Predicción del precio de Sigma - Pronóstico de SIGMA
Predicción de precio de Sigma hasta $0.0040098 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001343 | $0.0040098 |
| 2027 | $0.001293 | $0.003397 |
| 2028 | $0.002333 | $0.005716 |
| 2029 | $0.005126 | $0.016864 |
| 2030 | $0.00436 | $0.0126062 |
| 2031 | $0.005154 | $0.011508 |
| 2032 | $0.007868 | $0.021346 |
| 2033 | $0.018285 | $0.05686 |
| 2034 | $0.01470028 | $0.03293 |
| 2035 | $0.01738 | $0.03880028 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Sigma hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.87, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Sigma para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Sigma'
'name_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_lang' => 'Sigma'
'name_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_with_lang' => 'Sigma'
'name_with_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'image' => '/uploads/coins/sigma.jpg?1722053593'
'price_for_sd' => 0.003888
'ticker' => 'SIGMA'
'marketcap' => '$3.51M'
'low24h' => '$0.003615'
'high24h' => '$0.004703'
'volume24h' => '$1.48M'
'current_supply' => '899.82M'
'max_supply' => '899.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003888'
'change_24h_pct' => '2.0676%'
'ath_price' => '$0.1721'
'ath_days' => 422
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 nov. 2024'
'ath_pct' => '-97.73%'
'fdv' => '$3.51M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1917086'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003921'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003436'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001343'
'current_year_max_price_prediction' => '$0.0040098'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00436'
'grand_prediction_max_price' => '$0.0126062'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0039617468813752
107 => 0.0039765386061161
108 => 0.0040098651172416
109 => 0.0037250937285276
110 => 0.0038529477216115
111 => 0.0039280499642492
112 => 0.0035887352997691
113 => 0.0039213428043122
114 => 0.0037201364922092
115 => 0.0036518440478641
116 => 0.0037437908273295
117 => 0.0037079590779506
118 => 0.0036771530439456
119 => 0.003659962747656
120 => 0.0037274783146996
121 => 0.0037243286327985
122 => 0.0036138600609082
123 => 0.0034697583121524
124 => 0.0035181235890135
125 => 0.003500552030503
126 => 0.0034368704356847
127 => 0.0034797841416472
128 => 0.0032908138987181
129 => 0.0029657004175771
130 => 0.0031804803417141
131 => 0.0031722115482704
201 => 0.0031680420476562
202 => 0.003329443224564
203 => 0.003313928225563
204 => 0.0032857683504529
205 => 0.0034363532574951
206 => 0.0033813877407719
207 => 0.0035507785118083
208 => 0.003662350229121
209 => 0.0036340520326436
210 => 0.0037389857720491
211 => 0.0035192378273083
212 => 0.0035922292797939
213 => 0.0036072727169894
214 => 0.0034344950631169
215 => 0.0033164666712768
216 => 0.0033085955231633
217 => 0.0031039505570269
218 => 0.0032132702461005
219 => 0.0033094670485292
220 => 0.0032633962453393
221 => 0.0032488116053755
222 => 0.0033233213679282
223 => 0.0033291114146115
224 => 0.0031970977366305
225 => 0.0032245475606122
226 => 0.0033390178897696
227 => 0.003221663202018
228 => 0.0029936622134962
301 => 0.0029371148159825
302 => 0.0029295703507789
303 => 0.0027762093238911
304 => 0.0029408935834763
305 => 0.0028690044909036
306 => 0.0030961012729772
307 => 0.0029663848090012
308 => 0.0029607929915002
309 => 0.0029523401392062
310 => 0.0028203359680996
311 => 0.0028492364922692
312 => 0.0029453062362832
313 => 0.0029795850032505
314 => 0.0029760094470181
315 => 0.0029448354421269
316 => 0.0029591067419293
317 => 0.002913133912815
318 => 0.0028968999500131
319 => 0.0028456610979069
320 => 0.0027703541404049
321 => 0.0027808260347299
322 => 0.0026316232467812
323 => 0.0025503296491154
324 => 0.0025278286527139
325 => 0.0024977393799445
326 => 0.0025312273161377
327 => 0.0026312005740293
328 => 0.0025106116145023
329 => 0.0023038703017252
330 => 0.0023162958068931
331 => 0.0023442122278399
401 => 0.0022921901620912
402 => 0.002242955642741
403 => 0.0022857610627931
404 => 0.0021981620431469
405 => 0.0023547981508549
406 => 0.002350561583109
407 => 0.0024089458377506
408 => 0.0024454547103436
409 => 0.0023613135789047
410 => 0.0023401523118897
411 => 0.0023522067313074
412 => 0.0021529740298834
413 => 0.0023926642755425
414 => 0.0023947371267403
415 => 0.0023769881163202
416 => 0.0025046157725276
417 => 0.0027739499351895
418 => 0.0026726155892545
419 => 0.0026333758676616
420 => 0.0025587811282296
421 => 0.0026581741895254
422 => 0.0026505423531912
423 => 0.0026160282949999
424 => 0.0025951540849153
425 => 0.0026336154570343
426 => 0.0025903882952766
427 => 0.0025826235092219
428 => 0.0025355773539013
429 => 0.0025187840169155
430 => 0.0025063508987732
501 => 0.0024926632573515
502 => 0.0025228547835801
503 => 0.0024544368131202
504 => 0.002371931447842
505 => 0.0023650720194395
506 => 0.0023840115043458
507 => 0.0023756321921536
508 => 0.0023650319025165
509 => 0.0023447930627821
510 => 0.0023387886313673
511 => 0.0023583001205294
512 => 0.0023362727868559
513 => 0.0023687753175821
514 => 0.0023599364276716
515 => 0.0023105631071417
516 => 0.0022490256694169
517 => 0.002248477857142
518 => 0.0022352197171258
519 => 0.0022183334824405
520 => 0.0022136361182558
521 => 0.0022821561097104
522 => 0.0024239904413906
523 => 0.0023961449682739
524 => 0.0024162661763196
525 => 0.0025152426052129
526 => 0.002546704235633
527 => 0.0025243735155704
528 => 0.0024938058486498
529 => 0.0024951506708608
530 => 0.0025996096421905
531 => 0.0026061246201003
601 => 0.002622585867467
602 => 0.0026437432222811
603 => 0.0025279767045822
604 => 0.0024896980782879
605 => 0.0024715595415323
606 => 0.0024156998688222
607 => 0.0024759397367936
608 => 0.002440840545455
609 => 0.0024455766255257
610 => 0.0024424922471665
611 => 0.0024441765263154
612 => 0.0023547543678706
613 => 0.0023873351025176
614 => 0.0023331633120295
615 => 0.0022606333656348
616 => 0.0022603902198222
617 => 0.0022781418214492
618 => 0.0022675824741813
619 => 0.0022391675421888
620 => 0.0022432037491636
621 => 0.0022078423289675
622 => 0.0022474972658146
623 => 0.0022486344275112
624 => 0.0022333651168061
625 => 0.0022944590183458
626 => 0.0023194892396545
627 => 0.002309438652248
628 => 0.0023187840636492
629 => 0.0023973020733966
630 => 0.0024101039349664
701 => 0.0024157896762322
702 => 0.0024081715361524
703 => 0.0023202192287299
704 => 0.0023241202875662
705 => 0.0022954969062187
706 => 0.0022713131652378
707 => 0.00227228038805
708 => 0.0022847139745805
709 => 0.0023390121761793
710 => 0.0024532795403901
711 => 0.0024576159033335
712 => 0.0024628717017216
713 => 0.0024414937283246
714 => 0.0024350459269885
715 => 0.0024435522412696
716 => 0.0024864650553746
717 => 0.0025968484639681
718 => 0.0025578315951112
719 => 0.0025261102733968
720 => 0.0025539384245472
721 => 0.0025496544988019
722 => 0.0025134938543206
723 => 0.0025124789454668
724 => 0.0024430751074498
725 => 0.0024174180887839
726 => 0.002395977163592
727 => 0.0023725642330121
728 => 0.0023586842629558
729 => 0.0023800102052959
730 => 0.0023848877006302
731 => 0.0023382581549899
801 => 0.0023319027202212
802 => 0.0023699814137597
803 => 0.0023532244004502
804 => 0.002370459404193
805 => 0.0023744580729004
806 => 0.0023738141951414
807 => 0.0023563179487155
808 => 0.0023674695344418
809 => 0.0023410927097515
810 => 0.0023124118745717
811 => 0.0022941152886062
812 => 0.0022781490906613
813 => 0.002287008065242
814 => 0.0022554274384467
815 => 0.0022453241603425
816 => 0.0023636916281163
817 => 0.0024511309492256
818 => 0.0024498595468669
819 => 0.0024421202119865
820 => 0.0024306211302209
821 => 0.0024856238259201
822 => 0.0024664619865521
823 => 0.0024804038257176
824 => 0.0024839526089223
825 => 0.002494693706858
826 => 0.0024985327261415
827 => 0.0024869285434966
828 => 0.0024479834892087
829 => 0.0023509361167081
830 => 0.0023057603028346
831 => 0.0022908515317937
901 => 0.0022913934373053
902 => 0.002276445264124
903 => 0.002280848171056
904 => 0.0022749141127744
905 => 0.002263676441992
906 => 0.0022863141707381
907 => 0.0022889229580911
908 => 0.002283639041701
909 => 0.0022848835952914
910 => 0.002241135024372
911 => 0.0022444611332021
912 => 0.0022259409365747
913 => 0.0022224686229713
914 => 0.0021756511786351
915 => 0.0020927072896963
916 => 0.0021386662557265
917 => 0.0020831542875706
918 => 0.0020621310640864
919 => 0.0021616517342786
920 => 0.002151662619265
921 => 0.0021345655965257
922 => 0.0021092755365624
923 => 0.0020998952073162
924 => 0.0020429032962673
925 => 0.0020395359101225
926 => 0.0020677826401494
927 => 0.0020547477461526
928 => 0.0020364418182808
929 => 0.0019701396031711
930 => 0.0018955939614788
1001 => 0.0018978440258242
1002 => 0.0019215556074756
1003 => 0.0019905002290694
1004 => 0.0019635623726586
1005 => 0.0019440186487563
1006 => 0.0019403586967516
1007 => 0.0019861706587191
1008 => 0.0020510041828059
1009 => 0.0020814226217391
1010 => 0.0020512788725781
1011 => 0.0020166513565966
1012 => 0.0020187589730459
1013 => 0.0020327800010545
1014 => 0.0020342534128516
1015 => 0.0020117144597138
1016 => 0.0020180590429994
1017 => 0.0020084210408277
1018 => 0.0019492726392902
1019 => 0.001948202832268
1020 => 0.0019336868606339
1021 => 0.0019332473227819
1022 => 0.0019085520338534
1023 => 0.0019050969922219
1024 => 0.0018560629971576
1025 => 0.0018883373211975
1026 => 0.0018666893991096
1027 => 0.0018340608742945
1028 => 0.0018284357043179
1029 => 0.0018282666049159
1030 => 0.0018617688042963
1031 => 0.0018879458284918
1101 => 0.0018670659739826
1102 => 0.0018623120358498
1103 => 0.0019130716577915
1104 => 0.0019066120332152
1105 => 0.0019010180399922
1106 => 0.0020451990518243
1107 => 0.0019310685303746
1108 => 0.0018813011086801
1109 => 0.0018197044737561
1110 => 0.0018397606486845
1111 => 0.0018439867794284
1112 => 0.0016958579760642
1113 => 0.0016357621389876
1114 => 0.0016151395123667
1115 => 0.0016032708991853
1116 => 0.0016086795752488
1117 => 0.0015545862733412
1118 => 0.0015909378668437
1119 => 0.0015440976397847
1120 => 0.001536244723287
1121 => 0.0016200008516591
1122 => 0.0016316550276259
1123 => 0.001581934692283
1124 => 0.0016138631965643
1125 => 0.0016022854770725
1126 => 0.001544900581038
1127 => 0.0015427089001043
1128 => 0.0015139151764508
1129 => 0.0014688585744967
1130 => 0.0014482664983737
1201 => 0.0014375419663402
1202 => 0.0014419671172742
1203 => 0.0014397296255501
1204 => 0.0014251284785528
1205 => 0.0014405665462045
1206 => 0.0014011286628045
1207 => 0.0013854241798619
1208 => 0.001378330829258
1209 => 0.0013433274377806
1210 => 0.0013990333997
1211 => 0.0014100081759634
1212 => 0.0014210045759262
1213 => 0.0015167207300419
1214 => 0.0015119390214733
1215 => 0.0015551633381467
1216 => 0.0015534837206852
1217 => 0.0015411554453824
1218 => 0.001489144479783
1219 => 0.0015098751236646
1220 => 0.0014460694240543
1221 => 0.0014938769925682
1222 => 0.0014720596147902
1223 => 0.0014865005151951
1224 => 0.0014605344741836
1225 => 0.001474905153391
1226 => 0.0014126107025528
1227 => 0.0013544410208667
1228 => 0.001377850198856
1229 => 0.0014032986524947
1230 => 0.0014584773841287
1231 => 0.0014256133867821
]
'min_raw' => 0.0013433274377806
'max_raw' => 0.0040098651172416
'avg_raw' => 0.0026765962775111
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001343'
'max' => '$0.0040098'
'avg' => '$0.002676'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0025447425622194
'max_diff' => 0.00012179511724164
'year' => 2026
]
1 => [
'items' => [
101 => 0.0014374325229533
102 => 0.0013978403952794
103 => 0.0013161505269561
104 => 0.0013166128827393
105 => 0.0013040466762083
106 => 0.0012931876390693
107 => 0.0014293882122117
108 => 0.001412449517929
109 => 0.0013854599254711
110 => 0.0014215865674998
111 => 0.0014311390250591
112 => 0.0014314109700967
113 => 0.0014577680355572
114 => 0.0014718348061183
115 => 0.0014743141353986
116 => 0.0015157875473829
117 => 0.0015296888880325
118 => 0.0015869465427769
119 => 0.0014706413389153
120 => 0.0014682461097785
121 => 0.0014220949434397
122 => 0.0013928251441265
123 => 0.00142409907164
124 => 0.0014518035021002
125 => 0.0014229557973199
126 => 0.0014267226985559
127 => 0.0013879970118323
128 => 0.0014018396226231
129 => 0.0014137627438371
130 => 0.0014071794971114
131 => 0.0013973240581302
201 => 0.0014495320547396
202 => 0.0014465862749661
203 => 0.0014952035616655
204 => 0.0015331042133031
205 => 0.0016010289565897
206 => 0.0015301459459732
207 => 0.0015275626873319
208 => 0.0015528144549184
209 => 0.0015296850221185
210 => 0.0015443020252472
211 => 0.0015986739314076
212 => 0.0015998227241067
213 => 0.0015805789662619
214 => 0.0015794079818482
215 => 0.0015831039560459
216 => 0.0016047513923637
217 => 0.0015971871129557
218 => 0.0016059406885907
219 => 0.0016168871689618
220 => 0.0016621664529881
221 => 0.0016730831350746
222 => 0.0016465612572552
223 => 0.0016489558858694
224 => 0.0016390359755232
225 => 0.0016294534664248
226 => 0.0016509935474649
227 => 0.001690358468937
228 => 0.0016901135818035
301 => 0.0016992454784403
302 => 0.0017049345743923
303 => 0.0016805128098935
304 => 0.001664615139218
305 => 0.0016707113177501
306 => 0.0016804592399804
307 => 0.00166755019795
308 => 0.0015878696104888
309 => 0.0016120396107089
310 => 0.0016080165408196
311 => 0.0016022872000753
312 => 0.0016265903221977
313 => 0.0016242462267811
314 => 0.0015540314683449
315 => 0.0015585263893688
316 => 0.00155430481938
317 => 0.0015679455756657
318 => 0.0015289483765139
319 => 0.0015409436523228
320 => 0.0015484669768615
321 => 0.0015528982728116
322 => 0.0015689071523517
323 => 0.0015670286951115
324 => 0.0015687903848122
325 => 0.0015925273269826
326 => 0.0017125806349456
327 => 0.0017191148716153
328 => 0.0016869379004687
329 => 0.0016997919657791
330 => 0.0016751149712583
331 => 0.0016916808030016
401 => 0.0017030147243539
402 => 0.0016517989131507
403 => 0.0016487662451991
404 => 0.0016239873999438
405 => 0.0016373021478385
406 => 0.0016161174265738
407 => 0.0016213154161621
408 => 0.0016067813841207
409 => 0.0016329397480983
410 => 0.0016621888636239
411 => 0.0016695783452883
412 => 0.0016501398004012
413 => 0.0016360650128405
414 => 0.001611354322407
415 => 0.0016524487513115
416 => 0.0016644660146532
417 => 0.0016523856297431
418 => 0.0016495863405978
419 => 0.0016442816927256
420 => 0.0016507117467205
421 => 0.0016644005660562
422 => 0.0016579451716503
423 => 0.0016622090733848
424 => 0.0016459594768892
425 => 0.0016805208945138
426 => 0.0017354127433597
427 => 0.0017355892296294
428 => 0.0017291338004265
429 => 0.0017264923778809
430 => 0.0017331160399912
501 => 0.0017367091049693
502 => 0.0017581288136622
503 => 0.0017811130144886
504 => 0.001888370250953
505 => 0.0018582528481506
506 => 0.0019534178491033
507 => 0.0020286810092281
508 => 0.0020512491400904
509 => 0.0020304875216097
510 => 0.0019594631463078
511 => 0.0019559783516158
512 => 0.0020621187540346
513 => 0.0020321292288129
514 => 0.0020285620702137
515 => 0.0019906135295272
516 => 0.0020130458170911
517 => 0.0020081395467391
518 => 0.0020003947589655
519 => 0.0020431940009906
520 => 0.0021233103613471
521 => 0.0021108234752591
522 => 0.0021015025940443
523 => 0.0020606612058291
524 => 0.002085256843789
525 => 0.0020764988082099
526 => 0.0021141288870444
527 => 0.0020918376619511
528 => 0.0020319020286638
529 => 0.0020414469758153
530 => 0.0020400042762551
531 => 0.0020696949309726
601 => 0.0020607825333938
602 => 0.002038263987589
603 => 0.0021230365323372
604 => 0.0021175318748109
605 => 0.0021253362206432
606 => 0.002128771935036
607 => 0.0021803714891645
608 => 0.0022015101754893
609 => 0.0022063090273699
610 => 0.0022263891444538
611 => 0.0022058094157642
612 => 0.0022881430036203
613 => 0.0023428900352466
614 => 0.0024064815297369
615 => 0.0024994057949697
616 => 0.0025343461782948
617 => 0.0025280345107863
618 => 0.0025984886281559
619 => 0.0027250931109619
620 => 0.0025536248965221
621 => 0.0027341813426845
622 => 0.0026770192564539
623 => 0.0025414889783032
624 => 0.0025327624261873
625 => 0.0026245451040899
626 => 0.0028281102499223
627 => 0.0027771194897081
628 => 0.0028281936525391
629 => 0.0027686129286328
630 => 0.0027656542435051
701 => 0.0028252999497657
702 => 0.0029646653935616
703 => 0.0028984580952497
704 => 0.002803533698424
705 => 0.0028736243958529
706 => 0.0028129053471521
707 => 0.0026760883362377
708 => 0.0027770804980347
709 => 0.0027095499155323
