Predicción del precio de Sentio AI - Pronóstico de SEN
Predicción de precio de Sentio AI hasta $0.00441 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.001477 | $0.00441 |
| 2027 | $0.001422 | $0.003737 |
| 2028 | $0.002567 | $0.006288 |
| 2029 | $0.005639 | $0.018551 |
| 2030 | $0.004796 | $0.013867 |
| 2031 | $0.00567 | $0.012659 |
| 2032 | $0.008655 | $0.023482 |
| 2033 | $0.020114 | $0.062548 |
| 2034 | $0.01617 | $0.036224 |
| 2035 | $0.019118 | $0.042681 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Sentio AI hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.03, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Sentio AI para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Sentio AI'
'name_with_ticker' => 'Sentio AI <small>SEN</small>'
'name_lang' => 'Sentio AI'
'name_lang_with_ticker' => 'Sentio AI <small>SEN</small>'
'name_with_lang' => 'Sentio AI'
'name_with_lang_with_ticker' => 'Sentio AI <small>SEN</small>'
'image' => '/uploads/coins/sentio-protocol.png?1739167366'
'price_for_sd' => 0.004276
'ticker' => 'SEN'
'marketcap' => '$426.17K'
'low24h' => '$0.004261'
'high24h' => '$0.004543'
'volume24h' => '$56.81K'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004276'
'change_24h_pct' => '-5.6484%'
'ath_price' => '$0.7897'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 ene. 2025'
'ath_pct' => '-99.46%'
'fdv' => '$426.17K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.210885'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.004313'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00378'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001477'
'current_year_max_price_prediction' => '$0.00441'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.004796'
'grand_prediction_max_price' => '$0.013867'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0043580367108033
107 => 0.0043743080379141
108 => 0.0044109681687293
109 => 0.0040977113647582
110 => 0.0042383544730046
111 => 0.0043209691226223
112 => 0.0039477131301029
113 => 0.0043135910517597
114 => 0.0040922582607345
115 => 0.0040171345871536
116 => 0.0041182787168389
117 => 0.0040788627511346
118 => 0.0040449752184053
119 => 0.0040260653928806
120 => 0.0041003344788512
121 => 0.0040968697372199
122 => 0.0039753510975635
123 => 0.0038168349858652
124 => 0.0038700381960652
125 => 0.0038507089710168
126 => 0.0037806573659217
127 => 0.0038278636896927
128 => 0.0036199909303789
129 => 0.0032623566522653
130 => 0.0034986208110213
131 => 0.0034895248979152
201 => 0.0034849383260602
202 => 0.0036624843115037
203 => 0.0036454173616861
204 => 0.0036144406806471
205 => 0.0037800884548822
206 => 0.0037196247890094
207 => 0.003905959560198
208 => 0.0040286916918801
209 => 0.003997562853317
210 => 0.00411299301638
211 => 0.0038712638905728
212 => 0.0039515566096767
213 => 0.0039681048278031
214 => 0.003778044387061
215 => 0.0036482097257468
216 => 0.0036395512340606
217 => 0.0034144358236602
218 => 0.003534690658828
219 => 0.0036405099372925
220 => 0.0035898307148157
221 => 0.0035737871869783
222 => 0.0036557500912831
223 => 0.0036621193109124
224 => 0.003516900428385
225 => 0.0035470960325464
226 => 0.0036730167215008
227 => 0.003543923154264
228 => 0.0032931154404373
301 => 0.0032309116597204
302 => 0.0032226125287296
303 => 0.0030539109419812
304 => 0.0032350684137869
305 => 0.0031559883226253
306 => 0.0034058013830797
307 => 0.0032631095027225
308 => 0.0032569583409549
309 => 0.003247659957764
310 => 0.0031024515330749
311 => 0.003134242949605
312 => 0.0032399224601205
313 => 0.0032776301000374
314 => 0.0032736968842645
315 => 0.0032394045728657
316 => 0.003255103417419
317 => 0.0032045319692729
318 => 0.0031866741383788
319 => 0.0031303099118937
320 => 0.0030474700699757
321 => 0.0030589894580806
322 => 0.0028948620550172
323 => 0.0028054367349277
324 => 0.0027806849849336
325 => 0.0027475859103948
326 => 0.0027844236134761
327 => 0.0028943971027058
328 => 0.0027617457425175
329 => 0.0025343242898856
330 => 0.0025479927066961
331 => 0.0025787015810798
401 => 0.0025214757968252
402 => 0.0024673163946242
403 => 0.0025144036007468
404 => 0.0024180421332226
405 => 0.0025903464040578
406 => 0.0025856860564088
407 => 0.0026499104333515
408 => 0.0026900712542707
409 => 0.0025975135642722
410 => 0.0025742355555402
411 => 0.0025874957672404
412 => 0.0023683340053216
413 => 0.0026320002417273
414 => 0.0026342804382887
415 => 0.0026147560109824
416 => 0.0027551501420866
417 => 0.0030514255487443
418 => 0.002939954823109
419 => 0.0028967899889226
420 => 0.0028147336075808
421 => 0.0029240688636929
422 => 0.0029156736219192
423 => 0.0028777071548175
424 => 0.0028547449170519
425 => 0.0028970535441957
426 => 0.0028495024099399
427 => 0.0028409609196098
428 => 0.0027892087814423
429 => 0.0027707356226887
430 => 0.0027570588313853
501 => 0.0027420020280139
502 => 0.0027752135843295
503 => 0.0026999518283742
504 => 0.0026091935286931
505 => 0.002601647958093
506 => 0.0026224819419331
507 => 0.0026132644549916
508 => 0.0026016038283117
509 => 0.0025793405163972
510 => 0.0025727354673326
511 => 0.0025941986724784
512 => 0.0025699679652514
513 => 0.0026057216936798
514 => 0.0025959986578913
515 => 0.0025416865703586
516 => 0.0024739936003826
517 => 0.002473390990959
518 => 0.0024588066516163
519 => 0.0024402313026934
520 => 0.0024350640655695
521 => 0.0025104380475841
522 => 0.0026664599346008
523 => 0.002635829104892
524 => 0.0026579630185303
525 => 0.0027668399668909
526 => 0.0028014486747307
527 => 0.0027768842336582
528 => 0.0027432589116494
529 => 0.0027447382551664
530 => 0.0028596461595476
531 => 0.0028668128245949
601 => 0.0028849206751158
602 => 0.0029081943803131
603 => 0.0027808478462916
604 => 0.0027387402448661
605 => 0.0027187873272698
606 => 0.0026573400638244
607 => 0.0027236056693601
608 => 0.0026849955387906
609 => 0.0026902053645143
610 => 0.0026868124586771
611 => 0.0026886652146915
612 => 0.0025902982415025
613 => 0.0026261379965167
614 => 0.0025665474525708
615 => 0.0024867624035798
616 => 0.0024864949361193
617 => 0.0025060222138285
618 => 0.0024944066249446
619 => 0.0024631493739223
620 => 0.0024675893188999
621 => 0.002428690728966
622 => 0.0024723123119996
623 => 0.0024735632229155
624 => 0.0024567665373639
625 => 0.0025239716046457
626 => 0.0025515055755452
627 => 0.0025404496372952
628 => 0.0025507298614447
629 => 0.0026371019541563
630 => 0.002651184373947
701 => 0.0026574388545855
702 => 0.0026490586790897
703 => 0.0025523085847439
704 => 0.0025565998628413
705 => 0.0025251133114703
706 => 0.0024985104935329
707 => 0.002499574466737
708 => 0.0025132517732811
709 => 0.0025729813731227
710 => 0.002698678794737
711 => 0.0027034489200036
712 => 0.0027092304509812
713 => 0.0026857140589308
714 => 0.0026786212900669
715 => 0.0026879784829974
716 => 0.0027351838256993
717 => 0.0028566087832541
718 => 0.002813689093554
719 => 0.002778794717743
720 => 0.0028094064927854
721 => 0.0028046940499607
722 => 0.0027649162900849
723 => 0.0027637998608492
724 => 0.0026874536219285
725 => 0.0026592301557193
726 => 0.0026356445148651
727 => 0.002609889610771
728 => 0.0025946212403118
729 => 0.0026180803966874
730 => 0.0026234457833111
731 => 0.0025721519279
801 => 0.0025651607649448
802 => 0.0026070484345282
803 => 0.0025886152328743
804 => 0.0026075742378968
805 => 0.0026119728896893
806 => 0.0026112646054412
807 => 0.0025920182258747
808 => 0.0026042852942751
809 => 0.0025752700205191
810 => 0.0025437202682628
811 => 0.0025235934919422
812 => 0.0025060302101731
813 => 0.0025157753396825
814 => 0.0024810357323717
815 => 0.0024699218328228
816 => 0.0026001294875188
817 => 0.002696315282011
818 => 0.0026949167024653
819 => 0.0026864032091665
820 => 0.0026737538850235
821 => 0.0027342584488505
822 => 0.0027131798686401
823 => 0.0027285162969175
824 => 0.0027324200615819
825 => 0.0027442355814825
826 => 0.0027484586142687
827 => 0.0027356936761039
828 => 0.002692852984517
829 => 0.0025860980542529
830 => 0.0025364033460356
831 => 0.0025200032645931
901 => 0.0025205993764053
902 => 0.0025041559514632
903 => 0.0025089992770513
904 => 0.0025024716404785
905 => 0.0024901098760145
906 => 0.0025150120355614
907 => 0.0025178817774695
908 => 0.0025120693158726
909 => 0.0025134383609929
910 => 0.0024653136615053
911 => 0.002468972477886
912 => 0.0024485997233384
913 => 0.002444780077458
914 => 0.0023932795280204
915 => 0.0023020388395678
916 => 0.0023525950379185
917 => 0.0022915302595881
918 => 0.002268404102752
919 => 0.0023778797323588
920 => 0.0023668914155276
921 => 0.002348084193619
922 => 0.0023202643926478
923 => 0.002309945757854
924 => 0.0022472529993293
925 => 0.0022435487767028
926 => 0.0022746210006745
927 => 0.0022602822384415
928 => 0.0022401451857525
929 => 0.0021672108221731
930 => 0.002085208449772
1001 => 0.0020876835859463
1002 => 0.0021137670148987
1003 => 0.0021896081024075
1004 => 0.0021599756774536
1005 => 0.0021384770131567
1006 => 0.0021344509595814
1007 => 0.0021848454491908
1008 => 0.00225616420996
1009 => 0.0022896253768456
1010 => 0.0022564663766927
1011 => 0.0022183751027245
1012 => 0.0022206935420729
1013 => 0.0022361170803792
1014 => 0.0022377378761782
1015 => 0.002212944372671
1016 => 0.0022199235986795
1017 => 0.0022093215161788
1018 => 0.0021442565554421
1019 => 0.0021430797366256
1020 => 0.0021271117459466
1021 => 0.0021266282415349
1022 => 0.002099462705988
1023 => 0.0020956620597785
1024 => 0.0020417232401199
1025 => 0.002077225934561
1026 => 0.002053412591105
1027 => 0.002017520265517
1028 => 0.002011332415057
1029 => 0.0020111464008002
1030 => 0.0020479997938019
1031 => 0.0020767952812067
1101 => 0.0020538268344098
1102 => 0.0020485973642988
1103 => 0.0021044344236749
1104 => 0.0020973286489032
1105 => 0.0020911750937782
1106 => 0.0022497783971641
1107 => 0.0021242315065641
1108 => 0.0020694858962965
1109 => 0.0020017278076809
1110 => 0.0020237901830001
1111 => 0.0020284390496436
1112 => 0.0018654930608366
1113 => 0.0017993858934712
1114 => 0.0017767004048274
1115 => 0.0017636445853872
1116 => 0.0017695942862508
1117 => 0.0017100900820246
1118 => 0.0017500778913733
1119 => 0.0016985522802786
1120 => 0.0016899138438997
1121 => 0.0017820480193355
1122 => 0.0017948679516073
1123 => 0.0017401741376949
1124 => 0.0017752964203508
1125 => 0.0017625605924235
1126 => 0.0016994355389934
1127 => 0.0016970246262688
1128 => 0.0016653506934105
1129 => 0.0016157871217691
1130 => 0.0015931352395608
1201 => 0.0015813379426341
1202 => 0.0015862057372708
1203 => 0.0015837444313455
1204 => 0.0015676827452915
1205 => 0.001584665068389
1206 => 0.0015412822504554
1207 => 0.0015240068627951
1208 => 0.0015162039709749
1209 => 0.0014776992230369
1210 => 0.0015389774001453
1211 => 0.0015510499729978
1212 => 0.0015631463325482
1213 => 0.0016684368838992
1214 => 0.0016631768655017
1215 => 0.0017107248700821
1216 => 0.0017088772420593
1217 => 0.0016953157809263
1218 => 0.0016381022071585
1219 => 0.0016609065179285
1220 => 0.0015907183939553
1221 => 0.0016433081087645
1222 => 0.0016193083591246
1223 => 0.0016351937692697
1224 => 0.0016066303694992
1225 => 0.001622438534286
1226 => 0.0015539128278841
1227 => 0.0014899244874286
1228 => 0.001515675263564
1229 => 0.0015436693021816
1230 => 0.001604367510653
1231 => 0.0015682161584368
]
'min_raw' => 0.0014776992230369
'max_raw' => 0.0044109681687293
'avg_raw' => 0.0029443336958831
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001477'
'max' => '$0.00441'
'avg' => '$0.002944'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0027992907769631
'max_diff' => 0.0001339781687293
'year' => 2026
]
1 => [
'items' => [
101 => 0.0015812175517277
102 => 0.0015376650606101
103 => 0.0014478038312803
104 => 0.0014483124360794
105 => 0.0014344892436803
106 => 0.0014225439872284
107 => 0.0015723685761181
108 => 0.0015537355201134
109 => 0.001524046184004
110 => 0.0015637865401937
111 => 0.0015742945211345
112 => 0.0015745936685795
113 => 0.0016035872066084
114 => 0.0016190610630519
115 => 0.0016217883973175
116 => 0.001667410355853
117 => 0.0016827022345859
118 => 0.0017456873188989
119 => 0.0016177482144424
120 => 0.0016151133927788
121 => 0.0015643457685026
122 => 0.0015321481385822
123 => 0.0015665503677695
124 => 0.0015970260464569
125 => 0.0015652927327901
126 => 0.0015694364336281
127 => 0.0015268370527374
128 => 0.0015420643269187
129 => 0.0015551801067789
130 => 0.00154793834405
131 => 0.0015370970747395
201 => 0.0015945273883446
202 => 0.0015912869449798
203 => 0.001644767373326
204 => 0.001686459191644
205 => 0.0017611783833739
206 => 0.0016832050116042
207 => 0.0016803633520208
208 => 0.0017081410302648
209 => 0.001682697981968
210 => 0.0016987771102274
211 => 0.0017585877872289
212 => 0.0017598514925855
213 => 0.0017386827996699
214 => 0.0017373946827822
215 => 0.0017414603618167
216 => 0.0017652731709114
217 => 0.00175695224372
218 => 0.001766581431326
219 => 0.0017786228778746
220 => 0.0018284314062673
221 => 0.0018404400738368
222 => 0.0018112652374232
223 => 0.0018138993984945
224 => 0.0018029872088087
225 => 0.0017924461703015
226 => 0.0018161408854706
227 => 0.001859443443163
228 => 0.001859174060199
301 => 0.0018692194119022
302 => 0.0018754775827931
303 => 0.0018486129320682
304 => 0.001831125032287
305 => 0.0018378310058471
306 => 0.0018485540036068
307 => 0.0018343536821946
308 => 0.0017467027202093
309 => 0.0017732904229105
310 => 0.0017688649291088
311 => 0.0017625624877767
312 => 0.0017892966284394
313 => 0.0017867180553541
314 => 0.0017094797804043
315 => 0.0017144243241676
316 => 0.0017097804744874
317 => 0.0017247857028465
318 => 0.0016818876503937
319 => 0.0016950828024054
320 => 0.0017033586780502
321 => 0.0017082332323833
322 => 0.0017258434651477
323 => 0.0017237771075893
324 => 0.0017257150174605
325 => 0.001751826343721
326 => 0.0018838884716211
327 => 0.001891076321864
328 => 0.0018556807184351
329 => 0.0018698205638575
330 => 0.0018426751526907
331 => 0.0018608980490654
401 => 0.0018733656919537
402 => 0.0018170268111316
403 => 0.0018136907882456
404 => 0.0017864333383107
405 => 0.0018010799479649
406 => 0.0017777761388766
407 => 0.0017834940784942
408 => 0.0017675062208424
409 => 0.001796281181465
410 => 0.001828456058618
411 => 0.0018365847032112
412 => 0.0018152017388879
413 => 0.0017997190635119
414 => 0.0017725365858618
415 => 0.0018177416519949
416 => 0.0018309609909316
417 => 0.0018176722164351
418 => 0.0018145929170188
419 => 0.0018087576501891
420 => 0.0018158308964618
421 => 0.0018308889955728
422 => 0.0018237878741115
423 => 0.0018284782899423
424 => 0.0018106032615309
425 => 0.0018486218253855
426 => 0.0019090044544522
427 => 0.0019091985944782
428 => 0.0019020974347392
429 => 0.0018991917931706
430 => 0.0019064780139972
501 => 0.0019104304898992
502 => 0.0019339927919881
503 => 0.001959276080893
504 => 0.0020772621582491
505 => 0.0020441321398564
506 => 0.0021488164067098
507 => 0.0022316080702401
508 => 0.0022564336700922
509 => 0.002233595286363
510 => 0.0021554664093308
511 => 0.0021516330338901
512 => 0.0022683905613373
513 => 0.0022354012119999
514 => 0.0022314772338675
515 => 0.002189732736204
516 => 0.0022144089044797
517 => 0.0022090118645003
518 => 0.0022004923728605
519 => 0.0022475727829738
520 => 0.0023357031078087
521 => 0.0023219671702023
522 => 0.0023117139299708
523 => 0.0022667872159501
524 => 0.0022938431325354
525 => 0.0022842090388613
526 => 0.0023256032192322
527 => 0.0023010822237738
528 => 0.0022351512852328
529 => 0.0022456510045066
530 => 0.0022440639930609
531 => 0.0022767245761575
601 => 0.0022669206797974
602 => 0.0022421496249497
603 => 0.0023354018879394
604 => 0.0023293466046772
605 => 0.0023379316119126
606 => 0.0023417109975977
607 => 0.0023984720067904
608 => 0.0024217251761069
609 => 0.0024270040526458
610 => 0.0024490927650319
611 => 0.0024264544653593
612 => 0.0025170238048837
613 => 0.0025772471307999
614 => 0.0026471996229156
615 => 0.002749419015354
616 => 0.0027878544524931
617 => 0.0027809114347962
618 => 0.0028584130115292
619 => 0.0029976816221551
620 => 0.0028090616028457
621 => 0.0030076789411837
622 => 0.0029447989850133
623 => 0.0027957117400955
624 => 0.0027861122791459
625 => 0.0028870758923428
626 => 0.0031110034690258
627 => 0.0030549121508323
628 => 0.0031110952143282
629 => 0.0030455546864211
630 => 0.0030423000467916
701 => 0.003107912057177
702 => 0.0032612180957671
703 => 0.0031883881434238
704 => 0.0030839685481029
705 => 0.003161070352339
706 => 0.0030942776340745
707 => 0.00294377494572
708 => 0.0030548692588584
709 => 0.0029805836554466
710 => 0.003002264143762
711 => 0.003158401432984
712 => 0.0031396145812568
713 => 0.0031639265070075
