Previsão de Preço SynFutures - Projeção F
Previsão de Preço SynFutures até $0.007552 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00253 | $0.007552 |
| 2027 | $0.002435 | $0.006398 |
| 2028 | $0.004395 | $0.010766 |
| 2029 | $0.009656 | $0.031764 |
| 2030 | $0.008212 | $0.023743 |
| 2031 | $0.0097092 | $0.021675 |
| 2032 | $0.01482 | $0.0402064 |
| 2033 | $0.034439 | $0.107095 |
| 2034 | $0.027687 | $0.062023 |
| 2035 | $0.032735 | $0.073079 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SynFutures hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.75, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SynFutures para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SynFutures'
'name_with_ticker' => 'SynFutures <small>F</small>'
'name_lang' => 'SynFutures'
'name_lang_with_ticker' => 'SynFutures <small>F</small>'
'name_with_lang' => 'SynFutures'
'name_with_lang_with_ticker' => 'SynFutures <small>F</small>'
'image' => '/uploads/coins/synfutures.png?1732911435'
'price_for_sd' => 0.007323
'ticker' => 'F'
'marketcap' => '$22.75M'
'low24h' => '$0.007152'
'high24h' => '$0.007431'
'volume24h' => '$4.74M'
'current_supply' => '3.11B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007323'
'change_24h_pct' => '1.3765%'
'ath_price' => '$0.1923'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de dez. de 2024'
'ath_pct' => '-96.17%'
'fdv' => '$73.27M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.361079'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007385'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006472'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00253'
'current_year_max_price_prediction' => '$0.007552'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008212'
'grand_prediction_max_price' => '$0.023743'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0074618790825441
107 => 0.0074897390303763
108 => 0.0075525089154062
109 => 0.0070161471203753
110 => 0.0072569578195892
111 => 0.0073984115444663
112 => 0.0067593184693413
113 => 0.0073857787292119
114 => 0.0070068102548211
115 => 0.0068781826626974
116 => 0.0070513627700953
117 => 0.0069838743138192
118 => 0.0069258517021681
119 => 0.0068934740879118
120 => 0.0070206384455938
121 => 0.0070147060763137
122 => 0.0068066405056076
123 => 0.0065352274504592
124 => 0.0066263225805968
125 => 0.0065932268657964
126 => 0.0064732837259275
127 => 0.0065541109202092
128 => 0.0061981888622996
129 => 0.005585843460885
130 => 0.0059903775897064
131 => 0.0059748034657952
201 => 0.0059669502862889
202 => 0.0062709465035962
203 => 0.0062417242816881
204 => 0.0061886856627801
205 => 0.0064723096300979
206 => 0.0063687830667462
207 => 0.0066878275410701
208 => 0.0068979708663626
209 => 0.006844671721644
210 => 0.0070423125347925
211 => 0.0066284212284089
212 => 0.0067658993179525
213 => 0.0067942333616711
214 => 0.006468809754367
215 => 0.0062465053985896
216 => 0.0062316802325144
217 => 0.0058462351150235
218 => 0.0060521367855829
219 => 0.006233321734885
220 => 0.0061465482046893
221 => 0.0061190782973149
222 => 0.0062594160965951
223 => 0.0062703215455111
224 => 0.0060216761545177
225 => 0.0060733774048807
226 => 0.0062889802135122
227 => 0.0060679447672831
228 => 0.005638509001195
301 => 0.0055320029937912
302 => 0.0055177931291084
303 => 0.0052289403899313
304 => 0.0055391202344842
305 => 0.0054037184200338
306 => 0.0058314511295198
307 => 0.005587132499838
308 => 0.0055766004120258
309 => 0.0055606796165764
310 => 0.0053120521316103
311 => 0.0053664857497169
312 => 0.0055474313867774
313 => 0.0056119948285791
314 => 0.0056052603326465
315 => 0.0055465446544413
316 => 0.0055734243912507
317 => 0.0054868353934664
318 => 0.0054562590161546
319 => 0.0053597515586635
320 => 0.0052179122570171
321 => 0.005237635881862
322 => 0.0049566151110283
323 => 0.004803500080177
324 => 0.004761119857661
325 => 0.0047044472529212
326 => 0.0047675211791664
327 => 0.0049558190144929
328 => 0.0047286918754749
329 => 0.0043392983267448
330 => 0.0043627015425178
331 => 0.0044152816198826
401 => 0.0043172989935653
402 => 0.0042245666608144
403 => 0.0043051899005293
404 => 0.0041401987206479
405 => 0.0044352200157166
406 => 0.0044272405164726
407 => 0.0045372062112797
408 => 0.0046059700169658
409 => 0.0044474917074058
410 => 0.0044076348411224
411 => 0.004430339123551
412 => 0.0040550879094201
413 => 0.0045065401813414
414 => 0.004510444359336
415 => 0.0044770144170515
416 => 0.0047173988148245
417 => 0.0052246848718993
418 => 0.0050338234516934
419 => 0.0049599161409727
420 => 0.0048194182892667
421 => 0.0050066233347279
422 => 0.0049922489080902
423 => 0.0049272422994947
424 => 0.0048879260997832
425 => 0.0049603674032521
426 => 0.004878949820611
427 => 0.0048643249855631
428 => 0.0047757143971503
429 => 0.0047440844486118
430 => 0.0047206668939384
501 => 0.0046948864672045
502 => 0.0047517516644975
503 => 0.0046228876461917
504 => 0.0044674902728104
505 => 0.0044545706626366
506 => 0.0044902428422302
507 => 0.0044744605582415
508 => 0.0044544951031328
509 => 0.0044163756120621
510 => 0.0044050663733555
511 => 0.0044418159126894
512 => 0.0044003278254127
513 => 0.0044615457581625
514 => 0.0044448978677973
515 => 0.0043519041055178
516 => 0.0042359994470171
517 => 0.0042349676524382
518 => 0.0042099961838859
519 => 0.0041781912641992
520 => 0.0041693438631404
521 => 0.004298400036157
522 => 0.0045655424519754
523 => 0.004513096003574
524 => 0.0045509939374722
525 => 0.0047374142632876
526 => 0.0047966716790096
527 => 0.0047546121689189
528 => 0.0046970385173893
529 => 0.0046995714658654
530 => 0.0048963180618717
531 => 0.0049085889057303
601 => 0.0049395933694368
602 => 0.00497944286716
603 => 0.0047613987106953
604 => 0.0046893016057043
605 => 0.0046551379975644
606 => 0.004549927307474
607 => 0.0046633880166537
608 => 0.0045972793202866
609 => 0.0046061996420212
610 => 0.0046003902707893
611 => 0.0046035625803099
612 => 0.004435137551252
613 => 0.0044965027796818
614 => 0.0043944711854355
615 => 0.0042578623343237
616 => 0.0042574043735536
617 => 0.0042908391963296
618 => 0.0042709508554377
619 => 0.0042174318414736
620 => 0.0042250339648045
621 => 0.0041584313650951
622 => 0.0042331207262883
623 => 0.0042352625499159
624 => 0.0042065030774995
625 => 0.0043215723435633
626 => 0.0043687163157572
627 => 0.0043497862149252
628 => 0.0043673881294191
629 => 0.0045152753902866
630 => 0.0045393874665816
701 => 0.0045500964581175
702 => 0.0045357478281289
703 => 0.0043700912370672
704 => 0.004377438811307
705 => 0.0043235271867275
706 => 0.0042779775450248
707 => 0.0042797992918165
708 => 0.0043032177286906
709 => 0.0044054874159931
710 => 0.0046207079437937
711 => 0.0046288754054996
712 => 0.0046387746073488
713 => 0.0045985095784879
714 => 0.0045863652604991
715 => 0.0046023867506408
716 => 0.004683212265125
717 => 0.0048911174322914
718 => 0.0048176298606955
719 => 0.0047578833210859
720 => 0.004810297143875
721 => 0.0048022284466897
722 => 0.0047341205223963
723 => 0.0047322089598019
724 => 0.0046014880776624
725 => 0.0045531635439058
726 => 0.0045127799464702
727 => 0.0044686821123111
728 => 0.0044425394380487
729 => 0.0044827064673486
730 => 0.0044918931421919
731 => 0.004404067230628
801 => 0.0043920968834098
802 => 0.0044638174186468
803 => 0.0044322558851
804 => 0.0044647177050412
805 => 0.0044722491257199
806 => 0.0044710363935273
807 => 0.0044380825276855
808 => 0.0044590863390746
809 => 0.0044094060636017
810 => 0.004355386225761
811 => 0.0043209249347735
812 => 0.00429085288776
813 => 0.0043075386072407
814 => 0.0042480570639838
815 => 0.004229027721169
816 => 0.0044519707203767
817 => 0.0046166611109326
818 => 0.0046142664474293
819 => 0.0045996895492108
820 => 0.004578031235274
821 => 0.0046816278245592
822 => 0.0046455368443314
823 => 0.0046717960479494
824 => 0.0046784801173655
825 => 0.0046987107823751
826 => 0.0047059415062316
827 => 0.0046840852366766
828 => 0.0046107329265315
829 => 0.0044279459437783
830 => 0.0043428581098826
831 => 0.0043147777074471
901 => 0.0043157983767434
902 => 0.0042876437610843
903 => 0.0042959365571972
904 => 0.0042847598650229
905 => 0.0042635939139769
906 => 0.0043062316694077
907 => 0.0043111452735229
908 => 0.0043011931119222
909 => 0.0043035372062526
910 => 0.004221137558822
911 => 0.0042274022250535
912 => 0.0041925197674011
913 => 0.0041859797271056
914 => 0.0040977999117233
915 => 0.0039415765869051
916 => 0.0040281394738195
917 => 0.0039235836790107
918 => 0.0038839868152378
919 => 0.0040714322097629
920 => 0.0040526178910786
921 => 0.0040204159558787
922 => 0.0039727825822466
923 => 0.0039551149006189
924 => 0.0038477716599567
925 => 0.0038414292486445
926 => 0.003894631457228
927 => 0.0038700804685429
928 => 0.0038356015822426
929 => 0.0037107225511316
930 => 0.0035703171741364
1001 => 0.0035745551299112
1002 => 0.0036192154679984
1003 => 0.0037490714242542
1004 => 0.0036983344556142
1005 => 0.0036615242027263
1006 => 0.0036546307488725
1007 => 0.0037409167562757
1008 => 0.0038630295342286
1009 => 0.0039203221175246
1010 => 0.0038635469074798
1011 => 0.0037983266031748
1012 => 0.003802296260896
1013 => 0.0038287046152776
1014 => 0.0038314797599291
1015 => 0.0037890280465821
1016 => 0.0038009779552269
1017 => 0.0037828249512729
1018 => 0.0036714199995146
1019 => 0.0036694050372062
1020 => 0.0036420644653972
1021 => 0.0036412366037487
1022 => 0.0035947234706763
1023 => 0.0035882159618294
1024 => 0.0034958613129688
1025 => 0.0035566494225245
1026 => 0.0035158759501535
1027 => 0.0034544207098007
1028 => 0.0034438258032
1029 => 0.0034435073075138
1030 => 0.0035066080982159
1031 => 0.003555912053046
1101 => 0.003516585222162
1102 => 0.0035076312650883
1103 => 0.0036032361011735
1104 => 0.0035910695143242
1105 => 0.0035805333285788
1106 => 0.0038520956743076
1107 => 0.0036371328873892
1108 => 0.0035433968426458
1109 => 0.0034273806872839
1110 => 0.0034651561324739
1111 => 0.0034731159738123
1112 => 0.0031941180336505
1113 => 0.0030809286040739
1114 => 0.0030420862572968
1115 => 0.0030197319375765
1116 => 0.0030299190817809
1117 => 0.002928035319366
1118 => 0.0029965028927107
1119 => 0.0029082801664795
1120 => 0.0028934893393252
1121 => 0.0030512425025253
1122 => 0.003073192933604
1123 => 0.0029795455751579
1124 => 0.0030396823394105
1125 => 0.003017875912729
1126 => 0.0029097924919061
1127 => 0.0029056645002385
1128 => 0.0028514320389856
1129 => 0.0027665687385986
1130 => 0.0027277839331353
1201 => 0.002707584469705
1202 => 0.002715919161996
1203 => 0.0027117048865279
1204 => 0.0026842038884524
1205 => 0.002713281211546
1206 => 0.0026390006666212
1207 => 0.0026094215551131
1208 => 0.0025960613566751
1209 => 0.0025301330976256
1210 => 0.0026350542762032
1211 => 0.0026557250701451
1212 => 0.0026764365919367
1213 => 0.0028567162487756
1214 => 0.002847709986585
1215 => 0.0029291222105609
1216 => 0.0029259586812447
1217 => 0.0029027385961762
1218 => 0.0028047768767907
1219 => 0.002843822672138
1220 => 0.0027236457831228
1221 => 0.0028136904796071
1222 => 0.0027725978404881
1223 => 0.0027997970169855
1224 => 0.0027508904451923
1225 => 0.0027779573613255
1226 => 0.0026606268822247
1227 => 0.0025510653317247
1228 => 0.0025951560979469
1229 => 0.0026430878032212
1230 => 0.0027470159530272
1231 => 0.0026851172043914
]
'min_raw' => 0.0025301330976256
'max_raw' => 0.0075525089154062
'avg_raw' => 0.0050413210065159
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00253'
'max' => '$0.007552'
'avg' => '$0.005041'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047929769023744
'max_diff' => 0.00022939891540621
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027073783350517
102 => 0.002632807273808
103 => 0.0024789458742918
104 => 0.0024798167131038
105 => 0.002456148488841
106 => 0.0024356956874606
107 => 0.0026922270202773
108 => 0.0026603232938813
109 => 0.0026094888813258
110 => 0.0026775327626106
111 => 0.002695524644824
112 => 0.002696036848417
113 => 0.0027456799077356
114 => 0.002772174417393
115 => 0.0027768441895539
116 => 0.0028549586160011
117 => 0.002881141541392
118 => 0.0029889853055308
119 => 0.0027699265433554
120 => 0.002765415172304
121 => 0.0026784902795609
122 => 0.002623361138355
123 => 0.0026822650190243
124 => 0.0027344458161157
125 => 0.0026801116823799
126 => 0.0026872065731897
127 => 0.0026142674379112
128 => 0.0026403397466679
129 => 0.0026627967312885
130 => 0.0026503973043416
131 => 0.002631834762063
201 => 0.0027301675858162
202 => 0.0027246192625306
203 => 0.0028161890486714
204 => 0.0028875742451865
205 => 0.0030155092789716
206 => 0.0028820024018127
207 => 0.0028771368805672
208 => 0.0029246981311956
209 => 0.0028811342600123
210 => 0.0029086651228264
211 => 0.0030110736313468
212 => 0.0030132373617586
213 => 0.0029769920895514
214 => 0.0029747865614437
215 => 0.0029817478624509
216 => 0.0030225204198824
217 => 0.0030082732355017
218 => 0.0030247604379617
219 => 0.0030453779370988
220 => 0.0031306606551687
221 => 0.003151222029772
222 => 0.0031012685493363
223 => 0.0031057787893143
224 => 0.0030870948163776
225 => 0.0030690463326303
226 => 0.0031096166883249
227 => 0.0031837598107691
228 => 0.0031832985702524
301 => 0.0032004983335231
302 => 0.0032112136435502
303 => 0.0031652156888275
304 => 0.0031352727116947
305 => 0.0031467547544485
306 => 0.0031651147908583
307 => 0.0031408008420912
308 => 0.0029907238869841
309 => 0.0030362476482106
310 => 0.0030286702683443
311 => 0.0030178791579739
312 => 0.0030636536519119
313 => 0.003059238590304
314 => 0.0029269903541221
315 => 0.0029354564571241
316 => 0.0029275052058862
317 => 0.0029531973253087
318 => 0.0028797468012491
319 => 0.002902339687753
320 => 0.0029165097343731
321 => 0.0029248560006918
322 => 0.0029550084377231
323 => 0.0029514703972556
324 => 0.0029547885081601
325 => 0.0029994966123293
326 => 0.0032256148612489
327 => 0.0032379219786358
328 => 0.003177317231506
329 => 0.0032015276326086
330 => 0.0031550489567244
331 => 0.0031862504032255
401 => 0.0032075976404908
402 => 0.0031111335801267
403 => 0.0031054216045185
404 => 0.0030587510946055
405 => 0.0030838291830799
406 => 0.0030439281411387
407 => 0.0030537184611519
408 => 0.0030263438728903
409 => 0.003075612681535
410 => 0.0031307028651987
411 => 0.0031446208211694
412 => 0.0031080086710672
413 => 0.003081499061535
414 => 0.0030349569200046
415 => 0.0031123575386289
416 => 0.0031349918382557
417 => 0.0031122386502886
418 => 0.0031069662394697
419 => 0.0030969750304948
420 => 0.0031090859216852
421 => 0.003134868566999
422 => 0.0031227099475997
423 => 0.0031307409299202
424 => 0.0031001351068274
425 => 0.0031652309160645
426 => 0.0032686187272926
427 => 0.0032689511360113
428 => 0.0032567924510725
429 => 0.0032518173791581
430 => 0.003264292927756
501 => 0.0032710604010965
502 => 0.0033114040376377
503 => 0.0033546943670078
504 => 0.0035567114451274
505 => 0.0034999858579758
506 => 0.0036792274277332
507 => 0.0038209842378065
508 => 0.0038634909068735
509 => 0.0038243867714252
510 => 0.0036906136364206
511 => 0.0036840500882188
512 => 0.0038839636294765
513 => 0.0038274788974509
514 => 0.0038207602183094
515 => 0.0037492848236313
516 => 0.0037915356342859
517 => 0.0037822947622138
518 => 0.0037677075935689
519 => 0.003848319197081
520 => 0.003999216922608
521 => 0.0039756980969747
522 => 0.0039581423846464
523 => 0.0038812183636146
524 => 0.0039275438058779
525 => 0.0039110482031933
526 => 0.0039819237806942
527 => 0.0039399386586689
528 => 0.0038270509700516
529 => 0.0038450287065466
530 => 0.0038423114078415
531 => 0.0038982332226413
601 => 0.0038814468819032
602 => 0.0038390336054013
603 => 0.0039987011705868
604 => 0.0039883332470213
605 => 0.0040030325921999
606 => 0.0040095036985398
607 => 0.0041066905318102
608 => 0.0041465048677693
609 => 0.00415554341908
610 => 0.0041933639588899
611 => 0.0041546024095958
612 => 0.0043096762432883
613 => 0.0044127912938847
614 => 0.0045325647314045
615 => 0.0047075859156859
616 => 0.0047733955000121
617 => 0.0047615075876423
618 => 0.0048942066520753
619 => 0.0051326639211269
620 => 0.0048097066194719
621 => 0.0051497814423162
622 => 0.0050421176797563
623 => 0.0047868488355153
624 => 0.0047704125313681
625 => 0.0049432835564204
626 => 0.0053266948517668
627 => 0.0052306546708974
628 => 0.0053268519390972
629 => 0.0052146327159234
630 => 0.0052090600856349
701 => 0.0053214017019057
702 => 0.0055838940117449
703 => 0.0054591937547174
704 => 0.0052804053585109
705 => 0.0054124199280142
706 => 0.0052980566905388
707 => 0.0050403643082521
