Previsão de Preço SynFutures - Projeção F
Previsão de Preço SynFutures até $0.007484 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0025072 | $0.007484 |
| 2027 | $0.002413 | $0.00634 |
| 2028 | $0.004355 | $0.010668 |
| 2029 | $0.009568 | $0.031476 |
| 2030 | $0.008137 | $0.023528 |
| 2031 | $0.009621 | $0.021478 |
| 2032 | $0.014686 | $0.039842 |
| 2033 | $0.034127 | $0.106125 |
| 2034 | $0.027436 | $0.061462 |
| 2035 | $0.032438 | $0.072417 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em SynFutures hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.62, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de SynFutures para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'SynFutures'
'name_with_ticker' => 'SynFutures <small>F</small>'
'name_lang' => 'SynFutures'
'name_lang_with_ticker' => 'SynFutures <small>F</small>'
'name_with_lang' => 'SynFutures'
'name_with_lang_with_ticker' => 'SynFutures <small>F</small>'
'image' => '/uploads/coins/synfutures.png?1732911435'
'price_for_sd' => 0.007256
'ticker' => 'F'
'marketcap' => '$23.98M'
'low24h' => '$0.007152'
'high24h' => '$0.007431'
'volume24h' => '$4.74M'
'current_supply' => '3.3B'
'max_supply' => '10B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007256'
'change_24h_pct' => '-0.14%'
'ath_price' => '$0.1923'
'ath_days' => 396
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de dez. de 2024'
'ath_pct' => '-96.23%'
'fdv' => '$72.63M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.3578092'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007318'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.006413'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0025072'
'current_year_max_price_prediction' => '$0.007484'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008137'
'grand_prediction_max_price' => '$0.023528'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0073942921639337
107 => 0.0074218997667458
108 => 0.0074841011055605
109 => 0.0069525974756896
110 => 0.0071912270013749
111 => 0.0073313994911522
112 => 0.0066980950828195
113 => 0.0073188810992284
114 => 0.0069433451799824
115 => 0.0068158826486301
116 => 0.0069874941551844
117 => 0.0069206169841825
118 => 0.0068631199197143
119 => 0.0068310355698161
120 => 0.0069570481201588
121 => 0.0069511694840678
122 => 0.0067449884937251
123 => 0.0064760337968354
124 => 0.0065663038212485
125 => 0.0065335078750932
126 => 0.0064146511354652
127 => 0.006494746227157
128 => 0.0061420479785445
129 => 0.0055352489734663
130 => 0.0059361189829771
131 => 0.0059206859236736
201 => 0.0059129038753393
202 => 0.0062141466082534
203 => 0.006185189070336
204 => 0.006132630855463
205 => 0.0064136858626324
206 => 0.0063110970042922
207 => 0.0066272516927216
208 => 0.0068354916181244
209 => 0.0067826752371864
210 => 0.0069785258935386
211 => 0.0065683834602912
212 => 0.0067046163245577
213 => 0.0067326937290724
214 => 0.006410217687471
215 => 0.0061899268816632
216 => 0.0061752359964149
217 => 0.0057932820970872
218 => 0.0059973187870839
219 => 0.0061768626306691
220 => 0.0060908750627569
221 => 0.0060636539675614
222 => 0.0062027206393799
223 => 0.0062135273108057
224 => 0.0059671340570579
225 => 0.0060183670167716
226 => 0.0062320169755488
227 => 0.0060129835859798
228 => 0.0055874374889483
301 => 0.0054818961732494
302 => 0.0054678150162227
303 => 0.00518157859746
304 => 0.0054889489486298
305 => 0.0053547735533309
306 => 0.0057786320194121
307 => 0.0055365263367851
308 => 0.0055260896446975
309 => 0.0055103130538773
310 => 0.0052639375439707
311 => 0.0053178781226597
312 => 0.0054971848216043
313 => 0.0055611634718223
314 => 0.0055544899744429
315 => 0.0054963061209591
316 => 0.0055229423911344
317 => 0.0054371376842078
318 => 0.0054068382563215
319 => 0.005311204927398
320 => 0.005170650353262
321 => 0.0051901953288669
322 => 0.0049117199393984
323 => 0.0047599917674085
324 => 0.0047179954091468
325 => 0.0046618361237307
326 => 0.0047243387498687
327 => 0.0049109310536087
328 => 0.0046858611475328
329 => 0.0042999945803839
330 => 0.0043231858185542
331 => 0.0043752896451824
401 => 0.004278194508962
402 => 0.0041863021111065
403 => 0.004266195095576
404 => 0.0041026983442859
405 => 0.0043950474464608
406 => 0.0043871402225459
407 => 0.0044961098890895
408 => 0.0045642508578619
409 => 0.0044072079857421
410 => 0.0043677121280931
411 => 0.0043902107635966
412 => 0.0040183584350531
413 => 0.0044657216206168
414 => 0.0044695904360227
415 => 0.0044364632896913
416 => 0.0046746703752152
417 => 0.0051773616243237
418 => 0.0049882289557004
419 => 0.0049149910698443
420 => 0.0047757657952953
421 => 0.0049612752072531
422 => 0.0049470309788124
423 => 0.0048826131758402
424 => 0.0048436530876069
425 => 0.0049154382447583
426 => 0.0048347581122246
427 => 0.0048202657434798
428 => 0.0047324577567389
429 => 0.0047011143004812
430 => 0.004677908853287
501 => 0.0046523619360463
502 => 0.0047087120695841
503 => 0.0045810152535099
504 => 0.0044270254115977
505 => 0.0044142228224359
506 => 0.0044495718967268
507 => 0.0044339325627821
508 => 0.0044141479473218
509 => 0.0043763737283887
510 => 0.0043651669245497
511 => 0.0044015836002581
512 => 0.0043604712966074
513 => 0.0044211347401471
514 => 0.0044046376401657
515 => 0.0043124861807127
516 => 0.0041976313433943
517 => 0.004196608894426
518 => 0.0041718636081255
519 => 0.004140346765543
520 => 0.0041315795009442
521 => 0.0042594667312636
522 => 0.004524189470682
523 => 0.0044722180626559
524 => 0.0045097727311989
525 => 0.0046945045312088
526 => 0.0047532252153529
527 => 0.004711546664623
528 => 0.0046544944937629
529 => 0.0046570044997361
530 => 0.0048519690384316
531 => 0.0048641287375617
601 => 0.0048948523743958
602 => 0.0049343409302263
603 => 0.0047182717364343
604 => 0.0046468276601393
605 => 0.0046129734932243
606 => 0.0045087157623374
607 => 0.0046211487867166
608 => 0.004555638878273
609 => 0.0045644784030592
610 => 0.0045587216509459
611 => 0.0045618652268696
612 => 0.0043949657289287
613 => 0.004455775133999
614 => 0.0043546677038915
615 => 0.0042192962048192
616 => 0.004218842392087
617 => 0.0042519743747043
618 => 0.0042322661749889
619 => 0.004179231916299
620 => 0.0041867651824313
621 => 0.0041207658442376
622 => 0.0041947786970446
623 => 0.0041969011208324
624 => 0.0041684021409943
625 => 0.004282429152549
626 => 0.0043291461122202
627 => 0.0043103874731835
628 => 0.0043278299560987
629 => 0.0044743777092962
630 => 0.0044982713873941
701 => 0.0045088833808775
702 => 0.0044946647154295
703 => 0.0043305085800056
704 => 0.0043377896026574
705 => 0.0042843662894727
706 => 0.0042392292194416
707 => 0.0042410344655301
708 => 0.0042642407869345
709 => 0.00436558415354
710 => 0.0045788552940436
711 => 0.0045869487779265
712 => 0.0045967583164962
713 => 0.0045568579932542
714 => 0.0045448236739697
715 => 0.0045607000474273
716 => 0.0046407934745366
717 => 0.004846815514215
718 => 0.0047739935656433
719 => 0.0047147881879133
720 => 0.0047667272658377
721 => 0.0047587316519032
722 => 0.0046912406237944
723 => 0.0046893463754213
724 => 0.0045598095142936
725 => 0.0045119226861463
726 => 0.0044719048682795
727 => 0.0044282064558605
728 => 0.0044023005721945
729 => 0.0044421037835191
730 => 0.0044512072488867
731 => 0.0043641768316845
801 => 0.0043523149074082
802 => 0.0044233858247777
803 => 0.0043921101638342
804 => 0.0044242779567136
805 => 0.0044317411605918
806 => 0.0044305394128753
807 => 0.0043978840308636
808 => 0.0044186975975603
809 => 0.0043694673074996
810 => 0.0043159367612091
811 => 0.0042817876077467
812 => 0.0042519879421228
813 => 0.0042685225285776
814 => 0.0042095797469622
815 => 0.0041907227648397
816 => 0.0044116464294835
817 => 0.0045748451158856
818 => 0.0045724721423516
819 => 0.0045580272762422
820 => 0.0045365651352378
821 => 0.0046392233852427
822 => 0.0046034593036575
823 => 0.0046294806611997
824 => 0.0046361041888072
825 => 0.004656151611996
826 => 0.0046633168426518
827 => 0.0046416585390374
828 => 0.0045689706267686
829 => 0.0043878392603541
830 => 0.0043035221203333
831 => 0.0042756960597134
901 => 0.0042767074841677
902 => 0.00424880788252
903 => 0.0042570255655777
904 => 0.0042459501077139
905 => 0.0042249758699609
906 => 0.0042672274285002
907 => 0.0042720965270214
908 => 0.0042622345083898
909 => 0.0042645573707878
910 => 0.0041829040686414
911 => 0.0041891119918619
912 => 0.0041545454865052
913 => 0.0041480646834563
914 => 0.0040606835679644
915 => 0.0039058752557753
916 => 0.0039916540883345
917 => 0.0038880453209321
918 => 0.0038488071107878
919 => 0.0040345546948173
920 => 0.0040159107892168
921 => 0.0039840005271396
922 => 0.0039367985988461
923 => 0.0039192909444912
924 => 0.0038129199788807
925 => 0.0038066350147654
926 => 0.0038593553375796
927 => 0.0038350267225964
928 => 0.0038008601331929
929 => 0.0036771122097852
930 => 0.0035379785723456
1001 => 0.003542178142297
1002 => 0.0035864339636932
1003 => 0.0037151137331133
1004 => 0.0036648363210183
1005 => 0.0036283594816765
1006 => 0.0036215284661576
1007 => 0.0037070329270769
1008 => 0.0038280396530161
1009 => 0.003884813301454
1010 => 0.0038285523400934
1011 => 0.0037639227769877
1012 => 0.0037678564790294
1013 => 0.0037940256363832
1014 => 0.0037967756448091
1015 => 0.0037547084432537
1016 => 0.0037665501140815
1017 => 0.003748561533269
1018 => 0.0036381656460271
1019 => 0.003636168934496
1020 => 0.0036090760033927
1021 => 0.0036082556402063
1022 => 0.0035621638057511
1023 => 0.0035557152394931
1024 => 0.003464197104608
1025 => 0.0035244346181318
1026 => 0.0034840304566714
1027 => 0.0034231318549725
1028 => 0.0034126329130855
1029 => 0.0034123173022145
1030 => 0.0034748465494812
1031 => 0.0035237039274712
1101 => 0.0034847333043585
1102 => 0.0034758604488896
1103 => 0.0035705993320152
1104 => 0.0035585429455733
1105 => 0.0035481021926701
1106 => 0.0038172048279217
1107 => 0.0036041890937795
1108 => 0.0035113020751805
1109 => 0.0033963367508979
1110 => 0.0034337700401898
1111 => 0.003441657784253
1112 => 0.0031651869034105
1113 => 0.0030530227014849
1114 => 0.0030145321742028
1115 => 0.0029923803315758
1116 => 0.0030024752044263
1117 => 0.0029015142671446
1118 => 0.0029693616867376
1119 => 0.0028819380490673
1120 => 0.0028672811917107
1121 => 0.0030236054855759
1122 => 0.0030453570978339
1123 => 0.0029525579622448
1124 => 0.0030121500301084
1125 => 0.0029905411179094
1126 => 0.0028834366764141
1127 => 0.0028793460745559
1128 => 0.0028256048307167
1129 => 0.0027415101904638
1130 => 0.0027030766833077
1201 => 0.0026830601790859
1202 => 0.0026913193788417
1203 => 0.0026871432747095
1204 => 0.002659891370421
1205 => 0.0026887053219634
1206 => 0.0026150975825194
1207 => 0.0025857863875749
1208 => 0.0025725472008331
1209 => 0.0025072160953731
1210 => 0.0026111869370343
1211 => 0.0026316705026318
1212 => 0.0026521944271811
1213 => 0.0028308411781047
1214 => 0.002821916491279
1215 => 0.0029025913136842
1216 => 0.002899456438437
1217 => 0.0028764466722416
1218 => 0.0027793722535858
1219 => 0.0028180643866769
1220 => 0.0026989760151151
1221 => 0.0027882051203113
1222 => 0.0027474846829963
1223 => 0.002774437499494
1224 => 0.0027259739051936
1225 => 0.0027527956592922
1226 => 0.0026365279159251
1227 => 0.0025279587331002
1228 => 0.0025716501416009
1229 => 0.0026191476993599
1230 => 0.002722134506734
1231 => 0.0026607964138847
]
'min_raw' => 0.0025072160953731
'max_raw' => 0.0074841011055605
'avg_raw' => 0.0049956586004668
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0025072'
'max' => '$0.007484'
'avg' => '$0.004995'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0047495639046269
'max_diff' => 0.00022732110556054
'year' => 2026
]
1 => [
'items' => [
101 => 0.0026828559115234
102 => 0.0026089602871491
103 => 0.0024564925068234
104 => 0.002457355457902
105 => 0.0024339016115901
106 => 0.0024136340640589
107 => 0.0026678418317092
108 => 0.0026362270773718
109 => 0.0025858531039719
110 => 0.0026532806691498
111 => 0.0026711095876022
112 => 0.002671617151846
113 => 0.0027208105628425
114 => 0.0027470650951097
115 => 0.0027516925702155
116 => 0.0028290994653124
117 => 0.0028550452355273
118 => 0.0029619121910595
119 => 0.0027448375814771
120 => 0.0027403670727426
121 => 0.0026542295132685
122 => 0.0025995997112691
123 => 0.0026579700625493
124 => 0.002709678225436
125 => 0.0026558362300254
126 => 0.0026628668579594
127 => 0.0025905883781734
128 => 0.0026164245336783
129 => 0.0026386781113052
130 => 0.0026263909937445
131 => 0.0026079965840529
201 => 0.0027054387457514
202 => 0.0026999406771094
203 => 0.0027906810582687
204 => 0.0028614196742892
205 => 0.0029881959202382
206 => 0.0028558982985953
207 => 0.0028510768474272
208 => 0.0028982073059804
209 => 0.0028550380200997
210 => 0.0028823195186232
211 => 0.0029838004490558
212 => 0.0029859445812043
213 => 0.0029500276051589
214 => 0.0029478420539024
215 => 0.0029547403020406
216 => 0.0029951435568487
217 => 0.0029810254181521
218 => 0.0029973632856794
219 => 0.0030177940391965
220 => 0.0031023042982032
221 => 0.0031226794355416
222 => 0.0030731784151068
223 => 0.0030776478030127
224 => 0.0030591330625367
225 => 0.0030412480552259
226 => 0.003081450939765
227 => 0.0031549225014499
228 => 0.0031544654386779
301 => 0.0031715094129057
302 => 0.0031821276676497
303 => 0.0031365463452508
304 => 0.0031068745804408
305 => 0.0031182526231324
306 => 0.0031364463611778
307 => 0.0031123526390933
308 => 0.0029636350250903
309 => 0.0030087464490608
310 => 0.0030012377022762
311 => 0.0029905443337601
312 => 0.0030359042193988
313 => 0.0030315291477728
314 => 0.0029004787668062
315 => 0.0029088681870037
316 => 0.002900988955235
317 => 0.0029264483650189
318 => 0.0028536631284207
319 => 0.0028760513769822
320 => 0.0028900930766033
321 => 0.0028983637455535
322 => 0.0029282430730524
323 => 0.0029247370788363
324 => 0.0029280251355293
325 => 0.0029723282903601
326 => 0.0031963984444879
327 => 0.0032085940885942
328 => 0.0031485382766677
329 => 0.0031725293889838
330 => 0.0031264716996164
331 => 0.0031573905350485
401 => 0.0031785444169978
402 => 0.0030829540921264
403 => 0.0030772938534636
404 => 0.0030310460676285
405 => 0.0030558970081278
406 => 0.0030163573749476
407 => 0.0030260590178923
408 => 0.0029989323784447
409 => 0.0030477549285904
410 => 0.0031023461259105
411 => 0.0031161380182253
412 => 0.0030798574873281
413 => 0.003053587991955
414 => 0.0030074674117896
415 => 0.0030841669644688
416 => 0.0031065962510487
417 => 0.0030840491529748
418 => 0.0030788244976873
419 => 0.0030689237853582
420 => 0.0030809249806116
421 => 0.0031064740963371
422 => 0.003094425605179
423 => 0.003102383845856
424 => 0.0030720552388975
425 => 0.0031365614345651
426 => 0.0032390127975467
427 => 0.0032393421954312
428 => 0.0032272936393273
429 => 0.0032223636297593
430 => 0.0032347261794895
501 => 0.0032414323555797
502 => 0.003281410574503
503 => 0.0033243087962102
504 => 0.0035244960789571
505 => 0.0034682842910241
506 => 0.0036459023574719
507 => 0.0037863751872127
508 => 0.0038284968467196
509 => 0.0037897469019505
510 => 0.0036571854341262
511 => 0.0036506813360969
512 => 0.0038487841350345
513 => 0.0037928110206516
514 => 0.0037861531968008
515 => 0.0037153251995984
516 => 0.0037571933181631
517 => 0.0037480361464648
518 => 0.0037335811029548
519 => 0.0038134625566178
520 => 0.0039629935068083
521 => 0.0039396877059288
522 => 0.0039222910066972
523 => 0.0038460637347673
524 => 0.0038919695784466
525 => 0.0038756233867809
526 => 0.0039458569997263
527 => 0.0039042521632825
528 => 0.0037923869692591
529 => 0.0038102018701198
530 => 0.0038075091836933
531 => 0.0038629244795447
601 => 0.0038462901832223
602 => 0.0038042610703655
603 => 0.0039624824262767
604 => 0.0039522084114972
605 => 0.0039667746154877
606 => 0.0039731871089592
607 => 0.0040694936601293
608 => 0.0041089473726778
609 => 0.0041179040561608
610 => 0.0041553820316222
611 => 0.0041169715699896
612 => 0.0042706408027149
613 => 0.0043728218756289
614 => 0.0044915104500085
615 => 0.0046649463576583
616 => 0.0047301598633065
617 => 0.0047183796272146
618 => 0.004849876752998
619 => 0.0050861741650139
620 => 0.0047661420901846
621 => 0.0051031366420785
622 => 0.0049964480577381
623 => 0.0047434913435126
624 => 0.0047272039132802
625 => 0.0048985091370416
626 => 0.0052784476358274
627 => 0.0051832773511083
628 => 0.0052786033003194
629 => 0.0051674005170288
630 => 0.0051618783615477
701 => 0.0052732024293442
702 => 0.0055333171817097
703 => 0.0054097464131165
704 => 0.0052325774155427
705 => 0.0053633962462963
706 => 0.0052500688683863
