093997
814 => 0.012355651283
815 => 0.012737308356218
816 => 0.013277836556118
817 => 0.013663049140377
818 => 0.013692620979393
819 => 0.013444955094953
820 => 0.01384184125535
821 => 0.013844732137739
822 => 0.013397042927482
823 => 0.013122835778944
824 => 0.01306053533786
825 => 0.01321617405441
826 => 0.013405148188794
827 => 0.013703107728658
828 => 0.01388315843827
829 => 0.014352635197419
830 => 0.014479662147492
831 => 0.014619226253456
901 => 0.014805726939002
902 => 0.015029668829793
903 => 0.014539696721761
904 => 0.014559164227035
905 => 0.014102908984161
906 => 0.01361533482353
907 => 0.013985342834472
908 => 0.014469079088675
909 => 0.01435810945748
910 => 0.014345623107067
911 => 0.014366621685037
912 => 0.014282954207045
913 => 0.013904529304949
914 => 0.013714486688181
915 => 0.013959690148854
916 => 0.014090004875451
917 => 0.014292111651764
918 => 0.014267197725627
919 => 0.014787803076727
920 => 0.014990094573876
921 => 0.014938339752364
922 => 0.014947863885072
923 => 0.015314102977958
924 => 0.015721436172062
925 => 0.01610295746069
926 => 0.016491057302202
927 => 0.016023187795464
928 => 0.015785632514122
929 => 0.016030728926634
930 => 0.015900677320174
1001 => 0.016647992426709
1002 => 0.016699734903259
1003 => 0.017446995970407
1004 => 0.018156235705322
1005 => 0.017710774935172
1006 => 0.01813082437743
1007 => 0.018585142096366
1008 => 0.019461594686587
1009 => 0.019166436288174
1010 => 0.018940349580712
1011 => 0.018726698734603
1012 => 0.019171272229239
1013 => 0.019743208927853
1014 => 0.019866398614793
1015 => 0.020066012969718
1016 => 0.019856142883196
1017 => 0.02010890828598
1018 => 0.021001281228551
1019 => 0.020760154182274
1020 => 0.020417715013454
1021 => 0.021122157747206
1022 => 0.021377092834099
1023 => 0.023166360784455
1024 => 0.025425385482752
1025 => 0.024490134424101
1026 => 0.023909593911633
1027 => 0.024046034702668
1028 => 0.024870954049674
1029 => 0.025135891962301
1030 => 0.024415699386206
1031 => 0.024670083579396
1101 => 0.026071765494372
1102 => 0.026823722870417
1103 => 0.025802463752399
1104 => 0.02298485034951
1105 => 0.02038688211301
1106 => 0.021075980277364
1107 => 0.020997857930732
1108 => 0.022503790284995
1109 => 0.020754403381967
1110 => 0.020783858570861
1111 => 0.022320932011399
1112 => 0.021910867169573
1113 => 0.021246614642953
1114 => 0.02039173189156
1115 => 0.018811402058529
1116 => 0.017411659854655
1117 => 0.020156876657829
1118 => 0.020038497917423
1119 => 0.019867067958569
1120 => 0.02024856678134
1121 => 0.022101016774383
1122 => 0.022058311806248
1123 => 0.021786644587238
1124 => 0.021992701778492
1125 => 0.021210491821054
1126 => 0.021412085137675
1127 => 0.020386470581568
1128 => 0.020850091194376
1129 => 0.021245189455361
1130 => 0.021324511280784
1201 => 0.021503227403734
1202 => 0.019976117700401
1203 => 0.020661745123612
1204 => 0.021064487000147
1205 => 0.019244884550088
1206 => 0.021028519310177
1207 => 0.019949534117979
1208 => 0.019583310337933
1209 => 0.02007638241145
1210 => 0.019884231744872
1211 => 0.019719031885214
1212 => 0.019626847525031
1213 => 0.019988905237443
1214 => 0.019972014812407
1215 => 0.019379618122526
1216 => 0.018606860789755
1217 => 0.018866223515528
1218 => 0.018771994605716
1219 => 0.018430496880787
1220 => 0.018660625114797
1221 => 0.017647256837452
1222 => 0.01590380938658
1223 => 0.017055584175866
1224 => 0.017011242099368
1225 => 0.016988882813645
1226 => 0.017854409735076
1227 => 0.017771209292684
1228 => 0.017620199675041
1229 => 0.018427723470736
1230 => 0.01813296642258
1231 => 0.019041338191502
]
'min_raw' => 0.0081542301564568
'max_raw' => 0.026823722870417
'avg_raw' => 0.017488976513437
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008154'
'max' => '$0.026823'
'avg' => '$0.017488'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044422143559401
'max_diff' => 0.017731836509253
'year' => 2029
]
4 => [
'items' => [
101 => 0.019639650588317
102 => 0.019487899211106
103 => 0.020050614912206
104 => 0.01887219870889
105 => 0.01926362130178
106 => 0.019344292955686
107 => 0.018417758752446
108 => 0.017784821914017
109 => 0.017742612242902
110 => 0.016645186989135
111 => 0.01723142270159
112 => 0.017747285868468
113 => 0.017500227444132
114 => 0.017422016127648
115 => 0.017821580781601
116 => 0.017852630377253
117 => 0.017144696305899
118 => 0.01729189821669
119 => 0.01790575465497
120 => 0.017276430609439
121 => 0.016053756788472
122 => 0.015750516776084
123 => 0.015710058968609
124 => 0.014887648004744
125 => 0.01577078072371
126 => 0.015385269625396
127 => 0.016603094565838
128 => 0.015907479491184
129 => 0.015877492915624
130 => 0.01583216380859
131 => 0.015124280718623
201 => 0.015279262127008
202 => 0.015794443932817
203 => 0.015978266605068
204 => 0.015959092394338
205 => 0.015791919260912
206 => 0.01586845026533
207 => 0.015621917234932
208 => 0.015534861290758
209 => 0.015260088784319
210 => 0.014856249107696
211 => 0.014912405491623
212 => 0.014112293421833
213 => 0.013676349901051
214 => 0.013555686480141
215 => 0.01339433031083
216 => 0.013573912088817
217 => 0.014110026804869
218 => 0.013463358714229
219 => 0.012354691631319
220 => 0.012421324412079
221 => 0.012571028486996
222 => 0.01229205593378
223 => 0.012028031824553
224 => 0.012257579366573
225 => 0.011787822508244
226 => 0.012627796359035
227 => 0.012605077420371
228 => 0.012918167728311
301 => 0.013113949523126
302 => 0.012662735871186
303 => 0.012549256857935
304 => 0.012613899661216
305 => 0.011545498116595
306 => 0.012830856528454
307 => 0.012841972361376
308 => 0.012746791851285
309 => 0.013431205524611
310 => 0.014875531849307
311 => 0.014332118188064
312 => 0.014121691993666
313 => 0.013721671644295
314 => 0.014254675008974
315 => 0.014213748666715
316 => 0.014028664226162
317 => 0.013916724579018
318 => 0.014122976811139
319 => 0.013891167644966
320 => 0.013849528349031
321 => 0.013597239519668
322 => 0.013507183885996
323 => 0.013440510280043
324 => 0.013367109191103
325 => 0.013529013702894
326 => 0.013162116778862
327 => 0.012719675055828
328 => 0.012682890813844
329 => 0.012784455340066
330 => 0.012739520597802
331 => 0.012682675683585
401 => 0.012574143261553
402 => 0.012541944010365
403 => 0.012646575955872
404 => 0.012528452589816
405 => 0.012702750050944
406 => 0.012655350785836
407 => 0.012390582344008
408 => 0.012060582835658
409 => 0.012057645147836
410 => 0.011986547295069
411 => 0.011895993489938
412 => 0.011870803492941
413 => 0.012238247512844
414 => 0.01299884563737
415 => 0.012849522025955
416 => 0.012957423638502
417 => 0.01348819277808
418 => 0.013656908326767
419 => 0.013537158026556
420 => 0.01337323642975
421 => 0.013380448148093
422 => 0.013940617866821
423 => 0.01397555496506
424 => 0.014063829741174
425 => 0.014177287774931
426 => 0.013556480420311
427 => 0.013351208177519
428 => 0.013253938800813
429 => 0.012954386768547
430 => 0.013277427953696
501 => 0.013089205689112
502 => 0.013114603303193
503 => 0.013098063073705
504 => 0.013107095157451
505 => 0.012627561569225
506 => 0.012802278405231
507 => 0.012511777778483
508 => 0.012122830049494
509 => 0.012121526160324
510 => 0.012216720565972
511 => 0.012160095208535
512 => 0.012007717827643
513 => 0.012029362315398
514 => 0.011839733827265
515 => 0.012052386647191
516 => 0.012058484769158
517 => 0.01197660185021
518 => 0.01230422285974
519 => 0.012438449454657
520 => 0.012384552363303
521 => 0.012434667891049
522 => 0.012855727096165
523 => 0.0129243781187
524 => 0.012954868368078
525 => 0.012914015473095
526 => 0.01244236408037
527 => 0.012463283825254
528 => 0.012309788617764
529 => 0.012180101342361
530 => 0.012185288153257
531 => 0.01225196427098
601 => 0.012543142787577
602 => 0.013155910809844
603 => 0.013179164908361
604 => 0.013207349554135
605 => 0.013092708435308
606 => 0.013058131576902
607 => 0.013103747378183
608 => 0.013333870829535
609 => 0.013925810824319
610 => 0.013716579695819
611 => 0.013546471531473
612 => 0.013695702252436
613 => 0.013672729352653
614 => 0.013478814959373
615 => 0.013473372428205
616 => 0.013101188709318
617 => 0.012963600862659
618 => 0.012848622159718
619 => 0.012723068417703
620 => 0.012648635950836
621 => 0.012762998048894
622 => 0.012789154013813
623 => 0.012539099287701
624 => 0.012505017752516
625 => 0.012709217839665
626 => 0.012619356994657
627 => 0.012711781102189
628 => 0.012733224287936
629 => 0.012729771441153
630 => 0.012635946398512
701 => 0.012695747682788
702 => 0.012554299817855
703 => 0.012400496509522
704 => 0.012302379581091
705 => 0.012216759547712
706 => 0.012264266518496
707 => 0.012094912842082
708 => 0.012040733192581
709 => 0.012675488353247
710 => 0.013144388815199
711 => 0.013137570816777
712 => 0.013096068004832
713 => 0.013034403244819
714 => 0.013329359668254
715 => 0.013226602748169
716 => 0.013301366993159
717 => 0.013320397631354
718 => 0.01337799764151
719 => 0.013398584694253
720 => 0.013336356322237
721 => 0.013127510305197
722 => 0.012607085887218
723 => 0.01236482691579
724 => 0.012284877420076
725 => 0.012287783432399
726 => 0.012207622639508
727 => 0.012231233585569
728 => 0.012199411716024
729 => 0.012139148793642
730 => 0.012260545452856
731 => 0.012274535286942
801 => 0.012246199856099
802 => 0.01225287387582
803 => 0.012018268610665
804 => 0.012036105139439
805 => 0.011936789080669
806 => 0.011918168516923
807 => 0.011667106168791
808 => 0.011222312827008
809 => 0.01146877151549
810 => 0.011171084077139
811 => 0.011058345333535
812 => 0.011592033011286
813 => 0.011538465570632
814 => 0.011446781397438
815 => 0.011311161396629
816 => 0.011260858619103
817 => 0.010955234866776
818 => 0.010937176985049
819 => 0.011088652369238
820 => 0.011018751691384
821 => 0.010920584666221
822 => 0.010565033652112
823 => 0.010165276593359
824 => 0.010177342746179
825 => 0.010304498028824
826 => 0.010674219162341
827 => 0.010529762719235
828 => 0.010424957912316
829 => 0.010405331122401
830 => 0.010651001489656
831 => 0.010998676528856
901 => 0.011161797878458
902 => 0.011000149575072
903 => 0.010814456707904
904 => 0.010825758972311
905 => 0.010900947873904
906 => 0.010908849164348
907 => 0.010787982197357
908 => 0.010822005540582
909 => 0.010770320971063
910 => 0.010453132863324
911 => 0.010447395936269
912 => 0.010369552859281
913 => 0.010367195801846
914 => 0.010234765309024
915 => 0.010216237367629
916 => 0.0099532885861732
917 => 0.01012636227041
918 => 0.0100102735298
919 => 0.0098353004151359
920 => 0.0098051349842164
921 => 0.0098042281749371
922 => 0.0099838864404248
923 => 0.010124262858975
924 => 0.010012292943145
925 => 0.0099867995637559
926 => 0.010259002159511
927 => 0.010224361898019
928 => 0.010194363654973
929 => 0.010967546042429
930 => 0.010355511850584
1001 => 0.010088630009249
1002 => 0.0097583130511096
1003 => 0.0098658659182824
1004 => 0.0098885288876761
1005 => 0.0090941761474584
1006 => 0.0087719073396824
1007 => 0.0086613168292975
1008 => 0.0085976704270507
1009 => 0.0086266748917758
1010 => 0.0083365951664164
1011 => 0.0085315335393337
1012 => 0.0082803490170013
1013 => 0.0082382371144071
1014 => 0.0086873861561288
1015 => 0.0087498826213937
1016 => 0.0084832532844437
1017 => 0.0086544724821343
1018 => 0.0085923860209268
1019 => 0.0082846548546934
1020 => 0.0082729017876605
1021 => 0.0081184931057181
1022 => 0.0078768734178907
1023 => 0.0077664467370318
1024 => 0.0077089355628721
1025 => 0.0077326657942009
1026 => 0.007720667063084
1027 => 0.007642367226292
1028 => 0.0077251551180744
1029 => 0.007513666264889
1030 => 0.0074294496994691
1031 => 0.0073914110306784
1101 => 0.0072037025006321
1102 => 0.0075024302462979
1103 => 0.007561283375467
1104 => 0.0076202524634813
1105 => 0.0081335381147392
1106 => 0.0081078958141325
1107 => 0.0083396897233098
1108 => 0.0083306826382408
1109 => 0.0082645712605311
1110 => 0.0079856582327675
1111 => 0.0080968279944874
1112 => 0.0077546647475305
1113 => 0.0080110367169898
1114 => 0.007894039256478
