Previsão de Preço SynFutures - Projeção F
Previsão de Preço SynFutures até $0.007454 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002497 | $0.007454 |
| 2027 | $0.0024039 | $0.006315 |
| 2028 | $0.004338 | $0.010626 |
| 2029 | $0.00953 | $0.03135 |
| 2030 | $0.0081051 | $0.023434 |
| 2031 | $0.009582 | $0.021392 |
| 2032 | $0.014627 | $0.039682 |
| 2033 | $0.03399 | $0.10570013 |
| 2034 | $0.027326 | $0.061215 |
| 2035 | $0.0323089 | $0.072127 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SynFutures hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.20, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SynFutures para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SynFutures'
'name_with_ticker' => 'SynFutures <small>F</small>'
'name_lang' => 'SynFutures'
'name_lang_with_ticker' => 'SynFutures <small>F</small>'
'name_with_lang' => 'SynFutures'
'name_with_lang_with_ticker' => 'SynFutures <small>F</small>'
'image' => '/uploads/coins/synfutures.png?1732911435'
'price_for_sd' => 0.007227
'ticker' => 'F'
'marketcap' => '$23.87M'
'low24h' => '$0.00718'
'high24h' => '$0.007431'
'volume24h' => '$4.88M'
'current_supply' => '3.3B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007227'
'change_24h_pct' => '0.4589%'
'ath_price' => '$0.1923'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de dez. de 2024'
'ath_pct' => '-96.24%'
'fdv' => '$72.29M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.356375'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007289'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006387'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002497'
'current_year_max_price_prediction' => '$0.007454'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0081051'
'grand_prediction_max_price' => '$0.023434'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0073646611132298
107 => 0.0073921580844546
108 => 0.0074541101646543
109 => 0.0069247364223584
110 => 0.0071624096910527
111 => 0.007302020469437
112 => 0.0066712538936132
113 => 0.0072895522423021
114 => 0.0069155212032553
115 => 0.0067885694508451
116 => 0.0069594932608438
117 => 0.0068928840858585
118 => 0.006835617428628
119 => 0.0068036616499274
120 => 0.006929169231818
121 => 0.0069233141531088
122 => 0.0067179593891639
123 => 0.0064500824709288
124 => 0.0065399907574486
125 => 0.0065073262340613
126 => 0.0063889457874983
127 => 0.0064687199151721
128 => 0.0061174350296586
129 => 0.005513067642332
130 => 0.0059123312506737
131 => 0.0058969600360678
201 => 0.0058892091726344
202 => 0.0061892447394675
203 => 0.0061604032427148
204 => 0.0061080556436918
205 => 0.0063879843827907
206 => 0.0062858066274468
207 => 0.00660069439331
208 => 0.0068080998415713
209 => 0.0067554951110289
210 => 0.0069505609375962
211 => 0.0065420620627808
212 => 0.0066777490028643
213 => 0.0067057138931615
214 => 0.0063845301056025
215 => 0.0061651220682723
216 => 0.0061504900536172
217 => 0.0057700667531767
218 => 0.0059732858096024
219 => 0.0061521101694811
220 => 0.0060664671784301
221 => 0.0060393551659749
222 => 0.0061778645577303
223 => 0.0061886279237224
224 => 0.005943222038452
225 => 0.0059942496929934
226 => 0.0062070434950727
227 => 0.0059888878351536
228 => 0.0055650470234555
301 => 0.0054599286420967
302 => 0.0054459039123073
303 => 0.0051608145250182
304 => 0.0054669531549822
305 => 0.0053333154389977
306 => 0.005755475382567
307 => 0.0055143398868894
308 => 0.0055039450176222
309 => 0.0054882316481289
310 => 0.005242843435595
311 => 0.0052965678589054
312 => 0.0054751560244502
313 => 0.0055388782938562
314 => 0.005532231539096
315 => 0.0054742808450106
316 => 0.0055008103760073
317 => 0.0054153495131655
318 => 0.005385171503782
319 => 0.0052899214050522
320 => 0.0051499300734309
321 => 0.0051693967267095
322 => 0.0048920372680431
323 => 0.0047409171143811
324 => 0.004699089047579
325 => 0.0046431548085361
326 => 0.0047054069687142
327 => 0.0048912515435451
328 => 0.0046670835571731
329 => 0.0042827632680942
330 => 0.0043058615723177
331 => 0.00435775660396
401 => 0.0042610505558146
402 => 0.0041695263971685
403 => 0.0042490992275216
404 => 0.004086257654634
405 => 0.0043774352300586
406 => 0.0043695596926591
407 => 0.0044780926864769
408 => 0.0045459605948324
409 => 0.0043895470385692
410 => 0.0043502094521563
411 => 0.0043726179291707
412 => 0.0040022557196213
413 => 0.0044478261925168
414 => 0.0044516795044691
415 => 0.0044186851081198
416 => 0.0046559376294917
417 => 0.0051566144505035
418 => 0.0049682396907604
419 => 0.0048952952901306
420 => 0.0047566279312114
421 => 0.0049413939537182
422 => 0.0049272068059886
423 => 0.0048630471436395
424 => 0.0048242431796604
425 => 0.0048957406730864
426 => 0.0048153838489972
427 => 0.004800949555333
428 => 0.0047134934403939
429 => 0.0046822755863604
430 => 0.0046591631300525
501 => 0.0046337185866406
502 => 0.0046898429090221
503 => 0.0045626578107361
504 => 0.0044092850503122
505 => 0.0043965337647992
506 => 0.0044317411852051
507 => 0.0044161645225597
508 => 0.0043964591897313
509 => 0.0043588363429337
510 => 0.0043476744479739
511 => 0.0043839451916119
512 => 0.0043429976367603
513 => 0.0044034179844726
514 => 0.0043869869931052
515 => 0.0042952048109957
516 => 0.0041808102299713
517 => 0.0041797918782494
518 => 0.0041551457534124
519 => 0.0041237552078629
520 => 0.0041150230762094
521 => 0.004242397825696
522 => 0.0045060597451277
523 => 0.0044542966014483
524 => 0.004491700777657
525 => 0.0046756923043302
526 => 0.0047341776778414
527 => 0.0046926661450252
528 => 0.0046358425985865
529 => 0.0046383425462454
530 => 0.0048325258060837
531 => 0.0048446367778098
601 => 0.0048752372962141
602 => 0.004914567610069
603 => 0.0046993642675438
604 => 0.0046282064881654
605 => 0.0045944879846126
606 => 0.0044906480443732
607 => 0.0046026305173577
608 => 0.0045373831259172
609 => 0.0045461872281908
610 => 0.0045404535450353
611 => 0.0045435845237482
612 => 0.0043773538399921
613 => 0.0044379195643253
614 => 0.0043372173007059
615 => 0.0042023882740792
616 => 0.0042019362799047
617 => 0.0042349354931595
618 => 0.0042153062698562
619 => 0.0041624845346606
620 => 0.0041699876128336
621 => 0.0041042527529284
622 => 0.0041779690149941
623 => 0.0041800829336207
624 => 0.0041516981573735
625 => 0.0042652682299696
626 => 0.0043117979813766
627 => 0.0042931145135898
628 => 0.0043104870994703
629 => 0.0044564475937647
630 => 0.0044802455230376
701 => 0.0044908149912176
702 => 0.0044766533040426
703 => 0.0043131549893626
704 => 0.0043204068348671
705 => 0.0042671976042297
706 => 0.0042222414113916
707 => 0.0042240394233409
708 => 0.0042471527503557
709 => 0.0043480900050079
710 => 0.0045605065068472
711 => 0.0045685675578176
712 => 0.0045783377867511
713 => 0.0045385973555548
714 => 0.0045266112612413
715 => 0.0045424240135143
716 => 0.0046221964832761
717 => 0.0048273929335176
718 => 0.0047548628033922
719 => 0.0046958946786014
720 => 0.0047476256217352
721 => 0.0047396620485203
722 => 0.0046724414763296
723 => 0.0046705548187533
724 => 0.0045415370490025
725 => 0.004493842117118
726 => 0.0044539846621317
727 => 0.0044104613617917
728 => 0.004384659290436
729 => 0.0044243029988701
730 => 0.0044333699840396
731 => 0.0043466883226949
801 => 0.0043348739325534
802 => 0.004405660048361
803 => 0.0043745097179665
804 => 0.0044065486052683
805 => 0.0044139819019468
806 => 0.0044127849699782
807 => 0.0043802604474537
808 => 0.0044009906082156
809 => 0.0043519575980552
810 => 0.0042986415640258
811 => 0.0042646292560214
812 => 0.0042349490062095
813 => 0.0042514173338313
814 => 0.0041927107528572
815 => 0.0041739293360735
816 => 0.0043939676961928
817 => 0.004556512398624
818 => 0.0045541489342759
819 => 0.0045397619528904
820 => 0.0045183858168442
821 => 0.0046206326857806
822 => 0.0045850119211338
823 => 0.0046109290036288
824 => 0.0046175259888603
825 => 0.0046374930762712
826 => 0.0046446295937915
827 => 0.0046230580812152
828 => 0.0045506614502707
829 => 0.0043702559292222
830 => 0.0042862766721787
831 => 0.0042585621185692
901 => 0.0042595694899555
902 => 0.0042317816900181
903 => 0.0042399664424615
904 => 0.0042289353671358
905 => 0.0042080451791727
906 => 0.0042501274235916
907 => 0.0042549770102377
908 => 0.0042451545115449
909 => 0.0042474680655667
910 => 0.0041661419716347
911 => 0.0041723250179254
912 => 0.0041378970304755
913 => 0.0041314421978642
914 => 0.0040444112435786
915 => 0.0038902232927231
916 => 0.0039756583848836
917 => 0.0038724648075457
918 => 0.0038333838361699
919 => 0.0040183870763246
920 => 0.0039998178822042
921 => 0.0039680354937047
922 => 0.0039210227170839
923 => 0.0039035852209243
924 => 0.0037976405142992
925 => 0.0037913807358387
926 => 0.0038438897931899
927 => 0.0038196586699487
928 => 0.003785628995874
929 => 0.0036623769659084
930 => 0.0035238008768824
1001 => 0.0035279836179518
1002 => 0.0035720620935712
1003 => 0.0037002262062269
1004 => 0.0036501502701507
1005 => 0.0036138196039722
1006 => 0.0036070159622928
1007 => 0.0036921777822993
1008 => 0.0038126995995614
1009 => 0.0038692457396971
1010 => 0.0038132102321544
1011 => 0.0037488396582554
1012 => 0.0037527575968241
1013 => 0.0037788218868543
1014 => 0.0037815608752073
1015 => 0.0037396622490009
1016 => 0.0037514564668554
1017 => 0.0037335399714486
1018 => 0.0036235864722081
1019 => 0.0036215977620731
1020 => 0.0035946134001198
1021 => 0.0035937963243641
1022 => 0.003547889193117
1023 => 0.0035414664681145
1024 => 0.0034503150726596
1025 => 0.0035103111971799
1026 => 0.0034700689467896
1027 => 0.0034094143832643
1028 => 0.0033989575136504
1029 => 0.0033986431675228
1030 => 0.0034609218421511
1031 => 0.0035095834346064
1101 => 0.0034707689779644
1102 => 0.0034619316785736
1103 => 0.0035562909158065
1104 => 0.003544282842765
1105 => 0.0035338839289549
1106 => 0.0038019081927204
1107 => 0.0035897460737559
1108 => 0.003497231280097
1109 => 0.0033827266548613
1110 => 0.0034200099382205
1111 => 0.0034278660738297
1112 => 0.0031525030911479
1113 => 0.0030407883633681
1114 => 0.0030024520786748
1115 => 0.0029803890048383
1116 => 0.0029904434246362
1117 => 0.0028898870668038
1118 => 0.0029574626023159
1119 => 0.0028703892962503
1120 => 0.0028557911731274
1121 => 0.0030114890306853
1122 => 0.0030331534779908
1123 => 0.0029407262151694
1124 => 0.0030000794805154
1125 => 0.0029785571614288
1126 => 0.0028718819181673
1127 => 0.0028678077085247
1128 => 0.0028142818212721
1129 => 0.0027305241723761
1130 => 0.0026922446793128
1201 => 0.0026723083869676
1202 => 0.0026805344897398
1203 => 0.0026763751204553
1204 => 0.002649232422368
1205 => 0.0026779309081376
1206 => 0.0026046181360294
1207 => 0.0025754243994547
1208 => 0.0025622382659335
1209 => 0.0024971689609618
1210 => 0.0026007231616231
1211 => 0.0026211246436948
1212 => 0.0026415663229886
1213 => 0.0028194971851134
1214 => 0.002810608262069
1215 => 0.0028909597973089
1216 => 0.0028878374844065
1217 => 0.0028649199249475
1218 => 0.0027682345113456
1219 => 0.0028067715939555
1220 => 0.0026881604436744
1221 => 0.0027770319822393
1222 => 0.0027364747234024
1223 => 0.0027633195322296
1224 => 0.0027150501454596
1225 => 0.0027417644170922
1226 => 0.0026259625919391
1227 => 0.0025178284769868
1228 => 0.0025613448014752
1229 => 0.0026086520228894
1230 => 0.0027112261325714
1231 => 0.0026501338390629
]
'min_raw' => 0.0024971689609618
'max_raw' => 0.0074541101646543
'avg_raw' => 0.004975639562808
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002497'
'max' => '$0.007454'
'avg' => '$0.004975'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047305310390382
'max_diff' => 0.00022641016465429
'year' => 2026
]
1 => [
'items' => [
101 => 0.0026721049379639
102 => 0.0025985054345629
103 => 0.0024466486363879
104 => 0.002447508129374
105 => 0.002424148269355
106 => 0.0024039619397031
107 => 0.0026571510238763
108 => 0.0026256629589322
109 => 0.0025754908484999
110 => 0.002642648212074
111 => 0.0026604056849336
112 => 0.0026609112152219
113 => 0.002709907494103
114 => 0.002736056816925
115 => 0.00274066574841
116 => 0.0028177624518642
117 => 0.0028436042499319
118 => 0.0029500429589047
119 => 0.0027338382295787
120 => 0.0027293856354557
121 => 0.002643593253902
122 => 0.0025891823691968
123 => 0.0026473188137283
124 => 0.0026988197671672
125 => 0.0026451935320837
126 => 0.002652195986274
127 => 0.0025802071470988
128 => 0.0026059397697142
129 => 0.0026281041708692
130 => 0.0026158662913147
131 => 0.0025975455933016
201 => 0.0026945972762943
202 => 0.0026891212399913
203 => 0.0027794979984027
204 => 0.0028499531444884
205 => 0.0029762213616378
206 => 0.0028444538945314
207 => 0.0028396517643018
208 => 0.002886593357582
209 => 0.0028435970634185
210 => 0.0028707692371482
211 => 0.0029718435043698
212 => 0.0029739790443654
213 => 0.0029382059979505
214 => 0.0029360292048251
215 => 0.0029428998097033
216 => 0.0029831411570746
217 => 0.0029690795938113
218 => 0.0029853519908148
219 => 0.0030057008724393
220 => 0.0030898724745856
221 => 0.0031101659629015
222 => 0.0030608633072613
223 => 0.0030653147850472
224 => 0.0030468742384496
225 => 0.0030290609014957
226 => 0.0030691026815391
227 => 0.0031422798215916
228 => 0.0031418245904012
301 => 0.0031588002645331
302 => 0.0031693759688831
303 => 0.0031239773039239
304 => 0.0030944244423907
305 => 0.00310575689
306 => 0.0031238777205158
307 => 0.0030998805488901
308 => 0.0029517588890451
309 => 0.0029966895385938
310 => 0.0029892108815124
311 => 0.0029785603643927
312 => 0.0030237384799524
313 => 0.0030193809404939
314 => 0.0028888557160125
315 => 0.0028972115173957
316 => 0.0028893638599699
317 => 0.0029147212465925
318 => 0.0028422276813251
319 => 0.0028645262137497
320 => 0.0028785116442507
321 => 0.0028867491702569
322 => 0.0029165087627158
323 => 0.0029130168180247
324 => 0.0029162916985309
325 => 0.0029604173179063
326 => 0.0031835895586232
327 => 0.0031957363312836
328 => 0.0031359211802303
329 => 0.0031598161532744
330 => 0.0031139430302859
331 => 0.0031447379650713
401 => 0.0031658070773449
402 => 0.0030705998103376
403 => 0.0030649622538755
404 => 0.0030188997961904
405 => 0.0030436511518394
406 => 0.0030042699653164
407 => 0.0030139327309937
408 => 0.0029869147957751
409 => 0.0030355416999513
410 => 0.0030899141346773
411 => 0.0031036507589216
412 => 0.0030675156145234
413 => 0.0030413513885571
414 => 0.0029954156267921
415 => 0.0030718078223525
416 => 0.0030941472283444
417 => 0.003071690482963
418 => 0.0030664867643686
419 => 0.003056625727035
420 => 0.003068578830055
421 => 0.0030940255631417
422 => 0.0030820253537454
423 => 0.0030899517034681
424 => 0.0030597446319414
425 => 0.0031239923327711
426 => 0.0032260331437398
427 => 0.0032263612216325
428 => 0.0032143609475506
429 => 0.0032094506939458
430 => 0.0032217637033913
501 => 0.0032284430059094
502 => 0.0032682610206366
503 => 0.0033109873368585
504 => 0.003510372411714
505 => 0.0034543858805469
506 => 0.0036312921804298
507 => 0.0037712020952292
508 => 0.0038131549611585
509 => 0.0037745602985384
510 => 0.003642530042558
511 => 0.003636052008316
512 => 0.003833360952487
513 => 0.0037776121384366
514 => 0.0037709809943965
515 => 0.0037004368253051
516 => 0.0037421371663034
517 => 0.00373301669002
518 => 0.0037186195720177
519 => 0.0037981809177716
520 => 0.0039471126545325
521 => 0.0039239002466854
522 => 0.0039065732610201
523 => 0.0038306514536444
524 => 0.0038763733394341
525 => 0.0038600926516494
526 => 0.0039300448183522
527 => 0.0038886067044277
528 => 0.0037771897863397
529 => 0.0037949332977802
530 => 0.0037922514017209
531 => 0.0038474446325789
601 => 0.0038308769946555
602 => 0.0037890163045153
603 => 0.0039466036220472
604 => 0.0039363707781934
605 => 0.0039508786112244
606 => 0.0039572654079942
607 => 0.0040531860311759
608 => 0.0040924816413759
609 => 0.0041014024328577
610 => 0.0041387302233161
611 => 0.0041004736834263
612 => 0.0042535271194363
613 => 0.0043552987234673
614 => 0.0044735116786683
615 => 0.0046462525788637
616 => 0.0047112047552799
617 => 0.0046994717259747
618 => 0.0048304419050383
619 => 0.005065792405512
620 => 0.0047470427910488
621 => 0.0050826869090631
622 => 0.0049764258564974
623 => 0.004724482812419
624 => 0.0047082606505937
625 => 0.0048788794051625
626 => 0.0052572953813495
627 => 0.0051625064712732
628 => 0.0052574504220492
629 => 0.0051466932602241
630 => 0.0051411932336048
701 => 0.005252071193914
702 => 0.0055111435918194
703 => 0.0053880680067582
704 => 0.0052116089762013
705 => 0.0053419035783579
706 => 0.0052290303357737
707 => 0.0049746953290001
