Predicción del precio de SynFutures - Pronóstico de F
Predicción de precio de SynFutures hasta $0.007637 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002558 | $0.007637 |
| 2027 | $0.002463 | $0.00647 |
| 2028 | $0.004445 | $0.010887 |
| 2029 | $0.009764 | $0.032121 |
| 2030 | $0.0083045 | $0.02401 |
| 2031 | $0.009818 | $0.021919 |
| 2032 | $0.014987 | $0.040659 |
| 2033 | $0.034827 | $0.10830091 |
| 2034 | $0.027999 | $0.062722 |
| 2035 | $0.0331039 | $0.0739022 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en SynFutures hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.53, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de SynFutures para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'SynFutures'
'name_with_ticker' => 'SynFutures <small>F</small>'
'name_lang' => 'SynFutures'
'name_lang_with_ticker' => 'SynFutures <small>F</small>'
'name_with_lang' => 'SynFutures'
'name_with_lang_with_ticker' => 'SynFutures <small>F</small>'
'image' => '/uploads/coins/synfutures.png?1732911435'
'price_for_sd' => 0.007405
'ticker' => 'F'
'marketcap' => '$24.45M'
'low24h' => '$0.007182'
'high24h' => '$0.007431'
'volume24h' => '$5.34M'
'current_supply' => '3.3B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007405'
'change_24h_pct' => '2.919%'
'ath_price' => '$0.1923'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 dic. 2024'
'ath_pct' => '-96.15%'
'fdv' => '$74.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.365144'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007468'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006545'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002558'
'current_year_max_price_prediction' => '$0.007637'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0083045'
'grand_prediction_max_price' => '$0.02401'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.007545871087686
107 => 0.0075740446311762
108 => 0.0076375210632364
109 => 0.0070951219011901
110 => 0.0073386432009462
111 => 0.0074816891496928
112 => 0.0068354023491994
113 => 0.0074689141376175
114 => 0.0070856799385081
115 => 0.0069556044953459
116 => 0.0071307339434273
117 => 0.007062485827191
118 => 0.0070038101045149
119 => 0.0069710680430847
120 => 0.0070996637814238
121 => 0.0070936646365252
122 => 0.0068832570492451
123 => 0.0066087889289487
124 => 0.0067009094392291
125 => 0.0066674411942098
126 => 0.0065461479567705
127 => 0.0066278849538033
128 => 0.0062679565850185
129 => 0.0056487185339729
130 => 0.0060578061582681
131 => 0.0060420567297344
201 => 0.006034115153688
202 => 0.0063415331969944
203 => 0.0063119820454714
204 => 0.0062583464160916
205 => 0.0065451628963753
206 => 0.0064404710228457
207 => 0.0067631067085564
208 => 0.0069756154379332
209 => 0.006921716350226
210 => 0.0071215818373488
211 => 0.0067030317097287
212 => 0.0068420572728076
213 => 0.0068707102486771
214 => 0.00654162362553
215 => 0.0063168169793258
216 => 0.0063018249390074
217 => 0.0059120411947535
218 => 0.0061202605247095
219 => 0.0063034849183694
220 => 0.0062157346525937
221 => 0.0061879555399137
222 => 0.0063298730020413
223 => 0.0063409012042895
224 => 0.0060894570243144
225 => 0.0061417402315329
226 => 0.0063597698969936
227 => 0.0061362464433697
228 => 0.0057019768853274
301 => 0.0055942720306865
302 => 0.0055799022176831
303 => 0.0052877981097172
304 => 0.0056014693840844
305 => 0.0054645434669556
306 => 0.0058970907985411
307 => 0.0056500220825373
308 => 0.0056393714440004
309 => 0.0056232714417428
310 => 0.0053718453693479
311 => 0.0054268917002419
312 => 0.0056098740879265
313 => 0.0056751642652966
314 => 0.0056683539648902
315 => 0.0056089773744012
316 => 0.0056361596734697
317 => 0.0055485960172292
318 => 0.0055176754677307
319 => 0.0054200817081465
320 => 0.0052766458425218
321 => 0.0052965914793802
322 => 0.005012407497542
323 => 0.004857568981451
324 => 0.0048147117209359
325 => 0.0047574012010468
326 => 0.0048211850966548
327 => 0.0050116024400273
328 => 0.0047819187246271
329 => 0.004388142105013
330 => 0.0044118087508145
331 => 0.0044649806772403
401 => 0.0043658951441133
402 => 0.004272119002627
403 => 0.0043536497493505
404 => 0.0041868014045545
405 => 0.0044851435025815
406 => 0.0044770741849239
407 => 0.0045882776697168
408 => 0.0046578154908831
409 => 0.0044975533262319
410 => 0.004457247825217
411 => 0.004480207670378
412 => 0.0041007325735551
413 => 0.0045572664584488
414 => 0.0045612145824434
415 => 0.0045274083478265
416 => 0.0047704985476301
417 => 0.0052834946909503
418 => 0.0050904849066112
419 => 0.0050157456843635
420 => 0.0048736663682365
421 => 0.0050629786211406
422 => 0.0050484423938488
423 => 0.0049827040613346
424 => 0.0049429453127139
425 => 0.0050162020261173
426 => 0.0049338679952271
427 => 0.0049190785408914
428 => 0.0048294705387018
429 => 0.0047974845588244
430 => 0.0047738034127218
501 => 0.0047477327977241
502 => 0.0048052380780164
503 => 0.0046749235474243
504 => 0.0045177769984212
505 => 0.0045047119632208
506 => 0.0045407856740987
507 => 0.0045248257424072
508 => 0.0045046355532081
509 => 0.0044660869835563
510 => 0.0044546504464004
511 => 0.0044918136439378
512 => 0.0044498585606671
513 => 0.0045117655714447
514 => 0.0044949302899844
515 => 0.0044008897762803
516 => 0.0042836804779476
517 => 0.0042826370693376
518 => 0.0042573845182736
519 => 0.0042252215977471
520 => 0.0042162746090446
521 => 0.0043467834572692
522 => 0.004616932867293
523 => 0.0045638960739778
524 => 0.0046022205925772
525 => 0.0047907392929161
526 => 0.0048506637187988
527 => 0.0048081307806951
528 => 0.0047499090717014
529 => 0.0047524705314169
530 => 0.0049514317359582
531 => 0.0049638407022347
601 => 0.0049951941567311
602 => 0.0050354922062441
603 => 0.0048149937127808
604 => 0.0047420850722039
605 => 0.0047075369134812
606 => 0.0046011419564353
607 => 0.0047158797959951
608 => 0.0046490269704477
609 => 0.0046580477006318
610 => 0.0046521729382654
611 => 0.0046553809557671
612 => 0.0044850601098849
613 => 0.0045471160743243
614 => 0.0044439359974915
615 => 0.0043057894571197
616 => 0.004305326341476
617 => 0.0043391375115199
618 => 0.0043190253045466
619 => 0.0042649038727134
620 => 0.0042725915666593
621 => 0.0042052392783211
622 => 0.0042807693539161
623 => 0.0042829352862246
624 => 0.0042538520929695
625 => 0.0043702165955655
626 => 0.0044178912272235
627 => 0.0043987480464006
628 => 0.0044165480906252
629 => 0.0045660999921868
630 => 0.0045904834775483
701 => 0.0046013130110632
702 => 0.0045868028707914
703 => 0.0044192816248494
704 => 0.0044267119044623
705 => 0.004372193442731
706 => 0.0043261310875821
707 => 0.0043279733402228
708 => 0.0043516553784564
709 => 0.0044550762283556
710 => 0.0046727193099765
711 => 0.004680978705829
712 => 0.0046909893345458
713 => 0.0046502710766157
714 => 0.0046379900604028
715 => 0.0046541918907869
716 => 0.0047359271891141
717 => 0.0049461725673288
718 => 0.0048718578088511
719 => 0.0048114387534305
720 => 0.0048644425538947
721 => 0.0048562830342708
722 => 0.0047874084771944
723 => 0.0047854753977711
724 => 0.0046532831022137
725 => 0.004604414620419
726 => 0.0045635764592889
727 => 0.0045189822534421
728 => 0.0044925453134047
729 => 0.0045331644686764
730 => 0.0045424545500788
731 => 0.0044536400571759
801 => 0.004441534969974
802 => 0.0045140628020725
803 => 0.0044821460072761
804 => 0.0045149732222227
805 => 0.0045225894176769
806 => 0.0045213630347929
807 => 0.0044880382354049
808 => 0.004509278468775
809 => 0.0044590389848364
810 => 0.0044044110917797
811 => 0.0043695618994475
812 => 0.004339151357063
813 => 0.004356024893449
814 => 0.004295873817219
815 => 0.0042766302773311
816 => 0.0045020827556296
817 => 0.0046686269253713
818 => 0.0046662053071845
819 => 0.0046514643292621
820 => 0.0046295622261677
821 => 0.004734324913853
822 => 0.0046978276882595
823 => 0.004724382469324
824 => 0.0047311417756056
825 => 0.0047516001599471
826 => 0.0047589122738916
827 => 0.0047368099869616
828 => 0.0046626320124573
829 => 0.0044777875526228
830 => 0.0043917419575918
831 => 0.0043633454780288
901 => 0.0043643776361284
902 => 0.0043359061079869
903 => 0.0043442922490289
904 => 0.0043329897503686
905 => 0.0043115855522739
906 => 0.0043547032445321
907 => 0.0043596721568958
908 => 0.0043496079723047
909 => 0.0043519784521047
910 => 0.0042686513021597
911 => 0.004274986484393
912 => 0.0042397113846822
913 => 0.0042330977287341
914 => 0.0041439253484194
915 => 0.0039859435509488
916 => 0.0040734808024117
917 => 0.0039677481122448
918 => 0.0039277055403669
919 => 0.0041172608477393
920 => 0.0040982347523249
921 => 0.0040656703474204
922 => 0.0040175008055499
923 => 0.003999634253907
924 => 0.0038910827419875
925 => 0.0038846689395635
926 => 0.0039384700000082
927 => 0.0039136426617944
928 => 0.003878775676094
929 => 0.0037524909882969
930 => 0.0036105051877897
1001 => 0.0036147908466161
1002 => 0.0036599538880177
1003 => 0.0037912715219588
1004 => 0.0037399634505599
1005 => 0.0037027388560677
1006 => 0.0036957678084865
1007 => 0.0037830250638417
1008 => 0.0039065123611295
1009 => 0.0039644498381444
1010 => 0.00390703555801
1011 => 0.0038410811243959
1012 => 0.0038450954651666
1013 => 0.0038718010758575
1014 => 0.0038746074579441
1015 => 0.0038316779018867
1016 => 0.0038437623204555
1017 => 0.0038254049836271
1018 => 0.0037127460413957
1019 => 0.0037107083983761
1020 => 0.0036830600770817
1021 => 0.003682222896901
1022 => 0.0036351862051822
1023 => 0.0036286054468615
1024 => 0.0035352112405307
1025 => 0.0035966835899613
1026 => 0.0035554511654065
1027 => 0.0034933041758566
1028 => 0.0034825900114336
1029 => 0.0034822679307133
1030 => 0.0035460789931684
1031 => 0.0035959379205439
1101 => 0.0035561684210847
1102 => 0.0035471136769572
1103 => 0.0036437946550966
1104 => 0.0036314911193617
1105 => 0.0036208363367645
1106 => 0.0038954554280779
1107 => 0.0036780729885084
1108 => 0.0035832818371003
1109 => 0.0034659597868813
1110 => 0.0035041604380217
1111 => 0.0035122098765013
1112 => 0.0032300714946136
1113 => 0.0031156079882199
1114 => 0.0030763284262918
1115 => 0.0030537224830707
1116 => 0.0030640242952642
1117 => 0.0029609937142796
1118 => 0.0030302319686697
1119 => 0.0029410161944953
1120 => 0.0029260588796217
1121 => 0.0030855877355592
1122 => 0.0031077852439089
1123 => 0.003013083777064
1124 => 0.0030738974495532
1125 => 0.0030518455665354
1126 => 0.0029425455428787
1127 => 0.0029383710859316
1128 => 0.0028835281761423
1129 => 0.002797709642002
1130 => 0.0027584882690812
1201 => 0.0027380614375284
1202 => 0.0027464899463381
1203 => 0.0027422282343673
1204 => 0.0027144176810248
1205 => 0.002743822302731
1206 => 0.0026687056451002
1207 => 0.0026387935867756
1208 => 0.0026252830039849
1209 => 0.002558612646784
1210 => 0.002664714833533
1211 => 0.0026856183009626
1212 => 0.0027065629546806
1213 => 0.0028888718657726
1214 => 0.0028797642277741
1215 => 0.0029620928396811
1216 => 0.002958893701215
1217 => 0.002935412247464
1218 => 0.0028363478566003
1219 => 0.0028758331571456
1220 => 0.0027543035394453
1221 => 0.0028453617922371
1222 => 0.0028038066083465
1223 => 0.0028313119427629
1224 => 0.0027818548714261
1225 => 0.0028092264567363
1226 => 0.0026905752885577
1227 => 0.0025797804971795
1228 => 0.0026243675555317
1229 => 0.0026728387871091
1230 => 0.0027779367674091
1231 => 0.002715341277382
]
'min_raw' => 0.002558612646784
'max_raw' => 0.0076375210632364
'avg_raw' => 0.0050980668550102
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002558'
'max' => '$0.007637'
'avg' => '$0.005098'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.004846927353216
'max_diff' => 0.00023198106323642
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027378529825932
102 => 0.0026624425385494
103 => 0.0025068492525584
104 => 0.0025077298936597
105 => 0.002483795256394
106 => 0.0024631122352822
107 => 0.0027225311223981
108 => 0.0026902682829795
109 => 0.002638861670822
110 => 0.0027076714640124
111 => 0.0027258658654902
112 => 0.0027263838345219
113 => 0.0027765856833958
114 => 0.0028033784191389
115 => 0.00280810075494
116 => 0.0028870944488258
117 => 0.0029135720930643
118 => 0.0030226297624261
119 => 0.0028011052427016
120 => 0.0027965430909961
121 => 0.0027086397589138
122 => 0.0026528900760106
123 => 0.0027124569873981
124 => 0.0027652251391933
125 => 0.0027102794124808
126 => 0.0027174541644218
127 => 0.0026436940155411
128 => 0.0026700597980283
129 => 0.0026927695617609
130 => 0.002680230565046
131 => 0.0026614590800695
201 => 0.0027608987525061
202 => 0.00275528797648
203 => 0.0028478884855612
204 => 0.002920077204316
205 => 0.0030494522936014
206 => 0.0029144426434561
207 => 0.0029095223551901
208 => 0.0029576189622298
209 => 0.0029135647297243
210 => 0.0029414054839673
211 => 0.0030449667176765
212 => 0.0030471548033551
213 => 0.0030105015490491
214 => 0.0030082711951935
215 => 0.0030153108536257
216 => 0.0030565423529424
217 => 0.0030421348001651
218 => 0.0030588075849936
219 => 0.0030796571577244
220 => 0.0031658998305744
221 => 0.0031866926470254
222 => 0.0031361768828889
223 => 0.0031407378907894
224 => 0.0031218436083136
225 => 0.0031035919681866
226 => 0.003144618989754
227 => 0.0032195966780566
228 => 0.003219130245749
301 => 0.0032365236120772
302 => 0.0032473595352052
303 => 0.0032008438207592
304 => 0.003170563801085
305 => 0.0031821750873958
306 => 0.0032007417870676
307 => 0.0031761541569279
308 => 0.0030243879136073
309 => 0.0030704240969656
310 => 0.0030627614250004
311 => 0.0030518488483092
312 => 0.0030981385866633
313 => 0.0030936738284745
314 => 0.0029599369867536
315 => 0.0029684983854525
316 => 0.0029604576337647
317 => 0.0029864389474508
318 => 0.0029121616535219
319 => 0.0029350088488692
320 => 0.0029493383956119
321 => 0.0029577786087281
322 => 0.0029882704460122
323 => 0.0029846925808424
324 => 0.0029880480408897
325 => 0.0030332593860354
326 => 0.0032619228551221
327 => 0.003274368503227
328 => 0.0032130815801766
329 => 0.0032375644971041
330 => 0.0031905626504286
331 => 0.0032221153049869
401 => 0.0032437028298852
402 => 0.0031461529559123
403 => 0.0031403766854691
404 => 0.0030931808454529
405 => 0.0031185412165686
406 => 0.0030781910426483
407 => 0.0030880915639392
408 => 0.003060408843298
409 => 0.0031102322288774
410 => 0.0031659425157267
411 => 0.0031800171342507
412 => 0.0031429928724183
413 => 0.0031161848668338
414 => 0.0030691188401336
415 => 0.0031473906914709
416 => 0.0031702797660934
417 => 0.0031472704649061
418 => 0.0031419387070579
419 => 0.0031318350355697
420 => 0.0031440822487272
421 => 0.0031701551072773
422 => 0.0031578596286752
423 => 0.0031659810089104
424 => 0.0031350306821848
425 => 0.0032008592193962
426 => 0.0033054107789879
427 => 0.0033057469293479
428 => 0.0032934513844686
429 => 0.0032884203124152
430 => 0.0033010362876174
501 => 0.0033078799366303
502 => 0.0033486776870602
503 => 0.0033924552987256
504 => 0.0035967463106998
505 => 0.0035393822120211
506 => 0.0037206413511712
507 => 0.0038639937966855
508 => 0.0039069789270525
509 => 0.0038674346297215
510 => 0.0037321557246932
511 => 0.0037255182962304
512 => 0.0039276820936233
513 => 0.0038705615611713
514 => 0.0038637672555921
515 => 0.0037914873233906
516 => 0.0038342137153654
517 => 0.0038248688266822
518 => 0.0038101174627281
519 => 0.0038916364422699
520 => 0.0040442326947227
521 => 0.0040204491377393
522 => 0.0040026958157387
523 => 0.0039249059266463
524 => 0.0039717528148807
525 => 0.0039550715352734
526 => 0.0040267448986677
527 => 0.0039842871859523
528 => 0.0038701288169583
529 => 0.0038883089134915
530 => 0.0038855610284738
531 => 0.0039421123074212
601 => 0.0039251370171702
602 => 0.0038822463306087
603 => 0.0040437111373211
604 => 0.0040332265108876
605 => 0.004048091314051
606 => 0.0040546352601128
607 => 0.0041529160426297
608 => 0.0041931785345925
609 => 0.0042023188251622
610 => 0.0042405650785141
611 => 0.0042013672235373
612 => 0.0043581865910414
613 => 0.0044624623197679
614 => 0.0045835839446636
615 => 0.0047605751930598
616 => 0.0048271255397174
617 => 0.0048151038152628
618 => 0.0049492965598236
619 => 0.0051904379388623
620 => 0.0048638453824624
621 => 0.0052077481373802
622 => 0.0050988724957215
623 => 0.0048407303079377
624 => 0.0048241089943409
625 => 0.0049989258810005
626 => 0.0053866529101096
627 => 0.0052895316868813
628 => 0.0053868117656381
629 => 0.0052733293864327
630 => 0.0052676940298006
701 => 0.0053813001797775
702 => 0.0056467471415474
703 => 0.0055206432401411
704 => 0.00533984237553
705 => 0.0054733429203858
706 => 0.0053576923935395
707 => 0.0050970993880105
708 => 0.0052894574201123
