Predicción del precio de Torum - Pronóstico de XTM
Predicción de precio de Torum hasta $0.001795 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0006016 | $0.001795 |
| 2027 | $0.000579 | $0.001521 |
| 2028 | $0.001045 | $0.00256 |
| 2029 | $0.002296 | $0.007552 |
| 2030 | $0.001952 | $0.005645 |
| 2031 | $0.0023086 | $0.005153 |
| 2032 | $0.003523 | $0.00956 |
| 2033 | $0.008188 | $0.025464 |
| 2034 | $0.006583 | $0.014747 |
| 2035 | $0.007783 | $0.017376 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Torum hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.99, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Torum para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Torum'
'name_with_ticker' => 'Torum <small>XTM</small>'
'name_lang' => 'Torum'
'name_lang_with_ticker' => 'Torum <small>XTM</small>'
'name_with_lang' => 'Torum'
'name_with_lang_with_ticker' => 'Torum <small>XTM</small>'
'image' => '/uploads/coins/torum.png?1717226849'
'price_for_sd' => 0.001741
'ticker' => 'XTM'
'marketcap' => '$400.8K'
'low24h' => '$0.001714'
'high24h' => '$0.001756'
'volume24h' => '$30.83K'
'current_supply' => '230.56M'
'max_supply' => '797.65M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001741'
'change_24h_pct' => '1.2752%'
'ath_price' => '$2.45'
'ath_days' => 1509
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 nov. 2021'
'ath_pct' => '-99.93%'
'fdv' => '$1.39M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.085856'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001756'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001538'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0006016'
'current_year_max_price_prediction' => '$0.001795'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001952'
'grand_prediction_max_price' => '$0.005645'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.001774266150592
107 => 0.0017808906163397
108 => 0.0017958158759228
109 => 0.0016682811669217
110 => 0.0017255405070409
111 => 0.0017591750048863
112 => 0.0016072131199873
113 => 0.0017561712070165
114 => 0.0016660610713771
115 => 0.0016354763379323
116 => 0.0016766546522835
117 => 0.0016606074231336
118 => 0.0016468109578354
119 => 0.0016391122931457
120 => 0.0016693491025205
121 => 0.0016679385192224
122 => 0.0016184652303733
123 => 0.001553929341859
124 => 0.0015755897043627
125 => 0.0015677202915981
126 => 0.0015392005245648
127 => 0.0015584194040555
128 => 0.0014737891852309
129 => 0.0013281872924393
130 => 0.001424376362724
131 => 0.0014206731881517
201 => 0.0014188058796067
202 => 0.001491089307455
203 => 0.0014841409237298
204 => 0.0014715295392298
205 => 0.0015389689065985
206 => 0.0015143526303214
207 => 0.0015902141934833
208 => 0.0016401815253999
209 => 0.001627508193752
210 => 0.0016745027109327
211 => 0.001576088715367
212 => 0.0016087778970098
213 => 0.0016155150920411
214 => 0.0015381367152735
215 => 0.0014852777652394
216 => 0.0014817526759082
217 => 0.001390102540961
218 => 0.0014390613032758
219 => 0.0014821429880615
220 => 0.0014615102043229
221 => 0.0014549784813782
222 => 0.0014883476373451
223 => 0.0014909407065512
224 => 0.0014318184538505
225 => 0.0014441118423452
226 => 0.001495377315974
227 => 0.0014428200839434
228 => 0.0013407099672831
301 => 0.0013153852465686
302 => 0.001312006461998
303 => 0.0012433238108912
304 => 0.0013170775655016
305 => 0.0012848820751364
306 => 0.0013865872434388
307 => 0.0013284937967602
308 => 0.0013259895043838
309 => 0.0013222038991571
310 => 0.0012630859041048
311 => 0.0012760289878767
312 => 0.0013190537696216
313 => 0.0013344054964571
314 => 0.0013328041855752
315 => 0.001318842924719
316 => 0.0013252343184457
317 => 0.0013046454123427
318 => 0.0012973750410768
319 => 0.0012744277494881
320 => 0.0012407015702039
321 => 0.0012453914022881
322 => 0.0011785710161912
323 => 0.0011421637234194
324 => 0.0011320866646205
325 => 0.0011186112004455
326 => 0.001133608754156
327 => 0.001178381722433
328 => 0.0011243760235758
329 => 0.0010317870409445
330 => 0.0010373517965646
331 => 0.0010498541502521
401 => 0.0010265560968667
402 => 0.0010045064445948
403 => 0.0010236768283004
404 => 0.00098444565578048
405 => 0.001054595050022
406 => 0.0010526977054992
407 => 0.001078845061663
408 => 0.00109519554007
409 => 0.0010575129808721
410 => 0.0010480359191383
411 => 0.0010534344842103
412 => 0.00096420822902236
413 => 0.0010715533730293
414 => 0.0010724816982923
415 => 0.001064532813788
416 => 0.0011216907890622
417 => 0.0012423119449103
418 => 0.0011969294141055
419 => 0.0011793559264836
420 => 0.0011459487136683
421 => 0.0011904618412207
422 => 0.0011870439275376
423 => 0.0011715868256576
424 => 0.0011622383222114
425 => 0.0011794632264517
426 => 0.0011601039659564
427 => 0.0011566265108146
428 => 0.0011355569161635
429 => 0.0011280360294785
430 => 0.0011224678643921
501 => 0.0011163378617485
502 => 0.0011298591200787
503 => 0.0010992181698328
504 => 0.0010622681876056
505 => 0.0010591961963878
506 => 0.0010676782342325
507 => 0.0010639255638996
508 => 0.001059178230046
509 => 0.0010501142768599
510 => 0.0010474251955703
511 => 0.0010561634052047
512 => 0.0010462984759967
513 => 0.0010608547164136
514 => 0.0010568962244537
515 => 0.0010347844101502
516 => 0.0010072249026858
517 => 0.0010069795652613
518 => 0.0010010419145848
519 => 0.00099347942371645
520 => 0.00099137571176323
521 => 0.0010220623520552
522 => 0.0010855827790858
523 => 0.0010731121993447
524 => 0.0010821234712441
525 => 0.0011264500102053
526 => 0.0011405400839956
527 => 0.001130539283361
528 => 0.0011168495706298
529 => 0.0011174518485135
530 => 0.0011642337410738
531 => 0.001167151470329
601 => 0.0011745236308616
602 => 0.0011839989405184
603 => 0.0011321529695679
604 => 0.0011150099079441
605 => 0.0011068865742859
606 => 0.0010818698507444
607 => 0.0011088482423121
608 => 0.0010931290888756
609 => 0.0010952501397169
610 => 0.0010938688025739
611 => 0.0010946231060596
612 => 0.0010545754418367
613 => 0.0010691667058363
614 => 0.0010449058994148
615 => 0.0010124234030197
616 => 0.001012314510302
617 => 0.0010202645552768
618 => 0.0010155355574405
619 => 0.0010028099458567
620 => 0.001004617558919
621 => 0.00098878096643354
622 => 0.0010065404079775
623 => 0.0010070496852146
624 => 0.0010002113328569
625 => 0.001027572202886
626 => 0.0010387819736613
627 => 0.0010342808236477
628 => 0.0010384661609772
629 => 0.0010736304082343
630 => 0.0010793637148608
701 => 0.0010819100709434
702 => 0.0010784982911203
703 => 0.0010391088988651
704 => 0.0010408559859083
705 => 0.0010280370203961
706 => 0.0010172063453677
707 => 0.0010176395155694
708 => 0.0010232078904232
709 => 0.0010475253099907
710 => 0.0010986998858804
711 => 0.0011006419236273
712 => 0.0011029957300298
713 => 0.0010934216164626
714 => 0.0010905339721989
715 => 0.001094343520347
716 => 0.0011135620004198
717 => 0.0011629971489334
718 => 0.0011455234657862
719 => 0.0011313170893933
720 => 0.0011437799115014
721 => 0.0011418613577247
722 => 0.001125666833085
723 => 0.0011252123067159
724 => 0.0010941298362296
725 => 0.0010826393546044
726 => 0.0010730370481107
727 => 0.0010625515800942
728 => 0.001056335443178
729 => 0.001065886254665
730 => 0.001068070638254
731 => 0.0010471876220179
801 => 0.0010443413440703
802 => 0.00106139486592
803 => 0.0010538902467733
804 => 0.0010616089336712
805 => 0.0010633997352412
806 => 0.0010631113749428
807 => 0.0010552756906537
808 => 0.0010602699221561
809 => 0.0010484570758008
810 => 0.0010356123796216
811 => 0.0010274182637121
812 => 0.0010202678107894
813 => 0.0010242352976577
814 => 0.0010100919314066
815 => 0.0010055671838932
816 => 0.0010585779888968
817 => 0.0010977376405152
818 => 0.0010971682436718
819 => 0.0010937021868242
820 => 0.0010885523294127
821 => 0.0011131852562737
822 => 0.0011046036371062
823 => 0.0011108474820688
824 => 0.0011124368026651
825 => 0.0011172471974375
826 => 0.0011189665001012
827 => 0.001113769573319
828 => 0.0010963280522867
829 => 0.0010528654401645
830 => 0.0010326334768965
831 => 0.001025956592028
901 => 0.0010261992841118
902 => 0.0010195047530166
903 => 0.001021476592452
904 => 0.0010188190277312
905 => 0.001013786243084
906 => 0.0010239245373877
907 => 0.0010250928813615
908 => 0.0010227264823274
909 => 0.0010232838549648
910 => 0.0010036910816648
911 => 0.0010051806776655
912 => 0.00099688641784468
913 => 0.00099533134411707
914 => 0.00097436417755387
915 => 0.00093721780274776
916 => 0.0009578005002762
917 => 0.00093293949602709
918 => 0.00092352425701227
919 => 0.00096809453413836
920 => 0.00096362091450195
921 => 0.00095596402232014
922 => 0.00094463788294708
923 => 0.00094043690768002
924 => 0.00091491311182447
925 => 0.00091340502980117
926 => 0.00092605531222764
927 => 0.00092021764215746
928 => 0.00091201934248039
929 => 0.00088232593209836
930 => 0.00084894070767865
1001 => 0.00084994839775184
1002 => 0.00086056761648557
1003 => 0.00089144442715064
1004 => 0.00087938032304955
1005 => 0.00087062767710456
1006 => 0.00086898856962264
1007 => 0.00088950543146288
1008 => 0.00091854108938227
1009 => 0.00093216397044181
1010 => 0.00091866410904485
1011 => 0.00090315619515618
1012 => 0.00090410009001783
1013 => 0.00091037939966004
1014 => 0.00091103926631877
1015 => 0.00090094520861655
1016 => 0.00090378662673345
1017 => 0.00089947025278917
1018 => 0.00087298067386053
1019 => 0.00087250156137707
1020 => 0.00086600059150582
1021 => 0.00086580374472177
1022 => 0.00085474397322784
1023 => 0.00085319663474325
1024 => 0.0008312367871619
1025 => 0.00084569082534049
1026 => 0.00083599581540135
1027 => 0.00082138314860144
1028 => 0.00081886391933728
1029 => 0.00081878818826354
1030 => 0.00083379212973455
1031 => 0.00084551549554867
1101 => 0.00083616446425004
1102 => 0.00083403541568547
1103 => 0.00085676808430985
1104 => 0.00085387514501453
1105 => 0.00085136987824223
1106 => 0.00091594126468147
1107 => 0.00086482797374669
1108 => 0.00084253966145448
1109 => 0.00081495364255716
1110 => 0.00082393578941091
1111 => 0.00082582845972818
1112 => 0.00075948905703378
1113 => 0.0007325751696227
1114 => 0.00072333933769167
1115 => 0.00071802398583987
1116 => 0.00072044625842472
1117 => 0.00069622060307062
1118 => 0.00071250064412393
1119 => 0.00069152327433095
1120 => 0.00068800635001889
1121 => 0.0007255164858062
1122 => 0.00073073580206997
1123 => 0.00070846857737427
1124 => 0.00072276774036513
1125 => 0.00071758266509141
1126 => 0.00069188287112735
1127 => 0.00069090132803281
1128 => 0.00067800607481309
1129 => 0.00065782750053727
1130 => 0.00064860535062979
1201 => 0.0006438023748876
1202 => 0.00064578417628696
1203 => 0.00064478211685532
1204 => 0.00063824300124476
1205 => 0.00064515693130771
1206 => 0.00062749469703002
1207 => 0.00062046145302635
1208 => 0.00061728469987992
1209 => 0.0006016084503582
1210 => 0.00062655633460706
1211 => 0.00063147138208925
1212 => 0.00063639611373331
1213 => 0.00067926254043781
1214 => 0.00067712105489892
1215 => 0.00069647904122475
1216 => 0.00069572682547318
1217 => 0.00069020561419447
1218 => 0.00066691253200474
1219 => 0.0006761967394063
1220 => 0.00064762139211049
1221 => 0.00066903198523925
1222 => 0.00065926108466303
1223 => 0.00066572843392579
1224 => 0.00065409955681397
1225 => 0.00066053545755222
1226 => 0.00063263692218352
1227 => 0.00060658566239921
1228 => 0.0006170694498201
1229 => 0.00062846652571312
1230 => 0.00065317829017012
1231 => 0.00063846016712716
]
'min_raw' => 0.0006016084503582
'max_raw' => 0.0017958158759228
'avg_raw' => 0.0011987121631405
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0006016'
'max' => '$0.001795'
'avg' => '$0.001198'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011396615496418
'max_diff' => 5.4545875922848E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00064375336072726
102 => 0.00062602204823684
103 => 0.00058943728587008
104 => 0.00058964435165199
105 => 0.00058401658300423
106 => 0.0005791533692249
107 => 0.00064015072060891
108 => 0.00063256473573888
109 => 0.00062047746167764
110 => 0.00063665675833779
111 => 0.0006409348211747
112 => 0.00064105661160941
113 => 0.00065286060880457
114 => 0.0006591604042236
115 => 0.00066027077047108
116 => 0.00067884461509989
117 => 0.00068507032282454
118 => 0.0007107131318472
119 => 0.00065862591059652
120 => 0.00065755320855181
121 => 0.00063688443422139
122 => 0.00062377597078065
123 => 0.00063778198192796
124 => 0.00065018939579329
125 => 0.00063726996715572
126 => 0.00063895697179176
127 => 0.00062161369440192
128 => 0.00062781309999174
129 => 0.00063315286323581
130 => 0.00063020455982921
131 => 0.00062579080693003
201 => 0.00064917212934862
202 => 0.00064785286350562
203 => 0.00066962608847609
204 => 0.00068659987435883
205 => 0.00071701993308785
206 => 0.00068527501597059
207 => 0.00068411810501622
208 => 0.00069542709516954
209 => 0.00068506859147707
210 => 0.00069161480824732
211 => 0.00071596523636204
212 => 0.0007164797225372
213 => 0.00070786141622524
214 => 0.00070733699150293
215 => 0.00070899223150408
216 => 0.00071868702389131
217 => 0.00071529936554033
218 => 0.0007192196495491
219 => 0.00072412202473158
220 => 0.00074440032705034
221 => 0.00074928935708752
222 => 0.00073741154876861
223 => 0.00073848398186963
224 => 0.00073404135550523
225 => 0.00072974983410316
226 => 0.00073939654748864
227 => 0.00075702610580722
228 => 0.00075691643323989
301 => 0.00076100614810016
302 => 0.00076355400657708
303 => 0.00075261673284775
304 => 0.00074549696982465
305 => 0.00074822714001
306 => 0.00075259274159174
307 => 0.00074681143425515
308 => 0.00071112652721165
309 => 0.00072195104844796
310 => 0.00072014931882219
311 => 0.00071758343673728
312 => 0.00072846757654394
313 => 0.00072741777470756
314 => 0.00069597213395977
315 => 0.00069798518185531
316 => 0.00069609455406972
317 => 0.00070220355923102
318 => 0.00068473868515031
319 => 0.00069011076278981
320 => 0.00069348007952521
321 => 0.00069546463296667
322 => 0.00070263420081826
323 => 0.00070179293478172
324 => 0.00070258190654023
325 => 0.0007132124829684
326 => 0.00076697829056875
327 => 0.00076990464484887
328 => 0.00075549420610977
329 => 0.0007612508921527
330 => 0.00075019931379911
331 => 0.00075761831238702
401 => 0.00076269420279873
402 => 0.0007397572300658
403 => 0.00073839905140027
404 => 0.00072730185925155
405 => 0.00073326486173519
406 => 0.00072377729602867
407 => 0.00072610521279209
408 => 0.00071959615457744
409 => 0.00073131116342325
410 => 0.0007444103636412
411 => 0.00074771973891934
412 => 0.00073901419733818
413 => 0.00073271081151027
414 => 0.00072164414246084
415 => 0.00074004825972685
416 => 0.00074543018447074
417 => 0.00074001999076733
418 => 0.00073876633067118
419 => 0.00073639064705429
420 => 0.00073927034318108
421 => 0.00074540087335276
422 => 0.00074250982853691
423 => 0.00074441941457143
424 => 0.00073714204176441
425 => 0.00075262035354045
426 => 0.00077720363769939
427 => 0.00077728267697773
428 => 0.00077439161657808
429 => 0.0007732086569513
430 => 0.00077617506036557
501 => 0.00077778421252956
502 => 0.00078737701722593
503 => 0.00079767047885934
504 => 0.00084570557291327
505 => 0.00083221751071846
506 => 0.00087483710378365
507 => 0.00090854366843668
508 => 0.00091865079336669
509 => 0.00090935271400806
510 => 0.00087754448679456
511 => 0.0008759838234183
512 => 0.00092351874396241
513 => 0.00091008795167141
514 => 0.00090849040166482
515 => 0.00089149516869807
516 => 0.00090154145628197
517 => 0.00089934418581722
518 => 0.00089587568689447
519 => 0.0009150433037741
520 => 0.00095092337146781
521 => 0.0009453311264366
522 => 0.00094115677493759
523 => 0.00092286598180435
524 => 0.00093388112466711
525 => 0.00092995884327484
526 => 0.00094681145327728
527 => 0.00093682834044286
528 => 0.00090998620021026
529 => 0.00091426089951515
530 => 0.00091361478731471
531 => 0.00092691173061563
601 => 0.00092292031828712
602 => 0.00091283539999769
603 => 0.00095080073729709
604 => 0.00094833547946717
605 => 0.0009518306514336
606 => 0.00095336933422501
607 => 0.00097647816601487
608 => 0.00098594511499903
609 => 0.00098809427816071
610 => 0.00099708714749556
611 => 0.00098787052737934
612 => 0.001024743579183
613 => 0.0010492620070302
614 => 0.0010777414226814
615 => 0.0011193575034932
616 => 0.0011350055348487
617 => 0.0011321788580445
618 => 0.0011637316955582
619 => 0.0012204314431902
620 => 0.0011436394981487
621 => 0.0012245016027428
622 => 0.0011989015940262
623 => 0.0011382044338836
624 => 0.001134296252343
625 => 0.0011754010739
626 => 0.0012665676119212
627 => 0.0012437314281492
628 => 0.001266604963737
629 => 0.0012399217694744
630 => 0.0012385967239757
701 => 0.0012653090205496
702 => 0.0013277237575062
703 => 0.0012980728555596
704 => 0.0012555610169196
705 => 0.0012869510970139
706 => 0.0012597581046215
707 => 0.0011984846819221
708 => 0.0012437139657498
709 => 0.00121347043171
710 => 0.0012222971027775
711 => 0.001285864512943
712 => 0.0012782159139734
