Previsão de Preço Sentio AI - Projeção SEN
Previsão de Preço Sentio AI até $0.004622 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.001548 | $0.004622 |
| 2027 | $0.00149 | $0.003916 |
| 2028 | $0.00269 | $0.006589 |
| 2029 | $0.0059096 | $0.01944 |
| 2030 | $0.005025 | $0.014531 |
| 2031 | $0.005942 | $0.013265 |
| 2032 | $0.00907 | $0.0246069 |
| 2033 | $0.021077 | $0.065543 |
| 2034 | $0.016945 | $0.037959 |
| 2035 | $0.020034 | $0.044725 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Sentio AI hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.62, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Sentio AI para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Sentio AI'
'name_with_ticker' => 'Sentio AI <small>SEN</small>'
'name_lang' => 'Sentio AI'
'name_lang_with_ticker' => 'Sentio AI <small>SEN</small>'
'name_with_lang' => 'Sentio AI'
'name_with_lang_with_ticker' => 'Sentio AI <small>SEN</small>'
'image' => '/uploads/coins/sentio-protocol.png?1739167366'
'price_for_sd' => 0.004481
'ticker' => 'SEN'
'marketcap' => '$448.19K'
'low24h' => '$0.004279'
'high24h' => '$0.004551'
'volume24h' => '$54.72K'
'current_supply' => '100M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.004481'
'change_24h_pct' => '1.136%'
'ath_price' => '$0.7897'
'ath_days' => 365
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '6 de jan. de 2025'
'ath_pct' => '-99.43%'
'fdv' => '$448.19K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.220986'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.00452'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.003961'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.001548'
'current_year_max_price_prediction' => '$0.004622'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.005025'
'grand_prediction_max_price' => '$0.014531'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0045667787000469
107 => 0.0045838293939722
108 => 0.0046222454780159
109 => 0.004293984245963
110 => 0.0044413639019113
111 => 0.0045279356421747
112 => 0.0041368013701579
113 => 0.0045202041752095
114 => 0.0042882699482283
115 => 0.0042095479880557
116 => 0.0043155367365985
117 => 0.0042742328182139
118 => 0.0042387221346343
119 => 0.0042189065630459
120 => 0.0042967330024245
121 => 0.0042931023060047
122 => 0.0041657631457205
123 => 0.0039996544021379
124 => 0.0040554059488179
125 => 0.0040351508892355
126 => 0.0039617439403544
127 => 0.0040112113607115
128 => 0.0037933818763473
129 => 0.0034186175702901
130 => 0.0036661983502126
131 => 0.0036566667595017
201 => 0.003651860499242
202 => 0.0038379106127236
203 => 0.0038200261872188
204 => 0.0037875657798027
205 => 0.0039611477795164
206 => 0.0038977880146135
207 => 0.0040930478806061
208 => 0.0042216586569651
209 => 0.0041890388039576
210 => 0.0043099978607531
211 => 0.0040566903518511
212 => 0.004140828945375
213 => 0.0041581697928893
214 => 0.0039590058045844
215 => 0.0038229523004118
216 => 0.003813879082807
217 => 0.0035779810558995
218 => 0.0037039958777711
219 => 0.0038148837061705
220 => 0.0037617770416103
221 => 0.003744965058127
222 => 0.0038308538356688
223 => 0.0038375281292714
224 => 0.0036853535278216
225 => 0.0037169954462059
226 => 0.0038489475058998
227 => 0.0037136705928557
228 => 0.0034508496481694
301 => 0.0033856664201034
302 => 0.0033769697759141
303 => 0.003200187691652
304 => 0.0033900222750885
305 => 0.0033071543921679
306 => 0.0035689330414043
307 => 0.0034194064809075
308 => 0.0034129606897395
309 => 0.0034032169309969
310 => 0.0032510532882966
311 => 0.003284367455544
312 => 0.0033951088213653
313 => 0.0034346225882811
314 => 0.0034305009786651
315 => 0.003394566128258
316 => 0.0034110169187582
317 => 0.0033580231907219
318 => 0.0033393100023832
319 => 0.0032802460325184
320 => 0.0031934383136553
321 => 0.0032055094593859
322 => 0.0030335206538427
323 => 0.0029398120244461
324 => 0.0029138747108889
325 => 0.0028791902512054
326 => 0.002917792412902
327 => 0.0030330334311659
328 => 0.0028940283133938
329 => 0.0026557137890488
330 => 0.0026700368980301
331 => 0.0027022166713419
401 => 0.0026422498766659
402 => 0.0025854963381366
403 => 0.0026348389353277
404 => 0.0025338619297178
405 => 0.0027144192600465
406 => 0.0027095356902672
407 => 0.0027768362974233
408 => 0.0028189207482255
409 => 0.0027219297141292
