Previsão de Preço CONX - Projeção CONX
Previsão de Preço CONX até $0.0207067 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.006936 | $0.0207067 |
| 2027 | $0.006677 | $0.017543 |
| 2028 | $0.012051 | $0.029518 |
| 2029 | $0.026474 | $0.087088 |
| 2030 | $0.022515 | $0.065098 |
| 2031 | $0.026619 | $0.059427 |
| 2032 | $0.040633 | $0.110234 |
| 2033 | $0.094422 | $0.293623 |
| 2034 | $0.075911 | $0.170051 |
| 2035 | $0.08975 | $0.200362 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em CONX hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.51, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de CONX para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'CONX'
'name_with_ticker' => 'CONX <small>CONX</small>'
'name_lang' => 'CONX'
'name_lang_with_ticker' => 'CONX <small>CONX</small>'
'name_with_lang' => 'CONX'
'name_with_lang_with_ticker' => 'CONX <small>CONX</small>'
'image' => '/uploads/coins/xpla.png?1762828636'
'price_for_sd' => 0.02007
'ticker' => 'CONX'
'marketcap' => '$17.77M'
'low24h' => '$0.01901'
'high24h' => '$0.02038'
'volume24h' => '$484.84K'
'current_supply' => '884.91M'
'max_supply' => '2B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02007'
'change_24h_pct' => '3.0135%'
'ath_price' => '$1.4'
'ath_days' => 1027
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '16 de mar. de 2023'
'ath_pct' => '-98.57%'
'fdv' => '$40.15M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.989973'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020249'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017745'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006936'
'current_year_max_price_prediction' => '$0.0207067'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022515'
'grand_prediction_max_price' => '$0.065098'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020458253559582
107 => 0.020534637252028
108 => 0.020706733611356
109 => 0.01923618906339
110 => 0.019896420392507
111 => 0.020284244443053
112 => 0.018532041273524
113 => 0.020249609020155
114 => 0.019210590154476
115 => 0.018857931545925
116 => 0.0193327399031
117 => 0.019147706624543
118 => 0.018988625877158
119 => 0.018899856086763
120 => 0.019248502941586
121 => 0.019232238149086
122 => 0.018661784225156
123 => 0.017917650336067
124 => 0.018167406094607
125 => 0.018076667486057
126 => 0.017747819063156
127 => 0.017969423194881
128 => 0.016993590750049
129 => 0.015314721748072
130 => 0.016423834035926
131 => 0.016381134419326
201 => 0.016359603336362
202 => 0.017193070567073
203 => 0.017112951924201
204 => 0.016967535802864
205 => 0.017745148382051
206 => 0.017461309330283
207 => 0.018336034406942
208 => 0.018912184916101
209 => 0.018766054510462
210 => 0.019307926849103
211 => 0.018173159962848
212 => 0.018550084003517
213 => 0.018627767525904
214 => 0.01773555276353
215 => 0.017126060325019
216 => 0.017085414128092
217 => 0.016028638232946
218 => 0.016593159386136
219 => 0.017089914639471
220 => 0.016852007422889
221 => 0.016776693105395
222 => 0.017161457619789
223 => 0.017191357117843
224 => 0.016509645393612
225 => 0.016651394848082
226 => 0.017242513637109
227 => 0.016636500171253
228 => 0.015459114998833
301 => 0.015167107197449
302 => 0.015128147973973
303 => 0.014336199657189
304 => 0.015186620555027
305 => 0.014815389043258
306 => 0.015988104940901
307 => 0.015318255909569
308 => 0.015289380056638
309 => 0.015245729969767
310 => 0.014564067338538
311 => 0.014713308132857
312 => 0.015209407263188
313 => 0.015386421021847
314 => 0.015367957036588
315 => 0.015206976106804
316 => 0.015280672352103
317 => 0.01504327106852
318 => 0.014959439734206
319 => 0.014694844983486
320 => 0.014305963796094
321 => 0.014360040110348
322 => 0.013589564721826
323 => 0.013169768837936
324 => 0.013053574870096
325 => 0.01289819544022
326 => 0.013071125390149
327 => 0.013587382061856
328 => 0.012964666985815
329 => 0.011897065666327
330 => 0.011961230324732
331 => 0.012105389261511
401 => 0.01183675003653
402 => 0.011582505555267
403 => 0.011803550504219
404 => 0.011351193751212
405 => 0.012160054413952
406 => 0.01213817699983
407 => 0.012439670235292
408 => 0.01262820014269
409 => 0.01219369974342
410 => 0.012084424068017
411 => 0.012146672459029
412 => 0.011117845215609
413 => 0.012355593100136
414 => 0.01236629719524
415 => 0.012274642234315
416 => 0.012933704771647
417 => 0.014324532292178
418 => 0.013801247033047
419 => 0.01359861516433
420 => 0.013213411833778
421 => 0.013726672400629
422 => 0.013687261997207
423 => 0.013509033206981
424 => 0.013401239878544
425 => 0.013599852391312
426 => 0.013376629590265
427 => 0.013336532641445
428 => 0.013093588757503
429 => 0.013006868844179
430 => 0.012942664872772
501 => 0.012871982608806
502 => 0.013027890070193
503 => 0.012674583251355
504 => 0.012248529862931
505 => 0.012213108133645
506 => 0.012310910642514
507 => 0.01226764031288
508 => 0.012212900971954
509 => 0.012108388662755
510 => 0.012077382093167
511 => 0.012178138402077
512 => 0.012064390403776
513 => 0.012232231771444
514 => 0.012186588206524
515 => 0.011931626963233
516 => 0.01161385085535
517 => 0.011611021981432
518 => 0.011542557640246
519 => 0.011455358008063
520 => 0.011431101065247
521 => 0.011784934715162
522 => 0.012517359781138
523 => 0.01237356721524
524 => 0.012477472080556
525 => 0.012988581179484
526 => 0.013151047392447
527 => 0.013035732722709
528 => 0.012877882890473
529 => 0.01288482748199
530 => 0.013424248143134
531 => 0.013457891148103
601 => 0.013542896168014
602 => 0.013652151641015
603 => 0.013054339402195
604 => 0.012856670579302
605 => 0.012763004124767
606 => 0.012474547698277
607 => 0.012785623223861
608 => 0.012604372836685
609 => 0.01262882970631
610 => 0.012612902137883
611 => 0.012621599667262
612 => 0.012159828320912
613 => 0.012328073529534
614 => 0.012048333238505
615 => 0.011673792391137
616 => 0.011672536798886
617 => 0.011764205140668
618 => 0.011709677223993
619 => 0.011562944002264
620 => 0.011583786763849
621 => 0.011401182240577
622 => 0.011605958259136
623 => 0.011611830502625
624 => 0.011532980581254
625 => 0.01184846629149
626 => 0.011977721044385
627 => 0.01192582033701
628 => 0.011974079552399
629 => 0.012379542445538
630 => 0.012445650588706
701 => 0.012475011459042
702 => 0.012435671782361
703 => 0.011981490669767
704 => 0.012001635533438
705 => 0.011853825890149
706 => 0.011728942317366
707 => 0.011733937005349
708 => 0.011798143395487
709 => 0.012078536466877
710 => 0.012668607155542
711 => 0.012690999906841
712 => 0.012718140574658
713 => 0.01260774583884
714 => 0.012574449730182
715 => 0.012618375891957
716 => 0.012839975418177
717 => 0.013409989563298
718 => 0.013208508494448
719 => 0.013044701249232
720 => 0.013188404365402
721 => 0.01316628239705
722 => 0.012979550721396
723 => 0.01297430978519
724 => 0.012615911997882
725 => 0.012483420496237
726 => 0.012372700680645
727 => 0.012251797532433
728 => 0.012180122093463
729 => 0.012290248143626
730 => 0.012315435274271
731 => 0.012074642740916
801 => 0.012041823608379
802 => 0.012238459988984
803 => 0.012151927649223
804 => 0.012240928306566
805 => 0.012261577222504
806 => 0.012258252271453
807 => 0.012167902570566
808 => 0.012225488775644
809 => 0.01208928023336
810 => 0.011941173901488
811 => 0.011846691289103
812 => 0.011764242678498
813 => 0.011809989959603
814 => 0.011646909255587
815 => 0.011594736456206
816 => 0.012205979865095
817 => 0.012657511943214
818 => 0.012650946487972
819 => 0.012610980967683
820 => 0.012551600311244
821 => 0.012835631353299
822 => 0.012736680617627
823 => 0.012808675545439
824 => 0.012827001276185
825 => 0.012882467743795
826 => 0.012902292238462
827 => 0.012842368846582
828 => 0.012641258624408
829 => 0.012140111071735
830 => 0.011906825533144
831 => 0.011829837419731
901 => 0.011832635791432
902 => 0.011755444207428
903 => 0.011778180588402
904 => 0.011747537421991
905 => 0.011689506678188
906 => 0.0118064067247
907 => 0.011819878366061
908 => 0.011792592498354
909 => 0.011799019307962
910 => 0.011573103977291
911 => 0.01159027982922
912 => 0.01149464250308
913 => 0.011476711657354
914 => 0.011234948824966
915 => 0.010806630923309
916 => 0.011043960618652
917 => 0.010757299720283
918 => 0.01064873689445
919 => 0.011162656426963
920 => 0.011111073159808
921 => 0.011022785029145
922 => 0.010892188483036
923 => 0.010843748953723
924 => 0.010549445707707
925 => 0.010532056701885
926 => 0.010677921337467
927 => 0.010610609827042
928 => 0.010516078973542
929 => 0.010173697804605
930 => 0.0097887480122113
1001 => 0.0098003672267356
1002 => 0.0099228125934506
1003 => 0.010278839011182
1004 => 0.010139733330455
1005 => 0.010038810563033
1006 => 0.010019910762423
1007 => 0.010256481336479
1008 => 0.010591278261837
1009 => 0.010748357488555
1010 => 0.010592696745444
1011 => 0.010413882065128
1012 => 0.010424765686171
1013 => 0.010497169541025
1014 => 0.010504778162435
1015 => 0.010388388187995
1016 => 0.010421151284041
1017 => 0.010371381145226
1018 => 0.010065941895186
1019 => 0.010060417467711
1020 => 0.0099854577498778
1021 => 0.0099831879994127
1022 => 0.0098556628198006
1023 => 0.0098378211656329
1024 => 0.009584612181288
1025 => 0.0097512751015712
1026 => 0.0096394863648413
1027 => 0.009470994370292
1028 => 0.0094419462869233
1029 => 0.0094410730664606
1030 => 0.0096140766707421
1031 => 0.0097492534537276
1101 => 0.0096414309777776
1102 => 0.0096168818900547
1103 => 0.0098790019212848
1104 => 0.0098456447580336
1105 => 0.0098167576697887
1106 => 0.010561300869256
1107 => 0.0099719368294472
1108 => 0.0097149404683674
1109 => 0.0093968586692458
1110 => 0.0095004277069475
1111 => 0.0095222512249369
1112 => 0.0087573218366033
1113 => 0.0084469900790222
1114 => 0.0083404959144259
1115 => 0.0082792070170943
1116 => 0.0083071371372259
1117 => 0.0080278021571182
1118 => 0.0082155198835247
1119 => 0.0079736394023496
1120 => 0.0079330873525334
1121 => 0.0083655996161163
1122 => 0.0084257811708938
1123 => 0.0081690279612692
1124 => 0.0083339050864171
1125 => 0.008274118348875
1126 => 0.0079777857489603
1127 => 0.0079664680233186
1128 => 0.0078177787412759
1129 => 0.0075851088067975
1130 => 0.007478772403373
1201 => 0.0074233914812146
1202 => 0.0074462427290498
1203 => 0.0074346884388846
1204 => 0.0073592888799336
1205 => 0.0074390102533441
1206 => 0.007235355087426
1207 => 0.0071542579593963
1208 => 0.0071176282681043
1209 => 0.006936872586398
1210 => 0.0072245352584092
1211 => 0.0072812084286743
1212 => 0.007337993262592
1213 => 0.0078322664731931
1214 => 0.007807573980393
1215 => 0.0080307820895736
1216 => 0.0080221086329042
1217 => 0.0079584460644343
1218 => 0.0076898641600438
1219 => 0.0077969161201218
1220 => 0.0074674268265703
1221 => 0.0077143026083932
1222 => 0.0076016388113483
1223 => 0.0076762108652827
1224 => 0.0075421235884177
1225 => 0.0076163330237628
1226 => 0.0072946477397802
1227 => 0.0069942625478313
1228 => 0.0071151463178619
1229 => 0.0072465608006211
1230 => 0.0075315008830306
1231 => 0.0073617929206522
]
'min_raw' => 0.006936872586398
'max_raw' => 0.020706733611356
'avg_raw' => 0.013821803098877
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006936'
'max' => '$0.0207067'
'avg' => '$0.013821'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013140917413602
'max_diff' => 0.0006289436113555
'year' => 2026
]
1 => [
'items' => [
101 => 0.007422826321292
102 => 0.0072183746460165
103 => 0.0067965324411892
104 => 0.0067989200222566
105 => 0.0067340287893759
106 => 0.0066779532898919
107 => 0.0073812859216172
108 => 0.0072938153908186
109 => 0.0071544425478511
110 => 0.0073409986366197
111 => 0.0073903270275334
112 => 0.0073917313374752
113 => 0.0075278378441311
114 => 0.0076004779111319
115 => 0.0076132810377808
116 => 0.0078274475667797
117 => 0.0078992333623753
118 => 0.0081949088949275
119 => 0.0075943149089548
120 => 0.0075819460710455
121 => 0.0073436238633675
122 => 0.007192476151533
123 => 0.0073539730765093
124 => 0.0074970373055096
125 => 0.0073480692677525
126 => 0.0073675213485967
127 => 0.0071675439290437
128 => 0.0072390264467217
129 => 0.0073005968206811
130 => 0.00726660127912
131 => 0.0072157083080003
201 => 0.0074853076702145
202 => 0.00747009581763
203 => 0.0077211529417864
204 => 0.0079168699233335
205 => 0.0082676297428612
206 => 0.0079015935856611
207 => 0.0078882537732308
208 => 0.0080186525795104
209 => 0.0078992133989975
210 => 0.0079746948381813
211 => 0.0082554685160701
212 => 0.0082614008214466
213 => 0.0081620270630477
214 => 0.008155980160818
215 => 0.0081750659781483
216 => 0.0082868522063866
217 => 0.0082477906633963
218 => 0.0082929936698619
219 => 0.0083495207216202
220 => 0.0085833405746656
221 => 0.0086397137496415
222 => 0.0085027561605902
223 => 0.0085151218974324
224 => 0.0084638959995574
225 => 0.0084144124240687
226 => 0.0085256442752714
227 => 0.0087289226696119
228 => 0.0087276580852708
301 => 0.0087748147215905
302 => 0.008804192915351
303 => 0.0086780802015788
304 => 0.0085959854622061
305 => 0.0086274658091056
306 => 0.0086778035693506
307 => 0.0086111419518935
308 => 0.0081996755682833
309 => 0.0083244881844963
310 => 0.0083037132621333
311 => 0.0082741272463716
312 => 0.0083996272971212
313 => 0.008387522511067
314 => 0.008024937173153
315 => 0.008048148710081
316 => 0.0080263487435926
317 => 0.0080967888951702
318 => 0.0078954093996474
319 => 0.0079573523761586
320 => 0.0079962024303471
321 => 0.0080190854107243
322 => 0.0081017544268533
323 => 0.0080920541719727
324 => 0.0081011514453901
325 => 0.0082237277724983
326 => 0.0088436767718954
327 => 0.0088774192280923
328 => 0.0087112590330556
329 => 0.0087776367536078
330 => 0.0086502060453592
331 => 0.008735751133518
401 => 0.0087942789102266
402 => 0.0085298031415247
403 => 0.0085141426029357
404 => 0.0083861859428246
405 => 0.0084549426041327
406 => 0.0083455458122127
407 => 0.0083723879584125
408 => 0.0082973349775815
409 => 0.0084324154001779
410 => 0.0085834563020161
411 => 0.0086216151986064
412 => 0.0085212355701152
413 => 0.0084485541037477
414 => 0.0083209493915698
415 => 0.0085331588717781
416 => 0.0085952153907578
417 => 0.0085328329153022
418 => 0.0085183775326551
419 => 0.0084909846086593
420 => 0.0085241890709756
421 => 0.0085948774176281
422 => 0.0085615420987556
423 => 0.0085835606641636
424 => 0.0084996485982742
425 => 0.0086781219501346
426 => 0.00896158058484
427 => 0.0089624919507008
428 => 0.0089291564521385
429 => 0.0089155162843501
430 => 0.0089497205288422
501 => 0.0089682749283477
502 => 0.0090788851830495
503 => 0.0091975743932516
504 => 0.0097514451491052
505 => 0.0095959204572111
506 => 0.010087347541723
507 => 0.010476002561752
508 => 0.010592543208434
509 => 0.010485331297147
510 => 0.01011856514011
511 => 0.010100569842695
512 => 0.010648673325987
513 => 0.010493808987227
514 => 0.010475388366906
515 => 0.010279424088817
516 => 0.010395263247815
517 => 0.010369927524485
518 => 0.010329933845741
519 => 0.010550946891684
520 => 0.010964663583719
521 => 0.010900181957455
522 => 0.010852049414665
523 => 0.010641146623333
524 => 0.010768157210559
525 => 0.010722931173175
526 => 0.010917250930927
527 => 0.010802140211145
528 => 0.010492635737548
529 => 0.010541925345108
530 => 0.010534475320082
531 => 0.010687796307199
601 => 0.010641773152528
602 => 0.010525488560487
603 => 0.010963249545043
604 => 0.01093482378166
605 => 0.010975125015102
606 => 0.01099286686442
607 => 0.011259324261505
608 => 0.011368483331405
609 => 0.011393264351371
610 => 0.011496957025111
611 => 0.011390684383187
612 => 0.011815850721993
613 => 0.012098561528155
614 => 0.012426944677677
615 => 0.012906800720199
616 => 0.013087231031104
617 => 0.013054637910408
618 => 0.013418459285327
619 => 0.014072238208761
620 => 0.013186785323089
621 => 0.01411916936175
622 => 0.013823987340001
623 => 0.013124116076533
624 => 0.013079052618106
625 => 0.013553013563399
626 => 0.014604213323008
627 => 0.014340899705835
628 => 0.014604644009756
629 => 0.014296972269629
630 => 0.01428169377447
701 => 0.014589701080074
702 => 0.015309376938223
703 => 0.014967485914663
704 => 0.014477301297271
705 => 0.014839245990636
706 => 0.014525696000843
707 => 0.013819180116724
708 => 0.014340698354874
709 => 0.013991973961007
710 => 0.014093750278346
711 => 0.014826717085416
712 => 0.01473852458
713 => 0.014852653848414