713 => 0.0012881139092813
714 => 0.0012706442066385
715 => 0.0012543247496509
716 => 0.0012238632712848
717 => 0.0012148451292733
718 => 0.0012173374192865
719 => 0.0012148438942182
720 => 0.0011978009770278
721 => 0.0011941205606832
722 => 0.0011879863721994
723 => 0.0011898876137096
724 => 0.0011783535447401
725 => 0.0012001207159459
726 => 0.0012041608947333
727 => 0.0012200012267055
728 => 0.0012216458225191
729 => 0.0012657609215886
730 => 0.0012414630663452
731 => 0.0012577641654184
801 => 0.0012563060416854
802 => 0.0011395199253938
803 => 0.0011556120218062
804 => 0.0011806462738457
805 => 0.001169368377235
806 => 0.0011534240700489
807 => 0.0011405481871164
808 => 0.0011210399078471
809 => 0.0011484974362953
810 => 0.0011846011664222
811 => 0.0012225614726954
812 => 0.0012681682934248
813 => 0.0012579893819599
814 => 0.0012217088849053
815 => 0.0012233364015002
816 => 0.001233397068686
817 => 0.0012203675905724
818 => 0.0012165249431111
819 => 0.0012328691479327
820 => 0.0012329817014887
821 => 0.0012179897122539
822 => 0.0012013288597246
823 => 0.0012012590501441
824 => 0.0011982944123613
825 => 0.00124044917195
826 => 0.0012636300273969
827 => 0.0012662876751161
828 => 0.0012634511465304
829 => 0.0012645428138052
830 => 0.001251054384776
831 => 0.0012818849336675
901 => 0.0013101780941556
902 => 0.0013025949227496
903 => 0.0012912266708006
904 => 0.001282171310554
905 => 0.001300461767659
906 => 0.0012996473223959
907 => 0.0013099309780811
908 => 0.001309464452058
909 => 0.0013060064454389
910 => 0.0013025950462459
911 => 0.0013161208584392
912 => 0.0013122256417454
913 => 0.0013083243747042
914 => 0.001300499786399
915 => 0.0013015632779023
916 => 0.0012901969888423
917 => 0.0012849384234372
918 => 0.0012058622168064
919 => 0.0011847304705051
920 => 0.0011913789480678
921 => 0.0011935677995091
922 => 0.0011843712364377
923 => 0.0011975567454789
924 => 0.0011955017978617
925 => 0.001203496396936
926 => 0.0011985017185195
927 => 0.001198706701864
928 => 0.001213394986109
929 => 0.0012176590575137
930 => 0.001215490316382
1001 => 0.0012170092283306
1002 => 0.0012520119130927
1003 => 0.0012470356506424
1004 => 0.0012443921103962
1005 => 0.0012451243891107
1006 => 0.0012540683255334
1007 => 0.001256572139411
1008 => 0.0012459633040719
1009 => 0.0012509664921468
1010 => 0.0012722694319704
1011 => 0.0012797242552666
1012 => 0.0013035164727102
1013 => 0.0012934091158672
1014 => 0.0013119616067886
1015 => 0.0013689856388708
1016 => 0.0014145403814609
1017 => 0.0013726463575457
1018 => 0.0014563018409509
1019 => 0.0015214396344483
1020 => 0.0015189395374412
1021 => 0.0015075812564806
1022 => 0.0014334236103617
1023 => 0.0013651826387749
1024 => 0.001422269109172
1025 => 0.0014224146343249
1026 => 0.0014175108558904
1027 => 0.0013870539091903
1028 => 0.0014164510201644
1029 => 0.001418784456079
1030 => 0.0014174783524775
1031 => 0.0013941270828527
1101 => 0.0013584740101716
1102 => 0.0013654405352321
1103 => 0.0013768518453944
1104 => 0.0013552478546085
1105 => 0.0013483440705204
1106 => 0.0013611795186388
1107 => 0.0014025380068481
1108 => 0.0013947194242256
1109 => 0.0013945152494359
1110 => 0.0014279664614903
1111 => 0.0014040226128827
1112 => 0.001365528405423
1113 => 0.0013558081103632
1114 => 0.0013213076112763
1115 => 0.0013451372288822
1116 => 0.0013459948143968
1117 => 0.0013329435763668
1118 => 0.0013665874414597
1119 => 0.00136627740732
1120 => 0.0013982172499972
1121 => 0.0014592742331389
1122 => 0.0014412166787922
1123 => 0.0014202177077434
1124 => 0.0014225008781347
1125 => 0.0014475416219828
1126 => 0.0014324014166276
1127 => 0.0014378459400346
1128 => 0.0014475333810445
1129 => 0.0014533780547314
1130 => 0.0014216599195356
1201 => 0.0014142649049676
1202 => 0.001399137300459
1203 => 0.0013951907908128
1204 => 0.0014075119090373
1205 => 0.0014042657296967
1206 => 0.001345922737655
1207 => 0.0013398255703693
1208 => 0.0013400125617852
1209 => 0.0013246809447408
1210 => 0.0013012965487384
1211 => 0.001362749345223
1212 => 0.0013578138256339
1213 => 0.0013523653939865
1214 => 0.001353032795775
1215 => 0.0013797073719004
1216 => 0.0013642347706493
1217 => 0.0014053712169849
1218 => 0.0013969148002931
1219 => 0.0013882415084221
1220 => 0.0013870425952906
1221 => 0.0013837041178907
1222 => 0.0013722552366939
1223 => 0.0013584300246777
1224 => 0.0013493014221852
1225 => 0.0012446592381626
1226 => 0.0012640802188416
1227 => 0.0012864222868347
1228 => 0.0012941346791757
1229 => 0.0012809420983951
1230 => 0.0013727761601929
1231 => 0.0013895551282184
]
'min_raw' => 0.0005791533692249
'max_raw' => 0.0015214396344483
'avg_raw' => 0.0010502965018366
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000579'
'max' => '$0.001521'
'avg' => '$0.00105'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.2455081133296E-5
'max_diff' => -0.00027437624147456
'year' => 2027
]
2 => [
'items' => [
101 => 0.0013387305396042
102 => 0.0013292233342287
103 => 0.0013733994509945
104 => 0.0013467558522741
105 => 0.0013587534631465
106 => 0.0013328211907827
107 => 0.0013855135661666
108 => 0.00138511213855
109 => 0.0013646136144144
110 => 0.001381938826646
111 => 0.0013789281446682
112 => 0.0013557853614047
113 => 0.001386247233675
114 => 0.0013862623423836
115 => 0.0013665329585795
116 => 0.0013434933576137
117 => 0.0013393744211321
118 => 0.0013362713557944
119 => 0.0013579902992948
120 => 0.0013774634361239
121 => 0.0014136981159627
122 => 0.001422808375389
123 => 0.0014583663244339
124 => 0.0014371932970628
125 => 0.0014465790258598
126 => 0.0014567685621613
127 => 0.0014616538005721
128 => 0.0014536935667381
129 => 0.0015089296978407
130 => 0.001513593319697
131 => 0.0015151569917653
201 => 0.0014965316791401
202 => 0.00151307531606
203 => 0.0015053350962129
204 => 0.0015254729979601
205 => 0.0015286308780877
206 => 0.0015259562659645
207 => 0.0015269586269607
208 => 0.0014798243333859
209 => 0.0014773801716109
210 => 0.0014440538523782
211 => 0.0014576345738012
212 => 0.0014322460660417
213 => 0.0014402970233829
214 => 0.0014438458086665
215 => 0.0014419921246261
216 => 0.0014584024074141
217 => 0.001444450314645
218 => 0.001407628447891
219 => 0.001370796549044
220 => 0.0013703341545566
221 => 0.0013606369657272
222 => 0.0013536276743323
223 => 0.0013549779125229
224 => 0.0013597363280211
225 => 0.0013533511065732
226 => 0.0013547137173081
227 => 0.0013773421345343
228 => 0.0013818801022305
229 => 0.0013664583149003
301 => 0.0013045376134161
302 => 0.0012893421179556
303 => 0.0013002643387529
304 => 0.0012950442206929
305 => 0.0010452017601564
306 => 0.0011038985402939
307 => 0.0010690229066905
308 => 0.0010850952032057
309 => 0.0010494962122982
310 => 0.0010664859166622
311 => 0.0010633485386309
312 => 0.0011577312241279
313 => 0.001156257568313
314 => 0.0011569629293674
315 => 0.0011232942084296
316 => 0.001176929395089
317 => 0.0012033520166963
318 => 0.0011984618926521
319 => 0.0011996926315204
320 => 0.0011785444601294
321 => 0.0011571676898941
322 => 0.0011334575618419
323 => 0.0011775080491025
324 => 0.001172610386886
325 => 0.0011838438618874
326 => 0.0012124137516699
327 => 0.0012166207764668
328 => 0.0012222750604573
329 => 0.001220248402146
330 => 0.0012685316253306
331 => 0.0012626842084199
401 => 0.0012767748007579
402 => 0.001247789383263
403 => 0.0012149896320464
404 => 0.001221223792448
405 => 0.0012206233926694
406 => 0.0012129796143807
407 => 0.001206079153118
408 => 0.0011945918293087
409 => 0.0012309394216456
410 => 0.0012294637757752
411 => 0.001253352767166
412 => 0.0012491301558924
413 => 0.001220930524359
414 => 0.001221937679716
415 => 0.0012287112835141
416 => 0.0012521548035989
417 => 0.0012591144365167
418 => 0.0012558904572558
419 => 0.0012635213770308
420 => 0.0012695525448833
421 => 0.0012642787988556
422 => 0.001338943921262
423 => 0.0013079377568046
424 => 0.0013230499456216
425 => 0.0013266541136083
426 => 0.0013174221130979
427 => 0.0013194242034355
428 => 0.0013224568247599
429 => 0.0013408703075936
430 => 0.0013891926145335
501 => 0.0014105942353361
502 => 0.001474982067458
503 => 0.0014088171286534
504 => 0.0014048911750024
505 => 0.0014164893678938
506 => 0.0014542918414937
507 => 0.0014849271957405
508 => 0.0014950907101402
509 => 0.0014964339863494
510 => 0.0015155014150209
511 => 0.0015264305095488
512 => 0.001513186127657
513 => 0.0015019629007482
514 => 0.0014617626950393
515 => 0.0014664159783116
516 => 0.001498472485619
517 => 0.0015437541903096
518 => 0.0015826106036925
519 => 0.0015690044420086
520 => 0.0016728098512041
521 => 0.0016831017335187
522 => 0.0016816797281592
523 => 0.0017051261677095
524 => 0.0016585897599866
525 => 0.0016386945440847
526 => 0.001504389489795
527 => 0.0015421237318184
528 => 0.0015969726686538
529 => 0.0015897132061907
530 => 0.0015498804421445
531 => 0.0015825803869691
601 => 0.0015717687625883
602 => 0.0015632411858644
603 => 0.0016023076679886
604 => 0.0015593524661304
605 => 0.0015965441576562
606 => 0.0015488454285756
607 => 0.001569066593809
608 => 0.0015575880824348
609 => 0.0015650160860474
610 => 0.0015215921287074
611 => 0.0015450226420311
612 => 0.0015206173423208
613 => 0.0015206057710311
614 => 0.0015200670226873
615 => 0.0015487797495668
616 => 0.0015497160705595
617 => 0.001528497322013
618 => 0.0015254393688483
619 => 0.0015367462244364
620 => 0.001523508857813
621 => 0.0015297025383411
622 => 0.0015236964580866
623 => 0.0015223443629139
624 => 0.0015115706385378
625 => 0.0015069290218469
626 => 0.0015087491193511
627 => 0.0015025361882446
628 => 0.0014987926725213
629 => 0.001519322343187
630 => 0.0015083541683149
701 => 0.0015176413130821
702 => 0.0015070574394888
703 => 0.0014703691224401
704 => 0.0014492692833335
705 => 0.0013799684534373
706 => 0.0013996220828285
707 => 0.0014126524594479
708 => 0.0014083459200529
709 => 0.0014175980330829
710 => 0.0014181660376804
711 => 0.0014151580814202
712 => 0.001411675253414
713 => 0.001409980005353
714 => 0.0014226149955088
715 => 0.0014299500325684
716 => 0.0014139602320656
717 => 0.0014102140455289
718 => 0.0014263806166583
719 => 0.001436242215708
720 => 0.0015090547223376
721 => 0.0015036605366652
722 => 0.0015171988841475
723 => 0.0015156746739839
724 => 0.0015298650189732
725 => 0.0015530602357435
726 => 0.0015058978745649
727 => 0.0015140836297137
728 => 0.0015120766715879
729 => 0.0015339881141528
730 => 0.0015340565192848
731 => 0.0015209195149094
801 => 0.0015280412981049
802 => 0.0015240661141011
803 => 0.0015312498088743
804 => 0.0015035884940269
805 => 0.0015372769896566
806 => 0.0015563761958399
807 => 0.0015566413883363
808 => 0.0015656942604865
809 => 0.0015748925028982
810 => 0.0015925477282092
811 => 0.0015744001082466
812 => 0.0015417543065692
813 => 0.001544111228005
814 => 0.0015249710064261
815 => 0.0015252927570088
816 => 0.0015235752271823
817 => 0.0015287296634813
818 => 0.0015047196029354
819 => 0.0015103547161549
820 => 0.0015024655246484
821 => 0.0015140664801521
822 => 0.0015015857697368
823 => 0.0015120757037719
824 => 0.0015166028115547
825 => 0.0015333079367347
826 => 0.0014991184091652
827 => 0.0014294036480234
828 => 0.0014440585360252
829 => 0.001422382805554
830 => 0.0014243889769344
831 => 0.0014284417624027
901 => 0.0014153053587111
902 => 0.0014178113705598
903 => 0.001417721838182
904 => 0.0014169502965197
905 => 0.0014135330105675
906 => 0.0014085772698475
907 => 0.0014283194155797
908 => 0.0014316739908405
909 => 0.0014391307961015
910 => 0.0014613171905587
911 => 0.0014591002465612
912 => 0.0014627161742012
913 => 0.0014548226244656
914 => 0.0014247551360674
915 => 0.0014263879453465
916 => 0.0014060267874724
917 => 0.0014386101155165
918 => 0.0014308939533568
919 => 0.0014259192934158
920 => 0.001424561911361
921 => 0.0014468033015987
922 => 0.0014534582741489
923 => 0.0014493113418542
924 => 0.0014408058627325
925 => 0.0014571388970654
926 => 0.0014615089280175
927 => 0.0014624872167872
928 => 0.0014914262220765
929 => 0.0014641045857106
930 => 0.0014706811751376
1001 => 0.0015219898484767
1002 => 0.0014754599618711
1003 => 0.0015001078805463
1004 => 0.0014989014931888
1005 => 0.001511510534343
1006 => 0.0014978671837838
1007 => 0.0014980363094654
1008 => 0.0015092322837999
1009 => 0.0014935095570517
1010 => 0.0014896163887996
1011 => 0.0014842380047428
1012 => 0.0014959815095666
1013 => 0.0015030212095955
1014 => 0.0015597560217379
1015 => 0.0015964092978036
1016 => 0.0015948180824235
1017 => 0.0016093588123677
1018 => 0.00160280808035
1019 => 0.0015816540386691
1020 => 0.0016177614083579
1021 => 0.0016063355257918
1022 => 0.0016072774616681
1023 => 0.0016072424027678
1024 => 0.0016148396158062
1025 => 0.0016094562940941
1026 => 0.001598845214413
1027 => 0.0016058893443037
1028 => 0.0016268078917565
1029 => 0.0016917397049096
1030 => 0.0017280764077822
1031 => 0.001689552189771
1101 => 0.0017161256794953
1102 => 0.0017001910547632
1103 => 0.0016972952594354
1104 => 0.0017139853747477
1105 => 0.0017307047038975
1106 => 0.0017296397549103
1107 => 0.0017175023804946
1108 => 0.0017106462856616
1109 => 0.001762562932697
1110 => 0.0018008142338556
1111 => 0.0017982057515565
1112 => 0.0018097187441006
1113 => 0.0018435212462935
1114 => 0.0018466117234673
1115 => 0.0018462223943772
1116 => 0.001838562324244
1117 => 0.0018718452774625
1118 => 0.0018996105025952
1119 => 0.0018367892393289
1120 => 0.00186071075399
1121 => 0.0018714498926244
1122 => 0.0018872181342986
1123 => 0.0019138218010671
1124 => 0.0019427204394518
1125 => 0.0019468070237769
1126 => 0.0019439073966372
1127 => 0.0019248479677854
1128 => 0.0019564692027384
1129 => 0.0019749921805646
1130 => 0.0019860221899694
1201 => 0.0020139924586012
1202 => 0.0018715162138886
1203 => 0.0017706644463522
1204 => 0.0017549149865342
1205 => 0.001786942132391
1206 => 0.0017953874353417
1207 => 0.0017919831443118
1208 => 0.001678465310908
1209 => 0.0017543173386344
1210 => 0.0018359277426483
1211 => 0.0018390627306353
1212 => 0.0018799186052778
1213 => 0.0018932229528002
1214 => 0.0019261172869893
1215 => 0.0019240597374296
1216 => 0.0019320689843415
1217 => 0.0019302277971773
1218 => 0.0019911576245433
1219 => 0.0020583722722949
1220 => 0.0020560448427727
1221 => 0.0020463819419108
1222 => 0.0020607329974602
1223 => 0.0021301057170993
1224 => 0.0021237189887501
1225 => 0.0021299231513211
1226 => 0.0022117174974507
1227 => 0.0023180617825293
1228 => 0.0022686541853186
1229 => 0.0023758544546126
1230 => 0.0024433313416911
1231 => 0.0025600256406529
]
'min_raw' => 0.0010452017601564
'max_raw' => 0.0025600256406529
'avg_raw' => 0.0018026137004047
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001045'
'max' => '$0.00256'
'avg' => '$0.0018026'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00046604839093154
'max_diff' => 0.0010385860062046
'year' => 2028
]
3 => [
'items' => [
101 => 0.0025454149396913
102 => 0.0025908431739349
103 => 0.0025192587356248
104 => 0.0023548863956631
105 => 0.0023288738436721
106 => 0.0023809516315008
107 => 0.0025089797912014
108 => 0.0023769195691383
109 => 0.002403635180066
110 => 0.0023959410823216
111 => 0.0023955310965506
112 => 0.0024111785858967
113 => 0.002388481086482
114 => 0.0022960073906644
115 => 0.0023383875405067
116 => 0.0023220225293906
117 => 0.0023401807293163
118 => 0.0024381730453039
119 => 0.0023948483065607
120 => 0.0023492092137108
121 => 0.0024064507642701
122 => 0.0024793389284629
123 => 0.0024747777181403
124 => 0.0024659270636765
125 => 0.0025158177394837
126 => 0.0025982225193206
127 => 0.0026204962001813
128 => 0.0026369381760273
129 => 0.002639205246707
130 => 0.0026625574836846
131 => 0.0025369866199348
201 => 0.0027362708055942
202 => 0.0027706816793431
203 => 0.0027642138612629
204 => 0.0028024600992038
205 => 0.0027912070857881
206 => 0.0027749032348926
207 => 0.0028355316572371
208 => 0.0027660260634805
209 => 0.0026673716236541
210 => 0.0026132478468017
211 => 0.0026845224022015
212 => 0.0027280472860449
213 => 0.0027568144655629
214 => 0.0027655193967034
215 => 0.0025467343286333
216 => 0.0024288213113197
217 => 0.0025044022035422
218 => 0.0025966161083683
219 => 0.0025364743670375
220 => 0.0025388318094343
221 => 0.0024530854912683
222 => 0.0026042027548832
223 => 0.0025821862406708
224 => 0.0026964079553515
225 => 0.0026691480264564
226 => 0.0027622914007172
227 => 0.0027377636286999
228 => 0.0028395770390143
301 => 0.0028801931648767
302 => 0.0029483939615949
303 => 0.0029985627452881
304 => 0.0030280228146486
305 => 0.0030262541425861
306 => 0.0031429896143408
307 => 0.0030741547850738
308 => 0.0029876820163909
309 => 0.0029861179968235
310 => 0.003030903469053
311 => 0.0031247615325517
312 => 0.0031490975628377
313 => 0.0031626980837852
314 => 0.0031418684125165
315 => 0.0030671531387839
316 => 0.0030348914624012
317 => 0.00306237934539
318 => 0.0030287640265554
319 => 0.0030867934976565
320 => 0.0031664803559046
321 => 0.0031500253347924
322 => 0.003205032003296
