Predicción del precio de CONX - Pronóstico de CONX
Predicción de precio de CONX hasta $0.02043 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.006844 | $0.02043 |
| 2027 | $0.006588 | $0.0173091 |
| 2028 | $0.011891 | $0.029124 |
| 2029 | $0.026121 | $0.085927 |
| 2030 | $0.022215 | $0.06423 |
| 2031 | $0.026265 | $0.058634 |
| 2032 | $0.040091 | $0.108764 |
| 2033 | $0.093164 | $0.2897094 |
| 2034 | $0.074899 | $0.167784 |
| 2035 | $0.088554 | $0.197691 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en CONX hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.61, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de CONX para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'CONX'
'name_with_ticker' => 'CONX <small>CONX</small>'
'name_lang' => 'CONX'
'name_lang_with_ticker' => 'CONX <small>CONX</small>'
'name_with_lang' => 'CONX'
'name_with_lang_with_ticker' => 'CONX <small>CONX</small>'
'image' => '/uploads/coins/xpla.png?1762828636'
'price_for_sd' => 0.01981
'ticker' => 'CONX'
'marketcap' => '$17.52M'
'low24h' => '$0.01901'
'high24h' => '$0.02038'
'volume24h' => '$459.6K'
'current_supply' => '884.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01981'
'change_24h_pct' => '2.3336%'
'ath_price' => '$1.4'
'ath_days' => 1027
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mar. 2023'
'ath_pct' => '-98.59%'
'fdv' => '$39.59M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.976775'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019979'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017508'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006844'
'current_year_max_price_prediction' => '$0.02043'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022215'
'grand_prediction_max_price' => '$0.06423'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020185521543372
107 => 0.02026088695347
108 => 0.020430689070676
109 => 0.018979748570452
110 => 0.019631178257677
111 => 0.020013832168215
112 => 0.018284987879337
113 => 0.019979658475282
114 => 0.018954490924394
115 => 0.018606533660123
116 => 0.01907501227658
117 => 0.018892445704136
118 => 0.018735485685818
119 => 0.018647899298681
120 => 0.018991898290509
121 => 0.018975850326373
122 => 0.018413001208414
123 => 0.017678787478703
124 => 0.017925213706138
125 => 0.017835684747453
126 => 0.017511220251711
127 => 0.017729870145848
128 => 0.016767046668247
129 => 0.015110558918244
130 => 0.016204885465488
131 => 0.016162755083817
201 => 0.016141511034918
202 => 0.016963867190208
203 => 0.016884816620862
204 => 0.016741339063432
205 => 0.017508585173853
206 => 0.017228530022633
207 => 0.0180915940094
208 => 0.018660063770564
209 => 0.018515881451063
210 => 0.01905053000909
211 => 0.017930890868707
212 => 0.018302790079017
213 => 0.018379437990832
214 => 0.017499117475946
215 => 0.016897750271642
216 => 0.016857645935202
217 => 0.015814958076443
218 => 0.01637195351431
219 => 0.016862086449596
220 => 0.016627350809446
221 => 0.016553040518303
222 => 0.016932675679819
223 => 0.016962176583224
224 => 0.016289552859222
225 => 0.016429412630665
226 => 0.017012651127336
227 => 0.016414716516985
228 => 0.015253027241137
301 => 0.014964912239116
302 => 0.014926472386833
303 => 0.014145081650663
304 => 0.014984165461227
305 => 0.014617882891868
306 => 0.015774965139734
307 => 0.015114045965309
308 => 0.015085555060662
309 => 0.015042486879581
310 => 0.014369911594115
311 => 0.014517162837243
312 => 0.015006648396397
313 => 0.015181302358353
314 => 0.015163084519224
315 => 0.01500424965012
316 => 0.015076963439829
317 => 0.014842726988011
318 => 0.014760013221663
319 => 0.014498945822858
320 => 0.014115248868323
321 => 0.014168604283201
322 => 0.013408400216498
323 => 0.012994200693874
324 => 0.012879555725074
325 => 0.012726247681451
326 => 0.012896872276538
327 => 0.013406246653891
328 => 0.012791833085001
329 => 0.011738464117239
330 => 0.011801773387055
331 => 0.01194401051964
401 => 0.011678952564061
402 => 0.011428097453732
403 => 0.011646195619644
404 => 0.011199869301686
405 => 0.011997946922817
406 => 0.011976361159752
407 => 0.01227383514412
408 => 0.012459851731326
409 => 0.012031143721401
410 => 0.011923324816255
411 => 0.011984743364722
412 => 0.010969631570063
413 => 0.012190878853738
414 => 0.012201440250961
415 => 0.01211100715593
416 => 0.012761283632708
417 => 0.014133569825028
418 => 0.013617260559393
419 => 0.013417330006209
420 => 0.013037261878458
421 => 0.013543680092474
422 => 0.013504795074992
423 => 0.013328942279235
424 => 0.013222585959667
425 => 0.013418550739534
426 => 0.013198303754795
427 => 0.013158741344354
428 => 0.012919036181406
429 => 0.012833472344124
430 => 0.012770124285395
501 => 0.012700384297185
502 => 0.012854213333053
503 => 0.012505616499882
504 => 0.012085242892447
505 => 0.012050293375495
506 => 0.012146792064594
507 => 0.01210409857815
508 => 0.012050088975507
509 => 0.011946969935421
510 => 0.011916376719017
511 => 0.012015789830611
512 => 0.011903558223766
513 => 0.012069162073238
514 => 0.01202412698946
515 => 0.011772564672365
516 => 0.011459024884965
517 => 0.011456233723185
518 => 0.011388682090298
519 => 0.011302644929361
520 => 0.011278711359451
521 => 0.011627828000436
522 => 0.012350488999093
523 => 0.012208613353245
524 => 0.012311133047372
525 => 0.012815428475003
526 => 0.012975728826755
527 => 0.012861951434004
528 => 0.012706205921322
529 => 0.012713057933458
530 => 0.013245287497665
531 => 0.013278482002739
601 => 0.013362353808106
602 => 0.013470152780173
603 => 0.012880310065083
604 => 0.012685276394621
605 => 0.0125928586215
606 => 0.012308247650467
607 => 0.012615176182025
608 => 0.012436342070676
609 => 0.01246047290214
610 => 0.012444757666493
611 => 0.012453339247816
612 => 0.011997723843857
613 => 0.012163726150619
614 => 0.01188771511895
615 => 0.011518167331237
616 => 0.011516928477473
617 => 0.011607374774977
618 => 0.011553573778058
619 => 0.011408796678697
620 => 0.011429361582332
621 => 0.011249191387076
622 => 0.011451237506123
623 => 0.011457031465862
624 => 0.011379232704502
625 => 0.011690512627885
626 => 0.011818044266476
627 => 0.011766835455138
628 => 0.01181445131976
629 => 0.01221450892686
630 => 0.012279735772555
701 => 0.012308705228768
702 => 0.012269889995159
703 => 0.011821763638422
704 => 0.011841639947924
705 => 0.011695800776938
706 => 0.011572582045609
707 => 0.011577510148665
708 => 0.011640860593882
709 => 0.0119175157036
710 => 0.01249972007229
711 => 0.012521814302496
712 => 0.01254859315404
713 => 0.012439670106839
714 => 0.01240681787355
715 => 0.012450158449139
716 => 0.012668803799167
717 => 0.013231219001074
718 => 0.013032423906272
719 => 0.012870800399768
720 => 0.013012587788357
721 => 0.01299076073125
722 => 0.012806518403293
723 => 0.012801347334785
724 => 0.012447727401601
725 => 0.01231700216384
726 => 0.012207758370551
727 => 0.012088467000162
728 => 0.012017747077112
729 => 0.012126405020547
730 => 0.012151256377813
731 => 0.011913673885478
801 => 0.01188129226967
802 => 0.012075307261485
803 => 0.011989928497195
804 => 0.012077742673559
805 => 0.012098116315732
806 => 0.012094835690097
807 => 0.01200569045449
808 => 0.012062508969317
809 => 0.011928116243336
810 => 0.011781984338967
811 => 0.011688761288319
812 => 0.011607411812386
813 => 0.011652549229693
814 => 0.011491642578759
815 => 0.011440165302715
816 => 0.01204326013495
817 => 0.012488772771885
818 => 0.012482294841702
819 => 0.012442862107699
820 => 0.012384273063608
821 => 0.012664517645663
822 => 0.012566886036943
823 => 0.012637921189681
824 => 0.012656002617389
825 => 0.012710729653283
826 => 0.012730289864667
827 => 0.012671165320423
828 => 0.012472736128485
829 => 0.011978269448256
830 => 0.011748093873823
831 => 0.011672132100382
901 => 0.011674893166575
902 => 0.01159873063504
903 => 0.011621163913942
904 => 0.011590929256134
905 => 0.011533672128794
906 => 0.011649013763426
907 => 0.011662305812336
908 => 0.011635383696583
909 => 0.011641724829437
910 => 0.011418821209588
911 => 0.011435768087684
912 => 0.011341405716941
913 => 0.011323713909982
914 => 0.011085174053814
915 => 0.010662566121709
916 => 0.01089673193964
917 => 0.010613892560276
918 => 0.010506777001595
919 => 0.011013845396504
920 => 0.010962949793543
921 => 0.010875838645061
922 => 0.010746983100901
923 => 0.010699189326147
924 => 0.010408809480406
925 => 0.010391652290004
926 => 0.010535572382468
927 => 0.010469158211784
928 => 0.01037588756313
929 => 0.010038070728399
930 => 0.0096582527588519
1001 => 0.0096697170759019
1002 => 0.0097905301052503
1003 => 0.010141810281938
1004 => 0.010004559039697
1005 => 0.0099049816886752
1006 => 0.0098863338441129
1007 => 0.010119750660716
1008 => 0.010450084358545
1009 => 0.010605069538767
1010 => 0.010451483932137
1011 => 0.010275053056878
1012 => 0.010285791586753
1013 => 0.010357230215066
1014 => 0.010364737404813
1015 => 0.010249899042406
1016 => 0.010282225368754
1017 => 0.010233118723051
1018 => 0.0099317513290097
1019 => 0.0099263005484978
1020 => 0.0098523401297945
1021 => 0.0098501006377099
1022 => 0.0097242755152044
1023 => 0.0097066717107779
1024 => 0.0094568382930043
1025 => 0.0096212794051482
1026 => 0.0095109809406679
1027 => 0.0093447351379187
1028 => 0.0093160742988629
1029 => 0.009315212719432
1030 => 0.0094859099869741
1031 => 0.0096192847081921
1101 => 0.0095128996296804
1102 => 0.0094886778094914
1103 => 0.0097473034796609
1104 => 0.0097143910057065
1105 => 0.0096858890155247
1106 => 0.010420506599037
1107 => 0.009838999458762
1108 => 0.0095854291543352
1109 => 0.0092715877509122
1110 => 0.0093737760943924
1111 => 0.0093953086798228
1112 => 0.0086405766787555
1113 => 0.0083343819999183
1114 => 0.0082293075248445
1115 => 0.0081688356789044
1116 => 0.0081963934584569
1117 => 0.0079207823344498
1118 => 0.0081059975679699
1119 => 0.007867341631408
1120 => 0.0078273301869898
1121 => 0.0082540765653597
1122 => 0.0083134558308937
1123 => 0.0080601254364339
1124 => 0.0082228045601426
1125 => 0.0081638148484768
1126 => 0.0078714327024563
1127 => 0.0078602658550958
1128 => 0.0077135587719521
1129 => 0.0074839905949212
1130 => 0.0073790717778816
1201 => 0.0073244291470204
1202 => 0.0073469757614773
1203 => 0.0073355755032701
1204 => 0.0072611811070361
1205 => 0.0073398397029793
1206 => 0.0071388994943204
1207 => 0.0070588834841472
1208 => 0.0070227421087093
1209 => 0.0068443961078376
1210 => 0.0071282239060509
1211 => 0.0071841415578674
1212 => 0.0072401693847317
1213 => 0.0077278533657637
1214 => 0.007703490052252
1215 => 0.0079237225409831
1216 => 0.0079151647114526
1217 => 0.0078523508381367
1218 => 0.0075873494389975
1219 => 0.0076929742734986
1220 => 0.0073678774506479
1221 => 0.0076114620947628
1222 => 0.0075003002355267
1223 => 0.0075738781583363
1224 => 0.0074415784188708
1225 => 0.0075147985572134
1226 => 0.0071974017075212
1227 => 0.0069010209951727
1228 => 0.0070202932457141
1229 => 0.0071499558224889
1230 => 0.0074310973263468
1231 => 0.0072636517660161
]
'min_raw' => 0.0068443961078376
'max_raw' => 0.020430689070676
'avg_raw' => 0.013637542589257
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006844'
'max' => '$0.02043'
'avg' => '$0.013637'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012965733892162
'max_diff' => 0.0006205590706757
'year' => 2026
]
1 => [
'items' => [
101 => 0.0073238715213286
102 => 0.0071221454216968
103 => 0.0067059268579448
104 => 0.0067082826098144
105 => 0.0066442564515955
106 => 0.0065889285029222
107 => 0.0072828849028905
108 => 0.0071965804547272
109 => 0.0070590656118259
110 => 0.007243134693672
111 => 0.0072918054804812
112 => 0.0072931910693586
113 => 0.0074274831199628
114 => 0.0074991548114434
115 => 0.0075117872577098
116 => 0.0077230987009073
117 => 0.0077939275094018
118 => 0.0080856613475224
119 => 0.0074930739691636
120 => 0.0074808700220692
121 => 0.0072457249231321
122 => 0.0070965921838892
123 => 0.0072559361693767
124 => 0.0073970931878954
125 => 0.0072501110651711
126 => 0.007269303827437
127 => 0.0070719923365603
128 => 0.0071425219101801
129 => 0.0072032714803411
130 => 0.0071697291383929
131 => 0.0071195146290287
201 => 0.0073855199221103
202 => 0.0073705108609915
203 => 0.0076182211053443
204 => 0.0078113289547468
205 => 0.0081574127430333
206 => 0.0077962562682005
207 => 0.0077830942907906
208 => 0.0079117547312197
209 => 0.0077939078121587
210 => 0.0078683829970679
211 => 0.0081454136393625
212 => 0.0081512668602951
213 => 0.0080532178682262
214 => 0.0080472515781481
215 => 0.0080660829596134
216 => 0.0081763789490429
217 => 0.0081378381412828
218 => 0.0081824385397567
219 => 0.0082382120209938
220 => 0.0084689147868565
221 => 0.0085245364426655
222 => 0.0083894046555718
223 => 0.0084016055429399
224 => 0.0083510625451164
225 => 0.0083022386425207
226 => 0.0084119876453974
227 => 0.0086125561052765
228 => 0.0086113083792971
301 => 0.0086578363634953
302 => 0.0086868229121921
303 => 0.0085623914257347
304 => 0.0084813911035235
305 => 0.0085124517812437
306 => 0.0085621184813319
307 => 0.0084963455397962
308 => 0.0080903644756478
309 => 0.0082135131963396
310 => 0.0081930152275517
311 => 0.0081638236273596
312 => 0.0082876506182961
313 => 0.0082757072029423
314 => 0.0079179555440113
315 => 0.0079408576444936
316 => 0.0079193482965957
317 => 0.0079888494000524
318 => 0.0077901545244889
319 => 0.0078512717299818
320 => 0.0078896038683287
321 => 0.0079121817922965
322 => 0.0079937487354952
323 => 0.007984177796153
324 => 0.0079931537924675
325 => 0.0081140960363567
326 => 0.0087257804035817
327 => 0.0087590730340843
328 => 0.0085951279452821
329 => 0.0086606207745847
330 => 0.008534888864031
331 => 0.0086192935379163
401 => 0.0086770410721423
402 => 0.0084160910691871
403 => 0.0084006393035636
404 => 0.0082743884526897
405 => 0.0083422285087356
406 => 0.0082342901016939
407 => 0.0082607744112568
408 => 0.0081867219728585
409 => 0.008320001618282
410 => 0.0084690289714286
411 => 0.0085066791661019
412 => 0.0084076377133443
413 => 0.008335925174398
414 => 0.0082100215795872
415 => 0.0084194020637022
416 => 0.008480631298012
417 => 0.0084190804526004
418 => 0.008404817776806
419 => 0.0083777900319477
420 => 0.0084105518406461
421 => 0.0084802978304523
422 => 0.0084474069096659
423 => 0.0084691319423088
424 => 0.0083863385206305
425 => 0.0085624326177344
426 => 0.0088421124232875
427 => 0.0088430116395946
428 => 0.0088101205415139
429 => 0.0087966622128278
430 => 0.0088304104754574
501 => 0.0088487175235077
502 => 0.0089578532164788
503 => 0.0090749601631946
504 => 0.0096214471857532
505 => 0.0094679958166219
506 => 0.0099528716136944
507 => 0.010336345415936
508 => 0.010451332441952
509 => 0.010345549788575
510 => 0.0099836730456411
511 => 0.0099659176462086
512 => 0.010506714280572
513 => 0.010353914461309
514 => 0.010335739409013
515 => 0.010142387559816
516 => 0.010256682449784
517 => 0.010231684480743
518 => 0.01019222396367
519 => 0.010410290651877
520 => 0.010818492025255
521 => 0.010754870013126
522 => 0.010707379132412
523 => 0.01049928791751
524 => 0.010624605307736
525 => 0.010579982185373
526 => 0.010771711437578
527 => 0.010658135275895
528 => 0.010352756852396
529 => 0.010401389372878
530 => 0.010394038665243
531 => 0.010545315707513
601 => 0.01049990609435
602 => 0.010385171709474
603 => 0.010817096837338
604 => 0.010789050022028
605 => 0.010828813993743
606 => 0.010846319323833
607 => 0.011109224537789
608 => 0.011216928391918
609 => 0.011241379052427
610 => 0.011343689383735
611 => 0.011238833478182
612 => 0.011658331861389
613 => 0.011937273807812
614 => 0.012261279232804
615 => 0.012734738243165
616 => 0.012912763210802
617 => 0.012880604593838
618 => 0.013239575811981
619 => 0.013884639111502
620 => 0.013010990329737
621 => 0.013930944618321
622 => 0.013639697711938
623 => 0.012949156536213
624 => 0.012904693825442
625 => 0.013372336326991
626 => 0.014409522386504
627 => 0.014149719042263
628 => 0.014409947331703
629 => 0.014106377209232
630 => 0.014091302393961
701 => 0.014395203608436
702 => 0.015105285360849
703 => 0.014767952137294
704 => 0.014284302243828
705 => 0.014641421798738
706 => 0.01433205179042
707 => 0.013634954574468
708 => 0.014149520375542
709 => 0.013805444878354
710 => 0.013905864400493
711 => 0.014629059918214
712 => 0.014542043120183
713 => 0.014654650914373
714 => 0.014455901105088
715 => 0.014270237443247
