Previsão de Preço Sigma - Projeção SIGMA
Previsão de Preço Sigma até $0.003852 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00129 | $0.003852 |
| 2027 | $0.001242 | $0.003263 |
| 2028 | $0.002242 | $0.005491 |
| 2029 | $0.004925 | $0.0162023 |
| 2030 | $0.004188 | $0.012111 |
| 2031 | $0.004952 | $0.011056 |
| 2032 | $0.007559 | $0.0205086 |
| 2033 | $0.017566 | $0.054627 |
| 2034 | $0.014123 | $0.031637 |
| 2035 | $0.016697 | $0.037276 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sigma hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.12, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Sigma para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sigma'
'name_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_lang' => 'Sigma'
'name_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'name_with_lang' => 'Sigma'
'name_with_lang_with_ticker' => 'Sigma <small>SIGMA</small>'
'image' => '/uploads/coins/sigma.jpg?1722053593'
'price_for_sd' => 0.003735
'ticker' => 'SIGMA'
'marketcap' => '$3.35M'
'low24h' => '$0.003615'
'high24h' => '$0.004703'
'volume24h' => '$1.45M'
'current_supply' => '899.82M'
'max_supply' => '899.82M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.003735'
'change_24h_pct' => '-1.9296%'
'ath_price' => '$0.1721'
'ath_days' => 422
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 de nov. de 2024'
'ath_pct' => '-97.84%'
'fdv' => '$3.35M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.18418'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.003767'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003301'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00129'
'current_year_max_price_prediction' => '$0.003852'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004188'
'grand_prediction_max_price' => '$0.012111'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0038061736756849
107 => 0.0038203845465488
108 => 0.0038524023642304
109 => 0.0035788136177087
110 => 0.0037016469327534
111 => 0.0037737999974169
112 => 0.003447809826316
113 => 0.0037673562198726
114 => 0.0035740510463118
115 => 0.003508440367059
116 => 0.0035967765031232
117 => 0.0035623518249893
118 => 0.0035327555082146
119 => 0.0035162402549251
120 => 0.0035811045639471
121 => 0.0035780785664016
122 => 0.0034719479672218
123 => 0.0033335049270284
124 => 0.0033799709555551
125 => 0.00336308941177
126 => 0.0033019085193302
127 => 0.0033431370538255
128 => 0.0031615874531921
129 => 0.0028492408014293
130 => 0.0030555865670205
131 => 0.0030476424795062
201 => 0.0030436367103459
202 => 0.0031986998502095
203 => 0.003183794107227
204 => 0.0031567400377561
205 => 0.0033014116501283
206 => 0.0032486045655047
207 => 0.0034113435574009
208 => 0.0035185339827617
209 => 0.0034913470236432
210 => 0.0035921601367914
211 => 0.0033810414390042
212 => 0.0034511666017971
213 => 0.0034656193006595
214 => 0.0032996264248885
215 => 0.0031862328711213
216 => 0.0031786708138662
217 => 0.0029820620182283
218 => 0.0030870888498873
219 => 0.0031795081154417
220 => 0.0031352464592659
221 => 0.0031212345412
222 => 0.0031928183917844
223 => 0.003198381070049
224 => 0.0030715514161093
225 => 0.0030979233173361
226 => 0.003207898529416
227 => 0.0030951522241591
228 => 0.0028761045700493
301 => 0.0028217777232593
302 => 0.0028145295204551
303 => 0.0026671908032442
304 => 0.0028254081029358
305 => 0.0027563420116604
306 => 0.0029745209664606
307 => 0.0028498983175959
308 => 0.0028445260842835
309 => 0.0028364051656965
310 => 0.0027095846453072
311 => 0.0027373502794079
312 => 0.0028296474759842
313 => 0.0028625801555249
314 => 0.0028591450072393
315 => 0.0028291951693684
316 => 0.0028429060517777
317 => 0.0027987385223492
318 => 0.0027831420484403
319 => 0.0027339152866359
320 => 0.0026615655460233
321 => 0.0026716262212023
322 => 0.0025282824537094
323 => 0.0024501811613498
324 => 0.0024285637529831
325 => 0.0023996560510615
326 => 0.0024318289548356
327 => 0.0025278763788263
328 => 0.0024120228078958
329 => 0.0022133999867186
330 => 0.0022253375567082
331 => 0.0022521577321784
401 => 0.0022021785126229
402 => 0.0021548773757515
403 => 0.0021960018765986
404 => 0.0021118427688675
405 => 0.0022623279582729
406 => 0.0022582577556293
407 => 0.0023143493282979
408 => 0.0023494245398026
409 => 0.002268587533019
410 => 0.0022482572444194
411 => 0.0022598383007658
412 => 0.0020684292364813
413 => 0.0022987071241564
414 => 0.0023006985768915
415 => 0.0022836465495275
416 => 0.0024062624156823
417 => 0.0026650201381167
418 => 0.0025676650744316
419 => 0.0025299662512004
420 => 0.0024583007606801
421 => 0.0025537907717226
422 => 0.0025464586287508
423 => 0.0025132998975995
424 => 0.0024932453935376
425 => 0.0025301964321762
426 => 0.0024886667509312
427 => 0.0024812068790203
428 => 0.0024360081716608
429 => 0.0024198742895437
430 => 0.0024079294055324
501 => 0.0023947792619162
502 => 0.0024237852019221
503 => 0.0023580539258195
504 => 0.0022787884505563
505 => 0.0022721983839525
506 => 0.0022903941372502
507 => 0.0022823438709305
508 => 0.0022721598423745
509 => 0.002252715758406
510 => 0.0022469471140497
511 => 0.0022656924096594
512 => 0.0022445300638347
513 => 0.0022757562578717
514 => 0.0022672644609177
515 => 0.002219829973428
516 => 0.0021607090395191
517 => 0.002160182739197
518 => 0.0021474452309641
519 => 0.0021312220991323
520 => 0.0021267091949917
521 => 0.0021925384858429
522 => 0.0023288031477998
523 => 0.0023020511341207
524 => 0.0023213822056605
525 => 0.0024164719449717
526 => 0.0024466981136506
527 => 0.0024252442950684
528 => 0.0023958769849792
529 => 0.0023971689975815
530 => 0.0024975259862456
531 => 0.0025037851285282
601 => 0.0025195999618005
602 => 0.0025399264918267
603 => 0.0024287059910262
604 => 0.0023919305219957
605 => 0.0023745042645436
606 => 0.0023208381364018
607 => 0.0023787124546167
608 => 0.0023449915678182
609 => 0.0023495416675169
610 => 0.002346578409119
611 => 0.0023481965485789
612 => 0.0022622858945955
613 => 0.002293587221576
614 => 0.0022415426944787
615 => 0.0021718609149678
616 => 0.0021716273172093
617 => 0.0021886818340265
618 => 0.0021785371400803
619 => 0.002151238029515
620 => 0.0021551157393227
621 => 0.0021211429210899
622 => 0.0021592406545539
623 => 0.0021603331612294
624 => 0.0021456634586482
625 => 0.0022043582735235
626 => 0.0022284055870684
627 => 0.002218749674574
628 => 0.0022277281025071
629 => 0.0023031628010671
630 => 0.0023154619483791
701 => 0.002320924417179
702 => 0.0023136054326255
703 => 0.0022291069103193
704 => 0.0022328547790991
705 => 0.0022053554047433
706 => 0.0021821213312254
707 => 0.0021830505723195
708 => 0.0021949959063258
709 => 0.0022471618805161
710 => 0.0023569420978475
711 => 0.0023611081768469
712 => 0.0023661575861273
713 => 0.0023456191009541
714 => 0.002339424497299
715 => 0.0023475967784829
716 => 0.002388824456143
717 => 0.0024948732362899
718 => 0.0024573885146261
719 => 0.002426912852429
720 => 0.0024536482243554
721 => 0.0024495325234061
722 => 0.002414791865499
723 => 0.0024138168109389
724 => 0.0023471383811549
725 => 0.0023224888838582
726 => 0.0023018899189341
727 => 0.0022793963869866
728 => 0.0022660614672581
729 => 0.0022865499645737
730 => 0.0022912359263226
731 => 0.0022464374688644
801 => 0.0022403316046489
802 => 0.002276914992051
803 => 0.0022608160072215
804 => 0.0022773742123543
805 => 0.0022812158579788
806 => 0.0022805972645526
807 => 0.0022637880754339
808 => 0.002274501751321
809 => 0.0022491607139477
810 => 0.0022216061419049
811 => 0.0022040280416522
812 => 0.002188688817785
813 => 0.0021971999107075
814 => 0.0021668594185031
815 => 0.0021571528844135
816 => 0.0022708721989958
817 => 0.0023548778793663
818 => 0.0023536564035038
819 => 0.002346220983329
820 => 0.0023351734571692
821 => 0.0023880162607936
822 => 0.002369606884636
823 => 0.0023830012439455
824 => 0.0023864106705493
825 => 0.0023967299780252
826 => 0.0024004182434734
827 => 0.0023892697436239
828 => 0.0023518540164543
829 => 0.0022586175817283
830 => 0.0022152157696763
831 => 0.0022008924487849
901 => 0.0022014130742954
902 => 0.0021870518985399
903 => 0.0021912819084226
904 => 0.0021855808737282
905 => 0.0021747844932454
906 => 0.002196533264636
907 => 0.002199039607935
908 => 0.002193963184814
909 => 0.0021951588662282
910 => 0.0021531282509546
911 => 0.0021563237473482
912 => 0.0021385308173648
913 => 0.0021351948574899
914 => 0.0020902158798997
915 => 0.0020105291012916
916 => 0.0020546833120232
917 => 0.0020013512344809
918 => 0.0019811535686028
919 => 0.0020767661774883
920 => 0.0020671693234372
921 => 0.0020507436809538
922 => 0.0020264467323171
923 => 0.0020174347577222
924 => 0.001962680852928
925 => 0.0019594457001321
926 => 0.0019865832138278
927 => 0.0019740601850021
928 => 0.0019564731096888
929 => 0.0018927745056774
930 => 0.0018211561848856
1001 => 0.0018233178918136
1002 => 0.0018460983471512
1003 => 0.0019123355934084
1004 => 0.0018864555553797
1005 => 0.0018676792908507
1006 => 0.0018641630609169
1007 => 0.0019081760402649
1008 => 0.0019704636270467
1009 => 0.0019996875691585
1010 => 0.00197072753007
1011 => 0.0019374597964844
1012 => 0.00193948464928
1013 => 0.0019529550877785
1014 => 0.001954370640403
1015 => 0.001932716765817
1016 => 0.0019388122046747
1017 => 0.0019295526756713
1018 => 0.0018727269632693
1019 => 0.0018716991663282
1020 => 0.0018577532200664
1021 => 0.001857330942356
1022 => 0.0018336054087853
1023 => 0.0018302860426319
1024 => 0.0017831775556902
1025 => 0.0018141845044528
1026 => 0.0017933866711607
1027 => 0.0017620394306766
1028 => 0.0017566351546017
1029 => 0.001756472695537
1030 => 0.0017886593023995
1031 => 0.0018138083852117
1101 => 0.0017937484583752
1102 => 0.0017891812018799
1103 => 0.0018379475523326
1104 => 0.0018317415897223
1105 => 0.001826367266126
1106 => 0.0019648864568266
1107 => 0.0018552377085998
1108 => 0.0018074245958412
1109 => 0.0017482467893386
1110 => 0.0017675153815362
1111 => 0.0017715755570268
1112 => 0.0016292635999893
1113 => 0.001571527656743
1114 => 0.001551714856754
1115 => 0.0015403123102485
1116 => 0.0015455085938752
1117 => 0.0014935394732029
1118 => 0.0015284635817846
1119 => 0.0014834627161228
1120 => 0.0014759181745491
1121 => 0.00155638529689
1122 => 0.0015675818268816
1123 => 0.0015198139514481
1124 => 0.001550488660393
1125 => 0.0015393655845192
1126 => 0.0014842341268042
1127 => 0.0014821285106391
1128 => 0.0014544654831221
1129 => 0.0014111782016757
1130 => 0.0013913947525019
1201 => 0.0013810913604044
1202 => 0.001385342740793
1203 => 0.0013831931127741
1204 => 0.0013691653358868
1205 => 0.001383997168525
1206 => 0.0013461079650709
1207 => 0.0013310201789614
1208 => 0.0013242053760097
1209 => 0.001290576527123
1210 => 0.0013440949805187
1211 => 0.0013546387900454
1212 => 0.001365203374134
1213 => 0.0014571608658772
1214 => 0.0014525669294589
1215 => 0.0014940938773427
1216 => 0.0014924802165111
1217 => 0.0014806360582827
1218 => 0.0014306675029864
1219 => 0.0014505840785237
1220 => 0.0013892839547431
1221 => 0.0014352141754828
1222 => 0.0014142535408291
1223 => 0.0014281273638218
1224 => 0.0014031809791287
1225 => 0.0014169873384288
1226 => 0.0013571391184337
1227 => 0.0013012536926895
1228 => 0.0013237436194062
1229 => 0.0013481927417824
1230 => 0.0014012046686146
1231 => 0.0013696312023323
]
'min_raw' => 0.001290576527123
'max_raw' => 0.0038524023642304
'avg_raw' => 0.0025714894456767
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00129'
'max' => '$0.003852'
'avg' => '$0.002571'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.002444813472877
'max_diff' => 0.00011701236423039
'year' => 2026
]
1 => [
'items' => [
101 => 0.0013809862147323
102 => 0.0013429488239982
103 => 0.0012644668220702
104 => 0.001264911021678
105 => 0.0012528382755048
106 => 0.0012424056601613
107 => 0.0013732577947448
108 => 0.0013569842633432
109 => 0.0013310545208819
110 => 0.0013657625115734
111 => 0.0013749398552021
112 => 0.0013752011212734
113 => 0.001400523175339
114 => 0.001414037560133
115 => 0.0014164195290277
116 => 0.0014562643282191
117 => 0.0014696197793424
118 => 0.0015246289923853
119 => 0.001412890959003
120 => 0.0014105897877367
121 => 0.0013662509241796
122 => 0.001338130515942
123 => 0.0013681763525897
124 => 0.0013947928621939
125 => 0.0013670779733263
126 => 0.0013706969527191
127 => 0.001333491978804
128 => 0.0013467910063219
129 => 0.0013582459203928
130 => 0.0013519211901316
131 => 0.0013424527628101
201 => 0.001392610611937
202 => 0.0013897805095191
203 => 0.00143648865175
204 => 0.0014729009887503
205 => 0.0015381584061386
206 => 0.0014700588891478
207 => 0.0014675770720776
208 => 0.0014918372320349
209 => 0.0014696160652383
210 => 0.0014836590756051
211 => 0.0015358958600644
212 => 0.0015369995410064
213 => 0.0015185114632157
214 => 0.0015173864620019
215 => 0.0015209372995791
216 => 0.0015417346661766
217 => 0.0015344674272489
218 => 0.00154287726012
219 => 0.0015533938849013
220 => 0.0015968951039532
221 => 0.0016073831005939
222 => 0.0015819027061597
223 => 0.0015842033004853
224 => 0.0015746729335144
225 => 0.0015654667184357
226 => 0.0015861609454729
227 => 0.0016239800521293
228 => 0.0016237447814296
301 => 0.0016325180790755
302 => 0.001637983770827
303 => 0.0016145210206988
304 => 0.0015992476331145
305 => 0.0016051044217852
306 => 0.0016144695544139
307 => 0.0016020674354938
308 => 0.0015255158122986
309 => 0.0015487366846394
310 => 0.0015448715960392
311 => 0.0015393672398618
312 => 0.0015627160065622
313 => 0.0015604639610542
314 => 0.0014930064547554
315 => 0.0014973248654433
316 => 0.0014932690716124
317 => 0.0015063741712175
318 => 0.0014689083468524
319 => 0.0014804325820909
320 => 0.0014876604743995
321 => 0.0014919177584966
322 => 0.0015072979879022
323 => 0.0015054932954994
324 => 0.0015071858056886
325 => 0.0015299906256671
326 => 0.0016453295794493
327 => 0.0016516072242226
328 => 0.0016206938054181
329 => 0.0016330431064903
330 => 0.001609335148927
331 => 0.0016252504596687
401 => 0.0016361393110732
402 => 0.0015869346853822
403 => 0.0015840211067842
404 => 0.0015602152980466
405 => 0.0015730071912323
406 => 0.0015526543694043
407 => 0.0015576482399694
408 => 0.0015436849425115
409 => 0.0015688160978709
410 => 0.0015969166345493
411 => 0.0016040159398381
412 => 0.0015853407240664
413 => 0.0015718186370909
414 => 0.0015480783068144
415 => 0.001587559005152
416 => 0.0015991043644984
417 => 0.0015874983622944
418 => 0.0015848089979876
419 => 0.0015797126574857
420 => 0.001585890210717
421 => 0.0015990414859919
422 => 0.0015928395874382
423 => 0.0015969360506963
424 => 0.0015813245570109
425 => 0.0016145287878453
426 => 0.0016672650974438
427 => 0.0016674346533024
428 => 0.0016612327213181
429 => 0.0016586950243726
430 => 0.0016650585829532
501 => 0.0016685105524363
502 => 0.0016890891340088
503 => 0.001711170771923
504 => 0.001814216141095
505 => 0.0017852814137742
506 => 0.0018767093955001
507 => 0.0019490170586076
508 => 0.0019706989651427
509 => 0.001950752631343
510 => 0.0018825173008939
511 => 0.0018791693500482
512 => 0.0019811417419526
513 => 0.0019523298706082
514 => 0.0019489027901904
515 => 0.0019124444446887
516 => 0.0019339958423341
517 => 0.0019292822355291
518 => 0.0019218415765899
519 => 0.001962960142014
520 => 0.0020399304258083
521 => 0.0020279338852562
522 => 0.0020189790242375
523 => 0.0019797414299748
524 => 0.0020033712257549
525 => 0.0019949571080765
526 => 0.0020311094973539
527 => 0.0020096936228195
528 => 0.0019521115923455
529 => 0.0019612817204913
530 => 0.0019598956740698
531 => 0.0019884204112081
601 => 0.0019798579931467
602 => 0.0019582237245214
603 => 0.002039667349746
604 => 0.0020343788537371
605 => 0.0020418767319592
606 => 0.0020451775298321
607 => 0.0020947508293087
608 => 0.0021150594239355
609 => 0.0021196698304678
610 => 0.0021389614246403
611 => 0.0021191898380306
612 => 0.0021982902813718
613 => 0.0022508874605549
614 => 0.0023119817908021
615 => 0.0024012570279012
616 => 0.0024348253428926
617 => 0.0024287615272478
618 => 0.0024964489931321
619 => 0.0026180818647184
620 => 0.0024533470082123
621 => 0.0026268132121207
622 => 0.0025718958147269
623 => 0.002441687653428
624 => 0.0024333037828938
625 => 0.0025214822614732
626 => 0.0027170536400984
627 => 0.002668065227905
628 => 0.0027171337675911
629 => 0.0026598927096183
630 => 0.0026570502086245
701 => 0.0027143536971698
702 => 0.0028482464216066
703 => 0.0027846390071204
704 => 0.0026934421812766
705 => 0.0027607804982999
706 => 0.0027024458162272
707 => 0.0025710014506681
708 => 0.0026680277673895
709 => 0.0026031490325483
710 => 0.0026220840965182