323 => 0.0032619581183269
324 => 0.003343365019533
325 => 0.003364647797997
326 => 0.0033998274214866
327 => 0.0034360388099616
328 => 0.0034476689320155
329 => 0.0034698744436314
330 => 0.0034697574096242
331 => 0.0035366752134819
401 => 0.0036104876234087
402 => 0.0036383500993949
403 => 0.0037024183265792
404 => 0.0035927037327445
405 => 0.0036759235124786
406 => 0.0037509898369248
407 => 0.0036614926702987
408 => 0.0037848436643274
409 => 0.0037896331039062
410 => 0.0038619479552611
411 => 0.0037886429995637
412 => 0.0037451147508683
413 => 0.0038707791738698
414 => 0.0039315842297679
415 => 0.0039132692520834
416 => 0.0037738913675825
417 => 0.0036927674606043
418 => 0.0034804505484093
419 => 0.0037319491023123
420 => 0.0038544467116051
421 => 0.0037735741283677
422 => 0.0038143615552754
423 => 0.0040368845311163
424 => 0.0041216068730208
425 => 0.0041039852181585
426 => 0.0041069629877531
427 => 0.0041526776256255
428 => 0.0043554015054626
429 => 0.0042339246575614
430 => 0.0043267891561312
501 => 0.0043760441513247
502 => 0.0044217949358712
503 => 0.004309445468709
504 => 0.0041632804626725
505 => 0.0041169838696712
506 => 0.0037655329437891
507 => 0.003747238396823
508 => 0.0037369691132294
509 => 0.0036722227327906
510 => 0.0036213498132919
511 => 0.0035808937789161
512 => 0.0034747250635196
513 => 0.0035105538883506
514 => 0.0033413431151416
515 => 0.0034495981713791
516 => 0.0031795336916006
517 => 0.0034044514153695
518 => 0.0032820389240761
519 => 0.0033642356197062
520 => 0.0033639488431786
521 => 0.0032125986660374
522 => 0.00312530304246
523 => 0.0031809312114
524 => 0.0032405690242733
525 => 0.0032502450587663
526 => 0.0033275670398626
527 => 0.0033491459427562
528 => 0.003283760859566
529 => 0.0031739372055328
530 => 0.0031994467355539
531 => 0.0031247860926483
601 => 0.0029939461877365
602 => 0.0030879176916898
603 => 0.0031200036947748
604 => 0.0031341747016364
605 => 0.0030055086822202
606 => 0.0029650790254445
607 => 0.0029435546154148
608 => 0.0031573280381449
609 => 0.0031690390288082
610 => 0.0031091239448072
611 => 0.0033799458058732
612 => 0.0033186504778679
613 => 0.0033871323769698
614 => 0.0031971320130827
615 => 0.0032043902828526
616 => 0.0031144410656975
617 => 0.0031648066168955
618 => 0.0031292098686663
619 => 0.0031607375780808
620 => 0.0031796351571102
621 => 0.0032695696144839
622 => 0.003405478322409
623 => 0.0032561364056021
624 => 0.0031910659938337
625 => 0.0032314353113249
626 => 0.0033389441236105
627 => 0.0035018254774981
628 => 0.0034053964377039
629 => 0.0034481900080933
630 => 0.0034575384994699
701 => 0.0033864352955228
702 => 0.0035044471540482
703 => 0.0035676906677585
704 => 0.0036325654264242
705 => 0.0036888943616241
706 => 0.0036066530211866
707 => 0.0036946630442878
708 => 0.0036237425015287
709 => 0.0035601194430428
710 => 0.0035602159329601
711 => 0.0035203042589873
712 => 0.0034429703614705
713 => 0.0034287088042536
714 => 0.0035028992259323
715 => 0.0035623929182595
716 => 0.0035672931037152
717 => 0.0036002318686838
718 => 0.003619724690496
719 => 0.0038107808434616
720 => 0.0038876252086837
721 => 0.003981589043888
722 => 0.0040181932532116
723 => 0.0041283587999404
724 => 0.0040393911737487
725 => 0.0040201424681895
726 => 0.0037529168867011
727 => 0.0037966750606995
728 => 0.0038667361193069
729 => 0.0037540721677524
730 => 0.0038255315133468
731 => 0.003839639101883
801 => 0.00375024388979
802 => 0.003797993735108
803 => 0.0036711843027859
804 => 0.0034082424215034
805 => 0.003504739883528
806 => 0.0035757944962725
807 => 0.0034743908029155
808 => 0.0036561529983931
809 => 0.0035499712761284
810 => 0.003516316767792
811 => 0.0033850185320732
812 => 0.0034469862451999
813 => 0.003530798464496
814 => 0.0034790122571873
815 => 0.0035864764130909
816 => 0.0037386743174939
817 => 0.0038471396077134
818 => 0.0038554662258776
819 => 0.0037857303108765
820 => 0.0038974825597144
821 => 0.0038982965528445
822 => 0.003772239559634
823 => 0.0036950303531809
824 => 0.0036774882590252
825 => 0.0037213118495563
826 => 0.0037745217787421
827 => 0.0038584190066251
828 => 0.0039091163443297
829 => 0.004041308113273
830 => 0.0040770754157141
831 => 0.0041163728371282
901 => 0.0041688863110135
902 => 0.0042319422005911
903 => 0.0040939795039691
904 => 0.0040994610191005
905 => 0.0039709920662297
906 => 0.0038337045657757
907 => 0.0039378886654917
908 => 0.0040740955168405
909 => 0.0040428495146459
910 => 0.0040393337011011
911 => 0.0040452463242781
912 => 0.0040216878590224
913 => 0.0039151337937883
914 => 0.0038616230092915
915 => 0.0039306655733495
916 => 0.0039673586234153
917 => 0.0040242663440971
918 => 0.0040172512663468
919 => 0.0041638394433801
920 => 0.0042207991763789
921 => 0.0042062264392334
922 => 0.0042089081735807
923 => 0.0043120310494235
924 => 0.0044267248961977
925 => 0.0045341508188878
926 => 0.0046434290814988
927 => 0.004511689870718
928 => 0.0044448008240284
929 => 0.0045138132462627
930 => 0.004477194283605
1001 => 0.0046876177049261
1002 => 0.0047021869660691
1003 => 0.0049125951713818
1004 => 0.0051122976131665
1005 => 0.0049868680875224
1006 => 0.0051051424807349
1007 => 0.0052330658800469
1008 => 0.0054798508721434
1009 => 0.005396742368806
1010 => 0.0053330825577259
1011 => 0.0052729243438571
1012 => 0.0053981040370705
1013 => 0.0055591457125952
1014 => 0.0055938325470652
1015 => 0.0056500384702972
1016 => 0.005590944814552
1017 => 0.0056621166139444
1018 => 0.005913384340273
1019 => 0.0058454895826174
1020 => 0.0057490681121196
1021 => 0.0059474198500471
1022 => 0.0060192025729301
1023 => 0.0065230113150274
1024 => 0.0071590906632263
1025 => 0.0068957496363498
1026 => 0.0067322853630057
1027 => 0.006770703344666
1028 => 0.0070029779899834
1029 => 0.0070775772340307
1030 => 0.0068747907728088
1031 => 0.0069464183791462
1101 => 0.0073410935323363
1102 => 0.0075528240893278
1103 => 0.0072652655537257
1104 => 0.0064719029587363
1105 => 0.0057403864136715
1106 => 0.005934417542042
1107 => 0.0059124204335717
1108 => 0.0063364496489464
1109 => 0.0058438703151016
1110 => 0.0058521640877935
1111 => 0.0062849617782873
1112 => 0.0061694987744944
1113 => 0.0059824634957341
1114 => 0.005741751978192
1115 => 0.0052967744748951
1116 => 0.0049026454911093
1117 => 0.0056756231907974
1118 => 0.0056422909868181
1119 => 0.0055940210159002
1120 => 0.0057014406128216
1121 => 0.0062230396838871
1122 => 0.0062110151370476
1123 => 0.0061345211050325
1124 => 0.0061925411541285
1125 => 0.0059722923006047
1126 => 0.006029055445131
1127 => 0.0057402705377133
1128 => 0.0058708133765892
1129 => 0.0059820622020277
1130 => 0.0060043970508015
1201 => 0.0060547186055345
1202 => 0.0056247264299481
1203 => 0.0058177802928794
1204 => 0.0059311813506508
1205 => 0.0054188312460737
1206 => 0.0059210538364145
1207 => 0.0056172412228173
1208 => 0.0055141226586502
1209 => 0.0056529582204635
1210 => 0.0055988538670028
1211 => 0.0055523381210116
1212 => 0.0055263815355065
1213 => 0.0056283270493804
1214 => 0.005623571169307
1215 => 0.0054567685218377
1216 => 0.0052391812679597
1217 => 0.0053122106924193
1218 => 0.0052856784178586
1219 => 0.0051895220321192
1220 => 0.0052543198261413
1221 => 0.0049689831346811
1222 => 0.0044780761875346
1223 => 0.004802384353706
1224 => 0.0047898988420878
1225 => 0.0047836030809571
1226 => 0.0050273117046156
1227 => 0.0050038847437654
1228 => 0.0049613645804248
1229 => 0.0051887411159747
1230 => 0.005105745621853
1231 => 0.0053615181785383
]
'min_raw' => 0.0022960073906644
'max_raw' => 0.0075528240893278
'avg_raw' => 0.0049244157399961
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002296'
'max' => '$0.007552'
'avg' => '$0.004924'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0012508056305079
'max_diff' => 0.0049927984486749
'year' => 2029
]
4 => [
'items' => [
101 => 0.005529986526703
102 => 0.0054872575042283
103 => 0.0056457027999554
104 => 0.0053138931428601
105 => 0.0054241070010543
106 => 0.0054468219244784
107 => 0.0051859353248208
108 => 0.0050077176842866
109 => 0.0049958325994928
110 => 0.0046868277707102
111 => 0.004851895656046
112 => 0.0049971485641683
113 => 0.0049275836932588
114 => 0.0049055615333202
115 => 0.0050180679724226
116 => 0.0050268106862934
117 => 0.0048274758835291
118 => 0.004868923901136
119 => 0.0050417690247165
120 => 0.0048645686474967
121 => 0.0045202972600759
122 => 0.0044349131960712
123 => 0.0044235213879924
124 => 0.0041919530345162
125 => 0.0044406189675077
126 => 0.0043320696239242
127 => 0.0046749756996837
128 => 0.0044791095882521
129 => 0.0044706661916609
130 => 0.0044579027593363
131 => 0.0042585823115311
201 => 0.0043022208221252
202 => 0.0044472818776727
203 => 0.0044990412965218
204 => 0.0044936423650834
205 => 0.0044465709993627
206 => 0.0044681200295452
207 => 0.0043987030951475
208 => 0.0043741905308231
209 => 0.0042968221351033
210 => 0.00418311196696
211 => 0.0041989240632653
212 => 0.0039736344662895
213 => 0.0038508847368331
214 => 0.003816909229535
215 => 0.0037714757612419
216 => 0.0038220410606726
217 => 0.0039729962491674
218 => 0.0037909122649129
219 => 0.0034787420456151
220 => 0.003497504007707
221 => 0.0035396565660512
222 => 0.003461105552444
223 => 0.0033867636103516
224 => 0.0034513978974485
225 => 0.0033191272602647
226 => 0.0035556408406244
227 => 0.0035492438110973
228 => 0.0036374014479537
301 => 0.0036925282274568
302 => 0.0035654788482089
303 => 0.0035335262729061
304 => 0.0035517279119622
305 => 0.0032508953630177
306 => 0.0036128170106356
307 => 0.0036159469240733
308 => 0.003589146704994
309 => 0.0037818588092733
310 => 0.0041885414577153
311 => 0.0040355310865998
312 => 0.0039762808461409
313 => 0.0038636460957169
314 => 0.0040137252130672
315 => 0.0040022014784536
316 => 0.0039500867802845
317 => 0.0039185676482241
318 => 0.0039766426154748
319 => 0.0039113715170945
320 => 0.0038996470342956
321 => 0.0038286094248972
322 => 0.0038032522303473
323 => 0.0037844787730015
324 => 0.0037638110411057
325 => 0.0038093989075901
326 => 0.0037060908045531
327 => 0.0035815113597088
328 => 0.0035711539268383
329 => 0.0035997517096286
330 => 0.0035870993195984
331 => 0.0035710933520626
401 => 0.0035405336010707
402 => 0.0035314671757571
403 => 0.0035609286596218
404 => 0.0035276683620498
405 => 0.0035767457428995
406 => 0.0035633994108837
407 => 0.0034888478851618
408 => 0.0033959290816022
409 => 0.0033951019093467
410 => 0.0033750827055372
411 => 0.0033495852395783
412 => 0.0033424924278516
413 => 0.0034459545780689
414 => 0.0036601181326571
415 => 0.0036180727023919
416 => 0.0036484548347475
417 => 0.0037979048556355
418 => 0.0038454105231569
419 => 0.0038116921255836
420 => 0.0037655363033252
421 => 0.0037675669252598
422 => 0.0039252953422346
423 => 0.0039351326701277
424 => 0.0039599884240713
425 => 0.003991935092124
426 => 0.0038171327812943
427 => 0.0037593337521394
428 => 0.0037319453655578
429 => 0.0036475997355258
430 => 0.0037385592662675
501 => 0.0036855610429797
502 => 0.0036927123139784
503 => 0.003688055039359
504 => 0.0036905982262247
505 => 0.0035555747302585
506 => 0.0036047701955626
507 => 0.0035229731928771
508 => 0.0034134561884258
509 => 0.0034130890490253
510 => 0.0034398931807121
511 => 0.003423949034339
512 => 0.0033810437464105
513 => 0.0033871382400535
514 => 0.0033337440628132
515 => 0.0033936212599032
516 => 0.0033953383236649
517 => 0.0033722823412522
518 => 0.0034645314248303
519 => 0.0035023259496404
520 => 0.0034871500081094
521 => 0.0035012611651266
522 => 0.0036198198798432
523 => 0.0036391501234214
524 => 0.0036477353407346
525 => 0.0036362322868582
526 => 0.0035034282007903
527 => 0.003509318626734
528 => 0.0034660985895182
529 => 0.0034295822124862
530 => 0.0034310426760643
531 => 0.0034498168406555
601 => 0.0035318047185154
602 => 0.0037043433740222
603 => 0.0037108910898746
604 => 0.003718827112498
605 => 0.0036865473201632
606 => 0.003676811425919
607 => 0.0036896555834746
608 => 0.0037544520308314
609 => 0.0039211260854971
610 => 0.0038622123427924
611 => 0.0038143145529265
612 => 0.0038563338277903
613 => 0.003849865289783
614 => 0.0037952643192946
615 => 0.0037937318519072
616 => 0.0036889351325538
617 => 0.0036501941715146
618 => 0.0036178193247597
619 => 0.00358246683727
620 => 0.00356150869766
621 => 0.0035937099254051
622 => 0.0036010747271841
623 => 0.0035306661799384
624 => 0.0035210697551174
625 => 0.0035785668946722
626 => 0.0035532645472636
627 => 0.0035792886390414
628 => 0.0035853264515644
629 => 0.0035843542246856
630 => 0.0035579356680348
701 => 0.0035747740682313
702 => 0.0035349462319979
703 => 0.0034916394420417
704 => 0.003464012408158
705 => 0.0034399041569002
706 => 0.0034532808158778
707 => 0.003405595469104
708 => 0.0033903399669547
709 => 0.0035690695971207
710 => 0.0037010990965917
711 => 0.00369917933538
712 => 0.0036874932827261
713 => 0.0036701301789116
714 => 0.0037531818116393
715 => 0.0037242482834668
716 => 0.0037452998426895
717 => 0.0037506583480428
718 => 0.0037668769298688
719 => 0.0037726736788374
720 => 0.0037551518773533
721 => 0.003696346571465
722 => 0.0035498093402321
723 => 0.0034815958635235
724 => 0.0034590842800243
725 => 0.003459902533329
726 => 0.0034373314543442
727 => 0.00344397964867
728 => 0.0034350194836686
729 => 0.0034180510988528
730 => 0.0034522330659311
731 => 0.0034561722192098
801 => 0.0034481937396496
802 => 0.0034500729604112
803 => 0.0033840145573063
804 => 0.003389036834223
805 => 0.0033610721581504
806 => 0.003355829118506
807 => 0.0032851368525574
808 => 0.0031598952564215
809 => 0.0032292912581767
810 => 0.0031454706466109
811 => 0.0031137265109214
812 => 0.0032639983120494
813 => 0.0032489151911071
814 => 0.003223099444529
815 => 0.003184912574867
816 => 0.0031707486934513
817 => 0.0030846934337098
818 => 0.0030796088298773
819 => 0.0031222601402927
820 => 0.003102578028078
821 => 0.0030749368883297
822 => 0.002974823482099
823 => 0.002862262867086
824 => 0.0028656603645224
825 => 0.0029014638018934
826 => 0.0030055671248008
827 => 0.0029648921555351
828 => 0.0029353819986413
829 => 0.0029298556333272
830 => 0.0029990296654631
831 => 0.0030969254133432
901 => 0.0031428559079547
902 => 0.0030973401827246
903 => 0.003045054168321
904 => 0.0030482365757477
905 => 0.0030694077066138
906 => 0.0030716324931241
907 => 0.0030375996728365
908 => 0.0030471797123991
909 => 0.0030326267562863
910 => 0.0029433152914851
911 => 0.0029416999302965
912 => 0.0029197814564924
913 => 0.0029191177738165
914 => 0.0028818289820562
915 => 0.0028766120223236
916 => 0.0028025728630155
917 => 0.0028513056618834
918 => 0.0028186182589896
919 => 0.0027693506326499
920 => 0.0027608568752988
921 => 0.0027606015426963
922 => 0.0028111883789076
923 => 0.0028507145252491
924 => 0.0028191868703576
925 => 0.0028120086344767
926 => 0.0028886534138881
927 => 0.0028788996670753
928 => 0.0028704529852404
929 => 0.0030881599228505
930 => 0.0029158278938479
1001 => 0.0028406812928345
1002 => 0.0027476731041278
1003 => 0.0027779570393587
1004 => 0.0027843383094754
1005 => 0.002560670381622
1006 => 0.002469928331148
1007 => 0.0024387890789673
1008 => 0.0024208679990929
1009 => 0.0024290348602304
1010 => 0.0023473563718228
1011 => 0.0024022456668703
1012 => 0.00233151900002
1013 => 0.0023196614441581
1014 => 0.0024461294858391
1015 => 0.0024637267750234
1016 => 0.0023886512723138
1017 => 0.0024368618986732
1018 => 0.0024193800553775
1019 => 0.0023327314057253
1020 => 0.0023294220646529
1021 => 0.0022859448181048
1022 => 0.0022179113461108
1023 => 0.0021868182238278
1024 => 0.00217062465578
1025 => 0.0021773064375629
1026 => 0.0021739279242275
1027 => 0.0021518808394
1028 => 0.0021751916373225
1029 => 0.0021156421813174
1030 => 0.0020919291081136
1031 => 0.0020812184630866
1101 => 0.0020283648933433
1102 => 0.002112478426894
1103 => 0.0021290498526379
1104 => 0.0021456539292097
1105 => 0.0022901810796822
1106 => 0.0022829609116741
1107 => 0.0023482277141031
1108 => 0.0023456915661786
1109 => 0.0023270764168738
1110 => 0.0022485421640001
1111 => 0.0022798445174571
1112 => 0.0021835007389822
1113 => 0.0022556880485557
1114 => 0.0022227447750805
1115 => 0.0022445498946558
1116 => 0.002205342323571
1117 => 0.0022270414122503
1118 => 0.0021329795524411
1119 => 0.0020451459112375
1120 => 0.0020804927324816
1121 => 0.0021189187695734
1122 => 0.0022022362087605
1123 => 0.0021526130293346
1124 => 0.0021704594011163
1125 => 0.0021106770430942
1126 => 0.0019873289625081
1127 => 0.0019880270992487
1128 => 0.0019690526843345
1129 => 0.0019526560195387
1130 => 0.002158312848429
1201 => 0.0021327361708031
1202 => 0.0020919830823992
1203 => 0.0021465327106913
1204 => 0.0021609564982307
1205 => 0.0021613671231845
1206 => 0.0022011651238567
1207 => 0.0022224053239497
1208 => 0.0022261490012763
1209 => 0.0022887720152268
1210 => 0.0023097624234855
1211 => 0.0023962189444291
1212 => 0.0022206032413688
1213 => 0.0022169865515314
1214 => 0.0021473003358286
