Previsão de Preço SynFutures - Projeção F
Previsão de Preço SynFutures até $0.007571 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002536 | $0.007571 |
| 2027 | $0.002441 | $0.006414 |
| 2028 | $0.0044069 | $0.010793 |
| 2029 | $0.00968 | $0.031845 |
| 2030 | $0.008233 | $0.0238042 |
| 2031 | $0.009734 | $0.02173 |
| 2032 | $0.014858 | $0.0403091 |
| 2033 | $0.034527 | $0.107368 |
| 2034 | $0.027758 | $0.062182 |
| 2035 | $0.032819 | $0.073266 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SynFutures hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.17, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SynFutures para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SynFutures'
'name_with_ticker' => 'SynFutures <small>F</small>'
'name_lang' => 'SynFutures'
'name_lang_with_ticker' => 'SynFutures <small>F</small>'
'name_with_lang' => 'SynFutures'
'name_with_lang_with_ticker' => 'SynFutures <small>F</small>'
'image' => '/uploads/coins/synfutures.png?1732911435'
'price_for_sd' => 0.007341
'ticker' => 'F'
'marketcap' => '$22.83M'
'low24h' => '$0.007152'
'high24h' => '$0.007431'
'volume24h' => '$4.83M'
'current_supply' => '3.11B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007341'
'change_24h_pct' => '1.0579%'
'ath_price' => '$0.1923'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de dez. de 2024'
'ath_pct' => '-96.17%'
'fdv' => '$73.52M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.3620017'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007404'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006488'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002536'
'current_year_max_price_prediction' => '$0.007571'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008233'
'grand_prediction_max_price' => '$0.0238042'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0074809334377079
107 => 0.0075088645275855
108 => 0.0075717946992765
109 => 0.0070340632722768
110 => 0.0072754888960344
111 => 0.0074173038314702
112 => 0.0067765787938997
113 => 0.0074046387575655
114 => 0.0070247025644772
115 => 0.0068957465140929
116 => 0.0070693688472676
117 => 0.0070017080551761
118 => 0.0069435372793109
119 => 0.0069110769868774
120 => 0.0070385660663632
121 => 0.0070326185484228
122 => 0.0068240216698199
123 => 0.006551915545179
124 => 0.0066432432921875
125 => 0.0066100630654971
126 => 0.0064898136436367
127 => 0.0065708472350001
128 => 0.0062140163087978
129 => 0.0056001072467244
130 => 0.0060056743776732
131 => 0.0059900604843038
201 => 0.0059821872512333
202 => 0.0062869597410891
203 => 0.0062576628984872
204 => 0.0062044888422891
205 => 0.006488837060395
206 => 0.0063850461357631
207 => 0.0067049053092612
208 => 0.0069155852481213
209 => 0.0068621500008444
210 => 0.0070602955016468
211 => 0.0066453472990225
212 => 0.006783176447102
213 => 0.0068115828434982
214 => 0.0064853282475218
215 => 0.006262456224257
216 => 0.0062475932012323
217 => 0.0058611638265479
218 => 0.0060675912793554
219 => 0.0062492388952776
220 => 0.0061622437836753
221 => 0.006134703730247
222 => 0.0062753998905032
223 => 0.0062863331871362
224 => 0.0060370528652444
225 => 0.0060888861378468
226 => 0.0063050395011636
227 => 0.0060834396276837
228 => 0.005652907271646
301 => 0.0055461292947732
302 => 0.0055318831443497
303 => 0.0052422928024024
304 => 0.0055532647097666
305 => 0.0054175171386731
306 => 0.0058463420892517
307 => 0.0056013995773155
308 => 0.0055908405951864
309 => 0.0055748791450322
310 => 0.0053256167748918
311 => 0.0053801893925025
312 => 0.0055615970850849
313 => 0.0056263253935023
314 => 0.005619573700631
315 => 0.0055607080884247
316 => 0.005587656464252
317 => 0.0055008463562756
318 => 0.005470191900353
319 => 0.0053734380052889
320 => 0.0052312365084903
321 => 0.0052510104987926
322 => 0.004969272124589
323 => 0.0048157661053356
324 => 0.0047732776623831
325 => 0.0047164603407527
326 => 0.0047796953300463
327 => 0.0049684739951734
328 => 0.0047407668734022
329 => 0.0043503789849228
330 => 0.004373841962209
331 => 0.0044265563059506
401 => 0.0043283234751284
402 => 0.0042353543448117
403 => 0.0043161834607981
404 => 0.0041507709660568
405 => 0.0044465456156726
406 => 0.0044385457402993
407 => 0.0045487922390945
408 => 0.004617731637277
409 => 0.0044588486438615
410 => 0.0044188900006828
411 => 0.0044416522598565
412 => 0.0040654428192748
413 => 0.0045180479016121
414 => 0.004521962049159
415 => 0.0044884467415146
416 => 0.004729444975245
417 => 0.0052380264176503
418 => 0.0050466776213763
419 => 0.004972581583911
420 => 0.0048317249625257
421 => 0.005019408047283
422 => 0.0050049969146859
423 => 0.0049398243078218
424 => 0.0049004077118395
425 => 0.0049730339985157
426 => 0.0048914085112008
427 => 0.0048767463307607
428 => 0.0047879094699031
429 => 0.0047561987523965
430 => 0.0047327213995947
501 => 0.004706875140997
502 => 0.0047638855469773
503 => 0.0046346924666824
504 => 0.0044788982768007
505 => 0.0044659456756286
506 => 0.0045017089462693
507 => 0.0044858863612731
508 => 0.004465869923179
509 => 0.0044276530917047
510 => 0.0044163149741797
511 => 0.0044531583556634
512 => 0.0044115643260709
513 => 0.0044729385824786
514 => 0.0044562481807282
515 => 0.0043630169533069
516 => 0.0042468163253187
517 => 0.0042457818959905
518 => 0.0042207466612976
519 => 0.0041888605258436
520 => 0.0041799905324162
521 => 0.0043093762581005
522 => 0.004577200838078
523 => 0.0045246204645294
524 => 0.0045626151730717
525 => 0.0047495115343546
526 => 0.0048089202674368
527 => 0.004766753355868
528 => 0.0047090326865709
529 => 0.0047115721030826
530 => 0.0049088211033059
531 => 0.0049211232814992
601 => 0.0049522069169608
602 => 0.0049921581727632
603 => 0.0047735572274853
604 => 0.0047012760182184
605 => 0.004667025171259
606 => 0.0045615458193698
607 => 0.0046752962572661
608 => 0.0046090187483833
609 => 0.0046179618486937
610 => 0.0046121376428844
611 => 0.0046153180530874
612 => 0.0044464629406301
613 => 0.0045079848688461
614 => 0.0044056927308128
615 => 0.0042687350408176
616 => 0.0042682759106171
617 => 0.0043017961112156
618 => 0.0042818569842541
619 => 0.0042282013062823
620 => 0.0042358228420905
621 => 0.0041690501686536
622 => 0.0042439302536041
623 => 0.0042460775465066
624 => 0.0042172446350549
625 => 0.0043326077373816
626 => 0.0043798720945322
627 => 0.0043608936545538
628 => 0.0043785405165906
629 => 0.0045268054164365
630 => 0.0045509790643625
701 => 0.0045617154019496
702 => 0.004547330131875
703 => 0.0043812505267861
704 => 0.0043886168634968
705 => 0.0043345675723549
706 => 0.0042889016169139
707 => 0.0042907280156452
708 => 0.0043142062529005
709 => 0.0044167370919749
710 => 0.0046325071982838
711 => 0.0046406955160924
712 => 0.0046506199961464
713 => 0.0046102521481226
714 => 0.0045980768188904
715 => 0.0046141392208668
716 => 0.0046951711281433
717 => 0.0049036071936064
718 => 0.004829931967095
719 => 0.004770032861118
720 => 0.0048225805257428
721 => 0.0048144912246561
722 => 0.0047462093826987
723 => 0.0047442929388147
724 => 0.0046132382530731
725 => 0.0045647903197253
726 => 0.0045243036003549
727 => 0.0044800931597349
728 => 0.0044538837285881
729 => 0.0044941533268031
730 => 0.0045033634603707
731 => 0.0044153132800814
801 => 0.0044033123658646
802 => 0.004475216043784
803 => 0.004443573915971
804 => 0.0044761186291137
805 => 0.0044836692817262
806 => 0.0044824534527493
807 => 0.0044494154372373
808 => 0.0044704728831168
809 => 0.0044206657460849
810 => 0.0043665079653528
811 => 0.0043319586753947
812 => 0.0043018098376079
813 => 0.0043185381650728
814 => 0.0042589047321326
815 => 0.0042398267967511
816 => 0.0044633390942604
817 => 0.0046284500315926
818 => 0.0046260492531726
819 => 0.0046114351319715
820 => 0.0045897215122328
821 => 0.0046935826416136
822 => 0.0046573995009061
823 => 0.0046837257589734
824 => 0.0046904268965611
825 => 0.0047107092217855
826 => 0.0047179584097284
827 => 0.00469604632888
828 => 0.0046225067092176
829 => 0.0044392529689559
830 => 0.0043539478581801
831 => 0.0043257957507551
901 => 0.0043268190263915
902 => 0.004298592516235
903 => 0.0043069064884996
904 => 0.0042957012559724
905 => 0.0042744812564027
906 => 0.0043172278898957
907 => 0.0043221540411933
908 => 0.0043121764661518
909 => 0.0043145265462676
910 => 0.004231916486402
911 => 0.0042381971498339
912 => 0.0042032256177366
913 => 0.0041966688770565
914 => 0.0041082638892342
915 => 0.003951641638799
916 => 0.0040384255692298
917 => 0.0039336027849367
918 => 0.0038939048082005
919 => 0.0040818288557675
920 => 0.0040629664935935
921 => 0.0040306823288233
922 => 0.0039829273205188
923 => 0.0039652145234078
924 => 0.0038575971753513
925 => 0.0038512385683119
926 => 0.0039045766319215
927 => 0.0038799629508164
928 => 0.0038453960206148
929 => 0.0037201981034182
930 => 0.0035794341928834
1001 => 0.0035836829705321
1002 => 0.0036284573514676
1003 => 0.0037586449026853
1004 => 0.003707778374157
1005 => 0.0036708741240836
1006 => 0.0036639630673825
1007 => 0.0037504694112737
1008 => 0.003872894011519
1009 => 0.003930332894858
1010 => 0.0038734127059138
1011 => 0.0038080258576554
1012 => 0.0038120056521354
1013 => 0.0038384814418316
1014 => 0.0038412636729811
1015 => 0.0037987035566415
1016 => 0.0038106839800938
1017 => 0.0037924846213568
1018 => 0.0036807951903817
1019 => 0.0036787750827464
1020 => 0.0036513646951497
1021 => 0.0036505347195069
1022 => 0.0036039028123633
1023 => 0.0035973786862028
1024 => 0.0035047882042148
1025 => 0.0035657315398491
1026 => 0.0035248539499743
1027 => 0.0034632417799844
1028 => 0.0034526198186551
1029 => 0.0034523005096712
1030 => 0.0035155624320217
1031 => 0.0035649922874535
1101 => 0.0035255650331514
1102 => 0.003516588211612
1103 => 0.0036124371803723
1104 => 0.0036002395254148
1105 => 0.0035896764348881
1106 => 0.0038619322313318
1107 => 0.0036464205240619
1108 => 0.003552445118714
1109 => 0.0034361327091505
1110 => 0.0034740046162025
1111 => 0.0034819847834724
1112 => 0.00320227440536
1113 => 0.0030887959397955
1114 => 0.0030498544067595
1115 => 0.0030274430039448
1116 => 0.0030376561616321
1117 => 0.0029355122329276
1118 => 0.0030041546423217
1119 => 0.002915706634075
1120 => 0.0029008780376577
1121 => 0.0030590340330085
1122 => 0.0030810405158277
1123 => 0.0029871540232429
1124 => 0.0030474443503248
1125 => 0.0030255822396267
1126 => 0.0029172228213152
1127 => 0.0029130842885736
1128 => 0.0028587133414826
1129 => 0.0027736333375752
1130 => 0.0027347494927882
1201 => 0.0027144984488181
1202 => 0.0027228544242452
1203 => 0.0027186293873722
1204 => 0.002691058163851
1205 => 0.0027202097376307
1206 => 0.0026457395128854
1207 => 0.0026160848693444
1208 => 0.0026026905548395
1209 => 0.0025365939440318
1210 => 0.0026417830451231
1211 => 0.0026625066231754
1212 => 0.0026832710330784
1213 => 0.0028640110448189
1214 => 0.0028549817845983
1215 => 0.0029366018995643
1216 => 0.0029334302919865
1217 => 0.00291015091304
1218 => 0.0028119390425366
1219 => 0.002851084543661
1220 => 0.0027306007757618
1221 => 0.0028208754067717
1222 => 0.0027796778351375
1223 => 0.0028069464663612
1224 => 0.0027579150087077
1225 => 0.0027850510418324
1226 => 0.0026674209523257
1227 => 0.0025575796298444
1228 => 0.002601782984479
1229 => 0.0026498370862335
1230 => 0.0027540306227948
1231 => 0.0026919738119969
]
'min_raw' => 0.0025365939440318
'max_raw' => 0.0075717946992765
'avg_raw' => 0.0050541943216541
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002536'
'max' => '$0.007571'
'avg' => '$0.005054'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0048052160559682
'max_diff' => 0.00022998469927646
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027142917877876
102 => 0.0026395303048727
103 => 0.0024852760110574
104 => 0.0024861490736084
105 => 0.0024624204111174
106 => 0.0024419153822837
107 => 0.0026991017832236
108 => 0.0026671165887514
109 => 0.0026161523674786
110 => 0.0026843700028898
111 => 0.002702407828452
112 => 0.0027029213399875
113 => 0.0027526911658315
114 => 0.0027792533308062
115 => 0.00278393502751
116 => 0.0028622489238237
117 => 0.0028884987088828
118 => 0.0029966178585326
119 => 0.0027769997166876
120 => 0.00277247682558
121 => 0.002685329964917
122 => 0.0026300600481471
123 => 0.0026891143434037
124 => 0.0027414283872858
125 => 0.0026869555080852
126 => 0.0026940685161236
127 => 0.0026209431263945
128 => 0.0026470820123533
129 => 0.0026695963422291
130 => 0.0026571652526028
131 => 0.0026385553097607
201 => 0.002737139232269
202 => 0.0027315767410075
203 => 0.0028233803560818
204 => 0.0028949478389718
205 => 0.0030232095625283
206 => 0.0028893617675622
207 => 0.0028844838219168
208 => 0.0029321665230474
209 => 0.0028884914089097
210 => 0.002916092573431
211 => 0.0030187625882116
212 => 0.0030209318438386
213 => 0.002984594017158
214 => 0.0029823828571021
215 => 0.0029893619342084
216 => 0.0030302386068074
217 => 0.003015955041388
218 => 0.0030324843449069
219 => 0.003053154492063
220 => 0.0031386549846614
221 => 0.0031592688639664
222 => 0.0031091878243264
223 => 0.0031137095814723
224 => 0.0030949778978917
225 => 0.0030768833262601
226 => 0.0031175572807879
227 => 0.003191889732136
228 => 0.003191427313814
301 => 0.0032086709977104
302 => 0.0032194136699235
303 => 0.0031732982566684
304 => 0.00314327881835
305 => 0.0031547901811878
306 => 0.0031731971010502
307 => 0.0031488210651586
308 => 0.0029983608795579
309 => 0.0030440008884353
310 => 0.0030364041592757
311 => 0.0030255854931585
312 => 0.0030714768750085
313 => 0.0030670505392763
314 => 0.0029344645993024
315 => 0.0029429523210055
316 => 0.0029349807657713
317 => 0.0029607384915595
318 => 0.0028871004071875
319 => 0.0029097509859803
320 => 0.0029239572166631
321 => 0.0029323247956727
322 => 0.002962554228758
323 => 0.0029590071536923
324 => 0.0029623337375916
325 => 0.0030071560065827
326 => 0.0032338516619942
327 => 0.0032461902063424
328 => 0.0031854307013609
329 => 0.0032097029251728
330 => 0.0031631055632059
331 => 0.0031943866844695
401 => 0.0032157884331837
402 => 0.0031190780460637
403 => 0.0031133514845837
404 => 0.0030665617987283
405 => 0.0030917039256037
406 => 0.003051700993962
407 => 0.0030615163141438
408 => 0.0030340718232314
409 => 0.00308346644273
410 => 0.0031386973024773
411 => 0.0031526507987822
412 => 0.0031159451573618
413 => 0.0030893678539539
414 => 0.0030427068642775
415 => 0.0031203051300173
416 => 0.0031429972276839
417 => 0.0031201859380886
418 => 0.0031149000638528
419 => 0.0031048833417274
420 => 0.0031170251588038
421 => 0.0031428736416466
422 => 0.0031306839744845
423 => 0.0031387354643994
424 => 0.0031080514875041
425 => 0.003173313522789
426 => 0.0032769653409855
427 => 0.0032772985985297
428 => 0.0032651088656607
429 => 0.0032601210896022
430 => 0.0032726284952607
501 => 0.0032794132497497
502 => 0.0033198599061832
503 => 0.0033632607800021
504 => 0.0035657937208304
505 => 0.0035089232814945
506 => 0.0036886225553359
507 => 0.0038307413499142
508 => 0.0038733565623065
509 => 0.0038341525721063
510 => 0.0037000378393892
511 => 0.0036934575307739
512 => 0.0038938815632329
513 => 0.003837252594061
514 => 0.0038305167583699
515 => 0.0037588588469905
516 => 0.0038012175476207
517 => 0.0037919530784282
518 => 0.0037773286605746
519 => 0.0038581461106444
520 => 0.0040094291625515
521 => 0.0039858502801883
522 => 0.0039682497382971
523 => 0.0038911292871703
524 => 0.003937573024225
525 => 0.003921035299031
526 => 0.0039920918615641
527 => 0.0039499995280151
528 => 0.0038368235739234
529 => 0.0038548472176454
530 => 0.0038521229801553
531 => 0.0039081875946586
601 => 0.003891358388994
602 => 0.0038488368076502
603 => 0.0040089120935267
604 => 0.0039985176948474
605 => 0.0040132545756843
606 => 0.0040197422063818
607 => 0.0041171772120519
608 => 0.0041570932163025
609 => 0.0041661548480954
610 => 0.0042040719649189
611 => 0.0041652114356871
612 => 0.004320681259702
613 => 0.0044240596207562
614 => 0.0045441389069225
615 => 0.0047196070182807
616 => 0.0047855846513222
617 => 0.0047736663824562
618 => 0.0049067043018981
619 => 0.0051457704858685
620 => 0.0048219884934004
621 => 0.0051629317176734
622 => 0.0050549930292474
623 => 0.0047990723407233
624 => 0.0047825940654891
625 => 0.0049559065270579
626 => 0.0053402968861112
627 => 0.0052440114608877
628 => 0.0053404543745735
629 => 0.005227948592892
630 => 0.0052223617325584
701 => 0.0053349902198749
702 => 0.0055981528195492
703 => 0.0054731341329465
704 => 0.0052938891898619
705 => 0.0054262408664753
706 => 0.0053115855956233
707 => 0.0050532351804041