710 => 0.0027292589296297
711 => 0.0028711981696338
712 => 0.0028541196647519
713 => 0.0028762208314961
714 => 0.0028372128506808
715 => 0.0028007732456054
716 => 0.0027327560166914
717 => 0.0027126194684189
718 => 0.0027181844859243
719 => 0.0027126167106726
720 => 0.0026745616962058
721 => 0.002666343719455
722 => 0.0026526467314991
723 => 0.0026568920008017
724 => 0.0026311376562494
725 => 0.0026797414255386
726 => 0.0026887627134137
727 => 0.0027241324834844
728 => 0.0027278046903478
729 => 0.0028263089965375
730 => 0.0027720544799858
731 => 0.0028084530937983
801 => 0.0028051972591819
802 => 0.0025444263303945
803 => 0.00258035826358
804 => 0.0026362570755549
805 => 0.0026110747365292
806 => 0.0025754728009068
807 => 0.0025467223290367
808 => 0.0025031624242668
809 => 0.0025644721537366
810 => 0.0026450879284265
811 => 0.0027298492394302
812 => 0.0028316844008201
813 => 0.0028089559782899
814 => 0.0027279455019231
815 => 0.0027315795727147
816 => 0.0027540439683944
817 => 0.0027249505348836
818 => 0.00271637031337
819 => 0.0027528651777167
820 => 0.0027531164977902
821 => 0.0027196409864772
822 => 0.0026824390816067
823 => 0.002682283204267
824 => 0.002675663484623
825 => 0.0027697905620517
826 => 0.0028215509373165
827 => 0.0028274851809246
828 => 0.0028211515154401
829 => 0.0028235890919109
830 => 0.0027934708700063
831 => 0.0028623121939989
901 => 0.0029254878005958
902 => 0.0029085553884779
903 => 0.0028831712956289
904 => 0.0028629516430111
905 => 0.0029037922809109
906 => 0.0029019737115944
907 => 0.0029249360167854
908 => 0.0029238943139852
909 => 0.0029161729544055
910 => 0.0029085556642319
911 => 0.0029387573587505
912 => 0.0029300597557535
913 => 0.0029213486429768
914 => 0.0029038771726983
915 => 0.0029062518356795
916 => 0.002880872125752
917 => 0.0028691303106431
918 => 0.0026925615839579
919 => 0.0026453766506381
920 => 0.0026602219911984
921 => 0.00266510946277
922 => 0.00264457451932
923 => 0.0026740163532331
924 => 0.0026694278746043
925 => 0.0026872789607785
926 => 0.002676126377141
927 => 0.0026765840830636
928 => 0.0027093814535601
929 => 0.0027189026697453
930 => 0.0027140601023479
1001 => 0.0027174516705595
1002 => 0.0027956089285053
1003 => 0.0027844974657538
1004 => 0.0027785947226267
1005 => 0.002780229822813
1006 => 0.0028002006779287
1007 => 0.0028057914269928
1008 => 0.0027821030303531
1009 => 0.0027932746151494
1010 => 0.0028408418053266
1011 => 0.0028574876298188
1012 => 0.0029106131111489
1013 => 0.0028880444624497
1014 => 0.0029294701938853
1015 => 0.0030567987692456
1016 => 0.0031585176457107
1017 => 0.0030649727632031
1018 => 0.0032517665260104
1019 => 0.0033972122643297
1020 => 0.0033916298146404
1021 => 0.0033662679859439
1022 => 0.0032006818797424
1023 => 0.003048307076066
1024 => 0.0031757750695172
1025 => 0.0031761000116466
1026 => 0.0031651503979633
1027 => 0.003097143287776
1028 => 0.0031627838979428
1029 => 0.0031679942112061
1030 => 0.0031650778213128
1031 => 0.0031129369293832
1101 => 0.0030333274246544
1102 => 0.0030488829313202
1103 => 0.0030743631685625
1104 => 0.0030261237637285
1105 => 0.0030107083509554
1106 => 0.0030393685362028
1107 => 0.0031317176246567
1108 => 0.0031142595644264
1109 => 0.0031138036639202
1110 => 0.0031884966489554
1111 => 0.0031350325914252
1112 => 0.0030490791360749
1113 => 0.0030273747550121
1114 => 0.0029503388240623
1115 => 0.0030035478159619
1116 => 0.0030054627128542
1117 => 0.0029763206917735
1118 => 0.0030514438504747
1119 => 0.0030507515773421
1120 => 0.0031220698359223
1121 => 0.003258403560413
1122 => 0.003218082969506
1123 => 0.0031711945091489
1124 => 0.0031762925848657
1125 => 0.0032322058923559
1126 => 0.0031983994302707
1127 => 0.0032105564697435
1128 => 0.0032321874912206
1129 => 0.0032452380235458
1130 => 0.0031744148141004
1201 => 0.003157902536113
1202 => 0.0031241242103727
1203 => 0.0031153120756894
1204 => 0.0031428238171969
1205 => 0.0031355754453139
1206 => 0.0030053017731853
1207 => 0.002991687449612
1208 => 0.0029921049814792
1209 => 0.0029578711175283
1210 => 0.0029056562579344
1211 => 0.0030428737913598
1212 => 0.0030318533030676
1213 => 0.0030196875369111
1214 => 0.0030211777738483
1215 => 0.0030807392543746
1216 => 0.0030461905877425
1217 => 0.0031380438803991
1218 => 0.0031191616047916
1219 => 0.0030997950700641
1220 => 0.0030971180250457
1221 => 0.0030896635614508
1222 => 0.0030640994320999
1223 => 0.0030332292097427
1224 => 0.0030128460150096
1225 => 0.0027791911904085
1226 => 0.0028225561667469
1227 => 0.0028724436191822
1228 => 0.0028896645678515
1229 => 0.0028602069434993
1230 => 0.0030652625986556
1231 => 0.0031027282428181
]
'min_raw' => 0.0012931876390693
'max_raw' => 0.0033972122643297
'avg_raw' => 0.0023451999516995
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001293'
'max' => '$0.003397'
'avg' => '$0.002345'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.0139798711248E-5
'max_diff' => -0.00061265285291194
'year' => 2027
]
2 => [
'items' => [
101 => 0.0029892423628264
102 => 0.0029680137882779
103 => 0.0030666543404689
104 => 0.0030071620291806
105 => 0.0030339514133109
106 => 0.0029760474178308
107 => 0.0030937038662615
108 => 0.0030928075212529
109 => 0.003047036505422
110 => 0.0030857218545759
111 => 0.0030789993231607
112 => 0.0030273239590166
113 => 0.0030953420674766
114 => 0.0030953758036097
115 => 0.0030513221960202
116 => 0.0029998772269303
117 => 0.002990680081533
118 => 0.0029837512679387
119 => 0.0030322473499108
120 => 0.0030757287853636
121 => 0.0031566369567793
122 => 0.003176979193404
123 => 0.0032563762972094
124 => 0.0032090991876681
125 => 0.0032300565179867
126 => 0.0032528086646429
127 => 0.0032637168804323
128 => 0.0032459425281705
129 => 0.003369278911532
130 => 0.0033796922812169
131 => 0.0033831837939969
201 => 0.0033415954594717
202 => 0.003378535634401
203 => 0.0033612525498816
204 => 0.0034062183344219
205 => 0.0034132695435897
206 => 0.0034072974202786
207 => 0.0034095355853642
208 => 0.0033042897401942
209 => 0.003298832187906
210 => 0.0032244180752071
211 => 0.0032547423761733
212 => 0.0031980525489986
213 => 0.0032160294771656
214 => 0.0032239535358112
215 => 0.0032198144572611
216 => 0.0032564568666517
217 => 0.00322530333312
218 => 0.0031430840360149
219 => 0.0030608423383172
220 => 0.0030598098607952
221 => 0.003038157073478
222 => 0.0030225060741534
223 => 0.0030255210118724
224 => 0.0030361460456384
225 => 0.0030218885278757
226 => 0.0030249310921649
227 => 0.0030754579318651
228 => 0.003085590729226
229 => 0.003051155524654
301 => 0.0029128932093213
302 => 0.0028789632903338
303 => 0.0029033514432425
304 => 0.0028916954769504
305 => 0.0023338239374775
306 => 0.0024648875806511
307 => 0.0023870140143781
308 => 0.0024229017365072
309 => 0.0023434129906047
310 => 0.0023813491865115
311 => 0.0023743437563356
312 => 0.0025850902161037
313 => 0.0025817997000067
314 => 0.0025833746959321
315 => 0.0025081960367828
316 => 0.0026279576821306
317 => 0.0026869565751184
318 => 0.0026760374502311
319 => 0.0026787855587219
320 => 0.0026315639499303
321 => 0.0025838319043265
322 => 0.0025308897198427
323 => 0.0026292497547618
324 => 0.0026183137979406
325 => 0.0026433969482554
326 => 0.002707190461821
327 => 0.0027165842990215
328 => 0.0027292097114819
329 => 0.0027246843998529
330 => 0.0028324956821739
331 => 0.0028194390245231
401 => 0.0028509018128048
402 => 0.0027861804702218
403 => 0.002712942127683
404 => 0.0027268623422578
405 => 0.002725521713655
406 => 0.0027084539728388
407 => 0.0026930459795802
408 => 0.0026673960119798
409 => 0.0027485563049484
410 => 0.0027452613452699
411 => 0.002798602912492
412 => 0.0027891742723532
413 => 0.0027262075059264
414 => 0.0027284563763077
415 => 0.0027435811103922
416 => 0.0027959279877497
417 => 0.0028114681049966
418 => 0.0028042693035213
419 => 0.0028213083326492
420 => 0.0028347752865347
421 => 0.0028229995747163
422 => 0.0029897188212862
423 => 0.0029204853664851
424 => 0.0029542292706318
425 => 0.0029622769929402
426 => 0.0029416629214727
427 => 0.0029461333754394
428 => 0.0029529048950733
429 => 0.0029940202362905
430 => 0.0031019187884642
501 => 0.0031497063227317
502 => 0.0032934774773709
503 => 0.0031457382332454
504 => 0.0031369719979048
505 => 0.0031628695243282
506 => 0.0032472784118237
507 => 0.0033156838870151
508 => 0.0033383779295426
509 => 0.0033413773219005
510 => 0.0033839528543535
511 => 0.003408356355569
512 => 0.0033787830648661
513 => 0.003353722797448
514 => 0.0032639600301512
515 => 0.0032743503148817
516 => 0.0033459290731252
517 => 0.0034470382851121
518 => 0.0035338005076173
519 => 0.0035034194012647
520 => 0.0037352057970165
521 => 0.0037581864713928
522 => 0.0037550112852482
523 => 0.0038073646814602
524 => 0.0037034538515631
525 => 0.0036590299586045
526 => 0.0033591411117099
527 => 0.0034433976453802
528 => 0.0035658694652827
529 => 0.0035496598606728
530 => 0.0034607175513785
531 => 0.0035337330369001
601 => 0.0035095918339813
602 => 0.0034905506656198
603 => 0.0035777819491958
604 => 0.0034818675696404
605 => 0.0035649126459759
606 => 0.0034584064765843
607 => 0.0035035581795994
608 => 0.0034779278892259
609 => 0.0034945138282278
610 => 0.003397552767729
611 => 0.0034498706023775
612 => 0.0033953761738025
613 => 0.003395350336348
614 => 0.0033941473688169
615 => 0.00345825982237
616 => 0.0034603505271786
617 => 0.0034129713271343
618 => 0.0034061432442058
619 => 0.0034313902455359
620 => 0.0034018326191784
621 => 0.0034156624465176
622 => 0.0034022515105599
623 => 0.0033992324263982
624 => 0.0033751758501437
625 => 0.0033648116156439
626 => 0.0033688756990447
627 => 0.0033550028872191
628 => 0.0033466440162927
629 => 0.0033924845789999
630 => 0.0033679938155485
701 => 0.003388731018254
702 => 0.0033650983585274
703 => 0.0032831772636556
704 => 0.003236063575695
705 => 0.0030813222215716
706 => 0.0031252066776449
707 => 0.0031543021174233
708 => 0.0031446860747501
709 => 0.0031653450553266
710 => 0.0031666133489488
711 => 0.00315989690377
712 => 0.0031521201206828
713 => 0.0031483348127591
714 => 0.003176547396778
715 => 0.003192925751393
716 => 0.0031572222340518
717 => 0.0031488573994841
718 => 0.0031849556267612
719 => 0.003206975524547
720 => 0.0033695580778852
721 => 0.0033575134371992
722 => 0.0033877431216798
723 => 0.0033843397231196
724 => 0.0034160252484216
725 => 0.0034678176909884
726 => 0.0033625091738555
727 => 0.0033807870911352
728 => 0.003376305767917
729 => 0.0034252316797477
730 => 0.0034253844211039
731 => 0.0033960508929309
801 => 0.0034119530744357
802 => 0.0034030769129732
803 => 0.003419117336421
804 => 0.0033573525736796
805 => 0.0034325753876045
806 => 0.0034752218758489
807 => 0.0034758140223795
808 => 0.0034960281193439
809 => 0.0035165668125812
810 => 0.0035559890457071
811 => 0.0035154673478958
812 => 0.003442572758241
813 => 0.003447835512166
814 => 0.0034050974409225
815 => 0.0034058158756213
816 => 0.003401980814894
817 => 0.0034134901208265
818 => 0.0033598782191073
819 => 0.0033724608252829
820 => 0.0033548451029535
821 => 0.0033807487979952
822 => 0.0033528807041645
823 => 0.0033763036068873
824 => 0.0033864121552209
825 => 0.0034237129161934
826 => 0.0033473713514405
827 => 0.0031917057330399
828 => 0.0032244285332909
829 => 0.0031760289413992
830 => 0.003180508507899
831 => 0.0031895579451464
901 => 0.0031602257582361
902 => 0.0031658214151351
903 => 0.0031656214988947
904 => 0.0031638987287378
905 => 0.0031562682940597
906 => 0.0031452026541408
907 => 0.0031892847577532
908 => 0.0031967751661531
909 => 0.0032134254161608
910 => 0.0032629652662112
911 => 0.0032580150669611
912 => 0.0032660890473198
913 => 0.0032484635935301
914 => 0.0031813261021493
915 => 0.0031849719909395
916 => 0.0031395076993045
917 => 0.003212262792006
918 => 0.003195033425734
919 => 0.0031839255412147
920 => 0.0031808946520098
921 => 0.0032305573017665
922 => 0.0032454171449403
923 => 0.0032361574878813
924 => 0.0032171656611061
925 => 0.0032536355829442
926 => 0.0032633933954856
927 => 0.0032655778098593
928 => 0.0033301955189425
929 => 0.0032691892219838
930 => 0.0032838740440122
1001 => 0.0033984408335104
1002 => 0.0032945445645718
1003 => 0.0033495807353919
1004 => 0.0033468870012246
1005 => 0.0033750416438937
1006 => 0.0033445774987533
1007 => 0.0033449551383433
1008 => 0.0033699545536727
1009 => 0.0033348473835109
1010 => 0.0033261543544655
1011 => 0.0033141449971001
1012 => 0.003340366989554
1013 => 0.0033560858881114
1014 => 0.0034827686662254
1015 => 0.0035646115183236
1016 => 0.0035610585042689
1017 => 0.0035935264017657
1018 => 0.0035788993165715
1019 => 0.0035316646000494
1020 => 0.0036122885014926
1021 => 0.0035867757256287
1022 => 0.0035888789678729
1023 => 0.0035888006850915
1024 => 0.0036057644506754
1025 => 0.0035937440680529
1026 => 0.003570050660037
1027 => 0.003585779450003
1028 => 0.0036324883330568
1029 => 0.0037774741392592
1030 => 0.0038586101172165
1031 => 0.0037725896515088
1101 => 0.003831925416894
1102 => 0.0037963451011579
1103 => 0.0037898790993659
1104 => 0.0038271463449064
1105 => 0.0038644788218269
1106 => 0.0038621009044398
1107 => 0.0038349994432395
1108 => 0.0038196905154815
1109 => 0.0039356148453319
1110 => 0.0040210259168462
1111 => 0.004015201454372
1112 => 0.0040409087375164
1113 => 0.0041163861159248
1114 => 0.0041232868214931
1115 => 0.0041224174912024
1116 => 0.0041053133724371
1117 => 0.0041796306534562
1118 => 0.0042416274367704
1119 => 0.0041013542631284
1120 => 0.0041547684513406
1121 => 0.0041787478013267
1122 => 0.0042139566014589
1123 => 0.004273359748962
1124 => 0.004337887323057
1125 => 0.0043470122295429
1126 => 0.0043405376717242
1127 => 0.0042979800020142
1128 => 0.004368586843563
1129 => 0.0044099466754081
1130 => 0.004434575508769
1201 => 0.004497030132325
1202 => 0.0041788958896287
1203 => 0.0039537046603505
1204 => 0.0039185377980979
1205 => 0.0039900509953571
1206 => 0.0040089084551672
1207 => 0.004001307036763
1208 => 0.0037478338347195
1209 => 0.0039172033141466
1210 => 0.0040994306330199
1211 => 0.004106430726482
1212 => 0.0041976575325035
1213 => 0.0042273647200572
1214 => 0.0043008142562753
1215 => 0.0042962199677867
1216 => 0.0043141037610184
1217 => 0.0043099925866586
1218 => 0.0044460423858781
1219 => 0.0045961255180079
1220 => 0.0045909286163773
1221 => 0.0045693523904307
1222 => 0.0046013967652547
1223 => 0.0047562986414985
1224 => 0.004742037758986
1225 => 0.0047558909916078
1226 => 0.0049385290335864
1227 => 0.0051759844681172
1228 => 0.0050656625786418
1229 => 0.0053050293345349
1230 => 0.005455698019083
1231 => 0.0057162639295763
]
'min_raw' => 0.0023338239374775
'max_raw' => 0.0057162639295763
'avg_raw' => 0.0040250439335269
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002333'
'max' => '$0.005716'
'avg' => '$0.004025'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0010406362984082
'max_diff' => 0.0023190516652466
'year' => 2028
]
3 => [
'items' => [
101 => 0.0056836397942684
102 => 0.0057850761911024
103 => 0.0056252357832047
104 => 0.0052582098975953
105 => 0.0052001266462789
106 => 0.0053164107863164
107 => 0.0056022839977582
108 => 0.0053074076215517
109 => 0.0053670607284105
110 => 0.0053498806296221
111 => 0.0053489651751684
112 => 0.0053839043482443
113 => 0.0053332232553929
114 => 0.005126739365762
115 => 0.0052213697155627
116 => 0.005184828392982
117 => 0.0052253737147213
118 => 0.0054441800939858
119 => 0.0053474405780203
120 => 0.0052455333564309
121 => 0.0053733476273269
122 => 0.0055360991159261
123 => 0.0055259144202621
124 => 0.0055061518538014
125 => 0.005617552406206
126 => 0.005801553481479
127 => 0.005851288232749
128 => 0.0058880014093544
129 => 0.0058930635361341
130 => 0.005945206588059
131 => 0.0056648202561176
201 => 0.0061098005657403
202 => 0.0061866363728792
203 => 0.006172194425655
204 => 0.0062575941915448
205 => 0.006232467414037
206 => 0.0061960626556989
207 => 0.0063314394496854
208 => 0.0061762408797239
209 => 0.0059559560486201
210 => 0.0058351034335366
211 => 0.0059942519059809
212 => 0.0060914383245863
213 => 0.0061556723650674
214 => 0.0061751095469057
215 => 0.0056865858489087
216 => 0.0054232986704548
217 => 0.0055920627332501
218 => 0.0057979665373339
219 => 0.0056636764500896
220 => 0.0056689403672648
221 => 0.0054774779936686
222 => 0.005814906708999
223 => 0.0057657461833976
224 => 0.0060207910771813
225 => 0.0059599225664167
226 => 0.0061679017765116
227 => 0.0061131338803513
228 => 0.006340472355281
301 => 0.006431163827874
302 => 0.0065834489253582
303 => 0.0066954704629794
304 => 0.0067612516525012
305 => 0.0067573023966213
306 => 0.007017960241565
307 => 0.0068642594170932
