Previsão de Preço Sigma - Projeção SIGMA
Previsão de Preço Sigma até $0.003849 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001289 | $0.003849 |
| 2027 | $0.001241 | $0.003261 |
| 2028 | $0.00224 | $0.005487 |
| 2029 | $0.004921 | $0.016188 |
| 2030 | $0.004185 | $0.01210084 |
| 2031 | $0.004948 | $0.011046 |
| 2032 | $0.007553 | $0.020491 |
| 2033 | $0.017551 | $0.05458 |
| 2034 | $0.01411 | $0.03161 |
| 2035 | $0.016683 | $0.037244 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sigma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.29, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Sigma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sigma'
'name_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_lang' => 'Sigma'
'name_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_with_lang' => 'Sigma'
'name_with_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'image' => '/uploads/coins/sigma.jpg?1722053593'
'price_for_sd' => 0.003732
'ticker' => 'SIGMA'
'marketcap' => '$3.36M'
'low24h' => '$0.003615'
'high24h' => '$0.004703'
'volume24h' => '$1.45M'
'current_supply' => '899.82M'
'max_supply' => '899.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003732'
'change_24h_pct' => '-2.1352%'
'ath_price' => '$0.1721'
'ath_days' => 422
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de nov. de 2024'
'ath_pct' => '-97.83%'
'fdv' => '$3.36M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.184022'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003764'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003298'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001289'
'current_year_max_price_prediction' => '$0.003849'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004185'
'grand_prediction_max_price' => '$0.01210084'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0038029130373681
107 => 0.0038171117341922
108 => 0.0038491021231403
109 => 0.0035757477521427
110 => 0.0036984758394579
111 => 0.003770567092689
112 => 0.0034448561878889
113 => 0.0037641288353415
114 => 0.0035709892607022
115 => 0.0035054347882106
116 => 0.0035936952492755
117 => 0.0035593000617624
118 => 0.0035297290992918
119 => 0.0035132279941396
120 => 0.003578036735794
121 => 0.0035750133305327
122 => 0.0034689736503512
123 => 0.0033306492102849
124 => 0.0033770754327161
125 => 0.0033602083508587
126 => 0.0032990798703105
127 => 0.0033402730855191
128 => 0.0031588790131496
129 => 0.0028467999396814
130 => 0.003052968934855
131 => 0.0030450316528096
201 => 0.0030410293152752
202 => 0.0031959596170557
203 => 0.0031810666433897
204 => 0.0031540357503535
205 => 0.003298583426762
206 => 0.0032458215804323
207 => 0.003408421158566
208 => 0.0035155197570062
209 => 0.0034883560881651
210 => 0.0035890828376506
211 => 0.0033781449991131
212 => 0.0034482100877181
213 => 0.0034626504053735
214 => 0.0032967997308727
215 => 0.003183503318066
216 => 0.0031759477390054
217 => 0.0029795073724059
218 => 0.0030844442306321
219 => 0.0031767843232889
220 => 0.003132560584787
221 => 0.0031185606703239
222 => 0.0031900831971049
223 => 0.0031956411099848
224 => 0.0030689201073218
225 => 0.0030952694165077
226 => 0.0032051504160211
227 => 0.0030925006972456
228 => 0.0028736406948919
301 => 0.002819360388332
302 => 0.0028121183948523
303 => 0.0026649058984363
304 => 0.0028229876579677
305 => 0.0027539807336044
306 => 0.002971972780838
307 => 0.002847456892573
308 => 0.0028420892614966
309 => 0.0028339752998645
310 => 0.0027072634229275
311 => 0.0027350052710168
312 => 0.0028272233992685
313 => 0.0028601278663402
314 => 0.0028566956608463
315 => 0.0028267714801306
316 => 0.0028404706168256
317 => 0.0027963409244353
318 => 0.0027807578115722
319 => 0.0027315732209032
320 => 0.0026592854602097
321 => 0.0026693375167008
322 => 0.0025261165476456
323 => 0.0024480821623922
324 => 0.0024264832730307
325 => 0.0023976003354968
326 => 0.0024297456776797
327 => 0.002525710820635
328 => 0.0024099564980901
329 => 0.0022115038313085
330 => 0.002223431174729
331 => 0.0022502283741347
401 => 0.0022002919703233
402 => 0.0021530313549605
403 => 0.0021941206256436
404 => 0.0021100336145729
405 => 0.0022603898876921
406 => 0.0022563231718729
407 => 0.0023123666925221
408 => 0.002347411856113
409 => 0.0022666441000426
410 => 0.0022463312278101
411 => 0.0022579023630023
412 => 0.0020666572732976
413 => 0.0022967378886021
414 => 0.0022987276353175
415 => 0.0022816902159295
416 => 0.0024042010406371
417 => 0.0026627370928545
418 => 0.0025654654304217
419 => 0.0025277989026762
420 => 0.0024561948058978
421 => 0.0025516030134244
422 => 0.0025442771516862
423 => 0.0025111468266558
424 => 0.0024911095027044
425 => 0.0025280288864627
426 => 0.0024865347824881
427 => 0.0024790813012325
428 => 0.0024339213142914
429 => 0.0024178012536019
430 => 0.0024058666024255
501 => 0.0023927277241549
502 => 0.0024217088156154
503 => 0.0023560338495858
504 => 0.0022768362787505
505 => 0.0022702518576651
506 => 0.00228843202319
507 => 0.0022803886532994
508 => 0.0022702133491046
509 => 0.0022507859223175
510 => 0.002245022219791
511 => 0.002263751456851
512 => 0.0022426072401926
513 => 0.0022738066836571
514 => 0.0022653221613787
515 => 0.0022179283096352
516 => 0.0021588580229114
517 => 0.0021583321734554
518 => 0.0021456055770755
519 => 0.002129396343129
520 => 0.0021248873050622
521 => 0.0021906602018739
522 => 0.0023268081298571
523 => 0.0023000790338502
524 => 0.0023193935450231
525 => 0.0024144018237196
526 => 0.0024446020985186
527 => 0.002423166658799
528 => 0.0023938245068305
529 => 0.0023951154126031
530 => 0.0024953864283531
531 => 0.0025016402086105
601 => 0.002517441493775
602 => 0.0025377506106539
603 => 0.0024266253892226
604 => 0.002389881424667
605 => 0.0023724700957831
606 => 0.0023188499418527
607 => 0.002376674680822
608 => 0.0023429826817268
609 => 0.0023475288834874
610 => 0.0023445681636268
611 => 0.0023461849168737
612 => 0.0022603478600495
613 => 0.0022916223720934
614 => 0.0022396224300291
615 => 0.0021700003448726
616 => 0.0021697669472305
617 => 0.002186806853939
618 => 0.0021766708506572
619 => 0.0021493951264462
620 => 0.0021532695143326
621 => 0.0021193257996253
622 => 0.0021573908958688
623 => 0.0021584824666256
624 => 0.0021438253311521
625 => 0.0022024698638862
626 => 0.0022264965767967
627 => 0.0022168489362418
628 => 0.0022258196726168
629 => 0.0023011897484639
630 => 0.002313478359454
701 => 0.0023189361487157
702 => 0.0023116234341235
703 => 0.0022271972992445
704 => 0.002230941957334
705 => 0.0022034661408927
706 => 0.00218025197133
707 => 0.0021811804163702
708 => 0.0021931155171562
709 => 0.0022452368022732
710 => 0.0023549229740844
711 => 0.0023590854841251
712 => 0.0023641305677234
713 => 0.0023436096772733
714 => 0.0023374203803551
715 => 0.0023455856605833
716 => 0.0023867780196906
717 => 0.0024927359509312
718 => 0.0024552833413385
719 => 0.002424833786755
720 => 0.0024515462552657
721 => 0.0024474340801177
722 => 0.0024127231835221
723 => 0.0024117489642629
724 => 0.0023451276559509
725 => 0.0023204992751618
726 => 0.002299917956772
727 => 0.0022774436943793
728 => 0.0022641201982889
729 => 0.0022845911437045
730 => 0.0022892730911262
731 => 0.0022445130112039
801 => 0.0022384123777047
802 => 0.0022749644251826
803 => 0.0022588792318853
804 => 0.0022754232520852
805 => 0.0022792616066836
806 => 0.0022786435431884
807 => 0.0022618487540133
808 => 0.0022725532518057
809 => 0.0022472339233623
810 => 0.0022197029565203
811 => 0.0022021399149149
812 => 0.0021868138317148
813 => 0.0021953176334314
814 => 0.0021650031330445
815 => 0.0021553049142605
816 => 0.0022689268088125
817 => 0.0023528605239593
818 => 0.0023516400944996
819 => 0.0023442110440331
820 => 0.0023331729819677
821 => 0.0023859705166987
822 => 0.0023675769113185
823 => 0.0023809597960698
824 => 0.0023843663019169
825 => 0.0023946767691421
826 => 0.0023983618749606
827 => 0.0023872229257067
828 => 0.0023498392515027
829 => 0.0022566826897192
830 => 0.0022133180587377
831 => 0.0021990070082188
901 => 0.0021995271877246
902 => 0.0021851783147708
903 => 0.0021894047009271
904 => 0.0021837085501433
905 => 0.0021729214186057
906 => 0.0021946515584563
907 => 0.0021971557546438
908 => 0.0021920836803468
909 => 0.0021932783374555
910 => 0.002151283728588
911 => 0.0021544764874927
912 => 0.0021366988001951
913 => 0.00213336569814
914 => 0.0020884252527321
915 => 0.0020088067394701
916 => 0.0020529231245733
917 => 0.0019996367350712
918 => 0.0019794563719461
919 => 0.0020749870722897
920 => 0.0020653984395844
921 => 0.0020489868684713
922 => 0.002024710734324
923 => 0.0020157064800257
924 => 0.0019609994813097
925 => 0.0019577670999751
926 => 0.0019848813657519
927 => 0.0019723690650408
928 => 0.0019547970560636
929 => 0.0018911530207941
930 => 0.0018195960533353
1001 => 0.0018217559083918
1002 => 0.0018445168483758
1003 => 0.00191069735111
1004 => 0.0018848394837574
1005 => 0.0018660793043083
1006 => 0.0018625660866264
1007 => 0.0019065413613348
1008 => 0.0019687755881521
1009 => 0.0019979744949624
1010 => 0.0019690392650974
1011 => 0.0019358000310118
1012 => 0.0019378231491748
1013 => 0.0019512820479404
1014 => 0.0019526963879021
1015 => 0.0019310610635609
1016 => 0.0019371512806333
1017 => 0.0019278996839992
1018 => 0.0018711226525327
1019 => 0.0018700957360753
1020 => 0.0018561617369001
1021 => 0.0018557398209428
1022 => 0.0018320346123469
1023 => 0.0018287180897979
1024 => 0.0017816499593273
1025 => 0.0018126303453385
1026 => 0.0017918503289454
1027 => 0.0017605299427308
1028 => 0.001755130296342
1029 => 0.0017549679764513
1030 => 0.0017871270099835
1031 => 0.0018122545483077
1101 => 0.0017922118062273
1102 => 0.0017876484623678
1103 => 0.0018363730361061
1104 => 0.0018301723899635
1105 => 0.0018248026703939
1106 => 0.0019632031957316
1107 => 0.0018536483803992
1108 => 0.001805876227744
1109 => 0.0017467491171475
1110 => 0.0017660012025025
1111 => 0.0017700578997588
1112 => 0.0016278678572369
1113 => 0.0015701813746944
1114 => 0.0015503855477551
1115 => 0.0015389927694796
1116 => 0.0015441846016012
1117 => 0.0014922600013635
1118 => 0.0015271541914769
1119 => 0.0014821918767481
1120 => 0.0014746537983638
1121 => 0.0015550519868608
1122 => 0.0015662389251107
1123 => 0.0015185119710272
1124 => 0.0015491604018408
1125 => 0.0015380468547827
1126 => 0.0014829626265845
1127 => 0.0014808588142395
1128 => 0.0014532194848339
1129 => 0.0014099692863428
1130 => 0.0013902027850747
1201 => 0.0013799082195936
1202 => 0.0013841559579482
1203 => 0.0013820081714532
1204 => 0.0013679924117545
1205 => 0.0013828115383928
1206 => 0.0013449547935176
1207 => 0.0013298799326758
1208 => 0.0013230709677677
1209 => 0.001289470927738
1210 => 0.0013429435334308
1211 => 0.0013534783103825
1212 => 0.001364033844099
1213 => 0.0014559125585329
1214 => 0.0014513225576063
1215 => 0.0014928139305614
1216 => 0.0014912016521061
1217 => 0.0014793676404236
1218 => 0.0014294418917358
1219 => 0.0014493414053219
1220 => 0.001388093795575
1221 => 0.00143398466923
1222 => 0.0014130419909425
1223 => 0.0014269039286346
1224 => 0.0014019789147838
1225 => 0.0014157734465774
1226 => 0.0013559764968122
1227 => 0.0013001389464872
1228 => 0.0013226096067376
1229 => 0.0013470377842616
1230 => 0.0014000042973175
1231 => 0.0013684578791057
]
'min_raw' => 0.001289470927738
'max_raw' => 0.0038491021231403
'avg_raw' => 0.0025692865254391
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001289'
'max' => '$0.003849'
'avg' => '$0.002569'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.002442719072262
'max_diff' => 0.00011691212314029
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013798031639968
102 => 0.0013417983587893
103 => 0.0012633835901104
104 => 0.0012638274091853
105 => 0.0012517650053826
106 => 0.0012413413273573
107 => 0.0013720813647219
108 => 0.0013558217743815
109 => 0.0013299142451766
110 => 0.0013645925025417
111 => 0.0013737619842069
112 => 0.0013740230264592
113 => 0.0013993233878573
114 => 0.0014128261952709
115 => 0.001415206123602
116 => 0.0014550167889125
117 => 0.0014683607988092
118 => 0.0015233228870588
119 => 0.0014116805764007
120 => 0.0014093813764809
121 => 0.001365080496739
122 => 0.0013369841784375
123 => 0.0013670042756906
124 => 0.0013935979837049
125 => 0.0013659068373767
126 => 0.0013695227164951
127 => 0.0013323496149993
128 => 0.0013456372496271
129 => 0.0013570823506062
130 => 0.0013507630385575
131 => 0.0013413027225624
201 => 0.0013914176029183
202 => 0.0013885899249669
203 => 0.0014352580536905
204 => 0.0014716391973004
205 => 0.0015368407105567
206 => 0.001468799532442
207 => 0.0014663198414723
208 => 0.001490559218456
209 => 0.0014683570878869
210 => 0.001482388068015
211 => 0.00153458010274
212 => 0.0015356828381906
213 => 0.0015172105985986
214 => 0.0015160865611406
215 => 0.0015196343568184
216 => 0.0015404139069167
217 => 0.0015331528936213
218 => 0.0015415555220332
219 => 0.0015520631375278
220 => 0.0015955270903501
221 => 0.0016060061022291
222 => 0.001580547536108
223 => 0.0015828461595812
224 => 0.0015733239569987
225 => 0.0015641256286167
226 => 0.0015848021275113
227 => 0.0016225888356387
228 => 0.0016223537664886
301 => 0.0016311195483055
302 => 0.0016365805577578
303 => 0.0016131379074854
304 => 0.0015978776041681
305 => 0.0016037293754983
306 => 0.0016130864852902
307 => 0.0016006949909048
308 => 0.0015242089472592
309 => 0.0015474099269539
310 => 0.0015435481494627
311 => 0.0015380485087072
312 => 0.001561377273198
313 => 0.001559127156952
314 => 0.0014917274395374
315 => 0.0014960421507685
316 => 0.0014919898314182
317 => 0.0015050837042655
318 => 0.0014676499757827
319 => 0.001479164338544
320 => 0.0014863860389275
321 => 0.001490639675933
322 => 0.0015060067295433
323 => 0.001504203583168
324 => 0.0015058946434329
325 => 0.0015286799271852
326 => 0.0016439200734394
327 => 0.0016501923403369
328 => 0.0016193054041595
329 => 0.0016316441259445
330 => 0.0016079564782991
331 => 0.0016238581548569
401 => 0.001634737678099
402 => 0.0015855752045801
403 => 0.0015826641219602
404 => 0.0015588787069668
405 => 0.0015716596417095
406 => 0.0015513242555521
407 => 0.0015563138480135
408 => 0.0015423625125066
409 => 0.0015674721387359
410 => 0.0015955486025016
411 => 0.001602641826022
412 => 0.0015839826087646
413 => 0.0015704721057679
414 => 0.0015467521131421
415 => 0.0015861989895134
416 => 0.0015977344582861
417 => 0.0015861383986067
418 => 0.0015834513382001
419 => 0.0015783593635849
420 => 0.001584531624686
421 => 0.0015976716336458
422 => 0.0015914750480782
423 => 0.0015955680020154
424 => 0.0015799698822427
425 => 0.001613145667978
426 => 0.0016658367999135
427 => 0.0016660062105185
428 => 0.001659809591549
429 => 0.0016572740685747
430 => 0.0016636321756797
501 => 0.0016670811879609
502 => 0.001687642140461
503 => 0.001709704861678
504 => 0.0018126619548785
505 => 0.0017837520150972
506 => 0.0018751016731296
507 => 0.0019473473923646
508 => 0.0019690107246408
509 => 0.0019490814782852
510 => 0.0018809046030597
511 => 0.0018775595203062
512 => 0.0019794445554274
513 => 0.0019506573663754
514 => 0.0019472332218378
515 => 0.0019108061091406
516 => 0.0019323390443303
517 => 0.0019276294755352
518 => 0.0019201951907922
519 => 0.0019612785311369
520 => 0.002038182876727
521 => 0.0020261966132624
522 => 0.0020172494236128
523 => 0.0019780454430562
524 => 0.0020016549958773
525 => 0.0019932480863289
526 => 0.0020293695049056
527 => 0.0020079719767282
528 => 0.0019504392751054
529 => 0.0019596015474691
530 => 0.0019582166884332
531 => 0.0019867169892586
601 => 0.0019781619063718
602 => 0.0019565461711954
603 => 0.0020379200260344
604 => 0.0020326360605263
605 => 0.0020401275155341
606 => 0.0020434254857094
607 => 0.0020929563171817
608 => 0.0021132475140261
609 => 0.0021178539709572
610 => 0.0021371290385819
611 => 0.0021173743897155
612 => 0.0021964070700069
613 => 0.0022489591907159
614 => 0.0023100011832269
615 => 0.0023991999408262
616 => 0.0024327394988182
617 => 0.0024266808778679
618 => 0.0024943103578683
619 => 0.0026158390301102
620 => 0.0024512452971657
621 => 0.0026245628976211
622 => 0.0025696925463648
623 => 0.0024395959306117
624 => 0.0024312192422955
625 => 0.0025193221809363
626 => 0.002714726019248
627 => 0.0026657795740029
628 => 0.0027148060780979
629 => 0.002657614056875
630 => 0.0026547739909691
701 => 0.0027120283892821
702 => 0.002845806411715
703 => 0.0027822534878513
704 => 0.0026911347876764
705 => 0.0027584154179215
706 => 0.0027001307094748
707 => 0.0025687989484817