714 => 0.0031210165944114
715 => 0.0030809319697746
716 => 0.0030061110411667
717 => 0.0029839602528331
718 => 0.0029900819338266
719 => 0.002983957219232
720 => 0.0029420955973157
721 => 0.0029330555840486
722 => 0.0029179884992179
723 => 0.0029226584188322
724 => 0.0028943278913194
725 => 0.0029477934501217
726 => 0.0029577171289722
727 => 0.0029966249040109
728 => 0.003000664438287
729 => 0.0031090220379522
730 => 0.0030493404929321
731 => 0.0030893800259883
801 => 0.003085798513285
802 => 0.0027989429127649
803 => 0.0028384690835682
804 => 0.0028999594013424
805 => 0.0028722580965333
806 => 0.0028330949326402
807 => 0.0028014685780005
808 => 0.0027535514167607
809 => 0.0028209939010382
810 => 0.0029096735961546
811 => 0.0030029135016989
812 => 0.0031149351388899
813 => 0.0030899332135445
814 => 0.0030008193351123
815 => 0.003004816918601
816 => 0.0030295284067373
817 => 0.0029975247843254
818 => 0.0029880862912912
819 => 0.0030282317027323
820 => 0.0030285081621174
821 => 0.0029916841267655
822 => 0.0029507609501992
823 => 0.0029505894805952
824 => 0.0029433075965962
825 => 0.0030468501174077
826 => 0.0031037880345244
827 => 0.0031103158749618
828 => 0.0031033486588519
829 => 0.0031060300638137
830 => 0.0030728991443848
831 => 0.0031486266015302
901 => 0.003218121604876
902 => 0.0031994954594351
903 => 0.0031715722195566
904 => 0.003149330014028
905 => 0.00319425590268
906 => 0.0031922554235783
907 => 0.0032175146266479
908 => 0.0032163687232924
909 => 0.0032078750033468
910 => 0.0031994957627726
911 => 0.0032327185045028
912 => 0.0032231508884254
913 => 0.0032135684111976
914 => 0.0031943492861134
915 => 0.0031969614844082
916 => 0.0031690430658708
917 => 0.0031561267279955
918 => 0.0029618959969785
919 => 0.0029099911989786
920 => 0.0029263215050489
921 => 0.0029316978658235
922 => 0.0029091088312161
923 => 0.0029414957041962
924 => 0.0029364482443485
925 => 0.0029560849579509
926 => 0.0029438167918191
927 => 0.0029443202816365
928 => 0.0029803983423812
929 => 0.0029908719569025
930 => 0.0029855449920245
1001 => 0.0029892758156274
1002 => 0.0030752510708726
1003 => 0.0030630281389106
1004 => 0.0030565349499179
1005 => 0.0030583336076441
1006 => 0.0030803021286896
1007 => 0.0030864521151455
1008 => 0.0030603941903798
1009 => 0.0030726832583384
1010 => 0.003125008549991
1011 => 0.0031433194407144
1012 => 0.0032017590141774
1013 => 0.0031769328446897
1014 => 0.0032225023532358
1015 => 0.003362567486716
1016 => 0.00347446120711
1017 => 0.0033715591176321
1018 => 0.0035770376855563
1019 => 0.0037370322248353
1020 => 0.0037308913679329
1021 => 0.0037029926192693
1022 => 0.0035208430899751
1023 => 0.0033532263774221
1024 => 0.0034934448748542
1025 => 0.0034938023206404
1026 => 0.0034817574273573
1027 => 0.0034069476296427
1028 => 0.0034791542085565
1029 => 0.0034848857045749
1030 => 0.0034816775909324
1031 => 0.0034243210944254
1101 => 0.0033367483255118
1102 => 0.0033538598349379
1103 => 0.0033818888364433
1104 => 0.0033288240891314
1105 => 0.0033118666870588
1106 => 0.0033433937237895
1107 => 0.0034449804050546
1108 => 0.003425776031413
1109 => 0.0034252745276062
1110 => 0.0035074389819668
1111 => 0.0034486269648437
1112 => 0.0033540756658704
1113 => 0.0033302002159012
1114 => 0.0032454584529409
1115 => 0.0033039898904574
1116 => 0.0033060963326921
1117 => 0.0032740392625412
1118 => 0.0033566769204366
1119 => 0.003355915399871
1120 => 0.0034343675570505
1121 => 0.0035843386162931
1122 => 0.0035399847944474
1123 => 0.003488406125323
1124 => 0.0034940141567782
1125 => 0.0035555204200406
1126 => 0.0035183323292207
1127 => 0.0035317054259641
1128 => 0.003555500178257
1129 => 0.0035698561431057
1130 => 0.0034919485543622
1201 => 0.0034737845686754
1202 => 0.0034366274286528
1203 => 0.0034269338243917
1204 => 0.003457197539631
1205 => 0.0034492241198983
1206 => 0.0033059192943789
1207 => 0.0032909431427716
1208 => 0.0032914024399603
1209 => 0.0032537441946666
1210 => 0.0031963063315791
1211 => 0.0033472496063363
1212 => 0.0033351267489235
1213 => 0.0033217440525745
1214 => 0.0033233833565166
1215 => 0.0033889027161465
1216 => 0.0033508981787542
1217 => 0.0034519394702328
1218 => 0.003431168418284
1219 => 0.0034098646672291
1220 => 0.0034069198399052
1221 => 0.0033987197132997
1222 => 0.0033705984280367
1223 => 0.0033366402862544
1224 => 0.0033142181796459
1225 => 0.0030571910818132
1226 => 0.0031048938161131
1227 => 0.0031597714636841
1228 => 0.0031787150077172
1229 => 0.0031463107647952
1230 => 0.0033718779450535
1231 => 0.0034130912425061
]
'min_raw' => 0.0014225439872284
'max_raw' => 0.0037370322248353
'avg_raw' => 0.0025797881060319
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.001422'
'max' => '$0.003737'
'avg' => '$0.002579'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.5155235808517E-5
'max_diff' => -0.00067393594389399
'year' => 2027
]
2 => [
'items' => [
101 => 0.0032882534762452
102 => 0.0032649014272702
103 => 0.0033734089014966
104 => 0.0033079656300389
105 => 0.0033374347311691
106 => 0.003273738653262
107 => 0.003403164166016
108 => 0.0034021781604558
109 => 0.0033518287127868
110 => 0.0033943837211785
111 => 0.0033869887412431
112 => 0.0033301443388299
113 => 0.003404966234964
114 => 0.003405003345691
115 => 0.0033565430970009
116 => 0.0032999521358434
117 => 0.0032898350086072
118 => 0.0032822131122796
119 => 0.0033355602119033
120 => 0.0033833910546138
121 => 0.0034723923946265
122 => 0.0034947694461254
123 => 0.0035821085678502
124 => 0.0035301023733277
125 => 0.0035531560457666
126 => 0.00357818406834
127 => 0.0035901834227368
128 => 0.0035706311186681
129 => 0.0037063047249235
130 => 0.0037177597342233
131 => 0.0037216004997561
201 => 0.0036758521230857
202 => 0.0037164873891099
203 => 0.0036974754938358
204 => 0.0037469391636825
205 => 0.0037546956986983
206 => 0.0037481261894866
207 => 0.0037505882361292
208 => 0.0036348147476545
209 => 0.0036288112815233
210 => 0.0035469535948376
211 => 0.0035803112072235
212 => 0.00351795074974
213 => 0.0035377258931919
214 => 0.003546442588001
215 => 0.0035418894813008
216 => 0.0035821971965784
217 => 0.0035479274042703
218 => 0.0034574837878935
219 => 0.003367015530214
220 => 0.0033658797749327
221 => 0.0033420610795831
222 => 0.003324844525457
223 => 0.0033281610445717
224 => 0.0033398488905125
225 => 0.0033241652066035
226 => 0.0033275121157485
227 => 0.0033830931078935
228 => 0.0033942394794827
229 => 0.0033563597536541
301 => 0.0032042671884341
302 => 0.0031669432914338
303 => 0.0031937709684326
304 => 0.0031809490667508
305 => 0.0025672741597635
306 => 0.0027114479763916
307 => 0.0026257847902314
308 => 0.0026652623275877
309 => 0.0025778223968927
310 => 0.0026195533149398
311 => 0.0026118471381456
312 => 0.0028436743688702
313 => 0.0028400547055304
314 => 0.0028417872468228
315 => 0.0027590885368215
316 => 0.0028908298273683
317 => 0.0029557303243552
318 => 0.0029437189696337
319 => 0.0029467419688426
320 => 0.0028947968267579
321 => 0.0028422901893447
322 => 0.0027840522477399
323 => 0.0028922511448145
324 => 0.0028802212744765
325 => 0.002907813468821
326 => 0.0029779881877908
327 => 0.0029883216817269
328 => 0.003002210002369
329 => 0.0029972320280568
330 => 0.0031158275719576
331 => 0.0031014648690726
401 => 0.0031360748505937
402 => 0.0030648794927391
403 => 0.0029843151874012
404 => 0.0029996278280003
405 => 0.0029981530975742
406 => 0.0029793780866321
407 => 0.0029624288462411
408 => 0.0029342131364089
409 => 0.0030234918174573
410 => 0.0030198672660487
411 => 0.003078544540273
412 => 0.0030681727620932
413 => 0.0029989074890041
414 => 0.003001381311783
415 => 0.0030180189588501
416 => 0.0030756020453144
417 => 0.0030926966259325
418 => 0.003084777735089
419 => 0.0031035211623395
420 => 0.0031183352030072
421 => 0.0031053815777664
422 => 0.0032887775943984
423 => 0.0032126187819671
424 => 0.0032497380572365
425 => 0.0032585907856688
426 => 0.0032359147079423
427 => 0.0032408323372318
428 => 0.0032482812056314
429 => 0.0032935092759163
430 => 0.0034122008191914
501 => 0.0034647684957473
502 => 0.0036229209443092
503 => 0.0034604034819868
504 => 0.0034507603683367
505 => 0.0034792484000691
506 => 0.0035721006295117
507 => 0.0036473486403086
508 => 0.0036723127466518
509 => 0.0036756121654176
510 => 0.0037224464884998
511 => 0.0037492910490822
512 => 0.0037167595698126
513 => 0.0036891925473196
514 => 0.0035904508944943
515 => 0.0036018805096734
516 => 0.0036806192240536
517 => 0.0037918422958027
518 => 0.0038872832621517
519 => 0.0038538631621898
520 => 0.0041088349339857
521 => 0.004134114343693
522 => 0.0041306215466526
523 => 0.0041882118040463
524 => 0.0040739068711717
525 => 0.0040250392978141
526 => 0.0036951528504816
527 => 0.0037878374862887
528 => 0.0039225600476121
529 => 0.0039047290114373
530 => 0.0038068898862598
531 => 0.0038872090424018
601 => 0.0038606530175691
602 => 0.003839707178973
603 => 0.0039356641261323
604 => 0.0038301555210365
605 => 0.0039215075185664
606 => 0.0038043476368188
607 => 0.0038540158223913
608 => 0.0038258217580806
609 => 0.0038440667730242
610 => 0.0037374067884707
611 => 0.003794957927111
612 => 0.0037350124718927
613 => 0.0037349840499418
614 => 0.0037336607506953
615 => 0.0038041863129209
616 => 0.0038064861489731
617 => 0.0037543676519302
618 => 0.0037468565622624
619 => 0.0037746289974858
620 => 0.0037421147494515
621 => 0.0037573279614645
622 => 0.0037425755421454
623 => 0.0037392544618232
624 => 0.0037127915287806
625 => 0.0037013905696123
626 => 0.0037058611794687
627 => 0.0036906006832715
628 => 0.0036814056823164
629 => 0.0037318316335706
630 => 0.0037048910819925
701 => 0.0037277026076593
702 => 0.0037017059951179
703 => 0.0036115904098646
704 => 0.0035597639838304
705 => 0.0033895439970061
706 => 0.0034378181741122
707 => 0.0034698240034769
708 => 0.0034592460770628
709 => 0.0034819715561143
710 => 0.0034833667159594
711 => 0.0034759784310609
712 => 0.0034674237436464
713 => 0.0034632597949169
714 => 0.0034942944572875
715 => 0.0035123111233723
716 => 0.0034730362166364
717 => 0.0034638346555025
718 => 0.0035035437546395
719 => 0.003527766282174
720 => 0.0037066118160255
721 => 0.0036933623612143
722 => 0.0037266158927162
723 => 0.0037228720553862
724 => 0.0037577270541032
725 => 0.0038147002461839
726 => 0.0036988578167287
727 => 0.0037189640569523
728 => 0.0037140344711703
729 => 0.0037678543961307
730 => 0.0037680224160618
731 => 0.0037357546825434
801 => 0.0037532475443679
802 => 0.003743483508789
803 => 0.0037611284407686
804 => 0.0036931854066675
805 => 0.0037759326882053
806 => 0.0038228450647202
807 => 0.0038234964431137
808 => 0.0038457325372621
809 => 0.0038683256967446
810 => 0.0039116912989218
811 => 0.0038671162536366
812 => 0.0037869300864617
813 => 0.003792719268732
814 => 0.0037457061482563
815 => 0.0037464964473051
816 => 0.0037422777690457
817 => 0.0037549383400695
818 => 0.0036959636900416
819 => 0.0037098049225263
820 => 0.0036904271159935
821 => 0.0037189219333853
822 => 0.0036882662202338
823 => 0.0037140320939748
824 => 0.0037251517909292
825 => 0.0037661837120808
826 => 0.0036822057721177
827 => 0.0035109690677263
828 => 0.0035469650990337
829 => 0.0034937241413028
830 => 0.0034986517946434
831 => 0.0035086064386217
901 => 0.0034763401805313
902 => 0.0034824955657483
903 => 0.0034822756520735
904 => 0.0034803805548317
905 => 0.0034719868549204
906 => 0.003459814329406
907 => 0.0035083059245494
908 => 0.003516545591485
909 => 0.003534861350404
910 => 0.0035893566252492
911 => 0.0035839112622051
912 => 0.003592792875256
913 => 0.003573404363834
914 => 0.0034995511720807
915 => 0.0035035617557113
916 => 0.0034535497135721
917 => 0.0035335824300441
918 => 0.0035146296264033
919 => 0.0035024106306008
920 => 0.0034990765643879
921 => 0.0035537069224788
922 => 0.0035700531818456
923 => 0.0035598672899648
924 => 0.0035389757285476
925 => 0.0035790937025044
926 => 0.0035898275798938
927 => 0.0035922304991911
928 => 0.0036633118571841
929 => 0.0035962031574876
930 => 0.0036123568885076
1001 => 0.0037383836866403
1002 => 0.0036240947712433
1003 => 0.0036846361586761
1004 => 0.0036816729728034
1005 => 0.0037126438980051
1006 => 0.0036791324529633
1007 => 0.0036795478674877
1008 => 0.0037070479509146
1009 => 0.0036684290434077
1010 => 0.00365886645881
1011 => 0.0036456558166769
1012 => 0.0036745007704729
1013 => 0.0036917920157285
1014 => 0.0038311467534688
1015 => 0.0039211762693971
1016 => 0.0039172678506747
1017 => 0.0039529834815442
1018 => 0.0039368932627198
1019 => 0.0038849337017506
1020 => 0.0039736223365317
1021 => 0.0039455575415969
1022 => 0.0039478711691926
1023 => 0.0039477850558579
1024 => 0.0039664456910226
1025 => 0.0039532229207863
1026 => 0.0039271594833611
1027 => 0.0039444616094536
1028 => 0.0039958427383253
1029 => 0.0041553313389085
1030 => 0.0042445832727378
1031 => 0.004149958260424
1101 => 0.0042152293268387
1102 => 0.0041760899454488
1103 => 0.0041689771555545
1104 => 0.0042099722087569
1105 => 0.004251039018373
1106 => 0.0042484232401372
1107 => 0.0042186108451599
1108 => 0.0042017705796987
1109 => 0.0043292907116734
1110 => 0.0044232453726636
1111 => 0.0044168382946641
1112 => 0.0044451170532605
1113 => 0.0045281443631285
1114 => 0.0045357353398107
1115 => 0.0045347790512253
1116 => 0.004515964023482
1117 => 0.0045977151925057
1118 => 0.0046659134559802
1119 => 0.0045116088881778
1120 => 0.0045703660476018
1121 => 0.0045967440295047
1122 => 0.0046354747329327
1123 => 0.0047008199216354
1124 => 0.0047718021285217
1125 => 0.0047818397908558
1126 => 0.0047747175890834
1127 => 0.0047279029155377
1128 => 0.0048055724933066
1129 => 0.0048510695103879
1130 => 0.0048781619428791
1201 => 0.0049468638439258
1202 => 0.0045969069309408
1203 => 0.0043491900339429
1204 => 0.0043105054634013
1205 => 0.0043891720587932
1206 => 0.0044099158126437
1207 => 0.004401554031477
1208 => 0.0041227261424709
1209 => 0.0043090374922705
1210 => 0.0045094928391515
1211 => 0.0045171931454053
1212 => 0.0046175452833776
1213 => 0.0046502240530745
1214 => 0.0047310206775976
1215 => 0.0047259668267351
1216 => 0.0047456395190514
1217 => 0.0047411171077715
1218 => 0.0048907758409639
1219 => 0.0050558716482122
1220 => 0.0050501549053797
1221 => 0.0050264204297628
1222 => 0.0050616701733834
1223 => 0.0052320667392055
1224 => 0.0052163793539739
1225 => 0.0052316183124781
1226 => 0.005432525466712
1227 => 0.0056937333459255
1228 => 0.0055723760611885
1229 => 0.0058356864494498
1230 => 0.0060014263813763
1231 => 0.0062880564558144
]
'min_raw' => 0.0025672741597635
'max_raw' => 0.0062880564558144
'avg_raw' => 0.004427665307789
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.002567'
'max' => '$0.006288'
'avg' => '$0.004427'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011447301725351
'max_diff' => 0.0025510242309791
'year' => 2028
]
3 => [
'items' => [
101 => 0.0062521689588119
102 => 0.006363751943402
103 => 0.0061879228492307
104 => 0.0057841837080906
105 => 0.0057202904435539
106 => 0.0058482063771916
107 => 0.0061626752181858
108 => 0.0058383026342891
109 => 0.0059039227855477
110 => 0.0058850241775707
111 => 0.0058840171510655
112 => 0.0059224512568954
113 => 0.005866700581801
114 => 0.0056395623021114
115 => 0.0057436584371589
116 => 0.0057034619203101
117 => 0.0057480629526027
118 => 0.0059887563290209
119 => 0.0058823400498929
120 => 0.0057702391443882
121 => 0.0059108385570735
122 => 0.0060898699246219
123 => 0.0060786664633911
124 => 0.0060569270659196
125 => 0.0061794709112282
126 => 0.0063818774417
127 => 0.0064365871135513
128 => 0.0064769726748219
129 => 0.0064825411614014
130 => 0.0065399000339661
131 => 0.0062314669198889
201 => 0.0067209581930535
202 => 0.0068054798140055
203 => 0.0067895932523288
204 => 0.0068835354768034
205 => 0.0068558952912788
206 => 0.0068158489990658
207 => 0.0069647674069423
208 => 0.0067940444694077
209 => 0.0065517247529977
210 => 0.0064187833640346
211 => 0.0065938513090971
212 => 0.0067007591941175
213 => 0.0067714185054975
214 => 0.0067927999704275
215 => 0.0062554097045383
216 => 0.0059657861562545
217 => 0.0061514315301637
218 => 0.0063779316988921
219 => 0.0062302087000154
220 => 0.0062359991618947
221 => 0.0060253849864176
222 => 0.0063965663800605
223 => 0.0063424883731336
224 => 0.0066230451687325
225 => 0.0065560880378539
226 => 0.0067848712135127
227 => 0.0067246249360026
228 => 0.0069747038656231
301 => 0.0070744671212655
302 => 0.0072419851543999
303 => 0.0073652121014946
304 => 0.0074375733217846
305 => 0.0074332290255385
306 => 0.0077199602305439
307 => 0.0075508848565775
308 => 0.0073384863388696
309 => 0.007334644719793
310 => 0.0074446489218242
