Previsão de Preço SynFutures - Projeção F
Previsão de Preço SynFutures até $0.007467 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0025016 | $0.007467 |
| 2027 | $0.0024083 | $0.006326 |
| 2028 | $0.004346 | $0.010645 |
| 2029 | $0.009547 | $0.0314072 |
| 2030 | $0.008119 | $0.023476 |
| 2031 | $0.00960013 | $0.021431 |
| 2032 | $0.014653 | $0.039754 |
| 2033 | $0.034052 | $0.105891 |
| 2034 | $0.027376 | $0.061326 |
| 2035 | $0.032367 | $0.072258 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SynFutures hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.09, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SynFutures para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SynFutures'
'name_with_ticker' => 'SynFutures <small>F</small>'
'name_lang' => 'SynFutures'
'name_lang_with_ticker' => 'SynFutures <small>F</small>'
'name_with_lang' => 'SynFutures'
'name_with_lang_with_ticker' => 'SynFutures <small>F</small>'
'image' => '/uploads/coins/synfutures.png?1732911435'
'price_for_sd' => 0.00724
'ticker' => 'F'
'marketcap' => '$23.88M'
'low24h' => '$0.007152'
'high24h' => '$0.007431'
'volume24h' => '$4.69M'
'current_supply' => '3.3B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00724'
'change_24h_pct' => '-0.3232%'
'ath_price' => '$0.1923'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de dez. de 2024'
'ath_pct' => '-96.23%'
'fdv' => '$72.31M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.357021'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007302'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006399'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0025016'
'current_year_max_price_prediction' => '$0.007467'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008119'
'grand_prediction_max_price' => '$0.023476'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0073780093513392
107 => 0.0074055561600397
108 => 0.0074676205266169
109 => 0.0069372873095193
110 => 0.0071753913542309
111 => 0.007315255173167
112 => 0.0066833453509242
113 => 0.0073027643477263
114 => 0.0069280553880945
115 => 0.0068008735392558
116 => 0.0069721071437827
117 => 0.0069053772415684
118 => 0.0068480067901559
119 => 0.0068159930925183
120 => 0.0069417281533195
121 => 0.0069358624624472
122 => 0.0067301354988527
123 => 0.0064617730613475
124 => 0.006551844304071
125 => 0.0065191205771672
126 => 0.0064005255694229
127 => 0.0064804442854267
128 => 0.0061285227060824
129 => 0.0055230599201126
130 => 0.005923047182351
131 => 0.0059076481078572
201 => 0.005899883196205
202 => 0.0062004625689412
203 => 0.0061715687977986
204 => 0.0061191263202462
205 => 0.0063995624221967
206 => 0.0062971994725869
207 => 0.0066126579635401
208 => 0.0068204393282579
209 => 0.0067677392531425
210 => 0.006963158630954
211 => 0.006553919363585
212 => 0.0066898522323754
213 => 0.0067178678082383
214 => 0.0063961018842296
215 => 0.0061762961760928
216 => 0.0061616376413286
217 => 0.0057805248345119
218 => 0.0059841122196783
219 => 0.0061632606936063
220 => 0.006077462477078
221 => 0.0060503013248739
222 => 0.0061890617609493
223 => 0.0061998446352351
224 => 0.0059539939588006
225 => 0.0060051140995097
226 => 0.006218293584283
227 => 0.0059997425234556
228 => 0.0055751335123811
301 => 0.0054698246069557
302 => 0.0054557744577437
303 => 0.0051701683540756
304 => 0.0054768618515704
305 => 0.0053429819210391
306 => 0.0057659070174594
307 => 0.0055243344705769
308 => 0.0055139207609058
309 => 0.0054981789113787
310 => 0.0052523459397119
311 => 0.0053061677370066
312 => 0.0054850795885052
313 => 0.0055489173527061
314 => 0.0055422585508926
315 => 0.0054842028228278
316 => 0.0055107804378424
317 => 0.0054251646796254
318 => 0.0053949319734611
319 => 0.0052995092366454
320 => 0.0051592641747303
321 => 0.0051787661107625
322 => 0.0049009039459921
323 => 0.0047495098913638
324 => 0.0047076060123843
325 => 0.0046515703941292
326 => 0.0047139353845713
327 => 0.0049001167973908
328 => 0.0046755425129403
329 => 0.0042905256543045
330 => 0.0043136658235453
331 => 0.0043656549134515
401 => 0.0042687735883535
402 => 0.0041770835447816
403 => 0.004256800598619
404 => 0.0040936638800274
405 => 0.0043853692064984
406 => 0.0043774793949121
407 => 0.0044862091016841
408 => 0.0045542000186868
409 => 0.0043975029673163
410 => 0.0043580940826505
411 => 0.0043805431743901
412 => 0.0040095096939045
413 => 0.0044558877505673
414 => 0.0044597480465376
415 => 0.0044266938487865
416 => 0.0046643763835831
417 => 0.0051659606670456
418 => 0.0049772444834259
419 => 0.0049041678731516
420 => 0.0047652491836013
421 => 0.0049503500892514
422 => 0.0049361372277215
423 => 0.0048718612778152
424 => 0.0048329869827587
425 => 0.0049046140633512
426 => 0.0048241115948115
427 => 0.0048096511394019
428 => 0.0047220365127501
429 => 0.004690762077247
430 => 0.0046676077302716
501 => 0.0046421170693509
502 => 0.0046983431154651
503 => 0.0045709274978179
504 => 0.0044172767536423
505 => 0.0044045023567882
506 => 0.0044397735896389
507 => 0.0044241686947369
508 => 0.0044044276465551
509 => 0.0043667366094213
510 => 0.0043555544838454
511 => 0.0043918909671712
512 => 0.0043508691960449
513 => 0.0044113990539133
514 => 0.0043949382818429
515 => 0.0043029897471475
516 => 0.0041883878292093
517 => 0.004187367631754
518 => 0.0041626768365191
519 => 0.0041312293965014
520 => 0.0041224814381085
521 => 0.0042500870506938
522 => 0.0045142268498306
523 => 0.0044623698869304
524 => 0.0044998418571411
525 => 0.0046841668632061
526 => 0.0047427582397878
527 => 0.0047011714685029
528 => 0.0046442449310078
529 => 0.0046467494097505
530 => 0.0048412846212061
531 => 0.0048534175437228
601 => 0.0048840735246935
602 => 0.0049234751236199
603 => 0.0047078817311774
604 => 0.0046365949803545
605 => 0.0046028153629762
606 => 0.0044987872158082
607 => 0.0046109726538296
608 => 0.004545607003354
609 => 0.0045544270628117
610 => 0.0045486829875191
611 => 0.0045518196410415
612 => 0.0043852876689147
613 => 0.0044459631668949
614 => 0.0043450783832964
615 => 0.0042100049829064
616 => 0.0042095521695054
617 => 0.0042426111928925
618 => 0.0042229463921822
619 => 0.0041700289190988
620 => 0.0041775455963869
621 => 0.004111691593924
622 => 0.0041855414646111
623 => 0.0041876592146548
624 => 0.0041592229918107
625 => 0.0042729989069225
626 => 0.0043196129921761
627 => 0.0043008956611372
628 => 0.0043182997343338
629 => 0.004464524777859
630 => 0.0044883658401996
701 => 0.0044989544652391
702 => 0.0044847671104101
703 => 0.0043209724597004
704 => 0.004328237448968
705 => 0.0042749317781184
706 => 0.0042298941034636
707 => 0.0042316953742583
708 => 0.0042548505935188
709 => 0.0043559707940646
710 => 0.0045687722947521
711 => 0.0045768479561473
712 => 0.0045866358933419
713 => 0.0045468234337481
714 => 0.0045348156149807
715 => 0.0045506570274159
716 => 0.0046305740825028
717 => 0.0048361424454549
718 => 0.0047634808565383
719 => 0.0047044058537041
720 => 0.0047562305576961
721 => 0.004748252550732
722 => 0.0046809101431724
723 => 0.0046790200660831
724 => 0.0045497684553062
725 => 0.0045019870777188
726 => 0.0044620573822326
727 => 0.0044184551971528
728 => 0.0043926063602791
729 => 0.0044323219218034
730 => 0.0044414053406248
731 => 0.0043545665712425
801 => 0.0043427307678559
802 => 0.0044136451814786
803 => 0.0043824383919991
804 => 0.0044145353488699
805 => 0.0044219821181865
806 => 0.0044207830168129
807 => 0.0043881995445193
808 => 0.0044089672781061
809 => 0.004359845397014
810 => 0.0043064327291944
811 => 0.0042723587748522
812 => 0.0042426247304345
813 => 0.0042591229064303
814 => 0.0042003099214533
815 => 0.0041814944638877
816 => 0.0044019316372557
817 => 0.0045647709473216
818 => 0.0045624031992618
819 => 0.0045479901418831
820 => 0.0045265752622003
821 => 0.0046290074506689
822 => 0.0045933221244027
823 => 0.0046192861808702
824 => 0.0046258951229492
825 => 0.0046458984001362
826 => 0.0046530478523908
827 => 0.0046314372420636
828 => 0.0045589093942914
829 => 0.0043781768933841
830 => 0.0042940454263336
831 => 0.0042662806408866
901 => 0.0042672898381048
902 => 0.004239451673573
903 => 0.0042476512606466
904 => 0.0042366001918116
905 => 0.0042156721409789
906 => 0.004257830658265
907 => 0.0042626890346485
908 => 0.0042528487329572
909 => 0.0042551664802296
910 => 0.0041736929850731
911 => 0.0041798872379587
912 => 0.004145396850764
913 => 0.0041389303189528
914 => 0.0040517416235461
915 => 0.0038972742114296
916 => 0.0039828641522566
917 => 0.0038794835395045
918 => 0.0038403317349833
919 => 0.0040256702882316
920 => 0.0040070674379767
921 => 0.003975227444805
922 => 0.0039281294588681
923 => 0.0039106603577443
924 => 0.0038045236293617
925 => 0.0037982525052314
926 => 0.0038508567337506
927 => 0.00382658169229
928 => 0.0037924903404021
929 => 0.0036690149196494
930 => 0.0035301876654164
1001 => 0.0035343779875846
1002 => 0.0035785363541833
1003 => 0.0037069327606359
1004 => 0.0036567660633544
1005 => 0.0036203695488803
1006 => 0.0036135535757945
1007 => 0.0036988697491695
1008 => 0.0038196100087862
1009 => 0.0038762586371873
1010 => 0.0038201215668862
1011 => 0.0037556343231589
1012 => 0.0037595593628795
1013 => 0.0037856708936916
1014 => 0.0037884148463828
1015 => 0.0037464402801121
1016 => 0.0037582558746499
1017 => 0.0037403069061064
1018 => 0.0036301541192861
1019 => 0.0036281618046708
1020 => 0.0036011285343315
1021 => 0.0036003099776493
1022 => 0.0035543196410368
1023 => 0.0035478852750285
1024 => 0.0034565686702705
1025 => 0.0035166735360544
1026 => 0.0034763583477336
1027 => 0.0034155938495427
1028 => 0.0034051180271511
1029 => 0.0034048031112801
1030 => 0.003467194664229
1031 => 0.003515944454432
1101 => 0.0034770596476949
1102 => 0.0034682063309512
1103 => 0.0035627365916089
1104 => 0.0035507067542777
1105 => 0.0035402889927331
1106 => 0.0038087990428283
1107 => 0.0035962523860774
1108 => 0.003503569911995
1109 => 0.0033888577503936
1110 => 0.00342620860864
1111 => 0.0034340789832707
1112 => 0.0031582169130406
1113 => 0.0030462997055046
1114 => 0.0030078939373893
1115 => 0.0029857908748611
1116 => 0.002995863518008
1117 => 0.0028951249046465
1118 => 0.0029628229188883
1119 => 0.0028755917949402
1120 => 0.0028609672131357
1121 => 0.0030169472686175
1122 => 0.0030386509821155
1123 => 0.0029460561975177
1124 => 0.0030055170389634
1125 => 0.0029839557112877
1126 => 0.0028770871221918
1127 => 0.0028730055281605
1128 => 0.0028193826267647
1129 => 0.0027354731695201
1130 => 0.002697124295968
1201 => 0.0026771518696619
1202 => 0.0026853928820106
1203 => 0.002681225973988
1204 => 0.0026540340805349
1205 => 0.002682784581491
1206 => 0.0026093389320754
1207 => 0.0025800922826863
1208 => 0.0025668822496744
1209 => 0.0025016950084442
1210 => 0.0026054368981392
1211 => 0.002625875357315
1212 => 0.0026463540865691
1213 => 0.0028246074433041
1214 => 0.0028157024093404
1215 => 0.002896199579445
1216 => 0.0028930716074395
1217 => 0.002870112510558
1218 => 0.0027732518574029
1219 => 0.0028118587873754
1220 => 0.0026930326577691
1221 => 0.0027820652734615
1222 => 0.0027414345057504
1223 => 0.0027683279700275
1224 => 0.0027199710963714
1225 => 0.0027467337868591
1226 => 0.0026307220742024
1227 => 0.0025223919692524
1228 => 0.0025659871658372
1229 => 0.0026133801302403
1230 => 0.002716140152569
1231 => 0.0026549371310218
]
'min_raw' => 0.0025016950084442
'max_raw' => 0.0074676205266169
'avg_raw' => 0.0049846577675305
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0025016'
'max' => '$0.007467'
'avg' => '$0.004984'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047391049915558
'max_diff' => 0.00022682052661687
'year' => 2026
]
1 => [
'items' => [
101 => 0.0026769480519126
102 => 0.002603215151512
103 => 0.0024510831172237
104 => 0.0024519441680163
105 => 0.0024285419689176
106 => 0.0024083190521192
107 => 0.0026619670342824
108 => 0.0026304218981192
109 => 0.0025801588521685
110 => 0.0026474379365476
111 => 0.0026652275943201
112 => 0.0026657340408676
113 => 0.002714819124106
114 => 0.0027410158418294
115 => 0.0027456331268712
116 => 0.0028228695659004
117 => 0.0028487582014897
118 => 0.0029553898275852
119 => 0.0027387932333568
120 => 0.0027343325690341
121 => 0.002648384691237
122 => 0.0025938751883559
123 => 0.0026521170035342
124 => 0.0027037113009815
125 => 0.0026499878698772
126 => 0.0026570030158159
127 => 0.002584883698924
128 => 0.0026106629611836
129 => 0.0026328675346832
130 => 0.0026206074743212
131 => 0.0026022535705657
201 => 0.0026994811569645
202 => 0.0026939951955018
203 => 0.0027845357592089
204 => 0.0028551186032364
205 => 0.0029816156779262
206 => 0.0028496093860457
207 => 0.0028447985520921
208 => 0.0028918252256707
209 => 0.002848751001951
210 => 0.0028759724244702
211 => 0.0029772298859168
212 => 0.0029793692965177
213 => 0.002943531412477
214 => 0.0029413506739761
215 => 0.0029482337316297
216 => 0.0029885480152947
217 => 0.0029744609658493
218 => 0.002990762856108
219 => 0.0030111486194998
220 => 0.0030954727802731
221 => 0.0031158030499574
222 => 0.0030664110346608
223 => 0.0030708705806231
224 => 0.003052396611061
225 => 0.0030345509879422
226 => 0.0030746653425693
227 => 0.0031479751141
228 => 0.0031475190578161
301 => 0.0031645254998729
302 => 0.0031751203723853
303 => 0.0031296394236413
304 => 0.0031000329983899
305 => 0.0031113859857371
306 => 0.0031295396597411
307 => 0.0031054989939267
308 => 0.0029571088678
309 => 0.0030021209528689
310 => 0.0029946287409349
311 => 0.0029839589200568
312 => 0.0030292189196617
313 => 0.0030248534822873
314 => 0.0028940916845612
315 => 0.002902462630596
316 => 0.002894600749515
317 => 0.0029200040956773
318 => 0.0028473791378915
319 => 0.0028697180857699
320 => 0.0028837288644645
321 => 0.0028919813207516
322 => 0.0029217948516226
323 => 0.0029182965778813
324 => 0.002921577394015
325 => 0.0029657829898164
326 => 0.0031893597238511
327 => 0.0032015285121904
328 => 0.0031416049478827
329 => 0.0031655432298835
330 => 0.0031195869631686
331 => 0.0031504377128946
401 => 0.003171545012333
402 => 0.0030761651848711
403 => 0.0030705174104987
404 => 0.0030243714659235
405 => 0.0030491676826983
406 => 0.0030097151188985
407 => 0.0030193953980629
408 => 0.0029923284936077
409 => 0.0030410435326601
410 => 0.0030955145158724
411 => 0.0031092760373562
412 => 0.00307307539904
413 => 0.0030468637511607
414 => 0.0030008447321383
415 => 0.0030773753863733
416 => 0.003099755281901
417 => 0.0030772578343095
418 => 0.0030720446841236
419 => 0.0030621657739413
420 => 0.0030741405416194
421 => 0.0030996333961836
422 => 0.0030876114367502
423 => 0.0030955521527557
424 => 0.0030652903317738
425 => 0.0031296544797278
426 => 0.0032318802367546
427 => 0.0032322089092791
428 => 0.0032201868850428
429 => 0.0032152677317435
430 => 0.0032276030581673
501 => 0.0032342944667306
502 => 0.0032741846504732
503 => 0.0033169884069241
504 => 0.0035167348615381
505 => 0.0034606468563808
506 => 0.0036378737938841
507 => 0.0037780372914116
508 => 0.0038200661957132
509 => 0.0037814015813685
510 => 0.0036491320243168
511 => 0.0036426422488226
512 => 0.0038403088098244
513 => 0.0037844589526394
514 => 0.00377781578984
515 => 0.0037071437614551
516 => 0.0037489196831316
517 => 0.0037397826762451
518 => 0.0037253594638772
519 => 0.0038050650122999
520 => 0.0039542666835839
521 => 0.0039310122039099
522 => 0.0039136538135775
523 => 0.0038375944000924
524 => 0.0038833991554955
525 => 0.0038670889594287
526 => 0.0039371679124376
527 => 0.003895654693114
528 => 0.0037840358350413
529 => 0.00380181150609
530 => 0.0037991247491707
531 => 0.0038544180161845
601 => 0.0038378203498902
602 => 0.0037958837884437
603 => 0.0039537567284917
604 => 0.0039435053379004
605 => 0.0039580394659647
606 => 0.0039644378386215
607 => 0.0040605323151955
608 => 0.0040998991475676
609 => 0.0041088361077295
610 => 0.0041462315537429
611 => 0.0041079056749662
612 => 0.0042612365159614
613 => 0.0043631925781206
614 => 0.0044816197909295
615 => 0.0046546737790772
616 => 0.0047197436794597
617 => 0.0047079893843737
618 => 0.0048391969431494
619 => 0.0050749740096893
620 => 0.0047556466706457
621 => 0.0050918991340459
622 => 0.0049854454863548
623 => 0.0047330458026985
624 => 0.0047167942386678
625 => 0.0048877222348604
626 => 0.0052668240792058
627 => 0.0051718633669348
628 => 0.0052669794009123
629 => 0.0051560214948919
630 => 0.0051505114996314
701 => 0.0052615904230796
702 => 0.0055211323823133
703 => 0.0053978337262662
704 => 0.005221054868752
705 => 0.0053515856261568
706 => 0.0052385078040414
707 => 0.0049837118223258
