Previsão de Preço Torum - Projeção XTM
Previsão de Preço Torum até $0.001794 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0006012 | $0.001794 |
| 2027 | $0.000578 | $0.00152 |
| 2028 | $0.001044 | $0.002558 |
| 2029 | $0.002294 | $0.007548 |
| 2030 | $0.001951 | $0.005642 |
| 2031 | $0.0023072 | $0.00515 |
| 2032 | $0.003521 | $0.009554 |
| 2033 | $0.008184 | $0.025449 |
| 2034 | $0.006579 | $0.014739 |
| 2035 | $0.007779 | $0.017366 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Torum hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.82, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Torum para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Torum'
'name_with_ticker' => 'Torum <small>XTM</small>'
'name_lang' => 'Torum'
'name_lang_with_ticker' => 'Torum <small>XTM</small>'
'name_with_lang' => 'Torum'
'name_with_lang_with_ticker' => 'Torum <small>XTM</small>'
'image' => '/uploads/coins/torum.png?1717226849'
'price_for_sd' => 0.00174
'ticker' => 'XTM'
'marketcap' => '$401.68K'
'low24h' => '$0.00171'
'high24h' => '$0.001756'
'volume24h' => '$26.98K'
'current_supply' => '230.56M'
'max_supply' => '797.65M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00174'
'change_24h_pct' => '0.9468%'
'ath_price' => '$2.45'
'ath_days' => 1509
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 de nov. de 2021'
'ath_pct' => '-99.93%'
'fdv' => '$1.39M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.0858053'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001755'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001538'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0006012'
'current_year_max_price_prediction' => '$0.001794'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.001951'
'grand_prediction_max_price' => '$0.005642'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.001773206443139
107 => 0.0017798269523238
108 => 0.0017947432975686
109 => 0.0016672847606127
110 => 0.0017245099017199
111 => 0.0017581243108497
112 => 0.0016062531874985
113 => 0.0017551223070439
114 => 0.001665065991054
115 => 0.0016344995248065
116 => 0.001675653244783
117 => 0.0016596156000849
118 => 0.0016458273749355
119 => 0.0016381333083904
120 => 0.0016683520583708
121 => 0.001666942317565
122 => 0.0016174985773904
123 => 0.0015530012339174
124 => 0.00157464865944
125 => 0.001566783946802
126 => 0.0015382812136334
127 => 0.0015574886143559
128 => 0.0014729089422171
129 => 0.0013273940123712
130 => 0.0014235256322703
131 => 0.0014198246694752
201 => 0.0014179584762087
202 => 0.00149019873168
203 => 0.0014832544979827
204 => 0.0014706506458239
205 => 0.0015380497340044
206 => 0.0015134481601729
207 => 0.0015892644138619
208 => 0.0016392019020294
209 => 0.0016265361397216
210 => 0.0016735025887119
211 => 0.0015751473724024
212 => 0.0016078170299341
213 => 0.0016145502010732
214 => 0.0015372180397184
215 => 0.0014843906604964
216 => 0.0014808676765785
217 => 0.0013892722810688
218 => 0.0014382018020178
219 => 0.0014812577556119
220 => 0.0014606372951173
221 => 0.0014541094733435
222 => 0.0014874586990742
223 => 0.0014900502195303
224 => 0.0014309632784946
225 => 0.001443249324576
226 => 0.0014944841791207
227 => 0.0014419583376966
228 => 0.001339909207857
301 => 0.0013145996127172
302 => 0.0013112228461771
303 => 0.0012425812168287
304 => 0.001316290920887
305 => 0.0012841146597683
306 => 0.0013857590831114
307 => 0.0013277003336278
308 => 0.0013251975369781
309 => 0.0013214141927617
310 => 0.0012623315068314
311 => 0.0012752668601496
312 => 0.001318265944689
313 => 0.0013336085024721
314 => 0.0013320081479974
315 => 0.0013180552257167
316 => 0.0013244428020863
317 => 0.0013038661930207
318 => 0.0012966001640946
319 => 0.001273666578125
320 => 0.0012399605423145
321 => 0.0012446475733251
322 => 0.0011778670967205
323 => 0.0011414815487582
324 => 0.001131410508636
325 => 0.0011179430928869
326 => 0.0011329316890803
327 => 0.0011776779160208
328 => 0.0011237044728889
329 => 0.0010311707904362
330 => 0.0010367322224213
331 => 0.0010492271088879
401 => 0.0010259429706193
402 => 0.0010039064878377
403 => 0.00102306542174
404 => 0.00098385768063475
405 => 0.0010539651770833
406 => 0.0010520689657783
407 => 0.0010782007050359
408 => 0.0010945414178709
409 => 0.0010568813651548
410 => 0.0010474099637403
411 => 0.0010528053044372
412 => 0.00096363234098766
413 => 0.0010709133714741
414 => 0.0010718411422807
415 => 0.0010638970053687
416 => 0.0011210208421725
417 => 0.0012415699552001
418 => 0.0011962145298023
419 => 0.0011786515382133
420 => 0.0011452642783641
421 => 0.0011897508197738
422 => 0.0011863349474917
423 => 0.0011708870776009
424 => 0.0011615441576906
425 => 0.0011787587740948
426 => 0.0011594110762124
427 => 0.0011559356980335
428 => 0.0011348786875184
429 => 0.0011273622927974
430 => 0.0011217974533823
501 => 0.0011156711119761
502 => 0.001129184294529
503 => 0.0010985616450568
504 => 0.0010616337317687
505 => 0.0010585635753444
506 => 0.0010670405471629
507 => 0.0010632901181695
508 => 0.0010585456197333
509 => 0.0010494870801311
510 => 0.0010467996049362
511 => 0.001055532595542
512 => 0.0010456735583131
513 => 0.0010602211047939
514 => 0.0010562649771036
515 => 0.0010341663694175
516 => 0.0010066233222883
517 => 0.0010063781313953
518 => 0.001000444027071
519 => 0.00099288605301537
520 => 0.00099078359753612
521 => 0.0010214519097653
522 => 0.0010849343982544
523 => 0.0010724712667568
524 => 0.0010814771565369
525 => 0.0011257772207984
526 => 0.0011398588790777
527 => 0.0011298640515734
528 => 0.0011161825152314
529 => 0.0011167844333955
530 => 0.0011635383847588
531 => 0.0011664543713558
601 => 0.0011738221287534
602 => 0.0011832917791373
603 => 0.0011314767739817
604 => 0.0011143439513123
605 => 0.0011062254694387
606 => 0.001081223687516
607 => 0.0011081859658289
608 => 0.0010924762008958
609 => 0.0010945959849073
610 => 0.001093215472789
611 => 0.0010939693257554
612 => 0.0010539455806092
613 => 0.0010685281297544
614 => 0.0010442818134687
615 => 0.0010118187177388
616 => 0.0010117098900589
617 => 0.0010196551867483
618 => 0.001014929013378
619 => 0.0010022110023593
620 => 0.0010040175357972
621 => 0.00098819040195756
622 => 0.0010059392364048
623 => 0.0010064482094684
624 => 0.00099961394142065
625 => 0.0010269584697539
626 => 0.001038161545323
627 => 0.0010336630836897
628 => 0.0010378459212628
629 => 0.0010729891661382
630 => 0.0010787190484602
701 => 0.0010812638836928
702 => 0.0010778541416071
703 => 0.0010384882752658
704 => 0.0010402343188346
705 => 0.0010274230096446
706 => 0.0010165988034016
707 => 0.0010170317148859
708 => 0.0010225967639431
709 => 0.0010468996595618
710 => 0.0010980436706574
711 => 0.0010999845484927
712 => 0.0011023369490485
713 => 0.0010927685537664
714 => 0.0010898826341921
715 => 0.0010936899070296
716 => 0.0011128969085728
717 => 0.0011623025311919
718 => 0.0011448392844677
719 => 0.0011306413930493
720 => 0.0011430967715473
721 => 0.001141179363656
722 => 0.0011249945114425
723 => 0.0011245402565462
724 => 0.0010934763505383
725 => 0.0010819927317781
726 => 0.0010723961604081
727 => 0.0010619169549969
728 => 0.001055704530763
729 => 0.0010652496378826
730 => 0.0010674327168152
731 => 0.0010465621732783
801 => 0.0010437175953135
802 => 0.0010607609316877
803 => 0.001053260794789
804 => 0.0010609748715838
805 => 0.0010627646035703
806 => 0.0010624764154994
807 => 0.001054645411192
808 => 0.0010596366598136
809 => 0.0010478308688606
810 => 0.0010349938443716
811 => 0.0010268046225225
812 => 0.0010196584403165
813 => 0.001023623557543
814 => 0.0010094886386326
815 => 0.0010049665935934
816 => 0.0010579457370873
817 => 0.0010970820000079
818 => 0.0010965129432454
819 => 0.001093048956553
820 => 0.0010879021749722
821 => 0.0011125203894428
822 => 0.001103943895778
823 => 0.0011101840115092
824 => 0.0011117723828596
825 => 0.0011165799045505
826 => 0.0011182981803345
827 => 0.0011131043574959
828 => 0.0010956732536775
829 => 0.0010522366002615
830 => 0.0010320167208414
831 => 0.0010253438238441
901 => 0.0010255863709763
902 => 0.0010188958382916
903 => 0.0010208665000159
904 => 0.0010182105225661
905 => 0.0010131807438261
906 => 0.0010233129828793
907 => 0.0010244806290419
908 => 0.0010221156433756
909 => 0.0010226726831137
910 => 0.0010030916118956
911 => 0.0010045803182125
912 => 0.00099629101226452
913 => 0.00099473686732836
914 => 0.00097378222372439
915 => 0.0009366580351558
916 => 0.00095722843935498
917 => 0.00093238228371891
918 => 0.00092297266809884
919 => 0.0009675163249488
920 => 0.00096304537724978
921 => 0.00095539305826332
922 => 0.00094407368359933
923 => 0.00093987521742866
924 => 0.00091436666604851
925 => 0.00091285948475015
926 => 0.00092550221160297
927 => 0.00091966802817006
928 => 0.00091147462505221
929 => 0.0008817989495113
930 => 0.0008484336649248
1001 => 0.00084944075313977
1002 => 0.00086005362938354
1003 => 0.00089091199840367
1004 => 0.0008788550997723
1005 => 0.00087010768147827
1006 => 0.00086846955297823
1007 => 0.00088897416081058
1008 => 0.00091799247674152
1009 => 0.00093160722132808
1010 => 0.00091811542292874
1011 => 0.00090261677137758
1012 => 0.00090356010248366
1013 => 0.00090983566171265
1014 => 0.00091049513425599
1015 => 0.0009004071053833
1016 => 0.00090324682642
1017 => 0.00089893303049573
1018 => 0.00087245927287113
1019 => 0.00087198044654489
1020 => 0.0008654833594768
1021 => 0.00086528663026249
1022 => 0.00085423346438535
1023 => 0.00085268705007221
1024 => 0.00083074031834394
1025 => 0.00084518572362831
1026 => 0.00083549650418137
1027 => 0.00082089256501902
1028 => 0.00081837484040288
1029 => 0.00081829915456067
1030 => 0.00083329413469936
1031 => 0.00084501049855489
1101 => 0.00083566505230197
1102 => 0.00083353727534404
1103 => 0.00085625636653623
1104 => 0.00085336515509291
1105 => 0.00085086138462931
1106 => 0.00091539420482558
1107 => 0.00086431144208147
1108 => 0.00084203644182288
1109 => 0.00081446689909505
1110 => 0.00082344368122493
1111 => 0.00082533522111607
1112 => 0.00075903544063924
1113 => 0.0007321376279569
1114 => 0.00072290731226701
1115 => 0.00071759513508997
1116 => 0.00072001596093567
1117 => 0.00069580477472281
1118 => 0.00071207509227391
1119 => 0.0006911102515342
1120 => 0.00068759542775869
1121 => 0.0007250831600467
1122 => 0.00073029935899442
1123 => 0.00070804543373746
1124 => 0.00072233605633567
1125 => 0.00071715407792704
1126 => 0.00069146963355594
1127 => 0.00069048867670295
1128 => 0.0006776011253694
1129 => 0.00065743460305408
1130 => 0.00064821796121594
1201 => 0.00064341785412409
1202 => 0.00064539847186241
1203 => 0.00064439701092601
1204 => 0.00063786180090173
1205 => 0.00064477160151476
1206 => 0.00062711991627522
1207 => 0.00062009087298354
1208 => 0.00061691601720125
1209 => 0.00060124913055807
1210 => 0.00062618211430349
1211 => 0.00063109422619879
1212 => 0.00063601601647196
1213 => 0.00067885684055092
1214 => 0.00067671663404684
1215 => 0.00069606305852082
1216 => 0.00069531129204155
1217 => 0.00068979337839028
1218 => 0.00066651420834828
1219 => 0.00067579287061572
1220 => 0.00064723459038083
1221 => 0.0006686323957071
1222 => 0.00065886733094991
1223 => 0.00066533081748992
1224 => 0.00065370888590189
1225 => 0.0006601409427005
1226 => 0.00063225907015651
1227 => 0.00060622336988346
1228 => 0.00061670089570281
1229 => 0.00062809116451885
1230 => 0.00065278816949856
1231 => 0.00063807883707851
]
'min_raw' => 0.00060124913055807
'max_raw' => 0.0017947432975686
'avg_raw' => 0.0011979962140633
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0006012'
'max' => '$0.001794'
'avg' => '$0.001197'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0011389808694419
'max_diff' => 5.4513297568566E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0006433688692382
102 => 0.00062564814704393
103 => 0.00058908523548312
104 => 0.00058929217759184
105 => 0.00058366777021453
106 => 0.00057880746106362
107 => 0.00063976838085147
108 => 0.00063218692682632
109 => 0.00062010687207342
110 => 0.00063627650540247
111 => 0.00064055201310126
112 => 0.00064067373079479
113 => 0.00065247067787303
114 => 0.0006587667106434
115 => 0.00065987641370775
116 => 0.00067843916482526
117 => 0.00068466115415125
118 => 0.00071028864761608
119 => 0.00065823253625077
120 => 0.00065716047489368
121 => 0.00063650404530319
122 => 0.00062340341109168
123 => 0.00063740105693574
124 => 0.00064980106028437
125 => 0.00063688934797211
126 => 0.00063857534501897
127 => 0.00062124242616541
128 => 0.00062743812906592
129 => 0.00063277470305516
130 => 0.00062982816056762
131 => 0.00062541704384952
201 => 0.00064878440141756
202 => 0.00064746592352615
203 => 0.00066922614410674
204 => 0.00068618979213761
205 => 0.00071659168202373
206 => 0.0006848657250412
207 => 0.0006837095050695
208 => 0.00069501174075639
209 => 0.00068465942383785
210 => 0.00069120173078054
211 => 0.00071553761523159
212 => 0.00071605179412206
213 => 0.00070743863522467
214 => 0.000706914523723
215 => 0.00070856877510687
216 => 0.00071825777713185
217 => 0.00071487214211136
218 => 0.00071879008467086
219 => 0.00072368953183518
220 => 0.00074395572262935
221 => 0.00074884183261896
222 => 0.00073697111850178
223 => 0.00073804291107581
224 => 0.0007336029381376
225 => 0.00072931397991198
226 => 0.00073895493165112
227 => 0.00075657396044777
228 => 0.00075646435338406
301 => 0.0007605516255999
302 => 0.00076309796232958
303 => 0.00075216722105339
304 => 0.00074505171041708
305 => 0.00074778024996675
306 => 0.00075214324412652
307 => 0.0007463653897637
308 => 0.00071070179607385
309 => 0.00072151985220017
310 => 0.00071971919868483
311 => 0.00071715484911204
312 => 0.0007280324882006
313 => 0.00072698331337434
314 => 0.00069555645401392
315 => 0.00069756829958598
316 => 0.0006956788010066
317 => 0.00070178415747161
318 => 0.00068432971455267
319 => 0.00068969858363707
320 => 0.00069306588799678
321 => 0.00069504925613351
322 => 0.00070221454185161
323 => 0.00070137377827401
324 => 0.00070216227880714
325 => 0.0007127865059618
326 => 0.00076652020111554
327 => 0.00076944480758604
328 => 0.00075504297570073
329 => 0.00076079622347534
330 => 0.00074975124584506
331 => 0.00075716581332319
401 => 0.00076223867208212
402 => 0.00073931539880513
403 => 0.00073795803133248
404 => 0.0007268674671506
405 => 0.00073282690814028
406 => 0.00072334500902673
407 => 0.00072567153540645
408 => 0.00071916636482585
409 => 0.00073087437670439
410 => 0.0007439657532257
411 => 0.00074727315192911
412 => 0.00073857280986511
413 => 0.00073227318883029
414 => 0.00072121312951732
415 => 0.00073960625464429
416 => 0.00074498496495174
417 => 0.00073957800256883
418 => 0.00073832509124025
419 => 0.00073595082653654
420 => 0.00073882880272101
421 => 0.00074495567134027
422 => 0.00074206635324493
423 => 0.00074397479875013
424 => 0.00073670177246474
425 => 0.00075217083958358
426 => 0.00077673944100203
427 => 0.00077681843307296
428 => 0.00077392909940312
429 => 0.00077274684631698
430 => 0.00077571147800167
501 => 0.00077731966907506
502 => 0.00078690674432287
503 => 0.00079719405802971
504 => 0.00084520046239289
505 => 0.00083172045614844
506 => 0.00087431459401323
507 => 0.0009080010269077
508 => 0.00091810211520357
509 => 0.0009088095892643
510 => 0.00087702035999845
511 => 0.00087546062875214
512 => 0.00092296715834173
513 => 0.00090954438779577
514 => 0.00090794779195023
515 => 0.00089096270964494
516 => 0.00090100299693073
517 => 0.0008988070388192
518 => 0.0008953406115102
519 => 0.00091449678023902
520 => 0.0009503554180164
521 => 0.00094476651303863
522 => 0.00094059465473455
523 => 0.0009223147860558
524 => 0.00093332334995689
525 => 0.00092940341120687
526 => 0.00094624595573158
527 => 0.00093626880546318
528 => 0.00090944269710722
529 => 0.00091371484328292
530 => 0.00091306911698283
531 => 0.00092635811848205
601 => 0.00092236909008528
602 => 0.00091229019516674
603 => 0.00095023285709081
604 => 0.00094776907167364
605 => 0.00095126215609543
606 => 0.00095279991988513
607 => 0.00097589494957362
608 => 0.00098535624427847
609 => 0.00098750412381975
610 => 0.00099649162202656
611 => 0.00098728050667694
612 => 0.0010241315354894
613 => 0.0010486353193325
614 => 0.0010770977252195
615 => 0.0011186889501938
616 => 0.0011343276355245
617 => 0.001131502646996
618 => 0.0011630366390975
619 => 0.0012197025219425
620 => 0.0011429564420586
621 => 0.0012237702505304
622 => 0.0011981855318085
623 => 0.0011375246239683
624 => 0.0011336187766486
625 => 0.0011746990477256
626 => 0.0012658111351448
627 => 0.001242988590631
628 => 0.0012658484646516
629 => 0.0012391812073329
630 => 0.0012378569532377
701 => 0.0012645532954861
702 => 0.0013269307542914
703 => 0.0012972975617971
704 => 0.0012548111139996
705 => 0.0012861824458909
706 => 0.0012590056949269
707 => 0.0011977688687115
708 => 0.0012429711386613
709 => 0.0012127456680324
710 => 0.0012215670672363
711 => 0.0012850965107989
