Previsão de Preço Sigma - Projeção SIGMA
Previsão de Preço Sigma até $0.003837 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001285 | $0.003837 |
| 2027 | $0.001237 | $0.003251 |
| 2028 | $0.002233 | $0.00547 |
| 2029 | $0.0049066 | $0.01614 |
| 2030 | $0.004172 | $0.012065 |
| 2031 | $0.004933 | $0.011014 |
| 2032 | $0.00753 | $0.02043 |
| 2033 | $0.01750021 | $0.054419 |
| 2034 | $0.014069 | $0.031517 |
| 2035 | $0.016634 | $0.037134 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sigma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.23, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Sigma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sigma'
'name_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_lang' => 'Sigma'
'name_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_with_lang' => 'Sigma'
'name_with_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'image' => '/uploads/coins/sigma.jpg?1722053593'
'price_for_sd' => 0.003721
'ticker' => 'SIGMA'
'marketcap' => '$3.34M'
'low24h' => '$0.003615'
'high24h' => '$0.004703'
'volume24h' => '$1.45M'
'current_supply' => '899.82M'
'max_supply' => '899.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003721'
'change_24h_pct' => '-2.3252%'
'ath_price' => '$0.1721'
'ath_days' => 422
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de nov. de 2024'
'ath_pct' => '-97.84%'
'fdv' => '$3.34M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.18348'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003753'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003288'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001285'
'current_year_max_price_prediction' => '$0.003837'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004172'
'grand_prediction_max_price' => '$0.012065'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0037917045931541
107 => 0.0038058614417161
108 => 0.0038377575443931
109 => 0.0035652088392595
110 => 0.0036875752062549
111 => 0.0037594539826866
112 => 0.0034347030557957
113 => 0.0037530347010158
114 => 0.0035604643726692
115 => 0.0034951031109191
116 => 0.0035831034391742
117 => 0.0035488096256701
118 => 0.0035193258186195
119 => 0.0035028733476892
120 => 0.0035674910765179
121 => 0.0035644765822332
122 => 0.0034587494361087
123 => 0.0033208326839791
124 => 0.0033671220729568
125 => 0.0033503047039759
126 => 0.0032893563893051
127 => 0.0033304281944656
128 => 0.0031495687505037
129 => 0.0028384094774229
130 => 0.0030439708242863
131 => 0.0030360569360398
201 => 0.0030320663947197
202 => 0.0031865400655892
203 => 0.003171690986449
204 => 0.003144739762407
205 => 0.0032888614089402
206 => 0.0032362550692459
207 => 0.0033983754125713
208 => 0.0035051583559717
209 => 0.003478074747459
210 => 0.0035785046218539
211 => 0.0033681884869875
212 => 0.0034380470705713
213 => 0.0034524448278282
214 => 0.0032870829701934
215 => 0.003174120479438
216 => 0.0031665871691713
217 => 0.0029707257773916
218 => 0.0030753533519424
219 => 0.0031674212877639
220 => 0.0031233278912659
221 => 0.0031093692391873
222 => 0.0031806809653943
223 => 0.0031862224972642
224 => 0.003059874983365
225 => 0.00308614663241
226 => 0.0031957037762261
227 => 0.0030833860734805
228 => 0.0028651711240384
301 => 0.002811050799519
302 => 0.0028038301505927
303 => 0.0026570515381591
304 => 0.0028146673783898
305 => 0.0027458638402872
306 => 0.0029632133927604
307 => 0.0028390644940568
308 => 0.0028337126831669
309 => 0.0028256226360669
310 => 0.0026992842209972
311 => 0.0027269443046723
312 => 0.0028188906355582
313 => 0.0028516981222678
314 => 0.0028482760326201
315 => 0.0028184400483757
316 => 0.0028320988091778
317 => 0.0027880991816063
318 => 0.0027725619973378
319 => 0.002723522369947
320 => 0.0026514476652255
321 => 0.0026614700949769
322 => 0.0025186712455511
323 => 0.0024408668534753
324 => 0.0024193316231942
325 => 0.002390533813243
326 => 0.0024225844124562
327 => 0.0025182667143524
328 => 0.0024028535581329
329 => 0.0022049857970861
330 => 0.0022168779866753
331 => 0.0022435962058594
401 => 0.0021938069811685
402 => 0.0021466856584916
403 => 0.0021876538254854
404 => 0.0021038146466853
405 => 0.002253727770071
406 => 0.00224967304021
407 => 0.0023055513820428
408 => 0.0023404932559299
409 => 0.0022599635491862
410 => 0.0022397105457157
411 => 0.0022512475769402
412 => 0.0020605661498537
413 => 0.0022899686413841
414 => 0.002291952523657
415 => 0.0022749653191865
416 => 0.0023971150639191
417 => 0.0026548891247657
418 => 0.0025579041541376
419 => 0.0025203486421242
420 => 0.0024489555863337
421 => 0.0025440825942743
422 => 0.002536778324277
423 => 0.0025037456452869
424 => 0.0024837673779654
425 => 0.0025205779480723
426 => 0.0024792061409646
427 => 0.0024717746275868
428 => 0.0024267477420839
429 => 0.002410675192552
430 => 0.0023987757167453
501 => 0.0023856755631005
502 => 0.0024145712376861
503 => 0.0023490898375324
504 => 0.0022701256881679
505 => 0.0022635606735522
506 => 0.0022816872561082
507 => 0.0022736675926925
508 => 0.0022635222784892
509 => 0.002244152110763
510 => 0.0022384053957768
511 => 0.0022570794315722
512 => 0.0022359975339231
513 => 0.0022671050222947
514 => 0.0022586455067135
515 => 0.0022113913403474
516 => 0.0021524951533222
517 => 0.0021519708537188
518 => 0.0021392817668333
519 => 0.0021231203068676
520 => 0.0021186245584293
521 => 0.0021842036007307
522 => 0.0023199502556791
523 => 0.0022932999391706
524 => 0.0023125575240823
525 => 0.0024072857819155
526 => 0.0024373970465026
527 => 0.0024160247841231
528 => 0.0023867691131942
529 => 0.0023880562142401
530 => 0.0024880316980977
531 => 0.0024942670463935
601 => 0.0025100217599373
602 => 0.0025302710191226
603 => 0.0024194733205226
604 => 0.0023828376525999
605 => 0.0023654776406686
606 => 0.0023120155230905
607 => 0.0023696698334029
608 => 0.0023360771357876
609 => 0.0023406099383859
610 => 0.0023376579447473
611 => 0.0023392699328869
612 => 0.0022536858662977
613 => 0.0022848682019967
614 => 0.0022330215209837
615 => 0.0021636046351703
616 => 0.0021633719254284
617 => 0.0021803616098884
618 => 0.0021702554807652
619 => 0.0021430601471469
620 => 0.002146923115929
621 => 0.0021130794445909
622 => 0.0021510323503889
623 => 0.0021521207039252
624 => 0.0021375067678842
625 => 0.0021959784557578
626 => 0.0022199343539879
627 => 0.0022103151482249
628 => 0.0022192594448688
629 => 0.0022944073801405
630 => 0.0023066597725241
701 => 0.0023121014758732
702 => 0.0023048103142729
703 => 0.0022206330111745
704 => 0.0022243666325165
705 => 0.002196971796406
706 => 0.0021738260466893
707 => 0.0021747517552945
708 => 0.0021866516793857
709 => 0.0022386193458134
710 => 0.0023479822361491
711 => 0.0023521324778941
712 => 0.0023571626919602
713 => 0.0023367022833705
714 => 0.0023305312283601
715 => 0.0023386724428033
716 => 0.0023797433943858
717 => 0.0024853890325106
718 => 0.0024480468081623
719 => 0.0024176869985009
720 => 0.0024443207365199
721 => 0.002440220681314
722 => 0.0024056120892266
723 => 0.0024046407413142
724 => 0.0023382157880622
725 => 0.002313659995268
726 => 0.0022931393368399
727 => 0.0022707313135418
728 => 0.0022574470862069
729 => 0.0022778576969666
730 => 0.0022825258451386
731 => 0.0022378976879961
801 => 0.0022318150350842
802 => 0.0022682593515725
803 => 0.0022522215666671
804 => 0.0022687168261602
805 => 0.0022725438678564
806 => 0.0022719276259991
807 => 0.0022551823366299
808 => 0.0022658552847221
809 => 0.0022406105807252
810 => 0.0022131607567604
811 => 0.0021956494792554
812 => 0.0021803685670983
813 => 0.0021888473052949
814 => 0.0021586221517806
815 => 0.0021489525168592
816 => 0.0022622395300574
817 => 0.0023459258647475
818 => 0.0023447090322977
819 => 0.0023373018777033
820 => 0.0023262963484625
821 => 0.0023789382713726
822 => 0.0023605988780392
823 => 0.0023739423189968
824 => 0.002377338784743
825 => 0.0023876188636066
826 => 0.0023912931081978
827 => 0.0023801869891165
828 => 0.0023429134969814
829 => 0.0022500314984383
830 => 0.0022067946773863
831 => 0.0021925258062729
901 => 0.0021930444526374
902 => 0.0021787378705644
903 => 0.002182951800161
904 => 0.0021772724378201
905 => 0.0021665170995317
906 => 0.0021881831934633
907 => 0.0021906800089553
908 => 0.0021856228837411
909 => 0.0021868140197997
910 => 0.0021449431829527
911 => 0.0021481265317395
912 => 0.0021304012411742
913 => 0.0021270779628748
914 => 0.0020822699718434
915 => 0.002002886120709
916 => 0.0020468724802143
917 => 0.00199374314335
918 => 0.0019736222584387
919 => 0.0020688713981693
920 => 0.0020593110263403
921 => 0.0020429478255627
922 => 0.0020187432412227
923 => 0.002009765525444
924 => 0.0019552197663717
925 => 0.0019519969119354
926 => 0.001979031262991
927 => 0.0019665558401741
928 => 0.001949035621727
929 => 0.0018855791665078
930 => 0.0018142331011312
1001 => 0.0018163865903795
1002 => 0.0018390804463351
1003 => 0.0019050658932094
1004 => 0.0018792842375558
1005 => 0.0018605793505687
1006 => 0.0018570764875028
1007 => 0.0019009221525125
1008 => 0.0019629729544519
1009 => 0.0019920858024134
1010 => 0.0019632358542539
1011 => 0.0019300945871997
1012 => 0.0019321117425634
1013 => 0.0019455309734969
1014 => 0.0019469411449303
1015 => 0.0019253695870553
1016 => 0.001931441854241
1017 => 0.0019222175251262
1018 => 0.0018656078343755
1019 => 0.0018645839445811
1020 => 0.0018506910135163
1021 => 0.0018502703410851
1022 => 0.0018266349995898
1023 => 0.0018233282519312
1024 => 0.0017763988468296
1025 => 0.0018072879233828
1026 => 0.0017865691525802
1027 => 0.0017553410779168
1028 => 0.0017499573460742
1029 => 0.001749795504594
1030 => 0.0017818597548036
1031 => 0.0018069132339504
1101 => 0.0017869295644688
1102 => 0.001782379670295
1103 => 0.0018309606365773
1104 => 0.0018247782657926
1105 => 0.001819424372565
1106 => 0.0019574169857173
1107 => 0.0018481850647094
1108 => 0.0018005537124098
1109 => 0.0017416008689906
1110 => 0.0017607962120739
1111 => 0.0017648409528999
1112 => 0.0016230699915254
1113 => 0.0015655535301523
1114 => 0.0015458160480712
1115 => 0.0015344568480864
1116 => 0.0015396333781593
1117 => 0.0014878618169154
1118 => 0.0015226531622939
1119 => 0.0014778233663979
1120 => 0.0014703075052271
1121 => 0.0015504687336353
1122 => 0.0015616227002732
1123 => 0.0015140364133301
1124 => 0.0015445945130677
1125 => 0.0015335137213135
1126 => 0.0014785918445792
1127 => 0.0014764942328659
1128 => 0.001448936365718
1129 => 0.001405813639886
1130 => 0.0013861053970436
1201 => 0.0013758411730564
1202 => 0.0013800763919193
1203 => 0.0013779349356624
1204 => 0.0013639604850494
1205 => 0.0013787359348136
1206 => 0.0013409907663034
1207 => 0.0013259603360692
1208 => 0.0013191714394357
1209 => 0.001285670429852
1210 => 0.0013389854340662
1211 => 0.0013494891615411
1212 => 0.0013600135846039
1213 => 0.0014516215020369
1214 => 0.0014470450293632
1215 => 0.0014884141135006
1216 => 0.0014868065869639
1217 => 0.0014750074540332
1218 => 0.0014252288530617
1219 => 0.0014450697161907
1220 => 0.0013840026234344
1221 => 0.0014297582414861
1222 => 0.0014088772882076
1223 => 0.0014226983701783
1224 => 0.0013978468185983
1225 => 0.001411600693338
1226 => 0.001351979984988
1227 => 0.0012963070064168
1228 => 0.0013187114381894
1229 => 0.0013430676177838
1230 => 0.0013958780209836
1231 => 0.0013644245805142
]
'min_raw' => 0.001285670429852
'max_raw' => 0.0038377575443931
'avg_raw' => 0.0025617139871225
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001285'
'max' => '$0.003837'
'avg' => '$0.002561'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.002435519570148
'max_diff' => 0.00011656754439308
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013757364270933
102 => 0.0013378436346336
103 => 0.0012596599802483
104 => 0.0012601024912414
105 => 0.0012480756393377
106 => 0.0012376826833438
107 => 0.0013680373865183
108 => 0.0013518257185756
109 => 0.0013259945474396
110 => 0.0013605705964951
111 => 0.001369713052661
112 => 0.0013699733255353
113 => 0.0013951991183891
114 => 0.0014086621285572
115 => 0.0014110350424514
116 => 0.0014507283725462
117 => 0.0014640330532263
118 => 0.0015188331499989
119 => 0.0014075198862053
120 => 0.0014052274627892
121 => 0.0013610571524119
122 => 0.0013330436432657
123 => 0.0013629752613498
124 => 0.0013894905888989
125 => 0.0013618810575501
126 => 0.0013654862794752
127 => 0.0013284227394209
128 => 0.0013416712109887
129 => 0.0013530825794647
130 => 0.0013467818925215
131 => 0.0013373494592108
201 => 0.0013873166344167
202 => 0.0013844972905687
203 => 0.0014310278728608
204 => 0.0014673017891914
205 => 0.001532311131994
206 => 0.0014644704937658
207 => 0.0014619981112667
208 => 0.0014861660467785
209 => 0.0014640293532413
210 => 0.0014780189794241
211 => 0.0015300571869372
212 => 0.0015311566722612
213 => 0.0015127388764771
214 => 0.0015116181519298
215 => 0.0015151554910787
216 => 0.0015358737969609
217 => 0.0015286341842764
218 => 0.0015370120473595
219 => 0.0015474886934312
220 => 0.0015908245435897
221 => 0.0016012726703501
222 => 0.001575889139055
223 => 0.0015781809877236
224 => 0.0015686868502257
225 => 0.0015595156323639
226 => 0.0015801311907684
227 => 0.0016178065289523
228 => 0.0016175721526288
301 => 0.0016263120987835
302 => 0.0016317570128323
303 => 0.0016083834558143
304 => 0.001593168129665
305 => 0.001599002653887
306 => 0.0016083321851773
307 => 0.0015959772126298
308 => 0.0015197165986864
309 => 0.00154284919741
310 => 0.0015389988018561
311 => 0.0015335153703633
312 => 0.0015567753772589
313 => 0.0015545318928506
314 => 0.0014873308247255
315 => 0.0014916328190735
316 => 0.0014875924432505
317 => 0.001500647724118
318 => 0.0014633243252307
319 => 0.0014748047513515
320 => 0.0014820051669922
321 => 0.0014862462671207
322 => 0.0015015680289346
323 => 0.0014997701970288
324 => 0.001501456273179
325 => 0.0015241744011539
326 => 0.0016390748965304
327 => 0.0016453286769801
328 => 0.0016145327748331
329 => 0.0016268351303185
330 => 0.0016032172980159
331 => 0.0016190721070664
401 => 0.0016299195647502
402 => 0.001580901989323
403 => 0.0015779994866277
404 => 0.0015542841751298
405 => 0.0015670274402249
406 => 0.0015467519891854
407 => 0.0015517268756654
408 => 0.0015378166593647
409 => 0.0015628522792094
410 => 0.0015908459923378
411 => 0.0015979183097792
412 => 0.0015793140874149
413 => 0.0015658434043451
414 => 0.0015421933223933
415 => 0.0015815239357555
416 => 0.0015930254056813
417 => 0.0015814635234303
418 => 0.0015787843826806
419 => 0.0015737074158011
420 => 0.0015798614852045
421 => 0.001592962766206
422 => 0.0015867844440284
423 => 0.0015908653346747
424 => 0.0015753131877269
425 => 0.0016083911934342
426 => 0.0016609270271529
427 => 0.0016610959384488
428 => 0.0016549175829677
429 => 0.0016523895330194
430 => 0.0016587289006769
501 => 0.0016621677475767
502 => 0.0016826681001401
503 => 0.0017046657952107
504 => 0.001807319439759
505 => 0.001778494707145
506 => 0.0018695751274809
507 => 0.0019416079146542
508 => 0.0019632073979154
509 => 0.0019433368896493
510 => 0.0018753609542547
511 => 0.0018720257305679
512 => 0.0019736104767471
513 => 0.0019449081330754
514 => 0.0019414940806257
515 => 0.001905174330694
516 => 0.0019266438011922
517 => 0.0019219481130561
518 => 0.0019145357396124
519 => 0.0019554979937466
520 => 0.0020321756767602
521 => 0.0020202247407838
522 => 0.0020113039214654
523 => 0.0019722154880234
524 => 0.0019957554556732
525 => 0.0019873733240715
526 => 0.0020233882808645
527 => 0.0020020538182893
528 => 0.0019446906845925
529 => 0.0019538259527051
530 => 0.0019524451753075
531 => 0.0019808614763073
601 => 0.0019723316080831
602 => 0.0019507795816372
603 => 0.0020319136007756
604 => 0.0020266452088639
605 => 0.0020341145840727
606 => 0.0020374028340377
607 => 0.0020867876817454
608 => 0.0021070190737124
609 => 0.0021116119538893
610 => 0.002130830211506
611 => 0.0021111337861324
612 => 0.00218993353094
613 => 0.0022423307631445
614 => 0.0023031928446869
615 => 0.0023921287040057
616 => 0.0024255694098123
617 => 0.0024195286456244
618 => 0.002486958799149
619 => 0.0026081292861446
620 => 0.0024440206654431
621 => 0.0026168274415286
622 => 0.0025621188113701
623 => 0.0024324056334305
624 => 0.0024240536339891
625 => 0.0025118969040908
626 => 0.0027067248225748
627 => 0.0026579226387145
628 => 0.0027068046454647
629 => 0.00264978118807
630 => 0.0026469494927789
701 => 0.0027040351434178
702 => 0.0028374188777125
703 => 0.0027740532653636
704 => 0.0026832031221759
705 => 0.0027502854541209
706 => 0.0026921725300134
707 => 0.0025612278472158
708 => 0.0026578853206043