707 => 0.0049947105676192
708 => 0.0051832045761852
709 => 0.0050571640006574
710 => 0.005093949341282
711 => 0.0053588678839207
712 => 0.0053269921839829
713 => 0.0053682422913127
714 => 0.0052954369315788
715 => 0.0052274252452358
716 => 0.0051004763820626
717 => 0.0050628930821803
718 => 0.0050732797541623
719 => 0.0050628879350615
720 => 0.0049918612128363
721 => 0.0049765229989343
722 => 0.004950958637115
723 => 0.0049588821018083
724 => 0.0049108136224702
725 => 0.0050015287744357
726 => 0.0050183663060197
727 => 0.0050843812286043
728 => 0.0050912351168631
729 => 0.0052750857365977
730 => 0.0051738239047321
731 => 0.0052417590840735
801 => 0.0052356823222025
802 => 0.0047489736825417
803 => 0.0048160378388203
804 => 0.0049203686200981
805 => 0.0048733677445495
806 => 0.0048069195030348
807 => 0.0047532589852824
808 => 0.0046719578138178
809 => 0.0047863876514035
810 => 0.0049368507195721
811 => 0.0050950511085738
812 => 0.0052851185102592
813 => 0.0052426976788315
814 => 0.0050914979307074
815 => 0.0050982806409568
816 => 0.0051402086868202
817 => 0.0050859080578624
818 => 0.0050698937423085
819 => 0.0051380085657796
820 => 0.0051384776351336
821 => 0.0050759981990674
822 => 0.005006563739496
823 => 0.0050062728065751
824 => 0.0049939176151516
825 => 0.0051695984781358
826 => 0.0052662051894384
827 => 0.0052772809931997
828 => 0.0052654596995979
829 => 0.0052700092463349
830 => 0.0052137959296115
831 => 0.0053422829020999
901 => 0.0054601952540998
902 => 0.0054285922249338
903 => 0.0053812147915787
904 => 0.0053434763839051
905 => 0.0054197022554297
906 => 0.0054163080373614
907 => 0.0054591653925695
908 => 0.0054572211353812
909 => 0.0054428098187714
910 => 0.0054285927396073
911 => 0.0054849618514671
912 => 0.0054687284525117
913 => 0.005452469838604
914 => 0.0054198606993428
915 => 0.0054242928229488
916 => 0.0053769235699756
917 => 0.0053550083860806
918 => 0.0050254566021791
919 => 0.0049373895971054
920 => 0.0049650972696707
921 => 0.0049742193549087
922 => 0.0049358924814397
923 => 0.0049908433726282
924 => 0.0049822793344439
925 => 0.0050155969972244
926 => 0.0049947815680039
927 => 0.0049956358404798
928 => 0.0050568495794999
929 => 0.0050746201883593
930 => 0.005065581913267
1001 => 0.0050719120113277
1002 => 0.0052177864493691
1003 => 0.0051970477690815
1004 => 0.005186030758516
1005 => 0.0051890825457342
1006 => 0.005226356592237
1007 => 0.0052367912901703
1008 => 0.0051925787417938
1009 => 0.0052134296351978
1010 => 0.0053022100929401
1011 => 0.0053332782286112
1012 => 0.0054324328041221
1013 => 0.005390310178113
1014 => 0.0054676280811772
1015 => 0.0057052769555811
1016 => 0.0058951273205062
1017 => 0.0057205330790229
1018 => 0.0060691690969096
1019 => 0.0063406322457009
1020 => 0.0063302130379048
1021 => 0.0062828771588573
1022 => 0.0059738235811796
1023 => 0.0056894278712714
1024 => 0.0059273369586893
1025 => 0.0059279434378796
1026 => 0.0059075068362792
1027 => 0.0057805768589215
1028 => 0.0059030899482039
1029 => 0.0059128145923289
1030 => 0.0059073713776105
1031 => 0.0058100544615733
1101 => 0.0056614695179571
1102 => 0.0056905026602776
1103 => 0.0057380595396587
1104 => 0.005648024445586
1105 => 0.005619252777611
1106 => 0.0056727447824103
1107 => 0.0058451071673752
1108 => 0.0058125230569249
1109 => 0.0058116721541183
1110 => 0.005951080796438
1111 => 0.0058512942948051
1112 => 0.0056908688611793
1113 => 0.0056503593234372
1114 => 0.0055065777549475
1115 => 0.0056058881964357
1116 => 0.0056094622024259
1117 => 0.0055550708885509
1118 => 0.0056952824165326
1119 => 0.0056939903426185
1120 => 0.0058271003207052
1121 => 0.0060815566049824
1122 => 0.0060063013606883
1123 => 0.0059187876993217
1124 => 0.0059283028608028
1125 => 0.0060326606968317
1126 => 0.005969563566911
1127 => 0.0059922537347593
1128 => 0.0060326263525451
1129 => 0.006056984155251
1130 => 0.0059247981478388
1201 => 0.0058939792663233
1202 => 0.0058309346507003
1203 => 0.0058144874872678
1204 => 0.0058658360112237
1205 => 0.0058523074893314
1206 => 0.0056091618210617
1207 => 0.0055837517458778
1208 => 0.0055845310366064
1209 => 0.0055206361943733
1210 => 0.0054231812234485
1211 => 0.0056792870683049
1212 => 0.0056587181847639
1213 => 0.0056360117292398
1214 => 0.0056387931404803
1215 => 0.0057499600075
1216 => 0.0056854776105672
1217 => 0.0058569146312701
1218 => 0.0058216723336821
1219 => 0.0057855262041424
1220 => 0.005780529708002
1221 => 0.0057666165319721
1222 => 0.0057189030745006
1223 => 0.0056612862074696
1224 => 0.0056232425611682
1225 => 0.0051871440192005
1226 => 0.0052680813719212
1227 => 0.0053611924185545
1228 => 0.0053933339787332
1229 => 0.0053383536159192
1230 => 0.0057210740343338
1231 => 0.0057910007427638
]
'min_raw' => 0.0024136340640589
'max_raw' => 0.0063406322457009
'avg_raw' => 0.0043771331548799
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002413'
'max' => '$0.00634'
'avg' => '$0.004377'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.3582031314202E-5
'max_diff' => -0.0011434688598596
'year' => 2027
]
2 => [
'items' => [
101 => 0.0055791881817229
102 => 0.005539566699802
103 => 0.0057236716120923
104 => 0.005612633844071
105 => 0.0056626341442121
106 => 0.0055545608440091
107 => 0.0057741574463961
108 => 0.0057724844882108
109 => 0.0056870564500681
110 => 0.0057592596429204
111 => 0.005746712561329
112 => 0.0056502645166658
113 => 0.0057772150214432
114 => 0.0057772779873097
115 => 0.005695055357963
116 => 0.0055990373277341
117 => 0.0055818715717738
118 => 0.0055689394805526
119 => 0.0056594536425232
120 => 0.0057406083571157
121 => 0.0058916171610123
122 => 0.0059295843621926
123 => 0.0060777728760189
124 => 0.0059895338312031
125 => 0.006028649056883
126 => 0.0060711141675451
127 => 0.0060914735031992
128 => 0.006058299058293
129 => 0.0062884968170911
130 => 0.0063079325610107
131 => 0.0063144491978284
201 => 0.0062368278087548
202 => 0.0063057737697645
203 => 0.0062735162378583
204 => 0.0063574413744778
205 => 0.0063706019075096
206 => 0.0063594554042312
207 => 0.0063636327651404
208 => 0.0061671995876736
209 => 0.0061570134911544
210 => 0.0060181253423425
211 => 0.0060747232895927
212 => 0.0059689161400186
213 => 0.006002468677083
214 => 0.0060172583157206
215 => 0.0060095330478009
216 => 0.0060779232526114
217 => 0.0060197776073267
218 => 0.0058663216893914
219 => 0.0057128239624939
220 => 0.0057108969235692
221 => 0.005670483681537
222 => 0.0056412723096022
223 => 0.005646899456166
224 => 0.0056667302546168
225 => 0.0056401197075458
226 => 0.0056457984169524
227 => 0.0057401028301444
228 => 0.0057590149076618
229 => 0.0056947442788321
301 => 0.0054366884298735
302 => 0.005373360877255
303 => 0.0054188794662372
304 => 0.0053971245124763
305 => 0.0043559007098658
306 => 0.0046005207975982
307 => 0.0044551758479808
308 => 0.0045221574877641
309 => 0.0043737979310971
310 => 0.0044446028877292
311 => 0.0044315277976222
312 => 0.0048248696598612
313 => 0.0048187281677064
314 => 0.0048216677750004
315 => 0.0046813526597527
316 => 0.0049048784483129
317 => 0.005014995289485
318 => 0.0049946155928489
319 => 0.0049997447234288
320 => 0.004911609266442
321 => 0.0048225211188786
322 => 0.0047237086526631
323 => 0.0049072900013015
324 => 0.0048868788891711
325 => 0.004933694636712
326 => 0.0050527602639698
327 => 0.0050702931298699
328 => 0.0050938574794403
329 => 0.005085411337544
330 => 0.0052866327037543
331 => 0.0052622634686049
401 => 0.0053209863138075
402 => 0.0052001889659128
403 => 0.0050634953005804
404 => 0.0050894762975075
405 => 0.0050869741185774
406 => 0.0050551185089304
407 => 0.0050263606889017
408 => 0.0049784870210194
409 => 0.0051299663901687
410 => 0.0051238166044151
411 => 0.0052233744874227
412 => 0.0052057766645474
413 => 0.0050882540964685
414 => 0.0050924514379788
415 => 0.0051206805768084
416 => 0.0052183819486127
417 => 0.0052473863677808
418 => 0.0052339503651958
419 => 0.0052657523867117
420 => 0.0052908874078449
421 => 0.0052689089583804
422 => 0.0055800774543496
423 => 0.0054508586002313
424 => 0.0055138389706296
425 => 0.0055288594178677
426 => 0.0054903848581133
427 => 0.0054987286124533
428 => 0.0055113671267415
429 => 0.0055881057106245
430 => 0.0057894899592218
501 => 0.0058786816720566
502 => 0.0061470193407617
503 => 0.0058712755419143
504 => 0.0058549140460319
505 => 0.005903249763187
506 => 0.0060607923811438
507 => 0.0061884658757722
508 => 0.006230822539601
509 => 0.0062364206719583
510 => 0.0063158845891189
511 => 0.0063614318245211
512 => 0.0063062355794671
513 => 0.0062594625410716
514 => 0.0060919273232222
515 => 0.0061113199808715
516 => 0.0062449161613021
517 => 0.006433628634936
518 => 0.0065955635695004
519 => 0.0065388595994182
520 => 0.006971470864381
521 => 0.0070143625042435
522 => 0.0070084362664672
523 => 0.0071061498052058
524 => 0.0069122083298258
525 => 0.0068292945916617
526 => 0.0062695754028693
527 => 0.0064268336642709
528 => 0.0066554177826721
529 => 0.0066251638174552
530 => 0.0064591599206013
531 => 0.0065954376406587
601 => 0.0065503799646094
602 => 0.0065148411060646
603 => 0.0066776515066049
604 => 0.0064986347833282
605 => 0.0066536319539167
606 => 0.0064548464793966
607 => 0.0065391186183771
608 => 0.0064912816765071
609 => 0.0065222380405721
610 => 0.0063412677687903
611 => 0.0064389149346387
612 => 0.0063372053256569
613 => 0.0063371571020593
614 => 0.0063349118568037
615 => 0.0064545727607214
616 => 0.0064584748985022
617 => 0.0063700453097094
618 => 0.0063573012244346
619 => 0.0064044227871412
620 => 0.0063492557783686
621 => 0.0063750680745563
622 => 0.0063500376065247
623 => 0.0063444027209485
624 => 0.0062995029939805
625 => 0.0062801589570589
626 => 0.0062877442523703
627 => 0.0062618517289849
628 => 0.0062462505470716
629 => 0.0063318083890451
630 => 0.0062860982854722
701 => 0.0063248026600974
702 => 0.0062806941403305
703 => 0.006127794793651
704 => 0.0060398607624944
705 => 0.0057510480703939
706 => 0.0058329549916026
707 => 0.0058872593651028
708 => 0.0058693117699849
709 => 0.0059078701490954
710 => 0.0059102373204146
711 => 0.0058977015983096
712 => 0.0058831868380375
713 => 0.0058761218554537
714 => 0.0059287784474022
715 => 0.0059593473713677
716 => 0.0058927095354823
717 => 0.0058770972228968
718 => 0.0059444717541526
719 => 0.0059855701792977
720 => 0.0062890178593585
721 => 0.0062665374750965
722 => 0.0063229588280416
723 => 0.0063166066495562
724 => 0.0063757452160689
725 => 0.0064724117784944
726 => 0.0062758616286876
727 => 0.0063099759385012
728 => 0.0063016118975494
729 => 0.0063929283034923
730 => 0.0063932133833441
731 => 0.0063384646363885
801 => 0.0063681448203101
802 => 0.0063515781558784
803 => 0.0063815163576256
804 => 0.0062662372358591
805 => 0.0064066347625584
806 => 0.0064862311131802
807 => 0.0064873363085858
808 => 0.0065250643470648
809 => 0.0065633982192201
810 => 0.0066369767486456
811 => 0.0065613461539693
812 => 0.0064252940766365
813 => 0.0064351165971744
814 => 0.0063553493140137
815 => 0.0063566902164548
816 => 0.0063495323741359
817 => 0.006371013597752
818 => 0.0062709511564488
819 => 0.0062944356114207
820 => 0.0062615572369353
821 => 0.0063099044673361
822 => 0.0062578908395083
823 => 0.0063016078641556
824 => 0.006320474682751
825 => 0.0063900936495418
826 => 0.0062476080615078
827 => 0.0059570703020804
828 => 0.0060181448615419
829 => 0.0059278107907952
830 => 0.0059361715529689
831 => 0.0059530616231651
901 => 0.005898315379572
902 => 0.0059087592375972
903 => 0.0059083861094962
904 => 0.0059051706931023
905 => 0.0058909290807435
906 => 0.0058702759252061
907 => 0.005952551740161
908 => 0.0059665320043714
909 => 0.0059976083999226
910 => 0.0060900706737626
911 => 0.0060808315121954
912 => 0.0060959009680406
913 => 0.0060630044305419
914 => 0.0059376975289939
915 => 0.0059445022966176
916 => 0.0058596467353105
917 => 0.0059954384524387
918 => 0.0059632811814596
919 => 0.005942549179664
920 => 0.0059368922608934
921 => 0.0060295837308261
922 => 0.0060573184713907
923 => 0.00604003604228
924 => 0.006004589275965
925 => 0.0060726575461855
926 => 0.0060908697437268
927 => 0.0060949467831163
928 => 0.0062155507071507
929 => 0.0061016872027273
930 => 0.0061290952799479
1001 => 0.0063429252744425
1002 => 0.0061490109759581
1003 => 0.0062517317046702
1004 => 0.0062467040595326
1005 => 0.0062992525084618
1006 => 0.0062423935529461
1007 => 0.0062430983878446
1008 => 0.0062897578505534
1009 => 0.0062242330502573
1010 => 0.0062080081882267
1011 => 0.006185593657536
1012 => 0.0062345349652799
1013 => 0.0062638730658474
1014 => 0.0065003166099611
1015 => 0.0066530699225941
1016 => 0.0066464384984345
1017 => 0.0067070373017474
1018 => 0.0066797369858336
1019 => 0.0065915770642882
1020 => 0.006742055300409
1021 => 0.0066944376902236
1022 => 0.0066983632281519
1023 => 0.0066982171194341
1024 => 0.0067298786674037
1025 => 0.006707443558929
1026 => 0.0066632216572087
1027 => 0.0066925782193204
1028 => 0.0067797567136291
1029 => 0.0070503614349262
1030 => 0.0072017954219997
1031 => 0.0070412449187582
1101 => 0.0071519905060373
1102 => 0.0070855826163573
1103 => 0.0070735143273389
1104 => 0.0071430707401848
1105 => 0.0072127489023236
1106 => 0.0072083107046223
1107 => 0.0071577279369228
1108 => 0.0071291550149395
1109 => 0.0073455187528279
1110 => 0.007504931869244
1111 => 0.0074940609634235
1112 => 0.0075420416063072
1113 => 0.007682914257799
1114 => 0.0076957938875779
1115 => 0.0076941713502606
1116 => 0.0076622478440033
1117 => 0.0078009552640224
1118 => 0.0079166674341272
1119 => 0.0076548584746635
1120 => 0.0077545518990964
1121 => 0.0077993074892458
1122 => 0.0078650219739704
1123 => 0.0079758933247273
1124 => 0.0080963290188226
1125 => 0.0081133599464779
1126 => 0.0081012756883015
1127 => 0.0080218451105604
1128 => 0.0081536272841362
1129 => 0.0082308221907446
1130 => 0.0082767899910559
1201 => 0.0083933566843327
1202 => 0.0077995838845339
1203 => 0.0073792819844134
1204 => 0.0073136457734766
1205 => 0.0074471195894331
1206 => 0.0074823155702672
1207 => 0.007468128114525
1208 => 0.0069950401137623
1209 => 0.0073111550630604
1210 => 0.0076512681688052
1211 => 0.0076643332983511
1212 => 0.0078346010305166
1213 => 0.0078900471836198
1214 => 0.0080271350255149
1215 => 0.0080185601436794
1216 => 0.0080519388516368
1217 => 0.008044265664716
1218 => 0.0082981920245758
1219 => 0.0085783105079304
1220 => 0.0085686108955741
1221 => 0.0085283405493804
1222 => 0.0085881488805924
1223 => 0.0088772611747354
1224 => 0.0088506443476209
1225 => 0.0088765003279467
1226 => 0.0092173800163962
1227 => 0.0096605721009508
1228 => 0.0094546648819174
1229 => 0.0099014242990137
1230 => 0.010182635670377
1231 => 0.01066896165935
]
'min_raw' => 0.0043559007098658
'max_raw' => 0.01066896165935
'avg_raw' => 0.0075124311846081
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004355'
'max' => '$0.010668'
'avg' => '$0.007512'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019422666458069
'max_diff' => 0.0043283294136495
'year' => 2028
]
3 => [
'items' => [
101 => 0.010608071250325
102 => 0.010797394389007
103 => 0.010499064709957
104 => 0.0098140394644828
105 => 0.0097056315972151
106 => 0.0099226668928094
107 => 0.010456226989034
108 => 0.0099058631866001
109 => 0.010017201067037
110 => 0.0099851357499811
111 => 0.009983427125504
112 => 0.010048638372316
113 => 0.0099540460576251
114 => 0.0095686599507402
115 => 0.009745280132431
116 => 0.0096770785982824
117 => 0.0097527532851814
118 => 0.010161138359761
119 => 0.0099805815836049
120 => 0.0097903796871663
121 => 0.01002893507448
122 => 0.010332698059055
123 => 0.010313689117395
124 => 0.010276803825453
125 => 0.010484724284878
126 => 0.010828147968871
127 => 0.010920974010666
128 => 0.010989496296974
129 => 0.010998944362562
130 => 0.011096265310063
131 => 0.010572946047316
201 => 0.011403467157086
202 => 0.011546875210061
203 => 0.011519920439757
204 => 0.011679312455105
205 => 0.011632415280804
206 => 0.011564468633184
207 => 0.011817138881164
208 => 0.011527472831292
209 => 0.011116328341441
210 => 0.010890766342792
211 => 0.01118780457818
212 => 0.011369195463325
213 => 0.01148908329978
214 => 0.011525361286652
215 => 0.010613569831984
216 => 0.010122164808191
217 => 0.010437149794473
218 => 0.010821453216839
219 => 0.010570811222401
220 => 0.010580635914055
221 => 0.010223286297545
222 => 0.010853070728595
223 => 0.010761316434312
224 => 0.011237337875364
225 => 0.011123731538147
226 => 0.011511908544279
227 => 0.011409688529336
228 => 0.011833998096319
301 => 0.012003266670312
302 => 0.012287494950595
303 => 0.012496574430589