712 => 0.0012774524800714
713 => 0.001287344563651
714 => 0.0012698852950539
715 => 0.0012535755851103
716 => 0.0012231323003256
717 => 0.0012141195445366
718 => 0.0012166103459917
719 => 0.0012141183102191
720 => 0.0011970855721703
721 => 0.0011934073540104
722 => 0.001187276829264
723 => 0.0011891769352288
724 => 0.0011776497551574
725 => 0.0011994039255891
726 => 0.0012034416913183
727 => 0.0012192725624112
728 => 0.0012209161759649
729 => 0.0012650049266203
730 => 0.0012407215836407
731 => 0.0012570129466343
801 => 0.0012555556937879
802 => 0.0011388393297812
803 => 0.0011549218149441
804 => 0.0011799411148958
805 => 0.0011686699541804
806 => 0.0011527351699743
807 => 0.0011398669773588
808 => 0.0011203703497061
809 => 0.0011478114787277
810 => 0.0011838936453525
811 => 0.0012218312792552
812 => 0.001267410860617
813 => 0.0012572380286619
814 => 0.0012209792006861
815 => 0.001222605745222
816 => 0.0012326604035213
817 => 0.0012196387074617
818 => 0.00121579835508
819 => 0.0012321327980767
820 => 0.0012322452844083
821 => 0.0012172622493672
822 => 0.0012006113477855
823 => 0.0012005415798999
824 => 0.0011975787127921
825 => 0.0012397082948093
826 => 0.0012628753051376
827 => 0.0012655313655362
828 => 0.0012626965311104
829 => 0.0012637875463703
830 => 0.0012503071735105
831 => 0.0012811193083876
901 => 0.0013093955703552
902 => 0.0013018169281137
903 => 0.0012904554660261
904 => 0.0012814055142313
905 => 0.0012996850470824
906 => 0.0012988710882592
907 => 0.0013091486018746
908 => 0.0013086823544912
909 => 0.0013052264132192
910 => 0.0013018170515362
911 => 0.0013153347852324
912 => 0.001311441895016
913 => 0.0013075429580659
914 => 0.0012997230431152
915 => 0.001300785899432
916 => 0.0012894263990611
917 => 0.0012841709744141
918 => 0.0012051419972509
919 => 0.0011840228722065
920 => 0.0011906673788649
921 => 0.0011928549229814
922 => 0.0011836638526972
923 => 0.0011968414864925
924 => 0.001194787766224
925 => 0.0012027775904023
926 => 0.0011977858951336
927 => 0.0011979907560486
928 => 0.0012126702674923
929 => 0.0012169317921156
930 => 0.0012147643462975
1001 => 0.0012162823510528
1002 => 0.0012512641299289
1003 => 0.001246290839627
1004 => 0.0012436488782755
1005 => 0.0012443807196254
1006 => 0.001253319314146
1007 => 0.0012558216325827
1008 => 0.0012452191335319
1009 => 0.0012502193333766
1010 => 0.0012715095496952
1011 => 0.0012789599204849
1012 => 0.0013027379276645
1013 => 0.0012926366075942
1014 => 0.0013111780177582
1015 => 0.0013681679913696
1016 => 0.0014136955256966
1017 => 0.0013718265236245
1018 => 0.0014554320425196
1019 => 0.0015205309314787
1020 => 0.0015180323276926
1021 => 0.0015066808306381
1022 => 0.0014325674763016
1023 => 0.0013643672626733
1024 => 0.0014214196373074
1025 => 0.0014215650755433
1026 => 0.001416664225965
1027 => 0.0013862254701398
1028 => 0.0014156050232421
1029 => 0.0014179370654765
1030 => 0.0014166317419653
1031 => 0.0013932944192416
1101 => 0.0013576626409006
1102 => 0.001364625005098
1103 => 0.0013760294996817
1104 => 0.0013544384122079
1105 => 0.0013475387515099
1106 => 0.0013603665334617
1107 => 0.0014017003196847
1108 => 0.0013938864068295
1109 => 0.0013936823539864
1110 => 0.0014271135867954
1111 => 0.0014031840390157
1112 => 0.0013647128228071
1113 => 0.0013549983333414
1114 => 0.0013205184402024
1115 => 0.0013443338252067
1116 => 0.0013451908985153
1117 => 0.0013321474555358
1118 => 0.0013657712263184
1119 => 0.0013654613773512
1120 => 0.0013973821434715
1121 => 0.0014584026594011
1122 => 0.0014403558902035
1123 => 0.0014193694611095
1124 => 0.0014216512678426
1125 => 0.0014466770557255
1126 => 0.0014315458930883
1127 => 0.0014369871646709
1128 => 0.0014466688197092
1129 => 0.0014525100025759
1130 => 0.0014208108115188
1201 => 0.0014134202137358
1202 => 0.0013983016444192
1203 => 0.0013943574918859
1204 => 0.001406671251135
1205 => 0.0014034270106244
1206 => 0.0013451188648224
1207 => 0.0013390253391627
1208 => 0.0013392122188951
1209 => 0.0013238897588923
1210 => 0.0013005193295762
1211 => 0.001361935422443
1212 => 0.0013570028506682
1213 => 0.0013515576731794
1214 => 0.001352224676352
1215 => 0.001378883320681
1216 => 0.0013634199606764
1217 => 0.0014045318376436
1218 => 0.0013960804716753
1219 => 0.0013874123600598
1220 => 0.0013862141629974
1221 => 0.001382877679554
1222 => 0.0013714356363757
1223 => 0.0013576186816777
1224 => 0.0013484955313819
1225 => 0.0012439158464957
1226 => 0.0012633252276986
1227 => 0.0012856539515517
1228 => 0.001293361737549
1229 => 0.001280177036238
1230 => 0.0013719562487451
1231 => 0.0013887251952767
]
'min_raw' => 0.00057880746106362
'max_raw' => 0.0015205309314787
'avg_raw' => 0.0010496691962712
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000578'
'max' => '$0.00152'
'avg' => '$0.001049'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.2441669494447E-5
'max_diff' => -0.00027421236608984
'year' => 2027
]
2 => [
'items' => [
101 => 0.0013379309624213
102 => 0.0013284294353689
103 => 0.0013725791672769
104 => 0.0013459514818511
105 => 0.0013579419269679
106 => 0.0013320251430483
107 => 0.0013846860471093
108 => 0.0013842848592515
109 => 0.0013637985781713
110 => 0.0013811134426563
111 => 0.0013781045588541
112 => 0.0013549755979701
113 => 0.0013854192764237
114 => 0.0013854343761084
115 => 0.0013657167759789
116 => 0.0013426909357653
117 => 0.0013385744593812
118 => 0.0013354732473965
119 => 0.0013571792189274
120 => 0.0013766407251293
121 => 0.0014128537632543
122 => 0.0014219585814395
123 => 0.0014574952929584
124 => 0.0014363349114999
125 => 0.0014457150345277
126 => 0.0014558984849736
127 => 0.0014607808056014
128 => 0.0014528253261382
129 => 0.0015080284666211
130 => 0.0015126893030583
131 => 0.0015142520411997
201 => 0.0014956378528258
202 => 0.0015121716088068
203 => 0.0015044360119238
204 => 0.0015245618860028
205 => 0.0015277178800385
206 => 0.001525044865368
207 => 0.0015260466276889
208 => 0.0014789404857881
209 => 0.0014764977838258
210 => 0.0014431913692443
211 => 0.0014567639793749
212 => 0.0014313906352879
213 => 0.0014394367840723
214 => 0.0014429834497899
215 => 0.0014411308728905
216 => 0.0014575313543875
217 => 0.0014435875947181
218 => 0.0014067877203842
219 => 0.0013699778199492
220 => 0.0013695157016339
221 => 0.0013598243045981
222 => 0.0013528191996091
223 => 0.0013541686313494
224 => 0.0013589242048115
225 => 0.0013525427970343
226 => 0.0013539045939291
227 => 0.0013765194959889
228 => 0.0013810547533149
229 => 0.0013656421768818
301 => 0.0013037584584787
302 => 0.001288572038759
303 => 0.0012994877360937
304 => 0.0012942707358287
305 => 0.001044577497503
306 => 0.0011032392200955
307 => 0.0010683844164949
308 => 0.0010844471135864
309 => 0.0010488693847179
310 => 0.0010658489417225
311 => 0.0010627134375379
312 => 0.00115703975154
313 => 0.0011555669758884
314 => 0.0011562719156553
315 => 0.0011226233038733
316 => 0.0011762264561014
317 => 0.001202633296396
318 => 0.0011977460930528
319 => 0.0011989760968436
320 => 0.0011778405565196
321 => 0.0011564765538856
322 => 0.0011327805870681
323 => 0.0011768047645051
324 => 0.0011719100274918
325 => 0.0011831367931294
326 => 0.0012116896191104
327 => 0.0012158941311978
328 => 0.0012215450380811
329 => 0.0012195195902224
330 => 0.0012677739755173
331 => 0.0012619300510654
401 => 0.0012760122275827
402 => 0.0012470441220694
403 => 0.0012142639610032
404 => 0.0012204943979577
405 => 0.001219894356777
406 => 0.0012122551438511
407 => 0.001205358803994
408 => 0.0011938783411635
409 => 0.0012302042243479
410 => 0.0012287294598295
411 => 0.0012526041831567
412 => 0.0012483840939019
413 => 0.0012202013050275
414 => 0.0012212078588456
415 => 0.0012279774170058
416 => 0.0012514069350916
417 => 0.0012583624112627
418 => 0.0012551403575725
419 => 0.0012627667196645
420 => 0.0012687942853103
421 => 0.0012635236891076
422 => 0.0013381442166337
423 => 0.0013071565710798
424 => 0.0013222597339121
425 => 0.0013258617492546
426 => 0.001316635262697
427 => 0.0013186361572556
428 => 0.0013216669673008
429 => 0.0013400694524018
430 => 0.0013883628981086
501 => 0.0014097517364676
502 => 0.0014741011119772
503 => 0.0014079756911889
504 => 0.0014040520823735
505 => 0.0014156433480677
506 => 0.001453423243565
507 => 0.0014840403003805
508 => 0.0014941977444665
509 => 0.0014955402183836
510 => 0.0015145962587432
511 => 0.0015255188257032
512 => 0.0015122823542199
513 => 0.0015010658305542
514 => 0.0014608896350297
515 => 0.0014655401390578
516 => 0.0014975775001285
517 => 0.0015428321596321
518 => 0.0015816653654309
519 => 0.001568067330234
520 => 0.0016718107400695
521 => 0.0016820964754009
522 => 0.0016806753193557
523 => 0.0017041077551632
524 => 0.0016575991420179
525 => 0.0016377158088364
526 => 0.0015034909702837
527 => 0.001541202674957
528 => 0.0015960188524303
529 => 0.0015887637257916
530 => 0.0015489547524698
531 => 0.0015816351667549
601 => 0.0015708299997812
602 => 0.0015623075162823
603 => 0.0016013506653556
604 => 0.0015584211191453
605 => 0.0015955905973675
606 => 0.0015479203570785
607 => 0.0015681294449134
608 => 0.0015566577892547
609 => 0.0015640813563791
610 => 0.0015206833346583
611 => 0.0015440998537514
612 => 0.0015197091304777
613 => 0.0015196975660991
614 => 0.001519159139531
615 => 0.0015478547172975
616 => 0.0015487904790583
617 => 0.0015275844037322
618 => 0.0015245282769765
619 => 0.001535828379373
620 => 0.0015225989189683
621 => 0.0015287889002264
622 => 0.0015227864071947
623 => 0.0015214351195814
624 => 0.0015106678299762
625 => 0.0015060289855615
626 => 0.0015078479959848
627 => 0.0015016387756459
628 => 0.0014978974957943
629 => 0.0015184149048019
630 => 0.0015074532808391
701 => 0.0015167348787177
702 => 0.001506157326504
703 => 0.0014694909221108
704 => 0.0014484036852041
705 => 0.001379144246283
706 => 0.001398786137245
707 => 0.0014118087312738
708 => 0.0014075047640249
709 => 0.0014167513510896
710 => 0.0014173190164377
711 => 0.0014143128567252
712 => 0.001410832108891
713 => 0.0014091378733427
714 => 0.0014217653170583
715 => 0.0014290959731555
716 => 0.0014131157228044
717 => 0.0014093717737346
718 => 0.0014255286891333
719 => 0.001435384398193
720 => 0.0015081534164452
721 => 0.0015027624525323
722 => 0.0015162927140306
723 => 0.0015147694142247
724 => 0.0015289512838145
725 => 0.0015521326468887
726 => 0.0015049984541478
727 => 0.0015131793202299
728 => 0.0015111735607904
729 => 0.0015330719164128
730 => 0.0015331402806888
731 => 0.0015200111225891
801 => 0.0015271286521912
802 => 0.0015231558424266
803 => 0.0015303352466288
804 => 0.0015026904529225
805 => 0.0015363588275857
806 => 0.0015554466264775
807 => 0.0015557116605837
808 => 0.0015647591257683
809 => 0.0015739518743897
810 => 0.0015915965548488
811 => 0.0015734597738283
812 => 0.0015408334703526
813 => 0.0015431889840812
814 => 0.0015240601942909
815 => 0.0015243817527031
816 => 0.0015226652486974
817 => 0.0015278166064309
818 => 0.001503820886259
819 => 0.0015094526338214
820 => 0.0015015681542546
821 => 0.0015131621809111
822 => 0.00150068892479
823 => 0.0015111725935524
824 => 0.0015156969974512
825 => 0.001532392145241
826 => 0.001498223037887
827 => 0.001428549914947
828 => 0.001443196050094
829 => 0.0014215332657826
830 => 0.0014235382389466
831 => 0.0014275886038271
901 => 0.0014144600460525
902 => 0.0014169645611475
903 => 0.0014168750822443
904 => 0.001416104001397
905 => 0.0014126887564708
906 => 0.0014077359756423
907 => 0.0014274663300776
908 => 0.0014308189017673
909 => 0.0014382712533379
910 => 0.0014604443966335
911 => 0.0014582287767395
912 => 0.0014618425447118
913 => 0.0014539537095188
914 => 0.0014239041793855
915 => 0.0014255360134444
916 => 0.0014051870165816
917 => 0.0014377508837373
918 => 0.0014300393301728
919 => 0.0014250676414232
920 => 0.0014237110700854
921 => 0.0014459391763145
922 => 0.0014525901740811
923 => 0.0014484457186048
924 => 0.0014399453195098
925 => 0.0014562685986896
926 => 0.0014606360195742
927 => 0.001461613724046
928 => 0.0014905354450741
929 => 0.0014632301269712
930 => 0.0014698027884301
1001 => 0.0015210808168834
1002 => 0.0014745787209605
1003 => 0.0014992119182913
1004 => 0.001498006251467
1005 => 0.0015106077616795
1006 => 0.001496972559819
1007 => 0.0014971415844877
1008 => 0.0015083308718562
1009 => 0.0014926175357458
1010 => 0.0014887266927477
1011 => 0.0014833515210126
1012 => 0.0014950880118495
1013 => 0.0015021235073104
1014 => 0.001558824433723
1015 => 0.001595455818062
1016 => 0.0015938655530594
1017 => 0.0016083975983315
1018 => 0.0016018507788382
1019 => 0.0015807093717305
1020 => 0.0016167951757434
1021 => 0.0016053761174595
1022 => 0.0016063174907503
1023 => 0.0016062824527894
1024 => 0.0016138751282767
1025 => 0.0016084950218354
1026 => 0.0015978902797831
1027 => 0.00160493020246
1028 => 0.0016258362559922
1029 => 0.0016907292876319
1030 => 0.0017270442878558
1031 => 0.00168854307902
1101 => 0.0017151006973232
1102 => 0.0016991755897882
1103 => 0.0016962815240182
1104 => 0.0017129616709052
1105 => 0.0017296710141813
1106 => 0.0017286067012511
1107 => 0.001716476576067
1108 => 0.001709624576141
1109 => 0.001761510215169
1110 => 0.001799738670156
1111 => 0.0017971317458127
1112 => 0.0018086378620468
1113 => 0.0018424201751809
1114 => 0.0018455088065202
1115 => 0.0018451197099628
1116 => 0.0018374642149231
1117 => 0.0018707272893914
1118 => 0.001898475931321
1119 => 0.00183569218901
1120 => 0.0018595994161825
1121 => 0.0018703321407029
1122 => 0.0018860909645549
1123 => 0.0019126787418786
1124 => 0.0019415601201119
1125 => 0.0019456442636623
1126 => 0.001942746368369
1127 => 0.0019236983230511
1128 => 0.0019553006717404
1129 => 0.0019738125864363
1130 => 0.0019848360080001
1201 => 0.0020127895709635
1202 => 0.0018703984223557
1203 => 0.0017696068900719
1204 => 0.0017538668368584
1205 => 0.001785874854015
1206 => 0.0017943151128801
1207 => 0.0017909128551148
1208 => 0.0016774628219641
1209 => 0.0017532695459129
1210 => 0.0018348312068713
1211 => 0.0018379643224391
1212 => 0.0018787957952888
1213 => 0.0018920921965873
1214 => 0.0019249668841348
1215 => 0.0019229105634779
1216 => 0.0019309150267452
1217 => 0.001929074939258
1218 => 0.0019899683753576
1219 => 0.0020571428781382
1220 => 0.0020548168387088
1221 => 0.0020451597091614
1222 => 0.0020595021933245
1223 => 0.0021288334790513
1224 => 0.0021224505652728
1225 => 0.0021286510223133
1226 => 0.0022103965155252
1227 => 0.0023166772848616
1228 => 0.0022672991970901
1229 => 0.0023744354393922
1230 => 0.0024418720248732
1231 => 0.0025584966263896
]
'min_raw' => 0.001044577497503
'max_raw' => 0.0025584966263896
'avg_raw' => 0.0018015370619463
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001044'
'max' => '$0.002558'
'avg' => '$0.0018015'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00046577003643937
'max_diff' => 0.0010379656949109
'year' => 2028
]
3 => [
'items' => [
101 => 0.0025438946518915
102 => 0.0025892957534309
103 => 0.0025177540700158
104 => 0.0023534799039349
105 => 0.0023274828883364
106 => 0.002379529571914
107 => 0.0025074812648483
108 => 0.002375499917762
109 => 0.0024021995723847
110 => 0.0023945100700572
111 => 0.0023941003291564
112 => 0.0024097384728015
113 => 0.0023870545298136
114 => 0.0022946360653178
115 => 0.0023369909029708
116 => 0.0023206356661066
117 => 0.0023387830207711
118 => 0.0024367168093571
119 => 0.0023934179469733
120 => 0.0023478061127659
121 => 0.0024050134749382
122 => 0.002477858105566
123 => 0.0024732996194957
124 => 0.00246445425122
125 => 0.0025143151290619
126 => 0.0025966706913904
127 => 0.0026189310689563
128 => 0.0026353632245821
129 => 0.0026376289412193
130 => 0.0026609672307181
131 => 0.0025354713660772
201 => 0.0027346365262247
202 => 0.0027690268475556
203 => 0.0027625628924782
204 => 0.0028007862872716
205 => 0.0027895399948894
206 => 0.0027732458817169
207 => 0.0028338380928137
208 => 0.0027643740123305
209 => 0.0026657784953692
210 => 0.002611687044766
211 => 0.0026829190303532
212 => 0.0027264179182975
213 => 0.0027551679161798
214 => 0.0027638676481678
215 => 0.0025452132528083
216 => 0.0024273706608383
217 => 0.002502906411223
218 => 0.0025950652398914
219 => 0.0025349594191307
220 => 0.0025373154535091
221 => 0.0024516203486362
222 => 0.0026026473551663
223 => 0.0025806439906519
224 => 0.0026947974846758
225 => 0.002667553837188
226 => 0.0027606415801513
227 => 0.0027361284577191
228 => 0.0028378810584251
301 => 0.0028784729256884
302 => 0.0029466329884431
303 => 0.0029967718080669
304 => 0.0030262142819528
305 => 0.0030244466662566
306 => 0.0031411124159747
307 => 0.0030723186993568
308 => 0.0029858975778506
309 => 0.0029843344924177
310 => 0.0030290932158425
311 => 0.0031228952211848
312 => 0.0031472167164064
313 => 0.0031608091142359
314 => 0.0031399918838053
315 => 0.0030653212349066
316 => 0.003033078827301
317 => 0.0030605502927335
318 => 0.0030269550511595
319 => 0.0030849498632761
320 => 0.0031645891273357
