Previsão de Preço Sigma - Projeção SIGMA
Previsão de Preço Sigma até $0.003829 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001282 | $0.003829 |
| 2027 | $0.001235 | $0.003244 |
| 2028 | $0.002228 | $0.005459 |
| 2029 | $0.004896 | $0.016106 |
| 2030 | $0.004163 | $0.012039 |
| 2031 | $0.004923 | $0.01099 |
| 2032 | $0.007514 | $0.020386 |
| 2033 | $0.017462 | $0.0543026 |
| 2034 | $0.014039 | $0.031449 |
| 2035 | $0.016598 | $0.037055 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sigma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,956.66, com um retorno de 39.57% nos próximos 90 dias.
Previsão de preço de longo prazo de Sigma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sigma'
'name_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_lang' => 'Sigma'
'name_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_with_lang' => 'Sigma'
'name_with_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'image' => '/uploads/coins/sigma.jpg?1722053593'
'price_for_sd' => 0.003713
'ticker' => 'SIGMA'
'marketcap' => '$3.34M'
'low24h' => '$0.003615'
'high24h' => '$0.004703'
'volume24h' => '$1.45M'
'current_supply' => '899.82M'
'max_supply' => '899.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003713'
'change_24h_pct' => '-2.6673%'
'ath_price' => '$0.1721'
'ath_days' => 422
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de nov. de 2024'
'ath_pct' => '-97.85%'
'fdv' => '$3.34M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.183085'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003744'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003281'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001282'
'current_year_max_price_prediction' => '$0.003829'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004163'
'grand_prediction_max_price' => '$0.012039'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0037835428078673
107 => 0.0037976691832859
108 => 0.0038294966284144
109 => 0.0035575345945145
110 => 0.0036796375633498
111 => 0.0037513616180395
112 => 0.0034273097296079
113 => 0.0037449561541115
114 => 0.0035528003405652
115 => 0.0034875797713642
116 => 0.0035753906756368
117 => 0.0035411706808429
118 => 0.0035117503387845
119 => 0.0034953332824104
120 => 0.0035598119191723
121 => 0.0035568039136987
122 => 0.0034513043491921
123 => 0.0033136844680055
124 => 0.0033598742173503
125 => 0.0033430930483822
126 => 0.0032822759272276
127 => 0.0033232593237986
128 => 0.0031427891865224
129 => 0.0028322996953601
130 => 0.0030374185637722
131 => 0.0030295217104648
201 => 0.0030255397589333
202 => 0.0031796809194759
203 => 0.0031648638035314
204 => 0.0031379705930024
205 => 0.0032817820123263
206 => 0.0032292889097365
207 => 0.0033910602829878
208 => 0.0034976133721275
209 => 0.0034705880620903
210 => 0.003570801757442
211 => 0.0033609383358851
212 => 0.0034306465462672
213 => 0.0034450133118156
214 => 0.0032800074017351
215 => 0.0031672880669463
216 => 0.0031597709724103
217 => 0.0029643311795676
218 => 0.0030687335393693
219 => 0.0031606032955316
220 => 0.0031166048117109
221 => 0.0031026762061506
222 => 0.0031738344312123
223 => 0.0031793640347285
224 => 0.0030532884885564
225 => 0.0030795035868989
226 => 0.0031888249048846
227 => 0.0030767489701753
228 => 0.0028590037365351
301 => 0.0028049999080289
302 => 0.0027977948018182
303 => 0.0026513321358118
304 => 0.0028086087020791
305 => 0.0027399532661535
306 => 0.0029568349656239
307 => 0.0028329533020463
308 => 0.0028276130111286
309 => 0.0028195403781562
310 => 0.002693473911228
311 => 0.0027210744555433
312 => 0.0028128228685291
313 => 0.0028455597359023
314 => 0.00284214501243
315 => 0.0028123732512523
316 => 0.0028260026110634
317 => 0.0027820976943282
318 => 0.0027665939544272
319 => 0.0027176598866599
320 => 0.0026457403254233
321 => 0.0026557411815216
322 => 0.002513249711935
323 => 0.0024356127967095
324 => 0.0024141239218132
325 => 0.00238538810022
326 => 0.0024173697093253
327 => 0.0025128460515047
328 => 0.0023976813264004
329 => 0.0022002394830751
330 => 0.0022121060742835
331 => 0.0022387667815062
401 => 0.0021890847299749
402 => 0.0021420648376991
403 => 0.0021829448191885
404 => 0.0020992861073418
405 => 0.0022488765371486
406 => 0.0022448305352447
407 => 0.0023005885968666
408 => 0.0023354552570693
409 => 0.0022550988935172
410 => 0.0022348894853906
411 => 0.0022464016827259
412 => 0.0020561307045095
413 => 0.0022850393986371
414 => 0.0022870190105296
415 => 0.0022700683716491
416 => 0.002391955184509
417 => 0.0026491743770937
418 => 0.0025523981702253
419 => 0.0025149234978495
420 => 0.0024436841182693
421 => 0.0025386063617841
422 => 0.0025313178144999
423 => 0.002498356239581
424 => 0.0024784209762236
425 => 0.0025151523102081
426 => 0.0024738695574553
427 => 0.0024664540406867
428 => 0.0024215240772309
429 => 0.0024054861244603
430 => 0.0023936122627182
501 => 0.0023805403076417
502 => 0.0024093737832122
503 => 0.0023440333342099
504 => 0.0022652391581165
505 => 0.0022586882749391
506 => 0.0022767758393514
507 => 0.0022687734385597
508 => 0.0022586499625228
509 => 0.0022393214898038
510 => 0.0022335871448355
511 => 0.0022522209840737
512 => 0.0022311844659941
513 => 0.002262224994339
514 => 0.0022537836881799
515 => 0.0022066312381661
516 => 0.0021478618273759
517 => 0.0021473386563469
518 => 0.0021346768831933
519 => 0.0021185502113718
520 => 0.0021140641401994
521 => 0.002179502021171
522 => 0.0023149564763913
523 => 0.0022883635256812
524 => 0.0023075796579244
525 => 0.0024021040096563
526 => 0.0024321504586255
527 => 0.0024108242008363
528 => 0.0023816315038282
529 => 0.0023829158343411
530 => 0.0024826761172481
531 => 0.0024888980437245
601 => 0.002504618844661
602 => 0.0025248245165621
603 => 0.0024142653141329
604 => 0.0023777085058492
605 => 0.0023603858619898
606 => 0.0023070388236099
607 => 0.0023645690308732
608 => 0.00233104864279
609 => 0.0023355716883619
610 => 0.0023326260489996
611 => 0.0023342345672747
612 => 0.0022488347235748
613 => 0.0022799499381354
614 => 0.0022282148590333
615 => 0.0021589473956508
616 => 0.0021587151868252
617 => 0.002175668300357
618 => 0.0021655839250529
619 => 0.0021384471304026
620 => 0.0021423017840006
621 => 0.0021085309624249
622 => 0.0021464021731804
623 => 0.0021474881839952
624 => 0.0021329057049955
625 => 0.0021912515303843
626 => 0.0022151558626517
627 => 0.0022055573625872
628 => 0.0022144824062995
629 => 0.0022894685828431
630 => 0.002301694601496
701 => 0.0023071245913761
702 => 0.0022998491242726
703 => 0.0022158530159527
704 => 0.0022195786005357
705 => 0.0021922427328297
706 => 0.002169146805201
707 => 0.0021700705211839
708 => 0.0021819448302456
709 => 0.0022338006343367
710 => 0.0023429281169798
711 => 0.002347069425175
712 => 0.002352088811518
713 => 0.0023316724447195
714 => 0.0023255146731348
715 => 0.0023336383633107
716 => 0.002374620908141
717 => 0.002480039140097
718 => 0.0024427772962768
719 => 0.0024124828372358
720 => 0.0024390592451422
721 => 0.0024349680154578
722 => 0.0024004339196532
723 => 0.0023994646626034
724 => 0.002333182691536
725 => 0.0023086797559999
726 => 0.002288203269053
727 => 0.0022658434798591
728 => 0.0022525878473181
729 => 0.0022729545234784
730 => 0.0022776126232876
731 => 0.0022330805299147
801 => 0.0022270109701397
802 => 0.00226337683888
803 => 0.0022473735759036
804 => 0.0022638333287367
805 => 0.0022676521325831
806 => 0.0022670372172093
807 => 0.0022503279726989
808 => 0.002260977946873
809 => 0.0022357875830412
810 => 0.0022083968458444
811 => 0.002190923262016
812 => 0.0021756752425913
813 => 0.0021841357299882
814 => 0.002153975637242
815 => 0.0021443268165698
816 => 0.0022573699752548
817 => 0.0023408761719942
818 => 0.0023396619588215
819 => 0.0023322707484032
820 => 0.0023212889089737
821 => 0.0023738175181851
822 => 0.0023555176010786
823 => 0.0023688323197828
824 => 0.00237222147451
825 => 0.0023824794251212
826 => 0.0023861457607641
827 => 0.0023750635480176
828 => 0.0023378702884619
829 => 0.0022451882218782
830 => 0.0022020444696931
831 => 0.0021878063128559
901 => 0.0021883238428149
902 => 0.0021740480561924
903 => 0.0021782529151486
904 => 0.0021725857778465
905 => 0.0021618535908242
906 => 0.0021834730476821
907 => 0.0021859644886858
908 => 0.0021809182491219
909 => 0.0021821068212157
910 => 0.0021403261129038
911 => 0.0021435026094138
912 => 0.0021258154731963
913 => 0.0021224993483771
914 => 0.0020777878082144
915 => 0.0019985748337747
916 => 0.0020424665110038
917 => 0.0019894515370149
918 => 0.0019693739630573
919 => 0.002064418075469
920 => 0.0020548782826962
921 => 0.0020385503043174
922 => 0.0020143978212462
923 => 0.0020054394303349
924 => 0.0019510110830396
925 => 0.0019477951659175
926 => 0.001974771324526
927 => 0.0019623227555211
928 => 0.0019448402499965
929 => 0.0018815203871594
930 => 0.0018103278968444
1001 => 0.0018124767506269
1002 => 0.0018351217572128
1003 => 0.0019009651679563
1004 => 0.0018752390082762
1005 => 0.0018565743842547
1006 => 0.001853079061232
1007 => 0.0018968303468155
1008 => 0.0019587475820938
1009 => 0.0019877977635663
1010 => 0.0019590099159942
1011 => 0.0019259399867511
1012 => 0.0019279528001128
1013 => 0.0019413431456521
1014 => 0.001942750281639
1015 => 0.0019212251573454
1016 => 0.0019272843537499
1017 => 0.0019180798803469
1018 => 0.0018615920440629
1019 => 0.0018605703582294
1020 => 0.0018467073322159
1021 => 0.0018462875652977
1022 => 0.0018227030997549
1023 => 0.0018194034699937
1024 => 0.0017725750821836
1025 => 0.0018033976688496
1026 => 0.0017827234959725
1027 => 0.0017515626409023
1028 => 0.0017461904977429
1029 => 0.0017460290046325
1030 => 0.0017780242353499
1031 => 0.0018030237859502
1101 => 0.0017830831320611
1102 => 0.0017785430317038
1103 => 0.0018270194256478
1104 => 0.0018208503626463
1105 => 0.0018155079938731
1106 => 0.0019532035727888
1107 => 0.001844206777557
1108 => 0.0017966779535164
1109 => 0.0017378520082873
1110 => 0.0017570060326801
1111 => 0.0017610420670508
1112 => 0.0016195762729483
1113 => 0.0015621836178994
1114 => 0.0015424886214831
1115 => 0.0015311538725992
1116 => 0.0015363192599985
1117 => 0.0014846591389674
1118 => 0.0015193755946798
1119 => 0.0014746422965882
1120 => 0.0014671426135884
1121 => 0.0015471312919684
1122 => 0.0015582612492779
1123 => 0.0015107773935889
1124 => 0.0015412697158792
1125 => 0.0015302127759418
1126 => 0.0014754091205917
1127 => 0.0014733160240657
1128 => 0.0014458174762527
1129 => 0.0014027875736933
1130 => 0.0013831217535773
1201 => 0.0013728796237144
1202 => 0.001377105726111
1203 => 0.0013749688794184
1204 => 0.0013610245093306
1205 => 0.0013757681543891
1206 => 0.0013381042337592
1207 => 0.0013231061570856
1208 => 0.0013163318738048
1209 => 0.0012829029763914
1210 => 0.0013361032180743
1211 => 0.0013465843358848
1212 => 0.0013570861047352
1213 => 0.0014484968327157
1214 => 0.0014439302110698
1215 => 0.0014852102467136
1216 => 0.0014836061804376
1217 => 0.0014718324455797
1218 => 0.0014221609948999
1219 => 0.0014419591498324
1220 => 0.0013810235062666
1221 => 0.0014266806336471
1222 => 0.0014058446273979
1223 => 0.0014196359589751
1224 => 0.001394837901285
1225 => 0.0014085621702974
1226 => 0.0013490697977415
1227 => 0.0012935166573291
1228 => 0.0013158728627283
1229 => 0.0013401766147395
1230 => 0.0013928733415805
1231 => 0.0013614876058126
]
'min_raw' => 0.0012829029763914
'max_raw' => 0.0038294966284144
'avg_raw' => 0.0025561998024029
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001282'
'max' => '$0.003829'
'avg' => '$0.002556'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0024302770236086
'max_diff' => 0.00011631662841443
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013727751032208
102 => 0.0013349638764075
103 => 0.0012569485152487
104 => 0.0012573900737204
105 => 0.0012453891100632
106 => 0.0012350185252939
107 => 0.0013650926351172
108 => 0.0013489158633933
109 => 0.0013231402948148
110 => 0.0013576419176375
111 => 0.0013667646943262
112 => 0.0013670244069535
113 => 0.0013921959003491
114 => 0.0014056299308866
115 => 0.0014079977369953
116 => 0.0014476056257195
117 => 0.0014608816675792
118 => 0.0015155638051034
119 => 0.0014044901472539
120 => 0.0014022026583645
121 => 0.0013581274262246
122 => 0.0013301742171997
123 => 0.0013600414063616
124 => 0.0013864996586812
125 => 0.0013589495578763
126 => 0.001362547019427
127 => 0.0013255632600225
128 => 0.001338783213762
129 => 0.0013501700188425
130 => 0.0013438828943625
131 => 0.0013344707647157
201 => 0.0013843303837169
202 => 0.0013815171086114
203 => 0.001427947532093
204 => 0.0014641433674684
205 => 0.0015290127752406
206 => 0.0014613181665116
207 => 0.0014588511059078
208 => 0.0014829670190388
209 => 0.0014608779755585
210 => 0.0014748374885502
211 => 0.0015267636818844
212 => 0.0015278608005253
213 => 0.0015094826497322
214 => 0.0015083643375863
215 => 0.001511894062481
216 => 0.0015325677714385
217 => 0.0015253437422899
218 => 0.0015337035717107
219 => 0.0015441576664118
220 => 0.0015874002345396
221 => 0.0015978258713182
222 => 0.0015724969790191
223 => 0.0015747838943981
224 => 0.0015653101933847
225 => 0.0015561587169107
226 => 0.0015767298995583
227 => 0.0016143241401743
228 => 0.0016140902683545
301 => 0.0016228114014498
302 => 0.0016282445951184
303 => 0.0016049213505519
304 => 0.0015897387759586
305 => 0.00159556074115
306 => 0.001604870190277
307 => 0.0015925418122678
308 => 0.0015164453521348
309 => 0.0015395281570784
310 => 0.0015356860496443
311 => 0.0015302144214419
312 => 0.0015534243603068
313 => 0.0015511857050823
314 => 0.0014841292897579
315 => 0.001488422023903
316 => 0.0014843903451392
317 => 0.0014974175240287
318 => 0.001460174465147
319 => 0.0014716301792231
320 => 0.0014788150957011
321 => 0.0014830470667037
322 => 0.0014983358478549
323 => 0.0014965418858493
324 => 0.0014982243326578
325 => 0.0015208935590165
326 => 0.0016355467267994
327 => 0.0016417870457539
328 => 0.0016110574329327
329 => 0.0016233333071399
330 => 0.0015997663131005
331 => 0.0016155869940843
401 => 0.0016264111022117
402 => 0.0015774990389404
403 => 0.0015746027839901
404 => 0.0015509385205831
405 => 0.0015636543553256
406 => 0.0015434225479493
407 => 0.0015483867258009
408 => 0.0015345064517587
409 => 0.0015594881814997
410 => 0.0015874216371184
411 => 0.0015944787311333
412 => 0.0015759145550502
413 => 0.0015624728681271
414 => 0.0015388736938572
415 => 0.00157811964661
416 => 0.0015895963591936
417 => 0.0015780593643246
418 => 0.0015753859905251
419 => 0.0015703199520057
420 => 0.0015764607745457
421 => 0.0015895338545521
422 => 0.001583368831443
423 => 0.0015874409378203
424 => 0.0015719222674478
425 => 0.0016049290715164
426 => 0.0016573518198973
427 => 0.0016575203676054
428 => 0.0016513553112644
429 => 0.0016488327030377
430 => 0.0016551584249704
501 => 0.0016585898696242
502 => 0.0016790460944156
503 => 0.0017009964386287
504 => 0.0018034291173857
505 => 0.0017746664310817
506 => 0.0018655507974222
507 => 0.0019374285313396
508 => 0.0019589815209091
509 => 0.0019391537846517
510 => 0.0018713241699885
511 => 0.0018679961254948
512 => 0.0019693622067263
513 => 0.0019407216459178
514 => 0.0019373149423431
515 => 0.0019010733720252
516 => 0.0019224966286889
517 => 0.0019178110481963
518 => 0.0019104146301624
519 => 0.0019512887115197
520 => 0.0020278013429662
521 => 0.0020158761318244
522 => 0.0020069745149016
523 => 0.0019679702207678
524 => 0.0019914595177608
525 => 0.0019830954290095
526 => 0.0020190328622673
527 => 0.001997744322917
528 => 0.0019405046655009
529 => 0.0019496202696088
530 => 0.0019482424643859
531 => 0.00197659759824
601 => 0.0019680860908747
602 => 0.001946580455968
603 => 0.00202753983111
604 => 0.0020222827796079
605 => 0.0020297360767085
606 => 0.002033017248593
607 => 0.0020822957935777
608 => 0.0021024836367204
609 => 0.0021070666305517
610 => 0.0021262435201534
611 => 0.0021065894920687
612 => 0.0021852196174922
613 => 0.0022375040627038
614 => 0.0022982351363501
615 => 0.0023869795579209
616 => 0.0024203482813634
617 => 0.0024143205201454
618 => 0.0024816055277543
619 => 0.0026025151907659
620 => 0.0024387598199796
621 => 0.0026111946230467
622 => 0.0025566037552512
623 => 0.0024271697897558
624 => 0.0024188357683041
625 => 0.0025064899524968
626 => 0.0027008984966337
627 => 0.0026522013612909
628 => 0.0027009781477019
629 => 0.0026440774354219
630 => 0.0026412518354603
701 => 0.0026982146071112
702 => 0.0028313112279525
703 => 0.002768082012443
704 => 0.0026774274275705
705 => 0.0027443653622988
706 => 0.0026863775284237