708 => 0.0052439378332376
709 => 0.0051164204001867
710 => 0.0051536367663505
711 => 0.005421659443837
712 => 0.0053894102461818
713 => 0.005431143694143
714 => 0.005357485250846
715 => 0.0052886766499363
716 => 0.0051602402865445
717 => 0.0051222166111804
718 => 0.0051327249871025
719 => 0.0051222114037512
720 => 0.0050503524388246
721 => 0.0050348345021905
722 => 0.0050089705946105
723 => 0.0050169869010604
724 => 0.004968355188057
725 => 0.005060133278319
726 => 0.0050771681006174
727 => 0.0051439565410526
728 => 0.0051508907385007
729 => 0.0053368955944386
730 => 0.0052344472454726
731 => 0.0053031784429239
801 => 0.0052970304777007
802 => 0.0048046189180631
803 => 0.0048724688863972
804 => 0.004978022144632
805 => 0.0049304705448713
806 => 0.0048632437081703
807 => 0.0048089544330593
808 => 0.0047267006299028
809 => 0.0048424712783012
810 => 0.0049946973701093
811 => 0.0051547514434002
812 => 0.0053470459253011
813 => 0.0053041280354953
814 => 0.0051511566318184
815 => 0.0051580188172416
816 => 0.0052004381473578
817 => 0.0051455012606548
818 => 0.0051292993002707
819 => 0.0051982122467991
820 => 0.0051986868123879
821 => 0.0051354752848916
822 => 0.0050652272396667
823 => 0.0050649328977923
824 => 0.0050524329366601
825 => 0.0052301723082086
826 => 0.0053279109910829
827 => 0.0053391165735607
828 => 0.0053271567661008
829 => 0.0053317596213243
830 => 0.0052748876352847
831 => 0.0054048801305077
901 => 0.0055241740990498
902 => 0.0054922007671366
903 => 0.0054442681973218
904 => 0.0054060875967189
905 => 0.0054832066310315
906 => 0.0054797726418302
907 => 0.0055231321703043
908 => 0.005521165131636
909 => 0.0055065849530445
910 => 0.0054922012878407
911 => 0.0055492308945179
912 => 0.0055328072836623
913 => 0.0055163581624027
914 => 0.0054833669314822
915 => 0.0054878509876907
916 => 0.0054399266941098
917 => 0.0054177547230329
918 => 0.0050843414760327
919 => 0.0049952425618421
920 => 0.0050232748940221
921 => 0.0050325038656349
922 => 0.0049937279039958
923 => 0.005049322672259
924 => 0.0050406582865146
925 => 0.0050743663429499
926 => 0.0050533070127228
927 => 0.0050541712949811
928 => 0.0051161022948564
929 => 0.0051340811275935
930 => 0.0051249369481565
1001 => 0.0051313412179901
1002 => 0.0052789249132318
1003 => 0.0052579432312294
1004 => 0.005246797130846
1005 => 0.005249884676826
1006 => 0.0052875954751904
1007 => 0.0052981524397991
1008 => 0.005253421838927
1009 => 0.0052745170488828
1010 => 0.0053643377754939
1011 => 0.0053957699463949
1012 => 0.0054960863476131
1013 => 0.0054534701573938
1014 => 0.0055316940189268
1015 => 0.0057721275007999
1016 => 0.0059642024028516
1017 => 0.0057875623850938
1018 => 0.0061402834821205
1019 => 0.006414927450992
1020 => 0.0064043861580232
1021 => 0.006356495629421
1022 => 0.0060438207726485
1023 => 0.005756092707727
1024 => 0.0059967894516128
1025 => 0.0059974030371127
1026 => 0.0059767269733495
1027 => 0.0058483097170644
1028 => 0.0059722583311913
1029 => 0.0059820969220655
1030 => 0.0059765899274685
1031 => 0.0058781327181648
1101 => 0.005727806757492
1102 => 0.0057571800903779
1103 => 0.0058052942088449
1104 => 0.0057142041449303
1105 => 0.0056850953501681
1106 => 0.005739214137806
1107 => 0.0059135961476725
1108 => 0.0058806302388334
1109 => 0.005879769365728
1110 => 0.0060208115034625
1111 => 0.0059198557716429
1112 => 0.0057575505821721
1113 => 0.0057165663812882
1114 => 0.0055711000784165
1115 => 0.0056715741719432
1116 => 0.0056751900556986
1117 => 0.0056201614214944
1118 => 0.0057620158525576
1119 => 0.0057607086390024
1120 => 0.0058953783090512
1121 => 0.0061528161385664
1122 => 0.0060766791046325
1123 => 0.0059881400178532
1124 => 0.0059977666715087
1125 => 0.0061033473015037
1126 => 0.0060395108424374
1127 => 0.0060624668782012
1128 => 0.0061033125547942
1129 => 0.0061279557656238
1130 => 0.0059942208927078
1201 => 0.0059630408965527
1202 => 0.0058992575671108
1203 => 0.0058826176870317
1204 => 0.0059345678779792
1205 => 0.0059208808380919
1206 => 0.0056748861546704
1207 => 0.0056491783415513
1208 => 0.0056499667634774
1209 => 0.0055853232450497
1210 => 0.0054867263632253
1211 => 0.0057458330817458
1212 => 0.0057250231860524
1213 => 0.0057020506717649
1214 => 0.0057048646736858
1215 => 0.0058173341182541
1216 => 0.0057520961605614
1217 => 0.0059255419633784
1218 => 0.0058898867205773
1219 => 0.0058533170553379
1220 => 0.0058482620136626
1221 => 0.0058341858125226
1222 => 0.00578591328129
1223 => 0.0057276212990972
1224 => 0.0056891318832885
1225 => 0.0052479234359601
1226 => 0.0053298091573928
1227 => 0.0054240112157827
1228 => 0.0054565293888479
1229 => 0.0054009048036308
1230 => 0.0057881096789502
1231 => 0.0058588557408701
]
'min_raw' => 0.0024419153822837
'max_raw' => 0.006414927450992
'avg_raw' => 0.0044284214166378
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002441'
'max' => '$0.006414'
'avg' => '$0.004428'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.4678561748175E-5
'max_diff' => -0.0011568672482845
'year' => 2027
]
2 => [
'items' => [
101 => 0.0056445613046634
102 => 0.0056044755652333
103 => 0.0057907376933537
104 => 0.005678398860478
105 => 0.0057289850300433
106 => 0.0056196454005984
107 => 0.0058418150862401
108 => 0.0058401225254715
109 => 0.005753693499827
110 => 0.0058267427204613
111 => 0.0058140486207231
112 => 0.0057164704636357
113 => 0.0058449084878668
114 => 0.0058449721915244
115 => 0.0057617861334706
116 => 0.0056646430294334
117 => 0.0056472761368493
118 => 0.0056341925162008
119 => 0.0057257672614043
120 => 0.005807872891607
121 => 0.0059606511137022
122 => 0.0059990631886579
123 => 0.0061489880744469
124 => 0.0060597151046698
125 => 0.0060992886558934
126 => 0.0061422513437674
127 => 0.0061628492362347
128 => 0.0061292860758031
129 => 0.0063621811349782
130 => 0.0063818446136929
131 => 0.0063884376080174
201 => 0.0063099067044328
202 => 0.0063796605272028
203 => 0.0063470250235325
204 => 0.0064319335376785
205 => 0.0064452482768629
206 => 0.0064339711664593
207 => 0.0064381974748353
208 => 0.0062394626273331
209 => 0.0062291571770802
210 => 0.0060886416316415
211 => 0.0061459027550463
212 => 0.0060388558294382
213 => 0.006072801512254
214 => 0.0060877644457929
215 => 0.0060799486584512
216 => 0.0061491402130497
217 => 0.0060903132567402
218 => 0.0059350592469926
219 => 0.0057797629383938
220 => 0.005777813319741
221 => 0.0057369265428944
222 => 0.0057073728920211
223 => 0.0057130659736514
224 => 0.0057331291358769
225 => 0.0057062067845597
226 => 0.0057119520332111
227 => 0.0058073614412154
228 => 0.0058264951175619
229 => 0.0057614714093265
301 => 0.0055003918378854
302 => 0.0054363222561852
303 => 0.0054823742009563
304 => 0.0054603643374808
305 => 0.0044069401843104
306 => 0.0046544265634364
307 => 0.004507378560803
308 => 0.0045751450457698
309 => 0.0044250471129768
310 => 0.0044966817138123
311 => 0.0044834534187148
312 => 0.0048814041926951
313 => 0.0048751907387228
314 => 0.0048781647903307
315 => 0.0047362055582364
316 => 0.0049623504695757
317 => 0.0050737575848095
318 => 0.0050531390927841
319 => 0.0050583283230189
320 => 0.0049691601548424
321 => 0.0048790281331106
322 => 0.0047790578497913
323 => 0.004964790279498
324 => 0.004944140003873
325 => 0.0049915043064222
326 => 0.0051119650635153
327 => 0.0051297033675832
328 => 0.0051535438281345
329 => 0.0051449987201064
330 => 0.0053485778610831
331 => 0.0053239230838524
401 => 0.0053833340033149
402 => 0.0052611212344633
403 => 0.0051228258859651
404 => 0.005149111310499
405 => 0.0051465798127424
406 => 0.0051143509407824
407 => 0.0050852561562271
408 => 0.0050368215373472
409 => 0.0051900758384579
410 => 0.005183853993708
411 => 0.0052845784281052
412 => 0.0052667744059405
413 => 0.0051478747885417
414 => 0.0051521213116378
415 => 0.0051806812202682
416 => 0.0052795273901295
417 => 0.0053088716633048
418 => 0.0052952782268029
419 => 0.0053274528827226
420 => 0.0053528824188951
421 => 0.0053306464409458
422 => 0.0056454609971804
423 => 0.0055147280446375
424 => 0.0055784463760729
425 => 0.00559364282267
426 => 0.0055547174442583
427 => 0.0055631589650225
428 => 0.0055759455688035
429 => 0.0056535833230883
430 => 0.0058573272549966
501 => 0.005947564055507
502 => 0.0062190459220478
503 => 0.0059400711453815
504 => 0.0059235179366465
505 => 0.0059724200187775
506 => 0.006131808613711
507 => 0.0062609780992951
508 => 0.0063038310696298
509 => 0.0063094947970849
510 => 0.0063898898182444
511 => 0.0064359707450946
512 => 0.0063801277480766
513 => 0.0063328066551095
514 => 0.0061633083738113
515 => 0.0061829282614
516 => 0.0063180898307802
517 => 0.0065090135085065
518 => 0.0066728458862187
519 => 0.0066154774976787
520 => 0.007053157806468
521 => 0.0070965520213207
522 => 0.007090556343931
523 => 0.0071894148232906
524 => 0.0069932008739411
525 => 0.006909315609128
526 => 0.0063430380125262
527 => 0.0065021389190083
528 => 0.0067334014302487
529 => 0.0067027929696961
530 => 0.0065348439523687
531 => 0.0066727184818286
601 => 0.006627132850654
602 => 0.006591177571997
603 => 0.0067558956737985
604 => 0.0065747813546211
605 => 0.0067315946763696
606 => 0.006530479969201
607 => 0.0066157395516452
608 => 0.0065673420891079
609 => 0.0065986611787394
610 => 0.0064155704207076
611 => 0.0065143617494647
612 => 0.0064114603766355
613 => 0.0064114115879866
614 => 0.0064091400344781
615 => 0.0065302030432771
616 => 0.0065341509036477
617 => 0.0064446851572292
618 => 0.0064317917454527
619 => 0.0064794654465012
620 => 0.0064236520283355
621 => 0.0064497667754098
622 => 0.0064244430174209
623 => 0.0064187421060976
624 => 0.0063733162747439
625 => 0.0063537455775874
626 => 0.0063614197522172
627 => 0.0063352238378976
628 => 0.0063194398519724
629 => 0.0064060002024005
630 => 0.0063597544990013
701 => 0.0063989123850978
702 => 0.0063542870317716
703 => 0.0061995961148023
704 => 0.0061106317326265
705 => 0.005818434930327
706 => 0.0059013015809902
707 => 0.0059562422561116
708 => 0.0059380843633117
709 => 0.0059770945432175
710 => 0.0059794894514362
711 => 0.0059668068442871
712 => 0.005952122009951
713 => 0.0059449742447185
714 => 0.0059982478307075
715 => 0.0060291749404806
716 => 0.0059617562878714
717 => 0.0059459610408523
718 => 0.006014125020926
719 => 0.0060557050093939
720 => 0.0063627082824637
721 => 0.0063399644883872
722 => 0.0063970469482751
723 => 0.0063906203392935
724 => 0.006450451851205
725 => 0.0065482510864967
726 => 0.0063493978960523
727 => 0.0063839119340875
728 => 0.0063754498890068
729 => 0.0064678362783304
730 => 0.0064681246985536
731 => 0.0064127344431117
801 => 0.006442762399191
802 => 0.0064260016178814
803 => 0.0064562906150633
804 => 0.0063396607311511
805 => 0.0064817033403382
806 => 0.0065622323467237
807 => 0.0065633504920555
808 => 0.0066015206019645
809 => 0.0066403036442958
810 => 0.0067147443167595
811 => 0.0066382275343435
812 => 0.0065005812915357
813 => 0.0065105189056718
814 => 0.0064298169638764
815 => 0.006431173578098
816 => 0.0064239318650634
817 => 0.0064456647910108
818 => 0.0063444298862481
819 => 0.0063681895160505
820 => 0.0063349258951909
821 => 0.006383839625472
822 => 0.0063312165374188
823 => 0.0063754458083525
824 => 0.0063945336954639
825 => 0.0064649684098377
826 => 0.0063208132728371
827 => 0.006026871190048
828 => 0.0060886613795536
829 => 0.0059972688357602
830 => 0.0060057275636443
831 => 0.0060228155401665
901 => 0.0059674278174198
902 => 0.0059779940494521
903 => 0.0059776165492905
904 => 0.0059743634568397
905 => 0.0059599549709779
906 => 0.0059390598158463
907 => 0.0060222996827011
908 => 0.006036443758115
909 => 0.0060678842856798
910 => 0.0061614299693993
911 => 0.0061520825496366
912 => 0.0061673285790902
913 => 0.0061340465823957
914 => 0.0060072714200159
915 => 0.0060141559212668
916 => 0.005928306080351
917 => 0.0060656889122309
918 => 0.006033154844277
919 => 0.0060121799190204
920 => 0.0060064567163329
921 => 0.0061002342817084
922 => 0.006128293999052
923 => 0.0061108090662211
924 => 0.0060749469588678
925 => 0.0061438128066664
926 => 0.0061622384023204
927 => 0.0061663632136775
928 => 0.00628838029226
929 => 0.0061731826129296
930 => 0.0062009118393109
1001 => 0.0064172473478808
1002 => 0.0062210608938674
1003 => 0.0063249852340383
1004 => 0.0063198986783831
1005 => 0.0063730628542066
1006 => 0.0063155376642196
1007 => 0.0063162507578928
1008 => 0.0063634569443709
1009 => 0.006297164369143
1010 => 0.006280749395242
1011 => 0.0062580722263641
1012 => 0.0063075869949815
1013 => 0.0063372688594072
1014 => 0.0065764828877517
1015 => 0.0067310260595472
1016 => 0.0067243169328809
1017 => 0.0067856257916517
1018 => 0.0067580055892507
1019 => 0.0066688126698565
1020 => 0.0068210541073446
1021 => 0.0067728785464711
1022 => 0.0067768500811762
1023 => 0.0067767022604561
1024 => 0.0068087347968564
1025 => 0.0067860368090779
1026 => 0.006741296745266
1027 => 0.0067709972875557
1028 => 0.006859197280018
1029 => 0.0071329727629273
1030 => 0.007286181150206
1031 => 0.007123749425639
1101 => 0.0072357926541978
1102 => 0.0071686066421469
1103 => 0.0071563969451465
1104 => 0.007226768372611
1105 => 0.0072972629759437
1106 => 0.0072927727744679
1107 => 0.0072415973123864
1108 => 0.0072126895923858
1109 => 0.007431588533027
1110 => 0.0075928695436453
1111 => 0.0075818712599627
1112 => 0.0076304141073041
1113 => 0.007772937408472
1114 => 0.0077859679529706
1115 => 0.0077843264038674
1116 => 0.0077520288397309
1117 => 0.00789236153872
1118 => 0.0080094295451357
1119 => 0.0077445528867996
1120 => 0.0078454144508039
1121 => 0.0078906944564421
1122 => 0.0079571789386912
1123 => 0.0080693494043386
1124 => 0.0081911962817781
1125 => 0.0082084267662311
1126 => 0.0081962009129571
1127 => 0.0081158396218659
1128 => 0.0082491659290958
1129 => 0.0083272653529845
1130 => 0.0083737717726367
1201 => 0.0084917043149442
1202 => 0.0078909740903418
1203 => 0.0074657473791387
1204 => 0.0073993420878362
1205 => 0.007534379858959
1206 => 0.007569988242298
1207 => 0.0075556345476231
1208 => 0.0070770032242429
1209 => 0.0073968221929737
1210 => 0.0077409205121852
1211 => 0.0077541387300107
1212 => 0.0079264015433645
1213 => 0.0079824973766839
1214 => 0.0081211915204368
1215 => 0.0081125161639827
1216 => 0.0081462859808807
1217 => 0.0081385228847876
1218 => 0.0083954245805923
1219 => 0.008678825301336
1220 => 0.0086690120355357
1221 => 0.0086282698288837
1222 => 0.0086887789533405
1223 => 0.0089812788682149
1224 => 0.0089543501632689
1225 => 0.0089805091063423
1226 => 0.009325382990552
1227 => 0.0097737680977626
1228 => 0.0095654481983345
1229 => 0.010017442437657
1230 => 0.010301948852126
1231 => 0.010793973277437
]
'min_raw' => 0.0044069401843104
'max_raw' => 0.010793973277437
'avg_raw' => 0.0076004567308734
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0044069'
'max' => '$0.010793'
'avg' => '$0.00760045'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019650248020267
'max_diff' => 0.0043790458264445
'year' => 2028
]
3 => [
'items' => [
101 => 0.010732369396116
102 => 0.010923910894248
103 => 0.010622085591435
104 => 0.0099290336872186
105 => 0.0098193555704803
106 => 0.010038933937683
107 => 0.010578745927306
108 => 0.010021933337102
109 => 0.010134575798906
110 => 0.010102134762328
111 => 0.010100406117355
112 => 0.010166381465093
113 => 0.010070680782156
114 => 0.0096807789836462
115 => 0.0098594686801974
116 => 0.009790468006975
117 => 0.0098670293982562
118 => 0.010280199650682
119 => 0.010097527233336
120 => 0.009905096680764
121 => 0.010146447297447
122 => 0.010453769569554
123 => 0.010434537894077
124 => 0.010397220405435
125 => 0.010607577135033
126 => 0.01095502482359
127 => 0.01104893853765
128 => 0.011118263721387
129 => 0.011127822492966
130 => 0.01122628378097
131 => 0.010696832619929
201 => 0.011537085209772
202 => 0.011682173620528
203 => 0.011654903012605
204 => 0.011816162674907
205 => 0.011768715991495
206 => 0.011699973191387
207 => 0.01195560405705
208 => 0.011662543897915
209 => 0.01124658189727
210 => 0.011018376916921
211 => 0.011318895643816
212 => 0.011502411943672
213 => 0.011623704544048
214 => 0.011660407611635
215 => 0.010737932406406
216 => 0.010240769433609
217 => 0.010559445199187
218 => 0.010948251627019
219 => 0.010694672780591
220 => 0.010704612591283
221 => 0.010343075795625
222 => 0.01098023961122
223 => 0.010887410202679
224 => 0.011369009338402
225 => 0.011254071839587
226 => 0.011646797239199
227 => 0.01154337947982
228 => 0.011972660816993
301 => 0.01214391276472
302 => 0.01243147143819
