Previsione del prezzo di Biswap BSW
Previsione del prezzo di Biswap fino a $0.003467 entro il 2026
| Anno | Prezzo min. | Prezzo max. |
|---|---|---|
| 2026 | $0.001161 | $0.003467 |
| 2027 | $0.001118 | $0.002937 |
| 2028 | $0.002017 | $0.004942 |
| 2029 | $0.004432 | $0.014582 |
| 2030 | $0.00377 | $0.01090022 |
| 2031 | $0.004457 | $0.00995 |
| 2032 | $0.0068037 | $0.018457 |
| 2033 | $0.01581 | $0.049165 |
| 2034 | $0.01271 | $0.028473 |
| 2035 | $0.015028 | $0.033549 |
Calcolatore di profitto dell’investimento
Se apri uno short di $10,000.00 su Biswap oggi e lo chiudi il Apr 06, 2026, la nostra previsione suggerisce che potresti guadagnare circa $3,954.59, con un rendimento del 39.55% nei prossimi 90 giorni.
Previsione a lungo termine del prezzo di Biswap per gli anni 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Biswap'
'name_with_ticker' => 'Biswap <small>BSW</small>'
'name_lang' => 'Biswap'
'name_lang_with_ticker' => 'Biswap <small>BSW</small>'
'name_with_lang' => 'Biswap'
'name_with_lang_with_ticker' => 'Biswap <small>BSW</small>'
'image' => '/uploads/coins/biswap.png?1717082240'
'price_for_sd' => 0.003361
'ticker' => 'BSW'
'marketcap' => '$1.67M'
'low24h' => '$0.003094'
'high24h' => '$0.00337'
'volume24h' => '$227.83K'
'current_supply' => '498.98M'
'max_supply' => '576.9M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003361'
'change_24h_pct' => '8.4799%'
'ath_price' => '$2.1'
'ath_days' => 1490
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 dic 2021'
'ath_pct' => '-99.84%'
'fdv' => '$1.93M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.165764'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00339'
'next_week_prediction_price_date' => '13 gennaio 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002971'
'next_month_prediction_price_date' => '5 febbraio 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001161'
'current_year_max_price_prediction' => '$0.003467'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00377'
'grand_prediction_max_price' => '$0.01090022'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0034255960471459
107 => 0.0034383859792945
108 => 0.0034672023494956
109 => 0.0032209696211744
110 => 0.0033315208871776
111 => 0.0033964593987016
112 => 0.0031030648411527
113 => 0.0033906599316343
114 => 0.0032166832571927
115 => 0.0031576329608453
116 => 0.0032371364055921
117 => 0.0032061538358547
118 => 0.0031795168417519
119 => 0.0031646529413609
120 => 0.003223031496708
121 => 0.0032203080673236
122 => 0.0031247894199865
123 => 0.0030001892383733
124 => 0.0030420091491842
125 => 0.0030268155835229
126 => 0.0029717521415571
127 => 0.0030088582530567
128 => 0.0028454617169859
129 => 0.0025643464692889
130 => 0.0027500598127105
131 => 0.002742910051006
201 => 0.0027393048169387
202 => 0.0028788632617802
203 => 0.0028654479374698
204 => 0.0028410989924832
205 => 0.0029713049540878
206 => 0.0029237780265848
207 => 0.0030702448183966
208 => 0.003166717320362
209 => 0.003142248773305
210 => 0.0032329816276956
211 => 0.003042972595465
212 => 0.0031060859741328
213 => 0.0031190935540048
214 => 0.0029696982327329
215 => 0.0028676428504371
216 => 0.0028608369199545
217 => 0.0026838869511514
218 => 0.0027784121961958
219 => 0.0028615905001144
220 => 0.0028217545474345
221 => 0.0028091436748813
222 => 0.0028735698877911
223 => 0.0028785763563074
224 => 0.0027644283435742
225 => 0.0027881633300189
226 => 0.0028871421691064
227 => 0.0027856693172274
228 => 0.0025885241415229
301 => 0.0025396294122028
302 => 0.0025331059540029
303 => 0.0024004995701971
304 => 0.0025428967918153
305 => 0.0024807365885706
306 => 0.0026770999258268
307 => 0.0025649382407038
308 => 0.0025601031746328
309 => 0.0025527942631166
310 => 0.0024386544706743
311 => 0.0024636438312569
312 => 0.0025467122718207
313 => 0.0025763520272469
314 => 0.0025732603579246
315 => 0.0025463051911442
316 => 0.0025586451284634
317 => 0.0025188938908388
318 => 0.0025048569014831
319 => 0.0024605523018984
320 => 0.0023954367799669
321 => 0.0024044914926681
322 => 0.0022754806053186
323 => 0.0022051886267646
324 => 0.0021857327335342
325 => 0.0021597154999888
326 => 0.0021886714492924
327 => 0.0022751151336841
328 => 0.002170845710257
329 => 0.0019920830974408
330 => 0.0020028270350678
331 => 0.0020269654730117
401 => 0.0019819836535949
402 => 0.0019394121365548
403 => 0.0019764246166848
404 => 0.0019006805410487
405 => 0.0020361187826808
406 => 0.0020324555578059
407 => 0.0020829385588417
408 => 0.0021145066154048
409 => 0.0020417524653065
410 => 0.0020234549933049
411 => 0.0020338780649307
412 => 0.0018616079086345
413 => 0.0020688604117991
414 => 0.0020706527400528
415 => 0.0020553057373905
416 => 0.0021656612971224
417 => 0.0023985459489192
418 => 0.0023109253751498
419 => 0.0022769960406405
420 => 0.002212496350936
421 => 0.0022984383578546
422 => 0.0022918393526274
423 => 0.0022619961483916
424 => 0.0022439468853534
425 => 0.002277203205922
426 => 0.0022398260592035
427 => 0.0022331120965976
428 => 0.0021924327880689
429 => 0.0021779121257148
430 => 0.0021671616053921
501 => 0.002155326338841
502 => 0.002181431987688
503 => 0.0021222731529167
504 => 0.0020509333975945
505 => 0.0020450022688464
506 => 0.0020613786367903
507 => 0.0020541333130523
508 => 0.0020449675810238
509 => 0.0020274677024428
510 => 0.0020222758622935
511 => 0.0020391468240558
512 => 0.0020201004918644
513 => 0.0020482043925202
514 => 0.0020405616866016
515 => 0.0019978701526126
516 => 0.0019446606948321
517 => 0.0019441870190473
518 => 0.0019327231286495
519 => 0.0019181221406204
520 => 0.0019140604797761
521 => 0.0019733075288444
522 => 0.002095947147301
523 => 0.0020718700556806
524 => 0.002089268221896
525 => 0.0021748499800773
526 => 0.0022020538474699
527 => 0.0021827451867536
528 => 0.0021563143010587
529 => 0.0021574771258903
530 => 0.0022477994634828
531 => 0.0022534327568869
601 => 0.0022676662719495
602 => 0.0022859603611958
603 => 0.0021858607492581
604 => 0.0021527624431698
605 => 0.002137078629521
606 => 0.0020887785538827
607 => 0.0021408660445231
608 => 0.0021105168943357
609 => 0.0021146120315706
610 => 0.002111945068074
611 => 0.0021134014104824
612 => 0.002036080924932
613 => 0.0020642524460215
614 => 0.0020174118282538
615 => 0.001954697499169
616 => 0.0019544872587475
617 => 0.0019698365019436
618 => 0.0019607061714746
619 => 0.0019361366869447
620 => 0.0019396266662575
621 => 0.0019090507751487
622 => 0.0019433391330324
623 => 0.0019443224004469
624 => 0.0019311195149622
625 => 0.0019839454611636
626 => 0.0020055882944242
627 => 0.001996897872365
628 => 0.0020049785512457
629 => 0.002072870567539
630 => 0.0020839399285312
701 => 0.002088856207483
702 => 0.0020822690449697
703 => 0.0020062194926724
704 => 0.0020095926137044
705 => 0.0019848428896722
706 => 0.0019639319809266
707 => 0.0019647683076132
708 => 0.0019755192329362
709 => 0.0020224691543556
710 => 0.0021212724961336
711 => 0.0021250220107297
712 => 0.0021295665318014
713 => 0.0021110816807098
714 => 0.0021055064727444
715 => 0.002112861611134
716 => 0.0021499669514729
717 => 0.0022454119608262
718 => 0.0022116753199629
719 => 0.002184246905799
720 => 0.0022083090196681
721 => 0.0022046048458431
722 => 0.0021733378910107
723 => 0.0021724603317263
724 => 0.0021124490487528
725 => 0.0020902642438283
726 => 0.0020717249603295
727 => 0.0020514805467291
728 => 0.0020394789797479
729 => 0.0020579188412457
730 => 0.0020621362557443
731 => 0.0020218171763057
801 => 0.0020163218347624
802 => 0.0020492472653797
803 => 0.0020347580109488
804 => 0.0020496605684472
805 => 0.0020531180896186
806 => 0.0020525613490765
807 => 0.0020374329033704
808 => 0.0020470753235267
809 => 0.0020242681253132
810 => 0.0019994687227863
811 => 0.0019836482490316
812 => 0.0019698427873993
813 => 0.001977502859891
814 => 0.0019501961001319
815 => 0.0019414601181084
816 => 0.0020438086885391
817 => 0.0021194146779487
818 => 0.0021183153369194
819 => 0.0021116233811313
820 => 0.0021016804922438
821 => 0.0021492395672204
822 => 0.0021326709364723
823 => 0.0021447259996969
824 => 0.002147794519237
825 => 0.0021570820037059
826 => 0.0021604014811173
827 => 0.0021503677148549
828 => 0.0021166931697567
829 => 0.0020327794050518
830 => 0.0019937173210608
831 => 0.0019808261827133
901 => 0.0019812947511084
902 => 0.0019683695429881
903 => 0.0019721765960467
904 => 0.0019670456052991
905 => 0.001957328750143
906 => 0.0019769028714665
907 => 0.0019791586066035
908 => 0.0019745897727932
909 => 0.0019756658985498
910 => 0.0019378379059755
911 => 0.0019407138860928
912 => 0.0019247000633376
913 => 0.0019216976646205
914 => 0.0018812161151783
915 => 0.0018094971824471
916 => 0.0018492364331055
917 => 0.0018012370064944
918 => 0.0017830588963268
919 => 0.0018691112425841
920 => 0.0018604739737404
921 => 0.0018456907240106
922 => 0.0018238232165609
923 => 0.0018157123453344
924 => 0.0017664332593518
925 => 0.0017635215880583
926 => 0.0017879456337185
927 => 0.0017766747770264
928 => 0.0017608462256235
929 => 0.0017035168169567
930 => 0.0016390595805003
1001 => 0.0016410051393052
1002 => 0.0016615077869524
1003 => 0.0017211220001456
1004 => 0.0016978296957147
1005 => 0.0016809308616016
1006 => 0.0016777662179493
1007 => 0.0017173783588879
1008 => 0.0017734378373161
1009 => 0.0017997396903344
1010 => 0.0017736753527924
1011 => 0.0017437340452277
1012 => 0.0017455564338845
1013 => 0.0017576799691737
1014 => 0.001758953981315
1015 => 0.0017394652681066
1016 => 0.001744951226719
1017 => 0.0017366175539402
1018 => 0.0016854738194794
1019 => 0.0016845487915016
1020 => 0.0016719972942608
1021 => 0.0016716172399126
1022 => 0.0016502640119883
1023 => 0.0016472765477938
1024 => 0.0016048784177019
1025 => 0.0016327849953218
1026 => 0.0016140667282154
1027 => 0.0015858538844933
1028 => 0.0015809899796016
1029 => 0.0015808437647472
1030 => 0.0016098120469734
1031 => 0.0016324464840778
1101 => 0.0016143923404857
1102 => 0.0016102817619547
1103 => 0.0016541719865158
1104 => 0.0016485865553722
1105 => 0.0016437496080239
1106 => 0.0017684183258886
1107 => 0.0016697333076773
1108 => 0.0016267010069933
1109 => 0.0015734403632845
1110 => 0.0015907822974396
1111 => 0.0015944364977721
1112 => 0.0014663542506052
1113 => 0.0014143912988812
1114 => 0.0013965595720321
1115 => 0.0013862971611268
1116 => 0.0013909738706435
1117 => 0.0013442011194456
1118 => 0.0013756331818005
1119 => 0.0013351319328654
1120 => 0.0013283417666789
1121 => 0.001400763016917
1122 => 0.0014108400108088
1123 => 0.0013678484241897
1124 => 0.0013954559825048
1125 => 0.001385445098086
1126 => 0.0013358262105327
1127 => 0.001333931134
1128 => 0.001309034120414
1129 => 0.0012700751151638
1130 => 0.0012522698043548
1201 => 0.0012429966438926
1202 => 0.0012468229306296
1203 => 0.0012448882429691
1204 => 0.001232263097311
1205 => 0.0012456119015397
1206 => 0.0012115112228421
1207 => 0.0011979320578169
1208 => 0.0011917986640092
1209 => 0.0011615323489032
1210 => 0.0012096995157282
1211 => 0.0012191890543868
1212 => 0.0012286972903679
1213 => 0.0013114599930352
1214 => 0.001307325402295
1215 => 0.0013447000889598
1216 => 0.0013432477773637
1217 => 0.0013325879112971
1218 => 0.0012876156898249
1219 => 0.0013055408157509
1220 => 0.0012503700643337
1221 => 0.0012917077425419
1222 => 0.0012728429525104
1223 => 0.001285329538056
1224 => 0.001262877531375
1225 => 0.0012753033988929
1226 => 0.0012214393760414
1227 => 0.0011711419093899
1228 => 0.001191383078245
1229 => 0.001213387543649
1230 => 0.0012610988312783
1231 => 0.0012326823819759
]
'min_raw' => 0.0011615323489032
'max_raw' => 0.0034672023494956
'avg_raw' => 0.0023143673491994
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001161'
'max' => '$0.003467'
'avg' => '$0.002314'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0022003576510968
'max_diff' => 0.00010531234949563
'year' => 2026
]
1 => [
'items' => [
101 => 0.00124290201169
102 => 0.0012086679628931
103 => 0.0011380333417527
104 => 0.0011384331260375
105 => 0.0011275675284339
106 => 0.0011181780657012
107 => 0.0012359463530112
108 => 0.0012213000048431
109 => 0.0011979629659039
110 => 0.0012292005199011
111 => 0.0012374602249846
112 => 0.0012376953671766
113 => 0.001260485480215
114 => 0.001272648567629
115 => 0.0012747923645035
116 => 0.0013106530997824
117 => 0.0013226731452334
118 => 0.0013721820113054
119 => 0.0012716166146407
120 => 0.0012695455364752
121 => 0.0012296400963461
122 => 0.0012043314353361
123 => 0.0012313730020179
124 => 0.0012553281385561
125 => 0.001230384449213
126 => 0.0012336415684512
127 => 0.0012001567034824
128 => 0.0012121259670994
129 => 0.0012224355093603
130 => 0.0012167431860907
131 => 0.0012082215026446
201 => 0.0012533640905407
202 => 0.0012508169688164
203 => 0.0012928547844888
204 => 0.0013256262679586
205 => 0.0013843586249397
206 => 0.0013230683486429
207 => 0.0013208346873678
208 => 0.0013426690846219
209 => 0.001322669802501
210 => 0.0013353086584496
211 => 0.0013823223098504
212 => 0.0013833156342213
213 => 0.0013666761711817
214 => 0.0013656636583435
215 => 0.0013688594492361
216 => 0.0013875772963124
217 => 0.0013810367054026
218 => 0.001388605642791
219 => 0.0013980707148948
220 => 0.0014372222662237
221 => 0.0014466615727021
222 => 0.0014237289516788
223 => 0.0014257995105915
224 => 0.0014172220808143
225 => 0.0014089363911243
226 => 0.0014275614115195
227 => 0.0014615990023674
228 => 0.0014613872562813
301 => 0.0014692833157617
302 => 0.0014742024954036
303 => 0.0014530857753212
304 => 0.0014393395670308
305 => 0.0014446107379833
306 => 0.0014530394551275
307 => 0.0014418774186129
308 => 0.0013729801584864
309 => 0.0013938791860347
310 => 0.0013904005659404
311 => 0.0013854465879115
312 => 0.0014064607217188
313 => 0.0014044338572488
314 => 0.0013437213972779
315 => 0.0013476080119841
316 => 0.001343957755191
317 => 0.0013557524816618
318 => 0.0013220328485645
319 => 0.0013324047806001
320 => 0.0013389099591419
321 => 0.0013427415592782
322 => 0.0013565839263233
323 => 0.0013549596843185
324 => 0.0013564829611597
325 => 0.0013770075372381
326 => 0.0014808137998588
327 => 0.0014864637456977
328 => 0.0014586413460166
329 => 0.0014697558459166
330 => 0.0014484184365826
331 => 0.0014627423824167
401 => 0.0014725424623677
402 => 0.0014282577855163
403 => 0.0014256355343583
404 => 0.0014042100579458
405 => 0.0014157228953688
406 => 0.0013974051432264
407 => 0.0014018996788744
408 => 0.0013893325653761
409 => 0.0014119508675857
410 => 0.001437241643985
411 => 0.0014436310928664
412 => 0.00142682320369
413 => 0.0014146531842324
414 => 0.0013932866391184
415 => 0.0014288196798274
416 => 0.0014392106237805
417 => 0.0014287651006224
418 => 0.0014263446446675
419 => 0.0014217578850065
420 => 0.0014273177474125
421 => 0.0014391540324682
422 => 0.0014335722590178
423 => 0.00143725911872
424 => 0.0014232086114085
425 => 0.0014530927658342
426 => 0.0015005559950756
427 => 0.0015007085971186
428 => 0.0014951267935804
429 => 0.0014928428398342
430 => 0.0014985701089965
501 => 0.0015016769175722
502 => 0.0015201978558418
503 => 0.0015400715605118
504 => 0.00163281346863
505 => 0.0016067719119432
506 => 0.0016890580500665
507 => 0.0017541357018042
508 => 0.0017736496440595
509 => 0.0017556977353866
510 => 0.0016942852255594
511 => 0.0016912720348434
512 => 0.0017830482522181
513 => 0.0017571172671927
514 => 0.0017540328590356
515 => 0.0017212199674343
516 => 0.0017406164503264
517 => 0.0017363741549886
518 => 0.0017296774842578
519 => 0.0017666846224452
520 => 0.0018359586814819
521 => 0.001825161669733
522 => 0.0018171022013214
523 => 0.0017817879568179
524 => 0.0018030550197311
525 => 0.0017954822259714
526 => 0.0018280197537765
527 => 0.0018087452430993
528 => 0.0017569208144773
529 => 0.0017651740255509
530 => 0.0017639265693003
531 => 0.0017895991305423
601 => 0.0017818928648896
602 => 0.0017624217972504
603 => 0.0018357219102791
604 => 0.0018309622086557
605 => 0.0018377103773384
606 => 0.0018406811298866
607 => 0.0018852976169943
608 => 0.001903575564194
609 => 0.0019077249782088
610 => 0.0019250876143814
611 => 0.0019072929800039
612 => 0.0019784842048731
613 => 0.0020258222152881
614 => 0.0020808077503768
615 => 0.0021611563958598
616 => 0.002191368229828
617 => 0.0021859107324373
618 => 0.0022468301584362
619 => 0.0023563010127934
620 => 0.0022080379219944
621 => 0.0023641593166166
622 => 0.0023147330855874
623 => 0.0021975443809571
624 => 0.0021899988099429
625 => 0.0022693603613074
626 => 0.0024453766439677
627 => 0.0024012865615214
628 => 0.0024454487595477
629 => 0.0023939312097368
630 => 0.0023913729291647
701 => 0.0024429466671427
702 => 0.0025634515170665
703 => 0.0025062041799245
704 => 0.0024241260845084
705 => 0.002484731272887
706 => 0.0024322294499681
707 => 0.0023139281485967
708 => 0.0024012528466663
709 => 0.0023428613079314
710 => 0.0023599030631992
711 => 0.0024826333925342
712 => 0.0024678661546044
713 => 0.0024869763278949
714 => 0.0024532473722375
715 => 0.0024217392090853
716 => 0.0023629268827348
717 => 0.0023455154523151
718 => 0.0023503273452855
719 => 0.0023455130677799
720 => 0.0023126081117
721 => 0.0023055022895674
722 => 0.0022936589413666
723 => 0.0022973296901998
724 => 0.0022750607306886
725 => 0.0023170868582881
726 => 0.0023248872779035
727 => 0.0023554703888822
728 => 0.0023586456289196
729 => 0.0024438191576719
730 => 0.0023969070093181
731 => 0.0024283797286339
801 => 0.0024255645123856
802 => 0.0022000842155336
803 => 0.0022311534110103
804 => 0.0022794873291214
805 => 0.0022577129645275