707 => 0.0025557147089305
708 => 0.0026521641235092
709 => 0.0025876711467016
710 => 0.0026064936259693
711 => 0.0027420482706127
712 => 0.0027257379771361
713 => 0.0027468450071873
714 => 0.002709591651614
715 => 0.0026747911431936
716 => 0.0026098334099073
717 => 0.0025906026274588
718 => 0.0025959173238765
719 => 0.0025905999937592
720 => 0.0025542567389778
721 => 0.0025464084165681
722 => 0.0025333275353756
723 => 0.0025373818474299
724 => 0.0025127859638413
725 => 0.0025592034779419
726 => 0.0025678189775887
727 => 0.0026015977734517
728 => 0.0026051048000951
729 => 0.0026991782657625
730 => 0.0026473641817132
731 => 0.0026821255427063
801 => 0.0026790161593924
802 => 0.0024299750162662
803 => 0.0024642906884804
804 => 0.0025176751055945
805 => 0.0024936254980455
806 => 0.0024596249797126
807 => 0.0024321677381664
808 => 0.0023905672095767
809 => 0.0024491191546992
810 => 0.0025261087362302
811 => 0.0026070573829349
812 => 0.002704311877985
813 => 0.002682605806857
814 => 0.0026052392777987
815 => 0.002608709883776
816 => 0.0026301638042943
817 => 0.0026023790279288
818 => 0.0025941847549554
819 => 0.0026290380370194
820 => 0.002629278052418
821 => 0.0025973083093071
822 => 0.0025617797902405
823 => 0.0025616309244484
824 => 0.0025553089676453
825 => 0.0026452020974929
826 => 0.0026946342296885
827 => 0.0027003015439809
828 => 0.0026942527742818
829 => 0.0026965807056719
830 => 0.00266781723711
831 => 0.0027335619967009
901 => 0.0027938958895844
902 => 0.002777725117446
903 => 0.0027534828311998
904 => 0.0027341726825381
905 => 0.0027731762601066
906 => 0.0027714394921948
907 => 0.0027933689256642
908 => 0.0027923740798915
909 => 0.0027850000362234
910 => 0.0027777253807963
911 => 0.0028065685672751
912 => 0.0027982621927766
913 => 0.0027899429161842
914 => 0.0027732573333607
915 => 0.0027755251811846
916 => 0.002751287080711
917 => 0.0027400734263719
918 => 0.0025714469704303
919 => 0.0025263844713743
920 => 0.0025405620509091
921 => 0.0025452296782126
922 => 0.0025256184208743
923 => 0.0025537359261788
924 => 0.0025493538427609
925 => 0.0025664019659069
926 => 0.0025557510387087
927 => 0.0025561881564761
928 => 0.0025875102623488
929 => 0.0025966032029374
930 => 0.002591978459965
1001 => 0.0025952174714159
1002 => 0.0026698591232018
1003 => 0.0026592474672235
1004 => 0.0026536102364832
1005 => 0.0026551717879238
1006 => 0.0026742443302901
1007 => 0.0026795836008305
1008 => 0.0026569607363671
1009 => 0.0026676298100292
1010 => 0.0027130573715757
1011 => 0.0027289544471397
1012 => 0.0027796902813107
1013 => 0.0027581367971973
1014 => 0.0027976991501004
1015 => 0.0029193003351245
1016 => 0.0030164437758837
1017 => 0.002927106653139
1018 => 0.0031054982109507
1019 => 0.0032444016274562
1020 => 0.003239070282975
1021 => 0.0032148492594134
1022 => 0.0030567114126602
1023 => 0.0029111906083755
1024 => 0.0030329249402994
1025 => 0.0030332352661464
1026 => 0.0030227781790733
1027 => 0.0029578301093612
1028 => 0.0030205181270304
1029 => 0.0030254940742235
1030 => 0.0030227088670065
1031 => 0.0029729133342371
1101 => 0.0028968847594509
1102 => 0.0029117405609774
1103 => 0.002936074666928
1104 => 0.0028900051277372
1105 => 0.002875283118514
1106 => 0.0029026541346369
1107 => 0.0029908492515626
1108 => 0.0029741764755873
1109 => 0.0029737410820266
1110 => 0.0030450742880062
1111 => 0.0029940151071942
1112 => 0.0029119279402095
1113 => 0.0028911998479492
1114 => 0.0028176290845411
1115 => 0.0028684446728771
1116 => 0.0028702734354361
1117 => 0.0028424422570272
1118 => 0.002914186286951
1119 => 0.002913525153085
1120 => 0.0029816354318081
1121 => 0.0031118367036742
1122 => 0.0030733297807679
1123 => 0.0030285504189692
1124 => 0.0030334191771937
1125 => 0.0030868174377977
1126 => 0.0030545316304728
1127 => 0.0030661418318915
1128 => 0.0030867998643673
1129 => 0.0030992633682701
1130 => 0.0030316258707846
1201 => 0.0030158563346452
1202 => 0.0029835973980591
1203 => 0.0029751816436454
1204 => 0.0030014558743899
1205 => 0.002994533542871
1206 => 0.0028701197350243
1207 => 0.0028571177998725
1208 => 0.0028575165506611
1209 => 0.0028248225665134
1210 => 0.0027749563932329
1211 => 0.0029060017192596
1212 => 0.0028954769456015
1213 => 0.0028838584100357
1214 => 0.002885281614348
1215 => 0.002942163948838
1216 => 0.0029091693222071
1217 => 0.0029968909448184
1218 => 0.0029788580163629
1219 => 0.0029603626113369
1220 => 0.0029578059829785
1221 => 0.0029506868299973
1222 => 0.0029262726055047
1223 => 0.0028967909623624
1224 => 0.0028773246279036
1225 => 0.0026541798744367
1226 => 0.0026955942427069
1227 => 0.0027432376983632
1228 => 0.0027596840283366
1229 => 0.0027315514428657
1230 => 0.0029273834514492
1231 => 0.0029631638465016
]
'min_raw' => 0.0012350185252939
'max_raw' => 0.0032444016274562
'avg_raw' => 0.0022397100763751
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001235'
'max' => '$0.003244'
'avg' => '$0.002239'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.7884451097494E-5
'max_diff' => -0.0005850950009582
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028547826959905
102 => 0.0028345090079031
103 => 0.002928712591065
104 => 0.0028718963144987
105 => 0.0028974806803576
106 => 0.0028421812752705
107 => 0.0029545453971057
108 => 0.0029536893707587
109 => 0.0029099771895061
110 => 0.0029469224257727
111 => 0.0029405022817938
112 => 0.0028911513368179
113 => 0.0029561099100872
114 => 0.0029561421287291
115 => 0.0029140701046581
116 => 0.0028649391912936
117 => 0.0028561557444044
118 => 0.0028495385970635
119 => 0.0028958532677502
120 => 0.0029373788566657
121 => 0.003014647682571
122 => 0.0030340749012656
123 => 0.0031099006291738
124 => 0.0030647501000922
125 => 0.0030847647448368
126 => 0.0031064934729515
127 => 0.0031169110242572
128 => 0.0030999361834412
129 => 0.0032177247499974
130 => 0.0032276697139632
131 => 0.0032310041743573
201 => 0.0031912865324444
202 => 0.0032265650944929
203 => 0.0032100594236136
204 => 0.0032530025938341
205 => 0.0032597366312506
206 => 0.0032540331411292
207 => 0.0032561706308947
208 => 0.003155658868666
209 => 0.0031504468035526
210 => 0.0030793799259009
211 => 0.0031083402038438
212 => 0.0030542003523318
213 => 0.0030713686569485
214 => 0.003078936282038
215 => 0.0030749833841502
216 => 0.0031099775745071
217 => 0.003080225363863
218 => 0.0030017043882568
219 => 0.0029231620196634
220 => 0.0029221759842049
221 => 0.0029014971649423
222 => 0.00288655016613
223 => 0.0028894294883745
224 => 0.0028995765955201
225 => 0.0028859603978163
226 => 0.0028888661039551
227 => 0.0029371201864788
228 => 0.0029467971985966
229 => 0.0029139109303677
301 => 0.002781867817963
302 => 0.0027494641069739
303 => 0.0027727552518394
304 => 0.0027616235847355
305 => 0.0022288457687651
306 => 0.0023540140138223
307 => 0.0022796432929213
308 => 0.0023139167427448
309 => 0.0022380034949097
310 => 0.0022742332757309
311 => 0.0022675429581129
312 => 0.0024688097921673
313 => 0.002465667287387
314 => 0.0024671714381277
315 => 0.0023953744042317
316 => 0.0025097490287299
317 => 0.0025660940815361
318 => 0.0025556661118367
319 => 0.0025582906071483
320 => 0.0025131930823268
321 => 0.0024676080807462
322 => 0.002417047298512
323 => 0.0025109829824017
324 => 0.0025005389378887
325 => 0.0025244938183528
326 => 0.0025854178240167
327 => 0.0025943891152784
328 => 0.0026064466217122
329 => 0.0026021248639674
330 => 0.0027050866669413
331 => 0.0026926173132373
401 => 0.0027226648679861
402 => 0.0026608547681545
403 => 0.0025909107731265
404 => 0.0026042048399399
405 => 0.0026029245144016
406 => 0.0025866245008103
407 => 0.002571909577363
408 => 0.0025474133757271
409 => 0.0026249229824587
410 => 0.0026217762339746
411 => 0.0026727184342378
412 => 0.0026637139055152
413 => 0.0026035794589233
414 => 0.0026057271724476
415 => 0.0026201715780544
416 => 0.002670163830783
417 => 0.002685004935125
418 => 0.002678129944278
419 => 0.0026944025376668
420 => 0.0027072637319943
421 => 0.0026960177056599
422 => 0.0028552377227836
423 => 0.002789118470893
424 => 0.0028213445342097
425 => 0.0028290302604238
426 => 0.0028093434343399
427 => 0.0028136128019851
428 => 0.0028200797306345
429 => 0.0028593456550394
430 => 0.0029623908023646
501 => 0.0030080287966629
502 => 0.0031453329542482
503 => 0.003004239196548
504 => 0.00299586727687
505 => 0.0030205999018395
506 => 0.0031012119774632
507 => 0.003166540493249
508 => 0.0031882137308277
509 => 0.0031910782069598
510 => 0.003231738641467
511 => 0.0032550444442542
512 => 0.0032268013952422
513 => 0.003202868368375
514 => 0.0031171432368133
515 => 0.0031270661542134
516 => 0.003195425215016
517 => 0.0032919864147283
518 => 0.0033748459695619
519 => 0.0033458314414062
520 => 0.0035671918101695
521 => 0.0035891387865564
522 => 0.0035861064240504
523 => 0.0036361049024077
524 => 0.0035368681048816
525 => 0.0034944424513168
526 => 0.0032080429604351
527 => 0.0032885095352894
528 => 0.0034054724274764
529 => 0.0033899919501071
530 => 0.0033050503713739
531 => 0.0033747815337575
601 => 0.0033517262307784
602 => 0.0033335415567534
603 => 0.0034168490737345
604 => 0.0033252490367296
605 => 0.0034045586470369
606 => 0.0033028432514649
607 => 0.0033459639773268
608 => 0.0033214865678128
609 => 0.0033373264516068
610 => 0.0032447268146088
611 => 0.0032946913310038
612 => 0.0032426481264587
613 => 0.0032426234512035
614 => 0.0032414745945787
615 => 0.0033027031939311
616 => 0.0033046998563578
617 => 0.0032594518289251
618 => 0.003252930881265
619 => 0.0032770422425314
620 => 0.003248814153264
621 => 0.0032620218985667
622 => 0.0032492142024142
623 => 0.003246330920239
624 => 0.0032233564373163
625 => 0.0032134583983767
626 => 0.003217339674486
627 => 0.0032040908781901
628 => 0.0031961079991919
629 => 0.0032398865990198
630 => 0.0032164974591554
701 => 0.0032363018778881
702 => 0.0032137322432253
703 => 0.0031354960563623
704 => 0.0030905015979648
705 => 0.0029427206934791
706 => 0.0029846311746696
707 => 0.0030124178670584
708 => 0.0030032343653897
709 => 0.0030229640805175
710 => 0.0030241753247883
711 => 0.0030177609932796
712 => 0.0030103340191193
713 => 0.0030067189788354
714 => 0.003033662527364
715 => 0.003049304164163
716 => 0.0030152066333776
717 => 0.0030072180589898
718 => 0.0030416925451901
719 => 0.003062721961857
720 => 0.003217991359117
721 => 0.0032064885006544
722 => 0.0032353584180735
723 => 0.0032321081084171
724 => 0.0032623683812108
725 => 0.003311831138283
726 => 0.0032112595231508
727 => 0.0032287152780329
728 => 0.0032244355300481
729 => 0.0032711606963366
730 => 0.0032713065672055
731 => 0.0032432924959204
801 => 0.0032584793784405
802 => 0.0032500024772481
803 => 0.0032653213834246
804 => 0.0032063348729667
805 => 0.0032781740755041
806 => 0.0033189022741269
807 => 0.0033194677852043
808 => 0.0033387726281125
809 => 0.0033583874665683
810 => 0.003396036440892
811 => 0.0033573374571085
812 => 0.0032877217525521
813 => 0.0032927477815637
814 => 0.0032519321194537
815 => 0.0032526182381078
816 => 0.0032489556829605
817 => 0.0032599472866617
818 => 0.0032087469118676
819 => 0.0032207635374939
820 => 0.0032039401912478
821 => 0.0032286787073637
822 => 0.0032020641534462
823 => 0.003224433466224
824 => 0.0032340873200645
825 => 0.0032697102485683
826 => 0.0031968026179421
827 => 0.0030481390236825
828 => 0.0030793899135677
829 => 0.0030331673927231
830 => 0.0030374454630088
831 => 0.0030460878458358
901 => 0.0030180750554818
902 => 0.0030234190130969
903 => 0.003023228089326
904 => 0.0030215828114141
905 => 0.0030142956027377
906 => 0.0030037277084267
907 => 0.0030458269467355
908 => 0.0030529804276817
909 => 0.0030688817296962
910 => 0.0031161932185352
911 => 0.0031114656851184
912 => 0.0031191764882646
913 => 0.0031023438482908
914 => 0.0030382262809
915 => 0.0030417081732882
916 => 0.0029982889194133
917 => 0.0030677714017548
918 => 0.0030513170328124
919 => 0.0030407087941132
920 => 0.0030378142378995
921 => 0.0030852430027683
922 => 0.0030994344325718
923 => 0.0030905912858697
924 => 0.0030724537339878
925 => 0.0031072831954869
926 => 0.003116602090047
927 => 0.0031186882468714
928 => 0.003180399374761
929 => 0.0031221372133953
930 => 0.0031361614947121
1001 => 0.0032455749341381
1002 => 0.0031463520426013
1003 => 0.0031989126211828
1004 => 0.0031963400543733
1005 => 0.0032232282678226
1006 => 0.0031941344360623
1007 => 0.0031944950889757
1008 => 0.0032183700009533
1009 => 0.0031848419929438
1010 => 0.0031765399866552
1011 => 0.0031650708244276
1012 => 0.0031901133205606
1013 => 0.0032051251644177
1014 => 0.0033261096009215
1015 => 0.0034042710644636
1016 => 0.003400877869195
1017 => 0.0034318853221543
1018 => 0.0034179161806004
1019 => 0.0033728061376497
1020 => 0.0034498034803829
1021 => 0.0034254382994364
1022 => 0.00342744693535
1023 => 0.0034273721738209
1024 => 0.0034435728891092
1025 => 0.0034320931975537
1026 => 0.0034094655471317
1027 => 0.0034244868374701
1028 => 0.0034690946995655
1029 => 0.0036075588722462
1030 => 0.0036850452576847
1031 => 0.0036028940945481
1101 => 0.0036595608668318
1102 => 0.003625580995897
1103 => 0.0036194058425346
1104 => 0.0036549967631704
1105 => 0.0036906499810012
1106 => 0.0036883790251585
1107 => 0.0036624966198263
1108 => 0.0036478763057958
1109 => 0.0037585862217989
1110 => 0.0038401554020157
1111 => 0.0038345929307716
1112 => 0.0038591438698304
1113 => 0.0039312261862388
1114 => 0.0039378164898862
1115 => 0.003936986263103
1116 => 0.0039206515078859
1117 => 0.0039916259094616
1118 => 0.0040508340039319
1119 => 0.0039168704840096
1120 => 0.0039678820386847
1121 => 0.0039907827690681
1122 => 0.0040244078356113
1123 => 0.0040811389590853
1124 => 0.0041427640063653
1125 => 0.004151478463735
1126 => 0.004145295139206
1127 => 0.0041046517639546
1128 => 0.0041720826260282
1129 => 0.0042115820435826
1130 => 0.0042351030428081
1201 => 0.004294748383323
1202 => 0.0039909241961826
1203 => 0.0037758623354827
1204 => 0.0037422773204035
1205 => 0.0038105737692325
1206 => 0.0038285829981348
1207 => 0.0038213235005459
1208 => 0.0035792518237593
1209 => 0.0037410028631231
1210 => 0.0039150333810649
1211 => 0.0039217186020206
1212 => 0.0040088419181088
1213 => 0.0040372128411325
1214 => 0.0041073585300976
1215 => 0.0041029708981542
1216 => 0.0041200502571555
1217 => 0.0041161240082944
1218 => 0.0042460541261847
1219 => 0.0043893863410269
1220 => 0.0043844232021954
1221 => 0.0043638175004821
1222 => 0.0043944204813207
1223 => 0.0045423546874515
1224 => 0.0045287352763483
1225 => 0.0045419653741364
1226 => 0.0047163881403711
1227 => 0.0049431625478254
1228 => 0.0048378030677846
1229 => 0.0050664028230994
1230 => 0.0052102942515178
1231 => 0.0054591395983159
]
'min_raw' => 0.0022288457687651
'max_raw' => 0.0054591395983159
'avg_raw' => 0.0038439926835405
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002228'
'max' => '$0.005459'
'avg' => '$0.003843'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00099382724347123
'max_diff' => 0.0022147379708597
'year' => 2028
]
3 => [
'items' => [
101 => 0.0054279829353076
102 => 0.0055248566027046
103 => 0.005372206005931
104 => 0.005021689379963
105 => 0.0049662187821799
106 => 0.005077272323681
107 => 0.0053502866190155
108 => 0.0050686741319456
109 => 0.0051256439713069
110 => 0.0051092366537383
111 => 0.0051083623775117
112 => 0.0051417299451434
113 => 0.0050933285479583
114 => 0.0048961325485807
115 => 0.0049865063130121
116 => 0.0049516086624605
117 => 0.0049903302075397
118 => 0.0051992944163521
119 => 0.0051069063585516
120 => 0.0050095830446551
121 => 0.0051316480780536
122 => 0.0052870788116661
123 => 0.0052773522356925
124 => 0.0052584786129104
125 => 0.0053648682363424
126 => 0.0055405927250173
127 => 0.005588090348188
128 => 0.0056231521225664
129 => 0.0056279865488796
130 => 0.0056777841444853
131 => 0.0054100099223036
201 => 0.0058349744898357
202 => 0.0059083541312393
203 => 0.0058945617999299
204 => 0.0059761201830626
205 => 0.0059521236378085
206 => 0.0059173564086779
207 => 0.0060466437939088
208 => 0.0058984262396956
209 => 0.0056880500815611
210 => 0.0055726335604399
211 => 0.0057246233458375
212 => 0.0058174382040672
213 => 0.0058787829212234
214 => 0.0058973457955694
215 => 0.0054307964729161
216 => 0.0051793522640177
217 => 0.0053405251191079
218 => 0.0055371671258741
219 => 0.0054089175660273
220 => 0.0054139447059648
221 => 0.0052310945370146
222 => 0.0055533453085261
223 => 0.0055063960816725
224 => 0.0057499687536408
225 => 0.0056918381806828
226 => 0.0058904622392363
227 => 0.0058381578680021
228 => 0.0060552703886973
