Predicción del precio de CONX - Pronóstico de CONX
Predicción de precio de CONX hasta $0.020279 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.006793 | $0.020279 |
| 2027 | $0.00654 | $0.01718 |
| 2028 | $0.0118028 | $0.0289088 |
| 2029 | $0.025927 | $0.085289 |
| 2030 | $0.02205 | $0.063753 |
| 2031 | $0.02607 | $0.058199 |
| 2032 | $0.039794 | $0.107957 |
| 2033 | $0.092472 | $0.287559 |
| 2034 | $0.074343 | $0.166539 |
| 2035 | $0.087897 | $0.196224 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en CONX hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.68, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de CONX para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'CONX'
'name_with_ticker' => 'CONX <small>CONX</small>'
'name_lang' => 'CONX'
'name_lang_with_ticker' => 'CONX <small>CONX</small>'
'name_with_lang' => 'CONX'
'name_with_lang_with_ticker' => 'CONX <small>CONX</small>'
'image' => '/uploads/coins/xpla.png?1762828636'
'price_for_sd' => 0.01966
'ticker' => 'CONX'
'marketcap' => '$17.36M'
'low24h' => '$0.01901'
'high24h' => '$0.02038'
'volume24h' => '$456.91K'
'current_supply' => '884.95M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01966'
'change_24h_pct' => '0.9695%'
'ath_price' => '$1.4'
'ath_days' => 1027
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mar. 2023'
'ath_pct' => '-98.60%'
'fdv' => '$39.24M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.969528'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019831'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017378'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006793'
'current_year_max_price_prediction' => '$0.020279'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.02205'
'grand_prediction_max_price' => '$0.063753'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020035746160188
107 => 0.020110552363375
108 => 0.020279094558853
109 => 0.018838919951842
110 => 0.019485516069085
111 => 0.019865330710102
112 => 0.018149314344212
113 => 0.019831410583962
114 => 0.018813849716034
115 => 0.018468474274208
116 => 0.018933476806872
117 => 0.018752264867663
118 => 0.018596469483453
119 => 0.018509532982159
120 => 0.018850979521691
121 => 0.018835050632505
122 => 0.018276377821913
123 => 0.017547611914913
124 => 0.017792209674228
125 => 0.017703345015153
126 => 0.017381288026895
127 => 0.017598315551672
128 => 0.016642636167672
129 => 0.014998439459392
130 => 0.016084646167989
131 => 0.016042828391273
201 => 0.016021741971968
202 => 0.01683799629293
203 => 0.016759532274161
204 => 0.016617119311773
205 => 0.017378672501159
206 => 0.017100695342697
207 => 0.017957355445421
208 => 0.018521607194376
209 => 0.018378494699209
210 => 0.018909176196367
211 => 0.017797844712585
212 => 0.018166984452617
213 => 0.018243063641432
214 => 0.017369275053015
215 => 0.016772369958013
216 => 0.016732563193392
217 => 0.015697612017247
218 => 0.01625047458171
219 => 0.01673697075943
220 => 0.01650397684393
221 => 0.016430217930779
222 => 0.016807036221715
223 => 0.016836318230151
224 => 0.016168685334638
225 => 0.0163075073548
226 => 0.016886418256112
227 => 0.016292920285419
228 => 0.015139850675704
301 => 0.014853873470061
302 => 0.014815718839222
303 => 0.014040125976378
304 => 0.014872983834395
305 => 0.014509419060168
306 => 0.015657915825777
307 => 0.015001900632773
308 => 0.014973621128963
309 => 0.014930872511254
310 => 0.014263287694866
311 => 0.014409446342427
312 => 0.014895299947508
313 => 0.015068657987334
314 => 0.0150505753235
315 => 0.014892918999787
316 => 0.014965093257452
317 => 0.014732594826335
318 => 0.014650494791272
319 => 0.014391364497217
320 => 0.014010514551528
321 => 0.014063474072365
322 => 0.013308910675146
323 => 0.01289778448863
324 => 0.012783990178758
325 => 0.012631819671807
326 => 0.012801178242429
327 => 0.013306773091847
328 => 0.012696918435518
329 => 0.011651365403571
330 => 0.011714204922327
331 => 0.011855386663751
401 => 0.011592295422619
402 => 0.011343301642462
403 => 0.011559781532804
404 => 0.011116766929887
405 => 0.011908922861986
406 => 0.011887497264014
407 => 0.012182764008906
408 => 0.012367400363971
409 => 0.011941873342277
410 => 0.011834854447068
411 => 0.011895817273516
412 => 0.010888237548697
413 => 0.012100423249322
414 => 0.012110906281598
415 => 0.012021144194817
416 => 0.012666595658365
417 => 0.014028699567812
418 => 0.013516221286575
419 => 0.013317774206342
420 => 0.012940526161755
421 => 0.013443186782395
422 => 0.013404590289457
423 => 0.013230042311106
424 => 0.013124475149177
425 => 0.013318985881898
426 => 0.013100373116838
427 => 0.013061104257156
428 => 0.012823177692426
429 => 0.012738248733786
430 => 0.012675370713928
501 => 0.012606148192332
502 => 0.012758835825796
503 => 0.012412825560635
504 => 0.011995571100654
505 => 0.011960880907062
506 => 0.012056663581562
507 => 0.012014286878277
508 => 0.01196067802371
509 => 0.01185832412084
510 => 0.011827957904303
511 => 0.011926633376453
512 => 0.011815234521533
513 => 0.011979609600177
514 => 0.011934908674074
515 => 0.011685212934583
516 => 0.011373999593973
517 => 0.011371229142449
518 => 0.011304178738707
519 => 0.011218779968446
520 => 0.011195023984218
521 => 0.011541550200251
522 => 0.012258849096782
523 => 0.012118026159885
524 => 0.012219785163908
525 => 0.012720338749114
526 => 0.012879449681679
527 => 0.012766516510493
528 => 0.012611926620359
529 => 0.012618727790968
530 => 0.013147008243098
531 => 0.013179956446895
601 => 0.013263205928398
602 => 0.013370205038429
603 => 0.012784738921609
604 => 0.012591152389516
605 => 0.012499420350839
606 => 0.012216921176479
607 => 0.012521572316377
608 => 0.012344065143621
609 => 0.012368016925734
610 => 0.012352418296211
611 => 0.012360936202705
612 => 0.011908701438259
613 => 0.012073472017664
614 => 0.011799508971623
615 => 0.011432703206771
616 => 0.011431473545228
617 => 0.011521248736523
618 => 0.011467846939837
619 => 0.011324144078042
620 => 0.011344556391302
621 => 0.011165723048303
622 => 0.011366269997024
623 => 0.011372020965922
624 => 0.011294799466798
625 => 0.01160376971145
626 => 0.011730355072779
627 => 0.011679526227811
628 => 0.011726788785517
629 => 0.012123877988691
630 => 0.012188620855025
701 => 0.012217375359576
702 => 0.012178848132719
703 => 0.011734046847204
704 => 0.011753775675657
705 => 0.011609018622748
706 => 0.011486714167161
707 => 0.011491605703982
708 => 0.01155448609262
709 => 0.011829088437687
710 => 0.012406972884188
711 => 0.012428903176505
712 => 0.012455483330545
713 => 0.012347368485951
714 => 0.012314760014301
715 => 0.012357779005367
716 => 0.012574802019752
717 => 0.013133044133925
718 => 0.012935724087039
719 => 0.012775299817452
720 => 0.012916035151952
721 => 0.012894370050326
722 => 0.012711494789612
723 => 0.012706362090128
724 => 0.01235536599606
725 => 0.012225610731877
726 => 0.012117177521113
727 => 0.011998771285679
728 => 0.011928576100301
729 => 0.012036427808183
730 => 0.012061094769839
731 => 0.01182527512563
801 => 0.011793133779508
802 => 0.01198570919149
803 => 0.011900963932611
804 => 0.011988126532949
805 => 0.012008349003894
806 => 0.012005092720309
807 => 0.011916608937109
808 => 0.011973005861896
809 => 0.011839610322042
810 => 0.011694562707813
811 => 0.01160203136672
812 => 0.011521285499116
813 => 0.01156608799944
814 => 0.011406375266397
815 => 0.011355279948714
816 => 0.011953899852749
817 => 0.012396106812109
818 => 0.012389676947787
819 => 0.012350536802352
820 => 0.012292382485524
821 => 0.012570547669256
822 => 0.012473640481332
823 => 0.012544148557413
824 => 0.01256209582199
825 => 0.012616416786495
826 => 0.012635831862261
827 => 0.012577146018659
828 => 0.01238018915966
829 => 0.01188939139313
830 => 0.011660923707927
831 => 0.01158552556638
901 => 0.011588266145624
902 => 0.011512668735595
903 => 0.011534935560887
904 => 0.011504925242462
905 => 0.011448092959641
906 => 0.011562578766125
907 => 0.011575772188813
908 => 0.011549049833576
909 => 0.011555343915598
910 => 0.011334094227504
911 => 0.011350915360761
912 => 0.011257253153261
913 => 0.011239692618469
914 => 0.011002922714011
915 => 0.010583450507918
916 => 0.010815878829246
917 => 0.010535138101449
918 => 0.010428817333916
919 => 0.010932123311145
920 => 0.010881605350566
921 => 0.010795140561684
922 => 0.010667241118087
923 => 0.010619801970332
924 => 0.010331576725976
925 => 0.010314546840918
926 => 0.010457399054756
927 => 0.010391477673314
928 => 0.01029889908739
929 => 0.0099635888337137
930 => 0.0095865890911715
1001 => 0.009597968343663
1002 => 0.0097178849474361
1003 => 0.010066558645864
1004 => 0.0099303257997718
1005 => 0.0098314873068403
1006 => 0.0098129778281884
1007 => 0.010044662705735
1008 => 0.010372545346946
1009 => 0.010526380546241
1010 => 0.010373934535784
1011 => 0.010198812767246
1012 => 0.010209471617861
1013 => 0.010280380175752
1014 => 0.010287831662593
1015 => 0.010173845394084
1016 => 0.010205931860991
1017 => 0.010157189583711
1018 => 0.0098580583180173
1019 => 0.0098526479819764
1020 => 0.0097792363452318
1021 => 0.0097770134700468
1022 => 0.0096521219625533
1023 => 0.0096346487773208
1024 => 0.0093866691088198
1025 => 0.0095498900775787
1026 => 0.0094404100212207
1027 => 0.0092753977525547
1028 => 0.0092469495752397
1029 => 0.0092460943886775
1030 => 0.0094155250925294
1031 => 0.0095479101811568
1101 => 0.0094423144736735
1102 => 0.0094182723779664
1103 => 0.0096749790608673
1104 => 0.0096423107955348
1105 => 0.0096140202884446
1106 => 0.010343187052674
1107 => 0.0097659946611941
1108 => 0.0095143058335192
1109 => 0.0092027931148595
1110 => 0.0093042232268386
1111 => 0.0093255960417509
1112 => 0.0085764641077622
1113 => 0.0082725413754414
1114 => 0.0081682465467955
1115 => 0.0081082233983973
1116 => 0.0081355767008456
1117 => 0.007862010595176
1118 => 0.0080458515425517
1119 => 0.0078089664190091
1120 => 0.0077692518571563
1121 => 0.0081928318024863
1122 => 0.0082517704773608
1123 => 0.0080003197795351
1124 => 0.0081617918337094
1125 => 0.0081032398222363
1126 => 0.0078130271345507
1127 => 0.0078019431445411
1128 => 0.0076563246193297
1129 => 0.0074284598246765
1130 => 0.0073243194990913
1201 => 0.0072700823133388
1202 => 0.007292461633242
1203 => 0.0072811459642804
1204 => 0.007207303570093
1205 => 0.0072853785238784
1206 => 0.0070859292797549
1207 => 0.0070065069836732
1208 => 0.0069706337751163
1209 => 0.0067936110910865
1210 => 0.0070753329037228
1211 => 0.0071308356498501
1212 => 0.0071864477535328
1213 => 0.0076705131480956
1214 => 0.0076463306089378
1215 => 0.0078649289855497
1216 => 0.0078564346546111
1217 => 0.0077940868565425
1218 => 0.007531051752206
1219 => 0.0076358928566446
1220 => 0.0073132082331077
1221 => 0.0075549854934831
1222 => 0.0074446484487075
1223 => 0.0075176804276554
1224 => 0.0073863623444791
1225 => 0.0074590391936996
1226 => 0.007143997409973
1227 => 0.0068498158250865
1228 => 0.0069682030825406
1229 => 0.0070969035706184
1230 => 0.0073759590210454
1231 => 0.0072097558969285
]
'min_raw' => 0.0067936110910865
'max_raw' => 0.020279094558853
'avg_raw' => 0.01353635282497
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006793'
'max' => '$0.020279'
'avg' => '$0.013536'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012869528908913
'max_diff' => 0.00061595455885278
'year' => 2026
]
1 => [
'items' => [
101 => 0.0072695288251969
102 => 0.0070692995213653
103 => 0.0066561692748876
104 => 0.0066585075472168
105 => 0.0065949564593279
106 => 0.0065400390407811
107 => 0.0072288463250581
108 => 0.0071431822508265
109 => 0.0070066877599753
110 => 0.0071893910600551
111 => 0.0072377007124874
112 => 0.0072390760203768
113 => 0.0073723716318603
114 => 0.0074435115236036
115 => 0.0074560502378613
116 => 0.0076657937625729
117 => 0.0077360970254722
118 => 0.0080256662156645
119 => 0.007437475800816
120 => 0.0074253624062916
121 => 0.0071919620701649
122 => 0.00704393588708
123 => 0.0072020975495626
124 => 0.0073422071913023
125 => 0.0071963156672878
126 => 0.007215366020386
127 => 0.007019518569172
128 => 0.0070895248175019
129 => 0.0071498236294237
130 => 0.0071165301696808
131 => 0.0070666882490241
201 => 0.0073307197984689
202 => 0.0073158221037013
203 => 0.0075616943526034
204 => 0.0077533693531158
205 => 0.0080968852200388
206 => 0.0077384085050175
207 => 0.0077253441887063
208 => 0.0078530499762311
209 => 0.0077360774743816
210 => 0.007810000057797
211 => 0.0080849751490119
212 => 0.0080907849393892
213 => 0.0079934634650774
214 => 0.0079875414445209
215 => 0.0080062330982428
216 => 0.0081157106979149
217 => 0.0080774558606826
218 => 0.0081217253268218
219 => 0.0081770849721069
220 => 0.0084060759370095
221 => 0.0084612848834023
222 => 0.0083271557662247
223 => 0.0083392661237258
224 => 0.0082890981519747
225 => 0.0082406365198661
226 => 0.0083495711915933
227 => 0.0085486514452911
228 => 0.0085474129773652
301 => 0.0085935957266559
302 => 0.0086223671968655
303 => 0.0084988589847225
304 => 0.0084184596801403
305 => 0.0084492898894578
306 => 0.0084985880655511
307 => 0.008433303155375
308 => 0.0080303344468557
309 => 0.0081525694112797
310 => 0.0081322235362151
311 => 0.0081032485359803
312 => 0.0082261567379236
313 => 0.0082143019420096
314 => 0.0078592047793563
315 => 0.0078819369475995
316 => 0.0078605871977985
317 => 0.0079295726071533
318 => 0.0077323520358856
319 => 0.0077930157553067
320 => 0.0078310634714406
321 => 0.0078534738685398
322 => 0.0079344355898152
323 => 0.0079249356662802
324 => 0.0079338450612298
325 => 0.0080538899207792
326 => 0.0086610356259592
327 => 0.0086940812271007
328 => 0.0085313526012194
329 => 0.0085963594775787
330 => 0.0084715604904098
331 => 0.0085553388865769
401 => 0.0086126579374938
402 => 0.0083536441682197
403 => 0.0083383070537888
404 => 0.0082129929768063
405 => 0.0082803296636246
406 => 0.0081731921532176
407 => 0.0081994799507605
408 => 0.0081259769771017
409 => 0.0082582676953914
410 => 0.0084061892743387
411 => 0.0084435601067809
412 => 0.0083452535357804
413 => 0.0082740730996572
414 => 0.0081491037021182
415 => 0.0083569305953502
416 => 0.008417705512341
417 => 0.0083566113705839
418 => 0.0083424545230054
419 => 0.008315627322425
420 => 0.0083481460404289
421 => 0.008417374519091
422 => 0.0083847276470032
423 => 0.0084062914811811
424 => 0.0083241123818244
425 => 0.0084988998710799
426 => 0.0087765044689177
427 => 0.0087773970130927
428 => 0.0087447499650261
429 => 0.0087313914963477
430 => 0.0087648893488526
501 => 0.0087830605596826
502 => 0.0088913864722277
503 => 0.0090076244922833
504 => 0.0095500566132615
505 => 0.0093977438442681
506 => 0.0098790218914312
507 => 0.010259650340604
508 => 0.010373784169646
509 => 0.010268786417339
510 => 0.0099095947785637
511 => 0.0098919711231511
512 => 0.01042875507828
513 => 0.010277089024694
514 => 0.010259048830217
515 => 0.010067131640374
516 => 0.010180578468977
517 => 0.010155765983397
518 => 0.010116598261041
519 => 0.010333046907242
520 => 0.010738219450426
521 => 0.010675069509887
522 => 0.010627931008716
523 => 0.010421383818395
524 => 0.010545771360953
525 => 0.010501479339535
526 => 0.01069178597196
527 => 0.010579052538719
528 => 0.01027594000517
529 => 0.01032421167521
530 => 0.010316915509392
531 => 0.010467070084902
601 => 0.0104219974084
602 => 0.010308114345915
603 => 0.010736834614721
604 => 0.010708995905133
605 => 0.010748464830515
606 => 0.010765840272085
607 => 0.011026794744809
608 => 0.011133699442672
609 => 0.011157968680718
610 => 0.011259519875382
611 => 0.011155441994483
612 => 0.011571827724348
613 => 0.011848699937928
614 => 0.012170301261714
615 => 0.012640247234052
616 => 0.012816951266895
617 => 0.012785031264978
618 => 0.013141338937786
619 => 0.013781615905547
620 => 0.012914449546382
621 => 0.013827577828227
622 => 0.013538491956768
623 => 0.012853074555971
624 => 0.0128089417559
625 => 0.013273114377579
626 => 0.014302604577505
627 => 0.014044728958804
628 => 0.014303026369635
629 => 0.014001708719626
630 => 0.013986745758599
701 => 0.014288392043928
702 => 0.014993205031483
703 => 0.014658374800615
704 => 0.014178313560926
705 => 0.014532783309732
706 => 0.014225708808689
707 => 0.013533784013099
708 => 0.014044531766179
709 => 0.013703009288953
710 => 0.013802683704141
711 => 0.014520513153635
712 => 0.014434142015131
713 => 0.014545914266107
714 => 0.014348639168723
715 => 0.014164353120338