303 => 0.012643000768969
304 => 0.012767214837914
305 => 0.01275975749113
306 => 0.013251955515493
307 => 0.012961723536616
308 => 0.01259712376872
309 => 0.012590529309216
310 => 0.012779360695428
311 => 0.013175099477567
312 => 0.013277708786011
313 => 0.013335053391212
314 => 0.013247228132167
315 => 0.012932202120208
316 => 0.012796175485463
317 => 0.012912074119337
318 => 0.012770340049392
319 => 0.013015012817673
320 => 0.013351000787807
321 => 0.013281620600615
322 => 0.013513548164339
323 => 0.013753568793302
324 => 0.014096809072721
325 => 0.014186544791912
326 => 0.014334874523391
327 => 0.014487554540861
328 => 0.01453659124763
329 => 0.01463021753605
330 => 0.014629724079295
331 => 0.014911873201223
401 => 0.015223092420141
402 => 0.015340570470541
403 => 0.015610704769658
404 => 0.015148109249054
405 => 0.015498993265347
406 => 0.015815499431239
407 => 0.015438147732245
408 => 0.015958239137638
409 => 0.015978433108357
410 => 0.016283338090828
411 => 0.015974258478367
412 => 0.015790727991106
413 => 0.016320573631033
414 => 0.016576949246213
415 => 0.016499726824466
416 => 0.015912060382038
417 => 0.015570013306345
418 => 0.014674810133303
419 => 0.01573521696167
420 => 0.016251710195277
421 => 0.015910722789338
422 => 0.016082697002841
423 => 0.017020932548884
424 => 0.017378151898564
425 => 0.017303852770982
426 => 0.017316408100476
427 => 0.017509157177574
428 => 0.01836391273428
429 => 0.017851723391623
430 => 0.018243272952716
501 => 0.018450949428083
502 => 0.018643850912339
503 => 0.018170145834146
504 => 0.017553862487526
505 => 0.017358659681836
506 => 0.015876818311945
507 => 0.015799682033331
508 => 0.015756383102677
509 => 0.015483389469657
510 => 0.015268891253352
511 => 0.015098314307939
512 => 0.014650669464586
513 => 0.014801736458465
514 => 0.0140882840089
515 => 0.01454472560293
516 => 0.013406038266512
517 => 0.014354370916557
518 => 0.013838236570532
519 => 0.0141848069025
520 => 0.01418359775126
521 => 0.013545451889885
522 => 0.013177382674808
523 => 0.013411930704123
524 => 0.013663384809995
525 => 0.013704182392679
526 => 0.014030199204565
527 => 0.014121183489055
528 => 0.013845496859402
529 => 0.013382441502439
530 => 0.013489998700694
531 => 0.013175203031619
601 => 0.012623535730005
602 => 0.013019752817211
603 => 0.013155038751219
604 => 0.013214788726746
605 => 0.012672287295027
606 => 0.012501821566902
607 => 0.012411067043594
608 => 0.013312411380046
609 => 0.013361789057466
610 => 0.013109165878482
611 => 0.014251046602203
612 => 0.013992603826469
613 => 0.014281347726981
614 => 0.013480239012313
615 => 0.01351084244405
616 => 0.013131584740189
617 => 0.013343943712342
618 => 0.013193855235473
619 => 0.013326787205964
620 => 0.013406466080977
621 => 0.013785661552381
622 => 0.014358700719731
623 => 0.013729022394008
624 => 0.01345466253033
625 => 0.013624873846697
626 => 0.014078169012367
627 => 0.01476493439211
628 => 0.014358355464861
629 => 0.014538788288617
630 => 0.014578204833709
701 => 0.014278408585126
702 => 0.014775988307421
703 => 0.015042645322929
704 => 0.015316180243946
705 => 0.01555368295159
706 => 0.01520692438133
707 => 0.015578005757397
708 => 0.015278979672968
709 => 0.015010722362486
710 => 0.015011129198094
711 => 0.014842847468615
712 => 0.014516780412887
713 => 0.014456648645045
714 => 0.014769461695166
715 => 0.015020308137857
716 => 0.015040969052351
717 => 0.01517985053198
718 => 0.015262039161032
719 => 0.016067599455762
720 => 0.016391602470247
721 => 0.016787787223295
722 => 0.016942123512357
723 => 0.017406620409811
724 => 0.017031501440523
725 => 0.016950342091909
726 => 0.015823624554464
727 => 0.0160081244881
728 => 0.016303526683449
729 => 0.015828495627862
730 => 0.016129793495555
731 => 0.016189276076999
801 => 0.015812354254366
802 => 0.016013684485664
803 => 0.015479011081588
804 => 0.014370355138846
805 => 0.014777222558411
806 => 0.015076813929304
807 => 0.01464926010369
808 => 0.015415633787484
809 => 0.014967934102576
810 => 0.014826034795835
811 => 0.014272435009482
812 => 0.01453371279863
813 => 0.014887094749591
814 => 0.014668745788959
815 => 0.015121852667533
816 => 0.015763572846784
817 => 0.016220900861616
818 => 0.01625600882793
819 => 0.015961977552991
820 => 0.016433164547564
821 => 0.016436596630413
822 => 0.015905095775679
823 => 0.015579554461564
824 => 0.015505590790052
825 => 0.01569036654292
826 => 0.015914718418388
827 => 0.016268458795609
828 => 0.016482216696987
829 => 0.017039583935351
830 => 0.017190391529081
831 => 0.017356083352585
901 => 0.017577498726253
902 => 0.017843364652077
903 => 0.017261665142129
904 => 0.017284777148083
905 => 0.016743106618598
906 => 0.016164253974431
907 => 0.016603530976353
908 => 0.017177827221795
909 => 0.017046083028549
910 => 0.01703125911552
911 => 0.017056188825425
912 => 0.016956858006081
913 => 0.016507588391561
914 => 0.016281968003725
915 => 0.016573075865933
916 => 0.016727786738976
917 => 0.01696772981086
918 => 0.016938151762666
919 => 0.017556219347834
920 => 0.017796381722036
921 => 0.017734937909588
922 => 0.017746245049806
923 => 0.01818104755665
924 => 0.018664637368216
925 => 0.019117583042043
926 => 0.01957833883593
927 => 0.019022879742795
928 => 0.018740851871255
929 => 0.019031832644877
930 => 0.018877434150542
1001 => 0.019764653696557
1002 => 0.01982608285295
1003 => 0.020713238242893
1004 => 0.021555254348448
1005 => 0.021026399118834
1006 => 0.021525085780197
1007 => 0.022064456062981
1008 => 0.023104988848146
1009 => 0.022754574012487
1010 => 0.022486161740073
1011 => 0.022232513439601
1012 => 0.02276031528735
1013 => 0.02343932393264
1014 => 0.023585575891372
1015 => 0.023822559937065
1016 => 0.023573400190049
1017 => 0.023873485661284
1018 => 0.024932919238981
1019 => 0.024646650934408
1020 => 0.024240103921989
1021 => 0.025076424982498
1022 => 0.02537908632318
1023 => 0.027503322117065
1024 => 0.030185257554648
1025 => 0.029074918672951
1026 => 0.02838569549867
1027 => 0.028547679293218
1028 => 0.02952703132578
1029 => 0.029841568115559
1030 => 0.028986548693606
1031 => 0.029288556008086
1101 => 0.030952646003573
1102 => 0.031845376895753
1103 => 0.030632928434418
1104 => 0.027287831215997
1105 => 0.024203498811647
1106 => 0.025021602654579
1107 => 0.024928855067509
1108 => 0.026716712168205
1109 => 0.024639823530019
1110 => 0.024674793008208
1111 => 0.026499621100374
1112 => 0.026012788250858
1113 => 0.025224181383482
1114 => 0.024209256514504
1115 => 0.02233307402501
1116 => 0.020671286872847
1117 => 0.023930434164965
1118 => 0.023789893807354
1119 => 0.023586370542619
1120 => 0.024039289544769
1121 => 0.026238535655906
1122 => 0.026187835914779
1123 => 0.025865310028967
1124 => 0.026109943070743
1125 => 0.025181296028475
1126 => 0.025420629516168
1127 => 0.024203010237636
1128 => 0.024753425003805
1129 => 0.025222489387326
1130 => 0.025316661006934
1201 => 0.025528834474435
1202 => 0.023715835425096
1203 => 0.024529818771394
1204 => 0.025007957727418
1205 => 0.022847708529255
1206 => 0.024965256546501
1207 => 0.023684275145206
1208 => 0.023249490817911
1209 => 0.023834870636134
1210 => 0.023606747551672
1211 => 0.023410620719489
1212 => 0.023301178577244
1213 => 0.023731016909733
1214 => 0.023710964437755
1215 => 0.023007665497776
1216 => 0.022090240700706
1217 => 0.022398158576045
1218 => 0.022286289125189
1219 => 0.02188085980384
1220 => 0.022154070214707
1221 => 0.020950989833876
1222 => 0.018881152569334
1223 => 0.02024855046712
1224 => 0.020195907135498
1225 => 0.020169361980509
1226 => 0.021196923708594
1227 => 0.021098147358321
1228 => 0.020918867315355
1229 => 0.021877567185258
1230 => 0.021527628836411
1231 => 0.022606056371714
]
'min_raw' => 0.0096807789836462
'max_raw' => 0.031845376895753
'avg_raw' => 0.0207630779397
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00968'
'max' => '$0.031845'
'avg' => '$0.020763'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0052738387993358
'max_diff' => 0.021051403618317
'year' => 2029
]
4 => [
'items' => [
101 => 0.023316378494785
102 => 0.02313621782786
103 => 0.023804279217893
104 => 0.022405252381987
105 => 0.02286995297766
106 => 0.022965727126382
107 => 0.021865736977679
108 => 0.021114308390814
109 => 0.021064196670983
110 => 0.019761323054597
111 => 0.020457307624042
112 => 0.021069745243355
113 => 0.020776435150783
114 => 0.020683581937865
115 => 0.02115794886526
116 => 0.021194811238197
117 => 0.020354345228743
118 => 0.020529104726205
119 => 0.021257880881974
120 => 0.020510741436927
121 => 0.019059171539737
122 => 0.01869916213571
123 => 0.018651130244923
124 => 0.017674756188495
125 => 0.018723219685539
126 => 0.018265537272004
127 => 0.019711350532482
128 => 0.018885509752149
129 => 0.018849909406696
130 => 0.018796094263109
131 => 0.017955688779237
201 => 0.01813968416965
202 => 0.018751312870673
203 => 0.018969548881688
204 => 0.018946785077784
205 => 0.018748315556365
206 => 0.018839173886942
207 => 0.018546487547011
208 => 0.018443133908643
209 => 0.018116921396293
210 => 0.017637479121645
211 => 0.017704148510525
212 => 0.016754247911552
213 => 0.016236691650191
214 => 0.016093438898329
215 => 0.015901875331593
216 => 0.016115076512923
217 => 0.016751556962504
218 => 0.015983826503449
219 => 0.014667606481429
220 => 0.014746713547482
221 => 0.014924443637805
222 => 0.01459324479029
223 => 0.01427979287653
224 => 0.014552313884387
225 => 0.013994614109635
226 => 0.014991838991141
227 => 0.014964866852787
228 => 0.015336570620639
301 => 0.015569004614807
302 => 0.01503331950965
303 => 0.01489859615435
304 => 0.014975340700364
305 => 0.013706924305339
306 => 0.015232913940316
307 => 0.015246110762048
308 => 0.015133111562361
309 => 0.015945653933342
310 => 0.017660371774434
311 => 0.01701522594825
312 => 0.016765405984716
313 => 0.01629049805142
314 => 0.016923284675294
315 => 0.016874696535589
316 => 0.016654962541341
317 => 0.016522066736008
318 => 0.016766931332142
319 => 0.01649172530275
320 => 0.016442290737716
321 => 0.016142771058943
322 => 0.016035856160898
323 => 0.01595670062679
324 => 0.015869558161399
325 => 0.016061772725501
326 => 0.015626189235315
327 => 0.015100918246925
328 => 0.015057247647752
329 => 0.015177826011629
330 => 0.015124479061617
331 => 0.015056992243079
401 => 0.01492814152755
402 => 0.014889914272712
403 => 0.015014134305707
404 => 0.014873897130934
405 => 0.015080824721426
406 => 0.015024551866638
407 => 0.01471021627419
408 => 0.014318437744059
409 => 0.014314950093358
410 => 0.014230542051687
411 => 0.014123035719784
412 => 0.014093129917661
413 => 0.014529362925228
414 => 0.015432352195537
415 => 0.015255073795074
416 => 0.01538317560763
417 => 0.016013309738383
418 => 0.016213610429755
419 => 0.016071441743401
420 => 0.015876832476937
421 => 0.015885394297002
422 => 0.016550433072741
423 => 0.01659191072543
424 => 0.016696711372579
425 => 0.016831409820825
426 => 0.016094381471589
427 => 0.015850680328033
428 => 0.015735201206192
429 => 0.015379570206964
430 => 0.015763087750134
501 => 0.015539628501587
502 => 0.015569780788671
503 => 0.015550144072152
504 => 0.015560867047201
505 => 0.014991560246463
506 => 0.015198985722767
507 => 0.014854100637579
508 => 0.01439233822368
509 => 0.014390790234153
510 => 0.014503805930777
511 => 0.014436579772121
512 => 0.014255675907719
513 => 0.014281372447815
514 => 0.014056243717403
515 => 0.014308707151774
516 => 0.014315946899715
517 => 0.014218734725705
518 => 0.014607689479594
519 => 0.01476704455962
520 => 0.0147030574242
521 => 0.014762555051622
522 => 0.015262440512977
523 => 0.01534394365471
524 => 0.015380141966472
525 => 0.015331641024068
526 => 0.014771692040203
527 => 0.014796528158724
528 => 0.014614297200038
529 => 0.014460331242974
530 => 0.014466489073811
531 => 0.014545647589916
601 => 0.01489133747233
602 => 0.015618821450338
603 => 0.01564642893552
604 => 0.015679890012927
605 => 0.015543786994922
606 => 0.015502737022361
607 => 0.015556892532066
608 => 0.015830097264915
609 => 0.016532854012165
610 => 0.016284452842142
611 => 0.016082498824319
612 => 0.016259666944362
613 => 0.016232393300971
614 => 0.016002176303526
615 => 0.015995714879169
616 => 0.015553854856245
617 => 0.015390509266436
618 => 0.015254005465387
619 => 0.015104946878162
620 => 0.015016579951166
621 => 0.015152351713082
622 => 0.015183404321436
623 => 0.014886536991124
624 => 0.014846075070965
625 => 0.015088503341224
626 => 0.01498181969812
627 => 0.01509154647068
628 => 0.015117004023132
629 => 0.01511290477085
630 => 0.015001514794911
701 => 0.015072511443878
702 => 0.014904583203952
703 => 0.014721986465038
704 => 0.01460550112179
705 => 0.014503852210267
706 => 0.014560252934249
707 => 0.014359194651618
708 => 0.0142948720605
709 => 0.015048459376683
710 => 0.015605142429576
711 => 0.015597048037516
712 => 0.015547775507561
713 => 0.015474566522616
714 => 0.015824741571676
715 => 0.015702747586554
716 => 0.015791508403669
717 => 0.015814101756904
718 => 0.015882485032465
719 => 0.015906926175737
720 => 0.015833048065304
721 => 0.015585104103239
722 => 0.01496725132358
723 => 0.014679639186786
724 => 0.014584722391086
725 => 0.014588172436337
726 => 0.014493004786632
727 => 0.014521035924585
728 => 0.014483256700795
729 => 0.014411711990713
730 => 0.014555835250009
731 => 0.014572444113042
801 => 0.014538804022178
802 => 0.014546727481365
803 => 0.014268201896878
804 => 0.014289377592141
805 => 0.01417146863004
806 => 0.01414936212106
807 => 0.013851298532378
808 => 0.01332323568002
809 => 0.013615833760528
810 => 0.01326241642479
811 => 0.0131285719246
812 => 0.01376217097141
813 => 0.013698575200413
814 => 0.013589726884881
815 => 0.013428717540234
816 => 0.013368997608107
817 => 0.013006158205531
818 => 0.012984719717954
819 => 0.013164552723358
820 => 0.01308156597904
821 => 0.01296502116048
822 => 0.012542907641612
823 => 0.012068312289421
824 => 0.012082637339904
825 => 0.012233597291275
826 => 0.012672533709611
827 => 0.01250103365729
828 => 0.012376608401595
829 => 0.012353307291413
830 => 0.012644969469522
831 => 0.013057732556661
901 => 0.013251391762094
902 => 0.013059481371028
903 => 0.01283902504696
904 => 0.01285244320191
905 => 0.012941708175351
906 => 0.012951088661921
907 => 0.01280759425823
908 => 0.012847987092346
909 => 0.012786626683725
910 => 0.012410057969286
911 => 0.012403247035354
912 => 0.012310830999839
913 => 0.012308032679012
914 => 0.012150809948342
915 => 0.012128813401492
916 => 0.011816638127009
917 => 0.012022112838027
918 => 0.011884291189782
919 => 0.011676561457037
920 => 0.011640748772814
921 => 0.011639672200281
922 => 0.011852964188292
923 => 0.012019620396963
924 => 0.01188668865636
925 => 0.011856422675799
926 => 0.012179584165935
927 => 0.012138458920633
928 => 0.01210284472343
929 => 0.013020774149433
930 => 0.012294161381826
1001 => 0.011977316741542
1002 => 0.011585161332026
1003 => 0.011712849110784
1004 => 0.011739754801892
1005 => 0.01079669173333
1006 => 0.010414091163866
1007 => 0.010282797066424
1008 => 0.010207235457121
1009 => 0.010241669831323
1010 => 0.0098972844442348
1011 => 0.010128717119967
1012 => 0.0098305084849203
1013 => 0.0097805128367999
1014 => 0.010313746817224
1015 => 0.010387943210493
1016 => 0.010071398345797
1017 => 0.01027467139289
1018 => 0.010200961760308
1019 => 0.0098356204160575
1020 => 0.0098216670639761
1021 => 0.0096383516198006
1022 => 0.0093514984465304
1023 => 0.0092203988490478
1024 => 0.0091521210404199
1025 => 0.0091802937949677
1026 => 0.0091660487881679
1027 => 0.0090730904831047
1028 => 0.009171377049401
1029 => 0.0089202954873271
1030 => 0.0088203127862077
1031 => 0.0087751529196931
1101 => 0.008552303581637
1102 => 0.0089069559800346
1103 => 0.0089768269703122
1104 => 0.0090468356280248
1105 => 0.0096562131964725
1106 => 0.009625770415236
1107 => 0.0099009583313783
1108 => 0.0098902650349951
1109 => 0.0098117769835626
1110 => 0.0094806488052268
1111 => 0.0096126305953192
1112 => 0.0092064111599389
1113 => 0.0095107783811625
1114 => 0.0093718778920751
1115 => 0.0094638159860807
1116 => 0.0092985030033349
1117 => 0.0093899940335922
1118 => 0.0089933959741498
1119 => 0.0086230582865278
1120 => 0.008772092982858
1121 => 0.0089341107419537
1122 => 0.0092854065250305
1123 => 0.0090761776547572
1124 => 0.009151424268327
1125 => 0.0088993607089993
1126 => 0.0083792815877099
1127 => 0.008382225179056
1128 => 0.0083022223367852
1129 => 0.008233088200457
1130 => 0.009100210107407
1201 => 0.008992369791109
1202 => 0.0088205403608797