308 => 0.0066711749570536
309 => 0.0066676826683452
310 => 0.0067676838462276
311 => 0.0069772588810858
312 => 0.0070315986384318
313 => 0.0070619671496222
314 => 0.0070154567175987
315 => 0.0068486254884718
316 => 0.0067765886095884
317 => 0.0068379661175064
318 => 0.0067629066995521
319 => 0.0068924803128943
320 => 0.0070704125594434
321 => 0.0070336702541514
322 => 0.0071564942720284
323 => 0.0072836042090677
324 => 0.0074653771278983
325 => 0.0075128992999123
326 => 0.0075914516431451
327 => 0.0076723078074322
328 => 0.0076982766282665
329 => 0.007747859164891
330 => 0.0077475978404484
331 => 0.007897018151856
401 => 0.0080618333825005
402 => 0.0081240473165875
403 => 0.008267104827524
404 => 0.0080221238533783
405 => 0.0082079447364064
406 => 0.0083755598242962
407 => 0.008175722206555
408 => 0.008451151806418
409 => 0.0084618461136438
410 => 0.0086233174558868
411 => 0.0084596353163574
412 => 0.0083624413843967
413 => 0.0086430366241581
414 => 0.0087788078220114
415 => 0.0087379124322753
416 => 0.0084266964971294
417 => 0.0082455554741951
418 => 0.0077714744776821
419 => 0.0083330438968267
420 => 0.0086065679796874
421 => 0.0084259881358333
422 => 0.0085170621053711
423 => 0.0090139321523355
424 => 0.0092031080962664
425 => 0.0091637608223685
426 => 0.009170409863946
427 => 0.0092724857695048
428 => 0.0097251465489808
429 => 0.0094539017173241
430 => 0.0096612582277757
501 => 0.0097712393732397
502 => 0.0098733959904625
503 => 0.0096225316254937
504 => 0.0092961607725988
505 => 0.0091927854233706
506 => 0.0084080330292018
507 => 0.0083671832590784
508 => 0.0083442530452334
509 => 0.008199681290484
510 => 0.0080860874927873
511 => 0.0079957534873916
512 => 0.0077586900812158
513 => 0.0078386920217309
514 => 0.0074608624312649
515 => 0.0077025844137865
516 => 0.0070995592643883
517 => 0.0076017765277962
518 => 0.0073284425043402
519 => 0.0075119789497959
520 => 0.0075113386084279
521 => 0.0071733898220609
522 => 0.0069784680148957
523 => 0.0071026797768916
524 => 0.0072358446456932
525 => 0.0072574501976358
526 => 0.0074301019259957
527 => 0.0074782853122445
528 => 0.0073322874024435
529 => 0.0070870629085184
530 => 0.007144022965482
531 => 0.0069773137211593
601 => 0.0066851621828623
602 => 0.0068949905181437
603 => 0.0069666351373095
604 => 0.006998277482637
605 => 0.0067109799985527
606 => 0.0066207048915216
607 => 0.0065726431820198
608 => 0.0070499764110505
609 => 0.0070761258028556
610 => 0.0069423418172291
611 => 0.0075470581181789
612 => 0.0074101921950552
613 => 0.0075631049641497
614 => 0.0071388544373396
615 => 0.0071550613787929
616 => 0.0069542143804847
617 => 0.007066675278936
618 => 0.0069871915406946
619 => 0.0070575895497014
620 => 0.0070997858260382
621 => 0.0073005998673303
622 => 0.0076040695015757
623 => 0.0072706049461194
624 => 0.0071253096640067
625 => 0.0072154500398577
626 => 0.0074555057393089
627 => 0.0078192024122025
628 => 0.0076038866617718
629 => 0.0076994401355144
630 => 0.007720314318649
701 => 0.0075615484557037
702 => 0.0078250563360306
703 => 0.0079662723498319
704 => 0.0081111307594555
705 => 0.0082369072576911
706 => 0.0080532711251471
707 => 0.0082497881101748
708 => 0.0080914301101602
709 => 0.0079493666133979
710 => 0.0079495820650813
711 => 0.0078604635583458
712 => 0.0076877852218913
713 => 0.0076559406872881
714 => 0.0078215999778153
715 => 0.0079544430408249
716 => 0.0079653846317698
717 => 0.0080389333771749
718 => 0.0080824587670933
719 => 0.0085090667581923
720 => 0.0086806520212988
721 => 0.0088904632330825
722 => 0.0089721965243842
723 => 0.0092181844281957
724 => 0.0090195292177072
725 => 0.0089765489133181
726 => 0.0083798627207014
727 => 0.0084775700513154
728 => 0.0086340089149836
729 => 0.0083824423399433
730 => 0.0085420034291627
731 => 0.0085735041681406
801 => 0.0083738942039866
802 => 0.0084805145104786
803 => 0.0081973625871535
804 => 0.0076102414397393
805 => 0.0078257099697051
806 => 0.007984367333683
807 => 0.0077579437129747
808 => 0.00816379928929
809 => 0.0079267068401663
810 => 0.0078515599162387
811 => 0.0075583849741843
812 => 0.0076967522614956
813 => 0.0078838959988128
814 => 0.0077682629269454
815 => 0.0080082189134633
816 => 0.0083480605842968
817 => 0.0085902519968541
818 => 0.0086088444462075
819 => 0.0084531315934976
820 => 0.0087026624337114
821 => 0.0087044799934634
822 => 0.0084230081863388
823 => 0.0082506082717165
824 => 0.0082114386483819
825 => 0.0083092920471289
826 => 0.0084281041379418
827 => 0.0086154376903575
828 => 0.0087286394326543
829 => 0.0090238095389993
830 => 0.0091036741065862
831 => 0.0091914210529401
901 => 0.0093086780334251
902 => 0.00944947510257
903 => 0.0091414191308625
904 => 0.0091536587689066
905 => 0.0088668013133779
906 => 0.008560252982625
907 => 0.0087928849538775
908 => 0.009097020310556
909 => 0.0090272513236942
910 => 0.0090194008874212
911 => 0.009032603143703
912 => 0.0089799996060513
913 => 0.008742075754831
914 => 0.0086225918862302
915 => 0.008776756560311
916 => 0.0088586882235047
917 => 0.0089857570879263
918 => 0.008970093168288
919 => 0.0092974089168382
920 => 0.0094245939192103
921 => 0.0093920545530505
922 => 0.0093980425795275
923 => 0.0096283049511747
924 => 0.0098844040655149
925 => 0.010124274681349
926 => 0.010368281374458
927 => 0.010074121782172
928 => 0.0099247656824502
929 => 0.010078863053057
930 => 0.0099970968191355
1001 => 0.010466949852689
1002 => 0.010499481457307
1003 => 0.010969300515138
1004 => 0.011415214746033
1005 => 0.011135144006991
1006 => 0.011399238099244
1007 => 0.011684877391923
1008 => 0.012235921930806
1009 => 0.012050349516091
1010 => 0.01190820395471
1011 => 0.011773877086047
1012 => 0.012053389975944
1013 => 0.01241297884347
1014 => 0.012490430841436
1015 => 0.012615932667081
1016 => 0.012483982843049
1017 => 0.012642901872299
1018 => 0.013203955878115
1019 => 0.013052354133183
1020 => 0.012837055284183
1021 => 0.013279953537575
1022 => 0.013440236693754
1023 => 0.014565187824759
1024 => 0.015985485097067
1025 => 0.015397472700157
1026 => 0.015032474430353
1027 => 0.015118257681632
1028 => 0.015636902165382
1029 => 0.015803474312609
1030 => 0.015350673795583
1031 => 0.015510610593077
1101 => 0.016391878071908
1102 => 0.016864649799855
1103 => 0.016222562291588
1104 => 0.014451068321842
1105 => 0.012817669978466
1106 => 0.013250920772015
1107 => 0.013201803577364
1108 => 0.014148615543011
1109 => 0.013048738481704
1110 => 0.013067257590625
1111 => 0.01403364862503
1112 => 0.013775832065187
1113 => 0.013358202256892
1114 => 0.012820719138243
1115 => 0.01182713188225
1116 => 0.010947083941386
1117 => 0.012673060616357
1118 => 0.012598633363647
1119 => 0.012490851672223
1120 => 0.012730708163291
1121 => 0.013895383199464
1122 => 0.013868533670195
1123 => 0.013697730663736
1124 => 0.013827283238747
1125 => 0.013335491064115
1126 => 0.013462237105417
1127 => 0.012817411239823
1128 => 0.013108899461379
1129 => 0.013357306210891
1130 => 0.01340717754358
1201 => 0.013519540202622
1202 => 0.01255941358347
1203 => 0.012990482247633
1204 => 0.013243694702157
1205 => 0.012099671620669
1206 => 0.01322108104415
1207 => 0.012542699915119
1208 => 0.012312447170983
1209 => 0.01262245215747
1210 => 0.012501642912746
1211 => 0.01239777821829
1212 => 0.012339819934161
1213 => 0.012567453382235
1214 => 0.012556834009802
1215 => 0.012184381507004
1216 => 0.011698532400211
1217 => 0.011861599307904
1218 => 0.011802355571579
1219 => 0.011587648628542
1220 => 0.011732335184334
1221 => 0.011095208816817
1222 => 0.0099990660164521
1223 => 0.010723211526135
1224 => 0.010695332711731
1225 => 0.010681274949305
1226 => 0.01122545028592
1227 => 0.011173140383566
1228 => 0.011078197398572
1229 => 0.011585904926168
1230 => 0.011400584848965
1231 => 0.011971697660001
]
'min_raw' => 0.005126739365762
'max_raw' => 0.016864649799855
'avg_raw' => 0.010995694582808
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005126'
'max' => '$0.016864'
'avg' => '$0.010995'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0027929154282845
'max_diff' => 0.011148385870278
'year' => 2029
]
4 => [
'items' => [
101 => 0.012347869494609
102 => 0.012252460149468
103 => 0.012606251578114
104 => 0.011865356040109
105 => 0.012111451818264
106 => 0.012162171817068
107 => 0.011579639894086
108 => 0.011181698930519
109 => 0.011155160805108
110 => 0.010465186013924
111 => 0.010833764978092
112 => 0.011158099213727
113 => 0.011002768284211
114 => 0.010953595152306
115 => 0.011204810018858
116 => 0.011224331565499
117 => 0.010779238233285
118 => 0.010871787231325
119 => 0.011257731938143
120 => 0.010862062414946
121 => 0.010093341163624
122 => 0.009902687664893
123 => 0.0098772509737212
124 => 0.009360183564244
125 => 0.0099154280433234
126 => 0.0096730489485784
127 => 0.010438721604731
128 => 0.010001373489921
129 => 0.0099825202868084
130 => 0.0099540209051398
131 => 0.0095089596260171
201 => 0.0096063997610251
202 => 0.0099303056103434
203 => 0.010045878866441
204 => 0.010033823628966
205 => 0.0099287182949755
206 => 0.00997683497865
207 => 0.0098218343755707
208 => 0.0097671004365648
209 => 0.0095943450693062
210 => 0.0093404424043244
211 => 0.0093757491271657
212 => 0.0088727015105905
213 => 0.0085986144703226
214 => 0.0085227507899856
215 => 0.0084213027060775
216 => 0.0085342096210061
217 => 0.0088712764398974
218 => 0.0084647023435997
219 => 0.0077676595733542
220 => 0.0078095530315491
221 => 0.0079036751938335
222 => 0.0077282791670969
223 => 0.0075622815476633
224 => 0.0077066030099482
225 => 0.0074112567992427
226 => 0.007939366372364
227 => 0.0079250824884211
228 => 0.0081219290792038
301 => 0.0082450212921189
302 => 0.0079613335929267
303 => 0.007889986903753
304 => 0.0079306292204326
305 => 0.0072589022575983
306 => 0.0080670346554767
307 => 0.008074023418012
308 => 0.0080141813901842
309 => 0.0084444869437658
310 => 0.0093525658774911
311 => 0.0090109100552332
312 => 0.008878610594253
313 => 0.0086271092222194
314 => 0.0089622198677804
315 => 0.0089364885987417
316 => 0.0088201220418549
317 => 0.0087497431851641
318 => 0.0088794183865506
319 => 0.0087336749926604
320 => 0.0087074954743571
321 => 0.0085488760770358
322 => 0.0084922561689149
323 => 0.0084503370430456
324 => 0.0084041882043518
325 => 0.0085059810429363
326 => 0.0082753050787407
327 => 0.0079971324793645
328 => 0.0079740054375956
329 => 0.0080378612332698
330 => 0.0080096097971889
331 => 0.0079738701805888
401 => 0.0079056335193937
402 => 0.0078853891596627
403 => 0.0079511735076214
404 => 0.0078769068142418
405 => 0.0079864913658394
406 => 0.0079566904313947
407 => 0.0077902248340929
408 => 0.007582747066397
409 => 0.0075809000790651
410 => 0.0075361993343468
411 => 0.007479266215146
412 => 0.0074634287238377
413 => 0.0076944486589399
414 => 0.0081726530107566
415 => 0.0080787700540346
416 => 0.0081466101117786
417 => 0.0084803160521061
418 => 0.0085863911356485
419 => 0.0085111015538761
420 => 0.008408040530687
421 => 0.0084125746926638
422 => 0.0087647654075944
423 => 0.0087867311104787
424 => 0.008842231355263
425 => 0.0089135648541781
426 => 0.0085232499571962
427 => 0.0083941908961164
428 => 0.0083330355530527
429 => 0.0081447007665128
430 => 0.0083478036871918
501 => 0.0082294643130463
502 => 0.0082454323376672
503 => 0.0082350331406849
504 => 0.0082407118054279
505 => 0.0079392187549754
506 => 0.0080490669765521
507 => 0.007866423002768
508 => 0.0076218832246192
509 => 0.0076210634415362
510 => 0.0076809142057988
511 => 0.0076453126292547
512 => 0.0075495097021749
513 => 0.0075631180557895
514 => 0.0074438945587428
515 => 0.0075775939469421
516 => 0.0075814279669962
517 => 0.0075299464198846
518 => 0.0077359287743658
519 => 0.0078203199130624
520 => 0.0077864336559119
521 => 0.0078179423629268
522 => 0.0080826713147426
523 => 0.0081258336848225
524 => 0.0081450035584659
525 => 0.0081193184673053
526 => 0.0078227811221962
527 => 0.007835933814426
528 => 0.0077394280857925
529 => 0.0076578909146204
530 => 0.0076611519738612
531 => 0.0077030726789339
601 => 0.0078861428566036
602 => 0.008271403252933
603 => 0.008286023603352
604 => 0.0083037438945655
605 => 0.0082316665646952
606 => 0.0082099273523192
607 => 0.00823860698481
608 => 0.008383290533642
609 => 0.0087554559024382
610 => 0.0086239078050164
611 => 0.0085169571541443
612 => 0.0086107817086476
613 => 0.0085963381539029
614 => 0.0084744200163787
615 => 0.0084709981803194
616 => 0.008236998294824
617 => 0.008150493865076
618 => 0.0080782042888341
619 => 0.0079992659587453
620 => 0.0079524686706318
621 => 0.0080243705741612
622 => 0.0080408153902166
623 => 0.0078836006215195
624 => 0.0078621728294746
625 => 0.0079905578033092
626 => 0.0079340603629988
627 => 0.0079921693814271
628 => 0.0080056511721524
629 => 0.0080034802933337
630 => 0.00794449047696
701 => 0.0079820888268149
702 => 0.0078931575208004
703 => 0.0077964580825599
704 => 0.0077347698655503
705 => 0.0076809387144549
706 => 0.0077108073657675
707 => 0.0076043310776383
708 => 0.0075702671701215
709 => 0.0079693513518737
710 => 0.0082641591278121
711 => 0.0082598725059932
712 => 0.0082337787981007
713 => 0.0081950088410877
714 => 0.0083804542698033
715 => 0.0083158487905372
716 => 0.0083628546746717
717 => 0.0083748196450147
718 => 0.0084110340066244
719 => 0.0084239775281703
720 => 0.0083848532162049
721 => 0.0082535472466165
722 => 0.0079263452545994
723 => 0.0077740318440505
724 => 0.0077237658815888
725 => 0.0077255929538557
726 => 0.0076751941443268
727 => 0.0076900388524493
728 => 0.0076700317606503
729 => 0.0076321431690183
730 => 0.0077084678520015
731 => 0.0077172635607017
801 => 0.0076994484676814
802 => 0.0077036445670034
803 => 0.007556143205721
804 => 0.0075673574138632
805 => 0.0075049152778948
806 => 0.0074932081301519
807 => 0.0073353598478826
808 => 0.0070557087353683
809 => 0.0072106625980915
810 => 0.0070235001217321
811 => 0.0069526188559605
812 => 0.0072881597438249
813 => 0.0072544807451388
814 => 0.0071968369392971
815 => 0.0071115697364354
816 => 0.007079943301468
817 => 0.0068877910943186
818 => 0.006876437716828
819 => 0.0069716735392373
820 => 0.00692772548406
821 => 0.006866005770161
822 => 0.0066424632228458
823 => 0.0063911273872697
824 => 0.006398713636305
825 => 0.0064786588893323
826 => 0.0067111104945954
827 => 0.0066202876309655
828 => 0.0065543946013297
829 => 0.0065420548176161
830 => 0.0066965130458787
831 => 0.0069151037988694
901 => 0.0070176616894803
902 => 0.0069160299346144
903 => 0.0067992808468667
904 => 0.0068063868228748
905 => 0.0068536596977228
906 => 0.0068586274084668
907 => 0.0067826357543432
908 => 0.0068040269598554
909 => 0.0067715317626296
910 => 0.0065721087972367
911 => 0.0065685018681698
912 => 0.0065195602563326
913 => 0.0065180783237768
914 => 0.0064348164329846
915 => 0.0064231675189005
916 => 0.006257845981097
917 => 0.006366661117919
918 => 0.0062936736371899
919 => 0.006183664287725
920 => 0.0061646986344122
921 => 0.0061641285039719
922 => 0.006277083508232
923 => 0.0063653411729286
924 => 0.0062949432856658
925 => 0.0062789150513418
926 => 0.0064500546606419
927 => 0.0064282755853863
928 => 0.0064094150466749
929 => 0.0068955313944635
930 => 0.0065107323730572
1001 => 0.0063429380361637
1002 => 0.0061352606809778
1003 => 0.0062028814750264
1004 => 0.0062171301698886
1005 => 0.0057177035673233
1006 => 0.0055150862568622
1007 => 0.0054455556313842
1008 => 0.0054055397734029
1009 => 0.0054237755023725
1010 => 0.0052413961583173
1011 => 0.0053639580937983
1012 => 0.0052060329979887
1013 => 0.0051795563417435
1014 => 0.0054619459762163
1015 => 0.0055012388441569
1016 => 0.0053336032621852
1017 => 0.0054412524435466
1018 => 0.0054022173539494
1019 => 0.0052087401704839
1020 => 0.0052013507651973
1021 => 0.0051042707155862
1022 => 0.0049523592363465
1023 => 0.0048829316140049
1024 => 0.0048467731054911
1025 => 0.0048616928108191
1026 => 0.0048541489512547
1027 => 0.0048049201647338
1028 => 0.004856970687673
1029 => 0.0047240031103245
1030 => 0.0046710543496318
1031 => 0.0046471386228288
1101 => 0.0045291222446039
1102 => 0.0047169387844814
1103 => 0.0047539410088877
1104 => 0.0047910161391066
1105 => 0.005113729835396
1106 => 0.0050976079711088
1107 => 0.0052433417725985
1108 => 0.0052376788250599
1109 => 0.005196113184144
1110 => 0.0050207545823357
1111 => 0.00509064939555
1112 => 0.0048755240245421
1113 => 0.0050367105796045
1114 => 0.0049631517671855
1115 => 0.0050118402711321
1116 => 0.0049242939509707
1117 => 0.004972745699247
1118 => 0.0047627156089864
1119 => 0.0045665924659042
1120 => 0.0046455181438719
1121 => 0.004731319382069
1122 => 0.004917358328229
