Previsione del prezzo di DRAC (Ordinals) DRAC
Previsione del prezzo di DRAC (Ordinals) fino a $0.006398 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.002143 | $0.006398 |
| 2027 | $0.002063 | $0.005421 |
| 2028 | $0.003724 | $0.009122 |
| 2029 | $0.008181 | $0.026912 |
| 2030 | $0.006957 | $0.020117 |
| 2031 | $0.008226 | $0.018364 |
| 2032 | $0.012556 | $0.034065 |
| 2033 | $0.029179 | $0.090737 |
| 2034 | $0.023458 | $0.05255 |
| 2035 | $0.027735 | $0.061917 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su DRAC (Ordinals) oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,954.47, con un rendimento del 39.54% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di DRAC (Ordinals) per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'DRAC (Ordinals)'
'name_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_lang' => 'DRAC (Ordinals)'
'name_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'name_with_lang' => 'DRAC (Ordinals)'
'name_with_lang_with_ticker' => 'DRAC (Ordinals) <small>DRAC</small>'
'image' => '/uploads/coins/drac-ordinals.png?1717128736'
'price_for_sd' => 0.006204
'ticker' => 'DRAC'
'marketcap' => '$662.79K'
'low24h' => '$0.005956'
'high24h' => '$0.006314'
'volume24h' => '$14.83K'
'current_supply' => '106.82M'
'max_supply' => '106.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006204'
'change_24h_pct' => '3.2342%'
'ath_price' => '$0.03978'
'ath_days' => 752
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 dic 2023'
'ath_pct' => '-84.37%'
'fdv' => '$662.79K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.305928'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006257'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005483'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002143'
'current_year_max_price_prediction' => '$0.006398'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006957'
'grand_prediction_max_price' => '$0.020117'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0063221535273909
107 => 0.0063457581537205
108 => 0.006398940582123
109 => 0.0059445025542616
110 => 0.0061485318871718
111 => 0.0062683800052934
112 => 0.0057269018475082
113 => 0.006257676723099
114 => 0.0059365917992299
115 => 0.0058276107535349
116 => 0.0059743393744022
117 => 0.0059171590881519
118 => 0.0058679988357731
119 => 0.0058405665702653
120 => 0.0059483078755832
121 => 0.0059432816149115
122 => 0.0057669959277251
123 => 0.0055370384351143
124 => 0.0056142197177319
125 => 0.0055861790341785
126 => 0.005484555979661
127 => 0.0055530376483914
128 => 0.0052514790370822
129 => 0.0047326631199774
130 => 0.0050754088065782
131 => 0.0050622134704796
201 => 0.0050555597836578
202 => 0.0053131236943433
203 => 0.0052883648673414
204 => 0.0052434273538937
205 => 0.0054837306669861
206 => 0.0053960167251717
207 => 0.0056663304258399
208 => 0.005844376511894
209 => 0.0057992182652832
210 => 0.0059666714697885
211 => 0.0056159978185991
212 => 0.0057324775389393
213 => 0.0057564838478675
214 => 0.0054807653614039
215 => 0.0052924157176365
216 => 0.0052798549437403
217 => 0.0049532826176273
218 => 0.0051277349182372
219 => 0.0052812457234471
220 => 0.0052077259606713
221 => 0.0051844518001169
222 => 0.0053033544388398
223 => 0.0053125941922008
224 => 0.0051019268363848
225 => 0.0051457312506264
226 => 0.0053284029398921
227 => 0.0051411283927442
228 => 0.0047772845387594
301 => 0.0046870462324364
302 => 0.0046750067789509
303 => 0.0044302733353124
304 => 0.0046930763875561
305 => 0.0045783558125678
306 => 0.0049407567343924
307 => 0.0047337552714413
308 => 0.0047248318521021
309 => 0.0047113427949898
310 => 0.0045006906102389
311 => 0.0045468100510546
312 => 0.0047001180965152
313 => 0.0047548201342743
314 => 0.0047491142635754
315 => 0.0046993668034555
316 => 0.0047221409359502
317 => 0.0046487775201511
318 => 0.004622871371105
319 => 0.0045411044386678
320 => 0.0044209296366766
321 => 0.0044376406799684
322 => 0.0041995429517765
323 => 0.0040698146726547
324 => 0.004033907594785
325 => 0.0039858911495976
326 => 0.0040393311800358
327 => 0.004198868450828
328 => 0.0040064326545326
329 => 0.0036765149795857
330 => 0.0036963435940024
331 => 0.0037408926034282
401 => 0.0036578758190844
402 => 0.0035793073997736
403 => 0.003647616265907
404 => 0.0035078257978042
405 => 0.0037577856136416
406 => 0.0037510249011275
407 => 0.0038441944630603
408 => 0.0039024553021688
409 => 0.0037681829301944
410 => 0.0037344137917539
411 => 0.0037536502277314
412 => 0.0034357147907146
413 => 0.0038182123549076
414 => 0.0038215202097263
415 => 0.0037931963485117
416 => 0.0039968644931571
417 => 0.0044266678040462
418 => 0.0042649585096916
419 => 0.0042023397832282
420 => 0.0040833015384473
421 => 0.0042419129318263
422 => 0.004229734051538
423 => 0.004174656536171
424 => 0.0041413454830247
425 => 0.0042027221198193
426 => 0.0041337402385007
427 => 0.0041213491971205
428 => 0.0040462729679427
429 => 0.004019474169877
430 => 0.00399963340668
501 => 0.0039777906759133
502 => 0.0040259702971153
503 => 0.0039167889369146
504 => 0.0037851269196931
505 => 0.003774180647564
506 => 0.0038044042673187
507 => 0.0037910325654611
508 => 0.0037741166289999
509 => 0.0037418194995144
510 => 0.003732237631115
511 => 0.0037633740549513
512 => 0.0037282228478064
513 => 0.003780090368734
514 => 0.0037659852730025
515 => 0.0036871953548443
516 => 0.0035889939450552
517 => 0.0035881197465236
518 => 0.0035669624138672
519 => 0.0035400153697029
520 => 0.0035325193184813
521 => 0.0036418634837302
522 => 0.0038682026333999
523 => 0.0038237668424829
524 => 0.0038558762553835
525 => 0.0040138227870002
526 => 0.0040640292397833
527 => 0.0040283938888029
528 => 0.0039796140224882
529 => 0.003981760089044
530 => 0.004148455658911
531 => 0.0041588522571307
601 => 0.004185121106762
602 => 0.0042188840021144
603 => 0.0040341438558762
604 => 0.0039730588447696
605 => 0.0039441133776399
606 => 0.0038549725421859
607 => 0.0039511032908654
608 => 0.0038950920203389
609 => 0.0039026498543504
610 => 0.0038977278050355
611 => 0.003900415576789
612 => 0.0037577157447788
613 => 0.003809708063481
614 => 0.0037232607495626
615 => 0.0036075175003924
616 => 0.0036071294884364
617 => 0.0036354574846974
618 => 0.0036186068840467
619 => 0.0035732623509643
620 => 0.0035797033278685
621 => 0.0035232735926733
622 => 0.0035865549194145
623 => 0.003588369601434
624 => 0.0035640028436814
625 => 0.0036614964586666
626 => 0.0037014396722733
627 => 0.003685400950334
628 => 0.003700314352786
629 => 0.0038256133502111
630 => 0.0038460425539699
701 => 0.0038551158568022
702 => 0.0038429588329893
703 => 0.0037026045884444
704 => 0.0037088298960223
705 => 0.0036631527195721
706 => 0.003624560318814
707 => 0.0036261038124539
708 => 0.0036459453231044
709 => 0.0037325943638048
710 => 0.0039149421617187
711 => 0.003921862127355
712 => 0.0039302493275759
713 => 0.0038961343692085
714 => 0.0038858449713287
715 => 0.0038994193430511
716 => 0.0039678995885558
717 => 0.0041440493721993
718 => 0.0040817862740112
719 => 0.0040311654060015
720 => 0.004075573554534
721 => 0.00406873726815
722 => 0.0040110321312735
723 => 0.0040094125402743
724 => 0.0038986579331599
725 => 0.0038577144766701
726 => 0.0038234990598626
727 => 0.0037861367179249
728 => 0.0037639870692272
729 => 0.0037980189964622
730 => 0.0038058025008747
731 => 0.0037313910971992
801 => 0.0037212490978378
802 => 0.0037820150563609
803 => 0.0037552742235982
804 => 0.0037827778332354
805 => 0.0037891589065929
806 => 0.0037881314068137
807 => 0.0037602109062443
808 => 0.003778006600706
809 => 0.0037359144781523
810 => 0.0036901456169076
811 => 0.0036609479349343
812 => 0.0036354690849021
813 => 0.0036496062317395
814 => 0.0035992098846054
815 => 0.0035830870788792
816 => 0.0037719778198381
817 => 0.0039115134411022
818 => 0.0039094845379069
819 => 0.0038971341114967
820 => 0.0038787838830437
821 => 0.003966557155048
822 => 0.0039359787021637
823 => 0.0039582270815522
824 => 0.0039638902278682
825 => 0.003981030866136
826 => 0.0039871571710291
827 => 0.0039686392226498
828 => 0.0039064907261121
829 => 0.0037516225816419
830 => 0.0036795310423325
831 => 0.0036557396335808
901 => 0.0036566044061026
902 => 0.0036327501194367
903 => 0.003639776275934
904 => 0.0036303067089425
905 => 0.0036123736399949
906 => 0.003648498915266
907 => 0.0036526620167108
908 => 0.0036442299457976
909 => 0.0036462160037431
910 => 0.0035764020579666
911 => 0.0035817098606361
912 => 0.0035521553408896
913 => 0.0035466142247221
914 => 0.0034719029724093
915 => 0.003339541159368
916 => 0.003412882452465
917 => 0.0033242964837502
918 => 0.0032907476351015
919 => 0.0034495626666882
920 => 0.0034336220423602
921 => 0.0034063386227335
922 => 0.0033659807587427
923 => 0.0033510116344124
924 => 0.0032600639736307
925 => 0.0032546903006448
926 => 0.0032997664171216
927 => 0.003278965340342
928 => 0.0032497527505597
929 => 0.0031439477116007
930 => 0.0030249878169662
1001 => 0.00302857846843
1002 => 0.0030664173975857
1003 => 0.0031764391873807
1004 => 0.0031334517707115
1005 => 0.0031022639066942
1006 => 0.0030964233572675
1007 => 0.0031695300613609
1008 => 0.0032729913639811
1009 => 0.0033215330923544
1010 => 0.0032734297137707
1011 => 0.0032181711425236
1012 => 0.0032215344757119
1013 => 0.0032439092246135
1014 => 0.0032462604943611
1015 => 0.0032102928451522
1016 => 0.0032204175277228
1017 => 0.0032050372090776
1018 => 0.0031106482219424
1019 => 0.0031089410244758
1020 => 0.0030857764448048
1021 => 0.0030850750305385
1022 => 0.0030456663018429
1023 => 0.0030401527482787
1024 => 0.0029619043255147
1025 => 0.003013407674336
1026 => 0.0029788619319939
1027 => 0.0029267933497674
1028 => 0.0029178167065657
1029 => 0.0029175468578315
1030 => 0.0029710096494561
1031 => 0.0030127829304883
1101 => 0.0029794628699722
1102 => 0.0029718765380749
1103 => 0.0030528787152752
1104 => 0.0030425704498752
1105 => 0.00303364355852
1106 => 0.003263727539105
1107 => 0.0030815981147951
1108 => 0.0030021792902119
1109 => 0.0029038834135644
1110 => 0.0029358890466517
1111 => 0.0029426331038037
1112 => 0.0027062492396301
1113 => 0.0026103483353745
1114 => 0.0025774387589834
1115 => 0.0025584988324972
1116 => 0.0025671299948296
1117 => 0.0024808079329454
1118 => 0.0025388177861667
1119 => 0.0024640701771973
1120 => 0.0024515384973038
1121 => 0.002585196481593
1122 => 0.0026037942092882
1123 => 0.0025244505250793
1124 => 0.0025754020149171
1125 => 0.0025569262964232
1126 => 0.0024653515104144
1127 => 0.0024618540271674
1128 => 0.0024159050185576
1129 => 0.0023440037175645
1130 => 0.0023111428936412
1201 => 0.0022940286912312
1202 => 0.0023010903446947
1203 => 0.0022975197566134
1204 => 0.0022742192541439
1205 => 0.0022988553141404
1206 => 0.0022359203611723
1207 => 0.0022108591557991
1208 => 0.0021995395907475
1209 => 0.0021436811975877
1210 => 0.0022325767414452
1211 => 0.0022500902834617
1212 => 0.0022676383325661
1213 => 0.0024203821194586
1214 => 0.0024127514715149
1215 => 0.0024817288126495
1216 => 0.0024790484800142
1217 => 0.0024593750249638
1218 => 0.0023763759542323
1219 => 0.0024094579045097
1220 => 0.0023076368036323
1221 => 0.0023839280955715
1222 => 0.002349111935931
1223 => 0.0023721567169751
1224 => 0.0023307201227936
1225 => 0.0023536528448887
1226 => 0.0022542433939834
1227 => 0.0021614162474567
1228 => 0.0021987726010123
1229 => 0.0022393832295446
1230 => 0.0023274374195982
1231 => 0.0022749930704336
]
'min_raw' => 0.0021436811975877
'max_raw' => 0.006398940582123
'avg_raw' => 0.0042713108898553
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002143'
'max' => '$0.006398'
'avg' => '$0.004271'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040608988024123
'max_diff' => 0.00019436058212304
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022938540415336
102 => 0.002230672945637
103 => 0.0021003122980146
104 => 0.002101050125123
105 => 0.0020809969795474
106 => 0.0020636681339628
107 => 0.0022810169348094
108 => 0.0022539861756481
109 => 0.0022109161986228
110 => 0.002268567074404
111 => 0.002283810881003
112 => 0.0022842448507466
113 => 0.0023263054415321
114 => 0.0023487531863741
115 => 0.0023527096986966
116 => 0.0024188929470769
117 => 0.0024410766989557
118 => 0.0025324484333828
119 => 0.002346848652058
120 => 0.0023430263466989
121 => 0.0022693783404534
122 => 0.0022226696105637
123 => 0.0022725765271501
124 => 0.0023167872422721
125 => 0.0022707520906092
126 => 0.0022767633095613
127 => 0.0022149648796638
128 => 0.0022370549104658
129 => 0.0022560818208409
130 => 0.0022455762792819
131 => 0.002229848975094
201 => 0.0023131624678045
202 => 0.0023084615940375
203 => 0.0023860450338184
204 => 0.0024465268731726
205 => 0.0025549211417174
206 => 0.0024418060717699
207 => 0.0024376837090293
208 => 0.0024779804660662
209 => 0.0024410705297322
210 => 0.0024643963354076
211 => 0.0025511629938075
212 => 0.0025529962365744
213 => 0.0025222870582292
214 => 0.0025204184019361
215 => 0.0025263164355589
216 => 0.0025608614027093
217 => 0.0025487903297273
218 => 0.0025627592809842
219 => 0.0025802276684311
220 => 0.0026524843253545
221 => 0.0026699051607149
222 => 0.0026275815624566
223 => 0.0026314029095021
224 => 0.0026155727219447
225 => 0.0026002809591159
226 => 0.0026346546087724
227 => 0.0026974731291353
228 => 0.0026970823383804
301 => 0.002711655014087
302 => 0.0027207336703257
303 => 0.0026817614317667
304 => 0.0026563919375138
305 => 0.0026661202159132
306 => 0.0026816759449283
307 => 0.0026610757026485
308 => 0.0025339214643374
309 => 0.0025724919375968
310 => 0.0025660719248467
311 => 0.0025569290459902
312 => 0.0025957119551092
313 => 0.0025919712489132
314 => 0.002479922575433
315 => 0.0024870955679681
316 => 0.0024803587888667
317 => 0.0025021267003587
318 => 0.0024398949910754
319 => 0.002459037045714
320 => 0.0024710427629377
321 => 0.0024781142226147
322 => 0.0025036611839134
323 => 0.002500663542867
324 => 0.0025034748463371
325 => 0.0025413542457954
326 => 0.002732935249615
327 => 0.0027433625809532
328 => 0.0026920145878264
329 => 0.0027125270982862
330 => 0.0026731475637964
331 => 0.0026995833091194
401 => 0.0027176699746742
402 => 0.0026359398108976
403 => 0.0026311002810231
404 => 0.0025915582131864
405 => 0.0026128058806646
406 => 0.0025789993139453
407 => 0.0025872942629148
408 => 0.0025641008624556
409 => 0.0026058443655221
410 => 0.002652520088235
411 => 0.0026643122190724
412 => 0.0026332921996707
413 => 0.0026108316613049
414 => 0.002571398354896
415 => 0.0026369768222826
416 => 0.002656153964614
417 => 0.0026368760929179
418 => 0.0026324089888161
419 => 0.002623943834615
420 => 0.0026342049112972
421 => 0.0026560495217784
422 => 0.0026457480068821
423 => 0.0026525523389604
424 => 0.0026266212416745
425 => 0.0026817743331993
426 => 0.002769370715855
427 => 0.0027696523525487
428 => 0.0027593507821234
429 => 0.0027551356014558
430 => 0.0027657056378637
501 => 0.0027714394490095
502 => 0.0028056210085396
503 => 0.0028422991837688
504 => 0.003013460223622
505 => 0.0029653988885432
506 => 0.0031172631455168
507 => 0.0032373680556771
508 => 0.003273382266683
509 => 0.0032402508871571
510 => 0.0031269102275212
511 => 0.0031213491940393
512 => 0.0032907279907276
513 => 0.0032428707226228
514 => 0.0032371782528623
515 => 0.00317661999219
516 => 0.0032124174245338
517 => 0.0032045880009636
518 => 0.0031922288728294
519 => 0.0032605278800707
520 => 0.0033883775245319
521 => 0.0033684509584763
522 => 0.0033535767012825
523 => 0.0032884020360907
524 => 0.0033276517418247
525 => 0.0033136756733914
526 => 0.0033737257328129
527 => 0.0033381534078833
528 => 0.003242508156748
529 => 0.0032577399782422
530 => 0.0032554377190655
531 => 0.0033028180497816
601 => 0.0032885956505527
602 => 0.0032526605673547
603 => 0.0033879405483462
604 => 0.0033791562188474
605 => 0.0033916103896994
606 => 0.0033970931008665
607 => 0.0034794356413954
608 => 0.0035131687455827
609 => 0.0035208267508143
610 => 0.0035528705907803
611 => 0.0035200294708847
612 => 0.0036514173657888
613 => 0.0037387826492039
614 => 0.0038402619216669
615 => 0.0039885504137923
616 => 0.0040443082585767
617 => 0.0040342361029855
618 => 0.0041466667453218
619 => 0.0043487021104074
620 => 0.0040750732266814
621 => 0.0043632051056677
622 => 0.0042719858794232
623 => 0.0040557067349612
624 => 0.0040417809078214
625 => 0.0041882476555036
626 => 0.0045130968049606
627 => 0.0044317257774302
628 => 0.0045132298988113
629 => 0.0044181510118739
630 => 0.0044134295437497
701 => 0.0045086121294928
702 => 0.0047310114292141
703 => 0.0046253578584296
704 => 0.0044738775573916
705 => 0.0045857282543835
706 => 0.0044888328293558
707 => 0.0042705003174464
708 => 0.004431663554539
709 => 0.0043238982875599
