Predicción del precio de CONX - Pronóstico de CONX
Predicción de precio de CONX hasta $0.020398 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.006833 | $0.020398 |
| 2027 | $0.006578 | $0.017281 |
| 2028 | $0.011872 | $0.029078 |
| 2029 | $0.026079 | $0.08579 |
| 2030 | $0.022179 | $0.064128 |
| 2031 | $0.026223 | $0.058541 |
| 2032 | $0.040027 | $0.108592 |
| 2033 | $0.093016 | $0.289249 |
| 2034 | $0.07478 | $0.167517 |
| 2035 | $0.088413 | $0.197377 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en CONX hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.60, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de CONX para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'CONX'
'name_with_ticker' => 'CONX <small>CONX</small>'
'name_lang' => 'CONX'
'name_lang_with_ticker' => 'CONX <small>CONX</small>'
'name_with_lang' => 'CONX'
'name_with_lang_with_ticker' => 'CONX <small>CONX</small>'
'image' => '/uploads/coins/xpla.png?1762828636'
'price_for_sd' => 0.01977
'ticker' => 'CONX'
'marketcap' => '$17.53M'
'low24h' => '$0.01901'
'high24h' => '$0.02038'
'volume24h' => '$467.42K'
'current_supply' => '884.96M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01977'
'change_24h_pct' => '1.7164%'
'ath_price' => '$1.4'
'ath_days' => 1027
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 mar. 2023'
'ath_pct' => '-98.59%'
'fdv' => '$39.6M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.975225'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019947'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.01748'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006833'
'current_year_max_price_prediction' => '$0.020398'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022179'
'grand_prediction_max_price' => '$0.064128'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020153475582414
107 => 0.020228721344527
108 => 0.020398253888712
109 => 0.018949616860436
110 => 0.019600012356383
111 => 0.019982058776436
112 => 0.018255959151671
113 => 0.019947939336687
114 => 0.0189243993127
115 => 0.018576994455503
116 => 0.019044729328609
117 => 0.018862452593673
118 => 0.018705741760623
119 => 0.018618294423148
120 => 0.018961747291943
121 => 0.018945724805098
122 => 0.018383769250421
123 => 0.017650721137583
124 => 0.017896756145736
125 => 0.017807369320683
126 => 0.017483419935564
127 => 0.017701722707337
128 => 0.016740427780955
129 => 0.015086569823878
130 => 0.016179159049362
131 => 0.016137095552689
201 => 0.016115885230239
202 => 0.016936935836243
203 => 0.016858010765336
204 => 0.016714760988803
205 => 0.01748078904108
206 => 0.017201178497468
207 => 0.018062872308352
208 => 0.018630439583061
209 => 0.018486486163317
210 => 0.019020285928472
211 => 0.017902424295403
212 => 0.018273733089084
213 => 0.01835025931685
214 => 0.017471336373823
215 => 0.016870923883019
216 => 0.016830883215086
217 => 0.01578985069797
218 => 0.016345961865693
219 => 0.016835316679844
220 => 0.016600953699333
221 => 0.016526761381098
222 => 0.01690579384461
223 => 0.016935247913219
224 => 0.016263692027545
225 => 0.016403329761586
226 => 0.016985642325377
227 => 0.016388656979038
228 => 0.015228811968106
301 => 0.014941154369283
302 => 0.014902775543018
303 => 0.014122625320598
304 => 0.014960377025524
305 => 0.014594675955974
306 => 0.015749921252912
307 => 0.015090051335006
308 => 0.01506160566171
309 => 0.015018605854451
310 => 0.014347098330414
311 => 0.014494115801649
312 => 0.014982824267426
313 => 0.01515720095371
314 => 0.015139012036704
315 => 0.014980429329329
316 => 0.015053027680691
317 => 0.014819163096013
318 => 0.014736580643693
319 => 0.014475927708078
320 => 0.014092839899936
321 => 0.014146110609272
322 => 0.013387113420964
323 => 0.012973571469744
324 => 0.012859108508041
325 => 0.012706043851916
326 => 0.01287639756824
327 => 0.013384963277292
328 => 0.012771525133941
329 => 0.011719828464849
330 => 0.011783037226665
331 => 0.011925048547617
401 => 0.011660411390523
402 => 0.011409954530646
403 => 0.011627706450101
404 => 0.011182088707135
405 => 0.011978899322891
406 => 0.01195734782877
407 => 0.012254349551886
408 => 0.012440070824439
409 => 0.01201204341918
410 => 0.011904395684267
411 => 0.01196571672639
412 => 0.010952216494398
413 => 0.012171524960556
414 => 0.012182069590804
415 => 0.012091780064788
416 => 0.012741024181091
417 => 0.01411113177081
418 => 0.013595642183108
419 => 0.013396029033994
420 => 0.013016564291613
421 => 0.013522178530449
422 => 0.013483355245717
423 => 0.013307781628867
424 => 0.013201594157572
425 => 0.013397247829318
426 => 0.01317735050244
427 => 0.013137850900158
428 => 0.012898526286322
429 => 0.012813098287759
430 => 0.012749850798609
501 => 0.012680221527625
502 => 0.012833806348882
503 => 0.012485762938148
504 => 0.012066056703918
505 => 0.012031162671826
506 => 0.012127508162346
507 => 0.01208488245487
508 => 0.012030958596338
509 => 0.011928003265113
510 => 0.011897458617631
511 => 0.011996713903791
512 => 0.011884660472659
513 => 0.012050001414161
514 => 0.012005037826804
515 => 0.011753874882901
516 => 0.011440832862367
517 => 0.011438046131756
518 => 0.011370601741924
519 => 0.011284701171141
520 => 0.011260805597488
521 => 0.011609367990804
522 => 0.012330881713375
523 => 0.012189231305275
524 => 0.012291588242045
525 => 0.012795083064573
526 => 0.012955128928036
527 => 0.012841532165044
528 => 0.012686033909516
529 => 0.012692875043592
530 => 0.013224259655253
531 => 0.013257401461673
601 => 0.013341140114543
602 => 0.013448767948022
603 => 0.012859861650481
604 => 0.012665137609938
605 => 0.01257286655665
606 => 0.012288707425915
607 => 0.01259514868645
608 => 0.012416598487059
609 => 0.0124406910091
610 => 0.012425000722515
611 => 0.012433568679963
612 => 0.011978676598084
613 => 0.012144415364297
614 => 0.011868842519906
615 => 0.01149988141577
616 => 0.011498644528775
617 => 0.011588947236305
618 => 0.011535231652321
619 => 0.011390684396973
620 => 0.011411216652351
621 => 0.011231332490182
622 => 0.011433057846547
623 => 0.011438842607959
624 => 0.011361167357704
625 => 0.011671953101918
626 => 0.0117992822749
627 => 0.011748154761217
628 => 0.011795695032244
629 => 0.012195117519244
630 => 0.01226024081265
701 => 0.012289164277778
702 => 0.012250410666132
703 => 0.011802995742076
704 => 0.011822840496513
705 => 0.011677232855656
706 => 0.011554209742887
707 => 0.011559130022226
708 => 0.011622379894075
709 => 0.011898595793994
710 => 0.012479875871557
711 => 0.01250193502559
712 => 0.012528671363789
713 => 0.012419921239726
714 => 0.01238712116171
715 => 0.012430392931031
716 => 0.012648691165909
717 => 0.013210213493408
718 => 0.013011734000055
719 => 0.012850367082441
720 => 0.012991929373397
721 => 0.012970136968306
722 => 0.012786187138239
723 => 0.012781024279173
724 => 0.012427965742956
725 => 0.012297448040871
726 => 0.012188377679927
727 => 0.012069275693131
728 => 0.011998668043023
729 => 0.012107153484192
730 => 0.012131965388149
731 => 0.011894760075033
801 => 0.01186242986736
802 => 0.012056136846482
803 => 0.011970893627094
804 => 0.012058568392165
805 => 0.012078909689721
806 => 0.012075634272315
807 => 0.011986630561153
808 => 0.012043358872518
809 => 0.011909179504615
810 => 0.011763279595109
811 => 0.011670204542729
812 => 0.011588984214914
813 => 0.011634049973339
814 => 0.011473398773237
815 => 0.011422003221054
816 => 0.012024140597055
817 => 0.012468945950775
818 => 0.01246247830477
819 => 0.012423108173056
820 => 0.012364612143268
821 => 0.012644411816981
822 => 0.012546935205431
823 => 0.012617857584777
824 => 0.012635910306924
825 => 0.012690550459729
826 => 0.012710079617877
827 => 0.012651048938081
828 => 0.012452934766695
829 => 0.01195925308773
830 => 0.011729442933504
831 => 0.011653601754819
901 => 0.011656358437621
902 => 0.011580316819559
903 => 0.011602714484025
904 => 0.011572527825901
905 => 0.011515361598351
906 => 0.011630520119878
907 => 0.011643791066708
908 => 0.011616911691742
909 => 0.011623242757594
910 => 0.011400693013204
911 => 0.011417612986917
912 => 0.011323400423195
913 => 0.011305736703246
914 => 0.011067575546182
915 => 0.010645638534432
916 => 0.010879432597359
917 => 0.010597042245764
918 => 0.010490096740703
919 => 0.010996360128223
920 => 0.010945545325677
921 => 0.010858572472381
922 => 0.010729921495626
923 => 0.010682203596911
924 => 0.01039228474997
925 => 0.010375154797836
926 => 0.010518846406847
927 => 0.010452537673415
928 => 0.010359415098595
929 => 0.010022134572281
930 => 0.0096429195909592
1001 => 0.0096543657075849
1002 => 0.0097749869375977
1003 => 0.010125709431849
1004 => 0.0099886760857844
1005 => 0.0098892568209379
1006 => 0.0098706385811643
1007 => 0.010103684831856
1008 => 0.010433494101284
1009 => 0.010588233231433
1010 => 0.010434891452953
1011 => 0.010258740674342
1012 => 0.010269462156032
1013 => 0.010340787370407
1014 => 0.010348282641953
1015 => 0.01023362659367
1016 => 0.01026590159966
1017 => 0.010216872914273
1018 => 0.0099159839625514
1019 => 0.0099105418355439
1020 => 0.0098366988343016
1021 => 0.0098344628975711
1022 => 0.0097088375314581
1023 => 0.0096912616743317
1024 => 0.0094418248849997
1025 => 0.0096060049351022
1026 => 0.0094958815773329
1027 => 0.0093298997017006
1028 => 0.0093012843637793
1029 => 0.0093004241521673
1030 => 0.0094708504255734
1031 => 0.0096040134048704
1101 => 0.0094977972202892
1102 => 0.0094736138539743
1103 => 0.0097318289373719
1104 => 0.0096989687143268
1105 => 0.0096705119730955
1106 => 0.010403963298587
1107 => 0.0098233793425398
1108 => 0.0095702115991297
1109 => 0.0092568684414091
1110 => 0.0093588945535763
1111 => 0.0093803929544853
1112 => 0.0086268591445168
1113 => 0.0083211505716593
1114 => 0.0082162429098391
1115 => 0.0081558670672849
1116 => 0.008183381096889
1117 => 0.007908207525278
1118 => 0.0080931287163514
1119 => 0.0078548516631793
1120 => 0.0078149037397944
1121 => 0.0082409726277288
1122 => 0.0083002576244265
1123 => 0.0080473294101092
1124 => 0.0082097502690593
1125 => 0.0081508542077852
1126 => 0.0078589362393593
1127 => 0.0078477871201686
1128 => 0.0077013129450253
1129 => 0.0074721092239151
1130 => 0.0073673569730108
1201 => 0.0073128010912391
1202 => 0.0073353119113311
1203 => 0.0073239297518501
1204 => 0.0072496534620476
1205 => 0.0073281871818369
1206 => 0.0071275659801488
1207 => 0.0070476770011217
1208 => 0.0070115930027055
1209 => 0.0068335301388818
1210 => 0.0071169073401402
1211 => 0.00717273621868
1212 => 0.007228675097357
1213 => 0.0077155848451455
1214 => 0.0076912602101387
1215 => 0.0079111430640229
1216 => 0.0079025988206596
1217 => 0.0078398846688657
1218 => 0.0075753039784247
1219 => 0.0076807611259372
1220 => 0.0073561804175733
1221 => 0.0075993783536223
1222 => 0.0074883929717982
1223 => 0.0075618540843863
1224 => 0.0074297643802313
1225 => 0.0075028682763609
1226 => 0.0071859753168967
1227 => 0.0068900651301533
1228 => 0.0070091480274557
1229 => 0.0071386047556046
1230 => 0.0074192999271922
1231 => 0.0072521201986795
]
'min_raw' => 0.0068335301388818
'max_raw' => 0.020398253888712
'avg_raw' => 0.013615892013797
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006833'
'max' => '$0.020398'
'avg' => '$0.013615'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012945149861118
'max_diff' => 0.0006195738887121
'year' => 2026
]
1 => [
'items' => [
101 => 0.0073122443508181
102 => 0.0071108385058153
103 => 0.0066952807188391
104 => 0.0066976327307839
105 => 0.0066337082186761
106 => 0.0065784681070834
107 => 0.0072713228015719
108 => 0.0071851553679004
109 => 0.0070478588396598
110 => 0.007231635698657
111 => 0.0072802292171068
112 => 0.0072816126062626
113 => 0.0074156914586197
114 => 0.0074872493661576
115 => 0.0074998617575109
116 => 0.0077108377286601
117 => 0.007781554091349
118 => 0.0080728247811102
119 => 0.0074811781776503
120 => 0.0074689936051959
121 => 0.0072342218159424
122 => 0.0070853258356026
123 => 0.0072444168511023
124 => 0.0073853497727457
125 => 0.0072386009946668
126 => 0.0072577632870481
127 => 0.0070607650422929
128 => 0.0071311826451639
129 => 0.007191835771032
130 => 0.0071583466799536
131 => 0.0071082118897189
201 => 0.0073737948803488
202 => 0.0073588096471893
203 => 0.0076061266337904
204 => 0.0077989279106534
205 => 0.0081444622661425
206 => 0.0077838791530763
207 => 0.0077707380712481
208 => 0.0078991942540145
209 => 0.0077815344253767
210 => 0.0078558913755966
211 => 0.0081324822119081
212 => 0.0081383261404332
213 => 0.0080404328081607
214 => 0.0080344759899953
215 => 0.008053277475294
216 => 0.0081633983619419
217 => 0.0081249187404741
218 => 0.0081694483326215
219 => 0.0082251332694631
220 => 0.0084554697781642
221 => 0.0085110031306114
222 => 0.0083760858749067
223 => 0.0083882673924924
224 => 0.0083378046352973
225 => 0.0082890582441434
226 => 0.0083986330126187
227 => 0.0085988830557048
228 => 0.0085976373105798
301 => 0.0086440914282711
302 => 0.0086730319587462
303 => 0.0085487980161842
304 => 0.008467926287785
305 => 0.0084989376544551
306 => 0.0085485255051001
307 => 0.0084828569828192
308 => 0.0080775204426829
309 => 0.0082004736559618
310 => 0.0081800082291672
311 => 0.0081508629727308
312 => 0.0082744933794519
313 => 0.0082625689251253
314 => 0.0079053852225717
315 => 0.0079282509643295
316 => 0.0079067757640617
317 => 0.0079761665295396
318 => 0.0077777870963198
319 => 0.0078388072738723
320 => 0.0078770785572046
321 => 0.0078996206371012
322 => 0.0079810580869366
323 => 0.0079715023421459
324 => 0.0079804640884235
325 => 0.0081012143278397
326 => 0.0087119276023284
327 => 0.0087451673783959
328 => 0.0085814825641625
329 => 0.0086468714189085
330 => 0.0085213391167667
331 => 0.0086056097921878
401 => 0.0086632656480679
402 => 0.0084027299219293
403 => 0.0083873026870902
404 => 0.0082612522684831
405 => 0.0083289846235819
406 => 0.008221217576491
407 => 0.0082476598403158
408 => 0.0081737249654665
409 => 0.0083067930199086
410 => 0.00845558378146
411 => 0.0084931742037531
412 => 0.0083942899863943
413 => 0.0083226912962389
414 => 0.008196987582401
415 => 0.0084060356600035
416 => 0.0084671676885192
417 => 0.0084057145594824
418 => 0.0083914745267072
419 => 0.0083644896903293
420 => 0.0083971994873103
421 => 0.0084668347503631
422 => 0.0084339960462688
423 => 0.0084556865888666
424 => 0.0083730246076742
425 => 0.0085488391427885
426 => 0.0088280749366222
427 => 0.0088289727253591
428 => 0.0087961338442519
429 => 0.0087826968816264
430 => 0.0088163915664723
501 => 0.0088346695507729
502 => 0.008943631983016
503 => 0.0090605530140677
504 => 0.0096061724493435
505 => 0.0094529646952495
506 => 0.0099370707172716
507 => 0.010319935727392
508 => 0.010434740203269
509 => 0.01032912548743
510 => 0.0099678232497394
511 => 0.009950096038275
512 => 0.010490034119255
513 => 0.010337476880647
514 => 0.010319330682548
515 => 0.010126285793257
516 => 0.010240399231903
517 => 0.010215440948928
518 => 0.010176043078251
519 => 0.010393763569975
520 => 0.010801316894441
521 => 0.010737795886812
522 => 0.010690380401272
523 => 0.010482619546075
524 => 0.01060773798597
525 => 0.01056318570601
526 => 0.010754610574297
527 => 0.010641214722904
528 => 0.01033632110952
529 => 0.010384876422394
530 => 0.010377537384533
531 => 0.010528574263665
601 => 0.010483236741516
602 => 0.010368684505692
603 => 0.010799923921484
604 => 0.010771921632503
605 => 0.010811622476064
606 => 0.01082910001519
607 => 0.011091587848292
608 => 0.01119912071484
609 => 0.011223532558174
610 => 0.011325680464504
611 => 0.01122099102521
612 => 0.011639823424693
613 => 0.011918322530801
614 => 0.012241813573978
615 => 0.012714520934256
616 => 0.012892263274508
617 => 0.012860155711651
618 => 0.013218557037279
619 => 0.013862596252619
620 => 0.012990334450857
621 => 0.013908828246129
622 => 0.013618043715067
623 => 0.012928598822908
624 => 0.012884206699875
625 => 0.013351106785464
626 => 0.014386646237834
627 => 0.014127255350006
628 => 0.014387070508402
629 => 0.014083982325239
630 => 0.014068931442317
701 => 0.014372350191851
702 => 0.015081304638633
703 => 0.014744506955727
704 => 0.014261624891101
705 => 0.014618177493144
706 => 0.014309298631869
707 => 0.013613308107667
708 => 0.014127056998683
709 => 0.013783527745987
710 => 0.013883787844943
711 => 0.01460583523799
712 => 0.014518956585359
713 => 0.014631385606611
714 => 0.01443295132688
715 => 0.014247582419398