1115 => 0.0079714797579019
1116 => 0.0078322347538132
1117 => 0.0079092986883612
1118 => 0.0075752396357002
1119 => 0.0072632999926631
1120 => 0.0073888336111071
1121 => 0.0075253030108663
1122 => 0.0078212034413007
1123 => 0.0076449675860595
1124 => 0.0077083486638197
1125 => 0.0074960326631873
1126 => 0.0070579641088153
1127 => 0.0070604435292589
1128 => 0.006993056226011
1129 => 0.0069348237572974
1130 => 0.0076652103940465
1201 => 0.0075743752700627
1202 => 0.0074296413882016
1203 => 0.0076233734405685
1204 => 0.0076745992701554
1205 => 0.0076760575975087
1206 => 0.0078173995019676
1207 => 0.0078928337017142
1208 => 0.0079061293063701
1209 => 0.00812853384693
1210 => 0.0082030809153389
1211 => 0.0085101297398191
1212 => 0.0078864336368951
1213 => 0.00787358902609
1214 => 0.0076260996478401
1215 => 0.0074691379715018
1216 => 0.0076368469481056
1217 => 0.0077854142068183
1218 => 0.0076307160466979
1219 => 0.0076509163605533
1220 => 0.0074432467198958
1221 => 0.007517478844666
1222 => 0.0075814175506653
1223 => 0.0075461143553559
1224 => 0.0074932637632839
1225 => 0.0077732333858425
1226 => 0.0077574364025279
1227 => 0.0080181505515283
1228 => 0.0082213958745218
1229 => 0.0085856478277734
1230 => 0.0082055319256716
1231 => 0.0081916789913751
]
'min_raw' => 0.0069348237572974
'max_raw' => 0.020050614912206
'avg_raw' => 0.013492719334751
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006934'
'max' => '$0.02005'
'avg' => '$0.013492'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012194063991594
'max_diff' => -0.0067731079582117
'year' => 2030
]
5 => [
'items' => [
101 => 0.0083270936462036
102 => 0.0082030601840608
103 => 0.0082814450506454
104 => 0.0085730188139413
105 => 0.0085791793081038
106 => 0.0084759830935332
107 => 0.0084697035944981
108 => 0.0084895235563492
109 => 0.0086056096919768
110 => 0.0085650456292219
111 => 0.0086119873895983
112 => 0.0086706887797468
113 => 0.0089135026182745
114 => 0.0089720442127011
115 => 0.0088298184885811
116 => 0.0088426598790352
117 => 0.0087894635540309
118 => 0.0087380765706247
119 => 0.0088535870048555
120 => 0.0090646845937757
121 => 0.009063371366631
122 => 0.0091123419041097
123 => 0.0091428501432651
124 => 0.0090118864474141
125 => 0.0089266338970837
126 => 0.0089593251496411
127 => 0.0090115991744033
128 => 0.0089423733879425
129 => 0.0085150797654027
130 => 0.0086446933548589
131 => 0.0086231193157927
201 => 0.0085923952606696
202 => 0.0087227227271401
203 => 0.0087101523250631
204 => 0.0083336199795585
205 => 0.0083577243586614
206 => 0.0083350858466879
207 => 0.0084082355102782
208 => 0.0081991098621702
209 => 0.0082634355030455
210 => 0.008303779941987
211 => 0.0083275431264642
212 => 0.0084133920433638
213 => 0.0084033186638302
214 => 0.0084127658679484
215 => 0.0085400571484367
216 => 0.0091838527640544
217 => 0.0092188931389576
218 => 0.0090463415175196
219 => 0.0091152724868538
220 => 0.008982940099278
221 => 0.0090717757176076
222 => 0.0091325547914887
223 => 0.008857905843764
224 => 0.0088416429155366
225 => 0.008708764345124
226 => 0.0087801657622368
227 => 0.0086665609736668
228 => 0.0086944356150551
301 => 0.0086164956876659
302 => 0.0087567720392817
303 => 0.0089136227971294
304 => 0.0089532494927859
305 => 0.0088490087168789
306 => 0.0087735315253203
307 => 0.0086410184406759
308 => 0.0088613906536862
309 => 0.0089258342044918
310 => 0.0088610521591482
311 => 0.0088460407437265
312 => 0.0088175941386273
313 => 0.008852075825474
314 => 0.0089254832310742
315 => 0.0088908656542151
316 => 0.0089137311736137
317 => 0.0088265913924873
318 => 0.0090119298018469
319 => 0.009306291800027
320 => 0.0093072382219842
321 => 0.0092726204585235
322 => 0.0092584556155654
323 => 0.0092939755416577
324 => 0.0093132436444591
325 => 0.009428108572201
326 => 0.0095513632160887
327 => 0.010126538858898
328 => 0.0099650318399999
329 => 0.010475361887653
330 => 0.010878966697283
331 => 0.010999990132192
401 => 0.010888654266668
402 => 0.010507780284958
403 => 0.01048909279036
404 => 0.011058279319882
405 => 0.010897458054898
406 => 0.010878328877157
407 => 0.010674826745249
408 => 0.010795121709436
409 => 0.010768811436148
410 => 0.01072727938262
411 => 0.010956793794468
412 => 0.011386424284555
413 => 0.011319462343626
414 => 0.011269478360997
415 => 0.011050463099237
416 => 0.011182359205646
417 => 0.011135393528457
418 => 0.011337187882816
419 => 0.011217649377586
420 => 0.010896239675643
421 => 0.010947425230058
422 => 0.010939688636479
423 => 0.011098907184109
424 => 0.011051113728158
425 => 0.010930356197147
426 => 0.011384955854247
427 => 0.011355436681131
428 => 0.011397288119587
429 => 0.011415712417094
430 => 0.011692419217426
501 => 0.011805777139892
502 => 0.011831511372901
503 => 0.011939192631828
504 => 0.011828832165084
505 => 0.012270352717738
506 => 0.012563938121815
507 => 0.012904952676417
508 => 0.013403266596762
509 => 0.013590637240473
510 => 0.013556790410776
511 => 0.013934606338003
512 => 0.014613533160854
513 => 0.013694020932935
514 => 0.014662269541684
515 => 0.014355733211121
516 => 0.013628941085712
517 => 0.013582144241152
518 => 0.014074336306709
519 => 0.015165970936385
520 => 0.014892528842869
521 => 0.015166418189692
522 => 0.014846911718133
523 => 0.014831045528808
524 => 0.01515090047352
525 => 0.015898258986225
526 => 0.015543216971154
527 => 0.015034177182676
528 => 0.015410044240952
529 => 0.015084433410219
530 => 0.014350741075846
531 => 0.014892319746853
601 => 0.014530181512823
602 => 0.01463587270184
603 => 0.015397033405775
604 => 0.015305448536096
605 => 0.015423967837991
606 => 0.015214784372337
607 => 0.01501937403021
608 => 0.014654626115269
609 => 0.01454664223951
610 => 0.014576485097917
611 => 0.014546627450872
612 => 0.014342554344669
613 => 0.014298484776814
614 => 0.014225033566324
615 => 0.014247799167794
616 => 0.014109689403163
617 => 0.014370331063954
618 => 0.014418708452963
619 => 0.014608381717976
620 => 0.014628074225566
621 => 0.015156311568797
622 => 0.014865367316814
623 => 0.015060557839962
624 => 0.015043098162367
625 => 0.013644692874896
626 => 0.013837380785275
627 => 0.014137142705028
628 => 0.014002100366497
629 => 0.013811182094855
630 => 0.013657005354114
701 => 0.01342341182651
702 => 0.013752190230846
703 => 0.014184498870863
704 => 0.014639038286095
705 => 0.015185137610895
706 => 0.015063254598896
707 => 0.014628829339077
708 => 0.014648317338884
709 => 0.01476878448545
710 => 0.014612768585053
711 => 0.014566756450234
712 => 0.01476246312469
713 => 0.014763810848999
714 => 0.014584295700441
715 => 0.014384797463744
716 => 0.014383961558848
717 => 0.014348462774552
718 => 0.014853226872999
719 => 0.015130796089738
720 => 0.015162618953112
721 => 0.015128654157481
722 => 0.015141725859305
723 => 0.014980214447905
724 => 0.015349381639644
725 => 0.015688165961636
726 => 0.015597364526271
727 => 0.015461240266474
728 => 0.015352810736913
729 => 0.015571821975046
730 => 0.015562069749368
731 => 0.015685206976132
801 => 0.015679620760251
802 => 0.015638214342316
803 => 0.015597366005024
804 => 0.015759325045097
805 => 0.015712683442539
806 => 0.015665969392689
807 => 0.015572277214152
808 => 0.015585011537277
809 => 0.015448910781253
810 => 0.015385944343969
811 => 0.014439080204831
812 => 0.014186047167175
813 => 0.014265656511784
814 => 0.014291865975085
815 => 0.014181745672826
816 => 0.01433962989868
817 => 0.014315023809322
818 => 0.014410751708935
819 => 0.014350945073279
820 => 0.014353399558468
821 => 0.014529278121814
822 => 0.014580336416994
823 => 0.014554367755974
824 => 0.014572555315999
825 => 0.014991679960275
826 => 0.014932093838711
827 => 0.014900439899225
828 => 0.014909208256789
829 => 0.015016303589536
830 => 0.015046284435516
831 => 0.01491925348438
901 => 0.014979162015293
902 => 0.015234244936396
903 => 0.01532350952234
904 => 0.015608399231238
905 => 0.015487373019387
906 => 0.015709521869132
907 => 0.016392331697122
908 => 0.016937807434566
909 => 0.016436165403674
910 => 0.017437862129575
911 => 0.01821782671555
912 => 0.018187890375641
913 => 0.01805188550917
914 => 0.017163916564469
915 => 0.016346794302684
916 => 0.017030351771511
917 => 0.017032094300074
918 => 0.016973376107285
919 => 0.016608682454837
920 => 0.016960685558699
921 => 0.016988626286796
922 => 0.016972986909101
923 => 0.016693377140839
924 => 0.016266464705225
925 => 0.01634988237326
926 => 0.016486522215176
927 => 0.016227834488373
928 => 0.016145168085217
929 => 0.01629886065661
930 => 0.016794090144758
1001 => 0.016700469878692
1002 => 0.016698025075196
1003 => 0.017098572274594
1004 => 0.016811866923321
1005 => 0.016350934537195
1006 => 0.016234543030746
1007 => 0.015821431593569
1008 => 0.01610676913468
1009 => 0.016117037924808
1010 => 0.01596076146962
1011 => 0.016363615510244
1012 => 0.016359903139339
1013 => 0.016742353094001
1014 => 0.017473453765671
1015 => 0.017257231321779
1016 => 0.017005788144467
1017 => 0.017033126989604
1018 => 0.017332966642735
1019 => 0.017151676743779
1020 => 0.017216869855442
1021 => 0.017332867965153
1022 => 0.017402852504813
1023 => 0.017023057291348
1024 => 0.016934508859384
1025 => 0.016753369843863
1026 => 0.016706114055834
1027 => 0.016853648004386
1028 => 0.016814778021394
1029 => 0.01611617487276
1030 => 0.016043166956737
1031 => 0.01604540600529
1101 => 0.015861824129112
1102 => 0.015581817703241
1103 => 0.016317657872114
1104 => 0.016258559608477
1105 => 0.016193319699264
1106 => 0.016201311215889
1107 => 0.016520714493259
1108 => 0.016335444462132
1109 => 0.016828015205044
1110 => 0.016726757468333
1111 => 0.016622902852756
1112 => 0.016608546981394
1113 => 0.016568571814856
1114 => 0.016431482094694
1115 => 0.016265938019783
1116 => 0.016156631482345
1117 => 0.014903638506155
1118 => 0.015136186714211
1119 => 0.015403712230143
1120 => 0.015496060966202
1121 => 0.015338092062835
1122 => 0.016437719669831
1123 => 0.016638632229904
1124 => 0.01603005498024
1125 => 0.015916215024873
1126 => 0.016445182998353
1127 => 0.01612615064664
1128 => 0.016269810895081
1129 => 0.015959296015905
1130 => 0.016590238277589
1201 => 0.016585431554673
1202 => 0.0163399807644
1203 => 0.016547434091564
1204 => 0.016511383970794
1205 => 0.016234270633095
1206 => 0.016599023264672
1207 => 0.016599204177427
1208 => 0.01636296312835
1209 => 0.016087085302844
1210 => 0.016037764863587
1211 => 0.016000608537875
1212 => 0.016260672716681
1213 => 0.016493845446198
1214 => 0.016927722087407
1215 => 0.017036808983662
1216 => 0.017462582402071
1217 => 0.01720905506194
1218 => 0.017321440448091
1219 => 0.017443450682642
1220 => 0.017501946875863
1221 => 0.017406630468088
1222 => 0.018068031842207
1223 => 0.018123874382997
1224 => 0.018142597903888
1225 => 0.017919577081868
1226 => 0.018117671770495
1227 => 0.018024989825893
1228 => 0.018266122497962
1229 => 0.018303935179879
1230 => 0.01827190918352
1231 => 0.018283911525593
]
'min_raw' => 0.0081991098621702
'max_raw' => 0.018303935179879
'avg_raw' => 0.013251522521025
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008199'
'max' => '$0.0183039'
'avg' => '$0.013251'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012642861048728
'max_diff' => -0.0017466797323266
'year' => 2031
]
6 => [
'items' => [
101 => 0.01771952213198
102 => 0.01769025556453
103 => 0.017291203840688
104 => 0.017453820367795
105 => 0.017149816564781
106 => 0.017246219302303
107 => 0.017288712710444
108 => 0.017266516565511
109 => 0.01746301446225
110 => 0.017295951108153
111 => 0.016855043448934
112 => 0.016414015664718
113 => 0.016408478920141
114 => 0.016292364089344
115 => 0.016208434334169
116 => 0.016224602182584
117 => 0.016281579789203
118 => 0.016205122692093
119 => 0.016221438690235
120 => 0.016492392972311
121 => 0.016546730921224
122 => 0.016362069339611
123 => 0.015620626442895
124 => 0.015438674496272
125 => 0.015569457947241
126 => 0.015506951881211
127 => 0.012515320436109
128 => 0.013218159868639