716 => 0.013820369525766
717 => 0.0137185329416
718 => 0.013746676909767
719 => 0.013718518994847
720 => 0.013526063335056
721 => 0.013484502553648
722 => 0.013415232763816
723 => 0.013436702368179
724 => 0.013306454897701
725 => 0.013552258784993
726 => 0.01359788215249
727 => 0.013776757723318
728 => 0.013795329178478
729 => 0.014293495097099
730 => 0.014019113680461
731 => 0.014203192423693
801 => 0.014186726688282
802 => 0.012867929629413
803 => 0.01304964822828
804 => 0.01333234534168
805 => 0.01320499067528
806 => 0.013024940973394
807 => 0.012879541185466
808 => 0.012659245638864
809 => 0.012969307390305
810 => 0.013377005622059
811 => 0.01380566907844
812 => 0.014320680134139
813 => 0.014205735661897
814 => 0.013796041304988
815 => 0.013814419894557
816 => 0.013928029103564
817 => 0.013780894855415
818 => 0.013737502093234
819 => 0.013922067604382
820 => 0.013923338605621
821 => 0.013754042871358
822 => 0.013565901643516
823 => 0.013565113324902
824 => 0.013531635410636
825 => 0.014007664366203
826 => 0.014269432159808
827 => 0.014299443415485
828 => 0.014267412163184
829 => 0.01427973972092
830 => 0.01412742280948
831 => 0.014475574100854
901 => 0.014795072154413
902 => 0.014709439850979
903 => 0.014581064854782
904 => 0.014478807986933
905 => 0.014685351382684
906 => 0.0146761543304
907 => 0.014792281617639
908 => 0.014787013413106
909 => 0.014747964174176
910 => 0.01470944124555
911 => 0.014862180303117
912 => 0.014818193907452
913 => 0.014774139188765
914 => 0.014685780705998
915 => 0.014697790091285
916 => 0.014569437260842
917 => 0.014510055368452
918 => 0.013617094184001
919 => 0.013378465777167
920 => 0.013453543131686
921 => 0.013478260546176
922 => 0.013374409157711
923 => 0.013523305371537
924 => 0.013500100054332
925 => 0.013590378368919
926 => 0.013533976397394
927 => 0.013536291153979
928 => 0.013702157326066
929 => 0.013750308981468
930 => 0.013725818660899
1001 => 0.013742970841946
1002 => 0.014138235614701
1003 => 0.014082041603871
1004 => 0.014052189655606
1005 => 0.014060458849287
1006 => 0.014161457473298
1007 => 0.014189731573701
1008 => 0.014069932223509
1009 => 0.014126430289611
1010 => 0.014366991884403
1011 => 0.014451174827972
1012 => 0.014719846373742
1013 => 0.014605709925843
1014 => 0.014815212315672
1015 => 0.015459151237376
1016 => 0.015973574205217
1017 => 0.015500489584562
1018 => 0.016445161853633
1019 => 0.017180724720294
1020 => 0.017152492592327
1021 => 0.017024230192649
1022 => 0.016186811424907
1023 => 0.01541620618962
1024 => 0.016060850190564
1025 => 0.016062493520695
1026 => 0.016007118029307
1027 => 0.015663185608181
1028 => 0.015995149926569
1029 => 0.016021500048645
1030 => 0.016006750987345
1031 => 0.01574305880646
1101 => 0.015340449584709
1102 => 0.015419118462929
1103 => 0.015547979690254
1104 => 0.015304018503659
1105 => 0.015226058122412
1106 => 0.015371001303719
1107 => 0.015838038434003
1108 => 0.015749747769884
1109 => 0.015747442143834
1110 => 0.016125187046
1111 => 0.015854803218501
1112 => 0.015420110729416
1113 => 0.015310345143032
1114 => 0.014920751258329
1115 => 0.015189845142179
1116 => 0.015199529352
1117 => 0.015052149381889
1118 => 0.015432069801733
1119 => 0.01542856876818
1120 => 0.01578924666313
1121 => 0.016478727333844
1122 => 0.016274813972231
1123 => 0.016037684918385
1124 => 0.016063467421414
1125 => 0.016346237842996
1126 => 0.016175268391087
1127 => 0.016236750198035
1128 => 0.016346144782918
1129 => 0.016412145252093
1130 => 0.016053970969589
1201 => 0.015970463410881
1202 => 0.015799636252935
1203 => 0.015755070636067
1204 => 0.015894205791788
1205 => 0.015857548593973
1206 => 0.015198715431664
1207 => 0.01512986370049
1208 => 0.015131975284787
1209 => 0.014958844333028
1210 => 0.014694778075405
1211 => 0.01538872843386
1212 => 0.015332994508247
1213 => 0.015271468567834
1214 => 0.015279005144472
1215 => 0.015580225474918
1216 => 0.015405502471268
1217 => 0.015870032213008
1218 => 0.015774538863148
1219 => 0.015676596469194
1220 => 0.015663057846952
1221 => 0.015625358381332
1222 => 0.015496072886368
1223 => 0.015339952882345
1224 => 0.015236868932806
1225 => 0.014055206172669
1226 => 0.014274515907535
1227 => 0.014526811766786
1228 => 0.014613903286387
1229 => 0.014464927215559
1230 => 0.015501955369664
1231 => 0.015691430406471
]
'min_raw' => 0.0065400390407811
'max_raw' => 0.017180724720294
'avg_raw' => 0.011860381880537
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00654'
'max' => '$0.01718'
'avg' => '$0.01186'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025357205030544
'max_diff' => -0.0030983698385592
'year' => 2027
]
2 => [
'items' => [
101 => 0.015117498160832
102 => 0.015010138871172
103 => 0.015508993826821
104 => 0.015208123306026
105 => 0.015343605283118
106 => 0.015050767353326
107 => 0.015645791418581
108 => 0.015641258332141
109 => 0.015409780531529
110 => 0.015605423983515
111 => 0.015571426119184
112 => 0.015310088252397
113 => 0.015654076295098
114 => 0.015654246908875
115 => 0.015431454558548
116 => 0.015171281868881
117 => 0.015124769136974
118 => 0.015089728041588
119 => 0.015334987321711
120 => 0.015554886025363
121 => 0.015964062995349
122 => 0.016066939807408
123 => 0.016468474853773
124 => 0.016229380284049
125 => 0.016335367810015
126 => 0.016450432262301
127 => 0.016505598392082
128 => 0.016415708143982
129 => 0.017039457349405
130 => 0.017092120893525
131 => 0.01710977852433
201 => 0.016899453801747
202 => 0.017086271382515
203 => 0.016998865623221
204 => 0.017226271126884
205 => 0.017261931213517
206 => 0.017231728388783
207 => 0.017243047463137
208 => 0.016710787553208
209 => 0.016683187068983
210 => 0.016306852508141
211 => 0.016460211623409
212 => 0.016173514108109
213 => 0.016264428843523
214 => 0.016304503192625
215 => 0.016283570626853
216 => 0.016468882317688
217 => 0.016311329523801
218 => 0.015895521796656
219 => 0.015479600782974
220 => 0.015474379233449
221 => 0.015364874572163
222 => 0.015285722758831
223 => 0.01530097020614
224 => 0.015354704199213
225 => 0.015282599641471
226 => 0.015297986804659
227 => 0.015553516237715
228 => 0.015604760843162
229 => 0.015430611651294
301 => 0.014731377516334
302 => 0.014559783705719
303 => 0.014683121933936
304 => 0.014624174204848
305 => 0.011802849953311
306 => 0.012465678236916
307 => 0.01207184817832
308 => 0.01225334318857
309 => 0.011851344680543
310 => 0.012043199439121
311 => 0.012007770870625
312 => 0.013073579136146
313 => 0.013056938006052
314 => 0.013064903234399
315 => 0.012684702132087
316 => 0.013290372811655
317 => 0.013588747967623
318 => 0.01353352666725
319 => 0.013547424678858
320 => 0.013308610793127
321 => 0.013067215474834
322 => 0.012799470916374
323 => 0.013296907211765
324 => 0.013241600787238
325 => 0.013368453826479
326 => 0.013691076821521
327 => 0.013738584283066
328 => 0.013802434793157
329 => 0.013779548930478
330 => 0.014324783028079
331 => 0.014258751581289
401 => 0.014417868369508
402 => 0.014090553063921
403 => 0.013720164726594
404 => 0.013790563440613
405 => 0.013783783478342
406 => 0.013697466776958
407 => 0.013619543918428
408 => 0.013489824313606
409 => 0.013900276338153
410 => 0.01388361273553
411 => 0.01415337709268
412 => 0.014105693622203
413 => 0.013787251736229
414 => 0.013798624950485
415 => 0.013875115282131
416 => 0.014139849193312
417 => 0.01421844024261
418 => 0.014182033737263
419 => 0.014268205235
420 => 0.014336311673317
421 => 0.014276758355068
422 => 0.01511990775464
423 => 0.014769773339767
424 => 0.014940426417357
425 => 0.014981126170816
426 => 0.014876874608154
427 => 0.014899483039127
428 => 0.014933728651622
429 => 0.015141661304712
430 => 0.01568733675222
501 => 0.015929012693382
502 => 0.016656106686451
503 => 0.01590894487076
504 => 0.01586461138068
505 => 0.015995582964967
506 => 0.016422464109614
507 => 0.016768411182443
508 => 0.016883181784666
509 => 0.016898350614406
510 => 0.017113667893982
511 => 0.017237083743205
512 => 0.017087522712835
513 => 0.016960785399288
514 => 0.01650682807338
515 => 0.016559374869939
516 => 0.016921370190077
517 => 0.01743270990119
518 => 0.017871492569154
519 => 0.017717846171953
520 => 0.018890059725146
521 => 0.019006279910882
522 => 0.018990222039062
523 => 0.019254988918051
524 => 0.018729480582094
525 => 0.018504815587228
526 => 0.016988187445007
527 => 0.017414298090513
528 => 0.018033674938357
529 => 0.017951698090001
530 => 0.017501890067106
531 => 0.017871151349433
601 => 0.017749062021628
602 => 0.017652765103297
603 => 0.018093919954247
604 => 0.017608852073985
605 => 0.018028836015194
606 => 0.017490202266416
607 => 0.017718548015753
608 => 0.017588927924588
609 => 0.017672808009213
610 => 0.017182446748449
611 => 0.01744703378191
612 => 0.017171439057976
613 => 0.017171308390193
614 => 0.017165224621387
615 => 0.017489460591923
616 => 0.017500033915281
617 => 0.017260423043162
618 => 0.017225891373065
619 => 0.017353573056197
620 => 0.017204091245135
621 => 0.017274032843703
622 => 0.017206209704905
623 => 0.017190941287788
624 => 0.017069279942489
625 => 0.017016864889786
626 => 0.017037418182521
627 => 0.01696725919847
628 => 0.016924985872818
629 => 0.017156815392911
630 => 0.017032958232301
701 => 0.017137832506686
702 => 0.017018315034836
703 => 0.016604015406121
704 => 0.016365747308508
705 => 0.015583173715461
706 => 0.01580511061567
707 => 0.015952255010118
708 => 0.015903623788631
709 => 0.01600810247017
710 => 0.016014516612676
711 => 0.015980549528274
712 => 0.015941219995989
713 => 0.015922076554732
714 => 0.016064756081933
715 => 0.016147586349846
716 => 0.015967022918639
717 => 0.015924719433059
718 => 0.016107279031189
719 => 0.016218640280587
720 => 0.017040869177661
721 => 0.016979955805201
722 => 0.017132836416429
723 => 0.017115624405749
724 => 0.017275867642108
725 => 0.017537797609709
726 => 0.017005220748805
727 => 0.017097657676735
728 => 0.017074994276687
729 => 0.017322427335751
730 => 0.017323199794753
731 => 0.017174851315647
801 => 0.017255273432849
802 => 0.017210384013292
803 => 0.017291505261601
804 => 0.016979142269975
805 => 0.017359566676274
806 => 0.017575242800639
807 => 0.017578237463835
808 => 0.017680466235072
809 => 0.01778433658734
810 => 0.017983706683317
811 => 0.017778776263571
812 => 0.017410126388023
813 => 0.017436741718305
814 => 0.017220602431155
815 => 0.017224235771621
816 => 0.017204840715464
817 => 0.017263046738981
818 => 0.016991915218928
819 => 0.017055549244755
820 => 0.016966461235957
821 => 0.017097464016803
822 => 0.016956526680149
823 => 0.01707498334771
824 => 0.017126105318528
825 => 0.017314746491426
826 => 0.016928664225532
827 => 0.016141416349903
828 => 0.016306905397818
829 => 0.016062134097067
830 => 0.016084788612862
831 => 0.016130554340206
901 => 0.015982212644269
902 => 0.01601051156507
903 => 0.016009500528482
904 => 0.016000787961378
905 => 0.015962198557036
906 => 0.01590623628606
907 => 0.01612917274935
908 => 0.016167053998665
909 => 0.016251259323399
910 => 0.016501797252788
911 => 0.016476762605551
912 => 0.016517595153872
913 => 0.016428457930152
914 => 0.016088923433019
915 => 0.016107361789763
916 => 0.015877435185709
917 => 0.016245379583188
918 => 0.016158245493236
919 => 0.016102069578604
920 => 0.01608674145983
921 => 0.016337900424287
922 => 0.016413051122887
923 => 0.016366222250695
924 => 0.016270174867613
925 => 0.01645461423699
926 => 0.016503962431363
927 => 0.016515009672191
928 => 0.016841800871985
929 => 0.016533273670062
930 => 0.016607539234062
1001 => 0.017186937964345
1002 => 0.016661503267538
1003 => 0.016939837745029
1004 => 0.016926214720738
1005 => 0.017068601221097
1006 => 0.016914534871758
1007 => 0.016916444708805
1008 => 0.017042874275027
1009 => 0.016865326750961
1010 => 0.016821363487145
1011 => 0.016760628553055
1012 => 0.016893241059698
1013 => 0.016972736259882
1014 => 0.017613409190576
1015 => 0.01802731312204
1016 => 0.018009344460781
1017 => 0.018173544388762
1018 => 0.018099570817308
1019 => 0.017860690641839
1020 => 0.01826842997303
1021 => 0.018139404188103
1022 => 0.018150040917046
1023 => 0.018149645017464
1024 => 0.01823543588481
1025 => 0.018174645192678
1026 => 0.018054820498448
1027 => 0.018134365722462
1028 => 0.018370586599846
1029 => 0.019103823451387
1030 => 0.019514152507605
1031 => 0.019079121126978
1101 => 0.019379199948032
1102 => 0.019199259584416
1103 => 0.019166559067585
1104 => 0.019355030742858
1105 => 0.019543832312849
1106 => 0.019531806469052
1107 => 0.019394746224307
1108 => 0.019317324369825
1109 => 0.019903588590185
1110 => 0.020335538080995
1111 => 0.020306082021548
1112 => 0.020436091488324
1113 => 0.02081780330382
1114 => 0.020852702248461
1115 => 0.020848305783579
1116 => 0.020761805107959
1117 => 0.021137649961858
1118 => 0.021451186351341
1119 => 0.020741782700798
1120 => 0.021011914324149
1121 => 0.021133185112969
1122 => 0.021311246610378
1123 => 0.021611666203079
1124 => 0.021938001563114
1125 => 0.021984148961108
1126 => 0.021951405173875
1127 => 0.021736178231566
1128 => 0.022093258276507
1129 => 0.022302427392276
1130 => 0.022426982813966
1201 => 0.022742834639326
1202 => 0.021133934040075
1203 => 0.019995074228377
1204 => 0.019817224823445
1205 => 0.020178888581956
1206 => 0.020274256430861
1207 => 0.020235813770548
1208 => 0.018953923511878
1209 => 0.019810475936526
1210 => 0.020732054324474
1211 => 0.020767455903602
1212 => 0.021228817313904
1213 => 0.021379055500942
1214 => 0.021750511908257
1215 => 0.021727277208843
1216 => 0.021817720932862
1217 => 0.021796929486977
1218 => 0.022484974262154
1219 => 0.023243989824813
1220 => 0.0232177075294
1221 => 0.023108590062003
1222 => 0.02327064810838
1223 => 0.024054033510095
1224 => 0.0239819119358
1225 => 0.024051971901927
1226 => 0.024975627440215
1227 => 0.026176511028457
1228 => 0.025618580034978
1229 => 0.02682912975051
1230 => 0.027591106627955
1231 => 0.028908866847616
]
'min_raw' => 0.011802849953311
'max_raw' => 0.028908866847616
'avg_raw' => 0.020355858400463
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0118028'
'max' => '$0.0289088'
'avg' => '$0.020355'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052628109125302
'max_diff' => 0.011728142127322
'year' => 2028
]
3 => [
'items' => [
101 => 0.028743876778008
102 => 0.029256871161351
103 => 0.028448510118944
104 => 0.026592349768858
105 => 0.02629860528836
106 => 0.026886689177111
107 => 0.028332436033219
108 => 0.026841157463636
109 => 0.027142841176017
110 => 0.027055956246556
111 => 0.027051326517902
112 => 0.027228024430151
113 => 0.026971714892491
114 => 0.025927463726859
115 => 0.026406037882258
116 => 0.02622123741784
117 => 0.026426287310899
118 => 0.027532857014729
119 => 0.027043616171338
120 => 0.026528240685525
121 => 0.027174635915711
122 => 0.027997719169236
123 => 0.027946212098453
124 => 0.027846266852849
125 => 0.028409652969356
126 => 0.029340201777182
127 => 0.02959172538069
128 => 0.029777394962625
129 => 0.029802995661061
130 => 0.030066698765693
131 => 0.028648700710347
201 => 0.030899100040954
202 => 0.031287681839323
203 => 0.031214644566295
204 => 0.03164653688116
205 => 0.031519463206076
206 => 0.031335353388128
207 => 0.03201999457332
208 => 0.031235108702193
209 => 0.030121062022511
210 => 0.029509873980693
211 => 0.030314735697292
212 => 0.030806236661816
213 => 0.031131087534034
214 => 0.031229387211687
215 => 0.02875877586286
216 => 0.02742725337223
217 => 0.028280744022788
218 => 0.029322061521246
219 => 0.028642916139065
220 => 0.028669537352254
221 => 0.027701254513531
222 => 0.029407733067046
223 => 0.029159113495542
224 => 0.030448952272302
225 => 0.030141121896625
226 => 0.03119293534782
227 => 0.030915957616013
228 => 0.032065676695126
301 => 0.032524330763186
302 => 0.033294482327265
303 => 0.033861008952881
304 => 0.034193684223371
305 => 0.034173711647964
306 => 0.035491936807806
307 => 0.034714625486326
308 => 0.033738139268336
309 => 0.033720477713427
310 => 0.034226213762641
311 => 0.035286097779884
312 => 0.03556091028487
313 => 0.035714492984546
314 => 0.03547927573374
315 => 0.034635560004679
316 => 0.034271247830606
317 => 0.034581652358056
318 => 0.034202054294349
319 => 0.034857347048712
320 => 0.03575720396343
321 => 0.035571387068961
322 => 0.036192545087947
323 => 0.036835378289868
324 => 0.037754658640061
325 => 0.037994992564454
326 => 0.038392255402396
327 => 0.038801169356682