716 => 0.013901577587907
717 => 0.013799142615135
718 => 0.013827451956385
719 => 0.013799128586431
720 => 0.01360554206316
721 => 0.013563737071892
722 => 0.013494060254925
723 => 0.013515656014016
724 => 0.013384643213447
725 => 0.013631891436747
726 => 0.013677782885735
727 => 0.013857709523862
728 => 0.013876390104316
729 => 0.014377483230404
730 => 0.014101489557083
731 => 0.014286649941294
801 => 0.014270087453733
802 => 0.012943541184301
803 => 0.013126327556012
804 => 0.013410685788871
805 => 0.013282582790407
806 => 0.013101475122063
807 => 0.012955220969497
808 => 0.012733630973104
809 => 0.013045514637768
810 => 0.013455608491671
811 => 0.013886790761209
812 => 0.014404828005878
813 => 0.014289208123486
814 => 0.013877106415259
815 => 0.01389559299685
816 => 0.014009869770041
817 => 0.013861870965619
818 => 0.013818223228915
819 => 0.014003873241274
820 => 0.014005151710878
821 => 0.013834861200137
822 => 0.013645614460283
823 => 0.013644821509533
824 => 0.013611146880083
825 => 0.014089972967009
826 => 0.014353278900041
827 => 0.014383466500925
828 => 0.01435124703398
829 => 0.014363647028062
830 => 0.014210435107181
831 => 0.014560632124731
901 => 0.01488200753893
902 => 0.01479587206274
903 => 0.014666742739053
904 => 0.014563885013024
905 => 0.014771642051354
906 => 0.014762390957477
907 => 0.014879200605049
908 => 0.01487390144471
909 => 0.014834622753664
910 => 0.014795873465506
911 => 0.014949510013033
912 => 0.014905265154672
913 => 0.014860951571827
914 => 0.014772073897359
915 => 0.014784153849421
916 => 0.014655046821731
917 => 0.014595316003187
918 => 0.013697107806546
919 => 0.013457077226604
920 => 0.013532595733327
921 => 0.013557458386577
922 => 0.013452996770579
923 => 0.013602767893933
924 => 0.013579426223005
925 => 0.013670235010165
926 => 0.013613501622407
927 => 0.01361582998043
928 => 0.013782670776992
929 => 0.013831105370026
930 => 0.013806471145094
1001 => 0.013823724111825
1002 => 0.014221311448109
1003 => 0.014164787243017
1004 => 0.01413475988563
1005 => 0.014143077668837
1006 => 0.014244669757626
1007 => 0.014273109995765
1008 => 0.014152606708312
1009 => 0.014209436755296
1010 => 0.014451411882547
1011 => 0.014536089482479
1012 => 0.014806339733909
1013 => 0.014691532623786
1014 => 0.014902266043151
1015 => 0.015549988729962
1016 => 0.016067434431187
1017 => 0.015591569979992
1018 => 0.01654179311398
1019 => 0.017281678125202
1020 => 0.017253280106128
1021 => 0.017124264040573
1022 => 0.016281924626157
1023 => 0.015506791338439
1024 => 0.016155223247513
1025 => 0.016156876233801
1026 => 0.016101175357745
1027 => 0.015755222000393
1028 => 0.016089136930807
1029 => 0.016115641885382
1030 => 0.016100806159056
1031 => 0.015835564531105
1101 => 0.01543058959007
1102 => 0.015509720724175
1103 => 0.015639339136071
1104 => 0.015393944441119
1105 => 0.015315525967093
1106 => 0.015461320830032
1107 => 0.01593110225599
1108 => 0.015842292798671
1109 => 0.015839973624833
1110 => 0.016219938144314
1111 => 0.015947965549841
1112 => 0.015510718821189
1113 => 0.015400308255629
1114 => 0.015008425129358
1115 => 0.015279100200513
1116 => 0.01528884131445
1117 => 0.015140595344211
1118 => 0.015522748164644
1119 => 0.015519226559127
1120 => 0.015882023786187
1121 => 0.01657555582391
1122 => 0.016370444273716
1123 => 0.016131921856914
1124 => 0.01615785585713
1125 => 0.016442287828928
1126 => 0.016270313765829
1127 => 0.016332156837965
1128 => 0.016442194222032
1129 => 0.016508582507914
1130 => 0.016148303604449
1201 => 0.01606430535792
1202 => 0.015892474424898
1203 => 0.015847646941849
1204 => 0.015987599651425
1205 => 0.015950727057054
1206 => 0.015288022611543
1207 => 0.015218766309735
1208 => 0.015220890301636
1209 => 0.015046742037781
1210 => 0.014781124135029
1211 => 0.01547915212424
1212 => 0.015423090707811
1213 => 0.015361203242882
1214 => 0.015368784104211
1215 => 0.015671774395964
1216 => 0.01549602472537
1217 => 0.015963284029447
1218 => 0.015867229563629
1219 => 0.01576871166321
1220 => 0.015755093488443
1221 => 0.015717172501934
1222 => 0.015587127329417
1223 => 0.015430089969099
1224 => 0.015326400301473
1225 => 0.014137794127654
1226 => 0.014358392519711
1227 => 0.014612170861596
1228 => 0.014699774128262
1229 => 0.014549922678669
1230 => 0.015593044378002
1231 => 0.015783632764241
]
'min_raw' => 0.0065784681070834
'max_raw' => 0.017281678125202
'avg_raw' => 0.011930073116142
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006578'
'max' => '$0.017281'
'avg' => '$0.01193'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025506203179834
'max_diff' => -0.0031165757635105
'year' => 2027
]
2 => [
'items' => [
101 => 0.01520632811055
102 => 0.015098337981038
103 => 0.015600124192914
104 => 0.015297485766284
105 => 0.015433763831265
106 => 0.015139205194892
107 => 0.015737725603075
108 => 0.015733165880361
109 => 0.015500327923381
110 => 0.015697120970215
111 => 0.015662923335488
112 => 0.015400049855513
113 => 0.01574605916127
114 => 0.015746230777568
115 => 0.015522129306309
116 => 0.015260427849998
117 => 0.015213641810722
118 => 0.015178394814948
119 => 0.015425095230984
120 => 0.01564628605259
121 => 0.016057867333744
122 => 0.016161348646757
123 => 0.016565243100584
124 => 0.016324743618594
125 => 0.016431353923971
126 => 0.016547094491405
127 => 0.016602584775652
128 => 0.016512166335245
129 => 0.017139580671629
130 => 0.017192553665098
131 => 0.017210315051594
201 => 0.016998754467472
202 => 0.017186669782543
203 => 0.017098750429723
204 => 0.017327492161063
205 => 0.017363361785258
206 => 0.017332981489663
207 => 0.017344367074546
208 => 0.016808979621916
209 => 0.016781216958103
210 => 0.016402671067069
211 => 0.016556931315735
212 => 0.016268549174739
213 => 0.016359998122314
214 => 0.016400307947048
215 => 0.016379252382169
216 => 0.016565652958745
217 => 0.016407174389534
218 => 0.015988923389097
219 => 0.015570558436455
220 => 0.015565306205267
221 => 0.015455158097991
222 => 0.015375541191063
223 => 0.015390878231899
224 => 0.015444927964247
225 => 0.015372399722362
226 => 0.015387877300043
227 => 0.015644908216113
228 => 0.01569645393327
229 => 0.015521281446158
301 => 0.014817938633136
302 => 0.014645336542619
303 => 0.014769399502435
304 => 0.014710105398321
305 => 0.011872203133099
306 => 0.012538926175113
307 => 0.012142781983323
308 => 0.012325343452618
309 => 0.011920982813842
310 => 0.012113964905023
311 => 0.012078328159359
312 => 0.01315039908115
313 => 0.013133660168291
314 => 0.013141672200073
315 => 0.012759237047891
316 => 0.013368466629563
317 => 0.013668595028681
318 => 0.013613049249663
319 => 0.013627028925555
320 => 0.013386811776848
321 => 0.013143998027161
322 => 0.012874680209991
323 => 0.013375039425605
324 => 0.013319408022245
325 => 0.013447006446005
326 => 0.013771525163747
327 => 0.013819311777661
328 => 0.013883537471366
329 => 0.013860517132069
330 => 0.014408955008295
331 => 0.014342535562774
401 => 0.0145025873163
402 => 0.014173348716141
403 => 0.013800783988447
404 => 0.013871596363123
405 => 0.013864776562005
406 => 0.013777952666363
407 => 0.013699571935537
408 => 0.013569090102345
409 => 0.013981953930242
410 => 0.013965192412807
411 => 0.014236541896943
412 => 0.014188578239874
413 => 0.013868265199268
414 => 0.013879705242177
415 => 0.013956645028637
416 => 0.014222934508058
417 => 0.014301987355921
418 => 0.014265366927079
419 => 0.014352044765861
420 => 0.014420551395494
421 => 0.014360648143797
422 => 0.015208751863057
423 => 0.014856560069235
424 => 0.015028215899009
425 => 0.015069154802955
426 => 0.01496429066135
427 => 0.01498703193876
428 => 0.015021478777411
429 => 0.015230633236314
430 => 0.015779515055805
501 => 0.016022611077292
502 => 0.016753977452084
503 => 0.016002425336768
504 => 0.015957831344477
505 => 0.016089572513725
506 => 0.016518961998721
507 => 0.016866941845807
508 => 0.016982386836525
509 => 0.016997644797837
510 => 0.017214227275061
511 => 0.017338368311981
512 => 0.017187928465641
513 => 0.017060446447576
514 => 0.016603821682519
515 => 0.016656677242422
516 => 0.01702079963582
517 => 0.017535143963195
518 => 0.01797650490449
519 => 0.01782195568583
520 => 0.019001057129459
521 => 0.019117960221397
522 => 0.019101807994021
523 => 0.019368130634969
524 => 0.01883953442835
525 => 0.018613549308951
526 => 0.017088009506864
527 => 0.017516623965291
528 => 0.018139640252258
529 => 0.018057181710487
530 => 0.017604730629618
531 => 0.017976161679773
601 => 0.017853354958869
602 => 0.017756492202836
603 => 0.018200239265991
604 => 0.017712321141928
605 => 0.018134772895733
606 => 0.017592974151774
607 => 0.017822661653643
608 => 0.017692279918848
609 => 0.017776652880245
610 => 0.017283410271941
611 => 0.017549552010594
612 => 0.01727233790062
613 => 0.017272206465038
614 => 0.017266086948196
615 => 0.017592228119224
616 => 0.017602863571103
617 => 0.017361844752941
618 => 0.017327110175822
619 => 0.017455542112559
620 => 0.017305181951017
621 => 0.017375534524247
622 => 0.017307312858791
623 => 0.017291954724929
624 => 0.017169578501344
625 => 0.017116855459419
626 => 0.017137529522663
627 => 0.017066958286601
628 => 0.0170244365642
629 => 0.017257628307354
630 => 0.017133043365915
701 => 0.017238533878279
702 => 0.017118314125476
703 => 0.016701580085009
704 => 0.016461911931454
705 => 0.015674739960277
706 => 0.015897980954819
707 => 0.01604598996516
708 => 0.015997072988125
709 => 0.016102165583153
710 => 0.016108617414961
711 => 0.016074450741025
712 => 0.016034890109629
713 => 0.016015634182106
714 => 0.016159152089779
715 => 0.016242469065773
716 => 0.016060844649452
717 => 0.016018292589904
718 => 0.016201924902563
719 => 0.016313940507205
720 => 0.017141000795744
721 => 0.017079729498199
722 => 0.017233508431151
723 => 0.017216195283231
724 => 0.01737738010387
725 => 0.017640849163826
726 => 0.017105142897827
727 => 0.017198122982275
728 => 0.017175326412792
729 => 0.017424213380827
730 => 0.017424990378774
731 => 0.017275770208611
801 => 0.017356664883677
802 => 0.017311511695285
803 => 0.01739310960953
804 => 0.017078911182665
805 => 0.017461570950962
806 => 0.017678514381535
807 => 0.017681526641279
808 => 0.017784356105601
809 => 0.017888836796833
810 => 0.018089378385303
811 => 0.017883243800775
812 => 0.017512427750006
813 => 0.017539199471143
814 => 0.017321790156253
815 => 0.017325444846115
816 => 0.017305935825211
817 => 0.017364483865514
818 => 0.01709175918507
819 => 0.017155767122456
820 => 0.017066155635285
821 => 0.017197928184403
822 => 0.017056162704335
823 => 0.017175315419596
824 => 0.017226737781528
825 => 0.017416487404099
826 => 0.017028136530801
827 => 0.016236262811102
828 => 0.016402724267524
829 => 0.016156514698211
830 => 0.016179302331237
831 => 0.016225336976574
901 => 0.016076123629438
902 => 0.016104588833819
903 => 0.016103571856412
904 => 0.016094808094533
905 => 0.01605599194005
906 => 0.015999700836508
907 => 0.016223947267533
908 => 0.016262051105893
909 => 0.016346751218499
910 => 0.016598761300981
911 => 0.016573579550934
912 => 0.016614652030042
913 => 0.016524991038763
914 => 0.016183461447469
915 => 0.016202008147424
916 => 0.015970730501786
917 => 0.016340836929117
918 => 0.016253190841959
919 => 0.016196684839397
920 => 0.016181266653073
921 => 0.016433901419805
922 => 0.016509493701576
923 => 0.016462389664386
924 => 0.016365777909864
925 => 0.016551301039247
926 => 0.016600939202078
927 => 0.016612051356151
928 => 0.016940762770886
929 => 0.016630422672706
930 => 0.016705124618853
1001 => 0.017287927878082
1002 => 0.016759405743314
1003 => 0.017039375705551
1004 => 0.017025672632793
1005 => 0.017168895791806
1006 => 0.017013924153383
1007 => 0.017015845212573
1008 => 0.017143017675
1009 => 0.016964426887196
1010 => 0.016920205296607
1011 => 0.016859113485931
1012 => 0.016992505219544
1013 => 0.017072467531056
1014 => 0.017716905035995
1015 => 0.018133241054106
1016 => 0.018115166809552
1017 => 0.01828033157121
1018 => 0.018205923333347
1019 => 0.017965639505386
1020 => 0.018375774700224
1021 => 0.018245990763792
1022 => 0.018256689993824
1023 => 0.018256291767948
1024 => 0.018342586739767
1025 => 0.018281438843415
1026 => 0.018160910063003
1027 => 0.018240922692283
1028 => 0.018478531596207
1029 => 0.019216076924717
1030 => 0.019628817061727
1031 => 0.019191229450217
1101 => 0.019493071525105
1102 => 0.0193120738375
1103 => 0.019279181173448
1104 => 0.019468760302431
1105 => 0.019658671264584
1106 => 0.019646574757303
1107 => 0.019508709150816
1108 => 0.019430832367921
1109 => 0.020020541458634
1110 => 0.020455029071238
1111 => 0.0204253999289
1112 => 0.020556173327266
1113 => 0.020940128069536
1114 => 0.020975232079291
1115 => 0.020970809780918
1116 => 0.020883800830014
1117 => 0.021261854136603
1118 => 0.021577232856174
1119 => 0.02086366077181
1120 => 0.021135379680191
1121 => 0.0212573630524
1122 => 0.021436470833638
1123 => 0.021738655682536
1124 => 0.022066908579012
1125 => 0.022113327137684
1126 => 0.022080390948974
1127 => 0.021863899339837
1128 => 0.022223077576032
1129 => 0.022433475763029
1130 => 0.022558763068509
1201 => 0.022876470829387
1202 => 0.021258116380179
1203 => 0.020112564663594
1204 => 0.019933670221082
1205 => 0.020297459104607
1206 => 0.02039338733203
1207 => 0.02035471878384
1208 => 0.019065296177818
1209 => 0.019926881677914
1210 => 0.02085387523185
1211 => 0.020889484829557
1212 => 0.021353557185178
1213 => 0.021504678167137
1214 => 0.021878317240767
1215 => 0.02185494601498
1216 => 0.021945921183513
1217 => 0.021925007567737
1218 => 0.022617095272647
1219 => 0.02338057078718
1220 => 0.023354134057815
1221 => 0.023244375419569
1222 => 0.023407385713994
1223 => 0.024195374264001
1224 => 0.024122828905575
1225 => 0.024193300541887
1226 => 0.025122383451434
1227 => 0.026330323394348
1228 => 0.025769114015677
1229 => 0.026986776883744
1230 => 0.027753231113657
1231 => 0.029078734451446
]
'min_raw' => 0.011872203133099
'max_raw' => 0.029078734451446
'avg_raw' => 0.020475468792272
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011872'
'max' => '$0.029078'
'avg' => '$0.020475'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052937350260153
'max_diff' => 0.011797056326244
'year' => 2028
]
3 => [
'items' => [
101 => 0.028912774905313
102 => 0.029428783627721
103 => 0.028615672680933
104 => 0.026748605590272
105 => 0.02645313507633
106 => 0.027044674527748
107 => 0.028498916547485
108 => 0.026998875271339
109 => 0.027302331667845
110 => 0.027214936205237
111 => 0.027210279272441
112 => 0.027388015456135
113 => 0.027130199851591
114 => 0.026079812698539
115 => 0.026561198940813
116 => 0.026375312594605
117 => 0.026581567354467
118 => 0.027694639227513
119 => 0.02720252362012
120 => 0.026684119803957
121 => 0.027334313232441
122 => 0.028162232897604
123 => 0.028110423172873
124 => 0.028009890652109
125 => 0.028576587207941
126 => 0.029512603891663
127 => 0.029765605440054
128 => 0.029952366010687
129 => 0.029978117138031
130 => 0.030243369753917
131 => 0.028817039586033
201 => 0.031080662193221
202 => 0.03147152728617
203 => 0.031398060848394
204 => 0.031832490949089
205 => 0.031704670593036
206 => 0.031519478951516
207 => 0.03220814306705
208 => 0.031418645230918
209 => 0.030298052447544
210 => 0.029683273083772
211 => 0.030492864142823
212 => 0.030987253151751
213 => 0.031314012837606
214 => 0.031412890121112
215 => 0.028927761536725
216 => 0.02758841506129
217 => 0.028446920796405
218 => 0.029494357044147
219 => 0.028811221024791
220 => 0.028837998663402
221 => 0.027864026224789
222 => 0.029580531993289
223 => 0.029330451540904
224 => 0.03062786937026
225 => 0.030318230192855
226 => 0.031376224067225
227 => 0.031097618822868
228 => 0.032254093615586
301 => 0.032715442720706
302 => 0.033490119671457
303 => 0.034059975189933
304 => 0.034394605249981
305 => 0.034374515316341
306 => 0.035700486326284
307 => 0.034918607547619
308 => 0.033936383526937
309 => 0.03391861819328
310 => 0.034427325931813
311 => 0.035493437794627
312 => 0.035769865089358
313 => 0.035924350236207
314 => 0.035687750856141
315 => 0.034839077479657
316 => 0.034472624618563
317 => 0.034784853073376
318 => 0.034403024503236
319 => 0.035062167737473
320 => 0.035967312183477
321 => 0.035780403434707
322 => 0.036405211358922
323 => 0.037051821828774
324 => 0.037976503841757
325 => 0.038218249960826
