Predicción del precio de Shadowcats - Pronóstico de SHADOWCATS
Predicción de precio de Shadowcats hasta $0.025354 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.008493 | $0.025354 |
| 2027 | $0.008176 | $0.02148 |
| 2028 | $0.014756 | $0.036144 |
| 2029 | $0.032416 | $0.106635 |
| 2030 | $0.027568 | $0.0797098 |
| 2031 | $0.032595 | $0.072766 |
| 2032 | $0.049753 | $0.134977 |
| 2033 | $0.115617 | $0.35953 |
| 2034 | $0.09295 | $0.20822 |
| 2035 | $0.109896 | $0.245335 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Shadowcats hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.71, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Shadowcats para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Shadowcats'
'name_with_ticker' => 'Shadowcats <small>SHADOWCATS</small>'
'name_lang' => 'Shadowcats'
'name_lang_with_ticker' => 'Shadowcats <small>SHADOWCATS</small>'
'name_with_lang' => 'Shadowcats'
'name_with_lang_with_ticker' => 'Shadowcats <small>SHADOWCATS</small>'
'image' => '/uploads/coins/shadowcats.png?1717242602'
'price_for_sd' => 0.02458
'ticker' => 'SHADOWCATS'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$59.93'
'current_supply' => '0'
'max_supply' => '1M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02458'
'change_24h_pct' => '0%'
'ath_price' => '$1.54'
'ath_days' => 1043
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '28 feb. 2023'
'ath_pct' => '-98.41%'
'fdv' => '$24.58K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.21'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.024794'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.021728'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.008493'
'current_year_max_price_prediction' => '$0.025354'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.027568'
'grand_prediction_max_price' => '$0.0797098'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.025050302206585
107 => 0.025143830941764
108 => 0.02535455595782
109 => 0.02355393376749
110 => 0.024362360267458
111 => 0.02483723509687
112 => 0.022691733341492
113 => 0.02479482542548
114 => 0.023522588941179
115 => 0.023090772770056
116 => 0.023672156357018
117 => 0.023445590607765
118 => 0.023250802680944
119 => 0.023142107670897
120 => 0.023569011612197
121 => 0.023549096033075
122 => 0.022850598326623
123 => 0.021939436542967
124 => 0.022245252345428
125 => 0.022134146597355
126 => 0.021731485033414
127 => 0.022002830309968
128 => 0.020807963036725
129 => 0.018752255996908
130 => 0.020110319035421
131 => 0.020058035085727
201 => 0.020031671147402
202 => 0.021052217986739
203 => 0.020954115956158
204 => 0.020776059810037
205 => 0.021728214892657
206 => 0.021380665479207
207 => 0.022451730878518
208 => 0.023157203822671
209 => 0.022978273064375
210 => 0.023641773778197
211 => 0.022252297723856
212 => 0.022713825933004
213 => 0.02280894625726
214 => 0.021716465446736
215 => 0.02097016666161
216 => 0.020920397041071
217 => 0.019626417793969
218 => 0.020317651063135
219 => 0.020925907734825
220 => 0.02063459999171
221 => 0.020542380662811
222 => 0.021013509214224
223 => 0.021050119937612
224 => 0.020215391564536
225 => 0.020388958025709
226 => 0.02111275902182
227 => 0.020370720097689
228 => 0.018929059679472
301 => 0.01857150796324
302 => 0.018523803973309
303 => 0.017554095361102
304 => 0.018595401278618
305 => 0.018140843340359
306 => 0.01957678642088
307 => 0.018756583434404
308 => 0.018721226122976
309 => 0.018667778360962
310 => 0.017833110100278
311 => 0.018015849403432
312 => 0.0186233026791
313 => 0.01884004885131
314 => 0.018817440449799
315 => 0.018620325826655
316 => 0.01871056389174
317 => 0.018419875643074
318 => 0.018317227572317
319 => 0.017993242025433
320 => 0.017517072774805
321 => 0.01758328702962
322 => 0.016639871147664
323 => 0.016125848104303
324 => 0.015983573300616
325 => 0.015793317487052
326 => 0.01600506320101
327 => 0.016637198569004
328 => 0.015874709200203
329 => 0.014567474659804
330 => 0.014646041683101
331 => 0.014822558457692
401 => 0.014493620616018
402 => 0.014182308554534
403 => 0.014452969134448
404 => 0.013899076626713
405 => 0.014889493720999
406 => 0.01486270571421
407 => 0.015231871959978
408 => 0.01546271918951
409 => 0.014930691063116
410 => 0.014796887428085
411 => 0.014873108059635
412 => 0.01361335080367
413 => 0.015128922916053
414 => 0.015142029646617
415 => 0.015029801862206
416 => 0.015836797224011
417 => 0.017539809145584
418 => 0.016899067557192
419 => 0.01665095304765
420 => 0.016179287183639
421 => 0.016807753942685
422 => 0.016759497501199
423 => 0.016541263572087
424 => 0.016409275010829
425 => 0.016652467981938
426 => 0.016379140710411
427 => 0.016330043621914
428 => 0.01603256868378
429 => 0.015926383665114
430 => 0.01584776850464
501 => 0.015761220937525
502 => 0.015952123304271
503 => 0.015519513425927
504 => 0.014997828321914
505 => 0.014954455850226
506 => 0.015074211057903
507 => 0.015021228293233
508 => 0.014954202189133
509 => 0.014826231102934
510 => 0.014788264815328
511 => 0.014911636831422
512 => 0.014772357018287
513 => 0.014977871969532
514 => 0.014921983274454
515 => 0.014609793566921
516 => 0.014220689603901
517 => 0.014217225762457
518 => 0.014133393951883
519 => 0.014026621536919
520 => 0.013996919893698
521 => 0.014430174855342
522 => 0.015326999659713
523 => 0.015150931491416
524 => 0.015278158787202
525 => 0.015903991160987
526 => 0.016102924453178
527 => 0.015961726314374
528 => 0.015768445593258
529 => 0.015776948964071
530 => 0.016437447698177
531 => 0.016478642194039
601 => 0.016582727395235
602 => 0.016716506293245
603 => 0.015984509439182
604 => 0.015742471978072
605 => 0.015627781201271
606 => 0.015274577999642
607 => 0.015655477371245
608 => 0.015433543619149
609 => 0.015463490064643
610 => 0.01544398740273
611 => 0.015454637174899
612 => 0.014889216879236
613 => 0.01509522631736
614 => 0.014752695670292
615 => 0.014294085584737
616 => 0.014292548162921
617 => 0.014404792331648
618 => 0.014338025107974
619 => 0.014158356225811
620 => 0.014183877342509
621 => 0.013960285505652
622 => 0.014211025439764
623 => 0.014218215763884
624 => 0.014121667231354
625 => 0.014507966695296
626 => 0.014666233900864
627 => 0.014602683588483
628 => 0.014661775041535
629 => 0.015158247918709
630 => 0.015239194660319
701 => 0.0152751458559
702 => 0.015226976016442
703 => 0.014670849654342
704 => 0.014695516223333
705 => 0.014514529306602
706 => 0.014361614433896
707 => 0.014367730226872
708 => 0.014446348348984
709 => 0.014789678299143
710 => 0.015512195938846
711 => 0.015539614955119
712 => 0.015572847602711
713 => 0.015437673723563
714 => 0.015396903988172
715 => 0.015450689792714
716 => 0.015722029430014
717 => 0.016419988645141
718 => 0.016173283243387
719 => 0.015972707911562
720 => 0.016148666552293
721 => 0.016121579098762
722 => 0.015892933731109
723 => 0.015886516417166
724 => 0.015447672854294
725 => 0.015285442381084
726 => 0.01514987045493
727 => 0.015001829450764
728 => 0.014914065781115
729 => 0.01504891066557
730 => 0.015079751286083
731 => 0.014784910589537
801 => 0.014744724892071
802 => 0.014985498169449
803 => 0.014879542827008
804 => 0.014988520524275
805 => 0.015013804284834
806 => 0.01500973301705
807 => 0.014899103470647
808 => 0.014969615444504
809 => 0.014802833605702
810 => 0.014621483405827
811 => 0.014505793276824
812 => 0.0144048382952
813 => 0.014460853986543
814 => 0.014261168274966
815 => 0.014197284796953
816 => 0.014945727574331
817 => 0.015498610301095
818 => 0.015490571167283
819 => 0.015441635007695
820 => 0.015368925800885
821 => 0.015716710298658
822 => 0.015595549133804
823 => 0.01568370400459
824 => 0.015706143119053
825 => 0.015774059560303
826 => 0.015798333850435
827 => 0.015724960086078
828 => 0.015478708771046
829 => 0.014865073906859
830 => 0.014579425221105
831 => 0.01448515639695
901 => 0.014488582889666
902 => 0.014394064924021
903 => 0.014421904700902
904 => 0.014384383385756
905 => 0.014313327092251
906 => 0.01445646646065
907 => 0.014472961939423
908 => 0.01443955150045
909 => 0.014447420868304
910 => 0.014170796703396
911 => 0.014191827837858
912 => 0.014074723808667
913 => 0.014052768214904
914 => 0.013756739426523
915 => 0.013232281517849
916 => 0.013522882109615
917 => 0.013171877459388
918 => 0.013038946679758
919 => 0.013668220315547
920 => 0.013605058695847
921 => 0.013496953458618
922 => 0.013337043281651
923 => 0.013277731041507
924 => 0.012917368646368
925 => 0.012896076513605
926 => 0.013074681847239
927 => 0.012992261631201
928 => 0.012876512432907
929 => 0.012457280569996
930 => 0.011985925153183
1001 => 0.012000152410382
1002 => 0.012150081798591
1003 => 0.012586021715541
1004 => 0.012415692448151
1005 => 0.012292116610357
1006 => 0.012268974570614
1007 => 0.012558645649137
1008 => 0.012968590913214
1009 => 0.013160928059111
1010 => 0.012970327788893
1011 => 0.012751376461115
1012 => 0.012764703013914
1013 => 0.012853358599286
1014 => 0.012862675047786
1015 => 0.012720160241962
1016 => 0.012760277325016
1017 => 0.012699335807474
1018 => 0.012325337826807
1019 => 0.012318573389297
1020 => 0.012226788253309
1021 => 0.012224009035869
1022 => 0.012067859622678
1023 => 0.012046013240363
1024 => 0.011735969102882
1025 => 0.011940041093072
1026 => 0.011803160316313
1027 => 0.011596848698825
1028 => 0.011561280498207
1029 => 0.011560211275146
1030 => 0.011772047175872
1031 => 0.011937565667235
1101 => 0.011805541416028
1102 => 0.011775482053211
1103 => 0.012096437406393
1104 => 0.012055592912128
1105 => 0.012020221843513
1106 => 0.012931884811135
1107 => 0.012210232434314
1108 => 0.011895550807542
1109 => 0.011506072537991
1110 => 0.011632888626477
1111 => 0.011659610639637
1112 => 0.010722985610103
1113 => 0.01034299695227
1114 => 0.010212599164472
1115 => 0.010137553394041
1116 => 0.010171752693992
1117 => 0.0098297183337182
1118 => 0.010059571080548
1119 => 0.0097633982359961
1120 => 0.0097137438947771
1121 => 0.010243337629611
1122 => 0.010317027503972
1123 => 0.010002643606301
1124 => 0.010204528962735
1125 => 0.010131322526076
1126 => 0.0097684752693483
1127 => 0.0097546171730651
1128 => 0.009572553174337
1129 => 0.0092876582708647
1130 => 0.009157453655227
1201 => 0.0090896419609146
1202 => 0.0091176223876115
1203 => 0.0091034746276584
1204 => 0.0090111509240506
1205 => 0.0091087665142789
1206 => 0.0088593990187924
1207 => 0.0087600988727993
1208 => 0.0087152473006
1209 => 0.0084939192952983
1210 => 0.0088461505767441
1211 => 0.0089155445764817
1212 => 0.0089850753038356
1213 => 0.0095902928148081
1214 => 0.0095600578582869
1215 => 0.009833367140218
1216 => 0.0098227468441057
1217 => 0.0097447946095821
1218 => 0.0094159269546473
1219 => 0.009547007740402
1220 => 0.009143561456326
1221 => 0.0094458508440364
1222 => 0.009307898591392
1223 => 0.0093992090486499
1224 => 0.0092350246133682
1225 => 0.0093258910588623
1226 => 0.0089320004681671
1227 => 0.0085641909767661
1228 => 0.0087122082531343
1229 => 0.0088731199603752
1230 => 0.0092220175412141
1231 => 0.009014217020409
]
'min_raw' => 0.0084939192952983
'max_raw' => 0.02535455595782
'avg_raw' => 0.016924237626559
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.008493'
'max' => '$0.025354'
'avg' => '$0.016924'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.016090520704702
'max_diff' => 0.00077011595781969
'year' => 2026
]
1 => [
'items' => [
101 => 0.0090889499454982
102 => 0.0088386071565901
103 => 0.0083220784761903
104 => 0.0083250019724265
105 => 0.008245545288136
106 => 0.0081768831120432
107 => 0.0090380854099402
108 => 0.008930981290603
109 => 0.0087603248938799
110 => 0.0089887552625094
111 => 0.0090491558776525
112 => 0.0090508753982524
113 => 0.0092175322985633
114 => 0.0093064771161341
115 => 0.0093221540257399
116 => 0.0095843922592398
117 => 0.009672291056103
118 => 0.010034333760479
119 => 0.0092989307697861
120 => 0.0092837856291382
121 => 0.0089919697462483
122 => 0.0088068954998929
123 => 0.0090046419382341
124 => 0.0091798182875238
125 => 0.0089974129637229
126 => 0.0090212312482247
127 => 0.0087763670040845
128 => 0.0088638944494311
129 => 0.0089392848765837
130 => 0.0088976587139545
131 => 0.0088353423337696
201 => 0.0091654558245668
202 => 0.0091468295276908
203 => 0.0094542387995975
204 => 0.0096938863100967
205 => 0.010123377491028
206 => 0.0096751810538446
207 => 0.0096588469942541
208 => 0.0098185150468163
209 => 0.009672266611756
210 => 0.0097646905743897
211 => 0.010108486561779
212 => 0.010115750429246
213 => 0.0099940712902103
214 => 0.0099866671035418
215 => 0.010010036913217
216 => 0.010146914618431
217 => 0.010099085342402
218 => 0.010154434591511
219 => 0.01022364967506
220 => 0.010509952607206
221 => 0.010578979274872
222 => 0.010411280258667
223 => 0.010426421602184
224 => 0.010363697566682
225 => 0.010303106934318
226 => 0.010439305827322
227 => 0.010688211981284
228 => 0.010686663549019
301 => 0.010744404938694
302 => 0.010780377346106
303 => 0.010625957440082
304 => 0.010525435759438
305 => 0.010563982168157
306 => 0.010625618715132
307 => 0.01054399426669
308 => 0.010040170358786
309 => 0.010192998348048
310 => 0.010167560297728
311 => 0.0101313334207
312 => 0.010285003145687
313 => 0.010270181325832
314 => 0.0098262102769852
315 => 0.0098546318630718
316 => 0.0098279386877703
317 => 0.0099141897980792
318 => 0.0096676087687474
319 => 0.0097434554326213
320 => 0.0097910257491847
321 => 0.0098190450310929
322 => 0.0099202698903469
323 => 0.0099083923214464
324 => 0.0099195315639872
325 => 0.010069621307889
326 => 0.010828723727963
327 => 0.010870039997822
328 => 0.010666583574318
329 => 0.010747860402508
330 => 0.010591826665672
331 => 0.010696573158545
401 => 0.010768238048696
402 => 0.010444398190469
403 => 0.010425222495769
404 => 0.010268544752197
405 => 0.010352734496911
406 => 0.010218782559614
407 => 0.010251649679587
408 => 0.010159750346839
409 => 0.010325150848811
410 => 0.010510094310656
411 => 0.010556818332756
412 => 0.010433907546566
413 => 0.010344912037149
414 => 0.010188665239555
415 => 0.01044850714614
416 => 0.010524492838164
417 => 0.010448108025648
418 => 0.010430407995547
419 => 0.010396866470488
420 => 0.010437523988649
421 => 0.010524079003767
422 => 0.010483261257057
423 => 0.010510222097875
424 => 0.010407475174576
425 => 0.010626008559496
426 => 0.010973092167672
427 => 0.010974208098226
428 => 0.010933390131494
429 => 0.010916688298943
430 => 0.010958570009851
501 => 0.010981289119941
502 => 0.011116726893227
503 => 0.011262057020042
504 => 0.011940249309385
505 => 0.011749815628367
506 => 0.012351548173312
507 => 0.012827440491171
508 => 0.012970139789048
509 => 0.012838863149522
510 => 0.012389772857128
511 => 0.012367738344885
512 => 0.013038868842752
513 => 0.012849243737381
514 => 0.012826688434479
515 => 0.012586738119388
516 => 0.012728578474031
517 => 0.012697555907799
518 => 0.012648585269324
519 => 0.012919206785298
520 => 0.013425786104652
521 => 0.01334683096706
522 => 0.013287894619471
523 => 0.013029652700449
524 => 0.013185172016121
525 => 0.013129794566586
526 => 0.013367731233185
527 => 0.013226782822834
528 => 0.012847807140706
529 => 0.012908160267205
530 => 0.012899038013548
531 => 0.013086773347394
601 => 0.013030419860051
602 => 0.012888034090704
603 => 0.013424054671611
604 => 0.01338924847659
605 => 0.013438595703326
606 => 0.013460319878649
607 => 0.013786586160505
608 => 0.013920247016825
609 => 0.013950590371272
610 => 0.014077557847075
611 => 0.01394743130481
612 => 0.014468030252522
613 => 0.01481419817496
614 => 0.01521629003051
615 => 0.015803854303571
616 => 0.016024783905515
617 => 0.015984874950388
618 => 0.016430359476445
619 => 0.017230885267203
620 => 0.016146684100609
621 => 0.017288350561679
622 => 0.016926912141277
623 => 0.016069948148505
624 => 0.016014769770312
625 => 0.016595115735774
626 => 0.01788226723094
627 => 0.017559850380152
628 => 0.017882794589405
629 => 0.01750606301512
630 => 0.017487355117114
701 => 0.017864497577723
702 => 0.018745711493901
703 => 0.018327079794134
704 => 0.017726868599815
705 => 0.01817005520538
706 => 0.017786125952655
707 => 0.016921025891236
708 => 0.017559603834063
709 => 0.017132604949347
710 => 0.017257225924416
711 => 0.018154714068798
712 => 0.018046725920807
713 => 0.018186472583741