328 => 0.038932501498258
329 => 0.039183255306498
330 => 0.039181933710153
331 => 0.039937597188962
401 => 0.040771117407038
402 => 0.041085751993324
403 => 0.041809236875437
404 => 0.040570294368753
405 => 0.041510046492019
406 => 0.042357726430726
407 => 0.041347087462057
408 => 0.042740017831688
409 => 0.042794102161493
410 => 0.043610711329669
411 => 0.042782921494335
412 => 0.042291382532513
413 => 0.04371043709757
414 => 0.044397072901801
415 => 0.044190252609539
416 => 0.042616339973448
417 => 0.041700255310955
418 => 0.039302685049675
419 => 0.042142710591489
420 => 0.043526004188225
421 => 0.042612757577212
422 => 0.043073346047424
423 => 0.045586167394588
424 => 0.046542887070454
425 => 0.046343896065849
426 => 0.046377522269957
427 => 0.046893750841364
428 => 0.04918299261925
429 => 0.047811225881732
430 => 0.048859890153445
501 => 0.049416097901922
502 => 0.049932734656501
503 => 0.048664038071977
504 => 0.047013482456365
505 => 0.046490682207289
506 => 0.04252195319987
507 => 0.042315363619718
508 => 0.042199398628073
509 => 0.041468255759327
510 => 0.04089377774138
511 => 0.040436931492507
512 => 0.039238030509625
513 => 0.03964262439724
514 => 0.037731826460609
515 => 0.038954287265945
516 => 0.035904607621253
517 => 0.038444471451072
518 => 0.037062139041939
519 => 0.037990338076961
520 => 0.03798709967797
521 => 0.036277990968722
522 => 0.035292212733417
523 => 0.035920388992016
524 => 0.036593843805928
525 => 0.036703109583711
526 => 0.037576261328917
527 => 0.03781993921267
528 => 0.037081583848666
529 => 0.035841409789177
530 => 0.036129473937838
531 => 0.035286375122639
601 => 0.03380887687833
602 => 0.034870041912037
603 => 0.035232370310677
604 => 0.035392395172911
605 => 0.033939445341453
606 => 0.033482896959333
607 => 0.033239834431505
608 => 0.035653852211298
609 => 0.035786097554613
610 => 0.03510951168061
611 => 0.038167743987605
612 => 0.037475571828253
613 => 0.038248897716546
614 => 0.036103335135692
615 => 0.036185298515664
616 => 0.035169554805722
617 => 0.03573830341127
618 => 0.035336330228492
619 => 0.035692354144425
620 => 0.035905753411694
621 => 0.036921330448088
622 => 0.038456067709484
623 => 0.03676963710536
624 => 0.036034835141013
625 => 0.036490702147011
626 => 0.037704736057436
627 => 0.039544059576982
628 => 0.038455143033575
629 => 0.038938385704537
630 => 0.039043952730172
701 => 0.038241025984945
702 => 0.039573664631361
703 => 0.040287836508312
704 => 0.041020429077018
705 => 0.041656518677646
706 => 0.040727815495021
707 => 0.041721661024802
708 => 0.040920796965151
709 => 0.04020233911184
710 => 0.040203428715836
711 => 0.03975272960946
712 => 0.038879443299113
713 => 0.038718395904869
714 => 0.039556184787769
715 => 0.040228012132952
716 => 0.040283347050937
717 => 0.040655305188966
718 => 0.040875426183578
719 => 0.043032911170756
720 => 0.043900669480251
721 => 0.044961747915278
722 => 0.045375097764824
723 => 0.046619132617837
724 => 0.045614473438458
725 => 0.045397109105397
726 => 0.042379487472688
727 => 0.042873622845994
728 => 0.043664781255628
729 => 0.042392533383461
730 => 0.043199481827258
731 => 0.043358790543568
801 => 0.042349302887596
802 => 0.042888513862038
803 => 0.041456529378834
804 => 0.038487281058056
805 => 0.039576970253547
806 => 0.040379348286845
807 => 0.03923425590083
808 => 0.041286789681567
809 => 0.040087741819758
810 => 0.039707701212013
811 => 0.038225027306937
812 => 0.03892479231678
813 => 0.039871234512263
814 => 0.03928644327117
815 => 0.040499972903286
816 => 0.042218654498893
817 => 0.043443489353181
818 => 0.043537516964458
819 => 0.042750030210713
820 => 0.044011982759263
821 => 0.044021174705874
822 => 0.042597687075882
823 => 0.041725808828524
824 => 0.041527716256277
825 => 0.042022590340087
826 => 0.042623458836628
827 => 0.043570860984184
828 => 0.044143356259996
829 => 0.04563612031128
830 => 0.046040019462659
831 => 0.046483782175452
901 => 0.047076786011096
902 => 0.04778883915885
903 => 0.046230907408773
904 => 0.046292806941552
905 => 0.044842082466914
906 => 0.043291775310828
907 => 0.044468265193782
908 => 0.046006369213853
909 => 0.045653526452195
910 => 0.045613824433585
911 => 0.045680592216465
912 => 0.045414560296942
913 => 0.044211307784543
914 => 0.043607041905575
915 => 0.04438669905411
916 => 0.044801052130009
917 => 0.045443677615343
918 => 0.045364460460098
919 => 0.047019794697379
920 => 0.047663007527278
921 => 0.047498446160761
922 => 0.04752872941259
923 => 0.048693235517272
924 => 0.049988405804625
925 => 0.051201503691504
926 => 0.052435518965803
927 => 0.050947865388199
928 => 0.050192526647209
929 => 0.050971843421823
930 => 0.050558326971535
1001 => 0.052934515151837
1002 => 0.053099037265899
1003 => 0.05547505362075
1004 => 0.057730176072268
1005 => 0.056313774065185
1006 => 0.057649377361717
1007 => 0.05909394122025
1008 => 0.061880739275401
1009 => 0.060942243731164
1010 => 0.060223370852379
1011 => 0.059544039455495
1012 => 0.060957620251588
1013 => 0.062776169363257
1014 => 0.063167867424063
1015 => 0.063802567922746
1016 => 0.063135257955866
1017 => 0.063938959309191
1018 => 0.066776378250699
1019 => 0.066009682606114
1020 => 0.064920851538328
1021 => 0.067160721284036
1022 => 0.067971321437735
1023 => 0.07366053783099
1024 => 0.080843408537281
1025 => 0.077869652899605
1026 => 0.076023746812804
1027 => 0.07645757852868
1028 => 0.0790805197551
1029 => 0.079922925229032
1030 => 0.077632976756303
1031 => 0.078441825269903
1101 => 0.082898660104075
1102 => 0.085289609000227
1103 => 0.082042379251974
1104 => 0.073083401163545
1105 => 0.064822814213832
1106 => 0.067013893851974
1107 => 0.066765493418126
1108 => 0.071553806445975
1109 => 0.065991397168554
1110 => 0.066085053875192
1111 => 0.070972384145545
1112 => 0.069668528219467
1113 => 0.067556448604472
1114 => 0.064838234732389
1115 => 0.059813364985493
1116 => 0.055362697721807
1117 => 0.064091481153351
1118 => 0.06371508013952
1119 => 0.063169995691988
1120 => 0.064383022145673
1121 => 0.070273134281202
1122 => 0.070137348132045
1123 => 0.069273545929814
1124 => 0.069928732287003
1125 => 0.067441591268277
1126 => 0.068082584139951
1127 => 0.064821505694655
1128 => 0.066295649346595
1129 => 0.067551917030201
1130 => 0.067804131367046
1201 => 0.068372383146341
1202 => 0.063516733909025
1203 => 0.065696777862208
1204 => 0.066977349442209
1205 => 0.061191680456174
1206 => 0.066862985368699
1207 => 0.063432207858648
1208 => 0.062267750443188
1209 => 0.063835538947506
1210 => 0.063224570242649
1211 => 0.062699295227499
1212 => 0.062406182743675
1213 => 0.063557393590743
1214 => 0.063503688228733
1215 => 0.061620083842533
1216 => 0.059162998706271
1217 => 0.059987677129071
1218 => 0.059688063726666
1219 => 0.058602226105454
1220 => 0.059333949557616
1221 => 0.056111809791057
1222 => 0.050568285794942
1223 => 0.054230507549508
1224 => 0.054089515995688
1225 => 0.054018421660794
1226 => 0.056770480092975
1227 => 0.056505933175511
1228 => 0.056025777929864
1229 => 0.058593407677825
1230 => 0.057656188280326
1231 => 0.060544477626757
]
'min_raw' => 0.025927463726859
'max_raw' => 0.085289609000227
'avg_raw' => 0.055608536363543
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.025927'
'max' => '$0.085289'
'avg' => '$0.0556085'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014124613773548
'max_diff' => 0.056380742152611
'year' => 2029
]
4 => [
'items' => [
101 => 0.062446891793159
102 => 0.061964378023909
103 => 0.063753607742576
104 => 0.060006676054316
105 => 0.061251256460349
106 => 0.061507762757118
107 => 0.058561723525298
108 => 0.056549216322915
109 => 0.056415005036778
110 => 0.052925594888422
111 => 0.054789609624139
112 => 0.056429865453399
113 => 0.055644310200178
114 => 0.055395626874804
115 => 0.056666096051308
116 => 0.056764822387155
117 => 0.054513851467295
118 => 0.054981899600512
119 => 0.056933738122557
120 => 0.054932718277658
121 => 0.051045063583756
122 => 0.050080871468637
123 => 0.049952230466894
124 => 0.04733726497965
125 => 0.050145303396234
126 => 0.048919519376644
127 => 0.05279175640738
128 => 0.050579955382648
129 => 0.050484609061142
130 => 0.050340479111922
131 => 0.048089670294187
201 => 0.048582454378909
202 => 0.050220543729657
203 => 0.050805032464402
204 => 0.050744065500793
205 => 0.050212516198182
206 => 0.050455856746944
207 => 0.049671972053913
208 => 0.049395166053655
209 => 0.048521490175351
210 => 0.047237427993366
211 => 0.047415984715383
212 => 0.044871921539724
213 => 0.043485780897973
214 => 0.043102115437376
215 => 0.042589061948983
216 => 0.043160066194073
217 => 0.044864714528392
218 => 0.042808546975885
219 => 0.039283391930496
220 => 0.039495259755296
221 => 0.039971263853499
222 => 0.03908423336558
223 => 0.038244733451589
224 => 0.038974610516023
225 => 0.037480955851994
226 => 0.040151764883628
227 => 0.040079526984178
228 => 0.041075039429448
301 => 0.041697553791448
302 => 0.040262859728457
303 => 0.03990203805144
304 => 0.0401075784771
305 => 0.0367104530879
306 => 0.040797421809662
307 => 0.040832766084883
308 => 0.04053012694231
309 => 0.042706311615645
310 => 0.047298740045403
311 => 0.045570883740123
312 => 0.044901805553985
313 => 0.043629887433043
314 => 0.045324642810173
315 => 0.045194512039511
316 => 0.044606011343952
317 => 0.044250084287044
318 => 0.044905890802717
319 => 0.044168822602263
320 => 0.044036424900182
321 => 0.043234238875691
322 => 0.042947894962086
323 => 0.042735897328133
324 => 0.042502508763607
325 => 0.043017305780143
326 => 0.041850708013485
327 => 0.040443905469884
328 => 0.040326945060198
329 => 0.040649883034605
330 => 0.040507007020835
331 => 0.040326261024812
401 => 0.039981167695163
402 => 0.039878785876008
403 => 0.040211477119663
404 => 0.039835888102681
405 => 0.040390090156631
406 => 0.040239377863355
407 => 0.039397511244459
408 => 0.038348233738372
409 => 0.038338892967634
410 => 0.038112827850108
411 => 0.03782489993382
412 => 0.037744804974407
413 => 0.038913142305449
414 => 0.041331565615313
415 => 0.040856771251621
416 => 0.041199858838272
417 => 0.042887510198327
418 => 0.043423963816242
419 => 0.043043201744846
420 => 0.042521991137138
421 => 0.042544921758689
422 => 0.044326056186408
423 => 0.04443714335588
424 => 0.044717824795059
425 => 0.045078579764969
426 => 0.043104639876171
427 => 0.04245194936744
428 => 0.042142668394513
429 => 0.041190202704696
430 => 0.042217355292926
501 => 0.041618877466824
502 => 0.041699632572479
503 => 0.041647040703981
504 => 0.041675759420428
505 => 0.040151018338072
506 => 0.04070655385045
507 => 0.039782868313237
508 => 0.038546157067475
509 => 0.038542011177733
510 => 0.038844694503085
511 => 0.038664646617166
512 => 0.038180142385611
513 => 0.038248963924908
514 => 0.037646014823241
515 => 0.038322172862596
516 => 0.038341562655755
517 => 0.038081204980026
518 => 0.039122919731482
519 => 0.039549711115112
520 => 0.039378338115545
521 => 0.039537687128617
522 => 0.040876501101001
523 => 0.041094786195048
524 => 0.04119173401472
525 => 0.041061836779484
526 => 0.039562158190337
527 => 0.039628675312891
528 => 0.039140616802391
529 => 0.038728258791356
530 => 0.038744750949265
531 => 0.038956756569726
601 => 0.039882597548243
602 => 0.041830975306226
603 => 0.041904914817895
604 => 0.041994531663007
605 => 0.041630014916121
606 => 0.041520073177304
607 => 0.041665114709174
608 => 0.042396822954236
609 => 0.044278975217388
610 => 0.043613696902867
611 => 0.043072815277488
612 => 0.043547314283585
613 => 0.043474268880842
614 => 0.042857692171401
615 => 0.042840386916739
616 => 0.041656979079823
617 => 0.041219500147407
618 => 0.040853910006751
619 => 0.040454695117126
620 => 0.040218027148752
621 => 0.040581656711842
622 => 0.040664823095259
623 => 0.039869740700405
624 => 0.039761373907917
625 => 0.0404106553546
626 => 0.040124930797567
627 => 0.040418805590104
628 => 0.040486987062784
629 => 0.04047600827533
630 => 0.040177679022531
701 => 0.040367825191958
702 => 0.039918072815961
703 => 0.039429034657685
704 => 0.03911705878086
705 => 0.038844818450734
706 => 0.038995873208589
707 => 0.038457390578347
708 => 0.038285119147418
709 => 0.040303407948181
710 => 0.041794339585565
711 => 0.041772660849083
712 => 0.041640697116072
713 => 0.041444625776683
714 => 0.042382479114507
715 => 0.042055749764578
716 => 0.042293472665802
717 => 0.042353983121362
718 => 0.04253713004576
719 => 0.042602589329222
720 => 0.042404725910204
721 => 0.041740672108999
722 => 0.040085913172737
723 => 0.039315618420971
724 => 0.039061408322614
725 => 0.039070648376875
726 => 0.038815766430923
727 => 0.038890840587014
728 => 0.03878965870319
729 => 0.038598044693756
730 => 0.03898404158346
731 => 0.039028524129189
801 => 0.038938427842813
802 => 0.038959648779787
803 => 0.038213690009218
804 => 0.038270403634407
805 => 0.037954614962535
806 => 0.037895408393449
807 => 0.037097122129822
808 => 0.035682842300362
809 => 0.036466490613347
810 => 0.035519953648889
811 => 0.035161485758073
812 => 0.036858417000001
813 => 0.036688092168857
814 => 0.036396570096364
815 => 0.035965348192623
816 => 0.035805403793869
817 => 0.03483363225928
818 => 0.034776214812817
819 => 0.035257851025398
820 => 0.035035592485382
821 => 0.034723457319308
822 => 0.033592935388424
823 => 0.032321854435161
824 => 0.03236022037941
825 => 0.032764527581341
826 => 0.03394010529921
827 => 0.033480786747138
828 => 0.033147545867536
829 => 0.033085139867971
830 => 0.03386628160834
831 => 0.034971760825217
901 => 0.035490426940072
902 => 0.034976444572375
903 => 0.03438600930314
904 => 0.034421946362165
905 => 0.03466101951577
906 => 0.034686142723902
907 => 0.034301830061356
908 => 0.034410011824738
909 => 0.034245673833813
910 => 0.033237131886848
911 => 0.033218890561148
912 => 0.032971378102427
913 => 0.032963883523545
914 => 0.032542803086384
915 => 0.032483891022434
916 => 0.031647810256695
917 => 0.03219812114859
918 => 0.031829001494925
919 => 0.031272651110329
920 => 0.031176736094323
921 => 0.031173852773122
922 => 0.031745100220432
923 => 0.032191445789572
924 => 0.031835422489335
925 => 0.031754362885092
926 => 0.032619867389181
927 => 0.032509724051787
928 => 0.032414340631952
929 => 0.034872777286348
930 => 0.032926732840189
1001 => 0.032078146385331
1002 => 0.031027859505246
1003 => 0.031369838209408
1004 => 0.031441898147087
1005 => 0.028916147528923
1006 => 0.027891450817696
1007 => 0.027539813521283
1008 => 0.027337441285777
1009 => 0.027429664854728
1010 => 0.026507317629687
1011 => 0.027127150219129
1012 => 0.026328475486314
1013 => 0.026194575068245
1014 => 0.027622704427333
1015 => 0.027821420284639
1016 => 0.026973636701192
1017 => 0.02751805100546
1018 => 0.027320638810808
1019 => 0.026342166472273
1020 => 0.026304796026096
1021 => 0.025813833001585
1022 => 0.0250455709374
1023 => 0.024694454558844
1024 => 0.02451159010036
1025 => 0.024587043539888
1026 => 0.024548891971949
1027 => 0.024299927184435
1028 => 0.024563162342142
1029 => 0.023890705290478
1030 => 0.02362292747415
1031 => 0.023501978446913
1101 => 0.022905134108378
1102 => 0.02385497886887
1103 => 0.024042110252516
1104 => 0.024229610342795
1105 => 0.02586167061693
1106 => 0.025780137497789
1107 => 0.026517157186587
1108 => 0.026488517956773
1109 => 0.0262783080026
1110 => 0.025391466783805
1111 => 0.025744945887192
1112 => 0.024656992149816
1113 => 0.025472161063521
1114 => 0.025100152013574
1115 => 0.025346384429527
1116 => 0.024903636343762
1117 => 0.025148671415044
1118 => 0.024086486045695
1119 => 0.023094632293148
1120 => 0.023493783197189
1121 => 0.023927705878324
1122 => 0.024868560812468
1123 => 0.024308195375577
1124 => 0.024509723976446
1125 => 0.023834636899014
1126 => 0.022441739429182
1127 => 0.022449623077593
1128 => 0.02223535614778
1129 => 0.022050198236938
1130 => 0.024372560086867
1201 => 0.02408373767972
1202 => 0.023623536974074
1203 => 0.02423953390623
1204 => 0.024402413272278
1205 => 0.024407050218848
1206 => 0.024856465679367
1207 => 0.025096318791208
1208 => 0.025138593941753
1209 => 0.025845758879144
1210 => 0.026082791238426
1211 => 0.027059093980234
1212 => 0.025075968930429
1213 => 0.02503512777506
1214 => 0.024248202246318
1215 => 0.023749121635189
1216 => 0.024282374722744
1217 => 0.024754764162012
1218 => 0.024262880702976
1219 => 0.0243271102985
1220 => 0.023666796943099
1221 => 0.023902827897024