709 => 0.0051608330820872
710 => 0.0051983725019688
711 => 0.0054687217290713
712 => 0.005436192594811
713 => 0.0054782883066606
714 => 0.0054039904770827
715 => 0.0053345845885646
716 => 0.0052050333434966
717 => 0.0051666796066312
718 => 0.0051772791996779
719 => 0.0051666743539993
720 => 0.0050941916230212
721 => 0.0050785389841676
722 => 0.0050524505669871
723 => 0.00506053645835
724 => 0.0050114826016151
725 => 0.0051040573643179
726 => 0.0051212400560416
727 => 0.0051886082482421
728 => 0.0051956026374418
729 => 0.0053832220937942
730 => 0.0052798844500522
731 => 0.0053492122632172
801 => 0.005343010931069
802 => 0.0048463250319026
803 => 0.0049147639665109
804 => 0.0050212334714407
805 => 0.0049732691037859
806 => 0.0049054587098554
807 => 0.0048506981809932
808 => 0.0047677303802155
809 => 0.0048845059665547
810 => 0.0050380534448915
811 => 0.0051994968548843
812 => 0.0053934605337994
813 => 0.0053501700986517
814 => 0.0051958708388253
815 => 0.0052027925909055
816 => 0.0052455801386558
817 => 0.0051901663766605
818 => 0.0051738237764429
819 => 0.0052433349163436
820 => 0.0052438136013614
821 => 0.005180053371209
822 => 0.0051091955433935
823 => 0.0051088986465077
824 => 0.0050962901804533
825 => 0.0052755724045339
826 => 0.0053741595003009
827 => 0.0053854623519496
828 => 0.0053733987283286
829 => 0.0053780415382722
830 => 0.0053206758794638
831 => 0.0054517967642421
901 => 0.0055721262546262
902 => 0.0055398753807386
903 => 0.0054915267360493
904 => 0.0054530147117681
905 => 0.0055308031717477
906 => 0.0055273393740752
907 => 0.0055710752815008
908 => 0.0055690911681091
909 => 0.0055543844274326
910 => 0.0055398759059626
911 => 0.0055974005536221
912 => 0.0055808343789137
913 => 0.0055642424723604
914 => 0.0055309648636738
915 => 0.0055354878433769
916 => 0.0054871475467627
917 => 0.0054647831136476
918 => 0.0051284756993737
919 => 0.005038603369118
920 => 0.0050668790337364
921 => 0.0050761881167061
922 => 0.0050370755634043
923 => 0.0050931529176485
924 => 0.0050844133213902
925 => 0.0051184139779386
926 => 0.005097171843864
927 => 0.005098043628456
928 => 0.0051605122154688
929 => 0.005178647112039
930 => 0.0051694235572768
1001 => 0.0051758834188673
1002 => 0.0053247482026823
1003 => 0.0053035843908516
1004 => 0.005292341537627
1005 => 0.0052954558848052
1006 => 0.0053334940287669
1007 => 0.0053441426322705
1008 => 0.0052990237509616
1009 => 0.0053203020762161
1010 => 0.0054109024845278
1011 => 0.0054426074998979
1012 => 0.0055437946896886
1013 => 0.0055008085730066
1014 => 0.0055797114505719
1015 => 0.0058222319962344
1016 => 0.0060159741892549
1017 => 0.0058378008618185
1018 => 0.0061935837263812
1019 => 0.0064706117204639
1020 => 0.0064599789246368
1021 => 0.0064116726860955
1022 => 0.0060962836800025
1023 => 0.0058060580144107
1024 => 0.006048844107311
1025 => 0.0060494630189912
1026 => 0.0060286074782947
1027 => 0.0058990755061911
1028 => 0.0060241000464423
1029 => 0.006034024040425
1030 => 0.0060284692427977
1031 => 0.0059291573834896
1101 => 0.0057775265302258
1102 => 0.0058071548360006
1103 => 0.0058556866052607
1104 => 0.0057638058412636
1105 => 0.0057344443699147
1106 => 0.0057890329314008
1107 => 0.0059649286504874
1108 => 0.0059316765836886
1109 => 0.0059308082378423
1110 => 0.0060730746806784
1111 => 0.0059712426106277
1112 => 0.0058075285438194
1113 => 0.005766188582827
1114 => 0.0056194595712387
1115 => 0.0057208058221736
1116 => 0.0057244530933215
1117 => 0.005668946787418
1118 => 0.0058120325746307
1119 => 0.0058107140139118
1120 => 0.0059465526733614
1121 => 0.0062062251715584
1122 => 0.0061294272361339
1123 => 0.0060401195928269
1124 => 0.0060498298098867
1125 => 0.006156326924175
1126 => 0.0060919363377837
1127 => 0.0061150916415971
1128 => 0.0061562918758495
1129 => 0.0061811490001182
1130 => 0.0060462532522339
1201 => 0.0060148026005926
1202 => 0.0059504656050132
1203 => 0.0059336812837734
1204 => 0.0059860824242374
1205 => 0.0059722765750847
1206 => 0.0057241465543044
1207 => 0.0056982155865505
1208 => 0.0056990108523106
1209 => 0.005633806200943
1210 => 0.005534353456698
1211 => 0.0057957093305591
1212 => 0.0057747187962149
1213 => 0.0057515468708373
1214 => 0.0057543852994789
1215 => 0.0058678310261496
1216 => 0.0058020267755341
1217 => 0.0059769781609
1218 => 0.0059410134155888
1219 => 0.0059041263102678
1220 => 0.0058990273887037
1221 => 0.005884829000215
1222 => 0.0058361374430998
1223 => 0.0057773394619741
1224 => 0.0057385159418411
1225 => 0.0052934776195434
1226 => 0.005376074143493
1227 => 0.005471093915387
1228 => 0.005503894359877
1229 => 0.0054477869298552
1230 => 0.0058383529064158
1231 => 0.0059097130739208
]
'min_raw' => 0.0024631122352822
'max_raw' => 0.0064706117204639
'avg_raw' => 0.004466861977873
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002463'
'max' => '$0.00647'
'avg' => '$0.004466'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.5500411501876E-5
'max_diff' => -0.0011669093427725
'year' => 2027
]
2 => [
'items' => [
101 => 0.0056935584718396
102 => 0.0056531247713244
103 => 0.0058410037330901
104 => 0.0057276897518764
105 => 0.0057787150306787
106 => 0.0056684262872436
107 => 0.0058925244992385
108 => 0.0058908172463303
109 => 0.0058036379803766
110 => 0.0058773212989828
111 => 0.0058645170091176
112 => 0.0057660918325689
113 => 0.0058956447528929
114 => 0.0058957090095251
115 => 0.0058118008614853
116 => 0.0057138145144304
117 => 0.0056962968699112
118 => 0.0056830996779304
119 => 0.005775469330454
120 => 0.0058582876720742
121 => 0.0060123920734214
122 => 0.0060511375813503
123 => 0.0062023638782316
124 => 0.0061123159815136
125 => 0.0061522330478132
126 => 0.0061955686698952
127 => 0.006216345360736
128 => 0.0061824908579495
129 => 0.0064174075442332
130 => 0.0064372417102168
131 => 0.0064438919345063
201 => 0.0063646793496352
202 => 0.006435038664937
203 => 0.0064021198713629
204 => 0.0064877654271385
205 => 0.0065011957438615
206 => 0.0064898207433945
207 => 0.0064940837379055
208 => 0.0062936237883056
209 => 0.0062832288824084
210 => 0.0061414936029108
211 => 0.0061992517769604
212 => 0.0060912756389961
213 => 0.006125515984622
214 => 0.0061406088027199
215 => 0.0061327251710555
216 => 0.0062025173374615
217 => 0.0061431797384188
218 => 0.0059865780585405
219 => 0.0058299337126393
220 => 0.0058279671704763
221 => 0.0057867254792029
222 => 0.0057569152902047
223 => 0.005762657790179
224 => 0.0057828951090945
225 => 0.0057557390604399
226 => 0.005761534180267
227 => 0.005857771782078
228 => 0.005877071546786
229 => 0.0058114834054033
301 => 0.0055481375534281
302 => 0.0054835118208003
303 => 0.0055299635158291
304 => 0.0055077625974777
305 => 0.0044451942794104
306 => 0.0046948289444416
307 => 0.0045465045032723
308 => 0.0046148592298425
309 => 0.0044634583838364
310 => 0.0045357148031487
311 => 0.0045223716808837
312 => 0.0049237768350272
313 => 0.00491750944566
314 => 0.0049205093132872
315 => 0.0047773178153265
316 => 0.0050054257596508
317 => 0.0051177999355214
318 => 0.0050970024663096
319 => 0.0051022367412463
320 => 0.0050122945558508
321 => 0.0049213801502457
322 => 0.004820542082803
323 => 0.0050078867481498
324 => 0.0049870572194433
325 => 0.0050348326640681
326 => 0.0051563390712188
327 => 0.0051742313512297
328 => 0.0051982787570099
329 => 0.0051896594738486
330 => 0.0053950057674286
331 => 0.0053701369763576
401 => 0.0054300636075993
402 => 0.0053067899804908
403 => 0.0051672941701774
404 => 0.0051938077632563
405 => 0.005191254291034
406 => 0.0051587456589045
407 => 0.0051293983193771
408 => 0.0050805432676256
409 => 0.0052351278805545
410 => 0.0052288520275742
411 => 0.0053304507924436
412 => 0.0053124922238751
413 => 0.0051925605077681
414 => 0.0051968438924715
415 => 0.0052256517131259
416 => 0.0053253559093329
417 => 0.0053549549031465
418 => 0.0053412434698961
419 => 0.0053736974153672
420 => 0.0053993476906137
421 => 0.0053769186950196
422 => 0.0056944659740662
423 => 0.005562598204487
424 => 0.0056268696378499
425 => 0.0056421979959976
426 => 0.0056029347289228
427 => 0.0056114495256391
428 => 0.0056243471225212
429 => 0.0057026588051806
430 => 0.0059081713201469
501 => 0.0059991914140545
502 => 0.0062730298574277
503 => 0.0059916334623163
504 => 0.0059749365647645
505 => 0.0060242631375447
506 => 0.0061850352925479
507 => 0.0063153260236173
508 => 0.0063585509757657
509 => 0.0063642638667583
510 => 0.006445356750529
511 => 0.0064918376792136
512 => 0.0064355099414847
513 => 0.0063877780815193
514 => 0.00621680848382
515 => 0.0062365986802884
516 => 0.0063729335089625
517 => 0.0065655144845461
518 => 0.0067307689962322
519 => 0.0066729026259409
520 => 0.0071143821839725
521 => 0.007158153078869
522 => 0.0071521053564768
523 => 0.0072518219690337
524 => 0.0070539048000433
525 => 0.0069692913758354
526 => 0.0063980982514234
527 => 0.0065585802207184
528 => 0.0067918501878643
529 => 0.006760976032995
530 => 0.0065915691475296
531 => 0.0067306404859185
601 => 0.0066846591522843
602 => 0.0066483917666797
603 => 0.0068145396909129
604 => 0.006631853223238
605 => 0.0067900277506013
606 => 0.0065871672831518
607 => 0.0066731669546461
608 => 0.0066243493817699
609 => 0.0066559403342775
610 => 0.0064712602714272
611 => 0.0065709091504861
612 => 0.0064671145504432
613 => 0.0064670653382883
614 => 0.0064647740667396
615 => 0.0065868879533943
616 => 0.0065908700828541
617 => 0.0065006277361124
618 => 0.0064876224040965
619 => 0.0065357099329297
620 => 0.0064794120308098
621 => 0.0065057534648769
622 => 0.0064802098860132
623 => 0.006474459488381
624 => 0.0064286393416973
625 => 0.0064088987626548
626 => 0.0064166395523494
627 => 0.0063902162464711
628 => 0.0063742952489067
629 => 0.0064616069795983
630 => 0.0064149598440349
701 => 0.0064544576370591
702 => 0.0064094449168892
703 => 0.0062534112176716
704 => 0.0061636745872251
705 => 0.0058689413937345
706 => 0.0059525273617931
707 => 0.0060079449450918
708 => 0.0059896294341422
709 => 0.0060289782388238
710 => 0.0060313939358535
711 => 0.0060186012383379
712 => 0.0060037889334609
713 => 0.0059965791226186
714 => 0.0060503151457499
715 => 0.0060815107158489
716 => 0.0060135068409674
717 => 0.005997574484558
718 => 0.00606633015666
719 => 0.0061082710769234
720 => 0.0064179392675807
721 => 0.0063949980478017
722 => 0.0064525760074599
723 => 0.0064460936128082
724 => 0.0065064444874183
725 => 0.0066050926612232
726 => 0.0064045133414146
727 => 0.0064393269758224
728 => 0.0064307914766298
729 => 0.006523979818686
730 => 0.0065242707425181
731 => 0.0064683996763524
801 => 0.0064986882877253
802 => 0.0064817820157816
803 => 0.0065123339342037
804 => 0.006394691653825
805 => 0.0065379672526268
806 => 0.0066191952846718
807 => 0.0066203231359755
808 => 0.0066588245784993
809 => 0.0066979442739567
810 => 0.0067730311227797
811 => 0.0066958501424965
812 => 0.006557009072384
813 => 0.0065670329491922
814 => 0.0064856304805852
815 => 0.0064869988707891
816 => 0.0064796942966383
817 => 0.0065016158735274
818 => 0.0063995022071949
819 => 0.0064234680805813
820 => 0.0063899157174964
821 => 0.0064392540395377
822 => 0.0063861741609381
823 => 0.0064307873605537
824 => 0.0064500409385568
825 => 0.0065210870558881
826 => 0.0063756805916424
827 => 0.0060791869678932
828 => 0.006141513522243
829 => 0.0060493276527145
830 => 0.0060578598059157
831 => 0.0060750961132643
901 => 0.0060192276017787
902 => 0.006029885553151
903 => 0.0060295047761292
904 => 0.0060262234454671
905 => 0.0060116898878854
906 => 0.0059906133540152
907 => 0.006074575777939
908 => 0.0060888426298789
909 => 0.0061205560744521
910 => 0.0062149137740673
911 => 0.0062054852147679
912 => 0.0062208635861723
913 => 0.0061872926877424
914 => 0.0060594170636102
915 => 0.0060663613252288
916 => 0.005979766271571
917 => 0.0061183416442379
918 => 0.0060855251668848
919 => 0.0060643681704515
920 => 0.0060585952879565
921 => 0.0061531868820581
922 => 0.0061814901695549
923 => 0.0061638534601499
924 => 0.0061276800546151
925 => 0.0061971436869491
926 => 0.0062157292245263
927 => 0.0062198898409816
928 => 0.0063429660791471
929 => 0.0062267684354886
930 => 0.0062547383632225
1001 => 0.0064729517550339
1002 => 0.0062750623200506
1003 => 0.0063798887672223
1004 => 0.0063747580581237
1005 => 0.0064283837213632
1006 => 0.0063703591885223
1007 => 0.0063710784721486
1008 => 0.0064186944281882
1009 => 0.0063518264055135
1010 => 0.0063352689427322
1011 => 0.0063123949264865
1012 => 0.0063623395041298
1013 => 0.0063922790196279
1014 => 0.0066335695263921
1015 => 0.0067894541979456
1016 => 0.0067826868332369
1017 => 0.0068445278786986
1018 => 0.0068166679213191
1019 => 0.006726700769855
1020 => 0.0068802637270788
1021 => 0.0068316699820662
1022 => 0.0068356759913636
1023 => 0.0068355268874975
1024 => 0.006867837479792
1025 => 0.0068449424639291
1026 => 0.006799814037538
1027 => 0.0068297723930319
1028 => 0.0069187379985405
1029 => 0.0071948899678374
1030 => 0.0073494282683829
1031 => 0.0071855865681005
1101 => 0.0072986023790275
1102 => 0.0072308331641222
1103 => 0.0072185174818144
1104 => 0.0072894997628794
1105 => 0.0073606062890309
1106 => 0.007356077110717
1107 => 0.0073044574240916
1108 => 0.0072752987729179
1109 => 0.0074960978484696
1110 => 0.007658778846122
1111 => 0.0076476850927093
1112 => 0.0076966493123909
1113 => 0.0078404097757822
1114 => 0.0078535534308899
1115 => 0.0078518976324498
1116 => 0.0078193197118667
1117 => 0.0079608705577307
1118 => 0.0080789547637005
1119 => 0.0078117788645184
1120 => 0.0079135159493376
1121 => 0.0079591890044771
1122 => 0.0080262506000067
1123 => 0.0081393947524936
1124 => 0.0082622993120987
1125 => 0.0082796793644068
1126 => 0.0082673473855821
1127 => 0.0081862885246707
1128 => 0.0083207721603469
1129 => 0.0083995495200966
1130 => 0.0084464596350398
1201 => 0.0085654158814369
1202 => 0.0079594710657167
1203 => 0.0075305532077385
1204 => 0.0074635714905663
1205 => 0.007599781446362
1206 => 0.0076356989254513
1207 => 0.0076212206346671
1208 => 0.0071384345900071
1209 => 0.007461029721956
1210 => 0.007808114959364
1211 => 0.007821447916882
1212 => 0.0079952060439385
1213 => 0.0080517888126943
1214 => 0.0081916868799732
1215 => 0.0081829362177747
1216 => 0.0082169991708927
1217 => 0.008209168687859
1218 => 0.0084683003984794
1219 => 0.0087541611567251
1220 => 0.0087442627076486
1221 => 0.0087031668414998
1222 => 0.0087642012106172
1223 => 0.0090592401478273
1224 => 0.0090320776903916
1225 => 0.0090584637040978
1226 => 0.0094063312387344
1227 => 0.0098586085173417
1228 => 0.0096484803135323
1229 => 0.010104398053037
1230 => 0.010391374102894
1231 => 0.010887669507245
]
'min_raw' => 0.0044451942794104
'max_raw' => 0.010887669507245
'avg_raw' => 0.0076664318933277
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004445'
'max' => '$0.010887'
'avg' => '$0.007666'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019820820441282
'max_diff' => 0.0044170577867812
'year' => 2028
]
3 => [
'items' => [
101 => 0.010825530878314
102 => 0.011018735037244
103 => 0.010714289763804
104 => 0.010015221877445
105 => 0.0099045917085044
106 => 0.010126076108326
107 => 0.010670573893155
108 => 0.010108927935378
109 => 0.010222548181147
110 => 0.010189825542722
111 => 0.010188081892383
112 => 0.0102546299339
113 => 0.010158098528767
114 => 0.0097648122185879
115 => 0.0099450530168922
116 => 0.0098754533887929
117 => 0.0099526793651651
118 => 0.01036943610923
119 => 0.010185178018439
120 => 0.0099910770877025
121 => 0.010234522729291
122 => 0.010544512688032
123 => 0.010525114073519
124 => 0.010487472653373
125 => 0.010699655367896
126 => 0.011050119048585
127 => 0.011144847973198
128 => 0.0112147749287
129 => 0.011224416674438
130 => 0.011323732647852
131 => 0.010789685627957
201 => 0.011637231963831
202 => 0.011783579803042
203 => 0.011756072474766
204 => 0.01191873193879
205 => 0.011870873398202
206 => 0.011801533881665
207 => 0.012059383730803
208 => 0.011763779686176
209 => 0.011344206960342
210 => 0.011114021064742
211 => 0.011417148420635
212 => 0.011602257719192
213 => 0.011724603190375
214 => 0.011761624856032
215 => 0.010831142177874
216 => 0.010329663621282
217 => 0.010651105626594
218 => 0.011043287057817
219 => 0.010787507040304
220 => 0.010797533132735
221 => 0.010432858045568
222 => 0.011075552711181
223 => 0.010981917504314
224 => 0.011467697123177
225 => 0.01135176191851
226 => 0.011747896339836
227 => 0.011643580870791
228 => 0.012076588550599
301 => 0.012249327037289
302 => 0.012539381841041
303 => 0.012752747335416
304 => 0.012878039634745
305 => 0.012870517555053
306 => 0.013366988065369