714 => 0.01793982338147
715 => 0.017709414133539
716 => 0.017279338161862
717 => 0.017152013869137
718 => 0.017187201722998
719 => 0.017151996431784
720 => 0.016911372878233
721 => 0.016859410244753
722 => 0.016772803579086
723 => 0.016799646606205
724 => 0.016636800737077
725 => 0.016944124537796
726 => 0.017001166543338
727 => 0.017224811176823
728 => 0.017248030704585
729 => 0.01787087782546
730 => 0.017527824097802
731 => 0.017757974156149
801 => 0.017737387368674
802 => 0.01608852115677
803 => 0.016315720372701
804 => 0.016669171053647
805 => 0.016509942000972
806 => 0.016284829374349
807 => 0.016103038858576
808 => 0.015827607638145
809 => 0.016215271791713
810 => 0.01672500893017
811 => 0.01726095847961
812 => 0.017904866746457
813 => 0.017761153917216
814 => 0.017248921062455
815 => 0.017271899454133
816 => 0.017413942829824
817 => 0.017229983752303
818 => 0.017175730629034
819 => 0.0174064892838
820 => 0.017408078391833
821 => 0.017196411240947
822 => 0.016961181937418
823 => 0.016960196318047
824 => 0.016918339535529
825 => 0.017513509243745
826 => 0.017840792404818
827 => 0.017878314891792
828 => 0.017838266842481
829 => 0.017853679747211
830 => 0.017663240886974
831 => 0.018098527648585
901 => 0.018497989826438
902 => 0.018390925429509
903 => 0.018230420678411
904 => 0.018102570913205
905 => 0.01836080808795
906 => 0.018349309193062
907 => 0.018494500872798
908 => 0.018487914139537
909 => 0.018439091638577
910 => 0.018390927173114
911 => 0.018581893834412
912 => 0.018526898502789
913 => 0.018471817748226
914 => 0.018361344862508
915 => 0.018376359962437
916 => 0.018215882924748
917 => 0.018141638904183
918 => 0.017025186971201
919 => 0.016726834533589
920 => 0.016820702283986
921 => 0.016851605984692
922 => 0.016721762621494
923 => 0.016907924650296
924 => 0.016878911495302
925 => 0.016991784709257
926 => 0.016921266425563
927 => 0.016924160520524
928 => 0.017131539756785
929 => 0.017191742831326
930 => 0.017161123061716
1001 => 0.017182568098766
1002 => 0.017676759926211
1003 => 0.017606501651713
1004 => 0.017569178343686
1005 => 0.017579517155081
1006 => 0.017705793762586
1007 => 0.01774114431824
1008 => 0.017591361529894
1009 => 0.017661999958762
1010 => 0.01796276942353
1011 => 0.018068021714121
1012 => 0.018403936501723
1013 => 0.01826123392954
1014 => 0.018523170676804
1015 => 0.019328274937075
1016 => 0.019971447929157
1017 => 0.01937995946539
1018 => 0.020561064757762
1019 => 0.021480724647364
1020 => 0.021445426569028
1021 => 0.021285062595159
1022 => 0.020238054261269
1023 => 0.01927458158241
1024 => 0.020080567389487
1025 => 0.020082622013061
1026 => 0.02001338711744
1027 => 0.019583375126922
1028 => 0.019998423632275
1029 => 0.020031368675395
1030 => 0.020012928212042
1031 => 0.019683239027128
1101 => 0.019179864578511
1102 => 0.019278222740862
1103 => 0.019439335417247
1104 => 0.019134315509226
1105 => 0.019036843166806
1106 => 0.019218062796237
1107 => 0.019801990200875
1108 => 0.019691602107489
1109 => 0.019688719428258
1110 => 0.020161006503598
1111 => 0.019822950883584
1112 => 0.019279463352276
1113 => 0.019142225582901
1114 => 0.018655123956058
1115 => 0.018991566784715
1116 => 0.019003674763161
1117 => 0.018819408464267
1118 => 0.019294415546882
1119 => 0.019290038272992
1120 => 0.01974098680246
1121 => 0.020603031022271
1122 => 0.020348082127853
1123 => 0.020051604302006
1124 => 0.020083839662114
1125 => 0.02043738199885
1126 => 0.020223622231473
1127 => 0.020300491734208
1128 => 0.020437265647651
1129 => 0.020519784745537
1130 => 0.020071966433825
1201 => 0.019967558563739
1202 => 0.019753976703726
1203 => 0.019698257183143
1204 => 0.019872215151592
1205 => 0.019826383372931
1206 => 0.019002657134457
1207 => 0.018916573159366
1208 => 0.018919213231983
1209 => 0.018702750983549
1210 => 0.018372594097795
1211 => 0.019240226680913
1212 => 0.019170543641979
1213 => 0.019093618960034
1214 => 0.019103041794646
1215 => 0.019479651692181
1216 => 0.019261198932355
1217 => 0.019841991398055
1218 => 0.019722597927327
1219 => 0.019600142464587
1220 => 0.019583215389552
1221 => 0.019536080483806
1222 => 0.019374437353878
1223 => 0.019179243561244
1224 => 0.01905035971195
1225 => 0.01757294983607
1226 => 0.017847148515335
1227 => 0.018162589101834
1228 => 0.018271477928245
1229 => 0.018085216055792
1230 => 0.019381792107882
1231 => 0.019618689046717
]
'min_raw' => 0.0081768831120432
'max_raw' => 0.021480724647364
'avg_raw' => 0.014828803879704
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.008176'
'max' => '$0.02148'
'avg' => '$0.014828'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00031703618325512
'max_diff' => -0.0038738313104555
'year' => 2027
]
2 => [
'items' => [
101 => 0.018901112766582
102 => 0.018766883543015
103 => 0.019390592153432
104 => 0.019014419616074
105 => 0.019183810086613
106 => 0.018817680540941
107 => 0.019561627511304
108 => 0.019555959881841
109 => 0.019266547707566
110 => 0.019511156895455
111 => 0.019468650029522
112 => 0.019141904397556
113 => 0.019571985930643
114 => 0.019572199245717
115 => 0.01929364632034
116 => 0.018968357486577
117 => 0.018910203526079
118 => 0.018866392328729
119 => 0.01917303521774
120 => 0.01944797027318
121 => 0.019959556249173
122 => 0.020088181118521
123 => 0.020590212546627
124 => 0.020291277274657
125 => 0.020423791408861
126 => 0.020567654246809
127 => 0.020636627381702
128 => 0.020524239359697
129 => 0.021304100811926
130 => 0.021369945012831
131 => 0.021392022003845
201 => 0.021129057109994
202 => 0.021362631483433
203 => 0.021253349769271
204 => 0.021537670430186
205 => 0.021582255540206
206 => 0.02154449353818
207 => 0.021558645555829
208 => 0.020893171383339
209 => 0.020858663036839
210 => 0.020388139283718
211 => 0.020579881191051
212 => 0.020221428885721
213 => 0.020335097804209
214 => 0.020385201980401
215 => 0.020359030402145
216 => 0.020590721990804
217 => 0.02039373680898
218 => 0.019873860526782
219 => 0.019353842604639
220 => 0.019347314203224
221 => 0.019210402663402
222 => 0.019111440696711
223 => 0.01913050428236
224 => 0.01919768684469
225 => 0.019107535924057
226 => 0.019126774193742
227 => 0.01944625765443
228 => 0.019510327784019
229 => 0.01929259244986
301 => 0.018418353664149
302 => 0.018203813273273
303 => 0.018358020651714
304 => 0.018284319457046
305 => 0.01475687283446
306 => 0.015585594095081
307 => 0.015093196062735
308 => 0.015320115730184
309 => 0.014817504845011
310 => 0.015057377103509
311 => 0.015013081456097
312 => 0.016345640719531
313 => 0.016324834639508
314 => 0.016334793408982
315 => 0.015859435394559
316 => 0.016616693618911
317 => 0.016989746250352
318 => 0.016920704136746
319 => 0.016938080549287
320 => 0.016639496211031
321 => 0.016337684358049
322 => 0.016002928564581
323 => 0.016624863451779
324 => 0.016555714909105
325 => 0.016714316787138
326 => 0.01711768601831
327 => 0.017177083669851
328 => 0.017256914715873
329 => 0.017228300968635
330 => 0.017909996514637
331 => 0.017827438686044
401 => 0.018026379299444
402 => 0.017617143364019
403 => 0.017154054058053
404 => 0.017242072195587
405 => 0.017233595341146
406 => 0.017125675254822
407 => 0.017028249826323
408 => 0.016866063937315
409 => 0.01737924408913
410 => 0.017358409912144
411 => 0.017695691020477
412 => 0.017636073308405
413 => 0.017237931636261
414 => 0.017252151343971
415 => 0.017347785712081
416 => 0.017678777352042
417 => 0.017777038206412
418 => 0.01773151986365
419 => 0.017839258404688
420 => 0.01792441055467
421 => 0.0178499522037
422 => 0.018904125434671
423 => 0.01846635921247
424 => 0.018679723423213
425 => 0.01873060953026
426 => 0.018600265837078
427 => 0.018628532716872
428 => 0.018671349337495
429 => 0.018931323473566
430 => 0.019613570830739
501 => 0.019915733541016
502 => 0.02082480496333
503 => 0.019890643134236
504 => 0.019835213837243
505 => 0.019998965051729
506 => 0.02053268621161
507 => 0.020965217081814
508 => 0.021108712524766
509 => 0.021127677816403
510 => 0.021396884806776
511 => 0.021551189233245
512 => 0.021364195997298
513 => 0.021205738808841
514 => 0.020638164828218
515 => 0.020703863061928
516 => 0.021156458742385
517 => 0.021795776798782
518 => 0.022344378200878
519 => 0.022152277110553
520 => 0.023617872827497
521 => 0.02376318065641
522 => 0.023743103812819
523 => 0.024074136671788
524 => 0.023417103860404
525 => 0.023136209604126
526 => 0.021239999051551
527 => 0.021772756871401
528 => 0.022547151650324
529 => 0.022444657597502
530 => 0.021882271409417
531 => 0.022343951580524
601 => 0.022191305677882
602 => 0.022070907521184
603 => 0.022622474817348
604 => 0.02201600391808
605 => 0.022541101639177
606 => 0.02186765838043
607 => 0.022153154612152
608 => 0.021991093143128
609 => 0.022095966775093
610 => 0.021482877665543
611 => 0.021813685667159
612 => 0.02146911496508
613 => 0.021468951593703
614 => 0.021461345176356
615 => 0.021866731079293
616 => 0.021879950699034
617 => 0.02158036990426
618 => 0.021537195631401
619 => 0.021696833546711
620 => 0.021509939357119
621 => 0.021597385972131
622 => 0.021512588026005
623 => 0.021493498222214
624 => 0.021341387417744
625 => 0.021275853900804
626 => 0.021301551281387
627 => 0.021213832873551
628 => 0.021160979359916
629 => 0.021450831282191
630 => 0.021295975092712
701 => 0.021427097350203
702 => 0.021277666988844
703 => 0.020759676252667
704 => 0.020461774302638
705 => 0.019483337819765
706 => 0.019760821192561
707 => 0.019944792955802
708 => 0.019883990289149
709 => 0.020014617944629
710 => 0.020022637421762
711 => 0.019980169039374
712 => 0.019930996093105
713 => 0.019907061422296
714 => 0.020085450849199
715 => 0.020189011915828
716 => 0.019963256983468
717 => 0.019910365761463
718 => 0.020138616462351
719 => 0.020277849258036
720 => 0.021305865993227
721 => 0.021229707193034
722 => 0.021420850836109
723 => 0.021399330995237
724 => 0.02159967998475
725 => 0.021927165908804
726 => 0.021261295458698
727 => 0.021376867544769
728 => 0.021348531938213
729 => 0.021657892660589
730 => 0.021658858450996
731 => 0.021473381244218
801 => 0.021573931447036
802 => 0.021517807082274
803 => 0.021619231395063
804 => 0.021228690045825
805 => 0.021704327252863
806 => 0.021973982899869
807 => 0.021977727068789
808 => 0.022105541705351
809 => 0.022235408778621
810 => 0.022484677316726
811 => 0.022228456814384
812 => 0.021767541073234
813 => 0.021800817700997
814 => 0.021530582970603
815 => 0.021535125665243
816 => 0.021510876405238
817 => 0.021583650259911
818 => 0.021244659814497
819 => 0.021324220194471
820 => 0.021212835196602
821 => 0.021376625415536
822 => 0.021200414215457
823 => 0.021348518273926
824 => 0.021412435075834
825 => 0.021648289450905
826 => 0.021165578332491
827 => 0.020181297685375
828 => 0.020388205410648
829 => 0.020082172632718
830 => 0.020110497131465
831 => 0.020167717126743
901 => 0.019982248400829
902 => 0.020017629988942
903 => 0.020016365909638
904 => 0.020005472757109
905 => 0.019957225178356
906 => 0.019887256643673
907 => 0.020165989750672
908 => 0.020213351937023
909 => 0.020318632210346
910 => 0.020631874891464
911 => 0.020600574560849
912 => 0.02065162669872
913 => 0.020540180168393
914 => 0.02011566681637
915 => 0.02013871993378
916 => 0.019851247190274
917 => 0.020311280885967
918 => 0.020202338834679
919 => 0.020132103185504
920 => 0.020112938737897
921 => 0.020426957887034
922 => 0.020520917338103
923 => 0.020462368113581
924 => 0.020342281945933
925 => 0.020572882888105
926 => 0.020634581971958
927 => 0.020648394121458
928 => 0.021056974777643
929 => 0.020671229241374
930 => 0.020764082025935
1001 => 0.021488492945082
1002 => 0.020831552203289
1003 => 0.021179548365744
1004 => 0.021162515764476
1005 => 0.02134053882564
1006 => 0.021147912677357
1007 => 0.021150300509325
1008 => 0.021308372927312
1009 => 0.021086388724761
1010 => 0.021031422314438
1011 => 0.020955486612254
1012 => 0.02112128943992
1013 => 0.021220680736489
1014 => 0.022021701591972
1015 => 0.022539197595603
1016 => 0.022516731729287
1017 => 0.022722027693078
1018 => 0.022629539981094
1019 => 0.022330872762075
1020 => 0.022840661286354
1021 => 0.022679342866814
1022 => 0.022692641761319
1023 => 0.022692146775801
1024 => 0.022799409422094
1025 => 0.022723404006719
1026 => 0.022573589531217
1027 => 0.022673043371604
1028 => 0.022968385722154
1029 => 0.02388513744047
1030 => 0.024398163847385
1031 => 0.023854252606599
1101 => 0.024229435297231
1102 => 0.024004459374114
1103 => 0.023963574556429
1104 => 0.024199217011929
1105 => 0.024435271928354
1106 => 0.024420236250671
1107 => 0.024248872502901
1108 => 0.02415207346998
1109 => 0.024885068177315
1110 => 0.02542512619144
1111 => 0.025388297855471
1112 => 0.02555084615322
1113 => 0.026028092982839
1114 => 0.026071726451887
1115 => 0.026066229637691
1116 => 0.025958079531973
1117 => 0.026427991014065
1118 => 0.026819999439731
1119 => 0.025933045907256
1120 => 0.026270786201348
1121 => 0.026422408700679
1122 => 0.026645035514065
1123 => 0.027020644264833
1124 => 0.027428654993469
1125 => 0.027486352184107
1126 => 0.027445413266284
1127 => 0.027176319222832
1128 => 0.027622769430685
1129 => 0.0278842894919
1130 => 0.028040018703573
1201 => 0.028434922073506
1202 => 0.026423345069616
1203 => 0.024999450884399
1204 => 0.024777089246096
1205 => 0.025229270381525
1206 => 0.025348506940861
1207 => 0.025300442833302
1208 => 0.023697720473045
1209 => 0.024768651244561
1210 => 0.025920882708295
1211 => 0.025965144611427
1212 => 0.026541975774196
1213 => 0.026729815645902
1214 => 0.02719424033892
1215 => 0.027165190447923
1216 => 0.027278270470062
1217 => 0.027252275331245
1218 => 0.028112524278904
1219 => 0.029061506616376
1220 => 0.029028646375608
1221 => 0.028892218936747
1222 => 0.029094836947791
1223 => 0.03007428841919
1224 => 0.029984116223094
1225 => 0.030071710830752
1226 => 0.031226539314998
1227 => 0.032727980616954
1228 => 0.032030410389953
1229 => 0.033543937062119
1230 => 0.034496621873646
1231 => 0.036144191745733
]
'min_raw' => 0.01475687283446
'max_raw' => 0.036144191745733
'avg_raw' => 0.025450532290097
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.014756'
'max' => '$0.036144'
'avg' => '$0.02545'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0065799897224169
'max_diff' => 0.014663467098369
'year' => 2028
]
3 => [
'items' => [
101 => 0.035937907883295
102 => 0.036579294744072
103 => 0.03556861671679
104 => 0.033247895674419
105 => 0.0328806326861
106 => 0.033615902489294
107 => 0.035423491553867
108 => 0.033558975076987
109 => 0.033936164331909
110 => 0.033827533801116
111 => 0.03382174534178
112 => 0.034042667291266
113 => 0.033722208481023
114 => 0.032416601638657
115 => 0.033014953560524
116 => 0.032783901148272
117 => 0.033040271025764
118 => 0.034423793519609
119 => 0.033812105246024
120 => 0.033167741339321
121 => 0.033975916674124
122 => 0.035005001594503
123 => 0.034940603309629
124 => 0.034815643720579
125 => 0.035520034381384
126 => 0.036683481385935
127 => 0.036997956436156
128 => 0.03723009548907
129 => 0.037262103542446
130 => 0.037591806385107
131 => 0.035818911104303
201 => 0.038632541446118
202 => 0.03911837768118
203 => 0.039027060604837
204 => 0.039567047132994
205 => 0.039408169398274
206 => 0.039177980487818
207 => 0.040033973993376
208 => 0.039052646514368
209 => 0.037659775703611
210 => 0.036895619228969
211 => 0.037901922117522
212 => 0.03851643617643
213 => 0.038922590878934
214 => 0.039045493046506
215 => 0.035956535918166
216 => 0.034291759347408
217 => 0.035358862042562
218 => 0.036660800978144
219 => 0.03581167876778
220 => 0.035844962750825
221 => 0.034634337624237
222 => 0.036767914439036
223 => 0.036457070243326
224 => 0.038069730480547
225 => 0.037684856172527
226 => 0.038999917992871
227 => 0.038653618143054
228 => 0.040091089458283
301 => 0.040664535683909
302 => 0.041627441146515
303 => 0.042335758324539
304 => 0.042751695719423
305 => 0.042726724398376
306 => 0.044374875576093
307 => 0.043403018408609
308 => 0.042182136757102
309 => 0.042160054859859
310 => 0.042792366767201
311 => 0.04411751905869
312 => 0.044461111767692
313 => 0.044653133218244
314 => 0.044359045682408
315 => 0.043304164380736
316 => 0.042848671983043
317 => 0.043236764702762
318 => 0.042762160655733
319 => 0.043581460391282
320 => 0.04470653392117