710 => 0.0043553499215811
711 => 0.0045818564838974
712 => 0.0045546026150574
713 => 0.0045898716449766
714 => 0.0045276227303205
715 => 0.0044694724282789
716 => 0.00436093057122
717 => 0.0043287966783937
718 => 0.0043376773303146
719 => 0.0043287922775837
720 => 0.0042680641061104
721 => 0.0042549498632627
722 => 0.0042330922173018
723 => 0.0042398668157554
724 => 0.004198768046669
725 => 0.0042763299153741
726 => 0.0042907260816786
727 => 0.0043471691415991
728 => 0.0043530292473228
729 => 0.0045102223657847
730 => 0.0044236430376589
731 => 0.0044817279258653
801 => 0.0044765322667479
802 => 0.0040603941598374
803 => 0.0041177343193521
804 => 0.0042069376132236
805 => 0.0041667516502467
806 => 0.0041099381006644
807 => 0.004064058113227
808 => 0.0039945452407897
809 => 0.0040923832738687
810 => 0.0042210298834528
811 => 0.004356291937641
812 => 0.0045188004330273
813 => 0.0044825304286645
814 => 0.0043532539543583
815 => 0.0043590532025592
816 => 0.0043949018730168
817 => 0.004348474587579
818 => 0.0043347822747352
819 => 0.0043930207594918
820 => 0.004393421815929
821 => 0.004340001613108
822 => 0.0042806348334663
823 => 0.004280386084492
824 => 0.0042698223394698
825 => 0.0044200302786459
826 => 0.0045026294574571
827 => 0.0045120993201926
828 => 0.0045019920602431
829 => 0.0045058819434549
830 => 0.0044578193012533
831 => 0.0045676762487923
901 => 0.0046684918475801
902 => 0.0046414711134939
903 => 0.0046009631918749
904 => 0.0045686966811795
905 => 0.0046338701490185
906 => 0.0046309680770882
907 => 0.0046676113112743
908 => 0.00466594896251
909 => 0.004653627221075
910 => 0.004641471553542
911 => 0.0046896674012958
912 => 0.0046757877711444
913 => 0.0046618865820936
914 => 0.0046340056192868
915 => 0.004637795105186
916 => 0.0045972941778308
917 => 0.00457855659564
918 => 0.0042967883172355
919 => 0.0042214906262017
920 => 0.0042451808126268
921 => 0.0042529802371133
922 => 0.0042202105854788
923 => 0.0042671938480899
924 => 0.0042598715563795
925 => 0.0042883583100271
926 => 0.0042705610230992
927 => 0.0042712914299627
928 => 0.0043236294560361
929 => 0.0043388234076671
930 => 0.0043310956412373
1001 => 0.0043365079039524
1002 => 0.0044612312138478
1003 => 0.0044434995476076
1004 => 0.0044340799533227
1005 => 0.0044366892453143
1006 => 0.0044685587250905
1007 => 0.0044774804394187
1008 => 0.0044396785088922
1009 => 0.0044575061178589
1010 => 0.0045334138141785
1011 => 0.0045599772118869
1012 => 0.0046447548262177
1013 => 0.004608739788848
1014 => 0.0046748469486343
1015 => 0.004878037820226
1016 => 0.0050403607481922
1017 => 0.0048910818753557
1018 => 0.0051891672608655
1019 => 0.0054212694912938
1020 => 0.0054123610211035
1021 => 0.005371888628607
1022 => 0.0051076464100214
1023 => 0.0048644867808495
1024 => 0.0050679001357551
1025 => 0.005068418678229
1026 => 0.0050509452906443
1027 => 0.0049424195810438
1028 => 0.0050471688311933
1029 => 0.0050554834462768
1030 => 0.0050508294728646
1031 => 0.0049676230657659
1101 => 0.0048405822612407
1102 => 0.0048654057303522
1103 => 0.0049060670791419
1104 => 0.004829086663037
1105 => 0.0048044867556836
1106 => 0.0048502226637775
1107 => 0.0049975932891107
1108 => 0.0049697337260514
1109 => 0.0049690062002706
1110 => 0.0050882012253318
1111 => 0.0050028833112843
1112 => 0.0048657188337935
1113 => 0.0048310829942498
1114 => 0.0047081490973672
1115 => 0.0047930599778195
1116 => 0.0047961157692431
1117 => 0.0047496109477875
1118 => 0.0048694924437519
1119 => 0.0048683877146619
1120 => 0.0049821973530741
1121 => 0.0051997586367703
1122 => 0.0051354150596407
1123 => 0.0050605904800004
1124 => 0.0050687259864679
1125 => 0.0051579524122749
1126 => 0.0051040040783908
1127 => 0.0051234042753966
1128 => 0.0051579230477532
1129 => 0.0051787490801688
1130 => 0.0050657294408977
1201 => 0.0050393791566293
1202 => 0.0049854757227093
1203 => 0.0049714133229548
1204 => 0.0050153165451506
1205 => 0.0050037495972258
1206 => 0.0047958589418066
1207 => 0.0047741332116226
1208 => 0.0047747995087501
1209 => 0.0047201691272003
1210 => 0.004636844682543
1211 => 0.0048558163480584
1212 => 0.004838229858811
1213 => 0.0048188157357681
1214 => 0.0048211938550654
1215 => 0.0049162420334273
1216 => 0.0048611092899293
1217 => 0.0050076887245977
1218 => 0.004977556399411
1219 => 0.0049466512937829
1220 => 0.0049423792667926
1221 => 0.0049304834378255
1222 => 0.0048896882140543
1223 => 0.0048404255299378
1224 => 0.0048078980388234
1225 => 0.0044350317962858
1226 => 0.0045042336020377
1227 => 0.0045838439716121
1228 => 0.0046113251521706
1229 => 0.0045643166911854
1230 => 0.004891544394614
1231 => 0.004951332049275
]
'min_raw' => 0.0020636681339628
'max_raw' => 0.0054212694912938
'avg_raw' => 0.0037424688126283
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002063'
'max' => '$0.005421'
'avg' => '$0.003742'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.0013063624841E-5
'max_diff' => -0.00097767109082921
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047702313434546
102 => 0.0047363547956887
103 => 0.0048937653354457
104 => 0.0047988275373163
105 => 0.0048415780220009
106 => 0.0047491748573778
107 => 0.004936930954054
108 => 0.0049355005671749
109 => 0.004862459204904
110 => 0.0049241932641297
111 => 0.0049134654521386
112 => 0.0048310019340278
113 => 0.0049395451946657
114 => 0.0049395990307687
115 => 0.0048692983076392
116 => 0.0047872024538311
117 => 0.0047725256541878
118 => 0.0047614686572071
119 => 0.0048388586785498
120 => 0.0049082463296935
121 => 0.0050373595458142
122 => 0.0050698216760013
123 => 0.005196523531248
124 => 0.0051210787454499
125 => 0.0051545224418207
126 => 0.0051908303051308
127 => 0.0052082376299791
128 => 0.0051798733282673
129 => 0.0053766934620296
130 => 0.0053933111117322
131 => 0.0053988828659354
201 => 0.0053325162242267
202 => 0.0053914653353699
203 => 0.0053638849984554
204 => 0.0054356413730687
205 => 0.0054468936888394
206 => 0.0054373633776944
207 => 0.0054409350403257
208 => 0.0052729837776105
209 => 0.0052642746186252
210 => 0.0051455246178872
211 => 0.0051939161209436
212 => 0.0051034505254448
213 => 0.0051321380976763
214 => 0.0051447833061708
215 => 0.0051381781668626
216 => 0.0051966521039204
217 => 0.0051469373119851
218 => 0.0050157318021994
219 => 0.0048844905455602
220 => 0.0048828429184899
221 => 0.0048482894122174
222 => 0.0048233135559727
223 => 0.0048281247919516
224 => 0.0048450802150803
225 => 0.0048223280759572
226 => 0.0048271833984019
227 => 0.0049078141018272
228 => 0.0049239840143673
229 => 0.0048690323335634
301 => 0.0046483934056461
302 => 0.0045942480593044
303 => 0.004633166660506
304 => 0.0046145660758105
305 => 0.0037243149752947
306 => 0.0039334662660797
307 => 0.003809195671202
308 => 0.0038664652787368
309 => 0.0037396171810812
310 => 0.0038001557419608
311 => 0.0037889764802806
312 => 0.0041252855666262
313 => 0.004120034562821
314 => 0.0041225479404656
315 => 0.0040025778769162
316 => 0.0041936934456926
317 => 0.0042878438471654
318 => 0.0042704191135846
319 => 0.0042748045436257
320 => 0.004199448325894
321 => 0.0041232775533738
322 => 0.004038792444051
323 => 0.0041957553344976
324 => 0.0041783037405258
325 => 0.0042183314182118
326 => 0.0043201330726055
327 => 0.0043351237529219
328 => 0.0043552713792875
329 => 0.0043480498894411
330 => 0.0045200950753723
331 => 0.0044992592681653
401 => 0.0045494675686632
402 => 0.0044461852852261
403 => 0.0043293115778727
404 => 0.0043515254487512
405 => 0.004349386074353
406 => 0.0043221493828034
407 => 0.0042975613155071
408 => 0.0042566291111039
409 => 0.0043861446626621
410 => 0.004380886567792
411 => 0.0044660090118721
412 => 0.0044509627930457
413 => 0.0043504804612882
414 => 0.0043540692074246
415 => 0.0043782052498841
416 => 0.0044617403684173
417 => 0.0044865392791025
418 => 0.0044750514356074
419 => 0.0045022423090604
420 => 0.0045237328667765
421 => 0.0045049411922351
422 => 0.0047709916756066
423 => 0.0046605089659358
424 => 0.0047143574698956
425 => 0.0047272000207962
426 => 0.0046943040967141
427 => 0.0047014380447327
428 => 0.0047122440320966
429 => 0.0047778558713406
430 => 0.0049500403224555
501 => 0.0050262996437551
502 => 0.0052557295744536
503 => 0.0050199673687022
504 => 0.0050059782150939
505 => 0.0050473054737328
506 => 0.0051820051306774
507 => 0.0052911665509356
508 => 0.0053273816917087
509 => 0.0053321681204086
510 => 0.0054001101320359
511 => 0.0054390532260572
512 => 0.0053918601847721
513 => 0.0053518690236003
514 => 0.0052086256481688
515 => 0.0052252064589137
516 => 0.0053394318025477
517 => 0.0055007818282698
518 => 0.0056392369359483
519 => 0.0055907547828869
520 => 0.005960639387679
521 => 0.005997311935401
522 => 0.0059922449750712
523 => 0.0060757904963888
524 => 0.005909969650323
525 => 0.0058390780260022
526 => 0.0053605155665646
527 => 0.0054949720973575
528 => 0.0056904125612202
529 => 0.0056645452829639
530 => 0.0055226111939682
531 => 0.0056391292662143
601 => 0.0056006047476727
602 => 0.0055702188615153
603 => 0.0057094224965964
604 => 0.0055563623816545
605 => 0.0056888856694888
606 => 0.0055189231820635
607 => 0.0055909762452783
608 => 0.005550075441783
609 => 0.0055765432742584
610 => 0.005421812866434
611 => 0.0055053016386277
612 => 0.0054183394590251
613 => 0.0054182982276292
614 => 0.0054163785326946
615 => 0.0055186891513477
616 => 0.0055220254969489
617 => 0.0054464177951815
618 => 0.0054355215441425
619 => 0.0054758106951899
620 => 0.0054286426510588
621 => 0.0054507122820356
622 => 0.0054293111176984
623 => 0.0054244932648286
624 => 0.005386103793472
625 => 0.005369564553671
626 => 0.0053760500157607
627 => 0.0053539117901638
628 => 0.0053405727084671
629 => 0.0054137250536053
630 => 0.0053746427065551
701 => 0.0054077351234001
702 => 0.0053700221378093
703 => 0.005239292498986
704 => 0.0051641085012578
705 => 0.0049171723321645
706 => 0.004987203123396
707 => 0.0050336336104346
708 => 0.0050182883347453
709 => 0.0050512559247593
710 => 0.0050532798670344
711 => 0.0050425617674561
712 => 0.005030151581218
713 => 0.0050241109888836
714 => 0.0050691326151795
715 => 0.0050952691846026
716 => 0.0050382935309687
717 => 0.0050249449324964
718 => 0.0050825504640323
719 => 0.0051176898049916
720 => 0.0053771389555449
721 => 0.0053579181244622
722 => 0.0054061586385822
723 => 0.0054007274970033
724 => 0.0054512912411176
725 => 0.0055339415929118
726 => 0.0053658903183123
727 => 0.0053950582088069
728 => 0.0053879069156426
729 => 0.0054659828592409
730 => 0.0054662266038145
731 => 0.0054194161754447
801 => 0.0054447928680765
802 => 0.0054306282944226
803 => 0.0054562255934721
804 => 0.0053576614185447
805 => 0.0054777019442611
806 => 0.0055457571871017
807 => 0.0055467021342146
808 => 0.0055789597792012
809 => 0.0056117354147444
810 => 0.0056746453930134
811 => 0.0056099808895949
812 => 0.0054936557429077
813 => 0.0055020540427706
814 => 0.0054338526518295
815 => 0.0054349991295328
816 => 0.0054288791417015
817 => 0.0054472456858745
818 => 0.0053616918421503
819 => 0.0053817711582698
820 => 0.0053536599981182
821 => 0.0053949971006348
822 => 0.0053505252115947
823 => 0.0053879034670725
824 => 0.0054040346830279
825 => 0.0054635592171837
826 => 0.005341733389502
827 => 0.0050933222799757
828 => 0.0051455413068917
829 => 0.0050683052643669
830 => 0.0050754537541609
831 => 0.0050898948412185
901 => 0.0050430865532351
902 => 0.0050520160994836
903 => 0.0050516970732554
904 => 0.0050489478775722
905 => 0.0050367712340459
906 => 0.0050191126918572
907 => 0.0050894588889244
908 => 0.0051014120785917
909 => 0.0051279825385353
910 => 0.0052070382044122
911 => 0.0051991386791301
912 => 0.0052120231326133
913 => 0.0051838964430025
914 => 0.0050767584706226
915 => 0.0050825765779792
916 => 0.005010024686014
917 => 0.0051261272235388
918 => 0.0050986326101743
919 => 0.0050809066540752
920 => 0.0050760699627237
921 => 0.0051553215923052
922 => 0.0051790349219931
923 => 0.005164258366274
924 => 0.0051339512193931
925 => 0.0051921499009081
926 => 0.0052077214128763
927 => 0.0052112073001507
928 => 0.005314324205305
929 => 0.0052169703896629
930 => 0.0052404044207017
1001 => 0.0054232300413269
1002 => 0.0052574324316309
1003 => 0.0053452591232148
1004 => 0.0053409604636898
1005 => 0.0053858896272109
1006 => 0.0053372749608971
1007 => 0.0053378775979502
1008 => 0.0053777716513918
1009 => 0.0053217476482635
1010 => 0.0053078753172216
1011 => 0.0052887107912428
1012 => 0.0053305558325974
1013 => 0.0053556400424011
1014 => 0.0055578003510968
1015 => 0.0056884051301444
1016 => 0.0056827352322403
1017 => 0.0057345474854793
1018 => 0.0057112055908493
1019 => 0.0056358284558084
1020 => 0.0057644880340609
1021 => 0.0057237747601564
1022 => 0.0057271311129904
1023 => 0.0057270061893703
1024 => 0.0057540769573006
1025 => 0.0057348948372226
1026 => 0.0056970849095445
1027 => 0.0057221849040526
1028 => 0.0057967229143296
1029 => 0.0060280911853349
1030 => 0.0061575679350113
1031 => 0.0060202965224285
1101 => 0.0061149845046907
1102 => 0.0060582054561112
1103 => 0.0060478870139539
1104 => 0.0061073580642015
1105 => 0.0061669332106498
1106 => 0.0061631385313715
1107 => 0.0061198900342676
1108 => 0.0060954600556436
1109 => 0.0062804520384277
1110 => 0.0064167509800868
1111 => 0.0064074563060253
1112 => 0.0064484799745426
1113 => 0.0065689267341238
1114 => 0.0065799388763319
1115 => 0.0065785515995249
1116 => 0.0065512568560637
1117 => 0.0066698523328596
1118 => 0.0067687867660915
1119 => 0.0065449389115735
1120 => 0.0066301772441903
1121 => 0.0066684434779096
1122 => 0.0067246296620895
1123 => 0.0068194251726987
1124 => 0.0069223982404877
1125 => 0.0069369597613153
1126 => 0.0069266276654552
1127 => 0.0068587141591837
1128 => 0.0069713885186827
1129 => 0.0070373905159383
1130 => 0.0070766931948751
1201 => 0.0071763582493168
1202 => 0.0066686797971417
1203 => 0.0063093197554359
1204 => 0.0062532004957016
1205 => 0.0063673212171521
1206 => 0.0063974139413029
1207 => 0.0063852836019308
1208 => 0.0059807912034053
1209 => 0.006251070926935
1210 => 0.0065418691836883
1211 => 0.0065530399290434
1212 => 0.0066986196166788
1213 => 0.006746026330486
1214 => 0.0068632370605984
1215 => 0.0068559054975168
1216 => 0.0068844444450691
1217 => 0.0068778838352526
1218 => 0.0070949920311547
1219 => 0.0073344946121138
1220 => 0.0073262013993068
1221 => 0.007291770069628
1222 => 0.0073429064656151
1223 => 0.0075900987958213
1224 => 0.0075673412872323
1225 => 0.0075894482683466
1226 => 0.0078809019568089
1227 => 0.0082598332106137
1228 => 0.0080837815991455
1229 => 0.008465762938545
1230 => 0.0087061999437362
1231 => 0.009122010882564
]
'min_raw' => 0.0037243149752947
'max_raw' => 0.009122010882564
'avg_raw' => 0.0064231629289294
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003724'
'max' => '$0.009122'
'avg' => '$0.006423'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016606468413319
'max_diff' => 0.0037007413912702
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090699493051107
102 => 0.0092318214522348
103 => 0.0089767482158902
104 => 0.0083910485064368
105 => 0.0082983592854474
106 => 0.0084839254531331
107 => 0.0089401217691067
108 => 0.0084695582076783
109 => 0.008564752603292
110 => 0.0085373366109512
111 => 0.0085358757292298
112 => 0.0085916316426993
113 => 0.0085107547821789
114 => 0.0081812479029492
115 => 0.0083322589639039
116 => 0.0082739463411225
117 => 0.0083386485435925
118 => 0.0086878196451047
119 => 0.0085334427779268
120 => 0.0083708192889131
121 => 0.0085747852331774
122 => 0.0088345039705286
123 => 0.0088182512387046
124 => 0.0087867141458512
125 => 0.0089644870870374
126 => 0.0092581159032926
127 => 0.0093374825924303
128 => 0.0093960694597711
129 => 0.0094041475989442
130 => 0.0094873574529624
131 => 0.0090399170963235
201 => 0.0097500164333927
202 => 0.0098726309728062
203 => 0.0098495845212485
204 => 0.009985865421398
205 => 0.0099457681234613
206 => 0.0098876734298242
207 => 0.01010370764434
208 => 0.0098560418504598
209 => 0.0095045114363032
210 => 0.0093116548986137
211 => 0.0095656239447364
212 => 0.0097207139789053
213 => 0.0098232186259121
214 => 0.0098542364701614
215 => 0.00907465061751
216 => 0.0086544970807445
217 => 0.0089238106807411
218 => 0.0092523918597688
219 => 0.0090380918112835
220 => 0.0090464919674605
221 => 0.0087409564153826
222 => 0.0092794249765363
223 => 0.0092009746364096
224 => 0.0096079751397629
225 => 0.0095108412032545
226 => 0.0098427343140706
227 => 0.0097553357350434
228 => 0.010118122350197
301 => 0.010262847753037
302 => 0.010505864229116
303 => 0.010684628138175
304 => 0.010789601724783
305 => 0.010783299504389
306 => 0.011199257152163
307 => 0.010953981459724
308 => 0.010645857382978
309 => 0.010640284390549