129 => 0.012800556544002
130 => 0.012993007369
131 => 0.012566742512402
201 => 0.012770178444426
202 => 0.012732611256072
203 => 0.013862756265049
204 => 0.013845110605198
205 => 0.013853556648781
206 => 0.013450404982496
207 => 0.014092636533649
208 => 0.014409022889646
209 => 0.014350468195501
210 => 0.014365205150506
211 => 0.014111975437654
212 => 0.013856008465934
213 => 0.013572101701263
214 => 0.014099565378086
215 => 0.014040920421328
216 => 0.014175430852341
217 => 0.014517528750643
218 => 0.014567903965671
219 => 0.014635608765525
220 => 0.014611341414333
221 => 0.015189488173053
222 => 0.015119470785837
223 => 0.015288192543651
224 => 0.014941119086877
225 => 0.014548372526023
226 => 0.014623020807389
227 => 0.01461583157761
228 => 0.014524304431108
229 => 0.014441677815702
301 => 0.014304127780954
302 => 0.01473935644447
303 => 0.014721686955552
304 => 0.015007735442599
305 => 0.014957173593986
306 => 0.014619509194371
307 => 0.014631568944461
308 => 0.014712676559538
309 => 0.01499339094139
310 => 0.015076726082416
311 => 0.015038121924762
312 => 0.015129495102503
313 => 0.015201712736605
314 => 0.015138564525464
315 => 0.016032610027432
316 => 0.01566134000238
317 => 0.01584229442931
318 => 0.015885450993888
319 => 0.015774906361207
320 => 0.015798879533729
321 => 0.015835192357801
322 => 0.016055676714787
323 => 0.016634291465181
324 => 0.016890555999367
325 => 0.017661540494334
326 => 0.016869276797178
327 => 0.016822267148101
328 => 0.016961144737146
329 => 0.017413794252689
330 => 0.017780624169829
331 => 0.01790232281627
401 => 0.017918407301423
402 => 0.01814672205252
403 => 0.01827758781003
404 => 0.018118998636462
405 => 0.017984610916842
406 => 0.017503250785981
407 => 0.017558969531829
408 => 0.017942816437095
409 => 0.018485022799253
410 => 0.018950292264942
411 => 0.018787371114336
412 => 0.020030344489054
413 => 0.020153580222067
414 => 0.020136553028453
415 => 0.020417302368191
416 => 0.019860072102419
417 => 0.019621845367974
418 => 0.01801366706719
419 => 0.01846549957297
420 => 0.019122264655313
421 => 0.019035339333923
422 => 0.018558378975744
423 => 0.01894993044774
424 => 0.018820471286152
425 => 0.018718361474141
426 => 0.019186146317923
427 => 0.018671797666643
428 => 0.019117133634061
429 => 0.018545985649436
430 => 0.018788115324428
501 => 0.018650670810408
502 => 0.018739614255545
503 => 0.018219652692687
504 => 0.018500211330652
505 => 0.018207980530956
506 => 0.018207841975507
507 => 0.018201390964407
508 => 0.0185451992043
509 => 0.018556410778659
510 => 0.018302335969914
511 => 0.018265719820579
512 => 0.01840110891597
513 => 0.018242603743727
514 => 0.0183167673162
515 => 0.018244850082786
516 => 0.018228659998736
517 => 0.018099654654508
518 => 0.018044075605138
519 => 0.018065869582492
520 => 0.017991475502219
521 => 0.017946650377904
522 => 0.018192474118949
523 => 0.01806114041061
524 => 0.018172345344555
525 => 0.018045613287143
526 => 0.017606304761622
527 => 0.017353653782992
528 => 0.016523840702206
529 => 0.016759174662537
530 => 0.016915201321707
531 => 0.016863634511782
601 => 0.016974419973207
602 => 0.016981221300777
603 => 0.016945203817943
604 => 0.016903500186947
605 => 0.016883201165734
606 => 0.017034493439182
607 => 0.017122323696182
608 => 0.016930860684322
609 => 0.016886003579496
610 => 0.017079583255449
611 => 0.017197666745953
612 => 0.018069528894452
613 => 0.018004938530414
614 => 0.018167047668932
615 => 0.018148796667702
616 => 0.01831871287088
617 => 0.01859645405113
618 => 0.018031728574026
619 => 0.018129745390114
620 => 0.018105713930348
621 => 0.018368083106684
622 => 0.018368902194614
623 => 0.018211598767088
624 => 0.018296875507106
625 => 0.018249276370273
626 => 0.01833529444394
627 => 0.018004075886723
628 => 0.018407464336579
629 => 0.01863615959387
630 => 0.01863933502774
701 => 0.018747734764658
702 => 0.018857875175456
703 => 0.019069280102775
704 => 0.018851979206773
705 => 0.018461076048682
706 => 0.018489297994087
707 => 0.018260111615524
708 => 0.018263964279953
709 => 0.01824339845529
710 => 0.018305118043228
711 => 0.018017619865482
712 => 0.018085095113156
713 => 0.017990629371278
714 => 0.01812954004004
715 => 0.017980095123209
716 => 0.01810570234165
717 => 0.018159910253184
718 => 0.018359938613758
719 => 0.017950550771714
720 => 0.017115781248665
721 => 0.017291259923012
722 => 0.0170317131801
723 => 0.017055735219321
724 => 0.017104263561625
725 => 0.01694696732673
726 => 0.016976974491374
727 => 0.016975902424296
728 => 0.016966663929393
729 => 0.016925745103628
730 => 0.016866404710725
731 => 0.017102798572039
801 => 0.017142966495513
802 => 0.017232254813642
803 => 0.017497916283551
804 => 0.017471370437978
805 => 0.017514667813484
806 => 0.017420149885859
807 => 0.017060119634899
808 => 0.017079671009684
809 => 0.016835865052827
810 => 0.017226020147175
811 => 0.017133626271037
812 => 0.017074059338034
813 => 0.01705780594848
814 => 0.017324125941788
815 => 0.01740381305784
816 => 0.01735415739472
817 => 0.017252312180973
818 => 0.017447885099202
819 => 0.01750021216156
820 => 0.017511926261075
821 => 0.017858443974788
822 => 0.01753129275194
823 => 0.017610041302883
824 => 0.018224415017575
825 => 0.017667262836127
826 => 0.017962398772616
827 => 0.017947953404338
828 => 0.018098934962591
829 => 0.01793556850974
830 => 0.017937593632716
831 => 0.018071655028068
901 => 0.017883389976396
902 => 0.017836772902025
903 => 0.017772371747659
904 => 0.017912989312148
905 => 0.017997283182474
906 => 0.018676629870274
907 => 0.019115518812565
908 => 0.019096465486093
909 => 0.019270577223716
910 => 0.019192138291236
911 => 0.018938838287114
912 => 0.019371190507505
913 => 0.019234376174588
914 => 0.019245654981965
915 => 0.019245235184191
916 => 0.019336204755064
917 => 0.019271744476862
918 => 0.019144686651813
919 => 0.019229033565621
920 => 0.019479513745056
921 => 0.020257011907695
922 => 0.020692110179988
923 => 0.020230818445377
924 => 0.020549011306969
925 => 0.020358208973723
926 => 0.020323534513895
927 => 0.020523383145242
928 => 0.020723581585163
929 => 0.020710829810022
930 => 0.020565496022943
1001 => 0.02048340065433
1002 => 0.021105054289432
1003 => 0.021563078098181
1004 => 0.021531843945055
1005 => 0.021669701339063
1006 => 0.022074454911639
1007 => 0.022111460505778
1008 => 0.02210679865148
1009 => 0.022015076425271
1010 => 0.022413608881365
1011 => 0.022746071667751
1012 => 0.021993845380014
1013 => 0.022280283303019
1014 => 0.022408874515109
1015 => 0.022597684565751
1016 => 0.022916238769424
1017 => 0.023262273126941
1018 => 0.023311206179168
1019 => 0.023276485836951
1020 => 0.023048266876265
1021 => 0.023426901799309
1022 => 0.023648697257147
1023 => 0.02378077137659
1024 => 0.024115689368461
1025 => 0.022409668650657
1026 => 0.021202062391865
1027 => 0.021013477236508
1028 => 0.02139697256567
1029 => 0.021498097225652
1030 => 0.021457334002013
1031 => 0.020098063366984
1101 => 0.021006320957922
1102 => 0.021983529757305
1103 => 0.022021068327097
1104 => 0.02251027948454
1105 => 0.022669586690847
1106 => 0.023063465794961
1107 => 0.023038828549757
1108 => 0.023134731843623
1109 => 0.023112685337177
1110 => 0.023842263436517
1111 => 0.024647096423486
1112 => 0.024619227616359
1113 => 0.024503523352131
1114 => 0.024675363915019
1115 => 0.025506037808715
1116 => 0.025429562667861
1117 => 0.025503851753064
1118 => 0.026483263088461
1119 => 0.027756637144115
1120 => 0.027165027050598
1121 => 0.02844865072231
1122 => 0.029256623781685
1123 => 0.030653929641901
1124 => 0.030478980066326
1125 => 0.031022940983804
1126 => 0.030165783812968
1127 => 0.028197577688682
1128 => 0.027886101535523
1129 => 0.028509684681979
1130 => 0.030042702999188
1201 => 0.028461404479621
1202 => 0.028781299110642
1203 => 0.028689169435387
1204 => 0.028684260236519
1205 => 0.028871624390171
1206 => 0.028599842913042
1207 => 0.027492556282663
1208 => 0.028000019220085
1209 => 0.027804063409575
1210 => 0.028021490990809
1211 => 0.029194857972776
1212 => 0.028676084460473
1213 => 0.028129598707
1214 => 0.028815013116752
1215 => 0.029687781194311
1216 => 0.029633164936532
1217 => 0.029527186568617
1218 => 0.030124581079708
1219 => 0.031111301791862
1220 => 0.031378008435393
1221 => 0.031574885827069
1222 => 0.031602031893111
1223 => 0.031881653244524
1224 => 0.030378058764323
1225 => 0.032764301819447
1226 => 0.033176340076432
1227 => 0.033098893961355
1228 => 0.033556857142774
1229 => 0.033422112757396
1230 => 0.03322688928373
1231 => 0.033952858337841
]
'min_raw' => 0.012515320436109
'max_raw' => 0.033952858337841
'avg_raw' => 0.023234089386975
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012515'
'max' => '$0.033952'
'avg' => '$0.023234'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.004316210573939
'max_diff' => 0.015648923157962
'year' => 2032
]
7 => [
'items' => [
101 => 0.033120593399984
102 => 0.031939298099938
103 => 0.03129121613496
104 => 0.032144662745723
105 => 0.032665832809734
106 => 0.033010293069404
107 => 0.033114526535851
108 => 0.030494778523636
109 => 0.029082879642939
110 => 0.029987890638012
111 => 0.031092066512525
112 => 0.030371925011589
113 => 0.030400153195017
114 => 0.02937342066454
115 => 0.031182909559092
116 => 0.030919282247353
117 => 0.032286981207004
118 => 0.031960568873813
119 => 0.033075874281641
120 => 0.032782176989806
121 => 0.034001298027821
122 => 0.034487638416269
123 => 0.035304279621312
124 => 0.035905004216069
125 => 0.036257761188141
126 => 0.036236582982696
127 => 0.03763438184887
128 => 0.03681014869286
129 => 0.035774717592072
130 => 0.035755989910202
131 => 0.036292254349472
201 => 0.037416117497218
202 => 0.037707518859885
203 => 0.037870372467911
204 => 0.037620956498245
205 => 0.036726310480718
206 => 0.036340006866309
207 => 0.036669148738079
208 => 0.036266636512387
209 => 0.036961485538914
210 => 0.037915661664079
211 => 0.037718628067454
212 => 0.038377281840045
213 => 0.039058919202278
214 => 0.040033691244522
215 => 0.040288532752069
216 => 0.040709776073289
217 => 0.041143373822047
218 => 0.041282633733161
219 => 0.04154852411329
220 => 0.04154712273974
221 => 0.042348401296747
222 => 0.043232236358656
223 => 0.043565863633699
224 => 0.044333021156343
225 => 0.04301929078322
226 => 0.044015770362281
227 => 0.044914619886095
228 => 0.043842974428587
301 => 0.045319988030393
302 => 0.045377337121567
303 => 0.046243240310307
304 => 0.04536548154154
305 => 0.044844271186552
306 => 0.046348985951906
307 => 0.04707707002879
308 => 0.046857765179488
309 => 0.045188844447882
310 => 0.04421746099871
311 => 0.041675163146352
312 => 0.044686624771564
313 => 0.046153419883665
314 => 0.045185045802893
315 => 0.045673437362278
316 => 0.048337943348786
317 => 0.049352414714461
318 => 0.049141411762091
319 => 0.049177067787637
320 => 0.049724458122598
321 => 0.052151888321177
322 => 0.050697315878797
323 => 0.051809282009207
324 => 0.052399064835285
325 => 0.052946887993099
326 => 0.051601607458794
327 => 0.049851417249758
328 => 0.049297058542569
329 => 0.045088760085128
330 => 0.044869699874704
331 => 0.04474673474039
401 => 0.0439714569623
402 => 0.043362300995177
403 => 0.04287787755361
404 => 0.041606605781854
405 => 0.042035622686247
406 => 0.040009480817106
407 => 0.041305734582924
408 => 0.038071963236869
409 => 0.040765144105898
410 => 0.039299368202793
411 => 0.040283597299811
412 => 0.040280163417212
413 => 0.038467885599482
414 => 0.037422601575489
415 => 0.03808869723864
416 => 0.038802804664278
417 => 0.038918666191542
418 => 0.039844525108992
419 => 0.040102912431582
420 => 0.039319986781185
421 => 0.038004950513465
422 => 0.038310403445673
423 => 0.037416411581567
424 => 0.035849725226622
425 => 0.036974946718463
426 => 0.037359146808274
427 => 0.037528831455331
428 => 0.035988175360387
429 => 0.035504067766084
430 => 0.035246332944933
501 => 0.037806071158339
502 => 0.037946299395951
503 => 0.03722887190605
504 => 0.040471712189669
505 => 0.0397377575596