321 => 0.0031481439342352
322 => 0.0032031177491692
323 => 0.0032600098642118
324 => 0.0033413681439075
325 => 0.0033626382109083
326 => 0.0033977968228325
327 => 0.0034339865835049
328 => 0.0034456097592914
329 => 0.0034678020083276
330 => 0.0034676850442208
331 => 0.003534562880402
401 => 0.003608331204744
402 => 0.0036361770394425
403 => 0.0037002070009033
404 => 0.0035905579357791
405 => 0.0036737280112335
406 => 0.0037487495011754
407 => 0.0036593057880937
408 => 0.0037825831088645
409 => 0.0037873696878776
410 => 0.0038596413480873
411 => 0.00378638017489
412 => 0.0037428779241034
413 => 0.0038684672921163
414 => 0.0039292360312697
415 => 0.0039109319924843
416 => 0.0037716373535455
417 => 0.0036905618990549
418 => 0.003478371796366
419 => 0.0037297201389313
420 => 0.0038521445846632
421 => 0.0037713203038066
422 => 0.003812083369803
423 => 0.004034473440411
424 => 0.0041191451806078
425 => 0.004101534050547
426 => 0.0041045100416234
427 => 0.0041501973757328
428 => 0.0043528001756483
429 => 0.0042313958816428
430 => 0.0043242049154779
501 => 0.0043734304923762
502 => 0.0044191539515705
503 => 0.0043068715868369
504 => 0.0041607938800741
505 => 0.0041145249384173
506 => 0.0037632839219479
507 => 0.0037450003016782
508 => 0.0037347371515705
509 => 0.0036700294418925
510 => 0.003619186907019
511 => 0.0035787550356253
512 => 0.0034726497311093
513 => 0.0035084571566296
514 => 0.0033393474471293
515 => 0.0034475378463875
516 => 0.0031776346667283
517 => 0.0034024180549648
518 => 0.0032800786763942
519 => 0.0033622262787973
520 => 0.0033619396735513
521 => 0.0032106798926061
522 => 0.0031234364076681
523 => 0.0031790313518378
524 => 0.00323863354512
525 => 0.0032483038004542
526 => 0.0033255795998209
527 => 0.0033471456143864
528 => 0.003281799583432
529 => 0.003172041523247
530 => 0.0031975358173132
531 => 0.0031229197666125
601 => 0.0029921580078246
602 => 0.0030860733858674
603 => 0.0031181402250989
604 => 0.003132302768111
605 => 0.0030037135964325
606 => 0.0029633080868844
607 => 0.0029417965326361
608 => 0.003155442275937
609 => 0.003167146272033
610 => 0.0031072669732275
611 => 0.0033779270818166
612 => 0.0033166683633785
613 => 0.0033851093606242
614 => 0.0031952224773452
615 => 0.0032024764120031
616 => 0.0031125809183865
617 => 0.0031629163879927
618 => 0.003127340900463
619 => 0.0031588497794733
620 => 0.0031777360716362
621 => 0.0032676168142868
622 => 0.0034034443486684
623 => 0.0032541916285935
624 => 0.0031891600811185
625 => 0.0032295052874207
626 => 0.0033369498884324
627 => 0.0034997339589532
628 => 0.0034033625128702
629 => 0.0034461305241486
630 => 0.0034554734319965
701 => 0.0033844126955197
702 => 0.0035023540696671
703 => 0.0035655598102267
704 => 0.0036303958214557
705 => 0.0036866911133421
706 => 0.0036044988927964
707 => 0.0036924563505723
708 => 0.0036215781661863
709 => 0.0035579931075401
710 => 0.0035580895398273
711 => 0.0035182017037091
712 => 0.0034409139950392
713 => 0.0034266609557543
714 => 0.0035008070660748
715 => 0.0035602652248892
716 => 0.0035651624836345
717 => 0.0035980815754246
718 => 0.0036175627548524
719 => 0.0038085047966238
720 => 0.0038853032653797
721 => 0.0039792109792538
722 => 0.0040157933261565
723 => 0.0041258930748364
724 => 0.004036978585913
725 => 0.004017741376936
726 => 0.0037506753999919
727 => 0.0037944074387551
728 => 0.0038644266523293
729 => 0.003751829991034
730 => 0.003823246656447
731 => 0.0038373458190113
801 => 0.0037480039995688
802 => 0.0037957253255652
803 => 0.0036689916321059
804 => 0.0034062067968626
805 => 0.0035026466243098
806 => 0.0035736587986058
807 => 0.0034723156701474
808 => 0.0036539693053883
809 => 0.0035478510017728
810 => 0.0035142165941035
811 => 0.0033829967782537
812 => 0.0034449274802209
813 => 0.0035286896413938
814 => 0.0034769343641854
815 => 0.0035843343354868
816 => 0.0037364413373758
817 => 0.0038448418450505
818 => 0.0038531634900153
819 => 0.0037834692258505
820 => 0.0038951547289575
821 => 0.0038959682359178
822 => 0.0037699865321644
823 => 0.0036928234400845
824 => 0.0036752918232114
825 => 0.0037190892394363
826 => 0.0037722673881824
827 => 0.0038561145071696
828 => 0.0039067815651179
829 => 0.004038894380516
830 => 0.0040746403203915
831 => 0.0041139142708228
901 => 0.0041663963802368
902 => 0.004229414608725
903 => 0.0040915343124226
904 => 0.0040970125536357
905 => 0.0039686203308016
906 => 0.003831414827396
907 => 0.0039355367015734
908 => 0.0040716622013078
909 => 0.0040404348612634
910 => 0.0040369211475918
911 => 0.0040428302393646
912 => 0.0040192858447607
913 => 0.0039127954205633
914 => 0.0038593165961967
915 => 0.0039283179235328
916 => 0.0039649890581162
917 => 0.004021862789796
918 => 0.0040148519019076
919 => 0.004161352526922
920 => 0.0042182782398536
921 => 0.0042037142064971
922 => 0.0042063943391377
923 => 0.004309455623274
924 => 0.0044240809674031
925 => 0.0045314427283265
926 => 0.0046406557228326
927 => 0.0045089951952997
928 => 0.004442146099111
929 => 0.0045111173026261
930 => 0.004474520211201
1001 => 0.0046848179539322
1002 => 0.0046993785133624
1003 => 0.0049096610491731
1004 => 0.0051092442156361
1005 => 0.0049838896046846
1006 => 0.0051020933567162
1007 => 0.0052299403518317
1008 => 0.005476577947837
1009 => 0.0053935190823177
1010 => 0.0053298972930282
1011 => 0.005269775009568
1012 => 0.0053948799373051
1013 => 0.0055558254282389
1014 => 0.0055904915454692
1015 => 0.0056466638988585
1016 => 0.0055876055376983
1017 => 0.0056587348286507
1018 => 0.0059098524815067
1019 => 0.0058419982750282
1020 => 0.0057456343937206
1021 => 0.0059438676630548
1022 => 0.0060156075126145
1023 => 0.0065191153472754
1024 => 0.007154814787406
1025 => 0.0068916310449643
1026 => 0.0067282644031445
1027 => 0.0067666594390807
1028 => 0.0069987953548323
1029 => 0.0070733500433461
1030 => 0.0068706846994234
1031 => 0.0069422695250832
1101 => 0.0073367089525333
1102 => 0.0075483130502283
1103 => 0.0072609262633366
1104 => 0.0064680375162276
1105 => 0.005736957880549
1106 => 0.005930873120876
1107 => 0.0059088891505134
1108 => 0.0063326651079878
1109 => 0.0058403799746446
1110 => 0.0058486687937545
1111 => 0.0062812079892429
1112 => 0.0061658139474857
1113 => 0.0059788903783913
1114 => 0.0057383226294654
1115 => 0.0052936108957524
1116 => 0.0048997173114986
1117 => 0.0056722333384951
1118 => 0.0056389210426817
1119 => 0.0055906799017384
1120 => 0.0056980353406712
1121 => 0.0062193228787557
1122 => 0.0062073055137597
1123 => 0.006130857168969
1124 => 0.006188842564708
1125 => 0.0059687252581629
1126 => 0.0060254545000375
1127 => 0.0057368420737995
1128 => 0.0058673069439787
1129 => 0.0059784893243636
1130 => 0.0060008108333092
1201 => 0.006051102332728
1202 => 0.0056213669765105
1203 => 0.005814305535085
1204 => 0.0059276388623493
1205 => 0.0054155947666674
1206 => 0.005917517396925
1207 => 0.0056138862400337
1208 => 0.0055108292649978
1209 => 0.0056495819051596
1210 => 0.0055955098663472
1211 => 0.0055490219025929
1212 => 0.0055230808200535
1213 => 0.0056249654454182
1214 => 0.0056202124058664
1215 => 0.0054535093838162
1216 => 0.005236052087236
1217 => 0.0053090378937607
1218 => 0.0052825214660047
1219 => 0.0051864225111297
1220 => 0.0052511816036834
1221 => 0.0049660153339035
1222 => 0.0044754015884
1223 => 0.0047995160565851
1224 => 0.0047870380021286
1225 => 0.004780746001237
1226 => 0.0050243090662121
1227 => 0.0050008960974707
1228 => 0.0049584013299446
1229 => 0.0051856420613993
1230 => 0.0051026961375992
1231 => 0.0053583159302335
]
'min_raw' => 0.0022946360653178
'max_raw' => 0.0075483130502283
'avg_raw' => 0.004921474557773
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002294'
'max' => '$0.007548'
'avg' => '$0.004921'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0012500585678148
'max_diff' => 0.0049898164238387
'year' => 2029
]
4 => [
'items' => [
101 => 0.0055266836581141
102 => 0.0054839801561982
103 => 0.0056423308180617
104 => 0.0053107193393325
105 => 0.005420867370623
106 => 0.0054435687272135
107 => 0.0051828379460468
108 => 0.0050047267487099
109 => 0.0049928487624638
110 => 0.0046840284915165
111 => 0.0048489977875464
112 => 0.0049941639411594
113 => 0.0049246406189274
114 => 0.0049026316120589
115 => 0.0050150708549788
116 => 0.0050238083471307
117 => 0.0048245926001102
118 => 0.004866015862258
119 => 0.0050387577514587
120 => 0.0048616632098601
121 => 0.0045175974437633
122 => 0.00443226437669
123 => 0.0044208793725419
124 => 0.004189449326788
125 => 0.0044379667402677
126 => 0.0043294822294312
127 => 0.0046721834993198
128 => 0.0044764343719032
129 => 0.0044679960182591
130 => 0.0044552402090887
131 => 0.0042560388084535
201 => 0.0042996512552832
202 => 0.0044446256709082
203 => 0.0044963541756569
204 => 0.0044909584688125
205 => 0.0044439152171811
206 => 0.0044654513768775
207 => 0.0043960759028
208 => 0.0043715779789775
209 => 0.0042942557927092
210 => 0.0041806135396939
211 => 0.0041964161919841
212 => 0.0039712611526477
213 => 0.0038485847373349
214 => 0.0038146295224255
215 => 0.0037692231899625
216 => 0.0038197582884988
217 => 0.0039706233167105
218 => 0.003788648084886
219 => 0.0034766643140011
220 => 0.0034954150702258
221 => 0.0035375424523131
222 => 0.0034590383544939
223 => 0.0033847408142575
224 => 0.0034493364975431
225 => 0.0033171448610098
226 => 0.0035535171800351
227 => 0.0035471239712313
228 => 0.0036352289545978
301 => 0.0036903228087931
302 => 0.0035633493117199
303 => 0.0035314158205789
304 => 0.0035496065884291
305 => 0.0032489537163015
306 => 0.0036106592007089
307 => 0.0036137872447582
308 => 0.0035870030325175
309 => 0.0037796000365605
310 => 0.0041860397876032
311 => 0.0040331208042598
312 => 0.0039739059519085
313 => 0.0038613384743029
314 => 0.0040113279546169
315 => 0.0039998111027292
316 => 0.0039477275308565
317 => 0.0039162272240773
318 => 0.0039742675051702
319 => 0.0039090353909465
320 => 0.0038973179107733
321 => 0.003826322729668
322 => 0.0038009806800883
323 => 0.0037822184354755
324 => 0.003761563047697
325 => 0.0038071236861345
326 => 0.0037038772854339
327 => 0.0035793722475584
328 => 0.0035690210008223
329 => 0.0035976017031518
330 => 0.003584956869954
331 => 0.0035689604622257
401 => 0.0035384189635101
402 => 0.003529357953257
403 => 0.0035588018408022
404 => 0.003525561408449
405 => 0.0035746094770863
406 => 0.0035612711163704
407 => 0.0034867641176814
408 => 0.003393900811291
409 => 0.0033930741330767
410 => 0.0033730668860412
411 => 0.0033475846488318
412 => 0.0033404960733948
413 => 0.0034438964292688
414 => 0.0036579320714156
415 => 0.0036159117534234
416 => 0.0036462757395882
417 => 0.0037956364991774
418 => 0.0038431137932161
419 => 0.0038094155344688
420 => 0.0037632872794774
421 => 0.0037653166885921
422 => 0.0039229508998701
423 => 0.0039327823522695
424 => 0.0039576232607359
425 => 0.0039895508481551
426 => 0.003814852940665
427 => 0.0037570884328597
428 => 0.0037297164044086
429 => 0.0036454211510875
430 => 0.0037363263548655
501 => 0.003683359785573
502 => 0.0036905067853662
503 => 0.0036858522923749
504 => 0.0036883939602836
505 => 0.0035534511091547
506 => 0.0036026171917186
507 => 0.0035208690435375
508 => 0.0034114174497834
509 => 0.0034110505296624
510 => 0.0034378386521738
511 => 0.0034219040286847
512 => 0.0033790243665921
513 => 0.0033851152202061
514 => 0.0033317529334506
515 => 0.0033915943679736
516 => 0.0033933104061928
517 => 0.0033702681943164
518 => 0.0034624621807258
519 => 0.0035002341321809
520 => 0.0034850672547119
521 => 0.0034991699836259
522 => 0.0036176578873463
523 => 0.0036369765856424
524 => 0.003645556675304
525 => 0.0036340604918015
526 => 0.0035013357249946
527 => 0.0035072226327917
528 => 0.0034640284094008
529 => 0.0034275338423305
530 => 0.0034289934336245
531 => 0.0034477563850603
601 => 0.0035296952944127
602 => 0.0037021308985825
603 => 0.0037086747037119
604 => 0.0037166059864251
605 => 0.0036843454736874
606 => 0.0036746153943541
607 => 0.0036874518805412
608 => 0.003752209627234
609 => 0.0039187841332847
610 => 0.0038599055777092
611 => 0.003812036395527
612 => 0.0038540305737396
613 => 0.003847565899165
614 => 0.003792997539937
615 => 0.003791465987839
616 => 0.0036867318599206
617 => 0.0036480140375099
618 => 0.0036156585271247
619 => 0.0035803271544461
620 => 0.0035593815324039
621 => 0.0035915635274757
622 => 0.0035989239305148
623 => 0.0035285574358453
624 => 0.0035189667426349
625 => 0.0035764295411484
626 => 0.0035511423059517
627 => 0.0035771508544447
628 => 0.0035831850607923
629 => 0.0035822134145908
630 => 0.003555810636825
701 => 0.0035726389800308
702 => 0.0035328349315785
703 => 0.0034895540072615
704 => 0.0034619434740441
705 => 0.0034378496218062
706 => 0.0034512182913707
707 => 0.0034035614253958
708 => 0.0033883150348272
709 => 0.0035669379160024
710 => 0.003698888558846
711 => 0.0036969699442409
712 => 0.0036852908712597
713 => 0.0036679381378232
714 => 0.0037509401666996
715 => 0.003722023919517
716 => 0.0037430629053757
717 => 0.0037484182102802
718 => 0.0037646271053114
719 => 0.0037704203920834
720 => 0.0037529090557619
721 => 0.0036941388722373
722 => 0.0035476891625952
723 => 0.0034795164274234
724 => 0.00345701828931
725 => 0.0034578360539003
726 => 0.0034352784558359
727 => 0.0034419226794265
728 => 0.00343296786602
729 => 0.0034160096158302
730 => 0.0034501711672086
731 => 0.0034541079677681
801 => 0.0034461342534762
802 => 0.0034480123518446
803 => 0.0033819934031259
804 => 0.0033870126804114
805 => 0.003359064706667
806 => 0.0033538247985078
807 => 0.0032831747545905
808 => 0.0031580079609035
809 => 0.0032273625148408
810 => 0.0031435919664106
811 => 0.0031118667903891
812 => 0.0032620488393975
813 => 0.0032469747270787
814 => 0.003221174399348
815 => 0.0031830103373749
816 => 0.0031688549155529
817 => 0.0030828510536246
818 => 0.0030777694866491
819 => 0.0031203953229204
820 => 0.0031007249661466
821 => 0.0030731003354897
822 => 0.002973046723514
823 => 0.0028605533370408
824 => 0.0028639488052702
825 => 0.0028997308584935
826 => 0.0030037720041074
827 => 0.0029631213285859
828 => 0.0029336287970824
829 => 0.002928105732474
830 => 0.0029972384493668
831 => 0.003095075727522
901 => 0.0031409787894468
902 => 0.0030954902491761
903 => 0.0030432354633901
904 => 0.0030464159700755
905 => 0.0030675744561616
906 => 0.0030697979138843
907 => 0.0030357854202164
908 => 0.0030453597379546
909 => 0.0030308154738163
910 => 0.0029415573516462
911 => 0.0029399429552568
912 => 0.0029180375725946
913 => 0.0029173742863133
914 => 0.0028801077658511
915 => 0.0028748939220272
916 => 0.0028008989837334
917 => 0.0028496026761957
918 => 0.0028169347963506
919 => 0.0027676965958503
920 => 0.0027592079115251
921 => 0.0027589527314238
922 => 0.0028095093538775
923 => 0.0028490118926268
924 => 0.0028175030681069
925 => 0.0028103291195366
926 => 0.0028869281216873
927 => 0.0028771802004482
928 => 0.0028687385635225
929 => 0.0030863154723519
930 => 0.0029140863712755
1001 => 0.0028389846527129
1002 => 0.002746032014562
1003 => 0.0027762978622518
1004 => 0.0027826753210578
1005 => 0.0025591409822774
1006 => 0.0024684531288735
1007 => 0.002437332475085
1008 => 0.0024194220988482
1009 => 0.0024275840822037
1010 => 0.002345954377516
1011 => 0.0024008108890968
1012 => 0.0023301264648244
1013 => 0.0023182759910682
1014 => 0.0024446684977871
1015 => 0.0024622552767227
1016 => 0.0023872246139994
1017 => 0.0024354064458287
1018 => 0.0024179350438298
1019 => 0.002331338146402
1020 => 0.0023280307818839
1021 => 0.0022845795027828
1022 => 0.002216586664815
1023 => 0.0021855121133724
1024 => 0.0021693282171794
1025 => 0.0021760060081665
1026 => 0.0021726295126996
1027 => 0.002150595595829
1028 => 0.0021738924710227
1029 => 0.0021143785818363
1030 => 0.0020906796716262
1031 => 0.0020799754236949
1101 => 0.0020271534215503
1102 => 0.0021112167170133
1103 => 0.0021277782452211
1104 => 0.0021443724047554
1105 => 0.0022888132341885
1106 => 0.0022815973785356
1107 => 0.0023468251993738
1108 => 0.0023442905662023
1109 => 0.0023256865350786
1110 => 0.0022471991879822
1111 => 0.0022784828456324
1112 => 0.002182196609945
1113 => 0.0022543408045496
1114 => 0.0022214172069457
1115 => 0.0022432093030816
1116 => 0.0022040251493152
1117 => 0.0022257112778835
1118 => 0.0021317055979513
1119 => 0.0020439244167262
1120 => 0.0020792501265436
1121 => 0.0021176532131001
1122 => 0.002200920889679
1123 => 0.002151327348452
1124 => 0.0021691630612166
1125 => 0.0021094164091173
1126 => 0.0019861420000491
1127 => 0.0019868397198169
1128 => 0.0019678766376607
1129 => 0.0019514897660224
1130 => 0.0021570237632427
1201 => 0.0021314623616767
1202 => 0.0020907336136748
1203 => 0.0021452506613714
1204 => 0.0021596658340843
1205 => 0.0021600762137861
1206 => 0.0021998504444969
1207 => 0.0022210779585572
1208 => 0.0022248193999157
1209 => 0.0022874050113183
1210 => 0.0023083828827362
1211 => 0.0023947877662074