310 => 0.010799866216047
311 => 0.011134305943156
312 => 0.011221021298496
313 => 0.011269483352204
314 => 0.011195262029973
315 => 0.010929032844898
316 => 0.010814076432595
317 => 0.010912022626485
318 => 0.01079224284797
319 => 0.010999016349957
320 => 0.011282960532622
321 => 0.011224327181739
322 => 0.011420329682938
323 => 0.011623171651616
324 => 0.011913244777027
325 => 0.011989080633386
326 => 0.012114434420169
327 => 0.012243464643342
328 => 0.012284905673563
329 => 0.012364029458652
330 => 0.012363612437248
331 => 0.012602057289257
401 => 0.012865069345047
402 => 0.012964350307364
403 => 0.013192641405828
404 => 0.012801700899982
405 => 0.013098233764467
406 => 0.013365713830932
407 => 0.013046813068784
408 => 0.013486343475057
409 => 0.013503409444735
410 => 0.013761085325225
411 => 0.013499881455623
412 => 0.013344779431646
413 => 0.013792553163271
414 => 0.014009216767264
415 => 0.013943955926474
416 => 0.013447317705741
417 => 0.013158252959458
418 => 0.012401714762012
419 => 0.013297866936905
420 => 0.013734356520178
421 => 0.013446187303168
422 => 0.013591523094426
423 => 0.014384428046238
424 => 0.014686314915095
425 => 0.014623524556721
426 => 0.014634135093669
427 => 0.01479702776847
428 => 0.015519383595171
429 => 0.015086531239735
430 => 0.015417430646797
501 => 0.015592938499157
502 => 0.015755959973587
503 => 0.015355630755852
504 => 0.014834808325583
505 => 0.014669841999279
506 => 0.013417534553731
507 => 0.013352346512695
508 => 0.013315754489861
509 => 0.01308504696194
510 => 0.012903774041105
511 => 0.012759619084224
512 => 0.012381313429056
513 => 0.012508980482396
514 => 0.011906040226585
515 => 0.012291780035362
516 => 0.011329472828586
517 => 0.012130910865502
518 => 0.011694724578925
519 => 0.011987611939169
520 => 0.011986590082761
521 => 0.011447291592529
522 => 0.011136235478235
523 => 0.011334452540748
524 => 0.011546956966252
525 => 0.011581435094339
526 => 0.011856952628938
527 => 0.011933843650615
528 => 0.011700860265235
529 => 0.011309531150657
530 => 0.011400427978707
531 => 0.011134393456916
601 => 0.010668178190347
602 => 0.011003022134135
603 => 0.011117352578592
604 => 0.011167847416127
605 => 0.010709378246642
606 => 0.01056531727974
607 => 0.01048862042975
608 => 0.011250348538086
609 => 0.011292077723365
610 => 0.011078585311567
611 => 0.012043591257074
612 => 0.011825180691087
613 => 0.012069198805182
614 => 0.011392180044297
615 => 0.011418043072689
616 => 0.011097531541579
617 => 0.011276996582413
618 => 0.01115015647598
619 => 0.011262497580621
620 => 0.011329834375544
621 => 0.011650293313865
622 => 0.012134569991818
623 => 0.011602427434844
624 => 0.011370565302349
625 => 0.011514411265307
626 => 0.011897492020463
627 => 0.012477878974068
628 => 0.012134278216158
629 => 0.012286762397799
630 => 0.012320073407939
701 => 0.012066714929847
702 => 0.012487220662542
703 => 0.012712573100875
704 => 0.012943738072489
705 => 0.013144452140246
706 => 0.0128514056994
707 => 0.013165007397662
708 => 0.012912299787015
709 => 0.012685594935831
710 => 0.012685938753511
711 => 0.012543723488734
712 => 0.012268163492952
713 => 0.012217346001881
714 => 0.012481705007974
715 => 0.012693695895969
716 => 0.012711156480873
717 => 0.012828525528952
718 => 0.012897983322608
719 => 0.013578764123729
720 => 0.013852579793653
721 => 0.014187396411772
722 => 0.01431782635376
723 => 0.014710373717421
724 => 0.014393359840127
725 => 0.014324771893663
726 => 0.013372580390685
727 => 0.013528501695955
728 => 0.01377814674986
729 => 0.013376696945674
730 => 0.013631324445423
731 => 0.013681593307621
801 => 0.013363055834944
802 => 0.013533200462293
803 => 0.013081346776421
804 => 0.012144419167396
805 => 0.012488263730806
806 => 0.012741449066304
807 => 0.012380122375021
808 => 0.013027786483871
809 => 0.012649434481982
810 => 0.012529515061482
811 => 0.012061666647752
812 => 0.012282473089896
813 => 0.012581116964539
814 => 0.012396589771086
815 => 0.012779511404398
816 => 0.013321830558636
817 => 0.01370831948361
818 => 0.013737989304218
819 => 0.013489502818206
820 => 0.013887703997859
821 => 0.013890604458727
822 => 0.013441431901379
823 => 0.013166316211006
824 => 0.013103809347305
825 => 0.013259963748023
826 => 0.013449564018187
827 => 0.013748510799661
828 => 0.013929158078702
829 => 0.014400190374526
830 => 0.014527638208222
831 => 0.014667664737685
901 => 0.01485478336363
902 => 0.015079467250308
903 => 0.014587871697518
904 => 0.014607403705279
905 => 0.014149636733124
906 => 0.013660447072953
907 => 0.014031681046671
908 => 0.014517020084121
909 => 0.014405682772678
910 => 0.014393155050726
911 => 0.014414223204149
912 => 0.014330278507258
913 => 0.013950599754354
914 => 0.01375992746156
915 => 0.014005943364954
916 => 0.014136689868699
917 => 0.014339466293715
918 => 0.014314469819241
919 => 0.014836800113485
920 => 0.015039761871379
921 => 0.014987835568487
922 => 0.014997391257895
923 => 0.015364843825847
924 => 0.015773526653793
925 => 0.016156312052614
926 => 0.016545697801309
927 => 0.016076278083272
928 => 0.015837935700236
929 => 0.016083844200783
930 => 0.01595336168898
1001 => 0.016703152905425
1002 => 0.016755066822453
1003 => 0.01750480382046
1004 => 0.018216393508589
1005 => 0.017769456774928
1006 => 0.018190897984298
1007 => 0.018646721012836
1008 => 0.019526077589509
1009 => 0.019229941230623
1010 => 0.019003105420765
1011 => 0.018788746676511
1012 => 0.01923479319481
1013 => 0.019808624914834
1014 => 0.019932222771236
1015 => 0.020132498516621
1016 => 0.019921933058901
1017 => 0.0201755359597
1018 => 0.021070865638282
1019 => 0.020828939655835
1020 => 0.020485365869219
1021 => 0.021192142662083
1022 => 0.021447922435895
1023 => 0.023243118841416
1024 => 0.025509628459252
1025 => 0.024571278594763
1026 => 0.023988814553514
1027 => 0.02412570741944
1028 => 0.024953360005681
1029 => 0.025219175748001
1030 => 0.024496596928193
1031 => 0.024751823983003
1101 => 0.026158150148376
1102 => 0.026912599015754
1103 => 0.025887956117854
1104 => 0.023061007000474
1105 => 0.020454430808857
1106 => 0.021145812190529
1107 => 0.02106743099791
1108 => 0.022578353019842
1109 => 0.020823169801164
1110 => 0.020852722585149
1111 => 0.0223948888744
1112 => 0.021983465347851
1113 => 0.021317011925986
1114 => 0.020459296656378
1115 => 0.018873730651447
1116 => 0.0174693506241
1117 => 0.020223663267131
1118 => 0.020104892297571
1119 => 0.019932894332777
1120 => 0.020315657191303
1121 => 0.022174244983175
1122 => 0.02213139851891
1123 => 0.021858831173719
1124 => 0.022065571102748
1125 => 0.021280769416854
1126 => 0.021483030680912
1127 => 0.02045401791387
1128 => 0.020919174659942
1129 => 0.021315582016262
1130 => 0.021395166661955
1201 => 0.021574474932393
1202 => 0.020042305393608
1203 => 0.020730204534388
1204 => 0.021134280832163
1205 => 0.019308649418392
1206 => 0.021098193968965
1207 => 0.020015633730707
1208 => 0.019648196526333
1209 => 0.020142902315852
1210 => 0.019950114988559
1211 => 0.019784367765405
1212 => 0.019691877966986
1213 => 0.020055135300123
1214 => 0.020038188911346
1215 => 0.019443829409123
1216 => 0.018668511667666
1217 => 0.018928733750636
1218 => 0.018834192628298
1219 => 0.018491563404898
1220 => 0.01872245413226
1221 => 0.017705728220081
1222 => 0.015956504132991
1223 => 0.017112095145105
1224 => 0.01706760614818
1225 => 0.017045172778515
1226 => 0.017913567485929
1227 => 0.017830091372086
1228 => 0.01767858140806
1229 => 0.018488780805593
1230 => 0.018193047126773
1231 => 0.019104428641276
]
'min_raw' => 0.0081812479029492
'max_raw' => 0.026912599015754
'avg_raw' => 0.017546923459352
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008181'
'max' => '$0.026912'
'avg' => '$0.017546'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0044569329276545
'max_diff' => 0.01779058813319
'year' => 2029
]
4 => [
'items' => [
101 => 0.019704723451189
102 => 0.019552469269892
103 => 0.020117049440091
104 => 0.018934728741853
105 => 0.019327448251335
106 => 0.019408387197953
107 => 0.018478783070791
108 => 0.017843749096677
109 => 0.017801399570521
110 => 0.016700338172479
111 => 0.017288516283856
112 => 0.017806088681404
113 => 0.017558211668219
114 => 0.01747974121096
115 => 0.017880629758931
116 => 0.017911782232487
117 => 0.017201502534028
118 => 0.01734919217497
119 => 0.01796508252906
120 => 0.017333673318259
121 => 0.016106948361783
122 => 0.015802703611777
123 => 0.015762111753783
124 => 0.014936975861813
125 => 0.015823034700775
126 => 0.015436246272668
127 => 0.016658106282623
128 => 0.015960186397903
129 => 0.015930100466588
130 => 0.015884621168758
131 => 0.015174392620604
201 => 0.015329887535271
202 => 0.015846776314167
203 => 0.016031208053646
204 => 0.016011970312214
205 => 0.015844243277163
206 => 0.015921027854908
207 => 0.015673677976471
208 => 0.015586333586253
209 => 0.015310650664756
210 => 0.014905472929506
211 => 0.014961815378692
212 => 0.01415905226464
213 => 0.013721664314242
214 => 0.013600601094252
215 => 0.013438710296902
216 => 0.013618887090588
217 => 0.0141567781376
218 => 0.013507967414952
219 => 0.012395626939752
220 => 0.012462480497648
221 => 0.012612680593239
222 => 0.012332783708777
223 => 0.012067884797599
224 => 0.012298192908941
225 => 0.011826879585873
226 => 0.012669636556606
227 => 0.012646842342347
228 => 0.012960970025294
301 => 0.013157400511991
302 => 0.012704691835281
303 => 0.012590836827343
304 => 0.012655693814286
305 => 0.011583752290841
306 => 0.012873369533645
307 => 0.012884522197113
308 => 0.012789026321519
309 => 0.013475707690847
310 => 0.014924819561418
311 => 0.014379605385319
312 => 0.014168481977148
313 => 0.013767136223884
314 => 0.014301905610556
315 => 0.014260843665361
316 => 0.014075145976912
317 => 0.013962835435526
318 => 0.014169771051659
319 => 0.013937193822632
320 => 0.013895416561504
321 => 0.013642291813176
322 => 0.013551937794465
323 => 0.013485043276109
324 => 0.013411398984318
325 => 0.013573839940994
326 => 0.013205727362278
327 => 0.012761819678868
328 => 0.01272491355814
329 => 0.012826814602289
330 => 0.012781730975894
331 => 0.012724697715082
401 => 0.012615805688108
402 => 0.012583499749814
403 => 0.012688478376654
404 => 0.012569963627586
405 => 0.012744838595668
406 => 0.012697282280623
407 => 0.012431636570616
408 => 0.012100543661309
409 => 0.012097596239925
410 => 0.012026262815716
411 => 0.011935408974934
412 => 0.011910135514882
413 => 0.012278797002185
414 => 0.013041915247791
415 => 0.012892096876307
416 => 0.013000356003709
417 => 0.013532883762529
418 => 0.01370215832339
419 => 0.013582011249579
420 => 0.013417546524597
421 => 0.013424782137824
422 => 0.013986807889943
423 => 0.014021860746708
424 => 0.014110428007273
425 => 0.014224261966203
426 => 0.013601397665016
427 => 0.013395445285251
428 => 0.013297853621915
429 => 0.012997309071568
430 => 0.013321420602375
501 => 0.013132574693213
502 => 0.013158056458254
503 => 0.013141461425342
504 => 0.013150523435463
505 => 0.012669400988857
506 => 0.012844696721349
507 => 0.012553233566915
508 => 0.012162997121402
509 => 0.012161688912002
510 => 0.012257198729194
511 => 0.012200385752628
512 => 0.012047503493487
513 => 0.012069219696814
514 => 0.011878962904805
515 => 0.012092320316074
516 => 0.0120984386432
517 => 0.012016284418204
518 => 0.012344990947914
519 => 0.012479662281335
520 => 0.012425586610529
521 => 0.012475868188116
522 => 0.012898322506031
523 => 0.012967200992826
524 => 0.012997792266802
525 => 0.012956804012241
526 => 0.012483589877537
527 => 0.012504578936673
528 => 0.012350575147193
529 => 0.012220458173602
530 => 0.012225662170172
531 => 0.01229255920862
601 => 0.012584702498984
602 => 0.013199500830768
603 => 0.013222831978047
604 => 0.013251110009167
605 => 0.013136089045202
606 => 0.013101397621867
607 => 0.013147164563861
608 => 0.013378050492719
609 => 0.013971951786658
610 => 0.013762027404046
611 => 0.013591355613315
612 => 0.01374108078657
613 => 0.013718031769732
614 => 0.013523474871909
615 => 0.013518014307779
616 => 0.013144597417253
617 => 0.013006553695117
618 => 0.012891194028506
619 => 0.012765224284108
620 => 0.012690545197085
621 => 0.012805286215791
622 => 0.012831528844345
623 => 0.012580645601614
624 => 0.012546451142675
625 => 0.01275132781438
626 => 0.012661169229735
627 => 0.012753899569868
628 => 0.012775413804205
629 => 0.012771949516962
630 => 0.012677813599945
701 => 0.012737813026278
702 => 0.01259589649631
703 => 0.012441583585144
704 => 0.012343141561854
705 => 0.012257237840094
706 => 0.01230490221768
707 => 0.012134987414757
708 => 0.012080628249592
709 => 0.012717486570666
710 => 0.013187940659824
711 => 0.013181100071047
712 => 0.013139459746126
713 => 0.013077590669725
714 => 0.013373524384421
715 => 0.013270426995602
716 => 0.013345438960043
717 => 0.013364532653236
718 => 0.013422323511877
719 => 0.013442978776549
720 => 0.013380544220706
721 => 0.01317100622556
722 => 0.01264885746393
723 => 0.012405795805878
724 => 0.012325581410208
725 => 0.012328497051142
726 => 0.012248070658195
727 => 0.012271759835376
728 => 0.01223983252912
729 => 0.012179369935116
730 => 0.012301168822879
731 => 0.012315205010059
801 => 0.012286775694266
802 => 0.012293471827292
803 => 0.012058089234852
804 => 0.012075984862131
805 => 0.011976339735375
806 => 0.011957657475349
807 => 0.011705763272003
808 => 0.011259496178127
809 => 0.011506771468329
810 => 0.011208097689933
811 => 0.011094985404408
812 => 0.011630441371514
813 => 0.011576696443653
814 => 0.011484708489514
815 => 0.011348639133373
816 => 0.011298169685582
817 => 0.010991533297494
818 => 0.010973415583844
819 => 0.01112539285766
820 => 0.011055260575013
821 => 0.010956768289003
822 => 0.010600039213081
823 => 0.010198957622807
824 => 0.010211063754908
825 => 0.010338640346386
826 => 0.010709586492156
827 => 0.01056465141557
828 => 0.010459499354569
829 => 0.010439807534403
830 => 0.010686291891401
831 => 0.011035118896622
901 => 0.011198780722908
902 => 0.011036596823542
903 => 0.010850288692553
904 => 0.010861628405217
905 => 0.010937066433294
906 => 0.010944993903408
907 => 0.010823726462919
908 => 0.010857862537089
909 => 0.010806006718957
910 => 0.010487767658802
911 => 0.010482011723351
912 => 0.010403910725691
913 => 0.010401545858521
914 => 0.010268676578294
915 => 0.010250087247508
916 => 0.0099862672270291
917 => 0.010159914363429
918 => 0.010043440981216
919 => 0.0098678881209271
920 => 0.0098376227416434
921 => 0.0098367129277956
922 => 0.010016966462411
923 => 0.010157807995928
924 => 0.010045467085566
925 => 0.010019889237914
926 => 0.010292993733736
927 => 0.01025823869724
928 => 0.01022814105978
929 => 0.011003885264273
930 => 0.010389823194341
1001 => 0.010122057082414
1002 => 0.009790645671498
1003 => 0.0098985548980136
1004 => 0.0099212929575568
1005 => 0.0091243082557009
1006 => 0.0088009716614161
1007 => 0.0086900147269401
1008 => 0.0086261574424483
1009 => 0.0086552580088605
1010 => 0.0083642171504044
1011 => 0.0085598014206584
1012 => 0.0083077846383067
1013 => 0.0082655332046119
1014 => 0.0087161704303453
1015 => 0.0087788739677216
1016 => 0.0085113611968121
1017 => 0.0086831477021196
1018 => 0.0086208555272841
1019 => 0.0083121047427081
1020 => 0.0083003127337543
1021 => 0.008145392443169
1022 => 0.0079029721868822
1023 => 0.0077921796247553
1024 => 0.0077344778964545
1025 => 0.0077582867541357
1026 => 0.007746248267129
1027 => 0.0076676889962641
1028 => 0.0077507511925768
1029 => 0.007538561604667
1030 => 0.0074540660010336
1031 => 0.0074159012971555
1101 => 0.0072275708247086
1102 => 0.0075272883573129
1103 => 0.007586336486978
1104 => 0.0076455009596993
1105 => 0.0081604873014378
1106 => 0.0081347600391409
1107 => 0.0083673219606205
1108 => 0.0083582850320057
1109 => 0.0082919546047464
1110 => 0.0080121174429649
1111 => 0.0081236555480332
1112 => 0.0077803585975031
1113 => 0.0080375800147638
1114 => 0.0079201949017492
1115 => 0.0079978919899748
1116 => 0.0078581856196812
1117 => 0.0079355048933363
1118 => 0.0076003389890627
1119 => 0.0072873657835636
1120 => 0.0074133153377139
1121 => 0.0075502369071538
1122 => 0.0078471177566668
1123 => 0.0076702979719107
1124 => 0.0077338890528053
1125 => 0.0075208695768268
1126 => 0.007081349551878
1127 => 0.0070838371874875
1128 => 0.0070162266071133
1129 => 0.0069578011943637
1130 => 0.0076906078512268
1201 => 0.0075994717594869
1202 => 0.0074542583248963
1203 => 0.0076486322776484
1204 => 0.0077000278358855
1205 => 0.0077014909951748
1206 => 0.0078433012135849
1207 => 0.0079189853525712
1208 => 0.0079323250101014
1209 => 0.0081554664527821
1210 => 0.0082302605210619
1211 => 0.0085383267030536
1212 => 0.0079125640821539
1213 => 0.0078996769127709
1214 => 0.0076513675177748