506 => 0.040557764704637
507 => 0.038282686793681
508 => 0.038369597833678
509 => 0.037292539490891
510 => 0.037895620193787
511 => 0.037469382191178
512 => 0.037846897232753
513 => 0.03807317819212
514 => 0.039150059800232
515 => 0.040777440364044
516 => 0.038989209598817
517 => 0.038210051846471
518 => 0.038693436933877
519 => 0.03998075512138
520 => 0.041931108072053
521 => 0.040776459870744
522 => 0.041288873135287
523 => 0.04140081263791
524 => 0.040549417801664
525 => 0.041962500214082
526 => 0.042719782558758
527 => 0.043496597546895
528 => 0.044171084235232
529 => 0.043186320558105
530 => 0.044240158852959
531 => 0.043390951214808
601 => 0.042629124173915
602 => 0.042630279551068
603 => 0.042152374319799
604 => 0.04122637271428
605 => 0.041055603810809
606 => 0.041943965212401
607 => 0.04265634692834
608 => 0.042715022098543
609 => 0.043109433219981
610 => 0.04334284165889
611 => 0.045630561663587
612 => 0.046550701574489
613 => 0.047675831240183
614 => 0.048114132653804
615 => 0.049433262769049
616 => 0.048367958066479
617 => 0.048137472692997
618 => 0.044937694517583
619 => 0.045461658014552
620 => 0.046300574128157
621 => 0.044951527935304
622 => 0.045807187237039
623 => 0.045976112508544
624 => 0.04490568786189
625 => 0.045477447915986
626 => 0.043959022727347
627 => 0.040810537883779
628 => 0.041966005377756
629 => 0.042816818379475
630 => 0.041602603321535
701 => 0.043779036816281
702 => 0.042507609299357
703 => 0.042104627815776
704 => 0.040532453375054
705 => 0.041274459192531
706 => 0.042278032685168
707 => 0.041657940944659
708 => 0.042944724413459
709 => 0.044767152977895
710 => 0.04606592410041
711 => 0.046165627620291
712 => 0.045330604799421
713 => 0.046668734198909
714 => 0.046678481010716
715 => 0.045169065581674
716 => 0.044244557035846
717 => 0.044034506749052
718 => 0.044559253548249
719 => 0.045196393036078
720 => 0.0462009844276
721 => 0.046808037965795
722 => 0.048390911637089
723 => 0.048819191867996
724 => 0.049289741995311
725 => 0.049918542077689
726 => 0.050673577797615
727 => 0.049021602626624
728 => 0.049087238679834
729 => 0.047548942273761
730 => 0.045905051949852
731 => 0.047152559791877
801 => 0.048783510346312
802 => 0.048409368487084
803 => 0.048367269884896
804 => 0.048438068056598
805 => 0.048155977313071
806 => 0.04688009133487
807 => 0.046239349384087
808 => 0.047066069971303
809 => 0.047505435170308
810 => 0.048186852277293
811 => 0.048102853235887
812 => 0.049858110524626
813 => 0.050540150430804
814 => 0.050365655436671
815 => 0.050397766715048
816 => 0.051632567386712
817 => 0.05300591968973
818 => 0.054292245351303
819 => 0.055600751063229
820 => 0.054023296355656
821 => 0.053222362139031
822 => 0.0540487218059
823 => 0.053610243734805
824 => 0.056129868792364
825 => 0.056304322164597
826 => 0.058823765024586
827 => 0.061215016308391
828 => 0.05971311422075
829 => 0.061129340242239
830 => 0.062661104151082
831 => 0.065616125250978
901 => 0.064620978103429
902 => 0.06385871098435
903 => 0.063138372240069
904 => 0.064637282816363
905 => 0.066565607327085
906 => 0.066980949957432
907 => 0.06765396369169
908 => 0.066946372042321
909 => 0.067798588245322
910 => 0.070807285924691
911 => 0.069994309253217
912 => 0.068839751687201
913 => 0.071214829546666
914 => 0.072074360991125
915 => 0.078107002808449
916 => 0.085723462298825
917 => 0.08257019805744
918 => 0.080612865187611
919 => 0.081072884840577
920 => 0.083854158013038
921 => 0.084747414682834
922 => 0.082319235130289
923 => 0.083176909198164
924 => 0.087902777636814
925 => 0.090438054430137
926 => 0.086994808011704
927 => 0.077495027704379
928 => 0.06873579641067
929 => 0.071059138983087
930 => 0.070795744037089
1001 => 0.075873100110324
1002 => 0.069974920028471
1003 => 0.070074230254323
1004 => 0.075256580674139
1005 => 0.073874018430111
1006 => 0.071634444659979
1007 => 0.068752147777652
1008 => 0.06342395541048
1009 => 0.058704626843239
1010 => 0.067960316960058
1011 => 0.06756119477184
1012 => 0.066983206696707
1013 => 0.068269456613075
1014 => 0.074515121098547
1015 => 0.074371138316914
1016 => 0.073455193320824
1017 => 0.074149929527589
1018 => 0.071512654043932
1019 => 0.072192339985717
1020 => 0.06873440890368
1021 => 0.070297538168719
1022 => 0.071629639540512
1023 => 0.071897078612997
1024 => 0.072499632499083
1025 => 0.067350875514902
1026 => 0.069662516241236
1027 => 0.071020388596513
1028 => 0.064885471895554
1029 => 0.070899121018596
1030 => 0.067261247110758
1031 => 0.066026498067405
1101 => 0.067688924988463
1102 => 0.067041075600564
1103 => 0.06648409273984
1104 => 0.066173286733376
1105 => 0.067393989588837
1106 => 0.067337042341575
1107 => 0.065339735541826
1108 => 0.062734330242194
1109 => 0.063608789780264
1110 => 0.063291090431982
1111 => 0.062139707009773
1112 => 0.062915600417777
1113 => 0.059498958519596
1114 => 0.053620803715369
1115 => 0.057504092831792
1116 => 0.057354590425016
1117 => 0.057279204532125
1118 => 0.060197388976889
1119 => 0.059916872876495
1120 => 0.059407733407458
1121 => 0.062130356264153
1122 => 0.061136562297014
1123 => 0.064199201136428
1124 => 0.066216453155127
1125 => 0.065704812791918
1126 => 0.06760204806573
1127 => 0.063628935561861
1128 => 0.06494864416204
1129 => 0.0652206342755
1130 => 0.062096759520723
1201 => 0.059962768779721
1202 => 0.059820455926571
1203 => 0.056120410063713
1204 => 0.058096944697925
1205 => 0.059836213381472
1206 => 0.059003238654755
1207 => 0.058739543740689
1208 => 0.060086703868205
1209 => 0.060191389747759
1210 => 0.057804540599811
1211 => 0.058300842119351
1212 => 0.060370501959099
1213 => 0.05824869200159
1214 => 0.054126361849839
1215 => 0.053103966976532
1216 => 0.052967560653956
1217 => 0.050194744670386
1218 => 0.053172288290737
1219 => 0.051872510707246
1220 => 0.055978492519768
1221 => 0.053633177729278
1222 => 0.053532075896181
1223 => 0.053379245647041
1224 => 0.050992568386396
1225 => 0.051515099025225
1226 => 0.053252070452354
1227 => 0.053871841425937
1228 => 0.053807194235759
1229 => 0.05324355834476
1230 => 0.053501587969376
1231 => 0.052670384645005
]
'min_raw' => 0.029082879642939
'max_raw' => 0.090438054430137
'avg_raw' => 0.059760467036538
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029082'
'max' => '$0.090438'
'avg' => '$0.05976'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016567559206829
'max_diff' => 0.056485196092296
'year' => 2033
]
8 => [
'items' => [
101 => 0.052376869451169
102 => 0.051450454761706
103 => 0.050088881096786
104 => 0.05027821626591
105 => 0.047580582560574
106 => 0.04611076854365
107 => 0.045703943395603
108 => 0.045159919805241
109 => 0.045765392307726
110 => 0.047572940503227
111 => 0.045392653886711
112 => 0.041654705412018
113 => 0.041879362484501
114 => 0.042384100225088
115 => 0.041443524784679
116 => 0.040553349066845
117 => 0.041327284631263
118 => 0.039743466586031
119 => 0.042575497069074
120 => 0.042498898581181
121 => 0.043554504413669
122 => 0.044214596403936
123 => 0.04269329807369
124 => 0.042310695657661
125 => 0.042528643382142
126 => 0.038926452981039
127 => 0.043260128607479
128 => 0.043297606414257
129 => 0.042976698679193
130 => 0.045284247163049
131 => 0.050153894206406
201 => 0.048321737107596
202 => 0.047612270501696
203 => 0.046263573965262
204 => 0.048060632022384
205 => 0.04792264600207
206 => 0.047298620888565
207 => 0.04692120855284
208 => 0.047616602353507
209 => 0.046835041565355
210 => 0.046694651771949
211 => 0.045844042369509
212 => 0.0455404135131
213 => 0.045315618795627
214 => 0.045068141899563
215 => 0.045614014264881
216 => 0.044376995669581
217 => 0.042885272510077
218 => 0.042761251870033
219 => 0.043103683761202
220 => 0.042952183140416
221 => 0.042760526543347
222 => 0.042394601904975
223 => 0.042286039881513
224 => 0.042638813790959
225 => 0.042240552615191
226 => 0.042828208674445
227 => 0.042668398742821
228 => 0.041775713455655
301 => 0.040663097073423
302 => 0.040653192453829
303 => 0.040413481079334
304 => 0.040108172603068
305 => 0.040023242769482
306 => 0.041262105936709
307 => 0.043826515616814
308 => 0.043323060635487
309 => 0.043686858455638
310 => 0.045476383666843
311 => 0.046045219918585
312 => 0.045641473420724
313 => 0.045088800312452
314 => 0.045113115124352
315 => 0.047001766440845
316 => 0.047119559306788
317 => 0.047417183877606
318 => 0.047799715559802
319 => 0.045706620220315
320 => 0.045014530522091
321 => 0.044686580027398
322 => 0.043676619436558
323 => 0.044765775346302
324 => 0.04413117084
325 => 0.044216800669077
326 => 0.044161034130556
327 => 0.044191486431505
328 => 0.042574705458837
329 => 0.043163775469771
330 => 0.042184332324585
331 => 0.040872967900834
401 => 0.040868571747462
402 => 0.041189526332366
403 => 0.040998609986311
404 => 0.040484859007984
405 => 0.040557834909619
406 => 0.039918489222444
407 => 0.04063546305177
408 => 0.040656023295739
409 => 0.04037994931762
410 => 0.041484546425019
411 => 0.041937100761186
412 => 0.041755382954711
413 => 0.041924350955461
414 => 0.043343981462924
415 => 0.043575443178462
416 => 0.043678243183001
417 => 0.043540504795309
418 => 0.041950299195085
419 => 0.042020831575532
420 => 0.041503311766787
421 => 0.041066062063291
422 => 0.041083549758358
423 => 0.041308352944438
424 => 0.042290081642579
425 => 0.04435607181175
426 => 0.044434474628451
427 => 0.044529501129464
428 => 0.044142980593351
429 => 0.044026402301156
430 => 0.044180199159972
501 => 0.04495607644291
502 => 0.046951843463254
503 => 0.046246406105467
504 => 0.045672874552799
505 => 0.046176016347485
506 => 0.046098561611949
507 => 0.045444765696333
508 => 0.045426415822517
509 => 0.044171572429252
510 => 0.043707685398163
511 => 0.043320026673643
512 => 0.042896713466555
513 => 0.042645759207805
514 => 0.043031339005915
515 => 0.043119525667789
516 => 0.04227644870044
517 => 0.042161540425067
518 => 0.042850015275684
519 => 0.042547043162857
520 => 0.042858657494247
521 => 0.042930954692107
522 => 0.042919313178106
523 => 0.042602975496189
524 => 0.042804599701317
525 => 0.04232769834912
526 => 0.041809139756873
527 => 0.041478331682361
528 => 0.041189657762025
529 => 0.041349830830854
530 => 0.040778843086927
531 => 0.040596172615931
601 => 0.042736293957308
602 => 0.044317224602365
603 => 0.044294237244669
604 => 0.04415430761656
605 => 0.04394640057288
606 => 0.044940866747692
607 => 0.044594414617366
608 => 0.044846487489222
609 => 0.044910650614575
610 => 0.04510485307032
611 => 0.045174263755983
612 => 0.044964456455087
613 => 0.044260317527474
614 => 0.042505670267384
615 => 0.041688877231232
616 => 0.041419321924538
617 => 0.041429119747978
618 => 0.041158852038095
619 => 0.041238457991204
620 => 0.0411311683363
621 => 0.040927987686067
622 => 0.04133728499825
623 => 0.041384452700611
624 => 0.041288917817209
625 => 0.041311419740663
626 => 0.040520431709575
627 => 0.040580568811643
628 => 0.040245717785475
629 => 0.040182937254758
630 => 0.03933646301942
701 => 0.037836811213117
702 => 0.038667763888532
703 => 0.037664089906258
704 => 0.037283983361029
705 => 0.03908334862745
706 => 0.038902742261325
707 => 0.038593622670219
708 => 0.038136370368806
709 => 0.037966771042348
710 => 0.036936339223407
711 => 0.036875455814404
712 => 0.037386165647871
713 => 0.037150490632178
714 => 0.036819513653038
715 => 0.035620748585191
716 => 0.034272939751457
717 => 0.034313621628123
718 => 0.034742334541259
719 => 0.035988875156015
720 => 0.035501830172458
721 => 0.035148473448691
722 => 0.035082300356193
723 => 0.035910595151553
724 => 0.037082805820112
725 => 0.037632780839065
726 => 0.037087772298273
727 => 0.036461695831954
728 => 0.0364998022055
729 => 0.036753306836744
730 => 0.036779946589125
731 => 0.036372435171253
801 => 0.036487147248372
802 => 0.036312889113736
803 => 0.035243467263127
804 => 0.035224124813023
805 => 0.034961671444127
806 => 0.034953724460422
807 => 0.034507225807868
808 => 0.034444757559877
809 => 0.0335582073847
810 => 0.034141737394723