708 => 0.0026657421455787
709 => 0.0026009189904632
710 => 0.0026198378333144
711 => 0.0027560864636505
712 => 0.0027396926679793
713 => 0.0027609077576025
714 => 0.0027234636797132
715 => 0.0026884850065755
716 => 0.0026231947156136
717 => 0.0026038654792322
718 => 0.0026092073847749
719 => 0.0026038628320491
720 => 0.0025673335143046
721 => 0.0025594450116157
722 => 0.0025462971615309
723 => 0.0025503722300453
724 => 0.0025256504253467
725 => 0.0025723055785984
726 => 0.0025809651861657
727 => 0.0026149169159854
728 => 0.0026184418972059
729 => 0.0027129969814811
730 => 0.0026609176299959
731 => 0.0026958569552871
801 => 0.0026927316531714
802 => 0.0024424155187625
803 => 0.0024769068735261
804 => 0.0025305645975549
805 => 0.0025063918656112
806 => 0.0024722172781911
807 => 0.0024446194665239
808 => 0.0024028059598269
809 => 0.0024616576675456
810 => 0.0025390414050143
811 => 0.0026204044764907
812 => 0.0027181568757499
813 => 0.0026963396781986
814 => 0.0026185770633817
815 => 0.0026220654374767
816 => 0.0026436291935078
817 => 0.0026157021701737
818 => 0.0026074659457923
819 => 0.0026424976627536
820 => 0.0026427389069352
821 => 0.0026106054914959
822 => 0.002574895080588
823 => 0.0025747454526624
824 => 0.002568391129963
825 => 0.0026587444767671
826 => 0.0027084296817556
827 => 0.0027141260104358
828 => 0.0027080462734494
829 => 0.0027103861229193
830 => 0.0026814753968753
831 => 0.0027475567434025
901 => 0.0028081995217436
902 => 0.0027919459617042
903 => 0.0027675795646254
904 => 0.0027481705557074
905 => 0.0027873738160303
906 => 0.0027856281565598
907 => 0.0028076698599784
908 => 0.0028066699209923
909 => 0.002799258125163
910 => 0.0027919462264028
911 => 0.0028209370784876
912 => 0.002812588178666
913 => 0.002804226310697
914 => 0.0027874553043471
915 => 0.002789734762647
916 => 0.0027653725727702
917 => 0.0027541015089952
918 => 0.0025846117528831
919 => 0.0025393185518123
920 => 0.0025535687148973
921 => 0.0025582602385902
922 => 0.0025385485794394
923 => 0.0025668100351519
924 => 0.0025624055172154
925 => 0.0025795409199495
926 => 0.0025688354642539
927 => 0.0025692748198899
928 => 0.0026007572824467
929 => 0.002609896775263
930 => 0.0026052483554519
1001 => 0.0026085039493491
1002 => 0.0026835277366092
1003 => 0.0026728617531865
1004 => 0.0026671956620741
1005 => 0.002668765208035
1006 => 0.0026879353942081
1007 => 0.0026933019996832
1008 => 0.0026705633151805
1009 => 0.0026812870102427
1010 => 0.0027269471427782
1011 => 0.002742925605026
1012 => 0.0027939211864238
1013 => 0.0027722573570718
1014 => 0.002812022253436
1015 => 0.0029342459880071
1016 => 0.0030318867644217
1017 => 0.0029420922712551
1018 => 0.0031213971226626
1019 => 0.0032610116692366
1020 => 0.0032556530303989
1021 => 0.0032313080048611
1022 => 0.0030723605554313
1023 => 0.0029260947426931
1024 => 0.0030484523058231
1025 => 0.0030487642204145
1026 => 0.0030382535972281
1027 => 0.0029729730193141
1028 => 0.0030359819746206
1029 => 0.0030409833966779
1030 => 0.0030381839303113
1031 => 0.002988133464283
1101 => 0.0029117156535301
1102 => 0.0029266475108328
1103 => 0.0029511061976963
1104 => 0.0029048008008472
1105 => 0.0028900034208109
1106 => 0.002917514565615
1107 => 0.0030061612063486
1108 => 0.0029894030724129
1109 => 0.0029889654498109
1110 => 0.0030606638533424
1111 => 0.0030093432698978
1112 => 0.0029268358493719
1113 => 0.0029060016375499
1114 => 0.0028320542211887
1115 => 0.002883129965061
1116 => 0.0028849680901546
1117 => 0.0028569944272172
1118 => 0.0029291057579476
1119 => 0.00292844123934
1120 => 0.0029969002155133
1121 => 0.0031277680659396
1122 => 0.0030890640029528
1123 => 0.0030440553886891
1124 => 0.0030489490730131
1125 => 0.0031026207114048
1126 => 0.0030701696136288
1127 => 0.0030818392546462
1128 => 0.0031026030480055
1129 => 0.0031151303600752
1130 => 0.0030471465855906
1201 => 0.0030312963157185
1202 => 0.0029988722262488
1203 => 0.0029904133865304
1204 => 0.0030168221308527
1205 => 0.0030098643597584
1206 => 0.0028848136028581
1207 => 0.0028717451029861
1208 => 0.0028721458952197
1209 => 0.0028392845309184
1210 => 0.0027891630627279
1211 => 0.0029208792885353
1212 => 0.0029103006322355
1213 => 0.0028986226144036
1214 => 0.0029000531049542
1215 => 0.0029572266543001
1216 => 0.002924063108346
1217 => 0.0030122338306632
1218 => 0.0029941085808093
1219 => 0.0029755184866895
1220 => 0.002972948769414
1221 => 0.0029657931692102
1222 => 0.0029412539536297
1223 => 0.002911621376238
1224 => 0.0028920553819141
1225 => 0.0026677682163466
1226 => 0.0027093946096575
1227 => 0.0027572819807966
1228 => 0.0027738125094172
1229 => 0.0027455358963339
1230 => 0.0029423704866622
1231 => 0.0029783340630605
]
'min_raw' => 0.0012413413273573
'max_raw' => 0.0032610116692366
'avg_raw' => 0.002251176498297
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001241'
'max' => '$0.003261'
'avg' => '$0.002251'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.8129600380686E-5
'max_diff' => -0.0005880904539037
'year' => 2027
]
2 => [
'items' => [
101 => 0.002869398044304
102 => 0.002849020563023
103 => 0.0029437064309425
104 => 0.0028865992777104
105 => 0.0029123146253141
106 => 0.0028567321093381
107 => 0.0029696714906426
108 => 0.0029688110817822
109 => 0.0029248751116032
110 => 0.002962009492738
111 => 0.0029555564801836
112 => 0.0029059528780609
113 => 0.0029712440133062
114 => 0.0029712763968947
115 => 0.0029289889808477
116 => 0.0028796065368106
117 => 0.002870778122178
118 => 0.002864127097683
119 => 0.0029106788810035
120 => 0.0029524170643651
121 => 0.0030300814758279
122 => 0.0030496081541306
123 => 0.0031258220795104
124 => 0.0030804403977354
125 => 0.0031005575094751
126 => 0.0031223974800077
127 => 0.0031328683650193
128 => 0.0031158066197915
129 => 0.0032341982168095
130 => 0.0032441940950227
131 => 0.0032475456265235
201 => 0.0032076246461318
202 => 0.0032430838203415
203 => 0.0032264936470132
204 => 0.0032696566691304
205 => 0.0032764251821315
206 => 0.0032706924924164
207 => 0.0032728409252767
208 => 0.0031718145829307
209 => 0.0031665758341236
210 => 0.0030951451224148
211 => 0.0031242536654253
212 => 0.003069836639476
213 => 0.003087092838962
214 => 0.0030946992072723
215 => 0.0030907260721246
216 => 0.003125899418773
217 => 0.0030959948886819
218 => 0.0030170719170114
219 => 0.00293812744283
220 => 0.0029371363592635
221 => 0.0029163516726972
222 => 0.0029013281512151
223 => 0.0029042222144406
224 => 0.0029144212707259
225 => 0.0029007353635229
226 => 0.0029036559457178
227 => 0.0029521570698901
228 => 0.0029618836244486
229 => 0.0029288289916484
301 => 0.0027961098711949
302 => 0.0027635402661349
303 => 0.0027869506523687
304 => 0.0027757619955709
305 => 0.002240256569767
306 => 0.0023660656262954
307 => 0.0022913141569781
308 => 0.0023257630731893
309 => 0.0022494611798155
310 => 0.0022858764426583
311 => 0.0022791518732837
312 => 0.0024814491132207
313 => 0.0024782905200698
314 => 0.0024798023714621
315 => 0.0024076377654004
316 => 0.0025225979423393
317 => 0.0025792314593336
318 => 0.0025687501025902
319 => 0.0025713880342706
320 => 0.0025260596281164
321 => 0.0024802412495167
322 => 0.0024294216162517
323 => 0.0025238382133615
324 => 0.002513340699508
325 => 0.0025374182194018
326 => 0.0025986541316652
327 => 0.0026076713523586
328 => 0.0026197905884142
329 => 0.0026154467049943
330 => 0.0027189356313165
331 => 0.002706402439497
401 => 0.0027366038257367
402 => 0.0026744772828569
403 => 0.0026041752024828
404 => 0.0026175373296137
405 => 0.0026162504493196
406 => 0.0025998669861626
407 => 0.0025850767281786
408 => 0.0025604551157646
409 => 0.0026383615407555
410 => 0.0026351986821747
411 => 0.0026864016861768
412 => 0.00267735105786
413 => 0.0026169087468959
414 => 0.0026190674558565
415 => 0.0026335858110565
416 => 0.0026838340041716
417 => 0.0026987510890461
418 => 0.0026918409009892
419 => 0.0027081968035632
420 => 0.0027211238420739
421 => 0.002709820240572
422 => 0.0028698554006528
423 => 0.0028033976445748
424 => 0.0028357886924771
425 => 0.0028435137665427
426 => 0.0028237261517645
427 => 0.0028280173768686
428 => 0.0028345174136123
429 => 0.0028739843638826
430 => 0.0029775570612459
501 => 0.003023428703865
502 => 0.0031614358039513
503 => 0.0030196197025095
504 => 0.0030112049219434
505 => 0.0030360641680841
506 => 0.0031170889453699
507 => 0.0031827519170897
508 => 0.0032045361129969
509 => 0.0032074152541039
510 => 0.0032482838538117
511 => 0.00327170897301
512 => 0.0032433213308563
513 => 0.0032192657764411
514 => 0.0031331017664111
515 => 0.0031430754851889
516 => 0.0032117845171068
517 => 0.0033088400716326
518 => 0.0033921238343251
519 => 0.0033629607633624
520 => 0.0035854544088885
521 => 0.0036075137450374
522 => 0.0036044658580454
523 => 0.0036547203086619
524 => 0.003554975458329
525 => 0.0035123326023462
526 => 0.0032244668603478
527 => 0.0033053453919583
528 => 0.0034229070874839
529 => 0.0034073473562473
530 => 0.0033219709105236
531 => 0.0033920590686351
601 => 0.0033688857317041
602 => 0.003350607959404
603 => 0.0034343419776314
604 => 0.0033422729849865
605 => 0.0034219886288531
606 => 0.0033197524910414
607 => 0.003363093977814
608 => 0.00333849125373
609 => 0.0033544122314088
610 => 0.0032613385212176
611 => 0.0033115588360002
612 => 0.0032592491910136
613 => 0.0032592243894309
614 => 0.0032580696511186
615 => 0.0033196117164689
616 => 0.0033216186010105
617 => 0.0032761389217318
618 => 0.0032695845894216
619 => 0.0032938193912369
620 => 0.0032654467854158
621 => 0.0032787221491045
622 => 0.0032658488826581
623 => 0.0032629508392285
624 => 0.0032398587361204
625 => 0.0032299100231709
626 => 0.0032338111698651
627 => 0.0032204945450186
628 => 0.0032124707968652
629 => 0.0032564735256561
630 => 0.0032329646427281
701 => 0.0032528704521825
702 => 0.0032301852699958
703 => 0.0031515485450732
704 => 0.003106323733002
705 => 0.0029577862492515
706 => 0.002999911295383
707 => 0.0030278402445497
708 => 0.0030186097270167
709 => 0.0030384404504136
710 => 0.0030396578957717
711 => 0.0030332107254451
712 => 0.0030257457281405
713 => 0.0030221121802929
714 => 0.0030491936690392
715 => 0.0030649153847774
716 => 0.0030306432882397
717 => 0.0030226138155385
718 => 0.0030572647973524
719 => 0.0030784018762417
720 => 0.0032344661908614
721 => 0.0032229044423533
722 => 0.0032519221622302
723 => 0.0032486552122852
724 => 0.0032790704056014
725 => 0.0033287863922537
726 => 0.0032276998905812
727 => 0.0032452450119633
728 => 0.0032409433533764
729 => 0.0032879077338725
730 => 0.003288054351542
731 => 0.0032598968593899
801 => 0.0032751614926887
802 => 0.0032666411931446
803 => 0.0032820385260083
804 => 0.0032227500281531
805 => 0.0032949570187429
806 => 0.0033358937294916
807 => 0.0033364621357601
808 => 0.0033558658117611
809 => 0.0033755810703633
810 => 0.0034134227924131
811 => 0.003374525685274
812 => 0.0033045535760878
813 => 0.0033096053363625
814 => 0.0032685807143484
815 => 0.0032692703456561
816 => 0.0032655890396879
817 => 0.0032766369160143
818 => 0.0032251744157308
819 => 0.0032372525616855
820 => 0.0032203430866193
821 => 0.0032452082540669
822 => 0.0032184574442528
823 => 0.0032409412789864
824 => 0.0032506445567065
825 => 0.0032864498603903
826 => 0.0032131689717863
827 => 0.0030637442792425
828 => 0.0030951551612145
829 => 0.0030486959995064
830 => 0.003052995971805
831 => 0.0030616826001836
901 => 0.0030335263955205
902 => 0.0030388977120662
903 => 0.0030387058108418
904 => 0.0030370521097635
905 => 0.0030297275934864
906 => 0.0030191055957732
907 => 0.0030614203653841
908 => 0.0030686104692983
909 => 0.0030845931796344
910 => 0.0031321468844185
911 => 0.0031273951479169
912 => 0.0031351454272986
913 => 0.0031182266109245
914 => 0.0030537807871722
915 => 0.0030572805054602
916 => 0.0030136389623302
917 => 0.003083477167257
918 => 0.0030669385585111
919 => 0.0030562760098625
920 => 0.003053366634676
921 => 0.0031010382158963
922 => 0.0031153023001579
923 => 0.0031064138800731
924 => 0.0030881834711627
925 => 0.0031231912456073
926 => 0.0031325578491893
927 => 0.0031346546863042
928 => 0.0031966817505451
929 => 0.0031381213101606
930 => 0.0031522173902018
1001 => 0.0032621909827805
1002 => 0.0031624601096301
1003 => 0.0032152897774017
1004 => 0.0032127040400766
1005 => 0.0032397299104501
1006 => 0.0032104871298799
1007 => 0.0032108496291923
1008 => 0.0032348467711929
1009 => 0.0032011471131604
1010 => 0.0031928026039122
1011 => 0.0031812747241503
1012 => 0.0032064454278713
1013 => 0.0032215341263791
1014 => 0.0033431379549236
1015 => 0.0034216995739718
1016 => 0.0034182890068973
1017 => 0.0034494552056434
1018 => 0.0034354145476586
1019 => 0.0033900735592874
1020 => 0.0034674650976926
1021 => 0.0034429751767417
1022 => 0.0034449940960696
1023 => 0.0034449189517914
1024 => 0.0034612026082777
1025 => 0.003449664145282
1026 => 0.0034269206503184
1027 => 0.0034420188436697
1028 => 0.0034868550802201
1029 => 0.0036260281342162
1030 => 0.0037039112190301
1031 => 0.0036213394747175
1101 => 0.0036782963582646
1102 => 0.003644142523949
1103 => 0.0036379357562653
1104 => 0.0036737088882136
1105 => 0.0037095446362937
1106 => 0.0037072620540632
1107 => 0.003681247141143
1108 => 0.0036665519769384
1109 => 0.0037778286835369
1110 => 0.0038598154654094
1111 => 0.0038542245165321
1112 => 0.0038789011466027
1113 => 0.0039513524957095
1114 => 0.003957976539082
1115 => 0.0039571420618689
1116 => 0.0039407236792229
1117 => 0.0040120614414151
1118 => 0.0040715726577043
1119 => 0.003936923298013
1120 => 0.0039881960114939
1121 => 0.0040112139844791
1122 => 0.0040450111979463
1123 => 0.0041020327621361
1124 => 0.0041639733050691
1125 => 0.0041727323769834
1126 => 0.0041665173963
1127 => 0.0041256659431845
1128 => 0.0041934420243662
1129 => 0.0042331436631778
1130 => 0.0042567850805342
1201 => 0.0043167357813934
1202 => 0.004011356135644
1203 => 0.0037951932440294
1204 => 0.0037614362870738
1205 => 0.0038300823864698
1206 => 0.0038481838154382
1207 => 0.0038408871521183
1208 => 0.0035975761649358
1209 => 0.0037601553050807
1210 => 0.0039350767898342
1211 => 0.0039417962364538
1212 => 0.0040293655891571
1213 => 0.0040578817599864
1214 => 0.0041283865668901
1215 => 0.0041239764720219
1216 => 0.0041411432705264
1217 => 0.0041371969208377
1218 => 0.0042677922290881
1219 => 0.0044118582476791
1220 => 0.0044068696995572
1221 => 0.004386158504873
1222 => 0.0044169181607625
1223 => 0.0045656097310014
1224 => 0.0045519205939476
1225 => 0.0045652184245574
1226 => 0.0047405341657586
1227 => 0.0049684695676936
1228 => 0.0048625706891546
1229 => 0.0050923407840028
1230 => 0.0052369688791204
1231 => 0.0054870882148021
]
'min_raw' => 0.002240256569767
'max_raw' => 0.0054870882148021
'avg_raw' => 0.0038636723922845
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00224'
'max' => '$0.005487'
'avg' => '$0.003863'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00099891524240972
'max_diff' => 0.0022260765455655
'year' => 2028
]
3 => [
'items' => [
101 => 0.005455772042111
102 => 0.0055531416640314
103 => 0.0053997095571116
104 => 0.0050473984258787
105 => 0.0049916438407683
106 => 0.0051032659320903
107 => 0.0053776779516812
108 => 0.0050946237210439
109 => 0.0051518852232513
110 => 0.0051353939067634
111 => 0.0051345151545913
112 => 0.0051680535508553
113 => 0.0051194043578292
114 => 0.0049211987936183
115 => 0.0050120352356634
116 => 0.0049769589230656
117 => 0.0050158787070052
118 => 0.0052259127291877
119 => 0.0051330516813951
120 => 0.0050352301109646
121 => 0.0051579200686287
122 => 0.0053141465455788
123 => 0.0053043701734172
124 => 0.0052853999252172
125 => 0.0053923342210706
126 => 0.0055689583490115
127 => 0.0056166991410607
128 => 0.0056519404177339
129 => 0.0056567995943809
130 => 0.0057068521338063
131 => 0.0054377070144519
201 => 0.0058648472310042
202 => 0.0059386025468924
203 => 0.0059247396043501
204 => 0.0060067155338617
205 => 0.0059825961358708
206 => 0.0059476509123995
207 => 0.0060776001974557
208 => 0.0059286238285053
209 => 0.0057171706283836
210 => 0.0056011632207268
211 => 0.00575393113318
212 => 0.0058472211664497
213 => 0.0059088799440805
214 => 0.0059275378529363
215 => 0.0054585999839094
216 => 0.0052058684809905
217 => 0.005367866476789
218 => 0.0055655152121675
219 => 0.0054366090657473
220 => 0.0054416619426354
221 => 0.0052578756537794
222 => 0.0055817762206594
223 => 0.0055345866324976
224 => 0.0057794062993582
225 => 0.0057209781210613
226 => 0.0059206190555414
227 => 0.0058680469067965