326 => 0.038617847102866
327 => 0.039029163822849
328 => 0.039161267668011
329 => 0.039413494897841
330 => 0.039412165535837
331 => 0.04017226926978
401 => 0.041010687226772
402 => 0.041327170596116
403 => 0.042054906652929
404 => 0.040808684158551
405 => 0.041753958236109
406 => 0.042606619115811
407 => 0.041590041663948
408 => 0.042991156849173
409 => 0.04304555897682
410 => 0.043866966515109
411 => 0.04303431261241
412 => 0.042539885382912
413 => 0.043967278268525
414 => 0.044657948723418
415 => 0.044449913161542
416 => 0.042866752263679
417 => 0.041945284716158
418 => 0.03953362640648
419 => 0.04239033985018
420 => 0.043781761637132
421 => 0.042863148817394
422 => 0.043326443691153
423 => 0.045854030298517
424 => 0.046816371629488
425 => 0.04661621135992
426 => 0.046650035150558
427 => 0.047169297065019
428 => 0.0494719903565
429 => 0.048092163160232
430 => 0.04914698935064
501 => 0.049706465358574
502 => 0.050226137854679
503 => 0.048949986448423
504 => 0.047289732219272
505 => 0.046763860012168
506 => 0.042771810876351
507 => 0.042564007382241
508 => 0.042447360983907
509 => 0.04171192194237
510 => 0.041134068309429
511 => 0.040674537646185
512 => 0.03946859195836
513 => 0.039875563227094
514 => 0.037953537501128
515 => 0.039183181448192
516 => 0.036115581980615
517 => 0.038670369971424
518 => 0.037279915019983
519 => 0.038213568123709
520 => 0.038210310695986
521 => 0.036491159317039
522 => 0.035499588679437
523 => 0.036131456082224
524 => 0.036808868095708
525 => 0.036918775915808
526 => 0.037797058273553
527 => 0.038042168000984
528 => 0.03729947408379
529 => 0.036052012800041
530 => 0.036341769604693
531 => 0.035493716767039
601 => 0.03400753678893
602 => 0.035074937195421
603 => 0.03543939462448
604 => 0.035600359787834
605 => 0.034138872468288
606 => 0.033679641422053
607 => 0.033435150666359
608 => 0.03586335313966
609 => 0.035996375552504
610 => 0.035315814080918
611 => 0.038392016465975
612 => 0.03769577712451
613 => 0.038473647051707
614 => 0.036315477211758
615 => 0.036397922206005
616 => 0.035376210017568
617 => 0.03594830057226
618 => 0.035543965407543
619 => 0.03590208130895
620 => 0.036116734503686
621 => 0.037138279039207
622 => 0.03868203436909
623 => 0.036985694351108
624 => 0.036246574713237
625 => 0.036705120379606
626 => 0.037926287915586
627 => 0.039776419243013
628 => 0.038681104259814
629 => 0.039167186449703
630 => 0.039273373783902
701 => 0.038465729066056
702 => 0.039806198255773
703 => 0.040524566584494
704 => 0.041261463844382
705 => 0.041901291087751
706 => 0.040967130874065
707 => 0.041966816209315
708 => 0.041161246297321
709 => 0.040438566807975
710 => 0.040439662814451
711 => 0.039986315414121
712 => 0.039107897700535
713 => 0.038945903996804
714 => 0.039788615701162
715 => 0.040464390682962
716 => 0.040520050747207
717 => 0.040894194499704
718 => 0.041115608918444
719 => 0.043285771220406
720 => 0.044158628450779
721 => 0.045225941749738
722 => 0.045641720430164
723 => 0.046893065193339
724 => 0.045882502667823
725 => 0.045663861108691
726 => 0.04262850802498
727 => 0.043125546922394
728 => 0.043921354154274
729 => 0.04264163059312
730 => 0.043453320640912
731 => 0.043613565450293
801 => 0.042598146076204
802 => 0.043140525437586
803 => 0.041700126658029
804 => 0.038713431126328
805 => 0.039809523301692
806 => 0.040616616083396
807 => 0.039464795170082
808 => 0.041529389575572
809 => 0.040323296145764
810 => 0.039941022431209
811 => 0.038449636380312
812 => 0.039153513187622
813 => 0.040105516648054
814 => 0.039517289191788
815 => 0.040737949486336
816 => 0.042466730001626
817 => 0.04369876194748
818 => 0.043793342062081
819 => 0.043001228060627
820 => 0.044270595803162
821 => 0.044279841761366
822 => 0.042847989762267
823 => 0.041970988385403
824 => 0.041771731827353
825 => 0.042269513775912
826 => 0.042873912957078
827 => 0.043826882010232
828 => 0.044402741250505
829 => 0.045904276736997
830 => 0.046310549187246
831 => 0.046756919435958
901 => 0.047353407743725
902 => 0.048069644893662
903 => 0.046502558785004
904 => 0.046564822037515
905 => 0.045105573150916
906 => 0.043546156438126
907 => 0.044729559339096
908 => 0.046276701210623
909 => 0.045921785155855
910 => 0.045881849849417
911 => 0.045949009957716
912 => 0.045681414842895
913 => 0.0444710920561
914 => 0.043863275529593
915 => 0.044647513919321
916 => 0.045064301721026
917 => 0.045710703253755
918 => 0.045631020620965
919 => 0.047296081550818
920 => 0.04794307387933
921 => 0.047777545555334
922 => 0.047808006750611
923 => 0.048979355457001
924 => 0.05028213612474
925 => 0.051502362137129
926 => 0.052743628446858
927 => 0.051247233463031
928 => 0.050487456375056
929 => 0.051271352390836
930 => 0.050855406130728
1001 => 0.053245556718985
1002 => 0.05341104555988
1003 => 0.055801023313045
1004 => 0.058069396794055
1005 => 0.056644672052764
1006 => 0.057988123312789
1007 => 0.059441175383695
1008 => 0.062244348577674
1009 => 0.061300338462764
1010 => 0.060577241509267
1011 => 0.059893918382192
1012 => 0.061315805335144
1013 => 0.063145040184918
1014 => 0.063539039851365
1015 => 0.064177469830467
1016 => 0.063506238770945
1017 => 0.064314662648464
1018 => 0.067168754175556
1019 => 0.066397553451173
1020 => 0.065302324445846
1021 => 0.067555355596621
1022 => 0.06837071881165
1023 => 0.074093364863753
1024 => 0.08131844189525
1025 => 0.078327212561796
1026 => 0.076470459988154
1027 => 0.07690684088572
1028 => 0.079545194433331
1029 => 0.080392549855667
1030 => 0.078089145716826
1031 => 0.078902746999174
1101 => 0.083385770056424
1102 => 0.085790768094039
1103 => 0.082524457724628
1104 => 0.073512836959173
1105 => 0.065203711057076
1106 => 0.067407665411128
1107 => 0.067157805384045
1108 => 0.071974254390544
1109 => 0.066379160568949
1110 => 0.066473367599487
1111 => 0.071389415670732
1112 => 0.070077898327725
1113 => 0.067953408198502
1114 => 0.065219222186121
1115 => 0.06016482646064
1116 => 0.055688007214329
1117 => 0.064468080706243
1118 => 0.064089467971744
1119 => 0.063541180624926
1120 => 0.064761334784382
1121 => 0.070686057035902
1122 => 0.07054947301155
1123 => 0.069680595134404
1124 => 0.070339631346281
1125 => 0.067837875964167
1126 => 0.068482635290049
1127 => 0.065202394849081
1128 => 0.06668520052334
1129 => 0.067948849996842
1130 => 0.068202546337298
1201 => 0.0687741371464
1202 => 0.063889956264959
1203 => 0.066082810088709
1204 => 0.067370906267546
1205 => 0.061551240870223
1206 => 0.067255870194291
1207 => 0.063804933542135
1208 => 0.062633633811064
1209 => 0.064210634591946
1210 => 0.063596075853952
1211 => 0.063067714339126
1212 => 0.062772879535449
1213 => 0.063930854861704
1214 => 0.063876833928654
1215 => 0.061982161541576
1216 => 0.059510638649359
1217 => 0.06034016285696
1218 => 0.060038788935508
1219 => 0.058946570966154
1220 => 0.059682594002598
1221 => 0.056441521042834
1222 => 0.050865423471872
1223 => 0.054549164327737
1224 => 0.054407344311925
1225 => 0.054335832228927
1226 => 0.057104061670991
1227 => 0.056837960284056
1228 => 0.056354983661096
1229 => 0.058937700721718
1230 => 0.057994974252145
1231 => 0.06090023509708
]
'min_raw' => 0.026079812698539
'max_raw' => 0.085790768094039
'avg_raw' => 0.055935290396289
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.026079'
'max' => '$0.08579'
'avg' => '$0.055935'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.014207609565441
'max_diff' => 0.056712033642593
'year' => 2029
]
4 => [
'items' => [
101 => 0.062813827790044
102 => 0.06232847878487
103 => 0.064128221961799
104 => 0.0603592734193
105 => 0.061611166941148
106 => 0.061869180460952
107 => 0.058905830394095
108 => 0.05688149776189
109 => 0.056746497854403
110 => 0.053236584040379
111 => 0.055111551668796
112 => 0.056761445590371
113 => 0.055971274438877
114 => 0.055721129858006
115 => 0.056999064271937
116 => 0.057098370720668
117 => 0.054834173165586
118 => 0.055304971535098
119 => 0.057268278999684
120 => 0.055255501224319
121 => 0.051345002792167
122 => 0.050375145114123
123 => 0.050245748221848
124 => 0.047615417278609
125 => 0.050439955641725
126 => 0.049206968953303
127 => 0.053101959128579
128 => 0.050877161629713
129 => 0.050781255056183
130 => 0.050636278203857
131 => 0.048372243703409
201 => 0.048867923372108
202 => 0.050515638085011
203 => 0.051103561257409
204 => 0.051042236053816
205 => 0.05050756338401
206 => 0.05075233379428
207 => 0.049963843019136
208 => 0.049685410515417
209 => 0.048806600944784
210 => 0.047514993653294
211 => 0.047694599569064
212 => 0.045135587557191
213 => 0.043741301996076
214 => 0.043355382129147
215 => 0.042839313954389
216 => 0.043413673402691
217 => 0.045128338197684
218 => 0.043060088668493
219 => 0.039514219921532
220 => 0.039727332675091
221 => 0.040206133758593
222 => 0.039313891107073
223 => 0.038469458317659
224 => 0.039203624117056
225 => 0.037701192784607
226 => 0.040387695407169
227 => 0.040315033040065
228 => 0.041316395085548
301 => 0.041942567322607
302 => 0.040499443041856
303 => 0.04013650118787
304 => 0.040343249362688
305 => 0.036926162570199
306 => 0.041037146193249
307 => 0.041072698150333
308 => 0.040768280709557
309 => 0.042957252576451
310 => 0.047576665973045
311 => 0.045838656837773
312 => 0.045165647168992
313 => 0.043886255296671
314 => 0.045590969003766
315 => 0.045460073588737
316 => 0.044868114881367
317 => 0.044510096408126
318 => 0.045169756422518
319 => 0.044428357232208
320 => 0.044295181565341
321 => 0.043488281920682
322 => 0.043200255459134
323 => 0.042987012133667
324 => 0.042752252185184
325 => 0.043270074133003
326 => 0.042096621474096
327 => 0.040681552602437
328 => 0.040563904937016
329 => 0.040888740484932
330 => 0.040745024936142
331 => 0.04056321688226
401 => 0.040216095794922
402 => 0.040113112383378
403 => 0.040447758510449
404 => 0.040069962544067
405 => 0.040627421072075
406 => 0.040475823198044
407 => 0.03962900979704
408 => 0.038573566768912
409 => 0.038564171112095
410 => 0.038336777642959
411 => 0.038047157871177
412 => 0.037966592276269
413 => 0.039141794721186
414 => 0.041574428611314
415 => 0.041096844370686
416 => 0.041441947929342
417 => 0.043139515876378
418 => 0.043679121679092
419 => 0.04329612226159
420 => 0.042771849036537
421 => 0.042794914397708
422 => 0.044586514716011
423 => 0.044698254630242
424 => 0.04498058534484
425 => 0.04534346009975
426 => 0.043357921401466
427 => 0.042701395703575
428 => 0.042390297405256
429 => 0.041432235056625
430 => 0.042465423161565
501 => 0.041863428698342
502 => 0.04194465831849
503 => 0.041891757421807
504 => 0.041920644888539
505 => 0.040386944474934
506 => 0.040945744296731
507 => 0.040016631211986
508 => 0.038772653089351
509 => 0.038768482838489
510 => 0.039072944721661
511 => 0.038891838879956
512 => 0.038404487716583
513 => 0.038473713649107
514 => 0.037867221637243
515 => 0.03854735276024
516 => 0.038566856487221
517 => 0.038304968957875
518 => 0.03935280479286
519 => 0.039782103989406
520 => 0.039609724007416
521 => 0.03977000935034
522 => 0.041116690152048
523 => 0.041336257882529
524 => 0.041433775364579
525 => 0.041303114857223
526 => 0.039794624203258
527 => 0.039861532178359
528 => 0.039370605851207
529 => 0.038955824837306
530 => 0.038972413902622
531 => 0.039185665261525
601 => 0.04011694645288
602 => 0.042076772818062
603 => 0.042151146796006
604 => 0.042241290226916
605 => 0.041874631590945
606 => 0.041764043837886
607 => 0.041909937629292
608 => 0.04264594536928
609 => 0.044539157100679
610 => 0.043869969631442
611 => 0.04332590980243
612 => 0.043803196949951
613 => 0.04372972233469
614 => 0.043109522639652
615 => 0.043092115699851
616 => 0.041901754195236
617 => 0.0414617046502
618 => 0.04109396631323
619 => 0.040692405649311
620 => 0.040454347027305
621 => 0.040820113266415
622 => 0.040903768332919
623 => 0.040104014058604
624 => 0.039995010506208
625 => 0.040648107110509
626 => 0.040360703644852
627 => 0.040656305236543
628 => 0.040724887341439
629 => 0.040713844042971
630 => 0.040413761816747
701 => 0.040605025279161
702 => 0.040152630172169
703 => 0.039660718440863
704 => 0.039346909403474
705 => 0.039073069397623
706 => 0.039225011748543
707 => 0.038683365011089
708 => 0.038510081318582
709 => 0.040540229521659
710 => 0.042039921827044
711 => 0.04201811570698
712 => 0.041885376559172
713 => 0.041688153110681
714 => 0.042631517245593
715 => 0.042302868044151
716 => 0.04254198779776
717 => 0.042602853810878
718 => 0.042787076900916
719 => 0.042852920821094
720 => 0.042653894762771
721 => 0.041985939002052
722 => 0.04032145675367
723 => 0.039546635773863
724 => 0.039290931944863
725 => 0.039300226293397
726 => 0.039043846669045
727 => 0.039119361958546
728 => 0.039017585533115
729 => 0.038824845605712
730 => 0.039213110601153
731 => 0.039257854524939
801 => 0.039167228835582
802 => 0.039188574466123
803 => 0.038438232464984
804 => 0.038495279337673
805 => 0.038177635101372
806 => 0.038118080636324
807 => 0.037315103667403
808 => 0.035892513573586
809 => 0.036680766579723
810 => 0.035728667793456
811 => 0.035368093556446
812 => 0.037074995913653
813 => 0.036903670259091
814 => 0.036610435211953
815 => 0.036176679461697
816 => 0.036015795234623
817 => 0.035038313600675
818 => 0.03498055877108
819 => 0.035465025063089
820 => 0.035241460538794
821 => 0.034927491276178
822 => 0.033790326433535
823 => 0.032511776648065
824 => 0.032550368029411
825 => 0.032957050927905
826 => 0.034139536303936
827 => 0.033677518810316
828 => 0.033342319817655
829 => 0.033279547122374
830 => 0.034065278827351
831 => 0.035177253805776
901 => 0.035698967586615
902 => 0.035181965074487
903 => 0.034588060425946
904 => 0.034624208650013
905 => 0.034864686590045
906 => 0.034889957421367
907 => 0.034503386549551
908 => 0.034612203985616
909 => 0.034446900349759
910 => 0.033432432241634
911 => 0.033414083730471
912 => 0.033165116896229
913 => 0.033157578279434
914 => 0.032734023586701
915 => 0.032674765357292
916 => 0.031833771806939
917 => 0.032387316308544
918 => 0.032016027719258
919 => 0.031456408237079
920 => 0.031359929627418
921 => 0.031357029363911
922 => 0.031931633443482
923 => 0.032380601725324
924 => 0.032022486443231
925 => 0.031940950535272
926 => 0.032811540716948
927 => 0.032700750180724
928 => 0.032604806290877
929 => 0.035077688642706
930 => 0.033120209299817
1001 => 0.032266636577302
1002 => 0.031210178244127
1003 => 0.031554166404534
1004 => 0.031626649764169
1005 => 0.02908605791381
1006 => 0.02805534011653
1007 => 0.027701636610284
1008 => 0.027498075241806
1009 => 0.027590840713584
1010 => 0.026663073804892
1011 => 0.027286548511382
1012 => 0.026483180790639
1013 => 0.026348493577872
1014 => 0.027785014580723
1015 => 0.027984898086236
1016 => 0.027132132952781
1017 => 0.027679746218593
1018 => 0.027481174036016
1019 => 0.026496952224406
1020 => 0.026459362190648
1021 => 0.025965514282652
1022 => 0.025192737934436
1023 => 0.024839558406944
1024 => 0.024655619442581
1025 => 0.024731516244176
1026 => 0.024693140498809
1027 => 0.024442712801935
1028 => 0.024707494721254
1029 => 0.024031086332837
1030 => 0.023761735062377
1031 => 0.023640075342412
1101 => 0.023039723965078
1102 => 0.023995149983886
1103 => 0.024183380945731
1104 => 0.024371982780718
1105 => 0.02601363299034
1106 => 0.025931620785122
1107 => 0.026672971178724
1108 => 0.026644163665684
1109 => 0.026432718524349
1110 => 0.025540666254093
1111 => 0.025896222389714
1112 => 0.024801875869964
1113 => 0.025621834690891
1114 => 0.025247639727319
1115 => 0.025495318997301
1116 => 0.025049969337534
1117 => 0.025296444227286
1118 => 0.024228017489692
1119 => 0.023230335635297
1120 => 0.023631831937655
1121 => 0.024068304334989
1122 => 0.025014687703508
1123 => 0.024451029576711
1124 => 0.024653742353381
1125 => 0.023974688485247
1126 => 0.022573606393138
1127 => 0.022581536365623
1128 => 0.022366010409984
1129 => 0.022179764517008
1130 => 0.024515772493046
1201 => 0.024225252974404
1202 => 0.023762348143703
1203 => 0.024381964654703
1204 => 0.024545801094848
1205 => 0.024550465287972
1206 => 0.02500252149978
1207 => 0.025243783981058
1208 => 0.025286307539075
1209 => 0.025997627755676
1210 => 0.02623605290974
1211 => 0.02721809237614
1212 => 0.025223314545129
1213 => 0.025182233408399
1214 => 0.024390683929688
1215 => 0.023888670736387
1216 => 0.024425057202524
1217 => 0.024900222387467
1218 => 0.024405448636502
1219 => 0.024470055643134