811 => 0.0337503361007
812 => 0.033160402028377
813 => 0.033058697171949
814 => 0.033055639801153
815 => 0.033661370186584
816 => 0.034134659082495
817 => 0.033757144693783
818 => 0.033671191985282
819 => 0.034588942041448
820 => 0.034472149981324
821 => 0.034371008810484
822 => 0.036977847211662
823 => 0.034914331202992
824 => 0.034014520441836
825 => 0.032900833755477
826 => 0.033263455756251
827 => 0.03333986553984
828 => 0.030661649816259
829 => 0.029575098030752
830 => 0.029202234403807
831 => 0.028987646114982
901 => 0.029085436692829
902 => 0.028107412646061
903 => 0.028764660980514
904 => 0.027917774826327
905 => 0.027775791606571
906 => 0.029290128959321
907 => 0.029500840155325
908 => 0.028601880730332
909 => 0.029179158209489
910 => 0.02896982937079
911 => 0.02793229225873
912 => 0.027892665972655
913 => 0.027372066321017
914 => 0.026557428674159
915 => 0.026185117409898
916 => 0.025991214470917
917 => 0.026071222602634
918 => 0.026030768042948
919 => 0.025766774676484
920 => 0.026045899833695
921 => 0.0253328503995
922 => 0.025048908369374
923 => 0.024920658341771
924 => 0.024287785927329
925 => 0.025294967378346
926 => 0.025493394812334
927 => 0.025692213209664
928 => 0.02742279161934
929 => 0.027336336812557
930 => 0.028117846160682
1001 => 0.028087478144517
1002 => 0.02786457901882
1003 => 0.026924204272629
1004 => 0.027299020885893
1005 => 0.026145393609702
1006 => 0.027009769604054
1007 => 0.026615304497436
1008 => 0.02687640055471
1009 => 0.026406926301649
1010 => 0.02666675273741
1011 => 0.025540449318105
1012 => 0.024488723032675
1013 => 0.024911968391736
1014 => 0.025372084501014
1015 => 0.026369733461332
1016 => 0.025775541970992
1017 => 0.025989235699786
1018 => 0.025273397480224
1019 => 0.023796418764189
1020 => 0.023804778303322
1021 => 0.02357757730559
1022 => 0.023381242471661
1023 => 0.025843792011427
1024 => 0.02553753504901
1025 => 0.025049554661319
1026 => 0.025702735801814
1027 => 0.025875447262739
1028 => 0.025880364115228
1029 => 0.026356908214288
1030 => 0.026611239885381
1031 => 0.026656066944748
1101 => 0.027405919381035
1102 => 0.027657260026885
1103 => 0.028692496576085
1104 => 0.026589661620005
1105 => 0.026546355117894
1106 => 0.025711927399968
1107 => 0.025182720149479
1108 => 0.025748162673165
1109 => 0.02624906755855
1110 => 0.025727491911023
1111 => 0.025795598679527
1112 => 0.02509542598702
1113 => 0.025345704778404
1114 => 0.025561278589738
1115 => 0.025442251401962
1116 => 0.025264061940881
1117 => 0.026207999070192
1118 => 0.026154738438037
1119 => 0.027033754393872
1120 => 0.02771901019048
1121 => 0.028947111082127
1122 => 0.027665523779346
1123 => 0.027618817644185
1124 => 0.028075377607288
1125 => 0.027657190129934
1126 => 0.027921470180281
1127 => 0.028904531480263
1128 => 0.028925302016444
1129 => 0.028577368774089
1130 => 0.028556197004671
1201 => 0.028623021389838
1202 => 0.029014413900982
1203 => 0.028877649331311
1204 => 0.029035916753789
1205 => 0.029233832589075
1206 => 0.030052496398392
1207 => 0.030249873471245
1208 => 0.029770349512491
1209 => 0.029813645156965
1210 => 0.029634290033164
1211 => 0.029461035230885
1212 => 0.029850486724576
1213 => 0.030562216983983
1214 => 0.030557789346978
1215 => 0.030722896933101
1216 => 0.030825757591431
1217 => 0.030384204347276
1218 => 0.030096769421694
1219 => 0.030206990262122
1220 => 0.030383235786263
1221 => 0.03014983621402
1222 => 0.028709185932939
1223 => 0.029146187199123
1224 => 0.02907344882016
1225 => 0.028969860523227
1226 => 0.029409268675606
1227 => 0.029366886687366
1228 => 0.028097381595848
1229 => 0.028178651192908
1230 => 0.028102323869219
1231 => 0.02834895306716
]
'min_raw' => 0.023381242471661
'max_raw' => 0.052376869451169
'avg_raw' => 0.037879055961415
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023381'
'max' => '$0.052376'
'avg' => '$0.037879'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0057016371712771
'max_diff' => -0.038061184978968
'year' => 2034
]
9 => [
'items' => [
101 => 0.027643871343877
102 => 0.027860749733161
103 => 0.027996773825811
104 => 0.028076893061368
105 => 0.028366338678476
106 => 0.028332375576077
107 => 0.028364227484344
108 => 0.028793398923704
109 => 0.030964000790134
110 => 0.03108214186056
111 => 0.030500372021713
112 => 0.03073277759743
113 => 0.030286609713566
114 => 0.030586125203069
115 => 0.030791046094118
116 => 0.029865047991487
117 => 0.029810216393527
118 => 0.029362207016096
119 => 0.029602941878979
120 => 0.029219915402682
121 => 0.029313896702268
122 => 0.029051116795483
123 => 0.029524068308738
124 => 0.030052901589792
125 => 0.030186505760845
126 => 0.029835050707016
127 => 0.029580574086027
128 => 0.029133796969381
129 => 0.029876797271441
130 => 0.030094073202288
131 => 0.029875656013474
201 => 0.029825043978316
202 => 0.029729134263145
203 => 0.029845391677784
204 => 0.030092889870906
205 => 0.029976174293603
206 => 0.030053266988676
207 => 0.029759469132703
208 => 0.030384350519773
209 => 0.031376812548336
210 => 0.031380003476041
211 => 0.031263287269598
212 => 0.031215529512608
213 => 0.03133528742335
214 => 0.031400251177201
215 => 0.031787526300696
216 => 0.032203087937928
217 => 0.034142332775141
218 => 0.033597800584865
219 => 0.035318413970632
220 => 0.036679195765089
221 => 0.03708723472547
222 => 0.036711858081636
223 => 0.035427714860527
224 => 0.035364708667771
225 => 0.037283760791391
226 => 0.036741540668313
227 => 0.036677045310003
228 => 0.035990923664211
301 => 0.036396506534693
302 => 0.036307799611377
303 => 0.036167771393231
304 => 0.036941595256963
305 => 0.038390124450134
306 => 0.038164357591158
307 => 0.037995833103955
308 => 0.037257407857773
309 => 0.037702104789224
310 => 0.037543756729543
311 => 0.038224120484095
312 => 0.037821088067801
313 => 0.036737432817592
314 => 0.036910008487962
315 => 0.03688392402256
316 => 0.037420740472176
317 => 0.037259601498605
318 => 0.036852459051782
319 => 0.038385173534828
320 => 0.038285647581704
321 => 0.038426752628433
322 => 0.038488871433821
323 => 0.039421807730192
324 => 0.039804001880184
325 => 0.039890766643482
326 => 0.040253821526018
327 => 0.039881733507269
328 => 0.041370350876524
329 => 0.042360194563847
330 => 0.043509948943564
331 => 0.045190049117172
401 => 0.045821782324244
402 => 0.045707665374811
403 => 0.046981498151723
404 => 0.049270547336122
405 => 0.046170347661399
406 => 0.049434865446755
407 => 0.048401356806582
408 => 0.045950926412757
409 => 0.045793147584071
410 => 0.047452607496851
411 => 0.051133129866299
412 => 0.050211200756892
413 => 0.05113463781205
414 => 0.050057399435961
415 => 0.05000390547091
416 => 0.051082318748565
417 => 0.053602090153053
418 => 0.052405041210999
419 => 0.050688778024123
420 => 0.051956040053299
421 => 0.050858220404062
422 => 0.048384525473959
423 => 0.050210495775077
424 => 0.04898952143536
425 => 0.049345866658255
426 => 0.051912173114114
427 => 0.05160338833174
428 => 0.052002984432833
429 => 0.051297707773655
430 => 0.050638868162063
501 => 0.049409095100953
502 => 0.049045019924638
503 => 0.049145637205319
504 => 0.04904497006371
505 => 0.048356923338218
506 => 0.048208339713357
507 => 0.047960693828991
508 => 0.048037449643788
509 => 0.047571802929821
510 => 0.048450574486597
511 => 0.048613682231243
512 => 0.049253178886797
513 => 0.049319573551026
514 => 0.051100562634081
515 => 0.05011962377544
516 => 0.050777722252002
517 => 0.050718855729996
518 => 0.046004034669746
519 => 0.04665369541263
520 => 0.047664363653786
521 => 0.047209058981073
522 => 0.046565364698744
523 => 0.046045547053059
524 => 0.045257970165763
525 => 0.046366469510558
526 => 0.0478240282732
527 => 0.049356539646585
528 => 0.051197751647584
529 => 0.050786814563031
530 => 0.049322119468946
531 => 0.049387824620906
601 => 0.0497939880163
602 => 0.049267969515429
603 => 0.049112836390422
604 => 0.049772675107155
605 => 0.049777219053756
606 => 0.049171971197045
607 => 0.0484993489635
608 => 0.048496530651781
609 => 0.048376844022082
610 => 0.050078691421499
611 => 0.051014535414999
612 => 0.051121828420666
613 => 0.051007313740851
614 => 0.051051385896187
615 => 0.050506838896284
616 => 0.051751511857665
617 => 0.052893746852425
618 => 0.052587603473538
619 => 0.05212865102774
620 => 0.051763073298518
621 => 0.05250148497876
622 => 0.052468604669007
623 => 0.05288377042621
624 => 0.052864936109349
625 => 0.052725331480376
626 => 0.052587608459259
627 => 0.053133664670484
628 => 0.052976409251046
629 => 0.052818909570506
630 => 0.052503019849188
701 => 0.052545954508688
702 => 0.052087081307501
703 => 0.051874785568023
704 => 0.048682367014974
705 => 0.047829248462314
706 => 0.048097656925811
707 => 0.048186023961216
708 => 0.047814745673798
709 => 0.04834706336439
710 => 0.048264102216175
711 => 0.04858685551323
712 => 0.048385213265549
713 => 0.04839348873373
714 => 0.048986475589499
715 => 0.049158622196476
716 => 0.049071067042774
717 => 0.049132387671212
718 => 0.050545495671737
719 => 0.050344596902713
720 => 0.050237873435729
721 => 0.050267436565445
722 => 0.050628515956956
723 => 0.050729598472376
724 => 0.050301304751602
725 => 0.050503290546255
726 => 0.051363320424076
727 => 0.051664282207838
728 => 0.052624807751755
729 => 0.052216759428719
730 => 0.052965749785569
731 => 0.055267890792897
801 => 0.057107000325591
802 => 0.05541567919491
803 => 0.058792969642516
804 => 0.061422674699519
805 => 0.061321742239428
806 => 0.060863192336566
807 => 0.057869343043494
808 => 0.055114358288232
809 => 0.057419020018841
810 => 0.05742489507555
811 => 0.057226922588987
812 => 0.055997332477662
813 => 0.057184135518404
814 => 0.057278339633943
815 => 0.057225610380138
816 => 0.056282886524711
817 => 0.054843521441966
818 => 0.055124769933781
819 => 0.055585460700688
820 => 0.054713276968771
821 => 0.054434561418948
822 => 0.054952746653873
823 => 0.056622447448981
824 => 0.056306800185584
825 => 0.056298557359906
826 => 0.057649030207989
827 => 0.056682383099043
828 => 0.055128317377945
829 => 0.05473589528776
830 => 0.053343061234796
831 => 0.054305096676283
901 => 0.054339718619143
902 => 0.053812821639605
903 => 0.05517107216394
904 => 0.055158555646243
905 => 0.056448012370188
906 => 0.058912969328542
907 => 0.058183960262792
908 => 0.057336202035285
909 => 0.0574283768604
910 => 0.058439307185068
911 => 0.057828075633479
912 => 0.058047878761089
913 => 0.058438974486709
914 => 0.058674932248337
915 => 0.057394426169686
916 => 0.057095878949067
917 => 0.056485156111515
918 => 0.056325829922879
919 => 0.056823250930915
920 => 0.056692198069441
921 => 0.054336808778909
922 => 0.054090657492786
923 => 0.054098206601308
924 => 0.053479247488496
925 => 0.05253518627425
926 => 0.055016122778323
927 => 0.054816868856362
928 => 0.054596907947545
929 => 0.054623851903796
930 => 0.055700742353474
1001 => 0.055076091508389
1002 => 0.056736828158307
1003 => 0.056395430629397
1004 => 0.056045277542082
1005 => 0.055996875719491
1006 => 0.055862096654532
1007 => 0.055399889091707
1008 => 0.054841745685227
1009 => 0.054473211062715
1010 => 0.050248657762312
1011 => 0.051032710281771
1012 => 0.051934691236772
1013 => 0.052246051447977
1014 => 0.051713448261241
1015 => 0.055420919511774
1016 => 0.056098310235328
1017 => 0.054046449548578
1018 => 0.053662630191007
1019 => 0.055446082644957
1020 => 0.05437044279703
1021 => 0.054854803354689
1022 => 0.05380788076009
1023 => 0.05593514664634
1024 => 0.055918940444431
1025 => 0.055091385968201
1026 => 0.055790829344663
1027 => 0.055669283845546
1028 => 0.054734976880059
1029 => 0.055964765843639
1030 => 0.055965375803622
1031 => 0.055168872612836
1101 => 0.054238731262967
1102 => 0.054072443958569
1103 => 0.053947168812261
1104 => 0.054823993348204
1105 => 0.055610151485371
1106 => 0.057072996873509
1107 => 0.057440790960436
1108 => 0.058876315767151
1109 => 0.058021530639187
1110 => 0.058400445815093
1111 => 0.058811811839363
1112 => 0.059009035838883
1113 => 0.058687669915289