708 => 0.00516243398798
709 => 0.0050368984932093
710 => 0.0050735364244174
711 => 0.0053373933624298
712 => 0.0053056453975693
713 => 0.0053467302038812
714 => 0.0052742165961173
715 => 0.0052064774521194
716 => 0.0050800373094725
717 => 0.0050426046166584
718 => 0.005052949666265
719 => 0.0050425994901656
720 => 0.0049718573923995
721 => 0.0049565806431223
722 => 0.0049311187250373
723 => 0.0049390104381337
724 => 0.004891134582987
725 => 0.0049814862133052
726 => 0.0049982562720681
727 => 0.0050640066539131
728 => 0.0050708330766748
729 => 0.0052539469542148
730 => 0.0051530909075695
731 => 0.0052207538511513
801 => 0.005214701440609
802 => 0.0047299431821423
803 => 0.0047967385931007
804 => 0.0049006512909973
805 => 0.0048538387614452
806 => 0.0047876567971035
807 => 0.0047342113124451
808 => 0.0046532359381063
809 => 0.0047672072224939
810 => 0.0049170673419686
811 => 0.0050746337766115
812 => 0.0052639395236731
813 => 0.0052216886846908
814 => 0.0050710948373485
815 => 0.0050778503673314
816 => 0.0051196103954826
817 => 0.0050655273647281
818 => 0.0050495772231325
819 => 0.0051174190909585
820 => 0.005117886280617
821 => 0.0050556572175813
822 => 0.0049865010018155
823 => 0.0049862112347464
824 => 0.0049739055541206
825 => 0.0051488824134702
826 => 0.0052451019939565
827 => 0.0052561334137937
828 => 0.0052443594915077
829 => 0.0052488908069054
830 => 0.0051929027530741
831 => 0.0053208748413907
901 => 0.0054383146847578
902 => 0.0054068382979991
903 => 0.0053596507196158
904 => 0.0053220635405718
905 => 0.0053979839531541
906 => 0.0053946033366916
907 => 0.0054372889501783
908 => 0.0054353524841865
909 => 0.0054209989178581
910 => 0.0054068388106102
911 => 0.005462982035262
912 => 0.0054468136881949
913 => 0.005430620227219
914 => 0.0053981417621369
915 => 0.0054025561249517
916 => 0.0053553766941691
917 => 0.0053335493307052
918 => 0.005005318155376
919 => 0.004917604060065
920 => 0.0049452007000349
921 => 0.0049542862304594
922 => 0.0049161129437714
923 => 0.0049708436309693
924 => 0.0049623139113436
925 => 0.0049954980606879
926 => 0.0049747660448659
927 => 0.0049756168940268
928 => 0.0050365853320276
929 => 0.0050542847289575
930 => 0.0050452826728273
1001 => 0.0050515874043685
1002 => 0.0051968772816738
1003 => 0.0051762217072297
1004 => 0.0051652488449872
1005 => 0.0051682884028183
1006 => 0.0052054130815199
1007 => 0.005215805964624
1008 => 0.0051717705886168
1009 => 0.0051925379265073
1010 => 0.0052809626154773
1011 => 0.0053119062522128
1012 => 0.0054106634868845
1013 => 0.0053687096583261
1014 => 0.0054457177263641
1015 => 0.0056824142735281
1016 => 0.005871503853558
1017 => 0.0056976092613052
1018 => 0.0060448481946172
1019 => 0.0063152235126672
1020 => 0.0063048460576267
1021 => 0.0062576998670309
1022 => 0.0059498847557308
1023 => 0.0056666287010476
1024 => 0.0059035844184774
1025 => 0.0059041884673316
1026 => 0.0058838337610587
1027 => 0.0057574124285464
1028 => 0.0058794345727214
1029 => 0.0058891202474067
1030 => 0.0058836988452117
1031 => 0.005786771905985
1101 => 0.0056387823848785
1102 => 0.0056676991830658
1103 => 0.0057150654883834
1104 => 0.0056253911907708
1105 => 0.0055967348191263
1106 => 0.0056500124661112
1107 => 0.0058216841455353
1108 => 0.0057892306089665
1109 => 0.0057883831159717
1110 => 0.0059272331078543
1111 => 0.00582784647937
1112 => 0.0056680639164954
1113 => 0.0056277167120965
1114 => 0.0054845113176139
1115 => 0.0055834237936631
1116 => 0.0055869834775856
1117 => 0.0055328101253145
1118 => 0.0056724597854658
1119 => 0.0056711728892627
1120 => 0.0058037494574675
1121 => 0.0060571860623901
1122 => 0.0059822323874566
1123 => 0.0058950694184455
1124 => 0.005904546449944
1125 => 0.0060084860941754
1126 => 0.0059456418125618
1127 => 0.005968241054396
1128 => 0.0060084518875163
1129 => 0.0060327120815165
1130 => 0.0059010557813706
1201 => 0.0058703603999577
1202 => 0.005807568422202
1203 => 0.0057911871672733
1204 => 0.0058423299229577
1205 => 0.0058288556137351
1206 => 0.0055866842999357
1207 => 0.0055613760502152
1208 => 0.0055621522181023
1209 => 0.0054985134208384
1210 => 0.0054014489799496
1211 => 0.0056565285351888
1212 => 0.005636042077067
1213 => 0.0056134266128265
1214 => 0.0056161968781539
1215 => 0.0057269182676349
1216 => 0.0056626942701717
1217 => 0.0058334442935339
1218 => 0.0057983432219462
1219 => 0.0057623419403207
1220 => 0.0057573654665742
1221 => 0.0057435080446334
1222 => 0.0056959857886788
1223 => 0.0056385998089687
1224 => 0.0056007086144757
1225 => 0.0051663576445166
1226 => 0.0052469706580377
1227 => 0.0053397085819863
1228 => 0.0053717213417094
1229 => 0.0053169613009874
1230 => 0.0056981480488528
1231 => 0.0057677945408948
]
'min_raw' => 0.0024039619397031
'max_raw' => 0.0063152235126672
'avg_raw' => 0.0043595927261851
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0024039'
'max' => '$0.006315'
'avg' => '$0.004359'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.3207021258693E-5
'max_diff' => -0.0011388866519871
'year' => 2027
]
2 => [
'items' => [
101 => 0.0055568307735716
102 => 0.0055173680662992
103 => 0.0057007352173718
104 => 0.0055901424095525
105 => 0.0056399423441418
106 => 0.0055323021246675
107 => 0.0057510187404492
108 => 0.0057493524862875
109 => 0.0056642667828096
110 => 0.0057361806367474
111 => 0.0057236838349127
112 => 0.005627622285243
113 => 0.0057540640629156
114 => 0.0057541267764598
115 => 0.0056722336367851
116 => 0.0055766003783584
117 => 0.0055595034105085
118 => 0.005546623141888
119 => 0.005636774587636
120 => 0.0057176040919974
121 => 0.0058680077602805
122 => 0.0059058228159899
123 => 0.0060534174959144
124 => 0.0059655320502739
125 => 0.0060044905300193
126 => 0.0060467854707964
127 => 0.0060670632207498
128 => 0.0060340217153647
129 => 0.0062632970056815
130 => 0.0062826548649976
131 => 0.0062891453877814
201 => 0.0062118350498895
202 => 0.0062805047246474
203 => 0.0062483764579288
204 => 0.0063319652824411
205 => 0.0063450730774403
206 => 0.0063339712413993
207 => 0.0063381318624246
208 => 0.006142485849072
209 => 0.0061323405711647
210 => 0.005994008987023
211 => 0.0060503801300562
212 => 0.0059449969800949
213 => 0.0059784150625143
214 => 0.0059931454348257
215 => 0.0059854511242715
216 => 0.0060535672699047
217 => 0.0059956546309073
218 => 0.0058428136548737
219 => 0.0056899310374184
220 => 0.0056880117206917
221 => 0.0056477604261181
222 => 0.0056186661125337
223 => 0.0056242707095063
224 => 0.0056440220402567
225 => 0.0056175181292845
226 => 0.0056231740824728
227 => 0.0057171005908178
228 => 0.0057359368822132
229 => 0.0056719238042376
301 => 0.0054149020591222
302 => 0.0053518282781807
303 => 0.005397164461114
304 => 0.005375496685696
305 => 0.0043384453656714
306 => 0.0045820851905115
307 => 0.0044373226798182
308 => 0.0045040359049486
309 => 0.0043562708676011
310 => 0.0044267920884525
311 => 0.0044137693939839
312 => 0.0048055350225002
313 => 0.0047994181410669
314 => 0.0048023459685109
315 => 0.0046625931361974
316 => 0.0048852231927757
317 => 0.0049948987641641
318 => 0.0049746007348209
319 => 0.0049797093115027
320 => 0.0048919270385851
321 => 0.0048031958927953
322 => 0.004704779396489
323 => 0.0048876250819795
324 => 0.0048672957630329
325 => 0.0049139239064383
326 => 0.0050325124035585
327 => 0.0050499750102333
328 => 0.0050734449306925
329 => 0.0050650326349106
330 => 0.0052654476493603
331 => 0.0052411760687296
401 => 0.0052996635946393
402 => 0.0051793503163838
403 => 0.0050432044217965
404 => 0.005069081305413
405 => 0.0050665891534319
406 => 0.0050348611983547
407 => 0.0050062186191637
408 => 0.0049585367948073
409 => 0.0051094091426531
410 => 0.0051032840008559
411 => 0.0052024429268553
412 => 0.0051849156235065
413 => 0.0050678640020844
414 => 0.0050720445236426
415 => 0.0051001605402118
416 => 0.005197470394581
417 => 0.0052263585847179
418 => 0.0052129764240512
419 => 0.0052446510057403
420 => 0.0052696853036306
421 => 0.0052477949281205
422 => 0.0055577164826277
423 => 0.0054290154455409
424 => 0.0054917434355209
425 => 0.0055067036915164
426 => 0.0054683833103643
427 => 0.0054766936288862
428 => 0.0054892814970207
429 => 0.0055657125673758
430 => 0.005766289811496
501 => 0.0058551241075413
502 => 0.0061223864702008
503 => 0.0058477476558879
504 => 0.0058314517252149
505 => 0.00587959374728
506 => 0.0060365050467553
507 => 0.0061636669170512
508 => 0.0062058538455726
509 => 0.006211429544607
510 => 0.0062905750270471
511 => 0.0063359397416059
512 => 0.006280964683746
513 => 0.0062343790783383
514 => 0.0060675152221858
515 => 0.0060868301678906
516 => 0.006219890990087
517 => 0.0064078472386826
518 => 0.0065691332534923
519 => 0.0065126565124911
520 => 0.006943534179965
521 => 0.0069862539407176
522 => 0.0069803514510768
523 => 0.007077673423624
524 => 0.0068845091273929
525 => 0.0068019276483721
526 => 0.0062444514149965
527 => 0.006401079497415
528 => 0.006628747613655
529 => 0.006598614884759
530 => 0.0064332762131593
531 => 0.0065690078292836
601 => 0.0065241307122729
602 => 0.0064887342681332
603 => 0.0066508922406754
604 => 0.0064725928887829
605 => 0.006626968941228
606 => 0.0064289800571513
607 => 0.0065129144934867
608 => 0.0064652692479709
609 => 0.0064961015610013
610 => 0.0063158564890331
611 => 0.0064131123546654
612 => 0.0063118103252752
613 => 0.0063117622949233
614 => 0.0063095260470099
615 => 0.0064287074353455
616 => 0.0064325939361403
617 => 0.0063445187100873
618 => 0.0063318256940194
619 => 0.0063787584271013
620 => 0.0063238124883647
621 => 0.0063495213472739
622 => 0.006324591183511
623 => 0.0063189788785384
624 => 0.0062742590776615
625 => 0.0062549925578473
626 => 0.0062625474567035
627 => 0.0062367586920899
628 => 0.0062212200285898
629 => 0.0063064350157372
630 => 0.0062609080856671
701 => 0.0062994573607559
702 => 0.0062555255964859
703 => 0.0061032389613674
704 => 0.0060156573071088
705 => 0.0057280019703486
706 => 0.0058095806670184
707 => 0.0058636674273098
708 => 0.0058457917533562
709 => 0.0058841956179761
710 => 0.0058865533033605
711 => 0.0058740678154915
712 => 0.0058596112200293
713 => 0.0058525745488581
714 => 0.0059050201307314
715 => 0.0059354665562459
716 => 0.0058690957572926
717 => 0.005853546007724
718 => 0.005920650549898
719 => 0.0059615842818592
720 => 0.006263815959983
721 => 0.0062414256610722
722 => 0.0062976209174642
723 => 0.006291294193981
724 => 0.0063501957752862
725 => 0.0064464749670548
726 => 0.0062507124501039
727 => 0.0062846900540881
728 => 0.0062763595302486
729 => 0.0063673100051471
730 => 0.0063675939426021
731 => 0.0063130645895873
801 => 0.0063426258364944
802 => 0.0063261255594413
803 => 0.0063559437902224
804 => 0.0062411266249795
805 => 0.0063809615384983
806 => 0.0064602389237007
807 => 0.0064613396902711
808 => 0.0064989165416728
809 => 0.0065370967990014
810 => 0.006610380478144
811 => 0.0065350529569649
812 => 0.00639954607935
813 => 0.0064093292382293
814 => 0.0063298816054637
815 => 0.0063312171345239
816 => 0.0063240879757334
817 => 0.0063454831179217
818 => 0.0062458216555366
819 => 0.0062692120015579
820 => 0.0062364653801544
821 => 0.0062846188693284
822 => 0.0062328136750341
823 => 0.0062763555130178
824 => 0.0062951467268567
825 => 0.0063644867104684
826 => 0.0062225721030761
827 => 0.0059331986118287
828 => 0.0059940284280034
829 => 0.0059040563518021
830 => 0.0059123836100024
831 => 0.0059292059968403
901 => 0.0058746791371563
902 => 0.0058850811436451
903 => 0.0058847095107756
904 => 0.0058815069794779
905 => 0.0058673224373468
906 => 0.0058467520449307
907 => 0.0059286981570837
908 => 0.0059426223983633
909 => 0.0059735742618793
910 => 0.0060656660128534
911 => 0.006056463875258
912 => 0.0060714729434691
913 => 0.0060387082318367
914 => 0.0059139034710035
915 => 0.0059206809699706
916 => 0.0058361654492493
917 => 0.0059714130099977
918 => 0.0059393846024319
919 => 0.0059187356797171
920 => 0.0059131014298435
921 => 0.0060054214584556
922 => 0.0060330450579555
923 => 0.006015831884498
924 => 0.0059805271635481
925 => 0.0060483226646757
926 => 0.0060664618807149
927 => 0.0060705225822375
928 => 0.0061906432117376
929 => 0.0060772359910528
930 => 0.0061045342362425
1001 => 0.0063175073525845
1002 => 0.0061243701243434
1003 => 0.0062266792216169
1004 => 0.0062216717236962
1005 => 0.0062740095959102
1006 => 0.0062173784905466
1007 => 0.0062180805009694
1008 => 0.0062645529858208
1009 => 0.0061992907622037
1010 => 0.0061831309178514
1011 => 0.0061608062086177
1012 => 0.0062095513944964
1013 => 0.0062387719288755
1014 => 0.0064742679758537
1015 => 0.0066264091621261
1016 => 0.0066198043119862
1017 => 0.0066801602785037
1018 => 0.0066529693627903
1019 => 0.0065651627233505
1020 => 0.0067150379499953
1021 => 0.006667611157239
1022 => 0.0066715209644103
1023 => 0.0066713754411921
1024 => 0.0067029101122528
1025 => 0.0066805649076962
1026 => 0.0066365202158268
1027 => 0.0066657591377694
1028 => 0.006752588282833
1029 => 0.0070221086133541
1030 => 0.0071729357609832
1031 => 0.0070130286296827
1101 => 0.007123330427612
1102 => 0.0070571886534036
1103 => 0.0070451687254826
1104 => 0.007114446405821
1105 => 0.007183845347568
1106 => 0.0071794249349986
1107 => 0.0071290448669653
1108 => 0.0071005864448803
1109 => 0.0073160831511792
1110 => 0.0074748574534897
1111 => 0.0074640301105085
1112 => 0.0075118184811867
1113 => 0.0076521266155366
1114 => 0.0076649546329428
1115 => 0.0076633385975982
1116 => 0.0076315430179918
1117 => 0.0077696945975729
1118 => 0.0078849430758052
1119 => 0.0076241832599756
1120 => 0.0077234771842469
1121 => 0.0077680534259027
1122 => 0.0078335045738283
1123 => 0.007943931631265
1124 => 0.0080638847049716
1125 => 0.0080808473848123
1126 => 0.0080688115517264
1127 => 0.0079896992751052
1128 => 0.0081209533596928
1129 => 0.0081978389241571
1130 => 0.0082436225183008
1201 => 0.0083597220953855
1202 => 0.0077683287135956
1203 => 0.0073497110838064
1204 => 0.007284337896003
1205 => 0.0074172768440749
1206 => 0.0074523317845132
1207 => 0.0074382011819777
1208 => 0.0069670089806002
1209 => 0.0072818571665782
1210 => 0.0076206073415032
1211 => 0.0076336201153255
1212 => 0.0078032055358251
1213 => 0.007858429500281
1214 => 0.0079949679918523
1215 => 0.0079864274720291
1216 => 0.0080196724219248
1217 => 0.0080120299836661
1218 => 0.0082649387877305
1219 => 0.0085439347559343
1220 => 0.0085342740127083
1221 => 0.0084941650413485
1222 => 0.0085537337034136
1223 => 0.008841687441625
1224 => 0.0088151772757751
1225 => 0.0088409296437677
1226 => 0.0091804433294804
1227 => 0.0096218594161656
1228 => 0.0094167773264498
1229 => 0.0098617464503514
1230 => 0.010141830927048
1231 => 0.010626208068219
]
'min_raw' => 0.0043384453656714
'max_raw' => 0.010626208068219
'avg_raw' => 0.007482326716945
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004338'
'max' => '$0.010626'
'avg' => '$0.007482'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019344834259683
'max_diff' => 0.0043109845555514
'year' => 2028
]
3 => [
'items' => [
101 => 0.010565561664536
102 => 0.01075412613107
103 => 0.010456991944659
104 => 0.0097747117919301
105 => 0.0096667383460973
106 => 0.0098829039189777
107 => 0.010414325886776
108 => 0.0098661675500415
109 => 0.0099770592676399
110 => 0.0099451224455115
111 => 0.009943420667983
112 => 0.010008370594615
113 => 0.0099141573384748
114 => 0.0095303155843177
115 => 0.0097062279982543
116 => 0.0096382997672254
117 => 0.009713671203937
118 => 0.010120419762325
119 => 0.0099405865289868
120 => 0.0097511468261312
121 => 0.0099887462535476
122 => 0.01029129197267
123 => 0.010272359205294
124 => 0.010235621723303
125 => 0.010442708985778
126 => 0.010784756472514
127 => 0.01087721053372
128 => 0.010945458231562
129 => 0.010954868436041
130 => 0.011051799390575
131 => 0.010530577218296
201 => 0.011357770191638
202 => 0.011500603567389
203 => 0.011473756812585
204 => 0.011632510098385
205 => 0.011585800854521
206 => 0.011518126488617
207 => 0.011769784214402
208 => 0.01148127893952
209 => 0.011071782023629
210 => 0.010847123916641
211 => 0.011142971834576
212 => 0.011323635834389
213 => 0.011443043245877
214 => 0.011479175856446
215 => 0.010571038211801
216 => 0.010081602388961
217 => 0.010395325140008
218 => 0.010778088548274
219 => 0.010528450948237
220 => 0.010538236269532
221 => 0.010182318655487
222 => 0.010809579359588
223 => 0.010718192751093
224 => 0.011192306637623
225 => 0.011079155553601
226 => 0.011465777023071
227 => 0.011363966633063
228 => 0.011786575869844
301 => 0.011955166136084
302 => 0.012238255432081