1203 => 0.0090505408814717
1204 => 0.0091113566697153
1205 => 0.0091130880097097
1206 => 0.0092808904523609
1207 => 0.0093704466460841
1208 => 0.0093862313133866
1209 => 0.0096502720825101
1210 => 0.0097387750655383
1211 => 0.010103306327221
1212 => 0.009362848428741
1213 => 0.0093475991855937
1214 => 0.0090537774604686
1215 => 0.0088674310772566
1216 => 0.0090665367567534
1217 => 0.009242917208152
1218 => 0.0090592580927522
1219 => 0.0090832400959678
1220 => 0.0088366927390446
1221 => 0.0089248218180133
1222 => 0.0090007304530901
1223 => 0.008958818166504
1224 => 0.0088960734449071
1225 => 0.0092284560225534
1226 => 0.0092097016949048
1227 => 0.0095192239926515
1228 => 0.009760518757897
1229 => 0.010192962113815
1230 => 0.0097416849281326
1231 => 0.0097252385938219
]
'min_raw' => 0.008233088200457
'max_raw' => 0.023804279217893
'avg_raw' => 0.016018683709175
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008233'
'max' => '$0.0238042'
'avg' => '$0.016018'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014476907831892
'max_diff' => -0.0080410976778602
'year' => 2030
]
5 => [
'items' => [
101 => 0.0098860041497834
102 => 0.0097387504531693
103 => 0.0098318097064046
104 => 0.010177968829429
105 => 0.010185282626228
106 => 0.010062767106548
107 => 0.010055312026041
108 => 0.010078842471769
109 => 0.010216661027355
110 => 0.010168502989296
111 => 0.01022423269015
112 => 0.01029392353443
113 => 0.010582194414679
114 => 0.010651695547971
115 => 0.010482843826278
116 => 0.010498089246195
117 => 0.010434934067198
118 => 0.01037392695562
119 => 0.010511062033075
120 => 0.010761679082521
121 => 0.010760120006864
122 => 0.010818258291036
123 => 0.010854477960432
124 => 0.010698996624967
125 => 0.010597783992786
126 => 0.010636595356291
127 => 0.010698655571737
128 => 0.010616470064849
129 => 0.010109183044301
130 => 0.010263061520715
131 => 0.010237448617966
201 => 0.010200972729817
202 => 0.010355698727759
203 => 0.010340775027801
204 => 0.0098937522743237
205 => 0.0099223692206395
206 => 0.0098954925656114
207 => 0.0099823365364534
208 => 0.0097340605937462
209 => 0.0098104286015589
210 => 0.0098583259001535
211 => 0.00988653777699
212 => 0.0099884584211888
213 => 0.0099764992099557
214 => 0.009987715019827
215 => 0.010138836429121
216 => 0.010903156658726
217 => 0.010944756922446
218 => 0.010739902009308
219 => 0.010821737506522
220 => 0.010664631247327
221 => 0.010770097731645
222 => 0.010842255221657
223 => 0.010516189399379
224 => 0.010496881897533
225 => 0.01033912720492
226 => 0.010423895641048
227 => 0.010289022964103
228 => 0.010322116001379
301 => 0.010229584984155
302 => 0.010396122392416
303 => 0.01058233709215
304 => 0.010629382279144
305 => 0.010505626646389
306 => 0.010416019412381
307 => 0.010258698627921
308 => 0.010520326598601
309 => 0.010596834590195
310 => 0.010519924734691
311 => 0.010502103040657
312 => 0.010468330962666
313 => 0.010509267946654
314 => 0.010596417911242
315 => 0.01055531959735
316 => 0.010582465757735
317 => 0.010479012587345
318 => 0.010699048095758
319 => 0.011048517437546
320 => 0.011049641038624
321 => 0.011008542503196
322 => 0.01099172586798
323 => 0.011033895459396
324 => 0.011056770732853
325 => 0.011193139458913
326 => 0.011339468535146
327 => 0.012022322485547
328 => 0.011830579828759
329 => 0.012436448476718
330 => 0.012915611915056
331 => 0.013059292078936
401 => 0.01292711308884
402 => 0.012474935903893
403 => 0.012452749933974
404 => 0.013128493552569
405 => 0.012937565029298
406 => 0.012914854688984
407 => 0.012673255037773
408 => 0.012816070354337
409 => 0.01278483454963
410 => 0.012735527303793
411 => 0.013008008979197
412 => 0.013518070350947
413 => 0.013438572502835
414 => 0.013379231047018
415 => 0.013119214061666
416 => 0.013275802363744
417 => 0.013220044268625
418 => 0.013459616430216
419 => 0.013317699188863
420 => 0.01293611855795
421 => 0.012996886531129
422 => 0.012987701574232
423 => 0.013176727336336
424 => 0.01311998649446
425 => 0.012976622014197
426 => 0.013516327016629
427 => 0.013481281575768
428 => 0.013530967998406
429 => 0.013552841498255
430 => 0.013881350422566
501 => 0.014015930017744
502 => 0.014046481941996
503 => 0.014174322148656
504 => 0.014043301161195
505 => 0.014567478527418
506 => 0.014916025889359
507 => 0.015320881586336
508 => 0.015912484574573
509 => 0.016134932770783
510 => 0.016094749495195
511 => 0.016543296129004
512 => 0.017349324459328
513 => 0.016257670865985
514 => 0.017407184750517
515 => 0.017043261926451
516 => 0.01618040745728
517 => 0.016124849801851
518 => 0.01670918486632
519 => 0.018005183799146
520 => 0.017680550765571
521 => 0.018005714782492
522 => 0.01762639368465
523 => 0.017607557194973
524 => 0.017987292003431
525 => 0.018874563081659
526 => 0.018453053851252
527 => 0.017848717011159
528 => 0.018294949929361
529 => 0.017908381678708
530 => 0.017037335216346
531 => 0.017680302524809
601 => 0.017250368596294
602 => 0.01737584617318
603 => 0.018279503343071
604 => 0.018170772921609
605 => 0.018311480155147
606 => 0.018063135570903
607 => 0.017831142568873
608 => 0.017398110402557
609 => 0.017269910926338
610 => 0.017305340649431
611 => 0.017269893369127
612 => 0.017027615851844
613 => 0.016975296045055
614 => 0.016888094074888
615 => 0.016915121611765
616 => 0.016751156396016
617 => 0.017060592635076
618 => 0.017118026727789
619 => 0.017343208617736
620 => 0.017366587748562
621 => 0.017993716106801
622 => 0.017648304345547
623 => 0.017880036376413
624 => 0.017859308082426
625 => 0.01619910813003
626 => 0.016427869035402
627 => 0.016783749215034
628 => 0.016623425676494
629 => 0.016396765702929
630 => 0.016213725621536
701 => 0.015936401181417
702 => 0.016326730005341
703 => 0.016839970901958
704 => 0.017379604384677
705 => 0.018027938655978
706 => 0.017883237994066
707 => 0.017367484226447
708 => 0.017390620563704
709 => 0.017533640296814
710 => 0.017348416747724
711 => 0.017293790707104
712 => 0.017526135517672
713 => 0.017527735548688
714 => 0.017314613470446
715 => 0.017077767281409
716 => 0.017076774887229
717 => 0.017034630395553
718 => 0.017633891096095
719 => 0.017963423889303
720 => 0.018001204292975
721 => 0.017960880967117
722 => 0.017976399814864
723 => 0.017784651943256
724 => 0.018222930716687
725 => 0.018625138660465
726 => 0.018517338339613
727 => 0.018355730333938
728 => 0.018227001773321
729 => 0.018487013981785
730 => 0.018475436047439
731 => 0.018621625724955
801 => 0.01861499371675
802 => 0.018565835626674
803 => 0.018517340095204
804 => 0.018709619395796
805 => 0.018654246045136
806 => 0.018598786684369
807 => 0.018487554445946
808 => 0.01850267275452
809 => 0.018341092652744
810 => 0.018266338304261
811 => 0.01714221226383
812 => 0.016841809053949
813 => 0.016936322019049
814 => 0.016967438141188
815 => 0.01683670227927
816 => 0.017024143921973
817 => 0.016994931340507
818 => 0.0171085804062
819 => 0.017037577404024
820 => 0.017040491392
821 => 0.017249296081964
822 => 0.017309912971779
823 => 0.017279082732381
824 => 0.017300675175257
825 => 0.017798263907729
826 => 0.017727522701963
827 => 0.017689942846325
828 => 0.017700352723162
829 => 0.017827497312731
830 => 0.017863090855974
831 => 0.017712278512142
901 => 0.017783402485329
902 => 0.018086239336181
903 => 0.018192215094898
904 => 0.018530438845472
905 => 0.018386755384781
906 => 0.018650492595355
907 => 0.01946113086602
908 => 0.020108724808528
909 => 0.019513170656046
910 => 0.020702394460872
911 => 0.021628375776952
912 => 0.021592835071738
913 => 0.021431368810946
914 => 0.020377163701076
915 => 0.019407068441661
916 => 0.020218594318582
917 => 0.020220663064934
918 => 0.0201509522724
919 => 0.019717984527028
920 => 0.020135885933373
921 => 0.020169057429414
922 => 0.020150490212643
923 => 0.019818534857413
924 => 0.019311700385582
925 => 0.019410734628187
926 => 0.019572954737819
927 => 0.019265838227626
928 => 0.019167695893774
929 => 0.019350161164748
930 => 0.019938102285976
1001 => 0.019826955422719
1002 => 0.01982405292894
1003 => 0.020299586343559
1004 => 0.019959207045225
1005 => 0.019411983767138
1006 => 0.019273802672433
1007 => 0.018783352876167
1008 => 0.01912210829737
1009 => 0.019134299501905
1010 => 0.018948766619708
1011 => 0.019427038737998
1012 => 0.01942263137623
1013 => 0.019876679571136
1014 => 0.020744649187081
1015 => 0.020487947861455
1016 => 0.020189432148777
1017 => 0.020221889083688
1018 => 0.02057786154912
1019 => 0.020362632470459
1020 => 0.020440030347776
1021 => 0.020577744398163
1022 => 0.020660830704009
1023 => 0.020209934242903
1024 => 0.020104808708948
1025 => 0.019889758760525
1026 => 0.019833656243079
1027 => 0.020008809938905
1028 => 0.019962663128326
1029 => 0.01913327487837
1030 => 0.019046599191577
1031 => 0.019049257411147
1101 => 0.018831307275501
1102 => 0.018498881004616
1103 => 0.019372477396361
1104 => 0.01930231538013
1105 => 0.01922486194432
1106 => 0.019234349548264
1107 => 0.019613548132992
1108 => 0.019393593803862
1109 => 0.019978378437659
1110 => 0.019858164297185
1111 => 0.019734867117618
1112 => 0.019717823691678
1113 => 0.019670364796766
1114 => 0.019507610587434
1115 => 0.019311075099655
1116 => 0.019181305347011
1117 => 0.017693740262653
1118 => 0.017969823689542
1119 => 0.018287432506381
1120 => 0.018397069797217
1121 => 0.018209527624573
1122 => 0.019515015895493
1123 => 0.019753541182589
1124 => 0.019031032529358
1125 => 0.018895880660172
1126 => 0.019523876429537
1127 => 0.01914511821125
1128 => 0.019315673013753
1129 => 0.01894702681923
1130 => 0.019696087425763
1201 => 0.019690380838961
1202 => 0.019398979344719
1203 => 0.019645269892221
1204 => 0.01960247084868
1205 => 0.01927347927937
1206 => 0.019706517045322
1207 => 0.019706731826651
1208 => 0.019426264224058
1209 => 0.019098739466481
1210 => 0.019040185775616
1211 => 0.018996073435131
1212 => 0.019304824082129
1213 => 0.019581648946789
1214 => 0.020096751389218
1215 => 0.020226260381777
1216 => 0.020731742601635
1217 => 0.020430752551192
1218 => 0.02056417754208
1219 => 0.020709029243806
1220 => 0.020778476476358
1221 => 0.020665315937658
1222 => 0.021450537889881
1223 => 0.021516834681228
1224 => 0.021539063421901
1225 => 0.021274290997613
1226 => 0.021509470881138
1227 => 0.021399438001976
1228 => 0.021685712985542
1229 => 0.021730604558308
1230 => 0.02169258299324
1231 => 0.021706832287001
]
'min_raw' => 0.0097340605937462
'max_raw' => 0.021730604558308
'avg_raw' => 0.015732332576027
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009734'
'max' => '$0.02173'
'avg' => '$0.015732'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015009723932892
'max_diff' => -0.0020736746595849
'year' => 2031
]
6 => [
'items' => [
101 => 0.021036783873423
102 => 0.021002038328392
103 => 0.020528280356463
104 => 0.020721340231866
105 => 0.020360424048401
106 => 0.020474874288026
107 => 0.020525322863131
108 => 0.020498971390428
109 => 0.020732255547557
110 => 0.020533916357193
111 => 0.02001046662384
112 => 0.019486874276957
113 => 0.019480301001551
114 => 0.019342448378789
115 => 0.0192428061815
116 => 0.019262000803694
117 => 0.019329645155903
118 => 0.019238874568778
119 => 0.019258245075727
120 => 0.019579924556086
121 => 0.019644435081758
122 => 0.019425203109633
123 => 0.018544955106525
124 => 0.018328940038628
125 => 0.018484207385667
126 => 0.01840999959428
127 => 0.014858306514141
128 => 0.015692724120311
129 => 0.015196941512869
130 => 0.015425420948239
131 => 0.014919355288325
201 => 0.01516087634641
202 => 0.015116276225918
203 => 0.016457995044429
204 => 0.016437045950552
205 => 0.016447073173189
206 => 0.015968447710906
207 => 0.016730911068421
208 => 0.017106527935628
209 => 0.017037011250227
210 => 0.017054507102264
211 => 0.016753870397734
212 => 0.016449983993648
213 => 0.016112927203735
214 => 0.016739137057916
215 => 0.016669513211889
216 => 0.016829205264804
217 => 0.017235347117645
218 => 0.017295153048259
219 => 0.017375532825495
220 => 0.017346722397178
221 => 0.018033103684423
222 => 0.017949978381648
223 => 0.018150286444554
224 => 0.017738237561747
225 => 0.017271965138813
226 => 0.017360588282819
227 => 0.017352053161389
228 => 0.017243391269428
229 => 0.017145296171966
301 => 0.016981995472816
302 => 0.017498703048884
303 => 0.017477725664915
304 => 0.01781732512784
305 => 0.017757297624075
306 => 0.017356419262709
307 => 0.01737073671181
308 => 0.017467028437747
309 => 0.017800295200653
310 => 0.017899231466415
311 => 0.017853400246186
312 => 0.017961879344982
313 => 0.018047616801621
314 => 0.017972646649498
315 => 0.019034065905494
316 => 0.018593290628512
317 => 0.018808121431618
318 => 0.018859357312302
319 => 0.018728117681304
320 => 0.018756578857929
321 => 0.018799689785309
322 => 0.019061450894375
323 => 0.019748387785751
324 => 0.020052627458804
325 => 0.020967947526105
326 => 0.020027364589177
327 => 0.019971554290219
328 => 0.020136431074358
329 => 0.020673820850333
330 => 0.021109324789305
331 => 0.021253806570687
401 => 0.021272902223231
402 => 0.021543959650071
403 => 0.021699324712214
404 => 0.021511046148935
405 => 0.021351499780143
406 => 0.020780024490754
407 => 0.020846174311576
408 => 0.021301880979421
409 => 0.021945593488741
410 => 0.022497965788608
411 => 0.022304544261313
412 => 0.02378021398026
413 => 0.023926520605323
414 => 0.023906305760399
415 => 0.024239614025638
416 => 0.023578064996186
417 => 0.023295239969186
418 => 0.021385995516004
419 => 0.021922415330279
420 => 0.022702133033159
421 => 0.022598934471391
422 => 0.022032682633646
423 => 0.022497536235812
424 => 0.02234384109762
425 => 0.022222615365311
426 => 0.022777973945785
427 => 0.02216733437368
428 => 0.022696041436312
429 => 0.022017969159713
430 => 0.022305427794557
501 => 0.02214225237061
502 => 0.022247846867931
503 => 0.021630543594238
504 => 0.021963625456533
505 => 0.021616686293695
506 => 0.021616521799359
507 => 0.021608863098111
508 => 0.022017035484626
509 => 0.022030345971496
510 => 0.021728705961147
511 => 0.021685234923153
512 => 0.02184597013471
513 => 0.021657791298596
514 => 0.02174583899163
515 => 0.021660458173522
516 => 0.021641237152971
517 => 0.021488080791032
518 => 0.021422096819186
519 => 0.021447970834744
520 => 0.021359649480675
521 => 0.021306432670126
522 => 0.021598276935045
523 => 0.021442356317263
524 => 0.021574379864153
525 => 0.021423922369771
526 => 0.020902371143034
527 => 0.020602421517234
528 => 0.019617259597752
529 => 0.019896650296027
530 => 0.020081886618035
531 => 0.020020666014716
601 => 0.020152191559873
602 => 0.020160266160139
603 => 0.020117505864665
604 => 0.020067994920438
605 => 0.020043895730916
606 => 0.020223511345521
607 => 0.020327784255382
608 => 0.02010047756109
609 => 0.020047222782976
610 => 0.020277042400852
611 => 0.020417232234994
612 => 0.021452315204433
613 => 0.021375632914783
614 => 0.021568090413665
615 => 0.021546422652792
616 => 0.021748148772504
617 => 0.022077885722415
618 => 0.021407438307345
619 => 0.021523804796274
620 => 0.021495274420483
621 => 0.0218067615823
622 => 0.021807734011219
623 => 0.021620981897772
624 => 0.021722223248179
625 => 0.021665713103793
626 => 0.021767834572502
627 => 0.021374608776054
628 => 0.021853515350026
629 => 0.022125024517411
630 => 0.022128794422463
701 => 0.022257487612973
702 => 0.022388247347939
703 => 0.022639229272432
704 => 0.022381247598285
705 => 0.021917163680505
706 => 0.021950669040387
707 => 0.021678576809194
708 => 0.021683150728758
709 => 0.021658734787662
710 => 0.021732008864838
711 => 0.021390688315435
712 => 0.021470795566158
713 => 0.021358644946038
714 => 0.021523561002728
715 => 0.02134613858733
716 => 0.021495260662272
717 => 0.021559616806342
718 => 0.021797092363448
719 => 0.02131106325446
720 => 0.020320016999956
721 => 0.020528346937927
722 => 0.020220210595705
723 => 0.020248729787335
724 => 0.020306343093224
725 => 0.020119599518936
726 => 0.020155224307944
727 => 0.020153951539793
728 => 0.020142983511471
729 => 0.02009440429542
730 => 0.020023954821041
731 => 0.020304603843764
801 => 0.020352291581529
802 => 0.020458295515322
803 => 0.020773691319133
804 => 0.020742175840787
805 => 0.020793578893534
806 => 0.020681366318003
807 => 0.02025393500688
808 => 0.020277146583509
809 => 0.019987697851017
810 => 0.020450893660462
811 => 0.0203412027789
812 => 0.020270484353975
813 => 0.020251188176532
814 => 0.020567365785537
815 => 0.020661971081628
816 => 0.020603019409829
817 => 0.020482107811075
818 => 0.020714293824988
819 => 0.020776417007169
820 => 0.020790324096645