1212 => 0.0022192769522976
1213 => 0.0022156624225832
1214 => 0.002146017828033
1215 => 0.0021018481251318
1216 => 0.0021490421653795
1217 => 0.00219084964241
1218 => 0.0021473169028823
1219 => 0.0021530013596383
1220 => 0.0020945622135778
1221 => 0.002115451458477
1222 => 0.0021334440902694
1223 => 0.0021235096165517
1224 => 0.0021086372285623
1225 => 0.0021874219060597
1226 => 0.0021829765657957
1227 => 0.0022563426687332
1228 => 0.0023135367924334
1229 => 0.0024160388867766
1230 => 0.0023090726077744
1231 => 0.0023051743314151
]
'min_raw' => 0.0019514897660224
'max_raw' => 0.0056423308180617
'avg_raw' => 0.0037969102920421
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.001951'
'max' => '$0.005642'
'avg' => '$0.003796'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00034314629929532
'max_diff' => -0.0019059822321665
'year' => 2030
]
5 => [
'items' => [
101 => 0.0023432806081304
102 => 0.0023083770488638
103 => 0.0023304348934904
104 => 0.0024124850269943
105 => 0.0024142186170223
106 => 0.0023851787504482
107 => 0.002383411671928
108 => 0.0023889890959649
109 => 0.0024216562427566
110 => 0.0024102413379076
111 => 0.0024234509547889
112 => 0.0024399697829719
113 => 0.0025082986601747
114 => 0.002524772521142
115 => 0.0024847495797091
116 => 0.0024883632032027
117 => 0.0024733935244525
118 => 0.0024589330023493
119 => 0.0024914381442475
120 => 0.0025508419299568
121 => 0.0025504723820889
122 => 0.0025642529057289
123 => 0.0025728380577925
124 => 0.0025359843004199
125 => 0.0025119938595205
126 => 0.0025211933211127
127 => 0.0025359034605369
128 => 0.0025164230211558
129 => 0.0023961807250779
130 => 0.0024326545566003
131 => 0.0024265835275557
201 => 0.0024179376439339
202 => 0.0024546123635735
203 => 0.0024510749973957
204 => 0.0023451171469088
205 => 0.0023519002247175
206 => 0.0023455296483366
207 => 0.0023661142839208
208 => 0.0023072654109893
209 => 0.0023253669279498
210 => 0.0023367200296962
211 => 0.0023434070938435
212 => 0.0023675653549064
213 => 0.0023647306618043
214 => 0.0023673891464031
215 => 0.0024032094700148
216 => 0.0025843763747925
217 => 0.0025942368896973
218 => 0.0025456801079922
219 => 0.0025650775845432
220 => 0.002527838671327
221 => 0.0025528374032481
222 => 0.0025699409007295
223 => 0.0024926534844243
224 => 0.0024880770252219
225 => 0.0024506844137642
226 => 0.0024707770851358
227 => 0.0024388082002694
228 => 0.0024466522463915
301 => 0.0024247196096025
302 => 0.0024641939890783
303 => 0.0025083324790306
304 => 0.0025194836046744
305 => 0.0024901497939671
306 => 0.0024689101818227
307 => 0.0024316204196604
308 => 0.0024936341251929
309 => 0.0025117688225241
310 => 0.002493538871348
311 => 0.0024893145933282
312 => 0.0024813095941138
313 => 0.0024910128917536
314 => 0.0025116700570678
315 => 0.0025019285193836
316 => 0.0025083629766478
317 => 0.0024838414607401
318 => 0.0025359965005471
319 => 0.0026188312555543
320 => 0.0026190975828365
321 => 0.0026093559926418
322 => 0.0026053699438196
323 => 0.0026153654065285
324 => 0.0026207875350128
325 => 0.002653111028559
326 => 0.0026877954249589
327 => 0.0028496523689695
328 => 0.0028042035867724
329 => 0.0029478126964112
330 => 0.0030613888568266
331 => 0.0030954453812516
401 => 0.0030641149812639
402 => 0.0029569353753409
403 => 0.0029516766325471
404 => 0.0031118482138583
405 => 0.0030665924058147
406 => 0.0030612093714507
407 => 0.0030039429805978
408 => 0.0030377945101724
409 => 0.0030303906840825
410 => 0.0030187033823919
411 => 0.0030832897427022
412 => 0.0032041896435387
413 => 0.0031853462602013
414 => 0.0031712805486592
415 => 0.0031096486951492
416 => 0.0031467648369351
417 => 0.003133548489758
418 => 0.0031903343045319
419 => 0.0031566956458197
420 => 0.0030662495485585
421 => 0.0030806533876616
422 => 0.0030784762763576
423 => 0.0031232810727207
424 => 0.0031098317849759
425 => 0.0030758500870721
426 => 0.0032037764208212
427 => 0.0031954695962712
428 => 0.0032072467742786
429 => 0.0032124314522588
430 => 0.003290297957297
501 => 0.0033221973729609
502 => 0.0033294390987945
503 => 0.0033597410764859
504 => 0.0033286851579851
505 => 0.0034529309744829
506 => 0.0035355471925096
507 => 0.0036315101811392
508 => 0.0037717378999469
509 => 0.0038244648193975
510 => 0.0038149401733391
511 => 0.0039212592293422
512 => 0.00411231220964
513 => 0.003853557443071
514 => 0.0041260268405738
515 => 0.0040397661751349
516 => 0.0038352436891423
517 => 0.0038220748522061
518 => 0.0039605798542752
519 => 0.0042677706182519
520 => 0.0041908228160045
521 => 0.0042678964772906
522 => 0.0041779859573918
523 => 0.0041735211422535
524 => 0.0042635297240231
525 => 0.0044738396814402
526 => 0.0043739293040222
527 => 0.0042306832789639
528 => 0.004336453914712
529 => 0.0042448256014168
530 => 0.0040383613664126
531 => 0.0041907639754703
601 => 0.0040888566909699
602 => 0.0041185986542763
603 => 0.0043327926087317
604 => 0.0043070202254447
605 => 0.0043403720758765
606 => 0.0042815069328343
607 => 0.0042265176070518
608 => 0.0041238759469179
609 => 0.0040934888115249
610 => 0.004101886722533
611 => 0.0040934846499373
612 => 0.0040360575844179
613 => 0.0040236562150867
614 => 0.0040029867228848
615 => 0.0040093930628063
616 => 0.0039705283703936
617 => 0.0040438740748315
618 => 0.0040574876838953
619 => 0.0041108625710611
620 => 0.0041164041289111
621 => 0.0042650524299238
622 => 0.0041831794436592
623 => 0.004238106911419
624 => 0.0042331936817052
625 => 0.0038396763115802
626 => 0.0038938995331503
627 => 0.003978253849729
628 => 0.0039402523444499
629 => 0.0038865271069679
630 => 0.0038431410971362
701 => 0.003777406855794
702 => 0.0038699265381689
703 => 0.0039915800821206
704 => 0.0041194894635446
705 => 0.0042731642043708
706 => 0.0042388657911896
707 => 0.0041166166211588
708 => 0.0041221006296233
709 => 0.0041560006120731
710 => 0.0041120970546624
711 => 0.0040991490384827
712 => 0.0041542217534803
713 => 0.0041546010090011
714 => 0.0041040846602779
715 => 0.0040479449830664
716 => 0.004047709755769
717 => 0.0040377202424542
718 => 0.0041797630696187
719 => 0.0042578722624096
720 => 0.0042668273554838
721 => 0.0042572695132952
722 => 0.0042609479474164
723 => 0.00421549792915
724 => 0.0043193831931227
725 => 0.0044147185845318
726 => 0.0043891666630906
727 => 0.0043508607004306
728 => 0.0043203481561067
729 => 0.0043819788773505
730 => 0.0043792345583493
731 => 0.0044138859130567
801 => 0.0044123139274512
802 => 0.0044006619801665
803 => 0.0043891670792184
804 => 0.004434743062153
805 => 0.0044216179109957
806 => 0.0044084723728534
807 => 0.0043821069836278
808 => 0.0043856904779063
809 => 0.0043473911293108
810 => 0.0043296720981916
811 => 0.0040632203840586
812 => 0.0039920157794813
813 => 0.0040144181975847
814 => 0.0040217936553029
815 => 0.0039908053201397
816 => 0.0040352346325135
817 => 0.0040283103712424
818 => 0.0040552486212912
819 => 0.0040384187721835
820 => 0.0040391094750614
821 => 0.0040886024727848
822 => 0.0041029705005822
823 => 0.0040956628056802
824 => 0.0041007808646964
825 => 0.0042187243745271
826 => 0.0042019565790503
827 => 0.0041930490218979
828 => 0.0041955164761044
829 => 0.0042256535716035
830 => 0.0042340903129189
831 => 0.0041983432471265
901 => 0.0042152017700055
902 => 0.0042869832207593
903 => 0.0043121026660448
904 => 0.0043922718773786
905 => 0.0043582145715099
906 => 0.0044207282303975
907 => 0.0046128739053413
908 => 0.0047663731659557
909 => 0.0046252089022694
910 => 0.0049070907463749
911 => 0.00512657619556
912 => 0.0051181519784482
913 => 0.0050798796135928
914 => 0.0048300012650182
915 => 0.0046000594831835
916 => 0.004792415547532
917 => 0.0047929059026984
918 => 0.0047763823461787
919 => 0.0046737559557479
920 => 0.0047728111702473
921 => 0.0047806738134586
922 => 0.0047762728241059
923 => 0.0046975894111829
924 => 0.0045774543827749
925 => 0.0046009284797632
926 => 0.0046393795294886
927 => 0.0045665836706291
928 => 0.0045433209828669
929 => 0.0045865707453243
930 => 0.004725930491408
1001 => 0.004699585338667
1002 => 0.0046988973602598
1003 => 0.0048116130957696
1004 => 0.0047309329547227
1005 => 0.0046012245633007
1006 => 0.0045684714838231
1007 => 0.0044522201167959
1008 => 0.0045325153500748
1009 => 0.0045354050325736
1010 => 0.0044914281539042
1011 => 0.0046047930446343
1012 => 0.0046037483672087
1013 => 0.0047113714588198
1014 => 0.0049171063885928
1015 => 0.0048562604462579
1016 => 0.0047855032353421
1017 => 0.0047931965060533
1018 => 0.004877572697145
1019 => 0.0048265569258898
1020 => 0.0048449025529278
1021 => 0.0048775449288412
1022 => 0.0048972388846944
1023 => 0.0047903628488788
1024 => 0.0047654449324584
1025 => 0.0047144716204625
1026 => 0.0047011736348247
1027 => 0.0047426903338523
1028 => 0.0047317521504652
1029 => 0.004535162165949
1030 => 0.0045146174187507
1031 => 0.0045152474968161
1101 => 0.0044635867531366
1102 => 0.0043847917190261
1103 => 0.0045918603640614
1104 => 0.0045752298539412
1105 => 0.0045568710578678
1106 => 0.004559119905633
1107 => 0.0046490013862353
1108 => 0.0045968655883624
1109 => 0.0047354771518967
1110 => 0.0047069827814791
1111 => 0.0046777576379793
1112 => 0.004673717832928
1113 => 0.0046624686460526
1114 => 0.004623890998619
1115 => 0.0045773061711857
1116 => 0.0045465468330056
1117 => 0.0041939491238914
1118 => 0.0042593892077365
1119 => 0.0043346720591489
1120 => 0.0043606593977794
1121 => 0.0043162062567829
1122 => 0.0046256462795707
1123 => 0.0046821839535722
1124 => 0.0045109276511602
1125 => 0.0044788925893277
1126 => 0.0046277464928911
1127 => 0.0045379693923927
1128 => 0.00457839601525
1129 => 0.004491015768813
1130 => 0.0046685656835216
1201 => 0.004667213050649
1202 => 0.0045981421236806
1203 => 0.004656520398177
1204 => 0.0046463757363645
1205 => 0.0045683948299314
1206 => 0.0046710378173476
1207 => 0.0046710887269887
1208 => 0.0046046094615131
1209 => 0.0045269762336202
1210 => 0.0045130972460879
1211 => 0.004502641293362
1212 => 0.004575824491841
1213 => 0.0046414403187594
1214 => 0.0047635351051115
1215 => 0.004794232635301
1216 => 0.0049140471392809
1217 => 0.0048427034358232
1218 => 0.0048743291755104
1219 => 0.0049086633896748
1220 => 0.0049251244745442
1221 => 0.0048983020201001
1222 => 0.0050844232623982
1223 => 0.0051001375978557
1224 => 0.0051054064786061
1225 => 0.0050426474429025
1226 => 0.0050983921555425
1227 => 0.0050723110505691
1228 => 0.0051401668401703
1229 => 0.0051508074944059
1230 => 0.0051417952388206
1231 => 0.0051451727504263
]
'min_raw' => 0.0023072654109893
'max_raw' => 0.0051508074944059
'avg_raw' => 0.0037290364526976
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0023072'
'max' => '$0.00515'
'avg' => '$0.003729'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00035577564496681
'max_diff' => -0.0004915233236558
'year' => 2031
]
6 => [
'items' => [
101 => 0.0049863511041619
102 => 0.0049781153639522
103 => 0.0048658204618109
104 => 0.0049115814644755
105 => 0.004826033463376
106 => 0.0048531616157667
107 => 0.004865119446854
108 => 0.004858873354495
109 => 0.0049141687229069
110 => 0.0048671563636593
111 => 0.0047430830180575
112 => 0.0046189758687556
113 => 0.0046174178045916
114 => 0.0045847425828535
115 => 0.0045611243823023
116 => 0.0045656740856292
117 => 0.0045817078335801
118 => 0.0045601924717236
119 => 0.0045647838650323
120 => 0.0046410315862487
121 => 0.0046563225229648
122 => 0.0046043579454489
123 => 0.0043957126682696
124 => 0.0043445105939028
125 => 0.0043813136295764
126 => 0.0043637241489435
127 => 0.0035218659629033
128 => 0.0037196480562544
129 => 0.0036021326524304
130 => 0.0036562891571363
131 => 0.0035363363602983
201 => 0.0035935841222141
202 => 0.0035830125509418
203 => 0.0039010403042528
204 => 0.0038960747383178
205 => 0.003898451491959
206 => 0.0037850028480648
207 => 0.0039657296182546
208 => 0.0040547621239745
209 => 0.0040382845766891
210 => 0.0040424316203461
211 => 0.0039711716705075
212 => 0.00389914144404
213 => 0.0038192488375151
214 => 0.0039676794254137
215 => 0.003951176477834
216 => 0.0039890283020087
217 => 0.0040852961482985
218 => 0.0040994719543507
219 => 0.0041185243814416
220 => 0.0041116954425736
221 => 0.004274388471609
222 => 0.0042546852723096
223 => 0.0043021643136237
224 => 0.0042044963233971
225 => 0.0040939757217249
226 => 0.0041149820749121
227 => 0.0041129589941777
228 => 0.0040872028544455
229 => 0.00406395136313
301 => 0.0040252441811568
302 => 0.0041477194325051
303 => 0.0041427471609664
304 => 0.004223242457544
305 => 0.0042090141319843
306 => 0.0041139938916348
307 => 0.004117387558108
308 => 0.0041402115960805
309 => 0.0042192058521036
310 => 0.0042426567256303
311 => 0.004231793346657
312 => 0.004257506158906
313 => 0.0042778285173118
314 => 0.0042600583342332
315 => 0.0045116466526261
316 => 0.004407169642153
317 => 0.0044580910101113
318 => 0.0044702354563232
319 => 0.0044391277127215
320 => 0.004445873868424
321 => 0.0044560924560957
322 => 0.004518137719434
323 => 0.0046809624433753
324 => 0.0047530764052235
325 => 0.0049700348174841
326 => 0.0047470883445669
327 => 0.0047338596235082
328 => 0.0047729403850727
329 => 0.0049003179404499
330 => 0.0050035454851178
331 => 0.0050377920170241
401 => 0.0050423182615641
402 => 0.0051065670320866
403 => 0.0051433932291815
404 => 0.0050987655414348
405 => 0.0050609482487831
406 => 0.0049254914005599
407 => 0.0049411708995785
408 => 0.0050491870992055
409 => 0.0052017663433011
410 => 0.0053326952078997
411 => 0.0052868484828489
412 => 0.0056366266322429
413 => 0.0056713057070397
414 => 0.0056665141802115
415 => 0.0057455182735369
416 => 0.0055887112371898
417 => 0.0055216731911582
418 => 0.0050691247766989
419 => 0.005196272421952
420 => 0.0053810889914468
421 => 0.0053566278254476
422 => 0.0052224090925194
423 => 0.0053325933909551
424 => 0.0052961630161107
425 => 0.0052674288679732
426 => 0.0053990655709795
427 => 0.0052543256086864
428 => 0.0053796450996026
429 => 0.0052189215562384
430 => 0.0052870579068271
501 => 0.0052483804188485
502 => 0.0052734094937053
503 => 0.0051270900335206
504 => 0.0052060404625321
505 => 0.0051238054361088
506 => 0.0051237664459989
507 => 0.0051219511032328
508 => 0.0052187002471339
509 => 0.0052218552332431
510 => 0.0051503574697203
511 => 0.0051400535249917
512 => 0.0051781526091694
513 => 0.0051335485597633
514 => 0.0051544185137459
515 => 0.0051341806894088
516 => 0.0051296247288768
517 => 0.0050933220602245
518 => 0.0050776818724065
519 => 0.0050838147930479
520 => 0.0050628799731613
521 => 0.0050502659869342
522 => 0.0051194418638828
523 => 0.005082483983376
524 => 0.0051137775386445
525 => 0.0050781145828546
526 => 0.0049544912404765
527 => 0.0048833941489818
528 => 0.0046498811151196
529 => 0.0047161051218509
530 => 0.0047600117068274
531 => 0.0047455005807546
601 => 0.0047766760946193
602 => 0.0047785900179736
603 => 0.0047684545406194
604 => 0.0047567189562784
605 => 0.0047510067228396
606 => 0.0047935810309468
607 => 0.0048182968497883
608 => 0.0047644183200241
609 => 0.0047517953343411
610 => 0.0048062695026478
611 => 0.0048394987138462
612 => 0.0050848445394542
613 => 0.0050666685282366
614 => 0.0051122867495307
615 => 0.0051071508378817
616 => 0.0051549660013505
617 => 0.0052331235854262
618 => 0.0050742073637961
619 => 0.0051017897249616
620 => 0.0050950271669735
621 => 0.005168859001849
622 => 0.0051690894967785
623 => 0.0051248236235969
624 => 0.0051488208715804
625 => 0.0051354262660861
626 => 0.0051596321286039
627 => 0.0050664257765254
628 => 0.005179941052353
629 => 0.0052442968989845
630 => 0.0052451904799774
701 => 0.0052756946405212
702 => 0.0053066886343154
703 => 0.0053661789063956
704 => 0.0053050294829155
705 => 0.0051950276228513
706 => 0.005202969401844
707 => 0.0051384753515365
708 => 0.0051395595081739
709 => 0.0051337721950762
710 => 0.0051511403573311
711 => 0.0050702371114438
712 => 0.0050892249415464
713 => 0.0050626418682102
714 => 0.0051017319385517
715 => 0.0050596774846843
716 => 0.0050950239058633
717 => 0.0051102782494917
718 => 0.0051665671058831
719 => 0.0050513635748282
720 => 0.004816455776414
721 => 0.0048658362436224
722 => 0.0047927986538691
723 => 0.0047995585608745
724 => 0.0048132146488566
725 => 0.0047689507997127
726 => 0.0047773949472152
727 => 0.0047770932628458
728 => 0.0047744935099339
729 => 0.0047629787732207
730 => 0.0047462801268651
731 => 0.0048128023943732
801 => 0.0048241058238942
802 => 0.0048492319475209
803 => 0.0049239902482214
804 => 0.0049165201310593
805 => 0.0049287042020829
806 => 0.004902106443449
807 => 0.0048007923546133
808 => 0.0048062941970739
809 => 0.0047376861334296
810 => 0.0048474774850816
811 => 0.0048214774438353
812 => 0.0048047150481036
813 => 0.0048001412731257
814 => 0.0048750848851938
815 => 0.0048975091885218
816 => 0.0048835358675268
817 => 0.0048548761784992
818 => 0.0049099112539086
819 => 0.0049246363183447
820 => 0.0049279327172325
821 => 0.0050254443189289
822 => 0.0049333825325486