709 => 0.0025932532207958
710 => 0.0026121163035513
711 => 0.0027479633640495
712 => 0.0027316178863236
713 => 0.0027527704480513
714 => 0.0027154367302608
715 => 0.0026805611508574
716 => 0.0026154632920066
717 => 0.0025961910252865
718 => 0.0026015171864644
719 => 0.0025961883859055
720 => 0.0025597667321587
721 => 0.0025519014794998
722 => 0.0025387923804836
723 => 0.0025428554384214
724 => 0.002518206497069
725 => 0.0025647241421323
726 => 0.0025733582269681
727 => 0.0026072098897955
728 => 0.0026107244817288
729 => 0.0027050008808549
730 => 0.0026530750244668
731 => 0.0026879113719946
801 => 0.0026847952811793
802 => 0.0024352169113212
803 => 0.002469606608639
804 => 0.0025231061855841
805 => 0.0024990046986873
806 => 0.0024649308350946
807 => 0.0024374143633186
808 => 0.0023957240948741
809 => 0.002454402347119
810 => 0.0025315580090845
811 => 0.0026126812766425
812 => 0.0027101455672063
813 => 0.0026883926721619
814 => 0.0026108592495251
815 => 0.0026143373422264
816 => 0.0026358375427267
817 => 0.0026079928295796
818 => 0.0025997808800792
819 => 0.0026347093469684
820 => 0.0026349498801236
821 => 0.0026029111725018
822 => 0.0025673060120019
823 => 0.0025671568250793
824 => 0.0025608212306734
825 => 0.0026509082762402
826 => 0.0027004470424743
827 => 0.0027061265821873
828 => 0.0027000647641994
829 => 0.002702397717358
830 => 0.0026735722007986
831 => 0.0027394587837119
901 => 0.0027999228277009
902 => 0.002783717172286
903 => 0.0027594225910493
904 => 0.0027400707869088
905 => 0.0027791585022396
906 => 0.0027774179878057
907 => 0.0027993947270244
908 => 0.0027983977351896
909 => 0.0027910077843774
910 => 0.0027837174362044
911 => 0.0028126228426466
912 => 0.0028042985497979
913 => 0.0027959613270231
914 => 0.0027792397503834
915 => 0.0027815124903647
916 => 0.00275722210393
917 => 0.0027459842597129
918 => 0.0025769940460456
919 => 0.0025318343390392
920 => 0.002546042502174
921 => 0.0025507201983928
922 => 0.0025310666360298
923 => 0.0025592447958723
924 => 0.0025548532595089
925 => 0.0025719381585361
926 => 0.002561264255364
927 => 0.0025617023160734
928 => 0.0025930919893864
929 => 0.0026022045450904
930 => 0.002597569825712
1001 => 0.0026008158242957
1002 => 0.0026756184916075
1003 => 0.0026649839443704
1004 => 0.0026593345531051
1005 => 0.0026608994730942
1006 => 0.0026800131583797
1007 => 0.0026853639466911
1008 => 0.0026626922806225
1009 => 0.0026733843694038
1010 => 0.0027189099264065
1011 => 0.002734841294834
1012 => 0.0027856865753642
1013 => 0.0027640865964922
1014 => 0.0028037342925369
1015 => 0.0029255977932828
1016 => 0.0030229507899915
1017 => 0.0029334209509354
1018 => 0.0031121973315616
1019 => 0.0032514003878276
1020 => 0.0032460575426733
1021 => 0.0032217842699886
1022 => 0.0030633052913344
1023 => 0.0029174705723883
1024 => 0.003039467507256
1025 => 0.0030397785025319
1026 => 0.003029298857633
1027 => 0.0029642106832025
1028 => 0.0030270339302496
1029 => 0.0030320206114597
1030 => 0.0030292293960476
1031 => 0.002979326445319
1101 => 0.0029031338631634
1102 => 0.0029180217113373
1103 => 0.0029424083103501
1104 => 0.0028962393908414
1105 => 0.0028814856235849
1106 => 0.0029089156839338
1107 => 0.0029973010536581
1108 => 0.0029805923114933
1109 => 0.0029801559787101
1110 => 0.0030516430633004
1111 => 0.0030004737386121
1112 => 0.0029182094947803
1113 => 0.0028974366882807
1114 => 0.0028237072194462
1115 => 0.0028746324261855
1116 => 0.0028764651337157
1117 => 0.0028485739184276
1118 => 0.0029204727131837
1119 => 0.0029198101531325
1120 => 0.00298806735803
1121 => 0.0031185494975588
1122 => 0.003079959508264
1123 => 0.003035083549293
1124 => 0.0030399628103086
1125 => 0.0030934762606064
1126 => 0.0030611208069631
1127 => 0.0030727560536834
1128 => 0.0030934586492669
1129 => 0.003105949039199
1130 => 0.0030381656354135
1201 => 0.0030223620815361
1202 => 0.0029900335565967
1203 => 0.0029815996478805
1204 => 0.0030079305568869
1205 => 0.0030009932926484
1206 => 0.0028763111017444
1207 => 0.0028632811190697
1208 => 0.0028636807300358
1209 => 0.0028309162190586
1210 => 0.0027809424754346
1211 => 0.0029122704899012
1212 => 0.0029017230124052
1213 => 0.0028900794135595
1214 => 0.0028915056879806
1215 => 0.0029485107279412
1216 => 0.0029154449259405
1217 => 0.0030033557799377
1218 => 0.002985283951198
1219 => 0.0029667486482424
1220 => 0.0029641865047748
1221 => 0.0029570519944947
1222 => 0.0029325851041097
1223 => 0.0029030398637376
1224 => 0.0028835315368791
1225 => 0.0026599054198706
1226 => 0.0027014091264141
1227 => 0.0027491553576105
1228 => 0.0027656371652885
1229 => 0.0027374438927489
1230 => 0.0029336983463496
1231 => 0.0029695559261774
]
'min_raw' => 0.0012376826833438
'max_raw' => 0.0032514003878276
'avg_raw' => 0.0022445415355857
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001237'
'max' => '$0.003251'
'avg' => '$0.002244'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.7987746508244E-5
'max_diff' => -0.00058635715656544
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028609409779469
102 => 0.0028406235558521
103 => 0.0029350303531596
104 => 0.0028780915136216
105 => 0.0029037310695791
106 => 0.0028483123736862
107 => 0.0029609188852294
108 => 0.0029600610122789
109 => 0.0029162545359552
110 => 0.0029532794697702
111 => 0.002946845476381
112 => 0.0028973880725021
113 => 0.0029624867731479
114 => 0.0029625190612912
115 => 0.0029203562802646
116 => 0.0028711193826451
117 => 0.0028623169882743
118 => 0.0028556855665512
119 => 0.0029021001463488
120 => 0.0029437153134607
121 => 0.0030211508221811
122 => 0.0030406199488957
123 => 0.003116609246596
124 => 0.0030713613196672
125 => 0.003091419139616
126 => 0.0031131947405223
127 => 0.0031236347643679
128 => 0.003106623305754
129 => 0.0032246659635253
130 => 0.0032346323805748
131 => 0.0032379740340023
201 => 0.0031981707139613
202 => 0.0032335253782408
203 => 0.0032169841016478
204 => 0.0032600199080437
205 => 0.0032667684719953
206 => 0.0032610526784154
207 => 0.0032631947791325
208 => 0.0031624661948764
209 => 0.0031572428863971
210 => 0.003086022704653
211 => 0.0031150454551467
212 => 0.0030607888141953
213 => 0.0030779941539463
214 => 0.0030855781037701
215 => 0.0030816166787675
216 => 0.0031166863579143
217 => 0.0030868699663774
218 => 0.003008179606843
219 => 0.0029294678081729
220 => 0.0029284796456578
221 => 0.0029077562184466
222 => 0.0028927769762579
223 => 0.0028956625097206
224 => 0.0029058315060092
225 => 0.0028921859357074
226 => 0.0028950979099793
227 => 0.0029434560852755
228 => 0.0029531539724564
229 => 0.0029201967626065
301 => 0.0027878688093564
302 => 0.0027553951977093
303 => 0.0027787365857815
304 => 0.0027675809056609
305 => 0.0022336537917018
306 => 0.0023590920472736
307 => 0.0022845608952935
308 => 0.0023189082791394
309 => 0.0022428312727159
310 => 0.0022791392077187
311 => 0.0022724344578772
312 => 0.0024741354608489
313 => 0.0024709861771182
314 => 0.0024724935725837
315 => 0.0024005416595164
316 => 0.0025151630107399
317 => 0.0025716296100032
318 => 0.0025611791452894
319 => 0.0025638093021114
320 => 0.0025186144937826
321 => 0.0024729311571193
322 => 0.0024222613061445
323 => 0.0025163996262727
324 => 0.0025059330520692
325 => 0.0025299396075376
326 => 0.0025909950372868
327 => 0.0025999856812444
328 => 0.0026120691978975
329 => 0.0026077381173406
330 => 0.0027109220275223
331 => 0.00269842577517
401 => 0.002728538147922
402 => 0.0026665947125399
403 => 0.0025964998356801
404 => 0.002609822580197
405 => 0.0026085394927653
406 => 0.0025922043171003
407 => 0.002577457650905
408 => 0.0025529086065372
409 => 0.0026305854154917
410 => 0.0026274318789027
411 => 0.002678483970694
412 => 0.0026694600175763
413 => 0.0026091958501206
414 => 0.0026113481966509
415 => 0.0026258237614498
416 => 0.0026759238564981
417 => 0.002690796975783
418 => 0.0026839071543389
419 => 0.0027002148506511
420 => 0.0027131037888979
421 => 0.0027018335028533
422 => 0.002861396986315
423 => 0.0027951351032545
424 => 0.002827430684011
425 => 0.0028351329897248
426 => 0.0028154036956009
427 => 0.0028196822730433
428 => 0.002826163152026
429 => 0.0028655137801227
430 => 0.0029687812144445
501 => 0.0030145176581404
502 => 0.003152118005596
503 => 0.0030107198831735
504 => 0.0030023299037526
505 => 0.0030271158814617
506 => 0.0031079018518942
507 => 0.0031733712930893
508 => 0.0031950912837564
509 => 0.003197961939081
510 => 0.0032387100854902
511 => 0.003262066163104
512 => 0.0032337621887335
513 => 0.0032097775340041
514 => 0.0031238674778485
515 => 0.0031338118007738
516 => 0.0032023183244188
517 => 0.0032990878240814
518 => 0.0033821261219424
519 => 0.0033530490042083
520 => 0.0035748868872731
521 => 0.0035968812072525
522 => 0.0035938423033929
523 => 0.0036439486374995
524 => 0.0035444977682753
525 => 0.003501980594912
526 => 0.003214963288594
527 => 0.0032956034443856
528 => 0.0034128186466589
529 => 0.0033973047751036
530 => 0.0033121799620414
531 => 0.0033820615471384
601 => 0.0033589565097061
602 => 0.0033407326080544
603 => 0.0034242198343981
604 => 0.0033324221995669
605 => 0.00341190289503
606 => 0.0033099680809761
607 => 0.0033531818260329
608 => 0.003328651614325
609 => 0.0033445256676097
610 => 0.0032517262764676
611 => 0.00330179857535
612 => 0.0032496431042117
613 => 0.0032496183757275
614 => 0.0032484670408114
615 => 0.0033098277213129
616 => 0.0033118286909011
617 => 0.0032664830552997
618 => 0.0032599480407776
619 => 0.0032841114146056
620 => 0.0032558224322506
621 => 0.0032690586690458
622 => 0.0032562233443792
623 => 0.0032533338424434
624 => 0.0032303097994111
625 => 0.0032203904086135
626 => 0.0032242800573364
627 => 0.0032110026809937
628 => 0.0032030025814835
629 => 0.0032468756196593
630 => 0.0032234360251952
701 => 0.0032432831656365
702 => 0.0032206648441949
703 => 0.0031422598877445
704 => 0.0030971683681725
705 => 0.002949068673581
706 => 0.00299106956325
707 => 0.0030189161965537
708 => 0.0030097128844129
709 => 0.0030294851601003
710 => 0.0030306990172437
711 => 0.0030242708488633
712 => 0.0030168278533781
713 => 0.0030132050147994
714 => 0.0030402066854291
715 => 0.0030558820640642
716 => 0.0030217109787456
717 => 0.0030137051715597
718 => 0.0030482540254542
719 => 0.0030693288063715
720 => 0.0032249331477689
721 => 0.0032134054755628
722 => 0.0032423376706087
723 => 0.0032390803494473
724 => 0.0032694058991155
725 => 0.0033189753562896
726 => 0.0032181867900165
727 => 0.0032356802001151
728 => 0.0032313912199408
729 => 0.0032782171808533
730 => 0.003278363366392
731 => 0.0032502888636947
801 => 0.0032655085070637
802 => 0.0032570133196642
803 => 0.0032723652714886
804 => 0.0032132515164724
805 => 0.0032852456891465
806 => 0.0033260617458508
807 => 0.0033266284768377
808 => 0.0033459749637793
809 => 0.0033656321149849
810 => 0.0034033623049469
811 => 0.0033645798404649
812 => 0.0032948139622586
813 => 0.0032998508333227
814 => 0.0032589471244567
815 => 0.0032596347231926
816 => 0.0032559642672523
817 => 0.0032669795818281
818 => 0.0032156687585769
819 => 0.0032277113062354
820 => 0.0032108516689925
821 => 0.0032356435505564
822 => 0.0032089715842384
823 => 0.0032313891516647
824 => 0.0032410638306117
825 => 0.0032767636042071
826 => 0.0032036986986518
827 => 0.0030547144101652
828 => 0.003086032713865
829 => 0.0030397104826933
830 => 0.0030439977815494
831 => 0.0030526588075573
901 => 0.0030245855885544
902 => 0.0030299410740513
903 => 0.0030297497384234
904 => 0.0030281009113498
905 => 0.003020797982848
906 => 0.00301020729168
907 => 0.0030523973456505
908 => 0.0030595662579473
909 => 0.0030755018619426
910 => 0.0031229154102093
911 => 0.003118177678649
912 => 0.0031259051153905
913 => 0.0031090361643716
914 => 0.0030447802838059
915 => 0.003048269687265
916 => 0.0030047567702163
917 => 0.0030743891388233
918 => 0.0030578992748348
919 => 0.0030472681522485
920 => 0.0030443673519542
921 => 0.0030918984292362
922 => 0.0031061204725173
923 => 0.0030972582495504
924 => 0.0030790815716927
925 => 0.0031139861666318
926 => 0.0031233251637308
927 => 0.0031254158207724
928 => 0.0031872600707121
929 => 0.0031288722273401
930 => 0.003142926761565
1001 => 0.0032525762255439
1002 => 0.0031531392923067
1003 => 0.0032058132535507
1004 => 0.0032032351372499
1005 => 0.0032301813534326
1006 => 0.0032010247610218
1007 => 0.0032013861919286
1008 => 0.0032253126064041
1009 => 0.0031917122724248
1010 => 0.003183392357209
1011 => 0.0031718984539267
1012 => 0.0031969949712476
1013 => 0.0032120391983636
1014 => 0.0033332846201512
1015 => 0.0034116146920891
1016 => 0.0034082141770854
1017 => 0.0034392885187217
1018 => 0.0034252892432062
1019 => 0.0033800818897443
1020 => 0.0034572453296544
1021 => 0.0034328275886114
1022 => 0.0034348405575154
1023 => 0.0034347656347122
1024 => 0.0034510012978699
1025 => 0.003439496842546
1026 => 0.0034168203801946
1027 => 0.0034318740741696
1028 => 0.0034765781634815
1029 => 0.0036153410283945
1030 => 0.0036929945659633
1031 => 0.0036106661879282
1101 => 0.0036674552006759
1102 => 0.0036334020290215
1103 => 0.0036272135547378
1104 => 0.0036628812514184
1105 => 0.0036986113796805
1106 => 0.0036963355249758
1107 => 0.0036703972866199
1108 => 0.0036557454339311
1109 => 0.0037666941712214
1110 => 0.0038484393108944
1111 => 0.003842864840395
1112 => 0.0038674687402642
1113 => 0.0039397065512499
1114 => 0.0039463110713727
1115 => 0.0039454790536404
1116 => 0.0039291090614056
1117 => 0.0040002365675861
1118 => 0.0040595723846114
1119 => 0.0039253198811778
1120 => 0.003976441476991
1121 => 0.0039993916083865
1122 => 0.0040330892102722
1123 => 0.0040899427130272
1124 => 0.0041517006966661
1125 => 0.0041604339526944
1126 => 0.0041542372896175
1127 => 0.004113506239264
1128 => 0.0041810825618876
1129 => 0.0042206671868207
1130 => 0.0042442389250904
1201 => 0.0043040129313789
1202 => 0.0039995333405848
1203 => 0.0037840075526031
1204 => 0.0037503500885797
1205 => 0.0038187938651858
1206 => 0.0038368419432479
1207 => 0.0038295667856114
1208 => 0.0035869729164907
1209 => 0.0037490728820647
1210 => 0.0039234788152702
1211 => 0.0039301784574551
1212 => 0.0040174897142738
1213 => 0.0040459218385033
1214 => 0.0041162188443905
1215 => 0.0041118217475324
1216 => 0.0041289379497962
1217 => 0.0041250032313071
1218 => 0.004255213631932
1219 => 0.0043988550402528
1220 => 0.0043938811950344
1221 => 0.0043732310431002
1222 => 0.0044039000400965
1223 => 0.0045521533670325
1224 => 0.0045385045763994
1225 => 0.0045517632138982
1226 => 0.004726562241547
1227 => 0.0049538258423622
1228 => 0.0048482390828911
1229 => 0.0050773319691718
1230 => 0.0052215337973935
1231 => 0.0054709159485555
]
'min_raw' => 0.0022336537917018
'max_raw' => 0.0054709159485555
'avg_raw' => 0.0038522848701286
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002233'
'max' => '$0.00547'
'avg' => '$0.003852'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00099597110835799
'max_diff' => 0.0022195155607278
'year' => 2028
]
3 => [
'items' => [
101 => 0.005439692074997
102 => 0.0055367747163936
103 => 0.0053837948247083
104 => 0.0050325220710616
105 => 0.004976931813179
106 => 0.0050882249172296
107 => 0.0053618281537158
108 => 0.0050796081776414
109 => 0.0051367009112372
110 => 0.0051202582001208
111 => 0.0051193820379224
112 => 0.005152821585425
113 => 0.005104315777683
114 => 0.0049066943909137
115 => 0.0049972631078799
116 => 0.0049622901767923
117 => 0.0050010952512387
118 => 0.0052105102335964
119 => 0.0051179228780664
120 => 0.0050203896202016
121 => 0.0051427179699266
122 => 0.0052984839957082
123 => 0.0052887364377533
124 => 0.0052698221011575
125 => 0.0053764412262253
126 => 0.0055525447843647
127 => 0.0056001448684884
128 => 0.0056352822774476
129 => 0.0056401271324917
130 => 0.0056900321505064
131 => 0.0054216802909573
201 => 0.0058475615838262
202 => 0.0059210995183714
203 => 0.005907277434512
204 => 0.0059890117538096
205 => 0.0059649634436727
206 => 0.0059301212153486
207 => 0.0060596874968236
208 => 0.0059111502105723
209 => 0.0057003202330629
210 => 0.0055846547376571
211 => 0.0057369723924768
212 => 0.0058299874691216
213 => 0.0058914645179138
214 => 0.0059100674357329
215 => 0.0054425116819143
216 => 0.0051905250624371
217 => 0.0053520455964895
218 => 0.0055491117955853
219 => 0.0054205855782712
220 => 0.0054256235626576
221 => 0.0052423789528635
222 => 0.0055653248774997
223 => 0.0055182743726829
224 => 0.0057623724749031
225 => 0.0057041165037986
226 => 0.0059031690303254
227 => 0.0058507518291143
228 => 0.0060683327007354
301 => 0.006155131601192