303 => 0.012446497070597
304 => 0.012568780543762
305 => 0.012561439102706
306 => 0.013045987144768
307 => 0.012760266093184
308 => 0.012401333113112
309 => 0.012394841147921
310 => 0.01258073762442
311 => 0.012970325640954
312 => 0.013071340145366
313 => 0.01312779347268
314 => 0.013041333236744
315 => 0.012731203513061
316 => 0.012597291070768
317 => 0.012711388351419
318 => 0.012571857181674
319 => 0.012812727126185
320 => 0.013143493007042
321 => 0.013075191160635
322 => 0.013303513992788
323 => 0.013539804103804
324 => 0.01387770957501
325 => 0.013966050577787
326 => 0.014112074896069
327 => 0.014262381886072
328 => 0.014310656440373
329 => 0.01440282754325
330 => 0.014402341756041
331 => 0.01468010557839
401 => 0.01498648767607
402 => 0.015102139825183
403 => 0.015368075564971
404 => 0.014912669930084
405 => 0.015258100335468
406 => 0.015569687207809
407 => 0.015198200493386
408 => 0.015710208383915
409 => 0.015730088490069
410 => 0.016030254490252
411 => 0.015725978744219
412 => 0.015545300777508
413 => 0.016066911297489
414 => 0.01631930219753
415 => 0.016243280004413
416 => 0.015664747361108
417 => 0.015328016548272
418 => 0.014446727060558
419 => 0.015490652527628
420 => 0.015999118170914
421 => 0.015663430557928
422 => 0.015832731864136
423 => 0.016756384894674
424 => 0.017108052166598
425 => 0.017034907832378
426 => 0.017047268020803
427 => 0.01723702129752
428 => 0.018078491825525
429 => 0.01757426318001
430 => 0.017959727086419
501 => 0.018164175752485
502 => 0.018354079067575
503 => 0.017887736545273
504 => 0.017281031775691
505 => 0.017088862907431
506 => 0.015630053040496
507 => 0.015554115651632
508 => 0.015511489694124
509 => 0.015242739061599
510 => 0.015031574681428
511 => 0.014863648926285
512 => 0.014422961597915
513 => 0.014571680634727
514 => 0.013869317011899
515 => 0.014318664367546
516 => 0.013197675066349
517 => 0.014131268266763
518 => 0.013623155933052
519 => 0.013964339699501
520 => 0.013963149341482
521 => 0.013334921855036
522 => 0.012972573351627
523 => 0.013203475920814
524 => 0.013451021804051
525 => 0.013491185290762
526 => 0.013812134989987
527 => 0.01390170515225
528 => 0.013630303378962
529 => 0.013174445054718
530 => 0.013280330546419
531 => 0.012970427585518
601 => 0.012427334566784
602 => 0.012817393454333
603 => 0.012950576708221
604 => 0.01300939802042
605 => 0.01247532841115
606 => 0.012307512144702
607 => 0.01221816817256
608 => 0.013105503374721
609 => 0.013154113600141
610 => 0.012905416814097
611 => 0.014029549869411
612 => 0.013775123937635
613 => 0.014059380039296
614 => 0.013270722547886
615 => 0.013300850326126
616 => 0.012927487230896
617 => 0.013136545616094
618 => 0.012988789887702
619 => 0.013119655764525
620 => 0.013198096231512
621 => 0.013571398061533
622 => 0.014135530774019
623 => 0.013515639216647
624 => 0.013245543588089
625 => 0.013413109396971
626 => 0.013859359227587
627 => 0.014535450564078
628 => 0.014135190885269
629 => 0.014312819333875
630 => 0.014351623247755
701 => 0.01405648657902
702 => 0.014546332674033
703 => 0.014808845175853
704 => 0.015078128683413
705 => 0.015311940007874
706 => 0.014970570928822
707 => 0.015335884776743
708 => 0.015041506301894
709 => 0.014777418377667
710 => 0.014777818890037
711 => 0.014612152677461
712 => 0.014291153515308
713 => 0.014231956344796
714 => 0.014539907501577
715 => 0.014786855166232
716 => 0.014807194958692
717 => 0.014943917874474
718 => 0.015024829087676
719 => 0.015817868970514
720 => 0.016136836171762
721 => 0.016526863227707
722 => 0.016678800746718
723 => 0.017136078206326
724 => 0.016766789519433
725 => 0.016686891589089
726 => 0.015577686046397
727 => 0.015759318391874
728 => 0.016050129301897
729 => 0.015582481411191
730 => 0.015879096360137
731 => 0.015937654434223
801 => 0.015566590914812
802 => 0.015764791973238
803 => 0.015238428724578
804 => 0.014147004054455
805 => 0.014547547741691
806 => 0.014842482717045
807 => 0.014421574141995
808 => 0.01517603647136
809 => 0.014735295153809
810 => 0.014595601315459
811 => 0.014050605847609
812 => 0.014307822729635
813 => 0.014655712245566
814 => 0.014440756971218
815 => 0.014886821441188
816 => 0.015518567691714
817 => 0.015968787690979
818 => 0.016003349992118
819 => 0.015713888694988
820 => 0.016177752270956
821 => 0.016181131010696
822 => 0.015657891002066
823 => 0.015337409410192
824 => 0.01526459531822
825 => 0.015446499196011
826 => 0.015667364084958
827 => 0.016015606456313
828 => 0.016226042027894
829 => 0.016774746392175
830 => 0.016923210060563
831 => 0.017086326620749
901 => 0.017304300648442
902 => 0.01756603435608
903 => 0.016993375904275
904 => 0.017016128692134
905 => 0.016482877070809
906 => 0.015913021237405
907 => 0.016345470781427
908 => 0.016910841033882
909 => 0.01678114447329
910 => 0.016766550960763
911 => 0.016791093200931
912 => 0.016693306229738
913 => 0.016251019383188
914 => 0.016028905697713
915 => 0.01631548901922
916 => 0.016467795300246
917 => 0.016704009059612
918 => 0.016674890727902
919 => 0.017283352004525
920 => 0.017519781657706
921 => 0.017459292835027
922 => 0.017470424234145
923 => 0.017898468827877
924 => 0.018374542450193
925 => 0.018820448220939
926 => 0.019274042723041
927 => 0.018727216846663
928 => 0.018449572390169
929 => 0.018736030598364
930 => 0.018584031840905
1001 => 0.019457461787026
1002 => 0.019517936181441
1003 => 0.020391302968636
1004 => 0.021220232048266
1005 => 0.020699596545157
1006 => 0.02119053237465
1007 => 0.021721519500833
1008 => 0.022745879816795
1009 => 0.022400911299809
1010 => 0.022136670822144
1011 => 0.021886964847551
1012 => 0.022406563340972
1013 => 0.023075018501969
1014 => 0.023218997341264
1015 => 0.023452298065072
1016 => 0.023207010880643
1017 => 0.02350243227679
1018 => 0.024545399619927
1019 => 0.024263580637284
1020 => 0.023863352377269
1021 => 0.024686674927027
1022 => 0.0249846321572
1023 => 0.027075852039961
1024 => 0.029716103525933
1025 => 0.028623022073915
1026 => 0.027944511143129
1027 => 0.028103977306358
1028 => 0.029068107770882
1029 => 0.029377755876115
1030 => 0.028536025583988
1031 => 0.028833338953152
1101 => 0.030471564848454
1102 => 0.031350420480704
1103 => 0.030156816486049
1104 => 0.026863710403819
1105 => 0.023827316201447
1106 => 0.024632704674529
1107 => 0.024541398615795
1108 => 0.026301467967455
1109 => 0.024256859347752
1110 => 0.024291285313217
1111 => 0.026087751035122
1112 => 0.025608484779737
1113 => 0.024832134825798
1114 => 0.023832984415271
1115 => 0.021985962471184
1116 => 0.02035000362729
1117 => 0.023558495658988
1118 => 0.023420139648317
1119 => 0.023219779641653
1120 => 0.023665659155266
1121 => 0.025830723508262
1122 => 0.025780811767296
1123 => 0.025463298736464
1124 => 0.025704129571919
1125 => 0.024789916015943
1126 => 0.025025529665574
1127 => 0.023826835221092
1128 => 0.024368695171899
1129 => 0.024830469127473
1130 => 0.024923177085735
1201 => 0.025132052849484
1202 => 0.023347232317639
1203 => 0.02414856433686
1204 => 0.024619271823496
1205 => 0.02249259827439
1206 => 0.024577234325207
1207 => 0.023316162563047
1208 => 0.022888135866308
1209 => 0.023464417425238
1210 => 0.023239839941271
1211 => 0.023046761408188
1212 => 0.022939020269218
1213 => 0.023362177844221
1214 => 0.023342437037564
1215 => 0.022650069113513
1216 => 0.021746903381114
1217 => 0.022050035446311
1218 => 0.021939904725147
1219 => 0.021540776784501
1220 => 0.021809740825605
1221 => 0.020625359308169
1222 => 0.018587692466214
1223 => 0.019933837597432
1224 => 0.019882012474205
1225 => 0.019855879896991
1226 => 0.020867470758383
1227 => 0.020770229638432
1228 => 0.020593736053534
1229 => 0.021537535341406
1230 => 0.021193035905441
1231 => 0.022254701992811
]
'min_raw' => 0.0095303155843177
'max_raw' => 0.031350420480704
'avg_raw' => 0.020440368032511
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00953'
'max' => '$0.03135'
'avg' => '$0.02044'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0051918702186463
'max_diff' => 0.020724212412485
'year' => 2029
]
4 => [
'items' => [
101 => 0.02295398394221
102 => 0.022776623420441
103 => 0.023434301473774
104 => 0.022057018996853
105 => 0.022514496988704
106 => 0.022608782568787
107 => 0.021525889004696
108 => 0.020786139488258
109 => 0.020736806629273
110 => 0.019454182911531
111 => 0.020139350148572
112 => 0.020742268963021
113 => 0.02045351763929
114 => 0.020362107596397
115 => 0.020829101681117
116 => 0.020865391121034
117 => 0.020037988045153
118 => 0.020210031345076
119 => 0.020927480505576
120 => 0.020191953467017
121 => 0.018762944578756
122 => 0.018408530616874
123 => 0.018361245261213
124 => 0.017400046487663
125 => 0.018432214252503
126 => 0.017981645362774
127 => 0.019404987086784
128 => 0.018591981927564
129 => 0.018556934900083
130 => 0.018503956177764
131 => 0.017676612686748
201 => 0.017857748330859
202 => 0.01845987079962
203 => 0.018674714879869
204 => 0.018652304882134
205 => 0.018456920071037
206 => 0.018546366237025
207 => 0.018258228971267
208 => 0.018156481705669
209 => 0.017835339347652
210 => 0.017363348799208
211 => 0.017428981979855
212 => 0.016493845200342
213 => 0.015984333051399
214 => 0.015843306803833
215 => 0.015654720611696
216 => 0.015864608116044
217 => 0.01649119607534
218 => 0.015735398058378
219 => 0.014439635371362
220 => 0.014517512916724
221 => 0.014692480639101
222 => 0.014366429445979
223 => 0.01405784935509
224 => 0.014326134708224
225 => 0.013777102975998
226 => 0.014758828500911
227 => 0.014732275576716
228 => 0.015098202142904
301 => 0.015327023534311
302 => 0.014799664308924
303 => 0.01466703488987
304 => 0.014742586634634
305 => 0.013493884587274
306 => 0.014996156545378
307 => 0.015009148255655
308 => 0.014897905344769
309 => 0.015697818785016
310 => 0.017385885643196
311 => 0.016750766988817
312 => 0.016504829849278
313 => 0.016037303167236
314 => 0.01666025471207
315 => 0.016612421752984
316 => 0.01639610297189
317 => 0.016265272698128
318 => 0.016506331489009
319 => 0.016235402846258
320 => 0.016186736617399
321 => 0.015891872219891
322 => 0.015786619045456
323 => 0.015708693785354
324 => 0.015622905730759
325 => 0.015812132802144
326 => 0.015383319363493
327 => 0.014866212393579
328 => 0.014823220544206
329 => 0.014941924820208
330 => 0.014889407014571
331 => 0.014822969109157
401 => 0.014696121054436
402 => 0.01465848794628
403 => 0.014780777290799
404 => 0.014642719750749
405 => 0.014846431171475
406 => 0.014791032936905
407 => 0.014481582901896
408 => 0.014095893585197
409 => 0.014092460141268
410 => 0.014009364010642
411 => 0.013903528594704
412 => 0.013874087603176
413 => 0.014303540464091
414 => 0.015192495033743
415 => 0.015017971980841
416 => 0.015144082772405
417 => 0.015764423050461
418 => 0.015961610570573
419 => 0.01582165153944
420 => 0.015630066985329
421 => 0.015638495733402
422 => 0.016293198151389
423 => 0.016334031138124
424 => 0.016437202922384
425 => 0.016569807821501
426 => 0.01584423472716
427 => 0.015604321305908
428 => 0.015490637017029
429 => 0.015140533408638
430 => 0.015518090134673
501 => 0.015298103999003
502 => 0.015327787644502
503 => 0.01530845613143
504 => 0.015319012444758
505 => 0.014758554088619
506 => 0.014962755656772
507 => 0.014623230944172
508 => 0.014168645467438
509 => 0.014167121537521
510 => 0.014278380688941
511 => 0.014212199392106
512 => 0.014034107223998
513 => 0.014059404375906
514 => 0.013837774706275
515 => 0.014086314230534
516 => 0.014093441454773
517 => 0.013997740199894
518 => 0.014380649628861
519 => 0.014537527934333
520 => 0.014474535318252
521 => 0.014533108204463
522 => 0.015025224201613
523 => 0.015105460581675
524 => 0.01514109628158
525 => 0.015093349164532
526 => 0.014542103181501
527 => 0.014566553284927
528 => 0.014387154648883
529 => 0.014235581705988
530 => 0.014241643828809
531 => 0.01431957202456
601 => 0.014659889025834
602 => 0.015376066092232
603 => 0.015403244488383
604 => 0.015436185497368
605 => 0.015302197859001
606 => 0.015261785905181
607 => 0.01531509970348
608 => 0.015584058154818
609 => 0.016275892313166
610 => 0.016031351915556
611 => 0.015832536765801
612 => 0.016006951252316
613 => 0.015980101509223
614 => 0.015753462656892
615 => 0.015747101659151
616 => 0.015312109240703
617 => 0.015151302447901
618 => 0.015016920255656
619 => 0.01487017840986
620 => 0.014783184924841
621 => 0.014916846455662
622 => 0.014947416429197
623 => 0.014655163156053
624 => 0.014615330114837
625 => 0.014853990446411
626 => 0.014748964932639
627 => 0.014856986278061
628 => 0.014882048156789
629 => 0.01487801261709
630 => 0.014768353918608
701 => 0.014838247102951
702 => 0.01467292888582
703 => 0.014493170154683
704 => 0.014378495283582
705 => 0.014278426249133
706 => 0.014333950365492
707 => 0.014136017028975
708 => 0.014072694171012
709 => 0.014814568864742
710 => 0.015362599677497
711 => 0.015354631092436
712 => 0.015306124380228
713 => 0.015234053245114
714 => 0.015578785702381
715 => 0.015458687807412
716 => 0.015546069060517
717 => 0.015568311256812
718 => 0.015635631686075
719 => 0.015659692953151
720 => 0.015586963092425
721 => 0.015342872796624
722 => 0.014734622986898
723 => 0.014451481058531
724 => 0.014358039506069
725 => 0.01436143592903
726 => 0.014267747421459
727 => 0.014295342885763
728 => 0.014258150845137
729 => 0.014187718117913
730 => 0.01432960134306
731 => 0.014345952063025
801 => 0.014312834822897
802 => 0.014320635131809
803 => 0.01404643852811
804 => 0.014067285100366
805 => 0.013951208736993
806 => 0.013929445818182
807 => 0.013636014879501
808 => 0.013116159438133
809 => 0.01340420981624
810 => 0.013056285465499
811 => 0.01292452124196
812 => 0.013548272582655
813 => 0.013485665248218
814 => 0.013378508706417
815 => 0.013220001847712
816 => 0.013161210111963
817 => 0.012804010136753
818 => 0.01278290485663
819 => 0.012959942809555
820 => 0.012878245885784
821 => 0.012763512463765
822 => 0.012347959639555
823 => 0.01188074068033
824 => 0.011894843083875
825 => 0.012043456741887
826 => 0.012475570995838
827 => 0.012306736481167
828 => 0.01218424510362
829 => 0.012161306150683
830 => 0.012448435172643
831 => 0.012854782894107
901 => 0.013045432153499
902 => 0.012856504527545
903 => 0.012639474643435
904 => 0.012652684246861
905 => 0.012740561820448
906 => 0.012749796510911
907 => 0.012608532367387
908 => 0.01264829739633
909 => 0.012587890681176
910 => 0.012217174781778
911 => 0.012210469706711
912 => 0.012119490046397
913 => 0.01211673521844
914 => 0.011961956120307
915 => 0.011940301454541
916 => 0.011632978160778
917 => 0.011835259283393
918 => 0.011699579726578
919 => 0.011495078630886
920 => 0.011459822564908
921 => 0.011458762724992
922 => 0.011668739624659
923 => 0.011832805581066
924 => 0.011701939930559
925 => 0.011672144358662
926 => 0.011990283114944
927 => 0.011949797058308
928 => 0.011914736394368
929 => 0.01281839891251
930 => 0.012103079515735
1001 => 0.011791159429738
1002 => 0.011405099091298
1003 => 0.011530802284179
1004 => 0.011557289793883
1005 => 0.010628884272542
1006 => 0.01025223026816
1007 => 0.010122976807762
1008 => 0.010048589613928
1009 => 0.010082488792254
1010 => 0.009743456011201
1011 => 0.009971291647153
1012 => 0.009677717916489
1013 => 0.0096284993251716
1014 => 0.010153445522405
1015 => 0.010226488719059
1016 => 0.0099148637493914
1017 => 0.010114977427418
1018 => 0.010042413425977
1019 => 0.0096827503954935
1020 => 0.0096690139132312
1021 => 0.0094885476473012
1022 => 0.0092061528862757
1023 => 0.0090770909028241
1024 => 0.0090098743012749
1025 => 0.0090376091810995
1026 => 0.0090235855771589
1027 => 0.0089320720755148
1028 => 0.0090288310239512
1029 => 0.0087816518942542
1030 => 0.0086832231731512
1031 => 0.008638765203358
1101 => 0.008419379498652
1102 => 0.0087685197161049
1103 => 0.0088373047372957
1104 => 0.0089062252862271
1105 => 0.009506131610617
1106 => 0.0094761619859682
1107 => 0.0097470727969946
1108 => 0.0097365457010511
1109 => 0.0096592775492822
1110 => 0.0093332959269632
1111 => 0.0094632263915559
1112 => 0.0090633206172171
1113 => 0.0093629572143011
1114 => 0.0092262155845154
1115 => 0.0093167247317209
1116 => 0.0091539811241647
1117 => 0.0092440501561051
1118 => 0.0088536162175761
1119 => 0.0084890344993315
1120 => 0.008635752825557
1121 => 0.0087952524254399
1122 => 0.0091410881977282
1123 => 0.0089351112648364
1124 => 0.0090091883587545
1125 => 0.0087610424944849
1126 => 0.0082490466971348
1127 => 0.0082519445377452
1128 => 0.0081731851387576
1129 => 0.0081051255189719
1130 => 0.008958770193359
1201 => 0.0088526059839737