301 => 0.0061418824512895
302 => 0.0062873175844729
303 => 0.0063943002604701
304 => 0.0064571225340681
305 => 0.0064533509204017
306 => 0.0067022840663296
307 => 0.0065554968872376
308 => 0.0063710975952162
309 => 0.0063677623937959
310 => 0.0064632654000919
311 => 0.0066634135013182
312 => 0.0067153089919298
313 => 0.0067443114914686
314 => 0.0066998931538406
315 => 0.0065405661912681
316 => 0.0064717696166354
317 => 0.0065303862914511
318 => 0.0064587031351398
319 => 0.0065824483736745
320 => 0.0067523770167395
321 => 0.0067172874239172
322 => 0.0068345866717962
323 => 0.0069559790531102
324 => 0.0071295756104621
325 => 0.0071749601788158
326 => 0.0072499791444839
327 => 0.0073271983026029
328 => 0.007351999015076
329 => 0.0073993512703964
330 => 0.0073991017006371
331 => 0.0075418009092195
401 => 0.0076992025553124
402 => 0.007758618032856
403 => 0.0078952406472789
404 => 0.007661279207907
405 => 0.0078387416472259
406 => 0.0079988172096645
407 => 0.0078079685249844
408 => 0.0080710089747755
409 => 0.0080812222393784
410 => 0.0082354304091361
411 => 0.008079110886376
412 => 0.0079862888527506
413 => 0.0082542625858308
414 => 0.0083839266341749
415 => 0.0083448707675726
416 => 0.0080476536943036
417 => 0.0078746606094211
418 => 0.0074219043384095
419 => 0.0079582136990381
420 => 0.0082194343442417
421 => 0.0080469771959388
422 => 0.0081339545503096
423 => 0.0086084747932546
424 => 0.0087891413788576
425 => 0.0087515639920069
426 => 0.0087579139518082
427 => 0.0088553983620691
428 => 0.0092876979228112
429 => 0.0090286540053892
430 => 0.0092266833740679
501 => 0.0093317174371671
502 => 0.0094292789285856
503 => 0.0091896987402878
504 => 0.0088780084354444
505 => 0.0087792830320316
506 => 0.008029829731299
507 => 0.0079908174322851
508 => 0.007968918646655
509 => 0.0078308499009018
510 => 0.0077223656869522
511 => 0.0076360950122588
512 => 0.007409694999259
513 => 0.0074860983576044
514 => 0.0071252639902379
515 => 0.0073561130312942
516 => 0.0067802126683268
517 => 0.0072598396035777
518 => 0.0069988004686814
519 => 0.0071740812271392
520 => 0.0071734696890854
521 => 0.0068507222399494
522 => 0.0066645682468552
523 => 0.0067831928164767
524 => 0.0069103677715409
525 => 0.0069310014801321
526 => 0.0070958871289789
527 => 0.0071419031693668
528 => 0.0070024724187078
529 => 0.0067682784133651
530 => 0.0068226763394097
531 => 0.0066634658746202
601 => 0.0063844556590187
602 => 0.0065848456669147
603 => 0.0066532676261371
604 => 0.0066834866612427
605 => 0.0064091121587384
606 => 0.0063228977330913
607 => 0.0062769978962859
608 => 0.0067328601105393
609 => 0.0067578332716868
610 => 0.0066300670484067
611 => 0.0072075824929231
612 => 0.0070768729613497
613 => 0.00722290753273
614 => 0.0068177402977932
615 => 0.0068332182317978
616 => 0.0066414055696858
617 => 0.0067488078435418
618 => 0.0066728993781173
619 => 0.0067401308011842
620 => 0.006780429038965
621 => 0.0069722102265066
622 => 0.0072620294366771
623 => 0.0069435645124269
624 => 0.0068048047844294
625 => 0.0068908905392647
626 => 0.0071201482486393
627 => 0.007467485413828
628 => 0.0072618548212244
629 => 0.007353110186388
630 => 0.0073730454240076
701 => 0.00722142103788
702 => 0.0074730760212193
703 => 0.0076079399712323
704 => 0.0077462824777833
705 => 0.0078664013999526
706 => 0.0076910254384499
707 => 0.0078787028564143
708 => 0.007727467987059
709 => 0.0075917946748739
710 => 0.007592000435285
711 => 0.0075068905846804
712 => 0.0073419795246028
713 => 0.0073115673949349
714 => 0.0074697751340959
715 => 0.0075966427585744
716 => 0.0076070921837814
717 => 0.0076773326193866
718 => 0.0077189001856437
719 => 0.0081263188433297
720 => 0.0082901859977948
721 => 0.0084905596524284
722 => 0.0085686164833485
723 => 0.0088035395594956
724 => 0.0086138200959875
725 => 0.0085727730966661
726 => 0.008002926556686
727 => 0.0080962388956844
728 => 0.0082456409537222
729 => 0.0080053901415949
730 => 0.0081577739837756
731 => 0.0081878577821532
801 => 0.0079972265109319
802 => 0.0080990509095822
803 => 0.0078286354955972
804 => 0.0072679237537419
805 => 0.0074737002536759
806 => 0.0076252210212483
807 => 0.0074089822035466
808 => 0.007796581914679
809 => 0.0075701541651176
810 => 0.0074983874389554
811 => 0.0072183998535113
812 => 0.0073505432161304
813 => 0.0075292690061835
814 => 0.0074188372470339
815 => 0.0076479997286813
816 => 0.0079725549180954
817 => 0.0082038522736676
818 => 0.0082216084125978
819 => 0.0080728997086841
820 => 0.008311206355752
821 => 0.0083129421595106
822 => 0.0080441312881068
823 => 0.0078794861261172
824 => 0.0078420783988968
825 => 0.0079355302357103
826 => 0.0080489980177627
827 => 0.0082279050848061
828 => 0.0083360148784727
829 => 0.0086179078833513
830 => 0.0086941800479656
831 => 0.0087779800326013
901 => 0.0088899626550328
902 => 0.0090244265050169
903 => 0.008730227256283
904 => 0.0087419163408912
905 => 0.008467962073936
906 => 0.0081752026506785
907 => 0.0083973705599537
908 => 0.0086878255475725
909 => 0.0086211948524885
910 => 0.00861369753815
911 => 0.0086263059412858
912 => 0.0085760685731475
913 => 0.0083488468189419
914 => 0.0082347374764632
915 => 0.0083819676406587
916 => 0.0084602139204679
917 => 0.0085815670766592
918 => 0.0085666077387043
919 => 0.0088792004366756
920 => 0.0090006645067948
921 => 0.0089695887999177
922 => 0.0089753074778617
923 => 0.0091952123749323
924 => 0.0094397918473661
925 => 0.0096688727984044
926 => 0.0099019037810563
927 => 0.0096209758361154
928 => 0.0094783379509012
929 => 0.0096255038390128
930 => 0.0095474155472709
1001 => 0.0099961340341115
1002 => 0.01002720232857
1003 => 0.010475888367956
1004 => 0.010901744847874
1005 => 0.010634272022849
1006 => 0.010886486849607
1007 => 0.011159277748122
1008 => 0.011685535650086
1009 => 0.011508310502681
1010 => 0.011372558817241
1011 => 0.011244274130447
1012 => 0.011511214199044
1013 => 0.011854628332823
1014 => 0.011928596448059
1015 => 0.012048453052736
1016 => 0.011922438488286
1017 => 0.012074209151117
1018 => 0.01261002628232
1019 => 0.01246524376368
1020 => 0.012259629312261
1021 => 0.012682605476921
1022 => 0.012835678906633
1023 => 0.013910028401531
1024 => 0.015266439018003
1025 => 0.014704876116111
1026 => 0.014356295901385
1027 => 0.014438220520279
1028 => 0.014933535760018
1029 => 0.015092615294502
1030 => 0.01466018228177
1031 => 0.014812924932422
1101 => 0.015654551954838
1102 => 0.016106057849736
1103 => 0.015492852199132
1104 => 0.013801042129205
1105 => 0.012241115980587
1106 => 0.01265487863959
1107 => 0.01260797079461
1108 => 0.013512194035086
1109 => 0.012461790748493
1110 => 0.01247947684593
1111 => 0.013402398465431
1112 => 0.01315617880023
1113 => 0.012757334476038
1114 => 0.012244027985541
1115 => 0.011295133462755
1116 => 0.010454671122042
1117 => 0.012103011319098
1118 => 0.012031931892488
1119 => 0.011928998349377
1120 => 0.012158065810998
1121 => 0.013270352382695
1122 => 0.013244710577097
1123 => 0.013081590492448
1124 => 0.01320531563898
1125 => 0.012735644859648
1126 => 0.012856689713687
1127 => 0.012240868880315
1128 => 0.012519245615949
1129 => 0.012756478735248
1130 => 0.012804106796244
1201 => 0.012911415249616
1202 => 0.011994476264539
1203 => 0.012406154948924
1204 => 0.012647977606924
1205 => 0.011555414040497
1206 => 0.012626381138076
1207 => 0.011978514396814
1208 => 0.011758618694198
1209 => 0.012054679288715
1210 => 0.011939304187103
1211 => 0.011840111449791
1212 => 0.011784760198023
1213 => 0.012002154423621
1214 => 0.011992012723154
1215 => 0.011636313575676
1216 => 0.011172318537942
1217 => 0.011328050502723
1218 => 0.011271471619923
1219 => 0.011066422449835
1220 => 0.011204600832743
1221 => 0.010596133164894
1222 => 0.0095492961677567
1223 => 0.01024086875355
1224 => 0.010214243961283
1225 => 0.010200818533684
1226 => 0.010720516218246
1227 => 0.01067055927734
1228 => 0.010579886940418
1229 => 0.011064757181261
1230 => 0.010887773020929
1231 => 0.011433196500362
]
'min_raw' => 0.0048961325485807
'max_raw' => 0.016106057849736
'avg_raw' => 0.010501095199158
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004896'
'max' => '$0.016106'
'avg' => '$0.010501'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0026672867798156
'max_diff' => 0.01064691825142
'year' => 2029
]
4 => [
'items' => [
101 => 0.011792447679695
102 => 0.011701329960058
103 => 0.012039207430633
104 => 0.011331638252658
105 => 0.011566664350833
106 => 0.011615102903935
107 => 0.011058773957754
108 => 0.0106787328507
109 => 0.010653388441646
110 => 0.0099944495349059
111 => 0.010346449380117
112 => 0.01065619467716
113 => 0.010507850717083
114 => 0.010460889450972
115 => 0.010700804374876
116 => 0.010719447819196
117 => 0.010294375312963
118 => 0.010382761347304
119 => 0.010751345803463
120 => 0.010373473964699
121 => 0.0096393307069946
122 => 0.0094572530287592
123 => 0.0094329605101252
124 => 0.008939151405988
125 => 0.0094694203298572
126 => 0.0092379437342646
127 => 0.009969175526226
128 => 0.0095514998483324
129 => 0.0095334946846562
130 => 0.0095062772389764
131 => 0.0090812353440484
201 => 0.009174292506216
202 => 0.0094836286862672
203 => 0.009594003320231
204 => 0.0095824903416359
205 => 0.0094821127702272
206 => 0.0095280651084018
207 => 0.0093800366162856
208 => 0.0093277646747728
209 => 0.009162780048828
210 => 0.0089202982268554
211 => 0.0089540168114281
212 => 0.0084735968732802
213 => 0.0082118385931613
214 => 0.0081393873511431
215 => 0.0080425025223705
216 => 0.0081503307503536
217 => 0.008472235903957
218 => 0.0080839499927233
219 => 0.0074182610330029
220 => 0.0074582700737609
221 => 0.0075481585095533
222 => 0.0073806520041256
223 => 0.0072221211544938
224 => 0.0073599508662343
225 => 0.0070778896783783
226 => 0.0075822442565424
227 => 0.0075686028786404
228 => 0.0077565950763021
301 => 0.0078741504554882
302 => 0.0076032233654702
303 => 0.0075350859349954
304 => 0.0075739001120674
305 => 0.0069323882247153
306 => 0.0077041698688612
307 => 0.0077108442685687
308 => 0.0076536940061275
309 => 0.0080646439055502
310 => 0.0089318763718201
311 => 0.0086055886336642
312 => 0.0084792401593512
313 => 0.0082390516173219
314 => 0.0085590885885915
315 => 0.0085345147425525
316 => 0.0084233824914096
317 => 0.0083561693591647
318 => 0.0084800116161931
319 => 0.0083408239330173
320 => 0.0083158220004972
321 => 0.0081643374917962
322 => 0.0081102644142959
323 => 0.0080702308604259
324 => 0.0080261578512308
325 => 0.0081233719272056
326 => 0.0079030720414701
327 => 0.0076374119755372
328 => 0.0076153252155366
329 => 0.007676308701786
330 => 0.0076493280488072
331 => 0.0076151960425503
401 => 0.0075500287473071
402 => 0.0075306950028874
403 => 0.0075935202928521
404 => 0.007522594203424
405 => 0.0076272495119192
406 => 0.0075987890588509
407 => 0.0074398112815502
408 => 0.0072416661099219
409 => 0.0072399022022708
410 => 0.0071972121500667
411 => 0.0071428399500925
412 => 0.0071277148479271
413 => 0.0073483432323498
414 => 0.0078050373852531
415 => 0.0077153773952734
416 => 0.0077801659267591
417 => 0.0080988613781026
418 => 0.0082001650785781
419 => 0.0081282621114903
420 => 0.0080298368953585
421 => 0.0080341671053519
422 => 0.0083705158642132
423 => 0.0083914935237296
424 => 0.0084444973016781
425 => 0.0085126221352077
426 => 0.0081398640652205
427 => 0.0080166102337771
428 => 0.007958205730577
429 => 0.0077783424661079
430 => 0.0079723095765269
501 => 0.0078592932477855
502 => 0.0078745430117203
503 => 0.0078646115829521
504 => 0.0078700348146198
505 => 0.007582103279159
506 => 0.007687010397445
507 => 0.0075125819662244
508 => 0.0072790418773303
509 => 0.0072782589690626
510 => 0.0073354175749634
511 => 0.0073014173995572
512 => 0.0072099238017633
513 => 0.0072229200354923
514 => 0.0071090593527464
515 => 0.0072367447838919
516 => 0.0072404063451767
517 => 0.0071912404991133
518 => 0.0073879575229869
519 => 0.0074685526481738
520 => 0.0074361906350603
521 => 0.0074662820430632
522 => 0.0077191031726476
523 => 0.0077603240481291
524 => 0.0077786316381198
525 => 0.0077541018928231
526 => 0.0074709031492017
527 => 0.0074834642177354
528 => 0.0073912994312354
529 => 0.0073134298987287
530 => 0.0073165442716571
531 => 0.0073565793336962
601 => 0.007531414797646
602 => 0.0078993457244149
603 => 0.0079133084341317
604 => 0.0079302316456296
605 => 0.0078613964395433
606 => 0.0078406350827235
607 => 0.0078680246713297
608 => 0.008006200182535
609 => 0.0083616251116404
610 => 0.0082359942036617
611 => 0.0081338543199134
612 => 0.0082234585346756
613 => 0.008209664668154
614 => 0.0080932305530552
615 => 0.0080899626352402
616 => 0.0078664883421273
617 => 0.0077838749842269
618 => 0.0077148370788626
619 => 0.007639449488485
620 => 0.0075947571978942
621 => 0.0076634248685244
622 => 0.0076791299772496
623 => 0.0075289869153111
624 => 0.0075085229707666
625 => 0.0076311330362086
626 => 0.0075771769177716
627 => 0.0076326721236314
628 => 0.00764554748742
629 => 0.0076434742573053
630 => 0.0075871378728362
701 => 0.0076230450043216
702 => 0.0075381139339276
703 => 0.0074457641511084
704 => 0.0073868507432645
705 => 0.0073354409811911
706 => 0.0073639661051423
707 => 0.0072622792467381
708 => 0.0072297475741825
709 => 0.0076108804761104
710 => 0.0078924274486337
711 => 0.0078883336441484
712 => 0.007863413662185
713 => 0.0078263876238211
714 => 0.0080034914972077
715 => 0.0079417920490236
716 => 0.0079866835527389
717 => 0.007998110324525
718 => 0.0080326957211978
719 => 0.0080450570277931
720 => 0.0080076925737828
721 => 0.0078822929024405
722 => 0.0075698088440983
723 => 0.0074243466714055
724 => 0.0073763417315527
725 => 0.007378086619942
726 => 0.0073299548086407
727 => 0.0073441317841854
728 => 0.0073250246351047
729 => 0.0072888403172617
730 => 0.0073617318254802
731 => 0.007370131892771
801 => 0.0073531181437642
802 => 0.007357125497562
803 => 0.0072162589224523
804 => 0.0072269687022118
805 => 0.007167335287578
806 => 0.0071561547412257
807 => 0.0070054066619071
808 => 0.0067383345881105
809 => 0.0068863184423073
810 => 0.0067075747561163
811 => 0.006639881813747
812 => 0.0069603296745109
813 => 0.0069281655971304
814 => 0.0068731146780432
815 => 0.0067916828950964
816 => 0.006761479054684
817 => 0.006577970081712
818 => 0.0065671273926065
819 => 0.0066580793947705
820 => 0.0066161081752391
821 => 0.0065571646872732
822 => 0.0063436773488663
823 => 0.0061036468972683
824 => 0.0061108919078244
825 => 0.0061872411285524
826 => 0.0064092367849143
827 => 0.0063224992414099
828 => 0.0062595701583988
829 => 0.0062477854327921
830 => 0.006395295946754
831 => 0.0066040542284182
901 => 0.0067019989434718
902 => 0.0066049387054789
903 => 0.0064934411301671
904 => 0.0065002274709463
905 => 0.0065453739558162
906 => 0.0065501182130391
907 => 0.006477544753647
908 => 0.0064979737573644
909 => 0.0064669402326504
910 => 0.0062764875487641
911 => 0.0062730428636446
912 => 0.0062263027035545
913 => 0.0062248874300827
914 => 0.0061453707578901
915 => 0.0061342458257776
916 => 0.0059763606468222
917 => 0.006080281149731
918 => 0.006010576732451
919 => 0.0059055157340004
920 => 0.0058874031782676
921 => 0.0058868586929707
922 => 0.0059947328471701
923 => 0.0060790205774317
924 => 0.0060117892706327
925 => 0.0059964820052986
926 => 0.0061599235519943
927 => 0.0061391241253745
928 => 0.0061211119560636
929 => 0.0065853622139761
930 => 0.006217871908939
1001 => 0.0060576251603295
1002 => 0.0058592893788931
1003 => 0.0059238685094246
1004 => 0.0059374762810925
1005 => 0.0054605144794496
1006 => 0.0052670111359249
1007 => 0.0052006080804469
1008 => 0.0051623921832179
1009 => 0.0051798076474702
1010 => 0.0050056319426195
1011 => 0.0051226808968794
1012 => 0.0049718594591846
1013 => 0.0049465737543397
1014 => 0.0052162611681289
1015 => 0.0052537865962667
1016 => 0.0050936914615943
1017 => 0.005196498455102
1018 => 0.005159219210132
1019 => 0.0049744448598501
1020 => 0.0049673878387775
1021 => 0.0048746745649385
1022 => 0.0047295962442079
1023 => 0.0046632915586629
1024 => 0.0046287595027475
1025 => 0.0046430081020345
1026 => 0.0046358035742207
1027 => 0.0045887891569047
1028 => 0.0046384983855881
1029 => 0.0045115118475735
1030 => 0.0044609447849359
1031 => 0.0044381048158895
1101 => 0.0043253969543291
1102 => 0.0045047652834853
1103 => 0.0045401031039517
1104 => 0.0045755105508409
1105 => 0.0048837082023204
1106 => 0.00486831151861
1107 => 0.0050074900408628
1108 => 0.005002081819421
1109 => 0.0049623858503319
1110 => 0.0047949150864149
1111 => 0.0048616659480329
1112 => 0.0046562171713599
1113 => 0.0048101533640022