321 => 0.044474210686271
322 => 0.045250832428693
323 => 0.046054554229109
324 => 0.047203912501109
325 => 0.047504397314024
326 => 0.048001087283357
327 => 0.048512344415957
328 => 0.048676546428182
329 => 0.048990059018411
330 => 0.048988406652306
331 => 0.049933197944794
401 => 0.050975331998159
402 => 0.051368713477845
403 => 0.052273272499203
404 => 0.050724246874657
405 => 0.051899200604799
406 => 0.052959038280386
407 => 0.051695456111572
408 => 0.053437009754396
409 => 0.053504630335902
410 => 0.054525620833782
411 => 0.053490651366068
412 => 0.05287608979988
413 => 0.054650306014145
414 => 0.055508793352941
415 => 0.055250209979894
416 => 0.05328237774317
417 => 0.052137014977102
418 => 0.049139379694323
419 => 0.052690208174982
420 => 0.054419713148824
421 => 0.053277898743106
422 => 0.053853763513972
423 => 0.056995494979042
424 => 0.058191662908892
425 => 0.057942868341328
426 => 0.057984910527739
427 => 0.058630341030703
428 => 0.061492535325914
429 => 0.059777442159079
430 => 0.061088566621809
501 => 0.06178398230923
502 => 0.062429923155644
503 => 0.060843696588552
504 => 0.058780039131062
505 => 0.058126392187828
506 => 0.053164367803159
507 => 0.052906072884958
508 => 0.052761084120234
509 => 0.051846950467719
510 => 0.051128691819124
511 => 0.050557505874526
512 => 0.049058543385342
513 => 0.049564399222936
514 => 0.047175365872962
515 => 0.048703784748132
516 => 0.044890829836345
517 => 0.048066371989448
518 => 0.046338068769699
519 => 0.047498577899194
520 => 0.047494528992168
521 => 0.045357663745012
522 => 0.044125164465692
523 => 0.044910560976064
524 => 0.045752568380036
525 => 0.045889181248477
526 => 0.046980865826368
527 => 0.047285531526376
528 => 0.04636238023187
529 => 0.0448118148209
530 => 0.045171975801237
531 => 0.044117865814921
601 => 0.042270578609657
602 => 0.043597332531018
603 => 0.044050344653022
604 => 0.044250420613631
605 => 0.042433825809623
606 => 0.041863012282011
607 => 0.041559115949501
608 => 0.044577315243523
609 => 0.044742659014049
610 => 0.043896736906784
611 => 0.047720385045249
612 => 0.046854975709749
613 => 0.047821849967938
614 => 0.0451392949673
615 => 0.045241772180864
616 => 0.043971807653711
617 => 0.044682902929856
618 => 0.044180323708347
619 => 0.044625453458724
620 => 0.044892262395761
621 => 0.046162018534232
622 => 0.048080870564912
623 => 0.04597235930978
624 => 0.045053650761481
625 => 0.045623612377833
626 => 0.04714149527084
627 => 0.049441165552742
628 => 0.048079714460678
629 => 0.048683903336397
630 => 0.04881589172725
701 => 0.047812008095621
702 => 0.049478180174165
703 => 0.050371095327014
704 => 0.051287041511081
705 => 0.052082331918477
706 => 0.050921192463076
707 => 0.052163778123158
708 => 0.051162473427028
709 => 0.050264199601624
710 => 0.050265561912225
711 => 0.049702061619862
712 => 0.048610208797803
713 => 0.048408854385388
714 => 0.049456325467032
715 => 0.05029629807863
716 => 0.050365482246119
717 => 0.05083053424325
718 => 0.051105747224736
719 => 0.053803208577205
720 => 0.054888149847739
721 => 0.05621479549646
722 => 0.056731598742289
723 => 0.058286991228016
724 => 0.05703088547299
725 => 0.056759119091615
726 => 0.052986245686246
727 => 0.053604053495015
728 => 0.05459322340644
729 => 0.053002556733751
730 => 0.054011468616574
731 => 0.054210649193919
801 => 0.052948506488889
802 => 0.053622671441613
803 => 0.051832289203157
804 => 0.04811989600516
805 => 0.049482313129038
806 => 0.050485510716857
807 => 0.049053824065669
808 => 0.051620066973998
809 => 0.050120920844958
810 => 0.049645763493758
811 => 0.047792005260897
812 => 0.048666907789109
813 => 0.049850225985914
814 => 0.049119072915795
815 => 0.050636325319478
816 => 0.052785159359531
817 => 0.054316546461751
818 => 0.05443410734815
819 => 0.05344952803639
820 => 0.055027322666987
821 => 0.055038815178353
822 => 0.05325905638956
823 => 0.052168964041162
824 => 0.051921292766032
825 => 0.05254002417012
826 => 0.053291278318801
827 => 0.054475796724939
828 => 0.055191576389757
829 => 0.057057950135403
830 => 0.057562937357846
831 => 0.058117765212752
901 => 0.058859186329479
902 => 0.059749452476583
903 => 0.0578016008296
904 => 0.057878992606784
905 => 0.056065180122955
906 => 0.054126861356962
907 => 0.055597803685506
908 => 0.057520865108819
909 => 0.057079712693517
910 => 0.057030074034869
911 => 0.057113552490099
912 => 0.056780937975652
913 => 0.055276534854078
914 => 0.054521033024486
915 => 0.055495823133733
916 => 0.056013880693881
917 => 0.056817342790305
918 => 0.056718299127893
919 => 0.058787931202749
920 => 0.059592127644613
921 => 0.059386379781279
922 => 0.059424242339731
923 => 0.060880201584297
924 => 0.06249952770511
925 => 0.064016240306154
926 => 0.065559105508257
927 => 0.063699121288068
928 => 0.062754736008934
929 => 0.063729100555314
930 => 0.063212089011831
1001 => 0.066182990696269
1002 => 0.066388689483026
1003 => 0.069359376337457
1004 => 0.072178911905123
1005 => 0.070408012132299
1006 => 0.072077890854995
1007 => 0.0738840008408
1008 => 0.077368280034203
1009 => 0.076194897380285
1010 => 0.075296104656634
1011 => 0.074446749875719
1012 => 0.076214122343529
1013 => 0.078487818788902
1014 => 0.078977551226042
1015 => 0.079771104866398
1016 => 0.078936780244686
1017 => 0.079941632353696
1018 => 0.083489201852889
1019 => 0.082530617258945
1020 => 0.081169273035381
1021 => 0.083969738442798
1022 => 0.084983215987208
1023 => 0.092096332156192
1024 => 0.10107693514771
1025 => 0.097358906539401
1026 => 0.095051006202192
1027 => 0.095593417525564
1028 => 0.098872829725469
1029 => 0.099926072840738
1030 => 0.097062994978763
1031 => 0.098074282481761
1101 => 0.10364657605088
1102 => 0.10663593277012
1103 => 0.10257598482121
1104 => 0.091374749450042
1105 => 0.081046698882839
1106 => 0.083786162971439
1107 => 0.08347559275926
1108 => 0.089462327041494
1109 => 0.082507755333404
1110 => 0.082624852484975
1111 => 0.088735386092104
1112 => 0.087105200486789
1113 => 0.084464508584576
1114 => 0.08106597885609
1115 => 0.074783482327031
1116 => 0.069218899950868
1117 => 0.080132327437311
1118 => 0.079661720599315
1119 => 0.078980212157872
1120 => 0.080496835447389
1121 => 0.087861127640252
1122 => 0.087691356869319
1123 => 0.086611361842451
1124 => 0.087430528551691
1125 => 0.084320904699833
1126 => 0.085122325571276
1127 => 0.081045062866861
1128 => 0.082888155890788
1129 => 0.084458842845749
1130 => 0.084774181506375
1201 => 0.085484655610356
1202 => 0.079413732180232
1203 => 0.08213939856741
1204 => 0.083740472209475
1205 => 0.076506763247069
1206 => 0.083597485041435
1207 => 0.079308050909899
1208 => 0.077852152540516
1209 => 0.079812327894865
1210 => 0.079048445652942
1211 => 0.078391704558007
1212 => 0.078025231742789
1213 => 0.079464568186364
1214 => 0.079397421420892
1215 => 0.077042387636039
1216 => 0.073970342067157
1217 => 0.075001421396532
1218 => 0.07462682060975
1219 => 0.073269219033988
1220 => 0.074184078578612
1221 => 0.070155500143906
1222 => 0.06322454033428
1223 => 0.06780334468556
1224 => 0.067627065698816
1225 => 0.067538177840084
1226 => 0.070979022761214
1227 => 0.070648264915846
1228 => 0.070047936187713
1229 => 0.073258193526112
1230 => 0.072086406413542
1231 => 0.075697578186716
]
'min_raw' => 0.032416601638657
'max_raw' => 0.10663593277012
'avg_raw' => 0.069526267204391
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.032416'
'max' => '$0.106635'
'avg' => '$0.069526'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.017659728804197
'max_diff' => 0.070491741024391
'year' => 2029
]
4 => [
'items' => [
101 => 0.078076129472476
102 => 0.077472851928334
103 => 0.079709890909127
104 => 0.075025175381793
105 => 0.076581249961809
106 => 0.076901954776124
107 => 0.073218579448871
108 => 0.070702380989899
109 => 0.070534579239448
110 => 0.066171837865097
111 => 0.068502379092458
112 => 0.070553158928186
113 => 0.069570994533816
114 => 0.069260070627885
115 => 0.070848513432118
116 => 0.0709719490421
117 => 0.068157604053402
118 => 0.068742795495267
119 => 0.071183141087828
120 => 0.068681305047616
121 => 0.063820646294083
122 => 0.062615135719342
123 => 0.062454298386704
124 => 0.059184858097756
125 => 0.06269569370032
126 => 0.061163119875256
127 => 0.066004502225578
128 => 0.063239130591928
129 => 0.06311992094788
130 => 0.062939718086648
131 => 0.060125575771074
201 => 0.060741694090111
202 => 0.062789765220058
203 => 0.063520540072396
204 => 0.063444314268235
205 => 0.0627797285542
206 => 0.063083972490856
207 => 0.062103896765273
208 => 0.061757811628057
209 => 0.060665471736788
210 => 0.05906003386322
211 => 0.059283279846262
212 => 0.056102487333053
213 => 0.05436942275442
214 => 0.053889733320479
215 => 0.053248272561811
216 => 0.053962188020032
217 => 0.056093476547508
218 => 0.053522690405288
219 => 0.049115257884131
220 => 0.049380152088552
221 => 0.049975290718091
222 => 0.048866253819181
223 => 0.047816643468774
224 => 0.048729194510873
225 => 0.046861707249503
226 => 0.050200967631602
227 => 0.050110649996435
228 => 0.051355319768405
301 => 0.052133637320012
302 => 0.050339867346856
303 => 0.049888739049477
304 => 0.050145722230302
305 => 0.045898362688375
306 => 0.05100821987914
307 => 0.051052410136317
308 => 0.050674026325683
309 => 0.053394867530624
310 => 0.059136691124704
311 => 0.056976386124292
312 => 0.056139850732569
313 => 0.054549596341398
314 => 0.05666851589767
315 => 0.056505815936043
316 => 0.055770025007436
317 => 0.055325016358007
318 => 0.05614495843929
319 => 0.055223416460238
320 => 0.055057882198521
321 => 0.054054924675565
322 => 0.053696914471529
323 => 0.053431857969258
324 => 0.053140056804171
325 => 0.053783697462032
326 => 0.052325123053339
327 => 0.050566225302268
328 => 0.050419991985803
329 => 0.050823755029526
330 => 0.050645119939302
331 => 0.050419136749717
401 => 0.049987673297941
402 => 0.049859667308556
403 => 0.050275624674377
404 => 0.049806033060187
405 => 0.050498941066904
406 => 0.050310508429426
407 => 0.049257939034088
408 => 0.047946047856395
409 => 0.047934369273128
410 => 0.047651724470827
411 => 0.047291733819166
412 => 0.047191592655344
413 => 0.04865234200742
414 => 0.051676049449666
415 => 0.051082423327567
416 => 0.051511379038036
417 => 0.053621416580473
418 => 0.054292134064171
419 => 0.053816074681056
420 => 0.053164415235385
421 => 0.053193084943767
422 => 0.055420002540355
423 => 0.055558892659262
424 => 0.055909823182088
425 => 0.056360868076874
426 => 0.053892889577012
427 => 0.053076843378365
428 => 0.052690155416927
429 => 0.051499306162772
430 => 0.052783534987679
501 => 0.052035269847567
502 => 0.052136236379345
503 => 0.05207048179307
504 => 0.052106388243482
505 => 0.050200034240271
506 => 0.050894609444024
507 => 0.049739743452708
508 => 0.048193507530126
509 => 0.048188324005133
510 => 0.048566763056634
511 => 0.04834165270048
512 => 0.047735886520185
513 => 0.04782193274696
514 => 0.047068077258316
515 => 0.047913464452276
516 => 0.047937707132058
517 => 0.047612187013832
518 => 0.04891462262708
519 => 0.049448231560514
520 => 0.049233967245381
521 => 0.049433198204979
522 => 0.051107091173001
523 => 0.051380008763859
524 => 0.051501220729794
525 => 0.051338812752949
526 => 0.049463793895626
527 => 0.049546958955144
528 => 0.048936748929284
529 => 0.048421185759781
530 => 0.048441805582788
531 => 0.048706872070434
601 => 0.049864432967925
602 => 0.052300451634753
603 => 0.052392896762453
604 => 0.05250494295404
605 => 0.052049194782953
606 => 0.05191173677363
607 => 0.052093079368849
608 => 0.053007919900333
609 => 0.055361138124092
610 => 0.054529353637655
611 => 0.053853099902685
612 => 0.054446356744951
613 => 0.054355029504185
614 => 0.053584135683633
615 => 0.053562499261632
616 => 0.052082907550328
617 => 0.051535936183332
618 => 0.051078845968973
619 => 0.050579715387536
620 => 0.050283814047851
621 => 0.05073845299036
622 => 0.050842434295642
623 => 0.049848358302116
624 => 0.049712869417435
625 => 0.05052465333237
626 => 0.050167417497762
627 => 0.050534843412678
628 => 0.05062008937666
629 => 0.050606362813078
630 => 0.050233367573473
701 => 0.050471103616319
702 => 0.049908787002463
703 => 0.049297352142119
704 => 0.048907294794957
705 => 0.04856691802596
706 => 0.048755778840214
707 => 0.048082524522021
708 => 0.047867136915699
709 => 0.050390563994233
710 => 0.052254646708559
711 => 0.052227542207635
712 => 0.052062550528972
713 => 0.051817406361817
714 => 0.052989986077597
715 => 0.052581482751091
716 => 0.052878703052719
717 => 0.052954358093781
718 => 0.053183343117232
719 => 0.053265185581188
720 => 0.053017800811867
721 => 0.052187547310519
722 => 0.050118634523294
723 => 0.049155550035917
724 => 0.048837716113642
725 => 0.048849268773064
726 => 0.048530594852859
727 => 0.048624458604322
728 => 0.048497952870653
729 => 0.048258381616108
730 => 0.04874098599034
731 => 0.048796601648699
801 => 0.04868395602106
802 => 0.0487104881442
803 => 0.047777830458931
804 => 0.047848738397116
805 => 0.047453913986756
806 => 0.047379889169493
807 => 0.046381807441399
808 => 0.04461356098582
809 => 0.045593341170047
810 => 0.044409904485443
811 => 0.043961719080991
812 => 0.046083359078535
813 => 0.045870405267915
814 => 0.045505920912929
815 => 0.044966772586711
816 => 0.044766797228019
817 => 0.04355181025311
818 => 0.043480022340929
819 => 0.044082202693102
820 => 0.043804317180335
821 => 0.043414060676936
822 => 0.042000591181295
823 => 0.040411383484528
824 => 0.04045935167549
825 => 0.040964849075571
826 => 0.04243465094192
827 => 0.041860373924907
828 => 0.041443729359995
829 => 0.041365704357276
830 => 0.042342350622705
831 => 0.043724509702006
901 => 0.044372987817947
902 => 0.043730365699622
903 => 0.042992156011323
904 => 0.043037087414516
905 => 0.043335995910332
906 => 0.043367406966903
907 => 0.042886908349003
908 => 0.043022165895405
909 => 0.04281669731421
910 => 0.041555737010686
911 => 0.041532930237343
912 => 0.041223470243127
913 => 0.041214099917489
914 => 0.040687631268913
915 => 0.040613974665672
916 => 0.039568639209562
917 => 0.040256682172341
918 => 0.039795179076785
919 => 0.039099585054209
920 => 0.038979664382531
921 => 0.038976059422332
922 => 0.039690278951541
923 => 0.040248336101303
924 => 0.039803207120719
925 => 0.039701859880303
926 => 0.040783983261945
927 => 0.040646273197858
928 => 0.040527017170492
929 => 0.043600752516108
930 => 0.041167651143493
1001 => 0.040106680068462
1002 => 0.038793526890168
1003 => 0.039221096186514
1004 => 0.039311191319554
1005 => 0.036153294639409
1006 => 0.034872136349565
1007 => 0.034432491103922
1008 => 0.034179469049383
1009 => 0.034294774376888
1010 => 0.033141581651149
1011 => 0.033916546234893
1012 => 0.032917978811357
1013 => 0.032750565733182
1014 => 0.03453612798523
1015 => 0.034784578541499
1016 => 0.033724611280918
1017 => 0.034405281855323
1018 => 0.034158461243015
1019 => 0.032935096383772
1020 => 0.032888372844611
1021 => 0.032274531361597
1022 => 0.031313988303813
1023 => 0.030874994351595
1024 => 0.030646362489759
1025 => 0.030740700451899
1026 => 0.030693000291452
1027 => 0.030381724478903
1028 => 0.030710842256661
1029 => 0.029870082335346
1030 => 0.029535284960215
1031 => 0.029384064753108
1101 => 0.028637841930606
1102 => 0.029825414288003
1103 => 0.030059381003052
1104 => 0.030293808704807
1105 => 0.032334341797988
1106 => 0.032232402531139
1107 => 0.033153883857015
1108 => 0.033118076787187
1109 => 0.032855255386039
1110 => 0.03174645512662
1111 => 0.03218840314756
1112 => 0.030828155833078
1113 => 0.031847345608915
1114 => 0.031382229957605
1115 => 0.031690089539343
1116 => 0.031136530252799
1117 => 0.031442892817875
1118 => 0.030114863190784
1119 => 0.028874767810887
1120 => 0.029373818392398
1121 => 0.029916343447858
1122 => 0.031092676000907
1123 => 0.030392062036844
1124 => 0.030644029311468
1125 => 0.029799981120289
1126 => 0.02805846861144
1127 => 0.028068325383113
1128 => 0.027800431624539
1129 => 0.027568932304002
1130 => 0.030472535978586
1201 => 0.03011142696247
1202 => 0.029536047006069
1203 => 0.030306215942402
1204 => 0.030509860833393
1205 => 0.030515658317149
1206 => 0.03107755369216
1207 => 0.031377437354529
1208 => 0.031430293149792
1209 => 0.032314447662925
1210 => 0.032610804593448