716 => 0.013923682430856
717 => 0.013821084576643
718 => 0.013849438932464
719 => 0.013821070525633
720 => 0.013627176181205
721 => 0.013585304715987
722 => 0.013515517106192
723 => 0.013537147204614
724 => 0.013405926081114
725 => 0.013653567452825
726 => 0.013699531873623
727 => 0.013879744612378
728 => 0.013898454896748
729 => 0.014400344809013
730 => 0.014123912279255
731 => 0.014309367086253
801 => 0.014292778262746
802 => 0.012964122657395
803 => 0.013147199676985
804 => 0.013432010066733
805 => 0.013303703372203
806 => 0.01312230772528
807 => 0.01297582101457
808 => 0.01275387866881
809 => 0.013066258258442
810 => 0.013477004200943
811 => 0.013908872091684
812 => 0.014427733065305
813 => 0.0143119293362
814 => 0.013899172346694
815 => 0.013917688323724
816 => 0.014032146807956
817 => 0.013883912671226
818 => 0.013840195530431
819 => 0.014026140744133
820 => 0.014027421246626
821 => 0.013856859957625
822 => 0.013667312297286
823 => 0.013666518085669
824 => 0.013632789910324
825 => 0.014112377376698
826 => 0.014376101991441
827 => 0.014406337593508
828 => 0.014374066894517
829 => 0.014386486605781
830 => 0.014233031063237
831 => 0.014583784927664
901 => 0.014905671359625
902 => 0.014819398919759
903 => 0.01469006426805
904 => 0.014587042988363
905 => 0.014795130380328
906 => 0.014785864576324
907 => 0.014902859962449
908 => 0.014897552375937
909 => 0.014858211228002
910 => 0.014819400324755
911 => 0.014973281169142
912 => 0.014928965957209
913 => 0.014884581911512
914 => 0.01479556291301
915 => 0.014807662073355
916 => 0.014678349753097
917 => 0.014618523956817
918 => 0.013718887522913
919 => 0.013478475271306
920 => 0.013554113859704
921 => 0.01357901604696
922 => 0.013474388326964
923 => 0.013624397600782
924 => 0.013601018814357
925 => 0.013691971996206
926 => 0.013635148396915
927 => 0.01363748045725
928 => 0.013804586546697
929 => 0.013853098155383
930 => 0.013828424759669
1001 => 0.013845705160273
1002 => 0.014243924698591
1003 => 0.014187310614586
1004 => 0.014157235510819
1005 => 0.014165566520099
1006 => 0.014267320150063
1007 => 0.01429580561091
1008 => 0.014175110711662
1009 => 0.014232031123876
1010 => 0.01447439101481
1011 => 0.014559203260256
1012 => 0.014829883235529
1013 => 0.01471489357108
1014 => 0.014925962076813
1015 => 0.015574714704878
1016 => 0.016092983194444
1017 => 0.015616362073088
1018 => 0.016568096153082
1019 => 0.017309157652503
1020 => 0.017280714477852
1021 => 0.017151493264367
1022 => 0.016307814449416
1023 => 0.015531448625356
1024 => 0.016180911603416
1025 => 0.016182567218111
1026 => 0.016126777772315
1027 => 0.015780274315912
1028 => 0.016114720203122
1029 => 0.01614126730312
1030 => 0.016126407986565
1031 => 0.015860744598961
1101 => 0.015455125708891
1102 => 0.015534382669096
1103 => 0.015664207186711
1104 => 0.015418422290635
1105 => 0.015339879123707
1106 => 0.015485905814475
1107 => 0.015956434238
1108 => 0.015867483565118
1109 => 0.015865160703572
1110 => 0.016245729403115
1111 => 0.015973324346108
1112 => 0.015535382353181
1113 => 0.015424796224221
1114 => 0.015032289966158
1115 => 0.015303395436662
1116 => 0.015313152039905
1117 => 0.015164670344341
1118 => 0.015547430824446
1119 => 0.015543903619238
1120 => 0.015907277728719
1121 => 0.016601912548963
1122 => 0.016396474851713
1123 => 0.01615757316137
1124 => 0.016183548399135
1125 => 0.016468432645075
1126 => 0.016296185126705
1127 => 0.016358126535263
1128 => 0.016468338889334
1129 => 0.016534832738964
1130 => 0.016173980957456
1201 => 0.01608984914565
1202 => 0.015917744984949
1203 => 0.015872846221899
1204 => 0.016013021469718
1205 => 0.015976090244382
1206 => 0.015312332035182
1207 => 0.015242965609205
1208 => 0.015245092978457
1209 => 0.015070667802144
1210 => 0.014804627541427
1211 => 0.015503765462153
1212 => 0.015447614902689
1213 => 0.01538562903075
1214 => 0.015393221946376
1215 => 0.015696694021781
1216 => 0.015520664892339
1217 => 0.015988667183567
1218 => 0.015892459981927
1219 => 0.015793785428588
1220 => 0.015780145599616
1221 => 0.015742164315098
1222 => 0.015611912358272
1223 => 0.015454625293475
1224 => 0.015350770749323
1225 => 0.014160274577579
1226 => 0.014381223742257
1227 => 0.014635405616069
1228 => 0.014723148180339
1229 => 0.014573058452555
1230 => 0.015617838815532
1231 => 0.015808730255602
]
'min_raw' => 0.0065889285029222
'max_raw' => 0.017309157652503
'avg_raw' => 0.011949043077712
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006588'
'max' => '$0.0173091'
'avg' => '$0.011949'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025546760491546
'max_diff' => -0.0031215314181731
'year' => 2027
]
2 => [
'items' => [
101 => 0.015230507632089
102 => 0.015122345787904
103 => 0.01562492988803
104 => 0.015321810237247
105 => 0.015458304997434
106 => 0.015163277984551
107 => 0.015762750097643
108 => 0.015758183124532
109 => 0.015524974932847
110 => 0.015722080899518
111 => 0.01568782888727
112 => 0.015424537413224
113 => 0.015771096906995
114 => 0.01577126879618
115 => 0.015546810982067
116 => 0.015284693395317
117 => 0.015237832961747
118 => 0.015202529919865
119 => 0.015449622613247
120 => 0.015671165149494
121 => 0.016083400884398
122 => 0.016187046742633
123 => 0.016591583427417
124 => 0.016350701528162
125 => 0.016457481354159
126 => 0.016573405960207
127 => 0.016628984479333
128 => 0.016538422264925
129 => 0.017166834250337
130 => 0.017219891475952
131 => 0.017237681104757
201 => 0.017025784118996
202 => 0.017213998237459
203 => 0.017125939084426
204 => 0.017355044537079
205 => 0.01739097119742
206 => 0.017360542594239
207 => 0.017371946283295
208 => 0.016835707513217
209 => 0.016807900704103
210 => 0.016428752888761
211 => 0.016583258426032
212 => 0.016294417729746
213 => 0.016386012089927
214 => 0.016426386011152
215 => 0.016405296965904
216 => 0.016591993937291
217 => 0.016433263371941
218 => 0.01601434731226
219 => 0.015595317119179
220 => 0.01559005653644
221 => 0.015479733283099
222 => 0.015399989777645
223 => 0.015415351205849
224 => 0.015469486882459
225 => 0.015396843313707
226 => 0.015412345502223
227 => 0.015669785122124
228 => 0.01572141280192
229 => 0.015545961773737
301 => 0.01484150057812
302 => 0.014668624033709
303 => 0.014792884265541
304 => 0.014733495878109
305 => 0.01189108107584
306 => 0.012558864271498
307 => 0.012162090172413
308 => 0.01234494193197
309 => 0.011939938320958
310 => 0.012133227272191
311 => 0.012097533860681
312 => 0.013171309478158
313 => 0.013154543948821
314 => 0.013162568720503
315 => 0.012779525459714
316 => 0.013389723774908
317 => 0.013690329406994
318 => 0.013634695304855
319 => 0.013648697209773
320 => 0.013408098092738
321 => 0.013164898245879
322 => 0.012895152187524
323 => 0.013396307022327
324 => 0.013340587159695
325 => 0.013468388477199
326 => 0.013793423210856
327 => 0.013841285810074
328 => 0.013905613628798
329 => 0.013882556684951
330 => 0.014431866630052
331 => 0.014365341571236
401 => 0.014525647822416
402 => 0.014195885701275
403 => 0.013822728559897
404 => 0.013893653533047
405 => 0.01388682288779
406 => 0.013799860933819
407 => 0.013721355570106
408 => 0.013590666258273
409 => 0.014004186579292
410 => 0.013987398409435
411 => 0.014259179365301
412 => 0.014211139441412
413 => 0.013890317072321
414 => 0.013901775305996
415 => 0.013978837434103
416 => 0.014245550339361
417 => 0.014324728888841
418 => 0.014288050230003
419 => 0.014374865894869
420 => 0.01444348145662
421 => 0.014383482953001
422 => 0.015232935238596
423 => 0.01488018342601
424 => 0.015052112205033
425 => 0.015093116205767
426 => 0.014988085320108
427 => 0.015010862758334
428 => 0.015045364370764
429 => 0.015254851405336
430 => 0.015804605999614
501 => 0.016048088567114
502 => 0.016780617884655
503 => 0.016027870729324
504 => 0.015983205828304
505 => 0.016115156478659
506 => 0.016545228734159
507 => 0.016893761902608
508 => 0.017009390461944
509 => 0.01702467268488
510 => 0.017241599549035
511 => 0.017365937982122
512 => 0.017215258921983
513 => 0.017087574195271
514 => 0.016630223353
515 => 0.016683162958318
516 => 0.017047864341278
517 => 0.017563026525512
518 => 0.018005089273075
519 => 0.017850294306321
520 => 0.019031270634441
521 => 0.019148359613519
522 => 0.01913218170255
523 => 0.019398927822065
524 => 0.018869491096731
525 => 0.018643146639297
526 => 0.01711518108247
527 => 0.017544477079033
528 => 0.018168484021708
529 => 0.018085894362939
530 => 0.017632723841415
531 => 0.018004745502598
601 => 0.017881743507218
602 => 0.017784726730104
603 => 0.01822917939369
604 => 0.017740485432968
605 => 0.018163608925618
606 => 0.017620948669643
607 => 0.01785100139669
608 => 0.01772041234242
609 => 0.017804919464925
610 => 0.017310892553522
611 => 0.01757745748309
612 => 0.017299802576068
613 => 0.01729967093149
614 => 0.017293541684028
615 => 0.01762020145083
616 => 0.017630853814097
617 => 0.017389451752876
618 => 0.017354661944445
619 => 0.017483298100291
620 => 0.017332698851658
621 => 0.017403163292233
622 => 0.01733483314778
623 => 0.01731945059301
624 => 0.017196879779481
625 => 0.017144072902858
626 => 0.017164779839848
627 => 0.017094096388745
628 => 0.017051507052723
629 => 0.017285069593136
630 => 0.017160286549679
701 => 0.017265944802085
702 => 0.017145533888334
703 => 0.016728137200735
704 => 0.016488087951807
705 => 0.015699664301626
706 => 0.015923260270781
707 => 0.016071504629657
708 => 0.016022509869933
709 => 0.016127769572276
710 => 0.016134231663116
711 => 0.016100010660888
712 => 0.016060387124291
713 => 0.016041100577995
714 => 0.016184846692918
715 => 0.016268296150903
716 => 0.016086382934324
717 => 0.016043763212916
718 => 0.016227687518581
719 => 0.016339881238788
720 => 0.017168256632586
721 => 0.017106887907796
722 => 0.017260911364014
723 => 0.017243570686527
724 => 0.017405011806504
725 => 0.01766889980756
726 => 0.017132341717168
727 => 0.017225469648878
728 => 0.01720263683066
729 => 0.017451919552868
730 => 0.017452697786317
731 => 0.017303240341758
801 => 0.017384263647123
802 => 0.017339038660826
803 => 0.017420766323588
804 => 0.017106068291062
805 => 0.017489336525126
806 => 0.017706624916581
807 => 0.017709641966107
808 => 0.017812634939149
809 => 0.017917281764711
810 => 0.018118142233559
811 => 0.017911679875252
812 => 0.017540274191363
813 => 0.017567088482107
814 => 0.017349333465535
815 => 0.017352993966704
816 => 0.017333453924584
817 => 0.017392095061892
818 => 0.017118936723023
819 => 0.017183046439175
820 => 0.017093292461137
821 => 0.017225274541258
822 => 0.017083283640467
823 => 0.017202625819984
824 => 0.017254129948408
825 => 0.017444181291096
826 => 0.017055212902626
827 => 0.016262080027692
828 => 0.016428806173809
829 => 0.016182205107645
830 => 0.016205028975195
831 => 0.016251136820038
901 => 0.016101686209355
902 => 0.016130196676143
903 => 0.016129178081644
904 => 0.016120400384543
905 => 0.016081522508648
906 => 0.016025141896847
907 => 0.016249744901226
908 => 0.016287909328346
909 => 0.016372744122263
910 => 0.01662515492497
911 => 0.016599933133523
912 => 0.016641070921815
913 => 0.016551267360952
914 => 0.016209194704821
915 => 0.01622777089581
916 => 0.015996125496512
917 => 0.016366820428594
918 => 0.016279034975743
919 => 0.016222439123211
920 => 0.016206996420491
921 => 0.016460032900756
922 => 0.016535745381512
923 => 0.016488566444381
924 => 0.016391801067894
925 => 0.016577619196864
926 => 0.016627336289138
927 => 0.016638466112603
928 => 0.016967700210045
929 => 0.016656866641315
930 => 0.016731687370729
1001 => 0.01731541734309
1002 => 0.016786054807388
1003 => 0.017066469948743
1004 => 0.017052745086784
1005 => 0.01719619598437
1006 => 0.017040977926164
1007 => 0.017042902040022
1008 => 0.017170276718873
1009 => 0.016991401954571
1010 => 0.016947110047409
1011 => 0.016885921094888
1012 => 0.017019524934164
1013 => 0.017099614393427
1014 => 0.017745076615867
1015 => 0.018162074648216
1016 => 0.018143971663878
1017 => 0.018309399053363
1018 => 0.018234872499259
1019 => 0.017994206596943
1020 => 0.018404993946116
1021 => 0.018275003640765
1022 => 0.0182857198836
1023 => 0.018285321024506
1024 => 0.018371753213615
1025 => 0.018310508086238
1026 => 0.018189787653494
1027 => 0.018269927510536
1028 => 0.018507914235427
1029 => 0.019246632331816
1030 => 0.019660028765268
1031 => 0.019221745347446
1101 => 0.019524067380211
1102 => 0.019342781888907
1103 => 0.01930983692236
1104 => 0.019499717500359
1105 => 0.019689930439174
1106 => 0.019677814697285
1107 => 0.019539729871248
1108 => 0.019461729256792
1109 => 0.020052376041572
1110 => 0.020487554531193
1111 => 0.020457878275674
1112 => 0.020588859616297
1113 => 0.020973424883468
1114 => 0.021008584711969
1115 => 0.021004155381717
1116 => 0.020917008078228
1117 => 0.021295662525868
1118 => 0.02161154272788
1119 => 0.020896835995398
1120 => 0.021168986962929
1121 => 0.021291164300411
1122 => 0.021470556880216
1123 => 0.021773222232034
1124 => 0.022101997082129
1125 => 0.022148489450765
1126 => 0.022115500890353
1127 => 0.021898665038773
1128 => 0.022258414402846
1129 => 0.022469147143159
1130 => 0.022594633667483
1201 => 0.022912846614201
1202 => 0.021291918826053
1203 => 0.020144545572263
1204 => 0.019965366670413
1205 => 0.020329734013187
1206 => 0.020425814775702
1207 => 0.020387084740807
1208 => 0.019095611829055
1209 => 0.019958567332809
1210 => 0.02088703489549
1211 => 0.020922701115876
1212 => 0.021387511391095
1213 => 0.021538872669923
1214 => 0.02191310586555
1215 => 0.021889697477271
1216 => 0.021980817305055
1217 => 0.021959870434623
1218 => 0.022653058625425
1219 => 0.023417748139322
1220 => 0.023391269373019
1221 => 0.023281336208001
1222 => 0.023444605704443
1223 => 0.024233847231894
1224 => 0.024161186519384
1225 => 0.024231770212363
1226 => 0.02516233045293
1227 => 0.026372191136318
1228 => 0.025810089380858
1229 => 0.027029688449784
1230 => 0.027797361415504
1231 => 0.029124972430851
]
'min_raw' => 0.01189108107584
'max_raw' => 0.029124972430851
'avg_raw' => 0.020508026753345
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011891'
'max' => '$0.029124'
'avg' => '$0.020508'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0053021525729178
'max_diff' => 0.011815814778348
'year' => 2028
]
3 => [
'items' => [
101 => 0.028958748993107
102 => 0.029475578218922
103 => 0.028661174347668
104 => 0.02679113844109
105 => 0.026495198100664
106 => 0.0270876781566
107 => 0.028544232560759
108 => 0.027041806074976
109 => 0.027345744996285
110 => 0.027258210566501
111 => 0.027253546228735
112 => 0.027431565030024
113 => 0.027173339473919
114 => 0.026121282104454
115 => 0.026603433797066
116 => 0.026417251873723
117 => 0.026623834598454
118 => 0.027738676362635
119 => 0.027245778244183
120 => 0.026726550116184
121 => 0.02737777741464
122 => 0.028207013551552
123 => 0.028155121444385
124 => 0.028054429067262
125 => 0.028622026725021
126 => 0.029559531765131
127 => 0.029812935610272
128 => 0.029999993148142
129 => 0.030025785222251
130 => 0.030291459615261
131 => 0.028862861445479
201 => 0.031130083429925
202 => 0.031521570035896
203 => 0.031447986779431
204 => 0.031883107665692
205 => 0.031755084063003
206 => 0.031569597948993
207 => 0.032259357106584
208 => 0.0314686038931
209 => 0.03034622925962
210 => 0.02973047233764
211 => 0.030541350724197
212 => 0.031036525859112
213 => 0.031363805124237
214 => 0.031462839632117
215 => 0.028973759454702
216 => 0.027632283289791
217 => 0.028492154131443
218 => 0.029541255903375
219 => 0.028857033632166
220 => 0.028883853849793
221 => 0.027908332701499
222 => 0.029627567878959
223 => 0.029377089774647
224 => 0.030676570622906
225 => 0.030366439089484
226 => 0.031426115275684
227 => 0.031147067022241
228 => 0.032305380720904
301 => 0.032767463415392
302 => 0.033543372176866
303 => 0.034114133820323
304 => 0.034449295974292
305 => 0.034429174095729
306 => 0.035757253526874
307 => 0.034974131485889
308 => 0.033990345634718
309 => 0.033972552052475
310 => 0.03448206868515
311 => 0.035549875768174
312 => 0.035826742608842
313 => 0.035981473401905
314 => 0.03574449780611
315 => 0.034894474957483
316 => 0.03452743940116
317 => 0.034840164329191
318 => 0.034457728614968
319 => 0.035117919950226
320 => 0.036024503662796
321 => 0.035837297711171
322 => 0.036463099139969
323 => 0.037110737782545
324 => 0.0380368901287
325 => 0.038279020647306
326 => 0.038679253187165
