Previsão de Preço Sigma - Projeção SIGMA
Previsão de Preço Sigma até $0.003812 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001277 | $0.003812 |
| 2027 | $0.001229 | $0.00323 |
| 2028 | $0.002219 | $0.005435 |
| 2029 | $0.004874 | $0.016036 |
| 2030 | $0.004145 | $0.011986 |
| 2031 | $0.0049016 | $0.010942 |
| 2032 | $0.007482 | $0.020298 |
| 2033 | $0.017386 | $0.054066 |
| 2034 | $0.013978 | $0.031312 |
| 2035 | $0.016526 | $0.036894 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sigma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.64, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Sigma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sigma'
'name_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_lang' => 'Sigma'
'name_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_with_lang' => 'Sigma'
'name_with_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'image' => '/uploads/coins/sigma.jpg?1722053593'
'price_for_sd' => 0.003697
'ticker' => 'SIGMA'
'marketcap' => '$3.32M'
'low24h' => '$0.003615'
'high24h' => '$0.004703'
'volume24h' => '$1.46M'
'current_supply' => '899.82M'
'max_supply' => '899.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003697'
'change_24h_pct' => '-2.9447%'
'ath_price' => '$0.1721'
'ath_days' => 422
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de nov. de 2024'
'ath_pct' => '-97.85%'
'fdv' => '$3.32M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.18229'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003728'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003267'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001277'
'current_year_max_price_prediction' => '$0.003812'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004145'
'grand_prediction_max_price' => '$0.011986'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0037671071528517
107 => 0.0037811721635006
108 => 0.0038128613506697
109 => 0.0035420807158958
110 => 0.0036636532712075
111 => 0.0037350657576452
112 => 0.0034124215459113
113 => 0.0037286881189594
114 => 0.0035373670274769
115 => 0.0034724297754814
116 => 0.003559859230461
117 => 0.0035257878868275
118 => 0.0034964953463079
119 => 0.0034801496053882
120 => 0.0035443481478883
121 => 0.0035413532091469
122 => 0.0034363119332164
123 => 0.0032992898707953
124 => 0.0033452789725397
125 => 0.0033285707007259
126 => 0.0032680177682625
127 => 0.0033088231335538
128 => 0.0031291369559333
129 => 0.002819996226612
130 => 0.0030242240616383
131 => 0.0030163615121469
201 => 0.0030123968581551
202 => 0.0031658684317346
203 => 0.0031511156811266
204 => 0.0031243392943136
205 => 0.0032675259989203
206 => 0.0032152609256059
207 => 0.0033763295663609
208 => 0.0034824197904287
209 => 0.0034555118779459
210 => 0.0035552902464601
211 => 0.003346338468559
212 => 0.0034157438674875
213 => 0.0034300482240149
214 => 0.0032657590972118
215 => 0.0031535294135764
216 => 0.00314604497319
217 => 0.0029514541679693
218 => 0.0030554030054361
219 => 0.0031468736807117
220 => 0.0031030663256658
221 => 0.0030891982257658
222 => 0.0031600473405311
223 => 0.00316555292353
224 => 0.0030400250476997
225 => 0.0030661262680356
226 => 0.0031749726958035
227 => 0.003063383617327
228 => 0.0028465842658199
301 => 0.0027928150291605
302 => 0.0027856412218265
303 => 0.0026398147875145
304 => 0.0027964081466617
305 => 0.0027280509489528
306 => 0.0029439905174702
307 => 0.0028206469940402
308 => 0.0028153299012687
309 => 0.0028072923356967
310 => 0.0026817734996702
311 => 0.0027092541476218
312 => 0.0028006040068339
313 => 0.0028331986657306
314 => 0.0028297987757675
315 => 0.002800156342688
316 => 0.002813726496758
317 => 0.0027700123023435
318 => 0.0027545759104635
319 => 0.0027058544115761
320 => 0.0026342472678691
321 => 0.0026442046803937
322 => 0.0025023321916818
323 => 0.0024250325300888
324 => 0.002403637002553
325 => 0.0023750260089514
326 => 0.0024068686904112
327 => 0.0025019302847467
328 => 0.0023872658335358
329 => 0.0021906816747108
330 => 0.0022024967176193
331 => 0.002229041611117
401 => 0.0021795753776962
402 => 0.0021327597391496
403 => 0.002173462138593
404 => 0.0020901668389757
405 => 0.0022391074501277
406 => 0.0022350790239973
407 => 0.0022905948734092
408 => 0.0023253100733463
409 => 0.0022453027766706
410 => 0.0022251811579194
411 => 0.0022366433464367
412 => 0.0020471989025867
413 => 0.002275113220671
414 => 0.0022770842331582
415 => 0.0022602072276069
416 => 0.0023815645659217
417 => 0.002637666402069
418 => 0.0025413105896379
419 => 0.0025039987066947
420 => 0.0024330687899449
421 => 0.0025275786926123
422 => 0.0025203218066716
423 => 0.0024875034163555
424 => 0.0024676547514927
425 => 0.0025042265250957
426 => 0.0024631231040214
427 => 0.0024557398001499
428 => 0.002411005011803
429 => 0.0023950367276663
430 => 0.0023832144458072
501 => 0.0023701992751138
502 => 0.002398907498485
503 => 0.0023338508874444
504 => 0.0022553989921077
505 => 0.0022488765658717
506 => 0.0022668855581668
507 => 0.002258917919688
508 => 0.002248838419884
509 => 0.0022295939097698
510 => 0.0022238844747128
511 => 0.0022424373688239
512 => 0.0022214922330734
513 => 0.0022523979218139
514 => 0.0022439932845662
515 => 0.0021970456641105
516 => 0.0021385315467874
517 => 0.0021380106484057
518 => 0.0021254038778109
519 => 0.0021093472600176
520 => 0.0021048806762732
521 => 0.0021700342960401
522 => 0.0023049003390739
523 => 0.0022784229077555
524 => 0.0022975555653994
525 => 0.0023916693047199
526 => 0.002421585232351
527 => 0.0024003516155161
528 => 0.0023712857311599
529 => 0.0023725644825597
530 => 0.0024718914082463
531 => 0.0024780863067645
601 => 0.00249373881677
602 => 0.0025138567155258
603 => 0.0024037777806664
604 => 0.002367379774627
605 => 0.0023501323800811
606 => 0.0022970170804613
607 => 0.0023542973773396
608 => 0.0023209226013355
609 => 0.0023254259988631
610 => 0.0023224931553154
611 => 0.0023240946862104
612 => 0.0022390658181915
613 => 0.0022700458687119
614 => 0.0022185355260421
615 => 0.0021495689595147
616 => 0.0021493377594009
617 => 0.0021662172288536
618 => 0.0021561766599294
619 => 0.0021291577471211
620 => 0.0021329956561598
621 => 0.0020993715345427
622 => 0.0021370782333085
623 => 0.0021381595265081
624 => 0.0021236403935855
625 => 0.002181732765556
626 => 0.0022055332577512
627 => 0.0021959764534315
628 => 0.0022048627268836
629 => 0.0022795231645652
630 => 0.0022916960735706
701 => 0.0022971024756535
702 => 0.0022898586130734
703 => 0.0022062273826283
704 => 0.002209936783326
705 => 0.0021827196622324
706 => 0.0021597240629779
707 => 0.002160643766352
708 => 0.0021724664935875
709 => 0.0022240970368187
710 => 0.0023327504712619
711 => 0.0023368737896744
712 => 0.002341871371876
713 => 0.0023215436934784
714 => 0.002315412671164
715 => 0.0023235010721478
716 => 0.0023643055893985
717 => 0.0024692658860857
718 => 0.0024321659071739
719 => 0.0024020030468231
720 => 0.0024284640071995
721 => 0.0024243905497574
722 => 0.0023900064695635
723 => 0.0023890414229522
724 => 0.0023230473798047
725 => 0.0022986508846647
726 => 0.0022782633472798
727 => 0.0022560006886855
728 => 0.0022428026384197
729 => 0.0022630808420345
730 => 0.0022677187071259
731 => 0.0022233800605198
801 => 0.0022173368668244
802 => 0.002253544762759
803 => 0.0022376110177246
804 => 0.0022539992696303
805 => 0.0022578014846483
806 => 0.002257189240458
807 => 0.0022405525806631
808 => 0.002251156291504
809 => 0.0022260753542469
810 => 0.0021988036020147
811 => 0.0021814059231808
812 => 0.002166224140931
813 => 0.0021746478760935
814 => 0.0021446187983523
815 => 0.0021350118920169
816 => 0.0022475639928621
817 => 0.0023307074398955
818 => 0.0023294985012472
819 => 0.0023221393981396
820 => 0.0023112052636612
821 => 0.0023635056893569
822 => 0.0023452852668245
823 => 0.0023585421465841
824 => 0.0023619165788724
825 => 0.0023721299690951
826 => 0.0023757803782291
827 => 0.0023647463064539
828 => 0.0023277146138776
829 => 0.0022354351568453
830 => 0.0021924788204932
831 => 0.0021783025140026
901 => 0.0021788177958189
902 => 0.0021646040230062
903 => 0.0021687906161161
904 => 0.0021631480967762
905 => 0.0021524625302185
906 => 0.0021739880724697
907 => 0.0021764686906899
908 => 0.0021714443719174
909 => 0.0021726277808713
910 => 0.0021310285673495
911 => 0.0021341912652048
912 => 0.0021165809616502
913 => 0.0021132792420291
914 => 0.0020687619281476
915 => 0.0019898930537186
916 => 0.0020335940661391
917 => 0.0019808093884274
918 => 0.0019608190311596
919 => 0.0020554502733271
920 => 0.0020459519212755
921 => 0.0020296948713977
922 => 0.0020056473063623
923 => 0.001996727830571
924 => 0.001942535919226
925 => 0.0019393339720011
926 => 0.0019661929465684
927 => 0.0019537984539665
928 => 0.001936391892192
929 => 0.0018733470899196
930 => 0.0018024638587487
1001 => 0.0018046033779416
1002 => 0.0018271500149477
1003 => 0.0018927074028711
1004 => 0.0018670929972551
1005 => 0.0018485094520892
1006 => 0.001845029312699
1007 => 0.0018885905433332
1008 => 0.0019502388110406
1009 => 0.0019791627989467
1010 => 0.0019505000053664
1011 => 0.0019175737314157
1012 => 0.0019195778011454
1013 => 0.0019329099792181
1014 => 0.0019343110026267
1015 => 0.0019128793831605
1016 => 0.0019189122585038
1017 => 0.0019097477691996
1018 => 0.0018535053152561
1019 => 0.0018524880676111
1020 => 0.0018386852623813
1021 => 0.0018382673189245
1022 => 0.0018147853039574
1023 => 0.0018115000077401
1024 => 0.0017648750417666
1025 => 0.0017955637355637
1026 => 0.0017749793709933
1027 => 0.0017439538782251
1028 => 0.0017386050715776
1029 => 0.0017384442799909
1030 => 0.0017703005238907
1031 => 0.0017951914768061
1101 => 0.001775337444828
1102 => 0.0017708170666008
1103 => 0.0018190828797933
1104 => 0.0018129406151119
1105 => 0.0018076214535112
1106 => 0.0019447188848315
1107 => 0.0018361955700955
1108 => 0.0017888732105764
1109 => 0.0017303028043991
1110 => 0.001749373623988
1111 => 0.001753392125884
1112 => 0.0016125408571369
1113 => 0.0015553975149481
1114 => 0.0015357880733103
1115 => 0.0015245025624109
1116 => 0.0015296455114423
1117 => 0.0014782098012268
1118 => 0.0015127754491597
1119 => 0.0014682364718655
1120 => 0.0014607693673798
1121 => 0.0015404105761024
1122 => 0.0015514921850389
1123 => 0.0015042145985295
1124 => 0.0015345744626146
1125 => 0.0015235655538637
1126 => 0.0014689999647966
1127 => 0.0014669159606515
1128 => 0.0014395368661309
1129 => 0.0013966938848434
1130 => 0.0013771134927644
1201 => 0.0013669158545649
1202 => 0.001371123598834
1203 => 0.0013689960345725
1204 => 0.0013551122386258
1205 => 0.0013697918375043
1206 => 0.0013322915283987
1207 => 0.0013173586031523
1208 => 0.0013106137472598
1209 => 0.0012773300644913
1210 => 0.0013302992050969
1211 => 0.0013407347930838
1212 => 0.0013511909424028
1213 => 0.0014422045835084
1214 => 0.0014376577992006
1215 => 0.0014787585149689
1216 => 0.0014771614167335
1217 => 0.001465438826809
1218 => 0.0014159831481896
1219 => 0.0014356953002246
1220 => 0.0013750243602095
1221 => 0.0014204831536917
1222 => 0.0013997376587511
1223 => 0.0014134690809842
1224 => 0.0013887787456966
1225 => 0.0014024433966837
1226 => 0.0013432094581303
1227 => 0.0012878976397532
1228 => 0.0013101567301208
1229 => 0.0013343549069861
1230 => 0.0013868227200109
1231 => 0.0013555733234234
]
'min_raw' => 0.0012773300644913
'max_raw' => 0.0038128613506697
'avg_raw' => 0.0025450957075805
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001277'
'max' => '$0.003812'
'avg' => '$0.002545'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024197199355087
'max_diff' => 0.00011581135066966
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013668117881068
102 => 0.0013291648127137
103 => 0.0012514883491509
104 => 0.001251927989499
105 => 0.0012399791578536
106 => 0.001229653622754
107 => 0.0013591626925331
108 => 0.0013430561924707
109 => 0.0013173925925878
110 => 0.001351744340862
111 => 0.0013608274883412
112 => 0.0013610860727805
113 => 0.0013861482215744
114 => 0.0013995238948784
115 => 0.0014018814152717
116 => 0.0014413172479024
117 => 0.001454535618829
118 => 0.0015089802179419
119 => 0.0013983890624492
120 => 0.0013961115103783
121 => 0.0013522277404068
122 => 0.0013243959597159
123 => 0.0013541334062419
124 => 0.0013804767242976
125 => 0.0013530463007305
126 => 0.0013566281349605
127 => 0.0013198050324698
128 => 0.0013329675589222
129 => 0.0013443048998868
130 => 0.0013380450865843
131 => 0.0013286738430919
201 => 0.0013783168726322
202 => 0.001375515818353
203 => 0.0014217445487492
204 => 0.0014577831499413
205 => 0.0015223707659481
206 => 0.0014549702216164
207 => 0.0014525138778881
208 => 0.0014765250318426
209 => 0.0014545319428465
210 => 0.0014684308159164
211 => 0.0015201314426208
212 => 0.0015212237953943
213 => 0.0015029254790214
214 => 0.0015018120248071
215 => 0.0015053264166282
216 => 0.0015259103192942
217 => 0.0015187176712232
218 => 0.0015270411856665
219 => 0.001537449867932
220 => 0.0015805045909718
221 => 0.0015908849389356
222 => 0.0015656660749769
223 => 0.0015679430560287
224 => 0.0015585105086348
225 => 0.0015493987860418
226 => 0.0015698806077707
227 => 0.0016073115395513
228 => 0.0016070786836674
301 => 0.0016157619322872
302 => 0.0016211715242414
303 => 0.0015979495955106
304 => 0.0015828329738009
305 => 0.00158862964846
306 => 0.0015978986574751
307 => 0.001585623833761
308 => 0.0015098579355458
309 => 0.00153284046912
310 => 0.0015290150517447
311 => 0.0015235671922158
312 => 0.0015466763074433
313 => 0.0015444473769045
314 => 0.0014776822536746
315 => 0.0014819563402449
316 => 0.0014779421750352
317 => 0.0014909127640487
318 => 0.0014538314884739
319 => 0.0014652374390945
320 => 0.0014723911443996
321 => 0.0014766047317816
322 => 0.0014918270986895
323 => 0.0014900409296288
324 => 0.0014917160679128
325 => 0.0015142868194814
326 => 0.0016284419355684
327 => 0.001634655146668
328 => 0.0016040590228386
329 => 0.0016162815708266
330 => 0.001592816951467
331 => 0.0016085689076424
401 => 0.0016193459960012
402 => 0.0015706464060225
403 => 0.0015677627323617
404 => 0.0015442012661712
405 => 0.0015568618635123
406 => 0.0015367179428135
407 => 0.0015416605563485
408 => 0.0015278405780152
409 => 0.001552713787485
410 => 0.0015805259005781
411 => 0.0015875523386791
412 => 0.0015690688051073
413 => 0.001555685508677
414 => 0.0015321888488775
415 => 0.0015712643177814
416 => 0.0015826911756922
417 => 0.0015712042973613
418 => 0.0015685425366588
419 => 0.0015634985049372
420 => 0.0015696126518332
421 => 0.00158262894257
422 => 0.0015764907002317
423 => 0.001580545117438
424 => 0.0015650938599442
425 => 0.0015979572829353
426 => 0.0016501523076585
427 => 0.0016503201231977
428 => 0.001644181847772
429 => 0.0016416701977188
430 => 0.0016479684408073
501 => 0.0016513849793153
502 => 0.0016717523425633
503 => 0.0016936073347998
504 => 0.0017955950474878
505 => 0.0017669573058754
506 => 0.0018574468718483
507 => 0.0019290123699333
508 => 0.0019504717336291
509 => 0.0019307301287701
510 => 0.001863195164968
511 => 0.0018598815774513
512 => 0.0019608073258979
513 => 0.0019322911792696
514 => 0.0019288992743658
515 => 0.0018928151369031
516 => 0.0019141453312509
517 => 0.001909480104852
518 => 0.0019021158167505
519 => 0.001942812341692
520 => 0.0020189926033786
521 => 0.0020071191951808
522 => 0.0019982562467527
523 => 0.0019594213867061
524 => 0.0019828086465342
525 => 0.0019744808912629
526 => 0.0020102622128325
527 => 0.0019890661505879
528 => 0.0019320751414125
529 => 0.0019411511474685
530 => 0.0019397793274115
531 => 0.0019680112869759
601 => 0.001959536753475
602 => 0.0019381245387341
603 => 0.002018732227526
604 => 0.0020134980125794
605 => 0.0020209189326656
606 => 0.0020241858511871
607 => 0.002073250330888
608 => 0.0020933504783332
609 => 0.0020979135637058
610 => 0.0021170071491776
611 => 0.0020974384979054
612 => 0.0021757270552059
613 => 0.0022277843775468
614 => 0.002288251636291
615 => 0.0023766105533833
616 => 0.0024098343235756
617 => 0.0024038327468648
618 => 0.0024708254693778
619 => 0.002591209902569
620 => 0.0024281658827354
621 => 0.002599851631522
622 => 0.0025454979056635
623 => 0.0024166261994346
624 => 0.0024083283808511
625 => 0.0024956017965405
626 => 0.0026891658327847
627 => 0.0026406802370907
628 => 0.0026892451378498
629 => 0.0026325916014377
630 => 0.0026297782758414
701 => 0.0026864936020393
702 => 0.0028190120530924
703 => 0.0027560575043769
704 => 0.0026657967217047
705 => 0.0027324438790166
706 => 0.0026747079434498
707 => 0.002544612721347
708 => 0.0026406431610694