806 => 0.0022269291074082
807 => 0.0022020694922584
808 => 0.0021644046332803
809 => 0.0022174171990024
810 => 0.0022871230856692
811 => 0.0023604134852377
812 => 0.0024484670981421
813 => 0.0024288145567989
814 => 0.0023587673841933
815 => 0.0023619096491868
816 => 0.0023813338949416
817 => 0.0023561777318104
818 => 0.0023487586881964
819 => 0.0023803146322762
820 => 0.0023805319407202
821 => 0.0023515867348139
822 => 0.0023194194353658
823 => 0.0023192846532066
824 => 0.0023135607929691
825 => 0.0023949494717574
826 => 0.0024397050157675
827 => 0.0024448361667611
828 => 0.0024393596484227
829 => 0.0024414673429759
830 => 0.0024154250780376
831 => 0.0024749499730928
901 => 0.0025295759031975
902 => 0.0025149349870167
903 => 0.0024929861723327
904 => 0.0024755028842388
905 => 0.0025108164799686
906 => 0.0025092440211395
907 => 0.0025290987933526
908 => 0.0025281980661983
909 => 0.0025215216530788
910 => 0.0025149352254524
911 => 0.0025410496664951
912 => 0.0025335291268599
913 => 0.0025259969057494
914 => 0.002510889883187
915 => 0.0025129431784543
916 => 0.0024909981535426
917 => 0.0024808453808825
918 => 0.0023281720399819
919 => 0.0022873727345479
920 => 0.0023002090265839
921 => 0.0023044350672163
922 => 0.0022866791572057
923 => 0.0023121365710419
924 => 0.0023081690600616
925 => 0.0023236043243696
926 => 0.0023139610413512
927 => 0.00231435680505
928 => 0.0023427156442423
929 => 0.002350948335907
930 => 0.0023467611224804
1001 => 0.0023496937032351
1002 => 0.0024172737889628
1003 => 0.0024076660618618
1004 => 0.0024025621483285
1005 => 0.002403975967258
1006 => 0.0024212441280948
1007 => 0.0024260782703225
1008 => 0.0024055956700147
1009 => 0.0024152553827283
1010 => 0.0024563852134631
1011 => 0.0024707783264734
1012 => 0.0025167142341162
1013 => 0.0024971998441039
1014 => 0.0025330193515346
1015 => 0.0026431163056064
1016 => 0.0027310693706488
1017 => 0.0026501840972217
1018 => 0.0028116987004167
1019 => 0.0029374609868977
1020 => 0.0029326340208745
1021 => 0.0029107044572924
1022 => 0.0027675274376971
1023 => 0.0026357738096165
1024 => 0.0027459913140605
1025 => 0.0027462722811458
1026 => 0.002736804499767
1027 => 0.0026780009227563
1028 => 0.0027347582627511
1029 => 0.0027392634542875
1030 => 0.0027367417450543
1031 => 0.0026916571804325
1101 => 0.0026228213832753
1102 => 0.0026362717332702
1103 => 0.0026583036809416
1104 => 0.002616592607654
1105 => 0.0026032633923755
1106 => 0.0026280449395651
1107 => 0.0027078962480504
1108 => 0.0026928008207284
1109 => 0.0026924066181156
1110 => 0.0027569912576565
1111 => 0.0027107625939828
1112 => 0.0026364413852576
1113 => 0.0026176742998782
1114 => 0.0025510637898049
1115 => 0.0025970719063711
1116 => 0.0025987276565796
1117 => 0.0025735294813279
1118 => 0.0026384860783043
1119 => 0.0026378874918277
1120 => 0.0026995541131433
1121 => 0.0028174375321733
1122 => 0.0027825736044753
1123 => 0.0027420306497472
1124 => 0.0027464387930604
1125 => 0.0027947852449808
1126 => 0.0027655538765075
1127 => 0.0027760656804188
1128 => 0.0027947693341066
1129 => 0.002806053712762
1130 => 0.0027448151446286
1201 => 0.0027305375050174
1202 => 0.0027013304651434
1203 => 0.0026937108936155
1204 => 0.0027174994181679
1205 => 0.0027112319824093
1206 => 0.002598588497186
1207 => 0.0025868166262377
1208 => 0.0025871776527133
1209 => 0.0025575767234919
1210 => 0.0025124282013922
1211 => 0.002631075821792
1212 => 0.0026215467574015
1213 => 0.0026110274078054
1214 => 0.0026123159681083
1215 => 0.0026638168787829
1216 => 0.0026339437497333
1217 => 0.0027133663594212
1218 => 0.0026970394585316
1219 => 0.0026802938342411
1220 => 0.00267797907888
1221 => 0.0026715334421977
1222 => 0.0026494289556984
1223 => 0.0026227364599767
1224 => 0.0026051117622369
1225 => 0.0024030778949768
1226 => 0.0024405742055634
1227 => 0.0024837102929969
1228 => 0.002498600697522
1229 => 0.0024731296301973
1230 => 0.0026504347086844
1231 => 0.0026828300550782
]
'min_raw' => 0.0011181780657012
'max_raw' => 0.0029374609868977
'avg_raw' => 0.0020278195262994
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001118'
'max' => '$0.002937'
'avg' => '$0.002027'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.3354283202041E-5
'max_diff' => -0.00052974136259793
'year' => 2027
]
2 => [
'items' => [
101 => 0.0025847024377551
102 => 0.0025663467670781
103 => 0.0026516381033981
104 => 0.0026001970011553
105 => 0.0026233609263454
106 => 0.0025732931900741
107 => 0.0026750269647784
108 => 0.0026742519238658
109 => 0.0026346751877443
110 => 0.0026681251741044
111 => 0.0026623124158106
112 => 0.0026176303782027
113 => 0.0026764434650685
114 => 0.0026764726356258
115 => 0.0026383808875813
116 => 0.0025938980652212
117 => 0.0025859455872206
118 => 0.0025799544633122
119 => 0.0026218874771266
120 => 0.0026594844861914
121 => 0.0027294431989719
122 => 0.002747032481543
123 => 0.0028156846224027
124 => 0.0027748056151328
125 => 0.0027929267495838
126 => 0.0028125998044213
127 => 0.002822031790363
128 => 0.0028066628754192
129 => 0.0029133079085228
130 => 0.0029223120168362
131 => 0.0029253310164684
201 => 0.0028893709113374
202 => 0.0029213119012611
203 => 0.0029063677698502
204 => 0.0029452482481821
205 => 0.0029513452036354
206 => 0.002946181299272
207 => 0.0029481165691667
208 => 0.0028571138468858
209 => 0.002852394875658
210 => 0.002788051368123
211 => 0.0028142718230467
212 => 0.002765253939346
213 => 0.0027807980152077
214 => 0.0027876496957381
215 => 0.0027840707666584
216 => 0.0028157542882272
217 => 0.0027888168223779
218 => 0.0027177244210722
219 => 0.0026466126506892
220 => 0.0026457199003385
221 => 0.0026269974264236
222 => 0.0026134645069754
223 => 0.0026160714273672
224 => 0.0026252585548541
225 => 0.0026129305344245
226 => 0.0026155613426297
227 => 0.0026592502878183
228 => 0.0026680117942006
229 => 0.0026382367721721
301 => 0.0025186857622124
302 => 0.0024893476444973
303 => 0.0025104353017107
304 => 0.0025003567597818
305 => 0.0020179830499878
306 => 0.0021313095979535
307 => 0.0020639748113583
308 => 0.0020950057789459
309 => 0.0020262743980906
310 => 0.0020590766155551
311 => 0.0020530192437346
312 => 0.0022352449792871
313 => 0.0022323997750697
314 => 0.0022337616237637
315 => 0.0021687570373218
316 => 0.0022723111085907
317 => 0.0023233255677817
318 => 0.0023138841490913
319 => 0.0023162603507683
320 => 0.0022754293332248
321 => 0.0022341569572657
322 => 0.002188379540554
323 => 0.0022734283225447
324 => 0.0022639723498184
325 => 0.0022856609491008
326 => 0.0023408211636342
327 => 0.0023489437147576
328 => 0.0023598605058381
329 => 0.0023559476133458
330 => 0.002449168587228
331 => 0.0024378789121991
401 => 0.0024650837807576
402 => 0.0024091213020944
403 => 0.0023457944454797
404 => 0.0023578308106112
405 => 0.0023566716118587
406 => 0.002341913681273
407 => 0.0023285908814118
408 => 0.0023064121733186
409 => 0.0023765888875568
410 => 0.0023737398411164
411 => 0.0024198625913314
412 => 0.0024117099472184
413 => 0.0023572645945415
414 => 0.0023592091209636
415 => 0.0023722869956601
416 => 0.0024175496693053
417 => 0.002430986712561
418 => 0.0024247621387514
419 => 0.0024394952432569
420 => 0.0024511396883411
421 => 0.0024409576062785
422 => 0.002585114416174
423 => 0.0025252504581277
424 => 0.0025544277347487
425 => 0.0025613863433004
426 => 0.0025435620138191
427 => 0.0025474274726422
428 => 0.0025532825894847
429 => 0.002588833712403
430 => 0.0026821301457407
501 => 0.0027234505009757
502 => 0.0028477648284106
503 => 0.0027200194206806
504 => 0.0027124395368489
505 => 0.002734832301153
506 => 0.0028078179713652
507 => 0.0028669660018768
508 => 0.0028865888159293
509 => 0.0028891822947437
510 => 0.0029259959984061
511 => 0.0029470969268104
512 => 0.0029215258464849
513 => 0.0028998570333128
514 => 0.0028222420341622
515 => 0.0028312261816525
516 => 0.0028931180487103
517 => 0.0029805439563422
518 => 0.0030555644802058
519 => 0.003029294907478
520 => 0.0032297132039629
521 => 0.003249583859424
522 => 0.0032468383773345
523 => 0.003292106687625
524 => 0.0032022583104294
525 => 0.003163846388448
526 => 0.0029045420766721
527 => 0.0029773960113957
528 => 0.003083293484078
529 => 0.0030692775564733
530 => 0.0029923719811639
531 => 0.0030555061404306
601 => 0.0030346320129893
602 => 0.0030181677226081
603 => 0.0030935938286044
604 => 0.0030106597267278
605 => 0.0030824661529705
606 => 0.0029903736685718
607 => 0.0030294149046734
608 => 0.00300725321085
609 => 0.0030215945427888
610 => 0.0029377554093163
611 => 0.0029829929706581
612 => 0.0029358733780372
613 => 0.0029358510372151
614 => 0.0029348108695964
615 => 0.0029902468613547
616 => 0.0029920546270557
617 => 0.0029510873453872
618 => 0.0029451833200696
619 => 0.0029670135960939
620 => 0.0029414560602278
621 => 0.0029534142704023
622 => 0.0029418182622319
623 => 0.0029392077565435
624 => 0.002918406803077
625 => 0.0029094451803895
626 => 0.0029129592635578
627 => 0.0029009638860703
628 => 0.0028937362372422
629 => 0.0029333731083272
630 => 0.0029121967270533
701 => 0.002930127524185
702 => 0.0029096931178065
703 => 0.0028388585624516
704 => 0.0027981208606052
705 => 0.0026643209519066
706 => 0.0027022664400352
707 => 0.002727424337922
708 => 0.0027191096528205
709 => 0.0027369728137745
710 => 0.0027380694667785
711 => 0.002732261971059
712 => 0.002725537635002
713 => 0.0027222646000886
714 => 0.0027466591207859
715 => 0.0027608209611325
716 => 0.0027299492695442
717 => 0.0027227164641459
718 => 0.0027539294488145
719 => 0.0027729693514312
720 => 0.0029135492947559
721 => 0.0029031346784872
722 => 0.0029292733215565
723 => 0.0029263305114771
724 => 0.0029537279736261
725 => 0.0029985112452083
726 => 0.002907454332482
727 => 0.0029232586640201
728 => 0.0029193838069023
729 => 0.0029616884808727
730 => 0.0029618205514472
731 => 0.0029364567861267
801 => 0.002950206894787
802 => 0.0029425319613473
803 => 0.0029564016034023
804 => 0.0029029955849374
805 => 0.0029680383506042
806 => 0.003004913407474
807 => 0.0030054254176744
808 => 0.0030229039019722
809 => 0.0030406630543043
810 => 0.0030747502007094
811 => 0.0030397123822918
812 => 0.0029766827578214
813 => 0.0029812332931238
814 => 0.0029442790473584
815 => 0.0029449002549061
816 => 0.0029415842003318
817 => 0.0029515359297301
818 => 0.0029051794299061
819 => 0.0029160592077587
820 => 0.0029008274550531
821 => 0.0029232255531644
822 => 0.0028991289021349
823 => 0.0029193819383288
824 => 0.0029281224773514
825 => 0.0029603752545148
826 => 0.0028943651407239
827 => 0.0027597660502125
828 => 0.0027880604108942
829 => 0.0027462108289719
830 => 0.0027500841671114
831 => 0.0027579089265904
901 => 0.002732546321017
902 => 0.0027373847068928
903 => 0.0027372118457021
904 => 0.002735722221348
905 => 0.002729124428088
906 => 0.0027195563225275
907 => 0.0027576727101731
908 => 0.0027641494271807
909 => 0.002778546366793
910 => 0.0028213818935417
911 => 0.0028171016142883
912 => 0.0028240829273378
913 => 0.0028088427601491
914 => 0.0027507911147574
915 => 0.0027539435983971
916 => 0.0027146320768954
917 => 0.0027775410828038
918 => 0.0027626433998464
919 => 0.0027530387667286
920 => 0.0027504180535961
921 => 0.0027933597613303
922 => 0.0028062085933132
923 => 0.0027982020634745
924 => 0.0027817804371876
925 => 0.0028133148142765
926 => 0.002821752083257
927 => 0.0028236408766272
928 => 0.0028795137467118
929 => 0.0028267635493948
930 => 0.0028394610461808
1001 => 0.0029385232914454
1002 => 0.0028486875046459
1003 => 0.0028962755244907
1004 => 0.0028939463385554
1005 => 0.0029182907592172
1006 => 0.0028919493855007
1007 => 0.0028922759183978
1008 => 0.0029138921147116
1009 => 0.0028835360654904
1010 => 0.0028760194808052
1011 => 0.0028656353728973
1012 => 0.0028883086926192
1013 => 0.0029019003223664
1014 => 0.0030114388761768
1015 => 0.0030822057775032
1016 => 0.0030791335996822
1017 => 0.0031072075540903
1018 => 0.0030945599805015
1019 => 0.003053717629122
1020 => 0.0031234305427328
1021 => 0.0031013704599541
1022 => 0.0031031890663754
1023 => 0.0031031213777535
1024 => 0.0031177894042754
1025 => 0.0031073957631798
1026 => 0.0030869088296949
1027 => 0.0031005090122273
1028 => 0.0031408966921944
1029 => 0.0032662612900576
1030 => 0.0033364169798818
1031 => 0.0032620378294401
1101 => 0.0033133435714383
1102 => 0.0032825784083444
1103 => 0.0032769874630259
1104 => 0.0033092112604654
1105 => 0.0033414914613965
1106 => 0.0033394353521483
1107 => 0.003316001583879
1108 => 0.0033027644427935
1109 => 0.0034030005098604
1110 => 0.0034768527365984
1111 => 0.0034718165098465
1112 => 0.0034940447768608
1113 => 0.0035593076563093
1114 => 0.003565274476105
1115 => 0.0035645227939565
1116 => 0.0035497334085195
1117 => 0.0036139931887923
1118 => 0.0036675998280392
1119 => 0.0035463100930973
1120 => 0.0035924956363639
1121 => 0.0036132298147416
1122 => 0.0036436737401535
1123 => 0.0036950377453178
1124 => 0.0037508326785557
1125 => 0.0037587226938759
1126 => 0.0037531243504342
1127 => 0.0037163260921155
1128 => 0.0037773775738364
1129 => 0.0038131400999951
1130 => 0.0038344358659117
1201 => 0.0038884383849988
1202 => 0.0036133578619685
1203 => 0.0034186421953786
1204 => 0.0033882345323123
1205 => 0.00345006971088
1206 => 0.0034663751543419
1207 => 0.0034598024505277
1208 => 0.0032406322650069
1209 => 0.0033870806466438
1210 => 0.0035446467915555
1211 => 0.0035506995488899
1212 => 0.0036295804555855
1213 => 0.0036552673122431
1214 => 0.0037187767812898
1215 => 0.0037148042467092
1216 => 0.0037302677917657
1217 => 0.0037267129905485
1218 => 0.0038443509084609
1219 => 0.0039741230013183
1220 => 0.0039696294063926
1221 => 0.0039509731326506
1222 => 0.0039786808805248
1223 => 0.0041126195875762
1224 => 0.004100288657755
1225 => 0.0041122671057302
1226 => 0.0042701883897985
1227 => 0.0044755085231281
1228 => 0.0043801167073922
1229 => 0.0045870894992836
1230 => 0.0047173679006229
1231 => 0.0049426709247013
]
'min_raw' => 0.0020179830499878
'max_raw' => 0.0049426709247013
'avg_raw' => 0.0034803269873446
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002017'
'max' => '$0.004942'
'avg' => '$0.00348'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00089980498428665
'max_diff' => 0.0020052099378036
'year' => 2028
]
3 => [
'items' => [
101 => 0.0049144618764459
102 => 0.0050021706903696
103 => 0.0048639617926627
104 => 0.0045466062269009
105 => 0.0044963834938308
106 => 0.0045969306772793
107 => 0.0048441161165368
108 => 0.0045891459281388
109 => 0.0046407260651778
110 => 0.0046258709822406
111 => 0.0046250794180009
112 => 0.0046552902055053
113 => 0.0046114678825415
114 => 0.0044329278553014
115 => 0.0045147516976425
116 => 0.004483155582611
117 => 0.0045182138278849
118 => 0.0047074087185081
119 => 0.0046237611475207
120 => 0.0045356452264624
121 => 0.0046461621459578
122 => 0.0047868881622092
123 => 0.0047780817810212
124 => 0.0047609937207346
125 => 0.0048573182218684
126 => 0.0050164180773107
127 => 0.0050594221289217
128 => 0.0050911668406419
129 => 0.0050955439000568
130 => 0.0051406303323576
131 => 0.0048981892226321
201 => 0.0052829494900958
202 => 0.0053493869594989
203 => 0.0053368994688021
204 => 0.0054107419199275
205 => 0.0053890155976042
206 => 0.0053575375653133
207 => 0.0054745935570869
208 => 0.0053403983084499
209 => 0.0051499250477217
210 => 0.0050454276497523
211 => 0.0051830382529631
212 => 0.0052670722463957
213 => 0.0053226133704888
214 => 0.0053394200810806
215 => 0.0049170092358388
216 => 0.004689353218233
217 => 0.0048352781154368
218 => 0.0050133165612238
219 => 0.0048972002100764
220 => 0.0049017517512041
221 => 0.0047362003493082
222 => 0.0050279641868374
223 => 0.0049854566498295
224 => 0.0052059858270209
225 => 0.005153354769027
226 => 0.0053331877521332
227 => 0.0052858317008218
228 => 0.0054824040221744
301 => 0.0055608220431451
302 => 0.0056924981051453
303 => 0.0057893595523707
304 => 0.0058462384468457
305 => 0.0058428236513687
306 => 0.0060682061682313
307 => 0.0059353059723028
308 => 0.0057683520040455
309 => 0.0057653323334927
310 => 0.0058518001594092
311 => 0.0060330130012406
312 => 0.0060799988545879
313 => 0.006106257536681
314 => 0.0060660414509841
315 => 0.0059217878133466
316 => 0.0058594998239973
317 => 0.0059125709955797
318 => 0.0058476695131922
319 => 0.0059597076799328
320 => 0.0061135600129286
321 => 0.006081790114563
322 => 0.0061879921215898
323 => 0.0062979000260856
324 => 0.0064550732657874
325 => 0.0064961641707537
326 => 0.0065640858741157
327 => 0.0066339996179926
328 => 0.0066564540282976
329 => 0.0066993264647642
330 => 0.0066991005058616
331 => 0.0068282994788014
401 => 0.0069708099469132
402 => 0.0070246043495005
403 => 0.0071483016120093
404 => 0.006936474384832
405 => 0.0070971477699418
406 => 0.0072420791852264
407 => 0.0070692859771031
408 => 0.0073074411588471
409 => 0.007316688184883
410 => 0.0074563072994497
411 => 0.0073147765790505
412 => 0.0072307360890595
413 => 0.0074733578347074
414 => 0.0075907548549131
415 => 0.0075553939170185
416 => 0.0072862954336559
417 => 0.0071296685741619
418 => 0.0067197458718014
419 => 0.0072053170200904
420 => 0.0074418245621173
421 => 0.007285682936258
422 => 0.0073644316901255
423 => 0.0077940593568571
424 => 0.0079576337560171
425 => 0.0079236114244631
426 => 0.0079293606384405
427 => 0.0080176224151419
428 => 0.008409023739684
429 => 0.0081744869934067
430 => 0.0083537815480114
501 => 0.0084488787332792
502 => 0.0085372102987796
503 => 0.0083202958913886
504 => 0.0080380934344783
505 => 0.0079487080703216
506 => 0.0072701577287814
507 => 0.0072348362367095