1114 => 0.060917630825701
1115 => 0.061105907850777
1116 => 0.061169035508694
1117 => 0.060417105236437
1118 => 0.061084995309673
1119 => 0.0607725116626
1120 => 0.061585507301826
1121 => 0.061712995398906
1122 => 0.0616050175162
1123 => 0.061645484250476
1124 => 0.059742606005501
1125 => 0.059643931730016
1126 => 0.05829850098218
1127 => 0.058846773956845
1128 => 0.057821803910115
1129 => 0.058146832470295
1130 => 0.058290101962636
1201 => 0.058215266110309
1202 => 0.05887777248821
1203 => 0.058314506725883
1204 => 0.056827955769636
1205 => 0.055340999803575
1206 => 0.055322332282669
1207 => 0.054930843023758
1208 => 0.0546478679944
1209 => 0.054702379024133
1210 => 0.054894483002897
1211 => 0.054636702561928
1212 => 0.054691713088809
1213 => 0.055605254368253
1214 => 0.055788458556768
1215 => 0.055165859141699
1216 => 0.052666032649532
1217 => 0.052052568958014
1218 => 0.052493514493963
1219 => 0.052282770928309
1220 => 0.042196276642112
1221 => 0.044565948859569
1222 => 0.043157970094421
1223 => 0.043806831487389
1224 => 0.042369649762507
1225 => 0.043055548210769
1226 => 0.042928887812375
1227 => 0.046739250614349
1228 => 0.046679757040178
1229 => 0.046708233465804
1230 => 0.045348979475773
1231 => 0.04751430798966
]
'min_raw' => 0.027643871343877
'max_raw' => 0.061712995398906
'avg_raw' => 0.044678433371392
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027643'
'max' => '$0.061712'
'avg' => '$0.044678'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042626288722157
'max_diff' => 0.0093361259477376
'year' => 2035
]
10 => [
'items' => [
101 => 0.048581026678295
102 => 0.048383605438827
103 => 0.048433292111528
104 => 0.047579510454712
105 => 0.046716499938516
106 => 0.045759288459688
107 => 0.047537669072436
108 => 0.047339943506268
109 => 0.047793454815644
110 => 0.048946861764282
111 => 0.049116705318836
112 => 0.04934497677854
113 => 0.049263157709705
114 => 0.051212419871647
115 => 0.05097635136219
116 => 0.051545208548436
117 => 0.050375026157029
118 => 0.049050853706421
119 => 0.049302535598823
120 => 0.049278296608686
121 => 0.048969706444034
122 => 0.048691125041384
123 => 0.048227365495796
124 => 0.049694769321536
125 => 0.049635195406005
126 => 0.050599627851349
127 => 0.050429155048638
128 => 0.049290695950358
129 => 0.049331356239773
130 => 0.049604816226758
131 => 0.050551264364023
201 => 0.050832234610266
202 => 0.050702077997478
203 => 0.051010149045705
204 => 0.051253635841155
205 => 0.051040727238425
206 => 0.054055064068575
207 => 0.052803301257866
208 => 0.053413401742096
209 => 0.053558907112664
210 => 0.053186198165602
211 => 0.053267025390513
212 => 0.053389456612153
213 => 0.054132835015457
214 => 0.056083675044002
215 => 0.056947688812828
216 => 0.059547116866028
217 => 0.056875944496979
218 => 0.05671744818301
219 => 0.057185683670598
220 => 0.05871182311523
221 => 0.059948615792116
222 => 0.06035893127532
223 => 0.060413161239996
224 => 0.061182940363745
225 => 0.061624163401947
226 => 0.061089468930921
227 => 0.060636371351571
228 => 0.059013432062882
229 => 0.059201291704664
301 => 0.060495458345104
302 => 0.062323544950761
303 => 0.063892233438408
304 => 0.063342933404347
305 => 0.06753370491884
306 => 0.067949202796735
307 => 0.067891794424665
308 => 0.068838360424885
309 => 0.066959619679261
310 => 0.066156421611619
311 => 0.060734336191102
312 => 0.062257721030277
313 => 0.064472050359273
314 => 0.064178975569272
315 => 0.062570870421362
316 => 0.063891013546451
317 => 0.063454532944604
318 => 0.063110262584331
319 => 0.064687431844836
320 => 0.062953269456368
321 => 0.064454750762883
322 => 0.062529085456443
323 => 0.063345442560633
324 => 0.062882038785545
325 => 0.063181917820657
326 => 0.061428831108922
327 => 0.0623747541448
328 => 0.061389477600723
329 => 0.061389010451355
330 => 0.061367260417035
331 => 0.062526433901757
401 => 0.062564234507478
402 => 0.061707603550855
403 => 0.061584149646915
404 => 0.062040623434591
405 => 0.061506212179897
406 => 0.061756259842424
407 => 0.061513785868867
408 => 0.061459199870136
409 => 0.061024249345206
410 => 0.060836860699853
411 => 0.060910340616106
412 => 0.060659515780439
413 => 0.060508384744219
414 => 0.061337196650018
415 => 0.060894395882927
416 => 0.061269331081804
417 => 0.060842045102089
418 => 0.059360885736754
419 => 0.058509055322774
420 => 0.055711282585204
421 => 0.056504727462953
422 => 0.057030782237778
423 => 0.056856921137836
424 => 0.057230442055825
425 => 0.057253373206579
426 => 0.057131937748545
427 => 0.056991331044988
428 => 0.056922891477735
429 => 0.057432983940554
430 => 0.057729109784143
501 => 0.057083578872137
502 => 0.056932340011391
503 => 0.057585007404168
504 => 0.057983134136728
505 => 0.060922678241867
506 => 0.060704907319956
507 => 0.061251469598568
508 => 0.061189935073678
509 => 0.061762819415862
510 => 0.062699243196345
511 => 0.060795231822415
512 => 0.06112570236117
513 => 0.061044678616746
514 => 0.061929274612794
515 => 0.061932036224937
516 => 0.061401676736459
517 => 0.061689193219263
518 => 0.061528709406164
519 => 0.061818725347122
520 => 0.060701998856525
521 => 0.062062051178897
522 => 0.062833113205846
523 => 0.062843819402839
524 => 0.063209296684086
525 => 0.06358064276885
526 => 0.064293409241126
527 => 0.063560764098792
528 => 0.062242806809301
529 => 0.062337959068627
530 => 0.06156524119202
531 => 0.061578230719128
601 => 0.061508891605415
602 => 0.061716983505274
603 => 0.060747663326521
604 => 0.060975160835025
605 => 0.060656662990896
606 => 0.061125010009058
607 => 0.060621146038052
608 => 0.061044639544644
609 => 0.061227405303056
610 => 0.061901814886265
611 => 0.060521535194266
612 => 0.057707051465559
613 => 0.05829869006765
614 => 0.057423610102948
615 => 0.057504602085346
616 => 0.057668218779567
617 => 0.057137883541544
618 => 0.057239054792175
619 => 0.057235440243171
620 => 0.057204292012595
621 => 0.057066331334667
622 => 0.056866261056982
623 => 0.057663279464893
624 => 0.05779870842332
625 => 0.058099750221805
626 => 0.058995446415494
627 => 0.058905945243773
628 => 0.059051925368217
629 => 0.0587332515762
630 => 0.057519384448579
701 => 0.0575853032737
702 => 0.056763294468166
703 => 0.05807872960852
704 => 0.057767217204389
705 => 0.057566383130937
706 => 0.057511583693281
707 => 0.058409500144587
708 => 0.058678170819933
709 => 0.058510753284876
710 => 0.058167375036123
711 => 0.058826762784395
712 => 0.059003187128496
713 => 0.059042682032861
714 => 0.060210990697739
715 => 0.059107977508938
716 => 0.05937348374649
717 => 0.061444887619779
718 => 0.059566410140902
719 => 0.060561481556509
720 => 0.060512777988817
721 => 0.061021822853661
722 => 0.060471021451994
723 => 0.060477849295497
724 => 0.060929846649792
725 => 0.060295097883837
726 => 0.060137925162894
727 => 0.059920792174604
728 => 0.060394894110884
729 => 0.060679096779897
730 => 0.062969561568285
731 => 0.064449306279468
801 => 0.064385066659007
802 => 0.064972096538494
803 => 0.064707634201208
804 => 0.06385361555247
805 => 0.065311321249386
806 => 0.064850042173885
807 => 0.064888069460415
808 => 0.064886654082911
809 => 0.065193364342403
810 => 0.064976032013971
811 => 0.064547647685925
812 => 0.064832029194741
813 => 0.065676540607676
814 => 0.0682979299462
815 => 0.069764894148828
816 => 0.068209616859228
817 => 0.069282426307601
818 => 0.068639122919669
819 => 0.068522215557464
820 => 0.069196019171038
821 => 0.06987100218864
822 => 0.069828008688451
823 => 0.069338005678433
824 => 0.06906121541144
825 => 0.071157164044654
826 => 0.072701423294053
827 => 0.072596115166089
828 => 0.073060910994883
829 => 0.074425565923815
830 => 0.074550332868104
831 => 0.074534615100859
901 => 0.074225367211354
902 => 0.075569047211723
903 => 0.076689968707832
904 => 0.074153785259964
905 => 0.075119530715833
906 => 0.075553084965348
907 => 0.076189671233385
908 => 0.07726369897181
909 => 0.078430377967527
910 => 0.078595359169506
911 => 0.078478297111624
912 => 0.077708840951934
913 => 0.078985435030423
914 => 0.079733233901787
915 => 0.080178531016612
916 => 0.081307730409432
917 => 0.075555762448793
918 => 0.071484233634897
919 => 0.070848405617018
920 => 0.072141386894076
921 => 0.072482335745504
922 => 0.072344899691007
923 => 0.067762023843761
924 => 0.07082427772413
925 => 0.074119005417787
926 => 0.074245569326701
927 => 0.075894978899653
928 => 0.076432094268189
929 => 0.077760085167471
930 => 0.077677018975148
1001 => 0.078000363626172
1002 => 0.07792603229045
1003 => 0.080385855789893
1004 => 0.083099406397103
1005 => 0.083005444768138
1006 => 0.082615339763078
1007 => 0.083194712218379
1008 => 0.085995387246775
1009 => 0.085737545970064
1010 => 0.085988016807521
1011 => 0.089290170505128
1012 => 0.093583440037903
1013 => 0.091588785302715
1014 => 0.095916612131634
1015 => 0.098640749712195
1016 => 0.10335186397669
1017 => 0.10276200926805
1018 => 0.10459601147947
1019 => 0.10170604623319
1020 => 0.095070101869396
1021 => 0.094019938272451
1022 => 0.096122392387913
1023 => 0.1012910706763
1024 => 0.095959612314847
1025 => 0.097038159397663
1026 => 0.096727537765254
1027 => 0.09671098605852
1028 => 0.097342697383905
1029 => 0.096426367158587
1030 => 0.092693072975983
1031 => 0.09440401969943
1101 => 0.093743341003097
1102 => 0.094476413273538
1103 => 0.098432501975105
1104 => 0.096683420858767
1105 => 0.094840905986516
1106 => 0.0971518285231
1107 => 0.10009442703131
1108 => 0.099910284505025
1109 => 0.099552971038426
1110 => 0.10156712834132
1111 => 0.10489392611299
1112 => 0.10579314618252
1113 => 0.1064569320541
1114 => 0.10654845691103
1115 => 0.10749121981986
1116 => 0.10242174605225
1117 => 0.11046713111477
1118 => 0.11185634686579
1119 => 0.11159523188169
1120 => 0.11313928672181
1121 => 0.11268498661896
1122 => 0.11202677704742
1123 => 0.1144744323989
1124 => 0.11166839305403
1125 => 0.10768557347452
1126 => 0.10550051988196
1127 => 0.10837797471589
1128 => 0.11013513597363
1129 => 0.11129650778856
1130 => 0.11164793819803
1201 => 0.10281527486989
1202 => 0.098054959217982
1203 => 0.10110626697372
1204 => 0.10482907302574
1205 => 0.10240106567666
1206 => 0.10249623896792
1207 => 0.099034538557238
1208 => 0.1051353566997
1209 => 0.1042465188123
1210 => 0.10885781134446
1211 => 0.10775728937372
1212 => 0.11151761942435
1213 => 0.11052739849964
1214 => 0.11463775019562
1215 => 0.11627748077047
1216 => 0.11903084360934
1217 => 0.12105622852182
1218 => 0.12224557328186
1219 => 0.12217416948359
1220 => 0.1268869459521
1221 => 0.12410798632049
1222 => 0.12061695807269
1223 => 0.12055381638574
1224 => 0.12236186938353
1225 => 0.12615105245177
1226 => 0.127133532491
1227 => 0.12768260480053
1228 => 0.12684168144514
1229 => 0.12382531993486
1230 => 0.12252287032802
1231 => 0.12363259512864
]
'min_raw' => 0.045759288459688
'max_raw' => 0.12768260480053
'avg_raw' => 0.086720946630111
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045759'
'max' => '$0.127682'
'avg' => '$0.08672'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018115417115811
'max_diff' => 0.065969609401627
'year' => 2036
]
11 => [
'items' => [
101 => 0.12227549705722
102 => 0.12461822906296
103 => 0.12783530048741
104 => 0.12717098795994
105 => 0.12939168513996
106 => 0.13168987309714
107 => 0.13497638509397
108 => 0.13583560102913
109 => 0.13725585229689
110 => 0.13871775737966
111 => 0.1391872818928
112 => 0.14008374987328
113 => 0.14007902504451
114 => 0.14278059164294
115 => 0.14576050326156
116 => 0.14688535091248
117 => 0.1494718760613
118 => 0.1450425423866
119 => 0.14840224285938
120 => 0.15143277678459
121 => 0.14781964930471
122 => 0.15279950378499
123 => 0.15299286024987
124 => 0.15591231330614
125 => 0.15295288833408
126 => 0.15119559123249
127 => 0.15626884211971
128 => 0.15872362841813
129 => 0.15798422680734
130 => 0.1523573440404
131 => 0.14908225692169
201 => 0.1405107222149
202 => 0.15066407533784
203 => 0.15560947746665
204 => 0.15234453664361
205 => 0.15399118288449