302 => 0.0063008804642287
303 => 0.0064080939211831
304 => 0.0064710517137734
305 => 0.006467271964055
306 => 0.0067167421037454
307 => 0.0065696382781928
308 => 0.006384841203589
309 => 0.0063814988075368
310 => 0.0064772078310688
311 => 0.0066777876879037
312 => 0.0067297951264628
313 => 0.0067588601896321
314 => 0.0067143460336262
315 => 0.006554675374015
316 => 0.0064857303927436
317 => 0.0065444735143153
318 => 0.006472635724487
319 => 0.0065966479038544
320 => 0.0067669431136979
321 => 0.0067317778262855
322 => 0.0068493301098307
323 => 0.0069709843564392
324 => 0.0071449553929235
325 => 0.0071904378639893
326 => 0.0072656186591176
327 => 0.0073430043929093
328 => 0.0073678586049992
329 => 0.0074153130076879
330 => 0.0074150628995616
331 => 0.0075580699361136
401 => 0.0077158111259898
402 => 0.0077753547734512
403 => 0.0079122721075326
404 => 0.0076778059710738
405 => 0.0078556512289306
406 => 0.0080160721032731
407 => 0.0078248117235057
408 => 0.0080884195990619
409 => 0.0080986548955215
410 => 0.0082531957201572
411 => 0.0080965389879493
412 => 0.0080035167204303
413 => 0.0082720685212588
414 => 0.0084020122783773
415 => 0.0083628721612159
416 => 0.0080650139370312
417 => 0.0078916476748156
418 => 0.0074379147267426
419 => 0.0079753810035397
420 => 0.0082371651488613
421 => 0.0080643359793373
422 => 0.0081515009595728
423 => 0.008627044828398
424 => 0.0088081011444613
425 => 0.0087704426963994
426 => 0.008776806354211
427 => 0.0088745010559542
428 => 0.0093077331649384
429 => 0.0090481304429934
430 => 0.0092465869967919
501 => 0.0093518476373383
502 => 0.009449619586517
503 => 0.009209522580476
504 => 0.008897159903342
505 => 0.0087982215314005
506 => 0.0080471515245187
507 => 0.0080080550689288
508 => 0.0079861090436624
509 => 0.0078477424586842
510 => 0.0077390242246887
511 => 0.0076525674485662
512 => 0.0074256790498421
513 => 0.0075022472240327
514 => 0.0071406344717556
515 => 0.0073719814958934
516 => 0.0067948388118139
517 => 0.0072755003890028
518 => 0.007013898145539
519 => 0.0071895570162552
520 => 0.0071889441590033
521 => 0.0068655004853192
522 => 0.0066789449244355
523 => 0.0067978253886816
524 => 0.0069252746830965
525 => 0.0069459529023244
526 => 0.0071111942393003
527 => 0.0071573095445996
528 => 0.0070175780166249
529 => 0.0067828788125085
530 => 0.0068373940847058
531 => 0.0066778401741844
601 => 0.0063982280831481
602 => 0.0065990503684891
603 => 0.0066676199262371
604 => 0.0066979041492602
605 => 0.0064229377713916
606 => 0.0063365373656548
607 => 0.0062905385146102
608 => 0.0067473841060055
609 => 0.0067724111387728
610 => 0.0066443693006697
611 => 0.0072231305503209
612 => 0.0070921390546769
613 => 0.0072384886490069
614 => 0.0068324473951559
615 => 0.0068479587178601
616 => 0.0066557322811873
617 => 0.0067633662411489
618 => 0.0066872940274525
619 => 0.0067546704808436
620 => 0.0067950556492026
621 => 0.0069872505434087
622 => 0.0072776949459677
623 => 0.0069585430353492
624 => 0.0068194839775532
625 => 0.006905755434912
626 => 0.0071355076945783
627 => 0.0074835941287744
628 => 0.007277519953838
629 => 0.0073689721733083
630 => 0.0073889504148366
701 => 0.007236998947519
702 => 0.0074891967961158
703 => 0.0076243516720304
704 => 0.0077629926083579
705 => 0.0078833706487403
706 => 0.0077076163696092
707 => 0.0078956986416658
708 => 0.0077441375313786
709 => 0.0076081715473514
710 => 0.0076083777516248
711 => 0.0075230843036985
712 => 0.0073578175006751
713 => 0.00732733976655
714 => 0.0074858887883826
715 => 0.0076130300892441
716 => 0.0076235020557489
717 => 0.0076938940126617
718 => 0.0077355512476679
719 => 0.0081438487809936
720 => 0.0083080694265116
721 => 0.0085088753233132
722 => 0.0085871005369176
723 => 0.0088225303845758
724 => 0.0086324016619145
725 => 0.008591266116801
726 => 0.0080201903148984
727 => 0.0081137039454677
728 => 0.0082634282907324
729 => 0.0080226592142049
730 => 0.0081753717758595
731 => 0.0082055204704244
801 => 0.008014477973116
802 => 0.0081165220253874
803 => 0.0078455232765073
804 => 0.0072836019781392
805 => 0.0074898223751546
806 => 0.007641670000393
807 => 0.0074249647165006
808 => 0.007813400550225
809 => 0.0075864843551064
810 => 0.0075145628151521
811 => 0.0072339712459099
812 => 0.0073663996656323
813 => 0.007545510999499
814 => 0.0074348410190969
815 => 0.0076644978456125
816 => 0.0079897531591971
817 => 0.0082215494649463
818 => 0.0082393439070755
819 => 0.0080903144116252
820 => 0.0083291351291779
821 => 0.0083308746773788
822 => 0.008061483932368
823 => 0.0078964836010229
824 => 0.0078589951785776
825 => 0.0079526486078841
826 => 0.0080663611604389
827 => 0.0082456541623432
828 => 0.0083539971683635
829 => 0.0086364982673741
830 => 0.0087129349648251
831 => 0.0087969157211651
901 => 0.0089091399103415
902 => 0.0090438938231392
903 => 0.0087490599334823
904 => 0.0087607742335575
905 => 0.0084862289977621
906 => 0.0081928380395452
907 => 0.0084154852051325
908 => 0.0087065667566268
909 => 0.0086397923270975
910 => 0.0086322788396976
911 => 0.0086449144414366
912 => 0.0085945687022205
913 => 0.0083668567896462
914 => 0.0082525012927033
915 => 0.0084000490589583
916 => 0.0084784641301272
917 => 0.0086000790669974
918 => 0.0085850874590483
919 => 0.0088983544759352
920 => 0.0090200805659946
921 => 0.0089889378232043
922 => 0.0089946688373697
923 => 0.0092150481090263
924 => 0.0094601551835624
925 => 0.0096897303035927
926 => 0.0099232639761684
927 => 0.0096417300189041
928 => 0.0094987844380057
929 => 0.0096462677895217
930 => 0.0095680110472288
1001 => 0.010017697500901
1002 => 0.010048832815282
1003 => 0.010498486751506
1004 => 0.010925261880776
1005 => 0.010657212068552
1006 => 0.010909970968251
1007 => 0.01118335032601
1008 => 0.011710743461331
1009 => 0.011533136007269
1010 => 0.011397091480921
1011 => 0.011268530060885
1012 => 0.01153604596743
1013 => 0.011880200907528
1014 => 0.011954328585351
1015 => 0.012074443742375
1016 => 0.011948157341746
1017 => 0.012100255401313
1018 => 0.012637228386856
1019 => 0.01249213354617
1020 => 0.012286075547238
1021 => 0.01270996414789
1022 => 0.012863367784641
1023 => 0.013940034845467
1024 => 0.015299371484658
1025 => 0.014736597190148
1026 => 0.014387265024932
1027 => 0.014469366370027
1028 => 0.014965750094211
1029 => 0.015125172791987
1030 => 0.014691806943133
1031 => 0.014844879087273
1101 => 0.015688321651205
1102 => 0.016140801525878
1103 => 0.015526273079918
1104 => 0.013830813470065
1105 => 0.012267522278963
1106 => 0.012682177498763
1107 => 0.012635168465087
1108 => 0.013541342278431
1109 => 0.012488673082206
1110 => 0.01250639733175
1111 => 0.013431309859898
1112 => 0.013184559054403
1113 => 0.012784854350957
1114 => 0.012270440565638
1115 => 0.01131949910596
1116 => 0.010477223736159
1117 => 0.012129119700772
1118 => 0.012057886943
1119 => 0.011954731353643
1120 => 0.012184292955157
1121 => 0.01329897892991
1122 => 0.013273281810305
1123 => 0.013109809846167
1124 => 0.01323380189019
1125 => 0.012763117946147
1126 => 0.012884423915801
1127 => 0.012267274645651
1128 => 0.012546251890189
1129 => 0.01278399676418
1130 => 0.012831727567506
1201 => 0.012939267504597
1202 => 0.012020350516496
1203 => 0.012432917266168
1204 => 0.012675261579323
1205 => 0.011580341155925
1206 => 0.01265361852299
1207 => 0.012004354216139
1208 => 0.011783984158771
1209 => 0.012080683409469
1210 => 0.011965059422923
1211 => 0.011865652708958
1212 => 0.011810182054541
1213 => 0.012028045238753
1214 => 0.012017881660807
1215 => 0.011661415206015
1216 => 0.01119641924717
1217 => 0.01135248715393
1218 => 0.011295786220259
1219 => 0.011090294722072
1220 => 0.011228771180712
1221 => 0.010618990938191
1222 => 0.0095698957245527
1223 => 0.010262960157338
1224 => 0.010236277930584
1225 => 0.010222823541913
1226 => 0.010743642308257
1227 => 0.010693577601206
1228 => 0.010602709667674
1229 => 0.011088625861213
1230 => 0.010911259914076
1231 => 0.011457859970478
]
'min_raw' => 0.0049066943909137
'max_raw' => 0.016140801525878
'avg_raw' => 0.010523747958396
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0049066'
'max' => '$0.01614'
'avg' => '$0.010523'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.002673040599212
'max_diff' => 0.010669885577323
'year' => 2029
]
4 => [
'items' => [
101 => 0.0118178861195
102 => 0.011726571842482
103 => 0.012065178175795
104 => 0.011356082643289
105 => 0.011591615735212
106 => 0.011640158779023
107 => 0.011082629730811
108 => 0.01070176880644
109 => 0.010676369724917
110 => 0.010016009367926
111 => 0.010368768540388
112 => 0.010679182013988
113 => 0.010530518049193
114 => 0.010483455479148
115 => 0.01072388794288
116 => 0.010742571604477
117 => 0.010316582140064
118 => 0.010405158839048
119 => 0.010774538398459
120 => 0.010395851421881
121 => 0.0096601244845553
122 => 0.0094776540318779
123 => 0.0094533091098931
124 => 0.0089584347703178
125 => 0.0094898475800422
126 => 0.0092578716476196
127 => 0.0099906808386442
128 => 0.0095721041588655
129 => 0.0095540601547988
130 => 0.0095267839961722
131 => 0.0091008252090982
201 => 0.0091940831123743
202 => 0.0095040865864437
203 => 0.0096146993184307
204 => 0.0096031615042611
205 => 0.0095025674002989
206 => 0.0095486188659676
207 => 0.0094002710496545
208 => 0.0093478863481215
209 => 0.0091825458205361
210 => 0.0089395409214721
211 => 0.0089733322431227
212 => 0.0084918759523863
213 => 0.0082295530123738
214 => 0.0081569454799391
215 => 0.0080598516530898
216 => 0.0081679124860385
217 => 0.0084905120472064
218 => 0.0081013885331231
219 => 0.0074342635620681
220 => 0.0074743589095541
221 => 0.0075644412509398
222 => 0.007396573403722
223 => 0.0072377005744108
224 => 0.0073758276097368
225 => 0.0070931579649477
226 => 0.0075986005270423
227 => 0.0075849297222241
228 => 0.0077733274530146
301 => 0.0078911364203885
302 => 0.0076196248916977
303 => 0.0075513404764772
304 => 0.0075902383827405
305 => 0.0069473426383662
306 => 0.0077207891549313
307 => 0.0077274779525246
308 => 0.0076702044066438
309 => 0.0080820407992326
310 => 0.008951144042587
311 => 0.0086241524428401
312 => 0.0084975314120447
313 => 0.0082568247399432
314 => 0.0085775520887705
315 => 0.0085529252325066
316 => 0.0084415532490234
317 => 0.008374195125911
318 => 0.0084983045330584
319 => 0.0083588165969075
320 => 0.0083337607307026
321 => 0.0081819494425525
322 => 0.0081277597196564
323 => 0.0080876398061792
324 => 0.008043471723542
325 => 0.0081408955078392
326 => 0.0079201203954557
327 => 0.0076538872527723
328 => 0.0076317528476407
329 => 0.0076928678862859
330 => 0.0076658290311649
331 => 0.007631623396005
401 => 0.0075663155231343
402 => 0.0075469400723355
403 => 0.0076099008877993
404 => 0.0075388217979843
405 => 0.0076437028668847
406 => 0.007615181019478
407 => 0.0074558602983944
408 => 0.0072572876918383
409 => 0.0072555199791199
410 => 0.0072127378367617
411 => 0.0071582483461305
412 => 0.0071430906163875
413 => 0.0073641949360893
414 => 0.0078218742607765
415 => 0.0077320208580024
416 => 0.0077969491500538
417 => 0.0081163320850543
418 => 0.008217854315911
419 => 0.0081457962411347
420 => 0.0080471587040325
421 => 0.008051498255071
422 => 0.0083885725789624
423 => 0.0084095954910797
424 => 0.0084627136077517
425 => 0.0085309853988532
426 => 0.0081574232223749
427 => 0.0080339035101527
428 => 0.0079753730178892
429 => 0.0077951217558686
430 => 0.0079895072883825
501 => 0.0078762471630051
502 => 0.0078915298234353
503 => 0.0078815769707813
504 => 0.0078870119013393
505 => 0.0075984592455453
506 => 0.0077035926674355
507 => 0.0075287879625805
508 => 0.0072947440855285
509 => 0.0072939594883863
510 => 0.007351241395725
511 => 0.0073171678757987
512 => 0.0072254769097872
513 => 0.00723850117874
514 => 0.0071243948779339
515 => 0.0072523557496191
516 => 0.0072560252095531
517 => 0.0072067533038784
518 => 0.0074038946819071
519 => 0.0074846636653375
520 => 0.007452231841516
521 => 0.0074823881621215
522 => 0.0077357546725515
523 => 0.0077770644689074
524 => 0.0077954115516767
525 => 0.0077708288912885
526 => 0.0074870192368207
527 => 0.0074996074018482
528 => 0.0074072437992553
529 => 0.0073292062881009
530 => 0.0073323273792942
531 => 0.0073724488041939
601 => 0.0075476614198214
602 => 0.0079163860400615
603 => 0.0079303788698654
604 => 0.0079473385877874
605 => 0.0078783548917273
606 => 0.0078575487489106
607 => 0.007884997421807
608 => 0.0080234710025497
609 => 0.0083796626474303
610 => 0.0082537607308894
611 => 0.0081514005129616
612 => 0.0082411980202009
613 => 0.0082273743978175
614 => 0.0081106891133001
615 => 0.0081074141459961
616 => 0.007883457778465
617 => 0.0078006662086285
618 => 0.0077314793760315
619 => 0.0076559291610037
620 => 0.007611140461069
621 => 0.0076799562602687
622 => 0.0076956952477503
623 => 0.0075452283001058
624 => 0.0075247202111363
625 => 0.0076475947686375
626 => 0.0075935222571064
627 => 0.0076491371761499
628 => 0.0076620403144239
629 => 0.0076599626119773
630 => 0.0076035046997505
701 => 0.0076394892894047
702 => 0.00755437500735
703 => 0.0074618260093674
704 => 0.0074027855146608
705 => 0.0073512648524442
706 => 0.0073798515102404
707 => 0.0072779452949142
708 => 0.0072453434456644
709 => 0.0076272985201087
710 => 0.0079094528403098
711 => 0.0079053502047487
712 => 0.0078803764658827
713 => 0.0078432705556658
714 => 0.0080207564740989
715 => 0.0079589239290597
716 => 0.0080039122718577
717 => 0.0080153636932546
718 => 0.0080500236968755
719 => 0.008062411669042
720 => 0.008024966613155
721 => 0.0078992964320697
722 => 0.0075861382891673
723 => 0.007440362328292
724 => 0.0073922538331125
725 => 0.0073940024855412
726 => 0.0073457668452285
727 => 0.0073599744030704
728 => 0.0073408260364176
729 => 0.0073045636624648
730 => 0.0073776124108335
731 => 0.0073860305985869
801 => 0.0073689801478501
802 => 0.0073729961462339
803 => 0.0072318256964759
804 => 0.0072425585791649
805 => 0.0071827965244837
806 => 0.0071715918596734
807 => 0.0070205185895168
808 => 0.0067528703930138
809 => 0.0069011734751155
810 => 0.0067220442065057
811 => 0.0066542052382318
812 => 0.0069753443629163
813 => 0.0069431109018107
814 => 0.0068879412279468
815 => 0.0068063337819346
816 => 0.0067760647863824
817 => 0.0065921599514071
818 => 0.0065812938726626
819 => 0.0066724420747246
820 => 0.0066303803156912
821 => 0.0065713096759743
822 => 0.0063573618068146
823 => 0.006116813566174
824 => 0.0061240742055266
825 => 0.0062005881253153
826 => 0.0064230626664087
827 => 0.0063361380143548
828 => 0.0062730731819443
829 => 0.0062612630345557
830 => 0.0064090917553422
831 => 0.0066183003663296
901 => 0.006716456365826
902 => 0.0066191867513671
903 => 0.0065074486556446
904 => 0.0065142496357868
905 => 0.0065594935097797
906 => 0.0065642480012224
907 => 0.0064915179877689
908 => 0.0065119910605376
909 => 0.006480890590905
910 => 0.0062900270661766
911 => 0.006286574950249
912 => 0.0062397339631906
913 => 0.0062383156367183
914 => 0.0061586274327001
915 => 0.0061474785020994
916 => 0.0059892527362929
917 => 0.0060933974144985
918 => 0.0060235426321992
919 => 0.0059182549981969
920 => 0.0059001033704096
921 => 0.0058995577105596
922 => 0.0060076645687958
923 => 0.0060921341229171
924 => 0.0060247577860447
925 => 0.0060094175001743
926 => 0.0061732116198099
927 => 0.0061523673250697
928 => 0.006134316300256
929 => 0.0065995680298358
930 => 0.0062312849818282
1001 => 0.0060706925520354
1002 => 0.0058719289244915
1003 => 0.005936647363873
1004 => 0.0059502844899624
1005 => 0.0054722937955561
1006 => 0.0052783730303655
1007 => 0.0052118267315019
1008 => 0.0051735283956794
1009 => 0.0051909814282339
1010 => 0.0050164299949252
1011 => 0.0051337314449229
1012 => 0.0049825846581429
1013 => 0.0049572444074651
1014 => 0.0052275135857216
1015 => 0.0052651199629864
1016 => 0.0051046794741893
1017 => 0.0052077082409527
1018 => 0.0051703485779173
1019 => 0.0049851756359847
1020 => 0.0049781033916428
1021 => 0.0048851901185247
1022 => 0.0047397988376497
1023 => 0.0046733511209209
1024 => 0.004638744573123
1025 => 0.0046530239092126
1026 => 0.0046458038399308
1027 => 0.0045986880040241
1028 => 0.0046485044644932
1029 => 0.0045212439935774
1030 => 0.0044705678486515
1031 => 0.0044476786096661
1101 => 0.004334727616889
1102 => 0.0045144828759318
1103 => 0.0045498969264604
1104 => 0.0045853807536084
1105 => 0.0048942432430942
1106 => 0.0048788133459558
1107 => 0.0050182921014221
1108 => 0.0050128722134696
1109 => 0.0049730906130046
1110 => 0.0048052585843984
1111 => 0.0048721534396826
1112 => 0.0046662614728866
1113 => 0.004820529733703
1114 => 0.004750128141863