708 => 0.0051717907522678
709 => 0.0050460277279951
710 => 0.005082732064408
711 => 0.0053470672355911
712 => 0.0053152617284502
713 => 0.0053564209998012
714 => 0.0052837759631925
715 => 0.0052159140439291
716 => 0.0050892447321317
717 => 0.0050517441936301
718 => 0.0050621079933439
719 => 0.0050517390578456
720 => 0.0049808687420461
721 => 0.0049655643040968
722 => 0.0049400562370118
723 => 0.004947962253613
724 => 0.004899999624845
725 => 0.0049905150149149
726 => 0.0050073154689308
727 => 0.0050731850214666
728 => 0.0050800238169247
729 => 0.0052634695831425
730 => 0.0051624307377906
731 => 0.0052302163185268
801 => 0.0052241529381632
802 => 0.0047385160691861
803 => 0.0048054325449207
804 => 0.004909533581617
805 => 0.004862636205691
806 => 0.0047963342884274
807 => 0.0047427919353532
808 => 0.0046616697954591
809 => 0.0047758476495474
810 => 0.0049259793862123
811 => 0.0050838314055216
812 => 0.0052734802638477
813 => 0.0052311528464254
814 => 0.0050802860520322
815 => 0.0050870538262204
816 => 0.005128889543231
817 => 0.0050747084885266
818 => 0.0050587294377544
819 => 0.0051266942670299
820 => 0.0051271623034563
821 => 0.0050648204520197
822 => 0.0049955388925863
823 => 0.0049952486003226
824 => 0.0049829206160019
825 => 0.0051582146159158
826 => 0.0052546085916461
827 => 0.0052656600056169
828 => 0.0052538647434328
829 => 0.0052584042717103
830 => 0.0052023147411291
831 => 0.005330518775204
901 => 0.0054481714749359
902 => 0.0054166380381245
903 => 0.0053693649336019
904 => 0.0053317096288684
905 => 0.0054077676450321
906 => 0.0054043809012987
907 => 0.0054471438812418
908 => 0.0054452039054606
909 => 0.0054308243237028
910 => 0.0054166385516646
911 => 0.005472883534309
912 => 0.0054566858825742
913 => 0.0054404630714123
914 => 0.0054079257400391
915 => 0.0054123481037606
916 => 0.005365083161606
917 => 0.0053432162366687
918 => 0.0050143901517006
919 => 0.0049265170770949
920 => 0.0049541637351872
921 => 0.0049632657328764
922 => 0.0049250232581956
923 => 0.0049798531432022
924 => 0.0049713079637031
925 => 0.0050045522583711
926 => 0.004983782666362
927 => 0.0049846350576628
928 => 0.0050457139992177
929 => 0.0050634454757995
930 => 0.0050544271036994
1001 => 0.0050607432623866
1002 => 0.0052062964734485
1003 => 0.0051856034613652
1004 => 0.0051746107111229
1005 => 0.0051776557780658
1006 => 0.0052148477441882
1007 => 0.0052252594640964
1008 => 0.0051811442752268
1009 => 0.0052019492533246
1010 => 0.00529053420952
1011 => 0.0053215339307142
1012 => 0.0054204701600555
1013 => 0.00537844029138
1014 => 0.0054555879343439
1015 => 0.0056927134872453
1016 => 0.005882145786743
1017 => 0.005707936015504
1018 => 0.0060558043094738
1019 => 0.0063266696750723
1020 => 0.0063162734111908
1021 => 0.0062690417694699
1022 => 0.0059606687520643
1023 => 0.005676899303865
1024 => 0.005914284496771
1025 => 0.0059148896404464
1026 => 0.0058944980418493
1027 => 0.0057678475742793
1028 => 0.0058900908801086
1029 => 0.0058997941098029
1030 => 0.0058943628814711
1031 => 0.005797260264933
1101 => 0.0056490025170425
1102 => 0.0056779717261014
1103 => 0.0057254238814957
1104 => 0.0056355870517777
1105 => 0.0056068787412773
1106 => 0.005660252952477
1107 => 0.0058322357819212
1108 => 0.0057997234242435
1109 => 0.0057988743951918
1110 => 0.0059379760487225
1111 => 0.0058384092848102
1112 => 0.0056783371205999
1113 => 0.0056379167880443
1114 => 0.0054944518378708
1115 => 0.0055935435899603
1116 => 0.0055971097257083
1117 => 0.0055428381857821
1118 => 0.0056827409569574
1119 => 0.0056814517282916
1120 => 0.0058142685877431
1121 => 0.00606816453928
1122 => 0.0059930750129496
1123 => 0.0059057540635445
1124 => 0.0059152482718921
1125 => 0.0060193763037627
1126 => 0.005956418118682
1127 => 0.0059790583209971
1128 => 0.0060193420351049
1129 => 0.0060436462000145
1130 => 0.0059117512765815
1201 => 0.0058810002606658
1202 => 0.0058180944742422
1203 => 0.0058016835287564
1204 => 0.0058529189792261
1205 => 0.0058394202482025
1206 => 0.0055968100058075
1207 => 0.0055714558856065
1208 => 0.0055722334602758
1209 => 0.0055084793195078
1210 => 0.0054112389520897
1211 => 0.0056667808317438
1212 => 0.0056462572425013
1213 => 0.0056236007883772
1214 => 0.0056263760747315
1215 => 0.0057372981435714
1216 => 0.0056729577419455
1217 => 0.0058440172448525
1218 => 0.0058088525535741
1219 => 0.005772786020653
1220 => 0.0057678005271899
1221 => 0.0057539179890672
1222 => 0.0057063096003798
1223 => 0.0056488196102191
1224 => 0.0056108597390174
1225 => 0.0051757215203199
1226 => 0.0052564806426276
1227 => 0.0053493866514169
1228 => 0.0053814574333536
1229 => 0.0053265981416204
1230 => 0.0057084757795888
1231 => 0.0057782485039101
]
'min_raw' => 0.0024083190521192
'max_raw' => 0.0063266696750723
'avg_raw' => 0.0043674943635958
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0024083'
'max' => '$0.006326'
'avg' => '$0.004367'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.3375956324965E-5
'max_diff' => -0.0011409508515445
'year' => 2027
]
2 => [
'items' => [
101 => 0.0055669023707787
102 => 0.0055273681384755
103 => 0.0057110676372768
104 => 0.0056002743831492
105 => 0.0056501645786989
106 => 0.0055423292643984
107 => 0.0057614422978049
108 => 0.0057597730236051
109 => 0.0056745331047177
110 => 0.0057465773004635
111 => 0.0057340578485321
112 => 0.0056378221900449
113 => 0.0057644931398314
114 => 0.0057645559670421
115 => 0.0056825143983886
116 => 0.0055867078074101
117 => 0.0055695798517938
118 => 0.005556676238054
119 => 0.0056469910807248
120 => 0.0057279670862563
121 => 0.0058786433568963
122 => 0.005916526951315
123 => 0.0060643891423852
124 => 0.0059763444068823
125 => 0.0060153734977605
126 => 0.0060577450969108
127 => 0.0060780595997074
128 => 0.0060449582075367
129 => 0.0062746490527745
130 => 0.0062940419976582
131 => 0.0063005442843294
201 => 0.0062230938236562
202 => 0.0062918879602401
203 => 0.0062597014619548
204 => 0.0063434417888263
205 => 0.0063565733413299
206 => 0.0063454513835279
207 => 0.00634961954556
208 => 0.0061536189293912
209 => 0.0061434552634572
210 => 0.0060048729572667
211 => 0.006061346271388
212 => 0.0059557721174746
213 => 0.0059892507692148
214 => 0.0060040078399056
215 => 0.0059962995836331
216 => 0.0060645391878366
217 => 0.0060065215838335
218 => 0.0058534035878923
219 => 0.0057002438750556
220 => 0.0056983210796221
221 => 0.0056579968307257
222 => 0.0056288497845281
223 => 0.0056344645396728
224 => 0.0056542516691466
225 => 0.0056276997205921
226 => 0.0056333659250341
227 => 0.0057274626724952
228 => 0.0057463331041313
229 => 0.0056822040042785
301 => 0.0054247164145845
302 => 0.0053615283142149
303 => 0.0054069466676861
304 => 0.0053852396200434
305 => 0.0043463086740946
306 => 0.0045903900891647
307 => 0.0044453652005517
308 => 0.0045121993414989
309 => 0.0043641664842379
310 => 0.0044348155227896
311 => 0.0044217692250589
312 => 0.0048142449175975
313 => 0.0048081169494912
314 => 0.0048110500835388
315 => 0.0046710439532048
316 => 0.0048940775204077
317 => 0.0050039518756395
318 => 0.0049836170566973
319 => 0.0049887348925286
320 => 0.0049007935167462
321 => 0.0048119015482867
322 => 0.0047133066748893
323 => 0.0048964837629671
324 => 0.00487611759771
325 => 0.0049228302532948
326 => 0.0050416336886819
327 => 0.005059127945833
328 => 0.0050826404048534
329 => 0.0050742128620254
330 => 0.0052749911229698
331 => 0.0052506755507918
401 => 0.0053092690836732
402 => 0.0051887377410341
403 => 0.0050523450858979
404 => 0.0050782688706275
405 => 0.0050757722016921
406 => 0.0050439867406017
407 => 0.0050152922475532
408 => 0.0049675240012509
409 => 0.0051186698009218
410 => 0.0051125335574798
411 => 0.0052118722062031
412 => 0.0051943131351171
413 => 0.0050770493609713
414 => 0.0050812374596056
415 => 0.0051094044356525
416 => 0.0052068906613559
417 => 0.0052358312105131
418 => 0.005222424795062
419 => 0.0052541567860266
420 => 0.0052792364578675
421 => 0.0052573064066764
422 => 0.0055677896851572
423 => 0.0054388553811133
424 => 0.0055016970637851
425 => 0.0055166844348177
426 => 0.0054782945990683
427 => 0.0054866199798054
428 => 0.0054992306630916
429 => 0.0055758002625807
430 => 0.0057767410472322
501 => 0.0058657363529041
502 => 0.0061334831209693
503 => 0.0058583465316426
504 => 0.0058420210650603
505 => 0.0058902503431666
506 => 0.0060474460398946
507 => 0.0061748383874516
508 => 0.0062171017785771
509 => 0.0062226875834069
510 => 0.0063019765147755
511 => 0.0063474234515849
512 => 0.0062923487530014
513 => 0.0062456787125132
514 => 0.0060785124203831
515 => 0.0060978623738758
516 => 0.0062311643650154
517 => 0.0064194612789481
518 => 0.0065810396200572
519 => 0.0065244605165745
520 => 0.0069561191375252
521 => 0.0069989163266251
522 => 0.0069930031388902
523 => 0.0070905015047355
524 => 0.0068969871037296
525 => 0.0068142559481346
526 => 0.0062557693049942
527 => 0.0064126812713425
528 => 0.0066407620295465
529 => 0.0066105746859392
530 => 0.0064449363427154
531 => 0.0065809139685207
601 => 0.006535955513016
602 => 0.0065004949138313
603 => 0.0066629467930715
604 => 0.0064843242786916
605 => 0.0066389801333264
606 => 0.0064406324000472
607 => 0.0065247189651533
608 => 0.0064769873639896
609 => 0.0065078755597075
610 => 0.0063273037986899
611 => 0.0064247359378033
612 => 0.0063232503013756
613 => 0.0063232021839701
614 => 0.0063209618829212
615 => 0.0064403592841221
616 => 0.0064442528290888
617 => 0.0063560179692018
618 => 0.0063433019474045
619 => 0.0063903197447259
620 => 0.0063352742180432
621 => 0.0063610296735256
622 => 0.0063360543245523
623 => 0.006330431847437
624 => 0.0062856309931973
625 => 0.0062663295533656
626 => 0.0062738981452604
627 => 0.0062480626392468
628 => 0.0062324958123626
629 => 0.0063178652492425
630 => 0.0062722558029108
701 => 0.0063108749474606
702 => 0.0062668635581215
703 => 0.0061143009078226
704 => 0.0060265605143149
705 => 0.0057383838104653
706 => 0.0058201103661949
707 => 0.0058742951571959
708 => 0.0058563870840933
709 => 0.005894860554622
710 => 0.0058972225132439
711 => 0.0058847143957844
712 => 0.0058702315981554
713 => 0.0058631821732186
714 => 0.0059157228112124
715 => 0.0059462244200043
716 => 0.0058797333258719
717 => 0.0058641553928259
718 => 0.0059313815600677
719 => 0.00597238948325
720 => 0.006275168947666
721 => 0.0062527380669772
722 => 0.0063090351756679
723 => 0.0063026969851789
724 => 0.0063617053239194
725 => 0.0064581590189756
726 => 0.0062620416880491
727 => 0.0062960808754709
728 => 0.0062877352527947
729 => 0.0063788505728335
730 => 0.0063791350249171
731 => 0.0063245068390061
801 => 0.0063541216648295
802 => 0.0063375914814951
803 => 0.0063674637569687
804 => 0.0062524384888902
805 => 0.0063925268491994
806 => 0.0064719479224002
807 => 0.0064730506840786
808 => 0.0065106956424512
809 => 0.0065489451004067
810 => 0.0066223616041265
811 => 0.0065468975539648
812 => 0.0064111450740011
813 => 0.0064209459645766
814 => 0.0063413543352438
815 => 0.0063426922849123
816 => 0.0063355502047249
817 => 0.006356984124998
818 => 0.0062571420290562
819 => 0.0062805747694122
820 => 0.0062477687956919
821 => 0.0062960095616909
822 => 0.0062441104719602
823 => 0.0062877312282828
824 => 0.0063065565006606
825 => 0.0063760221610139
826 => 0.0062338503374453
827 => 0.0059439523650026
828 => 0.0060048924334832
829 => 0.0059147572854613
830 => 0.0059230996365795
831 => 0.0059399525135134
901 => 0.0058853268254522
902 => 0.005895747685281
903 => 0.0058953753788375
904 => 0.0058921670430432
905 => 0.0058779567918343
906 => 0.0058573491161689
907 => 0.0059394437533118
908 => 0.0059533932318814
909 => 0.0059844011947668
910 => 0.0060766598594115
911 => 0.0060674410432044
912 => 0.0060824773149232
913 => 0.006049653218186
914 => 0.0059246222522853
915 => 0.0059314120352759
916 => 0.005846743332585
917 => 0.0059822360256778
918 => 0.0059501495675372
919 => 0.0059294632192393
920 => 0.0059238187574485
921 => 0.0060163061134781
922 => 0.0060439797799638
923 => 0.0060267354081206
924 => 0.0059913666983714
925 => 0.0060592850769102
926 => 0.0060774571697608
927 => 0.0060815252311891
928 => 0.0062018635759024
929 => 0.0060882508078663
930 => 0.0061155985303464
1001 => 0.0063289576543844
1002 => 0.0061354703704285
1003 => 0.0062379649000212
1004 => 0.0062329483261535
1005 => 0.0062853810592673
1006 => 0.0062286473116413
1007 => 0.0062293505944379
1008 => 0.0062759073093421
1009 => 0.006210526799807
1010 => 0.0061943376661979
1011 => 0.0061719724940658
1012 => 0.0062208060292029
1013 => 0.0062500795249667
1014 => 0.00648600240181
1015 => 0.006638419339641
1016 => 0.0066318025183986
1017 => 0.0066922678783831
1018 => 0.0066650276799109
1019 => 0.0065770618934428
1020 => 0.006727208764659
1021 => 0.0066796960121942
1022 => 0.0066836129057794
1023 => 0.0066834671188046
1024 => 0.0067150589455567
1025 => 0.0066926732409544
1026 => 0.0066485487193379
1027 => 0.0066778406359921
1028 => 0.0067648271564035
1029 => 0.0070348359848326
1030 => 0.0071859365023627
1031 => 0.0070257395439499
1101 => 0.0071362412607403
1102 => 0.0070699796064536
1103 => 0.0070579378927562
1104 => 0.0071273411369134
1105 => 0.0071968658622619
1106 => 0.0071924374378208
1107 => 0.007141966057352
1108 => 0.007113456055189
1109 => 0.0073293433431186
1110 => 0.0074884054193212
1111 => 0.0074775584520899
1112 => 0.0075254334378263
1113 => 0.0076659958766658
1114 => 0.0076788471444875
1115 => 0.007677228180125
1116 => 0.0076453749719379
1117 => 0.0077837769473146
1118 => 0.007899234310125
1119 => 0.0076380018745702
1120 => 0.0077374757662458
1121 => 0.0077821328010676
1122 => 0.0078477025773311
1123 => 0.0079583297806583
1124 => 0.008078500265888
1125 => 0.0080954936901018
1126 => 0.0080834360424119
1127 => 0.0080041803770468
1128 => 0.0081356723559173
1129 => 0.0082126972732732
1130 => 0.0082585638488748
1201 => 0.00837487385313
1202 => 0.0077824085877116
1203 => 0.0073630322254141
1204 => 0.0072975405505733
1205 => 0.007430720446695
1206 => 0.0074658389232126
1207 => 0.0074516827093632
1208 => 0.0069796364855667
1209 => 0.0072950553248972
1210 => 0.0076344194748476
1211 => 0.0076474558339512
1212 => 0.0078173486231861
1213 => 0.0078726726795017
1214 => 0.0080094586431928
1215 => 0.0080009026439211
1216 => 0.0080342078493398
1217 => 0.0080265515593798
1218 => 0.0082799187534345
1219 => 0.0085594203938693
1220 => 0.0085497421408218
1221 => 0.008509560473096
1222 => 0.0085692371016613
1223 => 0.0088577127478061
1224 => 0.0088311545330371
1225 => 0.0088569535764618
1226 => 0.0091970826210415
1227 => 0.0096392987617875
1228 => 0.0094338449666364
1229 => 0.0098796205843774
1230 => 0.010160212706195
1231 => 0.010645467767112
]
'min_raw' => 0.0043463086740946
'max_raw' => 0.010645467767112
'avg_raw' => 0.0074958882206034
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004346'
'max' => '$0.010645'
'avg' => '$0.007495'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019379896219754
'max_diff' => 0.0043187980920399
'year' => 2028
]
3 => [
'items' => [
101 => 0.010584711443554
102 => 0.010773617677803
103 => 0.010475944944157
104 => 0.0097924281781213
105 => 0.0096842590334991
106 => 0.0099008164003118
107 => 0.010433201555262
108 => 0.0098840496971845
109 => 0.0099951424028566
110 => 0.0099631476961495
111 => 0.0099614428341978
112 => 0.010026510480719
113 => 0.0099321264657399
114 => 0.0095475890093567
115 => 0.0097238202595237
116 => 0.0096557689105145
117 => 0.0097312769558043
118 => 0.010138762734347
119 => 0.0099586035584056
120 => 0.0097688205014943
121 => 0.010006850571093
122 => 0.010309944645698
123 => 0.010290977563221
124 => 0.010254173495592
125 => 0.010461636097821
126 => 0.010804303535866
127 => 0.01089692516742
128 => 0.010965296562267
129 => 0.010974723822472
130 => 0.011071830461596
131 => 0.010549663589003
201 => 0.011378355826004
202 => 0.011521448083173
203 => 0.011494552669392
204 => 0.011653593690993
205 => 0.011606799787956
206 => 0.011539002764195
207 => 0.011791116612428
208 => 0.011502088429968
209 => 0.011091849312602
210 => 0.010866784019205
211 => 0.011163168153049
212 => 0.011344159601207
213 => 0.011463783435221
214 => 0.011499981535115
215 => 0.010590197916904
216 => 0.010099875005601
217 => 0.010414166370183
218 => 0.010797623526204
219 => 0.010547533465141
220 => 0.010557336522051
221 => 0.010200773817487
222 => 0.010829171413714
223 => 0.0107376191696
224 => 0.01121259237402
225 => 0.011099236206887
226 => 0.011486558416738
227 => 0.011384563498303
228 => 0.011807938702266
301 => 0.011976834533553