1114 => 0.0047399033142093
1115 => 0.004786401751502
1116 => 0.0047027933686547
1117 => 0.0047490656998279
1118 => 0.004548483012131
1119 => 0.0043611817206342
1120 => 0.0044365572279981
1121 => 0.0045184990247374
1122 => 0.0046961697184499
1123 => 0.0045903505190262
1124 => 0.0046284071046059
1125 => 0.0045009239135093
1126 => 0.0042378896765038
1127 => 0.0042393784217199
1128 => 0.0041989163348689
1129 => 0.0041639511842683
1130 => 0.004602505127022
1201 => 0.0045479640117287
1202 => 0.0044610598826735
1203 => 0.0045773845128467
1204 => 0.0046081425913846
1205 => 0.0046090182306398
1206 => 0.0046938856780409
1207 => 0.0047391794499322
1208 => 0.0047471626735425
1209 => 0.0048807034357106
1210 => 0.0049254645377441
1211 => 0.005109829182192
1212 => 0.0047353365898372
1213 => 0.0047276241613393
1214 => 0.0045790214389453
1215 => 0.0044847752430869
1216 => 0.0045854745566068
1217 => 0.0046746804015584
1218 => 0.0045817933132082
1219 => 0.0045939224059933
1220 => 0.0044692290790371
1221 => 0.0045138010760576
1222 => 0.004552192484388
1223 => 0.0045309950052507
1224 => 0.0044992613530124
1225 => 0.0046673665395624
1226 => 0.0046578813861277
1227 => 0.0048144248005647
1228 => 0.0049364615866452
1229 => 0.0051551733239865
1230 => 0.0049269362243702
1231 => 0.0049186183572998
]
'min_raw' => 0.0041639511842683
'max_raw' => 0.012039207430633
'avg_raw' => 0.0081015793074506
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004163'
'max' => '$0.012039'
'avg' => '$0.0081015'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00073218136431241
'max_diff' => -0.0040668504191033
'year' => 2030
]
5 => [
'items' => [
101 => 0.0049999268421401
102 => 0.0049254520898388
103 => 0.0049725175625121
104 => 0.0051475903487094
105 => 0.0051512893608057
106 => 0.0050893261422854
107 => 0.0050855556748072
108 => 0.0050974563887273
109 => 0.0051671592418698
110 => 0.0051428029232295
111 => 0.0051709886717866
112 => 0.0052062353819528
113 => 0.0053520307194954
114 => 0.0053871814817892
115 => 0.0053017833529961
116 => 0.0053094938478638
117 => 0.0052775526034641
118 => 0.0052466977615966
119 => 0.0053160549401269
120 => 0.0054428065471098
121 => 0.0054420180319412
122 => 0.005471421941062
123 => 0.0054897403328492
124 => 0.0054111043854163
125 => 0.0053599152751615
126 => 0.0053795444372809
127 => 0.0054109318949774
128 => 0.0053693659077795
129 => 0.0051128013795559
130 => 0.0051906266680134
131 => 0.0051776727345519
201 => 0.0051592247580506
202 => 0.0052374786873998
203 => 0.0052299309050123
204 => 0.0050038455190168
205 => 0.005018318771896
206 => 0.0050047256854613
207 => 0.0050486477286157
208 => 0.0049230801553686
209 => 0.0049617038951889
210 => 0.0049859283427291
211 => 0.0050001967284312
212 => 0.0050517439215111
213 => 0.0050456954533587
214 => 0.0050513679402383
215 => 0.0051277988196214
216 => 0.0055143599796303
217 => 0.0055353996506704
218 => 0.0054317926155705
219 => 0.0054731815825345
220 => 0.0053937238167357
221 => 0.0054470643472372
222 => 0.0054835585835038
223 => 0.0053186481472533
224 => 0.0053088832214784
225 => 0.0052290975052154
226 => 0.0052719698298412
227 => 0.0052037568787324
228 => 0.0052204939509467
301 => 0.0051736956379236
302 => 0.005257923283914
303 => 0.0053521028797843
304 => 0.005375896364966
305 => 0.0053133059491922
306 => 0.0052679863632626
307 => 0.0051884200995699
308 => 0.0053207405693407
309 => 0.005359435107095
310 => 0.0053205373234067
311 => 0.0053115238569927
312 => 0.0052944433544253
313 => 0.0053151475663572
314 => 0.0053592243683323
315 => 0.0053384385624916
316 => 0.0053521679534481
317 => 0.0052998456728081
318 => 0.005411130417187
319 => 0.0055878773733928
320 => 0.005588445643758
321 => 0.005567659725874
322 => 0.0055591545761147
323 => 0.0055804821892587
324 => 0.0055920515444848
325 => 0.0056610211345769
326 => 0.0057350282526154
327 => 0.0060803871806659
328 => 0.0059834117756454
329 => 0.0062898347621063
330 => 0.0065321755603519
331 => 0.006604842969467
401 => 0.0065379923723469
402 => 0.0063093000907974
403 => 0.0062980793564305
404 => 0.0066398421764562
405 => 0.0065432785260702
406 => 0.0065317925871197
407 => 0.0064096016024872
408 => 0.0064818316080529
409 => 0.0064660338462854
410 => 0.0064410963064825
411 => 0.006578906125516
412 => 0.0068368738043794
413 => 0.006796667122423
414 => 0.0067666546994768
415 => 0.0066351489986116
416 => 0.0067143448033941
417 => 0.0066861446942068
418 => 0.006807310259507
419 => 0.0067355344627691
420 => 0.0065425469614455
421 => 0.0065732808571264
422 => 0.0065686354906222
423 => 0.0066642368041035
424 => 0.0066355396627669
425 => 0.0065630319132036
426 => 0.0068359920988977
427 => 0.0068182675827231
428 => 0.0068433968942702
429 => 0.006854459594363
430 => 0.007020605649297
501 => 0.0070886703719227
502 => 0.0071041222555994
503 => 0.0071687784777793
504 => 0.0071025135498911
505 => 0.0073676205075366
506 => 0.007543901164951
507 => 0.0077486602198574
508 => 0.0080478682331213
509 => 0.0081603732139374
510 => 0.008140050196146
511 => 0.0083669062969888
512 => 0.0087745616674755
513 => 0.0082224490018345
514 => 0.0088038249793888
515 => 0.0086197680572035
516 => 0.0081833724057449
517 => 0.0081552736705577
518 => 0.0084508058723832
519 => 0.0091062678521118
520 => 0.008942082060378
521 => 0.0091065364012491
522 => 0.0089146916771163
523 => 0.0089051649695689
524 => 0.0090972189312034
525 => 0.0095459634808791
526 => 0.0093327817662661
527 => 0.0090271335040674
528 => 0.0092528194244612
529 => 0.0090573093939702
530 => 0.0086167705754619
531 => 0.0089419565105974
601 => 0.0087245139365345
602 => 0.0087879752395291
603 => 0.0092450071880673
604 => 0.0091900158948626
605 => 0.0092611797203261
606 => 0.0091355774310647
607 => 0.0090182450872314
608 => 0.0087992355542524
609 => 0.0087343976285767
610 => 0.0087523164986093
611 => 0.0087343887488747
612 => 0.0086118549279744
613 => 0.0085853937610175
614 => 0.0085412906567991
615 => 0.0085549600529533
616 => 0.0084720333142044
617 => 0.0086285332037621
618 => 0.0086575809623363
619 => 0.0087714685309486
620 => 0.0087832927161295
621 => 0.0091004679736267
622 => 0.0089257731717109
623 => 0.0090429735272596
624 => 0.0090324900243268
625 => 0.0081928304227794
626 => 0.0083085281074932
627 => 0.0084885173969744
628 => 0.0084074324660328
629 => 0.0082927973446332
630 => 0.0082002233377567
701 => 0.0080599642511605
702 => 0.0082573762221074
703 => 0.00851695197148
704 => 0.0087898759854988
705 => 0.0091177763056525
706 => 0.0090445927713747
707 => 0.0087837461170962
708 => 0.0087954475074585
709 => 0.0088677808983511
710 => 0.0087741025849637
711 => 0.0087464750215278
712 => 0.0088639852953851
713 => 0.0088647945240586
714 => 0.008757006303104
715 => 0.0086372194205492
716 => 0.0086367175091375
717 => 0.0086154025903909
718 => 0.00891848355381
719 => 0.0090851474387488
720 => 0.0091042551845648
721 => 0.0090838613352129
722 => 0.0090917101184255
723 => 0.0089947320759677
724 => 0.0092163951230811
725 => 0.0094198150553156
726 => 0.0093652941680438
727 => 0.0092835596074225
728 => 0.0092184540930178
729 => 0.0093499573779331
730 => 0.0093441017436611
731 => 0.0094180383596672
801 => 0.0094146841676866
802 => 0.0093898220646205
803 => 0.0093652950559478
804 => 0.0094625418729279
805 => 0.0094345363513737
806 => 0.0094064873295092
807 => 0.0093502307220696
808 => 0.009357876929344
809 => 0.0092761564813469
810 => 0.0092383488628302
811 => 0.0086698129935001
812 => 0.0085178816317696
813 => 0.0085656823310181
814 => 0.0085814195623553
815 => 0.0085152988390248
816 => 0.0086100989712605
817 => 0.0085953244710697
818 => 0.0086528034085184
819 => 0.0086168930638458
820 => 0.0086183668369172
821 => 0.0087239715037065
822 => 0.0087546289877498
823 => 0.0087390363439291
824 => 0.0087499568971765
825 => 0.0090016164374862
826 => 0.0089658384984733
827 => 0.0089468321814534
828 => 0.0089520970611594
829 => 0.0090164014693499
830 => 0.0090344031927527
831 => 0.0089581286257363
901 => 0.0089941001524793
902 => 0.0091472623478844
903 => 0.0092008604480467
904 => 0.0093719198552171
905 => 0.0092992507787126
906 => 0.0094326380136806
907 => 0.0098426248989128
908 => 0.010170150791771
909 => 0.0098689444451186
910 => 0.010470404037182
911 => 0.010938726603857
912 => 0.010920751603716
913 => 0.01083908873172
914 => 0.01030591594056
915 => 0.0098152823889757
916 => 0.010225718188277
917 => 0.010226764473536
918 => 0.010191507674379
919 => 0.0099725307228148
920 => 0.010183887751124
921 => 0.010200664504495
922 => 0.010191273983906
923 => 0.010023384868561
924 => 0.0097670492205238
925 => 0.0098171365925694
926 => 0.0098991807297349
927 => 0.0097438540618807
928 => 0.0096942177799266
929 => 0.0097865010717683
930 => 0.01008385706607
1001 => 0.010027643637813
1002 => 0.010026175678025
1003 => 0.010266680562311
1004 => 0.010094530969365
1005 => 0.0098177683547329
1006 => 0.009747882144488
1007 => 0.0094998331791108
1008 => 0.0096711614830169
1009 => 0.0096773272836646
1010 => 0.0095834925225481
1011 => 0.0098253825284446
1012 => 0.0098231534694564
1013 => 0.010052792029479
1014 => 0.010491774707938
1015 => 0.010361945928892
1016 => 0.010210969184193
1017 => 0.010227384542472
1018 => 0.010407420506246
1019 => 0.010298566652727
1020 => 0.010337711257409
1021 => 0.010407361256199
1022 => 0.010449382829781
1023 => 0.010221338284709
1024 => 0.010168170192622
1025 => 0.010059406935675
1026 => 0.010031032632099
1027 => 0.010119618035463
1028 => 0.010096278911445
1029 => 0.0096768090719953
1030 => 0.0096329721398647
1031 => 0.0096343165559884
1101 => 0.0095240865058133
1102 => 0.0093559592210531
1103 => 0.0097977876870445
1104 => 0.00976230267784
1105 => 0.0097231299739998
1106 => 0.0097279284067038
1107 => 0.0099197111688346
1108 => 0.0098084674815371
1109 => 0.010104227056699
1110 => 0.010043427779393
1111 => 0.0099810692300397
1112 => 0.0099724493790312
1113 => 0.0099484466577117
1114 => 0.0098661323952881
1115 => 0.0097667329770912
1116 => 0.0097011008713674
1117 => 0.0089487527555846
1118 => 0.0090883841896662
1119 => 0.0092490174267715
1120 => 0.0093044673765229
1121 => 0.0092096164004534
1122 => 0.0098698776899468
1123 => 0.0099905137899733
1124 => 0.0096250991740948
1125 => 0.0095567450192444
1126 => 0.0098743589769591
1127 => 0.0096827989337299
1128 => 0.0097690584094666
1129 => 0.0095826126043345
1130 => 0.0099614560861143
1201 => 0.0099585699335196
1202 => 0.0098111912625391
1203 => 0.0099357547060462
1204 => 0.009914108742381
1205 => 0.0097477185858218
1206 => 0.009966730950862
1207 => 0.0099668395782626
1208 => 0.0098249908117325
1209 => 0.0096593425071133
1210 => 0.0096297285026856
1211 => 0.0096074183284312
1212 => 0.0097635714742386
1213 => 0.0099035778964913
1214 => 0.010164095137768
1215 => 0.010229595361962
1216 => 0.010485247097588
1217 => 0.01033301893648
1218 => 0.010400499708614
1219 => 0.010473759632504
1220 => 0.010508883134062
1221 => 0.010451651273105
1222 => 0.010848783648984
1223 => 0.01088231378933
1224 => 0.010893556155353
1225 => 0.010759645352647
1226 => 0.010878589487664
1227 => 0.010822939465905
1228 => 0.0109677253625
1229 => 0.010990429639805
1230 => 0.010971199924656
1231 => 0.010978406620635
]
'min_raw' => 0.0049230801553686
'max_raw' => 0.010990429639805
'avg_raw' => 0.0079567548975869
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004923'
'max' => '$0.01099'
'avg' => '$0.007956'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00075912897110028
'max_diff' => -0.0010487777908278
'year' => 2031
]
6 => [
'items' => [
101 => 0.010639524196774
102 => 0.010621951355349
103 => 0.010382344415616
104 => 0.010479986014642
105 => 0.010297449725346
106 => 0.010355333863014
107 => 0.010380848639358
108 => 0.010367521168146
109 => 0.010485506524151
110 => 0.010385194868731
111 => 0.010120455917316
112 => 0.00985564483795
113 => 0.009852320350559
114 => 0.0097826002676658
115 => 0.0097322054176041
116 => 0.0097419132535794
117 => 0.009776124933769
118 => 0.0097302169725581
119 => 0.0097400137636752
120 => 0.0099027057718963
121 => 0.0099353324938787
122 => 0.0098244541444992
123 => 0.0093792615720711
124 => 0.0092700101981162
125 => 0.0093485379191661
126 => 0.0093110067263372
127 => 0.0075147091224339
128 => 0.007936722599612
129 => 0.0076859765216963
130 => 0.0078015318506722
131 => 0.0075455850355024
201 => 0.0076677362710233
202 => 0.0076451793980715
203 => 0.0083237645810873
204 => 0.0083131694068179
205 => 0.0083182407560565
206 => 0.0080761720435674
207 => 0.0084617940754443
208 => 0.0086517653548666
209 => 0.0086166067269674
210 => 0.0086254553961468
211 => 0.0084734059426024
212 => 0.0083197129271305
213 => 0.0081492437197865
214 => 0.0084659544364007
215 => 0.0084307416111454
216 => 0.0085115071631064
217 => 0.0087169167017803
218 => 0.008747164036625
219 => 0.0087878167613944
220 => 0.0087732456534226
221 => 0.0091203885607126
222 => 0.0090783472641172
223 => 0.0091796546928057
224 => 0.0089712576257802
225 => 0.0087354365632096
226 => 0.0087802584376329
227 => 0.0087759417306912
228 => 0.0087209850968376
229 => 0.0086713727050717
301 => 0.0085887820509862
302 => 0.0088501111016297
303 => 0.0088395016194165
304 => 0.0090112568042749
305 => 0.0089808974070103
306 => 0.0087781499218727
307 => 0.0087853910879685
308 => 0.0088340914099482
309 => 0.0090026437803703
310 => 0.0090526815998321
311 => 0.009029502088195
312 => 0.0090843662729216
313 => 0.0091277286875365
314 => 0.0090898119245778
315 => 0.0096266333286969
316 => 0.0094037076546489
317 => 0.0095123600770731
318 => 0.009538273039604
319 => 0.009471897530972
320 => 0.0094862920020655
321 => 0.0095080957035136
322 => 0.0096404835091039
323 => 0.0099879074176932
324 => 0.010141779101813
325 => 0.010604709655382
326 => 0.010129002200444
327 => 0.010100775688741
328 => 0.010184163460602
329 => 0.010455952701723
330 => 0.010676212353786
331 => 0.01074928518746
401 => 0.010758942968731
402 => 0.010896032462492
403 => 0.010974609603749
404 => 0.010879386192138
405 => 0.010798694321105
406 => 0.010509666054907
407 => 0.010543121863717
408 => 0.010773599209891
409 => 0.011099162036408
410 => 0.011378528810599
411 => 0.011280704303193
412 => 0.012027036241366
413 => 0.012101032004543
414 => 0.012090808182641
415 => 0.012259381543205
416 => 0.011924797751854
417 => 0.011781756698795
418 => 0.010816140819514
419 => 0.011087439494632
420 => 0.011481788051729
421 => 0.011429594541466
422 => 0.011143208078335
423 => 0.011378311560786
424 => 0.011300578997122
425 => 0.011239268099033
426 => 0.01152014520888
427 => 0.011211309288808
428 => 0.011478707177179
429 => 0.011135766619466
430 => 0.011281151157302
501 => 0.011198623862168
502 => 0.011252029136285
503 => 0.010939822995045
504 => 0.011108281850482
505 => 0.010932814552818
506 => 0.010932731358472
507 => 0.010928857908151
508 => 0.011135294405712
509 => 0.011142026292486
510 => 0.01098946940888
511 => 0.010967483578566
512 => 0.011048776716478
513 => 0.01095360374269
514 => 0.010998134578114
515 => 0.010954952536331
516 => 0.010945231349173
517 => 0.010867771275972
518 => 0.010834399346628
519 => 0.010847485340012
520 => 0.010802816098299
521 => 0.01077590126441
522 => 0.010923503870254
523 => 0.010844645752224
524 => 0.010911417732681
525 => 0.010835322633654
526 => 0.01057154386737
527 => 0.010419841909469
528 => 0.0099215882722626
529 => 0.010062892385693
530 => 0.010156577159087
531 => 0.010125614342039
601 => 0.010192134454077
602 => 0.010196218248702
603 => 0.010174591882186
604 => 0.01014955132027
605 => 0.010137362959559
606 => 0.010228205014562
607 => 0.010280941885094
608 => 0.010165979679437
609 => 0.010139045643144
610 => 0.0102552787803
611 => 0.01032618092682
612 => 0.010849682540245
613 => 0.010810899849834
614 => 0.010908236792046
615 => 0.01089727814611
616 => 0.010999302768539
617 => 0.011166069907387
618 => 0.010826985685283
619 => 0.01088583898159
620 => 0.010871409512457
621 => 0.011028946672845
622 => 0.011029438486664
623 => 0.010934987089447
624 => 0.010986190724177
625 => 0.010957610259969
626 => 0.011009259021675
627 => 0.010810381883359
628 => 0.011052592770367
629 => 0.011189910735576
630 => 0.011191817395656
701 => 0.011256905021342
702 => 0.01132303781866
703 => 0.01144997396416
704 => 0.011319497638457
705 => 0.011084783430132
706 => 0.011101729037851
707 => 0.010964116183388
708 => 0.010966429480334
709 => 0.010954080919943
710 => 0.010991139879231
711 => 0.010818514240917
712 => 0.01085902913319
713 => 0.010802308046753
714 => 0.010885715681026
715 => 0.010795982854324
716 => 0.01087140255413
717 => 0.010903951196363