1115 => 0.0047967268846843
1116 => 0.0047129381434523
1117 => 0.0047593102924024
1118 => 0.0045582949116153
1119 => 0.0043705895773991
1120 => 0.004446127683348
1121 => 0.0045282462433447
1122 => 0.0047063002048375
1123 => 0.0046002527342857
1124 => 0.004638391414795
1125 => 0.0045106332194269
1126 => 0.0042470315700584
1127 => 0.0042485235267668
1128 => 0.0042079741558855
1129 => 0.004172933579139
1130 => 0.0046124335619666
1201 => 0.0045577747916354
1202 => 0.0044706831946757
1203 => 0.0045872587580888
1204 => 0.0046180831873581
1205 => 0.0046189607155254
1206 => 0.0047040112373408
1207 => 0.0047494027160798
1208 => 0.0047574031609455
1209 => 0.0048912319946601
1210 => 0.0049360896544763
1211 => 0.0051208520067654
1212 => 0.0047455515662414
1213 => 0.0047378225006421
1214 => 0.0045888992153326
1215 => 0.0044944497134053
1216 => 0.0045953662535347
1217 => 0.0046847645316078
1218 => 0.0045916770690291
1219 => 0.0046038323264583
1220 => 0.0044788700134715
1221 => 0.004523538160341
1222 => 0.0045620123858741
1223 => 0.0045407691799452
1224 => 0.0045089670724867
1225 => 0.0046774348922903
1226 => 0.0046679292776662
1227 => 0.0048248103845258
1228 => 0.0049471104259983
1229 => 0.0051662939640646
1230 => 0.0049375645157962
1231 => 0.0049292287055841
]
'min_raw' => 0.004172933579139
'max_raw' => 0.012065178175795
'avg_raw' => 0.0081190558774668
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004172'
'max' => '$0.012065'
'avg' => '$0.008119'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00073376081177473
'max_diff' => -0.0040756233500835
'year' => 2030
]
5 => [
'items' => [
101 => 0.0050107125875135
102 => 0.0049360771797185
103 => 0.0049832441811182
104 => 0.0051586946309401
105 => 0.0051624016224736
106 => 0.0051003047380981
107 => 0.0050965261370404
108 => 0.0051084525229502
109 => 0.0051783057377379
110 => 0.0051538968781186
111 => 0.0051821434284268
112 => 0.0052174661721136
113 => 0.0053635760165355
114 => 0.0053988026053731
115 => 0.00531322025739
116 => 0.005320947385188
117 => 0.0052889372377544
118 => 0.0052580158364194
119 => 0.0053275226309123
120 => 0.0054545476640075
121 => 0.0054537574478693
122 => 0.0054832247865335
123 => 0.0055015826944008
124 => 0.0054227771150247
125 => 0.0053714775806124
126 => 0.0053911490863802
127 => 0.0054226042524927
128 => 0.0053809485999521
129 => 0.0051238306156959
130 => 0.0052018237873588
131 => 0.0051888419099229
201 => 0.0051703541378038
202 => 0.0052487768750142
203 => 0.0052412128106967
204 => 0.0050146397176841
205 => 0.0050291441919842
206 => 0.0050155217828066
207 => 0.005059538573742
208 => 0.0049337001285572
209 => 0.0049724071867612
210 => 0.0049966838908106
211 => 0.0050109830559981
212 => 0.0050626414456849
213 => 0.005056579929894
214 => 0.0050622646533525
215 => 0.0051388604079487
216 => 0.0055262554502072
217 => 0.0055473405076184
218 => 0.0054435099734284
219 => 0.0054849882238706
220 => 0.0054053590533179
221 => 0.005458814648979
222 => 0.0054953876099054
223 => 0.0053301214320549
224 => 0.0053203354415712
225 => 0.0052403776131059
226 => 0.0052833424210803
227 => 0.0052149823223141
228 => 0.0052317554994166
301 => 0.0051848562339787
302 => 0.0052692655742162
303 => 0.0053636483324871
304 => 0.0053874931445144
305 => 0.0053247677099076
306 => 0.0052793503614447
307 => 0.0051996124589485
308 => 0.0053322183678747
309 => 0.0053709963767366
310 => 0.0053320146835025
311 => 0.0053229817734133
312 => 0.0053058644251165
313 => 0.0053266132997734
314 => 0.0053707851833724
315 => 0.0053499545387937
316 => 0.0053637135465266
317 => 0.0053112783972759
318 => 0.0054228032029506
319 => 0.005599931434268
320 => 0.0056005009304951
321 => 0.0055796701736315
322 => 0.0055711466767279
323 => 0.0055925202973859
324 => 0.0056041146098011
325 => 0.0056732329797576
326 => 0.0057473997445182
327 => 0.0060935036741612
328 => 0.0059963190756747
329 => 0.006303403071869
330 => 0.0065462666429923
331 => 0.0066190908088353
401 => 0.0065520960029015
402 => 0.0063229103907903
403 => 0.0063116654512724
404 => 0.0066541655154362
405 => 0.0065573935598132
406 => 0.0065458828436176
407 => 0.006423428270959
408 => 0.0064958140896941
409 => 0.0064799822493008
410 => 0.0064549909147199
411 => 0.0065930980144267
412 => 0.0068516221761721
413 => 0.0068113287611398
414 => 0.006781251595976
415 => 0.0066494622135592
416 => 0.0067288288579983
417 => 0.0067005679160815
418 => 0.0068219948573931
419 => 0.0067500642272962
420 => 0.0065566604170715
421 => 0.0065874606113171
422 => 0.0065828052239182
423 => 0.0066786127667018
424 => 0.0066498537204476
425 => 0.0065771895585709
426 => 0.0068507385686924
427 => 0.0068329758175346
428 => 0.0068581593375461
429 => 0.0068692459018814
430 => 0.0070357503638681
501 => 0.0071039619143955
502 => 0.0071194471305765
503 => 0.0071842428279069
504 => 0.0071178349545994
505 => 0.0073835137958408
506 => 0.0075601747224761
507 => 0.0077653754796512
508 => 0.0080652289386479
509 => 0.0081779766130303
510 => 0.0081576097548184
511 => 0.0083849552252495
512 => 0.0087934899820082
513 => 0.0082401863096151
514 => 0.0088228164201714
515 => 0.0086383624539573
516 => 0.008201025418249
517 => 0.0081728660690144
518 => 0.0084690357871834
519 => 0.0091259117168034
520 => 0.0089613717466587
521 => 0.0091261808452497
522 => 0.0089339222773926
523 => 0.0089243750190161
524 => 0.0091168432757381
525 => 0.0095665558484675
526 => 0.0093529142623874
527 => 0.0090466066616756
528 => 0.0092727794273671
529 => 0.0090768476464238
530 => 0.0086353585061061
531 => 0.0089612459260445
601 => 0.0087433342890711
602 => 0.0088069324895597
603 => 0.0092649503385681
604 => 0.0092098404192105
605 => 0.0092811577579004
606 => 0.0091552845218125
607 => 0.0090376990709189
608 => 0.0088182170948159
609 => 0.0087532393020224
610 => 0.0087711968262945
611 => 0.0087532304031652
612 => 0.008630432254679
613 => 0.0086039140062052
614 => 0.0085597157636243
615 => 0.0085734146471352
616 => 0.0084903090204312
617 => 0.0086471465085203
618 => 0.0086762569283569
619 => 0.0087903901730271
620 => 0.0088022398651113
621 => 0.0091200993269328
622 => 0.0089450276767727
623 => 0.0090624808546591
624 => 0.0090519747369168
625 => 0.0082105038379347
626 => 0.0083264511034539
627 => 0.0085068286623453
628 => 0.0084255688165607
629 => 0.0083106864064968
630 => 0.0082179127007651
701 => 0.0080773510499831
702 => 0.0082751888742114
703 => 0.0085353245753645
704 => 0.0088088373357818
705 => 0.0091374449961572
706 => 0.0090641035917763
707 => 0.0088026942441458
708 => 0.0088144208765209
709 => 0.0088869103036037
710 => 0.0087930299091725
711 => 0.0087653427480917
712 => 0.0088831065128365
713 => 0.0088839174871624
714 => 0.0087758967475447
715 => 0.0086558514630462
716 => 0.0086553484689209
717 => 0.0086339875700443
718 => 0.0089377223338493
719 => 0.0091047457428937
720 => 0.0091238947075689
721 => 0.0091034568650001
722 => 0.0091113225794559
723 => 0.0090141353378426
724 => 0.0092362765521893
725 => 0.009440135297963
726 => 0.0093854967992887
727 => 0.0093035859224558
728 => 0.0092383399636961
729 => 0.0093701269249513
730 => 0.0093642586590186
731 => 0.0094383547696611
801 => 0.0094349933420825
802 => 0.0094100776069691
803 => 0.0093854976891081
804 => 0.0094829542850389
805 => 0.0094548883505159
806 => 0.0094267788218445
807 => 0.0093704008587406
808 => 0.0093780635602652
809 => 0.0092961668265001
810 => 0.0092582776501207
811 => 0.0086885153462215
812 => 0.0085362562410992
813 => 0.0085841600550906
814 => 0.0085999312344785
815 => 0.0085336678768039
816 => 0.0086286725100493
817 => 0.0086138661385928
818 => 0.0086714690684924
819 => 0.0086354812587196
820 => 0.0086369582109858
821 => 0.0087427906861175
822 => 0.0087735143038917
823 => 0.0087578880239217
824 => 0.0087688321347752
825 => 0.0090210345501725
826 => 0.0089851794316822
827 => 0.0089661321146033
828 => 0.0089714083516059
829 => 0.0090358514760206
830 => 0.0090538920323926
831 => 0.0089774529273571
901 => 0.0090135020511811
902 => 0.0091669946451085
903 => 0.0092207083660547
904 => 0.0093921367792662
905 => 0.0093193109424369
906 => 0.0094529859177654
907 => 0.0098638572187682
908 => 0.010192089644141
909 => 0.0098902335409895
910 => 0.010492990590039
911 => 0.010962323413087
912 => 0.010944309637624
913 => 0.010862470604061
914 => 0.01032814766288
915 => 0.009836455726098
916 => 0.010247776909558
917 => 0.010248825451844
918 => 0.010213492597402
919 => 0.0099940432729982
920 => 0.010205856236597
921 => 0.010222669180455
922 => 0.010213258402817
923 => 0.010045007120323
924 => 0.009788118509989
925 => 0.0098383139295438
926 => 0.0099205350507334
927 => 0.0097648733151988
928 => 0.0097151299588183
929 => 0.0098076123223904
930 => 0.010105609767285
1001 => 0.010049275076509
1002 => 0.010047803950067
1003 => 0.010288827646832
1004 => 0.010116306696118
1005 => 0.0098389470545324
1006 => 0.0097689100871079
1007 => 0.0095203260353055
1008 => 0.0096920239253114
1009 => 0.0096982030267049
1010 => 0.0096041658470585
1011 => 0.0098465776533922
1012 => 0.0098443437859211
1013 => 0.010074477717799
1014 => 0.010514407361192
1015 => 0.010384298518018
1016 => 0.010232996089208
1017 => 0.010249446858381
1018 => 0.01042987119225
1019 => 0.010320782521306
1020 => 0.010360011567971
1021 => 0.010429811814389
1022 => 0.010471924036096
1023 => 0.010243387557748
1024 => 0.010190104772481
1025 => 0.010081106893542
1026 => 0.010052671381469
1027 => 0.010141447879549
1028 => 0.010118058408825
1029 => 0.0096976836971594
1030 => 0.0096537522008476
1031 => 0.0096550995171197
1101 => 0.0095446316808148
1102 => 0.0093761417151311
1103 => 0.0098189232849346
1104 => 0.0097833617281553
1105 => 0.0097441045217168
1106 => 0.009748913305507
1107 => 0.0099411097776989
1108 => 0.0098296261176731
1109 => 0.010126023699664
1110 => 0.010065093267334
1111 => 0.010002600199326
1112 => 0.0099939617537414
1113 => 0.0099699072542162
1114 => 0.0098874154250594
1115 => 0.0097878015843622
1116 => 0.0097220278983308
1117 => 0.0089680568317598
1118 => 0.0091079894760675
1119 => 0.0092689692280816
1120 => 0.0093245387933909
1121 => 0.0092294832066324
1122 => 0.0098911687989953
1123 => 0.010012065132881
1124 => 0.0096458622516684
1125 => 0.0095773606445586
1126 => 0.0098956597529531
1127 => 0.0097036864801078
1128 => 0.0097901320331154
1129 => 0.0096032840307024
1130 => 0.0099829447463058
1201 => 0.0099800523677586
1202 => 0.0098323557743627
1203 => 0.0099571879237183
1204 => 0.0099354952657994
1205 => 0.0097687461756161
1206 => 0.0099882309898896
1207 => 0.0099883398516192
1208 => 0.0098461850916765
1209 => 0.0096801794537418
1210 => 0.0096505015665572
1211 => 0.0096281432652268
1212 => 0.0097846332615769
1213 => 0.0099249417029728
1214 => 0.010186020926998
1215 => 0.010251662447007
1216 => 0.010507865669607
1217 => 0.010355309124858
1218 => 0.010422935465207
1219 => 0.010496353423987
1220 => 0.010531552693281
1221 => 0.010474197372862
1222 => 0.010872186435014
1223 => 0.010905788905929
1224 => 0.010917055523767
1225 => 0.010782855851269
1226 => 0.010902056570271
1227 => 0.010846286501363
1228 => 0.010991384727291
1229 => 0.011014137981823
1230 => 0.010994866784705
1231 => 0.011002089026829
]
'min_raw' => 0.0049337001285572
'max_raw' => 0.011014137981823
'avg_raw' => 0.0079739190551903
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004933'
'max' => '$0.011014'
'avg' => '$0.007973'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0007607665494182
'max_diff' => -0.0010510401939713
'year' => 2031
]
6 => [
'items' => [
101 => 0.010662475572365
102 => 0.010644864823147
103 => 0.010404741007962
104 => 0.010502593237556
105 => 0.01031966318451
106 => 0.010377672188719
107 => 0.010403242005045
108 => 0.010389885784071
109 => 0.010508125655801
110 => 0.01040759761002
111 => 0.010142287568865
112 => 0.0098769052441658
113 => 0.0098735735852549
114 => 0.0098037031035488
115 => 0.0097531995426924
116 => 0.0097629283202234
117 => 0.0097972138011872
118 => 0.0097512068082112
119 => 0.0097610247327764
120 => 0.0099240676970475
121 => 0.0099567648007629
122 => 0.009845647266755
123 => 0.0093994943335296
124 => 0.0092900072846262
125 => 0.0093687044041554
126 => 0.0093310922497641
127 => 0.0075309197074502
128 => 0.0079538435439301
129 => 0.0077025565614302
130 => 0.0078183611641243
131 => 0.0075618622254405
201 => 0.0076842769632416
202 => 0.0076616714310402
203 => 0.0083417204448738
204 => 0.0083311024148996
205 => 0.0083361847039546
206 => 0.0080935938055259
207 => 0.0084800476937834
208 => 0.0086704287755714
209 => 0.0086351943041609
210 => 0.0086440620615181
211 => 0.0084916846098365
212 => 0.0083376600507675
213 => 0.0081668231105501
214 => 0.0084842170293899
215 => 0.0084489282437098
216 => 0.0085298680215557
217 => 0.0087357206657092
218 => 0.0087660332495189
219 => 0.0088067736695591
220 => 0.0087921711290753
221 => 0.0091400628863234
222 => 0.0090979308990569
223 => 0.0091994568661691
224 => 0.0089906102490257
225 => 0.008754280477825
226 => 0.0087991990411279
227 => 0.0087948730222696
228 => 0.0087397978370295
229 => 0.0086900784223727
301 => 0.0086073096053273
302 => 0.008869202389939
303 => 0.0088585700211561
304 => 0.0090306957129738
305 => 0.0090002708250052
306 => 0.0087970859769184
307 => 0.0088043427635174
308 => 0.0088531481408887
309 => 0.0090220641092208
310 => 0.0090722098692978
311 => 0.0090489803552671
312 => 0.0091039628919507
313 => 0.0091474188471268
314 => 0.0091094202908612
315 => 0.0096473997157191
316 => 0.0094239931507234
317 => 0.0095328799560495
318 => 0.0095588488175214
319 => 0.0094923301249273
320 => 0.0095067556474952
321 => 0.0095286063834659
322 => 0.0096612797734671
323 => 0.010009453138185
324 => 0.010163656751322
325 => 0.010627585929718
326 => 0.010150852287869
327 => 0.010122564886482
328 => 0.01020613254083
329 => 0.010478508080439
330 => 0.010699242872359
331 => 0.010772473337335
401 => 0.010782151952184
402 => 0.010919537172748
403 => 0.010998283819092
404 => 0.010902854993381
405 => 0.010821989055406
406 => 0.010532337303029
407 => 0.010565865282062
408 => 0.010796839809504
409 => 0.011123104933847
410 => 0.011403074352634
411 => 0.011305038820094
412 => 0.012052980731073
413 => 0.012127136116478
414 => 0.012116890239946
415 => 0.012285827243699
416 => 0.011950521694672
417 => 0.011807172076223
418 => 0.010839473189064
419 => 0.011111357104431
420 => 0.011506556342599
421 => 0.011454250241507
422 => 0.011167245991043
423 => 0.011402856634174
424 => 0.011324956387329
425 => 0.011263513230558
426 => 0.011544996243067
427 => 0.011235494108128
428 => 0.011503468822047
429 => 0.011159788479603
430 => 0.011305486638149
501 => 0.011222781316731
502 => 0.011276301795671
503 => 0.010963422169389
504 => 0.011132244421008
505 => 0.010956398608686
506 => 0.010956315234875
507 => 0.010952433428822
508 => 0.011159315247198
509 => 0.011166061655868
510 => 0.011013175679507
511 => 0.010991142421786
512 => 0.01107261092368
513 => 0.010977232644596
514 => 0.011021859541076
515 => 0.010978584347828
516 => 0.010968842190313
517 => 0.010891215021742
518 => 0.010857771103119
519 => 0.010870885325355
520 => 0.010826119724018
521 => 0.010799146829971
522 => 0.010947067841298
523 => 0.010868039612062
524 => 0.010934955631743
525 => 0.010858696381842
526 => 0.01059434859711
527 => 0.010442319390684
528 => 0.009942990930378
529 => 0.010084599862306
530 => 0.010178486730679
531 => 0.010147457121242
601 => 0.010214120729178
602 => 0.010218213333285
603 => 0.01019654031479
604 => 0.010171445735859
605 => 0.010159231082652
606 => 0.010250269100377
607 => 0.010303119733865
608 => 0.010187909533964
609 => 0.01016091739609
610 => 0.010277401269119
611 => 0.010348456364376
612 => 0.010873087265345
613 => 0.010834220913666
614 => 0.010931767829245
615 => 0.01092078554353
616 => 0.011023030251499
617 => 0.01119015713719
618 => 0.010850341449167
619 => 0.010909321702666
620 => 0.010894861106561
621 => 0.011052738103061
622 => 0.011053230977812
623 => 0.010958575831869
624 => 0.011009889922089
625 => 0.010981247804656
626 => 0.011033007982071
627 => 0.010833701829843
628 => 0.011076435209487
629 => 0.011214049394351
630 => 0.011215960167442
701 => 0.011281188198894
702 => 0.011347463656602
703 => 0.011474673626297
704 => 0.01134391583959
705 => 0.01110869531032
706 => 0.011125677472775
707 => 0.010987767762528
708 => 0.010990086049673
709 => 0.010977710851207
710 => 0.011014849753364
711 => 0.010841851730365
712 => 0.01088245402058
713 => 0.010825610576513
714 => 0.01090919813612
715 => 0.010819271739501
716 => 0.010894854133223