709 => 0.0025764303408165
710 => 0.0025951710555076
711 => 0.0027301368527431
712 => 0.0027138974109445
713 => 0.0027349127523637
714 => 0.0026978212248261
715 => 0.0026631718893089
716 => 0.0025984963314727
717 => 0.0025793490872639
718 => 0.0025846406967175
719 => 0.002579346465005
720 => 0.0025431610847947
721 => 0.0025353468553835
722 => 0.002522322797349
723 => 0.0025263594975306
724 => 0.0025018704581031
725 => 0.0025480863351966
726 => 0.002556664409238
727 => 0.0025902964705023
728 => 0.0025937882626728
729 => 0.0026874530745714
730 => 0.0026358640701509
731 => 0.0026704744282965
801 => 0.0026673785520987
802 => 0.0024194192400818
803 => 0.0024535858455142
804 => 0.0025067383614956
805 => 0.0024827932250925
806 => 0.0024489404045175
807 => 0.0024216024368299
808 => 0.0023801826203323
809 => 0.0024384802166555
810 => 0.0025151353565623
811 => 0.0025957323635211
812 => 0.0026925643864571
813 => 0.0026709526061868
814 => 0.0025939221562073
815 => 0.0025973776859226
816 => 0.0026187384109217
817 => 0.0025910743312213
818 => 0.0025829156540507
819 => 0.0026176175339635
820 => 0.0026178565067386
821 => 0.0025860256397276
822 => 0.0025506514560319
823 => 0.0025505032369106
824 => 0.0025442087425961
825 => 0.002633711377993
826 => 0.0026829287777242
827 => 0.0026885714732856
828 => 0.0026825489793543
829 => 0.0026848667982442
830 => 0.002656228277772
831 => 0.002721687443082
901 => 0.0027817592464109
902 => 0.0027656587198718
903 => 0.0027415217417651
904 => 0.0027222954761087
905 => 0.0027611296227027
906 => 0.0027594003992855
907 => 0.0027812345716143
908 => 0.0027802440474372
909 => 0.0027729020365078
910 => 0.0027656589820782
911 => 0.0027943768741737
912 => 0.0027861065824454
913 => 0.0027778234446698
914 => 0.0027612103437758
915 => 0.0027634683401017
916 => 0.0027393355295845
917 => 0.002728170587197
918 => 0.0025602766421314
919 => 0.0025154098939169
920 => 0.0025295258862521
921 => 0.0025341732374504
922 => 0.0025146471711291
923 => 0.0025426425343989
924 => 0.0025382794866877
925 => 0.0025552535530343
926 => 0.0025446488933093
927 => 0.0025450841122434
928 => 0.002576270155343
929 => 0.0025853235963297
930 => 0.0025807189431737
1001 => 0.0025839438844059
1002 => 0.0026582612939403
1003 => 0.0026476957348415
1004 => 0.0026420829921496
1005 => 0.0026436377602334
1006 => 0.0026626274517527
1007 => 0.0026679435285794
1008 => 0.0026454189375107
1009 => 0.0026560416648718
1010 => 0.0027012718897506
1011 => 0.0027170999086492
1012 => 0.0027676153470933
1013 => 0.0027461554910019
1014 => 0.0027855459856185
1015 => 0.0029066189368606
1016 => 0.0030033403879238
1017 => 0.002914391344343
1018 => 0.0030920079718181
1019 => 0.0032303079938993
1020 => 0.0032249998087011
1021 => 0.0032008840009141
1022 => 0.0030434331026709
1023 => 0.0028985444386469
1024 => 0.0030197499584006
1025 => 0.0030200589361966
1026 => 0.0030096472745579
1027 => 0.0029449813383175
1028 => 0.0030073970401483
1029 => 0.0030123513718991
1030 => 0.0030095782635818
1031 => 0.0029599990418836
1101 => 0.0028843007341222
1102 => 0.0028990920022626
1103 => 0.0029233204012103
1104 => 0.0028774509874288
1105 => 0.0028627929303998
1106 => 0.0028900450472262
1107 => 0.0029778570458446
1108 => 0.0029612566961661
1109 => 0.0029608231939487
1110 => 0.0030318465295174
1111 => 0.0029810091490453
1112 => 0.0028992785675221
1113 => 0.0028786405177935
1114 => 0.0028053893447133
1115 => 0.0028559841908715
1116 => 0.0028578050093125
1117 => 0.0028300947291384
1118 => 0.0029015271040381
1119 => 0.002900868842128
1120 => 0.0029686832507894
1121 => 0.0030983189302211
1122 => 0.0030599792808288
1123 => 0.0030153944399275
1124 => 0.003020242048337
1125 => 0.0030734083476723
1126 => 0.0030412627894256
1127 => 0.0030528225562979
1128 => 0.0030733908505807
1129 => 0.0030858002132035
1130 => 0.0030184565320249
1201 => 0.0030027554985215
1202 => 0.0029706366942875
1203 => 0.0029622574977887
1204 => 0.0029884175936565
1205 => 0.0029815253326452
1206 => 0.0028576519765731
1207 => 0.0028447065216387
1208 => 0.0028451035402597
1209 => 0.0028125515783044
1210 => 0.0027629020229565
1211 => 0.0028933780899899
1212 => 0.0028828990357957
1213 => 0.0028713309709797
1214 => 0.0028727479929132
1215 => 0.0029293832313682
1216 => 0.0028965319329162
1217 => 0.0029838724940727
1218 => 0.0029659179003965
1219 => 0.0029475028391414
1220 => 0.0029449573167395
1221 => 0.0029378690892555
1222 => 0.0029135609197995
1223 => 0.0028842073444869
1224 => 0.0028648255715023
1225 => 0.0026426501556042
1226 => 0.0026838846204599
1227 => 0.0027313211136368
1228 => 0.0027476960009916
1229 => 0.0027196856230634
1230 => 0.0029146669402454
1231 => 0.0029502919057812
]
'min_raw' => 0.001229653622754
'max_raw' => 0.0032303079938993
'avg_raw' => 0.0022299808083267
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001229'
'max' => '$0.00323'
'avg' => '$0.002229'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.7676441737268E-5
'max_diff' => -0.00058255335677035
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028423815614141
102 => 0.0028221959419333
103 => 0.002915990306098
104 => 0.002859420838612
105 => 0.0028848940663571
106 => 0.0028298348810828
107 => 0.0029417108948044
108 => 0.0029408585870234
109 => 0.0028973362908513
110 => 0.0029341210375482
111 => 0.0029277287825814
112 => 0.0028785922173938
113 => 0.0029432686115641
114 => 0.0029433006902487
115 => 0.0029014114264394
116 => 0.0028524939370491
117 => 0.0028437486453257
118 => 0.0028371602427767
119 => 0.0028832737232065
120 => 0.0029246189255668
121 => 0.0030015520968144
122 => 0.0030208949239531
123 => 0.0030963912660003
124 => 0.0030514368701613
125 => 0.0030713645715799
126 => 0.0030929989104152
127 => 0.0031033712080293
128 => 0.0030864701056753
129 => 0.0032037470004088
130 => 0.0032136487635955
131 => 0.0032169687391421
201 => 0.003177423630089
202 => 0.0032125489425762
203 => 0.0031961149720915
204 => 0.0032388715978041
205 => 0.0032455763826599
206 => 0.0032398976684167
207 => 0.0032420258729577
208 => 0.0031419507323646
209 => 0.0031367613083864
210 => 0.0030660031442193
211 => 0.0030948376191353
212 => 0.0030409329503521
213 => 0.0030580266761029
214 => 0.0030655614275388
215 => 0.0030616257009821
216 => 0.0030964678770842
217 => 0.0030668449096111
218 => 0.0029886650279827
219 => 0.0029104638462979
220 => 0.0029094820941632
221 => 0.0028888931033911
222 => 0.0028740110341246
223 => 0.0028768778486351
224 => 0.0028869808768946
225 => 0.0028734238277559
226 => 0.0028763169115495
227 => 0.0029243613790394
228 => 0.002933996354357
229 => 0.0029012529435998
301 => 0.002769783424558
302 => 0.0027375204748188
303 => 0.0027607104432892
304 => 0.0027496271319856
305 => 0.0022191636951112
306 => 0.0023437882111295
307 => 0.0022697405555601
308 => 0.0023038651220153
309 => 0.0022282816402264
310 => 0.0022643540394058
311 => 0.0022576927844305
312 => 0.0024580853182803
313 => 0.0024549564644951
314 => 0.0024564540812268
315 => 0.0023849689326035
316 => 0.0024988467153938
317 => 0.0025549470061088
318 => 0.0025445643353584
319 => 0.0025471774299004
320 => 0.0025022758080718
321 => 0.0024568888270762
322 => 0.0024065476801458
323 => 0.0025000753087887
324 => 0.0024896766330535
325 => 0.0025135274538647
326 => 0.0025741868065326
327 => 0.0025831191266354
328 => 0.0025951242554363
329 => 0.0025908212713444
330 => 0.0026933358097414
331 => 0.0026809206227288
401 => 0.002710837651336
402 => 0.0026492960536805
403 => 0.0025796558943513
404 => 0.0025928922119315
405 => 0.0025916174481087
406 => 0.0025753882415398
407 => 0.0025607372395062
408 => 0.0025363474490145
409 => 0.0026135203551401
410 => 0.0026103872760856
411 => 0.0026611081841707
412 => 0.00265214277099
413 => 0.0025922695475609
414 => 0.0025944079314488
415 => 0.0026087895907675
416 => 0.0026585646778762
417 => 0.0026733413126764
418 => 0.0026664961866899
419 => 0.0026826980921693
420 => 0.0026955034176554
421 => 0.0026843062438961
422 => 0.0028428346115775
423 => 0.0027770025807569
424 => 0.0028090886545225
425 => 0.0028167409940535
426 => 0.0027971396872563
427 => 0.0028013905088304
428 => 0.0028078293452357
429 => 0.0028469246990352
430 => 0.0029495222197367
501 => 0.0029949619632505
502 => 0.0031316696735691
503 => 0.0029911888251035
504 => 0.002982853272923
505 => 0.0030074784597288
506 => 0.0030877403576666
507 => 0.0031527850873285
508 => 0.0031743641766778
509 => 0.0031772162095672
510 => 0.0032177000157373
511 => 0.0032409045784557
512 => 0.0032127842168385
513 => 0.0031889551546924
514 => 0.0031036024118574
515 => 0.0031134822242484
516 => 0.0031815443342835
517 => 0.0032776860735464
518 => 0.0033601856876771
519 => 0.0033312971982104
520 => 0.0035516959807462
521 => 0.0035735476197864
522 => 0.0035705284298191
523 => 0.0036203097155124
524 => 0.0035215040011937
525 => 0.0034792626440519
526 => 0.0031941072683997
527 => 0.0032742242976214
528 => 0.0033906791047032
529 => 0.0033752658743028
530 => 0.0032906932805541
531 => 0.0033601215317809
601 => 0.0033371663807032
602 => 0.0033190607006381
603 => 0.0034020063309751
604 => 0.0033108042032008
605 => 0.0033897692937126
606 => 0.003288495748342
607 => 0.0033314291583969
608 => 0.0033070580783943
609 => 0.0033228291539632
610 => 0.0032306317684436
611 => 0.003280379239705
612 => 0.0032285621100846
613 => 0.0032285375420184
614 => 0.0032273936760101
615 => 0.0032883562992161
616 => 0.0032903442881702
617 => 0.0032452928175115
618 => 0.0032388001967534
619 => 0.0032628068186166
620 => 0.003234701351759
621 => 0.003247851722808
622 => 0.0032350996631016
623 => 0.0032322289058622
624 => 0.0032093542237598
625 => 0.0031994991817576
626 => 0.0032033635976598
627 => 0.0031901723539426
628 => 0.0031822241524548
629 => 0.0032258125786808
630 => 0.0032025250409004
701 => 0.0032222434295257
702 => 0.0031997718370281
703 => 0.0031218755070248
704 => 0.0030770765039012
705 => 0.0029299375575186
706 => 0.0029716659801874
707 => 0.002999331967588
708 => 0.0029901883589171
709 => 0.003009832368449
710 => 0.0030110383510922
711 => 0.0030046518833464
712 => 0.002997257171854
713 => 0.0029936578352527
714 => 0.0030204843413977
715 => 0.0030360580311536
716 => 0.0030021086195468
717 => 0.0029941547474101
718 => 0.0030284794769429
719 => 0.0030494175421292
720 => 0.0032040124513822
721 => 0.0031925595611698
722 => 0.0032213040680868
723 => 0.0032180678777284
724 => 0.0032481967003365
725 => 0.0032974445919103
726 => 0.0031973098584137
727 => 0.0032146897857501
728 => 0.0032104286289284
729 => 0.003256950821773
730 => 0.003257096058981
731 => 0.0032292036804148
801 => 0.0032443245913377
802 => 0.003235884513681
803 => 0.0032511368747516
804 => 0.0031924066008385
805 => 0.0032639337349233
806 => 0.0033044850108427
807 => 0.0033050480653482
808 => 0.0033242690482991
809 => 0.0033437986801815
810 => 0.0033812841079074
811 => 0.0033427532319475
812 => 0.0032734399370009
813 => 0.0032784441330154
814 => 0.0032378057735489
815 => 0.0032384889117135
816 => 0.0032348422666526
817 => 0.0032457861229869
818 => 0.0031948081618775
819 => 0.0032067725874565
820 => 0.0031900223215822
821 => 0.0032146533739434
822 => 0.0031881544332616
823 => 0.0032104265740695
824 => 0.0032200384917091
825 => 0.0032555066747288
826 => 0.0031829157537913
827 => 0.0030348979520264
828 => 0.0030660130884998
829 => 0.0030199913576145
830 => 0.003024250844025
831 => 0.0030328556844665
901 => 0.003004964581267
902 => 0.0030102853248078
903 => 0.003010095230407
904 => 0.0030084570995585
905 => 0.0030012015464108
906 => 0.0029906795588792
907 => 0.0030325959187081
908 => 0.0030397183250369
909 => 0.0030555505520264
910 => 0.0031026565204449
911 => 0.0030979495233646
912 => 0.003105626830894
913 => 0.0030888673116637
914 => 0.0030250282700546
915 => 0.0030284950371529
916 => 0.0029852643958863
917 => 0.0030544450473334
918 => 0.0030380621559308
919 => 0.0030274999992665
920 => 0.0030246180169629
921 => 0.0030718407519658
922 => 0.0030859705344044
923 => 0.0030771658022031
924 => 0.0030591070395832
925 => 0.0030937852024073
926 => 0.0031030636158248
927 => 0.0031051407104143
928 => 0.0031665837660604
929 => 0.0031085746946777
930 => 0.0031225380547201
1001 => 0.003231476203754
1002 => 0.0031326843350172
1003 => 0.0031850165912086
1004 => 0.003182455199592
1005 => 0.0032092266110325
1006 => 0.0031802591624549
1007 => 0.0031806182486972
1008 => 0.0032043894484039
1009 => 0.0031710070855743
1010 => 0.0031627411430805
1011 => 0.003151321802727
1012 => 0.0031762555146205
1013 => 0.0031912021472459
1014 => 0.0033116610291144
1015 => 0.0033894829603938
1016 => 0.0033861045051162
1017 => 0.0034169772621501
1018 => 0.0034030688023443
1019 => 0.0033581547167651
1020 => 0.0034348175841595
1021 => 0.0034105582452053
1022 => 0.0034125581556336
1023 => 0.0034124837188676
1024 => 0.0034286140584839
1025 => 0.0034171842345418
1026 => 0.0033946548783046
1027 => 0.0034096109163759
1028 => 0.0034540250025662
1029 => 0.0035918876888915
1030 => 0.0036690374745967
1031 => 0.0035872431749199
1101 => 0.0036436637875677
1102 => 0.0036098315246988
1103 => 0.0036036831961129
1104 => 0.0036391195103063
1105 => 0.0036746178510766
1106 => 0.0036723567602331
1107 => 0.0036465867876938
1108 => 0.0036320299840952
1109 => 0.0037422589778307
1110 => 0.0038234738227132
1111 => 0.0038179355147634
1112 => 0.0038423798048994
1113 => 0.0039141489967721
1114 => 0.0039207106722361
1115 => 0.003919884051946
1116 => 0.0039036202546684
1117 => 0.0039742863444743
1118 => 0.0040332372398419
1119 => 0.0038998556555049
1120 => 0.0039506456167273
1121 => 0.0039734468666704
1122 => 0.0040069258664128
1123 => 0.0040634105507102
1124 => 0.0041247678996798
1125 => 0.0041334445015731
1126 => 0.0041272880373162
1127 => 0.0040868212162967
1128 => 0.0041539591596846
1129 => 0.0041932869923427
1130 => 0.0042167058166891
1201 => 0.0042760920587109
1202 => 0.0039735876794275
1203 => 0.0037594600443276
1204 => 0.0037260209220662
1205 => 0.0037940206921133
1206 => 0.0038119516891867
1207 => 0.00380472372675
1208 => 0.0035637036058121
1209 => 0.0037247520010097
1210 => 0.0038980265329087
1211 => 0.0039046827133617
1212 => 0.0039914275670299
1213 => 0.004019675247176
1214 => 0.0040895162242868
1215 => 0.0040851476521529
1216 => 0.0041021528186667
1217 => 0.0040982436253736
1218 => 0.0042276093287185
1219 => 0.0043703189105008
1220 => 0.0043653773314724
1221 => 0.0043448611406281
1222 => 0.0043753311825623
1223 => 0.0045226227646498
1224 => 0.0045090625160707
1225 => 0.0045222351425061
1226 => 0.0046959002187771
1227 => 0.0049216895214985
1228 => 0.0048167877215091
1229 => 0.0050443944428064
1230 => 0.0051876608089492
1231 => 0.0054354251751743
]
'min_raw' => 0.0022191636951112
'max_raw' => 0.0054354251751743
'avg_raw' => 0.0038272944351428
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002219'
'max' => '$0.005435'
'avg' => '$0.003827'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0009895100723572
'max_diff' => 0.002205117181275
'year' => 2028
]
3 => [
'items' => [
101 => 0.0054044038562577
102 => 0.0055008567058503
103 => 0.0053488692210523
104 => 0.0049998752342177
105 => 0.0049446455999058
106 => 0.0050552167264353
107 => 0.0053270450516354
108 => 0.0050466558851199
109 => 0.0051033782483263
110 => 0.0050870422039069
111 => 0.0050861717255235
112 => 0.0051193943449261
113 => 0.0050712032027074
114 => 0.0048748638198876
115 => 0.0049648450019987
116 => 0.0049300989463343
117 => 0.004968652285584
118 => 0.0051767087569077
119 => 0.0050847220314887
120 => 0.0049878214886545
121 => 0.0051093562733204
122 => 0.0052641118180832
123 => 0.0052544274942144
124 => 0.0052356358581756
125 => 0.0053415633266283
126 => 0.0055165244706762
127 => 0.0055638157648615
128 => 0.0055987252314011
129 => 0.0056035386570367
130 => 0.0056531199326102
131 => 0.0053865089177612
201 => 0.005809627445383
202 => 0.0058826883266898
203 => 0.0058689559090674
204 => 0.0059501600037681
205 => 0.0059262676991581
206 => 0.005891651498366
207 => 0.0060203772610728
208 => 0.0058728035617628
209 => 0.0056633412746044
210 => 0.005548426121175
211 => 0.0056997556651518
212 => 0.0057921673369852
213 => 0.0058532455735809
214 => 0.0058717278110702
215 => 0.0054072051718997
216 => 0.0051568532329934
217 => 0.0053173259555415
218 => 0.0055131137522859
219 => 0.0053854213066647
220 => 0.0053904266087793
221 => 0.0052083707383079
222 => 0.0055292216571474
223 => 0.0054824763770534
224 => 0.0057249909728717
225 => 0.0056671129182785
226 => 0.0058648741568059
227 => 0.0058127969950008
228 => 0.0060289663820589
301 => 0.0061152022031089