508 => 0.0072150092128588
509 => 0.0070900026320681
510 => 0.0069917817017509
511 => 0.0069136727712534
512 => 0.0067086916123266
513 => 0.0067778667361794
514 => 0.0064511695517429
515 => 0.006660178832908
516 => 0.0061387622381681
517 => 0.0065730134722453
518 => 0.0063366702685179
519 => 0.0064953683733908
520 => 0.0064948146906531
521 => 0.0062026011643022
522 => 0.0060340585006437
523 => 0.0061414604457055
524 => 0.0062566038563888
525 => 0.0062752854873832
526 => 0.0064245719248846
527 => 0.0064662345606899
528 => 0.0063399948291571
529 => 0.0061279570382012
530 => 0.0061772085809732
531 => 0.0060330604197014
601 => 0.0057804463116516
602 => 0.0059618781742722
603 => 0.0060238269891667
604 => 0.0060511871149703
605 => 0.0058027701526296
606 => 0.0057247121496675
607 => 0.0056831547238606
608 => 0.0060958895278497
609 => 0.0061185000721083
610 => 0.0060028213308722
611 => 0.0065257002103678
612 => 0.0064073566161705
613 => 0.0065395754057734
614 => 0.0061727395196969
615 => 0.006186753144555
616 => 0.0060130871572806
617 => 0.0061103285057888
618 => 0.0060416014548981
619 => 0.0061024723657871
620 => 0.0061389581387937
621 => 0.0063125956291885
622 => 0.0065749961334679
623 => 0.0062866599784236
624 => 0.006161027786621
625 => 0.0062389692918331
626 => 0.0064465377912242
627 => 0.0067610146930378
628 => 0.0065748380377267
629 => 0.0066574600758692
630 => 0.0066755093156047
701 => 0.0065382295426126
702 => 0.0067660763940819
703 => 0.0068881813728088
704 => 0.0070134358149174
705 => 0.0071221907374505
706 => 0.006963406436335
707 => 0.0071333283993641
708 => 0.0069964012924269
709 => 0.0068735635222402
710 => 0.0068737498164323
711 => 0.0067966918888207
712 => 0.0066473824441495
713 => 0.0066198474917343
714 => 0.0067630877914795
715 => 0.0068779529469683
716 => 0.0068874137913413
717 => 0.0069510090434047
718 => 0.0069886440584927
719 => 0.0073575183686763
720 => 0.0075058826677205
721 => 0.0076872997241993
722 => 0.0077579718918029
723 => 0.0079706697789153
724 => 0.0077988989605942
725 => 0.0077617352635614
726 => 0.0072457997623754
727 => 0.0073302841717914
728 => 0.0074655518627993
729 => 0.007248030276778
730 => 0.0073859976565411
731 => 0.007413235339855
801 => 0.0072406389765206
802 => 0.0073328301516262
803 => 0.0070879977233243
804 => 0.006580332811355
805 => 0.0067666415702526
806 => 0.0069038275276514
807 => 0.0067080462515368
808 => 0.0070589766111905
809 => 0.0068539703397538
810 => 0.0067889931937449
811 => 0.0065354941811389
812 => 0.0066551359570171
813 => 0.0068169531719976
814 => 0.00671696894641
815 => 0.0069244512272113
816 => 0.0072183014703289
817 => 0.007427716652659
818 => 0.0074437929500397
819 => 0.0073091530175289
820 => 0.007524914368638
821 => 0.0075264859545288
822 => 0.0072831062690668
823 => 0.0071340375668651
824 => 0.0071001688440817
825 => 0.007184779553949
826 => 0.0072875125757266
827 => 0.0074494939177629
828 => 0.0075473758502924
829 => 0.0078026000177637
830 => 0.0078716563596311
831 => 0.0079475283427688
901 => 0.0080489167102937
902 => 0.0081706594409512
903 => 0.0079042932770901
904 => 0.0079148765013489
905 => 0.0076668400176519
906 => 0.0074017774627919
907 => 0.0076029269014168
908 => 0.0078659030346303
909 => 0.0078055760191083
910 => 0.007798787997493
911 => 0.0078102035670098
912 => 0.0077647189674023
913 => 0.0075589938091158
914 => 0.0074556799225319
915 => 0.0075889811944086
916 => 0.007659824887854
917 => 0.0077696972781685
918 => 0.0077561531869375
919 => 0.0080391726649544
920 => 0.008149145476047
921 => 0.0081210097249676
922 => 0.0081261873802909
923 => 0.008325287901788
924 => 0.008546728629838
925 => 0.0087541370933345
926 => 0.0089651218908039
927 => 0.0087107714825777
928 => 0.0085816280314327
929 => 0.0087148711081442
930 => 0.008644170456109
1001 => 0.0090504373738788
1002 => 0.0090785664138004
1003 => 0.0094848039538478
1004 => 0.0098703717532193
1005 => 0.0096282035265987
1006 => 0.0098565572568055
1007 => 0.010103540433977
1008 => 0.010580011054317
1009 => 0.010419552511825
1010 => 0.010296643782982
1011 => 0.010180495628116
1012 => 0.010422181500392
1013 => 0.010733106514048
1014 => 0.010800076783987
1015 => 0.0109085942059
1016 => 0.010794501405637
1017 => 0.010931913616644
1018 => 0.011417039103482
1019 => 0.011285953914617
1020 => 0.011099791873434
1021 => 0.011482751853345
1022 => 0.011621343581356
1023 => 0.012594052909588
1024 => 0.013822138617098
1025 => 0.013313703070143
1026 => 0.012998100719036
1027 => 0.013072274757734
1028 => 0.013520730084792
1029 => 0.013664759702582
1030 => 0.013273237551441
1031 => 0.013411529794155
1101 => 0.014173533648099
1102 => 0.01458232426773
1103 => 0.014027131698367
1104 => 0.01249537741875
1105 => 0.011083030018468
1106 => 0.011457648147855
1107 => 0.011415178077737
1108 => 0.012233856156883
1109 => 0.011282827576216
1110 => 0.011298840458465
1111 => 0.012134447933294
1112 => 0.011911522184948
1113 => 0.011550411022801
1114 => 0.011085666529581
1115 => 0.010226543350201
1116 => 0.0094655939918023
1117 => 0.010957990919794
1118 => 0.010893636050511
1119 => 0.010800440662933
1120 => 0.011007836913195
1121 => 0.012014894234015
1122 => 0.011991678303244
1123 => 0.011843990396548
1124 => 0.011956010372115
1125 => 0.011530773379476
1126 => 0.011640366634945
1127 => 0.011082806295424
1128 => 0.011334846854664
1129 => 0.011549636240431
1130 => 0.011592758389635
1201 => 0.011689914793662
1202 => 0.010859723958707
1203 => 0.01123245527048
1204 => 0.011451399995945
1205 => 0.010462199761015
1206 => 0.011431846687822
1207 => 0.010845272183279
1208 => 0.010646179986383
1209 => 0.0109142314011
1210 => 0.010809771504097
1211 => 0.010719963018744
1212 => 0.010669848340811
1213 => 0.010866675716024
1214 => 0.010857493483711
1215 => 0.010535445695315
1216 => 0.010115347483699
1217 => 0.010256346232771
1218 => 0.010205120065363
1219 => 0.010019469826369
1220 => 0.010144575671956
1221 => 0.0095936728426109
1222 => 0.0086458731581608
1223 => 0.009272018661598
1224 => 0.0092479127408309
1225 => 0.0092357574424637
1226 => 0.0097062884829061
1227 => 0.0096610577803657
1228 => 0.0095789636123544
1229 => 0.010017962102594
1230 => 0.0098577217482937
1231 => 0.010351544762872
]
'min_raw' => 0.0044329278553014
'max_raw' => 0.01458232426773
'avg_raw' => 0.0095076260615157
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004432'
'max' => '$0.014582'
'avg' => '$0.0095076'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0024149448053135
'max_diff' => 0.0096396533430288
'year' => 2029
]
4 => [
'items' => [
101 => 0.010676808538743
102 => 0.010594311124001
103 => 0.010900223277345
104 => 0.010259594559172
105 => 0.010472385721786
106 => 0.010516241685485
107 => 0.010012544929369
108 => 0.0096684580826788
109 => 0.0096455114128819
110 => 0.0090489122388101
111 => 0.009367610702019
112 => 0.0096480521610043
113 => 0.0095137424652867
114 => 0.0094712240280105
115 => 0.0096884415029305
116 => 0.0097053211610737
117 => 0.0093204631665839
118 => 0.009400487330506
119 => 0.0097342013969713
120 => 0.0093920785922531
121 => 0.0087273898681286
122 => 0.0085625378745052
123 => 0.0085405435797308
124 => 0.0080934518984474
125 => 0.0085735540729896
126 => 0.0083639766078636
127 => 0.0090260293090731
128 => 0.0086478683568021
129 => 0.0086315665939704
130 => 0.0086069240885016
131 => 0.0082220938092963
201 => 0.0083063471832021
202 => 0.0085864182302164
203 => 0.0086863507350173
204 => 0.0086759269560437
205 => 0.0085850457292938
206 => 0.0086266506895127
207 => 0.0084926266165186
208 => 0.0084452999268745
209 => 0.0082959238761262
210 => 0.0080763823477135
211 => 0.0081069109437657
212 => 0.0076719417298144
213 => 0.0074349474164902
214 => 0.0073693505140969
215 => 0.0072816315947334
216 => 0.0073792585994502
217 => 0.0076707095166822
218 => 0.007319157875739
219 => 0.0067164472458222
220 => 0.0067526711816491
221 => 0.0068340556104692
222 => 0.0066823962657749
223 => 0.0065388634238257
224 => 0.006663653584713
225 => 0.0064082771454234
226 => 0.006864916633082
227 => 0.0068525658146582
228 => 0.0070227727772608
301 => 0.0071292066839747
302 => 0.0068839109873857
303 => 0.0068222197830436
304 => 0.0068573618967457
305 => 0.0062765410372748
306 => 0.0069753073216019
307 => 0.0069813502814457
308 => 0.0069296067904761
309 => 0.0073016782648916
310 => 0.0080868651279115
311 => 0.007791446245975
312 => 0.0076770511258062
313 => 0.0074595859187431
314 => 0.0077493453953484
315 => 0.0077270963884971
316 => 0.0076264779418302
317 => 0.0075656235913374
318 => 0.0076777495980166
319 => 0.0075517299382663
320 => 0.0075290933445865
321 => 0.0073919402157436
322 => 0.0073429827888164
323 => 0.0073067366589708
324 => 0.007266833231482
325 => 0.0073548502492077
326 => 0.0071553921074383
327 => 0.0069148651415872
328 => 0.0068948679269145
329 => 0.0069500819947989
330 => 0.0069256538799639
331 => 0.0068947509744988
401 => 0.0068357489120604
402 => 0.0068182442605145
403 => 0.006875125885989
404 => 0.0068109098472331
405 => 0.0069056641104461
406 => 0.0068798961938447
407 => 0.0067359587063732
408 => 0.0065565593045005
409 => 0.0065549622735209
410 => 0.0065163109666614
411 => 0.006467082716113
412 => 0.0064533885430002
413 => 0.0066531441054311
414 => 0.0070666321414822
415 => 0.0069854545460752
416 => 0.0070441136781713
417 => 0.0073326585510073
418 => 0.0074243782892349
419 => 0.007359277791542
420 => 0.0072701642150763
421 => 0.0072740847601817
422 => 0.0075786128274793
423 => 0.0075976058694949
424 => 0.0076455951592808
425 => 0.0077072749584274
426 => 0.0073697821280477
427 => 0.007258188878221
428 => 0.0072053098054954
429 => 0.007042462728277
430 => 0.0072180793396038
501 => 0.0071157550608367
502 => 0.0071295621019375
503 => 0.0071205702483076
504 => 0.007125480408416
505 => 0.0068647889930388
506 => 0.0069597712432649
507 => 0.0068018448301537
508 => 0.0065903990910697
509 => 0.0065896902508098
510 => 0.0066414412958957
511 => 0.00661065774926
512 => 0.0065278200167808
513 => 0.0065395867256964
514 => 0.0064364979740828
515 => 0.0065521035666244
516 => 0.0065554187213618
517 => 0.0065109042711541
518 => 0.006689010636962
519 => 0.0067619809603544
520 => 0.0067326805956358
521 => 0.006759925168657
522 => 0.0069888278416592
523 => 0.0070261489650824
524 => 0.007042724542812
525 => 0.0070205154644976
526 => 0.0067641090893169
527 => 0.0067754818023803
528 => 0.006692036379835
529 => 0.0066215337910463
530 => 0.0066243535248604
531 => 0.0066606010201929
601 => 0.006818895958197
602 => 0.0071520183232305
603 => 0.0071646600734743
604 => 0.0071799822435556
605 => 0.0071176592775293
606 => 0.0070988620746253
607 => 0.0071236604372254
608 => 0.0072487636827901
609 => 0.0075705631955824
610 => 0.0074568177554948
611 => 0.0073643409421503
612 => 0.0074454680390233
613 => 0.0074329791583549
614 => 0.0073275604371484
615 => 0.0073246016847521
616 => 0.0071222694543529
617 => 0.0070474718356563
618 => 0.0069849653469687
619 => 0.0069167098930951
620 => 0.0068762457720953
621 => 0.0069384170525651
622 => 0.0069526363599975
623 => 0.0068166977686822
624 => 0.0067981698409963
625 => 0.0069091802291027
626 => 0.0068603286961814
627 => 0.0069105737092506
628 => 0.0069222309832764
629 => 0.0069203538936685
630 => 0.0068693472827359
701 => 0.0069018573755053
702 => 0.0068249613143806
703 => 0.0067413483973224
704 => 0.0066880085655081
705 => 0.0066414624877481
706 => 0.0066672889569633
707 => 0.0065752223099382
708 => 0.0065457683366194
709 => 0.0068908436875753
710 => 0.0071457545595116
711 => 0.0071420480544778
712 => 0.0071194856583207
713 => 0.007085962514246
714 => 0.0072463112559983
715 => 0.0071904489606461
716 => 0.0072310934479658
717 => 0.0072414391758324
718 => 0.0072727525781508
719 => 0.0072839444280017
720 => 0.0072501148845126
721 => 0.0071365788046326
722 => 0.006853657688258
723 => 0.0067219571448546
724 => 0.0066784937718855
725 => 0.0066800735829442
726 => 0.0066364953413573
727 => 0.0066493310865444
728 => 0.0066320315930044
729 => 0.0065992705374366
730 => 0.0066652660541002
731 => 0.0066728714226049
801 => 0.0066574672804279
802 => 0.0066610955135487
803 => 0.0065335557955184
804 => 0.0065432523632786
805 => 0.0064892606418099
806 => 0.0064791378449144
807 => 0.0063426514746386
808 => 0.0061008460856793
809 => 0.0062348297437798
810 => 0.0060729963257477
811 => 0.0060117075581625
812 => 0.0063018390515519
813 => 0.0062727178966106
814 => 0.0062228751380129
815 => 0.0061491473099057
816 => 0.0061218009412825
817 => 0.0059556530623365
818 => 0.0059458361592839
819 => 0.0060281835344597
820 => 0.0059901830542162
821 => 0.0059368159880472
822 => 0.0057435258841155
823 => 0.0055262038111423
824 => 0.0055327633984875
825 => 0.0056018895064794
826 => 0.0058028829883915
827 => 0.0057243513577859
828 => 0.0056673757587349
829 => 0.0056567059417129
830 => 0.0057902610405186
831 => 0.0059792694859869
901 => 0.0060679480197751
902 => 0.0059800702859981
903 => 0.0058791210771084
904 => 0.0058852653876999
905 => 0.0059261407333657
906 => 0.0059304361542489
907 => 0.0058647285970081
908 => 0.0058832248894871
909 => 0.005855127329875
910 => 0.0056826926583992
911 => 0.0056795738619884
912 => 0.0056372556127236
913 => 0.0056359742329542
914 => 0.0055639803341727
915 => 0.0055539078900628
916 => 0.0054109596343148
917 => 0.0055050486091353
918 => 0.0054419386647186
919 => 0.0053468170923517
920 => 0.0053304180974221
921 => 0.0053299251238322
922 => 0.0054275937098586
923 => 0.0055039072948422
924 => 0.0054430364892214
925 => 0.0054291773867126
926 => 0.0055771563431382
927 => 0.0055583246720749
928 => 0.0055420165663854
929 => 0.005962345852758
930 => 0.0056296224238908
1001 => 0.0054845360177154
1002 => 0.0053049640389119
1003 => 0.0053634335806908
1004 => 0.00537575397224
1005 => 0.0049439157334998
1006 => 0.004768719013825
1007 => 0.0047085981017817
1008 => 0.0046739976669158
1009 => 0.0046897655195691
1010 => 0.0045320679233361
1011 => 0.0046380433160822
1012 => 0.0045014905275904
1013 => 0.0044785970082185
1014 => 0.0047227703096863
1015 => 0.0047567455981458
1016 => 0.0046117964622828
1017 => 0.0047048772726404
1018 => 0.0046711248768847
1019 => 0.0045038313332188
1020 => 0.0044974419503788
1021 => 0.0044134999308197
1022 => 0.0042821469245876
1023 => 0.0042221150760678
1024 => 0.0041908499681383
1025 => 0.0042037505610148
1026 => 0.0041972276264918
1027 => 0.0041546610664461
1028 => 0.004199667491887
1029 => 0.0040846946728246
1030 => 0.004038911569875
1031 => 0.0040182324044325
1101 => 0.0039161874099261
1102 => 0.0040785863758009
1103 => 0.0041105810179265
1104 => 0.0041426386993807
1105 => 0.0044216789297311
1106 => 0.0044077388683823
1107 => 0.0045337502338902
1108 => 0.0045288536639466
1109 => 0.0044929131812549
1110 => 0.0043412861967014
1111 => 0.0044017220102533
1112 => 0.0042157099699511
1113 => 0.0043550828381348
1114 => 0.0042914788814459
1115 => 0.0043335782763984
1116 => 0.0042578797683244
1117 => 0.0042997744482073
1118 => 0.0041181681344974
1119 => 0.0039485867140249
1120 => 0.0040168312280133
1121 => 0.0040910208194255
1122 => 0.0042518827567636
1123 => 0.0041560747139672
1124 => 0.00419053090906
1125 => 0.0040751084233966
1126 => 0.0038369588666699
1127 => 0.0038383067672981
1128 => 0.0038016726463658
1129 => 0.003770015417211
1130 => 0.0041670794201962
1201 => 0.004117698234772
1202 => 0.0040390157786483
1203 => 0.0041443353728864
1204 => 0.0041721835452496
1205 => 0.0041729763435669
1206 => 0.0042498148008308
1207 => 0.0042908234992466
1208 => 0.0042980514600843
1209 => 0.0044189584327938
1210 => 0.0044594848552445
1211 => 0.0046264074538049
1212 => 0.0042873441976979
1213 => 0.0042803614130651
1214 => 0.0041458174355608
1215 => 0.0040604875179715
1216 => 0.0041516600480211
1217 => 0.0042324264633536
1218 => 0.0041483270732207
1219 => 0.004159308678137
1220 => 0.0040464121180563
1221 => 0.0040867673260083
1222 => 0.0041215266675301
1223 => 0.0041023346022014
1224 => 0.0040736031514979
1225 => 0.0042258045383444
1226 => 0.0042172167396164
1227 => 0.0043589501701427
1228 => 0.0044694415146927
1229 => 0.0046674617568168
1230 => 0.0044608173111317
1231 => 0.0044532863661936
]
'min_raw' => 0.003770015417211
'max_raw' => 0.010900223277345
'avg_raw' => 0.0073351193472779
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00377'
'max' => '$0.01090022'
'avg' => '$0.007335'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00066291243809033
'max_diff' => -0.0036821009903854
'year' => 2030
]
5 => [
'items' => [
101 => 0.0045269025609646
102 => 0.0044594735849886
103 => 0.0045020863702363
104 => 0.0046605961783223
105 => 0.0046639452407907
106 => 0.0046078441294222
107 => 0.0046044303716969
108 => 0.0046152052038141
109 => 0.0046783137320705
110 => 0.0046562616731686
111 => 0.0046817808740198
112 => 0.004713693025448
113 => 0.0048456952142273
114 => 0.0048775204950507
115 => 0.0048002015621661
116 => 0.0048071825961022
117 => 0.0047782631927512
118 => 0.0047503274114732
119 => 0.0048131229680929
120 => 0.0049278830820652
121 => 0.0049271691653522
122 => 0.004953791281176
123 => 0.0049703766387846
124 => 0.0048991801427044
125 => 0.004852833841724
126 => 0.0048706059626116
127 => 0.0048990239709375
128 => 0.0048613903855199
129 => 0.0046290984627503
130 => 0.0046995609932531
131 => 0.0046878325827358
201 => 0.0046711298999356
202 => 0.0047419805192268
203 => 0.0047351468041549
204 => 0.0045304505065544
205 => 0.0045435544993912
206 => 0.0045312474037606
207 => 0.0045710141475382
208 => 0.0044573260503213
209 => 0.0044922957433242
210 => 0.0045142284069551
211 => 0.0045271469143283