714 => 0.014651218676945
715 => 0.014463046463382
716 => 0.014111809052915
717 => 0.014007824971471
718 => 0.014036562430626
719 => 0.014007810730613
720 => 0.013811296627495
721 => 0.013768859425637
722 => 0.013698128896657
723 => 0.013720051245162
724 => 0.013587057157733
725 => 0.013838044478691
726 => 0.013884629937154
727 => 0.014067277578741
728 => 0.014086240662801
729 => 0.014594911744796
730 => 0.014314744260704
731 => 0.01450270479753
801 => 0.014485891837963
802 => 0.013139284409008
803 => 0.0133248350315
804 => 0.013613493571105
805 => 0.01348345329028
806 => 0.013299606757934
807 => 0.013151140825836
808 => 0.012926199757288
809 => 0.013242799991659
810 => 0.013659095633176
811 => 0.014096798607263
812 => 0.014622670051193
813 => 0.014505301666726
814 => 0.014086967806407
815 => 0.014105733957788
816 => 0.014221738921416
817 => 0.014071501953355
818 => 0.0140271941385
819 => 0.014215651708047
820 => 0.014216949511754
821 => 0.014044083723257
822 => 0.013851975033447
823 => 0.013851170091022
824 => 0.01381698620522
825 => 0.014303053506973
826 => 0.01457034137599
827 => 0.014600985499417
828 => 0.014568278782323
829 => 0.014580866299649
830 => 0.014425337377955
831 => 0.01478083037228
901 => 0.015107065898486
902 => 0.015019627808457
903 => 0.014888545681447
904 => 0.014784132453513
905 => 0.014995031370256
906 => 0.014985640373479
907 => 0.015104216515766
908 => 0.015098837217023
909 => 0.015058964520246
910 => 0.015019629232436
911 => 0.015175589202341
912 => 0.015130675235649
913 => 0.015085691505161
914 => 0.014995469747003
915 => 0.015007732382361
916 => 0.014876672888529
917 => 0.014816038769808
918 => 0.013904247105833
919 => 0.013660586579566
920 => 0.013737247141297
921 => 0.01376248578871
922 => 0.013656444415419
923 => 0.013808480504924
924 => 0.013784785841421
925 => 0.013876967916197
926 => 0.013819376557957
927 => 0.013821740127388
928 => 0.0139911040322
929 => 0.014040271094292
930 => 0.014015264329685
1001 => 0.014032778210434
1002 => 0.014436378200149
1003 => 0.014378999188013
1004 => 0.014348517731421
1005 => 0.014356961303211
1006 => 0.014460089753865
1007 => 0.014488960089443
1008 => 0.014366634448915
1009 => 0.014424323928144
1010 => 0.014669958408817
1011 => 0.014755916575344
1012 => 0.01503025378064
1013 => 0.014913710459876
1014 => 0.015127630769016
1015 => 0.015785148868506
1016 => 0.01631041982317
1017 => 0.015827358945521
1018 => 0.016791952160909
1019 => 0.017543026341768
1020 => 0.017514198863727
1021 => 0.017383231707635
1022 => 0.016528153721068
1023 => 0.015741298209334
1024 => 0.016399536256549
1025 => 0.0164012142407
1026 => 0.016344671008681
1027 => 0.015993485850788
1028 => 0.016332450526425
1029 => 0.016359356311438
1030 => 0.016344296226656
1031 => 0.016075043389497
1101 => 0.015663944073397
1102 => 0.01574427189573
1103 => 0.015875850507355
1104 => 0.015626744745375
1105 => 0.015547140360572
1106 => 0.015695140057275
1107 => 0.016172025917012
1108 => 0.01608187340764
1109 => 0.016079519161286
1110 => 0.016465229826991
1111 => 0.016189144231918
1112 => 0.015745285086815
1113 => 0.015633204798894
1114 => 0.015235395283102
1115 => 0.015510163732608
1116 => 0.015520052159945
1117 => 0.015369564288216
1118 => 0.01575749634822
1119 => 0.015753921485993
1120 => 0.016122205240899
1121 => 0.016826225459219
1122 => 0.016618012037931
1123 => 0.016375882482529
1124 => 0.016402208678725
1125 => 0.016690942072412
1126 => 0.016516367271447
1127 => 0.016579145587053
1128 => 0.016690847049913
1129 => 0.016758239315848
1130 => 0.016392511968765
1201 => 0.016307243429399
1202 => 0.016132813923046
1203 => 0.01608730852072
1204 => 0.016229377714053
1205 => 0.016191947500988
1206 => 0.015519221075917
1207 => 0.015448917421483
1208 => 0.015451073534194
1209 => 0.015274291652362
1210 => 0.015004656850055
1211 => 0.01571324101146
1212 => 0.01565633178667
1213 => 0.015593508406926
1214 => 0.01560120391248
1215 => 0.0159087762808
1216 => 0.015730368774397
1217 => 0.016204694370584
1218 => 0.016107187287541
1219 => 0.016007179515745
1220 => 0.015993355395372
1221 => 0.015954860935492
1222 => 0.015822849109409
1223 => 0.015663436896733
1224 => 0.015558179145874
1225 => 0.014351597859831
1226 => 0.01457553232816
1227 => 0.014833148521704
1228 => 0.014922076599383
1229 => 0.014769958968877
1230 => 0.015828855640629
1231 => 0.016022326266341
]
'min_raw' => 0.0066779532898919
'max_raw' => 0.017543026341768
'avg_raw' => 0.01211048981583
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006677'
'max' => '$0.017543'
'avg' => '$0.01211'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025891929650616
'max_diff' => -0.003163707269588
'year' => 2027
]
2 => [
'items' => [
101 => 0.015436291121284
102 => 0.015326667873302
103 => 0.015836042522517
104 => 0.015528827340522
105 => 0.015667166318163
106 => 0.015368153115878
107 => 0.015975724858088
108 => 0.015971096179374
109 => 0.015734737049023
110 => 0.015934506167478
111 => 0.01589979136707
112 => 0.015632942491031
113 => 0.015984184443428
114 => 0.015984358655055
115 => 0.015756868130983
116 => 0.015491209002947
117 => 0.015443715425443
118 => 0.015407935394658
119 => 0.015658366623946
120 => 0.015882902481047
121 => 0.016300708043953
122 => 0.016405754289283
123 => 0.016815756778131
124 => 0.016571620258681
125 => 0.016679842815656
126 => 0.016797333710267
127 => 0.016853663165729
128 => 0.01676187734086
129 => 0.017398779969797
130 => 0.017452554065871
131 => 0.017470584055141
201 => 0.017255824072156
202 => 0.017446581202247
203 => 0.017357332258289
204 => 0.017589533216396
205 => 0.017625945291517
206 => 0.017595105559286
207 => 0.017606663326656
208 => 0.017063179290181
209 => 0.017034996775783
210 => 0.016650726192227
211 => 0.016807319295411
212 => 0.016514575994712
213 => 0.016607407910954
214 => 0.016648327335098
215 => 0.016626953350082
216 => 0.016816172834514
217 => 0.01665529761776
218 => 0.016230721470411
219 => 0.015806029647574
220 => 0.015800697987684
221 => 0.015688884127165
222 => 0.015608063185739
223 => 0.015623632166335
224 => 0.015678499284647
225 => 0.01560487420908
226 => 0.015620585851838
227 => 0.015881503807756
228 => 0.015933829043033
229 => 0.015756007448771
301 => 0.015042028088275
302 => 0.014866815762327
303 => 0.014992754907607
304 => 0.014932564107683
305 => 0.012051744673745
306 => 0.01272855046795
307 => 0.012326415447186
308 => 0.012511737766097
309 => 0.012101262042256
310 => 0.012297162572549
311 => 0.012260986897745
312 => 0.013349270586688
313 => 0.01333227853377
314 => 0.013340411730303
315 => 0.012952193068889
316 => 0.013570635937806
317 => 0.01387530313352
318 => 0.013818917344049
319 => 0.013833108432475
320 => 0.013589258515992
321 => 0.013342772730524
322 => 0.013069382060549
323 => 0.013577308133254
324 => 0.013520835424556
325 => 0.013650363500069
326 => 0.013979789865523
327 => 0.014028299149205
328 => 0.014093496118407
329 => 0.014070127645984
330 => 0.014626859465646
331 => 0.01455943556885
401 => 0.014721907760949
402 => 0.014387690135007
403 => 0.014009491167024
404 => 0.014081374426582
405 => 0.014074451490638
406 => 0.013986314570294
407 => 0.013906748499475
408 => 0.013774293409164
409 => 0.014193400914574
410 => 0.014176385915235
411 => 0.014451838976768
412 => 0.014403149972534
413 => 0.014077992886037
414 => 0.014089605934993
415 => 0.01416770927026
416 => 0.01443802580539
417 => 0.014518274157569
418 => 0.014481099923496
419 => 0.014569088578184
420 => 0.014638631223264
421 => 0.014577822063709
422 => 0.015438751527835
423 => 0.015081233590537
424 => 0.015255485345583
425 => 0.01529704336241
426 => 0.015190593376178
427 => 0.015213678566503
428 => 0.015248646339509
429 => 0.015460963809805
430 => 0.01601814628642
501 => 0.016264918612443
502 => 0.017007345330815
503 => 0.016244427606003
504 => 0.01619915922548
505 => 0.016332892696598
506 => 0.016768775774132
507 => 0.017122018068058
508 => 0.01723920891599
509 => 0.017254697621154
510 => 0.017474555442575
511 => 0.017600573845707
512 => 0.017447858920219
513 => 0.017318449010788
514 => 0.016854918778152
515 => 0.01690857366473
516 => 0.017278202626265
517 => 0.017800325305471
518 => 0.018248360881835
519 => 0.018091474438608
520 => 0.019288407255857
521 => 0.019407078255655
522 => 0.019390681760576
523 => 0.019661031958729
524 => 0.019124441871256
525 => 0.018895039212918
526 => 0.017346428902072
527 => 0.017781525232426
528 => 0.018413963300907
529 => 0.018330257751022
530 => 0.017870964320573
531 => 0.018248012466582
601 => 0.018123348558126
602 => 0.018025020961216
603 => 0.018475478744401
604 => 0.017980181908003
605 => 0.018409022336082
606 => 0.017859030051285
607 => 0.018092191082666
608 => 0.017959837604524
609 => 0.018045486525514
610 => 0.017544784683501
611 => 0.017814951243601
612 => 0.017533544866376
613 => 0.017533411443113
614 => 0.017527199381739
615 => 0.017858272736597
616 => 0.017869069026813
617 => 0.017624405317349
618 => 0.01758914545445
619 => 0.017719519648031
620 => 0.017566885612403
621 => 0.017638302117006
622 => 0.017569048745574
623 => 0.017553458352966
624 => 0.017429231452175
625 => 0.017375711087624
626 => 0.017396697801614
627 => 0.017325059327373
628 => 0.017281894555366
629 => 0.017518612822145
630 => 0.017392143801393
701 => 0.017499229630894
702 => 0.017377191812868
703 => 0.016954155566245
704 => 0.016710862947286
705 => 0.015911786692896
706 => 0.01613840372739
707 => 0.016288651055712
708 => 0.016238994314598
709 => 0.016345676209118
710 => 0.016352225611008
711 => 0.016317542239606
712 => 0.016277383338737
713 => 0.016257836206721
714 => 0.016403524514105
715 => 0.016488101480184
716 => 0.016303730385159
717 => 0.01626053481722
718 => 0.016446944173698
719 => 0.016560653773464
720 => 0.017400221570235
721 => 0.017338023676082
722 => 0.017494128184686
723 => 0.017476553212636
724 => 0.017640175607051
725 => 0.017907629069937
726 => 0.017363821398726
727 => 0.017458207606994
728 => 0.017435066288422
729 => 0.017687717136605
730 => 0.017688505884976
731 => 0.017537029080644
801 => 0.017619147113703
802 => 0.01757331108044
803 => 0.017656142987657
804 => 0.017337192985285
805 => 0.017725639659649
806 => 0.017945863893063
807 => 0.017948921706757
808 => 0.018053306245588
809 => 0.018159366982584
810 => 0.018362941331305
811 => 0.018153689404488
812 => 0.017777265558409
813 => 0.017804442144254
814 => 0.017583744981026
815 => 0.017587454940212
816 => 0.017567650887322
817 => 0.017627084340825
818 => 0.017350235286096
819 => 0.017415211205883
820 => 0.017324244537683
821 => 0.017458009863223
822 => 0.017314100485142
823 => 0.017435055128978
824 => 0.017487255143547
825 => 0.017679874321095
826 => 0.017285650476005
827 => 0.016481801369258
828 => 0.016650780197225
829 => 0.016400847237662
830 => 0.016423979484631
831 => 0.016470710304979
901 => 0.016319240426858
902 => 0.016348136106239
903 => 0.016347103749236
904 => 0.016338207454306
905 => 0.016298804288963
906 => 0.016241661903536
907 => 0.016469299579578
908 => 0.016507979656548
909 => 0.016593960676207
910 => 0.016849781869226
911 => 0.016824219299364
912 => 0.01686591291139
913 => 0.016774895990438
914 => 0.016428201498551
915 => 0.016447028677458
916 => 0.016212253454804
917 => 0.016587956945917
918 => 0.016498985400177
919 => 0.016441624865845
920 => 0.016425973512611
921 => 0.016682428836887
922 => 0.016759164289355
923 => 0.016711347904901
924 => 0.016613275105361
925 => 0.016801603873099
926 => 0.016851992706393
927 => 0.016863272907899
928 => 0.017196955375872
929 => 0.016881922051109
930 => 0.016957753703541
1001 => 0.01754937060872
1002 => 0.017012855713275
1003 => 0.017297059619102
1004 => 0.017283149316838
1005 => 0.017428538418123
1006 => 0.017271223166943
1007 => 0.017273173278022
1008 => 0.017402268950452
1009 => 0.017220977361051
1010 => 0.017176087014006
1011 => 0.017114071321073
1012 => 0.017249480317792
1013 => 0.017330651887303
1014 => 0.01798483512361
1015 => 0.018407467328645
1016 => 0.018389119750011
1017 => 0.018556782273495
1018 => 0.018481248771053
1019 => 0.018237331166936
1020 => 0.01865366877458
1021 => 0.018521922135216
1022 => 0.018532783168093
1023 => 0.018532378919907
1024 => 0.018619978917593
1025 => 0.018557906290811
1026 => 0.018435554771798
1027 => 0.018516777420025
1028 => 0.018757979647631
1029 => 0.019506678763108
1030 => 0.019925660707073
1031 => 0.019481455523992
1101 => 0.019787862311137
1102 => 0.019604127422751
1103 => 0.019570737327892
1104 => 0.019763183433503
1105 => 0.019955966390546
1106 => 0.019943686949606
1107 => 0.019803736422307
1108 => 0.019724681920549
1109 => 0.020323309093061
1110 => 0.020764367396419
1111 => 0.020734290177023
1112 => 0.020867041241804
1113 => 0.021256802473837
1114 => 0.021292437356248
1115 => 0.021287948180122
1116 => 0.021199623405953
1117 => 0.021583393955782
1118 => 0.021903542100249
1119 => 0.021179178772681
1120 => 0.021455006845207
1121 => 0.021578834953589
1122 => 0.021760651354838
1123 => 0.022067406099713
1124 => 0.022400623115325
1125 => 0.022447743654871
1126 => 0.022414309377137
1127 => 0.022194543797987
1128 => 0.022559153832575
1129 => 0.02277273383968
1130 => 0.022899915846219
1201 => 0.023222428253734
1202 => 0.02157959967383
1203 => 0.020416723951096
1204 => 0.020235124114862
1205 => 0.020604414522905
1206 => 0.02070179345847
1207 => 0.020662540131646
1208 => 0.019353617781674
1209 => 0.020228232909577
1210 => 0.021169245247473
1211 => 0.021205393363765
1212 => 0.021676483815755
1213 => 0.021829890177573
1214 => 0.022209179738663
1215 => 0.022185455073347
1216 => 0.022277806045657
1217 => 0.022256576156419
1218 => 0.022959130199497
1219 => 0.023734151639297
1220 => 0.023707315111254
1221 => 0.023595896609646
1222 => 0.023761372084212
1223 => 0.024561277266431
1224 => 0.024487634815472
1225 => 0.02455917218373
1226 => 0.025502305474246
1227 => 0.026728512911064
1228 => 0.026158816447448
1229 => 0.027394893847753
1230 => 0.028172939049597
1231 => 0.029518487774811
]
'min_raw' => 0.012051744673745
'max_raw' => 0.029518487774811
'avg_raw' => 0.020785116224278
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012051'
'max' => '$0.029518'
'avg' => '$0.020785'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0053737913838527
'max_diff' => 0.011975461433043
'year' => 2028
]
3 => [
'items' => [
101 => 0.029350018447447
102 => 0.02987383069208
103 => 0.029048423190855
104 => 0.027153120725666
105 => 0.026853181855623
106 => 0.027453667069111
107 => 0.028929901371979
108 => 0.027407175197441
109 => 0.027715220719347
110 => 0.027626503588315
111 => 0.027621776229426
112 => 0.027802200290668
113 => 0.02754048577955
114 => 0.026474213779717
115 => 0.02696287995366
116 => 0.026774182476223
117 => 0.026983556395768
118 => 0.028113461087179
119 => 0.027613903289543
120 => 0.027087659730513
121 => 0.02774768593633
122 => 0.028588126105947
123 => 0.028535532870549
124 => 0.028433480011609
125 => 0.029008746634139
126 => 0.029958918557254
127 => 0.030215746209972
128 => 0.030405331132598
129 => 0.030431471690365
130 => 0.030700735681628
131 => 0.029252835337346
201 => 0.031550690368439
202 => 0.031947466455344
203 => 0.03187288899569
204 => 0.032313888917395
205 => 0.032184135553341
206 => 0.031996143286506
207 => 0.032695221965782
208 => 0.031893784672733
209 => 0.030756245333398
210 => 0.030132168753862
211 => 0.030954003136617
212 => 0.031455868716097
213 => 0.031787569939488
214 => 0.031887942529267
215 => 0.029365231719429
216 => 0.028005630508882
217 => 0.028877119296983
218 => 0.02994039576541
219 => 0.029246928782878
220 => 0.029274111375687
221 => 0.028285409698514
222 => 0.030027873925334
223 => 0.029774011543917
224 => 0.031091050027783
225 => 0.030776728223714
226 => 0.031850721980167
227 => 0.031567903430643
228 => 0.032741867417546
301 => 0.033210193435728
302 => 0.03399658570938
303 => 0.03457505906707
304 => 0.034914749687138
305 => 0.034894355936457
306 => 0.036240379406361
307 => 0.035446676392637
308 => 0.034449598345961
309 => 0.034431564349838
310 => 0.034947965198916
311 => 0.03603019971093
312 => 0.036310807374024
313 => 0.036467628776492
314 => 0.03622745133962
315 => 0.035365943603429
316 => 0.034993948930886
317 => 0.035310899169616
318 => 0.034923296263493
319 => 0.035592407621629
320 => 0.036511240430823
321 => 0.036321505089183
322 => 0.036955761889573
323 => 0.037612150952215