1123 => 0.0048065550666841
1124 => 0.0048464041094708
1125 => 0.0047129164867844
1126 => 0.0044374933923279
1127 => 0.0044390522571317
1128 => 0.0043966844144678
1129 => 0.0043600724126
1130 => 0.0048192821541698
1201 => 0.0047621721637739
1202 => 0.0046711748684487
1203 => 0.0047929783643302
1204 => 0.0048251851419227
1205 => 0.0048261020236034
1206 => 0.0049149667099953
1207 => 0.0049623938090525
1208 => 0.0049707530408222
1209 => 0.0051105835449085
1210 => 0.0051574528854693
1211 => 0.0053505010660418
1212 => 0.0049583699510522
1213 => 0.0049502942687881
1214 => 0.0047946923893051
1215 => 0.0046960072173686
1216 => 0.0048014494474564
1217 => 0.0048948568690145
1218 => 0.0047975948182651
1219 => 0.004810295188779
1220 => 0.0046797288322494
1221 => 0.0047264001609906
1222 => 0.0047665997966095
1223 => 0.0047444039206461
1224 => 0.0047111756200364
1225 => 0.0048871985256509
1226 => 0.0048772666234768
1227 => 0.0050411831999341
1228 => 0.0051689678930695
1229 => 0.0053979809074142
1230 => 0.005158993888227
1231 => 0.0051502842513605
]
'min_raw' => 0.0043600724126
'max_raw' => 0.012606251578114
'avg_raw' => 0.0084831619953569
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00436'
'max' => '$0.0126062'
'avg' => '$0.008483'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00076666695316202
'max_diff' => -0.0042583982217406
'year' => 2030
]
5 => [
'items' => [
101 => 0.0052354223488007
102 => 0.0051574398512701
103 => 0.0052067220978451
104 => 0.0053900407755904
105 => 0.0053939140103813
106 => 0.0053290323372515
107 => 0.0053250842815451
108 => 0.0053375455165974
109 => 0.0054105313595184
110 => 0.0053850278633734
111 => 0.005414541154782
112 => 0.0054514479776119
113 => 0.0056041102450052
114 => 0.0056409166008381
115 => 0.0055514962380718
116 => 0.0055595698956322
117 => 0.0055261242253138
118 => 0.0054938161268592
119 => 0.0055664400139663
120 => 0.0056991615950805
121 => 0.0056983359410126
122 => 0.0057291247680923
123 => 0.0057483059522945
124 => 0.0056659662682137
125 => 0.0056123661615911
126 => 0.0056329198531336
127 => 0.0056657856535112
128 => 0.0056222619170254
129 => 0.0053536132532788
130 => 0.0054351040965164
131 => 0.0054215400355031
201 => 0.0054022231631738
202 => 0.0054841628361993
203 => 0.0054762595548428
204 => 0.0052395255945372
205 => 0.0052546805345945
206 => 0.0052404472166368
207 => 0.005286437978821
208 => 0.0051549561991834
209 => 0.0051953991090566
210 => 0.0052207645230004
211 => 0.0052357049466796
212 => 0.0052896800017531
213 => 0.005283346652018
214 => 0.0052892863118412
215 => 0.0053693170696291
216 => 0.0057740851792805
217 => 0.0057961158144184
218 => 0.0056876289096734
219 => 0.0057309672883095
220 => 0.0056477670783898
221 => 0.0057036199367018
222 => 0.0057418330438501
223 => 0.0055691553606049
224 => 0.005558930508872
225 => 0.0054753869020901
226 => 0.0055202785042229
227 => 0.0054488527374091
228 => 0.005466378122218
301 => 0.0054173756184569
302 => 0.0055055703689257
303 => 0.0056041858040285
304 => 0.0056290999573771
305 => 0.0055635615461345
306 => 0.0055161074172031
307 => 0.0054327935991615
308 => 0.0055713463353343
309 => 0.0056118633777093
310 => 0.0055711335165593
311 => 0.0055616955177658
312 => 0.0055438105271062
313 => 0.0055654899030821
314 => 0.0056116427131951
315 => 0.0055898779002544
316 => 0.0056042539426484
317 => 0.005549467293553
318 => 0.0056659935260752
319 => 0.0058510652268856
320 => 0.005851660262666
321 => 0.0058298953324048
322 => 0.0058209895918739
323 => 0.0058433217311283
324 => 0.0058554360005615
325 => 0.0059276540438961
326 => 0.006005146881688
327 => 0.0063667721428887
328 => 0.0062652292166104
329 => 0.0065860846615307
330 => 0.0068398396605975
331 => 0.0069159296894564
401 => 0.0068459304432187
402 => 0.0066064668031247
403 => 0.0065947175745201
404 => 0.0069525773517616
405 => 0.0068514655736747
406 => 0.0068394386494063
407 => 0.0067114924949995
408 => 0.0067871245186934
409 => 0.0067705826856567
410 => 0.0067444705929541
411 => 0.0068887712255896
412 => 0.0071588891280771
413 => 0.0071167887198248
414 => 0.0070853627180461
415 => 0.0069476631262238
416 => 0.0070305890368182
417 => 0.0070010607083967
418 => 0.0071279331464355
419 => 0.0070527767247099
420 => 0.0068506995525095
421 => 0.0068828810082375
422 => 0.0068780168459443
423 => 0.0069781209612598
424 => 0.006948072190579
425 => 0.0068721493412034
426 => 0.0071579658944519
427 => 0.0071394065572792
428 => 0.007165719454135
429 => 0.0071773032050843
430 => 0.0073512747043941
501 => 0.0074225452611943
502 => 0.0074387249253546
503 => 0.0075064264420521
504 => 0.0074370404499445
505 => 0.0077146338897488
506 => 0.0078992173291924
507 => 0.0081136204926831
508 => 0.0084269211406805
509 => 0.0085447250825205
510 => 0.0085234448548493
511 => 0.00876098583051
512 => 0.0091878416835331
513 => 0.0086097246270212
514 => 0.0092184832913061
515 => 0.0090257573266503
516 => 0.0085688075314432
517 => 0.0085393853517161
518 => 0.0088488370583265
519 => 0.0095351711599653
520 => 0.0093632522518418
521 => 0.0095354523577108
522 => 0.0093345717872674
523 => 0.0093245963737905
524 => 0.0095256960367782
525 => 0.0099955763607208
526 => 0.0097723538320162
527 => 0.0094523096007086
528 => 0.0096886252806664
529 => 0.0094839067687032
530 => 0.0090226186641466
531 => 0.0093631207886927
601 => 0.009135436714951
602 => 0.0092018870320199
603 => 0.0096804450895752
604 => 0.0096228637179825
605 => 0.0096973793447148
606 => 0.0095658612139458
607 => 0.009443002541302
608 => 0.0092136777052073
609 => 0.0091457859268175
610 => 0.0091645487718742
611 => 0.0091457766288833
612 => 0.0090174714906924
613 => 0.0089897640083161
614 => 0.0089435836571297
615 => 0.0089578968789787
616 => 0.0088710643082099
617 => 0.0090349353097752
618 => 0.009065351211692
619 => 0.0091846028609238
620 => 0.0091969839627493
621 => 0.0095290981084189
622 => 0.0093461752179355
623 => 0.0094688956856743
624 => 0.0094579184119499
625 => 0.0085787110190984
626 => 0.0086998580405208
627 => 0.0088883247878245
628 => 0.0088034207736248
629 => 0.0086833863620261
630 => 0.0085864521388221
701 => 0.0084395868786349
702 => 0.0086462969120509
703 => 0.0089180986248316
704 => 0.0092038773027265
705 => 0.0095472216592565
706 => 0.0094705911958479
707 => 0.0091974587188065
708 => 0.0092097112422032
709 => 0.0092854515206512
710 => 0.0091873609783311
711 => 0.009158432162446
712 => 0.0092814771455808
713 => 0.0092823244887553
714 => 0.009169459465178
715 => 0.0090440306455531
716 => 0.009043505094219
717 => 0.0090211862472654
718 => 0.0093385422605589
719 => 0.0095130559795582
720 => 0.0095330636961986
721 => 0.0095117093008152
722 => 0.0095199277600726
723 => 0.0094183820721343
724 => 0.009650485402323
725 => 0.0098634863707444
726 => 0.0098063975611055
727 => 0.0097208133198043
728 => 0.0096526413493123
729 => 0.009790338411394
730 => 0.0097842069779748
731 => 0.0098616259931033
801 => 0.0098581138193831
802 => 0.0098320807164719
803 => 0.0098063984908296
804 => 0.009908225612514
805 => 0.0098789010367624
806 => 0.0098495309118451
807 => 0.0097906246299821
808 => 0.009798630972017
809 => 0.0097130615080417
810 => 0.0096734731586145
811 => 0.0090781593689607
812 => 0.008919072071926
813 => 0.0089691241740937
814 => 0.0089856026257296
815 => 0.0089163676301841
816 => 0.0090156328287852
817 => 0.0090001624527311
818 => 0.0090603486360903
819 => 0.0090227469217078
820 => 0.009024290109182
821 => 0.0091348687336504
822 => 0.0091669701787686
823 => 0.009150643124691
824 => 0.0091620780337083
825 => 0.0094255906856379
826 => 0.0093881276131938
827 => 0.0093682261026245
828 => 0.0093737389570616
829 => 0.0094410720894045
830 => 0.0094599216902079
831 => 0.0093800546070663
901 => 0.009417720385182
902 => 0.0095780964878995
903 => 0.0096342190473493
904 => 0.0098133353167565
905 => 0.0097372435419745
906 => 0.0098769132877617
907 => 0.010306210469386
908 => 0.010649162763173
909 => 0.010333769660704
910 => 0.010963557873533
911 => 0.011453938334974
912 => 0.011435116716092
913 => 0.011349607539935
914 => 0.010791322422024
915 => 0.01027758013296
916 => 0.010707347372412
917 => 0.010708442937488
918 => 0.010671525550477
919 => 0.010442234830376
920 => 0.010663546730434
921 => 0.010681113665374
922 => 0.010671280853233
923 => 0.010495484195731
924 => 0.01022707519238
925 => 0.010279521669155
926 => 0.01036543006799
927 => 0.010202787546625
928 => 0.010150813406191
929 => 0.010247443221743
930 => 0.010558804621072
1001 => 0.010499943552123
1002 => 0.010498406451736
1003 => 0.01075023906568
1004 => 0.010569981262976
1005 => 0.010280183187184
1006 => 0.010207005351079
1007 => 0.0099472733314047
1008 => 0.010126671162527
1009 => 0.010133127371094
1010 => 0.010034873012389
1011 => 0.010288155986882
1012 => 0.010285821939682
1013 => 0.010526276427767
1014 => 0.010985935098404
1015 => 0.010849991411067
1016 => 0.010691903693326
1017 => 0.010709092211541
1018 => 0.010897607831487
1019 => 0.010783626984275
1020 => 0.010824615291635
1021 => 0.010897545790775
1022 => 0.010941546571668
1023 => 0.010702761176304
1024 => 0.010647088878219
1025 => 0.010533202894659
1026 => 0.01050349216733
1027 => 0.010596249924631
1028 => 0.010571811532762
1029 => 0.010132584751763
1030 => 0.010086683109314
1031 => 0.010088090847156
1101 => 0.0099726689847133
1102 => 0.0097966229400675
1103 => 0.010259261434233
1104 => 0.01022210508853
1105 => 0.010181087358547
1106 => 0.010186111796426
1107 => 0.01038692748647
1108 => 0.010270444244809
1109 => 0.010580134033993
1110 => 0.010516471123464
1111 => 0.010451175499502
1112 => 0.010442149655317
1113 => 0.010417016410852
1114 => 0.010330825163915
1115 => 0.010226744053948
1116 => 0.010158020689796
1117 => 0.0093702371353949
1118 => 0.0095164451807657
1119 => 0.009684644209682
1120 => 0.0097427058404487
1121 => 0.0096433874032798
1122 => 0.010334746861168
1123 => 0.01046106489623
1124 => 0.010078439328506
1125 => 0.010006865707284
1126 => 0.010339439215859
1127 => 0.010138856734731
1128 => 0.010229179013701
1129 => 0.010033951650212
1130 => 0.010430638580607
1201 => 0.01042761649083
1202 => 0.010273296315325
1203 => 0.010403726670923
1204 => 0.010381061186904
1205 => 0.010206834088834
1206 => 0.010436161890379
1207 => 0.010436275634108
1208 => 0.010287745820395
1209 => 0.010114295515335
1210 => 0.010083286697504
1211 => 0.010059925718716
1212 => 0.010223433644973
1213 => 0.01037003434038
1214 => 0.010642821889136
1215 => 0.010711407160165
1216 => 0.010979100038974
1217 => 0.010819701963373
1218 => 0.010890361065736
1219 => 0.010967071516692
1220 => 0.011003849327813
1221 => 0.010943921858197
1222 => 0.011359759085772
1223 => 0.011394868488702
1224 => 0.01140664036781
1225 => 0.011266422394354
1226 => 0.011390968773208
1227 => 0.011332697647085
1228 => 0.011484302929073
1229 => 0.011508076573082
1230 => 0.011487941142378
1231 => 0.011495487272228
]
'min_raw' => 0.0051549561991834
'max_raw' => 0.011508076573082
'avg_raw' => 0.0083315163861328
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005154'
'max' => '$0.011508'
'avg' => '$0.008331'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00079488378658343
'max_diff' => -0.0010981750050318
'year' => 2031
]
6 => [
'items' => [
101 => 0.011140643557207
102 => 0.011122243038634
103 => 0.010871350662242
104 => 0.010973591160124
105 => 0.010782457449848
106 => 0.010843067918272
107 => 0.010869784435235
108 => 0.010855829242923
109 => 0.010979371684474
110 => 0.010874335371102
111 => 0.010597127270544
112 => 0.010319843644824
113 => 0.010316362574774
114 => 0.010243358690584
115 => 0.010190590253643
116 => 0.010200755326659
117 => 0.010236578369818
118 => 0.010188508153252
119 => 0.010198766371178
120 => 0.010369121138899
121 => 0.010403284572651
122 => 0.010287183876247
123 => 0.009821022826936
124 => 0.0097066257361587
125 => 0.0097888520964165
126 => 0.0097495531922691
127 => 0.0078686503475892
128 => 0.0083105405711205
129 => 0.0080479844054723
130 => 0.0081689823662313
131 => 0.007900980509694
201 => 0.0080288850428144
202 => 0.0080052657458728
203 => 0.0087158121488287
204 => 0.0087047179440712
205 => 0.0087100281527964
206 => 0.0084565580546682
207 => 0.0088603428034495
208 => 0.0090592616903291
209 => 0.0090224470984224
210 => 0.0090317125380661
211 => 0.0088725015871178
212 => 0.0087115696628195
213 => 0.008533071391527
214 => 0.0088646991165353
215 => 0.0088278277745884
216 => 0.0089123973671244
217 => 0.0091274816520316
218 => 0.0091591536300099
219 => 0.0092017210895983
220 => 0.009186463685494
221 => 0.0095499569509827
222 => 0.0095059355181262
223 => 0.0096120145054797
224 => 0.0093938019802614
225 => 0.0091468737950539
226 => 0.0091938067703713
227 => 0.0091892867474371
228 => 0.0091317416676437
229 => 0.0090797925426206
301 => 0.0089933118860324
302 => 0.0092669494802065
303 => 0.009255840293604
304 => 0.0094356851116824
305 => 0.0094038957931677
306 => 0.0091915989439606
307 => 0.0091991811674623
308 => 0.0092501752644033
309 => 0.0094266664161566
310 => 0.0094790610064309
311 => 0.0094547897446524
312 => 0.0095122380209842
313 => 0.009557642796242
314 => 0.0095179401616924
315 => 0.010080045741469
316 => 0.0098466203148812
317 => 0.0099603902436363
318 => 0.009987523701273
319 => 0.0099180219200917
320 => 0.0099330943677577
321 => 0.0099559250189756
322 => 0.010094548262471
323 => 0.010458335764361
324 => 0.010619454772563
325 => 0.01110418925821
326 => 0.010606076081817
327 => 0.010576520107327
328 => 0.010663835425771
329 => 0.010948425883202
330 => 0.011179059718728
331 => 0.011255574267557
401 => 0.011265686928302
402 => 0.011409233308496
403 => 0.011491511416642
404 => 0.011391803002296
405 => 0.011307310561044
406 => 0.011004669124067
407 => 0.011039700694462
408 => 0.01128103347535
409 => 0.011621930242783
410 => 0.011914455133504
411 => 0.011812023112296
412 => 0.012593507128382
413 => 0.012670988076501
414 => 0.01266028271473
415 => 0.012836795845256
416 => 0.012486453227436
417 => 0.012336674970749
418 => 0.011325578785873
419 => 0.011609655571746
420 => 0.012022577863256
421 => 0.011967926049596
422 => 0.011668050844056
423 => 0.011914227651271
424 => 0.011832833900145
425 => 0.011768635271602
426 => 0.012062741634473
427 => 0.011739359607273
428 => 0.012019351880161
429 => 0.011660258894033
430 => 0.01181249101314
501 => 0.011726076699696
502 => 0.011781997351034
503 => 0.011455086365957
504 => 0.011631479598189
505 => 0.01144774782757
506 => 0.011447660714788
507 => 0.011443604825768
508 => 0.011659764439111
509 => 0.011666813396342
510 => 0.011507071115482
511 => 0.011484049757167
512 => 0.011569171784841
513 => 0.011469516183929
514 => 0.011516144412371
515 => 0.011470928505467
516 => 0.011460749452431
517 => 0.011379641026012
518 => 0.011344697285788
519 => 0.011358399626719
520 => 0.011311626473081
521 => 0.011283443956155
522 => 0.011437998613808
523 => 0.011355426294941
524 => 0.011425343221687
525 => 0.01134566405944
526 => 0.011069461368531
527 => 0.010910614280199
528 => 0.010388893001076
529 => 0.010536852508642
530 => 0.010634949815234
531 => 0.01060252865599
601 => 0.010672181851368
602 => 0.010676457991865
603 => 0.010653813028017
604 => 0.010627593060881
605 => 0.010614830630934
606 => 0.010709951327694
607 => 0.010765172093778
608 => 0.010644795192323
609 => 0.010616592568564
610 => 0.010738300262126
611 => 0.010812541884891
612 => 0.011360700314622
613 => 0.01132009096762
614 => 0.011422012459415
615 => 0.011410537663552
616 => 0.01151736762432
617 => 0.011691989460467
618 => 0.011336934442547
619 => 0.011398559716779
620 => 0.011383450622673
621 => 0.011548407750308
622 => 0.011548922728455
623 => 0.011450022690218
624 => 0.011503638005416
625 => 0.011473711407332
626 => 0.011527792814893
627 => 0.011319548605032
628 => 0.011573167574069
629 => 0.011716953186668
630 => 0.011718949650038
701 => 0.011787102889257
702 => 0.011856350527472
703 => 0.011989265338828
704 => 0.011852643605523
705 => 0.011606874407164
706 => 0.011624618149456
707 => 0.011480523758382
708 => 0.011482946011128
709 => 0.011470015836131
710 => 0.011508820264636
711 => 0.011328063994927
712 => 0.011370487130137
713 => 0.011311094492413
714 => 0.011398430608784
715 => 0.011304471384746
716 => 0.011383443336611
717 => 0.011417525013074
718 => 0.011543287132948
719 => 0.011285896217386
720 => 0.010761058716722
721 => 0.010871385922402
722 => 0.010708203319187
723 => 0.010723306490395
724 => 0.010753817299885
725 => 0.01065492178381
726 => 0.010673787931721
727 => 0.010673113900158
728 => 0.010667305460295
729 => 0.010641578917037
730 => 0.010604270339473
731 => 0.010752896229516
801 => 0.0107781506644