327 => 0.039091223940219
328 => 0.039223537843177
329 => 0.039476166138517
330 => 0.0394748346627
331 => 0.040236147034552
401 => 0.041075898156586
402 => 0.04139288476487
403 => 0.042121777991878
404 => 0.040873573884093
405 => 0.041820351038183
406 => 0.042674367730541
407 => 0.041656173822936
408 => 0.043059516915816
409 => 0.043114005548069
410 => 0.043936719203201
411 => 0.043102741300859
412 => 0.042607527884601
413 => 0.044037190461934
414 => 0.044728959149157
415 => 0.044520592790765
416 => 0.042934914515088
417 => 0.042011981745703
418 => 0.039596488667788
419 => 0.042457744560114
420 => 0.043851378841288
421 => 0.042931305338977
422 => 0.043395336896063
423 => 0.045926942608787
424 => 0.046890814154861
425 => 0.046690335611249
426 => 0.046724213184961
427 => 0.047244300775717
428 => 0.049550655570595
429 => 0.048168634316618
430 => 0.049225137781935
501 => 0.049785503410432
502 => 0.050306002235696
503 => 0.049027821626191
504 => 0.047364927433427
505 => 0.046838219039029
506 => 0.042839822161839
507 => 0.042631688240224
508 => 0.042514856362918
509 => 0.041778247902701
510 => 0.041199475427009
511 => 0.040739214065895
512 => 0.039531350808653
513 => 0.039938969200774
514 => 0.038013887269384
515 => 0.039245486468373
516 => 0.036173009223146
517 => 0.038731859572125
518 => 0.037339193663825
519 => 0.038274331365619
520 => 0.038271068758273
521 => 0.036549183763591
522 => 0.035556036433482
523 => 0.0361889085661
524 => 0.036867397729719
525 => 0.036977480313804
526 => 0.037857159224815
527 => 0.038102658700243
528 => 0.037358783828421
529 => 0.036109338961472
530 => 0.036399556507261
531 => 0.035550155184179
601 => 0.034061612037229
602 => 0.035130709712838
603 => 0.035495746664198
604 => 0.035656967777615
605 => 0.034193156552925
606 => 0.033733195285239
607 => 0.033488315765772
608 => 0.035920379314118
609 => 0.03605361324537
610 => 0.035371969615708
611 => 0.03845306345788
612 => 0.037755717029022
613 => 0.03853482384408
614 => 0.036373222306897
615 => 0.0364557983966
616 => 0.035432461587696
617 => 0.036005461821292
618 => 0.035600483724846
619 => 0.035959169064916
620 => 0.036174163578839
621 => 0.037197332468242
622 => 0.038743542517303
623 => 0.037044505155841
624 => 0.036304210246788
625 => 0.036763485044788
626 => 0.037986594354386
627 => 0.03983966756824
628 => 0.038742610929064
629 => 0.039229466036301
630 => 0.039335822218556
701 => 0.038526893268072
702 => 0.039869493932489
703 => 0.040589004535818
704 => 0.041327073533093
705 => 0.041967918163203
706 => 0.041032272545096
707 => 0.042033547476002
708 => 0.04122669663051
709 => 0.040502868011397
710 => 0.040503965760629
711 => 0.040049897494411
712 => 0.039170083012329
713 => 0.039007831723058
714 => 0.039851883419928
715 => 0.040528732948825
716 => 0.040584481517916
717 => 0.040959220194897
718 => 0.04118098668382
719 => 0.043354599752183
720 => 0.044228844909349
721 => 0.045297855338918
722 => 0.045714295147361
723 => 0.046967629668842
724 => 0.045955460251893
725 => 0.045736471031692
726 => 0.042696291445177
727 => 0.043194120682155
728 => 0.043991193323933
729 => 0.04270943487946
730 => 0.043522415592353
731 => 0.043682915206364
801 => 0.042665881217988
802 => 0.043209123014624
803 => 0.041766433862726
804 => 0.0387749891984
805 => 0.03987282426555
806 => 0.04068120040226
807 => 0.039527547983116
808 => 0.041595425291917
809 => 0.040387414057768
810 => 0.040004532491308
811 => 0.038510774993413
812 => 0.03921577103242
813 => 0.040169288269749
814 => 0.039580125475357
815 => 0.040802726736959
816 => 0.042534256179235
817 => 0.043768247174161
818 => 0.043862977680225
819 => 0.043069604141462
820 => 0.044340990300571
821 => 0.044350250960736
822 => 0.042916122179497
823 => 0.04203772628625
824 => 0.041838152891144
825 => 0.042336726360789
826 => 0.042942086594677
827 => 0.043896570960112
828 => 0.044473345871862
829 => 0.045977268943928
830 => 0.046384187406376
831 => 0.046831267426636
901 => 0.047428704208077
902 => 0.048146080243843
903 => 0.046576502317827
904 => 0.046638864574887
905 => 0.045177295342467
906 => 0.043615399007397
907 => 0.044800683632589
908 => 0.046350285608221
909 => 0.045994805202853
910 => 0.045954806395443
911 => 0.046022073294762
912 => 0.045754052678019
913 => 0.044541805361799
914 => 0.043933022348663
915 => 0.044718507752719
916 => 0.045135958287042
917 => 0.045783387660264
918 => 0.045703578324438
919 => 0.04737128686102
920 => 0.048019307969447
921 => 0.047853516439525
922 => 0.047884026071026
923 => 0.049057237334311
924 => 0.050362089548383
925 => 0.051584255837276
926 => 0.052827495879601
927 => 0.051328721484093
928 => 0.050567736277608
929 => 0.051352878763309
930 => 0.050936271108715
1001 => 0.053330222265868
1002 => 0.053495974249907
1003 => 0.055889752297142
1004 => 0.058161732709757
1005 => 0.056734742519351
1006 => 0.058080329995854
1007 => 0.059535692559048
1008 => 0.062343323067517
1009 => 0.061397811885897
1010 => 0.060673565138825
1011 => 0.059989155462377
1012 => 0.061413303352089
1013 => 0.063245446860885
1014 => 0.063640073024627
1015 => 0.064279518168687
1016 => 0.06360721978734
1017 => 0.064416929136435
1018 => 0.067275558943054
1019 => 0.066503131935482
1020 => 0.065406161410892
1021 => 0.067662775097494
1022 => 0.068479434818311
1023 => 0.074211180427024
1024 => 0.081447746024626
1025 => 0.078451760349367
1026 => 0.076592055360881
1027 => 0.077029130145967
1028 => 0.079671678929006
1029 => 0.080520381727813
1030 => 0.078213314955259
1031 => 0.079028209941753
1101 => 0.083518361436045
1102 => 0.085927183651425
1103 => 0.082655679534953
1104 => 0.073629729427344
1105 => 0.065307391217368
1106 => 0.067514850070427
1107 => 0.067264592741914
1108 => 0.072088700364723
1109 => 0.066484709806811
1110 => 0.066579066635571
1111 => 0.071502931695202
1112 => 0.07018932891371
1113 => 0.068061460641226
1114 => 0.065322927010597
1115 => 0.060260494310678
1116 => 0.05577655649198
1117 => 0.064570591143654
1118 => 0.06419137637856
1119 => 0.063642217202223
1120 => 0.064864311523931
1121 => 0.070798454652617
1122 => 0.070661653446554
1123 => 0.06979139397017
1124 => 0.070451478112892
1125 => 0.067945744699546
1126 => 0.068591529254655
1127 => 0.065306072916475
1128 => 0.066791236394109
1129 => 0.068056895191587
1130 => 0.06831099493358
1201 => 0.068883494626943
1202 => 0.063991547429007
1203 => 0.066187888100856
1204 => 0.067478032476277
1205 => 0.061649113252271
1206 => 0.067362813484623
1207 => 0.063906389511891
1208 => 0.0627332273018
1209 => 0.064312735665319
1210 => 0.063697199719934
1211 => 0.063167998059575
1212 => 0.062872694440256
1213 => 0.064032511058447
1214 => 0.063978404226928
1215 => 0.062080719128861
1216 => 0.059605266277973
1217 => 0.060436109508701
1218 => 0.060134256373781
1219 => 0.059040301673
1220 => 0.059777495056732
1221 => 0.056531268479811
1222 => 0.050946304378393
1223 => 0.054635902735867
1224 => 0.054493857212615
1225 => 0.05442223141854
1226 => 0.057194862611172
1227 => 0.056928338097486
1228 => 0.056444593495329
1229 => 0.059031417324025
1230 => 0.05808719182886
1231 => 0.060997072317451
]
'min_raw' => 0.026121282104454
'max_raw' => 0.085927183651425
'avg_raw' => 0.056024232877939
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.026121'
'max' => '$0.085927'
'avg' => '$0.056024'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014230201028614
'max_diff' => 0.056802211220574
'year' => 2029
]
4 => [
'items' => [
101 => 0.062913707806506
102 => 0.062427587049819
103 => 0.064230191991179
104 => 0.06045525045867
105 => 0.061709134611403
106 => 0.061967558397472
107 => 0.058999496319521
108 => 0.056971944804089
109 => 0.056836730233789
110 => 0.053321235319841
111 => 0.055199184326789
112 => 0.056851701738093
113 => 0.05606027413861
114 => 0.05580973180384
115 => 0.057089698256174
116 => 0.057189162611692
117 => 0.054921364765129
118 => 0.055392911749247
119 => 0.057359341061184
120 => 0.055343362775924
121 => 0.051426646275848
122 => 0.050455246430987
123 => 0.050325643785232
124 => 0.047691130363275
125 => 0.05052016001355
126 => 0.049285212757924
127 => 0.053186396341507
128 => 0.050958061201032
129 => 0.050862002126843
130 => 0.050716794747404
131 => 0.048449160214747
201 => 0.048945628061706
202 => 0.050595962799187
203 => 0.051184820825871
204 => 0.051123398109317
205 => 0.050587875258636
206 => 0.050833034877357
207 => 0.050043290326184
208 => 0.049764415088053
209 => 0.048884208125835
210 => 0.047590547054755
211 => 0.047770438561173
212 => 0.04520735747453
213 => 0.043810854865518
214 => 0.043424321348952
215 => 0.042907432576252
216 => 0.043482705311217
217 => 0.045200096587846
218 => 0.043128558343347
219 => 0.039577051324666
220 => 0.039790502947962
221 => 0.040270065371153
222 => 0.039376403968159
223 => 0.038530628449543
224 => 0.039265961643043
225 => 0.037761141300538
226 => 0.04045191572018
227 => 0.040379137812937
228 => 0.041382092120206
301 => 0.042009260031235
302 => 0.040563841044335
303 => 0.040200322077958
304 => 0.040407399002222
305 => 0.036984878713685
306 => 0.041102399195359
307 => 0.041138007683469
308 => 0.040833106189737
309 => 0.043025558732046
310 => 0.047652317439415
311 => 0.045911544702765
312 => 0.045237464883999
313 => 0.043956038655777
314 => 0.045663463021323
315 => 0.045532359470018
316 => 0.044939459491474
317 => 0.044580871734489
318 => 0.045241580671634
319 => 0.044499002585435
320 => 0.044365615156473
321 => 0.043557432463914
322 => 0.043268948012641
323 => 0.043055365609814
324 => 0.042820232370476
325 => 0.043338877704904
326 => 0.042163559143615
327 => 0.0407462401766
328 => 0.040628405440097
329 => 0.040953757507719
330 => 0.040809813437409
331 => 0.040627716291267
401 => 0.040280043248076
402 => 0.040176896083021
403 => 0.040512074329561
404 => 0.040133677631323
405 => 0.040692022571908
406 => 0.040540183642704
407 => 0.039692023727096
408 => 0.038634902443229
409 => 0.038625491846415
410 => 0.038397736799833
411 => 0.038107656504809
412 => 0.038026962802871
413 => 0.039204033932498
414 => 0.041640535944049
415 => 0.04116219229863
416 => 0.041507844605074
417 => 0.043208111848117
418 => 0.043748575675861
419 => 0.043364967252516
420 => 0.042839860382704
421 => 0.042862962420013
422 => 0.04465741155482
423 => 0.044769329146242
424 => 0.045052108793781
425 => 0.045415560554388
426 => 0.043426864658957
427 => 0.042769295022179
428 => 0.042457702047699
429 => 0.041498116287958
430 => 0.042532947261173
501 => 0.041929995568961
502 => 0.042011354352003
503 => 0.041958369337815
504 => 0.041987302738393
505 => 0.040451163593892
506 => 0.041010851961051
507 => 0.040080261497305
508 => 0.038834305330029
509 => 0.038830128448068
510 => 0.039135074454864
511 => 0.038953680637483
512 => 0.038465554538974
513 => 0.038534890547377
514 => 0.037927434154989
515 => 0.038608646751766
516 => 0.038628181491545
517 => 0.038365877535886
518 => 0.039415379530443
519 => 0.039845361353925
520 => 0.039672707271215
521 => 0.039833247483222
522 => 0.041182069636689
523 => 0.041401986500941
524 => 0.041499659045149
525 => 0.041368790775043
526 => 0.039857901476119
527 => 0.039924915841324
528 => 0.039433208894182
529 => 0.039017768338649
530 => 0.039034383782171
531 => 0.039247974231207
601 => 0.040180736249062
602 => 0.042143678926312
603 => 0.042218171166021
604 => 0.042308457933641
605 => 0.041941216275239
606 => 0.041830452677035
607 => 0.041976578453576
608 => 0.042713756516528
609 => 0.044609978636334
610 => 0.043939727094777
611 => 0.043394802158405
612 => 0.043872848238311
613 => 0.043799256791359
614 => 0.043178070919265
615 => 0.043160636300759
616 => 0.041968382007074
617 => 0.041527632741015
618 => 0.041159309664786
619 => 0.040757110480861
620 => 0.040518673322791
621 => 0.040885021165336
622 => 0.040968809251427
623 => 0.040167783291037
624 => 0.040058606412529
625 => 0.040712741503129
626 => 0.04042488103837
627 => 0.040720952664971
628 => 0.040789643821997
629 => 0.040778582963625
630 => 0.040478023577852
701 => 0.040669591167534
702 => 0.04021647670889
703 => 0.039723782790707
704 => 0.039409474766822
705 => 0.039135199329072
706 => 0.039287383282917
707 => 0.038744875275151
708 => 0.038571316044937
709 => 0.040604692378557
710 => 0.042106769338681
711 => 0.042084928544793
712 => 0.041951978328996
713 => 0.041754441276288
714 => 0.04269930545074
715 => 0.042370133665517
716 => 0.04260963364249
717 => 0.042670596438412
718 => 0.042855112460849
719 => 0.042921061079182
720 => 0.042721718550319
721 => 0.042052700675815
722 => 0.040385571740863
723 => 0.039609518721314
724 => 0.039353408298678
725 => 0.039362717426118
726 => 0.039105930133551
727 => 0.039181565499611
728 => 0.039079627239893
729 => 0.038886580837502
730 => 0.03927546321156
731 => 0.039320278282481
801 => 0.039229508489577
802 => 0.03925088806172
803 => 0.038499352944765
804 => 0.038556490527458
805 => 0.038238341206327
806 => 0.038178692043962
807 => 0.037374438264573
808 => 0.035949586115935
809 => 0.036739092520025
810 => 0.035785479805284
811 => 0.035424332220621
812 => 0.037133948716443
813 => 0.036962350637642
814 => 0.036668649318628
815 => 0.036234203855088
816 => 0.036073063806647
817 => 0.035094027883061
818 => 0.035036181217742
819 => 0.035521417857665
820 => 0.035297497844314
821 => 0.034983029340429
822 => 0.033844056296516
823 => 0.032563473494143
824 => 0.03260212623949
825 => 0.033009455802835
826 => 0.034193821444136
827 => 0.033731069298346
828 => 0.033395337307106
829 => 0.033332464797214
830 => 0.034119445891034
831 => 0.035233189016427
901 => 0.035755732372263
902 => 0.035237907776507
903 => 0.034643058762559
904 => 0.034679264465773
905 => 0.034920124788815
906 => 0.034945435803186
907 => 0.034558250246572
908 => 0.034667240712806
909 => 0.034501674228299
910 => 0.033485593018491
911 => 0.033467215331434
912 => 0.033217852616024
913 => 0.033210302012104
914 => 0.032786073826747
915 => 0.032726721371065
916 => 0.031884390560229
917 => 0.032438815250734
918 => 0.032066936276946
919 => 0.031506426946066
920 => 0.031409794926153
921 => 0.031406890050948
922 => 0.031982407806169
923 => 0.032432089990681
924 => 0.03207340527091
925 => 0.03199173971303
926 => 0.032863714216674
927 => 0.032752747512861
928 => 0.032656651063018
929 => 0.035133465535189
930 => 0.033172873612222
1001 => 0.032317943627134
1002 => 0.031259805423786
1003 => 0.031604340558392
1004 => 0.031676939173527
1005 => 0.029132307538223
1006 => 0.028099950800694
1007 => 0.027745684871917
1008 => 0.027541799821321
1009 => 0.027634712799105
1010 => 0.02670547065196
1011 => 0.027329936743088
1012 => 0.026525291590544
1013 => 0.026390390212179
1014 => 0.027829195421333
1015 => 0.028029396760809
1016 => 0.027175275648925
1017 => 0.027723759672402
1018 => 0.027524871740991
1019 => 0.026539084922213
1020 => 0.026501435116693
1021 => 0.026006801943112
1022 => 0.025232796806314
1023 => 0.024879055689467
1024 => 0.024694824244492
1025 => 0.024770841729288
1026 => 0.024732404962802
1027 => 0.024481579061848
1028 => 0.024746782009838
1029 => 0.024069298067147
1030 => 0.023799518502309
1031 => 0.02367766533171
1101 => 0.023076359338051
1102 => 0.024033304575951
1103 => 0.024221834843096
1104 => 0.024410736573107
1105 => 0.026054997164165
1106 => 0.025972854551668
1107 => 0.026715383763566
1108 => 0.026686530443815
1109 => 0.026474749084406
1110 => 0.025581278365402
1111 => 0.025937399869413
1112 => 0.024841313233636
1113 => 0.025662575867806
1114 => 0.025287785898319
1115 => 0.025535859002118
1116 => 0.025089801193637
1117 => 0.025336668002126
1118 => 0.024266542363448
1119 => 0.023267274099125
1120 => 0.023669408819147
1121 => 0.024106575249496
1122 => 0.025054463458425
1123 => 0.024489909061095
1124 => 0.02469294417054
1125 => 0.024012810541565
1126 => 0.022609500594423
1127 => 0.022617443176325
1128 => 0.022401574513726
1129 => 0.0222150324719
1130 => 0.024554754924882
1201 => 0.024263773452315
1202 => 0.023800132558494
1203 => 0.02442073431923
1204 => 0.024584831275044
1205 => 0.024589502884682
1206 => 0.025042277909266
1207 => 0.025283924021051
1208 => 0.025326515195607
1209 => 0.026038966479641
1210 => 0.02627777075259
1211 => 0.02726137175602
1212 => 0.025263422036753
1213 => 0.025222275577072
1214 => 0.024429467458699
1215 => 0.023926656016227
1216 => 0.024463895388339
1217 => 0.024939816131544
1218 => 0.024444255642815
1219 => 0.02450896538079