324 => 0.03855081679207
325 => 0.038796218801304
326 => 0.039201858990765
327 => 0.039619395991581
328 => 0.039753497623305
329 => 0.040009539247559
330 => 0.040008189781814
331 => 0.040779788450093
401 => 0.041630885675627
402 => 0.04195215517532
403 => 0.042690896674961
404 => 0.041425827745416
405 => 0.04238539706054
406 => 0.04325095260236
407 => 0.042219001602736
408 => 0.043641305641972
409 => 0.043696530484805
410 => 0.044530360045634
411 => 0.043685114043319
412 => 0.043183209665265
413 => 0.044632188798595
414 => 0.045333304158799
415 => 0.04512212250644
416 => 0.043515019704661
417 => 0.042579616942143
418 => 0.040131487486918
419 => 0.043031402577955
420 => 0.044443866627116
421 => 0.043511361764
422 => 0.043981662976387
423 => 0.046547473895491
424 => 0.047524368569531
425 => 0.04732118130634
426 => 0.047355516609072
427 => 0.047882631243292
428 => 0.050220147818754
429 => 0.048819453703527
430 => 0.04989023187161
501 => 0.050458168750984
502 => 0.050985700176012
503 => 0.049690249724162
504 => 0.048004887720251
505 => 0.047471062826928
506 => 0.043418642533025
507 => 0.043207696457958
508 => 0.043089286033702
509 => 0.042342725058259
510 => 0.041756132631823
511 => 0.04128965255554
512 => 0.040065469532631
513 => 0.040478595366593
514 => 0.03852750313493
515 => 0.039775742802285
516 => 0.036661752489781
517 => 0.039255176154756
518 => 0.037843693562415
519 => 0.038791466161469
520 => 0.038788159472157
521 => 0.037043009625721
522 => 0.036036443614645
523 => 0.036677866653038
524 => 0.037365523066419
525 => 0.037477093005936
526 => 0.038368657495554
527 => 0.038617473980492
528 => 0.037863548414999
529 => 0.036597221962059
530 => 0.036891360715246
531 => 0.0360304829022
601 => 0.034521827648024
602 => 0.035605370190167
603 => 0.035975339254057
604 => 0.036138738669343
605 => 0.034655149497088
606 => 0.034188973568877
607 => 0.033940785416293
608 => 0.036405709230036
609 => 0.036540743320804
610 => 0.035849889820539
611 => 0.03897261315115
612 => 0.038265844686942
613 => 0.03905547822394
614 => 0.036864670706411
615 => 0.036948362503894
616 => 0.035911199115847
617 => 0.036491941309871
618 => 0.03608149144533
619 => 0.0364450230796
620 => 0.036662922442284
621 => 0.037699915642024
622 => 0.039267016951352
623 => 0.037545023438659
624 => 0.036794726205777
625 => 0.037260206389225
626 => 0.038499841458008
627 => 0.040377952042966
628 => 0.039266072776173
629 => 0.039759505913842
630 => 0.03986729910311
701 => 0.039047440495784
702 => 0.040408181399253
703 => 0.04113741350406
704 => 0.041885454750271
705 => 0.042534958004717
706 => 0.041586670626755
707 => 0.04260147405283
708 => 0.041783721628333
709 => 0.041050113165868
710 => 0.041051225747085
711 => 0.040591022442271
712 => 0.039699320549846
713 => 0.039534877039721
714 => 0.040390332946316
715 => 0.041076327571429
716 => 0.041132829374446
717 => 0.041512631246585
718 => 0.041737394082246
719 => 0.043940375421988
720 => 0.044826432740849
721 => 0.045909886858146
722 => 0.046331953296961
723 => 0.047602221958603
724 => 0.046576376848151
725 => 0.046354428805636
726 => 0.043273172534207
727 => 0.043777728076038
728 => 0.044585570180878
729 => 0.043286493552969
730 => 0.044110458667156
731 => 0.044273126834664
801 => 0.04324235142625
802 => 0.04379293310906
803 => 0.042330751395609
804 => 0.039298888517023
805 => 0.04041155672934
806 => 0.041230855053676
807 => 0.040061615326094
808 => 0.042157432281959
809 => 0.040933099282786
810 => 0.040545044500397
811 => 0.039031104442777
812 => 0.039745625873077
813 => 0.040712026338518
814 => 0.040114903206988
815 => 0.041354023363403
816 => 0.04310894796616
817 => 0.044359611745652
818 => 0.044455622181088
819 => 0.04365152915884
820 => 0.044940093358645
821 => 0.044949479142083
822 => 0.043495973460764
823 => 0.042605709324109
824 => 0.042403439439129
825 => 0.042908749269155
826 => 0.043522288688148
827 => 0.044489669348825
828 => 0.045074237221694
829 => 0.046598480203295
830 => 0.047010896650645
831 => 0.047464017289429
901 => 0.048069526200074
902 => 0.048796594896602
903 => 0.047205809980644
904 => 0.047269014830949
905 => 0.045787697943125
906 => 0.044204698406155
907 => 0.045405997731037
908 => 0.046976536796168
909 => 0.046616253399336
910 => 0.04657571415727
911 => 0.046643889917776
912 => 0.04637224800232
913 => 0.045143621686232
914 => 0.0445266132419
915 => 0.04532271155073
916 => 0.045745802371614
917 => 0.046401979337408
918 => 0.046321091676159
919 => 0.048011333071783
920 => 0.048668109767875
921 => 0.048500078183955
922 => 0.048531000039303
923 => 0.049720062875835
924 => 0.051042545299482
925 => 0.052281224606153
926 => 0.053541262399413
927 => 0.052022237659526
928 => 0.051250970577032
929 => 0.052046721334245
930 => 0.051624484781465
1001 => 0.054050781257236
1002 => 0.054218772760958
1003 => 0.056644893787877
1004 => 0.058947571539542
1005 => 0.057501300900478
1006 => 0.058865068971655
1007 => 0.060340095330274
1008 => 0.063185660490454
1009 => 0.062227374252695
1010 => 0.061493342012831
1011 => 0.060799685092978
1012 => 0.062243075028257
1013 => 0.064099973121277
1014 => 0.064499931185364
1015 => 0.065148016044926
1016 => 0.064466634059143
1017 => 0.065287283609255
1018 => 0.068184537132834
1019 => 0.067401673655998
1020 => 0.066289881667308
1021 => 0.068576985068988
1022 => 0.069404678899166
1023 => 0.075213867665982
1024 => 0.082548208449705
1025 => 0.079511743205366
1026 => 0.077626911242083
1027 => 0.078069891462266
1028 => 0.080748144433379
1029 => 0.0816083142842
1030 => 0.07927007611134
1031 => 0.080095981363394
1101 => 0.084646800503429
1102 => 0.087088168964299
1103 => 0.083772462674909
1104 => 0.074624560525298
1105 => 0.066189776963106
1106 => 0.068427061387054
1107 => 0.068173422764397
1108 => 0.073062710204114
1109 => 0.067383002620986
1110 => 0.067478634330264
1111 => 0.07246902705639
1112 => 0.07113767583405
1113 => 0.068981057360441
1114 => 0.066205522664621
1115 => 0.061074690073512
1116 => 0.056530168563715
1117 => 0.065443021785225
1118 => 0.065058683347342
1119 => 0.064502104333521
1120 => 0.065740710700639
1121 => 0.071755031634814
1122 => 0.071616382070824
1123 => 0.07073436428435
1124 => 0.071403367001642
1125 => 0.068863777949519
1126 => 0.069518287873619
1127 => 0.066188440850296
1128 => 0.067693670771533
1129 => 0.068976430225783
1130 => 0.069233963177802
1201 => 0.069814198068659
1202 => 0.064856154455051
1203 => 0.067082170477048
1204 => 0.068389746340477
1205 => 0.062482071019489
1206 => 0.068272970594005
1207 => 0.06476984594639
1208 => 0.063580832825822
1209 => 0.065181682352099
1210 => 0.064557829734832
1211 => 0.06402147788836
1212 => 0.063722184342335
1213 => 0.064897671555117
1214 => 0.06484283367163
1215 => 0.062919508439281
1216 => 0.060410609078447
1217 => 0.061252678055757
1218 => 0.060946746501862
1219 => 0.059838011084589
1220 => 0.060585164886606
1221 => 0.057295077668408
1222 => 0.051634653613351
1223 => 0.0553741031276
1224 => 0.055230138389039
1225 => 0.055157544839576
1226 => 0.057967637798741
1227 => 0.057697512200592
1228 => 0.057207231594875
1229 => 0.059829006696782
1230 => 0.058872023516735
1231 => 0.061821220184046
]
'min_raw' => 0.026474213779717
'max_raw' => 0.087088168964299
'avg_raw' => 0.056781191372008
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.026474'
'max' => '$0.087088'
'avg' => '$0.056781'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014422469105972
'max_diff' => 0.057569681189489
'year' => 2029
]
4 => [
'items' => [
101 => 0.063763751851219
102 => 0.063271062986108
103 => 0.065098023408154
104 => 0.061272077624254
105 => 0.062542903343363
106 => 0.062804818762784
107 => 0.059796654398992
108 => 0.057741708089149
109 => 0.057604666598385
110 => 0.054041672886162
111 => 0.055944995367751
112 => 0.057619840386714
113 => 0.056817719595855
114 => 0.056563792116146
115 => 0.057861052539828
116 => 0.057961860785033
117 => 0.055663422111195
118 => 0.056141340293573
119 => 0.058134338561374
120 => 0.056091121850731
121 => 0.052121485539507
122 => 0.051136960849808
123 => 0.051005607107812
124 => 0.04833549806571
125 => 0.051202751497262
126 => 0.049951118536775
127 => 0.053905012062088
128 => 0.051646569285585
129 => 0.051549212331383
130 => 0.051402043015945
131 => 0.049103769862592
201 => 0.049606945620298
202 => 0.051279578474744
203 => 0.051876392720768
204 => 0.051814140105353
205 => 0.051271381661255
206 => 0.05151985369759
207 => 0.05071943869516
208 => 0.050436795498604
209 => 0.049544695823138
210 => 0.048233555749028
211 => 0.048415877818022
212 => 0.045818166252748
213 => 0.044402795120998
214 => 0.044011039046022
215 => 0.04348716644995
216 => 0.04407021184972
217 => 0.045810807262268
218 => 0.043711279906818
219 => 0.04011178752062
220 => 0.040328123146267
221 => 0.040814165066472
222 => 0.039908429163659
223 => 0.039051226144298
224 => 0.039796494622553
225 => 0.038271342247251
226 => 0.040998472444526
227 => 0.040924711215384
228 => 0.041941216708328
301 => 0.042576858453858
302 => 0.041111910021869
303 => 0.040743479452866
304 => 0.040953354249206
305 => 0.03748459136759
306 => 0.041657744777071
307 => 0.04169383438105
308 => 0.041384813281146
309 => 0.043606888640038
310 => 0.048296160729985
311 => 0.046531867944214
312 => 0.045848680451532
313 => 0.044549940528536
314 => 0.046280434364382
315 => 0.046147559437698
316 => 0.045546648627914
317 => 0.045183215895201
318 => 0.045852851848681
319 => 0.045100240590032
320 => 0.044965050927605
321 => 0.044145948661096
322 => 0.043853566418732
323 => 0.043637098246557
324 => 0.043398788058716
325 => 0.043924440949894
326 => 0.042733242343088
327 => 0.041296773597919
328 => 0.041177346764565
329 => 0.041507094751569
330 => 0.04136120581417
331 => 0.04117664830446
401 => 0.040824277757177
402 => 0.040719736943004
403 => 0.041059443873075
404 => 0.040675934555169
405 => 0.041241823444572
406 => 0.041087932978715
407 => 0.040228313346134
408 => 0.039156909011987
409 => 0.039147371266066
410 => 0.038916538959729
411 => 0.03862253931174
412 => 0.03854075533547
413 => 0.039733730190037
414 => 0.042203152436257
415 => 0.041718345761058
416 => 0.042068668268876
417 => 0.043791908280411
418 => 0.044339674460442
419 => 0.043950883000409
420 => 0.043418681270302
421 => 0.043442095445457
422 => 0.045260789865652
423 => 0.045374219605783
424 => 0.045660819965275
425 => 0.046029182420473
426 => 0.044013616719373
427 => 0.043347162482192
428 => 0.043031359491143
429 => 0.042058808509848
430 => 0.043107621362955
501 => 0.042496523028093
502 => 0.042578981071558
503 => 0.042525280162578
504 => 0.04255460449012
505 => 0.040997710156057
506 => 0.041564960623432
507 => 0.040621796701383
508 => 0.039359006084877
509 => 0.039354772767939
510 => 0.039663838982335
511 => 0.03947999430425
512 => 0.038985273002603
513 => 0.039055545828483
514 => 0.03843988192923
515 => 0.039130298572807
516 => 0.039150097251716
517 => 0.03888424923669
518 => 0.039947931335257
519 => 0.040383722758923
520 => 0.040208735900416
521 => 0.040371445214451
522 => 0.041738491667183
523 => 0.041961379887397
524 => 0.042060372111647
525 => 0.041927735645109
526 => 0.040396432314084
527 => 0.04046435212842
528 => 0.039966001596331
529 => 0.039544947911601
530 => 0.039561787850854
531 => 0.039778264177953
601 => 0.040723628994562
602 => 0.042713093518817
603 => 0.042788592243232
604 => 0.042880098899678
605 => 0.042507895340354
606 => 0.042395635185354
607 => 0.042543735306604
608 => 0.043290873580839
609 => 0.045212716068233
610 => 0.044533408577644
611 => 0.043981121013744
612 => 0.044465626102942
613 => 0.044391040342137
614 => 0.04376146146048
615 => 0.04374379127815
616 => 0.042535428115707
617 => 0.042088723767649
618 => 0.041715424179172
619 => 0.041307790773787
620 => 0.041066132027079
621 => 0.041437429693958
622 => 0.041522349863438
623 => 0.040710501025634
624 => 0.040599849028926
625 => 0.041262822314851
626 => 0.040971072489851
627 => 0.041271144419911
628 => 0.041340763681655
629 => 0.041329553377046
630 => 0.041024933052492
701 => 0.041219088963454
702 => 0.040759852353366
703 => 0.040260501515004
704 => 0.039941946790785
705 => 0.039663965543752
706 => 0.039818205695971
707 => 0.039268367716449
708 => 0.039092463480748
709 => 0.041153313309466
710 => 0.04267568523581
711 => 0.042653549345075
712 => 0.042518802803118
713 => 0.042318596774107
714 => 0.04327622726281
715 => 0.042942607948972
716 => 0.043185343874616
717 => 0.043247130355287
718 => 0.043434139423381
719 => 0.043500979091252
720 => 0.043298943191811
721 => 0.042620886036683
722 => 0.040931232073842
723 => 0.040144693593006
724 => 0.039885122793496
725 => 0.039894557699063
726 => 0.039634300884249
727 => 0.039710958180104
728 => 0.039607642605114
729 => 0.039411987900805
730 => 0.03980612456932
731 => 0.03985154514873
801 => 0.039759548940716
802 => 0.039781217378014
803 => 0.039019528067754
804 => 0.039077437651711
805 => 0.038754989729445
806 => 0.038694534631188
807 => 0.037879414362452
808 => 0.036435310652815
809 => 0.037235484290493
810 => 0.036268987057618
811 => 0.035902959910705
812 => 0.037635675495289
813 => 0.037461758908646
814 => 0.037164089312037
815 => 0.036723773938871
816 => 0.036560456683851
817 => 0.035568192742311
818 => 0.035509564495123
819 => 0.03600135729793
820 => 0.035774411840992
821 => 0.035455694468484
822 => 0.034301332453125
823 => 0.033003447351732
824 => 0.033042622344728
825 => 0.033455455447471
826 => 0.034655823371823
827 => 0.034186818857202
828 => 0.033846550700639
829 => 0.033782828703337
830 => 0.034580442910599
831 => 0.035709234119217
901 => 0.03623883769902
902 => 0.035714016635735
903 => 0.035111130456605
904 => 0.035147825344823
905 => 0.035391939996538
906 => 0.035417592994838
907 => 0.035025176069926
908 => 0.035135639135693
909 => 0.034967835637838
910 => 0.033938025881239
911 => 0.033919399888305
912 => 0.03366666796611
913 => 0.033659015343948
914 => 0.033229055297362
915 => 0.033168900914671
916 => 0.032315189145465
917 => 0.032877104817234
918 => 0.032500201286509
919 => 0.03193211876315
920 => 0.031834181122
921 => 0.031831236998244
922 => 0.032414530728805
923 => 0.032870288690382
924 => 0.032506757684792
925 => 0.032423988721571
926 => 0.0333077447075
927 => 0.033195278702676
928 => 0.033097883867826
929 => 0.035608163247175
930 => 0.033621081238878
1001 => 0.032754600064584
1002 => 0.031682165071084
1003 => 0.032031355312654
1004 => 0.032104934827225
1005 => 0.029525921988794
1006 => 0.028479616801438
1007 => 0.028120564290316
1008 => 0.027913924493908
1009 => 0.028008092843951
1010 => 0.027066295455972
1011 => 0.027699198876585
1012 => 0.026883681946747
1013 => 0.026746957879538
1014 => 0.02820520317325
1015 => 0.028408109486924
1016 => 0.027542448114738
1017 => 0.028098342853528
1018 => 0.027896767693728
1019 => 0.026897661643834
1020 => 0.026859503141654
1021 => 0.026358186846093
1022 => 0.025573723917503
1023 => 0.025215203309187
1024 => 0.025028482663557
1025 => 0.025105527241057
1026 => 0.02506657114507
1027 => 0.024812356267838
1028 => 0.02508114244426
1029 => 0.024394504833617
1030 => 0.024121080204444
1031 => 0.02399758064285
1101 => 0.023388150242019
1102 => 0.024358025024671
1103 => 0.024549102575014
1104 => 0.024740556607158
1105 => 0.026407033245753
1106 => 0.026323780782303
1107 => 0.027076342506298
1108 => 0.027047099341576
1109 => 0.026832456547201
1110 => 0.025926913904758
1111 => 0.02628784706229
1112 => 0.025176950904874
1113 => 0.026009309839606
1114 => 0.025629455981934
1115 => 0.025880880868229
1116 => 0.025428796252603
1117 => 0.025678998545007
1118 => 0.02459441415071
1119 => 0.02358164450383
1120 => 0.023989212574324
1121 => 0.024432285678013
1122 => 0.025392981059738
1123 => 0.024820798815947
1124 => 0.02502657718742
1125 => 0.024337254089869
1126 => 0.022914983644211
1127 => 0.022923033540475
1128 => 0.022704248218257
1129 => 0.02251518575668
1130 => 0.024886520829658
1201 => 0.024591607828074
1202 => 0.024121702557308
1203 => 0.024750689435521
1204 => 0.024917003549485
1205 => 0.024921738278499
1206 => 0.025380630868343
1207 => 0.025625541925803
1208 => 0.025668708561186
1209 => 0.026390785966335
1210 => 0.02663281678811
1211 => 0.027629707489516
1212 => 0.025604762933676
1213 => 0.0255630605331
1214 => 0.024759540570789
1215 => 0.024249935507543
1216 => 0.024794433665455
1217 => 0.025276784701955