1202 => 0.0086834472107464
1203 => 0.0089098729508136
1204 => 0.0089697435103471
1205 => 0.0089714479410089
1206 => 0.0091366423160677
1207 => 0.0092248065836493
1208 => 0.0092403459179363
1209 => 0.0095002828363521
1210 => 0.0095874102627541
1211 => 0.0099462758013694
1212 => 0.0092173264615145
1213 => 0.0092023142295586
1214 => 0.0089130592253176
1215 => 0.0087296091286872
1216 => 0.0089256202103823
1217 => 0.0090992592705831
1218 => 0.008918454674935
1219 => 0.0089420639381333
1220 => 0.0086993485407539
1221 => 0.0087861078744962
1222 => 0.0088608367004593
1223 => 0.0088195758351198
1224 => 0.0087578063226581
1225 => 0.0090850228478004
1226 => 0.00906656000908
1227 => 0.0093712715599678
1228 => 0.009608816004017
1229 => 0.010034538113902
1230 => 0.0095902748988415
1231 => 0.0095740841814984
]
'min_raw' => 0.0081051255189719
'max_raw' => 0.023434301473774
'avg_raw' => 0.015769713496373
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0081051'
'max' => '$0.023434'
'avg' => '$0.015769'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014251900653458
'max_diff' => -0.0079161190069301
'year' => 2030
]
5 => [
'items' => [
101 => 0.0097323510406003
102 => 0.0095873860329226
103 => 0.0096789989137529
104 => 0.01001977786247
105 => 0.010026977984664
106 => 0.0099063666610819
107 => 0.0098990274510807
108 => 0.009922192175118
109 => 0.010057868687341
110 => 0.010010459145052
111 => 0.010065322667652
112 => 0.010133930342763
113 => 0.010417720776073
114 => 0.010486141688776
115 => 0.010319914343083
116 => 0.010334922811231
117 => 0.010272749220899
118 => 0.010212690311671
119 => 0.010347693968716
120 => 0.010594415805467
121 => 0.010592880961726
122 => 0.010650115632265
123 => 0.010685772357853
124 => 0.01053270758931
125 => 0.010433068053336
126 => 0.010471276191657
127 => 0.010532371836897
128 => 0.010451463697332
129 => 0.0099520611796402
130 => 0.010103548001551
131 => 0.010078333187058
201 => 0.010042424224994
202 => 0.010194745395838
203 => 0.010180053647321
204 => 0.0097399787400013
205 => 0.0097681509077484
206 => 0.0097416919828311
207 => 0.0098271861822254
208 => 0.0095827690655873
209 => 0.0096579501244908
210 => 0.0097051029798564
211 => 0.009732876373912
212 => 0.0098332129176356
213 => 0.0098214395823097
214 => 0.0098324810705812
215 => 0.0099812536770578
216 => 0.010733694468023
217 => 0.010774648160108
218 => 0.010572977202171
219 => 0.010653540772083
220 => 0.010498876335168
221 => 0.010602703607831
222 => 0.01067373959086
223 => 0.010352741642986
224 => 0.010333734227772
225 => 0.010178431435709
226 => 0.010261882359364
227 => 0.010129105939495
228 => 0.010161684628609
301 => 0.010070591773687
302 => 0.010234540776139
303 => 0.01041786123598
304 => 0.01046417522368
305 => 0.010342343061467
306 => 0.010254128546893
307 => 0.01009925291897
308 => 0.010356814539835
309 => 0.010432133406824
310 => 0.010356418921891
311 => 0.010338874221338
312 => 0.010305627045492
313 => 0.010345927766863
314 => 0.010431723204099
315 => 0.010391263660291
316 => 0.010417987901782
317 => 0.010316142651139
318 => 0.010532758260117
319 => 0.01087679597856
320 => 0.010877902116081
321 => 0.010837442354182
322 => 0.01082088709133
323 => 0.010862401262343
324 => 0.010884920997116
325 => 0.011019170213774
326 => 0.011163224971972
327 => 0.011835465672469
328 => 0.011646703173784
329 => 0.012243155115043
330 => 0.012714871160988
331 => 0.012856318177524
401 => 0.012726193577907
402 => 0.012281044351811
403 => 0.012259203207082
404 => 0.012924444088025
405 => 0.012736483069196
406 => 0.012714125704093
407 => 0.012476281112765
408 => 0.012616876723866
409 => 0.012586126401305
410 => 0.012537585512785
411 => 0.01280583214479
412 => 0.013307965893362
413 => 0.013229703639666
414 => 0.013171284497764
415 => 0.012915308823506
416 => 0.013069463353646
417 => 0.013014571878099
418 => 0.013250420492042
419 => 0.013110708997828
420 => 0.012735059079614
421 => 0.012794882567248
422 => 0.01278584036744
423 => 0.012971928198746
424 => 0.012916069250772
425 => 0.012774933011344
426 => 0.013306249654798
427 => 0.013271748907311
428 => 0.013320663079279
429 => 0.0133421966105
430 => 0.013665599688521
501 => 0.013798087581842
502 => 0.013828164653153
503 => 0.013954017904827
504 => 0.013825033309602
505 => 0.014341063654959
506 => 0.014684193723417
507 => 0.015082756955242
508 => 0.015665164960635
509 => 0.015884155758238
510 => 0.015844597030762
511 => 0.016286172133521
512 => 0.017079672777515
513 => 0.016004986197965
514 => 0.017136633775774
515 => 0.016778367218139
516 => 0.015928923654927
517 => 0.015874229503738
518 => 0.016449482546988
519 => 0.017725338430862
520 => 0.017405751002589
521 => 0.017725861161406
522 => 0.017352435657494
523 => 0.017333891933748
524 => 0.017707724718182
525 => 0.018581205395577
526 => 0.01816624746768
527 => 0.017571303526182
528 => 0.018010600874231
529 => 0.017630040856301
530 => 0.01677253262386
531 => 0.017405506620106
601 => 0.016982254934878
602 => 0.017105782277925
603 => 0.017995394366337
604 => 0.017888353886237
605 => 0.018026874179168
606 => 0.017782389487853
607 => 0.017554002234468
608 => 0.017127700465765
609 => 0.017001493528475
610 => 0.017036372585492
611 => 0.017001476244147
612 => 0.016762964322473
613 => 0.016711457695697
614 => 0.016625611061179
615 => 0.016652218522865
616 => 0.016490801734652
617 => 0.01679542856442
618 => 0.016851969988387
619 => 0.017073651991322
620 => 0.017096667752269
621 => 0.017714048974998
622 => 0.017374005772189
623 => 0.017602136110551
624 => 0.017581729985841
625 => 0.01594733367268
626 => 0.016172539064233
627 => 0.016522887980144
628 => 0.016365056268413
629 => 0.016141919154958
630 => 0.015961723971987
701 => 0.015688709843884
702 => 0.016072971986418
703 => 0.016578235842126
704 => 0.017109482077462
705 => 0.017747739620585
706 => 0.017605287967097
707 => 0.017097550296656
708 => 0.017120327037649
709 => 0.017261123888153
710 => 0.017078779174008
711 => 0.017025002158015
712 => 0.017253735751958
713 => 0.01725531091451
714 => 0.017045501283791
715 => 0.016812336274003
716 => 0.016811359304099
717 => 0.016769869842714
718 => 0.017359816540505
719 => 0.017684227573951
720 => 0.017721420776122
721 => 0.017681724175106
722 => 0.017697001821335
723 => 0.017508234188882
724 => 0.017939701019367
725 => 0.018335657650667
726 => 0.018229532815099
727 => 0.018070436600048
728 => 0.017943708801648
729 => 0.018199679773264
730 => 0.018188281788833
731 => 0.018332199314918
801 => 0.018325670384627
802 => 0.018277276333616
803 => 0.018229534543403
804 => 0.018418825345112
805 => 0.018364312634137
806 => 0.018309715249865
807 => 0.018200211837267
808 => 0.018215095169698
809 => 0.018056026424852
810 => 0.017982433944995
811 => 0.016875779621004
812 => 0.016580045424661
813 => 0.016673089423055
814 => 0.016703721923213
815 => 0.01657501802197
816 => 0.016759546355032
817 => 0.016730787809789
818 => 0.016842670486146
819 => 0.016772771047339
820 => 0.01677563974469
821 => 0.01698119909009
822 => 0.017040873842571
823 => 0.017010522781825
824 => 0.017031779624398
825 => 0.017521634589548
826 => 0.017451992878184
827 => 0.017414997107032
828 => 0.017425245188475
829 => 0.01755041363468
830 => 0.017585453965673
831 => 0.017436985621013
901 => 0.01750700415064
902 => 0.017805134163117
903 => 0.017909462794787
904 => 0.018242429706492
905 => 0.018100979444385
906 => 0.018360617522307
907 => 0.019158656456695
908 => 0.019796185177579
909 => 0.019209887418866
910 => 0.020380627725975
911 => 0.021292216987783
912 => 0.021257228673583
913 => 0.021098272000348
914 => 0.020060451861634
915 => 0.019105434296964
916 => 0.019904347041998
917 => 0.019906383634883
918 => 0.019837756321564
919 => 0.019411517972543
920 => 0.019822924150944
921 => 0.019855580079377
922 => 0.019837301443367
923 => 0.019510505500541
924 => 0.019011548497832
925 => 0.019109043501827
926 => 0.019268742307215
927 => 0.018966399151955
928 => 0.018869782194231
929 => 0.019049411500767
930 => 0.01962821455368
1001 => 0.019518795189304
1002 => 0.019515937807502
1003 => 0.019984080249331
1004 => 0.019648991292444
1005 => 0.01911027322605
1006 => 0.018974239809467
1007 => 0.018491412823687
1008 => 0.018824903142536
1009 => 0.01883690486541
1010 => 0.018654255625965
1011 => 0.019125094205193
1012 => 0.019120755344796
1013 => 0.019567746500699
1014 => 0.020422225708574
1015 => 0.020169514160437
1016 => 0.019875638124893
1017 => 0.019907590598255
1018 => 0.020258030365615
1019 => 0.020046146482507
1020 => 0.02012234140418
1021 => 0.020257915035476
1022 => 0.02033970997334
1023 => 0.019895821565449
1024 => 0.019792329943932
1025 => 0.019580622406933
1026 => 0.019525391862238
1027 => 0.019697823233701
1028 => 0.019652393659411
1029 => 0.018835896167075
1030 => 0.018750567636177
1031 => 0.018753184540399
1101 => 0.018538621892305
1102 => 0.018211362353025
1103 => 0.0190713808826
1104 => 0.019002309358723
1105 => 0.018926059742075
1106 => 0.01893539988504
1107 => 0.019308704779996
1108 => 0.019092169088573
1109 => 0.019667864713724
1110 => 0.019549519000188
1111 => 0.019428138165658
1112 => 0.019411359636975
1113 => 0.019364638371408
1114 => 0.019204413767559
1115 => 0.019010932930405
1116 => 0.018883180122693
1117 => 0.01741873550206
1118 => 0.017690527905367
1119 => 0.018003200290715
1120 => 0.018111133545181
1121 => 0.017926506244663
1122 => 0.0192117039787
1123 => 0.019446521989182
1124 => 0.018735242918632
1125 => 0.018602191645865
1126 => 0.019220426797992
1127 => 0.018847555425086
1128 => 0.019015459381474
1129 => 0.018652542866316
1130 => 0.019389961206731
1201 => 0.01938434331449
1202 => 0.019097470924721
1203 => 0.019339933504137
1204 => 0.019297799664252
1205 => 0.018973921442738
1206 => 0.019400228724044
1207 => 0.019400440167137
1208 => 0.019124331729127
1209 => 0.018801897521441
1210 => 0.018744253900662
1211 => 0.018700827175737
1212 => 0.019004779069249
1213 => 0.019277301386539
1214 => 0.019784397855005
1215 => 0.019911893955492
1216 => 0.020409519723589
1217 => 0.020113207807646
1218 => 0.020244559042102
1219 => 0.02038715938787
1220 => 0.020455527237585
1221 => 0.020344125495295
1222 => 0.021117143144088
1223 => 0.021182409518294
1224 => 0.021204292769014
1225 => 0.020943635567176
1226 => 0.021175160169986
1227 => 0.02106683747562
1228 => 0.021348663033449
1229 => 0.021392856879446
1230 => 0.021355426264128
1231 => 0.0213694540884
]
'min_raw' => 0.0095827690655873
'max_raw' => 0.021392856879446
'avg_raw' => 0.015487812972517
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009582'
'max' => '$0.021392'
'avg' => '$0.015487'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014776435466154
'max_diff' => -0.0020414445943278
'year' => 2031
]
6 => [
'items' => [
101 => 0.020709819894813
102 => 0.020675614382028
103 => 0.020209219788092
104 => 0.020399279032536
105 => 0.020043972384824
106 => 0.020156643782878
107 => 0.020206308261567
108 => 0.020180366356334
109 => 0.020410024697054
110 => 0.020214768191343
111 => 0.019699454169629
112 => 0.019183999750955
113 => 0.019177528640609
114 => 0.019041818590698
115 => 0.018943725081148
116 => 0.018962621371142
117 => 0.019029214361761
118 => 0.018939854575474
119 => 0.018958924016534
120 => 0.019275603797159
121 => 0.019339111668706
122 => 0.019123287107061
123 => 0.01825672034872
124 => 0.018044062692604
125 => 0.018196916798635
126 => 0.018123862381018
127 => 0.014627371450944
128 => 0.015448820130782
129 => 0.014960743218983
130 => 0.015185671515279
131 => 0.014687471375237
201 => 0.014925238594971
202 => 0.014881331671355
203 => 0.016202196840101
204 => 0.016181573347281
205 => 0.016191444721923
206 => 0.015720258290547
207 => 0.016470871069835
208 => 0.016840649916075
209 => 0.016772213692981
210 => 0.016789437615933
211 => 0.016493473554029
212 => 0.016194310300988
213 => 0.015862492212471
214 => 0.01647896920698
215 => 0.016410427488804
216 => 0.016567637529768
217 => 0.016967466927393
218 => 0.017026343324998
219 => 0.017105473800443
220 => 0.017077111157887
221 => 0.017752824371634
222 => 0.01767099104295
223 => 0.017868185820023
224 => 0.01746254120238
225 => 0.017003515813376
226 => 0.017090761533155
227 => 0.017082359068754
228 => 0.016975386053036
229 => 0.016878815597533
301 => 0.016718052997677
302 => 0.01722672965201
303 => 0.017206078308796
304 => 0.017540399550859
305 => 0.017481305023901
306 => 0.017086657309993
307 => 0.017100752230301
308 => 0.017195547343162
309 => 0.017523634311125
310 => 0.01762103286108
311 => 0.01757591397208
312 => 0.017682707035693
313 => 0.01776711191887
314 => 0.0176933069895
315 => 0.018738229148553
316 => 0.018304304616395
317 => 0.018515796414141
318 => 0.018566235961722
319 => 0.018437036121224
320 => 0.018465054940328
321 => 0.018507495816601
322 => 0.01876518850655
323 => 0.019441448688957
324 => 0.019740959720286
325 => 0.020642053435655
326 => 0.019716089498529
327 => 0.01966114663052
328 => 0.019823460819081
329 => 0.020352498220459
330 => 0.02078123334432
331 => 0.020923469519227
401 => 0.020942268377804
402 => 0.021209112897613
403 => 0.021362063200011
404 => 0.0211767109542
405 => 0.021019644333065
406 => 0.020457051191984
407 => 0.020522172879955
408 => 0.020970796732
409 => 0.021604504346826
410 => 0.022148291406387
411 => 0.021957876131021
412 => 0.023410610269827
413 => 0.023554642925803
414 => 0.023534742269881
415 => 0.023862870095127
416 => 0.023211603184083
417 => 0.02293317396191
418 => 0.021053603919336
419 => 0.021581686434634
420 => 0.022349285383817
421 => 0.022247690784544
422 => 0.021690239909669
423 => 0.02214786852991
424 => 0.021996562196688
425 => 0.021877220613971
426 => 0.022423947539905
427 => 0.021822798826536
428 => 0.022343288465546
429 => 0.02167575511974
430 => 0.02195874593196
501 => 0.021798106660218
502 => 0.021902059956243
503 => 0.021294351111794
504 => 0.02162225605296
505 => 0.02128070918819
506 => 0.021280547250505
507 => 0.021273007584535
508 => 0.021674835956287
509 => 0.021687939565064
510 => 0.02139098779121
511 => 0.021348192401339
512 => 0.021506429387664
513 => 0.02132117531901
514 => 0.021407854531758
515 => 0.021323800744063
516 => 0.021304878466009
517 => 0.021154102535116
518 => 0.021089144118417
519 => 0.021114615987377
520 => 0.021027667366968
521 => 0.020975277678102
522 => 0.02126258595679
523 => 0.02110908873347
524 => 0.021239060305856
525 => 0.021090941295402
526 => 0.020577496272787
527 => 0.020282208610698
528 => 0.019312358559357
529 => 0.019587406830822
530 => 0.019769764119362
531 => 0.019709495036587
601 => 0.019838976347425
602 => 0.019846925448307
603 => 0.019804829754248
604 => 0.01975608833332
605 => 0.019732363705182
606 => 0.019909187646101
607 => 0.020011839895425
608 => 0.019788066112892
609 => 0.019735639046573
610 => 0.019961886695602
611 => 0.020099897630811
612 => 0.021118892834748
613 => 0.021043402378729
614 => 0.021232868609082
615 => 0.021211537619141
616 => 0.021410128412888
617 => 0.021734740429935
618 => 0.021074713436332
619 => 0.021189271300405
620 => 0.021161184357662
621 => 0.021467830233742
622 => 0.021468787548695
623 => 0.021284938027888
624 => 0.021384605835735
625 => 0.021328973999638
626 => 0.021429508246559
627 => 0.021042394157664
628 => 0.021513857331555
629 => 0.021781146570735
630 => 0.02178485788208
701 => 0.021911550860113
702 => 0.022040278263357
703 => 0.022287359304089
704 => 0.022033387307234
705 => 0.021576516408568
706 => 0.021609501011768
707 => 0.021341637771042
708 => 0.021346140600512
709 => 0.021322104143908
710 => 0.021394239359557
711 => 0.021058223780984
712 => 0.021137085965657
713 => 0.021026678445299
714 => 0.021189031296018
715 => 0.021014366466532
716 => 0.021161170813288
717 => 0.021224526702707
718 => 0.021458311298616
719 => 0.020979836291632
720 => 0.020004193362479
721 => 0.020209285334714
722 => 0.019905938198152
723 => 0.019934014130565
724 => 0.01999073198229
725 => 0.019806890867922
726 => 0.019841961959044
727 => 0.019840708972878
728 => 0.019829911415014
729 => 0.019782087240886
730 => 0.019712732726676
731 => 0.019989019765095
801 => 0.020035966316728
802 => 0.020140322685563
803 => 0.020450816453612
804 => 0.020419790804237
805 => 0.02047039492561
806 => 0.020359926412783
807 => 0.019939138448043
808 => 0.019961989259001
809 => 0.019677039280204
810 => 0.02013303587395
811 => 0.02002504986169
812 => 0.019955430577095
813 => 0.019936434310276
814 => 0.02024769773232
815 => 0.020340832626652
816 => 0.020282797210555
817 => 0.020163764878975
818 => 0.020392342144357
819 => 0.020453499777673