228 => 0.0060862709569674
301 => 0.0061733264387609
302 => 0.006319506141796
303 => 0.006427036526407
304 => 0.0064901804249791
305 => 0.0064863895021556
306 => 0.0067365970864636
307 => 0.0065890584155844
308 => 0.0064037150727652
309 => 0.0064003627964443
310 => 0.0064963547400259
311 => 0.0066975275196691
312 => 0.0067496886944857
313 => 0.0067788396752498
314 => 0.0067341939334566
315 => 0.006574051280409
316 => 0.0065049024947647
317 => 0.0065638192635669
318 => 0.0064917691180975
319 => 0.0066161478828779
320 => 0.0067869464927919
321 => 0.0067516772552556
322 => 0.0068695770284799
323 => 0.0069915908903493
324 => 0.007166076192808
325 => 0.0072116931120427
326 => 0.0072870961448816
327 => 0.0073647106342789
328 => 0.0073896383165041
329 => 0.0074372329964776
330 => 0.0074369821490208
331 => 0.0075804119206125
401 => 0.0077386194003284
402 => 0.0077983390614096
403 => 0.0079356611291044
404 => 0.0077005019005162
405 => 0.0078788728767149
406 => 0.0080397679621613
407 => 0.0078479422083663
408 => 0.0081123293203043
409 => 0.0081225948727468
410 => 0.0082775925268029
411 => 0.0081204727104595
412 => 0.0080271754650589
413 => 0.008296521116728
414 => 0.0084268489932622
415 => 0.0083875931762066
416 => 0.0080888544701154
417 => 0.0079149757296644
418 => 0.0074599015272001
419 => 0.0079989565777617
420 => 0.0082615145684388
421 => 0.0080881745083489
422 => 0.0081755971520691
423 => 0.0086525467493191
424 => 0.0088341382757525
425 => 0.0087963685076749
426 => 0.0088027509767367
427 => 0.0089007344682808
428 => 0.0093352472302816
429 => 0.0090748771113637
430 => 0.0092739203113942
501 => 0.0093794921069867
502 => 0.0094775530743131
503 => 0.0092367463310464
504 => 0.0089234602962101
505 => 0.0088242294581244
506 => 0.0080709392555321
507 => 0.0080317272291137
508 => 0.008009716330439
509 => 0.0078709407277985
510 => 0.0077619011179598
511 => 0.007675188771835
512 => 0.0074476296811048
513 => 0.0075244241941591
514 => 0.0071617424988086
515 => 0.0073937733948437
516 => 0.0068149246518086
517 => 0.0072970070855915
518 => 0.0070346315344821
519 => 0.0072108096604843
520 => 0.0072101949915996
521 => 0.0068857952043039
522 => 0.0066986881770425
523 => 0.0068179200571279
524 => 0.0069457460972178
525 => 0.006966485442164
526 => 0.0071322152397416
527 => 0.0071784668638955
528 => 0.0070383222834275
529 => 0.0068029292982234
530 => 0.006857605719944
531 => 0.0066975801611015
601 => 0.0064171415245243
602 => 0.0066185574493029
603 => 0.0066873297016554
604 => 0.006717703446163
605 => 0.0064419242556844
606 => 0.0063552684465785
607 => 0.0063091336209231
608 => 0.0067673296678194
609 => 0.0067924306815875
610 => 0.0066640103462243
611 => 0.0072444824393816
612 => 0.0071131037271611
613 => 0.0072598859372774
614 => 0.006852644407764
615 => 0.0068682015826148
616 => 0.0066754069162081
617 => 0.0067833590468516
618 => 0.0067070619603724
619 => 0.0067746375814994
620 => 0.0068151421301781
621 => 0.0070079051608772
622 => 0.0072992081297626
623 => 0.0069791127921713
624 => 0.0068396426697331
625 => 0.006926169149284
626 => 0.0071566005666542
627 => 0.0075057159595373
628 => 0.0072990326203485
629 => 0.0073907551765698
630 => 0.0074107924746517
701 => 0.0072583918321669
702 => 0.0075113351886078
703 => 0.0076468895882326
704 => 0.007785940353217
705 => 0.007906674236339
706 => 0.0077304004198904
707 => 0.0079190386713494
708 => 0.0077670295398074
709 => 0.007630661634399
710 => 0.0076308684482213
711 => 0.0075453228691414
712 => 0.0073795675302376
713 => 0.0073489997026006
714 => 0.0075080174022594
715 => 0.0076355345383536
716 => 0.0076460374604483
717 => 0.007716637499057
718 => 0.0077584178746675
719 => 0.0081679223533162
720 => 0.0083326284422274
721 => 0.0085340279300214
722 => 0.0086124843807703
723 => 0.0088486101693303
724 => 0.0086579194178692
725 => 0.0086166622742895
726 => 0.0080438983473999
727 => 0.0081376884083412
728 => 0.0082878553453031
729 => 0.0080463745448804
730 => 0.0081995385315303
731 => 0.0082297763469518
801 => 0.0080381691196858
802 => 0.0081405148186281
803 => 0.0078687149856223
804 => 0.0073051326233789
805 => 0.0075119626168855
806 => 0.0076642591103294
807 => 0.0074469132361627
808 => 0.0078364973031596
809 => 0.0076089103338676
810 => 0.0075367761907031
811 => 0.0072553551805397
812 => 0.0073881750644488
813 => 0.0075678158592333
814 => 0.0074568187335404
815 => 0.0076871544356555
816 => 0.0080133712181383
817 => 0.0082458527238808
818 => 0.0082636997671574
819 => 0.0081142297340161
820 => 0.00835375641603
821 => 0.0083555011064112
822 => 0.0080853140306044
823 => 0.0079198259510806
824 => 0.0078822267112229
825 => 0.0079761569841526
826 => 0.0080902056759743
827 => 0.0082700286758149
828 => 0.0083786919484881
829 => 0.0086620281330733
830 => 0.008738690780737
831 => 0.0088229197878569
901 => 0.008935475716633
902 => 0.0090706279678764
903 => 0.0087749225363777
904 => 0.008786671464435
905 => 0.0085113146609439
906 => 0.0082170564262535
907 => 0.0084403617465767
908 => 0.0087323037478374
909 => 0.008665331930181
910 => 0.0086577962325845
911 => 0.0086704691857135
912 => 0.0086199746222956
913 => 0.0083915895833724
914 => 0.0082768960465912
915 => 0.0084248799704808
916 => 0.0085035268400215
917 => 0.0086255012759513
918 => 0.008610465352155
919 => 0.008924658400012
920 => 0.0090467443177047
921 => 0.0090155095156079
922 => 0.0090212574709012
923 => 0.0092422881933003
924 => 0.0094881198150431
925 => 0.0097183735691448
926 => 0.0099525975774459
927 => 0.0096702313935203
928 => 0.0095268632592479
929 => 0.0096747825779858
930 => 0.0095962945053483
1001 => 0.010047310251798
1002 => 0.010078537603527
1003 => 0.010529520736405
1004 => 0.010957557431578
1005 => 0.010688715252414
1006 => 0.010942221318448
1007 => 0.011216408797517
1008 => 0.011745360929956
1009 => 0.011567228460511
1010 => 0.011430781780608
1011 => 0.011301840327405
1012 => 0.011570147022641
1013 => 0.011915319299759
1014 => 0.011989666102231
1015 => 0.0121101363249
1016 => 0.011983476616161
1017 => 0.012136024284228
1018 => 0.012674584585345
1019 => 0.01252906083798
1020 => 0.012322393722612
1021 => 0.012747535356462
1022 => 0.012901392461057
1023 => 0.013981242196691
1024 => 0.015344597094297
1025 => 0.014780159214417
1026 => 0.014429794408079
1027 => 0.014512138448333
1028 => 0.015009989504463
1029 => 0.015169883462689
1030 => 0.014735236565478
1031 => 0.014888761197555
1101 => 0.015734697014507
1102 => 0.016188514439431
1103 => 0.015572169420572
1104 => 0.013871697958138
1105 => 0.012303785610067
1106 => 0.012719666568788
1107 => 0.012672518574358
1108 => 0.013581371077031
1109 => 0.012525590144733
1110 => 0.012543366787932
1111 => 0.013471013397868
1112 => 0.013223533186226
1113 => 0.012822646938237
1114 => 0.012306712523324
1115 => 0.011352960039201
1116 => 0.010508194866657
1117 => 0.012164973907816
1118 => 0.012093530582904
1119 => 0.011990070061124
1120 => 0.012220310256747
1121 => 0.013338291291877
1122 => 0.013312518210466
1123 => 0.013148563016069
1124 => 0.013272921585984
1125 => 0.012800846279666
1126 => 0.012922510835059
1127 => 0.01230353724474
1128 => 0.012583339158185
1129 => 0.012821786816396
1130 => 0.01286965871406
1201 => 0.012977516543896
1202 => 0.012055883197085
1203 => 0.01246966951207
1204 => 0.012712730205589
1205 => 0.011614573149646
1206 => 0.012691023171437
1207 => 0.012039839610966
1208 => 0.011818818130093
1209 => 0.012116394436722
1210 => 0.012000428660627
1211 => 0.011900728096078
1212 => 0.011845093467987
1213 => 0.012063600665277
1214 => 0.012053407043351
1215 => 0.011695886858165
1216 => 0.011229516350977
1217 => 0.01138604560128
1218 => 0.011329177057175
1219 => 0.011123078117153
1220 => 0.011261963918247
1221 => 0.010650381138724
1222 => 0.0095981847538606
1223 => 0.010293297915348
1224 => 0.010266536814768
1225 => 0.010253042654337
1226 => 0.010775400983678
1227 => 0.010725188283169
1228 => 0.010634051740061
1229 => 0.011121404323069
1230 => 0.010943514074454
1231 => 0.011491729904471
]
'min_raw' => 0.0049211987936183
'max_raw' => 0.016188514439431
'avg_raw' => 0.010554856616525
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004921'
'max' => '$0.016188'
'avg' => '$0.010554'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0026809422238512
'max_diff' => 0.010701426224629
'year' => 2029
]
4 => [
'items' => [
101 => 0.011852820306498
102 => 0.011761236100493
103 => 0.012100843368901
104 => 0.011389651719062
105 => 0.011625881057082
106 => 0.011674567596248
107 => 0.011115390467844
108 => 0.010733403701963
109 => 0.010707929539647
110 => 0.010045617128628
111 => 0.010399419072596
112 => 0.010710750141967
113 => 0.010561646720005
114 => 0.01051444503095
115 => 0.010755588223536
116 => 0.010774327114851
117 => 0.010347078406995
118 => 0.010435916942565
119 => 0.010806388404071
120 => 0.010426582012267
121 => 0.0096886802340146
122 => 0.0095056703907176
123 => 0.0094812535040812
124 => 0.0089849162943662
125 => 0.0095178999835424
126 => 0.0092852383201421
127 => 0.010020213727109
128 => 0.0096003997164016
129 => 0.0095823023734716
130 => 0.00955494558533
131 => 0.0091277276454963
201 => 0.0092212612232034
202 => 0.009532181081068
203 => 0.0096431207891169
204 => 0.0096315488686652
205 => 0.0095306574041427
206 => 0.0095768449999532
207 => 0.0094280586610224
208 => 0.0093755191080261
209 => 0.0092096898266272
210 => 0.008965966594479
211 => 0.0089998578047506
212 => 0.0085169783082123
213 => 0.0082538799301437
214 => 0.0081810577666752
215 => 0.0080836769262374
216 => 0.0081920571917231
217 => 0.0085156103712693
218 => 0.0081253365911004
219 => 0.0074562395695235
220 => 0.0074964534406061
221 => 0.0075868020693233
222 => 0.0074184379974248
223 => 0.0072590955330984
224 => 0.0073976308779675
225 => 0.0071141256493751
226 => 0.0076210623217364
227 => 0.0076073511054226
228 => 0.0077963057481254
301 => 0.007914462963947
302 => 0.007642148835331
303 => 0.0075736625683998
304 => 0.0076126754585711
305 => 0.0069678792863261
306 => 0.0077436121445406
307 => 0.0077503207145115
308 => 0.0076928778655301
309 => 0.0081059316644643
310 => 0.0089776040149261
311 => 0.0086496458137433
312 => 0.0085226504856563
313 => 0.0082812322741297
314 => 0.0086029077069938
315 => 0.0085782080526683
316 => 0.0084665068487427
317 => 0.0083989496120794
318 => 0.0085234258920494
319 => 0.0083835256234732
320 => 0.0083583956910346
321 => 0.008206135642093
322 => 0.0081517857320117
323 => 0.0081115472223197
324 => 0.0080672485769032
325 => 0.0081649603501574
326 => 0.0079435326169091
327 => 0.0076765124774399
328 => 0.007654312642041
329 => 0.0077156083394069
330 => 0.0076884895562504
331 => 0.0076541828077406
401 => 0.0075886818819482
402 => 0.0075692491564714
403 => 0.0076323960868528
404 => 0.007561106884147
405 => 0.0076662979860632
406 => 0.0076376918268311
407 => 0.0074779001467446
408 => 0.0072787405508996
409 => 0.0072769676127452
410 => 0.0072340590045076
411 => 0.0071794084405646
412 => 0.0071642059039112
413 => 0.0073859638176291
414 => 0.0078449960623692
415 => 0.0077548770490161
416 => 0.0078199972719317
417 => 0.008140324316823
418 => 0.0082421466518237
419 => 0.0081698755702344
420 => 0.0080709464562688
421 => 0.0080752988352096
422 => 0.0084133695655094
423 => 0.0084344546222721
424 => 0.0084877297584146
425 => 0.0085562033639094
426 => 0.0081815369213384
427 => 0.0080576520794577
428 => 0.0079989485685052
429 => 0.0078181644758895
430 => 0.0080131246205188
501 => 0.0078995296932691
502 => 0.0079148575299104
503 => 0.0079048752561896
504 => 0.0079103262526395
505 => 0.0076209206226051
506 => 0.0077263648234775
507 => 0.007551043388288
508 => 0.0073163076673239
509 => 0.0073155207508782
510 => 0.0073729719860343
511 => 0.0073387977432964
512 => 0.0072468357347888
513 => 0.0072598985040489
514 => 0.007145454900039
515 => 0.007273794029644
516 => 0.0072774743366616
517 => 0.0072280567810841
518 => 0.0074257809176277
519 => 0.0075067886576971
520 => 0.0074742609639894
521 => 0.0075045064279944
522 => 0.0077586219008838
523 => 0.0078000538108002
524 => 0.0078184551283467
525 => 0.0077937998005418
526 => 0.0075091511923525
527 => 0.007521776568545
528 => 0.0074291399351129
529 => 0.0073508717416706
530 => 0.0073540020589457
531 => 0.007394242084528
601 => 0.007569972636292
602 => 0.0079397872225974
603 => 0.0079538214158167
604 => 0.0079708312674049
605 => 0.0079016436525294
606 => 0.0078807760058467
607 => 0.0079083058182178
608 => 0.0080471887329069
609 => 0.0084044332958309
610 => 0.0082781592077315
611 => 0.0081754964085333
612 => 0.008265559361122
613 => 0.0082516948755077
614 => 0.0081346646641981
615 => 0.0081313800159479
616 => 0.0079067616236229
617 => 0.0078237253182937
618 => 0.0077543339664009
619 => 0.007678560421641
620 => 0.0076336393243552
621 => 0.0077026585460598
622 => 0.0077184440586751
623 => 0.0075675323241683
624 => 0.007546963612393
625 => 0.0076702013924473
626 => 0.007615969040213
627 => 0.0076717483593836
628 => 0.0076846896398974
629 => 0.0076826057956717
630 => 0.007625980991393
701 => 0.0076620719530643
702 => 0.0075767060694783
703 => 0.0074838834926196
704 => 0.0074246684716347
705 => 0.0073729955120925
706 => 0.0074016666732965
707 => 0.0072994592187515
708 => 0.0072667609970129
709 => 0.0076498451473224
710 => 0.0079328335280047
711 => 0.0079287187648739
712 => 0.0079036712025462
713 => 0.0078664556056397
714 => 0.0080444661801916
715 => 0.0079824508554515
716 => 0.0080275721857537
717 => 0.0080390574580519
718 => 0.0080738199181558
719 => 0.0080862445097085
720 => 0.0080486887646025
721 => 0.0079226470969787
722 => 0.0076085632449425
723 => 0.0074623563639664
724 => 0.0074141056579762
725 => 0.0074158594794978
726 => 0.0073674812525277
727 => 0.0073817308085304
728 => 0.0073625258384704
729 => 0.007326156271358
730 => 0.0073994209550141
731 => 0.0074078640272977
801 => 0.0073907631746846
802 => 0.0073947910445349
803 => 0.007253203288768
804 => 0.0072639678983265
805 => 0.0072040291844042
806 => 0.0071927913981158
807 => 0.0070412715487811
808 => 0.0067728321725314
809 => 0.0069215736450145
810 => 0.006741914862471
811 => 0.006673875359247
812 => 0.0069959637851957
813 => 0.0069636350405728
814 => 0.0069083022827458
815 => 0.0068264536015625
816 => 0.0067960951295389
817 => 0.0066116466638474
818 => 0.0066007484645
819 => 0.0066921661046242
820 => 0.0066499800091958
821 => 0.0065907347540907
822 => 0.0063761544456949
823 => 0.0061348951339596
824 => 0.0061421772360789
825 => 0.0062189173343528
826 => 0.0064420495198966
827 => 0.0063548679147786
828 => 0.0062916166599719
829 => 0.0062797716012723
830 => 0.0064280373102074
831 => 0.0066378643509769
901 => 0.0067363105038905
902 => 0.0066387533562072
903 => 0.0065266849577986
904 => 0.0065335060419347
905 => 0.0065788836587932
906 => 0.0065836522047201
907 => 0.0065107071981735
908 => 0.0065312407902386
909 => 0.0065000483862608
910 => 0.0063086206606257
911 => 0.0063051583400928
912 => 0.0062581788890329
913 => 0.0062567563699257
914 => 0.0061768326040995
915 => 0.0061656507167735
916 => 0.0060069572286998
917 => 0.006111409763118
918 => 0.0060413484870344
919 => 0.0059357496181922
920 => 0.0059175443334012
921 => 0.0059169970605568
922 => 0.0060254234873828
923 => 0.0061101427371916
924 => 0.0060425672329277
925 => 0.006027181600503
926 => 0.0061914599027027
927 => 0.0061705539913178
928 => 0.0061524496068872
929 => 0.0066190766408791
930 => 0.006249704932113
1001 => 0.0060886377840909
1002 => 0.0058892866025917
1003 => 0.0059541963525037
1004 => 0.0059678737905328
1005 => 0.0054884701347786
1006 => 0.005293976131345
1007 => 0.0052272331187185
1008 => 0.0051888215713443
1009 => 0.0052063261958246
1010 => 0.0050312587808631
1011 => 0.005148906979065
1012 => 0.0049973133957886
1013 => 0.0049718982382241
1014 => 0.0052429663439637
1015 => 0.0052806838873205
1016 => 0.0051197691294383
1017 => 0.0052231024537316
1018 => 0.0051856323539022
1019 => 0.0049999120326739
1020 => 0.0049928188824692
1021 => 0.0048996309536618
1022 => 0.0047538098898169
1023 => 0.0046871657507383
1024 => 0.0046524569044752
1025 => 0.0046667784509053
1026 => 0.0046595370387837
1027 => 0.0046122819264103
1028 => 0.0046622456465101
1029 => 0.0045346089880898
1030 => 0.0044837830422684
1031 => 0.0044608261416939
1101 => 0.0043475412608539
1102 => 0.0045278278842854
1103 => 0.0045633466202925
1104 => 0.0045989353391818
1105 => 0.0049087108396625
1106 => 0.004893235331075
1107 => 0.005033126391828
1108 => 0.0050276904824503
1109 => 0.0049877912858386
1110 => 0.0048194631384331