1222 => 0.024106129551347
1223 => 0.023993878327349
1224 => 0.023825832812003
1225 => 0.02471603361505
1226 => 0.024665804997017
1227 => 0.025494780450443
1228 => 0.026141026096992
1229 => 0.027299213825834
1230 => 0.026090584553095
1231 => 0.02604653729853
]
'min_raw' => 0.022050198236938
'max_raw' => 0.063753607742576
'avg_raw' => 0.042901902989757
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.02205'
'max' => '$0.063753'
'avg' => '$0.0429019'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0038772654899213
'max_diff' => -0.021536001257652
'year' => 2030
]
5 => [
'items' => [
101 => 0.026477106277304
102 => 0.026082725320559
103 => 0.026331960471654
104 => 0.027259058189833
105 => 0.027278646303716
106 => 0.026950520158306
107 => 0.026930553652537
108 => 0.02699357386807
109 => 0.027362685238846
110 => 0.02723370638425
111 => 0.027382963980134
112 => 0.0275696128893
113 => 0.028341671915108
114 => 0.028527812732436
115 => 0.028075587049276
116 => 0.028116417965109
117 => 0.027947273145735
118 => 0.027783881369597
119 => 0.028151162220902
120 => 0.028822375195583
121 => 0.028818199614504
122 => 0.028973907978114
123 => 0.029070912998686
124 => 0.028654496438378
125 => 0.028383424569678
126 => 0.028487370772889
127 => 0.028653583015476
128 => 0.02843347038277
129 => 0.027074833247621
130 => 0.027486956964349
131 => 0.027418359426065
201 => 0.027320668189804
202 => 0.027735061773832
203 => 0.027695092501733
204 => 0.026497857625755
205 => 0.026574500718096
206 => 0.02650251854605
207 => 0.026735107670097
208 => 0.026070164744568
209 => 0.026274696710002
210 => 0.026402977241354
211 => 0.026478535459818
212 => 0.026751503555665
213 => 0.026719473900203
214 => 0.026749512547309
215 => 0.027154252172545
216 => 0.029201286307119
217 => 0.029312701858537
218 => 0.028764050935029
219 => 0.028983226157309
220 => 0.028562457658882
221 => 0.02884492237078
222 => 0.029038177552835
223 => 0.028164894545964
224 => 0.028113184393857
225 => 0.027690679234161
226 => 0.027917709575066
227 => 0.027556487978627
228 => 0.027645119123398
301 => 0.027397298715894
302 => 0.02784332610885
303 => 0.028342054039826
304 => 0.028468052410553
305 => 0.028136604942879
306 => 0.027896615132831
307 => 0.027475272083943
308 => 0.028175974964485
309 => 0.028380881840289
310 => 0.028174898675898
311 => 0.028127167875888
312 => 0.028036718096116
313 => 0.02814635722425
314 => 0.028379765873437
315 => 0.028269694664861
316 => 0.028342398637331
317 => 0.028065326066288
318 => 0.028654634289586
319 => 0.02959059757293
320 => 0.029593606847932
321 => 0.029483535046031
322 => 0.029438496036224
323 => 0.029551436384689
324 => 0.029612701890676
325 => 0.029977930267895
326 => 0.030369834867992
327 => 0.032198682635272
328 => 0.031685149500472
329 => 0.033307812038243
330 => 0.03459112742926
331 => 0.034975937602445
401 => 0.034621930349832
402 => 0.033410890661741
403 => 0.033351471277073
404 => 0.03516127585885
405 => 0.034649923170197
406 => 0.034589099394992
407 => 0.033942037190206
408 => 0.034324531093448
409 => 0.034240874065962
410 => 0.034108817355433
411 => 0.034838589078062
412 => 0.036204656595652
413 => 0.035991742162136
414 => 0.035832811414332
415 => 0.035136423141501
416 => 0.035555804425697
417 => 0.035406470783115
418 => 0.036048102881121
419 => 0.035668014240153
420 => 0.034646049170651
421 => 0.03480880047641
422 => 0.034784200943955
423 => 0.035290457578744
424 => 0.035138491903042
425 => 0.034754527206812
426 => 0.036199987525388
427 => 0.036106127372372
428 => 0.03623919960993
429 => 0.036297782124299
430 => 0.037177608348348
501 => 0.037538045001042
502 => 0.037619870431535
503 => 0.037962257374423
504 => 0.037611351532489
505 => 0.039015225091852
506 => 0.039948719090535
507 => 0.041033020407168
508 => 0.042617476063487
509 => 0.043213246047297
510 => 0.043105625532252
511 => 0.04430694172773
512 => 0.046465680227246
513 => 0.0435419683037
514 => 0.046620644058521
515 => 0.045645970859565
516 => 0.043335038238464
517 => 0.043186241421771
518 => 0.04475123182326
519 => 0.04822222990902
520 => 0.047352784256271
521 => 0.048223652010637
522 => 0.047207738516305
523 => 0.04715728984852
524 => 0.048174311359779
525 => 0.050550637555791
526 => 0.049421734055321
527 => 0.047803174068903
528 => 0.048998293575291
529 => 0.047962970455769
530 => 0.045630097698789
531 => 0.047352119407566
601 => 0.046200652531261
602 => 0.046536711781113
603 => 0.048956923887335
604 => 0.048665717563627
605 => 0.049042565511484
606 => 0.048377438747345
607 => 0.047756105468774
608 => 0.046596340763508
609 => 0.046252991609987
610 => 0.046347880963612
611 => 0.046252944587536
612 => 0.045604066893727
613 => 0.045463941817529
614 => 0.045230393884846
615 => 0.045302780154915
616 => 0.044863641714613
617 => 0.045692386682095
618 => 0.045846209050936
619 => 0.046449300526674
620 => 0.046511915484365
621 => 0.048191516659828
622 => 0.047266420556934
623 => 0.04788705489171
624 => 0.047831539515171
625 => 0.043385123155724
626 => 0.043997800098992
627 => 0.044950933154101
628 => 0.044521548004715
629 => 0.043914497864136
630 => 0.043424272327648
701 => 0.042681530511735
702 => 0.04372692535454
703 => 0.04510150840748
704 => 0.046546777178995
705 => 0.048283172910208
706 => 0.047895629596876
707 => 0.046514316468611
708 => 0.046576281166496
709 => 0.046959322546605
710 => 0.046463249156384
711 => 0.046316947429105
712 => 0.046939222935893
713 => 0.046943508205311
714 => 0.04637271581739
715 => 0.04573838453212
716 => 0.045735726660874
717 => 0.045622853535573
718 => 0.047227818394547
719 => 0.048110386786733
720 => 0.048211571830567
721 => 0.048103576227082
722 => 0.048145139448671
723 => 0.047631592347326
724 => 0.048805408733339
725 => 0.049882618727554
726 => 0.04959390343787
727 => 0.049161078175336
728 => 0.048816312006038
729 => 0.04951268748521
730 => 0.049481678981319
731 => 0.049873210237992
801 => 0.049855448118595
802 => 0.049723790883211
803 => 0.049593908139764
804 => 0.050108878536253
805 => 0.049960575332236
806 => 0.04981204177238
807 => 0.049514134978739
808 => 0.049554625459703
809 => 0.049121874930553
810 => 0.048921664734452
811 => 0.045910983756514
812 => 0.04510643142237
813 => 0.045359559964864
814 => 0.045442896453533
815 => 0.045092754246652
816 => 0.045594768227167
817 => 0.045516529880068
818 => 0.045820909520727
819 => 0.045630746335871
820 => 0.045638550699309
821 => 0.046197780078906
822 => 0.046360126746934
823 => 0.046277555921277
824 => 0.046335385697205
825 => 0.047668048475052
826 => 0.047478586444199
827 => 0.047377938516426
828 => 0.047405818680259
829 => 0.047746342592611
830 => 0.047841670696154
831 => 0.047437758822858
901 => 0.047628245997291
902 => 0.048439316209604
903 => 0.048723144881316
904 => 0.049628989755927
905 => 0.049244170753084
906 => 0.049950522687379
907 => 0.052121607720285
908 => 0.053856020672228
909 => 0.052260982843975
910 => 0.055446011354059
911 => 0.057926012914364
912 => 0.057830826323821
913 => 0.057398380688312
914 => 0.054574964846158
915 => 0.051976815493449
916 => 0.054150277750239
917 => 0.054155818352508
918 => 0.053969116017101
919 => 0.052809523846678
920 => 0.053928764723132
921 => 0.054017605999419
922 => 0.053967878509501
923 => 0.053078821911245
924 => 0.051721396810833
925 => 0.051986634426237
926 => 0.05242109905097
927 => 0.051598566877536
928 => 0.051335718009142
929 => 0.051824404064529
930 => 0.053399052356772
1001 => 0.05310137421844
1002 => 0.053093600639236
1003 => 0.054367193950196
1004 => 0.053455575998188
1005 => 0.051989979921976
1006 => 0.051619897583895
1007 => 0.050306354601043
1008 => 0.051213623417979
1009 => 0.051246274407521
1010 => 0.050749372548548
1011 => 0.052030300769249
1012 => 0.052018496790192
1013 => 0.053234547494743
1014 => 0.055559179714058
1015 => 0.054871671578602
1016 => 0.05407217441774
1017 => 0.054159101926777
1018 => 0.055112482145544
1019 => 0.054536046701724
1020 => 0.054743336906372
1021 => 0.055112168386992
1022 => 0.055334693576821
1023 => 0.054127083976429
1024 => 0.053845532411934
1025 => 0.053269576722147
1026 => 0.053119320633403
1027 => 0.053588424525025
1028 => 0.053464832223268
1029 => 0.05124353021828
1030 => 0.051011391799552
1031 => 0.051018511153437
1101 => 0.050434788061963
1102 => 0.049544470237871
1103 => 0.051884172321469
1104 => 0.051696261500047
1105 => 0.051488822496338
1106 => 0.051514232590662
1107 => 0.052529817965291
1108 => 0.051940727159716
1109 => 0.053506921616422
1110 => 0.053184959120238
1111 => 0.052854739500903
1112 => 0.052809093090775
1113 => 0.052681986710345
1114 => 0.052246091637649
1115 => 0.051719722144135
1116 => 0.051372167411173
1117 => 0.047388108914312
1118 => 0.048127526997127
1119 => 0.048978160101327
1120 => 0.049271795240199
1121 => 0.048769512016226
1122 => 0.052265924840784
1123 => 0.052904753156102
1124 => 0.050969700519261
1125 => 0.050607731178587
1126 => 0.052289655490497
1127 => 0.05127524952353
1128 => 0.051732036468342
1129 => 0.050744712942759
1130 => 0.052750878122019
1201 => 0.052735594504599
1202 => 0.051955150938571
1203 => 0.052614776496331
1204 => 0.052500150323082
1205 => 0.051619031459185
1206 => 0.052778811161628
1207 => 0.052779386397891
1208 => 0.052028226433895
1209 => 0.051151036046009
1210 => 0.050994215122967
1211 => 0.050876071623382
1212 => 0.051702980409773
1213 => 0.052444384241974
1214 => 0.053823952964104
1215 => 0.054170809318592
1216 => 0.055524612761693
1217 => 0.054718488726819
1218 => 0.055075833070425
1219 => 0.055463780904852
1220 => 0.055649777362986
1221 => 0.055346706115577
1222 => 0.057449720110441
1223 => 0.057627278926291
1224 => 0.057686812861368
1225 => 0.056977688374775
1226 => 0.057607556891522
1227 => 0.057312862271589
1228 => 0.058079575804132
1229 => 0.058199806275925
1230 => 0.05809797534364
1231 => 0.058136138393096
]
'min_raw' => 0.026070164744568
'max_raw' => 0.058199806275925
'avg_raw' => 0.042134985510246
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.02607'
'max' => '$0.058199'
'avg' => '$0.042134'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0040199665076298
'max_diff' => -0.0055538014666505
'year' => 2031
]
6 => [
'items' => [
101 => 0.05634158694557
102 => 0.056248529986003
103 => 0.054979691739283
104 => 0.0554967527036
105 => 0.054530132014186
106 => 0.054836657392096
107 => 0.054971770857997
108 => 0.054901195251032
109 => 0.055525986554731
110 => 0.054994786310156
111 => 0.053592861527319
112 => 0.052190554791012
113 => 0.052172949972232
114 => 0.051803747361332
115 => 0.051536881496482
116 => 0.051588289329628
117 => 0.05176945723886
118 => 0.051526351688253
119 => 0.051578230583239
120 => 0.052439765907283
121 => 0.052612540672331
122 => 0.052025384513239
123 => 0.049667867808254
124 => 0.049089327295468
125 => 0.049505170743102
126 => 0.049306424358881
127 => 0.039794132666258
128 => 0.042028904501623
129 => 0.04070107896273
130 => 0.041313002061367
131 => 0.039957636024914
201 => 0.040604487738329
202 => 0.040485037846104
203 => 0.044078484825664
204 => 0.044022378093703
205 => 0.044049233417191
206 => 0.042767358855954
207 => 0.044809419838691
208 => 0.045815412508926
209 => 0.045629230039293
210 => 0.045676088155756
211 => 0.044870910466561
212 => 0.044057029297254
213 => 0.043154309825078
214 => 0.044831451024881
215 => 0.044644981553218
216 => 0.045072675431615
217 => 0.046160421384216
218 => 0.046320596107682
219 => 0.046535872560351
220 => 0.046458711276491
221 => 0.04829700610358
222 => 0.04807437647056
223 => 0.048610849831222
224 => 0.047507283426008
225 => 0.046258493287024
226 => 0.046495847466419
227 => 0.046472988350261
228 => 0.046181965565104
229 => 0.045919243207171
301 => 0.045481884502779
302 => 0.046865752160385
303 => 0.046809569660726
304 => 0.047719099025205
305 => 0.047558330875336
306 => 0.046484681823874
307 => 0.046523027409788
308 => 0.04678091990332
309 => 0.047673488767997
310 => 0.047938463977756
311 => 0.047815716903159
312 => 0.048106250124081
313 => 0.048335875735905
314 => 0.048135087565548
315 => 0.050977824633019
316 => 0.049797322007668
317 => 0.05037269077338
318 => 0.050509912833733
319 => 0.050158421411608
320 => 0.050234647315103
321 => 0.050350108788582
322 => 0.051051168245871
323 => 0.052890951114985
324 => 0.05370577842389
325 => 0.056157226585603
326 => 0.05363811835883
327 => 0.053488644901759
328 => 0.053930224742326
329 => 0.055369484325393
330 => 0.05653586903469
331 => 0.056922826133112
401 => 0.056973968901634
402 => 0.057699926142696
403 => 0.058116031294971
404 => 0.05761177583906
405 => 0.057184472137922
406 => 0.055653923319334
407 => 0.055831088512632
408 => 0.057051581008184
409 => 0.0587755985448
410 => 0.060254984944669
411 => 0.059736955389256
412 => 0.063689155225183
413 => 0.064080999695626
414 => 0.06402685945966
415 => 0.064919539477606
416 => 0.063147751433107
417 => 0.062390277717307
418 => 0.057276860048211
419 => 0.058713521839631
420 => 0.060801794125648
421 => 0.060525403457975
422 => 0.059008844304191
423 => 0.060253834498557
424 => 0.059842201805857
425 => 0.059517530022468
426 => 0.061004914402895
427 => 0.059369474178232
428 => 0.060785479358361
429 => 0.058969438068148
430 => 0.059739321704629
501 => 0.059302298517481
502 => 0.059585106079114
503 => 0.057931818852519
504 => 0.058823892508711
505 => 0.057894705655556
506 => 0.057894265100004
507 => 0.05787375324872
508 => 0.058966937460812
509 => 0.059002586158721
510 => 0.058194721374276
511 => 0.058078295437618
512 => 0.058508783146747
513 => 0.058004794784266
514 => 0.058240607767006
515 => 0.058011937319287
516 => 0.057960458784969
517 => 0.057550269065171
518 => 0.057373548055481
519 => 0.05744284491692
520 => 0.057206299003849
521 => 0.057063771534984
522 => 0.057845400947798
523 => 0.057427807883372
524 => 0.057781398821547
525 => 0.057378437320762
526 => 0.055981597197073
527 => 0.055178259670624
528 => 0.052539758164123
529 => 0.053288033918316
530 => 0.053784141517493
531 => 0.053620177958924
601 => 0.053972435128203
602 => 0.053994060857483
603 => 0.053879538460913
604 => 0.053746936196914
605 => 0.053682392748164
606 => 0.05416344673569
607 => 0.054442714766982
608 => 0.053833932552133
609 => 0.053691303396963
610 => 0.054306815827962
611 => 0.054682278055302
612 => 0.057454480187977
613 => 0.057249106499893
614 => 0.057764554154432
615 => 0.05770652265872
616 => 0.058246793917927
617 => 0.059129909091061
618 => 0.057334289021194
619 => 0.057645946577453
620 => 0.057569535341882
621 => 0.05840377317574
622 => 0.058406377575197
623 => 0.057906210320529
624 => 0.058177359103571
625 => 0.058026011291455
626 => 0.058299517243833
627 => 0.057246363609078
628 => 0.0585289910553
629 => 0.05925615816662
630 => 0.059266254882667
701 => 0.059610926322277
702 => 0.059961132466946
703 => 0.060633322665109
704 => 0.059942385447151
705 => 0.058699456653426
706 => 0.058789192097697
707 => 0.058060463400706
708 => 0.058072713461758
709 => 0.058007321675808
710 => 0.058203567347908
711 => 0.057289428498253
712 => 0.057503975059112
713 => 0.057203608617526
714 => 0.057645293639469
715 => 0.057170113569008
716 => 0.057569498494071
717 => 0.057741859787907
718 => 0.058377876672839
719 => 0.057076173357974
720 => 0.054421912181399
721 => 0.054979870060521
722 => 0.054154606530654
723 => 0.054230987812343
724 => 0.054385290157346
725 => 0.053885145772606
726 => 0.053980557559854
727 => 0.053977148779411
728 => 0.053947773751126
729 => 0.053817666880163
730 => 0.053628986176406
731 => 0.054380632027315
801 => 0.054508351304165
802 => 0.054792255435532
803 => 0.055636961556468
804 => 0.055552555495444
805 => 0.055690225282948
806 => 0.055389692909811
807 => 0.054244928647185
808 => 0.054307094854273
809 => 0.053531881255745
810 => 0.0547724314809
811 => 0.05447865281312
812 => 0.054289251794859
813 => 0.054237571972239
814 => 0.055084371956264
815 => 0.055337747783448
816 => 0.055179860971366
817 => 0.054856030513492
818 => 0.055477880724491
819 => 0.055644261607199
820 => 0.055681508150947
821 => 0.056783307496885
822 => 0.055743086494921
823 => 0.055993478029001
824 => 0.057946961300479
825 => 0.056175421535513
826 => 0.057113845659067
827 => 0.057067914681543
828 => 0.057547980708612
829 => 0.057028535255246
830 => 0.05703497440419
831 => 0.057461240513738
901 => 0.056862626640376
902 => 0.056714401427005
903 => 0.056509629356343
904 => 0.056956741681197