302 => 0.01226043692082
303 => 0.012469055991364
304 => 0.012591561099834
305 => 0.012584206352626
306 => 0.013069632624187
307 => 0.01278339371135
308 => 0.012423810175494
309 => 0.012417306443802
310 => 0.01260353985236
311 => 0.012993833986056
312 => 0.013095031576375
313 => 0.013151587223734
314 => 0.013064970281088
315 => 0.01275427845613
316 => 0.012620123301357
317 => 0.012734427380073
318 => 0.012594643314065
319 => 0.012835949828477
320 => 0.013167315213054
321 => 0.013098889571499
322 => 0.01332762623227
323 => 0.01356434461237
324 => 0.0139028625276
325 => 0.013991363645923
326 => 0.014137652629116
327 => 0.014288232046248
328 => 0.014336594096802
329 => 0.014428932257172
330 => 0.014428445589488
331 => 0.014706712850838
401 => 0.015013650257328
402 => 0.015129512022661
403 => 0.015395929763388
404 => 0.014939698718784
405 => 0.015285755206921
406 => 0.015597906821576
407 => 0.015225746798083
408 => 0.015738682688303
409 => 0.015758598826583
410 => 0.016059308869075
411 => 0.015754481631936
412 => 0.015573476191565
413 => 0.016096032115729
414 => 0.016348880467075
415 => 0.016272720485902
416 => 0.01569313926869
417 => 0.015355798140865
418 => 0.014472911341103
419 => 0.015518728893292
420 => 0.016028116116048
421 => 0.015691820078842
422 => 0.015861428238836
423 => 0.016786755364135
424 => 0.017139060022954
425 => 0.017065783116715
426 => 0.017078165707629
427 => 0.017268262906746
428 => 0.01811125857607
429 => 0.017606116030524
430 => 0.017992278579264
501 => 0.018197097802703
502 => 0.018387345312132
503 => 0.017920157557316
504 => 0.017312353152652
505 => 0.017119835983802
506 => 0.015658382065612
507 => 0.015582307042398
508 => 0.015539603826558
509 => 0.015270366091181
510 => 0.015058818981596
511 => 0.014890588865814
512 => 0.014449102804237
513 => 0.01459809139006
514 => 0.013894454753207
515 => 0.014344616538114
516 => 0.013221595475797
517 => 0.014156880787246
518 => 0.013647847514429
519 => 0.01398964966672
520 => 0.01398845715121
521 => 0.013359091020372
522 => 0.012996085770641
523 => 0.013227406844146
524 => 0.013475401397232
525 => 0.013515637679116
526 => 0.013837169090513
527 => 0.013926901596139
528 => 0.013655007914881
529 => 0.013198323360433
530 => 0.013304400766566
531 => 0.012993936115392
601 => 0.012449858756059
602 => 0.012840624614211
603 => 0.012974049258946
604 => 0.013032977183095
605 => 0.012497939587899
606 => 0.012329819159256
607 => 0.012240313253714
608 => 0.013129256725608
609 => 0.013177955055675
610 => 0.012928807513803
611 => 0.014054978028202
612 => 0.013800090956684
613 => 0.014084862264418
614 => 0.01329477535381
615 => 0.013324957737789
616 => 0.012950917932603
617 => 0.013160355230158
618 => 0.013012331698725
619 => 0.013143434766215
620 => 0.013222017404311
621 => 0.013595995833245
622 => 0.014161151020174
623 => 0.013540135927044
624 => 0.013269550757867
625 => 0.013437420274996
626 => 0.013884478920695
627 => 0.014561795653441
628 => 0.014160810515386
629 => 0.014338760910486
630 => 0.014377635155353
701 => 0.014081963559828
702 => 0.01457269748691
703 => 0.014835685785149
704 => 0.015105457361381
705 => 0.015339692462196
706 => 0.01499770466143
707 => 0.015363680630275
708 => 0.015068768602841
709 => 0.014804202026788
710 => 0.014804603265075
711 => 0.014638636787216
712 => 0.014317055823242
713 => 0.014257751359548
714 => 0.014566260669012
715 => 0.014813655919262
716 => 0.014834032577016
717 => 0.014971003299181
718 => 0.015052061161648
719 => 0.015846538406644
720 => 0.016166083726841
721 => 0.016556817695696
722 => 0.016709030597124
723 => 0.017167136859079
724 => 0.016797178846979
725 => 0.016717136103916
726 => 0.01560592015783
727 => 0.01578788170675
728 => 0.016079219703249
729 => 0.015610724214086
730 => 0.015907876769163
731 => 0.015966540978087
801 => 0.015594804916636
802 => 0.015793365208824
803 => 0.015266047941797
804 => 0.014172645095604
805 => 0.014573914756844
806 => 0.014869384293424
807 => 0.014447712833593
808 => 0.0152035426044
809 => 0.014762002455788
810 => 0.014622055426343
811 => 0.014076072169759
812 => 0.014333755250044
813 => 0.014682275305795
814 => 0.014466930431146
815 => 0.014913803380239
816 => 0.015546694652817
817 => 0.015997730662982
818 => 0.016032355607306
819 => 0.015742369669836
820 => 0.016207073985298
821 => 0.016210458848907
822 => 0.015686270482692
823 => 0.015365208027079
824 => 0.015292261961643
825 => 0.015474495535022
826 => 0.015695760735277
827 => 0.016044634285993
828 => 0.016255451266043
829 => 0.016805150141326
830 => 0.016953882895876
831 => 0.017117295100173
901 => 0.017335664199571
902 => 0.017597872292086
903 => 0.017024175913178
904 => 0.017046969939816
905 => 0.016512751815144
906 => 0.015941863134303
907 => 0.016375096480783
908 => 0.016941491450687
909 => 0.01681155981878
910 => 0.016796939855928
911 => 0.016821526578206
912 => 0.016723562370918
913 => 0.01628047389208
914 => 0.016057957631888
915 => 0.016345060377488
916 => 0.016497642709301
917 => 0.016734284599366
918 => 0.016705113491511
919 => 0.017314677586834
920 => 0.017551535762015
921 => 0.017490937305071
922 => 0.017502088879532
923 => 0.017930909291876
924 => 0.018407845784047
925 => 0.018854559746279
926 => 0.019308976375471
927 => 0.018761159392796
928 => 0.018483011713649
929 => 0.018769989119171
930 => 0.018617714868301
1001 => 0.019492727881276
1002 => 0.019553311883805
1003 => 0.020428261623379
1004 => 0.021258693113311
1005 => 0.02073711397321
1006 => 0.021228939609885
1007 => 0.021760889135082
1008 => 0.022787106074886
1009 => 0.022441512312307
1010 => 0.022176792906316
1011 => 0.02192663434677
1012 => 0.022447174597633
1013 => 0.023116841314534
1014 => 0.023261081111367
1015 => 0.023494804686079
1016 => 0.023249072925628
1017 => 0.023545029764625
1018 => 0.02458988745631
1019 => 0.024307557684803
1020 => 0.023906604022487
1021 => 0.024731418820872
1022 => 0.025029916090022
1023 => 0.027124926249146
1024 => 0.029769963115593
1025 => 0.028674900484636
1026 => 0.02799515977215
1027 => 0.028154914963249
1028 => 0.029120792886727
1029 => 0.029431002220316
1030 => 0.028587746316053
1031 => 0.028885598557215
1101 => 0.030526793690203
1102 => 0.031407242223208
1103 => 0.030211474855374
1104 => 0.026912400112342
1105 => 0.023870502532124
1106 => 0.024677350748831
1107 => 0.024585879200472
1108 => 0.026349138627606
1109 => 0.024300824213125
1110 => 0.02433531257467
1111 => 0.026135034339432
1112 => 0.025654899427636
1113 => 0.024877142361559
1114 => 0.023876181019424
1115 => 0.022025811400771
1116 => 0.020386887428156
1117 => 0.023601194760104
1118 => 0.023462587983111
1119 => 0.023261864829653
1120 => 0.023708552487161
1121 => 0.025877540957514
1122 => 0.025827538752941
1123 => 0.025509450238802
1124 => 0.025750717573273
1125 => 0.024834847031315
1126 => 0.025070887723963
1127 => 0.023870020680006
1128 => 0.024412862736512
1129 => 0.024875473644203
1130 => 0.024968349632994
1201 => 0.025177603978104
1202 => 0.023389548509977
1203 => 0.024192332920616
1204 => 0.024663893551139
1205 => 0.022533365466912
1206 => 0.024621779861084
1207 => 0.023358422442341
1208 => 0.022929619959428
1209 => 0.023506946012239
1210 => 0.023281961487991
1211 => 0.023088533005577
1212 => 0.022980596588866
1213 => 0.023404521124899
1214 => 0.023384744538594
1215 => 0.022691121717437
1216 => 0.021786319022921
1217 => 0.022090000506337
1218 => 0.021979670176383
1219 => 0.021579818827734
1220 => 0.021849270358487
1221 => 0.020662742183348
1222 => 0.018621382128389
1223 => 0.019969967109245
1224 => 0.01991804805446
1225 => 0.019891868112696
1226 => 0.020905292453658
1227 => 0.020807875086952
1228 => 0.020631061612467
1229 => 0.021576571509616
1230 => 0.021231447678254
1231 => 0.022295038005111
]
'min_raw' => 0.0095475890093567
'max_raw' => 0.031407242223208
'avg_raw' => 0.020477415616282
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009547'
'max' => '$0.0314072'
'avg' => '$0.020477'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0052012803352621
'max_diff' => 0.020761774456095
'year' => 2029
]
4 => [
'items' => [
101 => 0.022995587383089
102 => 0.022817905400435
103 => 0.023476775476472
104 => 0.022096996714364
105 => 0.022555303872021
106 => 0.022649760342028
107 => 0.021564904064253
108 => 0.020823813772926
109 => 0.020774391499542
110 => 0.019489443062913
111 => 0.020175852146019
112 => 0.020779863733614
113 => 0.020490589056349
114 => 0.020399013335361
115 => 0.020866853833534
116 => 0.020903209047025
117 => 0.02007430632668
118 => 0.020246661450175
119 => 0.020965410966804
120 => 0.020228550806477
121 => 0.018796951880385
122 => 0.01844189555331
123 => 0.018394524494292
124 => 0.017431583575393
125 => 0.018465622114853
126 => 0.018014236581869
127 => 0.019440158072137
128 => 0.018625679364266
129 => 0.018590568815048
130 => 0.018537494070306
131 => 0.017708651042822
201 => 0.017890114990119
202 => 0.018493328788673
203 => 0.018708562267687
204 => 0.01868611165247
205 => 0.018490372711978
206 => 0.018579980996589
207 => 0.018291321490259
208 => 0.018189389810646
209 => 0.017867665391269
210 => 0.017394819373425
211 => 0.017460571512339
212 => 0.016523739824099
213 => 0.016013304198924
214 => 0.01587202234531
215 => 0.015683094346081
216 => 0.015893362265541
217 => 0.016521085897633
218 => 0.015763918018332
219 => 0.014465806798423
220 => 0.014543825494613
221 => 0.014719110340994
222 => 0.014392468189388
223 => 0.014083328805891
224 => 0.014352100418571
225 => 0.013802073581997
226 => 0.01478557845641
227 => 0.014758977405798
228 => 0.015125567203445
301 => 0.015354803327094
302 => 0.01482648827816
303 => 0.014693618472068
304 => 0.014769307152214
305 => 0.013518341868026
306 => 0.015023336651186
307 => 0.015036351908567
308 => 0.014924907373079
309 => 0.01572627063361
310 => 0.0174173970648
311 => 0.016781127275983
312 => 0.016534744382397
313 => 0.016066370321585
314 => 0.016690450948317
315 => 0.016642531293359
316 => 0.016425820440646
317 => 0.016294753040747
318 => 0.016536248743807
319 => 0.016264829050623
320 => 0.016216074615613
321 => 0.015920675784798
322 => 0.015815231841988
323 => 0.015737165344576
324 => 0.01565122180158
325 => 0.015840791841632
326 => 0.01541120119086
327 => 0.014893156979319
328 => 0.014850087208446
329 => 0.014969006632561
330 => 0.0149163936399
331 => 0.014849835317679
401 => 0.014722757354478
402 => 0.014685056037388
403 => 0.014807567027853
404 => 0.014669259262452
405 => 0.014873339904315
406 => 0.014817841262025
407 => 0.014507830357658
408 => 0.014121441990079
409 => 0.014118002323131
410 => 0.01403475558314
411 => 0.01392872834353
412 => 0.013899233991045
413 => 0.014329465223016
414 => 0.015220030997458
415 => 0.015045191626502
416 => 0.015171530990277
417 => 0.015792995617386
418 => 0.015990540534251
419 => 0.015850327831368
420 => 0.015658396035719
421 => 0.015666840060657
422 => 0.016322729108095
423 => 0.016363636103453
424 => 0.016466994883628
425 => 0.016599840125341
426 => 0.015872951950471
427 => 0.015632603692989
428 => 0.015518713354581
429 => 0.015167975193391
430 => 0.015546216230217
501 => 0.015325831375954
502 => 0.015355568822213
503 => 0.015336202271325
504 => 0.01534677771767
505 => 0.014785303546754
506 => 0.014989875224422
507 => 0.014649735132969
508 => 0.01419432573303
509 => 0.014192799041035
510 => 0.014304259846491
511 => 0.014237958597944
512 => 0.014059543642863
513 => 0.014084886645138
514 => 0.013862855278054
515 => 0.014111845273109
516 => 0.014118985415239
517 => 0.014023110704566
518 => 0.014406714145946
519 => 0.01456387678887
520 => 0.01450077000047
521 => 0.014559449048366
522 => 0.015052456991718
523 => 0.015132838797929
524 => 0.015168539086524
525 => 0.015120705429188
526 => 0.014568460328543
527 => 0.014592954747084
528 => 0.014413230956132
529 => 0.014261383291603
530 => 0.014267456401848
531 => 0.01434552584023
601 => 0.014686459656358
602 => 0.015403934773252
603 => 0.01543116242947
604 => 0.015464163143094
605 => 0.015329932655957
606 => 0.015289447456623
607 => 0.015342857884661
608 => 0.015612303815516
609 => 0.016305391903534
610 => 0.016060408283432
611 => 0.015861232786891
612 => 0.016035963394686
613 => 0.016009064987199
614 => 0.015782015358416
615 => 0.015775642831548
616 => 0.015339862001755
617 => 0.015178763751229
618 => 0.015044137995095
619 => 0.014897130183891
620 => 0.014809979025663
621 => 0.014943882814195
622 => 0.014974508194935
623 => 0.014681725221073
624 => 0.014641819983606
625 => 0.014880912880221
626 => 0.014775697010702
627 => 0.01488391414173
628 => 0.014909021444398
629 => 0.014904978590398
630 => 0.014795121138655
701 => 0.0148651410024
702 => 0.014699523150718
703 => 0.014519438612011
704 => 0.014404555895978
705 => 0.014304305489259
706 => 0.014359930241495
707 => 0.014161638156454
708 => 0.014098200527618
709 => 0.01484141984806
710 => 0.015390443951025
711 => 0.01538246092313
712 => 0.015333866293891
713 => 0.015261664531901
714 => 0.01560702180691
715 => 0.015486706237933
716 => 0.015574245867066
717 => 0.015596528376707
718 => 0.015663970822327
719 => 0.015688075699763
720 => 0.015615214018239
721 => 0.015370681315743
722 => 0.014761329070594
723 => 0.014477673955562
724 => 0.014384063042952
725 => 0.014387465621832
726 => 0.014293607306515
727 => 0.014321252786811
728 => 0.014283993336673
729 => 0.01421343295214
730 => 0.014355573336584
731 => 0.014371953691762
801 => 0.014338776427582
802 => 0.014346590874331
803 => 0.014071897297113
804 => 0.014092781653185
805 => 0.013976494904716
806 => 0.013954692541236
807 => 0.013660729767352
808 => 0.013139932102831
809 => 0.013428504564028
810 => 0.013079949610331
811 => 0.012947946567896
812 => 0.013572828440097
813 => 0.013510107631653
814 => 0.013402756871677
815 => 0.013243962723815
816 => 0.013185064429722
817 => 0.01282721703975
818 => 0.012806073506909
819 => 0.012983432336072
820 => 0.012901587338958
821 => 0.012786645965886
822 => 0.012370339964039
823 => 0.011902274183783
824 => 0.011916402147533
825 => 0.012065285163559
826 => 0.012498182612264
827 => 0.012329042089853
828 => 0.01220632870018
829 => 0.012183348171045
830 => 0.012470997606164
831 => 0.012878081821277
901 => 0.013069076627013
902 => 0.012879806575127
903 => 0.012662383330545
904 => 0.012675616876001
905 => 0.012763653725183
906 => 0.012772905153258
907 => 0.012631384972505
908 => 0.012671222074428
909 => 0.012610705873827
910 => 0.01223931806244
911 => 0.012232600834616
912 => 0.012141456276264
913 => 0.01213869645526
914 => 0.011983636824428
915 => 0.011961942910198
916 => 0.011654062601735
917 => 0.011856710353113
918 => 0.011720784880973
919 => 0.011515913132881
920 => 0.011480593166289
921 => 0.011479531405443
922 => 0.011689888882249
923 => 0.01185425220352
924 => 0.011723149362756
925 => 0.011693299787235
926 => 0.012012015160935
927 => 0.011971455724476
928 => 0.011936331514084
929 => 0.012841631894753
930 => 0.012125016001984
1001 => 0.011812530569731
1002 => 0.011425770507945
1003 => 0.011551701534276
1004 => 0.011578237051835
1005 => 0.01064814882198
1006 => 0.010270812142962
1007 => 0.010141324414356
1008 => 0.010066802395856
1009 => 0.010100763015475
1010 => 0.0097611157471815
1011 => 0.0099893643287222
1012 => 0.0096952585040488
1013 => 0.0096459507054391
1014 => 0.010171848352676
1015 => 0.010245023938039
1016 => 0.0099328341570061
1017 => 0.010133310535364
1018 => 0.010060615013741
1019 => 0.0097003001042779
1020 => 0.0096865387250335
1021 => 0.0095057453691463
1022 => 0.0092228387756749
1023 => 0.0090935428710611
1024 => 0.0090262044413397
1025 => 0.0090539895898426
1026 => 0.00903994056852
1027 => 0.0089482612012657
1028 => 0.009045195522535
1029 => 0.0087975683877188
1030 => 0.0086989612673676
1031 => 0.0086544227187728
1101 => 0.0084346393837374
1102 => 0.0087844124078715
1103 => 0.0088533220999503
1104 => 0.0089223675654099
1105 => 0.0095233612028938
1106 => 0.0094933372591555
1107 => 0.0097647390882962
1108 => 0.0097541929122917
1109 => 0.0096767847142027
1110 => 0.0093502122594955
1111 => 0.0094803782193475
1112 => 0.0090797476272044
1113 => 0.0093799273070702
1114 => 0.0092429378369826
1115 => 0.0093336110294346
1116 => 0.0091705724537338
1117 => 0.0092608047332244
1118 => 0.0088696631443233
1119 => 0.008504420632118
1120 => 0.008651404881123
1121 => 0.0088111935694792
1122 => 0.009157656159236
1123 => 0.0089513058990312
1124 => 0.0090255172555681
1125 => 0.0087769216340006
1126 => 0.0082639978588781
1127 => 0.0082669009517419
1128 => 0.0081879988035912
1129 => 0.0081198158276867
1130 => 0.0089750077086866