717 => 0.010927472988758
718 => 0.011047837267914
719 => 0.010801493837605
720 => 0.010299182907221
721 => 0.010404774754719
722 => 0.010248596118209
723 => 0.010263051045632
724 => 0.010292252299511
725 => 0.010197601481633
726 => 0.010215657874894
727 => 0.010215012773466
728 => 0.01020945363787
729 => 0.010184831304552
730 => 0.010149124049861
731 => 0.010291370762438
801 => 0.010315541250764
802 => 0.010369269252223
803 => 0.010529127340512
804 => 0.010513153747779
805 => 0.010539207340265
806 => 0.010482332494152
807 => 0.010265689306622
808 => 0.010277454074007
809 => 0.010130747236203
810 => 0.010365517628538
811 => 0.010309920900815
812 => 0.010274077328774
813 => 0.010264297078054
814 => 0.010424551423625
815 => 0.010472502035498
816 => 0.010442622432025
817 => 0.010381338493572
818 => 0.01049902177237
819 => 0.010530508853118
820 => 0.010537557649298
821 => 0.010746069855798
822 => 0.01054921116536
823 => 0.010596597008756
824 => 0.010966287832042
825 => 0.010631029269168
826 => 0.01080862320708
827 => 0.010799930907974
828 => 0.010890781957158
829 => 0.010792478470197
830 => 0.010793697059733
831 => 0.010874366636627
901 => 0.010761080764715
902 => 0.010733029589687
903 => 0.010694277092292
904 => 0.010778891752622
905 => 0.010829614414698
906 => 0.01123840181934
907 => 0.01150249712571
908 => 0.011491032051958
909 => 0.011595801364327
910 => 0.011548601829528
911 => 0.011396182081054
912 => 0.011656344006091
913 => 0.011574017887372
914 => 0.011580804752573
915 => 0.011580552145111
916 => 0.011635291816985
917 => 0.011596503742645
918 => 0.011520048466607
919 => 0.011570803046859
920 => 0.011721526005114
921 => 0.012189374692282
922 => 0.012451189015792
923 => 0.012173613141263
924 => 0.012365081262624
925 => 0.012250268616875
926 => 0.012229403743762
927 => 0.01234965987336
928 => 0.012470126495393
929 => 0.012462453292361
930 => 0.012375000710794
1001 => 0.012325600966494
1002 => 0.012699672380462
1003 => 0.012975281826133
1004 => 0.012956487109647
1005 => 0.013039440875845
1006 => 0.013282995699067
1007 => 0.013305263299774
1008 => 0.013302458093899
1009 => 0.013247265522163
1010 => 0.013487076875215
1011 => 0.01368713172501
1012 => 0.013234490036473
1013 => 0.013406850065953
1014 => 0.01348422803628
1015 => 0.013597841853729
1016 => 0.013789527407653
1017 => 0.013997748761296
1018 => 0.014027193543732
1019 => 0.014006301061531
1020 => 0.013868973481513
1021 => 0.014096811771267
1022 => 0.014230274097939
1023 => 0.014309747859241
1024 => 0.014511280094731
1025 => 0.013484705896282
1026 => 0.012758045654572
1027 => 0.012644567164728
1028 => 0.012875330136147
1029 => 0.01293618049141
1030 => 0.012911651789504
1031 => 0.0120937296224
1101 => 0.012640260973791
1102 => 0.013228282754227
1103 => 0.013250871065607
1104 => 0.013545247063849
1105 => 0.013641107955756
1106 => 0.013878119219085
1107 => 0.013863294100032
1108 => 0.01392100257098
1109 => 0.013907736392881
1110 => 0.014346749849587
1111 => 0.014831046886464
1112 => 0.014814277220047
1113 => 0.014744653791054
1114 => 0.014848056455668
1115 => 0.015347902898149
1116 => 0.015301885047601
1117 => 0.015346587469617
1118 => 0.015935934595413
1119 => 0.0167021696926
1120 => 0.016346176561211
1121 => 0.017118579222061
1122 => 0.01760476575376
1123 => 0.018445575087709
1124 => 0.018340301618025
1125 => 0.018667622521587
1126 => 0.018151840136055
1127 => 0.016967499522055
1128 => 0.016780073086416
1129 => 0.017155305556959
1130 => 0.01807777797114
1201 => 0.017126253617836
1202 => 0.017318745755241
1203 => 0.017263308006719
1204 => 0.017260353964695
1205 => 0.017373097733775
1206 => 0.017209557016405
1207 => 0.016543262713428
1208 => 0.016848621465986
1209 => 0.016730707787092
1210 => 0.016861541804872
1211 => 0.017567599038778
1212 => 0.017255434305366
1213 => 0.01692659411692
1214 => 0.01733903268871
1215 => 0.01786420871987
1216 => 0.017831344147672
1217 => 0.017767573141282
1218 => 0.018127046965358
1219 => 0.018720792406783
1220 => 0.018881279413737
1221 => 0.018999747641259
1222 => 0.019016082408297
1223 => 0.019184340660791
1224 => 0.018279573630593
1225 => 0.019715462143583
1226 => 0.019963400424156
1227 => 0.019916798303397
1228 => 0.020192371267417
1229 => 0.020111290710791
1230 => 0.01999381770539
1231 => 0.020430659469411
]
'min_raw' => 0.0075309197074502
'max_raw' => 0.020430659469411
'avg_raw' => 0.013980789588431
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00753'
'max' => '$0.02043'
'avg' => '$0.01398'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.002597219578893
'max_diff' => 0.0094165214875881
'year' => 2032
]
7 => [
'items' => [
101 => 0.019929855638273
102 => 0.019219027649421
103 => 0.018829053356153
104 => 0.019342602963857
105 => 0.01965620978887
106 => 0.019863483951064
107 => 0.019926204987305
108 => 0.018349808119606
109 => 0.017500217638894
110 => 0.018044795396455
111 => 0.01870921784543
112 => 0.018275882730341
113 => 0.018292868646441
114 => 0.01767504665079
115 => 0.018763881383065
116 => 0.018605247321114
117 => 0.019428241115135
118 => 0.019231827041254
119 => 0.019902946531842
120 => 0.019726218278307
121 => 0.020459807377989
122 => 0.020752455930984
123 => 0.021243858398573
124 => 0.021605336054099
125 => 0.02181760264739
126 => 0.021804858957321
127 => 0.022645964950736
128 => 0.022149994132424
129 => 0.021526937893278
130 => 0.021515668771629
131 => 0.021838358426658
201 => 0.022514627418015
202 => 0.022689974128161
203 => 0.022787969017894
204 => 0.022637886433041
205 => 0.022099545656312
206 => 0.021867092838371
207 => 0.022065149374063
208 => 0.021822943250103
209 => 0.022241058971094
210 => 0.022815221160714
211 => 0.022696658939041
212 => 0.023092994670252
213 => 0.023503160456321
214 => 0.024089715952097
215 => 0.02424306327878
216 => 0.024496540578511
217 => 0.024757451982889
218 => 0.024841249694216
219 => 0.025001245526041
220 => 0.025000402269031
221 => 0.025482560477199
222 => 0.026014395912005
223 => 0.026215151476625
224 => 0.026676777827744
225 => 0.02588625887877
226 => 0.026485876582394
227 => 0.027026746760467
228 => 0.026381899036708
301 => 0.02727067139366
302 => 0.027305180410279
303 => 0.027826225590234
304 => 0.027298046480172
305 => 0.026984415410624
306 => 0.027889856556805
307 => 0.028327971006314
308 => 0.028196007368628
309 => 0.027191757569993
310 => 0.026607241112887
311 => 0.025077448799836
312 => 0.026889553876754
313 => 0.027772177399892
314 => 0.027189471788294
315 => 0.027483354604823
316 => 0.02908668395998
317 => 0.029697127970535
318 => 0.029570159883665
319 => 0.029591615400274
320 => 0.029920999908027
321 => 0.031381672210767
322 => 0.030506403508847
323 => 0.031175513635772
324 => 0.031530407234438
325 => 0.031860052187313
326 => 0.031050548368408
327 => 0.029997395793985
328 => 0.029663818165328
329 => 0.027131533199093
330 => 0.026999716769444
331 => 0.026925724213036
401 => 0.026459211611335
402 => 0.026092660494955
403 => 0.025801165438039
404 => 0.025036195360898
405 => 0.025294350306001
406 => 0.024075147664702
407 => 0.024855150308717
408 => 0.022909273454527
409 => 0.024529857520739
410 => 0.023647847292416
411 => 0.024240093439146
412 => 0.024238027148133
413 => 0.023147514220191
414 => 0.022518529121778
415 => 0.022919342906953
416 => 0.023349047101298
417 => 0.023418765161132
418 => 0.023975887865528
419 => 0.024131368837012
420 => 0.023660254234702
421 => 0.022868949481848
422 => 0.023052751528196
423 => 0.022514804379175
424 => 0.021572072692353
425 => 0.022249159048345
426 => 0.022480346099666
427 => 0.022582451471965
428 => 0.021655383131442
429 => 0.021364078131217
430 => 0.021208989793382
501 => 0.022749276600712
502 => 0.022833656989019
503 => 0.022401954992259
504 => 0.024353288953278
505 => 0.02391164198018
506 => 0.024405069855266
507 => 0.023036073419012
508 => 0.023088370926475
509 => 0.022440266074412
510 => 0.022803161485185
511 => 0.022546678705516
512 => 0.022773843122197
513 => 0.022910004536922
514 => 0.023558003041357
515 => 0.024537256622765
516 => 0.02346121367364
517 => 0.022992366351487
518 => 0.023283236593254
519 => 0.024057862377509
520 => 0.02523146009302
521 => 0.024536666624582
522 => 0.024845004167517
523 => 0.024912362203665
524 => 0.024400047222692
525 => 0.025250349877127
526 => 0.025706033977485
527 => 0.026173471573915
528 => 0.02657933454159
529 => 0.025986766718728
530 => 0.026620899230451
531 => 0.026109900365459
601 => 0.02565148155747
602 => 0.025652176789574
603 => 0.025364603974892
604 => 0.02480739540994
605 => 0.024704637601449
606 => 0.025239196698097
607 => 0.025667862470674
608 => 0.025703169436874
609 => 0.025940500834215
610 => 0.026080951110454
611 => 0.027457554750485
612 => 0.028011236122368
613 => 0.028688267223255
614 => 0.028952008992432
615 => 0.029745777160999
616 => 0.029104744898182
617 => 0.02896605353584
618 => 0.027040631598486
619 => 0.027355919332864
620 => 0.027860725416344
621 => 0.027048955664871
622 => 0.02756383672854
623 => 0.027665485157181
624 => 0.027021372039344
625 => 0.027365420686065
626 => 0.026451729483688
627 => 0.024557172594147
628 => 0.025252459060533
629 => 0.025764423930687
630 => 0.025033786936164
701 => 0.02634342546929
702 => 0.025578361674664
703 => 0.025335873181307
704 => 0.024389839115329
705 => 0.02483633077828
706 => 0.025440217145566
707 => 0.025067085579909
708 => 0.025841389604634
709 => 0.026938010602985
710 => 0.02771952803132
711 => 0.027779523235327
712 => 0.027277059886509
713 => 0.028082260609668
714 => 0.028088125617878
715 => 0.027179855912814
716 => 0.026623545775728
717 => 0.026497150942096
718 => 0.026812910017676
719 => 0.027196299827772
720 => 0.02780079870153
721 => 0.028166084710594
722 => 0.029118556889505
723 => 0.029376268551601
724 => 0.029659415534951
725 => 0.030037787224001
726 => 0.030492119449217
727 => 0.029498066405594
728 => 0.029537561986164
729 => 0.028611913555543
730 => 0.027622725456012
731 => 0.028373395919519
801 => 0.029354797693047
802 => 0.029129663041847
803 => 0.029104330794503
804 => 0.029146932607956
805 => 0.028977188433161
806 => 0.028209441821579
807 => 0.02782388427959
808 => 0.028321351874975
809 => 0.028585733762186
810 => 0.028995767012728
811 => 0.028945221759847
812 => 0.030001423378886
813 => 0.030411831390165
814 => 0.030306831458531
815 => 0.030326153972916
816 => 0.031069178073696
817 => 0.031895573688324
818 => 0.032669602233929
819 => 0.033456977315818
820 => 0.032507765922828
821 => 0.032025814916688
822 => 0.032523065333283
823 => 0.032259217262931
824 => 0.033775366537592
825 => 0.033880341423828
826 => 0.035396381063639
827 => 0.036835283208463
828 => 0.035931534551909
829 => 0.036783728829306
830 => 0.037705446420729
831 => 0.039483589197875
901 => 0.03888477326635
902 => 0.038426089647443
903 => 0.037992635843919
904 => 0.038894584400199
905 => 0.040054926808872
906 => 0.040304853450079
907 => 0.040709830088159
908 => 0.040284046671405
909 => 0.04079685589838
910 => 0.042607297809395
911 => 0.042118100423826
912 => 0.041423361493914
913 => 0.042852531505971
914 => 0.043369742577577
915 => 0.046999800743646
916 => 0.051582899128532
917 => 0.049685466302943
918 => 0.048507668518325
919 => 0.048784478935447
920 => 0.050458071317937
921 => 0.050995576074025
922 => 0.049534452857976
923 => 0.0500505462791
924 => 0.052894271770679
925 => 0.054419839259274
926 => 0.052347913698713
927 => 0.046631553250884
928 => 0.041360807854579
929 => 0.042758846878437
930 => 0.042600352639334
1001 => 0.045655580918055
1002 => 0.042106433227969
1003 => 0.042166191772773
1004 => 0.045284598936756
1005 => 0.044452661368438
1006 => 0.043105029054278
1007 => 0.041370647061851
1008 => 0.038164481537934
1009 => 0.035324691322861
1010 => 0.040894173899248
1011 => 0.040654007683107
1012 => 0.040306211411496
1013 => 0.041080194378479
1014 => 0.044838435967249
1015 => 0.044751796334387
1016 => 0.044200639194048
1017 => 0.044618687027319
1018 => 0.043031743247874
1019 => 0.043440734793875
1020 => 0.041359972941579
1021 => 0.042300564199108
1022 => 0.043102137640584
1023 => 0.043263065376458
1024 => 0.043625643782556
1025 => 0.040527451000438
1026 => 0.041918448601448
1027 => 0.042735529373192
1028 => 0.039043928720801
1029 => 0.042662558297695
1030 => 0.040473518356959
1031 => 0.039730525322796
1101 => 0.040730867561407
1102 => 0.040341033218156
1103 => 0.040005876541669
1104 => 0.039818853357466
1105 => 0.040553394293758
1106 => 0.040519127081114
1107 => 0.039317275541088
1108 => 0.037749509200861
1109 => 0.038275703044817
1110 => 0.038084531888214
1111 => 0.037391702955116
1112 => 0.03785858600354
1113 => 0.035802669342383
1114 => 0.032265571584112
1115 => 0.03460228670746
1116 => 0.034512325717069
1117 => 0.034466963306307
1118 => 0.03622294013944
1119 => 0.036054143484213
1120 => 0.035747775902113
1121 => 0.037386076274214
1122 => 0.036788074600148
1123 => 0.038630974852705
1124 => 0.039844828150355
1125 => 0.03953695569003
1126 => 0.040678590583532
1127 => 0.03828782548822
1128 => 0.039081941752035
1129 => 0.03924560801341
1130 => 0.037365859901929
1201 => 0.036081760704552
1202 => 0.035996125927889
1203 => 0.033769674879406
1204 => 0.034959027058221
1205 => 0.03600560775684
1206 => 0.035504376820145
1207 => 0.035345702079435
1208 => 0.036156336917368
1209 => 0.036219330186893
1210 => 0.03478307696599
1211 => 0.03508171949084
1212 => 0.036327108464654
1213 => 0.035050338884039
1214 => 0.032569784148032
1215 => 0.03195457227715
1216 => 0.03187249167297
1217 => 0.030203988286069
1218 => 0.031995683676112
1219 => 0.031213560623907
1220 => 0.033684277974551
1221 => 0.032273017474586
1222 => 0.032212180855083
1223 => 0.032120217381913
1224 => 0.0306840675918
1225 => 0.030998493123754
1226 => 0.03204369148033
1227 => 0.032416630028959
1228 => 0.032377729482942
1229 => 0.032038569438177
1230 => 0.03219383516989
1231 => 0.031693670149876
]
'min_raw' => 0.017500217638894
'max_raw' => 0.054419839259274
'avg_raw' => 0.035960028449084
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01750021'
'max' => '$0.054419'
'avg' => '$0.03596'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099692979314437
'max_diff' => 0.033989179789863
'year' => 2033
]
8 => [
'items' => [
101 => 0.031517051471275
102 => 0.030959594338814
103 => 0.030140286355559
104 => 0.030254216155739
105 => 0.028630952657316
106 => 0.027746512550261
107 => 0.027501711185362
108 => 0.027174352569265
109 => 0.027538687212118
110 => 0.028626354155778
111 => 0.02731439706031
112 => 0.025065138643219
113 => 0.025200322906636
114 => 0.025504041809966
115 => 0.024938063642913
116 => 0.024402412806743
117 => 0.024868117750067
118 => 0.023915077307296
119 => 0.025619212194271
120 => 0.025573120121361
121 => 0.026208316224231
122 => 0.026605517382891
123 => 0.025690097307581
124 => 0.025459871634199
125 => 0.025591018640931
126 => 0.023423450753225
127 => 0.026031179684136
128 => 0.026053731432219
129 => 0.02586062967357
130 => 0.027249164824682
131 => 0.030179407088502
201 => 0.029076932080131
202 => 0.028650020434406
203 => 0.027838461083813
204 => 0.028919815732852
205 => 0.028836784567567
206 => 0.028461286149509
207 => 0.028234183534642
208 => 0.028652627065881
209 => 0.028182333750412
210 => 0.028097856148158
211 => 0.027586013791034
212 => 0.027403309356884
213 => 0.027268042267513
214 => 0.027119126493184
215 => 0.027447597583854
216 => 0.026703238878427
217 => 0.025805615250065
218 => 0.025730987557789
219 => 0.025937041177497
220 => 0.025845877789664
221 => 0.025730551102561
222 => 0.025510361049528
223 => 0.025445035364409
224 => 0.025657312149529
225 => 0.025417664035634
226 => 0.025771277881994
227 => 0.02567511448213
228 => 0.025137953547579
301 => 0.024468452140679
302 => 0.024462492173831
303 => 0.024318249193917
304 => 0.024134534071919
305 => 0.024083428727811
306 => 0.024828897378697
307 => 0.02637199517603
308 => 0.026069048155212
309 => 0.026287958425012
310 => 0.027364780288971
311 => 0.02770706957836
312 => 0.027464120748318
313 => 0.027131557405325
314 => 0.027146188504629
315 => 0.028282658121406
316 => 0.028353538337383
317 => 0.028532629776331
318 => 0.028762812886614
319 => 0.027503321927339
320 => 0.027086866593711
321 => 0.026889526952576
322 => 0.026281797237932
323 => 0.026937181632368
324 => 0.026555317212088
325 => 0.02660684376873
326 => 0.026573287031121
327 => 0.026591611278952
328 => 0.025618735853839
329 => 0.025973200525923
330 => 0.02538383425903
331 => 0.024594738987128
401 => 0.024592093663084
402 => 0.024785223612971
403 => 0.024670342361602
404 => 0.024361199868036