206 => 0.16297475084786
207 => 0.16639511188537
208 => 0.1656837006997
209 => 0.16580391747925
210 => 0.16764948221114
211 => 0.17583373260342
212 => 0.17092954005893
213 => 0.1746786115026
214 => 0.17666710547804
215 => 0.17851412950241
216 => 0.17397842225651
217 => 0.16807753377236
218 => 0.16620847468699
219 => 0.15201990262371
220 => 0.15128132582997
221 => 0.15086674029448
222 => 0.14825283713748
223 => 0.14619902526442
224 => 0.14456575780981
225 => 0.14027957627397
226 => 0.14172603672014
227 => 0.13489475794762
228 => 0.13926516802062
301 => 0.12836228215269
302 => 0.13744252948451
303 => 0.13250056368999
304 => 0.13581896080726
305 => 0.13580738323233
306 => 0.12969716204066
307 => 0.12617291397437
308 => 0.128418702008
309 => 0.13082636505092
310 => 0.13121700027929
311 => 0.13433859826088
312 => 0.13520976915901
313 => 0.13257008066658
314 => 0.12813634407706
315 => 0.12916619996404
316 => 0.12615204397769
317 => 0.12086985154944
318 => 0.12466361436964
319 => 0.12595897179643
320 => 0.12653107543099
321 => 0.12133664584171
322 => 0.11970444328821
323 => 0.11883547234423
324 => 0.12746580844594
325 => 0.12793859773947
326 => 0.12551974086808
327 => 0.13645320329218
328 => 0.13397862401383
329 => 0.13674333535439
330 => 0.12907275133673
331 => 0.12936577797602
401 => 0.1257344005755
402 => 0.12776772927107
403 => 0.12633063808628
404 => 0.12760345640621
405 => 0.12836637845915
406 => 0.13199715998637
407 => 0.13748398717734
408 => 0.1314548423021
409 => 0.12882785754101
410 => 0.13045762411206
411 => 0.13479790725892
412 => 0.14137365840141
413 => 0.13748068137573
414 => 0.13920831847269
415 => 0.13958573032115
416 => 0.13671519318825
417 => 0.14147949919999
418 => 0.14403272949683
419 => 0.14665181546482
420 => 0.1489258944257
421 => 0.14560569493427
422 => 0.14915878432201
423 => 0.1462956214802
424 => 0.14372706842276
425 => 0.1437309638575
426 => 0.142119673004
427 => 0.13899759393962
428 => 0.13842183465886
429 => 0.14141700714774
430 => 0.14381885183994
501 => 0.14401667927284
502 => 0.14534646390568
503 => 0.14613341675352
504 => 0.15384662447286
505 => 0.15694894042459
506 => 0.16074239364652
507 => 0.16222015746377
508 => 0.16666769674604
509 => 0.16307594756413
510 => 0.16229885003546
511 => 0.15151057451567
512 => 0.15327715402766
513 => 0.15610561827594
514 => 0.15155721484934
515 => 0.15444212992536
516 => 0.15501167327222
517 => 0.15140266184137
518 => 0.15333039078277
519 => 0.14821091424621
520 => 0.13759557777593
521 => 0.14149131710403
522 => 0.1443598925412
523 => 0.14026608169956
524 => 0.14760407918084
525 => 0.14331737253929
526 => 0.14195869233213
527 => 0.13665799643952
528 => 0.13915972085833
529 => 0.14254333895603
530 => 0.14045265635948
531 => 0.14479113666489
601 => 0.15093558180778
602 => 0.15531447932465
603 => 0.155650636703
604 => 0.15283529896301
605 => 0.15734689565859
606 => 0.1573797577151
607 => 0.15229065821207
608 => 0.14917361310268
609 => 0.14846541389551
610 => 0.15023463436566
611 => 0.15238279463253
612 => 0.15576984464738
613 => 0.15781656803453
614 => 0.16315333713001
615 => 0.16459731383008
616 => 0.16618380643708
617 => 0.16830384981624
618 => 0.17084950546088
619 => 0.16527975583466
620 => 0.16550105237062
621 => 0.16031457863712
622 => 0.1547720876373
623 => 0.15897814742491
624 => 0.16447701108852
625 => 0.16321556568838
626 => 0.16307362731187
627 => 0.16331232829074
628 => 0.16236123965399
629 => 0.15805950099897
630 => 0.15589919477673
701 => 0.15868654095632
702 => 0.16016789140026
703 => 0.16246533675148
704 => 0.16218212811876
705 => 0.16810010061589
706 => 0.17039964577808
707 => 0.16981132372251
708 => 0.16991958913949
709 => 0.17408280581504
710 => 0.17871315898906
711 => 0.18305009576544
712 => 0.18746181413015
713 => 0.1821433154492
714 => 0.1794429098184
715 => 0.18222903912984
716 => 0.18075067969958
717 => 0.18924577149575
718 => 0.18983395322018
719 => 0.19832843072451
720 => 0.2063907013797
721 => 0.20132693363176
722 => 0.20610183854096
723 => 0.21126628750396
724 => 0.22122934745524
725 => 0.21787413936833
726 => 0.21530410255656
727 => 0.21287543018777
728 => 0.21792911184634
729 => 0.22443059256556
730 => 0.22583094924207
731 => 0.22810006203544
801 => 0.22571436738712
802 => 0.22858767381538
803 => 0.23873170810193
804 => 0.23599070049384
805 => 0.23209802905138
806 => 0.24010576987721
807 => 0.24300374015277
808 => 0.26334321322548
809 => 0.2890226381615
810 => 0.27839118761779
811 => 0.27179190319055
812 => 0.27334289156807
813 => 0.28272014825131
814 => 0.28573182547872
815 => 0.27754504858723
816 => 0.28043675658796
817 => 0.29637035197847
818 => 0.30491821469453
819 => 0.29330906899499
820 => 0.26127989643537
821 => 0.23174753657863
822 => 0.23958084827213
823 => 0.23869279382205
824 => 0.25581145431264
825 => 0.23592532836889
826 => 0.23626015972897
827 => 0.25373281598953
828 => 0.24907141085638
829 => 0.24152053152833
830 => 0.23180266635403
831 => 0.21383829378559
901 => 0.19792674802814
902 => 0.22913295346864
903 => 0.22778728514525
904 => 0.2258385579961
905 => 0.23017523939223
906 => 0.25123293326337
907 => 0.25074748526254
908 => 0.24765931275898
909 => 0.25000166438503
910 => 0.24110990596318
911 => 0.24340151457007
912 => 0.23174285850194
913 => 0.23701305795322
914 => 0.24150433073257
915 => 0.24240602023745
916 => 0.24443757273336
917 => 0.22707817908646
918 => 0.2348720371889
919 => 0.23945019863833
920 => 0.21876589865484
921 => 0.23904133653275
922 => 0.22677599066423
923 => 0.22261294805714
924 => 0.22821793648843
925 => 0.22603366704573
926 => 0.2241557604435
927 => 0.22310785629292
928 => 0.22722354119686
929 => 0.22703153957678
930 => 0.22029748025392
1001 => 0.21151317438263
1002 => 0.21446147576804
1003 => 0.21339033023425
1004 => 0.20950836063925
1005 => 0.21212433943548
1006 => 0.20060489273345
1007 => 0.18078628341133
1008 => 0.19387906378994
1009 => 0.19337500598757
1010 => 0.19312083718641
1011 => 0.20295969978307
1012 => 0.20201392016558
1013 => 0.20029732089874
1014 => 0.20947683394754
1015 => 0.20612618820285
1016 => 0.21645208887656
1017 => 0.22325339489764
1018 => 0.22152836369149
1019 => 0.22792502487788
1020 => 0.21452939867723
1021 => 0.21897888836185
1022 => 0.21989592201912
1023 => 0.20936356018142
1024 => 0.20216866140765
1025 => 0.2016888436873
1026 => 0.18921388073171
1027 => 0.1958779052482
1028 => 0.20174197104664
1029 => 0.19893353859908
1030 => 0.19804447278571
1031 => 0.20258651721135
1101 => 0.2029394729632
1102 => 0.19489204441641
1103 => 0.1965653596402
1104 => 0.20354336228895
1105 => 0.19638953187717
1106 => 0.18249080795864
1107 => 0.17904373226195
1108 => 0.1785838288218
1109 => 0.16923508614137
1110 => 0.17927408234284
1111 => 0.17489179147253
1112 => 0.18873539582394
1113 => 0.18082800326315
1114 => 0.18048713137416
1115 => 0.17997185351892
1116 => 0.17192500450217
1117 => 0.1736867530329
1118 => 0.17954307347094
1119 => 0.18163267457941
1120 => 0.1814147120642
1121 => 0.17951437430589
1122 => 0.18038433920034
1123 => 0.17758187915946
1124 => 0.17659227219086
1125 => 0.17346880038513
1126 => 0.16887815971182
1127 => 0.16951651645348
1128 => 0.16042125607317
1129 => 0.15546567549597
1130 => 0.1540940361057
1201 => 0.15225982258828
1202 => 0.15430121540315
1203 => 0.16039549034327
1204 => 0.15304450179293
1205 => 0.14044174753528
1206 => 0.14119919454021
1207 => 0.14290095307226
1208 => 0.13972973730604
1209 => 0.13672844772328
1210 => 0.13933782551317
1211 => 0.13399787239503
1212 => 0.14354626089466
1213 => 0.1432880037448
1214 => 0.14684705250908
1215 => 0.14907259874041
1216 => 0.14394343520633
1217 => 0.14265346444824
1218 => 0.14338829041795
1219 => 0.13124325398373
1220 => 0.14585454392585
1221 => 0.14598090296801
1222 => 0.14489894013418
1223 => 0.15267900095539
1224 => 0.16909735594997
1225 => 0.16292011037421
1226 => 0.16052809417904
1227 => 0.15598086964347
1228 => 0.16203977634964
1229 => 0.16157454684828
1230 => 0.15947060261005
1231 => 0.15819813057007
]
'min_raw' => 0.11883547234423
'max_raw' => 0.30491821469453
'avg_raw' => 0.21187684351938
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118835'
'max' => '$0.304918'
'avg' => '$0.211876'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.073076183884537
'max_diff' => 0.177235609894
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037301096866326
]
1 => [
'year' => 2028
'avg' => 0.0064019510808407
]
2 => [
'year' => 2029
'avg' => 0.017488976513437
]
3 => [
'year' => 2030
'avg' => 0.013492719334751
]
4 => [
'year' => 2031
'avg' => 0.013251522521025
]
5 => [
'year' => 2032
'avg' => 0.023234089386975
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037301096866326
'min' => '$0.00373'
'max_raw' => 0.023234089386975
'max' => '$0.023234'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023234089386975
]
1 => [
'year' => 2033
'avg' => 0.059760467036538
]
2 => [
'year' => 2034
'avg' => 0.037879055961415
]
3 => [
'year' => 2035
'avg' => 0.044678433371392
]
4 => [
'year' => 2036
'avg' => 0.086720946630111
]
5 => [
'year' => 2037
'avg' => 0.21187684351938
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023234089386975
'min' => '$0.023234'
'max_raw' => 0.21187684351938
'max' => '$0.211876'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21187684351938
]
]
]
]
'prediction_2025_max_price' => '$0.006377'
'last_price' => 0.00618409
'sma_50day_nextmonth' => '$0.00556'
'sma_200day_nextmonth' => '$0.006531'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.00608'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005892'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00554'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005369'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005499'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006038'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00605'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0059053'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005678'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005521'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00562'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00600077'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006346'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006378'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006461'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005442'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005932'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005829'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005889'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.006234'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006188'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.006067'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00387'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.19'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 110.73
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005584'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006257'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 205.95
'cci_20_action' => 'SELL'
'adx_14' => 15.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000483'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.22
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000420'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767701106
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di DRAC (Ordinals) per l'anno 2026
La previsione del prezzo di DRAC (Ordinals) per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.002136 come limite inferiore e $0.006377 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3.13% entro il 2026 se DRAC raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di DRAC (Ordinals) 2027-2032
La previsione del prezzo di DRAC per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.00373 come limite inferiore e $0.023234 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se DRAC (Ordinals) raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.002056 | $0.00373 | $0.0054033 |