1218 => 0.024774528562041
1219 => 0.024840112610708
1220 => 0.024165874778707
1221 => 0.024406883077809
1222 => 0.024614471892319
1223 => 0.024499853550453
1224 => 0.024328264345089
1225 => 0.025237237417621
1226 => 0.025185949594574
1227 => 0.026032406216916
1228 => 0.026692279684726
1229 => 0.027874890905532
1230 => 0.026640774445703
1231 => 0.026595798336739
]
'min_raw' => 0.02251518575668
'max_raw' => 0.065098023408154
'avg_raw' => 0.043806604582417
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022515'
'max' => '$0.065098'
'avg' => '$0.0438066'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0039590280230364
'max_diff' => -0.021990145556145
'year' => 2030
]
5 => [
'items' => [
101 => 0.027035447016264
102 => 0.026632749480188
103 => 0.026887240422342
104 => 0.027833888480336
105 => 0.027853889662093
106 => 0.027518844097597
107 => 0.027498456544549
108 => 0.027562805710207
109 => 0.027939700783377
110 => 0.027808002063996
111 => 0.027960407156268
112 => 0.028150992057863
113 => 0.028939332017187
114 => 0.029129398112467
115 => 0.028667636038908
116 => 0.028709327984019
117 => 0.028536616292856
118 => 0.028369778963263
119 => 0.028744804915552
120 => 0.029430172214516
121 => 0.029425908580119
122 => 0.029584900471842
123 => 0.029683951103226
124 => 0.029258753283834
125 => 0.028981965138368
126 => 0.029088103325827
127 => 0.029257820598963
128 => 0.029033066301541
129 => 0.027645778661534
130 => 0.028066593111234
131 => 0.027996549010029
201 => 0.027896797692259
202 => 0.028319929875494
203 => 0.028279117744184
204 => 0.027056635962507
205 => 0.027134895279837
206 => 0.027061395170797
207 => 0.027298889059815
208 => 0.026619924030792
209 => 0.02682876910082
210 => 0.026959754770941
211 => 0.027036906336921
212 => 0.027315630696567
213 => 0.027282925609987
214 => 0.027313597702465
215 => 0.027726872347316
216 => 0.02981707368224
217 => 0.029930838729131
218 => 0.02937061803063
219 => 0.029594415149817
220 => 0.029164773620029
221 => 0.029453194857323
222 => 0.029650525342775
223 => 0.028758826823488
224 => 0.028706026224252
225 => 0.028274611411038
226 => 0.028506429295075
227 => 0.028137590373277
228 => 0.028228090543248
301 => 0.027975044178345
302 => 0.028430477254142
303 => 0.028939722200029
304 => 0.029068377584052
305 => 0.028729940658312
306 => 0.028484890019996
307 => 0.028054661823812
308 => 0.028770140902327
309 => 0.028979368788715
310 => 0.028769041917311
311 => 0.028720304585474
312 => 0.028627947429709
313 => 0.02873989859267
314 => 0.028978229288712
315 => 0.028865836933735
316 => 0.028940074064296
317 => 0.028657158675596
318 => 0.029258894042005
319 => 0.030214594619364
320 => 0.030217667352993
321 => 0.03010527439218
322 => 0.030059285614156
323 => 0.030174607612525
324 => 0.030237165065884
325 => 0.030610095262173
326 => 0.031010264220985
327 => 0.032877678144367
328 => 0.032353315787259
329 => 0.034010196513035
330 => 0.035320574048088
331 => 0.035713498974985
401 => 0.035352026530786
402 => 0.034115448825538
403 => 0.034054776423913
404 => 0.035902745585194
405 => 0.035380609654783
406 => 0.035318503247283
407 => 0.034657796001918
408 => 0.035048355814113
409 => 0.034962934654019
410 => 0.034828093173865
411 => 0.035573254088901
412 => 0.036968128800874
413 => 0.036750724495961
414 => 0.036588442267439
415 => 0.0358773687817
416 => 0.036305593844128
417 => 0.036153111101508
418 => 0.036808273731741
419 => 0.03642016990322
420 => 0.035376653961575
421 => 0.035542837314755
422 => 0.035517719035237
423 => 0.036034651447832
424 => 0.035879481168622
425 => 0.035487419547827
426 => 0.036963361270751
427 => 0.036867521824883
428 => 0.037003400247176
429 => 0.037063218130849
430 => 0.037961597848582
501 => 0.038329635273993
502 => 0.038413186212963
503 => 0.038762793302068
504 => 0.038404487670102
505 => 0.039837965665552
506 => 0.040791144886766
507 => 0.04189831160236
508 => 0.043516179752202
509 => 0.044124513142659
510 => 0.044014623160654
511 => 0.04524127232739
512 => 0.047445533613136
513 => 0.044460167388745
514 => 0.047603765272064
515 => 0.046608538476788
516 => 0.044248873648555
517 => 0.044096939052237
518 => 0.045694931470189
519 => 0.049239124852135
520 => 0.048351344607866
521 => 0.049240576942576
522 => 0.048203240189781
523 => 0.048151727676644
524 => 0.049190195811872
525 => 0.051616633213784
526 => 0.050463923757782
527 => 0.048811232096647
528 => 0.050031553900499
529 => 0.048974398218551
530 => 0.04659233058788
531 => 0.048350665739045
601 => 0.047174917097963
602 => 0.047518063057666
603 => 0.049989311821809
604 => 0.049691964632394
605 => 0.050076759429106
606 => 0.049397606684743
607 => 0.048763170928951
608 => 0.047578949476948
609 => 0.047228359886421
610 => 0.047325250236351
611 => 0.047228311872376
612 => 0.046565750853536
613 => 0.046422670864601
614 => 0.046184197947897
615 => 0.046258110676451
616 => 0.045809711825336
617 => 0.046655933101321
618 => 0.04681299922702
619 => 0.047428808502684
620 => 0.047492743864552
621 => 0.049207763931779
622 => 0.048263159698492
623 => 0.048896881771386
624 => 0.048840195704363
625 => 0.044300014740512
626 => 0.044925611618975
627 => 0.045898844038748
628 => 0.045460404152826
629 => 0.044840552733265
630 => 0.044339989477638
701 => 0.043581584960144
702 => 0.044649024754649
703 => 0.046052594574855
704 => 0.047528340711435
705 => 0.049301352999818
706 => 0.04890563729719
707 => 0.047495195479985
708 => 0.047558466869577
709 => 0.047949585703657
710 => 0.04744305127663
711 => 0.047293664385373
712 => 0.04792906223879
713 => 0.047933437874598
714 => 0.047350608799573
715 => 0.046702900939278
716 => 0.046700187019694
717 => 0.04658493366207
718 => 0.048223743506065
719 => 0.049124923217899
720 => 0.049228242019537
721 => 0.049117969039347
722 => 0.049160408732844
723 => 0.048636032114668
724 => 0.049834601564763
725 => 0.050934527418403
726 => 0.050639723793139
727 => 0.050197771250063
728 => 0.049845734762185
729 => 0.050556795184475
730 => 0.050525132783184
731 => 0.050924920525626
801 => 0.050906783844343
802 => 0.050772350263337
803 => 0.050639728594185
804 => 0.051165558521497
805 => 0.051014127947002
806 => 0.050862462158998
807 => 0.050558273202285
808 => 0.050599617533546
809 => 0.050157741299808
810 => 0.0499533091352
811 => 0.046879139880848
812 => 0.046057621404706
813 => 0.046316087840851
814 => 0.046401181702708
815 => 0.046043655809086
816 => 0.046556256099673
817 => 0.046476367887363
818 => 0.04678716618842
819 => 0.046592992903213
820 => 0.046600961842568
821 => 0.047171984072251
822 => 0.047337754254831
823 => 0.047253442202041
824 => 0.047312491473767
825 => 0.048673257017542
826 => 0.04847979967205
827 => 0.048377029313005
828 => 0.048405497404805
829 => 0.048753202176382
830 => 0.048850540528447
831 => 0.048438111090904
901 => 0.048632615197875
902 => 0.049460788999114
903 => 0.04975060295897
904 => 0.050675550000237
905 => 0.050282616057484
906 => 0.05100386331519
907 => 0.053220731494068
908 => 0.054991719190966
909 => 0.053363045715736
910 => 0.056615239087166
911 => 0.059147538126255
912 => 0.05905034427137
913 => 0.058608779360773
914 => 0.055725824229423
915 => 0.053072885935116
916 => 0.055292181468014
917 => 0.05529783890873
918 => 0.055107199454258
919 => 0.053923154175457
920 => 0.055065997245122
921 => 0.055156711977796
922 => 0.055105935850493
923 => 0.054198131111378
924 => 0.052812081065108
925 => 0.053082911926414
926 => 0.053526538402034
927 => 0.052686660933509
928 => 0.052418269192345
929 => 0.052917260502787
930 => 0.054525114473999
1001 => 0.054221158994405
1002 => 0.054213221488452
1003 => 0.055513671927338
1004 => 0.054582830067866
1005 => 0.053086327970896
1006 => 0.052708441454974
1007 => 0.051367198898308
1008 => 0.052293599909539
1009 => 0.052326939432693
1010 => 0.051819559066431
1011 => 0.053127499091285
1012 => 0.053115446193698
1013 => 0.054357140586116
1014 => 0.056730793905302
1015 => 0.056028787818433
1016 => 0.055212431117449
1017 => 0.055301191725962
1018 => 0.0562746765215
1019 => 0.055686085391621
1020 => 0.055897746865729
1021 => 0.056274356146509
1022 => 0.056501573876286
1023 => 0.055268498591329
1024 => 0.054981009757597
1025 => 0.05439290849865
1026 => 0.054239483857621
1027 => 0.054718480061898
1028 => 0.054592281485256
1029 => 0.052324137374869
1030 => 0.052087103695499
1031 => 0.052094373180039
1101 => 0.051498340722926
1102 => 0.050589248161648
1103 => 0.052978289133591
1104 => 0.052786415708937
1105 => 0.052574602297942
1106 => 0.052600548232198
1107 => 0.053637549946008
1108 => 0.053036036582156
1109 => 0.054635258446056
1110 => 0.054306506507848
1111 => 0.053969323322919
1112 => 0.053922714335911
1113 => 0.053792927576831
1114 => 0.05334784048842
1115 => 0.052810371083575
1116 => 0.052455487227695
1117 => 0.048387414180985
1118 => 0.049142424875562
1119 => 0.050010995858283
1120 => 0.050310823080938
1121 => 0.049797947869174
1122 => 0.053368091927791
1123 => 0.054020391650065
1124 => 0.05204453324284
1125 => 0.051674930808615
1126 => 0.053392323001847
1127 => 0.052356525566671
1128 => 0.052822945088308
1129 => 0.051814801200367
1130 => 0.053863271748535
1201 => 0.053847665835085
1202 => 0.053050764525042
1203 => 0.053724300055345
1204 => 0.05360725668206
1205 => 0.052707557065703
1206 => 0.053891793831139
1207 => 0.053892381197799
1208 => 0.053125381013012
1209 => 0.05222969271511
1210 => 0.052069564802659
1211 => 0.051948929930785
1212 => 0.052793276304879
1213 => 0.05355031462369
1214 => 0.054958975249281
1215 => 0.055313145999506
1216 => 0.056695498016114
1217 => 0.055872374695722
1218 => 0.056237254602421
1219 => 0.056633383356556
1220 => 0.056823302048441
1221 => 0.056513839731613
1222 => 0.058661201412196
1223 => 0.058842504531499
1224 => 0.058903293899136
1225 => 0.058179215622437
1226 => 0.058822366604776
1227 => 0.058521457559062
1228 => 0.05930433930107
1229 => 0.059427105154553
1230 => 0.059323126844175
1231 => 0.059362094663798
]
'min_raw' => 0.026619924030792
'max_raw' => 0.059427105154553
'avg_raw' => 0.043023514592673
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.026619'
'max' => '$0.059427'
'avg' => '$0.043023'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0041047382741121
'max_diff' => -0.0056709182536007
'year' => 2031
]
6 => [
'items' => [
101 => 0.057529700289979
102 => 0.057434680975046
103 => 0.056139085873673
104 => 0.056667050454038
105 => 0.055680045977047
106 => 0.055993035263973
107 => 0.056130997959379
108 => 0.056058934076613
109 => 0.05669690077926
110 => 0.056154498754024
111 => 0.054723010630275
112 => 0.053291132498544
113 => 0.053273156434983
114 => 0.052896168197647
115 => 0.052623674750892
116 => 0.052676166655961
117 => 0.052861154976052
118 => 0.052612922893438
119 => 0.05266589579395
120 => 0.053545598899036
121 => 0.053722017083005
122 => 0.053122479162843
123 => 0.050715247900482
124 => 0.050124507310617
125 => 0.050549119931717
126 => 0.050346182447386
127 => 0.040633298593473
128 => 0.042915196581707
129 => 0.041559370283032
130 => 0.04218419742003
131 => 0.040800249858601
201 => 0.041460742173821
202 => 0.041338773360517
203 => 0.045007997799328
204 => 0.044950707906569
205 => 0.044978129546519
206 => 0.043669223225003
207 => 0.045754346535857
208 => 0.046781553257393
209 => 0.046591444631459
210 => 0.046639290876877
211 => 0.045817133858397
212 => 0.044986089823604
213 => 0.044064334092259
214 => 0.045776842308647
215 => 0.045586440628475
216 => 0.046023153578428
217 => 0.047133837569371
218 => 0.047297390006115
219 => 0.047517206139685
220 => 0.047438417703378
221 => 0.049315477903142
222 => 0.049088153527709
223 => 0.049635939866817
224 => 0.048509101806622
225 => 0.047233977581061
226 => 0.047476337009389
227 => 0.047452995847509
228 => 0.047155836067046
229 => 0.046887573504156
301 => 0.046440991919452
302 => 0.047854042135094
303 => 0.047796674876872
304 => 0.04872538410535
305 => 0.048561225728216
306 => 0.047464935909349
307 => 0.0475040901147
308 => 0.047767420962556
309 => 0.048678812033643
310 => 0.048949374955777
311 => 0.048824039430176
312 => 0.04912069932263
313 => 0.049355167205827
314 => 0.049150144878829
315 => 0.052052828675307
316 => 0.050847431988601
317 => 0.051434933946606
318 => 0.051575049701827
319 => 0.051216146141144
320 => 0.051293979472083
321 => 0.051411875760143
322 => 0.052127718934781
323 => 0.054006298555924
324 => 0.054838308682204
325 => 0.057341452197775
326 => 0.054769221823357
327 => 0.054616596317886
328 => 0.055067488052733
329 => 0.056537098281024
330 => 0.057728079337583
331 => 0.05812319646339
401 => 0.058175417714238
402 => 0.058916683709141
403 => 0.059341563553626
404 => 0.058826674520128
405 => 0.058390359975367
406 => 0.056827535433389
407 => 0.057008436629553
408 => 0.058254666480038
409 => 0.06001503954642
410 => 0.061525622772976
411 => 0.060996669176177
412 => 0.065032211736713
413 => 0.065432319297876
414 => 0.06537703736995
415 => 0.06628854193827
416 => 0.064479390994832
417 => 0.063705943915863
418 => 0.058484696132325
419 => 0.05995165378757
420 => 0.062083962890871
421 => 0.0618017437853
422 => 0.060253203917697
423 => 0.061524448066626
424 => 0.06110413499551
425 => 0.060772616637516
426 => 0.062291366503483
427 => 0.060621438639046
428 => 0.062067304082995
429 => 0.060212966695568
430 => 0.060999085391651
501 => 0.060552846399471
502 => 0.060841617716405
503 => 0.059153466498175
504 => 0.060064351917978
505 => 0.059115570669998
506 => 0.059115120824151
507 => 0.059094176425516
508 => 0.060210413356224
509 => 0.06024681380246
510 => 0.059421913024126
511 => 0.059303031934596
512 => 0.05974259763069
513 => 0.059227981323003
514 => 0.059468767054413
515 => 0.059235274477515
516 => 0.059182710380349
517 => 0.058763870711087
518 => 0.058583423065332
519 => 0.058654181236796
520 => 0.058412647119254
521 => 0.058267114076764
522 => 0.059065226240351
523 => 0.058638827107099
524 => 0.058999874457756
525 => 0.058588415433874
526 => 0.057162119192938
527 => 0.056341841141966
528 => 0.053647699760569
529 => 0.054411754914262
530 => 0.054918324271632
531 => 0.054750903102043
601 => 0.055110588557712
602 => 0.055132670323446
603 => 0.055015732915249
604 => 0.054880334377166
605 => 0.054814429856836
606 => 0.055305628156814
607 => 0.055590785302925
608 => 0.054969165283668
609 => 0.054823528410544
610 => 0.055452020570595
611 => 0.055835400425159
612 => 0.058666061868723
613 => 0.058456357326067
614 => 0.058982674575694
615 => 0.058923419330382
616 => 0.059475083656904
617 => 0.060376821680027
618 => 0.058543336149101
619 => 0.05886156584011
620 => 0.058783543268872
621 => 0.059635373243039
622 => 0.059638032563238
623 => 0.059127317941662
624 => 0.059404184623417
625 => 0.059249645237101
626 => 0.059528918795424
627 => 0.058453556594049
628 => 0.059763231677147
629 => 0.060505733055666
630 => 0.060516042688027
701 => 0.060867982448589
702 => 0.061225573628297
703 => 0.061911938758118
704 => 0.061206431277352
705 => 0.059937291999222
706 => 0.060028919755808
707 => 0.0592848238614
708 => 0.059297332247817
709 => 0.059230561500824
710 => 0.059430945538818
711 => 0.058497529621817
712 => 0.058716600471852
713 => 0.058409899998926
714 => 0.05886089913318
715 => 0.05837569861755
716 => 0.058783505644025
717 => 0.058959501637635
718 => 0.059608930642977
719 => 0.058279777425427
720 => 0.055569544039079
721 => 0.056139267955293
722 => 0.055296601532364
723 => 0.055374593518064
724 => 0.055532149741509
725 => 0.055021458472135
726 => 0.0551188822726
727 => 0.055115401608887
728 => 0.055085407129412
729 => 0.054952556606415
730 => 0.054759897064394
731 => 0.055527393382324
801 => 0.055657805962387
802 => 0.055947696973167
803 => 0.056810215986299
804 => 0.056724029997288
805 => 0.056864602921187
806 => 0.056557733017599
807 => 0.055388828332767
808 => 0.055452305480924
809 => 0.05466074442626
810 => 0.055927454977328
811 => 0.055627481199073
812 => 0.055434086152787
813 => 0.055381316522615
814 => 0.05624597355355
815 => 0.056504692489044
816 => 0.056343476210426
817 => 0.05601281691955
818 => 0.056647780508676
819 => 0.056817669978163
820 => 0.056855701965098
821 => 0.057980735702837
822 => 0.056918578853472
823 => 0.057174250564045
824 => 0.059168928265229
825 => 0.057360030836963
826 => 0.058318244147942
827 => 0.058271344592671
828 => 0.058761534098397
829 => 0.058231134745641