212 => 0.004573817421264
213 => 0.0045683411759441
214 => 0.0045734770101659
215 => 0.0046426770513945
216 => 0.004992667113342
217 => 0.0050117163002042
218 => 0.0049179111371817
219 => 0.0049553844495842
220 => 0.004883443884284
221 => 0.0049317380677299
222 => 0.0049647797215044
223 => 0.0048154708416423
224 => 0.0048066297387835
225 => 0.0047343922491796
226 => 0.0047732085843522
227 => 0.0047114490040993
228 => 0.004726602644835
301 => 0.0046842317442675
302 => 0.0047604909293268
303 => 0.0048457605477025
304 => 0.0048673030207035
305 => 0.0048106340488557
306 => 0.0047696019785706
307 => 0.0046975631799544
308 => 0.0048173653075426
309 => 0.0048523991005531
310 => 0.0048171812899422
311 => 0.0048090205536993
312 => 0.0047935559732652
313 => 0.0048123014375442
314 => 0.0048522082989924
315 => 0.0048333889600975
316 => 0.0048458194649917
317 => 0.004798447198616
318 => 0.0048992037117071
319 => 0.0050592293028712
320 => 0.0050597438113136
321 => 0.0050409243709754
322 => 0.0050332238614595
323 => 0.0050525337493057
324 => 0.0050630085713291
325 => 0.0051254532077956
326 => 0.0051924587906283
327 => 0.0055051446088821
328 => 0.0054173436823489
329 => 0.0056947771420663
330 => 0.0059141909884766
331 => 0.0059799836072104
401 => 0.0059194574937572
402 => 0.0057124009291904
403 => 0.0057022417463172
404 => 0.0060116716708068
405 => 0.0059242435443501
406 => 0.0059138442469021
407 => 0.0058032132919454
408 => 0.0058686098882351
409 => 0.0058543066933164
410 => 0.0058317284004009
411 => 0.0059565005505553
412 => 0.0061900628771578
413 => 0.0061536599982232
414 => 0.0061264869377795
415 => 0.006007422496874
416 => 0.0060791258843047
417 => 0.0060535936814286
418 => 0.0061632962281209
419 => 0.0060983108696693
420 => 0.0059235811903043
421 => 0.0059514074676597
422 => 0.0059472015818161
423 => 0.0060337584144446
424 => 0.0060077762017622
425 => 0.0059421281377903
426 => 0.006189264586517
427 => 0.0061732169201818
428 => 0.0061959688420378
429 => 0.0062059849416654
430 => 0.0063564125429726
501 => 0.0064180379180819
502 => 0.0064320279571357
503 => 0.0064905672972119
504 => 0.0064305714450265
505 => 0.0066705976300858
506 => 0.0068302010372341
507 => 0.0070155886077531
508 => 0.0072864896757626
509 => 0.0073883509833092
510 => 0.0073699506498261
511 => 0.0075753447478398
512 => 0.0079444333763161
513 => 0.0074445540142889
514 => 0.0079709281963054
515 => 0.0078042842075612
516 => 0.0074091743080459
517 => 0.0073837338885568
518 => 0.0076513068998288
519 => 0.0082447580858822
520 => 0.0080961052946435
521 => 0.0082450012285953
522 => 0.0080713062125673
523 => 0.008062680791005
524 => 0.0082365652493613
525 => 0.0086428557642594
526 => 0.0084498423702035
527 => 0.0081731103409986
528 => 0.0083774449649363
529 => 0.0082004314034047
530 => 0.007801570306298
531 => 0.0080959916226556
601 => 0.0078991204730436
602 => 0.0079565779407463
603 => 0.0083703718148573
604 => 0.0083205830411614
605 => 0.0083850143246401
606 => 0.0082712947957605
607 => 0.0081650628238632
608 => 0.0079667729594271
609 => 0.0079080691061397
610 => 0.007924292739245
611 => 0.0079080610665129
612 => 0.0077971197097388
613 => 0.0077731619343062
614 => 0.0077332312589711
615 => 0.0077456074449456
616 => 0.0076705260931845
617 => 0.0078122201165566
618 => 0.007838519775898
619 => 0.0079416328698072
620 => 0.0079523384132815
621 => 0.0082395069120958
622 => 0.0080813393286195
623 => 0.0081874517991476
624 => 0.0081779601010142
625 => 0.0074177375376464
626 => 0.007522489499378
627 => 0.0076854506788559
628 => 0.0076120368883898
629 => 0.007508246964852
630 => 0.0074244310367315
701 => 0.0072974413350104
702 => 0.0074761769015617
703 => 0.0077111951651681
704 => 0.0079582988642857
705 => 0.0082551777678998
706 => 0.0081889178526645
707 => 0.0079527489196873
708 => 0.0079633432854992
709 => 0.0080288334862187
710 => 0.0079440177258747
711 => 0.0079190039023489
712 => 0.0080253969709796
713 => 0.0080261296415707
714 => 0.0079285388589679
715 => 0.0078200845630296
716 => 0.0078196301355696
717 => 0.0078003317411516
718 => 0.0080747393540626
719 => 0.0082256357954248
720 => 0.0082429358292452
721 => 0.0082244713653092
722 => 0.0082315776046498
723 => 0.0081437742901974
724 => 0.0083444666297715
725 => 0.0085286417669801
726 => 0.0084792788958803
727 => 0.0084052769347561
728 => 0.0083463308083033
729 => 0.0084653930618228
730 => 0.008460091407095
731 => 0.0085270331578274
801 => 0.0085239962933399
802 => 0.0085014863003752
803 => 0.008479279699783
804 => 0.0085673263610107
805 => 0.0085419703365632
806 => 0.0085165749272063
807 => 0.0084656405458983
808 => 0.0084725633742485
809 => 0.0083985741906063
810 => 0.0083643434087387
811 => 0.00784959458058
812 => 0.0077120368737928
813 => 0.0077553153285934
814 => 0.0077695637196383
815 => 0.0077096984293595
816 => 0.007795529877488
817 => 0.0077821531372152
818 => 0.0078341942084854
819 => 0.0078016812065164
820 => 0.0078030155514582
821 => 0.0078986293577461
822 => 0.0079263864524817
823 => 0.007912268970072
824 => 0.0079221563708328
825 => 0.0081500073481546
826 => 0.0081176142254435
827 => 0.0081004060246221
828 => 0.0081051728138526
829 => 0.0081633936237384
830 => 0.008179692271768
831 => 0.0081106337547807
901 => 0.0081432021506145
902 => 0.0082818742465297
903 => 0.0083304016319391
904 => 0.0084852777516996
905 => 0.0084194836233218
906 => 0.0085402515934624
907 => 0.0089114511608395
908 => 0.0092079910603167
909 => 0.0089352807137278
910 => 0.0094798384749892
911 => 0.0099038548043025
912 => 0.0098875803513473
913 => 0.0098136432966571
914 => 0.0093309119787913
915 => 0.0088866954229727
916 => 0.0092583014343462
917 => 0.0092592487344907
918 => 0.0092273274485526
919 => 0.0090290670831266
920 => 0.00922042841759
921 => 0.0092356179853975
922 => 0.0092271158666574
923 => 0.0090751101093313
924 => 0.008843025413254
925 => 0.0088883742073353
926 => 0.0089626564571307
927 => 0.0088220246613673
928 => 0.00877708428144
929 => 0.0088606369979821
930 => 0.0091298612595805
1001 => 0.0090789659724353
1002 => 0.0090776368908039
1003 => 0.0092953885121718
1004 => 0.0091395253450134
1005 => 0.0088889462008556
1006 => 0.0088256716622229
1007 => 0.0086010896769133
1008 => 0.0087562092541002
1009 => 0.0087617917315291
1010 => 0.0086768343243875
1011 => 0.0088958400262181
1012 => 0.0088938218501206
1013 => 0.0091017351693118
1014 => 0.009499187346929
1015 => 0.0093816411805738
1016 => 0.0092449477780892
1017 => 0.0092598101410362
1018 => 0.0094228135791273
1019 => 0.0093242579794508
1020 => 0.0093596992602485
1021 => 0.0094227599345041
1022 => 0.0094608060049909
1023 => 0.0092543358969889
1024 => 0.0092061978382067
1025 => 0.0091077242641011
1026 => 0.0090820343467133
1027 => 0.0091622390181038
1028 => 0.0091411079208652
1029 => 0.0087613225459176
1030 => 0.0087216328611297
1031 => 0.0087228500870983
1101 => 0.0086230484875575
1102 => 0.0084708270931294
1103 => 0.0088708558290194
1104 => 0.0088387279231288
1105 => 0.0088032612015281
1106 => 0.0088076056725539
1107 => 0.0089812445885719
1108 => 0.008880525248306
1109 => 0.0091483041219782
1110 => 0.0090932568357209
1111 => 0.0090367977942836
1112 => 0.0090289934349725
1113 => 0.0090072615208782
1114 => 0.0089327347013597
1115 => 0.0088427390884237
1116 => 0.0087833161894768
1117 => 0.0081021449004552
1118 => 0.0082285663295065
1119 => 0.0083740026599542
1120 => 0.0084242066984252
1121 => 0.0083383292166068
1122 => 0.0089361256677714
1123 => 0.009045348839909
1124 => 0.0087145047270527
1125 => 0.0086526173018134
1126 => 0.0089401829970669
1127 => 0.0087667457293525
1128 => 0.0088448445203846
1129 => 0.008676037651928
1130 => 0.0090190401761689
1201 => 0.0090164270716206
1202 => 0.0088829913426275
1203 => 0.008995770307044
1204 => 0.0089761721866226
1205 => 0.0088255235772272
1206 => 0.0090238160057938
1207 => 0.0090239143563644
1208 => 0.0088954853683515
1209 => 0.008745508427073
1210 => 0.0087186960922697
1211 => 0.0086984965997257
1212 => 0.0088398766834702
1213 => 0.0089666376244715
1214 => 0.0092025083089726
1215 => 0.0092618118032054
1216 => 0.0094932772892532
1217 => 0.0093554508621617
1218 => 0.0094165475321403
1219 => 0.0094828766100538
1220 => 0.0095146772091766
1221 => 0.0094628598394202
1222 => 0.0098224210142475
1223 => 0.0098527789940727
1224 => 0.0098629577621125
1225 => 0.0097417157570089
1226 => 0.0098494070345855
1227 => 0.0097990218521677
1228 => 0.0099301100994121
1229 => 0.0099506664103988
1230 => 0.0099332559463051
1231 => 0.0099397808438715
]
'min_raw' => 0.0044573260503213
'max_raw' => 0.0099506664103988
'avg_raw' => 0.0072039962303601
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004457'
'max' => '$0.00995'
'avg' => '$0.0072039'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00068731063311025
'max_diff' => -0.00094955686694588
'year' => 2031
]
6 => [
'items' => [
101 => 0.0096329588120942
102 => 0.0096170484711314
103 => 0.0094001098431572
104 => 0.0094885139375861
105 => 0.0093232467203698
106 => 0.0093756546573901
107 => 0.0093987555766674
108 => 0.0093866889674026
109 => 0.0094935121724447
110 => 0.0094026906256199
111 => 0.0091629976311046
112 => 0.0089232393323932
113 => 0.0089202293622558
114 => 0.0088571052342906
115 => 0.0088114780515324
116 => 0.0088202674656429
117 => 0.0088512425073896
118 => 0.0088096777257966
119 => 0.0088185476793374
120 => 0.0089658480083056
121 => 0.0089953880387824
122 => 0.0088949994731875
123 => 0.0084919248963234
124 => 0.0083930093841249
125 => 0.0084641078927133
126 => 0.0084301273849385
127 => 0.0068037707441113
128 => 0.0071858591127846
129 => 0.0069588351786139
130 => 0.0070634582523488
131 => 0.0068317256031232
201 => 0.0069423205694824
202 => 0.0069218977174774
203 => 0.0075362845074873
204 => 0.0075266917028227
205 => 0.0075312832707757
206 => 0.0073121157691113
207 => 0.0076612555503088
208 => 0.0078332543611871
209 => 0.0078014219588936
210 => 0.0078094334887487
211 => 0.0076717688623702
212 => 0.007532616165279
213 => 0.0073782744087583
214 => 0.0076650223151561
215 => 0.0076331408429146
216 => 0.0077062654696448
217 => 0.0078922419841075
218 => 0.0079196277323181
219 => 0.0079564344556322
220 => 0.0079432418654051
221 => 0.0082575428873295
222 => 0.0082194789597496
223 => 0.0083112020734779
224 => 0.0081225206694893
225 => 0.0079090097510729
226 => 0.007949591196466
227 => 0.0079456828769393
228 => 0.0078959254836037
229 => 0.0078510067337036
301 => 0.0077762296708993
302 => 0.0080128353625351
303 => 0.0080032296035474
304 => 0.0081587356760846
305 => 0.0081312484672582
306 => 0.0079476821594549
307 => 0.0079542382660497
308 => 0.007998331233657
309 => 0.0081509374979907
310 => 0.0081962414274717
311 => 0.0081752548422867
312 => 0.0082249285327597
313 => 0.00826418859235
314 => 0.0082298589917857
315 => 0.0087158937410556
316 => 0.0085140582269343
317 => 0.0086124314521545
318 => 0.0086358928867209
319 => 0.00857579691542
320 => 0.0085888295797198
321 => 0.0086085705149455
322 => 0.0087284336079644
323 => 0.0090429890467116
324 => 0.0091823035092815
325 => 0.0096014379435774
326 => 0.009170735382516
327 => 0.009145179274967
328 => 0.009220678043231
329 => 0.0094667543260484
330 => 0.0096661760405019
331 => 0.0097323357281009
401 => 0.0097410798229944
402 => 0.0098651997951429
403 => 0.009936343048478
404 => 0.0098501283658448
405 => 0.0097770704493666
406 => 0.0095153860608243
407 => 0.009545676741341
408 => 0.0097543494922786
409 => 0.010049112043742
410 => 0.010302048977713
411 => 0.010213479279178
412 => 0.010889203558536
413 => 0.010956198860748
414 => 0.0109469422762
415 => 0.011099567544877
416 => 0.010796637468148
417 => 0.010667128991353
418 => 0.0097928664001518
419 => 0.010038498527572
420 => 0.010395539250246
421 => 0.010348283571766
422 => 0.010088991055234
423 => 0.010301852281088
424 => 0.010231473703035
425 => 0.010175963198514
426 => 0.010430267580964
427 => 0.010150649466212
428 => 0.010392749845654
429 => 0.010082253604812
430 => 0.010213883858101
501 => 0.010139164160095
502 => 0.010187516962007
503 => 0.0099048474700427
504 => 0.010057369066492
505 => 0.0098985020701859
506 => 0.0098984267465446
507 => 0.0098949197487959
508 => 0.010081826065426
509 => 0.010087921073702
510 => 0.0099497970233119
511 => 0.0099298911897475
512 => 0.010003493489505
513 => 0.0099173244729619
514 => 0.0099576424134609
515 => 0.0099185456623071
516 => 0.0099097441601188
517 => 0.0098396122932303
518 => 0.0098093975566589
519 => 0.0098212455334064
520 => 0.0097808022807165
521 => 0.0097564337580745
522 => 0.0098900722362956
523 => 0.0098186745883429
524 => 0.0098791295227604
525 => 0.0098102334949707
526 => 0.009571409846081
527 => 0.0094340598400903
528 => 0.0089829441063016
529 => 0.0091108799687967
530 => 0.0091957015779902
531 => 0.0091676680366578
601 => 0.0092278949309803
602 => 0.0092315923731491
603 => 0.0092120119958644
604 => 0.0091893404273703
605 => 0.0091783051616438
606 => 0.0092605529913457
607 => 0.0093083006248224
608 => 0.0092042145612395
609 => 0.0091798286528609
610 => 0.0092850654098922
611 => 0.009349259770888
612 => 0.0098232348647854
613 => 0.0097881212589101
614 => 0.00987624951896
615 => 0.0098663276293168
616 => 0.0099587000857818
617 => 0.010109690012589
618 => 0.0098026852739421
619 => 0.0098559706811461
620 => 0.0098429063298395
621 => 0.0099855394917489
622 => 0.0099859847769115
623 => 0.0099004690712919
624 => 0.0099468285226421
625 => 0.0099209519487035
626 => 0.0099677144152394
627 => 0.0097876522952959
628 => 0.010006948520882
629 => 0.010131275349653
630 => 0.010133001627791
701 => 0.01019193155791
702 => 0.010251807779902
703 => 0.010366734973896
704 => 0.010248602522838
705 => 0.010036093743348
706 => 0.010051436190828
707 => 0.0099268423711675
708 => 0.0099289368157857
709 => 0.0099177565062692
710 => 0.0099513094567429
711 => 0.0097950152810788
712 => 0.0098316972117108
713 => 0.0097803422940169
714 => 0.0098558590455845
715 => 0.009774615504264
716 => 0.0098429000298137
717 => 0.0098723693673731
718 => 0.0099811118573966
719 => 0.0097585541500717
720 => 0.009304743919004
721 => 0.0094001403314916
722 => 0.0092590415441959
723 => 0.0092721007741611
724 => 0.0092984824970518
725 => 0.0092129707016004
726 => 0.0092292836573862
727 => 0.009228700843813
728 => 0.0092236784713008
729 => 0.0092014335506816
730 => 0.0091691740147605
731 => 0.0092976860769089
801 => 0.0093195227804898
802 => 0.0093680630675549
803 => 0.0095124860366693
804 => 0.0094980547763267
805 => 0.0095215927606928
806 => 0.0094702094729817
807 => 0.0092744842975072
808 => 0.0092851131161977
809 => 0.009152571576812
810 => 0.0093646736823988
811 => 0.0093144451041848
812 => 0.009282062413054
813 => 0.0092732264957555
814 => 0.0094180074614758
815 => 0.009461328195583
816 => 0.0094343336212337
817 => 0.0093789669616859
818 => 0.0094852873157012
819 => 0.0095137341571401
820 => 0.0095201023558591
821 => 0.0097084816382685
822 => 0.009530630665113
823 => 0.0095734411620382
824 => 0.0099074364382529
825 => 0.0096045488109238
826 => 0.0097649951423201
827 => 0.0097571421293207
828 => 0.0098392210432553
829 => 0.0097504092626741
830 => 0.0097515101911343
831 => 0.009824390706201
901 => 0.00972204316686
902 => 0.0096967004768025
903 => 0.0096616897319959
904 => 0.0097381344124387
905 => 0.0097839595410687
906 => 0.010153276422978
907 => 0.010391871971588
908 => 0.010381513909572
909 => 0.010476167206919
910 => 0.010433525029539
911 => 0.010295822190341
912 => 0.01053086414578
913 => 0.010456487036506
914 => 0.010462618595026
915 => 0.010462390378112
916 => 0.01051184465362
917 => 0.010476801767005
918 => 0.010407728640408
919 => 0.010453582605351
920 => 0.010589752488138
921 => 0.01101242798251
922 => 0.011248962788866
923 => 0.010998188290166
924 => 0.011171169181365
925 => 0.011067442286039
926 => 0.01104859202355
927 => 0.011157236806411
928 => 0.011266071757582
929 => 0.011259139441699
930 => 0.011180130855885
1001 => 0.011135500910528
1002 => 0.011473453808903
1003 => 0.011722451747548
1004 => 0.011705471757436
1005 => 0.011780415911602
1006 => 0.012000454266172
1007 => 0.012020571815703
1008 => 0.012018037466859
1009 => 0.011968174021296
1010 => 0.01218483035696
1011 => 0.012365568883877
1012 => 0.011956632074342
1013 => 0.012112349858037
1014 => 0.012182256588051
1015 => 0.012284900408104
1016 => 0.012458077737636
1017 => 0.012646194250525
1018 => 0.012672795988041
1019 => 0.012653920782263
1020 => 0.012529852885169
1021 => 0.01273569221827
1022 => 0.012856268072074
1023 => 0.012928068233684
1024 => 0.013110141497122
1025 => 0.012182688308217
1026 => 0.011526190843695
1027 => 0.011423669284672
1028 => 0.011632150906407
1029 => 0.011687125847449
1030 => 0.011664965517647
1031 => 0.01092601793519
1101 => 0.011419778878579
1102 => 0.011951024137066
1103 => 0.011971431431008
1104 => 0.012237383915221
1105 => 0.012323988945842
1106 => 0.012538115554822
1107 => 0.01252472187713
1108 => 0.012576858298918
1109 => 0.012564873038426
1110 => 0.012961497491885
1111 => 0.013399033163352
1112 => 0.013383882694327
1113 => 0.013320981764867
1114 => 0.013414400371318
1115 => 0.013865984073443
1116 => 0.013824409482633
1117 => 0.01386479565629
1118 => 0.014397238291239
1119 => 0.015089489455753
1120 => 0.014767869288955
1121 => 0.015465692507196
1122 => 0.015904935233059
1123 => 0.016664560108894
1124 => 0.016569451333208
1125 => 0.016865167722986
1126 => 0.01639918677493
1127 => 0.015329200327906
1128 => 0.015159870876921
1129 => 0.015498872725898
1130 => 0.016332275692291
1201 => 0.015472625900657
1202 => 0.015646531933894