823 => 0.0049555427195458
824 => 0.0051284301725937
825 => 0.0049716451095169
826 => 0.0050546976541528
827 => 0.0050506326642775
828 => 0.0050931195357683
829 => 0.0050471475007164
830 => 0.0050477173791878
831 => 0.0050854428427617
901 => 0.0050324642329954
902 => 0.0050193459841774
903 => 0.00500122321739
904 => 0.0050407936156621
905 => 0.0050645142798111
906 => 0.0052556854119437
907 => 0.0053791906817641
908 => 0.0053738289922792
909 => 0.0054228247975089
910 => 0.0054007517385028
911 => 0.0053294720083933
912 => 0.0054511378160532
913 => 0.005412637663796
914 => 0.0054158115695704
915 => 0.0054156934366389
916 => 0.0054412926721482
917 => 0.0054231532676544
918 => 0.0053873986394254
919 => 0.0054111342302425
920 => 0.0054816204493401
921 => 0.0057004118362003
922 => 0.0058228503948876
923 => 0.005693040881229
924 => 0.0057825817455321
925 => 0.0057288891336224
926 => 0.0057191315888215
927 => 0.0057753698686218
928 => 0.0058317065860861
929 => 0.0058281181807339
930 => 0.0057872206167773
1001 => 0.0057641186206355
1002 => 0.005939054675158
1003 => 0.0060679445801722
1004 => 0.0060591551527391
1005 => 0.0060979488269538
1006 => 0.0062118482542914
1007 => 0.0062222617904931
1008 => 0.006220949924284
1009 => 0.0061951388882681
1010 => 0.0063072876661916
1011 => 0.0064008441498054
1012 => 0.006189164379183
1013 => 0.0062697692647443
1014 => 0.0063059553948
1015 => 0.0063590873696628
1016 => 0.0064487299172092
1017 => 0.0065461055003561
1018 => 0.006559875475482
1019 => 0.0065501050191762
1020 => 0.0064858832044946
1021 => 0.0065924327295062
1022 => 0.0066548469423642
1023 => 0.0066920131777973
1024 => 0.0067862605669836
1025 => 0.00630617886802
1026 => 0.005966353179885
1027 => 0.0059132844915402
1028 => 0.0060212017561123
1029 => 0.0060496586781559
1030 => 0.0060381877285621
1031 => 0.0056556830209662
1101 => 0.0059112706834159
1102 => 0.0061862615177908
1103 => 0.0061968250356745
1104 => 0.0063344911971498
1105 => 0.0063793209424527
1106 => 0.0064901602467565
1107 => 0.0064832272180941
1108 => 0.0065102148248535
1109 => 0.0065040108414197
1110 => 0.0067093173126734
1111 => 0.0069358008387722
1112 => 0.0069279584344369
1113 => 0.0068953987479288
1114 => 0.0069437554346449
1115 => 0.0071775107050286
1116 => 0.0071559902655836
1117 => 0.0071768955393978
1118 => 0.0074525061770498
1119 => 0.0078108392111536
1120 => 0.007644357540764
1121 => 0.0080055748616993
1122 => 0.0082329420179206
1123 => 0.0086261500044027
1124 => 0.0085769184279049
1125 => 0.0087299914115489
1126 => 0.008488783631034
1127 => 0.0079349218108363
1128 => 0.0078472710576921
1129 => 0.0080227500851573
1130 => 0.0084541481511874
1201 => 0.0080091638248427
1202 => 0.0080991835745134
1203 => 0.0080732578805523
1204 => 0.0080718764104982
1205 => 0.0081246015036177
1206 => 0.0080481210060919
1207 => 0.0077365257005929
1208 => 0.0078793279928604
1209 => 0.0078241851698866
1210 => 0.0078853702431458
1211 => 0.0082155608488822
1212 => 0.0080695757113252
1213 => 0.0079157922277785
1214 => 0.008108670843433
1215 => 0.0083542716014443
1216 => 0.008338902347395
1217 => 0.0083090795706894
1218 => 0.0084771890015089
1219 => 0.0087548565297809
1220 => 0.0088299089469144
1221 => 0.0088853111068632
1222 => 0.0088929501286929
1223 => 0.0089716368011652
1224 => 0.008548518731687
1225 => 0.0092200179743917
1226 => 0.0093359673438146
1227 => 0.009314173667972
1228 => 0.0094430465121902
1229 => 0.0094051288522327
1230 => 0.0093501921120529
1231 => 0.0095544829821788
]
'min_raw' => 0.0035218659629033
'max_raw' => 0.0095544829821788
'avg_raw' => 0.006538174472541
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003521'
'max' => '$0.009554'
'avg' => '$0.006538'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.001214600551914
'max_diff' => 0.0044036754877728
'year' => 2032
]
7 => [
'items' => [
101 => 0.0093202799850026
102 => 0.0089878583158484
103 => 0.0088054852135953
104 => 0.0090456488262607
105 => 0.0091923083639604
106 => 0.0092892409890814
107 => 0.0093185727428747
108 => 0.0085813641829579
109 => 0.0081840496566239
110 => 0.0084387237127837
111 => 0.0087494436379631
112 => 0.008546792666814
113 => 0.008554736201214
114 => 0.0082658091720937
115 => 0.0087750072689788
116 => 0.0087008213892927
117 => 0.0090856978643366
118 => 0.0089938440047407
119 => 0.0093076958293202
120 => 0.0092250481255884
121 => 0.0095681141230084
122 => 0.0097049724375203
123 => 0.0099347788478816
124 => 0.010103825378824
125 => 0.010203092735138
126 => 0.010197133095407
127 => 0.010590479815924
128 => 0.010358536997323
129 => 0.010067162152435
130 => 0.010061892100767
131 => 0.010212799261748
201 => 0.010529059271806
202 => 0.010611060891018
203 => 0.010656888609291
204 => 0.010586701863482
205 => 0.010334944557382
206 => 0.010226237029047
207 => 0.010318858992749
208 => 0.010205590290237
209 => 0.010401123848357
210 => 0.01066963318737
211 => 0.010614187070665
212 => 0.010799535125864
213 => 0.01099135086381
214 => 0.011265655984058
215 => 0.01133736949998
216 => 0.011455909214778
217 => 0.011577925519574
218 => 0.011617113868242
219 => 0.011691936585281
220 => 0.011691542232629
221 => 0.011917025526575
222 => 0.012165740582434
223 => 0.012259624758254
224 => 0.012475506243749
225 => 0.012105816765229
226 => 0.012386230481373
227 => 0.012639170672545
228 => 0.012337604949129
301 => 0.012753243043056
302 => 0.012769381328387
303 => 0.01301305027663
304 => 0.012766045116264
305 => 0.012619374240506
306 => 0.013042807563132
307 => 0.013247693609925
308 => 0.013185980265213
309 => 0.01271633866479
310 => 0.012442987109467
311 => 0.011727573363612
312 => 0.012575011849152
313 => 0.012987774415338
314 => 0.012715269709459
315 => 0.012852705232453
316 => 0.013602508882286
317 => 0.013887985565952
318 => 0.013828608411382
319 => 0.013838642173073
320 => 0.013992680209811
321 => 0.014675769695002
322 => 0.014266446641585
323 => 0.01457935877888
324 => 0.014745326248212
325 => 0.014899486083196
326 => 0.014520918251192
327 => 0.014028407064022
328 => 0.013872408096832
329 => 0.01268817448694
330 => 0.01262652998468
331 => 0.012591927057541
401 => 0.012373760496614
402 => 0.012202341340575
403 => 0.012066022463308
404 => 0.011708281021097
405 => 0.011829008256233
406 => 0.01125884306379
407 => 0.011623614548501
408 => 0.010713617134242
409 => 0.011471490021556
410 => 0.011059014265243
411 => 0.011335980642108
412 => 0.011335014332511
413 => 0.010825031420433
414 => 0.010530883919819
415 => 0.010718326155602
416 => 0.010919279111545
417 => 0.01095188305256
418 => 0.011212423805349
419 => 0.011285135129148
420 => 0.011064816423471
421 => 0.010694759460494
422 => 0.010780715252893
423 => 0.01052914202843
424 => 0.010088269629182
425 => 0.010404911883215
426 => 0.010513027470519
427 => 0.010560777473082
428 => 0.010127230102959
429 => 0.0099910001064947
430 => 0.0099184723994576
501 => 0.010638793939266
502 => 0.010678254779251
503 => 0.010476367542689
504 => 0.011388916995682
505 => 0.011182378949521
506 => 0.011413132550133
507 => 0.010772915665679
508 => 0.010797372812831
509 => 0.0104942838798
510 => 0.010663993429888
511 => 0.01054404818988
512 => 0.010650282575343
513 => 0.010713959027969
514 => 0.011016998227089
515 => 0.011474950242432
516 => 0.010971734276207
517 => 0.010752475873537
518 => 0.010888502553398
519 => 0.011250759527251
520 => 0.011799597386233
521 => 0.011474674327325
522 => 0.011618869663317
523 => 0.011650369929427
524 => 0.011410783695093
525 => 0.011808431272435
526 => 0.012021533839616
527 => 0.01224013297818
528 => 0.012429936485187
529 => 0.012152819675139
530 => 0.012449374385024
531 => 0.01221040363781
601 => 0.011996022173218
602 => 0.011996347301407
603 => 0.011861862677054
604 => 0.011601281771218
605 => 0.011553226654154
606 => 0.011803215441815
607 => 0.012003682775494
608 => 0.01202019422527
609 => 0.012131183241578
610 => 0.012196865398151
611 => 0.012840639823131
612 => 0.013099571222439
613 => 0.013416187636193
614 => 0.013539527572873
615 => 0.013910736562466
616 => 0.01361095515525
617 => 0.013546095562085
618 => 0.012645663974867
619 => 0.012793109596831
620 => 0.013029184263981
621 => 0.012649556759176
622 => 0.012890343032768
623 => 0.012937879343726
624 => 0.012636657161829
625 => 0.012797552944223
626 => 0.012370261448461
627 => 0.011484264029386
628 => 0.011809417640838
629 => 0.012048840144389
630 => 0.01170715471124
701 => 0.012319612625107
702 => 0.011961827355524
703 => 0.011848426601788
704 => 0.011406009831175
705 => 0.011614813516721
706 => 0.011897223491203
707 => 0.011722726960656
708 => 0.012084833462326
709 => 0.012597672838966
710 => 0.012963152718873
711 => 0.012991209725871
712 => 0.012756230648341
713 => 0.013132786119699
714 => 0.013135528915213
715 => 0.012710772805247
716 => 0.012450612052944
717 => 0.012391502982638
718 => 0.012539169029278
719 => 0.012718462870556
720 => 0.01300115928624
721 => 0.013171986809574
722 => 0.01361741439051
723 => 0.013737934322502
724 => 0.013870349188401
725 => 0.014047296284475
726 => 0.014259766641615
727 => 0.013794893596136
728 => 0.013813363868865
729 => 0.013380480525521
730 => 0.012917882591407
731 => 0.013268936759753
801 => 0.013727893386086
802 => 0.013622608228903
803 => 0.01361076149794
804 => 0.013630684413411
805 => 0.013551302843187
806 => 0.013192262943082
807 => 0.013011955352957
808 => 0.01324459814559
809 => 0.013368237436135
810 => 0.01355999119329
811 => 0.01353635349529
812 => 0.014030290580873
813 => 0.014222219596448
814 => 0.014173115941158
815 => 0.014182152195477
816 => 0.014529630510452
817 => 0.014916097861069
818 => 0.015278075533781
819 => 0.015646294769766
820 => 0.015202392108945
821 => 0.014977005713889
822 => 0.015209546941956
823 => 0.015086157293089
824 => 0.015795190815227
825 => 0.015844282757932
826 => 0.016553265008875
827 => 0.017226173589057
828 => 0.016803531766254
829 => 0.017202063968951
830 => 0.017633109038976
831 => 0.018464664913594
901 => 0.018184626149511
902 => 0.01797012084499
903 => 0.0177674143687
904 => 0.018189214367113
905 => 0.018731853326652
906 => 0.018848732561205
907 => 0.019038121572485
908 => 0.018839002184511
909 => 0.019078819555045
910 => 0.019925480254124
911 => 0.019696705059552
912 => 0.019371807505812
913 => 0.020040164813577
914 => 0.020282040725084
915 => 0.021979652543438
916 => 0.024122957588956
917 => 0.023235615226411
918 => 0.022684813187621
919 => 0.022814264731936
920 => 0.023596927179105
921 => 0.023848293516671
922 => 0.023164993159993
923 => 0.023406346397598
924 => 0.024736226466127
925 => 0.025449664455232
926 => 0.024480719838522
927 => 0.02180744006992
928 => 0.019342554035879
929 => 0.019996352807372
930 => 0.019922232316422
1001 => 0.02135102254414
1002 => 0.019691248846823
1003 => 0.019719195179158
1004 => 0.02117753127567
1005 => 0.020788472207331
1006 => 0.020158246343542
1007 => 0.019347155382135
1008 => 0.017847778723139
1009 => 0.016519739003056
1010 => 0.019124330723421
1011 => 0.019012015992296
1012 => 0.018849367617517
1013 => 0.019211323975196
1014 => 0.020968881304982
1015 => 0.020928363919872
1016 => 0.020670612987958
1017 => 0.020866114798102
1018 => 0.020123973930986
1019 => 0.020315240530676
1020 => 0.019342163585338
1021 => 0.019782035003913
1022 => 0.020156894161887
1023 => 0.020232152687735
1024 => 0.020401713989266
1025 => 0.018952831232615
1026 => 0.019603337053388
1027 => 0.01998544827894
1028 => 0.018259055860571
1029 => 0.019951323051604
1030 => 0.018927609407294
1031 => 0.018580145620753
1101 => 0.019047959834458
1102 => 0.018865652180413
1103 => 0.01870891476493
1104 => 0.018621452593999
1105 => 0.018964963721774
1106 => 0.018948938517078
1107 => 0.018386887639402
1108 => 0.017653715181599
1109 => 0.017899791924003
1110 => 0.017810389936506
1111 => 0.01748638560073
1112 => 0.01770472540261
1113 => 0.016743267414374
1114 => 0.015089128917852
1115 => 0.016181903476287
1116 => 0.016139832844497
1117 => 0.016118618924197
1118 => 0.016939808802791
1119 => 0.016860870344038
1120 => 0.016717596268434
1121 => 0.017483754259975
1122 => 0.017204096286783
1123 => 0.018065936264454
1124 => 0.018633599814063
1125 => 0.01848962197589
1126 => 0.019023512288053
1127 => 0.017905461035143
1128 => 0.018276832812929
1129 => 0.018353372021632
1130 => 0.017474299989287
1201 => 0.016873785652139
1202 => 0.016833738192216
1203 => 0.015792529087574
1204 => 0.016348734586927
1205 => 0.016838172409011
1206 => 0.016603769674142
1207 => 0.016529564770865
1208 => 0.016908661528627
1209 => 0.016938120593449
1210 => 0.01626645079357
1211 => 0.016406112213981
1212 => 0.016988523553875
1213 => 0.016391436942529
1214 => 0.015231395190229
1215 => 0.014943688796827
1216 => 0.014905303460466
1217 => 0.014125020903277
1218 => 0.014962914713756
1219 => 0.014597151611324
1220 => 0.015752592869392
1221 => 0.015092611019539
1222 => 0.015064160521081
1223 => 0.015021153419881
1224 => 0.014349531989841
1225 => 0.014496574399252
1226 => 0.014985365763322
1227 => 0.015159772028651
1228 => 0.015141580026309
1229 => 0.014982970418979
1230 => 0.015055581085002
1231 => 0.014821676830508
]
'min_raw' => 0.0081840496566239
'max_raw' => 0.025449664455232
'avg_raw' => 0.016816857055928
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.008184'
'max' => '$0.025449'
'avg' => '$0.016816'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0046621836937206
'max_diff' => 0.015895181473054
'year' => 2033
]
8 => [
'items' => [
101 => 0.014739080369951
102 => 0.014478383220484
103 => 0.014095230430194
104 => 0.014148510175697
105 => 0.013389384240751
106 => 0.01297577214153
107 => 0.012861289763786
108 => 0.012708199143718
109 => 0.012878581756681
110 => 0.013387233732357
111 => 0.012773691533155
112 => 0.011721816467606
113 => 0.011785035951353
114 => 0.0119270713613
115 => 0.011662389314522
116 => 0.011411889970326
117 => 0.01162967882645
118 => 0.011183985494553
119 => 0.011980931271135
120 => 0.011959376121293
121 => 0.012256428224007
122 => 0.012442180999957
123 => 0.012014080989568
124 => 0.011906414994661
125 => 0.011967746438507
126 => 0.010954074289215
127 => 0.012173589583365
128 => 0.012184136002271
129 => 0.012093831160687
130 => 0.012743185406511
131 => 0.014113525403869
201 => 0.013597948375065
202 => 0.013398301366113
203 => 0.013018772256156
204 => 0.013524472260965
205 => 0.013485642390745
206 => 0.013310038991817
207 => 0.01320383350823
208 => 0.013399520368178
209 => 0.013179585740712
210 => 0.01314007943822
211 => 0.012900714228398
212 => 0.012815271738914
213 => 0.012752013521264
214 => 0.012682372439256
215 => 0.01283598331269
216 => 0.012487880864295
217 => 0.012068103436433
218 => 0.012033203485361
219 => 0.012129565318706
220 => 0.012086932380746
221 => 0.012032999375256
222 => 0.011930026579997
223 => 0.011899476751309
224 => 0.011998748873875
225 => 0.011886676435423
226 => 0.01205204542326
227 => 0.012007074208852
228 => 0.01175586866086
301 => 0.011442773539855
302 => 0.011439986336539
303 => 0.011372530506298
304 => 0.011286615364433
305 => 0.011262715737439
306 => 0.01161133725645
307 => 0.012332973367439
308 => 0.012191298931564
309 => 0.012293673230864
310 => 0.012797253459854
311 => 0.012957326471465
312 => 0.012843710439361
313 => 0.012688185807085
314 => 0.012695028101605
315 => 0.013226502850598
316 => 0.013259650278772
317 => 0.013343403136003
318 => 0.0134510492261
319 => 0.012862043033979
320 => 0.012667285962924
321 => 0.012574999257947
322 => 0.012290791926069
323 => 0.012597285167405
324 => 0.012418704681027
325 => 0.012442801289818
326 => 0.012427108341731
327 => 0.012435677752539
328 => 0.011980708508549
329 => 0.012146475388579
330 => 0.011870855799513
331 => 0.011501832109505
401 => 0.0115005950127
402 => 0.011590913038034
403 => 0.01153718834242
404 => 0.011392616567913
405 => 0.011413152306122
406 => 0.01123323763069
407 => 0.01143499720518
408 => 0.011440782947846
409 => 0.011363094521749
410 => 0.011673932983707
411 => 0.011801283755191
412 => 0.011750147568887
413 => 0.011797695904041
414 => 0.012197186143996
415 => 0.01226232048409
416 => 0.012291248855426
417 => 0.01225248867011
418 => 0.011804997852273
419 => 0.011824845972922
420 => 0.011679213633035
421 => 0.011556169652188
422 => 0.011561090766141
423 => 0.011624351366895
424 => 0.011900614120568
425 => 0.012481992799096
426 => 0.012504055694964
427 => 0.012530796568376
428 => 0.012422027997323
429 => 0.012389222355519
430 => 0.012432501464914
501 => 0.01265083672913
502 => 0.01321245430614
503 => 0.013013941145248
504 => 0.012852546855401
505 => 0.012994133159185
506 => 0.012972337057508
507 => 0.012788356024529
508 => 0.012783192289701
509 => 0.012430073865121
510 => 0.012299534023671
511 => 0.012190445161418
512 => 0.012071322971675
513 => 0.012000703344583
514 => 0.012109207187842
515 => 0.012134023300576
516 => 0.011896777750965
517 => 0.011864442059206
518 => 0.012058181896319
519 => 0.011972924217354
520 => 0.012060613854458