1220 => 0.023805862306963
1221 => 0.024043280171443
1222 => 0.024247776419973
1223 => 0.024134865611269
1224 => 0.023965832665693
1225 => 0.024861264261014
1226 => 0.024810740501182
1227 => 0.025644586988628
1228 => 0.026294629954526
1229 => 0.027459623158496
1230 => 0.026243892017685
1231 => 0.02619958594282
]
'min_raw' => 0.022179764517008
'max_raw' => 0.064128221961799
'avg_raw' => 0.043153993239403
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022179'
'max' => '$0.064128'
'avg' => '$0.043153'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0039000481815313
'max_diff' => -0.02166254613224
'year' => 2030
]
5 => [
'items' => [
101 => 0.026632684931541
102 => 0.026235986604542
103 => 0.026486686253645
104 => 0.027419231569224
105 => 0.027438934782257
106 => 0.027108880577806
107 => 0.02708879674947
108 => 0.027152187269832
109 => 0.02752346752756
110 => 0.02739373079722
111 => 0.027543865426102
112 => 0.027731611078461
113 => 0.028508206699129
114 => 0.028695441274119
115 => 0.028240558326889
116 => 0.028281629163915
117 => 0.028111490454835
118 => 0.027947138593695
119 => 0.028316577575876
120 => 0.028991734577152
121 => 0.028987534460488
122 => 0.029144157761607
123 => 0.029241732780667
124 => 0.028822869369583
125 => 0.028550204691001
126 => 0.028654761678873
127 => 0.028821950579436
128 => 0.028600544571737
129 => 0.027233924126973
130 => 0.027648469469863
131 => 0.027579468854574
201 => 0.027481203587642
202 => 0.027898032135501
203 => 0.0278578280052
204 => 0.026653558214271
205 => 0.026730651659043
206 => 0.026658246521989
207 => 0.026892202332506
208 => 0.026223352222996
209 => 0.026429086011907
210 => 0.026558120315678
211 => 0.026634122511887
212 => 0.026908694559788
213 => 0.026876476699066
214 => 0.02690669185233
215 => 0.027313809715034
216 => 0.029372872158612
217 => 0.02948494238435
218 => 0.028933067605054
219 => 0.029153530694134
220 => 0.028730289773077
221 => 0.02901441423885
222 => 0.029208804982353
223 => 0.028330390591653
224 => 0.028278376592298
225 => 0.027853388805405
226 => 0.028081753169543
227 => 0.027718409046221
228 => 0.027807560984846
301 => 0.027558284392324
302 => 0.02800693262839
303 => 0.0285085910692
304 => 0.028635329802441
305 => 0.02830193475974
306 => 0.02806053477702
307 => 0.027636715929462
308 => 0.02834153611837
309 => 0.028547647020612
310 => 0.028340453505544
311 => 0.028292442240835
312 => 0.028201460980966
313 => 0.028311744345213
314 => 0.028546524496374
315 => 0.028435806512795
316 => 0.028508937691549
317 => 0.028230237050684
318 => 0.0288230080308
319 => 0.029764471005331
320 => 0.029767497962739
321 => 0.029656779382349
322 => 0.029611475724718
323 => 0.029725079707164
324 => 0.029786705207361
325 => 0.030154079655183
326 => 0.03054828707454
327 => 0.032387881094505
328 => 0.031871330454953
329 => 0.033503527707404
330 => 0.034794383819805
331 => 0.035181455125617
401 => 0.034825367737382
402 => 0.033607212017692
403 => 0.033547443486565
404 => 0.035367882423861
405 => 0.034853525042689
406 => 0.034792343868871
407 => 0.034141479546664
408 => 0.034526220972203
409 => 0.034442072378621
410 => 0.034309239706963
411 => 0.035043299545571
412 => 0.036417394033471
413 => 0.036203228521355
414 => 0.036043363901413
415 => 0.035342883672717
416 => 0.035764729228315
417 => 0.035614518105886
418 => 0.036259920414175
419 => 0.035877598384156
420 => 0.034849628279643
421 => 0.03501333590702
422 => 0.034988591828476
423 => 0.035497823211529
424 => 0.035344964590237
425 => 0.034958743729375
426 => 0.036412697527894
427 => 0.036318285855534
428 => 0.036452140021428
429 => 0.036511066764831
430 => 0.03739606282045
501 => 0.037758617387722
502 => 0.037840923621903
503 => 0.038185322419835
504 => 0.037832354666071
505 => 0.039244477342872
506 => 0.040183456523301
507 => 0.041274129160798
508 => 0.042867895029347
509 => 0.043467165739081
510 => 0.043358912849231
511 => 0.044567287941368
512 => 0.046738711121267
513 => 0.043797819557254
514 => 0.046894585515202
515 => 0.045914185166798
516 => 0.043589673577381
517 => 0.043440002435214
518 => 0.045014188671701
519 => 0.048505582234421
520 => 0.047631027746018
521 => 0.048507012692263
522 => 0.047485129721788
523 => 0.047434384619198
524 => 0.048457382117273
525 => 0.050847671532216
526 => 0.049712134629835
527 => 0.048084064035201
528 => 0.049286206026695
529 => 0.048244799380674
530 => 0.045898218735821
531 => 0.047630358990682
601 => 0.046472126130771
602 => 0.046810160054339
603 => 0.049244593251737
604 => 0.048951675808714
605 => 0.04933073810341
606 => 0.04866170307506
607 => 0.04803671886144
608 => 0.046870139414782
609 => 0.046524772752298
610 => 0.046620219672818
611 => 0.046524725453545
612 => 0.045872034974558
613 => 0.045731086527764
614 => 0.045496166274681
615 => 0.045568977884225
616 => 0.045127259080085
617 => 0.045960873727259
618 => 0.046115599951562
619 => 0.046722235174083
620 => 0.046785218055321
621 => 0.04847468851513
622 => 0.047544156576265
623 => 0.048168437739118
624 => 0.04811259615595
625 => 0.043640052792059
626 => 0.044256329806019
627 => 0.04521506344136
628 => 0.044783155238172
629 => 0.044172538089818
630 => 0.043679432003302
701 => 0.042932325859545
702 => 0.043983863409981
703 => 0.045366523470253
704 => 0.046820284596186
705 => 0.048566883334792
706 => 0.048177062828986
707 => 0.046787633147676
708 => 0.046849961948201
709 => 0.047235254067564
710 => 0.046736265765508
711 => 0.046589104373823
712 => 0.047215036352164
713 => 0.047219346801692
714 => 0.046645200455426
715 => 0.046007141859223
716 => 0.046004468370407
717 => 0.045890932006128
718 => 0.047505327588771
719 => 0.048393081925421
720 => 0.04849486152943
721 => 0.048386231347133
722 => 0.048428038792922
723 => 0.047911474104757
724 => 0.049092187799402
725 => 0.050175727446089
726 => 0.049885315674329
727 => 0.049449947143994
728 => 0.049103155139393
729 => 0.049803622499253
730 => 0.049772431790357
731 => 0.050166263672535
801 => 0.050148397183476
802 => 0.050015966334266
803 => 0.049885320403852
804 => 0.050403316750398
805 => 0.050254142121359
806 => 0.050104735782919
807 => 0.04980507849821
808 => 0.049845806899983
809 => 0.049410513542163
810 => 0.049209126917166
811 => 0.046180755271299
812 => 0.045371475412624
813 => 0.045626091330574
814 => 0.045709917501862
815 => 0.045357717870247
816 => 0.045862681669321
817 => 0.045783983596125
818 => 0.0460901517621
819 => 0.045898871184275
820 => 0.04590672140591
821 => 0.046469236799975
822 => 0.046632537411983
823 => 0.046549481402718
824 => 0.046607650984614
825 => 0.047948144447557
826 => 0.047757569143695
827 => 0.047656329811824
828 => 0.047684373798634
829 => 0.04802689861892
830 => 0.048122786867438
831 => 0.047716501620519
901 => 0.047908108091673
902 => 0.048723944127366
903 => 0.049009440567538
904 => 0.049920608158502
905 => 0.049533527971148
906 => 0.050244030407474
907 => 0.05242787266861
908 => 0.054172476977196
909 => 0.052568066756198
910 => 0.055771810394897
911 => 0.058266384367353
912 => 0.05817063846336
913 => 0.057735651790727
914 => 0.054895645644765
915 => 0.052282229647145
916 => 0.054468463100659
917 => 0.054474036259335
918 => 0.054286236866804
919 => 0.053119830968798
920 => 0.054245648469885
921 => 0.054335011774752
922 => 0.054284992087647
923 => 0.05339071142043
924 => 0.052025310132283
925 => 0.052292106275678
926 => 0.052729123801053
927 => 0.051901758454112
928 => 0.05163736509393
929 => 0.052128922653403
930 => 0.053712823530109
1001 => 0.053413396244281
1002 => 0.053405576987767
1003 => 0.054686653893471
1004 => 0.053769679302687
1005 => 0.052295471429446
1006 => 0.051923214499039
1007 => 0.050601953178412
1008 => 0.05151455307874
1009 => 0.051547395924483
1010 => 0.051047574285618
1011 => 0.052336029200765
1012 => 0.052324155861894
1013 => 0.05354735204262
1014 => 0.055885643728664
1015 => 0.055194095816755
1016 => 0.054389900835404
1017 => 0.054477339127785
1018 => 0.055436321379109
1019 => 0.054856498818523
1020 => 0.055065007053976
1021 => 0.055436005776922
1022 => 0.055659838517856
1023 => 0.054445133040955
1024 => 0.05416192708821
1025 => 0.053582587100676
1026 => 0.053431448111822
1027 => 0.053903308443343
1028 => 0.053778989917058
1029 => 0.051544635610472
1030 => 0.051311133153604
1031 => 0.051318294340591
1101 => 0.05073114131036
1102 => 0.049835592006382
1103 => 0.052189042106764
1104 => 0.05200002712719
1105 => 0.051791369218339
1106 => 0.051816928621587
1107 => 0.052838481544338
1108 => 0.052245929259484
1109 => 0.05382132662618
1110 => 0.053497472288367
1111 => 0.053165312308803
1112 => 0.053119397681787
1113 => 0.052991544428213
1114 => 0.052553088049606
1115 => 0.052023625625295
1116 => 0.051674028671515
1117 => 0.047666559970652
1118 => 0.048410322851159
1119 => 0.049265954249063
1120 => 0.049561314778892
1121 => 0.049056080154293
1122 => 0.052573037792027
1123 => 0.053215619842687
1124 => 0.051269196896646
1125 => 0.050905100635366
1126 => 0.052596907882301
1127 => 0.051576541297375
1128 => 0.052036012308089
1129 => 0.05104288730013
1130 => 0.053060840643682
1201 => 0.053045467220201
1202 => 0.052260437792016
1203 => 0.052923939289068
1204 => 0.052808639575985
1205 => 0.051922343285007
1206 => 0.053088937816964
1207 => 0.053089516433298
1208 => 0.052333942676681
1209 => 0.051451597945317
1210 => 0.051293855547401
1211 => 0.051175017840281
1212 => 0.052006785517021
1213 => 0.052752545815117
1214 => 0.054140220840215
1215 => 0.05448911531187
1216 => 0.05585087366196
1217 => 0.055040012867292
1218 => 0.055399456955163
1219 => 0.055789684359018
1220 => 0.055976773726563
1221 => 0.055671921641917
1222 => 0.057787292881706
1223 => 0.057965895027644
1224 => 0.058025778782274
1225 => 0.05731248750222
1226 => 0.057946057106811
1227 => 0.057649630870443
1228 => 0.058420849587893
1229 => 0.058541786530204
1230 => 0.058439357242523
1231 => 0.058477744536872
]
'min_raw' => 0.026223352222996
'max_raw' => 0.058541786530204
'avg_raw' => 0.0423825693766
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.026223'
'max' => '$0.058541'
'avg' => '$0.042382'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0040435877059883
'max_diff' => -0.0055864354315951
'year' => 2031
]
6 => [
'items' => [
101 => 0.056672648360771
102 => 0.056579044601399
103 => 0.055302750700546
104 => 0.055822849899032
105 => 0.054850549376465
106 => 0.055158875887976
107 => 0.055294783276407
108 => 0.055223792969367
109 => 0.055852255527364
110 => 0.055317933966648
111 => 0.053907771517324
112 => 0.052497224870183
113 => 0.052479516606035
114 => 0.052108144572059
115 => 0.051839710611675
116 => 0.051891420515651
117 => 0.052073652961892
118 => 0.051829118930619
119 => 0.051881302664381
120 => 0.052747900343234
121 => 0.052921690327436
122 => 0.052331084056987
123 => 0.049959714657057
124 => 0.049377774658185
125 => 0.049796061589002
126 => 0.0495961473772
127 => 0.040027961753996
128 => 0.042275865039264
129 => 0.04094023723874
130 => 0.041555755978502
131 => 0.040192425853309
201 => 0.040843078447305
202 => 0.040722926671222
203 => 0.04433748863364
204 => 0.044281052220264
205 => 0.044308065344799
206 => 0.043018658528449
207 => 0.045072718598104
208 => 0.046084622450028
209 => 0.045897345977986
210 => 0.045944479431286
211 => 0.045134570542993
212 => 0.044315907033211
213 => 0.043407883209451
214 => 0.04509487923886
215 => 0.044907314078372
216 => 0.045337521072717
217 => 0.046431658586755
218 => 0.046592774491922
219 => 0.046809315902342
220 => 0.046731701221173
221 => 0.048580797811578
222 => 0.048356860013748
223 => 0.048896485675217
224 => 0.047786434748078
225 => 0.046530306757018
226 => 0.0467690556222
227 => 0.046746062186586
228 => 0.046453329360581
229 => 0.046189063254232
301 => 0.045749134643675
302 => 0.047141133864661
303 => 0.047084621238378
304 => 0.047999494969158
305 => 0.047837782150633
306 => 0.046757824370687
307 => 0.046796395274073
308 => 0.047055803135887
309 => 0.047953616707495
310 => 0.048220148903357
311 => 0.048096680570762
312 => 0.048388920955868
313 => 0.048619895840656
314 => 0.048417927845246
315 => 0.051277368747443
316 => 0.050089929525327
317 => 0.050668679140037
318 => 0.050806707512955
319 => 0.05045315073815
320 => 0.050529824542686
321 => 0.050645964464198
322 => 0.051351143325086
323 => 0.053201736701205
324 => 0.054021351910073
325 => 0.056487204705054
326 => 0.053953294276571
327 => 0.053802942518109
328 => 0.054247117068105
329 => 0.055694833695786
330 => 0.056868072045413
331 => 0.057257302891729
401 => 0.05730874617357
402 => 0.058038969116835
403 => 0.058457519290063
404 => 0.057950300844753
405 => 0.057520486320337
406 => 0.055980944044423
407 => 0.056159150254894
408 => 0.057386814326447
409 => 0.059120962136569
410 => 0.060609041364982
411 => 0.060087967883988
412 => 0.064063390723416
413 => 0.064457537659799
414 => 0.064403079297487
415 => 0.065301004675496
416 => 0.063518805659471
417 => 0.06275688105164
418 => 0.057613417099118
419 => 0.059058520670609
420 => 0.061159063579727
421 => 0.060881048849074
422 => 0.059355578440799
423 => 0.060607884158885
424 => 0.060193832725265
425 => 0.059867253180559
426 => 0.061363377385415
427 => 0.059718327364781
428 => 0.061142652947374
429 => 0.059315940654937
430 => 0.060090348103758
501 => 0.059650756981934
502 => 0.059935226312015
503 => 0.058272224421021
504 => 0.059169539874312
505 => 0.058234893148064
506 => 0.058234450003821
507 => 0.058213817625537
508 => 0.05931342535411
509 => 0.059349283522661
510 => 0.058536671749831
511 => 0.058419561697984
512 => 0.058852578939524
513 => 0.058345629157076
514 => 0.058582827769579
515 => 0.058352813661411
516 => 0.058301032640824
517 => 0.057888432658971
518 => 0.057710673242116
519 => 0.057780377289761
520 => 0.05754244144025
521 => 0.057399076484404
522 => 0.058185298727375
523 => 0.057765251899071
524 => 0.058120920526618
525 => 0.057715591236569
526 => 0.056310543323692
527 => 0.055502485410884
528 => 0.05284848015147
529 => 0.053601152750757
530 => 0.05410017546278
531 => 0.053935248459433
601 => 0.054289575480899
602 => 0.054311328282293
603 => 0.054196132955678
604 => 0.054062751524892
605 => 0.053997828820842
606 => 0.05448170946666
607 => 0.054762618468231
608 => 0.054150259067994
609 => 0.054006791828337
610 => 0.054625920991266
611 => 0.055003589422993
612 => 0.057792080929309
613 => 0.057585500471812
614 => 0.058103976880762
615 => 0.058045604393783
616 => 0.058589050270131
617 => 0.059477354600598
618 => 0.057671183522963
619 => 0.057984672369343
620 => 0.057907812143726
621 => 0.058746951933188
622 => 0.058749571636015
623 => 0.058246465414091
624 => 0.058519207458963
625 => 0.058366970331802
626 => 0.058642083396663
627 => 0.057582741463856
628 => 0.05887290558912
629 => 0.059604345511804
630 => 0.05961450155584
701 => 0.059961198274126
702 => 0.060313462219225
703 => 0.060989602186118
704 => 0.060294605042524
705 => 0.059044372837806
706 => 0.059134635564761
707 => 0.058401624880577
708 => 0.058413946922608
709 => 0.058348170896554
710 => 0.058545569702129
711 => 0.057626059400982
712 => 0.05784186663077
713 => 0.057539735245301
714 => 0.057984015594717
715 => 0.057506043380919
716 => 0.057907775079398
717 => 0.058081149162844
718 => 0.05872090326324
719 => 0.057411551180122
720 => 0.054741693647301
721 => 0.055302930069594
722 => 0.054472817316854
723 => 0.054549647412582
724 => 0.054704856433372
725 => 0.05420177321576
726 => 0.054297745639706
727 => 0.054294316829375
728 => 0.054264769194336
729 => 0.05413389781944
730 => 0.053944108433727
731 => 0.054700170932314
801 => 0.054828640683668
802 => 0.055114213026895
803 => 0.055963882614765
804 => 0.055878980586348
805 => 0.056017459317247
806 => 0.055715161025219
807 => 0.054563670163337
808 => 0.054626201657127
809 => 0.053846432927568
810 => 0.055094272587321
811 => 0.054798767685212
812 => 0.05460825375245
813 => 0.054556270260797
814 => 0.055408046015231
815 => 0.055662910670906
816 => 0.05550409612082
817 => 0.055178362845232
818 => 0.055803867028759
819 => 0.055971225560368
820 => 0.05600869096365
821 => 0.057116964448328
822 => 0.056070631140061
823 => 0.056322493967019
824 => 0.058287455845535
825 => 0.056505506567925
826 => 0.057449444842486
827 => 0.057403243975964
828 => 0.0578861308561
829 => 0.057363633157381
830 => 0.057370110142564
831 => 0.057798880978534
901 => 0.057196749668642
902 => 0.057047653488521