708 => 0.0052305812307811
709 => 0.005103388591752
710 => 0.0051405101657533
711 => 0.0054078501745152
712 => 0.005375683117367
713 => 0.005417310267906
714 => 0.0053438394367769
715 => 0.0052752060952156
716 => 0.0051470968664127
717 => 0.0051091700394728
718 => 0.0051196516499747
719 => 0.0051091648453071
720 => 0.0050374889091765
721 => 0.0050220104975934
722 => 0.0049962124668301
723 => 0.0050042083552999
724 => 0.0049557005099849
725 => 0.0050472448363266
726 => 0.0050642362699814
727 => 0.0051308545965297
728 => 0.0051377711321897
729 => 0.005323302223374
730 => 0.005221114816073
731 => 0.0052896709513268
801 => 0.0052835386453143
802 => 0.0047923812854128
803 => 0.0048600584360892
804 => 0.0049653428442817
805 => 0.0049179123611006
806 => 0.0048508567549063
807 => 0.0047967057576103
808 => 0.004714661459483
809 => 0.004830137233576
810 => 0.0049819755970286
811 => 0.0051416220036583
812 => 0.005333426700777
813 => 0.0052906181252329
814 => 0.0051380363482623
815 => 0.0051448810553161
816 => 0.00518719234103
817 => 0.0051323953816448
818 => 0.0051162346885584
819 => 0.0051849721099643
820 => 0.0051854454668081
821 => 0.0051223949426016
822 => 0.0050523258230703
823 => 0.005052032230901
824 => 0.0050395641078678
825 => 0.0052168507673129
826 => 0.0053143405043047
827 => 0.0053255175455382
828 => 0.0053135882003757
829 => 0.00531817933187
830 => 0.0052614522019542
831 => 0.0053911135990338
901 => 0.0055101037191772
902 => 0.0054782118251256
903 => 0.0054304013422424
904 => 0.0053923179897612
905 => 0.0054692405975874
906 => 0.0054658153549483
907 => 0.0055090644442824
908 => 0.0055071024157714
909 => 0.0054925593737088
910 => 0.0054782123445034
911 => 0.0055350966935882
912 => 0.0055187149145865
913 => 0.0055023076901572
914 => 0.0054694004897439
915 => 0.0054738731248108
916 => 0.0054260708970816
917 => 0.0054039553992529
918 => 0.005071391374409
919 => 0.0049825194001276
920 => 0.0050104803323924
921 => 0.0050196857972992
922 => 0.0049810086001995
923 => 0.0050364617654838
924 => 0.0050278194484137
925 => 0.0050614416485472
926 => 0.00504043595761
927 => 0.0050412980384931
928 => 0.0051030712966538
929 => 0.0051210043363001
930 => 0.0051118834475986
1001 => 0.0051182714053994
1002 => 0.005265479196729
1003 => 0.0052445509562421
1004 => 0.0052334332455987
1005 => 0.0052365129274268
1006 => 0.0052741276742821
1007 => 0.0052846577497126
1008 => 0.0052400410801784
1009 => 0.0052610825594566
1010 => 0.0053506745076619
1011 => 0.0053820266190686
1012 => 0.0054820875088117
1013 => 0.0054395798644084
1014 => 0.0055176044853985
1015 => 0.0057574255697686
1016 => 0.0059490112463203
1017 => 0.0057728211405504
1018 => 0.0061246438372488
1019 => 0.0063985882725968
1020 => 0.0063880738288898
1021 => 0.0063403052801379
1022 => 0.0060284268236838
1023 => 0.0057414316182089
1024 => 0.0059815152940488
1025 => 0.0059821273167121
1026 => 0.0059615039160378
1027 => 0.0058334137456746
1028 => 0.0059570466557607
1029 => 0.0059668601871946
1030 => 0.0059613672192203
1031 => 0.005863160785926
1101 => 0.0057132177138685
1102 => 0.0057425162312356
1103 => 0.0057905078003563
1104 => 0.0056996497479206
1105 => 0.0056706150948838
1106 => 0.0057245960389479
1107 => 0.0058985338880987
1108 => 0.0058656519452701
1109 => 0.0058647932648565
1110 => 0.0060054761603911
1111 => 0.0059047775684574
1112 => 0.0057428857793664
1113 => 0.0057020059675306
1114 => 0.0055569101754543
1115 => 0.0056571283558549
1116 => 0.0056607350297525
1117 => 0.0056058465565521
1118 => 0.005747339676459
1119 => 0.0057460357924497
1120 => 0.0058803624513296
1121 => 0.0061371445723189
1122 => 0.0060612014636616
1123 => 0.0059728878908799
1124 => 0.005982490024911
1125 => 0.0060878017351463
1126 => 0.0060241278711056
1127 => 0.0060470254365646
1128 => 0.0060877670769386
1129 => 0.0061123475201343
1130 => 0.0059789532774067
1201 => 0.0059478526984427
1202 => 0.0058842318287023
1203 => 0.0058676343313268
1204 => 0.0059194522022374
1205 => 0.0059058000240048
1206 => 0.0056604319027771
1207 => 0.0056347895688935
1208 => 0.0056355759826649
1209 => 0.005571097114888
1210 => 0.0054727513648268
1211 => 0.005731198124068
1212 => 0.0057104412323409
1213 => 0.0056875272303299
1214 => 0.0056903340648308
1215 => 0.005802517043444
1216 => 0.0057374452504721
1217 => 0.005910449277145
1218 => 0.0058748848502381
1219 => 0.0058384083299779
1220 => 0.005833366163776
1221 => 0.0058193258155063
1222 => 0.005771176237106
1223 => 0.0057130327278466
1224 => 0.005674641346729
1225 => 0.0052345566819509
1226 => 0.005316233835879
1227 => 0.0054101959563664
1228 => 0.0054426313038291
1229 => 0.0053871483975364
1230 => 0.0057733670404188
1231 => 0.0058439329081688
]
'min_raw' => 0.0024356956874606
'max_raw' => 0.0063985882725968
'avg_raw' => 0.0044171419800287
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002435'
'max' => '$0.006398'
'avg' => '$0.004417'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.4437410165025E-5
'max_diff' => -0.0011539206428094
'year' => 2027
]
2 => [
'items' => [
101 => 0.0056301842918563
102 => 0.0055902006530427
103 => 0.0057759883611228
104 => 0.0056639356615269
105 => 0.0057143929852939
106 => 0.0056053318499902
107 => 0.0058269356570376
108 => 0.0058252474073159
109 => 0.0057390385212254
110 => 0.0058119016814161
111 => 0.0057992399142586
112 => 0.0057019102941856
113 => 0.0058300211795977
114 => 0.0058300847209985
115 => 0.0057471105424792
116 => 0.0056502148673521
117 => 0.005632892209213
118 => 0.0056198419132769
119 => 0.0057111834124913
120 => 0.0057930799150694
121 => 0.0059454690025026
122 => 0.0059837832397587
123 => 0.0061333262584925
124 => 0.0060442806719539
125 => 0.0060837534271331
126 => 0.0061266066866421
127 => 0.0061471521151272
128 => 0.0061136744419393
129 => 0.006345976304395
130 => 0.0063655896991314
131 => 0.0063721659007314
201 => 0.006293835019743
202 => 0.0063634111756316
203 => 0.0063308587964114
204 => 0.006415551043831
205 => 0.0064288318696313
206 => 0.0064175834826575
207 => 0.0064217990263901
208 => 0.0062235703676408
209 => 0.0062132911659452
210 => 0.0060731335214464
211 => 0.0061302487975727
212 => 0.006023474526461
213 => 0.0060573337477274
214 => 0.0060722585698391
215 => 0.0060644626897442
216 => 0.0061334780095898
217 => 0.0060748008888227
218 => 0.0059199423197064
219 => 0.0057650415594766
220 => 0.0057630969066113
221 => 0.0057223142706683
222 => 0.0056928358945939
223 => 0.0056985144756274
224 => 0.0057185265358585
225 => 0.0056916727572733
226 => 0.0056974033724556
227 => 0.0057925697673705
228 => 0.005811654709175
229 => 0.0057467966199552
301 => 0.0054863820327599
302 => 0.0054224756398616
303 => 0.005468410287758
304 => 0.0054464564846337
305 => 0.0043957154615994
306 => 0.0046425714790994
307 => 0.0044958980159392
308 => 0.004563491895885
309 => 0.0044137762709075
310 => 0.004485228414415
311 => 0.0044720338125236
312 => 0.0048689709836631
313 => 0.004862773355705
314 => 0.0048657398322373
315 => 0.0047241421782335
316 => 0.0049497110858569
317 => 0.0050608344409477
318 => 0.0050402684653727
319 => 0.0050454444783484
320 => 0.0049565034264749
321 => 0.004866600976035
322 => 0.0047668853226092
323 => 0.004952144681447
324 => 0.004931547003227
325 => 0.0049787906662531
326 => 0.0050989446030719
327 => 0.0051166377266889
328 => 0.0051404174642561
329 => 0.0051318941210952
330 => 0.005334954734633
331 => 0.0053103627544965
401 => 0.0053696223510299
402 => 0.0052477208649243
403 => 0.0051097777624006
404 => 0.0051359962364905
405 => 0.0051334711866
406 => 0.0051013244033764
407 => 0.0050723037248618
408 => 0.0050239924716606
409 => 0.0051768564255094
410 => 0.0051706504281455
411 => 0.0052711183117843
412 => 0.0052533596374582
413 => 0.0051347628640237
414 => 0.0051389985709883
415 => 0.0051674857359368
416 => 0.0052660801390844
417 => 0.0052953496707574
418 => 0.0052817908574973
419 => 0.0053138835627719
420 => 0.005339248328496
421 => 0.0053170689868241
422 => 0.0056310816928062
423 => 0.0055006817243929
424 => 0.0055642377616804
425 => 0.0055793955020796
426 => 0.0055405692687801
427 => 0.0055489892885196
428 => 0.0055617433241068
429 => 0.0056391833306965
430 => 0.0058424083154343
501 => 0.0059324152777754
502 => 0.0062032056648438
503 => 0.0059249414525103
504 => 0.0059084304057222
505 => 0.0059572079315195
506 => 0.0061161905548023
507 => 0.0062450310384945
508 => 0.006287774859921
509 => 0.0062934241615461
510 => 0.0063736144120978
511 => 0.0064195779682543
512 => 0.0063638772064678
513 => 0.0063166766429666
514 => 0.0061476100832548
515 => 0.0061671799978944
516 => 0.0063019973032106
517 => 0.0064924346876695
518 => 0.0066558497751681
519 => 0.0065986275071168
520 => 0.0070351930197218
521 => 0.0070784767070864
522 => 0.0070724963010218
523 => 0.0071711029823146
524 => 0.0069753888008498
525 => 0.0068917171964899
526 => 0.0063268819405447
527 => 0.0064855776081346
528 => 0.0067162510808463
529 => 0.0066857205817518
530 => 0.0065181993399489
531 => 0.0066557226952841
601 => 0.0066102531732574
602 => 0.0065743894747027
603 => 0.0067386880303018
604 => 0.0065580350194079
605 => 0.0067144489288703
606 => 0.0065138464720901
607 => 0.0065988888936173
608 => 0.0065506147021193
609 => 0.0065818540202809
610 => 0.0063992296046326
611 => 0.0064977693063593
612 => 0.0063951300290723
613 => 0.0063950813646908
614 => 0.0063928155969559
615 => 0.0065135702515119
616 => 0.0065175080564617
617 => 0.0064282701842947
618 => 0.0064154096127579
619 => 0.0064629618862279
620 => 0.0064072906279547
621 => 0.00643333885931
622 => 0.0064080796023467
623 => 0.0064023932115629
624 => 0.0063570830823379
625 => 0.0063375622328399
626 => 0.0063452168609184
627 => 0.0063190876690552
628 => 0.0063033438858234
629 => 0.0063896837622059
630 => 0.0063435558491954
701 => 0.0063826139979696
702 => 0.0063381023079101
703 => 0.0061838053973434
704 => 0.0060950676124163
705 => 0.0058036150516871
706 => 0.0058862706363642
707 => 0.0059410713745184
708 => 0.0059229597308853
709 => 0.0059618705496848
710 => 0.0059642593579386
711 => 0.005951609054098
712 => 0.0059369616228549
713 => 0.0059298320633795
714 => 0.0059829699585705
715 => 0.0060138182952682
716 => 0.0059465713617315
717 => 0.0059308163460884
718 => 0.005998806708699
719 => 0.0060402807906147
720 => 0.0063465021092064
721 => 0.0063238162448433
722 => 0.0063807533125187
723 => 0.006374343072469
724 => 0.0064340221901789
725 => 0.0065315723253578
726 => 0.0063332256250924
727 => 0.0063676517539456
728 => 0.0063592112621662
729 => 0.0064513623381978
730 => 0.0064516500237986
731 => 0.00639640085043
801 => 0.0064263523236286
802 => 0.0064096342329648
803 => 0.0064398460823797
804 => 0.0063235132612938
805 => 0.0064651940800244
806 => 0.0065455179745343
807 => 0.0065466332718875
808 => 0.0065847061603954
809 => 0.0066233904201524
810 => 0.0066976414880669
811 => 0.006621319598168
812 => 0.0064840239480262
813 => 0.0064939362505042
814 => 0.0064134398610606
815 => 0.00641479301991
816 => 0.0064075697519228
817 => 0.0064292473228944
818 => 0.0063282702690865
819 => 0.0063519693817852
820 => 0.0063187904852253
821 => 0.0063675796295042
822 => 0.0063150905753945
823 => 0.0063592071919055
824 => 0.0063782464611027
825 => 0.0064485017743263
826 => 0.0063047138085085
827 => 0.0060115204126166
828 => 0.0060731532190594
829 => 0.005981993457178
830 => 0.0059904306402098
831 => 0.0060074750927018
901 => 0.0059522284455775
902 => 0.0059627677648269
903 => 0.0059623912261792
904 => 0.0059591464195365
905 => 0.0059447746328927
906 => 0.0059239326988879
907 => 0.0060069605491541
908 => 0.0060210685988182
909 => 0.0060524290456039
910 => 0.0061457364632437
911 => 0.0061364128518811
912 => 0.0061516200488465
913 => 0.0061184228232558
914 => 0.005991970564293
915 => 0.0059988375303349
916 => 0.0059132063537574
917 => 0.0060502392638936
918 => 0.0060177880620273
919 => 0.0059968665610766
920 => 0.0059911579357058
921 => 0.0060846966443863
922 => 0.0061126848920631
923 => 0.0060952444943324
924 => 0.0060594737297689
925 => 0.006128164172408
926 => 0.0061465428370411
927 => 0.0061506571422734
928 => 0.0062723634365438
929 => 0.0061574591721348
930 => 0.0061851177706282
1001 => 0.0064009022605787
1002 => 0.0062052155044178
1003 => 0.0063088751434917
1004 => 0.0063038015435777
1005 => 0.006356830307277
1006 => 0.0062994516371607
1007 => 0.0063001629145445
1008 => 0.0063472488642299
1009 => 0.0062811251398926
1010 => 0.0062647519758467
1011 => 0.006242132566984
1012 => 0.0062915212187211
1013 => 0.0063211274817809
1014 => 0.0065597322186386
1015 => 0.0067138817603467
1016 => 0.0067071897222006
1017 => 0.0067683424238849
1018 => 0.0067407925716816
1019 => 0.0066518268316332
1020 => 0.0068036805016796
1021 => 0.0067556276466495
1022 => 0.006759589065634
1023 => 0.0067594416214215
1024 => 0.006791392569163
1025 => 0.0067687523944268
1026 => 0.0067241262860555
1027 => 0.0067537511794056
1028 => 0.0068417265215625
1029 => 0.0071148046830305
1030 => 0.0072676228399924
1031 => 0.0071056048380973
1101 => 0.0072173626862971
1102 => 0.0071503478007701
1103 => 0.0071381692025497
1104 => 0.0072083613900593
1105 => 0.0072786764397012
1106 => 0.0072741976750193
1107 => 0.0072231525596971
1108 => 0.0071943184692734
1109 => 0.0074126598620906
1110 => 0.0075735300809697
1111 => 0.0075625598105298
1112 => 0.0076109790165285
1113 => 0.0077531393028906
1114 => 0.0077661366578648
1115 => 0.0077644992898789
1116 => 0.0077322839894415
1117 => 0.0078722592532108
1118 => 0.0079890290808777
1119 => 0.0077248270781798
1120 => 0.007825431742149
1121 => 0.0078705964170846
1122 => 0.0079369115596453
1123 => 0.0080487963208535
1124 => 0.008170332847493
1125 => 0.00818751944494
1126 => 0.0081753247315969
1127 => 0.008095168125201
1128 => 0.0082281548428822
1129 => 0.0083060553431775
1130 => 0.0083524433083822
1201 => 0.0084700754699197
1202 => 0.0078708753387411
1203 => 0.007446731703714
1204 => 0.0073804955503962
1205 => 0.007515189372776
1206 => 0.0075507070595745
1207 => 0.0075363899245614
1208 => 0.0070589777018863
1209 => 0.0073779820738465
1210 => 0.0077212039554264
1211 => 0.007734388505713
1212 => 0.0079062125560629
1213 => 0.0079621655101627
1214 => 0.0081005063921875
1215 => 0.0080918531323507
1216 => 0.0081255369356395
1217 => 0.0081177936125856
1218 => 0.008374040965427
1219 => 0.0086567198487112
1220 => 0.0086469315778469
1221 => 0.00860629314387
1222 => 0.0086666481482083
1223 => 0.0089584030494678
1224 => 0.0089315429334368
1225 => 0.0089576352482217
1226 => 0.0093016307193922
1227 => 0.0097488737646992
1228 => 0.0095410844676865
1229 => 0.0099919274524445
1230 => 0.01027570921319
1231 => 0.010766480424817
]
'min_raw' => 0.0043957154615994
'max_raw' => 0.010766480424817
'avg_raw' => 0.0075810979432084
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004395'
'max' => '$0.010766'
'avg' => '$0.007581'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019600197741388
'max_diff' => 0.0043678921522205
'year' => 2028
]
3 => [
'items' => [
101 => 0.010705033452022
102 => 0.010896087083263
103 => 0.010595030546349
104 => 0.0099037438840296
105 => 0.0097943451235785
106 => 0.010013364212419
107 => 0.010551801270765
108 => 0.0099964069133174
109 => 0.010108762468482
110 => 0.010076404061036
111 => 0.010074679819018
112 => 0.010140487123861
113 => 0.010045030195907
114 => 0.0096561214990485
115 => 0.0098343560629655
116 => 0.0097655311383104
117 => 0.0098418975234532
118 => 0.010254015408176
119 => 0.010071808267677
120 => 0.009879867846467
121 => 0.010120603729654
122 => 0.010427143234775
123 => 0.010407960543449
124 => 0.010370738104533
125 => 0.010580559043796
126 => 0.010927121763691
127 => 0.011020796274277
128 => 0.0110899448829
129 => 0.011099479307754
130 => 0.011197689809361
131 => 0.010669587189988
201 => 0.011507699609569
202 => 0.011652418472043
203 => 0.01162521732388
204 => 0.011786066248818
205 => 0.011738740414758
206 => 0.011670172706401
207 => 0.011925152465976
208 => 0.011632838747429
209 => 0.011217936225225
210 => 0.010990312495703
211 => 0.01129006578462
212 => 0.011473114658214
213 => 0.011594098319564
214 => 0.011630707902389
215 => 0.010710582293015
216 => 0.010214685622068
217 => 0.010532549702678
218 => 0.010920365818829
219 => 0.010667432851882
220 => 0.010677347345321
221 => 0.010316731404068
222 => 0.010952272327849
223 => 0.010859679360994
224 => 0.011340051836828
225 => 0.011225407090241
226 => 0.011617132196331
227 => 0.01151397784776
228 => 0.011942165781398
301 => 0.012112981540852
302 => 0.012399807786326