1211 => 0.033831456848267
1212 => 0.031351994320948
1213 => 0.031300931421853
1214 => 0.030317053798756
1215 => 0.029693063055697
1216 => 0.03035977897878
1217 => 0.030950398270832
1218 => 0.030335405986505
1219 => 0.030415710995642
1220 => 0.029590134100648
1221 => 0.029885238993605
1222 => 0.030139423082341
1223 => 0.029999077568791
1224 => 0.029788973542207
1225 => 0.030901974224218
1226 => 0.030839174363854
1227 => 0.031875626186717
1228 => 0.03268361450002
1229 => 0.034131674002646
1230 => 0.032620548422607
1231 => 0.03256547700029
]
'min_raw' => 0.027568932304002
'max_raw' => 0.079709890909127
'avg_raw' => 0.053639411606564
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.027568'
'max' => '$0.0797098'
'avg' => '$0.053639'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0048476693346556
'max_diff' => -0.026926041860998
'year' => 2030
]
5 => [
'items' => [
101 => 0.033103808987171
102 => 0.032610722177625
103 => 0.03292233602048
104 => 0.034081468195031
105 => 0.034105958831343
106 => 0.033695709118719
107 => 0.033670745386422
108 => 0.033749538331372
109 => 0.034211031070994
110 => 0.034049771327531
111 => 0.034236385185264
112 => 0.034469748671892
113 => 0.035435038996653
114 => 0.035667767225978
115 => 0.035102358284471
116 => 0.035153408381273
117 => 0.034941929916327
118 => 0.034737644369006
119 => 0.035196848445875
120 => 0.036036052922031
121 => 0.03603083227454
122 => 0.036225511401204
123 => 0.036346794884307
124 => 0.035826157389893
125 => 0.035487241525402
126 => 0.035617203433624
127 => 0.035825015355075
128 => 0.035549812828317
129 => 0.033851135346956
130 => 0.034366405582863
131 => 0.034280639420181
201 => 0.034158497975
202 => 0.034676606181671
203 => 0.034626633381205
204 => 0.033129753992949
205 => 0.033225579354772
206 => 0.033135581450585
207 => 0.033426383090852
208 => 0.032595017934721
209 => 0.032850740257417
210 => 0.033011126900964
211 => 0.033105595866162
212 => 0.033446882546431
213 => 0.033406836493617
214 => 0.03344439322756
215 => 0.033950431278056
216 => 0.036509798086174
217 => 0.036649098774616
218 => 0.035963131237898
219 => 0.036237161738705
220 => 0.035711083101037
221 => 0.036064243214924
222 => 0.036305866395551
223 => 0.035214017703763
224 => 0.035149365510275
225 => 0.034621115558933
226 => 0.034904967161177
227 => 0.034453338852354
228 => 0.034564152642051
301 => 0.034254307625484
302 => 0.034811966965778
303 => 0.035435516759727
304 => 0.035593050062406
305 => 0.035178647765408
306 => 0.03487859319194
307 => 0.03435179620505
308 => 0.035227871334684
309 => 0.035484062400495
310 => 0.035226525672079
311 => 0.035166848784817
312 => 0.035053761191288
313 => 0.035190840852384
314 => 0.035482667128931
315 => 0.035345047246096
316 => 0.035435947603259
317 => 0.035089529177797
318 => 0.035826329742568
319 => 0.036996546360136
320 => 0.037000308797912
321 => 0.036862688173255
322 => 0.036806376778723
323 => 0.036947583891139
324 => 0.037024182957005
325 => 0.037480820865602
326 => 0.037970811534784
327 => 0.040257384188175
328 => 0.039615323736971
329 => 0.041644107023876
330 => 0.043248611199279
331 => 0.043729731845018
401 => 0.043287123489414
402 => 0.041772984214125
403 => 0.041698693317696
404 => 0.043961456648091
405 => 0.043322122366128
406 => 0.043246075587634
407 => 0.042437066347511
408 => 0.042915291006167
409 => 0.042810696258186
410 => 0.042645588331549
411 => 0.043558007666846
412 => 0.045265975210288
413 => 0.044999772451424
414 => 0.044801064440723
415 => 0.043930383780864
416 => 0.044454728011665
417 => 0.044268019074229
418 => 0.045070239157874
419 => 0.044595021751673
420 => 0.04331727878014
421 => 0.043520763559852
422 => 0.043490007244753
423 => 0.044122970030075
424 => 0.043932970313023
425 => 0.043452906750612
426 => 0.045260137562904
427 => 0.0451427860463
428 => 0.045309163666553
429 => 0.045382408240387
430 => 0.04648243778885
501 => 0.046933084697836
502 => 0.04703538943586
503 => 0.047463469145114
504 => 0.047024738422723
505 => 0.048779974121993
506 => 0.049947103441165
507 => 0.05130278420531
508 => 0.053283798174362
509 => 0.054028677752129
510 => 0.053894121923564
511 => 0.055396104105899
512 => 0.058095132700368
513 => 0.054439672770687
514 => 0.058288880952791
515 => 0.057070266083582
516 => 0.054180952150634
517 => 0.053994914396126
518 => 0.055951591337143
519 => 0.060291312469142
520 => 0.059204261546286
521 => 0.060293090495027
522 => 0.059022913689766
523 => 0.058959838705494
524 => 0.060231400842683
525 => 0.063202475085469
526 => 0.061791029081774
527 => 0.059767375134719
528 => 0.061261609717682
529 => 0.059967165437037
530 => 0.057050420180602
531 => 0.059203430298932
601 => 0.057763773747003
602 => 0.058183942065208
603 => 0.061209886004613
604 => 0.060845796424169
605 => 0.061316962055051
606 => 0.060485367049096
607 => 0.059708526183038
608 => 0.058258495017581
609 => 0.057829212275162
610 => 0.057947850581192
611 => 0.05782915348391
612 => 0.057017874373311
613 => 0.05684267872662
614 => 0.056550678306637
615 => 0.056641181446692
616 => 0.056092135229388
617 => 0.057128298880177
618 => 0.057320619984406
619 => 0.058074653480573
620 => 0.058152939739555
621 => 0.060252912293384
622 => 0.05909628269934
623 => 0.059872249689619
624 => 0.059802839898324
625 => 0.054243572344727
626 => 0.05500959036378
627 => 0.056201274011729
628 => 0.055664422143617
629 => 0.054905439206097
630 => 0.054292519789959
701 => 0.053363884200281
702 => 0.054670920959885
703 => 0.056389535310901
704 => 0.058196526635642
705 => 0.060367508313557
706 => 0.059882970476059
707 => 0.058155941643277
708 => 0.05823341489512
709 => 0.058712324053414
710 => 0.058092093179938
711 => 0.057909174987005
712 => 0.058687193902605
713 => 0.058692551691285
714 => 0.057978901113946
715 => 0.057185809093911
716 => 0.057182486009388
717 => 0.057041362944783
718 => 0.059048019169453
719 => 0.060151477197193
720 => 0.060277986881762
721 => 0.060142962087445
722 => 0.060194927771836
723 => 0.059552849858532
724 => 0.061020449566054
725 => 0.062367264188244
726 => 0.062006289098999
727 => 0.061465136124589
728 => 0.061034081715012
729 => 0.061904746379209
730 => 0.061865977052266
731 => 0.062355500937454
801 => 0.062333293306395
802 => 0.062168684835731
803 => 0.062006294977686
804 => 0.062650152409117
805 => 0.062464731808899
806 => 0.062279023199274
807 => 0.061906556152106
808 => 0.061957180609839
809 => 0.061416121073119
810 => 0.061165802174233
811 => 0.057401606534001
812 => 0.05639569046029
813 => 0.05671217213439
814 => 0.056816366118946
815 => 0.056378590154551
816 => 0.057006248432076
817 => 0.056908428554378
818 => 0.057288988475785
819 => 0.057051231158881
820 => 0.0570609888021
821 => 0.05776018237591
822 => 0.057963161244969
823 => 0.057859924553925
824 => 0.057932227993586
825 => 0.059598430243186
826 => 0.059361549565441
827 => 0.059235711426596
828 => 0.05927056945105
829 => 0.059696319849602
830 => 0.059815506716086
831 => 0.059310503587679
901 => 0.059548665982424
902 => 0.060562731231942
903 => 0.060917596678151
904 => 0.062050156837372
905 => 0.061569025152083
906 => 0.062452163183322
907 => 0.06516662840741
908 => 0.067335131055118
909 => 0.065340886403124
910 => 0.069323065358493
911 => 0.072423762884891
912 => 0.072304752949346
913 => 0.071764074615192
914 => 0.068234012917697
915 => 0.064985597513406
916 => 0.067703034934099
917 => 0.06770996224093
918 => 0.067476531956517
919 => 0.066026716508006
920 => 0.067426081521566
921 => 0.067537158034595
922 => 0.067474984724927
923 => 0.066363414619826
924 => 0.064666252521831
925 => 0.064997873933347
926 => 0.065541076570304
927 => 0.064512680654603
928 => 0.064184045846831
929 => 0.06479504047981
930 => 0.066763792493056
1001 => 0.066391611329156
1002 => 0.066381892174864
1003 => 0.067974241023405
1004 => 0.066834462898239
1005 => 0.065002056741345
1006 => 0.064539350020262
1007 => 0.062897052877011
1008 => 0.064031393363516
1009 => 0.064072216258198
1010 => 0.063450949566418
1011 => 0.065052469109387
1012 => 0.065037710824857
1013 => 0.06655811527618
1014 => 0.069464557549276
1015 => 0.068604979551783
1016 => 0.067605383862519
1017 => 0.067714067629724
1018 => 0.068906060301568
1019 => 0.068185354321626
1020 => 0.068444525216954
1021 => 0.068905668015378
1022 => 0.069183886915199
1023 => 0.067674036211586
1024 => 0.067322017788066
1025 => 0.066601911635222
1026 => 0.066414049381363
1027 => 0.067000560817347
1028 => 0.06684603577572
1029 => 0.064068785251974
1030 => 0.063778547119766
1031 => 0.063787448308917
1101 => 0.06305763072541
1102 => 0.061944483734272
1103 => 0.064869767564428
1104 => 0.064634826333546
1105 => 0.064375469397659
1106 => 0.064407239142435
1107 => 0.065677005706038
1108 => 0.064940476974399
1109 => 0.066898659322145
1110 => 0.066496115899798
1111 => 0.066083248757603
1112 => 0.066026177942311
1113 => 0.065867259316735
1114 => 0.06532226821862
1115 => 0.064664158718758
1116 => 0.064229617822481
1117 => 0.059248427276486
1118 => 0.060172907267571
1119 => 0.06123643722831
1120 => 0.061603563508929
1121 => 0.060975568601565
1122 => 0.065347065285237
1123 => 0.066145779854134
1124 => 0.063726421326083
1125 => 0.063273858127242
1126 => 0.065376735253209
1127 => 0.064108443279977
1128 => 0.064679555077865
1129 => 0.063445123752283
1130 => 0.065953392903579
1201 => 0.065934284095146
1202 => 0.064958510743464
1203 => 0.065783227698498
1204 => 0.065639912832274
1205 => 0.064538267121448
1206 => 0.065988317037582
1207 => 0.065989036244249
1208 => 0.065049875608398
1209 => 0.063953141594422
1210 => 0.063757071456424
1211 => 0.06360935894576
1212 => 0.064643226855183
1213 => 0.065570189589951
1214 => 0.067295037425804
1215 => 0.067728705153112
1216 => 0.069421339163687
1217 => 0.068413458023244
1218 => 0.068860238678556
1219 => 0.069345282280881
1220 => 0.069577830020723
1221 => 0.06919890595785
1222 => 0.071828263292227
1223 => 0.072050261612676
1224 => 0.072124695729244
1225 => 0.071238091230004
1226 => 0.072025603537696
1227 => 0.071657152608594
1228 => 0.072615759567503
1229 => 0.072766081378767
1230 => 0.07263876415248
1231 => 0.072686478668043
]
'min_raw' => 0.032595017934721
'max_raw' => 0.072766081378767
'avg_raw' => 0.052680549656744
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.032595'
'max' => '$0.072766'
'avg' => '$0.05268'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0050260856307199
'max_diff' => -0.0069438095303591
'year' => 2031
]
6 => [
'items' => [
101 => 0.070442786033571
102 => 0.070326438734052
103 => 0.068740035049483
104 => 0.069386506277049
105 => 0.068177959303287
106 => 0.06856120199808
107 => 0.068730131726275
108 => 0.068641892422944
109 => 0.069423056790298
110 => 0.06875890749671
111 => 0.067006108314678
112 => 0.065252831583681
113 => 0.065230820622511
114 => 0.064769213807145
115 => 0.06443555662714
116 => 0.064499830837133
117 => 0.064726341536567
118 => 0.064422391413515
119 => 0.06448725458293
120 => 0.065564415376264
121 => 0.065780432291408
122 => 0.065046322410492
123 => 0.062098765307065
124 => 0.061375427400497
125 => 0.061895348343324
126 => 0.06164685961985
127 => 0.049753827053342
128 => 0.052547918642997
129 => 0.050887764298809
130 => 0.05165283980064
131 => 0.049958252110107
201 => 0.05076699817698
202 => 0.050617652309106
203 => 0.055110468902091
204 => 0.055040319750658
205 => 0.055073896437238
206 => 0.053471193703176
207 => 0.056024342676659
208 => 0.057282115669264
209 => 0.057049335362877
210 => 0.05710792115094
211 => 0.056101223208019
212 => 0.055083643473859
213 => 0.053954990944276
214 => 0.056051887838571
215 => 0.055818748699149
216 => 0.056353486004169
217 => 0.057713473529405
218 => 0.057913736858586
219 => 0.058182892803876
220 => 0.058086419557314
221 => 0.060384803685123
222 => 0.060106454202019
223 => 0.060777196369689
224 => 0.059397428841461
225 => 0.057836090914535
226 => 0.058132850210461
227 => 0.058104269903876
228 => 0.057740409798097
229 => 0.057411933163884
301 => 0.056865112115638
302 => 0.058595334826577
303 => 0.058525090944271
304 => 0.059662257749231
305 => 0.059461252470605
306 => 0.058118890025607
307 => 0.058166832762941
308 => 0.058489270712
309 => 0.059605232135228
310 => 0.05993652546609
311 => 0.059783057195478
312 => 0.060146305208653
313 => 0.060433401627451
314 => 0.06018236009864
315 => 0.063736578746883
316 => 0.062260619364872
317 => 0.062979991698005
318 => 0.063151557760669
319 => 0.0627120948988
320 => 0.062807398657554
321 => 0.062951757883347
322 => 0.063828278833925
323 => 0.066128523431623
324 => 0.067147286105649
325 => 0.07021228387532
326 => 0.067062692047432
327 => 0.066875808302672
328 => 0.067427906955055
329 => 0.069227385108816
330 => 0.07068569313605
331 => 0.071169498040492
401 => 0.071233440845363
402 => 0.072141091008838
403 => 0.072661339155869
404 => 0.072030878405423
405 => 0.071496628931412
406 => 0.069583013628992
407 => 0.069804519810848
408 => 0.071330477746729
409 => 0.073485983209635
410 => 0.075335631138928
411 => 0.074687948900828
412 => 0.079629307185129
413 => 0.080119222675378
414 => 0.08005153219549
415 => 0.081167632591479
416 => 0.078952400595334
417 => 0.078005345998883
418 => 0.071612139731683
419 => 0.073408369917271
420 => 0.076019295980924
421 => 0.075673730125929
422 => 0.073777605828251
423 => 0.075334192758619
424 => 0.074819536440465
425 => 0.074413605649228
426 => 0.076273253297444
427 => 0.074228494318115
428 => 0.075998897945946
429 => 0.073728336980772
430 => 0.074690907458735
501 => 0.074144505901148
502 => 0.074498094673363
503 => 0.072431021935999
504 => 0.073546364209727
505 => 0.072384620030507
506 => 0.072384069212502
507 => 0.072358423645357
508 => 0.073725210520246
509 => 0.073769781391167
510 => 0.072759723825523
511 => 0.072614158750249
512 => 0.073152389127281
513 => 0.072522262318536
514 => 0.072817094686377
515 => 0.072531192490607
516 => 0.072466829884318
517 => 0.07195397768701
518 => 0.071733026859245
519 => 0.071819667372013
520 => 0.07152391863569
521 => 0.071345719324355
522 => 0.072322975317121
523 => 0.07180086686258
524 => 0.072242954708373
525 => 0.071739139812158
526 => 0.069992697880177
527 => 0.068988300656806
528 => 0.065689433742545
529 => 0.066624988307198
530 => 0.067245261951464
531 => 0.067040261515734
601 => 0.067480681776319
602 => 0.067507720003373
603 => 0.067364534887104
604 => 0.067198744865614
605 => 0.067118047451916
606 => 0.067719499859472
607 => 0.068068663226015
608 => 0.067307514709856
609 => 0.06712918826212
610 => 0.067898751436118
611 => 0.068368184527694
612 => 0.071834214724225
613 => 0.071577440012136
614 => 0.072221894149987
615 => 0.07214933850402
616 => 0.072824829110083
617 => 0.073928970767367
618 => 0.071683942055246
619 => 0.072073601412419
620 => 0.071978065936589
621 => 0.073021097210953
622 => 0.073024353440741
623 => 0.072399004088483
624 => 0.072738016117477
625 => 0.072548788903201
626 => 0.072890748054989
627 => 0.071574010629308
628 => 0.073177654680766
629 => 0.074086817521402
630 => 0.074099441248327
701 => 0.074530377219226
702 => 0.074968233123788
703 => 0.075808659403382
704 => 0.074944794090992
705 => 0.073390784489595
706 => 0.073502978963396
707 => 0.072591863702687
708 => 0.072607179714826
709 => 0.072525421641691
710 => 0.07277078377363
711 => 0.071627853819359
712 => 0.07189609719517
713 => 0.071520554898203
714 => 0.072072785056807
715 => 0.071478676693065
716 => 0.071978019866489
717 => 0.072193519826651
718 => 0.07298871931903
719 => 0.071361225081483
720 => 0.068042654159451
721 => 0.068740258001046
722 => 0.067708447123728
723 => 0.067803945148805
724 => 0.067996866357858
725 => 0.067371545599426
726 => 0.067490837094013
727 => 0.067486575162385
728 => 0.067449848138096
729 => 0.067287178057795
730 => 0.067051274258062
731 => 0.067991042388835
801 => 0.068150727306837
802 => 0.06850568709878
803 => 0.069561806668075
804 => 0.069456275418088
805 => 0.069628401265266
806 => 0.069252651507321
807 => 0.0678213751024
808 => 0.067899100297266
809 => 0.066929865871828
810 => 0.068480901595386
811 => 0.068113595863376
812 => 0.067876791468484
813 => 0.067812177195361
814 => 0.068870914680791
815 => 0.069187705530109
816 => 0.068990302731857
817 => 0.068585423833483
818 => 0.069362911010062
819 => 0.069570933778964
820 => 0.069617502405337