903 => 0.056841678183531
904 => 0.057291417726521
905 => 0.057561016242574
906 => 0.059733782283665
907 => 0.061137488236379
908 => 0.061076549658961
909 => 0.061633414184328
910 => 0.061382541615356
911 => 0.060572407913304
912 => 0.061955207357427
913 => 0.06151763175452
914 => 0.061553704955569
915 => 0.061552362309225
916 => 0.061843311831634
917 => 0.061637147429875
918 => 0.061230776231665
919 => 0.061500544397587
920 => 0.062301659406488
921 => 0.06478834497533
922 => 0.066179927163856
923 => 0.064704569980259
924 => 0.065722251609684
925 => 0.06511200526907
926 => 0.065001105355725
927 => 0.065640284625085
928 => 0.066280582693144
929 => 0.066239798474293
930 => 0.065774974956552
1001 => 0.065512407945841
1002 => 0.067500653317351
1003 => 0.068965558638203
1004 => 0.068865661916171
1005 => 0.069306573559067
1006 => 0.070601103779494
1007 => 0.070719459399269
1008 => 0.07070454931155
1009 => 0.070411192558806
1010 => 0.071685825676807
1011 => 0.07274914704888
1012 => 0.070343288946437
1013 => 0.071259408216852
1014 => 0.071670683672861
1015 => 0.072274558062211
1016 => 0.073293395378144
1017 => 0.074400122936498
1018 => 0.0745566263479
1019 => 0.074445579688133
1020 => 0.073715663112964
1021 => 0.074926657613321
1022 => 0.075636029790315
1023 => 0.076058444688021
1024 => 0.077129618585467
1025 => 0.071673223570063
1026 => 0.067810915977731
1027 => 0.067207760874791
1028 => 0.068434300494523
1029 => 0.068757729210776
1030 => 0.068627355500799
1031 => 0.064279977159987
1101 => 0.067184872827537
1102 => 0.070310296315256
1103 => 0.070430356560107
1104 => 0.071995008907582
1105 => 0.072504523849187
1106 => 0.073764274072576
1107 => 0.07368547635311
1108 => 0.073992205485501
1109 => 0.073921693769772
1110 => 0.076255115786894
1111 => 0.078829226788302
1112 => 0.078740093509495
1113 => 0.078370034597544
1114 => 0.078919635186213
1115 => 0.081576393598165
1116 => 0.081331801857279
1117 => 0.081569401899275
1118 => 0.08470186979531
1119 => 0.088774523648518
1120 => 0.086882367045941
1121 => 0.090987802420137
1122 => 0.093571956368415
1123 => 0.098040983415456
1124 => 0.097481439218744
1125 => 0.099221198652922
1126 => 0.096479738326232
1127 => 0.090184791275608
1128 => 0.089188591808758
1129 => 0.091183008369181
1130 => 0.096086086870659
1201 => 0.091028592978594
1202 => 0.092051717406065
1203 => 0.091757057502124
1204 => 0.091741356328067
1205 => 0.092340606280534
1206 => 0.091471362969705
1207 => 0.087929909347502
1208 => 0.08955293667264
1209 => 0.088926207878231
1210 => 0.089621610201355
1211 => 0.093374409733523
1212 => 0.091715207604784
1213 => 0.089967372944794
1214 => 0.092159545483983
1215 => 0.094950934438583
1216 => 0.094776254334412
1217 => 0.094437301921702
1218 => 0.096347958925178
1219 => 0.099503804524946
1220 => 0.10035681690935
1221 => 0.10098649321244
1222 => 0.10107331493617
1223 => 0.10196763264998
1224 => 0.097158660905767
1225 => 0.10479062256698
1226 => 0.10610845151719
1227 => 0.10586075429296
1228 => 0.1073254657084
1229 => 0.10689451045384
1230 => 0.10627012390478
1231 => 0.1085920030513
]
'min_raw' => 0.040027961753996
'max_raw' => 0.1085920030513
'avg_raw' => 0.074309982402647
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.040027'
'max' => '$0.108592'
'avg' => '$0.0743099'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013804609530999
'max_diff' => 0.050050216521094
'year' => 2032
]
7 => [
'items' => [
101 => 0.1059301559758
102 => 0.10215199916936
103 => 0.10007922762189
104 => 0.10280882040132
105 => 0.10447568746206
106 => 0.10557738055655
107 => 0.10591075222128
108 => 0.097531967692883
109 => 0.09301626754077
110 => 0.095910779565667
111 => 0.09944228400459
112 => 0.097139043220298
113 => 0.097229325898431
114 => 0.093945509821062
115 => 0.099732828862165
116 => 0.098889665156891
117 => 0.10326399995138
118 => 0.10222002984645
119 => 0.10578713006066
120 => 0.10484779302771
121 => 0.10874692853385
122 => 0.11030239925213
123 => 0.11291427667781
124 => 0.11483558434439
125 => 0.11596381295496
126 => 0.11589607834106
127 => 0.12036668217743
128 => 0.11773052328613
129 => 0.1144188864237
130 => 0.11435898936094
131 => 0.11607413301825
201 => 0.11966860359728
202 => 0.120600597521
203 => 0.12112145497941
204 => 0.12032374365068
205 => 0.11746238210938
206 => 0.11622686070328
207 => 0.11727956073777
208 => 0.11599219905513
209 => 0.11821454648927
210 => 0.12126630418414
211 => 0.12063612828811
212 => 0.1227427118273
213 => 0.1249228041713
214 => 0.12804043413731
215 => 0.12885549805593
216 => 0.1302027677193
217 => 0.13158955075794
218 => 0.13203494809509
219 => 0.13288534981041
220 => 0.1328808677736
221 => 0.13544361058134
222 => 0.13827039525981
223 => 0.13933744103572
224 => 0.14179105396017
225 => 0.1375893278119
226 => 0.14077638536131
227 => 0.14365119104811
228 => 0.14022372919398
301 => 0.14494768686371
302 => 0.1451311074353
303 => 0.14790054029949
304 => 0.1450931895325
305 => 0.14342619360844
306 => 0.14823874837967
307 => 0.15056739203942
308 => 0.14986598561797
309 => 0.14452824811806
310 => 0.14142145594679
311 => 0.1332903815791
312 => 0.1429219904039
313 => 0.14761326610458
314 => 0.14451609884733
315 => 0.14607812986042
316 => 0.15460006457761
317 => 0.15784466556351
318 => 0.15716981123991
319 => 0.15728385051155
320 => 0.15903457830987
321 => 0.16679826951101
322 => 0.16214608578233
323 => 0.1657025059289
324 => 0.16758881835102
325 => 0.16934093045401
326 => 0.16503829688978
327 => 0.15944063384094
328 => 0.15766761897947
329 => 0.14420814660209
330 => 0.14350752261332
331 => 0.14311424113735
401 => 0.14063465706209
402 => 0.13868638319418
403 => 0.13713704347965
404 => 0.13307111339671
405 => 0.13444324544307
406 => 0.12796300151642
407 => 0.13210883193495
408 => 0.12176620615706
409 => 0.13037985223767
410 => 0.12569183629042
411 => 0.12883971291521
412 => 0.12882873027022
413 => 0.12303249136878
414 => 0.11968934173485
415 => 0.12181972679892
416 => 0.12410366869778
417 => 0.12447423058677
418 => 0.12743542087562
419 => 0.12826182543467
420 => 0.12575778103962
421 => 0.12155187822649
422 => 0.12252881352355
423 => 0.11966954417224
424 => 0.11465878461428
425 => 0.11825759960828
426 => 0.11948639327595
427 => 0.12002909856243
428 => 0.11510159202679
429 => 0.11355326249193
430 => 0.1127289448393
501 => 0.12091579900972
502 => 0.12136429336195
503 => 0.11906973284521
504 => 0.12944136396003
505 => 0.1270939444104
506 => 0.12971658717909
507 => 0.1224401668851
508 => 0.12271813593932
509 => 0.11927336196234
510 => 0.12120220520957
511 => 0.11983896097195
512 => 0.1210463737364
513 => 0.12177009196906
514 => 0.12521430069253
515 => 0.13041917956878
516 => 0.12469985076348
517 => 0.12220785730071
518 => 0.12375387602951
519 => 0.12787112763626
520 => 0.13410897457873
521 => 0.13041604364042
522 => 0.13205490368081
523 => 0.13241292169182
524 => 0.12968989113765
525 => 0.13420937659935
526 => 0.13663140557451
527 => 0.13911590613475
528 => 0.14127312835707
529 => 0.13812354197565
530 => 0.14149405087925
531 => 0.13877801567786
601 => 0.13634145132366
602 => 0.13634514658602
603 => 0.1348166541741
604 => 0.13185500752358
605 => 0.13130883444141
606 => 0.13415009578891
607 => 0.13642851832115
608 => 0.13661618011381
609 => 0.13787763189723
610 => 0.13862414606868
611 => 0.14594099978564
612 => 0.14888389887879
613 => 0.15248242018366
614 => 0.15388424703346
615 => 0.15810324326861
616 => 0.1546960611586
617 => 0.15395889587692
618 => 0.14372499103361
619 => 0.14540079237839
620 => 0.14808391202216
621 => 0.14376923468828
622 => 0.1465059043548
623 => 0.14704618091756
624 => 0.14362262360351
625 => 0.14545129348812
626 => 0.14059488843741
627 => 0.13052503592786
628 => 0.13422058722381
629 => 0.13694175688675
630 => 0.13305831225994
701 => 0.14001923644343
702 => 0.13595280823808
703 => 0.13466394571996
704 => 0.12963563352411
705 => 0.13200880332306
706 => 0.13521854945667
707 => 0.13323529951914
708 => 0.13735084092599
709 => 0.14317954513289
710 => 0.14733342685606
711 => 0.14765231031581
712 => 0.14498164265627
713 => 0.14926140462466
714 => 0.14929257801827
715 => 0.1444649890346
716 => 0.14150811766222
717 => 0.14083631026511
718 => 0.1425146168587
719 => 0.1445523908958
720 => 0.14776539259268
721 => 0.14970694222647
722 => 0.15476947395304
723 => 0.15613924988409
724 => 0.1576442183422
725 => 0.15965532031732
726 => 0.16207016387441
727 => 0.15678662364861
728 => 0.15699654855154
729 => 0.15207658904886
730 => 0.1468189067267
731 => 0.15080883222987
801 => 0.15602512906772
802 => 0.15482850480962
803 => 0.15469386013577
804 => 0.15492029512987
805 => 0.15401807951736
806 => 0.14993739173964
807 => 0.14788809588412
808 => 0.15053221036887
809 => 0.15193743954151
810 => 0.15411682743942
811 => 0.15384817187971
812 => 0.15946204105555
813 => 0.16164342086269
814 => 0.16108533056152
815 => 0.16118803260813
816 => 0.16513731655267
817 => 0.1695297325312
818 => 0.17364380972543
819 => 0.17782882575112
820 => 0.17278362558819
821 => 0.17022198409014
822 => 0.17286494423722
823 => 0.17146255238082
824 => 0.17952111196411
825 => 0.18007906914525
826 => 0.18813704600297
827 => 0.19578502556697
828 => 0.19098146663061
829 => 0.19551100635055
830 => 0.20041007285647
831 => 0.20986116699127
901 => 0.20667837098017
902 => 0.20424039911644
903 => 0.2019365274854
904 => 0.20673051862026
905 => 0.21289791162937
906 => 0.21422630901298
907 => 0.21637882026128
908 => 0.21411571788024
909 => 0.21684137542565
910 => 0.22646414427555
911 => 0.22386398718977
912 => 0.22017134613187
913 => 0.22776759795832
914 => 0.23051665196463
915 => 0.24981095267168
916 => 0.27417080432214
917 => 0.26408566578344
918 => 0.25782549484708
919 => 0.25929678351037
920 => 0.2681921767001
921 => 0.27104909466697
922 => 0.26328300679433
923 => 0.26602612032159
924 => 0.28114094555379
925 => 0.2892495643492
926 => 0.27823697089223
927 => 0.24785366231023
928 => 0.21983886420666
929 => 0.22726965018653
930 => 0.22642722966055
1001 => 0.24266622375969
1002 => 0.22380197430321
1003 => 0.22411959988399
1004 => 0.24069439918371
1005 => 0.23627252689454
1006 => 0.2291096600967
1007 => 0.21989116106119
1008 => 0.20284991298609
1009 => 0.18775600433561
1010 => 0.21735863511876
1011 => 0.2160821158505
1012 => 0.2142335267805
1013 => 0.21834736171755
1014 => 0.23832297643945
1015 => 0.23786247386535
1016 => 0.23493299143944
1017 => 0.23715497804022
1018 => 0.22872013510244
1019 => 0.23089398618531
1020 => 0.21983442651951
1021 => 0.22483380937646
1022 => 0.22909429180156
1023 => 0.22994964672592
1024 => 0.23187680504601
1025 => 0.21540944820161
1026 => 0.22280280796855
1027 => 0.2271457141675
1028 => 0.20752430596436
1029 => 0.22675786201496
1030 => 0.21512278815551
1031 => 0.21117366933467
1101 => 0.21649063757009
1102 => 0.21441860987783
1103 => 0.21263720214156
1104 => 0.21164314601626
1105 => 0.21554734067598
1106 => 0.21536520532859
1107 => 0.20897718509375
1108 => 0.20064427310642
1109 => 0.20344107188788
1110 => 0.20242496867045
1111 => 0.19874247953055
1112 => 0.20122403258541
1113 => 0.19029652881707
1114 => 0.17149632654588
1115 => 0.183916316032
1116 => 0.18343815994713
1117 => 0.18319705196649
1118 => 0.19253033080201
1119 => 0.19163315139736
1120 => 0.1900047619927
1121 => 0.19871257288213
1122 => 0.19553410477091
1123 => 0.20532939454844
1124 => 0.21178120591554
1125 => 0.21014481785861
1126 => 0.21621277763369
1127 => 0.20350550448307
1128 => 0.20772635089639
1129 => 0.20859626149234
1130 => 0.19860511984744
1201 => 0.19177994104356
1202 => 0.19132477943008
1203 => 0.17949085995174
1204 => 0.18581244421701
1205 => 0.19137517676551
1206 => 0.18871105956026
1207 => 0.18786767964132
1208 => 0.19217632474042
1209 => 0.19251114336567
1210 => 0.18487724322749
1211 => 0.18646457280039
1212 => 0.19308400099099
1213 => 0.18629778019369
1214 => 0.17311326170741
1215 => 0.16984331883258
1216 => 0.16940704817608
1217 => 0.1605387037571
1218 => 0.17006183205132
1219 => 0.16590473134692
1220 => 0.1790369626624
1221 => 0.17153590256457
1222 => 0.17121254685593
1223 => 0.17072374727635
1224 => 0.16309039688825
1225 => 0.16476161549852
1226 => 0.17031700069284
1227 => 0.17229922471606
1228 => 0.17209246251056
1229 => 0.17028977627466
1230 => 0.17111503680221
1231 => 0.16845658510314
]
'min_raw' => 0.09301626754077
'max_raw' => 0.2892495643492
'avg_raw' => 0.19113291594499
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.093016'
'max' => '$0.289249'
'avg' => '$0.191132'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.052988305786774
'max_diff' => 0.18065756129791
'year' => 2033
]
8 => [
'items' => [
101 => 0.16751783047731
102 => 0.1645548626534
103 => 0.160200118493
104 => 0.1608056723777
105 => 0.15217778471516
106 => 0.14747685359995
107 => 0.14617569782454
108 => 0.14443573794261
109 => 0.14637223092306
110 => 0.15215334299345
111 => 0.14518009530521
112 => 0.13322495126018
113 => 0.13394347578786
114 => 0.13555778706971
115 => 0.13254952867572
116 => 0.1297024645698
117 => 0.13217775582028
118 => 0.12711220368653
119 => 0.13616993484412
120 => 0.1359249486003
121 => 0.13930111064951
122 => 0.14141229406471
123 => 0.13654669979643
124 => 0.13532301599593
125 => 0.13602008190203
126 => 0.12449913520777
127 => 0.13835960351259
128 => 0.13847946941806
129 => 0.13745310476274
130 => 0.14483337624111
131 => 0.16040805102486
201 => 0.15454823188137
202 => 0.15227913279504
203 => 0.14796557377322
204 => 0.153713135056
205 => 0.15327181202541
206 => 0.15127598191427
207 => 0.15006889763569
208 => 0.15229298743021
209 => 0.14979330829724
210 => 0.14934429723837
211 => 0.14662377875046
212 => 0.14565267742599
213 => 0.144933712666
214 => 0.14414220310928
215 => 0.14588807595952
216 => 0.14193169839217
217 => 0.13716069489442
218 => 0.13676403757655
219 => 0.13785924330565
220 => 0.137374696299
221 => 0.1367617177519
222 => 0.13559137477072
223 => 0.13524415900863
224 => 0.1363724417903
225 => 0.13509867631277
226 => 0.13697818666046
227 => 0.13646706384394
228 => 0.13361197333983
301 => 0.13005347348182
302 => 0.13002179536888
303 => 0.12925512241158
304 => 0.12827864913041
305 => 0.12800701660227
306 => 0.13196929369532
307 => 0.14017108869696
308 => 0.13856088008582
309 => 0.13972442082818
310 => 0.14544788968203
311 => 0.14726720831995
312 => 0.14597589904368
313 => 0.14420827526182
314 => 0.14428604173738
315 => 0.15032654729608
316 => 0.15070328621834
317 => 0.15165518393431
318 => 0.1528786415056
319 => 0.14618425915845
320 => 0.14397073693085
321 => 0.14292184729787
322 => 0.13969167319969
323 => 0.14317513903038
324 => 0.14114547266772
325 => 0.14141934400332
326 => 0.14124098493672
327 => 0.14133838104767
328 => 0.13616740302366
329 => 0.13805143563701
330 => 0.13491886600318
331 => 0.13072470691094
401 => 0.130710646619
402 => 0.13173716111497
403 => 0.13112655012525
404 => 0.12948341165217
405 => 0.12971681171687
406 => 0.12767198155495
407 => 0.12996509112137
408 => 0.1300308492986
409 => 0.129147877209
410 => 0.13268072888422
411 => 0.13412814109809
412 => 0.13354694995362
413 => 0.13408736317805
414 => 0.13862779152326
415 => 0.13936807945631
416 => 0.1396968664555
417 => 0.13925633543252
418 => 0.13417035387322
419 => 0.13439593878264
420 => 0.13274074639527
421 => 0.13134228324781
422 => 0.13139821443974
423 => 0.13211720628501
424 => 0.13525708584164
425 => 0.14186477726256
426 => 0.14211553432182
427 => 0.14241945919275
428 => 0.14118324400229
429 => 0.14081038967186
430 => 0.14130228077556
501 => 0.14378378225735
502 => 0.15016687778959
503 => 0.14791066551588
504 => 0.14607632981732
505 => 0.14768553675831
506 => 0.14743781196312
507 => 0.14534676539034
508 => 0.14528807667749
509 => 0.14127468975629
510 => 0.13979103199193
511 => 0.13855117651416
512 => 0.13719728669969
513 => 0.13639465543487
514 => 0.13762786184702
515 => 0.13790991074434
516 => 0.13521348337143
517 => 0.13484597028414
518 => 0.13704793108329
519 => 0.13607893023296
520 => 0.13707557163759
521 => 0.1373068009925
522 => 0.13726956774069
523 => 0.13625781956391
524 => 0.13690267768103
525 => 0.13537739599258
526 => 0.13371888124631
527 => 0.1326608521673
528 => 0.13173758146868
529 => 0.13224986571308
530 => 0.13042366592118
531 => 0.12983942785362
601 => 0.13668421426071
602 => 0.14174053157349
603 => 0.14166701071724
604 => 0.14121947141285
605 => 0.14055451878657