311 => 0.0076751875511025
312 => 0.0077349628634738
313 => 0.0077683691083912
314 => 0.0077172062814204
315 => 0.0075336870807211
316 => 0.0074544444203226
317 => 0.007521961462863
318 => 0.0074393939216417
319 => 0.00758192866215
320 => 0.0077776593046457
321 => 0.0077372417009732
322 => 0.0078723516903047
323 => 0.0080121763152773
324 => 0.0082121318089051
325 => 0.0082644075792699
326 => 0.0083508174398134
327 => 0.0084397615704731
328 => 0.0084683280281295
329 => 0.0085228702594468
330 => 0.0085225827949649
331 => 0.0086869494801551
401 => 0.0088682510239324
402 => 0.008936688159568
403 => 0.0090940555793162
404 => 0.0088245693878094
405 => 0.0090289777597016
406 => 0.0092133592278217
407 => 0.0089935320403732
408 => 0.0092965126051053
409 => 0.0093082766538651
410 => 0.0094858998232165
411 => 0.0093058447125971
412 => 0.0091989285626676
413 => 0.0095075914814182
414 => 0.0096569437450109
415 => 0.0096119576277477
416 => 0.0092696110541367
417 => 0.0090703506643598
418 => 0.0085488477898551
419 => 0.0091665904719536
420 => 0.0094674749126027
421 => 0.0092688318361238
422 => 0.0093690158495221
423 => 0.0099155873418476
424 => 0.010123686378242
425 => 0.010080403233394
426 => 0.010087717372372
427 => 0.010200003835146
428 => 0.010697943848368
429 => 0.010399566650286
430 => 0.01062766483824
501 => 0.010748647294661
502 => 0.010861022542611
503 => 0.010585064450208
504 => 0.010226047026622
505 => 0.010112331138046
506 => 0.0092490806969951
507 => 0.0092041447626318
508 => 0.0091789208609755
509 => 0.0090198877290242
510 => 0.0088949312501515
511 => 0.0087955612188153
512 => 0.0085347845821858
513 => 0.0086227890418698
514 => 0.0082071655113965
515 => 0.0084730667173998
516 => 0.0078097215271834
517 => 0.0083621751130044
518 => 0.0080614997432243
519 => 0.0082633951673935
520 => 0.0082626907732783
521 => 0.0078909372863802
522 => 0.0076765176334348
523 => 0.0078131541816293
524 => 0.0079596394075166
525 => 0.0079834061425814
526 => 0.0081733280615998
527 => 0.0082263311868399
528 => 0.0080657292428832
529 => 0.0077959751725417
530 => 0.0078586328906467
531 => 0.0076752478767772
601 => 0.0073538726937736
602 => 0.0075846899608792
603 => 0.0076635011241879
604 => 0.0076983086236779
605 => 0.007382273041383
606 => 0.0072829677999597
607 => 0.0072300985226775
608 => 0.0077551789474723
609 => 0.0077839440384446
610 => 0.0076367777660563
611 => 0.0083019832721299
612 => 0.0081514267789235
613 => 0.0083196352690714
614 => 0.0078529473594758
615 => 0.007870775466101
616 => 0.0076498379306929
617 => 0.00777354818747
618 => 0.0076861137653477
619 => 0.007763553621251
620 => 0.007809970751583
621 => 0.0080308720333155
622 => 0.0083646974508032
623 => 0.0079978767482332
624 => 0.0078380477151543
625 => 0.0079372047483638
626 => 0.008201272994562
627 => 0.008601349904957
628 => 0.0083644963217049
629 => 0.0084696079199175
630 => 0.0084925701280375
701 => 0.0083179230645437
702 => 0.008607789391302
703 => 0.0087631311106816
704 => 0.0089224795713255
705 => 0.0090608373748601
706 => 0.0088588322919965
707 => 0.0090750066869517
708 => 0.0089008082845355
709 => 0.0087445343092683
710 => 0.0087447713123817
711 => 0.0086467383648981
712 => 0.0084567871762023
713 => 0.0084217572626327
714 => 0.0086039872968121
715 => 0.0087501185269755
716 => 0.0087621545950132
717 => 0.0088430603525254
718 => 0.0088909395464255
719 => 0.0093602207352545
720 => 0.0095489695114992
721 => 0.0097797679422596
722 => 0.0098696769381276
723 => 0.010140270781531
724 => 0.0099217442764254
725 => 0.0098744646924496
726 => 0.0092180925389236
727 => 0.0093255734422928
728 => 0.0094976607389516
729 => 0.0092209301950618
730 => 0.009396452030569
731 => 0.0094311037589589
801 => 0.0092115269970727
802 => 0.009328812432948
803 => 0.0090173370879715
804 => 0.0083714867621598
805 => 0.0086085084073407
806 => 0.008783036118817
807 => 0.0085339635554287
808 => 0.0089804164848628
809 => 0.0087196079001465
810 => 0.0086369440998114
811 => 0.0083144431429312
812 => 0.0084666511803784
813 => 0.008672514730435
814 => 0.0085453149907065
815 => 0.0088092735497801
816 => 0.0091831092646047
817 => 0.0094495268572904
818 => 0.0094699790919364
819 => 0.0092986904284319
820 => 0.0095731816048475
821 => 0.0095751809733988
822 => 0.0092655538050727
823 => 0.0090759088884842
824 => 0.009032821164419
825 => 0.0091404627469798
826 => 0.009271159499941
827 => 0.0094772318521226
828 => 0.009601757058661
829 => 0.0099264527542469
830 => 0.010014306099717
831 => 0.010110830290919
901 => 0.010239816377323
902 => 0.010394697245405
903 => 0.010055826723415
904 => 0.010069290680987
905 => 0.009753739142892
906 => 0.0094165270697691
907 => 0.009672428999191
908 => 0.010006986730703
909 => 0.0099302388174408
910 => 0.0099216031093812
911 => 0.0099361259749918
912 => 0.0098782605547445
913 => 0.0096165374035587
914 => 0.0094851016755068
915 => 0.0096546872975241
916 => 0.0097448145082387
917 => 0.0098845939521382
918 => 0.0098673631852915
919 => 0.01022742002156
920 => 0.010367327220581
921 => 0.010331532972105
922 => 0.010338119975261
923 => 0.010591415276249
924 => 0.010873131745099
925 => 0.011136996393939
926 => 0.01140541084799
927 => 0.011081826747237
928 => 0.010917530696768
929 => 0.011087042283008
930 => 0.010997097049301
1001 => 0.011513949041672
1002 => 0.011549734752226
1003 => 0.012066549370315
1004 => 0.012557067984021
1005 => 0.012248982031306
1006 => 0.01253949320822
1007 => 0.012853704731777
1008 => 0.013459869739701
1009 => 0.013255734690174
1010 => 0.013099370441441
1011 => 0.012951606981935
1012 => 0.013259079284379
1013 => 0.013654637489483
1014 => 0.013739836938253
1015 => 0.013877892593955
1016 => 0.013732743952627
1017 => 0.013907559503508
1018 => 0.014524735215965
1019 => 0.014357968890499
1020 => 0.014121133899312
1021 => 0.014608334850111
1022 => 0.014784650980259
1023 => 0.016022129919116
1024 => 0.017584498197127
1025 => 0.016937667470967
1026 => 0.016536158766143
1027 => 0.01663052283569
1028 => 0.017201046841316
1029 => 0.017384281044397
1030 => 0.016886187315807
1031 => 0.017062122441336
1101 => 0.018031542280558
1102 => 0.018551604921588
1103 => 0.017845290001338
1104 => 0.015896595149222
1105 => 0.014099809499623
1106 => 0.014576397964209
1107 => 0.014522367622587
1108 => 0.015563888302243
1109 => 0.01435399156879
1110 => 0.014374363126828
1111 => 0.01543742135115
1112 => 0.015153815642333
1113 => 0.014694410715523
1114 => 0.014103163663997
1115 => 0.013010188805516
1116 => 0.012042110493502
1117 => 0.013940734998483
1118 => 0.013858862857403
1119 => 0.013740299864349
1120 => 0.014004148975536
1121 => 0.015285325364583
1122 => 0.015255790102053
1123 => 0.015067901830855
1124 => 0.015210413428587
1125 => 0.014669427743408
1126 => 0.014808852072493
1127 => 0.014099524879596
1128 => 0.014420170394906
1129 => 0.01469342503888
1130 => 0.014748284954262
1201 => 0.014871887144834
1202 => 0.013815719959353
1203 => 0.014289908018195
1204 => 0.014568449077351
1205 => 0.013309990438671
1206 => 0.014543573396318
1207 => 0.013797334438414
1208 => 0.013544049727969
1209 => 0.01388506422286
1210 => 0.013752170542554
1211 => 0.013637916360005
1212 => 0.013574160563006
1213 => 0.013824563971658
1214 => 0.013812882353348
1215 => 0.013403173775586
1216 => 0.012868725637753
1217 => 0.013048103975472
1218 => 0.012982934143698
1219 => 0.012746750266273
1220 => 0.012905909682707
1221 => 0.012205052161468
1222 => 0.01099926322358
1223 => 0.011795844330263
1224 => 0.011765176824169
1225 => 0.011749712876936
1226 => 0.012348321562724
1227 => 0.012290779149837
1228 => 0.012186339106991
1229 => 0.012744832142983
1230 => 0.012540974672055
1231 => 0.013169215362595
]
'min_raw' => 0.0056395623021114
'max_raw' => 0.018551604921588
'avg_raw' => 0.01209558361185
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.005639'
'max' => '$0.018551'
'avg' => '$0.012095'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0030722881423479
'max_diff' => 0.012263548465774
'year' => 2029
]
4 => [
'items' => [
101 => 0.013583015313446
102 => 0.013478062260884
103 => 0.013867243114727
104 => 0.01305223649008
105 => 0.013322948998397
106 => 0.01337874247117
107 => 0.012737940425612
108 => 0.012300193800224
109 => 0.012271001090988
110 => 0.011512008767767
111 => 0.01191745634046
112 => 0.012274233425869
113 => 0.012103364888978
114 => 0.012049273014751
115 => 0.012325616669082
116 => 0.012347090937746
117 => 0.011857475336447
118 => 0.011959281924067
119 => 0.012383832318378
120 => 0.011948584343414
121 => 0.011102968625412
122 => 0.010893244235796
123 => 0.010865263136234
124 => 0.010296473958143
125 => 0.010907259022346
126 => 0.010640634973799
127 => 0.011482897148512
128 => 0.011001801511459
129 => 0.010981062440099
130 => 0.010949712291979
131 => 0.010460131950011
201 => 0.010567318930448
202 => 0.010923624778459
203 => 0.011050758719102
204 => 0.011037497607515
205 => 0.010921878685422
206 => 0.010974808435891
207 => 0.010804303267681
208 => 0.010744094344028
209 => 0.010554058419209
210 => 0.010274758108489
211 => 0.010313596529743
212 => 0.0097602295313049
213 => 0.0094587258211465
214 => 0.0093752735679297
215 => 0.0092636777272185
216 => 0.0093878786150833
217 => 0.0097586619121252
218 => 0.009311418589828
219 => 0.0085446512842208
220 => 0.0085907353057957
221 => 0.0086942724198057
222 => 0.0085013316928146
223 => 0.0083187294870053
224 => 0.0084774872899712
225 => 0.0081525978744707
226 => 0.0087335337534914
227 => 0.0087178210660179
228 => 0.008934358036883
301 => 0.009069763048551
302 => 0.0087576983345495
303 => 0.0086792149028908
304 => 0.0087239226324367
305 => 0.0079850034507417
306 => 0.0088739725753722
307 => 0.0088816604172773
308 => 0.008815832447462
309 => 0.0092891810624853
310 => 0.01028809428132
311 => 0.0099122629472031
312 => 0.0097667296950709
313 => 0.0094900708763835
314 => 0.0098587023259093
315 => 0.0098303971821321
316 => 0.0097023905875648
317 => 0.0096249717997656
318 => 0.0097676182900753
319 => 0.0096072963210175
320 => 0.0095784980900216
321 => 0.009404012142971
322 => 0.0093417285984787
323 => 0.009295616341716
324 => 0.009244851277917
325 => 0.0093568263587919
326 => 0.0091030760939806
327 => 0.0087970781500634
328 => 0.0087716377319704
329 => 0.0088418809630698
330 => 0.0088108035623018
331 => 0.0087714889453318
401 => 0.0086964266348373
402 => 0.008674157250766
403 => 0.0087465219454283
404 => 0.0086648264242784
405 => 0.0087853726159204
406 => 0.0087525907219188
407 => 0.0085694737268534
408 => 0.008341242152407
409 => 0.0083392104126625
410 => 0.0082900382943229
411 => 0.0082274102085398
412 => 0.0082099885078115
413 => 0.008464117150617
414 => 0.0089901558357941
415 => 0.0088868818548549
416 => 0.0089615078900267
417 => 0.0093285941229703
418 => 0.009445279797755
419 => 0.0093624590696445
420 => 0.0092490889488469
421 => 0.0092540766587989
422 => 0.0096414966810338
423 => 0.0096656595926015
424 => 0.0097267114748824
425 => 0.0098051803968733
426 => 0.0093758226663688
427 => 0.0092338539483036
428 => 0.0091665812935598
429 => 0.0089594075547425
430 => 0.0091828266703229
501 => 0.0090526499194346
502 => 0.0090702152106005
503 => 0.0090587757916854
504 => 0.0090650224879431
505 => 0.0087333713700737
506 => 0.0088542076063557
507 => 0.0086532939269634
508 => 0.0083842930638759
509 => 0.008383391278659
510 => 0.0084492288588064
511 => 0.00841006608991
512 => 0.0083046800857765
513 => 0.0083196496702558
514 => 0.0081885003584806
515 => 0.0083355735712402
516 => 0.0083397911047289
517 => 0.0082831599066844
518 => 0.008509746483133
519 => 0.008602579188381
520 => 0.0085653033206703
521 => 0.0085999638141326
522 => 0.008891173355017
523 => 0.0089386532165442
524 => 0.008959740634691
525 => 0.0089314862879218
526 => 0.0086052865899591
527 => 0.0086197549336719
528 => 0.0085135958274038
529 => 0.0084239025693782
530 => 0.0084274898293201
531 => 0.0084736038232526
601 => 0.0086749863393059
602 => 0.0090987839721923
603 => 0.0091148667825683
604 => 0.0091343596179127
605 => 0.009055072460253
606 => 0.0090311586948269
607 => 0.0090627071240905
608 => 0.0092218632327817
609 => 0.0096312559547974
610 => 0.0094865492244165
611 => 0.0093689004001224
612 => 0.0094721101369236
613 => 0.0094562218069277
614 => 0.0093221083123122
615 => 0.0093183441931972
616 => 0.0090609375183521
617 => 0.0089657801315283
618 => 0.0088862594966914
619 => 0.0087994250393882
620 => 0.0087479466623815
621 => 0.0088270408459677
622 => 0.0088451306215687
623 => 0.0086721898068277
624 => 0.0086486186128168
625 => 0.0087898458153211
626 => 0.0087276969889797
627 => 0.0087916185980885
628 => 0.0088064489597112
629 => 0.0088040609299177
630 => 0.0087391704174701
701 => 0.0087805296950413
702 => 0.0086827026737914
703 => 0.0085763304813257
704 => 0.0085084716497543
705 => 0.0084492558190404
706 => 0.0084821122035647
707 => 0.0083649851920743
708 => 0.0083275139037975
709 => 0.0087665181024134
710 => 0.0090908152240214
711 => 0.0090860998154375
712 => 0.0090573959783874
713 => 0.0090147478988917
714 => 0.0092187432601281
715 => 0.0091476753552893
716 => 0.0091993831939817
717 => 0.0092125450091
718 => 0.0092523818593782
719 => 0.0092666201092597
720 => 0.0092235822290175
721 => 0.0090791418462904
722 => 0.0087192101455141
723 => 0.0085516609671856
724 => 0.008496366947585
725 => 0.0084983767801792
726 => 0.0084429366249436
727 => 0.0084592662353139
728 => 0.0084372578528637
729 => 0.0083955793009024
730 => 0.0084795386704282
731 => 0.0084892142056304
801 => 0.0084696170855434
802 => 0.00847423291675
803 => 0.0083119771324685
804 => 0.0083243130873463
805 => 0.0082556249230089
806 => 0.0082427467202438
807 => 0.0080691090221615
808 => 0.007761484670822
809 => 0.0079319384232824
810 => 0.0077260542597348
811 => 0.0076480828073451
812 => 0.008017187535909
813 => 0.0079801396585327
814 => 0.0079167297967898
815 => 0.0078229333954988
816 => 0.0077881433978673
817 => 0.0075767703854328
818 => 0.007564281340227
819 => 0.0076690435127409
820 => 0.007620699374772
821 => 0.0075528058957068
822 => 0.0073069025967843
823 => 0.0070304258730112
824 => 0.0070387709674311
825 => 0.0071267130692311
826 => 0.0073824165908226
827 => 0.007282508801221
828 => 0.0072100245535552
829 => 0.0071964504328358
830 => 0.0073663589729847
831 => 0.007606815154235
901 => 0.0077196318145739
902 => 0.007607833930471
903 => 0.0074794065408392
904 => 0.0074872233209709
905 => 0.0075392248572076
906 => 0.007544689483404
907 => 0.0074610964553026
908 => 0.0074846274030642
909 => 0.0074488817416994
910 => 0.0072295106838851
911 => 0.0072255429570824
912 => 0.0071717057616586
913 => 0.0071700755927775
914 => 0.0070784850930438
915 => 0.0070656709489958
916 => 0.0068838124526287
917 => 0.0070035122656558
918 => 0.0069232239155995
919 => 0.0068022104339574
920 => 0.0067813476641096
921 => 0.0067807205040555
922 => 0.0069049742915825
923 => 0.0070020602878045
924 => 0.0069246205658231
925 => 0.0069069890422339
926 => 0.0070952475863394
927 => 0.0070712899705873
928 => 0.007050542829856
929 => 0.0075852849405506
930 => 0.0071619948334885
1001 => 0.0069774161862549
1002 => 0.0067489650597688
1003 => 0.0068233498985032
1004 => 0.0068390238769652
1005 => 0.0062896400991768
1006 => 0.0060667551689494
1007 => 0.0059902694601367
1008 => 0.0059462508533659
1009 => 0.0059663106852222
1010 => 0.0057656881062228
1011 => 0.0059005097973016
1012 => 0.0057267876020925
1013 => 0.0056976625107248
1014 => 0.006008299315809
1015 => 0.0060515226125226
1016 => 0.0058671186003168
1017 => 0.0059855358284507
1018 => 0.0059425960954067
1019 => 0.0057297655705165
1020 => 0.005721637009941
1021 => 0.0056148461339058
1022 => 0.0054477390916989
1023 => 0.0053713666893298
1024 => 0.0053315912790804
1025 => 0.0053480033885566
1026 => 0.0053397049237866
1027 => 0.0052855518278645
1028 => 0.0053428089158555
1029 => 0.0051965407163006
1030 => 0.0051382955406749
1031 => 0.0051119875461225
1101 => 0.0049821661001341
1102 => 0.0051887697525608
1103 => 0.0052294732748131
1104 => 0.0052702569955781
1105 => 0.0056252514406094
1106 => 0.0056075169213395
1107 => 0.005767828338478
1108 => 0.0057615989316018
1109 => 0.0057158755185611
1110 => 0.0055229759600789
1111 => 0.0055998622859859
1112 => 0.0053632181256321
1113 => 0.0055405280208079
1114 => 0.0054596111892879
1115 => 0.005513169958676
1116 => 0.0054168664621167
1117 => 0.0054701647933865
1118 => 0.0052391255899402
1119 => 0.0050233844325713
1120 => 0.0051102049721736
1121 => 0.0052045888278542
1122 => 0.0054092370755291
1123 => 0.0052873502675253
1124 => 0.0053311853727339
1125 => 0.005184345108193
1126 => 0.0048813716995971
1127 => 0.004883086496187
1128 => 0.004836480637909