1111 => 0.0048865557378282
1112 => 0.004680055145395
1113 => 0.0048347794299214
1114 => 0.0047641697279041
1115 => 0.0048109062186424
1116 => 0.0047268697942356
1117 => 0.0047733790212812
1118 => 0.004571769430258
1119 => 0.004383509230884
1120 => 0.0044592706307699
1121 => 0.0045416319368129
1122 => 0.0047202122335846
1123 => 0.0046138512820828
1124 => 0.0046521027021957
1125 => 0.0045239668480279
1126 => 0.0042595859806826
1127 => 0.0042610823476801
1128 => 0.0042204131110893
1129 => 0.0041852689528691
1130 => 0.0046260681168218
1201 => 0.0045712477727807
1202 => 0.0044838987292605
1203 => 0.0046008188951253
1204 => 0.0046317344427525
1205 => 0.0046326145649313
1206 => 0.0047179164998001
1207 => 0.0047634421577307
1208 => 0.0047714662522605
1209 => 0.0049056906898467
1210 => 0.0049506809508625
1211 => 0.0051359894687263
1212 => 0.0047595796237254
1213 => 0.0047518277106709
1214 => 0.0046024642016324
1215 => 0.0045077355028564
1216 => 0.0046089503566815
1217 => 0.0046986128999651
1218 => 0.0046052502667855
1219 => 0.004617441455686
1220 => 0.0044921097486499
1221 => 0.0045369099365104
1222 => 0.0045754978935329
1223 => 0.0045541918917603
1224 => 0.0045222957758847
1225 => 0.004691261593914
1226 => 0.0046817278802784
1227 => 0.0048390727345347
1228 => 0.004961734300266
1229 => 0.005181565754434
1230 => 0.0049521601719368
1231 => 0.004943799720706
]
'min_raw' => 0.0041852689528691
'max_raw' => 0.012100843368901
'avg_raw' => 0.0081430561608848
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004185'
'max' => '$0.01210084'
'avg' => '$0.008143'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0007359298407492
'max_diff' => -0.0040876710705307
'year' => 2030
]
5 => [
'items' => [
101 => 0.0050255244725456
102 => 0.0049506684392288
103 => 0.0049979748683426
104 => 0.0051739439573492
105 => 0.0051776619069115
106 => 0.0051153814614363
107 => 0.0051115916906691
108 => 0.005123553331496
109 => 0.0051936130354344
110 => 0.0051691320221611
111 => 0.0051974620705044
112 => 0.0052328892297627
113 => 0.0053794309812597
114 => 0.0054147617014308
115 => 0.0053289263682931
116 => 0.005336676337818
117 => 0.0053045715669919
118 => 0.0052735587606455
119 => 0.0053432710202555
120 => 0.0054706715448908
121 => 0.0054698789928392
122 => 0.0054994334382422
123 => 0.0055178456128861
124 => 0.005438807080779
125 => 0.0053873559027047
126 => 0.0054070855583019
127 => 0.0054386337072579
128 => 0.0053968549187908
129 => 0.0051389768825548
130 => 0.0052172006054361
131 => 0.005204180353004
201 => 0.005185637930224
202 => 0.0052642924884672
203 => 0.0052567060644456
204 => 0.0050294632114844
205 => 0.0050440105616433
206 => 0.0050303478840299
207 => 0.0050744947905198
208 => 0.0049482843614005
209 => 0.0049871058393574
210 => 0.0050114543064032
211 => 0.0050257957405469
212 => 0.0050776068346875
213 => 0.0050715274007915
214 => 0.0050772289285406
215 => 0.0051540511035293
216 => 0.0055425913024352
217 => 0.005563738688196
218 => 0.0054596012264168
219 => 0.005501202088377
220 => 0.0054213375305218
221 => 0.005474951143256
222 => 0.0055116322154507
223 => 0.0053458775035676
224 => 0.0053360625852691
225 => 0.0052558683979743
226 => 0.0052989602117956
227 => 0.0052303980375948
228 => 0.0052472207969406
301 => 0.0052001828952279
302 => 0.005284841753158
303 => 0.0053795035109804
304 => 0.0054034188093124
305 => 0.0053405079555841
306 => 0.0052949563514576
307 => 0.0052149827402425
308 => 0.0053479806380213
309 => 0.0053868732763693
310 => 0.0053477763515492
311 => 0.0053387167397837
312 => 0.0053215487918584
313 => 0.0053423590010941
314 => 0.0053866614587082
315 => 0.0053657692378354
316 => 0.0053795689177955
317 => 0.0053269787679558
318 => 0.005438833245822
319 => 0.0056164850759195
320 => 0.0056170562556023
321 => 0.0055961639221126
322 => 0.0055876152293801
323 => 0.0056090520313934
324 => 0.005620680617102
325 => 0.0056900033039757
326 => 0.005764389308929
327 => 0.006111516336889
328 => 0.0060140444564891
329 => 0.0063220362063745
330 => 0.0065656176928105
331 => 0.0066386571300652
401 => 0.0065714642845619
402 => 0.0063416011897817
403 => 0.0063303230097319
404 => 0.0066738355190291
405 => 0.006576777501283
406 => 0.0065652327589081
407 => 0.0064424162051898
408 => 0.0065150159995634
409 => 0.0064991373595592
410 => 0.0064740721495029
411 => 0.0066125874998222
412 => 0.0068718758702694
413 => 0.0068314633461443
414 => 0.0068012972715679
415 => 0.0066691183139865
416 => 0.0067487195696895
417 => 0.0067203750871953
418 => 0.0068421609718434
419 => 0.0067700177116655
420 => 0.0065760421913393
421 => 0.006606933432303
422 => 0.0066022642833759
423 => 0.0066983550374361
424 => 0.0066695109781864
425 => 0.0065966320178768
426 => 0.0068709896508074
427 => 0.0068531743921823
428 => 0.0068784323557776
429 => 0.0068895516924808
430 => 0.007056548348922
501 => 0.0071249615357689
502 => 0.0071404925269246
503 => 0.0072054797631634
504 => 0.0071388755852849
505 => 0.0074053397847729
506 => 0.0075825229288153
507 => 0.0077883302683818
508 => 0.0080890701072863
509 => 0.0082021510687134
510 => 0.00818172400518
511 => 0.0084097415187411
512 => 0.0088194839220657
513 => 0.0082645446598756
514 => 0.0088488970504595
515 => 0.0086638978302734
516 => 0.008225268007206
517 => 0.0081970254177064
518 => 0.0084940706264846
519 => 0.0091528883100128
520 => 0.0089878619525373
521 => 0.0091531582340145
522 => 0.0089603313414424
523 => 0.0089507558609535
524 => 0.00914379306224
525 => 0.0095948350049559
526 => 0.009380561885026
527 => 0.0090733488256819
528 => 0.009300190167937
529 => 0.0091036792041005
530 => 0.0086608850026213
531 => 0.0089877357599919
601 => 0.0087691799667118
602 => 0.0088329661662559
603 => 0.0092923379360099
604 => 0.0092370651093261
605 => 0.0093085932651809
606 => 0.0091823479423151
607 => 0.0090644149036983
608 => 0.0088442841292976
609 => 0.0087791142593136
610 => 0.0087971248668109
611 => 0.008779105334151
612 => 0.0086559441889801
613 => 0.0086293475514067
614 => 0.0085850186568923
615 => 0.0085987580349006
616 => 0.008515406744338
617 => 0.008672707850885
618 => 0.0087019043223927
619 => 0.0088163749499139
620 => 0.0088282596702049
621 => 0.0091470587384641
622 => 0.0089714695688676
623 => 0.0090892699434725
624 => 0.0090787327691877
625 => 0.0082347744455139
626 => 0.0083510644562088
627 => 0.0085319752190344
628 => 0.0084504751656002
629 => 0.0083352531581197
630 => 0.008242205209266
701 => 0.0081012280521114
702 => 0.00829965069358
703 => 0.0085605553672158
704 => 0.0088348766432866
705 => 0.0091644556822436
706 => 0.0090908974774714
707 => 0.0088287153924037
708 => 0.0088404766892157
709 => 0.0089131803982078
710 => 0.0088190224892345
711 => 0.0087912534836975
712 => 0.0089093653632691
713 => 0.0089101787348705
714 => 0.0088018386812334
715 => 0.0086814385376362
716 => 0.0086809340566383
717 => 0.0086595100140126
718 => 0.0089641426310317
719 => 0.0091316597685607
720 => 0.0091508653384111
721 => 0.0091303670806878
722 => 0.0091382560465387
723 => 0.0090407815151989
724 => 0.0092635793886675
725 => 0.0094680407497882
726 => 0.009413240737328
727 => 0.0093310877283693
728 => 0.0092656488997087
729 => 0.0093978254289714
730 => 0.0093919398161885
731 => 0.009466254958167
801 => 0.0094628835940618
802 => 0.0094378942069483
803 => 0.0094132416297777
804 => 0.0095109863116582
805 => 0.0094828374130082
806 => 0.0094546447913436
807 => 0.0093981001725209
808 => 0.0094057855253256
809 => 0.0093236467012422
810 => 0.0092856455228043
811 => 0.0087141989766753
812 => 0.0085614897869951
813 => 0.0086095352067507
814 => 0.008625353006433
815 => 0.008558893771382
816 => 0.0086541792424684
817 => 0.0086393291027319
818 => 0.0086971023094055
819 => 0.0086610081180969
820 => 0.0086624894362983
821 => 0.0087686347568441
822 => 0.008799449194973
823 => 0.0087837767230377
824 => 0.0087947531851603
825 => 0.0090477011219014
826 => 0.0090117400141165
827 => 0.0089926363923372
828 => 0.0089979282261266
829 => 0.0090625618472289
830 => 0.0090806557322726
831 => 0.0090039906699075
901 => 0.0090401463565143
902 => 0.0091940926812465
903 => 0.0092479651822954
904 => 0.0094199003453759
905 => 0.0093468592321955
906 => 0.0094809293565835
907 => 0.0098930152110788
908 => 0.010222217905822
909 => 0.0099194695028594
910 => 0.010524008328045
911 => 0.010994728519395
912 => 0.010976661494426
913 => 0.01089458054111
914 => 0.010358678118001
915 => 0.0098655327184008
916 => 0.010278069785226
917 => 0.010279121427048
918 => 0.010243684127147
919 => 0.010023586100965
920 => 0.010236025192926
921 => 0.01025288783658
922 => 0.010243449240273
923 => 0.010074700599646
924 => 0.009817052615372
925 => 0.0098673964147771
926 => 0.0099498605851883
927 => 0.0097937387067717
928 => 0.0097438483068594
929 => 0.0098366040523333
930 => 0.010135482390677
1001 => 0.010078981172098
1002 => 0.010077505696941
1003 => 0.01031924187027
1004 => 0.010146210940098
1005 => 0.0098680314113107
1006 => 0.0097977874115547
1007 => 0.0095484685344491
1008 => 0.0097206739709094
1009 => 0.0097268713379961
1010 => 0.0096325561803438
1011 => 0.0098756845665537
1012 => 0.0098734440956729
1013 => 0.010104258313495
1014 => 0.010545488408108
1015 => 0.010414994957517
1016 => 0.010263245272126
1017 => 0.01027974467049
1018 => 0.010460702346562
1019 => 0.010351291204747
1020 => 0.010390636214185
1021 => 0.010460642793178
1022 => 0.01050287950045
1023 => 0.0102736674583
1024 => 0.010220227166795
1025 => 0.01011090708537
1026 => 0.010082387516683
1027 => 0.010171426441965
1028 => 0.010147967830945
1029 => 0.0097263504732899
1030 => 0.0096822891135581
1031 => 0.009683640412556
1101 => 0.009572846028507
1102 => 0.0094038579991334
1103 => 0.0098479484505763
1104 => 0.0098122817722836
1105 => 0.00977290851983
1106 => 0.0097777315185949
1107 => 0.0099704961319444
1108 => 0.0098586829213554
1109 => 0.010155956667531
1110 => 0.010094846122184
1111 => 0.01003216832194
1112 => 0.010023504340734
1113 => 0.0099993787350588
1114 => 0.0099166430564558
1115 => 0.0098167347528992
1116 => 0.0097507666369821
1117 => 0.0089945667990417
1118 => 0.0091349130903513
1119 => 0.0092963687055361
1120 => 0.0093521025369051
1121 => 0.0092567659616847
1122 => 0.0099204075255287
1123 => 0.010041661234252
1124 => 0.009674375841345
1125 => 0.0096056717404958
1126 => 0.0099249117549424
1127 => 0.0097323710007265
1128 => 0.0098190720905605
1129 => 0.0096316717573
1130 => 0.010012454766544
1201 => 0.010009553837999
1202 => 0.0098614206470293
1203 => 0.0099866218056649
1204 => 0.0099648650233028
1205 => 0.0097976230155334
1206 => 0.010017756636494
1207 => 0.010017865820024
1208 => 0.0098752908444084
1209 => 0.009708794486565
1210 => 0.009679028870251
1211 => 0.0096566044768063
1212 => 0.0098135570644134
1213 => 0.009954280263684
1214 => 0.010216131249287
1215 => 0.010281966808493
1216 => 0.010538927378998
1217 => 0.010385919870445
1218 => 0.010453746117208
1219 => 0.010527381102676
1220 => 0.010562684422547
1221 => 0.010505159557298
1222 => 0.010904325092482
1223 => 0.010938026893768
1224 => 0.010949326816219
1225 => 0.010814730443635
1226 => 0.010934283525163
1227 => 0.010878348597498
1228 => 0.011023875740112
1229 => 0.011046696254258
1230 => 0.01102736809064
1231 => 0.011034611682027
]
'min_raw' => 0.0049482843614005
'max_raw' => 0.011046696254258
'avg_raw' => 0.0079974903078291
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004948'
'max' => '$0.011046'
'avg' => '$0.007997'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00076301540853144
'max_diff' => -0.0010541471146429
'year' => 2031
]
6 => [
'items' => [
101 => 0.010693994315373
102 => 0.010676331508013
103 => 0.010435497876353
104 => 0.010533639361407
105 => 0.010350168559143
106 => 0.0104083490405
107 => 0.010433994442317
108 => 0.010420598739772
109 => 0.010539188133721
110 => 0.010438362922651
111 => 0.010172268613438
112 => 0.0099061018070088
113 => 0.0099027602995689
114 => 0.0098326832776703
115 => 0.0097820304260844
116 => 0.0097917879623063
117 => 0.0098261747926477
118 => 0.0097800318009932
119 => 0.0097898787477717
120 => 0.009953403674159
121 => 0.0099861974319396
122 => 0.009874751429653
123 => 0.0094272796488908
124 => 0.0093174689514938
125 => 0.009396398703142
126 => 0.0093586753655812
127 => 0.0075531814346885
128 => 0.0079773554524817
129 => 0.0077253256546976
130 => 0.00784147258085
131 => 0.0075842154201121
201 => 0.0077069920212192
202 => 0.0076843196660783
203 => 0.0083663789344681
204 => 0.0083557295171341
205 => 0.0083608268296573
206 => 0.0081175188219483
207 => 0.008505115084761
208 => 0.0086960589413333
209 => 0.0086607203152879
210 => 0.0086696142861228
211 => 0.0085167864000457
212 => 0.0083623065376597
213 => 0.0081909645959933
214 => 0.0085092967451054
215 => 0.0084739036442352
216 => 0.0085550826835958
217 => 0.008761543837147
218 => 0.0087919460262771
219 => 0.0088328068767765
220 => 0.0088181611705458
221 => 0.0091670813110074
222 => 0.0091248247797483
223 => 0.0092266508620489
224 => 0.009017186885193
225 => 0.0087801585128773
226 => 0.0088252098574132
227 => 0.0088208710506543
228 => 0.0087656330607637
229 => 0.0087157666733479
301 => 0.008632753188068
302 => 0.0088954201391777
303 => 0.0088847563406488
304 => 0.0090573908435215
305 => 0.0090268760182566
306 => 0.0088230905468936
307 => 0.0088303687848705
308 => 0.0088793184330667
309 => 0.0090487337243712
310 => 0.0090990277175029
311 => 0.0090757295360152
312 => 0.0091308746034762
313 => 0.0091744590163518
314 => 0.0091363481346959
315 => 0.0096759178502065
316 => 0.0094518508856572
317 => 0.0095610595651306
318 => 0.0095871051916901
319 => 0.0095203898669384
320 => 0.0095348580319804
321 => 0.00955677335968
322 => 0.0096898389380108
323 => 0.010039041518386
324 => 0.010193700964132
325 => 0.010659001537421
326 => 0.010180858650126
327 => 0.010152487629946
328 => 0.010236302313927
329 => 0.010509483007515
330 => 0.010730870301111
331 => 0.010804317238536
401 => 0.010814024463793
402 => 0.010951815801063
403 => 0.011030795225929
404 => 0.010935084308446
405 => 0.01085397932723
406 => 0.010563471351635
407 => 0.010597098440837
408 => 0.01082875573906
409 => 0.011155985317346
410 => 0.01143678233795
411 => 0.011338457008099
412 => 0.012088609868001
413 => 0.01216298445996
414 => 0.01215270829617
415 => 0.012322144685077
416 => 0.011985847958217
417 => 0.011842074592042
418 => 0.01087151514475
419 => 0.011144202760833
420 => 0.011540570225193
421 => 0.011488109504983
422 => 0.011200256857433
423 => 0.011436563975905
424 => 0.011358433452531
425 => 0.011296808667108
426 => 0.011579123755684
427 => 0.01126870671893
428 => 0.011537473577795
429 => 0.011192777301263
430 => 0.011338906149923
501 => 0.011255956347967
502 => 0.011309635035778
503 => 0.010995830523669
504 => 0.011165151821229
505 => 0.010988786201014
506 => 0.010988702580747
507 => 0.010984809299905
508 => 0.011192302669964
509 => 0.011199069021312
510 => 0.011045731107334
511 => 0.011023632718341
512 => 0.011105342044682
513 => 0.011009681823243
514 => 0.011054440638776
515 => 0.011011037522169
516 => 0.011001266566412
517 => 0.010923409928544
518 => 0.010889867148237
519 => 0.010903020136686
520 => 0.010858122206279
521 => 0.01083106957918
522 => 0.010979427851471
523 => 0.010900166011341
524 => 0.010967279837696
525 => 0.010890795162125
526 => 0.010625665953807
527 => 0.010473187342414
528 => 0.0099723828453929
529 => 0.010114410379502
530 => 0.010208574781554
531 => 0.010177453447238
601 => 0.010244314115707
602 => 0.010248418817732
603 => 0.010226681732848
604 => 0.010201512973246
605 => 0.010189262212992
606 => 0.010280569343069
607 => 0.010333576205336
608 => 0.010218025439057
609 => 0.010190953511245
610 => 0.010307781715685
611 => 0.010379046852904
612 => 0.010905228585707
613 => 0.010866247343397
614 => 0.010964082611914
615 => 0.010953067862084
616 => 0.01105561480987
617 => 0.011223235729928
618 => 0.010882415531904
619 => 0.010941570133606
620 => 0.010927066791348
621 => 0.011085410479138
622 => 0.011085904810848
623 => 0.010990969860164
624 => 0.011042435637073
625 => 0.011013708852292
626 => 0.011065622035049
627 => 0.01086572672514
628 => 0.011109177635244
629 => 0.011247198613644
630 => 0.011249115035063
701 => 0.011314535883422
702 => 0.011381007254274
703 => 0.01150859326219
704 => 0.011377448949761
705 => 0.011141533098343
706 => 0.011158565460812
707 => 0.011020248083444
708 => 0.011022573223546
709 => 0.011010161443454
710 => 0.011047410129826
711 => 0.010873900717123
712 => 0.010914623029479
713 => 0.010857611553712