820 => 0.020467190716366
821 => 0.02087218580528
822 => 0.020489825442902
823 => 0.020581863382462
824 => 0.021299917113517
825 => 0.020648741464091
826 => 0.020993683728542
827 => 0.02097680059969
828 => 0.021153261389973
829 => 0.020962325664382
830 => 0.020964692541535
831 => 0.021121377768817
901 => 0.020901341625429
902 => 0.020846857581951
903 => 0.020771588266108
904 => 0.020935936063578
905 => 0.02103445513535
906 => 0.021828446499546
907 => 0.022341401131222
908 => 0.022319132417839
909 => 0.022522626772872
910 => 0.022430950702135
911 => 0.0221349044868
912 => 0.022640219277387
913 => 0.022480316534377
914 => 0.022493498722229
915 => 0.022493008080538
916 => 0.0225993294257
917 => 0.022523991008445
918 => 0.022375491254705
919 => 0.022474072321431
920 => 0.02276682284623
921 => 0.023675529457891
922 => 0.024184053716537
923 => 0.023644915658998
924 => 0.024016805871742
925 => 0.023793804262128
926 => 0.023753278235937
927 => 0.023986852772011
928 => 0.024220836149391
929 => 0.02420593241979
930 => 0.024036072502992
1001 => 0.023940122946028
1002 => 0.024666685136815
1003 => 0.025202003782322
1004 => 0.02516549863952
1005 => 0.025326620467739
1006 => 0.025799679138701
1007 => 0.02584292969501
1008 => 0.025837481119017
1009 => 0.025730280102478
1010 => 0.026196067798471
1011 => 0.026584636089223
1012 => 0.025705466164484
1013 => 0.026040242562645
1014 => 0.026190534473602
1015 => 0.026411207588486
1016 => 0.026783520122405
1017 => 0.027187950285263
1018 => 0.027245141144642
1019 => 0.027204561493078
1020 => 0.026937828929007
1021 => 0.027380361239062
1022 => 0.027639586287632
1023 => 0.027793948871796
1024 => 0.028185386701751
1025 => 0.026191462625278
1026 => 0.024780064059495
1027 => 0.024559653792605
1028 => 0.025007866737531
1029 => 0.025126056916676
1030 => 0.025078414603661
1031 => 0.023489757199127
1101 => 0.024551289840151
1102 => 0.025693409705692
1103 => 0.025737283181157
1104 => 0.026309052266447
1105 => 0.026495243718224
1106 => 0.02695559277537
1107 => 0.026926797816506
1108 => 0.027038885486168
1109 => 0.027013118472
1110 => 0.027865818162432
1111 => 0.028806472548108
1112 => 0.02877390067783
1113 => 0.028638670480571
1114 => 0.028839510383675
1115 => 0.029810366516343
1116 => 0.029720985641299
1117 => 0.029807811547959
1118 => 0.030952505643428
1119 => 0.032440770798374
1120 => 0.031749322214523
1121 => 0.03324956668251
1122 => 0.034193891050565
1123 => 0.035827002400155
1124 => 0.035622528815943
1125 => 0.036258287080014
1126 => 0.035256478425279
1127 => 0.032956123255076
1128 => 0.032592083243986
1129 => 0.03332090056515
1130 => 0.035112626832279
1201 => 0.033264472728786
1202 => 0.033638351896882
1203 => 0.033530674671318
1204 => 0.033524937009566
1205 => 0.033743920221866
1206 => 0.033426273651029
1207 => 0.032132124377913
1208 => 0.032725225363312
1209 => 0.032496200589801
1210 => 0.03275032065094
1211 => 0.034121701813821
1212 => 0.033515381512068
1213 => 0.032876672327632
1214 => 0.033677755385829
1215 => 0.034697809400918
1216 => 0.034633976253867
1217 => 0.034510113268402
1218 => 0.03520832243221
1219 => 0.036361559414731
1220 => 0.036673274737025
1221 => 0.036903376615203
1222 => 0.036935103776601
1223 => 0.037261913257318
1224 => 0.035504576312909
1225 => 0.038293515175299
1226 => 0.038775087873953
1227 => 0.038684572165749
1228 => 0.039219819952625
1229 => 0.039062336475801
1230 => 0.038834167626282
1231 => 0.03968264921895
]
'min_raw' => 0.014627371450944
'max_raw' => 0.03968264921895
'avg_raw' => 0.027155010334947
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014627'
'max' => '$0.039682'
'avg' => '$0.027155'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0050446023853565
'max_diff' => 0.018289792339504
'year' => 2032
]
7 => [
'items' => [
101 => 0.03870993354189
102 => 0.037329286099801
103 => 0.036571835606962
104 => 0.037569307517721
105 => 0.03817842880665
106 => 0.038581019231242
107 => 0.038702842850471
108 => 0.035640993377407
109 => 0.033990826329382
110 => 0.035048564487962
111 => 0.036339078042618
112 => 0.035497407444953
113 => 0.035530399338889
114 => 0.03433039825376
115 => 0.036445251511581
116 => 0.036137135180632
117 => 0.037735643250642
118 => 0.037354146470906
119 => 0.038657667748273
120 => 0.038314406910187
121 => 0.039739263457628
122 => 0.040307677310853
123 => 0.04126213263697
124 => 0.041964233860193
125 => 0.042376521127527
126 => 0.042351768946447
127 => 0.043985456500322
128 => 0.043022128026497
129 => 0.041811960424285
130 => 0.041790072310391
131 => 0.042416835259784
201 => 0.043730358457695
202 => 0.044070935911928
203 => 0.044261272246413
204 => 0.043969765524493
205 => 0.04292414150853
206 => 0.042472646359872
207 => 0.042857333307603
208 => 0.042386894227054
209 => 0.043199004061974
210 => 0.04431420432262
211 => 0.044083919878776
212 => 0.044853726248372
213 => 0.045650394854911
214 => 0.046789666742889
215 => 0.047087514601522
216 => 0.047579845785703
217 => 0.048086616296595
218 => 0.048249377326845
219 => 0.048560138635374
220 => 0.048558500769882
221 => 0.049495000889783
222 => 0.050527989523028
223 => 0.050917918818336
224 => 0.051814539732071
225 => 0.050279107838645
226 => 0.051443750567579
227 => 0.052494287461976
228 => 0.051241794067923
301 => 0.052968064418092
302 => 0.053035091583976
303 => 0.054047122210512
304 => 0.053021235288909
305 => 0.052412066909608
306 => 0.054170713195408
307 => 0.055021666736268
308 => 0.054765352604472
309 => 0.05281478940571
310 => 0.05167947796044
311 => 0.048708148922945
312 => 0.05222781651972
313 => 0.053942143935998
314 => 0.052810349711853
315 => 0.053381160885973
316 => 0.056495321565828
317 => 0.057680992325745
318 => 0.057434381096146
319 => 0.057476054334382
320 => 0.058115820754986
321 => 0.06095289738975
322 => 0.059252855307278
323 => 0.060552473779966
324 => 0.061241786731757
325 => 0.061882059017208
326 => 0.060309752644273
327 => 0.058264205154853
328 => 0.057616294398712
329 => 0.052697815081488
330 => 0.052441786873154
331 => 0.052298070481367
401 => 0.051391958960238
402 => 0.050680003509465
403 => 0.050113830101798
404 => 0.048628022006391
405 => 0.049129438622237
406 => 0.046761370630408
407 => 0.048276376612404
408 => 0.044496882918444
409 => 0.047644557575035
410 => 0.045931421366657
411 => 0.047081746255932
412 => 0.047077732880761
413 => 0.044959620048767
414 => 0.04373793677116
415 => 0.044516440904276
416 => 0.045351059132711
417 => 0.045486473132281
418 => 0.046568577451212
419 => 0.046870569506871
420 => 0.045955519479563
421 => 0.044418561312364
422 => 0.044775561640321
423 => 0.043730702170909
424 => 0.041899626140703
425 => 0.043214736913117
426 => 0.043663773552158
427 => 0.043862093713012
428 => 0.042061440737807
429 => 0.04149563647892
430 => 0.041194407039046
501 => 0.044186119624896
502 => 0.044350012393759
503 => 0.043511513816157
504 => 0.047301606896613
505 => 0.046443792104177
506 => 0.047402181397054
507 => 0.044743167602459
508 => 0.044844745510249
509 => 0.043585925767302
510 => 0.044290780708987
511 => 0.043792611954739
512 => 0.044233835395211
513 => 0.044498302906197
514 => 0.045756916089212
515 => 0.047658928915847
516 => 0.04556892125072
517 => 0.044658274981564
518 => 0.04522323480528
519 => 0.04672779726537
520 => 0.049007286409541
521 => 0.047657782957197
522 => 0.048256669673293
523 => 0.048387499778144
524 => 0.047392425893719
525 => 0.049043976203019
526 => 0.049929055430943
527 => 0.050836963577453
528 => 0.051625274782059
529 => 0.050474325098409
530 => 0.051706006242071
531 => 0.05071348866127
601 => 0.049823097786709
602 => 0.049824448142128
603 => 0.049265892939981
604 => 0.048183621853337
605 => 0.047984034459942
606 => 0.049022313285491
607 => 0.04985491457821
608 => 0.04992349160857
609 => 0.050384462464818
610 => 0.050657260269168
611 => 0.053331049602433
612 => 0.054406469791018
613 => 0.055721473240957
614 => 0.056233741194242
615 => 0.057775484075403
616 => 0.056530401484631
617 => 0.05626102003418
618 => 0.052521256104735
619 => 0.053133642238676
620 => 0.054114131525589
621 => 0.05253742401194
622 => 0.053537482021308
623 => 0.053734914656482
624 => 0.052483848093961
625 => 0.053152096800398
626 => 0.051377426358033
627 => 0.047697611881876
628 => 0.049048072888461
629 => 0.050042466749568
630 => 0.04862334410189
701 => 0.051167066520222
702 => 0.049681076396521
703 => 0.049210088867414
704 => 0.047372598597187
705 => 0.048239823273247
706 => 0.04941275706508
707 => 0.048688020349917
708 => 0.050191957853647
709 => 0.05232193444441
710 => 0.053839882605287
711 => 0.053956411816642
712 => 0.052980472843827
713 => 0.054544421276123
714 => 0.054555812933051
715 => 0.052791672712504
716 => 0.051711146650192
717 => 0.051465648855389
718 => 0.052078950479486
719 => 0.052823611872865
720 => 0.053997735341395
721 => 0.054707233563124
722 => 0.056557228636613
723 => 0.057057784259983
724 => 0.057607743131085
725 => 0.058342657783912
726 => 0.05922511125288
727 => 0.057294353300882
728 => 0.057371065913698
729 => 0.055573170841961
730 => 0.053651862113576
731 => 0.055109895943906
801 => 0.057016081222951
802 => 0.05657880021379
803 => 0.056529597167419
804 => 0.056612343043628
805 => 0.056282647442984
806 => 0.054791446460359
807 => 0.054042574662297
808 => 0.055008810339369
809 => 0.05552232159953
810 => 0.056318732781152
811 => 0.056220558292816
812 => 0.058272027968357
813 => 0.05906916705105
814 => 0.058865224762193
815 => 0.058902755051488
816 => 0.060345937284377
817 => 0.061951052740413
818 => 0.063454455178631
819 => 0.064983780711422
820 => 0.06314011909105
821 => 0.062204021421466
822 => 0.063169835270267
823 => 0.062657360847279
824 => 0.065602190891558
825 => 0.065806084534516
826 => 0.068750701634064
827 => 0.071545493900017
828 => 0.069790134951677
829 => 0.071445359376858
830 => 0.07323561954512
831 => 0.076689321868941
901 => 0.075526236428991
902 => 0.074635331209861
903 => 0.073793430082607
904 => 0.075545292680383
905 => 0.077799035925734
906 => 0.078284470634698
907 => 0.079071060313551
908 => 0.078244057445847
909 => 0.079240091308619
910 => 0.082756528523662
911 => 0.081806356147707
912 => 0.080456958626021
913 => 0.083232848085076
914 => 0.084237431689311
915 => 0.091288125528352
916 => 0.10018991774978
917 => 0.096504517317788
918 => 0.094216870342524
919 => 0.094754521645423
920 => 0.098005154820003
921 => 0.099049155025739
922 => 0.096211202578098
923 => 0.097213615359992
924 => 0.10273700834328
925 => 0.10570013146715
926 => 0.10167581226441
927 => 0.090572875190843
928 => 0.080335460143271
929 => 0.083050883610695
930 => 0.082743038858889
1001 => 0.088677235562126
1002 => 0.081783694850784
1003 => 0.081899764396892
1004 => 0.087956674003528
1005 => 0.086340794362196
1006 => 0.083723276289467
1007 => 0.080354570921921
1008 => 0.074127207482479
1009 => 0.06861145802129
1010 => 0.07942911291592
1011 => 0.078962635966235
1012 => 0.07828710821508
1013 => 0.079790422125539
1014 => 0.087090087751629
1015 => 0.086921806832236
1016 => 0.085851289480736
1017 => 0.086663267456741
1018 => 0.083580932624417
1019 => 0.084375320494167
1020 => 0.080333838484423
1021 => 0.082160757140025
1022 => 0.08371766027127
1023 => 0.084030231625212
1024 => 0.084734470845933
1025 => 0.078716823810627
1026 => 0.081418570660645
1027 => 0.083005593815585
1028 => 0.075835365465169
1029 => 0.082863861455139
1030 => 0.078612069963799
1031 => 0.077168948071873
1101 => 0.079111921582499
1102 => 0.078354742915804
1103 => 0.077703765161203
1104 => 0.077340508388918
1105 => 0.078767213696961
1106 => 0.078700656189059
1107 => 0.076366289393534
1108 => 0.073321203069734
1109 => 0.074343233991552
1110 => 0.073971920576065
1111 => 0.072626232857953
1112 => 0.073533063901006
1113 => 0.069539838924092
1114 => 0.062669702901085
1115 => 0.067208325195841
1116 => 0.067033593174564
1117 => 0.06694548536597
1118 => 0.070356134582172
1119 => 0.0700282793571
1120 => 0.069433218913225
1121 => 0.07261530410625
1122 => 0.07145380020571
1123 => 0.075033281542436
1124 => 0.077390959457141
1125 => 0.076792976075081
1126 => 0.079010383549508
1127 => 0.074366779519779
1128 => 0.075909198509398
1129 => 0.076227088925458
1130 => 0.07257603766891
1201 => 0.070081920526575
1202 => 0.069915591348199
1203 => 0.065591135933904
1204 => 0.067901225110436
1205 => 0.069934007987798
1206 => 0.068960462739865
1207 => 0.068652267398207
1208 => 0.070226770559326
1209 => 0.070349122939653
1210 => 0.067559475701882
1211 => 0.068139531699254
1212 => 0.070558461634578
1213 => 0.068078580871218
1214 => 0.063260577634233
1215 => 0.062065646217354
1216 => 0.061906220339387
1217 => 0.058665471565606
1218 => 0.062145497248417
1219 => 0.06062637277898
1220 => 0.065425268776025
1221 => 0.062684165119509
1222 => 0.062566001619451
1223 => 0.062387380158296
1224 => 0.059597933815057
1225 => 0.060208645285663
1226 => 0.062238743227942
1227 => 0.062963105044437
1228 => 0.062887548172455
1229 => 0.062228794640508
1230 => 0.06253036863407
1231 => 0.061558893725464
]
'min_raw' => 0.033990826329382
'max_raw' => 0.10570013146715
'avg_raw' => 0.069845478898267
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.03399'
'max' => '$0.10570013'
'avg' => '$0.069845'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019363454878438
'max_diff' => 0.066017482248203
'year' => 2033
]
8 => [
'items' => [
101 => 0.061215845715734
102 => 0.060133091834237
103 => 0.05854174274683
104 => 0.058763029597745
105 => 0.055610150656453
106 => 0.053892294873286
107 => 0.053416815033481
108 => 0.052780983520023
109 => 0.053488633894809
110 => 0.05560121894655
111 => 0.053052993164229
112 => 0.048684238797696
113 => 0.048946808379119
114 => 0.049536724270971
115 => 0.04843741990919
116 => 0.047397020588387
117 => 0.04830156338756
118 => 0.046450464570189
119 => 0.049760420719321
120 => 0.049670895681532
121 => 0.050904642647613
122 => 0.05167612994454
123 => 0.049898101497102
124 => 0.049450932150871
125 => 0.049705660133198
126 => 0.045495573998932
127 => 0.050560588790959
128 => 0.050604391249209
129 => 0.050229328008423
130 => 0.05292629202039
131 => 0.05861772728981
201 => 0.056476380404001
202 => 0.055647186167263
203 => 0.054070887317088
204 => 0.056171211943582
205 => 0.056009939782435
206 => 0.05528060590908
207 => 0.054839502506814
208 => 0.055652249050457
209 => 0.054738794215789
210 => 0.054574712627422
211 => 0.05358055672445
212 => 0.0532256882983
213 => 0.052962957843298
214 => 0.052673717427701
215 => 0.053311709710286
216 => 0.051865935263075
217 => 0.050122473010756
218 => 0.049977522988999
219 => 0.050377742743207
220 => 0.050200675294827
221 => 0.049976675258179
222 => 0.049548998185438
223 => 0.049422115533831
224 => 0.049834422596843
225 => 0.049368951961698
226 => 0.050055779239353
227 => 0.049869000223717
228 => 0.048825667825572
301 => 0.047525289366355
302 => 0.047513713270432
303 => 0.047233548864442
304 => 0.046876717370413
305 => 0.046777455011973
306 => 0.048225385315989
307 => 0.051222557712396
308 => 0.050634141054724
309 => 0.051059332393256
310 => 0.0531508529515
311 => 0.053815684442749
312 => 0.053343802797658
313 => 0.052697862097465
314 => 0.052726280210069
315 => 0.054933655122176
316 => 0.055071326387823
317 => 0.055419177261679
318 => 0.055866263937229
319 => 0.053419943591761
320 => 0.052611058741791
321 => 0.052227764224652
322 => 0.05104736546551
323 => 0.052320324327503
324 => 0.051578625712153
325 => 0.051678706195397
326 => 0.051613528649392
327 => 0.051649119996797
328 => 0.04975949551912
329 => 0.050447975363047
330 => 0.049303244089657
331 => 0.047770577416703
401 => 0.047765439380593
402 => 0.048140557377471
403 => 0.047917422514559
404 => 0.047316972335786
405 => 0.047402263449636
406 => 0.046655023544783
407 => 0.0474929919033
408 => 0.047517021837427
409 => 0.047194358374953
410 => 0.048485364248598
411 => 0.049014290408391
412 => 0.04880190640527
413 => 0.04899938898056
414 => 0.050658592423392
415 => 0.050929114980696
416 => 0.051049263230933
417 => 0.050888280492208
418 => 0.049029716173652
419 => 0.049112151404406
420 => 0.04850729637777
421 => 0.047996257618315
422 => 0.048016696488648
423 => 0.048279436841397
424 => 0.049426839371366
425 => 0.051841480352612
426 => 0.051933114212771
427 => 0.052044177124432
428 => 0.051592428446961
429 => 0.051456176723183
430 => 0.0516359279164
501 => 0.052542740113165
502 => 0.054875307280354
503 => 0.054050822256546
504 => 0.053380503098317
505 => 0.053968553716831
506 => 0.053878027933404
507 => 0.05311389921935
508 => 0.053092452671356
509 => 0.051625845362358