302 => 0.0062600055681856
303 => 0.0063665235129918
304 => 0.0064290728875456
305 => 0.0064253176577142
306 => 0.006673169441671
307 => 0.0065270199039535
308 => 0.0063434216397789
309 => 0.0063401009264251
310 => 0.0064351890690486
311 => 0.0066344677298296
312 => 0.0066861377871835
313 => 0.0067150143002854
314 => 0.0066707889152711
315 => 0.0065121540667105
316 => 0.0064436563433989
317 => 0.0065020183882304
318 => 0.0064306466225091
319 => 0.0065538543135247
320 => 0.0067230447890317
321 => 0.0066881076248911
322 => 0.0068048973265406
323 => 0.0069257623811129
324 => 0.0070986048375406
325 => 0.0071437922559884
326 => 0.007218485340359
327 => 0.0072953690595764
328 => 0.0073200620381147
329 => 0.0073672085959256
330 => 0.0073669601102938
331 => 0.0075090394355862
401 => 0.0076657573312141
402 => 0.0077249147087861
403 => 0.0078609438365559
404 => 0.0076279987222792
405 => 0.0078046902673387
406 => 0.0079640704638585
407 => 0.0077740508230933
408 => 0.0080359486289902
409 => 0.00804611752732
410 => 0.0081996558190275
411 => 0.0080440153460044
412 => 0.0079515965299452
413 => 0.0082184061890202
414 => 0.0083475069786211
415 => 0.0083086207701362
416 => 0.0080126948035175
417 => 0.0078404531980836
418 => 0.0073896636937388
419 => 0.0079236433342926
420 => 0.0081837292408068
421 => 0.0080120212438518
422 => 0.0080986207698582
423 => 0.0085710797037585
424 => 0.0087509614763371
425 => 0.0087135473251092
426 => 0.0087198697007774
427 => 0.0088169306401757
428 => 0.0092473522979035
429 => 0.0089894336634971
430 => 0.0091866027954739
501 => 0.0092911805921282
502 => 0.0093883182778447
503 => 0.0091497788224059
504 => 0.0088394424957206
505 => 0.0087411459540266
506 => 0.0079949482675493
507 => 0.0079561054373959
508 => 0.0079343017797726
509 => 0.007796832802646
510 => 0.0076888198425464
511 => 0.0076029239264111
512 => 0.0073775073917803
513 => 0.0074535788550464
514 => 0.007094311946932
515 => 0.0073241581831062
516 => 0.0067507595229527
517 => 0.0072283029657617
518 => 0.0069683977810768
519 => 0.0071429171224652
520 => 0.0071423082409238
521 => 0.0068209628020201
522 => 0.0066356174591687
523 => 0.0067537267253823
524 => 0.0068803492342885
525 => 0.0069008933103492
526 => 0.0070650626983317
527 => 0.0071108788457085
528 => 0.0069720537802056
529 => 0.0067388771102213
530 => 0.0067930387324651
531 => 0.0066345198756227
601 => 0.0063567216763462
602 => 0.0065562411929578
603 => 0.0066243659281829
604 => 0.0066544536922388
605 => 0.0063812710685892
606 => 0.0062954311571551
607 => 0.0062497307085743
608 => 0.0067036126639886
609 => 0.0067284773420868
610 => 0.0066012661334253
611 => 0.007176272859237
612 => 0.0070461311279706
613 => 0.0071915313272934
614 => 0.0067881241329417
615 => 0.0068035348310258
616 => 0.0066125554003326
617 => 0.0067194911202706
618 => 0.0066439124001175
619 => 0.006710851770859
620 => 0.00675097495368
621 => 0.0069419230465279
622 => 0.0072304832862579
623 => 0.0069134017690141
624 => 0.0067752448112601
625 => 0.0068609566108265
626 => 0.0070892184280406
627 => 0.0074350467656275
628 => 0.0072303094293322
629 => 0.0073211683825146
630 => 0.0073410170217515
701 => 0.0071900512897555
702 => 0.0074406130875015
703 => 0.007574891190474
704 => 0.0077126327391855
705 => 0.0078322298665011
706 => 0.0076576157356286
707 => 0.0078444778856146
708 => 0.0076938999783357
709 => 0.0075588160290486
710 => 0.0075590208956394
711 => 0.00747428076099
712 => 0.0073100860721627
713 => 0.0072798060523444
714 => 0.0074373265393839
715 => 0.0075636430527439
716 => 0.0075740470857995
717 => 0.0076439823979724
718 => 0.0076853693953253
719 => 0.0080910182322785
720 => 0.0082541735502043
721 => 0.0084536767845917
722 => 0.0085313945377719
723 => 0.0087652971114875
724 => 0.0085764017865739
725 => 0.0085355330948216
726 => 0.0079681619599363
727 => 0.008061068951489
728 => 0.0082098220091562
729 => 0.007970614843068
730 => 0.0081223367320511
731 => 0.0081522898468454
801 => 0.0079624866750981
802 => 0.0080638687500393
803 => 0.0077946280166859
804 => 0.0072363519984949
805 => 0.0074412346083014
806 => 0.0075920971718597
807 => 0.0073767976924421
808 => 0.0077627136760577
809 => 0.0075372695253524
810 => 0.0074658145528065
811 => 0.0071870432293678
812 => 0.0073186125631386
813 => 0.007496561970955
814 => 0.0073866099257636
815 => 0.0076147769289184
816 => 0.0079379222553027
817 => 0.008168214858521
818 => 0.0081858938650415
819 => 0.0080378311495782
820 => 0.0082751025960317
821 => 0.008276830859484
822 => 0.0080091876986021
823 => 0.0078452577528053
824 => 0.0078080125242087
825 => 0.0079010584076002
826 => 0.0080140332872551
827 => 0.0081921631845971
828 => 0.0082998033508899
829 => 0.0085804718166488
830 => 0.0086564126560876
831 => 0.0087398486148069
901 => 0.0088513447863527
902 => 0.008985224527325
903 => 0.0086923032758555
904 => 0.0087039415832499
905 => 0.0084311773696522
906 => 0.0081396896890781
907 => 0.0083608925041815
908 => 0.0086500857595519
909 => 0.0085837445072398
910 => 0.0085762797611259
911 => 0.0085888333935416
912 => 0.008538814255801
913 => 0.008312579549596
914 => 0.0081989658964441
915 => 0.0083455564949443
916 => 0.0084234628740502
917 => 0.0085442888738932
918 => 0.0085293945190851
919 => 0.0088406293189158
920 => 0.0089615657508781
921 => 0.0089306250364205
922 => 0.0089363188725106
923 => 0.0091552685059015
924 => 0.0093987855286587
925 => 0.0096268713553722
926 => 0.0098588900548194
927 => 0.0095791824567918
928 => 0.0094371641884798
929 => 0.0095836907901104
930 => 0.009505941712774
1001 => 0.0099527109730237
1002 => 0.0099836443072619
1003 => 0.010430381261009
1004 => 0.010854387826562
1005 => 0.010588076899605
1006 => 0.010839196108818
1007 => 0.011110802007631
1008 => 0.011634773852911
1009 => 0.011458318568972
1010 => 0.011323156586882
1011 => 0.011195429166905
1012 => 0.011461209651721
1013 => 0.011803131999489
1014 => 0.011876778798307
1015 => 0.011996114747634
1016 => 0.011870647588622
1017 => 0.012021758961898
1018 => 0.012555248511263
1019 => 0.012411094925782
1020 => 0.012206373660553
1021 => 0.012627512422896
1022 => 0.012779920903853
1023 => 0.013849603440145
1024 => 0.015200121828597
1025 => 0.014640998347796
1026 => 0.014293932360461
1027 => 0.0143755011
1028 => 0.01486866469753
1029 => 0.015027053192827
1030 => 0.014596498662822
1031 => 0.014748577801617
1101 => 0.01558654880847
1102 => 0.016036093368317
1103 => 0.015425551474155
1104 => 0.013741090602604
1105 => 0.012187940750523
1106 => 0.012599906030545
1107 => 0.012553201952561
1108 => 0.013453497260412
1109 => 0.012407656910443
1110 => 0.012425266179729
1111 => 0.013344178641117
1112 => 0.013099028550566
1113 => 0.012701916800326
1114 => 0.01219084010577
1115 => 0.011246067567012
1116 => 0.010409256182502
1117 => 0.012050436013678
1118 => 0.011979665355066
1119 => 0.011877178953772
1120 => 0.012105251349665
1121 => 0.013212706164647
1122 => 0.01318717574668
1123 => 0.01302476425331
1124 => 0.013147951939602
1125 => 0.012680321403315
1126 => 0.012800840440266
1127 => 0.012187694723652
1128 => 0.012464862194788
1129 => 0.012701064776862
1130 => 0.012748485942252
1201 => 0.012855328249261
1202 => 0.011942372433821
1203 => 0.012352262791979
1204 => 0.012593034975864
1205 => 0.011505217489704
1206 => 0.012571532321763
1207 => 0.011926479904218
1208 => 0.01170753942534
1209 => 0.012002313936934
1210 => 0.011887440023088
1211 => 0.011788678177586
1212 => 0.011733567370852
1213 => 0.011950017239091
1214 => 0.011939919594024
1215 => 0.011585765598477
1216 => 0.011123786148449
1217 => 0.011278841615837
1218 => 0.011222508510882
1219 => 0.011018350071411
1220 => 0.011155928209431
1221 => 0.010550103716295
1222 => 0.0095078141638716
1223 => 0.010196382568395
1224 => 0.010169873433839
1225 => 0.010156506326102
1226 => 0.010673946451469
1227 => 0.01062420652279
1228 => 0.010533928065182
1229 => 0.01101669203674
1230 => 0.01084047669303
1231 => 0.011383530860788
]
'min_raw' => 0.0048748638198876
'max_raw' => 0.016036093368317
'avg_raw' => 0.010455478594102
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004874'
'max' => '$0.016036'
'avg' => '$0.010455'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0026557001247764
'max_diff' => 0.010600668193143
'year' => 2029
]
4 => [
'items' => [
101 => 0.011741221458216
102 => 0.01165049955263
103 => 0.011986909288379
104 => 0.011282413780638
105 => 0.011516418928855
106 => 0.011564647065586
107 => 0.011010734804269
108 => 0.010632344590266
109 => 0.010607110276956
110 => 0.0099510337912581
111 => 0.010301504554253
112 => 0.010609904322224
113 => 0.010462204766155
114 => 0.010415447499102
115 => 0.01065432023606
116 => 0.010672882693529
117 => 0.01024965669609
118 => 0.010337658782782
119 => 0.010704642113416
120 => 0.010328411744432
121 => 0.0095974575943785
122 => 0.0094161708589334
123 => 0.0093919838666475
124 => 0.008900319862088
125 => 0.0094282853054521
126 => 0.0091978142408295
127 => 0.0099258695725049
128 => 0.009510008271691
129 => 0.0094920813221843
130 => 0.0094649821086933
131 => 0.0090417865895847
201 => 0.0091344395127912
202 => 0.0094424319409682
203 => 0.0095523271091248
204 => 0.0095408641427415
205 => 0.0094409226100455
206 => 0.0094866753319303
207 => 0.0093392898734343
208 => 0.0092872450004763
209 => 0.0091229770653509
210 => 0.0088815485808918
211 => 0.0089151206924227
212 => 0.0084367876915099
213 => 0.0081761664855588
214 => 0.0081040299706838
215 => 0.0080075660082005
216 => 0.0081149258319271
217 => 0.0084354326342177
218 => 0.0080488334313439
219 => 0.0073860362147979
220 => 0.0074258714568638
221 => 0.0075153694185964
222 => 0.007348590558996
223 => 0.0071907483650729
224 => 0.0073279793465471
225 => 0.0070471434283952
226 => 0.0075493070975956
227 => 0.0075357249776412
228 => 0.0077229005399261
301 => 0.0078399452602521
302 => 0.0075701950735789
303 => 0.0075023536311127
304 => 0.0075409991999631
305 => 0.0069022740309341
306 => 0.007670703066825
307 => 0.0076773484730371
308 => 0.0076204464705061
309 => 0.0080296112095332
310 => 0.0088930764305629
311 => 0.0085682060816035
312 => 0.0084424064632281
313 => 0.0082032612967376
314 => 0.0085219080320513
315 => 0.0084974409344426
316 => 0.008386791440185
317 => 0.0083198702808105
318 => 0.0084431745688727
319 => 0.0083045915149715
320 => 0.0082796981904832
321 => 0.0081288717282882
322 => 0.0080750335434514
323 => 0.0080351738947581
324 => 0.0079912923380749
325 => 0.0080880841175153
326 => 0.0078687412112844
327 => 0.0076042351688202
328 => 0.0075822443533843
329 => 0.007642962928255
330 => 0.007616099478841
331 => 0.0075821157415236
401 => 0.0075172315320647
402 => 0.00749798177315
403 => 0.0075605341509674
404 => 0.0074899161634417
405 => 0.0075941168507966
406 => 0.0075657800295231
407 => 0.0074074928493785
408 => 0.0072102084174984
409 => 0.0072084521722366
410 => 0.0071659475649993
411 => 0.0071118115570722
412 => 0.007096752158131
413 => 0.0073164221360556
414 => 0.0077711324161905
415 => 0.0076818619079052
416 => 0.007746368998951
417 => 0.0080636800418817
418 => 0.0081645436805534
419 => 0.0080929530589105
420 => 0.0079949554004883
421 => 0.0079992668001124
422 => 0.0083341544648494
423 => 0.0083550409977175
424 => 0.0084078145280242
425 => 0.0084756434282663
426 => 0.0081045046139221
427 => 0.0079817861953327
428 => 0.0079236354004464
429 => 0.0077445534593864
430 => 0.0079376779794943
501 => 0.0078251525920439
502 => 0.0078403361112256
503 => 0.0078304478244397
504 => 0.0078358474976678
505 => 0.007549166732616
506 => 0.0076536181359034
507 => 0.0074799474192552
508 => 0.007247421825116
509 => 0.0072466423177904
510 => 0.0073035526275372
511 => 0.0072697001483992
512 => 0.0071786039974655
513 => 0.007191543775744
514 => 0.0070781777021505
515 => 0.0072053084696372
516 => 0.007208954125153
517 => 0.0071600018548109
518 => 0.0073558643427894
519 => 0.0074361093639228
520 => 0.0074038879309244
521 => 0.0074338486222879
522 => 0.0076855715005566
523 => 0.0077266133131536
524 => 0.0077448413752392
525 => 0.0077204181868
526 => 0.0074384496544084
527 => 0.0074509561578428
528 => 0.007359191733837
529 => 0.0072816604654488
530 => 0.0072847613095864
531 => 0.0073246224598973
601 => 0.0074986984411306
602 => 0.0078650310812964
603 => 0.007878933137205
604 => 0.0078957828345178
605 => 0.0078272466475672
606 => 0.0078065754777799
607 => 0.0078338460864109
608 => 0.0079714213652021
609 => 0.0083253023335766
610 => 0.0082002171644379
611 => 0.0080985209748614
612 => 0.0081877359502158
613 => 0.0081740020040501
614 => 0.0080580736770565
615 => 0.0080548199550291
616 => 0.0078323164310003
617 => 0.0077500619443269
618 => 0.0076813239386211
619 => 0.0076062638308414
620 => 0.0075617656829119
621 => 0.0076301350621781
622 => 0.007645771948139
623 => 0.0074962811054813
624 => 0.0074759060560147
625 => 0.0075979835051129
626 => 0.0075442617712708
627 => 0.0075995159067623
628 => 0.0076123353401575
629 => 0.0076102711161243
630 => 0.0075541794560913
701 => 0.007589930607519
702 => 0.0075053684764614
703 => 0.0074134198597577
704 => 0.007354762370902
705 => 0.0073035759320886
706 => 0.0073319771433155
707 => 0.0072307320111476
708 => 0.0071983416557052
709 => 0.0075778189218417
710 => 0.0078581428584047
711 => 0.0078540668373467
712 => 0.007829255107423
713 => 0.0077923899096322
714 => 0.0079687244463645
715 => 0.0079072930196873
716 => 0.0079519895153624
717 => 0.0079633666494178
718 => 0.0079978018076297
719 => 0.0080101094168886
720 => 0.007972907273524
721 => 0.007848052336533
722 => 0.0075369257044026
723 => 0.0073920954172757
724 => 0.0073442990101845
725 => 0.007346036318804
726 => 0.007298113591392
727 => 0.0073122289823608
728 => 0.0072932048344583
729 => 0.0072571777007665
730 => 0.0073297525693319
731 => 0.0073381161468524
801 => 0.0073211763053241
802 => 0.0073251662512352
803 => 0.0071849115984823
804 => 0.007195574855114
805 => 0.0071362004871674
806 => 0.0071250685089462
807 => 0.006974975277095
808 => 0.0067090633605088
809 => 0.0068564043749918
810 => 0.0066784371487781
811 => 0.0066110382635675
812 => 0.0069300941034775
813 => 0.006898069746382
814 => 0.0068432579676879
815 => 0.0067621799232238
816 => 0.0067321072878555
817 => 0.0065493954751974
818 => 0.0065385998865759
819 => 0.0066291567945632
820 => 0.0065873678974
821 => 0.0065286804590899
822 => 0.0063161205065809
823 => 0.0060771327437792
824 => 0.0060843462821146
825 => 0.0061603638429365
826 => 0.0063813951533908
827 => 0.0062950343965158
828 => 0.0062323786765275
829 => 0.0062206451435977
830 => 0.006367514874029
831 => 0.0065753663127491
901 => 0.0066728855573827
902 => 0.0065762469476543
903 => 0.0064652337161905
904 => 0.0064719905772039
905 => 0.0065169409463991
906 => 0.0065216645946375
907 => 0.0064494063932992
908 => 0.0064697466537211
909 => 0.0064388479381878
910 => 0.0062492225779947
911 => 0.0062457928565373
912 => 0.006199255735024
913 => 0.0061978466094796
914 => 0.0061186753565563
915 => 0.0061075987509873
916 => 0.0059503994229566
917 => 0.0060538684967098
918 => 0.0059844668744063
919 => 0.0058798622594073
920 => 0.0058618283843536
921 => 0.005861286264293
922 => 0.005968691814733
923 => 0.0060526134003183
924 => 0.0059856741453397
925 => 0.005970433374544
926 => 0.0061331649335342
927 => 0.0061124558593216
928 => 0.0060945219346127
929 => 0.0065567554961462
930 => 0.0061908615636578
1001 => 0.0060313109245974
1002 => 0.0058338367109154
1003 => 0.0058981353106417
1004 => 0.005911683970347
1005 => 0.0054367940838444
1006 => 0.005244131316034
1007 => 0.0051780167144648
1008 => 0.0051399668265384
1009 => 0.0051573066382669
1010 => 0.0049838875501488
1011 => 0.0051004280454511
1012 => 0.0049502617738915
1013 => 0.0049250859097812
1014 => 0.0051936018053612
1015 => 0.005230964223584
1016 => 0.0050715645398519
1017 => 0.0051739249412726
1018 => 0.0051368076368015
1019 => 0.0049528359436141
1020 => 0.0049458095781385
1021 => 0.0048534990494147
1022 => 0.0047090509468027
1023 => 0.0046430342878489
1024 => 0.0046086522386829
1025 => 0.0046228389422616
1026 => 0.0046156657108119
1027 => 0.0045688555234421
1028 => 0.0046183488159579
1029 => 0.0044919139056204
1030 => 0.0044415665055687
1031 => 0.0044188257530161
1101 => 0.0043066074927697
1102 => 0.0044851966485086
1103 => 0.0045203809619961
1104 => 0.0045556345994501
1105 => 0.004862493444807
1106 => 0.0048471636440671
1107 => 0.0049857375768403
1108 => 0.0049803528486339
1109 => 0.0049408293182581
1110 => 0.0047740860449077
1111 => 0.0048405469417521
1112 => 0.0046359906315816
1113 => 0.0047892581276384