1215 => 0.007493885773852
1216 => 0.0076621504275127
1217 => 0.0078112099402403
1218 => 0.007655999212337
1219 => 0.0076762664567239
1220 => 0.0074679087356962
1221 => 0.0075423868168216
1222 => 0.0076065373735678
1223 => 0.007571117206728
1224 => 0.0075180915026133
1225 => 0.0077989887600489
1226 => 0.0077831394359392
1227 => 0.0080447174198632
1228 => 0.0082486361639531
1229 => 0.0086140950081979
1230 => 0.008232719652428
1231 => 0.008218820818634
]
'min_raw' => 0.0069578011943637
'max_raw' => 0.020117049440091
'avg_raw' => 0.013537425317227
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006957'
'max' => '$0.020117'
'avg' => '$0.013537'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012234467085855
'max_diff' => -0.0067955495756629
'year' => 2030
]
5 => [
'items' => [
101 => 0.0083546841484134
102 => 0.008230239721094
103 => 0.0083088843034843
104 => 0.0086014241501343
105 => 0.0086076050561158
106 => 0.0085040669172787
107 => 0.0084977666121209
108 => 0.0085176522442677
109 => 0.0086341230128678
110 => 0.0085934245475337
111 => 0.0086405218419774
112 => 0.0086994177298587
113 => 0.0089430360934743
114 => 0.009001771656176
115 => 0.0088590746897087
116 => 0.0088719586280705
117 => 0.0088185860454924
118 => 0.0087670287994785
119 => 0.0088829219591867
120 => 0.0090947189864392
121 => 0.009093401408125
122 => 0.0091425342017017
123 => 0.0091731435250619
124 => 0.0090417459018056
125 => 0.0089562108806903
126 => 0.0089890104505207
127 => 0.0090414576769612
128 => 0.0089720025218521
129 => 0.0085432931297608
130 => 0.0086733361732593
131 => 0.0086516906520412
201 => 0.0086208647976413
202 => 0.0087516240834721
203 => 0.0087390120313644
204 => 0.0083612321057373
205 => 0.008385416350872
206 => 0.0083627028297847
207 => 0.008436094863167
208 => 0.0082262763104392
209 => 0.0082908150841088
210 => 0.0083312931979409
211 => 0.0083551351179555
212 => 0.008441268481606
213 => 0.0084311617255291
214 => 0.0084406402314577
215 => 0.0085683532713864
216 => 0.0092142820015228
217 => 0.0092494384771427
218 => 0.0090763151333134
219 => 0.0091454744944663
220 => 0.0090127036445425
221 => 0.0091018336055837
222 => 0.0091628140612725
223 => 0.0088872551078819
224 => 0.0088709382950249
225 => 0.0087376194525742
226 => 0.008809257446942
227 => 0.0086952762469488
228 => 0.008723243246534
301 => 0.0086450450775746
302 => 0.0087857862126015
303 => 0.0089431566705228
304 => 0.0089829146629415
305 => 0.00887832850178
306 => 0.0088026012285351
307 => 0.0086696490828318
308 => 0.0088907514641683
309 => 0.008955408538444
310 => 0.0088904118480824
311 => 0.0088753506947199
312 => 0.0088468098363129
313 => 0.0088814057727523
314 => 0.0089550564021317
315 => 0.00892032412543
316 => 0.0089432654060954
317 => 0.0088558369011446
318 => 0.0090417893998864
319 => 0.0093371267197942
320 => 0.0093380762775702
321 => 0.0093033438136485
322 => 0.0092891320377332
323 => 0.0093247696534589
324 => 0.0093441015980586
325 => 0.0094593471124947
326 => 0.0095830101410684
327 => 0.010160091537016
328 => 0.0099980493902622
329 => 0.010510070335472
330 => 0.010915012425535
331 => 0.011036436852373
401 => 0.010924732093143
402 => 0.010542596145988
403 => 0.010523846733345
404 => 0.01109491917203
405 => 0.010933565051326
406 => 0.010914372492093
407 => 0.010710196088194
408 => 0.010830889630638
409 => 0.010804492182438
410 => 0.010762822519047
411 => 0.010993097390445
412 => 0.011424151392924
413 => 0.011356967584239
414 => 0.011306817987622
415 => 0.011087077053578
416 => 0.011219410176787
417 => 0.011172288886287
418 => 0.011374751854188
419 => 0.011254817277107
420 => 0.010932342635166
421 => 0.010983697784785
422 => 0.010975935557233
423 => 0.011135681650231
424 => 0.011087729838255
425 => 0.010966572196345
426 => 0.011422678097205
427 => 0.011393061116997
428 => 0.011435051223547
429 => 0.011453536567038
430 => 0.011731160191403
501 => 0.011844893707341
502 => 0.011870713206644
503 => 0.011978751250319
504 => 0.011868025121697
505 => 0.012311008582577
506 => 0.01260556673526
507 => 0.012947711187425
508 => 0.013447676191798
509 => 0.013635667658377
510 => 0.013601708682586
511 => 0.013980776442879
512 => 0.014661952781924
513 => 0.013739393896284
514 => 0.014710850643011
515 => 0.014403298653005
516 => 0.013674098417323
517 => 0.013627146518852
518 => 0.014120969384644
519 => 0.015216220972281
520 => 0.014941872871819
521 => 0.015216669707491
522 => 0.014896104601986
523 => 0.014880185842563
524 => 0.015201100575832
525 => 0.015950935342265
526 => 0.015594716951869
527 => 0.015083990540902
528 => 0.015461102974977
529 => 0.015134413284473
530 => 0.014398289977082
531 => 0.014941663082997
601 => 0.014578324961446
602 => 0.014684366341432
603 => 0.015448049030464
604 => 0.015356160708866
605 => 0.015475072705643
606 => 0.0152651961438
607 => 0.015069138340542
608 => 0.014703181891318
609 => 0.014594840228137
610 => 0.014624781966116
611 => 0.014594825390499
612 => 0.014390076120471
613 => 0.014345860535103
614 => 0.014272165955694
615 => 0.014295006987368
616 => 0.014156439617968
617 => 0.014417944873504
618 => 0.014466482553308
619 => 0.014656784270559
620 => 0.014676542026145
621 => 0.015206529599913
622 => 0.014914621350361
623 => 0.015110458606306
624 => 0.015092941078843
625 => 0.013689902397559
626 => 0.013883228748725
627 => 0.014183983881988
628 => 0.014048494102117
629 => 0.013856943253105
630 => 0.013702255672221
701 => 0.013467888169565
702 => 0.013797755928924
703 => 0.014231496954957
704 => 0.014687542414347
705 => 0.015235451152523
706 => 0.015113164300523
707 => 0.014677299641604
708 => 0.014696852211804
709 => 0.014817718507126
710 => 0.014661185672823
711 => 0.014615021084103
712 => 0.014811376201542
713 => 0.014812728391321
714 => 0.01463261844783
715 => 0.014432459205412
716 => 0.014431620530878
717 => 0.014396004126998
718 => 0.014902440681114
719 => 0.015180929579367
720 => 0.015212857882744
721 => 0.015178780550158
722 => 0.015191895562989
723 => 0.01502984900918
724 => 0.015400239377775
725 => 0.015740146207809
726 => 0.015649043916309
727 => 0.015512468630398
728 => 0.015403679836813
729 => 0.015623416733898
730 => 0.015613632195769
731 => 0.015737177418176
801 => 0.015731572693256
802 => 0.015690029081731
803 => 0.015649045399962
804 => 0.015811541065591
805 => 0.015764744923491
806 => 0.015717876094056
807 => 0.015623873481366
808 => 0.015636649997649
809 => 0.015500098293386
810 => 0.015436923226813
811 => 0.01448692180374
812 => 0.014233050381303
813 => 0.014312923498831
814 => 0.014339219803026
815 => 0.014228734634636
816 => 0.014387141984796
817 => 0.014362454367068
818 => 0.014458499445873
819 => 0.014398494650428
820 => 0.014400957268164
821 => 0.014577418577195
822 => 0.014628646045926
823 => 0.014602591341873
824 => 0.014620839163489
825 => 0.015041352510705
826 => 0.01498156895999
827 => 0.014949810140204
828 => 0.014958607550328
829 => 0.01506605772645
830 => 0.015096137909202
831 => 0.014968686061185
901 => 0.0150287930895
902 => 0.015284721187348
903 => 0.015374281537319
904 => 0.015660115183019
905 => 0.015538687970038
906 => 0.015761572874712
907 => 0.016446645084617
908 => 0.01699392816928
909 => 0.016490624027194
910 => 0.017495639716097
911 => 0.018278188590846
912 => 0.01824815306163
913 => 0.018111697564636
914 => 0.017220786475872
915 => 0.016400956809255
916 => 0.017086779137187
917 => 0.017088527439341
918 => 0.017029614693146
919 => 0.016663712686205
920 => 0.017016882096443
921 => 0.017044915401705
922 => 0.017029224205416
923 => 0.016748687994597
924 => 0.016320361052434
925 => 0.016404055111663
926 => 0.016541147687992
927 => 0.016281602840494
928 => 0.016198662535341
929 => 0.016352864342658
930 => 0.016849734695058
1001 => 0.016755804233111
1002 => 0.016753351329146
1003 => 0.017155225678071
1004 => 0.016867570374154
1005 => 0.016405110761775
1006 => 0.016288333610557
1007 => 0.015873853394246
1008 => 0.01616013635598
1009 => 0.016170439170113
1010 => 0.016013644917712
1011 => 0.016417833751215
1012 => 0.016414109079958
1013 => 0.016797826221801
1014 => 0.017531349279426
1015 => 0.017314410416809
1016 => 0.017062134122466
1017 => 0.017089563550524
1018 => 0.017390396674722
1019 => 0.01720850610048
1020 => 0.017273915219163
1021 => 0.017390297670187
1022 => 0.017460514092504
1023 => 0.017079460487922
1024 => 0.016990618664793
1025 => 0.016808879473914
1026 => 0.016761467111336
1027 => 0.016909489890195
1028 => 0.016870491117687
1029 => 0.01616957325848
1030 => 0.016096323442322
1031 => 0.016098569909607
1101 => 0.01591437976404
1102 => 0.015633445581351
1103 => 0.01637172383975
1104 => 0.016312429763403
1105 => 0.016246973692113
1106 => 0.016254991687359
1107 => 0.016575453256758
1108 => 0.016389569362809
1109 => 0.016883772160643
1110 => 0.016782178922504
1111 => 0.016677980201154
1112 => 0.016663576763892
1113 => 0.01662346914599
1114 => 0.016485925200813
1115 => 0.016319832621904
1116 => 0.016210163914615
1117 => 0.01495301934521
1118 => 0.015186338064818
1119 => 0.015454749984056
1120 => 0.015547404702984
1121 => 0.015388912394747
1122 => 0.016492183443165
1123 => 0.016693761695095
1124 => 0.016083168021374
1125 => 0.015968950875396
1126 => 0.01649967150024
1127 => 0.016179582085501
1128 => 0.016323718329359
1129 => 0.016012174608449
1130 => 0.016645207397105
1201 => 0.016640384747876
1202 => 0.016394120695395
1203 => 0.016602261386208
1204 => 0.016566091819088
1205 => 0.016288060310359
1206 => 0.016654021491848
1207 => 0.016654203004028
1208 => 0.016417179207757
1209 => 0.016140387304894
1210 => 0.016090903450195
1211 => 0.016053624012899
1212 => 0.016314549873055
1213 => 0.016548495183377
1214 => 0.016983809405925
1215 => 0.017093257744284
1216 => 0.01752044189529
1217 => 0.017266074532585
1218 => 0.017378832289863
1219 => 0.017501246785947
1220 => 0.017559936797014
1221 => 0.01746430457346
1222 => 0.018127897395983
1223 => 0.018183924962162
1224 => 0.018202710520466
1225 => 0.017978950754374
1226 => 0.018177701798289
1227 => 0.018084712766784
1228 => 0.018326644393663
1229 => 0.018364582361895
1230 => 0.018332450252485
1231 => 0.018344492362412
]
'min_raw' => 0.0082262763104392
'max_raw' => 0.018364582361895
'avg_raw' => 0.013295429336167
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008226'
'max' => '$0.018364'
'avg' => '$0.013295'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012684751160756
'max_diff' => -0.0017524670781956
'year' => 2031
]
6 => [
'items' => [
101 => 0.017778232954185
102 => 0.017748869416612
103 => 0.017348495498263
104 => 0.017511650829405
105 => 0.017206639758074
106 => 0.017303361910755
107 => 0.017345996114055
108 => 0.017323726425721
109 => 0.017520875387031
110 => 0.017353258495046
111 => 0.016910889958327
112 => 0.016468400898596
113 => 0.016462845808895
114 => 0.016346346250048
115 => 0.016262138406961
116 => 0.016278359824973
117 => 0.016335526217842
118 => 0.016258815792284
119 => 0.016275185850894
120 => 0.016547037896949
121 => 0.016601555886025
122 => 0.016416282457591
123 => 0.0156723829076
124 => 0.015489828092101
125 => 0.015621044873262
126 => 0.01555833170331
127 => 0.012556787962574
128 => 0.013261956141932
129 => 0.012842969155006
130 => 0.013036057635246
131 => 0.012608380417749
201 => 0.012812490402422
202 => 0.012774798741156
203 => 0.013908688306121
204 => 0.013890984180178
205 => 0.013899458208386
206 => 0.013494970763087
207 => 0.014139330246479
208 => 0.014456764898416
209 => 0.014398016192592
210 => 0.014412801976156
211 => 0.014158733226871
212 => 0.013901918149245
213 => 0.013617070704602
214 => 0.014146282048541
215 => 0.014087442781034
216 => 0.014222398890996
217 => 0.014565630276349
218 => 0.014616172401651
219 => 0.014684101530605
220 => 0.0146597537734
221 => 0.015239816129578
222 => 0.01516956675087
223 => 0.01533884754143
224 => 0.014990624111883
225 => 0.01459657624768
226 => 0.01467147186427
227 => 0.01466425881412
228 => 0.014572428406955
229 => 0.014489528021382
301 => 0.014351522236441
302 => 0.014788192961006
303 => 0.014770464927043
304 => 0.015057461190319
305 => 0.015006731813052
306 => 0.014667948616079
307 => 0.014680048324236
308 => 0.014761424676513
309 => 0.015043069160884
310 => 0.015126680419664
311 => 0.015087948353264
312 => 0.015179624281517
313 => 0.01525208119728
314 => 0.015188723754571
315 => 0.016085731534309
316 => 0.015713231364998
317 => 0.015894785355681
318 => 0.01593808491268
319 => 0.015827174007917
320 => 0.015851226611739
321 => 0.015887659752586
322 => 0.016108874649469
323 => 0.016689406547938
324 => 0.016946520173955
325 => 0.017720059203591
326 => 0.016925170466509
327 => 0.016878005058427
328 => 0.017017342796305
329 => 0.017471492094124
330 => 0.017839537443931
331 => 0.017961639319508
401 => 0.017977777098048
402 => 0.018206848333809
403 => 0.018338147694221
404 => 0.018179033060616
405 => 0.018044200068631
406 => 0.017561245027431
407 => 0.017617148388493
408 => 0.018002267109513
409 => 0.018546269986334
410 => 0.0190130810485
411 => 0.018849620084537
412 => 0.020096711854112
413 => 0.020220355909152
414 => 0.020203272298637
415 => 0.020484951856721
416 => 0.019925875296968
417 => 0.019686859236076
418 => 0.018073352491918
419 => 0.018526682072941
420 => 0.019185623242072
421 => 0.019098409907435
422 => 0.018619869216864
423 => 0.019012718032474
424 => 0.018882829928515
425 => 0.018780381791861
426 => 0.019249716566424
427 => 0.018733663702582
428 => 0.019180475219995
429 => 0.018607434827239
430 => 0.018850366760452
501 => 0.018712466845865
502 => 0.01880170499098
503 => 0.018280020618068
504 => 0.018561508842519
505 => 0.018268309782484
506 => 0.018268170767954
507 => 0.018261698382453
508 => 0.018606645776341
509 => 0.018617894498472
510 => 0.018362977853202
511 => 0.018326240382072
512 => 0.018462078067727
513 => 0.018303047713771
514 => 0.018377457015462
515 => 0.018305301495717
516 => 0.018289057768395
517 => 0.018159624985449
518 => 0.018103861783727
519 => 0.018125727971963
520 => 0.018051087398722
521 => 0.018006113753476
522 => 0.018252751992443
523 => 0.018120983130721
524 => 0.018232556524553
525 => 0.018105404560597
526 => 0.017664640456052
527 => 0.017411152358533
528 => 0.016578589823902
529 => 0.016814703525932
530 => 0.016971247154656
531 => 0.016919509486297
601 => 0.017030662017752
602 => 0.01703748588044
603 => 0.017001349059398
604 => 0.016959507250045
605 => 0.016939140971249
606 => 0.017090934527615
607 => 0.017179055796222
608 => 0.016986958402082
609 => 0.016941952670363
610 => 0.017136173741826
611 => 0.017254648483221
612 => 0.018129399408473
613 => 0.018064595034522
614 => 0.018227241295923
615 => 0.018208929822899
616 => 0.018379409016428
617 => 0.018658070447966
618 => 0.018091473842688
619 => 0.018189815421928
620 => 0.018165704337737
621 => 0.018428942832667
622 => 0.018429764634515
623 => 0.018271940007066
624 => 0.018357499298018
625 => 0.018309742449005
626 => 0.018396045529897
627 => 0.018063729532598
628 => 0.018468454546013
629 => 0.018697907548716
630 => 0.018701093503881
701 => 0.01880985240611
702 => 0.018920357749666
703 => 0.019132463133634
704 => 0.018914442245627
705 => 0.018522243892009
706 => 0.018550559346347
707 => 0.01832061359512
708 => 0.018324479024741
709 => 0.018303845058484
710 => 0.018365769144475
711 => 0.01807731838718
712 => 0.01814501720337
713 => 0.01805023846426
714 => 0.018189609391459
715 => 0.018039669312633
716 => 0.018165692710642
717 => 0.018220080231482
718 => 0.018420771354258
719 => 0.018010027070622
720 => 0.017172491671344
721 => 0.017348551766407
722 => 0.017088145056586
723 => 0.017112246689019
724 => 0.017160935822278
725 => 0.017003118411291
726 => 0.017033224999909
727 => 0.017032149380707
728 => 0.017022880275519
729 => 0.016981825871723
730 => 0.016922288863854
731 => 0.017159465978681
801 => 0.017199766992189
802 => 0.017289351152979
803 => 0.017555892849974
804 => 0.017529259048958
805 => 0.01757269988344
806 => 0.017477868785675
807 => 0.017116645631662
808 => 0.017136261786822
809 => 0.01689164801765
810 => 0.017283095828935
811 => 0.017190395820364
812 => 0.017130631521789
813 => 0.01711432427921
814 => 0.017381526681517
815 => 0.017461477828171
816 => 0.017411657638898
817 => 0.017309474977211
818 => 0.017505695895242
819 => 0.017558196335011
820 => 0.017569949247333
821 => 0.017917615092453
822 => 0.01758937990599
823 => 0.017668389377749
824 => 0.018284798722164
825 => 0.017725800505454
826 => 0.018021914327993
827 => 0.018007421097282
828 => 0.018158902908947
829 => 0.017994995167302
830 => 0.017997027000202
831 => 0.018131532586694
901 => 0.017942643748676
902 => 0.017895872216033
903 => 0.017831257678671
904 => 0.017972341157126
905 => 0.018056914321802
906 => 0.018738511916952
907 => 0.019178855048045