510 => 0.051083674033254
511 => 0.050630595089834
512 => 0.050135844711545
513 => 0.049842540103112
514 => 0.050293189286225
515 => 0.050396258086328
516 => 0.049410905771451
517 => 0.049276605891935
518 => 0.050081265862571
519 => 0.049727165010241
520 => 0.050091366518141
521 => 0.050175864392036
522 => 0.050162258288188
523 => 0.049792536330132
524 => 0.050028186080929
525 => 0.049470804169722
526 => 0.048864735057341
527 => 0.048478100723081
528 => 0.048140710986837
529 => 0.048327914421712
530 => 0.047660568358381
531 => 0.047447070921699
601 => 0.049948353247646
602 => 0.05179607739514
603 => 0.051769210754257
604 => 0.051605666987417
605 => 0.051362674123534
606 => 0.052524963671663
607 => 0.052120045233808
608 => 0.052414657229415
609 => 0.052489648347123
610 => 0.052716623874547
611 => 0.052797748116396
612 => 0.052552534313121
613 => 0.051729566838989
614 => 0.049678810138852
615 => 0.048724177359026
616 => 0.048409132641016
617 => 0.048420583918161
618 => 0.048104706573763
619 => 0.048197746608317
620 => 0.048072351046682
621 => 0.04783488218939
622 => 0.048313251388944
623 => 0.048368378982875
624 => 0.048256721895613
625 => 0.048283021181709
626 => 0.047358548188545
627 => 0.047428833862365
628 => 0.047037474299061
629 => 0.046964099098852
630 => 0.045974776202394
701 => 0.044222047286674
702 => 0.045193229247496
703 => 0.044020178007672
704 => 0.043575925728524
705 => 0.045678946922606
706 => 0.045467861923449
707 => 0.045106576161334
708 => 0.044572159220616
709 => 0.04437393877883
710 => 0.043169614123504
711 => 0.043098456198046
712 => 0.043695352016726
713 => 0.043419905134336
714 => 0.043033073391569
715 => 0.04163200803177
716 => 0.040056746690557
717 => 0.040104293928708
718 => 0.040605355252569
719 => 0.042062258629019
720 => 0.041493021275156
721 => 0.041080033043682
722 => 0.041002692762307
723 => 0.041970768306555
724 => 0.043340798019761
725 => 0.043983585308511
726 => 0.0433466026271
727 => 0.042614871220279
728 => 0.042659408320496
729 => 0.042955693695263
730 => 0.042986829098901
731 => 0.042510547176264
801 => 0.042644617747649
802 => 0.042440952290045
803 => 0.041191057752669
804 => 0.041168451123946
805 => 0.040861706847202
806 => 0.04085241875241
807 => 0.040330570216722
808 => 0.040257559999211
809 => 0.039221398057661
810 => 0.039903402985377
811 => 0.039445949886731
812 => 0.038756460164794
813 => 0.038637591876848
814 => 0.038634018552575
815 => 0.039341970329923
816 => 0.039895130156669
817 => 0.039453907479234
818 => 0.039353449628325
819 => 0.040426076656869
820 => 0.040289575090274
821 => 0.040171365613944
822 => 0.043218126885561
823 => 0.040806377597329
824 => 0.039754717249824
825 => 0.038453087864902
826 => 0.038876904956017
827 => 0.038966209444284
828 => 0.035836025409878
829 => 0.034566110136959
830 => 0.034130323071041
831 => 0.03387952145348
901 => 0.033993814899971
902 => 0.032850742208139
903 => 0.033618905961728
904 => 0.032629101632131
905 => 0.032463157715172
906 => 0.034233050469719
907 => 0.03447932070695
908 => 0.033428655364754
909 => 0.034103352601712
910 => 0.033858698004598
911 => 0.032646068986451
912 => 0.032599755477453
913 => 0.031991300862118
914 => 0.031039187209148
915 => 0.03060404572112
916 => 0.030377420256084
917 => 0.0304709303398
918 => 0.030423648780018
919 => 0.030115104619956
920 => 0.030441334170103
921 => 0.029607952476834
922 => 0.029276093171562
923 => 0.029126200022447
924 => 0.02838652580201
925 => 0.029563676421345
926 => 0.029795589922706
927 => 0.030027960365307
928 => 0.03205058642211
929 => 0.031949541740194
930 => 0.032862936453958
1001 => 0.032827443615007
1002 => 0.032566928646628
1003 => 0.031467858847669
1004 => 0.031905928480499
1005 => 0.030557618241786
1006 => 0.031567863948814
1007 => 0.031106829996996
1008 => 0.031411987905946
1009 => 0.030863286470674
1010 => 0.03116696050028
1011 => 0.029850585217303
1012 => 0.028621372499958
1013 => 0.029116043580374
1014 => 0.029653807617285
1015 => 0.030819817069038
1016 => 0.030125351458943
1017 => 0.030375107552985
1018 => 0.029538466446609
1019 => 0.027812236869439
1020 => 0.027822007141377
1021 => 0.027556464328885
1022 => 0.027326996569007
1023 => 0.030205119188271
1024 => 0.02984717914418
1025 => 0.029276848529956
1026 => 0.030040258721132
1027 => 0.030242116492629
1028 => 0.030247863099604
1029 => 0.030804827468618
1030 => 0.031102079452202
1031 => 0.031154471402673
1101 => 0.032030866871327
1102 => 0.032324623072485
1103 => 0.033534563291118
1104 => 0.031076859698179
1105 => 0.031026244910019
1106 => 0.030051001468081
1107 => 0.029432486659215
1108 => 0.030093351706207
1109 => 0.030678787920766
1110 => 0.030069192603165
1111 => 0.030148792882384
1112 => 0.029330460974271
1113 => 0.029622976125327
1114 => 0.029874929579461
1115 => 0.029735815691228
1116 => 0.029527555467353
1117 => 0.030630788827399
1118 => 0.030568540077619
1119 => 0.031595896345718
1120 => 0.032396794023653
1121 => 0.033832145840098
1122 => 0.032334281393056
1123 => 0.032279693259133
1124 => 0.032813301024435
1125 => 0.032324541379916
1126 => 0.032633420603842
1127 => 0.033782380621869
1128 => 0.033806656336543
1129 => 0.033400006838271
1130 => 0.033375262179345
1201 => 0.033453363663746
1202 => 0.033910806497339
1203 => 0.033750961915483
1204 => 0.033935938112376
1205 => 0.034167253679047
1206 => 0.035124072938566
1207 => 0.03535475882274
1208 => 0.034794311721116
1209 => 0.034844913819332
1210 => 0.034635291218708
1211 => 0.034432798413068
1212 => 0.034887972668447
1213 => 0.035719812566624
1214 => 0.03571463773379
1215 => 0.03590760842151
1216 => 0.036027827561304
1217 => 0.035511759007519
1218 => 0.035175817355371
1219 => 0.035304638761328
1220 => 0.035510626994817
1221 => 0.035237839553447
1222 => 0.03355406909788
1223 => 0.034064817494426
1224 => 0.03397980398692
1225 => 0.033858734414236
1226 => 0.034372295876463
1227 => 0.03432276162059
1228 => 0.032839018345514
1229 => 0.032934002775991
1230 => 0.03284479466333
1231 => 0.033133044325602
]
'min_raw' => 0.027326996569007
'max_raw' => 0.061215845715734
'avg_raw' => 0.04427142114237
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027326'
'max' => '$0.061215'
'avg' => '$0.044271'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0066638297603754
'max_diff' => -0.044484285751419
'year' => 2034
]
9 => [
'items' => [
101 => 0.032308974952198
102 => 0.032562453141265
103 => 0.032721432285238
104 => 0.032815072222373
105 => 0.033153363884811
106 => 0.033113669262771
107 => 0.033150896411371
108 => 0.033652493641078
109 => 0.036189400301556
110 => 0.036327478533717
111 => 0.035647530818816
112 => 0.035919156519544
113 => 0.035397694572158
114 => 0.035747755470929
115 => 0.035987258247286
116 => 0.034904991254667
117 => 0.034840906427218
118 => 0.034317292220882
119 => 0.034598652836343
120 => 0.034150987866601
121 => 0.03426082919152
122 => 0.033953703271252
123 => 0.034506468779573
124 => 0.035124546508951
125 => 0.035280697352022
126 => 0.034869931711069
127 => 0.034572510316244
128 => 0.03405033632363
129 => 0.034918723310753
130 => 0.035172666129402
131 => 0.034917389457234
201 => 0.034858236274387
202 => 0.03474614109978
203 => 0.034882017795588
204 => 0.035171283102275
205 => 0.035034870925533
206 => 0.035124973571544
207 => 0.034781595198394
208 => 0.035511929847684
209 => 0.036671877035361
210 => 0.03667560645524
211 => 0.036539193543186
212 => 0.03648337631863
213 => 0.036623344244626
214 => 0.036699271102693
215 => 0.037151901709636
216 => 0.037637592384483
217 => 0.039904098840555
218 => 0.039267672897262
219 => 0.041278652260161
220 => 0.042869075843226
221 => 0.043345974334992
222 => 0.042907250162375
223 => 0.041406398467266
224 => 0.041332759522912
225 => 0.043575665598647
226 => 0.042941941900646
227 => 0.042866562483261
228 => 0.042064652837818
301 => 0.042538680756716
302 => 0.042435003897283
303 => 0.042271344902623
304 => 0.043175757150809
305 => 0.044868736141977
306 => 0.044604869489547
307 => 0.04440790527393
308 => 0.043544865416517
309 => 0.04406460817761
310 => 0.043879537735402
311 => 0.044674717803734
312 => 0.044203670746649
313 => 0.042937140820349
314 => 0.043138839885649
315 => 0.043108353477691
316 => 0.043735761593177
317 => 0.043547429250135
318 => 0.043071578565086
319 => 0.044862949723836
320 => 0.044746628044916
321 => 0.044911545590786
322 => 0.044984147394722
323 => 0.046074523451552
324 => 0.046521215633893
325 => 0.046622622579732
326 => 0.047046945604543
327 => 0.046612065036325
328 => 0.048351897373786
329 => 0.049508784356166
330 => 0.05085256811906
331 => 0.052816197371673
401 => 0.053554540135241
402 => 0.053421165123652
403 => 0.054909966412392
404 => 0.057585309234065
405 => 0.053961928398891
406 => 0.057777357216585
407 => 0.056569436504147
408 => 0.053705478224522
409 => 0.053521073075165
410 => 0.055460578873366
411 => 0.059762216063261
412 => 0.058684704735958
413 => 0.059763978485785
414 => 0.058504948327611
415 => 0.058442426868318
416 => 0.05970283020121
417 => 0.062647831289522
418 => 0.06124877166418
419 => 0.059242876627758
420 => 0.060723998307469
421 => 0.059440913637163
422 => 0.056549764762178
423 => 0.058683880783353
424 => 0.057256858176118
425 => 0.057673339237604
426 => 0.060672728504417
427 => 0.060311834052435
428 => 0.060778864891227
429 => 0.059954567685084
430 => 0.059184544114808
501 => 0.057747237938187
502 => 0.057321722437627
503 => 0.057439319613538
504 => 0.057321664162307
505 => 0.056517504566013
506 => 0.056343846377758
507 => 0.05605440845586
508 => 0.056144117370609
509 => 0.05559988939939
510 => 0.056626960024317
511 => 0.056817593382818
512 => 0.057565009733058
513 => 0.057642608977998
514 => 0.05972415287461
515 => 0.05857767347528
516 => 0.05934683083862
517 => 0.059278030164453
518 => 0.053767548884723
519 => 0.054526844585682
520 => 0.055708070416257
521 => 0.055175929780696
522 => 0.054423607423746
523 => 0.053816066783536
524 => 0.052895580589397
525 => 0.054191147231276
526 => 0.055894679597193
527 => 0.057685813370055
528 => 0.059837743238414
529 => 0.059357457543021
530 => 0.057645584538017
531 => 0.057722377910497
601 => 0.058197084322093
602 => 0.057582296387451
603 => 0.057400983423439
604 => 0.058172174705088
605 => 0.058177485475606
606 => 0.057470097657196
607 => 0.056683965547637
608 => 0.056680671625394
609 => 0.056540787009633
610 => 0.058529833489999
611 => 0.059623607938919
612 => 0.059749007416782
613 => 0.059615167554928
614 => 0.059666677205841
615 => 0.05903023395369
616 => 0.060484954496724
617 => 0.061819949923962
618 => 0.061462142631445
619 => 0.060925738634658
620 => 0.0604984670145
621 => 0.061361491016623
622 => 0.061323061916334
623 => 0.061808289903529
624 => 0.061786277159218
625 => 0.061623113237471
626 => 0.061462148458542
627 => 0.062100355612363
628 => 0.061916562201356
629 => 0.061732483308417
630 => 0.061363284907558
701 => 0.06141346510197
702 => 0.060877153722896
703 => 0.060629031538997
704 => 0.056897869221524
705 => 0.055900780731049
706 => 0.05621448506776
707 => 0.056317764680735
708 => 0.055883830491876
709 => 0.056505980650152
710 => 0.056409019207005
711 => 0.056786239461744
712 => 0.056550568623583
713 => 0.056560240636986
714 => 0.057253298321698
715 => 0.057454495916048
716 => 0.057352165195697
717 => 0.057423834124539
718 => 0.059075414340124
719 => 0.05884061244803
720 => 0.05871587862263
721 => 0.058750430744712
722 => 0.059172444900074
723 => 0.059290585822456
724 => 0.058790014432706
725 => 0.059026086793881
726 => 0.06003125294572
727 => 0.060383004211387
728 => 0.061505625401208
729 => 0.061028715966772
730 => 0.061904103873837
731 => 0.064594747858427
801 => 0.06674422045172
802 => 0.064767476624216
803 => 0.068714709308114
804 => 0.071788196149428
805 => 0.071670230605298
806 => 0.071134297083484
807 => 0.067635214027523
808 => 0.06441530563104
809 => 0.067108895729231
810 => 0.067115762244333
811 => 0.066884380466071
812 => 0.065447288113336
813 => 0.066834372767274
814 => 0.066944474509952
815 => 0.066882846812469
816 => 0.065781031475068
817 => 0.064098763104369
818 => 0.064427474317223
819 => 0.064965909989403
820 => 0.063946538932517
821 => 0.063620788113972
822 => 0.064226420862277
823 => 0.066177895765909
824 => 0.065808980739502
825 => 0.06579934687726
826 => 0.067377721804548
827 => 0.066247945991238
828 => 0.064431620418296
829 => 0.063972974256737
830 => 0.062345089364278
831 => 0.063469475257826
901 => 0.06350993990443
902 => 0.062894125241478
903 => 0.064481590384246
904 => 0.064466961613488
905 => 0.06597402350354
906 => 0.068854959810725
907 => 0.068002925182425
908 => 0.067012101610815
909 => 0.067119831605607
910 => 0.068301363748186
911 => 0.067586982443027
912 => 0.067843878941206
913 => 0.068300974904568
914 => 0.068576752248319
915 => 0.067080151489814
916 => 0.066731222262317
917 => 0.066017435520375
918 => 0.065831221882863
919 => 0.066412586290525
920 => 0.066259417309014
921 => 0.063506539007569
922 => 0.063218847908198
923 => 0.063227670983488
924 => 0.062504258035152
925 => 0.06140087964994
926 => 0.064300492166978
927 => 0.064067612701809
928 => 0.063810531795701
929 => 0.063842022739816
930 => 0.065100646256475
1001 => 0.064370581054802
1002 => 0.066311579048785
1003 => 0.065912568212962
1004 => 0.065503324254807
1005 => 0.065446754273914
1006 => 0.065289230265077
1007 => 0.064749021826676
1008 => 0.064096687675813
1009 => 0.063665960165196
1010 => 0.058728482882472
1011 => 0.059644849946161
1012 => 0.06069904672345
1013 => 0.061062951226542
1014 => 0.060440467392578
1015 => 0.064773601282525
1016 => 0.065565306599335
1017 => 0.063167179553057
1018 => 0.06271858789758
1019 => 0.064803010876776
1020 => 0.063545849009975
1021 => 0.064111948921618
1022 => 0.062888350552742
1023 => 0.065374607972353
1024 => 0.065355666856436
1025 => 0.064388456565537
1026 => 0.065205936080235
1027 => 0.065063878897373
1028 => 0.063971900861081
1029 => 0.06540922562383
1030 => 0.06540993851898
1031 => 0.064479019642954
1101 => 0.063391910200102
1102 => 0.063197560708099
1103 => 0.063051144473055
1104 => 0.064075939503276
1105 => 0.064994767522921
1106 => 0.066704478670696
1107 => 0.067134340674981
1108 => 0.068812120695242
1109 => 0.067813084382804
1110 => 0.068255944240422
1111 => 0.068736731262218
1112 => 0.068967238240824
1113 => 0.068591639488871
1114 => 0.071197922462144
1115 => 0.071417972599535
1116 => 0.071491753507176
1117 => 0.070612929552674
1118 => 0.07139353091558
1119 => 0.071028313388676
1120 => 0.071978507933328
1121 => 0.072127510570622
1122 => 0.072001310637756
1123 => 0.07204860642668
1124 => 0.069824603688814
1125 => 0.069709277414307
1126 => 0.068136795478219
1127 => 0.068777593490375
1128 => 0.067579652320898
1129 => 0.067959531805901
1130 => 0.068126979063265
1201 => 0.068039514118566
1202 => 0.068813823248536
1203 => 0.068155502307157
1204 => 0.066418085104874
1205 => 0.064680194544436
1206 => 0.064658376744105
1207 => 0.064200820835858
1208 => 0.06387009171974
1209 => 0.06393380188075
1210 => 0.064158324797996
1211 => 0.063857042039629
1212 => 0.063921335991551
1213 => 0.064989043981803
1214 => 0.065203165204703
1215 => 0.064475497626726
1216 => 0.061553807299218
1217 => 0.060836817164343
1218 => 0.061352175454759
1219 => 0.061105867385265
1220 => 0.049317204097319
1221 => 0.052086775673108
1222 => 0.050441190288538
1223 => 0.051199551743491
1224 => 0.049519835188115
1225 => 0.050321483969828
1226 => 0.050173448711372
1227 => 0.054626837847659
1228 => 0.054557304301732
1229 => 0.054590586330534
1230 => 0.053001948379963
1231 => 0.055532691771443
]
'min_raw' => 0.032308974952198
'max_raw' => 0.072127510570622
'avg_raw' => 0.05221824276141
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0323089'
'max' => '$0.072127'
'avg' => '$0.052218'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0049819783831919
'max_diff' => 0.010911664854888
'year' => 2035
]
10 => [
'items' => [
101 => 0.056779426968675
102 => 0.056548689464451
103 => 0.05660676112322
104 => 0.055608897624958
105 => 0.054600247830419
106 => 0.053481499978184
107 => 0.055559995206222
108 => 0.055328902017961
109 => 0.055858946647127
110 => 0.057206999376417
111 => 0.057405505261559
112 => 0.057672299184238
113 => 0.057576672554642
114 => 0.05985488683158
115 => 0.059578980050501
116 => 0.060243836009103
117 => 0.058876176859516
118 => 0.05732854071236
119 => 0.057622695747897
120 => 0.057594366252529
121 => 0.057233699261419
122 => 0.056908105228355
123 => 0.056366082898853
124 => 0.058081121753607
125 => 0.058011494308133