307 => 0.013074236750794
308 => 0.012706472103501
309 => 0.012699820401314
310 => 0.012890290923413
311 => 0.013289464884695
312 => 0.013392964885111
313 => 0.013450807265613
314 => 0.013362219646366
315 => 0.013044459076071
316 => 0.0129072516729
317 => 0.013024156355682
318 => 0.012881191974373
319 => 0.013127988605234
320 => 0.013466893092321
321 => 0.013396910655911
322 => 0.013630851448476
323 => 0.013872955557492
324 => 0.014219175306961
325 => 0.014309689969952
326 => 0.014459307265913
327 => 0.014613312610177
328 => 0.014662774976195
329 => 0.014757213980193
330 => 0.014756716240025
331 => 0.015041314535051
401 => 0.01535523526774
402 => 0.015473733077049
403 => 0.015746212255546
404 => 0.015279601211179
405 => 0.015633531048373
406 => 0.015952784620961
407 => 0.015572157350442
408 => 0.016096763368072
409 => 0.016117132630954
410 => 0.016424684316967
411 => 0.016112921763419
412 => 0.015927798154304
413 => 0.016462243077328
414 => 0.016720844140722
415 => 0.016642951395863
416 => 0.016050183761442
417 => 0.01570516757321
418 => 0.014802193659953
419 => 0.015871805265776
420 => 0.016392781877974
421 => 0.016048834557876
422 => 0.016222301579912
423 => 0.017168681405275
424 => 0.017529001569217
425 => 0.017454057493945
426 => 0.017466721808981
427 => 0.017661144029171
428 => 0.018523319223764
429 => 0.018006683862099
430 => 0.018401632238134
501 => 0.018611111432691
502 => 0.018805687382997
503 => 0.018327870345405
504 => 0.017706237400024
505 => 0.017509340151846
506 => 0.016014635775353
507 => 0.015936829921384
508 => 0.015893155137793
509 => 0.015617791805171
510 => 0.015401431654095
511 => 0.015229374029022
512 => 0.014777843440074
513 => 0.014930221759024
514 => 0.014210576241999
515 => 0.014670979941121
516 => 0.0135224083195
517 => 0.014478972895976
518 => 0.013958358286654
519 => 0.014307936994929
520 => 0.014306717347748
521 => 0.013663032111784
522 => 0.013291767901049
523 => 0.013528351905949
524 => 0.013781988739263
525 => 0.013823140462132
526 => 0.014151987237122
527 => 0.014243761303485
528 => 0.013965681597886
529 => 0.013498606725586
530 => 0.013607097565578
531 => 0.013289569337639
601 => 0.012733113331724
602 => 0.013132769749962
603 => 0.013269230022801
604 => 0.013329498653257
605 => 0.012782288080843
606 => 0.012610342638471
607 => 0.012518800327714
608 => 0.013427968712264
609 => 0.013477775008701
610 => 0.013222958954227
611 => 0.014374751683097
612 => 0.014114065515325
613 => 0.014405315834388
614 => 0.013597253158996
615 => 0.013628122241396
616 => 0.013245572421087
617 => 0.013459774758472
618 => 0.013308383450472
619 => 0.0134424693264
620 => 0.013522839847575
621 => 0.013905326895223
622 => 0.014483340283662
623 => 0.013848196085123
624 => 0.013571454662387
625 => 0.0137431434846
626 => 0.01420037344304
627 => 0.014893100235248
628 => 0.014482992031835
629 => 0.014664991088421
630 => 0.014704749785711
701 => 0.014402351179545
702 => 0.014904250103195
703 => 0.015173221813798
704 => 0.015449131133024
705 => 0.015688695464105
706 => 0.015338926883549
707 => 0.0157132294021
708 => 0.015411607645437
709 => 0.015141021748627
710 => 0.015141432115739
711 => 0.014971689630041
712 => 0.01464279217507
713 => 0.014582138438181
714 => 0.0148976668372
715 => 0.015150690732562
716 => 0.015171530992486
717 => 0.015311618021796
718 => 0.01539452008273
719 => 0.016207072979772
720 => 0.016533888476753
721 => 0.01693351228016
722 => 0.017089188273151
723 => 0.01755771719912
724 => 0.017179342039341
725 => 0.017097478193431
726 => 0.015960980273674
727 => 0.016147081744366
728 => 0.016445048155066
729 => 0.015965893630039
730 => 0.01626980689
731 => 0.016329805805279
801 => 0.015949612142629
802 => 0.016152690005049
803 => 0.015613375410851
804 => 0.014495095868039
805 => 0.014905495068003
806 => 0.015207687018053
807 => 0.014776421845333
808 => 0.015549447975167
809 => 0.015097862068616
810 => 0.014954731016186
811 => 0.014396325750751
812 => 0.014659871541046
813 => 0.015016320996034
814 => 0.014796076674548
815 => 0.015253116711481
816 => 0.015900407291904
817 => 0.016361705106334
818 => 0.016397117824568
819 => 0.016100534234443
820 => 0.016575811330389
821 => 0.016579273205162
822 => 0.01604315869937
823 => 0.015714791549671
824 => 0.015640185842369
825 => 0.01582656552652
826 => 0.016052864870667
827 => 0.016409675863205
828 => 0.016625289273109
829 => 0.017187494693625
830 => 0.017339611360723
831 => 0.017506741458973
901 => 0.017730078811249
902 => 0.017998252565177
903 => 0.017411503658722
904 => 0.017434816286612
905 => 0.016888443829013
906 => 0.016304566500333
907 => 0.016747656611465
908 => 0.017326937989963
909 => 0.017194050201686
910 => 0.017179097610854
911 => 0.017204243721131
912 => 0.01710405066848
913 => 0.016650881204667
914 => 0.016423302336931
915 => 0.016716937137872
916 => 0.01687299096639
917 => 0.017115016845098
918 => 0.017085182047001
919 => 0.017708614718871
920 => 0.017950861803535
921 => 0.017888884632941
922 => 0.017900289923894
923 => 0.018338866699448
924 => 0.018826654274057
925 => 0.019283531706918
926 => 0.019748287054967
927 => 0.019188006343184
928 => 0.018903530351051
929 => 0.019197036960224
930 => 0.019041298221992
1001 => 0.01993621920698
1002 => 0.019998181594298
1003 => 0.020893037866313
1004 => 0.021742363025957
1005 => 0.021208917110425
1006 => 0.02171193258184
1007 => 0.022255984825629
1008 => 0.023305549873192
1009 => 0.022952093289316
1010 => 0.022681351085438
1011 => 0.02242550101099
1012 => 0.022957884400861
1013 => 0.023642787126897
1014 => 0.023790308614168
1015 => 0.024029349781094
1016 => 0.023778027222635
1017 => 0.024080717562027
1018 => 0.025149347468954
1019 => 0.024860594235045
1020 => 0.024450518223496
1021 => 0.025294098902707
1022 => 0.025599387471177
1023 => 0.027742062525564
1024 => 0.030447278291218
1025 => 0.029327301200833
1026 => 0.028632095279396
1027 => 0.028795485161438
1028 => 0.029783338381722
1029 => 0.030100605483184
1030 => 0.029238164132884
1031 => 0.029542792997928
1101 => 0.031221327994773
1102 => 0.032121808166729
1103 => 0.03089883514259
1104 => 0.027524701072803
1105 => 0.024413595365394
1106 => 0.025238800693915
1107 => 0.025145248018764
1108 => 0.026948624471367
1109 => 0.024853707565913
1110 => 0.024888980593887
1111 => 0.026729648961722
1112 => 0.026238590198228
1113 => 0.025443137891423
1114 => 0.024419403047534
1115 => 0.022526934504594
1116 => 0.020850722340722
1117 => 0.024138160402682
1118 => 0.023996400095632
1119 => 0.023791110163323
1120 => 0.024247960692985
1121 => 0.02646629718574
1122 => 0.026415157349527
1123 => 0.026089831803317
1124 => 0.02633658836283
1125 => 0.02539988027349
1126 => 0.02564129127656
1127 => 0.024413102550355
1128 => 0.024968295148292
1129 => 0.025441431208029
1130 => 0.02553642027692
1201 => 0.025750435499394
1202 => 0.023921698855455
1203 => 0.024742747919696
1204 => 0.025225037323045
1205 => 0.023046036252878
1206 => 0.02518196547791
1207 => 0.023889864619055
1208 => 0.023451306180857
1209 => 0.024041767342211
1210 => 0.023811664053389
1211 => 0.023613834757778
1212 => 0.023503442611688
1213 => 0.023937012121767
1214 => 0.023916785585894
1215 => 0.02320738171519
1216 => 0.022281993284859
1217 => 0.022592584016918
1218 => 0.022479743492157
1219 => 0.022070794873707
1220 => 0.022346376865898
1221 => 0.021132853241144
1222 => 0.019045048918223
1223 => 0.02042431640512
1224 => 0.020371216107229
1225 => 0.020344440529126
1226 => 0.021380921925376
1227 => 0.02128128815482
1228 => 0.021100451885646
1229 => 0.02206747367381
1230 => 0.021714497712852
1231 => 0.022802286452929
]
'min_raw' => 0.0097648122185879
'max_raw' => 0.032121808166729
'avg_raw' => 0.020943310192659
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009764'
'max' => '$0.032121'
'avg' => '$0.020943'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0053196179391776
'max_diff' => 0.021234138659484
'year' => 2029
]
4 => [
'items' => [
101 => 0.023518774470909
102 => 0.02333704993359
103 => 0.024010910377587
104 => 0.022599739400079
105 => 0.023068473792455
106 => 0.023165079301086
107 => 0.022055540775051
108 => 0.021297589471875
109 => 0.02124704276123
110 => 0.019932859653646
111 => 0.020634885662002
112 => 0.021252639497546
113 => 0.020956783349955
114 => 0.020863124132078
115 => 0.021341608764002
116 => 0.021378791117847
117 => 0.020531029509789
118 => 0.020707305993223
119 => 0.021442408232669
120 => 0.020688783302867
121 => 0.019224613168194
122 => 0.01886147873106
123 => 0.018813029903251
124 => 0.017828180509186
125 => 0.018885745110544
126 => 0.018424089821082
127 => 0.019882453349013
128 => 0.019049443923219
129 => 0.019013534551788
130 => 0.018959252270111
131 => 0.018111551713023
201 => 0.018297144260845
202 => 0.018914082156346
203 => 0.019134212547763
204 => 0.019111251144463
205 => 0.018911058824088
206 => 0.019002705843205
207 => 0.018707478862691
208 => 0.018603228071253
209 => 0.018274183897036
210 => 0.017790579861711
211 => 0.017857827968939
212 => 0.016899681833079
213 => 0.016377632965598
214 => 0.016233136719573
215 => 0.016039910300474
216 => 0.016254962157766
217 => 0.016896967525461
218 => 0.016122572842984
219 => 0.014794927477349
220 => 0.014874721226022
221 => 0.015053994088312
222 => 0.014719920295443
223 => 0.014403747487181
224 => 0.014678634092054
225 => 0.014116093248595
226 => 0.015121974461673
227 => 0.015094768193809
228 => 0.015469698506767
301 => 0.015704150125805
302 => 0.015163815048536
303 => 0.015027922237825
304 => 0.01510533295879
305 => 0.013825906175746
306 => 0.015365142042844
307 => 0.015378453418541
308 => 0.015264473338254
309 => 0.016084068918907
310 => 0.017813671232358
311 => 0.017162925268946
312 => 0.016910936763012
313 => 0.016431906429029
314 => 0.017070185907055
315 => 0.017021176001853
316 => 0.016799534624078
317 => 0.016665485227236
318 => 0.016912475351096
319 => 0.016634880417571
320 => 0.016585016739712
321 => 0.016282897104098
322 => 0.016175054139752
323 => 0.016095211502302
324 => 0.016007312603645
325 => 0.016201195671042
326 => 0.01576183113288
327 => 0.015232000571295
328 => 0.015187950892945
329 => 0.015309575927756
330 => 0.015255765903771
331 => 0.015187693271252
401 => 0.015057724077296
402 => 0.015019164993801
403 => 0.01514446330895
404 => 0.015003008816493
405 => 0.015211732625539
406 => 0.015154971298693
407 => 0.014837907141041
408 => 0.014442727808421
409 => 0.014439209883443
410 => 0.014354069144454
411 => 0.014245629612356
412 => 0.014215464215287
413 => 0.014655483908913
414 => 0.015566311506037
415 => 0.015387494254465
416 => 0.015516708044655
417 => 0.016152312004803
418 => 0.016354351390456
419 => 0.016210948620085
420 => 0.016014650063302
421 => 0.016023286203569
422 => 0.016694097795708
423 => 0.016735935491875
424 => 0.016841645852738
425 => 0.016977513540191
426 => 0.016234087474766
427 => 0.015988270902743
428 => 0.015871789373533
429 => 0.015513071347594
430 => 0.01589991798441
501 => 0.015674519015562
502 => 0.015704933037185
503 => 0.015685125865704
504 => 0.015695941920688
505 => 0.015121693297374
506 => 0.01533091931409
507 => 0.014983040481246
508 => 0.014517269775299
509 => 0.014515708348572
510 => 0.014629705068996
511 => 0.014561895358996
512 => 0.014379421172933
513 => 0.014405340769809
514 => 0.01417825782729
515 => 0.0144329127505
516 => 0.014440215342499
517 => 0.014342159325916
518 => 0.014734490370728
519 => 0.0148952287199
520 => 0.014830686149221
521 => 0.014890700241083
522 => 0.015394924918579
523 => 0.015477135541876
524 => 0.015513648070215
525 => 0.015464726119223
526 => 0.01489991654257
527 => 0.01492496824905
528 => 0.014741155448966
529 => 0.01458585300261
530 => 0.01459206428601
531 => 0.014671909931342
601 => 0.01502060054739
602 => 0.01575439939243
603 => 0.015782246522199
604 => 0.015815998055838
605 => 0.015678713606368
606 => 0.015637307302773
607 => 0.015691932905089
608 => 0.015967509169976
609 => 0.01667636614149
610 => 0.016425808744791
611 => 0.016222101681117
612 => 0.01640080769499
613 => 0.016373297304898
614 => 0.016141081927047
615 => 0.016134564414808
616 => 0.015688868860965
617 => 0.015524105362706
618 => 0.015386416651226
619 => 0.015236064172745
620 => 0.015146930183641
621 => 0.015283880501579
622 => 0.01531520265964
623 => 0.015015758395988
624 => 0.014974945249336
625 => 0.015219477898988
626 => 0.015111868196972
627 => 0.015222547444088
628 => 0.015248225978807
629 => 0.015244091143291
630 => 0.015131734255491
701 => 0.015203347185244
702 => 0.015033961257536
703 => 0.014849779502098
704 => 0.014732283017057
705 => 0.014629751750211
706 => 0.014686642056209
707 => 0.014483838503086
708 => 0.014418957564813
709 => 0.015179086335985
710 => 0.015740601632012
711 => 0.015732436977223
712 => 0.015682736740976
713 => 0.015608892271237
714 => 0.015962106987065
715 => 0.015839054042822
716 => 0.015928585341177
717 => 0.015951374814225
718 => 0.016020351685391
719 => 0.01604500498807
720 => 0.015970485584553
721 => 0.015720389364571
722 => 0.015097173362811
723 => 0.014807064631653
724 => 0.014711323918227
725 => 0.014714803911323
726 => 0.014618810166375
727 => 0.0146470846264
728 => 0.014608977463051
729 => 0.014536811714782
730 => 0.014682186024612
731 => 0.014698939059564
801 => 0.014665006958556
802 => 0.014672999196703
803 => 0.014392055892948
804 => 0.014413415402156
805 => 0.014294482940652
806 => 0.014272184537872
807 => 0.013971533631825
808 => 0.013438886971716
809 => 0.013734024926679
810 => 0.01337753977976
811 => 0.013242533452991
812 => 0.013881632406126
813 => 0.013817484597077
814 => 0.013707691432367
815 => 0.013545284458861
816 => 0.013485046132594
817 => 0.013119057131333
818 => 0.013097432548663
819 => 0.013278826580222
820 => 0.013195119476045
821 => 0.013077562999421
822 => 0.012651785357597
823 => 0.012173070318055
824 => 0.012187519716004
825 => 0.012339790063272
826 => 0.012782536634409
827 => 0.012609547889472
828 => 0.012484042570204
829 => 0.012460539196581
830 => 0.012754733125118
831 => 0.013171079169531
901 => 0.013366419418353
902 => 0.013172843164342
903 => 0.012950473186621
904 => 0.012964007816802
905 => 0.013054047647772
906 => 0.013063509560913
907 => 0.012918769565419
908 => 0.012959513026331
909 => 0.012897619983546
910 => 0.012517782494216
911 => 0.012510912438512
912 => 0.012417694192924
913 => 0.012414871581495
914 => 0.012256284091368
915 => 0.012234096605236
916 => 0.011919211518016
917 => 0.012126469835984
918 => 0.011987451837841
919 => 0.01177791892361
920 => 0.011741795370218
921 => 0.011740709452583
922 => 0.011955852904797
923 => 0.012123955759482
924 => 0.011989870115438
925 => 0.01195934141343
926 => 0.012285308081277
927 => 0.012243825851541
928 => 0.012207902508122
929 => 0.013133799947778
930 => 0.012400879875612
1001 => 0.012081284890532
1002 => 0.011685725407055
1003 => 0.011814521569459
1004 => 0.011841660813287
1005 => 0.01089041156048
1006 => 0.010504489857087
1007 => 0.010372056071635
1008 => 0.010295838555768
1009 => 0.010330571834828
1010 => 0.009983197037673
1011 => 0.01021663864641
1012 => 0.0099158414349345
1013 => 0.0098654118035518
1014 => 0.010403274479294
1015 => 0.010478114928476
1016 => 0.010158822321163
1017 => 0.010363859863835
1018 => 0.010289510400627
1019 => 0.0099209977397849
1020 => 0.0099069232667363
1021 => 0.0097220165673721
1022 => 0.0094326733878593
1023 => 0.0093004357907079
1024 => 0.009231565301972
1025 => 0.0092599826078835
1026 => 0.0092456139484308
1027 => 0.0091518487261658
1028 => 0.0092509884612134
1029 => 0.0089977274055336
1030 => 0.0088968768124989
1031 => 0.0088513249393411
1101 => 0.0086265411752628
1102 => 0.008984272105705
1103 => 0.0090547496055776
1104 => 0.0091253659678966
1105 => 0.0097400331900451
1106 => 0.0097093261526581
1107 => 0.0099869028157028
1108 => 0.0099761166970076
1109 => 0.0098969473362635
1110 => 0.0095629448260115
1111 => 0.0096960722735756
1112 => 0.009286326682572
1113 => 0.0095933359393438
1114 => 0.0094532297355663
1115 => 0.0095459658909125
1116 => 0.009379217921918
1117 => 0.0094715031328144
1118 => 0.0090714624353403
1119 => 0.0086979100607634
1120 => 0.0088482384409667
1121 => 0.0090116625823833
1122 => 0.0093660077606713
1123 => 0.0091549626957672
1124 => 0.0092308624816042
1125 => 0.0089766109045211
1126 => 0.0084520172776263
1127 => 0.0084549864205838
1128 => 0.0083742891199794
1129 => 0.0083045548702584
1130 => 0.0091792037602181
1201 => 0.0090704273445988
1202 => 0.0088971063626148
1203 => 0.0091291033845024
1204 => 0.0091904470793773
1205 => 0.0091921934481314
1206 => 0.0093614524865907
1207 => 0.0094517860657579