405 => 0.024405112100136
406 => 0.02402039474032
407 => 0.02445182375315
408 => 0.024464195593511
409 => 0.024298071923474
410 => 0.024962747843469
411 => 0.025235066110215
412 => 0.025125719951883
413 => 0.025227394092252
414 => 0.026081636971651
415 => 0.026220915834223
416 => 0.026282774304732
417 => 0.026199892148927
418 => 0.025243008083932
419 => 0.025285449961199
420 => 0.024974039626436
421 => 0.024710930709174
422 => 0.02472145368604
423 => 0.024856725871278
424 => 0.02544746743782
425 => 0.026690648238491
426 => 0.026737826041123
427 => 0.026795006914186
428 => 0.026562423566632
429 => 0.026492274203487
430 => 0.026584819320562
501 => 0.027051692665953
502 => 0.028252617665174
503 => 0.027828130563366
504 => 0.02748301594206
505 => 0.027785774507179
506 => 0.027739167199179
507 => 0.027345754615722
508 => 0.027334712834806
509 => 0.02657962830554
510 => 0.026300490747514
511 => 0.026067222510943
512 => 0.025812499686229
513 => 0.025661491457352
514 => 0.025893508728919
515 => 0.025946573824074
516 => 0.025439264004824
517 => 0.025370119551034
518 => 0.025784399700477
519 => 0.025602090452628
520 => 0.025789600035093
521 => 0.025833103866652
522 => 0.025826098747793
523 => 0.025635746954955
524 => 0.025757071511337
525 => 0.025470102766901
526 => 0.025158067358638
527 => 0.024959008208659
528 => 0.024785302698937
529 => 0.024881684611554
530 => 0.024538100691717
531 => 0.024428181280783
601 => 0.025715969481524
602 => 0.026667272471467
603 => 0.026653440149236
604 => 0.026569239445039
605 => 0.02644413427809
606 => 0.027042540443759
607 => 0.026834067701149
608 => 0.026985749039878
609 => 0.02702435830663
610 => 0.027141216928722
611 => 0.027182983841782
612 => 0.027056735221529
613 => 0.026633029431988
614 => 0.025577194889189
615 => 0.025085701059346
616 => 0.02492349990902
617 => 0.024929395612771
618 => 0.024766765783751
619 => 0.024814667556955
620 => 0.024750107501889
621 => 0.024627846376349
622 => 0.024874135331575
623 => 0.024902517839325
624 => 0.024845031054241
625 => 0.02485857127318
626 => 0.024382605245615
627 => 0.024418791908947
628 => 0.024217299969136
629 => 0.024179522659443
630 => 0.023670168581511
701 => 0.022767774000401
702 => 0.023267788195898
703 => 0.022663841360373
704 => 0.022435117542472
705 => 0.023517860522564
706 => 0.023409183157978
707 => 0.023223174750722
708 => 0.022948029548842
709 => 0.022845975517024
710 => 0.022225927526079
711 => 0.022189291782947
712 => 0.022496604309963
713 => 0.022354790152724
714 => 0.022155629366738
715 => 0.021434289188503
716 => 0.020623264000641
717 => 0.02064774375314
718 => 0.020905715775739
719 => 0.021655804223712
720 => 0.021362731690427
721 => 0.021150104204909
722 => 0.02111028546843
723 => 0.021608700321633
724 => 0.022314061760056
725 => 0.022645001565391
726 => 0.022317050269095
727 => 0.021940317478062
728 => 0.021963247457441
729 => 0.022115790337434
730 => 0.022131820437281
731 => 0.021886606119076
801 => 0.0219556325133
802 => 0.021850775108568
803 => 0.02120726540928
804 => 0.021195626359411
805 => 0.021037698701211
806 => 0.021032916714485
807 => 0.020764242370985
808 => 0.020726652973071
809 => 0.020193183756684
810 => 0.020544314810404
811 => 0.020308794534776
812 => 0.01995380992579
813 => 0.019892610445399
814 => 0.019890770715118
815 => 0.020255260535441
816 => 0.020540055534637
817 => 0.020312891510806
818 => 0.020261170665969
819 => 0.020813413976061
820 => 0.020743135981042
821 => 0.0206822756906
822 => 0.022250904379717
823 => 0.021009212370658
824 => 0.020467763781406
825 => 0.019797618333909
826 => 0.020015821070781
827 => 0.020061799593505
828 => 0.01845022059507
829 => 0.017796403196114
830 => 0.017572037703381
831 => 0.017442912190251
901 => 0.017501756308041
902 => 0.016913243963848
903 => 0.017308733992241
904 => 0.016799132047881
905 => 0.016713695623521
906 => 0.017624927027604
907 => 0.017751719554145
908 => 0.017210783244569
909 => 0.017558151924951
910 => 0.017432191212658
911 => 0.016807867710571
912 => 0.016784023145004
913 => 0.016470759557688
914 => 0.015980562703323
915 => 0.015756529587141
916 => 0.015639851195088
917 => 0.015687994973665
918 => 0.015663652005993
919 => 0.015504797675711
920 => 0.015672757350256
921 => 0.015243689787522
922 => 0.015072831626808
923 => 0.014995658959494
924 => 0.014614836801359
925 => 0.015220894207333
926 => 0.01534029515122
927 => 0.015459931351852
928 => 0.016501282799243
929 => 0.01644925982376
930 => 0.016919522185911
1001 => 0.016901248655274
1002 => 0.016767122211844
1003 => 0.01620126480974
1004 => 0.01642680548478
1005 => 0.015732626343809
1006 => 0.016252752555818
1007 => 0.016015388673647
1008 => 0.01617249958849
1009 => 0.015889999997483
1010 => 0.016046346935268
1011 => 0.015368609544499
1012 => 0.014735747905021
1013 => 0.01499042990313
1014 => 0.015267298361494
1015 => 0.015867619723997
1016 => 0.015510073273034
1017 => 0.015638660497128
1018 => 0.015207914821653
1019 => 0.014319163456727
1020 => 0.014324193692934
1021 => 0.014187478657942
1022 => 0.014069336906986
1023 => 0.015551141783998
1024 => 0.015366855923673
1025 => 0.015073220523982
1026 => 0.015466263175075
1027 => 0.01557018989045
1028 => 0.015573148537933
1029 => 0.015859902310271
1030 => 0.016012942849972
1031 => 0.01603991690841
1101 => 0.016491130164909
1102 => 0.016642370896841
1103 => 0.017265310067279
1104 => 0.015999958429413
1105 => 0.015973899345119
1106 => 0.015471794091206
1107 => 0.015153351001204
1108 => 0.015493598162018
1109 => 0.01579501069813
1110 => 0.015481159818887
1111 => 0.015522142117963
1112 => 0.015100822955138
1113 => 0.015251424730938
1114 => 0.015381143268508
1115 => 0.015309520316565
1116 => 0.015202297290917
1117 => 0.015770298307432
1118 => 0.015738249464067
1119 => 0.016267185068933
1120 => 0.016679528197473
1121 => 0.01741852079897
1122 => 0.016647343494753
1123 => 0.016619238728635
1124 => 0.016893967325583
1125 => 0.016642328837324
1126 => 0.016801355675638
1127 => 0.017392899116772
1128 => 0.017405397497541
1129 => 0.017196033516403
1130 => 0.017183293699124
1201 => 0.017223504341892
1202 => 0.017459019332545
1203 => 0.017376723158166
1204 => 0.017471958374641
1205 => 0.017591051471137
1206 => 0.018083671012669
1207 => 0.018202439916376
1208 => 0.017913893054983
1209 => 0.017939945605844
1210 => 0.017832021158895
1211 => 0.017727767495431
1212 => 0.017962114505873
1213 => 0.018390388273558
1214 => 0.018387724004677
1215 => 0.018487075194327
1216 => 0.01854897016241
1217 => 0.018283271649514
1218 => 0.018110311687623
1219 => 0.01817663554274
1220 => 0.018282688831418
1221 => 0.018142243890573
1222 => 0.017275352655249
1223 => 0.017538312078819
1224 => 0.017494542772678
1225 => 0.017432209958204
1226 => 0.017696617692009
1227 => 0.017671114921057
1228 => 0.016907207919137
1229 => 0.016956110766909
1230 => 0.016910181863281
1231 => 0.017058587547074
]
'min_raw' => 0.014069336906986
'max_raw' => 0.031517051471275
'avg_raw' => 0.02279319418913
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014069'
'max' => '$0.031517'
'avg' => '$0.022793'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.003430880731908
'max_diff' => -0.022902787787999
'year' => 2034
]
9 => [
'items' => [
101 => 0.016634314443374
102 => 0.016764817992549
103 => 0.016846668595197
104 => 0.016894879228962
105 => 0.017069049096465
106 => 0.017048612272775
107 => 0.01706777871481
108 => 0.017326026649175
109 => 0.018632156081208
110 => 0.018703245824382
111 => 0.018353173929144
112 => 0.018493020746428
113 => 0.018224545438379
114 => 0.018404774711301
115 => 0.018528083002507
116 => 0.017970876545368
117 => 0.017937882395216
118 => 0.017668298994068
119 => 0.01781315784386
120 => 0.017582676998121
121 => 0.017639228935787
122 => 0.017481104787962
123 => 0.017765696771844
124 => 0.018083914830948
125 => 0.01816430927949
126 => 0.017952826097363
127 => 0.017799698336083
128 => 0.017530856430694
129 => 0.017977946510888
130 => 0.01810868927516
131 => 0.017977259774806
201 => 0.017946804687783
202 => 0.017889092352905
203 => 0.017959048632451
204 => 0.018107977221987
205 => 0.018037745249441
206 => 0.018084134704636
207 => 0.017907345938032
208 => 0.018283359606777
209 => 0.018880559805362
210 => 0.018882479901653
211 => 0.01881224755053
212 => 0.018783509985628
213 => 0.018855572639935
214 => 0.018894663673732
215 => 0.019127701083731
216 => 0.019377759509279
217 => 0.020544673072275
218 => 0.020217008413266
219 => 0.021252363546355
220 => 0.02207119503259
221 => 0.022316726792151
222 => 0.022090849126517
223 => 0.021318133834056
224 => 0.021280220735375
225 => 0.022434983614294
226 => 0.022108710209508
227 => 0.022069901026203
228 => 0.021657036884979
301 => 0.021901090726661
302 => 0.021847712571431
303 => 0.021763452542052
304 => 0.022229090271043
305 => 0.023100722531948
306 => 0.022964870469971
307 => 0.0228634632077
308 => 0.022419126103641
309 => 0.02268671628657
310 => 0.022591432547781
311 => 0.023000831958172
312 => 0.022758312816764
313 => 0.022106238367568
314 => 0.022210083372868
315 => 0.022194387409224
316 => 0.022517409228788
317 => 0.02242044609645
318 => 0.022175453801433
319 => 0.023097743387639
320 => 0.023037855031955
321 => 0.023122763027931
322 => 0.023160142153627
323 => 0.023721523572185
324 => 0.023951503577167
325 => 0.024003713064664
326 => 0.024222176282105
327 => 0.023998277500799
328 => 0.024894032263149
329 => 0.025489656911372
330 => 0.026181505590847
331 => 0.027192482462954
401 => 0.027572619118926
402 => 0.027503950834496
403 => 0.028270461960808
404 => 0.029647865416206
405 => 0.027782363454304
406 => 0.029746741549979
407 => 0.029124842124724
408 => 0.027650329774937
409 => 0.027555388562969
410 => 0.028553945445686
411 => 0.030768648504012
412 => 0.030213890506855
413 => 0.030769555889359
414 => 0.030121342704764
415 => 0.030089153456579
416 => 0.030738073621822
417 => 0.032254310958708
418 => 0.03153400343526
419 => 0.030501265973747
420 => 0.031263823244154
421 => 0.030603225565183
422 => 0.029114714104815
423 => 0.03021346629387
424 => 0.02947876199571
425 => 0.029693187768942
426 => 0.031237426924658
427 => 0.031051619983893
428 => 0.031292071370503
429 => 0.030867680966844
430 => 0.030471233409602
501 => 0.029731234603429
502 => 0.029512157438421
503 => 0.029572702485258
504 => 0.029512127435303
505 => 0.029098104904189
506 => 0.029008696778014
507 => 0.02885967931733
508 => 0.028905866059512
509 => 0.02862566963683
510 => 0.029154458177966
511 => 0.02925260599087
512 => 0.029637414193804
513 => 0.029677366257985
514 => 0.030749051625755
515 => 0.030158785334128
516 => 0.030554786923691
517 => 0.030519364814209
518 => 0.027682286928669
519 => 0.028073211229547
520 => 0.028681366762908
521 => 0.028407393519464
522 => 0.0280200594531
523 => 0.027707266426972
524 => 0.027233353007659
525 => 0.027900377044641
526 => 0.028777442723173
527 => 0.029699610090971
528 => 0.030807533760581
529 => 0.030560258095178
530 => 0.029678898228624
531 => 0.029718435388404
601 => 0.029962838552863
602 => 0.029646314248519
603 => 0.029552965051879
604 => 0.02995001380672
605 => 0.02995274806328
606 => 0.029588548597891
607 => 0.029183807539911
608 => 0.029182111660099
609 => 0.029110091898167
610 => 0.030134154860419
611 => 0.030697285945214
612 => 0.030761848016555
613 => 0.030692940403409
614 => 0.030719460208864
615 => 0.030391786638368
616 => 0.031140751251942
617 => 0.031828075246281
618 => 0.031643857733263
619 => 0.031367689493186
620 => 0.0311477081879
621 => 0.031592037128844
622 => 0.031572251860543
623 => 0.031822072070799
624 => 0.031810738783031
625 => 0.031726733642535
626 => 0.031643860733351
627 => 0.031972442450734
628 => 0.031877816192989
629 => 0.031783042954529
630 => 0.03159296071574
701 => 0.031618796048923
702 => 0.031342675493187
703 => 0.031214929489686
704 => 0.029293936102556
705 => 0.028780583899245
706 => 0.028942094952654
707 => 0.028995268585069
708 => 0.028771857048309
709 => 0.029092171802308
710 => 0.029042251087194
711 => 0.029236463387059
712 => 0.029115127973822
713 => 0.029120107621504
714 => 0.029476929200398
715 => 0.029580516022779
716 => 0.029527830928868
717 => 0.029564729762704
718 => 0.030415047814426
719 => 0.030294159779112
720 => 0.030229940419739
721 => 0.030247729621168
722 => 0.030465004114408
723 => 0.030525829109767
724 => 0.030268109330332
725 => 0.030389651468174
726 => 0.030907162465111
727 => 0.031088262025454
728 => 0.031666244889346
729 => 0.031420707495938
730 => 0.031871402008147
731 => 0.033256683285596
801 => 0.034363341824195
802 => 0.033345612897501
803 => 0.035377850371524
804 => 0.036960238752202
805 => 0.036899504050546
806 => 0.036623578035072
807 => 0.034822070933642
808 => 0.033164297239948
809 => 0.034551095327512
810 => 0.034554630561035
811 => 0.034435503375422
812 => 0.033695614656733
813 => 0.034409756851814
814 => 0.034466442865876
815 => 0.034434713772029
816 => 0.03386744282617
817 => 0.033001324941039
818 => 0.033170562302601
819 => 0.033447776553187
820 => 0.032922952143876
821 => 0.032755238944869
822 => 0.033067049690565
823 => 0.034071768881545
824 => 0.033881832538432
825 => 0.033876872532921
826 => 0.034689500754302
827 => 0.034107834323939
828 => 0.033172696927703
829 => 0.032936562402206
830 => 0.03209844391597
831 => 0.032677335339689
901 => 0.032698168611448
902 => 0.032381115694804
903 => 0.03319842402451
904 => 0.033190892384368
905 => 0.033966805003133
906 => 0.03545005851074
907 => 0.035011387462068
908 => 0.034501260759737
909 => 0.03455672567656
910 => 0.035165038915023
911 => 0.034797238844608
912 => 0.034929502314322
913 => 0.035164838718421
914 => 0.035306823014088
915 => 0.034536296321427
916 => 0.034356649690816
917 => 0.033989155731985
918 => 0.033893283417725
919 => 0.03419259957918
920 => 0.034113740345633
921 => 0.032696417655627
922 => 0.032548299548613
923 => 0.032552842119491
924 => 0.032180392096771
925 => 0.031612316413875
926 => 0.033105185390489
927 => 0.032985287118979
928 => 0.032852928706621
929 => 0.032869141856908
930 => 0.033517145681632
1001 => 0.033141270738315
1002 => 0.034140595879816
1003 => 0.033935164673187
1004 => 0.033724464931271
1005 => 0.033695339808867
1006 => 0.033614238384286
1007 => 0.033336111422888
1008 => 0.033000256404161
1009 => 0.032778495829534
1010 => 0.030236429738012
1011 => 0.03070822241808
1012 => 0.031250976891243
1013 => 0.031438333560427
1014 => 0.031117847013101
1015 => 0.033348766185165
1016 => 0.033756376615574
1017 => 0.032521698034097
1018 => 0.032290740083097
1019 => 0.033363907749983
1020 => 0.032716656457439
1021 => 0.033008113674839
1022 => 0.032378142589393
1023 => 0.033658195199115
1024 => 0.033648443342903
1025 => 0.033150473966422
1026 => 0.033571354273477
1027 => 0.033498215962771
1028 => 0.032936009763168
1029 => 0.033676018138431
1030 => 0.033676385173353
1031 => 0.033197100475278
1101 => 0.032637400876838
1102 => 0.032537339808151
1103 => 0.032461957234209
1104 => 0.032989574182685
1105 => 0.033462633888874
1106 => 0.034342880720645
1107 => 0.034564195688301
1108 => 0.035428002740835
1109 => 0.034913647699053
1110 => 0.035141654627062
1111 => 0.035389188400965
1112 => 0.035507865194927
1113 => 0.035314487727713
1114 => 0.036656335637465
1115 => 0.036769628714206
1116 => 0.036807614902856
1117 => 0.03635515133751
1118 => 0.036757044883953
1119 => 0.036569012202887
1120 => 0.037058221002037
1121 => 0.037134935188275
1122 => 0.037069961001718
1123 => 0.037094311295281
1124 => 0.0359492808225
1125 => 0.035889904951969
1126 => 0.035080310744164
1127 => 0.035410226368063
1128 => 0.034793464922452
1129 => 0.034989046330202
1130 => 0.03507525675117
1201 => 0.035030225319655
1202 => 0.035428879302437
1203 => 0.035089941977444
1204 => 0.034195430650332
1205 => 0.033300675614208
1206 => 0.033289442693581
1207 => 0.033053869486308
1208 => 0.032883593204834
1209 => 0.032916394457522
1210 => 0.033031990350327
1211 => 0.032876874561403
1212 => 0.03290997637954
1213 => 0.033459687116876
1214 => 0.033569927684891
1215 => 0.033195287161005
1216 => 0.031691051397233
1217 => 0.031321908167713
1218 => 0.031587241000664
1219 => 0.031460428996136
1220 => 0.025391021585692
1221 => 0.026816938827983
1222 => 0.025969707222188
1223 => 0.02636015052539
1224 => 0.025495346445434
1225 => 0.025908076280654
1226 => 0.025831860150569
1227 => 0.028124692880215
1228 => 0.02808889345083
1229 => 0.028106028743213
1230 => 0.027288116592005
1231 => 0.028591072857614
]
'min_raw' => 0.016634314443374
'max_raw' => 0.037134935188275
'avg_raw' => 0.026884624815824
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016634'