126 => 0.05913868171731
127 => 0.058939440393824
128 => 0.057608858072959
129 => 0.057656380080854
130 => 0.057975988422248
131 => 0.059082156541035
201 => 0.05941054255236
202 => 0.059258421067994
203 => 0.059618481338021
204 => 0.05990305829461
205 => 0.059654219822345
206 => 0.063177247835727
207 => 0.061714240979914
208 => 0.062427300341901
209 => 0.062597360798145
210 => 0.062161754515462
211 => 0.062256221920285
212 => 0.062399314297764
213 => 0.063268143193456
214 => 0.06554820161342
215 => 0.06655802396674
216 => 0.069596124340459
217 => 0.066474172277703
218 => 0.066288928562221
219 => 0.066836182181369
220 => 0.068619868716327
221 => 0.070065379119754
222 => 0.070544938314066
223 => 0.070608319978254
224 => 0.071508004907277
225 => 0.072023687530462
226 => 0.07139875949283
227 => 0.070869198413631
228 => 0.068972376359479
229 => 0.069191938677122
301 => 0.070704505316209
302 => 0.072841094783649
303 => 0.074674510820959
304 => 0.074032512425693
305 => 0.078930507001337
306 => 0.079416123156999
307 => 0.079349026706136
308 => 0.080455332578107
309 => 0.078259540717519
310 => 0.077320797155653
311 => 0.070983695529728
312 => 0.072764162599596
313 => 0.075352176048816
314 => 0.075009642764259
315 => 0.073130158219638
316 => 0.074673085063394
317 => 0.074162945197065
318 => 0.073760576718769
319 => 0.075603904720811
320 => 0.073577089862825
321 => 0.075331957020175
322 => 0.073081321739097
323 => 0.074035445020284
324 => 0.073493838500132
325 => 0.073844324295469
326 => 0.07179539149753
327 => 0.072900945900266
328 => 0.071749396799651
329 => 0.071748850815441
330 => 0.07172343030522
331 => 0.073078222715344
401 => 0.073122402447199
402 => 0.07212120880914
403 => 0.071976921164312
404 => 0.072510428211458
405 => 0.071885831184967
406 => 0.072178076202495
407 => 0.071894682988833
408 => 0.071830885207263
409 => 0.071322533629418
410 => 0.071103521792265
411 => 0.071189401976852
412 => 0.070896248632585
413 => 0.070719613138844
414 => 0.071688293059664
415 => 0.071170766454406
416 => 0.071608974685032
417 => 0.071109581099947
418 => 0.069378465358612
419 => 0.068382882389554
420 => 0.065112965228688
421 => 0.06604030967919
422 => 0.06665514000928
423 => 0.066451938588853
424 => 0.066888493868442
425 => 0.066915294817053
426 => 0.066773366245505
427 => 0.066609031141828
428 => 0.066529041901659
429 => 0.067125216163922
430 => 0.067471315389468
501 => 0.066716846458274
502 => 0.066540084943837
503 => 0.067302894688646
504 => 0.067768208192318
505 => 0.071203821666364
506 => 0.070949300323321
507 => 0.071588098947067
508 => 0.071516180025197
509 => 0.072185742751484
510 => 0.073280194830643
511 => 0.0710548677401
512 => 0.071441107576997
513 => 0.07134641048857
514 => 0.072380288469103
515 => 0.072383516123307
516 => 0.071763654627942
517 => 0.072099691600684
518 => 0.071912124981191
519 => 0.072251083213763
520 => 0.070945901035611
521 => 0.07253547204289
522 => 0.073436656374325
523 => 0.073449169319641
524 => 0.0738763235405
525 => 0.074310336967996
526 => 0.075143387947473
527 => 0.074287103628318
528 => 0.072746731495756
529 => 0.072857941388355
530 => 0.071954821770634
531 => 0.07197000337457
601 => 0.071888962782957
602 => 0.072132171698839
603 => 0.070999271715823
604 => 0.071265161077428
605 => 0.070892914414134
606 => 0.071440298385449
607 => 0.070851403718127
608 => 0.071346364822767
609 => 0.071559973627309
610 => 0.072348194714738
611 => 0.07073498282263
612 => 0.067445534569779
613 => 0.068137016473233
614 => 0.067114260423293
615 => 0.067208920389622
616 => 0.067400148586628
617 => 0.066780315434158
618 => 0.066898560066462
619 => 0.066894335536121
620 => 0.066857930815922
621 => 0.066696688273873
622 => 0.066462854687036
623 => 0.067394375726811
624 => 0.067552659303347
625 => 0.067904504086801
626 => 0.068951355503763
627 => 0.068846750360752
628 => 0.069017365689029
629 => 0.068644913385365
630 => 0.06722619738377
701 => 0.067303240488305
702 => 0.066342511740219
703 => 0.067879936092699
704 => 0.067515853713022
705 => 0.067281127434348
706 => 0.067217080194488
707 => 0.068266526553629
708 => 0.06858053735234
709 => 0.068384866895064
710 => 0.067983541078572
711 => 0.068754205287564
712 => 0.068960402518177
713 => 0.069006562473851
714 => 0.070372031691979
715 => 0.069082877034673
716 => 0.069393189373782
717 => 0.071814157660945
718 => 0.069618673495275
719 => 0.07078167042297
720 => 0.070724747775303
721 => 0.071319697649842
722 => 0.070675944520306
723 => 0.070683924611877
724 => 0.071212199795072
725 => 0.070470332575206
726 => 0.070286635818665
727 => 0.070032860065165
728 => 0.070586970138733
729 => 0.070919134067594
730 => 0.073596131386687
731 => 0.075325593740731
801 => 0.075250513218809
802 => 0.075936608644324
803 => 0.075627516371216
804 => 0.074629375886927
805 => 0.076333079983343
806 => 0.07579395672123
807 => 0.075838401387924
808 => 0.07583674715521
809 => 0.076195216993541
810 => 0.075941208259805
811 => 0.07544053097215
812 => 0.075772903921326
813 => 0.076759932754876
814 => 0.079823700539959
815 => 0.081538225582016
816 => 0.079720483979606
817 => 0.080974337796418
818 => 0.080222472300127
819 => 0.08008583597339
820 => 0.080873348829417
821 => 0.08166224012245
822 => 0.081611991157554
823 => 0.081039296588829
824 => 0.080715795958543
825 => 0.083165451111732
826 => 0.084970315299815
827 => 0.08484723566215
828 => 0.085390469155158
829 => 0.086985419492207
830 => 0.087131241762458
831 => 0.087112871508093
901 => 0.086751435796295
902 => 0.088321871533593
903 => 0.089631956654835
904 => 0.086667773871895
905 => 0.087796495871637
906 => 0.088303215542472
907 => 0.08904723035621
908 => 0.090302508058348
909 => 0.091666072588837
910 => 0.091858895564172
911 => 0.091722078435743
912 => 0.090822770973304
913 => 0.092314799553272
914 => 0.093188794903042
915 => 0.093709239132802
916 => 0.095028999105811
917 => 0.088306344870651
918 => 0.083547716065411
919 => 0.082804587462039
920 => 0.084315768699084
921 => 0.084714255139848
922 => 0.084553625755235
923 => 0.079197356399334
924 => 0.082776387812386
925 => 0.086627124679321
926 => 0.086775047165
927 => 0.088702806555698
928 => 0.089330564034837
929 => 0.090882663021549
930 => 0.090785578807339
1001 => 0.091163490211314
1002 => 0.091076614924054
1003 => 0.093951551463936
1004 => 0.097123033399634
1005 => 0.097013215064896
1006 => 0.096557277013368
1007 => 0.097234422768877
1008 => 0.10050773200318
1009 => 0.10020637814259
1010 => 0.10049911774889
1011 => 0.10435853381175
1012 => 0.10937632368901
1013 => 0.10704505651316
1014 => 0.1121032354807
1015 => 0.11528709101822
1016 => 0.12079323995355
1017 => 0.12010384298849
1018 => 0.12224734636303
1019 => 0.11886967853955
1020 => 0.11111387047754
1021 => 0.10988648416368
1022 => 0.11234374264639
1023 => 0.11838467285035
1024 => 0.11215349225642
1025 => 0.11341405197507
1026 => 0.1130510106913
1027 => 0.11303166576411
1028 => 0.1137699829533
1029 => 0.11269901536235
1030 => 0.10833570073342
1031 => 0.11033538211468
1101 => 0.10956320910079
1102 => 0.11041999262901
1103 => 0.11504369996644
1104 => 0.11299944873715
1105 => 0.11084599612857
1106 => 0.11354690358912
1107 => 0.11698608691889
1108 => 0.11677086900692
1109 => 0.11635325630358
1110 => 0.11870731724677
1111 => 0.12259553624977
1112 => 0.12364650622216
1113 => 0.12442231076963
1114 => 0.12452928110941
1115 => 0.12563114209075
1116 => 0.11970615788933
1117 => 0.12910925998137
1118 => 0.13073291595722
1119 => 0.1304277359274
1120 => 0.13223236121066
1121 => 0.1317013946734
1122 => 0.13093210746701
1123 => 0.13379282239578
1124 => 0.13051324357774
1125 => 0.12585829433301
1126 => 0.12330449711289
1127 => 0.12666754330129
1128 => 0.1287212382544
1129 => 0.13007859997888
1130 => 0.13048933681656
1201 => 0.12016609754662
1202 => 0.11460244413322
1203 => 0.11816868218379
1204 => 0.1225197387341
1205 => 0.1196819875505
1206 => 0.11979322202433
1207 => 0.11574733458442
1208 => 0.1228777099975
1209 => 0.12183887427571
1210 => 0.12722835583802
1211 => 0.12594211280988
1212 => 0.13033702580548
1213 => 0.12917969792416
1214 => 0.13398370125417
1215 => 0.1359001482457
1216 => 0.13911816101565
1217 => 0.14148534430889
1218 => 0.14287539961568
1219 => 0.14279194590903
1220 => 0.14830003755734
1221 => 0.14505210835039
1222 => 0.14097194378833
1223 => 0.14089814648416
1224 => 0.14301132152723
1225 => 0.14743995669625
1226 => 0.14858823736155
1227 => 0.14922996960213
1228 => 0.14824713433683
1229 => 0.14472173996387
1230 => 0.14319949254778
1231 => 0.14449649145004
]
'min_raw' => 0.053481499978184
'max_raw' => 0.14922996960213
'avg_raw' => 0.10135573479016
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.053481'
'max' => '$0.149229'
'avg' => '$0.101355'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021172525025986
'max_diff' => 0.077102459031505
'year' => 2036
]
11 => [
'items' => [
101 => 0.14291037324496
102 => 0.14564845825309
103 => 0.14940843379266
104 => 0.14863201371229
105 => 0.15122746963355
106 => 0.15391349346212
107 => 0.15775462817386
108 => 0.15875884302432
109 => 0.16041877198525
110 => 0.16212738414431
111 => 0.16267614432141
112 => 0.16372389776977
113 => 0.16371837559192
114 => 0.16687585113051
115 => 0.17035864442846
116 => 0.17167331827159
117 => 0.17469633828232
118 => 0.1695195224532
119 => 0.17344619672656
120 => 0.17698815521216
121 => 0.17276528628782
122 => 0.17858552729776
123 => 0.17881151406722
124 => 0.18222364598231
125 => 0.17876479660099
126 => 0.1767109428794
127 => 0.18264034161674
128 => 0.18550939089143
129 => 0.18464520990079
130 => 0.17806874989219
131 => 0.17424096808955
201 => 0.16422292478807
202 => 0.17608972982594
203 => 0.18186970440044
204 => 0.17805378115439
205 => 0.1799783108807
206 => 0.19047792103658
207 => 0.19447549278453
208 => 0.19364402580609
209 => 0.19378453003834
210 => 0.19594154719247
211 => 0.20550694914494
212 => 0.19977513857074
213 => 0.20415689298787
214 => 0.20648095973113
215 => 0.20863968244391
216 => 0.20333854173263
217 => 0.19644183555649
218 => 0.19425735920647
219 => 0.17767436279119
220 => 0.17681114581148
221 => 0.17632659596261
222 => 0.17327157770644
223 => 0.17087117019701
224 => 0.1689622770241
225 => 0.16395277129463
226 => 0.16564333242274
227 => 0.15765922585506
228 => 0.1627671742977
301 => 0.15002434743269
302 => 0.16063695230101
303 => 0.15486099396712
304 => 0.15873939464443
305 => 0.15872586326983
306 => 0.15158449797485
307 => 0.1474655075092
308 => 0.15009028854742
309 => 0.15290426217577
310 => 0.15336081992963
311 => 0.15700921019101
312 => 0.15802739749108
313 => 0.15494224243726
314 => 0.14976028066955
315 => 0.15096393220023
316 => 0.14744111554934
317 => 0.14126751487186
318 => 0.14570150265916
319 => 0.14721546103842
320 => 0.14788411130701
321 => 0.14181308408353
322 => 0.1399054355215
323 => 0.1388898194338
324 => 0.1489765872917
325 => 0.14952916320454
326 => 0.14670210670806
327 => 0.15948067014466
328 => 0.15658848768125
329 => 0.15981976409479
330 => 0.15085471343989
331 => 0.15119719044795
401 => 0.14695299179662
402 => 0.14932945944391
403 => 0.14764984870793
404 => 0.14913746434272
405 => 0.15002913502054
406 => 0.15427263724064
407 => 0.16068540627994
408 => 0.15363879951729
409 => 0.15056849204153
410 => 0.15247329353143
411 => 0.15754603091082
412 => 0.16523148770924
413 => 0.16068154260034
414 => 0.16270073097659
415 => 0.16314183380937
416 => 0.15978687273419
417 => 0.16535518990955
418 => 0.16833929632076
419 => 0.17140037202484
420 => 0.1740582182893
421 => 0.17017771107413
422 => 0.17433041004322
423 => 0.17098406772418
424 => 0.16798205272549
425 => 0.16798660554307
426 => 0.16610339768195
427 => 0.16245444515158
428 => 0.16178152232
429 => 0.16528215187065
430 => 0.16808932525942
501 => 0.16832053750517
502 => 0.16987473293097
503 => 0.17079448977447
504 => 0.17980935718958
505 => 0.18343521143884
506 => 0.18786883738091
507 => 0.18959598455082
508 => 0.19479407831571
509 => 0.19059619543203
510 => 0.18968795706422
511 => 0.17707908187412
512 => 0.17914378448013
513 => 0.18244957256654
514 => 0.17713359310207
515 => 0.18050535850247
516 => 0.18117101641627
517 => 0.17695295815405
518 => 0.17920600532344
519 => 0.17322258002347
520 => 0.16081582860066
521 => 0.16536900217054
522 => 0.16872167049962
523 => 0.163936999413
524 => 0.17251333714343
525 => 0.16750321769286
526 => 0.16591525035517
527 => 0.15972002361963
528 => 0.16264393216266
529 => 0.16659856033345
530 => 0.16415505989877
531 => 0.16922569019416
601 => 0.17640705498014
602 => 0.18152492318429
603 => 0.18191780955618
604 => 0.17862736317145
605 => 0.18390032450233
606 => 0.183938732269
607 => 0.17799081034709
608 => 0.17434774128809
609 => 0.1735200283328
610 => 0.1755878175778
611 => 0.17809849545617
612 => 0.182057134705
613 => 0.18444925749515
614 => 0.19068664504795
615 => 0.19237430327982
616 => 0.19422852801064
617 => 0.19670634407275
618 => 0.19968159755431
619 => 0.19317191231793
620 => 0.19343055424794
621 => 0.18736882548856
622 => 0.18089099896932
623 => 0.18580686182494
624 => 0.19223369857885
625 => 0.19075937512648
626 => 0.19059348362039
627 => 0.19087246711916
628 => 0.18976087538298
629 => 0.18473318715773
630 => 0.18220831360601
701 => 0.18546604465167
702 => 0.18719738371752
703 => 0.18988253962001
704 => 0.18955153747826
705 => 0.19646821071839
706 => 0.19915582079016
707 => 0.19846821512448
708 => 0.19859475111512
709 => 0.20346054077307
710 => 0.20887229959868
711 => 0.21394112588334
712 => 0.21909735369125
713 => 0.21288131981782
714 => 0.20972520116856
715 => 0.21298150999076
716 => 0.21125366669384
717 => 0.22118236678959
718 => 0.22186980844223
719 => 0.23179779057995
720 => 0.24122062783078
721 => 0.2353023125812
722 => 0.24088301729478
723 => 0.24691900444405
724 => 0.2585634029586
725 => 0.25464197919378
726 => 0.25163823004647
727 => 0.24879970161627
728 => 0.25470622867581
729 => 0.26230488137884
730 => 0.26394155839209
731 => 0.26659360041228
801 => 0.26380530250432
802 => 0.26716350021352
803 => 0.27901941379384
804 => 0.27581584128939
805 => 0.2712662533331
806 => 0.28062535845072
807 => 0.28401238221018
808 => 0.30778428875223
809 => 0.33779730273005
810 => 0.32537171786716
811 => 0.31765875637165
812 => 0.31947148527698
813 => 0.33043122197704
814 => 0.33395114156045
815 => 0.32438278674371
816 => 0.3277624914241
817 => 0.34638499649824
818 => 0.35637537298902
819 => 0.34280709982797
820 => 0.30537277230214
821 => 0.27085661271575
822 => 0.28001185252098
823 => 0.27897393244724
824 => 0.29898149094458
825 => 0.27573943714465
826 => 0.27613077372307
827 => 0.29655206734177
828 => 0.29110401631391
829 => 0.28227887138242
830 => 0.27092104604024
831 => 0.24992505542354
901 => 0.2313283210178
902 => 0.2678007997596
903 => 0.26622804015535
904 => 0.26395045117849
905 => 0.26901897898563
906 => 0.29363031129037
907 => 0.29306294042164
908 => 0.28945361642992
909 => 0.29219125686652
910 => 0.28179894977759
911 => 0.28447728394284
912 => 0.27085114517973
913 => 0.27701072897848
914 => 0.28225993658497
915 => 0.28331379272783
916 => 0.2856881844289
917 => 0.26539926731066
918 => 0.27450839544544
919 => 0.27985915481474
920 => 0.25568422932196
921 => 0.27938129426606
922 => 0.2650460824024
923 => 0.26018049618822
924 => 0.26673136703338
925 => 0.26417848629409
926 => 0.26198366934464
927 => 0.2607589237751
928 => 0.26556916033055
929 => 0.26534475704576
930 => 0.25747427641436
1001 => 0.24720755527253
1002 => 0.25065340388136
1003 => 0.24940149477677
1004 => 0.24486441468224
1005 => 0.24792185885682
1006 => 0.23445842204909
1007 => 0.21129527878994
1008 => 0.2265975607332
1009 => 0.22600843952406
1010 => 0.2257113778959
1011 => 0.23721061985225
1012 => 0.23610523307079
1013 => 0.23409894523848
1014 => 0.24482756763285
1015 => 0.24091147613857
1016 => 0.25297994737675
1017 => 0.26092902307399
1018 => 0.25891288035151
1019 => 0.26638902446599
1020 => 0.25073278927368
1021 => 0.25593316258543
1022 => 0.25700495231758
1023 => 0.24469517809787
1024 => 0.23628608801879
1025 => 0.23572529758116
1026 => 0.22114509422803
1027 => 0.22893372117198
1028 => 0.23578739056738
1029 => 0.23250501479321
1030 => 0.2314659126813
1031 => 0.23677446001732
1101 => 0.23718697960996
1102 => 0.22778148918086
1103 => 0.22973718847422
1104 => 0.23789277963546
1105 => 0.22953168850204
1106 => 0.2132874542063
1107 => 0.20925865950685
1108 => 0.20872114402852
1109 => 0.19779473327587
1110 => 0.2095278828331
1111 => 0.20440604862251
1112 => 0.22058586152477
1113 => 0.21134403916907