714 => 0.010941446201791
715 => 0.010851253978821
716 => 0.010927059797397
717 => 0.010959775075691
718 => 0.011080495156908
719 => 0.010833423524671
720 => 0.010329627741261
721 => 0.010435531722867
722 => 0.010278891415493
723 => 0.010293389072312
724 => 0.010322676646372
725 => 0.010227746036547
726 => 0.010245855805294
727 => 0.010245208796918
728 => 0.010239633228275
729 => 0.010214938110265
730 => 0.010179125303371
731 => 0.010321792503437
801 => 0.010346034440781
802 => 0.010399921264556
803 => 0.010560251900329
804 => 0.010544231088959
805 => 0.010570361697001
806 => 0.010513318726362
807 => 0.010296035132117
808 => 0.010307834676668
809 => 0.01016069416705
810 => 0.010396158550908
811 => 0.010340397476832
812 => 0.010304447949628
813 => 0.010294638788061
814 => 0.010455366852469
815 => 0.010503459208443
816 => 0.010473491279558
817 => 0.01041202618311
818 => 0.010530057338815
819 => 0.010561637496746
820 => 0.010568707129476
821 => 0.010777835707156
822 => 0.01058039509384
823 => 0.010627921011856
824 => 0.010998704657346
825 => 0.010662455055532
826 => 0.010840573968873
827 => 0.010831855974951
828 => 0.010922975583802
829 => 0.010824381507444
830 => 0.010825603699184
831 => 0.010906511738866
901 => 0.010792890988975
902 => 0.010764756893449
903 => 0.010725889841981
904 => 0.010810754626939
905 => 0.010861627227417
906 => 0.011271623025463
907 => 0.011536499009081
908 => 0.011525000044072
909 => 0.011630079059098
910 => 0.011582740000415
911 => 0.011429869692515
912 => 0.011690800667553
913 => 0.011608231189235
914 => 0.011615038116706
915 => 0.011614784762525
916 => 0.011669686247258
917 => 0.011630783513678
918 => 0.011554102232508
919 => 0.011605006845514
920 => 0.01175617534741
921 => 0.01222540701571
922 => 0.012487995273783
923 => 0.012209598872858
924 => 0.01240163298234
925 => 0.0122864809454
926 => 0.012265554394812
927 => 0.012386166006776
928 => 0.0125069887334
929 => 0.012499292848045
930 => 0.012411581752832
1001 => 0.012362035980732
1002 => 0.012737213166121
1003 => 0.013013637325338
1004 => 0.01299478705085
1005 => 0.013077986032001
1006 => 0.013322260813906
1007 => 0.013344594238612
1008 => 0.013341780740427
1009 => 0.013286425017041
1010 => 0.013526945262916
1011 => 0.013727591483575
1012 => 0.013273611766458
1013 => 0.013446481299705
1014 => 0.013524088002689
1015 => 0.013638037667539
1016 => 0.013830289852324
1017 => 0.014039126717373
1018 => 0.014068658539871
1019 => 0.014047704298581
1020 => 0.013909970772244
1021 => 0.014138482561923
1022 => 0.014272339409056
1023 => 0.014352048098265
1024 => 0.014554176071836
1025 => 0.013524567275266
1026 => 0.012795758994176
1027 => 0.012681945056965
1028 => 0.012913390173796
1029 => 0.012974420405364
1030 => 0.012949819195544
1031 => 0.012129479214828
1101 => 0.012677626136739
1102 => 0.013267386135214
1103 => 0.013290041218629
1104 => 0.013585287405165
1105 => 0.013681431666051
1106 => 0.013919143545016
1107 => 0.013904274602264
1108 => 0.01396215366197
1109 => 0.013948848268469
1110 => 0.014389159468109
1111 => 0.014874888108157
1112 => 0.014858068869874
1113 => 0.014788239630987
1114 => 0.014891947958389
1115 => 0.015393271968763
1116 => 0.015347118087442
1117 => 0.015391952651767
1118 => 0.015983041913381
1119 => 0.016751542034947
1120 => 0.016394496572329
1121 => 0.017169182489145
1122 => 0.017656806209445
1123 => 0.018500101012471
1124 => 0.018394516349817
1125 => 0.018722804828252
1126 => 0.018205497767484
1127 => 0.017017656190955
1128 => 0.016829675714594
1129 => 0.017206017388692
1130 => 0.018131216671578
1201 => 0.017176879570769
1202 => 0.017369940723332
1203 => 0.017314339098406
1204 => 0.017311376324105
1205 => 0.017424453368685
1206 => 0.01726042921782
1207 => 0.016592165319812
1208 => 0.016898426726165
1209 => 0.016780164489291
1210 => 0.016911385258136
1211 => 0.017619529628032
1212 => 0.017306442122048
1213 => 0.016976629867657
1214 => 0.017390287625861
1215 => 0.017917016100282
1216 => 0.017884054378975
1217 => 0.017820094862709
1218 => 0.018180631307092
1219 => 0.018776131885948
1220 => 0.018937093299497
1221 => 0.019055911724268
1222 => 0.019072294777591
1223 => 0.01924105040882
1224 => 0.018333608847805
1225 => 0.019773741909888
1226 => 0.020022413106837
1227 => 0.019975673228176
1228 => 0.020252060797901
1229 => 0.020170740563612
1230 => 0.020052920302881
1231 => 0.020491053390217
]
'min_raw' => 0.0075531814346885
'max_raw' => 0.020491053390217
'avg_raw' => 0.014022117412453
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007553'
'max' => '$0.020491'
'avg' => '$0.014022'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.002604897073288
'max_diff' => 0.0094443571359596
'year' => 2032
]
7 => [
'items' => [
101 => 0.019988769161103
102 => 0.019275839933702
103 => 0.018884712859408
104 => 0.019399780542159
105 => 0.01971431440263
106 => 0.019922201276291
107 => 0.019985107718652
108 => 0.018404050953031
109 => 0.01755194904579
110 => 0.018098136598964
111 => 0.018764523109686
112 => 0.018329907037091
113 => 0.0183469431643
114 => 0.017727294859873
115 => 0.018819348235124
116 => 0.018660245243965
117 => 0.019485671843549
118 => 0.019288677161095
119 => 0.01996178051018
120 => 0.019784529840216
121 => 0.020520287461284
122 => 0.020813801096171
123 => 0.021306656170894
124 => 0.021669202370142
125 => 0.021882096432744
126 => 0.021869315071771
127 => 0.022712907411201
128 => 0.022215470481511
129 => 0.021590572460937
130 => 0.021579270027273
131 => 0.021902913567001
201 => 0.022581181639003
202 => 0.022757046681674
203 => 0.022855331248577
204 => 0.022704805013055
205 => 0.022164872877502
206 => 0.021931732918889
207 => 0.022130374918342
208 => 0.021887452822512
209 => 0.022306804511817
210 => 0.02288266394992
211 => 0.022763751253147
212 => 0.023161258570072
213 => 0.023572636824101
214 => 0.024160926203515
215 => 0.024314726831586
216 => 0.024568953421274
217 => 0.024830636091148
218 => 0.024914681512165
219 => 0.025075150298651
220 => 0.025074304548936
221 => 0.025557888037804
222 => 0.02609129560136
223 => 0.026292644608189
224 => 0.026755635546943
225 => 0.025962779789464
226 => 0.026564169989182
227 => 0.027106639003101
228 => 0.026459885081335
301 => 0.027351284688152
302 => 0.02738589571493
303 => 0.027908481127171
304 => 0.027378740696614
305 => 0.02706418251994
306 => 0.027972300189655
307 => 0.028411709724592
308 => 0.028279355996636
309 => 0.027272137591779
310 => 0.026685893278522
311 => 0.025151578832647
312 => 0.026969040571238
313 => 0.027854273168019
314 => 0.027269845053209
315 => 0.027564596600166
316 => 0.029172665466852
317 => 0.029784913976538
318 => 0.029657570566463
319 => 0.029679089506515
320 => 0.030009447689245
321 => 0.031474437803043
322 => 0.03059658176865
323 => 0.031267669814305
324 => 0.031623612493933
325 => 0.031954231891672
326 => 0.031142335144158
327 => 0.030086069404775
328 => 0.029751505706093
329 => 0.027211735195011
330 => 0.027079529110245
331 => 0.027005317828611
401 => 0.026537426195306
402 => 0.026169791537832
403 => 0.025877434808809
404 => 0.025110203446744
405 => 0.025369121509128
406 => 0.024146314851627
407 => 0.024928623217489
408 => 0.022976994266418
409 => 0.024602368849838
410 => 0.023717751360796
411 => 0.024311748212976
412 => 0.024309675813917
413 => 0.023215939282179
414 => 0.022585094876372
415 => 0.022987093484584
416 => 0.023418067903277
417 => 0.023487992052737
418 => 0.024046761636155
419 => 0.024202702216175
420 => 0.023730194978545
421 => 0.022936551094316
422 => 0.023120896467533
423 => 0.022581359123268
424 => 0.021635840680448
425 => 0.022314928533249
426 => 0.022546798983581
427 => 0.022649206183816
428 => 0.021719397388829
429 => 0.021427231278313
430 => 0.021271684492585
501 => 0.022816524454922
502 => 0.022901154275338
503 => 0.02246817614864
504 => 0.024425278337987
505 => 0.023982325837167
506 => 0.024477212306581
507 => 0.02310416905713
508 => 0.023156621158307
509 => 0.022506600480024
510 => 0.022870568625465
511 => 0.022613327671508
512 => 0.022841163596117
513 => 0.022977727509925
514 => 0.023627641526211
515 => 0.024609789823932
516 => 0.023530566044901
517 => 0.023060332789607
518 => 0.023352062856499
519 => 0.02412897846837
520 => 0.025306045389934
521 => 0.024609198081689
522 => 0.024918447083853
523 => 0.024986004233296
524 => 0.024472174826886
525 => 0.025324991013067
526 => 0.025782022135508
527 => 0.026250841497867
528 => 0.026657904214184
529 => 0.026063584734982
530 => 0.026699591770079
531 => 0.026187082370146
601 => 0.025727308456159
602 => 0.0257280057434
603 => 0.02543958285093
604 => 0.024880727153148
605 => 0.024777665588092
606 => 0.025313804864753
607 => 0.025743737792057
608 => 0.02577914912719
609 => 0.026017182086496
610 => 0.02615804753988
611 => 0.027538720480334
612 => 0.02809403855851
613 => 0.02877307099287
614 => 0.029037592394225
615 => 0.029833706976131
616 => 0.029190779793977
617 => 0.029051678453916
618 => 0.027120564885307
619 => 0.027436784623984
620 => 0.027943082936272
621 => 0.027128913557995
622 => 0.027645316632553
623 => 0.027747265538384
624 => 0.027101248394067
625 => 0.0274463140636
626 => 0.026529921950162
627 => 0.024629764667795
628 => 0.025327106431311
629 => 0.025840584691959
630 => 0.025107787902602
701 => 0.026421297784372
702 => 0.02565397242779
703 => 0.025410767127866
704 => 0.024461936543912
705 => 0.0249097480557
706 => 0.025515419537436
707 => 0.02514118497859
708 => 0.025917777879796
709 => 0.027017640537666
710 => 0.027801468165617
711 => 0.027861640718065
712 => 0.027357692065664
713 => 0.028165272997293
714 => 0.028171155342724
715 => 0.027260200752782
716 => 0.026702246138659
717 => 0.026575477676383
718 => 0.026892170149568
719 => 0.02727669327667
720 => 0.027882979075474
721 => 0.028249344885919
722 => 0.029204632614148
723 => 0.029463106083162
724 => 0.029747090061348
725 => 0.030126580233621
726 => 0.030582255484717
727 => 0.029585263976925
728 => 0.029624876308154
729 => 0.028696491620385
730 => 0.027704379437673
731 => 0.028457268915822
801 => 0.029441571755812
802 => 0.029215771596761
803 => 0.029190364466189
804 => 0.02923309221246
805 => 0.029062846266479
806 => 0.028292830162415
807 => 0.02790613289551
808 => 0.028405071026812
809 => 0.028670234438418
810 => 0.029081479765138
811 => 0.029030785098284
812 => 0.030090108895392
813 => 0.030501730090659
814 => 0.030396419774646
815 => 0.030415799407227
816 => 0.031161019919667
817 => 0.031989858395789
818 => 0.032766175003547
819 => 0.033555877600532
820 => 0.032603860297249
821 => 0.032120484622907
822 => 0.032619204933428
823 => 0.032354576916669
824 => 0.033875207994737
825 => 0.033980493191317
826 => 0.03550101431045
827 => 0.036944169912795
828 => 0.03603774973578
829 => 0.036892463136644
830 => 0.037816905365483
831 => 0.039600304410261
901 => 0.038999718352715
902 => 0.038539678845018
903 => 0.038104943733139
904 => 0.039009558488703
905 => 0.040173330920164
906 => 0.040423996355427
907 => 0.040830170122118
908 => 0.040403128071007
909 => 0.040917453184432
910 => 0.042733246840728
911 => 0.042242603366342
912 => 0.041545810757841
913 => 0.04297920545881
914 => 0.04349794542891
915 => 0.047138734205302
916 => 0.05173538042898
917 => 0.049832338709171
918 => 0.048651059302913
919 => 0.048928687983706
920 => 0.050607227578299
921 => 0.051146321221898
922 => 0.049680878861872
923 => 0.050198497877667
924 => 0.053050629545874
925 => 0.054580706678528
926 => 0.052502656415609
927 => 0.046769398156885
928 => 0.041483072207219
929 => 0.04288524389543
930 => 0.04272628114044
1001 => 0.045790540807257
1002 => 0.042230901681745
1003 => 0.042290836875415
1004 => 0.045418462187035
1005 => 0.044584065374967
1006 => 0.043232449400886
1007 => 0.041492940499617
1008 => 0.038277297410523
1009 => 0.03542911265167
1010 => 0.041015058861556
1011 => 0.040774182703602
1012 => 0.040425358331037
1013 => 0.04120162922544
1014 => 0.044970980340323
1015 => 0.044884084596926
1016 => 0.044331298212033
1017 => 0.044750581812939
1018 => 0.043158946958441
1019 => 0.043569147501297
1020 => 0.04148223482618
1021 => 0.042425606512505
1022 => 0.043229549440048
1023 => 0.04339095288533
1024 => 0.043754603089017
1025 => 0.040647251913857
1026 => 0.042042361364466
1027 => 0.042861857462621
1028 => 0.039159344277633
1029 => 0.042788670681442
1030 => 0.04059315984313
1031 => 0.039847970489141
1101 => 0.040851269783055
1102 => 0.040460283072476
1103 => 0.040124135658231
1104 => 0.039936559625336
1105 => 0.040673271896684
1106 => 0.040638903388664
1107 => 0.039433499123048
1108 => 0.037861098397115
1109 => 0.038388847693033
1110 => 0.03819711142615
1111 => 0.037502234460496
1112 => 0.037970497635582
1113 => 0.035908503595073
1114 => 0.032360950021501
1115 => 0.034704572576707
1116 => 0.034614345657703
1117 => 0.034568849153675
1118 => 0.036330016730943
1119 => 0.036160721105438
1120 => 0.035853447887399
1121 => 0.03749659114688
1122 => 0.036896821753774
1123 => 0.038745169699886
1124 => 0.039962611200845
1125 => 0.039653828656095
1126 => 0.040798838272153
1127 => 0.038401005970907
1128 => 0.039197469677047
1129 => 0.039361619743031
1130 => 0.037476315014117
1201 => 0.036188419963485
1202 => 0.036102532046686
1203 => 0.033869499511762
1204 => 0.03506236746751
1205 => 0.036112041904338
1206 => 0.035609329307124
1207 => 0.035450185516958
1208 => 0.03626321662684
1209 => 0.036326396107219
1210 => 0.034885897259129
1211 => 0.035185422584313
1212 => 0.036434492982271
1213 => 0.035153949215069
1214 => 0.032666061851033
1215 => 0.032049031387018
1216 => 0.031966708148991
1217 => 0.030293272593279
1218 => 0.032090264313069
1219 => 0.031305829270997
1220 => 0.033783850169929
1221 => 0.032368417922352
1222 => 0.032307401467147
1223 => 0.032215166145938
1224 => 0.030774771034384
1225 => 0.03109012602193
1226 => 0.032138414030451
1227 => 0.032512455001701
1228 => 0.032473439463973
1229 => 0.032133276847318
1230 => 0.032289001551308
1231 => 0.031787358021672
]
'min_raw' => 0.01755194904579
'max_raw' => 0.054580706678528
'avg_raw' => 0.036066327862159
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017551'
'max' => '$0.05458'
'avg' => '$0.036066'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099987676111015
'max_diff' => 0.03408965328831
'year' => 2033
]
8 => [
'items' => [
101 => 0.031610217250551
102 => 0.031051112250484
103 => 0.030229382357083
104 => 0.030343648938723
105 => 0.028715587002574
106 => 0.027828532451974
107 => 0.027583007443559
108 => 0.027254681141109
109 => 0.027620092773063
110 => 0.028710974907664
111 => 0.02739513960978
112 => 0.025139232286671
113 => 0.025274816160669
114 => 0.025579432870329
115 => 0.025011781647119
116 => 0.024474547403707
117 => 0.024941628991162
118 => 0.02398577131926
119 => 0.025694943703314
120 => 0.025648715380226
121 => 0.02628578915049
122 => 0.026684164453106
123 => 0.025766038356112
124 => 0.025535132125595
125 => 0.0256666668086
126 => 0.023492691495645
127 => 0.026108128987054
128 => 0.026130747399088
129 => 0.025937074823216
130 => 0.027329714544818
131 => 0.03026861873262
201 => 0.029162884760022
202 => 0.028734711144845
203 => 0.027920752789402
204 => 0.029005303969965
205 => 0.028922027360932
206 => 0.028545418953168
207 => 0.028317645013062
208 => 0.028737325481637
209 => 0.028265641958607
210 => 0.028180914636875
211 => 0.027667559251411
212 => 0.027484314734982
213 => 0.027348647790193
214 => 0.027199291814338
215 => 0.027528733879883
216 => 0.026782174817646
217 => 0.025881897774675
218 => 0.025807049479684
219 => 0.026013712202882
220 => 0.025922279332097
221 => 0.025806611734276
222 => 0.025585770789838
223 => 0.025520251999144
224 => 0.025733156283702
225 => 0.025492799759526
226 => 0.025847458903845
227 => 0.025751011240776
228 => 0.025212262435065
301 => 0.024540781952795
302 => 0.024534804368025
303 => 0.024390134999569
304 => 0.024205876807654
305 => 0.02415462039392
306 => 0.024902292682663
307 => 0.026449951944412
308 => 0.026146109398983
309 => 0.026365666777092
310 => 0.027445671773463
311 => 0.027788972884927
312 => 0.027545305887543
313 => 0.027211759472797
314 => 0.027226433822269
315 => 0.02836626289282
316 => 0.028437352633807
317 => 0.028616973474863
318 => 0.028847837016463
319 => 0.027584622946959
320 => 0.027166936553195
321 => 0.02696901356747
322 => 0.026359487377274
323 => 0.027016809116575
324 => 0.026633815888407
325 => 0.026685494759799
326 => 0.026651838827009
327 => 0.026670217242117
328 => 0.0256944659548
329 => 0.02604997843992
330 => 0.025458869980627
331 => 0.024667442108672