905 => 0.057224765298796
906 => 0.059384838814988
907 => 0.060780344817767
908 => 0.060719762221801
909 => 0.061273373743062
910 => 0.061023966682234
911 => 0.060218565492561
912 => 0.061593287115121
913 => 0.061158267672947
914 => 0.061194130147211
915 => 0.061192795344128
916 => 0.061482045243114
917 => 0.061277085180319
918 => 0.06087308785783
919 => 0.061141280134264
920 => 0.061937715314778
921 => 0.064409874552711
922 => 0.065793327614011
923 => 0.064326588941305
924 => 0.065338325637325
925 => 0.064731644138358
926 => 0.064621392062785
927 => 0.065256837474639
928 => 0.065893395149568
929 => 0.065852849177589
930 => 0.065390740993189
1001 => 0.065129707805383
1002 => 0.067106338555987
1003 => 0.068562686422006
1004 => 0.068463373261023
1005 => 0.06890170925523
1006 => 0.070188677291443
1007 => 0.070306341519865
1008 => 0.070291518531565
1009 => 0.069999875464427
1010 => 0.071267062629996
1011 => 0.072324172457551
1012 => 0.069932368520763
1013 => 0.070843136148879
1014 => 0.071252009080241
1015 => 0.071852355850612
1016 => 0.07286524148203
1017 => 0.073965503932395
1018 => 0.07412109310664
1019 => 0.074010695141885
1020 => 0.073285042479228
1021 => 0.074488962781278
1022 => 0.075194191058814
1023 => 0.075614138359224
1024 => 0.076679054840497
1025 => 0.071254534140268
1026 => 0.067414788772474
1027 => 0.066815157086698
1028 => 0.068034531699075
1029 => 0.068356071060029
1030 => 0.068226458946805
1031 => 0.063904476440977
1101 => 0.06679240274326
1102 => 0.069899568620775
1103 => 0.070018927516462
1104 => 0.071574439722521
1105 => 0.072080978259414
1106 => 0.073333369470937
1107 => 0.073255032059667
1108 => 0.073559969389776
1109 => 0.073489869578362
1110 => 0.075809660575625
1111 => 0.078368734537903
1112 => 0.078280121943947
1113 => 0.07791222478428
1114 => 0.078458614802172
1115 => 0.081099853378275
1116 => 0.080856690455173
1117 => 0.081092902522398
1118 => 0.084207071657307
1119 => 0.088255934518082
1120 => 0.086374831220067
1121 => 0.090456284103867
1122 => 0.093025342345699
1123 => 0.097468262929365
1124 => 0.096911987390445
1125 => 0.098641583770009
1126 => 0.09591613807757
1127 => 0.089657963864275
1128 => 0.088667583839693
1129 => 0.090650349729323
1130 => 0.095524786193514
1201 => 0.090496836378419
1202 => 0.091513984077597
1203 => 0.091221045471807
1204 => 0.091205436018413
1205 => 0.091801185366213
1206 => 0.090937019865032
1207 => 0.087416254152817
1208 => 0.089029800330723
1209 => 0.088406732662581
1210 => 0.089098072693156
1211 => 0.092828949707848
1212 => 0.091179440046653
1213 => 0.089441815613868
1214 => 0.091621182262311
1215 => 0.094396264917409
1216 => 0.094222605232156
1217 => 0.093885632858648
1218 => 0.095785128484814
1219 => 0.098922538759242
1220 => 0.099770568149284
1221 => 0.10039656610782
1222 => 0.10048288064998
1223 => 0.10137197407841
1224 => 0.096591094633343
1225 => 0.10417847309435
1226 => 0.10548860375746
1227 => 0.10524235349215
1228 => 0.10669850858548
1229 => 0.10627007081793
1230 => 0.10564933171258
1231 => 0.10795764726858
]
'min_raw' => 0.039794132666258
'max_raw' => 0.10795764726858
'avg_raw' => 0.073875889967418
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.039794'
'max' => '$0.107957'
'avg' => '$0.073875'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.01372396792169
'max_diff' => 0.049757840992653
'year' => 2032
]
7 => [
'items' => [
101 => 0.10531134975509
102 => 0.10155526359429
103 => 0.099494600439513
104 => 0.10220824791068
105 => 0.10386537772807
106 => 0.10496063512412
107 => 0.10529205935039
108 => 0.096962220695245
109 => 0.092472899654153
110 => 0.095350502971323
111 => 0.098861377619842
112 => 0.096571591547402
113 => 0.096661346826304
114 => 0.093396713632199
115 => 0.099150225217901
116 => 0.098311986974513
117 => 0.10266076846403
118 => 0.1016228968604
119 => 0.10516915934637
120 => 0.10423530958562
121 => 0.10811166773167
122 => 0.10965805194434
123 => 0.1122546717129
124 => 0.11416475578479
125 => 0.11528639368589
126 => 0.11521905475347
127 => 0.11966354291541
128 => 0.1170427835249
129 => 0.11375049206486
130 => 0.11369094489939
131 => 0.11539606929868
201 => 0.11896954226155
202 => 0.11989609180891
203 => 0.12041390660367
204 => 0.11962085522023
205 => 0.11677620873335
206 => 0.115547904803
207 => 0.11659445533905
208 => 0.11531461396457
209 => 0.11752397923699
210 => 0.12055790965096
211 => 0.11993141501794
212 => 0.12202569264682
213 => 0.12419304966828
214 => 0.12729246755106
215 => 0.12810277015673
216 => 0.12944216955085
217 => 0.13082085149719
218 => 0.13126364698183
219 => 0.13210908095338
220 => 0.13210462509903
221 => 0.13465239727658
222 => 0.13746266888634
223 => 0.13852348136109
224 => 0.14096276115324
225 => 0.13678557999175
226 => 0.13995401988674
227 => 0.14281203198321
228 => 0.13940459213979
301 => 0.14410095413229
302 => 0.14428330322627
303 => 0.14703655805061
304 => 0.14424560682634
305 => 0.1425883488984
306 => 0.14737279043972
307 => 0.14968783099307
308 => 0.14899052193797
309 => 0.14368396559832
310 => 0.14059532219974
311 => 0.13251174667082
312 => 0.1420870910693
313 => 0.14675096200917
314 => 0.1436718872993
315 => 0.14522479348388
316 => 0.15369694609542
317 => 0.15692259327864
318 => 0.15625168121351
319 => 0.15636505430836
320 => 0.15810555497879
321 => 0.16582389346269
322 => 0.16119888613345
323 => 0.16473453094094
324 => 0.16660982419811
325 => 0.1683517010866
326 => 0.16407420197431
327 => 0.15850923847816
328 => 0.15674658093765
329 => 0.14336573400133
330 => 0.14266920280822
331 => 0.14227821874247
401 => 0.13981311951373
402 => 0.13787622676745
403 => 0.13633593774339
404 => 0.13229375937501
405 => 0.13365787591495
406 => 0.12721548726394
407 => 0.13133709921862
408 => 0.12105489137471
409 => 0.12961821960457
410 => 0.12495758937581
411 => 0.12808707722718
412 => 0.12807615873888
413 => 0.12231377939949
414 => 0.11899015925432
415 => 0.12110809936806
416 => 0.12337869929227
417 => 0.12374709649076
418 => 0.12669098856123
419 => 0.12751256555935
420 => 0.12502314889929
421 => 0.12084181547153
422 => 0.12181304386074
423 => 0.11897047734201
424 => 0.11398898885569
425 => 0.11756678085501
426 => 0.11878839634799
427 => 0.11932793134359
428 => 0.11442920954511
429 => 0.11288992479961
430 => 0.11207042251695
501 => 0.12020945200286
502 => 0.12065532641092
503 => 0.118374169899
504 => 0.128685213641
505 => 0.12635150687983
506 => 0.1289588291041
507 => 0.12172491506435
508 => 0.12200126032243
509 => 0.1185766094874
510 => 0.12049418511976
511 => 0.11913890446915
512 => 0.12033926395852
513 => 0.12105875448718
514 => 0.1244828433707
515 => 0.12965731719943
516 => 0.12397139867481
517 => 0.12149396254977
518 => 0.12303094998811
519 => 0.12712415007825
520 => 0.13332555774187
521 => 0.12965419959005
522 => 0.13128348599412
523 => 0.1316394125915
524 => 0.12893228901142
525 => 0.13342537324967
526 => 0.1358332535947
527 => 0.13830324058807
528 => 0.14044786108694
529 => 0.13731667346674
530 => 0.14066749305847
531 => 0.13796732396682
601 => 0.13554499315325
602 => 0.1355486668292
603 => 0.13402910332524
604 => 0.13108475755901
605 => 0.13054177502534
606 => 0.13336643873659
607 => 0.13563155153636
608 => 0.13581811707571
609 => 0.13707219990736
610 => 0.13781435320906
611 => 0.14508846447412
612 => 0.14801417219953
613 => 0.15159167222535
614 => 0.15298531010226
615 => 0.15717966046494
616 => 0.1537923818986
617 => 0.15305952287379
618 => 0.1428854008555
619 => 0.14455141276603
620 => 0.14721885858102
621 => 0.1429293860545
622 => 0.14565006907211
623 => 0.14618718953173
624 => 0.14278363141944
625 => 0.14460161886628
626 => 0.13977358320319
627 => 0.12976255518339
628 => 0.13343651838566
629 => 0.13614179194517
630 => 0.13228103301792
701 => 0.13920129396301
702 => 0.13515862038207
703 => 0.13387728693947
704 => 0.12887834835152
705 => 0.13123765493824
706 => 0.13442865087879
707 => 0.13245698638063
708 => 0.13654848626124
709 => 0.14234314125535
710 => 0.14647275748182
711 => 0.14678977813804
712 => 0.14413471156721
713 => 0.14838947269137
714 => 0.14842046398113
715 => 0.14362107605187
716 => 0.14068147766831
717 => 0.1400135947306
718 => 0.14168209725517
719 => 0.14370796734256
720 => 0.14690219982855
721 => 0.14883240762129
722 => 0.15386536584165
723 => 0.15522714002986
724 => 0.15672331699857
725 => 0.15872267083265
726 => 0.16112340773426
727 => 0.15587073206756
728 => 0.15607943066401
729 => 0.15118821181142
730 => 0.14596124299569
731 => 0.14992786077597
801 => 0.15511368586663
802 => 0.153924051861
803 => 0.15379019373335
804 => 0.15401530597491
805 => 0.15311836078449
806 => 0.14906151093052
807 => 0.14702418633109
808 => 0.1496528548413
809 => 0.1510498751659
810 => 0.15321653185638
811 => 0.15294944568671
812 => 0.15853052063945
813 => 0.16069915760313
814 => 0.16014432746662
815 => 0.16024642956447
816 => 0.16417264319962
817 => 0.16853940024934
818 => 0.17262944447074
819 => 0.17679001312423
820 => 0.17177428522268
821 => 0.16922760792137
822 => 0.17185512883714
823 => 0.1704609292542
824 => 0.17847241360425
825 => 0.17902711139837
826 => 0.18703801642692
827 => 0.19464131921983
828 => 0.18986582096292
829 => 0.19436890072602
830 => 0.1992393486313
831 => 0.20863523284226
901 => 0.2054710295912
902 => 0.20304729949028
903 => 0.20075688625628
904 => 0.20552287260337
905 => 0.2116542379004
906 => 0.2129748752599
907 => 0.21511481230458
908 => 0.21286493016115
909 => 0.21557466538652
910 => 0.22514122145008
911 => 0.22255625355538
912 => 0.21888518359058
913 => 0.22643706082095
914 => 0.22917005583344
915 => 0.2483516461117
916 => 0.27256919618998
917 => 0.26254297143657
918 => 0.25631937018787
919 => 0.25778206410711
920 => 0.26662549357989
921 => 0.26946572245013
922 => 0.26174500129522
923 => 0.26447209053083
924 => 0.27949862034051
925 => 0.28755987147461
926 => 0.27661160966403
927 => 0.24640578954302
928 => 0.2185546439063
929 => 0.22594202188259
930 => 0.22510452247711
1001 => 0.24124865415984
1002 => 0.222494602926
1003 => 0.22281037305133
1004 => 0.23928834828033
1005 => 0.23489230699324
1006 => 0.2277712831106
1007 => 0.21860663526124
1008 => 0.20166493608437
1009 => 0.18665920066919
1010 => 0.21608890343284
1011 => 0.21481984113523
1012 => 0.2129820508638
1013 => 0.2170718542432
1014 => 0.23693077854263
1015 => 0.23647296606046
1016 => 0.2335605966269
1017 => 0.23576960317381
1018 => 0.22738403358253
1019 => 0.22954518580208
1020 => 0.21855023214253
1021 => 0.22352041038647
1022 => 0.22775600459156
1023 => 0.22860636283727
1024 => 0.23052226338524
1025 => 0.21415110297103
1026 => 0.22150127336499
1027 => 0.22581880985361
1028 => 0.20631202292469
1029 => 0.22543322339513
1030 => 0.21386611749076
1031 => 0.20994006801472
1101 => 0.21522597641652
1102 => 0.21316605277162
1103 => 0.21139505138451
1104 => 0.21040680218084
1105 => 0.21428818992671
1106 => 0.2141071185491
1107 => 0.20775641485197
1108 => 0.19947218076685
1109 => 0.20225264164653
1110 => 0.20124247414199
1111 => 0.19758149679131
1112 => 0.20004855349757
1113 => 0.189184884312
1114 => 0.17049450612262
1115 => 0.18284194245629
1116 => 0.18236657958887
1117 => 0.18212688007513
1118 => 0.19140563722181
1119 => 0.19051369881951
1120 => 0.18889482188544
1121 => 0.19755176484687
1122 => 0.19439186421364
1123 => 0.20412993339905
1124 => 0.21054405558339
1125 => 0.20891722672233
1126 => 0.21494973963884
1127 => 0.20231669784946
1128 => 0.20651288758223
1129 => 0.20737771647048
1130 => 0.19744493951451
1201 => 0.19065963097291
1202 => 0.19020712825137
1203 => 0.17844233831335
1204 => 0.18472699413617
1205 => 0.19025723118353
1206 => 0.18760867680158
1207 => 0.18677022360756
1208 => 0.19105369913747
1209 => 0.19138656187163
1210 => 0.18379725625755
1211 => 0.18537531321677
1212 => 0.19195607306686
1213 => 0.18520949495304
1214 => 0.17210199572517
1215 => 0.1688511546913
1216 => 0.16841743257249
1217 => 0.15960089386119
1218 => 0.16906839143368
1219 => 0.16493557503013
1220 => 0.17799109253021
1221 => 0.17053385095231
1222 => 0.17021238417249
1223 => 0.16972643998586
1224 => 0.16213768091041
1225 => 0.16379913685714
1226 => 0.16932206947093
1227 => 0.17129271404782
1228 => 0.17108715967344
1229 => 0.1692950040881
1230 => 0.17011544373775
1231 => 0.16747252176611
]
'min_raw' => 0.092472899654153
'max_raw' => 0.28755987147461
'avg_raw' => 0.19001638556438
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.092472'
'max' => '$0.287559'
'avg' => '$0.190016'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052678766987895
'max_diff' => 0.17960222420603
'year' => 2033
]
8 => [
'items' => [
101 => 0.16653925101026
102 => 0.16359359178846
103 => 0.15926428649154
104 => 0.15986630294625
105 => 0.1512888163287
106 => 0.14661534637778
107 => 0.14532179149071
108 => 0.14359199583435
109 => 0.14551717651291
110 => 0.15126451738681
111 => 0.1443320049265
112 => 0.13244669857251
113 => 0.13316102573596
114 => 0.1347659067866
115 => 0.13177522156608
116 => 0.12894478899405
117 => 0.13140562047518
118 => 0.12636965949177
119 => 0.13537447861185
120 => 0.13513092349037
121 => 0.13848736320406
122 => 0.14058621383811
123 => 0.13574904263759
124 => 0.13453250716176
125 => 0.13522550105725
126 => 0.12377185562784
127 => 0.1375513560163
128 => 0.13767052170787
129 => 0.1366501527091
130 => 0.14398731127161
131 => 0.15947100435565
201 => 0.15364541618732
202 => 0.15138957236921
203 => 0.14710121162197
204 => 0.1528151977
205 => 0.15237645272128
206 => 0.1503922815384
207 => 0.149192248616
208 => 0.15140334607053
209 => 0.14891826917225
210 => 0.14847188107597
211 => 0.14576725488756
212 => 0.14480182639094
213 => 0.14408706156687
214 => 0.1433001757269
215 => 0.14503584981013
216 => 0.14110258399059
217 => 0.13635945099502
218 => 0.13596511080785
219 => 0.13705391873537
220 => 0.13657220227966
221 => 0.13596280453479
222 => 0.13479929828023
223 => 0.13445411082888
224 => 0.13557580258462
225 => 0.13430947799108
226 => 0.13617800890912
227 => 0.13566987188995
228 => 0.13283145980709
301 => 0.1292937474371
302 => 0.12926225437641
303 => 0.1285000600493
304 => 0.12752929097705
305 => 0.12725924522934
306 => 0.13119837611166
307 => 0.13935225914979
308 => 0.13775145680352
309 => 0.13890820055552
310 => 0.144598234944
311 => 0.1464069257708
312 => 0.14512315986313
313 => 0.14336586190948
314 => 0.143443174101
315 => 0.14944839317889
316 => 0.14982293132662
317 => 0.15076926839537
318 => 0.15198557896353
319 => 0.14533030281236
320 => 0.14312971119278
321 => 0.14208694879925
322 => 0.138875644227
323 => 0.14233876089172
324 => 0.14032095111663
325 => 0.14059322259349
326 => 0.140415905437
327 => 0.14051273259458
328 => 0.13537196158139
329 => 0.13724498834763
330 => 0.13413071806925
331 => 0.12996105975974
401 => 0.12994708160302
402 => 0.13096759956712
403 => 0.1303605555492
404 => 0.12872701570551
405 => 0.12895905233021
406 => 0.12692616733738
407 => 0.12920588137491
408 => 0.1292712554163
409 => 0.12839344133499
410 => 0.13190565534972
411 => 0.13334461229725
412 => 0.13276681626433
413 => 0.1333040725873
414 => 0.13781797736819
415 => 0.13855394080295
416 => 0.13888080714566
417 => 0.13844284954793
418 => 0.1333865784804
419 => 0.13361084560317
420 => 0.13196532225986
421 => 0.13057502843574
422 => 0.13063063289757
423 => 0.13134542464872
424 => 0.13446696214794
425 => 0.14103605379037
426 => 0.14128534601626
427 => 0.1415874954664
428 => 0.14035850180453
429 => 0.13998782555622
430 => 0.14047684320739
501 => 0.14294384864186
502 => 0.14928965640475
503 => 0.14704662411909
504 => 0.14522300395598
505 => 0.1468228104835
506 => 0.14657653280828
507 => 0.14449770138439
508 => 0.14443935551009
509 => 0.14044941336503
510 => 0.13897442260058
511 => 0.13774180991667
512 => 0.13639582904401
513 => 0.135597886465
514 => 0.13682388892477
515 => 0.13710429019295
516 => 0.13442361438782
517 => 0.13405824818102
518 => 0.13624734590989
519 => 0.13528400561721
520 => 0.13627482499793
521 => 0.13650470359334
522 => 0.13646768784493
523 => 0.13546184994043
524 => 0.13610294102624
525 => 0.13458656948986
526 => 0.13293774319568
527 => 0.1318858947455
528 => 0.13096801746527
529 => 0.13147730912768
530 => 0.12966177734416
531 => 0.12908095218718
601 => 0.13588575379138
602 => 0.14091253390034
603 => 0.14083944252673
604 => 0.14039451758747
605 => 0.13973344937745
606 => 0.14289548738476
607 => 0.14179389656996
608 => 0.14259539592872
609 => 0.14279941115434