410 => 0.0026975367313456
411 => 0.0027114320829384
412 => 0.0024817728733877
413 => 0.0027580682403713
414 => 0.0027604576541783
415 => 0.0027399980425069
416 => 0.0028871167957632
417 => 0.0031975832526238
418 => 0.0030807732830685
419 => 0.0030355409322567
420 => 0.0029495542002988
421 => 0.0030641264152458
422 => 0.0030553290567428
423 => 0.0030155440652933
424 => 0.002991481978328
425 => 0.0030358171113455
426 => 0.0029859883647119
427 => 0.0029770377526141
428 => 0.0029228067816635
429 => 0.0029034487923861
430 => 0.0028891169077889
501 => 0.0028733389110692
502 => 0.002908141240201
503 => 0.0028292745837608
504 => 0.0027341691274876
505 => 0.0027262621378537
506 => 0.0027480940314224
507 => 0.0027384350437116
508 => 0.0027262158943367
509 => 0.0027028862104926
510 => 0.0026959647916559
511 => 0.0027184560450801
512 => 0.0026930647312858
513 => 0.0027305309979258
514 => 0.0027203422465028
515 => 0.0026634287092936
516 => 0.0025924933698406
517 => 0.0025918618965276
518 => 0.0025765789939997
519 => 0.0025571139198307
520 => 0.0025516991814974
521 => 0.0026306834394199
522 => 0.0027941784895196
523 => 0.0027620804990801
524 => 0.002785274586707
525 => 0.0028993665417993
526 => 0.0029356329434583
527 => 0.0029098919105775
528 => 0.0028746559971325
529 => 0.0028762061984988
530 => 0.0029966179813767
531 => 0.0030041279165747
601 => 0.0030231031000231
602 => 0.0030474915731405
603 => 0.0029140453730082
604 => 0.0028699208944732
605 => 0.0028490122686105
606 => 0.0027846217936098
607 => 0.0028540614004759
608 => 0.0028136019152555
609 => 0.0028190612821046
610 => 0.0028155058622821
611 => 0.0028174473619216
612 => 0.0027143687905929
613 => 0.0027519252043349
614 => 0.0026894803823026
615 => 0.0026058737753617
616 => 0.002605593496699
617 => 0.0026260560953024
618 => 0.0026138841409515
619 => 0.0025811297247629
620 => 0.002585782334986
621 => 0.002545020573725
622 => 0.0025907315508186
623 => 0.0025920423780799
624 => 0.0025744411620051
625 => 0.002644865229117
626 => 0.0026737180268734
627 => 0.0026621325293983
628 => 0.0026729051574859
629 => 0.0027634143154966
630 => 0.0027781712574437
701 => 0.0027847253162678
702 => 0.0027759437456899
703 => 0.0026745594987444
704 => 0.0026790563212155
705 => 0.0026460616216108
706 => 0.0026181845773407
707 => 0.0026192995129157
708 => 0.0026336319374326
709 => 0.0026962224758837
710 => 0.0028279405741402
711 => 0.0028329391796844
712 => 0.0028389976354235
713 => 0.0028143548511966
714 => 0.002806922351674
715 => 0.0028167277370352
716 => 0.0028661941293317
717 => 0.002993435120313
718 => 0.0029484596559601
719 => 0.0029118939033565
720 => 0.002943971926446
721 => 0.0029390337662272
722 => 0.002897350724392
723 => 0.0028961808202373
724 => 0.0028161777360809
725 => 0.0027866024174503
726 => 0.0027618870675284
727 => 0.0027348985506242
728 => 0.0027188988531401
729 => 0.0027434816602081
730 => 0.0027491040390398
731 => 0.0026953533017516
801 => 0.002688027274875
802 => 0.0027319212872348
803 => 0.002712605168929
804 => 0.0027324722756232
805 => 0.0027370816147931
806 => 0.0027363394050247
807 => 0.0027161711590714
808 => 0.0027290257976163
809 => 0.0026986207453054
810 => 0.0026655598176085
811 => 0.0026444690055065
812 => 0.0026260644746572
813 => 0.00263627637805
814 => 0.0025998728070746
815 => 0.0025882265720604
816 => 0.0027246709353158
817 => 0.0028254638534766
818 => 0.0028239982845282
819 => 0.0028150770104683
820 => 0.0028018218068297
821 => 0.002865224428624
822 => 0.0028431362229663
823 => 0.0028592072381136
824 => 0.002863297985967
825 => 0.0028756794476647
826 => 0.002880104755999
827 => 0.0028667284006384
828 => 0.0028218357182639
829 => 0.0027099674220547
830 => 0.0026578924281866
831 => 0.0026407068128325
901 => 0.0026413314773105
902 => 0.0026241004423825
903 => 0.0026291757544096
904 => 0.0026223354559815
905 => 0.0026093815856047
906 => 0.0026354765130573
907 => 0.0026384837103551
908 => 0.0026323928424765
909 => 0.0026338274623546
910 => 0.0025833976777635
911 => 0.0025872317447582
912 => 0.0025658831725219
913 => 0.0025618805725885
914 => 0.0025079132410079
915 => 0.0024123022904231
916 => 0.0024652800382266
917 => 0.0024012903686786
918 => 0.0023770565112191
919 => 0.0024917758232945
920 => 0.0024802611861805
921 => 0.0024605531327339