304 => 0.012619349900294
305 => 0.012611978921612
306 => 0.013098476499082
307 => 0.012811605874579
308 => 0.012451228759988
309 => 0.012444710674961
310 => 0.01263135508919
311 => 0.013022510578021
312 => 0.013123931505194
313 => 0.013180611967386
314 => 0.013093803866478
315 => 0.012782426363783
316 => 0.012647975136839
317 => 0.012762531477622
318 => 0.012622438916783
319 => 0.012864277979822
320 => 0.01319637466741
321 => 0.013127798014676
322 => 0.013357039483181
323 => 0.013594280286178
324 => 0.013933545289614
325 => 0.014022241724459
326 => 0.014168853558435
327 => 0.014319765295074
328 => 0.014368234077697
329 => 0.014460776022705
330 => 0.014460288280975
331 => 0.014739169661047
401 => 0.015046784459504
402 => 0.015162901924622
403 => 0.015429907632908
404 => 0.014972669714465
405 => 0.015319489927974
406 => 0.015632330442033
407 => 0.015259349084272
408 => 0.015773416992435
409 => 0.015793377084406
410 => 0.016094750775457
411 => 0.015789250803364
412 => 0.015607845895126
413 => 0.016131555068056
414 => 0.016384961440153
415 => 0.016308633378588
416 => 0.015727773061297
417 => 0.015389687442363
418 => 0.014504852165767
419 => 0.015552977772935
420 => 0.016063489181943
421 => 0.015726450960079
422 => 0.015896433434844
423 => 0.016823802700164
424 => 0.017176884873684
425 => 0.017103446249822
426 => 0.017115856168352
427 => 0.017306372900289
428 => 0.018151229009178
429 => 0.01764497164512
430 => 0.018031986430841
501 => 0.018237257677701
502 => 0.018427925051676
503 => 0.017959706242236
504 => 0.017350560450655
505 => 0.017157618408261
506 => 0.015692939151212
507 => 0.015616696235102
508 => 0.015573898775894
509 => 0.015304066849403
510 => 0.015092052868366
511 => 0.014923451479072
512 => 0.014480991084925
513 => 0.014630308479389
514 => 0.013925118959781
515 => 0.014376274224044
516 => 0.013250774723353
517 => 0.014188124151927
518 => 0.013677967474003
519 => 0.014020523962609
520 => 0.014019328815291
521 => 0.013388573712134
522 => 0.013024767332156
523 => 0.013256598917034
524 => 0.013505140778837
525 => 0.01354546585972
526 => 0.013867706871154
527 => 0.013957637410898
528 => 0.013685143677018
529 => 0.013227451247863
530 => 0.013333762760303
531 => 0.013022612932749
601 => 0.012477334828167
602 => 0.01286896308252
603 => 0.013002682187235
604 => 0.013061740161687
605 => 0.012525521771444
606 => 0.012357030311362
607 => 0.012267326871794
608 => 0.013158232187225
609 => 0.013207037991509
610 => 0.012957340596345
611 => 0.014085996499764
612 => 0.013830546908166
613 => 0.014115946688651
614 => 0.013324116104853
615 => 0.013354365099496
616 => 0.012979499811478
617 => 0.01318939932426
618 => 0.013041049114003
619 => 0.013172441517895
620 => 0.013251197583037
621 => 0.013626001359349
622 => 0.014192403808996
623 => 0.013570018173773
624 => 0.013298835839779
625 => 0.013467075834601
626 => 0.01391512111122
627 => 0.014593932640313
628 => 0.014192062552735
629 => 0.014370405673406
630 => 0.014409365711339
701 => 0.014113041586798
702 => 0.014604858533457
703 => 0.014868427230686
704 => 0.015138794176185
705 => 0.015373546219453
706 => 0.015030803672656
707 => 0.015397587327943
708 => 0.015102024447813
709 => 0.014836873989608
710 => 0.014837276113403
711 => 0.014670943357741
712 => 0.01434865268437
713 => 0.014289217339374
714 => 0.014598407509898
715 => 0.014846348746241
716 => 0.014866770374025
717 => 0.015004043382145
718 => 0.015085280134326
719 => 0.015881510741709
720 => 0.016201761278763
721 => 0.016593357573441
722 => 0.016745906399376
723 => 0.017205023673659
724 => 0.016834249186993
725 => 0.016754029794522
726 => 0.015640361463228
727 => 0.015822724590088
728 => 0.016114705551617
729 => 0.01564517612174
730 => 0.01594298447422
731 => 0.016001778151443
801 => 0.015629221691381
802 => 0.015828220193914
803 => 0.015299739170129
804 => 0.014203923251143
805 => 0.014606078489831
806 => 0.014902200109495
807 => 0.014479598046702
808 => 0.0152370958873
809 => 0.014794581286752
810 => 0.014654325402825
811 => 0.014107137194794
812 => 0.014365388965779
813 => 0.014714678183846
814 => 0.01449885805631
815 => 0.014946717226501
816 => 0.015581005251169
817 => 0.016033036670053
818 => 0.016067738029498
819 => 0.015777112110909
820 => 0.016242842000198
821 => 0.016246234333992
822 => 0.015720889116312
823 => 0.015399118095617
824 => 0.015326011042704
825 => 0.015508646794364
826 => 0.0157304003133
827 => 0.016080043806473
828 => 0.016291326046624
829 => 0.016842238073497
830 => 0.016991299072083
831 => 0.017155071917058
901 => 0.01737392294362
902 => 0.017636709713258
903 => 0.017061747221748
904 => 0.0170845915534
905 => 0.016549194442203
906 => 0.015977045845176
907 => 0.01641123531099
908 => 0.016978880279737
909 => 0.016848661896714
910 => 0.016834009668504
911 => 0.016858650652164
912 => 0.0167604702439
913 => 0.016316403896057
914 => 0.016093396556172
915 => 0.016381132919864
916 => 0.016534051991493
917 => 0.016771216135646
918 => 0.016741980648952
919 => 0.01735289001472
920 => 0.017590270921318
921 => 0.017529538727308
922 => 0.017540714912608
923 => 0.017970481705212
924 => 0.018448470766871
925 => 0.018896170599326
926 => 0.019351590098054
927 => 0.018802564117012
928 => 0.018523802583053
929 => 0.018811413330049
930 => 0.018658803019279
1001 => 0.019535747132124
1002 => 0.019596464839819
1003 => 0.020473345539623
1004 => 0.021305609740749
1005 => 0.020782879507584
1006 => 0.021275790573172
1007 => 0.021808914078234
1008 => 0.022837395815671
1009 => 0.022491039348926
1010 => 0.022225735723497
1011 => 0.021975025079405
1012 => 0.022496714130567
1013 => 0.023167858760701
1014 => 0.023312416885889
1015 => 0.023546656274147
1016 => 0.023300382198823
1017 => 0.023596992196351
1018 => 0.02464415582466
1019 => 0.024361202968722
1020 => 0.023959364426348
1021 => 0.024785999540235
1022 => 0.025085155574487
1023 => 0.027184789292105
1024 => 0.029835663592141
1025 => 0.028738184225347
1026 => 0.02805694336694
1027 => 0.028217051127915
1028 => 0.02918506068453
1029 => 0.029495954631027
1030 => 0.028650837712878
1031 => 0.028949347295606
1101 => 0.030594164445254
1102 => 0.031476556073988
1103 => 0.030278149721161
1104 => 0.026971794123196
1105 => 0.023923183262218
1106 => 0.024731812143286
1107 => 0.024640138722848
1108 => 0.026407289555026
1109 => 0.024354454636687
1110 => 0.024389019111923
1111 => 0.026192712751865
1112 => 0.025711518211866
1113 => 0.024932044683807
1114 => 0.02392887428159
1115 => 0.02207442101106
1116 => 0.020431880034097
1117 => 0.023653281144518
1118 => 0.023514368470899
1119 => 0.023313202333793
1120 => 0.023760875803472
1121 => 0.025934651097899
1122 => 0.025884538541538
1123 => 0.025565748025624
1124 => 0.025807547822254
1125 => 0.024889656010373
1126 => 0.025126217630303
1127 => 0.023922700346682
1128 => 0.0244667404222
1129 => 0.024930372283695
1130 => 0.025023453244078
1201 => 0.02523316940065
1202 => 0.023441167804142
1203 => 0.024245723910572
1204 => 0.024718325246386
1205 => 0.022583095217791
1206 => 0.024676118614009
1207 => 0.023409973043191
1208 => 0.022980224219586
1209 => 0.023558824395467
1210 => 0.023333343344219
1211 => 0.023139487977048
1212 => 0.023031313351308
1213 => 0.023456173462704
1214 => 0.02343635323069
1215 => 0.022741199626652
1216 => 0.021834400088271
1217 => 0.022138751778032
1218 => 0.02202817795583
1219 => 0.021627444159861
1220 => 0.021897490353561
1221 => 0.020708343583758
1222 => 0.018662478372784
1223 => 0.0200140395977
1224 => 0.019962005960756
1225 => 0.019935768241472
1226 => 0.020951429147588
1227 => 0.020853796786749
1228 => 0.020676593095807
1229 => 0.021624189675112
1230 => 0.021278304176693
1231 => 0.022344241781948
]
'min_raw' => 0.0095686599507402
'max_raw' => 0.031476556073988
'avg_raw' => 0.020522608012364
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.009568'
'max' => '$0.031476'
'avg' => '$0.020522'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0052127592408744
'max_diff' => 0.020807594414637
'year' => 2029
]
4 => [
'items' => [
101 => 0.023046337229291
102 => 0.022868263113437
103 => 0.023528587275184
104 => 0.02214576342626
105 => 0.02260508203961
106 => 0.022699746969233
107 => 0.021612496480415
108 => 0.020869770648422
109 => 0.020820239303122
110 => 0.019532455064369
111 => 0.02022037901008
112 => 0.020825723614078
113 => 0.020535810525402
114 => 0.020444032702434
115 => 0.020912905695795
116 => 0.020949341143005
117 => 0.020118609085366
118 => 0.020291344586012
119 => 0.021011680338593
120 => 0.020273193973238
121 => 0.018838435596417
122 => 0.018482595681879
123 => 0.018435120077849
124 => 0.017470054007601
125 => 0.018506374606483
126 => 0.018053992893406
127 => 0.019483061304652
128 => 0.018666785092396
129 => 0.018631597056356
130 => 0.018578405178919
131 => 0.01774773294588
201 => 0.017929597372941
202 => 0.018534142427227
203 => 0.018749850913283
204 => 0.01872735075094
205 => 0.018531179826652
206 => 0.018620985871234
207 => 0.018331689311137
208 => 0.01822953267458
209 => 0.017907098229209
210 => 0.017433208669302
211 => 0.017499105919141
212 => 0.016560206701017
213 => 0.01604864457583
214 => 0.015907050921859
215 => 0.015717705970162
216 => 0.015928437937981
217 => 0.016557546917499
218 => 0.015798708015285
219 => 0.014497731943799
220 => 0.01457592282245
221 => 0.0147515945117
222 => 0.014424231480967
223 => 0.014114409845875
224 => 0.014383774620964
225 => 0.013832533909011
226 => 0.014818209318156
227 => 0.014791549560662
228 => 0.015158948399433
301 => 0.0153886904331
302 => 0.014859209425365
303 => 0.014726046383789
304 => 0.014801902104193
305 => 0.013548176016608
306 => 0.015056492230636
307 => 0.01506953621189
308 => 0.01495784572517
309 => 0.015760977545101
310 => 0.017455836188253
311 => 0.016818162191168
312 => 0.016571235545698
313 => 0.016101827812158
314 => 0.016727285746427
315 => 0.016679260335739
316 => 0.016462071215511
317 => 0.016330714557926
318 => 0.016572743227142
319 => 0.016300724527397
320 => 0.016251862494349
321 => 0.015955811736494
322 => 0.015850135085392
323 => 0.015771896300024
324 => 0.015685763084918
325 => 0.015875751494381
326 => 0.01544521276348
327 => 0.014926025260246
328 => 0.014882860437038
329 => 0.015002042309004
330 => 0.014949313202706
331 => 0.014882607990364
401 => 0.014755249573919
402 => 0.014717465052342
403 => 0.014840246417024
404 => 0.014701633414896
405 => 0.014906164450176
406 => 0.014850543325798
407 => 0.014539848246443
408 => 0.014152607143516
409 => 0.014149159885434
410 => 0.014065729425011
411 => 0.013959468189808
412 => 0.013929908745103
413 => 0.014361089470926
414 => 0.015253620669226
415 => 0.015078395438538
416 => 0.015205013625514
417 => 0.01582784978681
418 => 0.016025830673149
419 => 0.01588530852946
420 => 0.01569295315215
421 => 0.015701415812531
422 => 0.016358752366733
423 => 0.016399749641313
424 => 0.016503336527955
425 => 0.01663647495094
426 => 0.015907982578601
427 => 0.015667103887306
428 => 0.01555296219993
429 => 0.015201449981203
430 => 0.01558052577272
501 => 0.015359654542647
502 => 0.015389457617619
503 => 0.015370048325946
504 => 0.01538064711165
505 => 0.014817933801791
506 => 0.015022956956563
507 => 0.01468206619686
508 => 0.014225651736402
509 => 0.014224121675091
510 => 0.014335828467686
511 => 0.014269380896363
512 => 0.014090572190457
513 => 0.014115971123177
514 => 0.013893449746531
515 => 0.014142989247182
516 => 0.014150145147165
517 => 0.014054058846906
518 => 0.014438508877475
519 => 0.01459601836868
520 => 0.014532772307481
521 => 0.014591580856425
522 => 0.015085676837968
523 => 0.015166236041878
524 => 0.015202015118813
525 => 0.01515407589554
526 => 0.014600612023943
527 => 0.014625160500158
528 => 0.014445040069859
529 => 0.01429285728688
530 => 0.014298943800106
531 => 0.014377185532934
601 => 0.014718871769012
602 => 0.015437930309336
603 => 0.015465218055316
604 => 0.015498291599484
605 => 0.015363764873922
606 => 0.015323190326245
607 => 0.01537671862781
608 => 0.015646759209254
609 => 0.016341376900029
610 => 0.016095852616153
611 => 0.015896237551549
612 => 0.016071353779042
613 => 0.016044396008426
614 => 0.015816845295084
615 => 0.015810458704442
616 => 0.015373716133175
617 => 0.015212262348725
618 => 0.015077339481832
619 => 0.014930007233436
620 => 0.014842663737964
621 => 0.014976863043917
622 => 0.015007556012988
623 => 0.01471412688512
624 => 0.01467413357925
625 => 0.014913754139174
626 => 0.014808306064706
627 => 0.014916762024283
628 => 0.014941924737222
629 => 0.014937872960893
630 => 0.014827773060514
701 => 0.014897947453789
702 => 0.014731964093701
703 => 0.014551482119499
704 => 0.014436345864382
705 => 0.014335874211185
706 => 0.014391621723826
707 => 0.014192892020356
708 => 0.014129314388577
709 => 0.014874173948321
710 => 0.015424409713694
711 => 0.015416409067749
712 => 0.015367707193153
713 => 0.015295346086318
714 => 0.015641465543579
715 => 0.015520884445546
716 => 0.015608617269253
717 => 0.015630948955021
718 => 0.015698540241969
719 => 0.015722698317385
720 => 0.015649675834615
721 => 0.015404603463493
722 => 0.014793906415438
723 => 0.014509625291023
724 => 0.01441580778489
725 => 0.014419217873053
726 => 0.01432515241821
727 => 0.014352858910379
728 => 0.014315517230927
729 => 0.014244801123969
730 => 0.014387255203494
731 => 0.014403671709107
801 => 0.014370421224747
802 => 0.014378252917499
803 => 0.01410295310846
804 => 0.014123883555022
805 => 0.014007340168855
806 => 0.013985489688901
807 => 0.013690878157265
808 => 0.013168931124349
809 => 0.013458140447209
810 => 0.013108816254178
811 => 0.012976521889152
812 => 0.01360278283719
813 => 0.013539923607782
814 => 0.013432335931285
815 => 0.01327319133451
816 => 0.013214163055508
817 => 0.012855525918368
818 => 0.012834335723051
819 => 0.013012085972235
820 => 0.012930060348249
821 => 0.01281486530664
822 => 0.012397640543067
823 => 0.011928541770439
824 => 0.011942700913735
825 => 0.012091912505415
826 => 0.012525765332149
827 => 0.012356251527014
828 => 0.012233267316442
829 => 0.012210236070693
830 => 0.012498520330414
831 => 0.012906502955338
901 => 0.013097919274855
902 => 0.012908231515613
903 => 0.012690328431311
904 => 0.012703591182386
905 => 0.012791822323477
906 => 0.012801094168884
907 => 0.012659261661802
908 => 0.012699186681757
909 => 0.012638536925625
910 => 0.012266329484194
911 => 0.012259597431861
912 => 0.012168251723078
913 => 0.01216548581132
914 => 0.012010083973425
915 => 0.011988342182061
916 => 0.011679782400704
917 => 0.011882877383198
918 => 0.011746651931906
919 => 0.011541328044474
920 => 0.011505930128889
921 => 0.011504866024802
922 => 0.011715687747615
923 => 0.011880413808621
924 => 0.011749021631955
925 => 0.011719106180258
926 => 0.012038524939174
927 => 0.011997875990535
928 => 0.011962674263172
929 => 0.012869972586068
930 => 0.012151775166125
1001 => 0.011838600097753
1002 => 0.011450986480312
1003 => 0.011577195428668
1004 => 0.011603789508482
1005 => 0.010671648631141
1006 => 0.010293479193294
1007 => 0.01016370569324
1008 => 0.010089019209231
1009 => 0.010123054777848
1010 => 0.0097826579289349
1011 => 0.010011410241049
1012 => 0.0097166553429194
1013 => 0.0096672387250327
1014 => 0.010194296996013
1015 => 0.01026763407539
1016 => 0.0099547553107224
1017 => 0.01015567412811
1018 => 0.010082818171945
1019 => 0.00972170806965
1020 => 0.0097079163198885
1021 => 0.0095267239641909
1022 => 0.0092431930132778
1023 => 0.0091136117605594
1024 => 0.0090461247190677
1025 => 0.0090739711876834
1026 => 0.0090598911610353
1027 => 0.0089680094630594
1028 => 0.0090651577124104
1029 => 0.0088169840797467
1030 => 0.0087181593395492
1031 => 0.0086735224971186
1101 => 0.0084532541137883
1102 => 0.0088037990654615
1103 => 0.00887286083699
1104 => 0.0089420586815428
1105 => 0.0095443786749994
1106 => 0.0095142884702649
1107 => 0.0097862892665404
1108 => 0.0097757198157745
1109 => 0.009698140782556
1110 => 0.0093708476025386
1111 => 0.0095013008306535
1112 => 0.0090997860714485
1113 => 0.0094006282293947
1114 => 0.0092633364319769
1115 => 0.0093542097345846
1116 => 0.0091908113427806
1117 => 0.0092812427593592
1118 => 0.0088892379450423
1119 => 0.0085231893650897
1120 => 0.0086704979992868
1121 => 0.0088306393314448
1122 => 0.0091778665428158
1123 => 0.0089710608802855
1124 => 0.0090454360167193
1125 => 0.0087962917599136
1126 => 0.0082822359935849
1127 => 0.008285145493396
1128 => 0.00820606921306
1129 => 0.0081377357615236
1130 => 0.0089948149983762
1201 => 0.0088882236468559
1202 => 0.0087183842785395
1203 => 0.0089457210221793
1204 => 0.0090058324655169