1114 => 0.0047193132430417
1115 => 0.004765609691798
1116 => 0.0046823645025517
1117 => 0.0047284358273902
1118 => 0.004528724467976
1119 => 0.0043422368105696
1120 => 0.004417284887824
1121 => 0.0044988707305882
1122 => 0.0046757696253872
1123 => 0.0045704101030291
1124 => 0.0046083013713537
1125 => 0.0044813719653881
1126 => 0.0042194803452886
1127 => 0.004220962623417
1128 => 0.0041806763032837
1129 => 0.0041458630407896
1130 => 0.0045825119115843
1201 => 0.0045282077221039
1202 => 0.0044416811033233
1203 => 0.0045575004209922
1204 => 0.0045881248868836
1205 => 0.0045889967223746
1206 => 0.0046734955068166
1207 => 0.0047185925232205
1208 => 0.0047265410678233
1209 => 0.0048595017308598
1210 => 0.0049040683913161
1211 => 0.0050876321584256
1212 => 0.0047147663564539
1213 => 0.0047070874306335
1214 => 0.0045591302363076
1215 => 0.0044652934445554
1216 => 0.0045655553217197
1217 => 0.0046543736577762
1218 => 0.004561890069589
1219 => 0.0045739664737712
1220 => 0.0044498148128166
1221 => 0.0044941931897292
1222 => 0.0045324178263394
1223 => 0.0045113124287435
1224 => 0.0044797166270298
1225 => 0.0046470915670906
1226 => 0.0046376476170247
1227 => 0.0047935110091425
1228 => 0.0049150176691964
1229 => 0.0051327793259266
1230 => 0.0049055336849568
1231 => 0.0048972519505802
]
'min_raw' => 0.0041458630407896
'max_raw' => 0.011986909288379
'avg_raw' => 0.0080663861645841
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004145'
'max' => '$0.011986'
'avg' => '$0.008066'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00072900077909802
'max_diff' => -0.0040491840799384
'year' => 2030
]
5 => [
'items' => [
101 => 0.004978207232543
102 => 0.0049040559974842
103 => 0.0049509170184277
104 => 0.0051252292909841
105 => 0.0051289122346255
106 => 0.0050672181834266
107 => 0.0050634640948044
108 => 0.0050753131121961
109 => 0.0051447131771567
110 => 0.0051204626620109
111 => 0.0051485259720856
112 => 0.0051836195710546
113 => 0.0053287815757681
114 => 0.0053637796436609
115 => 0.0052787524830992
116 => 0.0052864294836891
117 => 0.0052546269915913
118 => 0.0052239061827089
119 => 0.0052929620746628
120 => 0.0054191630745055
121 => 0.0054183779846353
122 => 0.0054476541636019
123 => 0.0054658929805611
124 => 0.0053875986265421
125 => 0.0053366318810388
126 => 0.0053561757743631
127 => 0.0053874268853991
128 => 0.005346041460246
129 => 0.0050905914446074
130 => 0.005168078661142
131 => 0.0051551809993793
201 => 0.00513681316062
202 => 0.0052147271560365
203 => 0.0052072121611061
204 => 0.0049821088867443
205 => 0.0049965192680232
206 => 0.0049829852297586
207 => 0.0050267164761952
208 => 0.0049016943666629
209 => 0.0049401503255183
210 => 0.0049642695424102
211 => 0.004978475946452
212 => 0.0050297992192737
213 => 0.0050237770255791
214 => 0.0050294248712581
215 => 0.005105523736011
216 => 0.0054904056799541
217 => 0.0055113539549688
218 => 0.0054081969873249
219 => 0.0054494061612174
220 => 0.0053702935587994
221 => 0.005423402378811
222 => 0.0054597380846452
223 => 0.005295544016935
224 => 0.0052858215098559
225 => 0.0052063823815858
226 => 0.0052490684694559
227 => 0.0051811518344162
228 => 0.0051978162010319
301 => 0.005151221179201
302 => 0.0052350829415203
303 => 0.0053288534225937
304 => 0.0053525435492213
305 => 0.0052902250253048
306 => 0.0052451023069983
307 => 0.0051658816779997
308 => 0.0052976273495713
309 => 0.0053361537988155
310 => 0.0052974249865346
311 => 0.0052884506744879
312 => 0.0052714443693756
313 => 0.0052920586425115
314 => 0.0053359439754989
315 => 0.0053152484628969
316 => 0.0053289182135785
317 => 0.0052768232201658
318 => 0.0053876245452311
319 => 0.0055636037152257
320 => 0.0055641695170327
321 => 0.0055434738928742
322 => 0.0055350056893619
323 => 0.0055562406556641
324 => 0.0055677597537791
325 => 0.0056364297409734
326 => 0.0057101153731658
327 => 0.0060539740670479
328 => 0.0059574199217786
329 => 0.006262511811236
330 => 0.0065037998845731
331 => 0.0065761516275182
401 => 0.0065095914284213
402 => 0.0062818925828219
403 => 0.0062707205911621
404 => 0.0066109987984605
405 => 0.0065148546191695
406 => 0.006503418574971
407 => 0.0063817583862014
408 => 0.0064536746256718
409 => 0.006437945489152
410 => 0.0064131162776599
411 => 0.0065503274528407
412 => 0.0068071745238531
413 => 0.0067671424991392
414 => 0.0067372604497225
415 => 0.0066063260077123
416 => 0.0066851777870688
417 => 0.0066571001787463
418 => 0.0067777394025903
419 => 0.0067062753988712
420 => 0.0065141262324509
421 => 0.0065447266205353
422 => 0.0065401014334358
423 => 0.0066352874561995
424 => 0.0066067149748281
425 => 0.0065345221978761
426 => 0.0068062966484872
427 => 0.0067886491273535
428 => 0.0068136692775361
429 => 0.0068246839214204
430 => 0.0069901082403044
501 => 0.0070578772907634
502 => 0.0070732620516818
503 => 0.0071376374081714
504 => 0.0070716603341678
505 => 0.0073356156710389
506 => 0.0075111305678373
507 => 0.0077150001523826
508 => 0.0080129084103817
509 => 0.0081249246711949
510 => 0.0081046899362976
511 => 0.0083305605775326
512 => 0.0087364450990096
513 => 0.0081867308027707
514 => 0.0087655812915208
515 => 0.0085823239099328
516 => 0.0081478239548471
517 => 0.0081198472801576
518 => 0.0084140956943898
519 => 0.0090667103567966
520 => 0.0089032377857579
521 => 0.0090669777393603
522 => 0.0088759663859234
523 => 0.0088664810622552
524 => 0.0090577007442693
525 => 0.0095044959541374
526 => 0.0092922402977971
527 => 0.008987919767211
528 => 0.0092126253112439
529 => 0.0090179645734862
530 => 0.0085793394492084
531 => 0.0089031127813637
601 => 0.008686614774685
602 => 0.0087498004027009
603 => 0.0092048470110914
604 => 0.0091500945992659
605 => 0.0092209492901049
606 => 0.0090958926153641
607 => 0.0089790699615286
608 => 0.0087610118027806
609 => 0.0086964555321126
610 => 0.0087142965628339
611 => 0.0086964466909838
612 => 0.0085744451552222
613 => 0.0085480989351903
614 => 0.0085041874142162
615 => 0.008517797430712
616 => 0.008435230924512
617 => 0.008591050980822
618 => 0.0086199725563548
619 => 0.0087333653990228
620 => 0.008745138220115
621 => 0.0090609356728994
622 => 0.0088869997426664
623 => 0.0090036909815724
624 => 0.0089932530188241
625 => 0.0081572408863929
626 => 0.0082724359820445
627 => 0.0084516434006658
628 => 0.0083709107014868
629 => 0.0082567735533899
630 => 0.0081646016866549
701 => 0.0080249518834942
702 => 0.008221506299706
703 => 0.0084799544557927
704 => 0.0087516928918577
705 => 0.0090781688177822
706 => 0.0090053031917146
707 => 0.0087455896515145
708 => 0.008757240211207
709 => 0.0088292593868999
710 => 0.0087359880107455
711 => 0.008708480461044
712 => 0.008825480271978
713 => 0.008826285985374
714 => 0.008718965994886
715 => 0.0085996994648096
716 => 0.0085991997336938
717 => 0.0085779774066447
718 => 0.0088797417907598
719 => 0.0090456816902026
720 => 0.0090647064322482
721 => 0.0090444011734817
722 => 0.009052215861694
723 => 0.0089556590904444
724 => 0.0091763592365
725 => 0.0093788955155028
726 => 0.0093246114661736
727 => 0.0092432319592967
728 => 0.0091784092623012
729 => 0.0093093412988564
730 => 0.0093035111013747
731 => 0.0093771265377945
801 => 0.0093737869163751
802 => 0.0093490328139238
803 => 0.0093246123502205
804 => 0.0094214367284398
805 => 0.0093935528624646
806 => 0.0093656256851438
807 => 0.00930961345559
808 => 0.009317226447851
809 => 0.0092358609922933
810 => 0.0091982176095224
811 => 0.0086321514517528
812 => 0.0084808800776515
813 => 0.0085284731313565
814 => 0.0085441420003893
815 => 0.0084783085045209
816 => 0.0085726968263587
817 => 0.0085579865063822
818 => 0.0086152157561613
819 => 0.0085794614055045
820 => 0.0085809287765271
821 => 0.0086860746981773
822 => 0.0087165990065551
823 => 0.0087010740969528
824 => 0.0087119472114755
825 => 0.0089625135463965
826 => 0.0089268910262311
827 => 0.0089079672723763
828 => 0.0089132092815213
829 => 0.0089772343522965
830 => 0.0089951578764742
831 => 0.0089192146450693
901 => 0.0089550299120225
902 => 0.0091075267730748
903 => 0.0091608920438683
904 => 0.009331208371458
905 => 0.0092588549683666
906 => 0.0093916627711228
907 => 0.0097998686792792
908 => 0.010125971804415
909 => 0.0098260738937584
910 => 0.010424920754087
911 => 0.010891208934334
912 => 0.010873312017332
913 => 0.010792003887666
914 => 0.010261147191369
915 => 0.0097726449448082
916 => 0.010181297816957
917 => 0.010182339557168
918 => 0.010147235913034
919 => 0.0099292101941685
920 => 0.010139649090616
921 => 0.010156352966014
922 => 0.01014700323771
923 => 0.0099798434302441
924 => 0.0097246213005396
925 => 0.0097744910937684
926 => 0.0098561788323934
927 => 0.0097015269013288
928 => 0.0096521062386627
929 => 0.0097439886532247
930 => 0.010040052937405
1001 => 0.0099840836994642
1002 => 0.0099826221164722
1003 => 0.010222082251033
1004 => 0.010050680473419
1005 => 0.0097751201115662
1006 => 0.0097055374860037
1007 => 0.0094585660417302
1008 => 0.009629150097972
1009 => 0.0096352891144713
1010 => 0.0095418619701944
1011 => 0.0097827012094179
1012 => 0.0097804818334295
1013 => 0.010009122846882
1014 => 0.01044619859096
1015 => 0.010316933786245
1016 => 0.010166612882332
1017 => 0.010182956932534
1018 => 0.010362210822696
1019 => 0.010253829828736
1020 => 0.010292804389823
1021 => 0.01036215183003
1022 => 0.010403990862506
1023 => 0.010176936939627
1024 => 0.010123999808959
1025 => 0.010015709018021
1026 => 0.0099874579720087
1027 => 0.010075658561666
1028 => 0.010052420822464
1029 => 0.0096347731539059
1030 => 0.0095911266487719
1031 => 0.0095924652247715
1101 => 0.0094827140123337
1102 => 0.009315317070057
1103 => 0.0097552262396081
1104 => 0.0097198953767683
1105 => 0.0096808928385847
1106 => 0.0096856704269668
1107 => 0.0098766200875638
1108 => 0.0097658596412285
1109 => 0.010060334441091
1110 => 0.009999799274962
1111 => 0.009937711610242
1112 => 0.0099291292037411
1113 => 0.0099052307498945
1114 => 0.0098232740594315
1115 => 0.0097243064308638
1116 => 0.0096589594300543
1117 => 0.0089098795035614
1118 => 0.009048904380721
1119 => 0.0092088398293768
1120 => 0.0092640489053518
1121 => 0.0091696099605449
1122 => 0.0098270030845846
1123 => 0.0099471151431444
1124 => 0.009583287883051
1125 => 0.0095152306576567
1126 => 0.0098314649049512
1127 => 0.0096407369957681
1128 => 0.0097266217615948
1129 => 0.0095409858743327
1130 => 0.009918183665529
1201 => 0.0099153100503392
1202 => 0.0097685715901654
1203 => 0.0098925939318827
1204 => 0.0098710419979694
1205 => 0.009705374637834
1206 => 0.0099234356163408
1207 => 0.0099235437718656
1208 => 0.0097823111943175
1209 => 0.0096173824635281
1210 => 0.0095878971019057
1211 => 0.0095656838427242
1212 => 0.0097211586615337
1213 => 0.0098605568979212
1214 => 0.010119942456085
1215 => 0.010185158148256
1216 => 0.010439699336455
1217 => 0.010288132452268
1218 => 0.010355320088908
1219 => 0.010428261772753
1220 => 0.010463232698329
1221 => 0.010406249451745
1222 => 0.010801656690351
1223 => 0.010835041176254
1224 => 0.010846234705603
1225 => 0.010712905609479
1226 => 0.0108313330529
1227 => 0.010775924774028
1228 => 0.01092008172279
1229 => 0.010942687373045
1230 => 0.010923541191499
1231 => 0.010930716581695
]
'min_raw' => 0.0049016943666629
'max_raw' => 0.010942687373045
'avg_raw' => 0.0079221908698538
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0049016'
'max' => '$0.010942'
'avg' => '$0.007922'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00075583132587332
'max_diff' => -0.001044221915334
'year' => 2031
]
6 => [
'items' => [
101 => 0.010593306258162
102 => 0.010575809752906
103 => 0.010337243662239
104 => 0.010434461107577
105 => 0.010252717753271
106 => 0.010310350443085
107 => 0.010335754383611
108 => 0.010322484806741
109 => 0.010439957636073
110 => 0.010340081733028
111 => 0.010076492803773
112 => 0.0098128320598902
113 => 0.0098095220140242
114 => 0.0097401047941586
115 => 0.0096899288585938
116 => 0.0096995945238706
117 => 0.0097336575890183
118 => 0.0096879490513242
119 => 0.0096977032853229
120 => 0.0098596885618228
121 => 0.0098921735537987
122 => 0.0097817768583588
123 => 0.0093385181960006
124 => 0.0092297414084277
125 => 0.0093079280061976
126 => 0.0092705598483254
127 => 0.007482065335129
128 => 0.0079022455918904
129 => 0.007652588751296
130 => 0.0077676421096008
131 => 0.0075128071236795
201 => 0.0076344277360071
202 => 0.0076119688497838
203 => 0.0082876062686185
204 => 0.0082770571196323
205 => 0.0082821064390034
206 => 0.0080410892694862
207 => 0.0084250361648564
208 => 0.0086141822117995
209 => 0.0085791763124694
210 => 0.0085879865431583
211 => 0.0084365975902322
212 => 0.0082835722149876
213 => 0.008113843523405
214 => 0.0084291784532652
215 => 0.0083941185920115
216 => 0.0084745332995876
217 => 0.0086790505422082
218 => 0.0087091664830696
219 => 0.008749642612993
220 => 0.0087351348017026
221 => 0.0090807697252443
222 => 0.0090389110554308
223 => 0.0091397784061202
224 => 0.0089322866129277
225 => 0.0086974899536285
226 => 0.0087421171224801
227 => 0.0087378191672507
228 => 0.0086831012642165
229 => 0.00863370438796
301 => 0.0085514725064765
302 => 0.0088116663475189
303 => 0.0088011029527423
304 => 0.0089721120355718
305 => 0.0089418845190881
306 => 0.0087400177660818
307 => 0.0087472274766572
308 => 0.0087957162451454
309 => 0.008963536426518
310 => 0.0090133568824186
311 => 0.0089902780622435
312 => 0.0090449039177484
313 => 0.0090880779666639
314 => 0.0090503259135728
315 => 0.0095848153733078
316 => 0.0093628580851507
317 => 0.0094710385230296
318 => 0.0094968389200276
319 => 0.0094307517456412
320 => 0.0094450836873613
321 => 0.0094667926738469
322 => 0.0095986053887322
323 => 0.0099445200929076
324 => 0.010097723360666
325 => 0.010558642950633
326 => 0.010085001961971
327 => 0.010056898065825
328 => 0.010139923602416
329 => 0.01041053219502
330 => 0.010629835042353
331 => 0.010702590448699
401 => 0.010712206276708
402 => 0.010848700255699
403 => 0.010926936058995
404 => 0.010832126296502
405 => 0.010751784949784
406 => 0.010464012218178
407 => 0.010497322695441
408 => 0.010726798851369
409 => 0.011050947437696
410 => 0.011329100646676
411 => 0.011231701087509
412 => 0.011974790970581
413 => 0.012048465297237
414 => 0.012038285887469
415 => 0.012206126967803
416 => 0.011872996603583
417 => 0.011730576918782
418 => 0.010769155660858
419 => 0.011039275818471
420 => 0.011431911331162
421 => 0.01137994454875
422 => 0.011094802144256
423 => 0.011328884340593
424 => 0.011251489446057
425 => 0.011190444881619
426 => 0.01147010186538
427 => 0.011162607524059
428 => 0.011428843839887
429 => 0.011087393010976
430 => 0.011232146000491
501 => 0.011149977202728
502 => 0.01120315048511
503 => 0.010892300562815
504 => 0.01106002763543
505 => 0.010885322565159
506 => 0.010885239732208
507 => 0.010881383108099
508 => 0.011086922848512
509 => 0.011093625492068
510 => 0.010941731313349
511 => 0.010919840989163
512 => 0.011000780990863
513 => 0.010906021447092
514 => 0.010950358841213
515 => 0.010907364381593
516 => 0.01089768542313
517 => 0.010820561835363
518 => 0.010787334873195
519 => 0.010800364021214
520 => 0.010755888822039
521 => 0.010729090905797
522 => 0.010876052328064
523 => 0.010797536768554
524 => 0.010864018692498
525 => 0.010788254149476
526 => 0.010525621234322
527 => 0.010374578267524
528 => 0.0098784890368817
529 => 0.010019179327295
530 => 0.010112457135394
531 => 0.010081628820374
601 => 0.010147859970011
602 => 0.010151926024692
603 => 0.010130393602798
604 => 0.010105461816719
605 => 0.01009332640207
606 => 0.010183773840505
607 => 0.010236281622837
608 => 0.010121818811333
609 => 0.010095001776102
610 => 0.010210729998198
611 => 0.010281324146823
612 => 0.010802551676841
613 => 0.010763937457874
614 => 0.010860851569823
615 => 0.010849940528086
616 => 0.010951521957036
617 => 0.011117564661855
618 => 0.010779953416688
619 => 0.01083855105513
620 => 0.010824184267401
621 => 0.010981037088653
622 => 0.010981526766039
623 => 0.01088748566432
624 => 0.010938466871205
625 => 0.010910010560118
626 => 0.010961434960353
627 => 0.010763421741438
628 => 0.01100458046787
629 => 0.011141301925832
630 => 0.011143200303408
701 => 0.011208005189394
702 => 0.011273850706801
703 => 0.011400235443527
704 => 0.011270325905089
705 => 0.011036631291876
706 => 0.011053503288121
707 => 0.0109164882219
708 => 0.010918791469917
709 => 0.010906496551494
710 => 0.010943394527201
711 => 0.010771518772153
712 => 0.010811857668322
713 => 0.010755382977461
714 => 0.010838428290181
715 => 0.010749085261576
716 => 0.010824177339301
717 => 0.010856584590705