821 => 0.021201713196046
822 => 0.020813316177339
823 => 0.020906807200076
824 => 0.021636197471282
825 => 0.020974741144275
826 => 0.021325129312927
827 => 0.021307979635404
828 => 0.021487226365997
829 => 0.021293276171675
830 => 0.021295680416781
831 => 0.021454839370323
901 => 0.021231329324542
902 => 0.021175985093978
903 => 0.021099527435837
904 => 0.021266469935241
905 => 0.021366544413474
906 => 0.022173071211427
907 => 0.022694124304996
908 => 0.022671504016024
909 => 0.022878211113818
910 => 0.022785087673042
911 => 0.022484367518053
912 => 0.022997660153702
913 => 0.022835232886707
914 => 0.022848623193249
915 => 0.022848124805371
916 => 0.022956124738284
917 => 0.022879596887766
918 => 0.022728752638973
919 => 0.022828890090928
920 => 0.023126262523442
921 => 0.024049315678464
922 => 0.024565868452842
923 => 0.024018218552844
924 => 0.024395980120539
925 => 0.024169457790131
926 => 0.024128291944241
927 => 0.024365554125113
928 => 0.024603231602025
929 => 0.024588092574254
930 => 0.024415550930889
1001 => 0.024318086534635
1002 => 0.025056119596043
1003 => 0.025599889783623
1004 => 0.025562808302312
1005 => 0.025726473901276
1006 => 0.026207001161823
1007 => 0.026250934552364
1008 => 0.026245399954953
1009 => 0.026136506462523
1010 => 0.026609647954881
1011 => 0.027004350911938
1012 => 0.02611130076526
1013 => 0.026451362570231
1014 => 0.026604027270589
1015 => 0.02682818434429
1016 => 0.027206374900712
1017 => 0.027617190155077
1018 => 0.027675283936404
1019 => 0.027634063618509
1020 => 0.027363119914948
1021 => 0.02781263886832
1022 => 0.028075956528688
1023 => 0.02823275616952
1024 => 0.028630373969697
1025 => 0.026604970075805
1026 => 0.025171288530603
1027 => 0.024947398454707
1028 => 0.025402687728084
1029 => 0.025522743878609
1030 => 0.02547434939487
1031 => 0.023860610471122
1101 => 0.024938902453245
1102 => 0.026099053960644
1103 => 0.026143620104909
1104 => 0.026724416207137
1105 => 0.026913547225659
1106 => 0.027381164214638
1107 => 0.027351914644659
1108 => 0.027465771940064
1109 => 0.027439598119584
1110 => 0.028305760123293
1111 => 0.029261265439687
1112 => 0.029228179328901
1113 => 0.029090814134644
1114 => 0.029294824872362
1115 => 0.030281008757053
1116 => 0.030190216748225
1117 => 0.030278413451156
1118 => 0.031441179830095
1119 => 0.032952941524304
1120 => 0.032250576438951
1121 => 0.033774506574058
1122 => 0.034733739814042
1123 => 0.036392634516026
1124 => 0.036184932729109
1125 => 0.036830728263059
1126 => 0.035813103181856
1127 => 0.033476430299452
1128 => 0.033106642871387
1129 => 0.033846966666882
1130 => 0.035666980478367
1201 => 0.03378964795508
1202 => 0.034169429879498
1203 => 0.034060052659716
1204 => 0.034054224412497
1205 => 0.034276664903648
1206 => 0.033954003369518
1207 => 0.032639422233768
1208 => 0.033241887021407
1209 => 0.033009246434164
1210 => 0.033267378510214
1211 => 0.034660410862893
1212 => 0.03404451805403
1213 => 0.033395725010962
1214 => 0.034209455465671
1215 => 0.035245613962637
1216 => 0.035180773026053
1217 => 0.03505495450767
1218 => 0.035764186908149
1219 => 0.036935631048143
1220 => 0.03725226769194
1221 => 0.03748600238904
1222 => 0.03751823045479
1223 => 0.037850199561646
1224 => 0.036065118007095
1225 => 0.038898088278313
1226 => 0.039387263984928
1227 => 0.03929531922634
1228 => 0.039839017436582
1229 => 0.039679047630836
1230 => 0.039447276480805
1231 => 0.040309153791964
]
'min_raw' => 0.014858306514141
'max_raw' => 0.040309153791964
'avg_raw' => 0.027583730153052
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014858'
'max' => '$0.0403091'
'avg' => '$0.027583'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051242459203943
'max_diff' => 0.018578549233656
'year' => 2032
]
7 => [
'items' => [
101 => 0.039321081004632
102 => 0.03791863607792
103 => 0.03714922705391
104 => 0.038162446923182
105 => 0.038781184940846
106 => 0.039190131411392
107 => 0.039313878366288
108 => 0.036203688806699
109 => 0.034527469133102
110 => 0.03560190672598
111 => 0.036912794743013
112 => 0.036057835957972
113 => 0.036091348723694
114 => 0.034872402175442
115 => 0.037020644465077
116 => 0.036707663633039
117 => 0.038331408743307
118 => 0.037943888941373
119 => 0.039267990045374
120 => 0.03891930984923
121 => 0.040366661848976
122 => 0.040944049747166
123 => 0.041913573891477
124 => 0.042626759798706
125 => 0.043045556204503
126 => 0.043020413239165
127 => 0.044679893242474
128 => 0.043701355862338
129 => 0.042472082289334
130 => 0.042449848608707
131 => 0.043086506811107
201 => 0.044420767744689
202 => 0.04476672219206
203 => 0.044960063532166
204 => 0.044663954539533
205 => 0.043601822345801
206 => 0.04314319904968
207 => 0.043533959385571
208 => 0.043056093073194
209 => 0.043881024393962
210 => 0.045013831293199
211 => 0.04477991114811
212 => 0.045561871121872
213 => 0.046371117430128
214 => 0.047528375996459
215 => 0.047830926238859
216 => 0.04833103028459
217 => 0.048845801623269
218 => 0.049011132303776
219 => 0.049326799871961
220 => 0.049325136148059
221 => 0.050276421611663
222 => 0.051325718936876
223 => 0.051721804385856
224 => 0.052632581035504
225 => 0.051072907940401
226 => 0.05225593789927
227 => 0.05332306053533
228 => 0.052050792936317
301 => 0.053804317421225
302 => 0.053872402803402
303 => 0.054900411239587
304 => 0.053858327746927
305 => 0.053239541895434
306 => 0.055025953463091
307 => 0.055890341749243
308 => 0.055629980962829
309 => 0.05364862252262
310 => 0.052495386925957
311 => 0.049477146926957
312 => 0.053052382584037
313 => 0.054793775581547
314 => 0.053644112735446
315 => 0.054223935803125
316 => 0.057387262452123
317 => 0.058591652429829
318 => 0.058341147733788
319 => 0.05838347890376
320 => 0.059033345874506
321 => 0.061915213911069
322 => 0.060188331782382
323 => 0.061508468464725
324 => 0.062208664200932
325 => 0.062859045023054
326 => 0.061261915278893
327 => 0.059184072948234
328 => 0.058525933060227
329 => 0.053529801422779
330 => 0.05326973107395
331 => 0.053123745706214
401 => 0.052203328612679
402 => 0.051480132900621
403 => 0.050905020819858
404 => 0.049395754976928
405 => 0.049905087893953
406 => 0.047499633148586
407 => 0.04903855785059
408 => 0.045199393995249
409 => 0.048396763735347
410 => 0.046656580752375
411 => 0.047825066823369
412 => 0.047820990085546
413 => 0.045669436759998
414 => 0.044428465703595
415 => 0.045219260760051
416 => 0.046067055833962
417 => 0.046204607732379
418 => 0.04730379617542
419 => 0.047610556042896
420 => 0.046681059323194
421 => 0.045119835857704
422 => 0.045482472461021
423 => 0.044421116884403
424 => 0.042561132060832
425 => 0.04389700563334
426 => 0.044353131605209
427 => 0.04455458281931
428 => 0.042725501366028
429 => 0.042150764262117
430 => 0.041844779050506
501 => 0.044883724410706
502 => 0.045050204697569
503 => 0.044198468012037
504 => 0.048048398595628
505 => 0.047177040733341
506 => 0.048150560953375
507 => 0.045449566990247
508 => 0.045552748597009
509 => 0.044274054769516
510 => 0.04499003787056
511 => 0.044484004091955
512 => 0.044932193511478
513 => 0.045200836401587
514 => 0.046479320408005
515 => 0.048411361969043
516 => 0.04628835753113
517 => 0.045363334095548
518 => 0.045937213432454
519 => 0.047465529731569
520 => 0.0497810071578
521 => 0.048410197918146
522 => 0.049018539780854
523 => 0.04915143541461
524 => 0.048140651431405
525 => 0.049818276205028
526 => 0.050717328950213
527 => 0.051639571034019
528 => 0.052440327994752
529 => 0.051271207265209
530 => 0.052522334032694
531 => 0.051514146711706
601 => 0.05060969846029
602 => 0.050611070134947
603 => 0.050043696534954
604 => 0.048944338691292
605 => 0.048741600237745
606 => 0.049796271276139
607 => 0.050642017571212
608 => 0.050711677286926
609 => 0.051179925891892
610 => 0.051457030592966
611 => 0.054173033369072
612 => 0.055265432153575
613 => 0.056601196709214
614 => 0.057121552283201
615 => 0.058687636003104
616 => 0.057422896208182
617 => 0.057149261797964
618 => 0.053350454955561
619 => 0.053972509363191
620 => 0.05496847848913
621 => 0.053366878119609
622 => 0.054382724916482
623 => 0.054583274592762
624 => 0.053312456351913
625 => 0.053991255283165
626 => 0.052188566571616
627 => 0.048450655656775
628 => 0.049822437568415
629 => 0.050832530792181
630 => 0.049391003218271
701 => 0.051974885599683
702 => 0.050465434854621
703 => 0.04998701143485
704 => 0.048120511104059
705 => 0.049001427412006
706 => 0.050192879332011
707 => 0.049456700566601
708 => 0.050984382042625
709 => 0.053147986430443
710 => 0.054689899762072
711 => 0.05480826872166
712 => 0.053816921749593
713 => 0.055405561599022
714 => 0.055417133105968
715 => 0.053625140866027
716 => 0.052527555596919
717 => 0.052278181914438
718 => 0.052901166265865
719 => 0.053657584277753
720 => 0.054850244656918
721 => 0.055570944345515
722 => 0.057450146903796
723 => 0.057958605235108
724 => 0.058517246786285
725 => 0.059263764177332
726 => 0.060160149708414
727 => 0.058198909197663
728 => 0.058276832939365
729 => 0.056450552930976
730 => 0.054498910826968
731 => 0.055979963908288
801 => 0.057916243795879
802 => 0.057472059050266
803 => 0.057422079192514
804 => 0.057506131449997
805 => 0.057171230657522
806 => 0.055656486785164
807 => 0.054895791895264
808 => 0.055877282377199
809 => 0.056398900887232
810 => 0.057207885706378
811 => 0.05710816125182
812 => 0.059192019267314
813 => 0.06000174347954
814 => 0.059794581376
815 => 0.059832704188685
816 => 0.06129867119745
817 => 0.062929128010307
818 => 0.064456265973273
819 => 0.066009736301303
820 => 0.064136967187883
821 => 0.06318609052843
822 => 0.064167152522324
823 => 0.063646587218916
824 => 0.066637909861996
825 => 0.066845022551622
826 => 0.069836128888027
827 => 0.072675044975592
828 => 0.070891972645457
829 => 0.072573329541433
830 => 0.074391854107469
831 => 0.077900083040332
901 => 0.076718634956726
902 => 0.075813664240335
903 => 0.074958471286133
904 => 0.07673799206577
905 => 0.079027317120234
906 => 0.079520415810083
907 => 0.080319424065835
908 => 0.079479364582993
909 => 0.08049112370056
910 => 0.084063077975055
911 => 0.083097904399574
912 => 0.081727202762996
913 => 0.084546917608574
914 => 0.085567361449825
915 => 0.092729370738314
916 => 0.10177170331288
917 => 0.098028118251852
918 => 0.095704354199738
919 => 0.096250493872405
920 => 0.099552447626361
921 => 0.10061293037336
922 => 0.097730172696695
923 => 0.098748411442941
924 => 0.10435900704578
925 => 0.10736891157725
926 => 0.10328105693941
927 => 0.092002828120271
928 => 0.081603786077793
929 => 0.084362080302425
930 => 0.084049375337186
1001 => 0.090077260376381
1002 => 0.083074885329003
1003 => 0.083192787366209
1004 => 0.089345322684373
1005 => 0.087703931742645
1006 => 0.085045088630515
1007 => 0.081623198574964
1008 => 0.075297518320758
1009 => 0.069694686914964
1010 => 0.080683129556738
1011 => 0.080209287928838
1012 => 0.079523095032244
1013 => 0.081050143069787
1014 => 0.088465054879946
1015 => 0.088294117162995
1016 => 0.087206698620939
1017 => 0.088031496001021
1018 => 0.084900497661949
1019 => 0.085707427225435
1020 => 0.081602138816403
1021 => 0.083457900629274
1022 => 0.085039383947343
1023 => 0.085356890137706
1024 => 0.086072247796862
1025 => 0.079959594922465
1026 => 0.08270399660501
1027 => 0.084316075477842
1028 => 0.077032644482454
1029 => 0.084172105465079
1030 => 0.079853187235347
1031 => 0.078387281520201
1101 => 0.080360930447253
1102 => 0.079591797540944
1103 => 0.0789305422331
1104 => 0.078561550409514
1105 => 0.080010780357857
1106 => 0.079943172048563
1107 => 0.077571950569661
1108 => 0.074478788813786
1109 => 0.075516955428631
1110 => 0.075139779764594
1111 => 0.073772846501494
1112 => 0.074693994476672
1113 => 0.070637724976312
1114 => 0.063659124127484
1115 => 0.068269401608544
1116 => 0.06809191094054
1117 => 0.068002412097172
1118 => 0.071466908205478
1119 => 0.071133876844189
1120 => 0.070529421662397
1121 => 0.073761745208061
1122 => 0.072581903633007
1123 => 0.076217897361688
1124 => 0.078612797992727
1125 => 0.078005373725776
1126 => 0.080257789344828
1127 => 0.075540872690635
1128 => 0.077107643193309
1129 => 0.07743055242246
1130 => 0.073721858837248
1201 => 0.071188364893565
1202 => 0.071019409731466
1203 => 0.06662668037009
1204 => 0.068973240938065
1205 => 0.071038117130608
1206 => 0.070049201675245
1207 => 0.069736140585086
1208 => 0.071335501800043
1209 => 0.071459785864047
1210 => 0.068626096033709
1211 => 0.069215309880722
1212 => 0.071672429571421
1213 => 0.069153396768836
1214 => 0.064259327515086
1215 => 0.063045530674355
1216 => 0.062883587801087
1217 => 0.059591674501582
1218 => 0.063126642383248
1219 => 0.061583534171651
1220 => 0.06645819452281
1221 => 0.063673814673556
1222 => 0.063553785623324
1223 => 0.063372344109465
1224 => 0.060538858345355
1225 => 0.061159211650281
1226 => 0.06322136051833
1227 => 0.06395715846622
1228 => 0.06388040871204
1229 => 0.063211254863875
1230 => 0.063517590068943
1231 => 0.062530777639159
]
'min_raw' => 0.034527469133102
'max_raw' => 0.10736891157725
'avg_raw' => 0.070948190355174
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034527'
'max' => '$0.107368'
'avg' => '$0.070948'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019669162618961
'max_diff' => 0.067059757785281
'year' => 2033
]
8 => [
'items' => [
101 => 0.062182313631478
102 => 0.06108246537066
103 => 0.059465992268094
104 => 0.059690772767411
105 => 0.056488116578033
106 => 0.054743139508231
107 => 0.054260152853738
108 => 0.053614282913948
109 => 0.054333105582031
110 => 0.056479043855441
111 => 0.053890587011507
112 => 0.049452859311719
113 => 0.049719574307996
114 => 0.050318803716238
115 => 0.049202143678278
116 => 0.048145318666522
117 => 0.049064142271321
118 => 0.04718381854339
119 => 0.050546031855406
120 => 0.05045509340781
121 => 0.051708318612653
122 => 0.052491986052011
123 => 0.050685886319636
124 => 0.050231657121157
125 => 0.050490406716177
126 => 0.046213852282344
127 => 0.051358832877865
128 => 0.051403326883705
129 => 0.051022342192609
130 => 0.053761885526269
131 => 0.059543176445287
201 => 0.057368022249664
202 => 0.056525736800735
203 => 0.054924551546615
204 => 0.057058035828757
205 => 0.056894217523428
206 => 0.056153369020482
207 => 0.055705301534313
208 => 0.056530879616079
209 => 0.055603003273714
210 => 0.055436331186288
211 => 0.054426479677509
212 => 0.054066008634191
213 => 0.053799130224484
214 => 0.053505323318327
215 => 0.054153388141189
216 => 0.052684787992556
217 => 0.050913800181953
218 => 0.050766561707855
219 => 0.051173100080178
220 => 0.050993237113648
221 => 0.050765700593169
222 => 0.050331271409692
223 => 0.050202385551066
224 => 0.050621202065073
225 => 0.050148382639278
226 => 0.050846053457846
227 => 0.050656325599082
228 => 0.049596521202936
301 => 0.048275612535495
302 => 0.048263853677655
303 => 0.047979266071979
304 => 0.047616800968118
305 => 0.047515971468303
306 => 0.048986761510132
307 => 0.052031252879677
308 => 0.051433546375332
309 => 0.051865450580148
310 => 0.05398999179654
311 => 0.054665319562048
312 => 0.054185987910106
313 => 0.053529849181038
314 => 0.053558715955156
315 => 0.055800940619082
316 => 0.055940785421002
317 => 0.056294128119812
318 => 0.056748273342417
319 => 0.054263330805295
320 => 0.053441675385125
321 => 0.053052329463341
322 => 0.051853294720082
323 => 0.053146350893217
324 => 0.052392942435318
325 => 0.052494602976386
326 => 0.05242839641565
327 => 0.05246454967468
328 => 0.050545092048263
329 => 0.051244441523606
330 => 0.050081637379786
331 => 0.048524773162102
401 => 0.048519554007337
402 => 0.048900594319008
403 => 0.048673936631517
404 => 0.048064006622383
405 => 0.048150644301392
406 => 0.047391607068822
407 => 0.048242805164238
408 => 0.048267214479882
409 => 0.047939456848073
410 => 0.049250844956764
411 => 0.049788121734885
412 => 0.04957238464038
413 => 0.049772985045224
414 => 0.05145838377907
415 => 0.051733177311789
416 => 0.051855222447181
417 => 0.051691698133638
418 => 0.049803791040148
419 => 0.049887527747745
420 => 0.049273123347576
421 => 0.048754016373774
422 => 0.048774777930368
423 => 0.049041666394086
424 => 0.050207183967941
425 => 0.052659946991106
426 => 0.052753027554888
427 => 0.052865843913544
428 => 0.052406963085931
429 => 0.052268560237424
430 => 0.052451149319411
501 => 0.053372278150758
502 => 0.055741671589022
503 => 0.054904169701473
504 => 0.054223267630402
505 => 0.054820602316611
506 => 0.054728647323733
507 => 0.053952454643609
508 => 0.053930669500268