1205 => 0.009007543753802
1206 => 0.0091734027735509
1207 => 0.0092619217621227
1208 => 0.0092775236175218
1209 => 0.0095385063687179
1210 => 0.0096259843444732
1211 => 0.0099862937462625
1212 => 0.0092544115443902
1213 => 0.009239338912071
1214 => 0.0089489201163717
1215 => 0.0087647319247997
1216 => 0.0089615316394285
1217 => 0.0091358693207496
1218 => 0.0089543372740948
1219 => 0.0089780415270372
1220 => 0.0087343495861162
1221 => 0.0088214579882239
1222 => 0.008896487478888
1223 => 0.0088550606041729
1224 => 0.008793042567641
1225 => 0.009121575619002
1226 => 0.0091030384967128
1227 => 0.0094089760270824
1228 => 0.0096474762098081
1229 => 0.01007491117426
1230 => 0.0096288605061659
1231 => 0.0096126046469297
]
'min_raw' => 0.0081377357615236
'max_raw' => 0.023528587275184
'avg_raw' => 0.015833161518354
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008137'
'max' => '$0.023528'
'avg' => '$0.015833'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014309241892165
'max_diff' => -0.0079479687988033
'year' => 2030
]
5 => [
'items' => [
101 => 0.0097715082784851
102 => 0.0096259600171551
103 => 0.0097179414941605
104 => 0.010060091536286
105 => 0.010067320627523
106 => 0.0099462240351433
107 => 0.0099388552964917
108 => 0.0099621132217099
109 => 0.010098335616161
110 => 0.010050735325848
111 => 0.01010581958689
112 => 0.010174703298802
113 => 0.010459635537362
114 => 0.010528331735445
115 => 0.010361435588998
116 => 0.010376504442365
117 => 0.010314080702192
118 => 0.010253780151353
119 => 0.010389326983452
120 => 0.010637041483293
121 => 0.010635500464246
122 => 0.010692965413328
123 => 0.01072876560054
124 => 0.010575084989686
125 => 0.010475044563012
126 => 0.010513406428337
127 => 0.010574747886403
128 => 0.010493514220225
129 => 0.0099921024014817
130 => 0.010144198716977
131 => 0.010118882452949
201 => 0.01008282901441
202 => 0.010235763035767
203 => 0.010221012176322
204 => 0.0097791666672478
205 => 0.0098074521831744
206 => 0.0097808868031558
207 => 0.0098667249807614
208 => 0.0096213244738675
209 => 0.0096968080169905
210 => 0.0097441505876229
211 => 0.0097720357254281
212 => 0.0098727759641988
213 => 0.0098609552599185
214 => 0.0098720411726237
215 => 0.010021412352283
216 => 0.010776880521004
217 => 0.010817998986581
218 => 0.010615516623708
219 => 0.010696404333888
220 => 0.01054111761854
221 => 0.010645362630884
222 => 0.010716684420793
223 => 0.010394394966585
224 => 0.010375311076748
225 => 0.010219383437888
226 => 0.010303170118819
227 => 0.010169859484983
228 => 0.010202569251518
301 => 0.010111109892699
302 => 0.010275718529196
303 => 0.010459776562397
304 => 0.010506276890255
305 => 0.01038395454731
306 => 0.010295385109582
307 => 0.010139886353518
308 => 0.010398484250368
309 => 0.010474106156035
310 => 0.01039808704069
311 => 0.010380471750615
312 => 0.010347090807751
313 => 0.010387553675445
314 => 0.010473694302896
315 => 0.010433071973758
316 => 0.010459903737827
317 => 0.01035764872199
318 => 0.010575135864363
319 => 0.010920557787581
320 => 0.010921668375546
321 => 0.010881045827438
322 => 0.010864423955978
323 => 0.010906105155519
324 => 0.010928715496417
325 => 0.011063504852707
326 => 0.011208139202251
327 => 0.011883084602662
328 => 0.011693562635064
329 => 0.01229241434699
330 => 0.012766028299961
331 => 0.012908044415829
401 => 0.012777396271605
402 => 0.01233045602769
403 => 0.012308527007082
404 => 0.012976444424796
405 => 0.012787727161736
406 => 0.012765279843789
407 => 0.012526478306168
408 => 0.012667639591048
409 => 0.012636765547333
410 => 0.01258802935892
411 => 0.01285735525709
412 => 0.013361509295575
413 => 0.013282932160751
414 => 0.013224277974693
415 => 0.012967272405363
416 => 0.013122047162371
417 => 0.013066934835916
418 => 0.013303732365516
419 => 0.013163458754688
420 => 0.01278629744286
421 => 0.012846361624909
422 => 0.012837283044624
423 => 0.01302411958356
424 => 0.012968035892139
425 => 0.012826331803763
426 => 0.01335978615188
427 => 0.013325146593743
428 => 0.013374257567476
429 => 0.013395877736921
430 => 0.0137205819981
501 => 0.013853602944528
502 => 0.013883801028226
503 => 0.014010160639123
504 => 0.013880657085996
505 => 0.014398763632973
506 => 0.014743274254357
507 => 0.015143441069449
508 => 0.015728192340999
509 => 0.015948064228353
510 => 0.0159083463399
511 => 0.016351698080315
512 => 0.017148391302685
513 => 0.016069380818472
514 => 0.01720558147839
515 => 0.016845873467527
516 => 0.015993012244642
517 => 0.015938098036462
518 => 0.016515665558522
519 => 0.017796654733637
520 => 0.01747578147413
521 => 0.01779717956734
522 => 0.017422251619546
523 => 0.017403633286797
524 => 0.017778970153771
525 => 0.018655965202003
526 => 0.018239337728256
527 => 0.017642000083391
528 => 0.018083064904756
529 => 0.017700973737868
530 => 0.016840015398284
531 => 0.017475536108396
601 => 0.017050581508132
602 => 0.017174605852318
603 => 0.018067797214846
604 => 0.017960326067016
605 => 0.018099403683869
606 => 0.017853935330418
607 => 0.017624629181488
608 => 0.017196612226013
609 => 0.017069897506478
610 => 0.017104916896239
611 => 0.017069880152607
612 => 0.016830408599698
613 => 0.016778694740647
614 => 0.016692502709927
615 => 0.016719217224339
616 => 0.016557150990217
617 => 0.016863003458598
618 => 0.016919772371892
619 => 0.017142346292401
620 => 0.017165454655189
621 => 0.017785319855664
622 => 0.017443908519654
623 => 0.017672956719886
624 => 0.017652468492972
625 => 0.016011496333444
626 => 0.016237607818607
627 => 0.016589366331828
628 => 0.016430899598419
629 => 0.016206864712884
630 => 0.016025944530824
701 => 0.015751831954965
702 => 0.016137640141621
703 => 0.016644936880948
704 => 0.017178320537665
705 => 0.01781914605253
706 => 0.017676121257643
707 => 0.017166340750414
708 => 0.017189209131573
709 => 0.017330572465524
710 => 0.017147494103844
711 => 0.017093500720871
712 => 0.017323154603829
713 => 0.017324736103905
714 => 0.017114082323033
715 => 0.016879979194828
716 => 0.016878998294173
717 => 0.016837341903677
718 => 0.017429662198875
719 => 0.017755378470897
720 => 0.017792721316566
721 => 0.017752864999851
722 => 0.017768204114314
723 => 0.017578676992293
724 => 0.018011879790711
725 => 0.018409429517856
726 => 0.01830287769857
727 => 0.018143141374227
728 => 0.018015903697943
729 => 0.018272904545709
730 => 0.018261460702515
731 => 0.018405957267804
801 => 0.01839940206895
802 => 0.018350813308834
803 => 0.018302879433828
804 => 0.018492931830029
805 => 0.018438199792071
806 => 0.018383382740141
807 => 0.018273438750424
808 => 0.018288381964603
809 => 0.018128673220988
810 => 0.018054784648417
811 => 0.016943677800422
812 => 0.016646753744174
813 => 0.016740172096716
814 => 0.01677092784398
815 => 0.016641706114182
816 => 0.016826976880373
817 => 0.016798102627712
818 => 0.016910435453942
819 => 0.016840254781038
820 => 0.016843135020334
821 => 0.017049521415247
822 => 0.017109436263721
823 => 0.017078963088215
824 => 0.01710030545578
825 => 0.017592131308264
826 => 0.017522209399747
827 => 0.017485064779442
828 => 0.017495354093117
829 => 0.017621026143292
830 => 0.017656207455901
831 => 0.017507141762228
901 => 0.017577442005103
902 => 0.017876771516835
903 => 0.017981519905358
904 => 0.018315826479444
905 => 0.018173807104947
906 => 0.018434489813291
907 => 0.019235739585458
908 => 0.019875833345733
909 => 0.019287176670791
910 => 0.020462627346086
911 => 0.021377884305187
912 => 0.021342755218657
913 => 0.021183158997563
914 => 0.020141163282991
915 => 0.01918230329116
916 => 0.019984430389672
917 => 0.019986475176605
918 => 0.019917571747472
919 => 0.019489618466842
920 => 0.019902679900948
921 => 0.019935467217569
922 => 0.019917115039113
923 => 0.019589004262243
924 => 0.019088039750972
925 => 0.019185927017334
926 => 0.019346268356483
927 => 0.019042708750767
928 => 0.018945703063416
929 => 0.019126055092289
930 => 0.019707186907156
1001 => 0.019597327303823
1002 => 0.019594458425602
1003 => 0.020064484396384
1004 => 0.019728047239257
1005 => 0.019187161689242
1006 => 0.019050580954459
1007 => 0.018565811357787
1008 => 0.018900643444898
1009 => 0.018912693455623
1010 => 0.018729309343414
1011 => 0.01920204229926
1012 => 0.019197685981849
1013 => 0.01964647556641
1014 => 0.020504392694421
1015 => 0.02025066438413
1016 => 0.019955605964824
1017 => 0.019987686996085
1018 => 0.020339536726288
1019 => 0.020126800347459
1020 => 0.020203301832537
1021 => 0.020339420932128
1022 => 0.020421544964558
1023 => 0.019975870611635
1024 => 0.019871962600901
1025 => 0.019659403277693
1026 => 0.019603950517876
1027 => 0.019777075651433
1028 => 0.019731463295342
1029 => 0.018911680698882
1030 => 0.018826008856325
1031 => 0.018828636289425
1101 => 0.01861321036784
1102 => 0.018284634129278
1103 => 0.019148112865951
1104 => 0.019078763439019
1105 => 0.019002207038905
1106 => 0.019011584761094
1107 => 0.019386391614674
1108 => 0.019168984711398
1109 => 0.019746996596048
1110 => 0.019628174729192
1111 => 0.019506305529807
1112 => 0.019489459494225
1113 => 0.019442550249853
1114 => 0.019281680996741
1115 => 0.019087421706865
1116 => 0.018959154897237
1117 => 0.017488818215565
1118 => 0.017761704151128
1119 => 0.018075634545658
1120 => 0.018184002059853
1121 => 0.017998631928019
1122 => 0.01928900053939
1123 => 0.019524763318989
1124 => 0.018810622481158
1125 => 0.018677035888579
1126 => 0.01929775845416
1127 => 0.018923386866867
1128 => 0.019091966369702
1129 => 0.018727589692631
1130 => 0.019467974969324
1201 => 0.019462334474
1202 => 0.019174307879006
1203 => 0.019417745984774
1204 => 0.019375442623179
1205 => 0.01905026130681
1206 => 0.019478283797068
1207 => 0.019478496090883
1208 => 0.01920127675544
1209 => 0.018877545262758
1210 => 0.018819669718064
1211 => 0.018776068269621
1212 => 0.019081243086202
1213 => 0.019354861872492
1214 => 0.019863998597927
1215 => 0.019992007667492
1216 => 0.020491635588049
1217 => 0.020194131487799
1218 => 0.020326011202117
1219 => 0.020469185287534
1220 => 0.020537828209135
1221 => 0.020425978251968
1222 => 0.02120210606765
1223 => 0.021267635035235
1224 => 0.021289606331243
1225 => 0.021027900398629
1226 => 0.021260356519827
1227 => 0.021151597998856
1228 => 0.021434557456434
1229 => 0.02147892911239
1230 => 0.021441347898363
1231 => 0.021455432162322
]
'min_raw' => 0.0096213244738675
'max_raw' => 0.02147892911239
'avg_raw' => 0.015550126793129
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009621'
'max' => '$0.021478'
'avg' => '$0.01555'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0014835887123439
'max_diff' => -0.0020496581627939
'year' => 2031
]
6 => [
'items' => [
101 => 0.020793143989967
102 => 0.020758800854382
103 => 0.020290529763801
104 => 0.020481353694498
105 => 0.02012461750249
106 => 0.020237742223766
107 => 0.020287606523012
108 => 0.02026156024286
109 => 0.02049214259323
110 => 0.020296100490553
111 => 0.019778713149284
112 => 0.01926118484618
113 => 0.019254687699904
114 => 0.01911843163283
115 => 0.019019943452879
116 => 0.019038915770394
117 => 0.019105776691913
118 => 0.019016057374574
119 => 0.019035203539813
120 => 0.019353157453014
121 => 0.019416920842763
122 => 0.019200227930431
123 => 0.018330174618783
124 => 0.018116661353742
125 => 0.018270130454502
126 => 0.018196782109014
127 => 0.014686223362588
128 => 0.015510977067207
129 => 0.015020936421912
130 => 0.01524676969695
131 => 0.014746565093514
201 => 0.014985288948243
202 => 0.014941205369074
203 => 0.016267384919865
204 => 0.016246678450279
205 => 0.016256589541508
206 => 0.015783507333962
207 => 0.016537140136164
208 => 0.016908406754289
209 => 0.016839695184215
210 => 0.01685698840607
211 => 0.016559833559418
212 => 0.016259466649972
213 => 0.01592631352126
214 => 0.016545270855435
215 => 0.016476453365829
216 => 0.016634295927234
217 => 0.017035734002431
218 => 0.017094847283918
219 => 0.017174296133705
220 => 0.017145819376611
221 => 0.017824251261616
222 => 0.017742088683904
223 => 0.017940076856403
224 => 0.017532800164174
225 => 0.017071927927859
226 => 0.017159524672934
227 => 0.017151088401975
228 => 0.017043684989963
229 => 0.016946725991929
301 => 0.016785316578231
302 => 0.01729603984727
303 => 0.017275305415237
304 => 0.017610971768707
305 => 0.017551639480242
306 => 0.0171554039368
307 => 0.017169555566751
308 => 0.017264732079211
309 => 0.017594139075541
310 => 0.01769192949979
311 => 0.017646629079003
312 => 0.01775385181489
313 => 0.017838596293512
314 => 0.017764494416656
315 => 0.018813620725906
316 => 0.018377950337474
317 => 0.018590293053421
318 => 0.018640935539979
319 => 0.018511215875559
320 => 0.018539347425858
321 => 0.018581959059174
322 => 0.018840688552452
323 => 0.019519669606797
324 => 0.019820385693786
325 => 0.020725104878563
326 => 0.019795415408932
327 => 0.019740251483242
328 => 0.019903218728322
329 => 0.020434384664038
330 => 0.020864844765056
331 => 0.021007653214403
401 => 0.021026527708494
402 => 0.021294445853195
403 => 0.02144801153736
404 => 0.021261913543481
405 => 0.021104214978942
406 => 0.020539358295027
407 => 0.020604741994244
408 => 0.021055170843953
409 => 0.021691428124294
410 => 0.022237403062114
411 => 0.022046221668037
412 => 0.023504800751813
413 => 0.023649412910208
414 => 0.023629432185789
415 => 0.023958880203787
416 => 0.023304992978982
417 => 0.02302544352191
418 => 0.02113831119855
419 => 0.021668518406287
420 => 0.02243920572071
421 => 0.022337202364717
422 => 0.021777508636452
423 => 0.022236978484232
424 => 0.022085063383605
425 => 0.021965241640778
426 => 0.022514168273259
427 => 0.021910600892183
428 => 0.022433184674379
429 => 0.021762965568275
430 => 0.022047094968541
501 => 0.021885809379158
502 => 0.021990180921907
503 => 0.021380027015654
504 => 0.021709251252819
505 => 0.021366330204999
506 => 0.021366167615773
507 => 0.021358597614636
508 => 0.021762042706652
509 => 0.021775199036618
510 => 0.021477052504047
511 => 0.021434084930779
512 => 0.021592958569366
513 => 0.021406959147652
514 => 0.021493987106406
515 => 0.021409595135866
516 => 0.021390596725731
517 => 0.021239214161459
518 => 0.021173994390421
519 => 0.021199568743151
520 => 0.021112270292799
521 => 0.021059669818739
522 => 0.02134813405641
523 => 0.021194019250837
524 => 0.021324513752139
525 => 0.021175798798186
526 => 0.020660287975765
527 => 0.020363812250362
528 => 0.019390060094687
529 => 0.019666214998101
530 => 0.019849305984767
531 => 0.019788794414766
601 => 0.019918796681997
602 => 0.01992677776537
603 => 0.019884512703077
604 => 0.019835575175432
605 => 0.019811755093389
606 => 0.019989290469509
607 => 0.020092355730913
608 => 0.01986768161472
609 => 0.019815043612821
610 => 0.02004220154889
611 => 0.020180767758667
612 => 0.021203862798033
613 => 0.021128068612963
614 => 0.02131829714363
615 => 0.021296880330372
616 => 0.021496270136292
617 => 0.021822188200554
618 => 0.021159505647787
619 => 0.021274524425108
620 => 0.021246324477081
621 => 0.021554204115225
622 => 0.021555165281849
623 => 0.021370576059053
624 => 0.021470644871349
625 => 0.02141478920557
626 => 0.021515727942979
627 => 0.021127056335412
628 => 0.021600416398921
629 => 0.021868781052282
630 => 0.021872507295754
701 => 0.021999710011574
702 => 0.022128955337931
703 => 0.022377030486978
704 => 0.022122036656667
705 => 0.021663327579087
706 => 0.021696444892867
707 => 0.021427503928517
708 => 0.021432024874716
709 => 0.021407891709593
710 => 0.021480317154786
711 => 0.021142949647795
712 => 0.021222129127366
713 => 0.021111277392293
714 => 0.021274283455085
715 => 0.021098915877388
716 => 0.021246310878212
717 => 0.021309921674346
718 => 0.021544646881522
719 => 0.021064246773439
720 => 0.020084678432831
721 => 0.020290595574145
722 => 0.019986027947699
723 => 0.020014216841097
724 => 0.020071162891991
725 => 0.019886582109456
726 => 0.019921794305955
727 => 0.019920536278512
728 => 0.019909695277646
729 => 0.019861678687261
730 => 0.019792045131409
731 => 0.020069443785844
801 => 0.0201165792227
802 => 0.020221355459986
803 => 0.020533098471747
804 => 0.020501947993466
805 => 0.020552755715963
806 => 0.020441842743024
807 => 0.020019361775806
808 => 0.020042304524943
809 => 0.01975620807557
810 => 0.020214039330543
811 => 0.020105618846288
812 => 0.020035719454772
813 => 0.020016646758183
814 => 0.020329162520573
815 => 0.020422672134764
816 => 0.020364403218397
817 => 0.020244891970952
818 => 0.020474388896375
819 => 0.02053579259192
820 => 0.020549538614872
821 => 0.020956163165051
822 => 0.020572264410192
823 => 0.020664672656112
824 => 0.021385615411684
825 => 0.02073181981568