718 => 0.010976168046066
719 => 0.010731422687989
720 => 0.010232370335066
721 => 0.010337277190075
722 => 0.01018211171126
723 => 0.010196472867081
724 => 0.010225484687401
725 => 0.010131447885669
726 => 0.010149387143999
727 => 0.010148746227455
728 => 0.010143223154928
729 => 0.010118760550924
730 => 0.01008328493534
731 => 0.01022460886901
801 => 0.010248622559218
802 => 0.010302002017884
803 => 0.010460823079241
804 => 0.010444953109953
805 => 0.0104708376883
806 => 0.010414331799103
807 => 0.010199094013218
808 => 0.010210782460532
809 => 0.010065027335235
810 => 0.010298274731628
811 => 0.010243038669447
812 => 0.010207427620827
813 => 0.010197710816277
814 => 0.010356925564325
815 => 0.010404565112327
816 => 0.010374879342983
817 => 0.010313992963988
818 => 0.010430912811101
819 => 0.010462195629736
820 => 0.010469198699163
821 => 0.010676358251091
822 => 0.01048077661686
823 => 0.010527855060134
824 => 0.01089514763542
825 => 0.010562063952546
826 => 0.010738505808017
827 => 0.010729869897351
828 => 0.010820131580143
829 => 0.010722465804821
830 => 0.010723676489157
831 => 0.010803822748621
901 => 0.010691271781659
902 => 0.010663402579431
903 => 0.010624901476156
904 => 0.010708967226622
905 => 0.010759360842059
906 => 0.011165496372449
907 => 0.011427878447111
908 => 0.011416487749266
909 => 0.011520577405073
910 => 0.01147368406178
911 => 0.011322253086449
912 => 0.0115807272963
913 => 0.011498935241282
914 => 0.011505678078921
915 => 0.011505427110167
916 => 0.011559811676368
917 => 0.011521275226942
918 => 0.011445315929439
919 => 0.011495741255994
920 => 0.011645486448477
921 => 0.012110300120688
922 => 0.012370416009619
923 => 0.012094640817563
924 => 0.012284866852266
925 => 0.012170799015911
926 => 0.012150069496821
927 => 0.012269545504208
928 => 0.01238923063853
929 => 0.012381607212887
930 => 0.012294721951269
1001 => 0.012245642671613
1002 => 0.012617287419935
1003 => 0.012891108939695
1004 => 0.01287243614777
1005 => 0.01295485177861
1006 => 0.013196826619773
1007 => 0.013218949766722
1008 => 0.013216162758701
1009 => 0.013161328230677
1010 => 0.013399583886207
1011 => 0.013598340945759
1012 => 0.013148635621762
1013 => 0.013319877522065
1014 => 0.01339675352818
1015 => 0.013509630313241
1016 => 0.013700072369985
1017 => 0.013906942955869
1018 => 0.013936196724933
1019 => 0.01391543977586
1020 => 0.01377900306349
1021 => 0.014005363327044
1022 => 0.014137959860632
1023 => 0.014216918061966
1024 => 0.014417142923158
1025 => 0.013397228288222
1026 => 0.012675282016569
1027 => 0.01256253968122
1028 => 0.012791805653526
1029 => 0.012852261262061
1030 => 0.012827891682065
1031 => 0.012015275516836
1101 => 0.012558261425284
1102 => 0.013142468607223
1103 => 0.01316491038434
1104 => 0.013457376714815
1105 => 0.013552615740617
1106 => 0.013788089471088
1107 => 0.013773360525134
1108 => 0.013830694631298
1109 => 0.01381751451318
1110 => 0.014253680014032
1111 => 0.014734835332676
1112 => 0.014718174453972
1113 => 0.014649002684145
1114 => 0.014751734557877
1115 => 0.015248338410455
1116 => 0.015202619085624
1117 => 0.015247031515334
1118 => 0.015832555444891
1119 => 0.016593819843122
1120 => 0.016240136100447
1121 => 0.017007528052295
1122 => 0.017490560608284
1123 => 0.018325915467367
1124 => 0.018221324924801
1125 => 0.018546522441325
1126 => 0.018034086024901
1127 => 0.016857428432306
1128 => 0.016671217864214
1129 => 0.017044016137138
1130 => 0.017960504313997
1201 => 0.017015152662944
1202 => 0.017206396070723
1203 => 0.017151317956417
1204 => 0.017148383077773
1205 => 0.017260395458617
1206 => 0.017097915658029
1207 => 0.016435943720874
1208 => 0.016739321558647
1209 => 0.016622172806083
1210 => 0.016752158081071
1211 => 0.017453635000178
1212 => 0.01714349533312
1213 => 0.016816788387574
1214 => 0.017226551399363
1215 => 0.017748320523218
1216 => 0.017715669149156
1217 => 0.017652311836261
1218 => 0.01800945369177
1219 => 0.018599347404324
1220 => 0.018758793304442
1221 => 0.018876493008182
1222 => 0.018892721808775
1223 => 0.019059888541025
1224 => 0.018160990890275
1225 => 0.019587564547344
1226 => 0.019833894409618
1227 => 0.019787594604837
1228 => 0.020061379879609
1229 => 0.019980825306509
1230 => 0.019864114368713
1231 => 0.020298122265025
]
'min_raw' => 0.007482065335129
'max_raw' => 0.020298122265025
'avg_raw' => 0.013890093800077
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007482'
'max' => '$0.020298'
'avg' => '$0.01389'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0025803709684661
'max_diff' => 0.0093554348919801
'year' => 2032
]
7 => [
'items' => [
101 => 0.019800567234534
102 => 0.01909435050919
103 => 0.018706906046283
104 => 0.019217124169292
105 => 0.019528696572855
106 => 0.019734626111884
107 => 0.019796940265968
108 => 0.018230769756069
109 => 0.017386690715033
110 => 0.017927735702951
111 => 0.018587847929142
112 => 0.018157323933529
113 => 0.018174199659067
114 => 0.017560385581038
115 => 0.018642156855001
116 => 0.018484551879513
117 => 0.019302206771143
118 => 0.019107066869165
119 => 0.019773832692109
120 => 0.019598250905171
121 => 0.020327081086102
122 => 0.020617831177565
123 => 0.02110604583277
124 => 0.021465178520529
125 => 0.021676068103895
126 => 0.021663407084337
127 => 0.022499056678406
128 => 0.022006303308156
129 => 0.02138728894207
130 => 0.021376092925153
131 => 0.021696689236851
201 => 0.022368571154865
202 => 0.022542780360722
203 => 0.022640139540739
204 => 0.022491030567446
205 => 0.021956182099992
206 => 0.021725237243489
207 => 0.021922008952346
208 => 0.021681374061199
209 => 0.022096777393544
210 => 0.022667214894218
211 => 0.022549421806083
212 => 0.022943186439191
213 => 0.02335069140921
214 => 0.023933441818531
215 => 0.024085794354713
216 => 0.024337627303573
217 => 0.024596846130764
218 => 0.024680100231915
219 => 0.024839058143242
220 => 0.024838220356585
221 => 0.02531725072147
222 => 0.025845636048274
223 => 0.026045089276994
224 => 0.02650372097852
225 => 0.025718330262028
226 => 0.026314058142406
227 => 0.026851419602542
228 => 0.026210755116955
301 => 0.027093761854657
302 => 0.027128047005346
303 => 0.027645712075539
304 => 0.027120959354271
305 => 0.026809362863451
306 => 0.027708930257078
307 => 0.028144202582747
308 => 0.028013095015892
309 => 0.027015359958546
310 => 0.026434635360301
311 => 0.024914767073284
312 => 0.026715116712679
313 => 0.027592014505109
314 => 0.027013089005106
315 => 0.027305065353223
316 => 0.028897993634897
317 => 0.02950447759009
318 => 0.029378333167053
319 => 0.029399649498032
320 => 0.029726897231792
321 => 0.031178093901901
322 => 0.030308503218696
323 => 0.030973272713065
324 => 0.031325864055874
325 => 0.031653370545204
326 => 0.030849118116899
327 => 0.029802797524489
328 => 0.029471383871322
329 => 0.026955526273505
330 => 0.026824564959723
331 => 0.026751052405763
401 => 0.026287566151604
402 => 0.025923392915404
403 => 0.025633788837092
404 => 0.024873781252505
405 => 0.025130261502046
406 => 0.023918968038124
407 => 0.024693910670737
408 => 0.022760657054614
409 => 0.024370728113063
410 => 0.023494439636897
411 => 0.024082843780939
412 => 0.024080790894312
413 => 0.022997352311426
414 => 0.022372447547604
415 => 0.022770661184769
416 => 0.023197577814047
417 => 0.023266843600827
418 => 0.023820352154351
419 => 0.023974824494013
420 => 0.023506766093213
421 => 0.022720594670486
422 => 0.022903204361325
423 => 0.022368746968048
424 => 0.021432130943936
425 => 0.0221048249242
426 => 0.022334512225328
427 => 0.022435955222504
428 => 0.021514900933867
429 => 0.021225485679316
430 => 0.021071403426222
501 => 0.022601698127928
502 => 0.022685531126132
503 => 0.022256629654527
504 => 0.024195304976289
505 => 0.023756523043119
506 => 0.024246749966653
507 => 0.022886634445905
508 => 0.022938592690436
509 => 0.022294692206096
510 => 0.022655233451881
511 => 0.022400414520147
512 => 0.022626105282159
513 => 0.022761383394352
514 => 0.023405178220958
515 => 0.024378079215841
516 => 0.023309016742529
517 => 0.02284321091365
518 => 0.023132194230095
519 => 0.023901794883564
520 => 0.025067779268702
521 => 0.024377493045077
522 => 0.024683830349302
523 => 0.024750751422276
524 => 0.024241759916761
525 => 0.025086546511528
526 => 0.025539274510697
527 => 0.026003679758986
528 => 0.026406909823735
529 => 0.025818186090329
530 => 0.026448204875306
531 => 0.025940520947901
601 => 0.02548507598162
602 => 0.025485766703634
603 => 0.025200059423296
604 => 0.024646465566208
605 => 0.024544374365307
606 => 0.02507546568509
607 => 0.02550135062902
608 => 0.025536428552854
609 => 0.025772220340572
610 => 0.025911759491696
611 => 0.027279432866981
612 => 0.027829522412508
613 => 0.028502161496116
614 => 0.028764192327043
615 => 0.029552811184882
616 => 0.028915937408685
617 => 0.028778145761081
618 => 0.026865214367228
619 => 0.027178456775807
620 => 0.027679988095339
621 => 0.026873484433961
622 => 0.027385025375552
623 => 0.02748601439334
624 => 0.02684607974816
625 => 0.027187896492095
626 => 0.026280132561806
627 => 0.024397865988888
628 => 0.025088642012298
629 => 0.025597285678223
630 => 0.024871388451636
701 => 0.02617253113419
702 => 0.025412430440079
703 => 0.025171515011314
704 => 0.024231618031148
705 => 0.024675213225834
706 => 0.025275182078317
707 => 0.024904471081348
708 => 0.025673752062596
709 => 0.026763259091787
710 => 0.027539706682053
711 => 0.027599312686846
712 => 0.027100108904253
713 => 0.027900086151734
714 => 0.027905913112627
715 => 0.027003535509465
716 => 0.026450834251988
717 => 0.026325259363396
718 => 0.026638970055506
719 => 0.027019872749917
720 => 0.027620450135438
721 => 0.027983366471291
722 => 0.028929659799243
723 => 0.029185699641431
724 => 0.029467009801566
725 => 0.029842926928347
726 => 0.03029431182222
727 => 0.029306707371781
728 => 0.029345946737722
729 => 0.028426303147789
730 => 0.027443532081713
731 => 0.028189332816722
801 => 0.029164368068031
802 => 0.028940693904063
803 => 0.028915525991368
804 => 0.028957851439524
805 => 0.028789208424407
806 => 0.028026442317234
807 => 0.02764338595338
808 => 0.028137626390852
809 => 0.028400293187258
810 => 0.02880766648153
811 => 0.028757449124404
812 => 0.029806798981753
813 => 0.030214544605626
814 => 0.03011022582662
815 => 0.030129422992529
816 => 0.030867626968082
817 => 0.031688661612123
818 => 0.032457668901332
819 => 0.033239936145546
820 => 0.032296882450235
821 => 0.031818057943223
822 => 0.032312082610781
823 => 0.032049946168274
824 => 0.033556259921639
825 => 0.03366055381772
826 => 0.035166758647456
827 => 0.03659632638641
828 => 0.035698440502939
829 => 0.036545106449384
830 => 0.037460844700152
831 => 0.039227452359058
901 => 0.038632521049545
902 => 0.038176812990221
903 => 0.037746171076124
904 => 0.03864226853688
905 => 0.039795083604637
906 => 0.040043388928706
907 => 0.040445738413633
908 => 0.040022717127187
909 => 0.040532199672445
910 => 0.04233089693518
911 => 0.041844873057249
912 => 0.04115464101835
913 => 0.042574539758558
914 => 0.043088395592923
915 => 0.046694904946884
916 => 0.051248271983731
917 => 0.049363148131456
918 => 0.048192990923783
919 => 0.048468005624086
920 => 0.050130741124741
921 => 0.050664758994965
922 => 0.049213114336699
923 => 0.049725859770973
924 => 0.052551137525842
925 => 0.054066808395567
926 => 0.052008323772725
927 => 0.046329046338988
928 => 0.041092493175239
929 => 0.042481462879328
930 => 0.042323996819632
1001 => 0.045359405306661
1002 => 0.041833281548499
1003 => 0.041892652429338
1004 => 0.044990829949326
1005 => 0.044164289303203
1006 => 0.042825399311811
1007 => 0.041102268553881
1008 => 0.037916901977545
1009 => 0.035095533970365
1010 => 0.040628886354691
1011 => 0.040390278138131
1012 => 0.040044738080795
1013 => 0.040813700087057
1014 => 0.044547561315793
1015 => 0.044461483729142
1016 => 0.043913902040034
1017 => 0.044329237925059
1018 => 0.042752588923046
1019 => 0.043158927270495
1020 => 0.041091663678464
1021 => 0.042026153158616
1022 => 0.042822526655215
1023 => 0.042982410425168
1024 => 0.043342636722741
1025 => 0.040264542450445
1026 => 0.041646516410606
1027 => 0.042458296638752
1028 => 0.038790644035171
1029 => 0.042385798939181
1030 => 0.040210959677306
1031 => 0.039472786566835
1101 => 0.040466639413171
1102 => 0.040079333992401
1103 => 0.039746351534959
1104 => 0.039560541602342
1105 => 0.040290317445155
1106 => 0.040256272529817
1107 => 0.039062217607588
1108 => 0.037504621637445
1109 => 0.03802740197137
1110 => 0.037837470974963
1111 => 0.037149136542399
1112 => 0.037612990840131
1113 => 0.035570411264208
1114 => 0.03205625926788
1115 => 0.034377815718041
1116 => 0.034288438320077
1117 => 0.034243370183081
1118 => 0.03598795569227
1119 => 0.035820254049997
1120 => 0.035515873927133
1121 => 0.037143546362745
1122 => 0.036549424028463
1123 => 0.038380369069893
1124 => 0.039586347892279
1125 => 0.039280472653594
1126 => 0.04041470156505
1127 => 0.038039445774395
1128 => 0.038828410469329
1129 => 0.038991014999497
1130 => 0.037123461137546
1201 => 0.035847692112674
1202 => 0.035762612863547
1203 => 0.03355060518622
1204 => 0.034732241832746
1205 => 0.035772033182242
1206 => 0.035274053816902
1207 => 0.035116408426545
1208 => 0.035921784536762
1209 => 0.035984369158106
1210 => 0.034557433159047
1211 => 0.034854138338438
1212 => 0.036091448259628
1213 => 0.034822961303034
1214 => 0.032358498352538
1215 => 0.031747277466949
1216 => 0.031665729333776
1217 => 0.030008049815519
1218 => 0.031788122169191
1219 => 0.03101107288384
1220 => 0.033465762265784
1221 => 0.032063656855581
1222 => 0.032003214893699
1223 => 0.031911848003408
1224 => 0.030485014764165
1225 => 0.030797400563577
1226 => 0.03183581853852
1227 => 0.032206337770596
1228 => 0.032167689579116
1229 => 0.031830729723936
1230 => 0.031984988220124
1231 => 0.03148806785668
]
'min_raw' => 0.017386690715033
'max_raw' => 0.054066808395567
'avg_raw' => 0.0357267495553
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017386'
'max' => '$0.054066'
'avg' => '$0.035726'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099046253799037
'max_diff' => 0.033768686130542
'year' => 2033
]
8 => [
'items' => [
101 => 0.031312594933846
102 => 0.030758754121749
103 => 0.029944761130397
104 => 0.030057951848353
105 => 0.028445218739632
106 => 0.027566516147776
107 => 0.027323302851465
108 => 0.026998067867053
109 => 0.027360039008371
110 => 0.028440650069364
111 => 0.027137203865381
112 => 0.024902536774772
113 => 0.025036844074605
114 => 0.025338592701135
115 => 0.024776286131864
116 => 0.024244110154862
117 => 0.024706793990063
118 => 0.023759936084677
119 => 0.025453015955334
120 => 0.025407222889634
121 => 0.026038298366058
122 => 0.026432922812438
123 => 0.025523441224713
124 => 0.0252947090649
125 => 0.025425005298427
126 => 0.023271498796678
127 => 0.025862310941186
128 => 0.025884716392198
129 => 0.025692867317894
130 => 0.027072394802493
131 => 0.029983628080412
201 => 0.028888305017171
202 => 0.02846416282077
203 => 0.027657868195365
204 => 0.02873220791068
205 => 0.028649715382854
206 => 0.028276652887663
207 => 0.028051023526546
208 => 0.028466752542578
209 => 0.02799951010079
210 => 0.027915580519282
211 => 0.027407058571624
212 => 0.027225539372585
213 => 0.027091149784103
214 => 0.026943200052034
215 => 0.027269540294203
216 => 0.026530010371813
217 => 0.025638209782423
218 => 0.025564066212831
219 => 0.025768783127243
220 => 0.025678211131998
221 => 0.025563632588963
222 => 0.025344870946702
223 => 0.025279969040545
224 => 0.025490868749624
225 => 0.025252775274291
226 => 0.025604095166768
227 => 0.025508555595431
228 => 0.024974879316315
301 => 0.024309721080272
302 => 0.024303799776755
303 => 0.024160492525877
304 => 0.023977969195496
305 => 0.023927195380552
306 => 0.024667828047993
307 => 0.026200915504325
308 => 0.025899933752974
309 => 0.026117423914176
310 => 0.027187260249366
311 => 0.027527329049222
312 => 0.027285956270055
313 => 0.026955550322707
314 => 0.026970086507552
315 => 0.028099183650323
316 => 0.028169604054139
317 => 0.028347533696098
318 => 0.028576223568927
319 => 0.027324903144281
320 => 0.026911149428081
321 => 0.026715089963163
322 => 0.026111302695777
323 => 0.026762435498844
324 => 0.026383048298783
325 => 0.026434240593784
326 => 0.026400901544507
327 => 0.026419106919789
328 => 0.025452542705005
329 => 0.025804707903753
330 => 0.025219164957271
331 => 0.024435188682212
401 => 0.02443256051884
402 => 0.024624437601502
403 => 0.024510301604584
404 => 0.024203164571581
405 => 0.024246791937473