509 => 0.052440907583299
510 => 0.051890176522834
511 => 0.051429944427203
512 => 0.050927382993437
513 => 0.050629447729489
514 => 0.051087211704069
515 => 0.05119190774116
516 => 0.050190998810396
517 => 0.050054578621618
518 => 0.0508719424606
519 => 0.050512251109459
520 => 0.050882202584024
521 => 0.050968034499508
522 => 0.050954213584238
523 => 0.050578654503359
524 => 0.050818024662178
525 => 0.050251842876891
526 => 0.049636205223146
527 => 0.049243466755638
528 => 0.048900750353539
529 => 0.049090909332218
530 => 0.048413027294886
531 => 0.048196159188073
601 => 0.050736931438369
602 => 0.052613827217568
603 => 0.052586536409606
604 => 0.052420410634764
605 => 0.052173581430732
606 => 0.053354221057079
607 => 0.052942909818894
608 => 0.053242173110878
609 => 0.053318348178728
610 => 0.053548907166649
611 => 0.053631312187616
612 => 0.053382226980287
613 => 0.052546266601292
614 => 0.050463132817566
615 => 0.049493428417929
616 => 0.049173409814345
617 => 0.049185041882783
618 => 0.048864177507411
619 => 0.048958686446091
620 => 0.048831311155422
621 => 0.048590093170288
622 => 0.04907601480137
623 => 0.049132012742679
624 => 0.049018592827653
625 => 0.049045307323503
626 => 0.048106238869369
627 => 0.048177634204387
628 => 0.047780095906525
629 => 0.047705562268071
630 => 0.046700620068694
701 => 0.044920219293797
702 => 0.045906734150775
703 => 0.044715162928526
704 => 0.04426389685141
705 => 0.046400120274203
706 => 0.04618570269217
707 => 0.04581871299681
708 => 0.045275858750019
709 => 0.045074508829338
710 => 0.043851170450916
711 => 0.043778889093262
712 => 0.044385208626523
713 => 0.044105413024104
714 => 0.043712474031428
715 => 0.042289288831541
716 => 0.040689157466441
717 => 0.040737455374286
718 => 0.041246427390022
719 => 0.042726332170002
720 => 0.042148107769851
721 => 0.041728599333181
722 => 0.04165003801337
723 => 0.042633397410068
724 => 0.044025056976558
725 => 0.044677992508527
726 => 0.044030953226292
727 => 0.04328766933793
728 => 0.043332909584169
729 => 0.043633872674407
730 => 0.043665499639803
731 => 0.043181698239297
801 => 0.043317885499657
802 => 0.043111004597947
803 => 0.041841376886025
804 => 0.041818413346749
805 => 0.041506826230731
806 => 0.041497391496691
807 => 0.040967304083295
808 => 0.04089314118984
809 => 0.039840620456537
810 => 0.040533392790524
811 => 0.040068717481066
812 => 0.039368342183888
813 => 0.039247597218667
814 => 0.039243967479209
815 => 0.039963096308359
816 => 0.040524989351458
817 => 0.040076800707018
818 => 0.039974756840451
819 => 0.041064318366862
820 => 0.040925661731052
821 => 0.040805585978681
822 => 0.043900449126234
823 => 0.041450623449762
824 => 0.04038235962366
825 => 0.039060180281059
826 => 0.039490688542017
827 => 0.039581402958083
828 => 0.036401799979869
829 => 0.035111835447601
830 => 0.034669168231415
831 => 0.034414406990104
901 => 0.03453050488686
902 => 0.033369385510071
903 => 0.034149676934415
904 => 0.033144245701093
905 => 0.032975681882871
906 => 0.034773517477079
907 => 0.03502367579721
908 => 0.033956422685433
909 => 0.034641771955778
910 => 0.034393254783284
911 => 0.033161480933826
912 => 0.033114436233092
913 => 0.032496375414378
914 => 0.031529229913249
915 => 0.031087218467255
916 => 0.030857015068462
917 => 0.030952001477379
918 => 0.030903973442398
919 => 0.030590558026736
920 => 0.030921938047153
921 => 0.030075399030666
922 => 0.029738300373273
923 => 0.029586040730357
924 => 0.028834688628257
925 => 0.030030423950495
926 => 0.030265998872452
927 => 0.030502037949779
928 => 0.032556596967183
929 => 0.032453957004797
930 => 0.033381772277078
1001 => 0.03334571908174
1002 => 0.033081091136474
1003 => 0.031964669364584
1004 => 0.032409655184555
1005 => 0.031040057996835
1006 => 0.032066253333431
1007 => 0.03159794063675
1008 => 0.031907916339603
1009 => 0.031350552076492
1010 => 0.031659020472704
1011 => 0.030321862425702
1012 => 0.029073243055733
1013 => 0.02957572393968
1014 => 0.03012197812619
1015 => 0.031306396385522
1016 => 0.030600966641502
1017 => 0.030854665852703
1018 => 0.030004815963914
1019 => 0.028251332895722
1020 => 0.028261257419461
1021 => 0.027991522251124
1022 => 0.027758431683703
1023 => 0.030681993733503
1024 => 0.030318402577934
1025 => 0.029739067657168
1026 => 0.030514530470467
1027 => 0.030719575146553
1028 => 0.030725412480223
1029 => 0.031291170131214
1030 => 0.031593115090965
1031 => 0.031646334198826
1101 => 0.032536566086664
1102 => 0.032834960073024
1103 => 0.034064002672546
1104 => 0.031567497170703
1105 => 0.031516083282763
1106 => 0.030525442822526
1107 => 0.029897162981238
1108 => 0.030568461680776
1109 => 0.031163140687156
1110 => 0.030543921156916
1111 => 0.030624778155127
1112 => 0.029793526527874
1113 => 0.030090659870593
1114 => 0.030346591133526
1115 => 0.030205280933078
1116 => 0.029993732723518
1117 => 0.031114383790263
1118 => 0.03105115226521
1119 => 0.03209472830222
1120 => 0.032908270449908
1121 => 0.034366283416618
1122 => 0.032844770877921
1123 => 0.032789320913546
1124 => 0.033331353209763
1125 => 0.032834877090704
1126 => 0.033148632860176
1127 => 0.034315732511511
1128 => 0.034340391488052
1129 => 0.033927321859691
1130 => 0.033902186535265
1201 => 0.033981521075878
1202 => 0.03444618595822
1203 => 0.03428381777062
1204 => 0.03447171434797
1205 => 0.034706681895121
1206 => 0.035678607294312
1207 => 0.035912935217619
1208 => 0.035343639849081
1209 => 0.03539504084673
1210 => 0.03518210875139
1211 => 0.034976419015323
1212 => 0.035438779503428
1213 => 0.03628375238316
1214 => 0.036278495850729
1215 => 0.036474513134901
1216 => 0.036596630279046
1217 => 0.036072414101165
1218 => 0.035731168645328
1219 => 0.035862023867109
1220 => 0.036071264216392
1221 => 0.035794170041907
1222 => 0.034083816434482
1223 => 0.034602628461163
1224 => 0.034516272771311
1225 => 0.034393291767752
1226 => 0.034914961272435
1227 => 0.034864644976087
1228 => 0.033357476552607
1229 => 0.033453960585083
1230 => 0.033363344066187
1231 => 0.033656144577133
]
'min_raw' => 0.027758431683703
'max_raw' => 0.062182313631478
'avg_raw' => 0.04497037265759
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027758'
'max' => '$0.062182'
'avg' => '$0.04497'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0067690374493991
'max_diff' => -0.045186597945767
'year' => 2034
]
9 => [
'items' => [
101 => 0.032819064902223
102 => 0.033076544972408
103 => 0.033238034058702
104 => 0.033333152371147
105 => 0.033676784938935
106 => 0.033636463623297
107 => 0.033674278509341
108 => 0.034183794891737
109 => 0.036760753908984
110 => 0.036901012102554
111 => 0.036210329460395
112 => 0.036486243552824
113 => 0.035956548831138
114 => 0.036312136446452
115 => 0.036555420461904
116 => 0.035456066776903
117 => 0.035390970186424
118 => 0.034859089226198
119 => 0.035144891926946
120 => 0.034690159280115
121 => 0.034801734765775
122 => 0.034489759980894
123 => 0.035051252480119
124 => 0.035679088341365
125 => 0.035837704473905
126 => 0.03542045371773
127 => 0.035118336672095
128 => 0.034587918663501
129 => 0.035470015632929
130 => 0.035727967668208
131 => 0.035468660720701
201 => 0.035408573634995
202 => 0.035294708716158
203 => 0.035432730615801
204 => 0.035726562806026
205 => 0.035587996971344
206 => 0.035679522146367
207 => 0.035330722559531
208 => 0.036072587638533
209 => 0.037250847923542
210 => 0.037254636223023
211 => 0.03711606964142
212 => 0.037059371181687
213 => 0.037201548903335
214 => 0.037278674484894
215 => 0.037738451165768
216 => 0.038231809862657
217 => 0.040534099631774
218 => 0.039887625877367
219 => 0.04193035432436
220 => 0.043545887310839
221 => 0.044030315014789
222 => 0.04358466432124
223 => 0.042060117372187
224 => 0.041985315825631
225 => 0.044263632614636
226 => 0.043619903768222
227 => 0.043543334270269
228 => 0.042728764178261
301 => 0.043210275989107
302 => 0.043104962292723
303 => 0.042938719470858
304 => 0.043857410463548
305 => 0.045577117989752
306 => 0.045309085444478
307 => 0.045109011583103
308 => 0.044232346163183
309 => 0.044760294556285
310 => 0.044572302245687
311 => 0.045380036514885
312 => 0.044901552627317
313 => 0.043615026889086
314 => 0.043819910353343
315 => 0.043788942629889
316 => 0.04442625618418
317 => 0.044234950474277
318 => 0.043751587119683
319 => 0.045571240216383
320 => 0.045453082065726
321 => 0.045620603308644
322 => 0.045694351340543
323 => 0.04680194211462
324 => 0.047255686615808
325 => 0.047358694561493
326 => 0.047789716743762
327 => 0.047347970336946
328 => 0.049115270924061
329 => 0.050290422689644
330 => 0.051655421938126
331 => 0.053650052717368
401 => 0.054400052341729
402 => 0.054264571622574
403 => 0.055776877914989
404 => 0.058494458705778
405 => 0.054813872399001
406 => 0.058689538717199
407 => 0.057462547507577
408 => 0.054553373422192
409 => 0.054366056908003
410 => 0.056336183374831
411 => 0.06070573426061
412 => 0.059611211322758
413 => 0.060707524508034
414 => 0.059428616943306
415 => 0.059365108403238
416 => 0.060645410822191
417 => 0.063636907209724
418 => 0.062215759410572
419 => 0.060178195560751
420 => 0.061682700999454
421 => 0.060379359153044
422 => 0.05744256519067
423 => 0.059610374361695
424 => 0.058160822104681
425 => 0.058583878515714
426 => 0.061630621755332
427 => 0.061264029548059
428 => 0.061738433809795
429 => 0.060901122705152
430 => 0.060118942101573
501 => 0.058658943919498
502 => 0.058226710434826
503 => 0.058346164219858
504 => 0.058226651239463
505 => 0.057409795674668
506 => 0.057233395793224
507 => 0.056939388262562
508 => 0.057030513490143
509 => 0.056477693317561
510 => 0.0575209792017
511 => 0.0577146222552
512 => 0.058473838718854
513 => 0.058552663090715
514 => 0.060667070135221
515 => 0.059502490266274
516 => 0.060283790987352
517 => 0.060213904096971
518 => 0.05461642404601
519 => 0.055387707410048
520 => 0.056587582282438
521 => 0.056047040278818
522 => 0.055282840353049
523 => 0.054665707939182
524 => 0.053730689227146
525 => 0.055046710108894
526 => 0.056777137625174
527 => 0.058596549588168
528 => 0.060782453849111
529 => 0.060294585464799
530 => 0.058555685628493
531 => 0.058633691404882
601 => 0.059115892420381
602 => 0.058491398292728
603 => 0.05830722278291
604 => 0.059090589533539
605 => 0.05909598414982
606 => 0.058377428183319
607 => 0.057578884720907
608 => 0.057575538794642
609 => 0.05743344569852
610 => 0.059453894989445
611 => 0.060564937808989
612 => 0.060692317077715
613 => 0.060556364169299
614 => 0.060608687047971
615 => 0.059962195711435
616 => 0.061439883195704
617 => 0.062795955359415
618 => 0.062432499051284
619 => 0.061887626377037
620 => 0.061453609047377
621 => 0.062330258361685
622 => 0.062291222547693
623 => 0.062784111252076
624 => 0.062761750973382
625 => 0.06259601104058
626 => 0.062432504970379
627 => 0.063080788056838
628 => 0.062894092939045
629 => 0.062707107832168
630 => 0.062332080574339
701 => 0.062383053007222
702 => 0.061838274412925
703 => 0.06158623490783
704 => 0.057796165478544
705 => 0.056783335082948
706 => 0.057101992143466
707 => 0.057206902321716
708 => 0.056766117235575
709 => 0.057398089820703
710 => 0.057299597562735
711 => 0.057682773322443
712 => 0.057443381743335
713 => 0.057453206457245
714 => 0.058157206047736
715 => 0.058361580123884
716 => 0.058257633819254
717 => 0.058330434247946
718 => 0.060008089400012
719 => 0.05976958048578
720 => 0.059642877378753
721 => 0.059677975005304
722 => 0.060106651865989
723 => 0.060226657982092
724 => 0.059718183635484
725 => 0.059957983076799
726 => 0.060979018662841
727 => 0.061336323332346
728 => 0.062476668321436
729 => 0.061992229502055
730 => 0.06288143792105
731 => 0.065614561447553
801 => 0.067797969638286
802 => 0.065790017232928
803 => 0.069799568319854
804 => 0.072921578976968
805 => 0.072801751007967
806 => 0.072257356236491
807 => 0.068703030106315
808 => 0.065432286209309
809 => 0.068168402362276
810 => 0.068175377285037
811 => 0.067940342480956
812 => 0.066480561498591
813 => 0.067889545267028
814 => 0.068001385281889
815 => 0.067938784614228
816 => 0.066819573957686
817 => 0.065110746149853
818 => 0.065444647013148
819 => 0.065991583438618
820 => 0.064956118682312
821 => 0.06462522495165
822 => 0.065240419352058
823 => 0.067222703891017
824 => 0.06684796448152
825 => 0.066838178521097
826 => 0.068441472629169
827 => 0.067293860060313
828 => 0.065448858572332
829 => 0.064982971364037
830 => 0.063329385633818
831 => 0.064471523187551
901 => 0.064512626684801
902 => 0.063887089618985
903 => 0.065499617457692
904 => 0.065484757729778
905 => 0.067015612919536
906 => 0.0699420330794
907 => 0.069076546637737
908 => 0.068070080070742
909 => 0.068179510892865
910 => 0.069379696913274
911 => 0.068654037047753
912 => 0.068914989394874
913 => 0.069379301930643
914 => 0.069659433211703
915 => 0.068139204312496
916 => 0.067784766235137
917 => 0.06705971031972
918 => 0.066870556765198
919 => 0.067461099679516
920 => 0.067305512485783
921 => 0.064509172095018
922 => 0.064216938965492
923 => 0.064225901338362
924 => 0.063491067239241
925 => 0.06237026885769
926 => 0.065315660085012
927 => 0.065079103948734
928 => 0.064817964282274
929 => 0.064849952401373
930 => 0.066128446904583
1001 => 0.065386855527201
1002 => 0.067358497748406
1003 => 0.066953187380717
1004 => 0.066537482331472
1005 => 0.066480019230981
1006 => 0.06632000825331
1007 => 0.065771271073413
1008 => 0.065108637954696
1009 => 0.064671110173421
1010 => 0.059655680633031
1011 => 0.060586515182316
1012 => 0.061657355483029
1013 => 0.062027005263713
1014 => 0.061394693734868
1015 => 0.065796238586556
1016 => 0.066600443245301
1017 => 0.064164454876991
1018 => 0.063708780914029
1019 => 0.065826112495707
1020 => 0.064549102718696
1021 => 0.065124140143092
1022 => 0.063881223760203
1023 => 0.066406733892871
1024 => 0.066387493737047
1025 => 0.065405013254206
1026 => 0.066235399030567
1027 => 0.066091099067134
1028 => 0.064981881021749
1029 => 0.066441898083386
1030 => 0.066442622233633
1031 => 0.065497006129866
1101 => 0.06439273354265
1102 => 0.06419531568581
1103 => 0.064046587850038
1104 => 0.065087562212674
1105 => 0.066020896571171
1106 => 0.067757600419124
1107 => 0.068194249029565
1108 => 0.06989851762546
1109 => 0.068883708655936
1110 => 0.06933356032815
1111 => 0.069821937953742
1112 => 0.070056084146943
1113 => 0.069674555490099
1114 => 0.072321986124465
1115 => 0.072545510385184
1116 => 0.072620456136326
1117 => 0.071727757422018
1118 => 0.072520682819059
1119 => 0.072149699284712
1120 => 0.073114895378887
1121 => 0.073266250450696
1122 => 0.073138058089487
1123 => 0.073186100578256
1124 => 0.070926985570593
1125 => 0.070809838539664
1126 => 0.069212530460581
1127 => 0.069863445309513
1128 => 0.068646591198596
1129 => 0.069032468172154
1130 => 0.069202559065328
1201 => 0.069113713235307
1202 => 0.069900247058447
1203 => 0.069231532630534
1204 => 0.06746668530844
1205 => 0.065701357154874
1206 => 0.065679194897912
1207 => 0.065214415155708
1208 => 0.06487846453075
1209 => 0.064943180539606
1210 => 0.065171248195854
1211 => 0.064865208823965
1212 => 0.064930517840548
1213 => 0.066015082667521
1214 => 0.066232584408808
1215 => 0.065493428508498
1216 => 0.062525610909068
1217 => 0.061797301025962
1218 => 0.062320795726926
1219 => 0.062070598977242
1220 => 0.050095817786258
1221 => 0.05290911500264
1222 => 0.051237549327212
1223 => 0.052007883695488
1224 => 0.05030164799071
1225 => 0.051115953100505
1226 => 0.050965580680387
1227 => 0.055489279352812
1228 => 0.055418648020186
1229 => 0.055452455501387
1230 => 0.053838736338738
1231 => 0.056409434782088
]
'min_raw' => 0.032819064902223
'max_raw' => 0.073266250450696
'avg_raw' => 0.05304265767646
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032819'
'max' => '$0.073266'
'avg' => '$0.053042'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050606332185207
'max_diff' => 0.011083936819218
'year' => 2035
]
10 => [
'items' => [
101 => 0.057675853274609
102 => 0.05744147291628
103 => 0.057500461402945
104 => 0.056486843763838
105 => 0.055462269535792
106 => 0.054325859036046
107 => 0.056437169279991
108 => 0.056202427622132
109 => 0.056740840527878
110 => 0.058110176140649
111 => 0.05831181601123
112 => 0.05858282204212
113 => 0.058485685671569
114 => 0.060799868103126
115 => 0.060519605341197
116 => 0.061194957960346
117 => 0.05980570638363
118 => 0.058233636355606
119 => 0.058532435473092
120 => 0.058503658715287
121 => 0.058137297560009
122 => 0.057806563090137
123 => 0.057255983381661
124 => 0.058998099049746