1203 => 0.015596446984623
1204 => 0.015593778170523
1205 => 0.015695635949844
1206 => 0.015547885928395
1207 => 0.014945925761288
1208 => 0.015221800558499
1209 => 0.0151152720507
1210 => 0.01523347337233
1211 => 0.015871357155231
1212 => 0.01558933352956
1213 => 0.015292244549655
1214 => 0.015664860059779
1215 => 0.016139327648747
1216 => 0.01610963631973
1217 => 0.016052022731423
1218 => 0.016376787512158
1219 => 0.016913203782779
1220 => 0.017058194945232
1221 => 0.017165224457142
1222 => 0.017179982018556
1223 => 0.017331994072892
1224 => 0.016514586944755
1225 => 0.017811833049613
1226 => 0.018035831616221
1227 => 0.017993729169488
1228 => 0.018242694148973
1229 => 0.018169442336377
1230 => 0.018063311952782
1231 => 0.018457974401635
]
'min_raw' => 0.0068037707441113
'max_raw' => 0.018457974401635
'avg_raw' => 0.012630872572873
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0068037'
'max' => '$0.018457'
'avg' => '$0.01263'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00234644469379
'max_diff' => 0.0085073079912359
'year' => 2032
]
7 => [
'items' => [
101 => 0.018005525751642
102 => 0.017363331854679
103 => 0.017011011581649
104 => 0.01747497533804
105 => 0.017758301813964
106 => 0.017945562591602
107 => 0.018002227589769
108 => 0.016578039933253
109 => 0.015810481775459
110 => 0.016302477754533
111 => 0.016902746804751
112 => 0.016511252419873
113 => 0.016526598258563
114 => 0.015968430148641
115 => 0.016952132297172
116 => 0.016808815168368
117 => 0.017552344686124
118 => 0.017374895399515
119 => 0.017981214857595
120 => 0.017821550624305
121 => 0.018484307929987
122 => 0.018748699762661
123 => 0.019192654799023
124 => 0.019519229930994
125 => 0.019711001094874
126 => 0.01969948787351
127 => 0.020459380764817
128 => 0.020011298475449
129 => 0.019448401515115
130 => 0.01943822048502
131 => 0.019729752797088
201 => 0.0203407245452
202 => 0.020499140630207
203 => 0.020587673610207
204 => 0.020452082269482
205 => 0.01996572105872
206 => 0.019755712753821
207 => 0.019934645914122
208 => 0.019715826034975
209 => 0.020093570536396
210 => 0.020612294418718
211 => 0.020505179988275
212 => 0.020863247469754
213 => 0.021233809643286
214 => 0.021763730194426
215 => 0.021902271049395
216 => 0.022131273814422
217 => 0.022366992883124
218 => 0.022442699495185
219 => 0.02258724690799
220 => 0.022586485071774
221 => 0.023022088429424
222 => 0.023502572422427
223 => 0.023683944006555
224 => 0.02410099796337
225 => 0.023386807677637
226 => 0.023928529213392
227 => 0.024417175598813
228 => 0.023834591233589
301 => 0.024637548056302
302 => 0.024668725050189
303 => 0.025139460642846
304 => 0.024662279937661
305 => 0.024378931558136
306 => 0.025196947712898
307 => 0.025592759962919
308 => 0.025473538091986
309 => 0.024566253767473
310 => 0.024038175375351
311 => 0.022656092364453
312 => 0.024293229392404
313 => 0.025090631082777
314 => 0.024564188689733
315 => 0.024829695611459
316 => 0.026278215285491
317 => 0.026829717792658
318 => 0.026715009126461
319 => 0.026734393002783
320 => 0.027031973745172
321 => 0.028351610637634
322 => 0.027560853622727
323 => 0.028165357731523
324 => 0.028485984531127
325 => 0.028783800571324
326 => 0.028052458502325
327 => 0.027100993216106
328 => 0.026799624220165
329 => 0.02451184436879
330 => 0.024392755492202
331 => 0.02432590729701
401 => 0.023904438882194
402 => 0.023573280158063
403 => 0.023309930445499
404 => 0.02261882215685
405 => 0.022852050916573
406 => 0.021750568549976
407 => 0.022455257933986
408 => 0.020697265480677
409 => 0.022161373834821
410 => 0.021364526222498
411 => 0.021899587963025
412 => 0.021897721183018
413 => 0.020912502877229
414 => 0.020344249519431
415 => 0.020706362675772
416 => 0.021094576723947
417 => 0.021157563147154
418 => 0.021660892794036
419 => 0.021801361279446
420 => 0.021375735210807
421 => 0.020660834994593
422 => 0.020826890009682
423 => 0.020340884419851
424 => 0.019489178317607
425 => 0.0201008885096
426 => 0.020309753264145
427 => 0.020401999838515
428 => 0.019564444706065
429 => 0.019301266699243
430 => 0.019161152936688
501 => 0.020552717144561
502 => 0.020628950173147
503 => 0.020238931220637
504 => 0.022001853869094
505 => 0.021602850178772
506 => 0.022048635059139
507 => 0.020811822257569
508 => 0.020859070172178
509 => 0.02027354317111
510 => 0.02060139916678
511 => 0.020369681116333
512 => 0.020574911642266
513 => 0.020697925973313
514 => 0.021283356895162
515 => 0.022168058515558
516 => 0.021195913037838
517 => 0.020772335331816
518 => 0.021035120558341
519 => 0.021734952246008
520 => 0.022795233076549
521 => 0.022167525484728
522 => 0.022446091454812
523 => 0.022506945726738
524 => 0.022044097387528
525 => 0.022812298955016
526 => 0.023223984415891
527 => 0.023646288512446
528 => 0.024012963326792
529 => 0.023477610969615
530 => 0.024050514731541
531 => 0.023588855430557
601 => 0.023174699312113
602 => 0.023175327415988
603 => 0.022915521233033
604 => 0.022412114015872
605 => 0.022319278001375
606 => 0.022802222672684
607 => 0.023189498564044
608 => 0.023221396461382
609 => 0.023435812293793
610 => 0.023562701374755
611 => 0.024806386865521
612 => 0.025306607458213
613 => 0.025918267730266
614 => 0.026156543877514
615 => 0.026873669654006
616 => 0.026294532347381
617 => 0.026169232348148
618 => 0.024429719784433
619 => 0.024714564869292
620 => 0.025170629333614
621 => 0.024437240119471
622 => 0.024902406772917
623 => 0.024994240523884
624 => 0.024412319834609
625 => 0.02472314881806
626 => 0.023897679192386
627 => 0.022186051497649
628 => 0.022814204485935
629 => 0.023276736519322
630 => 0.02261664627789
701 => 0.023799832486637
702 => 0.023108639529408
703 => 0.022889564545079
704 => 0.022034874925342
705 => 0.022438255525838
706 => 0.022983833563862
707 => 0.022646729766617
708 => 0.023346270762289
709 => 0.024337007372929
710 => 0.025043065281056
711 => 0.025097267640086
712 => 0.024643319707366
713 => 0.025370774166607
714 => 0.025376072878162
715 => 0.0245555012764
716 => 0.024052905739283
717 => 0.02393871497578
718 => 0.024223985891429
719 => 0.024570357446942
720 => 0.025116488850794
721 => 0.025446504620215
722 => 0.026307010720027
723 => 0.026539838997993
724 => 0.026795646686354
725 => 0.027137484646174
726 => 0.027547948762392
727 => 0.026649876643843
728 => 0.026685558723328
729 => 0.02584928640119
730 => 0.024955609491403
731 => 0.025633798867532
801 => 0.026520441261069
802 => 0.026317044516338
803 => 0.026294158227538
804 => 0.026332646617173
805 => 0.026179292113963
806 => 0.025485675379528
807 => 0.025137345397766
808 => 0.025586779942695
809 => 0.025825634401295
810 => 0.026196076836286
811 => 0.026150411987082
812 => 0.027104631917005
813 => 0.027475412927661
814 => 0.027380551278521
815 => 0.027398008104936
816 => 0.028069289413918
817 => 0.028815892289036
818 => 0.029515184404511
819 => 0.030226534379668
820 => 0.029368974220154
821 => 0.028933558058111
822 => 0.029382796393979
823 => 0.02914442420948
824 => 0.030514181487391
825 => 0.030609020509394
826 => 0.031978678738263
827 => 0.033278647493328
828 => 0.032462160409631
829 => 0.033232070954172
830 => 0.03406479197982
831 => 0.035671245942412
901 => 0.035130248763543
902 => 0.034715853403036
903 => 0.0343242517897
904 => 0.035139112582046
905 => 0.03618741797368
906 => 0.036413212914494
907 => 0.036779086978918
908 => 0.036394415137128
909 => 0.036857710000351
910 => 0.038493344449605
911 => 0.038051381583272
912 => 0.037423723264003
913 => 0.038714899573687
914 => 0.039182171260841
915 => 0.042461728673369
916 => 0.046602305378446
917 => 0.044888079434052
918 => 0.043824004072641
919 => 0.044074087022778
920 => 0.045586085468105
921 => 0.046071691380312
922 => 0.044751647112537
923 => 0.045217909064101
924 => 0.047787058259086
925 => 0.04916532437402
926 => 0.047293453864104
927 => 0.042129037366706
928 => 0.037367209499711
929 => 0.038630260677941
930 => 0.038487069871371
1001 => 0.041247300173493
1002 => 0.038040840915077
1003 => 0.038094829465565
1004 => 0.0409121384072
1005 => 0.040160528682475
1006 => 0.03894301718732
1007 => 0.037376098681004
1008 => 0.03447950489966
1009 => 0.03191391101003
1010 => 0.03694563144858
1011 => 0.03672865451368
1012 => 0.036414439757764
1013 => 0.037113690695467
1014 => 0.040509054763109
1015 => 0.040430780631629
1016 => 0.039932840542965
1017 => 0.040310523711574
1018 => 0.038876807501792
1019 => 0.039246308814164
1020 => 0.037366455201848
1021 => 0.038216227544236
1022 => 0.038940404954464
1023 => 0.039085794291197
1024 => 0.03941336389062
1025 => 0.036614317528496
1026 => 0.037871007169406
1027 => 0.038609194597545
1028 => 0.035274036941724
1029 => 0.038543269254039
1030 => 0.036565592358647
1031 => 0.035894339116641
1101 => 0.036798093176112
1102 => 0.036445899340207
1103 => 0.036143103761611
1104 => 0.035974138626066
1105 => 0.036637755863646
1106 => 0.036606797326319
1107 => 0.035520990723083
1108 => 0.0341046002723
1109 => 0.034579987399015
1110 => 0.034407274799101
1111 => 0.033781342056647
1112 => 0.034203145149654
1113 => 0.032345737797711
1114 => 0.029150164988327
1115 => 0.031261258269248
1116 => 0.03117998347436
1117 => 0.031139001037259
1118 => 0.032725429291539
1119 => 0.032572930820017
1120 => 0.032296144600936
1121 => 0.033776258660675
1122 => 0.033235997118526
1123 => 0.034900955889799
1124 => 0.035997605419341
1125 => 0.035719459625753
1126 => 0.036750863808854
1127 => 0.034590939358267
1128 => 0.035308379619624
1129 => 0.035456243063161
1130 => 0.03375799428293
1201 => 0.032597881455939
1202 => 0.032520515156633
1203 => 0.030509039388026
1204 => 0.031583553507551
1205 => 0.032529081466317
1206 => 0.032076246950001
1207 => 0.031932893070182
1208 => 0.032665256952515
1209 => 0.032722167898445
1210 => 0.031424592300095
1211 => 0.031694399355867
1212 => 0.032819539630127
1213 => 0.031666048707769
1214 => 0.029425004267298
1215 => 0.028869194261198
1216 => 0.028795038960773
1217 => 0.027287638142382
1218 => 0.028906336143515
1219 => 0.028199731087611
1220 => 0.030431887992782
1221 => 0.029156891939846
1222 => 0.029101929408306
1223 => 0.029018845480633
1224 => 0.027721363326301
1225 => 0.028005429458807
1226 => 0.028949708547752
1227 => 0.029286637964752
1228 => 0.029251493466178
1229 => 0.028945081065066
1230 => 0.02908535509321
1231 => 0.028633483573848
]
'min_raw' => 0.015810481775459
'max_raw' => 0.04916532437402
'avg_raw' => 0.03248790307474
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01581'
'max' => '$0.049165'
'avg' => '$0.032487'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0090067110313478
'max_diff' => 0.030707349972385
'year' => 2033
]
8 => [
'items' => [
101 => 0.028473918335469
102 => 0.027970286551268
103 => 0.027230086960325
104 => 0.027333016253353
105 => 0.025866487179936
106 => 0.025067444306149
107 => 0.0248462797699
108 => 0.024550529308927
109 => 0.024879685571429
110 => 0.02586233268733
111 => 0.024677051785338
112 => 0.022644970816662
113 => 0.022767102345376
114 => 0.023041495629223
115 => 0.022530165560068
116 => 0.022046234562294
117 => 0.022466973302296
118 => 0.021605953807418
119 => 0.023145545721609
120 => 0.023103904074987
121 => 0.023677768732873
122 => 0.024036618080337
123 => 0.023209586513288
124 => 0.023001590310706
125 => 0.023120074400597
126 => 0.021161796321273
127 => 0.023517735635186
128 => 0.023538109896205
129 => 0.023363653103786
130 => 0.024618118056979
131 => 0.027265430385647
201 => 0.02626940499971
202 => 0.025883713865249
203 => 0.0251505147367
204 => 0.026127459042435
205 => 0.02605244496246
206 => 0.025713202844567
207 => 0.025508028153165
208 => 0.025886068813072
209 => 0.025461184731812
210 => 0.025384863875784
211 => 0.024922442526164
212 => 0.024757379143181
213 => 0.024635172785783
214 => 0.024500635594036
215 => 0.02479739111445
216 => 0.024124904063752
217 => 0.023313950605328
218 => 0.023246528599898
219 => 0.023432686684694
220 => 0.023350325590011
221 => 0.023246134286664
222 => 0.02304720471376
223 => 0.022988186558937
224 => 0.023179966930573
225 => 0.022963458072487
226 => 0.023282928686441
227 => 0.02319605035656
228 => 0.022710755068156
301 => 0.022105897459476
302 => 0.022100512958027
303 => 0.021970197378402
304 => 0.021804220894671
305 => 0.021758050033925
306 => 0.022431539859149
307 => 0.023825643641508
308 => 0.023551947710954
309 => 0.023749721070266
310 => 0.024722570254593
311 => 0.025031809755694
312 => 0.024812318882551
313 => 0.024511866237786
314 => 0.024525084629333
315 => 0.025551822269697
316 => 0.025615858636905
317 => 0.025777657877923
318 => 0.025985615627092
319 => 0.02484773498647
320 => 0.024471490553487
321 => 0.024293205067894
322 => 0.023744154777432
323 => 0.024336258443681
324 => 0.023991264993764
325 => 0.024037816396813
326 => 0.024007499734508
327 => 0.02402405468213
328 => 0.023145115374292
329 => 0.023465354662378
330 => 0.022932894734504
331 => 0.022219990662512
401 => 0.022217600758086
402 => 0.022392083019736
403 => 0.022288294143015
404 => 0.022009000944416
405 => 0.02204867322505
406 => 0.021701102301558
407 => 0.022090874628137
408 => 0.022102051903791
409 => 0.021951968327016
410 => 0.022552466374326
411 => 0.022798490914269
412 => 0.022699702688934
413 => 0.022791559669031
414 => 0.023563321012532
415 => 0.023689151785831
416 => 0.023745037503416
417 => 0.023670158045291
418 => 0.022805666049648
419 => 0.022844009945758
420 => 0.022562667877674
421 => 0.022324963477239
422 => 0.022334470406661
423 => 0.022456681367893
424 => 0.022990383803174
425 => 0.024113529114745
426 => 0.024156151658311
427 => 0.0242078114245
428 => 0.023997685193291
429 => 0.023934309111322
430 => 0.024017918522194
501 => 0.024439712849046
502 => 0.025524682373749
503 => 0.025141181681041
504 => 0.024829389648325
505 => 0.025102915319545
506 => 0.025060808186426
507 => 0.024705381607778
508 => 0.024695405967501
509 => 0.024013228726325
510 => 0.023761043332686
511 => 0.023550298342012
512 => 0.023320170313834
513 => 0.023183742704768
514 => 0.023393357517532
515 => 0.023441298905301
516 => 0.022982972453752
517 => 0.02292050425198
518 => 0.023294783525979
519 => 0.02313007717203
520 => 0.023299481741587
521 => 0.02333878505485
522 => 0.023332456316183
523 => 0.023160483966256
524 => 0.02327009401381
525 => 0.023010833575017
526 => 0.022728926787487
527 => 0.022549087820457
528 => 0.022392154469546
529 => 0.022479230213652
530 => 0.022168821085319
531 => 0.022069514957863
601 => 0.023232960596003
602 => 0.024092410398045
603 => 0.024079913657544
604 => 0.024003842963643
605 => 0.023890817342885
606 => 0.024431444320894
607 => 0.024243100691933
608 => 0.024380136418639
609 => 0.024415017762457
610 => 0.024520593084605
611 => 0.024558327187768
612 => 0.024444268519991
613 => 0.024061473699839
614 => 0.023107585403061
615 => 0.022663547825938
616 => 0.022517008029457
617 => 0.02252233447274
618 => 0.022375407388694
619 => 0.022418683999756
620 => 0.022360357549474
621 => 0.022249901363323
622 => 0.022472409855414
623 => 0.022498051886318
624 => 0.022446115745485
625 => 0.022458348586767
626 => 0.022028339522889
627 => 0.022061032178085
628 => 0.021878995319572
629 => 0.021844865603088
630 => 0.021384692276529
701 => 0.020569428525339
702 => 0.021021163783066
703 => 0.020475531115322
704 => 0.020268891756363
705 => 0.02124709034266
706 => 0.021148906335601
707 => 0.020980857995078
708 => 0.020732279475102
709 => 0.020640079284027
710 => 0.020079900110086
711 => 0.02004680173605
712 => 0.020324441660765
713 => 0.020196320388515
714 => 0.020016389598957
715 => 0.019364698518467
716 => 0.018631981976495
717 => 0.018654098083206
718 => 0.018887161582531
719 => 0.019564825139714
720 => 0.019300050264224
721 => 0.019107953054114
722 => 0.019071979021082
723 => 0.019522269361225
724 => 0.020159524531269
725 => 0.020458510399274
726 => 0.020162224484417
727 => 0.019821867178597
728 => 0.019842583150738
729 => 0.019980397232476
730 => 0.01999487954388
731 => 0.019773341927088
801 => 0.019835703468551
802 => 0.019740970584609
803 => 0.019159595050724
804 => 0.019149079810878
805 => 0.019006400878916
806 => 0.01900208061756
807 => 0.018759348161365
808 => 0.018725388212813
809 => 0.01824342818823
810 => 0.01856065573592
811 => 0.018347876152123
812 => 0.018027167129712
813 => 0.017971876773366
814 => 0.017970214678489
815 => 0.01829951113528
816 => 0.018556807715096
817 => 0.018351577544082
818 => 0.018304850612362
819 => 0.018803771995512
820 => 0.018740279701737
821 => 0.018685295784809
822 => 0.020102465320268
823 => 0.018980665049834
824 => 0.018491496101804
825 => 0.017886056637953
826 => 0.018083190780274
827 => 0.018124729840564
828 => 0.016668757068668
829 => 0.01607806909644
830 => 0.015875367243978
831 => 0.015758709462103
901 => 0.0158118718782
902 => 0.015280183422406
903 => 0.015637486858015
904 => 0.015177089597803
905 => 0.015099902498867
906 => 0.015923149832401
907 => 0.016037699889521
908 => 0.015548993757933
909 => 0.015862822208748
910 => 0.015749023649941
911 => 0.015184981787409
912 => 0.015163439537072
913 => 0.014880423157484
914 => 0.014437557326198
915 => 0.014235155757624
916 => 0.014129743263379
917 => 0.014173238512953
918 => 0.014151245983792
919 => 0.014007729854696
920 => 0.014159472160318
921 => 0.013771833273703
922 => 0.013617472345634
923 => 0.013547751095572
924 => 0.01320369927204
925 => 0.01375123872382
926 => 0.013859110893541
927 => 0.01396719560476
928 => 0.014907999223353
929 => 0.014860999333251
930 => 0.015285855449894
1001 => 0.015269346322461
1002 => 0.015148170475782
1003 => 0.014636949511102