802 => 0.010834288144784
803 => 0.011001315207991
804 => 0.010984625265607
805 => 0.011011847254094
806 => 0.010952421806072
807 => 0.010726063066492
808 => 0.010738355435096
809 => 0.010585069401633
810 => 0.010830368276274
811 => 0.010772278264972
812 => 0.010734827256788
813 => 0.010724608402224
814 => 0.010892049493214
815 => 0.010942150491955
816 => 0.010910930911693
817 => 0.010846898641753
818 => 0.010969859529478
819 => 0.01100275867573
820 => 0.011010123581302
821 => 0.011227986698941
822 => 0.011022299709421
823 => 0.011071810612151
824 => 0.011458080541742
825 => 0.01110778701721
826 => 0.011293345309633
827 => 0.011284263196817
828 => 0.01137918854027
829 => 0.011276476547991
830 => 0.011277749786234
831 => 0.011362037060421
901 => 0.011243670785116
902 => 0.011214361630762
903 => 0.011173871243938
904 => 0.011262280522257
905 => 0.011315277886202
906 => 0.011742397717322
907 => 0.012018336607257
908 => 0.012006357372308
909 => 0.012115825155554
910 => 0.012066508916592
911 => 0.011907253772015
912 => 0.012179082884712
913 => 0.012093064779641
914 => 0.012100156007711
915 => 0.012099892071848
916 => 0.012157086591887
917 => 0.012116559032639
918 => 0.012036675053292
919 => 0.012089705766812
920 => 0.012247188027137
921 => 0.012736017795335
922 => 0.013009573409751
923 => 0.01271954940386
924 => 0.012919604079547
925 => 0.012799642560905
926 => 0.012777841984421
927 => 0.012903491104677
928 => 0.013029360157085
929 => 0.013021342842593
930 => 0.012929968373993
1001 => 0.012878353255221
1002 => 0.01326920022689
1003 => 0.013557169617711
1004 => 0.013537532035829
1005 => 0.013624205935775
1006 => 0.013878683186741
1007 => 0.013901949397357
1008 => 0.013899018389587
1009 => 0.013841350658998
1010 => 0.014091916560621
1011 => 0.014300943044042
1012 => 0.013828002245548
1013 => 0.014008091910365
1014 => 0.014088939963028
1015 => 0.014207648890873
1016 => 0.014407930750075
1017 => 0.014625489971308
1018 => 0.014656255230606
1019 => 0.014634425806881
1020 => 0.014490939652172
1021 => 0.014728995548066
1022 => 0.014868443108783
1023 => 0.01495148093999
1024 => 0.015162051063751
1025 => 0.014089439253077
1026 => 0.013330191301216
1027 => 0.01321162376986
1028 => 0.013452735507311
1029 => 0.013516314749647
1030 => 0.013490686036783
1031 => 0.012636083439159
1101 => 0.013207124464047
1102 => 0.013821516592334
1103 => 0.013845117896172
1104 => 0.014152695441925
1105 => 0.014252855298852
1106 => 0.014500495538295
1107 => 0.014485005573892
1108 => 0.01454530203138
1109 => 0.014531440919992
1110 => 0.014990142316755
1111 => 0.0154961580752
1112 => 0.015478636358516
1113 => 0.015405890606333
1114 => 0.015513930453319
1115 => 0.016036192943979
1116 => 0.015988111382925
1117 => 0.016034818523911
1118 => 0.016650595433823
1119 => 0.017451193009953
1120 => 0.017079235057158
1121 => 0.017886276786705
1122 => 0.01839426677601
1123 => 0.019272782935369
1124 => 0.019162788385434
1125 => 0.019504788279423
1126 => 0.018965875184495
1127 => 0.017728421786234
1128 => 0.017532590049178
1129 => 0.017924650146014
1130 => 0.01888849163742
1201 => 0.017894295347429
1202 => 0.01809541996205
1203 => 0.018037496059509
1204 => 0.018034409540903
1205 => 0.018152209402304
1206 => 0.017981334559314
1207 => 0.017285159709179
1208 => 0.017604212540412
1209 => 0.017481010920097
1210 => 0.017617712303125
1211 => 0.018355433287389
1212 => 0.018029269255174
1213 => 0.01768568194265
1214 => 0.018116616680684
1215 => 0.018665344687442
1216 => 0.018631006274938
1217 => 0.018564375402338
1218 => 0.018939970142508
1219 => 0.019560342614335
1220 => 0.019728026800612
1221 => 0.019851807838769
1222 => 0.019868875152633
1223 => 0.02004467909271
1224 => 0.019099336998621
1225 => 0.020599619180047
1226 => 0.02085867646832
1227 => 0.020809984434949
1228 => 0.021097915708068
1229 => 0.021013199023405
1230 => 0.020890457838969
1231 => 0.0213468901516
]
'min_raw' => 0.0078686503475892
'max_raw' => 0.0213468901516
'avg_raw' => 0.014607770249595
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007868'
'max' => '$0.021346'
'avg' => '$0.0146077'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0027136941484058
'max_diff' => 0.0098388135785182
'year' => 2032
]
7 => [
'items' => [
101 => 0.020823627337357
102 => 0.020080921649495
103 => 0.019673458620081
104 => 0.020210038806318
105 => 0.020537709601985
106 => 0.020754279154145
107 => 0.020819812969773
108 => 0.019172721214341
109 => 0.01828503011006
110 => 0.018854029930505
111 => 0.019548248981718
112 => 0.019095480576739
113 => 0.019113228241011
114 => 0.018467699480955
115 => 0.019605363953212
116 => 0.019439615808868
117 => 0.020299517474926
118 => 0.020094295041179
119 => 0.020795511468659
120 => 0.020610857682982
121 => 0.021377345223473
122 => 0.021683117855197
123 => 0.022196557693571
124 => 0.022574246128755
125 => 0.022796032001923
126 => 0.022782716809996
127 => 0.023661542932773
128 => 0.023143329872018
129 => 0.022492332134268
130 => 0.022480557639064
131 => 0.022817718592154
201 => 0.02352431545424
202 => 0.023707525740012
203 => 0.023809915295753
204 => 0.023653102126931
205 => 0.023090618990145
206 => 0.022847741623535
207 => 0.023054680176721
208 => 0.022801612108607
209 => 0.023238478592531
210 => 0.023838389584605
211 => 0.023714510337047
212 => 0.024128620088618
213 => 0.024557180115878
214 => 0.025170040202696
215 => 0.025330264523533
216 => 0.025595109233092
217 => 0.025867721436183
218 => 0.025955277128711
219 => 0.026122448112683
220 => 0.026121567039079
221 => 0.026625348051183
222 => 0.027181034108333
223 => 0.027390792730745
224 => 0.027873121116824
225 => 0.027047150658466
226 => 0.027673658739196
227 => 0.028238784710528
228 => 0.027565018230097
301 => 0.028493648355915
302 => 0.02852970495938
303 => 0.029074116863321
304 => 0.028522251101975
305 => 0.028194554974506
306 => 0.029140601415896
307 => 0.029598363488701
308 => 0.02946048182698
309 => 0.028411195573233
310 => 0.027800465967548
311 => 0.026202068788526
312 => 0.028095439292697
313 => 0.029017644834904
314 => 0.028408807283668
315 => 0.028715869530546
316 => 0.030391101584245
317 => 0.031028921487051
318 => 0.030896259405965
319 => 0.030918677113865
320 => 0.031262833156168
321 => 0.032789010577938
322 => 0.031874489690298
323 => 0.032573606642455
324 => 0.032944415753025
325 => 0.033288843920339
326 => 0.032443037199056
327 => 0.031342655082036
328 => 0.030994117874676
329 => 0.028348270388074
330 => 0.028210542536063
331 => 0.028133231719148
401 => 0.027645797954333
402 => 0.027262808534533
403 => 0.026958241128422
404 => 0.026158965303262
405 => 0.026428697431266
406 => 0.02515481858779
407 => 0.025969801128352
408 => 0.023936659735284
409 => 0.025629920302553
410 => 0.024708355558899
411 => 0.025327161498859
412 => 0.025325002543229
413 => 0.024185584615162
414 => 0.023528392133299
415 => 0.023947180761056
416 => 0.024396155413495
417 => 0.024469000040321
418 => 0.025051107396645
419 => 0.02521356104744
420 => 0.024721318901297
421 => 0.023894527399001
422 => 0.024086572207878
423 => 0.023524500351376
424 => 0.022539491042639
425 => 0.023246941924787
426 => 0.023488496760372
427 => 0.023595181136841
428 => 0.022626537610782
429 => 0.022322168784619
430 => 0.022160125375473
501 => 0.023769487683491
502 => 0.023857652183655
503 => 0.023406590135615
504 => 0.025445433364211
505 => 0.024983980348726
506 => 0.025499536425757
507 => 0.024069146154391
508 => 0.024123788989033
509 => 0.023446619311547
510 => 0.023825789082445
511 => 0.023557804109587
512 => 0.023795155911985
513 => 0.023937423603705
514 => 0.02461448216431
515 => 0.025637651223741
516 => 0.024513352193269
517 => 0.024023479005433
518 => 0.024327393576015
519 => 0.025136758126868
520 => 0.02636298685202
521 => 0.025637034766577
522 => 0.025959199974631
523 => 0.026029578740458
524 => 0.025494288548859
525 => 0.026382723764914
526 => 0.026858843414833
527 => 0.02734724365657
528 => 0.027771307901806
529 => 0.027152165859868
530 => 0.027814736595267
531 => 0.027280821542015
601 => 0.026801844544125
602 => 0.026802570954517
603 => 0.026502101687003
604 => 0.02591990461963
605 => 0.025812538547901
606 => 0.026371070411876
607 => 0.026818960073619
608 => 0.026855850411407
609 => 0.02710382514155
610 => 0.027250574032506
611 => 0.028688912659315
612 => 0.029267424353579
613 => 0.029974817502659
614 => 0.030250387000719
615 => 0.031079752392746
616 => 0.03040997248092
617 => 0.030265061383883
618 => 0.028253292226177
619 => 0.02858271931305
620 => 0.029110163864119
621 => 0.028261989592554
622 => 0.028799960945057
623 => 0.028906167885832
624 => 0.028233168955364
625 => 0.028592646762694
626 => 0.027637980284167
627 => 0.025658460344171
628 => 0.026384927536483
629 => 0.026919851916238
630 => 0.026156448870627
701 => 0.027524819282106
702 => 0.026725445536619
703 => 0.026472082436007
704 => 0.025483622650049
705 => 0.025950137619715
706 => 0.026581105796038
707 => 0.026191240820994
708 => 0.027000269182731
709 => 0.028146069102934
710 => 0.028962634359636
711 => 0.029025320100714
712 => 0.028500323346278
713 => 0.029341633995746
714 => 0.029347762025348
715 => 0.028398760175893
716 => 0.027817501827167
717 => 0.027685438707358
718 => 0.02801535827314
719 => 0.028415941532511
720 => 0.029047549683691
721 => 0.029429217261338
722 => 0.030424403882999
723 => 0.030693672848584
724 => 0.030989517804513
725 => 0.031384857900839
726 => 0.031859565049598
727 => 0.030820932833205
728 => 0.030862199627415
729 => 0.029895039688352
730 => 0.028861490588698
731 => 0.029645825521621
801 => 0.030671239110715
802 => 0.030436008100396
803 => 0.030409539806401
804 => 0.030454052135207
805 => 0.030276695635353
806 => 0.029474518759651
807 => 0.029071670554566
808 => 0.029591447516663
809 => 0.029867685839407
810 => 0.030296107387469
811 => 0.030243295388789
812 => 0.031346863287481
813 => 0.031775676402752
814 => 0.031665967657918
815 => 0.031686156707256
816 => 0.03246250236967
817 => 0.033325958413938
818 => 0.034134698942454
819 => 0.034957384544275
820 => 0.033965604941314
821 => 0.033462040423393
822 => 0.033981590467129
823 => 0.033705909900726
824 => 0.035290052207443
825 => 0.035399734783695
826 => 0.036983762538893
827 => 0.038487193501091
828 => 0.037542915450498
829 => 0.03843332712099
830 => 0.039396379938956
831 => 0.041254265074501
901 => 0.040628594722037
902 => 0.040149341037553
903 => 0.039696448621454
904 => 0.040638845844711
905 => 0.041851224817268
906 => 0.042112359635935
907 => 0.042535497803355
908 => 0.042090619759187
909 => 0.042626426361678
910 => 0.044518059113825
911 => 0.044006923246291
912 => 0.043281028145201
913 => 0.04477429052868
914 => 0.04531469638035
915 => 0.049107547660116
916 => 0.053896179075691
917 => 0.051913654225794
918 => 0.050683037075785
919 => 0.050972261296666
920 => 0.052720907384231
921 => 0.053282517008305
922 => 0.051755868451627
923 => 0.052295106530808
924 => 0.055266361363817
925 => 0.056860344252458
926 => 0.05469550138922
927 => 0.048722785788461
928 => 0.043215669233538
929 => 0.044676404532594
930 => 0.044510802481575
1001 => 0.047703045128054
1002 => 0.043994732824894
1003 => 0.044057171293582
1004 => 0.047315426137346
1005 => 0.046446179605659
1006 => 0.045038111549011
1007 => 0.043225949688613
1008 => 0.039876000884984
1009 => 0.036908857809377
1010 => 0.042728108672884
1011 => 0.042477171994028
1012 => 0.042113778496313
1013 => 0.042922471402194
1014 => 0.046849254601668
1015 => 0.046758729539163
1016 => 0.046182855277801
1017 => 0.046619650829521
1018 => 0.044961539176919
1019 => 0.045388872304295
1020 => 0.043214796878139
1021 => 0.044197569768172
1022 => 0.045035090467357
1023 => 0.045203235147424
1024 => 0.045582073697296
1025 => 0.042344939766922
1026 => 0.043798317864401
1027 => 0.044652041333558
1028 => 0.04079488764118
1029 => 0.044575797806755
1030 => 0.042288588467167
1031 => 0.04151227526458
1101 => 0.042557478720377
1102 => 0.042150161917159
1103 => 0.041799974848198
1104 => 0.04160456444674
1105 => 0.042372046509781
1106 => 0.0423362425542
1107 => 0.041080492937216
1108 => 0.039442418752762
1109 => 0.039992210217017
1110 => 0.039792465823731
1111 => 0.039068566374922
1112 => 0.039556387199466
1113 => 0.037408271168642
1114 => 0.033712549186964
1115 => 0.036154056331086
1116 => 0.036060060961886
1117 => 0.036012664234385
1118 => 0.037847389374892
1119 => 0.037671022886943
1120 => 0.03735091598433
1121 => 0.039062687360624
1122 => 0.038437867781703
1123 => 0.040363414497931
1124 => 0.041631704101793
1125 => 0.041310024833383
1126 => 0.04250285733599
1127 => 0.040004876301931
1128 => 0.040834605399841
1129 => 0.041005611416966
1130 => 0.039041564367552
1201 => 0.037699878625532
1202 => 0.037610403482877
1203 => 0.035284105301899
1204 => 0.036526795012954
1205 => 0.037620310532689
1206 => 0.037096601458969
1207 => 0.036930810811592
1208 => 0.037777799273434
1209 => 0.037843617530885
1210 => 0.036342954285902
1211 => 0.036654989694359
1212 => 0.037956229219192
1213 => 0.036622201796969
1214 => 0.034030404427734
1215 => 0.033387602845761
1216 => 0.033301841265542
1217 => 0.031558512393996
1218 => 0.033430557921144
1219 => 0.032613359880843
1220 => 0.035194878698618
1221 => 0.033720328994868
1222 => 0.033656764104284
1223 => 0.033560676449225
1224 => 0.032060121273477
1225 => 0.032388647491709
1226 => 0.03348071867707
1227 => 0.03387038197907
1228 => 0.033829736904254
1229 => 0.033475366932485
1230 => 0.033637595690893
1231 => 0.033115000335814
]
'min_raw' => 0.01828503011006
'max_raw' => 0.056860344252458
'avg_raw' => 0.037572687181259
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.018285'
'max' => '$0.05686'
'avg' => '$0.037572'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.010416379762471
'max_diff' => 0.035513454100858
'year' => 2033
]
8 => [
'items' => [
101 => 0.032930461039054
102 => 0.032348004256948
103 => 0.031491953695043
104 => 0.031610992776139
105 => 0.029914932615193
106 => 0.028990829022784
107 => 0.028735049327895
108 => 0.028393010030119
109 => 0.02877368357671
110 => 0.029910127889856
111 => 0.028539334938091
112 => 0.026189206572237
113 => 0.026330453291448
114 => 0.02664779273299
115 => 0.026056432783088
116 => 0.025496760219584
117 => 0.02598335010588
118 => 0.024987569736073
119 => 0.026768128033284
120 => 0.026719968921302
121 => 0.027383650945516
122 => 0.027798664935383
123 => 0.026842192051114
124 => 0.026601641707298
125 => 0.026738670115539
126 => 0.024473895761864
127 => 0.027198570563314
128 => 0.027222133664141
129 => 0.027020372089282
130 => 0.028471177306158
131 => 0.031532828831259
201 => 0.030380912372868
202 => 0.02993485550332
203 => 0.029086901068244
204 => 0.030216750006431
205 => 0.030129995236367
206 => 0.02973765726537
207 => 0.029500370036342
208 => 0.02993757903145
209 => 0.02944619500347
210 => 0.029357928929715
211 => 0.028823132557194
212 => 0.028632234583888
213 => 0.02849090132432
214 => 0.028335307292655
215 => 0.028678508954891
216 => 0.027900768836325
217 => 0.026962890496137
218 => 0.026884916060135
219 => 0.02710021033352
220 => 0.02700495864432
221 => 0.026884460031693
222 => 0.026654395364342
223 => 0.026586140092093
224 => 0.026807936614152
225 => 0.026557541272288
226 => 0.026927013238949
227 => 0.026826537307833
228 => 0.026265286924273
301 => 0.025565761144851
302 => 0.02555953389811
303 => 0.025408822216385
304 => 0.025216868230057
305 => 0.025163471022372
306 => 0.025942370862866
307 => 0.027554670222178
308 => 0.027238137278891
309 => 0.027466864770016
310 => 0.028591977646435
311 => 0.028949617196524
312 => 0.028695773115028
313 => 0.028348295679855
314 => 0.028363582923525
315 => 0.029551018508084
316 => 0.029625077408954
317 => 0.029812200359148
318 => 0.030052706231086
319 => 0.028736732304996
320 => 0.028301600669949
321 => 0.028095411161081
322 => 0.027460427279146
323 => 0.028145202956409
324 => 0.027746213494286
325 => 0.027800050804147
326 => 0.027764989185473
327 => 0.027784135200125
328 => 0.026767630330952
329 => 0.027137991279356
330 => 0.026522194369948
331 => 0.025697711434697
401 => 0.025694947478797
402 => 0.025896738509155
403 => 0.025776705308214
404 => 0.025453699050818
405 => 0.025499580565135
406 => 0.025097610220923
407 => 0.02554838704283
408 => 0.025561313709125
409 => 0.025387740078712
410 => 0.026082223968074
411 => 0.02636675458419
412 => 0.026252504702344
413 => 0.026358738507913
414 => 0.027251290651745
415 => 0.02739681559597
416 => 0.027461448163356
417 => 0.027374849085233
418 => 0.026375052722621
419 => 0.026419397942765
420 => 0.026094022140863
421 => 0.025819113875513
422 => 0.025830108764423
423 => 0.025971447348386