922 => 0.002431400814168
923 => 0.0024205879356365
924 => 0.0023548923086199
925 => 0.0023510106605032
926 => 0.0023835711871837
927 => 0.00236854562446
928 => 0.0023474440437702
929 => 0.0022710162575448
930 => 0.0021850861214571
1001 => 0.002187679812128
1002 => 0.0022150125896305
1003 => 0.0022944863265462
1004 => 0.0022634345626236
1005 => 0.0022409061516198
1006 => 0.0022366872574404
1007 => 0.0022894955509495
1008 => 0.0023642303499445
1009 => 0.0023992942455361
1010 => 0.0023645469899112
1011 => 0.0023246312135744
1012 => 0.0023270607019281
1013 => 0.0023432229995155
1014 => 0.0023449214284693
1015 => 0.0023189403614822
1016 => 0.0023262538796541
1017 => 0.0023151439767889
1018 => 0.0022469625234121
1019 => 0.0022457293371263
1020 => 0.0022289965088931
1021 => 0.0022284898455043
1022 => 0.0022000231304802
1023 => 0.0021960404402672
1024 => 0.0021395180497807
1025 => 0.0021767212583644
1026 => 0.0021517672993026
1027 => 0.0021141557969524
1028 => 0.0021076715597706
1029 => 0.002107476635771
1030 => 0.0021460952389065
1031 => 0.002176269977502
1101 => 0.0021522013841042
1102 => 0.0021467214319376
1103 => 0.0022052329843529
1104 => 0.0021977868559634
1105 => 0.0021913385568005
1106 => 0.002357538668393
1107 => 0.0022259783113111
1108 => 0.0021686104864207
1109 => 0.0020976069092644
1110 => 0.0021207260320176
1111 => 0.0021255975708723
1112 => 0.0019548467671681
1113 => 0.001885573187371
1114 => 0.0018618011053044
1115 => 0.0018481199359872
1116 => 0.0018543546166424
1117 => 0.0017920002698445
1118 => 0.0018339034221384
1119 => 0.0017799098284931
1120 => 0.0017708576268081
1121 => 0.0018674048607686
1122 => 0.0018808388443534
1123 => 0.0018235252967689
1124 => 0.0018603298725387
1125 => 0.0018469840217427
1126 => 0.0017808353936851
1127 => 0.0017783090026497
1128 => 0.0017451179463271
1129 => 0.0016931803702372
1130 => 0.0016694435042929
1201 => 0.0016570811384162
1202 => 0.0016621820915147
1203 => 0.0016596028935363
1204 => 0.0016427718820911
1205 => 0.0016605676274107
1206 => 0.0016151068518288
1207 => 0.0015970040046898
1208 => 0.0015888273686199
1209 => 0.0015484783136664
1210 => 0.0016126916034036
1211 => 0.0016253424304196
1212 => 0.0016380181834728
1213 => 0.0017483519596968
1214 => 0.0017428399960366
1215 => 0.0017926654630891
1216 => 0.0017907293370626
1217 => 0.0017765183067402
1218 => 0.001716564307411
1219 => 0.0017404609029663
1220 => 0.0016669108962024
1221 => 0.0017220195621842
1222 => 0.001696870268423
1223 => 0.0017135165606657
1224 => 0.0016835850262778
1225 => 0.0017001503732508
1226 => 0.0016283424108198
1227 => 0.001561289145867
1228 => 0.0015882733370909
1229 => 0.0016176082389677
1230 => 0.0016812137806308
1231 => 0.0016433308447506
]
'min_raw' => 0.0015484783136664
'max_raw' => 0.0046222454780159
'avg_raw' => 0.0030853618958412
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.001548'
'max' => '$0.004622'
'avg' => '$0.003085'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0029333716863336
'max_diff' => 0.00014039547801594
'year' => 2026
]
1 => [
'items' => [
101 => 0.0016569549810055
102 => 0.0016113164052044
103 => 0.001517150987312
104 => 0.001517683953351
105 => 0.0015031986553134
106 => 0.0014906812429208
107 => 0.0016476821556456
108 => 0.0016281566103311
109 => 0.0015970452093127
110 => 0.0016386890558938
111 => 0.0016497003499066
112 => 0.0016500138259671
113 => 0.0016803961014494
114 => 0.0016966111273206
115 => 0.0016994690959104
116 => 0.0017472762628343
117 => 0.0017633005945954
118 => 0.0018293025492712
119 => 0.0016952353956635
120 => 0.0016924743708603
121 => 0.0016392750702161
122 => 0.0016055352326998
123 => 0.0016415852657565
124 => 0.0016735206737245
125 => 0.0016402673923612
126 => 0.0016446095688922
127 => 0.001599969755555
128 => 0.0016159263883246
129 => 0.0016296703900563
130 => 0.0016220817601352
131 => 0.0016107212138493
201 => 0.0016709023344577
202 => 0.0016675066797812
203 => 0.0017235487228497
204 => 0.0017672375030266
205 => 0.0018455356074071
206 => 0.0017638274537135
207 => 0.0017608496838325
208 => 0.0017899578620694
209 => 0.001763296138285
210 => 0.0017801454273853
211 => 0.001842820926444
212 => 0.0018441451609764
213 => 0.0018219625263797
214 => 0.0018206127110485
215 => 0.0018248731286742
216 => 0.0018498265277799
217 => 0.0018411070433919