401 => 0.024664788964934
402 => 0.02485848981538
403 => 0.02474326897002
404 => 0.024433212637754
405 => 0.024477254676328
406 => 0.024091400075211
407 => 0.024524104411027
408 => 0.024536512823087
409 => 0.024369898084234
410 => 0.025036538815249
411 => 0.025309662066673
412 => 0.025199992676326
413 => 0.02530196736989
414 => 0.026158735428513
415 => 0.026298426005479
416 => 0.026360467332326
417 => 0.026277340173252
418 => 0.025317627517211
419 => 0.025360194854519
420 => 0.02504786397722
421 => 0.024783977298518
422 => 0.024794531381763
423 => 0.024930203437483
424 => 0.02552269126187
425 => 0.026769546959229
426 => 0.026816864221504
427 => 0.026874214123723
428 => 0.026640943249646
429 => 0.026570586521922
430 => 0.026663405206402
501 => 0.027131658649771
502 => 0.028336133635688
503 => 0.027910391731486
504 => 0.027564256936302
505 => 0.027867910468949
506 => 0.027821165387713
507 => 0.027426589859494
508 => 0.027415515438592
509 => 0.026658198846513
510 => 0.026378236145686
511 => 0.026144278358029
512 => 0.025888802561532
513 => 0.025737347945741
514 => 0.025970051070487
515 => 0.026023273028379
516 => 0.025514463579168
517 => 0.025445114731356
518 => 0.025860619510996
519 => 0.025677771349056
520 => 0.025865835218028
521 => 0.025909467648811
522 => 0.025902441822515
523 => 0.025711527341472
524 => 0.025833210538537
525 => 0.025545393501971
526 => 0.025232435703427
527 => 0.025032788125915
528 => 0.024858569135128
529 => 0.024955235956884
530 => 0.024610636387989
531 => 0.02450039205048
601 => 0.02579198700933
602 => 0.026746102092418
603 => 0.026732228881239
604 => 0.026647779276086
605 => 0.026522304292806
606 => 0.027122479373209
607 => 0.026913390376076
608 => 0.027065520091461
609 => 0.02710424348889
610 => 0.027221447550168
611 => 0.027263337928045
612 => 0.027136716111362
613 => 0.02671175782902
614 => 0.025652802193246
615 => 0.025159855486197
616 => 0.024997174862194
617 => 0.025003087993902
618 => 0.024839977424012
619 => 0.024888020796947
620 => 0.024823269899542
621 => 0.02470064736478
622 => 0.024947664360904
623 => 0.024976130768584
624 => 0.024918474050056
625 => 0.024932054294473
626 => 0.024454681290563
627 => 0.024490974923251
628 => 0.024288887364475
629 => 0.024250998383406
630 => 0.023740138632596
701 => 0.022835076533732
702 => 0.023336568793006
703 => 0.022730836664285
704 => 0.022501436728799
705 => 0.023587380344381
706 => 0.023478381724764
707 => 0.02329182346854
708 => 0.023015864925439
709 => 0.02291350921745
710 => 0.02229162833759
711 => 0.022254884297603
712 => 0.022563105253857
713 => 0.022420871887782
714 => 0.022221122373823
715 => 0.021497649882548
716 => 0.020684227268845
717 => 0.02070877938456
718 => 0.020967513983713
719 => 0.021719819725866
720 => 0.021425880857385
721 => 0.021212624835743
722 => 0.021172688393342
723 => 0.021672576582598
724 => 0.022380023100208
725 => 0.022711941178047
726 => 0.022383020443411
727 => 0.02200517401381
728 => 0.022028171775208
729 => 0.02218116557861
730 => 0.022197243064132
731 => 0.021951303881703
801 => 0.02202053432096
802 => 0.021915366953164
803 => 0.021269955011129
804 => 0.021258281555721
805 => 0.021099887056472
806 => 0.021095090933984
807 => 0.020825622377402
808 => 0.020787921863588
809 => 0.020252875688922
810 => 0.020605044701356
811 => 0.020368828217518
812 => 0.020012794258539
813 => 0.019951413869814
814 => 0.01994956870121
815 => 0.020315135969345
816 => 0.020600772834985
817 => 0.020372937304388
818 => 0.020321063570477
819 => 0.020874939335888
820 => 0.02080445359605
821 => 0.020743413399934
822 => 0.022316679023897
823 => 0.021071316519083
824 => 0.020528267384177
825 => 0.019856140957498
826 => 0.02007498871118
827 => 0.020121103148424
828 => 0.018504760252154
829 => 0.01784901014044
830 => 0.017623981413521
831 => 0.017494474199741
901 => 0.01755349226331
902 => 0.016963240250951
903 => 0.017359899365123
904 => 0.016848791015181
905 => 0.016763102037023
906 => 0.017677027080894
907 => 0.017804194411676
908 => 0.017261659070767
909 => 0.017610054588124
910 => 0.017483721530471
911 => 0.016857552500871
912 => 0.016833637449728
913 => 0.01651944784158
914 => 0.016027801943925
915 => 0.015803106576077
916 => 0.015686083277606
917 => 0.015734369371294
918 => 0.015709954444747
919 => 0.015550630534133
920 => 0.015719086704805
921 => 0.015288750799634
922 => 0.015117387574743
923 => 0.015039986781656
924 => 0.014658038896607
925 => 0.015265887834716
926 => 0.015385641733003
927 => 0.015505631583463
928 => 0.016550061311169
929 => 0.0164978845535
930 => 0.016969537031711
1001 => 0.016951209483721
1002 => 0.016816686556672
1003 => 0.016249156455398
1004 => 0.016475363838515
1005 => 0.015779132673715
1006 => 0.0163007964015
1007 => 0.016062730861337
1008 => 0.016220306202899
1009 => 0.015936971530775
1010 => 0.01609378063693
1011 => 0.015414039824863
1012 => 0.014779307418767
1013 => 0.015034742267974
1014 => 0.015312429161581
1015 => 0.015914525100225
1016 => 0.015555921726352
1017 => 0.015684889059891
1018 => 0.015252870081405
1019 => 0.014361491528668
1020 => 0.014366536634473
1021 => 0.014229417463871
1022 => 0.014110926480745
1023 => 0.015597111637627
1024 => 0.015412281020258
1025 => 0.015117777621514
1026 => 0.015511982123832
1027 => 0.015616216051112
1028 => 0.015619183444486
1029 => 0.015906784873487
1030 => 0.0160602778077
1031 => 0.016087331602632
1101 => 0.016539878665205
1102 => 0.016691566471339
1103 => 0.017316347077144
1104 => 0.016047255004628
1105 => 0.016021118888543
1106 => 0.015517529389593
1107 => 0.015198144967923
1108 => 0.01553939791419
1109 => 0.015841701438909
1110 => 0.015526922802773
1111 => 0.015568026247313
1112 => 0.01514546164666
1113 => 0.015296508607881
1114 => 0.015426610599108
1115 => 0.015354775926594
1116 => 0.015247235945004
1117 => 0.015816915997306
1118 => 0.015784772416161
1119 => 0.016315271577753
1120 => 0.016728833610573
1121 => 0.017470010706443
1122 => 0.016696553768467
1123 => 0.016668365923434
1124 => 0.016943906630102
1125 => 0.016691524287492
1126 => 0.016851021216079
1127 => 0.017444313285434
1128 => 0.017456848611963
1129 => 0.017246865741761
1130 => 0.017234088265026
1201 => 0.017274417772209
1202 => 0.01751062895545
1203 => 0.017428089509989
1204 => 0.017523606245919
1205 => 0.017643051386804
1206 => 0.018137127133194
1207 => 0.018256247122964
1208 => 0.017966847304458
1209 => 0.017992976867797
1210 => 0.017884733391473
1211 => 0.017780171549631
1212 => 0.018015211300061
1213 => 0.01844475106369
1214 => 0.018442078919113
1215 => 0.018541723795215
1216 => 0.018603801727524
1217 => 0.018337317798231
1218 => 0.018163846559147
1219 => 0.018230366470473
1220 => 0.0183367332573
1221 => 0.018195873155081
1222 => 0.017326419351442
1223 => 0.017590156094542
1224 => 0.017546257404422
1225 => 0.017483740331429
1226 => 0.017748929666032
1227 => 0.017723351507776
1228 => 0.016957186363428
1229 => 0.017006233770152
1230 => 0.016960169098681
1231 => 0.01710901347615
]
'min_raw' => 0.014110926480745
'max_raw' => 0.031610217250551
'avg_raw' => 0.022860571865648
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01411'
'max' => '$0.03161'
'avg' => '$0.02286'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.003441022565045
'max_diff' => -0.022970489427977
'year' => 2034
]
9 => [
'items' => [
101 => 0.016683486202643
102 => 0.016814375526004
103 => 0.016896468082605
104 => 0.016944821229107
105 => 0.017119505950337
106 => 0.017099008714504
107 => 0.017118231813378
108 => 0.017377243139906
109 => 0.018687233547528
110 => 0.018758533435084
111 => 0.018407426712049
112 => 0.018547686922628
113 => 0.018278417989854
114 => 0.01845918002837
115 => 0.018582852824265
116 => 0.018023999240527
117 => 0.017990907558227
118 => 0.017720527256784
119 => 0.017865814315656
120 => 0.01763465215848
121 => 0.017691371266142
122 => 0.017532779696437
123 => 0.017818212946641
124 => 0.018137371672212
125 => 0.018218003770251
126 => 0.01800589543461
127 => 0.017852315020986
128 => 0.017582678407196
129 => 0.018031090105173
130 => 0.018162219350761
131 => 0.01803040133907
201 => 0.01799985622548
202 => 0.017941973290423
203 => 0.018012136363783
204 => 0.018161505192728
205 => 0.018091065611407
206 => 0.018137592195855
207 => 0.017960280833944
208 => 0.0183374060155
209 => 0.018936371563928
210 => 0.018938297336107
211 => 0.018867857375091
212 => 0.018839034860693
213 => 0.01891131053535
214 => 0.018950517123948
215 => 0.019184243402699
216 => 0.019435041011863
217 => 0.020605404022266
218 => 0.020276770772228
219 => 0.021315186460264
220 => 0.022136438448099
221 => 0.022382696010254
222 => 0.022156150640386
223 => 0.021381151167805
224 => 0.02134312599635
225 => 0.022501302404723
226 => 0.022174064521517
227 => 0.022135140616572
228 => 0.021721056030933
301 => 0.02196583130642
302 => 0.021912295363034
303 => 0.021827786257332
304 => 0.022294800431767
305 => 0.023169009275665
306 => 0.023032755629065
307 => 0.022931048602503
308 => 0.022485398018577
309 => 0.022753779209762
310 => 0.022658213808084
311 => 0.023068823420994
312 => 0.022825587382423
313 => 0.022171585372705
314 => 0.022275737348371
315 => 0.022259994986774
316 => 0.02258397167293
317 => 0.022486721913342
318 => 0.022241005410411
319 => 0.023166021324875
320 => 0.023105955936599
321 => 0.023191114924316
322 => 0.023228604544338
323 => 0.023791645430863
324 => 0.024022305266774
325 => 0.024074669087794
326 => 0.024293778092038
327 => 0.024069217456165
328 => 0.024967620108675
329 => 0.025565005449346
330 => 0.026258899263704
331 => 0.027272864627556
401 => 0.027654124984068
402 => 0.027585253713193
403 => 0.028354030679838
404 => 0.029735505799948
405 => 0.027864489332852
406 => 0.029834674215887
407 => 0.029210936428797
408 => 0.027732065356169
409 => 0.027636843493836
410 => 0.028638352154266
411 => 0.030859601971463
412 => 0.030303204085462
413 => 0.03086051203908
414 => 0.03021038270803
415 => 0.030178098307023
416 => 0.030828936708587
417 => 0.032349656109197
418 => 0.031627219325282
419 => 0.030591429046772
420 => 0.031356240469742
421 => 0.03069369003521
422 => 0.029200778470019
423 => 0.030302778618485
424 => 0.029565902502363
425 => 0.029780962127536
426 => 0.031329766121574
427 => 0.031143409927384
428 => 0.031384572098785
429 => 0.030958927178576
430 => 0.030561307705058
501 => 0.029819121430126
502 => 0.02959939666346
503 => 0.029660120684097
504 => 0.029599366571651
505 => 0.029184120171871
506 => 0.029094447751374
507 => 0.028944989788574
508 => 0.028991313060782
509 => 0.028710288365249
510 => 0.029240640028385
511 => 0.029339077970505
512 => 0.029725023683277
513 => 0.029765093847503
514 => 0.030839947163979
515 => 0.03024793601944
516 => 0.03064510820698
517 => 0.030609581388197
518 => 0.027764116976642
519 => 0.028156196866809
520 => 0.028766150134462
521 => 0.028491367014156
522 => 0.028102887971392
523 => 0.027789170315432
524 => 0.027313855987374
525 => 0.027982851776512
526 => 0.028862510099457
527 => 0.02978740343423
528 => 0.030898602174547
529 => 0.030650595551488
530 => 0.029766630346714
531 => 0.029806284380063
601 => 0.03005141001094
602 => 0.029733950046942
603 => 0.029640324906004
604 => 0.030038547354287
605 => 0.03004128969343
606 => 0.029676013638531
607 => 0.029270076148323
608 => 0.029268375255417
609 => 0.029196142599926
610 => 0.030223232736976
611 => 0.030788028461828
612 => 0.030852781381468
613 => 0.030783670074412
614 => 0.030810268273568
615 => 0.030481626085701
616 => 0.031232804671352
617 => 0.031922160425407
618 => 0.031737398357382
619 => 0.031460413751938
620 => 0.031239782172316
621 => 0.031685424568996
622 => 0.031665580814578
623 => 0.031916139504276
624 => 0.031904772714814
625 => 0.031820519251458
626 => 0.031737401366339
627 => 0.032066954385615
628 => 0.031972048408523
629 => 0.031876995016235
630 => 0.031686350886055
701 => 0.03171226258961
702 => 0.031435325809463
703 => 0.031307202183202
704 => 0.029380530255805
705 => 0.028865660560983
706 => 0.029027649048113
707 => 0.029080979864105
708 => 0.028856907913095
709 => 0.029178169531482
710 => 0.029128101248557
711 => 0.029322887648453
712 => 0.02920119356244
713 => 0.029206187930179
714 => 0.029564064289229
715 => 0.029667957318776
716 => 0.029615116485428
717 => 0.029652124393827
718 => 0.030504956022811
719 => 0.030383710637189
720 => 0.030319301442588
721 => 0.030337143229673
722 => 0.030555059995795
723 => 0.030616064792495
724 => 0.030357583182147
725 => 0.030479484603851
726 => 0.030998525385875
727 => 0.031180160284419
728 => 0.031759851690875
729 => 0.031513588478219
730 => 0.031965615263071
731 => 0.033354991492417
801 => 0.034464921361942
802 => 0.033444183984135
803 => 0.0354824288408
804 => 0.037069494830573
805 => 0.037008580594489
806 => 0.036731838929674
807 => 0.03492500649465
808 => 0.033262332349587
809 => 0.034653229872806
810 => 0.034656775556633
811 => 0.034537296225863
812 => 0.033795220363838
813 => 0.034511473594407
814 => 0.0345683271748
815 => 0.034536504288367
816 => 0.033967556464842
817 => 0.033098878297453
818 => 0.033268615932039
819 => 0.033546649640045
820 => 0.033020273826882
821 => 0.032852064860341
822 => 0.033164797332206
823 => 0.034172486516951
824 => 0.033981988713721
825 => 0.033977014046217
826 => 0.034792044432076
827 => 0.034208658570367
828 => 0.033270756867186
829 => 0.033033924317729
830 => 0.03219332831668
831 => 0.032773930968705
901 => 0.032794825824524
902 => 0.032476835685625
903 => 0.033296560014414
904 => 0.033289006110415
905 => 0.034067212360734
906 => 0.035554850430426
907 => 0.035114882650995
908 => 0.034603247991874
909 => 0.034658876865411
910 => 0.035268988304349
911 => 0.034900101000878
912 => 0.03503275544718
913 => 0.035268787515957
914 => 0.035411191523397
915 => 0.034638387120214
916 => 0.034458209446324
917 => 0.034089629159316
918 => 0.033993473442313
919 => 0.034293674395401
920 => 0.034214582050518
921 => 0.032793069692802
922 => 0.0326445137422
923 => 0.032649069741116
924 => 0.032275518739878
925 => 0.031705763800478
926 => 0.033203045762922
927 => 0.03308279306689
928 => 0.032950043397291
929 => 0.032966304474357
930 => 0.033616223826661
1001 => 0.033239237780611
1002 => 0.034241516970832
1003 => 0.034035478500593
1004 => 0.033824155921046
1005 => 0.03379494470351
1006 => 0.03371360353958
1007 => 0.033434654422749
1008 => 0.033097806601933
1009 => 0.032875390493372
1010 => 0.030325809943569
1011 => 0.030798997263385
1012 => 0.031343356142451
1013 => 0.031531266646124
1014 => 0.031209832726581
1015 => 0.033447346593056
1016 => 0.033856161937681
1017 => 0.032617833592446
1018 => 0.032386192919666
1019 => 0.033462532916999
1020 => 0.032813368321394
1021 => 0.033105687099046
1022 => 0.032473853791585
1023 => 0.033757690292671
1024 => 0.033747909609547
1025 => 0.033248468213862
1026 => 0.033670592661468
1027 => 0.033597238150724
1028 => 0.033033370045066
1029 => 0.033775565917374
1030 => 0.033775934037267
1031 => 0.033295232552712
1101 => 0.032733878457839
1102 => 0.032633521604267
1103 => 0.032557916196147
1104 => 0.033087092803344
1105 => 0.033561550894665
1106 => 0.034444399774477
1107 => 0.034666368958833
1108 => 0.035532729462703
1109 => 0.035016853964976
1110 => 0.035245534891412
1111 => 0.035493800385951
1112 => 0.035612827993694
1113 => 0.03541887889425
1114 => 0.03676469336497
1115 => 0.036878321340988
1116 => 0.036916419818469
1117 => 0.036462618751082
1118 => 0.036865700312384
1119 => 0.036677111798509
1120 => 0.037167766720214
1121 => 0.037244707676933
1122 => 0.037179541423846
1123 => 0.037203963697939
1124 => 0.036055548465121
1125 => 0.035995997076927
1126 => 0.03518400967332
1127 => 0.035514900542198
1128 => 0.034896315922843
1129 => 0.035092475477768
1130 => 0.035178940740502
1201 => 0.03513377619411
1202 => 0.035533608615459
1203 => 0.035193669376946
1204 => 0.034296513835323
1205 => 0.033399113864272
1206 => 0.033387847738642
1207 => 0.03315157816669
1208 => 0.032980798541099
1209 => 0.03301369675572
1210 => 0.033129634355028
1211 => 0.032974060037064
1212 => 0.03300725970562
1213 => 0.03355859541188
1214 => 0.033669161855824
1215 => 0.033293413878204
1216 => 0.031784731527882
1217 => 0.03141449709487
1218 => 0.031680614263251
1219 => 0.031553427396905
1220 => 0.02546607855334
1221 => 0.026896210869214
1222 => 0.026046474809826
1223 => 0.026438072280468
1224 => 0.025570711801919
1225 => 0.02598466168454
1226 => 0.02590822025625
1227 => 0.028207830699483
1228 => 0.028171925445423
1229 => 0.028189111390478
1230 => 0.027368781455265
1231 => 0.028675589316444
]