1220 => 0.023843715913451
1221 => 0.024081511295128
1222 => 0.024286332712325
1223 => 0.024173242364595
1224 => 0.024003940640408
1225 => 0.024900796057929
1226 => 0.024850191960468
1227 => 0.025685364343881
1228 => 0.026336440940501
1229 => 0.027503286595507
1230 => 0.026285622325468
1231 => 0.026241245799691
]
'min_raw' => 0.0222150324719
'max_raw' => 0.064230191991179
'avg_raw' => 0.04322261223154
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022215'
'max' => '$0.06423'
'avg' => '$0.043222'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0039062496325539
'max_diff' => -0.021696991660246
'year' => 2030
]
5 => [
'items' => [
101 => 0.026675033457383
102 => 0.02627770434196
103 => 0.026528802627572
104 => 0.027462830779731
105 => 0.027482565322763
106 => 0.027151986300441
107 => 0.02713187053689
108 => 0.027195361854265
109 => 0.027567232483247
110 => 0.02743728945905
111 => 0.027587662816405
112 => 0.027775707002376
113 => 0.028553537484635
114 => 0.028741069780575
115 => 0.028285463525789
116 => 0.028326599669389
117 => 0.028156190423428
118 => 0.02799157722705
119 => 0.02836160365268
120 => 0.029037834218405
121 => 0.029033627423152
122 => 0.029190499770356
123 => 0.029288229943064
124 => 0.028868700498944
125 => 0.028595602257347
126 => 0.028700325500868
127 => 0.028867780247833
128 => 0.028646022183326
129 => 0.027277228680856
130 => 0.027692433190638
131 => 0.027623322857747
201 => 0.027524901339607
202 => 0.027942392684874
203 => 0.027902124626146
204 => 0.026695939930637
205 => 0.026773155961387
206 => 0.026700635693214
207 => 0.02693496351593
208 => 0.026265049870535
209 => 0.026471110795921
210 => 0.026600350276622
211 => 0.02667647332362
212 => 0.026951481967436
213 => 0.026919212877222
214 => 0.026949476075481
215 => 0.027357241294671
216 => 0.029419577845209
217 => 0.029531826273366
218 => 0.028979073960188
219 => 0.029199887606745
220 => 0.028775973691992
221 => 0.029060549942942
222 => 0.02925524978639
223 => 0.028375438632479
224 => 0.028323341925871
225 => 0.027897678367597
226 => 0.028126405852997
227 => 0.027762483977637
228 => 0.027851777676404
301 => 0.027602104710168
302 => 0.028051466340001
303 => 0.028553922465892
304 => 0.028680862725886
305 => 0.02834693755306
306 => 0.028105153721193
307 => 0.02768066096098
308 => 0.028386601881653
309 => 0.028593040520017
310 => 0.028385517547369
311 => 0.02833742994014
312 => 0.028246304011333
313 => 0.028356762736716
314 => 0.028591916210857
315 => 0.028481022175055
316 => 0.028554269639404
317 => 0.028275125837764
318 => 0.028868839380646
319 => 0.029811799371689
320 => 0.02981483114225
321 => 0.029703936508688
322 => 0.029658560813892
323 => 0.029772345437576
324 => 0.029834068928235
325 => 0.030202027536698
326 => 0.030596861783696
327 => 0.032439380934758
328 => 0.031922008930099
329 => 0.033556801532876
330 => 0.034849710230421
331 => 0.03523739701677
401 => 0.034880743415402
402 => 0.033660650711172
403 => 0.033600787142343
404 => 0.035424120752315
405 => 0.034908945493528
406 => 0.034847667035769
407 => 0.034195767776806
408 => 0.034581120978147
409 => 0.034496838580224
410 => 0.034363794691865
411 => 0.035099021756088
412 => 0.03647530118614
413 => 0.036260795130299
414 => 0.036100676310264
415 => 0.035399082250757
416 => 0.035821598581287
417 => 0.035671148608752
418 => 0.036317577168672
419 => 0.035934647209921
420 => 0.034905042534254
421 => 0.035069010472475
422 => 0.035044227048471
423 => 0.03555426815831
424 => 0.035401166477135
425 => 0.035014331488027
426 => 0.036470597212669
427 => 0.036376035416686
428 => 0.036510102423553
429 => 0.036569122866136
430 => 0.037455526150445
501 => 0.037818657214285
502 => 0.03790109432328
503 => 0.038246040748364
504 => 0.037892511741985
505 => 0.039306879829409
506 => 0.04024735207688
507 => 0.041339758988577
508 => 0.042936059097863
509 => 0.043536282705556
510 => 0.04342785768322
511 => 0.044638154207759
512 => 0.046813030158976
513 => 0.043867462295044
514 => 0.046969152408162
515 => 0.045987193129083
516 => 0.043658985343081
517 => 0.043509076209429
518 => 0.045085765553158
519 => 0.048582710766824
520 => 0.047706765652825
521 => 0.048584143499232
522 => 0.04756063563673
523 => 0.047509809844555
524 => 0.048534434006863
525 => 0.050928524211449
526 => 0.049791181696379
527 => 0.048160522313201
528 => 0.04936457582587
529 => 0.048321513243304
530 => 0.045971201309949
531 => 0.047706095834105
601 => 0.046546021272753
602 => 0.046884592702711
603 => 0.049322896882604
604 => 0.049029513672727
605 => 0.049409178712862
606 => 0.048739079854588
607 => 0.048113101856068
608 => 0.046944667436096
609 => 0.046598751607463
610 => 0.046694350297749
611 => 0.046598704233499
612 => 0.045944975913991
613 => 0.045803803345635
614 => 0.045568509546797
615 => 0.045641436933791
616 => 0.045199015754346
617 => 0.046033955928838
618 => 0.046188928182692
619 => 0.046796528013455
620 => 0.04685961104352
621 => 0.048551767923554
622 => 0.047619756349573
623 => 0.048245030179407
624 => 0.048189099802761
625 => 0.043709444665547
626 => 0.044326701619123
627 => 0.045286959732985
628 => 0.044854364754289
629 => 0.044242776666049
630 => 0.043748886493516
701 => 0.043000592379266
702 => 0.044053801975357
703 => 0.045438660597864
704 => 0.046894733343552
705 => 0.04864410934183
706 => 0.048253668983996
707 => 0.046862029976104
708 => 0.046924457885406
709 => 0.047310362656228
710 => 0.046810580914867
711 => 0.046663185522441
712 => 0.047290112792719
713 => 0.047294430096276
714 => 0.0467193708022
715 => 0.046080297631573
716 => 0.046077619891654
717 => 0.045963902993656
718 => 0.047580865620261
719 => 0.048470031571532
720 => 0.048571973014883
721 => 0.048463170100168
722 => 0.048505044023809
723 => 0.047987657948198
724 => 0.049170249090969
725 => 0.050255511669717
726 => 0.049964638115359
727 => 0.049528577307265
728 => 0.049181233870083
729 => 0.049882815040293
730 => 0.049851574735174
731 => 0.050246032847854
801 => 0.050228137949363
802 => 0.050095496522388
803 => 0.049964642852402
804 => 0.050483462862869
805 => 0.050334051031849
806 => 0.050184407122987
807 => 0.049884273354428
808 => 0.049925066518269
809 => 0.049489081002221
810 => 0.049287374153157
811 => 0.046254187105642
812 => 0.045443620414299
813 => 0.045698641196002
814 => 0.04578260065895
815 => 0.045429840996109
816 => 0.045935607736101
817 => 0.045856784525413
818 => 0.046163439528165
819 => 0.045971854795858
820 => 0.045979717500099
821 => 0.046543127347643
822 => 0.046706687623302
823 => 0.046623499547009
824 => 0.046681761624124
825 => 0.048024386600364
826 => 0.047833508263473
827 => 0.047732107951345
828 => 0.047760196530787
829 => 0.04810326599842
830 => 0.048199306718459
831 => 0.047792375438993
901 => 0.047984286582831
902 => 0.048801419876143
903 => 0.049087370283063
904 => 0.04999998671797
905 => 0.049612291035958
906 => 0.050323923239368
907 => 0.052511238019353
908 => 0.054258616416275
909 => 0.052651655028999
910 => 0.05586049292765
911 => 0.058359033512208
912 => 0.058263135363036
913 => 0.057827457019833
914 => 0.054982934991452
915 => 0.052365363411502
916 => 0.05455507318609
917 => 0.054560655206624
918 => 0.054372557195029
919 => 0.053204296599668
920 => 0.054331904258662
921 => 0.054421409659764
922 => 0.054371310436554
923 => 0.053475607777223
924 => 0.052108035369946
925 => 0.052375255744822
926 => 0.052812968170017
927 => 0.051984287232745
928 => 0.051719473461738
929 => 0.052211812644921
930 => 0.05379823207608
1001 => 0.053498328672122
1002 => 0.05349049698224
1003 => 0.05477361092321
1004 => 0.053855178254795
1005 => 0.052378626249507
1006 => 0.052005777394844
1007 => 0.050682415141873
1008 => 0.051596466163655
1009 => 0.051629361232675
1010 => 0.05112874482942
1011 => 0.052419248511577
1012 => 0.052407356292957
1013 => 0.053632497473041
1014 => 0.055974507267346
1015 => 0.055281859727867
1016 => 0.054476385999291
1017 => 0.054563963326952
1018 => 0.05552447045212
1019 => 0.054943725917998
1020 => 0.055152565701563
1021 => 0.055524154348095
1022 => 0.055748343004575
1023 => 0.054531706029352
1024 => 0.054248049751953
1025 => 0.053667788558221
1026 => 0.053516409243865
1027 => 0.053989019878612
1028 => 0.053864503673937
1029 => 0.0516265965295
1030 => 0.051392722781308
1031 => 0.05139989535527
1101 => 0.050811808695352
1102 => 0.049914835382007
1103 => 0.052272027693985
1104 => 0.052082712162448
1105 => 0.05187372246749
1106 => 0.051899322512643
1107 => 0.052922499802613
1108 => 0.052329005302739
1109 => 0.05390690770249
1110 => 0.053582538405189
1111 => 0.05324985025937
1112 => 0.053203862623689
1113 => 0.053075806071167
1114 => 0.052636652504826
1115 => 0.052106348184431
1116 => 0.051756195337932
1117 => 0.047742354377108
1118 => 0.048487299911998
1119 => 0.049344291845967
1120 => 0.049640122027394
1121 => 0.049134084031238
1122 => 0.052656633969252
1123 => 0.053300237787063
1124 => 0.051350719841675
1125 => 0.050986044632387
1126 => 0.052680542015261
1127 => 0.051658552949507
1128 => 0.052118754563239
1129 => 0.051124050391176
1130 => 0.053145212474272
1201 => 0.053129814605571
1202 => 0.052343536905231
1203 => 0.053008093433361
1204 => 0.052892610382666
1205 => 0.052004904795498
1206 => 0.053173354324757
1207 => 0.053173933861146
1208 => 0.052417158669719
1209 => 0.051533410925525
1210 => 0.051375417702053
1211 => 0.05125639103157
1212 => 0.052089481298768
1213 => 0.052836427427332
1214 => 0.05422630898894
1215 => 0.0545757582363
1216 => 0.055939681912899
1217 => 0.055127531771723
1218 => 0.055487547410201
1219 => 0.05587839531309
1220 => 0.056065782170691
1221 => 0.055760445341964
1222 => 0.057879180225104
1223 => 0.058058066365601
1224 => 0.05811804534115
1225 => 0.057403619859482
1226 => 0.058038196900569
1227 => 0.057741299318027
1228 => 0.058513744347277
1229 => 0.058634873590937
1230 => 0.058532281430855
1231 => 0.058570729764688
]
'min_raw' => 0.026265049870535
'max_raw' => 0.058634873590937
'avg_raw' => 0.042449961730736
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.026265'
'max' => '$0.058634'
'avg' => '$0.042449'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0040500173986348
'max_diff' => -0.0055953184002423
'year' => 2031
]
6 => [
'items' => [
101 => 0.056762763312373
102 => 0.056669010714038
103 => 0.055390687383354
104 => 0.055911613589497
105 => 0.054937767015756
106 => 0.055246583796021
107 => 0.055382707290247
108 => 0.055311604101803
109 => 0.055941065975601
110 => 0.055405894792308
111 => 0.05399349004931
112 => 0.052580700497584
113 => 0.052562964075596
114 => 0.052191001524433
115 => 0.051922140728282
116 => 0.05197393285597
117 => 0.052156455069296
118 => 0.051911532205437
119 => 0.051963798916345
120 => 0.052831774568703
121 => 0.053005840895664
122 => 0.052414295504546
123 => 0.050039155399613
124 => 0.049456290060274
125 => 0.049875242107469
126 => 0.049675010012877
127 => 0.040091610055963
128 => 0.042343087723259
129 => 0.041005336146309
130 => 0.041621833619958
131 => 0.040256335668984
201 => 0.040908022863068
202 => 0.040787680034127
203 => 0.044407989497071
204 => 0.04435146334438
205 => 0.044378519422376
206 => 0.043087062325402
207 => 0.045144388547763
208 => 0.046157901423956
209 => 0.045970327164344
210 => 0.04601753556436
211 => 0.045206338843182
212 => 0.044386373579825
213 => 0.043476905911013
214 => 0.045166584426065
215 => 0.044978721018965
216 => 0.045409612083731
217 => 0.046505489381457
218 => 0.04666686147638
219 => 0.046883747208431
220 => 0.046806009112469
221 => 0.04865804594397
222 => 0.048433752063543
223 => 0.048974235781619
224 => 0.047862419766938
225 => 0.046604294411781
226 => 0.04684342291058
227 => 0.046820392913195
228 => 0.046527194613893
229 => 0.046262508299065
301 => 0.045821880159783
302 => 0.047216092793166
303 => 0.047159490306382
304 => 0.048075818774224
305 => 0.047913848816793
306 => 0.046832173800298
307 => 0.046870806035123
308 => 0.047130626380342
309 => 0.04802986756172
310 => 0.048296823569362
311 => 0.048173158910265
312 => 0.048465863985639
313 => 0.048697206142667
314 => 0.048494916998755
315 => 0.0513589046865
316 => 0.050169577322024
317 => 0.050749247204183
318 => 0.050887495055465
319 => 0.050533376091446
320 => 0.050610171814692
321 => 0.050726496409828
322 => 0.051432796572804
323 => 0.053286332570053
324 => 0.054107251045788
325 => 0.056577024783441
326 => 0.054039085194115
327 => 0.053888494361922
328 => 0.054333375192095
329 => 0.055783393828198
330 => 0.056958497739435
331 => 0.057348347500163
401 => 0.057399872581761
402 => 0.05813125664961
403 => 0.058550472357795
404 => 0.058042447386462
405 => 0.057611949415689
406 => 0.056069959119757
407 => 0.056248448695211
408 => 0.057478064870496
409 => 0.059214970142118
410 => 0.060705415559363
411 => 0.060183513521511
412 => 0.064165257664903
413 => 0.064560031332754
414 => 0.064505486376418
415 => 0.065404839541981
416 => 0.063619806658425
417 => 0.062856670517321
418 => 0.05770502796333
419 => 0.059152429388232
420 => 0.061256312362234
421 => 0.060977855561468
422 => 0.059449959508796
423 => 0.060704256513197
424 => 0.060289546698048
425 => 0.059962447860514
426 => 0.061460951046487
427 => 0.059813285238392
428 => 0.061239875635399
429 => 0.059410258695049
430 => 0.060185897526058
501 => 0.059745607412149
502 => 0.060030529075775
503 => 0.058364882852121
504 => 0.059263625123128
505 => 0.058327492218857
506 => 0.058327048369972
507 => 0.058306383184225
508 => 0.059407739394652
509 => 0.059443654581134
510 => 0.058629750677572
511 => 0.0585124544095
512 => 0.058946160190024
513 => 0.058438404308754
514 => 0.058675980089823
515 => 0.05844560023714
516 => 0.05839373687976
517 => 0.057980480824325
518 => 0.057802438752932
519 => 0.057872253636705
520 => 0.057633939446351
521 => 0.057490346526462
522 => 0.058277818938278
523 => 0.057857104195191
524 => 0.058213338370001
525 => 0.057807364567468
526 => 0.056400082493522
527 => 0.055590739691057
528 => 0.05293251430849
529 => 0.053686383729468
530 => 0.05418619993551
531 => 0.054021010682395
601 => 0.054375901117842
602 => 0.054397688508277
603 => 0.054282310010034
604 => 0.054148716489969
605 => 0.054083690552586
606 => 0.054568340615085
607 => 0.054849696288937
608 => 0.054236363178465
609 => 0.054092667812123
610 => 0.054712781449859
611 => 0.055091050410651
612 => 0.057883975886163
613 => 0.057677066945907
614 => 0.058196367782121
615 => 0.058137902477284
616 => 0.058682212484748
617 => 0.059571929304379
618 => 0.057762886241334
619 => 0.058076873565076
620 => 0.057999891124321
621 => 0.058840365226608
622 => 0.058842989095014
623 => 0.058339082885898
624 => 0.058612258616805
625 => 0.058459779417997
626 => 0.058735329939042
627 => 0.057674303550863
628 => 0.058966519160944
629 => 0.059699122143326
630 => 0.059709294336447
701 => 0.060056542335799
702 => 0.060409366414389
703 => 0.06108658150874
704 => 0.060390479252966
705 => 0.059138259059018
706 => 0.059228665312374
707 => 0.058494489070832
708 => 0.058506830706092
709 => 0.058440950089842
710 => 0.058638662778469
711 => 0.057717690367668
712 => 0.057933840751669
713 => 0.057631228948292
714 => 0.058076215746115
715 => 0.05759748351061
716 => 0.057999854001057
717 => 0.058173503765941
718 => 0.058814275136774
719 => 0.057502841058143
720 => 0.054828738195533
721 => 0.055390867037617
722 => 0.054559434325907
723 => 0.054636386588863
724 => 0.054791842406897
725 => 0.054287959238671
726 => 0.054384084267985
727 => 0.054380650005516
728 => 0.054351055386901
729 => 0.054219975913955
730 => 0.054029884744899
731 => 0.054787149455442
801 => 0.054915823486034
802 => 0.055201849916702
803 => 0.056052870560787
804 => 0.055967833529994
805 => 0.05610653245537
806 => 0.055803753480036
807 => 0.054650431637138
808 => 0.054713062562006
809 => 0.053932053925307
810 => 0.055181877769915
811 => 0.054885902986643
812 => 0.054695086118438
813 => 0.054643019968042
814 => 0.055496150127698
815 => 0.055751420042644
816 => 0.055592352962177
817 => 0.05526610173941
818 => 0.055892600534638
819 => 0.056060225182378
820 => 0.056097750159249
821 => 0.057207785905164
822 => 0.056159788826486
823 => 0.056412052139519
824 => 0.058380138496063
825 => 0.05659535574803
826 => 0.057540794975068
827 => 0.057494520644733
828 => 0.057978175361366
829 => 0.057454846841145
830 => 0.057461334125357
831 => 0.057890786748119
901 => 0.057287697991639
902 => 0.057138364734278
903 => 0.056932061908779