1201 => 0.0088686510797013
1202 => 0.0086991857110246
1203 => 0.0089260218412844
1204 => 0.0089860009144985
1205 => 0.0089877084343923
1206 => 0.0091532022195419
1207 => 0.0092415262823426
1208 => 0.0092570937812296
1209 => 0.0095175018278924
1210 => 0.0096047871702686
1211 => 0.009964303142432
1212 => 0.0092340326026999
1213 => 0.0092189931615019
1214 => 0.0089292138908199
1215 => 0.0087454312961244
1216 => 0.0089417976423116
1217 => 0.0091157514183541
1218 => 0.0089346191195359
1219 => 0.00895827117385
1220 => 0.008715115861739
1221 => 0.0088020324442979
1222 => 0.0088768967141256
1223 => 0.0088355610646451
1224 => 0.0087736795967047
1225 => 0.0091014891924614
1226 => 0.0090829928903726
1227 => 0.0093882567222512
1228 => 0.0096262317088266
1229 => 0.010052725427887
1230 => 0.0096076569984271
1231 => 0.0095914369358708
]
'min_raw' => 0.0081198158276867
'max_raw' => 0.023476775476472
'avg_raw' => 0.015798295652079
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008119'
'max' => '$0.023476'
'avg' => '$0.015798'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00142777318167
'max_diff' => -0.0079304667467354
'year' => 2030
]
5 => [
'items' => [
101 => 0.0097499906491385
102 => 0.0096047628965212
103 => 0.0096965418230837
104 => 0.010037938423921
105 => 0.010045151596131
106 => 0.0099243216679665
107 => 0.0099169691558567
108 => 0.0099401758652952
109 => 0.010076098287325
110 => 0.010028602816594
111 => 0.010083565777763
112 => 0.010152297802327
113 => 0.010436602597699
114 => 0.010505147521353
115 => 0.01033861889334
116 => 0.010353654563908
117 => 0.010291368285718
118 => 0.010231200521431
119 => 0.010366448868752
120 => 0.010613617881792
121 => 0.01061208025619
122 => 0.010669418662936
123 => 0.010705140015322
124 => 0.010551797821254
125 => 0.010451977691464
126 => 0.010490255080945
127 => 0.010551461460299
128 => 0.01047040667704
129 => 0.0099700990065358
130 => 0.010121860393989
131 => 0.010096599878364
201 => 0.01006062583233
202 => 0.010213223080951
203 => 0.010198504704058
204 => 0.0097576321735271
205 => 0.0097858554025242
206 => 0.0097593485215606
207 => 0.0098449976767516
208 => 0.0096001375610643
209 => 0.0096754548834917
210 => 0.009722693202062
211 => 0.0097505169346019
212 => 0.0098510353354477
213 => 0.0098392406612875
214 => 0.0098503021619415
215 => 0.0099993444145219
216 => 0.010753148982949
217 => 0.010794176902433
218 => 0.010592140421639
219 => 0.010672850010723
220 => 0.010517905248929
221 => 0.010621920705561
222 => 0.010693085439282
223 => 0.010371505691788
224 => 0.010352463826176
225 => 0.010196879552234
226 => 0.010280481728307
227 => 0.010147464654966
228 => 0.010180102392024
301 => 0.010088844433902
302 => 0.010253090589243
303 => 0.010436743312186
304 => 0.010483141242667
305 => 0.010361088263136
306 => 0.010272713862272
307 => 0.010117557526693
308 => 0.010375585970646
309 => 0.010451041350932
310 => 0.010375189635655
311 => 0.010357613135833
312 => 0.01032430570043
313 => 0.010364679465708
314 => 0.010450630404726
315 => 0.01041009752915
316 => 0.010436870207565
317 => 0.010334840365312
318 => 0.0105518485839
319 => 0.010896509860891
320 => 0.010897618003254
321 => 0.010857084909191
322 => 0.010840499640398
323 => 0.01088208905466
324 => 0.010904649605811
325 => 0.011039142145343
326 => 0.01118345799868
327 => 0.011856917116263
328 => 0.011667812490936
329 => 0.012265345484318
330 => 0.012737916502135
331 => 0.012879619887352
401 => 0.012749259440611
402 => 0.012303303394246
403 => 0.012281422663066
404 => 0.012947869274122
405 => 0.01275956758131
406 => 0.012737169694121
407 => 0.012498894016258
408 => 0.012639744452892
409 => 0.012608938396249
410 => 0.012560309528754
411 => 0.012829042350125
412 => 0.013332086201787
413 => 0.01325368209999
414 => 0.01319515707506
415 => 0.012938717452197
416 => 0.013093151383024
417 => 0.013038160418243
418 => 0.013274436501069
419 => 0.013134471783759
420 => 0.012758141010787
421 => 0.012818072926785
422 => 0.012809014338248
423 => 0.012995439448438
424 => 0.012939479257715
425 => 0.012798087212881
426 => 0.01333036685259
427 => 0.013295803573482
428 => 0.013344806400991
429 => 0.013366378961123
430 => 0.013690368197995
501 => 0.013823096221842
502 => 0.013853227806986
503 => 0.013979309164087
504 => 0.013850090787964
505 => 0.014367056423597
506 => 0.014710808405511
507 => 0.015110094021821
508 => 0.015693557625104
509 => 0.015912945337279
510 => 0.015873314910738
511 => 0.01631569035577
512 => 0.017110629197038
513 => 0.01603399477873
514 => 0.017167693435481
515 => 0.016808777529934
516 => 0.015957794374503
517 => 0.015903001091726
518 => 0.016479296764701
519 => 0.017757465100957
520 => 0.01743729842959
521 => 0.017757988778935
522 => 0.017383886451953
523 => 0.017365309118237
524 => 0.017739819463925
525 => 0.018614883300123
526 => 0.018199173272823
527 => 0.017603151012407
528 => 0.018043244574365
529 => 0.017661994802261
530 => 0.016802932360619
531 => 0.01743705360417
601 => 0.017013034787341
602 => 0.017136786020172
603 => 0.018028010505108
604 => 0.017920776017193
605 => 0.018059547374201
606 => 0.017814619561361
607 => 0.017585818362596
608 => 0.017158743934102
609 => 0.01703230825034
610 => 0.017067250524653
611 => 0.017032290934684
612 => 0.016793346716959
613 => 0.016741746735891
614 => 0.016655744506798
615 => 0.016682400193749
616 => 0.016520690842214
617 => 0.016825869799417
618 => 0.016882513703102
619 => 0.017104597498342
620 => 0.017127654974698
621 => 0.017746155183276
622 => 0.017405495661865
623 => 0.017634039479956
624 => 0.017613596369728
625 => 0.015976237759888
626 => 0.016201851329787
627 => 0.01655283524311
628 => 0.016394717465905
629 => 0.016171175922799
630 => 0.015990654141202
701 => 0.015717145182782
702 => 0.016102103789484
703 => 0.016608283421513
704 => 0.01714049252549
705 => 0.017779906892197
706 => 0.017637197049152
707 => 0.017128539118672
708 => 0.017151357141858
709 => 0.017292409182636
710 => 0.0171097339739
711 => 0.0170558594886
712 => 0.017285007655655
713 => 0.017286585673144
714 => 0.017076395768456
715 => 0.016842808153742
716 => 0.016841829413108
717 => 0.016800264753258
718 => 0.017391280712604
719 => 0.017716279731791
720 => 0.017753540345579
721 => 0.017713771795606
722 => 0.017729077132133
723 => 0.017539967363733
724 => 0.017972216215536
725 => 0.018368890506932
726 => 0.018262573323128
727 => 0.018103188750727
728 => 0.017976231261809
729 => 0.018232666173506
730 => 0.018221247530554
731 => 0.018365425903048
801 => 0.018358885139257
802 => 0.01831040337541
803 => 0.018262575054564
804 => 0.018452208940449
805 => 0.018397597426741
806 => 0.018342901086269
807 => 0.01823319920186
808 => 0.018248109509906
809 => 0.018088752457499
810 => 0.018015026593373
811 => 0.016906366489999
812 => 0.016610096283864
813 => 0.01670330892185
814 => 0.01673399694254
815 => 0.01660505976915
816 => 0.01678992255455
817 => 0.016761111885263
818 => 0.016873197345779
819 => 0.016803171216234
820 => 0.016806045113016
821 => 0.017011977028864
822 => 0.017071759940132
823 => 0.017041353868954
824 => 0.017062649238948
825 => 0.017553392052244
826 => 0.017483624117265
827 => 0.017446561292334
828 => 0.017456827948131
829 => 0.017582223258573
830 => 0.017617327099167
831 => 0.017468589659869
901 => 0.017538735096083
902 => 0.0178374054607
903 => 0.017941923185037
904 => 0.018275493589768
905 => 0.018133786953097
906 => 0.018393895617627
907 => 0.019193380974811
908 => 0.019832065198308
909 => 0.019244704791638
910 => 0.020417567032146
911 => 0.021330808523477
912 => 0.021295756793957
913 => 0.021136512016287
914 => 0.020096810858187
915 => 0.019140062351433
916 => 0.019940423103021
917 => 0.019942463387172
918 => 0.019873711688806
919 => 0.019446700794941
920 => 0.019858852635299
921 => 0.019891567751671
922 => 0.019873255986154
923 => 0.019545867735008
924 => 0.01904600638697
925 => 0.019143678097877
926 => 0.019303666352793
927 => 0.019000775209191
928 => 0.018903983135989
929 => 0.019083938015518
930 => 0.019663790132446
1001 => 0.019554172448596
1002 => 0.01955130988787
1003 => 0.020020300824516
1004 => 0.019684604528457
1005 => 0.01914491005094
1006 => 0.019008630077672
1007 => 0.018524927981758
1008 => 0.018859022742293
1009 => 0.018871046217948
1010 => 0.018688065931968
1011 => 0.019159757892685
1012 => 0.019155411168228
1013 => 0.019603212482845
1014 => 0.020459240409901
1015 => 0.020206070829295
1016 => 0.019911662151822
1017 => 0.01994367253813
1018 => 0.020294747467569
1019 => 0.020082479550969
1020 => 0.020158812573763
1021 => 0.020294631928397
1022 => 0.020376575117252
1023 => 0.019931882174288
1024 => 0.019828202977161
1025 => 0.019616111726292
1026 => 0.019560781077811
1027 => 0.019733524976214
1028 => 0.019688013062117
1029 => 0.018870035691376
1030 => 0.018784552504951
1031 => 0.018787174152236
1101 => 0.018572222615465
1102 => 0.01824436992761
1103 => 0.019105947216228
1104 => 0.019036750502185
1105 => 0.018960362685283
1106 => 0.01896971975699
1107 => 0.019343701256416
1108 => 0.019126773100231
1109 => 0.019703512157275
1110 => 0.019584951945509
1111 => 0.019463351111681
1112 => 0.019446542172394
1113 => 0.019399736225865
1114 => 0.019239221219494
1115 => 0.019045389703845
1116 => 0.018917405347814
1117 => 0.017450306463096
1118 => 0.017722591482378
1119 => 0.018035830577501
1120 => 0.018143959457911
1121 => 0.01795899752568
1122 => 0.019246524643935
1123 => 0.01948176825536
1124 => 0.018769200011792
1125 => 0.01863590758739
1126 => 0.019255263273088
1127 => 0.018881716081459
1128 => 0.019049924358977
1129 => 0.018686350067992
1130 => 0.019425104958105
1201 => 0.019419476883595
1202 => 0.019132084545805
1203 => 0.019374986581728
1204 => 0.019332776375461
1205 => 0.019008311133912
1206 => 0.019435391085
1207 => 0.019435602911328
1208 => 0.019158994034653
1209 => 0.018835975424166
1210 => 0.01877822732597
1211 => 0.018734721891345
1212 => 0.019039224688991
1213 => 0.019312240945204
1214 => 0.019820256511548
1215 => 0.019947983695079
1216 => 0.020446511395681
1217 => 0.020149662422846
1218 => 0.020281251727666
1219 => 0.020424110532491
1220 => 0.020492602296983
1221 => 0.020380998642214
1222 => 0.021155417363436
1223 => 0.021220802031084
1224 => 0.021242724944571
1225 => 0.020981595308993
1226 => 0.021213539543539
1227 => 0.02110502051738
1228 => 0.02138735687599
1229 => 0.021431630822072
1230 => 0.021394132364832
1231 => 0.021408185614135
]
'min_raw' => 0.0096001375610643
'max_raw' => 0.021431630822072
'avg_raw' => 0.015515884191568
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00960013'
'max' => '$0.021431'
'avg' => '$0.015515'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014803217333776
'max_diff' => -0.0020451446544003
'year' => 2031
]
6 => [
'items' => [
101 => 0.020747355852396
102 => 0.020713088343095
103 => 0.020245848422266
104 => 0.020436252143667
105 => 0.020080301512796
106 => 0.020193177124543
107 => 0.020242931618683
108 => 0.020216942694487
109 => 0.020447017284396
110 => 0.02025140688184
111 => 0.019735158868167
112 => 0.019218770203068
113 => 0.019212287364019
114 => 0.019076331343515
115 => 0.018978060042279
116 => 0.018996990581259
117 => 0.019063704269773
118 => 0.018974182521423
119 => 0.018993286525302
120 => 0.019310540278992
121 => 0.019374163256744
122 => 0.01915794751924
123 => 0.018289810133377
124 => 0.018076767041328
125 => 0.018229898191065
126 => 0.0181567113644
127 => 0.014653883144291
128 => 0.01547682067642
129 => 0.014987859139147
130 => 0.015213195111561
131 => 0.014714091997982
201 => 0.014952290164017
202 => 0.014908303660355
203 => 0.016231562859527
204 => 0.016210901987215
205 => 0.016220791253441
206 => 0.015748750810104
207 => 0.016500724053635
208 => 0.016871173113482
209 => 0.016802612851687
210 => 0.016819867992508
211 => 0.016523367504187
212 => 0.016223662026286
213 => 0.015891242526953
214 => 0.016508836868423
215 => 0.016440170920338
216 => 0.016597665900016
217 => 0.016998219977014
218 => 0.017057203086409
219 => 0.017136476983584
220 => 0.017108062934547
221 => 0.017785000859212
222 => 0.017703019209955
223 => 0.017900571396934
224 => 0.017494191559997
225 => 0.017034334200574
226 => 0.017121738050731
227 => 0.017113320357103
228 => 0.017006153455847
229 => 0.016909407969149
301 => 0.016748353991668
302 => 0.017257952607921
303 => 0.017237263834738
304 => 0.017572191024511
305 => 0.017512989390409
306 => 0.017117626388782
307 => 0.017131746855731
308 => 0.017226713782029
309 => 0.017555395398258
310 => 0.017652970480306
311 => 0.017607769814607
312 => 0.017714756437601
313 => 0.017799314302219
314 => 0.017725375603521
315 => 0.018772191654169
316 => 0.01833748064618
317 => 0.018549355766774
318 => 0.018599886734595
319 => 0.018470452723073
320 => 0.018498522325488
321 => 0.018541040124637
322 => 0.018799199875234
323 => 0.019476685759924
324 => 0.01977673964645
325 => 0.020679466568464
326 => 0.019751824348126
327 => 0.019696781897736
328 => 0.019859390276132
329 => 0.020389386542704
330 => 0.020818898736742
331 => 0.020961392710658
401 => 0.02098022564163
402 => 0.021247553809515
403 => 0.021400781329972
404 => 0.021215093138505
405 => 0.021057741838601
406 => 0.020494129013506
407 => 0.020559368732678
408 => 0.021008805702653
409 => 0.021643661894447
410 => 0.022188434552536
411 => 0.021997674154917
412 => 0.023453041332895
413 => 0.02359733504395
414 => 0.023577398318656
415 => 0.023906120866222
416 => 0.023253673552487
417 => 0.022974739685293
418 => 0.021091762975653
419 => 0.02162080262544
420 => 0.022389792825815
421 => 0.02228801408923
422 => 0.021729552850551
423 => 0.022188010909608
424 => 0.022036430337975
425 => 0.021916872452044
426 => 0.02246459030493
427 => 0.021862352026673
428 => 0.022383785038301
429 => 0.021715041807354
430 => 0.021998545532345
501 => 0.021837615106508
502 => 0.021941756814916
503 => 0.021332946515527
504 => 0.021661445775043
505 => 0.021319279866326
506 => 0.021319117635134
507 => 0.021311564303734
508 => 0.021714120977944
509 => 0.021727248336637
510 => 0.021429758346167
511 => 0.021386885390874
512 => 0.02154540917722
513 => 0.021359819340854
514 => 0.021446655657201
515 => 0.021362449524414
516 => 0.021343492950271
517 => 0.021192443742306
518 => 0.02112736759033
519 => 0.021152885626326
520 => 0.021065779414024
521 => 0.021013294770342
522 => 0.021301123787087
523 => 0.02114734835443
524 => 0.021277555496582
525 => 0.021129168024648
526 => 0.020614792397581
527 => 0.020318969535031
528 => 0.019347361658147
529 => 0.019622908446756
530 => 0.019805596252677
531 => 0.01974521793391
601 => 0.019874933925929
602 => 0.019882897434329
603 => 0.019840725443026
604 => 0.019791895679663
605 => 0.019768128051313
606 => 0.01994527248058
607 => 0.020048110784176
608 => 0.019823931418049
609 => 0.019771409329168
610 => 0.019998067045604
611 => 0.020136328121695
612 => 0.021157170225361
613 => 0.021081542945045
614 => 0.021271352577534
615 => 0.021249982925782
616 => 0.021448933659676
617 => 0.02177413402674
618 => 0.021112910753047
619 => 0.021227676249979
620 => 0.021199538400454
621 => 0.021506740063433
622 => 0.021507699113493
623 => 0.021323516370676
624 => 0.021423364823581
625 => 0.021367632156368
626 => 0.021468348618743
627 => 0.021080532896608
628 => 0.021552850584048
629 => 0.021820624277347
630 => 0.021824342315338
701 => 0.021951264920778
702 => 0.022080225638767
703 => 0.022327754506835
704 => 0.022073322192983
705 => 0.02161562322885
706 => 0.021648667615702
707 => 0.021380318880496
708 => 0.021384829871216
709 => 0.02136074984922
710 => 0.021433015807889
711 => 0.021096391210669
712 => 0.021175396330801
713 => 0.021064788699963
714 => 0.021227435810591
715 => 0.021052454406085
716 => 0.021199524831531
717 => 0.021262995551691
718 => 0.02149720387551
719 => 0.021017861646228
720 => 0.020040450392108
721 => 0.02024591408769
722 => 0.019942017143099
723 => 0.019970143962338
724 => 0.020026964613551
725 => 0.019842790292409
726 => 0.019877924948883
727 => 0.019876669691715
728 => 0.019865852563586
729 => 0.019817941709507
730 => 0.019748461492219
731 => 0.020025249293011
801 => 0.02007228093393
802 => 0.020176826445705
803 => 0.020487882974849
804 => 0.020456801092369
805 => 0.020507496932269
806 => 0.020396828198414
807 => 0.019975277567496
808 => 0.019998169794896
809 => 0.019712703352394
810 => 0.020169526426954
811 => 0.020061344693128
812 => 0.019991599225567
813 => 0.019972568528556
814 => 0.02028439610667
815 => 0.020377699805341
816 => 0.020319559201708
817 => 0.020200311127424
818 => 0.020429302682577