1004 => 0.014840713075986
1005 => 0.014213560495161
1006 => 0.014683465850945
1007 => 0.014469020670282
1008 => 0.014610961719651
1009 => 0.014355738914578
1010 => 0.014496989752796
1011 => 0.013884691386776
1012 => 0.013312935787856
1013 => 0.013543026931447
1014 => 0.013793162318646
1015 => 0.014335519571403
1016 => 0.014012496066011
1017 => 0.014128667533421
1018 => 0.013739512564466
1019 => 0.012936574706891
1020 => 0.012941119247966
1021 => 0.01281760475153
1022 => 0.012710870193198
1023 => 0.014049599201386
1024 => 0.013883107087044
1025 => 0.013617823692789
1026 => 0.013972916057942
1027 => 0.014066808115362
1028 => 0.01406948109024
1029 => 0.014328547313595
1030 => 0.01446681100344
1031 => 0.014491180578044
1101 => 0.01489882687799
1102 => 0.015035464540747
1103 => 0.015598255735957
1104 => 0.014455080295351
1105 => 0.01443153734944
1106 => 0.013977912935723
1107 => 0.013690217161026
1108 => 0.013997611711551
1109 => 0.014269921319776
1110 => 0.013986374354311
1111 => 0.014023399601997
1112 => 0.013642760967499
1113 => 0.01377882136862
1114 => 0.01389601491538
1115 => 0.013831307527177
1116 => 0.013734437435165
1117 => 0.014247595037279
1118 => 0.014218640674287
1119 => 0.014696504830818
1120 => 0.015069034113228
1121 => 0.015736673184881
1122 => 0.015039957008799
1123 => 0.015014565902147
1124 => 0.015262768042536
1125 => 0.015035426542292
1126 => 0.015179098522884
1127 => 0.015713525407648
1128 => 0.015724817005584
1129 => 0.01553566819175
1130 => 0.015524158469239
1201 => 0.015560486567997
1202 => 0.01577326137711
1203 => 0.015698911320896
1204 => 0.01578495108826
1205 => 0.015892545134836
1206 => 0.016337599730403
1207 => 0.01644490088667
1208 => 0.016184214706214
1209 => 0.01620775174953
1210 => 0.016110247962043
1211 => 0.016016060525051
1212 => 0.01622778012844
1213 => 0.016614701864993
1214 => 0.016612294844951
1215 => 0.016702053167147
1216 => 0.016757971858278
1217 => 0.016517927900963
1218 => 0.016361668111412
1219 => 0.016421588057794
1220 => 0.016517401356947
1221 => 0.016390517096218
1222 => 0.015607328660497
1223 => 0.015844898001624
1224 => 0.015805354846713
1225 => 0.015749040585508
1226 => 0.01598791839508
1227 => 0.015964878047601
1228 => 0.015274730188802
1229 => 0.015318911215543
1230 => 0.01527741698337
1231 => 0.015411493336441
]
'min_raw' => 0.012710870193198
'max_raw' => 0.028473918335469
'avg_raw' => 0.020592394264333
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01271'
'max' => '$0.028473'
'avg' => '$0.020592'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0030996115822611
'max_diff' => -0.020691406038551
'year' => 2034
]
9 => [
'items' => [
101 => 0.015028185979225
102 => 0.01514608874069
103 => 0.015220036247412
104 => 0.015263591896962
105 => 0.015420944769526
106 => 0.015402481226091
107 => 0.015419797049742
108 => 0.015653109820137
109 => 0.016833125749519
110 => 0.016897351412997
111 => 0.016581080756599
112 => 0.016707424645667
113 => 0.016464872007028
114 => 0.016627699218308
115 => 0.016739101460903
116 => 0.016235696148035
117 => 0.01620588775248
118 => 0.01596233401282
119 => 0.016093205996925
120 => 0.015884979260186
121 => 0.01593607081792
122 => 0.015793214368414
123 => 0.016050327535088
124 => 0.016337820006776
125 => 0.016410451958547
126 => 0.016219388563461
127 => 0.016081046073727
128 => 0.015838162234604
129 => 0.016242083472085
130 => 0.016360202351201
131 => 0.016241463043898
201 => 0.01621394855189
202 => 0.016161808639254
203 => 0.016225010280837
204 => 0.016359559050418
205 => 0.01629610833541
206 => 0.01633801865053
207 => 0.016178299747019
208 => 0.016518007365501
209 => 0.01705754481874
210 => 0.017059279519876
211 => 0.016995828462844
212 => 0.016969865657379
213 => 0.017034970292426
214 => 0.017070286886206
215 => 0.017280823337798
216 => 0.017506737338499
217 => 0.018560979405768
218 => 0.018264952451897
219 => 0.01920033873112
220 => 0.019940107833278
221 => 0.020161932240833
222 => 0.019957864223527
223 => 0.019259758559862
224 => 0.019225506165514
225 => 0.020268770759638
226 => 0.019974000727252
227 => 0.01993893876985
228 => 0.019565938781207
301 => 0.019786427971443
302 => 0.019738203751157
303 => 0.019662079460226
304 => 0.020082757475785
305 => 0.020870229166727
306 => 0.020747494318831
307 => 0.020655878448382
308 => 0.020254444373055
309 => 0.020496197349949
310 => 0.02041011374535
311 => 0.020779983540711
312 => 0.020560880867558
313 => 0.019971767554343
314 => 0.020065585791215
315 => 0.020051405353448
316 => 0.02034323775786
317 => 0.020255636913781
318 => 0.020034299882698
319 => 0.020867537674096
320 => 0.020813431846635
321 => 0.020890141539661
322 => 0.020923911518857
323 => 0.021431088679184
324 => 0.021638862933911
325 => 0.021686031327334
326 => 0.021883400799488
327 => 0.021681120595068
328 => 0.022490385636088
329 => 0.023028499666443
330 => 0.023653546803794
331 => 0.024566908668297
401 => 0.02491034117842
402 => 0.024848303169411
403 => 0.025540803711022
404 => 0.026785211790875
405 => 0.025099833621338
406 => 0.026874540926279
407 => 0.026312689083516
408 => 0.024980548471608
409 => 0.024894774321107
410 => 0.025796915409962
411 => 0.027797777517179
412 => 0.027296584252911
413 => 0.027798597289812
414 => 0.027212972416275
415 => 0.02718389120527
416 => 0.027770154796844
417 => 0.02913999163412
418 => 0.028489233500296
419 => 0.027556212143018
420 => 0.028245140593812
421 => 0.027648327012416
422 => 0.026303538975928
423 => 0.027296200999868
424 => 0.026632436173846
425 => 0.026826158037758
426 => 0.028221292974489
427 => 0.028053426647832
428 => 0.028270661218529
429 => 0.027887247887268
430 => 0.027529079377137
501 => 0.026860531255034
502 => 0.026662607115104
503 => 0.026717306226816
504 => 0.02666258000894
505 => 0.026288533478898
506 => 0.026207758166349
507 => 0.026073129106586
508 => 0.026114856281677
509 => 0.025861714262201
510 => 0.026339445554761
511 => 0.026428116692414
512 => 0.026775769687656
513 => 0.026811864174916
514 => 0.027780072818133
515 => 0.027246799767535
516 => 0.027604565370456
517 => 0.02757256344751
518 => 0.025009419998071
519 => 0.025362598550598
520 => 0.025912033544794
521 => 0.02566451382465
522 => 0.025314578851061
523 => 0.025031987597562
524 => 0.024603832952072
525 => 0.025206452393618
526 => 0.025998832877818
527 => 0.026831960251622
528 => 0.02783290820258
529 => 0.027609508272245
530 => 0.026813248225924
531 => 0.026848967869934
601 => 0.027069772654039
602 => 0.026783810396393
603 => 0.026699474543966
604 => 0.027058186202981
605 => 0.027060656453032
606 => 0.026731622315916
607 => 0.026365961085123
608 => 0.026364428951215
609 => 0.026299363067064
610 => 0.027224547492521
611 => 0.027733305379826
612 => 0.027791633651702
613 => 0.027729379422394
614 => 0.027753338604472
615 => 0.027457303599564
616 => 0.02813395183433
617 => 0.028754911168126
618 => 0.028588480801808
619 => 0.028338978023226
620 => 0.028140237042403
621 => 0.028541663742805
622 => 0.02852378884374
623 => 0.028749487630059
624 => 0.028739248629412
625 => 0.028663354616534
626 => 0.028588483512222
627 => 0.028885338977773
628 => 0.028799849371047
629 => 0.028714226975349
630 => 0.028542498152644
701 => 0.028565838951764
702 => 0.028316379253354
703 => 0.02820096778237
704 => 0.026465456169618
705 => 0.026001670757212
706 => 0.026147587089178
707 => 0.026195626534377
708 => 0.025993786528541
709 => 0.026283173248466
710 => 0.026238072634702
711 => 0.026413532739881
712 => 0.026303912883758
713 => 0.02630841172089
714 => 0.026630780344332
715 => 0.026724365327172
716 => 0.026676767249576
717 => 0.026710103311558
718 => 0.027478318789645
719 => 0.027369103114809
720 => 0.027311084464302
721 => 0.027327156026999
722 => 0.027523451552376
723 => 0.027578403582143
724 => 0.027345567970609
725 => 0.027455374591015
726 => 0.02792291724417
727 => 0.028086530712151
728 => 0.028608706363029
729 => 0.028386876865604
730 => 0.028794054508684
731 => 0.030045579766422
801 => 0.031045384741264
802 => 0.030125922767711
803 => 0.031961937279612
804 => 0.033391537937767
805 => 0.033336667483383
806 => 0.033087383541374
807 => 0.031459821199965
808 => 0.029962114067813
809 => 0.031215009679862
810 => 0.031218203568438
811 => 0.031110578724225
812 => 0.030442130060094
813 => 0.031087318159659
814 => 0.031138530848024
815 => 0.031109865361093
816 => 0.030597367337565
817 => 0.029814877581104
818 => 0.029967774206501
819 => 0.030218221997907
820 => 0.029744072079893
821 => 0.02959255245133
822 => 0.029874256268616
823 => 0.030781964663233
824 => 0.030610367649228
825 => 0.030605886557714
826 => 0.031340051352088
827 => 0.030814547801995
828 => 0.02996970272259
829 => 0.029756368197902
830 => 0.028999174354618
831 => 0.029522170839206
901 => 0.029540992551614
902 => 0.029254552721899
903 => 0.029992945736111
904 => 0.029986141314494
905 => 0.030687135586192
906 => 0.032027173352253
907 => 0.031630858245575
908 => 0.031169986895469
909 => 0.031220096389802
910 => 0.031769673861863
911 => 0.031437386776622
912 => 0.031556879529262
913 => 0.031769492995271
914 => 0.031897767978209
915 => 0.031201639593797
916 => 0.031039338767721
917 => 0.030707328237419
918 => 0.030620712887333
919 => 0.030891128536637
920 => 0.030819883566971
921 => 0.029539410659568
922 => 0.02940559411626
923 => 0.029409698078597
924 => 0.02907321001782
925 => 0.028559984958747
926 => 0.029908709770915
927 => 0.029800388293106
928 => 0.029680809765022
929 => 0.029695457452406
930 => 0.030280893180843
1001 => 0.029941310893137
1002 => 0.030844146061447
1003 => 0.030658550292551
1004 => 0.030468194692501
1005 => 0.030441881750201
1006 => 0.030368611084558
1007 => 0.030117338709255
1008 => 0.029813912216948
1009 => 0.029613563764374
1010 => 0.027316947205578
1011 => 0.027743185880086
1012 => 0.028233534622231
1013 => 0.02840280104307
1014 => 0.028113259117345
1015 => 0.030128771589262
1016 => 0.030497025139842
1017 => 0.029381561114549
1018 => 0.029172903339512
1019 => 0.030142451158255
1020 => 0.029557695301153
1021 => 0.029821010827801
1022 => 0.02925186668508
1023 => 0.03040832364323
1024 => 0.030399513378804
1025 => 0.029949625502319
1026 => 0.030329867654825
1027 => 0.030263791223527
1028 => 0.029755868919
1029 => 0.030424425686248
1030 => 0.030424757282064
1031 => 0.029991749982353
1101 => 0.029486092253776
1102 => 0.029395692595009
1103 => 0.029327588595614
1104 => 0.029804261418801
1105 => 0.030231644781553
1106 => 0.031026899262314
1107 => 0.031226845133557
1108 => 0.032007247180172
1109 => 0.031542555758499
1110 => 0.031748547446965
1111 => 0.031972180564099
1112 => 0.032079398504288
1113 => 0.031904692624381
1114 => 0.033116978229071
1115 => 0.033219332277578
1116 => 0.033253650704683
1117 => 0.03284487481963
1118 => 0.033207963480744
1119 => 0.033038086320442
1120 => 0.033480059498315
1121 => 0.033549366536003
1122 => 0.033490665940751
1123 => 0.03351266508845
1124 => 0.032478193186683
1125 => 0.032424550361302
1126 => 0.031693126630916
1127 => 0.031991187207459
1128 => 0.031433977246026
1129 => 0.031610674264695
1130 => 0.031688560626894
1201 => 0.031647877211293
1202 => 0.032008039105251
1203 => 0.031701827919173
1204 => 0.030893686253334
1205 => 0.030085324409839
1206 => 0.030075176085371
1207 => 0.029862348680751
1208 => 0.029708513448493
1209 => 0.029738147571824
1210 => 0.029842582087681
1211 => 0.02970244352458
1212 => 0.029732349192223
1213 => 0.030228982535521
1214 => 0.030328578810692
1215 => 0.029990111752883
1216 => 0.028631117675217
1217 => 0.02829761711978
1218 => 0.028537330705425
1219 => 0.028422763051019
1220 => 0.022939388087875
1221 => 0.024227625699415
1222 => 0.023462198655054
1223 => 0.023814942652701
1224 => 0.02303363984678
1225 => 0.023406518497354
1226 => 0.023337661425941
1227 => 0.025409109383575
1228 => 0.0253767665729
1229 => 0.025392247364827
1230 => 0.024653308831179
1231 => 0.025830457979647
]
'min_raw' => 0.015028185979225
'max_raw' => 0.033549366536003
'avg_raw' => 0.024288776257614
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.015028'
'max' => '$0.033549'
'avg' => '$0.024288'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0023173157860272
'max_diff' => 0.0050754482005338
'year' => 2035
]
10 => [
'items' => [
101 => 0.026410363979097
102 => 0.026303038812297
103 => 0.026330050244551
104 => 0.025865904345278
105 => 0.025396741311704
106 => 0.024876367303797
107 => 0.025843157890317
108 => 0.025735667280762
109 => 0.025982212065181
110 => 0.026609244868157
111 => 0.026701577830262
112 => 0.026825674267678
113 => 0.02678119452865
114 => 0.027840882367865
115 => 0.027712547178491
116 => 0.028021798060329
117 => 0.027385645533467
118 => 0.026665778565169
119 => 0.026802601741618
120 => 0.026789424569464
121 => 0.026621664043883
122 => 0.026470217342467
123 => 0.026218101254455
124 => 0.027015833863087
125 => 0.026983447376007
126 => 0.027507746956654
127 => 0.027415071913
128 => 0.026796165290051
129 => 0.026818269661168
130 => 0.026966932179929
131 => 0.027481454854759
201 => 0.027634200216023
202 => 0.027563442478835
203 => 0.027730920794371
204 => 0.02786328882633
205 => 0.027747544181211
206 => 0.029386244272237
207 => 0.028705741744672
208 => 0.029037413941701
209 => 0.029116515806367
210 => 0.028913898043359
211 => 0.028957838580957
212 => 0.029024396522339
213 => 0.029428523309026
214 => 0.030489068932322
215 => 0.030958777369501
216 => 0.032371918377761
217 => 0.03091977462245
218 => 0.030833610421578
219 => 0.031088159789936
220 => 0.031917823157952
221 => 0.032590187391412
222 => 0.032813249397274
223 => 0.032842730723701
224 => 0.033261209875579
225 => 0.033501074321262
226 => 0.033210395499447
227 => 0.0329640756333
228 => 0.032081788447109
229 => 0.032183915591299
301 => 0.032887470340151
302 => 0.033881282862072
303 => 0.034734077394451
304 => 0.034435458472102
305 => 0.036713710057518
306 => 0.036939589396389
307 => 0.03690838017531
308 => 0.037422966924611
309 => 0.036401617021019
310 => 0.035964970149511
311 => 0.03301733278421
312 => 0.033845498651294
313 => 0.035049286375576
314 => 0.034889960556295
315 => 0.034015737733583
316 => 0.034733414218046
317 => 0.034496127928464
318 => 0.034308970386853
319 => 0.035166375367246
320 => 0.034223623371049
321 => 0.035039881703246
322 => 0.033993021949092
323 => 0.034436822538185
324 => 0.034184899859597
325 => 0.034347924707126
326 => 0.033394884779616
327 => 0.033909121990764
328 => 0.033373490820977
329 => 0.033373236862061
330 => 0.033361412774301
331 => 0.033991580470203
401 => 0.034012130216142
402 => 0.03354643533674
403 => 0.033479321429097
404 => 0.033727476721477
405 => 0.033436951866074
406 => 0.033572886617376
407 => 0.033441069191212
408 => 0.033411394312083
409 => 0.033174939826418
410 => 0.033073068732542
411 => 0.033113015013346
412 => 0.032976657763244
413 => 0.032894497587801
414 => 0.033345069047464
415 => 0.033104346892567
416 => 0.033308174924784
417 => 0.033075887156924
418 => 0.032270676550557
419 => 0.031807591415889
420 => 0.030286623223525
421 => 0.030717967916124
422 => 0.031003949893576
423 => 0.030909432851734
424 => 0.03111249203085
425 => 0.031124958215269
426 => 0.031058941606195
427 => 0.030982502830139
428 => 0.030945296661285
429 => 0.031222600961485
430 => 0.031383585441385
501 => 0.031032652010958
502 => 0.03095043321829
503 => 0.031305246292017
504 => 0.031521682062021
505 => 0.033119722182981
506 => 0.033001334209219
507 => 0.033298464790895
508 => 0.033265012447239
509 => 0.03357645263345
510 => 0.034085525713462
511 => 0.033050437802726
512 => 0.033230093273383
513 => 0.033186045900828
514 => 0.033666943564535
515 => 0.03366844487455
516 => 0.033380122702537
517 => 0.033536426829478
518 => 0.033449182153799
519 => 0.033606845074576
520 => 0.032999753065651
521 => 0.033739125600989
522 => 0.034158302184412
523 => 0.03416412245168
524 => 0.034362808825431
525 => 0.034564685688301
526 => 0.034952170746811
527 => 0.034553878940327
528 => 0.033837390753388
529 => 0.033889118886243
530 => 0.033469042124393
531 => 0.033476103690653
601 => 0.033438408496533
602 => 0.033551534611648
603 => 0.033024577886285
604 => 0.033148253576462
605 => 0.032975106885971
606 => 0.033229716886292
607 => 0.032955798614487
608 => 0.033186024659852
609 => 0.033285382588916
610 => 0.033652015486189
611 => 0.03290164663746
612 => 0.031371593759397
613 => 0.031693229424464
614 => 0.031217505011893
615 => 0.031261535117487
616 => 0.031350482938127
617 => 0.031062173949519
618 => 0.031117174218885
619 => 0.031115209222232
620 => 0.031098275942657
621 => 0.031023275639698
622 => 0.030914510362051
623 => 0.03134779775201
624 => 0.031421421722723
625 => 0.031585078689538
626 => 0.032072010813197
627 => 0.032023354811393
628 => 0.032102714769053
629 => 0.031929472427069
630 => 0.031269571332861
701 => 0.031305407137156
702 => 0.030858534083363
703 => 0.031573651140845
704 => 0.031404301982549
705 => 0.031295121478514
706 => 0.031265330566438
707 => 0.031753469700649
708 => 0.031899528580248
709 => 0.031808514488128
710 => 0.031621841929886
711 => 0.031980308426499
712 => 0.032076218938505
713 => 0.0320976897651
714 => 0.032732823667964
715 => 0.032133186694812
716 => 0.032277525274129
717 => 0.033403613666693
718 => 0.032382406884213
719 => 0.032923362892521
720 => 0.032896885910914
721 => 0.033173620699811
722 => 0.032874185580941
723 => 0.032877897438109
724 => 0.033123619183012
725 => 0.032778547308447
726 => 0.032693102659548
727 => 0.03257506148906
728 => 0.03283280006637
729 => 0.032987302686954
730 => 0.034232480339193
731 => 0.035036921889539
801 => 0.035001998960275