711 => 0.0027584495471709
712 => 0.0027420416953701
713 => 0.0027632749749264
714 => 0.0027257987922812
715 => 0.0026907901282389
716 => 0.0026254438570265
717 => 0.0026060980476527
718 => 0.0026114445333743
719 => 0.0026060953981999
720 => 0.0025695347600198
721 => 0.0025616394936858
722 => 0.0025484803705629
723 => 0.0025525589330631
724 => 0.0025278159317547
725 => 0.0025745110873886
726 => 0.0025831781197505
727 => 0.002617158959968
728 => 0.0026206869635264
729 => 0.0027153231198451
730 => 0.0026631991152408
731 => 0.0026981683976994
801 => 0.0026950404159327
802 => 0.0024445096591091
803 => 0.0024790305869478
804 => 0.0025327343174009
805 => 0.0025085408596254
806 => 0.0024743369707282
807 => 0.0024467154965472
808 => 0.0024048661387223
809 => 0.0024637683062152
810 => 0.0025412183929212
811 => 0.0026226512255374
812 => 0.0027204874382353
813 => 0.0026986515345002
814 => 0.0026208222455945
815 => 0.0026243136106405
816 => 0.0026458958555532
817 => 0.0026179448874375
818 => 0.0026097016012724
819 => 0.0026447633546184
820 => 0.0026450048056441
821 => 0.0026128438388396
822 => 0.0025771028096312
823 => 0.0025769530534138
824 => 0.0025705932824836
825 => 0.0026610240987385
826 => 0.0027107519040919
827 => 0.0027164531168354
828 => 0.0027103681670494
829 => 0.002712710022719
830 => 0.0026837745084613
831 => 0.0027499125134943
901 => 0.0028106072872833
902 => 0.0027943397913531
903 => 0.002769952502393
904 => 0.0027505268520852
905 => 0.0027897637254967
906 => 0.0027880165692882
907 => 0.0028100771713832
908 => 0.002809076375044
909 => 0.0028016582243006
910 => 0.0027943400562787
911 => 0.0028233557652777
912 => 0.002814999707064
913 => 0.0028066306695839
914 => 0.002789845283682
915 => 0.0027921266964018
916 => 0.0027677436182509
917 => 0.0027564628906046
918 => 0.002586827813054
919 => 0.0025414957773464
920 => 0.0025557581585986
921 => 0.0025604537048295
922 => 0.0025407251447949
923 => 0.0025690108320332
924 => 0.0025646025376391
925 => 0.0025817526323606
926 => 0.0025710379977492
927 => 0.002571477730091
928 => 0.0026029871858825
929 => 0.0026121345149495
930 => 0.002607482109558
1001 => 0.0026107404948191
1002 => 0.0026858286078824
1003 => 0.0026751534793875
1004 => 0.0026694825301378
1005 => 0.0026710534218359
1006 => 0.0026902400446309
1007 => 0.0026956112514627
1008 => 0.0026728530706882
1009 => 0.0026835859603049
1010 => 0.0027292852420864
1011 => 0.0027452774043545
1012 => 0.0027963167096411
1013 => 0.0027746343056041
1014 => 0.0028144332966066
1015 => 0.0029367618264724
1016 => 0.0030344863206196
1017 => 0.0029446148371663
1018 => 0.0031240734255283
1019 => 0.0032638076783737
1020 => 0.0032584444450099
1021 => 0.0032340785459148
1022 => 0.0030749948140777
1023 => 0.0029286035922363
1024 => 0.0030510660654062
1025 => 0.003051378247435
1026 => 0.0030408586123831
1027 => 0.0029755220625466
1028 => 0.0030385850420739
1029 => 0.0030435907523777
1030 => 0.0030407888857334
1031 => 0.0029906955061634
1101 => 0.0029142121743641
1102 => 0.0029291568343224
1103 => 0.002953636492197
1104 => 0.0029072913928488
1105 => 0.0028924813254585
1106 => 0.0029200160584677
1107 => 0.0030087387053131
1108 => 0.0029919662028622
1109 => 0.0029915282050403
1110 => 0.0030632880831728
1111 => 0.0030119234971808
1112 => 0.0029293453343439
1113 => 0.0029084932591555
1114 => 0.0028344824398774
1115 => 0.0028856019763703
1116 => 0.0028874416774823
1117 => 0.0028594440297741
1118 => 0.0029316171891516
1119 => 0.0029309521007821
1120 => 0.0029994697740539
1121 => 0.0031304498312868
1122 => 0.0030917125832258
1123 => 0.0030466653783316
1124 => 0.0030515632585271
1125 => 0.0031052809152735
1126 => 0.0030728019937498
1127 => 0.0030844816403808
1128 => 0.0031052632367294
1129 => 0.0031178012897846
1130 => 0.0030497592256422
1201 => 0.0030338953656624
1202 => 0.0030014434756021
1203 => 0.0029929773832285
1204 => 0.0030194087705518
1205 => 0.0030124450338268
1206 => 0.0028872870577275
1207 => 0.0028742073528527
1208 => 0.0028746084887277
1209 => 0.002841718948914
1210 => 0.0027915545063041
1211 => 0.0029233836663197
1212 => 0.0029127959398225
1213 => 0.0029011079091946
1214 => 0.0029025396262555
1215 => 0.0029597621965135
1216 => 0.0029265702159548
1217 => 0.0030148165363288
1218 => 0.0029966757457871
1219 => 0.0029780697124195
1220 => 0.0029754977918545
1221 => 0.0029683360564001
1222 => 0.0029437758007627
1223 => 0.002914117816238
1224 => 0.0028945350459242
1225 => 0.0026700555753215
1226 => 0.0027117176593283
1227 => 0.0027596460893598
1228 => 0.0027761907913455
1229 => 0.0027478899337404
1230 => 0.0029448932911167
1231 => 0.002980887702881
]
'min_raw' => 0.0012424056601613
'max_raw' => 0.0032638076783737
'avg_raw' => 0.0022531066692675
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001242'
'max' => '$0.003263'
'avg' => '$0.002253'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.817086696176E-5
'max_diff' => -0.00058859468585666
'year' => 2027
]
2 => [
'items' => [
101 => 0.0028718582817897
102 => 0.0028514633287455
103 => 0.0029462303808429
104 => 0.0028890742636272
105 => 0.0029148116597097
106 => 0.0028591814869823
107 => 0.0029722177031264
108 => 0.0029713565565468
109 => 0.002927382915428
110 => 0.0029645491357831
111 => 0.0029580905903807
112 => 0.0029084444578599
113 => 0.0029737915740795
114 => 0.0029738239854339
115 => 0.0029315003119264
116 => 0.0028820755271132
117 => 0.0028732395429499
118 => 0.0028665828158304
119 => 0.0029131745129031
120 => 0.0029549484828101
121 => 0.0030326794841615
122 => 0.0030522229047443
123 => 0.0031285021763582
124 => 0.0030830815840824
125 => 0.0031032159443431
126 => 0.0031250746405853
127 => 0.0031355545033907
128 => 0.0031184781293297
129 => 0.0032369712359468
130 => 0.0032469756846802
131 => 0.0032503300898024
201 => 0.0032103748809451
202 => 0.0032458644580435
203 => 0.0032292600602104
204 => 0.0032724600905375
205 => 0.0032792344068984
206 => 0.003273496801944
207 => 0.0032756470768823
208 => 0.003174534114001
209 => 0.0031692908734622
210 => 0.0030977989166728
211 => 0.0031269324175064
212 => 0.003072468734103
213 => 0.0030897397291483
214 => 0.0030973526192002
215 => 0.0030933760774648
216 => 0.0031285795819319
217 => 0.0030986494115341
218 => 0.0030196587708785
219 => 0.0029406466092757
220 => 0.0029396546759487
221 => 0.0029188521684792
222 => 0.002903815765748
223 => 0.0029067123103591
224 => 0.0029169201113708
225 => 0.0029032224697965
226 => 0.0029061455561144
227 => 0.0029546882654143
228 => 0.0029644231595736
229 => 0.0029313401855516
301 => 0.0027985072710025
302 => 0.002765909740586
303 => 0.0027893401990122
304 => 0.0027781419489993
305 => 0.0022421773779315
306 => 0.002368094303829
307 => 0.0022932787421955
308 => 0.0023277571950947
309 => 0.0022513898800626
310 => 0.0022878363655498
311 => 0.0022811060304929
312 => 0.0024835767211834
313 => 0.0024804154198376
314 => 0.0024819285674995
315 => 0.0024097020871121
316 => 0.0025247608315318
317 => 0.0025814429064116
318 => 0.0025709525628959
319 => 0.0025735927563532
320 => 0.0025282254853771
321 => 0.0024823678218505
322 => 0.0024315046155556
323 => 0.0025260021659692
324 => 0.0025154956514902
325 => 0.0025395938155804
326 => 0.0026008822318481
327 => 0.0026099071839555
328 => 0.00262203681111
329 => 0.0026176892032208
330 => 0.0027212668615112
331 => 0.0027087229236648
401 => 0.0027389502047373
402 => 0.0026767703942218
403 => 0.0026064080364618
404 => 0.0026197816203532
405 => 0.0026184936366808
406 => 0.0026020961262535
407 => 0.0025872931870219
408 => 0.0025626504639035
409 => 0.0026406236862868
410 => 0.0026374581158539
411 => 0.00268870502159
412 => 0.0026796466332153
413 => 0.002619152498685
414 => 0.0026213130585344
415 => 0.0026358438618512
416 => 0.0026861351380403
417 => 0.0027010650129044
418 => 0.0026941489000147
419 => 0.0027105188262286
420 => 0.0027234569484523
421 => 0.002712143655181
422 => 0.0028723160302783
423 => 0.0028058012929589
424 => 0.0028382201131218
425 => 0.0028459518107079
426 => 0.0028261472299212
427 => 0.002830442134345
428 => 0.0028369477442556
429 => 0.0028764485337036
430 => 0.0029801100348609
501 => 0.0030260210080757
502 => 0.0031641464362001
503 => 0.0030222087408618
504 => 0.003013786745417
505 => 0.0030386673060105
506 => 0.003119761554381
507 => 0.0031854808258898
508 => 0.003207283699685
509 => 0.0032101653093833
510 => 0.0032510689500507
511 => 0.0032745141540736
512 => 0.0032461021722011
513 => 0.0032220259924228
514 => 0.003135788104902
515 => 0.0031457703752005
516 => 0.003214538318616
517 => 0.003311677089102
518 => 0.0033950322597455
519 => 0.0033658441842072
520 => 0.0035885285969948
521 => 0.0036106068469385
522 => 0.0036075563466715
523 => 0.0036578538857273
524 => 0.0035580235136173
525 => 0.003515344095418
526 => 0.0032272315357671
527 => 0.0033081794130704
528 => 0.0034258419066329
529 => 0.0034102688343982
530 => 0.0033248191864456
531 => 0.0033949674385251
601 => 0.003371774232649
602 => 0.0033534807888875
603 => 0.0034372866011174
604 => 0.0033451386680176
605 => 0.0034249226605107
606 => 0.0033225988648785
607 => 0.0033659775128776
608 => 0.0033413536942842
609 => 0.0033572883226958
610 => 0.0032641348105994
611 => 0.003314398184553
612 => 0.0032620436889923
613 => 0.0032620188661446
614 => 0.0032608631377534
615 => 0.0033224579696051
616 => 0.0033244665748605
617 => 0.0032789479010574
618 => 0.0032723879490271
619 => 0.0032966435298933
620 => 0.0032682465972457
621 => 0.0032815333433033
622 => 0.0032686490392483
623 => 0.0032657485110206
624 => 0.0032426366086177
625 => 0.0032326793655876
626 => 0.0032365838571462
627 => 0.0032232558145531
628 => 0.0032152251867944
629 => 0.0032592656437642
630 => 0.0032357366041922
701 => 0.0032556594809959
702 => 0.0032329548484106
703 => 0.0031542506999325
704 => 0.0031089871118615
705 => 0.0029603222712648
706 => 0.0030024834356398
707 => 0.0030304363312394
708 => 0.0030211978994105
709 => 0.0030410456257775
710 => 0.0030422641149799
711 => 0.0030358114168143
712 => 0.0030283400189805
713 => 0.0030247033557092
714 => 0.0030518080642712
715 => 0.0030675432598939
716 => 0.0030332417782743
717 => 0.0030252054210595
718 => 0.0030598861128137
719 => 0.0030810413147493
720 => 0.0032372394397611
721 => 0.0032256677781469
722 => 0.0032547103779746
723 => 0.003251440626929
724 => 0.0032818818983973
725 => 0.0033316405118069
726 => 0.0032304673380181
727 => 0.0032480275026827
728 => 0.0032437221558304
729 => 0.0032907268038417
730 => 0.003290873547222
731 => 0.003262691912683
801 => 0.0032779696339614
802 => 0.0032694420290661
803 => 0.0032848525636868
804 => 0.0032255132315511
805 => 0.0032977821328073
806 => 0.0033387539429144
807 => 0.0033393228365375
808 => 0.0033587431493558
809 => 0.003378475311928
810 => 0.003416349479676
811 => 0.0033774190219457
812 => 0.0033073869182926
813 => 0.003312443009974
814 => 0.0032713832132259
815 => 0.0032720734358273
816 => 0.0032683889734874
817 => 0.003279446322323
818 => 0.0032279396978119
819 => 0.0032400281996347
820 => 0.0032231042262926
821 => 0.0032479907132699
822 => 0.003221216967166
823 => 0.0032437200796618
824 => 0.003253431677025
825 => 0.0032892676803709
826 => 0.0032159239603344
827 => 0.0030663711502468
828 => 0.0030978089640798
829 => 0.0030513099680338
830 => 0.003055613627152
831 => 0.0030643077034931
901 => 0.0030361273575469
902 => 0.0030415032794887
903 => 0.0030413112137272
904 => 0.0030396560947565
905 => 0.0030323252983993
906 => 0.0030216941933276
907 => 0.003064045243852
908 => 0.0030712415126005
909 => 0.0030872379265993
910 => 0.0031348324041884
911 => 0.0031300765935222
912 => 0.0031378335180355
913 => 0.0031209001953762
914 => 0.0030563991154243
915 => 0.0030599018343897
916 => 0.0030162228727633
917 => 0.0030861209573468
918 => 0.0030695681683078
919 => 0.0030588964775321
920 => 0.0030559846078314
921 => 0.0031036970629247
922 => 0.0031179733772897
923 => 0.0031090773362252
924 => 0.003090831296463
925 => 0.0031258690867638
926 => 0.0031352437213226
927 => 0.0031373423562771
928 => 0.0031994226028602
929 => 0.0031408119524356
930 => 0.0031549201185326
1001 => 0.0032649880030674
1002 => 0.0031651716201241
1003 => 0.0032180465843402
1004 => 0.0032154586299898
1005 => 0.0032425076724915
1006 => 0.0032132398190023
1007 => 0.0032136026291235
1008 => 0.0032376203464042
1009 => 0.0032038917941016
1010 => 0.0031955401302258
1011 => 0.0031840023663971
1012 => 0.0032091946516164
1013 => 0.0032242962872563
1014 => 0.0033460043795847
1015 => 0.0034246333577922
1016 => 0.003421219866479
1017 => 0.0034524127872933
1018 => 0.0034383600907721
1019 => 0.0033929802267909
1020 => 0.0034704381211219
1021 => 0.0034459272023796
1022 => 0.00344794785274
1023 => 0.0034478726440326
1024 => 0.0034641702622145
1025 => 0.0034526219060779
1026 => 0.0034298589107181
1027 => 0.0034449700493424
1028 => 0.0034898447287258
1029 => 0.0036291371104552
1030 => 0.0037070869726495
1031 => 0.0036244444308743
1101 => 0.0036814501495631
1102 => 0.0036472670315643
1103 => 0.0036410549421642
1104 => 0.0036768587461903
1105 => 0.0037127252200357
1106 => 0.0037104406807068
1107 => 0.0036844034624588
1108 => 0.0036696956985405
1109 => 0.0037810678143923
1110 => 0.0038631248921774
1111 => 0.0038575291495901
1112 => 0.0038822269375375
1113 => 0.003954740406825
1114 => 0.0039613701296883
1115 => 0.00396053493699
1116 => 0.0039441024771333
1117 => 0.0040155014047107
1118 => 0.0040750636462404
1119 => 0.0039402988374559
1120 => 0.0039916155124402
1121 => 0.0040146532211606
1122 => 0.0040484794125424
1123 => 0.0041055498673314
1124 => 0.0041675435184227
1125 => 0.0041763101004128
1126 => 0.0041700897909713
1127 => 0.0041292033115978
1128 => 0.00419703750436
1129 => 0.0042367731835725
1130 => 0.0042604348712088
1201 => 0.0043204369741248
1202 => 0.0040147954942067
1203 => 0.0037984472633534
1204 => 0.0037646613629994
1205 => 0.0038333663199343
1206 => 0.0038514832691662
1207 => 0.0038441803496476
1208 => 0.0036006607463016
1209 => 0.0037633792826853
1210 => 0.003938450746071
1211 => 0.0039451759539806
1212 => 0.0040328203891232
1213 => 0.0040613610098724
1214 => 0.0041319262679809
1215 => 0.0041275123918733
1216 => 0.0041446939092842
1217 => 0.0041407441759739
1218 => 0.0042714514573516
1219 => 0.0044156409989304
1220 => 0.0044106481736002
1221 => 0.004389919221025
1222 => 0.0044207052504108
1223 => 0.0045695243096105
1224 => 0.0045558234354162
1225 => 0.0045691326676582
1226 => 0.0047445987255293
1227 => 0.0049727295605173
1228 => 0.004866739883704
1229 => 0.0050967069846809
1230 => 0.0052414590847136
1231 => 0.0054917928740738
]
'min_raw' => 0.0022421773779315
'max_raw' => 0.0054917928740738
'avg_raw' => 0.0038669851260026
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002242'
'max' => '$0.005491'
'avg' => '$0.003866'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00099977171777022
'max_diff' => 0.0022279851957
'year' => 2028
]
3 => [
'items' => [
101 => 0.005460449850726
102 => 0.0055579029578897
103 => 0.0054043392974471
104 => 0.0050517260927346
105 => 0.0049959237033397
106 => 0.0051076415000498
107 => 0.0053822888019984
108 => 0.0050989918791247
109 => 0.0051563024776553
110 => 0.005139797021423
111 => 0.0051389175158041
112 => 0.0051724846680714
113 => 0.0051237937629627
114 => 0.0049254182562232
115 => 0.0050163325819277
116 => 0.0049812261947087
117 => 0.0050201793486827
118 => 0.0052303934551779
119 => 0.005137452787818
120 => 0.005039547344641
121 => 0.005162342497342
122 => 0.0053187029237229
123 => 0.0053089181692467
124 => 0.0052899316558528
125 => 0.0053969576377529
126 => 0.0055737332041814
127 => 0.0056215149294453
128 => 0.0056567864221808
129 => 0.0056616497651122
130 => 0.0057117452198571
131 => 0.0054423693340139
201 => 0.0058698757829105
202 => 0.0059436943370076
203 => 0.0059298195083029
204 => 0.0060118657244223
205 => 0.0059877256463284
206 => 0.0059527504606325
207 => 0.0060828111649123
208 => 0.0059337070628131
209 => 0.0057220725615678
210 => 0.0056059656885289
211 => 0.0057588645850209
212 => 0.0058522346056724
213 => 0.0059139462498744
214 => 0.0059326201561227
215 => 0.0054632802172171
216 => 0.0052103320209333
217 => 0.0053724689146942
218 => 0.0055702871151732
219 => 0.0054412704439221
220 => 0.0054463276531743
221 => 0.005262383784955
222 => 0.0055865620659422
223 => 0.0055393320171709
224 => 0.0057843615937451
225 => 0.0057258833188105
226 => 0.0059256954265134
227 => 0.0058730782021222
228 => 0.0060914893587804
301 => 0.0061786194824173
302 => 0.0063249245207246
303 => 0.0064325471024721
304 => 0.0064957451409662
305 => 0.0064919509677849