1208 => 0.0094677077506142
1209 => 0.0097340405047136
1210 => 0.0098233117308738
1211 => 0.010191007277291
1212 => 0.0094441218926911
1213 => 0.0094287402796969
1214 => 0.0091323680583669
1215 => 0.0089444041101399
1216 => 0.0091452381107122
1217 => 0.0093231496186441
1218 => 0.0091378962648447
1219 => 0.0091620864419392
1220 => 0.0089133989502186
1221 => 0.0090022930266746
1222 => 0.0090788605806438
1223 => 0.0090365844777748
1224 => 0.0089732951055934
1225 => 0.0093085629038698
1226 => 0.0092896457807659
1227 => 0.0096018548622943
1228 => 0.0098452441676312
1229 => 0.010281441313837
1230 => 0.0098262468522997
1231 => 0.0098096577568872
]
'min_raw' => 0.0083045548702584
'max_raw' => 0.024010910377587
'avg_raw' => 0.016157732623923
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0083045'
'max' => '$0.02401'
'avg' => '$0.016157'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014602573483295
'max_diff' => -0.008110897789142
'year' => 2030
]
5 => [
'items' => [
101 => 0.0099718188255195
102 => 0.0098232869048591
103 => 0.0099171539515688
104 => 0.010266317881434
105 => 0.010273695165066
106 => 0.010150116159125
107 => 0.010142596365383
108 => 0.01016633106528
109 => 0.010305345943918
110 => 0.010256769873826
111 => 0.010312983331932
112 => 0.010383279122064
113 => 0.010674052314849
114 => 0.010744156747222
115 => 0.010573839321538
116 => 0.010589217078113
117 => 0.01052551368559
118 => 0.010463977006613
119 => 0.010602302474242
120 => 0.01085509498513
121 => 0.010853522376039
122 => 0.010912165324981
123 => 0.010948699396347
124 => 0.010791868417469
125 => 0.010689777217054
126 => 0.010728925479525
127 => 0.010791524403754
128 => 0.010708625492084
129 => 0.010196935006748
130 => 0.010352149213084
131 => 0.010326313979563
201 => 0.010289521465357
202 => 0.010445590550064
203 => 0.010430537306111
204 => 0.0099796342070409
205 => 0.010008499560492
206 => 0.0099813896047893
207 => 0.010068987417839
208 => 0.0098185563354829
209 => 0.0098955872497366
210 => 0.0099439003170366
211 => 0.0099723570848348
212 => 0.01007516244311
213 => 0.010063099420892
214 => 0.010074412588712
215 => 0.010226845795426
216 => 0.010997800646225
217 => 0.011039762017738
218 => 0.010833128877758
219 => 0.010915674741522
220 => 0.010757204733891
221 => 0.01086358671167
222 => 0.010936370559057
223 => 0.010607474348243
224 => 0.010587999249158
225 => 0.010428875179435
226 => 0.010514379441256
227 => 0.010378336012724
228 => 0.010411716311489
301 => 0.010318382086101
302 => 0.01048636510914
303 => 0.01067419623082
304 => 0.010721649789833
305 => 0.010596819906113
306 => 0.01050643484361
307 => 0.010347748448545
308 => 0.010611647460095
309 => 0.010688819573249
310 => 0.010611242107838
311 => 0.010593265714001
312 => 0.010559200480163
313 => 0.010600492814396
314 => 0.010688399277347
315 => 0.010646944212797
316 => 0.010674326013277
317 => 0.010569974825839
318 => 0.010791920335048
319 => 0.011144423217769
320 => 0.011145556572177
321 => 0.011104101284169
322 => 0.011087138673482
323 => 0.011129674314696
324 => 0.011152748155151
325 => 0.011290300619134
326 => 0.011437899893319
327 => 0.012126681303333
328 => 0.011933274239604
329 => 0.012544402082358
330 => 0.013027724860957
331 => 0.013172652229115
401 => 0.013039325869769
402 => 0.012583223596595
403 => 0.012560845043122
404 => 0.013242454400658
405 => 0.013049868537468
406 => 0.013026961061844
407 => 0.012783264224003
408 => 0.012927319237608
409 => 0.012895812292973
410 => 0.012846077039494
411 => 0.013120923970493
412 => 0.013635412889567
413 => 0.013555224966683
414 => 0.013495368402061
415 => 0.013233094359869
416 => 0.013391041914296
417 => 0.013334799815451
418 => 0.013576451564209
419 => 0.013433302421486
420 => 0.01304840951014
421 => 0.013109704974896
422 => 0.013100440288707
423 => 0.013291106873963
424 => 0.013233873497705
425 => 0.01308926455343
426 => 0.013633654422374
427 => 0.01359830477234
428 => 0.013648422494033
429 => 0.013670485865064
430 => 0.014001846385065
501 => 0.014137594187755
502 => 0.014168411315566
503 => 0.01429736122901
504 => 0.014165202924248
505 => 0.014693930370567
506 => 0.015045503270267
507 => 0.015453873285045
508 => 0.016050611636147
509 => 0.0162749907763
510 => 0.016234458692971
511 => 0.016686898900296
512 => 0.017499923895679
513 => 0.016398794289812
514 => 0.017558286438541
515 => 0.017191204611234
516 => 0.016320860202209
517 => 0.016264820282955
518 => 0.016854227621653
519 => 0.018161476370531
520 => 0.01783402538563
521 => 0.018162011963036
522 => 0.017779398198459
523 => 0.017760398200125
524 => 0.018143429266501
525 => 0.019038402231023
526 => 0.018613234123138
527 => 0.018003651384988
528 => 0.01845375779268
529 => 0.018063833966956
530 => 0.017185226454792
531 => 0.017833774990033
601 => 0.017400109054116
602 => 0.017526675829166
603 => 0.018438177123522
604 => 0.018328502876252
605 => 0.018470431507782
606 => 0.018219931188051
607 => 0.017985924389148
608 => 0.017549133321422
609 => 0.017419821019808
610 => 0.017455558287805
611 => 0.017419803310193
612 => 0.017175422722117
613 => 0.01712264875739
614 => 0.017034689837431
615 => 0.0170619519847
616 => 0.016896563481887
617 => 0.017208685757703
618 => 0.017266618402507
619 => 0.017493754966008
620 => 0.017517337037527
621 => 0.018149909133791
622 => 0.017801499053111
623 => 0.018035242615511
624 => 0.01801433439121
625 => 0.016339723204668
626 => 0.016570469850954
627 => 0.016929439220288
628 => 0.016767724005975
629 => 0.016539096528468
630 => 0.016354467582151
701 => 0.016074735849202
702 => 0.016468452891555
703 => 0.016986148935111
704 => 0.01753046666352
705 => 0.018184428749094
706 => 0.018038472024552
707 => 0.017518241297217
708 => 0.017541578467617
709 => 0.017685839672188
710 => 0.017499008304755
711 => 0.017443908087118
712 => 0.017678269748406
713 => 0.017679883668364
714 => 0.017464911600808
715 => 0.017226009487193
716 => 0.017225008478614
717 => 0.017182498155016
718 => 0.017786960690589
719 => 0.018119353967099
720 => 0.018157462320572
721 => 0.018116788971279
722 => 0.018132442529154
723 => 0.017939030205339
724 => 0.018381113422937
725 => 0.018786812700904
726 => 0.018678076627908
727 => 0.018515065796743
728 => 0.018385219818055
729 => 0.018647489041894
730 => 0.018635810606206
731 => 0.018783269271635
801 => 0.018776579694809
802 => 0.018726994891826
803 => 0.018678078398737
804 => 0.018872026764564
805 => 0.018816172749921
806 => 0.018760231978567
807 => 0.018648034197511
808 => 0.018663283739365
809 => 0.018500301054318
810 => 0.018424897806636
811 => 0.017291013879178
812 => 0.016988003043035
813 => 0.01708333642044
814 => 0.017114722643611
815 => 0.016982851939403
816 => 0.017171920654433
817 => 0.017142454495469
818 => 0.017257090082872
819 => 0.017185470744761
820 => 0.017188410027379
821 => 0.01739902722991
822 => 0.017460170299835
823 => 0.017429072440986
824 => 0.017450852315351
825 => 0.017952760327391
826 => 0.017881405058194
827 => 0.017843498993596
828 => 0.017853999232544
829 => 0.017982247490649
830 => 0.018018150000824
831 => 0.017866028542391
901 => 0.017937769901591
902 => 0.018243235503733
903 => 0.018350131176627
904 => 0.01869129085167
905 => 0.018546360158082
906 => 0.018812386718616
907 => 0.019630061670561
908 => 0.020283277000978
909 => 0.019682553187862
910 => 0.020882099955701
911 => 0.021816119179228
912 => 0.021780269965738
913 => 0.021617402109863
914 => 0.020554046056063
915 => 0.019575529961611
916 => 0.020394100224608
917 => 0.020396186928549
918 => 0.020325871017004
919 => 0.019889144929423
920 => 0.020310673895815
921 => 0.020344133334398
922 => 0.020325404946374
923 => 0.019990568078984
924 => 0.019479334070677
925 => 0.019579227972179
926 => 0.01974285622062
927 => 0.019433073809893
928 => 0.019334079559288
929 => 0.01951812870559
930 => 0.020111173403137
1001 => 0.01999906173834
1002 => 0.019996134049693
1003 => 0.020475795294441
1004 => 0.020132461360577
1005 => 0.019580487954182
1006 => 0.019441107389432
1007 => 0.01894640028257
1008 => 0.019288096243366
1009 => 0.019300393272685
1010 => 0.019113249887005
1011 => 0.019595673608524
1012 => 0.019591227989001
1013 => 0.020049217513287
1014 => 0.020924721470713
1015 => 0.020665791869569
1016 => 0.020364684914899
1017 => 0.020397423589662
1018 => 0.020756486045876
1019 => 0.020539388688251
1020 => 0.020617458411709
1021 => 0.020756367877999
1022 => 0.02084017540794
1023 => 0.020385364975828
1024 => 0.020279326908005
1025 => 0.020062410235544
1026 => 0.02000582072464
1027 => 0.020182494828245
1028 => 0.020135947443933
1029 => 0.019299359754988
1030 => 0.019211931686763
1031 => 0.019214612980797
1101 => 0.018994770946267
1102 => 0.018659459075476
1103 => 0.019540638651484
1104 => 0.01946986759943
1105 => 0.019391741835207
1106 => 0.019401311795545
1107 => 0.019783801983543
1108 => 0.019561938358287
1109 => 0.020151799168764
1110 => 0.020030541518968
1111 => 0.019906174068003
1112 => 0.019888982697955
1113 => 0.019841111839865
1114 => 0.019676944855515
1115 => 0.019478703357006
1116 => 0.019347807148306
1117 => 0.017847329373096
1118 => 0.018125809320297
1119 => 0.018446175115306
1120 => 0.018556764103958
1121 => 0.018367593986344
1122 => 0.019684414444764
1123 => 0.019925010231715
1124 => 0.019196229899366
1125 => 0.019059904855088
1126 => 0.019693351891971
1127 => 0.01931130589298
1128 => 0.019483341182933
1129 => 0.019111494984327
1130 => 0.019867057752106
1201 => 0.019861301629729
1202 => 0.019567370647904
1203 => 0.01981579910099
1204 => 0.019772628543742
1205 => 0.019440781189182
1206 => 0.01987757790515
1207 => 0.019877794550872
1208 => 0.019594892371476
1209 => 0.019264524561192
1210 => 0.019205462599653
1211 => 0.019160967345491
1212 => 0.019472398078017
1213 => 0.019751625898982
1214 => 0.02027119964735
1215 => 0.020401832832457
1216 => 0.020911702850675
1217 => 0.020608100079947
1218 => 0.020742683255897
1219 => 0.020888792331343
1220 => 0.020958842395095
1221 => 0.020844699575304
1222 => 0.021636737584469
1223 => 0.02170360985986
1224 => 0.021726031555356
1225 => 0.021458960795017
1226 => 0.021696182138888
1227 => 0.021585194128036
1228 => 0.021873954098915
1229 => 0.021919235349421
1230 => 0.021880883741169
1231 => 0.021895256724796
]
'min_raw' => 0.0098185563354829
'max_raw' => 0.021919235349421
'avg_raw' => 0.015868895842452
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009818'
'max' => '$0.021919'
'avg' => '$0.015868'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015140014652244
'max_diff' => -0.0020916750281664
'year' => 2031
]
6 => [
'items' => [
101 => 0.021219392009053
102 => 0.021184344858072
103 => 0.020706474467604
104 => 0.020901210183959
105 => 0.020537161096159
106 => 0.020652604812022
107 => 0.020703491301986
108 => 0.020676911087412
109 => 0.020912220249183
110 => 0.020712159391192
111 => 0.020184165893902
112 => 0.019656028545137
113 => 0.019649398210935
114 => 0.019510348969404
115 => 0.019409841835915
116 => 0.019429203075507
117 => 0.019497434609156
118 => 0.019405876095142
119 => 0.019425414746241
120 => 0.019749886539842
121 => 0.019814957044021
122 => 0.019593822046132
123 => 0.018705933119977
124 => 0.018488042950398
125 => 0.018644658083341
126 => 0.018569806137101
127 => 0.014987282866586
128 => 0.015828943568674
129 => 0.01532885735959
130 => 0.015559320092596
131 => 0.015048861569817
201 => 0.015292479132311
202 => 0.015247491864007
203 => 0.016600857366415
204 => 0.016579726425588
205 => 0.016589840688738
206 => 0.016107060556052
207 => 0.016876142416329
208 => 0.017255019795991
209 => 0.017184899676511
210 => 0.017202547399905
211 => 0.016899301042282
212 => 0.016592776776343
213 => 0.016252794191671
214 => 0.016884439810875
215 => 0.016814211600569
216 => 0.016975289847697
217 => 0.017384957182712
218 => 0.017445282253968
219 => 0.017526359761492
220 => 0.017497299246535
221 => 0.01818963861216
222 => 0.01810579174678
223 => 0.018307838567955
224 => 0.017892212927469
225 => 0.017421893063711
226 => 0.017511285493897
227 => 0.017502676284022
228 => 0.017393071161117
229 => 0.017294124556934
301 => 0.017129406339003
302 => 0.017650599154246
303 => 0.017629439677757
304 => 0.017971987006913
305 => 0.017911438439158
306 => 0.017507080284938
307 => 0.017521522015522
308 => 0.017618649594156
309 => 0.017954809252792
310 => 0.018054604326971
311 => 0.018008375272465
312 => 0.018117796015483
313 => 0.018204277709322
314 => 0.018128656784734
315 => 0.019199289606482
316 => 0.018754688214632
317 => 0.018971383839504
318 => 0.019023064469191
319 => 0.018890685622974
320 => 0.018919393854587
321 => 0.018962879002957
322 => 0.01922691230859
323 => 0.019919812101224
324 => 0.020226692702654
325 => 0.021149958133276
326 => 0.020201210540689
327 => 0.020144915784853
328 => 0.020311223768853
329 => 0.0208532783142
330 => 0.021292562610608
331 => 0.021438298554646
401 => 0.021457559965489
402 => 0.021730970284847
403 => 0.021887683981102
404 => 0.021697771080671
405 => 0.021536839782266
406 => 0.020960403846907
407 => 0.021027127876007
408 => 0.021486790269476
409 => 0.02213609047423
410 => 0.022693257598082
411 => 0.022498157090544
412 => 0.023986636243565
413 => 0.024134212871695
414 => 0.024113822553412
415 => 0.024450024074639
416 => 0.023782732521252
417 => 0.023497452454014
418 => 0.021571634955629
419 => 0.0221127111196
420 => 0.022899197100222
421 => 0.022795102731515
422 => 0.022223935589558
423 => 0.022692824316587
424 => 0.022537795039925
425 => 0.022415517017251
426 => 0.022975696343881
427 => 0.022359756163353
428 => 0.022893052625751
429 => 0.02220909439648
430 => 0.022499048293228
501 => 0.022334456437942
502 => 0.022440967539931
503 => 0.021818305814081
504 => 0.022154278967091
505 => 0.021804328226338
506 => 0.021804162304122
507 => 0.021796437122124
508 => 0.0222081526167
509 => 0.022221578644197
510 => 0.021917320271638
511 => 0.021873471886743
512 => 0.022035602347568
513 => 0.021845790039977
514 => 0.021934602024035
515 => 0.0218484800645
516 => 0.021829092197403
517 => 0.021674606373798
518 => 0.021608049633313
519 => 0.021634148246213
520 => 0.021545060225628
521 => 0.021491381470771
522 => 0.021785759066709
523 => 0.021628484992358
524 => 0.021761654559186
525 => 0.021609891030446
526 => 0.021083812519609
527 => 0.020781259204847
528 => 0.019787545665379
529 => 0.020069361592474
530 => 0.020256205843698
531 => 0.020194453819783
601 => 0.020327121062013
602 => 0.020335265753207
603 => 0.020292134280376
604 => 0.020242193560321
605 => 0.020217885179693
606 => 0.02039905993341
607 => 0.020504237976004
608 => 0.020274958163962
609 => 0.020221241111966
610 => 0.020453055660826
611 => 0.020594462401715
612 => 0.021638530326859
613 => 0.021561182402669
614 => 0.021755310513622
615 => 0.021733454667467
616 => 0.021936931854778
617 => 0.022269531060157
618 => 0.021593263879422
619 => 0.021710640478438
620 => 0.021681862446981
621 => 0.021996053448425
622 => 0.021997034318437
623 => 0.021808661118066
624 => 0.021910781285993
625 => 0.021853780609776
626 => 0.021956788535803
627 => 0.021560149373985
628 => 0.022043213058528
629 => 0.022317079039728
630 => 0.022320881669143
701 => 0.022450691970696
702 => 0.022582586755181
703 => 0.022835747308384
704 => 0.022575526244755
705 => 0.022107413883297
706 => 0.0221412100838
707 => 0.021866755977553
708 => 0.021871369600663
709 => 0.021846741718925
710 => 0.021920651845922
711 => 0.021576368490534
712 => 0.0216571711059
713 => 0.021544046971208
714 => 0.021710394568662
715 => 0.021531432052044
716 => 0.021681848569342
717 => 0.021746763351822
718 => 0.021986300296686
719 => 0.021496052250526
720 => 0.020496403297532
721 => 0.020706541627024
722 => 0.020395730531696
723 => 0.02042449728191
724 => 0.020482610695536
725 => 0.020294246108448
726 => 0.020330180135614
727 => 0.0203288963193
728 => 0.020317833083877
729 => 0.02026883217979
730 => 0.02019777117433
731 => 0.020480856348659
801 => 0.020528958036054
802 => 0.020635882128594
803 => 0.020954015700691
804 => 0.020922226654732
805 => 0.020974075907606
806 => 0.020860889279704
807 => 0.020429747684951
808 => 0.020453160747831
809 => 0.020161199478551
810 => 0.02062841602252
811 => 0.020517772977951
812 => 0.020446440687342
813 => 0.02042697701096
814 => 0.020745899174648
815 => 0.020841325684516
816 => 0.020781862287401
817 => 0.020659901125094
818 => 0.020894102611304
819 => 0.020956765048847
820 => 0.020970792857711
821 => 0.021385752987594
822 => 0.020993984519339
823 => 0.021088287083492
824 => 0.021824008769157
825 => 0.021156810722911
826 => 0.021510240408299
827 => 0.021492941864359
828 => 0.021673744531995