1129 => 0.0047962063717901
1130 => 0.0053013504336503
1201 => 0.0052385277844121
1202 => 0.0051384281148761
1203 => 0.0052724155003528
1204 => 0.0053078438917386
1205 => 0.0053088524882349
1206 => 0.0054066062259638
1207 => 0.005458777413313
1208 => 0.0054679728112061
1209 => 0.0056217904296317
1210 => 0.0056733480664245
1211 => 0.0058857066756643
1212 => 0.0054543510525662
1213 => 0.0054454675673699
1214 => 0.0052743009776403
1215 => 0.0051657444203971
1216 => 0.0052817339379889
1217 => 0.0053844848164273
1218 => 0.0052774937338504
1219 => 0.0052914645105299
1220 => 0.005147837723663
1221 => 0.0051991775416995
1222 => 0.0052433983092128
1223 => 0.0052189822005685
1224 => 0.005182430104175
1225 => 0.0053760604161509
1226 => 0.0053651350351059
1227 => 0.0055454480331595
1228 => 0.0056860149094484
1229 => 0.005937935881093
1230 => 0.0056750432142446
1231 => 0.005665462360561
]
'min_raw' => 0.0047962063717901
'max_raw' => 0.013867243114727
'avg_raw' => 0.0093317247432587
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.004796'
'max' => '$0.013867'
'avg' => '$0.009331'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00084335593032132
'max_diff' => -0.0046843618068611
'year' => 2030
]
5 => [
'items' => [
101 => 0.0057591167421361
102 => 0.0056733337284267
103 => 0.005727545631962
104 => 0.0059292015053207
105 => 0.0059334621761596
106 => 0.0058620904500436
107 => 0.0058577474740232
108 => 0.0058714551947449
109 => 0.0059517417431648
110 => 0.0059236871561905
111 => 0.0059561526344924
112 => 0.0059967512122381
113 => 0.0061646841432343
114 => 0.0062051722043632
115 => 0.0061068072064728
116 => 0.0061156884644361
117 => 0.0060788972550455
118 => 0.0060433574077667
119 => 0.0061232457942716
120 => 0.0062692433908195
121 => 0.0062683351473486
122 => 0.00630220375196
123 => 0.0063233036120502
124 => 0.0062327275665014
125 => 0.0061737658914227
126 => 0.0061963755494767
127 => 0.0062325288850795
128 => 0.0061846515100033
129 => 0.0058891301720754
130 => 0.0059787724680265
131 => 0.0059638516066959
201 => 0.0059426024857224
202 => 0.0060327385074847
203 => 0.0060240446682974
204 => 0.0057636304317
205 => 0.005780301306215
206 => 0.0057646442427949
207 => 0.0058152354178391
208 => 0.0056706016389482
209 => 0.0057150900152117
210 => 0.0057429927077515
211 => 0.0057594276080161
212 => 0.0058188017372882
213 => 0.0058118348685118
214 => 0.0058183686669431
215 => 0.0059064048264648
216 => 0.0063516615109633
217 => 0.0063758958498971
218 => 0.0062565571016942
219 => 0.0063042305777485
220 => 0.0062127079287674
221 => 0.0062741476961769
222 => 0.0063161832246376
223 => 0.006126232754491
224 => 0.0061149851204172
225 => 0.0060230847249073
226 => 0.0060724667919499
227 => 0.0059938963725889
228 => 0.0060131748052235
301 => 0.0059592706269136
302 => 0.0060562874156565
303 => 0.0061647672603559
304 => 0.0061921735531259
305 => 0.006120079395999
306 => 0.0060678784750027
307 => 0.0059762308537855
308 => 0.0061286428903701
309 => 0.0061732128145401
310 => 0.0061284087835325
311 => 0.0061180267105606
312 => 0.0060983527010389
313 => 0.0061222006446857
314 => 0.0061729700771612
315 => 0.00614902815037
316 => 0.0061648422148181
317 => 0.0061045753085344
318 => 0.0062327575509414
319 => 0.0064363418006202
320 => 0.0064369963572723
321 => 0.0064130543014252
322 => 0.0064032577280113
323 => 0.0064278237302359
324 => 0.0064411497786926
325 => 0.0065205917252527
326 => 0.0066058360990185
327 => 0.0070036343963492
328 => 0.0068919342262744
329 => 0.0072448845407928
330 => 0.0075240224147145
331 => 0.0076077236578838
401 => 0.0075307224526159
402 => 0.0072673054889178
403 => 0.0072543809959818
404 => 0.0076480371515201
405 => 0.0075368112569864
406 => 0.0075235812907495
407 => 0.0073828368023693
408 => 0.007466034226546
409 => 0.007447837729446
410 => 0.0074191136685705
411 => 0.0075778485583168
412 => 0.0078749861015605
413 => 0.0078286744289078
414 => 0.0077941049136091
415 => 0.0076426313606052
416 => 0.0077338522723565
417 => 0.0077013702529033
418 => 0.0078409336220729
419 => 0.007758259373884
420 => 0.0075359686114416
421 => 0.0075713691480405
422 => 0.0075660184281496
423 => 0.0076761358643487
424 => 0.0076430813432845
425 => 0.0075595640024057
426 => 0.0078739705177407
427 => 0.0078535547074558
428 => 0.0078824996587358
429 => 0.0078952421214416
430 => 0.0080866158268618
501 => 0.0081650155106969
502 => 0.0081828136115072
503 => 0.0082572872475014
504 => 0.0081809606395997
505 => 0.0084863214911555
506 => 0.0086893686391405
507 => 0.0089252183502357
508 => 0.0092698581685718
509 => 0.0093994459283628
510 => 0.0093760370594516
511 => 0.0096373390363942
512 => 0.010106892880543
513 => 0.0094709473164123
514 => 0.010140599539639
515 => 0.009928595377272
516 => 0.0094259373220923
517 => 0.009393572069288
518 => 0.0097339779402356
519 => 0.010488965399147
520 => 0.010299849603686
521 => 0.010489274724839
522 => 0.010268300259107
523 => 0.010257327014364
524 => 0.010478542488263
525 => 0.010995424500855
526 => 0.010749873231705
527 => 0.010397815275737
528 => 0.010657769391795
529 => 0.010432573078848
530 => 0.0099251427572983
531 => 0.010299704990402
601 => 0.010049245892044
602 => 0.010122343172083
603 => 0.010648770943852
604 => 0.010585429761597
605 => 0.01066739911667
606 => 0.010522725350478
607 => 0.010387577239896
608 => 0.010135313255264
609 => 0.010060630325879
610 => 0.010081270000751
611 => 0.010060620097881
612 => 0.009919480716905
613 => 0.0098890016810212
614 => 0.0098382019525644
615 => 0.0098539469125873
616 => 0.0097584285611037
617 => 0.0099386914254516
618 => 0.0099721498015455
619 => 0.010103330081542
620 => 0.010116949653386
621 => 0.010482284865943
622 => 0.010281064370075
623 => 0.010416060451245
624 => 0.010403985131113
625 => 0.0094368314463406
626 => 0.009570096690833
627 => 0.0097774155903257
628 => 0.0096840187071184
629 => 0.0095519773657681
630 => 0.0094453469030189
701 => 0.0092837908484294
702 => 0.009511177892855
703 => 0.0098101676763583
704 => 0.010124532527704
705 => 0.010502221298594
706 => 0.010417925561713
707 => 0.010117471898847
708 => 0.010130950030681
709 => 0.010214266538234
710 => 0.01010636409085
711 => 0.010074541552611
712 => 0.010209894610148
713 => 0.010210826712266
714 => 0.010086671906106
715 => 0.0099486965591474
716 => 0.0099481184374057
717 => 0.0099235670570982
718 => 0.010272667895122
719 => 0.01046463805796
720 => 0.010486647127754
721 => 0.010463156672203
722 => 0.010472197216242
723 => 0.010360494008261
724 => 0.010615814417148
725 => 0.010850121672915
726 => 0.010787322323125
727 => 0.010693177170336
728 => 0.010618186021495
729 => 0.010769656791711
730 => 0.01076291203675
731 => 0.010848075203441
801 => 0.010844211710274
802 => 0.010815574540464
803 => 0.010787323345849
804 => 0.01089933613913
805 => 0.010867078253535
806 => 0.010834770262534
807 => 0.010769971640476
808 => 0.010778778849405
809 => 0.010684649952105
810 => 0.010641101617168
811 => 0.0099862391467879
812 => 0.0098112384964538
813 => 0.0098662972635156
814 => 0.0098844240392326
815 => 0.0098082635319378
816 => 0.0099174581353695
817 => 0.0099004402720903
818 => 0.0099666468229924
819 => 0.0099252838443431
820 => 0.0099269813954148
821 => 0.010048621096106
822 => 0.010083933618708
823 => 0.010065973384706
824 => 0.01007855211696
825 => 0.01036842369262
826 => 0.010327213224133
827 => 0.010305320984104
828 => 0.010311385284206
829 => 0.010385453686704
830 => 0.010406188795418
831 => 0.010318332682765
901 => 0.010359766133382
902 => 0.010536184507424
903 => 0.010597920953924
904 => 0.010794954055975
905 => 0.01071125089224
906 => 0.010864891671864
907 => 0.011337131048428
908 => 0.011714388538906
909 => 0.011367446959837
910 => 0.012060232297649
911 => 0.01259966505729
912 => 0.012578960729503
913 => 0.012484898150555
914 => 0.011870768295266
915 => 0.011305636846268
916 => 0.011778393300103
917 => 0.011779598453527
918 => 0.011738988254876
919 => 0.011486761798828
920 => 0.011730211320938
921 => 0.011749535459924
922 => 0.011738719080795
923 => 0.011545337648319
924 => 0.011250079943792
925 => 0.011307772592509
926 => 0.011402274328007
927 => 0.011223362827583
928 => 0.011166189762567
929 => 0.011272485368052
930 => 0.011614991956493
1001 => 0.011550243069953
1002 => 0.011548552214855
1003 => 0.011825575409271
1004 => 0.011627286587416
1005 => 0.011308500281567
1006 => 0.011228002535065
1007 => 0.010942289764764
1008 => 0.011139632592885
1009 => 0.011146734609946
1010 => 0.011038651959779
1011 => 0.011317270592951
1012 => 0.011314703073196
1013 => 0.011579209998482
1014 => 0.012084847895363
1015 => 0.011935305888325
1016 => 0.011761404804265
1017 => 0.011780312673856
1018 => 0.011987685334675
1019 => 0.011862303090087
1020 => 0.011907391419437
1021 => 0.011987617088089
1022 => 0.012036019225878
1023 => 0.011773348351095
1024 => 0.011712107205183
1025 => 0.011586829313368
1026 => 0.011554146649816
1027 => 0.01165618287869
1028 => 0.011629299937375
1029 => 0.011146137712913
1030 => 0.011095644572167
1031 => 0.011097193124706
1101 => 0.010970225721484
1102 => 0.010776569955901
1103 => 0.011285485745268
1104 => 0.011244612685109
1105 => 0.011199491990019
1106 => 0.011205019017712
1107 => 0.01142592211312
1108 => 0.01129778716191
1109 => 0.011638454930607
1110 => 0.011568423878774
1111 => 0.011496596794712
1112 => 0.011486668103788
1113 => 0.011459020804423
1114 => 0.011364207927793
1115 => 0.011249715681892
1116 => 0.011174117984
1117 => 0.010307533178598
1118 => 0.010468366277789
1119 => 0.01065339009801
1120 => 0.010717259579313
1121 => 0.01060800641191
1122 => 0.011368521908748
1123 => 0.01150747541853
1124 => 0.011086576173687
1125 => 0.01100784311018
1126 => 0.011373683635284
1127 => 0.011153037076461
1128 => 0.011252394208389
1129 => 0.011037638434607
1130 => 0.011474005587057
1201 => 0.011470681200471
1202 => 0.011300924522368
1203 => 0.011444401704257
1204 => 0.011419469013104
1205 => 0.011227814141618
1206 => 0.011480081388332
1207 => 0.011480206509739
1208 => 0.011316819397894
1209 => 0.011126019021297
1210 => 0.011091908420465
1211 => 0.011066210664852
1212 => 0.011246074135809
1213 => 0.01140733916145
1214 => 0.011707413393178
1215 => 0.011782859184623
1216 => 0.012077329131341
1217 => 0.011901986615552
1218 => 0.011979713681735
1219 => 0.012064097407242
1220 => 0.012104554068359
1221 => 0.012038632110093
1222 => 0.012496065146012
1223 => 0.01253468650963
1224 => 0.012547635918777
1225 => 0.012393392072783
1226 => 0.012530396709247
1227 => 0.012466296776963
1228 => 0.012633066993294
1229 => 0.012659218692644
1230 => 0.012637069133668
1231 => 0.012645370095818
]
'min_raw' => 0.0056706016389482
'max_raw' => 0.012659218692644
'avg_raw' => 0.0091649101657959
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00567'
'max' => '$0.012659'
'avg' => '$0.009164'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00087439526715812
'max_diff' => -0.0012080244220836
'year' => 2031
]
6 => [
'items' => [
101 => 0.012255031696379
102 => 0.012234790591169
103 => 0.011958801685387
104 => 0.0120712692045
105 => 0.011861016568226
106 => 0.011927689845031
107 => 0.01195707879016
108 => 0.011941727673032
109 => 0.012077627949286
110 => 0.011962084951878
111 => 0.011657147984693
112 => 0.011352127937634
113 => 0.011348298659407
114 => 0.011267992265068
115 => 0.01120994545081
116 => 0.011221127326557
117 => 0.011260533715166
118 => 0.011207655079867
119 => 0.011218939417723
120 => 0.011406334613281
121 => 0.011443915383309
122 => 0.011316201243
123 => 0.010803410540597
124 => 0.010677570415989
125 => 0.010768021802039
126 => 0.010724791865322
127 => 0.0086557440710007
128 => 0.0091418361596568
129 => 0.008853016746705
130 => 0.0089861180201354
131 => 0.008691308188936
201 => 0.0088320068926915
202 => 0.0088060249796018
203 => 0.0095876466736502
204 => 0.0095754427259831
205 => 0.0095812841099128
206 => 0.0093024596353038
207 => 0.0097466345942654
208 => 0.0099654511510649
209 => 0.0099249540300154
210 => 0.0099351462829073
211 => 0.0097600096096745
212 => 0.0095829798157395
213 => 0.0093866265295757
214 => 0.0097514266652684
215 => 0.0097108671175254
216 => 0.0098038961271833
217 => 0.010040495091632
218 => 0.010075335187899
219 => 0.010122160630596
220 => 0.010105377042651
221 => 0.010505230198989
222 => 0.01045680534344
223 => 0.010573495312531
224 => 0.010333455192823
225 => 0.010061827012556
226 => 0.01011345464943
227 => 0.010108482492836
228 => 0.010045181232616
229 => 0.0099880356852791
301 => 0.009892904449622
302 => 0.010193913756015
303 => 0.010181693327883
304 => 0.010379527854646
305 => 0.010344558680379
306 => 0.010111025976212
307 => 0.010119366642428
308 => 0.010175461631118
309 => 0.010369607027455
310 => 0.010427242599515
311 => 0.010400543506156
312 => 0.010463738279756
313 => 0.01051368485215
314 => 0.010470010800257
315 => 0.011088343274633
316 => 0.010831568521283
317 => 0.010956718749439
318 => 0.010986566341426
319 => 0.010910112362178
320 => 0.010926692492665
321 => 0.010951806872538
322 => 0.011104296469226
323 => 0.011504473294157
324 => 0.011681708885824
325 => 0.012214930908001
326 => 0.011666991937174
327 => 0.011634479506242
328 => 0.011730528894199
329 => 0.012043586668501
330 => 0.012297290590551
331 => 0.012381458818025
401 => 0.012392583038752
402 => 0.012550488228892
403 => 0.012640996539122
404 => 0.01253131438549
405 => 0.012438370244486
406 => 0.012105455868064
407 => 0.01214399161363
408 => 0.012409464686525
409 => 0.012784461038274
410 => 0.013106246919795
411 => 0.012993568719456
412 => 0.013853223849627
413 => 0.013938455144407
414 => 0.013926678935326
415 => 0.014120848508952
416 => 0.01373546144725
417 => 0.01357070101185
418 => 0.012458465822732
419 => 0.01277095854339
420 => 0.013225185064921
421 => 0.013165066481535
422 => 0.012835195040089
423 => 0.013105996682726
424 => 0.01301646119092
425 => 0.012945840833702
426 => 0.013269366380549
427 => 0.012913636752093
428 => 0.013221636389758
429 => 0.012826623668605
430 => 0.012994083423984
501 => 0.012899025167714
502 => 0.012960539509423
503 => 0.012600927924738
504 => 0.012794965606756
505 => 0.012592855319229
506 => 0.012592759492638
507 => 0.012588297896839
508 => 0.012826079753819
509 => 0.012833833811639
510 => 0.012658112660062
511 => 0.012632788496839
512 => 0.012726425201204
513 => 0.012616801143884
514 => 0.012668093550339
515 => 0.012618354738623
516 => 0.012607157484447
517 => 0.01251793585811
518 => 0.012479496728285
519 => 0.012494569701544
520 => 0.012443117873161
521 => 0.012412116285467
522 => 0.012582130900747
523 => 0.012491298950173
524 => 0.012568209601608
525 => 0.0124805602074
526 => 0.012176729220049
527 => 0.012001992806269
528 => 0.011428084236311
529 => 0.01159084399482
530 => 0.011698753883098
531 => 0.011663089665666
601 => 0.01173971020493
602 => 0.011744414083755
603 => 0.011719503965386
604 => 0.011690661239499
605 => 0.01167662219564
606 => 0.011781257726593
607 => 0.011842002174181
608 => 0.011709584084035
609 => 0.011678560378239
610 => 0.011812442378381
611 => 0.011894110321126
612 => 0.012497100525103
613 => 0.01245242906316
614 => 0.012564545666306
615 => 0.012551923057361
616 => 0.012669439119034
617 => 0.012861528213875
618 => 0.012470957375107
619 => 0.012538746967793
620 => 0.012522126525157
621 => 0.012703584159748
622 => 0.012704150650676
623 => 0.012595357734258
624 => 0.012654336139212
625 => 0.012621416011555
626 => 0.012680907131653
627 => 0.012451832448551
628 => 0.012730820685486
629 => 0.012888989038223
630 => 0.012891185205955
701 => 0.012966155749851
702 => 0.01304233016445
703 => 0.01318854031988
704 => 0.013038252442571
705 => 0.012767899181521
706 => 0.012787417813733
707 => 0.012628909795698
708 => 0.012631574344118
709 => 0.012617350775828
710 => 0.012660036774967
711 => 0.01246119962492
712 => 0.012507866306606
713 => 0.012442532678965
714 => 0.012538604945246
715 => 0.012435247068043
716 => 0.012522118510276
717 => 0.01255960934491
718 => 0.01269795133183
719 => 0.012414813844092
720 => 0.011837477339872
721 => 0.011958840472587
722 => 0.011779334866432
723 => 0.011795948793708
724 => 0.011829511570892
725 => 0.011720723628982
726 => 0.011741476939996
727 => 0.011740735485688
728 => 0.011734346033026
729 => 0.011706046087745
730 => 0.011665005568115
731 => 0.011828498366716
801 => 0.011856278979064
802 => 0.011918031839025
803 => 0.012101766462905
804 => 0.012083407041218
805 => 0.012113352019714
806 => 0.012047982299792
807 => 0.01179898110753
808 => 0.011812503070251
809 => 0.011643883978449
810 => 0.011913719869741
811 => 0.011849819169023
812 => 0.011808621971572
813 => 0.011797380934558
814 => 0.011981571001031