218 => 0.001851197451476
219 => 0.0018638156612951
220 => 0.0019160099271167
221 => 0.0019285937879035
222 => 0.0018980215301754
223 => 0.0019007818627452
224 => 0.0018893469991277
225 => 0.0018783010641516
226 => 0.0019031307128486
227 => 0.0019485073838704
228 => 0.0019482250979551
301 => 0.0019587516036357
302 => 0.0019653095294684
303 => 0.0019371581110992
304 => 0.0019188325728971
305 => 0.0019258597503281
306 => 0.0019370963600722
307 => 0.0019222158692313
308 => 0.0018303665864475
309 => 0.0018582277914892
310 => 0.001853590324627
311 => 0.0018469860078799
312 => 0.0018750006649936
313 => 0.0018722985829728
314 => 0.0017913607358925
315 => 0.0017965421142604
316 => 0.0017916758326724
317 => 0.0018073997840309
318 => 0.00176244699331
319 => 0.0017762741689741
320 => 0.0017849464439289
321 => 0.0017900544805008
322 => 0.0018085082112121
323 => 0.0018063428789053
324 => 0.0018083736111157
325 => 0.0018357356221562
326 => 0.001974123284491
327 => 0.0019816554196167
328 => 0.0019445644315087
329 => 0.0019593815496704
330 => 0.0019309359229474
331 => 0.0019500316627357
401 => 0.0019630964829196
402 => 0.0019040590727288
403 => 0.0019005632604469
404 => 0.0018720002285037
405 => 0.0018873483839771
406 => 0.0018629283650474
407 => 0.0018689201835168
408 => 0.0018521665367191
409 => 0.0018823197653371
410 => 0.00191603576027
411 => 0.001924553752075
412 => 0.001902146582862
413 => 0.0018859223156474
414 => 0.0018574378470244
415 => 0.0019048081531622
416 => 0.0019186606742609
417 => 0.0019047353917661
418 => 0.0019015085995386
419 => 0.0018953938340983
420 => 0.0019028058759332
421 => 0.001918585230456
422 => 0.0019111439782619
423 => 0.0019160590564341
424 => 0.0018973278468485
425 => 0.00193716743039
426 => 0.002000442276972
427 => 0.0020006457159502
428 => 0.0019932044236451
429 => 0.0019901596071587
430 => 0.0019977948246391
501 => 0.0020019366169093
502 => 0.0020266275101817
503 => 0.0020531218223915
504 => 0.0021767592171009
505 => 0.0021420423314096
506 => 0.0022517407832173
507 => 0.002338498016036
508 => 0.0023645127167243
509 => 0.0023405804161773
510 => 0.0022587093088035
511 => 0.002254692321689
512 => 0.0023770423211954
513 => 0.0023424728423498
514 => 0.0023383609128403
515 => 0.0022946169300737
516 => 0.0023204750416864
517 => 0.0023148194933611
518 => 0.0023058919336507
519 => 0.0023552274093162
520 => 0.0024475790155536
521 => 0.0024331851516536
522 => 0.0024224407999644
523 => 0.0023753621784961
524 => 0.0024037140240108
525 => 0.0023936184748668
526 => 0.0024369953607831
527 => 0.002411299854482
528 => 0.0023422109445476
529 => 0.0023532135811746
530 => 0.0023515505547827
531 => 0.0023857755200857
601 => 0.0023755020350176
602 => 0.0023495444919396
603 => 0.0024472633678034
604 => 0.0024409180475457
605 => 0.0024499142609289
606 => 0.0024538746722773
607 => 0.0025133544300159
608 => 0.0025377213836214
609 => 0.0025432531086934
610 => 0.0025663998300108
611 => 0.0025426771971809
612 => 0.0026375846424513
613 => 0.0027006925555532
614 => 0.0027739956441246
615 => 0.0028811111585401
616 => 0.0029213875828343
617 => 0.0029141120072858
618 => 0.0029953257678232
619 => 0.0031412650902284
620 => 0.0029436105169088
621 => 0.0031517412625571
622 => 0.0030858494714699
623 => 0.0029296212201447
624 => 0.0029195619625695
625 => 0.0030253615482142
626 => 0.0032600148463414
627 => 0.0032012368565762
628 => 0.003260110986076
629 => 0.003191431186731
630 => 0.0031880206558147
701 => 0.003256775361518
702 => 0.0034174244790176
703 => 0.0033411061051357
704 => 0.0032316850021428
705 => 0.0033124798418118
706 => 0.0032424878744811
707 => 0.003084776382567
708 => 0.0032011919101552
709 => 0.0031233481621803
710 => 0.0031460671062406
711 => 0.0033096830861002
712 => 0.0032899963785293
713 => 0.003315472801066
714 => 0.0032705075821227
715 => 0.0032285029772654
716 => 0.0031500982629964
717 => 0.0031268864924071
718 => 0.0031333013907259
719 => 0.003126883313502
720 => 0.003083016596445
721 => 0.0030735435830732
722 => 0.0030577548124311
723 => 0.0030626484126554
724 => 0.0030329609046806
725 => 0.0030889873659812
726 => 0.003099386370902
727 => 0.0031401577572174
728 => 0.0031443907777986
729 => 0.0032579385083426
730 => 0.003195398326451
731 => 0.0032373556799234
801 => 0.0032336026193109