303 => 0.012610798340089
304 => 0.012734696028865
305 => 0.012727257676359
306 => 0.013218202044872
307 => 0.01292870930305
308 => 0.01256503819112
309 => 0.012558460528073
310 => 0.012746810950201
311 => 0.013141541763566
312 => 0.013243889720372
313 => 0.013301088265661
314 => 0.013213486702455
315 => 0.012899263079338
316 => 0.012763582912027
317 => 0.012879186345609
318 => 0.012737813280254
319 => 0.012981862853333
320 => 0.013316995043347
321 => 0.013247791571365
322 => 0.013479128402635
323 => 0.013718537685655
324 => 0.014060903712918
325 => 0.014150410870221
326 => 0.014298362797592
327 => 0.014450653930532
328 => 0.014499565738072
329 => 0.014592953555107
330 => 0.014592461355214
331 => 0.014873891827575
401 => 0.015184318353765
402 => 0.015301497181011
403 => 0.015570943432986
404 => 0.015109526169002
405 => 0.015459516464113
406 => 0.015775216471129
407 => 0.015398825907981
408 => 0.015917592611527
409 => 0.015937735147075
410 => 0.01624186351953
411 => 0.0159335711501
412 => 0.015750508125237
413 => 0.016279004218735
414 => 0.016534726830908
415 => 0.016457701098982
416 => 0.015871531475795
417 => 0.015530355613102
418 => 0.014637432572525
419 => 0.015695138485493
420 => 0.016210316181995
421 => 0.015870197290019
422 => 0.016041733475597
423 => 0.016977579283318
424 => 0.017333888775369
425 => 0.017259778891814
426 => 0.017272302242182
427 => 0.017464560376618
428 => 0.018317138823197
429 => 0.017806254055393
430 => 0.018196806317892
501 => 0.01840395382968
502 => 0.018596363983086
503 => 0.018123865458176
504 => 0.01750915181965
505 => 0.017314446206406
506 => 0.015836379169222
507 => 0.015759439361017
508 => 0.015716250715157
509 => 0.015443952412162
510 => 0.015230000534791
511 => 0.015059858058382
512 => 0.014613353391439
513 => 0.01476403560925
514 => 0.01405240036291
515 => 0.014507679374714
516 => 0.013371892338521
517 => 0.014317809532357
518 => 0.013802989809329
519 => 0.01414867740731
520 => 0.014147471335846
521 => 0.013510950867611
522 => 0.013143819145376
523 => 0.013377769767765
524 => 0.013628583405989
525 => 0.013669277074952
526 => 0.013994463503815
527 => 0.014085216046252
528 => 0.013810231605837
529 => 0.013348355676724
530 => 0.013455638920789
531 => 0.013141645053859
601 => 0.012591382879666
602 => 0.012986590779827
603 => 0.013121532133008
604 => 0.013181129922011
605 => 0.012640010271729
606 => 0.012469978729331
607 => 0.012379455362862
608 => 0.013278503924962
609 => 0.013327755834681
610 => 0.01307577610104
611 => 0.0142147483908
612 => 0.013956963883246
613 => 0.014244972336922
614 => 0.01344590409088
615 => 0.013476429573967
616 => 0.013098137860654
617 => 0.013309955942647
618 => 0.01316024974951
619 => 0.013292843134849
620 => 0.013372319063319
621 => 0.013750548702684
622 => 0.01432212830728
623 => 0.01369405380741
624 => 0.013420392753624
625 => 0.013590170532265
626 => 0.014042311129838
627 => 0.014727327279814
628 => 0.014321783931793
629 => 0.014501757183072
630 => 0.014541073332024
701 => 0.014242040681225
702 => 0.014738353040184
703 => 0.015004330865385
704 => 0.015277169077685
705 => 0.015514066852673
706 => 0.015168191495852
707 => 0.015538327706935
708 => 0.015240063258639
709 => 0.014972489214505
710 => 0.01497289501388
711 => 0.014805041907362
712 => 0.014479805362631
713 => 0.014419826753759
714 => 0.014731843051576
715 => 0.014982050574371
716 => 0.015002658864362
717 => 0.015141186605108
718 => 0.015223165895133
719 => 0.016026674382814
720 => 0.01634985214353
721 => 0.016745027791891
722 => 0.016898970977807
723 => 0.017362284775728
724 => 0.0169881212554
725 => 0.016907168624178
726 => 0.015783320899211
727 => 0.015967350901215
728 => 0.016262000690678
729 => 0.015788179565713
730 => 0.016088710010914
731 => 0.016148041086902
801 => 0.015772079305197
802 => 0.015972896737155
803 => 0.015439585176092
804 => 0.014333753041938
805 => 0.014739584147468
806 => 0.015038412442412
807 => 0.014611947620265
808 => 0.015376369307495
809 => 0.014929809938682
810 => 0.014788272057398
811 => 0.014236082320611
812 => 0.014496694620642
813 => 0.014849176488043
814 => 0.014631383674405
815 => 0.01508333646446
816 => 0.015723422146584
817 => 0.016179585321428
818 => 0.016214603865791
819 => 0.015921321504926
820 => 0.016391308359915
821 => 0.016394731701058
822 => 0.015864584608677
823 => 0.015539872466465
824 => 0.015466097184555
825 => 0.015650402303264
826 => 0.015874182741978
827 => 0.016227022122707
828 => 0.016440235570776
829 => 0.016996183163663
830 => 0.017146606642031
831 => 0.017311876439209
901 => 0.017532727855557
902 => 0.017797916606024
903 => 0.017217698717207
904 => 0.017240751855591
905 => 0.016700460991189
906 => 0.016123082717027
907 => 0.016561240855898
908 => 0.017134074336737
909 => 0.017002665703307
910 => 0.016987879547612
911 => 0.017012745760154
912 => 0.016913667941953
913 => 0.016465542642226
914 => 0.016240496922116
915 => 0.016530863316344
916 => 0.016685180132156
917 => 0.016924512055638
918 => 0.016895009344385
919 => 0.017511502676903
920 => 0.017751053344129
921 => 0.017689766032502
922 => 0.017701044372803
923 => 0.018134739413384
924 => 0.018617097494699
925 => 0.019068889490605
926 => 0.019528471713758
927 => 0.018974427405947
928 => 0.018693117875143
929 => 0.018983357504488
930 => 0.018829352271739
1001 => 0.019714312020032
1002 => 0.019775584712934
1003 => 0.020660480468565
1004 => 0.021500351912085
1005 => 0.02097284370627
1006 => 0.021470260184862
1007 => 0.02200825666142
1008 => 0.023046139151483
1009 => 0.022696616841976
1010 => 0.022428888230606
1011 => 0.022175885986517
1012 => 0.022702343493491
1013 => 0.023379622665849
1014 => 0.023525502112675
1015 => 0.023761882546772
1016 => 0.023513357423544
1017 => 0.023812678560328
1018 => 0.024869413701549
1019 => 0.024583874538332
1020 => 0.024178363023853
1021 => 0.025012553927925
1022 => 0.025314444373274
1023 => 0.027433269619984
1024 => 0.030108374018262
1025 => 0.029000863231693
1026 => 0.028313395547319
1027 => 0.028474966760099
1028 => 0.029451824328351
1029 => 0.029765559975364
1030 => 0.028912718335619
1031 => 0.029213956420606
1101 => 0.030873807885961
1102 => 0.031764264942713
1103 => 0.030554904655306
1104 => 0.027218327586274
1105 => 0.024141851148772
1106 => 0.024957871235537
1107 => 0.024865359881749
1108 => 0.026648663210585
1109 => 0.024577064523723
1110 => 0.024611944932699
1111 => 0.026432125085825
1112 => 0.025946532226758
1113 => 0.025159933985106
1114 => 0.024147594186437
1115 => 0.022276190438501
1116 => 0.020618635951
1117 => 0.023869482012991
1118 => 0.023729299619518
1119 => 0.023526294739902
1120 => 0.023978060132064
1121 => 0.026171704640562
1122 => 0.026121134034506
1123 => 0.025799429640133
1124 => 0.026043439587893
1125 => 0.025117157861493
1126 => 0.025355881753429
1127 => 0.024141363819186
1128 => 0.024690376648213
1129 => 0.025158246298558
1130 => 0.025252178057794
1201 => 0.025463811107626
1202 => 0.023655429868095
1203 => 0.02446733995336
1204 => 0.024944261062767
1205 => 0.022789514139929
1206 => 0.024901668644142
1207 => 0.023623949973999
1208 => 0.023190273066663
1209 => 0.023774161889804
1210 => 0.023546619847575
1211 => 0.023350992561384
1212 => 0.023241829174386
1213 => 0.023670572684643
1214 => 0.02365057128743
1215 => 0.02294906368912
1216 => 0.022033975624233
1217 => 0.022341109215551
1218 => 0.022229524702432
1219 => 0.021825128032202
1220 => 0.022097642560897
1221 => 0.02089762649297
1222 => 0.01883306121951
1223 => 0.020196976278503
1224 => 0.020144467032385
1225 => 0.020117989489389
1226 => 0.021142933960378
1227 => 0.021044409198984
1228 => 0.020865585792298
1229 => 0.021821843800103
1230 => 0.021472796763769
1231 => 0.022548477483926
]
'min_raw' => 0.0096561214990485
'max_raw' => 0.031764264942713
'avg_raw' => 0.020710193220881
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009656'
'max' => '$0.031764'
'avg' => '$0.02071'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0052604060374491
'max_diff' => 0.020997784517896
'year' => 2029
]
4 => [
'items' => [
101 => 0.023256990376888
102 => 0.023077288589242
103 => 0.023743648389613
104 => 0.022348184953172
105 => 0.022811701930482
106 => 0.022907232137099
107 => 0.021810043724723
108 => 0.021060529068425
109 => 0.021010544985942
110 => 0.019710989861403
111 => 0.020405201719289
112 => 0.021016079425791
113 => 0.020723516410402
114 => 0.020630899699801
115 => 0.021104058388146
116 => 0.021140826870561
117 => 0.02030250157496
118 => 0.020476815950225
119 => 0.021203735872433
120 => 0.02045849943327
121 => 0.019010626765656
122 => 0.018651534325682
123 => 0.018603624774803
124 => 0.017629737597613
125 => 0.018675530599589
126 => 0.018219013928716
127 => 0.019661144622092
128 => 0.018837407304338
129 => 0.018801897634952
130 => 0.01874821956154
131 => 0.01790995463736
201 => 0.018093481381241
202 => 0.018703552229811
203 => 0.018921232381521
204 => 0.018898526558297
205 => 0.01870056254983
206 => 0.018791189459167
207 => 0.018499248607686
208 => 0.018396158216805
209 => 0.018070776585938
210 => 0.017592555477533
211 => 0.017659055055757
212 => 0.016711573906648
213 => 0.016195335889983
214 => 0.016052448010877
215 => 0.015861372367242
216 => 0.016074030513259
217 => 0.016708889811597
218 => 0.015943114804887
219 => 0.014630247268754
220 => 0.014709152844693
221 => 0.014886430246553
222 => 0.014556074980995
223 => 0.014243421446761
224 => 0.014515248328395
225 => 0.013958969046108
226 => 0.014953653940161
227 => 0.014926750501349
228 => 0.015297507518951
301 => 0.015529349490757
302 => 0.014995028805474
303 => 0.014860648598082
304 => 0.014937197671452
305 => 0.013672012003807
306 => 0.015194114857981
307 => 0.01520727806667
308 => 0.015094566682254
309 => 0.015905039462448
310 => 0.017615389821457
311 => 0.016971887217714
312 => 0.016722703559576
313 => 0.016249005243303
314 => 0.016880180124314
315 => 0.016831715741314
316 => 0.016612541421818
317 => 0.016479984109521
318 => 0.016724225021857
319 => 0.016449719957589
320 => 0.016400411305151
321 => 0.016101654519724
322 => 0.015995011939894
323 => 0.015916058019351
324 => 0.015829137510685
325 => 0.01602086249356
326 => 0.015586388458844
327 => 0.015062455364991
328 => 0.015018895997271
329 => 0.015139167241323
330 => 0.015085956168971
331 => 0.015018641243129
401 => 0.014890118717566
402 => 0.014851988829681
403 => 0.014975892467316
404 => 0.014836012484457
405 => 0.015042413018822
406 => 0.014986283494137
407 => 0.014672748531995
408 => 0.014281967883655
409 => 0.014278489116195
410 => 0.014194296066518
411 => 0.014087063559246
412 => 0.01405723392887
413 => 0.01449235582661
414 => 0.01539304513283
415 => 0.015216218270351
416 => 0.015343993800438
417 => 0.015972522944376
418 => 0.016172313458703
419 => 0.016030506883931
420 => 0.015836393298135
421 => 0.015844933310767
422 => 0.016508278195611
423 => 0.016549650202403
424 => 0.016654183916452
425 => 0.016788539280229
426 => 0.016053388183351
427 => 0.015810307760215
428 => 0.015695122770145
429 => 0.015340397582929
430 => 0.015722938285502
501 => 0.015500048200139
502 => 0.015530123687664
503 => 0.015510536986958
504 => 0.01552123264999
505 => 0.014953375905462
506 => 0.015160273057496
507 => 0.014816266413876
508 => 0.014355680134628
509 => 0.014354136087917
510 => 0.014466863927251
511 => 0.014399808997375
512 => 0.014219365905216
513 => 0.01424499699479
514 => 0.014020441679825
515 => 0.014272262075732
516 => 0.01427948338363
517 => 0.014182518814456
518 => 0.01457048287887
519 => 0.014729432072608
520 => 0.014665607915996
521 => 0.014724953999638
522 => 0.015223566224812
523 => 0.015304861773492
524 => 0.015340967886133
525 => 0.015292590478337
526 => 0.014734067715799
527 => 0.01475884057534
528 => 0.01457707376908
529 => 0.014423499971905
530 => 0.014429642118404
531 => 0.014508599013348
601 => 0.01485340840433
602 => 0.015579039440027
603 => 0.015606576607402
604 => 0.015639952457577
605 => 0.015504196101558
606 => 0.015463250685569
607 => 0.015517268258167
608 => 0.015789777123308
609 => 0.016490743909884
610 => 0.016242975431511
611 => 0.016041535801847
612 => 0.016218252664796
613 => 0.016191048488898
614 => 0.015961417866999
615 => 0.015954972900251
616 => 0.015514238319477
617 => 0.015351308780006
618 => 0.015215152661759
619 => 0.015066473735079
620 => 0.01497833188358
621 => 0.015113757827237
622 => 0.015144731342864
623 => 0.014848620150217
624 => 0.014808261288828
625 => 0.015050072080747
626 => 0.014943660166839
627 => 0.015053107459182
628 => 0.015078500169828
629 => 0.01507441135857
630 => 0.014963305099119
701 => 0.015034120915657
702 => 0.014866620398334
703 => 0.014684488743509
704 => 0.014568300094934
705 => 0.014466910088865
706 => 0.014523167157054
707 => 0.014322620981094
708 => 0.014258462223208
709 => 0.01501013011042
710 => 0.015565395260495
711 => 0.015557321485304
712 => 0.015508174455233
713 => 0.01543515193766
714 => 0.015784435071318
715 => 0.015662751811688
716 => 0.015751286550046
717 => 0.015773822356749
718 => 0.015842031456288
719 => 0.015866410346604
720 => 0.015792720407843
721 => 0.015545407972894
722 => 0.014929128898762
723 => 0.01464224932614
724 => 0.014547574288817
725 => 0.014551015546611
726 => 0.014456090294223
727 => 0.014484050035303
728 => 0.014446367037305
729 => 0.014375004555594
730 => 0.014518760724902
731 => 0.014535327284234
801 => 0.014501772876559
802 => 0.014509676154254
803 => 0.014231859989982
804 => 0.014252981749566
805 => 0.014135373108176
806 => 0.014113322905708
807 => 0.013816018501629
808 => 0.01328930065484
809 => 0.013581153471699
810 => 0.013228636309649
811 => 0.013095132718874
812 => 0.013727117953535
813 => 0.013663684164517
814 => 0.013555113091723
815 => 0.013394513846867
816 => 0.013334946024741
817 => 0.012973030794383
818 => 0.01295164691183
819 => 0.013131021872529
820 => 0.013048246500082
821 => 0.012931998527682
822 => 0.012510960155515
823 => 0.012037573624186
824 => 0.012051862187965
825 => 0.012202437635911
826 => 0.012640256058681
827 => 0.012469192826569
828 => 0.012345084488948
829 => 0.012321842727994
830 => 0.012612762026251
831 => 0.013024473782761
901 => 0.013217639727384
902 => 0.013026218142799
903 => 0.012806323333299
904 => 0.012819707311459
905 => 0.012908744922028
906 => 0.012918101515975
907 => 0.012774972600542
908 => 0.012815262551854
909 => 0.012754058431621
910 => 0.012378448858722
911 => 0.012371655272619
912 => 0.012279474625907
913 => 0.01227668343256
914 => 0.012119861156963
915 => 0.012097920636546
916 => 0.011786540489917
917 => 0.011991491845374
918 => 0.011854021236563
919 => 0.011646820603045
920 => 0.011611099135728
921 => 0.011610025305286
922 => 0.011822774026694
923 => 0.011989005752696
924 => 0.011856412596659
925 => 0.01182622370524
926 => 0.012148562085017
927 => 0.012107541588011
928 => 0.012072018102158
929 => 0.012987609510659
930 => 0.012262847466342
1001 => 0.011946809847048
1002 => 0.011555653279256
1003 => 0.011683015830111
1004 => 0.011709852990922
1005 => 0.010769191956652
1006 => 0.010387565892201
1007 => 0.010256606208156
1008 => 0.01018123705849
1009 => 0.010215583726419
1010 => 0.0098720755081404
1011 => 0.010102918711925
1012 => 0.0098054696309227
1013 => 0.0097556013245095
1014 => 0.010287477128213
1015 => 0.010361484539125
1016 => 0.010045745931874
1017 => 0.010248501231166
1018 => 0.010174979341133
1019 => 0.0098105685416858
1020 => 0.0097966507295713
1021 => 0.0096138022000675
1022 => 0.0093276796578462
1023 => 0.0091969139783582
1024 => 0.0091288100771212
1025 => 0.0091569110740902
1026 => 0.009142702350118
1027 => 0.0090499808150481
1028 => 0.0091480170399723
1029 => 0.0088975749966561
1030 => 0.008797846957059
1031 => 0.0087528021152459
1101 => 0.0085305203868967
1102 => 0.0088842694658336
1103 => 0.0089539624907976
1104 => 0.0090237928325501
1105 => 0.0096316182823063
1106 => 0.0096012530405334
1107 => 0.0098757400376882
1108 => 0.009865073977728
1109 => 0.0097867858397449
1110 => 0.0094565010633678
1111 => 0.0095881466884717
1112 => 0.0091829619166745
1113 => 0.0094865538975913
1114 => 0.0093480071958051
1115 => 0.0094397111183519
1116 => 0.0092748191970034
1117 => 0.0093660771944983
1118 => 0.0089704892924574
1119 => 0.0086010948756035
1120 => 0.0087497499722408
1121 => 0.0089113550630578
1122 => 0.0092617560761605
1123 => 0.0090530601235021
1124 => 0.0091281150797458
1125 => 0.0088766935403776
1126 => 0.0083579390896488
1127 => 0.0083608751835033
1128 => 0.0082810761129387
1129 => 0.0082121180651159
1130 => 0.0090770313641531
1201 => 0.008969465723162