306 => 0.0067423730814361
307 => 0.0065947079100982
308 => 0.0064092056528891
309 => 0.0064058505023083
310 => 0.0065019247499042
311 => 0.0067032700161826
312 => 0.0067554759142742
313 => 0.0067846518892477
314 => 0.0067399678679527
315 => 0.0065796879077236
316 => 0.0065104798335345
317 => 0.0065694471178946
318 => 0.0064973351962387
319 => 0.0066218206040483
320 => 0.0067927656576192
321 => 0.0067574661800468
322 => 0.0068754670411779
323 => 0.0069975855183959
324 => 0.0071722204255016
325 => 0.0072178764569309
326 => 0.0072933441407402
327 => 0.0073710251772227
328 => 0.0073959742325782
329 => 0.0074436097204892
330 => 0.0074433586579544
331 => 0.0075869114070121
401 => 0.0077452545346814
402 => 0.0078050253997247
403 => 0.0079424652081071
404 => 0.0077071043527176
405 => 0.0078856282651612
406 => 0.0080466613029287
407 => 0.0078546710766894
408 => 0.0081192848755747
409 => 0.0081295592297577
410 => 0.0082846897796452
411 => 0.0081274352479169
412 => 0.0080340580089509
413 => 0.0083036345990463
414 => 0.0084340742194104
415 => 0.0083947847442039
416 => 0.0080957898979216
417 => 0.0079217620728931
418 => 0.0074662976873331
419 => 0.0080058149266262
420 => 0.0082685980359522
421 => 0.0080951093531522
422 => 0.0081826069535225
423 => 0.0086599654899507
424 => 0.0088417127139462
425 => 0.0088039105618641
426 => 0.0088102985032896
427 => 0.0089083660064121
428 => 0.0093432513220177
429 => 0.0090826579603441
430 => 0.0092818718210966
501 => 0.0093875341345207
502 => 0.0094856791798537
503 => 0.009244665967576
504 => 0.0089311113195899
505 => 0.008831795400444
506 => 0.008077859322736
507 => 0.0080386136757129
508 => 0.008016583904774
509 => 0.0078776893151772
510 => 0.0077685562141841
511 => 0.0076817695204222
512 => 0.0074540153192903
513 => 0.0075308756763776
514 => 0.0071678830157694
515 => 0.0074001128563565
516 => 0.0068207678052616
517 => 0.0073032635791446
518 => 0.0070406630658109
519 => 0.0072169922478963
520 => 0.0072163770519912
521 => 0.0068916991225539
522 => 0.00670443166871
523 => 0.0068237657788577
524 => 0.0069517014176895
525 => 0.0069724585446628
526 => 0.00713833043987
527 => 0.0071846217204179
528 => 0.0070443569792245
529 => 0.006808762166795
530 => 0.0068634854683768
531 => 0.0067033227027501
601 => 0.006422643616561
602 => 0.0066242322364487
603 => 0.0066930634545043
604 => 0.0067234632416256
605 => 0.0064474475965695
606 => 0.0063607174883017
607 => 0.006314543106396
608 => 0.0067731320130743
609 => 0.0067982545485881
610 => 0.0066697241049311
611 => 0.0072506938980174
612 => 0.0071192025409746
613 => 0.007266110602956
614 => 0.0068585199023408
615 => 0.006874090415998
616 => 0.006681130446396
617 => 0.0067891751357833
618 => 0.0067128126317672
619 => 0.0067804461925992
620 => 0.0068209854700983
621 => 0.007013913776868
622 => 0.0073054665105029
623 => 0.0069850967214286
624 => 0.0068455070165491
625 => 0.006932107684374
626 => 0.0071627366748945
627 => 0.0075121514012138
628 => 0.007305290850606
629 => 0.0073970920502458
630 => 0.007417146528416
701 => 0.0072646152167917
702 => 0.0075177754482418
703 => 0.0076534460729459
704 => 0.0077926160608123
705 => 0.0079134534618221
706 => 0.0077370285072448
707 => 0.0079258284981664
708 => 0.0077736890331684
709 => 0.0076372042051765
710 => 0.0076374111963221
711 => 0.0075517922699975
712 => 0.0073858948115648
713 => 0.0073553007749061
714 => 0.0075144548172054
715 => 0.0076420812871854
716 => 0.0076525932145426
717 => 0.0077232537860083
718 => 0.00776506998434
719 => 0.0081749255743554
720 => 0.0083397728831629
721 => 0.0085413450519728
722 => 0.0086198687717092
723 => 0.0088561970158043
724 => 0.008665342765056
725 => 0.0086240502473771
726 => 0.008050795229582
727 => 0.0081446657066316
728 => 0.0082949613975418
729 => 0.0080532735501678
730 => 0.0082065688604526
731 => 0.0082368326019415
801 => 0.008045061089597
802 => 0.0081474945402981
803 => 0.0078754616646375
804 => 0.0073113960838122
805 => 0.0075184034144799
806 => 0.0076708304877654
807 => 0.0074532982600644
808 => 0.0078432163585587
809 => 0.0076154342549617
810 => 0.0075432382635906
811 => 0.0072615759615229
812 => 0.0073945097259226
813 => 0.0075743045457014
814 => 0.0074632122504694
815 => 0.0076937454436679
816 => 0.0080202419261938
817 => 0.0082529227628435
818 => 0.008270785108272
819 => 0.0081211869187116
820 => 0.0083609189722051
821 => 0.0083626651584933
822 => 0.0080922464228185
823 => 0.0079266164529156
824 => 0.0078889849752652
825 => 0.0079829957845216
826 => 0.0080971422623118
827 => 0.0082771194433703
828 => 0.0083858758845244
829 => 0.0086694550030948
830 => 0.0087461833817295
831 => 0.0088304846072581
901 => 0.0089431370420995
902 => 0.0090784051736181
903 => 0.0087824462026745
904 => 0.0087942052043266
905 => 0.0085186123084149
906 => 0.008224101775114
907 => 0.0084475985586331
908 => 0.0087397908725532
909 => 0.0086727616328961
910 => 0.0086652194741516
911 => 0.0086779032931395
912 => 0.0086273654354084
913 => 0.0083987845779109
914 => 0.0082839927022676
915 => 0.0084321035083783
916 => 0.0085108178101725
917 => 0.0086328968276469
918 => 0.0086178480119678
919 => 0.0089323104506525
920 => 0.0090545010454748
921 => 0.0090232394624889
922 => 0.0090289923461103
923 => 0.0092502125814526
924 => 0.0094962549805646
925 => 0.0097267061554872
926 => 0.0099611309887266
927 => 0.0096785227024995
928 => 0.0095350316436092
929 => 0.0096830777891753
930 => 0.0096045224204376
1001 => 0.010055924870241
1002 => 0.010087178996471
1003 => 0.010538548804739
1004 => 0.010966952500902
1005 => 0.010697879814991
1006 => 0.010951603238505
1007 => 0.01122602580741
1008 => 0.011755431466284
1009 => 0.011577146265091
1010 => 0.011440582595062
1011 => 0.011311530586756
1012 => 0.011580067329612
1013 => 0.011925535559316
1014 => 0.011999946107141
1015 => 0.012120519621634
1016 => 0.011993751314173
1017 => 0.012146429777439
1018 => 0.012685451843087
1019 => 0.01253980332287
1020 => 0.012332959009993
1021 => 0.012758465162592
1022 => 0.012912454185105
1023 => 0.013993229789774
1024 => 0.015357753635283
1025 => 0.014792831803296
1026 => 0.014442166592268
1027 => 0.014524581234749
1028 => 0.015022859151082
1029 => 0.015182890203257
1030 => 0.014747870637433
1031 => 0.014901526902364
1101 => 0.015748188029285
1102 => 0.016202394559738
1103 => 0.015585521083308
1104 => 0.013883591627395
1105 => 0.012314334942751
1106 => 0.012730572480068
1107 => 0.012683384060691
1108 => 0.013593015818442
1109 => 0.012536329653832
1110 => 0.012554121538821
1111 => 0.013482563518005
1112 => 0.013234871115484
1113 => 0.012833641145446
1114 => 0.01231726436556
1115 => 0.011362694128871
1116 => 0.010517204650074
1117 => 0.012175404222592
1118 => 0.012103899641785
1119 => 0.012000350412391
1120 => 0.01223078801721
1121 => 0.013349727615358
1122 => 0.013323932435967
1123 => 0.013159836665495
1124 => 0.013284301861124
1125 => 0.012811821794871
1126 => 0.012933590666116
1127 => 0.012314086364475
1128 => 0.012594128181602
1129 => 0.012832780286131
1130 => 0.012880693229421
1201 => 0.012988643537147
1202 => 0.012066219976893
1203 => 0.012480361074514
1204 => 0.012723630169593
1205 => 0.011624531547819
1206 => 0.012701904523712
1207 => 0.012050162634916
1208 => 0.011828951649024
1209 => 0.012126783099196
1210 => 0.012010717893413
1211 => 0.011910931845059
1212 => 0.011855249515535
1213 => 0.012073944062084
1214 => 0.012063741700091
1215 => 0.011705914975154
1216 => 0.011239144599358
1217 => 0.01139580805869
1218 => 0.011338890755187
1219 => 0.011132615104813
1220 => 0.011271619987348
1221 => 0.010659512833424
1222 => 0.0096064142896592
1223 => 0.010302123444951
1224 => 0.010275339399258
1225 => 0.01026183366886
1226 => 0.010784639871073
1227 => 0.010734384117922
1228 => 0.010643169433846
1229 => 0.011130939875608
1230 => 0.010952897102927
1231 => 0.011501582976178
]
'min_raw' => 0.0049254182562232
'max_raw' => 0.016202394559738
'avg_raw' => 0.01056390640798
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.004925'
'max' => '$0.0162023'
'avg' => '$0.010563'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0026832408782917
'max_diff' => 0.010710601685664
'year' => 2029
]
4 => [
'items' => [
101 => 0.011862982979079
102 => 0.011771320248278
103 => 0.012111218697804
104 => 0.011399417268378
105 => 0.011635849150717
106 => 0.011684577433986
107 => 0.011124920864072
108 => 0.010742606580661
109 => 0.010717110576659
110 => 0.010054230295378
111 => 0.010408335591056
112 => 0.010719933597379
113 => 0.010570702333332
114 => 0.010523460173292
115 => 0.010764810123363
116 => 0.010783565081506
117 => 0.010355950048284
118 => 0.010444864754498
119 => 0.010815653860249
120 => 0.01043552182038
121 => 0.0096969873611299
122 => 0.0095138206041982
123 => 0.0094893827823904
124 => 0.0089926200104529
125 => 0.0095260606827423
126 => 0.0092931995339668
127 => 0.010028805112844
128 => 0.0096086311513211
129 => 0.0095905182916309
130 => 0.0095631380476304
131 => 0.0091355538088121
201 => 0.0092291675827173
202 => 0.0095403540249586
203 => 0.0096513888533165
204 => 0.0096398070110372
205 => 0.0095388290416245
206 => 0.0095850562389308
207 => 0.0094361423297839
208 => 0.0093835577290892
209 => 0.0092175862647627
210 => 0.00897365406299
211 => 0.0090075743317696
212 => 0.0085242808117253
213 => 0.0082609568516767
214 => 0.0081880722500892
215 => 0.0080906079147893
216 => 0.0081990811061041
217 => 0.0085229117019057
218 => 0.0081323032988755
219 => 0.0074626325898741
220 => 0.0075028809405484
221 => 0.0075933070346711
222 => 0.0074247986065019
223 => 0.0072653195210802
224 => 0.0074039736469072
225 => 0.0071202253393903
226 => 0.007627596662011
227 => 0.0076138736896258
228 => 0.0078029903430666
301 => 0.0079212488675276
302 => 0.007648701255297
303 => 0.0075801562678681
304 => 0.0076192026079036
305 => 0.0069738535839144
306 => 0.0077502515596996
307 => 0.0077569658816348
308 => 0.0076994737808424
309 => 0.0081128817343498
310 => 0.0089853014614247
311 => 0.0086570620670969
312 => 0.008529957852525
313 => 0.0082883326477112
314 => 0.0086102838868406
315 => 0.0085855630548971
316 => 0.0084737660777519
317 => 0.0084061509171466
318 => 0.0085307339237558
319 => 0.0083907137039286
320 => 0.0083655622249493
321 => 0.0082131716274138
322 => 0.0081587751174241
323 => 0.0081185021070151
324 => 0.0080741654796991
325 => 0.008171961031559
326 => 0.0079503434449682
327 => 0.0076830943609795
328 => 0.007660875491321
329 => 0.0077222237439511
330 => 0.0076950817090025
331 => 0.0076607455456999
401 => 0.0075951884590576
402 => 0.0075757390718564
403 => 0.0076389401447592
404 => 0.0075675898183034
405 => 0.0076728711116423
406 => 0.0076442404253338
407 => 0.0074843117389919
408 => 0.0072849813826265
409 => 0.0072832069243453
410 => 0.0072402615260337
411 => 0.0071855641044
412 => 0.007170348533009
413 => 0.0073922965831679
414 => 0.0078517224046507
415 => 0.0077615261227654
416 => 0.0078267021801143
417 => 0.0081473038751557
418 => 0.0082492135131801
419 => 0.0081768804659725
420 => 0.0080778665296466
421 => 0.0080822226403407
422 => 0.008420583234323
423 => 0.0084416863695281
424 => 0.008495007184062
425 => 0.0085635394991984
426 => 0.0081885518155823
427 => 0.0080645607541645
428 => 0.0080058069105026
429 => 0.0078248678126228
430 => 0.0080199951171402
501 => 0.0079063027929822
502 => 0.007921643771794
503 => 0.0079116529392175
504 => 0.0079171086093814
505 => 0.007627454841386
506 => 0.0077329894506897
507 => 0.0075575176939483
508 => 0.0073225807093006
509 => 0.0073217931181486
510 => 0.0073792936123061
511 => 0.0073450900683866
512 => 0.0072530492111529
513 => 0.0072661231805024
514 => 0.0071515814519241
515 => 0.0072800306201967
516 => 0.0072837140827295
517 => 0.0072342541562711
518 => 0.0074321478225645
519 => 0.0075132250191108
520 => 0.0074806694359816
521 => 0.0075109408326119
522 => 0.0077652741854896
523 => 0.0078067416193508
524 => 0.007825158714287
525 => 0.00780048224687
526 => 0.0075155895794162
527 => 0.0075282257806749
528 => 0.0074355097200896
529 => 0.0073571744190727
530 => 0.0073603074202988
531 => 0.0074005819478978
601 => 0.0075764631719924
602 => 0.007946594839335
603 => 0.007960641065548
604 => 0.0079776655014754
605 => 0.0079084185647627
606 => 0.0078875330260462
607 => 0.0079150864426282
608 => 0.0080540884362835
609 => 0.0084116393026383
610 => 0.0082852569464491
611 => 0.0081825061236087
612 => 0.0082726462966626
613 => 0.008258769923563
614 => 0.0081416393699139
615 => 0.0081383519053884
616 => 0.0079135409240324
617 => 0.0078304334229235
618 => 0.0077609825745083
619 => 0.0076851440610991
620 => 0.0076401844482202
621 => 0.0077092628473808
622 => 0.0077250618945805
623 => 0.0075740207675319
624 => 0.0075534344200313
625 => 0.0076767778648284
626 => 0.0076224990134803
627 => 0.0076783261581425
628 => 0.0076912785345805
629 => 0.0076891929036555
630 => 0.0076325195489617
701 => 0.0076686414552198
702 => 0.007583202378461
703 => 0.0074903002150202
704 => 0.0074310344227543
705 => 0.0073793171585357
706 => 0.0074080129025492
707 => 0.0073057178147768
708 => 0.0072729915574051
709 => 0.0076564041661482
710 => 0.0079396351826068
711 => 0.0079355168914557
712 => 0.0079104478532119
713 => 0.0078732003474502
714 => 0.0080513635492367
715 => 0.00798929505222
716 => 0.0080344550697961
717 => 0.0080459501896292
718 => 0.0080807424552554
719 => 0.0080931776997205
720 => 0.0080555897541144
721 => 0.0079294400176795
722 => 0.0076150868684406
723 => 0.0074687546288899
724 => 0.0074204625524819
725 => 0.0074222178777396
726 => 0.0073737981710147
727 => 0.0073880599446642
728 => 0.0073688385081584
729 => 0.0073324377575814
730 => 0.0074057652587757
731 => 0.0074142155701954
801 => 0.0073971000552182
802 => 0.007401131378586
803 => 0.0072594222247074
804 => 0.0072701960639007
805 => 0.0072102059581992
806 => 0.0071989585365717
807 => 0.0070473087732943
808 => 0.0067786392356638
809 => 0.0069275082398942
810 => 0.0067476954169336
811 => 0.0066795975762695
812 => 0.0070019621625861
813 => 0.0069696056991217
814 => 0.0069142254986873
815 => 0.0068323066399997
816 => 0.006801922138457
817 => 0.0066173155256481
818 => 0.0066064079821254
819 => 0.0066979040042313
820 => 0.0066556817382153
821 => 0.0065963856859063
822 => 0.0063816213951873
823 => 0.0061401552264062
824 => 0.0061474435722395
825 => 0.006224249467891
826 => 0.0064475729681839
827 => 0.0063603166130837
828 => 0.0062970111263072
829 => 0.0062851559115899
830 => 0.00643354874435
831 => 0.0066435556919652
901 => 0.0067420862531456
902 => 0.0066444454594334
903 => 0.0065322809729706
904 => 0.0065391079055414
905 => 0.0065845244294153
906 => 0.0065892970639194
907 => 0.0065162895139276
908 => 0.0065368407116061
909 => 0.0065056215630915
910 => 0.0063140297062836
911 => 0.0063105644171383
912 => 0.0062635446856416
913 => 0.0062621209468587
914 => 0.0061821286539611
915 => 0.0061709371792241
916 => 0.0060121076264908
917 => 0.00611664971908
918 => 0.0060465283720774
919 => 0.0059408389621908
920 => 0.0059226180680896
921 => 0.0059220703260105
922 => 0.0060305897182444
923 => 0.0061153816067987
924 => 0.00604774816293
925 => 0.0060323493387804
926 => 0.0061967684940896
927 => 0.0061758446578627
928 => 0.0061577247506344
929 => 0.0066247518731826
930 => 0.0062550634631048
1001 => 0.0060938582152342
1002 => 0.005894336108948
1003 => 0.0059593015128326
1004 => 0.0059729906779714
1005 => 0.005493175978916
1006 => 0.0052985152152663
1007 => 0.0052317149768179
1008 => 0.0051932704951741
1009 => 0.0052107901282146
1010 => 0.0050355726094996
1011 => 0.0051533216799063
1012 => 0.0050015981194673
1013 => 0.0049761611708085
1014 => 0.0052474616918159
1015 => 0.0052852115743995
1016 => 0.0051241588473289
1017 => 0.0052275807701763
1018 => 0.0051900785432796
1019 => 0.005004198984438
1020 => 0.0049970997525277
1021 => 0.0049038319238835
1022 => 0.0047578858322655
1023 => 0.0046911845521397
1024 => 0.0046564459463231
1025 => 0.0046707797721249
1026 => 0.0046635321511772
1027 => 0.0046162365220135
1028 => 0.0046662430812786
1029 => 0.0045384969864934
1030 => 0.0044876274622296
1031 => 0.0044646508782837
1101 => 0.004351268866371
1102 => 0.0045317100685337
1103 => 0.0045672592584982
1104 => 0.0046028784913485
1105 => 0.0049129195950278
1106 => 0.0048974308176551
1107 => 0.0050374418217643
1108 => 0.0050320012516083
1109 => 0.0049920678452085
1110 => 0.0048235953723341
1111 => 0.0048907454972887
1112 => 0.0046840678501247
1113 => 0.0048389247960939
1114 => 0.0047682545529343
1115 => 0.0048150311157938
1116 => 0.0047309226380997
1117 => 0.0047774717424096
1118 => 0.0045756892902267
1119 => 0.0043872676755341