606 => 0.143735136831
607 => 0.14262707310279
608 => 0.14343328204689
609 => 0.14363849605964
610 => 0.14425961706975
611 => 0.14448161444371
612 => 0.14381058419252
613 => 0.14155852471007
614 => 0.13594660659921
615 => 0.13333424356952
616 => 0.13247212025737
617 => 0.13250345680236
618 => 0.13163905499901
619 => 0.13189366006987
620 => 0.13155051374573
621 => 0.13090067762382
622 => 0.13220974016374
623 => 0.13236059742671
624 => 0.13205504658776
625 => 0.13212701487143
626 => 0.12959718442738
627 => 0.12978952194154
628 => 0.12871856222164
629 => 0.12851777018477
630 => 0.12581047727199
701 => 0.12101411544862
702 => 0.12367176549288
703 => 0.12046169796156
704 => 0.11924599674699
705 => 0.12500093721643
706 => 0.1244233008105
707 => 0.12343463837606
708 => 0.12197220058021
709 => 0.12142976817606
710 => 0.11813412060161
711 => 0.11793939616132
712 => 0.11957280808918
713 => 0.11881904468675
714 => 0.1177604753972
715 => 0.11392644473592
716 => 0.10961572486871
717 => 0.10974583840528
718 => 0.11111699819125
719 => 0.11510383019503
720 => 0.11354610595826
721 => 0.11241595915165
722 => 0.11220431662687
723 => 0.11485346592823
724 => 0.11860256720361
725 => 0.1203615616406
726 => 0.11861845157499
727 => 0.11661606058734
728 => 0.11673793684857
729 => 0.11754872501302
730 => 0.11763392738518
731 => 0.11633057670133
801 => 0.11669746228442
802 => 0.11614012953499
803 => 0.11271977948055
804 => 0.11265791619411
805 => 0.11181850713015
806 => 0.1117930901573
807 => 0.11036504593911
808 => 0.11016525268138
809 => 0.10732978421007
810 => 0.10919609814447
811 => 0.10794427274315
812 => 0.1060574765876
813 => 0.10573219221921
814 => 0.1057224137783
815 => 0.10765973155015
816 => 0.10917345945835
817 => 0.10796604878196
818 => 0.10769114477562
819 => 0.11062640035581
820 => 0.11025286232778
821 => 0.10992938080457
822 => 0.1182668763049
823 => 0.1116670980335
824 => 0.108789218005
825 => 0.10522729497513
826 => 0.10638707507443
827 => 0.10663145778207
828 => 0.098065674980125
829 => 0.094590537964176
830 => 0.093398001898078
831 => 0.092711680532054
901 => 0.093024445796832
902 => 0.089896414889561
903 => 0.091998503392103
904 => 0.089289893032277
905 => 0.088835785690872
906 => 0.093679116546677
907 => 0.094353037740934
908 => 0.09147788055533
909 => 0.093324196914155
910 => 0.092654696936728
911 => 0.089336324382713
912 => 0.089209586959446
913 => 0.087544544258277
914 => 0.084939074846746
915 => 0.083748305411598
916 => 0.083128142351039
917 => 0.083384033716563
918 => 0.083254647211749
919 => 0.082410312747435
920 => 0.083303043474901
921 => 0.08102248536803
922 => 0.080114348754168
923 => 0.079704164514296
924 => 0.077680037930421
925 => 0.080901323458544
926 => 0.08153595728827
927 => 0.082171841542689
928 => 0.087706779840787
929 => 0.087430269964987
930 => 0.089929784576446
1001 => 0.089832658034957
1002 => 0.089119755978317
1003 => 0.086112139468049
1004 => 0.087310921803432
1005 => 0.08362125610726
1006 => 0.086385804519712
1007 => 0.085124180074571
1008 => 0.08595924802573
1009 => 0.084457720554504
1010 => 0.08528872785363
1011 => 0.081686452512661
1012 => 0.078322698484646
1013 => 0.079676371299621
1014 => 0.081147968460762
1015 => 0.0843387660621
1016 => 0.082438353334252
1017 => 0.083121813613747
1018 => 0.080832336087307
1019 => 0.076108489993335
1020 => 0.076135226449219
1021 => 0.075408565642242
1022 => 0.0747806246108
1023 => 0.08265663859688
1024 => 0.081677131756355
1025 => 0.080116415800664
1026 => 0.082205496127743
1027 => 0.082757882124386
1028 => 0.082773607777147
1029 => 0.084297746856816
1030 => 0.085111180156852
1031 => 0.085254551301605
1101 => 0.087652817074669
1102 => 0.088456684127909
1103 => 0.091767698752683
1104 => 0.085042166024486
1105 => 0.084903658103809
1106 => 0.082234893772114
1107 => 0.080542321241458
1108 => 0.082350785661347
1109 => 0.083952838257357
1110 => 0.082284674011976
1111 => 0.082502501045554
1112 => 0.080263126840157
1113 => 0.081063597746236
1114 => 0.081753071125628
1115 => 0.0813723844509
1116 => 0.080802478073389
1117 => 0.083821488214051
1118 => 0.083651143830319
1119 => 0.086462515480046
1120 => 0.088654180724124
1121 => 0.092582036648537
1122 => 0.088483114227652
1123 => 0.088333733202894
1124 => 0.089793956681374
1125 => 0.088456460575303
1126 => 0.089301711945543
1127 => 0.092445853585256
1128 => 0.092512284343629
1129 => 0.091399483549674
1130 => 0.09133176952023
1201 => 0.091545495085416
1202 => 0.092797292396307
1203 => 0.092359875952035
1204 => 0.092866065335376
1205 => 0.093499062910289
1206 => 0.096117409265543
1207 => 0.096748683707425
1208 => 0.095215014091924
1209 => 0.095353487286433
1210 => 0.094779852750063
1211 => 0.09422572897555
1212 => 0.095471318297378
1213 => 0.097747657265138
1214 => 0.097733496278561
1215 => 0.098261562673375
1216 => 0.098590543662606
1217 => 0.097178316428025
1218 => 0.096259008427347
1219 => 0.096611529611895
1220 => 0.097175218662899
1221 => 0.096428732849865
1222 => 0.091821076605954
1223 => 0.093218745172136
1224 => 0.092986104780222
1225 => 0.092654796572099
1226 => 0.094060163123246
1227 => 0.093924612090974
1228 => 0.089864332411425
1229 => 0.090124258342965
1230 => 0.089880139368224
1231 => 0.090668937717655
]
'min_raw' => 0.0747806246108
'max_raw' => 0.16751783047731
'avg_raw' => 0.12114922754406
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.07478'
'max' => '$0.167517'
'avg' => '$0.121149'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01823564292997
'max_diff' => -0.12173173387189
'year' => 2034
]
9 => [
'items' => [
101 => 0.088413862875818
102 => 0.089107508709006
103 => 0.089542556873056
104 => 0.089798803583879
105 => 0.090724542413386
106 => 0.09061591764658
107 => 0.090717790145365
108 => 0.092090416443533
109 => 0.099032689231205
110 => 0.099410541821776
111 => 0.09754985747271
112 => 0.098293164169786
113 => 0.096866177854706
114 => 0.097824123327997
115 => 0.098479525291646
116 => 0.095517889844466
117 => 0.095342521014139
118 => 0.093909645018929
119 => 0.094679591416511
120 => 0.093454551336854
121 => 0.093755133322319
122 => 0.092914679886692
123 => 0.09442732873821
124 => 0.096118705196074
125 => 0.096546013683811
126 => 0.095421949020446
127 => 0.094608052124699
128 => 0.093179117290071
129 => 0.095555467765947
130 => 0.096250385063061
131 => 0.09555181766122
201 => 0.095389944330214
202 => 0.095083194660457
203 => 0.095455022722753
204 => 0.09624660039422
205 => 0.095873306982501
206 => 0.096119873857525
207 => 0.09518021518859
208 => 0.097178783934002
209 => 0.10035299208348
210 => 0.10036319768171
211 => 0.099989902257804
212 => 0.099837157813102
213 => 0.10022018157149
214 => 0.10042795624797
215 => 0.10166658484806
216 => 0.10299568268511
217 => 0.10919800235977
218 => 0.10745641581411
219 => 0.11295948280712
220 => 0.11731169431477
221 => 0.11861673224678
222 => 0.11741615875611
223 => 0.11330906169826
224 => 0.11310754792266
225 => 0.11924528489874
226 => 0.11751109307684
227 => 0.11730481647778
228 => 0.11511038197356
301 => 0.11640756455155
302 => 0.11612385169322
303 => 0.11567599706665
304 => 0.11815093106293
305 => 0.1227837865651
306 => 0.12206171258845
307 => 0.12152271786092
308 => 0.11916099986391
309 => 0.12058328160692
310 => 0.12007683432024
311 => 0.12225285326319
312 => 0.12096382784611
313 => 0.11749795486816
314 => 0.11804990656357
315 => 0.11796648017518
316 => 0.11968338933654
317 => 0.11916801582261
318 => 0.11786584522513
319 => 0.12276795196865
320 => 0.12244963642368
321 => 0.12290093508939
322 => 0.12309961071891
323 => 0.12608343670888
324 => 0.12730581474518
325 => 0.12758331596017
326 => 0.12874448055255
327 => 0.12755442512731
328 => 0.1323154953234
329 => 0.13548132918765
330 => 0.1391586081333
331 => 0.1445321010323
401 => 0.14655258406991
402 => 0.14618760189381
403 => 0.150261722883
404 => 0.15758282773795
405 => 0.14766740650339
406 => 0.15810836913991
407 => 0.1548028809159
408 => 0.14696562779996
409 => 0.14646100109444
410 => 0.15176847989693
411 => 0.16353995705496
412 => 0.16059133553786
413 => 0.16354477994344
414 => 0.16009943016289
415 => 0.1599283395066
416 => 0.16337744699477
417 => 0.17143647464192
418 => 0.16760793269489
419 => 0.16211877901683
420 => 0.16617188467202
421 => 0.16266070945627
422 => 0.15474904897912
423 => 0.16058908078256
424 => 0.15668401783013
425 => 0.15782372280421
426 => 0.16603158429594
427 => 0.16504399268595
428 => 0.1663220276778
429 => 0.16406632936918
430 => 0.16195915145796
501 => 0.15802594740557
502 => 0.15686151959028
503 => 0.1571833255467
504 => 0.15686136011923
505 => 0.15466076859993
506 => 0.15418555107086
507 => 0.15339350103598
508 => 0.1536389904611
509 => 0.15214970467312
510 => 0.15496029465719
511 => 0.15548196492506
512 => 0.15752727793171
513 => 0.15773962911313
514 => 0.16343579672344
515 => 0.16029844332389
516 => 0.16240325085037
517 => 0.16221497705398
518 => 0.14713548483962
519 => 0.14921330581927
520 => 0.15244574320747
521 => 0.15098953454555
522 => 0.14893079619795
523 => 0.14726825459969
524 => 0.14474933407473
525 => 0.14829466634203
526 => 0.15295640126948
527 => 0.15785785840392
528 => 0.16374663799476
529 => 0.16243233094304
530 => 0.15774777176562
531 => 0.15795791766825
601 => 0.15925695694892
602 => 0.15757458305029
603 => 0.15707841814374
604 => 0.15918879150989
605 => 0.15920332449142
606 => 0.15726754999937
607 => 0.15511629089444
608 => 0.15510727704024
609 => 0.15472448126122
610 => 0.1601675286816
611 => 0.16316065440864
612 => 0.16350381144958
613 => 0.16313755720565
614 => 0.16327851392803
615 => 0.16153688001649
616 => 0.16551773867278
617 => 0.16917096824191
618 => 0.16819182467752
619 => 0.16672394928103
620 => 0.16555471582528
621 => 0.16791639043412
622 => 0.1678112287814
623 => 0.16913906046863
624 => 0.16907882235337
625 => 0.16863232249923
626 => 0.16819184062343
627 => 0.16993830147116
628 => 0.16943534879432
629 => 0.16893161489305
630 => 0.16792129943625
701 => 0.1680586180864
702 => 0.16659099613929
703 => 0.16591200707275
704 => 0.15570164063455
705 => 0.15297309708892
706 => 0.153831552433
707 => 0.15411417822206
708 => 0.15292671257427
709 => 0.1546292332783
710 => 0.15436389722999
711 => 0.15539616457756
712 => 0.15475124875464
713 => 0.15477771632496
714 => 0.15667427624962
715 => 0.15722485566429
716 => 0.15694482653027
717 => 0.1571409493369
718 => 0.16166051663748
719 => 0.16101797869497
720 => 0.16067664321926
721 => 0.16077119547876
722 => 0.16192604182467
723 => 0.16224933574926
724 => 0.16087951667334
725 => 0.16152553126837
726 => 0.16427617942256
727 => 0.16523875060333
728 => 0.16831081575195
729 => 0.16700574787521
730 => 0.16940125644498
731 => 0.1767642330994
801 => 0.18264628833018
802 => 0.17723690725374
803 => 0.18803855260985
804 => 0.19644918292358
805 => 0.1961263689235
806 => 0.19465978098692
807 => 0.18508450198291
808 => 0.17627318748406
809 => 0.18364422621053
810 => 0.18366301650411
811 => 0.18302983774045
812 => 0.17909721881947
813 => 0.18289299112645
814 => 0.18319428574796
815 => 0.18302564088062
816 => 0.18001051117441
817 => 0.17540696540215
818 => 0.17630648722672
819 => 0.17777992232511
820 => 0.17499040229309
821 => 0.17409898161989
822 => 0.1757563022511
823 => 0.18109653464135
824 => 0.18008699464183
825 => 0.18006063147257
826 => 0.18437987170209
827 => 0.18128822784814
828 => 0.1763178330776
829 => 0.17506274284658
830 => 0.17060801805657
831 => 0.17368491233622
901 => 0.17379564428365
902 => 0.17211046073178
903 => 0.17645457643525
904 => 0.17641454464428
905 => 0.18053863596843
906 => 0.18842234964224
907 => 0.1860907475749
908 => 0.18337934804818
909 => 0.18367415235569
910 => 0.18690742797003
911 => 0.18495251572509
912 => 0.1856555157985
913 => 0.18690636389522
914 => 0.18766103160878
915 => 0.18356556728538
916 => 0.18261071864289
917 => 0.1806574334267
918 => 0.18014785777359
919 => 0.18173876782554
920 => 0.18131961923453
921 => 0.17378633769224
922 => 0.17299906785629
923 => 0.1730232122982
924 => 0.17104358486306
925 => 0.16802417785944
926 => 0.17595899918552
927 => 0.17532172198528
928 => 0.17461821727756
929 => 0.17470439259011
930 => 0.17814862959171
1001 => 0.17615079819264
1002 => 0.18146236040519
1003 => 0.18037046289447
1004 => 0.1792505623327
1005 => 0.17909575796206
1006 => 0.1786646917912
1007 => 0.17718640549868
1008 => 0.17540128596923
1009 => 0.17422259543149
1010 => 0.160711134914
1011 => 0.16321878339349
1012 => 0.1661036043898
1013 => 0.16709943303753
1014 => 0.16539599922634
1015 => 0.1772536674481
1016 => 0.17942017769555
1017 => 0.17285767683806
1018 => 0.17163010087277
1019 => 0.17733414712402
1020 => 0.17389390994322
1021 => 0.17544304853508
1022 => 0.17209465823298
1023 => 0.17889832881977
1024 => 0.17884649624916
1025 => 0.17619971472303
1026 => 0.17843675634454
1027 => 0.17804801531191
1028 => 0.17505980548764
1029 => 0.17899306040117
1030 => 0.17899501124653
1031 => 0.17644754157363
1101 => 0.17347265470849
1102 => 0.17294081520069
1103 => 0.17254014557416
1104 => 0.17534450836845
1105 => 0.1778588912808
1106 => 0.1825375345123
1107 => 0.18371385658251
1108 => 0.18830511993478
1109 => 0.18557124615306
1110 => 0.1867831369909
1111 => 0.1880988159278
1112 => 0.18872960079265
1113 => 0.18770177070517
1114 => 0.19483389253062
1115 => 0.19543606213525
1116 => 0.19563796439494
1117 => 0.19323305304383
1118 => 0.19536917720013
1119 => 0.19436975544839
1120 => 0.19696997319905
1121 => 0.1973777205436
1122 => 0.1970323730488
1123 => 0.19716179849181
1124 => 0.19107579070629
1125 => 0.19076019909637
1126 => 0.18645708510164
1127 => 0.18821063586151
1128 => 0.18493245676582
1129 => 0.18597200112605
1130 => 0.18643022237489
1201 => 0.18619087359832
1202 => 0.18830977899046
1203 => 0.18650827654337
1204 => 0.18175381539107
1205 => 0.17699805888902
1206 => 0.17693835424009
1207 => 0.17568624749917
1208 => 0.17478120366028
1209 => 0.1749555472118
1210 => 0.17556995662737
1211 => 0.17474549306811
1212 => 0.17492143416984
1213 => 0.17784322874801
1214 => 0.17842917381338
1215 => 0.17643790353775
1216 => 0.16844266604216
1217 => 0.16648061470621
1218 => 0.16789089829732
1219 => 0.16721687357466
1220 => 0.13495706771664
1221 => 0.14253603058652
1222 => 0.1380328682065
1223 => 0.14010813261175
1224 => 0.13551156990999
1225 => 0.13770529055776
1226 => 0.13730019045597
1227 => 0.14948693847292
1228 => 0.14929665916496
1229 => 0.14938773580032
1230 => 0.14504041069549
1231 => 0.15196581763023
]
'min_raw' => 0.088413862875818
'max_raw' => 0.1973777205436
'avg_raw' => 0.14289579170971
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.088413'
'max' => '$0.197377'
'avg' => '$0.142895'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013633238265018
'max_diff' => 0.029859890066283
'year' => 2035
]
10 => [
'items' => [
101 => 0.15537752211586
102 => 0.15474610641514
103 => 0.1549050201437
104 => 0.15217435578079
105 => 0.14941417460029
106 => 0.14635270888229
107 => 0.15204053377774
108 => 0.15140814474378
109 => 0.1528586176613
110 => 0.15654757868013
111 => 0.15709079220315
112 => 0.15782087668682
113 => 0.15755919337037
114 => 0.16379355162473
115 => 0.1630385297045
116 => 0.16485791529761
117 => 0.16111530109548
118 => 0.15688017787356
119 => 0.15768513634144
120 => 0.15760761236791
121 => 0.15662064320708
122 => 0.15572965157906
123 => 0.15424640155373
124 => 0.15893962411357
125 => 0.15874908784847
126 => 0.16183364850624
127 => 0.16128842244815
128 => 0.15764726939282
129 => 0.15777731388652
130 => 0.15865192560391
131 => 0.16167896674392
201 => 0.16257759865096
202 => 0.16216131654733
203 => 0.16314662540928
204 => 0.1639253733595
205 => 0.16324442416202
206 => 0.17288522880357
207 => 0.16888169456184
208 => 0.17083298929485
209 => 0.17129836159097
210 => 0.17010632024017
211 => 0.17036483132536
212 => 0.17075640517936
213 => 0.17313396494287
214 => 0.17937336971475
215 => 0.18213675961516
216 => 0.19045055447378
217 => 0.18190729855217
218 => 0.18140037710129
219 => 0.18289794260788
220 => 0.18777902029446
221 => 0.19173467530311
222 => 0.19304699427669
223 => 0.19322043889308
224 => 0.19568243652883
225 => 0.19709360766011
226 => 0.19538348525889
227 => 0.19393433558113
228 => 0.18874366131047
229 => 0.18934449599104
301 => 0.19348365112105
302 => 0.19933045153721
303 => 0.20434761455017
304 => 0.20259077892882
305 => 0.2159941945871