1202 => 0.0087980739520856
1203 => 0.0090274886485096
1204 => 0.0090881495355449
1205 => 0.0090898764657196
1206 => 0.0092572515061802
1207 => 0.0093465795952776
1208 => 0.0093623240581511
1209 => 0.0096256923006929
1210 => 0.0097139698616818
1211 => 0.010077572641887
1212 => 0.0093390007310183
1213 => 0.0093237903285447
1214 => 0.0090307169837591
1215 => 0.0088448452351897
1216 => 0.0090434437814038
1217 => 0.0092193749819445
1218 => 0.0090361836565662
1219 => 0.0090601045762806
1220 => 0.0088141851892415
1221 => 0.0089020897985253
1222 => 0.0089778050900702
1223 => 0.0089359995564183
1224 => 0.0088734146491306
1225 => 0.0092049506297931
1226 => 0.0091862440704641
1227 => 0.0094949779976363
1228 => 0.009735658171642
1229 => 0.010167000070187
1230 => 0.0097168723126936
1231 => 0.0097004678681147
]
'min_raw' => 0.0082121180651159
'max_raw' => 0.023743648389613
'avg_raw' => 0.015977883227364
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008212'
'max' => '$0.023743'
'avg' => '$0.015977'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014440034339326
'max_diff' => -0.0080206165530999
'year' => 2030
]
5 => [
'items' => [
101 => 0.0098608239452288
102 => 0.0097139453120019
103 => 0.0098067675381232
104 => 0.010152044974533
105 => 0.010159340142684
106 => 0.010037136676873
107 => 0.010029700584873
108 => 0.010053171097241
109 => 0.01019063862127
110 => 0.010142603244424
111 => 0.010198190998618
112 => 0.010267704336426
113 => 0.010555240974648
114 => 0.010624565084673
115 => 0.010456143437743
116 => 0.010471350026724
117 => 0.010408355707494
118 => 0.010347503984435
119 => 0.010484289771192
120 => 0.01073426848502
121 => 0.010732713380415
122 => 0.010790703583131
123 => 0.010826830999007
124 => 0.010671745683184
125 => 0.010570790845229
126 => 0.010609503354024
127 => 0.010671405498637
128 => 0.010589429322823
129 => 0.010083434390641
130 => 0.010236920929983
131 => 0.010211373264728
201 => 0.010174990282703
202 => 0.010329322184889
203 => 0.010314436496428
204 => 0.0098685523348632
205 => 0.009897096392219
206 => 0.0098702881935319
207 => 0.0099569109679312
208 => 0.0097092673979126
209 => 0.0097854408921454
210 => 0.0098332161936461
211 => 0.0098613562132572
212 => 0.0099630172598844
213 => 0.0099510885094301
214 => 0.0099622757520074
215 => 0.010113012246634
216 => 0.010875385709939
217 => 0.010916880015464
218 => 0.010712546879228
219 => 0.010794173936861
220 => 0.01063746783608
221 => 0.010742665691374
222 => 0.01081463939223
223 => 0.010489404077807
224 => 0.010470145753247
225 => 0.010312792870644
226 => 0.010397345396832
227 => 0.010262816248125
228 => 0.010295824995588
301 => 0.010203529660031
302 => 0.010369642888215
303 => 0.010555383288711
304 => 0.010602308648987
305 => 0.010478868228739
306 => 0.010389489229359
307 => 0.010232569149721
308 => 0.010493530739351
309 => 0.01056984386082
310 => 0.010493129899012
311 => 0.010475353597828
312 => 0.010441667539205
313 => 0.010482500254409
314 => 0.010569428243171
315 => 0.010528434608979
316 => 0.010555511626578
317 => 0.01045232195719
318 => 0.010671797022877
319 => 0.011020376246739
320 => 0.011021496985942
321 => 0.010980503130779
322 => 0.010963729328471
323 => 0.011005791511584
324 => 0.011028608520441
325 => 0.011164629907742
326 => 0.011310586275648
327 => 0.01199170095891
328 => 0.011800446681375
329 => 0.012404772148059
330 => 0.012882715130365
331 => 0.013026029332845
401 => 0.012894187010018
402 => 0.012443161545608
403 => 0.012421032084593
404 => 0.013095054546461
405 => 0.012904612328799
406 => 0.01288195983299
407 => 0.01264097554958
408 => 0.01278342710756
409 => 0.012752270862191
410 => 0.012703089204662
411 => 0.012974876854025
412 => 0.013483639070982
413 => 0.013404343708327
414 => 0.013345153398512
415 => 0.01308579869094
416 => 0.013241988153869
417 => 0.013186372077732
418 => 0.013425334035651
419 => 0.013283778265435
420 => 0.012903169541695
421 => 0.012963782735453
422 => 0.012954621173154
423 => 0.013143165476087
424 => 0.013086569156304
425 => 0.012943569833377
426 => 0.013481900177034
427 => 0.013446943998868
428 => 0.013496503867413
429 => 0.013518321654236
430 => 0.013845993847975
501 => 0.013980230661409
502 => 0.014010704768205
503 => 0.01413821935872
504 => 0.01400753208903
505 => 0.014530374346233
506 => 0.014878033938582
507 => 0.015281858445494
508 => 0.015871954587888
509 => 0.016093836196122
510 => 0.01605375526958
511 => 0.016501159430069
512 => 0.017305134761231
513 => 0.016216261670542
514 => 0.017362847679028
515 => 0.016999851786713
516 => 0.016139195056053
517 => 0.016083778909075
518 => 0.016666625639508
519 => 0.01795932359069
520 => 0.017635517415578
521 => 0.017959853221592
522 => 0.017581498275766
523 => 0.01756270976368
524 => 0.017941477366377
525 => 0.018826488515628
526 => 0.018406052892766
527 => 0.017803255332349
528 => 0.018248351670392
529 => 0.017862768030658
530 => 0.01699394017227
531 => 0.017635269807098
601 => 0.017206430944305
602 => 0.017331588922796
603 => 0.01823294442742
604 => 0.018124490948413
605 => 0.01826483979277
606 => 0.018017127756048
607 => 0.017785725653148
608 => 0.017353796443938
609 => 0.017225923498943
610 => 0.017261262980553
611 => 0.017225905986451
612 => 0.016984245563533
613 => 0.016932059018212
614 => 0.016845079156333
615 => 0.016872037852564
616 => 0.016708490265375
617 => 0.017017138353056
618 => 0.017074426157928
619 => 0.017299034497028
620 => 0.017322354079903
621 => 0.017947885107198
622 => 0.017603353128986
623 => 0.01783449492543
624 => 0.017813819427566
625 => 0.016157848097146
626 => 0.016386026335719
627 => 0.016741000068663
628 => 0.016581084883127
629 => 0.01635500222517
630 => 0.016172428357085
701 => 0.015895810277799
702 => 0.016285144912414
703 => 0.016797078555811
704 => 0.017335337561919
705 => 0.017982020489631
706 => 0.017837688388385
707 => 0.017323248274409
708 => 0.017346325682123
709 => 0.017488981135987
710 => 0.017304229361618
711 => 0.017249742456574
712 => 0.017481495471937
713 => 0.017483091427585
714 => 0.017270512183176
715 => 0.017034269254606
716 => 0.017033279388109
717 => 0.016991242240806
718 => 0.017588976590885
719 => 0.017917670045669
720 => 0.017955354220544
721 => 0.017915133600448
722 => 0.017930612920823
723 => 0.017739353441751
724 => 0.018176515894674
725 => 0.018577699392362
726 => 0.018470173644947
727 => 0.018308977263885
728 => 0.018180576582099
729 => 0.01843992652495
730 => 0.01842837808025
731 => 0.018574195404495
801 => 0.018567580288386
802 => 0.018518547406709
803 => 0.018470175396065
804 => 0.018661964950543
805 => 0.018606732638899
806 => 0.01855141453622
807 => 0.01844046561252
808 => 0.018455545413917
809 => 0.018294376865683
810 => 0.018219812920699
811 => 0.017098550092059
812 => 0.016798912025926
813 => 0.016893184261227
814 => 0.016924221128865
815 => 0.016793818258488
816 => 0.01698078247686
817 => 0.016951644301471
818 => 0.017065003896648
819 => 0.016994181743083
820 => 0.016997088308969
821 => 0.017205361161729
822 => 0.017265823656941
823 => 0.017235071943884
824 => 0.017256609389602
825 => 0.01775293073579
826 => 0.017682369711825
827 => 0.017644885574177
828 => 0.017655268936477
829 => 0.017782089681677
830 => 0.017817592566178
831 => 0.017667164349807
901 => 0.017738107166262
902 => 0.018040172674747
903 => 0.018145878507289
904 => 0.018483240783086
905 => 0.018339923292191
906 => 0.018602988749364
907 => 0.019411562279092
908 => 0.02005750676367
909 => 0.019463469520867
910 => 0.020649664306262
911 => 0.021573287096227
912 => 0.021537836915174
913 => 0.021376781917964
914 => 0.02032526192737
915 => 0.019357637554746
916 => 0.020167096429947
917 => 0.020169159907087
918 => 0.020099626671833
919 => 0.019667761719484
920 => 0.020084598707613
921 => 0.020117685714001
922 => 0.020099165788969
923 => 0.019768055942564
924 => 0.019262512406431
925 => 0.019361294403291
926 => 0.019523101329246
927 => 0.019216767061952
928 => 0.019118874702104
929 => 0.019300875223845
930 => 0.01988731882621
1001 => 0.019776455060219
1002 => 0.019773559959254
1003 => 0.020247882163715
1004 => 0.019908369830459
1005 => 0.019362540360615
1006 => 0.019224711220873
1007 => 0.018735510627623
1008 => 0.019073403219854
1009 => 0.019085563372709
1010 => 0.018900503053123
1011 => 0.019377556985624
1012 => 0.019373160849652
1013 => 0.019826052558454
1014 => 0.020691811407324
1015 => 0.020435763914308
1016 => 0.020138008537817
1017 => 0.020170382803103
1018 => 0.02052544858679
1019 => 0.020310767708609
1020 => 0.020387968449211
1021 => 0.020525331734223
1022 => 0.020608206414609
1023 => 0.020158458411964
1024 => 0.020053600638614
1025 => 0.019839098434417
1026 => 0.019783138813215
1027 => 0.019957846382798
1028 => 0.019911817110723
1029 => 0.019084541358948
1030 => 0.018998086439969
1031 => 0.019000737888905
1101 => 0.018783342884424
1102 => 0.018451763321812
1103 => 0.01932313461477
1104 => 0.019253151305112
1105 => 0.019175895147528
1106 => 0.019185358586014
1107 => 0.019563591330774
1108 => 0.019344197237602
1109 => 0.019927492392285
1110 => 0.01980758444394
1111 => 0.019684601309173
1112 => 0.019667601293791
1113 => 0.019620263279333
1114 => 0.019457923614061
1115 => 0.019261888713142
1116 => 0.019132449491304
1117 => 0.017648673318274
1118 => 0.01792405354526
1119 => 0.018240853394709
1120 => 0.018350211433243
1121 => 0.018163146940984
1122 => 0.019465310060387
1123 => 0.019703227810257
1124 => 0.018982559426908
1125 => 0.018847751797079
1126 => 0.019474148026155
1127 => 0.019096354526198
1128 => 0.019266474916096
1129 => 0.018898767684014
1130 => 0.019645920391359
1201 => 0.019640228339552
1202 => 0.019349569061186
1203 => 0.019595232292912
1204 => 0.019552542260924
1205 => 0.019224388651511
1206 => 0.019656323446094
1207 => 0.019656537680363
1208 => 0.019376784444413
1209 => 0.019050093910682
1210 => 0.018991689359337
1211 => 0.018947689375446
1212 => 0.019255653617307
1213 => 0.01953177339358
1214 => 0.020045563841327
1215 => 0.020174742967251
1216 => 0.020678937695672
1217 => 0.020378714283693
1218 => 0.020511799433679
1219 => 0.020656282190033
1220 => 0.020725552536607
1221 => 0.020612680224117
1222 => 0.021395902172185
1223 => 0.021462030101902
1224 => 0.021484202224732
1225 => 0.021220104190592
1226 => 0.021454685057823
1227 => 0.021344932438547
1228 => 0.021630478263746
1229 => 0.02167525549517
1230 => 0.02163733077315
1231 => 0.021651543773165
]
'min_raw' => 0.0097092673979126
'max_raw' => 0.02167525549517
'avg_raw' => 0.015692261446541
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0097092'
'max' => '$0.021675'
'avg' => '$0.015692'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014971493327967
'max_diff' => -0.0020683928944433
'year' => 2031
]
6 => [
'items' => [
101 => 0.020983202010308
102 => 0.020948544964121
103 => 0.020475993680199
104 => 0.02066856182132
105 => 0.020308564911525
106 => 0.02042272364
107 => 0.020473043719767
108 => 0.020446759365736
109 => 0.020679449335092
110 => 0.02048161532572
111 => 0.019959498848064
112 => 0.019437240120124
113 => 0.019430683587217
114 => 0.019293182082782
115 => 0.019193793679733
116 => 0.019212939412153
117 => 0.01928041147042
118 => 0.019189872081049
119 => 0.019209193250235
120 => 0.019530053394996
121 => 0.019594399608758
122 => 0.019375726032706
123 => 0.018497720070411
124 => 0.018282255204953
125 => 0.01843712707739
126 => 0.018363108297391
127 => 0.014820461577835
128 => 0.015652753875774
129 => 0.015158234054315
130 => 0.015386131539806
131 => 0.014881354857383
201 => 0.015122260747848
202 => 0.015077774226354
203 => 0.016416075612118
204 => 0.016395179876753
205 => 0.016405181559495
206 => 0.015927775182988
207 => 0.016688296503759
208 => 0.017062956653832
209 => 0.016993617031311
210 => 0.017011068320436
211 => 0.016711197354379
212 => 0.016408084965932
213 => 0.016071886678482
214 => 0.016696501541199
215 => 0.016627055030996
216 => 0.016786340339336
217 => 0.017191447726201
218 => 0.01725110132777
219 => 0.017331276373226
220 => 0.017302539326678
221 => 0.01798717236246
222 => 0.017904258784473
223 => 0.018104056651558
224 => 0.017693057280263
225 => 0.017227972479224
226 => 0.017316369895134
227 => 0.017307856513135
228 => 0.01719947138908
229 => 0.017101626145309
301 => 0.016938741382157
302 => 0.017454132875179
303 => 0.017433208921777
304 => 0.017771943405909
305 => 0.017712068795548
306 => 0.017312211493751
307 => 0.01732649247551
308 => 0.017422538941044
309 => 0.017754956854897
310 => 0.017853641124466
311 => 0.017807926638914
312 => 0.017916129435388
313 => 0.018001648513938
314 => 0.017926869314979
315 => 0.018985585076865
316 => 0.018545932479125
317 => 0.01876021609618
318 => 0.018811321476216
319 => 0.018680416119885
320 => 0.018708804804304
321 => 0.018751805925745
322 => 0.019012900314651
323 => 0.019698087539409
324 => 0.020001552297028
325 => 0.02091454099301
326 => 0.019976353773341
327 => 0.01992068562633
328 => 0.020085142460094
329 => 0.020621163474304
330 => 0.021055558160428
331 => 0.021199671938645
401 => 0.021218718953496
402 => 0.021489085981936
403 => 0.02164405532059
404 => 0.021456256313324
405 => 0.021297116318042
406 => 0.020727096608123
407 => 0.020793077941658
408 => 0.021247623899176
409 => 0.021889696836792
410 => 0.022440662213571
411 => 0.022247733341705
412 => 0.023719644447483
413 => 0.023865578421404
414 => 0.023845415064818
415 => 0.024177874375296
416 => 0.023518010348159
417 => 0.023235905692295
418 => 0.021331524191337
419 => 0.021866577714394
420 => 0.02264430943275
421 => 0.022541373723481
422 => 0.021976564160783
423 => 0.02244023375487
424 => 0.022286930086776
425 => 0.022166013123175
426 => 0.022719957174337
427 => 0.022110872935317
428 => 0.02263823335154
429 => 0.021961888162889
430 => 0.022248614624541
501 => 0.022085854817509
502 => 0.02219118035975
503 => 0.021575449391962
504 => 0.021907682876156
505 => 0.021561627386738
506 => 0.021561463311378
507 => 0.021553824117269
508 => 0.021960956865925
509 => 0.021974233450242
510 => 0.021673361733842
511 => 0.021630001419009
512 => 0.021790327229007
513 => 0.021602627694895
514 => 0.021690451125539
515 => 0.021605287777142
516 => 0.021586115713604
517 => 0.02143334944947
518 => 0.021367533542485
519 => 0.021393341655481
520 => 0.021305245260832
521 => 0.02125216399647
522 => 0.021543264917751
523 => 0.021387741438488
524 => 0.021519428714034
525 => 0.021369354443291
526 => 0.020849131636649
527 => 0.020549945999293
528 => 0.019567293342227
529 => 0.019845972416794
530 => 0.020030736931546
531 => 0.019969672260523
601 => 0.020100862802772
602 => 0.020108916836581
603 => 0.020066265453966
604 => 0.020016880616879
605 => 0.019992842809338
606 => 0.020172000932944
607 => 0.020276008253882
608 => 0.020049280522432
609 => 0.019996161387211
610 => 0.020225395641688
611 => 0.020365228404495
612 => 0.021397674959817
613 => 0.02132118798424
614 => 0.021513155283127
615 => 0.02149154271125
616 => 0.021692755023273
617 => 0.022021652114761
618 => 0.021352912366692
619 => 0.021468982463676
620 => 0.021440524756346
621 => 0.021751218542969
622 => 0.021752188495057
623 => 0.021565912049671
624 => 0.021666895532705
625 => 0.021610529322812
626 => 0.021712390682439
627 => 0.021320166454049
628 => 0.021797853226238
629 => 0.022068670844614
630 => 0.022072431147508
701 => 0.022200796549276
702 => 0.022331223231896
703 => 0.022581565891414
704 => 0.022324241310995
705 => 0.021861339440866
706 => 0.021894759460725
707 => 0.021623360263638
708 => 0.021627922533173
709 => 0.021603568780842
710 => 0.021676656224852
711 => 0.021336205037946
712 => 0.021416108251029
713 => 0.021304243284801
714 => 0.021468739291086
715 => 0.021291768780487
716 => 0.021440511033177
717 => 0.021504703258555
718 => 0.021741573952158
719 => 0.021256782786448
720 => 0.020268260782089
721 => 0.020476060092076
722 => 0.020168708590322
723 => 0.020197155141979
724 => 0.020254621703561
725 => 0.020068353775584
726 => 0.020103887826265
727 => 0.020102618299925
728 => 0.020091678207784
729 => 0.020043222725709
730 => 0.019972952690074
731 => 0.020252886884066
801 => 0.020300453158501
802 => 0.020406187094355
803 => 0.020720779567444
804 => 0.020689344360781
805 => 0.020740616487082
806 => 0.020628689723247
807 => 0.020202347103539
808 => 0.020225499558986
809 => 0.019936788068577
810 => 0.020398804092433
811 => 0.020289392599671
812 => 0.020218854298523
813 => 0.020199607269522
814 => 0.020514979556502
815 => 0.020609343887621
816 => 0.020550542369022
817 => 0.020429938738862
818 => 0.020661533362033
819 => 0.020723498313001