904 => 0.057382516580818
905 => 0.057652543784393
906 => 0.05982876473208
907 => 0.061234702712019
908 => 0.061173667236412
909 => 0.061731417229835
910 => 0.061480145749393
911 => 0.06066872385698
912 => 0.062053722084971
913 => 0.061615450694848
914 => 0.06165158125575
915 => 0.061650236474468
916 => 0.061941648634551
917 => 0.0617351564116
918 => 0.061328139044173
919 => 0.061598336167376
920 => 0.062400725026051
921 => 0.064891364663675
922 => 0.066285159601475
923 => 0.064807456458319
924 => 0.065826756299235
925 => 0.065215539608354
926 => 0.0651044633535
927 => 0.065744658979262
928 => 0.066385975182718
929 => 0.066345126113044
930 => 0.065879563481286
1001 => 0.06561657896382
1002 => 0.067607985836348
1003 => 0.069075220497295
1004 => 0.068975164929884
1005 => 0.069416777664621
1006 => 0.070713366312376
1007 => 0.070831910128949
1008 => 0.070816976332759
1009 => 0.070523153114615
1010 => 0.071799813021642
1011 => 0.072864825176778
1012 => 0.070455141528984
1013 => 0.071372717516989
1014 => 0.071784646940456
1015 => 0.072389481548058
1016 => 0.073409938913134
1017 => 0.074518426274555
1018 => 0.074675178541405
1019 => 0.074563955306788
1020 => 0.073832878094192
1021 => 0.075045798192063
1022 => 0.075756298338919
1023 => 0.076179384916865
1024 => 0.077252262083643
1025 => 0.071787190876338
1026 => 0.067918741844144
1027 => 0.067314627666685
1028 => 0.068543117602164
1029 => 0.068867060601126
1030 => 0.068736479584434
1031 => 0.064382188494701
1101 => 0.067291703225239
1102 => 0.070422096436352
1103 => 0.070542347588518
1104 => 0.072109487883436
1105 => 0.072619813002713
1106 => 0.073881566349896
1107 => 0.073802643334491
1108 => 0.074109860195649
1109 => 0.074039236359524
1110 => 0.076376368741667
1111 => 0.078954572826688
1112 => 0.078865297817411
1113 => 0.078494650476263
1114 => 0.07904512498263
1115 => 0.081706107895513
1116 => 0.081461127230277
1117 => 0.08169910507915
1118 => 0.084836553899864
1119 => 0.088915683663683
1120 => 0.087020518350457
1121 => 0.091132481761029
1122 => 0.093720744762169
1123 => 0.098196877991252
1124 => 0.09763644406555
1125 => 0.099378969884249
1126 => 0.096633150372453
1127 => 0.090328193751689
1128 => 0.089330410232049
1129 => 0.091327998106272
1130 => 0.096238872973275
1201 => 0.09117333718039
1202 => 0.092198088473923
1203 => 0.091902960032447
1204 => 0.091887233892015
1205 => 0.092487436709436
1206 => 0.091616811218294
1207 => 0.088069726344843
1208 => 0.089695334439243
1209 => 0.089067609085883
1210 => 0.089764117165461
1211 => 0.093522884009163
1212 => 0.091861043589753
1213 => 0.090110429704856
1214 => 0.092306088008836
1215 => 0.095101915539854
1216 => 0.094926957677548
1217 => 0.094587466297961
1218 => 0.096501161429501
1219 => 0.099662025126741
1220 => 0.10051639388273
1221 => 0.10114707143159
1222 => 0.1012340312102
1223 => 0.10212977097502
1224 => 0.097313152504068
1225 => 0.10495724971701
1226 => 0.10627717414176
1227 => 0.10602908305517
1228 => 0.10749612350237
1229 => 0.10706448298758
1230 => 0.10643910360397
1231 => 0.10876467476124
]
'min_raw' => 0.040091610055963
'max_raw' => 0.10876467476124
'avg_raw' => 0.074428142408601
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.040091'
'max' => '$0.108764'
'avg' => '$0.074428'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013826560185429
'max_diff' => 0.050129801170301
'year' => 2032
]
7 => [
'items' => [
101 => 0.10609859509335
102 => 0.10231443065488
103 => 0.10023836320165
104 => 0.10297229629565
105 => 0.10464181383503
106 => 0.10574525872731
107 => 0.106079160485
108 => 0.097687052884814
109 => 0.093164172335941
110 => 0.096063286912838
111 => 0.099600406782851
112 => 0.097293503624596
113 => 0.097383929860855
114 => 0.094094892200668
115 => 0.099891413634643
116 => 0.099046909218132
117 => 0.10342819962489
118 => 0.10238256950727
119 => 0.10595534175327
120 => 0.10501451108426
121 => 0.10891984659018
122 => 0.11047779065623
123 => 0.11309382121776
124 => 0.11501818394798
125 => 0.11614820655036
126 => 0.11608036423192
127 => 0.12055807675758
128 => 0.11791772612056
129 => 0.1146008234376
130 => 0.11454083113276
131 => 0.11625870203314
201 => 0.11985888816547
202 => 0.120792364049
203 => 0.12131404972077
204 => 0.12051506995444
205 => 0.1176491585736
206 => 0.11641167256985
207 => 0.11746604649846
208 => 0.11617663778715
209 => 0.11840251896706
210 => 0.12145912924964
211 => 0.12082795131344
212 => 0.12293788452269
213 => 0.12512144342282
214 => 0.12824403071977
215 => 0.12906039066827
216 => 0.13040980261975
217 => 0.13179879077655
218 => 0.13224489633823
219 => 0.13309665027392
220 => 0.13309216111024
221 => 0.13565897892507
222 => 0.13849025846256
223 => 0.13955900094369
224 => 0.14201651534824
225 => 0.13780810805202
226 => 0.1410002333289
227 => 0.14387961023273
228 => 0.14044669838521
301 => 0.14517816760114
302 => 0.14536187982906
303 => 0.14813571635737
304 => 0.14532390163314
305 => 0.14365425502553
306 => 0.14847446222087
307 => 0.15080680864758
308 => 0.15010428692259
309 => 0.14475806190763
310 => 0.14164632963854
311 => 0.133502326082
312 => 0.14314925008949
313 => 0.1478479853689
314 => 0.14474589331838
315 => 0.14631040811075
316 => 0.15484589352226
317 => 0.15809565373521
318 => 0.15741972632846
319 => 0.15753394693349
320 => 0.15928745855708
321 => 0.16706349477256
322 => 0.16240391362513
323 => 0.16596598882116
324 => 0.16785530066112
325 => 0.16961019879056
326 => 0.1653007236259
327 => 0.15969415975543
328 => 0.15791832563011
329 => 0.14443745139951
330 => 0.14373571335134
331 => 0.14334180652006
401 => 0.14085827966808
402 => 0.13890690785768
403 => 0.13735510454426
404 => 0.13328270924215
405 => 0.13465702311019
406 => 0.12816647497358
407 => 0.13231889766048
408 => 0.12195982611469
409 => 0.1305871687195
410 => 0.12589169837684
411 => 0.12904458042766
412 => 0.12903358031921
413 => 0.12322812484147
414 => 0.11987965927867
415 => 0.12201343185952
416 => 0.12430100544526
417 => 0.12467215656322
418 => 0.12763805542892
419 => 0.12846577405055
420 => 0.12595774798452
421 => 0.12174515738214
422 => 0.12272364610011
423 => 0.11985983023603
424 => 0.11484110308933
425 => 0.11844564054466
426 => 0.11967638811224
427 => 0.12021995635222
428 => 0.11528461460814
429 => 0.11373382308067
430 => 0.11290819468384
501 => 0.12110806673835
502 => 0.12155727423966
503 => 0.11925906515141
504 => 0.1296471881554
505 => 0.12729603598333
506 => 0.1299228490058
507 => 0.12263485850499
508 => 0.1229132695567
509 => 0.11946301805839
510 => 0.12139492835155
511 => 0.12002951642472
512 => 0.12123884909137
513 => 0.1219637181055
514 => 0.1254134034515
515 => 0.13062655858485
516 => 0.12489813549767
517 => 0.12240217952606
518 => 0.12395065657306
519 => 0.12807445500514
520 => 0.13432222072309
521 => 0.13062341767006
522 => 0.13226488365524
523 => 0.13262347094927
524 => 0.12989611051509
525 => 0.13442278239256
526 => 0.13684866262631
527 => 0.13933711378096
528 => 0.14149776619372
529 => 0.13834317166758
530 => 0.14171904000391
531 => 0.13899868604581
601 => 0.13655824732037
602 => 0.13656194845854
603 => 0.13503102559696
604 => 0.13206466964393
605 => 0.13151762809413
606 => 0.13436340731994
607 => 0.13664545276274
608 => 0.13683341295567
609 => 0.13809687056853
610 => 0.13884457176917
611 => 0.14617305998598
612 => 0.14912063857121
613 => 0.15272488187043
614 => 0.15412893775949
615 => 0.15835464260369
616 => 0.15494204274703
617 => 0.15420370530179
618 => 0.14395352756729
619 => 0.14563199359709
620 => 0.14831937965868
621 => 0.14399784157362
622 => 0.14673886280764
623 => 0.147279998462
624 => 0.14385099736315
625 => 0.14568257500844
626 => 0.14081844780747
627 => 0.1307325832657
628 => 0.13443401084299
629 => 0.13715950742693
630 => 0.13326988775035
701 => 0.14024188047155
702 => 0.13616898625497
703 => 0.13487807432171
704 => 0.12984176662674
705 => 0.1322187099935
706 => 0.13543355993161
707 => 0.13344715643628
708 => 0.13756924194907
709 => 0.14340721435522
710 => 0.14756770114912
711 => 0.14788709166418
712 => 0.14521217738668
713 => 0.14949874458746
714 => 0.14952996754976
715 => 0.14469470223614
716 => 0.14173312915442
717 => 0.14106025351905
718 => 0.14274122878124
719 => 0.1447822430747
720 => 0.14800035375273
721 => 0.14994499063683
722 => 0.15501557227486
723 => 0.15638752628114
724 => 0.15789488778358
725 => 0.15990918760391
726 => 0.16232787099409
727 => 0.1570359294321
728 => 0.15724618813577
729 => 0.15231840542516
730 => 0.14705236288335
731 => 0.15104863275112
801 => 0.15627322400172
802 => 0.15507469699617
803 => 0.15493983822436
804 => 0.15516663327184
805 => 0.15426298304989
806 => 0.15017580658685
807 => 0.14812325215419
808 => 0.1507715710348
809 => 0.15217903465674
810 => 0.15436188799063
811 => 0.15409280524278
812 => 0.15971560100956
813 => 0.16190044942001
814 => 0.16134147170168
815 => 0.16144433705441
816 => 0.16539990073956
817 => 0.16979930108118
818 => 0.17391992005311
819 => 0.17811159065606
820 => 0.17305836814051
821 => 0.17049265338656
822 => 0.173139816094
823 => 0.17173519429992
824 => 0.17980656776659
825 => 0.18036541215321
826 => 0.18843620196771
827 => 0.19609634255345
828 => 0.19128514549722
829 => 0.19582188762017
830 => 0.20072874411215
831 => 0.21019486639395
901 => 0.20700700943164
902 => 0.20456516095859
903 => 0.20225762595049
904 => 0.20705923999148
905 => 0.21323643974756
906 => 0.21456694941054
907 => 0.21672288335837
908 => 0.21445618242729
909 => 0.21718617402986
910 => 0.22682424400604
911 => 0.22421995242088
912 => 0.22052143970919
913 => 0.2281297703053
914 => 0.2308831955714
915 => 0.25020817606887
916 => 0.27460676222206
917 => 0.26450558734489
918 => 0.25823546213575
919 => 0.25970909028925
920 => 0.26861862800813
921 => 0.27148008874885
922 => 0.26370165205092
923 => 0.26644912739204
924 => 0.28158798664741
925 => 0.28970949892516
926 => 0.27867939438735
927 => 0.24824777342784
928 => 0.2201884291058
929 => 0.22763103074875
930 => 0.22678727069326
1001 => 0.243052086352
1002 => 0.22415784092787
1003 => 0.22447597156382
1004 => 0.24107712638564
1005 => 0.23664822289503
1006 => 0.22947396645133
1007 => 0.22024080911735
1008 => 0.20317246382181
1009 => 0.18805455440753
1010 => 0.21770425621554
1011 => 0.21642570715909
1012 => 0.21457417865501
1013 => 0.21869455498454
1014 => 0.23870193285155
1015 => 0.23824069803416
1016 => 0.23530655744995
1017 => 0.23753207722274
1018 => 0.22908382207493
1019 => 0.23126112978971
1020 => 0.2201839843623
1021 => 0.22519131671795
1022 => 0.22945857371912
1023 => 0.23031528873993
1024 => 0.23224551142675
1025 => 0.21575196990407
1026 => 0.22315708582281
1027 => 0.22750689765955
1028 => 0.20785428953367
1029 => 0.22711842878485
1030 => 0.21546485404097
1031 => 0.21150945574208
1101 => 0.21683487846744
1102 => 0.21475955605222
1103 => 0.21297531570664
1104 => 0.21197967893667
1105 => 0.21589008164071
1106 => 0.21570765668063
1107 => 0.20930947888035
1108 => 0.20096331676298
1109 => 0.20376456272301
1110 => 0.20274684380391
1111 => 0.19905849915275
1112 => 0.2015439981152
1113 => 0.19059911856681
1114 => 0.17176902216914
1115 => 0.18420876063089
1116 => 0.18372984423194
1117 => 0.18348835286647
1118 => 0.19283647251136
1119 => 0.19193786650531
1120 => 0.19030688780517
1121 => 0.19902854494989
1122 => 0.19584502276923
1123 => 0.20565588799788
1124 => 0.21211795836445
1125 => 0.21047896829341
1126 => 0.21655657670706
1127 => 0.2038290977722
1128 => 0.20805665573654
1129 => 0.20892794957384
1130 => 0.19892092105455
1201 => 0.19208488956115
1202 => 0.191629004197
1203 => 0.17977626765061
1204 => 0.18610790384175
1205 => 0.19167948166904
1206 => 0.18901112826167
1207 => 0.18816640728769
1208 => 0.19248190354614
1209 => 0.19281725456515
1210 => 0.18517121579287
1211 => 0.18676106937218
1212 => 0.19339102308909
1213 => 0.18659401154923
1214 => 0.17338852841281
1215 => 0.17011338601489
1216 => 0.16967642164615
1217 => 0.16079397570817
1218 => 0.17033224669062
1219 => 0.16616853579701
1220 => 0.179321648621
1221 => 0.1718086611175
1222 => 0.17148479124224
1223 => 0.1709952144244
1224 => 0.16334972627636
1225 => 0.16502360228467
1226 => 0.17058782107477
1227 => 0.1725731970245
1228 => 0.17236610604723
1229 => 0.17056055336715
1230 => 0.17138712613817
1231 => 0.16872444724568
]
'min_raw' => 0.093164172335941
'max_raw' => 0.28970949892516
'avg_raw' => 0.19143683563055
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.093164'
'max' => '$0.2897094'
'avg' => '$0.191436'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.053072562279978
'max_diff' => 0.18094482416392
'year' => 2033
]
8 => [
'items' => [
101 => 0.16778419990988
102 => 0.16481652068267
103 => 0.160454852061
104 => 0.16106136883451
105 => 0.15241976200228
106 => 0.1477113559553
107 => 0.14640813121729
108 => 0.14466540463211
109 => 0.1466049768223
110 => 0.15239528141589
111 => 0.14541094559438
112 => 0.13343679172259
113 => 0.13415645877325
114 => 0.13577333696502
115 => 0.13276029515138
116 => 0.1299087039402
117 => 0.13238793114142
118 => 0.12731432429346
119 => 0.13638645811315
120 => 0.13614108231769
121 => 0.13952261278868
122 => 0.14163715318818
123 => 0.13676382215792
124 => 0.13553819258269
125 => 0.1362363668905
126 => 0.12469710078496
127 => 0.13857960856503
128 => 0.13869966506879
129 => 0.13767166839513
130 => 0.14506367521367
131 => 0.16066311522555
201 => 0.15479397840706
202 => 0.15252127123534
203 => 0.14820085324057
204 => 0.15395755369757
205 => 0.15351552892099
206 => 0.15151652524837
207 => 0.1503075215899
208 => 0.15253514790071
209 => 0.15003149403794
210 => 0.14958176900838
211 => 0.14685692463491
212 => 0.1458842791661
213 => 0.14516417118312
214 => 0.14437140305021
215 => 0.1461200520059
216 => 0.14215738341839
217 => 0.13737879356705
218 => 0.13698150552597
219 => 0.13807845273731
220 => 0.13759313525441
221 => 0.13697918201258
222 => 0.1358069780737
223 => 0.13545921020521
224 => 0.13658928706482
225 => 0.1353134961779
226 => 0.13719599512748
227 => 0.13668405957661
228 => 0.1338244292045
301 => 0.13026027099009
302 => 0.13022854250591
303 => 0.12946065046501
304 => 0.12848262449758
305 => 0.12821056004764
306 => 0.13217913754166
307 => 0.14039397418474
308 => 0.13878120518732
309 => 0.13994659607117
310 => 0.14567916578996
311 => 0.14750137731918
312 => 0.14620801473719
313 => 0.14443758026382
314 => 0.14451547039555
315 => 0.15056558093798
316 => 0.1509429189113
317 => 0.15189633023602
318 => 0.1531217332223
319 => 0.14641670616454
320 => 0.1441996642241
321 => 0.14314910675591
322 => 0.13991379637081
323 => 0.14340280124659
324 => 0.14136990751956
325 => 0.14164421433687
326 => 0.14146557166224
327 => 0.14156312264235
328 => 0.13638392226686
329 => 0.13827095067293
330 => 0.13513339995266
331 => 0.13093257174481
401 => 0.13091848909566
402 => 0.13194663584822
403 => 0.13133505392841
404 => 0.12968930270741
405 => 0.12992307390062
406 => 0.12787499226244
407 => 0.13017174809321
408 => 0.13023761083225
409 => 0.12935323473227
410 => 0.13289170398081
411 => 0.13434141771905
412 => 0.13375930242487
413 => 0.13430057495821
414 => 0.13884822302038
415 => 0.13958968808231
416 => 0.13991899788439
417 => 0.13947776637479
418 => 0.13438369761655
419 => 0.13460964122763
420 => 0.13295181692546
421 => 0.13155113008735
422 => 0.13160715021524
423 => 0.13232728532657
424 => 0.13547215759313
425 => 0.14209035587776
426 => 0.14234151166482
427 => 0.14264591980547
428 => 0.14140773891418
429 => 0.14103429170957
430 => 0.14152696496735
501 => 0.14401241227472
502 => 0.15040565754165
503 => 0.14814585767382
504 => 0.1463086052054
505 => 0.14792037093991
506 => 0.14767225223852
507 => 0.14557788070094
508 => 0.14551909866741
509 => 0.14149933007571
510 => 0.14001331315306
511 => 0.13877148618606
512 => 0.1374154435568
513 => 0.13661153603122
514 => 0.13784670335995
515 => 0.1381292007421
516 => 0.1354284857908
517 => 0.13506038832243
518 => 0.13726585045064
519 => 0.13629530879593
520 => 0.13729353495607
521 => 0.13752513198785
522 => 0.1374878395316
523 => 0.13647448257809
524 => 0.13712036608152
525 => 0.13559265904876
526 => 0.13393150710482
527 => 0.132871795658
528 => 0.13194705687033
529 => 0.13246015569586
530 => 0.13063105207098
531 => 0.1300458850088
601 => 0.1369015552834
602 => 0.14196591262612
603 => 0.14189227486465
604 => 0.1414440239298
605 => 0.140778013965
606 => 0.14396368949748