424 => 0.026588681233951
425 => 0.027887613558197
426 => 0.027936907090395
427 => 0.027996652289413
428 => 0.027753638539476
429 => 0.027680343267167
430 => 0.027777038650458
501 => 0.028264849336828
502 => 0.029519630861481
503 => 0.029076107266628
504 => 0.028715515680157
505 => 0.029031851716286
506 => 0.028983154263048
507 => 0.028572098750332
508 => 0.028560561791153
509 => 0.027771614839855
510 => 0.027479959115413
511 => 0.027236229762017
512 => 0.026970083670824
513 => 0.026812303346667
514 => 0.027054725634447
515 => 0.027110170479919
516 => 0.026580109910871
517 => 0.026507864613951
518 => 0.026940723516787
519 => 0.026750238452256
520 => 0.026946157064929
521 => 0.026991611863628
522 => 0.026984292594124
523 => 0.026785404309683
524 => 0.026912169771252
525 => 0.026612331664038
526 => 0.026286302756671
527 => 0.02607831662609
528 => 0.025896821141801
529 => 0.025997525385064
530 => 0.025638533145699
531 => 0.02552368430324
601 => 0.026869224485185
602 => 0.027863189484583
603 => 0.027848736839839
604 => 0.027760760081874
605 => 0.027630044464973
606 => 0.028255286675274
607 => 0.028037464791318
608 => 0.028195948411524
609 => 0.028236289144403
610 => 0.028358388392976
611 => 0.028402028379555
612 => 0.028270118030192
613 => 0.027827410786235
614 => 0.026724226425635
615 => 0.026210691127787
616 => 0.02604121592589
617 => 0.0260473760276
618 => 0.025877452922541
619 => 0.0259275028924
620 => 0.025860047585549
621 => 0.025732303553565
622 => 0.025989637551062
623 => 0.026019292897041
624 => 0.025959228067113
625 => 0.02597337550894
626 => 0.02547606437116
627 => 0.025513873856862
628 => 0.025303345835874
629 => 0.025263874369892
630 => 0.024731677865606
701 => 0.023788814615147
702 => 0.024311252381852
703 => 0.023680221025539
704 => 0.023441239889218
705 => 0.024572539419369
706 => 0.024458988323907
707 => 0.02426463820795
708 => 0.023977153880335
709 => 0.023870523146756
710 => 0.023222668564713
711 => 0.023184389859836
712 => 0.023505484084241
713 => 0.023357310147856
714 => 0.023149217823312
715 => 0.022395528517797
716 => 0.021548132200444
717 => 0.021573709768722
718 => 0.021843250770903
719 => 0.0226269775873
720 => 0.022320761961522
721 => 0.022098599011601
722 => 0.022056994569274
723 => 0.022577761269791
724 => 0.023314755255018
725 => 0.023660536343576
726 => 0.023317877786343
727 => 0.022924250085841
728 => 0.022948208380075
729 => 0.023107592178112
730 => 0.02312434116172
731 => 0.022868129994274
801 => 0.022940251937145
802 => 0.022830692110956
803 => 0.022158323659867
804 => 0.02214616264669
805 => 0.021981152585387
806 => 0.02197615614631
807 => 0.021695432868344
808 => 0.021656157741208
809 => 0.021098764634123
810 => 0.021465642465148
811 => 0.021219560078047
812 => 0.020848655875719
813 => 0.020784711851435
814 => 0.02078278961685
815 => 0.021163625299979
816 => 0.021461192178458
817 => 0.021223840786528
818 => 0.021169800475449
819 => 0.02174680961679
820 => 0.021673379943999
821 => 0.021609790320933
822 => 0.023248765527062
823 => 0.02195138876058
824 => 0.021385658438718
825 => 0.020685459736138
826 => 0.020913447964406
827 => 0.020961488433947
828 => 0.019277636774546
829 => 0.018594498366037
830 => 0.018360071007765
831 => 0.018225154748763
901 => 0.018286637782162
902 => 0.017671733090361
903 => 0.018084959212836
904 => 0.017552503726336
905 => 0.017463235831264
906 => 0.018415332199704
907 => 0.018547810847306
908 => 0.017982615778746
909 => 0.018345562509531
910 => 0.018213952979611
911 => 0.017561631147412
912 => 0.017536717251577
913 => 0.0172094050864
914 => 0.016697224928023
915 => 0.016463144852016
916 => 0.016341233916055
917 => 0.016391536744229
918 => 0.016366102095013
919 => 0.016200123804213
920 => 0.016375615776354
921 => 0.015927306305824
922 => 0.015748785862384
923 => 0.015668152319725
924 => 0.015270251860899
925 => 0.015903488438028
926 => 0.016028244021027
927 => 0.016153245411063
928 => 0.017241297169253
929 => 0.017186941178216
930 => 0.017678292864748
1001 => 0.017659199841747
1002 => 0.017519058381379
1003 => 0.016927824612236
1004 => 0.017163479854888
1005 => 0.016438169646961
1006 => 0.01698162137104
1007 => 0.016733612699257
1008 => 0.016897769389636
1009 => 0.016602600858922
1010 => 0.016765959311029
1011 => 0.016057828197883
1012 => 0.0153965853281
1013 => 0.015662688761784
1014 => 0.015951973626816
1015 => 0.016579216922619
1016 => 0.016205635990284
1017 => 0.01633998982021
1018 => 0.015889926980515
1019 => 0.014961318788129
1020 => 0.014966574609651
1021 => 0.014823728470082
1022 => 0.014700288549616
1023 => 0.016248546254319
1024 => 0.016055995934407
1025 => 0.015749192199989
1026 => 0.016159861190403
1027 => 0.016268448589661
1028 => 0.016271539920262
1029 => 0.016571153414767
1030 => 0.016731057190492
1031 => 0.016759240924027
1101 => 0.017230689231208
1102 => 0.017388712485221
1103 => 0.018039587904215
1104 => 0.016717490472308
1105 => 0.016690262745728
1106 => 0.016165640145275
1107 => 0.015832916198112
1108 => 0.016188422038595
1109 => 0.016503351681876
1110 => 0.016175425887154
1111 => 0.016218246073054
1112 => 0.015778032486162
1113 => 0.015935388129501
1114 => 0.016070924007639
1115 => 0.015996089062162
1116 => 0.015884057526731
1117 => 0.016477531042537
1118 => 0.016444044940934
1119 => 0.016996701122749
1120 => 0.017427536137298
1121 => 0.018199669504339
1122 => 0.017393908083608
1123 => 0.017364542934825
1124 => 0.017651591974497
1125 => 0.017388668539509
1126 => 0.017554827074613
1127 => 0.018172898795532
1128 => 0.018185957677051
1129 => 0.0179672045862
1130 => 0.017953893440741
1201 => 0.017995907364736
1202 => 0.018241984229853
1203 => 0.018155997412003
1204 => 0.018255503534539
1205 => 0.018379937464462
1206 => 0.018894648957518
1207 => 0.019018744155946
1208 => 0.018717257159749
1209 => 0.018744478059899
1210 => 0.018631713647318
1211 => 0.018522784637699
1212 => 0.018767641143518
1213 => 0.01921512122057
1214 => 0.019212337470235
1215 => 0.019316144150341
1216 => 0.019380814852066
1217 => 0.019103200858415
1218 => 0.018922484356697
1219 => 0.018991782562745
1220 => 0.019102591903335
1221 => 0.018955848587043
1222 => 0.018050080860771
1223 => 0.018324832928255
1224 => 0.018279100749536
1225 => 0.018213972565817
1226 => 0.018490237894268
1227 => 0.018463591429385
1228 => 0.017665426353977
1229 => 0.017716522292465
1230 => 0.017668533667232
1231 => 0.017823594732908
]
'min_raw' => 0.014700288549616
'max_raw' => 0.032930461039054
'avg_raw' => 0.023815374794335
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01470028'
'max' => '$0.03293'
'avg' => '$0.023815'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0035847415604442
'max_diff' => -0.023929883213404
'year' => 2034
]
9 => [
'items' => [
101 => 0.017380294733095
102 => 0.017516650827367
103 => 0.017602172091435
104 => 0.017652544772976
105 => 0.017834525439575
106 => 0.017813172108762
107 => 0.01783319808655
108 => 0.018103027374001
109 => 0.019467731315698
110 => 0.019542009140195
111 => 0.019176237966534
112 => 0.019322356335894
113 => 0.019041841019297
114 => 0.019230152830618
115 => 0.019358990989322
116 => 0.01877679612429
117 => 0.018742322322796
118 => 0.018460649219703
119 => 0.018612004390525
120 => 0.018371187430925
121 => 0.018430275489391
122 => 0.018265060126715
123 => 0.018562414885481
124 => 0.01889490371004
125 => 0.018978903517505
126 => 0.018757936188255
127 => 0.018597941279422
128 => 0.018317042925109
129 => 0.018784183148559
130 => 0.018920789185736
131 => 0.018783465615201
201 => 0.018751644743328
202 => 0.018691344248629
203 => 0.018764437778338
204 => 0.01892004519992
205 => 0.01884666361352
206 => 0.018895133444154
207 => 0.018710416431647
208 => 0.019103292760198
209 => 0.019727274920774
210 => 0.019729281125451
211 => 0.019655899143497
212 => 0.019625872817518
213 => 0.019701167184194
214 => 0.019742011289379
215 => 0.019985499464585
216 => 0.020246771977578
217 => 0.021466016793585
218 => 0.021123657728137
219 => 0.022205444262098
220 => 0.02306099695806
221 => 0.023317539802794
222 => 0.023081532456912
223 => 0.022274164075518
224 => 0.022234550730972
225 => 0.023441099954914
226 => 0.023100194535695
227 => 0.023059644920831
228 => 0.022628265528333
301 => 0.022883264176676
302 => 0.022827492231679
303 => 0.022739453488044
304 => 0.023225973145724
305 => 0.02413669451299
306 => 0.02399475004721
307 => 0.02388879508812
308 => 0.023424531300413
309 => 0.023704121797684
310 => 0.023604564976809
311 => 0.024032324259607
312 => 0.023778929136506
313 => 0.023097611841855
314 => 0.023206113866679
315 => 0.023189714003903
316 => 0.023527222017735
317 => 0.023425910489446
318 => 0.023169931302012
319 => 0.024133581766364
320 => 0.024071007665315
321 => 0.024159723434172
322 => 0.024198778859249
323 => 0.024785335915475
324 => 0.025025629573678
325 => 0.025080180441022
326 => 0.025308440831337
327 => 0.025074501114571
328 => 0.026010426777826
329 => 0.026632762731114
330 => 0.027355637965974
331 => 0.02841195297465
401 => 0.028809137189372
402 => 0.028737389416041
403 => 0.029538275400062
404 => 0.030977449710653
405 => 0.029028287691779
406 => 0.031080760030589
407 => 0.030430970985054
408 => 0.028890332847298
409 => 0.028791133914157
410 => 0.029834471948222
411 => 0.032148495290214
412 => 0.031568858688481
413 => 0.032149443368046
414 => 0.031472160499762
415 => 0.031438527696764
416 => 0.032116549250857
417 => 0.033700783569026
418 => 0.032948173228599
419 => 0.031869121757971
420 => 0.032665876571983
421 => 0.031975653815909
422 => 0.030420388765289
423 => 0.031568415451295
424 => 0.030800762700281
425 => 0.031024804583692
426 => 0.032638296486596
427 => 0.032444156872068
428 => 0.032695391510111
429 => 0.032251968949921
430 => 0.031837742357383
501 => 0.031064557661542
502 => 0.030835655790648
503 => 0.030898916032736
504 => 0.030835624442013
505 => 0.030403034710624
506 => 0.030309616999318
507 => 0.030153916721083
508 => 0.030202174747865
509 => 0.029909412673061
510 => 0.030461915195947
511 => 0.03056446453283
512 => 0.030966529794099
513 => 0.031008273543324
514 => 0.032128019572918
515 => 0.031511282276386
516 => 0.031925042901436
517 => 0.031888032256666
518 => 0.028923723147367
519 => 0.029332178788307
520 => 0.02996760758517
521 => 0.029681347773487
522 => 0.029276643374247
523 => 0.028949822872983
524 => 0.028454656394457
525 => 0.029151593704153
526 => 0.030067992155382
527 => 0.031031514920335
528 => 0.032189124389914
529 => 0.031930759432363
530 => 0.031009874216518
531 => 0.031051184454594
601 => 0.031306548091398
602 => 0.030975828979503
603 => 0.030878293457001
604 => 0.031293148208366
605 => 0.031296005085039
606 => 0.030915472778064
607 => 0.030492580755538
608 => 0.030490808822522
609 => 0.030415559271766
610 => 0.031485547227674
611 => 0.032073932415439
612 => 0.032141389828986
613 => 0.032069391994035
614 => 0.032097101103216
615 => 0.031754732726638
616 => 0.032537285309307
617 => 0.033255432945592
618 => 0.033062954038081
619 => 0.032774400793233
620 => 0.032544554235104
621 => 0.033008809493615
622 => 0.032988136937759
623 => 0.033249160552487
624 => 0.033237319013578
625 => 0.033149546589539
626 => 0.033062957172711
627 => 0.033406274422812
628 => 0.033307404568289
629 => 0.033208381141574
630 => 0.033009774499568
701 => 0.033036768440723
702 => 0.032748265018661
703 => 0.032614790134597
704 => 0.030607648129298
705 => 0.030071274200225
706 => 0.03024002835721
707 => 0.030295586607389
708 => 0.030062155986074
709 => 0.030396835533633
710 => 0.030344676080659
711 => 0.03054759799992
712 => 0.030420821194611
713 => 0.030426024158923
714 => 0.030798847711671
715 => 0.030907079975138
716 => 0.030852032172397
717 => 0.030890585766509
718 => 0.031779037070355
719 => 0.031652727706021
720 => 0.031585628373658
721 => 0.031604215347288
722 => 0.031831233704031
723 => 0.031894786449177
724 => 0.031625509002223
725 => 0.031752501802881
726 => 0.032293221030295
727 => 0.032482442157832
728 => 0.033086345165637
729 => 0.032829796434401
730 => 0.033300702733753
731 => 0.034748108154173
801 => 0.035904395756841
802 => 0.034841025891821
803 => 0.036964400821783
804 => 0.038617752784801
805 => 0.038554294382658
806 => 0.038265994225186
807 => 0.036383696971926
808 => 0.034651578976005
809 => 0.036100569229208
810 => 0.036104263003351
811 => 0.035979793455555
812 => 0.035206723784166
813 => 0.035952892306716
814 => 0.03601212045435
815 => 0.035978968441711
816 => 0.035386257737215
817 => 0.034481298042697
818 => 0.034658125000839
819 => 0.034947771165446
820 => 0.034399410549324
821 => 0.034224176106132
822 => 0.034549970275743
823 => 0.035599746972143
824 => 0.035401292768631
825 => 0.035396110327361
826 => 0.036245181567664
827 => 0.035637429800649
828 => 0.034660355355059
829 => 0.034413631171519
830 => 0.033537926533277
831 => 0.034142778846064
901 => 0.034164546404003
902 => 0.033833274973731
903 => 0.034687236205885
904 => 0.034679366802794
905 => 0.035490075897368
906 => 0.037039847197765
907 => 0.036581503564623
908 => 0.036048499786925
909 => 0.036106452076153
910 => 0.03674204565054
911 => 0.036357751266276
912 => 0.036495946206253
913 => 0.036741836475947
914 => 0.036890188180765
915 => 0.036085106548833
916 => 0.035897403508923
917 => 0.035513428964083
918 => 0.035413257172558
919 => 0.035725996427439
920 => 0.035643600683019
921 => 0.034162716925046
922 => 0.034007956332779
923 => 0.034012702619197
924 => 0.033623549751475
925 => 0.033029998220809
926 => 0.034589816204278
927 => 0.034464540990567
928 => 0.034326246850161
929 => 0.034343187093265
930 => 0.035020251212753
1001 => 0.034627519830892
1002 => 0.035671660576976
1003 => 0.035457016629325
1004 => 0.035236867874342
1005 => 0.035206436610509
1006 => 0.03512169812205
1007 => 0.034831098315321
1008 => 0.034480181586355
1009 => 0.034248475966005
1010 => 0.031592408711049
1011 => 0.032085359343937
1012 => 0.032652454113209
1013 => 0.032848212955073
1014 => 0.032513353909966
1015 => 0.034844320591411
1016 => 0.035270210665865
1017 => 0.033980161850222
1018 => 0.033738846389161
1019 => 0.034860141192864
1020 => 0.034183863353516
1021 => 0.034488391223166
1022 => 0.033830168536823
1023 => 0.035167626218447
1024 => 0.035157437031767
1025 => 0.034637135785764
1026 => 0.035076890836017
1027 => 0.035000472574195
1028 => 0.034413053748903
1029 => 0.035186248442968
1030 => 0.03518663193789
1031 => 0.034685853300936
1101 => 0.034101053487515
1102 => 0.03399650509323
1103 => 0.033917741922237
1104 => 0.034469020311371
1105 => 0.034963294791267
1106 => 0.035883017057317
1107 => 0.036114257087064
1108 => 0.037016802317687
1109 => 0.036479380576981
1110 => 0.036717612673859
1111 => 0.036976247315009
1112 => 0.03710024627295
1113 => 0.036898196625136
1114 => 0.038300220870732
1115 => 0.038418594673973
1116 => 0.03845828438627
1117 => 0.037985529699056
1118 => 0.038405446510914
1119 => 0.038208981340829
1120 => 0.038720129133795
1121 => 0.038800283634395
1122 => 0.038732395623966
1123 => 0.038757837927609
1124 => 0.037561457568018
1125 => 0.037499418934964
1126 => 0.036653517771213
1127 => 0.036998228748028
1128 => 0.0363538080993
1129 => 0.03655816052528
1130 => 0.03664823712751
1201 => 0.036601186222307
1202 => 0.037017718189456
1203 => 0.036663580925521
1204 => 0.035728954460438
1205 => 0.034794073356999
1206 => 0.034782336686283
1207 => 0.03453619899377
1208 => 0.03435828652445
1209 => 0.034392558777825
1210 => 0.034513338668919
1211 => 0.034351266577614
1212 => 0.034385852875557
1213 => 0.034960215868717
1214 => 0.035075400270826
1215 => 0.034683958667009
1216 => 0.033112264142932
1217 => 0.032726566364426
1218 => 0.033003798278897
1219 => 0.032871299279802
1220 => 0.026529704018521
1221 => 0.028019567758947
1222 => 0.027134341315378
1223 => 0.027542294387885
1224 => 0.026638707417277
1225 => 0.027069946480702
1226 => 0.026990312372016
1227 => 0.029385969178348
1228 => 0.029348564292435
1229 => 0.029366468031899
1230 => 0.028511875899343
1231 => 0.02987326437121
]
'min_raw' => 0.017380294733095
'max_raw' => 0.038800283634395
'avg_raw' => 0.028090289183745
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01738'
'max' => '$0.03880028'
'avg' => '$0.02809'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0026800061834798
'max_diff' => 0.0058698225953406
'year' => 2035
]
10 => [
'items' => [
101 => 0.030543933286398
102 => 0.030419810319472
103 => 0.030451049396123
104 => 0.029914258559247
105 => 0.029371665340567
106 => 0.028769845956553
107 => 0.029887951984927
108 => 0.029763637681278
109 => 0.030048769966973
110 => 0.030773941650243
111 => 0.030880725935264
112 => 0.031024245097231