| 2028 | $0.003712 | $0.0064019 | $0.009091 |
| 2029 | $0.008154 | $0.017488 | $0.026823 |
| 2030 | $0.006934 | $0.013492 | $0.02005 |
| 2031 | $0.008199 | $0.013251 | $0.0183039 |
| 2032 | $0.012515 | $0.023234 | $0.033952 |
Previsione del prezzo di DRAC (Ordinals) 2032-2037
La previsione del prezzo di DRAC (Ordinals) per gli anni 2032-2037 è attualmente stimata tra $0.023234 come limite inferiore e $0.211876 come limite superiore. Rispetto al prezzo attuale, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.012515 | $0.023234 | $0.033952 |
| 2033 | $0.029082 | $0.05976 | $0.090438 |
| 2034 | $0.023381 | $0.037879 | $0.052376 |
| 2035 | $0.027643 | $0.044678 | $0.061712 |
| 2036 | $0.045759 | $0.08672 | $0.127682 |
| 2037 | $0.118835 | $0.211876 | $0.304918 |
DRAC (Ordinals) Istogramma dei prezzi potenziali
Previsione del prezzo di DRAC (Ordinals) basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per DRAC (Ordinals) è Rialzista, con 27 indicatori tecnici che mostrano segnali rialzisti e 7 indicando segnali ribassisti. La previsione del prezzo di DRAC è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di DRAC (Ordinals)
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di DRAC (Ordinals) è previsto aumentare nel corso del prossimo mese, raggiungendo $0.006531 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per DRAC (Ordinals) dovrebbe raggiungere $0.00556 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 67.19, suggerendo che il mercato di DRAC è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di DRAC per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.00608 | BUY |
| SMA 5 | $0.005892 | BUY |
| SMA 10 | $0.00554 | BUY |
| SMA 21 | $0.005369 | BUY |
| SMA 50 | $0.005499 | BUY |
| SMA 100 | $0.006038 | BUY |
| SMA 200 | $0.006851 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.00605 | BUY |
| EMA 5 | $0.0059053 | BUY |
| EMA 10 | $0.005678 | BUY |
| EMA 21 | $0.005521 | BUY |
| EMA 50 | $0.00562 | BUY |
| EMA 100 | $0.00600077 | BUY |
| EMA 200 | $0.006346 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.006378 | SELL |
| SMA 50 | $0.006461 | SELL |
| SMA 100 | $0.005442 | BUY |
| SMA 200 | — | — |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.006234 | SELL |
| EMA 50 | $0.006188 | SELL |
| EMA 100 | $0.006067 | BUY |
| EMA 200 | $0.00387 | BUY |
Oscillatori di DRAC (Ordinals)
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 67.19 | NEUTRAL |
| Stoch RSI (14) | 110.73 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 205.95 | SELL |
| Indice Direzionale Medio (14) | 15.42 | NEUTRAL |
| Oscillatore Awesome (5, 34) | 0.000483 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 79.22 | SELL |
| VWMA (10) | 0.005584 | BUY |
| Media Mobile di Hull (9) | 0.006257 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000420 | NEUTRAL |
Previsione del prezzo di DRAC (Ordinals) sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di DRAC (Ordinals)
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di DRAC (Ordinals) sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.008689 | $0.01221 | $0.017157 | $0.0241094 | $0.033877 | $0.047604 |
| Azioni Amazon.com | $0.0129034 | $0.026923 | $0.056178 | $0.117219 | $0.244584 | $0.51034 |
| Azioni Apple | $0.008771 | $0.012441 | $0.017647 | $0.025032 | $0.0355063 | $0.050363 |
| Azioni Netflix | $0.009757 | $0.015395 | $0.024292 | $0.038329 | $0.060477 | $0.095424 |
| Azioni Google | $0.0080083 | $0.01037 | $0.01343 | $0.017391 | $0.022522 | $0.029166 |
| Azioni Tesla | $0.014018 | $0.031779 | $0.072042 | $0.163314 | $0.37022 | $0.839262 |
| Azioni Kodak | $0.004637 | $0.003477 | $0.0026078 | $0.001955 | $0.001466 | $0.001099 |
| Azioni Nokia | $0.004096 | $0.002713 | $0.001797 | $0.00119 | $0.000788 | $0.000522 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per DRAC (Ordinals)
Potresti avere domande come: "Dovrei investire su DRAC (Ordinals) in questo momento?", "Dovrei acquistare DRAC oggi?", "DRAC (Ordinals) sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su DRAC (Ordinals) con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come DRAC (Ordinals) con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su DRAC (Ordinals) per prendere decisioni responsabili.
Il prezzo odierno di DRAC (Ordinals) è di $0.006184 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di DRAC (Ordinals) sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DRAC (Ordinals) ha 1% della precedente crescita media annua di Bitcoin | $0.006344 | $0.0065097 | $0.006678 | $0.006852 |
| Se DRAC (Ordinals) ha 2% della precedente crescita media annua di Bitcoin | $0.0065055 | $0.006843 | $0.007199 | $0.007573 |
| Se DRAC (Ordinals) ha 5% della precedente crescita media annua di Bitcoin | $0.006987 | $0.007895 | $0.008922 | $0.010081 |
| Se DRAC (Ordinals) ha 10% della precedente crescita media annua di Bitcoin | $0.007791 | $0.009816 | $0.012368 | $0.015583 |
| Se DRAC (Ordinals) ha 20% della precedente crescita media annua di Bitcoin | $0.009398 | $0.014285 | $0.021711 | $0.032998 |
| Se DRAC (Ordinals) ha 50% della precedente crescita media annua di Bitcoin | $0.014221 | $0.0327041 | $0.0752085 | $0.172954 |
| Se DRAC (Ordinals) ha 100% della precedente crescita media annua di Bitcoin | $0.022258 | $0.080115 | $0.288361 | $1.03 |
Area domande
È DRAC un buon investimento?
La decisione di procurarsi DRAC (Ordinals) dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di DRAC (Ordinals) ha subito un aumento del 1.459% nelle precedenti 24 ore, e DRAC (Ordinals) ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in DRAC (Ordinals) dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può DRAC (Ordinals) salire?
Sembra che il valore medio di DRAC (Ordinals) possa potenzialmente salire fino a $0.006377 entro la fine di quest'anno. Guardando le prospettive di DRAC (Ordinals) su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.02005. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di DRAC (Ordinals) la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) aumenterà del 0.86% nella prossima settimana e raggiungerà $0.006237 entro 13 gennaio 2026.
Quale sarà il prezzo di DRAC (Ordinals) il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) diminuirà del -11.62% nel prossimo mese e raggiungerà $0.005465 entro 5 febbraio 2026.
Quanto può salire il prezzo di DRAC (Ordinals) quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di DRAC (Ordinals) in 2026, DRAC dovrebbe fluttuare all'interno dell'intervallo di $0.002136 e $0.006377. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di DRAC (Ordinals) non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà DRAC (Ordinals) tra 5 anni?
Il futuro di DRAC (Ordinals) sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.02005 prevista dopo un periodo di cinque anni. Basato sulla previsione di DRAC (Ordinals) per 2030, il valore di DRAC (Ordinals) potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.02005, mentre il suo picco più basso è previsto intorno a $0.006934.
Quanto varrà DRAC (Ordinals) in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2026 aumenti del 3.13% fino a $0.006377 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.006377 e $0.002136 durante 2026.
Quanto varrà DRAC (Ordinals) in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di DRAC (Ordinals), il valore di DRAC potrebbe diminuire del -12.62% fino a $0.0054033 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.0054033 e $0.002056 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.009091 nello scenario migliore. Il prezzo è previsto oscillare tra $0.009091 e $0.003712 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di DRAC (Ordinals) potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.026823 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.026823 e $0.008154.
Quanto varrà DRAC (Ordinals) in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2030 aumenti del 224.23%, raggiungendo $0.02005 nello scenario migliore. Il prezzo è previsto oscillare tra $0.02005 e $0.006934 nel corso di 2030.
Quanto varrà DRAC (Ordinals) in 2031?
La nostra simulazione sperimentale indica che il prezzo di DRAC (Ordinals) potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.0183039 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.0183039 e $0.008199 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di DRAC (Ordinals), DRAC potrebbe subire una 449.04% aumento in valore, raggiungendo $0.033952 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.033952 e $0.012515 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2033?
Secondo la nostra previsione sperimentale dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.090438. Durante l'anno, il prezzo di DRAC potrebbe oscillare tra $0.090438 e $0.029082.
Quanto varrà DRAC (Ordinals) in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di DRAC (Ordinals) suggeriscono che DRAC potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.052376 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.052376 e $0.023381.
Quanto varrà DRAC (Ordinals) in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di DRAC (Ordinals), DRAC potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.061712 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.061712 e $0.027643.
Quanto varrà DRAC (Ordinals) in 2036?
La nostra recente simulazione di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.127682 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.127682 e $0.045759.
Quanto varrà DRAC (Ordinals) in 2037?
Secondo la simulazione sperimentale, il valore di DRAC (Ordinals) potrebbe aumentare del 4830.69% in 2037, con un picco di $0.304918 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.304918 e $0.118835 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di TE-FOOD
Previsione del prezzo di TrustFi Network Token
Previsione del prezzo di RetroCraft
Previsione del prezzo di CrossWallet
Previsione del prezzo di İstanbul Başakşehir Fan Token
Previsione del prezzo di Trisolaris
Previsione del prezzo di DogeCola
Previsione del prezzo di Unistake
Previsione del prezzo di Forest Knight
Previsione del prezzo di AirCoin
Previsione del prezzo di Changer
Previsione del prezzo di RIKU
Previsione del prezzo di Glitch Protocol
Previsione del prezzo di Position
Previsione del prezzo di Primate
Previsione del prezzo di PlotX
Previsione del prezzo di Nyxia AI
Previsione del prezzo di Spartan Protocol Token
Previsione del prezzo di Playermon
Previsione del prezzo di Solrise Finance
Previsione del prezzo di AllianceBlock
Previsione del prezzo di Metaverse Face
Previsione del prezzo di Furucombo
Previsione del prezzo di Coinzix Token
Previsione del prezzo di Tranche Finance
Come leggere e prevedere i movimenti di prezzo di DRAC (Ordinals)?
I trader di DRAC (Ordinals) utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di DRAC (Ordinals)
Le medie mobili sono strumenti popolari per la previsione del prezzo di DRAC (Ordinals). Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di DRAC su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di DRAC al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di DRAC.
Come leggere i grafici di DRAC (Ordinals) e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di DRAC (Ordinals) in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di DRAC all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di DRAC (Ordinals)?
L'azione del prezzo di DRAC (Ordinals) è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di DRAC. La capitalizzazione di mercato di DRAC (Ordinals) può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di DRAC, grandi detentori di DRAC (Ordinals), poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di DRAC (Ordinals).
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