'min_raw' => 0.016683486202643
'max_raw' => 0.037244707676933
'avg_raw' => 0.026964096939788
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016683'
'max' => '$0.037244'
'avg' => '$0.026964'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025725597218984
'max_diff' => 0.0056344904263824
'year' => 2035
]
10 => [
'items' => [
101 => 0.029319369860152
102 => 0.029200223215176
103 => 0.029230209858803
104 => 0.028714939970792
105 => 0.028194100329318
106 => 0.027616409010277
107 => 0.02868968807625
108 => 0.028570357765598
109 => 0.028844058564542
110 => 0.029540156758398
111 => 0.029642659861663
112 => 0.029780425071935
113 => 0.029731046050848
114 => 0.03090745466524
115 => 0.030764983819843
116 => 0.03110829756559
117 => 0.030402075143312
118 => 0.029602917437257
119 => 0.029754811190745
120 => 0.029740182600831
121 => 0.029553943861322
122 => 0.029385815854589
123 => 0.029105930093152
124 => 0.029991530057639
125 => 0.029955576316376
126 => 0.030537625595767
127 => 0.03043474273191
128 => 0.029747665787362
129 => 0.029772204874852
130 => 0.029937242031301
131 => 0.030508437514131
201 => 0.03067800722339
202 => 0.030599455777877
203 => 0.030785381222927
204 => 0.030932329113904
205 => 0.030803835615584
206 => 0.032623032582982
207 => 0.031867575168149
208 => 0.0322357798557
209 => 0.032323594504093
210 => 0.032098659128777
211 => 0.032147439557351
212 => 0.03222132861477
213 => 0.032669968502454
214 => 0.033847329382735
215 => 0.034368774502045
216 => 0.035937567871137
217 => 0.034325475743753
218 => 0.034229820868414
219 => 0.034512407927209
220 => 0.035433455708509
221 => 0.036179878425634
222 => 0.036427509903064
223 => 0.036460238490757
224 => 0.036924811604645
225 => 0.03719109624975
226 => 0.036868400209133
227 => 0.036594949102394
228 => 0.035615481180055
229 => 0.035728857259069
301 => 0.036509906013822
302 => 0.037613183383454
303 => 0.038559910143044
304 => 0.038228399428594
305 => 0.040757592169753
306 => 0.041008351299213
307 => 0.040973704495535
308 => 0.041544971110406
309 => 0.040411123216309
310 => 0.039926381274314
311 => 0.036654072335473
312 => 0.03757345767154
313 => 0.038909838251122
314 => 0.038732963270244
315 => 0.037762447971796
316 => 0.038559173920161
317 => 0.038295751405708
318 => 0.038087979139149
319 => 0.039039824170893
320 => 0.037993231458851
321 => 0.038899397688217
322 => 0.037737230125966
323 => 0.038229913741613
324 => 0.037950242692947
325 => 0.038131224136628
326 => 0.037073210314923
327 => 0.037644088891281
328 => 0.037049459889272
329 => 0.037049177957702
330 => 0.037036051489525
331 => 0.037735629873401
401 => 0.037758443099383
402 => 0.037241453616695
403 => 0.037166947355346
404 => 0.037442436053865
405 => 0.037119910938504
406 => 0.037270818410033
407 => 0.037124481772084
408 => 0.037091538312561
409 => 0.036829039222212
410 => 0.036715947396526
411 => 0.036760293615395
412 => 0.036608917108354
413 => 0.036517707287334
414 => 0.037017907560406
415 => 0.036750670732525
416 => 0.036976949683818
417 => 0.03671907626014
418 => 0.035825174623568
419 => 0.035311082339537
420 => 0.033622585012779
421 => 0.034101440760073
422 => 0.034418922615941
423 => 0.034313994864471
424 => 0.034539420276279
425 => 0.034553259565734
426 => 0.034479971466416
427 => 0.034395113236191
428 => 0.034353808942673
429 => 0.034661657306588
430 => 0.034840373643541
501 => 0.034450786167537
502 => 0.034359511272817
503 => 0.034753405720771
504 => 0.034993681106478
505 => 0.036767739555459
506 => 0.036636311575425
507 => 0.036966170013871
508 => 0.036929033015792
509 => 0.037274777209854
510 => 0.037839922844747
511 => 0.036690823751805
512 => 0.036890267621483
513 => 0.03684136859047
514 => 0.037375235389059
515 => 0.037376902062931
516 => 0.037056822248552
517 => 0.037230342708629
518 => 0.037133488348099
519 => 0.037308517268228
520 => 0.036634556274624
521 => 0.037455368015241
522 => 0.037920715380231
523 => 0.037927176728845
524 => 0.038147747686625
525 => 0.038371860554338
526 => 0.038802025687796
527 => 0.038359863482238
528 => 0.037564456718063
529 => 0.037621882517289
530 => 0.037155535822481
531 => 0.037163375194673
601 => 0.037121528011529
602 => 0.037247114558254
603 => 0.036662115459285
604 => 0.036799413578534
605 => 0.036607195407569
606 => 0.036889849776719
607 => 0.036585760399955
608 => 0.036841345009876
609 => 0.036951646854754
610 => 0.037358663036983
611 => 0.036525643778905
612 => 0.03482706112124
613 => 0.035184123789205
614 => 0.034656000056617
615 => 0.034704879918777
616 => 0.034803625019512
617 => 0.034483559840643
618 => 0.034544618190358
619 => 0.034542436756445
620 => 0.03452363833749
621 => 0.034440377022963
622 => 0.034319631644148
623 => 0.034800644069876
624 => 0.03488237745415
625 => 0.035064060642766
626 => 0.035604626575202
627 => 0.035550611291129
628 => 0.035638712460525
629 => 0.035446388102401
630 => 0.034713801294151
701 => 0.03475358428242
702 => 0.034257489781221
703 => 0.035051374390998
704 => 0.034863372036638
705 => 0.034742165695754
706 => 0.034709093422675
707 => 0.035250999313501
708 => 0.03541314604937
709 => 0.035312107084839
710 => 0.035104873220808
711 => 0.035502823502939
712 => 0.035609298210263
713 => 0.035633133970597
714 => 0.036338225571135
715 => 0.035672540758476
716 => 0.035832777709221
717 => 0.037082900657278
718 => 0.035949211648565
719 => 0.036549752000762
720 => 0.036520358675583
721 => 0.036827574798589
722 => 0.03649515798653
723 => 0.036499278691313
724 => 0.03677206579592
725 => 0.036388985504913
726 => 0.03629412943759
727 => 0.036163086459954
728 => 0.03644921400751
729 => 0.036620734531834
730 => 0.038003063989939
731 => 0.038896111861757
801 => 0.038857342298395
802 => 0.03921162353394
803 => 0.039052016592483
804 => 0.038536603676333
805 => 0.039416350676292
806 => 0.039137961915327
807 => 0.039160911946539
808 => 0.039160057745231
809 => 0.039345161934104
810 => 0.039213998651738
811 => 0.038955462358558
812 => 0.039127090815354
813 => 0.039636765973743
814 => 0.041218813304126
815 => 0.042104147949548
816 => 0.041165515046813
817 => 0.041812971454324
818 => 0.041424728322124
819 => 0.04135417299577
820 => 0.04176082346634
821 => 0.042168185724727
822 => 0.042142238509943
823 => 0.041846514428638
824 => 0.041679467398829
825 => 0.0429444034734
826 => 0.043876386825521
827 => 0.043812831809002
828 => 0.044093342982718
829 => 0.044916932464632
830 => 0.044992231165299
831 => 0.044982745259736
901 => 0.044796109573526
902 => 0.045607040375079
903 => 0.046283533116705
904 => 0.044752908804592
905 => 0.045335750505301
906 => 0.045597406922736
907 => 0.045981596173492
908 => 0.046629787837111
909 => 0.047333895908149
910 => 0.047433464509546
911 => 0.047362815822059
912 => 0.046898437621768
913 => 0.047668881074855
914 => 0.048120188780551
915 => 0.048388932191299
916 => 0.049070420766318
917 => 0.045599022823692
918 => 0.043141794820229
919 => 0.042758063184685
920 => 0.043538396555064
921 => 0.043744164241791
922 => 0.043661219545282
923 => 0.040895386025988
924 => 0.042743501643609
925 => 0.044731918654194
926 => 0.044808301849654
927 => 0.045803744980992
928 => 0.046127902069148
929 => 0.046929364265589
930 => 0.046879232586987
1001 => 0.047074375877771
1002 => 0.047029515814631
1003 => 0.048514055765761
1004 => 0.050151723788174
1005 => 0.050095016552023
1006 => 0.049859582397792
1007 => 0.050209242264313
1008 => 0.051899491166614
1009 => 0.051743880133377
1010 => 0.051895042997251
1011 => 0.053887941711317
1012 => 0.05647899352614
1013 => 0.055275189820806
1014 => 0.057887097476196
1015 => 0.059531154893988
1016 => 0.06237438219935
1017 => 0.062018396137529
1018 => 0.063125243662941
1019 => 0.061381106790337
1020 => 0.057376215982618
1021 => 0.05674242668219
1022 => 0.058011288911747
1023 => 0.061130662889349
1024 => 0.057913048724283
1025 => 0.058563967879246
1026 => 0.058376503118827
1027 => 0.058366513918418
1028 => 0.058747761069008
1029 => 0.058194742192564
1030 => 0.055941643803735
1031 => 0.056974225517743
1101 => 0.056575496129318
1102 => 0.057017916113021
1103 => 0.059405474297184
1104 => 0.058349877911687
1105 => 0.057237892869253
1106 => 0.0586325688817
1107 => 0.06040847070822
1108 => 0.060297337963518
1109 => 0.060081693988915
1110 => 0.061297267783005
1111 => 0.063305039561139
1112 => 0.063847732204889
1113 => 0.064248336819642
1114 => 0.064303573427746
1115 => 0.064872544820578
1116 => 0.061813042242067
1117 => 0.066668551407762
1118 => 0.067506963709944
1119 => 0.067349376945763
1120 => 0.068281236933855
1121 => 0.068007060086352
1122 => 0.06760982085135
1123 => 0.06908701714478
1124 => 0.067393530797957
1125 => 0.064989840132644
1126 => 0.063671127894043
1127 => 0.065407714547315
1128 => 0.066468187417946
1129 => 0.067169092526691
1130 => 0.067381185989098
1201 => 0.06205054271795
1202 => 0.059177621645831
1203 => 0.061019131114952
1204 => 0.063265899761475
1205 => 0.061800561328793
1206 => 0.061857999821102
1207 => 0.059768812300265
1208 => 0.063450746499656
1209 => 0.062914319656746
1210 => 0.065697303066688
1211 => 0.065033121741068
1212 => 0.067302536677082
1213 => 0.066704923668053
1214 => 0.069185581856439
1215 => 0.070175183568926
1216 => 0.0718368788634
1217 => 0.073059228686331
1218 => 0.073777015882183
1219 => 0.073733922631296
1220 => 0.07657815310142
1221 => 0.074901009763032
1222 => 0.07279412245768
1223 => 0.072756015513471
1224 => 0.073847202303736
1225 => 0.076134030463656
1226 => 0.076726971733527
1227 => 0.077058345012849
1228 => 0.07655083530038
1229 => 0.074730416408505
1230 => 0.073944368760727
1231 => 0.074614104130627
]
'min_raw' => 0.027616409010277
'max_raw' => 0.077058345012849
'avg_raw' => 0.052337377011563
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027616'
'max' => '$0.077058'
'avg' => '$0.052337'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010932922807634
'max_diff' => 0.039813637335915
'year' => 2036
]
11 => [
'items' => [
101 => 0.073795075324256
102 => 0.075208948822948
103 => 0.077150499123735
104 => 0.076749576664344
105 => 0.078089800336433
106 => 0.079476790841402
107 => 0.081460249557149
108 => 0.081978799112709
109 => 0.082835941809377
110 => 0.083718223200955
111 => 0.08400158820578
112 => 0.084542619922988
113 => 0.084539768418777
114 => 0.086170203914218
115 => 0.087968624756073
116 => 0.088647486990335
117 => 0.090208493265338
118 => 0.087535324723579
119 => 0.08956295376965
120 => 0.091391925924054
121 => 0.089211349921903
122 => 0.092216765931821
123 => 0.092333459425067
124 => 0.094095392628185
125 => 0.092309335781266
126 => 0.091248780926861
127 => 0.094310563053057
128 => 0.09579206297869
129 => 0.095345823144243
130 => 0.091949915970524
131 => 0.089973352338109
201 => 0.084800304061428
202 => 0.090928003204212
203 => 0.093912626709227
204 => 0.091942186516678
205 => 0.092935961936138
206 => 0.098357678391953
207 => 0.10042191698818
208 => 0.099992569790285
209 => 0.10006512239907
210 => 0.10117894807702
211 => 0.10611826452803
212 => 0.10315851161813
213 => 0.10542113181792
214 => 0.10662121741341
215 => 0.107735923796
216 => 0.10499855722694
217 => 0.10143728354049
218 => 0.10030927867189
219 => 0.09174626507266
220 => 0.091300523027538
221 => 0.091050314510244
222 => 0.089472785201403
223 => 0.088233279286299
224 => 0.087247578162704
225 => 0.084660804059119
226 => 0.085533764383529
227 => 0.081410986364128
228 => 0.084048593638659
301 => 0.077468540371739
302 => 0.082948604259768
303 => 0.079966054633444
304 => 0.081968756492106
305 => 0.081961769253987
306 => 0.078274160174988
307 => 0.076147224216659
308 => 0.077502590590892
309 => 0.078955650933186
310 => 0.079191405085042
311 => 0.081075335747582
312 => 0.081601100300542
313 => 0.080008009159471
314 => 0.077332183393347
315 => 0.07795371668973
316 => 0.076134628864246
317 => 0.072946747420287
318 => 0.075236339528408
319 => 0.07601810694038
320 => 0.076363379965813
321 => 0.073228464696338
322 => 0.072243406256347
323 => 0.071718969408336
324 => 0.076927505198638
325 => 0.077212840546835
326 => 0.075753024563105
327 => 0.082351531235
328 => 0.080858085952528
329 => 0.082526630236026
330 => 0.077897319057687
331 => 0.078074164978894
401 => 0.075882574879065
402 => 0.077109718892866
403 => 0.076242413056609
404 => 0.077010577783424
405 => 0.077471012553415
406 => 0.079662243034873
407 => 0.082973624592044
408 => 0.079334946272041
409 => 0.077749522021182
410 => 0.07873311030965
411 => 0.081352535537591
412 => 0.085321098843831
413 => 0.082971629491757
414 => 0.08401428409363
415 => 0.084242057739665
416 => 0.082509646021529
417 => 0.085384975334965
418 => 0.086925887673169
419 => 0.088506544885286
420 => 0.089878985253557
421 => 0.087875195635369
422 => 0.090019537758789
423 => 0.088291576534653
424 => 0.086741416683255
425 => 0.086743767635872
426 => 0.085771329716868
427 => 0.083887108713735
428 => 0.083539629451621
429 => 0.085347260454933
430 => 0.086796809336296
501 => 0.086916201125036
502 => 0.087718745866269
503 => 0.088193683577263
504 => 0.092848718791509
505 => 0.09472101246315
506 => 0.097010417724128
507 => 0.097902270097089
508 => 0.10058642599293
509 => 0.098418752110555
510 => 0.097949762230795
511 => 0.091438878008186
512 => 0.092505034934892
513 => 0.09421205504339
514 => 0.091467026141041
515 => 0.093208115161024
516 => 0.093551843014877
517 => 0.091373751109337
518 => 0.092537164105882
519 => 0.089447484114973
520 => 0.083040971172725
521 => 0.085392107615268
522 => 0.08712333542095
523 => 0.084652659883394
524 => 0.089081250156115
525 => 0.08649415914345
526 => 0.085674175494705
527 => 0.082475126935671
528 => 0.083984954712864
529 => 0.086027018400168
530 => 0.084765260456798
531 => 0.087383597643199
601 => 0.091091861384164
602 => 0.0937345909569
603 => 0.093937466918591
604 => 0.092238368852452
605 => 0.094961184346938
606 => 0.09498101708525
607 => 0.091909670084442
608 => 0.090028487147779
609 => 0.089601078426526
610 => 0.090668829210631
611 => 0.091965275780203
612 => 0.094009410680392
613 => 0.095244638589152
614 => 0.098465457860937
615 => 0.099336919207757
616 => 0.10029439101734
617 => 0.10157386862831
618 => 0.10311020955162
619 => 0.099748783075371
620 => 0.099882338815755
621 => 0.096752225023194
622 => 0.093407249532118
623 => 0.095945668972764
624 => 0.09926431471962
625 => 0.098503013718513
626 => 0.098417351803921
627 => 0.098561411383632
628 => 0.097987415290564
629 => 0.095391252234905
630 => 0.094087475401194
701 => 0.095769680145625
702 => 0.096663697100971
703 => 0.098050239432241
704 => 0.097879318823554
705 => 0.10145090296513
706 => 0.10283871256345
707 => 0.10248365148048
708 => 0.10254899126477
709 => 0.10506155425209
710 => 0.10785604104199
711 => 0.11047344668574
712 => 0.11313598412675
713 => 0.10992619132101
714 => 0.10829645648675
715 => 0.10997792683322
716 => 0.10908571499897
717 => 0.11421262884575
718 => 0.1145676052368
719 => 0.11969414834935
720 => 0.12455984822056
721 => 0.12150378930952
722 => 0.12438551521472
723 => 0.12750233673174
724 => 0.13351519112416
725 => 0.13149027329956
726 => 0.12993921798043
727 => 0.12847347819849
728 => 0.13152345000506
729 => 0.13544719000973
730 => 0.13629232602562
731 => 0.13766176923817
801 => 0.13622196714772
802 => 0.13795605017667
803 => 0.14407812526353
804 => 0.14242388653401
805 => 0.14007460160594
806 => 0.14490739191668
807 => 0.14665635994314
808 => 0.1589315334945
809 => 0.17442944716522
810 => 0.16801320914076
811 => 0.16403044314826
812 => 0.16496648762897
813 => 0.17062580106403
814 => 0.17244339292174
815 => 0.167502551691
816 => 0.16924774034176
817 => 0.17886390139059
818 => 0.18402266326991
819 => 0.17701637172364
820 => 0.15768629122104
821 => 0.13986307420225
822 => 0.14459059394556
823 => 0.14405463991868
824 => 0.15438600532513
825 => 0.1423844334874
826 => 0.1425865091774
827 => 0.15313151627935
828 => 0.15031828917174
829 => 0.14576122154832
830 => 0.13989634583905
831 => 0.12905458065514
901 => 0.11945172688676
902 => 0.1382851345317
903 => 0.13747300374772
904 => 0.13629691802148
905 => 0.13891416953946
906 => 0.15162279999098
907 => 0.15132982492525
908 => 0.14946606703427
909 => 0.15087971096817
910 => 0.14551340293184
911 => 0.14689642270136
912 => 0.13986025091361
913 => 0.14304089441817
914 => 0.14575144412788
915 => 0.14629562711248
916 => 0.14752169916345
917 => 0.13704504772807
918 => 0.14174875664423
919 => 0.14451174495455
920 => 0.13202846325015
921 => 0.14426499061207
922 => 0.13686267253503
923 => 0.1343502146006
924 => 0.13773290821815
925 => 0.13641466922561