908 => 0.019159738591402
909 => 0.019334427220613
910 => 0.019255728393189
911 => 0.019001589119735
912 => 0.019435373870538
913 => 0.019298106225059
914 => 0.019309422402973
915 => 0.019309001214265
916 => 0.019400272198363
917 => 0.019335598341267
918 => 0.019208119530296
919 => 0.019292745914205
920 => 0.019544056019932
921 => 0.020324130299243
922 => 0.020760670200555
923 => 0.020297850049048
924 => 0.020617097192149
925 => 0.020425662665677
926 => 0.020390873317533
927 => 0.020591384115579
928 => 0.020792245881233
929 => 0.02077945185511
930 => 0.020633636527611
1001 => 0.020551269149033
1002 => 0.021174982534718
1003 => 0.021634523932609
1004 => 0.021603186290078
1005 => 0.021741500452665
1006 => 0.022147595111917
1007 => 0.022184723318215
1008 => 0.022180046017604
1009 => 0.022088019884366
1010 => 0.022487872814455
1011 => 0.022821437163478
1012 => 0.022066718493412
1013 => 0.022354105482981
1014 => 0.022483122761628
1015 => 0.022672558404385
1016 => 0.022992168086815
1017 => 0.023339348974216
1018 => 0.023388444158339
1019 => 0.023353608775783
1020 => 0.023124633647819
1021 => 0.023504523117542
1022 => 0.023727053459401
1023 => 0.023859565185462
1024 => 0.024195592874905
1025 => 0.022483919528418
1026 => 0.02127231205809
1027 => 0.021083102055775
1028 => 0.0214678680358
1029 => 0.021569327756281
1030 => 0.021528429470174
1031 => 0.020164655107788
1101 => 0.021075922065996
1102 => 0.022056368691526
1103 => 0.022094031639407
1104 => 0.022584863720319
1105 => 0.022744698765751
1106 => 0.023139882925717
1107 => 0.023115164048914
1108 => 0.023211385103113
1109 => 0.023189265549069
1110 => 0.023921260989563
1111 => 0.024728760662803
1112 => 0.02470079951681
1113 => 0.02458471188488
1114 => 0.024757121814179
1115 => 0.025590548013887
1116 => 0.025513819484801
1117 => 0.025588354715087
1118 => 0.026571011174385
1119 => 0.027848604352723
1120 => 0.027255034053127
1121 => 0.028542910807998
1122 => 0.029353560957776
1123 => 0.030755496569026
1124 => 0.030579967325819
1125 => 0.0311257305714
1126 => 0.03026573334642
1127 => 0.02829100588375
1128 => 0.02797849770383
1129 => 0.028604146993998
1130 => 0.030142244723912
1201 => 0.028555706822858
1202 => 0.02887666137393
1203 => 0.02878422644163
1204 => 0.02877930097691
1205 => 0.028967285931927
1206 => 0.02869460395004
1207 => 0.027583648501281
1208 => 0.028092792836546
1209 => 0.027896187757581
1210 => 0.028114335750572
1211 => 0.029291590497668
1212 => 0.028771098111729
1213 => 0.02822280166451
1214 => 0.028910487086045
1215 => 0.029786146942007
1216 => 0.029731349721933
1217 => 0.029625020211528
1218 => 0.030224394094448
1219 => 0.031214384148962
1220 => 0.031481974482595
1221 => 0.031679504196239
1222 => 0.031706740206459
1223 => 0.031987288038807
1224 => 0.030478711637111
1225 => 0.032872861129593
1226 => 0.033286264609899
1227 => 0.03320856188942
1228 => 0.033668042459103
1229 => 0.033532851619605
1230 => 0.033336981303966
1231 => 0.034065355741233
]
'min_raw' => 0.012556787962574
'max_raw' => 0.034065355741233
'avg_raw' => 0.023311071851904
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012556'
'max' => '$0.034065'
'avg' => '$0.023311'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043305116521349
'max_diff' => 0.015700773379338
'year' => 2032
]
7 => [
'items' => [
101 => 0.033230333225693
102 => 0.032045123891294
103 => 0.03139489460966
104 => 0.032251168980216
105 => 0.032774065858456
106 => 0.033119667432486
107 => 0.033224246259969
108 => 0.030595818128809
109 => 0.029179241145421
110 => 0.030087250750684
111 => 0.031195085136581
112 => 0.030472557561162
113 => 0.030500879274193
114 => 0.029470744828551
115 => 0.031286229177155
116 => 0.03102172837819
117 => 0.032393958991113
118 => 0.032066465142501
119 => 0.033185465937654
120 => 0.03289079552649
121 => 0.034113955928432
122 => 0.034601907728513
123 => 0.035421254744482
124 => 0.036023969744771
125 => 0.036377895521041
126 => 0.036356647144976
127 => 0.037759077395682
128 => 0.036932113274022
129 => 0.035893251436738
130 => 0.035874461703669
131 => 0.036412502969984
201 => 0.037540089859768
202 => 0.037832456734567
203 => 0.037995849932157
204 => 0.03774560756229
205 => 0.03684799727728
206 => 0.036460413707201
207 => 0.036790646138285
208 => 0.036386800252265
209 => 0.037083951550679
210 => 0.038041289186884
211 => 0.037843602750731
212 => 0.038504438867983
213 => 0.039188334727353
214 => 0.040166336521936
215 => 0.040422022406341
216 => 0.0408446614504
217 => 0.041279695856431
218 => 0.041419417183142
219 => 0.041686188548815
220 => 0.041684782532036
221 => 0.042488715998274
222 => 0.043375479507283
223 => 0.043710212203311
224 => 0.04447991158056
225 => 0.043161828370505
226 => 0.04416160962638
227 => 0.045063437345328
228 => 0.043988241160806
301 => 0.045470148612588
302 => 0.045527687720866
303 => 0.046396459942291
304 => 0.045515792859258
305 => 0.044992855556542
306 => 0.046502555955279
307 => 0.04723305242311
308 => 0.047013020942022
309 => 0.045338570506645
310 => 0.044363968532699
311 => 0.041813247180199
312 => 0.044834686805197
313 => 0.046306341909932
314 => 0.04533475927545
315 => 0.045824769042696
316 => 0.048498103446588
317 => 0.049515936102006
318 => 0.049304234024866
319 => 0.04934000819099
320 => 0.049889212216884
321 => 0.052324685319879
322 => 0.05086529338274
323 => 0.05198094383631
324 => 0.052572680814107
325 => 0.053122319096945
326 => 0.051772581189259
327 => 0.050016592002947
328 => 0.04946039651623
329 => 0.045238154530252
330 => 0.045018368498614
331 => 0.044894995938857
401 => 0.044117149400987
402 => 0.043505975092319
403 => 0.043019946590619
404 => 0.041744462661762
405 => 0.042174901045528
406 => 0.040142045877114
407 => 0.041442594573901
408 => 0.038198108640109
409 => 0.040900212936191
410 => 0.03942958041744
411 => 0.040417070601247
412 => 0.040413625341023
413 => 0.038595342828587
414 => 0.037546595422002
415 => 0.038214898087338
416 => 0.038931371594509
417 => 0.039047617010541
418 => 0.039976543614461
419 => 0.040235787062405
420 => 0.039450267312217
421 => 0.03813087388069
422 => 0.038437338882674
423 => 0.037540384918518
424 => 0.035968507597172
425 => 0.037097457331708
426 => 0.037482930407495
427 => 0.037653177277679
428 => 0.036107416463465
429 => 0.035621704855539
430 => 0.035363116070994
501 => 0.037931335570408
502 => 0.038072028432014
503 => 0.037352223860074
504 => 0.040605808779914
505 => 0.039869422307752
506 => 0.040692146416223
507 => 0.038409530395958
508 => 0.038496729401882
509 => 0.037416102397344
510 => 0.038021181312363
511 => 0.037593531037831
512 => 0.037972296915536
513 => 0.038199327620921
514 => 0.039279777305201
515 => 0.040912549936036
516 => 0.039118394152192
517 => 0.038336654784387
518 => 0.038821641491504
519 => 0.040113225003358
520 => 0.042070040138759
521 => 0.040911566194027
522 => 0.041425677258536
523 => 0.041537987654922
524 => 0.040683771857112
525 => 0.042101536293665
526 => 0.042861327773112
527 => 0.04364071661433
528 => 0.044317438107181
529 => 0.04332941157202
530 => 0.044386741592682
531 => 0.043534720239902
601 => 0.04277036900611
602 => 0.042771528211421
603 => 0.042292039517073
604 => 0.041362969752311
605 => 0.041191635033201
606 => 0.0420829398792
607 => 0.042797681958807
608 => 0.042856551539867
609 => 0.043252269479912
610 => 0.043486451280612
611 => 0.045781751282187
612 => 0.046704939930539
613 => 0.047833797534676
614 => 0.048273551190416
615 => 0.049597052033782
616 => 0.048528217613281
617 => 0.048296968563122
618 => 0.045086588430942
619 => 0.045612287997738
620 => 0.046453983726641
621 => 0.045100467683496
622 => 0.045958962076424
623 => 0.046128447054985
624 => 0.045054475726279
625 => 0.045628130216503
626 => 0.044104673967171
627 => 0.040945757119146
628 => 0.042105053071142
629 => 0.042958685106609
630 => 0.041740446939926
701 => 0.043924091701376
702 => 0.042648451511315
703 => 0.042244134812593
704 => 0.040666751221569
705 => 0.04141121555747
706 => 0.042418114231478
707 => 0.041795967915476
708 => 0.04308701493692
709 => 0.04491548182895
710 => 0.046218556223296
711 => 0.046318590094954
712 => 0.045480800558594
713 => 0.046823363637313
714 => 0.046833142743632
715 => 0.045318726106306
716 => 0.044391154348251
717 => 0.044180408093193
718 => 0.044706893557564
719 => 0.04534614410589
720 => 0.046354064051429
721 => 0.046963128965105
722 => 0.048551247236902
723 => 0.048980946506331
724 => 0.049453055726755
725 => 0.050083939238334
726 => 0.050841476649196
727 => 0.049184027920858
728 => 0.049249881448706
729 => 0.047706488141818
730 => 0.046057151048418
731 => 0.047308792309537
801 => 0.048945146759591
802 => 0.048569765240738
803 => 0.048527527151518
804 => 0.048598559901717
805 => 0.048315534495315
806 => 0.047035421071574
807 => 0.046392556124105
808 => 0.04722201591868
809 => 0.047662836884488
810 => 0.048346511758828
811 => 0.048262234399939
812 => 0.050023307454918
813 => 0.050707607191998
814 => 0.050532534036416
815 => 0.050564751710414
816 => 0.051803643697981
817 => 0.053181546385726
818 => 0.054472134083073
819 => 0.055784975320846
820 => 0.054202293967645
821 => 0.053398705982705
822 => 0.054227803661081
823 => 0.05378787276254
824 => 0.056315846197537
825 => 0.056490877593311
826 => 0.059018668227055
827 => 0.061417842542188
828 => 0.059910964140525
829 => 0.061331882601999
830 => 0.062868721767265
831 => 0.065833533860231
901 => 0.064835089450667
902 => 0.06407029668056
903 => 0.06334757120826
904 => 0.064851448186678
905 => 0.066786161894391
906 => 0.067202880696575
907 => 0.067878124354948
908 => 0.067168188213035
909 => 0.068023228099068
910 => 0.071041894620327
911 => 0.070226224279777
912 => 0.069067841270644
913 => 0.071450788573364
914 => 0.072313167938745
915 => 0.078365797956571
916 => 0.08600749337575
917 => 0.082843781294133
918 => 0.080879963112721
919 => 0.081341506967743
920 => 0.084131995447113
921 => 0.085028211781009
922 => 0.082591986841183
923 => 0.083452502675859
924 => 0.088194029528973
925 => 0.090737706559275
926 => 0.087283051490722
927 => 0.077751795170193
928 => 0.068963541554815
929 => 0.071294582153831
930 => 0.071030314490514
1001 => 0.076124493576664
1002 => 0.070206770811915
1003 => 0.070306410086427
1004 => 0.07550593140125
1005 => 0.074118788256817
1006 => 0.071871794014707
1007 => 0.068979947099455
1008 => 0.063634100613147
1009 => 0.058899135300266
1010 => 0.068185492676213
1011 => 0.067785048060017
1012 => 0.067205144913198
1013 => 0.068495656614369
1014 => 0.074762015117119
1015 => 0.074617555271408
1016 => 0.073698575437052
1017 => 0.074395613541894
1018 => 0.071749599864799
1019 => 0.072431537837998
1020 => 0.068962149450542
1021 => 0.070530457896129
1022 => 0.07186697297424
1023 => 0.072135298163615
1024 => 0.0727398485163
1025 => 0.067574031943625
1026 => 0.06989333192435
1027 => 0.071255703374006
1028 => 0.065100459600963
1029 => 0.07113403399523
1030 => 0.06748410657
1031 => 0.066245266381806
1101 => 0.067913201490425
1102 => 0.067263205556476
1103 => 0.066704377221509
1104 => 0.066392541408707
1105 => 0.067617288869197
1106 => 0.067560152936275
1107 => 0.065556228377676
1108 => 0.062942190481399
1109 => 0.063819547402259
1110 => 0.063500795407645
1111 => 0.062345597059341
1112 => 0.063124061266918
1113 => 0.05969609886847
1114 => 0.053798467731922
1115 => 0.057694623510053
1116 => 0.057544625750797
1117 => 0.057468990078723
1118 => 0.060396843464152
1119 => 0.060115397918214
1120 => 0.059604571496412
1121 => 0.06233621533151
1122 => 0.061339128585905
1123 => 0.064411914992677
1124 => 0.066435850855541
1125 => 0.065922515253252
1126 => 0.067826036714807
1127 => 0.063839759933703
1128 => 0.065163841178721
1129 => 0.065436732488221
1130 => 0.062302507270607
1201 => 0.060161445890225
1202 => 0.06001866150604
1203 => 0.056306356128891
1204 => 0.058289439696682
1205 => 0.060034471170764
1206 => 0.059198736514592
1207 => 0.05893416788931
1208 => 0.06028579161794
1209 => 0.060390824357529
1210 => 0.057996066764031
1211 => 0.058494012699829
1212 => 0.060570530028733
1213 => 0.058441689790935
1214 => 0.054305700952974
1215 => 0.05327991853664
1216 => 0.05314306025338
1217 => 0.050361056984453
1218 => 0.053348466222669
1219 => 0.052044382032598
1220 => 0.056163968363705
1221 => 0.053810882745161
1222 => 0.053709445927198
1223 => 0.053556109299302
1224 => 0.051161524162628
1225 => 0.051685786123735
1226 => 0.053428512729806
1227 => 0.054050337216073
1228 => 0.053985475827698
1229 => 0.053419972418696
1230 => 0.053678856983491
1231 => 0.052844899598924
]
'min_raw' => 0.029179241145421
'max_raw' => 0.090737706559275
'avg_raw' => 0.059958473852348
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.029179'
'max' => '$0.090737'
'avg' => '$0.059958'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016622453182847
'max_diff' => 0.056672350818041
'year' => 2033
]
8 => [
'items' => [
101 => 0.052550411889111
102 => 0.051620927671717
103 => 0.050254842648716
104 => 0.050444805149851
105 => 0.047738233263696
106 => 0.046263549251476
107 => 0.045855376152916
108 => 0.045309550026795
109 => 0.04591702866625
110 => 0.047730565885605
111 => 0.045543055235679
112 => 0.041792721662411
113 => 0.042018123100422
114 => 0.042524533209344
115 => 0.041580841321605
116 => 0.040687716147916
117 => 0.041464216024903
118 => 0.039875150250135
119 => 0.042716564216374
120 => 0.042639711931557
121 => 0.04369881534631
122 => 0.044361094446545
123 => 0.042834755535909
124 => 0.042450885427543
125 => 0.042669555287192
126 => 0.039055429600328
127 => 0.043403464172642
128 => 0.04344106615618
129 => 0.043119095144306
130 => 0.045434289323556
131 => 0.050320071168948
201 => 0.048481843508593
202 => 0.047770026197778
203 => 0.046416860969583
204 => 0.048219873293151
205 => 0.048081430078075
206 => 0.04745533735647
207 => 0.047076674524915
208 => 0.047774372402491
209 => 0.046990222036803
210 => 0.046849367084114
211 => 0.045995939322521
212 => 0.045691304440121
213 => 0.045465764901057
214 => 0.045217468029604
215 => 0.045765149056303
216 => 0.044524031796363
217 => 0.0430273660491
218 => 0.042902934486363
219 => 0.043246500971215
220 => 0.043094498377184
221 => 0.042902206756422
222 => 0.04253506968488
223 => 0.042426147958396
224 => 0.04278009072816
225 => 0.042380509977242
226 => 0.042970113141511
227 => 0.042809773705061
228 => 0.041914130646981
301 => 0.040797827787083
302 => 0.040787890350105
303 => 0.040547384730044
304 => 0.040241064662633
305 => 0.040155853427534
306 => 0.041398821371097
307 => 0.043971727815374
308 => 0.043466604715929
309 => 0.043831607922375
310 => 0.045627062441139
311 => 0.046197783441453
312 => 0.045792699193698
313 => 0.045238194890863
314 => 0.04526259026603
315 => 0.047157499328687
316 => 0.047275682482582
317 => 0.047574293185144
318 => 0.047958092325312
319 => 0.045858061846863
320 => 0.045163679019348
321 => 0.044834641912779
322 => 0.043821334977932
323 => 0.044914099632793
324 => 0.044277392465254
325 => 0.044363306015169
326 => 0.044307354703079
327 => 0.044337907902891
328 => 0.042715769983262
329 => 0.043306791784116
330 => 0.042324103409633
331 => 0.041008393988147
401 => 0.041003983268819
402 => 0.041326001285763
403 => 0.041134452368718
404 => 0.040618999158124
405 => 0.040692216853818
406 => 0.040050752796255
407 => 0.040770102204488
408 => 0.04079073057156
409 => 0.040513741866163
410 => 0.041621998880635
411 => 0.042076052683716
412 => 0.041893732784151
413 => 0.042063260633535
414 => 0.043487594861205
415 => 0.043719823488374
416 => 0.043822964104401
417 => 0.043684769342439
418 => 0.04208929484853
419 => 0.042160060926816
420 => 0.041640826398382
421 => 0.041202127937442
422 => 0.041219673575209
423 => 0.04144522161094
424 => 0.042430203111196
425 => 0.044503038610652
426 => 0.044581701202634
427 => 0.044677042558865
428 => 0.044289241348347
429 => 0.044172276792497
430 => 0.044326583232776
501 => 0.045105031261859
502 => 0.047107410939239
503 => 0.046399636226811
504 => 0.045824204368437
505 => 0.046329013243546
506 => 0.046251301874046
507 => 0.045595339709506
508 => 0.045576929036297
509 => 0.044317927918754
510 => 0.043852503871667
511 => 0.043463560701535
512 => 0.043038844913369
513 => 0.042787059157542
514 => 0.043173916513072
515 => 0.043262395367443
516 => 0.042416524998468
517 => 0.042301235992776
518 => 0.04299199199546
519 => 0.042688016032658
520 => 0.043000662848641
521 => 0.043073199591784
522 => 0.043061519505475
523 => 0.042744133688893
524 => 0.042946425943801
525 => 0.042467944454719
526 => 0.041947667700939
527 => 0.041615763546414
528 => 0.041326133150893
529 => 0.041486836927746
530 => 0.040913957306618
531 => 0.040730681586031
601 => 0.042877893879558
602 => 0.044464062687209
603 => 0.044440999164554