819 => 0.020490571162358
820 => 0.020504286915486
821 => 0.020910016046442
822 => 0.020526962666818
823 => 0.020619167422517
824 => 0.021338522605469
825 => 0.020686166718761
826 => 0.021031734181223
827 => 0.021014820452182
828 => 0.021191601072612
829 => 0.021000319281467
830 => 0.021002690448517
831 => 0.021159659663303
901 => 0.020939224710684
902 => 0.020884641916431
903 => 0.020809236177101
904 => 0.020973881850265
905 => 0.021072579485043
906 => 0.021868009935929
907 => 0.022381894283237
908 => 0.022359585208447
909 => 0.022563448391191
910 => 0.022471606160192
911 => 0.02217502336954
912 => 0.022681254028765
913 => 0.022521061466596
914 => 0.022534267546787
915 => 0.022533776015823
916 => 0.022640290065388
917 => 0.022564815099402
918 => 0.022416046194096
919 => 0.022514805936192
920 => 0.022808087062964
921 => 0.023718440679427
922 => 0.024227886623781
923 => 0.023687771393898
924 => 0.02406033564704
925 => 0.023836929853371
926 => 0.023796330374915
927 => 0.024030328258171
928 => 0.024264735723745
929 => 0.024249804981559
930 => 0.024079637198509
1001 => 0.023983513735711
1002 => 0.024711392799735
1003 => 0.025247681695012
1004 => 0.025211110387681
1005 => 0.025372524244615
1006 => 0.025846440320919
1007 => 0.025889769267627
1008 => 0.025884310816246
1009 => 0.025776915500923
1010 => 0.026243547423823
1011 => 0.026632819983514
1012 => 0.025752056588375
1013 => 0.026087439759204
1014 => 0.026238004069961
1015 => 0.026459077148569
1016 => 0.026832064488331
1017 => 0.027237227669318
1018 => 0.027294522185498
1019 => 0.027253868984474
1020 => 0.026986652975242
1021 => 0.02742998736248
1022 => 0.027689682249054
1023 => 0.027844324610996
1024 => 0.028236471910848
1025 => 0.026238933903886
1026 => 0.024824977218477
1027 => 0.024604167464269
1028 => 0.025053192782367
1029 => 0.025171597177839
1030 => 0.025123868514491
1031 => 0.023532331713746
1101 => 0.024595788352389
1102 => 0.025739978277595
1103 => 0.025783931272482
1104 => 0.026356736672924
1105 => 0.026543265591394
1106 => 0.027004449018069
1107 => 0.026975601869164
1108 => 0.027087892694528
1109 => 0.027062078978383
1110 => 0.027916324162671
1111 => 0.028858683457578
1112 => 0.028826052551715
1113 => 0.028690577253583
1114 => 0.02889178117328
1115 => 0.029864396954984
1116 => 0.029774854079655
1117 => 0.029861837355793
1118 => 0.031008606176645
1119 => 0.032499568769715
1120 => 0.031806866955037
1121 => 0.03330983057331
1122 => 0.034255866502336
1123 => 0.035891937819644
1124 => 0.035687093632896
1125 => 0.036324004190678
1126 => 0.035320379786345
1127 => 0.033015855288038
1128 => 0.032651155464816
1129 => 0.033381293746578
1130 => 0.035176267466437
1201 => 0.03332476363637
1202 => 0.033699320449789
1203 => 0.033591448062327
1204 => 0.033585700001227
1205 => 0.03380508011435
1206 => 0.033486857818168
1207 => 0.032190362936424
1208 => 0.032784538900435
1209 => 0.032555099026057
1210 => 0.032809679672555
1211 => 0.03418354642466
1212 => 0.033576127184661
1213 => 0.032936260358055
1214 => 0.033738795356435
1215 => 0.034760698190318
1216 => 0.03469674934751
1217 => 0.034572661863919
1218 => 0.035272136511912
1219 => 0.036427463703555
1220 => 0.036739744000975
1221 => 0.036970262932241
1222 => 0.037002047598214
1223 => 0.037329449411789
1224 => 0.035568927344316
1225 => 0.038362921078809
1226 => 0.038845366614236
1227 => 0.038754686848894
1228 => 0.039290904757111
1229 => 0.039133135845978
1230 => 0.038904553446931
1231 => 0.039754572888273
]
'min_raw' => 0.014653883144291
'max_raw' => 0.039754572888273
'avg_raw' => 0.027204228016282
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014653'
'max' => '$0.039754'
'avg' => '$0.0272042'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0050537455832269
'max_diff' => 0.018322942066201
'year' => 2032
]
7 => [
'items' => [
101 => 0.038780094191806
102 => 0.037396944365627
103 => 0.036638121015383
104 => 0.037637400815518
105 => 0.0382476261194
106 => 0.038650946227648
107 => 0.038772990648711
108 => 0.03570559166085
109 => 0.03405243373214
110 => 0.035112089010949
111 => 0.036404941584597
112 => 0.035561745482992
113 => 0.035594797173793
114 => 0.034392621120941
115 => 0.036511307489942
116 => 0.036202632706936
117 => 0.037804038027208
118 => 0.037421849795444
119 => 0.03872773366793
120 => 0.03838385067937
121 => 0.039811289738643
122 => 0.040380733825757
123 => 0.041336919074916
124 => 0.042040292836572
125 => 0.042453327362812
126 => 0.04242853031911
127 => 0.044065178885058
128 => 0.043100104405864
129 => 0.041887743409406
130 => 0.04186581562393
131 => 0.042493714563284
201 => 0.043809618484508
202 => 0.044150813225658
203 => 0.044341494539318
204 => 0.044049459469783
205 => 0.043001940290129
206 => 0.042549626819397
207 => 0.042935011001244
208 => 0.042463719263286
209 => 0.043277301024107
210 => 0.044394522553402
211 => 0.044163820725575
212 => 0.044935022347249
213 => 0.045733134892904
214 => 0.046874471678668
215 => 0.047172859378046
216 => 0.047666082898449
217 => 0.04817377191643
218 => 0.048336827946403
219 => 0.048648152500936
220 => 0.048646511666859
221 => 0.049584709166504
222 => 0.050619570062169
223 => 0.051010206093198
224 => 0.051908452106753
225 => 0.050370237286835
226 => 0.051536990897481
227 => 0.052589431860021
228 => 0.051334668357433
301 => 0.05306406752335
302 => 0.05313121617406
303 => 0.054145081077227
304 => 0.053117334764854
305 => 0.052507062285249
306 => 0.054268896067257
307 => 0.055121391937127
308 => 0.05486461324328
309 => 0.052910514704383
310 => 0.051773145539515
311 => 0.048796431052929
312 => 0.052322477946786
313 => 0.054039912532586
314 => 0.052906066963707
315 => 0.053477912716792
316 => 0.056597717724013
317 => 0.057785537478347
318 => 0.057538479272932
319 => 0.057580228042723
320 => 0.058221154021709
321 => 0.061063372776913
322 => 0.05936024941668
323 => 0.060662223410764
324 => 0.061352785722609
325 => 0.061994218483307
326 => 0.060419062349939
327 => 0.058369807364066
328 => 0.057720722288168
329 => 0.052793328367536
330 => 0.05253683611538
331 => 0.052392859241734
401 => 0.05148510541933
402 => 0.050771859569618
403 => 0.050204659988807
404 => 0.048716158908626
405 => 0.04921848432778
406 => 0.046846124280291
407 => 0.048363876167396
408 => 0.044577532248968
409 => 0.047730911976052
410 => 0.046014670757183
411 => 0.047167080577494
412 => 0.047163059928195
413 => 0.045041108077135
414 => 0.04381721053345
415 => 0.044597125683091
416 => 0.045433256633249
417 => 0.045568916066829
418 => 0.046652981668959
419 => 0.046955521076601
420 => 0.046038812547231
421 => 0.044499068687212
422 => 0.044856716068076
423 => 0.043809962820692
424 => 0.041975568017433
425 => 0.043293062390594
426 => 0.04374291289573
427 => 0.043941592506215
428 => 0.042137675898877
429 => 0.041570846135917
430 => 0.041269070726279
501 => 0.044266205705819
502 => 0.044430395525648
503 => 0.043590377193302
504 => 0.047387339709312
505 => 0.046527970152044
506 => 0.047488096498165
507 => 0.044824263316945
508 => 0.044926025331795
509 => 0.043664924013985
510 => 0.044371056485138
511 => 0.043871984814239
512 => 0.044314007959606
513 => 0.044578954810409
514 => 0.045839849193902
515 => 0.047745309364509
516 => 0.04565151362013
517 => 0.044739216830597
518 => 0.045305200627872
519 => 0.046812490064486
520 => 0.049096110717684
521 => 0.047744161328842
522 => 0.048344133510021
523 => 0.048475200740704
524 => 0.047478323313259
525 => 0.049132867010365
526 => 0.050019550419133
527 => 0.050929104123251
528 => 0.05171884411942
529 => 0.050565808372312
530 => 0.0517997219029
531 => 0.050805405412306
601 => 0.049913400729693
602 => 0.049914753532593
603 => 0.049355185965081
604 => 0.048270953292976
605 => 0.048071004153126
606 => 0.049111164829417
607 => 0.049945275188221
608 => 0.050013976512491
609 => 0.050475782865262
610 => 0.050749075107848
611 => 0.05342771060798
612 => 0.054505079964968
613 => 0.055822466821135
614 => 0.056335663245467
615 => 0.057880200491606
616 => 0.056632861224167
617 => 0.056362991527525
618 => 0.052616449382676
619 => 0.05322994544901
620 => 0.054212211844776
621 => 0.052632646593751
622 => 0.053634517179723
623 => 0.053832307655915
624 => 0.052578973570949
625 => 0.053248433459098
626 => 0.051470546477198
627 => 0.04778406244231
628 => 0.049136971120933
629 => 0.050133167292537
630 => 0.048711472525556
701 => 0.051259805368184
702 => 0.049771121929788
703 => 0.049299280749224
704 => 0.047458460080317
705 => 0.048327256576356
706 => 0.049502316277216
707 => 0.048776265997437
708 => 0.050282929344976
709 => 0.052416766457529
710 => 0.053937465856132
711 => 0.054054206273357
712 => 0.053076498439003
713 => 0.054643281483203
714 => 0.054654693787185
715 => 0.052887356112829
716 => 0.051804871627864
717 => 0.051558928875313
718 => 0.052173342091102
719 => 0.052919353162007
720 => 0.054095604695819
721 => 0.054806388862829
722 => 0.056659736999596
723 => 0.057161199865751
724 => 0.057712155521613
725 => 0.058448402186276
726 => 0.059332455076975
727 => 0.057398197681285
728 => 0.057475049333523
729 => 0.055673895628273
730 => 0.053749104582645
731 => 0.055209781057686
801 => 0.057119421243154
802 => 0.056681347674642
803 => 0.056632055449154
804 => 0.056714951299902
805 => 0.05638465813539
806 => 0.054890754393537
807 => 0.054140525286711
808 => 0.055108512238374
809 => 0.055622954223041
810 => 0.056420808877203
811 => 0.056322456450409
812 => 0.058377644356196
813 => 0.059176228230729
814 => 0.058971916302293
815 => 0.059009514614166
816 => 0.06045531257367
817 => 0.062063337255667
818 => 0.063569464567902
819 => 0.065101561959581
820 => 0.063254558755133
821 => 0.062316764435235
822 => 0.063284328794077
823 => 0.062770925525821
824 => 0.065721092990521
825 => 0.065925356184889
826 => 0.068875310318903
827 => 0.071675168066085
828 => 0.069916627579742
829 => 0.07157485205196
830 => 0.07336835701569
831 => 0.076828319076418
901 => 0.075663125577298
902 => 0.074770605617882
903 => 0.073927178568858
904 => 0.075682216367602
905 => 0.077940044458272
906 => 0.078426359003794
907 => 0.079214374353994
908 => 0.078385872567191
909 => 0.079383711712917
910 => 0.082906522370066
911 => 0.081954627833795
912 => 0.080602784567606
913 => 0.083383705247094
914 => 0.084390109630445
915 => 0.09145358265087
916 => 0.10037150911667
917 => 0.096679429001569
918 => 0.094387635731442
919 => 0.094926261511985
920 => 0.098182786366435
921 => 0.099228678792751
922 => 0.096385582637283
923 => 0.09738981226374
924 => 0.1029232162392
925 => 0.10589170993917
926 => 0.10186009677271
927 => 0.090737035942534
928 => 0.080481065872324
929 => 0.083201410967295
930 => 0.082893008255662
1001 => 0.088837960521084
1002 => 0.081931925463917
1003 => 0.082048205382765
1004 => 0.088116092965223
1005 => 0.086497284588152
1006 => 0.08387502233861
1007 => 0.080500211288714
1008 => 0.074261560930743
1009 => 0.068735814331053
1010 => 0.079573075916487
1011 => 0.079105753490642
1012 => 0.078429001364714
1013 => 0.079935039988737
1014 => 0.087247936050472
1015 => 0.087079350126714
1016 => 0.086006892493063
1017 => 0.086820342155979
1018 => 0.083732420679729
1019 => 0.084528248354824
1020 => 0.080479441274265
1021 => 0.082309671167797
1022 => 0.08386939614154
1023 => 0.084182534022142
1024 => 0.084888049656354
1025 => 0.078859495807517
1026 => 0.081566139496603
1027 => 0.083156039085724
1028 => 0.075972814901033
1029 => 0.083014049839419
1030 => 0.07875455209733
1031 => 0.077308814588156
1101 => 0.079255309682825
1102 => 0.078496758651404
1103 => 0.077844601018199
1104 => 0.07748068585338
1105 => 0.078909977024082
1106 => 0.078843298882596
1107 => 0.076504701113867
1108 => 0.073454095658
1109 => 0.074477978981699
1110 => 0.074105992571242
1111 => 0.072757865832542
1112 => 0.073666340480983
1113 => 0.069665877897749
1114 => 0.062783289949247
1115 => 0.067330138367398
1116 => 0.067155089649319
1117 => 0.067066822147836
1118 => 0.070483653068416
1119 => 0.070155203615104
1120 => 0.069559064641155
1121 => 0.072746917272788
1122 => 0.071583308179574
1123 => 0.075169277224078
1124 => 0.077531228362725
1125 => 0.076932161152849
1126 => 0.079153587615047
1127 => 0.074501567185524
1128 => 0.076046781765547
1129 => 0.076365248348915
1130 => 0.072707579666151
1201 => 0.070208942007669
1202 => 0.070042311362402
1203 => 0.065710017996072
1204 => 0.068024294143316
1205 => 0.070060761381636
1206 => 0.069085451610722
1207 => 0.068776697673802
1208 => 0.07035405457697
1209 => 0.070476628717495
1210 => 0.067681925323711
1211 => 0.068263032656025
1212 => 0.070686346832831
1213 => 0.068201971356353
1214 => 0.063375235625988
1215 => 0.062178138430015
1216 => 0.062018423597193
1217 => 0.058771801058738
1218 => 0.062258134188793
1219 => 0.060736256349605
1220 => 0.065543850208703
1221 => 0.062797778380029
1222 => 0.062679400711999
1223 => 0.062500455504544
1224 => 0.059705953369407
1225 => 0.060317771737127
1226 => 0.062351549173994
1227 => 0.063077223875611
1228 => 0.063001530058955
1229 => 0.06234158255503
1230 => 0.062643703142849
1231 => 0.061670467463694
]
'min_raw' => 0.03405243373214
'max_raw' => 0.10589170993917
'avg_raw' => 0.069972071835656
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034052'
'max' => '$0.105891'
'avg' => '$0.069972'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019398550587849
'max_diff' => 0.066137137050899
'year' => 2033
]
8 => [
'items' => [
101 => 0.061326797689235
102 => 0.060242081347225
103 => 0.058647847985008
104 => 0.058869535912026
105 => 0.055710942467623
106 => 0.053989973119871
107 => 0.053513631486424
108 => 0.052876647546492
109 => 0.053585580517389
110 => 0.055701994569252
111 => 0.053149150200417
112 => 0.04877247759126
113 => 0.049035523072558
114 => 0.049626508170129
115 => 0.048525211350563
116 => 0.047482926335679
117 => 0.048389108592864
118 => 0.046534654711709
119 => 0.049850610061909
120 => 0.049760922762543
121 => 0.050996905859794
122 => 0.051769791455432
123 => 0.04998854038217
124 => 0.04954056055426
125 => 0.049795750223786
126 => 0.045578033428541
127 => 0.050652228415343
128 => 0.050696110264299
129 => 0.050320367232091
130 => 0.053022219414369
131 => 0.058723970247804
201 => 0.05657874223187
202 => 0.05574804510424
203 => 0.05416888925738
204 => 0.056273020662325
205 => 0.056111456199988
206 => 0.0553808004298
207 => 0.054938897540205
208 => 0.055753117163766
209 => 0.054838006718276
210 => 0.054673627736713
211 => 0.053677669954535
212 => 0.053322158339489
213 => 0.053058951693035
214 => 0.052769187037439
215 => 0.05340833566283
216 => 0.051959940790691
217 => 0.050213318562791
218 => 0.050068105823255
219 => 0.050469050964347
220 => 0.050291662586269
221 => 0.050067256555947
222 => 0.049638804330717
223 => 0.049511691707924
224 => 0.049924746065722
225 => 0.049458431778333
226 => 0.05014650391083
227 => 0.049959386363558
228 => 0.048914162955214
301 => 0.047611427597147
302 => 0.047599830519881
303 => 0.047319158323899
304 => 0.04696168008297
305 => 0.046862237814338
306 => 0.048312792450712
307 => 0.05131539713656
308 => 0.050725913990487
309 => 0.051151875976187
310 => 0.05324718735576
311 => 0.053913223835114
312 => 0.053440486918007
313 => 0.052793375468727
314 => 0.052821845088349
315 => 0.055033220804495
316 => 0.055171141595382
317 => 0.055519622939021
318 => 0.055967519946413
319 => 0.053516765715127
320 => 0.052706414784449
321 => 0.052322425556935
322 => 0.051139887358726
323 => 0.052415153422331
324 => 0.051672110499406
325 => 0.05177237237567
326 => 0.051707076697223
327 => 0.051742732552929
328 => 0.049849683184809
329 => 0.050539410878806
330 => 0.049392604812649
331 => 0.047857160225087
401 => 0.047852012876433
402 => 0.048227810763976
403 => 0.048004271475493
404 => 0.047402732997905
405 => 0.047488178699465
406 => 0.046739584443608
407 => 0.047579071595862
408 => 0.047603145083559
409 => 0.047279896802767
410 => 0.048573242587718
411 => 0.049103127411082
412 => 0.048890358468015
413 => 0.049088198974838
414 => 0.050750409676563
415 => 0.051021422548282
416 => 0.051141788563794
417 => 0.050980514048449
418 => 0.049118581135102
419 => 0.049201165777359
420 => 0.048595214468248
421 => 0.048083249465625
422 => 0.048103725380827
423 => 0.048366941942967
424 => 0.04951642410728
425 => 0.0519354415564
426 => 0.052027241500316
427 => 0.052138505710335
428 => 0.051685938251277
429 => 0.051549439575138
430 => 0.051729516562263
501 => 0.052637972330257
502 => 0.054974767208875
503 => 0.054148787829489
504 => 0.053477253736914
505 => 0.054066370180394
506 => 0.053975680321567
507 => 0.053210166646024