826 => 0.021078149924265
827 => 0.021061198867664
828 => 0.021238369632044
829 => 0.021046665693758
830 => 0.021049042093828
831 => 0.021206357730011
901 => 0.020985436291017
902 => 0.020930733035897
903 => 0.020855160880741
904 => 0.021020169916772
905 => 0.021119085371156
906 => 0.021916271288097
907 => 0.022431289746535
908 => 0.022408931436989
909 => 0.022613244533232
910 => 0.022521199612081
911 => 0.022223962281462
912 => 0.022731310160598
913 => 0.022570764063303
914 => 0.0225839992885
915 => 0.022583506672757
916 => 0.022690255792276
917 => 0.022614614257684
918 => 0.022465517028559
919 => 0.022564494727328
920 => 0.022858423107498
921 => 0.02377078581837
922 => 0.024281356078572
923 => 0.023740048847615
924 => 0.024113435327136
925 => 0.023889536490629
926 => 0.023848847411623
927 => 0.024083361713806
928 => 0.024318286502231
929 => 0.024303322808816
930 => 0.024132779475941
1001 => 0.024036443874577
1002 => 0.024765929322901
1003 => 0.025303401774767
1004 => 0.02526674975681
1005 => 0.025428519844194
1006 => 0.025903481824113
1007 => 0.02594690639514
1008 => 0.025941435897293
1009 => 0.025833803567118
1010 => 0.026301465317956
1011 => 0.02669159697823
1012 => 0.02580888979248
1013 => 0.026145013133328
1014 => 0.026295909730252
1015 => 0.02651747070354
1016 => 0.026891281203407
1017 => 0.027297338554601
1018 => 0.027354759516252
1019 => 0.027314016596115
1020 => 0.027046210857595
1021 => 0.027490523656543
1022 => 0.02775079167375
1023 => 0.027905775321869
1024 => 0.028298788066678
1025 => 0.026296841616263
1026 => 0.024879764415465
1027 => 0.024658467347718
1028 => 0.02510848363706
1029 => 0.025227149343747
1030 => 0.025179315346175
1031 => 0.023584266121655
1101 => 0.024650069743654
1102 => 0.025796784825611
1103 => 0.025840834822053
1104 => 0.026414904368763
1105 => 0.026601844945077
1106 => 0.027064046175194
1107 => 0.027035135362406
1108 => 0.027147674006712
1109 => 0.027121803321284
1110 => 0.027977933772123
1111 => 0.028922372796001
1112 => 0.028889669875737
1113 => 0.028753895591959
1114 => 0.028955543556324
1115 => 0.029930305841203
1116 => 0.029840565350259
1117 => 0.029927740593135
1118 => 0.031077040262202
1119 => 0.032571293317961
1120 => 0.031877062753007
1121 => 0.033383343319493
1122 => 0.034331467091595
1123 => 0.035971149117616
1124 => 0.035765852852354
1125 => 0.036404169032542
1126 => 0.035398329690911
1127 => 0.033088719248858
1128 => 0.03272321455557
1129 => 0.033454964207586
1130 => 0.035253899323982
1201 => 0.033398309338904
1202 => 0.03377369277616
1203 => 0.033665582320977
1204 => 0.03365982157426
1205 => 0.033879685845792
1206 => 0.033560761252586
1207 => 0.032261405086424
1208 => 0.032856892360222
1209 => 0.032626946126161
1210 => 0.032882088616479
1211 => 0.034258987407958
1212 => 0.033650227631078
1213 => 0.033008948657763
1214 => 0.033813254801496
1215 => 0.034837412912045
1216 => 0.034773322938076
1217 => 0.034648961601045
1218 => 0.035349979946541
1219 => 0.036507856874197
1220 => 0.036820826355016
1221 => 0.037051854027377
1222 => 0.037083708840151
1223 => 0.03741183320938
1224 => 0.035647425778047
1225 => 0.038447585684769
1226 => 0.038931095947804
1227 => 0.0388402160578
1228 => 0.039377617365941
1229 => 0.039219500268531
1230 => 0.038990413402196
1231 => 0.039842308784135
]
'min_raw' => 0.014686223362588
'max_raw' => 0.039842308784135
'avg_raw' => 0.027264266073362
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.014686'
'max' => '$0.039842'
'avg' => '$0.027264'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0050648988887208
'max_diff' => 0.018363379671745
'year' => 2032
]
7 => [
'items' => [
101 => 0.038865679473154
102 => 0.037479477120428
103 => 0.036718979093748
104 => 0.037720464242906
105 => 0.038332036276481
106 => 0.038736246487387
107 => 0.038858560252977
108 => 0.035784391704318
109 => 0.034127585357795
110 => 0.035189579230593
111 => 0.036485285050308
112 => 0.035640228066797
113 => 0.035673352700646
114 => 0.034468523519228
115 => 0.03659188569866
116 => 0.036282529689404
117 => 0.037887469212667
118 => 0.037504437514996
119 => 0.038813203392824
120 => 0.038468561475671
121 => 0.039899150805103
122 => 0.040469851620273
123 => 0.041428147111434
124 => 0.042133073175695
125 => 0.042547019243717
126 => 0.042522167474466
127 => 0.044162428023079
128 => 0.0431952236839
129 => 0.041980187081332
130 => 0.041958210902583
131 => 0.042587495576255
201 => 0.043906303616452
202 => 0.044248251353399
203 => 0.044439353488983
204 => 0.044146673916022
205 => 0.043096842926003
206 => 0.042643531227277
207 => 0.043029765928296
208 => 0.042557434078476
209 => 0.043372811364175
210 => 0.044492498532631
211 => 0.044261287560068
212 => 0.04503419117626
213 => 0.045834065107188
214 => 0.046977920753
215 => 0.047276966975668
216 => 0.047771279010027
217 => 0.048280088466428
218 => 0.048443504351024
219 => 0.04875551597969
220 => 0.048753871524394
221 => 0.049694139568183
222 => 0.05073128433816
223 => 0.05112278247887
224 => 0.052023010866098
225 => 0.050481401300735
226 => 0.051650729864797
227 => 0.052705493499774
228 => 0.051447960811354
301 => 0.053181176654803
302 => 0.053248473498452
303 => 0.054264575939068
304 => 0.05323456145383
305 => 0.052622942140419
306 => 0.054388664181161
307 => 0.055243041456953
308 => 0.054985696068331
309 => 0.053027284954214
310 => 0.051887405685593
311 => 0.048904121773323
312 => 0.052437950435681
313 => 0.05415917529392
314 => 0.053022827397648
315 => 0.053595935179118
316 => 0.056722625403997
317 => 0.057913066603431
318 => 0.057665463155761
319 => 0.057707304062517
320 => 0.058349644525695
321 => 0.061198135882782
322 => 0.059491253834103
323 => 0.060796101204668
324 => 0.061488187545039
325 => 0.062131035908366
326 => 0.060552403502346
327 => 0.058498625936831
328 => 0.057848108370115
329 => 0.052909839994333
330 => 0.052652781679561
331 => 0.052508487057815
401 => 0.051598729878588
402 => 0.05088390993918
403 => 0.0503154585838
404 => 0.048823672473337
405 => 0.049327106493778
406 => 0.04694951079366
407 => 0.048470612265777
408 => 0.044675912119333
409 => 0.047836251161415
410 => 0.046116222303794
411 => 0.047271175421659
412 => 0.047267145899034
413 => 0.045140511030825
414 => 0.043913912420579
415 => 0.04469554879496
416 => 0.045533525034668
417 => 0.04566948386027
418 => 0.04675594192847
419 => 0.047059149021967
420 => 0.046140417373287
421 => 0.044597275393325
422 => 0.044955712079949
423 => 0.043906648712565
424 => 0.042068205512864
425 => 0.043388607515028
426 => 0.043839450812545
427 => 0.044038568896704
428 => 0.042230671156427
429 => 0.041662590435062
430 => 0.041360149025666
501 => 0.044363898497663
502 => 0.04452845067432
503 => 0.043686578473209
504 => 0.047491920651826
505 => 0.046630654518831
506 => 0.047592899804712
507 => 0.044923187707593
508 => 0.045025174304947
509 => 0.043761289814137
510 => 0.044468980676199
511 => 0.043968807584835
512 => 0.044411806248081
513 => 0.044677337820279
514 => 0.045941014920081
515 => 0.047850680324023
516 => 0.045752263701288
517 => 0.044837953528884
518 => 0.045405186417568
519 => 0.04691580234921
520 => 0.049204462812656
521 => 0.047849529754712
522 => 0.048450826037572
523 => 0.048582182525567
524 => 0.047583105050987
525 => 0.049241300224213
526 => 0.050129940488697
527 => 0.051041501521866
528 => 0.051832984425606
529 => 0.050677403999562
530 => 0.051914040701376
531 => 0.050917529815478
601 => 0.050023556533425
602 => 0.050024912321877
603 => 0.04946410982318
604 => 0.048377484316291
605 => 0.048177093900995
606 => 0.049219550147887
607 => 0.050055501336921
608 => 0.050124354280786
609 => 0.050587179811758
610 => 0.050861075193505
611 => 0.053545622277342
612 => 0.0546253693222
613 => 0.055945663570086
614 => 0.056459992587344
615 => 0.058007938532134
616 => 0.056757846463693
617 => 0.056487381181239
618 => 0.052732570648439
619 => 0.053347420662836
620 => 0.054331854860089
621 => 0.052748803605762
622 => 0.053752885258462
623 => 0.053951112246062
624 => 0.052695012129902
625 => 0.053365949474825
626 => 0.051584138805767
627 => 0.047889518927481
628 => 0.0492454133923
629 => 0.050243808107549
630 => 0.048818975747708
701 => 0.051372932604095
702 => 0.049880963732965
703 => 0.049408081227952
704 => 0.047563197981113
705 => 0.048433911857553
706 => 0.049611564842859
707 => 0.048883912214794
708 => 0.050393900675621
709 => 0.052532447035365
710 => 0.054056502523956
711 => 0.054173500580098
712 => 0.053193635004721
713 => 0.054763875842681
714 => 0.054775313332914
715 => 0.053004075253074
716 => 0.051919201791467
717 => 0.051672716258396
718 => 0.052288485446341
719 => 0.05303614291777
720 => 0.054214990366331
721 => 0.054927343190255
722 => 0.056784781552305
723 => 0.057287351116145
724 => 0.057839522697233
725 => 0.058577394212977
726 => 0.059463398154001
727 => 0.057524871971273
728 => 0.057601893230378
729 => 0.055796764489744
730 => 0.05386772554873
731 => 0.055331625646861
801 => 0.057245480290699
802 => 0.056806439920781
803 => 0.056757038910384
804 => 0.056840117707174
805 => 0.056509095605974
806 => 0.055011894910498
807 => 0.054260010094202
808 => 0.055230133333498
809 => 0.055745710659966
810 => 0.05654532613025
811 => 0.056446756645702
812 => 0.058506480224721
813 => 0.05930682652472
814 => 0.059102063692431
815 => 0.059139744981465
816 => 0.06058873372809
817 => 0.062200307221602
818 => 0.063709758464129
819 => 0.065245237100466
820 => 0.06339415767361
821 => 0.06245429369936
822 => 0.063423993413198
823 => 0.062909457095524
824 => 0.065866135398264
825 => 0.066070849388932
826 => 0.069027313890179
827 => 0.071833350751106
828 => 0.07007092927413
829 => 0.071732813345711
830 => 0.073530276464523
831 => 0.076997874448592
901 => 0.075830109439126
902 => 0.074935619743085
903 => 0.074090331302469
904 => 0.07584924236163
905 => 0.078112053339949
906 => 0.078599441151745
907 => 0.079389195603328
908 => 0.078558865364068
909 => 0.079558906679381
910 => 0.083089491962856
911 => 0.082135496653923
912 => 0.080780669952839
913 => 0.083567727953127
914 => 0.084576353409018
915 => 0.091655415079712
916 => 0.10059302286042
917 => 0.096892794551707
918 => 0.094595943434871
919 => 0.095135757929365
920 => 0.098399469733761
921 => 0.099447670380298
922 => 0.096598299686579
923 => 0.097604745586021
924 => 0.10315036144352
925 => 0.10612540642642
926 => 0.1020848957378
927 => 0.090937286996888
928 => 0.080658682631886
929 => 0.083385031361071
930 => 0.083075948023633
1001 => 0.089034020432852
1002 => 0.082112744181312
1003 => 0.082229280722785
1004 => 0.088310559759719
1005 => 0.086688178772182
1006 => 0.084060129351229
1007 => 0.080677870301033
1008 => 0.074425451625649
1009 => 0.068887510043269
1010 => 0.079748688798095
1011 => 0.079280335020415
1012 => 0.078602089344193
1013 => 0.080111451702777
1014 => 0.087440486876083
1015 => 0.087271528893566
1016 => 0.086196704411917
1017 => 0.08701194930818
1018 => 0.083917212979263
1019 => 0.084714796997061
1020 => 0.08065705444844
1021 => 0.082491323546714
1022 => 0.084054490737488
1023 => 0.084368319694122
1024 => 0.085075392357921
1025 => 0.079033533861738
1026 => 0.081746150946878
1027 => 0.08333955934655
1028 => 0.07614048222814
1029 => 0.083197256738717
1030 => 0.078928358547241
1031 => 0.077479430384355
1101 => 0.079430221273911
1102 => 0.078669996167045
1103 => 0.078016399262077
1104 => 0.077651680958885
1105 => 0.079084126487241
1106 => 0.079017301191201
1107 => 0.076673542281114
1108 => 0.07361620432674
1109 => 0.074642347297925
1110 => 0.074269539936352
1111 => 0.072918437964904
1112 => 0.073828917560986
1113 => 0.06981962620302
1114 => 0.062921848806472
1115 => 0.067478731839267
1116 => 0.06730329679944
1117 => 0.067214834497013
1118 => 0.070639206153163
1119 => 0.07031003183212
1120 => 0.069712577216142
1121 => 0.072907465242352
1122 => 0.071741288135478
1123 => 0.075335171192982
1124 => 0.077702335012437
1125 => 0.077101945698096
1126 => 0.079328274711789
1127 => 0.074665987559464
1128 => 0.076214612332973
1129 => 0.076533781752491
1130 => 0.072868040820038
1201 => 0.07036388882201
1202 => 0.070196890433164
1203 => 0.065855035961985
1204 => 0.068174419574264
1205 => 0.070215381170454
1206 => 0.069237918950897
1207 => 0.068928483613039
1208 => 0.070509321645822
1209 => 0.070632166299931
1210 => 0.067831295167744
1211 => 0.068413684968179
1212 => 0.070842347250242
1213 => 0.068352488909977
1214 => 0.063515100870892
1215 => 0.062315361755077
1216 => 0.062155294441448
1217 => 0.058901506806849
1218 => 0.062395534059572
1219 => 0.060870297529649
1220 => 0.065688501452535
1221 => 0.062936369212329
1222 => 0.06281773029207
1223 => 0.062638390163554
1224 => 0.05983772073418
1225 => 0.060450889347385
1226 => 0.062489155205897
1227 => 0.063216431426922
1228 => 0.063140570558671
1229 => 0.062479166591218
1230 => 0.062781953940582
1231 => 0.061806570390176
]
'min_raw' => 0.034127585357795
'max_raw' => 0.10612540642642
'avg_raw' => 0.070126495892105
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034127'
'max' => '$0.106125'
'avg' => '$0.070126'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019441361995206
'max_diff' => 0.066283097642281
'year' => 2033
]
8 => [
'items' => [
101 => 0.061462142157675
102 => 0.060375031913451
103 => 0.058777280176313
104 => 0.058999457354943
105 => 0.055833893089189
106 => 0.054109125667994
107 => 0.053631732777877
108 => 0.05299334305359
109 => 0.053703840595926
110 => 0.055824925443356
111 => 0.053266447104102
112 => 0.048880115447838
113 => 0.049143741454325
114 => 0.049736030819637
115 => 0.048632303505764
116 => 0.047587718231995
117 => 0.048495900377655
118 => 0.046637353830908
119 => 0.049960627290501
120 => 0.049870742056785
121 => 0.051109452892669
122 => 0.051884044199253
123 => 0.050098862014491
124 => 0.049649893522669
125 => 0.049905646380091
126 => 0.045678621343438
127 => 0.050764014766309
128 => 0.050807993459806
129 => 0.050431421185849
130 => 0.053139236189621
131 => 0.058853570436258
201 => 0.056703608034111
202 => 0.055871077609042
203 => 0.054288436662409
204 => 0.056397211755876
205 => 0.056235290730714
206 => 0.055503022448205
207 => 0.055060144306127
208 => 0.05587616086229
209 => 0.054959030824364
210 => 0.054794289068504
211 => 0.053796133268792
212 => 0.053439837061491
213 => 0.053176049534165
214 => 0.052885645385807
215 => 0.05352620457288
216 => 0.052074613182393
217 => 0.050324136266723
218 => 0.050178603051608
219 => 0.050580433053952
220 => 0.05040265319064
221 => 0.050177751910019
222 => 0.049748354117095
223 => 0.049620960964566
224 => 0.050034926907913
225 => 0.049567583493588
226 => 0.050257174158937
227 => 0.050069643654754
228 => 0.049022113502671
301 => 0.047716503087839
302 => 0.047704880416537
303 => 0.047423588794292
304 => 0.047065321620884
305 => 0.046965659889285
306 => 0.048419415810474
307 => 0.051428647060083
308 => 0.050837862960983
309 => 0.051264765018572
310 => 0.053364700621413
311 => 0.05403220700229
312 => 0.053558426783899
313 => 0.052909887199474
314 => 0.052938419649795
315 => 0.055154675736057
316 => 0.055292900909642
317 => 0.055642151330161
318 => 0.056091036818685
319 => 0.05363487392363
320 => 0.052822734598317
321 => 0.052437897930209
322 => 0.05125274994297
323 => 0.052530830440298
324 => 0.051786147667369
325 => 0.051886630815423
326 => 0.051821191033432
327 => 0.051856925579418
328 => 0.04995969836784
329 => 0.050650948248412
330 => 0.049501611251842
331 => 0.047962778032567
401 => 0.047957619324031
402 => 0.048334246574385
403 => 0.048110213948449
404 => 0.047507347912459
405 => 0.047592982187424
406 => 0.046842735830114
407 => 0.047684075678851
408 => 0.047708202295254
409 => 0.047384240625399
410 => 0.048680440744904
411 => 0.049211494991464
412 => 0.048998256480434
413 => 0.04919653360908
414 => 0.050862412707531
415 => 0.05113402368798
416 => 0.051254655343881
417 => 0.051093024905605
418 => 0.049226982820902
419 => 0.049309749722382
420 => 0.048702461116022
421 => 0.048189366238145
422 => 0.048209887342432
423 => 0.048473684807326
424 => 0.049625703808036
425 => 0.0520500598798
426 => 0.052142062420542
427 => 0.052253572183825
428 => 0.051800005936236
429 => 0.051663206015919
430 => 0.051843680421873
501 => 0.052754141095841
502 => 0.055096093136949
503 => 0.054268290871904
504 => 0.053595274744912
505 => 0.054185691332129
506 => 0.054094801326365
507 => 0.05332759820925
508 => 0.053306065373002
509 => 0.051833557301583
510 => 0.051289204594966
511 => 0.050834302729223
512 => 0.050337561767346
513 => 0.050043077074237
514 => 0.050495539403751
515 => 0.050599022891888
516 => 0.049609706100717