1120 => 0.0044630940336562
1121 => 0.0045455259567309
1122 => 0.0047242593692201
1123 => 0.0046178072232601
1124 => 0.0046560914403486
1125 => 0.0045278457218027
1126 => 0.0042632381728641
1127 => 0.0042647358228548
1128 => 0.0042240317162394
1129 => 0.0041888574252269
1130 => 0.0046300345327796
1201 => 0.0045751671854775
1202 => 0.0044877432484124
1203 => 0.0046047636622632
1204 => 0.004635705717049
1205 => 0.0046365865938494
1206 => 0.0047219616670609
1207 => 0.0047675263589382
1208 => 0.0047755573333703
1209 => 0.0049098968557191
1210 => 0.0049549256916293
1211 => 0.005140393094024
1212 => 0.0047636605131752
1213 => 0.0047559019535884
1214 => 0.004606410379465
1215 => 0.0045116004597876
1216 => 0.0046129020957787
1217 => 0.0047026415162145
1218 => 0.0046091988334056
1219 => 0.0046214004750977
1220 => 0.0044959613079744
1221 => 0.0045407999077596
1222 => 0.0045794209503063
1223 => 0.004558096680652
1224 => 0.0045261732168731
1225 => 0.0046952839071136
1226 => 0.0046857420192201
1227 => 0.00484322178181
1228 => 0.0049659885182347
1229 => 0.0051860084570869
1230 => 0.0049564061809958
1231 => 0.0049480385614687
]
'min_raw' => 0.0041888574252269
'max_raw' => 0.012111218697804
'avg_raw' => 0.0081500380615155
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004188'
'max' => '$0.012111'
'avg' => '$0.00815'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00073656083099633
'max_diff' => -0.0040911758619335
'year' => 2030
]
5 => [
'items' => [
101 => 0.0050298333845549
102 => 0.0049549131692681
103 => 0.0050022601591714
104 => 0.0051783801250318
105 => 0.0051821012623843
106 => 0.0051197674173165
107 => 0.0051159743971792
108 => 0.005127946293982
109 => 0.0051980660674915
110 => 0.0051735640640643
111 => 0.0052019184027451
112 => 0.0052373759374424
113 => 0.0053840433346339
114 => 0.0054194043475567
115 => 0.0053334954187376
116 => 0.0053412520331285
117 => 0.0053091197354973
118 => 0.0052780803386021
119 => 0.0053478523698826
120 => 0.0054753621284205
121 => 0.0054745688968304
122 => 0.0055041486823756
123 => 0.0055225766437182
124 => 0.0054434703435439
125 => 0.0053919750509497
126 => 0.0054117216228609
127 => 0.0054432968213713
128 => 0.0054014822115439
129 => 0.0051433830692774
130 => 0.005221673861604
131 => 0.0052086424455367
201 => 0.0051900841243825
202 => 0.0052688061214717
203 => 0.0052612131928089
204 => 0.0050337755005899
205 => 0.005048335323726
206 => 0.0050346609316584
207 => 0.005078845689946
208 => 0.0049525270473185
209 => 0.0049913818110217
210 => 0.0050157511545755
211 => 0.0050301048851429
212 => 0.0050819604023973
213 => 0.0050758757559616
214 => 0.0050815821722316
215 => 0.0051584702149709
216 => 0.0055473435503561
217 => 0.0055685090680004
218 => 0.0054642823181952
219 => 0.0055059188489606
220 => 0.0054259858147993
221 => 0.0054796453961366
222 => 0.005516357918882
223 => 0.0053504610880077
224 => 0.0053406377543448
225 => 0.0052603748081177
226 => 0.0053035035690945
227 => 0.0052348826093128
228 => 0.005251719792584
301 => 0.0052046415603185
302 => 0.0052893730052138
303 => 0.005384115926542
304 => 0.0054080517299809
305 => 0.0053450869361445
306 => 0.0052994962758249
307 => 0.0052194540948008
308 => 0.0053525660257003
309 => 0.0053914920108079
310 => 0.0053523615640718
311 => 0.0053432941845459
312 => 0.0053261115167287
313 => 0.005346939568751
314 => 0.0053912800115332
315 => 0.0053703698775565
316 => 0.0053841813894373
317 => 0.0053315461485171
318 => 0.0054434965310209
319 => 0.0056213006807635
320 => 0.0056218723501789
321 => 0.0056009621034888
322 => 0.0055924060810608
323 => 0.0056138612631047
324 => 0.0056254998192258
325 => 0.0056948819437482
326 => 0.0057693317276666
327 => 0.0061167563842279
328 => 0.0060192009309077
329 => 0.0063274567545942
330 => 0.0065712470891212
331 => 0.0066443491507865
401 => 0.0065770986937722
402 => 0.0063470385131246
403 => 0.0063357506631019
404 => 0.0066795577018924
405 => 0.0065824164660741
406 => 0.0065708618251744
407 => 0.0064479399678751
408 => 0.0065206020097072
409 => 0.0065047097552707
410 => 0.006479623054167
411 => 0.0066182571683008
412 => 0.0068777678540067
413 => 0.0068373206799637
414 => 0.0068071287408309
415 => 0.0066748364522926
416 => 0.006754505958545
417 => 0.0067261371733374
418 => 0.0068480274778653
419 => 0.0067758223616638
420 => 0.0065816805256718
421 => 0.0066125982529534
422 => 0.0066079251006726
423 => 0.0067040982434679
424 => 0.0066752294531649
425 => 0.0066022880060384
426 => 0.0068768808746954
427 => 0.0068590503411706
428 => 0.0068843299610813
429 => 0.0068954588315642
430 => 0.0070625986718467
501 => 0.007131070516532
502 => 0.007146614824044
503 => 0.0072116577806925
504 => 0.0071449964960298
505 => 0.0074116891633713
506 => 0.0075890242252048
507 => 0.0077950080251033
508 => 0.008096005719981
509 => 0.0082091836376393
510 => 0.0081887390598306
511 => 0.0084169520768476
512 => 0.0088270457955368
513 => 0.0082716307254058
514 => 0.0088564841429069
515 => 0.0086713263033835
516 => 0.0082323203967207
517 => 0.0082040535918713
518 => 0.0085013534888267
519 => 0.0091607360462191
520 => 0.0089955681942474
521 => 0.0091610062016552
522 => 0.0089680139782568
523 => 0.0089584302876989
524 => 0.0091516330001314
525 => 0.0096030616686616
526 => 0.0093886048297935
527 => 0.0090811283643018
528 => 0.0093081642015572
529 => 0.0091114847481518
530 => 0.0086683108925166
531 => 0.0089954418935037
601 => 0.0087766987092981
602 => 0.0088405395994766
603 => 0.0093003052370838
604 => 0.0092449850191779
605 => 0.0093165745036624
606 => 0.0091902209373703
607 => 0.0090721867823249
608 => 0.0088518672666013
609 => 0.0087866415196164
610 => 0.0088046675695065
611 => 0.0087866325868013
612 => 0.0086633658425948
613 => 0.0086367464009198
614 => 0.0085923794985702
615 => 0.0086061306567959
616 => 0.0085227079003835
617 => 0.0086801438777546
618 => 0.0087093653824757
619 => 0.0088239341577354
620 => 0.0088358290680502
621 => 0.0091549014763641
622 => 0.0089791617556588
623 => 0.0090970631329454
624 => 0.0090865169240301
625 => 0.0082418349859004
626 => 0.0083582247042829
627 => 0.0085392905809802
628 => 0.0084577206489571
629 => 0.0083423998495008
630 => 0.0082492721208298
701 => 0.0081081740890941
702 => 0.0083067668592144
703 => 0.0085678952339361
704 => 0.0088424517145606
705 => 0.0091723133363778
706 => 0.0090986920624007
707 => 0.0088362851809877
708 => 0.0088480565619995
709 => 0.008920822607547
710 => 0.0088265839670706
711 => 0.0087987911522373
712 => 0.0089170043015767
713 => 0.0089178183705674
714 => 0.0088093854255791
715 => 0.0086888820502441
716 => 0.0086883771367015
717 => 0.0086669347249851
718 => 0.0089718285356666
719 => 0.0091394893033001
720 => 0.0091587113401105
721 => 0.0091381955070696
722 => 0.0091460912369628
723 => 0.0090485331304297
724 => 0.0092715220320065
725 => 0.00947615869941
726 => 0.0094213117011211
727 => 0.0093390882537259
728 => 0.0092735933174577
729 => 0.0094058831755954
730 => 0.0093999925164561
731 => 0.0094743713766414
801 => 0.0094709971219103
802 => 0.0094459863087604
803 => 0.0094213125943361
804 => 0.0095191410830383
805 => 0.0094909680493695
806 => 0.0094627512551978
807 => 0.0094061581547115
808 => 0.0094138500969794
809 => 0.0093316408466216
810 => 0.0092936070857667
811 => 0.0087216705782618
812 => 0.008568830454892
813 => 0.0086169170690517
814 => 0.0086327484310015
815 => 0.008566232213441
816 => 0.0086615993828084
817 => 0.0086467365104813
818 => 0.0087045592522165
819 => 0.008668434113552
820 => 0.0086699167018437
821 => 0.0087761530319645
822 => 0.0088069938905603
823 => 0.0087913079809622
824 => 0.0088022938543632
825 => 0.0090554586700407
826 => 0.0090194667290064
827 => 0.0090003467276779
828 => 0.0090056430987144
829 => 0.0090703321370348
830 => 0.009088441535874
831 => 0.0090117107404675
901 => 0.0090478974271567
902 => 0.0092019757463047
903 => 0.009255894437929
904 => 0.0094279770191532
905 => 0.0093548732801252
906 => 0.0094890583569669
907 => 0.0099014975361146
908 => 0.010230982491038
909 => 0.0099279745099488
910 => 0.01053303167001
911 => 0.011004155459412
912 => 0.010986072943677
913 => 0.010903921613705
914 => 0.010367559704945
915 => 0.0098739914797979
916 => 0.010286882258147
917 => 0.010287934801653
918 => 0.010252467117618
919 => 0.010032180378192
920 => 0.010244801616585
921 => 0.010261678718362
922 => 0.010252232029351
923 => 0.010083338702722
924 => 0.0098254698096651
925 => 0.0098758567741176
926 => 0.0099583916497569
927 => 0.0098021359115929
928 => 0.0097522027353804
929 => 0.0098450380101348
930 => 0.010144172608391
1001 => 0.01008762294536
1002 => 0.010086146205123
1003 => 0.010328089644361
1004 => 0.010154910356529
1005 => 0.0098764923151007
1006 => 0.0098061880877574
1007 => 0.0095566554432909
1008 => 0.0097290085296287
1009 => 0.0097352112103717
1010 => 0.0096408151863903
1011 => 0.0098841520322006
1012 => 0.0098819096403279
1013 => 0.010112921759515
1014 => 0.010554530167211
1015 => 0.010423924830825
1016 => 0.010272045034429
1017 => 0.010288558579467
1018 => 0.010469671409635
1019 => 0.010360166458112
1020 => 0.010399545202175
1021 => 0.010469611805189
1022 => 0.010511884726443
1023 => 0.010282476156642
1024 => 0.010228990045141
1025 => 0.010119576232084
1026 => 0.010091032210563
1027 => 0.010180147478304
1028 => 0.010156668753743
1029 => 0.0097346898990732
1030 => 0.009690590760892
1031 => 0.009691943218501
1101 => 0.0095810538387447
1102 => 0.0094119209181159
1103 => 0.0098563921351266
1104 => 0.0098206948760299
1105 => 0.0097812878647356
1106 => 0.0097861149987659
1107 => 0.009979044889543
1108 => 0.0098671358096993
1109 => 0.010164664440001
1110 => 0.010103501498141
1111 => 0.01004076995761
1112 => 0.010032098547859
1113 => 0.010007952256758
1114 => 0.0099251456401346
1115 => 0.0098251516746553
1116 => 0.0097591269973169
1117 => 0.0090022787895236
1118 => 0.0091427454145065
1119 => 0.0093043394626137
1120 => 0.0093601210804728
1121 => 0.0092647027631543
1122 => 0.0099289133368838
1123 => 0.010050271009197
1124 => 0.0096826707037962
1125 => 0.0096139076956774
1126 => 0.0099334214282483
1127 => 0.0097407155885428
1128 => 0.0098274910163627
1129 => 0.0096399300050374
1130 => 0.010021039499704
1201 => 0.010018136083888
1202 => 0.009869875882714
1203 => 0.0099951843895039
1204 => 0.0099734089527582
1205 => 0.009806023550782
1206 => 0.010026345915506
1207 => 0.010026455192651
1208 => 0.0098837579724758
1209 => 0.0097171188597498
1210 => 0.0096873277222346
1211 => 0.009664884101993
1212 => 0.0098219712616022
1213 => 0.009962815117709
1214 => 0.010224890615771
1215 => 0.010290782622744
1216 => 0.010547963512638
1217 => 0.010394824814616
1218 => 0.010462709215971
1219 => 0.010536407336477
1220 => 0.010571740925606
1221 => 0.010514166738225
1222 => 0.010913674520109
1223 => 0.010947405217502
1224 => 0.010958714828569
1225 => 0.010824003052323
1226 => 0.010943658639313
1227 => 0.010887675752737
1228 => 0.011033327671114
1229 => 0.011056167751693
1230 => 0.011036823016002
1231 => 0.011044072818084
]
'min_raw' => 0.0049525270473185
'max_raw' => 0.011056167751693
'avg_raw' => 0.0080043473995058
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.004952'
'max' => '$0.011056'
'avg' => '$0.0080043'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00076366962209165
'max_diff' => -0.0010550509461109
'year' => 2031
]
6 => [
'items' => [
101 => 0.010703163404248
102 => 0.010685485452701
103 => 0.010444445328976
104 => 0.010542670961072
105 => 0.010359042849945
106 => 0.010417273215563
107 => 0.010442940605888
108 => 0.010429533417794
109 => 0.010548224490935
110 => 0.01044731283178
111 => 0.01018099037186
112 => 0.0099145953525631
113 => 0.0099112509800965
114 => 0.0098411138737783
115 => 0.0097904175921621
116 => 0.0098001834945486
117 => 0.0098345998083453
118 => 0.0097884172534388
119 => 0.009798272643043
120 => 0.0099619377765914
121 => 0.0099947596519182
122 => 0.0098832180952232
123 => 0.0094353626497231
124 => 0.009325457800037
125 => 0.0094044552264834
126 => 0.0093666995447279
127 => 0.0075596575735214
128 => 0.007984195280424
129 => 0.0077319493909208
130 => 0.0078481959020792
131 => 0.0075907181676529
201 => 0.0077136000380854
202 => 0.0076909082435439
203 => 0.0083735523132592
204 => 0.0083628937650568
205 => 0.0083679954480434
206 => 0.0081244788267257
207 => 0.0085124074166817
208 => 0.0087035149895549
209 => 0.0086681460639794
210 => 0.0086770476605532
211 => 0.0085240887390155
212 => 0.0083694764247556
213 => 0.0081979875735767
214 => 0.0085165926624044
215 => 0.008481169215297
216 => 0.0085624178580074
217 => 0.0087690560324743
218 => 0.0087994842886067
219 => 0.0088403801734215
220 => 0.0088257219098827
221 => 0.0091749412163699
222 => 0.0091326484541311
223 => 0.0092345618426685
224 => 0.0090249182702598
225 => 0.0087876866685288
226 => 0.0088327766403325
227 => 0.0088284341134571
228 => 0.0087731487622136
229 => 0.008723239619086
301 => 0.0086401549575925
302 => 0.0089030471207743
303 => 0.0088923741790466
304 => 0.0090651566996807
305 => 0.0090346157108388
306 => 0.0088306555127045
307 => 0.0088379399910822
308 => 0.008886931608973
309 => 0.0090564921578694
310 => 0.0091068292733444
311 => 0.0090835111158691
312 => 0.0091387034650108
313 => 0.009182325247399
314 => 0.009144181689266
315 => 0.0096842140347845
316 => 0.0094599549540015
317 => 0.0095692572695905
318 => 0.0095953252278118
319 => 0.009528552700978
320 => 0.0095430332711033
321 => 0.009564967389124
322 => 0.0096981470586052
323 => 0.010047649047172
324 => 0.010202441098767
325 => 0.010668140623298
326 => 0.010189587773692
327 => 0.010161192428045
328 => 0.010245078975191
329 => 0.010518493895392
330 => 0.010740071007657
331 => 0.010813580918885
401 => 0.01082329646717
402 => 0.010961205947482
403 => 0.011040253089737
404 => 0.010944460109192
405 => 0.010863285588124
406 => 0.010572528529411
407 => 0.010606184450663
408 => 0.010838040373112
409 => 0.011165550519818
410 => 0.011446588297315
411 => 0.011348178662791
412 => 0.012098974707834
413 => 0.012173413068973
414 => 0.012163128094344
415 => 0.012332709758932
416 => 0.01199612468943
417 => 0.011852228051189
418 => 0.010880836440949
419 => 0.011153757860878
420 => 0.011550465172857
421 => 0.01149795947254
422 => 0.011209860018564
423 => 0.011446369748045
424 => 0.011368172235135
425 => 0.011306494612286
426 => 0.011589051759354
427 => 0.011278368569345
428 => 0.011547365870376
429 => 0.011202374049383
430 => 0.011348628189712
501 => 0.011265607266144
502 => 0.011319331978354
503 => 0.011005258408551
504 => 0.011174724883112
505 => 0.010998208046055
506 => 0.010998124354091
507 => 0.01099422773513
508 => 0.011201899011132
509 => 0.011208671163986
510 => 0.011055201777247
511 => 0.011033084440975
512 => 0.011114863825337
513 => 0.011019121584304
514 => 0.011063918776289
515 => 0.011020478445614
516 => 0.011010699112186
517 => 0.010932775719613
518 => 0.010899204179544
519 => 0.010912368445437
520 => 0.0108674320193
521 => 0.010840356197131
522 => 0.010988841672612
523 => 0.01090951187295
524 => 0.010976683243064
525 => 0.010900132989116
526 => 0.010634776457574
527 => 0.010482167110189
528 => 0.0099809332206699
529 => 0.010123082529959
530 => 0.010217327669082
531 => 0.010186179651164
601 => 0.010253097646334
602 => 0.010257205867752
603 => 0.010235450145374
604 => 0.010210259805941
605 => 0.010197998541818
606 => 0.010289383959125
607 => 0.010342436269764
608 => 0.01022678642963
609 => 0.0101996912902
610 => 0.010316619663778
611 => 0.010387945904113
612 => 0.010914578787995
613 => 0.010875564122955
614 => 0.010973483275963
615 => 0.010962459082026
616 => 0.011065093954124
617 => 0.011232858593269
618 => 0.010891746174155
619 => 0.010950951495333
620 => 0.010936435717831
621 => 0.011094915170361
622 => 0.011095409925913
623 => 0.011000393577486
624 => 0.011051903481432
625 => 0.01102315206615
626 => 0.011075109759552
627 => 0.010875043058317
628 => 0.011118702704556
629 => 0.011256842022892
630 => 0.011258760087461
701 => 0.011324237028011
702 => 0.011390765391779
703 => 0.011518460792631
704 => 0.011387204036356
705 => 0.011151085909404
706 => 0.011168132875513
707 => 0.011029696904073
708 => 0.011032024037764
709 => 0.011019601615744
710 => 0.011056882239342
711 => 0.010883224058726
712 => 0.010923981286613
713 => 0.010866920928896
714 => 0.010950827457259
715 => 0.010860557902987
716 => 0.010936428717884
717 => 0.010969172046436
718 => 0.011089995633706
719 => 0.010842712160908
720 => 0.010338484420254
721 => 0.01044447920451
722 => 0.010287704592885
723 => 0.010302214680074
724 => 0.010331527365459
725 => 0.010236515361612
726 => 0.010254640657774