113 => 0.030972803694056
114 => 0.03219834661694
115 => 0.032049925282586
116 => 0.032407577994647
117 => 0.031671859230762
118 => 0.030839323614359
119 => 0.030997561417397
120 => 0.030982321844497
121 => 0.030788304590304
122 => 0.030613154488317
123 => 0.030321578916743
124 => 0.031244167170268
125 => 0.031206711772019
126 => 0.031813071132535
127 => 0.031705891225703
128 => 0.030990117576508
129 => 0.031015681572418
130 => 0.031187611730549
131 => 0.031782663970904
201 => 0.031959315990087
202 => 0.031877483736436
203 => 0.032071174610999
204 => 0.032224259980841
205 => 0.032090399776507
206 => 0.033985577983681
207 => 0.033198567860699
208 => 0.033582151118659
209 => 0.033673633465479
210 => 0.033439303357767
211 => 0.033490121167398
212 => 0.033567096301964
213 => 0.034034474245774
214 => 0.035261009207229
215 => 0.035804233192352
216 => 0.037438549353793
217 => 0.03575912600243
218 => 0.035659475970905
219 => 0.035953865663201
220 => 0.036913382259901
221 => 0.037690980338716
222 => 0.037948954482169
223 => 0.037983050023915
224 => 0.038467026666828
225 => 0.038744433052916
226 => 0.038408259172529
227 => 0.038123387007773
228 => 0.037103010273254
229 => 0.037221121658668
301 => 0.038034791978747
302 => 0.039184149230801
303 => 0.040170417323304
304 => 0.039825060612223
305 => 0.04245988853393
306 => 0.042721120960061
307 => 0.042685027085425
308 => 0.043280153428747
309 => 0.042098948832625
310 => 0.041593960983021
311 => 0.03818497960323
312 => 0.039142764320408
313 => 0.04053496065555
314 => 0.040350698250125
315 => 0.039339648058031
316 => 0.04016965035107
317 => 0.03989522563642
318 => 0.039678775478083
319 => 0.040670375614351
320 => 0.039580070531836
321 => 0.040524084028312
322 => 0.039313376954513
323 => 0.039826638172588
324 => 0.039535286281557
325 => 0.039723826661799
326 => 0.038621623451416
327 => 0.039216345549268
328 => 0.038596881056881
329 => 0.038596587350055
330 => 0.038582912637051
331 => 0.039311709865219
401 => 0.039335475916665
402 => 0.038796893663897
403 => 0.038719275547038
404 => 0.03900627040637
405 => 0.038670274590164
406 => 0.038827484917835
407 => 0.038675036330837
408 => 0.038640716942845
409 => 0.038367254220365
410 => 0.038249438960506
411 => 0.038295637359622
412 => 0.038137938406532
413 => 0.038042919083075
414 => 0.038564010902014
415 => 0.038285612563939
416 => 0.03852134236391
417 => 0.038252698505371
418 => 0.037321461849116
419 => 0.036785897800456
420 => 0.035026878082475
421 => 0.035525733892437
422 => 0.035856475810546
423 => 0.035747165608584
424 => 0.035982006219831
425 => 0.035996423526065
426 => 0.035920074449432
427 => 0.035831671999613
428 => 0.035788642576004
429 => 0.036109348646244
430 => 0.036295529314488
501 => 0.035889670186784
502 => 0.035794583071735
503 => 0.036204929057941
504 => 0.036455239872477
505 => 0.038303394289516
506 => 0.038166477040842
507 => 0.038510112466362
508 => 0.038471424390964
509 => 0.038831609062324
510 => 0.0394203587746
511 => 0.038223265992535
512 => 0.038431039907148
513 => 0.038380098541485
514 => 0.038936263014246
515 => 0.038937999299022
516 => 0.038604550915127
517 => 0.038785318693619
518 => 0.038684419078769
519 => 0.038866758320203
520 => 0.038164648427511
521 => 0.039019742488731
522 => 0.039504525720398
523 => 0.03951125693604
524 => 0.039741040340372
525 => 0.039974513587332
526 => 0.040422645153635
527 => 0.039962015441171
528 => 0.039133387429847
529 => 0.039193211695812
530 => 0.038707387395956
531 => 0.038715554190208
601 => 0.038671959202448
602 => 0.038802791042393
603 => 0.038193358659067
604 => 0.038336391221317
605 => 0.038136144796569
606 => 0.038430604610528
607 => 0.038113814526659
608 => 0.038380073976016
609 => 0.038494982727718
610 => 0.038918998495307
611 => 0.03805118705303
612 => 0.036281660776557
613 => 0.036653636653304
614 => 0.03610345511352
615 => 0.036154376509716
616 => 0.036257245834112
617 => 0.035923812696997
618 => 0.035987421231873
619 => 0.035985148687401
620 => 0.035965565126868
621 => 0.035878826290105
622 => 0.035753037816044
623 => 0.036254140381053
624 => 0.036339287471473
625 => 0.036528558905982
626 => 0.037091702311041
627 => 0.03703543100504
628 => 0.037127211839802
629 => 0.036926854792843
630 => 0.036163670498487
701 => 0.036205115077461
702 => 0.035688300513551
703 => 0.036515342795625
704 => 0.036319488266805
705 => 0.036193219577966
706 => 0.036158765996345
707 => 0.036723305324981
708 => 0.036892224340179
709 => 0.036786965345641
710 => 0.036571076076949
711 => 0.036985647294771
712 => 0.037096569063305
713 => 0.037121400356642
714 => 0.037855941068477
715 => 0.037162453022704
716 => 0.037329382488
717 => 0.038631718524121
718 => 0.037450679449448
719 => 0.038076302187617
720 => 0.038045681210167
721 => 0.038365728633095
722 => 0.038019427980002
723 => 0.038023720791635
724 => 0.038307901221305
725 => 0.037908821060044
726 => 0.037810003199839
727 => 0.037673487033713
728 => 0.037971565088106
729 => 0.038150249400803
730 => 0.03959031373198
731 => 0.040520660964833
801 => 0.040480272137838
802 => 0.040849350411851
803 => 0.040683077269039
804 => 0.040146137430259
805 => 0.041062628262218
806 => 0.040772612215381
807 => 0.040796520785913
808 => 0.040795630907724
809 => 0.040988466225227
810 => 0.040851824729679
811 => 0.04058249031599
812 => 0.040761287069108
813 => 0.041292249504856
814 => 0.042940373197338
815 => 0.043862685050385
816 => 0.042884848865695
817 => 0.043559347172146
818 => 0.043154888536596
819 => 0.043081386370914
820 => 0.043505021152399
821 => 0.043929397450488
822 => 0.043902366514929
823 => 0.04359429111448
824 => 0.04342026713789
825 => 0.044738034990936
826 => 0.045708943897471
827 => 0.045642734419101
828 => 0.045934961524149
829 => 0.046792949342815
830 => 0.0468713929963
831 => 0.046861510898968
901 => 0.046667080119055
902 => 0.047511880550329
903 => 0.048216627932947
904 => 0.046622075011151
905 => 0.047229259889541
906 => 0.047501844743725
907 => 0.047902080181949
908 => 0.04857734445348
909 => 0.049310860557366
910 => 0.049414587777051
911 => 0.04934098835088
912 => 0.048857214762396
913 => 0.049659836835935
914 => 0.050129994022811
915 => 0.050409961868239
916 => 0.051119913742038
917 => 0.047503528134985
918 => 0.044943670656286
919 => 0.044543911946197
920 => 0.045356837002898
921 => 0.045571198857394
922 => 0.045484789862634
923 => 0.042603437538298
924 => 0.044528742222519
925 => 0.046600208178525
926 => 0.046679781622206
927 => 0.047716800792093
928 => 0.04805449674266
929 => 0.048889433099629
930 => 0.048837207603172
1001 => 0.049040501319355
1002 => 0.048993767614561
1003 => 0.050540311399253
1004 => 0.052246378857744
1005 => 0.052187303166618
1006 => 0.051942035784186
1007 => 0.052306299671401
1008 => 0.054067144121863
1009 => 0.053905033781822
1010 => 0.054062510168646
1011 => 0.056138645012584
1012 => 0.058837915636443
1013 => 0.057583833429321
1014 => 0.060304830966341
1015 => 0.062017554682014
1016 => 0.064979533249332
1017 => 0.064608678944652
1018 => 0.065761755464906
1019 => 0.063944772339645
1020 => 0.059772611811171
1021 => 0.059112351437151
1022 => 0.060434209426394
1023 => 0.063683868307934
1024 => 0.060331866103661
1025 => 0.061009971783928
1026 => 0.060814677302393
1027 => 0.06080427088942
1028 => 0.061201441346656
1029 => 0.060625324883417
1030 => 0.058278122770809
1031 => 0.059353831666868
1101 => 0.058938448802316
1102 => 0.059399347059381
1103 => 0.06188662486386
1104 => 0.060786940057202
1105 => 0.059628511444528
1106 => 0.06108143800071
1107 => 0.062931512786462
1108 => 0.062815738431274
1109 => 0.062591087792282
1110 => 0.063857431681953
1111 => 0.065949060783743
1112 => 0.06651441972511
1113 => 0.066931756137373
1114 => 0.066989299777667
1115 => 0.067582035035874
1116 => 0.064394748163976
1117 => 0.069453054285011
1118 => 0.070326484019227
1119 => 0.070162315429148
1120 => 0.071133095819187
1121 => 0.070847467602116
1122 => 0.070433637129274
1123 => 0.071972530538397
1124 => 0.070208313427132
1125 => 0.06770422934645
1126 => 0.06633043929462
1127 => 0.068139556855352
1128 => 0.069244321820189
1129 => 0.069974501185697
1130 => 0.070195453020514
1201 => 0.0646421681708
1202 => 0.061649255636102
1203 => 0.063567678257031
1204 => 0.065908286257022
1205 => 0.064381745968356
1206 => 0.064441583457549
1207 => 0.062265138173643
1208 => 0.066100853371054
1209 => 0.065542021930234
1210 => 0.068441240433765
1211 => 0.067749318670215
1212 => 0.070113518812831
1213 => 0.069490945682305
1214 => 0.072075211939522
1215 => 0.073106145715741
1216 => 0.074837243978044
1217 => 0.076110646906631
1218 => 0.076858413462614
1219 => 0.076813520363395
1220 => 0.079776543994018
1221 => 0.0780293524792
1222 => 0.075834468155166
1223 => 0.075794769622516
1224 => 0.076931531315685
1225 => 0.079313871969226
1226 => 0.079931578239042
1227 => 0.08027679177483
1228 => 0.079748085227801
1229 => 0.07785163406081
1230 => 0.077032756062129
1231 => 0.077730463842185
]
'min_raw' => 0.028769845956553
'max_raw' => 0.08027679177483
'avg_raw' => 0.054523318865692
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.028769'
'max' => '$0.080276'
'avg' => '$0.054523'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.011389551223458
'max_diff' => 0.041476508140435
'year' => 2036
]
11 => [
'items' => [
101 => 0.07687722718189
102 => 0.078350153033483
103 => 0.080372794827706
104 => 0.079955127295592
105 => 0.081351327235235
106 => 0.082796247288248
107 => 0.084862547859477
108 => 0.085402755343685
109 => 0.08629569777283
110 => 0.087214828848728
111 => 0.087510028979029
112 => 0.088073657622996
113 => 0.088070687021827
114 => 0.089769219877002
115 => 0.091642754215445
116 => 0.092349970055787
117 => 0.093976173884545
118 => 0.091191356816776
119 => 0.093303672552352
120 => 0.095209034220533
121 => 0.092937383490886
122 => 0.096068324794968
123 => 0.09618989215094
124 => 0.098025414894704
125 => 0.09616476095029
126 => 0.095059910577515
127 => 0.098249572205513
128 => 0.099792948993902
129 => 0.099328071344822
130 => 0.095790329481487
131 => 0.093731211976139
201 => 0.088342104290541
202 => 0.094725735136259
203 => 0.097835015508144
204 => 0.095782277196471
205 => 0.096817559000222
206 => 0.10246572083024
207 => 0.10461617516371
208 => 0.10416889569516
209 => 0.1042444785625
210 => 0.10540482468733
211 => 0.11055043841913
212 => 0.10746706739664
213 => 0.10982418901163
214 => 0.11107439781698
215 => 0.11223566143029
216 => 0.10938396501714
217 => 0.10567394988338
218 => 0.10449883235468
219 => 0.095578172826425
220 => 0.095113813757519
221 => 0.094853154940622
222 => 0.093209737971008
223 => 0.091918462402685
224 => 0.090891592128767
225 => 0.088196777880583
226 => 0.089106198582243
227 => 0.084811227122084
228 => 0.087558997657851
301 => 0.080704119501725
302 => 0.086413065723951
303 => 0.083305945849126
304 => 0.08539229327935
305 => 0.085385014209712
306 => 0.081543387113615
307 => 0.079327616777298
308 => 0.08073959187467
309 => 0.082253341261777
310 => 0.08249894200697
311 => 0.084461557600255
312 => 0.08500928142606
313 => 0.083349652663091
314 => 0.080562067388361
315 => 0.08120955986963
316 => 0.079314495362831
317 => 0.075993467707269
318 => 0.078378687749074
319 => 0.079193106742068
320 => 0.079552800565801
321 => 0.076286951289159
322 => 0.075260750541401
323 => 0.074714409873953
324 => 0.080140487257526
325 => 0.080437740025275
326 => 0.078916952838164
327 => 0.085791055130865
328 => 0.084235234071535
329 => 0.08597346738022
330 => 0.08115080671365
331 => 0.081335038845687
401 => 0.079051913999567
402 => 0.080330311354937
403 => 0.079426781308832
404 => 0.080227029481992
405 => 0.080706694937437
406 => 0.082989445145236
407 => 0.086439131064492
408 => 0.082648478387202
409 => 0.08099683673256
410 => 0.082021505925914
411 => 0.084750335017145
412 => 0.088884650776549
413 => 0.086437052636123
414 => 0.087523255127932
415 => 0.087760542050607
416 => 0.085955773796865
417 => 0.088951195156359
418 => 0.090556465797672
419 => 0.092203141311704
420 => 0.093632903521738
421 => 0.091545422900229
422 => 0.093779326393836
423 => 0.09197919451504
424 => 0.090364290125546
425 => 0.090366739268901
426 => 0.089353686155383
427 => 0.087390768095035
428 => 0.087028775888141
429 => 0.088911905062981
430 => 0.090421996328206
501 => 0.09054637467766
502 => 0.091382438793379
503 => 0.091877212924916
504 => 0.096726672026799
505 => 0.098677164594406
506 => 0.10106218998514
507 => 0.1019912917875
508 => 0.10478755511116
509 => 0.1025293453759
510 => 0.10204076749487
511 => 0.095257947322426
512 => 0.096368633745683
513 => 0.098146949874617
514 => 0.095287271100397
515 => 0.09710107907532
516 => 0.097459163191276
517 => 0.095190100309919
518 => 0.096402104835271
519 => 0.093183380150233
520 => 0.086509290466866
521 => 0.088958625326067
522 => 0.090762160219637
523 => 0.088188293552263
524 => 0.092801849931135
525 => 0.090106705537733
526 => 0.089252474154771
527 => 0.085919812974358
528 => 0.08749270076562
529 => 0.089620054024886
530 => 0.088305597042021
531 => 0.091033292648175
601 => 0.094896437076334
602 => 0.097649543850069
603 => 0.097860893202693
604 => 0.09609082999101
605 => 0.098927367584125
606 => 0.098948028663772
607 => 0.095748402671143
608 => 0.093788649566249
609 => 0.093343389537462
610 => 0.094455736387744
611 => 0.095806330814543
612 => 0.097935841793721
613 => 0.099222660678937
614 => 0.10257800185558
615 => 0.10348586097281
616 => 0.10448332289695
617 => 0.10581623963348
618 => 0.10741674792852
619 => 0.10391492689597
620 => 0.1040540607738
621 => 0.1007932135143
622 => 0.097308530564719
623 => 0.099952970551587
624 => 0.10341022405931
625 => 0.10261712628471
626 => 0.10252788658355
627 => 0.10267796300787
628 => 0.10207999318598
629 => 0.099375397843348
630 => 0.098017166993941
701 => 0.09976963131132
702 => 0.10070098810279
703 => 0.10214544126352
704 => 0.10196738192276
705 => 0.10568813814185
706 => 0.10713391149876
707 => 0.10676402080593
708 => 0.10683208959533
709 => 0.10944959319888
710 => 0.11236079553671
711 => 0.11508752069306
712 => 0.11786126263767
713 => 0.11451740846245
714 => 0.11281960553253
715 => 0.11457130477881
716 => 0.11364182850178
717 => 0.11898287489016
718 => 0.11935267735379
719 => 0.12469333752372
720 => 0.12976225997897
721 => 0.12657856060401
722 => 0.12958064571763
723 => 0.1328276455316
724 => 0.13909163497949
725 => 0.13698214370325
726 => 0.13536630644559
727 => 0.13383934804477
728 => 0.13701670607905
729 => 0.14110432643063
730 => 0.14198476070361
731 => 0.14341140057763
801 => 0.14191146319133
802 => 0.14371797256045
803 => 0.15009574445389
804 => 0.14837241419013
805 => 0.14592500817643
806 => 0.15095964655858
807 => 0.15278166261742
808 => 0.16556952551557
809 => 0.18171473066475
810 => 0.17503050971786
811 => 0.17088139807766
812 => 0.17185653773135
813 => 0.17775222010215
814 => 0.17964572616004
815 => 0.174498523964
816 => 0.17631660279636
817 => 0.18633439591224
818 => 0.19170862050962
819 => 0.18440970165172
820 => 0.16427227400207
821 => 0.14570464604255
822 => 0.1506296170886
823 => 0.15007127821162
824 => 0.16083414716949
825 => 0.14833131333329
826 => 0.14854182898978
827 => 0.15952726267962
828 => 0.15659653730919
829 => 0.15184913754802
830 => 0.14573930731459
831 => 0.1344447210372
901 => 0.12444079099848
902 => 0.14406080157191
903 => 0.14321475103931
904 => 0.14198954449044
905 => 0.14471610908375
906 => 0.15795553280003
907 => 0.15765032123153
908 => 0.15570872095309
909 => 0.15718140765181
910 => 0.1515909684494
911 => 0.1530317519238
912 => 0.14570170483542
913 => 0.14901519224917
914 => 0.1518389517603
915 => 0.15240586328864
916 => 0.15368314390919
917 => 0.14276892085346
918 => 0.14766908658073
919 => 0.15054747486206
920 => 0.13754281189034
921 => 0.15029041448829
922 => 0.14257892851202
923 => 0.13996153434904
924 => 0.14348551077403
925 => 0.14211221373403
926 => 0.14093153358175
927 => 0.14027269377011
928 => 0.14286031312954
929 => 0.14273959759355
930 => 0.13850575008625
1001 => 0.13298286860668
1002 => 0.13483652891362
1003 => 0.13416307674595
1004 => 0.13172239921325
1005 => 0.13336712118176
1006 => 0.12612459800717
1007 => 0.11366421331887
1008 => 0.12189592511586
1009 => 0.12157901316606
1010 => 0.12141921179015
1011 => 0.12760511569779
1012 => 0.12701048377016
1013 => 0.12593122099885
1014 => 0.13170257770608
1015 => 0.12959595487224
1016 => 0.13608807006338
1017 => 0.14036419701195
1018 => 0.13927963289958
1019 => 0.14330135096303
1020 => 0.13487923350323
1021 => 0.13767672308667
1022 => 0.13825328181266
1023 => 0.13163136006018
1024 => 0.12710777290745
1025 => 0.12680610121704
1026 => 0.11896282448292