821 => 0.070995060613855
822 => 0.06969449260643
823 => 0.070007552252351
824 => 0.072449954243013
825 => 0.070235032665919
826 => 0.071408326023951
827 => 0.071350899419599
828 => 0.071951116599486
829 => 0.071301664091822
830 => 0.071309714834016
831 => 0.071842667027522
901 => 0.071094231790178
902 => 0.070908908700143
903 => 0.070652886178569
904 => 0.071211901988029
905 => 0.07154700668369
906 => 0.074247704423441
907 => 0.075992478330099
908 => 0.075916733093297
909 => 0.076608902768524
910 => 0.076297073990287
911 => 0.075290096609083
912 => 0.077008884210989
913 => 0.076464987896618
914 => 0.076509826047941
915 => 0.076508157169709
916 => 0.076869800670525
917 => 0.076613543106057
918 => 0.076108433142191
919 => 0.0764437487087
920 => 0.077439516063723
921 => 0.080530408487588
922 => 0.082260112836861
923 => 0.080426278113881
924 => 0.081691232749767
925 => 0.080932710717658
926 => 0.080794864700348
927 => 0.081589349691098
928 => 0.082385225322651
929 => 0.082334531485586
930 => 0.081756766645744
1001 => 0.081430401947958
1002 => 0.083901744779793
1003 => 0.085722588080063
1004 => 0.085598418774073
1005 => 0.086146461708692
1006 => 0.087755532715061
1007 => 0.087902646002349
1008 => 0.087884113109511
1009 => 0.087519477477284
1010 => 0.089103816847329
1011 => 0.090425500623619
1012 => 0.087435074863759
1013 => 0.088573789845566
1014 => 0.089084995688005
1015 => 0.089835597532643
1016 => 0.091101988660024
1017 => 0.092477625318017
1018 => 0.092672155424546
1019 => 0.092534127004841
1020 => 0.091626857649796
1021 => 0.093132095695731
1022 => 0.094013828840863
1023 => 0.094538880750685
1024 => 0.095870325033687
1025 => 0.089088152721252
1026 => 0.084287394062676
1027 => 0.083537686274344
1028 => 0.08506224654272
1029 => 0.08546426092735
1030 => 0.085302209432989
1031 => 0.079898519096879
1101 => 0.083509236963043
1102 => 0.087394065789255
1103 => 0.087543297885933
1104 => 0.089488124424275
1105 => 0.090121439666292
1106 => 0.091687279943899
1107 => 0.091589336208202
1108 => 0.091970593397838
1109 => 0.091882948972395
1110 => 0.09478333836009
1111 => 0.097982898566709
1112 => 0.097872107970733
1113 => 0.097412133335553
1114 => 0.098095274106125
1115 => 0.10139756312507
1116 => 0.1010935412703
1117 => 0.10138887260568
1118 => 0.10528245746787
1119 => 0.1103446716447
1120 => 0.10799276492157
1121 => 0.11309572576783
1122 => 0.11630776912422
1123 => 0.12186266597762
1124 => 0.12116716553313
1125 => 0.12332964611444
1126 => 0.11992207458217
1127 => 0.11209760156025
1128 => 0.11085934875365
1129 => 0.11333836223002
1130 => 0.11943277496307
1201 => 0.11314642748488
1202 => 0.11441814739236
1203 => 0.11405189197345
1204 => 0.11403237577867
1205 => 0.11477722955563
1206 => 0.11369678030318
1207 => 0.10929483567958
1208 => 0.11131222095976
1209 => 0.11053321162028
1210 => 0.11139758056142
1211 => 0.11606222324388
1212 => 0.11399987352277
1213 => 0.11182735562327
1214 => 0.11455217518956
1215 => 0.11802180684703
1216 => 0.11780468353344
1217 => 0.11738337355455
1218 => 0.11975827584644
1219 => 0.12368091865156
1220 => 0.12474119323933
1221 => 0.12552386626366
1222 => 0.12563178365035
1223 => 0.1267433998035
1224 => 0.12076595958467
1225 => 0.1302523107235
1226 => 0.13189034151001
1227 => 0.13158245961157
1228 => 0.1334030618919
1229 => 0.13286739451681
1230 => 0.13209129653393
1231 => 0.13497733840147
]
'min_raw' => 0.049753827053342
'max_raw' => 0.13497733840147
'avg_raw' => 0.092365582727407
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.049753'
'max' => '$0.134977'
'avg' => '$0.092365'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.017158809118621
'max_diff' => 0.062211257022705
'year' => 2032
]
7 => [
'items' => [
101 => 0.1316687242919
102 => 0.1269725631063
103 => 0.12439615620034
104 => 0.12778897664692
105 => 0.12986085370053
106 => 0.13123023263684
107 => 0.13164460587557
108 => 0.12122997125327
109 => 0.11561706081397
110 => 0.11921487205341
111 => 0.1236044500732
112 => 0.12074157525714
113 => 0.12085379452979
114 => 0.11677208739235
115 => 0.12396559058502
116 => 0.12291755767673
117 => 0.12835475425887
118 => 0.12705712365831
119 => 0.13149094640029
120 => 0.13032337227874
121 => 0.13516990717908
122 => 0.13710332116552
123 => 0.14034982416061
124 => 0.14273796497944
125 => 0.14414032694611
126 => 0.14405613439376
127 => 0.14961299115967
128 => 0.1463363068666
129 => 0.14222001913931
130 => 0.14214556848105
131 => 0.14427745222326
201 => 0.14874529569319
202 => 0.14990374250047
203 => 0.15055115622751
204 => 0.14955961956791
205 => 0.14600301360986
206 => 0.14446728918957
207 => 0.14577577088988
208 => 0.14417561020952
209 => 0.1469379364696
210 => 0.15073120042575
211 => 0.149947906419
212 => 0.15256634084557
213 => 0.15527614500974
214 => 0.15915128666942
215 => 0.16016439219534
216 => 0.16183901710473
217 => 0.16356275622212
218 => 0.16411637477056
219 => 0.16517340435727
220 => 0.16516783328958
221 => 0.16835326309543
222 => 0.17186689081582
223 => 0.1731932039396
224 => 0.1762429878344
225 => 0.17102033979173
226 => 0.17498177832555
227 => 0.1785550950443
228 => 0.17429483954165
301 => 0.18016660923983
302 => 0.18039459675149
303 => 0.18383693749837
304 => 0.18034746567872
305 => 0.17827542845099
306 => 0.18425732228921
307 => 0.18715177228963
308 => 0.18627994039369
309 => 0.17964525661792
310 => 0.17578358608544
311 => 0.16567684944134
312 => 0.17764871557481
313 => 0.1834798623443
314 => 0.17963015535648
315 => 0.18157172363706
316 => 0.19216429062022
317 => 0.19619725430949
318 => 0.19535842605467
319 => 0.19550017422145
320 => 0.19767628822471
321 => 0.20732637612303
322 => 0.20154381976707
323 => 0.20596436743295
324 => 0.20830900997546
325 => 0.2104868446373
326 => 0.20513877101955
327 => 0.19818100582165
328 => 0.19597718951637
329 => 0.17924737786598
330 => 0.17837651851569
331 => 0.17788767877263
401 => 0.1748056133404
402 => 0.17238395415944
403 => 0.17045816086831
404 => 0.1654043041818
405 => 0.16710983245598
406 => 0.15905503971955
407 => 0.16420821066799
408 => 0.15135256697089
409 => 0.16205912904935
410 => 0.15623203407769
411 => 0.16014477163194
412 => 0.16013112045922
413 => 0.15292653008726
414 => 0.14877107271668
415 => 0.15141909188604
416 => 0.15425797863561
417 => 0.15471857845956
418 => 0.15839926923291
419 => 0.15942647091156
420 => 0.15631400186977
421 => 0.15108616232966
422 => 0.15230047022051
423 => 0.14874646480603
424 => 0.14251820702001
425 => 0.14699145049688
426 => 0.14851881249452
427 => 0.14919338256456
428 => 0.14306860635225
429 => 0.14114406869098
430 => 0.14011946098856
501 => 0.1502955306323
502 => 0.15085299869856
503 => 0.14800091325352
504 => 0.16089260991095
505 => 0.15797482191536
506 => 0.16123470598185
507 => 0.15219028450719
508 => 0.15253579358745
509 => 0.14825401951806
510 => 0.15065152688867
511 => 0.14895704595439
512 => 0.15045783198575
513 => 0.15135739694498
514 => 0.15563846841738
515 => 0.16210801200879
516 => 0.15499901910055
517 => 0.15190152908778
518 => 0.15382319447076
519 => 0.15894084261973
520 => 0.16669434153302
521 => 0.16210411412264
522 => 0.16414117910025
523 => 0.16458618717514
524 => 0.16120152342219
525 => 0.16681913891342
526 => 0.1698296646926
527 => 0.1729178412015
528 => 0.17559921833544
529 => 0.17168435559339
530 => 0.17587381990091
531 => 0.17249785120905
601 => 0.16946925829122
602 => 0.16947385141653
603 => 0.1675739708385
604 => 0.16389271281819
605 => 0.16321383235862
606 => 0.16674545424248
607 => 0.16957748054749
608 => 0.16981073979847
609 => 0.17137869507569
610 => 0.17230659485753
611 => 0.18140127413811
612 => 0.1850592293799
613 => 0.189532107808
614 => 0.19127454603337
615 => 0.19651866039303
616 => 0.19228361214146
617 => 0.19136733281253
618 => 0.17864682671272
619 => 0.18072980887394
620 => 0.18406486429195
621 => 0.17870182054818
622 => 0.1821034374011
623 => 0.18277498862396
624 => 0.17851958637396
625 => 0.18079258058076
626 => 0.17475618186331
627 => 0.16223958900525
628 => 0.16683307345933
629 => 0.17021542416768
630 => 0.16538839266603
701 => 0.17404065980082
702 => 0.16898618395972
703 => 0.16738415777572
704 => 0.16113408246837
705 => 0.16408387742598
706 => 0.16807351734314
707 => 0.16560838371976
708 => 0.17072390612996
709 => 0.1779688501228
710 => 0.18313202865597
711 => 0.1835283933923
712 => 0.18020881550157
713 => 0.18552846025673
714 => 0.18556720806118
715 => 0.17956662704597
716 => 0.17589130458553
717 => 0.17505626358958
718 => 0.17714235971691
719 => 0.17967526553008
720 => 0.1836689520368
721 => 0.18608225315088
722 => 0.19237486254038
723 => 0.19407746221792
724 => 0.19594810306758
725 => 0.198447856127
726 => 0.20144945059836
727 => 0.19488213277589
728 => 0.19514306455599
729 => 0.18902766913042
730 => 0.18249249208178
731 => 0.18745187684038
801 => 0.19393561269294
802 => 0.19244823652447
803 => 0.19228087632118
804 => 0.19256232976126
805 => 0.1914408967034
806 => 0.18636869654495
807 => 0.18382146937902
808 => 0.18710804229002
809 => 0.18885470952368
810 => 0.19156363807771
811 => 0.19122970545488
812 => 0.19820761449236
813 => 0.2009190189433
814 => 0.20022532565721
815 => 0.20035298191651
816 => 0.2052618501614
817 => 0.21072152123546
818 => 0.21583522366337
819 => 0.22103710141167
820 => 0.21476603475335
821 => 0.21158197384987
822 => 0.21486711194595
823 => 0.21312397143051
824 => 0.22314057388132
825 => 0.2238341017023
826 => 0.23384997983875
827 => 0.24335624085883
828 => 0.23738552863447
829 => 0.24301564133525
830 => 0.24910506725097
831 => 0.26085255781613
901 => 0.25689641627549
902 => 0.25386607385599
903 => 0.25100241491208
904 => 0.25696123458131
905 => 0.2646271608913
906 => 0.26627832799514
907 => 0.26895384949775
908 => 0.26614086578496
909 => 0.26952879482702
910 => 0.28148967307694
911 => 0.27825773819222
912 => 0.27366787109646
913 => 0.28310983573982
914 => 0.28652684603954
915 => 0.31050921382518
916 => 0.34078794381675
917 => 0.32825235077938
918 => 0.32047110366002
919 => 0.32229988130672
920 => 0.33335664849995
921 => 0.33690773119816
922 => 0.3272546642928
923 => 0.330664290715
924 => 0.34945166752838
925 => 0.35953049241755
926 => 0.34584209445128
927 => 0.3080763473521
928 => 0.27325460378331
929 => 0.2824908982213
930 => 0.28144378906762
1001 => 0.30162848168061
1002 => 0.27818065761409
1003 => 0.27857545883608
1004 => 0.29917754951634
1005 => 0.2936812649321
1006 => 0.28477798781657
1007 => 0.27331960755921
1008 => 0.25213773188159
1009 => 0.23337635389362
1010 => 0.27017173661534
1011 => 0.26858505280431
1012 => 0.26628729951259
1013 => 0.27140070082045
1014 => 0.29622992610715
1015 => 0.29565753209993
1016 => 0.292016253464
1017 => 0.2947781312166
1018 => 0.28429381729306
1019 => 0.28699586371454
1020 => 0.27324908784122
1021 => 0.27946320465203
1022 => 0.28475888538254
1023 => 0.28582207169309
1024 => 0.28821748473838
1025 => 0.26774894253537
1026 => 0.2769387170597
1027 => 0.28233684862731
1028 => 0.25794789381913
1029 => 0.28185475740722
1030 => 0.26739263075402
1031 => 0.26248396775407
1101 => 0.26909283581632
1102 => 0.26651735350513
1103 => 0.26430310505136
1104 => 0.26306751636853
1105 => 0.2679203396793
1106 => 0.26769394967148
1107 => 0.25975378884264
1108 => 0.24939617272378
1109 => 0.25287252867043
1110 => 0.251609535964
1111 => 0.2470322874666
1112 => 0.25011680029476
1113 => 0.23653416683578
1114 => 0.21316595193347
1115 => 0.22860371048572
1116 => 0.22800937357451
1117 => 0.22770968195284
1118 => 0.23931073083655
1119 => 0.23819555766812
1120 => 0.2361715074476
1121 => 0.24699511419703
1122 => 0.24304435213543
1123 => 0.25521966989265
1124 => 0.26323912161774
1125 => 0.26120512925817
1126 => 0.26874746236699
1127 => 0.25295261689019
1128 => 0.25819903097837
1129 => 0.25928030965073
1130 => 0.24686155256984
1201 => 0.23837801379005
1202 => 0.23781225847286
1203 => 0.22310297133236
1204 => 0.2309605537936
1205 => 0.23787490119063
1206 => 0.23456346536249
1207 => 0.23351516370563
1208 => 0.23887070952163
1209 => 0.23928688129869
1210 => 0.229798120678
1211 => 0.23177113448101
1212 => 0.23999893002581
1213 => 0.23156381514363
1214 => 0.21517576479573
1215 => 0.21111130172693
1216 => 0.21056902743064
1217 => 0.19954588123142
1218 => 0.21138290858418
1219 => 0.20621572893209
1220 => 0.22253878754072
1221 => 0.21321514400579
1222 => 0.21281322036793
1223 => 0.21220565383992
1224 => 0.20271757654582
1225 => 0.20479486247446
1226 => 0.21170007728084
1227 => 0.21416393571657
1228 => 0.21390693509592
1229 => 0.21166623796116
1230 => 0.21269201763523
1231 => 0.20938762389973
]
'min_raw' => 0.11561706081397
'max_raw' => 0.35953049241755
'avg_raw' => 0.23757377661576
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.115617'
'max' => '$0.35953'
'avg' => '$0.237573'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.065863233760625
'max_diff' => 0.22455315401608
'year' => 2033
]
8 => [
'items' => [
101 => 0.20822077369671
102 => 0.20453787348856
103 => 0.19912502760973
104 => 0.1998777170281
105 => 0.18915345299397
106 => 0.1833103047684
107 => 0.18169299835102
108 => 0.17953026861782
109 => 0.18193728442919
110 => 0.18912307250139
111 => 0.18045548753634
112 => 0.16559552107415
113 => 0.16648863037868
114 => 0.16849518181942
115 => 0.16475598648426
116 => 0.16121715190641
117 => 0.16429388145713
118 => 0.15799751777162
119 => 0.16925606728958
120 => 0.16895155507684
121 => 0.1731480461131
122 => 0.17577219807874
123 => 0.16972437737723
124 => 0.16820336682584
125 => 0.16906980356199
126 => 0.15474953432521
127 => 0.17197777460271
128 => 0.17212676514005
129 => 0.17085101770458
130 => 0.1800245237901
131 => 0.19938348291887
201 => 0.1920998637823
202 => 0.18927942630407
203 => 0.18391777259622
204 => 0.19106185781843
205 => 0.19051330353845
206 => 0.18803253305137
207 => 0.18653215532031
208 => 0.18929664729389
209 => 0.18618960417151
210 => 0.18563149385089
211 => 0.18224995253799
212 => 0.18104289613961
213 => 0.18014923963655
214 => 0.17916541163555
215 => 0.18133549105108
216 => 0.17641780559776
217 => 0.17048755902771
218 => 0.16999452319156
219 => 0.17135583848331
220 => 0.17075355780471
221 => 0.16999163970339
222 => 0.16853693055191
223 => 0.1681053494216
224 => 0.16950777872169
225 => 0.1679245178086
226 => 0.17026070553054
227 => 0.16962539173734
228 => 0.16607658053291
301 => 0.161653447834
302 => 0.16161407267514
303 => 0.16066111599055
304 => 0.15944738237473
305 => 0.15910974944928
306 => 0.16403476787606
307 => 0.17422940862611
308 => 0.1722279567098
309 => 0.17367421083637
310 => 0.18078834972882
311 => 0.18304972055311
312 => 0.18144465310553
313 => 0.17924753778704
314 => 0.1793441997105
315 => 0.18685240786582
316 => 0.18732068559872
317 => 0.18850387235761
318 => 0.19002460171133
319 => 0.18170363989029
320 => 0.17895228315702
321 => 0.17764853769734
322 => 0.17363350629452
323 => 0.17796337343969
324 => 0.1754405452776
325 => 0.17578096098874
326 => 0.17555926481028
327 => 0.17568032591475
328 => 0.16925292029554
329 => 0.17159472908869
330 => 0.16770101776879
331 => 0.16248777540107
401 => 0.16247029878465
402 => 0.16374623246856
403 => 0.16298725718608
404 => 0.16094487421597
405 => 0.1612349850771
406 => 0.15869330866462
407 => 0.16154359061211
408 => 0.16162532649957
409 => 0.16052781269388
410 => 0.16491906529709
411 => 0.16671816507155
412 => 0.16599575797362
413 => 0.16666747906377
414 => 0.17231112607293
415 => 0.17323128678501
416 => 0.17363996139091
417 => 0.17309239155801
418 => 0.16677063457091
419 => 0.16705103137547
420 => 0.16499366566978
421 => 0.16325540844833
422 => 0.16332492962123
423 => 0.16421861979068
424 => 0.16812141717489
425 => 0.1763346241875
426 => 0.17664630938985
427 => 0.1770240809476
428 => 0.17548749416946
429 => 0.17502404489402
430 => 0.17563545411473
501 => 0.17871990283876
502 => 0.18665394237661
503 => 0.18384952290725
504 => 0.18156948622527
505 => 0.18356969308884
506 => 0.18326177692033
507 => 0.18066265458225
508 => 0.18058970587487
509 => 0.17560115911841
510 => 0.17375700696627
511 => 0.17221589539554
512 => 0.17053304179203
513 => 0.16953538976612
514 => 0.17106823670266
515 => 0.17141881693316
516 => 0.16806722031682
517 => 0.16761041008259
518 => 0.17034739622873
519 => 0.16914295067094
520 => 0.17038175279594
521 => 0.17066916551519