815 => 0.012036683555746
816 => 0.012002341110114
817 => 0.011931903752193
818 => 0.012067164302336
819 => 0.01210335431937
820 => 0.012111455929547
821 => 0.012351111690763
822 => 0.012124850024356
823 => 0.012179313456307
824 => 0.012604221605122
825 => 0.012218888547464
826 => 0.012423008062058
827 => 0.012413017474005
828 => 0.012517438110644
829 => 0.012404451933991
830 => 0.012405852533063
831 => 0.012498570984332
901 => 0.012368364641386
902 => 0.012336123719777
903 => 0.012291583117487
904 => 0.012388835893101
905 => 0.012447134533716
906 => 0.012916978761445
907 => 0.013220519560057
908 => 0.013207342053457
909 => 0.01332775979652
910 => 0.01327351050037
911 => 0.013098325212862
912 => 0.013397345137069
913 => 0.013302722721525
914 => 0.013310523278496
915 => 0.013310232941376
916 => 0.013373148575677
917 => 0.013328567082641
918 => 0.013240692383671
919 => 0.013299027709788
920 => 0.013472262773095
921 => 0.0140099897251
922 => 0.014310908851376
923 => 0.013991874015853
924 => 0.01421193997335
925 => 0.01407997881637
926 => 0.014055997548642
927 => 0.014194215232697
928 => 0.014332674848511
929 => 0.014323855569561
930 => 0.01422334099846
1001 => 0.014166562867708
1002 => 0.014596505895832
1003 => 0.014913280595065
1004 => 0.014891678684262
1005 => 0.01498702249323
1006 => 0.015266954865231
1007 => 0.015292548373101
1008 => 0.015289324179369
1009 => 0.015225887999709
1010 => 0.015501517773757
1011 => 0.015731452980512
1012 => 0.015211204356965
1013 => 0.015409308222257
1014 => 0.015498243429895
1015 => 0.015628826700594
1016 => 0.01584914256656
1017 => 0.016088464032897
1018 => 0.016122306712263
1019 => 0.016098293711731
1020 => 0.015940454771376
1021 => 0.01620232317554
1022 => 0.01635571954513
1023 => 0.016447063572808
1024 => 0.0166786968288
1025 => 0.01549879266346
1026 => 0.01466359785019
1027 => 0.014533170119739
1028 => 0.014798400038429
1029 => 0.014868339052818
1030 => 0.014840146723814
1031 => 0.013900059028888
1101 => 0.01452822075258
1102 => 0.015204069949935
1103 => 0.015230032070088
1104 => 0.015568376309624
1105 => 0.015678555063216
1106 => 0.015950966523836
1107 => 0.015933927112805
1108 => 0.016000254968452
1109 => 0.015985007343077
1110 => 0.016489592210875
1111 => 0.017046224251634
1112 => 0.017026949854044
1113 => 0.016946927412413
1114 => 0.017065774384088
1115 => 0.017640278302466
1116 => 0.017587387187899
1117 => 0.017638766400446
1118 => 0.018316138897835
1119 => 0.019196819499556
1120 => 0.01878765494117
1121 => 0.019675424298937
1122 => 0.02023422805102
1123 => 0.021200621358861
1124 => 0.021079624157131
1125 => 0.021455833980152
1126 => 0.020863013913158
1127 => 0.019501779210638
1128 => 0.019286358608367
1129 => 0.019717636109432
1130 => 0.020777889762357
1201 => 0.019684244948779
1202 => 0.0199054878702
1203 => 0.019841769893947
1204 => 0.019838374633776
1205 => 0.019967957904965
1206 => 0.019779990611497
1207 => 0.019014178043235
1208 => 0.019365145430307
1209 => 0.019229620067321
1210 => 0.01937999556164
1211 => 0.020191510084908
1212 => 0.019832720170081
1213 => 0.019454764140537
1214 => 0.019928804876743
1215 => 0.020532421632003
1216 => 0.020494648380263
1217 => 0.020421352483892
1218 => 0.020834517614087
1219 => 0.021516945363146
1220 => 0.0217014028415
1221 => 0.021837565580953
1222 => 0.021856340122236
1223 => 0.022049729565756
1224 => 0.021009825787532
1225 => 0.022660179790196
1226 => 0.022945150336347
1227 => 0.02289158768449
1228 => 0.023208320453142
1229 => 0.02311512963787
1230 => 0.022980110767731
1231 => 0.023482199577038
]
'min_raw' => 0.0086557440710007
'max_raw' => 0.023482199577038
'avg_raw' => 0.016068971824019
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.008655'
'max' => '$0.023482'
'avg' => '$0.016068'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0029851424320525
'max_diff' => 0.010822980884394
'year' => 2032
]
7 => [
'items' => [
101 => 0.022906595273645
102 => 0.022089597431546
103 => 0.021641376256986
104 => 0.022231630056618
105 => 0.022592077455034
106 => 0.022830310256628
107 => 0.022902399358445
108 => 0.02109055055761
109 => 0.0201140645437
110 => 0.020739980883181
111 => 0.021503642015786
112 => 0.021005583611383
113 => 0.021025106557886
114 => 0.020315006160653
115 => 0.021566470144377
116 => 0.021384142368417
117 => 0.022330059192629
118 => 0.022104308551074
119 => 0.022875667000939
120 => 0.022672542470053
121 => 0.023515701041222
122 => 0.023852059822868
123 => 0.024416858567316
124 => 0.024832326822877
125 => 0.025076297729183
126 => 0.025061650631081
127 => 0.02602838490769
128 => 0.025458335479897
129 => 0.024742219048253
130 => 0.024729266761323
131 => 0.02510015360872
201 => 0.025877430693025
202 => 0.026078967332063
203 => 0.026191598819152
204 => 0.026019099775946
205 => 0.025400351977886
206 => 0.025133179815807
207 => 0.025360818238621
208 => 0.025082436008712
209 => 0.025563001837794
210 => 0.026222921364445
211 => 0.026086650591796
212 => 0.026542183353905
213 => 0.027013611839244
214 => 0.027687775746457
215 => 0.02786402715602
216 => 0.028155364033786
217 => 0.028455245380186
218 => 0.028551559186621
219 => 0.028735452127524
220 => 0.028734482920953
221 => 0.029288656675788
222 => 0.029899927488702
223 => 0.030130668069626
224 => 0.030661243312349
225 => 0.029752651802759
226 => 0.03044182889993
227 => 0.0310634838928
228 => 0.030322321182474
301 => 0.031343841309896
302 => 0.031383504621629
303 => 0.031982373538351
304 => 0.031375305161851
305 => 0.031014829897716
306 => 0.032055508478441
307 => 0.032559060062586
308 => 0.032407386227403
309 => 0.031253140852599
310 => 0.03058132053655
311 => 0.028823037184989
312 => 0.030905799767101
313 => 0.03192025266583
314 => 0.031250513664665
315 => 0.031588291060462
316 => 0.03343109500724
317 => 0.034132715437454
318 => 0.033986783292666
319 => 0.034011443422888
320 => 0.03439002507172
321 => 0.036068864591361
322 => 0.035062865035997
323 => 0.035831914001989
324 => 0.036239814800539
325 => 0.03661869579479
326 => 0.035688283819476
327 => 0.034477831510059
328 => 0.034094430452335
329 => 0.031183921320112
330 => 0.031032416680079
331 => 0.030947372534568
401 => 0.030411181226856
402 => 0.029989881734154
403 => 0.02965484873571
404 => 0.02877562209847
405 => 0.02907233527857
406 => 0.027671031527671
407 => 0.028567536008341
408 => 0.026331021386244
409 => 0.028193657221917
410 => 0.027179909220219
411 => 0.027860613738694
412 => 0.027858238824755
413 => 0.026604845988679
414 => 0.025881915158471
415 => 0.026342594820368
416 => 0.026836479986719
417 => 0.026916611193331
418 => 0.027556946203226
419 => 0.027735649940533
420 => 0.027194169273613
421 => 0.026284674591829
422 => 0.026495929463043
423 => 0.025877634085249
424 => 0.024794095218053
425 => 0.025572311749247
426 => 0.025838029088762
427 => 0.025955385003474
428 => 0.024889848972867
429 => 0.024555034418138
430 => 0.024376781958566
501 => 0.026147127270706
502 => 0.026244110783234
503 => 0.025747929421056
504 => 0.027990716227948
505 => 0.027483104499584
506 => 0.02805023116806
507 => 0.026476760297749
508 => 0.026536869003954
509 => 0.02579196267796
510 => 0.026209060445858
511 => 0.025914269187196
512 => 0.026175363068052
513 => 0.026331861663707
514 => 0.027076645757903
515 => 0.028202161459909
516 => 0.026965399850591
517 => 0.026426525106659
518 => 0.026760839967048
519 => 0.027651164495761
520 => 0.029000051731636
521 => 0.028201483339112
522 => 0.028555874431143
523 => 0.02863329311899
524 => 0.028044458350952
525 => 0.029021762909438
526 => 0.029545508361939
527 => 0.030082762822354
528 => 0.030549245816805
529 => 0.029868171576386
530 => 0.030597018641791
531 => 0.030009696565901
601 => 0.029482807947587
602 => 0.029483607020131
603 => 0.029153082093248
604 => 0.028512648398592
605 => 0.028394542599282
606 => 0.029008943882412
607 => 0.029501635527465
608 => 0.029542215971185
609 => 0.029814995381297
610 => 0.02997642342635
611 => 0.031558637718653
612 => 0.032195017395781
613 => 0.032973170418921
614 => 0.033276304875736
615 => 0.034188630911031
616 => 0.033451853542033
617 => 0.033292447123703
618 => 0.03107944258165
619 => 0.031441821951436
620 => 0.032022026286873
621 => 0.031089009937439
622 => 0.031680794060394
623 => 0.031797624781967
624 => 0.031057306398908
625 => 0.031452742434569
626 => 0.030402581562467
627 => 0.028225052097163
628 => 0.029024187122213
629 => 0.029612619486591
630 => 0.028772853949436
701 => 0.030278101171372
702 => 0.029398766818927
703 => 0.029120060044695
704 => 0.028032725552275
705 => 0.028545905577354
706 => 0.029239988909304
707 => 0.028811126106007
708 => 0.029701080816922
709 => 0.030961494029829
710 => 0.031859739544252
711 => 0.03192869568129
712 => 0.031351183993292
713 => 0.032276650158939
714 => 0.032283391169601
715 => 0.031239461554111
716 => 0.030600060477248
717 => 0.030454787207273
718 => 0.030817708318172
719 => 0.031258361545737
720 => 0.031953148868629
721 => 0.032372994296546
722 => 0.033467728503743
723 => 0.033763932191721
724 => 0.034089370241462
725 => 0.034524255837294
726 => 0.035046447497468
727 => 0.033903921873395
728 => 0.033949316546374
729 => 0.032885412504581
730 => 0.031748478456652
731 => 0.0326112696782
801 => 0.033739254428068
802 => 0.033480493480136
803 => 0.033451377587487
804 => 0.033500342442847
805 => 0.033305245138449
806 => 0.032422827261299
807 => 0.031979682527622
808 => 0.032551452292344
809 => 0.032855322475749
810 => 0.033326598629945
811 => 0.033268503896508
812 => 0.034482460658354
813 => 0.03495416754786
814 => 0.034833484740048
815 => 0.03485569328108
816 => 0.035709696072873
817 => 0.036659522816417
818 => 0.037549160902424
819 => 0.038454138974355
820 => 0.037363152586747
821 => 0.036809216981805
822 => 0.037380737129734
823 => 0.037077480494514
824 => 0.038820083072247
825 => 0.038940737093858
826 => 0.04068321366159
827 => 0.042337031414618
828 => 0.041298298115164
829 => 0.042277776830974
830 => 0.043337162920193
831 => 0.045380890565496
901 => 0.044692634993764
902 => 0.044165442012156
903 => 0.043667247191915
904 => 0.044703911526636
905 => 0.046037563632138
906 => 0.046324819522102
907 => 0.046790283804039
908 => 0.046300905025847
909 => 0.046890307860875
910 => 0.048971158865256
911 => 0.048408894555693
912 => 0.047610388847614
913 => 0.049253020868518
914 => 0.049847483011313
915 => 0.054019729651688
916 => 0.059287363382074
917 => 0.057106528428546
918 => 0.055752813797787
919 => 0.056070968846556
920 => 0.057994530364238
921 => 0.058612317272927
922 => 0.056932959491193
923 => 0.057526137050311
924 => 0.06079460372098
925 => 0.062548031224829
926 => 0.06016664115787
927 => 0.053596480410432
928 => 0.047538492145242
929 => 0.049145343427937
930 => 0.04896317635888
1001 => 0.052474736046993
1002 => 0.048395484737863
1003 => 0.048464168868085
1004 => 0.052048343891742
1005 => 0.051092147443747
1006 => 0.049543231658382
1007 => 0.047549800944608
1008 => 0.043864759900174
1009 => 0.040600816282147
1010 => 0.047002161358421
1011 => 0.046726123718641
1012 => 0.046326380309754
1013 => 0.047215966009478
1014 => 0.051535541654031
1015 => 0.051435961454322
1016 => 0.050802483030038
1017 => 0.051282970831635
1018 => 0.049458999823637
1019 => 0.049929078683446
1020 => 0.04753753252895
1021 => 0.048618611270572
1022 => 0.04953990838076
1023 => 0.049724872415667
1024 => 0.05014160583081
1025 => 0.046580664425725
1026 => 0.048179422572861
1027 => 0.049118543200924
1028 => 0.044875562037836
1029 => 0.049034673105554
1030 => 0.046518676358242
1031 => 0.045664709273201
1101 => 0.0468144634516
1102 => 0.046366403130105
1103 => 0.045981187176669
1104 => 0.045766230055802
1105 => 0.04661048263068
1106 => 0.046571097238962
1107 => 0.045189736164097
1108 => 0.043387806953418
1109 => 0.043992593542832
1110 => 0.043772868904993
1111 => 0.042976558472424
1112 => 0.043513175557087
1113 => 0.04115018549192
1114 => 0.037084783902335
1115 => 0.039770512719033
1116 => 0.039667115081101
1117 => 0.039614977303346
1118 => 0.041633228281003
1119 => 0.041439220018473
1120 => 0.041087093122248
1121 => 0.042970091385833
1122 => 0.042282771689724
1123 => 0.044400929040245
1124 => 0.045796084465127
1125 => 0.045442227920827
1126 => 0.046754378341299
1127 => 0.044006526604355
1128 => 0.044919252726691
1129 => 0.045107364315521
1130 => 0.042946855479551
1201 => 0.041470962169564
1202 => 0.041372536912203
1203 => 0.038813541303312
1204 => 0.040180536102091
1205 => 0.041383434954928
1206 => 0.040807339753141
1207 => 0.04062496522261
1208 => 0.041556677146884
1209 => 0.041629079142973
1210 => 0.039978305959322
1211 => 0.040321553977391
1212 => 0.041752955272974
1213 => 0.04028548633734
1214 => 0.037434433905092
1215 => 0.036727333483011
1216 => 0.036632993252259
1217 => 0.034715280826733
1218 => 0.036774585314347
1219 => 0.035875643719575
1220 => 0.038715389446487
1221 => 0.037093341917136
1222 => 0.037023418690091
1223 => 0.036917719476905
1224 => 0.035267065172553
1225 => 0.035628453560653
1226 => 0.036829763603701
1227 => 0.037258404560787
1228 => 0.037213693797212
1229 => 0.036823876529118
1230 => 0.037002332878264
1231 => 0.036427462799351
]
'min_raw' => 0.0201140645437
'max_raw' => 0.062548031224829
'avg_raw' => 0.041331047884265
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.020114'
'max' => '$0.062548'
'avg' => '$0.041331'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0114583204727
'max_diff' => 0.039065831647791
'year' => 2033
]
8 => [
'items' => [
101 => 0.036224464209601
102 => 0.035583744821189
103 => 0.034642064323472
104 => 0.034773010772342
105 => 0.032907295302259
106 => 0.031890754493144
107 => 0.031609389394973
108 => 0.031233136226642
109 => 0.031651888191507
110 => 0.032902009964747
111 => 0.031394097878091
112 => 0.028808888373252
113 => 0.028964263869476
114 => 0.029313346478091
115 => 0.028662833346349
116 => 0.028047177260584
117 => 0.0285824402774
118 => 0.027487052929985
119 => 0.029445718805751
120 => 0.029392742382909
121 => 0.03012281189831
122 => 0.030579339348824
123 => 0.029527191377905
124 => 0.02926257900853
125 => 0.029413314240088
126 => 0.026921996629314
127 => 0.029919218098848
128 => 0.029945138194578
129 => 0.029723194598384
130 => 0.03131912250208
131 => 0.034687028161274
201 => 0.033419886578594
202 => 0.032929211058223
203 => 0.031996436535317
204 => 0.033239303204419
205 => 0.033143870435972
206 => 0.032712287265254
207 => 0.032451264416981
208 => 0.03293220701832
209 => 0.03239167030632
210 => 0.032294575059889
211 => 0.031706283507188
212 => 0.031496290188434
213 => 0.031340819495303
214 => 0.031169661538401
215 => 0.031547193341422
216 => 0.030691656607333
217 => 0.029659963175322
218 => 0.029574189029528
219 => 0.029811018987405
220 => 0.029706239360961
221 => 0.029573687384988
222 => 0.029320609564472
223 => 0.029245526781277
224 => 0.029489509401673
225 => 0.029214067248317
226 => 0.029620497149704
227 => 0.029509970705319
228 => 0.028892578971636
301 => 0.02812308028377
302 => 0.02811623013137
303 => 0.0279504429013
304 => 0.027739287937529
305 => 0.027680549457179
306 => 0.028537361919093
307 => 0.030310938073016
308 => 0.029962742635921
309 => 0.030214349523726
310 => 0.031452006387238
311 => 0.031845420286508
312 => 0.031566184419325
313 => 0.031183949141806
314 => 0.03120076555414
315 => 0.032506979207907
316 => 0.032588446151259
317 => 0.032794286834875
318 => 0.033058850283892
319 => 0.031611240718697
320 => 0.031132583273801
321 => 0.030905768821505
322 => 0.030207268096674
323 => 0.030960541243478
324 => 0.030521641239208
325 => 0.030580863844743
326 => 0.030542295045196
327 => 0.030563356217759
328 => 0.029445171318721
329 => 0.029852579125862
330 => 0.029175184628446
331 => 0.028268229437506
401 => 0.028265189005687
402 => 0.028487165003787
403 => 0.028355124994195
404 => 0.027999808723443
405 => 0.028050279722658
406 => 0.027608100661455
407 => 0.028103968266598
408 => 0.028118187975214
409 => 0.027927251937143
410 => 0.028691204399409
411 => 0.029004196346526
412 => 0.028878518156021
413 => 0.028995378429647
414 => 0.02997721172834
415 => 0.030137293396417
416 => 0.030208391098975
417 => 0.030113129596188
418 => 0.029013324539971
419 => 0.029062105570946
420 => 0.028704182732371
421 => 0.028401775650754
422 => 0.028413870348103
423 => 0.028569346898223
424 => 0.029248322111175
425 => 0.030677185419057
426 => 0.030731409737106
427 => 0.030797131192416
428 => 0.030529809004713
429 => 0.030449182074973
430 => 0.030555549806877
501 => 0.031092155739254
502 => 0.032472451884417
503 => 0.031984563039836
504 => 0.03158790181475
505 => 0.031935880648249
506 => 0.03188231203438
507 => 0.031430139023779
508 => 0.03141744803338