306 => 0.21732308850158
307 => 0.21713947833088
308 => 0.22016689643399
309 => 0.2141580880223
310 => 0.21158920601112
311 => 0.19424765819001
312 => 0.1991199257752
313 => 0.20620205284851
314 => 0.20526470677374
315 => 0.2001214767873
316 => 0.20434371294902
317 => 0.20294770963243
318 => 0.2018466238964
319 => 0.20689091110912
320 => 0.20134451011083
321 => 0.20614672325578
322 => 0.19998783522485
323 => 0.20259880400595
324 => 0.20111669184745
325 => 0.20207580005483
326 => 0.19646887307226
327 => 0.1994942347716
328 => 0.1963430080791
329 => 0.19634151398735
330 => 0.19627195048345
331 => 0.1999793547125
401 => 0.20010025303131
402 => 0.19736047570446
403 => 0.1969656309883
404 => 0.19842557885045
405 => 0.19671636226483
406 => 0.19751609394756
407 => 0.1967405853228
408 => 0.19656600199665
409 => 0.19517489235102
410 => 0.19457556406633
411 => 0.19481057612955
412 => 0.19400835880077
413 => 0.19352499384272
414 => 0.19617579702718
415 => 0.19475957981881
416 => 0.19595874142858
417 => 0.19459214542799
418 => 0.18985492829241
419 => 0.18713050462258
420 => 0.17818234059374
421 => 0.18072002881215
422 => 0.18240251872639
423 => 0.18184645581977
424 => 0.18304109411097
425 => 0.1831144351996
426 => 0.18272604611324
427 => 0.18227634130695
428 => 0.18205744987749
429 => 0.18368888725833
430 => 0.18463599156957
501 => 0.1825713790981
502 => 0.18208766928303
503 => 0.18417510648207
504 => 0.1854484419676
505 => 0.19485003576741
506 => 0.19415353533197
507 => 0.19590161474361
508 => 0.19570480782832
509 => 0.19753707354261
510 => 0.2005320536122
511 => 0.19444242172112
512 => 0.19549937125379
513 => 0.19524023163691
514 => 0.19806945002395
515 => 0.19807828253493
516 => 0.19638202478196
517 => 0.19730159362849
518 => 0.19678831552541
519 => 0.19771587843137
520 => 0.19414423314402
521 => 0.19849411156872
522 => 0.20096021233556
523 => 0.2009944541471
524 => 0.20216336633839
525 => 0.20335104882358
526 => 0.20563070192854
527 => 0.20328747053576
528 => 0.19907222536913
529 => 0.199376552455
530 => 0.19690515575611
531 => 0.19694670038111
601 => 0.19672493191693
602 => 0.19739047577188
603 => 0.1942902825934
604 => 0.19501789173581
605 => 0.19399923467556
606 => 0.19549715689228
607 => 0.1938856402025
608 => 0.19524010667194
609 => 0.19582464949887
610 => 0.19798162511456
611 => 0.19356705315028
612 => 0.18456544207488
613 => 0.18645768985691
614 => 0.18365890675443
615 => 0.18391794478628
616 => 0.18444124283622
617 => 0.18274506264389
618 => 0.18306864037181
619 => 0.18305707989839
620 => 0.1829574579839
621 => 0.18251621600629
622 => 0.18187632784169
623 => 0.18442544534227
624 => 0.18485859007844
625 => 0.18582141717165
626 => 0.18868613750919
627 => 0.18839988439271
628 => 0.18886677510221
629 => 0.18784755530485
630 => 0.18396522346949
701 => 0.18417605276661
702 => 0.18154700805319
703 => 0.18575418658743
704 => 0.18475787117848
705 => 0.18411554015291
706 => 0.18394027418143
707 => 0.18681209560659
708 => 0.18767138958728
709 => 0.18713593524359
710 => 0.18603770276297
711 => 0.18814663378904
712 => 0.18871089476296
713 => 0.18883721198587
714 => 0.19257383341665
715 => 0.18904604761517
716 => 0.18989522072076
717 => 0.19652022688343
718 => 0.19051226048225
719 => 0.19369481427859
720 => 0.19353904483147
721 => 0.19516713166194
722 => 0.19340549419108
723 => 0.19342733179884
724 => 0.19487296260813
725 => 0.19284283485737
726 => 0.19234014667653
727 => 0.19164568655502
728 => 0.19316201482402
729 => 0.19407098504366
730 => 0.20139661744888
731 => 0.20612931007207
801 => 0.20592385140371
802 => 0.20780135903003
803 => 0.20695552464837
804 => 0.20422410231018
805 => 0.20888630718001
806 => 0.20741099048426
807 => 0.20753261380014
808 => 0.20752808697425
809 => 0.2085090436025
810 => 0.20781394592803
811 => 0.20644383706134
812 => 0.20735337926735
813 => 0.21005439445193
814 => 0.21843842846212
815 => 0.2231302449679
816 => 0.21815597521726
817 => 0.22158715988313
818 => 0.21952967173971
819 => 0.21915576493908
820 => 0.2213108024718
821 => 0.22346961211244
822 => 0.22333210527112
823 => 0.22176492032812
824 => 0.22087965731966
825 => 0.22758316540457
826 => 0.23252219597024
827 => 0.23218538719735
828 => 0.23367195158484
829 => 0.23803655060422
830 => 0.23843559483962
831 => 0.23838532443788
901 => 0.23739625166449
902 => 0.24169376621388
903 => 0.24527882845855
904 => 0.23716730989451
905 => 0.24025606997612
906 => 0.24164271389039
907 => 0.24367871855525
908 => 0.24711379969887
909 => 0.25084520893111
910 => 0.25137287110937
911 => 0.25099846954293
912 => 0.2485375048486
913 => 0.25262045735549
914 => 0.25501215517701
915 => 0.2564363564967
916 => 0.26004789407891
917 => 0.24165127733114
918 => 0.22862923762589
919 => 0.22659565808538
920 => 0.23073102204757
921 => 0.23182148454549
922 => 0.2313819204799
923 => 0.21672443087959
924 => 0.22651848943607
925 => 0.23705607293501
926 => 0.23746086443287
927 => 0.24273619906292
928 => 0.24445406426174
929 => 0.24870140009284
930 => 0.24843572808018
1001 => 0.24946988676518
1002 => 0.24923215159263
1003 => 0.25709944683768
1004 => 0.26577824179762
1005 => 0.26547772272504
1006 => 0.26423004326671
1007 => 0.26608306002329
1008 => 0.27504050649814
1009 => 0.27421584836689
1010 => 0.27501693349718
1011 => 0.28557826771059
1012 => 0.29930950452029
1013 => 0.29292996642855
1014 => 0.30677172842499
1015 => 0.31548438388148
1016 => 0.33055202058808
1017 => 0.32866547826274
1018 => 0.3345311986612
1019 => 0.32528817376711
1020 => 0.30406432028677
1021 => 0.30070556423186
1022 => 0.30742987891104
1023 => 0.32396095040078
1024 => 0.30690925664074
1025 => 0.31035879208022
1026 => 0.30936532564159
1027 => 0.30931238803703
1028 => 0.31133280109007
1029 => 0.30840208657898
1030 => 0.29646182843533
1031 => 0.30193397837818
1101 => 0.29982091849102
1102 => 0.30216551597488
1103 => 0.31481834160968
1104 => 0.30922422579084
1105 => 0.30333127920476
1106 => 0.31072234197324
1107 => 0.32013370472223
1108 => 0.31954475855524
1109 => 0.31840195683088
1110 => 0.32484387031592
1111 => 0.33548402408964
1112 => 0.33836001489908
1113 => 0.34048301251756
1114 => 0.34077573802081
1115 => 0.34379099263217
1116 => 0.32757720864488
1117 => 0.35330890023222
1118 => 0.35775205254571
1119 => 0.35691692406057
1120 => 0.36185530086059
1121 => 0.3604023051315
1122 => 0.35829714228809
1123 => 0.36612551993899
1124 => 0.35715091667973
1125 => 0.34441259722434
1126 => 0.33742410323573
1127 => 0.34662711586567
1128 => 0.35224707453789
1129 => 0.35596150972373
1130 => 0.35708549556664
1201 => 0.32883583854109
1202 => 0.31361084020212
1203 => 0.32336988958244
1204 => 0.33527660336003
1205 => 0.32751106624866
1206 => 0.32781546060132
1207 => 0.31674384542775
1208 => 0.33625619563254
1209 => 0.3334134103324
1210 => 0.34816178549833
1211 => 0.34464196740188
1212 => 0.35666869482107
1213 => 0.35350165443207
1214 => 0.36664786201997
1215 => 0.37189224014615
1216 => 0.38069836724227
1217 => 0.38717619018157
1218 => 0.39098009171253
1219 => 0.39075171973269
1220 => 0.40582467269458
1221 => 0.39693667894182
1222 => 0.38577126404906
1223 => 0.38556931692008
1224 => 0.3913520435082
1225 => 0.40347105202332
1226 => 0.40661333460688
1227 => 0.40836944189302
1228 => 0.40567990245377
1229 => 0.39603262224339
1230 => 0.39186697556138
1231 => 0.39541622722486
]
'min_raw' => 0.14635270888229
'max_raw' => 0.40836944189302
'avg_raw' => 0.27736107538766
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.146352'
'max' => '$0.408369'
'avg' => '$0.277361'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.05793884600647
'max_diff' => 0.21099172134943
'year' => 2036
]
11 => [
'items' => [
101 => 0.39107579743109
102 => 0.39856859696464
103 => 0.40885781109982
104 => 0.40673312906887
105 => 0.41383562254821
106 => 0.42118595609522
107 => 0.43169726319158
108 => 0.43444530809915
109 => 0.43898772183256
110 => 0.44366335766943
111 => 0.44516504588831
112 => 0.44803223464464
113 => 0.44801712314461
114 => 0.45665758944589
115 => 0.46618829134916
116 => 0.46978591068139
117 => 0.47805843796197
118 => 0.46389202489791
119 => 0.47463741193902
120 => 0.48433002002458
121 => 0.47277409308565
122 => 0.48870124618532
123 => 0.48931966144847
124 => 0.4986569977057
125 => 0.48919181859182
126 => 0.48357142544792
127 => 0.49979728986097
128 => 0.50764847454051
129 => 0.50528363381997
130 => 0.4872870791701
131 => 0.47681231245534
201 => 0.4493978275312
202 => 0.48187146914146
203 => 0.4976884327007
204 => 0.48724611705558
205 => 0.49251261367376
206 => 0.52124491155524
207 => 0.53218431030999
208 => 0.52990899184117
209 => 0.53029348320747
210 => 0.5361961842114
211 => 0.56237201113965
212 => 0.54668684889332
213 => 0.55867756771882
214 => 0.56503740174811
215 => 0.57094477003192
216 => 0.55643814056981
217 => 0.53756522878432
218 => 0.53158738539091
219 => 0.48620783456022
220 => 0.48384563186609
221 => 0.4825196559118
222 => 0.47415956508304
223 => 0.46759082371324
224 => 0.46236711669425
225 => 0.44865854954544
226 => 0.45328478853895
227 => 0.43143619370408
228 => 0.44541415041278
301 => 0.41054326550355
302 => 0.43958477464989
303 => 0.42377880157693
304 => 0.43439208739514
305 => 0.43435505864075
306 => 0.41481263450409
307 => 0.40354097210205
308 => 0.41072371408429
309 => 0.41842418365603
310 => 0.41967355893655
311 => 0.42965741873912
312 => 0.43244369940767
313 => 0.42400113890296
314 => 0.40982064392175
315 => 0.41311444948323
316 => 0.40347422323747
317 => 0.38658009754773
318 => 0.39871375356124
319 => 0.40285671720345
320 => 0.40468648596728
321 => 0.38807305365487
322 => 0.38285275252714
323 => 0.38007350800931
324 => 0.40767605843277
325 => 0.4091881884542
326 => 0.40145191747092
327 => 0.43642059589867
328 => 0.4285061069955
329 => 0.4373485301972
330 => 0.41281557115256
331 => 0.41375276322608
401 => 0.40213846725624
402 => 0.40864169693181
403 => 0.40404542380599
404 => 0.40811630024019
405 => 0.41055636679
406 => 0.42216875696816
407 => 0.43971736949249
408 => 0.42043425311463
409 => 0.41203232316948
410 => 0.4172448332532
411 => 0.4311264345027
412 => 0.45215777098178
413 => 0.43970679649107
414 => 0.44523232753879
415 => 0.44643941025895
416 => 0.43725852262963
417 => 0.45249628340416
418 => 0.46066232319457
419 => 0.4690389902957
420 => 0.47631221563072
421 => 0.46569316524865
422 => 0.47705707133854
423 => 0.46789976902955
424 => 0.45968472219388
425 => 0.4596971810289
426 => 0.4545437621462
427 => 0.44455836368839
428 => 0.44271690300927
429 => 0.45229641401289
430 => 0.45997827465472
501 => 0.46061098949081
502 => 0.46486406225038
503 => 0.46738098689936
504 => 0.4920502700525
505 => 0.50197245981171
506 => 0.51410512563182
507 => 0.51883148272834
508 => 0.53305612309605
509 => 0.52156857073032
510 => 0.5190831665159
511 => 0.48457884182824
512 => 0.49022892306288
513 => 0.49927524827128
514 => 0.48472801239896
515 => 0.49395488524781
516 => 0.49577646540007
517 => 0.48423370289059
518 => 0.49039919108023
519 => 0.47402548238839
520 => 0.44007427159779
521 => 0.45253408080723
522 => 0.46170869431182
523 => 0.44861538961909
524 => 0.47208463149993
525 => 0.45837438489664
526 => 0.45402889493129
527 => 0.43707558929744
528 => 0.44507689696404
529 => 0.45589878015081
530 => 0.44921211452034
531 => 0.46308794971145
601 => 0.48273983289215
602 => 0.49674493513658
603 => 0.49782007298486
604 => 0.48881573051067
605 => 0.50324524679051
606 => 0.50335035006355
607 => 0.48707379675358
608 => 0.47710449847945
609 => 0.47483945293599
610 => 0.4804979807919
611 => 0.48736847823084
612 => 0.49820133777649
613 => 0.50474740792148
614 => 0.52181608709228
615 => 0.52643438227852
616 => 0.53150848850858
617 => 0.53828905922835
618 => 0.54643087288009
619 => 0.5286170481238
620 => 0.52932482459049
621 => 0.51273683762663
622 => 0.49501019459779
623 => 0.50846250699943
624 => 0.52604961597846
625 => 0.52201511374664
626 => 0.52156114982816
627 => 0.52232459121996
628 => 0.51928270829169
629 => 0.50552438454459
630 => 0.49861504049046
701 => 0.50752985708195
702 => 0.51226768534749
703 => 0.51961564380529
704 => 0.51870985282878
705 => 0.53763740470296
706 => 0.54499207902181
707 => 0.54311043860679
708 => 0.54345670572736
709 => 0.5567719922766
710 => 0.57158132941689
711 => 0.58545222791293
712 => 0.59956230163205
713 => 0.5825520570381
714 => 0.57391530387932
715 => 0.58282622854077
716 => 0.57809796648506
717 => 0.6052679627508
718 => 0.60714915434234
719 => 0.63431718590809
720 => 0.66010288297301
721 => 0.64390734864528
722 => 0.65917900805345
723 => 0.67569655282003
724 => 0.70756157654984
725 => 0.69683055758269
726 => 0.68861076523036
727 => 0.68084310117516
728 => 0.6970063769921
729 => 0.71780017311595
730 => 0.72227895764052
731 => 0.7295362995977
801 => 0.72190609191528
802 => 0.73109583662895
803 => 0.76353967364665
804 => 0.7547730624948
805 => 0.7423230653561
806 => 0.76793435874234
807 => 0.77720298625744
808 => 0.84225506817632
809 => 0.92438600876639
810 => 0.89038326006127
811 => 0.86927665667816
812 => 0.87423720912852
813 => 0.90422864832421
814 => 0.91386094671317
815 => 0.88767703923961
816 => 0.89692563801485
817 => 0.94788632656859
818 => 0.97522510096303
819 => 0.93809537324812
820 => 0.83565592706903
821 => 0.74120207933212
822 => 0.76625549306415
823 => 0.76341521344488
824 => 0.8181661158205
825 => 0.75456398171813
826 => 0.75563487853965
827 => 0.81151797159419
828 => 0.796609320446
829 => 0.7724592149417
830 => 0.74137840182841
831 => 0.68392264416126
901 => 0.63303247732314
902 => 0.73283981379819
903 => 0.72853593996152
904 => 0.72230329284766
905 => 0.7361733745567
906 => 0.80352255424446
907 => 0.80196993766463
908 => 0.79209298313574
909 => 0.79958456609442
910 => 0.77114590422777
911 => 0.7784751949271
912 => 0.74118711736006
913 => 0.75804288570804
914 => 0.77240739966165
915 => 0.7752912885081
916 => 0.78178883733417
917 => 0.72626799401913
918 => 0.75119522266127
919 => 0.76583763412305
920 => 0.69968268644321
921 => 0.7645299635118
922 => 0.72530149965975
923 => 0.71198676983661
924 => 0.7299132994612
925 => 0.72292731343237
926 => 0.71692117287565
927 => 0.71356964324641
928 => 0.72673290812383
929 => 0.7261188260838
930 => 0.70458116986472
1001 => 0.6764861753141
1002 => 0.68591577767205
1003 => 0.68248991473241
1004 => 0.67007414549406
1005 => 0.67844087487501
1006 => 0.64159803298613
1007 => 0.57821183844058
1008 => 0.62008670012902
1009 => 0.6184745635051
1010 => 0.61766165111474
1011 => 0.64912945233743
1012 => 0.64610454933556
1013 => 0.64061432076724
1014 => 0.66997331314091
1015 => 0.65925688599035
1016 => 0.6922823893606
1017 => 0.71403512183588
1018 => 0.70851792525297
1019 => 0.72897647528605
1020 => 0.68613301666525
1021 => 0.70036389503787
1022 => 0.70329685934732
1023 => 0.6696110277323
1024 => 0.64659946087628
1025 => 0.64506485171805
1026 => 0.60516596597895
1027 => 0.62647962868822
1028 => 0.64523476985309
1029 => 0.63625251269287
1030 => 0.63340899841324
1031 => 0.64793589618485
1101 => 0.64906476055617
1102 => 0.6233265332584
1103 => 0.62867832573726
1104 => 0.65099619003559
1105 => 0.62811597281869
1106 => 0.5836634482285
1107 => 0.5726386075259
1108 => 0.57116769054804
1109 => 0.54126744817145
1110 => 0.57337534009898
1111 => 0.5593593848346
1112 => 0.60363561957783
1113 => 0.57834527175071
1114 => 0.57725505540306
1115 => 0.57560703349362
1116 => 0.54987065971662
1117 => 0.55550528994191
1118 => 0.57423565898916
1119 => 0.58091886567793
1120 => 0.58022175246639
1121 => 0.57414386996251
1122 => 0.57692629344899
1123 => 0.56796313793843
1124 => 0.5647980611757
1125 => 0.55480820828957
1126 => 0.54012588431425
1127 => 0.54216755151495
1128 => 0.5130780258808
1129 => 0.49722850841735
1130 => 0.49284157087674
1201 => 0.48697517465471
1202 => 0.49350419593991
1203 => 0.51299561890959
1204 => 0.48948482747209
1205 => 0.44917722464276
1206 => 0.45159978025362
1207 => 0.457042543448
1208 => 0.44689999024276
1209 => 0.43730091483396
1210 => 0.4456465321043
1211 => 0.42856766941978
1212 => 0.45910644240819
1213 => 0.45828045418278
1214 => 0.4696634202478
1215 => 0.47678142253024
1216 => 0.46037673174982
1217 => 0.45625099638155
1218 => 0.45860120275153
1219 => 0.41975752660504
1220 => 0.46648906320174
1221 => 0.4668931994708
1222 => 0.46343273937688
1223 => 0.4883158399403
1224 => 0.54082694336282
1225 => 0.52107015400103
1226 => 0.51341972800802