802 => 0.0029330071600765
803 => 0.0029744265621828
804 => 0.0030388621537358
805 => 0.0030098340070815
806 => 0.0029687949992526
807 => 0.0029356538000584
808 => 0.0028854414944175
809 => 0.0029561143503651
810 => 0.0030490416407159
811 => 0.0031467475672353
812 => 0.0032641348360024
813 => 0.003237935364152
814 => 0.0031445530938985
815 => 0.0031487421543263
816 => 0.0031746372775563
817 => 0.0031411007401534
818 => 0.0031312101605623
819 => 0.0031732784638007
820 => 0.0031735681650848
821 => 0.0031349803257768
822 => 0.003092097003886
823 => 0.0030919173212015
824 => 0.0030842866482748
825 => 0.003192788666493
826 => 0.0032524538057216
827 => 0.003259294317779
828 => 0.0032519933847578
829 => 0.003254803224114
830 => 0.0032200853942285
831 => 0.0032994400580941
901 => 0.0033722637450201
902 => 0.0033527454412728
903 => 0.0033234847292652
904 => 0.0033001771627643
905 => 0.0033472549193303
906 => 0.0033451586209377
907 => 0.0033716276936448
908 => 0.003370426903614
909 => 0.0033615263500148
910 => 0.0033527457591396
911 => 0.0033875598094469
912 => 0.0033775339220549
913 => 0.0033674924616906
914 => 0.0033473527756594
915 => 0.0033500900934758
916 => 0.0033208344337427
917 => 0.0033072994269022
918 => 0.0031037653990442
919 => 0.0030493744561344
920 => 0.0030664869540036
921 => 0.0030721208326279
922 => 0.0030484498245696
923 => 0.0030823879695421
924 => 0.0030770987455976
925 => 0.0030976760218734
926 => 0.0030848202330177
927 => 0.0030853478390766
928 => 0.0031231539729579
929 => 0.0031341292544625
930 => 0.0031285471377079
1001 => 0.003132456660939
1002 => 0.0032225499736942
1003 => 0.0032097415856424
1004 => 0.0032029373847705
1005 => 0.0032048221949128
1006 => 0.0032278429679441
1007 => 0.0032342875275053
1008 => 0.0032069814757935
1009 => 0.0032198591676352
1010 => 0.0032746907450748
1011 => 0.0032938786939801
1012 => 0.003355117416148
1013 => 0.0033291021185396
1014 => 0.0033768543232156
1015 => 0.0035236283204632
1016 => 0.0036408815454528
1017 => 0.0035330506340579
1018 => 0.003748371249643
1019 => 0.0039160292347839
1020 => 0.0039095942420652
1021 => 0.0038803591943568
1022 => 0.0036894850356921
1023 => 0.0035138397891155
1024 => 0.003660774496168
1025 => 0.0036611490629536
1026 => 0.0036485272413079
1027 => 0.0035701341910816
1028 => 0.0036457993330868
1029 => 0.0036518053572837
1030 => 0.0036484435808642
1031 => 0.0035883398130579
1101 => 0.0034965724686508
1102 => 0.003514503588088
1103 => 0.003543875127511
1104 => 0.0034882686758383
1105 => 0.0034704990452151
1106 => 0.0035035361693541
1107 => 0.0036099886668882
1108 => 0.0035898644388667
1109 => 0.0035893389139446
1110 => 0.0036754388954213
1111 => 0.003613809890223
1112 => 0.0035147297569275
1113 => 0.003489710716564
1114 => 0.0034009099781186
1115 => 0.0034622449644602
1116 => 0.0034644523014261
1117 => 0.0034308597562351
1118 => 0.0035174556068307
1119 => 0.0035166576108225
1120 => 0.0035988674828716
1121 => 0.0037560218816115
1122 => 0.0037095435928058
1123 => 0.0036554943997482
1124 => 0.0036613710456551
1125 => 0.003725823346456
1126 => 0.0036868540140889
1127 => 0.0037008676577119
1128 => 0.003725802135128
1129 => 0.0037408457244414
1130 => 0.0036592065046606
1201 => 0.0036401724972745
1202 => 0.0036012355981911
1203 => 0.0035910776880119
1204 => 0.0036227909798702
1205 => 0.0036144356479127
1206 => 0.0034642667833013
1207 => 0.0034485733014178
1208 => 0.003449054598102
1209 => 0.0034095925917214
1210 => 0.0033494035600242
1211 => 0.003507576741624
1212 => 0.0034948732215093
1213 => 0.003480849518477
1214 => 0.0034825673420803
1215 => 0.0035512249592263
1216 => 0.0035114000739888
1217 => 0.0036172810585629
1218 => 0.0035955151112082
1219 => 0.0035731909494343
1220 => 0.0035701050702665
1221 => 0.0035615121725916
1222 => 0.0035320439291877
1223 => 0.0034964592545106
1224 => 0.0034729631699971
1225 => 0.0032036249441838
1226 => 0.0032536125522263
1227 => 0.0033111187387655
1228 => 0.0033309696439172
1229 => 0.0032970132970143
1230 => 0.0035333847327298
1231 => 0.0035765720717668
]
'min_raw' => 0.0014906812429208
'max_raw' => 0.0039160292347839
'avg_raw' => 0.0027033552388523
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00149'
'max' => '$0.003916'
'avg' => '$0.0027033'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -5.7797070745642E-5