1215 => 0.0021031042361345
1216 => 0.0021503264805861
1217 => 0.0021921589426911
1218 => 0.0021486001870338
1219 => 0.0021542880409471
1220 => 0.0020958139703583
1221 => 0.002116715699133
1222 => 0.0021347190837208
1223 => 0.0021247786729415
1224 => 0.0021098973968835
1225 => 0.0021887291578496
1226 => 0.0021842811609517
1227 => 0.0022576911090977
1228 => 0.0023149194132732
1229 => 0.0024174827651388
1230 => 0.0023104525607186
1231 => 0.002306551954663
]
'min_raw' => 0.0019526560195387
'max_raw' => 0.0056457027999554
'avg_raw' => 0.0037991794097471
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001952'
'max' => '$0.005645'
'avg' => '$0.003799'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00034335137112563
'max_diff' => -0.0019071212893724
'year' => 2030
]
5 => [
'items' => [
101 => 0.0023446810045334
102 => 0.0023097565861266
103 => 0.0023318276130097
104 => 0.0024139267814911
105 => 0.002415661407551
106 => 0.0023866041861093
107 => 0.0023848360515438
108 => 0.0023904168087729
109 => 0.0024231034781752
110 => 0.0024116817515261
111 => 0.0024248992627672
112 => 0.0024414279629678
113 => 0.0025097976750214
114 => 0.0025262813811329
115 => 0.0024862345211036
116 => 0.0024898503041786
117 => 0.0024748716792167
118 => 0.0024604025151852
119 => 0.0024929270828764
120 => 0.0025523663696039
121 => 0.0025519966008861
122 => 0.0025657853600722
123 => 0.002574375642813
124 => 0.0025374998608185
125 => 0.0025134950827001
126 => 0.0025227000420944
127 => 0.0025374189726238
128 => 0.0025179268913005
129 => 0.0023976127357627
130 => 0.0024341083648549
131 => 0.0024280337076288
201 => 0.0024193826570354
202 => 0.0024560792942999
203 => 0.0024525398141137
204 => 0.0023465186408681
205 => 0.0023533057723944
206 => 0.0023469313888159
207 => 0.0023675283262343
208 => 0.0023086442839126
209 => 0.0023267566187407
210 => 0.0023381165053523
211 => 0.0023448075658372
212 => 0.0023689802644121
213 => 0.0023661438772346
214 => 0.0023688039506027
215 => 0.0024046456812334
216 => 0.0025859208553668
217 => 0.0025957872631337
218 => 0.0025472014628201
219 => 0.0025666105317329
220 => 0.0025293493637172
221 => 0.0025543630354343
222 => 0.0025714767543447
223 => 0.0024941431493673
224 => 0.0024895639551715
225 => 0.0024521489970609
226 => 0.002472253676258
227 => 0.0024402656860778
228 => 0.0024481144199756
301 => 0.002426168675757
302 => 0.0024656666459964
303 => 0.0025098315140882
304 => 0.0025209893038917
305 => 0.0024916379626493
306 => 0.0024703856572421
307 => 0.0024330736098918
308 => 0.0024951243761886
309 => 0.0025132699112166
310 => 0.0024950290654179
311 => 0.002490802262876
312 => 0.0024827924796967
313 => 0.0024925015762421
314 => 0.0025131710867359
315 => 0.002503423727293
316 => 0.0025098620299314
317 => 0.0024853258594226
318 => 0.0025375120682367
319 => 0.0026203963271287
320 => 0.0026206628135739
321 => 0.0026109154015891
322 => 0.0026069269706158
323 => 0.0026169284068347
324 => 0.002622353775703
325 => 0.0026546965864851
326 => 0.0026894017110486
327 => 0.0028513553843547
328 => 0.0028058794409584
329 => 0.0029495743745827
330 => 0.0030632184106276
331 => 0.003097295287986
401 => 0.0030659461642572
402 => 0.0029587025054274
403 => 0.0029534406198923
404 => 0.0031137079232889
405 => 0.0030684250693719
406 => 0.0030630388179873
407 => 0.0030057382034706
408 => 0.0030396099634691
409 => 0.0030322017126887
410 => 0.0030205074264078
411 => 0.0030851323849577
412 => 0.0032061045382534
413 => 0.0031872498936926
414 => 0.0031731757761697
415 => 0.0031115070900986
416 => 0.0031486454133131
417 => 0.0031354211677542
418 => 0.0031922409189891
419 => 0.0031585821570691
420 => 0.0030680820072165
421 => 0.0030824944543729
422 => 0.0030803160419791
423 => 0.003125147614681
424 => 0.0031116902893439
425 => 0.0030776882832246
426 => 0.0032056910685848
427 => 0.0031973792796924
428 => 0.0032091634960023
429 => 0.0032143512724609
430 => 0.0032922643122476
501 => 0.003324182791709
502 => 0.0033314288453583
503 => 0.0033617489321828
504 => 0.0033306744539772
505 => 0.0034549945225274
506 => 0.0035376601138362
507 => 0.0036336804520737
508 => 0.0037739919740727
509 => 0.0038267504042984
510 => 0.0038172200661005
511 => 0.0039236026607268
512 => 0.0041147698185181
513 => 0.0038558604143684
514 => 0.0041284926456192
515 => 0.0040421804288957
516 => 0.0038375357157346
517 => 0.0038243590088097
518 => 0.0039629467845364
519 => 0.0042703211325189
520 => 0.0041933273445603
521 => 0.0042704470667738
522 => 0.0041804828143565
523 => 0.0041760153309458
524 => 0.0042660777038378
525 => 0.0044765133471446
526 => 0.0043765432610717
527 => 0.0042332116290154
528 => 0.0043390454756386
529 => 0.0042473624032335
530 => 0.0040407747806286
531 => 0.0041932684688617
601 => 0.0040913002823104
602 => 0.004121060020073
603 => 0.0043353819815807
604 => 0.0043095941961466
605 => 0.004342965978383
606 => 0.0042840656562273
607 => 0.0042290434676055
608 => 0.0041263404665416
609 => 0.0040959351711234
610 => 0.004104338100909
611 => 0.0040959310070487
612 => 0.0040384696218427
613 => 0.0040260608411784
614 => 0.0040053789964302
615 => 0.0040117891649223
616 => 0.0039729012461084
617 => 0.0040462907835642
618 => 0.0040599125284223
619 => 0.0041133193136031
620 => 0.0041188641832108
621 => 0.0042676013197413
622 => 0.0041856794043663
623 => 0.0042406396979977
624 => 0.004235723532029
625 => 0.0038419709872059
626 => 0.0038962266137744
627 => 0.0039806313423614
628 => 0.0039426071265409
629 => 0.0038888497816668
630 => 0.0038454378433945
701 => 0.0037796643178134
702 => 0.0038722392920001
703 => 0.0039939655388047
704 => 0.0041219513617087
705 => 0.0042757179419644
706 => 0.0042413990312917
707 => 0.0041190768024486
708 => 0.0041245640882781
709 => 0.0041584843301084
710 => 0.0041145545349592
711 => 0.0041015987807582
712 => 0.0041567044084303
713 => 0.0041570838906025
714 => 0.0041065373521903
715 => 0.004050364124664
716 => 0.0040501287567896
717 => 0.0040401332735203
718 => 0.004182260988625
719 => 0.0042604168611999
720 => 0.0042693773060361
721 => 0.0042598137518693
722 => 0.0042634943843042
723 => 0.0042180172041001
724 => 0.0043219645522079
725 => 0.0044173569181589
726 => 0.0043917897263234
727 => 0.0043534608711715
728 => 0.0043229300918752
729 => 0.0043845976450033
730 => 0.0043818516859363
731 => 0.0044165237490608
801 => 0.004414950824002
802 => 0.0044032919132554
803 => 0.0043917901426998
804 => 0.0044373933628516
805 => 0.0044242603678132
806 => 0.0044111069736061
807 => 0.0043847258278398
808 => 0.0043883114636939
809 => 0.0043499892265592
810 => 0.0043322596061544
811 => 0.0040656486545742
812 => 0.0039944014965478
813 => 0.0040168173028326
814 => 0.0040241971682877
815 => 0.0039931903138089
816 => 0.0040376461781241
817 => 0.004030717778761
818 => 0.0040576721277048
819 => 0.0040408322207065
820 => 0.0040415233363637
821 => 0.004091045912199
822 => 0.0041054225266481
823 => 0.0040981104645057
824 => 0.0041032315821874
825 => 0.0042212455776724
826 => 0.0042044677613896
827 => 0.0041955548808836
828 => 0.0041980238096955
829 => 0.0042281789157905
830 => 0.0042366206990893
831 => 0.0042008522700585
901 => 0.0042177208679643
902 => 0.0042895452169032
903 => 0.0043146796741257
904 => 0.0043948967963562
905 => 0.004360819137087
906 => 0.0044233701555221
907 => 0.0046156306609779
908 => 0.004769221656151
909 => 0.0046279730295735
910 => 0.0049100233325137
911 => 0.0051296399510656
912 => 0.0051212106994549
913 => 0.0050829154621865
914 => 0.0048328877807751
915 => 0.0046028085806376
916 => 0.0047952796012315
917 => 0.004795770249445
918 => 0.0047792368180819
919 => 0.0046765490958466
920 => 0.0047756635079366
921 => 0.0047835308500376
922 => 0.0047791272305562
923 => 0.0047003967946825
924 => 0.0045801899709202
925 => 0.0046036780965489
926 => 0.0046421521254734
927 => 0.004569312762196
928 => 0.0045460361721362
929 => 0.0045893117816098
930 => 0.0047287548121651
1001 => 0.0047023939149771
1002 => 0.0047017055254188
1003 => 0.0048144886223492
1004 => 0.0047337602650627
1005 => 0.0046039743570324
1006 => 0.004571201703589
1007 => 0.0044548808621694
1008 => 0.0045352240816585
1009 => 0.0045381154910957
1010 => 0.0044941123308693
1011 => 0.0046075449709696
1012 => 0.0046064996692216
1013 => 0.0047141870787764
1014 => 0.0049200449603012
1015 => 0.0048591626550832
1016 => 0.0047883631580906
1017 => 0.0047960610264708
1018 => 0.0048804876426436
1019 => 0.0048294413832334
1020 => 0.0048477979740244
1021 => 0.0048804598577449
1022 => 0.0049001655831424
1023 => 0.00479322567584
1024 => 0.0047682928679208
1025 => 0.0047172890931444
1026 => 0.0047039831603358
1027 => 0.0047455246706625
1028 => 0.0047345799503746
1029 => 0.0045378724793286
1030 => 0.0045173154541342
1031 => 0.0045179459087483
1101 => 0.0044662542914638
1102 => 0.0043874121676954
1103 => 0.0045946045615403
1104 => 0.0045779641126588
1105 => 0.0045595943449622
1106 => 0.0045618445366886
1107 => 0.0046517797324549
1108 => 0.0045996127770742
1109 => 0.0047383071779496
1110 => 0.0047097957786649
1111 => 0.0046805531695719
1112 => 0.0046765109502436
1113 => 0.004665255040605
1114 => 0.0046266543383147
1115 => 0.0045800416707565
1116 => 0.0045492639501144
1117 => 0.004196455520798
1118 => 0.0042619347130869
1119 => 0.0043372625551991
1120 => 0.0043632654244389
1121 => 0.0043187857172605
1122 => 0.0046284106682611
1123 => 0.0046849821304291
1124 => 0.0045136234814569
1125 => 0.0044815692747617
1126 => 0.0046305121367156
1127 => 0.004540681383433
1128 => 0.0045811321661358
1129 => 0.0044936996993277
1130 => 0.0046713557217986
1201 => 0.0046700022805627
1202 => 0.0046008900752782
1203 => 0.0046593032379247
1204 => 0.0046491525134375
1205 => 0.0045711250038872
1206 => 0.0046738293330265
1207 => 0.0046738802730924
1208 => 0.0046073612781351
1209 => 0.0045296816549053
1210 => 0.0045157943729826
1211 => 0.0045053321715477
1212 => 0.0045785591059274
1213 => 0.0046442141463175
1214 => 0.0047663818992188
1215 => 0.0047970977749324
1216 => 0.0049169838827142
1217 => 0.0048455975426788
1218 => 0.0048772421826086
1219 => 0.00491159691566
1220 => 0.0049280678380384
1221 => 0.0049012293539013
1222 => 0.0050874618263771
1223 => 0.0051031855530695
1224 => 0.0051084575826198
1225 => 0.0050456610407262
1226 => 0.0051014390676414
1227 => 0.0050753423760218
1228 => 0.0051432387177461
1229 => 0.0051538857310725
1230 => 0.0051448680895635
1231 => 0.005148247619645
]
'min_raw' => 0.0023086442839126
'max_raw' => 0.0051538857310725
'avg_raw' => 0.0037312650074925
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0023086'
'max' => '$0.005153'
'avg' => '$0.003731'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00035598826437388
'max_diff' => -0.00049181706888294
'year' => 2031
]
6 => [
'items' => [
101 => 0.0049893310580463
102 => 0.0049810903959758
103 => 0.0048687283839133
104 => 0.0049145167343668
105 => 0.0048289176078867
106 => 0.0048560619726623
107 => 0.0048680269500143
108 => 0.0048617771248521
109 => 0.0049171055390012
110 => 0.0048700650841262
111 => 0.0047459175895444
112 => 0.0046217362710607
113 => 0.0046201772757631
114 => 0.0045874825265887
115 => 0.0045638502112775
116 => 0.0045684026336079
117 => 0.0045844459636818
118 => 0.0045629177437685
119 => 0.0045675118809954
120 => 0.0046438051695393
121 => 0.0046591052444579
122 => 0.0046071096117592
123 => 0.0043983396435401
124 => 0.0043471069696793
125 => 0.0043839319996624
126 => 0.0043663320071661
127 => 0.003523970708024
128 => 0.0037218710003357
129 => 0.003604285366703
130 => 0.0036584742365358
131 => 0.003538449753249
201 => 0.0035957317276956
202 => 0.0035851538386181
203 => 0.0039033716523599
204 => 0.0038984031188927
205 => 0.0039007812929345
206 => 0.0037872648496175
207 => 0.0039680996261288
208 => 0.0040571853396465
209 => 0.0040406979450139
210 => 0.0040448474670359
211 => 0.0039735449306727
212 => 0.0039014716573461
213 => 0.0038215313052297
214 => 0.0039700505985359
215 => 0.0039535377884291
216 => 0.0039914122336925
217 => 0.0040877376117799
218 => 0.0041019218896078
219 => 0.0041209857028513
220 => 0.0041141526828581
221 => 0.0042769429408518
222 => 0.0042572279664841
223 => 0.0043047353823251
224 => 0.0042070090235438
225 => 0.0040964223723116
226 => 0.0041174412793608
227 => 0.0041154169895886
228 => 0.0040896454574167
229 => 0.0040663800704949
301 => 0.0040276497562522
302 => 0.004150198201524
303 => 0.0041452229584457
304 => 0.0042257663607958
305 => 0.0042115295320736
306 => 0.0041164525055234
307 => 0.0041198482001268
308 => 0.00414268587825
309 => 0.0042217273429905
310 => 0.0042451922312787
311 => 0.0042343223601095
312 => 0.0042600505389047
313 => 0.0042803850424021
314 => 0.0042626042394685
315 => 0.004514342912614
316 => 0.0044098034643649
317 => 0.0044607552640607
318 => 0.0044729069680628
319 => 0.0044417806337844
320 => 0.0044485308211389
321 => 0.004458755515665
322 => 0.0045208378586272
323 => 0.0046837598902307
324 => 0.0047559169489801
325 => 0.0049730050203942
326 => 0.0047499253097257
327 => 0.0047366886828902
328 => 0.0047757927999836
329 => 0.0049032464790098
330 => 0.0050065357147452
331 => 0.0050408027131376
401 => 0.0050453316626616
402 => 0.0051096188296728
403 => 0.0051464670349188
404 => 0.0051018126766773
405 => 0.0050639727835737
406 => 0.0049284349833372
407 => 0.0049441238527718
408 => 0.0050522046052726
409 => 0.0052048750341046
410 => 0.0053358821446932
411 => 0.0052900080206238
412 => 0.0056399952051887
413 => 0.0056746950049689
414 => 0.0056699006146181
415 => 0.0057489519225399
416 => 0.005592051174834
417 => 0.005524973065381
418 => 0.0050721541979637
419 => 0.0051993778294664
420 => 0.0053843048494374
421 => 0.0053598290649035
422 => 0.0052255301198872
423 => 0.0053357802669006
424 => 0.0052993281204571
425 => 0.0052705768001561
426 => 0.0054022921721723
427 => 0.0052574657100713
428 => 0.0053828600946915
429 => 0.0052220404993772
430 => 0.0052902175697584
501 => 0.0052515169672562
502 => 0.0052765610000426
503 => 0.005130154096107
504 => 0.005209151707644
505 => 0.0051268675357471
506 => 0.0051268285223359
507 => 0.0051250120946806
508 => 0.0052218190580135
509 => 0.0052249759296123
510 => 0.0051534354374421
511 => 0.0051431253348479
512 => 0.0051812471878823
513 => 0.0051366164821081
514 => 0.0051574989084375
515 => 0.0051372489895283
516 => 0.0051326903062533
517 => 0.0050963659423221
518 => 0.0050807164075813
519 => 0.005086852993392
520 => 0.0050659056623933
521 => 0.0050532841377685
522 => 0.0051225013557536
523 => 0.0050855213883987
524 => 0.0051168336453891
525 => 0.0050811493766267
526 => 0.0049574521542006
527 => 0.0048863125735089
528 => 0.0046526599870846
529 => 0.0047189235707494
530 => 0.0047628563952738
531 => 0.0047483365970306
601 => 0.0047795307420731
602 => 0.0047814458092303
603 => 0.0047713042746903
604 => 0.0047595616769041
605 => 0.0047538460297081
606 => 0.0047964457811649
607 => 0.0048211763707273
608 => 0.0047672656419602
609 => 0.0047546351125013
610 => 0.0048091418357778
611 => 0.0048423909054889
612 => 0.0050878833551975
613 => 0.0050696964815929
614 => 0.0051153419653467
615 => 0.0051102029843631
616 => 0.0051580467232329
617 => 0.0052362510160123
618 => 0.0050772398225276
619 => 0.0051048386675231
620 => 0.0050980720680806
621 => 0.0051719480264963
622 => 0.0051721786591746
623 => 0.0051278863317266
624 => 0.0051518979209971
625 => 0.0051384953105898
626 => 0.0051627156390673
627 => 0.0050694535848079
628 => 0.0051830366998792
629 => 0.0052474310069903
630 => 0.005248325122007
701 => 0.0052788475125129
702 => 0.0053098600290045
703 => 0.0053693858537891
704 => 0.0053081998860589
705 => 0.0051981322864461
706 => 0.005206078811622
707 => 0.0051415462182412
708 => 0.0051426310227947
709 => 0.0051368402510705
710 => 0.0051542187929238
711 => 0.0050732671974645
712 => 0.0050922663751151
713 => 0.0050656674151453
714 => 0.0051047808465788
715 => 0.0050627012600382
716 => 0.0050980688050215
717 => 0.0051133322649836
718 => 0.0051696547608426
719 => 0.0050543823816054
720 => 0.0048193341970868
721 => 0.0048687441751564
722 => 0.0047956629365214
723 => 0.004802426883397
724 => 0.0048160911325598
725 => 0.004771800830359
726 => 0.0047802500242711
727 => 0.0047799481596085
728 => 0.0047773468530267
729 => 0.0047658252348517
730 => 0.0047491166090152
731 => 0.0048156786317039
801 => 0.0048269888164049
802 => 0.0048521299559597
803 => 0.0049269329338768
804 => 0.0049194583524072
805 => 0.0049316497049016
806 => 0.0049050360508579
807 => 0.0048036614144783
808 => 0.0048091665449618
809 => 0.0047405174796187
810 => 0.0048503744450147
811 => 0.0048243588655679
812 => 0.0048075864522571
813 => 0.0048030099438899
814 => 0.0048779983439208
815 => 0.0049004360485092
816 => 0.0048864543767481
817 => 0.0048577775600555
818 => 0.0049128455256451
819 => 0.004927579390106
820 => 0.0049308777589947
821 => 0.0050284476357846
822 => 0.0049363308312412
823 => 0.0049585042616571
824 => 0.0051314950360769
825 => 0.0049746162747732
826 => 0.0050577184534496