820 => 0.020737369980343
821 => 0.021147711248738
822 => 0.020760303498923
823 => 0.020853556394806
824 => 0.021581088868266
825 => 0.020921317307456
826 => 0.021270813017879
827 => 0.021253707021541
828 => 0.021432497200703
829 => 0.021239041008356
830 => 0.021241439129715
831 => 0.021400192696515
901 => 0.021177251943301
902 => 0.021122048677582
903 => 0.021045785761365
904 => 0.021212303048902
905 => 0.021312122631852
906 => 0.022116595161018
907 => 0.022636321103264
908 => 0.022613758429432
909 => 0.022819939032706
910 => 0.022727052782533
911 => 0.02242709857857
912 => 0.022939083829216
913 => 0.022777070273539
914 => 0.022790426474223
915 => 0.022789929355766
916 => 0.022897654206821
917 => 0.022821321277011
918 => 0.022670861236941
919 => 0.022770743633216
920 => 0.02306735864154
921 => 0.023988060728637
922 => 0.024503297814258
923 => 0.023957042809132
924 => 0.024333842197022
925 => 0.024107896831638
926 => 0.024066835837455
927 => 0.024303493698306
928 => 0.024540565797413
929 => 0.024525465329591
930 => 0.024353363159426
1001 => 0.024256147010431
1002 => 0.024992300260423
1003 => 0.025534685434974
1004 => 0.025497698402266
1005 => 0.025660947135812
1006 => 0.026140250466596
1007 => 0.026184071956338
1008 => 0.026178551455856
1009 => 0.026069935321231
1010 => 0.02654187169579
1011 => 0.026935569322378
1012 => 0.026044793824287
1013 => 0.026383989472852
1014 => 0.026536265327694
1015 => 0.026759851460813
1016 => 0.027137078744772
1017 => 0.027546847629746
1018 => 0.027604793442968
1019 => 0.027563678115524
1020 => 0.027293424520705
1021 => 0.027741798524203
1022 => 0.028004445499788
1023 => 0.02816084576318
1024 => 0.028557450808619
1025 => 0.026537205731533
1026 => 0.025107175853276
1027 => 0.024883856037905
1028 => 0.025337985664081
1029 => 0.025457736024888
1030 => 0.025409464804601
1031 => 0.023799836163994
1101 => 0.024875381676232
1102 => 0.026032578212965
1103 => 0.026077030844772
1104 => 0.026656347626899
1105 => 0.026844996918157
1106 => 0.027311422860556
1107 => 0.027282247790865
1108 => 0.027395815085381
1109 => 0.027369707931083
1110 => 0.028233663771807
1111 => 0.029186735362809
1112 => 0.029153733524195
1113 => 0.029016718206757
1114 => 0.029220209317735
1115 => 0.030203881337008
1116 => 0.030113320580497
1117 => 0.030201292641501
1118 => 0.031361097389549
1119 => 0.032869008542314
1120 => 0.03216843242005
1121 => 0.033688481020014
1122 => 0.034645271039377
1123 => 0.03629994044393
1124 => 0.036092767685062
1125 => 0.036736918341729
1126 => 0.035721885208427
1127 => 0.033391163962323
1128 => 0.033022318403484
1129 => 0.033760756552936
1130 => 0.035576134687623
1201 => 0.033703583835093
1202 => 0.034082398433744
1203 => 0.033973299803848
1204 => 0.0339674864015
1205 => 0.034189360324301
1206 => 0.033867520627113
1207 => 0.032556287802916
1208 => 0.033157218079102
1209 => 0.032925170040425
1210 => 0.033182644639665
1211 => 0.03457212886116
1212 => 0.03395780476567
1213 => 0.033310664234709
1214 => 0.034122322072515
1215 => 0.035155841415935
1216 => 0.035091165632837
1217 => 0.034965667581246
1218 => 0.0356730935272
1219 => 0.036841553933563
1220 => 0.037157384086148
1221 => 0.037390523447924
1222 => 0.037422669426991
1223 => 0.037753792989996
1224 => 0.035973258137835
1225 => 0.038799012675593
1226 => 0.03928694242437
1227 => 0.039195231854216
1228 => 0.039737545234759
1229 => 0.039577982881041
1230 => 0.039346802065069
1231 => 0.040206484126594
]
'min_raw' => 0.014820461577835
'max_raw' => 0.040206484126594
'avg_raw' => 0.027513472852215
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01482'
'max' => '$0.0402064'
'avg' => '$0.027513'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051111941799228
'max_diff' => 0.018531228631425
'year' => 2032
]
7 => [
'items' => [
101 => 0.039220928015821
102 => 0.037822055194642
103 => 0.037054605898376
104 => 0.038065245040068
105 => 0.038682407097454
106 => 0.039090311958506
107 => 0.039213743722998
108 => 0.036111475989875
109 => 0.034439525741378
110 => 0.035511226681716
111 => 0.036818775793776
112 => 0.035965994636497
113 => 0.035999422043334
114 => 0.03478358022
115 => 0.036926350816577
116 => 0.036614167164193
117 => 0.038233776505003
118 => 0.037847243737642
119 => 0.0391679722822
120 => 0.038820180193984
121 => 0.040263845707374
122 => 0.040839762966349
123 => 0.041806817678531
124 => 0.042518187061433
125 => 0.042935916769401
126 => 0.0429108378446
127 => 0.044566091059683
128 => 0.043590046068891
129 => 0.042363903524314
130 => 0.042341726474113
131 => 0.042976763072523
201 => 0.044307625569009
202 => 0.044652698851086
203 => 0.044845547740004
204 => 0.044550192953508
205 => 0.043490766069778
206 => 0.043033310912799
207 => 0.043423075960297
208 => 0.0429464268001
209 => 0.043769256974733
210 => 0.044899178551547
211 => 0.044665854214129
212 => 0.045445822492178
213 => 0.046253007604902
214 => 0.047407318569049
215 => 0.047709098199089
216 => 0.048207928451892
217 => 0.048721388639229
218 => 0.048886298213261
219 => 0.049201161758525
220 => 0.04919950227222
221 => 0.050148364758634
222 => 0.051194989464972
223 => 0.051590066062198
224 => 0.052498522912866
225 => 0.050942822392221
226 => 0.05212283910773
227 => 0.053187243722853
228 => 0.051918216660452
301 => 0.053667274820589
302 => 0.053735186785496
303 => 0.054760576826795
304 => 0.053721147578976
305 => 0.053103937809597
306 => 0.054885799287246
307 => 0.05574798592817
308 => 0.055488288295216
309 => 0.053511976485583
310 => 0.052361678244376
311 => 0.049351125871177
312 => 0.052917255203415
313 => 0.05465421277573
314 => 0.053507478185089
315 => 0.054085824411041
316 => 0.057241093890439
317 => 0.058442416219625
318 => 0.058192549573031
319 => 0.05823477292315
320 => 0.058882984646436
321 => 0.061757512404202
322 => 0.060035028740717
323 => 0.061351802961219
324 => 0.062050215259791
325 => 0.062698939525645
326 => 0.061105877760118
327 => 0.059033327809892
328 => 0.058376864240927
329 => 0.053393458029718
330 => 0.053134050094589
331 => 0.052988436559736
401 => 0.05207036381993
402 => 0.05134901012773
403 => 0.050775362889547
404 => 0.049269941230989
405 => 0.049777976848636
406 => 0.047378648930814
407 => 0.048913653905677
408 => 0.045084268615034
409 => 0.048273494475879
410 => 0.046537743836128
411 => 0.047703253707857
412 => 0.047699187353712
413 => 0.045553114154617
414 => 0.044315303920784
415 => 0.045104084778077
416 => 0.045949720470598
417 => 0.04608692201665
418 => 0.047183310765353
419 => 0.047489289298319
420 => 0.046562160058661
421 => 0.045004913116508
422 => 0.045366626064149
423 => 0.044307973819445
424 => 0.042452726481072
425 => 0.043785197509002
426 => 0.044240161702553
427 => 0.044441099809164
428 => 0.04261667712847
429 => 0.042043403912053
430 => 0.041738198061861
501 => 0.044769403058549
502 => 0.044935459310826
503 => 0.044085892046189
504 => 0.047926016641622
505 => 0.047056878176463
506 => 0.048027918786139
507 => 0.045333804405446
508 => 0.045436723202895
509 => 0.044161286279976
510 => 0.044875445732084
511 => 0.044370700849768
512 => 0.044817748705815
513 => 0.045085707347483
514 => 0.046360934983753
515 => 0.048288055527059
516 => 0.046170458499988
517 => 0.045247791150745
518 => 0.045820208784937
519 => 0.047344632377105
520 => 0.049654212153047
521 => 0.048286894441064
522 => 0.048893686823082
523 => 0.049026243964238
524 => 0.048018034504276
525 => 0.04969138627393
526 => 0.050588149081574
527 => 0.0515080421633
528 => 0.052306759551344
529 => 0.051140616637576
530 => 0.052388556715328
531 => 0.051382937303738
601 => 0.050480792732519
602 => 0.050482160913444
603 => 0.049916232445689
604 => 0.048819674727837
605 => 0.048617452660452
606 => 0.049669437392823
607 => 0.05051302952486
608 => 0.050582511813389
609 => 0.051049567763013
610 => 0.051325966662942
611 => 0.054035051628329
612 => 0.055124668012134
613 => 0.056457030300868
614 => 0.056976060500154
615 => 0.05853815531738
616 => 0.057276636885332
617 => 0.057003699437235
618 => 0.053214568367966
619 => 0.053835038368288
620 => 0.054828470705253
621 => 0.053230949701299
622 => 0.05424420907966
623 => 0.054444247944717
624 => 0.053176666548883
625 => 0.053853736541357
626 => 0.052055639378609
627 => 0.048327249131575
628 => 0.049695537038092
629 => 0.050703057498018
630 => 0.049265201575327
701 => 0.051842502664043
702 => 0.050336896574308
703 => 0.0498596917257
704 => 0.047997945475468
705 => 0.048876618040393
706 => 0.050065035265833
707 => 0.049330731588843
708 => 0.050854521974849
709 => 0.053012615541487
710 => 0.054550601533767
711 => 0.054668669001006
712 => 0.053679847045029
713 => 0.055264440540059
714 => 0.055275982573731
715 => 0.053488554638082
716 => 0.052393764979937
717 => 0.052145026466149
718 => 0.052766424041649
719 => 0.053520915414626
720 => 0.054710538021213
721 => 0.055429402047463
722 => 0.057303818171903
723 => 0.057810981431455
724 => 0.058368200091409
725 => 0.059112816060979
726 => 0.060006918448064
727 => 0.0580506733264
728 => 0.058128398591981
729 => 0.056306770220744
730 => 0.054360099058144
731 => 0.055837379814572
801 => 0.057768727889177
802 => 0.057325674506912
803 => 0.057275821950648
804 => 0.057359660122338
805 => 0.057025612340882
806 => 0.055514726605742
807 => 0.0547559692482
808 => 0.055734959819076
809 => 0.056255249737639
810 => 0.057062174027281
811 => 0.056962703576477
812 => 0.059041253889253
813 => 0.059848915688699
814 => 0.059642281238604
815 => 0.059680306950357
816 => 0.061142540059299
817 => 0.062768844007616
818 => 0.064292092264922
819 => 0.06584160581729
820 => 0.063973606751368
821 => 0.063025152027858
822 => 0.064003715202076
823 => 0.063484475807562
824 => 0.066468179384849
825 => 0.066674764546891
826 => 0.069658252368448
827 => 0.072489937578227
828 => 0.070711406832875
829 => 0.072388481218958
830 => 0.074202373901388
831 => 0.077701667179277
901 => 0.076523228309906
902 => 0.075620562604459
903 => 0.07476754787446
904 => 0.076542536115312
905 => 0.078826030131038
906 => 0.079317872870991
907 => 0.080114846008104
908 => 0.079276926203669
909 => 0.080286108314272
910 => 0.08384896462179
911 => 0.082886249397296
912 => 0.081519039014319
913 => 0.084331571888748
914 => 0.085349416602558
915 => 0.092493183853499
916 => 0.10151248510212
917 => 0.097778435161264
918 => 0.095460589865938
919 => 0.096005338490365
920 => 0.099298881983745
921 => 0.10035666362197
922 => 0.097481248490072
923 => 0.098496893725378
924 => 0.10409319882795
925 => 0.10709543696451
926 => 0.10301799432068
927 => 0.09176849178007
928 => 0.081395936678305
929 => 0.084147205373537
930 => 0.083835296885305
1001 => 0.089847828564738
1002 => 0.082863288957583
1003 => 0.082980890691717
1004 => 0.089117755158899
1005 => 0.087480544931547
1006 => 0.08482847404128
1007 => 0.081415299730761
1008 => 0.075105731337357
1009 => 0.069517170655988
1010 => 0.080477625120813
1011 => 0.080004990393997
1012 => 0.079320545269025
1013 => 0.080843703829953
1014 => 0.08823972944572
1015 => 0.088069227116678
1016 => 0.086984578290364
1017 => 0.087807274865467
1018 => 0.084684251353984
1019 => 0.085489125622817
1020 => 0.081394293612582
1021 => 0.083245328696499
1022 => 0.084822783888255
1023 => 0.085139481372623
1024 => 0.085853016975879
1025 => 0.079755933369653
1026 => 0.082493344907878
1027 => 0.084101317725811
1028 => 0.076836438035839
1029 => 0.08395771441271
1030 => 0.079649796708855
1031 => 0.078187624737414
1101 => 0.08015624667045
1102 => 0.079389072788599
1103 => 0.078729501734944
1104 => 0.078361449754136
1105 => 0.079806988432883
1106 => 0.079739552325728
1107 => 0.07737437048033
1108 => 0.074289087180154
1109 => 0.075324609526665
1110 => 0.074948394550103
1111 => 0.073584942942348
1112 => 0.0745037447022
1113 => 0.070457806746739
1114 => 0.063496980783923
1115 => 0.068095515630825
1116 => 0.067918477041463
1117 => 0.067829206156645
1118 => 0.071284877999924
1119 => 0.070952694888107
1120 => 0.070349779287412
1121 => 0.073573869924529
1122 => 0.072397033471842
1123 => 0.076023766121481
1124 => 0.078412566806894
1125 => 0.077806689683466
1126 => 0.080053368274173
1127 => 0.075348465870067
1128 => 0.07691124572079
1129 => 0.077233332482105
1130 => 0.073534085146529
1201 => 0.071007044153378
1202 => 0.070838519329511
1203 => 0.066456978495086
1204 => 0.068797562242274
1205 => 0.070857179079863
1206 => 0.069870782447381
1207 => 0.069558518741298
1208 => 0.07115380629394
1209 => 0.071277773799494
1210 => 0.068451301535372
1211 => 0.069039014621819
1212 => 0.071489875891472
1213 => 0.068977259206086
1214 => 0.064095655419985
1215 => 0.062884950187579
1216 => 0.062723419791852
1217 => 0.059439891179325
1218 => 0.062965855300421
1219 => 0.061426677471599
1220 => 0.066288921790666
1221 => 0.063511633912354
1222 => 0.063391910582815
1223 => 0.063210931210623
1224 => 0.060384662492962
1225 => 0.061003435723383
1226 => 0.063060332183125
1227 => 0.063794256012558
1228 => 0.063717701744287
1229 => 0.063050252268336
1230 => 0.063355807220532
1231 => 0.062371508257106
]
'min_raw' => 0.034439525741378
'max_raw' => 0.10709543696451
'avg_raw' => 0.070767481352946
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034439'
'max' => '$0.107095'
'avg' => '$0.070767'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019619064163543
'max_diff' => 0.06688895283792
'year' => 2033
]
8 => [
'items' => [
101 => 0.062023931806709
102 => 0.060926884920821
103 => 0.059314529065503
104 => 0.059538737036338
105 => 0.056344238191094
106 => 0.05460370567532
107 => 0.054121949214803
108 => 0.053477724341812
109 => 0.054194716128424
110 => 0.056335188577234
111 => 0.053753324677408
112 => 0.049326900117851
113 => 0.049592935776141
114 => 0.050190638913622
115 => 0.049076823071128
116 => 0.048022689851685
117 => 0.048939173161459
118 => 0.047063638723051
119 => 0.050417288290032
120 => 0.050326581467739
121 => 0.051576614638012
122 => 0.052358286032646
123 => 0.050556786537133
124 => 0.050103714285784
125 => 0.050361804831138
126 => 0.04609614302023
127 => 0.051228019062905
128 => 0.051272399740028
129 => 0.050892385438211
130 => 0.053624951002039
131 => 0.059391516650287
201 => 0.05722190269385
202 => 0.056381762592989
203 => 0.054784655647113
204 => 0.056912705825665
205 => 0.056749304774707
206 => 0.056010343254263
207 => 0.055563417020999
208 => 0.056386892309295
209 => 0.055461379319782
210 => 0.055295131755469
211 => 0.054287852394867
212 => 0.053928299491423
213 => 0.053662100835927
214 => 0.053369042272365
215 => 0.054015456437939
216 => 0.052550596895884
217 => 0.050784119890117
218 => 0.050637256440633
219 => 0.051042759337024
220 => 0.050863354491511
221 => 0.050636397519255
222 => 0.050203074851165
223 => 0.050074517272016
224 => 0.050492267036978
225 => 0.050020651908661
226 => 0.050716545720699
227 => 0.050527301109385
228 => 0.04947019609421
301 => 0.048152651854898
302 => 0.048140922947526
303 => 0.047857060202371
304 => 0.047495518317368
305 => 0.047394945635918
306 => 0.04886198949339
307 => 0.051898726373427
308 => 0.051302542260921
309 => 0.051733346381612
310 => 0.053852476272903
311 => 0.054526083940885
312 => 0.054047973173424
313 => 0.053393505666334
314 => 0.053422298915167
315 => 0.055658812507679
316 => 0.055798301117081
317 => 0.056150743832308
318 => 0.056603732321674
319 => 0.05412511907194
320 => 0.053305556454003
321 => 0.052917202218021
322 => 0.051721221483201
323 => 0.053010984170065
324 => 0.052259494685574
325 => 0.052360896291569
326 => 0.052294858362639
327 => 0.0523309195373
328 => 0.05041635087663
329 => 0.051113919069812
330 => 0.049954076653071
331 => 0.048401177855477
401 => 0.048395971994191
402 => 0.048776041774912
403 => 0.048549961397207
404 => 0.047941584913861
405 => 0.048028001921865
406 => 0.047270897999507
407 => 0.048119928045848
408 => 0.048144275189601
409 => 0.047817352374781
410 => 0.049125400304737
411 => 0.049661308608906
412 => 0.049446121008826
413 => 0.049646210473238
414 => 0.051327316402406
415 => 0.051601410020654
416 => 0.051723144300272
417 => 0.051560036492285
418 => 0.049676938003574
419 => 0.049760461429101
420 => 0.049147621951245
421 => 0.048629837171889
422 => 0.04865054584764
423 => 0.048916754531538
424 => 0.050079303467056
425 => 0.052525819165851
426 => 0.05261866264824
427 => 0.052731191657332
428 => 0.052273479624808
429 => 0.052135429296084
430 => 0.052317553313484
501 => 0.053236335978266
502 => 0.055599694439148
503 => 0.054764325715668
504 => 0.05408515794019
505 => 0.054680971181602
506 => 0.054589250403225
507 => 0.053815034729196