830 => 0.058237709681297
831 => 0.058672964754068
901 => 0.058061727503027
902 => 0.05791037656382
903 => 0.057701286325302
904 => 0.058157827211693
905 => 0.058431502825516
906 => 0.060637127280341
907 => 0.062062061266853
908 => 0.062000201124503
909 => 0.062565487028253
910 => 0.062310820551188
911 => 0.061488435319124
912 => 0.062892146631062
913 => 0.062447953638189
914 => 0.062484572368827
915 => 0.062483209417844
916 => 0.062778558926079
917 => 0.062569276731109
918 => 0.062156760042448
919 => 0.062430607871729
920 => 0.063243838022304
921 => 0.065768129362638
922 => 0.067180756239101
923 => 0.065683087450928
924 => 0.066716159326426
925 => 0.066096684322274
926 => 0.065984107286235
927 => 0.066632952767459
928 => 0.067282933966805
929 => 0.067241532974353
930 => 0.066769680000531
1001 => 0.066503142228446
1002 => 0.068521455535383
1003 => 0.070008514398864
1004 => 0.069907106953744
1005 => 0.070354686437037
1006 => 0.071668793643098
1007 => 0.071788939137093
1008 => 0.071773803566362
1009 => 0.071476010423611
1010 => 0.072769919626362
1011 => 0.073849321447464
1012 => 0.071407079915135
1013 => 0.072337053519357
1014 => 0.07275454863217
1015 => 0.073367555322998
1016 => 0.074401800362276
1017 => 0.07552526479488
1018 => 0.07568413498381
1019 => 0.075571408982125
1020 => 0.074830453988478
1021 => 0.076059762176352
1022 => 0.076779862081983
1023 => 0.077208665096594
1024 => 0.078296038195627
1025 => 0.072757126939854
1026 => 0.068836410251267
1027 => 0.068224133724508
1028 => 0.069469222118257
1029 => 0.069797541998294
1030 => 0.069665196666329
1031 => 0.065252073577357
1101 => 0.068200899544762
1102 => 0.071373588341359
1103 => 0.071495464239218
1104 => 0.073083778588589
1105 => 0.073600998847949
1106 => 0.074879800084314
1107 => 0.074799810718799
1108 => 0.075111178469682
1109 => 0.075039600415892
1110 => 0.077408310422887
1111 => 0.080021349317442
1112 => 0.079930868089478
1113 => 0.079555212832313
1114 => 0.080113124947943
1115 => 0.08281006111739
1116 => 0.082561770452429
1117 => 0.08280296368409
1118 => 0.08598280342053
1119 => 0.09011704740483
1120 => 0.088196276002813
1121 => 0.092363797258107
1122 => 0.094987030977506
1123 => 0.099523642447777
1124 => 0.098955636348416
1125 => 0.1007217059026
1126 => 0.097938786884111
1127 => 0.091548642296932
1128 => 0.09053737745552
1129 => 0.092561955277331
1130 => 0.097539182296839
1201 => 0.09240520468604
1202 => 0.093443801670198
1203 => 0.09314468566889
1204 => 0.093128747048341
1205 => 0.093737059367624
1206 => 0.092854670621068
1207 => 0.089259660128895
1208 => 0.090907232251928
1209 => 0.090271025532313
1210 => 0.090976944320079
1211 => 0.094786496874595
1212 => 0.093102202881853
1213 => 0.091327935981433
1214 => 0.093553260415905
1215 => 0.096386863125427
1216 => 0.096209541360339
1217 => 0.09586546302132
1218 => 0.097805014603014
1219 => 0.10100858558068
1220 => 0.10187449794295
1221 => 0.10251369674598
1222 => 0.10260183146157
1223 => 0.10350967380752
1224 => 0.098627976707605
1225 => 0.10637535537605
1226 => 0.10771311365507
1227 => 0.10746167054302
1228 => 0.10894853256868
1229 => 0.10851106004268
1230 => 0.10787723098984
1231 => 0.11023422356514
]
'min_raw' => 0.040633298593473
'max_raw' => 0.11023422356514
'avg_raw' => 0.075433761079305
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.040633'
'max' => '$0.110234'
'avg' => '$0.075433'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014013374562681
'max_diff' => 0.050807118410584
'year' => 2032
]
7 => [
'items' => [
101 => 0.10753212177705
102 => 0.10369682847403
103 => 0.10159271071449
104 => 0.10436358271459
105 => 0.10605565755494
106 => 0.10717401138825
107 => 0.10751242458248
108 => 0.099006928957063
109 => 0.094422938551379
110 => 0.097361223845865
111 => 0.10094613469476
112 => 0.098608062346833
113 => 0.098699710356316
114 => 0.09536623362278
115 => 0.10124107341847
116 => 0.10038515867542
117 => 0.10482564587646
118 => 0.1037658879688
119 => 0.10738693290253
120 => 0.10643339041705
121 => 0.11039149196244
122 => 0.11197048583022
123 => 0.11462186228499
124 => 0.11657222559816
125 => 0.11771751624017
126 => 0.1176487572859
127 => 0.12218696939104
128 => 0.11951094426569
129 => 0.11614922601756
130 => 0.11608842314053
131 => 0.11782950465716
201 => 0.12147833387361
202 => 0.12242442220113
203 => 0.12295315650848
204 => 0.12214338151141
205 => 0.11923874803029
206 => 0.11798454201997
207 => 0.11905316187861
208 => 0.11774633161905
209 => 0.12000228727887
210 => 0.12310019624592
211 => 0.12246049029468
212 => 0.12459893137959
213 => 0.12681199293191
214 => 0.12997677034654
215 => 0.13080416035409
216 => 0.13217180457376
217 => 0.13357955972351
218 => 0.13403169273754
219 => 0.13489495494997
220 => 0.13489040513199
221 => 0.1374919039134
222 => 0.140361437631
223 => 0.14144462017953
224 => 0.14393533872285
225 => 0.1396700705026
226 => 0.14290532544353
227 => 0.14582360638394
228 => 0.14234431154019
301 => 0.14713970891057
302 => 0.14732590332386
303 => 0.15013721790431
304 => 0.14728741199431
305 => 0.14559520634186
306 => 0.15048054065438
307 => 0.15284440004161
308 => 0.15213238635645
309 => 0.14671392705592
310 => 0.14356015133436
311 => 0.13530611195313
312 => 0.14508337814816
313 => 0.149845599305
314 => 0.14670159405359
315 => 0.14828724742654
316 => 0.15693805807949
317 => 0.16023172667763
318 => 0.1595466666337
319 => 0.15966243050407
320 => 0.16143963429532
321 => 0.16932073462968
322 => 0.16459819662685
323 => 0.16820839997989
324 => 0.17012323882079
325 => 0.17190184785134
326 => 0.16753414620746
327 => 0.16185183054306
328 => 0.16005200264476
329 => 0.14638898469291
330 => 0.14567776527304
331 => 0.14527853626051
401 => 0.14276145380858
402 => 0.14078371648827
403 => 0.13921094634249
404 => 0.13508352781102
405 => 0.13647641040375
406 => 0.12989816672378
407 => 0.13410669391158
408 => 0.12360765816112
409 => 0.13235156711464
410 => 0.12759265500799
411 => 0.13078813649707
412 => 0.13077698776319
413 => 0.12489309321346
414 => 0.12149938563092
415 => 0.12366198818759
416 => 0.12598046979594
417 => 0.12635663563659
418 => 0.12936260756038
419 => 0.13020150971116
420 => 0.1276595970297
421 => 0.12339008898152
422 => 0.124381798324
423 => 0.12147928867275
424 => 0.11639275215235
425 => 0.12004599148371
426 => 0.12129336801303
427 => 0.12184428054985
428 => 0.1168422560747
429 => 0.11527051138538
430 => 0.114433727701
501 => 0.12274439043452
502 => 0.12319966729932
503 => 0.12087040648933
504 => 0.13139888622006
505 => 0.12901596699798
506 => 0.13167827159843
507 => 0.12429181109578
508 => 0.12457398383417
509 => 0.12107711505893
510 => 0.12303512791221
511 => 0.12165126753722
512 => 0.12287693982313
513 => 0.12361160273766
514 => 0.12710789771114
515 => 0.13239148918706
516 => 0.12658566783327
517 => 0.12405598832853
518 => 0.12562538726581
519 => 0.12980490344877
520 => 0.13613708441145
521 => 0.13238830583452
522 => 0.13405195010857
523 => 0.13441538237207
524 => 0.13165117183677
525 => 0.13623900479671
526 => 0.13869766175143
527 => 0.1412197350396
528 => 0.14340958060884
529 => 0.14021236350673
530 => 0.14363384410905
531 => 0.14087673471621
601 => 0.1384033225661
602 => 0.13840707371135
603 => 0.1368554661388
604 => 0.13384903095185
605 => 0.13329459817639
606 => 0.1361788274915
607 => 0.13849170626468
608 => 0.13868220603838
609 => 0.13996273456722
610 => 0.14072053816009
611 => 0.14814804355427
612 => 0.15113544766736
613 => 0.15478838886818
614 => 0.15621141533438
615 => 0.16049421481443
616 => 0.15703550640233
617 => 0.15628719308107
618 => 0.1458985224355
619 => 0.14759966667173
620 => 0.15032336272994
621 => 0.1459434351803
622 => 0.14872149109019
623 => 0.14926993817407
624 => 0.14579460691817
625 => 0.14765093150215
626 => 0.14272108376898
627 => 0.13249894639592
628 => 0.13625038495776
629 => 0.13901270645984
630 => 0.13507053308459
701 => 0.14213672627655
702 => 0.13800880208964
703 => 0.1367004482977
704 => 0.13159609369351
705 => 0.13400515258206
706 => 0.13726343922322
707 => 0.13525019689546
708 => 0.13942797701542
709 => 0.14534482783854
710 => 0.14956152808966
711 => 0.14988523397596
712 => 0.14717417821147
713 => 0.15151866237579
714 => 0.15155030719995
715 => 0.14664971131485
716 => 0.14364812362187
717 => 0.14296615658262
718 => 0.14466984395416
719 => 0.14673843494125
720 => 0.15000002637908
721 => 0.15197093777569
722 => 0.1571100294074
723 => 0.15850052025364
724 => 0.16002824812317
725 => 0.1620697636907
726 => 0.16452112656335
727 => 0.15915768415414
728 => 0.15937078371977
729 => 0.15437642041023
730 => 0.14903922694984
731 => 0.15308949149572
801 => 0.15838467360534
802 => 0.15716995297874
803 => 0.15703327209376
804 => 0.15726313143018
805 => 0.15634727174679
806 => 0.15220487234215
807 => 0.15012458529393
808 => 0.15280868632396
809 => 0.15423516656583
810 => 0.15644751301881
811 => 0.15617479462151
812 => 0.16187356149575
813 => 0.16408792998131
814 => 0.16352139976453
815 => 0.16362565495873
816 => 0.16763466332981
817 => 0.17209350515391
818 => 0.17626979891818
819 => 0.18051810431119
820 => 0.17539660634574
821 => 0.17279622552896
822 => 0.17547915476445
823 => 0.17405555474714
824 => 0.18223598271381
825 => 0.1828023777974
826 => 0.19098221422602
827 => 0.19874585303358
828 => 0.19386965059859
829 => 0.19846768986581
830 => 0.20344084421694
831 => 0.2130348658255
901 => 0.20980393686949
902 => 0.2073290959243
903 => 0.20499038318943
904 => 0.20985687313049
905 => 0.21611753469559
906 => 0.21746602123284
907 => 0.2196510845847
908 => 0.21735375764706
909 => 0.22012063490118
910 => 0.22988892743571
911 => 0.22724944856578
912 => 0.22350096425307
913 => 0.23121209305229
914 => 0.23400272058848
915 => 0.2535888061004
916 => 0.27831704812005
917 => 0.26807939354952
918 => 0.26172455099055
919 => 0.26321808973079
920 => 0.27224800661255
921 => 0.27514812931973
922 => 0.26726459606936
923 => 0.27004919328952
924 => 0.2853925977482
925 => 0.29362384196492
926 => 0.28244470671502
927 => 0.25160191593148
928 => 0.22316345425377
929 => 0.23070661489131
930 => 0.22985145456654
1001 => 0.2463360285287
1002 => 0.22718649786766
1003 => 0.22750892685229
1004 => 0.24433438434651
1005 => 0.23984564074842
1006 => 0.23257445099435
1007 => 0.22321654198575
1008 => 0.20591758168154
1009 => 0.1905954101229
1010 => 0.22064571703476
1011 => 0.21934989315778
1012 => 0.21747334815358
1013 => 0.22164939599705
1014 => 0.2419270989331
1015 => 0.2414596322479
1016 => 0.23848584770029
1017 => 0.24074143706992
1018 => 0.23217903527224
1019 => 0.23438576117777
1020 => 0.22315894945614
1021 => 0.22823393722739
1022 => 0.2325588502868
1023 => 0.23342714061491
1024 => 0.23538344306014
1025 => 0.21866705285731
1026 => 0.22617222129095
1027 => 0.23058080460653
1028 => 0.2106626648011
1029 => 0.23018708702428
1030 => 0.21837605769449
1031 => 0.21436721694425
1101 => 0.21976459288984
1102 => 0.21766123023472
1103 => 0.21585288253745
1104 => 0.21484379345102
1105 => 0.21880703065881
1106 => 0.21862214090598
1107 => 0.21213751560283
1108 => 0.20367858624202
1109 => 0.2065176805904
1110 => 0.20548621099698
1111 => 0.20174803212821
1112 => 0.20426711333633
1113 => 0.19317435457362
1114 => 0.17408983967381
1115 => 0.18669765479112
1116 => 0.18621226762377
1117 => 0.18596751340343
1118 => 0.19544193800968
1119 => 0.19453119069596
1120 => 0.19287817540348
1121 => 0.20171767320606
1122 => 0.19849113760009
1123 => 0.20843456007027
1124 => 0.21498394120937
1125 => 0.21332280630221
1126 => 0.21948253091944
1127 => 0.20658308759002
1128 => 0.21086776522822
1129 => 0.21175083135114
1130 => 0.20160859517529
1201 => 0.19468020021988
1202 => 0.19421815526584
1203 => 0.18220527320481
1204 => 0.18862245783722
1205 => 0.19426931475259
1206 => 0.19156490850393
1207 => 0.19070877427744
1208 => 0.19508257836771
1209 => 0.19542246040463
1210 => 0.18767311394392
1211 => 0.18928444846299
1212 => 0.19600398126957
1213 => 0.18911513347681
1214 => 0.17573122750236
1215 => 0.17241183377372
1216 => 0.17196896546176
1217 => 0.16296650640525
1218 => 0.17263365153497
1219 => 0.16841368362246
1220 => 0.18174451169509
1221 => 0.17413001419467
1222 => 0.17380176842633
1223 => 0.1733055768043
1224 => 0.16555678840746
1225 => 0.16725328060518
1226 => 0.17289267905344
1227 => 0.17490487995215
1228 => 0.17469499091294
1229 => 0.17286504292448
1230 => 0.17370278374274
1231 => 0.17100412867886
]
'min_raw' => 0.094422938551379
'max_raw' => 0.29362384196492
'avg_raw' => 0.19402339025815
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.094422'
'max' => '$0.293623'
'avg' => '$0.194023'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.053789639957906
'max_diff' => 0.18338961839979
'year' => 2033
]
8 => [
'items' => [
101 => 0.17005117740815
102 => 0.16704340106791
103 => 0.16262280076717
104 => 0.1632375123521
105 => 0.15447914644335
106 => 0.1497071238546
107 => 0.14838629089628
108 => 0.14662001786301
109 => 0.14858579613526
110 => 0.15445433509316
111 => 0.14737563202994
112 => 0.13523969214134
113 => 0.13596908280728
114 => 0.13760780707562
115 => 0.13455405524282
116 => 0.13166393541504
117 => 0.13417666012246
118 => 0.12903450240639
119 => 0.13822921226866
120 => 0.13798052113476
121 => 0.14140774037437
122 => 0.14355085089851
123 => 0.13861167498063
124 => 0.13736948559423
125 => 0.13807709312308
126 => 0.12638191688642
127 => 0.14045199496675
128 => 0.14057367358627
129 => 0.13953178737278
130 => 0.14702366958563
131 => 0.16283387783141
201 => 0.15688544152519
202 => 0.15458202719499
203 => 0.15020323486948
204 => 0.15603771565626
205 => 0.15558971856391
206 => 0.15356370581447
207 => 0.15233836698207
208 => 0.15459609135171
209 => 0.15205860994754
210 => 0.15160280856202
211 => 0.1488411480826
212 => 0.14785536093899
213 => 0.14712552338317
214 => 0.14632204394658
215 => 0.1480943193691
216 => 0.14407811009942
217 => 0.13923495543404
218 => 0.13883229952727
219 => 0.13994406788773
220 => 0.13945219314965
221 => 0.13882994462027
222 => 0.13764190271838
223 => 0.13728943606458
224 => 0.1384347816969
225 => 0.13714175325581
226 => 0.13904968715554
227 => 0.13853083470561
228 => 0.13563256709764
301 => 0.132020252582
302 => 0.13198809540572
303 => 0.13120982816871
304 => 0.13021858782911
305 => 0.12994284744315
306 => 0.13396504545616
307 => 0.14229087496885
308 => 0.14065631541529
309 => 0.14183745220914
310 => 0.1476474762208
311 => 0.14949430814059
312 => 0.14818347058854
313 => 0.14638911529834
314 => 0.14646805782461
315 => 0.15259991303948
316 => 0.15298234932775
317 => 0.15394864244957
318 => 0.15519060218552
319 => 0.14839498170196
320 => 0.14614798471095
321 => 0.14508323287797
322 => 0.14180420934319
323 => 0.14534035510321
324 => 0.14327999440171
325 => 0.14355800745228
326 => 0.14337695108838
327 => 0.14347582010605
328 => 0.13822664215986
329 => 0.14013916671478
330 => 0.13695922370199
331 => 0.13270163697321
401 => 0.1326873640496
402 => 0.13372940236975
403 => 0.13310955720196
404 => 0.13144156979312
405 => 0.13167849953186
406 => 0.12960274571125
407 => 0.13193053362842
408 => 0.13199728625666
409 => 0.13110096111309
410 => 0.13468723957232
411 => 0.13615654078319
412 => 0.13556656037255
413 => 0.13611514618481
414 => 0.14072423874434
415 => 0.14147572194035
416 => 0.14180948113582
417 => 0.14136228802851
418 => 0.13619939193577
419 => 0.13642838833181
420 => 0.13474816471915
421 => 0.13332855282406
422 => 0.13338532985498
423 => 0.13411519490568
424 => 0.13730255838815
425 => 0.14401017693165
426 => 0.14426472615217
427 => 0.14457324723316
428 => 0.14331833694648
429 => 0.14293984399615
430 => 0.14343917389496
501 => 0.14595820275007
502 => 0.15243782887508
503 => 0.15014749624282
504 => 0.14828542016165
505 => 0.14991896289695
506 => 0.14966749179698
507 => 0.14754482264168
508 => 0.14748524638826
509 => 0.14341116562086
510 => 0.14190507072348
511 => 0.14064646509799
512 => 0.13927210061167
513 => 0.13845733127507
514 => 0.13970918728213
515 => 0.13999550156247
516 => 0.13725829652434
517 => 0.13688522559196
518 => 0.13912048631278
519 => 0.13813683140847
520 => 0.13914854487102
521 => 0.13938327107265
522 => 0.13934547474798
523 => 0.13831842605583
524 => 0.13897303626518
525 => 0.13742468797139
526 => 0.13574109175629
527 => 0.1346670622628
528 => 0.1337298290804
529 => 0.13424986052231
530 => 0.13239604338589
531 => 0.13180296997398