926 => 0.13528132474942
927 => 0.13464889905837
928 => 0.13713277591683
929 => 0.13701690009251
930 => 0.13295279545235
1001 => 0.12765133662335
1002 => 0.12943068022082
1003 => 0.12878422801042
1004 => 0.12644140180596
1005 => 0.12802018379385
1006 => 0.12106802692245
1007 => 0.10910720236687
1008 => 0.11700888943825
1009 => 0.11670468308138
1010 => 0.11655128844159
1011 => 0.12248918788914
1012 => 0.12191839586791
1013 => 0.12088240276016
1014 => 0.1264223749801
1015 => 0.12440021059668
1016 => 0.13063204474453
1017 => 0.13473673376407
1018 => 0.13369565185593
1019 => 0.13755613171849
1020 => 0.12947167270353
1021 => 0.1321570056961
1022 => 0.13271044910416
1023 => 0.12635401258285
1024 => 0.12201178450169
1025 => 0.1217222073937
1026 => 0.11419338229685
1027 => 0.11821521989303
1028 => 0.12175427054273
1029 => 0.12005933992295
1030 => 0.11952277552334
1031 => 0.12226396667433
1101 => 0.12247698070347
1102 => 0.11762023826472
1103 => 0.11863010881077
1104 => 0.12284143686479
1105 => 0.11852399414896
1106 => 0.11013590820236
1107 => 0.10805554691325
1108 => 0.10777798836861
1109 => 0.10213588355699
1110 => 0.10819456660222
1111 => 0.10554978909037
1112 => 0.11390460956101
1113 => 0.10913238091598
1114 => 0.10892665967723
1115 => 0.1086156818521
1116 => 0.10375928916833
1117 => 0.10482253052622
1118 => 0.10835690673608
1119 => 0.10961801198536
1120 => 0.10948646837593
1121 => 0.10833958636448
1122 => 0.10886462307633
1123 => 0.10717329689253
1124 => 0.10657605441512
1125 => 0.10469099287193
1126 => 0.10192047316499
1127 => 0.10230573092282
1128 => 0.096816606437441
1129 => 0.09382584008792
1130 => 0.092998035380039
1201 => 0.091891060328321
1202 => 0.093123071157679
1203 => 0.096801056437446
1204 => 0.092364625861942
1205 => 0.084758676819661
1206 => 0.085215807317008
1207 => 0.086242843821286
1208 => 0.084328968090091
1209 => 0.08251764532993
1210 => 0.084092443512629
1211 => 0.08086970263596
1212 => 0.086632296659404
1213 => 0.086476434640553
1214 => 0.088624373336069
1215 => 0.089967523482515
1216 => 0.086871997244982
1217 => 0.086093480767435
1218 => 0.086536959134647
1219 => 0.079207249584909
1220 => 0.088025379691208
1221 => 0.088101639246549
1222 => 0.087448658635208
1223 => 0.092144040687589
1224 => 0.1020527613445
1225 => 0.098324702056007
1226 => 0.096881084818313
1227 => 0.094136767394179
1228 => 0.097793407420392
1229 => 0.097512634518849
1230 => 0.096242872978112
1231 => 0.095474917236377
]
'min_raw' => 0.071718969408336
'max_raw' => 0.18402266326991
'avg_raw' => 0.12787081633912
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.071718'
'max' => '$0.184022'
'avg' => '$0.12787'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.044102560398059
'max_diff' => 0.10696431825706
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.002251176498297
]
1 => [
'year' => 2028
'avg' => 0.0038636723922845
]
2 => [
'year' => 2029
'avg' => 0.010554856616525
]
3 => [
'year' => 2030
'avg' => 0.0081430561608848
]
4 => [
'year' => 2031
'avg' => 0.0079974903078291
]
5 => [
'year' => 2032
'avg' => 0.014022117412453
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.002251176498297
'min' => '$0.002251'
'max_raw' => 0.014022117412453
'max' => '$0.014022'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014022117412453
]
1 => [
'year' => 2033
'avg' => 0.036066327862159
]
2 => [
'year' => 2034
'avg' => 0.022860571865648
]
3 => [
'year' => 2035
'avg' => 0.026964096939788
]
4 => [
'year' => 2036
'avg' => 0.052337377011563
]
5 => [
'year' => 2037
'avg' => 0.12787081633912
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014022117412453
'min' => '$0.014022'
'max_raw' => 0.12787081633912
'max' => '$0.12787'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12787081633912
]
]
]
]
'prediction_2025_max_price' => '$0.003849'
'last_price' => 0.00373219
'sma_50day_nextmonth' => '$0.003318'
'sma_200day_nextmonth' => '$0.007863'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.0036019'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003464'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003289'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003154'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003551'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.005213'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003625'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003517'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003369'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003347'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003865'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0056014'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009653'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006425'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0131011'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003529'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003577'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004283'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006968'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015424'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018331'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.39'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.21
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003314'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0037062'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 214.22
'cci_20_action' => 'SELL'
'adx_14' => 18.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000012'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.69
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0013012'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767685664
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sigma para 2026
A previsão de preço para Sigma em 2026 sugere que o preço médio poderia variar entre $0.001289 na extremidade inferior e $0.003849 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sigma poderia potencialmente ganhar 3.13% até 2026 se SIGMA atingir a meta de preço prevista.
Previsão de preço de Sigma 2027-2032
A previsão de preço de SIGMA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002251 na extremidade inferior e $0.014022 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sigma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001241 | $0.002251 | $0.003261 |
| 2028 | $0.00224 | $0.003863 | $0.005487 |
| 2029 | $0.004921 | $0.010554 | $0.016188 |
| 2030 | $0.004185 | $0.008143 | $0.01210084 |
| 2031 | $0.004948 | $0.007997 | $0.011046 |
| 2032 | $0.007553 | $0.014022 | $0.020491 |
Previsão de preço de Sigma 2032-2037
A previsão de preço de Sigma para 2032-2037 é atualmente estimada entre $0.014022 na extremidade inferior e $0.12787 na extremidade superior. Comparado ao preço atual, Sigma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007553 | $0.014022 | $0.020491 |
| 2033 | $0.017551 | $0.036066 | $0.05458 |
| 2034 | $0.01411 | $0.02286 | $0.03161 |
| 2035 | $0.016683 | $0.026964 | $0.037244 |
| 2036 | $0.027616 | $0.052337 | $0.077058 |
| 2037 | $0.071718 | $0.12787 | $0.184022 |
Sigma Histograma de preços potenciais
Previsão de preço de Sigma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sigma é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de SIGMA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sigma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sigma está projetado para aumentar no próximo mês, alcançando $0.007863 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sigma é esperado para alcançar $0.003318 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 58.39, sugerindo que o mercado de SIGMA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SIGMA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.0036019 | BUY |
| SMA 5 | $0.003464 | BUY |
| SMA 10 | $0.003289 | BUY |
| SMA 21 | $0.003154 | BUY |
| SMA 50 | $0.003551 | BUY |
| SMA 100 | $0.005213 | SELL |
| SMA 200 | $0.010335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.003625 | BUY |
| EMA 5 | $0.003517 | BUY |
| EMA 10 | $0.003369 | BUY |
| EMA 21 | $0.003347 | BUY |
| EMA 50 | $0.003865 | SELL |
| EMA 100 | $0.0056014 | SELL |
| EMA 200 | $0.009653 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006425 | SELL |
| SMA 50 | $0.0131011 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006968 | SELL |
| EMA 50 | $0.015424 | SELL |
| EMA 100 | $0.018331 | SELL |
| EMA 200 | $0.009165 | SELL |
Osciladores de Sigma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 58.39 | NEUTRAL |
| Stoch RSI (14) | 102.21 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 214.22 | SELL |
| Índice Direcional Médio (14) | 18.86 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000012 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.69 | SELL |
| VWMA (10) | 0.003314 | BUY |
| Média Móvel de Hull (9) | 0.0037062 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0013012 | SELL |
Previsão do preço de Sigma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sigma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sigma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005244 | $0.007369 | $0.010354 | $0.01455 | $0.020445 | $0.028729 |
| Amazon.com stock | $0.007787 | $0.016248 | $0.0339043 | $0.070743 | $0.14761 | $0.307998 |
| Apple stock | $0.005293 | $0.0075088 | $0.01065 | $0.0151073 | $0.021428 | $0.030394 |
| Netflix stock | $0.005888 | $0.009291 | $0.01466 | $0.023132 | $0.036499 | $0.057589 |
| Google stock | $0.004833 | $0.006258 | $0.0081052 | $0.010496 | $0.013592 | $0.0176024 |
| Tesla stock | $0.00846 | $0.019179 | $0.043478 | $0.098562 | $0.223433 | $0.5065076 |
| Kodak stock | $0.002798 | $0.002098 | $0.001573 | $0.00118 | $0.000885 | $0.000663 |
| Nokia stock | $0.002472 | $0.001637 | $0.001085 | $0.000718 | $0.000476 | $0.000315 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sigma
Você pode fazer perguntas como: 'Devo investir em Sigma agora?', 'Devo comprar SIGMA hoje?', 'Sigma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sigma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sigma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sigma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sigma é de $0.003732 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Sigma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sigma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003829 | $0.003928 | $0.00403 | $0.004135 |
| Se Sigma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003926 | $0.00413 | $0.004345 | $0.00457 |
| Se Sigma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004217 | $0.004765 | $0.005384 | $0.006084 |
| Se Sigma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0047023 | $0.005924 | $0.007464 | $0.0094048 |
| Se Sigma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005672 | $0.008621 | $0.0131032 | $0.019915 |
| Se Sigma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008582 | $0.019737 | $0.045389 | $0.10438 |
| Se Sigma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013433 | $0.04835 | $0.17403 | $0.626391 |
Perguntas Frequentes sobre Sigma
SIGMA é um bom investimento?
A decisão de adquirir Sigma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sigma experimentou uma queda de -2.1352% nas últimas 24 horas, e Sigma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sigma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sigma pode subir?
Parece que o valor médio de Sigma pode potencialmente subir para $0.003849 até o final deste ano. Observando as perspectivas de Sigma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.01210084. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sigma na próxima semana?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma aumentará 0.86% na próxima semana e atingirá $0.003764 até 13 de janeiro de 2026.
Qual será o preço de Sigma no próximo mês?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma diminuirá -11.62% no próximo mês e atingirá $0.003298 até 5 de fevereiro de 2026.
Até onde o preço de Sigma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sigma em 2026, espera-se que SIGMA fluctue dentro do intervalo de $0.001289 e $0.003849. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sigma não considera flutuações repentinas e extremas de preço.
Onde estará Sigma em 5 anos?
O futuro de Sigma parece seguir uma tendência de alta, com um preço máximo de $0.01210084 projetada após um período de cinco anos. Com base na previsão de Sigma para 2030, o valor de Sigma pode potencialmente atingir seu pico mais alto de aproximadamente $0.01210084, enquanto seu pico mais baixo está previsto para cerca de $0.004185.
Quanto será Sigma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sigma, espera-se que o valor de SIGMA em 2026 aumente 3.13% para $0.003849 se o melhor cenário ocorrer. O preço ficará entre $0.003849 e $0.001289 durante 2026.
Quanto será Sigma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sigma, o valor de SIGMA pode diminuir -12.62% para $0.003261 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003261 e $0.001241 ao longo do ano.
Quanto será Sigma em 2028?
Nosso novo modelo experimental de previsão de preços de Sigma sugere que o valor de SIGMA em 2028 pode aumentar 47.02%, alcançando $0.005487 no melhor cenário. O preço é esperado para variar entre $0.005487 e $0.00224 durante o ano.
Quanto será Sigma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sigma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.016188 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.016188 e $0.004921.
Quanto será Sigma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sigma, espera-se que o valor de SIGMA em 2030 aumente 224.23%, alcançando $0.01210084 no melhor cenário. O preço está previsto para variar entre $0.01210084 e $0.004185 ao longo de 2030.
Quanto será Sigma em 2031?
Nossa simulação experimental indica que o preço de Sigma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011046 sob condições ideais. O preço provavelmente oscilará entre $0.011046 e $0.004948 durante o ano.
Quanto será Sigma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sigma, SIGMA poderia ver um 449.04% aumento em valor, atingindo $0.020491 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.020491 e $0.007553 ao longo do ano.
Quanto será Sigma em 2033?
De acordo com nossa previsão experimental de preços de Sigma, espera-se que o valor de SIGMA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.05458. Ao longo do ano, o preço de SIGMA poderia variar entre $0.05458 e $0.017551.
Quanto será Sigma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sigma sugerem que SIGMA pode aumentar 746.96% em 2034, atingindo potencialmente $0.03161 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.03161 e $0.01411.
Quanto será Sigma em 2035?
Com base em nossa previsão experimental para o preço de Sigma, SIGMA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.037244 em 2035. A faixa de preço esperada para o ano está entre $0.037244 e $0.016683.
Quanto será Sigma em 2036?
Nossa recente simulação de previsão de preços de Sigma sugere que o valor de SIGMA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.077058 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.077058 e $0.027616.
Quanto será Sigma em 2037?
De acordo com a simulação experimental, o valor de Sigma poderia aumentar 4830.69% em 2037, com um pico de $0.184022 sob condições favoráveis. O preço é esperado para cair entre $0.184022 e $0.071718 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sigma?
Traders de Sigma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sigma
Médias móveis são ferramentas populares para a previsão de preço de Sigma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SIGMA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SIGMA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SIGMA.
Como ler gráficos de Sigma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sigma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SIGMA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sigma?
A ação de preço de Sigma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SIGMA. A capitalização de mercado de Sigma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SIGMA, grandes detentores de Sigma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sigma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