508 => 0.053188681226774
509 => 0.051719415733879
510 => 0.051176261734713
511 => 0.050722361598637
512 => 0.050226714499405
513 => 0.04993287828474
514 => 0.050384344256638
515 => 0.050487599865999
516 => 0.04950046162817
517 => 0.049365918333955
518 => 0.050172036727825
519 => 0.049817294077805
520 => 0.050182155690545
521 => 0.050266806714425
522 => 0.050253175949902
523 => 0.049882783881348
524 => 0.050118860740594
525 => 0.049560468590578
526 => 0.048953300995225
527 => 0.048565965897268
528 => 0.048227964651755
529 => 0.048415507387514
530 => 0.047746951778486
531 => 0.047533067383792
601 => 0.050038883212579
602 => 0.051889956307364
603 => 0.05186304097146
604 => 0.051699200786209
605 => 0.051455767504695
606 => 0.052620163669462
607 => 0.052214511328494
608 => 0.052509657299936
609 => 0.052584784336905
610 => 0.052812171250996
611 => 0.052893442528217
612 => 0.052647784281922
613 => 0.051823325202727
614 => 0.049768851564591
615 => 0.048812488540093
616 => 0.048496872812523
617 => 0.04850834484478
618 => 0.048191894981709
619 => 0.048285103648672
620 => 0.048159480811159
621 => 0.04792158154834
622 => 0.048400817778417
623 => 0.048456045289539
624 => 0.048344185826993
625 => 0.048370532779794
626 => 0.04744438420571
627 => 0.047514797270309
628 => 0.047122728378964
629 => 0.047049220188298
630 => 0.046058104172323
701 => 0.044302198485458
702 => 0.04527514068587
703 => 0.044099963324149
704 => 0.043654905850422
705 => 0.045761738710407
706 => 0.045550271125712
707 => 0.045188330543463
708 => 0.04465294498729
709 => 0.04445436527661
710 => 0.043247857817213
711 => 0.043176570920045
712 => 0.043774548595364
713 => 0.043498602473359
714 => 0.043111069609097
715 => 0.041707464858314
716 => 0.040129348400872
717 => 0.040176981817036
718 => 0.040678951300248
719 => 0.042138495272494
720 => 0.04156822619217
721 => 0.041154489431312
722 => 0.041077008972884
723 => 0.04204683912643
724 => 0.043419351979397
725 => 0.044063304301765
726 => 0.043425167107421
727 => 0.042692109458306
728 => 0.042736727280745
729 => 0.043033549664299
730 => 0.043064741499968
731 => 0.042587596329938
801 => 0.042721909900408
802 => 0.042517875304974
803 => 0.041265715369416
804 => 0.041243067766823
805 => 0.040935767524831
806 => 0.040926462595632
807 => 0.040403668224365
808 => 0.040330525677918
809 => 0.039292485722417
810 => 0.039975726764602
811 => 0.039517444545269
812 => 0.038826705142887
813 => 0.03870762140956
814 => 0.038704041608739
815 => 0.039413276528481
816 => 0.039967438941628
817 => 0.039525416560682
818 => 0.039424776632784
819 => 0.040499347767209
820 => 0.04036259879542
821 => 0.040244175067787
822 => 0.043296458507267
823 => 0.040880337992272
824 => 0.039826771540396
825 => 0.038522782989357
826 => 0.038947368236857
827 => 0.03903683458696
828 => 0.035900977183315
829 => 0.034628760225202
830 => 0.034192183307663
831 => 0.033940927119327
901 => 0.034055427719428
902 => 0.032910283240961
903 => 0.033679839269432
904 => 0.032688240947733
905 => 0.03252199626216
906 => 0.034295096896819
907 => 0.034541813491828
908 => 0.033489243848681
909 => 0.034165163955128
910 => 0.033920065928538
911 => 0.032705239054899
912 => 0.032658841603987
913 => 0.032049284182025
914 => 0.031095444850228
915 => 0.030659514680671
916 => 0.030432478463447
917 => 0.030526158031521
918 => 0.030478790775261
919 => 0.030169687387714
920 => 0.030496508219611
921 => 0.029661616045804
922 => 0.029329155255011
923 => 0.029178990428841
924 => 0.028437975569987
925 => 0.029617259741228
926 => 0.029849593579193
927 => 0.03008238518659
928 => 0.032108677195403
929 => 0.032007449372884
930 => 0.032922499588503
1001 => 0.032886942419793
1002 => 0.032625955275468
1003 => 0.031524893443862
1004 => 0.0319637570654
1005 => 0.030613003052855
1006 => 0.031625079801399
1007 => 0.031163210238699
1008 => 0.031468921237651
1009 => 0.030919225296686
1010 => 0.031223449726805
1011 => 0.029904688551191
1012 => 0.028673247920873
1013 => 0.029168815578506
1014 => 0.029707554297389
1015 => 0.030875677108
1016 => 0.030179952798804
1017 => 0.03043016156864
1018 => 0.029592004074133
1019 => 0.027862645755113
1020 => 0.027872433735391
1021 => 0.027606409634129
1022 => 0.027376525970483
1023 => 0.030259865104865
1024 => 0.029901276304658
1025 => 0.02932991198247
1026 => 0.030094705832834
1027 => 0.030296929465781
1028 => 0.030302686488318
1029 => 0.030860660339357
1030 => 0.031158451083679
1031 => 0.031210937993064
1101 => 0.032088921903497
1102 => 0.032383210529386
1103 => 0.033595343730139
1104 => 0.031133185619571
1105 => 0.031082479093552
1106 => 0.030105468050705
1107 => 0.029485832201398
1108 => 0.030147895047429
1109 => 0.030734392348421
1110 => 0.030123692156702
1111 => 0.030203436709156
1112 => 0.029383621597812
1113 => 0.029676666924231
1114 => 0.029929077036812
1115 => 0.029789711008625
1116 => 0.029581073319038
1117 => 0.030686306258067
1118 => 0.030623944684204
1119 => 0.031653163006223
1120 => 0.032455512288345
1121 => 0.033893465638997
1122 => 0.032392886355388
1123 => 0.032338199282031
1124 => 0.032872774196179
1125 => 0.032383128688752
1126 => 0.032692567747458
1127 => 0.033843610222731
1128 => 0.033867929936444
1129 => 0.033460543397561
1130 => 0.033435753889647
1201 => 0.03351399693076
1202 => 0.033972268866435
1203 => 0.033812134570836
1204 => 0.033997446031807
1205 => 0.034229180851342
1206 => 0.035187734318465
1207 => 0.035418838314221
1208 => 0.034857375418218
1209 => 0.034908069231294
1210 => 0.034698066695687
1211 => 0.034495206877616
1212 => 0.034951206123343
1213 => 0.035784553707599
1214 => 0.035779369495528
1215 => 0.035972689937113
1216 => 0.036093126970667
1217 => 0.035576123057355
1218 => 0.035239572520549
1219 => 0.035368627411627
1220 => 0.035574988992911
1221 => 0.035301707132089
1222 => 0.033614884890619
1223 => 0.034126559004059
1224 => 0.034041391411997
1225 => 0.033920102404167
1226 => 0.03443459468189
1227 => 0.034384970646591
1228 => 0.03289853812917
1229 => 0.032993694716216
1230 => 0.032904324916396
1231 => 0.033193097022956
]
'min_raw' => 0.027376525970483
'max_raw' => 0.061326797689235
'avg_raw' => 0.044351661829859
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027376'
'max' => '$0.061326'
'avg' => '$0.044351'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0066759077616567
'max_diff' => -0.044564912249937
'year' => 2034
]
9 => [
'items' => [
101 => 0.032367534047329
102 => 0.03262147165838
103 => 0.032780738947514
104 => 0.032874548604363
105 => 0.033213453410786
106 => 0.033173686843377
107 => 0.033210981465121
108 => 0.033713487825494
109 => 0.0362549925569
110 => 0.036393321051916
111 => 0.035712140951186
112 => 0.035984258965744
113 => 0.03546185188346
114 => 0.035812547257621
115 => 0.036052484125925
116 => 0.034968255555265
117 => 0.034904054575896
118 => 0.034379491333752
119 => 0.0346613619073
120 => 0.034212885557574
121 => 0.03432292596676
122 => 0.034015243389526
123 => 0.034569010769557
124 => 0.035188208747183
125 => 0.0353446426092
126 => 0.034933132467245
127 => 0.034635172004629
128 => 0.034112051586554
129 => 0.034982012500312
130 => 0.035236415583073
131 => 0.034980676229221
201 => 0.034921415832918
202 => 0.034809117489005
203 => 0.034945240457447
204 => 0.035235030049248
205 => 0.035098370629329
206 => 0.035188636583815
207 => 0.034844635847162
208 => 0.035576294207162
209 => 0.036738343766017
210 => 0.036742079945363
211 => 0.036605419788798
212 => 0.036549501397116
213 => 0.036689723010983
214 => 0.036765787484315
215 => 0.037219238471316
216 => 0.037705809446652
217 => 0.039976423880998
218 => 0.039338844433844
219 => 0.041353468639453
220 => 0.042946774819877
221 => 0.043424537676551
222 => 0.042985018328891
223 => 0.041481446382912
224 => 0.041407673970074
225 => 0.043654645249067
226 => 0.043019772944947
227 => 0.042944256904519
228 => 0.042140893820727
301 => 0.042615780901702
302 => 0.042511916130919
303 => 0.042347960509001
304 => 0.04325401197858
305 => 0.044950059445858
306 => 0.04468571454265
307 => 0.044488393335013
308 => 0.043623789242485
309 => 0.044144474022502
310 => 0.043959068145398
311 => 0.044755689454914
312 => 0.044283788638479
313 => 0.043014963162829
314 => 0.04321702780193
315 => 0.043186486138227
316 => 0.043815031413018
317 => 0.043626357722979
318 => 0.043149644572143
319 => 0.044944262539998
320 => 0.044827730031356
321 => 0.044992946485571
322 => 0.045065679878205
323 => 0.046158032210523
324 => 0.046605534009698
325 => 0.046707124752732
326 => 0.047132216850917
327 => 0.046696548074079
328 => 0.048439533808004
329 => 0.049598517615026
330 => 0.050944736947644
331 => 0.052911925222243
401 => 0.053651606211001
402 => 0.05351798946101
403 => 0.055009489159601
404 => 0.057689680963794
405 => 0.054059732854253
406 => 0.057882077027803
407 => 0.056671966993543
408 => 0.053802817871262
409 => 0.053618078492833
410 => 0.055561099589948
411 => 0.059870533374498
412 => 0.058791069088662
413 => 0.059872298991362
414 => 0.058610986876954
415 => 0.058548352099301
416 => 0.059811039877267
417 => 0.062761378696012
418 => 0.061359783315023
419 => 0.059350252651088
420 => 0.060834058821578
421 => 0.059548648596921
422 => 0.056652259597102
423 => 0.058790243642666
424 => 0.057360634597678
425 => 0.057777870519202
426 => 0.060782696093471
427 => 0.060421147530593
428 => 0.060889024849453
429 => 0.060063233628146
430 => 0.059291814412123
501 => 0.057851903159071
502 => 0.05742561642381
503 => 0.057543426741246
504 => 0.057425558042867
505 => 0.056619940930253
506 => 0.056445967991487
507 => 0.056156005471615
508 => 0.056245876981211
509 => 0.055700662612325
510 => 0.056729594773451
511 => 0.056920573649475
512 => 0.057669344670521
513 => 0.057747084561878
514 => 0.059832401197404
515 => 0.058683843836879
516 => 0.05945439527599
517 => 0.059385469902565
518 => 0.053865001032763
519 => 0.054625672935512
520 => 0.055809039704197
521 => 0.055275934578921
522 => 0.054522248659166
523 => 0.053913606868883
524 => 0.052991452319784
525 => 0.054289367139231
526 => 0.055995987108949
527 => 0.057790367260662
528 => 0.0599461974405
529 => 0.05946504124099
530 => 0.057750065515014
531 => 0.057826998073291
601 => 0.058302564876712
602 => 0.057686662656482
603 => 0.057505021067896
604 => 0.058277610111737
605 => 0.058282930507874
606 => 0.057574260569229
607 => 0.056786703617655
608 => 0.056783403725272
609 => 0.056643265572637
610 => 0.058635917142989
611 => 0.059731674026886
612 => 0.059857300787724
613 => 0.05972321834494
614 => 0.059774821355625
615 => 0.059137224568242
616 => 0.060594581750747
617 => 0.061931996819102
618 => 0.061573541011077
619 => 0.061036164797353
620 => 0.060608118759576
621 => 0.061472706968076
622 => 0.061434208216139
623 => 0.061920315665215
624 => 0.061898263023432
625 => 0.061734803371734
626 => 0.061573546848736
627 => 0.062212910734812
628 => 0.062028784203492
629 => 0.061844371672812
630 => 0.061474504110386
701 => 0.06152477525497
702 => 0.060987491826825
703 => 0.060738919928549
704 => 0.057000994985847
705 => 0.056002099300936
706 => 0.056316372217806
707 => 0.056419839022132
708 => 0.055985118339939
709 => 0.056608396127623
710 => 0.056511258944627
711 => 0.056889162900313
712 => 0.056653064915483
713 => 0.056662754459134
714 => 0.057357068291122
715 => 0.057558630550371
716 => 0.05745611435851
717 => 0.05752791318524
718 => 0.059182486842836
719 => 0.058947259379013
720 => 0.058822299477114
721 => 0.058856914223932
722 => 0.059279693267907
723 => 0.05939804831734
724 => 0.05889656965623
725 => 0.059133069891823
726 => 0.060140057878629
727 => 0.060492446683427
728 => 0.06161710259212
729 => 0.061139328772943
730 => 0.06201630329561
731 => 0.064711823995642
801 => 0.066865192446672
802 => 0.06488486582739
803 => 0.068839252757889
804 => 0.071918310206397
805 => 0.071800130853085
806 => 0.071263225967055
807 => 0.067757800922906
808 => 0.064532056534337
809 => 0.067230528687717
810 => 0.067237407648181
811 => 0.06700560649705
812 => 0.065565909455434
813 => 0.066955508160726
814 => 0.06706580945967
815 => 0.067004070063744
816 => 0.065900257717486
817 => 0.06421494028337
818 => 0.064544247275917
819 => 0.065083658847388
820 => 0.064062440209551
821 => 0.063736098976942
822 => 0.064342829417321
823 => 0.066297841313529
824 => 0.065928257639163
825 => 0.065918606315821
826 => 0.067499842002624
827 => 0.066368018502892
828 => 0.06454840089168
829 => 0.064088923447041
830 => 0.062458088059668
831 => 0.063584511870563
901 => 0.063625049858183
902 => 0.063008119048728
903 => 0.064598461426767
904 => 0.064583806141779
905 => 0.066093599538502
906 => 0.068979757460533
907 => 0.068126178543783
908 => 0.067133559132724
909 => 0.067241484385057
910 => 0.068425158020928
911 => 0.06770948192004
912 => 0.06796684403579
913 => 0.068424768472542
914 => 0.068701045654859
915 => 0.067201732350186
916 => 0.066852170698421
917 => 0.066137090238379
918 => 0.065950539093962
919 => 0.066532957208024
920 => 0.066379510612104
921 => 0.063621642797295
922 => 0.063333430266015
923 => 0.063342269332877
924 => 0.062617545219216
925 => 0.061512166992167
926 => 0.064417034974148
927 => 0.064183733421594
928 => 0.06392618656368
929 => 0.063957734584232
930 => 0.0652186393201
1001 => 0.064487250896081
1002 => 0.06643176689354
1003 => 0.066032032861964
1004 => 0.065622047160812
1005 => 0.065565374648443
1006 => 0.065407565131836
1007 => 0.064866377581055
1008 => 0.064212861093158
1009 => 0.06378135290122
1010 => 0.058834926581817
1011 => 0.05975295453466
1012 => 0.060809062013525
1013 => 0.061173626083144
1014 => 0.060550014014995
1015 => 0.064891001586466
1016 => 0.065684141846571
1017 => 0.063281668263455
1018 => 0.062832263548403
1019 => 0.064920464484768
1020 => 0.063661024047958
1021 => 0.064228149999536
1022 => 0.063002333893533
1023 => 0.06549309758377
1024 => 0.065474122137621
1025 => 0.064505158805669
1026 => 0.06532411997866
1027 => 0.065181805321208
1028 => 0.064087848105886
1029 => 0.065527777978752
1030 => 0.065528492166004
1031 => 0.06459588602608
1101 => 0.063506806228385
1102 => 0.063312104483473
1103 => 0.063165422873182
1104 => 0.064192075315151
1105 => 0.065112568684362
1106 => 0.066825378634804
1107 => 0.067256019751706
1108 => 0.068936840700376
1109 => 0.06793599366313
1110 => 0.068379656191602
1111 => 0.068861314626155
1112 => 0.069092239392082
1113 => 0.06871595987811
1114 => 0.071326966664899
1115 => 0.071547415636885
1116 => 0.071621330270315
1117 => 0.070740913472474
1118 => 0.071522929653075
1119 => 0.071157050179825
1120 => 0.072108966924974
1121 => 0.072258239625297
1122 => 0.072131810958654
1123 => 0.072179192469846
1124 => 0.069951158790482
1125 => 0.069835623490393
1126 => 0.068260291475668
1127 => 0.068902250915935
1128 => 0.067702138512273
1129 => 0.068082706518002
1130 => 0.068250457268742
1201 => 0.068162833796327
1202 => 0.068938546339499
1203 => 0.0682790322102
1204 => 0.066538465988817
1205 => 0.064797425551331
1206 => 0.064775568206859
1207 => 0.064317182991585
1208 => 0.063985854438382
1209 => 0.064049680072241
1210 => 0.064274609930867
1211 => 0.063972781106098
1212 => 0.064037191588973
1213 => 0.065106834769489
1214 => 0.065321344080995
1215 => 0.064592357626298
1216 => 0.061665371818445
1217 => 0.06094708215941
1218 => 0.061463374522022
1219 => 0.06121662002618
1220 => 0.049406590122427
1221 => 0.052181181467664
1222 => 0.050532613506544
1223 => 0.051292349469993
1224 => 0.049609588476293
1225 => 0.050412690223547
1226 => 0.050264386655409
1227 => 0.054725847432423
1228 => 0.054656187858929
1229 => 0.054689530210458
1230 => 0.053098012898935
1231 => 0.055633343190595
]
'min_raw' => 0.032367534047329
'max_raw' => 0.072258239625297
'avg_raw' => 0.052312886836313
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032367'
'max' => '$0.072258'
'avg' => '$0.052312'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0049910080768454
'max_diff' => 0.010931441936061
'year' => 2035
]
10 => [
'items' => [
101 => 0.056882338059795
102 => 0.056651182350428
103 => 0.056709359262422
104 => 0.055709687165044
105 => 0.054699209221536
106 => 0.053578433670744
107 => 0.05566069611207
108 => 0.055429184074
109 => 0.055960189393931
110 => 0.057310685430325
111 => 0.057509551101719
112 => 0.05777682858077
113 => 0.057681028630637
114 => 0.05996337210594
115 => 0.059686965251693
116 => 0.060353026242748
117 => 0.05898288824998
118 => 0.057432447056471
119 => 0.057727135239616
120 => 0.057698754397846
121 => 0.057337433708106
122 => 0.057011249545148
123 => 0.056468244815642
124 => 0.058186392129379