607 => 0.14285386384156
608 => 0.14366135473527
609 => 0.14386689505801
610 => 0.14448900371015
611 => 0.14471135408125
612 => 0.14403925682754
613 => 0.14178361635431
614 => 0.1361627747549
615 => 0.1335462578172
616 => 0.13268276364622
617 => 0.13271415001933
618 => 0.13184837373412
619 => 0.13210338365148
620 => 0.13175969169174
621 => 0.13110882226801
622 => 0.13241996634305
623 => 0.13257106348355
624 => 0.13226502678943
625 => 0.13233710950958
626 => 0.12980325639226
627 => 0.12999589974153
628 => 0.12892323709286
629 => 0.12872212577737
630 => 0.12601052800896
701 => 0.12120653950982
702 => 0.12386841547279
703 => 0.12065324362593
704 => 0.11943560932972
705 => 0.12519970070699
706 => 0.12462114580372
707 => 0.1236309113011
708 => 0.12216614808876
709 => 0.121622853165
710 => 0.11832196519452
711 => 0.11812693112368
712 => 0.11976294033332
713 => 0.11900797837471
714 => 0.11794772585837
715 => 0.11410759872026
716 => 0.10979002439462
717 => 0.10992034482421
718 => 0.11129368488587
719 => 0.11528685633528
720 => 0.11372665516743
721 => 0.1125947113189
722 => 0.11238273226218
723 => 0.11503609396526
724 => 0.11879115667159
725 => 0.1205529480786
726 => 0.11880706630065
727 => 0.11680149131909
728 => 0.11692356137528
729 => 0.11773563877075
730 => 0.11782097662285
731 => 0.1165155534863
801 => 0.11688302245268
802 => 0.11632480349068
803 => 0.11289901475129
804 => 0.11283705309629
805 => 0.11199630929133
806 => 0.11197085190305
807 => 0.11054053695746
808 => 0.11034042600927
809 => 0.10750044887087
810 => 0.10936973042361
811 => 0.10811591449972
812 => 0.10622611815714
813 => 0.10590031655538
814 => 0.10589052256581
815 => 0.10783092085891
816 => 0.1093470557398
817 => 0.10813772516452
818 => 0.10786238403442
819 => 0.11080230695277
820 => 0.11042817496342
821 => 0.11010417907353
822 => 0.11845493199212
823 => 0.11184465943968
824 => 0.10896220330565
825 => 0.10539461647621
826 => 0.10655624073721
827 => 0.10680101203682
828 => 0.09822160881788
829 => 0.094740946000454
830 => 0.093546513687525
831 => 0.09285910100464
901 => 0.093172363596216
902 => 0.090039358819504
903 => 0.09214478984457
904 => 0.089431872534239
905 => 0.088977043118565
906 => 0.093828075335403
907 => 0.094503068129056
908 => 0.091623339167506
909 => 0.093472591346592
910 => 0.092802026799927
911 => 0.08947837771498
912 => 0.089351438767043
913 => 0.087683748488131
914 => 0.085074136130104
915 => 0.083881473257238
916 => 0.083260324077875
917 => 0.083516622335236
918 => 0.083387030093458
919 => 0.082541353056288
920 => 0.083435503311315
921 => 0.081151318898115
922 => 0.080241738259854
923 => 0.079830901787662
924 => 0.077803556648197
925 => 0.081029964329561
926 => 0.081665607288003
927 => 0.082302502659433
928 => 0.087846242040792
929 => 0.087569292487744
930 => 0.090072781567394
1001 => 0.08997550058538
1002 => 0.089261464946029
1003 => 0.086249066036772
1004 => 0.087449754551154
1005 => 0.083754221932309
1006 => 0.08652316624214
1007 => 0.085259535693012
1008 => 0.086095931482382
1009 => 0.084592016438327
1010 => 0.085424345118837
1011 => 0.081816341814249
1012 => 0.0784472390944
1013 => 0.079803064379107
1014 => 0.081277001521011
1015 => 0.08447287279686
1016 => 0.08256943823033
1017 => 0.083253985277284
1018 => 0.080960867261781
1019 => 0.076229509799019
1020 => 0.076256288768435
1021 => 0.075528472501014
1022 => 0.074899532983048
1023 => 0.082788070587482
1024 => 0.081807006237045
1025 => 0.080243808593153
1026 => 0.082336210758508
1027 => 0.082889475101916
1028 => 0.082905225759974
1029 => 0.084431788367101
1030 => 0.085246515104176
1031 => 0.085390114222813
1101 => 0.087792193468695
1102 => 0.088597338747723
1103 => 0.091913618203615
1104 => 0.085177391232714
1105 => 0.085038663071146
1106 => 0.082365655147956
1107 => 0.080670391264485
1108 => 0.082481731316418
1109 => 0.084086331329857
1110 => 0.082415514543178
1111 => 0.082633687942651
1112 => 0.080390752917283
1113 => 0.08119249664895
1114 => 0.081883066357206
1115 => 0.081501774354118
1116 => 0.080930961770754
1117 => 0.083954772427372
1118 => 0.083784157179716
1119 => 0.086599999180265
1120 => 0.088795149382486
1121 => 0.092729250974902
1122 => 0.088623810873862
1123 => 0.088474192318934
1124 => 0.089936737692929
1125 => 0.088597114839646
1126 => 0.089443710240712
1127 => 0.092592851367476
1128 => 0.092659387757133
1129 => 0.091544817503084
1130 => 0.091476995801833
1201 => 0.091691061211185
1202 => 0.092944848999976
1203 => 0.092506737021565
1204 => 0.09301373129462
1205 => 0.093647735396448
1206 => 0.096270245173774
1207 => 0.096902523402622
1208 => 0.095366415105196
1209 => 0.095505108485379
1210 => 0.094930561815026
1211 => 0.094375556930513
1212 => 0.095623126858943
1213 => 0.097903085424195
1214 => 0.097888901920291
1215 => 0.098417807991368
1216 => 0.098747312091954
1217 => 0.097332839280493
1218 => 0.096412069491839
1219 => 0.096765151218913
1220 => 0.097329736589624
1221 => 0.096582063792483
1222 => 0.091967080932798
1223 => 0.09336697192618
1224 => 0.093133961613709
1225 => 0.092802126593728
1226 => 0.09420972781261
1227 => 0.094073961241183
1228 => 0.090007225327147
1229 => 0.090267564565872
1230 => 0.090023057418525
1231 => 0.090813110033058
]
'min_raw' => 0.074899532983048
'max_raw' => 0.16778419990988
'avg_raw' => 0.12134186644646
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.074899'
'max' => '$0.167784'
'avg' => '$0.121341'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018264639352893
'max_diff' => -0.12192529901528
'year' => 2034
]
9 => [
'items' => [
101 => 0.08855444940573
102 => 0.089249198202385
103 => 0.089684938134781
104 => 0.089941592302474
105 => 0.090868803145593
106 => 0.090760005654981
107 => 0.090862040140818
108 => 0.092236849046576
109 => 0.099190160714455
110 => 0.09956861412692
111 => 0.097704971111109
112 => 0.098449459737192
113 => 0.097020204376877
114 => 0.097979673075435
115 => 0.098636117191126
116 => 0.095669772459262
117 => 0.095494124775659
118 => 0.094058970370057
119 => 0.094830141056327
120 => 0.093603153045337
121 => 0.093904212985015
122 => 0.093062423147741
123 => 0.09457747725615
124 => 0.096271543164959
125 => 0.096699531114214
126 => 0.095573679080121
127 => 0.094758488010173
128 => 0.093327281031977
129 => 0.095707410133245
130 => 0.096403432415576
131 => 0.095703754224502
201 => 0.09554162349936
202 => 0.095234386068179
203 => 0.09560680537279
204 => 0.096399641728748
205 => 0.096025754744667
206 => 0.096272713684693
207 => 0.095331560868265
208 => 0.09733330752985
209 => 0.10051256297502
210 => 0.10052278480113
211 => 0.10014889580166
212 => 0.099995908478628
213 => 0.10037954128157
214 => 0.10058764633972
215 => 0.1018282444782
216 => 0.1031594557084
217 => 0.10937163766679
218 => 0.10762728183132
219 => 0.11313909922916
220 => 0.11749823117093
221 => 0.11880534423853
222 => 0.11760286172076
223 => 0.1134892339843
224 => 0.11328739978245
225 => 0.11943489634956
226 => 0.11769794699617
227 => 0.11749134239751
228 => 0.11529341853177
301 => 0.11659266375459
302 => 0.11630849976558
303 => 0.11585993300715
304 => 0.11833880238609
305 => 0.12297902457328
306 => 0.12225580242967
307 => 0.12171595064879
308 => 0.11935047729343
309 => 0.12077502060095
310 => 0.12026776801447
311 => 0.12244724703644
312 => 0.1211561719452
313 => 0.11768478789648
314 => 0.11823761724807
315 => 0.11815405820372
316 => 0.11987369741548
317 => 0.11935750440818
318 => 0.11805326323444
319 => 0.1229631647983
320 => 0.12264434310105
321 => 0.12309635937496
322 => 0.1232953509178
323 => 0.12628392147755
324 => 0.12750824321229
325 => 0.12778618568084
326 => 0.1289491966364
327 => 0.12775724890879
328 => 0.13252588966357
329 => 0.13569675750759
330 => 0.13937988367979
331 => 0.14476192094836
401 => 0.14678561674798
402 => 0.14642005421517
403 => 0.15050065344786
404 => 0.15783339956238
405 => 0.14790221185615
406 => 0.15835977662562
407 => 0.155049032358
408 => 0.14719931725721
409 => 0.14669388814678
410 => 0.1520098063501
411 => 0.1638000012869
412 => 0.16084669117851
413 => 0.16380483184424
414 => 0.16035400362678
415 => 0.16018264091992
416 => 0.16363723282011
417 => 0.17170907509491
418 => 0.16787444539864
419 => 0.16237656343925
420 => 0.16643611392154
421 => 0.16291935560012
422 => 0.15499511482327
423 => 0.16084443283793
424 => 0.15693316046051
425 => 0.15807467767492
426 => 0.16629559045439
427 => 0.16530642847893
428 => 0.16658649566911
429 => 0.16432721058363
430 => 0.16221668205724
501 => 0.15827722383281
502 => 0.1571109444655
503 => 0.15743326212429
504 => 0.15711078474088
505 => 0.1549066940698
506 => 0.15443072089924
507 => 0.15363741142877
508 => 0.15388329120564
509 => 0.15239163731028
510 => 0.15520669640225
511 => 0.15572919617593
512 => 0.15777776142661
513 => 0.1579904502668
514 => 0.16369567533045
515 => 0.1605533332378
516 => 0.16266148761031
517 => 0.16247291444052
518 => 0.14736944438586
519 => 0.14945056930035
520 => 0.15268814657432
521 => 0.15122962240083
522 => 0.14916761046161
523 => 0.1475024252626
524 => 0.14497949941218
525 => 0.14853046909815
526 => 0.15319961663167
527 => 0.15810886755351
528 => 0.16400701086924
529 => 0.16269061394313
530 => 0.15799860586689
531 => 0.15820908592167
601 => 0.15951019079951
602 => 0.15782514176487
603 => 0.15732818790849
604 => 0.15944191697089
605 => 0.15945647306126
606 => 0.15751762050192
607 => 0.15536294068849
608 => 0.1553539125014
609 => 0.15497050804034
610 => 0.16042221042866
611 => 0.16342009551296
612 => 0.16376379820654
613 => 0.1633969615832
614 => 0.1635381424403
615 => 0.16179373916364
616 => 0.16578092776736
617 => 0.16943996632223
618 => 0.16845926582557
619 => 0.16698905636628
620 => 0.16581796371708
621 => 0.16818339361528
622 => 0.16807806474544
623 => 0.16940800781253
624 => 0.16934767391288
625 => 0.16890046408111
626 => 0.16845928179684
627 => 0.17020851968498
628 => 0.1697047672651
629 => 0.16920023237857
630 => 0.1681883104232
701 => 0.16832584742318
702 => 0.16685589181628
703 => 0.16617582309194
704 => 0.15594922119089
705 => 0.15321633899907
706 => 0.15407615936956
707 => 0.15435923456075
708 => 0.15316988072859
709 => 0.15487510860398
710 => 0.15460935064589
711 => 0.15564325939763
712 => 0.15499731809664
713 => 0.15502382775295
714 => 0.15692340338996
715 => 0.15747485827876
716 => 0.15719438387153
717 => 0.15739081853225
718 => 0.16191757237873
719 => 0.1612740127392
720 => 0.16093213450732
721 => 0.16102683711398
722 => 0.16218351977646
723 => 0.16250732776942
724 => 0.16113533054966
725 => 0.16178237236992
726 => 0.16453739431875
727 => 0.1655014960801
728 => 0.16857844610723
729 => 0.16727130304728
730 => 0.16967062070565
731 => 0.17704530519981
801 => 0.1829367134631
802 => 0.17751873095143
803 => 0.18833755196064
804 => 0.19676155598401
805 => 0.19643822867868
806 => 0.19496930872649
807 => 0.18537880410961
808 => 0.1765534787748
809 => 0.18393623816048
810 => 0.18395505833243
811 => 0.18332087275376
812 => 0.17938200059115
813 => 0.1831838085405
814 => 0.18348558224938
815 => 0.18331666922051
816 => 0.18029674516861
817 => 0.17568587931662
818 => 0.17658683146725
819 => 0.1780626094689
820 => 0.17526865383223
821 => 0.17437581571458
822 => 0.1760357716447
823 => 0.18138449551712
824 => 0.18037335025209
825 => 0.18034694516286
826 => 0.184673053399
827 => 0.18157649353451
828 => 0.17659819535912
829 => 0.17534110941414
830 => 0.17087930118405
831 => 0.17396108802099
901 => 0.17407199604285
902 => 0.17238413288736
903 => 0.17673515615184
904 => 0.17669506070648
905 => 0.18082570973175
906 => 0.18872195926716
907 => 0.1863866497287
908 => 0.18367093881642
909 => 0.18396621189108
910 => 0.18720462872405
911 => 0.18524660798097
912 => 0.18595072589199
913 => 0.18720356295727
914 => 0.18795943066494
915 => 0.18385745416009
916 => 0.1829010872166
917 => 0.18094469608938
918 => 0.18043431016207
919 => 0.18202774991374
920 => 0.18160793483623
921 => 0.17406267465307
922 => 0.1732741529825
923 => 0.17329833581639
924 => 0.17131556058358
925 => 0.16829135243295
926 => 0.1762387908867
927 => 0.17560050035454
928 => 0.17489587700679
929 => 0.17498218934636
930 => 0.17843190301545
1001 => 0.17643089487266
1002 => 0.18175090297905
1003 => 0.18065726924646
1004 => 0.17953558793529
1005 => 0.17938053741083
1006 => 0.17894878580338
1007 => 0.17746814889374
1008 => 0.17568019085286
1009 => 0.174499626084
1010 => 0.16096668104716
1011 => 0.16347831692848
1012 => 0.16636772506712
1013 => 0.167365137178
1014 => 0.16565899474352
1015 => 0.17753551779612
1016 => 0.17970547300285
1017 => 0.17313253713898
1018 => 0.17190300921005
1019 => 0.17761612544244
1020 => 0.17417041795426
1021 => 0.1757220198252
1022 => 0.17236830526106
1023 => 0.17918279433725
1024 => 0.17913087934788
1025 => 0.17647988918503
1026 => 0.17872048791748
1027 => 0.17833112874929
1028 => 0.17533816738453
1029 => 0.17927767655096
1030 => 0.17927963049836
1031 => 0.17672811010411
1101 => 0.17374849288326
1102 => 0.17321580769959
1103 => 0.17281450096988
1104 => 0.17562332297024
1105 => 0.17814170399281
1106 => 0.1828277867162
1107 => 0.18400597925144
1108 => 0.18860454315321
1109 => 0.18586632224972
1110 => 0.18708014011034
1111 => 0.18839791110306
1112 => 0.18902969897639
1113 => 0.1880002345404
1114 => 0.19514369712426
1115 => 0.19574682423637
1116 => 0.19594904754004
1117 => 0.193540312149
1118 => 0.19567983294778
1119 => 0.19467882201951
1120 => 0.19728317436602
1121 => 0.19769157006799
1122 => 0.19734567343752
1123 => 0.19747530467941
1124 => 0.19137961955724
1125 => 0.19106352612636
1126 => 0.18675356976728
1127 => 0.18850990884119
1128 => 0.18522651712603
1129 => 0.18626771446159
1130 => 0.18672666432621
1201 => 0.18648693496211
1202 => 0.18860920961724
1203 => 0.18680484260831
1204 => 0.18204282140634
1205 => 0.17727950279488
1206 => 0.17721970320983
1207 => 0.17596560549899
1208 => 0.17505912255351
1209 => 0.17523374332802
1210 => 0.17584912971354
1211 => 0.17502335517807
1212 => 0.17519957604304
1213 => 0.17812601655509
1214 => 0.17871289332936
1215 => 0.17671845674283
1216 => 0.16871050605206
1217 => 0.16674533486612
1218 => 0.16815786094353
1219 => 0.16748276445686
1220 => 0.13517166241051
1221 => 0.14276267655895
1222 => 0.13825235371843
1223 => 0.14033091799332
1224 => 0.13572704631558
1225 => 0.13792425518978
1226 => 0.13751851093994
1227 => 0.14972463705619
1228 => 0.14953405518586
1229 => 0.14962527664182
1230 => 0.14527103887272
1231 => 0.15220745786934
]
'min_raw' => 0.08855444940573
'max_raw' => 0.19769157006799
'avg_raw' => 0.14312300973686
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.088554'
'max' => '$0.197691'
'avg' => '$0.143123'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013654916422682
'max_diff' => 0.029907370158108
'year' => 2035
]
10 => [
'items' => [
101 => 0.15562458729263
102 => 0.15499216758034
103 => 0.15515133399697
104 => 0.15241632761558
105 => 0.14965175748202
106 => 0.14658542373962
107 => 0.1522822928227
108 => 0.15164889822946
109 => 0.15310167753817
110 => 0.15679650435916
111 => 0.15734058164384
112 => 0.15807182703193
113 => 0.15780972761389
114 => 0.16405399909638
115 => 0.16329777661882
116 => 0.16512005520968
117 => 0.16137148989167
118 => 0.15712963241725
119 => 0.15793587084637
120 => 0.15785822360228
121 => 0.15686968506573
122 => 0.15597727667548
123 => 0.15449166814022
124 => 0.15919235337449
125 => 0.15900151413844
126 => 0.16209097954377
127 => 0.16154488652391
128 => 0.15789794368566
129 => 0.15802819496259
130 => 0.15890419739658
131 => 0.16193605182261
201 => 0.16283611264064
202 => 0.16241916860851
203 => 0.16340604420615
204 => 0.16418603044036
205 => 0.16350399846829
206 => 0.17316013291475
207 => 0.16915023266924
208 => 0.17110463014819
209 => 0.17157074243095
210 => 0.17037680561996
211 => 0.17063572776259
212 => 0.17102792425662
213 => 0.17340926456839
214 => 0.17965859059287
215 => 0.18242637454851
216 => 0.1907533891391
217 => 0.1821965486204
218 => 0.18168882111575
219 => 0.18318876789527
220 => 0.18807760696396
221 => 0.19203955184382
222 => 0.19335395753056
223 => 0.19352767794054
224 => 0.19599359038889
225 => 0.19740700541774
226 => 0.19569416375772
227 => 0.19424270979286
228 => 0.18904378185179
229 => 0.18964557191718
301 => 0.19379130870122
302 => 0.19964740609134
303 => 0.20467254687516
304 => 0.20291291771651
305 => 0.21633764609245
306 => 0.21766865307583
307 => 0.21748475094733