125 => 0.058927372335099
126 => 0.060072355634429
127 => 0.059869968714498
128 => 0.058518379330718
129 => 0.058566651609975
130 => 0.058891305886844
131 => 0.060014938045926
201 => 0.060348508573452
202 => 0.060193985414615
203 => 0.060559730269974
204 => 0.060848800091032
205 => 0.060596032988902
206 => 0.064174682116416
207 => 0.062688577496125
208 => 0.063412894547805
209 => 0.063585639896707
210 => 0.063143156317938
211 => 0.063239115162024
212 => 0.063384466663595
213 => 0.064267012518387
214 => 0.066583068208064
215 => 0.067608833507098
216 => 0.070694899019609
217 => 0.067523657978355
218 => 0.067335489658867
219 => 0.067891383247921
220 => 0.069703230396975
221 => 0.071171562333135
222 => 0.071658692746461
223 => 0.071723075072228
224 => 0.072636964111445
225 => 0.073160788265702
226 => 0.072525993944416
227 => 0.071988072222862
228 => 0.070061303385556
229 => 0.070284332124892
301 => 0.071820778971954
302 => 0.073991100639697
303 => 0.075853462414104
304 => 0.075201328230568
305 => 0.080176651715966
306 => 0.080669934717169
307 => 0.080601778956152
308 => 0.081725551043246
309 => 0.07949509230257
310 => 0.078541527977828
311 => 0.072104377004733
312 => 0.073912953860196
313 => 0.076541826533607
314 => 0.076193885377515
315 => 0.074284727772116
316 => 0.075852014146862
317 => 0.075333820257795
318 => 0.074925099237603
319 => 0.07679752946557
320 => 0.074738715514726
321 => 0.076521288289537
322 => 0.074235120267488
323 => 0.075204307124586
324 => 0.074654149790204
325 => 0.075010169010296
326 => 0.072928887924302
327 => 0.074051896678062
328 => 0.072882167068036
329 => 0.072881612463897
330 => 0.072855790617924
331 => 0.074231972316745
401 => 0.074276849552537
402 => 0.073259849197813
403 => 0.073113283558166
404 => 0.073655213546102
405 => 0.073020755461917
406 => 0.073317614406276
407 => 0.073029747016927
408 => 0.07296494200417
409 => 0.072448564636855
410 => 0.072226095068925
411 => 0.072313331118845
412 => 0.072015549507201
413 => 0.071836125314954
414 => 0.072820098630044
415 => 0.072294401381162
416 => 0.072739527987093
417 => 0.072232250040178
418 => 0.070473803665691
419 => 0.06946250256049
420 => 0.066140960367148
421 => 0.06708294561282
422 => 0.067707482805254
423 => 0.06750107326688
424 => 0.067944520825195
425 => 0.067971744903744
426 => 0.067827575582123
427 => 0.06766064597692
428 => 0.067579393876893
429 => 0.068184980461895
430 => 0.068536543857596
501 => 0.067770163467744
502 => 0.067590611265203
503 => 0.068365464152364
504 => 0.068838123965915
505 => 0.072327978464563
506 => 0.072069438771222
507 => 0.072718322665657
508 => 0.072645268297078
509 => 0.073325401993756
510 => 0.074437133141879
511 => 0.072176672872828
512 => 0.0725690106147
513 => 0.072472818460795
514 => 0.073523019174197
515 => 0.073526297786191
516 => 0.07289664999709
517 => 0.073237992278431
518 => 0.073047464381222
519 => 0.073391774042868
520 => 0.072065985815993
521 => 0.073680652766331
522 => 0.074596064880332
523 => 0.074608775378424
524 => 0.0750426734553
525 => 0.075483539031089
526 => 0.076329742112517
527 => 0.075459938886426
528 => 0.073895247556326
529 => 0.074008213216437
530 => 0.073090835262097
531 => 0.073106256551248
601 => 0.073023936501175
602 => 0.073270985168207
603 => 0.072120199105655
604 => 0.072390286294378
605 => 0.072012162648538
606 => 0.07256818864774
607 => 0.071969996586989
608 => 0.072472772074026
609 => 0.072689753306959
610 => 0.073490418727757
611 => 0.071851737653336
612 => 0.068510356013635
613 => 0.069212754944636
614 => 0.06817385175344
615 => 0.068270006199168
616 => 0.068464253482407
617 => 0.067834634483675
618 => 0.067954745947058
619 => 0.067950454720374
620 => 0.067913475247125
621 => 0.067749687028515
622 => 0.06751216170702
623 => 0.068458389481419
624 => 0.068619172018748
625 => 0.068976571682487
626 => 0.070039950655268
627 => 0.069933694019684
628 => 0.070107003000867
629 => 0.069728670468034
630 => 0.068287555960282
701 => 0.068365815411464
702 => 0.067389918801203
703 => 0.068951615812048
704 => 0.068581785346487
705 => 0.06834335323945
706 => 0.068278294829987
707 => 0.06934430971356
708 => 0.069663278074461
709 => 0.069464518397118
710 => 0.069056856500141
711 => 0.069839687856758
712 => 0.070049140502785
713 => 0.070096029225914
714 => 0.071483056296815
715 => 0.070173548631229
716 => 0.070488760141722
717 => 0.072947950365497
718 => 0.070717804177587
719 => 0.071899162351518
720 => 0.071841341016395
721 => 0.072445683883197
722 => 0.071791767261871
723 => 0.071799873342104
724 => 0.072336488866093
725 => 0.071582909141771
726 => 0.071396312204413
727 => 0.071138529871886
728 => 0.071701388164181
729 => 0.07203879625452
730 => 0.074758057663723
731 => 0.076514824547454
801 => 0.076438558663888
802 => 0.077135486075928
803 => 0.076821513893681
804 => 0.075807614895527
805 => 0.077538216853564
806 => 0.07699058198258
807 => 0.077035728335968
808 => 0.07703404798644
809 => 0.077398177300573
810 => 0.077140158309548
811 => 0.076631576393132
812 => 0.076969196803773
813 => 0.077971808721872
814 => 0.081083946879543
815 => 0.082825540622923
816 => 0.080979100749382
817 => 0.082252750249335
818 => 0.081489014397083
819 => 0.081350220873555
820 => 0.082150166881484
821 => 0.082951513089005
822 => 0.082900470799901
823 => 0.082318734602824
824 => 0.081990126586105
825 => 0.084478456580464
826 => 0.086311815732713
827 => 0.086186792929525
828 => 0.086738602923202
829 => 0.088358734131477
830 => 0.088506858625016
831 => 0.088488198343433
901 => 0.088121056331003
902 => 0.089716285906173
903 => 0.091047054483173
904 => 0.088036073562878
905 => 0.089182615680692
906 => 0.089697335376659
907 => 0.09045309660079
908 => 0.091728192466187
909 => 0.093113284778484
910 => 0.093309152018207
911 => 0.093170174838513
912 => 0.092256669225273
913 => 0.093772253760976
914 => 0.09466004763716
915 => 0.095188708573626
916 => 0.096529304747711
917 => 0.089700514110269
918 => 0.084866756684172
919 => 0.084111895661784
920 => 0.085646935234254
921 => 0.086051712927804
922 => 0.085888547547082
923 => 0.080447714098011
924 => 0.084083250799681
925 => 0.087994782606069
926 => 0.088145040472967
927 => 0.090103235081518
928 => 0.090740903515172
929 => 0.09231750684149
930 => 0.092218889874166
1001 => 0.092602767694886
1002 => 0.09251452083174
1003 => 0.095434846500746
1004 => 0.098656399386218
1005 => 0.098544847253705
1006 => 0.098081710910734
1007 => 0.098769547356527
1008 => 0.10209453517692
1009 => 0.10178842358026
1010 => 0.10208578492189
1011 => 0.10600613295024
1012 => 0.1111031430501
1013 => 0.10873507012727
1014 => 0.11387310697518
1015 => 0.11710722881531
1016 => 0.12270030812338
1017 => 0.12200002704752
1018 => 0.12417737177824
1019 => 0.12074637776864
1020 => 0.11286812200433
1021 => 0.11162135787287
1022 => 0.11411741123714
1023 => 0.12025371487187
1024 => 0.11392415719843
1025 => 0.11520461847214
1026 => 0.11483584553917
1027 => 0.11481619519676
1028 => 0.11556616884297
1029 => 0.11447829295314
1030 => 0.11004609087284
1031 => 0.11207734296711
1101 => 0.11129297898477
1102 => 0.11216328930138
1103 => 0.11685999513685
1104 => 0.11478346953151
1105 => 0.11259601848952
1106 => 0.11533956753042
1107 => 0.11883304824522
1108 => 0.11861443250047
1109 => 0.11819022658138
1110 => 0.12058145313662
1111 => 0.12453105884223
1112 => 0.12559862139365
1113 => 0.12638667424376
1114 => 0.12649533341753
1115 => 0.12761459043863
1116 => 0.12159606334705
1117 => 0.13114762040813
1118 => 0.13279691045614
1119 => 0.13248691228318
1120 => 0.13432002875881
1121 => 0.13378067939
1122 => 0.13299924677593
1123 => 0.13590512630485
1124 => 0.13257376991733
1125 => 0.12784532893134
1126 => 0.12525121268846
1127 => 0.12866735421847
1128 => 0.13075347264393
1129 => 0.13213226422111
1130 => 0.13254948571927
1201 => 0.12206326447262
1202 => 0.11641177281317
1203 => 0.12003431417239
1204 => 0.1244540646451
1205 => 0.12157151141002
1206 => 0.12168450203944
1207 => 0.11757473864787
1208 => 0.12481768751286
1209 => 0.12376245078602
1210 => 0.12923702079156
1211 => 0.12793047072357
1212 => 0.13239477004149
1213 => 0.13121917041612
1214 => 0.13609901873415
1215 => 0.13804572234484
1216 => 0.1413145406874
1217 => 0.14371909676667
1218 => 0.14513109808824
1219 => 0.14504632682518
1220 => 0.15064137951753
1221 => 0.1473421724211
1222 => 0.14319759074458
1223 => 0.14312262833804
1224 => 0.14526916591749
1225 => 0.14976771981018
1226 => 0.15093412938326
1227 => 0.15158599321009
1228 => 0.15058764106776
1229 => 0.14700658822089
1230 => 0.14546030775796
1231 => 0.14677778351244
]
'min_raw' => 0.054325859036046
'max_raw' => 0.15158599321009
'avg_raw' => 0.10295592612307
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.054325'
'max' => '$0.151585'
'avg' => '$0.102955'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021506794133823
'max_diff' => 0.078319742759397
'year' => 2036
]
11 => [
'items' => [
101 => 0.1451666238767
102 => 0.14794793741953
103 => 0.15176727497036
104 => 0.15097859686941
105 => 0.15361502951565
106 => 0.15634345994371
107 => 0.16024523799731
108 => 0.16126530726294
109 => 0.16295144296927
110 => 0.16468703047782
111 => 0.16524445441016
112 => 0.16630874965551
113 => 0.16630314029421
114 => 0.16951046565138
115 => 0.17304824484294
116 => 0.17438367458798
117 => 0.17745442165066
118 => 0.17219587491763
119 => 0.17618454302047
120 => 0.17978242149207
121 => 0.17549288245511
122 => 0.18140501268314
123 => 0.18163456730272
124 => 0.18510056951858
125 => 0.18158711226713
126 => 0.17950083256657
127 => 0.1855238438902
128 => 0.18843818934662
129 => 0.18756036477742
130 => 0.18088007646222
131 => 0.17699186213174
201 => 0.16681565524832
202 => 0.17886981188115
203 => 0.18474103995243
204 => 0.1808648713999
205 => 0.18281978535454
206 => 0.19348516200805
207 => 0.19754584690571
208 => 0.19670125283332
209 => 0.19684397532836
210 => 0.19903504719249
211 => 0.20875146648336
212 => 0.20292916281943
213 => 0.20738009581295
214 => 0.20974085462368
215 => 0.2119336589736
216 => 0.20654882453312
217 => 0.19954323404499
218 => 0.19732426946272
219 => 0.18047946282829
220 => 0.17960261748968
221 => 0.17911041762998
222 => 0.17600716713766
223 => 0.17356886230255
224 => 0.17162983176921
225 => 0.16654123660619
226 => 0.16825848809643
227 => 0.16014832947894
228 => 0.16533692155604
301 => 0.1523929125759
302 => 0.16317306788786
303 => 0.15730591946508
304 => 0.16124555183453
305 => 0.16123180682833
306 => 0.15397769457459
307 => 0.14979367401609
308 => 0.15245989476048
309 => 0.15531829504333
310 => 0.15578206087241
311 => 0.15948805145101
312 => 0.1605223137615
313 => 0.15738845067563
314 => 0.15212467676059
315 => 0.15334733138715
316 => 0.14976889695911
317 => 0.14349782826644
318 => 0.14800181928387
319 => 0.14953967984372
320 => 0.15021888667694
321 => 0.14405201085481
322 => 0.14211424458211
323 => 0.14108259407796
324 => 0.15132861053226
325 => 0.1518899104427
326 => 0.14901822074108
327 => 0.16199853049722
328 => 0.15906068662826
329 => 0.16234297801911
330 => 0.15323638829505
331 => 0.15358427228616
401 => 0.14927306677122
402 => 0.15168705378473
403 => 0.14998092557001
404 => 0.15149202748952
405 => 0.15239777574957
406 => 0.15670827383811
407 => 0.16322228685199
408 => 0.15606442916613
409 => 0.15294564806999
410 => 0.15488052232134
411 => 0.16003334742744
412 => 0.16784014123145
413 => 0.16321836217311
414 => 0.16526942923631
415 => 0.16571749614399
416 => 0.16230956737393
417 => 0.16796579642623
418 => 0.17099701552647
419 => 0.17410641910091
420 => 0.17680622710109
421 => 0.17286445493603
422 => 0.17708271618349
423 => 0.17368354224139
424 => 0.17063413181518
425 => 0.17063875651205
426 => 0.16872581680691
427 => 0.16501925508229
428 => 0.16433570823141
429 => 0.16789160527214
430 => 0.1707430979541
501 => 0.17097796054911
502 => 0.17255669341283
503 => 0.17349097125934
504 => 0.18264816424423
505 => 0.18633126301503
506 => 0.19083488647448
507 => 0.19258930162224
508 => 0.19786946222436
509 => 0.19360530370447
510 => 0.19268272618588
511 => 0.17987478369249
512 => 0.18197208355827
513 => 0.18533006300272
514 => 0.17993015553671
515 => 0.18335515393652
516 => 0.18403132117203
517 => 0.17974666874731
518 => 0.18203528673626
519 => 0.17595739588556
520 => 0.16335476826357
521 => 0.16797982675342
522 => 0.1713854265798
523 => 0.16652521572012
524 => 0.17523695556996
525 => 0.1701477369965
526 => 0.16853469903429
527 => 0.16224166285413
528 => 0.16521173368999
529 => 0.1692287970228
530 => 0.16674671891686
531 => 0.17189740367259
601 => 0.17919214692416
602 => 0.18439081537469
603 => 0.1847899045862
604 => 0.18144750905624
605 => 0.18680371922388
606 => 0.18684273336745
607 => 0.18080090641759
608 => 0.17710032105183
609 => 0.17625954027063
610 => 0.17835997550685
611 => 0.18091029164535
612 => 0.18493142938259
613 => 0.18736131870034
614 => 0.19369718132732
615 => 0.19541148409076
616 => 0.19729498308366
617 => 0.19981191858776
618 => 0.20283414498944
619 => 0.196221685678
620 => 0.19648441101361
621 => 0.19032698045853
622 => 0.18374688284557
623 => 0.18874035671306
624 => 0.19526865954082
625 => 0.193771059659
626 => 0.1936025490791
627 => 0.19388593713355
628 => 0.19275679572969
629 => 0.187649731008
630 => 0.18508499507668
701 => 0.188394158762
702 => 0.19015283198682
703 => 0.19288038078608
704 => 0.192544152825
705 => 0.19957002561456
706 => 0.20230006732922
707 => 0.20160160583354
708 => 0.20173013955816
709 => 0.20667274967876
710 => 0.21216994865816
711 => 0.21731880092167
712 => 0.22255643459246
713 => 0.216242262774
714 => 0.21303631572856
715 => 0.21634403473654
716 => 0.21458891247139
717 => 0.22467436561001
718 => 0.22537266050323
719 => 0.2354573843488
720 => 0.24502898814482
721 => 0.23901723529363
722 => 0.244686047457
723 => 0.25081732999673
724 => 0.26264556878059
725 => 0.25866223408065
726 => 0.2556110621273
727 => 0.25272771937454
728 => 0.25872749792526
729 => 0.26644611718195
730 => 0.26810863384183
731 => 0.27080254596107
801 => 0.26797022676359
802 => 0.27138144326723
803 => 0.28342453648958
804 => 0.28017038639358
805 => 0.27554897012652
806 => 0.28505583559459
807 => 0.28849633325049
808 => 0.31264354760215
809 => 0.34313040319279
810 => 0.33050864479078
811 => 0.32267391204905
812 => 0.3245152600857
813 => 0.33564802770221
814 => 0.33922351932425
815 => 0.32950410054967
816 => 0.3329371635738
817 => 0.35185367836805
818 => 0.3620017816407
819 => 0.34821929432433
820 => 0.31019395843983
821 => 0.27513286215568
822 => 0.28443264371198
823 => 0.28337833708932
824 => 0.30370177235246
825 => 0.28009277599001
826 => 0.2804902909401
827 => 0.30123399332159
828 => 0.2956999291633
829 => 0.28673545397626
830 => 0.27519831274523
831 => 0.25387084012328
901 => 0.23498050286145
902 => 0.27202880441676
903 => 0.27043121428573
904 => 0.26811766702641
905 => 0.27326621610007
906 => 0.29826610896063
907 => 0.29768978051344
908 => 0.29402347297776
909 => 0.29680433493022
910 => 0.28624795543072
911 => 0.28896857479203
912 => 0.2751273082989
913 => 0.28138413881615
914 => 0.28671622023865
915 => 0.28778671452704
916 => 0.29019859281956
917 => 0.26958935688173
918 => 0.27884229876244
919 => 0.28427753523395
920 => 0.25972093912008
921 => 0.28379213028425
922 => 0.26923059593547
923 => 0.26428819247058
924 => 0.27094248762391
925 => 0.26834930233114
926 => 0.26611983389337
927 => 0.26487575219797
928 => 0.26976193215081
929 => 0.26953398601576
930 => 0.26153924724625
1001 => 0.25111043642866
1002 => 0.25461068765309
1003 => 0.25333901356822
1004 => 0.24873030263545
1005 => 0.25183601734626
1006 => 0.2381600215261
1007 => 0.21463118153393
1008 => 0.23017505394062
1009 => 0.22957663176144
1010 => 0.22927488016241
1011 => 0.24095567067496
1012 => 0.23983283218887
1013 => 0.23779486934174
1014 => 0.24869287384957
1015 => 0.24471495560537
1016 => 0.25697396231859
1017 => 0.26504853700276
1018 => 0.26300056367773
1019 => 0.270594740196
1020 => 0.25469132637179
1021 => 0.25997380250997
1022 => 0.26106251352086
1023 => 0.2485583941656
1024 => 0.24001654245157
1025 => 0.23944689832648
1026 => 0.22463650459403
1027 => 0.23254809738059
1028 => 0.2395099716288
1029 => 0.23617577412717
1030 => 0.23512026680447
1031 => 0.24051262480453
1101 => 0.24093165720356
1102 => 0.23137767409867
1103 => 0.23336424972147
1104 => 0.24164860030928
1105 => 0.23315550534211
1106 => 0.21665480916009
1107 => 0.21256240836698
1108 => 0.21201640666326
1109 => 0.20091749113993
1110 => 0.21283588215655
1111 => 0.20763318508477
1112 => 0.22406844279662