718 => 0.011024056386928
719 => 0.010778243220023
720 => 0.010277013532616
721 => 0.010382378089732
722 => 0.010226535633551
723 => 0.010240959446204
724 => 0.010270097843297
725 => 0.010175650764828
726 => 0.010193668291031
727 => 0.010193024578207
728 => 0.010187477408858
729 => 0.010162908076029
730 => 0.010127277682532
731 => 0.010269218203765
801 => 0.010293336664215
802 => 0.010346949014151
803 => 0.010506463001954
804 => 0.010490523792974
805 => 0.010516521304132
806 => 0.010459768883243
807 => 0.010243592028239
808 => 0.010255331471524
809 => 0.010108940425649
810 => 0.010343205465976
811 => 0.010287728412279
812 => 0.010251961994861
813 => 0.010242202796495
814 => 0.010402112188621
815 => 0.010449959585018
816 => 0.010420144298503
817 => 0.010358992276009
818 => 0.010476422237169
819 => 0.010507841540803
820 => 0.010514875164187
821 => 0.0107229385404
822 => 0.010526503595622
823 => 0.010573787439225
824 => 0.010942682489252
825 => 0.010608145582915
826 => 0.010785357243265
827 => 0.010776683654656
828 => 0.010867339143575
829 => 0.010769247258529
830 => 0.010770463225006
831 => 0.010850959157632
901 => 0.010737917137777
902 => 0.010709926343947
903 => 0.010671257262746
904 => 0.01075568978687
905 => 0.010806303266527
906 => 0.011214210741064
907 => 0.011477737572455
908 => 0.011466297177701
909 => 0.011570840970225
910 => 0.011523743034182
911 => 0.011371651374891
912 => 0.011631253291698
913 => 0.011549104383015
914 => 0.011555876639236
915 => 0.011555624575521
916 => 0.011610246418213
917 => 0.011571541836647
918 => 0.011495251133437
919 => 0.011545896462566
920 => 0.011696294984043
921 => 0.012163136609495
922 => 0.012424387367928
923 => 0.012147408985802
924 => 0.012338464964904
925 => 0.012223899457649
926 => 0.012203079496952
927 => 0.012323076770754
928 => 0.012443284083899
929 => 0.012435627397722
930 => 0.012348363061093
1001 => 0.012299069651581
1002 => 0.012672335862905
1003 => 0.012947352048984
1004 => 0.012928597788826
1005 => 0.013011372993954
1006 => 0.013254403556352
1007 => 0.013276623225219
1008 => 0.013273824057655
1009 => 0.013218750289984
1010 => 0.013458045440171
1011 => 0.013657669664455
1012 => 0.013206002304003
1013 => 0.013377991322103
1014 => 0.013455202733468
1015 => 0.013568571992946
1016 => 0.013759844936579
1017 => 0.013967618086007
1018 => 0.013996999487453
1019 => 0.013976151977098
1020 => 0.013839119999808
1021 => 0.014066467859161
1022 => 0.014199642903207
1023 => 0.01427894559428
1024 => 0.01448004402413
1025 => 0.013455679564859
1026 => 0.01273058348637
1027 => 0.012617349263199
1028 => 0.012847615508732
1029 => 0.01290833488134
1030 => 0.012883858978378
1031 => 0.012067697419187
1101 => 0.012613052341499
1102 => 0.013199808383162
1103 => 0.013222348072362
1104 => 0.013516090415309
1105 => 0.013611744963078
1106 => 0.013848246050839
1107 => 0.013833452843407
1108 => 0.013891037094723
1109 => 0.013877799472566
1110 => 0.014315867936464
1111 => 0.01479912250594
1112 => 0.014782388936855
1113 => 0.014712915374884
1114 => 0.014816095461413
1115 => 0.015314865965819
1116 => 0.015268947170408
1117 => 0.015313553368797
1118 => 0.015901631902966
1119 => 0.016666217650581
1120 => 0.01631099080766
1121 => 0.017081730843029
1122 => 0.01756687084012
1123 => 0.018405870300677
1124 => 0.018300823436056
1125 => 0.018627439769189
1126 => 0.018112767624442
1127 => 0.016930976347702
1128 => 0.016743953354442
1129 => 0.017118378123124
1130 => 0.018038864881094
1201 => 0.017089388719381
1202 => 0.017281466510295
1203 => 0.01722614809359
1204 => 0.017223200410252
1205 => 0.017335701494172
1206 => 0.017172512804285
1207 => 0.016507652724598
1208 => 0.016812354181073
1209 => 0.016694694315763
1210 => 0.016825246708449
1211 => 0.017529784127875
1212 => 0.017218291340672
1213 => 0.016890158992974
1214 => 0.017301709775385
1215 => 0.017825755345587
1216 => 0.017792961515604
1217 => 0.01772932777868
1218 => 0.018088027821968
1219 => 0.018680495204227
1220 => 0.018840636756925
1221 => 0.018958849977177
1222 => 0.018975149583021
1223 => 0.019143045653362
1224 => 0.018240226167877
1225 => 0.019673023877391
1226 => 0.019920428461586
1227 => 0.019873926653626
1228 => 0.020148906436583
1229 => 0.020068000408873
1230 => 0.019950780268489
1231 => 0.020386681714352
]
'min_raw' => 0.0075147091224339
'max_raw' => 0.020386681714352
'avg_raw' => 0.013950695418393
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007514'
'max' => '$0.020386'
'avg' => '$0.01395'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0025916289670653
'max_diff' => 0.0093962520745466
'year' => 2032
]
7 => [
'items' => [
101 => 0.019886955882103
102 => 0.019177657976958
103 => 0.018788523117874
104 => 0.01930096729093
105 => 0.019613899065578
106 => 0.019820727062421
107 => 0.019883313089297
108 => 0.018310309474538
109 => 0.017462547768963
110 => 0.018005953302629
111 => 0.018668945557548
112 => 0.018236543212426
113 => 0.018253492565709
114 => 0.017637000454902
115 => 0.018723491429884
116 => 0.018565198833656
117 => 0.019386421102899
118 => 0.019190429817623
119 => 0.019860104698526
120 => 0.019683756859135
121 => 0.020415766880971
122 => 0.020707785497062
123 => 0.021198130202546
124 => 0.021558829763963
125 => 0.02177063944551
126 => 0.021757923186708
127 => 0.022597218668161
128 => 0.022102315445499
129 => 0.021480600358101
130 => 0.021469355493656
131 => 0.02179135054719
201 => 0.022466163844369
202 => 0.022641133114193
203 => 0.022738917066278
204 => 0.022589157539776
205 => 0.022051975561609
206 => 0.021820023107012
207 => 0.022017653318639
208 => 0.021775968552377
209 => 0.022193184263713
210 => 0.022766110547846
211 => 0.022647803535768
212 => 0.023043286139564
213 => 0.02345256902851
214 => 0.024037861941746
215 => 0.0241908791826
216 => 0.024443810863007
217 => 0.024704160645875
218 => 0.024787777979508
219 => 0.02494742941435
220 => 0.024946587972482
221 => 0.025427708317158
222 => 0.025958398956392
223 => 0.026158722387187
224 => 0.0266193550704
225 => 0.025830537742892
226 => 0.026428864747087
227 => 0.026968570681968
228 => 0.026325111016939
301 => 0.027211970258307
302 => 0.027246404992984
303 => 0.027766328603792
304 => 0.027239286418926
305 => 0.026926330451931
306 => 0.027829822602339
307 => 0.028266993994186
308 => 0.028135314413143
309 => 0.027133226299583
310 => 0.02654996803591
311 => 0.025023468657761
312 => 0.026831673111044
313 => 0.027712396754191
314 => 0.027130945438114
315 => 0.02742419566094
316 => 0.029024073789975
317 => 0.029633203797073
318 => 0.029506509013737
319 => 0.029527918346547
320 => 0.029856593841886
321 => 0.03131412199312
322 => 0.030440737339662
323 => 0.031108407182132
324 => 0.031462536859115
325 => 0.031791472238958
326 => 0.030983710907158
327 => 0.029932825282856
328 => 0.029599965692462
329 => 0.027073131563883
330 => 0.026941598874006
331 => 0.02686776558933
401 => 0.026402257173371
402 => 0.026036495071914
403 => 0.025745627468959
404 => 0.024982304018386
405 => 0.02523990327536
406 => 0.024023325013133
407 => 0.024801648672419
408 => 0.022859960390595
409 => 0.024477056089277
410 => 0.023596944420804
411 => 0.024187915735656
412 => 0.024185853892412
413 => 0.023097688334142
414 => 0.022470057149568
415 => 0.02287000816815
416 => 0.023298787408221
417 => 0.023368355397336
418 => 0.023924278874371
419 => 0.024079425167276
420 => 0.023609324656685
421 => 0.022819723216769
422 => 0.02300312962237
423 => 0.022466340424613
424 => 0.021525638002841
425 => 0.022201266905246
426 => 0.022431956317833
427 => 0.022533841904517
428 => 0.021608769113108
429 => 0.02131809115774
430 => 0.021163336653326
501 => 0.022700307935965
502 => 0.022784506692344
503 => 0.022353733950203
504 => 0.02430086759223
505 => 0.023860171280682
506 => 0.024352537033899
507 => 0.022986487413437
508 => 0.023038672348568
509 => 0.022391962566325
510 => 0.022754076831218
511 => 0.022498146140279
512 => 0.022724821577098
513 => 0.022860689899309
514 => 0.02350729356284
515 => 0.024484439264461
516 => 0.023410712537841
517 => 0.022942874427002
518 => 0.023233118559745
519 => 0.024006076933163
520 => 0.025177148435904
521 => 0.024483850536271
522 => 0.024791524371166
523 => 0.024858737416635
524 => 0.024347525212729
525 => 0.025195997559047
526 => 0.025650700782416
527 => 0.026117132202018
528 => 0.026522121534547
529 => 0.025930829235982
530 => 0.026563596753868
531 => 0.026053697832956
601 => 0.025596265788515
602 => 0.025596959524107
603 => 0.025310005720614
604 => 0.02475399656784
605 => 0.024651459949357
606 => 0.02518486838765
607 => 0.025612611441194
608 => 0.025647842407835
609 => 0.025884662940508
610 => 0.026024810892299
611 => 0.02739845134175
612 => 0.027950940893868
613 => 0.028626514660107
614 => 0.028889688715308
615 => 0.029681748268343
616 => 0.029042095851336
617 => 0.028903703027314
618 => 0.026982425632356
619 => 0.027297034698149
620 => 0.027800754167742
621 => 0.026990731780878
622 => 0.027504504543891
623 => 0.027605934170505
624 => 0.026963207530132
625 => 0.027306515599334
626 => 0.026394791151282
627 => 0.024504312365973
628 => 0.025198102202357
629 => 0.02570896504907
630 => 0.024979900777876
701 => 0.026286720265307
702 => 0.02552330329898
703 => 0.025281336771131
704 => 0.024337339078697
705 => 0.024782869651723
706 => 0.025385456131123
707 => 0.025013127745051
708 => 0.025785765051538
709 => 0.026880025532368
710 => 0.027659860715345
711 => 0.027719726777442
712 => 0.027218344999687
713 => 0.028021812498315
714 => 0.028027664881877
715 => 0.027121350261164
716 => 0.026566237602358
717 => 0.02644011483831
718 => 0.026755194230726
719 => 0.027137758779983
720 => 0.027740956447412
721 => 0.028105456164744
722 => 0.029055878111833
723 => 0.029313035039983
724 => 0.02959557253891
725 => 0.029973129768815
726 => 0.030426484027003
727 => 0.029434570719561
728 => 0.029473981284423
729 => 0.028550325346508
730 => 0.027563266511185
731 => 0.028312321128574
801 => 0.029291610398251
802 => 0.029066960357768
803 => 0.02904168263903
804 => 0.029084192750493
805 => 0.028914813956354
806 => 0.028148719947933
807 => 0.027763992332907
808 => 0.028260389110773
809 => 0.028524201906131
810 => 0.028933352544837
811 => 0.028882916092494
812 => 0.02993684419823
813 => 0.030346368790987
814 => 0.030241594875614
815 => 0.030260875797568
816 => 0.031002300511311
817 => 0.031826917278615
818 => 0.032599279698962
819 => 0.033384959926676
820 => 0.032437791746545
821 => 0.031956878157887
822 => 0.032453058224449
823 => 0.032189778096891
824 => 0.033702663803798
825 => 0.033807412727683
826 => 0.035320189035734
827 => 0.036755993890126
828 => 0.035854190586198
829 => 0.036704550483689
830 => 0.037624284043686
831 => 0.039398599302311
901 => 0.038801072344369
902 => 0.038343376059027
903 => 0.037910855280952
904 => 0.038810862359387
905 => 0.039968707087831
906 => 0.040218095752639
907 => 0.04062220066343
908 => 0.040197333761331
909 => 0.040709039147355
910 => 0.042515584014761
911 => 0.042027439644775
912 => 0.041334196166272
913 => 0.042760289836676
914 => 0.043276387592196
915 => 0.046898631922931
916 => 0.051471865017933
917 => 0.049578516487135
918 => 0.048403253956093
919 => 0.048679468528488
920 => 0.050349458441072
921 => 0.050885806198164
922 => 0.04942782810423
923 => 0.049942810615053
924 => 0.05278041488165
925 => 0.054302698529436
926 => 0.052235232865773
927 => 0.046531177096605
928 => 0.041271777175974
929 => 0.042666806868791
930 => 0.042508653794437
1001 => 0.045557305580555
1002 => 0.042015797562991
1003 => 0.042075427475303
1004 => 0.04518712215178
1005 => 0.044356975360048
1006 => 0.04301224387461
1007 => 0.041281595203987
1008 => 0.038082331070713
1009 => 0.035248653609792
1010 => 0.040806147667603
1011 => 0.040566498418183
1012 => 0.040219450790994
1013 => 0.040991767730828
1014 => 0.044741919564674
1015 => 0.044655466426847
1016 => 0.04410549567277
1017 => 0.044522643642517
1018 => 0.042939115818633
1019 => 0.043347226995106
1020 => 0.041270944060156
1021 => 0.042209510659988
1022 => 0.043009358684792
1023 => 0.043169940017724
1024 => 0.043531737960306
1025 => 0.040440214153485
1026 => 0.041828217580377
1027 => 0.042643539555343
1028 => 0.03895988521078
1029 => 0.042570725552803
1030 => 0.040386397602028
1031 => 0.03964500388803
1101 => 0.040643192852734
1102 => 0.040254197642418
1103 => 0.039919762403154
1104 => 0.039733141793318
1105 => 0.0404661016029
1106 => 0.040431908151707
1107 => 0.039232643641861
1108 => 0.037668251977043
1109 => 0.038193313169162
1110 => 0.03800255351559
1111 => 0.037311215922561
1112 => 0.037777093987843
1113 => 0.035725602763833
1114 => 0.032196118740159
1115 => 0.034527803997218
1116 => 0.034438036651207
1117 => 0.034392771884723
1118 => 0.036144968912355
1119 => 0.035976535598212
1120 => 0.035670827483737
1121 => 0.0373056013533
1122 => 0.036708886900098
1123 => 0.038547820241258
1124 => 0.039759060674498
1125 => 0.039451850921105
1126 => 0.040591028403
1127 => 0.038205409518554
1128 => 0.03899781641755
1129 => 0.039161130381204
1130 => 0.037285428497509
1201 => 0.036004093371455
1202 => 0.035918642926838
1203 => 0.033696984397119
1204 => 0.034883776451093
1205 => 0.035928104345799
1206 => 0.035427952327354
1207 => 0.03526961913993
1208 => 0.036078509056197
1209 => 0.036141366730365
1210 => 0.034708205097986
1211 => 0.035006204783684
1212 => 0.03624891301137
1213 => 0.034974891724807
1214 => 0.032499676475211
1215 => 0.031885788870783
1216 => 0.031803884948158
1217 => 0.030138973076909
1218 => 0.031926811775928
1219 => 0.031146372272708
1220 => 0.033611771312279
1221 => 0.032203548603077
1222 => 0.032142842936662
1223 => 0.032051077418291
1224 => 0.030618018994064
1225 => 0.030931767713355
1226 => 0.031974716241561
1227 => 0.03234685202608
1228 => 0.032308035214936
1229 => 0.031969605224794
1230 => 0.032124536741239
1231 => 0.03162544834505
]
'min_raw' => 0.017462547768963
'max_raw' => 0.054302698529436
'avg_raw' => 0.035882623149199
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017462'
'max' => '$0.0543026'
'avg' => '$0.035882'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0099478386465292
'max_diff' => 0.033916016815084
'year' => 2033
]
8 => [
'items' => [
101 => 0.031449209844729
102 => 0.030892952659498
103 => 0.030075408267177
104 => 0.03018909282922
105 => 0.028569323465906
106 => 0.027686787149105
107 => 0.027442512728257
108 => 0.027115858763767
109 => 0.027479409162739
110 => 0.028564734862813
111 => 0.027255601803831
112 => 0.025011184999215
113 => 0.025146078273473
114 => 0.025449143410557
115 => 0.024884383532577
116 => 0.024349885704773
117 => 0.024814588200869
118 => 0.023863599213129
119 => 0.025564065886322
120 => 0.025518073028315
121 => 0.026151901847927
122 => 0.026548248016308
123 => 0.025634798416786
124 => 0.025405068312737
125 => 0.025535933020655
126 => 0.023373030903517
127 => 0.025975146600829
128 => 0.025997649805435
129 => 0.02580496370551
130 => 0.027190509983019
131 => 0.030114444791286
201 => 0.029014342901411
202 => 0.028588350198896
203 => 0.027778537760015
204 => 0.028857564752918
205 => 0.028774712315307
206 => 0.028400022171573
207 => 0.028173408403538
208 => 0.028590951219499
209 => 0.028121670227899
210 => 0.028037374466828
211 => 0.027526633869432
212 => 0.027344322713378
213 => 0.027209346791452
214 => 0.027060751563871
215 => 0.02738851560829
216 => 0.026645759162686
217 => 0.0257500677026
218 => 0.025675600649209
219 => 0.02588121073083
220 => 0.025790243575583
221 => 0.025675165133468
222 => 0.02545544904772
223 => 0.02539026397857
224 => 0.025602083830008
225 => 0.025362951567599
226 => 0.025715804246991
227 => 0.025619847842426
228 => 0.025083843166783
301 => 0.024415782886584
302 => 0.024409835748786
303 => 0.024265903257256
304 => 0.024082583588897
305 => 0.024031588250945
306 => 0.024775452252808
307 => 0.026315228474689
308 => 0.026012933558612
309 => 0.026231372615907
310 => 0.027305876580718
311 => 0.027647429079669
312 => 0.027405003206028
313 => 0.02707315571801
314 => 0.027087755323329
315 => 0.02822177864695
316 => 0.028292506290623
317 => 0.028471212228582
318 => 0.028700899861151
319 => 0.027444120003052
320 => 0.027028561105032
321 => 0.026831646244821
322 => 0.026225224691011
323 => 0.02687919834614
324 => 0.026498155903241
325 => 0.026549571547051
326 => 0.026516087041569
327 => 0.026534371845775
328 => 0.025563590571231
329 => 0.025917292244913
330 => 0.025329194610849
331 => 0.024541797895894
401 => 0.024539158266009
402 => 0.02473187249649
403 => 0.024617238531291
404 => 0.02430876147845
405 => 0.024352579187835
406 => 0.023968689946459