802 => 0.035321129160766
803 => 0.035177358082547
804 => 0.034713083346085
805 => 0.035505543708953
806 => 0.035254776092192
807 => 0.035275449069835
808 => 0.035274679620575
809 => 0.035441418163235
810 => 0.035323268624397
811 => 0.035090383755546
812 => 0.035244983599771
813 => 0.035704089866664
814 => 0.037129169806201
815 => 0.037926663420164
816 => 0.037081159689278
817 => 0.037664376841097
818 => 0.037314654371525
819 => 0.037251099395462
820 => 0.037617402866213
821 => 0.037984347502699
822 => 0.0379609747157
823 => 0.037694591752427
824 => 0.037544118775691
825 => 0.03868355056768
826 => 0.039523064502302
827 => 0.039465815280134
828 => 0.039718494728341
829 => 0.040460369403358
830 => 0.040528197126166
831 => 0.040519652392094
901 => 0.040351534304025
902 => 0.04108200626618
903 => 0.041691378828441
904 => 0.040312619824036
905 => 0.040837633203632
906 => 0.041073328624608
907 => 0.041419399430281
908 => 0.042003278887651
909 => 0.042637526844734
910 => 0.04272721646004
911 => 0.042663577385937
912 => 0.042245273808741
913 => 0.042939275491532
914 => 0.043345805400969
915 => 0.043587884658767
916 => 0.044201757378396
917 => 0.041074784199288
918 => 0.038861357162464
919 => 0.03851569856839
920 => 0.039218608911792
921 => 0.039403960763742
922 => 0.039329245664633
923 => 0.036837832298706
924 => 0.038502581792628
925 => 0.040293712271976
926 => 0.040362516888296
927 => 0.04125919425703
928 => 0.041551189164337
929 => 0.042273131976357
930 => 0.042227974256901
1001 => 0.042403755843009
1002 => 0.042363346700475
1003 => 0.043700593736748
1004 => 0.045175775800862
1005 => 0.045124694936774
1006 => 0.044912620061495
1007 => 0.045227587415424
1008 => 0.046750133395708
1009 => 0.046609961760145
1010 => 0.046746126564303
1011 => 0.048541294081989
1012 => 0.050875267214582
1013 => 0.049790902367421
1014 => 0.052143662068181
1015 => 0.053624599585377
1016 => 0.056185727889569
1017 => 0.055865062012062
1018 => 0.056862090466456
1019 => 0.055291003166335
1020 => 0.051683469156125
1021 => 0.051112563089924
1022 => 0.052255531492103
1023 => 0.055065407779633
1024 => 0.052167038488308
1025 => 0.052753374821099
1026 => 0.05258450991781
1027 => 0.052575511824743
1028 => 0.052918932439207
1029 => 0.052420782926313
1030 => 0.050391232195396
1031 => 0.051321363335158
1101 => 0.05096219503353
1102 => 0.051360719041957
1103 => 0.053511388751633
1104 => 0.052560526407423
1105 => 0.051558870169582
1106 => 0.052815169377148
1107 => 0.054414869979624
1108 => 0.05431476359086
1109 => 0.054120515355432
1110 => 0.055215482488031
1111 => 0.057024047395818
1112 => 0.05751289522299
1113 => 0.057873752694955
1114 => 0.057923508843602
1115 => 0.05843602809794
1116 => 0.055680082895882
1117 => 0.06005383870924
1118 => 0.060809065515641
1119 => 0.060667114176982
1120 => 0.061506516987494
1121 => 0.061259543387047
1122 => 0.060901717388971
1123 => 0.062232349389731
1124 => 0.060706887177325
1125 => 0.058541685617166
1126 => 0.057353813218433
1127 => 0.058918099416018
1128 => 0.059873354410819
1129 => 0.060504717196754
1130 => 0.060695767194298
1201 => 0.055894019076748
1202 => 0.053306143158547
1203 => 0.054964941952056
1204 => 0.056988790964314
1205 => 0.055668840312432
1206 => 0.055720579878989
1207 => 0.053838677126334
1208 => 0.057155297599995
1209 => 0.056672093894152
1210 => 0.05917895557484
1211 => 0.058580672915922
1212 => 0.060624921300714
1213 => 0.060086602190774
1214 => 0.062321134719117
1215 => 0.063212550242226
1216 => 0.064709375643274
1217 => 0.065810446501461
1218 => 0.066457016369517
1219 => 0.066418198739861
1220 => 0.06898023067693
1221 => 0.067469489954219
1222 => 0.065571643552244
1223 => 0.065537317498461
1224 => 0.066520239042735
1225 => 0.068580172948177
1226 => 0.069114283839039
1227 => 0.069412778962283
1228 => 0.068955623290345
1229 => 0.067315822511605
1230 => 0.066607764849324
1231 => 0.067211050491993
]
'min_raw' => 0.024876367303797
'max_raw' => 0.069412778962283
'avg_raw' => 0.04714457313304
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.024876'
'max' => '$0.069412'
'avg' => '$0.047144'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0098481813245723
'max_diff' => 0.03586341242628
'year' => 2036
]
11 => [
'items' => [
101 => 0.066473283991935
102 => 0.067746875951754
103 => 0.069495789737149
104 => 0.06913464595642
105 => 0.070341895469697
106 => 0.071591271709586
107 => 0.073377935845625
108 => 0.073845036010767
109 => 0.074617134821518
110 => 0.075411878119028
111 => 0.075667128247256
112 => 0.076154479941506
113 => 0.076151911357514
114 => 0.07762057849069
115 => 0.079240563819417
116 => 0.079852070778265
117 => 0.081258197311446
118 => 0.078850254899924
119 => 0.080676706879512
120 => 0.082324212284158
121 => 0.080359988422064
122 => 0.083067213410498
123 => 0.083172328822095
124 => 0.084759446738447
125 => 0.083150598675222
126 => 0.082195269830904
127 => 0.084953268408746
128 => 0.086287777044423
129 => 0.085885812182765
130 => 0.0828268397381
131 => 0.081046386569805
201 => 0.07638659720461
202 => 0.081906318995604
203 => 0.084594814467505
204 => 0.082819877184321
205 => 0.083715052308023
206 => 0.088598837521434
207 => 0.090458266729025
208 => 0.090071518452238
209 => 0.090136872544596
210 => 0.091140186793985
211 => 0.095589434711025
212 => 0.092923342226375
213 => 0.09496147003431
214 => 0.096042485674622
215 => 0.097046593247001
216 => 0.094580822400697
217 => 0.091372890759024
218 => 0.090356804148297
219 => 0.082643394651699
220 => 0.082241878189761
221 => 0.082016494832482
222 => 0.080595484645943
223 => 0.079478959886772
224 => 0.078591057944373
225 => 0.076260938097553
226 => 0.07704728514447
227 => 0.073333560442446
228 => 0.075709469900478
301 => 0.069782275605031
302 => 0.074718619141809
303 => 0.07203199178274
304 => 0.073835989797744
305 => 0.073829695818616
306 => 0.070507963514903
307 => 0.068592057644906
308 => 0.06981294743344
309 => 0.071121838201101
310 => 0.071334201324517
311 => 0.073031212370333
312 => 0.07350481167609
313 => 0.072069783669409
314 => 0.069659447677706
315 => 0.070219313754668
316 => 0.068580711976726
317 => 0.06570912538879
318 => 0.067771549009337
319 => 0.068475751111757
320 => 0.068786766877695
321 => 0.065962891272408
322 => 0.065075568247904
323 => 0.06460316491502
324 => 0.069294920797774
325 => 0.069551945776072
326 => 0.068236969647433
327 => 0.074180786440034
328 => 0.072835517640565
329 => 0.07433851248843
330 => 0.070168511776422
331 => 0.070327811419271
401 => 0.068353666254981
402 => 0.069459055634556
403 => 0.068677802049435
404 => 0.069369751096357
405 => 0.069784502502069
406 => 0.071758323728564
407 => 0.074741157009623
408 => 0.071463500658463
409 => 0.070035378849358
410 => 0.070921377587665
411 => 0.073280908983323
412 => 0.076855719829934
413 => 0.074739359858967
414 => 0.07567856447596
415 => 0.075883738902467
416 => 0.074323213411781
417 => 0.076913258630686
418 => 0.078301284904988
419 => 0.079725112650854
420 => 0.080961382387841
421 => 0.079156404538512
422 => 0.081087989570706
423 => 0.079531473005416
424 => 0.078135116736625
425 => 0.078137234432694
426 => 0.077261279747772
427 => 0.075564007168342
428 => 0.075251004063862
429 => 0.076879285741302
430 => 0.07818501344776
501 => 0.078292559435678
502 => 0.079015477384685
503 => 0.07944329278026
504 => 0.083636465243727
505 => 0.085322993896275
506 => 0.087385249208257
507 => 0.088188613874615
508 => 0.090606453498179
509 => 0.088653851634817
510 => 0.088231393939238
511 => 0.082366505881784
512 => 0.083326880972635
513 => 0.0848645341555
514 => 0.082391861216417
515 => 0.08396020306541
516 => 0.084269826968424
517 => 0.082307840736127
518 => 0.083355822355217
519 => 0.080572693879808
520 => 0.074801821604974
521 => 0.07691968326122
522 => 0.078479142304741
523 => 0.076253601969722
524 => 0.080242796879939
525 => 0.077912391567088
526 => 0.077173764962097
527 => 0.07429211923663
528 => 0.075652145094335
529 => 0.077491599540575
530 => 0.076355030552331
531 => 0.07871358185963
601 => 0.082053919513424
602 => 0.084434443046063
603 => 0.084617190083821
604 => 0.083086672935024
605 => 0.085539336433601
606 => 0.085557201409555
607 => 0.082790586963735
608 => 0.081096051020243
609 => 0.080711048888548
610 => 0.081672859697637
611 => 0.082840675579941
612 => 0.084681995737704
613 => 0.085794666945274
614 => 0.088695923339407
615 => 0.08948092013412
616 => 0.090343393615352
617 => 0.09149592416325
618 => 0.092879832588768
619 => 0.089851919739685
620 => 0.089972224361915
621 => 0.087152673841156
622 => 0.084139579745278
623 => 0.086426142576568
624 => 0.089415519309772
625 => 0.088729752984207
626 => 0.088652590263647
627 => 0.088782356556476
628 => 0.088265311142035
629 => 0.085926733895113
630 => 0.084752315041977
701 => 0.086267614988726
702 => 0.087072929472181
703 => 0.088321902005218
704 => 0.088167939777909
705 => 0.091385158893153
706 => 0.09263527295768
707 => 0.092315440284577
708 => 0.092374297193631
709 => 0.094637568994228
710 => 0.097154792713838
711 => 0.099512504904179
712 => 0.10191087101029
713 => 0.099019547059551
714 => 0.097551511069437
715 => 0.099066149483632
716 => 0.098262461020981
717 => 0.10288069331686
718 => 0.10320044970099
719 => 0.10781834804611
720 => 0.11220128346473
721 => 0.10944844025673
722 => 0.11204424741109
723 => 0.11485182448779
724 => 0.1202680961817
725 => 0.11844408642193
726 => 0.11704692353182
727 => 0.11572661135171
728 => 0.11847397140486
729 => 0.1220084062231
730 => 0.12276968963056
731 => 0.12400325958327
801 => 0.12270631161175
802 => 0.12426834258932
803 => 0.12978299833133
804 => 0.12829288967063
805 => 0.1261766958255
806 => 0.13052998690066
807 => 0.13210542601776
808 => 0.14316268280549
809 => 0.15712292625249
810 => 0.15134329379753
811 => 0.14775568942516
812 => 0.14859886155178
813 => 0.15369666987457
814 => 0.15533392411149
815 => 0.15088330270014
816 => 0.15245533742321
817 => 0.16111740330637
818 => 0.16576432374034
819 => 0.15945318162633
820 => 0.14204099083731
821 => 0.12598615572353
822 => 0.13024462095435
823 => 0.12976184315274
824 => 0.13906815232947
825 => 0.12825735107188
826 => 0.12843937723921
827 => 0.13793813103416
828 => 0.13540402637154
829 => 0.13129910136168
830 => 0.12601612621888
831 => 0.11625005805136
901 => 0.10759997912843
902 => 0.1245647758905
903 => 0.12383322300564
904 => 0.1227738260183
905 => 0.1251313993749
906 => 0.13657910638571
907 => 0.1363151996865
908 => 0.1346363599125
909 => 0.13590974508446
910 => 0.13107587078431
911 => 0.13232167025673
912 => 0.12598361255562
913 => 0.12884867933719
914 => 0.13129029403623
915 => 0.13178048433578
916 => 0.13288490811042
917 => 0.12344772787734
918 => 0.12768474474094
919 => 0.13017359519351
920 => 0.11892887830363
921 => 0.12995132329512
922 => 0.12328344756531
923 => 0.12102027039448
924 => 0.12406734030408
925 => 0.12287989419694
926 => 0.12185899776319
927 => 0.12128932001193
928 => 0.12352675186071
929 => 0.12342237299066
930 => 0.11976150021925
1001 => 0.11498604092521
1002 => 0.1165888418134
1003 => 0.11600652922438
1004 => 0.11389615328197
1005 => 0.11531829185939
1006 => 0.10905591329228
1007 => 0.09828181645767
1008 => 0.10539951484612
1009 => 0.10512549120073
1010 => 0.10498731605275
1011 => 0.11033606967293
1012 => 0.10982191042909
1013 => 0.10888870636686
1014 => 0.11387901425754
1015 => 0.11205748474833
1016 => 0.11767100948938
1017 => 0.12136843994386
1018 => 0.12043065198126
1019 => 0.12390810319492
1020 => 0.11662576710866
1021 => 0.11904466703991
1022 => 0.11954319896328
1023 => 0.11381743463279
1024 => 0.1099060332401
1025 => 0.10964518736045
1026 => 0.10286335636984
1027 => 0.10648615574399
1028 => 0.10967406927163
1029 => 0.10814730608398
1030 => 0.10766397846952
1031 => 0.11013319443082
1101 => 0.11032507365841
1102 => 0.10595020693474
1103 => 0.10685988026061
1104 => 0.11065336925006
1105 => 0.10676429407116
1106 => 0.099208456275389
1107 => 0.097334504034407
1108 => 0.097084484261667
1109 => 0.092002177159097
1110 => 0.0974597304838
1111 => 0.095077362204232
1112 => 0.10260323505423
1113 => 0.098304496844379
1114 => 0.098119186831931
1115 => 0.097839063569048
1116 => 0.093464511898403
1117 => 0.094422260697012
1118 => 0.09760596357285
1119 => 0.098741944625929
1120 => 0.098623452495274
1121 => 0.097590361691895
1122 => 0.098063305371401
1123 => 0.096539788995211
1124 => 0.096001803653527
1125 => 0.094303773930647
1126 => 0.091808139330695
1127 => 0.092155172628435
1128 => 0.087210667467617
1129 => 0.084516638631252
1130 => 0.083770966956076
1201 => 0.082773823628266
1202 => 0.083883596948249
1203 => 0.087196660305741
1204 => 0.083200402991005
1205 => 0.076349100129748
1206 => 0.076760875105762
1207 => 0.077686011219777
1208 => 0.075962026191698
1209 => 0.074330419045717
1210 => 0.075748969082675
1211 => 0.072845981741231
1212 => 0.078036823370804
1213 => 0.07789642565189
1214 => 0.079831250411902
1215 => 0.081041136040938
1216 => 0.078252741371133
1217 => 0.077551467652298
1218 => 0.07795094503366
1219 => 0.071348473766611
1220 => 0.079291687649898
1221 => 0.07936038089341
1222 => 0.078772187637584
1223 => 0.08300170381122
1224 => 0.091927302156767
1225 => 0.08856913302781
1226 => 0.087268748439879
1227 => 0.084796716387647
1228 => 0.088090552322507
1229 => 0.087837637114555
1230 => 0.08669385862895
1231 => 0.086002097832051
]
'min_raw' => 0.06460316491502
'max_raw' => 0.16576432374034
'avg_raw' => 0.11518374432768
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0646031'
'max' => '$0.165764'
'avg' => '$0.115183'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.039726797611223
'max_diff' => 0.096351544778056
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0020278195262994
]
1 => [
'year' => 2028
'avg' => 0.0034803269873446
]
2 => [
'year' => 2029
'avg' => 0.0095076260615157
]
3 => [
'year' => 2030
'avg' => 0.0073351193472779
]
4 => [
'year' => 2031
'avg' => 0.0072039962303601
]
5 => [
'year' => 2032
'avg' => 0.012630872572873
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0020278195262994
'min' => '$0.002027'
'max_raw' => 0.012630872572873
'max' => '$0.01263'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.012630872572873
]
1 => [
'year' => 2033
'avg' => 0.03248790307474
]
2 => [
'year' => 2034
'avg' => 0.020592394264333
]
3 => [
'year' => 2035
'avg' => 0.024288776257614
]
4 => [
'year' => 2036
'avg' => 0.04714457313304
]
5 => [
'year' => 2037
'avg' => 0.11518374432768
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.012630872572873
'min' => '$0.01263'
'max_raw' => 0.11518374432768
'max' => '$0.115183'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.11518374432768
]
]
]
]
'prediction_2025_max_price' => '$0.003467'
'last_price' => 0.00336189
'sma_50day_nextmonth' => '$0.00314'
'sma_200day_nextmonth' => '$0.009555'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentare'
'sma_200day_date_nextmonth' => '4 feb 2026'
'sma_50day_date_nextmonth' => '4 feb 2026'
'daily_sma3' => '$0.003191'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00315'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00314'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003222'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003442'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.004724'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.011811'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003231'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00319'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003176'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00324'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003819'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.006169'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012611'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.008356'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.020633'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.05010068'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.154496'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00329'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003392'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.004392'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.008529'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.022732'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.070732'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.226797'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '52.93'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 134.68
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003146'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003183'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 106.99
'cci_20_action' => 'SELL'
'adx_14' => 25.25
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000150'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 68.96
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000872'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 17
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutrale'
'overall_action_dir' => 0
'last_updated' => 1767709727
'last_updated_date' => '6 gennaio 2026'
]
Previsione del prezzo di Biswap per l'anno 2026
La previsione del prezzo di Biswap per 2026 suggerisce che il prezzo medio potrebbe variare tra $0.001161 come limite inferiore e $0.003467 come limite superiore. Nel mercato delle criptovalute, rispetto al prezzo medio di oggi, Biswap potrebbe potenzialmente guadagnare 3.13% entro il 2026 se BSW raggiunge l'obiettivo di prezzo previsto.