610 => 0.14341690379686
611 => 0.14363760434127
612 => 0.14297049400967
613 => 0.14073159025615
614 => 0.13515245497097
615 => 0.13255535243512
616 => 0.13169826534013
617 => 0.13172941882819
618 => 0.13087006655213
619 => 0.1311231843109
620 => 0.13078204252529
621 => 0.13013600251442
622 => 0.1314374179775
623 => 0.1315873939861
624 => 0.13128362806626
625 => 0.13135517593687
626 => 0.12884012386072
627 => 0.12903133780766
628 => 0.12796663425278
629 => 0.12776701517144
630 => 0.12507553729905
701 => 0.12030719411216
702 => 0.12294931911197
703 => 0.1197580036512
704 => 0.11854940412988
705 => 0.124270726288
706 => 0.1236964642281
707 => 0.12271357720727
708 => 0.12125968245185
709 => 0.12072041874449
710 => 0.1174440231687
711 => 0.1172504362392
712 => 0.11887430635668
713 => 0.11812494617142
714 => 0.11707256066642
715 => 0.11326092704592
716 => 0.10897538886796
717 => 0.10910474232762
718 => 0.11046789228676
719 => 0.11443143463877
720 => 0.11288281007186
721 => 0.11175926518015
722 => 0.11154885899556
723 => 0.11418253291079
724 => 0.11790973327259
725 => 0.11965845229094
726 => 0.11792552485314
727 => 0.11593483112004
728 => 0.11605599542359
729 => 0.11686204725252
730 => 0.11694675190279
731 => 0.11565101492916
801 => 0.11601575729741
802 => 0.1154616802873
803 => 0.11206131069895
804 => 0.11199980879579
805 => 0.11116530326044
806 => 0.11114003476448
807 => 0.1097203326717
808 => 0.10952170653498
809 => 0.10670280186
810 => 0.1085582134535
811 => 0.10731370077006
812 => 0.10543792660525
813 => 0.10511454243222
814 => 0.10510482111348
815 => 0.10703082176531
816 => 0.10853570701451
817 => 0.10733534960101
818 => 0.10706205148591
819 => 0.10998016034904
820 => 0.10960880439705
821 => 0.10928721253762
822 => 0.11757600336048
823 => 0.11101477864177
824 => 0.1081537101628
825 => 0.10461259461791
826 => 0.10576559969518
827 => 0.10600855480613
828 => 0.097492810254713
829 => 0.094037973750771
830 => 0.092852404055385
831 => 0.092170091934196
901 => 0.092481030135758
902 => 0.089371272070306
903 => 0.091461080920941
904 => 0.088768293297565
905 => 0.088316838689417
906 => 0.093131876532388
907 => 0.093801860919195
908 => 0.090943499377245
909 => 0.092779030213876
910 => 0.092113441216727
911 => 0.088814453412599
912 => 0.088688456344193
913 => 0.08703314022911
914 => 0.084442891041365
915 => 0.083259077656902
916 => 0.082642537367934
917 => 0.082896933907293
918 => 0.08276830323233
919 => 0.08192890106906
920 => 0.08281641678176
921 => 0.080549180882623
922 => 0.079646349279225
923 => 0.079238561189505
924 => 0.077226258831791
925 => 0.080428726757834
926 => 0.081059653282892
927 => 0.081691822928108
928 => 0.087194428089163
929 => 0.086919533485518
930 => 0.089404446823372
1001 => 0.089307887660525
1002 => 0.088599150123642
1003 => 0.085609103037198
1004 => 0.08680088251339
1005 => 0.083132770529323
1006 => 0.085881169435156
1007 => 0.084626914950416
1008 => 0.085457104732199
1009 => 0.083964348649358
1010 => 0.08479050149999
1011 => 0.081209269367814
1012 => 0.077865165192084
1013 => 0.079210930332885
1014 => 0.080673930947846
1015 => 0.083846089046707
1016 => 0.081956777852762
1017 => 0.08263624560087
1018 => 0.080360142386234
1019 => 0.075663891317699
1020 => 0.075690471588735
1021 => 0.074968055675232
1022 => 0.074343782851515
1023 => 0.082173787970676
1024 => 0.081200003060045
1025 => 0.079648404250773
1026 => 0.081725280915069
1027 => 0.082274440069574
1028 => 0.082290073858676
1029 => 0.083805309461002
1030 => 0.084613990973584
1031 => 0.084756524595203
1101 => 0.087140780554294
1102 => 0.087939951702684
1103 => 0.091231624559972
1104 => 0.084545379997184
1105 => 0.084407681190419
1106 => 0.081754506828878
1107 => 0.080071821703762
1108 => 0.081869721718995
1109 => 0.083462415694665
1110 => 0.08180399627032
1111 => 0.082020550835994
1112 => 0.079794258256656
1113 => 0.080590053096967
1114 => 0.081275498818585
1115 => 0.080897035979745
1116 => 0.080330458792193
1117 => 0.083331832951503
1118 => 0.083162483658954
1119 => 0.085957432277397
1120 => 0.088136294594167
1121 => 0.092041205384045
1122 => 0.087966227407204
1123 => 0.087817719013157
1124 => 0.089269412386458
1125 => 0.087939729455992
1126 => 0.088780043168952
1127 => 0.091905817853688
1128 => 0.091971860547245
1129 => 0.090865560338957
1130 => 0.090798241870742
1201 => 0.091010718927342
1202 => 0.092255203684447
1203 => 0.091820342471161
1204 => 0.092323574876515
1205 => 0.092952874705178
1206 => 0.095555925614129
1207 => 0.09618351237569
1208 => 0.094658801911526
1209 => 0.094796466194981
1210 => 0.094226182627146
1211 => 0.093675295846249
1212 => 0.094913608879151
1213 => 0.097176650285884
1214 => 0.097162572022745
1215 => 0.097687553641868
1216 => 0.098014612841399
1217 => 0.096610635335045
1218 => 0.095696697604092
1219 => 0.096047159485508
1220 => 0.096607555665959
1221 => 0.095865430557019
1222 => 0.091284690598846
1223 => 0.092674194483354
1224 => 0.092442913093704
1225 => 0.092113540270063
1226 => 0.093510697170651
1227 => 0.093375937979203
1228 => 0.089339377006574
1229 => 0.089597784543452
1230 => 0.089355091624764
1231 => 0.090139282095343
]
'min_raw' => 0.074343782851515
'max_raw' => 0.16653925101026
'avg_raw' => 0.12044151693089
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.074343'
'max' => '$0.166539'
'avg' => '$0.120441'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018129116802638
'max_diff' => -0.12102062046435
'year' => 2034
]
9 => [
'items' => [
101 => 0.087897380597088
102 => 0.088586974398514
103 => 0.089019481166228
104 => 0.089274230975085
105 => 0.090194561968257
106 => 0.090086571748629
107 => 0.09018784914458
108 => 0.091552457049079
109 => 0.098454175553155
110 => 0.098829820863548
111 => 0.096980005969354
112 => 0.097718970533599
113 => 0.096300320164034
114 => 0.097252669661254
115 => 0.097904243000198
116 => 0.094959908371859
117 => 0.094785563983742
118 => 0.09336105833946
119 => 0.094126506984573
120 => 0.092908623152492
121 => 0.093207449245117
122 => 0.092371905438948
123 => 0.09387571793494
124 => 0.095557213974296
125 => 0.095982026278128
126 => 0.094864527999942
127 => 0.09405538559981
128 => 0.092634798093254
129 => 0.094997266776513
130 => 0.095688124614427
131 => 0.094993637994398
201 => 0.094832710269705
202 => 0.094527752522202
203 => 0.094897408497466
204 => 0.095684362054273
205 => 0.095313249289633
206 => 0.095558375808843
207 => 0.094624206290984
208 => 0.096611100110019
209 => 0.099766765666684
210 => 0.099776911647452
211 => 0.099405796882376
212 => 0.099253944716286
213 => 0.099634730986381
214 => 0.099841291917237
215 => 0.10107268489046
216 => 0.1023940186116
217 => 0.10856010654505
218 => 0.10682869372734
219 => 0.11229961376411
220 => 0.11662640120314
221 => 0.11792381556863
222 => 0.11673025540044
223 => 0.11264715053995
224 => 0.11244681393602
225 => 0.11854869644
226 => 0.1168246351487
227 => 0.11661956354402
228 => 0.11443794814414
301 => 0.11572755304379
302 => 0.11544549753488
303 => 0.11500025911542
304 => 0.1174607354293
305 => 0.12206652744064
306 => 0.12134867156283
307 => 0.12081282545042
308 => 0.1184649037683
309 => 0.11987887704823
310 => 0.11937538824612
311 => 0.12153869566187
312 => 0.12025720027191
313 => 0.11681157368876
314 => 0.11736030107906
315 => 0.1172773620379
316 => 0.1189842416278
317 => 0.11847187874227
318 => 0.11717731496137
319 => 0.12205078534426
320 => 0.12173432928527
321 => 0.122182991625
322 => 0.12238050666229
323 => 0.12534690220418
324 => 0.12656213954362
325 => 0.1268380196954
326 => 0.12799240117804
327 => 0.12680929763249
328 => 0.13154255535321
329 => 0.13468989554424
330 => 0.13834569313677
331 => 0.14368779600521
401 => 0.14569647610095
402 => 0.14533362602065
403 => 0.14938394744693
404 => 0.15666228501635
405 => 0.14680478613907
406 => 0.15718475639273
407 => 0.15389857765294
408 => 0.14610710697673
409 => 0.14560542812059
410 => 0.15088190252335
411 => 0.16258461490684
412 => 0.15965321818584
413 => 0.16258940962173
414 => 0.15916418634677
415 => 0.15899409514112
416 => 0.16242305417251
417 => 0.17043500385216
418 => 0.1666288268828
419 => 0.16117173888434
420 => 0.16520116774071
421 => 0.16171050355928
422 => 0.15384506018315
423 => 0.15965097660201
424 => 0.1557687256357
425 => 0.15690177285948
426 => 0.16506168694942
427 => 0.16407986449767
428 => 0.16535043366455
429 => 0.16310791234159
430 => 0.16101304381278
501 => 0.15710281613679
502 => 0.15594519049382
503 => 0.15626511657453
504 => 0.15594503195435
505 => 0.15375729550648
506 => 0.15328485402885
507 => 0.15249743086802
508 => 0.1527414862314
509 => 0.15126090032026
510 => 0.15405507183925
511 => 0.15457369469533
512 => 0.15660705971228
513 => 0.15681817041377
514 => 0.16248106304286
515 => 0.1593620369438
516 => 0.1614545489348
517 => 0.16126737496684
518 => 0.14627597177209
519 => 0.14834165486206
520 => 0.15155520950298
521 => 0.15010750749312
522 => 0.14806079556126
523 => 0.14640796593854
524 => 0.14390376004961
525 => 0.14742838174927
526 => 0.15206288448258
527 => 0.15693570905118
528 => 0.16279008849025
529 => 0.16148345915194
530 => 0.15682626549979
531 => 0.15703518380495
601 => 0.15832663456108
602 => 0.15665408849121
603 => 0.15616082200323
604 => 0.15825886732025
605 => 0.15827331540529
606 => 0.15634884901796
607 => 0.15421015680208
608 => 0.1542011956036
609 => 0.1538206359811
610 => 0.1592318870582
611 => 0.16220752801141
612 => 0.16254868045121
613 => 0.16218456573405
614 => 0.16232469903749
615 => 0.16059323913059
616 => 0.16455084302928
617 => 0.16818273173317
618 => 0.16720930797654
619 => 0.16575000738502
620 => 0.16458760417442
621 => 0.16693548272183
622 => 0.16683093538602
623 => 0.16815101035373
624 => 0.16809112412808
625 => 0.16764723256696
626 => 0.16720932382931
627 => 0.16894558247516
628 => 0.16844556786861
629 => 0.16794477660128
630 => 0.16694036304733
701 => 0.16707687953085
702 => 0.16561783090815
703 => 0.16494280825376
704 => 0.15479208713761
705 => 0.15207948277099
706 => 0.15293292332488
707 => 0.1532138981148
708 => 0.15203336921815
709 => 0.15372594440295
710 => 0.15346215835328
711 => 0.15448839556287
712 => 0.15384724710836
713 => 0.15387356006458
714 => 0.15575904096203
715 => 0.15630640408798
716 => 0.15602801078436
717 => 0.15622298791145
718 => 0.1607161535105
719 => 0.16007736904567
720 => 0.15973802753017
721 => 0.15983202744906
722 => 0.16098012759418
723 => 0.16130153295086
724 => 0.15993971586982
725 => 0.16058195667781
726 => 0.16331653652574
727 => 0.1642734847087
728 => 0.16732760394752
729 => 0.16603015981223
730 => 0.16841167467463
731 => 0.17573163944338
801 => 0.1815793338037
802 => 0.17620155240376
803 => 0.1869400983971
804 => 0.19530159680585
805 => 0.19498066857012
806 => 0.19352264791761
807 => 0.18400330428119
808 => 0.17524346234153
809 => 0.18257144208659
810 => 0.18259012261397
811 => 0.18196064265501
812 => 0.17805099669229
813 => 0.18182459545016
814 => 0.18212413001586
815 => 0.18195647031174
816 => 0.17895895391877
817 => 0.17438230042033
818 => 0.17527656755897
819 => 0.1767413953746
820 => 0.17396817072451
821 => 0.1730819574132
822 => 0.17472959656791
823 => 0.18003863322364
824 => 0.17903499059703
825 => 0.17900878143201
826 => 0.18330279019935
827 => 0.18022920662702
828 => 0.17528784713143
829 => 0.17404008869026
830 => 0.16961138681493
831 => 0.17267030697472
901 => 0.17278039206558
902 => 0.17110505275547
903 => 0.17542379168312
904 => 0.1753839937436
905 => 0.17948399359594
906 => 0.187321653424
907 => 0.18500367174503
908 => 0.18230811124807
909 => 0.18260119341388
910 => 0.18581558138433
911 => 0.18387208904005
912 => 0.18457098243756
913 => 0.18581452352546
914 => 0.18656478273918
915 => 0.18249324265886
916 => 0.18154397190186
917 => 0.1796020970818
918 => 0.17909549818805
919 => 0.18067711471044
920 => 0.18026041463613
921 => 0.17277113983996
922 => 0.17198846895383
923 => 0.17201247235251
924 => 0.17004440919536
925 => 0.16704264049143
926 => 0.17493110941907
927 => 0.17429755496513
928 => 0.17359815988119
929 => 0.17368383178828
930 => 0.17710794878475
1001 => 0.17512178800475
1002 => 0.18040232196374
1003 => 0.17931680292915
1004 => 0.17820344442736
1005 => 0.17804954436869
1006 => 0.17762099633278
1007 => 0.17615134566196
1008 => 0.17437665416464
1009 => 0.17320484911696
1010 => 0.15977231773671
1011 => 0.16226531742745
1012 => 0.16513328632756
1013 => 0.16612329769922
1014 => 0.1644298147413
1015 => 0.17621821469104
1016 => 0.17837206895771
1017 => 0.17184790389154
1018 => 0.17062749898756
1019 => 0.17629822423337
1020 => 0.17287808369218
1021 => 0.17441817276846
1022 => 0.17108934256923
1023 => 0.17785326853709
1024 => 0.17780173875389
1025 => 0.17517041878219
1026 => 0.17739439240377
1027 => 0.17700792225772
1028 => 0.17403716849033
1029 => 0.17794744673035
1030 => 0.17794938617957
1031 => 0.17541679791665
1101 => 0.17245928928041
1102 => 0.17193055658949
1103 => 0.17153222753212
1104 => 0.17432020823837
1105 => 0.1768199030218
1106 => 0.18147121528687
1107 => 0.18264066570276
1108 => 0.18720510853071
1109 => 0.18448720506536
1110 => 0.18569201646881
1111 => 0.18700000967823
1112 => 0.18762710972269
1113 => 0.18660528385229
1114 => 0.19369574236372
1115 => 0.19429439430812
1116 => 0.19449511712676
1117 => 0.19210425441072
1118 => 0.19422790009095
1119 => 0.19323431660492
1120 => 0.19581934481012
1121 => 0.19622471024
1122 => 0.19588138014219
1123 => 0.19601004952789
1124 => 0.18995959403097
1125 => 0.18964584599476
1126 => 0.18536786925849
1127 => 0.18711117639973
1128 => 0.18385214725807
1129 => 0.18488561897061
1130 => 0.18534116345422
1201 => 0.1851032128679
1202 => 0.18720974036986
1203 => 0.18541876165806
1204 => 0.18069207437346
1205 => 0.17596409930607
1206 => 0.17590474343042
1207 => 0.17465995105087
1208 => 0.17376019415555
1209 => 0.17393351925418
1210 => 0.1745443395089
1211 => 0.17372469217194
1212 => 0.17389960548845
1213 => 0.17680433198394
1214 => 0.17738685416705
1215 => 0.17540721618274
1216 => 0.16745868401532
1217 => 0.16550809428406
1218 => 0.16691013950101
1219 => 0.16624005219058
1220 => 0.13416869662191
1221 => 0.14170338589163
1222 => 0.13722652938143
1223 => 0.13928967083159
1224 => 0.13471995961106
1225 => 0.13690086532458
1226 => 0.13649813167322
1227 => 0.14861368905126
1228 => 0.14842452128721
1229 => 0.14851506588533
1230 => 0.14419313630449
1231 => 0.15107808747994
]
'min_raw' => 0.087897380597088
'max_raw' => 0.19622471024
'avg_raw' => 0.14206104541854
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.087897'
'max' => '$0.196224'
'avg' => '$0.142061'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013553597745573
'max_diff' => 0.029685459229732
'year' => 2035
]
10 => [
'items' => [
101 => 0.1544698620038
102 => 0.15384213480859
103 => 0.15400012021977
104 => 0.15128540742494
105 => 0.14854135023925
106 => 0.14549776851295
107 => 0.15115236716234
108 => 0.15052367231975
109 => 0.1519656720914
110 => 0.15563308351459
111 => 0.15617312377779
112 => 0.15689894336809
113 => 0.15663878871233
114 => 0.1628367280675
115 => 0.16208611671627
116 => 0.16389487410712
117 => 0.16017412292339
118 => 0.15596373978206
119 => 0.15676399596944
120 => 0.15668692486334
121 => 0.15570572122462
122 => 0.15481993445216
123 => 0.15334534904489
124 => 0.15801115547106
125 => 0.15782173225093
126 => 0.16088827400458
127 => 0.16034623296282
128 => 0.15672635022604
129 => 0.15685563504615
130 => 0.15772513759357
131 => 0.160734495838
201 => 0.16162787825768
202 => 0.16121402792575
203 => 0.16219358096447
204 => 0.16296777974668
205 => 0.16229080841174
206 => 0.17187529490828
207 => 0.16789514788685
208 => 0.16983504385141
209 => 0.17029769760843
210 => 0.16911261973839
211 => 0.16936962069394
212 => 0.16975890711304
213 => 0.1721225780197
214 => 0.17832553441246
215 => 0.18107278157386
216 => 0.18933801020572
217 => 0.18084466094063
218 => 0.18034070074421
219 => 0.1818295180068
220 => 0.18668208217701
221 => 0.19061462965878
222 => 0.1919192825326
223 => 0.19209171394734
224 => 0.1945393294703
225 => 0.19594225704273
226 => 0.19424212456713
227 => 0.19280144030535
228 => 0.18764108810398
229 => 0.18823841292246
301 => 0.19235338858328
302 => 0.19816603407504
303 => 0.20315388860966
304 => 0.20140731579591
305 => 0.21473243347652
306 => 0.21605356446633
307 => 0.21587102688082
308 => 0.21888075988625
309 => 0.21290705279193