407 => 0.024399190292278
408 => 0.024411535501791
409 => 0.024245769419139
410 => 0.024909014599473
411 => 0.025180746691012
412 => 0.025071635904357
413 => 0.025173091187353
414 => 0.026025495277155
415 => 0.02616447433679
416 => 0.026226199654639
417 => 0.026143495905759
418 => 0.025188671569335
419 => 0.025231022088882
420 => 0.024920282076457
421 => 0.024657739510934
422 => 0.0246682398367
423 => 0.024803220843524
424 => 0.025392690816853
425 => 0.026633195624571
426 => 0.026680271875227
427 => 0.026737329664333
428 => 0.026505246961092
429 => 0.026435248597062
430 => 0.026527594507328
501 => 0.026993462890463
502 => 0.028191802853918
503 => 0.027768229476398
504 => 0.027423857727162
505 => 0.027725964593199
506 => 0.027679457609164
507 => 0.027286891860938
508 => 0.027275873847867
509 => 0.026522414666159
510 => 0.026243877962118
511 => 0.026011111844109
512 => 0.025756937319758
513 => 0.025606254141715
514 => 0.025837771987468
515 => 0.025890722858031
516 => 0.025384505042052
517 => 0.025315509424273
518 => 0.025728897820272
519 => 0.025546980999865
520 => 0.025734086960974
521 => 0.025777497148916
522 => 0.025770507108836
523 => 0.025580565055318
524 => 0.025701628456077
525 => 0.025415277422545
526 => 0.025103913682114
527 => 0.024905283014366
528 => 0.02473195141222
529 => 0.024828125859182
530 => 0.024485281516523
531 => 0.024375598711213
601 => 0.025660614899912
602 => 0.026609870174756
603 => 0.026596067627114
604 => 0.026512048168067
605 => 0.026387212294647
606 => 0.026984330368768
607 => 0.026776306371497
608 => 0.026927661210498
609 => 0.026966187369367
610 => 0.027082794448924
611 => 0.027124471457149
612 => 0.026998494591751
613 => 0.026575700844694
614 => 0.025522139025054
615 => 0.025031703153975
616 => 0.024869851147664
617 => 0.024875734160692
618 => 0.024713454398434
619 => 0.024761253061288
620 => 0.024696831974144
621 => 0.024574834020228
622 => 0.024820592829309
623 => 0.024848914242654
624 => 0.024791551200016
625 => 0.024805062273129
626 => 0.024330120780157
627 => 0.024366229550349
628 => 0.024165171329439
629 => 0.024127475336812
630 => 0.023619217662494
701 => 0.022718765519312
702 => 0.023217703415639
703 => 0.022615056598161
704 => 0.022386825116792
705 => 0.023467237452313
706 => 0.0233587940198
707 => 0.023173186002565
708 => 0.022898633060975
709 => 0.02279679870426
710 => 0.022178085389697
711 => 0.022141528506366
712 => 0.022448179531727
713 => 0.02230667063474
714 => 0.022107938549761
715 => 0.021388151083112
716 => 0.020578871657158
717 => 0.020603298716079
718 => 0.020860715444295
719 => 0.021609189298961
720 => 0.021316747615214
721 => 0.021104577818274
722 => 0.021064844793108
723 => 0.021562186789785
724 => 0.022266029911454
725 => 0.022596257356539
726 => 0.022269011987617
727 => 0.021893090127941
728 => 0.021915970749685
729 => 0.022068185275451
730 => 0.022084180869911
731 => 0.021839494384654
801 => 0.021908372196994
802 => 0.02180374050173
803 => 0.021161615981025
804 => 0.021150001984644
805 => 0.020992414271607
806 => 0.020987642578285
807 => 0.020719546566311
808 => 0.020682038080976
809 => 0.020149717176937
810 => 0.020500092407992
811 => 0.020265079098525
812 => 0.019910858607124
813 => 0.019849790860893
814 => 0.0198479550907
815 => 0.020211660333116
816 => 0.020495842300474
817 => 0.020269167255661
818 => 0.020217557741868
819 => 0.020768612327677
820 => 0.020698485608659
821 => 0.020637756322258
822 => 0.022203008479728
823 => 0.020963989258941
824 => 0.020423706157934
825 => 0.019755003223459
826 => 0.019972736270817
827 => 0.020018615823059
828 => 0.018410505808411
829 => 0.017758095775745
830 => 0.017534213238088
831 => 0.017405365672432
901 => 0.017464083126067
902 => 0.016876837576604
903 => 0.017271476297988
904 => 0.016762971290783
905 => 0.016677718771507
906 => 0.017586988716071
907 => 0.01771350831698
908 => 0.017173736392946
909 => 0.017520357349313
910 => 0.017394667772142
911 => 0.016771688149634
912 => 0.016747894910382
913 => 0.0164353056346
914 => 0.015946163947212
915 => 0.015722613070652
916 => 0.015606185833181
917 => 0.015654225980483
918 => 0.015629935411955
919 => 0.015471423021532
920 => 0.015639021156626
921 => 0.015210877177792
922 => 0.015040386795631
923 => 0.014963380245355
924 => 0.014583377821092
925 => 0.015188130665939
926 => 0.015307274594849
927 => 0.015426653274105
928 => 0.016465763173741
929 => 0.01641385217965
930 => 0.016883102284559
1001 => 0.016864868088378
1002 => 0.01673103035711
1003 => 0.016166390984129
1004 => 0.01639144617447
1005 => 0.015698761279942
1006 => 0.016217767900917
1007 => 0.015980914953338
1008 => 0.016137687681088
1009 => 0.015855796180967
1010 => 0.016011806576149
1011 => 0.015335528040343
1012 => 0.014704028659102
1013 => 0.01495816244473
1014 => 0.01523443493343
1015 => 0.015833464081853
1016 => 0.015476687262935
1017 => 0.015604997698243
1018 => 0.015175179218869
1019 => 0.014288340924341
1020 => 0.014293360332778
1021 => 0.014156939581987
1022 => 0.014039052135548
1023 => 0.015517667372401
1024 => 0.015333778194251
1025 => 0.015040774855689
1026 => 0.015432971467844
1027 => 0.015536674477095
1028 => 0.015539626755979
1029 => 0.015825763280148
1030 => 0.015978474394389
1031 => 0.016005390390162
1101 => 0.01645563239333
1102 => 0.016606547573957
1103 => 0.017228145844641
1104 => 0.015965517923279
1105 => 0.015939514932134
1106 => 0.015438490478472
1107 => 0.015120732849076
1108 => 0.01546024761521
1109 => 0.015761011349617
1110 => 0.015447836046075
1111 => 0.015488730129226
1112 => 0.015068317871584
1113 => 0.015218595471456
1114 => 0.015348034785044
1115 => 0.015276566004172
1116 => 0.015169573780078
1117 => 0.01573635215326
1118 => 0.015704372296223
1119 => 0.016232169347509
1120 => 0.016643624892116
1121 => 0.017381026784528
1122 => 0.016611509468166
1123 => 0.016583465198604
1124 => 0.01685760243202
1125 => 0.016606505604975
1126 => 0.016765190132099
1127 => 0.017355460253955
1128 => 0.017367931731495
1129 => 0.017159018414119
1130 => 0.017146306019771
1201 => 0.017186430107634
1202 => 0.017421438143502
1203 => 0.017339319114702
1204 => 0.017434349333829
1205 => 0.017553186078001
1206 => 0.018044745237631
1207 => 0.018163258486852
1208 => 0.017875332733319
1209 => 0.017901329205095
1210 => 0.017793637069535
1211 => 0.017689607815963
1212 => 0.017923450385741
1213 => 0.018350802278199
1214 => 0.018348143744255
1215 => 0.018447281076772
1216 => 0.018509042813631
1217 => 0.018243916226675
1218 => 0.018071328567541
1219 => 0.018137509658091
1220 => 0.018243334663117
1221 => 0.018103192035235
1222 => 0.017238166815566
1223 => 0.017500560209188
1224 => 0.017456885118108
1225 => 0.017394686477337
1226 => 0.017658525063653
1227 => 0.017633077188364
1228 => 0.016870814524703
1229 => 0.016919612107276
1230 => 0.016873782067322
1231 => 0.017021868302356
]
'min_raw' => 0.014039052135548
'max_raw' => 0.031449209844729
'avg_raw' => 0.022744130990139
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014039'
'max' => '$0.031449'
'avg' => '$0.022744'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0034234956334146
'max_diff' => -0.022853488684706
'year' => 2034
]
9 => [
'items' => [
101 => 0.016598508462305
102 => 0.016728731097733
103 => 0.016810405513912
104 => 0.016858512372493
105 => 0.017032307332872
106 => 0.017011914500206
107 => 0.017031039685761
108 => 0.017288731731834
109 => 0.018592049671643
110 => 0.018662986391497
111 => 0.018313668039046
112 => 0.018453213830851
113 => 0.018185316425896
114 => 0.018365157748599
115 => 0.018488200614117
116 => 0.01793219356462
117 => 0.017899270435604
118 => 0.017630267322763
119 => 0.017774814358489
120 => 0.017544829631349
121 => 0.017601259838865
122 => 0.017443476059154
123 => 0.017727455448197
124 => 0.018044988531083
125 => 0.018125209927581
126 => 0.017914181970877
127 => 0.017761383822803
128 => 0.017493120609623
129 => 0.017939248311776
130 => 0.018069709647381
131 => 0.017938563053919
201 => 0.017908173522604
202 => 0.017850585415676
203 => 0.017920391111726
204 => 0.018068999126929
205 => 0.017998918331318
206 => 0.018045207931484
207 => 0.017868799709281
208 => 0.018244003994607
209 => 0.018839918697533
210 => 0.018841834660745
211 => 0.018771753487373
212 => 0.018743077781149
213 => 0.01881498531791
214 => 0.018853992206801
215 => 0.0190865279951
216 => 0.019336048160579
217 => 0.020500449898691
218 => 0.020173490550058
219 => 0.021206617042681
220 => 0.02202368596366
221 => 0.022268689206968
222 => 0.022043297751418
223 => 0.021272245757389
224 => 0.021234414268064
225 => 0.022386691476899
226 => 0.022061120387764
227 => 0.02202239474267
228 => 0.021610419306879
301 => 0.021853947813582
302 => 0.021800684556818
303 => 0.021716605900289
304 => 0.022181241326735
305 => 0.023050997366751
306 => 0.022915437731394
307 => 0.02281424875203
308 => 0.022370868100129
309 => 0.022637882285227
310 => 0.022542803648234
311 => 0.022951321811153
312 => 0.022709324701225
313 => 0.022058653866555
314 => 0.022162275341616
315 => 0.022146613164118
316 => 0.02246893966719
317 => 0.022372185251604
318 => 0.022127720311622
319 => 0.023048024635161
320 => 0.022988265191392
321 => 0.023072990419745
322 => 0.023110289085481
323 => 0.023670462109639
324 => 0.023899947074098
325 => 0.02395204417873
326 => 0.024170037145963
327 => 0.023946620315119
328 => 0.024840446931997
329 => 0.025434789475992
330 => 0.02612514892543
331 => 0.027133949632185
401 => 0.027513268029854
402 => 0.027444747556462
403 => 0.028209608739041
404 => 0.029584047282226
405 => 0.027722560882742
406 => 0.029682710581441
407 => 0.029062149817849
408 => 0.027590811410785
409 => 0.02749607456331
410 => 0.028492482015164
411 => 0.030702417842713
412 => 0.030148853982797
413 => 0.030703323274879
414 => 0.030056505393295
415 => 0.030024385433665
416 => 0.030671908774095
417 => 0.032184882353671
418 => 0.031466125318981
419 => 0.030435610863298
420 => 0.031196526700794
421 => 0.030537350982919
422 => 0.02905204359888
423 => 0.030148430682946
424 => 0.029415307863137
425 => 0.02962927207691
426 => 0.031170187200359
427 => 0.03098478021595
428 => 0.031224714021999
429 => 0.030801237134482
430 => 0.030405642945366
501 => 0.02966723701417
502 => 0.029448631420915
503 => 0.029509046142285
504 => 0.02944860148238
505 => 0.029035470150176
506 => 0.028946254478321
507 => 0.028797557783269
508 => 0.028843645106769
509 => 0.028564051817317
510 => 0.029091702121434
511 => 0.029189638667517
512 => 0.02957361855647
513 => 0.029613484622345
514 => 0.030682863147466
515 => 0.030093867426006
516 => 0.030489016607406
517 => 0.030453670745333
518 => 0.027622699775554
519 => 0.028012782597322
520 => 0.028619629053258
521 => 0.02834624554742
522 => 0.027959745232052
523 => 0.027647625504557
524 => 0.027174732201522
525 => 0.027840320444433
526 => 0.028715498206443
527 => 0.029635680574653
528 => 0.03074121939732
529 => 0.030494476001992
530 => 0.02961501329536
531 => 0.029654465349931
601 => 0.029898342427482
602 => 0.029582499453485
603 => 0.029489351194466
604 => 0.029885545287081
605 => 0.029888273658053
606 => 0.029524858145571
607 => 0.029120988307785
608 => 0.029119296078418
609 => 0.029047431341703
610 => 0.030069289970308
611 => 0.03063120889448
612 => 0.030695631993559
613 => 0.030626872706616
614 => 0.030653335427202
615 => 0.030326367186264
616 => 0.031073719625627
617 => 0.031759564129482
618 => 0.031575743151518
619 => 0.031300169373859
620 => 0.031080661586521
621 => 0.031524034092879
622 => 0.031504291413104
623 => 0.031753573876058
624 => 0.031742264983613
625 => 0.03165844066731
626 => 0.031575746145148
627 => 0.031903620578153
628 => 0.03180919800695
629 => 0.031714628771414
630 => 0.03152495569172
701 => 0.031550735413387
702 => 0.031275209217425
703 => 0.031147738191952
704 => 0.029230879814599
705 => 0.028718632621016
706 => 0.02887979601587
707 => 0.028932855190062
708 => 0.028709924554952
709 => 0.029029549819518
710 => 0.028979736560602
711 => 0.029173530811262
712 => 0.029052456577018
713 => 0.029057425505824
714 => 0.029413479012986
715 => 0.029516842860875
716 => 0.02946427117359
717 => 0.029501090581313
718 => 0.030349578291775
719 => 0.030228950472457
720 => 0.030164869347646
721 => 0.030182620257157
722 => 0.030399427058961
723 => 0.030460121126254
724 => 0.030202956098238
725 => 0.030324236612104
726 => 0.030840633647355
727 => 0.031021343384152
728 => 0.031598082118414
729 => 0.031353073253386
730 => 0.03180279762888
731 => 0.03318509703681
801 => 0.034289373451709
802 => 0.033273835224415
803 => 0.035301698231623
804 => 0.036880680462406
805 => 0.036820076494456
806 => 0.036544744420002
807 => 0.03474711512967
808 => 0.033092909855564
809 => 0.03447672280862
810 => 0.034480250432421
811 => 0.034361379672511
812 => 0.033623083591831
813 => 0.034335688569253
814 => 0.034392252564559
815 => 0.034360591768768
816 => 0.033794541894737
817 => 0.032930288360596
818 => 0.033099161432437
819 => 0.033375778969029
820 => 0.032852084263797
821 => 0.032684732073694
822 => 0.032995871635152
823 => 0.033998428130672
824 => 0.033808900632608
825 => 0.033803951303693
826 => 0.034614830312577
827 => 0.034034415940859
828 => 0.033101291462679
829 => 0.032865665225539
830 => 0.032029350820544
831 => 0.032606996158924
901 => 0.03262778458629
902 => 0.032311414137852
903 => 0.033126963180953
904 => 0.033119447752946
905 => 0.033893690190915
906 => 0.035373750940131
907 => 0.034936024147222
908 => 0.034426995511608
909 => 0.034482341038132
910 => 0.035089344859705
911 => 0.034722336492633
912 => 0.034854315260305
913 => 0.035089145094033
914 => 0.035230823763218
915 => 0.034461955657947
916 => 0.034282695723396
917 => 0.033915992808991
918 => 0.033820326863457
919 => 0.034118998735732
920 => 0.034040309249621
921 => 0.032626037399467
922 => 0.032478238122191
923 => 0.032482770915017
924 => 0.032111122604835
925 => 0.031544269725994
926 => 0.033033925246562
927 => 0.032914285060545
928 => 0.032782211554597
929 => 0.032798389805474
930 => 0.033444998777843
1001 => 0.033069932919334
1002 => 0.034067106976267
1003 => 0.033862117967957
1004 => 0.033651871765079
1005 => 0.033622809335585
1006 => 0.03354188248484
1007 => 0.03326435420208
1008 => 0.032929222123784
1009 => 0.032707938897049
1010 => 0.030171344697419
1011 => 0.030642121826181
1012 => 0.031183708000136
1013 => 0.031370661377114
1014 => 0.031050864689012
1015 => 0.033276981724511
1016 => 0.033683714758294
1017 => 0.032451693868425
1018 => 0.032221233063013
1019 => 0.033292090696546
1020 => 0.032646232636504
1021 => 0.032937062481394
1022 => 0.032308447432161
1023 => 0.033585744680989
1024 => 0.033576013816011
1025 => 0.03307911633715
1026 => 0.033499090683676
1027 => 0.033426109805906
1028 => 0.032865113776077
1029 => 0.033603529255765
1030 => 0.03360389550063
1031 => 0.033125642480709
1101 => 0.03256714765649
1102 => 0.032467301972979
1103 => 0.032392081662833
1104 => 0.032918562896187
1105 => 0.033390604323749
1106 => 0.034268956391446
1107 => 0.034489794970395
1108 => 0.035351742646092
1109 => 0.034838494772685
1110 => 0.035066010907294
1111 => 0.035313011855534
1112 => 0.035431433193279
1113 => 0.035238471978262
1114 => 0.036577431510437
1115 => 0.036690480719612
1116 => 0.036728385141577
1117 => 0.036276895520899
1118 => 0.036677923976522
1119 => 0.036490296042803
1120 => 0.036978451801801
1121 => 0.037055000857897
1122 => 0.036990166530695
1123 => 0.037014464409345
1124 => 0.035871898657281
1125 => 0.035812650595522
1126 => 0.035004799069388
1127 => 0.035334004537625
1128 => 0.034718570693985
1129 => 0.034913731105474
1130 => 0.034999755955302
1201 => 0.034954821455619
1202 => 0.035352617320863
1203 => 0.035014409571079
1204 => 0.034121823712898
1205 => 0.033228994670298
1206 => 0.03321778592895
1207 => 0.032982719801775
1208 => 0.032812810046336
1209 => 0.032845540693106
1210 => 0.032960887761449
1211 => 0.032806105865035
1212 => 0.032839136430276
1213 => 0.033387663894787
1214 => 0.033497667165875
1215 => 0.033123833069663
1216 => 0.031622835229369
1217 => 0.031254486594393
1218 => 0.031519248288543
1219 => 0.031392709251576
1220 => 0.025336366466522
1221 => 0.026759214368868
1222 => 0.025913806460644
1223 => 0.026303409320101
1224 => 0.02544046676312
1225 => 0.025852308182006
1226 => 0.025776256109978
1227 => 0.028064153431821
1228 => 0.02802843106204
1229 => 0.028045529470068
1230 => 0.027229377905213
1231 => 0.028529529508957
]
'min_raw' => 0.016598508462305
'max_raw' => 0.037055000857897
'avg_raw' => 0.026826754660101
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016598'