601 => 0.13875126905545
602 => 0.14388405229373
603 => 0.14380941959264
604 => 0.14335511221872
605 => 0.14268010361398
606 => 0.14590882166626
607 => 0.1447840008571
608 => 0.14560240197769
609 => 0.14581071941107
610 => 0.1464412335407
611 => 0.14666658814753
612 => 0.14598541000687
613 => 0.14369929296791
614 => 0.13800250666432
615 => 0.13535063726182
616 => 0.13447547618862
617 => 0.13450728663146
618 => 0.13362981260977
619 => 0.13388826803478
620 => 0.13353993236044
621 => 0.13288026886469
622 => 0.13420912816033
623 => 0.13436226681497
624 => 0.13405209517668
625 => 0.13412515182588
626 => 0.13155706313689
627 => 0.13175230934231
628 => 0.1306651536598
629 => 0.13046132507519
630 => 0.12771309017926
701 => 0.12284419369812
702 => 0.12554203498389
703 => 0.12228342208457
704 => 0.12104933600356
705 => 0.12689130757132
706 => 0.12630493565699
707 => 0.12530132182939
708 => 0.12381676780692
709 => 0.12326613227918
710 => 0.11992064512262
711 => 0.11972297589393
712 => 0.12138108966447
713 => 0.12061592721158
714 => 0.11954134933803
715 => 0.11564933720827
716 => 0.11127342697348
717 => 0.11140550819747
718 => 0.11279740382646
719 => 0.11684452809042
720 => 0.11526324662453
721 => 0.11411600877791
722 => 0.11390116561508
723 => 0.11659037760251
724 => 0.12039617597205
725 => 0.1221817714171
726 => 0.12041230056039
727 => 0.11837962771529
728 => 0.11850334709287
729 => 0.11932639668467
730 => 0.11941288755947
731 => 0.11808982649946
801 => 0.11846226043798
802 => 0.11789649922929
803 => 0.1144244237359
804 => 0.11436162490029
805 => 0.11350952157943
806 => 0.11348372022953
807 => 0.11203407991361
808 => 0.11183126521252
809 => 0.10895291637839
810 => 0.11084745429746
811 => 0.10957669772906
812 => 0.1076613678393
813 => 0.10733116424437
814 => 0.10732123792558
815 => 0.10928785346243
816 => 0.11082447324989
817 => 0.10959880308362
818 => 0.10931974174538
819 => 0.11229938675381
820 => 0.11192019976642
821 => 0.11159182628083
822 => 0.12005540847042
823 => 0.11335582274581
824 => 0.11043442097089
825 => 0.10681863151529
826 => 0.10799595079443
827 => 0.10824402926496
828 => 0.099548707419261
829 => 0.096021016429394
830 => 0.094810445819903
831 => 0.094113745319184
901 => 0.094431240485976
902 => 0.091255904838213
903 => 0.093389782908714
904 => 0.090640210642192
905 => 0.090179235903827
906 => 0.095095811723011
907 => 0.095779924526031
908 => 0.092861286771159
909 => 0.094735524694319
910 => 0.094055899969525
911 => 0.090687344166951
912 => 0.090558690112711
913 => 0.088868467221441
914 => 0.086223595688247
915 => 0.0850148184262
916 => 0.084385276733041
917 => 0.084645037905161
918 => 0.084513694707714
919 => 0.083656591500409
920 => 0.084562822860268
921 => 0.08224777621648
922 => 0.081325905989325
923 => 0.080909518594946
924 => 0.078854781449471
925 => 0.082124781993677
926 => 0.082769013295268
927 => 0.083414513931535
928 => 0.089033156268242
929 => 0.088752464775218
930 => 0.091289779169849
1001 => 0.091191183798295
1002 => 0.090467500631178
1003 => 0.087414400389216
1004 => 0.088631311729383
1005 => 0.08488584777436
1006 => 0.087692204036256
1007 => 0.086411500234566
1008 => 0.087259196792632
1009 => 0.085734961947512
1010 => 0.086578536444916
1011 => 0.08292178443628
1012 => 0.079507160862506
1013 => 0.080881305067669
1014 => 0.082375156971132
1015 => 0.085614208524227
1016 => 0.083685056140799
1017 => 0.084378852287208
1018 => 0.082054751336811
1019 => 0.077259467229525
1020 => 0.077286608016806
1021 => 0.076548958027843
1022 => 0.075911520738718
1023 => 0.083906642498591
1024 => 0.08291232272358
1025 => 0.081328004295454
1026 => 0.083448677469812
1027 => 0.084009417116721
1028 => 0.084025380586162
1029 => 0.085572568991677
1030 => 0.086398303721049
1031 => 0.08654384304604
1101 => 0.088978377431335
1102 => 0.089794401245001
1103 => 0.093155487845479
1104 => 0.086328245898349
1105 => 0.086187643343239
1106 => 0.083478519690333
1107 => 0.08176035064011
1108 => 0.08359616419516
1109 => 0.085222444391393
1110 => 0.083529052749269
1111 => 0.083750173948281
1112 => 0.08147693402391
1113 => 0.082289510330993
1114 => 0.082989410512502
1115 => 0.082602966770503
1116 => 0.082024441784644
1117 => 0.085089107961157
1118 => 0.084916187484954
1119 => 0.087770075084895
1120 => 0.089994884552508
1121 => 0.093982140850735
1122 => 0.089821231043163
1123 => 0.089669590951657
1124 => 0.091151897169968
1125 => 0.089794174311642
1126 => 0.090652208291104
1127 => 0.09384389831149
1128 => 0.093911333692221
1129 => 0.092781704179388
1130 => 0.092712966120872
1201 => 0.092929923825604
1202 => 0.094200651878772
1203 => 0.093756620451466
1204 => 0.094270464860645
1205 => 0.094913035162587
1206 => 0.097570978375585
1207 => 0.098211799485814
1208 => 0.096654936415609
1209 => 0.096795503719392
1210 => 0.096213194194288
1211 => 0.095650690489355
1212 => 0.096915116670976
1213 => 0.099225880370247
1214 => 0.099211505229202
1215 => 0.099747557492605
1216 => 0.10008151361181
1217 => 0.098647929477367
1218 => 0.097714718920196
1219 => 0.098072571229546
1220 => 0.098644784865206
1221 => 0.097887010059604
1222 => 0.093209672923989
1223 => 0.094628478221481
1224 => 0.094392319643944
1225 => 0.094056001111667
1226 => 0.095482620809592
1227 => 0.095345019859466
1228 => 0.09122333718159
1229 => 0.091487193933861
1230 => 0.091239383184617
1231 => 0.092040110412734
]
'min_raw' => 0.075911520738718
'max_raw' => 0.17005117740815
'avg_raw' => 0.12298134907344
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.075911'
'max' => '$0.170051'
'avg' => '$0.122981'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018511417812661
'max_diff' => -0.12357266455677
'year' => 2034
]
9 => [
'items' => [
101 => 0.089750932413561
102 => 0.090455068148258
103 => 0.090896695480197
104 => 0.09115681737145
105 => 0.092096556009907
106 => 0.091986288527107
107 => 0.092089701628354
108 => 0.093483085947383
109 => 0.10053034568128
110 => 0.10091391247969
111 => 0.099025089281337
112 => 0.09977963689369
113 => 0.098331070479396
114 => 0.099303502817863
115 => 0.099968816326738
116 => 0.09696239251256
117 => 0.096784371605813
118 => 0.095329826442644
119 => 0.096111416623682
120 => 0.094867850447328
121 => 0.095172978088907
122 => 0.094319814602502
123 => 0.095855339014875
124 => 0.097572293904279
125 => 0.098006064513945
126 => 0.096865000789902
127 => 0.09603879545393
128 => 0.094588251052921
129 => 0.097000538719289
130 => 0.09770596514607
131 => 0.096996833414579
201 => 0.096832512097558
202 => 0.096521123498725
203 => 0.096898574660829
204 => 0.097702123242252
205 => 0.097323184570465
206 => 0.09757348023922
207 => 0.096619611253698
208 => 0.098648404053367
209 => 0.10187061527482
210 => 0.10188097521078
211 => 0.10150203449637
212 => 0.10134698012043
213 => 0.10173579628946
214 => 0.10194671311108
215 => 0.10320407330502
216 => 0.10455327088856
217 => 0.11084938730992
218 => 0.10908146301312
219 => 0.11466775205979
220 => 0.11908578140686
221 => 0.12041055523104
222 => 0.11919182564822
223 => 0.11502261757988
224 => 0.11481805634179
225 => 0.12104861339013
226 => 0.11928819564638
227 => 0.11907879955737
228 => 0.11685117895051
301 => 0.11816797862534
302 => 0.11787997522017
303 => 0.1174253477555
304 => 0.11993770980602
305 => 0.12464062728448
306 => 0.12390763349178
307 => 0.12336048762813
308 => 0.1209630537254
309 => 0.12240684442109
310 => 0.12189273820835
311 => 0.12410166475817
312 => 0.12279314560377
313 => 0.11927485875055
314 => 0.11983515752835
315 => 0.11975046949525
316 => 0.12149334321539
317 => 0.12097017578539
318 => 0.11964831265801
319 => 0.12462455322381
320 => 0.12430142384077
321 => 0.12475954742826
322 => 0.12496122759941
323 => 0.12799017754062
324 => 0.12923104141594
325 => 0.12951273924002
326 => 0.13069146394973
327 => 0.12948341149545
328 => 0.13431648263935
329 => 0.13753019293252
330 => 0.14126308281406
331 => 0.1467178382372
401 => 0.14876887673561
402 => 0.148398374989
403 => 0.15253410829656
404 => 0.15996592911806
405 => 0.14990055846092
406 => 0.16049941820352
407 => 0.15714394157873
408 => 0.1491881668638
409 => 0.14867590876459
410 => 0.15406365176998
411 => 0.16601314720489
412 => 0.1630199341285
413 => 0.16601804302919
414 => 0.1625205897426
415 => 0.16234691170807
416 => 0.16584817952953
417 => 0.17402908263852
418 => 0.170142642228
419 => 0.16457047690524
420 => 0.16868487706708
421 => 0.16512060287714
422 => 0.15708929554968
423 => 0.16301764527487
424 => 0.15905352664331
425 => 0.16021046720414
426 => 0.16854245494953
427 => 0.1675399281403
428 => 0.16883729066292
429 => 0.16654747976838
430 => 0.16440843532283
501 => 0.1604157500177
502 => 0.15923371273586
503 => 0.15956038531531
504 => 0.15923355085315
505 => 0.1569996801196
506 => 0.15651727594738
507 => 0.15571324785907
508 => 0.15596244978381
509 => 0.15445064175106
510 => 0.15730373586433
511 => 0.15783329527313
512 => 0.15990953924046
513 => 0.16012510177682
514 => 0.16590741167236
515 => 0.16272261254967
516 => 0.1648592507635
517 => 0.16466812973083
518 => 0.1493605926259
519 => 0.15146983617941
520 => 0.1547511572316
521 => 0.15327292654531
522 => 0.15118305420762
523 => 0.14949537024306
524 => 0.14693835646222
525 => 0.15053730425566
526 => 0.1552695378986
527 => 0.16024511903138
528 => 0.16622295374943
529 => 0.16488877063003
530 => 0.16013336756943
531 => 0.1603466914769
601 => 0.16166537593305
602 => 0.15995755974722
603 => 0.15945389141349
604 => 0.16159617963834
605 => 0.16161093239997
606 => 0.1596458834817
607 => 0.15746209120919
608 => 0.15745294103983
609 => 0.15706435629787
610 => 0.16258971810495
611 => 0.16562810842176
612 => 0.16597645497497
613 => 0.16560466192325
614 => 0.16574775031292
615 => 0.16397977793393
616 => 0.16802083851637
617 => 0.17172931532629
618 => 0.17073536432118
619 => 0.16924529046606
620 => 0.16805837486877
621 => 0.17045576472718
622 => 0.17034901273063
623 => 0.17169692501656
624 => 0.17163577592935
625 => 0.17118252372514
626 => 0.17073538050824
627 => 0.17250825282045
628 => 0.17199769406599
629 => 0.17148634227277
630 => 0.17046074796742
701 => 0.17060014326683
702 => 0.16911032669397
703 => 0.168421069378
704 => 0.1580562931053
705 => 0.15528648620641
706 => 0.15615792384142
707 => 0.15644482373773
708 => 0.15523940022573
709 => 0.15696766789405
710 => 0.15669831920863
711 => 0.15774619737988
712 => 0.15709152859207
713 => 0.15711839642747
714 => 0.15904363774235
715 => 0.15960254348662
716 => 0.15931827951416
717 => 0.15951736825647
718 => 0.16410528429293
719 => 0.16345302934584
720 => 0.16310653190512
721 => 0.16320251406421
722 => 0.16437482497755
723 => 0.16470300802748
724 => 0.1633124733839
725 => 0.1639682575604
726 => 0.16676050335252
727 => 0.16773763135234
728 => 0.17085615487971
729 => 0.16953135065795
730 => 0.17196308614318
731 => 0.17943741198506
801 => 0.18540842065157
802 => 0.17991723431948
803 => 0.19088223133215
804 => 0.19942005434191
805 => 0.1990923584743
806 => 0.19760359154915
807 => 0.1878835070423
808 => 0.17893894036081
809 => 0.18642145019624
810 => 0.1864405246526
811 => 0.18579777042183
812 => 0.18180567909695
813 => 0.18565885429708
814 => 0.18596470535179
815 => 0.18579351009352
816 => 0.18273278303469
817 => 0.17805961853277
818 => 0.17897274369047
819 => 0.18046846132603
820 => 0.17763675580252
821 => 0.17673185430868
822 => 0.17841423835029
823 => 0.18383523027101
824 => 0.18281042315007
825 => 0.18278366129457
826 => 0.18716822074382
827 => 0.18402982242531
828 => 0.17898426112294
829 => 0.17771019035131
830 => 0.17318809742895
831 => 0.17631152311756
901 => 0.17642392964757
902 => 0.17471326131855
903 => 0.1791230724298
904 => 0.17908243524408
905 => 0.18326889458045
906 => 0.19127183246927
907 => 0.18890496993489
908 => 0.18615256632132
909 => 0.18645182890999
910 => 0.18973400086468
911 => 0.18774952477618
912 => 0.18846315621386
913 => 0.18973292069803
914 => 0.19049900113781
915 => 0.18634160172401
916 => 0.18537231304926
917 => 0.1833894885948
918 => 0.1828722067058
919 => 0.18448717585097
920 => 0.18406168853892
921 => 0.17641448231398
922 => 0.17561530671482
923 => 0.17563981628949
924 => 0.17363025124667
925 => 0.17056518220551
926 => 0.17862000063993
927 => 0.17797308599253
928 => 0.17725894228903
929 => 0.17734642081786
930 => 0.18084274449711
1001 => 0.17881470019457
1002 => 0.18420658836281
1003 => 0.18309817825041
1004 => 0.18196134160105
1005 => 0.18180419614722
1006 => 0.18136661102755
1007 => 0.17986596883399
1008 => 0.17805385321064
1009 => 0.17685733751334
1010 => 0.16314154521256
1011 => 0.1656871164825
1012 => 0.16861556419243
1013 => 0.16962645260688
1014 => 0.16789725802261
1015 => 0.17993424797574
1016 => 0.1821335220315
1017 => 0.17547177746151
1018 => 0.1742256370497
1019 => 0.18001594473368
1020 => 0.17652368136392
1021 => 0.17809624734549
1022 => 0.17469721984093
1023 => 0.18160378131373
1024 => 0.18155116488696
1025 => 0.17886435648228
1026 => 0.18113522854744
1027 => 0.1807406086427
1028 => 0.17770720857114
1029 => 0.18169994550657
1030 => 0.18170192585428
1031 => 0.17911593118103
1101 => 0.17609605554969
1102 => 0.17555617311309
1103 => 0.17514944422011
1104 => 0.17799621697075
1105 => 0.18054862451734
1106 => 0.18529802216607
1107 => 0.18649213357786
1108 => 0.19115282991459
1109 => 0.18837761217126
1110 => 0.18960783025179
1111 => 0.19094340600319
1112 => 0.19158373013258
1113 => 0.19054035632542
1114 => 0.19778033615551
1115 => 0.19839161228042
1116 => 0.19859656787759
1117 => 0.19615528741417
1118 => 0.19832371585449
1119 => 0.19730917999807
1120 => 0.19994872045031
1121 => 0.20036263409656
1122 => 0.20001206396359
1123 => 0.20014344668809
1124 => 0.19396540112307
1125 => 0.19364503686874
1126 => 0.1892768475289
1127 => 0.19105691697291
1128 => 0.18772916246828
1129 => 0.18878442770137
1130 => 0.18924957856118
1201 => 0.18900661014909
1202 => 0.19115755942848
1203 => 0.18932881313109
1204 => 0.18450245097857
1205 => 0.1796747738869
1206 => 0.17961416633355
1207 => 0.17834312417089
1208 => 0.17742439349028
1209 => 0.17760137361309
1210 => 0.17822507464974
1211 => 0.1773881428522
1212 => 0.17756674468472
1213 => 0.18053272512243
1214 => 0.18112753134681
1215 => 0.17910614739058
1216 => 0.17098999912201
1217 => 0.16899827597909
1218 => 0.17042988707664
1219 => 0.16974566917957
1220 => 0.13699800313421
1221 => 0.14469158151857
1222 => 0.14012031849182
1223 => 0.14222696680824
1224 => 0.13756089098075
1225 => 0.13978778693562
1226 => 0.13937656056597
1227 => 0.15174760693849
1228 => 0.1515544500652
1229 => 0.15164690403881
1230 => 0.1472338349909
1231 => 0.15426397381211
]
'min_raw' => 0.089750932413561
'max_raw' => 0.20036263409656
'avg_raw' => 0.14505678325506
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.08975'
'max' => '$0.200362'
'avg' => '$0.145056'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013839411674843
'max_diff' => 0.030311456688409
'year' => 2035
]
10 => [
'items' => [
101 => 0.15772727299105
102 => 0.15708630848575
103 => 0.15724762544269
104 => 0.15447566565372
105 => 0.15167374266877
106 => 0.14856597886561
107 => 0.15433981988067
108 => 0.15369786732255
109 => 0.15517027552364
110 => 0.15891502414459
111 => 0.15946645260394
112 => 0.16020757804534
113 => 0.1599419373315
114 => 0.16627057684716
115 => 0.1655041368441
116 => 0.16735103673163
117 => 0.16355182353836
118 => 0.15925265318555
119 => 0.16006978491915
120 => 0.15999108856225
121 => 0.15898919361538
122 => 0.1580847276551
123 => 0.15657904666294
124 => 0.161343244121
125 => 0.16114982640465
126 => 0.16428103440887
127 => 0.16372756297919
128 => 0.16003134531437
129 => 0.16016335645137
130 => 0.16105119479009
131 => 0.16412401341755
201 => 0.16503623519963
202 => 0.16461365772442
203 => 0.16561386726396
204 => 0.16640439210218
205 => 0.1657131450125
206 => 0.17549974609124
207 => 0.1714356670039
208 => 0.17341647087339
209 => 0.17388888092469
210 => 0.172678812512
211 => 0.17294123302141
212 => 0.17333872858786
213 => 0.17575224382973
214 => 0.18208600618065
215 => 0.1848911864105
216 => 0.19333070953714
217 => 0.1846582552424
218 => 0.18414366769474
219 => 0.18566388065903
220 => 0.19061877414862
221 => 0.19463424993245
222 => 0.19596641490831
223 => 0.19614248250151
224 => 0.19864171255687
225 => 0.20007422461671
226 => 0.19833824029187
227 => 0.1968671753417
228 => 0.1915980032855