508 => 0.053793305073832
509 => 0.052307337663646
510 => 0.051758009345942
511 => 0.051298949487156
512 => 0.050797668105422
513 => 0.050500491699227
514 => 0.050957089723404
515 => 0.051061519093843
516 => 0.050063159534011
517 => 0.049927086815071
518 => 0.050742368782718
519 => 0.050383593585532
520 => 0.050752602773034
521 => 0.050838216069837
522 => 0.05082443035721
523 => 0.050449827846279
524 => 0.050688588315939
525 => 0.050123848627272
526 => 0.049509779037005
527 => 0.049118040896302
528 => 0.048776197412015
529 => 0.048965872045157
530 => 0.048289716611224
531 => 0.048073400879588
601 => 0.050607701641099
602 => 0.052479816861951
603 => 0.052452595565201
604 => 0.052286892921984
605 => 0.052040692405716
606 => 0.053218324877013
607 => 0.052808061271518
608 => 0.053106562323187
609 => 0.053182543368887
610 => 0.053412515110192
611 => 0.05349471024097
612 => 0.053246259467571
613 => 0.052412428326338
614 => 0.05033460040067
615 => 0.049367365892283
616 => 0.04904816239395
617 => 0.049059764834861
618 => 0.048739717718968
619 => 0.048833985938104
620 => 0.048706935079413
621 => 0.048466331489955
622 => 0.048951015451511
623 => 0.049006870762937
624 => 0.048893739734768
625 => 0.048920386187305
626 => 0.047983709592957
627 => 0.04805492308007
628 => 0.047658397334449
629 => 0.047584053537334
630 => 0.04658167098185
701 => 0.044805804987135
702 => 0.04578980713569
703 => 0.044601270911875
704 => 0.044151154234654
705 => 0.046281936577114
706 => 0.046068065128634
707 => 0.045702010176519
708 => 0.045160538609805
709 => 0.044959701538614
710 => 0.043739479071347
711 => 0.043667381818347
712 => 0.044272157021903
713 => 0.043993074074506
714 => 0.043601135919384
715 => 0.042181575651664
716 => 0.040585519910495
717 => 0.040633694800872
718 => 0.041141370436465
719 => 0.04261750581634
720 => 0.042040754186021
721 => 0.041622314260763
722 => 0.04154395304102
723 => 0.042524807766428
724 => 0.043912922698299
725 => 0.044564195167011
726 => 0.043918803929956
727 => 0.043177413227159
728 => 0.043222538243965
729 => 0.043522734764408
730 => 0.043554281174156
731 => 0.043071712042831
801 => 0.043207552426634
802 => 0.043001198462132
803 => 0.041734804562883
804 => 0.041711899513024
805 => 0.041401106026788
806 => 0.041391695323542
807 => 0.040862958072386
808 => 0.040788984075961
809 => 0.039739144171733
810 => 0.040430151975904
811 => 0.039966660220404
812 => 0.039268068818214
813 => 0.039147631397161
814 => 0.039144010902852
815 => 0.039861308070722
816 => 0.040421769940866
817 => 0.039974722857929
818 => 0.039872938902788
819 => 0.040959725255155
820 => 0.040821421785539
821 => 0.040701651872813
822 => 0.043788632231128
823 => 0.04134504639744
824 => 0.040279503498949
825 => 0.038960691820958
826 => 0.039390103553338
827 => 0.039480586914721
828 => 0.036309082562825
829 => 0.035022403642247
830 => 0.034580863924176
831 => 0.034326751573972
901 => 0.034442553762902
902 => 0.033284391821997
903 => 0.034062695800516
904 => 0.033059825456684
905 => 0.032891690979918
906 => 0.034684947386485
907 => 0.034934468539407
908 => 0.033869933780897
909 => 0.034553537428383
910 => 0.034305653243003
911 => 0.033077016790316
912 => 0.033030091915061
913 => 0.032413605331763
914 => 0.031448923204225
915 => 0.031008037586064
916 => 0.030778420528181
917 => 0.03087316500141
918 => 0.030825259296517
919 => 0.030512642167418
920 => 0.03084317814442
921 => 0.029998795310075
922 => 0.029662555261784
923 => 0.02951068343268
924 => 0.028761245066336
925 => 0.029953934783944
926 => 0.030188909683422
927 => 0.030424347556039
928 => 0.03247367349691
929 => 0.032371294964239
930 => 0.033296747039217
1001 => 0.03326078567338
1002 => 0.032996831750267
1003 => 0.031883253566965
1004 => 0.032327105983207
1005 => 0.030960997235995
1006 => 0.031984578795771
1007 => 0.031517458917677
1008 => 0.031826645095107
1009 => 0.031270700469895
1010 => 0.031578383179878
1011 => 0.030244630949082
1012 => 0.028999191882365
1013 => 0.029500392919445
1014 => 0.030045255766042
1015 => 0.031226657245935
1016 => 0.030523024270861
1017 => 0.030776077296006
1018 => 0.029928392022335
1019 => 0.028179375173424
1020 => 0.028189274418846
1021 => 0.027920226281044
1022 => 0.027687729408312
1023 => 0.030603844982334
1024 => 0.030241179913739
1025 => 0.029663320591364
1026 => 0.03043680825758
1027 => 0.030641330673428
1028 => 0.030647153139082
1029 => 0.031211469773747
1030 => 0.031512645662827
1031 => 0.031565729218648
1101 => 0.032453693636161
1102 => 0.032751327596378
1103 => 0.033977239755775
1104 => 0.031487092992837
1105 => 0.031435810058941
1106 => 0.030447692815269
1107 => 0.029821013237816
1108 => 0.030490602102085
1109 => 0.031083766427832
1110 => 0.030466124084309
1111 => 0.030546775135232
1112 => 0.029717640752286
1113 => 0.03001401727979
1114 => 0.030269296671507
1115 => 0.03012834639603
1116 => 0.029917337011571
1117 => 0.031035133717477
1118 => 0.03097206324665
1119 => 0.032012981237225
1120 => 0.032824451247638
1121 => 0.034278750573914
1122 => 0.032761113412607
1123 => 0.032705804682387
1124 => 0.033246456392081
1125 => 0.032751244825418
1126 => 0.033064201441427
1127 => 0.034228328424785
1128 => 0.034252924593536
1129 => 0.033840907076582
1130 => 0.033815835773231
1201 => 0.03389496824434
1202 => 0.034358449599281
1203 => 0.034196494972521
1204 => 0.034383912966798
1205 => 0.034618282038486
1206 => 0.035587731889418
1207 => 0.03582146296642
1208 => 0.035253617624973
1209 => 0.035304887701411
1210 => 0.035092497956007
1211 => 0.034887332123182
1212 => 0.035348514953309
1213 => 0.036191335639937
1214 => 0.036186092496187
1215 => 0.036381610513392
1216 => 0.036503416618352
1217 => 0.035980535648346
1218 => 0.035640159363739
1219 => 0.035770681289963
1220 => 0.035979388692393
1221 => 0.035703000292243
1222 => 0.033997003050953
1223 => 0.034514493634435
1224 => 0.034428357897347
1225 => 0.03430569013327
1226 => 0.034826030916597
1227 => 0.034775842778665
1228 => 0.033272513197313
1229 => 0.03336875147957
1230 => 0.033278365766008
1231 => 0.033570420497704
]
'min_raw' => 0.027687729408312
'max_raw' => 0.062023931806709
'avg_raw' => 0.04485583060751
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027687'
'max' => '$0.062023'
'avg' => '$0.044855'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0067517963330662
'max_diff' => -0.045071505157805
'year' => 2034
]
9 => [
'items' => [
101 => 0.032735472911465
102 => 0.032992297165534
103 => 0.033153374930109
104 => 0.033248250970901
105 => 0.033591008287352
106 => 0.033550789672357
107 => 0.033588508241774
108 => 0.034096726857495
109 => 0.036667122216241
110 => 0.03680702316436
111 => 0.036118099729455
112 => 0.036393311053286
113 => 0.035864965493631
114 => 0.036219647407435
115 => 0.036462311764916
116 => 0.035365758195133
117 => 0.035300827409304
118 => 0.034770301179582
119 => 0.035055375924893
120 => 0.034601801507503
121 => 0.034713092804171
122 => 0.034401912636487
123 => 0.034961974982965
124 => 0.035588211711217
125 => 0.035746423839612
126 => 0.03533023584441
127 => 0.035028888307759
128 => 0.034499821303448
129 => 0.035379671522644
130 => 0.035636966539686
131 => 0.035378320061453
201 => 0.035318386020909
202 => 0.035204811122377
203 => 0.035342481472536
204 => 0.035635565255766
205 => 0.035497352356002
206 => 0.035588644411294
207 => 0.03524073323648
208 => 0.035980708743704
209 => 0.037155967933979
210 => 0.03715974658445
211 => 0.037021532939668
212 => 0.036964978894077
213 => 0.037106794481129
214 => 0.037183723619525
215 => 0.037642329223522
216 => 0.038134431308263
217 => 0.04043085701679
218 => 0.039786029867132
219 => 0.041823555370714
220 => 0.043434973504473
221 => 0.043918167344013
222 => 0.043473651747664
223 => 0.041952987904813
224 => 0.041878376881973
225 => 0.044150890670906
226 => 0.043508801437807
227 => 0.043432426966641
228 => 0.042619931630139
301 => 0.043100217003516
302 => 0.042995171546997
303 => 0.042829352154882
304 => 0.043745703190318
305 => 0.045461030525433
306 => 0.045193680674017
307 => 0.044994116411938
308 => 0.044119683907792
309 => 0.044646287586859
310 => 0.044458774103172
311 => 0.045264451028087
312 => 0.044787185865696
313 => 0.043503936980354
314 => 0.043708298594988
315 => 0.043677409748055
316 => 0.044313100029139
317 => 0.04412228158556
318 => 0.043640149384419
319 => 0.045455167723081
320 => 0.045337310527831
321 => 0.04550440508479
322 => 0.045577965276334
323 => 0.046682734954867
324 => 0.047135323743476
325 => 0.047238069322172
326 => 0.047667993666877
327 => 0.047227372412823
328 => 0.048990171586666
329 => 0.050162330175087
330 => 0.051523852694269
331 => 0.053513403037545
401 => 0.054261492370987
402 => 0.054126356728789
403 => 0.055634811092637
404 => 0.058345470053416
405 => 0.054674258405468
406 => 0.058540053185155
407 => 0.057316187190653
408 => 0.054414422934098
409 => 0.054227583525529
410 => 0.056192691970244
411 => 0.060551113365943
412 => 0.059459378239127
413 => 0.060552899053507
414 => 0.059277248937755
415 => 0.059213902157484
416 => 0.06049094357469
417 => 0.063474820453894
418 => 0.062057292397536
419 => 0.060024918336608
420 => 0.061525591715955
421 => 0.060225569554
422 => 0.057296255769823
423 => 0.05945854340985
424 => 0.058012683243371
425 => 0.058434662106104
426 => 0.061473645120575
427 => 0.061107986644122
428 => 0.061581182571716
429 => 0.060746004145207
430 => 0.059965815799298
501 => 0.058509536314113
502 => 0.05807840375226
503 => 0.058197553281832
504 => 0.058078344707671
505 => 0.057263569719609
506 => 0.057087619138512
507 => 0.056794360461446
508 => 0.056885253587985
509 => 0.056333841479248
510 => 0.057374470055989
511 => 0.05756761988982
512 => 0.05832490258675
513 => 0.058403526188534
514 => 0.060512547720241
515 => 0.059350934101244
516 => 0.060130244805761
517 => 0.060060535921193
518 => 0.054477312964456
519 => 0.055246631826701
520 => 0.056443450550796
521 => 0.055904285337841
522 => 0.055142031871952
523 => 0.054526471328801
524 => 0.053593834161631
525 => 0.054906503064713
526 => 0.05663252308549
527 => 0.058447300904628
528 => 0.060627637545368
529 => 0.060141011789072
530 => 0.05840654102774
531 => 0.058484348119061
601 => 0.05896532094165
602 => 0.058342417435409
603 => 0.058158711030897
604 => 0.058940082502674
605 => 0.058945463378566
606 => 0.058228737614232
607 => 0.057432228086605
608 => 0.057428890682601
609 => 0.057287159505529
610 => 0.059302462599298
611 => 0.060410675530746
612 => 0.060537730357362
613 => 0.060402123728595
614 => 0.060454313337973
615 => 0.059809468650969
616 => 0.061283392382708
617 => 0.062636010554902
618 => 0.062273479990281
619 => 0.061729995137159
620 => 0.06129708327387
621 => 0.062171499713427
622 => 0.062132563325833
623 => 0.062624196615166
624 => 0.06260189328935
625 => 0.062436575505411
626 => 0.0622734858943
627 => 0.062920117767541
628 => 0.062733898172637
629 => 0.062547389327268
630 => 0.062173317284805
701 => 0.062224159888054
702 => 0.061680768875254
703 => 0.061429371328852
704 => 0.057648955418021
705 => 0.056638704757993
706 => 0.056956550181187
707 => 0.057061193147354
708 => 0.056621530765439
709 => 0.057251893681107
710 => 0.057153652288419
711 => 0.057535852078073
712 => 0.057297070242683
713 => 0.057306869932498
714 => 0.058009076396724
715 => 0.058212929920689
716 => 0.058109248373101
717 => 0.058181863375036
718 => 0.059855245445758
719 => 0.059617344027048
720 => 0.059490963639909
721 => 0.059525971870845
722 => 0.059953556867631
723 => 0.060073257321456
724 => 0.059566078087399
725 => 0.059805266746148
726 => 0.060823701697543
727 => 0.061180096292105
728 => 0.062317536758836
729 => 0.061834331832177
730 => 0.06272127538768
731 => 0.065447437495957
801 => 0.067625284424117
802 => 0.06562244638565
803 => 0.069621784922084
804 => 0.072735843643737
805 => 0.072616320883263
806 => 0.072073312715667
807 => 0.0685280396526
808 => 0.065265626522922
809 => 0.067994773635276
810 => 0.068001730792519
811 => 0.067767294635207
812 => 0.066311231796512
813 => 0.06771662680462
814 => 0.067828181956719
815 => 0.067765740736453
816 => 0.066649380771945
817 => 0.06494490544395
818 => 0.065277955843103
819 => 0.065823499190959
820 => 0.064790671821203
821 => 0.064460620895348
822 => 0.065074248361269
823 => 0.067051483910827
824 => 0.066677698983529
825 => 0.066667937948493
826 => 0.068267148376953
827 => 0.067122458841387
828 => 0.065282156675211
829 => 0.064817456107648
830 => 0.063168082152612
831 => 0.064307310618224
901 => 0.064348309422572
902 => 0.063724365634589
903 => 0.065332786274856
904 => 0.065317964395499
905 => 0.066844920411612
906 => 0.069763886815933
907 => 0.068900604816562
908 => 0.067896701776108
909 => 0.068005853871817
910 => 0.06920298295142
911 => 0.068479171382093
912 => 0.068739459069017
913 => 0.069202588974832
914 => 0.069482006745878
915 => 0.067965649954559
916 => 0.067612114650773
917 => 0.066888905493257
918 => 0.066700233723399
919 => 0.067289272491942
920 => 0.067134081587478
921 => 0.064344863631822
922 => 0.064053374836394
923 => 0.064062314381599
924 => 0.063329351945958
925 => 0.062211408300465
926 => 0.065149297451875
927 => 0.064913343837284
928 => 0.064652869308136
929 => 0.064684775951709
930 => 0.065960014058034
1001 => 0.065220311555298
1002 => 0.067186931893679
1003 => 0.066782653874126
1004 => 0.066368007648853
1005 => 0.066310690910087
1006 => 0.066151087489311
1007 => 0.06560374797365
1008 => 0.064942802618484
1009 => 0.064506389244897
1010 => 0.059503734283584
1011 => 0.060432197945298
1012 => 0.061500310755975
1013 => 0.061869019018028
1014 => 0.061238318021952
1015 => 0.065628651893143
1016 => 0.066430808197719
1017 => 0.064001024427796
1018 => 0.063546511091861
1019 => 0.065658449711779
1020 => 0.064384692549972
1021 => 0.06495826532194
1022 => 0.063718514716478
1023 => 0.066237592233825
1024 => 0.066218401083752
1025 => 0.065238423033558
1026 => 0.066066693770982
1027 => 0.065922761347613
1028 => 0.064816368542523
1029 => 0.066272666859184
1030 => 0.06627338916498
1031 => 0.065330181598228
1101 => 0.064228721654948
1102 => 0.064031806632412
1103 => 0.063883457614743
1104 => 0.064921780557554
1105 => 0.065852737661327
1106 => 0.06758501802761
1107 => 0.06802055446966
1108 => 0.069720482198284
1109 => 0.068708258003867
1110 => 0.069156963878754
1111 => 0.069644097579265
1112 => 0.069877647389039
1113 => 0.069497090506987
1114 => 0.072137777987707
1115 => 0.072360732919654
1116 => 0.072435487779783
1117 => 0.071545062818944
1118 => 0.072335968590726
1119 => 0.071965929972155
1120 => 0.072928667657987
1121 => 0.073079637219977
1122 => 0.072951771371869
1123 => 0.072999691493737
1124 => 0.070746330578136
1125 => 0.070629481927236
1126 => 0.069036242281016
1127 => 0.069685499213484
1128 => 0.06847174449793
1129 => 0.068856638621291
1130 => 0.069026296283463
1201 => 0.068937676748732
1202 => 0.069722207226308
1203 => 0.069055196051381
1204 => 0.067294843893957
1205 => 0.065534012129765
1206 => 0.065511906321308
1207 => 0.065048310399059
1208 => 0.064713215459101
1209 => 0.064777766632669
1210 => 0.065005253387863
1211 => 0.064699993515341
1212 => 0.064765136186212
1213 => 0.065846938566014
1214 => 0.066063886318222
1215 => 0.065326613089261
1216 => 0.062366354686965
1217 => 0.061639899849796
1218 => 0.062162061180528
1219 => 0.061912501695934
1220 => 0.049968220941256
1221 => 0.052774352532547
1222 => 0.051107044428227
1223 => 0.051875416711855
1224 => 0.050173526884685
1225 => 0.050985757913899
1226 => 0.050835768500731
1227 => 0.055347945060056
1228 => 0.055277493629378
1229 => 0.055311215001037
1230 => 0.053701606071197
1231 => 0.056265756802077
]
'min_raw' => 0.032735472911465
'max_raw' => 0.073079637219977
'avg_raw' => 0.052907555065721
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032735'
'max' => '$0.073079'
'avg' => '$0.0529075'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050477435031526
'max_diff' => 0.011055705413268
'year' => 2035
]
10 => [
'items' => [
101 => 0.057528949655987
102 => 0.057295166277517
103 => 0.057354004517213
104 => 0.056342968618828
105 => 0.055321004038548
106 => 0.054187488039797
107 => 0.056293420658665
108 => 0.056059276900916
109 => 0.056596318438928
110 => 0.057962166277437
111 => 0.058163292560009
112 => 0.058433608323407
113 => 0.058336719364615
114 => 0.060645007444306
115 => 0.06036545852728
116 => 0.0610390909856
117 => 0.059653377910219
118 => 0.058085312032333
119 => 0.058383350091783
120 => 0.058354646629987
121 => 0.057989218617027
122 => 0.057659326546317
123 => 0.057110149195099