522 => 0.17062288544771
523 => 0.16936530595569
524 => 0.17016684962235
525 => 0.16827095989904
526 => 0.16620946457837
527 => 0.16489435899948
528 => 0.16374675495846
529 => 0.16438351237955
530 => 0.16211358844065
531 => 0.16138739408806
601 => 0.16989530466339
602 => 0.17618018968084
603 => 0.17608880496359
604 => 0.17553252399963
605 => 0.17470600332465
606 => 0.1786594377033
607 => 0.1772821402172
608 => 0.17828423921539
609 => 0.1785393154684
610 => 0.17931135446219
611 => 0.17958729204348
612 => 0.17875321702186
613 => 0.17595395937561
614 => 0.16897847546661
615 => 0.165731368877
616 => 0.1646597696176
617 => 0.16469872021542
618 => 0.16362428884434
619 => 0.16394075703576
620 => 0.16351423412235
621 => 0.16270650291132
622 => 0.1643336372534
623 => 0.16452114932852
624 => 0.16414135673027
625 => 0.16423081163585
626 => 0.16108629113388
627 => 0.16132536219811
628 => 0.15999418413282
629 => 0.15974460429317
630 => 0.15637950206306
701 => 0.15041773568305
702 => 0.15372113298024
703 => 0.14973109357319
704 => 0.14822000519077
705 => 0.15537326257066
706 => 0.1546552739302
707 => 0.15342638947988
708 => 0.1516086132559
709 => 0.15093438237224
710 => 0.14683796895865
711 => 0.14659593100066
712 => 0.1486262241009
713 => 0.14768931369326
714 => 0.14637353664521
715 => 0.14160792555537
716 => 0.13624980085078
717 => 0.13641152895564
718 => 0.13811584873272
719 => 0.1430713883434
720 => 0.1411351732858
721 => 0.139730427046
722 => 0.13946736030181
723 => 0.14276019137297
724 => 0.14742023720809
725 => 0.14960662645129
726 => 0.14743998111291
727 => 0.14495105560865
728 => 0.14510254497153
729 => 0.1461103358343
730 => 0.14621624040458
731 => 0.14459620576698
801 => 0.14505223602806
802 => 0.1443594843612
803 => 0.14010806866043
804 => 0.14003117403179
805 => 0.13898780805548
806 => 0.13895621534838
807 => 0.13718118954284
808 => 0.13693285116247
809 => 0.13340842968921
810 => 0.13572821457584
811 => 0.13417222466806
812 => 0.13182698085612
813 => 0.13142265993896
814 => 0.13141050556396
815 => 0.13381854657191
816 => 0.13570007521463
817 => 0.13419929177868
818 => 0.13385759248178
819 => 0.13750604701443
820 => 0.13704174791875
821 => 0.1366396678963
822 => 0.14700298121539
823 => 0.1387996100639
824 => 0.1352224720098
825 => 0.13079508438776
826 => 0.13223666412232
827 => 0.13254042615361
828 => 0.12189335701919
829 => 0.11757384239737
830 => 0.11609154775663
831 => 0.11523846623432
901 => 0.11562722619636
902 => 0.11173915640819
903 => 0.11435200360858
904 => 0.11098526382238
905 => 0.1104208189409
906 => 0.11644096673766
907 => 0.11727863513438
908 => 0.11370488151078
909 => 0.11599980987529
910 => 0.11516763694843
911 => 0.11104297691288
912 => 0.11088544523847
913 => 0.10881583582145
914 => 0.10557729783915
915 => 0.10409719907967
916 => 0.10332635079492
917 => 0.10364441782074
918 => 0.10348359339948
919 => 0.10243410526489
920 => 0.10354374883087
921 => 0.10070906805617
922 => 0.09958027533111
923 => 0.099070425844992
924 => 0.096554483499311
925 => 0.10055846661593
926 => 0.10134730173075
927 => 0.10213769109444
928 => 0.10901749088357
929 => 0.10867379552822
930 => 0.11178063415418
1001 => 0.11165990811828
1002 => 0.11077378741471
1003 => 0.10703538992612
1004 => 0.10852544853454
1005 => 0.10393927974433
1006 => 0.10737554923112
1007 => 0.10580737933939
1008 => 0.10684534941329
1009 => 0.10497898563043
1010 => 0.10601190840814
1011 => 0.10153436380033
1012 => 0.097353295646315
1013 => 0.09903587952448
1014 => 0.10086504062685
1015 => 0.10483112795837
1016 => 0.10246895906323
1017 => 0.10331848432142
1018 => 0.1004727169153
1019 => 0.094601085903191
1020 => 0.094634318697063
1021 => 0.093731096186285
1022 => 0.092950580064328
1023 => 0.10274028257632
1024 => 0.10152277831666
1025 => 0.09958284462191
1026 => 0.10217952296224
1027 => 0.10286612593025
1028 => 0.10288567255149
1029 => 0.10478014203863
1030 => 0.10579122074351
1031 => 0.10596942774752
1101 => 0.10895041641824
1102 => 0.10994960450048
1103 => 0.11406511880082
1104 => 0.10570543777942
1105 => 0.10553327565002
1106 => 0.10221606355161
1107 => 0.10011223519574
1108 => 0.10236011447904
1109 => 0.10435142865791
1110 => 0.10227793923391
1111 => 0.10254869317894
1112 => 0.099765203037524
1113 => 0.10076016978769
1114 => 0.10161716918944
1115 => 0.10114398449189
1116 => 0.10043560409727
1117 => 0.10418816360389
1118 => 0.10397642949013
1119 => 0.10747089917367
1120 => 0.11019508818391
1121 => 0.1150773218973
1122 => 0.10998245650078
1123 => 0.10979677935547
1124 => 0.11161180323438
1125 => 0.10994932662978
1126 => 0.11099995445715
1127 => 0.11490804951167
1128 => 0.11499062140188
1129 => 0.11360743585305
1130 => 0.1135232688867
1201 => 0.11378892480174
1202 => 0.11534487979377
1203 => 0.11480118130989
1204 => 0.1154303629602
1205 => 0.11621716424828
1206 => 0.11947170797263
1207 => 0.12025636744637
1208 => 0.11835005172449
1209 => 0.11852217069006
1210 => 0.11780915628054
1211 => 0.11712039329498
1212 => 0.11866863190075
1213 => 0.1214980683835
1214 => 0.12148046660599
1215 => 0.1221368408736
1216 => 0.12254575660462
1217 => 0.12079039094246
1218 => 0.11964771244297
1219 => 0.1200858880902
1220 => 0.12078654049233
1221 => 0.11985867595934
1222 => 0.11413146623306
1223 => 0.11586873580844
1224 => 0.11557956920295
1225 => 0.11516776079288
1226 => 0.11691459878484
1227 => 0.11674611199907
1228 => 0.11169927863279
1229 => 0.11202236053049
1230 => 0.11171892631307
1231 => 0.11269938434635
]
'min_raw' => 0.092950580064328
'max_raw' => 0.20822077369671
'avg_raw' => 0.15058567688052
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.09295'
'max' => '$0.20822'
'avg' => '$0.150585'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.022666480749639
'max_diff' => -0.15130971872084
'year' => 2034
]
9 => [
'items' => [
101 => 0.10989637867839
102 => 0.11075856434332
103 => 0.11129931910988
104 => 0.11161782782166
105 => 0.11276849969206
106 => 0.11263348162907
107 => 0.11276010677969
108 => 0.11446624939738
109 => 0.12309533328024
110 => 0.12356499527698
111 => 0.12125220783421
112 => 0.12217612079988
113 => 0.12040240994335
114 => 0.12159311392417
115 => 0.12240776334725
116 => 0.11872651925244
117 => 0.11850853986822
118 => 0.11672750827604
119 => 0.11768453377089
120 => 0.11616183739601
121 => 0.11653545382475
122 => 0.11549078971871
123 => 0.11737097711904
124 => 0.11947331878419
125 => 0.1200044533128
126 => 0.11860726703583
127 => 0.11759561209224
128 => 0.11581947927115
129 => 0.11877322773632
130 => 0.11963699380139
131 => 0.1187686907409
201 => 0.11856748594899
202 => 0.11818620323188
203 => 0.11864837687986
204 => 0.1196322895459
205 => 0.11916829450261
206 => 0.11947477140324
207 => 0.11830679749563
208 => 0.12079097204153
209 => 0.12473643906958
210 => 0.12474912439123
211 => 0.12428512684683
212 => 0.12409526904863
213 => 0.1245713586869
214 => 0.12482961778545
215 => 0.12636920437573
216 => 0.12802124212693
217 => 0.13573058147124
218 => 0.13356582983278
219 => 0.1404060143297
220 => 0.14581571217998
221 => 0.14743784402786
222 => 0.14594555905501
223 => 0.14084053277454
224 => 0.14059005583041
225 => 0.14821912037993
226 => 0.1460635602114
227 => 0.14580716318828
228 => 0.14307953205199
301 => 0.14469189987723
302 => 0.14433925138184
303 => 0.14378257847971
304 => 0.14685886397175
305 => 0.15261739579095
306 => 0.15171987460376
307 => 0.15104991667233
308 => 0.14811435603863
309 => 0.14988221922132
310 => 0.14925271700316
311 => 0.15195745802438
312 => 0.15035522936076
313 => 0.14604722972307
314 => 0.14673329286472
315 => 0.14662959580103
316 => 0.14876367402379
317 => 0.14812307671239
318 => 0.14650450889476
319 => 0.15259771375523
320 => 0.15220205492377
321 => 0.15276300868657
322 => 0.15300995788103
323 => 0.15671878430528
324 => 0.15823817182209
325 => 0.15858309938903
326 => 0.16002640001635
327 => 0.1585471887546
328 => 0.16446508846133
329 => 0.16840014644729
330 => 0.17297091879421
331 => 0.17965004570085
401 => 0.18216145920312
402 => 0.18170779483273
403 => 0.18677183262552
404 => 0.19587179597193
405 => 0.18354715760295
406 => 0.19652503173204
407 => 0.19241638661953
408 => 0.18267486296914
409 => 0.18204762369108
410 => 0.18864469660854
411 => 0.20327636939473
412 => 0.19961130131285
413 => 0.20328236413313
414 => 0.19899987435329
415 => 0.19878721264006
416 => 0.20307437316322
417 => 0.21309155740656
418 => 0.20833276866109
419 => 0.20150987809158
420 => 0.20654779431217
421 => 0.20218348504476
422 => 0.19234947477204
423 => 0.19960849870436
424 => 0.19475459612592
425 => 0.19617122294596
426 => 0.20637340420232
427 => 0.20514585076193
428 => 0.20673441858219
429 => 0.2039306379595
430 => 0.20131146474229
501 => 0.19642258343001
502 => 0.19497522669238
503 => 0.19537522402422
504 => 0.19497502847356
505 => 0.19223974431048
506 => 0.19164905995589
507 => 0.1906645601531
508 => 0.19096969780853
509 => 0.1891185501537
510 => 0.19261204824497
511 => 0.19326047227531
512 => 0.19580274885258
513 => 0.19606669644051
514 => 0.20314690052114
515 => 0.19924724309152
516 => 0.20186346997554
517 => 0.20162945001815
518 => 0.18288599132553
519 => 0.18546867455844
520 => 0.18948651917819
521 => 0.18767648562305
522 => 0.18511752165871
523 => 0.18305102105453
524 => 0.17992006132867
525 => 0.18432682701806
526 => 0.19012125529233
527 => 0.19621365270381
528 => 0.203533269004
529 => 0.20189961585552
530 => 0.19607681756849
531 => 0.19633802404609
601 => 0.19795269970965
602 => 0.19586154801659
603 => 0.19524482655817
604 => 0.19786797165167
605 => 0.19788603581027
606 => 0.19547991306328
607 => 0.19280594794581
608 => 0.19279474393433
609 => 0.19231893766912
610 => 0.19908451923086
611 => 0.20280490501236
612 => 0.20323144124651
613 => 0.20277619572534
614 => 0.20295140165839
615 => 0.20078659114524
616 => 0.20573470602369
617 => 0.210275585554
618 => 0.20905853283813
619 => 0.20723399780282
620 => 0.20578066776567
621 => 0.20871617446888
622 => 0.2085854609763
623 => 0.21023592493268
624 => 0.21016105035407
625 => 0.20960606140263
626 => 0.20905855265854
627 => 0.2112293629413
628 => 0.21060420444201
629 => 0.2099780748989
630 => 0.20872227624455
701 => 0.20889296013828
702 => 0.20706874013466
703 => 0.20622477249036
704 => 0.19353352408157
705 => 0.19014200780824
706 => 0.19120904786851
707 => 0.19156034516203
708 => 0.19008435293353
709 => 0.19220054663791
710 => 0.19187074009069
711 => 0.19315382443555
712 => 0.19235220904193
713 => 0.1923851076173
714 => 0.19474248756753
715 => 0.1954268449961
716 => 0.19507877528449
717 => 0.19532255137937
718 => 0.20094026859442
719 => 0.20014160885093
720 => 0.19971733678007
721 => 0.19983486304323
722 => 0.20127031023689
723 => 0.2016721570786
724 => 0.19996950377298
725 => 0.20077248491483
726 => 0.20419147670336
727 => 0.20538793033117
728 => 0.20920643598081
729 => 0.20758426691231
730 => 0.21056182844336
731 => 0.21971383746429
801 => 0.22702509554105
802 => 0.22030136046314
803 => 0.23372755483802
804 => 0.24418177303206
805 => 0.24378052272536
806 => 0.24195758797281
807 => 0.23005573849866
808 => 0.21910347916598
809 => 0.22826550915527
810 => 0.2282888650539
811 => 0.22750183855241
812 => 0.22261368454488
813 => 0.22733174138864
814 => 0.22770624360743
815 => 0.22749662195309
816 => 0.22374888573639
817 => 0.21802678523093
818 => 0.21914486997292
819 => 0.22097631558862
820 => 0.21750900695852
821 => 0.21640099175957
822 => 0.21846100282294
823 => 0.22509878768948
824 => 0.22384395291053
825 => 0.22381118410326
826 => 0.22917989942037
827 => 0.2253370578946
828 => 0.21915897260212
829 => 0.21759892458684
830 => 0.21206180510684
831 => 0.21588631325422
901 => 0.2160239504938
902 => 0.21392930646701
903 => 0.21932894142065
904 => 0.21927918283397
905 => 0.22440533259285
906 => 0.23420460563792
907 => 0.23130647840555
908 => 0.22793627174966
909 => 0.22830270665885
910 => 0.23232159317424
911 => 0.22989168264478
912 => 0.23076549541311
913 => 0.23232027055396
914 => 0.23325830499933
915 => 0.22816773793769
916 => 0.22698088324565
917 => 0.22455299507513
918 => 0.22391960437012
919 => 0.22589706862546
920 => 0.22537607665902
921 => 0.21601238261677
922 => 0.21503382449025
923 => 0.21506383547094
924 => 0.21260320453391
925 => 0.20885015173584
926 => 0.21871295040601
927 => 0.21792082964302
928 => 0.21704638962595
929 => 0.21715350353856
930 => 0.22143461016001
1001 => 0.2189513521185
1002 => 0.22555350061985
1003 => 0.22419629736672
1004 => 0.22280428697135
1005 => 0.22261186873304
1006 => 0.22207606349156
1007 => 0.2202385879542
1008 => 0.21801972582768
1009 => 0.21655464085721
1010 => 0.19976020915577
1011 => 0.20287715799084
1012 => 0.20646292350676
1013 => 0.20770071539381
1014 => 0.20558338671843
1015 => 0.22032219299558
1016 => 0.22301511492908
1017 => 0.21485807873754
1018 => 0.2133322303157
1019 => 0.22042222736409
1020 => 0.21614609242702
1021 => 0.21807163572735
1022 => 0.21390966432791
1023 => 0.22236646889326
1024 => 0.2223020422115
1025 => 0.21901215422998
1026 => 0.22179274502378
1027 => 0.22130954894638
1028 => 0.21759527351788
1029 => 0.22248421804938
1030 => 0.22248664290487
1031 => 0.21932019725099
1101 => 0.21562248195135
1102 => 0.21496141779191
1103 => 0.21446339474925
1104 => 0.21794915258822
1105 => 0.22107447216697
1106 => 0.22688991707057
1107 => 0.2283520580909
1108 => 0.23405889183349
1109 => 0.23066075020047
1110 => 0.23216710237309
1111 => 0.23380246074299
1112 => 0.23458651168383
1113 => 0.23330894275022
1114 => 0.24217400457894
1115 => 0.24292248741576
1116 => 0.2431734472366
1117 => 0.24018419826666
1118 => 0.2428393509944
1119 => 0.2415970929625
1120 => 0.24482910325227
1121 => 0.24533592373408
1122 => 0.24490666481665
1123 => 0.24506753763719
1124 => 0.23750277127045
1125 => 0.23711049822701
1126 => 0.23176182744532
1127 => 0.23394145032424
1128 => 0.22986674982414
1129 => 0.23115887932679
1130 => 0.23172843769969
1201 => 0.23143093272784
1202 => 0.23406468293153
1203 => 0.23182545721878
1204 => 0.22591577240002
1205 => 0.2200044774916
1206 => 0.21993026599926
1207 => 0.21837392639289
1208 => 0.2172489779153
1209 => 0.21746568290178
1210 => 0.21822937953939
1211 => 0.2172045904784
1212 => 0.21742328118269
1213 => 0.22105500400238
1214 => 0.2217833201136
1215 => 0.21930821739618
1216 => 0.20937032283011
1217 => 0.20693153857628
1218 => 0.20868448833474
1219 => 0.20784669125462
1220 => 0.16774850161162
1221 => 0.17716897648339
1222 => 0.17157165020368
1223 => 0.17415115567397
1224 => 0.168437734963
1225 => 0.17116447879231
1226 => 0.17066094877178
1227 => 0.18580879359347
1228 => 0.18557228083175
1229 => 0.18568548697481
1230 => 0.18028186280979
1231 => 0.18888998282905
]
'min_raw' => 0.10989637867839
'max_raw' => 0.24533592373408
'avg_raw' => 0.17761615120624
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.109896'
'max' => '$0.245335'
'avg' => '$0.177616'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.016945798614065
'max_diff' => 0.037115150037369
'year' => 2035
]
10 => [
'items' => [
101 => 0.19313065228853
102 => 0.19234581723334
103 => 0.19254334330812
104 => 0.18914919090816
105 => 0.18571834978929
106 => 0.1819130189858
107 => 0.18898285326558
108 => 0.18819680837977
109 => 0.1899997125378
110 => 0.19458500543043
111 => 0.19526020722671
112 => 0.19616768528812
113 => 0.19584241900179
114 => 0.20359158155675
115 => 0.20265310684073
116 => 0.20491456088875
117 => 0.20026257833504
118 => 0.19499841850527
119 => 0.19599896319056
120 => 0.1959026026915
121 => 0.19467582294096
122 => 0.19356834103521
123 => 0.19172469569322
124 => 0.19755826236344
125 => 0.19732143020997
126 => 0.20115546748735
127 => 0.20047776415672
128 => 0.19595189545266
129 => 0.19611353773883
130 => 0.19720065979599
131 => 0.20096320164834
201 => 0.2020801802435
202 => 0.20156275125432
203 => 0.2027874672919
204 => 0.20375543291231
205 => 0.20290902887077
206 => 0.21489232519094
207 => 0.2099160250863
208 => 0.21234143913243
209 => 0.21291988609106
210 => 0.21143820636995
211 => 0.21175952964649
212 => 0.21224624685509
213 => 0.2152014984367
214 => 0.22295693369578
215 => 0.226391763179
216 => 0.23672561715076
217 => 0.22610654840556
218 => 0.22547645681229
219 => 0.2273378959651
220 => 0.23340496219605
221 => 0.23832174952569