517 => 0.049474865877731
518 => 0.050282763325288
519 => 0.049927237780071
520 => 0.050292904619936
521 => 0.050377742463417
522 => 0.050364081616635
523 => 0.04999287211558
524 => 0.050229469981926
525 => 0.049669845494799
526 => 0.049061337917928
527 => 0.048673147995246
528 => 0.048334400801785
529 => 0.04852235743282
530 => 0.047852326362706
531 => 0.047637969938316
601 => 0.050149315948428
602 => 0.052004474247618
603 => 0.051977499511224
604 => 0.051813297740768
605 => 0.051569327216982
606 => 0.052736293132428
607 => 0.052329745541706
608 => 0.052625542882144
609 => 0.052700835719861
610 => 0.052928724462877
611 => 0.053010175100806
612 => 0.052763974701879
613 => 0.051937696092234
614 => 0.049878688357211
615 => 0.048920214698373
616 => 0.048603902426315
617 => 0.048615399776641
618 => 0.048298251528197
619 => 0.048391665900951
620 => 0.048265765821568
621 => 0.048027341529715
622 => 0.04850763540466
623 => 0.0485629847995
624 => 0.048450878470004
625 => 0.048477283568909
626 => 0.047549091041917
627 => 0.047619659503816
628 => 0.047226725340556
629 => 0.047153054921837
630 => 0.046159751573808
701 => 0.044399970711151
702 => 0.045375060135125
703 => 0.044197289229286
704 => 0.043751249541104
705 => 0.045862732051556
706 => 0.045650797770915
707 => 0.045288058408075
708 => 0.044751491288928
709 => 0.044552473325047
710 => 0.043343303177935
711 => 0.043271858954972
712 => 0.043871156330221
713 => 0.043594601212107
714 => 0.043206213086662
715 => 0.041799510666572
716 => 0.040217911403226
717 => 0.040265649943408
718 => 0.040768727242378
719 => 0.04223149233835
720 => 0.041659964709261
721 => 0.041245314856833
722 => 0.041167663403802
723 => 0.042139633912813
724 => 0.043515175817182
725 => 0.044160549302696
726 => 0.043521003778836
727 => 0.042786328316601
728 => 0.042831044607829
729 => 0.043128522060117
730 => 0.043159782734248
731 => 0.042681584534191
801 => 0.042816194526445
802 => 0.042611709639215
803 => 0.041356786263737
804 => 0.04133408867928
805 => 0.041026110244564
806 => 0.04101678477996
807 => 0.040492836633688
808 => 0.040419532666142
809 => 0.03937920182034
810 => 0.040063950733459
811 => 0.03960465711347
812 => 0.038912393291735
813 => 0.038793046747938
814 => 0.038789459046717
815 => 0.03950025920428
816 => 0.04005564461977
817 => 0.039612646722631
818 => 0.039511784688606
819 => 0.040588727335395
820 => 0.040451676567041
821 => 0.040332991485529
822 => 0.043392011126721
823 => 0.040970558382438
824 => 0.03991466677424
825 => 0.038607800400717
826 => 0.039033322681728
827 => 0.03912298647856
828 => 0.035980208430607
829 => 0.03470518376796
830 => 0.03426764335203
831 => 0.034015832656749
901 => 0.034130585952629
902 => 0.03298291421077
903 => 0.033754168602037
904 => 0.032760381883865
905 => 0.032593770306502
906 => 0.034370784065145
907 => 0.034618045148496
908 => 0.033563152548922
909 => 0.034240564369447
910 => 0.033994925426596
911 => 0.032777417504807
912 => 0.032730917657577
913 => 0.032120014979896
914 => 0.031164070583394
915 => 0.03072717834278
916 => 0.030499641070596
917 => 0.030593527383712
918 => 0.030546055590832
919 => 0.030236270031131
920 => 0.030563812136492
921 => 0.029727077407037
922 => 0.029393882895738
923 => 0.029243386665038
924 => 0.028500736431992
925 => 0.029682623210826
926 => 0.029915469795273
927 => 0.030148775159422
928 => 0.03217953907
929 => 0.032078087843907
930 => 0.032995157519039
1001 => 0.032959521877846
1002 => 0.032697958750955
1003 => 0.031594466943646
1004 => 0.032034299110189
1005 => 0.030680564066664
1006 => 0.031694874406308
1007 => 0.031231985525907
1008 => 0.03153837121022
1009 => 0.030987462124142
1010 => 0.031292357958856
1011 => 0.029970686358484
1012 => 0.028736528014479
1013 => 0.029233189359435
1014 => 0.029773117041516
1015 => 0.030943817827283
1016 => 0.030246558097352
1017 => 0.030497319062545
1018 => 0.029657311806028
1019 => 0.027924136899623
1020 => 0.027933946481371
1021 => 0.027667335281288
1022 => 0.027436944278544
1023 => 0.030326646764954
1024 => 0.029967266581333
1025 => 0.029394641293248
1026 => 0.030161122996574
1027 => 0.030363792924634
1028 => 0.030369562652565
1029 => 0.030928767917556
1030 => 0.031227215867724
1031 => 0.031279818612489
1101 => 0.032159740179381
1102 => 0.032454678282157
1103 => 0.033669486586288
1104 => 0.031201894644292
1105 => 0.031151076212091
1106 => 0.030171908965998
1107 => 0.029550905618504
1108 => 0.030214429596492
1109 => 0.030802221260935
1110 => 0.030190173291475
1111 => 0.030270093835249
1112 => 0.029448469442405
1113 => 0.029742161501826
1114 => 0.029995128667992
1115 => 0.029855455067558
1116 => 0.029646356927429
1117 => 0.030754029047538
1118 => 0.030691529845519
1119 => 0.031723019589037
1120 => 0.032527139606648
1121 => 0.033968266431853
1122 => 0.032464375462111
1123 => 0.032409567697748
1124 => 0.032945322385835
1125 => 0.032454596260905
1126 => 0.032764718232571
1127 => 0.033918300987751
1128 => 0.033942674373576
1129 => 0.033534388757672
1130 => 0.03350954454084
1201 => 0.033587960259529
1202 => 0.034047243573164
1203 => 0.033886755871029
1204 => 0.034072476302991
1205 => 0.034304722547012
1206 => 0.035265391482647
1207 => 0.0354970055107
1208 => 0.034934303500638
1209 => 0.034985109191839
1210 => 0.03477464319356
1211 => 0.034571335676354
1212 => 0.035028341284355
1213 => 0.035863528015444
1214 => 0.035858332362136
1215 => 0.036052079450039
1216 => 0.036172782280715
1217 => 0.035654637371582
1218 => 0.035317344088453
1219 => 0.035446683795734
1220 => 0.035653500804328
1221 => 0.035379615827257
1222 => 0.033689070872907
1223 => 0.034201874219627
1224 => 0.03411651866793
1225 => 0.033994961982724
1226 => 0.034510589713242
1227 => 0.034460856160752
1228 => 0.032971143178239
1229 => 0.033066509770018
1230 => 0.032976942736549
1231 => 0.033266352145377
]
'min_raw' => 0.027436944278544
'max_raw' => 0.061462142157675
'avg_raw' => 0.04444954321811
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.027436'
'max' => '$0.061462'
'avg' => '$0.044449'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0066906410792502
'max_diff' => -0.044663264268741
'year' => 2034
]
9 => [
'items' => [
101 => 0.032438967203068
102 => 0.0326934652388
103 => 0.03285308402104
104 => 0.032947100710028
105 => 0.033286753458502
106 => 0.033246899128726
107 => 0.033284276057405
108 => 0.033787891418391
109 => 0.036335005094335
110 => 0.036473638871827
111 => 0.035790955448534
112 => 0.036063674010805
113 => 0.035540114008239
114 => 0.035891583345508
115 => 0.036132049739715
116 => 0.035045428343324
117 => 0.034981085676344
118 => 0.034455364755407
119 => 0.034737857399963
120 => 0.034288391290534
121 => 0.034398674552131
122 => 0.034090312938384
123 => 0.034645302448943
124 => 0.0352658669584
125 => 0.035422646060324
126 => 0.035010227740809
127 => 0.034711609697789
128 => 0.034187334785144
129 => 0.035059215649101
130 => 0.03531418018381
131 => 0.035057876428942
201 => 0.034998485248592
202 => 0.034885939069145
203 => 0.035022362452601
204 => 0.035312791592198
205 => 0.035175830573348
206 => 0.035266295739241
207 => 0.034921535814132
208 => 0.035654808899107
209 => 0.036819423029825
210 => 0.036823167454689
211 => 0.036686205697569
212 => 0.036630163897437
213 => 0.036770694971777
214 => 0.03684692731472
215 => 0.037301379040144
216 => 0.037789023847679
217 => 0.040064649388348
218 => 0.039425662842591
219 => 0.041444733199841
220 => 0.043041555708953
221 => 0.04352037295885
222 => 0.043079883619038
223 => 0.041572993382305
224 => 0.041499058158291
225 => 0.043750988364618
226 => 0.043114714936393
227 => 0.043039032236711
228 => 0.042233896180032
301 => 0.04270983130757
302 => 0.04260573731363
303 => 0.042441419851744
304 => 0.043349470921157
305 => 0.045049261460821
306 => 0.04478433316468
307 => 0.04458657648128
308 => 0.043720064260729
309 => 0.044241898160012
310 => 0.044056083103547
311 => 0.044854462507268
312 => 0.044381520234773
313 => 0.043109894539382
314 => 0.043312405122706
315 => 0.043281796055431
316 => 0.043911728490963
317 => 0.0437226384097
318 => 0.043244873182277
319 => 0.045043451761547
320 => 0.044926662072829
321 => 0.045092243149591
322 => 0.045165137060347
323 => 0.046259900147039
324 => 0.046708389555145
325 => 0.046810204502698
326 => 0.047236234752983
327 => 0.046799604481966
328 => 0.048546436878141
329 => 0.049707978491102
330 => 0.05105716884694
331 => 0.053028698585
401 => 0.05377001200418
402 => 0.053636100370244
403 => 0.055130891716884
404 => 0.057816998539449
405 => 0.054179039357818
406 => 0.058009819209731
407 => 0.056797038537095
408 => 0.05392155737927
409 => 0.053736410292402
410 => 0.055683719517504
411 => 0.060002663957213
412 => 0.058920817360129
413 => 0.060004433470685
414 => 0.058740337718062
415 => 0.058677564709309
416 => 0.059943039161495
417 => 0.062899889196449
418 => 0.061495200580709
419 => 0.059481235006265
420 => 0.060968315845659
421 => 0.059680068799741
422 => 0.056777287647644
423 => 0.058919990092425
424 => 0.057487225988252
425 => 0.057905382723779
426 => 0.060916839763173
427 => 0.060554493284866
428 => 0.061023403180176
429 => 0.060195789488463
430 => 0.059422667797703
501 => 0.057979578749128
502 => 0.057552351225275
503 => 0.057670421542832
504 => 0.05755229271549
505 => 0.056744897655485
506 => 0.05657054076915
507 => 0.056279938319841
508 => 0.056370008170329
509 => 0.055823590546882
510 => 0.056854793497967
511 => 0.057046193852618
512 => 0.057796617365228
513 => 0.057874528823742
514 => 0.059964447624751
515 => 0.058813355468814
516 => 0.059585607467531
517 => 0.059516529980048
518 => 0.053983877775181
519 => 0.054746228434008
520 => 0.055932206820327
521 => 0.055397925164846
522 => 0.054642575906649
523 => 0.05403259088139
524 => 0.053108401193952
525 => 0.054409180431531
526 => 0.056119566806497
527 => 0.057917907044778
528 => 0.060078495009153
529 => 0.059596276927521
530 => 0.057877516355658
531 => 0.057954618699356
601 => 0.058431235049446
602 => 0.057813973570918
603 => 0.057631931110525
604 => 0.05840622521084
605 => 0.058411557348764
606 => 0.057701323419177
607 => 0.056912028377877
608 => 0.056908721202834
609 => 0.056768273773921
610 => 0.05876532300366
611 => 0.059863498155566
612 => 0.059989402166934
613 => 0.05985502381245
614 => 0.059906740707805
615 => 0.059267736783549
616 => 0.060728310263671
617 => 0.062068676924776
618 => 0.061709430026843
619 => 0.061170867856885
620 => 0.060741877147845
621 => 0.061608373449314
622 => 0.061569789733001
623 => 0.062056969991302
624 => 0.062034868680696
625 => 0.061871048283606
626 => 0.061709435877385
627 => 0.062350210800211
628 => 0.062165677912968
629 => 0.061980858395181
630 => 0.061610174557807
701 => 0.061660556647713
702 => 0.061122087468107
703 => 0.060872966986948
704 => 0.05712679267393
705 => 0.056125692487715
706 => 0.056440658985572
707 => 0.056544354134768
708 => 0.056108674050782
709 => 0.056733327374187
710 => 0.056635975815406
711 => 0.057014713781866
712 => 0.056778094743313
713 => 0.056787805671191
714 => 0.057483651811078
715 => 0.057685658905828
716 => 0.057582916467041
717 => 0.057654873749363
718 => 0.059313098949199
719 => 0.059077352352839
720 => 0.058952116672127
721 => 0.05898680781156
722 => 0.059410519902867
723 => 0.059529136154611
724 => 0.059026550760957
725 => 0.059263572938016
726 => 0.060272783285338
727 => 0.060625949790543
728 => 0.061753087745615
729 => 0.06127425950902
730 => 0.06215316946049
731 => 0.064854639008824
801 => 0.067012759811507
802 => 0.065028062733246
803 => 0.068991176752347
804 => 0.072077029491158
805 => 0.071958589323286
806 => 0.071420499521214
807 => 0.067907338219717
808 => 0.064674474811795
809 => 0.067378902327153
810 => 0.06738579646906
811 => 0.067153483747053
812 => 0.065710609382666
813 => 0.067103274846784
814 => 0.067213819573907
815 => 0.067151943922934
816 => 0.066045695530756
817 => 0.064356658704778
818 => 0.064686692457591
819 => 0.065227294477206
820 => 0.06420382207268
821 => 0.063876760625055
822 => 0.064484830082177
823 => 0.066444156569328
824 => 0.066073757246538
825 => 0.066064084623318
826 => 0.067648809999973
827 => 0.066514488635429
828 => 0.064690855240129
829 => 0.064230363757046
830 => 0.062595929216335
831 => 0.06372483897526
901 => 0.063765466427725
902 => 0.063147174089939
903 => 0.064741026255736
904 => 0.064726338627436
905 => 0.066239464045273
906 => 0.069131991540223
907 => 0.068276528827333
908 => 0.06728171876632
909 => 0.067389882203043
910 => 0.068576168133785
911 => 0.067858912579785
912 => 0.068116842677887
913 => 0.06857577772569
914 => 0.068852664634746
915 => 0.067350042437878
916 => 0.06699970932506
917 => 0.066283050726448
918 => 0.066096087875136
919 => 0.066679791350133
920 => 0.06652600610702
921 => 0.063762051847662
922 => 0.063473203249063
923 => 0.063482061823201
924 => 0.062755738288021
925 => 0.06164792055925
926 => 0.064559199406102
927 => 0.064325382971378
928 => 0.064067267723398
929 => 0.06409888536849
930 => 0.065362572843514
1001 => 0.064629570290253
1002 => 0.066578377714852
1003 => 0.066177761494868
1004 => 0.065766870980505
1005 => 0.065710073395388
1006 => 0.06555191560289
1007 => 0.06500953368449
1008 => 0.064354574925921
1009 => 0.063922114421958
1010 => 0.058964771644073
1011 => 0.059884825628112
1012 => 0.06094326387119
1013 => 0.061308632511275
1014 => 0.060683644169669
1015 => 0.065034212033565
1016 => 0.065829102705414
1017 => 0.063421327010948
1018 => 0.062970930487347
1019 => 0.06506373995467
1020 => 0.063801520010322
1021 => 0.064369897573975
1022 => 0.063141376167262
1023 => 0.065637636819682
1024 => 0.065618619495891
1025 => 0.064647517721496
1026 => 0.065468286291396
1027 => 0.065325657554254
1028 => 0.06422928604268
1029 => 0.065672393752161
1030 => 0.065673109515581
1031 => 0.064738445171299
1101 => 0.063646961841512
1102 => 0.063451830401832
1103 => 0.063304825074253
1104 => 0.064333743274981
1105 => 0.06525626811641
1106 => 0.066972858133006
1107 => 0.067404449648352
1108 => 0.069088980065418
1109 => 0.068085924220352
1110 => 0.068530565884722
1111 => 0.069013287309799
1112 => 0.069244721712473
1113 => 0.06886761177277
1114 => 0.071484380890856
1115 => 0.071705316380156
1116 => 0.071779394138634
1117 => 0.070897034315101
1118 => 0.071680776357286
1119 => 0.071314089410556
1120 => 0.072268106977381
1121 => 0.072417709113366
1122 => 0.072291001426437
1123 => 0.072338487505708
1124 => 0.070105536693127
1125 => 0.069989746413741
1126 => 0.068410937738206
1127 => 0.069054313943451
1128 => 0.067851552965569
1129 => 0.068232960861467
1130 => 0.06840108182779
1201 => 0.068313264975764
1202 => 0.069090689468781
1203 => 0.068429719832385
1204 => 0.066685312288466
1205 => 0.064940429481878
1206 => 0.064918523899592
1207 => 0.064459127056358
1208 => 0.064127067281428
1209 => 0.064191033774533
1210 => 0.064416460039515
1211 => 0.064113965097104
1212 => 0.064178517729951
1213 => 0.06525052154714
1214 => 0.065465504267496
1215 => 0.064734908984555
1216 => 0.061801463499152
1217 => 0.061081588619043
1218 => 0.061599020407126
1219 => 0.061351721339298
1220 => 0.049515627426338
1221 => 0.052296342123925
1222 => 0.050644135874768
1223 => 0.051405548528734
1224 => 0.049719073785078
1225 => 0.050523947928465
1226 => 0.050375317063479
1227 => 0.054846624009869
1228 => 0.054776810701983
1229 => 0.05481022663803
1230 => 0.053215196945743
1231 => 0.055756122555332
]
'min_raw' => 0.032438967203068
'max_raw' => 0.072417709113366
'avg_raw' => 0.052428338158217
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.032438'
'max' => '$0.072417'
'avg' => '$0.052428'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0050020229245236
'max_diff' => 0.010955566955692
'year' => 2035
]
10 => [
'items' => [
101 => 0.057007873879345
102 => 0.056776208023553
103 => 0.056834513328411
104 => 0.055832635016235
105 => 0.05481992701009
106 => 0.05369667797663
107 => 0.055783535843022
108 => 0.055551512872131
109 => 0.056083690088125
110 => 0.057437166586161
111 => 0.057636471141854
112 => 0.057904338485852
113 => 0.057808327111125
114 => 0.060095707578022
115 => 0.059818690710859
116 => 0.060486221657531
117 => 0.059113059854531
118 => 0.057559196932723
119 => 0.057854535474552
120 => 0.057826091998012
121 => 0.057463973895745
122 => 0.057137069864413
123 => 0.056592866756885
124 => 0.058314805916009
125 => 0.058244898330779
126 => 0.059376620876979
127 => 0.059176577923972
128 => 0.057840642124976
129 => 0.05788835533339
130 => 0.05820924959016
131 => 0.059319868276748
201 => 0.059649575519614
202 => 0.059496841988157
203 => 0.059858350928251