829 => 0.021478110768378
830 => 0.021480535883343
831 => 0.021641076403571
901 => 0.021415626196547
902 => 0.021359801554774
903 => 0.021282680211989
904 => 0.021451071842533
905 => 0.021552015009345
906 => 0.022365542799265
907 => 0.022891118852928
908 => 0.022868302210331
909 => 0.023076803612709
910 => 0.022982871821283
911 => 0.022679541288816
912 => 0.02319728952052
913 => 0.023033452316503
914 => 0.02304695885654
915 => 0.023046456142445
916 => 0.023155393560219
917 => 0.023078201415758
918 => 0.022926047775415
919 => 0.023027054462588
920 => 0.023327008212941
921 => 0.02425807385774
922 => 0.024779110527549
923 => 0.024226706795985
924 => 0.024607747493037
925 => 0.024379258853488
926 => 0.024337735670734
927 => 0.024577057387169
928 => 0.024816798004588
929 => 0.024801527563685
930 => 0.024627488186256
1001 => 0.024529177758032
1002 => 0.025273617256954
1003 => 0.025822107598564
1004 => 0.025784704234392
1005 => 0.025949790519621
1006 => 0.02643448895898
1007 => 0.026478803709836
1008 => 0.026473221069791
1009 => 0.026363382336027
1010 => 0.026840630895622
1011 => 0.027238760040425
1012 => 0.026337957842707
1013 => 0.026680971527232
1014 => 0.026834961421425
1015 => 0.027061064272845
1016 => 0.027442537682427
1017 => 0.027856918986057
1018 => 0.027915517045851
1019 => 0.027873938918252
1020 => 0.02760064330934
1021 => 0.02805406427637
1022 => 0.028319667644826
1023 => 0.028477828372517
1024 => 0.028878897662504
1025 => 0.026835912410588
1026 => 0.025389785906326
1027 => 0.025163952370365
1028 => 0.025623193746206
1029 => 0.025744292034634
1030 => 0.025695477466413
1031 => 0.024067730609796
1101 => 0.025155382620035
1102 => 0.026325604730674
1103 => 0.026370557727823
1104 => 0.026956395384599
1105 => 0.027147168139942
1106 => 0.027618844241144
1107 => 0.02758934077259
1108 => 0.027704186397226
1109 => 0.027677785376972
1110 => 0.028551466031326
1111 => 0.029515265535913
1112 => 0.029481892223764
1113 => 0.029343334641821
1114 => 0.029549116278584
1115 => 0.030543860654349
1116 => 0.030452280532682
1117 => 0.030541242820105
1118 => 0.031714102500468
1119 => 0.033238986922284
1120 => 0.032530525012458
1121 => 0.034067683502358
1122 => 0.03503524329048
1123 => 0.036708537896487
1124 => 0.036499033170665
1125 => 0.037150434481581
1126 => 0.036123975986489
1127 => 0.033767019800268
1128 => 0.033394022461733
1129 => 0.034140772579277
1130 => 0.03597658487645
1201 => 0.034082956316938
1202 => 0.03446603490826
1203 => 0.034355708248188
1204 => 0.034349829409331
1205 => 0.034574200777541
1206 => 0.034248738405529
1207 => 0.032922746152387
1208 => 0.033530440587881
1209 => 0.033295780582453
1210 => 0.033556153353537
1211 => 0.03496127781318
1212 => 0.034340038795589
1213 => 0.033685613955916
1214 => 0.034506407933363
1215 => 0.035551560722065
1216 => 0.035486156938869
1217 => 0.035359246262806
1218 => 0.036074635098943
1219 => 0.037256247866979
1220 => 0.037575633050075
1221 => 0.037811396662694
1222 => 0.037843904481615
1223 => 0.03817875522
1224 => 0.03637817840645
1225 => 0.039235740051646
1226 => 0.039729162009224
1227 => 0.039636419131444
1228 => 0.040184836870922
1229 => 0.040023478459953
1230 => 0.039789695438817
1231 => 0.040659054207687
]
'min_raw' => 0.014987282866586
'max_raw' => 0.040659054207687
'avg_raw' => 0.027823168537137
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014987'
'max' => '$0.040659'
'avg' => '$0.027823'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.005168726531103
'max_diff' => 0.018739818858266
'year' => 2032
]
7 => [
'items' => [
101 => 0.039662404532812
102 => 0.038247785794032
103 => 0.03747169797595
104 => 0.038493713020018
105 => 0.039117821944021
106 => 0.039530318242003
107 => 0.039655139372536
108 => 0.036517952058901
109 => 0.034827182093237
110 => 0.035910946256511
111 => 0.037233213333112
112 => 0.036370833146077
113 => 0.036404636816707
114 => 0.035175109299522
115 => 0.037341999236143
116 => 0.03702630159879
117 => 0.038664141499836
118 => 0.038273257862965
119 => 0.039608852721688
120 => 0.039257145834729
121 => 0.040717061458832
122 => 0.041299461326925
123 => 0.042277401348753
124 => 0.042996778009743
125 => 0.043419209744558
126 => 0.043393848527701
127 => 0.045067733515696
128 => 0.044080702019363
129 => 0.042840757834506
130 => 0.042818331156176
131 => 0.043460515819658
201 => 0.044806358699558
202 => 0.045155316177099
203 => 0.045350335801389
204 => 0.045051656458106
205 => 0.043980304510021
206 => 0.043517700170716
207 => 0.043911852470742
208 => 0.043429838077703
209 => 0.04426193014944
210 => 0.045404570289211
211 => 0.045168619618837
212 => 0.045957367334196
213 => 0.046773638240912
214 => 0.047940942298537
215 => 0.048246118804344
216 => 0.04875056396362
217 => 0.049269803734118
218 => 0.049436569554497
219 => 0.049754977249997
220 => 0.049753299084272
221 => 0.05071284210597
222 => 0.051771247773478
223 => 0.052170771410814
224 => 0.053089453985007
225 => 0.051516242271178
226 => 0.052709541427871
227 => 0.053785927137424
228 => 0.052502615720321
301 => 0.054271361535586
302 => 0.054340037927528
303 => 0.055376969909492
304 => 0.054325840693641
305 => 0.053701683520592
306 => 0.05550360189232
307 => 0.056375493432503
308 => 0.056112872604911
309 => 0.054114315139749
310 => 0.052951068972862
311 => 0.049906629380691
312 => 0.053512899587621
313 => 0.055269408609072
314 => 0.054109766205725
315 => 0.054694622381603
316 => 0.057885408036941
317 => 0.059100252626422
318 => 0.058847573444215
319 => 0.058890272066555
320 => 0.05954578015605
321 => 0.062452664019769
322 => 0.060710791827588
323 => 0.062042387851804
324 => 0.062748661581622
325 => 0.06340468798294
326 => 0.061793694480578
327 => 0.059697815604199
328 => 0.05903396278504
329 => 0.053994462622766
330 => 0.053732134753879
331 => 0.053584882171725
401 => 0.052656475470537
402 => 0.0519270021154
403 => 0.051346897819787
404 => 0.049824530914289
405 => 0.050338285055345
406 => 0.04791194995065
407 => 0.049464233166598
408 => 0.045591743753594
409 => 0.048816868008388
410 => 0.047061579504909
411 => 0.048240208526662
412 => 0.048236096401039
413 => 0.04606586668732
414 => 0.044814123479986
415 => 0.045611782970274
416 => 0.046466937262152
417 => 0.046605683168924
418 => 0.047714413030155
419 => 0.048023835702355
420 => 0.047086270560024
421 => 0.045511495017939
422 => 0.04587727945956
423 => 0.044806710869952
424 => 0.04293058059549
425 => 0.0442780501127
426 => 0.044738135449928
427 => 0.044941335345332
428 => 0.043096376695416
429 => 0.042516650631612
430 => 0.042208009339615
501 => 0.045273334024234
502 => 0.045441259430036
503 => 0.044582129311691
504 => 0.048465478912675
505 => 0.047586557297504
506 => 0.048568528082674
507 => 0.045844088355454
508 => 0.045948165621978
509 => 0.044658372194029
510 => 0.045380570329652
511 => 0.044870143964926
512 => 0.045322223857195
513 => 0.045593198680626
514 => 0.046882780466165
515 => 0.048831592960895
516 => 0.046690159951168
517 => 0.045757106922945
518 => 0.046335967773965
519 => 0.047877550501624
520 => 0.050213127246194
521 => 0.048830418805546
522 => 0.049444041331593
523 => 0.049578090555369
524 => 0.048558532541884
525 => 0.050250719804433
526 => 0.051157576705738
527 => 0.052087824238883
528 => 0.052895532106968
529 => 0.051716262917563
530 => 0.052978249991824
531 => 0.051961311180677
601 => 0.051049011937876
602 => 0.051050395519246
603 => 0.050478096877672
604 => 0.049369196145352
605 => 0.049164697836723
606 => 0.050228523863502
607 => 0.051081611592279
608 => 0.051151875983636
609 => 0.051624189183517
610 => 0.051903699269994
611 => 0.054643278093004
612 => 0.055745159358603
613 => 0.057092518912633
614 => 0.057617391391951
615 => 0.0591970693775
616 => 0.057921351108996
617 => 0.057645341436961
618 => 0.053813559352749
619 => 0.054441013454378
620 => 0.055445628011402
621 => 0.053830125076771
622 => 0.054854789851277
623 => 0.055057080383132
624 => 0.053775230905232
625 => 0.054459922096825
626 => 0.052641585288746
627 => 0.04887122773437
628 => 0.050254917290205
629 => 0.051273778548168
630 => 0.049819737908368
701 => 0.052426049476066
702 => 0.050903496063408
703 => 0.050420919727048
704 => 0.048538217388022
705 => 0.049426780420184
706 => 0.050628574644179
707 => 0.049886005537325
708 => 0.05142694793136
709 => 0.053609333315641
710 => 0.055164631103776
711 => 0.055284027555739
712 => 0.054284075274827
713 => 0.055886505186598
714 => 0.055898177139093
715 => 0.054090629652497
716 => 0.052983516881424
717 => 0.05273197853045
718 => 0.05336037064818
719 => 0.054123354686688
720 => 0.055326367859777
721 => 0.056053323524919
722 => 0.057948838352115
723 => 0.058461710315685
724 => 0.059025201110585
725 => 0.059778198586697
726 => 0.060682365121359
727 => 0.058704100217747
728 => 0.058782700370315
729 => 0.056940567483013
730 => 0.054971984304353
731 => 0.056465893549599
801 => 0.058418981161339
802 => 0.057970940705236
803 => 0.057920527001288
804 => 0.058005308867733
805 => 0.057667500995464
806 => 0.056139608508938
807 => 0.055372310467317
808 => 0.056362320699615
809 => 0.056888467077795
810 => 0.057704474225567
811 => 0.057603884120783
812 => 0.059705830900672
813 => 0.060522583859766
814 => 0.060313623502
815 => 0.060352077236741
816 => 0.061830769455974
817 => 0.06347537932001
818 => 0.065015773483066
819 => 0.066582728587194
820 => 0.064693703049869
821 => 0.063734572380912
822 => 0.064724150405713
823 => 0.064199066376435
824 => 0.067216354958709
825 => 0.067425265473628
826 => 0.070442335871595
827 => 0.073305894945326
828 => 0.071507344797105
829 => 0.0732032965784
830 => 0.075037606702847
831 => 0.078576288538998
901 => 0.07738458498891
902 => 0.076471758745918
903 => 0.075609142357036
904 => 0.077404110125805
905 => 0.079713307485017
906 => 0.080210686478974
907 => 0.081016630462584
908 => 0.08016927890996
909 => 0.081189820522383
910 => 0.084792780862946
911 => 0.083819229174715
912 => 0.082436629271184
913 => 0.085280820428069
914 => 0.086310122151232
915 => 0.093534300693891
916 => 0.10265512451993
917 => 0.09887904356539
918 => 0.096535108263538
919 => 0.097085988658362
920 => 0.10041660476026
921 => 0.10148629294372
922 => 0.098578511717449
923 => 0.099605589204455
924 => 0.10526488713789
925 => 0.10830091890716
926 => 0.10417757997102
927 => 0.092801451380217
928 => 0.082312141277224
929 => 0.085094378656328
930 => 0.084778959280415
1001 => 0.090859168898093
1002 => 0.083796010288926
1003 => 0.083914935765424
1004 => 0.090120877678941
1005 => 0.088465238773194
1006 => 0.085783315784094
1007 => 0.082331722283039
1008 => 0.075951132462581
1009 => 0.070299666122692
1010 => 0.081383493070183
1011 => 0.080905538297576
1012 => 0.080213388957912
1013 => 0.081753692414953
1014 => 0.089232968779584
1015 => 0.089060547251324
1016 => 0.087963689458772
1017 => 0.088795646427161
1018 => 0.085637469705082
1019 => 0.086451403756709
1020 => 0.082310479716913
1021 => 0.084182350323165
1022 => 0.085777561581872
1023 => 0.086097823859564
1024 => 0.086819391124201
1025 => 0.080653677850845
1026 => 0.083421902094751
1027 => 0.085047974490511
1028 => 0.077701320249447
1029 => 0.084902754757459
1030 => 0.080546346500229
1031 => 0.079067716106669
1101 => 0.081058497136857
1102 => 0.080282687833295
1103 => 0.079615692551143
1104 => 0.079243497723268
1105 => 0.080705307597353
1106 => 0.080637112419487
1107 => 0.078245307740414
1108 => 0.075125296038994
1109 => 0.076172474376883
1110 => 0.075792024669378
1111 => 0.074413225850393
1112 => 0.075342369777585
1113 => 0.071250890151212
1114 => 0.064211712110644
1115 => 0.068862008740098
1116 => 0.068682977378413
1117 => 0.068592701647426
1118 => 0.072087271039702
1119 => 0.071751348826068
1120 => 0.071141646718962
1121 => 0.074402028193062
1122 => 0.073211945096696
1123 => 0.076879500780853
1124 => 0.079295190157068
1125 => 0.078682493191895
1126 => 0.080954460726265
1127 => 0.076196599250785
1128 => 0.077776969980669
1129 => 0.078102682197799
1130 => 0.074361795591767
1201 => 0.071806309854639
1202 => 0.071635888090643
1203 => 0.067205027990089
1204 => 0.069571957691152
1205 => 0.071654757877881
1206 => 0.070657258220261
1207 => 0.070341479628113
1208 => 0.071954723971376
1209 => 0.072080086873351
1210 => 0.069221799422958
1211 => 0.069816127894086
1212 => 0.072294576417578
1213 => 0.069753677350338
1214 => 0.064817125516197
1215 => 0.063592792408161
1216 => 0.063429443802613
1217 => 0.060108955310536
1218 => 0.063674608200816
1219 => 0.062118105160652
1220 => 0.067035079614761
1221 => 0.064226530176837
1222 => 0.064105459223945
1223 => 0.063922442721401
1224 => 0.061064361108618
1225 => 0.061690099341255
1226 => 0.063770148529165
1227 => 0.064512333512843
1228 => 0.064434917538503
1229 => 0.063759955153378
1230 => 0.064068949476922
1231 => 0.063073571100028
]
'min_raw' => 0.034827182093237
'max_raw' => 0.10830091890716
'avg_raw' => 0.071564050500197
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034827'
'max' => '$0.10830091'
'avg' => '$0.071564'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019839899226651
'max_diff' => 0.067641864699469
'year' => 2033
]
8 => [
'items' => [
101 => 0.062722082278138
102 => 0.061612686871635
103 => 0.059982182102378
104 => 0.06020891379101
105 => 0.056978457198332
106 => 0.055218332993333
107 => 0.054731153811453
108 => 0.054079677448825
109 => 0.054804739800125
110 => 0.05696930572069
111 => 0.054358379982211
112 => 0.049882130938734
113 => 0.050151161133404
114 => 0.050755592105046
115 => 0.049629238988102
116 => 0.048563240290566
117 => 0.049490039670865
118 => 0.047593393941795
119 => 0.050984792680072
120 => 0.050893064848487
121 => 0.052157168575425
122 => 0.0529476385779
123 => 0.051125861139898
124 => 0.050667689040851
125 => 0.050928684691229
126 => 0.046615007965473
127 => 0.051804649157407
128 => 0.05184952938994
129 => 0.051465237591418
130 => 0.054228561313928
131 => 0.060060036270705
201 => 0.057866000821429
202 => 0.057016403980396
203 => 0.055401319764542
204 => 0.057553323587956
205 => 0.057388083270807
206 => 0.056640803891131
207 => 0.056188846990649
208 => 0.057021591437542
209 => 0.056085660738104
210 => 0.055917541866829
211 => 0.05489892442204
212 => 0.054535324338391
213 => 0.054266129311794
214 => 0.053969772038067
215 => 0.054623462336277
216 => 0.053142114120414
217 => 0.051355753390439
218 => 0.051207236824432
219 => 0.051617304120886
220 => 0.051435879868125
221 => 0.051206368234909
222 => 0.050768168023326
223 => 0.050638163381215
224 => 0.051060615398789
225 => 0.050583691701431
226 => 0.051287418596261
227 => 0.051096043819852
228 => 0.050027039875615
301 => 0.048694665165145
302 => 0.048682804235471
303 => 0.048395746289632
304 => 0.048030134836156
305 => 0.047928430093856
306 => 0.04941198721211
307 => 0.052482906047768
308 => 0.051880011199469
309 => 0.052315664514514
310 => 0.054458647642605
311 => 0.055139837537274
312 => 0.054656345084904
313 => 0.053994510795586
314 => 0.05402362814545
315 => 0.056285316262916
316 => 0.056426374976559
317 => 0.05678278483867
318 => 0.057240872232897
319 => 0.054734359348967
320 => 0.053905571614024
321 => 0.053512846005815
322 => 0.052303403136469
323 => 0.053607683581263
324 => 0.052847735220939
325 => 0.052950278218279
326 => 0.052883496956738
327 => 0.052919964041269
328 => 0.050983844715008
329 => 0.051689264838061
330 => 0.050516367065002
331 => 0.048945988610829
401 => 0.048940724151605
402 => 0.04932507205351
403 => 0.049096446881922
404 => 0.048481222423669
405 => 0.048568612154187
406 => 0.047802986159059
407 => 0.048661573012101
408 => 0.048686194210875
409 => 0.048355591504912
410 => 0.049678363014176
411 => 0.050220303580801
412 => 0.05000269379754
413 => 0.050205035498304
414 => 0.051905064202323
415 => 0.05218224305853
416 => 0.05230534759705
417 => 0.052140403823659
418 => 0.050236108902227
419 => 0.05032057247968
420 => 0.049700834790795
421 => 0.049177221750036
422 => 0.049198163525678
423 => 0.049467368693559
424 => 0.050643003450368
425 => 0.053117057488618
426 => 0.05321094603086
427 => 0.053324741682979
428 => 0.052861877576699
429 => 0.052722273333232
430 => 0.052906447365277
501 => 0.053835571982463
502 => 0.056225532752736
503 => 0.055380760996409
504 => 0.054693948408859
505 => 0.055296468211484
506 => 0.055203715010576
507 => 0.054420784651392
508 => 0.05439881040384
509 => 0.052896116726587
510 => 0.052340605088787
511 => 0.051876377984915
512 => 0.051369454106442
513 => 0.051068932639042
514 => 0.051530670197533
515 => 0.051636275040279
516 => 0.050626677798845
517 => 0.050489073425427
518 => 0.051313532326452