1113 => 0.21468071173567
1114 => 0.21427602541265
1115 => 0.21366428268084
1116 => 0.20411098759948
1117 => 0.20620255207872
1118 => 0.21315523096199
1119 => 0.21563602511507
1120 => 0.21537725796035
1121 => 0.21312115904244
1122 => 0.21415398957396
1123 => 0.2108268825699
1124 => 0.20965201183903
1125 => 0.20594379663873
1126 => 0.20049374471488
1127 => 0.201251607862
1128 => 0.19045362891719
1129 => 0.18457031689595
1130 => 0.18294189366927
1201 => 0.18076429807407
1202 => 0.18318785888611
1203 => 0.19042303959954
1204 => 0.18169587662993
1205 => 0.16673376785784
1206 => 0.16763301608923
1207 => 0.16965335987598
1208 => 0.16588846259529
1209 => 0.16232530328299
1210 => 0.16542318121678
1211 => 0.15908353848805
1212 => 0.17041947541175
1213 => 0.17011287008656
1214 => 0.17433820636208
1215 => 0.17698039584779
1216 => 0.17089100450223
1217 => 0.16935953904629
1218 => 0.17023193137122
1219 => 0.15581322951805
1220 => 0.17315989080693
1221 => 0.17330990545409
1222 => 0.17202538896855
1223 => 0.1812619505868
1224 => 0.20075397655711
1225 => 0.19342029232215
1226 => 0.19058046812459
1227 => 0.18518196024914
1228 => 0.1923751514615
1229 => 0.19182282660766
1230 => 0.18932500415558
1231 => 0.18781431334289
]
'min_raw' => 0.14108259407796
'max_raw' => 0.3620017816407
'avg_raw' => 0.25154218785933
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.141082'
'max' => '$0.3620017'
'avg' => '$0.251542'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.086756735041912
'max_diff' => 0.21041578843061
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044284214166378
]
1 => [
'year' => 2028
'avg' => 0.0076004567308734
]
2 => [
'year' => 2029
'avg' => 0.0207630779397
]
3 => [
'year' => 2030
'avg' => 0.016018683709175
]
4 => [
'year' => 2031
'avg' => 0.015732332576027
]
5 => [
'year' => 2032
'avg' => 0.027583730153052
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044284214166378
'min' => '$0.004428'
'max_raw' => 0.027583730153052
'max' => '$0.027583'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027583730153052
]
1 => [
'year' => 2033
'avg' => 0.070948190355174
]
2 => [
'year' => 2034
'avg' => 0.04497037265759
]
3 => [
'year' => 2035
'avg' => 0.05304265767646
]
4 => [
'year' => 2036
'avg' => 0.10295592612307
]
5 => [
'year' => 2037
'avg' => 0.25154218785933
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027583730153052
'min' => '$0.027583'
'max_raw' => 0.25154218785933
'max' => '$0.251542'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25154218785933
]
]
]
]
'prediction_2025_max_price' => '$0.007571'
'last_price' => 0.00734181
'sma_50day_nextmonth' => '$0.006966'
'sma_200day_nextmonth' => '$0.009465'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007258'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007148'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00719'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00724'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007869'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010154'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009755'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007251'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007214'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007241'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007366'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008185'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.009282'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012253'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010658'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013574'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0074035'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007664'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008582'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010272'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017368'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011434'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005717'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '47.97'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 43.14
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007226'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007261'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 37.18
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 7.53
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.87
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000166'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -62.82
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.59
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 16
'sell_pct' => 48.39
'buy_pct' => 51.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767677814
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SynFutures para 2026
A previsão de preço para SynFutures em 2026 sugere que o preço médio poderia variar entre $0.002536 na extremidade inferior e $0.007571 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SynFutures poderia potencialmente ganhar 3.13% até 2026 se F atingir a meta de preço prevista.
Previsão de preço de SynFutures 2027-2032
A previsão de preço de F para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004428 na extremidade inferior e $0.027583 na extremidade superior. Considerando a volatilidade de preços no mercado, se SynFutures atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002441 | $0.004428 | $0.006414 |
| 2028 | $0.0044069 | $0.00760045 | $0.010793 |
| 2029 | $0.00968 | $0.020763 | $0.031845 |
| 2030 | $0.008233 | $0.016018 | $0.0238042 |
| 2031 | $0.009734 | $0.015732 | $0.02173 |
| 2032 | $0.014858 | $0.027583 | $0.0403091 |
Previsão de preço de SynFutures 2032-2037
A previsão de preço de SynFutures para 2032-2037 é atualmente estimada entre $0.027583 na extremidade inferior e $0.251542 na extremidade superior. Comparado ao preço atual, SynFutures poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014858 | $0.027583 | $0.0403091 |
| 2033 | $0.034527 | $0.070948 | $0.107368 |
| 2034 | $0.027758 | $0.04497 | $0.062182 |
| 2035 | $0.032819 | $0.053042 | $0.073266 |
| 2036 | $0.054325 | $0.102955 | $0.151585 |
| 2037 | $0.141082 | $0.251542 | $0.3620017 |
SynFutures Histograma de preços potenciais
Previsão de preço de SynFutures baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SynFutures é Altista, com 16 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de F foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SynFutures
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SynFutures está projetado para aumentar no próximo mês, alcançando $0.009465 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SynFutures é esperado para alcançar $0.006966 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 47.97, sugerindo que o mercado de F está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de F para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007258 | BUY |
| SMA 5 | $0.007148 | BUY |
| SMA 10 | $0.00719 | BUY |
| SMA 21 | $0.00724 | BUY |
| SMA 50 | $0.007869 | SELL |
| SMA 100 | $0.010154 | SELL |
| SMA 200 | $0.009755 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.007251 | BUY |
| EMA 5 | $0.007214 | BUY |
| EMA 10 | $0.007241 | BUY |
| EMA 21 | $0.007366 | SELL |
| EMA 50 | $0.008185 | SELL |
| EMA 100 | $0.009282 | SELL |
| EMA 200 | $0.012253 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.010658 | SELL |
| SMA 50 | $0.013574 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.010272 | SELL |
| EMA 50 | $0.017368 | SELL |
| EMA 100 | $0.011434 | SELL |
| EMA 200 | $0.005717 | BUY |
Osciladores de SynFutures
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 47.97 | NEUTRAL |
| Stoch RSI (14) | 43.14 | NEUTRAL |
| Estocástico Rápido (14) | 37.18 | NEUTRAL |
| Índice de Canal de Commodities (20) | 7.53 | NEUTRAL |
| Índice Direcional Médio (14) | 14.87 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000166 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -62.82 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.59 | NEUTRAL |
| VWMA (10) | 0.007226 | BUY |
| Média Móvel de Hull (9) | 0.007261 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.006688 | SELL |
Previsão do preço de SynFutures com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SynFutures
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SynFutures por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010316 | $0.014496 | $0.020369 | $0.028622 | $0.04022 | $0.056515 |
| Amazon.com stock | $0.015319 | $0.031964 | $0.066695 | $0.139163 | $0.290373 | $0.605881 |
| Apple stock | $0.010413 | $0.014771 | $0.020951 | $0.029718 | $0.042153 | $0.059791 |
| Netflix stock | $0.011584 | $0.018278 | $0.028839 | $0.0455049 | $0.071799 | $0.113288 |
| Google stock | $0.0095076 | $0.012312 | $0.015944 | $0.020647 | $0.026738 | $0.034626 |
| Tesla stock | $0.016643 | $0.037729 | $0.085529 | $0.193888 | $0.439529 | $0.99638 |
| Kodak stock | $0.0055055 | $0.004128 | $0.003096 | $0.002321 | $0.001741 | $0.0013055 |
| Nokia stock | $0.004863 | $0.003221 | $0.002134 | $0.001413 | $0.000936 | $0.00062 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SynFutures
Você pode fazer perguntas como: 'Devo investir em SynFutures agora?', 'Devo comprar F hoje?', 'SynFutures será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SynFutures regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SynFutures, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SynFutures para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SynFutures é de $0.007341 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para SynFutures
com base no histórico de preços de 4 horas
Previsão de longo prazo para SynFutures
com base no histórico de preços de 1 mês
Previsão do preço de SynFutures com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SynFutures tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007532 | $0.007728 | $0.007929 | $0.008135 |
| Se SynFutures tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007723 | $0.008125 | $0.008547 | $0.008991 |
| Se SynFutures tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008295 | $0.009374 | $0.010592 | $0.011969 |
| Se SynFutures tiver 10% da média anterior do crescimento anual do Bitcoin | $0.00925 | $0.011654 | $0.014684 | $0.01850085 |
| Se SynFutures tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011158 | $0.016959 | $0.025776 | $0.039176 |
| Se SynFutures tiver 50% da média anterior do crescimento anual do Bitcoin | $0.016883 | $0.038826 | $0.089288 | $0.205332 |
| Se SynFutures tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026425 | $0.095113 | $0.342345 | $1.23 |
Perguntas Frequentes sobre SynFutures
F é um bom investimento?
A decisão de adquirir SynFutures depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SynFutures experimentou uma escalada de 1.0579% nas últimas 24 horas, e SynFutures registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SynFutures dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SynFutures pode subir?
Parece que o valor médio de SynFutures pode potencialmente subir para $0.007571 até o final deste ano. Observando as perspectivas de SynFutures em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0238042. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SynFutures na próxima semana?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures aumentará 0.86% na próxima semana e atingirá $0.007404 até 13 de janeiro de 2026.
Qual será o preço de SynFutures no próximo mês?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures diminuirá -11.62% no próximo mês e atingirá $0.006488 até 5 de fevereiro de 2026.
Até onde o preço de SynFutures pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SynFutures em 2026, espera-se que F fluctue dentro do intervalo de $0.002536 e $0.007571. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SynFutures não considera flutuações repentinas e extremas de preço.
Onde estará SynFutures em 5 anos?
O futuro de SynFutures parece seguir uma tendência de alta, com um preço máximo de $0.0238042 projetada após um período de cinco anos. Com base na previsão de SynFutures para 2030, o valor de SynFutures pode potencialmente atingir seu pico mais alto de aproximadamente $0.0238042, enquanto seu pico mais baixo está previsto para cerca de $0.008233.
Quanto será SynFutures em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SynFutures, espera-se que o valor de F em 2026 aumente 3.13% para $0.007571 se o melhor cenário ocorrer. O preço ficará entre $0.007571 e $0.002536 durante 2026.
Quanto será SynFutures em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SynFutures, o valor de F pode diminuir -12.62% para $0.006414 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006414 e $0.002441 ao longo do ano.
Quanto será SynFutures em 2028?
Nosso novo modelo experimental de previsão de preços de SynFutures sugere que o valor de F em 2028 pode aumentar 47.02%, alcançando $0.010793 no melhor cenário. O preço é esperado para variar entre $0.010793 e $0.0044069 durante o ano.
Quanto será SynFutures em 2029?
Com base no nosso modelo de previsão experimental, o valor de SynFutures pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.031845 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.031845 e $0.00968.
Quanto será SynFutures em 2030?
Usando nossa nova simulação experimental para previsões de preços de SynFutures, espera-se que o valor de F em 2030 aumente 224.23%, alcançando $0.0238042 no melhor cenário. O preço está previsto para variar entre $0.0238042 e $0.008233 ao longo de 2030.
Quanto será SynFutures em 2031?
Nossa simulação experimental indica que o preço de SynFutures poderia aumentar 195.98% em 2031, potencialmente atingindo $0.02173 sob condições ideais. O preço provavelmente oscilará entre $0.02173 e $0.009734 durante o ano.
Quanto será SynFutures em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SynFutures, F poderia ver um 449.04% aumento em valor, atingindo $0.0403091 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0403091 e $0.014858 ao longo do ano.
Quanto será SynFutures em 2033?
De acordo com nossa previsão experimental de preços de SynFutures, espera-se que o valor de F seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.107368. Ao longo do ano, o preço de F poderia variar entre $0.107368 e $0.034527.
Quanto será SynFutures em 2034?
Os resultados da nossa nova simulação de previsão de preços de SynFutures sugerem que F pode aumentar 746.96% em 2034, atingindo potencialmente $0.062182 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.062182 e $0.027758.
Quanto será SynFutures em 2035?
Com base em nossa previsão experimental para o preço de SynFutures, F poderia aumentar 897.93%, com o valor potencialmente atingindo $0.073266 em 2035. A faixa de preço esperada para o ano está entre $0.073266 e $0.032819.
Quanto será SynFutures em 2036?
Nossa recente simulação de previsão de preços de SynFutures sugere que o valor de F pode aumentar 1964.7% em 2036, possivelmente atingindo $0.151585 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.151585 e $0.054325.
Quanto será SynFutures em 2037?
De acordo com a simulação experimental, o valor de SynFutures poderia aumentar 4830.69% em 2037, com um pico de $0.3620017 sob condições favoráveis. O preço é esperado para cair entre $0.3620017 e $0.141082 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de SynFutures?
Traders de SynFutures utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SynFutures
Médias móveis são ferramentas populares para a previsão de preço de SynFutures. Uma média móvel simples (SMA) calcula o preço médio de fechamento de F em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de F acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de F.
Como ler gráficos de SynFutures e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SynFutures em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de F dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SynFutures?
A ação de preço de SynFutures é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de F. A capitalização de mercado de SynFutures pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de F, grandes detentores de SynFutures, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SynFutures.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