509 => 0.03054958345758
510 => 0.030228753684227
511 => 0.029960644311921
512 => 0.029667875876535
513 => 0.029494312934351
514 => 0.029760984496491
515 => 0.029821975437918
516 => 0.029238893406677
517 => 0.029159421480381
518 => 0.029635578853792
519 => 0.02942603974669
520 => 0.029641555914665
521 => 0.029691557514298
522 => 0.029683506105123
523 => 0.029464723211895
524 => 0.029604168903838
525 => 0.02927433827163
526 => 0.028915696998062
527 => 0.028686906209667
528 => 0.028487255902098
529 => 0.028598033496481
530 => 0.028203131599694
531 => 0.028076794535107
601 => 0.029556927841035
602 => 0.030650318228239
603 => 0.030634419898979
604 => 0.030537642908326
605 => 0.030393851930713
606 => 0.031081636533622
607 => 0.030842026130656
608 => 0.031016362718933
609 => 0.031060738697533
610 => 0.031195051419566
611 => 0.031243056673124
612 => 0.031097951455079
613 => 0.030610960620209
614 => 0.029397425761413
615 => 0.028832522008769
616 => 0.02864609436118
617 => 0.028652870652093
618 => 0.028465950298008
619 => 0.028521006719469
620 => 0.028446803921462
621 => 0.028306281773621
622 => 0.028589356649833
623 => 0.028621978392292
624 => 0.028555905333691
625 => 0.028571467930871
626 => 0.028024411225829
627 => 0.028066002758968
628 => 0.02783441581725
629 => 0.0277909960575
630 => 0.027205564435419
701 => 0.026168387457231
702 => 0.026743084184353
703 => 0.026048931352579
704 => 0.025786045157054
705 => 0.027030507519476
706 => 0.026905598014302
707 => 0.0266918072383
708 => 0.026375566122692
709 => 0.026258269216717
710 => 0.025545610347702
711 => 0.025503502659833
712 => 0.025856715638725
713 => 0.025693720002283
714 => 0.025464812397444
715 => 0.024635732256706
716 => 0.023703571679517
717 => 0.02373170774799
718 => 0.02402821068413
719 => 0.024890332959825
720 => 0.024553486871844
721 => 0.02430910117015
722 => 0.02426333507443
723 => 0.024836193580178
724 => 0.025646908383378
725 => 0.026027277630318
726 => 0.025650343258586
727 => 0.025217341347928
728 => 0.025243696167892
729 => 0.025419022977946
730 => 0.025437447346695
731 => 0.025155607616172
801 => 0.025234943849429
802 => 0.025114424856455
803 => 0.024374800019036
804 => 0.024361422551103
805 => 0.024179906687939
806 => 0.024174410459741
807 => 0.023865606695244
808 => 0.023822402913932
809 => 0.023209254296475
810 => 0.02361283057327
811 => 0.023342132795502
812 => 0.022934127393254
813 => 0.02286378710812
814 => 0.022861672594211
815 => 0.02328060291398
816 => 0.02360793512857
817 => 0.023346841699242
818 => 0.023287395786467
819 => 0.023922122611711
820 => 0.023841347837535
821 => 0.02377139740404
822 => 0.025574317764749
823 => 0.024147165615618
824 => 0.0235248458196
825 => 0.022754606896704
826 => 0.02300540057388
827 => 0.023058246486587
828 => 0.021205960723023
829 => 0.020454488619433
830 => 0.020196611712109
831 => 0.0200481999061
901 => 0.020115833029737
902 => 0.019439419997619
903 => 0.019893980742041
904 => 0.019308264231997
905 => 0.019210066953002
906 => 0.020257400629312
907 => 0.020403130991936
908 => 0.019781399990108
909 => 0.020180651942388
910 => 0.020035877634474
911 => 0.019318304660453
912 => 0.019290898650955
913 => 0.018930845756502
914 => 0.01836743269666
915 => 0.018109937809922
916 => 0.017975832237236
917 => 0.018031166810192
918 => 0.018003187956839
919 => 0.017820607013089
920 => 0.018013653282813
921 => 0.017520499835894
922 => 0.017324122159724
923 => 0.017235422919325
924 => 0.016797720850331
925 => 0.017494299489094
926 => 0.017631534256197
927 => 0.017769039418185
928 => 0.018965927974528
929 => 0.018906134804625
930 => 0.019446635940094
1001 => 0.019425633059887
1002 => 0.019271473380514
1003 => 0.018621099051274
1004 => 0.018880326667101
1005 => 0.018082464358501
1006 => 0.018680277049467
1007 => 0.018407460302565
1008 => 0.018588037432911
1009 => 0.018263343470566
1010 => 0.018443042515613
1011 => 0.017664077710551
1012 => 0.016936691335915
1013 => 0.017229412846801
1014 => 0.017547634605899
1015 => 0.018237620461019
1016 => 0.017826670577969
1017 => 0.017974463695649
1018 => 0.017479381491689
1019 => 0.016457885491681
1020 => 0.016463667048106
1021 => 0.016306532143005
1022 => 0.016170744642926
1023 => 0.01787387311552
1024 => 0.017662062167476
1025 => 0.017324569142899
1026 => 0.017776316967735
1027 => 0.017895766262823
1028 => 0.017899166816328
1029 => 0.018228750368029
1030 => 0.018404649168653
1031 => 0.018435652094652
1101 => 0.018954258934377
1102 => 0.019128089106463
1103 => 0.01984407098392
1104 => 0.018389725384357
1105 => 0.018359774093792
1106 => 0.017782673986049
1107 => 0.017416667974127
1108 => 0.017807734730817
1109 => 0.018154166491309
1110 => 0.017793438586522
1111 => 0.017840542035506
1112 => 0.017356294295882
1113 => 0.017529390076824
1114 => 0.01767848348189
1115 => 0.017596162866918
1116 => 0.017472924921941
1117 => 0.018125763037605
1118 => 0.018088927352626
1119 => 0.018696865214615
1120 => 0.019170796252089
1121 => 0.020020165396549
1122 => 0.01913380441569
1123 => 0.019101501898582
1124 => 0.019417264184802
1125 => 0.019128040764902
1126 => 0.019310819982626
1127 => 0.019990716838818
1128 => 0.020005081988022
1129 => 0.019764447230407
1130 => 0.019749804583538
1201 => 0.019796021120993
1202 => 0.020066712824419
1203 => 0.019972124825726
1204 => 0.020081584452489
1205 => 0.02021846539186
1206 => 0.020784662993417
1207 => 0.020921171318299
1208 => 0.020589526860287
1209 => 0.02061947064158
1210 => 0.020495426510439
1211 => 0.020375601434026
1212 => 0.020644950706756
1213 => 0.021137191796744
1214 => 0.02113412959047
1215 => 0.021248319955548
1216 => 0.021319459606987
1217 => 0.021014076145602
1218 => 0.020815282741501
1219 => 0.020891512782186
1220 => 0.021013406277316
1221 => 0.020851984364555
1222 => 0.019855613541091
1223 => 0.020157848800515
1224 => 0.020107542074798
1225 => 0.020035899179869
1226 => 0.020339799070337
1227 => 0.020310487184533
1228 => 0.019432482404303
1229 => 0.019488689421654
1230 => 0.019435900539191
1231 => 0.019606472218016
]
'min_raw' => 0.016170744642926
'max_raw' => 0.036224464209601
'avg_raw' => 0.026197604426264
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01617'
'max' => '$0.036224'
'avg' => '$0.026197'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0039433199007745
'max_diff' => -0.026323567015227
'year' => 2034
]
9 => [
'items' => [
101 => 0.019118829334477
102 => 0.019268825001129
103 => 0.019362900877131
104 => 0.019418312290821
105 => 0.019618496313031
106 => 0.01959500702854
107 => 0.019617036186127
108 => 0.019913856244442
109 => 0.021415070243058
110 => 0.021496778008761
111 => 0.02109441908723
112 => 0.021255153540202
113 => 0.020946578539255
114 => 0.021153727004664
115 => 0.021295452723696
116 => 0.020655021451678
117 => 0.020617099268114
118 => 0.020307250668372
119 => 0.020473745755151
120 => 0.020208840100664
121 => 0.020273838682269
122 => 0.020092096981628
123 => 0.02041919585837
124 => 0.020784943228595
125 => 0.020877345458116
126 => 0.020634274973909
127 => 0.020458275924218
128 => 0.020149279570652
129 => 0.020663147393065
130 => 0.020813418004177
131 => 0.020662358085517
201 => 0.020627354201639
202 => 0.020561021904941
203 => 0.020641426911957
204 => 0.020812599598157
205 => 0.020731877720408
206 => 0.020785195942798
207 => 0.020582001860561
208 => 0.021014177240235
209 => 0.021700575751825
210 => 0.021702782635278
211 => 0.021622060322408
212 => 0.021589030491168
213 => 0.021671856482812
214 => 0.021716786185579
215 => 0.021984630254866
216 => 0.022272037612589
217 => 0.02361324234543
218 => 0.023236637423366
219 => 0.024426634050969
220 => 0.02536776688168
221 => 0.025649971466859
222 => 0.025390356527246
223 => 0.024502227842953
224 => 0.02445865201266
225 => 0.025785891225252
226 => 0.025410885356288
227 => 0.025366279601433
228 => 0.024891749732393
301 => 0.025172255656663
302 => 0.025110904896252
303 => 0.02501405971956
304 => 0.025549245482856
305 => 0.026551065455383
306 => 0.026394922417657
307 => 0.026278368883261
308 => 0.025767665223762
309 => 0.026075222896572
310 => 0.025965707500164
311 => 0.026436255143323
312 => 0.026157513143422
313 => 0.025408044318002
314 => 0.025527399698732
315 => 0.025509359373044
316 => 0.025880627997343
317 => 0.025769182371783
318 => 0.025487597826015
319 => 0.026547641343629
320 => 0.026478808013867
321 => 0.026576397937979
322 => 0.026619360040642
323 => 0.027264589849752
324 => 0.027528919857493
325 => 0.027588927396999
326 => 0.027840020460336
327 => 0.027582679972842
328 => 0.028612225403477
329 => 0.029296813039207
330 => 0.030091996806665
331 => 0.031253974016169
401 => 0.031690888195833
402 => 0.031611963559944
403 => 0.032492961418727
404 => 0.034076094987479
405 => 0.03193196011771
406 => 0.034189739341943
407 => 0.033474952506865
408 => 0.031780205779362
409 => 0.031671084069863
410 => 0.032818786230142
411 => 0.035364279159401
412 => 0.034726662051364
413 => 0.03536532207257
414 => 0.034620291233408
415 => 0.034583294172631
416 => 0.035329137587652
417 => 0.037071841380656
418 => 0.036243948132875
419 => 0.035056960154427
420 => 0.035933413606135
421 => 0.035174148514328
422 => 0.03346331175757
423 => 0.034726174477578
424 => 0.033881734140968
425 => 0.034128186724108
426 => 0.035903074710642
427 => 0.035689515492331
428 => 0.035965880895876
429 => 0.035478103192361
430 => 0.035022441901793
501 => 0.034171916265097
502 => 0.033920117554479
503 => 0.033989705659325
504 => 0.03392008307007
505 => 0.033444221793073
506 => 0.033341459595612
507 => 0.033170184764396
508 => 0.033223269996391
509 => 0.032901223205486
510 => 0.033508992038186
511 => 0.033621799289176
512 => 0.034064082761901
513 => 0.034110002099258
514 => 0.035341755275285
515 => 0.0346633263247
516 => 0.03511847503749
517 => 0.035077762252592
518 => 0.031816936079869
519 => 0.032266249155957
520 => 0.03296523930014
521 => 0.032650345187645
522 => 0.03220515858645
523 => 0.03184564653659
524 => 0.031300949019058
525 => 0.032067600314995
526 => 0.033075665244877
527 => 0.03413556828944
528 => 0.035408972349885
529 => 0.035124763387651
530 => 0.034111762886292
531 => 0.034157205348785
601 => 0.034438112770971
602 => 0.03407431213611
603 => 0.033967020226657
604 => 0.034423372510192
605 => 0.034426515157562
606 => 0.034007918560378
607 => 0.033542725044978
608 => 0.033540775867163
609 => 0.033457999174333
610 => 0.034635017023173
611 => 0.035282257830108
612 => 0.035356462945543
613 => 0.035277263234604
614 => 0.03530774406002
615 => 0.034931128895443
616 => 0.035791959479909
617 => 0.036581942751537
618 => 0.03637021035921
619 => 0.036052793403578
620 => 0.035799955509546
621 => 0.036310649786679
622 => 0.036287909374426
623 => 0.036575042936826
624 => 0.036562016899871
625 => 0.036465464682476
626 => 0.036370213807393
627 => 0.036747872760424
628 => 0.036639113046969
629 => 0.036530184399638
630 => 0.036311711321274
701 => 0.036341405441077
702 => 0.036024043291958
703 => 0.035877217040272
704 => 0.033669302500348
705 => 0.033079275589591
706 => 0.03326491006682
707 => 0.033326025756721
708 => 0.03306924528902
709 => 0.033437402518214
710 => 0.033380025604019
711 => 0.033603245612779
712 => 0.033463787442392
713 => 0.033469510854349
714 => 0.033879627597841
715 => 0.033998686233238
716 => 0.033938132050354
717 => 0.03398054212437
718 => 0.034957864379895
719 => 0.034818920408166
720 => 0.03474510919244
721 => 0.034765555403631
722 => 0.035015282193943
723 => 0.035085192060653
724 => 0.034788979042923
725 => 0.034928674814472
726 => 0.035523481679692
727 => 0.035731630419367
728 => 0.036395941279344
729 => 0.036113730218841
730 => 0.036631740834202
731 => 0.038223928862987
801 => 0.039495878831412
802 => 0.038326141074893
803 => 0.040661915210054
804 => 0.042480650421177
805 => 0.042410844334512
806 => 0.042093705782349
807 => 0.040023124098064
808 => 0.03811774396155
809 => 0.039711675352458
810 => 0.039715738611368
811 => 0.039578818491301
812 => 0.038728419384846
813 => 0.039549226445744
814 => 0.039614379129504
815 => 0.039577910952095
816 => 0.038925911951042
817 => 0.037930429985992
818 => 0.038124944779116
819 => 0.038443563978247
820 => 0.037840351363364
821 => 0.037647588382968
822 => 0.038005971438182
823 => 0.039160756314157
824 => 0.038942450922567
825 => 0.038936750086551
826 => 0.039870753127666
827 => 0.0392022085207
828 => 0.03812739823358
829 => 0.037855994461076
830 => 0.036892693908175
831 => 0.037558049031223
901 => 0.037581993977592
902 => 0.037217585776464
903 => 0.038156967950733
904 => 0.038148311378622
905 => 0.039040114944506
906 => 0.040744908416352
907 => 0.040240717098935
908 => 0.039654397452639
909 => 0.039718146655072
910 => 0.040417318059321
911 => 0.039994583067781
912 => 0.040146601518152
913 => 0.040417087961189
914 => 0.040580279148074
915 => 0.039694665954649
916 => 0.039488187155486
917 => 0.039065803996608
918 => 0.038955612114612
919 => 0.039299634384204
920 => 0.039208996670653
921 => 0.037579981497569
922 => 0.037409740348227
923 => 0.037414961401229
924 => 0.036986881936683
925 => 0.036333958002407
926 => 0.038049803117623
927 => 0.037911996741634
928 => 0.037759869167908
929 => 0.037778503927662
930 => 0.03852329413679
1001 => 0.038091278202689
1002 => 0.039239863369517
1003 => 0.039003748788848
1004 => 0.038761578760126
1005 => 0.038728103485477
1006 => 0.038634888685395
1007 => 0.038315220452215
1008 => 0.037929201851567
1009 => 0.037674318935061
1010 => 0.034752567760629
1011 => 0.035294827783559
1012 => 0.035918648511384
1013 => 0.036133988926824
1014 => 0.03576563424511
1015 => 0.038329765340197
1016 => 0.038798256799852
1017 => 0.037379165609617
1018 => 0.037113711589035
1019 => 0.038347168461593
1020 => 0.037603243183471
1021 => 0.037938232690658
1022 => 0.037214168605582
1023 => 0.038685410926252
1024 => 0.038674202524774
1025 => 0.038101856032518
1026 => 0.038585599368513
1027 => 0.038501537059545
1028 => 0.037855359279416
1029 => 0.038705895914449
1030 => 0.038706317770008
1031 => 0.038155446715098
1101 => 0.037512149924144
1102 => 0.037397143651913
1103 => 0.037310501874706
1104 => 0.037916924124703
1105 => 0.038460640417817
1106 => 0.039472361640602
1107 => 0.039726732393913
1108 => 0.040719558378508
1109 => 0.040128378844502
1110 => 0.04039044107487
1111 => 0.040674946696901
1112 => 0.04081134915445
1113 => 0.040589088669633
1114 => 0.042131356087187
1115 => 0.042261570711081
1116 => 0.042305230548121
1117 => 0.041785186652392
1118 => 0.042247107349589
1119 => 0.042030989952576
1120 => 0.042593267380461
1121 => 0.042681439660672
1122 => 0.042606760876154
1123 => 0.042634748149597
1124 => 0.041318694983331
1125 => 0.041250450683926
1126 => 0.040319934819152
1127 => 0.040699126912074
1128 => 0.039990245469507
1129 => 0.040215039077233
1130 => 0.040314125957606
1201 => 0.04026236859443
1202 => 0.040720565864072
1203 => 0.040331004581359
1204 => 0.039302888306473
1205 => 0.038274491921995
1206 => 0.038261581243102
1207 => 0.037990822627773
1208 => 0.037795113740804
1209 => 0.03783281421558
1210 => 0.037965675606041
1211 => 0.037787391595262
1212 => 0.03782543752819
1213 => 0.038457253513528
1214 => 0.038583959703482
1215 => 0.038153362562714
1216 => 0.036424452907658
1217 => 0.036000174141666
1218 => 0.036305137304848
1219 => 0.03615938455499
1220 => 0.029183445460131
1221 => 0.030822338874901
1222 => 0.029848564059407
1223 => 0.030297324295612
1224 => 0.029303352366758
1225 => 0.029777727869739
1226 => 0.029690128035758
1227 => 0.032325420148326
1228 => 0.032284273686714
1229 => 0.032303968320465
1230 => 0.031363892137418
1231 => 0.032861459022863
]
'min_raw' => 0.019118829334477
'max_raw' => 0.042681439660672
'avg_raw' => 0.030900134497575
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.019118'
'max' => '$0.042681'
'avg' => '$0.03090013'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0029480846915516
'max_diff' => 0.006456975451071
'year' => 2035
]
10 => [
'items' => [
101 => 0.033599214321396
102 => 0.033462675450359
103 => 0.033497039342584
104 => 0.032906553821128
105 => 0.032309685511051
106 => 0.031647666697801
107 => 0.032877615824821
108 => 0.032740866477828
109 => 0.033054520278968
110 => 0.03385223020642
111 => 0.033969696023442
112 => 0.034127571272741
113 => 0.034070984234193
114 => 0.035419117067642
115 => 0.035255849286245
116 => 0.035649277664066
117 => 0.034839965641404
118 => 0.03392415226716
119 => 0.034098218449409
120 => 0.034081454476307
121 => 0.033868029857921
122 => 0.033675359655301
123 => 0.033354618052432
124 => 0.034369491944735
125 => 0.034328289918084
126 => 0.034995302837433
127 => 0.03487740182492
128 => 0.034090030008089
129 => 0.034118151146563
130 => 0.034307279317358