727 => 0.010253993094649
728 => 0.010248412745483
729 => 0.010223696453745
730 => 0.010187852940755
731 => 0.010330642464454
801 => 0.010354905186967
802 => 0.010408838213598
803 => 0.01056930631773
804 => 0.010553271770029
805 => 0.010579424782597
806 => 0.010522332903004
807 => 0.010304863008625
808 => 0.010316672670169
809 => 0.010169406001478
810 => 0.010405072273779
811 => 0.010349263389855
812 => 0.010313283039331
813 => 0.010303465467335
814 => 0.01046433134086
815 => 0.010512464931482
816 => 0.010482471307931
817 => 0.010420953510975
818 => 0.010539085867235
819 => 0.010570693102166
820 => 0.010577768796437
821 => 0.010787076682096
822 => 0.010589466782125
823 => 0.010637033449121
824 => 0.011008135006525
825 => 0.010671597102474
826 => 0.010849868735941
827 => 0.010841143267163
828 => 0.010932341002461
829 => 0.010833662391006
830 => 0.010834885630661
831 => 0.010915863041336
901 => 0.010802144872395
902 => 0.010773986654544
903 => 0.010735086278254
904 => 0.01082002382674
905 => 0.010870940045663
906 => 0.011281287376335
907 => 0.011546390466062
908 => 0.011534881641777
909 => 0.011640050752123
910 => 0.011592671104673
911 => 0.01143966972494
912 => 0.011700824423615
913 => 0.011618184149777
914 => 0.011624996913544
915 => 0.011624743342137
916 => 0.0116796918997
917 => 0.011640755810705
918 => 0.011564008782588
919 => 0.011614957041486
920 => 0.011766255156077
921 => 0.012235889146161
922 => 0.012498702548835
923 => 0.012220067449322
924 => 0.012412266209894
925 => 0.012297015440971
926 => 0.012276070947845
927 => 0.012396785972861
928 => 0.012517712293547
929 => 0.012510009809699
930 => 0.012422223510515
1001 => 0.012372635257601
1002 => 0.012748134121948
1003 => 0.013024795288743
1004 => 0.013005928851928
1005 => 0.013089199168337
1006 => 0.013333683392768
1007 => 0.013356035966274
1008 => 0.013353220055781
1009 => 0.013297816870096
1010 => 0.013538543339338
1011 => 0.013739361595158
1012 => 0.013284992633362
1013 => 0.013458010385888
1014 => 0.01353568362928
1015 => 0.013649730995193
1016 => 0.013842148018046
1017 => 0.014051163940959
1018 => 0.014080721084202
1019 => 0.014059748876631
1020 => 0.013921897256821
1021 => 0.014150604973751
1022 => 0.014284576590472
1023 => 0.014364353622344
1024 => 0.014566654901539
1025 => 0.013536163312788
1026 => 0.012806730147515
1027 => 0.012692818625615
1028 => 0.012924462184748
1029 => 0.012985544743969
1030 => 0.012960922440938
1031 => 0.012139879096261
1101 => 0.012688496002324
1102 => 0.013278761664228
1103 => 0.013301436172235
1104 => 0.013596935504457
1105 => 0.013693162199955
1106 => 0.013931077894377
1107 => 0.013916196202914
1108 => 0.01397412488844
1109 => 0.013960808086822
1110 => 0.014401496811678
1111 => 0.014887641918104
1112 => 0.014870808258915
1113 => 0.014800919148058
1114 => 0.014904716395544
1115 => 0.015406470243851
1116 => 0.01536027678994
1117 => 0.015405149795665
1118 => 0.015996745860427
1119 => 0.016765904898175
1120 => 0.016408553302836
1121 => 0.01718390343957
1122 => 0.017671945251099
1123 => 0.018515963099674
1124 => 0.018410287908157
1125 => 0.018738857862918
1126 => 0.018221107260263
1127 => 0.017032247221907
1128 => 0.016844105570064
1129 => 0.01722076992156
1130 => 0.018146762475342
1201 => 0.017191607120713
1202 => 0.017384833804958
1203 => 0.017329184506896
1204 => 0.017326219192297
1205 => 0.01743939318975
1206 => 0.017275228403685
1207 => 0.016606391532578
1208 => 0.016912915529126
1209 => 0.016794551893567
1210 => 0.016925885171813
1211 => 0.017634636708542
1212 => 0.017321280759628
1213 => 0.016991185722417
1214 => 0.017405198153032
1215 => 0.017932378247312
1216 => 0.017899388264445
1217 => 0.017835373908942
1218 => 0.018196219479233
1219 => 0.018792230643523
1220 => 0.018953330066264
1221 => 0.019072250366598
1222 => 0.01908864746684
1223 => 0.019257547790065
1224 => 0.018349328183721
1225 => 0.019790696023723
1226 => 0.020039580432708
1227 => 0.019992800479021
1228 => 0.020269425024951
1229 => 0.020188035066251
1230 => 0.020070113785788
1231 => 0.020508622530815
]
'min_raw' => 0.0075596575735214
'max_raw' => 0.020508622530815
'avg_raw' => 0.014034140052168
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.007559'
'max' => '$0.0205086'
'avg' => '$0.014034'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0026071305262029
'max_diff' => 0.0094524547791221
'year' => 2032
]
7 => [
'items' => [
101 => 0.020005907640472
102 => 0.019292367143675
103 => 0.018900904714901
104 => 0.019416414019484
105 => 0.019731217562997
106 => 0.019939282679993
107 => 0.02000224305868
108 => 0.018419830686391
109 => 0.017566998182342
110 => 0.018113654039693
111 => 0.018780611913834
112 => 0.018345623199054
113 => 0.018362673933131
114 => 0.017742494338879
115 => 0.018835484046632
116 => 0.018676244639703
117 => 0.019502378964542
118 => 0.019305215377777
119 => 0.019978895849333
120 => 0.019801493203681
121 => 0.020537881667334
122 => 0.020831646962407
123 => 0.021324924613751
124 => 0.021687781662082
125 => 0.021900858261211
126 => 0.021888065941429
127 => 0.022732381581518
128 => 0.022234518146699
129 => 0.021609084335165
130 => 0.021597772210732
131 => 0.021921693244192
201 => 0.022600542866927
202 => 0.022776558697242
203 => 0.022874927533867
204 => 0.022724272236332
205 => 0.02218387716003
206 => 0.021950537305948
207 => 0.022149349622132
208 => 0.021906219243576
209 => 0.0223259304873
210 => 0.022902283670417
211 => 0.02278326901725
212 => 0.023181117159111
213 => 0.023592848131091
214 => 0.024181641913018
215 => 0.024335574410584
216 => 0.024590018975533
217 => 0.02485192601355
218 => 0.024936043495569
219 => 0.025096649868864
220 => 0.025095803393999
221 => 0.02557980150998
222 => 0.026113666420082
223 => 0.026315188064644
224 => 0.026778575974346
225 => 0.02598504041803
226 => 0.026586946252975
227 => 0.027129880382776
228 => 0.02648257193068
301 => 0.027374735828368
302 => 0.027409376530828
303 => 0.027932410010643
304 => 0.02740221537776
305 => 0.027087387497196
306 => 0.027996283791939
307 => 0.028436070079
308 => 0.028303602870238
309 => 0.027295520870843
310 => 0.026708773908525
311 => 0.025173143933102
312 => 0.026992163973269
313 => 0.027878155573293
314 => 0.027293226366639
315 => 0.027588230635175
316 => 0.029197678268851
317 => 0.029810451723738
318 => 0.029682999128732
319 => 0.029704536519239
320 => 0.030035177952871
321 => 0.031501424157159
322 => 0.030622815444229
323 => 0.031294478884423
324 => 0.03165072675124
325 => 0.031981629623848
326 => 0.031169036751649
327 => 0.030111865364277
328 => 0.029777014808861
329 => 0.027235066684732
330 => 0.02710274724575
331 => 0.02702847233496
401 => 0.026560179528824
402 => 0.026192229659396
403 => 0.025899622262124
404 => 0.025131733071718
405 => 0.025390873131856
406 => 0.024167018033278
407 => 0.024949997154587
408 => 0.02299669486624
409 => 0.024623463054666
410 => 0.023738087089779
411 => 0.024332593238091
412 => 0.024330519062145
413 => 0.023235844754758
414 => 0.022604459459527
415 => 0.023006802743531
416 => 0.023438146682034
417 => 0.023508130784841
418 => 0.024067379460338
419 => 0.024223453744659
420 => 0.023750541376754
421 => 0.022956217017943
422 => 0.023140720449885
423 => 0.022600720503368
424 => 0.021654391367893
425 => 0.022334061474312
426 => 0.022566130731629
427 => 0.022668625736354
428 => 0.02173801971825
429 => 0.021445603102923
430 => 0.021289922950535
501 => 0.022836087467056
502 => 0.02292078984954
503 => 0.022487440485042
504 => 0.024446220704448
505 => 0.024002888413745
506 => 0.024498199201508
507 => 0.02312397869731
508 => 0.023176475771204
509 => 0.022525897761656
510 => 0.022890177975364
511 => 0.022632716461615
512 => 0.022860747733984
513 => 0.022997428738434
514 => 0.023647899994532
515 => 0.024630890391544
516 => 0.023550741280176
517 => 0.023080104844333
518 => 0.02337208504217
519 => 0.024149666785712
520 => 0.025327742930854
521 => 0.024630298141938
522 => 0.024939812295879
523 => 0.025007427369188
524 => 0.024493157402651
525 => 0.025346704798068
526 => 0.025804127781478
527 => 0.026273349112108
528 => 0.026680760846211
529 => 0.026085931794256
530 => 0.026722484145243
531 => 0.026209535316964
601 => 0.025749367190323
602 => 0.025750065075422
603 => 0.025461394887596
604 => 0.024902060023899
605 => 0.024798910093297
606 => 0.025335509058689
607 => 0.025765810612823
608 => 0.025801252309827
609 => 0.026039489359887
610 => 0.026180475592076
611 => 0.027562332329017
612 => 0.028118126539933
613 => 0.028797741180395
614 => 0.029062489383837
615 => 0.029859286558714
616 => 0.029215808127298
617 => 0.029076587520992
618 => 0.027143818205109
619 => 0.027460309072309
620 => 0.027967041487523
621 => 0.027152174035995
622 => 0.027669019877357
623 => 0.027771056194734
624 => 0.027124485151805
625 => 0.027469846682519
626 => 0.0265526688495
627 => 0.024650882361946
628 => 0.025348822030083
629 => 0.025862740549783
630 => 0.025129315456474
701 => 0.02644395154876
702 => 0.025675968283244
703 => 0.025432554457773
704 => 0.024482910341318
705 => 0.024931105809131
706 => 0.025537296596888
707 => 0.025162741167297
708 => 0.02593999992348
709 => 0.027040805609572
710 => 0.027825305295594
711 => 0.027885529440315
712 => 0.0273811486996
713 => 0.028189422055511
714 => 0.028195309444497
715 => 0.027283573797136
716 => 0.026725140789693
717 => 0.026598263635449
718 => 0.026915227642482
719 => 0.027300080461804
720 => 0.027906886093348
721 => 0.028273566027831
722 => 0.029229672824953
723 => 0.029488367910525
724 => 0.029772595378118
725 => 0.030152410927328
726 => 0.030608476876862
727 => 0.02961063054313
728 => 0.029650276838187
729 => 0.028721096148339
730 => 0.027728133323247
731 => 0.028481668332929
801 => 0.029466815119526
802 => 0.02924082135819
803 => 0.029215392443406
804 => 0.02925815682468
805 => 0.029087764908899
806 => 0.02831708858884
807 => 0.027930059765596
808 => 0.028429425689164
809 => 0.028694816453321
810 => 0.029106414384021
811 => 0.029055676251284
812 => 0.030115908318375
813 => 0.030527882439894
814 => 0.030422481830243
815 => 0.030441878079026
816 => 0.031187737547586
817 => 0.032017286674324
818 => 0.032794268900163
819 => 0.033584648592448
820 => 0.032631815024353
821 => 0.032148024901079
822 => 0.032647172817107
823 => 0.032382317906847
824 => 0.03390425278227
825 => 0.034009628250949
826 => 0.035531453073159
827 => 0.036975846044964
828 => 0.036068648698361
829 => 0.036924094935142
830 => 0.037849329785775
831 => 0.039634257926591
901 => 0.039033156923293
902 => 0.038572722975221
903 => 0.038137615119093
904 => 0.039043005496268
905 => 0.040207775752539
906 => 0.040458656109709
907 => 0.040865178131997
908 => 0.040437769932709
909 => 0.040952536031283
910 => 0.042769886558933
911 => 0.042278822404165
912 => 0.041581432361893
913 => 0.043016056063272
914 => 0.043535240803843
915 => 0.047179151212329
916 => 0.051779738625474
917 => 0.049875065227346
918 => 0.048692772985702
919 => 0.048970639706835
920 => 0.050650618490404
921 => 0.051190174355825
922 => 0.049723475517551
923 => 0.050241538342704
924 => 0.053096115444112
925 => 0.054627504473219
926 => 0.052547672478706
927 => 0.046809498493175
928 => 0.041518640018896
929 => 0.042922013936737
930 => 0.042762914886216
1001 => 0.045829801865934
1002 => 0.04226711068648
1003 => 0.042327097268911
1004 => 0.045457404223479
1005 => 0.044622291995047
1006 => 0.043269517138081
1007 => 0.041528516772422
1008 => 0.038310116573457
1009 => 0.035459489765506
1010 => 0.041050225396046
1011 => 0.040809142709564
1012 => 0.040460019253085
1013 => 0.041236955726374
1014 => 0.045009538703399
1015 => 0.044922568455119
1016 => 0.044369308108173
1017 => 0.044788951205119
1018 => 0.043195951674242
1019 => 0.043606503925274
1020 => 0.041517801919881
1021 => 0.04246198245822
1022 => 0.0432666146908
1023 => 0.043428156524275
1024 => 0.043792118523623
1025 => 0.04068210308867
1026 => 0.042078408713708
1027 => 0.042898607452273
1028 => 0.039192919712348
1029 => 0.04282535792035
1030 => 0.040627964639107
1031 => 0.039882136355714
1101 => 0.040886295883898
1102 => 0.040494973939188
1103 => 0.040158538310321
1104 => 0.039970801448716
1105 => 0.040708145381171
1106 => 0.040673747405406
1107 => 0.039467309619618
1108 => 0.037893560708753
1109 => 0.038421762499786
1110 => 0.038229861837185
1111 => 0.037534389080243
1112 => 0.038003053746721
1113 => 0.03593929174131
1114 => 0.032388696476014
1115 => 0.034734328465942
1116 => 0.034644024185887
1117 => 0.03459848867291
1118 => 0.036361166284835
1119 => 0.03619172550434
1120 => 0.035884188828572
1121 => 0.037528740928019
1122 => 0.036928457289374
1123 => 0.038778390019066
1124 => 0.039996875360988
1125 => 0.039687828064405
1126 => 0.040833819417933
1127 => 0.038433931202234
1128 => 0.039231077800686
1129 => 0.03939536860983
1130 => 0.037508447410389
1201 => 0.036219448111538
1202 => 0.036133486553973
1203 => 0.03389853940481
1204 => 0.03509243013203
1205 => 0.036143004565428
1206 => 0.035639860939699
1207 => 0.035480580698782
1208 => 0.036294308905959
1209 => 0.036357542556768
1210 => 0.034915808617133
1211 => 0.035215590756959
1212 => 0.036465732114668
1213 => 0.035184090402277
1214 => 0.032694069910087
1215 => 0.032076510400797
1216 => 0.031994116578378
1217 => 0.030319246209922
1218 => 0.032117778680184
1219 => 0.031332671059241
1220 => 0.033812816626766
1221 => 0.032396170779883
1222 => 0.032335102008838
1223 => 0.032242787604563
1224 => 0.030801157490409
1225 => 0.031116782865035
1226 => 0.032165969681395
1227 => 0.032540331357408
1228 => 0.032501282367545
1229 => 0.032160828093613
1230 => 0.032316686316811
1231 => 0.031814612675286
]
'min_raw' => 0.017566998182342
'max_raw' => 0.054627504473219
'avg_raw' => 0.03609725132778
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.017566'
'max' => '$0.054627'
'avg' => '$0.036097'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01000734060882
'max_diff' => 0.034118881942404
'year' => 2033
]
8 => [
'items' => [
101 => 0.031637320022704
102 => 0.031077735642969
103 => 0.03025530119389
104 => 0.030369665748318
105 => 0.028740207903013
106 => 0.027852392787017
107 => 0.027606657264125
108 => 0.027278049452918
109 => 0.027643774390792
110 => 0.028735591853668
111 => 0.027418628351444
112 => 0.02516078680113
113 => 0.025296486925478
114 => 0.025601364815161
115 => 0.025033226884706
116 => 0.024495532013732
117 => 0.02496301407948
118 => 0.024006336850013
119 => 0.025716974687763
120 => 0.025670706728259
121 => 0.026308326729038
122 => 0.026707043600804
123 => 0.025788130297502
124 => 0.025557026086728
125 => 0.025688673548286
126 => 0.023512834257076
127 => 0.026130514238812
128 => 0.026153152043995
129 => 0.025959313412203
130 => 0.027353147190675
131 => 0.030294571210908
201 => 0.02918788917599
202 => 0.028759348442427
203 => 0.027944692194664
204 => 0.029030173275307
205 => 0.028946825264456
206 => 0.028569893950595
207 => 0.028341924715875
208 => 0.028761965020766
209 => 0.028289877073719
210 => 0.02820507710632
211 => 0.027691281567157
212 => 0.027507879935884
213 => 0.027372096669518
214 => 0.027222612635038
215 => 0.027552337166001
216 => 0.026805137999964
217 => 0.025904089054561
218 => 0.025829176584235
219 => 0.026036016501176
220 => 0.02594450523535
221 => 0.025828738463501
222 => 0.025607708168837
223 => 0.025542133201975
224 => 0.025755220031825
225 => 0.025514657424659
226 => 0.025869620655656
227 => 0.025773090297836
228 => 0.02523387956597
301 => 0.024561823352683
302 => 0.024555840642699
303 => 0.02441104723394
304 => 0.02422663105805
305 => 0.024175330696788
306 => 0.024923644043816
307 => 0.026472630277032
308 => 0.026168527215353
309 => 0.026388272843151
310 => 0.027469203841679
311 => 0.027812799301382
312 => 0.02756892338259
313 => 0.027235090983335
314 => 0.027249777914674
315 => 0.028390584280867
316 => 0.028461734974585
317 => 0.028641509823526
318 => 0.028872571308782
319 => 0.027608274152667
320 => 0.027190229632317
321 => 0.026992136946348
322 => 0.026382088145083
323 => 0.027039973475616
324 => 0.026656651866973
325 => 0.02670837504811
326 => 0.02667469025854
327 => 0.026693084431401
328 => 0.025716496529624
329 => 0.026072313833083
330 => 0.025480698554182
331 => 0.024688592107666
401 => 0.024685936689109
402 => 0.024879803619717
403 => 0.024764483983378
404 => 0.024454161807127
405 => 0.024498241607584
406 => 0.024112056172634
407 => 0.0245451315115
408 => 0.0245575505626
409 => 0.024390792967364
410 => 0.025058005279767
411 => 0.025331362708552
412 => 0.025221599287073
413 => 0.025323661414294
414 => 0.026181164070509
415 => 0.026320974418936
416 => 0.026383068940354