827 => 0.0050536510342463
828 => 0.0050961632968328
829 => 0.0050501637878742
830 => 0.0050507340069177
831 => 0.0050884820160644
901 => 0.0050354717451072
902 => 0.0050223456565331
903 => 0.0050042120591788
904 => 0.0050438061055975
905 => 0.0050675409457409
906 => 0.0052588263259771
907 => 0.0053824054052829
908 => 0.0053770405115336
909 => 0.0054260655977419
910 => 0.0054039793473867
911 => 0.0053326570189314
912 => 0.0054543955367732
913 => 0.0054158723759721
914 => 0.0054190481785429
915 => 0.0054189299750126
916 => 0.0054445445091922
917 => 0.0054263942641884
918 => 0.0053906182682015
919 => 0.0054143680439334
920 => 0.0054848963871571
921 => 0.0057038185285971
922 => 0.0058263302592795
923 => 0.0056964431685797
924 => 0.005786037544487
925 => 0.0057323128446829
926 => 0.0057225494685572
927 => 0.0057788213575993
928 => 0.005835191743134
929 => 0.0058316011932713
930 => 0.0057906791880244
1001 => 0.0057675633856179
1002 => 0.005942603985802
1003 => 0.0060715709182789
1004 => 0.0060627762380892
1005 => 0.0061015930962631
1006 => 0.0062155605924217
1007 => 0.0062259803519833
1008 => 0.0062246677017739
1009 => 0.0061988412405111
1010 => 0.0063110570410287
1011 => 0.0064046694360697
1012 => 0.0061928631609269
1013 => 0.0062735162177536
1014 => 0.0063097239734422
1015 => 0.0063628877011502
1016 => 0.006452583821069
1017 => 0.0065500175980215
1018 => 0.0065637958023896
1019 => 0.0065540195070427
1020 => 0.006489759311982
1021 => 0.0065963725133501
1022 => 0.0066588240263244
1023 => 0.0066960124731231
1024 => 0.0067903161866371
1025 => 0.0063099475802148
1026 => 0.0059699188047202
1027 => 0.0059168184013517
1028 => 0.0060248001596718
1029 => 0.0060532740882024
1030 => 0.006041796283315
1031 => 0.0056590629824321
1101 => 0.005914803389731
1102 => 0.0061899585647205
1103 => 0.0062005283955965
1104 => 0.0063382768294196
1105 => 0.0063831333659715
1106 => 0.0064940389102991
1107 => 0.0064871017383051
1108 => 0.0065141054734562
1109 => 0.0065078977823844
1110 => 0.0067133269493336
1111 => 0.006939945827005
1112 => 0.0069320987358751
1113 => 0.006899519590977
1114 => 0.0069479051767204
1115 => 0.0071818001444321
1116 => 0.0071602668438957
1117 => 0.0071811846111647
1118 => 0.0074569599598395
1119 => 0.0078155071417028
1120 => 0.0076489259781788
1121 => 0.0080103591705873
1122 => 0.0082378622064581
1123 => 0.0086313051827438
1124 => 0.0085820441843653
1125 => 0.0087352086478154
1126 => 0.0084938567161872
1127 => 0.0079396638958959
1128 => 0.0078519607607199
1129 => 0.0080275446583393
1130 => 0.0084592005374106
1201 => 0.0080139502785745
1202 => 0.0081040238260419
1203 => 0.0080780826383117
1204 => 0.0080767003426605
1205 => 0.0081294569454638
1206 => 0.0080529307414983
1207 => 0.0077411492197419
1208 => 0.0078840368538228
1209 => 0.0078288610762764
1210 => 0.0078900827150908
1211 => 0.008220470650048
1212 => 0.0080743982685388
1213 => 0.0079205228805755
1214 => 0.0081135167647636
1215 => 0.0083592642992288
1216 => 0.0083438858601727
1217 => 0.0083140452607151
1218 => 0.0084822551574546
1219 => 0.0087600886259929
1220 => 0.0088351858961135
1221 => 0.0088906211656204
1222 => 0.0088982647526988
1223 => 0.0089769984500698
1224 => 0.0085536275158597
1225 => 0.0092255280613878
1226 => 0.0093415467247225
1227 => 0.0093197400244965
1228 => 0.0094486898859814
1229 => 0.0094107495655903
1230 => 0.0093557799939975
1231 => 0.0095601929528731
]
'min_raw' => 0.003523970708024
'max_raw' => 0.0095601929528731
'avg_raw' => 0.0065420818304485
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003523'
'max' => '$0.00956'
'avg' => '$0.006542'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0012153264241114
'max_diff' => 0.0044063072218007
'year' => 2032
]
7 => [
'items' => [
101 => 0.0093258499907974
102 => 0.0089932296590895
103 => 0.0088107475666303
104 => 0.009051054706391
105 => 0.0091978018910795
106 => 0.0092947924452847
107 => 0.0093241417283838
108 => 0.0085864925962999
109 => 0.0081889406260031
110 => 0.0084437668810208
111 => 0.008754672499311
112 => 0.0085519004194521
113 => 0.0085598487010842
114 => 0.0082707490027706
115 => 0.0087802514077189
116 => 0.0087060211929076
117 => 0.0090911276786593
118 => 0.008999218925162
119 => 0.0093132583145448
120 => 0.0092305612187143
121 => 0.0095738322399744
122 => 0.009710772344047
123 => 0.0099407160918101
124 => 0.010109863648704
125 => 0.010209190329389
126 => 0.010203227128046
127 => 0.010596808921277
128 => 0.010364727488509
129 => 0.010073178511559
130 => 0.010067905310391
131 => 0.010218902656835
201 => 0.010535351670881
202 => 0.010617402296078
203 => 0.010663257402011
204 => 0.010593028711047
205 => 0.010341120949204
206 => 0.010232348454841
207 => 0.01032502577148
208 => 0.010211689377083
209 => 0.010407339790389
210 => 0.010676009596531
211 => 0.010620530343998
212 => 0.010805989167301
213 => 0.010997919538582
214 => 0.011272388589647
215 => 0.011344144963155
216 => 0.011462755519912
217 => 0.011584844744355
218 => 0.011624056512848
219 => 0.011698923945601
220 => 0.011698529357274
221 => 0.011924147405032
222 => 0.012173011098519
223 => 0.012266951381602
224 => 0.012482961882655
225 => 0.012113051469513
226 => 0.012393632767105
227 => 0.012646724120939
228 => 0.012344978175167
301 => 0.012760864663626
302 => 0.012777012593554
303 => 0.013020827163759
304 => 0.012773674387636
305 => 0.012626915858114
306 => 0.013050602233874
307 => 0.013255610725108
308 => 0.013193860499134
309 => 0.012723938230486
310 => 0.012450423314218
311 => 0.011734582021259
312 => 0.012582526954812
313 => 0.012995536197052
314 => 0.012722868636324
315 => 0.01286038629383
316 => 0.013610638042936
317 => 0.013896285333792
318 => 0.013836872694119
319 => 0.013846912452209
320 => 0.01400104254549
321 => 0.01468454026009
322 => 0.014274972586148
323 => 0.014588071726668
324 => 0.014754138381837
325 => 0.014908390346153
326 => 0.014529596273627
327 => 0.01403679075086
328 => 0.013880698555231
329 => 0.0126957572211
330 => 0.012634075878719
331 => 0.012599452272104
401 => 0.012381155330007
402 => 0.012209633730084
403 => 0.012073233385636
404 => 0.011715278149213
405 => 0.01183607753362
406 => 0.011265571597827
407 => 0.011630561078058
408 => 0.010720019829185
409 => 0.011478345638126
410 => 0.011065623377163
411 => 0.01134275527527
412 => 0.011341788388185
413 => 0.010831500699021
414 => 0.010537177409344
415 => 0.01072473166476
416 => 0.010925804714642
417 => 0.010958428140494
418 => 0.011219124598209
419 => 0.011291879375905
420 => 0.011071429002889
421 => 0.010701150885673
422 => 0.010787158047158
423 => 0.010535434476962
424 => 0.010094298602601
425 => 0.010411130089061
426 => 0.010519310288635
427 => 0.010567088827657
428 => 0.010133282360021
429 => 0.0099969709494928
430 => 0.0099243998982913
501 => 0.01064515191821
502 => 0.010684636340866
503 => 0.010482628452019
504 => 0.011395723264782
505 => 0.011189061786909
506 => 0.011419953290984
507 => 0.010779353798737
508 => 0.010803825562023
509 => 0.010500555496331
510 => 0.010670366468605
511 => 0.010550349546665
512 => 0.01065664742015
513 => 0.010720361927235
514 => 0.011023582229293
515 => 0.011481807926906
516 => 0.010978291227672
517 => 0.010758901791323
518 => 0.010895009763741
519 => 0.011257483230387
520 => 0.011806649087032
521 => 0.011481531846905
522 => 0.011625813357225
523 => 0.011657332448592
524 => 0.011417603032217
525 => 0.01181548825256
526 => 0.012028718174556
527 => 0.012247447952808
528 => 0.012437364890595
529 => 0.012160082469403
530 => 0.012456814406953
531 => 0.012217700845526
601 => 0.012003191261821
602 => 0.012003516584314
603 => 0.01186895158897
604 => 0.011608214954212
605 => 0.011560131118345
606 => 0.011810269304845
607 => 0.012010856442243
608 => 0.012027377759627
609 => 0.01213843310543
610 => 0.012204154515115
611 => 0.012848313673953
612 => 0.013107399816402
613 => 0.013424205447138
614 => 0.013547619094497
615 => 0.013919049926806
616 => 0.013619089363579
617 => 0.013554191008885
618 => 0.012653221303802
619 => 0.012800755042536
620 => 0.013036970793138
621 => 0.012657116414526
622 => 0.01289804658733
623 => 0.01294561130704
624 => 0.012644209108094
625 => 0.012805201045371
626 => 0.012377654190746
627 => 0.011491127279986
628 => 0.011816475210439
629 => 0.012056040798182
630 => 0.011714151166249
701 => 0.012326975098533
702 => 0.011968976008546
703 => 0.011855507484008
704 => 0.011412826315332
705 => 0.011621754786586
706 => 0.011904333535525
707 => 0.011729732721986
708 => 0.012092055626523
709 => 0.012605201487336
710 => 0.012970899786116
711 => 0.012998973560602
712 => 0.01276385405437
713 => 0.01314063456362
714 => 0.013143378998289
715 => 0.012718369044662
716 => 0.01245805281453
717 => 0.012398908419334
718 => 0.012546662714475
719 => 0.012726063705724
720 => 0.013008929067049
721 => 0.013179858680695
722 => 0.013625552459022
723 => 0.013746144416395
724 => 0.013878638416352
725 => 0.014055691259929
726 => 0.014268288594062
727 => 0.013803137730153
728 => 0.013821619041126
729 => 0.013388476997106
730 => 0.012925602604218
731 => 0.013276866570312
801 => 0.013736097479293
802 => 0.013630749401368
803 => 0.013618895590535
804 => 0.013638830412383
805 => 0.013559401401974
806 => 0.01320014693167
807 => 0.013019731585735
808 => 0.013252513410854
809 => 0.013376226590978
810 => 0.013568094944427
811 => 0.013544443120015
812 => 0.014038675393342
813 => 0.014230719109949
814 => 0.014181586109227
815 => 0.014190627763812
816 => 0.014538313739525
817 => 0.014925012051593
818 => 0.015287206050181
819 => 0.015655645342139
820 => 0.015211477395253
821 => 0.014985956304295
822 => 0.015218636504152
823 => 0.015095173114897
824 => 0.015804630371175
825 => 0.015853751652312
826 => 0.016563157606756
827 => 0.017236468332012
828 => 0.016813573929093
829 => 0.017212344303463
830 => 0.01764364697557
831 => 0.018475699806402
901 => 0.018195493684949
902 => 0.017980860187306
903 => 0.017778032569135
904 => 0.018200084644572
905 => 0.018743047897174
906 => 0.018859996981347
907 => 0.019049499175696
908 => 0.018850260789564
909 => 0.019090221480272
910 => 0.019937388162541
911 => 0.019708476246844
912 => 0.019383384527129
913 => 0.020052141260027
914 => 0.020294161721937
915 => 0.021992788070722
916 => 0.024137374002816
917 => 0.023249501344818
918 => 0.022698370134528
919 => 0.022827899041953
920 => 0.023611029225539
921 => 0.023862545785197
922 => 0.023178837073089
923 => 0.023420334548735
924 => 0.024751009383055
925 => 0.025464873738507
926 => 0.024495350059029
927 => 0.021820472679215
928 => 0.019354113574674
929 => 0.020008303070796
930 => 0.0199341382838
1001 => 0.02136378238821
1002 => 0.019703016773361
1003 => 0.019730979807045
1004 => 0.021190187437514
1005 => 0.020800895858857
1006 => 0.02017029335813
1007 => 0.019358717670796
1008 => 0.017858444951093
1009 => 0.016529611565053
1010 => 0.01913575984713
1011 => 0.019023377994234
1012 => 0.018860632417183
1013 => 0.019222805088
1014 => 0.020981412772982
1015 => 0.020940871173785
1016 => 0.020682966204203
1017 => 0.020878584850561
1018 => 0.020136000463622
1019 => 0.020327381368468
1020 => 0.019353722890791
1021 => 0.019793857186271
1022 => 0.020168940368382
1023 => 0.020244243870392
1024 => 0.020413906505513
1025 => 0.018964157864429
1026 => 0.019615052441892
1027 => 0.019997392025577
1028 => 0.018269967876854
1029 => 0.019963246404249
1030 => 0.018938920965987
1031 => 0.018591249527389
1101 => 0.019059343317232
1102 => 0.018876926712094
1103 => 0.018720095626859
1104 => 0.018632581186598
1105 => 0.018976297604232
1106 => 0.018960262822519
1107 => 0.018397876050788
1108 => 0.017664265432881
1109 => 0.017910489236198
1110 => 0.017821033820093
1111 => 0.017496835852148
1112 => 0.017715306138731
1113 => 0.016753273561901
1114 => 0.015098146515568
1115 => 0.016191574140288
1116 => 0.016149478366157
1117 => 0.016128251767949
1118 => 0.016949932407806
1119 => 0.016870946773681
1120 => 0.016727587074316
1121 => 0.017494202938845
1122 => 0.017214377835853
1123 => 0.018076732868187
1124 => 0.018644735666109
1125 => 0.01850067178359
1126 => 0.019034881160432
1127 => 0.017916161735324
1128 => 0.018287755453112
1129 => 0.018364340403342
1130 => 0.017484743018075
1201 => 0.016883869800256
1202 => 0.016843798407084
1203 => 0.015801967052815
1204 => 0.016358504952896
1205 => 0.016848235273865
1206 => 0.016613692454729
1207 => 0.016539443204958
1208 => 0.016918766519341
1209 => 0.016948243189553
1210 => 0.016276171984921
1211 => 0.016415916870091
1212 => 0.016998676271904
1213 => 0.016401232828372
1214 => 0.015240497809422
1215 => 0.014952619476305
1216 => 0.014914211200017
1217 => 0.014133462328686
1218 => 0.014971856883068
1219 => 0.014605875192503
1220 => 0.015762006967864
1221 => 0.015101630698237
1222 => 0.015073163197131
1223 => 0.015030130393934
1224 => 0.014358107588049
1225 => 0.014505237873261
1226 => 0.014994321349879
1227 => 0.015168831844256
1228 => 0.01515062896997
1229 => 0.014991924574025
1230 => 0.01506457863379
1231 => 0.014830534592933
]
'min_raw' => 0.0081889406260031
'max_raw' => 0.025464873738507
'avg_raw' => 0.016826907182255
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008188'
'max' => '$0.025464'
'avg' => '$0.016826'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0046649699179792
'max_diff' => 0.015904680785634
'year' => 2033
]
8 => [
'items' => [
101 => 0.0147478887709
102 => 0.014487035823042
103 => 0.014103654052157
104 => 0.014156965638815
105 => 0.013397386033394
106 => 0.012983526750419
107 => 0.01286897595547
108 => 0.012715793845056
109 => 0.012886278282443
110 => 0.013395234239808
111 => 0.012781325374196
112 => 0.011728821684805
113 => 0.011792078949916
114 => 0.011934199243371
115 => 0.011669359016738
116 => 0.011418709968585
117 => 0.011636628980154
118 => 0.011190669292048
119 => 0.011988091341081
120 => 0.011966523309404
121 => 0.012263752937035
122 => 0.012449616722959
123 => 0.01202126087052
124 => 0.011913530532029
125 => 0.011974898628904
126 => 0.01096062068668
127 => 0.012180864790187
128 => 0.012191417511866
129 => 0.012101058702108
130 => 0.012750801016415
131 => 0.014121959959313
201 => 0.013606074810254
202 => 0.013406308487827
203 => 0.013026552562866
204 => 0.013532554785201
205 => 0.01349370170939
206 => 0.013317993365981
207 => 0.013211724411644
208 => 0.013407528218394
209 => 0.013187462153123
210 => 0.013147932240789
211 => 0.012908423981015
212 => 0.012822930429207
213 => 0.012759634407045
214 => 0.012689951705983
215 => 0.012843654380678
216 => 0.012495343898548
217 => 0.012075315602396
218 => 0.01204039479434
219 => 0.012136814215651
220 => 0.012094155799303
221 => 0.012040190562255
222 => 0.011937156228172
223 => 0.01190658814223
224 => 0.012005919592015
225 => 0.011893780176591
226 => 0.012059247992599
227 => 0.012014249902397
228 => 0.011762894228404
301 => 0.011449611994819
302 => 0.011446823125808
303 => 0.011379326982468
304 => 0.011293360495812
305 => 0.011269446585871
306 => 0.011618276448825
307 => 0.012340343825541
308 => 0.012198584721884
309 => 0.012301020202333
310 => 0.012804901382025
311 => 0.012965070056813
312 => 0.012851386125251
313 => 0.01269576854801
314 => 0.012702614931636
315 => 0.013234407301713
316 => 0.013267574539525
317 => 0.013351377449319
318 => 0.013459087871104
319 => 0.012869729675834
320 => 0.012674856213639
321 => 0.012582514356083
322 => 0.012298137175606
323 => 0.012604813584093
324 => 0.012426126374061
325 => 0.012450237383519
326 => 0.012434535056979
327 => 0.012443109589056
328 => 0.011987868445367
329 => 0.012153734391357
330 => 0.011877950085919
331 => 0.011508705859178
401 => 0.011507468023056
402 => 0.011597840024443
403 => 0.011544083221762
404 => 0.011399425047959
405 => 0.01141997305878
406 => 0.011239950862352
407 => 0.011441831012834
408 => 0.011447620213188
409 => 0.011369885358766
410 => 0.011680909584675
411 => 0.011808336463802
412 => 0.011757169717379
413 => 0.011804746468473
414 => 0.012204475452645
415 => 0.012269648718463
416 => 0.012298594378035
417 => 0.012259811028774
418 => 0.01181205278051
419 => 0.011831912762836
420 => 0.011686193389836
421 => 0.011563075875181
422 => 0.011567999930101
423 => 0.01163129833679
424 => 0.011907726191206
425 => 0.012489452314511
426 => 0.012511528395654
427 => 0.012538285250005
428 => 0.012429451676445
429 => 0.012396626429262
430 => 0.012439931403211
501 => 0.012658397149418
502 => 0.013220350361534
503 => 0.013021718564779
504 => 0.01286022782213
505 => 0.013001898741025
506 => 0.012980089613514
507 => 0.012795998629395
508 => 0.012790831808605
509 => 0.012437502352631
510 => 0.01230688449768
511 => 0.012197730441506
512 => 0.012078537061703
513 => 0.012007875230758
514 => 0.012116443918318
515 => 0.01214127486171
516 => 0.011903887528903
517 => 0.011871532512618
518 => 0.012065388132949
519 => 0.011980079502108
520 => 0.012067821544481
521 => 0.012088178450948
522 => 0.012084900520148
523 => 0.011995828511915
524 => 0.012052600353797
525 => 0.011918318023246