125 => 0.058116638486147
126 => 0.059245868890338
127 => 0.059046266447638
128 => 0.057713272484287
129 => 0.057760880624465
130 => 0.058081068246857
131 => 0.059189241263794
201 => 0.059518222465394
202 => 0.059365825265179
203 => 0.05972653813417
204 => 0.060011630878372
205 => 0.059762341393477
206 => 0.0632917547946
207 => 0.06182609628061
208 => 0.062540448042342
209 => 0.06271081672831
210 => 0.06227442092167
211 => 0.062369059545968
212 => 0.062512411274298
213 => 0.063382814897571
214 => 0.065667005858358
215 => 0.066678658485876
216 => 0.069722265329828
217 => 0.066594654818045
218 => 0.066409075353615
219 => 0.066957320854332
220 => 0.068744240270236
221 => 0.070192370620019
222 => 0.070672799001686
223 => 0.070736295543332
224 => 0.071637611125615
225 => 0.072154228408839
226 => 0.071528167706972
227 => 0.070997646813428
228 => 0.069097386823431
229 => 0.06931734709151
301 => 0.070832655214467
302 => 0.072973117189347
303 => 0.074809856240906
304 => 0.074166694241869
305 => 0.079073566292912
306 => 0.079560062613998
307 => 0.079492844552733
308 => 0.080601155572527
309 => 0.078401383901851
310 => 0.077460938894068
311 => 0.071112351452281
312 => 0.072896045567906
313 => 0.07548874971765
314 => 0.07514559560129
315 => 0.073262704544565
316 => 0.074808427899196
317 => 0.074297363418917
318 => 0.073894265659236
319 => 0.075740934640681
320 => 0.073710446238601
321 => 0.075468494042597
322 => 0.073213779549297
323 => 0.074169632151704
324 => 0.07362704398519
325 => 0.073978165026029
326 => 0.071925518595862
327 => 0.073033076784405
328 => 0.071879440533905
329 => 0.071878893560115
330 => 0.071853426975945
331 => 0.073210674908651
401 => 0.07325493471501
402 => 0.072251926442052
403 => 0.072107377279985
404 => 0.07264185129343
405 => 0.072016122202652
406 => 0.072308896905935
407 => 0.07202499005016
408 => 0.071961076636931
409 => 0.071451803686358
410 => 0.071232394896499
411 => 0.071318430736471
412 => 0.071024746060132
413 => 0.0708477904196
414 => 0.071818226045134
415 => 0.071299761437672
416 => 0.071738763908211
417 => 0.071238465186503
418 => 0.069504211847287
419 => 0.068506824412508
420 => 0.065230980620098
421 => 0.066160005855954
422 => 0.066775950548473
423 => 0.06657238083127
424 => 0.067009727354844
425 => 0.067036576879411
426 => 0.066894391066376
427 => 0.066729758110013
428 => 0.06664962389163
429 => 0.06724687870273
430 => 0.067593605223246
501 => 0.066837768838644
502 => 0.066660686949006
503 => 0.06742487926471
504 => 0.06789103613583
505 => 0.071332876561258
506 => 0.071077893905544
507 => 0.071717850333567
508 => 0.071645801060703
509 => 0.072316577350325
510 => 0.073413013092646
511 => 0.071183652660253
512 => 0.071570592545833
513 => 0.071475723821635
514 => 0.072511475676506
515 => 0.072514709180741
516 => 0.071893724204104
517 => 0.072230370234269
518 => 0.072042463655631
519 => 0.072382036240327
520 => 0.071074488456722
521 => 0.072666940516092
522 => 0.073569758218411
523 => 0.073582293843083
524 => 0.074010222268778
525 => 0.074445022333227
526 => 0.075279583193832
527 => 0.074421746883784
528 => 0.072878582870687
529 => 0.072989994328044
530 => 0.072085237831787
531 => 0.072100446951947
601 => 0.072019259476574
602 => 0.072262909201675
603 => 0.071127955869769
604 => 0.071394327148255
605 => 0.071021405798506
606 => 0.071569781887649
607 => 0.070979819865546
608 => 0.071475678073064
609 => 0.071689674037469
610 => 0.072479323753126
611 => 0.070863187960499
612 => 0.067567777676557
613 => 0.068260512871229
614 => 0.067235903105134
615 => 0.067330734639951
616 => 0.067522309432607
617 => 0.066901352850236
618 => 0.067019811797562
619 => 0.06701557961038
620 => 0.066979108907665
621 => 0.066817574118109
622 => 0.066583316714569
623 => 0.067516526109646
624 => 0.067675096570648
625 => 0.068027579062731
626 => 0.069076327868014
627 => 0.068971533131166
628 => 0.069142457694857
629 => 0.068769330332021
630 => 0.067348042948157
701 => 0.067425225691121
702 => 0.066462755649594
703 => 0.068002966539842
704 => 0.067638224271241
705 => 0.067403072557885
706 => 0.06733890923423
707 => 0.06839025768495
708 => 0.068704837619274
709 => 0.068508812514877
710 => 0.068106759306795
711 => 0.068878820322674
712 => 0.069085391279884
713 => 0.06913163489916
714 => 0.070499578991281
715 => 0.069208087777946
716 => 0.069518962549314
717 => 0.071944318772413
718 => 0.069744855354343
719 => 0.070909960180782
720 => 0.070852934362441
721 => 0.071448962566649
722 => 0.070804042652936
723 => 0.070812037208196
724 => 0.071341269875086
725 => 0.070598058042054
726 => 0.070414028340384
727 => 0.070159792625572
728 => 0.070714907007836
729 => 0.071047672974339
730 => 0.073729522274682
731 => 0.075462119229891
801 => 0.075386902626666
802 => 0.076074241580561
803 => 0.075764589086528
804 => 0.074764639501095
805 => 0.076471431512568
806 => 0.075931331104927
807 => 0.075975856326311
808 => 0.075974199095347
809 => 0.076333318650031
810 => 0.076078849532714
811 => 0.075577264781762
812 => 0.075910240147424
813 => 0.076899057942569
814 => 0.079968378719335
815 => 0.081686011289104
816 => 0.079864975081911
817 => 0.081121101472986
818 => 0.080367873241939
819 => 0.080230989265758
820 => 0.081019929466365
821 => 0.081810250602354
822 => 0.081759910562643
823 => 0.081186178001355
824 => 0.080862091035408
825 => 0.083316186118658
826 => 0.085124321571578
827 => 0.085001018855583
828 => 0.085545236943794
829 => 0.087143078082816
830 => 0.087289164651771
831 => 0.087270761101844
901 => 0.086908670298132
902 => 0.08848195240539
903 => 0.089794412018529
904 => 0.086824856738882
905 => 0.087955624515039
906 => 0.088463262600818
907 => 0.089208625920175
908 => 0.090466178777327
909 => 0.091832214729616
910 => 0.092025387191092
911 => 0.091888322085521
912 => 0.090987384653969
913 => 0.092482117493162
914 => 0.093357696934563
915 => 0.093879084454638
916 => 0.095201236454937
917 => 0.088466397600815
918 => 0.083699143916657
919 => 0.082954668413898
920 => 0.084468588623812
921 => 0.084867797309879
922 => 0.08470687678909
923 => 0.079340899347828
924 => 0.082926417653185
925 => 0.086784133870806
926 => 0.086932324461769
927 => 0.088863577861353
928 => 0.089492473133009
929 => 0.091047385254843
930 => 0.090950125078265
1001 => 0.091328721435876
1002 => 0.091241688689637
1003 => 0.094121835969958
1004 => 0.097299066126163
1005 => 0.097189048748827
1006 => 0.096732284322591
1007 => 0.097410657385459
1008 => 0.10068989939934
1009 => 0.10038799934348
1010 => 0.10068126953196
1011 => 0.10454768067631
1012 => 0.10957456515453
1013 => 0.10723907262344
1014 => 0.11230641939602
1015 => 0.11549604558085
1016 => 0.121012174254
1017 => 0.12032152777662
1018 => 0.12246891618986
1019 => 0.11908512643983
1020 => 0.11131526119703
1021 => 0.1100856502805
1022 => 0.11254736247409
1023 => 0.11859924169166
1024 => 0.11235676726072
1025 => 0.11361961170788
1026 => 0.11325591242214
1027 => 0.11323653243283
1028 => 0.11397618780085
1029 => 0.1129032791117
1030 => 0.10853205609952
1031 => 0.11053536184623
1101 => 0.10976178929078
1102 => 0.1106201257147
1103 => 0.11525221338974
1104 => 0.11320425701343
1105 => 0.11104690133345
1106 => 0.11375270411169
1107 => 0.11719812086311
1108 => 0.11698251287481
1109 => 0.11656414326037
1110 => 0.11892247087184
1111 => 0.12281773716083
1112 => 0.1238706119863
1113 => 0.12464782265738
1114 => 0.12475498687784
1115 => 0.12585884495078
1116 => 0.11992312188457
1117 => 0.12934326683082
1118 => 0.13096986563679
1119 => 0.13066413247688
1120 => 0.13247202859197
1121 => 0.13194009969301
1122 => 0.13116941817551
1123 => 0.13403531806846
1124 => 0.13074979510739
1125 => 0.12608640889999
1126 => 0.12352798299529
1127 => 0.12689712460893
1128 => 0.12895454182554
1129 => 0.13031436372941
1130 => 0.13072584501589
1201 => 0.12038389516936
1202 => 0.11481015779291
1203 => 0.11838285954819
1204 => 0.12274180226432
1205 => 0.11989890773769
1206 => 0.12001034382082
1207 => 0.11595712332538
1208 => 0.12310042234042
1209 => 0.12205970375853
1210 => 0.12745895360238
1211 => 0.12617037929546
1212 => 0.13057325794544
1213 => 0.12941383244037
1214 => 0.13422654288932
1215 => 0.13614646338634
1216 => 0.13937030871261
1217 => 0.14174178245802
1218 => 0.14313435720038
1219 => 0.14305075223627
1220 => 0.14856882714352
1221 => 0.14531501115757
1222 => 0.14122745141367
1223 => 0.14115352035398
1224 => 0.14327052546652
1225 => 0.1477071874104
1226 => 0.14885754930165
1227 => 0.1495004446636
1228 => 0.14851582803742
1229 => 0.14498404398777
1230 => 0.14345903754168
1231 => 0.14475838721744
]
'min_raw' => 0.053578433670744
'max_raw' => 0.1495004446636
'avg_raw' => 0.10153943916717
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.053578'
'max' => '$0.14950044'
'avg' => '$0.101539'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021210899623415
'max_diff' => 0.077242205038301
'year' => 2036
]
11 => [
'items' => [
101 => 0.14316939421837
102 => 0.14591244192745
103 => 0.14967923231538
104 => 0.14890140499577
105 => 0.15150156510682
106 => 0.15419245727694
107 => 0.15804055393573
108 => 0.15904658889695
109 => 0.16070952643175
110 => 0.16242123540159
111 => 0.16297099019085
112 => 0.16402064266245
113 => 0.1640151104758
114 => 0.16717830884871
115 => 0.17066741461013
116 => 0.17198447126208
117 => 0.17501297041031
118 => 0.16982677175023
119 => 0.17376056300866
120 => 0.17730894119294
121 => 0.17307841843918
122 => 0.17890920846986
123 => 0.1791356048339
124 => 0.18255392114071
125 => 0.17908880269359
126 => 0.17703122642074
127 => 0.18297137202408
128 => 0.18584562136871
129 => 0.18497987407469
130 => 0.17839149442
131 => 0.17455677487207
201 => 0.16452057415297
202 => 0.17640888743634
203 => 0.18219933804982
204 => 0.17837649855178
205 => 0.1803045164333
206 => 0.19082315683297
207 => 0.19482797406564
208 => 0.19399500007703
209 => 0.19413575896919
210 => 0.19629668565536
211 => 0.20587942462591
212 => 0.2001372253086
213 => 0.20452692153058
214 => 0.20685520057849
215 => 0.20901783591458
216 => 0.20370708703704
217 => 0.19679788077776
218 => 0.1946094451267
219 => 0.17799639250363
220 => 0.17713161096777
221 => 0.17664618288613
222 => 0.17358562749654
223 => 0.171180869317
224 => 0.16926851632969
225 => 0.16424993101403
226 => 0.16594355623595
227 => 0.15794497870295
228 => 0.16306218515638
301 => 0.15029626228131
302 => 0.16092810219312
303 => 0.15514167509956
304 => 0.15902710526743
305 => 0.1590135493676
306 => 0.15185924055181
307 => 0.14773278453347
308 => 0.15036232291243
309 => 0.15318139678768
310 => 0.15363878203944
311 => 0.15729378490406
312 => 0.15831381763955
313 => 0.15522307083023
314 => 0.1500317169047
315 => 0.15123755001942
316 => 0.14770834836389
317 => 0.14152355821135
318 => 0.14596558247498
319 => 0.1474822848606
320 => 0.14815214703872
321 => 0.14207011625165
322 => 0.14015901013104
323 => 0.13914155326816
324 => 0.14924660310496
325 => 0.14980018054588
326 => 0.14696800009017
327 => 0.15976972430835
328 => 0.15687229984675
329 => 0.16010943285658
330 => 0.15112813330321
331 => 0.15147123104107
401 => 0.14721933990079
402 => 0.14960011482788
403 => 0.14791745984537
404 => 0.14940777174105
405 => 0.15030105854653
406 => 0.15455225199331
407 => 0.16097664399349
408 => 0.15391726545717
409 => 0.15084139313673
410 => 0.15274964702497
411 => 0.1578315785961
412 => 0.16553096506566
413 => 0.16097277331109
414 => 0.16299562140865
415 => 0.16343752372772
416 => 0.16007648188133
417 => 0.16565489147268
418 => 0.1686444064916
419 => 0.17171103030804
420 => 0.17437369384301
421 => 0.17048615331925
422 => 0.17464637893672
423 => 0.17129397146772
424 => 0.16828651540251
425 => 0.16829107647194
426 => 0.16640445535031
427 => 0.1627488891976
428 => 0.1620747467126
429 => 0.16558172105441
430 => 0.16839398236484
501 => 0.16862561367619
502 => 0.17018262603685
503 => 0.17110404991339
504 => 0.18013525651844
505 => 0.18376768252505
506 => 0.18820934428763
507 => 0.1899396218625
508 => 0.195147137024
509 => 0.19094164559738
510 => 0.19003176107345
511 => 0.17740003265688
512 => 0.17946847747745
513 => 0.18278025721042
514 => 0.17745464268487
515 => 0.18083251931385
516 => 0.18149938371361
517 => 0.17727368034116
518 => 0.17953081109425
519 => 0.17353654100667
520 => 0.16110730270095
521 => 0.165668728768
522 => 0.16902747371275
523 => 0.16423413054632
524 => 0.17282601264416
525 => 0.16780681249505
526 => 0.16621596701188
527 => 0.16000951160466
528 => 0.16293871964849
529 => 0.16690051546999
530 => 0.1644525862605
531 => 0.16953240692861
601 => 0.17672678773333
602 => 0.18185393192756
603 => 0.18224753039479
604 => 0.17895112016988
605 => 0.1842336385927
606 => 0.18427211597236
607 => 0.17831341361169
608 => 0.17466374159398
609 => 0.17383452843258
610 => 0.17590606548657
611 => 0.17842129389696
612 => 0.18238710806646
613 => 0.1847835665109
614 => 0.19103225915065
615 => 0.19272297621491
616 => 0.19458056167514
617 => 0.19706286870816
618 => 0.20004351475175
619 => 0.19352203089664
620 => 0.19378114160777
621 => 0.18770842613799
622 => 0.18121885874303
623 => 0.18614363145981
624 => 0.19258211667193
625 => 0.19110512105038
626 => 0.19093892887067
627 => 0.19121841801907
628 => 0.19010481155459
629 => 0.1850680107879
630 => 0.18253856097491
701 => 0.18580219656514
702 => 0.18753667363363
703 => 0.19022669630457
704 => 0.18989509423089
705 => 0.19682430374389
706 => 0.19951678503222
707 => 0.1988279331009
708 => 0.19895469843441
709 => 0.20382930719726
710 => 0.20925087468131
711 => 0.21432888806897
712 => 0.21949446139264
713 => 0.21326716113519
714 => 0.21010532211095
715 => 0.21336753289997
716 => 0.21163655793637
717 => 0.22158325351773
718 => 0.22227194113874
719 => 0.23221791746079
720 => 0.24165783333524
721 => 0.23572879130815
722 => 0.24131961088978
723 => 0.24736653809351
724 => 0.25903204174809
725 => 0.25510351051459
726 => 0.25209431715767
727 => 0.24925064397569
728 => 0.25516787644698
729 => 0.2627803014912
730 => 0.26441994493482
731 => 0.2670767937055
801 => 0.26428344208714
802 => 0.26764772643386
803 => 0.27952512851923
804 => 0.27631574963103
805 => 0.2717579156764
806 => 0.28113398390497
807 => 0.28452714654835
808 => 0.30834213899265
809 => 0.33840955070185
810 => 0.32596144482097
811 => 0.31823450380284
812 => 0.32005051822759
813 => 0.33103011913767
814 => 0.33455641847488
815 => 0.32497072128808
816 => 0.32835655158675
817 => 0.34701280941993
818 => 0.35702129318302
819 => 0.34342842791404
820 => 0.3059262517378
821 => 0.27134753259712
822 => 0.28051936601325
823 => 0.27947956473898
824 => 0.29952338636517
825 => 0.27623920700596
826 => 0.27663125287076
827 => 0.2970895595014
828 => 0.29163163403652
829 => 0.28279049378168
830 => 0.27141208270517
831 => 0.25037803745462
901 => 0.23174759699845
902 => 0.26828618106718
903 => 0.26671057088104
904 => 0.26442885383915
905 => 0.2695065682083
906 => 0.29416250785054
907 => 0.29359410863829
908 => 0.28997824284984
909 => 0.2927208451816
910 => 0.28230970233263
911 => 0.28499289090213
912 => 0.27134205515134
913 => 0.27751280301996
914 => 0.28277152466545
915 => 0.28382729089249
916 => 0.28620598611076
917 => 0.26588029590922
918 => 0.2750059340788
919 => 0.28036639154677
920 => 0.25614764969138
921 => 0.27988766488948
922 => 0.26552647086339
923 => 0.26065206591304
924 => 0.26721481002466
925 => 0.26465730226189
926 => 0.26245850726934
927 => 0.26123154188341
928 => 0.26605049685535
929 => 0.26582568684602
930 => 0.25794094119306
1001 => 0.24765561191214
1002 => 0.25110770602324
1003 => 0.24985352786912
1004 => 0.24530822444639
1005 => 0.24837121015128
1006 => 0.23488337124853
1007 => 0.21167824545321
1008 => 0.22700826234583
1009 => 0.22641807337131
1010 => 0.22612047332742
1011 => 0.23764055733167
1012 => 0.23653316706822
1013 => 0.23452324289646
1014 => 0.24527131061278
1015 => 0.24134812131441
1016 => 0.25343846631232
1017 => 0.26140194948243
1018 => 0.2593821525588
1019 => 0.26687184697114
1020 => 0.25118723529931
1021 => 0.25639703413929
1022 => 0.25747076645975
1023 => 0.24513868112554
1024 => 0.23671434981065
1025 => 0.23615254295636
1026 => 0.22154591340071
1027 => 0.22934865700874
1028 => 0.23621474848434
1029 => 0.23292642349775
1030 => 0.23188543804291
1031 => 0.23720360696949
1101 => 0.23761687424212
1102 => 0.22819433663002
1103 => 0.23015358057253
1104 => 0.23832395351003
1105 => 0.22994770813753
1106 => 0.21367403163067
1107 => 0.20963793485579
1108 => 0.209099445146
1109 => 0.19815323058565
1110 => 0.20990764614164
1111 => 0.2047765287527