417 => 0.026299870507601
418 => 0.02533933498871
419 => 0.025381938823485
420 => 0.025069340151993
421 => 0.024805227215418
422 => 0.024815790347791
423 => 0.024951578729469
424 => 0.025544574556139
425 => 0.026792499314352
426 => 0.026839857146705
427 => 0.026897256221043
428 => 0.026663785339249
429 => 0.026593368287285
430 => 0.026686266555009
501 => 0.027154921481428
502 => 0.028360429190747
503 => 0.027934322253121
504 => 0.027587890680081
505 => 0.027891804566918
506 => 0.027845019406195
507 => 0.027450105566773
508 => 0.027439021650602
509 => 0.026681055731159
510 => 0.02640085298879
511 => 0.026166694604454
512 => 0.02591099976162
513 => 0.025759415287818
514 => 0.025992317933488
515 => 0.026045585524176
516 => 0.025536339818977
517 => 0.025466931511086
518 => 0.025882792546784
519 => 0.025699787609835
520 => 0.025888012725791
521 => 0.025931682567257
522 => 0.02592465071698
523 => 0.025733572544822
524 => 0.025855360073722
525 => 0.025567296261264
526 => 0.025254070131002
527 => 0.025054251374571
528 => 0.024879883007474
529 => 0.024976632711889
530 => 0.024631737681449
531 => 0.024521398819846
601 => 0.025814101199237
602 => 0.026769034345785
603 => 0.02675514923964
604 => 0.026670627226936
605 => 0.026545044660723
606 => 0.027145734334504
607 => 0.026936466063328
608 => 0.027088726215557
609 => 0.027127482814638
610 => 0.027244787367315
611 => 0.02728671366223
612 => 0.027159983279313
613 => 0.026734660635429
614 => 0.025674797045335
615 => 0.025181427683098
616 => 0.025018607575844
617 => 0.025024525777503
618 => 0.024861275355724
619 => 0.024909359921309
620 => 0.024844553506132
621 => 0.024721825834142
622 => 0.024969054623981
623 => 0.024997545438914
624 => 0.024939839285202
625 => 0.024953431173394
626 => 0.024475648867276
627 => 0.024511973618321
628 => 0.024309712788573
629 => 0.024271791321286
630 => 0.023760493556548
701 => 0.022854655452519
702 => 0.023356577693983
703 => 0.022750326207241
704 => 0.022520729583003
705 => 0.023607604292546
706 => 0.02349851221692
707 => 0.023311794004633
708 => 0.023035598853176
709 => 0.022933155384846
710 => 0.022310741300939
711 => 0.022273965756412
712 => 0.02258245098299
713 => 0.022440095665253
714 => 0.022240174884975
715 => 0.021516082084452
716 => 0.020701962037777
717 => 0.02072653520461
718 => 0.020985491644215
719 => 0.021738442417401
720 => 0.021444251524137
721 => 0.021230812655622
722 => 0.021190841971498
723 => 0.021691158767605
724 => 0.022399211853707
725 => 0.022731414519911
726 => 0.022402211766848
727 => 0.022024041369664
728 => 0.022047058849467
729 => 0.022200183830589
730 => 0.022216275101034
731 => 0.021970125049012
801 => 0.022039414846824
802 => 0.021934157307956
803 => 0.021288191986212
804 => 0.02127650852192
805 => 0.021117978214366
806 => 0.021113177979657
807 => 0.020843478379269
808 => 0.020805745540829
809 => 0.020270240614664
810 => 0.020622711578724
811 => 0.020386292561589
812 => 0.020029953337157
813 => 0.019968520320553
814 => 0.019966673569891
815 => 0.02033255427739
816 => 0.020618436049631
817 => 0.020390405171612
818 => 0.020338486960879
819 => 0.020892837622384
820 => 0.020822291447689
821 => 0.020761198915377
822 => 0.022335813465841
823 => 0.021089383180443
824 => 0.020545868432256
825 => 0.019873165720724
826 => 0.02009220111566
827 => 0.020138355091673
828 => 0.018520626334215
829 => 0.017864313978789
830 => 0.017639092311017
831 => 0.017509474057047
901 => 0.017568542723024
902 => 0.01697778462538
903 => 0.017374783837234
904 => 0.016863237260213
905 => 0.016777474811859
906 => 0.017692183460033
907 => 0.017819459824776
908 => 0.017276459311116
909 => 0.017625153544684
910 => 0.017498712168379
911 => 0.016872006258049
912 => 0.016848070702011
913 => 0.016533611705985
914 => 0.016041544268464
915 => 0.015816656245585
916 => 0.015699532610702
917 => 0.015747860105149
918 => 0.015723424245111
919 => 0.015563963729311
920 => 0.015732564335219
921 => 0.015301859457703
922 => 0.015130349305051
923 => 0.015052882148104
924 => 0.014670606778861
925 => 0.015278976889955
926 => 0.015398833465885
927 => 0.015518926196295
928 => 0.016564251423729
929 => 0.016512029929425
930 => 0.016984086805035
1001 => 0.016965743542906
1002 => 0.016831105275167
1003 => 0.016263088570499
1004 => 0.016489489905055
1005 => 0.015792661787869
1006 => 0.016314772792971
1007 => 0.01607650313412
1008 => 0.016234213581636
1009 => 0.015950635976824
1010 => 0.016107579531959
1011 => 0.015427255906424
1012 => 0.014791979277311
1013 => 0.015047633137747
1014 => 0.015325558121606
1015 => 0.015928170300582
1016 => 0.015569259458226
1017 => 0.015698337369059
1018 => 0.015265947975151
1019 => 0.014373805149596
1020 => 0.014378854581102
1021 => 0.014241617843778
1022 => 0.014123025265839
1023 => 0.015610484685955
1024 => 0.01542549559381
1025 => 0.01513073968625
1026 => 0.015525282181653
1027 => 0.015629605479668
1028 => 0.015632575417302
1029 => 0.015920423437332
1030 => 0.016074047977221
1031 => 0.016101124968223
1101 => 0.016554060047109
1102 => 0.016705877911193
1103 => 0.017331194207287
1104 => 0.016061014008326
1105 => 0.016034855482994
1106 => 0.015530834203669
1107 => 0.015211175940059
1108 => 0.015552721478458
1109 => 0.015855284199863
1110 => 0.015540235670813
1111 => 0.015581374357669
1112 => 0.01515844744783
1113 => 0.015309623917537
1114 => 0.015439837458918
1115 => 0.015367941194966
1116 => 0.01526030900801
1117 => 0.015830477507088
1118 => 0.015798306365861
1119 => 0.016329260380319
1120 => 0.016743177003475
1121 => 0.017484989588616
1122 => 0.016710869484456
1123 => 0.016682657471012
1124 => 0.01695843442778
1125 => 0.016705835691178
1126 => 0.016865469373298
1127 => 0.0174592701345
1128 => 0.017471816208885
1129 => 0.017261653298229
1130 => 0.017248864866016
1201 => 0.017289228951938
1202 => 0.017525642663931
1203 => 0.017443032448701
1204 => 0.0175386310812
1205 => 0.017658178634998
1206 => 0.01815267800462
1207 => 0.018271900128516
1208 => 0.017982252177033
1209 => 0.018008404144001
1210 => 0.017900067859132
1211 => 0.017795416365398
1212 => 0.018030657640188
1213 => 0.018460565693546
1214 => 0.018457891257858
1215 => 0.018557621570019
1216 => 0.018619752728284
1217 => 0.018353040314221
1218 => 0.018179420339953
1219 => 0.018245997285814
1220 => 0.018352455272101
1221 => 0.018211474395665
1222 => 0.017341275117607
1223 => 0.017605237990025
1224 => 0.01756130166093
1225 => 0.017498730985458
1226 => 0.017764147694838
1227 => 0.01773854760573
1228 => 0.016971725547221
1229 => 0.017020815007459
1230 => 0.016974710839888
1231 => 0.017123682837335
]
'min_raw' => 0.014123025265839
'max_raw' => 0.031637320022704
'avg_raw' => 0.022880172644271
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.014123'
'max' => '$0.031637'
'avg' => '$0.02288'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.003443972916503
'max_diff' => -0.022990184450516
'year' => 2034
]
9 => [
'items' => [
101 => 0.016697790714431
102 => 0.016828792263009
103 => 0.016910955206214
104 => 0.016959349810967
105 => 0.017134184307827
106 => 0.017113669497553
107 => 0.017132909078416
108 => 0.017392142482664
109 => 0.018703256083184
110 => 0.018774617103651
111 => 0.018423209339804
112 => 0.018563589810249
113 => 0.018294090004828
114 => 0.018475007029699
115 => 0.018598785863321
116 => 0.018039453115482
117 => 0.018006333060194
118 => 0.01773572093321
119 => 0.017881132561997
120 => 0.01764977220513
121 => 0.017706539944064
122 => 0.017547812397084
123 => 0.017833490379309
124 => 0.018152922753306
125 => 0.018233623985745
126 => 0.018021333787264
127 => 0.017867621692958
128 => 0.017597753891269
129 => 0.018046550059875
130 => 0.01817779173639
131 => 0.018045860703219
201 => 0.018015289400083
202 => 0.017957356835882
203 => 0.018027580067443
204 => 0.018177076966034
205 => 0.018106576989433
206 => 0.018153143466028
207 => 0.017975680076391
208 => 0.018353128607128
209 => 0.018952607711875
210 => 0.018954535135221
211 => 0.018884034778599
212 => 0.01885518755162
213 => 0.018927525195834
214 => 0.018966765400375
215 => 0.019200692077307
216 => 0.019451704721706
217 => 0.020623071207718
218 => 0.020294156185744
219 => 0.021333462217038
220 => 0.022155418350793
221 => 0.022401887055521
222 => 0.02217514744442
223 => 0.021399483483077
224 => 0.021361425708634
225 => 0.022520595143757
226 => 0.022193076685011
227 => 0.022154119406498
228 => 0.021739679782484
301 => 0.021984664929622
302 => 0.021931083084228
303 => 0.021846501519959
304 => 0.022313916114886
305 => 0.023188874510201
306 => 0.023052504038983
307 => 0.022950709808263
308 => 0.022504677121104
309 => 0.022773288423781
310 => 0.022677641083808
311 => 0.023088602755633
312 => 0.02284515816516
313 => 0.022190595410562
314 => 0.022294836686699
315 => 0.022279080827515
316 => 0.022603335293044
317 => 0.022506002150983
318 => 0.022260074969387
319 => 0.023185883997526
320 => 0.023125767108859
321 => 0.023210999112355
322 => 0.023248520876181
323 => 0.023812044517024
324 => 0.024042902121932
325 => 0.024095310839977
326 => 0.024314607709472
327 => 0.02408985453409
328 => 0.024989027481919
329 => 0.025586925024029
330 => 0.026281413786717
331 => 0.027296248529985
401 => 0.0276778357812
402 => 0.027608905459723
403 => 0.02837834157992
404 => 0.02976100118431
405 => 0.027888380497521
406 => 0.029860254627788
407 => 0.029235982044527
408 => 0.0277558429798
409 => 0.027660539473725
410 => 0.028662906833126
411 => 0.030886061161994
412 => 0.03032918621742
413 => 0.030886972009908
414 => 0.030236285254434
415 => 0.030203973172606
416 => 0.030855369606555
417 => 0.032377392880248
418 => 0.031654336675106
419 => 0.030617658304379
420 => 0.031383125480822
421 => 0.030720006971944
422 => 0.02922581537626
423 => 0.030328760385645
424 => 0.029591252467934
425 => 0.0298064964864
426 => 0.031356628433404
427 => 0.0311701124564
428 => 0.031411481401558
429 => 0.03098547153108
430 => 0.030587511136463
501 => 0.029844688506983
502 => 0.029624775347107
503 => 0.02968555143285
504 => 0.029624745229498
505 => 0.029209142795196
506 => 0.029119393489079
507 => 0.028969807380209
508 => 0.029016170370242
509 => 0.028734904722607
510 => 0.029265711112142
511 => 0.02936423345549
512 => 0.029750510080215
513 => 0.029790614600817
514 => 0.030866389502371
515 => 0.030273870764258
516 => 0.030671383489391
517 => 0.03063582620972
518 => 0.027787922081506
519 => 0.028180338143103
520 => 0.028790814388004
521 => 0.028515795667158
522 => 0.02812698354035
523 => 0.027812996901165
524 => 0.027337275036018
525 => 0.028006844425783
526 => 0.028887256972558
527 => 0.029812943315905
528 => 0.030925094804065
529 => 0.030676875538778
530 => 0.02979215241743
531 => 0.029831840450363
601 => 0.03007717625329
602 => 0.029759444097392
603 => 0.029665738681749
604 => 0.030064302568125
605 => 0.030067047258564
606 => 0.029701458013989
607 => 0.02929517247077
608 => 0.02929347011951
609 => 0.029221175531347
610 => 0.030249146301065
611 => 0.030814426284843
612 => 0.030879234723989
613 => 0.030810064160522
614 => 0.030836685165119
615 => 0.030507761197653
616 => 0.031259583847907
617 => 0.031949530659334
618 => 0.031764610175308
619 => 0.031487388081757
620 => 0.031266567331418
621 => 0.031712591824312
622 => 0.031692731055751
623 => 0.031943504575832
624 => 0.031932128040424
625 => 0.031847802337689
626 => 0.031764613186844
627 => 0.032094448766671
628 => 0.031999461416678
629 => 0.031904326525094
630 => 0.031713518935601
701 => 0.031739452855991
702 => 0.031462278628743
703 => 0.031334045148589
704 => 0.029405721282204
705 => 0.028890410135306
706 => 0.029052537512246
707 => 0.02910591405437
708 => 0.028881649982851
709 => 0.029203187052696
710 => 0.029153075840953
711 => 0.029348029251768
712 => 0.029226230824584
713 => 0.02923122947452
714 => 0.029589412678706
715 => 0.029693394786702
716 => 0.029640508647337
717 => 0.029677548286517
718 => 0.030531111137977
719 => 0.030409761795903
720 => 0.030345297376508
721 => 0.030363154461238
722 => 0.03058125807038
723 => 0.030642315172924
724 => 0.030383611939038
725 => 0.030505617879684
726 => 0.031025103690097
727 => 0.031206894323391
728 => 0.03178708276041
729 => 0.031540608400337
730 => 0.031993022755412
731 => 0.033383590243492
801 => 0.034494471772922
802 => 0.033472859209338
803 => 0.035512851668226
804 => 0.037101278417008
805 => 0.037040311952727
806 => 0.036763333008104
807 => 0.034954951385125
808 => 0.033290851654209
809 => 0.034682941740527
810 => 0.034686490464443
811 => 0.034566908691445
812 => 0.033824196569541
813 => 0.034541063919525
814 => 0.034597966246486
815 => 0.034566116074938
816 => 0.033996680432455
817 => 0.033127257455682
818 => 0.033297140624239
819 => 0.033575412719858
820 => 0.03304858558921
821 => 0.032880232399387
822 => 0.033193233009773
823 => 0.034201786192706
824 => 0.034011125055623
825 => 0.034006146122812
826 => 0.034821875320156
827 => 0.034237989260236
828 => 0.033299283395035
829 => 0.033062247784063
830 => 0.032220931051431
831 => 0.032802031515327
901 => 0.03282294428651
902 => 0.032504681501137
903 => 0.033325108666022
904 => 0.033317548285264
905 => 0.034096421773855
906 => 0.035585335352516
907 => 0.035144990342319
908 => 0.03463291700486
909 => 0.034688593574895
910 => 0.035299228126698
911 => 0.034930024537247
912 => 0.035062792722192
913 => 0.035299027166149
914 => 0.035441553271559
915 => 0.034668086261679
916 => 0.034487754102472
917 => 0.034118857792721
918 => 0.034022619631283
919 => 0.034323077978301
920 => 0.034243917819212
921 => 0.03282118664907
922 => 0.032672503325789
923 => 0.032677063231043
924 => 0.032303191945145
925 => 0.031732948494762
926 => 0.033231514234903
927 => 0.033111158433555
928 => 0.032978294943667
929 => 0.03299456996307
930 => 0.03364504655976
1001 => 0.033267737283824
1002 => 0.034270875833673
1003 => 0.034064660704929
1004 => 0.033853156936254
1005 => 0.03382392067286
1006 => 0.033742509766574
1007 => 0.033463321477254
1008 => 0.033126184841285
1009 => 0.032903578031942
1010 => 0.030351811457913
1011 => 0.030825404491109
1012 => 0.031370230106439
1013 => 0.031558301725599
1014 => 0.031236592206866
1015 => 0.033476024529896
1016 => 0.03388519039502
1017 => 0.03264580030033
1018 => 0.032413961017577
1019 => 0.033491223874676
1020 => 0.032841502681817
1021 => 0.033134072095179
1022 => 0.032501697050404
1023 => 0.033786634319887
1024 => 0.033776845250752
1025 => 0.033276975631299
1026 => 0.033699462010702
1027 => 0.033626044605401
1028 => 0.033061693036163
1029 => 0.033804525271248
1030 => 0.033804893706769
1031 => 0.033323780066147
1101 => 0.03276194466322
1102 => 0.032661501763137
1103 => 0.032585831530529
1104 => 0.033115461856627
1105 => 0.033590326750895
1106 => 0.034473932590137
1107 => 0.034696092092079
1108 => 0.035563195418155
1109 => 0.035046877605971
1110 => 0.035275754604677
1111 => 0.035524232963401
1112 => 0.035643362626062
1113 => 0.035449247233606
1114 => 0.036796215612971
1115 => 0.036909941014234
1116 => 0.036948072157556
1117 => 0.036493881998667
1118 => 0.036897309164291
1119 => 0.036708558953599
1120 => 0.037199634565501
1121 => 0.037276641491816
1122 => 0.037211419364828
1123 => 0.037235862578712
1124 => 0.036086462688429
1125 => 0.036026860240551
1126 => 0.035214176634529
1127 => 0.035545351211037
1128 => 0.034926236213866
1129 => 0.03512256395706
1130 => 0.03520910335558
1201 => 0.035163900084861
1202 => 0.035564075324702
1203 => 0.035223844620437
1204 => 0.034325919852774
1205 => 0.033427750446109
1206 => 0.033416474660841
1207 => 0.033180002510073
1208 => 0.033009076457102
1209 => 0.033042002878832
1210 => 0.033158039883668
1211 => 0.033002332175438
1212 => 0.03303556030957
1213 => 0.033587368734063
1214 => 0.033698029978277
1215 => 0.033321959832297
1216 => 0.031811983929525
1217 => 0.031441432055497
1218 => 0.031707777394185
1219 => 0.031580481477129
1220 => 0.025487913307565
1221 => 0.026919271826663
1222 => 0.026068807198957
1223 => 0.0264607404274
1224 => 0.02559263626926
1225 => 0.026006941074762
1226 => 0.025930434105175
1227 => 0.028232016246906
1228 => 0.028196080207486
1229 => 0.028213280887864
1230 => 0.027392247597303
1231 => 0.028700175922649
]
'min_raw' => 0.016697790714431
'max_raw' => 0.037276641491816
'avg_raw' => 0.026987216103123
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.016697'
'max' => '$0.037276'
'avg' => '$0.026987'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0025747654485924
'max_diff' => 0.0056393214691117
'year' => 2035
]
10 => [
'items' => [
101 => 0.029344508447296
102 => 0.029225259645339
103 => 0.029255271999677
104 => 0.028739560316462
105 => 0.028218274104247