526 => 0.011772306157325
527 => 0.011679159683728
528 => 0.011597877031428
529 => 0.011642977371099
530 => 0.011482202895167
531 => 0.011430767904565
601 => 0.012033367331174
602 => 0.012478514006646
603 => 0.012472041397687
604 => 0.012432641055271
605 => 0.012374100138507
606 => 0.012654114516728
607 => 0.01255656310642
608 => 0.012627539908112
609 => 0.01264560648303
610 => 0.012700288564001
611 => 0.012719832707865
612 => 0.012660756730828
613 => 0.012462490536371
614 => 0.011968430030366
615 => 0.01173844353113
616 => 0.011662544155654
617 => 0.011665302953799
618 => 0.01158920298514
619 => 0.011611617836471
620 => 0.011581408014591
621 => 0.011524197920489
622 => 0.011639444809002
623 => 0.011652725939304
624 => 0.011625825938428
625 => 0.011632161862428
626 => 0.01140944134431
627 => 0.011426374301579
628 => 0.011332089443769
629 => 0.01131441216955
630 => 0.011076068259328
701 => 0.010653807473867
702 => 0.010887780938858
703 => 0.010605173894796
704 => 0.010498146325014
705 => 0.01100479819416
706 => 0.010953944398833
707 => 0.010866904806847
708 => 0.010738155109659
709 => 0.010690400594576
710 => 0.010400259278171
711 => 0.010383116181354
712 => 0.010526918052239
713 => 0.010460558436745
714 => 0.010367364404242
715 => 0.01002982506544
716 => 0.0096503190931923
717 => 0.0096617739930049
718 => 0.0097824877818173
719 => 0.010133479403261
720 => 0.0099963409045465
721 => 0.0098968453502458
722 => 0.0098782128237507
723 => 0.010111437902674
724 => 0.010441500251514
725 => 0.010596358120862
726 => 0.010442898675442
727 => 0.010266612727387
728 => 0.010277342436215
729 => 0.010348722382051
730 => 0.0103562234051
731 => 0.010241479375405
801 => 0.010273779147647
802 => 0.010224712840058
803 => 0.0099235930009533
804 => 0.0099181466979252
805 => 0.0098442470331955
806 => 0.0098420093807171
807 => 0.0097162876158767
808 => 0.009698698271902
809 => 0.0094490700770457
810 => 0.0096133761108439
811 => 0.009503168249826
812 => 0.0093370590078657
813 => 0.0093084217119414
814 => 0.0093075608402454
815 => 0.0094781178903917
816 => 0.0096113830524098
817 => 0.0095050853627525
818 => 0.0094808834393117
819 => 0.0097392966642647
820 => 0.0097064112259006
821 => 0.0096779326483656
822 => 0.010411946788331
823 => 0.0098309173207108
824 => 0.0095775553088258
825 => 0.0092639717069769
826 => 0.0093660761089647
827 => 0.0093875910066893
828 => 0.0086334789719355
829 => 0.0083275358133546
830 => 0.0082225476505543
831 => 0.008162125478548
901 => 0.0081896606210652
902 => 0.007914275894789
903 => 0.0080993389852896
904 => 0.0078608790900259
905 => 0.0078209005125693
906 => 0.0082472963448133
907 => 0.0083066268339017
908 => 0.0080535045349123
909 => 0.0082160500276414
910 => 0.0081571087724265
911 => 0.0078649668005088
912 => 0.0078538091260324
913 => 0.0077072225538109
914 => 0.0074778429530379
915 => 0.0073730103204083
916 => 0.0073184125751361
917 => 0.0073409406689243
918 => 0.0073295497753339
919 => 0.0072552164895597
920 => 0.0073338104722631
921 => 0.0071330353237319
922 => 0.0070530850418314
923 => 0.0070169733543294
924 => 0.0068387738538216
925 => 0.0071223685048071
926 => 0.0071782402236826
927 => 0.0072342220271038
928 => 0.0077215054054855
929 => 0.00769716210495
930 => 0.007917213686122
1001 => 0.0079086628863265
1002 => 0.007845900610777
1003 => 0.0075811168941269
1004 => 0.0076866549642677
1005 => 0.0073618251886318
1006 => 0.0076052097428159
1007 => 0.0074941391962683
1008 => 0.0075676566793013
1009 => 0.0074354656160038
1010 => 0.0075086256084678
1011 => 0.0071914894809321
1012 => 0.0068953522272649
1013 => 0.0070145265029259
1014 => 0.007144082569801
1015 => 0.0074249931330581
1016 => 0.007257685119044
1017 => 0.0073178554074999
1018 => 0.0071162950135572
1019 => 0.0067004183479734
1020 => 0.0067027721647365
1021 => 0.0066387986001021
1022 => 0.0065835160999646
1023 => 0.0072769024570694
1024 => 0.0071906689027472
1025 => 0.0070532670199034
1026 => 0.0072371849002236
1027 => 0.0072858157069495
1028 => 0.0072872001576502
1029 => 0.0074213818955242
1030 => 0.007492994713081
1031 => 0.0075056167825631
1101 => 0.0077167546462963
1102 => 0.0077875252732439
1103 => 0.0080790194698071
1104 => 0.0074869188658423
1105 => 0.0074747249435462
1106 => 0.0072397730019682
1107 => 0.0070907627661762
1108 => 0.0072499758602967
1109 => 0.0073910169269328
1110 => 0.007244155541059
1111 => 0.0072633325376411
1112 => 0.0070661831261217
1113 => 0.0071366547639978
1114 => 0.0071973544320916
1115 => 0.0071638396431318
1116 => 0.0071136663819249
1117 => 0.0073794531678798
1118 => 0.0073644564357894
1119 => 0.0076119632012824
1120 => 0.0078049124243628
1121 => 0.0081507119259221
1122 => 0.0077898521191092
1123 => 0.0077767009534612
1124 => 0.0079052557071845
1125 => 0.0077875055921809
1126 => 0.0078619196002674
1127 => 0.0081387226787833
1128 => 0.0081445710916518
1129 => 0.0080466026408506
1130 => 0.008040641251716
1201 => 0.0080594571643498
1202 => 0.0081696625523501
1203 => 0.0081311534035133
1204 => 0.0081757171654797
1205 => 0.0082314448322031
1206 => 0.0084619580898125
1207 => 0.0085175340558231
1208 => 0.0083825132712519
1209 => 0.008394704136335
1210 => 0.008344202656502
1211 => 0.0082954188597649
1212 => 0.0084050777105284
1213 => 0.0086054814156489
1214 => 0.0086042347146003
1215 => 0.0086507244788968
1216 => 0.0086796872169116
1217 => 0.0085553579433322
1218 => 0.0084744241579462
1219 => 0.0085054593212138
1220 => 0.0085550852231366
1221 => 0.0084893663100614
1222 => 0.0080837187345995
1223 => 0.0082067662961272
1224 => 0.0081862851651707
1225 => 0.0081571175440979
1226 => 0.0082808428187126
1227 => 0.0082689092141462
1228 => 0.0079114514263865
1229 => 0.0079343347141899
1230 => 0.0079128430349096
1231 => 0.0079822870474481
]
'min_raw' => 0.0065835160999646
'max_raw' => 0.0147478887709
'avg_raw' => 0.010665702435432
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.006583'
'max' => '$0.014747'
'avg' => '$0.010665'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0016054245260386
'max_diff' => -0.010716984967607
'year' => 2034
]
9 => [
'items' => [
101 => 0.007783755387608
102 => 0.0078448223890437
103 => 0.0078831230398766
104 => 0.0079056824174566
105 => 0.0079871823583857
106 => 0.0079776192809864
107 => 0.0079865879040674
108 => 0.0081074308012785
109 => 0.0087186127070978
110 => 0.0087518779897346
111 => 0.0085880675718251
112 => 0.0086535066027624
113 => 0.0085278779733058
114 => 0.0086122133138986
115 => 0.0086699134120469
116 => 0.0084091777636058
117 => 0.0083937386906654
118 => 0.0082675915471665
119 => 0.0083353758767434
120 => 0.0082275261345208
121 => 0.0082539886888384
122 => 0.0081799970800023
123 => 0.0083131672443248
124 => 0.0084620721805888
125 => 0.0084996914479232
126 => 0.0084007313516793
127 => 0.0083290777202105
128 => 0.008203277547525
129 => 0.0084124860383408
130 => 0.0084736649765685
131 => 0.0084121646914229
201 => 0.0083979137315469
202 => 0.0083709081883328
203 => 0.0084036430852032
204 => 0.0084733317829321
205 => 0.0084404678800313
206 => 0.0084621750668847
207 => 0.0083794496549535
208 => 0.0085553991014951
209 => 0.0088348491671435
210 => 0.0088357476447993
211 => 0.0088028835647498
212 => 0.0087894362912601
213 => 0.00882315683175
214 => 0.0088414488416767
215 => 0.0089504948863313
216 => 0.0090675056368318
217 => 0.0096135437536274
218 => 0.009460218435438
219 => 0.009944695936612
220 => 0.010327854738511
221 => 0.010442747309696
222 => 0.010337051550319
223 => 0.0099754720670608
224 => 0.0099577312526061
225 => 0.010498083655514
226 => 0.010345409351984
227 => 0.010327249229385
228 => 0.010134056206941
301 => 0.010248257210627
302 => 0.010223279775893
303 => 0.010183851673228
304 => 0.01040173923295
305 => 0.010809605293792
306 => 0.010746035543266
307 => 0.010698583673414
308 => 0.010490663392755
309 => 0.010615877842388
310 => 0.010571291375199
311 => 0.010762863133515
312 => 0.010649380267722
313 => 0.010344252693976
314 => 0.010392845265809
315 => 0.010385500596331
316 => 0.010536653373736
317 => 0.010491281061801
318 => 0.010376640924226
319 => 0.010808211251937
320 => 0.010780187475375
321 => 0.010819918783412
322 => 0.010837409733941
323 => 0.011100098987297
324 => 0.011207714369278
325 => 0.01123214494506
326 => 0.01133437123467
327 => 0.011229601461848
328 => 0.011648755252716
329 => 0.01192746806534
330 => 0.012251207339634
331 => 0.012724277432291
401 => 0.012902156163273
402 => 0.012870023962652
403 => 0.01322870030783
404 => 0.013873233727188
405 => 0.01300030259462
406 => 0.013919501196857
407 => 0.013628493532047
408 => 0.012938519593787
409 => 0.012894093406421
410 => 0.013361351768173
411 => 0.014397685842588
412 => 0.014138095910951
413 => 0.014398110438721
414 => 0.014094789680593
415 => 0.014079727248363
416 => 0.014383378826523
417 => 0.015092877290079
418 => 0.014755821165196
419 => 0.014272568560623
420 => 0.014629394763596
421 => 0.014320278883875
422 => 0.013623754290775
423 => 0.014137897407423
424 => 0.013794104547274
425 => 0.013894441580899
426 => 0.014617043037603
427 => 0.014530097718566
428 => 0.01464261301232
429 => 0.014444026463883
430 => 0.014258515313418
501 => 0.013912244974837
502 => 0.013809731398504
503 => 0.01383806246295
504 => 0.013809717359035
505 => 0.013615982286988
506 => 0.013574145216625
507 => 0.013504414933096
508 => 0.01352602726371
509 => 0.013394913930362
510 => 0.013642351879788
511 => 0.013688278543617
512 => 0.013868343248597
513 => 0.013887038163609
514 => 0.014388515803917
515 => 0.014112310346625
516 => 0.014297612813808
517 => 0.014281037617009
518 => 0.012953473421213
519 => 0.013136400054196
520 => 0.013420976489577
521 => 0.013292775191172
522 => 0.013111528549711
523 => 0.012965162168901
524 => 0.012743402135244
525 => 0.013055525124092
526 => 0.013465933663849
527 => 0.013897446801455
528 => 0.014415881562427
529 => 0.014300172959024
530 => 0.013887755024214
531 => 0.013906255791498
601 => 0.014020620255065
602 => 0.013872507883639
603 => 0.013828826653808
604 => 0.014014619124857
605 => 0.014015898575495
606 => 0.013845477392192
607 => 0.013656085433697
608 => 0.013655291874476
609 => 0.013621591404771
610 => 0.014100784919287
611 => 0.014364292900342
612 => 0.014394503665705
613 => 0.014362259475126
614 => 0.014374668984354
615 => 0.01422133949618
616 => 0.014571805237698
617 => 0.014893427259584
618 => 0.014807225687266
619 => 0.014677997276086
620 => 0.014575060622098
621 => 0.014782977082961
622 => 0.014773718890249
623 => 0.0148906181718
624 => 0.014885314945146
625 => 0.014846006113565
626 => 0.014807227091109
627 => 0.014960981531765
628 => 0.014916702722077
629 => 0.014872355135167
630 => 0.014783409260343
701 => 0.014795498481966
702 => 0.014666292383894
703 => 0.014606515730856
704 => 0.013707618293421
705 => 0.013467403525818
706 => 0.013542979981728
707 => 0.013567861713356
708 => 0.013463319938651
709 => 0.013613205988999
710 => 0.013589846406821
711 => 0.013680724876178
712 => 0.013623947954008
713 => 0.013626278098699
714 => 0.013793246920683
715 => 0.013841718680041
716 => 0.013817065552017
717 => 0.013834331757826
718 => 0.014232224183077
719 => 0.01417565660409
720 => 0.014145606205187
721 => 0.014153930371051
722 => 0.014255600416613
723 => 0.014284062478391
724 => 0.014163466722642
725 => 0.014220340378209
726 => 0.014462501185272
727 => 0.01454724376263
728 => 0.014817701390811
729 => 0.014702806183358
730 => 0.014913701309185
731 => 0.015561921026529
801 => 0.016079763790136
802 => 0.015603534183966
803 => 0.016554486472452
804 => 0.017294939235042
805 => 0.017266519424725
806 => 0.017137404358587
807 => 0.016294418574333
808 => 0.015518690487452
809 => 0.016167619971282
810 => 0.01616927422599
811 => 0.016113530607822
812 => 0.015767311782878
813 => 0.016101482943187
814 => 0.016128008236361
815 => 0.016113161125828
816 => 0.015847715964497
817 => 0.015442430265609
818 => 0.015521622121055
819 => 0.015651339995745
820 => 0.015405756996973
821 => 0.015327278348467
822 => 0.015473185087214
823 => 0.015943327000333
824 => 0.015854449395004
825 => 0.015852128441546
826 => 0.016232384527112
827 => 0.015960203234246
828 => 0.01552262098396
829 => 0.015412125694762
830 => 0.015019941856654
831 => 0.015290824630546
901 => 0.015300573219335
902 => 0.015152213492429
903 => 0.015534659558141
904 => 0.015531135250317
905 => 0.015894210870126
906 => 0.016588275090225
907 => 0.016383006147516
908 => 0.016144300700342
909 => 0.016170254601034
910 => 0.016454904831939
911 => 0.016282798804401
912 => 0.016344689331869
913 => 0.016454811153213
914 => 0.0165212503822
915 => 0.016160695018425
916 => 0.016076632315772
917 => 0.015904669528144
918 => 0.015859807646689
919 => 0.015999867749091
920 => 0.015962966860504
921 => 0.015299753888195
922 => 0.015230444442507
923 => 0.015232570064255
924 => 0.015058288167587
925 => 0.014792466442721
926 => 0.01549103006428
927 => 0.015434925629077
928 => 0.015372990674751
929 => 0.01538057735326
930 => 0.015683800144861
1001 => 0.015507915612615
1002 => 0.0159755334685
1003 => 0.015879405295209
1004 => 0.015780811796999
1005 => 0.015767183172314
1006 => 0.015729233087105
1007 => 0.015599088124318
1008 => 0.015441930261253
1009 => 0.015338161027277
1010 => 0.014148642775539
1011 => 0.014369410443952
1012 => 0.014623383522855
1013 => 0.01471105401196
1014 => 0.014561087573734
1015 => 0.015605009713356
1016 => 0.015795744347749
1017 => 0.01521799669886
1018 => 0.015109923703034
1019 => 0.01561209496097
1020 => 0.015309224304495
1021 => 0.015445606942561
1022 => 0.015150822276377
1023 => 0.015749801959686
1024 => 0.015745238738064
1025 => 0.015512222112688
1026 => 0.015709166168827
1027 => 0.015674942292518
1028 => 0.015411867096362
1029 => 0.015758141912642
1030 => 0.015758313660631
1031 => 0.015534040224924
1101 => 0.015272137951787
1102 => 0.015225316011206
1103 => 0.01519004196862
1104 => 0.015436931690423
1105 => 0.015658292242987
1106 => 0.016070189351374
1107 => 0.016173750070856
1108 => 0.016577954453423
1109 => 0.016337270423958
1110 => 0.01644396253684
1111 => 0.016559791917894
1112 => 0.016615324782655
1113 => 0.016524836959584
1114 => 0.017152732742872
1115 => 0.017205746385211
1116 => 0.017223521400922
1117 => 0.017011798475613
1118 => 0.017199857987655
1119 => 0.017111871169847
1120 => 0.017340788426341
1121 => 0.017376685575122
1122 => 0.017346281967183
1123 => 0.017357676288804
1124 => 0.016821878006174
1125 => 0.016794094038658
1126 => 0.016415257670124
1127 => 0.016569636290519
1128 => 0.016281032859251
1129 => 0.016372551980251
1130 => 0.016412892736762
1201 => 0.016391821014878
1202 => 0.016578364626088
1203 => 0.016419764448218
1204 => 0.016001192502534
1205 => 0.015582506517203
1206 => 0.015577250255712
1207 => 0.015467017626196
1208 => 0.015387339625169
1209 => 0.015402688434895
1210 => 0.015456779642349
1211 => 0.015384195745859
1212 => 0.015399685200272
1213 => 0.015656913349225
1214 => 0.01570849862003
1215 => 0.015533191714168
1216 => 0.014829309190463
1217 => 0.01465657465359
1218 => 0.01478073281322
1219 => 0.014721393209726
1220 => 0.011881313277881
1221 => 0.012548547930367
1222 => 0.012152099757007
1223 => 0.012334801314995
1224 => 0.011930130389752
1225 => 0.012123260565898
1226 => 0.012087596474349
1227 => 0.013160490050638
1228 => 0.013143738293161
1229 => 0.013151756472982
1230 => 0.012769027858873
1231 => 0.013378724933362
]
'min_raw' => 0.007783755387608
'max_raw' => 0.017376685575122
'avg_raw' => 0.012580220481365
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.007783'
'max' => '$0.017376'
'avg' => '$0.01258'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0012002392876435
'max_diff' => 0.0026287968042213
'year' => 2035
]
10 => [
'items' => [
101 => 0.013679083636253
102 => 0.013623495234136
103 => 0.013637485637344
104 => 0.013397084157811
105 => 0.013154084084795
106 => 0.012884559606377
107 => 0.013385302773045
108 => 0.013329628680883
109 => 0.013457325017397
110 => 0.013782092754842
111 => 0.013829916037854
112 => 0.013894191015197
113 => 0.013871153011224
114 => 0.014420011731702
115 => 0.014353541319166
116 => 0.014513715888536
117 => 0.014184224646868
118 => 0.013811374031325
119 => 0.013882240743935
120 => 0.013875415709637
121 => 0.013788525189608
122 => 0.013710084313264
123 => 0.013579502354731
124 => 0.013992682994023
125 => 0.013975908614625
126 => 0.014247466319009
127 => 0.014199465856988
128 => 0.013878907023908
129 => 0.013890355845344
130 => 0.013967354671612
131 => 0.014233848488483
201 => 0.014312961997613
202 => 0.014276313468056
203 => 0.014363057819148
204 => 0.014431617017399
205 => 0.014371667798892
206 => 0.015220422311235
207 => 0.014867960262752
208 => 0.015039747812768
209 => 0.015080718131216
210 => 0.014975773522025
211 => 0.014998532249974
212 => 0.015033005521434
213 => 0.015242320475182
214 => 0.015791623479586
215 => 0.016034906041004
216 => 0.016766833630382
217 => 0.016014704810935
218 => 0.015970076599408
219 => 0.01610191886035