124 => 0.058847827597307
125 => 0.058777281027551
126 => 0.059919347990488
127 => 0.059717476561342
128 => 0.058369329751189
129 => 0.058417479078255
130 => 0.058741306442554
131 => 0.059862076647788
201 => 0.060194797552556
202 => 0.060040667972832
203 => 0.060405481255624
204 => 0.060693814799707
205 => 0.060441691509499
206 => 0.064011225617871
207 => 0.062528906189025
208 => 0.063251378364733
209 => 0.063423683721586
210 => 0.062982327173198
211 => 0.06307804160475
212 => 0.06322302288793
213 => 0.064103320849154
214 => 0.066413477415672
215 => 0.067436630033216
216 => 0.070514835164556
217 => 0.067351671451301
218 => 0.067163982407029
219 => 0.067718460104073
220 => 0.069525692377274
221 => 0.070990284390008
222 => 0.071476174054972
223 => 0.071540392395361
224 => 0.072451953708168
225 => 0.072974443653057
226 => 0.07234126618835
227 => 0.071804714583456
228 => 0.06988285333396
229 => 0.070105314006644
301 => 0.071637847437799
302 => 0.073802641175075
303 => 0.075660259410057
304 => 0.075009786248698
305 => 0.079972437307381
306 => 0.080464463889238
307 => 0.080396481724749
308 => 0.081517391501592
309 => 0.079292613863866
310 => 0.078341478320702
311 => 0.071920723130553
312 => 0.073724693439784
313 => 0.076346870227713
314 => 0.075999815297172
315 => 0.074095520422792
316 => 0.075658814831633
317 => 0.075141940811334
318 => 0.074734260826402
319 => 0.07660192187003
320 => 0.074548351833273
321 => 0.076326384295697
322 => 0.074046039271248
323 => 0.075012757555307
324 => 0.074464001502373
325 => 0.074819113921634
326 => 0.072743133974774
327 => 0.073863282362535
328 => 0.072696532119137
329 => 0.072695978927606
330 => 0.072670222851316
331 => 0.074042899338511
401 => 0.074087662269478
402 => 0.073073252271442
403 => 0.072927059942662
404 => 0.073467609604661
405 => 0.072834767520641
406 => 0.073130870348694
407 => 0.072843736173658
408 => 0.072779096222887
409 => 0.072264034097559
410 => 0.07204213117204
411 => 0.07212914502687
412 => 0.071832121881618
413 => 0.071653154692807
414 => 0.072634621772923
415 => 0.072110263504286
416 => 0.072554256347898
417 => 0.072048270466238
418 => 0.070294302952849
419 => 0.069285577688029
420 => 0.065972495648112
421 => 0.066912081604767
422 => 0.067535028066101
423 => 0.067329144264346
424 => 0.06777146233697
425 => 0.067798617074271
426 => 0.067654814959962
427 => 0.067488310533784
428 => 0.067407265387393
429 => 0.06801130950955
430 => 0.068361977453653
501 => 0.067597549077445
502 => 0.067418454204389
503 => 0.068191333497982
504 => 0.068662789420597
505 => 0.072143755064981
506 => 0.071885873886674
507 => 0.072533105037599
508 => 0.072460236742577
509 => 0.073138638100754
510 => 0.074247537607569
511 => 0.071992834857036
512 => 0.072384173292773
513 => 0.072288226145655
514 => 0.073335751939202
515 => 0.073339022200389
516 => 0.072710978159363
517 => 0.073051451022854
518 => 0.072861408410837
519 => 0.07320484109655
520 => 0.071882429726315
521 => 0.073492984029775
522 => 0.074406064538011
523 => 0.074418742661753
524 => 0.074851535576002
525 => 0.075291278242553
526 => 0.076135325997485
527 => 0.075267738208776
528 => 0.073707032234858
529 => 0.073819710165125
530 => 0.072904668823657
531 => 0.072920050833923
601 => 0.072837940457615
602 => 0.073084359877898
603 => 0.071936504931701
604 => 0.072205904193274
605 => 0.071828743649472
606 => 0.072383353419409
607 => 0.071786684987236
608 => 0.072288179877035
609 => 0.072504608446654
610 => 0.073303234527919
611 => 0.07166872726569
612 => 0.068335856311592
613 => 0.069036466193298
614 => 0.068000209146536
615 => 0.068096118681523
616 => 0.068289871206085
617 => 0.067661855882097
618 => 0.067781661414877
619 => 0.067777381118187
620 => 0.067740495833721
621 => 0.06757712479285
622 => 0.06734020446161
623 => 0.068284022141035
624 => 0.068444395156264
625 => 0.068800884503105
626 => 0.069861554990268
627 => 0.069755568996268
628 => 0.069928436549799
629 => 0.069551067651051
630 => 0.068113623742415
701 => 0.068191683862406
702 => 0.0672182729153
703 => 0.068775992196661
704 => 0.068407103709945
705 => 0.068169278902797
706 => 0.068104386200736
707 => 0.06916768588488
708 => 0.069485841815556
709 => 0.069287588390209
710 => 0.068880964830845
711 => 0.069661802272287
712 => 0.06987072143073
713 => 0.069917490725664
714 => 0.07130098496117
715 => 0.069994812684725
716 => 0.070309221333901
717 => 0.072762147862867
718 => 0.070537681981818
719 => 0.071716031170518
720 => 0.071658357109565
721 => 0.072261160681341
722 => 0.071608909622161
723 => 0.071616995055755
724 => 0.072152243790042
725 => 0.071400583475354
726 => 0.071214461810815
727 => 0.070957336064282
728 => 0.071518760725079
729 => 0.071855309418174
730 => 0.074567644716737
731 => 0.076319937017126
801 => 0.076243865387024
802 => 0.076939017686032
803 => 0.076625845208464
804 => 0.07561452866767
805 => 0.077340722685892
806 => 0.076794482671501
807 => 0.076839514034605
808 => 0.076837837965022
809 => 0.077201039821461
810 => 0.076943678019212
811 => 0.076436391489334
812 => 0.076773151961938
813 => 0.077773210171501
814 => 0.080877421539519
815 => 0.082614579346392
816 => 0.080772842458305
817 => 0.082043247901868
818 => 0.081281457327474
819 => 0.0811430173188
820 => 0.081940925819582
821 => 0.082740230953569
822 => 0.082689318672025
823 => 0.082109064189523
824 => 0.081781293155771
825 => 0.084263285234699
826 => 0.086091974718821
827 => 0.085967270355694
828 => 0.086517674858506
829 => 0.088133679502134
830 => 0.088281426714318
831 => 0.088262813961513
901 => 0.087896607080289
902 => 0.089487773516661
903 => 0.090815152551792
904 => 0.087811840768019
905 => 0.088955462579042
906 => 0.089468871255203
907 => 0.090222707513298
908 => 0.091494555638332
909 => 0.092876120043172
910 => 0.093071488398099
911 => 0.092932865201042
912 => 0.092021686337605
913 => 0.093533410594873
914 => 0.094418943210484
915 => 0.094946257618026
916 => 0.096283439218804
917 => 0.089472041892402
918 => 0.084650596316362
919 => 0.083897657967145
920 => 0.085428787708115
921 => 0.085832534410279
922 => 0.085669784620892
923 => 0.080242809278405
924 => 0.083869086065105
925 => 0.087770654981582
926 => 0.087920530133304
927 => 0.089873737110851
928 => 0.0905097813674
929 => 0.092082368997016
930 => 0.091984003212614
1001 => 0.092366903275091
1002 => 0.092278881181632
1003 => 0.095191768618103
1004 => 0.0984051160285
1005 => 0.098293848025497
1006 => 0.097831891316652
1007 => 0.098517975804611
1008 => 0.10183449469538
1009 => 0.10152916278205
1010 => 0.10182576672774
1011 => 0.10573612941076
1012 => 0.1108201571413
1013 => 0.10845811583243
1014 => 0.11358306581361
1015 => 0.11680895016484
1016 => 0.12238778358762
1017 => 0.12168928616675
1018 => 0.12386108507887
1019 => 0.12043883000259
1020 => 0.11258064059559
1021 => 0.11133705204199
1022 => 0.11382674781898
1023 => 0.11994742194572
1024 => 0.11363398600909
1025 => 0.11491118587644
1026 => 0.11454335222872
1027 => 0.11452375193683
1028 => 0.11527181535829
1029 => 0.11418671034909
1030 => 0.10976579733496
1031 => 0.11179187571673
1101 => 0.11100950955326
1102 => 0.1118776031409
1103 => 0.11656234620436
1104 => 0.11449110962568
1105 => 0.11230923014363
1106 => 0.11504579121193
1107 => 0.11853037383629
1108 => 0.11831231491806
1109 => 0.11788918947512
1110 => 0.12027432544281
1111 => 0.12421387128216
1112 => 0.12527871469216
1113 => 0.12606476032766
1114 => 0.12617314274044
1115 => 0.12728954895142
1116 => 0.12128635138439
1117 => 0.13081358009632
1118 => 0.13245866931049
1119 => 0.13214946072019
1120 => 0.1339779081458
1121 => 0.13343993252995
1122 => 0.13266049026838
1123 => 0.13555896835989
1124 => 0.13223609712309
1125 => 0.1275196997403
1126 => 0.12493219085634
1127 => 0.12833963128313
1128 => 0.13042043624848
1129 => 0.13179571596653
1130 => 0.13221187477825
1201 => 0.12175236252261
1202 => 0.11611526552796
1203 => 0.11972858007208
1204 => 0.12413707319355
1205 => 0.12126186198251
1206 => 0.12137456481849
1207 => 0.11727526922375
1208 => 0.12449976989357
1209 => 0.12344722091359
1210 => 0.12890784688365
1211 => 0.12760462467163
1212 => 0.13205755316994
1213 => 0.13088494786245
1214 => 0.13575236693435
1215 => 0.13769411218224
1216 => 0.14095460466197
1217 => 0.14335303620265
1218 => 0.14476144107802
1219 => 0.14467688573209
1220 => 0.15025768751284
1221 => 0.1469668836811
1222 => 0.14283285848552
1223 => 0.14275808701241
1224 => 0.14489915724079
1225 => 0.14938625306555
1226 => 0.15054969172832
1227 => 0.15119989522158
1228 => 0.1502040859379
1229 => 0.14663215423258
1230 => 0.14508981223233
1231 => 0.14640393230249
]
'min_raw' => 0.054187488039797
'max_raw' => 0.15119989522158
'avg_raw' => 0.10269369163069
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.054187'
'max' => '$0.151199'
'avg' => '$0.102693'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021452015128332
'max_diff' => 0.078120258001606
'year' => 2036
]
11 => [
'items' => [
101 => 0.1447968763803
102 => 0.14757110576225
103 => 0.15138071524708
104 => 0.15059404595329
105 => 0.15322376345838
106 => 0.15594524442179
107 => 0.15983708442883
108 => 0.16085455552109
109 => 0.16253639654564
110 => 0.16426756341589
111 => 0.16482356755836
112 => 0.16588515198428
113 => 0.16587955691035
114 => 0.16907871303075
115 => 0.17260748130118
116 => 0.17393950963209
117 => 0.17700243533055
118 => 0.17175728240965
119 => 0.17573579115213
120 => 0.17932450562637
121 => 0.17504589228485
122 => 0.18094296398709
123 => 0.18117193391824
124 => 0.18462910803292
125 => 0.18112459975327
126 => 0.17904363392359
127 => 0.18505130430108
128 => 0.18795822675691
129 => 0.1870826380559
130 => 0.18041936480803
131 => 0.17654105397655
201 => 0.16639076646025
202 => 0.17841422048309
203 => 0.18427049420866
204 => 0.18040419847386
205 => 0.1823541331535
206 => 0.19299234449717
207 => 0.19704268660367
208 => 0.19620024375954
209 => 0.19634260273241
210 => 0.19852809381417
211 => 0.20821976484259
212 => 0.20241229091118
213 => 0.20685188712985
214 => 0.20920663295607
215 => 0.21139385211088
216 => 0.20602273314438
217 => 0.19903498628638
218 => 0.19682167353079
219 => 0.18001977155939
220 => 0.17914515959482
221 => 0.17865421339565
222 => 0.1755588670556
223 => 0.17312677271904
224 => 0.17119268100474
225 => 0.16611704677773
226 => 0.16782992433254
227 => 0.15974042274188
228 => 0.16491579918525
301 => 0.15200475931871
302 => 0.16275745697318
303 => 0.15690525250502
304 => 0.16083485041086
305 => 0.16082114041395
306 => 0.15358550478916
307 => 0.14941214116464
308 => 0.15207157089593
309 => 0.15492269067366
310 => 0.15538527526528
311 => 0.15908182647895
312 => 0.16011345446558
313 => 0.15698757350398
314 => 0.151737206715
315 => 0.15295674717196
316 => 0.1493874272162
317 => 0.14313233128565
318 => 0.14762485038647
319 => 0.14915879392961
320 => 0.1498362707851
321 => 0.14368510234002
322 => 0.14175227166621
323 => 0.14072324883349
324 => 0.1509431681118
325 => 0.15150303836003
326 => 0.14863866301242
327 => 0.16158591119486
328 => 0.15865555017826
329 => 0.16192948138968
330 => 0.15284608665811
331 => 0.15319308456927
401 => 0.14889285993549
402 => 0.15130069838929
403 => 0.1495989157784
404 => 0.15110616883695
405 => 0.1520096101056
406 => 0.15630912911484
407 => 0.16280655057386
408 => 0.15566692435118
409 => 0.15255608696463
410 => 0.15448603298323
411 => 0.15962573355608
412 => 0.16741264302038
413 => 0.16280263589136
414 => 0.16484847877222
415 => 0.16529540442848
416 => 0.16189615584328
417 => 0.16753797816436
418 => 0.17056147658031
419 => 0.17366296033023
420 => 0.17635589176869
421 => 0.17242415951742
422 => 0.17663167661795
423 => 0.17324116056168
424 => 0.17019951715409
425 => 0.1702041300716
426 => 0.1682960627307
427 => 0.16459894182575
428 => 0.16391713600686
429 => 0.16746397597928
430 => 0.17030820575017
501 => 0.17054247013704
502 => 0.17211718188
503 => 0.17304908006867
504 => 0.18218294917174
505 => 0.18585666688433
506 => 0.19034881936336
507 => 0.19209876591778
508 => 0.19736547765604
509 => 0.19311218018598
510 => 0.19219195252384
511 => 0.17941663257512
512 => 0.18150859050103
513 => 0.18485801698434
514 => 0.17947186338416
515 => 0.18288813812181
516 => 0.18356258312162
517 => 0.17928884394586
518 => 0.181571632697
519 => 0.17550922257366
520 => 0.16293869454789
521 => 0.16755197275553
522 => 0.170948898329
523 => 0.16610106669775
524 => 0.17479061725977
525 => 0.16971436121017
526 => 0.16810543174571
527 => 0.16182842428008
528 => 0.16479093017968
529 => 0.1687977618279
530 => 0.16632200571348
531 => 0.17145957138755
601 => 0.17873573452075
602 => 0.18392116167247
603 => 0.18431923438147
604 => 0.18098535211955
605 => 0.18632791972083
606 => 0.1863668344932
607 => 0.18034039641392
608 => 0.17664923664571
609 => 0.17581059738011
610 => 0.1779056826905
611 => 0.1804495030314
612 => 0.1844603987063
613 => 0.18688409896029
614 => 0.19320382379139
615 => 0.19491376012998
616 => 0.19679246174578
617 => 0.19930298647461
618 => 0.20231751509691
619 => 0.19572189808854
620 => 0.19598395424805
621 => 0.1898422070124
622 => 0.18327886927545
623 => 0.18825962448619
624 => 0.19477129936214
625 => 0.19327751395084
626 => 0.1931094325768
627 => 0.19339209882605
628 => 0.19226583340839
629 => 0.1871717766657
630 => 0.18461357326
701 => 0.18791430832064
702 => 0.18966850210656
703 => 0.19238910368675
704 => 0.19205373211706
705 => 0.19906170961633
706 => 0.20178479776231
707 => 0.20108811528705
708 => 0.2012163216291
709 => 0.20614634264575
710 => 0.21162953995242
711 => 0.21676527780173
712 => 0.22198957092711
713 => 0.21569148165683
714 => 0.21249370033752
715 => 0.2157929944005
716 => 0.21404234252975
717 => 0.22410210745611
718 => 0.22479862375325
719 => 0.2348576612441
720 => 0.24440488563082
721 => 0.23840844504981
722 => 0.24406281843208
723 => 0.25017848425284
724 => 0.26197659585209
725 => 0.25800340692803
726 => 0.25496000648001
727 => 0.25208400776224
728 => 0.25806850454199
729 => 0.26576746404447
730 => 0.26742574618159
731 => 0.27011279675625
801 => 0.2672876916339
802 => 0.27069021957865
803 => 0.28270263837013
804 => 0.27945677677612
805 => 0.27484713151433
806 => 0.28432978246524
807 => 0.2877615169815
808 => 0.31184722702995
809 => 0.34225643089717
810 => 0.32966682081854
811 => 0.32185204357856
812 => 0.32368870159895
813 => 0.33479311343474
814 => 0.33835949807999
815 => 0.32866483520771
816 => 0.33208915402863
817 => 0.35095748740349
818 => 0.36107974289049
819 => 0.34733236033886
820 => 0.309403877108
821 => 0.27443208339373
822 => 0.28370817788715
823 => 0.28265655664232
824 => 0.30292822698109
825 => 0.27937936405058
826 => 0.2797758665079
827 => 0.3004667335212
828 => 0.29494676493332
829 => 0.2860051227651
830 => 0.27449736727697
831 => 0.25322421691861
901 => 0.23438199440053
902 => 0.27133593186318
903 => 0.26974241088342
904 => 0.26743475635814
905 => 0.27257019178984
906 => 0.29750640852742
907 => 0.29693154802096
908 => 0.29327457877528
909 => 0.29604835771708
910 => 0.28551886590558
911 => 0.28823255569748
912 => 0.27442654368293
913 => 0.2806674377035
914 => 0.2859859380169
915 => 0.28705370569656
916 => 0.28945944080041
917 => 0.26890269773723
918 => 0.27813207185833
919 => 0.28355346447907
920 => 0.25905941538662
921 => 0.28306929588288
922 => 0.26854485057513
923 => 0.26361503568783
924 => 0.27025238197985
925 => 0.26766580167482
926 => 0.26544201181764
927 => 0.26420109886778
928 => 0.26907483344747
929 => 0.26884746790395
930 => 0.26087309218047
1001 => 0.25047084412632
1002 => 0.25396218001545
1003 => 0.25269374495548
1004 => 0.24809677266678
1005 => 0.25119457694881
1006 => 0.23755341465361
1007 => 0.21408450393063
1008 => 0.22958878522641
1009 => 0.22899188726193
1010 => 0.22869090424107
1011 => 0.24034194312799
1012 => 0.23922196457422
1013 => 0.23718919253225
1014 => 0.24805943921411
1015 => 0.24409165294978
1016 => 0.25631943528842
1017 => 0.26437344358003
1018 => 0.26233068655741
1019 => 0.26990552028406
1020 => 0.25404261334283
1021 => 0.25931163471934
1022 => 0.26039757272249
1023 => 0.2479253020574
1024 => 0.23940520691662
1025 => 0.23883701370693
1026 => 0.22406434287425
1027 => 0.23195578439223
1028 => 0.23889992635802
1029 => 0.23557422124359
1030 => 0.23452140235698
1031 => 0.23990002572013
1101 => 0.24031799082024
1102 => 0.23078834224376
1103 => 0.23276985794754
1104 => 0.24103310783184
1105 => 0.23256164525177
1106 => 0.21610297726424
1107 => 0.21202100004444
1108 => 0.21147638903755
1109 => 0.20040574307177
1110 => 0.212293777281
1111 => 0.20710433176916