106 => 0.027640087469528
107 => 0.028714286770808
108 => 0.028594854145699
109 => 0.028868789617197
110 => 0.029565484649428
111 => 0.029668075639411
112 => 0.029805958970324
113 => 0.029756537611396
114 => 0.030933954884931
115 => 0.030791361884256
116 => 0.031134969989076
117 => 0.030428142047853
118 => 0.029628299139635
119 => 0.029780323127653
120 => 0.029765681995107
121 => 0.02957928357349
122 => 0.02941101141289
123 => 0.029130885675878
124 => 0.030017244958591
125 => 0.029981260390395
126 => 0.030563808722003
127 => 0.030460837645819
128 => 0.029773171597763
129 => 0.029797731725199
130 => 0.029962910385403
131 => 0.030534595614347
201 => 0.030704310713596
202 => 0.030625691917647
203 => 0.030811776776185
204 => 0.030958850661082
205 => 0.030830246991738
206 => 0.032651003748509
207 => 0.031894898600379
208 => 0.032263418988632
209 => 0.032351308929782
210 => 0.032126180693652
211 => 0.032175002946831
212 => 0.032248955357129
213 => 0.032697979911093
214 => 0.033876350266994
215 => 0.034398242476185
216 => 0.035968380937242
217 => 0.034354906593302
218 => 0.034259169702953
219 => 0.034541999053428
220 => 0.035463836546105
221 => 0.036210899250126
222 => 0.036458743048131
223 => 0.036491499697493
224 => 0.036956471138895
225 => 0.037222984097902
226 => 0.036900011375946
227 => 0.036626325810741
228 => 0.03564601808728
229 => 0.03575949137556
301 => 0.036541209805763
302 => 0.03764543313141
303 => 0.038592971619672
304 => 0.038261176666133
305 => 0.040792537950901
306 => 0.041043512082602
307 => 0.041008835572566
308 => 0.041580591994539
309 => 0.040445771933092
310 => 0.03996061437072
311 => 0.036685499736401
312 => 0.037605673358455
313 => 0.038943199758012
314 => 0.038766173123564
315 => 0.037794825700023
316 => 0.038592234765548
317 => 0.038328586391198
318 => 0.038120635979568
319 => 0.039073297128418
320 => 0.038025807062094
321 => 0.038932750243312
322 => 0.037769586232274
323 => 0.038262692277532
324 => 0.037982781437388
325 => 0.038163918055544
326 => 0.037104997087034
327 => 0.037676365137788
328 => 0.037081226297639
329 => 0.037080944124339
330 => 0.037067806401458
331 => 0.037767984607644
401 => 0.03779081739381
402 => 0.037273384641528
403 => 0.037198814498106
404 => 0.037474539402133
405 => 0.037151737751984
406 => 0.037302774612399
407 => 0.037156312504622
408 => 0.037123340799197
409 => 0.036860616640701
410 => 0.036747427849469
411 => 0.036791812091027
412 => 0.036640305792945
413 => 0.036549017768129
414 => 0.037049646915635
415 => 0.036782180957445
416 => 0.037008653921541
417 => 0.036750559395787
418 => 0.035855891323091
419 => 0.035341358253541
420 => 0.033651413199993
421 => 0.034130679520809
422 => 0.034448433587347
423 => 0.034343415870251
424 => 0.034569034563033
425 => 0.034582885718371
426 => 0.034509534781437
427 => 0.034424603793305
428 => 0.034383264085261
429 => 0.034691376400037
430 => 0.034870245969349
501 => 0.034480324458925
502 => 0.034388971304614
503 => 0.03478320347981
504 => 0.035023684878938
505 => 0.03679926441528
506 => 0.036667723748181
507 => 0.036997865009046
508 => 0.036960696169504
509 => 0.037306736806517
510 => 0.037872367000351
511 => 0.036722282663598
512 => 0.036921897537534
513 => 0.036872956580226
514 => 0.037407281119112
515 => 0.037408949221999
516 => 0.037088594969446
517 => 0.037262264206909
518 => 0.037165326802924
519 => 0.037340505793801
520 => 0.036665966942376
521 => 0.037487482451443
522 => 0.037953228807793
523 => 0.037959695696403
524 => 0.038180455772922
525 => 0.038404760796226
526 => 0.038835294755608
527 => 0.038392753437772
528 => 0.037596664687512
529 => 0.03765413972393
530 => 0.03718739318093
531 => 0.037195239274643
601 => 0.037153356211496
602 => 0.037279050436809
603 => 0.036693549756432
604 => 0.036830965595835
605 => 0.036638582615965
606 => 0.036921479334508
607 => 0.036617129229859
608 => 0.036872932979414
609 => 0.036983329397694
610 => 0.03739069455781
611 => 0.036556961064491
612 => 0.034856922032819
613 => 0.035214290848257
614 => 0.034685714299509
615 => 0.034734636071529
616 => 0.03483346583685
617 => 0.034513126232356
618 => 0.034574236933832
619 => 0.034572053629546
620 => 0.034553239092725
621 => 0.034469906389493
622 => 0.034349057482935
623 => 0.034830482331332
624 => 0.034912285794254
625 => 0.035094124759023
626 => 0.03563515417563
627 => 0.035581092578559
628 => 0.035669269286376
629 => 0.035476780028302
630 => 0.034743565096138
701 => 0.034783382194558
702 => 0.034286862339236
703 => 0.035081427629994
704 => 0.034893264081393
705 => 0.034771953817534
706 => 0.034738853188108
707 => 0.035281223711991
708 => 0.035443509473354
709 => 0.035342383877465
710 => 0.035134972329993
711 => 0.035533263816859
712 => 0.035639829816176
713 => 0.03566368601342
714 => 0.03636938216333
715 => 0.035703126588894
716 => 0.035863500927671
717 => 0.037114695737941
718 => 0.035980034698108
719 => 0.036581089956868
720 => 0.036551671429693
721 => 0.036859150961473
722 => 0.036526449133432
723 => 0.03653057337133
724 => 0.036803594365083
725 => 0.036420185618952
726 => 0.036325248221521
727 => 0.036194092886924
728 => 0.036480465761794
729 => 0.036652133348748
730 => 0.038035648023647
731 => 0.038929461599567
801 => 0.03889065879497
802 => 0.039245243793174
803 => 0.039085500003857
804 => 0.03856964516987
805 => 0.03945014646969
806 => 0.039171519016688
807 => 0.039194488725381
808 => 0.039193633791676
809 => 0.039378896689888
810 => 0.03924762094741
811 => 0.038988862983806
812 => 0.039160638595775
813 => 0.039670750752416
814 => 0.041254154538782
815 => 0.042140248274943
816 => 0.041200810583253
817 => 0.041848822123409
818 => 0.041460246109436
819 => 0.041389630288562
820 => 0.041796629423457
821 => 0.042204340956459
822 => 0.042178371494392
823 => 0.041882393857651
824 => 0.041715203600811
825 => 0.042981224238451
826 => 0.043914006678165
827 => 0.043850397169229
828 => 0.044131148854751
829 => 0.044955444486765
830 => 0.045030807748948
831 => 0.045021313710117
901 => 0.044834518001456
902 => 0.045646144099488
903 => 0.046323216869668
904 => 0.044791280191947
905 => 0.0453746216243
906 => 0.04563650238737
907 => 0.046021021044078
908 => 0.046669768470755
909 => 0.047374480247882
910 => 0.047474134219939
911 => 0.047403424957883
912 => 0.046938648597198
913 => 0.04770975263269
914 => 0.048161447292067
915 => 0.048430421124877
916 => 0.049112494011906
917 => 0.045638119673808
918 => 0.043178784829693
919 => 0.042794724180559
920 => 0.043575726613012
921 => 0.043781670726073
922 => 0.04369865491233
923 => 0.040930449952337
924 => 0.042780150154338
925 => 0.04477027204448
926 => 0.044846720731307
927 => 0.045843017360999
928 => 0.046167452383205
929 => 0.046969601757691
930 => 0.046919427095915
1001 => 0.047114737703618
1002 => 0.047069839177215
1003 => 0.048555651980972
1004 => 0.050194724148852
1005 => 0.050137968291609
1006 => 0.049902332274854
1007 => 0.050252291941646
1008 => 0.051943990072546
1009 => 0.051788245617563
1010 => 0.051939538089298
1011 => 0.053934145525559
1012 => 0.056527418922296
1013 => 0.05532258306912
1014 => 0.057936730188336
1015 => 0.059582197229898
1016 => 0.062427862333812
1017 => 0.062071571047606
1018 => 0.063179367590104
1019 => 0.061433735285061
1020 => 0.057425410662187
1021 => 0.056791077947367
1022 => 0.0580610281063
1023 => 0.061183076652111
1024 => 0.057962703687165
1025 => 0.058614180943751
1026 => 0.058426555450027
1027 => 0.058416557684823
1028 => 0.058798131718792
1029 => 0.058244638680957
1030 => 0.055989608473318
1031 => 0.057023075528502
1101 => 0.056624004267331
1102 => 0.057066803584334
1103 => 0.059456408873867
1104 => 0.058399907414289
1105 => 0.057286968949833
1106 => 0.058682840765077
1107 => 0.060460265259479
1108 => 0.060349037228958
1109 => 0.060133208360038
1110 => 0.06134982439371
1111 => 0.063359317646283
1112 => 0.063902475597656
1113 => 0.064303423692984
1114 => 0.064358707661257
1115 => 0.064928166893255
1116 => 0.061866041080597
1117 => 0.066725713386253
1118 => 0.067564844547701
1119 => 0.067407122667772
1120 => 0.068339781637685
1121 => 0.068065369709462
1122 => 0.06766778987938
1123 => 0.069146252728944
1124 => 0.067451314377719
1125 => 0.065045562774959
1126 => 0.063725719865314
1127 => 0.065463795477426
1128 => 0.066525177603262
1129 => 0.067226683671858
1130 => 0.067438958984354
1201 => 0.062103745190679
1202 => 0.059228360860411
1203 => 0.061071449249765
1204 => 0.063320144287942
1205 => 0.061853549466121
1206 => 0.061911037206505
1207 => 0.059820058404927
1208 => 0.063505149514722
1209 => 0.062968262736519
1210 => 0.065753632291569
1211 => 0.065088881493269
1212 => 0.06736024223799
1213 => 0.066762116832317
1214 => 0.069244901950523
1215 => 0.0702353521529
1216 => 0.071898472193954
1217 => 0.07312187006627
1218 => 0.073840272696766
1219 => 0.073797142497492
1220 => 0.076643811626287
1221 => 0.074965230296081
1222 => 0.072856536534097
1223 => 0.072818396916787
1224 => 0.073910519296539
1225 => 0.076199308195358
1226 => 0.076792757856298
1227 => 0.077124415256872
1228 => 0.076616470402816
1229 => 0.074794490673885
1230 => 0.074007769064579
1231 => 0.074678078669227
]
'min_raw' => 0.027640087469528
'max_raw' => 0.077124415256872
'avg_raw' => 0.0523822513632
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.02764'
'max' => '$0.077124'
'avg' => '$0.052382'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.010942296755097
'max_diff' => 0.039847773765056
'year' => 2036
]
11 => [
'items' => [
101 => 0.073858347623104
102 => 0.075273433384621
103 => 0.077216648381193
104 => 0.076815382168706
105 => 0.078156754955858
106 => 0.079544934674029
107 => 0.081530094018064
108 => 0.082049088180833
109 => 0.082906965796309
110 => 0.08379000366075
111 => 0.084073611624271
112 => 0.084615107225015
113 => 0.084612253275909
114 => 0.086244086715609
115 => 0.088044049533273
116 => 0.088723493827706
117 => 0.090285838517977
118 => 0.087610377986975
119 => 0.089639745533216
120 => 0.091470285858289
121 => 0.089287840218417
122 => 0.092295833088365
123 => 0.092412626635246
124 => 0.094176070529473
125 => 0.092388482307702
126 => 0.091327018127798
127 => 0.094391425442637
128 => 0.095874195614362
129 => 0.095427573171455
130 => 0.092028754328459
131 => 0.090050495979638
201 => 0.084873012303237
202 => 0.091005965368585
203 => 0.093993147906022
204 => 0.092021018247338
205 => 0.093015645735247
206 => 0.098442010800232
207 => 0.10050801928586
208 => 0.10007830396334
209 => 0.10015091877913
210 => 0.10126569945727
211 => 0.10620925090506
212 => 0.10324696028692
213 => 0.10551152046958
214 => 0.10671263502498
215 => 0.10782829716288
216 => 0.10508858356084
217 => 0.10152425641896
218 => 0.10039528439286
219 => 0.091824928819209
220 => 0.091378804592433
221 => 0.091128381544996
222 => 0.089549499653948
223 => 0.088308930979732
224 => 0.087322384710634
225 => 0.084733392692867
226 => 0.085607101498205
227 => 0.081480788586513
228 => 0.084120657359863
301 => 0.077534962319493
302 => 0.083019724844098
303 => 0.080034617963506
304 => 0.082039036949631
305 => 0.082032043720616
306 => 0.078341272865542
307 => 0.076212513260757
308 => 0.077569041733489
309 => 0.079023347937622
310 => 0.079259304226369
311 => 0.081144850181303
312 => 0.08167106552765
313 => 0.080076608461572
314 => 0.077398488427886
315 => 0.078020554630297
316 => 0.07619990710902
317 => 0.073009292358177
318 => 0.075300847575022
319 => 0.076083285278623
320 => 0.076428854343026
321 => 0.073291251180152
322 => 0.072305348145698
323 => 0.071780461642683
324 => 0.076993463259893
325 => 0.077279043256169
326 => 0.075817975618276
327 => 0.082422139885671
328 => 0.080927414115094
329 => 0.082597389017534
330 => 0.077964108642618
331 => 0.078141106192479
401 => 0.075947637011382
402 => 0.077175833185133
403 => 0.076307783716136
404 => 0.077076607071565
405 => 0.077537436620831
406 => 0.079730545875219
407 => 0.083044766628943
408 => 0.079402968486362
409 => 0.07781618488413
410 => 0.078800616506545
411 => 0.081422287643919
412 => 0.085394253617917
413 => 0.083042769818046
414 => 0.084086318397644
415 => 0.084314287338042
416 => 0.082580390240678
417 => 0.085458184877102
418 => 0.087000418401924
419 => 0.088582430878129
420 => 0.089956047984235
421 => 0.087950540305933
422 => 0.09009672099995
423 => 0.088367278212464
424 => 0.08681578924558
425 => 0.086818142213916
426 => 0.085844870521353
427 => 0.083959033976887
428 => 0.083611256784164
429 => 0.085420437660127
430 => 0.086871229392583
501 => 0.086990723548492
502 => 0.08779395639595
503 => 0.08826930132112
504 => 0.092928327787871
505 => 0.094802226774287
506 => 0.097093594983783
507 => 0.097986212035819
508 => 0.10067266934152
509 => 0.098503136883772
510 => 0.098033744889539
511 => 0.091517278199394
512 => 0.092584349254846
513 => 0.094292832971667
514 => 0.091545450466611
515 => 0.093288032305787
516 => 0.093632054873771
517 => 0.091452095460388
518 => 0.092616505973562
519 => 0.089524176874228
520 => 0.083112170952948
521 => 0.085465323272662
522 => 0.087198035442477
523 => 0.084725241534281
524 => 0.089157628904383
525 => 0.086568319705817
526 => 0.085747632998632
527 => 0.082545841557968
528 => 0.084056963869707
529 => 0.086100778433521
530 => 0.08483793865203
531 => 0.087458520814972
601 => 0.091169964041432
602 => 0.093814959504873
603 => 0.094018009413516
604 => 0.092317454531457
605 => 0.095042604582753
606 => 0.095062454325763
607 => 0.091988473935336
608 => 0.090105678062194
609 => 0.08967790287838
610 => 0.090746569157813
611 => 0.092044127307723
612 => 0.094090014860291
613 => 0.095326301860176
614 => 0.098549882679918
615 => 0.099422091222435
616 => 0.10038038397355
617 => 0.10166095861559
618 => 0.10319861680595
619 => 0.099834308224369
620 => 0.099967978476171
621 => 0.096835180907024
622 => 0.093487337415774
623 => 0.09602793331105
624 => 0.099349424482816
625 => 0.098587470738091
626 => 0.098501735376507
627 => 0.098645918473685
628 => 0.098071430233246
629 => 0.095473041213266
630 => 0.094168146514208
701 => 0.095851793590135
702 => 0.09674657708048
703 => 0.098134308240684
704 => 0.097963241083737
705 => 0.10153788752098
706 => 0.10292688703479
707 => 0.10257152152052
708 => 0.10263691732749
709 => 0.10515163459999
710 => 0.10794851739805
711 => 0.11056816721964
712 => 0.11323298753473
713 => 0.11002044263518
714 => 0.10838931045741
715 => 0.11007222250569
716 => 0.10917924568417
717 => 0.11431055537476
718 => 0.11466583612449
719 => 0.11979677476299
720 => 0.12466664651173
721 => 0.12160796731916
722 => 0.12449216403181
723 => 0.12761165792856
724 => 0.13362966777502
725 => 0.13160301377487
726 => 0.13005062857248
727 => 0.12858363205728
728 => 0.13163621892626
729 => 0.13556332316694
730 => 0.13640918380705
731 => 0.13777980118766
801 => 0.13633876460307
802 => 0.13807433444423
803 => 0.14420165863156
804 => 0.14254600154876
805 => 0.14019470233102
806 => 0.14503163630245
807 => 0.14678210390361
808 => 0.15906780225552
809 => 0.17457900392169
810 => 0.16815726457985
811 => 0.16417108374214
812 => 0.16510793079248
813 => 0.17077209655365
814 => 0.17259124682451
815 => 0.16764616928962
816 => 0.16939285427462
817 => 0.17901726027222
818 => 0.18418044530203
819 => 0.17716814652329
820 => 0.15782149230456
821 => 0.13998299356258
822 => 0.14471456670702
823 => 0.14417815315025
824 => 0.15451837672558
825 => 0.1425065146749
826 => 0.14270876362569
827 => 0.15326281207407
828 => 0.15044717289024
829 => 0.14588619801226
830 => 0.14001629372667
831 => 0.12916523275434
901 => 0.11955414544692
902 => 0.13840370095798
903 => 0.13759087384865
904 => 0.13641377974011
905 => 0.13903327530378
906 => 0.15175280220415
907 => 0.15145957594001
908 => 0.14959422005287
909 => 0.15100907605277
910 => 0.14563816691475
911 => 0.14702237249294
912 => 0.13998016785324
913 => 0.14316353845883
914 => 0.14587641220861
915 => 0.14642106177866
916 => 0.14764818507047
917 => 0.13716255089718
918 => 0.14187029279895
919 => 0.14463565011047
920 => 0.13214166517245
921 => 0.14438868419947
922 => 0.13698001933466
923 => 0.13446540720513
924 => 0.13785100116258
925 => 0.13653163190477
926 => 0.13539731569286
927 => 0.13476434775658
928 => 0.13725035430457
929 => 0.13713437912768
930 => 0.1330667899021
1001 => 0.12776078557348
1002 => 0.12954165478982
1003 => 0.12889464830779
1004 => 0.1265498133514
1005 => 0.12812994899555
1006 => 0.12117183130705
1007 => 0.10920075147546
1008 => 0.1171092134963
1009 => 0.11680474631125
1010 => 0.11665122015006
1011 => 0.12259421078488
1012 => 0.12202292936346
1013 => 0.12098604798959
1014 => 0.12653077021184
1015 => 0.12450687201368
1016 => 0.13074404937001
1017 => 0.13485225777223