604 => 0.044300605901848
605 => 0.0440920099912
606 => 0.045089771171732
607 => 0.044742171127299
608 => 0.044995079202579
609 => 0.045059454922257
610 => 0.045254300836994
611 => 0.04532394150394
612 => 0.045113439039875
613 => 0.044406967059764
614 => 0.042646506054667
615 => 0.041827006704521
616 => 0.041556558269131
617 => 0.041566388556103
618 => 0.041295225357089
619 => 0.041375095071881
620 => 0.041267449929746
621 => 0.041063596072699
622 => 0.041474249526518
623 => 0.041521573511569
624 => 0.041425722088504
625 => 0.041448298568508
626 => 0.040654689724211
627 => 0.040715026081015
628 => 0.040379065579156
629 => 0.040316077035122
630 => 0.03946679814185
701 => 0.037962177477476
702 => 0.038795883382601
703 => 0.037788883886
704 => 0.037407517918105
705 => 0.039212845095544
706 => 0.039031640318911
707 => 0.038721496509137
708 => 0.038262729174848
709 => 0.038092567907959
710 => 0.037058721916849
711 => 0.036997636780341
712 => 0.037510038769725
713 => 0.0372735828823
714 => 0.036941509263508
715 => 0.035738772278008
716 => 0.034386497693775
717 => 0.034427314363378
718 => 0.034857447748659
719 => 0.036108118577755
720 => 0.035619459848002
721 => 0.035264932332854
722 => 0.035198539986324
723 => 0.036029579204932
724 => 0.037205673807359
725 => 0.037757471081185
726 => 0.037210656741156
727 => 0.036582505869906
728 => 0.036620738502868
729 => 0.036875083081444
730 => 0.036901811100413
731 => 0.036492949458183
801 => 0.03660804161555
802 => 0.036433206104261
803 => 0.035360240894206
804 => 0.035340834355966
805 => 0.035077511389517
806 => 0.035069538074744
807 => 0.034621560019823
808 => 0.034558884793213
809 => 0.033669397174842
810 => 0.03425486061887
811 => 0.033862162478826
812 => 0.033270273753653
813 => 0.033168231914337
814 => 0.033165164413428
815 => 0.033772901790283
816 => 0.03424775885378
817 => 0.033868993631101
818 => 0.033782756131952
819 => 0.034703547007163
820 => 0.034586367975098
821 => 0.034484891689052
822 => 0.037100367435231
823 => 0.035030014294013
824 => 0.034127222152816
825 => 0.033009845442507
826 => 0.033373668933686
827 => 0.033450331888957
828 => 0.030763242322955
829 => 0.029673090420684
830 => 0.029298991369332
831 => 0.029083692076295
901 => 0.02918180666769
902 => 0.028200542093581
903 => 0.028859968116
904 => 0.028010275939052
905 => 0.027867822280449
906 => 0.029387177149495
907 => 0.029598586503581
908 => 0.028696648519314
909 => 0.029275838715709
910 => 0.029065816299151
911 => 0.028024841472661
912 => 0.027985083891182
913 => 0.027462759315284
914 => 0.026645422495971
915 => 0.026271877637471
916 => 0.026077332231899
917 => 0.026157605457852
918 => 0.026117016858409
919 => 0.025852148791855
920 => 0.02613219878594
921 => 0.025416786775698
922 => 0.025131903948754
923 => 0.025003228985054
924 => 0.024368259648386
925 => 0.025378778235171
926 => 0.025577863126946
927 => 0.025777340277457
928 => 0.027513652683827
929 => 0.027426911422772
930 => 0.028211010177996
1001 => 0.028180541542233
1002 => 0.027956903875686
1003 => 0.027013413347133
1004 => 0.027389471855712
1005 => 0.026232022218772
1006 => 0.027099262185693
1007 => 0.026703490081597
1008 => 0.026965451239187
1009 => 0.026494421457755
1010 => 0.026755108787142
1011 => 0.025625073540348
1012 => 0.024569862526916
1013 => 0.024994510242251
1014 => 0.025456150873176
1015 => 0.026457105384868
1016 => 0.0258609451354
1017 => 0.026075346904424
1018 => 0.025357136868617
1019 => 0.023875264418194
1020 => 0.023883651655333
1021 => 0.023655697863181
1022 => 0.023458712504964
1023 => 0.025929421311505
1024 => 0.025622149615285
1025 => 0.025132552382084
1026 => 0.025787897734544
1027 => 0.025961181447464
1028 => 0.025966114591162
1029 => 0.026444237643405
1030 => 0.026699412002095
1031 => 0.026744387588803
1101 => 0.02749672454204
1102 => 0.0277488979652
1103 => 0.028787564606279
1104 => 0.026677762240564
1105 => 0.026634312249237
1106 => 0.025797119787599
1107 => 0.025266159092939
1108 => 0.025833475120619
1109 => 0.026336039674783
1110 => 0.02581273586919
1111 => 0.025881068298654
1112 => 0.025178575695137
1113 => 0.025429683745545
1114 => 0.025645971826464
1115 => 0.025526550261007
1116 => 0.025347770397448
1117 => 0.026294835112512
1118 => 0.026241398009711
1119 => 0.027123326445303
1120 => 0.027810852728154
1121 => 0.029043022737047
1122 => 0.027757189098292
1123 => 0.02771032820977
1124 => 0.028168400911796
1125 => 0.027748827836656
1126 => 0.028013983536974
1127 => 0.029000302054435
1128 => 0.029021141410488
1129 => 0.028672055346597
1130 => 0.028650813427884
1201 => 0.028717859225038
1202 => 0.029110548553102
1203 => 0.028973330835752
1204 => 0.029132122652197
1205 => 0.029330694250168
1206 => 0.03015207057199
1207 => 0.030350101622424
1208 => 0.029868988837196
1209 => 0.029912427934911
1210 => 0.029732478546394
1211 => 0.029558649691846
1212 => 0.029949391571204
1213 => 0.030663480035782
1214 => 0.030659037728505
1215 => 0.030824692372391
1216 => 0.030927893843175
1217 => 0.030484877582477
1218 => 0.030196490286923
1219 => 0.030307076326599
1220 => 0.030483905812291
1221 => 0.030249732907637
1222 => 0.028804309260667
1223 => 0.029242758461138
1224 => 0.029169779075109
1225 => 0.029065847554807
1226 => 0.029506711616308
1227 => 0.029464189202081
1228 => 0.028190477807077
1229 => 0.028272016678039
1230 => 0.028195436455885
1231 => 0.028442882820502
]
'min_raw' => 0.023458712504964
'max_raw' => 0.052550411889111
'avg_raw' => 0.038004562197038
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023458'
'max' => '$0.05255'
'avg' => '$0.0380045'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0057205286404569
'max_diff' => -0.038187294670163
'year' => 2034
]
9 => [
'items' => [
101 => 0.027735464920917
102 => 0.027953061902297
103 => 0.028089536689174
104 => 0.028169921387093
105 => 0.02846032603628
106 => 0.028426250402535
107 => 0.028458207847042
108 => 0.028888801277801
109 => 0.03106659508876
110 => 0.031185127600859
111 => 0.030601430160053
112 => 0.030834605774732
113 => 0.030386959584449
114 => 0.030687467470955
115 => 0.030893067334829
116 => 0.029964001084561
117 => 0.02990898781081
118 => 0.029459494025463
119 => 0.029701026525079
120 => 0.029316730951389
121 => 0.029411023643084
122 => 0.029147373056815
123 => 0.029621891619791
124 => 0.030152477105927
125 => 0.030286523953181
126 => 0.029933904408852
127 => 0.029678584619998
128 => 0.029230327178337
129 => 0.029975789293888
130 => 0.030193785134022
131 => 0.029974644254543
201 => 0.029923864524446
202 => 0.029827637027667
203 => 0.029944279642784
204 => 0.030192597881859
205 => 0.030075495586029
206 => 0.030152843715502
207 => 0.029858072406997
208 => 0.030485024239294
209 => 0.031480774633156
210 => 0.031483976133494
211 => 0.031366873206439
212 => 0.031318957211706
213 => 0.031439111921264
214 => 0.031504290922195
215 => 0.031892849220301
216 => 0.032309787755014
217 => 0.034255457971987
218 => 0.033709121560786
219 => 0.035435435925723
220 => 0.036800726454524
221 => 0.037210117387192
222 => 0.036833496992469
223 => 0.035545098966756
224 => 0.035481884012988
225 => 0.037407294611018
226 => 0.036863277927682
227 => 0.036798568874246
228 => 0.036110173873358
301 => 0.036517100578262
302 => 0.036428099738645
303 => 0.036287607559239
304 => 0.037063995365437
305 => 0.038517324030022
306 => 0.038290809128416
307 => 0.038121726262092
308 => 0.03738085436114
309 => 0.037827024725243
310 => 0.037668152004416
311 => 0.038350770036207
312 => 0.037946402236015
313 => 0.036859156466251
314 => 0.037032303938695
315 => 0.037006133046559
316 => 0.037544728152219
317 => 0.037383055270252
318 => 0.036974563821598
319 => 0.038512356710643
320 => 0.038412500994082
321 => 0.038554073569971
322 => 0.038616398196154
323 => 0.039552425628766
324 => 0.03993588611837
325 => 0.040022938362931
326 => 0.040387196170156
327 => 0.040013875296856
328 => 0.041507424963328
329 => 0.042500548340493
330 => 0.043654112248731
331 => 0.045339779167416
401 => 0.045973605522132
402 => 0.045859110464312
403 => 0.047137163883808
404 => 0.049433797469111
405 => 0.046323325775169
406 => 0.049598660021705
407 => 0.048561727014804
408 => 0.04610317750907
409 => 0.045944875905296
410 => 0.047609834174925
411 => 0.05130255137067
412 => 0.050377567595587
413 => 0.051304064312759
414 => 0.050223256678408
415 => 0.0501695854696
416 => 0.051251571898367
417 => 0.05377969216519
418 => 0.052578676991593
419 => 0.05085672723924
420 => 0.052128188139872
421 => 0.051026731039593
422 => 0.048544839914235
423 => 0.050376860277927
424 => 0.049151840433662
425 => 0.049509366349855
426 => 0.052084175854551
427 => 0.051774367962845
428 => 0.052175288062151
429 => 0.051467674580782
430 => 0.050806652008779
501 => 0.049572804289956
502 => 0.04920752280837
503 => 0.049308473468429
504 => 0.049207472782236
505 => 0.0485171463232
506 => 0.048368070390098
507 => 0.048119603970428
508 => 0.048196614103426
509 => 0.047729424543031
510 => 0.048611107769785
511 => 0.048774755946036
512 => 0.049416371472188
513 => 0.049482986124591
514 => 0.0512698762321
515 => 0.050285687188352
516 => 0.050945966169692
517 => 0.050886904602814
518 => 0.046156461731834
519 => 0.046808275022404
520 => 0.047822291952253
521 => 0.047365478699823
522 => 0.046719651638727
523 => 0.046198111659835
524 => 0.045407925261613
525 => 0.046520097442925
526 => 0.047982485595024
527 => 0.049520074701436
528 => 0.051367387265963
529 => 0.050955088606649
530 => 0.049485540478006
531 => 0.049551463333552
601 => 0.049958972486846
602 => 0.049431211107219
603 => 0.049275563973242
604 => 0.049937588960761
605 => 0.049942147963008
606 => 0.049334894713655
607 => 0.04866004385317
608 => 0.048657216203424
609 => 0.048537133011087
610 => 0.050244619211558
611 => 0.051183563975491
612 => 0.051291212479491
613 => 0.051176318373473
614 => 0.051220536554896
615 => 0.050674185284999
616 => 0.051922982272546
617 => 0.053069001881541
618 => 0.052761844145193
619 => 0.052301371033361
620 => 0.051934582020397
621 => 0.052675440310461
622 => 0.052642451057023
623 => 0.053058992400022
624 => 0.053040095678644
625 => 0.052900028491906
626 => 0.052761849147433
627 => 0.053309714629185
628 => 0.053151938168891
629 => 0.052993916638175
630 => 0.052676980266438
701 => 0.052720057183113
702 => 0.052259663578456
703 => 0.052046664430764
704 => 0.04884366830589
705 => 0.047987723080406
706 => 0.048257020872715
707 => 0.048345680698257
708 => 0.047973172239203
709 => 0.048507253679915
710 => 0.048424017653112
711 => 0.048747840341955
712 => 0.048545529984713
713 => 0.048553832872342
714 => 0.049148784495875
715 => 0.049321501483292
716 => 0.049233656229495
717 => 0.049295180034095
718 => 0.050712970143538
719 => 0.05051140572835
720 => 0.05040432865011
721 => 0.05043398973256
722 => 0.050796265503286
723 => 0.050897682939565
724 => 0.050467970135573
725 => 0.050670625178076
726 => 0.051533504628299
727 => 0.05183546360113
728 => 0.052799171693876
729 => 0.052389771367532
730 => 0.053141243384968
731 => 0.055451012170876
801 => 0.057296215300902
802 => 0.055599290246286
803 => 0.058987770809378
804 => 0.061626188976412
805 => 0.061524922092646
806 => 0.061064852857512
807 => 0.058061083920319
808 => 0.055296970960642
809 => 0.057609268821848
810 => 0.057615163344624
811 => 0.057416534907671
812 => 0.056182870744807
813 => 0.057373606068926
814 => 0.057468122314839
815 => 0.057415218351026
816 => 0.056469370929836
817 => 0.055025236739503
818 => 0.055307417103526
819 => 0.055769634296118
820 => 0.054894560721933
821 => 0.054614921692404
822 => 0.055134823851801
823 => 0.056810056935296
824 => 0.056493363824826
825 => 0.056485093687855
826 => 0.057840041113226
827 => 0.056870191172615
828 => 0.055310976301583
829 => 0.054917253983129
830 => 0.053519804995754
831 => 0.054485027988877
901 => 0.054519764646046
902 => 0.053991121877052
903 => 0.05535387274877
904 => 0.055341314759579
905 => 0.056635043893576
906 => 0.059108168095304
907 => 0.058376743573802
908 => 0.057526176434057
909 => 0.057618656665816
910 => 0.058632936547549
911 => 0.058019679777295
912 => 0.058240211187657
913 => 0.058632602746847
914 => 0.05886934231704
915 => 0.05758459348488
916 => 0.057285057075463
917 => 0.05667231070479
918 => 0.056512456614134
919 => 0.057011525747675
920 => 0.056880038663359
921 => 0.054516845164518
922 => 0.054269878295204
923 => 0.054277452416499
924 => 0.053656442480975
925 => 0.05270925326984
926 => 0.055198409962974
927 => 0.05499849584479
928 => 0.054777806130438
929 => 0.054804839361208
930 => 0.05588529791635
1001 => 0.055258577389903
1002 => 0.056924816626936
1003 => 0.056582287931538
1004 => 0.056230974667583
1005 => 0.05618241247324
1006 => 0.056047186839256
1007 => 0.055583447825084
1008 => 0.055023455099076
1009 => 0.054653699395627
1010 => 0.050415148708846
1011 => 0.051201799061797
1012 => 0.052106768587432
1013 => 0.052419160441244
1014 => 0.051884792558441
1015 => 0.055604547926108
1016 => 0.056284183076235
1017 => 0.054225523874995
1018 => 0.053840432792945
1019 => 0.055629794433336
1020 => 0.054550590623616
1021 => 0.055036556033052
1022 => 0.053986164626718
1023 => 0.056120478870609
1024 => 0.056104218972025
1025 => 0.055273922525478
1026 => 0.055975683396475
1027 => 0.055853735175652
1028 => 0.05491633253243
1029 => 0.056150196206414
1030 => 0.056150808187403
1031 => 0.055351665909802
1101 => 0.054418442684305
1102 => 0.054251604413334
1103 => 0.054125914187726
1104 => 0.055005643942504
1105 => 0.055794406889794
1106 => 0.057262099183783
1107 => 0.057631111898
1108 => 0.059071393088159
1109 => 0.058213775765438
1110 => 0.058593946416596
1111 => 0.059006675436851
1112 => 0.059204552906768
1113 => 0.058882122188229
1114 => 0.061119471719934
1115 => 0.061308372571029
1116 => 0.061371709392415
1117 => 0.060617287718629
1118 => 0.061287390739542
1119 => 0.060973871727536
1120 => 0.061789561098685
1121 => 0.061917471607326
1122 => 0.061809135957055
1123 => 0.061849736771428
1124 => 0.059940553641621
1125 => 0.059841552424597
1126 => 0.058491663805671
1127 => 0.059041753395756
1128 => 0.058013387273572
1129 => 0.058339492764262
1130 => 0.05848323695731
1201 => 0.058408153148273
1202 => 0.059072854635832
1203 => 0.058507722581864
1204 => 0.057016246175132
1205 => 0.055524363416649
1206 => 0.055505634043878
1207 => 0.055112847647488
1208 => 0.054828935025314
1209 => 0.054883626668686
1210 => 0.055076367153472
1211 => 0.054817732597955
1212 => 0.05487292539348
1213 => 0.055789493546856
1214 => 0.055973304753351
1215 => 0.055348642454008
1216 => 0.052840533183805
1217 => 0.052225036877781
1218 => 0.052667443416728
1219 => 0.052456001585742
1220 => 0.042336087302758
1221 => 0.044713611052735
1222 => 0.043300967173576
1223 => 0.043951978465712
1224 => 0.042510034867451
1225 => 0.04319820593128
1226 => 0.043071125863774
1227 => 0.046894113697695
1228 => 0.046834423001016
1229 => 0.046862993778754
1230 => 0.045499236116517
1231 => 0.047671739102517
]
'min_raw' => 0.027735464920917
'max_raw' => 0.061917471607326
'avg_raw' => 0.044826468264121
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027735'
'max' => '$0.061917'
'avg' => '$0.044826'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042767524159532
'max_diff' => 0.0093670597182145
'year' => 2035
]
10 => [
'items' => [
101 => 0.048741992194101
102 => 0.048543916830712
103 => 0.048593768132311
104 => 0.047737157605581
105 => 0.046871287641111
106 => 0.045910904594081
107 => 0.04769517758853
108 => 0.047496796890103
109 => 0.047951810837172
110 => 0.04910903941654
111 => 0.049279445720736
112 => 0.049508473521665
113 => 0.049426383358341
114 => 0.051382104090856
115 => 0.051145253405888
116 => 0.051715995410069
117 => 0.050541935805168
118 => 0.049213375919462
119 => 0.04946589171984
120 => 0.049441572417659
121 => 0.04913195978851
122 => 0.048852455350629
123 => 0.048387159211446
124 => 0.049859425046695
125 => 0.049799653742457
126 => 0.050767281681529
127 => 0.050596244044262
128 => 0.049454012842581
129 => 0.049494807853407
130 => 0.049769173906625
131 => 0.050718757949469
201 => 0.051000659145997
202 => 0.050870071279945
203 => 0.051179163072659
204 => 0.051423456622933
205 => 0.051209842581364
206 => 0.054234166937835
207 => 0.05297825660987
208 => 0.053590378565152
209 => 0.053736366044655
210 => 0.053362422185695
211 => 0.053443517218778
212 => 0.053566354096824
213 => 0.054312195566398
214 => 0.056269499393527
215 => 0.057136375934745
216 => 0.059744416779934
217 => 0.057064393905501
218 => 0.056905372439169
219 => 0.057375159350676
220 => 0.058906355415962
221 => 0.060147246008944
222 => 0.060558921007331
223 => 0.060613330654382
224 => 0.061385660318993
225 => 0.061828345279653
226 => 0.061291879183423
227 => 0.060837280337209