406 => 0.023864570305386
407 => 0.024293200563955
408 => 0.024305492146058
409 => 0.024140446148861
410 => 0.024800810201763
411 => 0.025071361893042
412 => 0.02496272508206
413 => 0.02506373964478
414 => 0.025912440903593
415 => 0.026050816240212
416 => 0.026112273424176
417 => 0.026029928939181
418 => 0.025079252345808
419 => 0.025121418895314
420 => 0.02481202873299
421 => 0.024550626648559
422 => 0.024561081361063
423 => 0.024695476012353
424 => 0.025282385336678
425 => 0.026517501409525
426 => 0.026564373161632
427 => 0.02662118309253
428 => 0.026390108553182
429 => 0.02632041426103
430 => 0.026412359022002
501 => 0.026876203679646
502 => 0.028069338071701
503 => 0.027647604690782
504 => 0.027304728887424
505 => 0.027605523405622
506 => 0.02755921844725
507 => 0.027168357998934
508 => 0.027157387847951
509 => 0.026407201681988
510 => 0.026129874937344
511 => 0.025898119951972
512 => 0.025645049558064
513 => 0.025495020945558
514 => 0.025725533081152
515 => 0.025778253933901
516 => 0.025274235120764
517 => 0.025205539218946
518 => 0.025617131861756
519 => 0.025436005285376
520 => 0.025622298460906
521 => 0.025665520075622
522 => 0.025658560400175
523 => 0.025469443452179
524 => 0.025589980955283
525 => 0.025304873826483
526 => 0.024994862645619
527 => 0.024797094826607
528 => 0.024624516174424
529 => 0.024720272840985
530 => 0.024378917809172
531 => 0.024269711464375
601 => 0.025549145561411
602 => 0.026494277285126
603 => 0.02648053469555
604 => 0.026396880215813
605 => 0.026272586627615
606 => 0.026867110829492
607 => 0.026659990485445
608 => 0.026810687841223
609 => 0.026849046643017
610 => 0.026965147183114
611 => 0.027006643147021
612 => 0.026881213523296
613 => 0.026460256386137
614 => 0.025411271223742
615 => 0.024922965798966
616 => 0.02476181687542
617 => 0.024767674332725
618 => 0.024606099511398
619 => 0.024653690537554
620 => 0.024589549294677
621 => 0.024468081298101
622 => 0.024712772534485
623 => 0.024740970920021
624 => 0.024683857061607
625 => 0.024697309442815
626 => 0.024224431088792
627 => 0.02426038300301
628 => 0.024060198176093
629 => 0.02402266593431
630 => 0.023516616123948
701 => 0.022620075531801
702 => 0.023116846049152
703 => 0.022516817120697
704 => 0.02228957707357
705 => 0.023365296113594
706 => 0.023257323757777
707 => 0.023072522019074
708 => 0.022799161731475
709 => 0.022697769741726
710 => 0.022081744108818
711 => 0.022045346028057
712 => 0.022350664965817
713 => 0.022209770781424
714 => 0.022011901985735
715 => 0.021295241265389
716 => 0.02048947733751
717 => 0.020513798285641
718 => 0.020770096799329
719 => 0.021515319294439
720 => 0.021224147973119
721 => 0.021012899838696
722 => 0.020973339413214
723 => 0.021468520963481
724 => 0.022169306600849
725 => 0.022498099542708
726 => 0.022172275722916
727 => 0.02179798686234
728 => 0.021820768090996
729 => 0.021972321399072
730 => 0.021988247508902
731 => 0.021744623938183
801 => 0.021813202546307
802 => 0.021709025369608
803 => 0.021069690228497
804 => 0.021058126683148
805 => 0.020901223528847
806 => 0.020896472563692
807 => 0.020629541156901
808 => 0.020592195607881
809 => 0.020062187098119
810 => 0.020411040304258
811 => 0.020177047889195
812 => 0.019824366126465
813 => 0.019763563657637
814 => 0.019761735862003
815 => 0.020123861174127
816 => 0.020406808659146
817 => 0.020181118287436
818 => 0.020129732964622
819 => 0.020678393777312
820 => 0.020608571687743
821 => 0.02054810620848
822 => 0.022106558933307
823 => 0.020872921994024
824 => 0.020334985874962
825 => 0.019669187776324
826 => 0.019885974994486
827 => 0.019931655246619
828 => 0.018330530838523
829 => 0.017680954865565
830 => 0.0174580448704
831 => 0.017329757016698
901 => 0.017388219402568
902 => 0.016803524839244
903 => 0.017196449255753
904 => 0.016690153186915
905 => 0.016605271003345
906 => 0.017510591092474
907 => 0.017636561094073
908 => 0.01709913393144
909 => 0.017444249171405
910 => 0.017319105587933
911 => 0.016698832179858
912 => 0.016675142298092
913 => 0.016363910905584
914 => 0.015876894042583
915 => 0.015654314267785
916 => 0.015538392788543
917 => 0.015586224250143
918 => 0.015562039199491
919 => 0.015404215384591
920 => 0.01557108547582
921 => 0.015144801348213
922 => 0.014975051573795
923 => 0.014898379538856
924 => 0.014520027839606
925 => 0.015122153646877
926 => 0.01524078001629
927 => 0.015359640116297
928 => 0.016394236137618
929 => 0.016342550644131
930 => 0.016809762333399
1001 => 0.016791607346301
1002 => 0.016658351004194
1003 => 0.01609616441645
1004 => 0.016320241970312
1005 => 0.015630566088907
1006 => 0.016147318152657
1007 => 0.015911494090844
1008 => 0.016067585800141
1009 => 0.015786918832603
1010 => 0.015942251520893
1011 => 0.015268910729226
1012 => 0.014640154572128
1013 => 0.014893184404281
1014 => 0.015168256769302
1015 => 0.015764683743803
1016 => 0.015409456758206
1017 => 0.015537209814846
1018 => 0.015109258460705
1019 => 0.014226272578851
1020 => 0.01423127018305
1021 => 0.01409544204202
1022 => 0.013978066696936
1023 => 0.015450258850671
1024 => 0.01526716848444
1025 => 0.014975437948126
1026 => 0.015365930863893
1027 => 0.015469183388778
1028 => 0.015472122843006
1029 => 0.015757016394269
1030 => 0.015909064133647
1031 => 0.015935863206726
1101 => 0.01638414936517
1102 => 0.016534408972443
1103 => 0.017153307029266
1104 => 0.01589616394526
1105 => 0.01587027391073
1106 => 0.015371425900019
1107 => 0.015055048605151
1108 => 0.015393088524072
1109 => 0.015692545745184
1110 => 0.015380730870613
1111 => 0.015421447310461
1112 => 0.01500286131756
1113 => 0.015152486113721
1114 => 0.015281363144811
1115 => 0.015210204823284
1116 => 0.015103677371858
1117 => 0.015667993668018
1118 => 0.015636152731015
1119 => 0.016161657039575
1120 => 0.016571325227271
1121 => 0.01730552385657
1122 => 0.016539349312256
1123 => 0.016511426866594
1124 => 0.016784373251849
1125 => 0.016534367185774
1126 => 0.016692362389617
1127 => 0.017280068386635
1128 => 0.017292485688257
1129 => 0.017084479887299
1130 => 0.017071822715407
1201 => 0.017111772504815
1202 => 0.017345759669187
1203 => 0.017263997364256
1204 => 0.017358614773491
1205 => 0.017476935292572
1206 => 0.017966359126351
1207 => 0.018084357555739
1208 => 0.017797682547498
1209 => 0.017823566090978
1210 => 0.017716341768491
1211 => 0.017612764416486
1212 => 0.017845591177537
1213 => 0.018271086659579
1214 => 0.018268439674268
1215 => 0.018367146355652
1216 => 0.018428639800423
1217 => 0.018164664919511
1218 => 0.017992826978662
1219 => 0.018058720579516
1220 => 0.018164085882257
1221 => 0.018024552031915
1222 => 0.017163284469239
1223 => 0.01742453802977
1224 => 0.017381052662651
1225 => 0.017319124211872
1226 => 0.0175818166872
1227 => 0.017556479357113
1228 => 0.016797527951393
1229 => 0.016846113557975
1230 => 0.01680048260305
1231 => 0.016947925553629
]
'min_raw' => 0.013978066696936
'max_raw' => 0.031312594933846
'avg_raw' => 0.022645330815391
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.013978'
'max' => '$0.031312'
'avg' => '$0.022645'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0034086240180964
'max_diff' => -0.022754213461721
'year' => 2034
]
9 => [
'items' => [
101 => 0.016526404782576
102 => 0.016656061732766
103 => 0.016737381356467
104 => 0.016785279239554
105 => 0.016958319237149
106 => 0.016938014990651
107 => 0.016957057096678
108 => 0.017213629732245
109 => 0.018511286077849
110 => 0.018581914649623
111 => 0.018234113731022
112 => 0.018373053337933
113 => 0.018106319675415
114 => 0.018285379770024
115 => 0.018407888139121
116 => 0.017854296376173
117 => 0.017821516264752
118 => 0.017553681697526
119 => 0.017697600823028
120 => 0.017468615146204
121 => 0.017524800221717
122 => 0.017367701852454
123 => 0.017650447639155
124 => 0.01796660136294
125 => 0.018046474278857
126 => 0.017836363024532
127 => 0.017684228629394
128 => 0.017417130747717
129 => 0.01786132047761
130 => 0.017991215091067
131 => 0.017860638196503
201 => 0.017830380676871
202 => 0.017773042731843
203 => 0.017842545192963
204 => 0.017990507657106
205 => 0.017920731291454
206 => 0.017966819810269
207 => 0.017791177902821
208 => 0.01816475230618
209 => 0.01875807836429
210 => 0.018759986004586
211 => 0.018690209262813
212 => 0.01866165812344
213 => 0.018733253294906
214 => 0.018772090738439
215 => 0.019003616394649
216 => 0.019252052648153
217 => 0.020411396242024
218 => 0.020085857200053
219 => 0.021114495806194
220 => 0.021928015391646
221 => 0.022171954344422
222 => 0.021947541986082
223 => 0.021179839430718
224 => 0.021142172280834
225 => 0.022289444014206
226 => 0.021965287201154
227 => 0.0219267297797
228 => 0.02151654395922
301 => 0.021759014581626
302 => 0.021705982699676
303 => 0.02162226927961
304 => 0.022084886336511
305 => 0.022950864168919
306 => 0.02281589340265
307 => 0.022715143986743
308 => 0.022273689373955
309 => 0.022539543653311
310 => 0.022444878036535
311 => 0.022851621602487
312 => 0.02261067572449
313 => 0.021962831394478
314 => 0.022066002739356
315 => 0.022050408598129
316 => 0.022371334919553
317 => 0.022275000803743
318 => 0.02203159781591
319 => 0.022947904350832
320 => 0.022888404501219
321 => 0.022972761684411
322 => 0.023009898325284
323 => 0.023567637965959
324 => 0.023796126051065
325 => 0.023847996846632
326 => 0.02406504285558
327 => 0.023842596544204
328 => 0.024732540391239
329 => 0.025324301119853
330 => 0.026011661657868
331 => 0.027016080149002
401 => 0.027393750793059
402 => 0.027325527971609
403 => 0.028087066608317
404 => 0.029455534610429
405 => 0.027602134480833
406 => 0.029553769317705
407 => 0.028935904261059
408 => 0.02747095732667
409 => 0.027376632014685
410 => 0.028368711087037
411 => 0.030569046985442
412 => 0.030017887798895
413 => 0.030569948484424
414 => 0.029925940370324
415 => 0.029893959939333
416 => 0.030538670447775
417 => 0.032045071692091
418 => 0.031329436927523
419 => 0.030303399011671
420 => 0.031061009441818
421 => 0.030404697173689
422 => 0.028925841943358
423 => 0.030017466337852
424 => 0.029287528192927
425 => 0.029500562949262
426 => 0.03103478435979
427 => 0.030850182780629
428 => 0.03108907431771
429 => 0.030667437007643
430 => 0.030273561273939
501 => 0.029538362967386
502 => 0.029320706993654
503 => 0.029380859274352
504 => 0.029320677185171
505 => 0.028909340489475
506 => 0.028820512369203
507 => 0.028672461610434
508 => 0.028718348731271
509 => 0.028439969991009
510 => 0.028965328189867
511 => 0.029062839301015
512 => 0.029445151186906
513 => 0.02948484407517
514 => 0.030549577235507
515 => 0.029963140102908
516 => 0.030356572762002
517 => 0.03032138044184
518 => 0.027502707168845
519 => 0.027891095476499
520 => 0.028495305800244
521 => 0.028223109868385
522 => 0.027838288504775
523 => 0.027527524620843
524 => 0.027056685559449
525 => 0.027719382496698
526 => 0.028590758499219
527 => 0.029506943608584
528 => 0.030607679986659
529 => 0.030362008441057
530 => 0.029486366107652
531 => 0.029525646783071
601 => 0.029768464462138
602 => 0.029453993505434
603 => 0.0293612498811
604 => 0.02975572291233
605 => 0.029758439431297
606 => 0.029396602590525
607 => 0.028994487157449
608 => 0.028992802279102
609 => 0.02892124972176
610 => 0.029938669411321
611 => 0.030498147367846
612 => 0.030562290613918
613 => 0.030493830016319
614 => 0.030520177783231
615 => 0.030194629887584
616 => 0.030938735838802
617 => 0.031621601044092
618 => 0.031438578581787
619 => 0.031164201892616
620 => 0.030945647643919
621 => 0.031387094146548
622 => 0.031367437228687
623 => 0.031615636812242
624 => 0.031604377045462
625 => 0.031520916860771
626 => 0.031438581562413
627 => 0.031765031713642
628 => 0.031671019312717
629 => 0.031576860884566
630 => 0.031388011741977
701 => 0.031413679476907
702 => 0.03113935016274
703 => 0.03101243286955
704 => 0.029103901297153
705 => 0.02859387929794
706 => 0.028754342601348
707 => 0.028807171287257
708 => 0.028585209059589
709 => 0.028903445876647
710 => 0.028853849005805
711 => 0.029046801417054
712 => 0.028926253127525
713 => 0.028931200471377
714 => 0.029285707287274
715 => 0.029388622124109
716 => 0.02933627880747
717 => 0.02937293827222
718 => 0.030217740164389
719 => 0.030097636350567
720 => 0.030033833593231
721 => 0.030051507393049
722 => 0.030267372389255
723 => 0.030327802802401
724 => 0.030071754895532
725 => 0.030192508568606
726 => 0.030706662382635
727 => 0.03088658711896
728 => 0.031460820508535
729 => 0.031216875958459
730 => 0.031664646737796
731 => 0.033040941457172
801 => 0.034140420911359
802 => 0.033129294167378
803 => 0.03514834816713
804 => 0.036720471322031
805 => 0.036660130616838
806 => 0.036385994580917
807 => 0.034596174166119
808 => 0.032949154735702
809 => 0.034326956425384
810 => 0.034330468725239
811 => 0.034212114338183
812 => 0.033477025404957
813 => 0.034186534836705
814 => 0.034242853118837
815 => 0.034211329857083
816 => 0.033647738895486
817 => 0.032787239666147
818 => 0.032955379155815
819 => 0.033230795069845
820 => 0.032709375286808
821 => 0.032542750072189
822 => 0.03285253804791
823 => 0.033850739452572
824 => 0.033662035259208
825 => 0.033657107430105
826 => 0.034464463992349
827 => 0.033886570932234
828 => 0.032957499933237
829 => 0.03272289725305
830 => 0.031890215785686
831 => 0.032465351841104
901 => 0.032486049963843
902 => 0.032171053824039
903 => 0.03298306013394
904 => 0.032975577352843
905 => 0.033746456492904
906 => 0.035220087879718
907 => 0.034784262565641
908 => 0.034277445143028
909 => 0.034332550249389
910 => 0.034936917255175
911 => 0.03457150316712
912 => 0.034702908620942
913 => 0.034936718357283
914 => 0.035077781576386
915 => 0.034312253423
916 => 0.034133772191001
917 => 0.033768662228731
918 => 0.033673411854675
919 => 0.033970786300675
920 => 0.033892438640548
921 => 0.032484310366774
922 => 0.032337153127413
923 => 0.032341666229852
924 => 0.031971632354533
925 => 0.031407241876366
926 => 0.032890426354985
927 => 0.032771305884198
928 => 0.032639806103642
929 => 0.032655914076433
930 => 0.033299714188815
1001 => 0.032926277610949
1002 => 0.033919119958259
1003 => 0.033715021419225
1004 => 0.033505688522799
1005 => 0.033476752340077
1006 => 0.033396177034396
1007 => 0.033119854330467
1008 => 0.032786178061052
1009 => 0.03256585608544
1010 => 0.030040280814179
1011 => 0.03050901289393
1012 => 0.031048246425409
1013 => 0.031234387679633
1014 => 0.0309159801837
1015 => 0.033132426999123
1016 => 0.033537393190513
1017 => 0.0323107241815
1018 => 0.032081264494479
1019 => 0.033147470338003
1020 => 0.032504417875995
1021 => 0.032793984360262
1022 => 0.032168100005674
1023 => 0.033439848693801
1024 => 0.03343016009956
1025 => 0.032935421136131
1026 => 0.033353571120195
1027 => 0.033280907270298
1028 => 0.032722348199076
1029 => 0.033457556012643
1030 => 0.033457920666546
1031 => 0.032981745170799
1101 => 0.032425676439986
1102 => 0.032326264484674
1103 => 0.032251370930463
1104 => 0.032775565136985
1105 => 0.033245556023439
1106 => 0.034120092542509
1107 => 0.034339971801879
1108 => 0.035198175189389
1109 => 0.034687156857291
1110 => 0.034913684665115
1111 => 0.035159612644822
1112 => 0.035277519561996
1113 => 0.035085396567695
1114 => 0.036418539679105
1115 => 0.036531097804158
1116 => 0.036568837569864
1117 => 0.036119309213542
1118 => 0.036518595607378
1119 => 0.036331782726677
1120 => 0.036817817944147
1121 => 0.036894034472255
1122 => 0.036829481784429
1123 => 0.036853674113447
1124 => 0.035716071650419
1125 => 0.03565708096138
1126 => 0.034852738730544
1127 => 0.035180514135007
1128 => 0.034567753727047
1129 => 0.034762066364543
1130 => 0.034847717523672
1201 => 0.034802978218803
1202 => 0.035199046064585
1203 => 0.034862307484355
1204 => 0.033973599006181
1205 => 0.033084648399976
1206 => 0.033073488349239
1207 => 0.032839443345906
1208 => 0.032670271675978
1209 => 0.032702860141294
1210 => 0.032817706143646
1211 => 0.032663596617542
1212 => 0.032696483698488
1213 => 0.033242628367658
1214 => 0.033352153786135
1215 => 0.032979943619808
1216 => 0.031485466092336
1217 => 0.031118717558481
1218 => 0.031382329131676
1219 => 0.031256339778449
1220 => 0.025226305658507
1221 => 0.026642972730227
1222 => 0.025801237261679
1223 => 0.026189147691973
1224 => 0.025329953744929
1225 => 0.025740006130671
1226 => 0.02566428442774
1227 => 0.027942243156839
1228 => 0.027906675964514
1229 => 0.027923700097306
1230 => 0.027111093882998
1231 => 0.028405597647054
]
'min_raw' => 0.016526404782576
'max_raw' => 0.036894034472255
'avg_raw' => 0.026710219627416
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016526'