519 => 0.050950718703037
520 => 0.051323881512065
521 => 0.05141045848469
522 => 0.051396517598061
523 => 0.051017698506336
524 => 0.051259146498853
525 => 0.050688050017439
526 => 0.050067068369819
527 => 0.049670920767161
528 => 0.049325229442487
529 => 0.049517039081114
530 => 0.048833272742466
531 => 0.048614522129235
601 => 0.05117734935174
602 => 0.05307053737604
603 => 0.053043009672382
604 => 0.052875441855914
605 => 0.052626470070533
606 => 0.053817358145612
607 => 0.053402476552814
608 => 0.053704337576092
609 => 0.053781173875583
610 => 0.054013734212532
611 => 0.054096854543754
612 => 0.053845607172018
613 => 0.053002390305188
614 => 0.050901174043703
615 => 0.049923052201856
616 => 0.049600255702139
617 => 0.049611988741826
618 => 0.049288339128666
619 => 0.0493836684447
620 => 0.049255187482913
621 => 0.04901187562417
622 => 0.049502015259471
623 => 0.049558499286473
624 => 0.049444094838861
625 => 0.049471041227775
626 => 0.048523821264329
627 => 0.048595836340897
628 => 0.048194847243337
629 => 0.04811966662154
630 => 0.047106001101025
701 => 0.045310145698266
702 => 0.046305223919296
703 => 0.045103309357463
704 => 0.044648126100919
705 => 0.046802892841877
706 => 0.046586614025011
707 => 0.046216438704678
708 => 0.04566887225461
709 => 0.045465774531895
710 => 0.044231817061607
711 => 0.044158908271355
712 => 0.044770490913284
713 => 0.044488266567308
714 => 0.044091916698839
715 => 0.042656377652585
716 => 0.041042356473952
717 => 0.04109107362796
718 => 0.041604463734951
719 => 0.043097214711118
720 => 0.042513971079876
721 => 0.04209082113346
722 => 0.042011577868337
723 => 0.043003473238364
724 => 0.044407212995457
725 => 0.045065816282578
726 => 0.04441316042712
727 => 0.043663424521857
728 => 0.043709057472469
729 => 0.044012633048966
730 => 0.044044534549729
731 => 0.043556533549499
801 => 0.043693902972581
802 => 0.043485226257595
803 => 0.042204577642915
804 => 0.042181414770457
805 => 0.041867122947166
806 => 0.041857606315664
807 => 0.041322917520476
808 => 0.0412481108619
809 => 0.040186453805765
810 => 0.040885239695107
811 => 0.040416530808442
812 => 0.03971007595899
813 => 0.039588282876665
814 => 0.039584621629541
815 => 0.040309992799515
816 => 0.040876763310654
817 => 0.040424684200198
818 => 0.040321754549932
819 => 0.041420773928844
820 => 0.041280913695094
821 => 0.041159795634667
822 => 0.044281523496562
823 => 0.04181043230241
824 => 0.040732895496805
825 => 0.03939923908118
826 => 0.039833484334987
827 => 0.039924986190354
828 => 0.036717782920413
829 => 0.035416620953229
830 => 0.034970111199346
831 => 0.034713138523266
901 => 0.034830244198615
902 => 0.033659045817074
903 => 0.034446110499303
904 => 0.033431951699823
905 => 0.033261924676732
906 => 0.03507536624037
907 => 0.035327696039978
908 => 0.034251178722125
909 => 0.034942477112509
910 => 0.03469180270639
911 => 0.033449336541627
912 => 0.033401883473096
913 => 0.032778457626416
914 => 0.031802916895393
915 => 0.031357068604063
916 => 0.031124866942906
917 => 0.031220677873819
918 => 0.031172232935287
919 => 0.030856096941941
920 => 0.03119035348037
921 => 0.030336466149023
922 => 0.029996441333443
923 => 0.029842860012761
924 => 0.02908498585827
925 => 0.030291100666232
926 => 0.030528720477634
927 => 0.03076680847347
928 => 0.032839201927638
929 => 0.032735671007191
930 => 0.03367154010643
1001 => 0.033635173954187
1002 => 0.033368248927009
1003 => 0.032242136144384
1004 => 0.032690984628508
1005 => 0.031309498760916
1006 => 0.032344601904824
1007 => 0.031872224056885
1008 => 0.032184890479267
1009 => 0.03162268805983
1010 => 0.031933834091515
1011 => 0.030585068950032
1012 => 0.029325611038552
1013 => 0.029832453668
1014 => 0.030383449570695
1015 => 0.031578149078883
1016 => 0.030866595907863
1017 => 0.031122497334966
1018 => 0.030265270391552
1019 => 0.028496566352519
1020 => 0.028506577025299
1021 => 0.028234500442206
1022 => 0.027999386550582
1023 => 0.030948326349116
1024 => 0.030581579069329
1025 => 0.029997215277685
1026 => 0.030779409434494
1027 => 0.030986233984645
1028 => 0.030992121988827
1029 => 0.031562790654281
1030 => 0.031867356623332
1031 => 0.031921037695442
1101 => 0.032818997170647
1102 => 0.033119981342364
1103 => 0.034359692548792
1104 => 0.031841516328742
1105 => 0.031789656146622
1106 => 0.030790416510361
1107 => 0.03015668293569
1108 => 0.030833808790401
1109 => 0.031433649860779
1110 => 0.030809055244468
1111 => 0.030890614115446
1112 => 0.030052146874304
1113 => 0.030351859459461
1114 => 0.030610012313445
1115 => 0.030467475480998
1116 => 0.030254090943966
1117 => 0.031384469733505
1118 => 0.031320689332209
1119 => 0.032373324048324
1120 => 0.033193928084166
1121 => 0.034664597216912
1122 => 0.033129877309176
1123 => 0.033073946015778
1124 => 0.033620683380396
1125 => 0.033119897639722
1126 => 0.033436376941292
1127 => 0.034613607508679
1128 => 0.034638480535512
1129 => 0.03422182528897
1130 => 0.034196471779352
1201 => 0.03427649497716
1202 => 0.034745193346196
1203 => 0.034581415734409
1204 => 0.034770943333111
1205 => 0.035007950497438
1206 => 0.035988312618049
1207 => 0.036224674606328
1208 => 0.03565043751445
1209 => 0.035702284694387
1210 => 0.035487504258864
1211 => 0.03528002904934
1212 => 0.035746403021029
1213 => 0.036598710620894
1214 => 0.03659340845955
1215 => 0.036791127256227
1216 => 0.036914304428565
1217 => 0.036385537833687
1218 => 0.036041330223708
1219 => 0.036173321323874
1220 => 0.03638437796743
1221 => 0.036104878498919
1222 => 0.034379678302518
1223 => 0.034902993835891
1224 => 0.034815888542316
1225 => 0.034691840011899
1226 => 0.035218037827384
1227 => 0.035167284764412
1228 => 0.033647033484849
1229 => 0.033744355039323
1230 => 0.033652951930915
1231 => 0.033948294073497
]
'min_raw' => 0.027999386550582
'max_raw' => 0.062722082278138
'avg_raw' => 0.04536073441436
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027999'
'max' => '$0.062722'
'avg' => '$0.04536'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0068277955426554
'max_diff' => -0.045578836629019
'year' => 2034
]
9 => [
'items' => [
101 => 0.033103948194793
102 => 0.033363663300326
103 => 0.033526554179839
104 => 0.033622498159258
105 => 0.033969113602324
106 => 0.033928442280701
107 => 0.033966585415867
108 => 0.03448052461485
109 => 0.03707985272067
110 => 0.037221328414375
111 => 0.036524650356265
112 => 0.036802959499113
113 => 0.036268666804364
114 => 0.036627341069799
115 => 0.036872736892871
116 => 0.035763840355311
117 => 0.035698178699036
118 => 0.035161680788277
119 => 0.035449964376724
120 => 0.034991284459181
121 => 0.035103828467004
122 => 0.034789145609722
123 => 0.035355512100098
124 => 0.035988797840793
125 => 0.036148790828104
126 => 0.0357279181598
127 => 0.035423178611087
128 => 0.034888156350996
129 => 0.035777910293277
130 => 0.03603810146076
131 => 0.035776543619841
201 => 0.035715934952948
202 => 0.035601081638704
203 => 0.035740301626512
204 => 0.036036684403783
205 => 0.035896915759352
206 => 0.035989235411405
207 => 0.035637408097391
208 => 0.036385712877432
209 => 0.03757420095749
210 => 0.037578022141004
211 => 0.037438252743169
212 => 0.037381062116948
213 => 0.037524474001044
214 => 0.037602269065102
215 => 0.038066036801026
216 => 0.038563678058993
217 => 0.040885952672037
218 => 0.040233867253426
219 => 0.042294327442854
220 => 0.043923883935421
221 => 0.044412516675672
222 => 0.043962997546588
223 => 0.042425216888536
224 => 0.042349766033082
225 => 0.044647859570459
226 => 0.043998542886798
227 => 0.043921308733385
228 => 0.043099667830233
301 => 0.043585359366201
302 => 0.04347913150262
303 => 0.043311445623112
304 => 0.044238111240174
305 => 0.045972746551303
306 => 0.045702387370757
307 => 0.04550057678408
308 => 0.044616301539443
309 => 0.045148832746741
310 => 0.044959208583785
311 => 0.045773954326309
312 => 0.045291316997266
313 => 0.043993623674298
314 => 0.044200285613234
315 => 0.04416904907691
316 => 0.044811894781014
317 => 0.044618928457053
318 => 0.044131369305158
319 => 0.045966817756389
320 => 0.045847633943267
321 => 0.046016609341061
322 => 0.046090997536908
323 => 0.047208202664943
324 => 0.047665885859322
325 => 0.047769787957318
326 => 0.04820455159349
327 => 0.04775897064199
328 => 0.049541612141825
329 => 0.0507269647192
330 => 0.052103812735506
331 => 0.054115757749189
401 => 0.054872267685866
402 => 0.054735610937063
403 => 0.056261044684426
404 => 0.059002215219951
405 => 0.055289679875358
406 => 0.059198988607954
407 => 0.057961346598354
408 => 0.05502691965782
409 => 0.054837977157471
410 => 0.056825205150998
411 => 0.061232685577033
412 => 0.06012866171954
413 => 0.061234491364558
414 => 0.059944482344045
415 => 0.059880422523127
416 => 0.061171838505786
417 => 0.06418930234069
418 => 0.062755818380668
419 => 0.060700567619288
420 => 0.062218132798247
421 => 0.060903477396206
422 => 0.057941190826528
423 => 0.060127817493303
424 => 0.058665682512773
425 => 0.059092411231462
426 => 0.062165601484373
427 => 0.06179582710249
428 => 0.062274349392832
429 => 0.061429770075487
430 => 0.060640799815152
501 => 0.059168128234536
502 => 0.058732142781347
503 => 0.058852633475496
504 => 0.058732083072143
505 => 0.057908136857339
506 => 0.057730205750701
507 => 0.057433646110963
508 => 0.057525562343863
509 => 0.056967943459573
510 => 0.058020285504168
511 => 0.058215609460851
512 => 0.058981416242864
513 => 0.059060924843439
514 => 0.061193685830767
515 => 0.060018996918539
516 => 0.060807079658623
517 => 0.060736586120628
518 => 0.055090517587582
519 => 0.055868496015752
520 => 0.057078786306903
521 => 0.056533552171249
522 => 0.055762718668573
523 => 0.055140229285685
524 => 0.054197094217801
525 => 0.055524538714543
526 => 0.057269987069773
527 => 0.059105192294156
528 => 0.061310071123843
529 => 0.060817967836676
530 => 0.059063973618117
531 => 0.059142656517468
601 => 0.059629043240676
602 => 0.058999128241228
603 => 0.058813354010489
604 => 0.05960352071413
605 => 0.05960896215795
606 => 0.058884168823314
607 => 0.058078693667646
608 => 0.058075318697334
609 => 0.05793199217335
610 => 0.05996997981426
611 => 0.06109066695297
612 => 0.061219151927345
613 => 0.06108201889048
614 => 0.061134795953754
615 => 0.060482692800394
616 => 0.06197320723379
617 => 0.063341050674474
618 => 0.062974439412658
619 => 0.062424837014334
620 => 0.061987052231631
621 => 0.062871311230854
622 => 0.062831936569571
623 => 0.0633291037553
624 => 0.063306549379979
625 => 0.063139370754821
626 => 0.062974445383133
627 => 0.063628355839559
628 => 0.063440040129589
629 => 0.063251431913307
630 => 0.062873149261081
701 => 0.062924564156128
702 => 0.062375056654407
703 => 0.062120829340358
704 => 0.058297860513685
705 => 0.057276238324088
706 => 0.057597661461972
707 => 0.057703482304712
708 => 0.057258871018555
709 => 0.057896329391636
710 => 0.057796982179427
711 => 0.058183484065957
712 => 0.057942014467214
713 => 0.057951924463775
714 => 0.058662035066932
715 => 0.058868183196055
716 => 0.058763334593763
717 => 0.058836766960809
718 => 0.060528984865498
719 => 0.060288405593534
720 => 0.060160602650225
721 => 0.060196004938943
722 => 0.060628402895152
723 => 0.060749450714837
724 => 0.060236562596951
725 => 0.060478443598317
726 => 0.061508342202865
727 => 0.061868748427244
728 => 0.06301899209066
729 => 0.06253034813849
730 => 0.063427275260713
731 => 0.066184123449437
801 => 0.068386484541975
802 => 0.066361102264856
803 => 0.070405457942307
804 => 0.073554568965568
805 => 0.073433700839376
806 => 0.07288458049222
807 => 0.069299401315686
808 => 0.066000265985429
809 => 0.068760132777875
810 => 0.0687671682459
811 => 0.068530093240825
812 => 0.067057640745304
813 => 0.068478855085706
814 => 0.068591665918955
815 => 0.068528521851158
816 => 0.067399595975189
817 => 0.065675934822963
818 => 0.066012734086246
819 => 0.066564418150023
820 => 0.065519965123942
821 => 0.065186199096468
822 => 0.065806733643126
823 => 0.067806225245966
824 => 0.067428232940715
825 => 0.067418362034038
826 => 0.069035573409584
827 => 0.067877999080752
828 => 0.066016982203537
829 => 0.065547050898243
830 => 0.06387911134811
831 => 0.065031163136384
901 => 0.065072623429286
902 => 0.064441656438532
903 => 0.066068181697379
904 => 0.066053192980775
905 => 0.067597336637714
906 => 0.070549159355911
907 => 0.069676160127766
908 => 0.068660957007479
909 => 0.068771337735184
910 => 0.069981941875249
911 => 0.069249982976761
912 => 0.069513200500056
913 => 0.069981543464003
914 => 0.070264106402454
915 => 0.068730681276737
916 => 0.06837316652773
917 => 0.067641816821888
918 => 0.067451021334922
919 => 0.068046690410219
920 => 0.067889752654177
921 => 0.065069138852209
922 => 0.064774369016157
923 => 0.064783409186194
924 => 0.064042196417898
925 => 0.062911669034799
926 => 0.065882627497301
927 => 0.065644017954225
928 => 0.065380611485581
929 => 0.065412877275013
930 => 0.06670246964846
1001 => 0.065954440945885
1002 => 0.067943197851175
1003 => 0.067534369218952
1004 => 0.067115055674964
1005 => 0.067057093770582
1006 => 0.066895693830297
1007 => 0.066342193380788
1008 => 0.065673808327786
1009 => 0.065232482621271
1010 => 0.060173517042138
1011 => 0.061112431626976
1012 => 0.062192567272075
1013 => 0.062565425768391
1014 => 0.06192762550942
1015 => 0.066367377622451
1016 => 0.067178563116017
1017 => 0.064721429343684
1018 => 0.064261799938991
1019 => 0.066397510849703
1020 => 0.065109416090503
1021 => 0.065689445081699
1022 => 0.064435739661628
1023 => 0.066983172284901
1024 => 0.066963765116429
1025 => 0.0659727562896
1026 => 0.0668103501639
1027 => 0.066664797616068
1028 => 0.065545951091325
1029 => 0.067018641715386
1030 => 0.067019372151562
1031 => 0.06606554770213
1101 => 0.064951689564213
1102 => 0.064752558037309
1103 => 0.064602539181343
1104 => 0.065652549639455
1105 => 0.066593985732901
1106 => 0.068345764901004
1107 => 0.068786203805111
1108 => 0.070505266169521
1109 => 0.069481648231142
1110 => 0.069935404805154
1111 => 0.07042802175403
1112 => 0.070664200434709
1113 => 0.070279359948589
1114 => 0.072949771394815
1115 => 0.073175235940169
1116 => 0.073250832251966
1117 => 0.072350384537199
1118 => 0.073150192860324
1119 => 0.072775989032801
1120 => 0.073749563435197
1121 => 0.073902232332715
1122 => 0.073772927207871
1123 => 0.073821386725658
1124 => 0.071542661649164
1125 => 0.071424497732715
1126 => 0.069813324347409
1127 => 0.070469889411114
1128 => 0.069242472494501
1129 => 0.069631699042554
1130 => 0.069803266396249
1201 => 0.06971364934704
1202 => 0.070507010614713
1203 => 0.069832491464192
1204 => 0.068052324524752
1205 => 0.066271672580019
1206 => 0.066249317945341
1207 => 0.06578050371941
1208 => 0.06544163690167
1209 => 0.065506914672713
1210 => 0.065736962052182
1211 => 0.065428266129772
1212 => 0.065494142056099
1213 => 0.066588121362121
1214 => 0.06680751111004
1215 => 0.066061939025502
1216 => 0.063068359520546
1217 => 0.062333727601205
1218 => 0.062861766456443
1219 => 0.062609397893697
1220 => 0.050530670563369
1221 => 0.053368388383335
1222 => 0.051682312814503
1223 => 0.052459334009227
1224 => 0.050738287460602
1225 => 0.051559661081384
1226 => 0.051407983365388
1227 => 0.055970949645717
1228 => 0.055899705203405
1229 => 0.055933806147768
1230 => 0.054306079223785
1231 => 0.056899092411292
]
'min_raw' => 0.033103948194793
'max_raw' => 0.073902232332715
'avg_raw' => 0.053503090263754
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0331039'
'max' => '$0.0739022'
'avg' => '$0.053503'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051045616442109
'max_diff' => 0.011180150054577
'year' => 2035
]
10 => [
'items' => [
101 => 0.058176503949196
102 => 0.057940089070737
103 => 0.057999589602287
104 => 0.056977173335574
105 => 0.055943705372121
106 => 0.054797430351072
107 => 0.056927067656306
108 => 0.056690288342085
109 => 0.0572333748984
110 => 0.058614596920463
111 => 0.058817987109964
112 => 0.059091345587233
113 => 0.058993366032113
114 => 0.06132763654091
115 => 0.061044940980282
116 => 0.061726155944332
117 => 0.060324845079378
118 => 0.058739128822033
119 => 0.059040521641584
120 => 0.059011495089414
121 => 0.058641953765154
122 => 0.058308348380922
123 => 0.057752989408909
124 => 0.05951022737402
125 => 0.05943888672173
126 => 0.060593808957871
127 => 0.060389665234317
128 => 0.059026343485981
129 => 0.059075034788933
130 => 0.059402507201529
131 => 0.06053589296054
201 => 0.060872359020602
202 => 0.060716494535727
203 => 0.061085414210325
204 => 0.061376993279061
205 => 0.061122032052128
206 => 0.06473174535985
207 => 0.06323274072615