'max' => '$0.037134'
'avg' => '$0.026884'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025649775363878
'max_diff' => 0.005617883717
'year' => 2035
]
10 => [
'items' => [
101 => 0.029232955966845
102 => 0.029114160486492
103 => 0.029144058749549
104 => 0.028630307532551
105 => 0.028111002977998
106 => 0.027535014306601
107 => 0.028605130063705
108 => 0.028486151459
109 => 0.028759045571043
110 => 0.029453092132979
111 => 0.02955529312565
112 => 0.029692652296221
113 => 0.029643418811463
114 => 0.030816360160052
115 => 0.030674309223422
116 => 0.031016611109857
117 => 0.030312470158953
118 => 0.029515667835332
119 => 0.029667113907622
120 => 0.029652528433008
121 => 0.029466838600744
122 => 0.02929920612293
123 => 0.029020145277527
124 => 0.029903135085616
125 => 0.029867287311936
126 => 0.030447621099331
127 => 0.030345041465348
128 => 0.02965998956411
129 => 0.029684456326781
130 => 0.029849007064071
131 => 0.030418519044639
201 => 0.030587588975804
202 => 0.030509269047416
203 => 0.030694646508603
204 => 0.030841161295477
205 => 0.030713046510053
206 => 0.032526881701486
207 => 0.031773650869855
208 => 0.032140770336245
209 => 0.032228326165786
210 => 0.032004053749518
211 => 0.032052690406014
212 => 0.032126361687908
213 => 0.032573679285258
214 => 0.033747570093093
215 => 0.034267478340938
216 => 0.0358316479564
217 => 0.034224307198426
218 => 0.034128934249685
219 => 0.034410688430827
220 => 0.035329021579273
221 => 0.036073244341442
222 => 0.036320145966894
223 => 0.036352778092599
224 => 0.036815981955658
225 => 0.037081481771723
226 => 0.036759736823212
227 => 0.036487091667449
228 => 0.035510510561469
229 => 0.035623552483629
301 => 0.036402299229025
302 => 0.037502324874852
303 => 0.038446261317133
304 => 0.038115727674553
305 => 0.040637466047056
306 => 0.040887486106312
307 => 0.040852941418239
308 => 0.041422524321198
309 => 0.040292018252366
310 => 0.039808705005416
311 => 0.036546040644779
312 => 0.037462716247768
313 => 0.038795158071184
314 => 0.038618804399454
315 => 0.037651149531018
316 => 0.038445527264144
317 => 0.038182881143084
318 => 0.037975721250206
319 => 0.0389247608794
320 => 0.037881252822702
321 => 0.038784748280076
322 => 0.037626006010531
323 => 0.03811723752439
324 => 0.037838390758929
325 => 0.038018838790356
326 => 0.036963943285789
327 => 0.037533139293913
328 => 0.036940262860508
329 => 0.036939981759884
330 => 0.036926893979756
331 => 0.03762441047444
401 => 0.03764715646229
402 => 0.03713169071883
403 => 0.037057404052109
404 => 0.037332080794194
405 => 0.037010506267165
406 => 0.037160968964396
407 => 0.037015063628985
408 => 0.036982217264748
409 => 0.036720491846155
410 => 0.036607733339535
411 => 0.03665194885541
412 => 0.036501018505069
413 => 0.0364100775096
414 => 0.036908803526806
415 => 0.036642354334363
416 => 0.036867966366644
417 => 0.036610852981351
418 => 0.035719585968955
419 => 0.035207008885148
420 => 0.033523488119228
421 => 0.034000932520042
422 => 0.034317478651734
423 => 0.034212860157098
424 => 0.034437621165558
425 => 0.034451419666045
426 => 0.034378347571027
427 => 0.034293739446111
428 => 0.034252556890025
429 => 0.034559497922856
430 => 0.034737687523574
501 => 0.03434924829089
502 => 0.034258242413514
503 => 0.034650975924076
504 => 0.034890543138644
505 => 0.036659372849822
506 => 0.036528332231573
507 => 0.036857218467955
508 => 0.036820190924909
509 => 0.037164916096323
510 => 0.037728396059859
511 => 0.036582683742516
512 => 0.036781539785055
513 => 0.036732784875681
514 => 0.037265078192004
515 => 0.037266739953635
516 => 0.036947603520477
517 => 0.037120612558289
518 => 0.037024043659637
519 => 0.037198556711571
520 => 0.036526582104225
521 => 0.037344974640796
522 => 0.037808950472982
523 => 0.037815392777862
524 => 0.038035313639979
525 => 0.038258765972846
526 => 0.038687663267189
527 => 0.038246804260091
528 => 0.037453741823083
529 => 0.037510998369458
530 => 0.03704602615281
531 => 0.037053842419776
601 => 0.03701211857414
602 => 0.037137334975719
603 => 0.036554060062842
604 => 0.036690953519061
605 => 0.036499301878707
606 => 0.036781123171818
607 => 0.03647793004716
608 => 0.036732761364588
609 => 0.036842738113398
610 => 0.037248554684137
611 => 0.036417990609702
612 => 0.034724414237685
613 => 0.035080424523712
614 => 0.034553857346674
615 => 0.034602593143691
616 => 0.034701047209911
617 => 0.034381925369127
618 => 0.034442803759663
619 => 0.034440628755159
620 => 0.03442188574137
621 => 0.034338869825512
622 => 0.034218480323319
623 => 0.034698075046121
624 => 0.034779567535042
625 => 0.034960715243129
626 => 0.035499687948732
627 => 0.03544583186559
628 => 0.035533673371661
629 => 0.035341915857117
630 => 0.034611488224817
701 => 0.034651153959444
702 => 0.034156521613042
703 => 0.034948066381946
704 => 0.034760618132789
705 => 0.034639769027135
706 => 0.034606794228998
707 => 0.035147102943689
708 => 0.035308771779426
709 => 0.035208030610187
710 => 0.035001407532987
711 => 0.035398184923839
712 => 0.035504345814937
713 => 0.03552811132339
714 => 0.036231124785461
715 => 0.035567401966415
716 => 0.035727166645797
717 => 0.036973605067495
718 => 0.035843257415759
719 => 0.036442027776645
720 => 0.03641272108333
721 => 0.036719031738674
722 => 0.036387594669053
723 => 0.036391703228755
724 => 0.03666368633942
725 => 0.036281735112904
726 => 0.036187158617826
727 => 0.036056501867246
728 => 0.036341786102156
729 => 0.036512801098688
730 => 0.037891056374065
731 => 0.038781472138034
801 => 0.038742816841416
802 => 0.039096053892825
803 => 0.038936917365885
804 => 0.038423023542299
805 => 0.039300177636484
806 => 0.039022609379398
807 => 0.039045491769267
808 => 0.039044640085573
809 => 0.039229198711097
810 => 0.039098422010364
811 => 0.038840647709265
812 => 0.039011770320157
813 => 0.039519943297054
814 => 0.041097327809994
815 => 0.041980053081
816 => 0.041044186640297
817 => 0.041689734779343
818 => 0.041302635928236
819 => 0.041232288551797
820 => 0.04163774048875
821 => 0.042043902115647
822 => 0.042018031375898
823 => 0.041723178891402
824 => 0.041556624204515
825 => 0.042817832093538
826 => 0.043747068582055
827 => 0.043683700883219
828 => 0.043963385297603
829 => 0.044784547388548
830 => 0.044859624159005
831 => 0.044850166211548
901 => 0.044664080602517
902 => 0.045472621322425
903 => 0.046147120215892
904 => 0.044621007160557
905 => 0.045202131033742
906 => 0.045463016263057
907 => 0.04584607318085
908 => 0.046492354408961
909 => 0.047194387240319
910 => 0.047293662380071
911 => 0.047223221917664
912 => 0.046760212393728
913 => 0.047528385094794
914 => 0.047978362647212
915 => 0.048246313982123
916 => 0.048925793984608
917 => 0.045464627401417
918 => 0.043014641662693
919 => 0.042632041011368
920 => 0.043410074480865
921 => 0.04361523570207
922 => 0.043532535471052
923 => 0.040774853779161
924 => 0.042617522387976
925 => 0.044600078875084
926 => 0.044676236943969
927 => 0.045668746174717
928 => 0.045991947864576
929 => 0.046791047886487
930 => 0.046741063962545
1001 => 0.046935632101421
1002 => 0.046890904255744
1003 => 0.048371068775971
1004 => 0.05000391004834
1005 => 0.049947369947195
1006 => 0.049712629695391
1007 => 0.050061258998481
1008 => 0.05174652617747
1009 => 0.051591373781485
1010 => 0.051742091118335
1011 => 0.05372911609986
1012 => 0.05631253122685
1013 => 0.055112275529725
1014 => 0.057716485028212
1015 => 0.059355696864297
1016 => 0.062190544237137
1017 => 0.06183560738414
1018 => 0.062939192663315
1019 => 0.061200196339718
1020 => 0.057207109271596
1021 => 0.056575187958142
1022 => 0.057840310430472
1023 => 0.060950490579851
1024 => 0.057742359789377
1025 => 0.058391360470012
1026 => 0.058204448230328
1027 => 0.058194488471401
1028 => 0.058574611960372
1029 => 0.058023223013712
1030 => 0.055776765252042
1031 => 0.056806303605757
1101 => 0.056408749404895
1102 => 0.05684986543038
1103 => 0.059230386689836
1104 => 0.058177901496491
1105 => 0.057069193842258
1106 => 0.058459759282591
1107 => 0.060230426938264
1108 => 0.060119621738568
1109 => 0.059904613338176
1110 => 0.061116604433708
1111 => 0.063118458643455
1112 => 0.063659551792248
1113 => 0.064058975692524
1114 => 0.06411404950005
1115 => 0.064681343945749
1116 => 0.061630858734619
1117 => 0.066472057106699
1118 => 0.067307998330151
1119 => 0.067150876026356
1120 => 0.068079989514439
1121 => 0.06780662075691
1122 => 0.067410552317496
1123 => 0.068883394824214
1124 => 0.067194899742523
1125 => 0.064798293549684
1126 => 0.063483467992796
1127 => 0.065214936350058
1128 => 0.066272283655919
1129 => 0.066971122965175
1130 => 0.067182591317905
1201 => 0.061867659217941
1202 => 0.059003205595709
1203 => 0.060839287526532
1204 => 0.063079434201743
1205 => 0.06161841460673
1206 => 0.061675683808779
1207 => 0.059592653815487
1208 => 0.063263736135367
1209 => 0.062728890320023
1210 => 0.065503671356155
1211 => 0.064841447592873
1212 => 0.067104173811459
1213 => 0.066508322165892
1214 => 0.068981669033025
1215 => 0.069968354061517
1216 => 0.071625151789618
1217 => 0.072843898942789
1218 => 0.073559570582049
1219 => 0.073516604341245
1220 => 0.076352451922189
1221 => 0.074680251680674
1222 => 0.072579574069995
1223 => 0.072541579439571
1224 => 0.073629550140974
1225 => 0.075909638260928
1226 => 0.076500831936499
1227 => 0.076831228549019
1228 => 0.076325214635756
1229 => 0.074510161121263
1230 => 0.073726430216235
1231 => 0.074394191654189
]
'min_raw' => 0.027535014306601
'max_raw' => 0.076831228549019
'avg_raw' => 0.05218312142781
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027535'
'max' => '$0.076831'
'avg' => '$0.052183'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010900699863227
'max_diff' => 0.039696293360744
'year' => 2036
]
11 => [
'items' => [
101 => 0.073577576796966
102 => 0.074987283142194
103 => 0.076923111051219
104 => 0.076523370243099
105 => 0.077859643832155
106 => 0.079242546416746
107 => 0.081220159222754
108 => 0.081737180441034
109 => 0.082591796854296
110 => 0.083471477870409
111 => 0.083754007704717
112 => 0.084293444822269
113 => 0.084290601722386
114 => 0.085916231784434
115 => 0.087709352084447
116 => 0.088386213486871
117 => 0.08994261895939
118 => 0.087277329130654
119 => 0.089298982082393
120 => 0.091122563650117
121 => 0.088948414527633
122 => 0.091944972581201
123 => 0.092061322140075
124 => 0.093818062342506
125 => 0.092037269596642
126 => 0.090979840548639
127 => 0.094032598588873
128 => 0.095509732043564
129 => 0.0950648074257
130 => 0.091678909115118
131 => 0.089708171070349
201 => 0.08455036948021
202 => 0.090660008264177
203 => 0.093635835095241
204 => 0.091671202442533
205 => 0.092662048876702
206 => 0.098067785738495
207 => 0.10012594033992
208 => 0.099697858570413
209 => 0.099770197342635
210 => 0.10088074020742
211 => 0.10580549885699
212 => 0.10285446931915
213 => 0.10511042082786
214 => 0.10630696937364
215 => 0.10741839034734
216 => 0.10468909170415
217 => 0.10113831427072
218 => 0.10001363400605
219 => 0.091475858443898
220 => 0.091031430148209
221 => 0.090781959078282
222 => 0.089209079270779
223 => 0.087973226590121
224 => 0.086990430654193
225 => 0.084411280630609
226 => 0.085281668051826
227 => 0.081171041224677
228 => 0.083800874597017
301 => 0.077240214926333
302 => 0.082704127251133
303 => 0.079730368186353
304 => 0.081727167419359
305 => 0.081720200774945
306 => 0.078043460301207
307 => 0.075922793127571
308 => 0.077274164788213
309 => 0.078722942480437
310 => 0.078958001786727
311 => 0.080836379881663
312 => 0.081360594832357
313 => 0.079772199058497
314 => 0.077104259837117
315 => 0.077723961269029
316 => 0.075910234897833
317 => 0.072731749196289
318 => 0.075014593118174
319 => 0.075794056402667
320 => 0.076138311794143
321 => 0.073012636158225
322 => 0.072030481011699
323 => 0.071507589852769
324 => 0.076700774363074
325 => 0.076985268733499
326 => 0.075529755310951
327 => 0.082108813998314
328 => 0.080619770393706
329 => 0.082283396924594
330 => 0.077667729859486
331 => 0.077844054557193
401 => 0.075658923799225
402 => 0.076882451013197
403 => 0.076017701414484
404 => 0.076783602105439
405 => 0.077242679821671
406 => 0.079427452021183
407 => 0.082729073840204
408 => 0.079101119910309
409 => 0.077520368429796
410 => 0.078501057757822
411 => 0.081112762672084
412 => 0.085069629307906
413 => 0.082727084620137
414 => 0.083766666173581
415 => 0.083993768495244
416 => 0.082266462768201
417 => 0.085133317533866
418 => 0.086669688293072
419 => 0.088245686784884
420 => 0.08961408211685
421 => 0.087616198330305
422 => 0.089754220367299
423 => 0.088031352017177
424 => 0.086485761000261
425 => 0.086488105023841
426 => 0.085518533201448
427 => 0.083639865621649
428 => 0.083293410496003
429 => 0.085095713812076
430 => 0.086540990392807
501 => 0.086660030294404
502 => 0.087460209670489
503 => 0.087933747582753
504 => 0.092575062866514
505 => 0.094441838268617
506 => 0.096724495894058
507 => 0.097613719682703
508 => 0.10028996448215
509 => 0.09812867945262
510 => 0.097661071841362
511 => 0.091169377350907
512 => 0.092232391960047
513 => 0.093934380914935
514 => 0.091197442521892
515 => 0.092933399975899
516 => 0.093276114749927
517 => 0.091104442402598
518 => 0.09226442643573
519 => 0.08918385275503
520 => 0.082796221928207
521 => 0.085140428792977
522 => 0.086866554096947
523 => 0.084403160458467
524 => 0.088818698208943
525 => 0.086239232210315
526 => 0.085421665324954
527 => 0.082232045421521
528 => 0.083737423236213
529 => 0.085773468285517
530 => 0.084515429160689
531 => 0.087126049240231
601 => 0.090823383499805
602 => 0.09345832407324
603 => 0.093660602092281
604 => 0.09196651183087
605 => 0.09468130228632
606 => 0.094701076570984
607 => 0.091638781846992
608 => 0.089763143379475
609 => 0.089336994373278
610 => 0.090401598142192
611 => 0.091694223654351
612 => 0.093732333811989
613 => 0.094963921095005
614 => 0.098175247545688
615 => 0.099044140407298
616 => 0.099998790230352
617 => 0.10127449679705
618 => 0.10280630961483
619 => 0.099454790375688
620 => 0.099587952483073
621 => 0.096467064172526
622 => 0.09313194743205
623 => 0.095662885309901
624 => 0.098971749908634
625 => 0.098212692713714
626 => 0.098127283273154
627 => 0.098270918261572
628 => 0.097698613925093
629 => 0.095110102621787
630 => 0.093810168450204
701 => 0.095487415180122
702 => 0.09637879717141
703 => 0.097761252903218
704 => 0.097590836054172
705 => 0.1011518935544
706 => 0.1025356128182
707 => 0.10218159821784
708 => 0.10224674542414
709 => 0.10475190305621
710 => 0.10753815356803
711 => 0.11014784485048
712 => 0.11280253491184
713 => 0.10960220242855
714 => 0.10797727096261
715 => 0.10965378545907
716 => 0.1087642032686
717 => 0.11387600640228
718 => 0.11422993656033
719 => 0.11934137005247
720 => 0.12419272909468
721 => 0.12114567740139
722 => 0.12401890990594
723 => 0.12712654511769
724 => 0.1331216776368
725 => 0.13110272791567
726 => 0.12955624407026
727 => 0.1280948243089
728 => 0.13113580683844
729 => 0.1350479822818
730 => 0.13589062740195
731 => 0.1372560344118
801 => 0.13582047589497
802 => 0.13754944800691
803 => 0.14365347931091
804 => 0.1420041161708
805 => 0.13966175536348
806 => 0.14448030184059
807 => 0.14622411507903
808 => 0.1584631096285
809 => 0.17391534581486
810 => 0.16751801856885
811 => 0.1635469911068
812 => 0.16448027675441
813 => 0.17012291031846
814 => 0.171935145131
815 => 0.16700886619573
816 => 0.16874891119754
817 => 0.17833673023497
818 => 0.18348028753449
819 => 0.17649464584983
820 => 0.15722153749644
821 => 0.1394508514011
822 => 0.14416443757801
823 => 0.14363006318516
824 => 0.15393097863609
825 => 0.14196477940539
826 => 0.1421662595114
827 => 0.15268018698501
828 => 0.1498752513894
829 => 0.14533161495352
830 => 0.13948402497537
831 => 0.12867421406416
901 => 0.11909966308622
902 => 0.13787756244136
903 => 0.13706782527577
904 => 0.13589520586368
905 => 0.13850474347462
906 => 0.15117591738321
907 => 0.15088380581203
908 => 0.14902554103281
909 => 0.15043501848985
910 => 0.14508452674058
911 => 0.1464634702928
912 => 0.13944803643363
913 => 0.14261930552837
914 => 0.14532186635038
915 => 0.1458644454475
916 => 0.14708690385807
917 => 0.13664113058425
918 => 0.1413309761124
919 => 0.1440858209811
920 => 0.13163933164223
921 => 0.14383979390538
922 => 0.1364592929113
923 => 0.1339542400225
924 => 0.13732696372165
925 => 0.13601261001601
926 => 0.13488260588134
927 => 0.13425204415826
928 => 0.13672860020898
929 => 0.13661306590909
930 => 0.1325609395313
1001 => 0.12727510585727
1002 => 0.12904920513985