521 => 0.012080958602453
522 => 0.012077682629447
523 => 0.011988663820826
524 => 0.012045401754862
525 => 0.011911199626475
526 => 0.011765274968363
527 => 0.011672184127915
528 => 0.011590950022915
529 => 0.011636023425723
530 => 0.011475344974792
531 => 0.011423940704521
601 => 0.012026180219455
602 => 0.012471061024302
603 => 0.012464592281207
604 => 0.012425215471244
605 => 0.012366709518934
606 => 0.012646556654307
607 => 0.012549063508063
608 => 0.012619997917781
609 => 0.012638053702162
610 => 0.012692703123428
611 => 0.012712235594255
612 => 0.012653194901244
613 => 0.012455047124288
614 => 0.011961281703437
615 => 0.011731432567137
616 => 0.011655578523718
617 => 0.011658335674129
618 => 0.011582281157333
619 => 0.011604682621054
620 => 0.011574490842449
621 => 0.011517314917947
622 => 0.011632492973502
623 => 0.011645766171447
624 => 0.011618882237005
625 => 0.011625214376779
626 => 0.011402626881878
627 => 0.011419549725681
628 => 0.011325321180937
629 => 0.011307654464739
630 => 0.011069452909043
701 => 0.010647444325261
702 => 0.010881278046041
703 => 0.010598839793336
704 => 0.010491876147398
705 => 0.010998225411006
706 => 0.010947401988882
707 => 0.010860414382617
708 => 0.010731741583144
709 => 0.010684015590172
710 => 0.010394047565082
711 => 0.010376914707241
712 => 0.01052063069027
713 => 0.010454310709067
714 => 0.010361172338117
715 => 0.010023834599821
716 => 0.0096445552932894
717 => 0.0096560033514889
718 => 0.0097766450421542
719 => 0.010127427028512
720 => 0.0099903704378522
721 => 0.0098909343087852
722 => 0.00987231291085
723 => 0.010105398692546
724 => 0.010435263906627
725 => 0.010590029284756
726 => 0.010436661495325
727 => 0.010260480836735
728 => 0.01027120413708
729 => 0.010342541450158
730 => 0.010350037993107
731 => 0.010235362496029
801 => 0.010267642976741
802 => 0.010218605974751
803 => 0.0099176659840513
804 => 0.0099122229339105
805 => 0.00983836740688
806 => 0.0098361310908736
807 => 0.00971048441527
808 => 0.0096929055767986
809 => 0.0094434264761796
810 => 0.0096076343756993
811 => 0.0094974923380032
812 => 0.0093314823073149
813 => 0.0093028621154513
814 => 0.009302001757924
815 => 0.0094724569402772
816 => 0.0096056425076497
817 => 0.0094994083059048
818 => 0.009475220837431
819 => 0.0097334797211538
820 => 0.0097006139241181
821 => 0.0096721523558468
822 => 0.0104057280947
823 => 0.0098250456557689
824 => 0.0095718349682002
825 => 0.0092584386589285
826 => 0.0093604820775087
827 => 0.0093819841251333
828 => 0.0086283224952657
829 => 0.008322562065891
830 => 0.0082176366088684
831 => 0.0081572505249236
901 => 0.0081847692216579
902 => 0.0079095489730994
903 => 0.0080945015318535
904 => 0.0078561840603903
905 => 0.0078162293607473
906 => 0.0082423705215931
907 => 0.0083016655746443
908 => 0.0080486944567991
909 => 0.0082111428667596
910 => 0.0081522368151061
911 => 0.0078602693294259
912 => 0.0078491183190404
913 => 0.0077026192978794
914 => 0.0074733766975628
915 => 0.007368606677818
916 => 0.0073140415418799
917 => 0.0073365561804213
918 => 0.0073251720902154
919 => 0.0072508832011271
920 => 0.0073294302423785
921 => 0.0071287750098594
922 => 0.0070488724794813
923 => 0.0070127823602341
924 => 0.0068346892920891
925 => 0.0071181145618546
926 => 0.0071739529104959
927 => 0.0072299012779333
928 => 0.0077168936189035
929 => 0.0076925648577746
930 => 0.0079124850097918
1001 => 0.0079039393170916
1002 => 0.0078412145272661
1003 => 0.0075765889567192
1004 => 0.0076820639926419
1005 => 0.0073574282265317
1006 => 0.0076006674155878
1007 => 0.007489663207614
1008 => 0.0075631367812117
1009 => 0.007431024671038
1010 => 0.0075041409675834
1011 => 0.0071871942544249
1012 => 0.006891233873238
1013 => 0.0070103369702497
1014 => 0.0071398156577928
1015 => 0.007420558442942
1016 => 0.0072533503561848
1017 => 0.0073134847070205
1018 => 0.0071120446980898
1019 => 0.0066964164211718
1020 => 0.006698768832082
1021 => 0.0066348334766324
1022 => 0.0065795839948092
1023 => 0.0072725562163627
1024 => 0.0071863741663429
1025 => 0.0070490543488641
1026 => 0.0072328623814321
1027 => 0.0072814641426688
1028 => 0.0072828477664852
1029 => 0.0074169493622748
1030 => 0.0074885194079867
1031 => 0.0075011339387458
1101 => 0.0077121456971775
1102 => 0.0077828740552914
1103 => 0.0080741941525107
1104 => 0.0074824471896402
1105 => 0.0074702605503497
1106 => 0.0072354489373935
1107 => 0.0070865277002319
1108 => 0.0072456457019096
1109 => 0.0073866025296228
1110 => 0.0072398288589462
1111 => 0.0072589944017753
1112 => 0.0070619627407414
1113 => 0.0071323922883597
1114 => 0.0071930557026531
1115 => 0.007159560930911
1116 => 0.0071094176364476
1117 => 0.0073750456772008
1118 => 0.0073600579021368
1119 => 0.0076074168404485
1120 => 0.0078002508216698
1121 => 0.0081458437892156
1122 => 0.0077851995114127
1123 => 0.0077720562004983
1124 => 0.0079005341729391
1125 => 0.0077828543859832
1126 => 0.0078572239491712
1127 => 0.0081338617028371
1128 => 0.008139706622652
1129 => 0.0080417966849986
1130 => 0.0080358388563944
1201 => 0.008054643530938
1202 => 0.0081647830970937
1203 => 0.0081262969484319
1204 => 0.0081708340940134
1205 => 0.00822652847654
1206 => 0.0084569040565992
1207 => 0.0085124468290185
1208 => 0.0083775066876652
1209 => 0.0083896902715687
1210 => 0.0083392189545128
1211 => 0.0082904642946406
1212 => 0.0084000576499871
1213 => 0.0086003416609456
1214 => 0.0085990957045081
1215 => 0.0086455577020857
1216 => 0.0086745031416645
1217 => 0.0085502481256354
1218 => 0.008469362679184
1219 => 0.0085003793062281
1220 => 0.008549975568326
1221 => 0.0084842959068715
1222 => 0.0080788906105958
1223 => 0.0082018646800953
1224 => 0.0081813957818058
1225 => 0.0081522455815385
1226 => 0.0082758969593505
1227 => 0.008263970482311
1228 => 0.0079067261916536
1229 => 0.0079295958120652
1230 => 0.0079081169690173
1231 => 0.0079775195050628
]
'min_raw' => 0.0065795839948092
'max_raw' => 0.014739080369951
'avg_raw' => 0.01065933218238
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.006579'
'max' => '$0.014739'
'avg' => '$0.010659'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0016044656618147
'max_diff' => -0.010710584085282
'year' => 2034
]
9 => [
'items' => [
101 => 0.0077791064212771
102 => 0.0078401369495171
103 => 0.0078784147247035
104 => 0.007900960628352
105 => 0.0079824118922014
106 => 0.0079728545264956
107 => 0.00798181779293
108 => 0.0081025885148822
109 => 0.0087134053830094
110 => 0.0087466507974501
111 => 0.008582938217805
112 => 0.0086483381642854
113 => 0.0085227845684391
114 => 0.0086070695384667
115 => 0.0086647351743534
116 => 0.0084041552542453
117 => 0.0083887254025262
118 => 0.008262653602328
119 => 0.0083303974466827
120 => 0.0082226121193595
121 => 0.0082490588685139
122 => 0.008175111452292
123 => 0.0083082020787078
124 => 0.008457018079233
125 => 0.0084946148778877
126 => 0.0083957138870669
127 => 0.0083241030518197
128 => 0.0081983780152012
129 => 0.0084074615530629
130 => 0.008468603951239
131 => 0.0084071403980744
201 => 0.008392897949801
202 => 0.0083659085360584
203 => 0.0083986238815137
204 => 0.0084682709566075
205 => 0.0084354266821728
206 => 0.0084571209040786
207 => 0.0083744449011582
208 => 0.0085502892592159
209 => 0.0088295724190609
210 => 0.0088304703600872
211 => 0.0087976259086096
212 => 0.0087841866667086
213 => 0.0088178870670926
214 => 0.0088361681518381
215 => 0.0089451490670835
216 => 0.009062089931133
217 => 0.0096078019183556
218 => 0.0094545681760453
219 => 0.0099387563156607
220 => 0.010321686270135
221 => 0.010436510219985
222 => 0.010330877589008
223 => 0.0099695140645973
224 => 0.009951783846114
225 => 0.010491813515328
226 => 0.010339230398849
227 => 0.010321081122659
228 => 0.010128003487687
301 => 0.010242136283086
302 => 0.010217173766505
303 => 0.010177769212874
304 => 0.010395526635936
305 => 0.010803149092568
306 => 0.010739617310043
307 => 0.010692193781542
308 => 0.010484397684434
309 => 0.010609537347832
310 => 0.010564977510588
311 => 0.010756434849758
312 => 0.010643019763333
313 => 0.010338074431672
314 => 0.010386637980852
315 => 0.01037929769809
316 => 0.010530360197199
317 => 0.010485014984568
318 => 0.010370443317559
319 => 0.010801755883325
320 => 0.010773748844391
321 => 0.010813456422299
322 => 0.010830936926092
323 => 0.011093469284294
324 => 0.011201020391351
325 => 0.0112254363756
326 => 0.011327601609003
327 => 0.011222894411523
328 => 0.011641797856411
329 => 0.011920344203568
330 => 0.012243890119655
331 => 0.012716677664002
401 => 0.012894450154205
402 => 0.01286233714503
403 => 0.013220799265304
404 => 0.013864947727271
405 => 0.012992537966103
406 => 0.013911187562989
407 => 0.013620353706935
408 => 0.012930791866107
409 => 0.012886392212958
410 => 0.013353371497544
411 => 0.014389086605666
412 => 0.014129651718065
413 => 0.014389510948202
414 => 0.014086371353011
415 => 0.014071317917049
416 => 0.014374788134684
417 => 0.015083862839488
418 => 0.014747008026503
419 => 0.014264044051901
420 => 0.014620657134995
421 => 0.014311725879436
422 => 0.013615617296247
423 => 0.014129453333095
424 => 0.013785865808463
425 => 0.013886142914268
426 => 0.014608312786259
427 => 0.014521419396636
428 => 0.014633867488919
429 => 0.014435399549319
430 => 0.014249999198211
501 => 0.013903935674858
502 => 0.013801483326319
503 => 0.013829797469605
504 => 0.013801469295235
505 => 0.013607849934407
506 => 0.013566037851871
507 => 0.013496349215814
508 => 0.013517948638136
509 => 0.01338691361422
510 => 0.013634203777566
511 => 0.013680103010997
512 => 0.013860060169592
513 => 0.013878743918782
514 => 0.01437992204394
515 => 0.014103881554559
516 => 0.014289073347025
517 => 0.014272508050014
518 => 0.012945736762132
519 => 0.0131285541394
520 => 0.013412960607175
521 => 0.013284835878946
522 => 0.0131036974898
523 => 0.012957418528538
524 => 0.012735790944434
525 => 0.013047727513079
526 => 0.013457890930092
527 => 0.01388914633991
528 => 0.014407271457834
529 => 0.014291631963155
530 => 0.013879460351231
531 => 0.01389795006865
601 => 0.014012246226301
602 => 0.013864222317243
603 => 0.013820567176691
604 => 0.01400624868036
605 => 0.014007527366827
606 => 0.013837207970168
607 => 0.013647929128902
608 => 0.013647136043646
609 => 0.013613455702059
610 => 0.014092363010958
611 => 0.014355713607862
612 => 0.014385906329386
613 => 0.01435368139714
614 => 0.0143660834946
615 => 0.014212845584796
616 => 0.014563102005318
617 => 0.014884531933558
618 => 0.014798381846441
619 => 0.014669230618895
620 => 0.01456635544539
621 => 0.014774147724983
622 => 0.014764895061868
623 => 0.014881724523544
624 => 0.014876424464323
625 => 0.014837139110539
626 => 0.014798383249444
627 => 0.014952045857922
628 => 0.014907793494427
629 => 0.014863472394788
630 => 0.014774579644241
701 => 0.014786661645392
702 => 0.014657532717627
703 => 0.014597791767106
704 => 0.013699431209842
705 => 0.013459359914163
706 => 0.013534891230885
707 => 0.01355975810152
708 => 0.013455278765981
709 => 0.013605075294605
710 => 0.013581729664292
711 => 0.013672553855101
712 => 0.013615810843812
713 => 0.013618139596788
714 => 0.013785008694103
715 => 0.013833451502965
716 => 0.013808813099397
717 => 0.013826068992701
718 => 0.014223723770648
719 => 0.014167189977508
720 => 0.014137157526663
721 => 0.014145476720792
722 => 0.014247086042372
723 => 0.014275531104752
724 => 0.014155007376652
725 => 0.014211847063563
726 => 0.0144538632364
727 => 0.014538555199964
728 => 0.014808851293212
729 => 0.01469402470867
730 => 0.014904793874174
731 => 0.01555262643243
801 => 0.016070159906567
802 => 0.015594214735775
803 => 0.016544599053538
804 => 0.017284609569451
805 => 0.017256206733298
806 => 0.017127168783097
807 => 0.016284686484928
808 => 0.01550942171345
809 => 0.016157963614273
810 => 0.016159616880952
811 => 0.016103906556508
812 => 0.015757894516025
813 => 0.016091866087524
814 => 0.016118375538063
815 => 0.016103537295193
816 => 0.015838250675022
817 => 0.015433207039185
818 => 0.01551235159609
819 => 0.015641991994806
820 => 0.015396555674217
821 => 0.015318123898277
822 => 0.015463943492004
823 => 0.015933804605712
824 => 0.015844980083886
825 => 0.015842660516653
826 => 0.016222689488486
827 => 0.015950670760039
828 => 0.015513349862409
829 => 0.015402920568203
830 => 0.015010970967859
831 => 0.015281691952893
901 => 0.015291434719189
902 => 0.015143163602388
903 => 0.015525381246368
904 => 0.015521859043491
905 => 0.015884717810862
906 => 0.016578367490546
907 => 0.016373221147836
908 => 0.016134658271122
909 => 0.016160596670452
910 => 0.016445076889675
911 => 0.016273073655081
912 => 0.01633492721749
913 => 0.0164449832669
914 => 0.016511382814048
915 => 0.016151042797449
916 => 0.016067030302524
917 => 0.015895170222287
918 => 0.015850335135273
919 => 0.015990311584648
920 => 0.015953432735679
921 => 0.015290615877408
922 => 0.015221347827841
923 => 0.015223472180029
924 => 0.015049294375875
925 => 0.014783631417078
926 => 0.015481777810886
927 => 0.015425706884911
928 => 0.015363808922179
929 => 0.015371391069429
930 => 0.015674432756604
1001 => 0.01549865327407
1002 => 0.015965991838077
1003 => 0.0158699210788
1004 => 0.015771386467056
1005 => 0.015757765982276
1006 => 0.015719838563332
1007 => 0.015589771331604
1008 => 0.015432707333464
1009 => 0.015329000077242
1010 => 0.014140192283377
1011 => 0.014360828094941
1012 => 0.014614649484559
1013 => 0.01470226761113
1014 => 0.014552390742641
1015 => 0.015595689383883
1016 => 0.015786310099113
1017 => 0.015208907518798
1018 => 0.015100899071213
1019 => 0.015602770399725
1020 => 0.015300080637357
1021 => 0.015436381818818
1022 => 0.015141773217261
1023 => 0.01574039515084
1024 => 0.015735834654672
1025 => 0.015502957202021
1026 => 0.015699783630326
1027 => 0.015665580194747
1028 => 0.015402662124255
1029 => 0.015748730122633
1030 => 0.015748901768043
1031 => 0.015524762283058
1101 => 0.015263016435038
1102 => 0.015216222459573
1103 => 0.015180969484946
1104 => 0.015427711748106
1105 => 0.015648940089712
1106 => 0.016060591186284
1107 => 0.016164090052551
1108 => 0.016568053017901
1109 => 0.016327512740635
1110 => 0.016434141130029
1111 => 0.016549901330222
1112 => 0.016605401027136
1113 => 0.016514967249294
1114 => 0.017142488012272
1115 => 0.017195469991407
1116 => 0.017213234390718
1117 => 0.017001637920148
1118 => 0.017189585110785
1119 => 0.017101650844442
1120 => 0.017330431376623
1121 => 0.017366307085285
1122 => 0.017335921636363
1123 => 0.017347309152552
1124 => 0.016811830883599
1125 => 0.01678406351048
1126 => 0.016405453407732
1127 => 0.016559739823146
1128 => 0.016271308764669
1129 => 0.016362773224481
1130 => 0.016403089886861
1201 => 0.016382030750384
1202 => 0.016568462945584
1203 => 0.016409957494083
1204 => 0.015991635546862
1205 => 0.015573199628106
1206 => 0.015567946505997
1207 => 0.015457779714596
1208 => 0.015378149302467
1209 => 0.015393488944884
1210 => 0.015447547845541
1211 => 0.015375007300887
1212 => 0.015390487503988
1213 => 0.015647562019516
1214 => 0.015699116480233
1215 => 0.015523914279087
1216 => 0.014820452159929
1217 => 0.014647820791387
1218 => 0.014771904795666
1219 => 0.014712600633654
1220 => 0.011874216982758
1221 => 0.012541053119196
1222 => 0.01214484173054
1223 => 0.012327434167242
1224 => 0.011923004937866
1225 => 0.012116019764076
1226 => 0.012080376973448
1227 => 0.013152629747725
1228 => 0.01313588799549
1229 => 0.013143901386331
1230 => 0.012761401362711
1231 => 0.013370734286345
]
'min_raw' => 0.0077791064212771
'max_raw' => 0.017366307085285
'avg_raw' => 0.012572706753281
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.007779'
'max' => '$0.017366'
'avg' => '$0.012572'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0011995224264679
'max_diff' => 0.0026272267153343
'year' => 2035
]
10 => [
'items' => [
101 => 0.013670913595431
102 => 0.013615358394333
103 => 0.01362934044156
104 => 0.013389082545468
105 => 0.013146227607943
106 => 0.012876864107121
107 => 0.013377308197314
108 => 0.01332166735735
109 => 0.013449287425285
110 => 0.013773861190257
111 => 0.013821655910085
112 => 0.01388589249822
113 => 0.013862868254046
114 => 0.014411399160303
115 => 0.014344968448232
116 => 0.014505047350903
117 => 0.014175752902892
118 => 0.013803124978053
119 => 0.01387394936444
120 => 0.013867128406497
121 => 0.013780289783154
122 => 0.013701895756816
123 => 0.013571391790344
124 => 0.013984325651214
125 => 0.013967561290569
126 => 0.014238956802982
127 => 0.014190985009968
128 => 0.013870617635528
129 => 0.013882059618981
130 => 0.013959012456528
131 => 0.014225347105913
201 => 0.014304413363296
202 => 0.01426778672263
203 => 0.014354479264339
204 => 0.014422997514566
205 => 0.014363084101642
206 => 0.015211331682439
207 => 0.014859080147277
208 => 0.015030765094565
209 => 0.015071710942867
210 => 0.01496682901344
211 => 0.014989574148393
212 => 0.015024026830167
213 => 0.015233216767374