'max' => '$0.037055'
'avg' => '$0.026826'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025594563267569
'max_diff' => 0.0056057910131677
'year' => 2035
]
10 => [
'items' => [
101 => 0.0291700309409
102 => 0.029051491172241
103 => 0.029081325078174
104 => 0.028568679729795
105 => 0.028050492997628
106 => 0.027475744163288
107 => 0.028543556456388
108 => 0.028424833957559
109 => 0.028697140654867
110 => 0.029389693255742
111 => 0.029491674256972
112 => 0.029628737756815
113 => 0.029579610248965
114 => 0.030750026797638
115 => 0.030608281630936
116 => 0.030949846699819
117 => 0.030247221438524
118 => 0.029452134261566
119 => 0.029603254340547
120 => 0.029588700261711
121 => 0.029403410133724
122 => 0.029236138491058
123 => 0.028957678334514
124 => 0.02983876747417
125 => 0.029802996864158
126 => 0.030382081461472
127 => 0.030279722633969
128 => 0.02959614533245
129 => 0.029620559429504
130 => 0.029784755965206
131 => 0.030353042050035
201 => 0.03052174805188
202 => 0.030443596710054
203 => 0.030628575139354
204 => 0.030774774547696
205 => 0.030646935534116
206 => 0.032456866377778
207 => 0.031705256903551
208 => 0.032071586131624
209 => 0.032158953493982
210 => 0.03193516383244
211 => 0.031983695796721
212 => 0.032057208498439
213 => 0.032503563228009
214 => 0.03367492719218
215 => 0.034193716318168
216 => 0.035754519000305
217 => 0.034150638103148
218 => 0.034055470448229
219 => 0.034336618143008
220 => 0.035252974545165
221 => 0.035995595340134
222 => 0.036241965500647
223 => 0.036274527384486
224 => 0.036736734183987
225 => 0.037001662501814
226 => 0.036680610121282
227 => 0.036408551844366
228 => 0.035434072865571
229 => 0.035546871460785
301 => 0.036323941924822
302 => 0.037421599724497
303 => 0.038363504308448
304 => 0.038033682151837
305 => 0.040549992388619
306 => 0.040799474270391
307 => 0.040765003941045
308 => 0.041333360795602
309 => 0.040205288183167
310 => 0.039723015285973
311 => 0.036467373931828
312 => 0.037382076356458
313 => 0.038711650049247
314 => 0.038535675985361
315 => 0.037570104030051
316 => 0.038362771835535
317 => 0.038100691070027
318 => 0.037893977096531
319 => 0.038840973882594
320 => 0.037799712015834
321 => 0.038701262665602
322 => 0.037545014631927
323 => 0.038035188751666
324 => 0.037756942214248
325 => 0.037937001824571
326 => 0.036884377021846
327 => 0.037452347814374
328 => 0.036860747569562
329 => 0.036860467074018
330 => 0.036847407465824
331 => 0.037543422530288
401 => 0.037566119556552
402 => 0.037051763372293
403 => 0.036977636610388
404 => 0.037251722100561
405 => 0.036930839774672
406 => 0.037080978595346
407 => 0.036935387326601
408 => 0.036902611665385
409 => 0.036641449620499
410 => 0.036528933830762
411 => 0.036573054171093
412 => 0.03642244870395
413 => 0.036331703462359
414 => 0.036829355953247
415 => 0.03656348030261
416 => 0.036788606696593
417 => 0.036532046757433
418 => 0.035642698230459
419 => 0.035131224487907
420 => 0.033451327563106
421 => 0.033927744247074
422 => 0.034243609001433
423 => 0.034139215702002
424 => 0.034363492904025
425 => 0.034377261702725
426 => 0.034304346898112
427 => 0.034219920895335
428 => 0.034178826986234
429 => 0.034485107317065
430 => 0.034662913358034
501 => 0.034275310255259
502 => 0.034184500271422
503 => 0.034576388408482
504 => 0.034815439945702
505 => 0.036580462185081
506 => 0.036449703636641
507 => 0.036777881933156
508 => 0.036740934093275
509 => 0.037084917230925
510 => 0.037647184282862
511 => 0.036503938153933
512 => 0.036702366151438
513 => 0.036653716188822
514 => 0.037184863723965
515 => 0.037186521908593
516 => 0.036868072428488
517 => 0.037040709057906
518 => 0.036944348027403
519 => 0.037118485433496
520 => 0.036447957276507
521 => 0.037264588192678
522 => 0.037727565299613
523 => 0.037733993737192
524 => 0.037953441211466
525 => 0.038176412554869
526 => 0.038604386631819
527 => 0.038164476590146
528 => 0.037373121249555
529 => 0.037430254549084
530 => 0.036966283202441
531 => 0.036974082644601
601 => 0.036932448611096
602 => 0.037057395479709
603 => 0.036475376087795
604 => 0.036611974875754
605 => 0.03642073577269
606 => 0.036701950434977
607 => 0.036399409944806
608 => 0.036653692728337
609 => 0.036763432748101
610 => 0.037168375783565
611 => 0.036339599529219
612 => 0.034649668643387
613 => 0.035004912604021
614 => 0.034479478882433
615 => 0.034528109773833
616 => 0.034626351914011
617 => 0.034307916994868
618 => 0.034368664342403
619 => 0.034366494019676
620 => 0.034347791350923
621 => 0.034264954129914
622 => 0.034144823770606
623 => 0.034623386147914
624 => 0.034704703221218
625 => 0.03488546100212
626 => 0.035423273548911
627 => 0.035369533392993
628 => 0.035457185816952
629 => 0.035265841067597
630 => 0.034536985707966
701 => 0.034576566060623
702 => 0.034082998428759
703 => 0.034872839368082
704 => 0.03468579460826
705 => 0.034565205634804
706 => 0.034532301816147
707 => 0.035071447496216
708 => 0.035232768333766
709 => 0.035132244013644
710 => 0.03492606570031
711 => 0.035321989013058
712 => 0.035427921388885
713 => 0.035451635741197
714 => 0.03615313594062
715 => 0.03549084180965
716 => 0.035650262589612
717 => 0.036894018006208
718 => 0.035766103469871
719 => 0.036363584955264
720 => 0.036334341345698
721 => 0.036639992655954
722 => 0.036309269016964
723 => 0.036313368732838
724 => 0.036584766389732
725 => 0.036203637327449
726 => 0.036109264411798
727 => 0.035978888904737
728 => 0.036263559054712
729 => 0.036434205935098
730 => 0.037809494464687
731 => 0.038697993575578
801 => 0.038659421485925
802 => 0.039011898181431
803 => 0.038853104201789
804 => 0.038340316553789
805 => 0.039215582541133
806 => 0.038938611760053
807 => 0.038961444894726
808 => 0.038960595044313
809 => 0.039144756400525
810 => 0.039014261201509
811 => 0.038757041769189
812 => 0.038927796032291
813 => 0.039434875147938
814 => 0.041008864281994
815 => 0.041889689453993
816 => 0.040955837500642
817 => 0.041599996073288
818 => 0.041213730466868
819 => 0.041143534515776
820 => 0.041548113702342
821 => 0.041953401051216
822 => 0.041927585999198
823 => 0.041633368195651
824 => 0.041467172023928
825 => 0.04272566511602
826 => 0.043652901388404
827 => 0.043589670090898
828 => 0.043868752474168
829 => 0.044688146983144
830 => 0.044763062148059
831 => 0.044753624559185
901 => 0.044567939506355
902 => 0.045374739812265
903 => 0.046047786821755
904 => 0.044524958781582
905 => 0.045104831763997
906 => 0.045365155428144
907 => 0.045747387801662
908 => 0.046392277885371
909 => 0.047092799564926
910 => 0.047191861011244
911 => 0.047121572174555
912 => 0.046659559295855
913 => 0.047426078476586
914 => 0.047875087435571
915 => 0.048142461995259
916 => 0.048820479391745
917 => 0.045366763098469
918 => 0.042922051045251
919 => 0.042540273956071
920 => 0.043316632679561
921 => 0.043521352283601
922 => 0.043438830067909
923 => 0.040687084388516
924 => 0.042525786584556
925 => 0.044504075545023
926 => 0.04458006968083
927 => 0.045570442498511
928 => 0.045892948484701
929 => 0.046690328414067
930 => 0.046640452082382
1001 => 0.046834601406097
1002 => 0.046789969838773
1003 => 0.048266948249769
1004 => 0.049896274770515
1005 => 0.049839856374043
1006 => 0.049605621409369
1007 => 0.049953500274906
1008 => 0.051635139853557
1009 => 0.05148032142888
1010 => 0.051630714341052
1011 => 0.053613462177334
1012 => 0.056191316407093
1013 => 0.054993644305037
1014 => 0.057592248145635
1015 => 0.059227931517221
1016 => 0.062056676775561
1017 => 0.061702503937353
1018 => 0.062803713708133
1019 => 0.061068460638858
1020 => 0.057083968839297
1021 => 0.056453407759994
1022 => 0.057715807009107
1023 => 0.060819292379935
1024 => 0.057618067210413
1025 => 0.058265670892923
1026 => 0.058079160988794
1027 => 0.058069222668618
1028 => 0.058448527927629
1029 => 0.057898325866203
1030 => 0.055656703688491
1031 => 0.056684025922574
1101 => 0.056287327471929
1102 => 0.056727493978748
1103 => 0.059102891077575
1104 => 0.05805267139779
1105 => 0.056946350278054
1106 => 0.058333922474512
1107 => 0.060100778702141
1108 => 0.059990212014762
1109 => 0.059775666427957
1110 => 0.060985048667538
1111 => 0.062982593811577
1112 => 0.063522522237224
1113 => 0.063921086362687
1114 => 0.063976041621792
1115 => 0.064542114945078
1116 => 0.061498196016922
1117 => 0.066328973529288
1118 => 0.067163115358138
1119 => 0.06700633126595
1120 => 0.067933444802663
1121 => 0.067660664481562
1122 => 0.067265448594207
1123 => 0.068735120752601
1124 => 0.06705026021943
1125 => 0.064658812810636
1126 => 0.063346817464706
1127 => 0.065074558771873
1128 => 0.066129630098298
1129 => 0.066826965129925
1130 => 0.067037978289154
1201 => 0.061734486778389
1202 => 0.05887619899921
1203 => 0.060708328695328
1204 => 0.062943653371428
1205 => 0.061485778675482
1206 => 0.061542924603441
1207 => 0.059464378409753
1208 => 0.06312755858828
1209 => 0.062593864048463
1210 => 0.065362672265121
1211 => 0.064701873963141
1212 => 0.06695972957931
1213 => 0.066365160526591
1214 => 0.068833183422519
1215 => 0.069817744574757
1216 => 0.071470975984073
1217 => 0.072687099738628
1218 => 0.073401230868043
1219 => 0.073358357113671
1220 => 0.07618810042713
1221 => 0.074519499658884
1222 => 0.072423343834962
1223 => 0.072385430989394
1224 => 0.073471059793361
1225 => 0.075746239938759
1226 => 0.076336161047936
1227 => 0.076665846469448
1228 => 0.07616092176997
1229 => 0.074349775225734
1230 => 0.073567731330654
1231 => 0.074234055387255
]
'min_raw' => 0.027475744163288
'max_raw' => 0.076665846469448
'avg_raw' => 0.052070795316368
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.027475'
'max' => '$0.076665'
'avg' => '$0.05207'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010877235700982
'max_diff' => 0.039610845611551
'year' => 2036
]
11 => [
'items' => [
101 => 0.073419198323911
102 => 0.074825870223754
103 => 0.076757531191142
104 => 0.076358650839991
105 => 0.077692048050403
106 => 0.079071973885701
107 => 0.081045329806525
108 => 0.081561238117386
109 => 0.082414014937004
110 => 0.083291802406984
111 => 0.083573724085305
112 => 0.084112000044381
113 => 0.084109163064376
114 => 0.0857312938972
115 => 0.087520554439016
116 => 0.088195958872075
117 => 0.089749014123875
118 => 0.087089461430714
119 => 0.089106762699216
120 => 0.090926418939731
121 => 0.088756949754168
122 => 0.091747057604976
123 => 0.091863156717093
124 => 0.093616115470842
125 => 0.091839155947655
126 => 0.090784003055043
127 => 0.093830189919952
128 => 0.095304143789895
129 => 0.094860176888834
130 => 0.091481566850409
131 => 0.089515070892644
201 => 0.084368371662432
202 => 0.090464859221479
203 => 0.093434280474511
204 => 0.091473876766723
205 => 0.092462590367057
206 => 0.097856691179021
207 => 0.099910415526053
208 => 0.099483255218487
209 => 0.099555438278809
210 => 0.10066359065873
211 => 0.10557774858198
212 => 0.10263307124508
213 => 0.10488416673419
214 => 0.10607813966468
215 => 0.10718716826336
216 => 0.1044637445371
217 => 0.10092061028427
218 => 0.099798350935746
219 => 0.091278953253317
220 => 0.090835481606078
221 => 0.090586547531917
222 => 0.089017053406752
223 => 0.087783860944994
224 => 0.086803180513904
225 => 0.084229582206757
226 => 0.085098096086648
227 => 0.080996317536768
228 => 0.083620490094875
301 => 0.077073952488359
302 => 0.082526103538481
303 => 0.079558745600789
304 => 0.081551246649113
305 => 0.081544295000661
306 => 0.077875468847663
307 => 0.075759366489062
308 => 0.077107829271898
309 => 0.078553488416208
310 => 0.078788041748591
311 => 0.080662376564752
312 => 0.081185463123251
313 => 0.079600486430424
314 => 0.076938290047534
315 => 0.077556657549045
316 => 0.07574683529138
317 => 0.072575191398632
318 => 0.074853121413994
319 => 0.075630906874751
320 => 0.075974421243681
321 => 0.072855473740925
322 => 0.071875432719915
323 => 0.071353667103669
324 => 0.076535673090994
325 => 0.076819555076697
326 => 0.075367174700973
327 => 0.0819320717196
328 => 0.080446233336782
329 => 0.082106278849631
330 => 0.077500547179704
331 => 0.077676492331935
401 => 0.075496065149268
402 => 0.076716958675365
403 => 0.075854070482354
404 => 0.076618322543561
405 => 0.077076412077919
406 => 0.079256481473941
407 => 0.08255099642909
408 => 0.078930851805083
409 => 0.077353502950977
410 => 0.078332081308718
411 => 0.080938164430929
412 => 0.084886513764019
413 => 0.082549011490894
414 => 0.083586355306344
415 => 0.083812968781806
416 => 0.082089381144641
417 => 0.084950064898701
418 => 0.086483128562655
419 => 0.088055734659045
420 => 0.089421184469119
421 => 0.087427601201798
422 => 0.089561021066767
423 => 0.087841861254904
424 => 0.086299597180188
425 => 0.086301936158171
426 => 0.085334451375218
427 => 0.083459827697321
428 => 0.083114118329229
429 => 0.084912542120322
430 => 0.086354707689411
501 => 0.086473491353189
502 => 0.087271948313379
503 => 0.087744466917659
504 => 0.092375791597495
505 => 0.094238548696052
506 => 0.09651629281598
507 => 0.097403602517317
508 => 0.10007408660021
509 => 0.09791745381716
510 => 0.097450852748692
511 => 0.090973131872288
512 => 0.09203385830291
513 => 0.093732183663214
514 => 0.091001136631947
515 => 0.092733357372912
516 => 0.093075334440631
517 => 0.090908336698873
518 => 0.092065823823191
519 => 0.088991881192017
520 => 0.082617999978334
521 => 0.084957160850562
522 => 0.086679570605558
523 => 0.084221479513588
524 => 0.088627512654683
525 => 0.086053599052641
526 => 0.085237792010435
527 => 0.082055037882581
528 => 0.083557175315487
529 => 0.085588837702029
530 => 0.08433350655325
531 => 0.086938507175887
601 => 0.09062788278583
602 => 0.093257151551592
603 => 0.093458994159667
604 => 0.091768550490609
605 => 0.094477497258543
606 => 0.094497228978322
607 => 0.091441525957721
608 => 0.089569924871828
609 => 0.08914469316723
610 => 0.090207005336901
611 => 0.091496848424526
612 => 0.093530571474179
613 => 0.094759507719721
614 => 0.097963921670674
615 => 0.098830944208054
616 => 0.099783539111826
617 => 0.10105649967265
618 => 0.10258501520632
619 => 0.0992407102371
620 => 0.099373585708092
621 => 0.096259415225811
622 => 0.092931477448273
623 => 0.095456967388124
624 => 0.098758709532633
625 => 0.098001286236581
626 => 0.097916060643022
627 => 0.098059386451781
628 => 0.097488314021691
629 => 0.094905374585324
630 => 0.093608238570438
701 => 0.095281874964332
702 => 0.096171338222701
703 => 0.097550818167083
704 => 0.097380768146649
705 => 0.10093416033805
706 => 0.10231490109462
707 => 0.10196164852386
708 => 0.10202665549838
709 => 0.10452642068539
710 => 0.10730667368926
711 => 0.10991074751408
712 => 0.11255972325626
713 => 0.10936627960778
714 => 0.1077448458673
715 => 0.1094177516039
716 => 0.10853008427221
717 => 0.11363088405935
718 => 0.11398405236956
719 => 0.11908448331083
720 => 0.1239253996221
721 => 0.12088490682102
722 => 0.12375195458564
723 => 0.12685290049691
724 => 0.1328351282701
725 => 0.1308205244134
726 => 0.12927736943204
727 => 0.12781909543112
728 => 0.13085353213255
729 => 0.13475728647264
730 => 0.1355981177678
731 => 0.13696058568823
801 => 0.13552811726455
802 => 0.13725336769966
803 => 0.14334425984905
804 => 0.14169844702449
805 => 0.13936112823601
806 => 0.14416930261245
807 => 0.14590936222798
808 => 0.15812201188608
809 => 0.17354098655882
810 => 0.16715742979786
811 => 0.16319495012024
812 => 0.16412622683575
813 => 0.16975671442101
814 => 0.17156504833065
815 => 0.16664937339417
816 => 0.16838567288434
817 => 0.17795285378437
818 => 0.18308533938533
819 => 0.17611473455445
820 => 0.15688311228425
821 => 0.13915067825226
822 => 0.14385411825946
823 => 0.14332089412738
824 => 0.15359963647434
825 => 0.14165919493293
826 => 0.14186024134552
827 => 0.15235153719885
828 => 0.14955263933153
829 => 0.14501878324222
830 => 0.13918378041918
831 => 0.12839723802836
901 => 0.11884329662782
902 => 0.13758077585557
903 => 0.13677278167938
904 => 0.13560268637422
905 => 0.13820660685832
906 => 0.15085050559337
907 => 0.15055902280322
908 => 0.14870475800811
909 => 0.15011120151246
910 => 0.14477222689585
911 => 0.14614820222074
912 => 0.13914786934411
913 => 0.14231231216408
914 => 0.14500905562331
915 => 0.14555046679872
916 => 0.14677029382206
917 => 0.13634700546406
918 => 0.14102675592513
919 => 0.14377567088769
920 => 0.13135597308047
921 => 0.14353017339442
922 => 0.13616555920347
923 => 0.13366589853427
924 => 0.1370313623201
925 => 0.13571983780974
926 => 0.13459226605104
927 => 0.13396306163554
928 => 0.13643428680717
929 => 0.13631900119916
930 => 0.13227559717424
1001 => 0.12700114145397
1002 => 0.1287714219218