1112 => 0.22349772796196
1113 => 0.21413390797618
1114 => 0.21373025241182
1115 => 0.2131200678229
1116 => 0.20359110551753
1117 => 0.20567734266526
1118 => 0.2126123126872
1119 => 0.21508678811906
1120 => 0.21482868005874
1121 => 0.21257832755073
1122 => 0.21360852740523
1123 => 0.21028989472848
1124 => 0.20911801645895
1125 => 0.20541924628981
1126 => 0.19998307595252
1127 => 0.20073900877989
1128 => 0.18996853289036
1129 => 0.18410020599333
1130 => 0.18247593045154
1201 => 0.1803038813139
1202 => 0.18272126918123
1203 => 0.18993802148541
1204 => 0.18123308708716
1205 => 0.16630908764152
1206 => 0.16720604543746
1207 => 0.16922124329578
1208 => 0.16546593541867
1209 => 0.16191185167209
1210 => 0.16500183913782
1211 => 0.15867834383309
1212 => 0.1699854074925
1213 => 0.1696795831082
1214 => 0.1738941572163
1215 => 0.17652961689786
1216 => 0.17045573557206
1217 => 0.16892817084414
1218 => 0.16979834113711
1219 => 0.15541636452264
1220 => 0.17271884289666
1221 => 0.17286847544814
1222 => 0.17158723069781
1223 => 0.18080026627789
1224 => 0.20024264496972
1225 => 0.19292764003798
1226 => 0.19009504903122
1227 => 0.18471029145675
1228 => 0.19188516120946
1229 => 0.19133424315786
1230 => 0.18884278279904
1231 => 0.18733593980019
]
'min_raw' => 0.14072324883349
'max_raw' => 0.36107974289049
'avg_raw' => 0.25090149586199
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.140723'
'max' => '$0.361079'
'avg' => '$0.2509014'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.086535760793697
'max_diff' => 0.20987984766891
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044171419800287
]
1 => [
'year' => 2028
'avg' => 0.0075810979432084
]
2 => [
'year' => 2029
'avg' => 0.020710193220881
]
3 => [
'year' => 2030
'avg' => 0.015977883227364
]
4 => [
'year' => 2031
'avg' => 0.015692261446541
]
5 => [
'year' => 2032
'avg' => 0.027513472852215
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044171419800287
'min' => '$0.004417'
'max_raw' => 0.027513472852215
'max' => '$0.027513'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027513472852215
]
1 => [
'year' => 2033
'avg' => 0.070767481352946
]
2 => [
'year' => 2034
'avg' => 0.04485583060751
]
3 => [
'year' => 2035
'avg' => 0.052907555065721
]
4 => [
'year' => 2036
'avg' => 0.10269369163069
]
5 => [
'year' => 2037
'avg' => 0.25090149586199
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027513472852215
'min' => '$0.027513'
'max_raw' => 0.25090149586199
'max' => '$0.2509014'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25090149586199
]
]
]
]
'prediction_2025_max_price' => '$0.007552'
'last_price' => 0.00732311
'sma_50day_nextmonth' => '$0.006956'
'sma_200day_nextmonth' => '$0.009462'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007251'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007144'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007189'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.00724'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007869'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010154'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009755'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007242'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0072083'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007238'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007364'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008184'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.009281'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012252'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010657'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013573'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007394'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007658'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008578'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.01027'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017368'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011433'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005716'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '47.73'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 42.68
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007224'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007255'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 36.19
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 5.11
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.9
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000169'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -63.81
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.12
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 16
'sell_pct' => 48.39
'buy_pct' => 51.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767678333
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SynFutures para 2026
A previsão de preço para SynFutures em 2026 sugere que o preço médio poderia variar entre $0.00253 na extremidade inferior e $0.007552 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SynFutures poderia potencialmente ganhar 3.13% até 2026 se F atingir a meta de preço prevista.
Previsão de preço de SynFutures 2027-2032
A previsão de preço de F para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004417 na extremidade inferior e $0.027513 na extremidade superior. Considerando a volatilidade de preços no mercado, se SynFutures atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002435 | $0.004417 | $0.006398 |
| 2028 | $0.004395 | $0.007581 | $0.010766 |
| 2029 | $0.009656 | $0.02071 | $0.031764 |
| 2030 | $0.008212 | $0.015977 | $0.023743 |
| 2031 | $0.0097092 | $0.015692 | $0.021675 |
| 2032 | $0.01482 | $0.027513 | $0.0402064 |
Previsão de preço de SynFutures 2032-2037
A previsão de preço de SynFutures para 2032-2037 é atualmente estimada entre $0.027513 na extremidade inferior e $0.2509014 na extremidade superior. Comparado ao preço atual, SynFutures poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.01482 | $0.027513 | $0.0402064 |
| 2033 | $0.034439 | $0.070767 | $0.107095 |
| 2034 | $0.027687 | $0.044855 | $0.062023 |
| 2035 | $0.032735 | $0.0529075 | $0.073079 |
| 2036 | $0.054187 | $0.102693 | $0.151199 |
| 2037 | $0.140723 | $0.2509014 | $0.361079 |
SynFutures Histograma de preços potenciais
Previsão de preço de SynFutures baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SynFutures é Altista, com 16 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de F foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SynFutures
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SynFutures está projetado para aumentar no próximo mês, alcançando $0.009462 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SynFutures é esperado para alcançar $0.006956 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 47.73, sugerindo que o mercado de F está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de F para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007251 | BUY |
| SMA 5 | $0.007144 | BUY |
| SMA 10 | $0.007189 | BUY |
| SMA 21 | $0.00724 | BUY |
| SMA 50 | $0.007869 | SELL |
| SMA 100 | $0.010154 | SELL |
| SMA 200 | $0.009755 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.007242 | BUY |
| EMA 5 | $0.0072083 | BUY |
| EMA 10 | $0.007238 | BUY |
| EMA 21 | $0.007364 | SELL |
| EMA 50 | $0.008184 | SELL |
| EMA 100 | $0.009281 | SELL |
| EMA 200 | $0.012252 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.010657 | SELL |
| SMA 50 | $0.013573 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.01027 | SELL |
| EMA 50 | $0.017368 | SELL |
| EMA 100 | $0.011433 | SELL |
| EMA 200 | $0.005716 | BUY |
Osciladores de SynFutures
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 47.73 | NEUTRAL |
| Stoch RSI (14) | 42.68 | NEUTRAL |
| Estocástico Rápido (14) | 36.19 | NEUTRAL |
| Índice de Canal de Commodities (20) | 5.11 | NEUTRAL |
| Índice Direcional Médio (14) | 14.9 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000169 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -63.81 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.12 | NEUTRAL |
| VWMA (10) | 0.007224 | BUY |
| Média Móvel de Hull (9) | 0.007255 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.006688 | SELL |
Previsão do preço de SynFutures com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SynFutures
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SynFutures por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.01029 | $0.014459 | $0.020317 | $0.02855 | $0.040117 | $0.056371 |
| Amazon.com stock | $0.01528 | $0.031882 | $0.066525 | $0.1388093 | $0.289633 | $0.604338 |
| Apple stock | $0.010387 | $0.014733 | $0.020898 | $0.029642 | $0.042046 | $0.059639 |
| Netflix stock | $0.011554 | $0.018231 | $0.028766 | $0.045389 | $0.071616 | $0.113000072 |
| Google stock | $0.009483 | $0.01228 | $0.0159037 | $0.020595 | $0.02667 | $0.034538 |
| Tesla stock | $0.01660093 | $0.037633 | $0.085311 | $0.193394 | $0.43841 | $0.993843 |
| Kodak stock | $0.005491 | $0.004118 | $0.003088 | $0.002315 | $0.001736 | $0.0013022 |
| Nokia stock | $0.004851 | $0.003213 | $0.002128 | $0.00141 | $0.000934 | $0.000618 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SynFutures
Você pode fazer perguntas como: 'Devo investir em SynFutures agora?', 'Devo comprar F hoje?', 'SynFutures será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SynFutures regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SynFutures, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SynFutures para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SynFutures é de $0.007323 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para SynFutures
com base no histórico de preços de 4 horas
Previsão de longo prazo para SynFutures
com base no histórico de preços de 1 mês
Previsão do preço de SynFutures com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SynFutures tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007513 | $0.0077087 | $0.0079091 | $0.008114 |
| Se SynFutures tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0077038 | $0.0081043 | $0.008525 | $0.008968 |
| Se SynFutures tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008274 | $0.00935 | $0.010565 | $0.011938 |
| Se SynFutures tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009226 | $0.011624 | $0.014646 | $0.018453 |
| Se SynFutures tiver 20% da média anterior do crescimento anual do Bitcoin | $0.01113 | $0.016916 | $0.02571 | $0.039076 |
| Se SynFutures tiver 50% da média anterior do crescimento anual do Bitcoin | $0.01684 | $0.038727 | $0.08906 | $0.2048097 |
| Se SynFutures tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026358 | $0.094871 | $0.341473 | $1.22 |
Perguntas Frequentes sobre SynFutures
F é um bom investimento?
A decisão de adquirir SynFutures depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SynFutures experimentou uma escalada de 1.3765% nas últimas 24 horas, e SynFutures registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SynFutures dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SynFutures pode subir?
Parece que o valor médio de SynFutures pode potencialmente subir para $0.007552 até o final deste ano. Observando as perspectivas de SynFutures em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.023743. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SynFutures na próxima semana?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures aumentará 0.86% na próxima semana e atingirá $0.007385 até 13 de janeiro de 2026.
Qual será o preço de SynFutures no próximo mês?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures diminuirá -11.62% no próximo mês e atingirá $0.006472 até 5 de fevereiro de 2026.
Até onde o preço de SynFutures pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SynFutures em 2026, espera-se que F fluctue dentro do intervalo de $0.00253 e $0.007552. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SynFutures não considera flutuações repentinas e extremas de preço.
Onde estará SynFutures em 5 anos?
O futuro de SynFutures parece seguir uma tendência de alta, com um preço máximo de $0.023743 projetada após um período de cinco anos. Com base na previsão de SynFutures para 2030, o valor de SynFutures pode potencialmente atingir seu pico mais alto de aproximadamente $0.023743, enquanto seu pico mais baixo está previsto para cerca de $0.008212.
Quanto será SynFutures em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SynFutures, espera-se que o valor de F em 2026 aumente 3.13% para $0.007552 se o melhor cenário ocorrer. O preço ficará entre $0.007552 e $0.00253 durante 2026.
Quanto será SynFutures em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SynFutures, o valor de F pode diminuir -12.62% para $0.006398 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006398 e $0.002435 ao longo do ano.
Quanto será SynFutures em 2028?
Nosso novo modelo experimental de previsão de preços de SynFutures sugere que o valor de F em 2028 pode aumentar 47.02%, alcançando $0.010766 no melhor cenário. O preço é esperado para variar entre $0.010766 e $0.004395 durante o ano.
Quanto será SynFutures em 2029?
Com base no nosso modelo de previsão experimental, o valor de SynFutures pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.031764 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.031764 e $0.009656.
Quanto será SynFutures em 2030?
Usando nossa nova simulação experimental para previsões de preços de SynFutures, espera-se que o valor de F em 2030 aumente 224.23%, alcançando $0.023743 no melhor cenário. O preço está previsto para variar entre $0.023743 e $0.008212 ao longo de 2030.
Quanto será SynFutures em 2031?
Nossa simulação experimental indica que o preço de SynFutures poderia aumentar 195.98% em 2031, potencialmente atingindo $0.021675 sob condições ideais. O preço provavelmente oscilará entre $0.021675 e $0.0097092 durante o ano.
Quanto será SynFutures em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SynFutures, F poderia ver um 449.04% aumento em valor, atingindo $0.0402064 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0402064 e $0.01482 ao longo do ano.
Quanto será SynFutures em 2033?
De acordo com nossa previsão experimental de preços de SynFutures, espera-se que o valor de F seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.107095. Ao longo do ano, o preço de F poderia variar entre $0.107095 e $0.034439.
Quanto será SynFutures em 2034?
Os resultados da nossa nova simulação de previsão de preços de SynFutures sugerem que F pode aumentar 746.96% em 2034, atingindo potencialmente $0.062023 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.062023 e $0.027687.
Quanto será SynFutures em 2035?
Com base em nossa previsão experimental para o preço de SynFutures, F poderia aumentar 897.93%, com o valor potencialmente atingindo $0.073079 em 2035. A faixa de preço esperada para o ano está entre $0.073079 e $0.032735.
Quanto será SynFutures em 2036?
Nossa recente simulação de previsão de preços de SynFutures sugere que o valor de F pode aumentar 1964.7% em 2036, possivelmente atingindo $0.151199 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.151199 e $0.054187.
Quanto será SynFutures em 2037?
De acordo com a simulação experimental, o valor de SynFutures poderia aumentar 4830.69% em 2037, com um pico de $0.361079 sob condições favoráveis. O preço é esperado para cair entre $0.361079 e $0.140723 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de SynFutures?
Traders de SynFutures utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SynFutures
Médias móveis são ferramentas populares para a previsão de preço de SynFutures. Uma média móvel simples (SMA) calcula o preço médio de fechamento de F em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de F acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de F.
Como ler gráficos de SynFutures e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SynFutures em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de F dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SynFutures?
A ação de preço de SynFutures é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de F. A capitalização de mercado de SynFutures pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de F, grandes detentores de SynFutures, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SynFutures.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