Previsione del prezzo di Biswap 2027-2032
La previsione del prezzo di BSW per gli anni 2027-2032 è attualmente compresa in un intervallo di prezzo tra $0.002027 come limite inferiore e $0.01263 come limite superiore. Considerando la volatilità dei prezzi sul mercato, se Biswap raggiunge l'obiettivo di prezzo massimo, potrebbe guadagnare 275.71% entro il 2032 rispetto al prezzo di oggi.
| Previsione del Prezzo di Biswap | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2027 | $0.001118 | $0.002027 | $0.002937 |
| 2028 | $0.002017 | $0.00348 | $0.004942 |
| 2029 | $0.004432 | $0.0095076 | $0.014582 |
| 2030 | $0.00377 | $0.007335 | $0.01090022 |
| 2031 | $0.004457 | $0.0072039 | $0.00995 |
| 2032 | $0.0068037 | $0.01263 | $0.018457 |
Previsione del prezzo di Biswap 2032-2037
La previsione del prezzo di Biswap per gli anni 2032-2037 è attualmente stimata tra $0.01263 come limite inferiore e $0.115183 come limite superiore. Rispetto al prezzo attuale, Biswap potrebbe potenzialmente guadagnare 3326.16% entro il 2037 se raggiunge l'obiettivo di prezzo massimo. Si prega di notare che queste informazioni sono solo a scopo generale e non devono essere considerate come consigli di investimento a lungo termine.
| Previsione del Prezzo di Biswap | Potenziale Minimo ($) | Prezzo Medio ($) | Potenziale Massimo ($) |
|---|---|---|---|
| 2032 | $0.0068037 | $0.01263 | $0.018457 |
| 2033 | $0.01581 | $0.032487 | $0.049165 |
| 2034 | $0.01271 | $0.020592 | $0.028473 |
| 2035 | $0.015028 | $0.024288 | $0.033549 |
| 2036 | $0.024876 | $0.047144 | $0.069412 |
| 2037 | $0.0646031 | $0.115183 | $0.165764 |
Biswap Istogramma dei prezzi potenziali
Previsione del prezzo di Biswap basata sull'analisi tecnica
Al 6 gennaio 2026, il sentimento generale della previsione di prezzo per Biswap è Neutrale, con 17 indicatori tecnici che mostrano segnali rialzisti e 17 indicando segnali ribassisti. La previsione del prezzo di BSW è stata aggiornata l'ultima volta il 6 gennaio 2026.
Medi Mobile Semplici a 50 e 200 giorni e Indice di Forza Relativa a 14 giorni - RSI (14) di Biswap
Secondo i nostri indicatori tecnici, il SMA a 200 giorni di Biswap è previsto aumentare nel corso del prossimo mese, raggiungendo $0.009555 entro il 4 feb 2026. Il SMA a 50 giorni a breve termine per Biswap dovrebbe raggiungere $0.00314 entro il 4 feb 2026.
L'oscillatore di momentum dell'Indice di Forza Relativa (RSI) è uno strumento comunemente utilizzato per identificare se una criptovaluta è ipervenduta (sotto 30) o ipercomprata (sopra 70). Al momento, l'RSI è a 52.93, suggerendo che il mercato di BSW è in uno stato NEUTRAL.
Medie Mobili e Oscillatori Popolari di BSW per Sabato, 19 Ottobre 2024
Le medie mobili (MA) sono indicatori ampiamente utilizzati nei mercati finanziari, progettati per smussare i movimenti dei prezzi su un periodo stabilito. In quanto indicatori ritardati, si basano su dati storici dei prezzi. La tabella seguente evidenzia due tipi: la media mobile semplice (SMA) e la media mobile esponenziale (EMA).
Media Mobile Semplice Giornaliera (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 3 | $0.003191 | BUY |
| SMA 5 | $0.00315 | BUY |
| SMA 10 | $0.00314 | BUY |
| SMA 21 | $0.003222 | BUY |
| SMA 50 | $0.003442 | SELL |
| SMA 100 | $0.004724 | SELL |
| SMA 200 | $0.011811 | SELL |
Media Mobile Esponenziale Giornaliera (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 3 | $0.003231 | BUY |
| EMA 5 | $0.00319 | BUY |
| EMA 10 | $0.003176 | BUY |
| EMA 21 | $0.00324 | BUY |
| EMA 50 | $0.003819 | SELL |
| EMA 100 | $0.006169 | SELL |
| EMA 200 | $0.012611 | SELL |
Media Mobile Semplice Settimanale (SMA)
| Periodo | Valore | Azione |
|---|---|---|
| SMA 21 | $0.008356 | SELL |
| SMA 50 | $0.020633 | SELL |
| SMA 100 | $0.05010068 | SELL |
| SMA 200 | $0.154496 | SELL |
Media Mobile Esponenziale Settimanale (EMA)
| Periodo | Valore | Azione |
|---|---|---|
| EMA 21 | $0.008529 | SELL |
| EMA 50 | $0.022732 | SELL |
| EMA 100 | $0.070732 | SELL |
| EMA 200 | $0.226797 | SELL |
Oscillatori di Biswap
Un oscillatore è uno strumento di analisi tecnica che imposta limiti alti e bassi tra due estremi, creando un indicatore di tendenza che fluttua entro questi limiti. I trader utilizzano questo indicatore per identificare condizioni di ipercomprato o ipervenduto a breve termine.
| Periodo | Valore | Azione |
|---|---|---|
| RSI (14) | 52.93 | NEUTRAL |
| Stoch RSI (14) | 134.68 | SELL |
| Stocastico Veloce (14) | 100 | SELL |
| Indice di Canale delle Materie Prime (20) | 106.99 | SELL |
| Indice Direzionale Medio (14) | 25.25 | SELL |
| Oscillatore Awesome (5, 34) | -0.000150 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscillatore Ultimate (7, 14, 28) | 68.96 | NEUTRAL |
| VWMA (10) | 0.003146 | BUY |
| Media Mobile di Hull (9) | 0.003183 | BUY |
| Ichimoku Cloud B/L (9, 26, 52, 26) | -0.000872 | SELL |
Previsione del prezzo di Biswap sulla base dei flussi monetari globali
Definizioni dei flussi monetari globali usate per la previsione del prezzo di Biswap
M0: Il totale della moneta fisica, più i conti presso la banca centrale che possono essere scambiati con moneta fisica.
M1: La misura M0 più l'ammontare dei conti a vista, tra cui i "conti correnti".
M2: La misura M1 più la maggior parte dei conti di risparmio, dei conti del mercato monetario e dei conti di certificati di deposito (CD) al di sotto dei $100.000.
Previsione del prezzo di Biswap sulla base delle società Internet e delle nicchie tecnologiche
| Confronto | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Azioni Facebook | $0.004724 | $0.006638 | $0.009327 | $0.0131067 | $0.018417 | $0.025879 |
| Azioni Amazon.com | $0.007014 | $0.014636 | $0.03054 | $0.063724 | $0.132964 | $0.277439 |
| Azioni Apple | $0.004768 | $0.006763 | $0.009594 | $0.0136084 | $0.0193024 | $0.027379 |
| Azioni Netflix | $0.0053045 | $0.008369 | $0.0132061 | $0.020837 | $0.032877 | $0.051876 |
| Azioni Google | $0.004353 | $0.005637 | $0.0073011 | $0.009454 | $0.012244 | $0.015855 |
| Azioni Tesla | $0.007621 | $0.017276 | $0.039164 | $0.088783 | $0.201265 | $0.456252 |
| Azioni Kodak | $0.002521 | $0.00189 | $0.001417 | $0.001063 | $0.000797 | $0.000597 |
| Azioni Nokia | $0.002227 | $0.001475 | $0.000977 | $0.000647 | $0.000428 | $0.000284 |
Questo calcolo mostra quanto può valere la criptovaluta se si assume che la sua capitalizzazione si comporti come quella di alcune società di Internet o di nicchie tecnologiche. Estrapolando i dati si può ottenere un quadro potenziale del prezzo futuro per il 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Panoramica delle previsioni per Biswap
Potresti avere domande come: "Dovrei investire su Biswap in questo momento?", "Dovrei acquistare BSW oggi?", "Biswap sarà un buon investimento, a breve e a lungo termine?".
Aggiorniamo regolarmente le previsioni su Biswap con nuovi valori. Consulta le nostre previsioni simili. Effettuiamo previsioni dei prezzi futuri di una grande quantità di valute digitali come Biswap con metodi di analisi tecnica.
Se cerchi delle criptovalute con un buon rendimento, dovresti esplorare il massimo delle fonti di informazione disponibili su Biswap per prendere decisioni responsabili.
Il prezzo odierno di Biswap è di $0.003361 USD, ma il prezzo può salire oppure scendere e potresti perdere il tuo investimento, perché le criptovalute sono beni ad alto rischio
Previsione a breve termine per Biswap
basata sulla cronologia dei prezzi delle ultime 4 ore
Previsione a lungo termine per Biswap
basata sulla cronologia dei prezzi dell'ultimo mese
Previsione del prezzo di Biswap sulla base dello schema di crescita di Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Biswap ha 1% della precedente crescita media annua di Bitcoin | $0.003449 | $0.003538 | $0.00363 | $0.003725 |
| Se Biswap ha 2% della precedente crescita media annua di Bitcoin | $0.003536 | $0.00372 | $0.003913 | $0.004117 |
| Se Biswap ha 5% della precedente crescita media annua di Bitcoin | $0.003798 | $0.004292 | $0.00485 | $0.00548 |
| Se Biswap ha 10% della precedente crescita media annua di Bitcoin | $0.004235 | $0.005336 | $0.006723 | $0.008471 |
| Se Biswap ha 20% della precedente crescita media annua di Bitcoin | $0.0051096 | $0.007765 | $0.0118031 | $0.017939 |
| Se Biswap ha 50% della precedente crescita media annua di Bitcoin | $0.007731 | $0.017779 | $0.040886 | $0.094023 |
| Se Biswap ha 100% della precedente crescita media annua di Bitcoin | $0.01210052 | $0.043553 | $0.156763 | $0.564242 |
Area domande
È BSW un buon investimento?
La decisione di procurarsi Biswap dipende interamente dalla tua tolleranza individuale al rischio. Come puoi notare, il valore di Biswap ha subito un aumento del 8.4799% nelle precedenti 24 ore, e Biswap ha registrato una declino di nel corso degli ultimi 30 giorni. Di conseguenza, la decisione di investire o meno in Biswap dipenderà da quanto tale investimento si allinea con le tue aspirazioni di trading.
Può Biswap salire?
Sembra che il valore medio di Biswap possa potenzialmente salire fino a $0.003467 entro la fine di quest'anno. Guardando le prospettive di Biswap su una linea temporale più estesa di cinque anni, la valuta digitale potrebbe potenzialmente crescere fino a $0.01090022. Tuttavia, data l' imprevedibilità del mercato, è fondamentale condurre ricerche approfondite prima di investire fondi in un particolare progetto, rete o asset.
Quale sarà il prezzo di Biswap la prossima settimana?
Basato sul nostro nuovo pronostico sperimentale di Biswap, il prezzo di Biswap aumenterà del 0.86% nella prossima settimana e raggiungerà $0.00339 entro 13 gennaio 2026.
Quale sarà il prezzo di Biswap il prossimo mese?
Basato sul nostro nuovo pronostico sperimentale di Biswap, il prezzo di Biswap diminuirà del -11.62% nel prossimo mese e raggiungerà $0.002971 entro 5 febbraio 2026.
Quanto può salire il prezzo di Biswap quest'anno in 2026?
Secondo la nostra previsione più recente sul valore di Biswap in 2026, BSW dovrebbe fluttuare all'interno dell'intervallo di $0.001161 e $0.003467. Tuttavia, è fondamentale tenere a mente che il mercato delle criptovalute è eccezionalmente instabile, e questa previsione del prezzo di Biswap non considera fluttuazioni di prezzo improvvise ed estreme.
Dove sarà Biswap tra 5 anni?
Il futuro di Biswap sembra seguire una tendenza al rialzo, con un prezzo massimo di $0.01090022 prevista dopo un periodo di cinque anni. Basato sulla previsione di Biswap per 2030, il valore di Biswap potrebbe potenzialmente raggiungere il suo picco più alto di circa $0.01090022, mentre il suo picco più basso è previsto intorno a $0.00377.
Quanto varrà Biswap in 2026?
Basato sulla nostra nuova simulazione sperimentale di previsione dei prezzi di Biswap, si prevede che il valore di BSW in 2026 aumenti del 3.13% fino a $0.003467 se si verifica il migliore scenario. Il prezzo sarà compreso tra $0.003467 e $0.001161 durante 2026.
Quanto varrà Biswap in 2027?
Secondo la nostra ultima simulazione sperimentale per la previsione dei prezzi di Biswap, il valore di BSW potrebbe diminuire del -12.62% fino a $0.002937 in 2027, assumendo le condizioni più favorevoli. Il prezzo è previsto oscillare tra $0.002937 e $0.001118 durante l'anno.
Quanto varrà Biswap in 2028?
Il nostro nuovo modello sperimentale di previsione dei prezzi di Biswap suggerisce che il valore di BSW in 2028 potrebbe aumentare del 47.02%, raggiungendo $0.004942 nello scenario migliore. Il prezzo è previsto oscillare tra $0.004942 e $0.002017 durante l'anno.
Quanto varrà Biswap in 2029?
Basato sul nostro modello di previsione sperimentale, il valore di Biswap potrebbe subire una 333.75% crescita in 2029, raggiungendo potenzialmente $0.014582 in condizioni ottimali. Il range di prezzo previsto per 2029 è compreso tra $0.014582 e $0.004432.
Quanto varrà Biswap in 2030?
Utilizzando la nostra nuova simulazione sperimentale per le previsioni dei prezzi di Biswap, si prevede che il valore di BSW in 2030 aumenti del 224.23%, raggiungendo $0.01090022 nello scenario migliore. Il prezzo è previsto oscillare tra $0.01090022 e $0.00377 nel corso di 2030.
Quanto varrà Biswap in 2031?
La nostra simulazione sperimentale indica che il prezzo di Biswap potrebbe aumentare del 195.98% in 2031, raggiungendo potenzialmente $0.00995 in condizioni ideali. Il prezzo probabilmente oscillera' tra $0.00995 e $0.004457 durante l'anno.
Quanto varrà Biswap in 2032?
Basato sui risultati della nostra ultima previsione sperimentale dei prezzi di Biswap, BSW potrebbe subire una 449.04% aumento in valore, raggiungendo $0.018457 se si verifica lo scenario più positivo in 2032. Il prezzo è previsto rimanere entro un intervallo di $0.018457 e $0.0068037 durante l'anno.
Quanto varrà Biswap in 2033?
Secondo la nostra previsione sperimentale dei prezzi di Biswap, si prevede che il valore di BSW sarà aumentare del 1362.43% in 2033, con il prezzo potenziale più alto di $0.049165. Durante l'anno, il prezzo di BSW potrebbe oscillare tra $0.049165 e $0.01581.
Quanto varrà Biswap in 2034?
I risultati della nostra nuova simulazione di previsione dei prezzi di Biswap suggeriscono che BSW potrebbe aumentare del 746.96% in 2034, raggiungendo potenzialmente $0.028473 nelle migliori circostanze. L'intervallo di prezzo previsto per l'anno è compreso tra $0.028473 e $0.01271.
Quanto varrà Biswap in 2035?
Basato sulla nostra previsione sperimentale per il prezzo di Biswap, BSW potrebbe aumentare del 897.93%, con il valore potenzialmente raggiungendo $0.033549 in 2035. L'intervallo di prezzo atteso per l'anno si trova tra $0.033549 e $0.015028.
Quanto varrà Biswap in 2036?
La nostra recente simulazione di previsione dei prezzi di Biswap suggerisce che il valore di BSW potrebbe aumentare del 1964.7% in 2036, potenzialmente raggiungendo $0.069412 se le condizioni sono ottimali. L' intervallo di prezzo previsto per 2036 è compreso tra $0.069412 e $0.024876.
Quanto varrà Biswap in 2037?
Secondo la simulazione sperimentale, il valore di Biswap potrebbe aumentare del 4830.69% in 2037, con un picco di $0.165764 in condizioni favorevoli. Il prezzo è previsto diminuire tra $0.165764 e $0.0646031 nel corso dell' anno.
Previsioni correlate
Previsione del prezzo di Thala
Previsione del prezzo di Streamr
Previsione del prezzo di Impossible Finance Launchpad
Previsione del prezzo di SelfKey
Previsione del prezzo di Solchat
Previsione del prezzo di pSTAKE Finance
Previsione del prezzo di Groestlcoin
Previsione del prezzo di Games for a Living
Previsione del prezzo di Fideum
Previsione del prezzo di district0x
Previsione del prezzo di SOLO Coin
Previsione del prezzo di Voxies
Previsione del prezzo di Picasso
Previsione del prezzo di Acet Token
Previsione del prezzo di Dream Machine Token
Previsione del prezzo di KILT Protocol [OLD]
Previsione del prezzo di Fluence
Previsione del prezzo di Vyvo Smart Chain
Previsione del prezzo di HydraDX
Previsione del prezzo di Leash
Previsione del prezzo di BNB48 Club Token
Previsione del prezzo di Turbo
Previsione del prezzo di SafeMoon
Previsione del prezzo di ASD
Previsione del prezzo di UniLend Finance
Come leggere e prevedere i movimenti di prezzo di Biswap?
I trader di Biswap utilizzano indicatori e modelli grafici per prevedere la direzione del mercato. Identificano anche livelli chiave di supporto e resistenza per valutare quando un trend ribassista potrebbe rallentare o un trend rialzista potrebbe fermarsi.
Indicatori di previsione del prezzo di Biswap
Le medie mobili sono strumenti popolari per la previsione del prezzo di Biswap. Una media mobile semplice (SMA) calcola il prezzo di chiusura medio di BSW su un periodo specifico, come una SMA a 12 giorni. Una media mobile esponenziale (EMA) dà più peso ai prezzi recenti, reagendo più rapidamente ai cambiamenti di prezzo.
Le medie mobili comunemente utilizzate nel mercato delle criptovalute includono quelle a 50 giorni, 100 giorni e 200 giorni, che aiutano a identificare livelli chiave di resistenza e supporto. Un movimento del prezzo di BSW al di sopra di queste medie è considerato rialzista, mentre una caduta al di sotto indica debolezza.
I trader utilizzano anche RSI e livelli di ritracciamento di Fibonacci per valutare la direzione futura di BSW.
Come leggere i grafici di Biswap e prevedere i movimenti di prezzo?
La maggior parte dei trader preferisce i grafici a candele rispetto ai semplici grafici a linee perché forniscono informazioni più dettagliate. Le candele possono rappresentare l'azione del prezzo di Biswap in diversi intervalli di tempo, come 5 minuti per le tendenze a breve termine e settimanale per le tendenze a lungo termine. Le opzioni popolari includono grafici a 1 ora, 4 ore e 1 giorno.
Ad esempio, un grafico a candele di 1 ora mostra i prezzi di apertura, chiusura, massimo e minimo di BSW all'interno di ogni ora. Il colore della candela è cruciale: il verde indica che il prezzo ha chiuso più alto di quanto ha aperto, mentre il rosso significa il contrario. Alcuni grafici utilizzano candele vuote e piene per trasmettere la stessa informazione.
Cosa influisce sul prezzo di Biswap?
L'azione del prezzo di Biswap è guidata dall'offerta e dalla domanda, influenzata da fattori come dimezzamenti delle ricompense dei blocchi, hard fork e aggiornamenti del protocollo. Eventi del mondo reale, come regolamentazioni, adozione da parte di aziende e governi e hack degli exchange di criptovalute, influenzano anche il prezzo di BSW. La capitalizzazione di mercato di Biswap può cambiare rapidamente.
I trader spesso monitorano l'attività delle "balene" di BSW, grandi detentori di Biswap, poiché le loro azioni possono influenzare significativamente i movimenti di prezzo nel relativamente piccolo mercato di Biswap.
Modelli di previsione del prezzo rialzisti e ribassisti
I trader spesso identificano modelli di candele per ottenere un vantaggio nelle previsioni dei prezzi delle criptovalute. Alcune formazioni indicano tendenze rialziste, mentre altre suggeriscono movimenti ribassisti.
Modelli di candele rialzisti comunemente seguiti:
- Martello
- Ingolgimento rialzista
- Linea penetrante
- Stella del mattino
- Tre soldati bianchi
Modelli di candele ribassisti comuni:
- Harami ribassista
- Copertura a nuvola scura
- Stella della sera
- Stella cadente
- Impiccato