1003 => 0.12840465823822
1004 => 0.12606873711851
1005 => 0.127642865913
1006 => 0.12071119935039
1007 => 0.10878562730611
1008 => 0.11666402548871
1009 => 0.11636071572873
1010 => 0.11620777319375
1011 => 0.12212817168504
1012 => 0.12155906197694
1013 => 0.12052612228399
1014 => 0.126049766371
1015 => 0.12403356197575
1016 => 0.13024702884443
1017 => 0.13433961998599
1018 => 0.13330160649103
1019 => 0.13715070824088
1020 => 0.12909007680414
1021 => 0.13176749523103
1022 => 0.13231930745806
1023 => 0.12598160546038
1024 => 0.12165217536348
1025 => 0.12136345173514
1026 => 0.11385681657933
1027 => 0.11786680048812
1028 => 0.12139542038345
1029 => 0.11970548528555
1030 => 0.11917050231893
1031 => 0.12190361427174
1101 => 0.12211600047799
1102 => 0.11727357246772
1103 => 0.11828046659081
1104 => 0.1224793824663
1105 => 0.11817466468405
1106 => 0.1098113012048
1107 => 0.1077370714294
1108 => 0.10746033094173
1109 => 0.1018348552816
1110 => 0.10787568138131
1111 => 0.10523869890471
1112 => 0.11356889495238
1113 => 0.10881073164569
1114 => 0.10860561673556
1115 => 0.10829555546508
1116 => 0.10345347617894
1117 => 0.10451358381241
1118 => 0.10803754304503
1119 => 0.10929493139947
1120 => 0.10916377549262
1121 => 0.1080202737223
1122 => 0.10854376297708
1123 => 0.1068574216917
1124 => 0.10626193948567
1125 => 0.10438243384316
1126 => 0.10162007977536
1127 => 0.10200420205099
1128 => 0.096531255833423
1129 => 0.09354930426285
1130 => 0.092723939369606
1201 => 0.091620226939986
1202 => 0.092848606625398
1203 => 0.096515751664428
1204 => 0.092092396719138
1205 => 0.084508864927711
1206 => 0.084964648110085
1207 => 0.085988657597638
1208 => 0.084080422692083
1209 => 0.082274438499991
1210 => 0.083844595230886
1211 => 0.080631352838925
1212 => 0.08637696258926
1213 => 0.086221559947398
1214 => 0.088363167956199
1215 => 0.089702359394323
1216 => 0.086615956697825
1217 => 0.085839734766176
1218 => 0.086281906055763
1219 => 0.078973799587606
1220 => 0.087765939743991
1221 => 0.087841974537165
1222 => 0.087190918475948
1223 => 0.09187246168235
1224 => 0.1017519780578
1225 => 0.098034906594731
1226 => 0.096595544175151
1227 => 0.093859315163361
1228 => 0.097505177860369
1229 => 0.097225232489556
1230 => 0.095959213356614
1231 => 0.095193521034791
]
'min_raw' => 0.071507589852769
'max_raw' => 0.18348028753449
'avg_raw' => 0.12749393869363
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0715075'
'max' => '$0.18348'
'avg' => '$0.127493'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.043972575546168
'max_diff' => 0.10664905898547
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022445415355857
]
1 => [
'year' => 2028
'avg' => 0.0038522848701286
]
2 => [
'year' => 2029
'avg' => 0.010523747958396
]
3 => [
'year' => 2030
'avg' => 0.0081190558774668
]
4 => [
'year' => 2031
'avg' => 0.0079739190551903
]
5 => [
'year' => 2032
'avg' => 0.013980789588431
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022445415355857
'min' => '$0.002244'
'max_raw' => 0.013980789588431
'max' => '$0.01398'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013980789588431
]
1 => [
'year' => 2033
'avg' => 0.035960028449084
]
2 => [
'year' => 2034
'avg' => 0.02279319418913
]
3 => [
'year' => 2035
'avg' => 0.026884624815824
]
4 => [
'year' => 2036
'avg' => 0.05218312142781
]
5 => [
'year' => 2037
'avg' => 0.12749393869363
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013980789588431
'min' => '$0.01398'
'max_raw' => 0.12749393869363
'max' => '$0.127493'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12749393869363
]
]
]
]
'prediction_2025_max_price' => '$0.003837'
'last_price' => 0.00372119
'sma_50day_nextmonth' => '$0.003311'
'sma_200day_nextmonth' => '$0.007861'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.003598'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003462'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003288'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003154'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003551'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.005213'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003619'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003513'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003367'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003346'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003864'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0056012'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009652'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006425'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01310094'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003523'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003573'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004281'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006967'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015423'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018331'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.12'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.86
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003313'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0037029'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 99.16
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 211.3
'cci_20_action' => 'SELL'
'adx_14' => 18.82
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000013'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0.84
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.24
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0013012'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767687044
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sigma para 2026
A previsão de preço para Sigma em 2026 sugere que o preço médio poderia variar entre $0.001285 na extremidade inferior e $0.003837 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sigma poderia potencialmente ganhar 3.13% até 2026 se SIGMA atingir a meta de preço prevista.
Previsão de preço de Sigma 2027-2032
A previsão de preço de SIGMA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002244 na extremidade inferior e $0.01398 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sigma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001237 | $0.002244 | $0.003251 |
| 2028 | $0.002233 | $0.003852 | $0.00547 |
| 2029 | $0.0049066 | $0.010523 | $0.01614 |
| 2030 | $0.004172 | $0.008119 | $0.012065 |
| 2031 | $0.004933 | $0.007973 | $0.011014 |
| 2032 | $0.00753 | $0.01398 | $0.02043 |
Previsão de preço de Sigma 2032-2037
A previsão de preço de Sigma para 2032-2037 é atualmente estimada entre $0.01398 na extremidade inferior e $0.127493 na extremidade superior. Comparado ao preço atual, Sigma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00753 | $0.01398 | $0.02043 |
| 2033 | $0.01750021 | $0.03596 | $0.054419 |
| 2034 | $0.014069 | $0.022793 | $0.031517 |
| 2035 | $0.016634 | $0.026884 | $0.037134 |
| 2036 | $0.027535 | $0.052183 | $0.076831 |
| 2037 | $0.0715075 | $0.127493 | $0.18348 |
Sigma Histograma de preços potenciais
Previsão de preço de Sigma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sigma é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de SIGMA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sigma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sigma está projetado para aumentar no próximo mês, alcançando $0.007861 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sigma é esperado para alcançar $0.003311 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 58.12, sugerindo que o mercado de SIGMA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SIGMA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.003598 | BUY |
| SMA 5 | $0.003462 | BUY |
| SMA 10 | $0.003288 | BUY |
| SMA 21 | $0.003154 | BUY |
| SMA 50 | $0.003551 | BUY |
| SMA 100 | $0.005213 | SELL |
| SMA 200 | $0.010335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.003619 | BUY |
| EMA 5 | $0.003513 | BUY |
| EMA 10 | $0.003367 | BUY |
| EMA 21 | $0.003346 | BUY |
| EMA 50 | $0.003864 | SELL |
| EMA 100 | $0.0056012 | SELL |
| EMA 200 | $0.009652 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006425 | SELL |
| SMA 50 | $0.01310094 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006967 | SELL |
| EMA 50 | $0.015423 | SELL |
| EMA 100 | $0.018331 | SELL |
| EMA 200 | $0.009165 | SELL |
Osciladores de Sigma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 58.12 | NEUTRAL |
| Stoch RSI (14) | 101.86 | SELL |
| Estocástico Rápido (14) | 99.16 | SELL |
| Índice de Canal de Commodities (20) | 211.3 | SELL |
| Índice Direcional Médio (14) | 18.82 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000013 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0.84 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.24 | SELL |
| VWMA (10) | 0.003313 | BUY |
| Média Móvel de Hull (9) | 0.0037029 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0013012 | SELL |
Previsão do preço de Sigma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sigma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sigma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005228 | $0.007347 | $0.010324 | $0.0145075 | $0.020385 | $0.028645 |
| Amazon.com stock | $0.007764 | $0.016201 | $0.0338044 | $0.070535 | $0.147175 | $0.30709 |
| Apple stock | $0.005278 | $0.007486 | $0.010619 | $0.015062 | $0.021365 | $0.0303052 |
| Netflix stock | $0.005871 | $0.009264 | $0.014617 | $0.023064 | $0.036391 | $0.05742 |
| Google stock | $0.004818 | $0.00624 | $0.008081 | $0.010465 | $0.013552 | $0.01755 |
| Tesla stock | $0.008435 | $0.019122 | $0.04335 | $0.098272 | $0.222775 | $0.505014 |
| Kodak stock | $0.00279 | $0.002092 | $0.001569 | $0.001176 | $0.000882 | $0.000661 |
| Nokia stock | $0.002465 | $0.001633 | $0.001081 | $0.000716 | $0.000474 | $0.000314 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sigma
Você pode fazer perguntas como: 'Devo investir em Sigma agora?', 'Devo comprar SIGMA hoje?', 'Sigma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sigma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sigma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sigma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sigma é de $0.003721 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Sigma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sigma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003817 | $0.003917 | $0.004018 | $0.004123 |
| Se Sigma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003914 | $0.004118 | $0.004332 | $0.004557 |
| Se Sigma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0042048 | $0.004751 | $0.005368 | $0.006066 |
| Se Sigma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004688 | $0.0059071 | $0.007442 | $0.009377 |
| Se Sigma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005655 | $0.008595 | $0.013064 | $0.019856 |
| Se Sigma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008557 | $0.019679 | $0.045255 | $0.104072 |
| Se Sigma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013393 | $0.0482084 | $0.173517 | $0.624545 |
Perguntas Frequentes sobre Sigma
SIGMA é um bom investimento?
A decisão de adquirir Sigma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sigma experimentou uma queda de -2.3252% nas últimas 24 horas, e Sigma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sigma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sigma pode subir?
Parece que o valor médio de Sigma pode potencialmente subir para $0.003837 até o final deste ano. Observando as perspectivas de Sigma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.012065. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sigma na próxima semana?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma aumentará 0.86% na próxima semana e atingirá $0.003753 até 13 de janeiro de 2026.
Qual será o preço de Sigma no próximo mês?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma diminuirá -11.62% no próximo mês e atingirá $0.003288 até 5 de fevereiro de 2026.
Até onde o preço de Sigma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sigma em 2026, espera-se que SIGMA fluctue dentro do intervalo de $0.001285 e $0.003837. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sigma não considera flutuações repentinas e extremas de preço.
Onde estará Sigma em 5 anos?
O futuro de Sigma parece seguir uma tendência de alta, com um preço máximo de $0.012065 projetada após um período de cinco anos. Com base na previsão de Sigma para 2030, o valor de Sigma pode potencialmente atingir seu pico mais alto de aproximadamente $0.012065, enquanto seu pico mais baixo está previsto para cerca de $0.004172.
Quanto será Sigma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sigma, espera-se que o valor de SIGMA em 2026 aumente 3.13% para $0.003837 se o melhor cenário ocorrer. O preço ficará entre $0.003837 e $0.001285 durante 2026.
Quanto será Sigma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sigma, o valor de SIGMA pode diminuir -12.62% para $0.003251 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003251 e $0.001237 ao longo do ano.
Quanto será Sigma em 2028?
Nosso novo modelo experimental de previsão de preços de Sigma sugere que o valor de SIGMA em 2028 pode aumentar 47.02%, alcançando $0.00547 no melhor cenário. O preço é esperado para variar entre $0.00547 e $0.002233 durante o ano.
Quanto será Sigma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sigma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.01614 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.01614 e $0.0049066.
Quanto será Sigma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sigma, espera-se que o valor de SIGMA em 2030 aumente 224.23%, alcançando $0.012065 no melhor cenário. O preço está previsto para variar entre $0.012065 e $0.004172 ao longo de 2030.
Quanto será Sigma em 2031?
Nossa simulação experimental indica que o preço de Sigma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011014 sob condições ideais. O preço provavelmente oscilará entre $0.011014 e $0.004933 durante o ano.
Quanto será Sigma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sigma, SIGMA poderia ver um 449.04% aumento em valor, atingindo $0.02043 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.02043 e $0.00753 ao longo do ano.
Quanto será Sigma em 2033?
De acordo com nossa previsão experimental de preços de Sigma, espera-se que o valor de SIGMA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.054419. Ao longo do ano, o preço de SIGMA poderia variar entre $0.054419 e $0.01750021.
Quanto será Sigma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sigma sugerem que SIGMA pode aumentar 746.96% em 2034, atingindo potencialmente $0.031517 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.031517 e $0.014069.
Quanto será Sigma em 2035?
Com base em nossa previsão experimental para o preço de Sigma, SIGMA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.037134 em 2035. A faixa de preço esperada para o ano está entre $0.037134 e $0.016634.
Quanto será Sigma em 2036?
Nossa recente simulação de previsão de preços de Sigma sugere que o valor de SIGMA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.076831 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.076831 e $0.027535.
Quanto será Sigma em 2037?
De acordo com a simulação experimental, o valor de Sigma poderia aumentar 4830.69% em 2037, com um pico de $0.18348 sob condições favoráveis. O preço é esperado para cair entre $0.18348 e $0.0715075 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sigma?
Traders de Sigma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sigma
Médias móveis são ferramentas populares para a previsão de preço de Sigma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SIGMA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SIGMA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SIGMA.
Como ler gráficos de Sigma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sigma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SIGMA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sigma?
A ação de preço de Sigma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SIGMA. A capitalização de mercado de Sigma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SIGMA, grandes detentores de Sigma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sigma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