'max' => '$0.036894'
'avg' => '$0.02671'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025483380856399
'max_diff' => 0.0055814395384095
'year' => 2035
]
10 => [
'items' => [
101 => 0.029043316750078
102 => 0.028925291916453
103 => 0.028954996224331
104 => 0.028444577799902
105 => 0.027928642063374
106 => 0.027356389929624
107 => 0.02841956366163
108 => 0.028301356891612
109 => 0.02857248069258
110 => 0.029262024855014
111 => 0.029363562852255
112 => 0.029500030950245
113 => 0.029451116851577
114 => 0.030616449127757
115 => 0.030475319700002
116 => 0.030815401015185
117 => 0.030115827947822
118 => 0.029324194618015
119 => 0.029474658233568
120 => 0.029460167377439
121 => 0.029275682147077
122 => 0.029109137129998
123 => 0.02883188660033
124 => 0.029709148301558
125 => 0.029673533078556
126 => 0.030250102140789
127 => 0.030148187958546
128 => 0.029467580106899
129 => 0.02949188814947
130 => 0.029655371417805
131 => 0.030221188876134
201 => 0.030389162021556
202 => 0.030311350168024
203 => 0.030495525053714
204 => 0.030641089373949
205 => 0.030513805691188
206 => 0.032315874221547
207 => 0.031567529727962
208 => 0.031932267627188
209 => 0.032019255466993
210 => 0.03179643794449
211 => 0.031844759086623
212 => 0.031917952450233
213 => 0.032362368221338
214 => 0.033528643797459
215 => 0.034045179311017
216 => 0.035599201888968
217 => 0.034002288227137
218 => 0.03390753397913
219 => 0.034187460372405
220 => 0.035099836135658
221 => 0.035839230996678
222 => 0.03608453092879
223 => 0.03611695136428
224 => 0.036577150344155
225 => 0.036840927817216
226 => 0.036521270083563
227 => 0.036250393623852
228 => 0.03528014776759
229 => 0.035392456367344
301 => 0.03616615124857
302 => 0.037259040838702
303 => 0.038196853802818
304 => 0.037868464388866
305 => 0.04037384381052
306 => 0.040622241946619
307 => 0.040587921355884
308 => 0.041153809276518
309 => 0.04003063699513
310 => 0.039550459084399
311 => 0.03630896018902
312 => 0.0372196891596
313 => 0.038543487203574
314 => 0.038368277568466
315 => 0.037406900043709
316 => 0.038196124511756
317 => 0.037935182221289
318 => 0.037729366210292
319 => 0.038672249256067
320 => 0.037635510615736
321 => 0.038533144942573
322 => 0.037381919633567
323 => 0.037869964444048
324 => 0.037592926605547
325 => 0.037772204039537
326 => 0.03672415182367
327 => 0.037289655359323
328 => 0.036700625017384
329 => 0.036700345740308
330 => 0.036687342862863
331 => 0.037380334447993
401 => 0.037402932878705
402 => 0.036890811050242
403 => 0.036817006293913
404 => 0.037089901160697
405 => 0.036770412742972
406 => 0.03691989936279
407 => 0.036774940540402
408 => 0.036742307256183
409 => 0.036482279695427
410 => 0.036370252672647
411 => 0.03641418135486
412 => 0.03626423011568
413 => 0.0361738790701
414 => 0.036669369765794
415 => 0.036404649075123
416 => 0.03662879752332
417 => 0.03637335207681
418 => 0.035487866866923
419 => 0.034978614958881
420 => 0.033306015481927
421 => 0.033780362618738
422 => 0.034094855261191
423 => 0.033990915444736
424 => 0.03421421838985
425 => 0.034227927377089
426 => 0.034155329313328
427 => 0.034071270055881
428 => 0.034030354658125
429 => 0.034335304511646
430 => 0.034512338165756
501 => 0.03412641880523
502 => 0.034036003298644
503 => 0.034426189079328
504 => 0.034664202180142
505 => 0.036421557188543
506 => 0.036291366653339
507 => 0.036618119348099
508 => 0.036581332009098
509 => 0.036923820888993
510 => 0.037483645461022
511 => 0.036345365576675
512 => 0.036542931605841
513 => 0.036494492977955
514 => 0.037023333215919
515 => 0.037024984197417
516 => 0.036707918057229
517 => 0.036879804755636
518 => 0.03678386231605
519 => 0.03695724327178
520 => 0.036289627879367
521 => 0.037102711362697
522 => 0.037563677303803
523 => 0.037570077816342
524 => 0.037788572013975
525 => 0.038010574773099
526 => 0.038436689736874
527 => 0.037998690658034
528 => 0.037210772953552
529 => 0.037267658066857
530 => 0.036805702205006
531 => 0.036813467766503
601 => 0.036772014590635
602 => 0.036896418691865
603 => 0.036316927583738
604 => 0.036452932988545
605 => 0.036262524625368
606 => 0.036542517695245
607 => 0.03624129143657
608 => 0.036494469619382
609 => 0.036603732930094
610 => 0.037006916898892
611 => 0.03618174083656
612 => 0.034499150985957
613 => 0.034852851771984
614 => 0.034329700526853
615 => 0.034378120166367
616 => 0.034475935544114
617 => 0.034158883901636
618 => 0.034219367363575
619 => 0.034217206468699
620 => 0.034198585044067
621 => 0.034116107666743
622 => 0.033996499151972
623 => 0.034472982661262
624 => 0.034553946494381
625 => 0.034733919066108
626 => 0.035269395363004
627 => 0.035215888653544
628 => 0.035303160316646
629 => 0.035112646766103
630 => 0.034386957543571
701 => 0.03442636595975
702 => 0.033934942378513
703 => 0.034721352260265
704 => 0.034535120020162
705 => 0.034415054883456
706 => 0.03438229399851
707 => 0.034919097637574
708 => 0.035079717699748
709 => 0.034979630055813
710 => 0.034774347378078
711 => 0.035168550805704
712 => 0.03527402301283
713 => 0.03529763435034
714 => 0.035996087243083
715 => 0.0353366701082
716 => 0.035495398366609
717 => 0.036733750927736
718 => 0.035610736035766
719 => 0.036205622070263
720 => 0.036176505494512
721 => 0.036480829059915
722 => 0.03615154207961
723 => 0.036155623986378
724 => 0.036425842695791
725 => 0.036046369252621
726 => 0.035952406291545
727 => 0.035822597133794
728 => 0.03610603068077
729 => 0.036275936273586
730 => 0.037645250569773
731 => 0.038529890053429
801 => 0.038491485520373
802 => 0.038842431062233
803 => 0.038684326881332
804 => 0.038173766775429
805 => 0.039045230620034
806 => 0.038769462996005
807 => 0.038792196943872
808 => 0.038791350785197
809 => 0.038974712147152
810 => 0.038844783817385
811 => 0.038588681742544
812 => 0.038758694251607
813 => 0.039263570622939
814 => 0.040830722371053
815 => 0.041707721251296
816 => 0.04077792593727
817 => 0.04141928629443
818 => 0.041034698620195
819 => 0.040964807599295
820 => 0.041367629299749
821 => 0.041771156086266
822 => 0.041745453174459
823 => 0.041452513448778
824 => 0.041287039230811
825 => 0.042540065447186
826 => 0.043463273818667
827 => 0.043400317196999
828 => 0.04367818725045
829 => 0.044494022321577
830 => 0.044568612056103
831 => 0.044559215463978
901 => 0.044374337024322
902 => 0.045177632601418
903 => 0.045847755904473
904 => 0.044331543007193
905 => 0.044908897029793
906 => 0.045168089851723
907 => 0.045548661813361
908 => 0.046190750503911
909 => 0.046888229127462
910 => 0.046986860252296
911 => 0.046916876749293
912 => 0.046456870847829
913 => 0.047220060280369
914 => 0.047667118750957
915 => 0.047933331839441
916 => 0.048608403938201
917 => 0.045169690538351
918 => 0.042735598278792
919 => 0.042355479623744
920 => 0.043128465856213
921 => 0.043332296161265
922 => 0.04325013242088
923 => 0.04051034028476
924 => 0.04234105518516
925 => 0.04431075048711
926 => 0.044386414505494
927 => 0.045372485158037
928 => 0.045693590182907
929 => 0.046487506305438
930 => 0.046437846635814
1001 => 0.046631152577686
1002 => 0.046586714889242
1003 => 0.048057277327469
1004 => 0.049679526077468
1005 => 0.049623352761691
1006 => 0.049390135310302
1007 => 0.049736502995099
1008 => 0.05141083755584
1009 => 0.051256691660151
1010 => 0.051406431267697
1011 => 0.053380566076171
1012 => 0.055947222144589
1013 => 0.054754752712753
1014 => 0.057342068256002
1015 => 0.058970646242774
1016 => 0.061787103472789
1017 => 0.061434469156247
1018 => 0.062530895287773
1019 => 0.060803180132633
1020 => 0.056835996907589
1021 => 0.056208174976459
1022 => 0.057465090381565
1023 => 0.060555094257009
1024 => 0.057367775163138
1025 => 0.058012565664654
1026 => 0.05782686595684
1027 => 0.057816970808584
1028 => 0.058194628371057
1029 => 0.057646816379396
1030 => 0.055414931775873
1031 => 0.056437791337089
1101 => 0.056042816138753
1102 => 0.056481070568659
1103 => 0.058846148976982
1104 => 0.057800491436235
1105 => 0.056698976159378
1106 => 0.058080520762365
1107 => 0.059839701792198
1108 => 0.059729615404903
1109 => 0.059516001801011
1110 => 0.060720130501705
1111 => 0.062708998338645
1112 => 0.063246581323052
1113 => 0.063643414091741
1114 => 0.063698130625999
1115 => 0.064261744934989
1116 => 0.061231048746455
1117 => 0.066040841431456
1118 => 0.066871359760314
1119 => 0.066715256735947
1120 => 0.067638342904919
1121 => 0.067366747537571
1122 => 0.066973248462292
1123 => 0.068436536386172
1124 => 0.066758994862691
1125 => 0.064377935866714
1126 => 0.063071639809514
1127 => 0.064791875833532
1128 => 0.065842363945436
1129 => 0.066536669763812
1130 => 0.066746766284941
1201 => 0.061466313064286
1202 => 0.058620441645714
1203 => 0.060444612597036
1204 => 0.062670227055203
1205 => 0.061218685345766
1206 => 0.061275583032644
1207 => 0.059206066013438
1208 => 0.062853333390463
1209 => 0.062321957211978
1210 => 0.065078737765949
1211 => 0.064420809962197
1212 => 0.066668857486356
1213 => 0.066076871232969
1214 => 0.068534173073276
1215 => 0.069514457306166
1216 => 0.071160507102246
1217 => 0.072371348032871
1218 => 0.07308237698703
1219 => 0.073039689475624
1220 => 0.075857140425221
1221 => 0.074195788034482
1222 => 0.072108737881021
1223 => 0.072070989728303
1224 => 0.073151902576511
1225 => 0.075417199372395
1226 => 0.07600455787284
1227 => 0.076332811145668
1228 => 0.075830079831753
1229 => 0.074026800881805
1230 => 0.073248154174049
1231 => 0.073911583728624
]
'min_raw' => 0.027356389929624
'max_raw' => 0.076332811145668
'avg_raw' => 0.051844600537646
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027356'
'max' => '$0.076332'
'avg' => '$0.051844'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010829985147048
'max_diff' => 0.039438776673413
'year' => 2036
]
11 => [
'items' => [
101 => 0.073100266392531
102 => 0.074500827730067
103 => 0.076424097590263
104 => 0.076026949969566
105 => 0.077354554921858
106 => 0.078728486379366
107 => 0.080693270070725
108 => 0.081206937283376
109 => 0.082056009652873
110 => 0.082929984026829
111 => 0.083210681041474
112 => 0.083746618737599
113 => 0.083743794081395
114 => 0.085358878401437
115 => 0.087140366421441
116 => 0.08781283690745
117 => 0.089359145709789
118 => 0.086711146074907
119 => 0.088719684215992
120 => 0.090531435896222
121 => 0.088371390853298
122 => 0.091348509719022
123 => 0.091464104498282
124 => 0.09320944842466
125 => 0.091440207987838
126 => 0.090389638664069
127 => 0.093422592937472
128 => 0.094890143973207
129 => 0.094448105657917
130 => 0.091084172252437
131 => 0.089126218724557
201 => 0.084001876681065
202 => 0.090071881186684
203 => 0.093028403316912
204 => 0.091076515574363
205 => 0.092060934217175
206 => 0.097431603133541
207 => 0.099476406131832
208 => 0.09905110140244
209 => 0.099122970900595
210 => 0.10022630948267
211 => 0.10511912037526
212 => 0.10218723467396
213 => 0.10442855143694
214 => 0.10561733776637
215 => 0.10672154876091
216 => 0.10400995554777
217 => 0.10048221261869
218 => 0.099364828348478
219 => 0.09088243880587
220 => 0.090440893593026
221 => 0.090193040884868
222 => 0.088630364619392
223 => 0.087402529127781
224 => 0.086426108758242
225 => 0.08386369012477
226 => 0.084728431192979
227 => 0.080644470709556
228 => 0.083257243900177
301 => 0.07673914435796
302 => 0.082167611343092
303 => 0.079213143565192
304 => 0.081196989217896
305 => 0.081190067767303
306 => 0.077537178941838
307 => 0.075430268901154
308 => 0.076772873981243
309 => 0.078212253203223
310 => 0.078445787639336
311 => 0.080311980372274
312 => 0.080832794650358
313 => 0.079254703073269
314 => 0.076604071232808
315 => 0.077219752554871
316 => 0.075417792138814
317 => 0.072259925821079
318 => 0.074527960541532
319 => 0.075302367313542
320 => 0.075644389461043
321 => 0.072538990620948
322 => 0.071563206883901
323 => 0.071043707809916
324 => 0.07620320323848
325 => 0.076485852044959
326 => 0.075039780788498
327 => 0.081576159989806
328 => 0.080096776067347
329 => 0.081749610366595
330 => 0.07716388592816
331 => 0.077339066777205
401 => 0.075168111338556
402 => 0.076383701320905
403 => 0.075524561501675
404 => 0.076285493663026
405 => 0.076741593263098
406 => 0.078912192469322
407 => 0.082192396099346
408 => 0.078587977331017
409 => 0.077017480457428
410 => 0.077991807884993
411 => 0.080586570219964
412 => 0.084517767980886
413 => 0.082190419783692
414 => 0.083223257392672
415 => 0.083448886462487
416 => 0.081732786064989
417 => 0.084581043050362
418 => 0.086107447108022
419 => 0.087673221826366
420 => 0.089032740142293
421 => 0.087047816971735
422 => 0.089171969291791
423 => 0.087460277485187
424 => 0.085924712983216
425 => 0.085927041800712
426 => 0.084963759757608
427 => 0.083097279417745
428 => 0.082753071806128
429 => 0.084543683270388
430 => 0.085979584093187
501 => 0.086097851762454
502 => 0.086892840237204
503 => 0.087363306227528
504 => 0.091974512500207
505 => 0.093829177808978
506 => 0.096097027441525
507 => 0.096980482682404
508 => 0.099639366221216
509 => 0.097492101819662
510 => 0.09702752765946
511 => 0.090577945908478
512 => 0.091634064558889
513 => 0.09332501241849
514 => 0.090605829015868
515 => 0.092330525015089
516 => 0.092671016539391
517 => 0.090513432204355
518 => 0.091665891221414
519 => 0.088605301752392
520 => 0.082259108586145
521 => 0.084588108177512
522 => 0.086303035809544
523 => 0.083855622629582
524 => 0.088242516026693
525 => 0.085679783467962
526 => 0.084867520279701
527 => 0.081698591989561
528 => 0.083194204159272
529 => 0.085217041033908
530 => 0.08396716302541
531 => 0.086560847563171
601 => 0.090234196579039
602 => 0.092852043839463
603 => 0.093053009646179
604 => 0.091369909239872
605 => 0.094067088382383
606 => 0.094086734387859
607 => 0.091044305296806
608 => 0.089180834418852
609 => 0.088757449914604
610 => 0.089815147415636
611 => 0.091099387443618
612 => 0.093124276029876
613 => 0.094347873794213
614 => 0.097538367817495
615 => 0.098401624021563
616 => 0.099350080866906
617 => 0.10061751170554
618 => 0.10213938738992
619 => 0.09880961003293
620 => 0.098941908294805
621 => 0.095841265723878
622 => 0.092527784459719
623 => 0.095042303707945
624 => 0.098329703132523
625 => 0.097575570072271
626 => 0.097490714697452
627 => 0.097633417900979
628 => 0.097064826201233
629 => 0.09449310701627
630 => 0.093201605741396
701 => 0.094867971883099
702 => 0.09575357132599
703 => 0.097127058829525
704 => 0.096957747503911
705 => 0.10049570381123
706 => 0.10187044665001
707 => 0.10151872860329
708 => 0.10158345318845
709 => 0.10407235943178
710 => 0.10684053505698
711 => 0.10943329682292
712 => 0.11207076545294
713 => 0.10889119407729
714 => 0.10727680382144
715 => 0.10894244247981
716 => 0.10805863116212
717 => 0.11313727314906
718 => 0.11348890730126
719 => 0.11856718204458
720 => 0.1233870694857
721 => 0.12035978454119
722 => 0.12321437789195
723 => 0.12630185333922
724 => 0.13225809440183
725 => 0.13025224195503
726 => 0.1287157904165
727 => 0.12726385113666
728 => 0.13028510628913
729 => 0.13417190277705
730 => 0.13500908151327
731 => 0.13636563089284
801 => 0.13493938509119
802 => 0.13665714106346
803 => 0.14272157446581
804 => 0.14108291102826
805 => 0.13875574551865
806 => 0.14354303325542
807 => 0.14527553407725
808 => 0.15743513216258
809 => 0.17278712703324
810 => 0.16643130035015
811 => 0.16248603362671
812 => 0.1634132648897
813 => 0.16901929371864
814 => 0.17081977225204
815 => 0.1659254509361
816 => 0.1676542079665
817 => 0.17717982917163
818 => 0.18229001932967
819 => 0.17534969470495
820 => 0.15620161432262
821 => 0.13854620972658
822 => 0.14322921805868
823 => 0.14269831024449
824 => 0.15293240188396
825 => 0.14104382944721
826 => 0.14124400251711
827 => 0.15168972433359
828 => 0.14890298483796
829 => 0.14438882375367
830 => 0.13857916809816
831 => 0.12783948229085
901 => 0.11832704307302
902 => 0.1369831269631
903 => 0.13617864270188
904 => 0.13501363027373
905 => 0.13760623936506
906 => 0.15019521318761
907 => 0.14990499659447
908 => 0.14805878669871
909 => 0.14945912063289
910 => 0.14414333844449
911 => 0.14551333655255
912 => 0.13854341302028
913 => 0.14169410954659
914 => 0.14437913839139
915 => 0.14491819768452
916 => 0.14613272579698
917 => 0.13575471605226
918 => 0.14041413774528
919 => 0.14315111146116
920 => 0.13078536464086
921 => 0.14290668040543
922 => 0.13557405799159
923 => 0.13308525581204
924 => 0.13643610007205
925 => 0.13513027280512
926 => 0.13400759920176
927 => 0.13338112804111
928 => 0.13584161824648
929 => 0.13572683343747
930 => 0.13170099390093
1001 => 0.12644945033971
1002 => 0.12821204073489