204 => 0.060144072854595
205 => 0.059894233203148
206 => 0.063431435802447
207 => 0.061962542670313
208 => 0.062678470962422
209 => 0.062849215641596
210 => 0.062411856736267
211 => 0.062506704222184
212 => 0.062650372318957
213 => 0.063522696869462
214 => 0.065811928899129
215 => 0.066825814181739
216 => 0.069876138078691
217 => 0.066741625122983
218 => 0.066555636096096
219 => 0.067105091540893
220 => 0.06889595457798
221 => 0.070347280862328
222 => 0.070828769519868
223 => 0.070892406194473
224 => 0.071795710924779
225 => 0.072313468350554
226 => 0.071686025971247
227 => 0.071154334250739
228 => 0.069249880503886
229 => 0.06947032621074
301 => 0.070988978525472
302 => 0.073134164368207
303 => 0.074974956989819
304 => 0.07433037557183
305 => 0.079248076787521
306 => 0.079735646776048
307 => 0.079668280368659
308 => 0.080779037362667
309 => 0.078574410931288
310 => 0.077631890419248
311 => 0.07126929203567
312 => 0.07305692265444
313 => 0.075655348742688
314 => 0.07531143730631
315 => 0.073424390824897
316 => 0.074973525495847
317 => 0.074461333127711
318 => 0.074057345756081
319 => 0.075908090222323
320 => 0.073873120657297
321 => 0.075635048364606
322 => 0.073375357855175
323 => 0.074333319965452
324 => 0.073789534340245
325 => 0.074141430283614
326 => 0.072084253789095
327 => 0.073194256290401
328 => 0.072038074035691
329 => 0.072037525854763
330 => 0.072012003067409
331 => 0.073372246362778
401 => 0.073416603847806
402 => 0.072411381997314
403 => 0.072266513824142
404 => 0.072802167388843
405 => 0.072175057352469
406 => 0.072468478191505
407 => 0.072183944770771
408 => 0.072119890304573
409 => 0.071609493419938
410 => 0.071389600408383
411 => 0.071475826124159
412 => 0.071181493303813
413 => 0.071004147133071
414 => 0.07197672445031
415 => 0.071457115623367
416 => 0.071897086945342
417 => 0.071395684095144
418 => 0.069657603365534
419 => 0.068658014758065
420 => 0.065374941380002
421 => 0.066306016917381
422 => 0.06692332096193
423 => 0.066719301978889
424 => 0.067157613699327
425 => 0.067184522479142
426 => 0.067042022870768
427 => 0.066877026579602
428 => 0.06679671550993
429 => 0.067395288425643
430 => 0.067742780150253
501 => 0.066985275681264
502 => 0.066807802982793
503 => 0.067573681823909
504 => 0.068040867474556
505 => 0.071490303829992
506 => 0.071234758443249
507 => 0.071876127215725
508 => 0.07180391893455
509 => 0.072476175586164
510 => 0.073575031094693
511 => 0.071340750601021
512 => 0.071728544439116
513 => 0.071633466345482
514 => 0.072671504040956
515 => 0.072674744681336
516 => 0.072052389229071
517 => 0.072389778216308
518 => 0.072201456939415
519 => 0.072541778939907
520 => 0.07123134547881
521 => 0.072827311981876
522 => 0.073732122147304
523 => 0.073744685437329
524 => 0.074173558274724
525 => 0.074609317916158
526 => 0.075445720601224
527 => 0.07458599109923
528 => 0.073039421418123
529 => 0.07315107875371
530 => 0.072244325515545
531 => 0.072259568201297
601 => 0.072178201550162
602 => 0.072422388995212
603 => 0.071284930891147
604 => 0.071551890034653
605 => 0.071178145670435
606 => 0.071727731991859
607 => 0.07113646795988
608 => 0.071633420495947
609 => 0.071847888736276
610 => 0.07263928116026
611 => 0.071019578655396
612 => 0.067716895603758
613 => 0.068411159622373
614 => 0.067384288605579
615 => 0.067479329427757
616 => 0.067671327014191
617 => 0.067049000018856
618 => 0.067167720397789
619 => 0.067163478870431
620 => 0.067126927679119
621 => 0.066965036392223
622 => 0.06673026199701
623 => 0.067665530927792
624 => 0.067824451344043
625 => 0.068177711743295
626 => 0.06922877507265
627 => 0.069123749060268
628 => 0.069295050843951
629 => 0.068921100011988
630 => 0.067496675934335
701 => 0.067574029014862
702 => 0.066609434861184
703 => 0.068153044902082
704 => 0.06778749766974
705 => 0.067551826991024
706 => 0.067487522062863
707 => 0.068541190774914
708 => 0.068856464967793
709 => 0.068660007248055
710 => 0.068257066733284
711 => 0.069030831640313
712 => 0.069237858486913
713 => 0.06928420416301
714 => 0.070655167223559
715 => 0.069360825768595
716 => 0.069672386621453
717 => 0.072103095456479
718 => 0.069898777958001
719 => 0.071066454099091
720 => 0.071009302428278
721 => 0.071606646030054
722 => 0.070960302817779
723 => 0.070968315016531
724 => 0.071498715667347
725 => 0.070753863611537
726 => 0.07056942776764
727 => 0.070314630970252
728 => 0.070870970455795
729 => 0.071204470816308
730 => 0.073892238793016
731 => 0.07562865948308
801 => 0.075553276881441
802 => 0.076242132750108
803 => 0.075931796872077
804 => 0.074929640459446
805 => 0.076640199255852
806 => 0.076098906879849
807 => 0.076143530365657
808 => 0.076141869477286
809 => 0.076501781586727
810 => 0.076246750871728
811 => 0.075744059154098
812 => 0.076077769375901
813 => 0.077068769431068
814 => 0.080144864009901
815 => 0.081866287289049
816 => 0.080041232167014
817 => 0.081300130751732
818 => 0.080545240192332
819 => 0.08040805412164
820 => 0.081198735464717
821 => 0.081990800790817
822 => 0.081940349653737
823 => 0.081365350899993
824 => 0.081040548694057
825 => 0.083500059814131
826 => 0.085312185710722
827 => 0.085188610873221
828 => 0.085734030017262
829 => 0.087335397493346
830 => 0.087481806466368
831 => 0.087463362300939
901 => 0.087100472385106
902 => 0.088677226629155
903 => 0.089992582759892
904 => 0.087016473854489
905 => 0.08814973716554
906 => 0.088658495577334
907 => 0.089405503867667
908 => 0.090665832066586
909 => 0.092034882776155
910 => 0.092228481557365
911 => 0.092091113957542
912 => 0.091188188212523
913 => 0.092686219835106
914 => 0.09356373162645
915 => 0.094086269816696
916 => 0.095411339725094
917 => 0.088661637496084
918 => 0.083883862776423
919 => 0.083137744262044
920 => 0.084655005600694
921 => 0.085055095315764
922 => 0.084893819653289
923 => 0.079515999830037
924 => 0.08310943115364
925 => 0.08697566111355
926 => 0.087124178752027
927 => 0.089059694309014
928 => 0.089689977513832
929 => 0.09124832123103
930 => 0.091150846407228
1001 => 0.091530278303701
1002 => 0.091443053481546
1003 => 0.094329557069671
1004 => 0.097513799177303
1005 => 0.097403538998386
1006 => 0.096945766521171
1007 => 0.097625636711641
1008 => 0.10091211581084
1009 => 0.10060954948014
1010 => 0.10090346689788
1011 => 0.10477841097368
1012 => 0.10981638947659
1013 => 0.10747574265721
1014 => 0.11255427275227
1015 => 0.1157509382458
1016 => 0.12127924067547
1017 => 0.12058706998382
1018 => 0.12273919755113
1019 => 0.11934793998536
1020 => 0.11156092712813
1021 => 0.11032860253599
1022 => 0.11279574757689
1023 => 0.11886098291946
1024 => 0.11260473173161
1025 => 0.11387036319875
1026 => 0.11350586125107
1027 => 0.11348643849131
1028 => 0.11422772623322
1029 => 0.11315244970062
1030 => 0.10877157966825
1031 => 0.11077930658746
1101 => 0.11000402680499
1102 => 0.11086425752457
1103 => 0.11550656793205
1104 => 0.11345409184205
1105 => 0.11129197501085
1106 => 0.11400374932931
1107 => 0.11745676990346
1108 => 0.1172406860816
1109 => 0.11682139315117
1110 => 0.11918492544655
1111 => 0.12308878834853
1112 => 0.12414398680394
1113 => 0.12492291273114
1114 => 0.12503031345644
1115 => 0.12613660767621
1116 => 0.12018778483448
1117 => 0.12962871946091
1118 => 0.13125890807034
1119 => 0.13095250017616
1120 => 0.13276438620672
1121 => 0.13223128337342
1122 => 0.13145890100924
1123 => 0.13433112576688
1124 => 0.13103835185883
1125 => 0.12636467384505
1126 => 0.12380060165183
1127 => 0.12717717875367
1128 => 0.12923913656346
1129 => 0.13060195951059
1130 => 0.13101434891095
1201 => 0.12064957501755
1202 => 0.11506353674572
1203 => 0.11864412323391
1204 => 0.12301268586837
1205 => 0.12016351724847
1206 => 0.12027519926418
1207 => 0.11621303356054
1208 => 0.12337209739691
1209 => 0.12232908201315
1210 => 0.12774024766914
1211 => 0.12644882955802
1212 => 0.13086142509023
1213 => 0.12969944080442
1214 => 0.13452277260916
1215 => 0.13644693025256
1216 => 0.13967789040706
1217 => 0.14205459784909
1218 => 0.14345024591821
1219 => 0.14336645644309
1220 => 0.14889670940207
1221 => 0.14563571244448
1222 => 0.14153913170778
1223 => 0.1414650374868
1224 => 0.14358671469933
1225 => 0.1480331680831
1226 => 0.14918606875224
1227 => 0.14983038294469
1228 => 0.14884359333021
1229 => 0.14530401485051
1230 => 0.14377564280904
1231 => 0.14507786006957
]
'min_raw' => 0.05369667797663
'max_raw' => 0.14983038294469
'avg_raw' => 0.10176353046066
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.053696'
'max' => '$0.14983'
'avg' => '$0.101763'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.021257710773562
'max_diff' => 0.077412673831322
'year' => 2036
]
11 => [
'items' => [
101 => 0.14348536026075
102 => 0.1462344617073
103 => 0.15000956516982
104 => 0.14923002123318
105 => 0.15183591973758
106 => 0.15453275054112
107 => 0.15838933971243
108 => 0.15939759493089
109 => 0.1610642024665
110 => 0.1627796890727
111 => 0.16333065713695
112 => 0.16438262612695
113 => 0.1643770817311
114 => 0.16754726108816
115 => 0.17104406709127
116 => 0.1723640304062
117 => 0.17539921326568
118 => 0.17020156898431
119 => 0.17414404187796
120 => 0.17770025111453
121 => 0.1734603918574
122 => 0.17930405008285
123 => 0.17953094608973
124 => 0.18295680641027
125 => 0.17948404065998
126 => 0.17742192344292
127 => 0.18337517858205
128 => 0.1862557712181
129 => 0.18538811327308
130 => 0.17878519346994
131 => 0.17494201093196
201 => 0.16488366093551
202 => 0.17679821099469
203 => 0.18260144077632
204 => 0.17877016450676
205 => 0.1807024374051
206 => 0.19124429179681
207 => 0.19525794741466
208 => 0.19442313510372
209 => 0.19456420464208
210 => 0.19672990036047
211 => 0.2063337878462
212 => 0.20057891584838
213 => 0.20497829985978
214 => 0.20731171727626
215 => 0.20947912541546
216 => 0.20415665604197
217 => 0.19723220158966
218 => 0.19503893619579
219 => 0.17838921958796
220 => 0.17752252953246
221 => 0.17703603014092
222 => 0.17396872029394
223 => 0.17155865496109
224 => 0.16964208152842
225 => 0.16461242050381
226 => 0.16630978345237
227 => 0.15829355355099
228 => 0.16342205336415
301 => 0.15062795688291
302 => 0.16128326061111
303 => 0.15548406322906
304 => 0.1593780683022
305 => 0.15936448248533
306 => 0.15219438455026
307 => 0.14805882169744
308 => 0.15069416330577
309 => 0.15351945870358
310 => 0.15397785337644
311 => 0.15764092260746
312 => 0.15866320649243
313 => 0.1555656385951
314 => 0.15036282767093
315 => 0.15157132198513
316 => 0.14803433159873
317 => 0.14183589199494
318 => 0.14628771953276
319 => 0.14780776918721
320 => 0.14847910970993
321 => 0.1423836562552
322 => 0.14046833244099
323 => 0.13944863011342
324 => 0.14957598117335
325 => 0.15013078032562
326 => 0.14729234942193
327 => 0.16012232625764
328 => 0.15721850735857
329 => 0.16046278452174
330 => 0.15146166379296
331 => 0.15180551872641
401 => 0.14754424392405
402 => 0.14993027307489
403 => 0.14824390457638
404 => 0.1497375054987
405 => 0.15063276373319
406 => 0.15489333930229
407 => 0.16133190954026
408 => 0.15425695138994
409 => 0.15117429080858
410 => 0.15308675609571
411 => 0.15817990317708
412 => 0.16589628171876
413 => 0.16132803031549
414 => 0.16335534271432
415 => 0.16379822028462
416 => 0.16042976082571
417 => 0.16602048162373
418 => 0.16901659431832
419 => 0.17208998598481
420 => 0.17475852585434
421 => 0.17086240576788
422 => 0.17503181274727
423 => 0.17167200672129
424 => 0.16865791338563
425 => 0.16866248452106
426 => 0.16677169974272
427 => 0.16310806598047
428 => 0.16243243570449
429 => 0.16594714972285
430 => 0.16876561752093
501 => 0.16899776002833
502 => 0.17055820861945
503 => 0.17148166602177
504 => 0.18053280394402
505 => 0.18417324649129
506 => 0.18862471072804
507 => 0.19035880691903
508 => 0.19557781474603
509 => 0.19136304205864
510 => 0.19045114947556
511 => 0.17779154361172
512 => 0.17986455336272
513 => 0.18318364198976
514 => 0.17784627416069
515 => 0.18123160555551
516 => 0.18189994168397
517 => 0.17766491244422
518 => 0.17992702454598
519 => 0.17391952547321
520 => 0.16146285660344
521 => 0.16603434945711
522 => 0.16940050694526
523 => 0.16459658516544
524 => 0.17320742901832
525 => 0.16817715180337
526 => 0.16658279542211
527 => 0.16036264274976
528 => 0.16329831537548
529 => 0.16726885463655
530 => 0.16481552299794
531 => 0.16990655451765
601 => 0.17711681287806
602 => 0.182255272364
603 => 0.18264973947883
604 => 0.17934605427942
605 => 0.18464023089531
606 => 0.18467879319217
607 => 0.1787069403421
608 => 0.17504921372284
609 => 0.17421817053902
610 => 0.17629427934781
611 => 0.17881505871251
612 => 0.18278962518984
613 => 0.18519137247058
614 => 0.19145385559044
615 => 0.19314830396321
616 => 0.19500998900024
617 => 0.19749777433211
618 => 0.2004849984781
619 => 0.19394912210945
620 => 0.19420880466198
621 => 0.18812268708287
622 => 0.18161879761204
623 => 0.18655443899913
624 => 0.19300713355189
625 => 0.1915268782919
626 => 0.19136031933627
627 => 0.19164042530003
628 => 0.19052436117461
629 => 0.18547644449859
630 => 0.18294141234553
701 => 0.18621225057866
702 => 0.18795055553131
703 => 0.19064651491674
704 => 0.19031418101768
705 => 0.19725868286965
706 => 0.19995710629849
707 => 0.19926673411335
708 => 0.19939377921015
709 => 0.20427914593456
710 => 0.2097126784844
711 => 0.2148018987351
712 => 0.21997887216121
713 => 0.21373782863532
714 => 0.21056901162693
715 => 0.21383842191441
716 => 0.21210362679559
717 => 0.22207227412197
718 => 0.22276248163418
719 => 0.23273040811389
720 => 0.24219115730175
721 => 0.23624903024378
722 => 0.24185218842016
723 => 0.2479124608201
724 => 0.25960370952335
725 => 0.25566650826319
726 => 0.25265067380171
727 => 0.24980072480802
728 => 0.25573101624723
729 => 0.26336024144505
730 => 0.26500350348085
731 => 0.26766621575325
801 => 0.26486669937978
802 => 0.26823840849502
803 => 0.28014202327585
804 => 0.27692556148595
805 => 0.27235766867227
806 => 0.28175442930642
807 => 0.28515508045093
808 => 0.30902263111798
809 => 0.33915639975447
810 => 0.32668082166997
811 => 0.31893682776853
812 => 0.32075685002536
813 => 0.33176068223896
814 => 0.3352947639018
815 => 0.32568791167121
816 => 0.32908121428899
817 => 0.3477786453351
818 => 0.35780921720593
819 => 0.34418635331981
820 => 0.30660141214864
821 => 0.27194637990279
822 => 0.28113845499083
823 => 0.28009635893915
824 => 0.30018441604616
825 => 0.27684884993602
826 => 0.27724176102192
827 => 0.29774521787628
828 => 0.29227524710578
829 => 0.28341459499848
830 => 0.27201107246896
831 => 0.25093060637497
901 => 0.23225904968324
902 => 0.26887827215843
903 => 0.26729918469756
904 => 0.26501243204658
905 => 0.27010135261886
906 => 0.29481170640255
907 => 0.29424205276823
908 => 0.2906182069865
909 => 0.29336686207283
910 => 0.2829327424723
911 => 0.28562185267384
912 => 0.27194089036863
913 => 0.27812525669804
914 => 0.28339558401858
915 => 0.28445368025671
916 => 0.28683762510895
917 => 0.26646707735997
918 => 0.2756128552514
919 => 0.28098514291912
920 => 0.25671295179088
921 => 0.28050535974156
922 => 0.26611247144404
923 => 0.26122730898194
924 => 0.26780453666595
925 => 0.26524138464092
926 => 0.26303773704315
927 => 0.26180806382012
928 => 0.26663765392912
929 => 0.26641234777793
930 => 0.25851020097655
1001 => 0.24820217260686
1002 => 0.25166188527722
1003 => 0.2504049392291
1004 => 0.24584960460144
1005 => 0.24891935012728
1006 => 0.23540174439412
1007 => 0.21214540631422
1008 => 0.2275092556107
1009 => 0.22691776412544
1010 => 0.22661950729656
1011 => 0.23816501541727
1012 => 0.23705518121165
1013 => 0.23504082126094
1014 => 0.24581260930126
1015 => 0.24188076176555
1016 => 0.25399778941083
1017 => 0.26197884749822
1018 => 0.25995459300708
1019 => 0.26746081671407
1020 => 0.25174159006951
1021 => 0.25696288661493
1022 => 0.25803898859653
1023 => 0.24567968710891
1024 => 0.23723676381324
1025 => 0.2366737170858
1026 => 0.22203485159762
1027 => 0.22985481538061
1028 => 0.23673605989755
1029 => 0.23344047778008
1030 => 0.23239719493441
1031 => 0.23772710073252
1101 => 0.23814128006059
1102 => 0.22869794748784
1103 => 0.23066151536117
1104 => 0.23884991980893
1105 => 0.23045518857837
1106 => 0.21414559706895
1107 => 0.21010059287687
1108 => 0.20956091475342
1109 => 0.19859054257117
1110 => 0.21037089939892
1111 => 0.20522845794967
1112 => 0.22147336887194
1113 => 0.21219436287634
1114 => 0.21179436347359
1115 => 0.21118970570917
1116 => 0.20174705319154
1117 => 0.20381439398103
1118 => 0.21068654963017
1119 => 0.21313861218617
1120 => 0.21288284197242
1121 => 0.2106528723184
1122 => 0.21167374100672
1123 => 0.20838516726742
1124 => 0.20722390343433