131 => 0.034961854075908
201 => 0.035156176431094
202 => 0.035066158573765
203 => 0.035279224165073
204 => 0.03544762252106
205 => 0.035300372405878
206 => 0.037385123513832
207 => 0.03651938950547
208 => 0.036941342237407
209 => 0.037041975477684
210 => 0.036784205548803
211 => 0.036840106616328
212 => 0.0369247815015
213 => 0.037438910823219
214 => 0.038788134927927
215 => 0.039385697099424
216 => 0.041183492375569
217 => 0.039336077879548
218 => 0.039226459948715
219 => 0.039550297166165
220 => 0.040605793309219
221 => 0.041461173795453
222 => 0.041744952850821
223 => 0.041782458937669
224 => 0.042314847310814
225 => 0.042620002397845
226 => 0.04225020135911
227 => 0.041936833698564
228 => 0.040814389635116
229 => 0.040944315591774
301 => 0.041839376591775
302 => 0.043103702973106
303 => 0.044188626539028
304 => 0.043808724119645
305 => 0.04670711141022
306 => 0.04699447467123
307 => 0.046954770360125
308 => 0.047609426634093
309 => 0.046310067248698
310 => 0.04575456593754
311 => 0.042004587343648
312 => 0.043058178368893
313 => 0.044589634799317
314 => 0.044386940798083
315 => 0.043274756202362
316 => 0.04418778284728
317 => 0.043885907685487
318 => 0.043647806220569
319 => 0.044738595189598
320 => 0.043539227911009
321 => 0.044577670193245
322 => 0.043245857224968
323 => 0.043810459481897
324 => 0.043489963934125
325 => 0.04369736383199
326 => 0.042484908266948
327 => 0.04313911985915
328 => 0.042457690913864
329 => 0.042457367827819
330 => 0.042442325246084
331 => 0.043244023378294
401 => 0.043270166725603
402 => 0.042677710594602
403 => 0.04259232841022
404 => 0.042908031096493
405 => 0.042538425933532
406 => 0.042711361863014
407 => 0.042543663986663
408 => 0.042505911662439
409 => 0.042205094719992
410 => 0.042075494510051
411 => 0.042126314091755
412 => 0.04195284066011
413 => 0.041848316642736
414 => 0.042421532788197
415 => 0.04211528652515
416 => 0.042374596156195
417 => 0.042079080104135
418 => 0.04105469271748
419 => 0.040465556698714
420 => 0.038530583886084
421 => 0.039079339775419
422 => 0.039443165497778
423 => 0.039322921098709
424 => 0.039581252596315
425 => 0.039597112052186
426 => 0.039513125848937
427 => 0.039415880584873
428 => 0.039368546968327
429 => 0.039721332966356
430 => 0.039926137112442
501 => 0.039479680276377
502 => 0.039375081686282
503 => 0.039826474197101
504 => 0.04010182336794
505 => 0.04213484694008
506 => 0.041984233987277
507 => 0.042362242942515
508 => 0.042319684935175
509 => 0.042715898541814
510 => 0.043363540336304
511 => 0.042046703484611
512 => 0.042275260829273
513 => 0.042219223846522
514 => 0.042831020930513
515 => 0.042832930894229
516 => 0.042466127980846
517 => 0.042664977790889
518 => 0.042553985282082
519 => 0.042754563747033
520 => 0.041982222459468
521 => 0.042922850778632
522 => 0.043456126422848
523 => 0.043463530955686
524 => 0.043716299378707
525 => 0.043973126735856
526 => 0.044466084482956
527 => 0.043959378411843
528 => 0.043047863516752
529 => 0.043113671948003
530 => 0.042579251098521
531 => 0.042588234809552
601 => 0.042540279056004
602 => 0.042684197882343
603 => 0.042013804548591
604 => 0.04217114452406
605 => 0.041950867637022
606 => 0.04227478199034
607 => 0.041926303691131
608 => 0.042219196823792
609 => 0.042345599790287
610 => 0.042812029457917
611 => 0.04185741164998
612 => 0.039910881317652
613 => 0.040320065592907
614 => 0.039714849909074
615 => 0.039770864924832
616 => 0.039884024171385
617 => 0.039517238029904
618 => 0.039587209266939
619 => 0.039584709401972
620 => 0.039563166916224
621 => 0.039467751674872
622 => 0.039329380697581
623 => 0.039880608082766
624 => 0.03997427235688
625 => 0.040182476435685
626 => 0.040801950548036
627 => 0.040740050476006
628 => 0.040841012061695
629 => 0.040620613487011
630 => 0.039781088582593
701 => 0.039826678823979
702 => 0.039258167783361
703 => 0.04016793833019
704 => 0.039952492656316
705 => 0.039813593428813
706 => 0.039775693487696
707 => 0.040396703156551
708 => 0.040582518982606
709 => 0.040466731029445
710 => 0.040229246559437
711 => 0.040685286947834
712 => 0.040807304116969
713 => 0.040834619261319
714 => 0.041642635392487
715 => 0.040879778387111
716 => 0.041063405650452
717 => 0.042496013140319
718 => 0.041196835833329
719 => 0.041885039027953
720 => 0.041851355062813
721 => 0.042203416529656
722 => 0.041822475746628
723 => 0.041827197964187
724 => 0.042139804696034
725 => 0.041700804920076
726 => 0.041592102401881
727 => 0.041441930651536
728 => 0.041769825174489
729 => 0.041966383111606
730 => 0.043550495728869
731 => 0.044573904723932
801 => 0.044529475840407
802 => 0.04493547266844
803 => 0.044752567378907
804 => 0.044161917951026
805 => 0.045170084502394
806 => 0.044851058422061
807 => 0.044877358544507
808 => 0.044876379652636
809 => 0.045088504106314
810 => 0.044938194489963
811 => 0.044641918807169
812 => 0.044838600432014
813 => 0.045422674542839
814 => 0.04723565850442
815 => 0.048250228348164
816 => 0.047174580125895
817 => 0.047916547866113
818 => 0.04747163161212
819 => 0.047390777093657
820 => 0.047856787665499
821 => 0.048323613927157
822 => 0.048293879112435
823 => 0.047954987218265
824 => 0.047763555786312
825 => 0.049213138723296
826 => 0.050281166738264
827 => 0.050208334387794
828 => 0.05052979269642
829 => 0.051473604232878
830 => 0.05155989453154
831 => 0.051549023937269
901 => 0.051335144428572
902 => 0.05226444945563
903 => 0.053039692058768
904 => 0.051285637501882
905 => 0.051953558514884
906 => 0.052253409776692
907 => 0.052693680390886
908 => 0.053436490714954
909 => 0.0542433797476
910 => 0.054357482703904
911 => 0.054276521196077
912 => 0.053744356188706
913 => 0.054627263796415
914 => 0.055144450366279
915 => 0.05545242313303
916 => 0.056233390827726
917 => 0.052255261556003
918 => 0.049439343931624
919 => 0.048999597732234
920 => 0.049893838920859
921 => 0.05012964319086
922 => 0.050034590785296
923 => 0.046865019487027
924 => 0.048982910595306
925 => 0.051261583350472
926 => 0.051349116451185
927 => 0.052489867677221
928 => 0.052861343037392
929 => 0.053779797296032
930 => 0.053722347732086
1001 => 0.053945976728266
1002 => 0.053894568294758
1003 => 0.055595811405528
1004 => 0.057472535193754
1005 => 0.057407550216584
1006 => 0.057137748967639
1007 => 0.057538449830272
1008 => 0.059475429901665
1009 => 0.059297103816164
1010 => 0.059470332418448
1011 => 0.061754141086033
1012 => 0.064723417221889
1013 => 0.063343890346334
1014 => 0.066337066718123
1015 => 0.068221112582702
1016 => 0.071479375091514
1017 => 0.071071424578129
1018 => 0.072339842262575
1019 => 0.07034110801733
1020 => 0.06575161017941
1021 => 0.065025304578667
1022 => 0.066479386784341
1023 => 0.070054105999725
1024 => 0.066366806154903
1025 => 0.067112742111161
1026 => 0.066897912505577
1027 => 0.066886465148863
1028 => 0.067323364194892
1029 => 0.066689619341505
1030 => 0.064107628800284
1031 => 0.06529093984956
1101 => 0.064834006626171
1102 => 0.065341008104149
1103 => 0.068077085977485
1104 => 0.066867400729733
1105 => 0.065593095588076
1106 => 0.067191357026663
1107 => 0.069226493060199
1108 => 0.069099137904712
1109 => 0.06885201567274
1110 => 0.070245030755463
1111 => 0.072545883556999
1112 => 0.073167794823678
1113 => 0.073626877006325
1114 => 0.073690176683055
1115 => 0.074342202693903
1116 => 0.07083609450186
1117 => 0.076400378245877
1118 => 0.077361176338233
1119 => 0.077180586117871
1120 => 0.07824847276096
1121 => 0.077934273420894
1122 => 0.077479047873504
1123 => 0.079171875348803
1124 => 0.077231185252506
1125 => 0.074476619986902
1126 => 0.072965411003068
1127 => 0.074955492898732
1128 => 0.076170766468126
1129 => 0.07697398499158
1130 => 0.07721703843146
1201 => 0.071108263700198
1202 => 0.067815972928227
1203 => 0.06992629356687
1204 => 0.072501030392565
1205 => 0.070821791708791
1206 => 0.070887614685976
1207 => 0.068493461619078
1208 => 0.072712859814629
1209 => 0.072098128988262
1210 => 0.075287353602895
1211 => 0.074526219553486
1212 => 0.077126908421733
1213 => 0.076442059884149
1214 => 0.079284827874296
1215 => 0.080418884990437
1216 => 0.082323143390333
1217 => 0.083723923621023
1218 => 0.084546488565141
1219 => 0.084497104851259
1220 => 0.08775651696008
1221 => 0.085834555514694
1222 => 0.083420118967756
1223 => 0.083376449428072
1224 => 0.084626920328561
1225 => 0.087247564286049
1226 => 0.087927059135407
1227 => 0.088306804057805
1228 => 0.087725211490136
1229 => 0.085639060089387
1230 => 0.084738270491572
1231 => 0.085505769327298
]
'min_raw' => 0.031647666697801
'max_raw' => 0.088306804057805
'avg_raw' => 0.059977235377803
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.031647'
'max' => '$0.0883068'
'avg' => '$0.059977'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.012528837363323
'max_diff' => 0.045625364397133
'year' => 2036
]
11 => [
'items' => [
101 => 0.084567184203132
102 => 0.086187445447915
103 => 0.088412410206131
104 => 0.087952963782024
105 => 0.089488824293757
106 => 0.091078278346162
107 => 0.093351269027951
108 => 0.093945512960772
109 => 0.094927775584652
110 => 0.095938846481087
111 => 0.096263575203898
112 => 0.096883583093148
113 => 0.096880315345527
114 => 0.098748750851127
115 => 0.10080969307443
116 => 0.10158765105281
117 => 0.10337652252723
118 => 0.10031314281682
119 => 0.10263675151674
120 => 0.10473270472776
121 => 0.10223382290357
122 => 0.10567794933343
123 => 0.10581167695814
124 => 0.10783080532256
125 => 0.10578403190703
126 => 0.10456866438642
127 => 0.1080773848792
128 => 0.10977514420199
129 => 0.10926376527714
130 => 0.10537214640915
131 => 0.10310705730859
201 => 0.097178882229384
202 => 0.10420106168881
203 => 0.10762136046372
204 => 0.10536328866161
205 => 0.1065021287344
206 => 0.11271527090143
207 => 0.11508083316747
208 => 0.11458881275266
209 => 0.11467195610342
210 => 0.11594837056418
211 => 0.12160869521748
212 => 0.11821689747992
213 => 0.12080979976205
214 => 0.12218506578309
215 => 0.12346248950783
216 => 0.12032554057377
217 => 0.11624441610149
218 => 0.11495175266717
219 => 0.10513876792262
220 => 0.10462795945103
221 => 0.10434122717685
222 => 0.10253342074721
223 => 0.10111298009338
224 => 0.099983392947867
225 => 0.097019018954771
226 => 0.09801940815733
227 => 0.09329481472527
228 => 0.096317442173791
301 => 0.088776876976927
302 => 0.09505688374198
303 => 0.091638961576632
304 => 0.093934004385941
305 => 0.093925997197786
306 => 0.089700095741861
307 => 0.087262683974397
308 => 0.08881589761811
309 => 0.090481065938423
310 => 0.090751233896095
311 => 0.092910168088721
312 => 0.093512680215748
313 => 0.091687040342256
314 => 0.088620615523729
315 => 0.089332876071369
316 => 0.087248250037133
317 => 0.083595023096115
318 => 0.086218834464377
319 => 0.087114719026344
320 => 0.087510392686326
321 => 0.083917863565784
322 => 0.082789012918509
323 => 0.082188022305873
324 => 0.088156865127316
325 => 0.088483851810976
326 => 0.086810941706116
327 => 0.094372654011928
328 => 0.092661205629429
329 => 0.094573312787714
330 => 0.089268245892233
331 => 0.08947090659186
401 => 0.086959402906071
402 => 0.088365677151376
403 => 0.087371767841129
404 => 0.088252064089428
405 => 0.088779710031061
406 => 0.091290801603809
407 => 0.095085556374119
408 => 0.090915728260365
409 => 0.089098874438164
410 => 0.090226040331084
411 => 0.093227831640114
412 => 0.097775699132164
413 => 0.095083270042507
414 => 0.096278124352086
415 => 0.096539146863361
416 => 0.09455384933179
417 => 0.097848899883952
418 => 0.099614744243798
419 => 0.101426135167
420 => 0.10299891515159
421 => 0.10070262579893
422 => 0.10315998456642
423 => 0.10117978718204
424 => 0.099403345419207
425 => 0.099406039548078
426 => 0.09829165168058
427 => 0.096132384765393
428 => 0.095734182817135
429 => 0.097805679639337
430 => 0.099466823919264
501 => 0.099603643718504
502 => 0.10052333854455
503 => 0.10106760446899
504 => 0.10640215042216
505 => 0.10854774893421
506 => 0.11117134618064
507 => 0.11219338516596
508 => 0.11526935609053
509 => 0.11278525975079
510 => 0.112247809882
511 => 0.10478651056142
512 => 0.10600829790717
513 => 0.10796449733267
514 => 0.10481876756943
515 => 0.10681400905703
516 => 0.10720791199167
517 => 0.10471187687581
518 => 0.1060451170785
519 => 0.10250442637832
520 => 0.095162733755792
521 => 0.097857073286575
522 => 0.099841014086111
523 => 0.097009685947037
524 => 0.1020847320488
525 => 0.099119994886365
526 => 0.098180315538355
527 => 0.094514291381894
528 => 0.096244513665533
529 => 0.098584664078552
530 => 0.097138723194992
531 => 0.1001392676375
601 => 0.10438883878405
602 => 0.10741733624943
603 => 0.10764982667981
604 => 0.10570270570315
605 => 0.10882297949461
606 => 0.1088457072827
607 => 0.10532602569924
608 => 0.10317024032704
609 => 0.10268044135466
610 => 0.1039040552184
611 => 0.10538974834056
612 => 0.1077322723082
613 => 0.10914781048109
614 => 0.11283878329256
615 => 0.11383745470686
616 => 0.11493469181292
617 => 0.11640093896201
618 => 0.11816154460254
619 => 0.11430943969239
620 => 0.11446249100169
621 => 0.11087546424538
622 => 0.10704221172458
623 => 0.10995117256619
624 => 0.11375425190375
625 => 0.11288182130169
626 => 0.11278365503681
627 => 0.11294874346528
628 => 0.11229095928224
629 => 0.10931582580098
630 => 0.10782173239201
701 => 0.10974949407346
702 => 0.11077401361235
703 => 0.11236295406967
704 => 0.11216708361984
705 => 0.11626002359816
706 => 0.11785041630966
707 => 0.11744352579731
708 => 0.11751840344395
709 => 0.12039773348105
710 => 0.1236001406617
711 => 0.12659961758122
712 => 0.12965081433429
713 => 0.12597247755823
714 => 0.12410484499162
715 => 0.12603176507262
716 => 0.12500931415428
717 => 0.13088462040973
718 => 0.13129141386739
719 => 0.13716629527132
720 => 0.14274225729152
721 => 0.13924009545037
722 => 0.14254247632575
723 => 0.14611427048952
724 => 0.15300484093417
725 => 0.15068433922161
726 => 0.14890687127668
727 => 0.14722717265738
728 => 0.15072235883949
729 => 0.1552188600258
730 => 0.15618736331438
731 => 0.15775670863861
801 => 0.1561067339206
802 => 0.15809394672969
803 => 0.16510968117134
804 => 0.16321396779561
805 => 0.16052175005093
806 => 0.16605999859431
807 => 0.16806426921277
808 => 0.18213129005775
809 => 0.19989148495419
810 => 0.19253864764734
811 => 0.1879745042564
812 => 0.1890471862162
813 => 0.19553260817184
814 => 0.19761551986699
815 => 0.19195344785685
816 => 0.19395338741175
817 => 0.20497325098897
818 => 0.2108850542386
819 => 0.2028560313645
820 => 0.18070427569054
821 => 0.16027934529922
822 => 0.1656969565856
823 => 0.16508276759377
824 => 0.17692223625151
825 => 0.16316875565855
826 => 0.16340032899897
827 => 0.17548462533034
828 => 0.17226074224641
829 => 0.16703846453421
830 => 0.16031747370583
831 => 0.14789310054317
901 => 0.13688848675373
902 => 0.15847106860603
903 => 0.15754038843118
904 => 0.15619262561892
905 => 0.15919192591443
906 => 0.17375567678318
907 => 0.1734199351874
908 => 0.17128411845187
909 => 0.17290411662154
910 => 0.16675447102249
911 => 0.16833937471819
912 => 0.16027610988589
913 => 0.16392104234177
914 => 0.16702725987168
915 => 0.16765087902915
916 => 0.1690559248337
917 => 0.15704996226947
918 => 0.16244028698427
919 => 0.16560659774909
920 => 0.15130109052225
921 => 0.16532382386693
922 => 0.15684096517208
923 => 0.15396175552279
924 => 0.15783823200853
925 => 0.15632756535204
926 => 0.15502878287011
927 => 0.15430403992928
928 => 0.15715049642931
929 => 0.15701770583134
930 => 0.15236035052388
1001 => 0.14628502038339
1002 => 0.14832410059446
1003 => 0.1475832836373
1004 => 0.14489846741727
1005 => 0.14670770938362
1006 => 0.13874072340021
1007 => 0.12503393810365
1008 => 0.13408906032075
1009 => 0.13374044796547
1010 => 0.13356466180762
1011 => 0.14036933588858
1012 => 0.13971522348623
1013 => 0.1385280030709
1014 => 0.14487666318331
1015 => 0.14255931684075
1016 => 0.14970083223306
1017 => 0.15440469615469
1018 => 0.15321164411011
1019 => 0.15763565086415
1020 => 0.14837107688416
1021 => 0.15144839673012
1022 => 0.15208262808539
1023 => 0.144798321703
1024 => 0.1398222443648
1025 => 0.13949039673778
1026 => 0.13086256437903
1027 => 0.13547148278365
1028 => 0.1395271402497
1029 => 0.13758479505519
1030 => 0.13696990659252
1031 => 0.14011123839526
1101 => 0.14035534678002
1102 => 0.13478964973804
1103 => 0.13594693439577
1104 => 0.14077300380108
1105 => 0.13582532982918
1106 => 0.12621280749973
1107 => 0.12382876905851
1108 => 0.12351069438391
1109 => 0.11704499305084
1110 => 0.12398808190688
1111 => 0.120957237558
1112 => 0.130531638541
1113 => 0.12506279204806
1114 => 0.12482704100619
1115 => 0.12447066872925
1116 => 0.11890537249712