1018 => 0.13381028323481
1019 => 0.13767407309379
1020 => 0.12958268241972
1021 => 0.1322703178314
1022 => 0.13282423576484
1023 => 0.1264623492003
1024 => 0.12211639806917
1025 => 0.12182657267619
1026 => 0.11429129232376
1027 => 0.11831657826537
1028 => 0.12185866331634
1029 => 0.12016227945383
1030 => 0.11962525500098
1031 => 0.12236879646417
1101 => 0.1225819931327
1102 => 0.11772108649658
1103 => 0.11873182291112
1104 => 0.12294676178072
1105 => 0.11862561726603
1106 => 0.11023033932893
1107 => 0.10814819432673
1108 => 0.10787039780189
1109 => 0.10222345541892
1110 => 0.10828733321194
1111 => 0.10564028805347
1112 => 0.11400227199261
1113 => 0.10922595161279
1114 => 0.10902005398753
1115 => 0.10870880952833
1116 => 0.10384825294706
1117 => 0.10491240593387
1118 => 0.10844981253711
1119 => 0.10971199906489
1120 => 0.10958034266925
1121 => 0.10843247731493
1122 => 0.10895796419612
1123 => 0.10726518786005
1124 => 0.10666743330369
1125 => 0.10478075549848
1126 => 0.10200786033287
1127 => 0.10239344841281
1128 => 0.096899617522246
1129 => 0.093906286873394
1130 => 0.093077772401256
1201 => 0.091969848223109
1202 => 0.093202915385251
1203 => 0.096884054189597
1204 => 0.092443819794393
1205 => 0.084831349370045
1206 => 0.085288871813567
1207 => 0.086316788904528
1208 => 0.084401272205875
1209 => 0.08258839640773
1210 => 0.084164544830954
1211 => 0.080939040758734
1212 => 0.086706575661628
1213 => 0.086550580005834
1214 => 0.088700360355667
1215 => 0.090044662126352
1216 => 0.086946481767791
1217 => 0.086167297785983
1218 => 0.086611156393958
1219 => 0.079275162311397
1220 => 0.088100853130398
1221 => 0.088177178071096
1222 => 0.087523637590628
1223 => 0.092223045489113
1224 => 0.102140261937
1225 => 0.098409006190195
1226 => 0.096964151187232
1227 => 0.094217480770416
1228 => 0.097877256019671
1229 => 0.097596242381916
1230 => 0.09632539214073
1231 => 0.095556777949566
]
'min_raw' => 0.071780461642683
'max_raw' => 0.18418044530203
'avg_raw' => 0.12798045347235
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.07178'
'max' => '$0.18418'
'avg' => '$0.12798'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.044140374173154
'max_diff' => 0.10705603004516
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0022531066692675
]
1 => [
'year' => 2028
'avg' => 0.0038669851260026
]
2 => [
'year' => 2029
'avg' => 0.01056390640798
]
3 => [
'year' => 2030
'avg' => 0.0081500380615155
]
4 => [
'year' => 2031
'avg' => 0.0080043473995058
]
5 => [
'year' => 2032
'avg' => 0.014034140052168
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0022531066692675
'min' => '$0.002253'
'max_raw' => 0.014034140052168
'max' => '$0.014034'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.014034140052168
]
1 => [
'year' => 2033
'avg' => 0.03609725132778
]
2 => [
'year' => 2034
'avg' => 0.022880172644271
]
3 => [
'year' => 2035
'avg' => 0.026987216103123
]
4 => [
'year' => 2036
'avg' => 0.0523822513632
]
5 => [
'year' => 2037
'avg' => 0.12798045347235
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.014034140052168
'min' => '$0.014034'
'max_raw' => 0.12798045347235
'max' => '$0.12798'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.12798045347235
]
]
]
]
'prediction_2025_max_price' => '$0.003852'
'last_price' => 0.00373539
'sma_50day_nextmonth' => '$0.003319'
'sma_200day_nextmonth' => '$0.007863'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.003603'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.003465'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.003289'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.003155'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003552'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.005213'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010335'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.003626'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.003518'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00337'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.003348'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.003865'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.0056014'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.009653'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.006425'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0131012'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00353'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.003578'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.004284'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.006969'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.015424'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.018331'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.009165'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.46'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.29
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.003315'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0037071'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 215.07
'cci_20_action' => 'SELL'
'adx_14' => 18.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000011'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 71.75
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0013012'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 14
'buy_signals' => 18
'sell_pct' => 43.75
'buy_pct' => 56.25
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767687598
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sigma para 2026
A previsão de preço para Sigma em 2026 sugere que o preço médio poderia variar entre $0.00129 na extremidade inferior e $0.003852 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sigma poderia potencialmente ganhar 3.13% até 2026 se SIGMA atingir a meta de preço prevista.
Previsão de preço de Sigma 2027-2032
A previsão de preço de SIGMA para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.002253 na extremidade inferior e $0.014034 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sigma atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001242 | $0.002253 | $0.003263 |
| 2028 | $0.002242 | $0.003866 | $0.005491 |
| 2029 | $0.004925 | $0.010563 | $0.0162023 |
| 2030 | $0.004188 | $0.00815 | $0.012111 |
| 2031 | $0.004952 | $0.0080043 | $0.011056 |
| 2032 | $0.007559 | $0.014034 | $0.0205086 |
Previsão de preço de Sigma 2032-2037
A previsão de preço de Sigma para 2032-2037 é atualmente estimada entre $0.014034 na extremidade inferior e $0.12798 na extremidade superior. Comparado ao preço atual, Sigma poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sigma | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.007559 | $0.014034 | $0.0205086 |
| 2033 | $0.017566 | $0.036097 | $0.054627 |
| 2034 | $0.014123 | $0.02288 | $0.031637 |
| 2035 | $0.016697 | $0.026987 | $0.037276 |
| 2036 | $0.02764 | $0.052382 | $0.077124 |
| 2037 | $0.07178 | $0.12798 | $0.18418 |
Sigma Histograma de preços potenciais
Previsão de preço de Sigma baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sigma é Altista, com 18 indicadores técnicos mostrando sinais de alta e 14 indicando sinais de baixa. A previsão de preço de SIGMA foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sigma
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sigma está projetado para aumentar no próximo mês, alcançando $0.007863 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sigma é esperado para alcançar $0.003319 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 58.46, sugerindo que o mercado de SIGMA está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SIGMA para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.003603 | BUY |
| SMA 5 | $0.003465 | BUY |
| SMA 10 | $0.003289 | BUY |
| SMA 21 | $0.003155 | BUY |
| SMA 50 | $0.003552 | BUY |
| SMA 100 | $0.005213 | SELL |
| SMA 200 | $0.010335 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.003626 | BUY |
| EMA 5 | $0.003518 | BUY |
| EMA 10 | $0.00337 | BUY |
| EMA 21 | $0.003348 | BUY |
| EMA 50 | $0.003865 | SELL |
| EMA 100 | $0.0056014 | SELL |
| EMA 200 | $0.009653 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.006425 | SELL |
| SMA 50 | $0.0131012 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.006969 | SELL |
| EMA 50 | $0.015424 | SELL |
| EMA 100 | $0.018331 | SELL |
| EMA 200 | $0.009165 | SELL |
Osciladores de Sigma
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 58.46 | NEUTRAL |
| Stoch RSI (14) | 102.29 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 215.07 | SELL |
| Índice Direcional Médio (14) | 18.86 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000011 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 71.75 | SELL |
| VWMA (10) | 0.003315 | BUY |
| Média Móvel de Hull (9) | 0.0037071 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0013012 | SELL |
Previsão do preço de Sigma com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sigma
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sigma por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.005248 | $0.007375 | $0.010363 | $0.014562 | $0.020463 | $0.028754 |
| Amazon.com stock | $0.007794 | $0.016262 | $0.033933 | $0.0708041 | $0.147737 | $0.308262 |
| Apple stock | $0.005298 | $0.007515 | $0.010659 | $0.01512 | $0.021446 | $0.03042 |
| Netflix stock | $0.005893 | $0.009299 | $0.014673 | $0.023152 | $0.03653 | $0.057639 |
| Google stock | $0.004837 | $0.006264 | $0.008112 | $0.0105053 | $0.0136043 | $0.017617 |
| Tesla stock | $0.008467 | $0.019195 | $0.043515 | $0.098647 | $0.223625 | $0.506941 |
| Kodak stock | $0.0028011 | $0.00210056 | $0.001575 | $0.001181 | $0.000885 | $0.000664 |
| Nokia stock | $0.002474 | $0.001639 | $0.001085 | $0.000719 | $0.000476 | $0.000315 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sigma
Você pode fazer perguntas como: 'Devo investir em Sigma agora?', 'Devo comprar SIGMA hoje?', 'Sigma será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sigma regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sigma, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sigma para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sigma é de $0.003735 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Sigma com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sigma tiver 1% da média anterior do crescimento anual do Bitcoin | $0.003832 | $0.003932 | $0.004034 | $0.004139 |
| Se Sigma tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003929 | $0.004133 | $0.004348 | $0.004574 |
| Se Sigma tiver 5% da média anterior do crescimento anual do Bitcoin | $0.00422 | $0.004769 | $0.005389 | $0.006089 |
| Se Sigma tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0047063 | $0.005929 | $0.00747 | $0.009412 |
| Se Sigma tiver 20% da média anterior do crescimento anual do Bitcoin | $0.005677 | $0.008628 | $0.013114 | $0.019932 |
| Se Sigma tiver 50% da média anterior do crescimento anual do Bitcoin | $0.00859 | $0.019754 | $0.045428 | $0.104469 |
| Se Sigma tiver 100% da média anterior do crescimento anual do Bitcoin | $0.013444 | $0.048392 | $0.174179 | $0.626929 |
Perguntas Frequentes sobre Sigma
SIGMA é um bom investimento?
A decisão de adquirir Sigma depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sigma experimentou uma queda de -1.9296% nas últimas 24 horas, e Sigma registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sigma dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sigma pode subir?
Parece que o valor médio de Sigma pode potencialmente subir para $0.003852 até o final deste ano. Observando as perspectivas de Sigma em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.012111. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sigma na próxima semana?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma aumentará 0.86% na próxima semana e atingirá $0.003767 até 13 de janeiro de 2026.
Qual será o preço de Sigma no próximo mês?
Com base na nossa nova previsão experimental de Sigma, o preço de Sigma diminuirá -11.62% no próximo mês e atingirá $0.003301 até 5 de fevereiro de 2026.
Até onde o preço de Sigma pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sigma em 2026, espera-se que SIGMA fluctue dentro do intervalo de $0.00129 e $0.003852. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sigma não considera flutuações repentinas e extremas de preço.
Onde estará Sigma em 5 anos?
O futuro de Sigma parece seguir uma tendência de alta, com um preço máximo de $0.012111 projetada após um período de cinco anos. Com base na previsão de Sigma para 2030, o valor de Sigma pode potencialmente atingir seu pico mais alto de aproximadamente $0.012111, enquanto seu pico mais baixo está previsto para cerca de $0.004188.
Quanto será Sigma em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sigma, espera-se que o valor de SIGMA em 2026 aumente 3.13% para $0.003852 se o melhor cenário ocorrer. O preço ficará entre $0.003852 e $0.00129 durante 2026.
Quanto será Sigma em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sigma, o valor de SIGMA pode diminuir -12.62% para $0.003263 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003263 e $0.001242 ao longo do ano.
Quanto será Sigma em 2028?
Nosso novo modelo experimental de previsão de preços de Sigma sugere que o valor de SIGMA em 2028 pode aumentar 47.02%, alcançando $0.005491 no melhor cenário. O preço é esperado para variar entre $0.005491 e $0.002242 durante o ano.
Quanto será Sigma em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sigma pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.0162023 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.0162023 e $0.004925.
Quanto será Sigma em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sigma, espera-se que o valor de SIGMA em 2030 aumente 224.23%, alcançando $0.012111 no melhor cenário. O preço está previsto para variar entre $0.012111 e $0.004188 ao longo de 2030.
Quanto será Sigma em 2031?
Nossa simulação experimental indica que o preço de Sigma poderia aumentar 195.98% em 2031, potencialmente atingindo $0.011056 sob condições ideais. O preço provavelmente oscilará entre $0.011056 e $0.004952 durante o ano.
Quanto será Sigma em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sigma, SIGMA poderia ver um 449.04% aumento em valor, atingindo $0.0205086 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0205086 e $0.007559 ao longo do ano.
Quanto será Sigma em 2033?
De acordo com nossa previsão experimental de preços de Sigma, espera-se que o valor de SIGMA seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.054627. Ao longo do ano, o preço de SIGMA poderia variar entre $0.054627 e $0.017566.
Quanto será Sigma em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sigma sugerem que SIGMA pode aumentar 746.96% em 2034, atingindo potencialmente $0.031637 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.031637 e $0.014123.
Quanto será Sigma em 2035?
Com base em nossa previsão experimental para o preço de Sigma, SIGMA poderia aumentar 897.93%, com o valor potencialmente atingindo $0.037276 em 2035. A faixa de preço esperada para o ano está entre $0.037276 e $0.016697.
Quanto será Sigma em 2036?
Nossa recente simulação de previsão de preços de Sigma sugere que o valor de SIGMA pode aumentar 1964.7% em 2036, possivelmente atingindo $0.077124 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.077124 e $0.02764.
Quanto será Sigma em 2037?
De acordo com a simulação experimental, o valor de Sigma poderia aumentar 4830.69% em 2037, com um pico de $0.18418 sob condições favoráveis. O preço é esperado para cair entre $0.18418 e $0.07178 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sigma?
Traders de Sigma utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sigma
Médias móveis são ferramentas populares para a previsão de preço de Sigma. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SIGMA em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SIGMA acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SIGMA.
Como ler gráficos de Sigma e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sigma em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SIGMA dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sigma?
A ação de preço de Sigma é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SIGMA. A capitalização de mercado de Sigma pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SIGMA, grandes detentores de Sigma, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sigma.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