308 => 0.22051698293586
309 => 0.21449861994194
310 => 0.21192565316174
311 => 0.19455653061476
312 => 0.19943654557316
313 => 0.20652993390843
314 => 0.20559109736341
315 => 0.20043968914753
316 => 0.20466863907009
317 => 0.2032704159742
318 => 0.20216757940614
319 => 0.2072198875198
320 => 0.20166466721146
321 => 0.20647451633633
322 => 0.20030583508216
323 => 0.20292095555428
324 => 0.20143648669516
325 => 0.20239711997667
326 => 0.19678127744192
327 => 0.1998114497568
328 => 0.19665521231134
329 => 0.19665371584384
330 => 0.19658404172729
331 => 0.20029734108498
401 => 0.20041843164372
402 => 0.19767429780791
403 => 0.19727882525074
404 => 0.19874109457015
405 => 0.19702916016606
406 => 0.19783016349895
407 => 0.19705342174102
408 => 0.19687856081063
409 => 0.19548523916711
410 => 0.19488495789291
411 => 0.19512034364787
412 => 0.19431685071653
413 => 0.19383271716178
414 => 0.19648773537779
415 => 0.19506926624811
416 => 0.19627033463995
417 => 0.19490156562053
418 => 0.19015681585492
419 => 0.1874280600899
420 => 0.17846566762121
421 => 0.18100739100752
422 => 0.18269255624224
423 => 0.18213560914222
424 => 0.18333214702299
425 => 0.18340560473099
426 => 0.18301659806869
427 => 0.18256617818859
428 => 0.18234693870074
429 => 0.18398097022364
430 => 0.18492958052165
501 => 0.18286168511815
502 => 0.18237720615804
503 => 0.18446796258262
504 => 0.18574332279382
505 => 0.19515986603034
506 => 0.19446225809234
507 => 0.19621311711807
508 => 0.19601599726089
509 => 0.19785117645357
510 => 0.200850918829
511 => 0.19475160383859
512 => 0.19581023402248
513 => 0.19555068234873
514 => 0.19838439946462
515 => 0.19839324602015
516 => 0.1966942910545
517 => 0.19761532210377
518 => 0.19710122783924
519 => 0.19803026565926
520 => 0.19445294111302
521 => 0.19880973626202
522 => 0.20127975836583
523 => 0.20131405462514
524 => 0.20248482549903
525 => 0.20367439651339
526 => 0.20595767448564
527 => 0.20361071712999
528 => 0.19938876931887
529 => 0.19969358031403
530 => 0.19721825385712
531 => 0.19725986454206
601 => 0.19703774344474
602 => 0.1977043455783
603 => 0.19459922279505
604 => 0.19532798890585
605 => 0.19430771208308
606 => 0.19580801613993
607 => 0.1941939369839
608 => 0.19555055718506
609 => 0.1961360294912
610 => 0.19829643490519
611 => 0.19387484334769
612 => 0.1848589188465
613 => 0.18675417548416
614 => 0.18395094204786
615 => 0.18421039197505
616 => 0.18473452211913
617 => 0.18303564483746
618 => 0.18335973708502
619 => 0.18334815822934
620 => 0.18324837790645
621 => 0.18280643431173
622 => 0.18216552866352
623 => 0.18471869950565
624 => 0.18515253298352
625 => 0.18611689106425
626 => 0.18898616658214
627 => 0.18869945829573
628 => 0.18916709140628
629 => 0.18814625095159
630 => 0.1842577458359
701 => 0.18446891037185
702 => 0.18183568522493
703 => 0.18604955357694
704 => 0.18505165393084
705 => 0.18440830153728
706 => 0.18423275687608
707 => 0.187109144773
708 => 0.18796980511362
709 => 0.18743349934612
710 => 0.18633352057042
711 => 0.18844580499928
712 => 0.18901096320232
713 => 0.18913748128175
714 => 0.19288004429932
715 => 0.18934664897974
716 => 0.1901971723521
717 => 0.19683271291058
718 => 0.19081519326604
719 => 0.19400280762846
720 => 0.19384679049296
721 => 0.19547746613778
722 => 0.19371302749423
723 => 0.19373489982588
724 => 0.19518282932694
725 => 0.19314947347816
726 => 0.19264598597485
727 => 0.19195042159508
728 => 0.1934691609716
729 => 0.19437957654115
730 => 0.20171685740517
731 => 0.20645707546399
801 => 0.20625129009662
802 => 0.20813178314031
803 => 0.20728460380078
804 => 0.20454883823884
805 => 0.209218456462
806 => 0.20774079387107
807 => 0.20786261057971
808 => 0.20785807655573
809 => 0.20884059299919
810 => 0.20814439005269
811 => 0.20677210258136
812 => 0.2076830910468
813 => 0.21038840110483
814 => 0.21878576653398
815 => 0.22348504347843
816 => 0.21850286416134
817 => 0.22193950474023
818 => 0.21987874499314
819 => 0.2195042436448
820 => 0.22166270789409
821 => 0.22382495024931
822 => 0.22368722475891
823 => 0.2221175478414
824 => 0.22123087717977
825 => 0.22794504448608
826 => 0.23289192858452
827 => 0.23255458425334
828 => 0.23404351242092
829 => 0.23841505157175
830 => 0.23881473032579
831 => 0.23876437998929
901 => 0.23777373449524
902 => 0.24207808250533
903 => 0.24566884534314
904 => 0.23754442868587
905 => 0.24063810019253
906 => 0.24202694900375
907 => 0.24406619111148
908 => 0.2475067343639
909 => 0.25124407689504
910 => 0.25177257810682
911 => 0.25139758120595
912 => 0.2489327033415
913 => 0.25302214813485
914 => 0.25541764898551
915 => 0.25684411492202
916 => 0.2604613951957
917 => 0.24203552606119
918 => 0.22899278006266
919 => 0.22695596693545
920 => 0.23109790652335
921 => 0.23219010296132
922 => 0.23174983994667
923 => 0.21706904353074
924 => 0.22687867558058
925 => 0.23743301484892
926 => 0.23783845000412
927 => 0.24312217292268
928 => 0.24484276969208
929 => 0.24909685919491
930 => 0.24883076473825
1001 => 0.24986656783484
1002 => 0.24962845464054
1003 => 0.25750825964031
1004 => 0.26620085471742
1005 => 0.26589985779066
1006 => 0.26465019440221
1007 => 0.26650615763333
1008 => 0.27547784730801
1009 => 0.27465187789116
1010 => 0.27545423682372
1011 => 0.28603236457244
1012 => 0.2997854353669
1013 => 0.29339575319714
1014 => 0.307259524924
1015 => 0.3159860343391
1016 => 0.33107763003459
1017 => 0.32918808792584
1018 => 0.33506313538285
1019 => 0.32580541319184
1020 => 0.30454781174692
1021 => 0.30118371494743
1022 => 0.3079187219325
1023 => 0.32447607941294
1024 => 0.30739727182281
1025 => 0.31085229235481
1026 => 0.30985724620916
1027 => 0.30980422442873
1028 => 0.31182785013249
1029 => 0.30889247550397
1030 => 0.29693323120358
1031 => 0.30241408239018
1101 => 0.30029766253494
1102 => 0.30264598815388
1103 => 0.31531893299614
1104 => 0.3097159219961
1105 => 0.30381360505922
1106 => 0.31121642032706
1107 => 0.32064274804633
1108 => 0.32005286539839
1109 => 0.31890824650959
1110 => 0.3253604032555
1111 => 0.3360174758952
1112 => 0.33889803980613
1113 => 0.34102441319463
1114 => 0.34131760415954
1115 => 0.3443376533152
1116 => 0.32809808785481
1117 => 0.35387069530207
1118 => 0.3583209126543
1119 => 0.3574844562347
1120 => 0.36243068552793
1121 => 0.36097537939613
1122 => 0.3588668691417
1123 => 0.36670769466461
1124 => 0.35771882092458
1125 => 0.34496024631835
1126 => 0.33796063995338
1127 => 0.34717828625691
1128 => 0.35280718120296
1129 => 0.35652752269733
1130 => 0.35765329578564
1201 => 0.32935871909338
1202 => 0.31410951154542
1203 => 0.32388407875115
1204 => 0.33580972534672
1205 => 0.32803184028583
1206 => 0.32833671865473
1207 => 0.31724749855014
1208 => 0.33679087526499
1209 => 0.3339435696633
1210 => 0.34871539616163
1211 => 0.34518998121649
1212 => 0.35723583228687
1213 => 0.35406375599961
1214 => 0.36723086731964
1215 => 0.37248358451051
1216 => 0.38130371419413
1217 => 0.38779183749379
1218 => 0.39160178759337
1219 => 0.39137305248015
1220 => 0.40646997288429
1221 => 0.3975678463682
1222 => 0.38638467739385
1223 => 0.38618240914955
1224 => 0.39197433082809
1225 => 0.40411260973021
1226 => 0.40725988884475
1227 => 0.40901878851006
1228 => 0.4063249724449
1229 => 0.39666235213283
1230 => 0.39249008167267
1231 => 0.39604497698704
]
'min_raw' => 0.14658542373962
'max_raw' => 0.40901878851006
'avg_raw' => 0.27780210612484
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.146585'
'max' => '$0.409018'
'avg' => '$0.2778021'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.058030974333887
'max_diff' => 0.21132721844208
'year' => 2036
]
11 => [
'items' => [
101 => 0.39169764549321
102 => 0.39920235929734
103 => 0.40950793427078
104 => 0.40737987379143
105 => 0.41449366091725
106 => 0.42185568220026
107 => 0.43238370328401
108 => 0.4351361178468
109 => 0.43968575445414
110 => 0.44436882500085
111 => 0.44587290104817
112 => 0.44874464890988
113 => 0.44872951338112
114 => 0.45738371885332
115 => 0.46692957548759
116 => 0.47053291537993
117 => 0.47881859677307
118 => 0.46462965775223
119 => 0.47539213099032
120 => 0.48510015125325
121 => 0.47352584928109
122 => 0.48947832808323
123 => 0.49009772668602
124 => 0.4994499102043
125 => 0.48996968054695
126 => 0.48434035043838
127 => 0.50059201553357
128 => 0.50845568435048
129 => 0.50608708330617
130 => 0.48806191240669
131 => 0.47757048980725
201 => 0.45011241322023
202 => 0.48263769103819
203 => 0.49847980508796
204 => 0.48802088515848
205 => 0.49329575601187
206 => 0.52207374100536
207 => 0.53303053445433
208 => 0.53075159801071
209 => 0.5311367007552
210 => 0.5370487876204
211 => 0.5632662366264
212 => 0.54755613346629
213 => 0.55956591868586
214 => 0.56593586546181
215 => 0.57185262702831
216 => 0.55732293063269
217 => 0.53842000910562
218 => 0.53243266036733
219 => 0.48698095169427
220 => 0.48461499287108
221 => 0.48328690848773
222 => 0.47491352431196
223 => 0.46833433801277
224 => 0.46310232479813
225 => 0.4493719597115
226 => 0.45400555486914
227 => 0.43212221867097
228 => 0.44612240167274
301 => 0.41119606870882
302 => 0.44028375664276
303 => 0.4244526505552
304 => 0.43508281251677
305 => 0.4350457248831
306 => 0.41547222641594
307 => 0.40418264098858
308 => 0.41137680422013
309 => 0.41908951827775
310 => 0.42034088018491
311 => 0.43034061528305
312 => 0.43313132640535
313 => 0.42467534141893
314 => 0.41047229808934
315 => 0.41377134111787
316 => 0.4041157859869
317 => 0.38719479701544
318 => 0.39934774670687
319 => 0.403497298059
320 => 0.40532997633083
321 => 0.38869012706611
322 => 0.38346152515843
323 => 0.380677861375
324 => 0.40832430250354
325 => 0.40983883695687
326 => 0.40209026456003
327 => 0.43711454654356
328 => 0.42918747284322
329 => 0.4380439563467
330 => 0.41347198754197
331 => 0.41441066984085
401 => 0.40277790602542
402 => 0.4092914764605
403 => 0.40468789481916
404 => 0.4087652443377
405 => 0.41120919082758
406 => 0.42284004582093
407 => 0.44041656232389
408 => 0.42110278393976
409 => 0.41268749411939
410 => 0.41790829259456
411 => 0.43181196692271
412 => 0.45287674524586
413 => 0.44040597251038
414 => 0.44594028968293
415 => 0.4471492917805
416 => 0.43795380565846
417 => 0.45321579593548
418 => 0.46139482051312
419 => 0.46978480731912
420 => 0.47706959778067
421 => 0.46643366208904
422 => 0.47781563788058
423 => 0.46864377458179
424 => 0.46041566503298
425 => 0.46042814367875
426 => 0.45526653036528
427 => 0.44526525416531
428 => 0.44342086538693
429 => 0.45301560873269
430 => 0.46070968427042
501 => 0.46134340518385
502 => 0.46560324073741
503 => 0.46812416753821
504 => 0.49283267721987
505 => 0.50277064421335
506 => 0.51492260213689
507 => 0.51965647459492
508 => 0.53390373350642
509 => 0.52239791482959
510 => 0.51990855858387
511 => 0.48534936870746
512 => 0.49100843411368
513 => 0.50006914384763
514 => 0.48549877647371
515 => 0.49474032093619
516 => 0.49656479757577
517 => 0.48500368096576
518 => 0.49117897287352
519 => 0.47477922841295
520 => 0.4407740319378
521 => 0.45325365344006
522 => 0.4624428554609
523 => 0.44932873115672
524 => 0.47283529138526
525 => 0.45910324417364
526 => 0.45475084446208
527 => 0.43777058144471
528 => 0.44578461195864
529 => 0.45662370297861
530 => 0.44992640490785
531 => 0.46382430400903
601 => 0.48350743557061
602 => 0.49753480727214
603 => 0.49861165469281
604 => 0.48959299444964
605 => 0.50404545504564
606 => 0.50415072544297
607 => 0.48784829085065
608 => 0.47786314043519
609 => 0.47559449325186
610 => 0.4812620187103
611 => 0.48814344089976
612 => 0.49899352573206
613 => 0.50555000475702
614 => 0.52264582476634
615 => 0.52727146348529
616 => 0.53235363803138
617 => 0.53914499050955
618 => 0.54729975042662
619 => 0.5294575999788
620 => 0.53016650187803
621 => 0.51355213842241
622 => 0.49579730832934
623 => 0.50927101119916
624 => 0.52688608536987
625 => 0.52284516789218
626 => 0.52239048212749
627 => 0.52315513746439
628 => 0.52010841765024
629 => 0.50632821684755
630 => 0.49940788627306
701 => 0.50833687827877
702 => 0.5130822401461
703 => 0.52044188256327
704 => 0.51953465129215
705 => 0.5384922997909
706 => 0.54585866874798
707 => 0.54397403634406
708 => 0.54432085406259
709 => 0.55765731319574
710 => 0.57249019860382
711 => 0.58638315316011
712 => 0.60051566325104
713 => 0.58347837073516
714 => 0.57482788430972
715 => 0.58375297819685
716 => 0.57901719775054
717 => 0.60623039691873
718 => 0.60811457978549
719 => 0.63532581112963
720 => 0.66115250992838
721 => 0.64493122314626
722 => 0.66022716595899
723 => 0.67677097520748
724 => 0.70868666738414
725 => 0.69793858506663
726 => 0.68970572245534
727 => 0.68192570706858
728 => 0.69811468404577
729 => 0.71894154430171
730 => 0.72342745052365
731 => 0.73069633235127
801 => 0.72305399190611
802 => 0.73225834919612
803 => 0.76475377502936
804 => 0.75597322412416
805 => 0.74350343029478
806 => 0.76915544809625
807 => 0.77843881361891
808 => 0.8435943345932
809 => 0.92585587126357
810 => 0.89179905492366
811 => 0.87065889001489
812 => 0.87562733021987
813 => 0.90566645868314
814 => 0.91531407335126
815 => 0.8890885309511
816 => 0.89835183588628
817 => 0.94939355682716
818 => 0.97677580249748
819 => 0.93958703495095
820 => 0.83698470021801
821 => 0.74238066179541
822 => 0.76747391286046
823 => 0.76462911692392
824 => 0.81946707849054
825 => 0.75576381088899
826 => 0.75683641053926
827 => 0.81280836307667
828 => 0.79787600574188
829 => 0.77368749925136
830 => 0.7425572646614
831 => 0.68501014682367
901 => 0.63403905973469
902 => 0.73400509945648
903 => 0.72969438204723
904 => 0.72345182442611
905 => 0.73734396089663
906 => 0.80480023224577
907 => 0.80324514685653
908 => 0.79335248702172
909 => 0.80085598231652
910 => 0.77237210024732
911 => 0.77971304522249
912 => 0.74236567603238
913 => 0.75924824667022
914 => 0.77363560158005
915 => 0.77652407608662
916 => 0.7830319566391
917 => 0.72742282985307
918 => 0.75238969518181
919 => 0.76705538948353
920 => 0.70079524908584
921 => 0.76574563955046
922 => 0.72645479867486
923 => 0.71311889715306
924 => 0.73107393168074
925 => 0.72407683726346
926 => 0.71806114636665
927 => 0.71470428748354
928 => 0.72788848321583
929 => 0.72727342472639
930 => 0.70570152156626
1001 => 0.67756185327712
1002 => 0.68700644960808
1003 => 0.68357513921748
1004 => 0.6711396277141
1005 => 0.67951966099799
1006 => 0.6426182354535
1007 => 0.57913125077341
1008 => 0.62107269751201
1009 => 0.61945799743609
1010 => 0.61864379243699
1011 => 0.65016163048461
1012 => 0.64713191759657
1013 => 0.64163295903775
1014 => 0.67103863502783
1015 => 0.66030516772929
1016 => 0.69338318482042
1017 => 0.71517050622865
1018 => 0.70964453677351
1019 => 0.73013561786522
1020 => 0.68722403403214
1021 => 0.70147754086757
1022 => 0.70441516887184
1023 => 0.67067577355063
1024 => 0.64762761609415
1025 => 0.64609056676003
1026 => 0.60612823796222
1027 => 0.62747579144136
1028 => 0.64626075508122
1029 => 0.63726421526979
1030 => 0.63441617952948
1031 => 0.64896617646316
1101 => 0.65009683583721
1102 => 0.6243176822871
1103 => 0.62967798462979
1104 => 0.65203133647492
1105 => 0.62911473751608
1106 => 0.58459152914426
1107 => 0.57354915788653
1108 => 0.57207590200946
1109 => 0.54212811537699
1110 => 0.57428706193512
1111 => 0.56024881995631
1112 => 0.6045954581634
1113 => 0.5792648962553
1114 => 0.578172946359
1115 => 0.57652230393651
1116 => 0.55074500685446
1117 => 0.55638859668274
1118 => 0.57514874881493
1119 => 0.58184258244394
1120 => 0.58114436075547
1121 => 0.57505681383492
1122 => 0.57784366164187
1123 => 0.56886625385355
1124 => 0.56569614431491
1125 => 0.55569040660365
1126 => 0.54098473632368
1127 => 0.54302964997122
1128 => 0.51389386919866
1129 => 0.49801914948084
1130 => 0.49362523628839
1201 => 0.48774951193318
1202 => 0.49428891498902
1203 => 0.51381133119245
1204 => 0.49026315533947
1205 => 0.44989145955202
1206 => 0.45231786725887
1207 => 0.45776928496924
1208 => 0.4476106041307
1209 => 0.43799626527047
1210 => 0.44635515287347
1211 => 0.42924913315767
1212 => 0.45983646572692
1213 => 0.45900916410093
1214 => 0.47041023017479
1215 => 0.47753955076421
1216 => 0.46110877495056
1217 => 0.45697647926697
1218 => 0.45933042269071
1219 => 0.42042498137005
1220 => 0.46723082559628
1221 => 0.46763560448081
1222 => 0.46416964192313
1223 => 0.48909230900528
1224 => 0.54168691012343
1225 => 0.52189870556985
1226 => 0.51423611466506
1227 => 0.49966952375373