208 => 0.063963345154608
209 => 0.064137590005824
210 => 0.063691265483409
211 => 0.063788057290638
212 => 0.063934670504401
213 => 0.064824877228561
214 => 0.067161037256146
215 => 0.068195706629585
216 => 0.071308560489263
217 => 0.068109791741414
218 => 0.067919990041738
219 => 0.068480709021046
220 => 0.070308283765722
221 => 0.071789361440915
222 => 0.072280720351197
223 => 0.072345661542643
224 => 0.073267483523255
225 => 0.07379585469158
226 => 0.073155550088484
227 => 0.072612958980046
228 => 0.07066946497851
229 => 0.070894429701146
301 => 0.072444213553329
302 => 0.07463337452635
303 => 0.076511902384582
304 => 0.075854107401935
305 => 0.080872618788644
306 => 0.081370183693855
307 => 0.081301436312155
308 => 0.082434963213812
309 => 0.080185143152761
310 => 0.079223301488451
311 => 0.072730273336361
312 => 0.074554549399922
313 => 0.077206241794284
314 => 0.076855280362554
315 => 0.074929550465827
316 => 0.076510441545771
317 => 0.075987749515707
318 => 0.075575480625083
319 => 0.077464164335287
320 => 0.075387479013067
321 => 0.077185525269613
322 => 0.074879512347186
323 => 0.075857112154007
324 => 0.075302179222473
325 => 0.075661288839198
326 => 0.07356194135764
327 => 0.074694698299909
328 => 0.073514814944683
329 => 0.073514255526347
330 => 0.073488209535885
331 => 0.074876337070906
401 => 0.074921603859987
402 => 0.073895775514263
403 => 0.073747937623194
404 => 0.074294571791452
405 => 0.073654606344137
406 => 0.073954042149041
407 => 0.073663675949627
408 => 0.073598308402091
409 => 0.073077448661953
410 => 0.072853047964565
411 => 0.072941041260105
412 => 0.072640674778775
413 => 0.072459693109044
414 => 0.073452207726533
415 => 0.072921947204334
416 => 0.0733709376965
417 => 0.072859256363559
418 => 0.071085545934643
419 => 0.070065466310326
420 => 0.066715091733146
421 => 0.067665253807108
422 => 0.068295212245158
423 => 0.06808701098514
424 => 0.06853430785485
425 => 0.068561768249855
426 => 0.068416347477861
427 => 0.068247968853446
428 => 0.068166011451003
429 => 0.068776854782374
430 => 0.069131469896277
501 => 0.068358437002173
502 => 0.068177326210964
503 => 0.068958905147219
504 => 0.069435667846831
505 => 0.072955815750947
506 => 0.072695031824283
507 => 0.073349548303951
508 => 0.073275859792714
509 => 0.073961897336058
510 => 0.075083278778327
511 => 0.072803196763011
512 => 0.073198940161566
513 => 0.07310191301929
514 => 0.074161229916776
515 => 0.074164536988502
516 => 0.073529423591655
517 => 0.073873728867624
518 => 0.073681547108099
519 => 0.074028845522483
520 => 0.07269154889595
521 => 0.074320231834817
522 => 0.075243590111144
523 => 0.075256410941707
524 => 0.075694075436461
525 => 0.07613876791095
526 => 0.07699231639118
527 => 0.076114962907101
528 => 0.074536689397883
529 => 0.074650635647456
530 => 0.07372529446647
531 => 0.073740849618899
601 => 0.073657814996154
602 => 0.073907008149566
603 => 0.072746232779777
604 => 0.073018664438941
605 => 0.072637258520753
606 => 0.073198111059587
607 => 0.072594726440048
608 => 0.073101866229864
609 => 0.073320730951199
610 => 0.074128346484743
611 => 0.072475440969091
612 => 0.069105054730811
613 => 0.06981355078008
614 => 0.068765629472047
615 => 0.068862618578823
616 => 0.069058552010213
617 => 0.068423467653648
618 => 0.068544621735073
619 => 0.068540293258736
620 => 0.068502992788099
621 => 0.068337782818835
622 => 0.068098195677606
623 => 0.06905263710723
624 => 0.069214815304634
625 => 0.069575317347838
626 => 0.070647926897538
627 => 0.070540747909648
628 => 0.07071556128571
629 => 0.070333944667302
630 => 0.068880320679248
701 => 0.068959259455395
702 => 0.06797489165193
703 => 0.069550144849942
704 => 0.069177104100327
705 => 0.068936602302276
706 => 0.068870979158444
707 => 0.069946247499753
708 => 0.070267984640238
709 => 0.070067499645264
710 => 0.06965629907149
711 => 0.070445925733673
712 => 0.070657196516798
713 => 0.070704492253774
714 => 0.072103559303266
715 => 0.070782684560144
716 => 0.071100632239179
717 => 0.073581169268846
718 => 0.07133166447365
719 => 0.072523277333608
720 => 0.072464954084967
721 => 0.073074542902142
722 => 0.072414950009395
723 => 0.072423126453815
724 => 0.072964400026343
725 => 0.072204278912931
726 => 0.072016062235643
727 => 0.071756042244004
728 => 0.072323786383108
729 => 0.072664123317643
730 => 0.075406989060056
731 => 0.077179005419529
801 => 0.077102077516004
802 => 0.077805054551225
803 => 0.077488356958326
804 => 0.076465656890252
805 => 0.078211281201467
806 => 0.077658892629376
807 => 0.077704430872107
808 => 0.077702735936438
809 => 0.078070026046232
810 => 0.077809767341799
811 => 0.077296770720353
812 => 0.077637321818218
813 => 0.078648636829634
814 => 0.081787789656002
815 => 0.083544501165881
816 => 0.081682033417316
817 => 0.082966738730839
818 => 0.082196373330033
819 => 0.082056375020322
820 => 0.082863264896191
821 => 0.083671567125974
822 => 0.083620081768324
823 => 0.08303329585628
824 => 0.082701835383708
825 => 0.085211765129429
826 => 0.087061038610538
827 => 0.086934930556813
828 => 0.087491530493419
829 => 0.089125725122282
830 => 0.089275135398751
831 => 0.089256313138072
901 => 0.088885984178493
902 => 0.090495061017597
903 => 0.09183738122579
904 => 0.088800263724182
905 => 0.089956758310007
906 => 0.090475945989512
907 => 0.091238267539069
908 => 0.092524431773098
909 => 0.093921547269468
910 => 0.094119114719246
911 => 0.093978931159155
912 => 0.093057495932819
913 => 0.094586236380002
914 => 0.095481736680586
915 => 0.096014986616424
916 => 0.097367219729381
917 => 0.090479152315868
918 => 0.085603435841421
919 => 0.084842022307737
920 => 0.086390386669592
921 => 0.086798678003839
922 => 0.086634096278958
923 => 0.08114603410622
924 => 0.084813128796178
925 => 0.088758614344494
926 => 0.0889101765129
927 => 0.0908853690746
928 => 0.091528572738568
929 => 0.093118861645143
930 => 0.093019388641048
1001 => 0.093406598682775
1002 => 0.093317585799725
1003 => 0.096263261124318
1004 => 0.099512778444363
1005 => 0.099400257992402
1006 => 0.098933101431102
1007 => 0.099626908586663
1008 => 0.10298075870039
1009 => 0.10267198992627
1010 => 0.10297193248946
1011 => 0.10692631078826
1012 => 0.11206756508044
1013 => 0.10967893628823
1014 => 0.11486157345791
1015 => 0.11812376883643
1016 => 0.12376539842628
1017 => 0.12305903861602
1018 => 0.12525528361516
1019 => 0.12179450713391
1020 => 0.11384786479464
1021 => 0.11259027822593
1022 => 0.11510799838366
1023 => 0.12129756771589
1024 => 0.11491306681858
1025 => 0.11620464303491
1026 => 0.11583266899772
1027 => 0.11581284808206
1028 => 0.11656933181509
1029 => 0.1154720127048
1030 => 0.11100133724551
1031 => 0.11305022146264
1101 => 0.11225904887091
1102 => 0.11313691384726
1103 => 0.11787438906561
1104 => 0.11577983834427
1105 => 0.11357339930683
1106 => 0.1163407635078
1107 => 0.11986456910515
1108 => 0.11964405568375
1109 => 0.11921616747879
1110 => 0.12162815088668
1111 => 0.12561204083168
1112 => 0.12668887027525
1113 => 0.12748376375568
1114 => 0.1275933661368
1115 => 0.1287223387798
1116 => 0.12265156834066
1117 => 0.13228603693602
1118 => 0.13394964351561
1119 => 0.13363695442808
1120 => 0.13548598312603
1121 => 0.13494195197776
1122 => 0.13415373619979
1123 => 0.13708483998573
1124 => 0.13372456602303
1125 => 0.12895508017971
1126 => 0.12633844591632
1127 => 0.12978424099221
1128 => 0.13188846780338
1129 => 0.1332792278716
1130 => 0.13370007102792
1201 => 0.12312282496858
1202 => 0.11742227598355
1203 => 0.12107626252603
1204 => 0.12553437829253
1205 => 0.12262680328248
1206 => 0.1227407747181
1207 => 0.11859533685104
1208 => 0.12590115755979
1209 => 0.12483676093415
1210 => 0.13035885251085
1211 => 0.12904096103852
1212 => 0.13354401235296
1213 => 0.13235820802818
1214 => 0.1372804154829
1215 => 0.13924401730004
1216 => 0.14254121036122
1217 => 0.14496663899902
1218 => 0.1463908970862
1219 => 0.1463053899729
1220 => 0.15194901007684
1221 => 0.14862116447462
1222 => 0.14444060608523
1223 => 0.14436499297346
1224 => 0.14653016340229
1225 => 0.15106776663563
1226 => 0.15224430113459
1227 => 0.15290182341372
1228 => 0.15189480515471
1229 => 0.14828266726234
1230 => 0.14672296443437
1231 => 0.14805187643274
]
'min_raw' => 0.054797430351072
'max_raw' => 0.15290182341372
'avg_raw' => 0.1038496268824
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.054797'
'max' => '$0.1529018'
'avg' => '$0.103849'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021693482156279
'max_diff' => 0.078999591081004
'year' => 2036
]
11 => [
'items' => [
101 => 0.14642673125344
102 => 0.14923218776812
103 => 0.15308467877594
104 => 0.15228915461723
105 => 0.15494847260816
106 => 0.15770058696037
107 => 0.16163623408922
108 => 0.16266515798529
109 => 0.16436593005903
110 => 0.16611658319743
111 => 0.16667884580405
112 => 0.16775237957995
113 => 0.16774672152704
114 => 0.17098188781785
115 => 0.17455037642137
116 => 0.1758973982585
117 => 0.17899480069776
118 => 0.17369060756646
119 => 0.17771389898673
120 => 0.18134300855734
121 => 0.17701623451664
122 => 0.18297968452269
123 => 0.18321123177296
124 => 0.18670732034643
125 => 0.18316336480769
126 => 0.18105897532149
127 => 0.18713426891769
128 => 0.19007391211894
129 => 0.18918846766312
130 => 0.1824501916345
131 => 0.17852822596758
201 => 0.1682636853266
202 => 0.180422477111
203 => 0.18634466991237
204 => 0.18243485458584
205 => 0.18440673801616
206 => 0.19516469462668
207 => 0.19926062797785
208 => 0.19840870247355
209 => 0.19855266385989
210 => 0.20076275514973
211 => 0.21056351704841
212 => 0.20469067333884
213 => 0.20918024230355
214 => 0.21156149349409
215 => 0.21377333230843
216 => 0.20834175523924
217 => 0.20127535327794
218 => 0.19903712714943
219 => 0.18204610050565
220 => 0.18116164378055
221 => 0.18066517141898
222 => 0.17753498340663
223 => 0.17507551305959
224 => 0.17311965092534
225 => 0.16798688461519
226 => 0.16971904257093
227 => 0.16153848436414
228 => 0.16677211560366
301 => 0.15371574717914
302 => 0.16458947877516
303 => 0.15867140103536
304 => 0.16264523107145
305 => 0.16263136675281
306 => 0.15531428575241
307 => 0.15109394613496
308 => 0.15378331079727
309 => 0.1566665231973
310 => 0.15713431470892
311 => 0.1608724748451
312 => 0.16191571498763
313 => 0.15875464865155
314 => 0.15344518296409
315 => 0.15467845074727
316 => 0.1510689540027
317 => 0.14474344979511
318 => 0.14928653734971
319 => 0.1508377471863
320 => 0.15152284982062
321 => 0.14530244292153
322 => 0.14334785602223
323 => 0.14230725035762
324 => 0.15264220654595
325 => 0.15320837877579
326 => 0.15031176159924
327 => 0.16340474590576
328 => 0.16044140031587
329 => 0.16375218337708
330 => 0.15456654462245
331 => 0.15491744839298
401 => 0.15056881980015
402 => 0.15300376123667
403 => 0.15128282311116
404 => 0.15280704203115
405 => 0.15372065256721
406 => 0.15806856759288
407 => 0.16463912498061
408 => 0.15741913407823
409 => 0.1542732806499
410 => 0.15622495042389
411 => 0.16142250422005
412 => 0.16929706427913
413 => 0.16463516623387
414 => 0.16670403742219
415 => 0.16715599373917
416 => 0.16371848271344
417 => 0.16942381021387
418 => 0.17248134157134
419 => 0.17561773607715
420 => 0.17834097954676
421 => 0.17436499114074
422 => 0.17861986867073
423 => 0.17519118846855
424 => 0.17211530787675
425 => 0.17211997271793
426 => 0.17019042789125
427 => 0.16645169165126
428 => 0.1657622113261
429 => 0.16934897504935
430 => 0.1722252198876
501 => 0.17246212118876
502 => 0.17405455811802
503 => 0.17499694588935
504 => 0.18423362716241
505 => 0.18794869678027
506 => 0.19249141358632
507 => 0.19426105779577
508 => 0.19958705241364
509 => 0.19528587920358
510 => 0.19435529332393
511 => 0.18143617250053
512 => 0.18355167781162
513 => 0.18693880593057
514 => 0.18149202499565
515 => 0.18494675382271
516 => 0.18562879047433
517 => 0.18130694546372
518 => 0.18361542961978
519 => 0.17748478011912
520 => 0.16477275638659
521 => 0.16943796233021
522 => 0.17287312419605
523 => 0.16797072466109
524 => 0.17675808607844
525 => 0.17162469094638
526 => 0.16999765113594
527 => 0.16364998875384
528 => 0.16664584105426
529 => 0.17069777418705
530 => 0.16819415059877
531 => 0.17338954546543
601 => 0.18074761015781
602 => 0.18599140523793
603 => 0.18639395871172
604 => 0.18302254978219
605 => 0.18842525410781
606 => 0.18846460691055
607 => 0.18237033436056
608 => 0.17863762635674
609 => 0.17778954724459
610 => 0.17990821514245
611 => 0.18248066909812
612 => 0.18653671200289
613 => 0.18898769378234
614 => 0.19537855436285
615 => 0.1971077379956
616 => 0.19900758655228
617 => 0.2015463701156
618 => 0.2045948307141
619 => 0.19792497247353
620 => 0.1981899783756
621 => 0.19197909873245
622 => 0.18534188310351
623 => 0.19037870242527
624 => 0.19696367366847
625 => 0.19545307398953
626 => 0.1952831006669
627 => 0.1955689486489
628 => 0.19443000582255
629 => 0.18927860963018
630 => 0.18669161071182
701 => 0.19002949933032
702 => 0.19180343857872
703 => 0.19455466364923
704 => 0.19421551708798
705 => 0.20130237740961
706 => 0.20405611703507
707 => 0.20335159259971
708 => 0.20348124205115
709 => 0.20846675610728
710 => 0.21401167308688
711 => 0.2192052195545
712 => 0.22448831808939
713 => 0.21811933660274
714 => 0.21488556058799
715 => 0.21822199198874
716 => 0.21645163452383
717 => 0.22662463363933
718 => 0.22732899002604
719 => 0.23750125351792
720 => 0.24715594286231
721 => 0.24109200546682
722 => 0.24681002530503
723 => 0.25299452995705
724 => 0.26492544283051
725 => 0.2609075311093
726 => 0.25782987369956
727 => 0.25492150231849
728 => 0.26097336147155
729 => 0.26875898159114
730 => 0.27043592959516
731 => 0.27315322600511
801 => 0.27029632108524
802 => 0.27373714838347
803 => 0.28588478072233
804 => 0.28260238323425
805 => 0.27794085112946
806 => 0.28753024018998
807 => 0.29100060281318
808 => 0.31535742514579
809 => 0.34610891947085
810 => 0.33337759889508
811 => 0.32547485737655
812 => 0.32733218908894
813 => 0.33856159381267
814 => 0.34216812220645
815 => 0.33236433478728
816 => 0.33582719824298
817 => 0.35490791634511
818 => 0.36514410942417
819 => 0.35124198431866
820 => 0.31288657251883
821 => 0.27752113116635
822 => 0.28690163873961
823 => 0.28583818029184
824 => 0.30633803152452
825 => 0.28252409913973
826 => 0.28292506468685
827 => 0.3038488311333
828 => 0.29826672896956
829 => 0.28922443836592
830 => 0.27758714989455
831 => 0.25607454583632
901 => 0.23702023249861
902 => 0.27439012890016
903 => 0.27277867101458
904 => 0.27044504119158
905 => 0.27563828183755
906 => 0.3008551842873
907 => 0.30027385306668
908 => 0.29657572043893
909 => 0.29938072144323
910 => 0.28873270812789
911 => 0.29147694361001
912 => 0.27751552909975
913 => 0.28382667153856
914 => 0.28920503767139
915 => 0.29028482430062
916 => 0.29271763871156
917 => 0.27192950593409
918 => 0.28126276724366
919 => 0.28674518385472
920 => 0.26197542615395
921 => 0.28625556538582
922 => 0.27156763079185
923 => 0.26658232518529
924 => 0.27329438242046
925 => 0.27067868718822
926 => 0.26842986602633
927 => 0.26717498517833
928 => 0.27210357922912
929 => 0.2718736544257
930 => 0.26380951795974
1001 => 0.25329018067614
1002 => 0.25682081555399
1003 => 0.25553810280299
1004 => 0.25088938632012
1005 => 0.25402205994141
1006 => 0.24022735072311
1007 => 0.21649427049961
1008 => 0.23217307025916
1009 => 0.23156945352367
1010 => 0.2312650825938
1011 => 0.2430472672829
1012 => 0.24191468208629
1013 => 0.23985902886414
1014 => 0.25085163263663
1015 => 0.24683918438829
1016 => 0.25920460443798
1017 => 0.26734926982794
1018 => 0.26528351923272
1019 => 0.27294361639856
1020 => 0.2569021542507
1021 => 0.26223048450446
1022 => 0.26332864598502
1023 => 0.25071598561242
1024 => 0.24209998703137
1025 => 0.24152539815559
1026 => 0.2265864439738
1027 => 0.23456671271469
1028 => 0.24158901896071
1029 => 0.23822587922185
1030 => 0.23716120965146
1031 => 0.24260037558789
1101 => 0.24302304536446
1102 => 0.23338612966621
1103 => 0.2353899496013
1104 => 0.24374621183801
1105 => 0.2351793932329
1106 => 0.21853546406505
1107 => 0.2144075395111
1108 => 0.21385679828286
1109 => 0.20266153950272
1110 => 0.21468338716823
1111 => 0.20943552849675
1112 => 0.22601345116097
1113 => 0.21654423064435
1114 => 0.21613603147377
1115 => 0.21551897855763
1116 => 0.20588275685525
1117 => 0.20799247699424
1118 => 0.21500550805567
1119 => 0.21750783654584
1120 => 0.21724682318335
1121 => 0.21497114037753
1122 => 0.21601293631265
1123 => 0.21265694861985
1124 => 0.21147187951668
1125 => 0.20773147544814
1126 => 0.20223411478039
1127 => 0.20299855649851
1128 => 0.19210684655302