214 => 0.015782191692201
215 => 0.016025328949409
216 => 0.016756819383898
217 => 0.016005139784832
218 => 0.015960538228182
219 => 0.016092301744329
220 => 0.0165217640655
221 => 0.016869802939465
222 => 0.016985267512803
223 => 0.017000528062282
224 => 0.017217147277805
225 => 0.017341309372433
226 => 0.017190844007389
227 => 0.017063340364895
228 => 0.016606638143816
229 => 0.016659502669464
301 => 0.017023686827957
302 => 0.017538118402168
303 => 0.017979554210324
304 => 0.017824978775899
305 => 0.019004280227311
306 => 0.019121203149204
307 => 0.019105048181969
308 => 0.019371415998506
309 => 0.018842730127544
310 => 0.018616706674901
311 => 0.01709090809963
312 => 0.017519595262766
313 => 0.018142717230299
314 => 0.018060244701308
315 => 0.017607716872388
316 => 0.017979210927386
317 => 0.017856383375111
318 => 0.017759504188511
319 => 0.018203326523278
320 => 0.017715325634985
321 => 0.018137849048137
322 => 0.017595958400325
323 => 0.017825684863463
324 => 0.017695281012367
325 => 0.017779668285721
326 => 0.01728634201001
327 => 0.017552528893565
328 => 0.017275267760512
329 => 0.017275136302635
330 => 0.017269015747756
331 => 0.017595212241228
401 => 0.017605849497169
402 => 0.017364789795638
403 => 0.017330049326587
404 => 0.017458503048885
405 => 0.017308117382157
406 => 0.017378481889103
407 => 0.017310248651391
408 => 0.01729488791237
409 => 0.017172490930437
410 => 0.017119758945246
411 => 0.017140436515375
412 => 0.017069853308505
413 => 0.01702732437326
414 => 0.017260555672098
415 => 0.017135949597652
416 => 0.017241458004086
417 => 0.017121217858732
418 => 0.016704413128799
419 => 0.016464704320984
420 => 0.015677398823958
421 => 0.015900677686265
422 => 0.016048711802973
423 => 0.015999786528284
424 => 0.016104896949884
425 => 0.016111349876099
426 => 0.016077177406563
427 => 0.016037610064605
428 => 0.016018350870751
429 => 0.016161893122977
430 => 0.016245224231805
501 => 0.016063569007026
502 => 0.016021009729487
503 => 0.016204673191198
504 => 0.016316707796743
505 => 0.017143908377279
506 => 0.01708262668645
507 => 0.017236431704506
508 => 0.017219115619803
509 => 0.017380327781786
510 => 0.017643841533286
511 => 0.017108044396883
512 => 0.017201040253292
513 => 0.017178239816888
514 => 0.017427169002945
515 => 0.017427946132693
516 => 0.017278700650716
517 => 0.017359609047727
518 => 0.017314448200122
519 => 0.0173960599556
520 => 0.017081808232107
521 => 0.017464532909944
522 => 0.017681513140043
523 => 0.017684525910749
524 => 0.017787372817754
525 => 0.017891871231763
526 => 0.01809244683756
527 => 0.01788627728698
528 => 0.017515398335689
529 => 0.017542174598041
530 => 0.017324728404598
531 => 0.017328383714394
601 => 0.017308871384228
602 => 0.017367429355877
603 => 0.017094658413884
604 => 0.017158677208763
605 => 0.017069050521038
606 => 0.017200845422376
607 => 0.017059055895014
608 => 0.017178228821828
609 => 0.017229659906395
610 => 0.017419441715681
611 => 0.017031024967476
612 => 0.016239016924383
613 => 0.016405506617211
614 => 0.016159255284036
615 => 0.016182046782466
616 => 0.016228089236535
617 => 0.016078850578744
618 => 0.0161073206116
619 => 0.016106303461686
620 => 0.016097538213234
621 => 0.016058715474472
622 => 0.016002414822422
623 => 0.016226699291762
624 => 0.016264809593572
625 => 0.01634952407363
626 => 0.016601576903899
627 => 0.01657639088234
628 => 0.016617470328461
629 => 0.016527794128231
630 => 0.016186206604197
701 => 0.01620475645018
702 => 0.015973439573541
703 => 0.016343608781023
704 => 0.016255947826696
705 => 0.016199432239174
706 => 0.016184011437505
707 => 0.016436689057988
708 => 0.016512294162273
709 => 0.016465182134953
710 => 0.016368553992441
711 => 0.01655410859161
712 => 0.016603755174427
713 => 0.016614869213425
714 => 0.016943636386587
715 => 0.016633243646257
716 => 0.016707958263893
717 => 0.01729086038246
718 => 0.016762248595913
719 => 0.017042266048697
720 => 0.017028560651523
721 => 0.017171808105093
722 => 0.017016810179251
723 => 0.017018731564305
724 => 0.017145925598652
725 => 0.016967304516977
726 => 0.0169230754252
727 => 0.016861973251685
728 => 0.016995387612176
729 => 0.017075363487478
730 => 0.017719910306606
731 => 0.018136316946668
801 => 0.018118239636228
802 => 0.018283432414338
803 => 0.018209011554807
804 => 0.017968686968151
805 => 0.018378891733112
806 => 0.018249085781782
807 => 0.018259786826695
808 => 0.018259388533269
809 => 0.01834569814307
810 => 0.018284539874367
811 => 0.018163990648984
812 => 0.01824401685059
813 => 0.018481666059468
814 => 0.019219336495794
815 => 0.019632146644796
816 => 0.019194484806485
817 => 0.019496378082026
818 => 0.019315349692274
819 => 0.019282451448728
820 => 0.019472062735506
821 => 0.019662005911741
822 => 0.019649907352562
823 => 0.019512018360305
824 => 0.019434128367383
825 => 0.020023937488851
826 => 0.020458498802412
827 => 0.020428864634164
828 => 0.020559660215266
829 => 0.020943680086739
830 => 0.020978790051093
831 => 0.020974367002577
901 => 0.020887343292581
902 => 0.021265460727327
903 => 0.021580892943736
904 => 0.020867199818073
905 => 0.021138964817397
906 => 0.021260968881314
907 => 0.02144010704412
908 => 0.021742343151816
909 => 0.022070651728942
910 => 0.022117078161468
911 => 0.022084136385881
912 => 0.021867608053858
913 => 0.022226847216485
914 => 0.022437281092757
915 => 0.022562589650383
916 => 0.022880351303168
917 => 0.021261722336878
918 => 0.020115976303459
919 => 0.019937051515567
920 => 0.020300902107615
921 => 0.020396846607084
922 => 0.020358171499652
923 => 0.019068530172366
924 => 0.019930261820876
925 => 0.020857412618218
926 => 0.020893028256284
927 => 0.021357179331243
928 => 0.021508325947444
929 => 0.021882028400458
930 => 0.021858653210274
1001 => 0.021949643810678
1002 => 0.021928726647382
1003 => 0.022620931749254
1004 => 0.023384536770071
1005 => 0.023358095556316
1006 => 0.023248318300009
1007 => 0.023411356245428
1008 => 0.024199478459799
1009 => 0.024126920795701
1010 => 0.024197404385925
1011 => 0.025126644893289
1012 => 0.026334789735783
1013 => 0.025773485160686
1014 => 0.026991354577607
1015 => 0.027757938819075
1016 => 0.029083666998404
1017 => 0.028917679301003
1018 => 0.029433775552573
1019 => 0.028620526679978
1020 => 0.026753142883784
1021 => 0.026457622249978
1022 => 0.027049262042632
1023 => 0.028503750741503
1024 => 0.027003455017418
1025 => 0.027306962888411
1026 => 0.027219552601147
1027 => 0.027214894878409
1028 => 0.02739266121101
1029 => 0.027134801873904
1030 => 0.026084236546524
1031 => 0.026565704445042
1101 => 0.026379786567437
1102 => 0.026586076313736
1103 => 0.027699336994148
1104 => 0.027207137910518
1105 => 0.02668864615892
1106 => 0.027338949877954
1107 => 0.028167009980886
1108 => 0.028115191467812
1109 => 0.028014641893989
1110 => 0.028581434577023
1111 => 0.02951761003472
1112 => 0.029770654499078
1113 => 0.0299574467494
1114 => 0.029983202244839
1115 => 0.030248499854807
1116 => 0.028821927742401
1117 => 0.03108593432176
1118 => 0.031476865716096
1119 => 0.031403386816407
1120 => 0.031837890608303
1121 => 0.03171004857043
1122 => 0.031524825515353
1123 => 0.032213606447115
1124 => 0.031423974690605
1125 => 0.030303191824111
1126 => 0.029688308176982
1127 => 0.030498036564771
1128 => 0.030992509435568
1129 => 0.031319324548783
1130 => 0.031418218604575
1201 => 0.028932668474557
1202 => 0.027593094809408
1203 => 0.028451746170525
1204 => 0.02949936009204
1205 => 0.028816108194172
1206 => 0.028842890375001
1207 => 0.027868752724081
1208 => 0.029585549658805
1209 => 0.029335426785951
1210 => 0.030633064692779
1211 => 0.030323372992119
1212 => 0.031381546331124
1213 => 0.031102893827714
1214 => 0.032259564790118
1215 => 0.032720992152637
1216 => 0.033495800509742
1217 => 0.034065752691265
1218 => 0.034400439513704
1219 => 0.034380346172263
1220 => 0.035706542103077
1221 => 0.034924530696433
1222 => 0.03394214006375
1223 => 0.033924371716608
1224 => 0.034433165745857
1225 => 0.035499458450338
1226 => 0.035775932634682
1227 => 0.035930443986429
1228 => 0.03569380447265
1229 => 0.034844987138
1230 => 0.0344784721165
1231 => 0.034790753533781
]
'min_raw' => 0.012876864107121
'max_raw' => 0.035930443986429
'avg_raw' => 0.024403654046775
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.012876'
'max' => '$0.03593'
'avg' => '$0.0244036'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0050977576858435
'max_diff' => 0.018564136901144
'year' => 2036
]
11 => [
'items' => [
101 => 0.034408860195094
102 => 0.035068115238012
103 => 0.035973413221218
104 => 0.035786472767622
105 => 0.036411386676313
106 => 0.037058106828948
107 => 0.037982945693236
108 => 0.038224732819044
109 => 0.038624397743665
110 => 0.039035784234189
111 => 0.039167910487768
112 => 0.03942018050222
113 => 0.03941885091472
114 => 0.040179083583
115 => 0.04101764375856
116 => 0.041334180812121
117 => 0.042062040312829
118 => 0.040815606425105
119 => 0.041761040846944
120 => 0.042613846361202
121 => 0.04159709647006
122 => 0.042998449322658
123 => 0.043052860678391
124 => 0.043874407549816
125 => 0.04304161240629
126 => 0.042547101308441
127 => 0.043974736318842
128 => 0.044665523930294
129 => 0.044457453079909
130 => 0.042874023634752
131 => 0.041952399781186
201 => 0.039540332388442
202 => 0.042397530408705
203 => 0.043789188218766
204 => 0.042870419577223
205 => 0.043333793038437
206 => 0.045861808393471
207 => 0.046824312963795
208 => 0.046624118741582
209 => 0.046657948269659
210 => 0.047177298265112
211 => 0.049480382156218
212 => 0.048100320903601
213 => 0.049155326021318
214 => 0.049714896931651
215 => 0.050234657578395
216 => 0.048958289702033
217 => 0.047297753848453
218 => 0.046771792439072
219 => 0.042779066142773
220 => 0.042571227399519
221 => 0.042454561214772
222 => 0.041718997422703
223 => 0.041141045770016
224 => 0.04068143715783
225 => 0.039475286908705
226 => 0.039882327210873
227 => 0.037959975456889
228 => 0.039189827985125
301 => 0.03612170816896
302 => 0.038676929521534
303 => 0.037286238710987
304 => 0.03822005018776
305 => 0.038216792207488
306 => 0.03649734921355
307 => 0.035505610378506
308 => 0.036137584963249
309 => 0.036815111884298
310 => 0.036925038347764
311 => 0.037803469686166
312 => 0.038048620990896
313 => 0.037305801092545
314 => 0.036058128205317
315 => 0.036347934160632
316 => 0.035499737470071
317 => 0.034013305395279
318 => 0.035080886862009
319 => 0.035445406112994
320 => 0.035606398580433
321 => 0.034144663352752
322 => 0.033685354408399
323 => 0.0334408221804
324 => 0.035869436543109
325 => 0.036002481520185
326 => 0.035321804606799
327 => 0.038398528799735
328 => 0.037702171357076
329 => 0.038480173232242
330 => 0.036321637307789
331 => 0.036404096286957
401 => 0.035382210788249
402 => 0.035954398385112
403 => 0.035549994634116
404 => 0.035908171281753
405 => 0.03612286088753
406 => 0.037144578704883
407 => 0.038688595897801
408 => 0.036991968134257
409 => 0.036252723121524
410 => 0.036711346569752
411 => 0.037932721249074
412 => 0.039783166409266
413 => 0.038687665630753
414 => 0.039173830273447
415 => 0.039280035619917
416 => 0.038472253903484
417 => 0.039812950473359
418 => 0.040531440656954
419 => 0.041268462914728
420 => 0.041908398690259
421 => 0.040974080017507
422 => 0.041973934926672
423 => 0.041168228368036
424 => 0.040445426292525
425 => 0.040446522484914
426 => 0.039993098184493
427 => 0.039114531467289
428 => 0.038952510285005
429 => 0.039795364936267
430 => 0.040471254547947
501 => 0.040526924053658
502 => 0.040901131271145
503 => 0.041122583247814
504 => 0.043293113668529
505 => 0.04416611895931
506 => 0.045233613303733
507 => 0.04564946251157
508 => 0.046901019536968
509 => 0.045890285592467
510 => 0.04567160694576
511 => 0.042635738983327
512 => 0.043132862192103
513 => 0.043928804414608
514 => 0.042648863777413
515 => 0.04346069150999
516 => 0.043620963501263
517 => 0.042605371884336
518 => 0.04314784324806
519 => 0.04170720013756
520 => 0.038719997980786
521 => 0.039816276083296
522 => 0.040623505769963
523 => 0.039471489476387
524 => 0.041536434093434
525 => 0.040330136077265
526 => 0.039947797518655
527 => 0.038456158487982
528 => 0.039160154692008
529 => 0.040112319638208
530 => 0.039523992402513
531 => 0.04074485975436
601 => 0.042473933518005
602 => 0.043706174450102
603 => 0.043800770608071
604 => 0.043008522242464
605 => 0.044278105304411
606 => 0.044287352830982
607 => 0.042855257950707
608 => 0.041978107810475
609 => 0.041778817453075
610 => 0.042276683839037
611 => 0.0428811855428
612 => 0.043834316245512
613 => 0.044410273167229
614 => 0.045912063355118
615 => 0.046318404720262
616 => 0.046764850685551
617 => 0.047361440174013
618 => 0.048077798817318
619 => 0.046510446888088
620 => 0.046572720702146
621 => 0.045113224287111
622 => 0.043553543054688
623 => 0.044737146693087
624 => 0.046284551002099
625 => 0.045929574743882
626 => 0.045889632663325
627 => 0.045956804163812
628 => 0.045689163657557
629 => 0.044478635566986
630 => 0.043870715938207
701 => 0.044655087356169
702 => 0.04507194585646
703 => 0.04571845703653
704 => 0.045638760887391
705 => 0.04730410425702
706 => 0.047951206333088
707 => 0.047785649930971
708 => 0.047816116293298
709 => 0.048987663692395
710 => 0.050290665347291
711 => 0.051511098343313
712 => 0.052752575205683
713 => 0.051255926392429
714 => 0.050496020425525
715 => 0.051280049411463
716 => 0.050864032595517
717 => 0.053254588618544
718 => 0.053420105530863
719 => 0.05581048868948
720 => 0.058079246948539
721 => 0.05665428053505
722 => 0.057997959681073
723 => 0.059451258229265
724 => 0.06225490691792
725 => 0.061310736673131
726 => 0.060587517062657
727 => 0.059904078025331
728 => 0.061326206169115
729 => 0.063155751307042
730 => 0.063549817806586
731 => 0.064188356080836
801 => 0.063517011162207
802 => 0.064325572170478
803 => 0.067180147829385
804 => 0.066408816288312
805 => 0.065313401502256
806 => 0.067566814828602
807 => 0.068382316351485
808 => 0.074105933120536
809 => 0.081332235722279
810 => 0.078340498994696
811 => 0.076483431465145
812 => 0.07691988638482
813 => 0.079558687469196
814 => 0.080406186626138
815 => 0.078102391767092
816 => 0.078916131058422
817 => 0.083399914558729
818 => 0.085805320549647
819 => 0.082538456124856
820 => 0.07352530674258
821 => 0.065214771385964
822 => 0.067419099590823
823 => 0.06716919718066
824 => 0.071986463188358
825 => 0.066390420286154
826 => 0.066484643296775
827 => 0.071401525263938
828 => 0.070089785451796
829 => 0.067964934951068
830 => 0.06523028514612
831 => 0.060175032057182
901 => 0.055697453420149
902 => 0.064479016252147
903 => 0.064100339294596
904 => 0.06355195894328
905 => 0.064772320074181
906 => 0.070698047320288
907 => 0.070561440127558
908 => 0.069692414865011
909 => 0.070351562867415
910 => 0.067849383119313
911 => 0.068494251813972
912 => 0.065213454954704
913 => 0.066696512153273
914 => 0.067960375976212
915 => 0.068214115350491
916 => 0.068785803116994
917 => 0.06390079374518
918 => 0.066094019536785
919 => 0.067382334211887
920 => 0.061561681640487
921 => 0.067267278625375
922 => 0.063815756600182
923 => 0.06264425818471
924 => 0.064221526467962
925 => 0.063606863484035
926 => 0.063078412344676
927 => 0.06278352752897
928 => 0.063941699279443
929 => 0.063887669182969
930 => 0.061992675407746
1001 => 0.059520733277795
1002 => 0.060350398195341
1003 => 0.060048973152646
1004 => 0.058956569913317
1005 => 0.059692717799355
1006 => 0.056451095065163
1007 => 0.050874051635875
1008 => 0.054558417354723
1009 => 0.054416573282366
1010 => 0.054345049068967
1011 => 0.057113748078293
1012 => 0.0568476015533
1013 => 0.056364543004325
1014 => 0.058947698164246
1015 => 0.058004811782535
1016 => 0.060910565438997
1017 => 0.062824482729507
1018 => 0.062339051395895
1019 => 0.064139099858385
1020 => 0.060369511999353
1021 => 0.061621617876509
1022 => 0.061879675162447
1023 => 0.058915822430545
1024 => 0.056891146416279
1025 => 0.056756123609123
1026 => 0.053245614417926
1027 => 0.055120900092024
1028 => 0.056771073880635
1029 => 0.055980768694549
1030 => 0.05573058168233
1031 => 0.057008732868815
1101 => 0.057108056162629
1102 => 0.054843474537849
1103 => 0.055314352767614
1104 => 0.057277993262727
1105 => 0.05526487406532
1106 => 0.051353712305911
1107 => 0.050383690113536
1108 => 0.050254271272017
1109 => 0.047623494152865
1110 => 0.050448511634772
1111 => 0.049215315798158
1112 => 0.053110966670067
1113 => 0.050885791784828
1114 => 0.050789868942926
1115 => 0.050644867498569
1116 => 0.048380448956081
1117 => 0.04887621270558
1118 => 0.050524206915866
1119 => 0.05111222981608
1120 => 0.051050894210058
1121 => 0.050516130845176
1122 => 0.050760942775187
1123 => 0.049972318250489
1124 => 0.049693838517018
1125 => 0.048814879876299
1126 => 0.047523053492963
1127 => 0.047702689874797
1128 => 0.045143243784648
1129 => 0.04374872171465
1130 => 0.04336273638518
1201 => 0.042846580671175