1125 => 0.20355863534632
1126 => 0.19817170381309
1127 => 0.19892078968276
1128 => 0.18824786874813
1129 => 0.18243269496816
1130 => 0.18082313150862
1201 => 0.17867075598224
1202 => 0.18106624805158
1203 => 0.18821763370411
1204 => 0.17959154535606
1205 => 0.16480272193307
1206 => 0.16569155541972
1207 => 0.16768850036719
1208 => 0.16396720666869
1209 => 0.16044531448756
1210 => 0.16350731399891
1211 => 0.15724109455697
1212 => 0.16844574304953
1213 => 0.16814268870847
1214 => 0.17231908877568
1215 => 0.17493067744607
1216 => 0.1689118110727
1217 => 0.16739808245655
1218 => 0.16826037107144
1219 => 0.1540086610389
1220 => 0.17115442001494
1221 => 0.17130269725056
1222 => 0.17003305753748
1223 => 0.1791626448763
1224 => 0.19842892175092
1225 => 0.19118017340649
1226 => 0.18837323895295
1227 => 0.18303725450492
1228 => 0.19014713696252
1229 => 0.18960120892122
1230 => 0.1871323152814
1231 => 0.18563912070462
]
'min_raw' => 0.13944863011342
'max_raw' => 0.35780921720593
'avg_raw' => 0.24862892365967
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.139448'
'max' => '$0.3578092'
'avg' => '$0.248628'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.085751952136795
'max_diff' => 0.20797883426124
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0043771331548799
]
1 => [
'year' => 2028
'avg' => 0.0075124311846081
]
2 => [
'year' => 2029
'avg' => 0.020522608012364
]
3 => [
'year' => 2030
'avg' => 0.015833161518354
]
4 => [
'year' => 2031
'avg' => 0.015550126793129
]
5 => [
'year' => 2032
'avg' => 0.027264266073362
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0043771331548799
'min' => '$0.004377'
'max_raw' => 0.027264266073362
'max' => '$0.027264'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027264266073362
]
1 => [
'year' => 2033
'avg' => 0.070126495892105
]
2 => [
'year' => 2034
'avg' => 0.04444954321811
]
3 => [
'year' => 2035
'avg' => 0.052428338158217
]
4 => [
'year' => 2036
'avg' => 0.10176353046066
]
5 => [
'year' => 2037
'avg' => 0.24862892365967
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027264266073362
'min' => '$0.027264'
'max_raw' => 0.24862892365967
'max' => '$0.248628'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.24862892365967
]
]
]
]
'prediction_2025_max_price' => '$0.007484'
'last_price' => 0.00725678
'sma_50day_nextmonth' => '$0.006918'
'sma_200day_nextmonth' => '$0.009452'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.007229'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007131'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.007182'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007236'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007868'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010153'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.009755'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0072094'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007186'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.007226'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007358'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.008182'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00928'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.012252'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010654'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.013572'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.007361'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.007636'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.008566'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010264'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017365'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011433'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005716'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '46.88'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 41.03
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.007218'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007235'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 32.67
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => -3.51
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.02
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000180'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -67.33
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 48.35
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.006688'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 16
'sell_pct' => 48.39
'buy_pct' => 51.61
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767688034
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de SynFutures para 2026
A previsão de preço para SynFutures em 2026 sugere que o preço médio poderia variar entre $0.0025072 na extremidade inferior e $0.007484 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, SynFutures poderia potencialmente ganhar 3.13% até 2026 se F atingir a meta de preço prevista.
Previsão de preço de SynFutures 2027-2032
A previsão de preço de F para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.004377 na extremidade inferior e $0.027264 na extremidade superior. Considerando a volatilidade de preços no mercado, se SynFutures atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002413 | $0.004377 | $0.00634 |
| 2028 | $0.004355 | $0.007512 | $0.010668 |
| 2029 | $0.009568 | $0.020522 | $0.031476 |
| 2030 | $0.008137 | $0.015833 | $0.023528 |
| 2031 | $0.009621 | $0.01555 | $0.021478 |
| 2032 | $0.014686 | $0.027264 | $0.039842 |
Previsão de preço de SynFutures 2032-2037
A previsão de preço de SynFutures para 2032-2037 é atualmente estimada entre $0.027264 na extremidade inferior e $0.248628 na extremidade superior. Comparado ao preço atual, SynFutures poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de SynFutures | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.014686 | $0.027264 | $0.039842 |
| 2033 | $0.034127 | $0.070126 | $0.106125 |
| 2034 | $0.027436 | $0.044449 | $0.061462 |
| 2035 | $0.032438 | $0.052428 | $0.072417 |
| 2036 | $0.053696 | $0.101763 | $0.14983 |
| 2037 | $0.139448 | $0.248628 | $0.3578092 |
SynFutures Histograma de preços potenciais
Previsão de preço de SynFutures baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para SynFutures é Altista, com 16 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de F foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de SynFutures
De acordo com nossos indicadores técnicos, o SMA de 200 dias de SynFutures está projetado para aumentar no próximo mês, alcançando $0.009452 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para SynFutures é esperado para alcançar $0.006918 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 46.88, sugerindo que o mercado de F está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de F para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.007229 | BUY |
| SMA 5 | $0.007131 | BUY |
| SMA 10 | $0.007182 | BUY |
| SMA 21 | $0.007236 | BUY |
| SMA 50 | $0.007868 | SELL |
| SMA 100 | $0.010153 | SELL |
| SMA 200 | $0.009755 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0072094 | BUY |
| EMA 5 | $0.007186 | BUY |
| EMA 10 | $0.007226 | BUY |
| EMA 21 | $0.007358 | SELL |
| EMA 50 | $0.008182 | SELL |
| EMA 100 | $0.00928 | SELL |
| EMA 200 | $0.012252 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.010654 | SELL |
| SMA 50 | $0.013572 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.010264 | SELL |
| EMA 50 | $0.017365 | SELL |
| EMA 100 | $0.011433 | SELL |
| EMA 200 | $0.005716 | BUY |
Osciladores de SynFutures
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 46.88 | NEUTRAL |
| Stoch RSI (14) | 41.03 | NEUTRAL |
| Estocástico Rápido (14) | 32.67 | NEUTRAL |
| Índice de Canal de Commodities (20) | -3.51 | NEUTRAL |
| Índice Direcional Médio (14) | 15.02 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000180 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -67.33 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 48.35 | NEUTRAL |
| VWMA (10) | 0.007218 | BUY |
| Média Móvel de Hull (9) | 0.007235 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.006688 | SELL |
Previsão do preço de SynFutures com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do SynFutures
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de SynFutures por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.010196 | $0.014328 | $0.020133 | $0.028291 | $0.039754 | $0.055861 |
| Amazon.com stock | $0.015141 | $0.031594 | $0.065922 | $0.137552 | $0.28701 | $0.598864 |
| Apple stock | $0.010293 | $0.0146001 | $0.0207091 | $0.029374 | $0.041665 | $0.059098 |
| Netflix stock | $0.01145 | $0.018066 | $0.0285059 | $0.044977 | $0.070968 | $0.111976 |
| Google stock | $0.009397 | $0.012169 | $0.015759 | $0.0204087 | $0.026429 | $0.034225 |
| Tesla stock | $0.01645 | $0.037292 | $0.084538 | $0.191642 | $0.434439 | $0.984841 |
| Kodak stock | $0.005441 | $0.00408 | $0.00306 | $0.002294 | $0.00172 | $0.00129 |
| Nokia stock | $0.0048073 | $0.003184 | $0.0021096 | $0.001397 | $0.000925 | $0.000613 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para SynFutures
Você pode fazer perguntas como: 'Devo investir em SynFutures agora?', 'Devo comprar F hoje?', 'SynFutures será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para SynFutures regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como SynFutures, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre SynFutures para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de SynFutures é de $0.007256 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para SynFutures
com base no histórico de preços de 4 horas
Previsão de longo prazo para SynFutures
com base no histórico de preços de 1 mês
Previsão do preço de SynFutures com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se SynFutures tiver 1% da média anterior do crescimento anual do Bitcoin | $0.007445 | $0.007638 | $0.007837 | $0.008041 |
| Se SynFutures tiver 2% da média anterior do crescimento anual do Bitcoin | $0.007634 | $0.00803 | $0.008448 | $0.008887 |
| Se SynFutures tiver 5% da média anterior do crescimento anual do Bitcoin | $0.008199 | $0.009265 | $0.010469 | $0.01183 |
| Se SynFutures tiver 10% da média anterior do crescimento anual do Bitcoin | $0.009143 | $0.011519 | $0.014513 | $0.018286 |
| Se SynFutures tiver 20% da média anterior do crescimento anual do Bitcoin | $0.011029 | $0.016763 | $0.025477 | $0.038722 |
| Se SynFutures tiver 50% da média anterior do crescimento anual do Bitcoin | $0.016688 | $0.038377 | $0.088254 | $0.202954 |
| Se SynFutures tiver 100% da média anterior do crescimento anual do Bitcoin | $0.026119 | $0.094012 | $0.33838 | $1.21 |
Perguntas Frequentes sobre SynFutures
F é um bom investimento?
A decisão de adquirir SynFutures depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de SynFutures experimentou uma queda de -0.14% nas últimas 24 horas, e SynFutures registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em SynFutures dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
SynFutures pode subir?
Parece que o valor médio de SynFutures pode potencialmente subir para $0.007484 até o final deste ano. Observando as perspectivas de SynFutures em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.023528. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de SynFutures na próxima semana?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures aumentará 0.86% na próxima semana e atingirá $0.007318 até 13 de janeiro de 2026.
Qual será o preço de SynFutures no próximo mês?
Com base na nossa nova previsão experimental de SynFutures, o preço de SynFutures diminuirá -11.62% no próximo mês e atingirá $0.006413 até 5 de fevereiro de 2026.
Até onde o preço de SynFutures pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de SynFutures em 2026, espera-se que F fluctue dentro do intervalo de $0.0025072 e $0.007484. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de SynFutures não considera flutuações repentinas e extremas de preço.
Onde estará SynFutures em 5 anos?
O futuro de SynFutures parece seguir uma tendência de alta, com um preço máximo de $0.023528 projetada após um período de cinco anos. Com base na previsão de SynFutures para 2030, o valor de SynFutures pode potencialmente atingir seu pico mais alto de aproximadamente $0.023528, enquanto seu pico mais baixo está previsto para cerca de $0.008137.
Quanto será SynFutures em 2026?
Com base na nossa nova simulação experimental de previsão de preços de SynFutures, espera-se que o valor de F em 2026 aumente 3.13% para $0.007484 se o melhor cenário ocorrer. O preço ficará entre $0.007484 e $0.0025072 durante 2026.
Quanto será SynFutures em 2027?
De acordo com nossa última simulação experimental para previsão de preços de SynFutures, o valor de F pode diminuir -12.62% para $0.00634 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00634 e $0.002413 ao longo do ano.
Quanto será SynFutures em 2028?
Nosso novo modelo experimental de previsão de preços de SynFutures sugere que o valor de F em 2028 pode aumentar 47.02%, alcançando $0.010668 no melhor cenário. O preço é esperado para variar entre $0.010668 e $0.004355 durante o ano.
Quanto será SynFutures em 2029?
Com base no nosso modelo de previsão experimental, o valor de SynFutures pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.031476 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.031476 e $0.009568.
Quanto será SynFutures em 2030?
Usando nossa nova simulação experimental para previsões de preços de SynFutures, espera-se que o valor de F em 2030 aumente 224.23%, alcançando $0.023528 no melhor cenário. O preço está previsto para variar entre $0.023528 e $0.008137 ao longo de 2030.
Quanto será SynFutures em 2031?
Nossa simulação experimental indica que o preço de SynFutures poderia aumentar 195.98% em 2031, potencialmente atingindo $0.021478 sob condições ideais. O preço provavelmente oscilará entre $0.021478 e $0.009621 durante o ano.
Quanto será SynFutures em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de SynFutures, F poderia ver um 449.04% aumento em valor, atingindo $0.039842 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.039842 e $0.014686 ao longo do ano.
Quanto será SynFutures em 2033?
De acordo com nossa previsão experimental de preços de SynFutures, espera-se que o valor de F seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.106125. Ao longo do ano, o preço de F poderia variar entre $0.106125 e $0.034127.
Quanto será SynFutures em 2034?
Os resultados da nossa nova simulação de previsão de preços de SynFutures sugerem que F pode aumentar 746.96% em 2034, atingindo potencialmente $0.061462 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.061462 e $0.027436.
Quanto será SynFutures em 2035?
Com base em nossa previsão experimental para o preço de SynFutures, F poderia aumentar 897.93%, com o valor potencialmente atingindo $0.072417 em 2035. A faixa de preço esperada para o ano está entre $0.072417 e $0.032438.
Quanto será SynFutures em 2036?
Nossa recente simulação de previsão de preços de SynFutures sugere que o valor de F pode aumentar 1964.7% em 2036, possivelmente atingindo $0.14983 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.14983 e $0.053696.
Quanto será SynFutures em 2037?
De acordo com a simulação experimental, o valor de SynFutures poderia aumentar 4830.69% em 2037, com um pico de $0.3578092 sob condições favoráveis. O preço é esperado para cair entre $0.3578092 e $0.139448 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de SynFutures?
Traders de SynFutures utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de SynFutures
Médias móveis são ferramentas populares para a previsão de preço de SynFutures. Uma média móvel simples (SMA) calcula o preço médio de fechamento de F em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de F acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de F.
Como ler gráficos de SynFutures e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de SynFutures em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de F dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de SynFutures?
A ação de preço de SynFutures é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de F. A capitalização de mercado de SynFutures pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de F, grandes detentores de SynFutures, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de SynFutures.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