1114 => 0.21094564267872
1115 => 0.21034340795148
1116 => 0.20093859485233
1117 => 0.20299765121399
1118 => 0.20984226816329
1119 => 0.21228450460093
1120 => 0.21202975933183
1121 => 0.20980872580617
1122 => 0.21082550358069
1123 => 0.20755010810011
1124 => 0.20639349778446
1125 => 0.20274291747753
1126 => 0.19737757292489
1127 => 0.19812365699251
1128 => 0.18749350551496
1129 => 0.18170163480516
1130 => 0.18009852132831
1201 => 0.17795477098835
1202 => 0.18034066363351
1203 => 0.18746339163144
1204 => 0.1788718704949
1205 => 0.16414231013144
1206 => 0.16502758180723
1207 => 0.16701652442322
1208 => 0.1633101430165
1209 => 0.15980236406805
1210 => 0.16285209326862
1211 => 0.15661098436626
1212 => 0.16777073261682
1213 => 0.16746889270148
1214 => 0.17162855673508
1215 => 0.17422968002019
1216 => 0.16823493297167
1217 => 0.16672727030049
1218 => 0.16758610347744
1219 => 0.15339150413694
1220 => 0.1704685551363
1221 => 0.17061623818248
1222 => 0.16935168628009
1223 => 0.17844468874245
1224 => 0.19763376011662
1225 => 0.19041405958705
1226 => 0.1876183733254
1227 => 0.18230377169836
1228 => 0.18938516281657
1229 => 0.1888414224656
1230 => 0.18638242239112
1231 => 0.18489521147352
]
'min_raw' => 0.1388898194338
'max_raw' => 0.35637537298902
'avg_raw' => 0.24763259621141
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.138889'
'max' => '$0.356375'
'avg' => '$0.247632'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.085408319455614
'max_diff' => 0.20714540338689
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0043595927261851
]
1 => [
'year' => 2028
'avg' => 0.007482326716945
]
2 => [
'year' => 2029
'avg' => 0.020440368032511
]
3 => [
'year' => 2030
'avg' => 0.015769713496373
]
4 => [
'year' => 2031
'avg' => 0.015487812972517
]
5 => [
'year' => 2032
'avg' => 0.027155010334947
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0043595927261851
'min' => '$0.004359'
'max_raw' => 0.027155010334947
'max' => '$0.027155'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027155010334947
]
1 => [
'year' => 2033
'avg' => 0.069845478898267
]
2 => [
'year' => 2034
'avg' => 0.04427142114237
]
3 => [
'year' => 2035
'avg' => 0.05221824276141
]
4 => [
'year' => 2036
'avg' => 0.10135573479016
]
5 => [
'year' => 2037
'avg' => 0.24763259621141
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027155010334947
'min' => '$0.027155'
'max_raw' => 0.24763259621141
'max' => '$0.247632'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.24763259621141
]
]
]
]
'prediction_2025_max_price' => '$0.007454'
'last_price' => 0.0072277
'sma_50day_nextmonth' => '$0.0069014'
'sma_200day_nextmonth' => '$0.009448'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.00722'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007125'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007179'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007235'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.007867'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010153'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009755'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007194'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007176'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007221'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007356'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00818'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00928'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012251'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010653'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013571'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007346'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007626'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008561'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010261'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017364'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011432'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005716'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '46.49'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 40.28
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007215'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007227'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 31.13
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -7.28
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.08
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000185'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -68.87
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 47.53
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 15
'sell_pct' => 51.61
'buy_pct' => 48.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767694237
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SynFutures para 2026
A previsão de preço para SynFutures em 2026 sugere que o preço médio poderia variar entre $0.002497 na extremidade inferior e $0.007454 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SynFutures poderia potencialmente ganhar 3.13% até 2026 se F atingir a meta de preço prevista.
Previsão de preço de SynFutures 2027-2032
A previsão de preço de F para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004359 na extremidade inferior e $0.027155 na extremidade superior. Considerando a volatilidade de preços no mercado, se SynFutures atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0024039 | $0.004359 | $0.006315 |
| 2028 | $0.004338 | $0.007482 | $0.010626 |
| 2029 | $0.00953 | $0.02044 | $0.03135 |
| 2030 | $0.0081051 | $0.015769 | $0.023434 |
| 2031 | $0.009582 | $0.015487 | $0.021392 |
| 2032 | $0.014627 | $0.027155 | $0.039682 |
Previsão de preço de SynFutures 2032-2037
A previsão de preço de SynFutures para 2032-2037 é atualmente estimada entre $0.027155 na extremidade inferior e $0.247632 na extremidade superior. Comparado ao preço atual, SynFutures poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014627 | $0.027155 | $0.039682 |
| 2033 | $0.03399 | $0.069845 | $0.10570013 |
| 2034 | $0.027326 | $0.044271 | $0.061215 |
| 2035 | $0.0323089 | $0.052218 | $0.072127 |
| 2036 | $0.053481 | $0.101355 | $0.149229 |
| 2037 | $0.138889 | $0.247632 | $0.356375 |
SynFutures Histograma de preços potenciais
Previsão de preço de SynFutures baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SynFutures é Baixista, com 15 indicadores técnicos mostrando sinais de alta e 16 indicando sinais de baixa. A previsão de preço de F foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SynFutures
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SynFutures está projetado para aumentar no próximo mês, alcançando $0.009448 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SynFutures é esperado para alcançar $0.0069014 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 46.49, sugerindo que o mercado de F está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de F para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.00722 | BUY |
| SMA 5 | $0.007125 | BUY |
| SMA 10 | $0.007179 | BUY |
| SMA 21 | $0.007235 | SELL |
| SMA 50 | $0.007867 | SELL |
| SMA 100 | $0.010153 | SELL |
| SMA 200 | $0.009755 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.007194 | BUY |
| EMA 5 | $0.007176 | BUY |
| EMA 10 | $0.007221 | BUY |
| EMA 21 | $0.007356 | SELL |
| EMA 50 | $0.00818 | SELL |
| EMA 100 | $0.00928 | SELL |
| EMA 200 | $0.012251 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.010653 | SELL |
| SMA 50 | $0.013571 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.010261 | SELL |
| EMA 50 | $0.017364 | SELL |
| EMA 100 | $0.011432 | SELL |
| EMA 200 | $0.005716 | BUY |
Osciladores de SynFutures
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 46.49 | NEUTRAL |
| Stoch RSI (14) | 40.28 | NEUTRAL |
| Estocástico Rápido (14) | 31.13 | NEUTRAL |
| Índice de Canal de Commodities (20) | -7.28 | NEUTRAL |
| Índice Direcional Médio (14) | 15.08 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000185 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -68.87 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 47.53 | NEUTRAL |
| VWMA (10) | 0.007215 | BUY |
| Média Móvel de Hull (9) | 0.007227 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.006688 | SELL |
Previsão do preço de SynFutures com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SynFutures
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SynFutures por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010156 | $0.014271 | $0.020053 | $0.028178 | $0.039594 | $0.055637 |
| Amazon.com stock | $0.015081 | $0.031467 | $0.065658 | $0.13700081 | $0.28586 | $0.596464 |
| Apple stock | $0.010251 | $0.014541 | $0.020626 | $0.029256 | $0.041498 | $0.058862 |
| Netflix stock | $0.0114041 | $0.017994 | $0.028391 | $0.044797 | $0.070683 | $0.111527 |
| Google stock | $0.009359 | $0.01212 | $0.015696 | $0.020326 | $0.026323 | $0.034088 |
| Tesla stock | $0.016384 | $0.037142 | $0.084199 | $0.190874 | $0.432698 | $0.980894 |
| Kodak stock | $0.00542 | $0.004064 | $0.003047 | $0.002285 | $0.001713 | $0.001285 |
| Nokia stock | $0.004788 | $0.003171 | $0.0021012 | $0.001391 | $0.000922 | $0.00061 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SynFutures
Você pode fazer perguntas como: 'Devo investir em SynFutures agora?', 'Devo comprar F hoje?', 'SynFutures será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SynFutures regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SynFutures, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SynFutures para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SynFutures é de $0.007227 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para SynFutures
com base no histórico de preços de 4 horas
Previsão de longo prazo para SynFutures
com base no histórico de preços de 1 mês
Previsão do preço de SynFutures com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SynFutures tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007415 | $0.0076083 | $0.007806 | $0.0080089 |
| Se SynFutures tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0076034 | $0.007998 | $0.008414 | $0.008851 |
| Se SynFutures tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008167 | $0.009228 | $0.010427 | $0.011783 |
| Se SynFutures tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0091064 | $0.011473 | $0.014455 | $0.018213 |
| Se SynFutures tiver 20% da média anterior do crescimento anual do Bitcoin | $0.010985 | $0.016695 | $0.025375 | $0.038567 |
| Se SynFutures tiver 50% da média anterior do crescimento anual do Bitcoin | $0.016621 | $0.038223 | $0.0879005 | $0.202141 |
| Se SynFutures tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026014 | $0.093635 | $0.337024 | $1.21 |
Perguntas Frequentes sobre SynFutures
F é um bom investimento?
A decisão de adquirir SynFutures depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SynFutures experimentou uma escalada de 0.4589% nas últimas 24 horas, e SynFutures registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SynFutures dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SynFutures pode subir?
Parece que o valor médio de SynFutures pode potencialmente subir para $0.007454 até o final deste ano. Observando as perspectivas de SynFutures em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.023434. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SynFutures na próxima semana?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures aumentará 0.86% na próxima semana e atingirá $0.007289 até 13 de janeiro de 2026.
Qual será o preço de SynFutures no próximo mês?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures diminuirá -11.62% no próximo mês e atingirá $0.006387 até 5 de fevereiro de 2026.
Até onde o preço de SynFutures pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SynFutures em 2026, espera-se que F fluctue dentro do intervalo de $0.002497 e $0.007454. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SynFutures não considera flutuações repentinas e extremas de preço.
Onde estará SynFutures em 5 anos?
O futuro de SynFutures parece seguir uma tendência de alta, com um preço máximo de $0.023434 projetada após um período de cinco anos. Com base na previsão de SynFutures para 2030, o valor de SynFutures pode potencialmente atingir seu pico mais alto de aproximadamente $0.023434, enquanto seu pico mais baixo está previsto para cerca de $0.0081051.
Quanto será SynFutures em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SynFutures, espera-se que o valor de F em 2026 aumente 3.13% para $0.007454 se o melhor cenário ocorrer. O preço ficará entre $0.007454 e $0.002497 durante 2026.
Quanto será SynFutures em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SynFutures, o valor de F pode diminuir -12.62% para $0.006315 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006315 e $0.0024039 ao longo do ano.
Quanto será SynFutures em 2028?
Nosso novo modelo experimental de previsão de preços de SynFutures sugere que o valor de F em 2028 pode aumentar 47.02%, alcançando $0.010626 no melhor cenário. O preço é esperado para variar entre $0.010626 e $0.004338 durante o ano.
Quanto será SynFutures em 2029?
Com base no nosso modelo de previsão experimental, o valor de SynFutures pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.03135 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.03135 e $0.00953.
Quanto será SynFutures em 2030?
Usando nossa nova simulação experimental para previsões de preços de SynFutures, espera-se que o valor de F em 2030 aumente 224.23%, alcançando $0.023434 no melhor cenário. O preço está previsto para variar entre $0.023434 e $0.0081051 ao longo de 2030.
Quanto será SynFutures em 2031?
Nossa simulação experimental indica que o preço de SynFutures poderia aumentar 195.98% em 2031, potencialmente atingindo $0.021392 sob condições ideais. O preço provavelmente oscilará entre $0.021392 e $0.009582 durante o ano.
Quanto será SynFutures em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SynFutures, F poderia ver um 449.04% aumento em valor, atingindo $0.039682 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.039682 e $0.014627 ao longo do ano.
Quanto será SynFutures em 2033?
De acordo com nossa previsão experimental de preços de SynFutures, espera-se que o valor de F seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.10570013. Ao longo do ano, o preço de F poderia variar entre $0.10570013 e $0.03399.
Quanto será SynFutures em 2034?
Os resultados da nossa nova simulação de previsão de preços de SynFutures sugerem que F pode aumentar 746.96% em 2034, atingindo potencialmente $0.061215 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.061215 e $0.027326.
Quanto será SynFutures em 2035?
Com base em nossa previsão experimental para o preço de SynFutures, F poderia aumentar 897.93%, com o valor potencialmente atingindo $0.072127 em 2035. A faixa de preço esperada para o ano está entre $0.072127 e $0.0323089.
Quanto será SynFutures em 2036?
Nossa recente simulação de previsão de preços de SynFutures sugere que o valor de F pode aumentar 1964.7% em 2036, possivelmente atingindo $0.149229 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.149229 e $0.053481.
Quanto será SynFutures em 2037?
De acordo com a simulação experimental, o valor de SynFutures poderia aumentar 4830.69% em 2037, com um pico de $0.356375 sob condições favoráveis. O preço é esperado para cair entre $0.356375 e $0.138889 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de SynFutures?
Traders de SynFutures utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SynFutures
Médias móveis são ferramentas populares para a previsão de preço de SynFutures. Uma média móvel simples (SMA) calcula o preço médio de fechamento de F em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de F acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de F.
Como ler gráficos de SynFutures e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SynFutures em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de F dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SynFutures?
A ação de preço de SynFutures é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de F. A capitalização de mercado de SynFutures pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de F, grandes detentores de SynFutures, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SynFutures.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