1003 => 0.12812826243137
1004 => 0.12579736946882
1005 => 0.12736810989249
1006 => 0.1204513640002
1007 => 0.10855146219367
1008 => 0.11641290183091
1009 => 0.11611024495648
1010 => 0.115957631636
1011 => 0.12186528624915
1012 => 0.12129740157087
1013 => 0.12026668531907
1014 => 0.12577843955656
1015 => 0.12376657511632
1016 => 0.12996666726627
1017 => 0.13405044895304
1018 => 0.13301466982078
1019 => 0.13685548623582
1020 => 0.12881220560832
1021 => 0.13148386079236
1022 => 0.13203448522304
1023 => 0.12571042536484
1024 => 0.12139031452739
1025 => 0.1211022123874
1026 => 0.11361173554321
1027 => 0.11761308781236
1028 => 0.121134112222
1029 => 0.11944781477232
1030 => 0.11891398337645
1031 => 0.12164121220403
1101 => 0.12185314124107
1102 => 0.11702113673736
1103 => 0.11802586348336
1104 => 0.12221574103612
1105 => 0.11792028931915
1106 => 0.10957492829112
1107 => 0.10750516337253
1108 => 0.10722901857905
1109 => 0.1016156519647
1110 => 0.10764347496136
1111 => 0.10501216868771
1112 => 0.11332443367828
1113 => 0.10857651249524
1114 => 0.10837183910259
1115 => 0.10806244525053
1116 => 0.10323078872031
1117 => 0.10428861443264
1118 => 0.10780498821182
1119 => 0.10905966999102
1120 => 0.10892879640214
1121 => 0.10778775606195
1122 => 0.10831011848662
1123 => 0.10662740711363
1124 => 0.10603320670522
1125 => 0.10415774676857
1126 => 0.10140133877074
1127 => 0.10178463420887
1128 => 0.096323468711768
1129 => 0.093347935902958
1130 => 0.092524347638371
1201 => 0.091423010990843
1202 => 0.092648746543254
1203 => 0.096307997916074
1204 => 0.091894164406968
1205 => 0.084326956450026
1206 => 0.084781758542134
1207 => 0.085803563811145
1208 => 0.08389943645226
1209 => 0.082097339708372
1210 => 0.083664116618453
1211 => 0.080457790850357
1212 => 0.086191032961817
1213 => 0.086035964829927
1214 => 0.088172962947766
1215 => 0.089509271726467
1216 => 0.086429512626667
1217 => 0.085654961541621
1218 => 0.086096181041047
1219 => 0.078803805544115
1220 => 0.087577020291517
1221 => 0.087652891416969
1222 => 0.087003236778159
1223 => 0.091674702788534
1224 => 0.10153295313721
1225 => 0.097823882808838
1226 => 0.096387618670448
1227 => 0.093657279493464
1228 => 0.097295294335296
1229 => 0.097015951557316
1230 => 0.095752657577686
1231 => 0.094988613437089
]
'min_raw' => 0.071353667103669
'max_raw' => 0.18308533938533
'avg_raw' => 0.1272195032445
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.071353'
'max' => '$0.183085'
'avg' => '$0.127219'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.043877922940382
'max_diff' => 0.10641949291589
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022397100763751
]
1 => [
'year' => 2028
'avg' => 0.0038439926835405
]
2 => [
'year' => 2029
'avg' => 0.010501095199158
]
3 => [
'year' => 2030
'avg' => 0.0081015793074506
]
4 => [
'year' => 2031
'avg' => 0.0079567548975869
]
5 => [
'year' => 2032
'avg' => 0.013950695418393
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022397100763751
'min' => '$0.002239'
'max_raw' => 0.013950695418393
'max' => '$0.01395'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.013950695418393
]
1 => [
'year' => 2033
'avg' => 0.035882623149199
]
2 => [
'year' => 2034
'avg' => 0.022744130990139
]
3 => [
'year' => 2035
'avg' => 0.026826754660101
]
4 => [
'year' => 2036
'avg' => 0.052070795316368
]
5 => [
'year' => 2037
'avg' => 0.1272195032445
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.013950695418393
'min' => '$0.01395'
'max_raw' => 0.1272195032445
'max' => '$0.127219'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.1272195032445
]
]
]
]
'prediction_2025_max_price' => '$0.003829'
'last_price' => 0.00371318
'sma_50day_nextmonth' => '$0.003307'
'sma_200day_nextmonth' => '$0.00786'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.003595'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003461'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003287'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003154'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003551'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.005213'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003615'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003511'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.003366'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003346'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003864'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.005601'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009652'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006424'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01310078'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.003519'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003571'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00428'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006967'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015423'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018331'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.90'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 101.59
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003312'
'vwma_10_action' => 'BUY'
'hma_9' => '0.00370052'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 98.21
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 209.15
'cci_20_action' => 'SELL'
'adx_14' => 18.78
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000015'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -1.79
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 70.82
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0013012'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767691109
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sigma para 2026
A previsão de preço para Sigma em 2026 sugere que o preço médio poderia variar entre $0.001282 na extremidade inferior e $0.003829 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sigma poderia potencialmente ganhar 3.13% até 2026 se SIGMA atingir a meta de preço prevista.
Previsão de preço de Sigma 2027-2032
A previsão de preço de SIGMA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002239 na extremidade inferior e $0.01395 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sigma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001235 | $0.002239 | $0.003244 |
| 2028 | $0.002228 | $0.003843 | $0.005459 |
| 2029 | $0.004896 | $0.010501 | $0.016106 |
| 2030 | $0.004163 | $0.0081015 | $0.012039 |
| 2031 | $0.004923 | $0.007956 | $0.01099 |
| 2032 | $0.007514 | $0.01395 | $0.020386 |
Previsão de preço de Sigma 2032-2037
A previsão de preço de Sigma para 2032-2037 é atualmente estimada entre $0.01395 na extremidade inferior e $0.127219 na extremidade superior. Comparado ao preço atual, Sigma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007514 | $0.01395 | $0.020386 |
| 2033 | $0.017462 | $0.035882 | $0.0543026 |
| 2034 | $0.014039 | $0.022744 | $0.031449 |
| 2035 | $0.016598 | $0.026826 | $0.037055 |
| 2036 | $0.027475 | $0.05207 | $0.076665 |
| 2037 | $0.071353 | $0.127219 | $0.183085 |
Sigma Histograma de preços potenciais
Previsão de preço de Sigma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sigma é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de SIGMA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sigma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sigma está projetado para aumentar no próximo mês, alcançando $0.00786 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sigma é esperado para alcançar $0.003307 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 57.90, sugerindo que o mercado de SIGMA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SIGMA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.003595 | BUY |
| SMA 5 | $0.003461 | BUY |
| SMA 10 | $0.003287 | BUY |
| SMA 21 | $0.003154 | BUY |
| SMA 50 | $0.003551 | BUY |
| SMA 100 | $0.005213 | SELL |
| SMA 200 | $0.010335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.003615 | BUY |
| EMA 5 | $0.003511 | BUY |
| EMA 10 | $0.003366 | BUY |
| EMA 21 | $0.003346 | BUY |
| EMA 50 | $0.003864 | SELL |
| EMA 100 | $0.005601 | SELL |
| EMA 200 | $0.009652 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006424 | SELL |
| SMA 50 | $0.01310078 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006967 | SELL |
| EMA 50 | $0.015423 | SELL |
| EMA 100 | $0.018331 | SELL |
| EMA 200 | $0.009165 | SELL |
Osciladores de Sigma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 57.90 | NEUTRAL |
| Stoch RSI (14) | 101.59 | SELL |
| Estocástico Rápido (14) | 98.21 | SELL |
| Índice de Canal de Commodities (20) | 209.15 | SELL |
| Índice Direcional Médio (14) | 18.78 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000015 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -1.79 | SELL |
| Oscilador Ultimate (7, 14, 28) | 70.82 | SELL |
| VWMA (10) | 0.003312 | BUY |
| Média Móvel de Hull (9) | 0.00370052 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0013012 | SELL |
Previsão do preço de Sigma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sigma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sigma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005217 | $0.007331 | $0.0103021 | $0.014476 | $0.020341 | $0.028583 |
| Amazon.com stock | $0.007747 | $0.016166 | $0.033731 | $0.070383 | $0.146858 | $0.306429 |
| Apple stock | $0.005266 | $0.00747 | $0.010596 | $0.01503 | $0.021319 | $0.03024 |
| Netflix stock | $0.005858 | $0.009244 | $0.014586 | $0.023014 | $0.036313 | $0.057296 |
| Google stock | $0.0048085 | $0.006227 | $0.008064 | $0.010442 | $0.013523 | $0.017512 |
| Tesla stock | $0.008417 | $0.019081 | $0.043257 | $0.09806 | $0.222295 | $0.503927 |
| Kodak stock | $0.002784 | $0.002088 | $0.001565 | $0.001174 | $0.00088 | $0.00066 |
| Nokia stock | $0.002459 | $0.001629 | $0.001079 | $0.000715 | $0.000473 | $0.000313 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sigma
Você pode fazer perguntas como: 'Devo investir em Sigma agora?', 'Devo comprar SIGMA hoje?', 'Sigma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sigma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sigma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sigma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sigma é de $0.003713 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Sigma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sigma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0038096 | $0.0039087 | $0.00401 | $0.004114 |
| Se Sigma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0039062 | $0.0041092 | $0.004322 | $0.004547 |
| Se Sigma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.004195 | $0.004741 | $0.005357 | $0.006053 |
| Se Sigma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.004678 | $0.005894 | $0.007426 | $0.009356 |
| Se Sigma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005643 | $0.008577 | $0.013036 | $0.019813 |
| Se Sigma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.008539 | $0.019636 | $0.045158 | $0.103848 |
| Se Sigma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013364 | $0.0481046 | $0.173144 | $0.6232014 |
Perguntas Frequentes sobre Sigma
SIGMA é um bom investimento?
A decisão de adquirir Sigma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sigma experimentou uma queda de -2.6673% nas últimas 24 horas, e Sigma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sigma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sigma pode subir?
Parece que o valor médio de Sigma pode potencialmente subir para $0.003829 até o final deste ano. Observando as perspectivas de Sigma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.012039. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sigma na próxima semana?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma aumentará 0.86% na próxima semana e atingirá $0.003744 até 13 de janeiro de 2026.
Qual será o preço de Sigma no próximo mês?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma diminuirá -11.62% no próximo mês e atingirá $0.003281 até 5 de fevereiro de 2026.
Até onde o preço de Sigma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sigma em 2026, espera-se que SIGMA fluctue dentro do intervalo de $0.001282 e $0.003829. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sigma não considera flutuações repentinas e extremas de preço.
Onde estará Sigma em 5 anos?
O futuro de Sigma parece seguir uma tendência de alta, com um preço máximo de $0.012039 projetada após um período de cinco anos. Com base na previsão de Sigma para 2030, o valor de Sigma pode potencialmente atingir seu pico mais alto de aproximadamente $0.012039, enquanto seu pico mais baixo está previsto para cerca de $0.004163.
Quanto será Sigma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sigma, espera-se que o valor de SIGMA em 2026 aumente 3.13% para $0.003829 se o melhor cenário ocorrer. O preço ficará entre $0.003829 e $0.001282 durante 2026.
Quanto será Sigma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sigma, o valor de SIGMA pode diminuir -12.62% para $0.003244 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003244 e $0.001235 ao longo do ano.
Quanto será Sigma em 2028?
Nosso novo modelo experimental de previsão de preços de Sigma sugere que o valor de SIGMA em 2028 pode aumentar 47.02%, alcançando $0.005459 no melhor cenário. O preço é esperado para variar entre $0.005459 e $0.002228 durante o ano.
Quanto será Sigma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sigma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.016106 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.016106 e $0.004896.
Quanto será Sigma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sigma, espera-se que o valor de SIGMA em 2030 aumente 224.23%, alcançando $0.012039 no melhor cenário. O preço está previsto para variar entre $0.012039 e $0.004163 ao longo de 2030.
Quanto será Sigma em 2031?
Nossa simulação experimental indica que o preço de Sigma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.01099 sob condições ideais. O preço provavelmente oscilará entre $0.01099 e $0.004923 durante o ano.
Quanto será Sigma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sigma, SIGMA poderia ver um 449.04% aumento em valor, atingindo $0.020386 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.020386 e $0.007514 ao longo do ano.
Quanto será Sigma em 2033?
De acordo com nossa previsão experimental de preços de Sigma, espera-se que o valor de SIGMA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0543026. Ao longo do ano, o preço de SIGMA poderia variar entre $0.0543026 e $0.017462.
Quanto será Sigma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sigma sugerem que SIGMA pode aumentar 746.96% em 2034, atingindo potencialmente $0.031449 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.031449 e $0.014039.
Quanto será Sigma em 2035?
Com base em nossa previsão experimental para o preço de Sigma, SIGMA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.037055 em 2035. A faixa de preço esperada para o ano está entre $0.037055 e $0.016598.
Quanto será Sigma em 2036?
Nossa recente simulação de previsão de preços de Sigma sugere que o valor de SIGMA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.076665 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.076665 e $0.027475.
Quanto será Sigma em 2037?
De acordo com a simulação experimental, o valor de Sigma poderia aumentar 4830.69% em 2037, com um pico de $0.183085 sob condições favoráveis. O preço é esperado para cair entre $0.183085 e $0.071353 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sigma?
Traders de Sigma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sigma
Médias móveis são ferramentas populares para a previsão de preço de Sigma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SIGMA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SIGMA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SIGMA.
Como ler gráficos de Sigma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sigma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SIGMA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sigma?
A ação de preço de Sigma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SIGMA. A capitalização de mercado de Sigma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SIGMA, grandes detentores de Sigma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sigma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