'max_diff' => -0.00070621624323208
'year' => 2027
]
2 => [
'items' => [
101 => 0.0034457548047832
102 => 0.0034212842353644
103 => 0.003534989019187
104 => 0.0034664111346975
105 => 0.003497291751884
106 => 0.0034305447483212
107 => 0.0035661695064657
108 => 0.0035651362730423
109 => 0.0035123751789
110 => 0.0035569684943767
111 => 0.003549219308425
112 => 0.0034896521630832
113 => 0.0035680578912211
114 => 0.003568096779484
115 => 0.0035173153734971
116 => 0.0034580138087837
117 => 0.0034474120896533
118 => 0.0034394251184292
119 => 0.0034953274465731
120 => 0.0035454492991849
121 => 0.0036387136406344
122 => 0.0036621625119809
123 => 0.0037536850179261
124 => 0.0036991878217857
125 => 0.0037233457229779
126 => 0.0037495725420658
127 => 0.0037621466435958
128 => 0.0037416578199161
129 => 0.0038838299438152
130 => 0.0038958336271137
131 => 0.0038998583582922
201 => 0.0038519187180358
202 => 0.003894500338996
203 => 0.0038745778087038
204 => 0.0039264106978857
205 => 0.003934538756745
206 => 0.0039276545800553
207 => 0.0039302345542299
208 => 0.0038089157273633
209 => 0.0038026247061824
210 => 0.0037168461859913
211 => 0.003751801567012
212 => 0.0036864541576488
213 => 0.0037071764943108
214 => 0.0037163107028617
215 => 0.0037115395106765
216 => 0.0037537778918083
217 => 0.0037178666391151
218 => 0.0036230909389011
219 => 0.0035282894171111
220 => 0.0035270992612286
221 => 0.0035021396939272
222 => 0.003484098498341
223 => 0.0034875738726567
224 => 0.0034998215450454
225 => 0.0034833866413567
226 => 0.0034868938613294
227 => 0.0035451370813616
228 => 0.0035568173437674
229 => 0.0035171232483393
301 => 0.0033577457273651
302 => 0.0033186340839498
303 => 0.0033467467576191
304 => 0.0033333107102933
305 => 0.002690241897441
306 => 0.0028413213762461
307 => 0.0027515550801145
308 => 0.0027929235193206
309 => 0.0027012953758399
310 => 0.0027450251285514
311 => 0.0027369498399804
312 => 0.0029798811711323
313 => 0.0029760881325374
314 => 0.0029779036593896
315 => 0.002891243832404
316 => 0.0030292952898629
317 => 0.003097304401977
318 => 0.0030847177253285
319 => 0.0030878855206717
320 => 0.0030334523012691
321 => 0.0029784306919386
322 => 0.0029174032594261
323 => 0.0030307846858157
324 => 0.0030181786066866
325 => 0.0030470924166845
326 => 0.0031206283763699
327 => 0.0031314568257695
328 => 0.0031460103715739
329 => 0.0031407939613949
330 => 0.003265070014982
331 => 0.0032500193648928
401 => 0.0032862871012403
402 => 0.0032116816159338
403 => 0.0031272584276919
404 => 0.0031433045157747
405 => 0.0031417591484579
406 => 0.0031220848488241
407 => 0.0031043237708121
408 => 0.0030747565800749
409 => 0.0031683115466884
410 => 0.0031645133858953
411 => 0.0032260011942564
412 => 0.0032151326268678
413 => 0.0031425496738578
414 => 0.0031451419882241
415 => 0.0031625765481617
416 => 0.00322291775917
417 => 0.0032408311389402
418 => 0.0032325329477059
419 => 0.003252174150847
420 => 0.0032676977569734
421 => 0.0032541236767709
422 => 0.0034463040272375
423 => 0.0033664973469565
424 => 0.0034053945676342
425 => 0.0034146713255701
426 => 0.0033909091051865
427 => 0.0033960622799263
428 => 0.0034038679355012
429 => 0.0034512623476477
430 => 0.0035756389988037
501 => 0.0036307245709401
502 => 0.003796452232587
503 => 0.0036261504810024
504 => 0.0036160454798421
505 => 0.0036458980362006
506 => 0.0037431977176419
507 => 0.0038220499705557
508 => 0.0038482098119429
509 => 0.0038516672668341
510 => 0.0039007448683497
511 => 0.0039288752342954
512 => 0.0038947855566566
513 => 0.0038658981241958
514 => 0.0037624269267614
515 => 0.0037744039996071
516 => 0.0038569141544227
517 => 0.0039734646079236
518 => 0.0040734770220353
519 => 0.0040384561603979
520 => 0.0043056406138158
521 => 0.0043321308610215
522 => 0.0043284707653899
523 => 0.004388819490802
524 => 0.0042690395606632
525 => 0.0042178313199021
526 => 0.0038721439149802
527 => 0.0039692679753572
528 => 0.0041104435010113
529 => 0.00409175839081
530 => 0.0039892329504473
531 => 0.0040733992472951
601 => 0.0040455712374338
602 => 0.004023622131471
603 => 0.0041241752409302
604 => 0.0040136129665857
605 => 0.004109340557749
606 => 0.0039865689319069
607 => 0.004038616132744
608 => 0.004009071624309
609 => 0.0040281905421052
610 => 0.0039164217393324
611 => 0.0039767294722743