1117 => 0.12012381867893
1118 => 0.12417411936186
1119 => 0.12561931227543
1120 => 0.12546856681443
1121 => 0.12415427067888
1122 => 0.12475594871945
1123 => 0.12281773411225
1124 => 0.122133310194
1125 => 0.11997308004237
1126 => 0.11679813849828
1127 => 0.11723963359304
1128 => 0.11094924362556
1129 => 0.10752190531501
1130 => 0.10657326324224
1201 => 0.10530469941606
1202 => 0.10671655090193
1203 => 0.11093142374112
1204 => 0.1058473928619
1205 => 0.097131178522775
1206 => 0.097655037856263
1207 => 0.098831994243379
1208 => 0.096638743802334
1209 => 0.094563016325443
1210 => 0.096367692957507
1211 => 0.092674518038195
1212 => 0.099278296788026
1213 => 0.099099683079719
1214 => 0.10156116342272
1215 => 0.10310037759586
1216 => 0.099552987253278
1217 => 0.098660828175283
1218 => 0.099169042532478
1219 => 0.090769391269511
1220 => 0.10087473271337
1221 => 0.10096212412581
1222 => 0.10021382579563
1223 => 0.10559460814707
1224 => 0.11694973721671
1225 => 0.1126774809017
1226 => 0.1110231341269
1227 => 0.10787821969868
1228 => 0.11206863144774
1229 => 0.11174687320602
1230 => 0.11029176041377
1231 => 0.10941170365678
]
'min_raw' => 0.082188022305873
'max_raw' => 0.2108850542386
'avg_raw' => 0.14653653827223
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.082188'
'max' => '$0.210885'
'avg' => '$0.146536'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.050540355608073
'max_diff' => 0.12257825018079
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0025797881060319
]
1 => [
'year' => 2028
'avg' => 0.004427665307789
]
2 => [
'year' => 2029
'avg' => 0.01209558361185
]
3 => [
'year' => 2030
'avg' => 0.0093317247432587
]
4 => [
'year' => 2031
'avg' => 0.0091649101657959
]
5 => [
'year' => 2032
'avg' => 0.016068971824019
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0025797881060319
'min' => '$0.002579'
'max_raw' => 0.016068971824019
'max' => '$0.016068'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016068971824019
]
1 => [
'year' => 2033
'avg' => 0.041331047884265
]
2 => [
'year' => 2034
'avg' => 0.026197604426264
]
3 => [
'year' => 2035
'avg' => 0.030900134497575
]
4 => [
'year' => 2036
'avg' => 0.059977235377803
]
5 => [
'year' => 2037
'avg' => 0.14653653827223
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016068971824019
'min' => '$0.016068'
'max_raw' => 0.14653653827223
'max' => '$0.146536'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.14653653827223
]
]
]
]
'prediction_2025_max_price' => '$0.00441'
'last_price' => 0.00427699
'sma_50day_nextmonth' => '$0.00405'
'sma_200day_nextmonth' => '$0.011328'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.004348'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.004293'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.004238'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004247'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004595'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006546'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014632'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00432'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.00430028'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.004273'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004347'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.005092'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008465'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0265036'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009865'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.03198'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004323'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.004489'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005695'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013256'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.051755'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.03256'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.01628'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.53'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 100.74
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.004238'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0044029'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 48.6
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 50.03
'cci_20_action' => 'NEUTRAL'
'adx_14' => 22.25
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000214'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -51.4
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.69
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0015014'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 26
'buy_signals' => 5
'sell_pct' => 83.87
'buy_pct' => 16.13
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767702871
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Sentio AI para 2026
La previsión del precio de Sentio AI para 2026 sugiere que el precio medio podría oscilar entre $0.001477 en el extremo inferior y $0.00441 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Sentio AI podría potencialmente ganar 3.13% para 2026 si SEN alcanza el objetivo de precio previsto.
Predicción de precio de Sentio AI 2027-2032
La predicción del precio de SEN para 2027-2032 está actualmente dentro de un rango de precios de $0.002579 en el extremo inferior y $0.016068 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Sentio AI alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Sentio AI | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.001422 | $0.002579 | $0.003737 |
| 2028 | $0.002567 | $0.004427 | $0.006288 |
| 2029 | $0.005639 | $0.012095 | $0.018551 |
| 2030 | $0.004796 | $0.009331 | $0.013867 |
| 2031 | $0.00567 | $0.009164 | $0.012659 |
| 2032 | $0.008655 | $0.016068 | $0.023482 |
Predicción de precio de Sentio AI 2032-2037
La predicción de precio de Sentio AI para 2032-2037 se estima actualmente entre $0.016068 en el extremo inferior y $0.146536 en el extremo superior. Comparado con el precio actual, Sentio AI podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Sentio AI | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.008655 | $0.016068 | $0.023482 |
| 2033 | $0.020114 | $0.041331 | $0.062548 |
| 2034 | $0.01617 | $0.026197 | $0.036224 |
| 2035 | $0.019118 | $0.03090013 | $0.042681 |
| 2036 | $0.031647 | $0.059977 | $0.0883068 |
| 2037 | $0.082188 | $0.146536 | $0.210885 |
Sentio AI Histograma de precios potenciales
Pronóstico de precio de Sentio AI basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Sentio AI es Bajista, con 5 indicadores técnicos mostrando señales alcistas y 26 indicando señales bajistas. La predicción de precio de SEN se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Sentio AI
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Sentio AI aumentar durante el próximo mes, alcanzando $0.011328 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Sentio AI alcance $0.00405 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 44.53, lo que sugiere que el mercado de SEN está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de SEN para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.004348 | SELL |
| SMA 5 | $0.004293 | SELL |
| SMA 10 | $0.004238 | BUY |
| SMA 21 | $0.004247 | BUY |
| SMA 50 | $0.004595 | SELL |
| SMA 100 | $0.006546 | SELL |
| SMA 200 | $0.014632 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00432 | SELL |
| EMA 5 | $0.00430028 | SELL |
| EMA 10 | $0.004273 | BUY |
| EMA 21 | $0.004347 | SELL |
| EMA 50 | $0.005092 | SELL |
| EMA 100 | $0.008465 | SELL |
| EMA 200 | $0.0265036 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.009865 | SELL |
| SMA 50 | $0.03198 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.013256 | SELL |
| EMA 50 | $0.051755 | SELL |
| EMA 100 | $0.03256 | SELL |
| EMA 200 | $0.01628 | SELL |
Osciladores de Sentio AI
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 44.53 | NEUTRAL |
| Stoch RSI (14) | 100.74 | SELL |
| Estocástico Rápido (14) | 48.6 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 50.03 | NEUTRAL |
| Índice Direccional Medio (14) | 22.25 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000214 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -51.4 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 53.69 | NEUTRAL |
| VWMA (10) | 0.004238 | BUY |
| Promedio Móvil de Hull (9) | 0.0044029 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0015014 | SELL |
Predicción de precios de Sentio AI basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Sentio AI
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Sentio AI por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0060098 | $0.008444 | $0.011866 | $0.016674 | $0.02343 | $0.032923 |
| Amazon.com acción | $0.008924 | $0.01862 | $0.038853 | $0.08107 | $0.169157 | $0.352957 |
| Apple acción | $0.006066 | $0.0086049 | $0.0122055 | $0.017312 | $0.024556 | $0.034831 |
| Netflix acción | $0.006748 | $0.010647 | $0.01680079 | $0.026509 | $0.041827 | $0.065996 |
| Google acción | $0.005538 | $0.007172 | $0.009288 | $0.012028 | $0.015576 | $0.020171 |
| Tesla acción | $0.009695 | $0.021979 | $0.049825 | $0.11295 | $0.256049 | $0.580444 |
| Kodak acción | $0.0032072 | $0.0024051 | $0.0018035 | $0.001352 | $0.001014 | $0.00076 |
| Nokia acción | $0.002833 | $0.001876 | $0.001243 | $0.000823 | $0.000545 | $0.000361 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Sentio AI
Podría preguntarse cosas como: "¿Debo invertir en Sentio AI ahora?", "¿Debería comprar SEN hoy?", "¿Será Sentio AI una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Sentio AI regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Sentio AI, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Sentio AI a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Sentio AI es de $0.004276 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Sentio AI basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Sentio AI ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.004388 | $0.0045022 | $0.004619 | $0.004739 |
| Si Sentio AI ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.004499 | $0.004733 | $0.004979 | $0.005238 |
| Si Sentio AI ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.004832 | $0.00546 | $0.00617 | $0.006972 |
| Si Sentio AI ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.005388 | $0.006789 | $0.008554 | $0.010777 |
| Si Sentio AI ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.00650044 | $0.009879 | $0.015015 | $0.022822 |
| Si Sentio AI ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.009835 | $0.022618 | $0.052015 | $0.119617 |
| Si Sentio AI ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.015394 | $0.0554088 | $0.199434 | $0.717828 |
Cuadro de preguntas
¿Es SEN una buena inversión?
La decisión de adquirir Sentio AI depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Sentio AI ha experimentado una caída de -5.6484% durante las últimas 24 horas, y Sentio AI ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Sentio AI dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Sentio AI subir?
Parece que el valor medio de Sentio AI podría potencialmente aumentar hasta $0.00441 para el final de este año. Mirando las perspectivas de Sentio AI en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.013867. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Sentio AI la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Sentio AI, el precio de Sentio AI aumentará en un 0.86% durante la próxima semana y alcanzará $0.004313 para el 13 de enero de 2026.
¿Cuál será el precio de Sentio AI el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Sentio AI, el precio de Sentio AI disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00378 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Sentio AI este año en 2026?
Según nuestra predicción más reciente sobre el valor de Sentio AI en 2026, se anticipa que SEN fluctúe dentro del rango de $0.001477 y $0.00441. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Sentio AI no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Sentio AI en 5 años?
El futuro de Sentio AI parece estar en una tendencia alcista, con un precio máximo de $0.013867 proyectada después de un período de cinco años. Basado en el pronóstico de Sentio AI para 2030, el valor de Sentio AI podría potencialmente alcanzar su punto más alto de aproximadamente $0.013867, mientras que su punto más bajo se anticipa que esté alrededor de $0.004796.
¿Cuánto será Sentio AI en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Sentio AI, se espera que el valor de SEN en 2026 crezca en un 3.13% hasta $0.00441 si ocurre lo mejor. El precio estará entre $0.00441 y $0.001477 durante 2026.
¿Cuánto será Sentio AI en 2027?
Según nuestra última simulación experimental para la predicción de precios de Sentio AI, el valor de SEN podría disminuir en un -12.62% hasta $0.003737 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.003737 y $0.001422 a lo largo del año.
¿Cuánto será Sentio AI en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Sentio AI sugiere que el valor de SEN en 2028 podría aumentar en un 47.02% , alcanzando $0.006288 en el mejor escenario. Se espera que el precio oscile entre $0.006288 y $0.002567 durante el año.
¿Cuánto será Sentio AI en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Sentio AI podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.018551 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.018551 y $0.005639.
¿Cuánto será Sentio AI en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Sentio AI, se espera que el valor de SEN en 2030 aumente en un 224.23% , alcanzando $0.013867 en el mejor escenario. Se pronostica que el precio oscile entre $0.013867 y $0.004796 durante el transcurso de 2030.
¿Cuánto será Sentio AI en 2031?
Nuestra simulación experimental indica que el precio de Sentio AI podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.012659 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.012659 y $0.00567 durante el año.
¿Cuánto será Sentio AI en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Sentio AI, SEN podría experimentar un 449.04% aumento en valor, alcanzando $0.023482 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.023482 y $0.008655 a lo largo del año.
¿Cuánto será Sentio AI en 2033?
Según nuestra predicción experimental de precios de Sentio AI, se anticipa que el valor de SEN aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.062548. A lo largo del año, el precio de SEN podría oscilar entre $0.062548 y $0.020114.
¿Cuánto será Sentio AI en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Sentio AI sugieren que SEN podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.036224 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.036224 y $0.01617.
¿Cuánto será Sentio AI en 2035?
Basado en nuestra predicción experimental para el precio de Sentio AI, SEN podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.042681 en 2035. El rango de precios esperado para el año está entre $0.042681 y $0.019118.
¿Cuánto será Sentio AI en 2036?
Nuestra reciente simulación de predicción de precios de Sentio AI sugiere que el valor de SEN podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.0883068 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.0883068 y $0.031647.
¿Cuánto será Sentio AI en 2037?
Según la simulación experimental, el valor de Sentio AI podría aumentar en un 4830.69% en 2037, con un máximo de $0.210885 bajo condiciones favorables. Se espera que el precio caiga entre $0.210885 y $0.082188 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Sentio AI?
Los traders de Sentio AI utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Sentio AI
Las medias móviles son herramientas populares para la predicción de precios de Sentio AI. Una media móvil simple (SMA) calcula el precio de cierre promedio de SEN durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de SEN por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de SEN.
¿Cómo leer gráficos de Sentio AI y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Sentio AI en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de SEN dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Sentio AI?
La acción del precio de Sentio AI está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de SEN. La capitalización de mercado de Sentio AI puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de SEN, grandes poseedores de Sentio AI, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Sentio AI.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