229 => 0.19220792429848
301 => 0.19640967524838
302 => 0.20234489594701
303 => 0.2074379327609
304 => 0.20565452877892
305 => 0.21926064227436
306 => 0.22060963285144
307 => 0.22042324597177
308 => 0.22349644726308
309 => 0.21739676854639
310 => 0.2147890377193
311 => 0.19718523628122
312 => 0.20213118643559
313 => 0.20932041545044
314 => 0.2083688940321
315 => 0.20314788375288
316 => 0.20743397215642
317 => 0.20601685729183
318 => 0.20489912000198
319 => 0.21001969121082
320 => 0.20438941282523
321 => 0.2092642491166
322 => 0.20301222114919
323 => 0.20566267521809
324 => 0.20415814930055
325 => 0.20513176195696
326 => 0.19944004226174
327 => 0.2025111560506
328 => 0.19931227383124
329 => 0.19931075714456
330 => 0.19924014164227
331 => 0.20300361238733
401 => 0.20312633903321
402 => 0.20034512846632
403 => 0.19994431257296
404 => 0.20142633900684
405 => 0.19969127419611
406 => 0.20050310010068
407 => 0.19971586357574
408 => 0.19953864005223
409 => 0.19812649286486
410 => 0.19751810102875
411 => 0.19775666714402
412 => 0.19694231800335
413 => 0.1964516431898
414 => 0.19914253407175
415 => 0.19770489962375
416 => 0.19892219597401
417 => 0.19753493314785
418 => 0.19272607579071
419 => 0.18996045107187
420 => 0.18087696530555
421 => 0.18345303060085
422 => 0.18516096455676
423 => 0.18459649239452
424 => 0.18580919702075
425 => 0.18588364723562
426 => 0.18548938459957
427 => 0.1850328789752
428 => 0.1848106772836
429 => 0.18646678664635
430 => 0.1874282138735
501 => 0.18533237857845
502 => 0.18484135369267
503 => 0.1869603588902
504 => 0.18825295083659
505 => 0.19779672352404
506 => 0.19708969001737
507 => 0.19886420537079
508 => 0.19866442217415
509 => 0.20052439696699
510 => 0.20356466966929
511 => 0.1973829451919
512 => 0.19845587881322
513 => 0.19819282026693
514 => 0.20106482449771
515 => 0.20107379058142
516 => 0.19935188057782
517 => 0.20028535592557
518 => 0.19976431559502
519 => 0.20070590589516
520 => 0.19708024715383
521 => 0.20149590813509
522 => 0.20399930337256
523 => 0.20403406301786
524 => 0.20522065249224
525 => 0.20642629612085
526 => 0.20874042407652
527 => 0.20636175634816
528 => 0.20208276466347
529 => 0.20239169404205
530 => 0.19988292278293
531 => 0.19992509568105
601 => 0.19969997344577
602 => 0.20037558222024
603 => 0.19722850528705
604 => 0.19796711795298
605 => 0.19693305589537
606 => 0.19845363096426
607 => 0.1968177435502
608 => 0.19819269341213
609 => 0.19878607619224
610 => 0.20097567142543
611 => 0.19649433855395
612 => 0.18735659746942
613 => 0.18927746142979
614 => 0.1864363527518
615 => 0.18669930817681
616 => 0.18723051998438
617 => 0.18550868871436
618 => 0.18583715985954
619 => 0.18582542455882
620 => 0.18572429607712
621 => 0.18527638126351
622 => 0.18462681616653
623 => 0.18721448358731
624 => 0.18765417870611
625 => 0.1886315664885
626 => 0.19153960956042
627 => 0.19124902748116
628 => 0.19172297890857
629 => 0.19068834560365
630 => 0.18674730184843
701 => 0.18696131948527
702 => 0.18429251612444
703 => 0.18856331918627
704 => 0.18755193664939
705 => 0.18689989174842
706 => 0.18672197525604
707 => 0.18963722680426
708 => 0.19050951575846
709 => 0.18996596381934
710 => 0.18885112293426
711 => 0.19099194700674
712 => 0.19156474121441
713 => 0.19169296871368
714 => 0.19548609850781
715 => 0.19190496253275
716 => 0.19276697755538
717 => 0.19949217268887
718 => 0.19339334871628
719 => 0.19662403179457
720 => 0.19646590666955
721 => 0.19811861481204
722 => 0.19633033636293
723 => 0.19635250421754
724 => 0.19781999708393
725 => 0.19575916801682
726 => 0.1952488777583
727 => 0.19454391542092
728 => 0.19608317489405
729 => 0.19700589133348
730 => 0.2044423081747
731 => 0.20924657259594
801 => 0.20903800680707
802 => 0.21094390769856
803 => 0.21008528189089
804 => 0.20731255266389
805 => 0.21204526335608
806 => 0.21054763566805
807 => 0.21067109827503
808 => 0.21066650299063
809 => 0.21166229447829
810 => 0.21095668494633
811 => 0.20956585612952
812 => 0.21048915320538
813 => 0.21323101543596
814 => 0.22174183993029
815 => 0.22650461007075
816 => 0.22145511518753
817 => 0.22493818914254
818 => 0.22284958591568
819 => 0.2224700245788
820 => 0.22465765241969
821 => 0.22684910941352
822 => 0.22670952307694
823 => 0.22511863783198
824 => 0.22421998712432
825 => 0.2310248713528
826 => 0.23603859413416
827 => 0.23569669185289
828 => 0.23720573732982
829 => 0.24163634152309
830 => 0.24204142044438
831 => 0.24199038981093
901 => 0.24098635943889
902 => 0.24534886465382
903 => 0.2489881432551
904 => 0.24075395541699
905 => 0.24388942635231
906 => 0.24529704027374
907 => 0.24736383513062
908 => 0.25085086448923
909 => 0.25463870326154
910 => 0.25517434519548
911 => 0.25479428161052
912 => 0.25229610011761
913 => 0.25644079850058
914 => 0.25886866560819
915 => 0.26031440491002
916 => 0.26398055923138
917 => 0.2453057332181
918 => 0.23208676316683
919 => 0.23002243010909
920 => 0.2342203325579
921 => 0.23532728595601
922 => 0.23488107442924
923 => 0.22000192182035
924 => 0.22994409444991
925 => 0.2406410362377
926 => 0.24105194933643
927 => 0.2464070620579
928 => 0.2481509062735
929 => 0.25246247392496
930 => 0.25219278419444
1001 => 0.25324258230555
1002 => 0.25300125189977
1003 => 0.26098752306641
1004 => 0.26979756613595
1005 => 0.26949250235868
1006 => 0.26822595443173
1007 => 0.27010699408176
1008 => 0.27919990267112
1009 => 0.2783627733591
1010 => 0.27917597317922
1011 => 0.28989702485995
1012 => 0.30383591709671
1013 => 0.29735990221083
1014 => 0.3114109910901
1015 => 0.32025540672338
1016 => 0.3355509090315
1017 => 0.33363583681059
1018 => 0.33959026361556
1019 => 0.33020745784752
1020 => 0.3086626392262
1021 => 0.30525308920912
1022 => 0.31207909468687
1023 => 0.32886016308203
1024 => 0.31155059912435
1025 => 0.31505230136896
1026 => 0.31404381088694
1027 => 0.31399007271496
1028 => 0.31604104017044
1029 => 0.31306600490501
1030 => 0.30094517603503
1031 => 0.30650008047765
1101 => 0.30435506510393
1102 => 0.30673511958256
1103 => 0.31957929199458
1104 => 0.3139005772044
1105 => 0.30791851247427
1106 => 0.31542134917228
1107 => 0.32497503854326
1108 => 0.32437718583205
1109 => 0.32321710168927
1110 => 0.32975643526212
1111 => 0.34055749847951
1112 => 0.34347698246498
1113 => 0.34563208585683
1114 => 0.3459292382038
1115 => 0.34899009205671
1116 => 0.33253110945513
1117 => 0.35865193754049
1118 => 0.36316228297752
1119 => 0.36231452497002
1120 => 0.36732758409893
1121 => 0.36585261493417
1122 => 0.36371561603
1123 => 0.37166238105757
1124 => 0.36255205622433
1125 => 0.34962109708155
1126 => 0.34252691715044
1127 => 0.35186910555489
1128 => 0.35757405401604
1129 => 0.36134466204599
1130 => 0.36248564575759
1201 => 0.33380877342177
1202 => 0.31835352972502
1203 => 0.32826016373991
1204 => 0.34034694095743
1205 => 0.33246396679741
1206 => 0.33277296446004
1207 => 0.32153391491701
1208 => 0.3413413474564
1209 => 0.33845557114214
1210 => 0.35342698376537
1211 => 0.34985393598975
1212 => 0.3620625417971
1213 => 0.35884760673309
1214 => 0.37219262243921
1215 => 0.37751631050625
1216 => 0.38645561133671
1217 => 0.3930313974171
1218 => 0.39689282477824
1219 => 0.39666099916333
1220 => 0.41196189812366
1221 => 0.40293949257944
1222 => 0.39160522479819
1223 => 0.39140022365319
1224 => 0.39727040154491
1225 => 0.40957268400131
1226 => 0.41276248685133
1227 => 0.41454515148358
1228 => 0.41181493854429
1229 => 0.40202176396767
1230 => 0.39779312083801
1231 => 0.40139604730007
]
'min_raw' => 0.14856597886561
'max_raw' => 0.41454515148358
'avg_raw' => 0.2815555651746
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.148565'
'max' => '$0.414545'
'avg' => '$0.281555'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.05881504645205
'max_diff' => 0.21418251738702
'year' => 2036
]
11 => [
'items' => [
101 => 0.39698997783997
102 => 0.40459608985284
103 => 0.41504090622436
104 => 0.41288409294692
105 => 0.42009399636589
106 => 0.42755548790055
107 => 0.43822575591168
108 => 0.44101535908867
109 => 0.44562646706112
110 => 0.45037281183484
111 => 0.45189720985858
112 => 0.45480775867883
113 => 0.45479241864986
114 => 0.4635635534222
115 => 0.47323838669553
116 => 0.47689041228331
117 => 0.48528804374854
118 => 0.47090739415244
119 => 0.48181528206407
120 => 0.49165447000251
121 => 0.4799237845202
122 => 0.4960918015584
123 => 0.49671956902247
124 => 0.5061981124102
125 => 0.49658979281755
126 => 0.49088440331427
127 => 0.50735564903207
128 => 0.51532556599553
129 => 0.5129249621448
130 => 0.49465624830831
131 => 0.48402307327347
201 => 0.45619400322102
202 => 0.48915873882451
203 => 0.50521489994245
204 => 0.4946146667299
205 => 0.49996080778357
206 => 0.52912761988032
207 => 0.54023245351554
208 => 0.53792272574806
209 => 0.53831303171941
210 => 0.54430499838198
211 => 0.57087667840014
212 => 0.55495431180654
213 => 0.56712636446765
214 => 0.57358237730951
215 => 0.57957908183453
216 => 0.56485307079901
217 => 0.54569474680986
218 => 0.53962650139077
219 => 0.49356068244467
220 => 0.49116275651482
221 => 0.4898167280258
222 => 0.48133020880203
223 => 0.47466212934541
224 => 0.46935942499158
225 => 0.45544354524558
226 => 0.46013974615492
227 => 0.43796073830962
228 => 0.45215008155327
301 => 0.4167518495013
302 => 0.44623254901833
303 => 0.43018754459414
304 => 0.44096133353597
305 => 0.4409237448013
306 => 0.42108578352649
307 => 0.40964366147087
308 => 0.41693502697877
309 => 0.42475194959254
310 => 0.42602021898734
311 => 0.43615506319866
312 => 0.43898348037029
313 => 0.43041324429408
314 => 0.41601829982211
315 => 0.41936191710922
316 => 0.40957590317327
317 => 0.3924262901641
318 => 0.4047434416308
319 => 0.40894905868845
320 => 0.41080649876983
321 => 0.39394182402168
322 => 0.3886425770659
323 => 0.38582130245164
324 => 0.41384128208964
325 => 0.41537627982574
326 => 0.40752301438106
327 => 0.44302051886821
328 => 0.43498634034087
329 => 0.44396248617744
330 => 0.41905851888655
331 => 0.42000988397471
401 => 0.40821994675542
402 => 0.41482152379433
403 => 0.41015574192199
404 => 0.41428818160764
405 => 0.41676514891654
406 => 0.42855315152313
407 => 0.44636714907276
408 => 0.42679241702895
409 => 0.41826342596214
410 => 0.42355476405112
411 => 0.43764629466647
412 => 0.4589956848809
413 => 0.44635641617744
414 => 0.45196550899933
415 => 0.45319084624975
416 => 0.44387111743897
417 => 0.45933931657568
418 => 0.46762885015646
419 => 0.47613219633307
420 => 0.48351541355986
421 => 0.47273577287754
422 => 0.48427153360842
423 => 0.47497574679522
424 => 0.46663646504301
425 => 0.46664911229112
426 => 0.46141775903049
427 => 0.45128135289509
428 => 0.44941204408335
429 => 0.4591364245897
430 => 0.46693445685353
501 => 0.46757674014083
502 => 0.47189413147945
503 => 0.47444911920098
504 => 0.49949147220933
505 => 0.5095637137505
506 => 0.52187986004927
507 => 0.52667769313261
508 => 0.54111745059511
509 => 0.52945617370438
510 => 0.5269331830962
511 => 0.49190705470085
512 => 0.49764258126338
513 => 0.50682571268601
514 => 0.49205848115565
515 => 0.50142489061351
516 => 0.50327401824817
517 => 0.491556696279
518 => 0.49781542421833
519 => 0.48119409839497
520 => 0.44672944855487
521 => 0.45937768558319
522 => 0.46869104538658
523 => 0.45539973261816
524 => 0.47922389631072
525 => 0.46530631171209
526 => 0.4608951055562
527 => 0.44368541763354
528 => 0.4518077278714
529 => 0.46279326876839
530 => 0.45600548170026
531 => 0.47009115905799
601 => 0.49004023470947
602 => 0.50425713400671
603 => 0.50534853100281
604 => 0.49620801721296
605 => 0.51085574889517
606 => 0.51096244162919
607 => 0.49443974045391
608 => 0.48431967798284
609 => 0.48202037849662
610 => 0.48776447941742
611 => 0.49473887835479
612 => 0.50573556160449
613 => 0.51238062698278
614 => 0.52970743321902
615 => 0.53439557018809
616 => 0.53954641136277
617 => 0.54642952363273
618 => 0.55469446470659
619 => 0.53661124416035
620 => 0.53732972422399
621 => 0.52049087963057
622 => 0.50249615924791
623 => 0.51615190894478
624 => 0.5340049851252
625 => 0.52990946972351
626 => 0.52944864057704
627 => 0.53022362737807
628 => 0.52713574251222
629 => 0.51316935370638
630 => 0.50615552068231
701 => 0.515205154703
702 => 0.52001463243213
703 => 0.52747371295948
704 => 0.52655422384239
705 => 0.54576801423406
706 => 0.5532339121854
707 => 0.55132381600566
708 => 0.55167531967177
709 => 0.5651919712949
710 => 0.58022526781125
711 => 0.59430593381701
712 => 0.60862939205674
713 => 0.59136190409465
714 => 0.5825945386181
715 => 0.59164022185169
716 => 0.58684045500074
717 => 0.61442133902961
718 => 0.61633097959838
719 => 0.64390986921541
720 => 0.67008551949506
721 => 0.6536450625399
722 => 0.66914767295417
723 => 0.68591501006358
724 => 0.71826192375004
725 => 0.70736862119859
726 => 0.69902452216399
727 => 0.69113938889468
728 => 0.70754709949845
729 => 0.72865535707062
730 => 0.73320187357928
731 => 0.7405689672263
801 => 0.73282336906181
802 => 0.74215208890129
803 => 0.77508656918185
804 => 0.76618738188935
805 => 0.75354910531824
806 => 0.77954771443864
807 => 0.78895651001227
808 => 0.85499236477256
809 => 0.93836535921252
810 => 0.90384839205778
811 => 0.88242259668926
812 => 0.88745816682752
813 => 0.91790316204303
814 => 0.9276811282304
815 => 0.90110124546605
816 => 0.91048970940821
817 => 0.96222106878292
818 => 0.98997328334673
819 => 0.95228204834939
820 => 0.84829342584779
821 => 0.75241116679139
822 => 0.77784345952754
823 => 0.77496022678719
824 => 0.8305391188168
825 => 0.76597513921558
826 => 0.76706223104851
827 => 0.82379043570622
828 => 0.80865632327118
829 => 0.78414099935709
830 => 0.75259015578625
831 => 0.69426550334575
901 => 0.64260573217594
902 => 0.74392243997471
903 => 0.73955347930195
904 => 0.73322657680409
905 => 0.74730641367071
906 => 0.8156741048636
907 => 0.81409800829699
908 => 0.8040716860717
909 => 0.81167656311163
910 => 0.78280782764295
911 => 0.79024795810212
912 => 0.75239597855168
913 => 0.76950665414678
914 => 0.78408840048236
915 => 0.78701590194567
916 => 0.79361171222445
917 => 0.73725123555451
918 => 0.76255543492265
919 => 0.77741928136859
920 => 0.71026388237448
921 => 0.77609183505155
922 => 0.73627012504643
923 => 0.72275403856868
924 => 0.74095166840198
925 => 0.73386003435817
926 => 0.72776306384202
927 => 0.72436084953476
928 => 0.73772318048522
929 => 0.73709981177494
930 => 0.71523644482331
1001 => 0.68671657389975
1002 => 0.69628877871455
1003 => 0.69281110696543
1004 => 0.68020757591806
1005 => 0.68870083408785
1006 => 0.65130082344769
1007 => 0.5869560490247
1008 => 0.62946417794227
1009 => 0.62782766121889
1010 => 0.62700245527684
1011 => 0.65894613932001
1012 => 0.65587549116543
1013 => 0.65030223469702
1014 => 0.68010521869242
1015 => 0.66922672862739
1016 => 0.70275167171318
1017 => 0.72483336748686
1018 => 0.71923273517063
1019 => 0.74000067677587
1020 => 0.69650930298035
1021 => 0.71095539278416
1022 => 0.71393271187131
1023 => 0.67973745449611
1024 => 0.65637788717887
1025 => 0.65482007035737
1026 => 0.61431779977594
1027 => 0.63595378579764
1028 => 0.65499255813879
1029 => 0.6458744636558
1030 => 0.6429879473378
1031 => 0.65773453319742
1101 => 0.65888046921468
1102 => 0.63275300658032
1103 => 0.63818573341114
1104 => 0.66084110741134
1105 => 0.63761487611403
1106 => 0.59249010268671
1107 => 0.58129853497793
1108 => 0.57980537354406
1109 => 0.54945295430343
1110 => 0.5820464090468
1111 => 0.56781849260103
1112 => 0.61276431017658
1113 => 0.58709150022668
1114 => 0.58598479670134
1115 => 0.58431185200467
1116 => 0.5581862709216
1117 => 0.5639061128115
1118 => 0.58291973841004
1119 => 0.58970401422742
1120 => 0.58899635867773
1121 => 0.58282656127176
1122 => 0.58565106292974
1123 => 0.57655235896777
1124 => 0.57333941722565
1125 => 0.56319848929828
1126 => 0.54829412674788
1127 => 0.55036666977428
1128 => 0.52083722762334
1129 => 0.5047480202934
1130 => 0.50029473975681
1201 => 0.49433962690789
1202 => 0.50096738559905
1203 => 0.52075357442391
1204 => 0.496887232827
1205 => 0.45597006418831
1206 => 0.45842925574296
1207 => 0.46395432902573
1208 => 0.45365839151531
1209 => 0.44391415073423
1210 => 0.45238597751814
1211 => 0.43504883376442
1212 => 0.46604944001918
1213 => 0.46521096049819
1214 => 0.47676606944533
1215 => 0.48399171620469
1216 => 0.46733893975529
1217 => 0.46315081151216
1218 => 0.46553655969926
1219 => 0.42610545648624