222 => 0.2399529315392
223 => 0.24016851917016
224 => 0.24322872506643
225 => 0.24498277801671
226 => 0.24285713557922
227 => 0.24105587617748
228 => 0.23460398858102
229 => 0.23535081213822
301 => 0.24049568585802
302 => 0.24776312301879
303 => 0.2539993401507
304 => 0.25181563426521
305 => 0.26847576871535
306 => 0.27012755299553
307 => 0.26989932981659
308 => 0.27366234022531
309 => 0.26619353088775
310 => 0.26300047019457
311 => 0.2414453289053
312 => 0.2475014443848
313 => 0.25630436389744
314 => 0.25513926449069
315 => 0.24874634903789
316 => 0.25399449055106
317 => 0.25225929084225
318 => 0.25089066683841
319 => 0.25716059872082
320 => 0.2502665510615
321 => 0.25623559049837
322 => 0.24858023567878
323 => 0.25182560924976
324 => 0.24998337824981
325 => 0.25117552748212
326 => 0.24420624742968
327 => 0.24796670177627
328 => 0.24404980016564
329 => 0.24404794304428
330 => 0.24396147722413
331 => 0.24856969459883
401 => 0.24871996840198
402 => 0.24531448879945
403 => 0.24482370598513
404 => 0.24663838727934
405 => 0.24451387074961
406 => 0.24550791866232
407 => 0.24454397944823
408 => 0.24432697642747
409 => 0.24259785943805
410 => 0.24185290829595
411 => 0.24214502283379
412 => 0.24114788532076
413 => 0.24054707390112
414 => 0.24384196071056
415 => 0.24208163560363
416 => 0.24357216564131
417 => 0.24187351854349
418 => 0.23598526763713
419 => 0.23259887227376
420 => 0.2214765121528
421 => 0.22463079968586
422 => 0.22672209558362
423 => 0.22603092230189
424 => 0.22751582995961
425 => 0.22760699122987
426 => 0.2271242326135
427 => 0.22656525998096
428 => 0.22629318301656
429 => 0.2283210218007
430 => 0.22949825046881
501 => 0.22693198510489
502 => 0.22633074503599
503 => 0.22892538100631
504 => 0.23050810744933
505 => 0.24219407024744
506 => 0.24132833637819
507 => 0.24350115849831
508 => 0.24325653207226
509 => 0.24553399581185
510 => 0.24925668649809
511 => 0.24168741545227
512 => 0.24300117918013
513 => 0.24267907465329
514 => 0.24619572741693
515 => 0.246206706023
516 => 0.24409829702137
517 => 0.24524129974618
518 => 0.24460330698183
519 => 0.24575624613691
520 => 0.24131677397456
521 => 0.2467235718569
522 => 0.24978887784983
523 => 0.24983143962651
524 => 0.25128437033939
525 => 0.25276063209174
526 => 0.25559418797008
527 => 0.25268160575621
528 => 0.24744215388761
529 => 0.2478204253892
530 => 0.24474853667568
531 => 0.24480017567994
601 => 0.2445245226282
602 => 0.24535177818667
603 => 0.24149831004902
604 => 0.24240271131873
605 => 0.24113654424498
606 => 0.24299842678019
607 => 0.24099534895251
608 => 0.24267891932474
609 => 0.24340549248615
610 => 0.24608656309376
611 => 0.24059935264385
612 => 0.229410559085
613 => 0.23176257914208
614 => 0.22828375673047
615 => 0.22860573498947
616 => 0.22925618231512
617 => 0.22714786971957
618 => 0.22755006932223
619 => 0.22753569992219
620 => 0.22741187219561
621 => 0.22686341866261
622 => 0.22606805253153
623 => 0.22923654639695
624 => 0.22977493524684
625 => 0.23097170696787
626 => 0.23453248783166
627 => 0.23417668185438
628 => 0.23475701616558
629 => 0.23349014962266
630 => 0.22866450129494
701 => 0.22892655721603
702 => 0.22565871568088
703 => 0.23088814091271
704 => 0.22964974399277
705 => 0.22885134144224
706 => 0.22863348990918
707 => 0.23220309726
708 => 0.2332711797261
709 => 0.23260562240957
710 => 0.23124054493597
711 => 0.23386189723422
712 => 0.23456326052326
713 => 0.23472026989839
714 => 0.23936480357646
715 => 0.23497984773666
716 => 0.23603535019001
717 => 0.24427007902459
718 => 0.23680231628653
719 => 0.24075815675986
720 => 0.24056453895389
721 => 0.24258821308171
722 => 0.24039853860879
723 => 0.24042568224819
724 => 0.24222256777812
725 => 0.23969916612134
726 => 0.23907433638444
727 => 0.23821113857803
728 => 0.24009589940887
729 => 0.24122572828655
730 => 0.25033131927281
731 => 0.25621394631534
801 => 0.2559585659611
802 => 0.25829226434687
803 => 0.25724091184985
804 => 0.2538458173042
805 => 0.25964082970595
806 => 0.25780704530842
807 => 0.2579582202661
808 => 0.25795259352663
809 => 0.25917189983877
810 => 0.25830790956884
811 => 0.25660489606001
812 => 0.25773543590348
813 => 0.2610927350632
814 => 0.27151389466948
815 => 0.27734571364715
816 => 0.27116281184437
817 => 0.27542769471558
818 => 0.272870284726
819 => 0.27240552725454
820 => 0.27508418887002
821 => 0.27776753912807
822 => 0.27759662131707
823 => 0.27564864682129
824 => 0.27454828545665
825 => 0.28288059035783
826 => 0.28901969067191
827 => 0.28860104518754
828 => 0.29044881020474
829 => 0.29587390544447
830 => 0.29636990816368
831 => 0.29630742322155
901 => 0.29507802872945
902 => 0.3004197395306
903 => 0.30487588865938
904 => 0.29479345942515
905 => 0.29863271648885
906 => 0.30035628267789
907 => 0.30288698920243
908 => 0.307156715305
909 => 0.31179477034131
910 => 0.31245064217713
911 => 0.31198526972326
912 => 0.3089263477492
913 => 0.31400136291343
914 => 0.31697418777289
915 => 0.31874443694481
916 => 0.32323349430342
917 => 0.3003669268359
918 => 0.28418083384024
919 => 0.28165314168895
920 => 0.28679330307518
921 => 0.28814872264071
922 => 0.2876023547134
923 => 0.26938343547159
924 => 0.28155722284964
925 => 0.2946551944673
926 => 0.2951583409003
927 => 0.30171545935777
928 => 0.30385072591289
929 => 0.30913006573232
930 => 0.3087998415892
1001 => 0.31008527682259
1002 => 0.30978977752307
1003 => 0.3195686428424
1004 => 0.33035618346518
1005 => 0.32998264523569
1006 => 0.32843180863878
1007 => 0.33073506544213
1008 => 0.34186896342794
1009 => 0.34084393251849
1010 => 0.3418396627351
1011 => 0.35496715593937
1012 => 0.37203476446905
1013 => 0.36410514674713
1014 => 0.38131013551766
1015 => 0.39213976395144
1016 => 0.41086848652319
1017 => 0.4085235582163
1018 => 0.41581451247577
1019 => 0.40432564714567
1020 => 0.377944890065
1021 => 0.3737700342755
1022 => 0.38212820129026
1023 => 0.40267593931804
1024 => 0.38148107989658
1025 => 0.38576877235329
1026 => 0.38453391663731
1027 => 0.384468116424
1028 => 0.38697944293708
1029 => 0.38333663284788
1030 => 0.36849516921547
1031 => 0.37529692453691
1101 => 0.37267044016018
1102 => 0.37558472039354
1103 => 0.39131188887239
1104 => 0.38435853279902
1105 => 0.37703373702051
1106 => 0.38622065642907
1107 => 0.39791876180419
1108 => 0.39718671539333
1109 => 0.3957662393846
1110 => 0.40377338827209
1111 => 0.41699885235972
1112 => 0.42057364215839
1113 => 0.42321247890441
1114 => 0.42357632990817
1115 => 0.42732422137908
1116 => 0.40717086434976
1117 => 0.4391547595302
1118 => 0.44467749469059
1119 => 0.44363944937436
1120 => 0.44977773707291
1121 => 0.44797169711866
1122 => 0.44535502858395
1123 => 0.45508552023739
1124 => 0.44393029676691
1125 => 0.42809686145415
1126 => 0.41941032569173
1127 => 0.43084945670654
1128 => 0.43783493484662
1129 => 0.44245189153737
1130 => 0.44384897984235
1201 => 0.4087353120867
1202 => 0.3898109926597
1203 => 0.40194126444464
1204 => 0.41674103320891
1205 => 0.40708865088702
1206 => 0.40746700599966
1207 => 0.39370524541009
1208 => 0.41795864365855
1209 => 0.41442512753693
1210 => 0.43275701542654
1211 => 0.42838196325909
1212 => 0.44333090619328
1213 => 0.43939434852507
1214 => 0.45573477931582
1215 => 0.46225341955775
1216 => 0.47319923106929
1217 => 0.48125101457465
1218 => 0.48597917585507
1219 => 0.48569531478668
1220 => 0.50443064534031
1221 => 0.49338307547543
1222 => 0.47950472401284
1223 => 0.47925370842052
1224 => 0.48644150330075
1225 => 0.50150514949451
1226 => 0.50541093378541
1227 => 0.50759373436713
1228 => 0.50425069929239
1229 => 0.49225935399053
1230 => 0.48708155188668
1231 => 0.49149318929452
]
'min_raw' => 0.1819130189858
'max_raw' => 0.50759373436713
'avg_raw' => 0.34475337667646
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.181913'
'max' => '$0.507593'
'avg' => '$0.344753'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.072016640307407
'max_diff' => 0.26225781063305
'year' => 2036
]
11 => [
'items' => [
101 => 0.48609813584106
102 => 0.49541151168638
103 => 0.50820076595176
104 => 0.50555983552015
105 => 0.5143880700026
106 => 0.52352436393457
107 => 0.53658967459394
108 => 0.54000543060735
109 => 0.54565154540795
110 => 0.55146325218986
111 => 0.55332981577832
112 => 0.55689366482936
113 => 0.55687488158569
114 => 0.5676147805757
115 => 0.57946122174867
116 => 0.58393297904572
117 => 0.59421553837615
118 => 0.57660701586664
119 => 0.58996328246223
120 => 0.60201096926049
121 => 0.58764722039178
122 => 0.60744430188304
123 => 0.6082129776962
124 => 0.61981906986087
125 => 0.60805407199375
126 => 0.60106805381546
127 => 0.6212364265335
128 => 0.63099526679397
129 => 0.62805582468744
130 => 0.60568652511859
131 => 0.59266663330513
201 => 0.55859106507973
202 => 0.59895504759772
203 => 0.61861516604872
204 => 0.60563561016134
205 => 0.61218174317525
206 => 0.64789532230842
207 => 0.66149274095932
208 => 0.65866457293306
209 => 0.65914248677389
210 => 0.66647940706731
211 => 0.69901535216414
212 => 0.67951905968482
213 => 0.69442324477312
214 => 0.70232837080292
215 => 0.70967109241685
216 => 0.69163968882402
217 => 0.66818109768368
218 => 0.66075077714487
219 => 0.60434504912743
220 => 0.60140888602646
221 => 0.59976072870304
222 => 0.58936932991535
223 => 0.5812045369119
224 => 0.57471159037624
225 => 0.55767215970868
226 => 0.56342246736125
227 => 0.53626517128273
228 => 0.55363944691829
301 => 0.51029574664113
302 => 0.54639366819695
303 => 0.52674721066521
304 => 0.539939278508
305 => 0.53989325262606
306 => 0.51560247317858
307 => 0.5015920585289
308 => 0.51052004003717
309 => 0.52009154491809
310 => 0.52164448938261
311 => 0.53405419530256
312 => 0.53751747747908
313 => 0.52702357079903
314 => 0.50939754479346
315 => 0.51349166862771
316 => 0.50150909124007
317 => 0.48051008527143
318 => 0.49559193796558
319 => 0.50074154557762
320 => 0.50301590566577
321 => 0.48236579504774
322 => 0.47587708195584
323 => 0.47242254555129
324 => 0.50673187482566
325 => 0.50861141733224
326 => 0.49899541212804
327 => 0.54246066747806
328 => 0.53262314153747
329 => 0.54361406826548
330 => 0.51312016980233
331 => 0.5142850777891
401 => 0.49984877757024
402 => 0.50793214105887
403 => 0.50221908028407
404 => 0.50727908517034
405 => 0.51031203123599
406 => 0.52474596260004
407 => 0.54655848050759
408 => 0.52259001458344
409 => 0.51214661074554
410 => 0.51862563975064
411 => 0.53588014778769
412 => 0.56202161070583
413 => 0.54654533851232
414 => 0.55341344530766
415 => 0.55491382110163
416 => 0.54350219094888
417 => 0.56244237378695
418 => 0.57259257163964
419 => 0.583004574349
420 => 0.59204502456385
421 => 0.57884579150203
422 => 0.59297086291391
423 => 0.58158854876669
424 => 0.57137743629463
425 => 0.57139292233729
426 => 0.56498734232301
427 => 0.55257572389034
428 => 0.55028683102296
429 => 0.56219394077435
430 => 0.57174231518748
501 => 0.57252876503778
502 => 0.57781523572608
503 => 0.58094371462444
504 => 0.61160706078916
505 => 0.62394011227712
506 => 0.63902073418388
507 => 0.64489548631384
508 => 0.66257638400982
509 => 0.64829762314801
510 => 0.64520832341794
511 => 0.60232024898506
512 => 0.60934316877081
513 => 0.62058754095876
514 => 0.60250566454088
515 => 0.61397445325379
516 => 0.61623863508788
517 => 0.60189124929931
518 => 0.60955480796293
519 => 0.58920266823915
520 => 0.54700210153759
521 => 0.56248935508136
522 => 0.57389318664274
523 => 0.55761851292235
524 => 0.5867902356493
525 => 0.56974871745881
526 => 0.56434737432955
527 => 0.54327480906448
528 => 0.55322024871217
529 => 0.56667159824066
530 => 0.55836022811928
531 => 0.57560756907964
601 => 0.60003440357733
602 => 0.61744242048353
603 => 0.61877879186538
604 => 0.60758660324125
605 => 0.62552215693901
606 => 0.62565279786701
607 => 0.60542142002704
608 => 0.59302981374885
609 => 0.59021441473028
610 => 0.59724783347015
611 => 0.60578770226109
612 => 0.61925269514881
613 => 0.62738930834622
614 => 0.64860528023887
615 => 0.65434571392344
616 => 0.66065271015203
617 => 0.66908080211904
618 => 0.67920088744385
619 => 0.65705871688993
620 => 0.65793846660421
621 => 0.63731998396362
622 => 0.61528617827264
623 => 0.63200709023944
624 => 0.65386745834633
625 => 0.64885266574905
626 => 0.64828839913894
627 => 0.64923733906264
628 => 0.6454563492121
629 => 0.62835507224816
630 => 0.61976691801652
701 => 0.63084782804715
702 => 0.63673683857386
703 => 0.6458701803251
704 => 0.6447443031728
705 => 0.6682708106747
706 => 0.67741250008528
707 => 0.67507366473911
708 => 0.67550406673002
709 => 0.69205465874388
710 => 0.71046232095214
711 => 0.72770352571514
712 => 0.74524201972704
713 => 0.72409868065663
714 => 0.71336339701653
715 => 0.72443946946848
716 => 0.71856234951847
717 => 0.75233402401824
718 => 0.75467230148725
719 => 0.78844153391056
720 => 0.82049255664569
721 => 0.80036188351947
722 => 0.81934420157206
723 => 0.83987512619704
724 => 0.87948261082109
725 => 0.86614420340782
726 => 0.85592719236874
727 => 0.84627216630506
728 => 0.86636274285136
729 => 0.89220894862339
730 => 0.8977759737948
731 => 0.90679668133978
801 => 0.89731251035587
802 => 0.90873514965883
803 => 0.9490620857603
804 => 0.93816539164997
805 => 0.92269033428231
806 => 0.95452457729431
807 => 0.96604526608786
808 => 1.0469034934726
809 => 1.1489903456326
810 => 1.1067257184999
811 => 1.0804907005677
812 => 1.0866565520847
813 => 1.1239352146355
814 => 1.1359079378812
815 => 1.1033619488542
816 => 1.1148577423892
817 => 1.1782006950082
818 => 1.2121821568032
819 => 1.1660307673665
820 => 1.0387009143013
821 => 0.92129697468262
822 => 0.9524377862378
823 => 0.94890738461933
824 => 1.0169614850143
825 => 0.93790550909921
826 => 0.93923660898327
827 => 1.0086979961038
828 => 0.99016688888971
829 => 0.96014886848774
830 => 0.92151613945149
831 => 0.85009996673306
901 => 0.78684467096904
902 => 0.91090287278689
903 => 0.9055532575393
904 => 0.89780622189223
905 => 0.91504641140797
906 => 0.99875987798323
907 => 0.99683001162463
908 => 0.98455318647763
909 => 0.99386505014865
910 => 0.95851645376401
911 => 0.96762659192491
912 => 0.92127837729875
913 => 0.9422297059822
914 => 0.96008446329773
915 => 0.96366907017303
916 => 0.97174537249763
917 => 0.90273425339222
918 => 0.93371821981054
919 => 0.95191839727626
920 => 0.86968933335802
921 => 0.95029299306919
922 => 0.90153292334448
923 => 0.88498302332824
924 => 0.90726528341657
925 => 0.89858186498994
926 => 0.89111637173416
927 => 0.88695049822398
928 => 0.90331213082955
929 => 0.90254884111212
930 => 0.87577803451336
1001 => 0.84085660862296
1002 => 0.85257738540851
1003 => 0.84831911731945
1004 => 0.83288660443719
1005 => 0.84328625479113
1006 => 0.79749145777501
1007 => 0.71870388971519
1008 => 0.77075337050398
1009 => 0.76874952211255
1010 => 0.76773909088631
1011 => 0.80685283715709
1012 => 0.80309295296082
1013 => 0.79626872632768
1014 => 0.83276127216345
1015 => 0.81944100203939
1016 => 0.8604909359114
1017 => 0.88752907730276
1018 => 0.88067133005367
1019 => 0.90610083271893
1020 => 0.85284740843301
1021 => 0.87053605982425
1022 => 0.87418166636057
1023 => 0.83231095981243
1024 => 0.8037081165146
1025 => 0.80180063296292
1026 => 0.75220724439909
1027 => 0.77869963226605
1028 => 0.80201183725946
1029 => 0.7908471001678
1030 => 0.78731267794162
1031 => 0.80536927457255
1101 => 0.80677242677507
1102 => 0.77478040785831
1103 => 0.78143256164658
1104 => 0.80917314877224
1105 => 0.78073357002603
1106 => 0.72548011410097
1107 => 0.71177649309276
1108 => 0.70994817744242
1109 => 0.67278287042027
1110 => 0.71269223457494
1111 => 0.69527072761696
1112 => 0.75030505935552
1113 => 0.7188697442215
1114 => 0.71751463061504
1115 => 0.71546617764693
1116 => 0.68347646261346
1117 => 0.69048017715334
1118 => 0.71376159097975
1119 => 0.72206866171691
1120 => 0.7212021661812
1121 => 0.71364749935087
1122 => 0.71710598713964
1123 => 0.70596499295498
1124 => 0.70203087602864
1125 => 0.68961372084498
1126 => 0.67136393305168
1127 => 0.67390167797679
1128 => 0.63774407304153
1129 => 0.61804349084346
1130 => 0.61259062934053
1201 => 0.60529883504805
1202 => 0.61341425690859
1203 => 0.63764164308971
1204 => 0.60841827522857
1205 => 0.55831686081156
1206 => 0.56132804118668
1207 => 0.5680932694621
1208 => 0.55548631132733
1209 => 0.54355488347456
1210 => 0.5539282919652