310 => 0.21035317727399
311 => 0.19311293259521
312 => 0.1979567381295
313 => 0.20499749394033
314 => 0.20406562350729
315 => 0.19895243843752
316 => 0.20315000980027
317 => 0.20176216143755
318 => 0.200667507852
319 => 0.20568232813647
320 => 0.20016832723623
321 => 0.20494248756336
322 => 0.19881957756145
323 => 0.20141529399341
324 => 0.19994183980595
325 => 0.20089534524499
326 => 0.1953211719317
327 => 0.19832886054614
328 => 0.19519604219697
329 => 0.19519455683317
330 => 0.19512539969448
331 => 0.19881114658923
401 => 0.19893133866314
402 => 0.19620756613907
403 => 0.19581502796503
404 => 0.19726644733205
405 => 0.1955672153806
406 => 0.19636227531584
407 => 0.1955912969361
408 => 0.19541773346353
409 => 0.1940347501847
410 => 0.19343892296226
411 => 0.19367256216876
412 => 0.19287503110773
413 => 0.1923944897955
414 => 0.19502980793243
415 => 0.1936218637603
416 => 0.19481402029529
417 => 0.19345540746152
418 => 0.18874586346023
419 => 0.18603735490257
420 => 0.17714146285912
421 => 0.17966432680732
422 => 0.18133698821507
423 => 0.18078417362979
424 => 0.18197183326982
425 => 0.18204474592595
426 => 0.18165862567022
427 => 0.18121154787915
428 => 0.18099393513541
429 => 0.18261584224047
430 => 0.18355741390584
501 => 0.18150486216466
502 => 0.18102397800995
503 => 0.18309922114477
504 => 0.18436511825819
505 => 0.19371179129747
506 => 0.19301935956937
507 => 0.19475722732405
508 => 0.19456157008463
509 => 0.19638313235558
510 => 0.19936061681893
511 => 0.19330655838718
512 => 0.19435733359735
513 => 0.19409970778176
514 => 0.19691239888323
515 => 0.19692117979784
516 => 0.19523483097816
517 => 0.19614902803119
518 => 0.19563874831588
519 => 0.19656089272989
520 => 0.19301011172148
521 => 0.1973345797066
522 => 0.19978627439161
523 => 0.19982031617469
524 => 0.20098239999753
525 => 0.20216314446489
526 => 0.20442948064882
527 => 0.20209993757878
528 => 0.19790931637221
529 => 0.1982118656877
530 => 0.19575490600759
531 => 0.19579620794369
601 => 0.19557573497185
602 => 0.19623739095678
603 => 0.19315530800203
604 => 0.19387866671113
605 => 0.1928659602824
606 => 0.19435513217135
607 => 0.19275302938778
608 => 0.19409958354679
609 => 0.19468071168284
610 => 0.19682508701567
611 => 0.19243630340758
612 => 0.18348727653616
613 => 0.18536847048099
614 => 0.18258603687199
615 => 0.18284356169597
616 => 0.18336380282519
617 => 0.18167753111308
618 => 0.18199921861522
619 => 0.18198772567397
620 => 0.1818886857152
621 => 0.18145002131598
622 => 0.18081387115
623 => 0.18334809761458
624 => 0.18377871207355
625 => 0.18473591467401
626 => 0.18758390033624
627 => 0.18729931940846
628 => 0.18776348270882
629 => 0.18675021683029
630 => 0.18289056419396
701 => 0.18310016190146
702 => 0.18048647513034
703 => 0.1846690768269
704 => 0.18367858153751
705 => 0.18304000278089
706 => 0.18286576065075
707 => 0.18572080591858
708 => 0.18657508021007
709 => 0.18604275379983
710 => 0.18495093680199
711 => 0.18704754820456
712 => 0.18760851296696
713 => 0.18773409228967
714 => 0.19144888570967
715 => 0.18794170797564
716 => 0.18878592051457
717 => 0.19537222575221
718 => 0.18939935574967
719 => 0.19256331820091
720 => 0.19240845870339
721 => 0.19402703483079
722 => 0.19227568821824
723 => 0.19229739825848
724 => 0.19373458420777
725 => 0.19171631573984
726 => 0.19121656408421
727 => 0.19052616075124
728 => 0.19203363117087
729 => 0.19293729151042
730 => 0.20022013018177
731 => 0.20492517610126
801 => 0.20472091764922
802 => 0.20658745754508
803 => 0.20574656422645
804 => 0.20303109788415
805 => 0.20766606781461
806 => 0.20619936939323
807 => 0.20632028222905
808 => 0.20631578184727
809 => 0.20729100807648
810 => 0.20659997091491
811 => 0.20523786573595
812 => 0.20614209472053
813 => 0.20882733153696
814 => 0.2171623890083
815 => 0.22182679759408
816 => 0.21688158575463
817 => 0.22029272666246
818 => 0.21824725763154
819 => 0.21787553506119
820 => 0.22001798363264
821 => 0.2221641822767
822 => 0.22202747870135
823 => 0.22046944869428
824 => 0.21958935707684
825 => 0.22625370565645
826 => 0.23116388416569
827 => 0.23082904290962
828 => 0.23230692331773
829 => 0.23664602590506
830 => 0.23704273906624
831 => 0.23699276232628
901 => 0.23600946736355
902 => 0.24028187736445
903 => 0.2438459969531
904 => 0.2357818629898
905 => 0.23885257963576
906 => 0.24023112327045
907 => 0.24225523432162
908 => 0.24567024894537
909 => 0.24937986061464
910 => 0.2499044403785
911 => 0.24953222593259
912 => 0.24708563731699
913 => 0.25114473867038
914 => 0.25352246504556
915 => 0.25493834668868
916 => 0.25852878695538
917 => 0.24023963668662
918 => 0.22729366709664
919 => 0.2252719670031
920 => 0.22938317364275
921 => 0.23046726604737
922 => 0.2300302697584
923 => 0.21545840398882
924 => 0.22519524914554
925 => 0.23567127583698
926 => 0.23607370268716
927 => 0.24131822069228
928 => 0.24302605073481
929 => 0.24724857514362
930 => 0.24698445509218
1001 => 0.24801257259068
1002 => 0.24777622618229
1003 => 0.2555975634922
1004 => 0.26422566002486
1005 => 0.2639268964776
1006 => 0.26268650551802
1007 => 0.26452869761108
1008 => 0.2734338178758
1009 => 0.27261397710347
1010 => 0.27341038257992
1011 => 0.28391002124261
1012 => 0.29756104506029
1013 => 0.29121877395659
1014 => 0.30497967731227
1015 => 0.31364143654052
1016 => 0.32862105348316
1017 => 0.32674553166577
1018 => 0.33257698661604
1019 => 0.32338795617943
1020 => 0.30228808488754
1021 => 0.29894894948854
1022 => 0.30563398311772
1023 => 0.32206848597902
1024 => 0.30511640213719
1025 => 0.30854578661995
1026 => 0.30755812365821
1027 => 0.30750549529627
1028 => 0.30951410581627
1029 => 0.30660051149493
1030 => 0.29473000408419
1031 => 0.30017018767719
1101 => 0.29806947153286
1102 => 0.30040037271376
1103 => 0.31297928505031
1104 => 0.3074178480625
1105 => 0.3015593259703
1106 => 0.30890721278405
1107 => 0.3182635977058
1108 => 0.31767809195244
1109 => 0.31654196606849
1110 => 0.32294624819066
1111 => 0.33352424597789
1112 => 0.33638343627394
1113 => 0.33849403209691
1114 => 0.33878504760209
1115 => 0.34178268817056
1116 => 0.32566361933119
1117 => 0.35124499554632
1118 => 0.35566219254741
1119 => 0.35483194258527
1120 => 0.35974147114792
1121 => 0.35829696330207
1122 => 0.35620409806977
1123 => 0.36398674512825
1124 => 0.35506456830293
1125 => 0.34240066157023
1126 => 0.33545299187299
1127 => 0.34460224378284
1128 => 0.35018937265929
1129 => 0.35388210943849
1130 => 0.35499952935667
1201 => 0.32691489676008
1202 => 0.31177883743566
1203 => 0.32148087792734
1204 => 0.33331803692626
1205 => 0.32559786331528
1206 => 0.3259004795046
1207 => 0.31489354076127
1208 => 0.33429190676981
1209 => 0.33146572800831
1210 => 0.34612794842243
1211 => 0.34262869184893
1212 => 0.35458516341252
1213 => 0.35143662374483
1214 => 0.36450603587294
1215 => 0.36971977821105
1216 => 0.37847446305093
1217 => 0.38491444485713
1218 => 0.38869612535095
1219 => 0.38846908743883
1220 => 0.40345398958109
1221 => 0.3946179163204
1222 => 0.38351772580241
1223 => 0.38331695837659
1224 => 0.38906590433678
1225 => 0.40111411792302
1226 => 0.40423804441156
1227 => 0.40598389314476
1228 => 0.40331006503643
1229 => 0.39371914079903
1230 => 0.38957782834041
1231 => 0.39310634654052
]
'min_raw' => 0.14549776851295
'max_raw' => 0.40598389314476
'avg_raw' => 0.27574083082885
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.145497'
'max' => '$0.405983'
'avg' => '$0.27574'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.05760038791586
'max_diff' => 0.20975918290476
'year' => 2036
]
11 => [
'items' => [
101 => 0.38879127199081
102 => 0.3962403012597
103 => 0.40646940947268
104 => 0.40435713907698
105 => 0.41141814232054
106 => 0.41872553783842
107 => 0.42917544162466
108 => 0.4319074334332
109 => 0.43642331200438
110 => 0.44107163444294
111 => 0.44256455033441
112 => 0.44541498999582
113 => 0.44539996677178
114 => 0.45398995854814
115 => 0.46346498548737
116 => 0.46704158880955
117 => 0.47526579093384
118 => 0.4611821330064
119 => 0.47186474932577
120 => 0.48150073664907
121 => 0.4700123153171
122 => 0.48584642766435
123 => 0.48646123036592
124 => 0.49574402123229
125 => 0.48633413432168
126 => 0.48074657351158
127 => 0.49687765220717
128 => 0.50468297306374
129 => 0.50233194689993
130 => 0.48444052170887
131 => 0.47402694484834
201 => 0.44677260557539
202 => 0.47905654774404
203 => 0.49478111423889
204 => 0.48439979888042
205 => 0.48963553050218
206 => 0.51819998453882
207 => 0.52907547922453
208 => 0.52681345235535
209 => 0.52719569766011
210 => 0.53306391718833
211 => 0.55908683426398
212 => 0.54349329914576
213 => 0.55541397246503
214 => 0.56173665461038
215 => 0.56760951415389
216 => 0.55318762725135
217 => 0.53442496429074
218 => 0.5284820413281
219 => 0.48336758166139
220 => 0.48101917811357
221 => 0.47970094803827
222 => 0.47138969388083
223 => 0.4648593247572
224 => 0.45966613277303
225 => 0.44603764618816
226 => 0.45063686034214
227 => 0.42891589721207
228 => 0.44281219967902
301 => 0.40814501805244
302 => 0.43701687705192
303 => 0.42130323684085
304 => 0.43185452362558
305 => 0.43181771117998
306 => 0.41238944692076
307 => 0.40118362955357
308 => 0.40832441251688
309 => 0.4159798986896
310 => 0.41722197556498
311 => 0.42714751321655
312 => 0.42991751742639
313 => 0.42152427535146
314 => 0.4074266177684
315 => 0.41070118209161
316 => 0.40111727061208
317 => 0.38432183438403
318 => 0.3963846099032
319 => 0.40050337182824
320 => 0.40232245173503
321 => 0.38580606917363
322 => 0.38061626318473
323 => 0.37785325402292
324 => 0.40529456018357
325 => 0.4067978568803
326 => 0.39910677843511
327 => 0.43387118230534
328 => 0.42600292702584
329 => 0.43479369594238
330 => 0.41040404970164
331 => 0.41133576703305
401 => 0.39978931764126
402 => 0.40625455776663
403 => 0.40168513443043
404 => 0.40573223025525
405 => 0.40815804280584
406 => 0.4197025975389
407 => 0.4371486973227
408 => 0.41797822603876
409 => 0.40962537717414
410 => 0.41480743763154
411 => 0.42860794751355
412 => 0.44951642641989
413 => 0.43713818608499
414 => 0.44263143894947
415 => 0.44383147032255
416 => 0.43470421416695
417 => 0.44985296137333
418 => 0.45797129806944
419 => 0.46629903166656
420 => 0.47352976941115
421 => 0.46297275173709
422 => 0.47427027393738
423 => 0.46516646532507
424 => 0.4569994078654
425 => 0.45701179392035
426 => 0.45188847947423
427 => 0.4419614121557
428 => 0.44013070863362
429 => 0.44965425954782
430 => 0.45729124549738
501 => 0.45792026423888
502 => 0.46214849206306
503 => 0.46465071373521
504 => 0.4891758877276
505 => 0.49904011559022
506 => 0.51110190670035
507 => 0.51580065410305
508 => 0.52994219919098
509 => 0.51852175301234
510 => 0.51605086764361
511 => 0.48174810492442
512 => 0.48736518039801
513 => 0.4963586601984
514 => 0.48189640409382
515 => 0.49106937683969
516 => 0.49288031596985
517 => 0.48140498216544
518 => 0.48753445377028
519 => 0.4712563944495
520 => 0.43750351453309
521 => 0.44989053797745
522 => 0.45901155665951
523 => 0.44599473838672
524 => 0.46932688132027
525 => 0.45569672509168
526 => 0.4513766199301
527 => 0.43452234946609
528 => 0.44247691634474
529 => 0.45323558194654
530 => 0.44658797743375
531 => 0.46038275494063
601 => 0.47991983882316
602 => 0.4938431282513
603 => 0.49491198552742
604 => 0.48596024321307
605 => 0.50030546740108
606 => 0.50040995669825
607 => 0.48422848521221
608 => 0.47431742402583
609 => 0.47206561007123
610 => 0.47769108282395
611 => 0.4845214452653
612 => 0.49529102310601
613 => 0.50179885344205
614 => 0.51876782347193
615 => 0.52335914022351
616 => 0.52840360533325
617 => 0.53514456637527
618 => 0.54323881845317
619 => 0.52552905571277
620 => 0.52623269760157
621 => 0.50974161174607
622 => 0.49211852144852
623 => 0.50549225023514
624 => 0.52297662159106
625 => 0.5189656874835
626 => 0.51851437546045
627 => 0.5192733570997
628 => 0.51624924376746
629 => 0.50257129124461
630 => 0.49570230911615
701 => 0.5045650485261
702 => 0.50927520008734
703 => 0.51658023439044
704 => 0.51567973472202
705 => 0.53449671858339
706 => 0.54180842951586
707 => 0.53993778097359
708 => 0.54028202532504
709 => 0.55351952871545
710 => 0.56824235498579
711 => 0.58203222463601
712 => 0.59605987233289
713 => 0.57914899552589
714 => 0.57056269520118
715 => 0.57942156541635
716 => 0.57472092418255
717 => 0.60173220301272
718 => 0.60360240535338
719 => 0.63061173096065
720 => 0.65624679717261
721 => 0.64014587138479
722 => 0.65532831920108
723 => 0.67174937435752
724 => 0.70342825397449
725 => 0.69275992179592
726 => 0.68458814654121
727 => 0.67686585841124
728 => 0.69293471413099
729 => 0.7136070403082
730 => 0.71805966136969
731 => 0.72527460852147
801 => 0.71768897379314
802 => 0.72682503529316
803 => 0.75907934697706
804 => 0.75036394724339
805 => 0.73798667855114
806 => 0.76344835988856
807 => 0.7726628433848
808 => 0.83733491422383
809 => 0.9189860751281
810 => 0.8851819583633
811 => 0.86419865223536
812 => 0.8691302269061
813 => 0.89894646680212
814 => 0.90852249673656
815 => 0.88249154631926
816 => 0.8916861180764
817 => 0.94234911244854
818 => 0.96952818346574
819 => 0.93261535438815
820 => 0.83077432294713
821 => 0.73687224092804
822 => 0.76177930154536
823 => 0.75895561382744
824 => 0.81338668094305
825 => 0.75015608784211
826 => 0.75122072886604
827 => 0.8067773728061
828 => 0.79195581268489
829 => 0.76794678349053
830 => 0.73704753341114
831 => 0.67992741180468
901 => 0.62933452718541
902 => 0.72855882476928
903 => 0.72428009262978
904 => 0.71808385441922
905 => 0.73187291205383
906 => 0.79882866183518
907 => 0.79728511508811
908 => 0.7874658582077
909 => 0.79491367800853
910 => 0.76664114466977
911 => 0.77392762026479
912 => 0.73685736635849
913 => 0.75361466931469
914 => 0.76789527089689
915 => 0.77076231309243
916 => 0.7772219055538
917 => 0.72202539521936
918 => 0.74680700787512
919 => 0.76136388358729
920 => 0.69559538953605
921 => 0.76006385192173
922 => 0.72106454677559
923 => 0.70782759685909
924 => 0.72564940608612
925 => 0.71870422969807
926 => 0.71273317487406
927 => 0.70940122368652
928 => 0.72248759346154
929 => 0.72187709866995
930 => 0.70046525776309
1001 => 0.67253438415838
1002 => 0.68190890213979
1003 => 0.67850305187057
1004 => 0.66615981113148
1005 => 0.67447766506106
1006 => 0.63785004592474
1007 => 0.57483413093869
1008 => 0.61646437460815
1009 => 0.61486165551187
1010 => 0.614053491866
1011 => 0.64533746940818
1012 => 0.64233023681166
1013 => 0.63687208020207
1014 => 0.66605956780501
1015 => 0.65540574220283
1016 => 0.68823832235174
1017 => 0.70986398311595
1018 => 0.70437901602931
1019 => 0.72471805450394
1020 => 0.68212487210022
1021 => 0.69627261875286
1022 => 0.69918844973004
1023 => 0.66569939873864
1024 => 0.64282225725552
1025 => 0.64129661273711
1026 => 0.60163080206967
1027 => 0.62281995795698
1028 => 0.64146553827096
1029 => 0.63253575225604
1030 => 0.62970884877349
1031 => 0.6441508855853
1101 => 0.64527315553325
1102 => 0.61968528178698
1103 => 0.62500581100141
1104 => 0.64719330228996
1105 => 0.62444674314817
1106 => 0.58025389436503
1107 => 0.56929345685287
1108 => 0.56783113244781
1109 => 0.53810555663158
1110 => 0.57002588569681
1111 => 0.5560918066482
1112 => 0.60010939540685
1113 => 0.57496678477897
1114 => 0.5738829370867
1115 => 0.57224454233395
1116 => 0.54665851128085
1117 => 0.55226022600438
1118 => 0.57088117891063
1119 => 0.57752534468763
1120 => 0.57683230376304
1121 => 0.57078992608276
1122 => 0.57355609564281
1123 => 0.56464529969252
1124 => 0.5614987121803
1125 => 0.55156721645463
1126 => 0.53697066138362
1127 => 0.53900040189212
1128 => 0.51008080690005
1129 => 0.49432387666929
1130 => 0.48996256605442
1201 => 0.4841304392285
1202 => 0.49062132029811
1203 => 0.50999888132099
1204 => 0.48662543154849
1205 => 0.44655329137041
1206 => 0.44896169527471
1207 => 0.45437266378616
1208 => 0.44428935976222
1209 => 0.43474635873113
1210 => 0.44304322387952
1211 => 0.42606412982438
1212 => 0.45642450618414
1213 => 0.45560334308758
1214 => 0.46691981392142
1215 => 0.47399623537118
1216 => 0.45768737494813
1217 => 0.45358574065559
1218 => 0.45592221795751
1219 => 0.41730545272427
1220 => 0.46376400033797
1221 => 0.46416577578697
1222 => 0.46072553046771
1223 => 0.48546327282527
1224 => 0.53766762509505
1225 => 0.51802624785596
1226 => 0.51042051292521
1227 => 0.4959620052621
1228 => 0.51522710826196
1229 => 0.51374784893399
1230 => 0.50705807726049