1228 => 0.51907864126449
1229 => 0.51758832386907
1230 => 0.51084854342086
1231 => 0.50677230317638
]
'min_raw' => 0.380677861375
'max_raw' => 0.97677580249748
'avg_raw' => 0.67872683193624
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.380677'
'max' => '$0.976775'
'avg' => '$0.678726'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23409243763538
'max_diff' => 0.56775701398741
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011949043077712
]
1 => [
'year' => 2028
'avg' => 0.020508026753345
]
2 => [
'year' => 2029
'avg' => 0.056024232877939
]
3 => [
'year' => 2030
'avg' => 0.04322261223154
]
4 => [
'year' => 2031
'avg' => 0.042449961730736
]
5 => [
'year' => 2032
'avg' => 0.074428142408601
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011949043077712
'min' => '$0.011949'
'max_raw' => 0.074428142408601
'max' => '$0.074428'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.074428142408601
]
1 => [
'year' => 2033
'avg' => 0.19143683563055
]
2 => [
'year' => 2034
'avg' => 0.12134186644646
]
3 => [
'year' => 2035
'avg' => 0.14312300973686
]
4 => [
'year' => 2036
'avg' => 0.27780210612484
]
5 => [
'year' => 2037
'avg' => 0.67872683193624
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.074428142408601
'min' => '$0.074428'
'max_raw' => 0.67872683193624
'max' => '$0.678726'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67872683193624
]
]
]
]
'prediction_2025_max_price' => '$0.02043'
'last_price' => 0.01981013
'sma_50day_nextmonth' => '$0.01820099'
'sma_200day_nextmonth' => '$0.02615'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.019765'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.020071'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.018643'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01790094'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01722'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.021891'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030239'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019725'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0195066'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018998'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018323'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.018774'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0220048'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.029459'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.02512'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0359068'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.081821'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.019827'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.019788'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.020822'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025326'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.043743'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.100135'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.154646'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.07'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 60.45
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.019195'
'vwma_10_action' => 'BUY'
'hma_9' => '0.020740'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 81.17
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 46.11
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.29
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002833'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -18.83
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 59.41
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004266'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 16
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767702280
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de CONX para 2026
La previsión del precio de CONX para 2026 sugiere que el precio medio podría oscilar entre $0.006844 en el extremo inferior y $0.02043 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, CONX podría potencialmente ganar 3.13% para 2026 si CONX alcanza el objetivo de precio previsto.
Predicción de precio de CONX 2027-2032
La predicción del precio de CONX para 2027-2032 está actualmente dentro de un rango de precios de $0.011949 en el extremo inferior y $0.074428 en el extremo superior. Considerando la volatilidad de precios en el mercado, si CONX alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de CONX | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006588 | $0.011949 | $0.0173091 |
| 2028 | $0.011891 | $0.020508 | $0.029124 |
| 2029 | $0.026121 | $0.056024 | $0.085927 |
| 2030 | $0.022215 | $0.043222 | $0.06423 |
| 2031 | $0.026265 | $0.042449 | $0.058634 |
| 2032 | $0.040091 | $0.074428 | $0.108764 |
Predicción de precio de CONX 2032-2037
La predicción de precio de CONX para 2032-2037 se estima actualmente entre $0.074428 en el extremo inferior y $0.678726 en el extremo superior. Comparado con el precio actual, CONX podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de CONX | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.040091 | $0.074428 | $0.108764 |
| 2033 | $0.093164 | $0.191436 | $0.2897094 |
| 2034 | $0.074899 | $0.121341 | $0.167784 |
| 2035 | $0.088554 | $0.143123 | $0.197691 |
| 2036 | $0.146585 | $0.2778021 | $0.409018 |
| 2037 | $0.380677 | $0.678726 | $0.976775 |
CONX Histograma de precios potenciales
Pronóstico de precio de CONX basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para CONX es Neutral, con 16 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de CONX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de CONX
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de CONX aumentar durante el próximo mes, alcanzando $0.02615 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para CONX alcance $0.01820099 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 55.07, lo que sugiere que el mercado de CONX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CONX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.019765 | BUY |
| SMA 5 | $0.020071 | SELL |
| SMA 10 | $0.018643 | BUY |
| SMA 21 | $0.01790094 | BUY |
| SMA 50 | $0.01722 | BUY |
| SMA 100 | $0.021891 | SELL |
| SMA 200 | $0.030239 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.019725 | BUY |
| EMA 5 | $0.0195066 | BUY |
| EMA 10 | $0.018998 | BUY |
| EMA 21 | $0.018323 | BUY |
| EMA 50 | $0.018774 | BUY |
| EMA 100 | $0.0220048 | SELL |
| EMA 200 | $0.029459 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.02512 | SELL |
| SMA 50 | $0.0359068 | SELL |
| SMA 100 | $0.081821 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.025326 | SELL |
| EMA 50 | $0.043743 | SELL |
| EMA 100 | $0.100135 | SELL |
| EMA 200 | $0.154646 | SELL |
Osciladores de CONX
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 55.07 | NEUTRAL |
| Stoch RSI (14) | 60.45 | NEUTRAL |
| Estocástico Rápido (14) | 81.17 | SELL |
| Índice de Canal de Materias Primas (20) | 46.11 | NEUTRAL |
| Índice Direccional Medio (14) | 18.29 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002833 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -18.83 | SELL |
| Oscilador Ultimate (7, 14, 28) | 59.41 | NEUTRAL |
| VWMA (10) | 0.019195 | BUY |
| Promedio Móvil de Hull (9) | 0.020740 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.004266 | NEUTRAL |
Predicción de precios de CONX basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de CONX
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de CONX por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.027836 | $0.039114 | $0.054963 | $0.077232 | $0.108524 | $0.152494 |
| Amazon.com acción | $0.041335 | $0.086247 | $0.179961 | $0.37550037 | $0.7835038 | $1.63 |
| Apple acción | $0.028099 | $0.039856 | $0.056533 | $0.080188 | $0.113741 | $0.161332 |
| Netflix acción | $0.031257 | $0.049319 | $0.077817 | $0.122784 | $0.193734 | $0.305682 |
| Google acción | $0.025654 | $0.033221 | $0.043022 | $0.055713 | $0.072148 | $0.093432 |
| Tesla acción | $0.044908 | $0.1018031 | $0.23078 | $0.523161 | $1.18 | $2.68 |
| Kodak acción | $0.014855 | $0.01114 | $0.008353 | $0.006264 | $0.004697 | $0.003522 |
| Nokia acción | $0.013123 | $0.008693 | $0.005759 | $0.003815 | $0.002527 | $0.001674 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de CONX
Podría preguntarse cosas como: "¿Debo invertir en CONX ahora?", "¿Debería comprar CONX hoy?", "¿Será CONX una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de CONX regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como CONX, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de CONX a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de CONX es de $0.01981 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de CONX
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de CONX
basado en el historial de precios del último mes
Predicción de precios de CONX basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si CONX ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.020325 | $0.020853 | $0.021395 | $0.021951 |
| Si CONX ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.020839 | $0.021923 | $0.023063 | $0.024262 |
| Si CONX ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.022384 | $0.025294 | $0.028581 | $0.032296 |
| Si CONX ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.024959 | $0.031447 | $0.039621 | $0.04992 |
| Si CONX ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0301087 | $0.045761 | $0.06955 | $0.1057076 |
| Si CONX ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.045556 | $0.104764 | $0.240923 | $0.554041 |
| Si CONX ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.071303 | $0.256642 | $0.923738 | $3.32 |
Cuadro de preguntas
¿Es CONX una buena inversión?
La decisión de adquirir CONX depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de CONX ha experimentado un aumento de 2.3336% durante las últimas 24 horas, y CONX ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en CONX dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede CONX subir?
Parece que el valor medio de CONX podría potencialmente aumentar hasta $0.02043 para el final de este año. Mirando las perspectivas de CONX en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.06423. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de CONX la próxima semana?
Basado en nuestro nuevo pronóstico experimental de CONX, el precio de CONX aumentará en un 0.86% durante la próxima semana y alcanzará $0.019979 para el 13 de enero de 2026.
¿Cuál será el precio de CONX el próximo mes?
Basado en nuestro nuevo pronóstico experimental de CONX, el precio de CONX disminuirá en un -11.62% durante el próximo mes y alcanzará $0.017508 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de CONX este año en 2026?
Según nuestra predicción más reciente sobre el valor de CONX en 2026, se anticipa que CONX fluctúe dentro del rango de $0.006844 y $0.02043. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de CONX no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará CONX en 5 años?
El futuro de CONX parece estar en una tendencia alcista, con un precio máximo de $0.06423 proyectada después de un período de cinco años. Basado en el pronóstico de CONX para 2030, el valor de CONX podría potencialmente alcanzar su punto más alto de aproximadamente $0.06423, mientras que su punto más bajo se anticipa que esté alrededor de $0.022215.
¿Cuánto será CONX en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de CONX, se espera que el valor de CONX en 2026 crezca en un 3.13% hasta $0.02043 si ocurre lo mejor. El precio estará entre $0.02043 y $0.006844 durante 2026.
¿Cuánto será CONX en 2027?
Según nuestra última simulación experimental para la predicción de precios de CONX, el valor de CONX podría disminuir en un -12.62% hasta $0.0173091 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.0173091 y $0.006588 a lo largo del año.
¿Cuánto será CONX en 2028?
Nuestro nuevo modelo experimental de predicción de precios de CONX sugiere que el valor de CONX en 2028 podría aumentar en un 47.02% , alcanzando $0.029124 en el mejor escenario. Se espera que el precio oscile entre $0.029124 y $0.011891 durante el año.
¿Cuánto será CONX en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de CONX podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.085927 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.085927 y $0.026121.
¿Cuánto será CONX en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de CONX, se espera que el valor de CONX en 2030 aumente en un 224.23% , alcanzando $0.06423 en el mejor escenario. Se pronostica que el precio oscile entre $0.06423 y $0.022215 durante el transcurso de 2030.
¿Cuánto será CONX en 2031?
Nuestra simulación experimental indica que el precio de CONX podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.058634 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.058634 y $0.026265 durante el año.
¿Cuánto será CONX en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de CONX, CONX podría experimentar un 449.04% aumento en valor, alcanzando $0.108764 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.108764 y $0.040091 a lo largo del año.
¿Cuánto será CONX en 2033?
Según nuestra predicción experimental de precios de CONX, se anticipa que el valor de CONX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.2897094. A lo largo del año, el precio de CONX podría oscilar entre $0.2897094 y $0.093164.
¿Cuánto será CONX en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de CONX sugieren que CONX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.167784 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.167784 y $0.074899.
¿Cuánto será CONX en 2035?
Basado en nuestra predicción experimental para el precio de CONX, CONX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.197691 en 2035. El rango de precios esperado para el año está entre $0.197691 y $0.088554.
¿Cuánto será CONX en 2036?
Nuestra reciente simulación de predicción de precios de CONX sugiere que el valor de CONX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.409018 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.409018 y $0.146585.
¿Cuánto será CONX en 2037?
Según la simulación experimental, el valor de CONX podría aumentar en un 4830.69% en 2037, con un máximo de $0.976775 bajo condiciones favorables. Se espera que el precio caiga entre $0.976775 y $0.380677 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Banana Gun
Predicción de precios de Dora Factory
Predicción de precios de Automata
Predicción de precios de Storm
Predicción de precios de Adventure Gold
Predicción de precios de Star Atlas
Predicción de precios de Radio Caca
Predicción de precios de CoinEx Token
Predicción de precios de Blendr Network
Predicción de precios de Access Protocol
Predicción de precios de Bancor Network Token
Predicción de precios de Gitcoin
Predicción de precios de Wexo
Predicción de precios de Origin Protocol
Predicción de precios de Euler
Predicción de precios de Polkastarter
Predicción de precios de ArbDoge AI
Predicción de precios de PhoenixPredicción de precios de Opulous
Predicción de precios de Mainframe
Predicción de precios de Frontier Token
Predicción de precios de GamerCoin
Predicción de precios de BetProtocol
Predicción de precios de Shrapnel
Predicción de precios de LeverFi
¿Cómo leer y predecir los movimientos de precio de CONX?
Los traders de CONX utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de CONX
Las medias móviles son herramientas populares para la predicción de precios de CONX. Una media móvil simple (SMA) calcula el precio de cierre promedio de CONX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CONX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CONX.
¿Cómo leer gráficos de CONX y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de CONX en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CONX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de CONX?
La acción del precio de CONX está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CONX. La capitalización de mercado de CONX puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CONX, grandes poseedores de CONX, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de CONX.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