220 => 0.016531637837719
221 => 0.016879884707425
222 => 0.01699541828495
223 => 0.017010687954472
224 => 0.017227436626436
225 => 0.017351672923083
226 => 0.017201117636604
227 => 0.017073537795108
228 => 0.016616562638664
229 => 0.016669458757324
301 => 0.017033860560338
302 => 0.017548599570254
303 => 0.017990299190228
304 => 0.017835631378099
305 => 0.019015637606184
306 => 0.019132630403806
307 => 0.019116465782004
308 => 0.019382992785849
309 => 0.018853990960498
310 => 0.018627832431233
311 => 0.017101122004932
312 => 0.017530065361014
313 => 0.018153559720038
314 => 0.018071037903638
315 => 0.017618239634062
316 => 0.017989955702137
317 => 0.017867054745395
318 => 0.017770117661648
319 => 0.018214205234474
320 => 0.017725912706039
321 => 0.018148688628543
322 => 0.017606474134875
323 => 0.017836337887637
324 => 0.017705856104311
325 => 0.017790293809368
326 => 0.017296672710946
327 => 0.01756301867368
328 => 0.017285591843232
329 => 0.017285460306792
330 => 0.017279336094134
331 => 0.017605727529857
401 => 0.017616371142858
402 => 0.017375167378708
403 => 0.017340406147984
404 => 0.017468936637072
405 => 0.017318461096538
406 => 0.017388867654872
407 => 0.017320593639466
408 => 0.017305223720527
409 => 0.017182753591446
410 => 0.017129990092452
411 => 0.017150680019956
412 => 0.017080054630998
413 => 0.017037500279518
414 => 0.017270870962547
415 => 0.017146190420751
416 => 0.017251761881346
417 => 0.017131449877818
418 => 0.016714396056144
419 => 0.016474543993035
420 => 0.015686767984803
421 => 0.015910180283504
422 => 0.01605830286868
423 => 0.016009348355163
424 => 0.01611452159308
425 => 0.016120978375706
426 => 0.016086785483945
427 => 0.016047194495667
428 => 0.016027923792092
429 => 0.016171551828348
430 => 0.016254932737692
501 => 0.016073168951727
502 => 0.016030584239821
503 => 0.016214357462886
504 => 0.016326459022793
505 => 0.017154153956721
506 => 0.017092835642596
507 => 0.017246732577938
508 => 0.017229406144759
509 => 0.017390714650702
510 => 0.017654385883857
511 => 0.017118268543216
512 => 0.017211319976009
513 => 0.017188505913559
514 => 0.017437583865212
515 => 0.01743836145939
516 => 0.017289026785007
517 => 0.017369983534668
518 => 0.01732479569794
519 => 0.017406456226411
520 => 0.017092016699127
521 => 0.017474970101709
522 => 0.017692080004001
523 => 0.017695094575205
524 => 0.017798002945801
525 => 0.017902563810377
526 => 0.018103259284599
527 => 0.017896966522529
528 => 0.01752586592576
529 => 0.017552658190199
530 => 0.017335082046094
531 => 0.017338739540385
601 => 0.017319215549218
602 => 0.017377808516407
603 => 0.017104874560456
604 => 0.017168931614385
605 => 0.017079251363767
606 => 0.017211125028658
607 => 0.017069250764733
608 => 0.017188494911928
609 => 0.017239956732851
610 => 0.01742985195995
611 => 0.017041203085291
612 => 0.016248721720647
613 => 0.016415310911403
614 => 0.016168912412976
615 => 0.016191717532111
616 => 0.01623778750217
617 => 0.016088459656051
618 => 0.016116946703229
619 => 0.016115928945443
620 => 0.016107158458685
621 => 0.016068312518595
622 => 0.016011978220028
623 => 0.016236396726735
624 => 0.016274529804106
625 => 0.016359294911414
626 => 0.016611498374038
627 => 0.016586297300755
628 => 0.016627401296863
629 => 0.016537671504149
630 => 0.016195879839843
701 => 0.016214440771625
702 => 0.015982985654896
703 => 0.016353376083697
704 => 0.016265662741242
705 => 0.016209113378752
706 => 0.016193683361271
707 => 0.016446511987498
708 => 0.016522162275068
709 => 0.016475022092556
710 => 0.016378336202926
711 => 0.016564001693634
712 => 0.016613677946349
713 => 0.016624798627342
714 => 0.01695376227905
715 => 0.016643184041142
716 => 0.016717943309889
717 => 0.017301193783676
718 => 0.016772266087015
719 => 0.017052450884431
720 => 0.017038737296609
721 => 0.017182070358031
722 => 0.017026979801994
723 => 0.01702890233531
724 => 0.01715617238363
725 => 0.016977444554039
726 => 0.016933189029977
727 => 0.01687205034045
728 => 0.017005544432319
729 => 0.017085568102976
730 => 0.017730500117561
731 => 0.018147155611456
801 => 0.018129067497616
802 => 0.018294358998589
803 => 0.018219893663504
804 => 0.017979425453551
805 => 0.018389875365966
806 => 0.018259991839724
807 => 0.018270699279819
808 => 0.018270300748364
809 => 0.0183566619387
810 => 0.01829546712046
811 => 0.01817484585219
812 => 0.018254919879227
813 => 0.018492711112537
814 => 0.019230822397058
815 => 0.01964387925055
816 => 0.019205955855828
817 => 0.019508029549479
818 => 0.019326892973151
819 => 0.019293975068886
820 => 0.019483699671569
821 => 0.019673756362054
822 => 0.019661650572508
823 => 0.019523679174735
824 => 0.019445742633027
825 => 0.020035904237493
826 => 0.020470725254522
827 => 0.020441073376238
828 => 0.020571947123677
829 => 0.020956196493932
830 => 0.020991327440779
831 => 0.020986901748952
901 => 0.020899826031658
902 => 0.02127816943776
903 => 0.02159379016345
904 => 0.020879670518964
905 => 0.021151597931071
906 => 0.021273674907321
907 => 0.021452920127061
908 => 0.02175533685775
909 => 0.022083841639355
910 => 0.022130295817345
911 => 0.022097334355024
912 => 0.021880676620873
913 => 0.022240130472782
914 => 0.022450690109
915 => 0.022576073553796
916 => 0.022894025107984
917 => 0.021274428813166
918 => 0.020127998056535
919 => 0.019948966339226
920 => 0.020313034376448
921 => 0.020409036214475
922 => 0.020370337993943
923 => 0.01907992594843
924 => 0.019942172586863
925 => 0.020869877470061
926 => 0.020905514392822
927 => 0.021369942854745
928 => 0.021521179799513
929 => 0.021895105585391
930 => 0.021871716425676
1001 => 0.021962761404078
1002 => 0.021941831740223
1003 => 0.022634450519198
1004 => 0.023398511887292
1005 => 0.023372054871681
1006 => 0.023262212010054
1007 => 0.023425347390562
1008 => 0.024213940604227
1009 => 0.024141339578061
1010 => 0.02421186529084
1011 => 0.025141661132918
1012 => 0.026350527989534
1013 => 0.025788887966388
1014 => 0.027007485209053
1015 => 0.027774527578246
1016 => 0.029101048042105
1017 => 0.028934961146778
1018 => 0.029451365828902
1019 => 0.028637630940764
1020 => 0.026769131154644
1021 => 0.026473433911161
1022 => 0.027065427280861
1023 => 0.028520785214401
1024 => 0.027019592880355
1025 => 0.027323282134375
1026 => 0.027235819608787
1027 => 0.02723115910249
1028 => 0.02740903167219
1029 => 0.027151018232632
1030 => 0.026099825064139
1031 => 0.026581580698539
1101 => 0.026395551712291
1102 => 0.026601964741913
1103 => 0.02771589073157
1104 => 0.027223397498863
1105 => 0.026704595885109
1106 => 0.027355288240051
1107 => 0.028183843210046
1108 => 0.02813199372908
1109 => 0.028031384064605
1110 => 0.028598515475502
1111 => 0.029535250412392
1112 => 0.029788446101727
1113 => 0.029975349983237
1114 => 0.03000112087073
1115 => 0.030266577028427
1116 => 0.028839152364923
1117 => 0.03110451196477
1118 => 0.031495676988367
1119 => 0.03142215417606
1120 => 0.031856917637048
1121 => 0.031728999197941
1122 => 0.031543665449463
1123 => 0.032232858011969
1124 => 0.031442754354027
1125 => 0.030321301682864
1126 => 0.029706050567645
1127 => 0.030516262867057
1128 => 0.031011031245796
1129 => 0.031338041670963
1130 => 0.031436994828033
1201 => 0.028949959278194
1202 => 0.027609585054146
1203 => 0.028468749564339
1204 => 0.029516989563142
1205 => 0.028833329338803
1206 => 0.028860127525257
1207 => 0.027885407708097
1208 => 0.029603230638702
1209 => 0.029352958286877
1210 => 0.030651371690865
1211 => 0.030341494911585
1212 => 0.031400300638419
1213 => 0.0311214816061
1214 => 0.032278843820696
1215 => 0.032740546942429
1216 => 0.033515818342172
1217 => 0.034086111139746
1218 => 0.034420997978444
1219 => 0.034400892628777
1220 => 0.035727881123659
1221 => 0.034945402369674
1222 => 0.033962424638586
1223 => 0.033944645672686
1224 => 0.034453743768518
1225 => 0.035520673713142
1226 => 0.035797313124583
1227 => 0.035951916815736
1228 => 0.035715135880942
1229 => 0.034865811274249
1230 => 0.034499077215252
1231 => 0.034811545258826
]
'min_raw' => 0.012884559606377
'max_raw' => 0.035951916815736
'avg_raw' => 0.024418238211057
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.012884'
'max' => '$0.035951'
'avg' => '$0.024418'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0051008042187692
'max_diff' => 0.018575231240615
'year' => 2036
]
11 => [
'items' => [
101 => 0.03442942369222
102 => 0.035089072720556
103 => 0.035994911729892
104 => 0.03580785955654
105 => 0.036433146927627
106 => 0.037080253574552
107 => 0.038005645143033
108 => 0.038247576766185
109 => 0.038647480539419
110 => 0.039059112883622
111 => 0.039191318098778
112 => 0.039443738875379
113 => 0.039442408493288
114 => 0.040203095493453
115 => 0.04104215681115
116 => 0.041358883034267
117 => 0.042087177519937
118 => 0.040839998735709
119 => 0.041785998170103
120 => 0.042639313339829
121 => 0.041621955816427
122 => 0.043024146148535
123 => 0.043078590021699
124 => 0.043900627867734
125 => 0.043067335027382
126 => 0.042572528398746
127 => 0.044001016595456
128 => 0.044692217036888
129 => 0.044484021838753
130 => 0.042899646101081
131 => 0.041977471464684
201 => 0.03956396256703
202 => 0.042422868112126
203 => 0.043815357607725
204 => 0.042896039889688
205 => 0.043359690273148
206 => 0.045889216426162
207 => 0.04685229621054
208 => 0.046651982347825
209 => 0.046685832093177
210 => 0.047205492463693
211 => 0.049509952728753
212 => 0.048129066720958
213 => 0.049184702333106
214 => 0.049744607655411
215 => 0.050264678922631
216 => 0.048987548260551
217 => 0.047326020033959
218 => 0.046799744298387
219 => 0.042804631860401
220 => 0.04259666890811
221 => 0.042479933001067
222 => 0.04174392961978
223 => 0.041165632570382
224 => 0.040705749285907
225 => 0.039498878214673
226 => 0.039906161773143
227 => 0.037982661179164
228 => 0.039213248694516
301 => 0.03614329530198
302 => 0.038700043711442
303 => 0.037308521793257
304 => 0.038242891336456
305 => 0.038239631409143
306 => 0.03651916083798
307 => 0.035526829317838
308 => 0.036159181584593
309 => 0.03683711341074
310 => 0.036947105568695
311 => 0.037826061877126
312 => 0.038071359689706
313 => 0.037328095865728
314 => 0.036079677341543
315 => 0.036369656491316
316 => 0.035520952899623
317 => 0.034033632500093
318 => 0.035101851977158
319 => 0.035466589072923
320 => 0.035627677753027
321 => 0.034165068959992
322 => 0.033705485522438
323 => 0.033460807156563
324 => 0.035890872913017
325 => 0.036023997400718
326 => 0.03534291369973
327 => 0.038421476611203
328 => 0.03772470300991
329 => 0.038503169836231
330 => 0.036343343922892
331 => 0.036425852181373
401 => 0.035403355981252
402 => 0.035975885530099
403 => 0.035571240098463
404 => 0.035929630800399
405 => 0.03614444870944
406 => 0.037166777127995
407 => 0.038711717059793
408 => 0.037014075353912
409 => 0.036274388551982
410 => 0.036733286083743
411 => 0.037955390683631
412 => 0.039806941710844
413 => 0.038710786236797
414 => 0.039197241422252
415 => 0.039303510239389
416 => 0.038495245774708
417 => 0.039836743574554
418 => 0.0405556631438
419 => 0.041293125862403
420 => 0.041933444077729
421 => 0.04099856703544
422 => 0.04199901948005
423 => 0.041192831413324
424 => 0.040469597375281
425 => 0.040470694222779
426 => 0.040016998945951
427 => 0.039137907177814
428 => 0.038975789168082
429 => 0.039819147527955
430 => 0.04049544106624
501 => 0.040551143841281
502 => 0.040925574693292
503 => 0.041147159014568
504 => 0.043318986592347
505 => 0.044192513610429
506 => 0.045260645913121
507 => 0.045676743641657
508 => 0.04692904862526
509 => 0.045917710643763
510 => 0.045698901309852
511 => 0.04266121904547
512 => 0.043158639346088
513 => 0.043955057241299
514 => 0.042674351683223
515 => 0.043486664582038
516 => 0.043647032355404
517 => 0.042630833798428
518 => 0.043173629355056
519 => 0.041732125284318
520 => 0.038743137909359
521 => 0.039840071171949
522 => 0.04064778327696
523 => 0.039495078512926
524 => 0.041561257186622
525 => 0.040354238260034
526 => 0.039971671207432
527 => 0.038479140740229
528 => 0.039183557667982
529 => 0.040136291649048
530 => 0.039547612815963
531 => 0.040769209785186
601 => 0.042499316881617
602 => 0.043732294228193
603 => 0.043826946918922
604 => 0.043034225088141
605 => 0.044304566881051
606 => 0.044313819934149
607 => 0.042880869202247
608 => 0.04200319485766
609 => 0.041803785399928
610 => 0.042301949321871
611 => 0.042906812289244
612 => 0.043860512603979
613 => 0.044436813730312
614 => 0.045939501421287
615 => 0.046346085625032
616 => 0.04679279839632
617 => 0.047389744419878
618 => 0.048106531174978
619 => 0.046538242561512
620 => 0.046600553591781
621 => 0.045140184949356
622 => 0.043579571616877
623 => 0.04476388260303
624 => 0.046312211675138
625 => 0.045957023275245
626 => 0.045917057324416
627 => 0.045984268968079
628 => 0.045716468513929
629 => 0.044505216984953
630 => 0.043896934049937
701 => 0.044681774225635
702 => 0.045098881849801
703 => 0.045745779399274
704 => 0.045666035621951
705 => 0.04733237423767
706 => 0.047979863036275
707 => 0.047814207693984
708 => 0.047844692263684
709 => 0.049016939805461
710 => 0.050320720163011
711 => 0.051541882516828
712 => 0.052784101313275
713 => 0.051286558069534
714 => 0.050526197965989
715 => 0.051310695505018
716 => 0.050894430068207
717 => 0.053286414740472
718 => 0.053452030569364
719 => 0.055843842273912
720 => 0.058113956393168
721 => 0.056688138388182
722 => 0.05803262054663
723 => 0.05948678761823
724 => 0.062292111829452
725 => 0.061347377327608
726 => 0.060623725505073
727 => 0.059939878029437
728 => 0.061362856068505
729 => 0.063193494583137
730 => 0.063587796585551
731 => 0.06422671646442
801 => 0.063554970335195
802 => 0.064364014557437
803 => 0.067220296173996
804 => 0.066448503668107
805 => 0.065352434237907
806 => 0.067607194253978
807 => 0.068423183138637
808 => 0.074150220467867
809 => 0.081380841668132
810 => 0.078387317012403
811 => 0.076529139658156
812 => 0.07696585541296
813 => 0.079606233503323
814 => 0.080454239144536
815 => 0.078149067486645
816 => 0.078963293086602
817 => 0.083449756195261
818 => 0.085856599710086
819 => 0.082587782934743
820 => 0.073569247094724
821 => 0.065253745178073
822 => 0.0674593907383
823 => 0.067209338980921
824 => 0.072029483893504
825 => 0.06643009667209
826 => 0.06652437599247
827 => 0.071444196397222
828 => 0.070131672660309
829 => 0.068005552301849
830 => 0.065269268209595
831 => 0.060210993989421
901 => 0.055730739452201
902 => 0.064517550340688
903 => 0.064138647077398
904 => 0.063589939001836
905 => 0.064811029447584
906 => 0.070740298039568
907 => 0.070603609207353
908 => 0.069734064596058
909 => 0.070393606519911
910 => 0.067889931413759
911 => 0.068535185496237
912 => 0.065252427960084
913 => 0.06673637146649
914 => 0.068000990602448
915 => 0.068254881616998
916 => 0.068826911036776
917 => 0.063938982275142
918 => 0.066133518787067
919 => 0.067422603387559
920 => 0.061598472265235
921 => 0.06730747904128
922 => 0.063853894310061
923 => 0.062681695781184
924 => 0.064259906674904
925 => 0.063644876354761
926 => 0.063116109401294
927 => 0.06282104835589
928 => 0.063979912255458
929 => 0.063925849869401
930 => 0.062029723603918
1001 => 0.059556304186588
1002 => 0.060386464930268
1003 => 0.060084859749291
1004 => 0.058991803665585
1005 => 0.059728391489908
1006 => 0.056484831490158
1007 => 0.050904455096166
1008 => 0.054591022673589
1009 => 0.054449093832072
1010 => 0.054377526874218
1011 => 0.057147880519408
1012 => 0.056881574939356
1013 => 0.05639822770389
1014 => 0.05898292661456
1015 => 0.058039476743059
1016 => 0.060946966942279
1017 => 0.062862028032162
1018 => 0.062376306594031
1019 => 0.064177430805359
1020 => 0.060405590157114
1021 => 0.06165844432048
1022 => 0.061916655827169
1023 => 0.058951031831215
1024 => 0.056925145825709
1025 => 0.056790042325933
1026 => 0.053277435176673
1027 => 0.055153841563034
1028 => 0.056805001532058
1029 => 0.056014224042085
1030 => 0.055763887512565
1031 => 0.057042802550514
1101 => 0.057142185202129
1102 => 0.054876250213202
1103 => 0.055347409850229
1104 => 0.057312223860403
1105 => 0.055297901578366
1106 => 0.051384402422044
1107 => 0.050413800522918
1108 => 0.050284304337832
1109 => 0.047651955007993
1110 => 0.050478660782931
1111 => 0.049244727961166
1112 => 0.053142706960337
1113 => 0.050916202261291
1114 => 0.050820222093774
1115 => 0.050675133993342
1116 => 0.048409362184168
1117 => 0.048905422213067
1118 => 0.050554401301202
1119 => 0.051142775616927
1120 => 0.051081403355389
1121 => 0.050546320404073
1122 => 0.050791278639117
1123 => 0.050002182814932
1124 => 0.049723536655803
1125 => 0.048844052729928
1126 => 0.047551454322527
1127 => 0.047731198059043
1128 => 0.04517022238721
1129 => 0.043774866919929
1130 => 0.043388650917076
1201 => 0.042872186736982
1202 => 0.043446986920476
1203 => 0.045162967464902
1204 => 0.043093130862743
1205 => 0.039544541190499
1206 => 0.039757817476304
1207 => 0.040236985968209
1208 => 0.039344058653561