1227 => 0.49887626260289
1228 => 0.5182545667497
1229 => 0.51676661533986
1230 => 0.51003753477575
1231 => 0.50596776585457
]
'min_raw' => 0.38007350800931
'max_raw' => 0.97522510096303
'avg_raw' => 0.67764930448617
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.380073'
'max' => '$0.975225'
'avg' => '$0.677649'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23372079912702
'max_diff' => 0.56685565907001
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011930073116142
]
1 => [
'year' => 2028
'avg' => 0.020475468792272
]
2 => [
'year' => 2029
'avg' => 0.055935290396289
]
3 => [
'year' => 2030
'avg' => 0.043153993239403
]
4 => [
'year' => 2031
'avg' => 0.0423825693766
]
5 => [
'year' => 2032
'avg' => 0.074309982402647
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011930073116142
'min' => '$0.01193'
'max_raw' => 0.074309982402647
'max' => '$0.0743099'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.074309982402647
]
1 => [
'year' => 2033
'avg' => 0.19113291594499
]
2 => [
'year' => 2034
'avg' => 0.12114922754406
]
3 => [
'year' => 2035
'avg' => 0.14289579170971
]
4 => [
'year' => 2036
'avg' => 0.27736107538766
]
5 => [
'year' => 2037
'avg' => 0.67764930448617
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.074309982402647
'min' => '$0.0743099'
'max_raw' => 0.67764930448617
'max' => '$0.677649'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67764930448617
]
]
]
]
'prediction_2025_max_price' => '$0.020398'
'last_price' => 0.01977868
'sma_50day_nextmonth' => '$0.018183'
'sma_200day_nextmonth' => '$0.026146'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.019755'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.020064'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.01864'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017899'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.017219'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.02189'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.030238'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0197094'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019496'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.018993'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01832'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.018773'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0220042'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.029459'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.025118'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0359062'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.081821'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.019811'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.019777'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.020817'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025324'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.043741'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.100134'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.154646'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 60.27
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.019194'
'vwma_10_action' => 'BUY'
'hma_9' => '0.020730'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 80.61
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 45.3
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.28
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002828'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -19.39
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 59.3
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004266'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 16
'buy_signals' => 16
'sell_pct' => 50
'buy_pct' => 50
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767701859
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de CONX para 2026
La previsión del precio de CONX para 2026 sugiere que el precio medio podría oscilar entre $0.006833 en el extremo inferior y $0.020398 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, CONX podría potencialmente ganar 3.13% para 2026 si CONX alcanza el objetivo de precio previsto.
Predicción de precio de CONX 2027-2032
La predicción del precio de CONX para 2027-2032 está actualmente dentro de un rango de precios de $0.01193 en el extremo inferior y $0.0743099 en el extremo superior. Considerando la volatilidad de precios en el mercado, si CONX alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de CONX | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006578 | $0.01193 | $0.017281 |
| 2028 | $0.011872 | $0.020475 | $0.029078 |
| 2029 | $0.026079 | $0.055935 | $0.08579 |
| 2030 | $0.022179 | $0.043153 | $0.064128 |
| 2031 | $0.026223 | $0.042382 | $0.058541 |
| 2032 | $0.040027 | $0.0743099 | $0.108592 |
Predicción de precio de CONX 2032-2037
La predicción de precio de CONX para 2032-2037 se estima actualmente entre $0.0743099 en el extremo inferior y $0.677649 en el extremo superior. Comparado con el precio actual, CONX podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de CONX | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.040027 | $0.0743099 | $0.108592 |
| 2033 | $0.093016 | $0.191132 | $0.289249 |
| 2034 | $0.07478 | $0.121149 | $0.167517 |
| 2035 | $0.088413 | $0.142895 | $0.197377 |
| 2036 | $0.146352 | $0.277361 | $0.408369 |
| 2037 | $0.380073 | $0.677649 | $0.975225 |
CONX Histograma de precios potenciales
Pronóstico de precio de CONX basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para CONX es Neutral, con 16 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de CONX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de CONX
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de CONX aumentar durante el próximo mes, alcanzando $0.026146 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para CONX alcance $0.018183 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.99, lo que sugiere que el mercado de CONX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CONX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.019755 | BUY |
| SMA 5 | $0.020064 | SELL |
| SMA 10 | $0.01864 | BUY |
| SMA 21 | $0.017899 | BUY |
| SMA 50 | $0.017219 | BUY |
| SMA 100 | $0.02189 | SELL |
| SMA 200 | $0.030238 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0197094 | BUY |
| EMA 5 | $0.019496 | BUY |
| EMA 10 | $0.018993 | BUY |
| EMA 21 | $0.01832 | BUY |
| EMA 50 | $0.018773 | BUY |
| EMA 100 | $0.0220042 | SELL |
| EMA 200 | $0.029459 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.025118 | SELL |
| SMA 50 | $0.0359062 | SELL |
| SMA 100 | $0.081821 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.025324 | SELL |
| EMA 50 | $0.043741 | SELL |
| EMA 100 | $0.100134 | SELL |
| EMA 200 | $0.154646 | SELL |
Osciladores de CONX
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.99 | NEUTRAL |
| Stoch RSI (14) | 60.27 | NEUTRAL |
| Estocástico Rápido (14) | 80.61 | SELL |
| Índice de Canal de Materias Primas (20) | 45.3 | NEUTRAL |
| Índice Direccional Medio (14) | 18.28 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002828 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -19.39 | SELL |
| Oscilador Ultimate (7, 14, 28) | 59.3 | NEUTRAL |
| VWMA (10) | 0.019194 | BUY |
| Promedio Móvil de Hull (9) | 0.020730 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.004266 | NEUTRAL |
Predicción de precios de CONX basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de CONX
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de CONX por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.027792 | $0.039052 | $0.054875 | $0.0771097 | $0.108352 | $0.152252 |
| Amazon.com acción | $0.041269 | $0.086111 | $0.179675 | $0.3749042 | $0.782259 | $1.63 |
| Apple acción | $0.028054 | $0.039793 | $0.056443 | $0.080061 | $0.11356 | $0.161076 |
| Netflix acción | $0.0312076 | $0.04924 | $0.077694 | $0.122589 | $0.193426 | $0.305197 |
| Google acción | $0.025613 | $0.033169 | $0.042953 | $0.055625 | $0.072034 | $0.093283 |
| Tesla acción | $0.044836 | $0.101641 | $0.230413 | $0.52233 | $1.18 | $2.68 |
| Kodak acción | $0.014831 | $0.011122 | $0.00834 | $0.006254 | $0.00469 | $0.003517 |
| Nokia acción | $0.0131025 | $0.008679 | $0.00575 | $0.0038091 | $0.002523 | $0.001671 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de CONX
Podría preguntarse cosas como: "¿Debo invertir en CONX ahora?", "¿Debería comprar CONX hoy?", "¿Será CONX una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de CONX regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como CONX, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de CONX a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de CONX es de $0.01977 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de CONX
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de CONX
basado en el historial de precios del último mes
Predicción de precios de CONX basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si CONX ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.020292 | $0.02082 | $0.021361 | $0.021916 |
| Si CONX ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0208069 | $0.021888 | $0.023026 | $0.024223 |
| Si CONX ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.022349 | $0.025253 | $0.028536 | $0.032244 |
| Si CONX ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.024919 | $0.031397 | $0.039558 | $0.04984 |
| Si CONX ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.03006 | $0.045688 | $0.06944 | $0.105539 |
| Si CONX ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.045484 | $0.104598 | $0.24054 | $0.553161 |
| Si CONX ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.071189 | $0.256235 | $0.922272 | $3.31 |
Cuadro de preguntas
¿Es CONX una buena inversión?
La decisión de adquirir CONX depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de CONX ha experimentado un aumento de 1.7164% durante las últimas 24 horas, y CONX ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en CONX dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede CONX subir?
Parece que el valor medio de CONX podría potencialmente aumentar hasta $0.020398 para el final de este año. Mirando las perspectivas de CONX en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.064128. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de CONX la próxima semana?
Basado en nuestro nuevo pronóstico experimental de CONX, el precio de CONX aumentará en un 0.86% durante la próxima semana y alcanzará $0.019947 para el 13 de enero de 2026.
¿Cuál será el precio de CONX el próximo mes?
Basado en nuestro nuevo pronóstico experimental de CONX, el precio de CONX disminuirá en un -11.62% durante el próximo mes y alcanzará $0.01748 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de CONX este año en 2026?
Según nuestra predicción más reciente sobre el valor de CONX en 2026, se anticipa que CONX fluctúe dentro del rango de $0.006833 y $0.020398. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de CONX no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará CONX en 5 años?
El futuro de CONX parece estar en una tendencia alcista, con un precio máximo de $0.064128 proyectada después de un período de cinco años. Basado en el pronóstico de CONX para 2030, el valor de CONX podría potencialmente alcanzar su punto más alto de aproximadamente $0.064128, mientras que su punto más bajo se anticipa que esté alrededor de $0.022179.
¿Cuánto será CONX en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de CONX, se espera que el valor de CONX en 2026 crezca en un 3.13% hasta $0.020398 si ocurre lo mejor. El precio estará entre $0.020398 y $0.006833 durante 2026.
¿Cuánto será CONX en 2027?
Según nuestra última simulación experimental para la predicción de precios de CONX, el valor de CONX podría disminuir en un -12.62% hasta $0.017281 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.017281 y $0.006578 a lo largo del año.
¿Cuánto será CONX en 2028?
Nuestro nuevo modelo experimental de predicción de precios de CONX sugiere que el valor de CONX en 2028 podría aumentar en un 47.02% , alcanzando $0.029078 en el mejor escenario. Se espera que el precio oscile entre $0.029078 y $0.011872 durante el año.
¿Cuánto será CONX en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de CONX podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.08579 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.08579 y $0.026079.
¿Cuánto será CONX en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de CONX, se espera que el valor de CONX en 2030 aumente en un 224.23% , alcanzando $0.064128 en el mejor escenario. Se pronostica que el precio oscile entre $0.064128 y $0.022179 durante el transcurso de 2030.
¿Cuánto será CONX en 2031?
Nuestra simulación experimental indica que el precio de CONX podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.058541 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.058541 y $0.026223 durante el año.
¿Cuánto será CONX en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de CONX, CONX podría experimentar un 449.04% aumento en valor, alcanzando $0.108592 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.108592 y $0.040027 a lo largo del año.
¿Cuánto será CONX en 2033?
Según nuestra predicción experimental de precios de CONX, se anticipa que el valor de CONX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.289249. A lo largo del año, el precio de CONX podría oscilar entre $0.289249 y $0.093016.
¿Cuánto será CONX en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de CONX sugieren que CONX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.167517 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.167517 y $0.07478.
¿Cuánto será CONX en 2035?
Basado en nuestra predicción experimental para el precio de CONX, CONX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.197377 en 2035. El rango de precios esperado para el año está entre $0.197377 y $0.088413.
¿Cuánto será CONX en 2036?
Nuestra reciente simulación de predicción de precios de CONX sugiere que el valor de CONX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.408369 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.408369 y $0.146352.
¿Cuánto será CONX en 2037?
Según la simulación experimental, el valor de CONX podría aumentar en un 4830.69% en 2037, con un máximo de $0.975225 bajo condiciones favorables. Se espera que el precio caiga entre $0.975225 y $0.380073 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Banana Gun
Predicción de precios de Dora Factory
Predicción de precios de Automata
Predicción de precios de Storm
Predicción de precios de Adventure Gold
Predicción de precios de Star Atlas
Predicción de precios de Radio Caca
Predicción de precios de CoinEx Token
Predicción de precios de Blendr Network
Predicción de precios de Access Protocol
Predicción de precios de Bancor Network Token
Predicción de precios de Gitcoin
Predicción de precios de Wexo
Predicción de precios de Origin Protocol
Predicción de precios de Euler
Predicción de precios de Polkastarter
Predicción de precios de ArbDoge AI
Predicción de precios de PhoenixPredicción de precios de Opulous
Predicción de precios de Mainframe
Predicción de precios de Frontier Token
Predicción de precios de GamerCoin
Predicción de precios de BetProtocol
Predicción de precios de Shrapnel
Predicción de precios de LeverFi
¿Cómo leer y predecir los movimientos de precio de CONX?
Los traders de CONX utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de CONX
Las medias móviles son herramientas populares para la predicción de precios de CONX. Una media móvil simple (SMA) calcula el precio de cierre promedio de CONX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CONX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CONX.
¿Cómo leer gráficos de CONX y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de CONX en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CONX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de CONX?
La acción del precio de CONX está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CONX. La capitalización de mercado de CONX puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CONX, grandes poseedores de CONX, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de CONX.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