612 => 0.0039139127393686
613 => 0.0039138829560582
614 => 0.0039124962731977
615 => 0.0039863998808892
616 => 0.0039888098748828
617 => 0.0039341949971366
618 => 0.0039263241400087
619 => 0.003955426824094
620 => 0.0039213552030351
621 => 0.0039372971000843
622 => 0.0039218380668565
623 => 0.0039183579128599
624 => 0.0038906274537152
625 => 0.0038786804094508
626 => 0.0038833651533443
627 => 0.0038673737072849
628 => 0.0038577382825982
629 => 0.0039105795447074
630 => 0.0038823485899729
701 => 0.0039062527460055
702 => 0.0038790109432614
703 => 0.0037845789862618
704 => 0.0037302701691915
705 => 0.0035518969562664
706 => 0.0036024833781807
707 => 0.0036360222282453
708 => 0.003624937638499
709 => 0.0036487516264408
710 => 0.0036502136118913
711 => 0.0036424714416565
712 => 0.0036335070003581
713 => 0.0036291436060987
714 => 0.0036616647720462
715 => 0.0036805444034908
716 => 0.0036393883005412
717 => 0.0036297460014552
718 => 0.003671357093828
719 => 0.0036967398361374
720 => 0.0038841517440195
721 => 0.0038702676645511
722 => 0.0039051139794038
723 => 0.0039011908191117
724 => 0.0039377153085306
725 => 0.0039974174123296
726 => 0.0038760263423355
727 => 0.0038970956346991
728 => 0.0038919299307726
729 => 0.0039483277317222
730 => 0.0039485037995007
731 => 0.0039146905005523
801 => 0.0039330212384704
802 => 0.003922789523442
803 => 0.0039412796153975
804 => 0.0038700822342051
805 => 0.0039567929592151
806 => 0.00400595235278
807 => 0.0040066349310073
808 => 0.004029936093404
809 => 0.0040536114239114
810 => 0.0040990541591336
811 => 0.0040523440506901
812 => 0.0039683171127378
813 => 0.0039743835862526
814 => 0.0039251186232754
815 => 0.0039259467762035
816 => 0.0039215260309698
817 => 0.0039347930201942
818 => 0.0038729935922723
819 => 0.0038874977944827
820 => 0.0038671918264517
821 => 0.0038970514934903
822 => 0.0038649274277366
823 => 0.0038919274397137
824 => 0.0039035797498185
825 => 0.0039465770249613
826 => 0.003858576695238
827 => 0.0036791380658335
828 => 0.0037168582412174
829 => 0.0036610671389687
830 => 0.0036662308178936
831 => 0.0036766622711151
901 => 0.003642850518265
902 => 0.003649300735178
903 => 0.0036490702880404
904 => 0.0036470844191061
905 => 0.0036382886763179
906 => 0.0036255331090904
907 => 0.0036763473629683
908 => 0.0036849816948828
909 => 0.0037041747451615
910 => 0.0037612802440205
911 => 0.0037555740580441
912 => 0.003764881084119
913 => 0.0037445638984542
914 => 0.0036671732738654
915 => 0.0036713759571181
916 => 0.0036189684296136
917 => 0.003702834566855
918 => 0.0036829739585773
919 => 0.0036701696952198
920 => 0.003666675933332
921 => 0.0037239229856772
922 => 0.0037410522009765
923 => 0.0037303784235009
924 => 0.0037084861944945
925 => 0.0037505257460432
926 => 0.0037617737565314
927 => 0.003764291771269
928 => 0.0038387777963289
929 => 0.0037684547126333
930 => 0.0037853821778302
1001 => 0.003917445429138
1002 => 0.0037976822836848
1003 => 0.0038611234928682
1004 => 0.0038580183758108
1005 => 0.0038904727516956
1006 => 0.003855356169716
1007 => 0.0038557914818365
1008 => 0.0038846087689723
1009 => 0.0038441400864152
1010 => 0.0038341194715016
1011 => 0.0038202760637676
1012 => 0.0038505026381039
1013 => 0.0038686221023881
1014 => 0.004014651677239
1015 => 0.0041089934423503
1016 => 0.0041048978175181
1017 => 0.0041423241617958
1018 => 0.0041254632509127
1019 => 0.0040710149219874
1020 => 0.0041639515801965
1021 => 0.0041345425329042
1022 => 0.004136966979031
1023 => 0.0041368767410251
1024 => 0.0041564311864909
1025 => 0.0041425750697398
1026 => 0.004115263241322
1027 => 0.0041333941076154
1028 => 0.0041872362986033
1029 => 0.00435436411151
1030 => 0.0044478910497617
1031 => 0.0043487336723914
1101 => 0.0044171311035312
1102 => 0.0043761170173439
1103 => 0.0043686635378203
1104 => 0.0044116221791066
1105 => 0.0044546560138077
1106 => 0.0044519149445776
1107 => 0.0044206745903965
1108 => 0.0044030277070142
1109 => 0.0045366558201243
1110 => 0.0046351107375684
1111 => 0.0046283967722488
1112 => 0.0046580300316708
1113 => 0.0047450341978559
1114 => 0.0047529887684401
1115 => 0.0047519866753802
1116 => 0.0047322704422135
1117 => 0.0048179373427414
1118 => 0.0048894021783275
1119 => 0.0047277067038922
1120 => 0.004789278223808
1121 => 0.0048169196628086