1209 => 0.038498977887955
1210 => 0.039233707050079
1211 => 0.037730122825718
1212 => 0.040418686938264
1213 => 0.040345968813634
1214 => 0.041348099255101
1215 => 0.041974751985938
1216 => 0.04053052032259
1217 => 0.040167299964876
1218 => 0.040374206788075
1219 => 0.036954497891242
1220 => 0.041068636080936
1221 => 0.041104215318844
1222 => 0.040799564283096
1223 => 0.042990215859342
1224 => 0.047613173966583
1225 => 0.04587383116858
1226 => 0.045200305065279
1227 => 0.043919931450559
1228 => 0.04562595327111
1229 => 0.045494957413378
1230 => 0.04490254446601
1231 => 0.044544251267
]
'min_raw' => 0.033460807156563
'max_raw' => 0.085856599710086
'avg_raw' => 0.059658703433325
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.03346'
'max' => '$0.085856'
'avg' => '$0.059658'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.020576247550186
'max_diff' => 0.04990468289435
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0010502965018366
]
1 => [
'year' => 2028
'avg' => 0.0018026137004047
]
2 => [
'year' => 2029
'avg' => 0.0049244157399961
]
3 => [
'year' => 2030
'avg' => 0.0037991794097471
]
4 => [
'year' => 2031
'avg' => 0.0037312650074925
]
5 => [
'year' => 2032
'avg' => 0.0065420818304485
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0010502965018366
'min' => '$0.00105'
'max_raw' => 0.0065420818304485
'max' => '$0.006542'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0065420818304485
]
1 => [
'year' => 2033
'avg' => 0.016826907182255
]
2 => [
'year' => 2034
'avg' => 0.010665702435432
]
3 => [
'year' => 2035
'avg' => 0.012580220481365
]
4 => [
'year' => 2036
'avg' => 0.024418238211057
]
5 => [
'year' => 2037
'avg' => 0.059658703433325
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0065420818304485
'min' => '$0.006542'
'max_raw' => 0.059658703433325
'max' => '$0.059658'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.059658703433325
]
]
]
]
'prediction_2025_max_price' => '$0.001795'
'last_price' => 0.00174127
'sma_50day_nextmonth' => '$0.001658'
'sma_200day_nextmonth' => '$0.003996'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001726'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001725'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00174'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001747'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002382'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003447'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004838'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001731'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001731'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001739'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001832'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002347'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00319'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004696'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003962'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005458'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.020166'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.028282'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001778'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001943'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002524'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003662'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007745'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.025562'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.077165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '31.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.98
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001742'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001718'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 31.52
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -13.36
'cci_20_action' => 'NEUTRAL'
'adx_14' => 49.56
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000157'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -68.48
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 34.45
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000686'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 21
'buy_signals' => 12
'sell_pct' => 63.64
'buy_pct' => 36.36
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767714527
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Torum para 2026
La previsión del precio de Torum para 2026 sugiere que el precio medio podría oscilar entre $0.0006016 en el extremo inferior y $0.001795 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Torum podría potencialmente ganar 3.13% para 2026 si XTM alcanza el objetivo de precio previsto.
Predicción de precio de Torum 2027-2032
La predicción del precio de XTM para 2027-2032 está actualmente dentro de un rango de precios de $0.00105 en el extremo inferior y $0.006542 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Torum alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Torum | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000579 | $0.00105 | $0.001521 |
| 2028 | $0.001045 | $0.0018026 | $0.00256 |
| 2029 | $0.002296 | $0.004924 | $0.007552 |
| 2030 | $0.001952 | $0.003799 | $0.005645 |
| 2031 | $0.0023086 | $0.003731 | $0.005153 |
| 2032 | $0.003523 | $0.006542 | $0.00956 |
Predicción de precio de Torum 2032-2037
La predicción de precio de Torum para 2032-2037 se estima actualmente entre $0.006542 en el extremo inferior y $0.059658 en el extremo superior. Comparado con el precio actual, Torum podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Torum | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.003523 | $0.006542 | $0.00956 |
| 2033 | $0.008188 | $0.016826 | $0.025464 |
| 2034 | $0.006583 | $0.010665 | $0.014747 |
| 2035 | $0.007783 | $0.01258 | $0.017376 |
| 2036 | $0.012884 | $0.024418 | $0.035951 |
| 2037 | $0.03346 | $0.059658 | $0.085856 |
Torum Histograma de precios potenciales
Pronóstico de precio de Torum basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Torum es Bajista, con 12 indicadores técnicos mostrando señales alcistas y 21 indicando señales bajistas. La predicción de precio de XTM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Torum
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Torum aumentar durante el próximo mes, alcanzando $0.003996 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Torum alcance $0.001658 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 31.97, lo que sugiere que el mercado de XTM está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de XTM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001726 | BUY |
| SMA 5 | $0.001725 | BUY |
| SMA 10 | $0.00174 | BUY |
| SMA 21 | $0.001747 | SELL |
| SMA 50 | $0.002382 | SELL |
| SMA 100 | $0.003447 | SELL |
| SMA 200 | $0.004838 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001731 | BUY |
| EMA 5 | $0.001731 | BUY |
| EMA 10 | $0.001739 | BUY |
| EMA 21 | $0.001832 | SELL |
| EMA 50 | $0.002347 | SELL |
| EMA 100 | $0.00319 | SELL |
| EMA 200 | $0.004696 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.003962 | SELL |
| SMA 50 | $0.005458 | SELL |
| SMA 100 | $0.020166 | SELL |
| SMA 200 | $0.028282 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003662 | SELL |
| EMA 50 | $0.007745 | SELL |
| EMA 100 | $0.025562 | SELL |
| EMA 200 | $0.077165 | SELL |
Osciladores de Torum
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 31.97 | NEUTRAL |
| Stoch RSI (14) | 91.98 | SELL |
| Estocástico Rápido (14) | 31.52 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | -13.36 | NEUTRAL |
| Índice Direccional Medio (14) | 49.56 | SELL |
| Oscilador Asombroso (5, 34) | -0.000157 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -68.48 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 34.45 | NEUTRAL |
| VWMA (10) | 0.001742 | SELL |
| Promedio Móvil de Hull (9) | 0.001718 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000686 | SELL |
Predicción de precios de Torum basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Torum
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Torum por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.002446 | $0.003438 | $0.004831 | $0.006788 | $0.009539 | $0.0134039 |
| Amazon.com acción | $0.003633 | $0.007581 | $0.015818 | $0.0330057 | $0.068868 | $0.143697 |
| Apple acción | $0.002469 | $0.0035033 | $0.004969 | $0.007048 | $0.009997 | $0.01418 |
| Netflix acción | $0.002747 | $0.004335 | $0.00684 | $0.010792 | $0.017028 | $0.026868 |
| Google acción | $0.002254 | $0.00292 | $0.003781 | $0.004897 | $0.006341 | $0.008212 |
| Tesla acción | $0.003947 | $0.008948 | $0.020285 | $0.045984 | $0.104244 | $0.236313 |
| Kodak acción | $0.0013057 | $0.000979 | $0.000734 | $0.00055 | $0.000412 | $0.0003096 |
| Nokia acción | $0.001153 | $0.000764 | $0.0005062 | $0.000335 | $0.000222 | $0.000147 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Torum
Podría preguntarse cosas como: "¿Debo invertir en Torum ahora?", "¿Debería comprar XTM hoy?", "¿Será Torum una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Torum regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Torum, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Torum a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Torum es de $0.001741 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Torum
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Torum
basado en el historial de precios del último mes
Predicción de precios de Torum basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Torum ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001786 | $0.001832 | $0.00188 | $0.001929 |
| Si Torum ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.001831 | $0.001927 | $0.002027 | $0.002132 |
| Si Torum ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.001967 | $0.002223 | $0.002512 | $0.002838 |
| Si Torum ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.002193 | $0.002764 | $0.003482 | $0.004387 |
| Si Torum ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.002646 | $0.004022 | $0.006113 | $0.009291 |
| Si Torum ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.0040043 | $0.0092086 | $0.021176 | $0.048699 |
| Si Torum ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.006267 | $0.022558 | $0.081194 | $0.292245 |
Cuadro de preguntas
¿Es XTM una buena inversión?
La decisión de adquirir Torum depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Torum ha experimentado un aumento de 1.2752% durante las últimas 24 horas, y Torum ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Torum dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Torum subir?
Parece que el valor medio de Torum podría potencialmente aumentar hasta $0.001795 para el final de este año. Mirando las perspectivas de Torum en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.005645. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Torum la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Torum, el precio de Torum aumentará en un 0.86% durante la próxima semana y alcanzará $0.001756 para el 13 de enero de 2026.
¿Cuál será el precio de Torum el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Torum, el precio de Torum disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001538 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Torum este año en 2026?
Según nuestra predicción más reciente sobre el valor de Torum en 2026, se anticipa que XTM fluctúe dentro del rango de $0.0006016 y $0.001795. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Torum no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Torum en 5 años?
El futuro de Torum parece estar en una tendencia alcista, con un precio máximo de $0.005645 proyectada después de un período de cinco años. Basado en el pronóstico de Torum para 2030, el valor de Torum podría potencialmente alcanzar su punto más alto de aproximadamente $0.005645, mientras que su punto más bajo se anticipa que esté alrededor de $0.001952.
¿Cuánto será Torum en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Torum, se espera que el valor de XTM en 2026 crezca en un 3.13% hasta $0.001795 si ocurre lo mejor. El precio estará entre $0.001795 y $0.0006016 durante 2026.
¿Cuánto será Torum en 2027?
Según nuestra última simulación experimental para la predicción de precios de Torum, el valor de XTM podría disminuir en un -12.62% hasta $0.001521 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001521 y $0.000579 a lo largo del año.
¿Cuánto será Torum en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Torum sugiere que el valor de XTM en 2028 podría aumentar en un 47.02% , alcanzando $0.00256 en el mejor escenario. Se espera que el precio oscile entre $0.00256 y $0.001045 durante el año.
¿Cuánto será Torum en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Torum podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.007552 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.007552 y $0.002296.
¿Cuánto será Torum en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Torum, se espera que el valor de XTM en 2030 aumente en un 224.23% , alcanzando $0.005645 en el mejor escenario. Se pronostica que el precio oscile entre $0.005645 y $0.001952 durante el transcurso de 2030.
¿Cuánto será Torum en 2031?
Nuestra simulación experimental indica que el precio de Torum podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.005153 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.005153 y $0.0023086 durante el año.
¿Cuánto será Torum en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Torum, XTM podría experimentar un 449.04% aumento en valor, alcanzando $0.00956 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.00956 y $0.003523 a lo largo del año.
¿Cuánto será Torum en 2033?
Según nuestra predicción experimental de precios de Torum, se anticipa que el valor de XTM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.025464. A lo largo del año, el precio de XTM podría oscilar entre $0.025464 y $0.008188.
¿Cuánto será Torum en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Torum sugieren que XTM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.014747 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.014747 y $0.006583.
¿Cuánto será Torum en 2035?
Basado en nuestra predicción experimental para el precio de Torum, XTM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.017376 en 2035. El rango de precios esperado para el año está entre $0.017376 y $0.007783.
¿Cuánto será Torum en 2036?
Nuestra reciente simulación de predicción de precios de Torum sugiere que el valor de XTM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.035951 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.035951 y $0.012884.
¿Cuánto será Torum en 2037?
Según la simulación experimental, el valor de Torum podría aumentar en un 4830.69% en 2037, con un máximo de $0.085856 bajo condiciones favorables. Se espera que el precio caiga entre $0.085856 y $0.03346 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Inter Milan Fan Token
Predicción de precios de Rebel Bots
Predicción de precios de Gala Music
Predicción de precios de Arbius
Predicción de precios de Banana
Predicción de precios de LitLab Games
Predicción de precios de Gamma Strategies
Predicción de precios de Vesta Finance
Predicción de precios de Bitcicoin
Predicción de precios de SAFE DEAL
Predicción de precios de MOE
Predicción de precios de MangoMan Intelligent
Predicción de precios de HMX
Predicción de precios de Bot Ocean
Predicción de precios de GAMEE
Predicción de precios de Witnet
Predicción de precios de Angola
Predicción de precios de Geojam
Predicción de precios de Netvrk
Predicción de precios de Humanode
Predicción de precios de Unmarshal
Predicción de precios de REVV
Predicción de precios de Planet IX (OLD)
Predicción de precios de Mind
Predicción de precios de White Whale
¿Cómo leer y predecir los movimientos de precio de Torum?
Los traders de Torum utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Torum
Las medias móviles son herramientas populares para la predicción de precios de Torum. Una media móvil simple (SMA) calcula el precio de cierre promedio de XTM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de XTM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de XTM.
¿Cómo leer gráficos de Torum y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Torum en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de XTM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Torum?
La acción del precio de Torum está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de XTM. La capitalización de mercado de Torum puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de XTM, grandes poseedores de Torum, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Torum.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