1003 => 0.12757167511995
1004 => 0.12525090752259
1005 => 0.12681482467266
1006 => 0.11992812502408
1007 => 0.10807991621821
1008 => 0.11590720587582
1009 => 0.11560586373846
1010 => 0.11545391336802
1011 => 0.12133590521532
1012 => 0.12077048741984
1013 => 0.11974424858446
1014 => 0.12523205984159
1015 => 0.12322893491126
1016 => 0.12940209395094
1017 => 0.13346813574937
1018 => 0.13243685602661
1019 => 0.13626098799092
1020 => 0.12825264725767
1021 => 0.13091269681039
1022 => 0.13146092933654
1023 => 0.12516434110253
1024 => 0.12086299676382
1025 => 0.12057614613534
1026 => 0.11311820781379
1027 => 0.11710217826679
1028 => 0.12060790739753
1029 => 0.11892893519948
1030 => 0.11839742275944
1031 => 0.1211128045446
1101 => 0.12132381296498
1102 => 0.11651279861866
1103 => 0.11751316084627
1104 => 0.12168483763179
1105 => 0.1174080452947
1106 => 0.10909893639379
1107 => 0.10703816250395
1108 => 0.10676321727945
1109 => 0.10117423504816
1110 => 0.10717587326924
1111 => 0.10455599735183
1112 => 0.112832153984
1113 => 0.10810485770162
1114 => 0.10790107340722
1115 => 0.10759302355757
1116 => 0.10278235567315
1117 => 0.10383558620594
1118 => 0.10733668490849
1119 => 0.10858591636826
1120 => 0.10845561129236
1121 => 0.10731952761483
1122 => 0.10783962090471
1123 => 0.10616421920549
1124 => 0.10557259999503
1125 => 0.10370528702911
1126 => 0.10096085282759
1127 => 0.10134248323591
1128 => 0.095905040962422
1129 => 0.092942433824924
1130 => 0.092122423215799
1201 => 0.091025870758675
1202 => 0.092246281733646
1203 => 0.095889637371639
1204 => 0.091494977491202
1205 => 0.08396064137574
1206 => 0.084413467814164
1207 => 0.085430834375925
1208 => 0.083534978518636
1209 => 0.081740710056835
1210 => 0.08330068091077
1211 => 0.080108283375251
1212 => 0.085816620366233
1213 => 0.085662225848056
1214 => 0.087789940877103
1215 => 0.089120444749873
1216 => 0.086054064078881
1217 => 0.085282877632501
1218 => 0.085722180480829
1219 => 0.078461482957161
1220 => 0.087196586987099
1221 => 0.087272128529483
1222 => 0.086625295980991
1223 => 0.091276469210852
1224 => 0.10109189546317
1225 => 0.097398937282442
1226 => 0.095968912254612
1227 => 0.093250433631366
1228 => 0.096872644989553
1229 => 0.096594515672544
1230 => 0.095336709423617
1231 => 0.094575984279672
]
'min_raw' => 0.071043707809916
'max_raw' => 0.18229001932967
'avg_raw' => 0.12666686356979
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.071043'
'max' => '$0.18229'
'avg' => '$0.126666'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.043687317880291
'max_diff' => 0.105957208184
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022299808083267
]
1 => [
'year' => 2028
'avg' => 0.0038272944351428
]
2 => [
'year' => 2029
'avg' => 0.010455478594102
]
3 => [
'year' => 2030
'avg' => 0.0080663861645841
]
4 => [
'year' => 2031
'avg' => 0.0079221908698538
]
5 => [
'year' => 2032
'avg' => 0.013890093800077
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022299808083267
'min' => '$0.002229'
'max_raw' => 0.013890093800077
'max' => '$0.01389'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013890093800077
]
1 => [
'year' => 2033
'avg' => 0.0357267495553
]
2 => [
'year' => 2034
'avg' => 0.022645330815391
]
3 => [
'year' => 2035
'avg' => 0.026710219627416
]
4 => [
'year' => 2036
'avg' => 0.051844600537646
]
5 => [
'year' => 2037
'avg' => 0.12666686356979
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013890093800077
'min' => '$0.01389'
'max_raw' => 0.12666686356979
'max' => '$0.126666'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12666686356979
]
]
]
]
'prediction_2025_max_price' => '$0.003812'
'last_price' => 0.00369705
'sma_50day_nextmonth' => '$0.003297'
'sma_200day_nextmonth' => '$0.007858'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.00359'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003457'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003285'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003153'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003551'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.005213'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0036077'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0035058'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003363'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003344'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003863'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.00560073'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009652'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006424'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01310046'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003511'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003565'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004277'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006965'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015422'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018331'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.46'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.04
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003310'
'vwma_10_action' => 'BUY'
'hma_9' => '0.003695'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 96.32
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 204.79
'cci_20_action' => 'SELL'
'adx_14' => 18.72
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000018'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -3.68
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 69.99
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0013012'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767694680
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sigma para 2026
A previsão de preço para Sigma em 2026 sugere que o preço médio poderia variar entre $0.001277 na extremidade inferior e $0.003812 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sigma poderia potencialmente ganhar 3.13% até 2026 se SIGMA atingir a meta de preço prevista.
Previsão de preço de Sigma 2027-2032
A previsão de preço de SIGMA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002229 na extremidade inferior e $0.01389 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sigma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001229 | $0.002229 | $0.00323 |
| 2028 | $0.002219 | $0.003827 | $0.005435 |
| 2029 | $0.004874 | $0.010455 | $0.016036 |
| 2030 | $0.004145 | $0.008066 | $0.011986 |
| 2031 | $0.0049016 | $0.007922 | $0.010942 |
| 2032 | $0.007482 | $0.01389 | $0.020298 |
Previsão de preço de Sigma 2032-2037
A previsão de preço de Sigma para 2032-2037 é atualmente estimada entre $0.01389 na extremidade inferior e $0.126666 na extremidade superior. Comparado ao preço atual, Sigma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007482 | $0.01389 | $0.020298 |
| 2033 | $0.017386 | $0.035726 | $0.054066 |
| 2034 | $0.013978 | $0.022645 | $0.031312 |
| 2035 | $0.016526 | $0.02671 | $0.036894 |
| 2036 | $0.027356 | $0.051844 | $0.076332 |
| 2037 | $0.071043 | $0.126666 | $0.18229 |
Sigma Histograma de preços potenciais
Previsão de preço de Sigma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sigma é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de SIGMA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sigma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sigma está projetado para aumentar no próximo mês, alcançando $0.007858 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sigma é esperado para alcançar $0.003297 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 57.46, sugerindo que o mercado de SIGMA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SIGMA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.00359 | BUY |
| SMA 5 | $0.003457 | BUY |
| SMA 10 | $0.003285 | BUY |
| SMA 21 | $0.003153 | BUY |
| SMA 50 | $0.003551 | BUY |
| SMA 100 | $0.005213 | SELL |
| SMA 200 | $0.010335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.0036077 | BUY |
| EMA 5 | $0.0035058 | BUY |
| EMA 10 | $0.003363 | BUY |
| EMA 21 | $0.003344 | BUY |
| EMA 50 | $0.003863 | SELL |
| EMA 100 | $0.00560073 | SELL |
| EMA 200 | $0.009652 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006424 | SELL |
| SMA 50 | $0.01310046 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006965 | SELL |
| EMA 50 | $0.015422 | SELL |
| EMA 100 | $0.018331 | SELL |
| EMA 200 | $0.009165 | SELL |
Osciladores de Sigma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 57.46 | NEUTRAL |
| Stoch RSI (14) | 101.04 | SELL |
| Estocástico Rápido (14) | 96.32 | SELL |
| Índice de Canal de Commodities (20) | 204.79 | SELL |
| Índice Direcional Médio (14) | 18.72 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000018 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -3.68 | SELL |
| Oscilador Ultimate (7, 14, 28) | 69.99 | NEUTRAL |
| VWMA (10) | 0.003310 | BUY |
| Média Móvel de Hull (9) | 0.003695 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0013012 | SELL |
Previsão do preço de Sigma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sigma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sigma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005194 | $0.007299 | $0.010257 | $0.014413 | $0.020253 | $0.028459 |
| Amazon.com stock | $0.007714 | $0.016095 | $0.033585 | $0.070077 | $0.14622 | $0.305098 |
| Apple stock | $0.005243 | $0.007438 | $0.01055 | $0.014965 | $0.021226 | $0.0301086 |
| Netflix stock | $0.005833 | $0.0092041 | $0.014522 | $0.022914 | $0.036155 | $0.057047 |
| Google stock | $0.004787 | $0.0062000025 | $0.008028 | $0.010397 | $0.013464 | $0.017436 |
| Tesla stock | $0.00838 | $0.018998 | $0.043069 | $0.097634 | $0.22133 | $0.501738 |
| Kodak stock | $0.002772 | $0.002079 | $0.001559 | $0.001169 | $0.000876 | $0.000657 |
| Nokia stock | $0.002449 | $0.001622 | $0.001074 | $0.000712 | $0.000471 | $0.000312 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sigma
Você pode fazer perguntas como: 'Devo investir em Sigma agora?', 'Devo comprar SIGMA hoje?', 'Sigma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sigma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sigma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sigma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sigma é de $0.003697 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Sigma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sigma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003793 | $0.003891 | $0.003992 | $0.004096 |
| Se Sigma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003889 | $0.004091 | $0.0043041 | $0.004527 |
| Se Sigma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004177 | $0.00472 | $0.005333 | $0.006027 |
| Se Sigma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004658 | $0.005868 | $0.007394 | $0.009316 |
| Se Sigma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005619 | $0.00854 | $0.012979 | $0.019727 |
| Se Sigma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0085019 | $0.019551 | $0.044962 | $0.103397 |
| Se Sigma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0133068 | $0.047895 | $0.172392 | $0.620494 |
Perguntas Frequentes sobre Sigma
SIGMA é um bom investimento?
A decisão de adquirir Sigma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sigma experimentou uma queda de -2.9447% nas últimas 24 horas, e Sigma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sigma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sigma pode subir?
Parece que o valor médio de Sigma pode potencialmente subir para $0.003812 até o final deste ano. Observando as perspectivas de Sigma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.011986. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sigma na próxima semana?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma aumentará 0.86% na próxima semana e atingirá $0.003728 até 13 de janeiro de 2026.
Qual será o preço de Sigma no próximo mês?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma diminuirá -11.62% no próximo mês e atingirá $0.003267 até 5 de fevereiro de 2026.
Até onde o preço de Sigma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sigma em 2026, espera-se que SIGMA fluctue dentro do intervalo de $0.001277 e $0.003812. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sigma não considera flutuações repentinas e extremas de preço.
Onde estará Sigma em 5 anos?
O futuro de Sigma parece seguir uma tendência de alta, com um preço máximo de $0.011986 projetada após um período de cinco anos. Com base na previsão de Sigma para 2030, o valor de Sigma pode potencialmente atingir seu pico mais alto de aproximadamente $0.011986, enquanto seu pico mais baixo está previsto para cerca de $0.004145.
Quanto será Sigma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sigma, espera-se que o valor de SIGMA em 2026 aumente 3.13% para $0.003812 se o melhor cenário ocorrer. O preço ficará entre $0.003812 e $0.001277 durante 2026.
Quanto será Sigma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sigma, o valor de SIGMA pode diminuir -12.62% para $0.00323 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00323 e $0.001229 ao longo do ano.
Quanto será Sigma em 2028?
Nosso novo modelo experimental de previsão de preços de Sigma sugere que o valor de SIGMA em 2028 pode aumentar 47.02%, alcançando $0.005435 no melhor cenário. O preço é esperado para variar entre $0.005435 e $0.002219 durante o ano.
Quanto será Sigma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sigma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.016036 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.016036 e $0.004874.
Quanto será Sigma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sigma, espera-se que o valor de SIGMA em 2030 aumente 224.23%, alcançando $0.011986 no melhor cenário. O preço está previsto para variar entre $0.011986 e $0.004145 ao longo de 2030.
Quanto será Sigma em 2031?
Nossa simulação experimental indica que o preço de Sigma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.010942 sob condições ideais. O preço provavelmente oscilará entre $0.010942 e $0.0049016 durante o ano.
Quanto será Sigma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sigma, SIGMA poderia ver um 449.04% aumento em valor, atingindo $0.020298 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.020298 e $0.007482 ao longo do ano.
Quanto será Sigma em 2033?
De acordo com nossa previsão experimental de preços de Sigma, espera-se que o valor de SIGMA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.054066. Ao longo do ano, o preço de SIGMA poderia variar entre $0.054066 e $0.017386.
Quanto será Sigma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sigma sugerem que SIGMA pode aumentar 746.96% em 2034, atingindo potencialmente $0.031312 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.031312 e $0.013978.
Quanto será Sigma em 2035?
Com base em nossa previsão experimental para o preço de Sigma, SIGMA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.036894 em 2035. A faixa de preço esperada para o ano está entre $0.036894 e $0.016526.
Quanto será Sigma em 2036?
Nossa recente simulação de previsão de preços de Sigma sugere que o valor de SIGMA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.076332 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.076332 e $0.027356.
Quanto será Sigma em 2037?
De acordo com a simulação experimental, o valor de Sigma poderia aumentar 4830.69% em 2037, com um pico de $0.18229 sob condições favoráveis. O preço é esperado para cair entre $0.18229 e $0.071043 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sigma?
Traders de Sigma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sigma
Médias móveis são ferramentas populares para a previsão de preço de Sigma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SIGMA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SIGMA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SIGMA.
Como ler gráficos de Sigma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sigma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SIGMA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sigma?
A ação de preço de Sigma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SIGMA. A capitalização de mercado de Sigma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SIGMA, grandes detentores de Sigma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sigma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