228 => 0.059208963696957
229 => 0.059397445781825
301 => 0.060695900437877
302 => 0.062530044118147
303 => 0.064103930205944
304 => 0.063552810153466
305 => 0.067757467123754
306 => 0.068174341687874
307 => 0.068116743102281
308 => 0.069066445398601
309 => 0.067181479743916
310 => 0.066375620407048
311 => 0.060935569767677
312 => 0.062464002100558
313 => 0.064685668258085
314 => 0.064391622411316
315 => 0.062778189062413
316 => 0.064102706272069
317 => 0.063664779461074
318 => 0.063319368415642
319 => 0.064901763375991
320 => 0.063161855115885
321 => 0.06466831134223
322 => 0.062736265649649
323 => 0.063555327623443
324 => 0.063090388433547
325 => 0.063391261070213
326 => 0.061632365784101
327 => 0.062581422985718
328 => 0.061592881884303
329 => 0.061592413187109
330 => 0.061570591087505
331 => 0.062733605309458
401 => 0.062771531161482
402 => 0.061912061894242
403 => 0.0617881989454
404 => 0.06224618518647
405 => 0.061710003244963
406 => 0.061960879400705
407 => 0.061717602028149
408 => 0.061662835167381
409 => 0.06122644350297
410 => 0.061038433975103
411 => 0.061112157355388
412 => 0.060860501451466
413 => 0.060708869666562
414 => 0.061540427708971
415 => 0.061096159791867
416 => 0.061472337278976
417 => 0.061043635555032
418 => 0.059557568603392
419 => 0.058702915784631
420 => 0.055895873071463
421 => 0.056691946902792
422 => 0.057219744676561
423 => 0.057045307515479
424 => 0.057420066035704
425 => 0.057443073165183
426 => 0.057321235350047
427 => 0.05718016276851
428 => 0.057111496437621
429 => 0.057623279010798
430 => 0.057920386020336
501 => 0.057272716244182
502 => 0.057120976277492
503 => 0.057775806180013
504 => 0.058175252042267
505 => 0.061124535859912
506 => 0.06090604338864
507 => 0.061454416614551
508 => 0.061392678204787
509 => 0.061967460708248
510 => 0.062906987180197
511 => 0.060996667166992
512 => 0.061328232667388
513 => 0.061246940463657
514 => 0.062134467428038
515 => 0.062137238190344
516 => 0.061605121439937
517 => 0.061893590562941
518 => 0.061732575012217
519 => 0.062023551874932
520 => 0.060903125288477
521 => 0.062267683928203
522 => 0.063041300746712
523 => 0.063052042416987
524 => 0.063418730649157
525 => 0.063791307130192
526 => 0.064506435240966
527 => 0.063771362595319
528 => 0.06244903846368
529 => 0.062544505994903
530 => 0.061769227840342
531 => 0.061782260406186
601 => 0.061712691548332
602 => 0.06192147292765
603 => 0.060948941060442
604 => 0.061177192345807
605 => 0.060857639209659
606 => 0.061327538021278
607 => 0.060822004577032
608 => 0.061246901262095
609 => 0.061430272585819
610 => 0.062106916718066
611 => 0.060722063688536
612 => 0.057898254615017
613 => 0.058491853517646
614 => 0.05761387411447
615 => 0.057695134450937
616 => 0.057859293263088
617 => 0.057327200843487
618 => 0.057428707308987
619 => 0.05742508078375
620 => 0.057393829348459
621 => 0.057255411559736
622 => 0.057054678380964
623 => 0.057854337582779
624 => 0.05799021526355
625 => 0.05829225451622
626 => 0.059190918456983
627 => 0.059101120737346
628 => 0.059247584543746
629 => 0.058927854876734
630 => 0.057709965793183
701 => 0.057776103029861
702 => 0.05695137062871
703 => 0.058271164254471
704 => 0.057958619703466
705 => 0.057757120198211
706 => 0.057702139191322
707 => 0.058603030746173
708 => 0.05887259161913
709 => 0.05870461937266
710 => 0.058360103394619
711 => 0.059021675919464
712 => 0.059198684817609
713 => 0.059238310582067
714 => 0.060410490252144
715 => 0.059303822404332
716 => 0.059570208354633
717 => 0.061648475495655
718 => 0.059763773980009
719 => 0.060762142406706
720 => 0.060713277467478
721 => 0.061224008971631
722 => 0.060671382577002
723 => 0.06067823304348
724 => 0.061131728019219
725 => 0.060494876114044
726 => 0.060337182626254
727 => 0.060119330202294
728 => 0.060595003000039
729 => 0.060880147329456
730 => 0.063178201209127
731 => 0.064662848819384
801 => 0.064598396351143
802 => 0.065187371260899
803 => 0.064922032669662
804 => 0.064065184365775
805 => 0.065527719938992
806 => 0.065064912488538
807 => 0.065103065772443
808 => 0.06510164570531
809 => 0.065409372200532
810 => 0.065191319775948
811 => 0.064761516064471
812 => 0.065046839826249
813 => 0.065894149393618
814 => 0.068524224289362
815 => 0.069996049044878
816 => 0.068435618591002
817 => 0.069511982623089
818 => 0.068866547751556
819 => 0.068749253035375
820 => 0.069425289190202
821 => 0.070102508656827
822 => 0.070059372704503
823 => 0.069567746147338
824 => 0.069290038779758
825 => 0.07139293200587
826 => 0.072942307913018
827 => 0.072836650863299
828 => 0.073302986719248
829 => 0.07467216321554
830 => 0.074797343555282
831 => 0.074781573709712
901 => 0.074471301176443
902 => 0.075819433247077
903 => 0.076944068738527
904 => 0.074399482049626
905 => 0.075368427349674
906 => 0.075803418112333
907 => 0.076442113607861
908 => 0.07751969996661
909 => 0.078690244567877
910 => 0.078855772408864
911 => 0.078738322484447
912 => 0.077966316853984
913 => 0.079247140724192
914 => 0.079997417308344
915 => 0.080444189844432
916 => 0.08157713066009
917 => 0.075806104467195
918 => 0.071721085289252
919 => 0.071083150556224
920 => 0.07238041592138
921 => 0.072722494452675
922 => 0.07258460302564
923 => 0.06798654254717
924 => 0.071058942719395
925 => 0.074364586969966
926 => 0.07449157022829
927 => 0.076146444857888
928 => 0.076685339872888
929 => 0.07801773085909
930 => 0.077934389440132
1001 => 0.078258805442301
1002 => 0.078184227821504
1003 => 0.08065220155542
1004 => 0.083374743081575
1005 => 0.083280470125676
1006 => 0.082889072569642
1007 => 0.083470364683553
1008 => 0.086280319303827
1009 => 0.086021623710997
1010 => 0.086272924443793
1011 => 0.089586019303197
1012 => 0.093893513902672
1013 => 0.091892250195829
1014 => 0.096234416591559
1015 => 0.098967580169321
1016 => 0.10369430396267
1017 => 0.10310249486414
1018 => 0.10494257375059
1019 => 0.10204303306348
1020 => 0.095385101552018
1021 => 0.094331458404792
1022 => 0.096440878668033
1023 => 0.10162668255099
1024 => 0.09627755924905
1025 => 0.09735967992632
1026 => 0.097048029098468
1027 => 0.097031422550282
1028 => 0.09766522695081
1029 => 0.096745860610831
1030 => 0.093000196750909
1031 => 0.094716812424575
1101 => 0.094053944674317
1102 => 0.094789445863293
1103 => 0.09875864243643
1104 => 0.097003766017618
1105 => 0.095155146264983
1106 => 0.09747372567635
1107 => 0.10042607401735
1108 => 0.10024132136405
1109 => 0.099882823996028
1110 => 0.10190365488924
1111 => 0.10524147547693
1112 => 0.10614367496934
1113 => 0.10680966018997
1114 => 0.10690148829998
1115 => 0.10784737490397
1116 => 0.10276110424021
1117 => 0.11083314640829
1118 => 0.11222696510506
1119 => 0.11196498495793
1120 => 0.11351415577853
1121 => 0.11305835042444
1122 => 0.11239795998003
1123 => 0.11485372524876
1124 => 0.1120383885382
1125 => 0.1080423725186
1126 => 0.10585007909801
1127 => 0.10873706792151
1128 => 0.11050005125399
1129 => 0.11166527108996
1130 => 0.11201786590828
1201 => 0.10315593695309
1202 => 0.098379848751346
1203 => 0.1014412665307
1204 => 0.10517640750928
1205 => 0.10274035534349
1206 => 0.10283584397633
1207 => 0.099362673771157
1208 => 0.10548370600554
1209 => 0.10459192309498
1210 => 0.10921849441253
1211 => 0.10811432603704
1212 => 0.11188711534404
1213 => 0.11089361347957
1214 => 0.11501758417305
1215 => 0.11666274773473
1216 => 0.11942523340405
1217 => 0.12145732910774
1218 => 0.12265061457275
1219 => 0.12257897418933
1220 => 0.12730736569414
1221 => 0.12451919842117
1222 => 0.12101660320575
1223 => 0.12095325230885
1224 => 0.12276729600307
1225 => 0.12656903392758
1226 => 0.12755476925837
1227 => 0.1281056608318
1228 => 0.12726195121042
1229 => 0.12423559546537
1230 => 0.12292883039862
1231 => 0.12404223209612
]
'min_raw' => 0.045910904594081
'max_raw' => 0.1281056608318
'avg_raw' => 0.087008282712938
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.04591'
'max' => '$0.1281056'
'avg' => '$0.0870082'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018175439673165
'max_diff' => 0.066188189224469
'year' => 2036
]
11 => [
'items' => [
101 => 0.12268063749578
102 => 0.12503113177193
103 => 0.12825886245157
104 => 0.12759234883006
105 => 0.12982040393748
106 => 0.13212620657543
107 => 0.13542360790777
108 => 0.13628567071846
109 => 0.13771062776322
110 => 0.13917737663629
111 => 0.13964845684432
112 => 0.14054789512907
113 => 0.14054315464534
114 => 0.1432536724556
115 => 0.14624345753808
116 => 0.14737203219303
117 => 0.14996712738211
118 => 0.14552311781378
119 => 0.14889395012046
120 => 0.1519345252385
121 => 0.14830942623458
122 => 0.15330578067174
123 => 0.15349977779255
124 => 0.15642890399283
125 => 0.15345967343617
126 => 0.15169655380974
127 => 0.156786614108
128 => 0.15924953395093
129 => 0.15850768245033
130 => 0.15286215590106
131 => 0.14957621730136
201 => 0.14097628217573
202 => 0.15116327682159
203 => 0.15612506475488
204 => 0.152849306069
205 => 0.15450140821065
206 => 0.16351474179963
207 => 0.16694643566017
208 => 0.16623266732653
209 => 0.16635328242529
210 => 0.16820496214279
211 => 0.17641632974884
212 => 0.17149588794128
213 => 0.17525738133772
214 => 0.17725246387212
215 => 0.17910560771723
216 => 0.17455487212577
217 => 0.16863443198487
218 => 0.16675918006908
219 => 0.15252359642583
220 => 0.15178257247519
221 => 0.15136661327638
222 => 0.14874404936644
223 => 0.14668343251393
224 => 0.14504475348703
225 => 0.14074437036944
226 => 0.14219562343256
227 => 0.13534171030283
228 => 0.13972660103546
301 => 0.12878759018691
302 => 0.13789792347605
303 => 0.13293958326279
304 => 0.13626897536186
305 => 0.13625735942648
306 => 0.13012689298737
307 => 0.12659096788486
308 => 0.12884419698044
309 => 0.13125983743245
310 => 0.1316517669686
311 => 0.1347837078693
312 => 0.13565776525384
313 => 0.13300933057285
314 => 0.12856090350135
315 => 0.12959417165224
316 => 0.12657002873876
317 => 0.12127033460487
318 => 0.12507666745561
319 => 0.1263763168435
320 => 0.12695031605258
321 => 0.12173867554589
322 => 0.12010106494846
323 => 0.11922921480728
324 => 0.12788814615691
325 => 0.12836250196268
326 => 0.12593563059323
327 => 0.13690531930852
328 => 0.13442254090476
329 => 0.13719641267723
330 => 0.12950041339775
331 => 0.12979441093426
401 => 0.12615100154149
402 => 0.12819106734874
403 => 0.12674921459057
404 => 0.12802625019184
405 => 0.12879170006582
406 => 0.13243451161096
407 => 0.13793951853236
408 => 0.13189039704318
409 => 0.12925470818532
410 => 0.13088987472906
411 => 0.13524453871475
412 => 0.14184207756423
413 => 0.1379362017775
414 => 0.13966956312558
415 => 0.14004822546826
416 => 0.1371681772665
417 => 0.14194826904949
418 => 0.14450995906939
419 => 0.14713772296275
420 => 0.14941933672308
421 => 0.14608813627797
422 => 0.14965299826306
423 => 0.14678034878593
424 => 0.1442032852359
425 => 0.14420719357754
426 => 0.14259056396772
427 => 0.13945814039024
428 => 0.13888047342256
429 => 0.14188556993976
430 => 0.14429537276285
501 => 0.14449385566554
502 => 0.14582804632854
503 => 0.14661760661965
504 => 0.1543563708277
505 => 0.15746896581059
506 => 0.16127498803726
507 => 0.1627576481902
508 => 0.16721992368749
509 => 0.16361627381513
510 => 0.16283660149723
511 => 0.15201258074
512 => 0.15378501353262
513 => 0.15662284944794
514 => 0.15205937560901
515 => 0.15495384939293
516 => 0.15552527983121
517 => 0.15190431051419
518 => 0.15383842667926
519 => 0.14870198757032
520 => 0.13805147886867
521 => 0.14196012611028
522 => 0.14483820611655
523 => 0.1407308310829
524 => 0.14809314185334
525 => 0.14379223189019
526 => 0.14242904991196
527 => 0.13711079100542
528 => 0.13962080449075
529 => 0.14301563366959
530 => 0.14091802392832
531 => 0.14527087909915
601 => 0.1514356828851
602 => 0.15582908918339
603 => 0.15616636036583
604 => 0.15334169445139
605 => 0.15786823960605
606 => 0.15790121054576
607 => 0.15279524911983
608 => 0.14966787617655
609 => 0.14895733046379
610 => 0.15073241296496
611 => 0.15288769081969
612 => 0.1562859632868
613 => 0.15833946816681
614 => 0.16369391979905
615 => 0.16514268088657
616 => 0.16673443008485
617 => 0.16886149789101
618 => 0.17141558816131
619 => 0.16582738405434
620 => 0.16604941382123
621 => 0.16084575553078
622 => 0.15528490036734
623 => 0.15950489626601
624 => 0.16502197954098
625 => 0.16375635454187
626 => 0.16361394587509
627 => 0.16385343775174
628 => 0.16289919783385
629 => 0.15858320605104
630 => 0.15641574199725
701 => 0.1592123236057
702 => 0.16069858226905
703 => 0.16300363984055
704 => 0.162719492841
705 => 0.16865707360005
706 => 0.1709642379399
707 => 0.17037396657264
708 => 0.17048259070989
709 => 0.17465960154265
710 => 0.17930529665647
711 => 0.18365660318403
712 => 0.18808293907683
713 => 0.18274681839523
714 => 0.18003746539929
715 => 0.18283282610768
716 => 0.18134956836826
717 => 0.18987280730182
718 => 0.19046293787297
719 => 0.19898556047935
720 => 0.20707454418782
721 => 0.20199399844972
722 => 0.20678472424794
723 => 0.21196628479232
724 => 0.22196235576032
725 => 0.21859603072432
726 => 0.21601747850377
727 => 0.21358075911483
728 => 0.21865118534491
729 => 0.22517420768786
730 => 0.2265792042238
731 => 0.22885583536201
801 => 0.22646223609339
802 => 0.22934506276613
803 => 0.23952270769912
804 => 0.23677261819767
805 => 0.23286704900666
806 => 0.24090132220985
807 => 0.24380889444964
808 => 0.26421575913587
809 => 0.28998026876777
810 => 0.27931359260127
811 => 0.27269244249324
812 => 0.27424856982441
813 => 0.28365689655829
814 => 0.28667855249984
815 => 0.27846465002342
816 => 0.28136593923933
817 => 0.29735232806744
818 => 0.30592851276896
819 => 0.29428090200902
820 => 0.26214560587329
821 => 0.23251539523277
822 => 0.24037466136041
823 => 0.23948366448296
824 => 0.25665904493614
825 => 0.23670702947258
826 => 0.23704297024319
827 => 0.2545735193751
828 => 0.2498966694164
829 => 0.242320771449
830 => 0.23257070767192
831 => 0.21454681300825
901 => 0.19858254687115
902 => 0.22989214911693
903 => 0.22854202213527
904 => 0.22658683818823
905 => 0.23093788848937
906 => 0.25206535368458
907 => 0.2515782972289
908 => 0.24847989255624
909 => 0.25083000519236
910 => 0.24190878534126
911 => 0.24420798682929
912 => 0.23251070165602
913 => 0.23779836307612
914 => 0.24230451697447
915 => 0.24320919408432
916 => 0.24524747780675
917 => 0.22783056656618
918 => 0.23565024837955
919 => 0.2402435788398
920 => 0.21949074471359
921 => 0.23983336203458
922 => 0.22752737689061
923 => 0.22335054070306
924 => 0.22897410037328
925 => 0.2267825937007
926 => 0.22489846495321
927 => 0.22384708873867
928 => 0.22797641031085
929 => 0.2277837725239
930 => 0.22102740096504
1001 => 0.21221398969144
1002 => 0.21517205980523
1003 => 0.21409736520083
1004 => 0.21020253331615
1005 => 0.21282717974263
1006 => 0.20126956518357
1007 => 0.18138529004725
1008 => 0.19452145127412
1009 => 0.19401572335628
1010 => 0.19376071240717
1011 => 0.20363217451234
1012 => 0.20268326120431
1013 => 0.20096097425844
1014 => 0.21017090216576
1015 => 0.20680915458858
1016 => 0.2171692684941
1017 => 0.22399310956244
1018 => 0.22226236273938
1019 => 0.22868021824663
1020 => 0.21524020776619
1021 => 0.21970444012816
1022 => 0.22062451223081
1023 => 0.210057253085
1024 => 0.20283851515691
1025 => 0.20235710763675
1026 => 0.1898408108728
1027 => 0.19652691557608
1028 => 0.20241041102516
1029 => 0.19959267328274
1030 => 0.19870066169101
1031 => 0.20325775545944
1101 => 0.20361188067412
1102 => 0.19553778825101
1103 => 0.19721664773902
1104 => 0.20421777089123
1105 => 0.19704023739862
1106 => 0.18309546226591
1107 => 0.1796369652314
1108 => 0.17917553797425
1109 => 0.1697958197198
1110 => 0.1798680785407
1111 => 0.17547126764562
1112 => 0.18936074058128
1113 => 0.18142714813117
1114 => 0.18108514681732
1115 => 0.18056816167074
1116 => 0.17249465069785
1117 => 0.17426223650252
1118 => 0.18013796092818
1119 => 0.18223448559803
1120 => 0.18201580089864
1121 => 0.180109166673
1122 => 0.18098201405795
1123 => 0.17817026851084
1124 => 0.17717738263673
1125 => 0.17404356170327
1126 => 0.16943771067121
1127 => 0.17007818250655
1128 => 0.16095278642556
1129 => 0.15598078631921
1130 => 0.15460460221968
1201 => 0.1527643113271
1202 => 0.15481246797283
1203 => 0.16092693532501
1204 => 0.15355159044167
1205 => 0.14090707895947
1206 => 0.14166703564474
1207 => 0.1433744326834
1208 => 0.14019270959743
1209 => 0.13718147571832
1210 => 0.13979949926708
1211 => 0.13444185306242
1212 => 0.14402187863078
1213 => 0.14376276578687
1214 => 0.14733360689394
1215 => 0.14956652711924
1216 => 0.14442036891644
1217 => 0.14312612404513
1218 => 0.14386338474398
1219 => 0.13167810766052
1220 => 0.14633780979116
1221 => 0.14646458750394
1222 => 0.14537903975811
1223 => 0.15318487857515