1129 => 0.18617246490792
1130 => 0.18452990628245
1201 => 0.18233340824122
1202 => 0.18477800658086
1203 => 0.19207599170722
1204 => 0.18327307329092
1205 => 0.16818108711911
1206 => 0.16908814120353
1207 => 0.17112602242444
1208 => 0.1673284442512
1209 => 0.1637343552168
1210 => 0.16685912403455
1211 => 0.16046445053942
1212 => 0.17189878816542
1213 => 0.17158952137699
1214 => 0.17585153534927
1215 => 0.17851666015147
1216 => 0.1723744103268
1217 => 0.17082965110631
1218 => 0.1717096161637
1219 => 0.15716575391152
1220 => 0.1746629915193
1221 => 0.17481430835672
1222 => 0.17351864172761
1223 => 0.18283538058715
1224 => 0.20249660554451
1225 => 0.19509926184461
1226 => 0.19223478677811
1227 => 0.18678941758278
1228 => 0.19404504872153
1229 => 0.19348792945555
1230 => 0.19096842485359
1231 => 0.18944462060899
]
'min_raw' => 0.14230725035762
'max_raw' => 0.36514410942417
'avg_raw' => 0.2537256798909
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1423072'
'max' => '$0.365144'
'avg' => '$0.253725'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.087509820006548
'max_diff' => 0.21224228601046
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.004466861977873
]
1 => [
'year' => 2028
'avg' => 0.0076664318933277
]
2 => [
'year' => 2029
'avg' => 0.020943310192659
]
3 => [
'year' => 2030
'avg' => 0.016157732623923
]
4 => [
'year' => 2031
'avg' => 0.015868895842452
]
5 => [
'year' => 2032
'avg' => 0.027823168537137
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.004466861977873
'min' => '$0.004466'
'max_raw' => 0.027823168537137
'max' => '$0.027823'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027823168537137
]
1 => [
'year' => 2033
'avg' => 0.071564050500197
]
2 => [
'year' => 2034
'avg' => 0.04536073441436
]
3 => [
'year' => 2035
'avg' => 0.053503090263754
]
4 => [
'year' => 2036
'avg' => 0.1038496268824
]
5 => [
'year' => 2037
'avg' => 0.2537256798909
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027823168537137
'min' => '$0.027823'
'max_raw' => 0.2537256798909
'max' => '$0.253725'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.2537256798909
]
]
]
]
'prediction_2025_max_price' => '$0.007637'
'last_price' => 0.00740554
'sma_50day_nextmonth' => '$0.0070032'
'sma_200day_nextmonth' => '$0.009474'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.007279'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007161'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007197'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007244'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007871'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010155'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009755'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007283'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007235'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007253'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007372'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008187'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.009283'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012253'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010661'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013575'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007435'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007685'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008593'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010278'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017371'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011434'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005717'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '48.76'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 44.67
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007234'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007280'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 40.55
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 15.7
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.76
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000155'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -59.45
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 52.11
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 17
'sell_pct' => 45.16
'buy_pct' => 54.84
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767709068
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de SynFutures para 2026
La previsión del precio de SynFutures para 2026 sugiere que el precio medio podría oscilar entre $0.002558 en el extremo inferior y $0.007637 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, SynFutures podría potencialmente ganar 3.13% para 2026 si F alcanza el objetivo de precio previsto.
Predicción de precio de SynFutures 2027-2032
La predicción del precio de F para 2027-2032 está actualmente dentro de un rango de precios de $0.004466 en el extremo inferior y $0.027823 en el extremo superior. Considerando la volatilidad de precios en el mercado, si SynFutures alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de SynFutures | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002463 | $0.004466 | $0.00647 |
| 2028 | $0.004445 | $0.007666 | $0.010887 |
| 2029 | $0.009764 | $0.020943 | $0.032121 |
| 2030 | $0.0083045 | $0.016157 | $0.02401 |
| 2031 | $0.009818 | $0.015868 | $0.021919 |
| 2032 | $0.014987 | $0.027823 | $0.040659 |
Predicción de precio de SynFutures 2032-2037
La predicción de precio de SynFutures para 2032-2037 se estima actualmente entre $0.027823 en el extremo inferior y $0.253725 en el extremo superior. Comparado con el precio actual, SynFutures podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de SynFutures | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014987 | $0.027823 | $0.040659 |
| 2033 | $0.034827 | $0.071564 | $0.10830091 |
| 2034 | $0.027999 | $0.04536 | $0.062722 |
| 2035 | $0.0331039 | $0.053503 | $0.0739022 |
| 2036 | $0.054797 | $0.103849 | $0.1529018 |
| 2037 | $0.1423072 | $0.253725 | $0.365144 |
SynFutures Histograma de precios potenciales
Pronóstico de precio de SynFutures basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para SynFutures es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de F se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de SynFutures
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de SynFutures aumentar durante el próximo mes, alcanzando $0.009474 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para SynFutures alcance $0.0070032 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 48.76, lo que sugiere que el mercado de F está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de F para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.007279 | BUY |
| SMA 5 | $0.007161 | BUY |
| SMA 10 | $0.007197 | BUY |
| SMA 21 | $0.007244 | BUY |
| SMA 50 | $0.007871 | SELL |
| SMA 100 | $0.010155 | SELL |
| SMA 200 | $0.009755 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.007283 | BUY |
| EMA 5 | $0.007235 | BUY |
| EMA 10 | $0.007253 | BUY |
| EMA 21 | $0.007372 | BUY |
| EMA 50 | $0.008187 | SELL |
| EMA 100 | $0.009283 | SELL |
| EMA 200 | $0.012253 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.010661 | SELL |
| SMA 50 | $0.013575 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.010278 | SELL |
| EMA 50 | $0.017371 | SELL |
| EMA 100 | $0.011434 | SELL |
| EMA 200 | $0.005717 | BUY |
Osciladores de SynFutures
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 48.76 | NEUTRAL |
| Stoch RSI (14) | 44.67 | NEUTRAL |
| Estocástico Rápido (14) | 40.55 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 15.7 | NEUTRAL |
| Índice Direccional Medio (14) | 14.76 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000155 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -59.45 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 52.11 | NEUTRAL |
| VWMA (10) | 0.007234 | BUY |
| Promedio Móvil de Hull (9) | 0.007280 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.006688 | SELL |
Predicción de precios de SynFutures basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de SynFutures
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de SynFutures por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.010406 | $0.014622 | $0.020546 | $0.028871 | $0.040569 | $0.0570065 |
| Amazon.com acción | $0.015452 | $0.032241 | $0.067274 | $0.140371 | $0.292894 | $0.61114 |
| Apple acción | $0.0105041 | $0.014899 | $0.021133 | $0.029976 | $0.042519 | $0.06031 |
| Netflix acción | $0.011684 | $0.018436 | $0.02909 | $0.045899 | $0.072422 | $0.114272 |
| Google acción | $0.00959 | $0.012419 | $0.016082 | $0.020827 | $0.026971 | $0.034927 |
| Tesla acción | $0.016787 | $0.038056 | $0.086271 | $0.195571 | $0.443345 | $1.00 |
| Kodak acción | $0.005553 | $0.004164 | $0.003122 | $0.002341 | $0.001756 | $0.001316 |
| Nokia acción | $0.0049058 | $0.003249 | $0.002152 | $0.001426 | $0.000944 | $0.000625 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de SynFutures
Podría preguntarse cosas como: "¿Debo invertir en SynFutures ahora?", "¿Debería comprar F hoy?", "¿Será SynFutures una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de SynFutures regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como SynFutures, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de SynFutures a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de SynFutures es de $0.007405 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de SynFutures
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de SynFutures
basado en el historial de precios del último mes
Predicción de precios de SynFutures basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si SynFutures ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.007598 | $0.007795 | $0.007998 | $0.008206 |
| Si SynFutures ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00779 | $0.008195 | $0.008621 | $0.009069 |
| Si SynFutures ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.008368 | $0.009455 | $0.010684 | $0.012073 |
| Si SynFutures ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.00933 | $0.011755 | $0.014811 | $0.018661 |
| Si SynFutures ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.011255 | $0.0171067 | $0.025999 | $0.039516 |
| Si SynFutures ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.01703 | $0.039163 | $0.090063 | $0.207115 |
| Si SynFutures ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.026654 | $0.095939 | $0.345317 | $1.24 |
Cuadro de preguntas
¿Es F una buena inversión?
La decisión de adquirir SynFutures depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de SynFutures ha experimentado un aumento de 2.919% durante las últimas 24 horas, y SynFutures ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en SynFutures dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede SynFutures subir?
Parece que el valor medio de SynFutures podría potencialmente aumentar hasta $0.007637 para el final de este año. Mirando las perspectivas de SynFutures en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.02401. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de SynFutures la próxima semana?
Basado en nuestro nuevo pronóstico experimental de SynFutures, el precio de SynFutures aumentará en un 0.86% durante la próxima semana y alcanzará $0.007468 para el 13 de enero de 2026.
¿Cuál será el precio de SynFutures el próximo mes?
Basado en nuestro nuevo pronóstico experimental de SynFutures, el precio de SynFutures disminuirá en un -11.62% durante el próximo mes y alcanzará $0.006545 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de SynFutures este año en 2026?
Según nuestra predicción más reciente sobre el valor de SynFutures en 2026, se anticipa que F fluctúe dentro del rango de $0.002558 y $0.007637. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de SynFutures no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará SynFutures en 5 años?
El futuro de SynFutures parece estar en una tendencia alcista, con un precio máximo de $0.02401 proyectada después de un período de cinco años. Basado en el pronóstico de SynFutures para 2030, el valor de SynFutures podría potencialmente alcanzar su punto más alto de aproximadamente $0.02401, mientras que su punto más bajo se anticipa que esté alrededor de $0.0083045.
¿Cuánto será SynFutures en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de SynFutures, se espera que el valor de F en 2026 crezca en un 3.13% hasta $0.007637 si ocurre lo mejor. El precio estará entre $0.007637 y $0.002558 durante 2026.
¿Cuánto será SynFutures en 2027?
Según nuestra última simulación experimental para la predicción de precios de SynFutures, el valor de F podría disminuir en un -12.62% hasta $0.00647 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00647 y $0.002463 a lo largo del año.
¿Cuánto será SynFutures en 2028?
Nuestro nuevo modelo experimental de predicción de precios de SynFutures sugiere que el valor de F en 2028 podría aumentar en un 47.02% , alcanzando $0.010887 en el mejor escenario. Se espera que el precio oscile entre $0.010887 y $0.004445 durante el año.
¿Cuánto será SynFutures en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de SynFutures podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.032121 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.032121 y $0.009764.
¿Cuánto será SynFutures en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de SynFutures, se espera que el valor de F en 2030 aumente en un 224.23% , alcanzando $0.02401 en el mejor escenario. Se pronostica que el precio oscile entre $0.02401 y $0.0083045 durante el transcurso de 2030.
¿Cuánto será SynFutures en 2031?
Nuestra simulación experimental indica que el precio de SynFutures podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.021919 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.021919 y $0.009818 durante el año.
¿Cuánto será SynFutures en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de SynFutures, F podría experimentar un 449.04% aumento en valor, alcanzando $0.040659 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.040659 y $0.014987 a lo largo del año.
¿Cuánto será SynFutures en 2033?
Según nuestra predicción experimental de precios de SynFutures, se anticipa que el valor de F aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.10830091. A lo largo del año, el precio de F podría oscilar entre $0.10830091 y $0.034827.
¿Cuánto será SynFutures en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de SynFutures sugieren que F podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.062722 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.062722 y $0.027999.
¿Cuánto será SynFutures en 2035?
Basado en nuestra predicción experimental para el precio de SynFutures, F podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0739022 en 2035. El rango de precios esperado para el año está entre $0.0739022 y $0.0331039.
¿Cuánto será SynFutures en 2036?
Nuestra reciente simulación de predicción de precios de SynFutures sugiere que el valor de F podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.1529018 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.1529018 y $0.054797.
¿Cuánto será SynFutures en 2037?
Según la simulación experimental, el valor de SynFutures podría aumentar en un 4830.69% en 2037, con un máximo de $0.365144 bajo condiciones favorables. Se espera que el precio caiga entre $0.365144 y $0.1423072 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de SynFutures?
Los traders de SynFutures utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de SynFutures
Las medias móviles son herramientas populares para la predicción de precios de SynFutures. Una media móvil simple (SMA) calcula el precio de cierre promedio de F durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de F por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de F.
¿Cómo leer gráficos de SynFutures y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de SynFutures en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de F dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de SynFutures?
La acción del precio de SynFutures está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de F. La capitalización de mercado de SynFutures puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de F, grandes poseedores de SynFutures, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de SynFutures.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