1220 => 0.47354370707556
1221 => 0.47395395503657
1222 => 0.47044116292562
1223 => 0.49570056687276
1224 => 0.54900578780689
1225 => 0.52895021949393
1226 => 0.52118409726039
1227 => 0.50642069321742
1228 => 0.52609205254048
1229 => 0.52458159906548
1230 => 0.51775075562905
1231 => 0.51361944020517
]
'min_raw' => 0.38582130245164
'max_raw' => 0.98997328334673
'avg_raw' => 0.68789729289918
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.385821'
'max' => '$0.989973'
'avg' => '$0.687897'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23725532358603
'max_diff' => 0.57542813186315
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.01211048981583
]
1 => [
'year' => 2028
'avg' => 0.020785116224278
]
2 => [
'year' => 2029
'avg' => 0.056781191372008
]
3 => [
'year' => 2030
'avg' => 0.043806604582417
]
4 => [
'year' => 2031
'avg' => 0.043023514592673
]
5 => [
'year' => 2032
'avg' => 0.075433761079305
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.01211048981583
'min' => '$0.01211'
'max_raw' => 0.075433761079305
'max' => '$0.075433'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.075433761079305
]
1 => [
'year' => 2033
'avg' => 0.19402339025815
]
2 => [
'year' => 2034
'avg' => 0.12298134907344
]
3 => [
'year' => 2035
'avg' => 0.14505678325506
]
4 => [
'year' => 2036
'avg' => 0.2815555651746
]
5 => [
'year' => 2037
'avg' => 0.68789729289918
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.075433761079305
'min' => '$0.075433'
'max_raw' => 0.68789729289918
'max' => '$0.687897'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.68789729289918
]
]
]
]
'prediction_2025_max_price' => '$0.0207067'
'last_price' => 0.02007779
'sma_50day_nextmonth' => '$0.018354'
'sma_200day_nextmonth' => '$0.026189'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.019855'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.020124'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.01867'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.017913'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.017225'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.021893'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.03024'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.019858'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019595'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019047'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018348'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.018785'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.02201'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.029462'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.025133'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.035912'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.081824'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.019961'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.019877'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.020871'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.025351'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.043753'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.10014'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.154647'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.76'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 61.99
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.0192093'
'vwma_10_action' => 'BUY'
'hma_9' => '0.020820'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 86.02
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 52.98
'cci_20_action' => 'NEUTRAL'
'adx_14' => 18.39
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002879'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -13.98
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 60.3
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.004266'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767677541
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de CONX para 2026
A previsão de preço para CONX em 2026 sugere que o preço médio poderia variar entre $0.006936 na extremidade inferior e $0.0207067 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, CONX poderia potencialmente ganhar 3.13% até 2026 se CONX atingir a meta de preço prevista.
Previsão de preço de CONX 2027-2032
A previsão de preço de CONX para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.01211 na extremidade inferior e $0.075433 na extremidade superior. Considerando a volatilidade de preços no mercado, se CONX atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de CONX | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006677 | $0.01211 | $0.017543 |
| 2028 | $0.012051 | $0.020785 | $0.029518 |
| 2029 | $0.026474 | $0.056781 | $0.087088 |
| 2030 | $0.022515 | $0.0438066 | $0.065098 |
| 2031 | $0.026619 | $0.043023 | $0.059427 |
| 2032 | $0.040633 | $0.075433 | $0.110234 |
Previsão de preço de CONX 2032-2037
A previsão de preço de CONX para 2032-2037 é atualmente estimada entre $0.075433 na extremidade inferior e $0.687897 na extremidade superior. Comparado ao preço atual, CONX poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de CONX | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.040633 | $0.075433 | $0.110234 |
| 2033 | $0.094422 | $0.194023 | $0.293623 |
| 2034 | $0.075911 | $0.122981 | $0.170051 |
| 2035 | $0.08975 | $0.145056 | $0.200362 |
| 2036 | $0.148565 | $0.281555 | $0.414545 |
| 2037 | $0.385821 | $0.687897 | $0.989973 |
CONX Histograma de preços potenciais
Previsão de preço de CONX baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para CONX é Altista, com 19 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de CONX foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de CONX
De acordo com nossos indicadores técnicos, o SMA de 200 dias de CONX está projetado para aumentar no próximo mês, alcançando $0.026189 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para CONX é esperado para alcançar $0.018354 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 55.76, sugerindo que o mercado de CONX está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de CONX para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.019855 | BUY |
| SMA 5 | $0.020124 | SELL |
| SMA 10 | $0.01867 | BUY |
| SMA 21 | $0.017913 | BUY |
| SMA 50 | $0.017225 | BUY |
| SMA 100 | $0.021893 | SELL |
| SMA 200 | $0.03024 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.019858 | BUY |
| EMA 5 | $0.019595 | BUY |
| EMA 10 | $0.019047 | BUY |
| EMA 21 | $0.018348 | BUY |
| EMA 50 | $0.018785 | BUY |
| EMA 100 | $0.02201 | SELL |
| EMA 200 | $0.029462 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.025133 | SELL |
| SMA 50 | $0.035912 | SELL |
| SMA 100 | $0.081824 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.025351 | SELL |
| EMA 50 | $0.043753 | SELL |
| EMA 100 | $0.10014 | SELL |
| EMA 200 | $0.154647 | SELL |
Osciladores de CONX
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 55.76 | NEUTRAL |
| Stoch RSI (14) | 61.99 | NEUTRAL |
| Estocástico Rápido (14) | 86.02 | SELL |
| Índice de Canal de Commodities (20) | 52.98 | NEUTRAL |
| Índice Direcional Médio (14) | 18.39 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.002879 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -13.98 | SELL |
| Oscilador Ultimate (7, 14, 28) | 60.3 | NEUTRAL |
| VWMA (10) | 0.0192093 | BUY |
| Média Móvel de Hull (9) | 0.020820 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.004266 | NEUTRAL |
Previsão do preço de CONX com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do CONX
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de CONX por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.028212 | $0.039643 | $0.0557057 | $0.078275 | $0.10999 | $0.154555 |
| Amazon.com stock | $0.041893 | $0.087413 | $0.182393 | $0.380573 | $0.794089 | $1.65 |
| Apple stock | $0.028478 | $0.040395 | $0.057297 | $0.081271 | $0.115277 | $0.163512 |
| Netflix stock | $0.031679 | $0.049985 | $0.078869 | $0.124443 | $0.196351 | $0.309812 |
| Google stock | $0.02600064 | $0.03367 | $0.0436034 | $0.056466 | $0.073123 | $0.094694 |
| Tesla stock | $0.045514 | $0.103178 | $0.233898 | $0.530229 | $1.20 | $2.72 |
| Kodak stock | $0.015056 | $0.01129 | $0.008466 | $0.006349 | $0.004761 | $0.00357 |
| Nokia stock | $0.01330069 | $0.008811 | $0.005837 | $0.003866 | $0.002561 | $0.001696 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para CONX
Você pode fazer perguntas como: 'Devo investir em CONX agora?', 'Devo comprar CONX hoje?', 'CONX será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para CONX regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como CONX, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre CONX para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de CONX é de $0.02007 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para CONX
com base no histórico de preços de 4 horas
Previsão de longo prazo para CONX
com base no histórico de preços de 1 mês
Previsão do preço de CONX com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se CONX tiver 1% da média anterior do crescimento anual do Bitcoin | $0.020599 | $0.021135 | $0.021684 | $0.022248 |
| Se CONX tiver 2% da média anterior do crescimento anual do Bitcoin | $0.021121 | $0.022219 | $0.023374 | $0.024589 |
| Se CONX tiver 5% da média anterior do crescimento anual do Bitcoin | $0.022687 | $0.025635 | $0.028967 | $0.032732 |
| Se CONX tiver 10% da média anterior do crescimento anual do Bitcoin | $0.025296 | $0.031872 | $0.040156 | $0.050594 |
| Se CONX tiver 20% da média anterior do crescimento anual do Bitcoin | $0.030515 | $0.046379 | $0.07049 | $0.107135 |
| Se CONX tiver 50% da média anterior do crescimento anual do Bitcoin | $0.046172 | $0.10618 | $0.244178 | $0.561527 |
| Se CONX tiver 100% da média anterior do crescimento anual do Bitcoin | $0.072266 | $0.26011 | $0.936219 | $3.36 |
Perguntas Frequentes sobre CONX
CONX é um bom investimento?
A decisão de adquirir CONX depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de CONX experimentou uma escalada de 3.0135% nas últimas 24 horas, e CONX registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em CONX dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
CONX pode subir?
Parece que o valor médio de CONX pode potencialmente subir para $0.0207067 até o final deste ano. Observando as perspectivas de CONX em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.065098. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de CONX na próxima semana?
Com base na nossa nova previsão experimental de CONX, o preço de CONX aumentará 0.86% na próxima semana e atingirá $0.020249 até 13 de janeiro de 2026.
Qual será o preço de CONX no próximo mês?
Com base na nossa nova previsão experimental de CONX, o preço de CONX diminuirá -11.62% no próximo mês e atingirá $0.017745 até 5 de fevereiro de 2026.
Até onde o preço de CONX pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de CONX em 2026, espera-se que CONX fluctue dentro do intervalo de $0.006936 e $0.0207067. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de CONX não considera flutuações repentinas e extremas de preço.
Onde estará CONX em 5 anos?
O futuro de CONX parece seguir uma tendência de alta, com um preço máximo de $0.065098 projetada após um período de cinco anos. Com base na previsão de CONX para 2030, o valor de CONX pode potencialmente atingir seu pico mais alto de aproximadamente $0.065098, enquanto seu pico mais baixo está previsto para cerca de $0.022515.
Quanto será CONX em 2026?
Com base na nossa nova simulação experimental de previsão de preços de CONX, espera-se que o valor de CONX em 2026 aumente 3.13% para $0.0207067 se o melhor cenário ocorrer. O preço ficará entre $0.0207067 e $0.006936 durante 2026.
Quanto será CONX em 2027?
De acordo com nossa última simulação experimental para previsão de preços de CONX, o valor de CONX pode diminuir -12.62% para $0.017543 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.017543 e $0.006677 ao longo do ano.
Quanto será CONX em 2028?
Nosso novo modelo experimental de previsão de preços de CONX sugere que o valor de CONX em 2028 pode aumentar 47.02%, alcançando $0.029518 no melhor cenário. O preço é esperado para variar entre $0.029518 e $0.012051 durante o ano.
Quanto será CONX em 2029?
Com base no nosso modelo de previsão experimental, o valor de CONX pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.087088 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.087088 e $0.026474.
Quanto será CONX em 2030?
Usando nossa nova simulação experimental para previsões de preços de CONX, espera-se que o valor de CONX em 2030 aumente 224.23%, alcançando $0.065098 no melhor cenário. O preço está previsto para variar entre $0.065098 e $0.022515 ao longo de 2030.
Quanto será CONX em 2031?
Nossa simulação experimental indica que o preço de CONX poderia aumentar 195.98% em 2031, potencialmente atingindo $0.059427 sob condições ideais. O preço provavelmente oscilará entre $0.059427 e $0.026619 durante o ano.
Quanto será CONX em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de CONX, CONX poderia ver um 449.04% aumento em valor, atingindo $0.110234 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.110234 e $0.040633 ao longo do ano.
Quanto será CONX em 2033?
De acordo com nossa previsão experimental de preços de CONX, espera-se que o valor de CONX seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.293623. Ao longo do ano, o preço de CONX poderia variar entre $0.293623 e $0.094422.
Quanto será CONX em 2034?
Os resultados da nossa nova simulação de previsão de preços de CONX sugerem que CONX pode aumentar 746.96% em 2034, atingindo potencialmente $0.170051 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.170051 e $0.075911.
Quanto será CONX em 2035?
Com base em nossa previsão experimental para o preço de CONX, CONX poderia aumentar 897.93%, com o valor potencialmente atingindo $0.200362 em 2035. A faixa de preço esperada para o ano está entre $0.200362 e $0.08975.
Quanto será CONX em 2036?
Nossa recente simulação de previsão de preços de CONX sugere que o valor de CONX pode aumentar 1964.7% em 2036, possivelmente atingindo $0.414545 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.414545 e $0.148565.
Quanto será CONX em 2037?
De acordo com a simulação experimental, o valor de CONX poderia aumentar 4830.69% em 2037, com um pico de $0.989973 sob condições favoráveis. O preço é esperado para cair entre $0.989973 e $0.385821 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Banana Gun
Previsão de Preço do Dora Factory
Previsão de Preço do Automata
Previsão de Preço do Storm
Previsão de Preço do Adventure Gold
Previsão de Preço do Star Atlas
Previsão de Preço do Radio Caca
Previsão de Preço do CoinEx Token
Previsão de Preço do Blendr Network
Previsão de Preço do Access Protocol
Previsão de Preço do Bancor Network Token
Previsão de Preço do Gitcoin
Previsão de Preço do Wexo
Previsão de Preço do Origin Protocol
Previsão de Preço do Euler
Previsão de Preço do Polkastarter
Previsão de Preço do ArbDoge AI
Previsão de Preço do PhoenixPrevisão de Preço do Opulous
Previsão de Preço do Mainframe
Previsão de Preço do Frontier Token
Previsão de Preço do GamerCoin
Previsão de Preço do BetProtocol
Previsão de Preço do Shrapnel
Previsão de Preço do LeverFi
Como ler e prever os movimentos de preço de CONX?
Traders de CONX utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de CONX
Médias móveis são ferramentas populares para a previsão de preço de CONX. Uma média móvel simples (SMA) calcula o preço médio de fechamento de CONX em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de CONX acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de CONX.
Como ler gráficos de CONX e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de CONX em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de CONX dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de CONX?
A ação de preço de CONX é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de CONX. A capitalização de mercado de CONX pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de CONX, grandes detentores de CONX, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de CONX.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