1224 => 0.16965763318129
1225 => 0.16345992028344
1226 => 0.16105997852253
1227 => 0.15649768748069
1228 => 0.1625766694119
1229 => 0.16210989844648
1230 => 0.15999898312319
1231 => 0.15872229494921
]
'min_raw' => 0.11922921480728
'max_raw' => 0.30592851276896
'avg_raw' => 0.21257886378812
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.119229'
'max' => '$0.305928'
'avg' => '$0.212578'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.073318310213196
'max_diff' => 0.17782285193717
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037424688126283
]
1 => [
'year' => 2028
'avg' => 0.0064231629289294
]
2 => [
'year' => 2029
'avg' => 0.017546923459352
]
3 => [
'year' => 2030
'avg' => 0.013537425317227
]
4 => [
'year' => 2031
'avg' => 0.013295429336167
]
5 => [
'year' => 2032
'avg' => 0.023311071851904
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037424688126283
'min' => '$0.003742'
'max_raw' => 0.023311071851904
'max' => '$0.023311'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023311071851904
]
1 => [
'year' => 2033
'avg' => 0.059958473852348
]
2 => [
'year' => 2034
'avg' => 0.038004562197038
]
3 => [
'year' => 2035
'avg' => 0.044826468264121
]
4 => [
'year' => 2036
'avg' => 0.087008282712938
]
5 => [
'year' => 2037
'avg' => 0.21257886378812
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023311071851904
'min' => '$0.023311'
'max_raw' => 0.21257886378812
'max' => '$0.212578'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21257886378812
]
]
]
]
'prediction_2025_max_price' => '$0.006398'
'last_price' => 0.00620458
'sma_50day_nextmonth' => '$0.005571'
'sma_200day_nextmonth' => '$0.006534'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.006087'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005896'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005542'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00537'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.005499'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006038'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.006851'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00606'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005912'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005681'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005523'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005621'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0060011'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.006346'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006379'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006462'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.005442'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005943'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005835'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.005892'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.006235'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.006188'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.006068'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00387'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.51'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 111.16
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005586'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006263'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 209.72
'cci_20_action' => 'SELL'
'adx_14' => 15.46
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000486'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 79.46
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000420'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 6
'buy_signals' => 28
'sell_pct' => 17.65
'buy_pct' => 82.35
'overall_action' => 'bullish'
'overall_action_label' => 'Rialzista'
'overall_action_dir' => 1
'last_updated' => 1767704178
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di DRAC (Ordinals) per l'anno 2026
La previsione del prezzo di DRAC (Ordinals) per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.002143 come limite inferiore e $0.006398 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3.13% entro il 2026 se DRAC raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di DRAC (Ordinals) 2027-2032
La previsione del prezzo di DRAC per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.003742 come limite inferiore e $0.023311 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se DRAC (Ordinals) raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.002063 | $0.003742 | $0.005421 |
| 2028 | $0.003724 | $0.006423 | $0.009122 |
| 2029 | $0.008181 | $0.017546 | $0.026912 |
| 2030 | $0.006957 | $0.013537 | $0.020117 |
| 2031 | $0.008226 | $0.013295 | $0.018364 |
| 2032 | $0.012556 | $0.023311 | $0.034065 |
Previsione del prezzo di DRAC (Ordinals) 2032-2037
La previsione del prezzo di DRAC (Ordinals) per gli anni 2032-2037 è attualmente stimata tra $0.023311 come limite inferiore e $0.212578 come limite superiore. Rispetto al prezzo attuale, DRAC (Ordinals) potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di DRAC (Ordinals) | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.012556 | $0.023311 | $0.034065 |
| 2033 | $0.029179 | $0.059958 | $0.090737 |
| 2034 | $0.023458 | $0.0380045 | $0.05255 |
| 2035 | $0.027735 | $0.044826 | $0.061917 |
| 2036 | $0.04591 | $0.0870082 | $0.1281056 |
| 2037 | $0.119229 | $0.212578 | $0.305928 |
DRAC (Ordinals) Istogramma dei prezzi potenziali
Previsione del prezzo di DRAC (Ordinals) basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per DRAC (Ordinals) è Rialzista, con 28 indicatori tecnici che mostrano segnali rialzisti e 6 indicando segnali ribassisti. La previsione del prezzo di DRAC è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di DRAC (Ordinals)
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di DRAC (Ordinals) è previsto aumentare nel corso del prossimo mese, raggiungendo $0.006534 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per DRAC (Ordinals) dovrebbe raggiungere $0.005571 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 67.51, suggerendo che il mercato di DRAC è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di DRAC per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.006087 | BUY |
| SMA 5 | $0.005896 | BUY |
| SMA 10 | $0.005542 | BUY |
| SMA 21 | $0.00537 | BUY |
| SMA 50 | $0.005499 | BUY |
| SMA 100 | $0.006038 | BUY |
| SMA 200 | $0.006851 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.00606 | BUY |
| EMA 5 | $0.005912 | BUY |
| EMA 10 | $0.005681 | BUY |
| EMA 21 | $0.005523 | BUY |
| EMA 50 | $0.005621 | BUY |
| EMA 100 | $0.0060011 | BUY |
| EMA 200 | $0.006346 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.006379 | SELL |
| SMA 50 | $0.006462 | SELL |
| SMA 100 | $0.005442 | BUY |
| SMA 200 | — | — |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.006235 | SELL |
| EMA 50 | $0.006188 | BUY |
| EMA 100 | $0.006068 | BUY |
| EMA 200 | $0.00387 | BUY |
Oscillatori di DRAC (Ordinals)
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 67.51 | NEUTRAL |
| Stoch RSI (14) | 111.16 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 209.72 | SELL |
| Indice Direzionale Medio (14) | 15.46 | NEUTRAL |
| Oscillatore Awesome (5, 34) | 0.000486 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 79.46 | SELL |
| VWMA (10) | 0.005586 | BUY |
| Media Mobile di Hull (9) | 0.006263 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000420 | NEUTRAL |
Previsione del prezzo di DRAC (Ordinals) sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di DRAC (Ordinals)
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di DRAC (Ordinals) sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.008718 | $0.01225 | $0.017214 | $0.024189 | $0.03399 | $0.047761 |
| Azioni Amazon.com | $0.012946 | $0.027013 | $0.056364 | $0.1176076 | $0.245395 | $0.512031 |
| Azioni Apple | $0.00880072 | $0.012483 | $0.0177064 | $0.025115 | $0.035623 | $0.050529 |
| Azioni Netflix | $0.009789 | $0.015446 | $0.024372 | $0.038456 | $0.060678 | $0.09574 |
| Azioni Google | $0.008034 | $0.0104051 | $0.013474 | $0.017449 | $0.022597 | $0.029263 |
| Azioni Tesla | $0.014065 | $0.031885 | $0.07228 | $0.163855 | $0.371447 | $0.842043 |
| Azioni Kodak | $0.004652 | $0.003489 | $0.002616 | $0.001962 | $0.001471 | $0.0011033 |
| Azioni Nokia | $0.00411 | $0.002722 | $0.0018037 | $0.001194 | $0.000791 | $0.000524 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per DRAC (Ordinals)
Potresti avere domande come: "Dovrei investire su DRAC (Ordinals) in questo momento?", "Dovrei acquistare DRAC oggi?", "DRAC (Ordinals) sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su DRAC (Ordinals) con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come DRAC (Ordinals) con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su DRAC (Ordinals) per prendere decisioni responsabili.
Il prezzo odierno di DRAC (Ordinals) è di $0.006204 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione del prezzo di DRAC (Ordinals) sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se DRAC (Ordinals) ha 1% della precedente crescita media annua di Bitcoin | $0.006365 | $0.006531 | $0.006701 | $0.006875 |
| Se DRAC (Ordinals) ha 2% della precedente crescita media annua di Bitcoin | $0.006527 | $0.006866 | $0.007223 | $0.007598 |
| Se DRAC (Ordinals) ha 5% della precedente crescita media annua di Bitcoin | $0.00701 | $0.007922 | $0.008951 | $0.010115 |
| Se DRAC (Ordinals) ha 10% della precedente crescita media annua di Bitcoin | $0.007817 | $0.009849 | $0.0124094 | $0.015635 |
| Se DRAC (Ordinals) ha 20% della precedente crescita media annua di Bitcoin | $0.00943 | $0.014332 | $0.021783 | $0.0331078 |
| Se DRAC (Ordinals) ha 50% della precedente crescita media annua di Bitcoin | $0.014268 | $0.032812 | $0.075457 | $0.173527 |
| Se DRAC (Ordinals) ha 100% della precedente crescita media annua di Bitcoin | $0.022332 | $0.080381 | $0.289317 | $1.04 |
Area domande
È DRAC un buon investimento?
La decisione di procurarsi DRAC (Ordinals) dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di DRAC (Ordinals) ha subito un aumento del 3.2342% nelle precedenti 24 ore, e DRAC (Ordinals) ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in DRAC (Ordinals) dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può DRAC (Ordinals) salire?
Sembra che il valore medio di DRAC (Ordinals) possa potenzialmente salire fino a $0.006398 entro la fine di quest'anno. Guardando le prospettive di DRAC (Ordinals) su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.020117. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di DRAC (Ordinals) la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) aumenterà del 0.86% nella prossima settimana e raggiungerà $0.006257 entro 13 gennaio 2026.
Quale sarà il prezzo di DRAC (Ordinals) il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di DRAC (Ordinals), il prezzo di DRAC (Ordinals) diminuirà del -11.62% nel prossimo mese e raggiungerà $0.005483 entro 5 febbraio 2026.
Quanto può salire il prezzo di DRAC (Ordinals) quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di DRAC (Ordinals) in 2026, DRAC dovrebbe fluttuare all'interno dell'intervallo di $0.002143 e $0.006398. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di DRAC (Ordinals) non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà DRAC (Ordinals) tra 5 anni?
Il futuro di DRAC (Ordinals) sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.020117 prevista dopo un periodo di cinque anni. Basato sulla previsione di DRAC (Ordinals) per 2030, il valore di DRAC (Ordinals) potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.020117, mentre il suo picco più basso è previsto intorno a $0.006957.
Quanto varrà DRAC (Ordinals) in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2026 aumenti del 3.13% fino a $0.006398 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.006398 e $0.002143 durante 2026.
Quanto varrà DRAC (Ordinals) in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di DRAC (Ordinals), il valore di DRAC potrebbe diminuire del -12.62% fino a $0.005421 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.005421 e $0.002063 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.009122 nello scenario migliore. Il prezzo è previsto oscillare tra $0.009122 e $0.003724 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di DRAC (Ordinals) potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.026912 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.026912 e $0.008181.
Quanto varrà DRAC (Ordinals) in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC in 2030 aumenti del 224.23%, raggiungendo $0.020117 nello scenario migliore. Il prezzo è previsto oscillare tra $0.020117 e $0.006957 nel corso di 2030.
Quanto varrà DRAC (Ordinals) in 2031?
La nostra simulazione sperimentale indica che il prezzo di DRAC (Ordinals) potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.018364 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.018364 e $0.008226 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di DRAC (Ordinals), DRAC potrebbe subire una 449.04% aumento in valore, raggiungendo $0.034065 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.034065 e $0.012556 durante l'anno.
Quanto varrà DRAC (Ordinals) in 2033?
Secondo la nostra previsione sperimentale dei prezzi di DRAC (Ordinals), si prevede che il valore di DRAC sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.090737. Durante l'anno, il prezzo di DRAC potrebbe oscillare tra $0.090737 e $0.029179.
Quanto varrà DRAC (Ordinals) in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di DRAC (Ordinals) suggeriscono che DRAC potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.05255 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.05255 e $0.023458.
Quanto varrà DRAC (Ordinals) in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di DRAC (Ordinals), DRAC potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.061917 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.061917 e $0.027735.
Quanto varrà DRAC (Ordinals) in 2036?
La nostra recente simulazione di previsione dei prezzi di DRAC (Ordinals) suggerisce che il valore di DRAC potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.1281056 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.1281056 e $0.04591.
Quanto varrà DRAC (Ordinals) in 2037?
Secondo la simulazione sperimentale, il valore di DRAC (Ordinals) potrebbe aumentare del 4830.69% in 2037, con un picco di $0.305928 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.305928 e $0.119229 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di TE-FOOD
Previsione del prezzo di TrustFi Network Token
Previsione del prezzo di RetroCraft
Previsione del prezzo di CrossWallet
Previsione del prezzo di İstanbul Başakşehir Fan Token
Previsione del prezzo di Trisolaris
Previsione del prezzo di DogeCola
Previsione del prezzo di Unistake
Previsione del prezzo di Forest Knight
Previsione del prezzo di AirCoin
Previsione del prezzo di Changer
Previsione del prezzo di RIKU
Previsione del prezzo di Glitch Protocol
Previsione del prezzo di Position
Previsione del prezzo di Primate
Previsione del prezzo di PlotX
Previsione del prezzo di Nyxia AI
Previsione del prezzo di Spartan Protocol Token
Previsione del prezzo di Playermon
Previsione del prezzo di Solrise Finance
Previsione del prezzo di AllianceBlock
Previsione del prezzo di Metaverse Face
Previsione del prezzo di Furucombo
Previsione del prezzo di Coinzix Token
Previsione del prezzo di Tranche Finance
Come leggere e prevedere i movimenti di prezzo di DRAC (Ordinals)?
I trader di DRAC (Ordinals) utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di DRAC (Ordinals)
Le medie mobili sono strumenti popolari per la previsione del prezzo di DRAC (Ordinals). Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di DRAC su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di DRAC al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di DRAC.
Come leggere i grafici di DRAC (Ordinals) e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di DRAC (Ordinals) in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di DRAC all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di DRAC (Ordinals)?
L'azione del prezzo di DRAC (Ordinals) è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di DRAC. La capitalizzazione di mercato di DRAC (Ordinals) può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di DRAC, grandi detentori di DRAC (Ordinals), poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di DRAC (Ordinals).
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