1211 => 0.53269966220144
1212 => 0.57065864794807
1213 => 0.56963196376245
1214 => 0.58378072628086
1215 => 0.59262823784546
1216 => 0.57223758810495
1217 => 0.56710939483739
1218 => 0.57003064678598
1219 => 0.5217488592449
1220 => 0.57983507417782
1221 => 0.58033740617664
1222 => 0.57603613462812
1223 => 0.60696525086921
1224 => 0.67223533317119
1225 => 0.64767810272621
1226 => 0.6381688008517
1227 => 0.62009161103698
1228 => 0.64417839314776
1229 => 0.64232890409399
1230 => 0.63396481319493
1231 => 0.62890618492163
]
'min_raw' => 0.47242254555129
'max_raw' => 1.2121821568032
'avg_raw' => 0.84230235117722
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.472422'
'max' => '$1.21'
'avg' => '$0.8423023'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.29050952656549
'max_diff' => 0.70458842243602
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.014828803879704
]
1 => [
'year' => 2028
'avg' => 0.025450532290097
]
2 => [
'year' => 2029
'avg' => 0.069526267204391
]
3 => [
'year' => 2030
'avg' => 0.053639411606564
]
4 => [
'year' => 2031
'avg' => 0.052680549656744
]
5 => [
'year' => 2032
'avg' => 0.092365582727407
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.014828803879704
'min' => '$0.014828'
'max_raw' => 0.092365582727407
'max' => '$0.092365'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.092365582727407
]
1 => [
'year' => 2033
'avg' => 0.23757377661576
]
2 => [
'year' => 2034
'avg' => 0.15058567688052
]
3 => [
'year' => 2035
'avg' => 0.17761615120624
]
4 => [
'year' => 2036
'avg' => 0.34475337667646
]
5 => [
'year' => 2037
'avg' => 0.84230235117722
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.092365582727407
'min' => '$0.092365'
'max_raw' => 0.84230235117722
'max' => '$0.8423023'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.84230235117722
]
]
]
]
'prediction_2025_max_price' => '$0.025354'
'last_price' => 0.02458444
'sma_50day_nextmonth' => '$0.024677'
'sma_200day_nextmonth' => '$0.038274'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.024912'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.024394'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.024999'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.02825'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.038539'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.035917'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.043094'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.024691'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.024739'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.025551'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.028627'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.033831'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.037439'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.045266'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.038719'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.039431'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0492063'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.025068'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.026698'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0307091'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0348055'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.042941'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0670089'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.051733'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '26.76'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 101.67
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.025110'
'vwma_10_action' => 'SELL'
'hma_9' => '0.024630'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 18.39
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -74.82
'cci_20_action' => 'NEUTRAL'
'adx_14' => 43.6
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.008922'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -81.61
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 32.3
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.007659'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 29
'buy_signals' => 5
'sell_pct' => 85.29
'buy_pct' => 14.71
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767715550
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Shadowcats para 2026
La previsión del precio de Shadowcats para 2026 sugiere que el precio medio podría oscilar entre $0.008493 en el extremo inferior y $0.025354 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Shadowcats podría potencialmente ganar 3.13% para 2026 si SHADOWCATS alcanza el objetivo de precio previsto.
Predicción de precio de Shadowcats 2027-2032
La predicción del precio de SHADOWCATS para 2027-2032 está actualmente dentro de un rango de precios de $0.014828 en el extremo inferior y $0.092365 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Shadowcats alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Shadowcats | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.008176 | $0.014828 | $0.02148 |
| 2028 | $0.014756 | $0.02545 | $0.036144 |
| 2029 | $0.032416 | $0.069526 | $0.106635 |
| 2030 | $0.027568 | $0.053639 | $0.0797098 |
| 2031 | $0.032595 | $0.05268 | $0.072766 |
| 2032 | $0.049753 | $0.092365 | $0.134977 |
Predicción de precio de Shadowcats 2032-2037
La predicción de precio de Shadowcats para 2032-2037 se estima actualmente entre $0.092365 en el extremo inferior y $0.8423023 en el extremo superior. Comparado con el precio actual, Shadowcats podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Shadowcats | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.049753 | $0.092365 | $0.134977 |
| 2033 | $0.115617 | $0.237573 | $0.35953 |
| 2034 | $0.09295 | $0.150585 | $0.20822 |
| 2035 | $0.109896 | $0.177616 | $0.245335 |
| 2036 | $0.181913 | $0.344753 | $0.507593 |
| 2037 | $0.472422 | $0.8423023 | $1.21 |
Shadowcats Histograma de precios potenciales
Pronóstico de precio de Shadowcats basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Shadowcats es Bajista, con 5 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de SHADOWCATS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Shadowcats
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Shadowcats aumentar durante el próximo mes, alcanzando $0.038274 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Shadowcats alcance $0.024677 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 26.76, lo que sugiere que el mercado de SHADOWCATS está en un estado BUY.
Promedios Móviles y Osciladores Populares de SHADOWCATS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.024912 | SELL |
| SMA 5 | $0.024394 | BUY |
| SMA 10 | $0.024999 | SELL |
| SMA 21 | $0.02825 | SELL |
| SMA 50 | $0.038539 | SELL |
| SMA 100 | $0.035917 | SELL |
| SMA 200 | $0.043094 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.024691 | SELL |
| EMA 5 | $0.024739 | SELL |
| EMA 10 | $0.025551 | SELL |
| EMA 21 | $0.028627 | SELL |
| EMA 50 | $0.033831 | SELL |
| EMA 100 | $0.037439 | SELL |
| EMA 200 | $0.045266 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.038719 | SELL |
| SMA 50 | $0.039431 | SELL |
| SMA 100 | $0.0492063 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0348055 | SELL |
| EMA 50 | $0.042941 | SELL |
| EMA 100 | $0.0670089 | SELL |
| EMA 200 | $0.051733 | SELL |
Osciladores de Shadowcats
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 26.76 | BUY |
| Stoch RSI (14) | 101.67 | NEUTRAL |
| Estocástico Rápido (14) | 18.39 | BUY |
| Índice de Canal de Materias Primas (20) | -74.82 | NEUTRAL |
| Índice Direccional Medio (14) | 43.6 | SELL |
| Oscilador Asombroso (5, 34) | -0.008922 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -81.61 | BUY |
| Oscilador Ultimate (7, 14, 28) | 32.3 | NEUTRAL |
| VWMA (10) | 0.025110 | SELL |
| Promedio Móvil de Hull (9) | 0.024630 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.007659 | NEUTRAL |
Predicción de precios de Shadowcats basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Shadowcats
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Shadowcats por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.034545 | $0.048541 | $0.0682093 | $0.095845 | $0.134679 | $0.189246 |
| Amazon.com acción | $0.051296 | $0.107034 | $0.223332 | $0.465997 | $0.97233 | $2.02 |
| Apple acción | $0.034871 | $0.049462 | $0.070158 | $0.099514 | $0.141153 | $0.200214 |
| Netflix acción | $0.03879 | $0.0612051 | $0.096572 | $0.152375 | $0.240424 | $0.379352 |
| Google acción | $0.031836 | $0.041228 | $0.05339 | $0.06914 | $0.089536 | $0.115949 |
| Tesla acción | $0.055731 | $0.126338 | $0.286398 | $0.649244 | $1.47 | $3.33 |
| Kodak acción | $0.018435 | $0.013824 | $0.010367 | $0.007774 | $0.005829 | $0.004371 |
| Nokia acción | $0.016286 | $0.010788 | $0.007147 | $0.004734 | $0.003136 | $0.002077 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Shadowcats
Podría preguntarse cosas como: "¿Debo invertir en Shadowcats ahora?", "¿Debería comprar SHADOWCATS hoy?", "¿Será Shadowcats una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Shadowcats regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Shadowcats, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Shadowcats a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Shadowcats es de $0.02458 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Shadowcats basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Shadowcats ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.025223 | $0.025879 | $0.026551 | $0.027241 |
| Si Shadowcats ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.025862 | $0.0272069 | $0.028621 | $0.0301093 |
| Si Shadowcats ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.027779 | $0.031389 | $0.035469 | $0.040079 |
| Si Shadowcats ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.030974 | $0.039026 | $0.04917 | $0.061951 |
| Si Shadowcats ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.037365 | $0.056789 | $0.086312 | $0.131183 |
| Si Shadowcats ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.056535 | $0.130013 | $0.298986 | $0.687567 |
| Si Shadowcats ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.088487 | $0.318494 | $1.14 | $4.12 |
Cuadro de preguntas
¿Es SHADOWCATS una buena inversión?
La decisión de adquirir Shadowcats depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Shadowcats ha experimentado una caída de 0% durante las últimas 24 horas, y Shadowcats ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Shadowcats dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Shadowcats subir?
Parece que el valor medio de Shadowcats podría potencialmente aumentar hasta $0.025354 para el final de este año. Mirando las perspectivas de Shadowcats en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0797098. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Shadowcats la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Shadowcats, el precio de Shadowcats aumentará en un 0.86% durante la próxima semana y alcanzará $0.024794 para el 13 de enero de 2026.
¿Cuál será el precio de Shadowcats el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Shadowcats, el precio de Shadowcats disminuirá en un -11.62% durante el próximo mes y alcanzará $0.021728 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Shadowcats este año en 2026?
Según nuestra predicción más reciente sobre el valor de Shadowcats en 2026, se anticipa que SHADOWCATS fluctúe dentro del rango de $0.008493 y $0.025354. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Shadowcats no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Shadowcats en 5 años?
El futuro de Shadowcats parece estar en una tendencia alcista, con un precio máximo de $0.0797098 proyectada después de un período de cinco años. Basado en el pronóstico de Shadowcats para 2030, el valor de Shadowcats podría potencialmente alcanzar su punto más alto de aproximadamente $0.0797098, mientras que su punto más bajo se anticipa que esté alrededor de $0.027568.
¿Cuánto será Shadowcats en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Shadowcats, se espera que el valor de SHADOWCATS en 2026 crezca en un 3.13% hasta $0.025354 si ocurre lo mejor. El precio estará entre $0.025354 y $0.008493 durante 2026.
¿Cuánto será Shadowcats en 2027?
Según nuestra última simulación experimental para la predicción de precios de Shadowcats, el valor de SHADOWCATS podría disminuir en un -12.62% hasta $0.02148 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.02148 y $0.008176 a lo largo del año.
¿Cuánto será Shadowcats en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Shadowcats sugiere que el valor de SHADOWCATS en 2028 podría aumentar en un 47.02% , alcanzando $0.036144 en el mejor escenario. Se espera que el precio oscile entre $0.036144 y $0.014756 durante el año.
¿Cuánto será Shadowcats en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Shadowcats podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.106635 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.106635 y $0.032416.
¿Cuánto será Shadowcats en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Shadowcats, se espera que el valor de SHADOWCATS en 2030 aumente en un 224.23% , alcanzando $0.0797098 en el mejor escenario. Se pronostica que el precio oscile entre $0.0797098 y $0.027568 durante el transcurso de 2030.
¿Cuánto será Shadowcats en 2031?
Nuestra simulación experimental indica que el precio de Shadowcats podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.072766 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.072766 y $0.032595 durante el año.
¿Cuánto será Shadowcats en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Shadowcats, SHADOWCATS podría experimentar un 449.04% aumento en valor, alcanzando $0.134977 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.134977 y $0.049753 a lo largo del año.
¿Cuánto será Shadowcats en 2033?
Según nuestra predicción experimental de precios de Shadowcats, se anticipa que el valor de SHADOWCATS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.35953. A lo largo del año, el precio de SHADOWCATS podría oscilar entre $0.35953 y $0.115617.
¿Cuánto será Shadowcats en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Shadowcats sugieren que SHADOWCATS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.20822 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.20822 y $0.09295.
¿Cuánto será Shadowcats en 2035?
Basado en nuestra predicción experimental para el precio de Shadowcats, SHADOWCATS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.245335 en 2035. El rango de precios esperado para el año está entre $0.245335 y $0.109896.
¿Cuánto será Shadowcats en 2036?
Nuestra reciente simulación de predicción de precios de Shadowcats sugiere que el valor de SHADOWCATS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.507593 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.507593 y $0.181913.
¿Cuánto será Shadowcats en 2037?
Según la simulación experimental, el valor de Shadowcats podría aumentar en un 4830.69% en 2037, con un máximo de $1.21 bajo condiciones favorables. Se espera que el precio caiga entre $1.21 y $0.472422 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Shadowcats?
Los traders de Shadowcats utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Shadowcats
Las medias móviles son herramientas populares para la predicción de precios de Shadowcats. Una media móvil simple (SMA) calcula el precio de cierre promedio de SHADOWCATS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SHADOWCATS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SHADOWCATS.
¿Cómo leer gráficos de Shadowcats y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Shadowcats en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SHADOWCATS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Shadowcats?
La acción del precio de Shadowcats está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SHADOWCATS. La capitalización de mercado de Shadowcats puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SHADOWCATS, grandes poseedores de Shadowcats, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Shadowcats.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