1027 => 0.12315263960557
1028 => 0.12683950352717
1029 => 0.12507378182092
1030 => 0.12451480707815
1031 => 0.1273704878121
1101 => 0.12759239866238
1102 => 0.12253280775896
1103 => 0.12358485692419
1104 => 0.1279720768318
1105 => 0.12347431023896
1106 => 0.11473588445507
1107 => 0.11256863404247
1108 => 0.11227948288708
1109 => 0.10640172788133
1110 => 0.11271346007816
1111 => 0.10995821983034
1112 => 0.11866199076035
1113 => 0.11369044348439
1114 => 0.11347613001783
1115 => 0.11315216378017
1116 => 0.10809293723971
1117 => 0.10920058632145
1118 => 0.11288258056887
1119 => 0.11419635759699
1120 => 0.1140593198895
1121 => 0.11286453678836
1122 => 0.11341150237378
1123 => 0.11164953564769
1124 => 0.11102734852454
1125 => 0.10906355481783
1126 => 0.10617732058083
1127 => 0.10657866915379
1128 => 0.10086028390602
1129 => 0.097744604125362
1130 => 0.096882225026075
1201 => 0.095729015653204
1202 => 0.097012483093314
1203 => 0.10084408443909
1204 => 0.096222360296511
1205 => 0.088298738430309
1206 => 0.088774961605662
1207 => 0.089844893688752
1208 => 0.087851082330224
1209 => 0.08596410720728
1210 => 0.087604678981549
1211 => 0.084247335941577
1212 => 0.090250612555236
1213 => 0.090088240746825
1214 => 0.092325891028262
1215 => 0.09372513967045
1216 => 0.090500324562333
1217 => 0.089689292283469
1218 => 0.090151293128872
1219 => 0.082515448273961
1220 => 0.091701879597768
1221 => 0.091781324237331
1222 => 0.091101071001152
1223 => 0.095992562081832
1224 => 0.10631513395639
1225 => 0.10243136719269
1226 => 0.10092745531431
1227 => 0.098068517734167
1228 => 0.1018778823128
1229 => 0.1015853825485
1230 => 0.10026258768712
1231 => 0.09946255722759
]
'min_raw' => 0.074714409873953
'max_raw' => 0.19170862050962
'avg_raw' => 0.13321151519179
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.074714'
'max' => '$0.1917086'
'avg' => '$0.133211'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0459445639174
'max_diff' => 0.11143182873479
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0023451999516995
]
1 => [
'year' => 2028
'avg' => 0.0040250439335269
]
2 => [
'year' => 2029
'avg' => 0.010995694582808
]
3 => [
'year' => 2030
'avg' => 0.0084831619953569
]
4 => [
'year' => 2031
'avg' => 0.0083315163861328
]
5 => [
'year' => 2032
'avg' => 0.014607770249595
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0023451999516995
'min' => '$0.002345'
'max_raw' => 0.014607770249595
'max' => '$0.0146077'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014607770249595
]
1 => [
'year' => 2033
'avg' => 0.037572687181259
]
2 => [
'year' => 2034
'avg' => 0.023815374794335
]
3 => [
'year' => 2035
'avg' => 0.028090289183745
]
4 => [
'year' => 2036
'avg' => 0.054523318865692
]
5 => [
'year' => 2037
'avg' => 0.13321151519179
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014607770249595
'min' => '$0.0146077'
'max_raw' => 0.13321151519179
'max' => '$0.133211'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.13321151519179
]
]
]
]
'prediction_2025_max_price' => '$0.0040098'
'last_price' => 0.00388807
'sma_50day_nextmonth' => '$0.003407'
'sma_200day_nextmonth' => '$0.007885'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.003653'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003496'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003305'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003162'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003555'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.005215'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010336'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0037032'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003569'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003398'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003361'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003871'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0056045'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009654'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006433'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0131042'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0036069'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003629'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004312'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006983'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.01543'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018333'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009166'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '61.27'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.81
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.003335'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003752'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 253.17
'cci_20_action' => 'SELL'
'adx_14' => 19.27
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000014'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 74.1
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0013012'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 12
'buy_signals' => 21
'sell_pct' => 36.36
'buy_pct' => 63.64
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767705093
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Sigma para 2026
La previsión del precio de Sigma para 2026 sugiere que el precio medio podría oscilar entre $0.001343 en el extremo inferior y $0.0040098 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Sigma podría potencialmente ganar 3.13% para 2026 si SIGMA alcanza el objetivo de precio previsto.
Predicción de precio de Sigma 2027-2032
La predicción del precio de SIGMA para 2027-2032 está actualmente dentro de un rango de precios de $0.002345 en el extremo inferior y $0.0146077 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Sigma alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Sigma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001293 | $0.002345 | $0.003397 |
| 2028 | $0.002333 | $0.004025 | $0.005716 |
| 2029 | $0.005126 | $0.010995 | $0.016864 |
| 2030 | $0.00436 | $0.008483 | $0.0126062 |
| 2031 | $0.005154 | $0.008331 | $0.011508 |
| 2032 | $0.007868 | $0.0146077 | $0.021346 |
Predicción de precio de Sigma 2032-2037
La predicción de precio de Sigma para 2032-2037 se estima actualmente entre $0.0146077 en el extremo inferior y $0.133211 en el extremo superior. Comparado con el precio actual, Sigma podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Sigma | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007868 | $0.0146077 | $0.021346 |
| 2033 | $0.018285 | $0.037572 | $0.05686 |
| 2034 | $0.01470028 | $0.023815 | $0.03293 |
| 2035 | $0.01738 | $0.02809 | $0.03880028 |
| 2036 | $0.028769 | $0.054523 | $0.080276 |
| 2037 | $0.074714 | $0.133211 | $0.1917086 |
Sigma Histograma de precios potenciales
Pronóstico de precio de Sigma basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Sigma es Alcista, con 21 indicadores técnicos mostrando señales alcistas y 12 indicando señales bajistas. La predicción de precio de SIGMA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Sigma
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Sigma aumentar durante el próximo mes, alcanzando $0.007885 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Sigma alcance $0.003407 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 61.27, lo que sugiere que el mercado de SIGMA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SIGMA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.003653 | BUY |
| SMA 5 | $0.003496 | BUY |
| SMA 10 | $0.003305 | BUY |
| SMA 21 | $0.003162 | BUY |
| SMA 50 | $0.003555 | BUY |
| SMA 100 | $0.005215 | SELL |
| SMA 200 | $0.010336 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0037032 | BUY |
| EMA 5 | $0.003569 | BUY |
| EMA 10 | $0.003398 | BUY |
| EMA 21 | $0.003361 | BUY |
| EMA 50 | $0.003871 | BUY |
| EMA 100 | $0.0056045 | SELL |
| EMA 200 | $0.009654 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.006433 | SELL |
| SMA 50 | $0.0131042 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.006983 | SELL |
| EMA 50 | $0.01543 | SELL |
| EMA 100 | $0.018333 | SELL |
| EMA 200 | $0.009166 | SELL |
Osciladores de Sigma
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 61.27 | NEUTRAL |
| Stoch RSI (14) | 105.81 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 253.17 | SELL |
| Índice Direccional Medio (14) | 19.27 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000014 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 74.1 | SELL |
| VWMA (10) | 0.003335 | BUY |
| Promedio Móvil de Hull (9) | 0.003752 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0013012 | SELL |
Predicción de precios de Sigma basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Sigma
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Sigma por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.005463 | $0.007676 | $0.010787 | $0.015158 | $0.021299 | $0.029929 |
| Amazon.com acción | $0.008112 | $0.016927 | $0.03532 | $0.073698 | $0.153775 | $0.320862 |
| Apple acción | $0.005514 | $0.007822 | $0.011095 | $0.015738 | $0.022323 | $0.031664 |
| Netflix acción | $0.006134 | $0.009679 | $0.015273 | $0.024098 | $0.038023 | $0.059995 |
| Google acción | $0.005035 | $0.00652 | $0.008443 | $0.010934 | $0.01416 | $0.018337 |
| Tesla acción | $0.008813 | $0.01998 | $0.045294 | $0.102679 | $0.232765 | $0.527662 |
| Kodak acción | $0.002915 | $0.002186 | $0.001639 | $0.001229 | $0.000922 | $0.000691 |
| Nokia acción | $0.002575 | $0.0017062 | $0.00113 | $0.000748 | $0.000496 | $0.000328 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Sigma
Podría preguntarse cosas como: "¿Debo invertir en Sigma ahora?", "¿Debería comprar SIGMA hoy?", "¿Será Sigma una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Sigma regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Sigma, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Sigma a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Sigma es de $0.003888 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Sigma basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Sigma ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.003989 | $0.004092 | $0.004199 | $0.0043083 |
| Si Sigma ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00409 | $0.0043028 | $0.004526 | $0.004761 |
| Si Sigma ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.004393 | $0.004964 | $0.0056095 | $0.006338 |
| Si Sigma ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.004898 | $0.006172 | $0.007776 | $0.009797 |
| Si Sigma ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.0059093 | $0.008981 | $0.01365 | $0.020746 |
| Si Sigma ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.008941 | $0.020561 | $0.047285 | $0.108739 |
| Si Sigma ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.013994 | $0.05037 | $0.181299 | $0.652554 |
Cuadro de preguntas
¿Es SIGMA una buena inversión?
La decisión de adquirir Sigma depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Sigma ha experimentado un aumento de 2.0676% durante las últimas 24 horas, y Sigma ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Sigma dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Sigma subir?
Parece que el valor medio de Sigma podría potencialmente aumentar hasta $0.0040098 para el final de este año. Mirando las perspectivas de Sigma en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0126062. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Sigma la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Sigma, el precio de Sigma aumentará en un 0.86% durante la próxima semana y alcanzará $0.003921 para el 13 de enero de 2026.
¿Cuál será el precio de Sigma el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Sigma, el precio de Sigma disminuirá en un -11.62% durante el próximo mes y alcanzará $0.003436 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Sigma este año en 2026?
Según nuestra predicción más reciente sobre el valor de Sigma en 2026, se anticipa que SIGMA fluctúe dentro del rango de $0.001343 y $0.0040098. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Sigma no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Sigma en 5 años?
El futuro de Sigma parece estar en una tendencia alcista, con un precio máximo de $0.0126062 proyectada después de un período de cinco años. Basado en el pronóstico de Sigma para 2030, el valor de Sigma podría potencialmente alcanzar su punto más alto de aproximadamente $0.0126062, mientras que su punto más bajo se anticipa que esté alrededor de $0.00436.
¿Cuánto será Sigma en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Sigma, se espera que el valor de SIGMA en 2026 crezca en un 3.13% hasta $0.0040098 si ocurre lo mejor. El precio estará entre $0.0040098 y $0.001343 durante 2026.
¿Cuánto será Sigma en 2027?
Según nuestra última simulación experimental para la predicción de precios de Sigma, el valor de SIGMA podría disminuir en un -12.62% hasta $0.003397 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003397 y $0.001293 a lo largo del año.
¿Cuánto será Sigma en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Sigma sugiere que el valor de SIGMA en 2028 podría aumentar en un 47.02% , alcanzando $0.005716 en el mejor escenario. Se espera que el precio oscile entre $0.005716 y $0.002333 durante el año.
¿Cuánto será Sigma en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Sigma podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.016864 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.016864 y $0.005126.
¿Cuánto será Sigma en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Sigma, se espera que el valor de SIGMA en 2030 aumente en un 224.23% , alcanzando $0.0126062 en el mejor escenario. Se pronostica que el precio oscile entre $0.0126062 y $0.00436 durante el transcurso de 2030.
¿Cuánto será Sigma en 2031?
Nuestra simulación experimental indica que el precio de Sigma podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.011508 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.011508 y $0.005154 durante el año.
¿Cuánto será Sigma en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Sigma, SIGMA podría experimentar un 449.04% aumento en valor, alcanzando $0.021346 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.021346 y $0.007868 a lo largo del año.
¿Cuánto será Sigma en 2033?
Según nuestra predicción experimental de precios de Sigma, se anticipa que el valor de SIGMA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.05686. A lo largo del año, el precio de SIGMA podría oscilar entre $0.05686 y $0.018285.
¿Cuánto será Sigma en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Sigma sugieren que SIGMA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.03293 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.03293 y $0.01470028.
¿Cuánto será Sigma en 2035?
Basado en nuestra predicción experimental para el precio de Sigma, SIGMA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.03880028 en 2035. El rango de precios esperado para el año está entre $0.03880028 y $0.01738.
¿Cuánto será Sigma en 2036?
Nuestra reciente simulación de predicción de precios de Sigma sugiere que el valor de SIGMA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.080276 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.080276 y $0.028769.
¿Cuánto será Sigma en 2037?
Según la simulación experimental, el valor de Sigma podría aumentar en un 4830.69% en 2037, con un máximo de $0.1917086 bajo condiciones favorables. Se espera que el precio caiga entre $0.1917086 y $0.074714 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Sigma?
Los traders de Sigma utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Sigma
Las medias móviles son herramientas populares para la predicción de precios de Sigma. Una media móvil simple (SMA) calcula el precio de cierre promedio de SIGMA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SIGMA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SIGMA.
¿Cómo leer gráficos de Sigma y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Sigma en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SIGMA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Sigma?
La acción del precio de Sigma está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SIGMA. La capitalización de mercado de Sigma puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SIGMA, grandes poseedores de Sigma, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Sigma.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