1231 => 0.503012082479
]
'min_raw' => 0.37785325402292
'max_raw' => 0.96952818346574
'avg_raw' => 0.67369071874433
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.377853'
'max' => '$0.969528'
'avg' => '$0.67369'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23235548550998
'max_diff' => 0.56354429032098
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011860381880537
]
1 => [
'year' => 2028
'avg' => 0.020355858400463
]
2 => [
'year' => 2029
'avg' => 0.055608536363543
]
3 => [
'year' => 2030
'avg' => 0.042901902989757
]
4 => [
'year' => 2031
'avg' => 0.042134985510246
]
5 => [
'year' => 2032
'avg' => 0.073875889967418
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011860381880537
'min' => '$0.01186'
'max_raw' => 0.073875889967418
'max' => '$0.073875'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.073875889967418
]
1 => [
'year' => 2033
'avg' => 0.19001638556438
]
2 => [
'year' => 2034
'avg' => 0.12044151693089
]
3 => [
'year' => 2035
'avg' => 0.14206104541854
]
4 => [
'year' => 2036
'avg' => 0.27574083082885
]
5 => [
'year' => 2037
'avg' => 0.67369071874433
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.073875889967418
'min' => '$0.073875'
'max_raw' => 0.67369071874433
'max' => '$0.67369'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67369071874433
]
]
]
]
'prediction_2025_max_price' => '$0.020279'
'last_price' => 0.01966314
'sma_50day_nextmonth' => '$0.018117'
'sma_200day_nextmonth' => '$0.026129'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.019716'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.020041'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.018629'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017893'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.017217'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.021889'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030238'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019651'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019457'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018972'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01831'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.018768'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0220019'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.029458'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.025113'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0359039'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.081819'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.019753'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.019739'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.020796'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025313'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.043737'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.100132'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.154645'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.68'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.59
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.019189'
'vwma_10_action' => 'BUY'
'hma_9' => '0.020696'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 78.51
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 42.31
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.23
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0028088'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -21.49
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.9
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004266'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 19
'buy_signals' => 13
'sell_pct' => 59.38
'buy_pct' => 40.63
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767694653
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de CONX para 2026
La previsión del precio de CONX para 2026 sugiere que el precio medio podría oscilar entre $0.006793 en el extremo inferior y $0.020279 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, CONX podría potencialmente ganar 3.13% para 2026 si CONX alcanza el objetivo de precio previsto.
Predicción de precio de CONX 2027-2032
La predicción del precio de CONX para 2027-2032 está actualmente dentro de un rango de precios de $0.01186 en el extremo inferior y $0.073875 en el extremo superior. Considerando la volatilidad de precios en el mercado, si CONX alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de CONX | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00654 | $0.01186 | $0.01718 |
| 2028 | $0.0118028 | $0.020355 | $0.0289088 |
| 2029 | $0.025927 | $0.0556085 | $0.085289 |
| 2030 | $0.02205 | $0.0429019 | $0.063753 |
| 2031 | $0.02607 | $0.042134 | $0.058199 |
| 2032 | $0.039794 | $0.073875 | $0.107957 |
Predicción de precio de CONX 2032-2037
La predicción de precio de CONX para 2032-2037 se estima actualmente entre $0.073875 en el extremo inferior y $0.67369 en el extremo superior. Comparado con el precio actual, CONX podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de CONX | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.039794 | $0.073875 | $0.107957 |
| 2033 | $0.092472 | $0.190016 | $0.287559 |
| 2034 | $0.074343 | $0.120441 | $0.166539 |
| 2035 | $0.087897 | $0.142061 | $0.196224 |
| 2036 | $0.145497 | $0.27574 | $0.405983 |
| 2037 | $0.377853 | $0.67369 | $0.969528 |
CONX Histograma de precios potenciales
Pronóstico de precio de CONX basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para CONX es Bajista, con 13 indicadores técnicos mostrando señales alcistas y 19 indicando señales bajistas. La predicción de precio de CONX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de CONX
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de CONX aumentar durante el próximo mes, alcanzando $0.026129 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para CONX alcance $0.018117 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.68, lo que sugiere que el mercado de CONX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CONX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.019716 | SELL |
| SMA 5 | $0.020041 | SELL |
| SMA 10 | $0.018629 | BUY |
| SMA 21 | $0.017893 | BUY |
| SMA 50 | $0.017217 | BUY |
| SMA 100 | $0.021889 | SELL |
| SMA 200 | $0.030238 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.019651 | BUY |
| EMA 5 | $0.019457 | BUY |
| EMA 10 | $0.018972 | BUY |
| EMA 21 | $0.01831 | BUY |
| EMA 50 | $0.018768 | BUY |
| EMA 100 | $0.0220019 | SELL |
| EMA 200 | $0.029458 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.025113 | SELL |
| SMA 50 | $0.0359039 | SELL |
| SMA 100 | $0.081819 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.025313 | SELL |
| EMA 50 | $0.043737 | SELL |
| EMA 100 | $0.100132 | SELL |
| EMA 200 | $0.154645 | SELL |
Osciladores de CONX
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.68 | NEUTRAL |
| Stoch RSI (14) | 59.59 | NEUTRAL |
| Estocástico Rápido (14) | 78.51 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 42.31 | NEUTRAL |
| Índice Direccional Medio (14) | 18.23 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0028088 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -21.49 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.9 | NEUTRAL |
| VWMA (10) | 0.019189 | BUY |
| Promedio Móvil de Hull (9) | 0.020696 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.004266 | NEUTRAL |
Predicción de precios de CONX basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de CONX
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de CONX por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.027629 | $0.038824 | $0.054555 | $0.076659 | $0.107719 | $0.151363 |
| Amazon.com acción | $0.041028 | $0.085608 | $0.178626 | $0.372714 | $0.77769 | $1.62 |
| Apple acción | $0.02789 | $0.03956 | $0.056113 | $0.079593 | $0.112897 | $0.160135 |
| Netflix acción | $0.031025 | $0.048953 | $0.07724 | $0.121873 | $0.192296 | $0.303414 |
| Google acción | $0.025463 | $0.032975 | $0.0427029 | $0.0553001 | $0.071613 | $0.092739 |
| Tesla acción | $0.044574 | $0.101047 | $0.229067 | $0.519279 | $1.17 | $2.66 |
| Kodak acción | $0.014745 | $0.011057 | $0.008291 | $0.006218 | $0.004662 | $0.003496 |
| Nokia acción | $0.013026 | $0.008629 | $0.005716 | $0.003786 | $0.0025086 | $0.001661 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de CONX
Podría preguntarse cosas como: "¿Debo invertir en CONX ahora?", "¿Debería comprar CONX hoy?", "¿Será CONX una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de CONX regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como CONX, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de CONX a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de CONX es de $0.01966 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de CONX
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de CONX
basado en el historial de precios del último mes
Predicción de precios de CONX basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si CONX ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.020174 | $0.020698 | $0.021236 | $0.021788 |
| Si CONX ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.020685 | $0.02176 | $0.022891 | $0.024082 |
| Si CONX ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.022218 | $0.0251063 | $0.028369 | $0.032056 |
| Si CONX ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.024774 | $0.031213 | $0.039327 | $0.049549 |
| Si CONX ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.029885 | $0.045421 | $0.069034 | $0.104923 |
| Si CONX ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.045218 | $0.103987 | $0.239135 | $0.54993 |
| Si CONX ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.070773 | $0.254738 | $0.916884 | $3.30 |
Cuadro de preguntas
¿Es CONX una buena inversión?
La decisión de adquirir CONX depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de CONX ha experimentado un aumento de 0.9695% durante las últimas 24 horas, y CONX ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en CONX dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede CONX subir?
Parece que el valor medio de CONX podría potencialmente aumentar hasta $0.020279 para el final de este año. Mirando las perspectivas de CONX en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.063753. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de CONX la próxima semana?
Basado en nuestro nuevo pronóstico experimental de CONX, el precio de CONX aumentará en un 0.86% durante la próxima semana y alcanzará $0.019831 para el 13 de enero de 2026.
¿Cuál será el precio de CONX el próximo mes?
Basado en nuestro nuevo pronóstico experimental de CONX, el precio de CONX disminuirá en un -11.62% durante el próximo mes y alcanzará $0.017378 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de CONX este año en 2026?
Según nuestra predicción más reciente sobre el valor de CONX en 2026, se anticipa que CONX fluctúe dentro del rango de $0.006793 y $0.020279. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de CONX no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará CONX en 5 años?
El futuro de CONX parece estar en una tendencia alcista, con un precio máximo de $0.063753 proyectada después de un período de cinco años. Basado en el pronóstico de CONX para 2030, el valor de CONX podría potencialmente alcanzar su punto más alto de aproximadamente $0.063753, mientras que su punto más bajo se anticipa que esté alrededor de $0.02205.
¿Cuánto será CONX en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de CONX, se espera que el valor de CONX en 2026 crezca en un 3.13% hasta $0.020279 si ocurre lo mejor. El precio estará entre $0.020279 y $0.006793 durante 2026.
¿Cuánto será CONX en 2027?
Según nuestra última simulación experimental para la predicción de precios de CONX, el valor de CONX podría disminuir en un -12.62% hasta $0.01718 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.01718 y $0.00654 a lo largo del año.
¿Cuánto será CONX en 2028?
Nuestro nuevo modelo experimental de predicción de precios de CONX sugiere que el valor de CONX en 2028 podría aumentar en un 47.02% , alcanzando $0.0289088 en el mejor escenario. Se espera que el precio oscile entre $0.0289088 y $0.0118028 durante el año.
¿Cuánto será CONX en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de CONX podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.085289 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.085289 y $0.025927.
¿Cuánto será CONX en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de CONX, se espera que el valor de CONX en 2030 aumente en un 224.23% , alcanzando $0.063753 en el mejor escenario. Se pronostica que el precio oscile entre $0.063753 y $0.02205 durante el transcurso de 2030.
¿Cuánto será CONX en 2031?
Nuestra simulación experimental indica que el precio de CONX podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.058199 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.058199 y $0.02607 durante el año.
¿Cuánto será CONX en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de CONX, CONX podría experimentar un 449.04% aumento en valor, alcanzando $0.107957 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.107957 y $0.039794 a lo largo del año.
¿Cuánto será CONX en 2033?
Según nuestra predicción experimental de precios de CONX, se anticipa que el valor de CONX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.287559. A lo largo del año, el precio de CONX podría oscilar entre $0.287559 y $0.092472.
¿Cuánto será CONX en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de CONX sugieren que CONX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.166539 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.166539 y $0.074343.
¿Cuánto será CONX en 2035?
Basado en nuestra predicción experimental para el precio de CONX, CONX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.196224 en 2035. El rango de precios esperado para el año está entre $0.196224 y $0.087897.
¿Cuánto será CONX en 2036?
Nuestra reciente simulación de predicción de precios de CONX sugiere que el valor de CONX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.405983 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.405983 y $0.145497.
¿Cuánto será CONX en 2037?
Según la simulación experimental, el valor de CONX podría aumentar en un 4830.69% en 2037, con un máximo de $0.969528 bajo condiciones favorables. Se espera que el precio caiga entre $0.969528 y $0.377853 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Banana Gun
Predicción de precios de Dora Factory
Predicción de precios de Automata
Predicción de precios de Storm
Predicción de precios de Adventure Gold
Predicción de precios de Star Atlas
Predicción de precios de Radio Caca
Predicción de precios de CoinEx Token
Predicción de precios de Blendr Network
Predicción de precios de Access Protocol
Predicción de precios de Bancor Network Token
Predicción de precios de Gitcoin
Predicción de precios de Wexo
Predicción de precios de Origin Protocol
Predicción de precios de Euler
Predicción de precios de Polkastarter
Predicción de precios de ArbDoge AI
Predicción de precios de PhoenixPredicción de precios de Opulous
Predicción de precios de Mainframe
Predicción de precios de Frontier Token
Predicción de precios de GamerCoin
Predicción de precios de BetProtocol
Predicción de precios de Shrapnel
Predicción de precios de LeverFi
¿Cómo leer y predecir los movimientos de precio de CONX?
Los traders de CONX utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de CONX
Las medias móviles son herramientas populares para la predicción de precios de CONX. Una media móvil simple (SMA) calcula el precio de cierre promedio de CONX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CONX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CONX.
¿Cómo leer gráficos de CONX y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de CONX en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CONX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de CONX?
La acción del precio de CONX está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CONX. La capitalización de mercado de CONX puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CONX, grandes poseedores de CONX, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de CONX.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