1202 => 0.043421037546515
1203 => 0.045135993195452
1204 => 0.043067392834696
1205 => 0.039520922611624
1206 => 0.039734071514922
1207 => 0.040212953816155
1208 => 0.039320559815931
1209 => 0.03847598378767
1210 => 0.039210274121624
1211 => 0.037707587935817
1212 => 0.040394546262541
1213 => 0.040321871569917
1214 => 0.041323403473732
1215 => 0.041949681926691
1216 => 0.040506312852677
1217 => 0.040143309433848
1218 => 0.040350092678799
1219 => 0.036932426255133
1220 => 0.041044107213199
1221 => 0.041079665200866
1222 => 0.040775196122584
1223 => 0.042964539298847
1224 => 0.047584736274022
1225 => 0.045846432324968
1226 => 0.04517330849538
1227 => 0.043893699603281
1228 => 0.045598702476344
1229 => 0.045467784857881
1230 => 0.044875725738159
1231 => 0.044517646535214
]
'min_raw' => 0.0334408221804
'max_raw' => 0.085805320549647
'avg_raw' => 0.059623071365024
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.03344'
'max' => '$0.0858053'
'avg' => '$0.059623'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.02056395807328
'max_diff' => 0.049874876563218
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0010496691962712
]
1 => [
'year' => 2028
'avg' => 0.0018015370619463
]
2 => [
'year' => 2029
'avg' => 0.004921474557773
]
3 => [
'year' => 2030
'avg' => 0.0037969102920421
]
4 => [
'year' => 2031
'avg' => 0.0037290364526976
]
5 => [
'year' => 2032
'avg' => 0.006538174472541
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0010496691962712
'min' => '$0.001049'
'max_raw' => 0.006538174472541
'max' => '$0.006538'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.006538174472541
]
1 => [
'year' => 2033
'avg' => 0.016816857055928
]
2 => [
'year' => 2034
'avg' => 0.01065933218238
]
3 => [
'year' => 2035
'avg' => 0.012572706753281
]
4 => [
'year' => 2036
'avg' => 0.024403654046775
]
5 => [
'year' => 2037
'avg' => 0.059623071365024
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.006538174472541
'min' => '$0.006538'
'max_raw' => 0.059623071365024
'max' => '$0.059623'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.059623071365024
]
]
]
]
'prediction_2025_max_price' => '$0.001794'
'last_price' => 0.00174023
'sma_50day_nextmonth' => '$0.001658'
'sma_200day_nextmonth' => '$0.003996'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.001726'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001725'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00174'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.001747'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.002382'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003447'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.004838'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00173'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001731'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001739'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.001832'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.002347'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00319'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004696'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003962'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.005458'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.020166'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.028282'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.001777'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.001942'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002523'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003662'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.007745'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.025562'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.077165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '31.83'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 91.53
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001742'
'vwma_10_action' => 'SELL'
'hma_9' => '0.001718'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 30.53
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -16.83
'cci_20_action' => 'NEUTRAL'
'adx_14' => 49.58
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000157'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -69.47
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 34.17
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000686'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 22
'buy_signals' => 11
'sell_pct' => 66.67
'buy_pct' => 33.33
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767692225
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Torum para 2026
A previsão de preço para Torum em 2026 sugere que o preço médio poderia variar entre $0.0006012 na extremidade inferior e $0.001794 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Torum poderia potencialmente ganhar 3.13% até 2026 se XTM atingir a meta de preço prevista.
Previsão de preço de Torum 2027-2032
A previsão de preço de XTM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.001049 na extremidade inferior e $0.006538 na extremidade superior. Considerando a volatilidade de preços no mercado, se Torum atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Torum | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000578 | $0.001049 | $0.00152 |
| 2028 | $0.001044 | $0.0018015 | $0.002558 |
| 2029 | $0.002294 | $0.004921 | $0.007548 |
| 2030 | $0.001951 | $0.003796 | $0.005642 |
| 2031 | $0.0023072 | $0.003729 | $0.00515 |
| 2032 | $0.003521 | $0.006538 | $0.009554 |
Previsão de preço de Torum 2032-2037
A previsão de preço de Torum para 2032-2037 é atualmente estimada entre $0.006538 na extremidade inferior e $0.059623 na extremidade superior. Comparado ao preço atual, Torum poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Torum | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.003521 | $0.006538 | $0.009554 |
| 2033 | $0.008184 | $0.016816 | $0.025449 |
| 2034 | $0.006579 | $0.010659 | $0.014739 |
| 2035 | $0.007779 | $0.012572 | $0.017366 |
| 2036 | $0.012876 | $0.0244036 | $0.03593 |
| 2037 | $0.03344 | $0.059623 | $0.0858053 |
Torum Histograma de preços potenciais
Previsão de preço de Torum baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Torum é Baixista, com 11 indicadores técnicos mostrando sinais de alta e 22 indicando sinais de baixa. A previsão de preço de XTM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Torum
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Torum está projetado para aumentar no próximo mês, alcançando $0.003996 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Torum é esperado para alcançar $0.001658 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 31.83, sugerindo que o mercado de XTM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de XTM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.001726 | BUY |
| SMA 5 | $0.001725 | BUY |
| SMA 10 | $0.00174 | SELL |
| SMA 21 | $0.001747 | SELL |
| SMA 50 | $0.002382 | SELL |
| SMA 100 | $0.003447 | SELL |
| SMA 200 | $0.004838 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00173 | BUY |
| EMA 5 | $0.001731 | BUY |
| EMA 10 | $0.001739 | BUY |
| EMA 21 | $0.001832 | SELL |
| EMA 50 | $0.002347 | SELL |
| EMA 100 | $0.00319 | SELL |
| EMA 200 | $0.004696 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.003962 | SELL |
| SMA 50 | $0.005458 | SELL |
| SMA 100 | $0.020166 | SELL |
| SMA 200 | $0.028282 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003662 | SELL |
| EMA 50 | $0.007745 | SELL |
| EMA 100 | $0.025562 | SELL |
| EMA 200 | $0.077165 | SELL |
Osciladores de Torum
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 31.83 | NEUTRAL |
| Stoch RSI (14) | 91.53 | SELL |
| Estocástico Rápido (14) | 30.53 | NEUTRAL |
| Índice de Canal de Commodities (20) | -16.83 | NEUTRAL |
| Índice Direcional Médio (14) | 49.58 | SELL |
| Oscilador Impressionante (5, 34) | -0.000157 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -69.47 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 34.17 | NEUTRAL |
| VWMA (10) | 0.001742 | SELL |
| Média Móvel de Hull (9) | 0.001718 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000686 | SELL |
Previsão do preço de Torum com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Torum
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Torum por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.002445 | $0.003436 | $0.004828 | $0.006784 | $0.009533 | $0.013395 |
| Amazon.com stock | $0.003631 | $0.007576 | $0.0158088 | $0.032986 | $0.068827 | $0.143612 |
| Apple stock | $0.002468 | $0.0035012 | $0.004966 | $0.007044 | $0.009991 | $0.014172 |
| Netflix stock | $0.002745 | $0.004332 | $0.006835 | $0.010786 | $0.017018 | $0.026852 |
| Google stock | $0.002253 | $0.002918 | $0.003779 | $0.004894 | $0.006337 | $0.0082076 |
| Tesla stock | $0.003944 | $0.008942 | $0.020272 | $0.045957 | $0.104181 | $0.236172 |
| Kodak stock | $0.0013049 | $0.000978 | $0.000733 | $0.00055 | $0.000412 | $0.0003094 |
| Nokia stock | $0.001152 | $0.000763 | $0.0005059 | $0.000335 | $0.000222 | $0.000147 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Torum
Você pode fazer perguntas como: 'Devo investir em Torum agora?', 'Devo comprar XTM hoje?', 'Torum será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Torum regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Torum, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Torum para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Torum é de $0.00174 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Torum
com base no histórico de preços de 4 horas
Previsão de longo prazo para Torum
com base no histórico de preços de 1 mês
Previsão do preço de Torum com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Torum tiver 1% da média anterior do crescimento anual do Bitcoin | $0.001785 | $0.001831 | $0.001879 | $0.001928 |
| Se Torum tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00183 | $0.001925 | $0.002025 | $0.002131 |
| Se Torum tiver 5% da média anterior do crescimento anual do Bitcoin | $0.001966 | $0.002221 | $0.00251 | $0.002837 |
| Se Torum tiver 10% da média anterior do crescimento anual do Bitcoin | $0.002192 | $0.002762 | $0.00348 | $0.004385 |
| Se Torum tiver 20% da média anterior do crescimento anual do Bitcoin | $0.002644 | $0.004019 | $0.0061097 | $0.009285 |
| Se Torum tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0040019 | $0.0092031 | $0.021164 | $0.04867 |
| Se Torum tiver 100% da média anterior do crescimento anual do Bitcoin | $0.006263 | $0.022544 | $0.081146 | $0.292071 |
Perguntas Frequentes sobre Torum
XTM é um bom investimento?
A decisão de adquirir Torum depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Torum experimentou uma escalada de 0.9468% nas últimas 24 horas, e Torum registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Torum dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Torum pode subir?
Parece que o valor médio de Torum pode potencialmente subir para $0.001794 até o final deste ano. Observando as perspectivas de Torum em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.005642. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Torum na próxima semana?
Com base na nossa nova previsão experimental de Torum, o preço de Torum aumentará 0.86% na próxima semana e atingirá $0.001755 até 13 de janeiro de 2026.
Qual será o preço de Torum no próximo mês?
Com base na nossa nova previsão experimental de Torum, o preço de Torum diminuirá -11.62% no próximo mês e atingirá $0.001538 até 5 de fevereiro de 2026.
Até onde o preço de Torum pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Torum em 2026, espera-se que XTM fluctue dentro do intervalo de $0.0006012 e $0.001794. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Torum não considera flutuações repentinas e extremas de preço.
Onde estará Torum em 5 anos?
O futuro de Torum parece seguir uma tendência de alta, com um preço máximo de $0.005642 projetada após um período de cinco anos. Com base na previsão de Torum para 2030, o valor de Torum pode potencialmente atingir seu pico mais alto de aproximadamente $0.005642, enquanto seu pico mais baixo está previsto para cerca de $0.001951.
Quanto será Torum em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Torum, espera-se que o valor de XTM em 2026 aumente 3.13% para $0.001794 se o melhor cenário ocorrer. O preço ficará entre $0.001794 e $0.0006012 durante 2026.
Quanto será Torum em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Torum, o valor de XTM pode diminuir -12.62% para $0.00152 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00152 e $0.000578 ao longo do ano.
Quanto será Torum em 2028?
Nosso novo modelo experimental de previsão de preços de Torum sugere que o valor de XTM em 2028 pode aumentar 47.02%, alcançando $0.002558 no melhor cenário. O preço é esperado para variar entre $0.002558 e $0.001044 durante o ano.
Quanto será Torum em 2029?
Com base no nosso modelo de previsão experimental, o valor de Torum pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.007548 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.007548 e $0.002294.
Quanto será Torum em 2030?
Usando nossa nova simulação experimental para previsões de preços de Torum, espera-se que o valor de XTM em 2030 aumente 224.23%, alcançando $0.005642 no melhor cenário. O preço está previsto para variar entre $0.005642 e $0.001951 ao longo de 2030.
Quanto será Torum em 2031?
Nossa simulação experimental indica que o preço de Torum poderia aumentar 195.98% em 2031, potencialmente atingindo $0.00515 sob condições ideais. O preço provavelmente oscilará entre $0.00515 e $0.0023072 durante o ano.
Quanto será Torum em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Torum, XTM poderia ver um 449.04% aumento em valor, atingindo $0.009554 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.009554 e $0.003521 ao longo do ano.
Quanto será Torum em 2033?
De acordo com nossa previsão experimental de preços de Torum, espera-se que o valor de XTM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.025449. Ao longo do ano, o preço de XTM poderia variar entre $0.025449 e $0.008184.
Quanto será Torum em 2034?
Os resultados da nossa nova simulação de previsão de preços de Torum sugerem que XTM pode aumentar 746.96% em 2034, atingindo potencialmente $0.014739 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.014739 e $0.006579.
Quanto será Torum em 2035?
Com base em nossa previsão experimental para o preço de Torum, XTM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.017366 em 2035. A faixa de preço esperada para o ano está entre $0.017366 e $0.007779.
Quanto será Torum em 2036?
Nossa recente simulação de previsão de preços de Torum sugere que o valor de XTM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.03593 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.03593 e $0.012876.
Quanto será Torum em 2037?
De acordo com a simulação experimental, o valor de Torum poderia aumentar 4830.69% em 2037, com um pico de $0.0858053 sob condições favoráveis. O preço é esperado para cair entre $0.0858053 e $0.03344 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Inter Milan Fan Token
Previsão de Preço do Rebel Bots
Previsão de Preço do Gala Music
Previsão de Preço do Arbius
Previsão de Preço do Banana
Previsão de Preço do LitLab Games
Previsão de Preço do Gamma Strategies
Previsão de Preço do Vesta Finance
Previsão de Preço do Bitcicoin
Previsão de Preço do SAFE DEAL
Previsão de Preço do MOE
Previsão de Preço do MangoMan Intelligent
Previsão de Preço do HMX
Previsão de Preço do Bot Ocean
Previsão de Preço do GAMEE
Previsão de Preço do Witnet
Previsão de Preço do Angola
Previsão de Preço do Geojam
Previsão de Preço do Netvrk
Previsão de Preço do Humanode
Previsão de Preço do Unmarshal
Previsão de Preço do REVV
Previsão de Preço do Planet IX (OLD)
Previsão de Preço do Mind
Previsão de Preço do White Whale
Como ler e prever os movimentos de preço de Torum?
Traders de Torum utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Torum
Médias móveis são ferramentas populares para a previsão de preço de Torum. Uma média móvel simples (SMA) calcula o preço médio de fechamento de XTM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de XTM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de XTM.
Como ler gráficos de Torum e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Torum em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de XTM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Torum?
A ação de preço de Torum é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de XTM. A capitalização de mercado de Torum pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de XTM, grandes detentores de Torum, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Torum.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