1112 => 0.22098566710413
1113 => 0.21172709420914
1114 => 0.21132797563652
1115 => 0.21072464937602
1116 => 0.2013027903215
1117 => 0.20336557866406
1118 => 0.21022260128627
1119 => 0.21266926420776
1120 => 0.21241405722013
1121 => 0.21018899813458
1122 => 0.2112076187898
1123 => 0.20792628674839
1124 => 0.20676758010954
1125 => 0.20311038322998
1126 => 0.19773531414344
1127 => 0.19848275046714
1128 => 0.18783333214338
1129 => 0.18203096383319
1130 => 0.18042494475892
1201 => 0.17827730893264
1202 => 0.18066752594014
1203 => 0.1878031636793
1204 => 0.17919607065587
1205 => 0.16443981338458
1206 => 0.16532668959002
1207 => 0.16731923710775
1208 => 0.16360613799049
1209 => 0.16009200129279
1210 => 0.16314725804052
1211 => 0.15689483730637
1212 => 0.16807481228218
1213 => 0.1677724252906
1214 => 0.17193962859656
1215 => 0.1745454663434
1216 => 0.16853985398692
1217 => 0.16702945872017
1218 => 0.16788984850775
1219 => 0.153669521861
1220 => 0.17077752452798
1221 => 0.17092547524547
1222 => 0.16965863137884
1223 => 0.17876811464869
1224 => 0.19799196566715
1225 => 0.19075917963639
1226 => 0.18795842627316
1227 => 0.18263419208233
1228 => 0.18972841801987
1229 => 0.18918369215503
1230 => 0.18672023521308
1231 => 0.18523032876814
]
'min_raw' => 0.13914155326816
'max_raw' => 0.35702129318302
'avg_raw' => 0.24808142322559
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.139141'
'max' => '$0.357021'
'avg' => '$0.248081'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.085563119597412
'max_diff' => 0.20752084851942
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0043674943635958
]
1 => [
'year' => 2028
'avg' => 0.0074958882206034
]
2 => [
'year' => 2029
'avg' => 0.020477415616282
]
3 => [
'year' => 2030
'avg' => 0.015798295652079
]
4 => [
'year' => 2031
'avg' => 0.015515884191568
]
5 => [
'year' => 2032
'avg' => 0.027204228016282
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0043674943635958
'min' => '$0.004367'
'max_raw' => 0.027204228016282
'max' => '$0.0272042'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027204228016282
]
1 => [
'year' => 2033
'avg' => 0.069972071835656
]
2 => [
'year' => 2034
'avg' => 0.044351661829859
]
3 => [
'year' => 2035
'avg' => 0.052312886836313
]
4 => [
'year' => 2036
'avg' => 0.10153943916717
]
5 => [
'year' => 2037
'avg' => 0.24808142322559
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027204228016282
'min' => '$0.0272042'
'max_raw' => 0.24808142322559
'max' => '$0.248081'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.24808142322559
]
]
]
]
'prediction_2025_max_price' => '$0.007467'
'last_price' => 0.0072408
'sma_50day_nextmonth' => '$0.0069089'
'sma_200day_nextmonth' => '$0.00945'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007224'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007128'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00718'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007236'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007867'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010153'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009755'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0072014'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00718'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007223'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007357'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008181'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00928'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012252'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010653'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013572'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007353'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00763'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008563'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010263'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017364'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011433'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005716'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '46.67'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 40.62
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007216'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007231'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 31.83
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -5.58
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.05
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000183'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -68.17
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 47.9
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 16
'sell_pct' => 48.39
'buy_pct' => 51.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767686772
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SynFutures para 2026
A previsão de preço para SynFutures em 2026 sugere que o preço médio poderia variar entre $0.0025016 na extremidade inferior e $0.007467 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SynFutures poderia potencialmente ganhar 3.13% até 2026 se F atingir a meta de preço prevista.
Previsão de preço de SynFutures 2027-2032
A previsão de preço de F para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004367 na extremidade inferior e $0.0272042 na extremidade superior. Considerando a volatilidade de preços no mercado, se SynFutures atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0024083 | $0.004367 | $0.006326 |
| 2028 | $0.004346 | $0.007495 | $0.010645 |
| 2029 | $0.009547 | $0.020477 | $0.0314072 |
| 2030 | $0.008119 | $0.015798 | $0.023476 |
| 2031 | $0.00960013 | $0.015515 | $0.021431 |
| 2032 | $0.014653 | $0.0272042 | $0.039754 |
Previsão de preço de SynFutures 2032-2037
A previsão de preço de SynFutures para 2032-2037 é atualmente estimada entre $0.0272042 na extremidade inferior e $0.248081 na extremidade superior. Comparado ao preço atual, SynFutures poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014653 | $0.0272042 | $0.039754 |
| 2033 | $0.034052 | $0.069972 | $0.105891 |
| 2034 | $0.027376 | $0.044351 | $0.061326 |
| 2035 | $0.032367 | $0.052312 | $0.072258 |
| 2036 | $0.053578 | $0.101539 | $0.14950044 |
| 2037 | $0.139141 | $0.248081 | $0.357021 |
SynFutures Histograma de preços potenciais
Previsão de preço de SynFutures baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SynFutures é Altista, com 16 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de F foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SynFutures
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SynFutures está projetado para aumentar no próximo mês, alcançando $0.00945 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SynFutures é esperado para alcançar $0.0069089 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 46.67, sugerindo que o mercado de F está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de F para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007224 | BUY |
| SMA 5 | $0.007128 | BUY |
| SMA 10 | $0.00718 | BUY |
| SMA 21 | $0.007236 | BUY |
| SMA 50 | $0.007867 | SELL |
| SMA 100 | $0.010153 | SELL |
| SMA 200 | $0.009755 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0072014 | BUY |
| EMA 5 | $0.00718 | BUY |
| EMA 10 | $0.007223 | BUY |
| EMA 21 | $0.007357 | SELL |
| EMA 50 | $0.008181 | SELL |
| EMA 100 | $0.00928 | SELL |
| EMA 200 | $0.012252 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.010653 | SELL |
| SMA 50 | $0.013572 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.010263 | SELL |
| EMA 50 | $0.017364 | SELL |
| EMA 100 | $0.011433 | SELL |
| EMA 200 | $0.005716 | BUY |
Osciladores de SynFutures
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 46.67 | NEUTRAL |
| Stoch RSI (14) | 40.62 | NEUTRAL |
| Estocástico Rápido (14) | 31.83 | NEUTRAL |
| Índice de Canal de Commodities (20) | -5.58 | NEUTRAL |
| Índice Direcional Médio (14) | 15.05 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000183 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -68.17 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 47.9 | NEUTRAL |
| VWMA (10) | 0.007216 | BUY |
| Média Móvel de Hull (9) | 0.007231 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.006688 | SELL |
Previsão do preço de SynFutures com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SynFutures
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SynFutures por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010174 | $0.014296 | $0.020089 | $0.028229 | $0.039666 | $0.055738 |
| Amazon.com stock | $0.0151083 | $0.031524 | $0.065777 | $0.137249 | $0.286378 | $0.597545 |
| Apple stock | $0.01027 | $0.014567 | $0.020663 | $0.0293096 | $0.041573 | $0.058968 |
| Netflix stock | $0.011424 | $0.018026 | $0.028443 | $0.044878 | $0.070811 | $0.111729 |
| Google stock | $0.009376 | $0.012142 | $0.015725 | $0.020363 | $0.026371 | $0.03415 |
| Tesla stock | $0.016414 | $0.03721 | $0.084352 | $0.19122 | $0.433482 | $0.982672 |
| Kodak stock | $0.005429 | $0.004071 | $0.003053 | $0.002289 | $0.001717 | $0.001287 |
| Nokia stock | $0.004796 | $0.003177 | $0.002105 | $0.001394 | $0.000923 | $0.000611 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SynFutures
Você pode fazer perguntas como: 'Devo investir em SynFutures agora?', 'Devo comprar F hoje?', 'SynFutures será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SynFutures regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SynFutures, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SynFutures para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SynFutures é de $0.00724 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para SynFutures
com base no histórico de preços de 4 horas
Previsão de longo prazo para SynFutures
com base no histórico de preços de 1 mês
Previsão do preço de SynFutures com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SynFutures tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007429 | $0.007622 | $0.00782 | $0.008023 |
| Se SynFutures tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007617 | $0.008013 | $0.008429 | $0.008868 |
| Se SynFutures tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008181 | $0.009245 | $0.010446 | $0.0118045 |
| Se SynFutures tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009122 | $0.011494 | $0.014481 | $0.018246 |
| Se SynFutures tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011005 | $0.016726 | $0.025421 | $0.038637 |
| Se SynFutures tiver 50% da média anterior do crescimento anual do Bitcoin | $0.016651 | $0.038292 | $0.088059 | $0.2025077 |
| Se SynFutures tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026061 | $0.0938053 | $0.337635 | $1.21 |
Perguntas Frequentes sobre SynFutures
F é um bom investimento?
A decisão de adquirir SynFutures depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SynFutures experimentou uma queda de -0.3232% nas últimas 24 horas, e SynFutures registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SynFutures dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SynFutures pode subir?
Parece que o valor médio de SynFutures pode potencialmente subir para $0.007467 até o final deste ano. Observando as perspectivas de SynFutures em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.023476. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SynFutures na próxima semana?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures aumentará 0.86% na próxima semana e atingirá $0.007302 até 13 de janeiro de 2026.
Qual será o preço de SynFutures no próximo mês?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures diminuirá -11.62% no próximo mês e atingirá $0.006399 até 5 de fevereiro de 2026.
Até onde o preço de SynFutures pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SynFutures em 2026, espera-se que F fluctue dentro do intervalo de $0.0025016 e $0.007467. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SynFutures não considera flutuações repentinas e extremas de preço.
Onde estará SynFutures em 5 anos?
O futuro de SynFutures parece seguir uma tendência de alta, com um preço máximo de $0.023476 projetada após um período de cinco anos. Com base na previsão de SynFutures para 2030, o valor de SynFutures pode potencialmente atingir seu pico mais alto de aproximadamente $0.023476, enquanto seu pico mais baixo está previsto para cerca de $0.008119.
Quanto será SynFutures em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SynFutures, espera-se que o valor de F em 2026 aumente 3.13% para $0.007467 se o melhor cenário ocorrer. O preço ficará entre $0.007467 e $0.0025016 durante 2026.
Quanto será SynFutures em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SynFutures, o valor de F pode diminuir -12.62% para $0.006326 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.006326 e $0.0024083 ao longo do ano.
Quanto será SynFutures em 2028?
Nosso novo modelo experimental de previsão de preços de SynFutures sugere que o valor de F em 2028 pode aumentar 47.02%, alcançando $0.010645 no melhor cenário. O preço é esperado para variar entre $0.010645 e $0.004346 durante o ano.
Quanto será SynFutures em 2029?
Com base no nosso modelo de previsão experimental, o valor de SynFutures pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0314072 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0314072 e $0.009547.
Quanto será SynFutures em 2030?
Usando nossa nova simulação experimental para previsões de preços de SynFutures, espera-se que o valor de F em 2030 aumente 224.23%, alcançando $0.023476 no melhor cenário. O preço está previsto para variar entre $0.023476 e $0.008119 ao longo de 2030.
Quanto será SynFutures em 2031?
Nossa simulação experimental indica que o preço de SynFutures poderia aumentar 195.98% em 2031, potencialmente atingindo $0.021431 sob condições ideais. O preço provavelmente oscilará entre $0.021431 e $0.00960013 durante o ano.
Quanto será SynFutures em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SynFutures, F poderia ver um 449.04% aumento em valor, atingindo $0.039754 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.039754 e $0.014653 ao longo do ano.
Quanto será SynFutures em 2033?
De acordo com nossa previsão experimental de preços de SynFutures, espera-se que o valor de F seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.105891. Ao longo do ano, o preço de F poderia variar entre $0.105891 e $0.034052.
Quanto será SynFutures em 2034?
Os resultados da nossa nova simulação de previsão de preços de SynFutures sugerem que F pode aumentar 746.96% em 2034, atingindo potencialmente $0.061326 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.061326 e $0.027376.
Quanto será SynFutures em 2035?
Com base em nossa previsão experimental para o preço de SynFutures, F poderia aumentar 897.93%, com o valor potencialmente atingindo $0.072258 em 2035. A faixa de preço esperada para o ano está entre $0.072258 e $0.032367.
Quanto será SynFutures em 2036?
Nossa recente simulação de previsão de preços de SynFutures sugere que o valor de F pode aumentar 1964.7% em 2036, possivelmente atingindo $0.14950044 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.14950044 e $0.053578.
Quanto será SynFutures em 2037?
De acordo com a simulação experimental, o valor de SynFutures poderia aumentar 4830.69% em 2037, com um pico de $0.357021 sob condições favoráveis. O preço é esperado para cair entre $0.357021 e $0.139141 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de SynFutures?
Traders de SynFutures utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SynFutures
Médias móveis são ferramentas populares para a previsão de preço de SynFutures. Uma média móvel simples (SMA) calcula o preço médio de fechamento de F em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de F acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de F.
Como ler gráficos de SynFutures e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SynFutures em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de F dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SynFutures?
A ação de preço de SynFutures é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de F. A capitalização de mercado de SynFutures pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de F, grandes detentores de SynFutures, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SynFutures.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