1122 => 0.004857505496107
1123 => 0.0049259805998568
1124 => 0.0050003627246534
1125 => 0.0050108811726581
1126 => 0.0050034178304447
1127 => 0.0049543608196425
1128 => 0.0050357506281582
1129 => 0.0050834268691608
1130 => 0.0051118169796265
1201 => 0.0051838095761035
1202 => 0.0048170903669256
1203 => 0.0045575082835422
1204 => 0.0045169707928111
1205 => 0.0045994053742708
1206 => 0.0046211427159983
1207 => 0.0046123804208042
1208 => 0.0043201971857857
1209 => 0.0045154325085475
1210 => 0.004725489299987
1211 => 0.0047335584368294
1212 => 0.0048387172587044
1213 => 0.0048729612817126
1214 => 0.0049576279168039
1215 => 0.0049523319957267
1216 => 0.004972946974031
1217 => 0.0049682079475205
1218 => 0.0051250350603636
1219 => 0.0052980386548811
1220 => 0.0052920480905207
1221 => 0.0052671767769232
1222 => 0.0053041149188047
1223 => 0.0054826731685387
1224 => 0.0054662343862408
1225 => 0.005482203262991
1226 => 0.0056927335025294
1227 => 0.0059664527615067
1228 => 0.0058392826847474
1229 => 0.0061152051591111
1230 => 0.0062888837307012
1231 => 0.0065892428615667
]
'min_raw' => 0.002690241897441
'max_raw' => 0.0065892428615667
'avg_raw' => 0.0046397423795038
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00269'
'max' => '$0.006589'
'avg' => '$0.004639'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0011995606545203
'max_diff' => 0.0026732136267828
'year' => 2028
]
3 => [
'items' => [
101 => 0.0065516364190824
102 => 0.0066685640245912
103 => 0.0064843130383342
104 => 0.0060612355306199
105 => 0.0059942818955485
106 => 0.0061283247684976
107 => 0.0064578560919306
108 => 0.0061179466544203
109 => 0.0061867098909296
110 => 0.006166906074189
111 => 0.0061658508129556
112 => 0.0062061258421733
113 => 0.0061477048116888
114 => 0.0059096870237523
115 => 0.006018769173316
116 => 0.0059766473168144
117 => 0.0060233846569953
118 => 0.0062756068060066
119 => 0.0061640933817037
120 => 0.0060466230478155
121 => 0.0061939569152652
122 => 0.0063815635579384
123 => 0.0063698234714015
124 => 0.0063470427965443
125 => 0.0064754562679567
126 => 0.006687557701113
127 => 0.0067448878662026
128 => 0.0067872078220081
129 => 0.0067930430289122
130 => 0.006853149286585
131 => 0.0065299427903512
201 => 0.0070428798004057
202 => 0.0071314498524431
203 => 0.0071148023535126
204 => 0.0072132442387547
205 => 0.0071842801388869
206 => 0.0071423157025065
207 => 0.0072983670298047
208 => 0.0071194667757501
209 => 0.0068655403880352
210 => 0.0067262313496404
211 => 0.0069096847291383
212 => 0.007021713306357
213 => 0.0070957570695428
214 => 0.0071181626675444
215 => 0.006555032390603
216 => 0.0062515364039685
217 => 0.0064460738518126
218 => 0.0066834229644399
219 => 0.0065286243040465
220 => 0.0065346921184613
221 => 0.0063139899091127
222 => 0.0067029502127604
223 => 0.00664628196819
224 => 0.0069402769212656
225 => 0.0068701126662572
226 => 0.0071098541376721
227 => 0.0070467221736369
228 => 0.0073087794266863
301 => 0.0074133211598446
302 => 0.0075888630004389
303 => 0.007717992292964
304 => 0.0077938194833844
305 => 0.0077892671032922
306 => 0.0080897322086943
307 => 0.0079125584334899
308 => 0.0076899864151805
309 => 0.007685960789575
310 => 0.0078012339917273
311 => 0.00804281499978
312 => 0.0081054534403073
313 => 0.0081404597832689
314 => 0.0080868463504437
315 => 0.0078945369156182
316 => 0.0078114986766915
317 => 0.0078822496621064
318 => 0.0077957272866455
319 => 0.0079450891805819
320 => 0.0081501949629358
321 => 0.0081078414299559
322 => 0.0082494229407111
323 => 0.0083959449095336
324 => 0.008605477905663
325 => 0.0086602575898356
326 => 0.0087508063246881
327 => 0.0088440107165612
328 => 0.0088739454553021
329 => 0.0089311001597623
330 => 0.0089307989262574
331 => 0.0091030384751036
401 => 0.0092930240312958
402 => 0.0093647391805826
403 => 0.0095296442119711
404 => 0.0092472501246797
405 => 0.0094614492837997
406 => 0.0096546622870787
407 => 0.0094243057793324
408 => 0.0097417985590781
409 => 0.0097541260842615
410 => 0.0099402570786191
411 => 0.0097515776574538
412 => 0.0096395404194519
413 => 0.0099629877275828
414 => 0.010119493691493
415 => 0.010072352821475
416 => 0.0097136084730109
417 => 0.0095048038749357
418 => 0.008958321966374
419 => 0.009605653393327
420 => 0.0099209496484791
421 => 0.00971279193188
422 => 0.0098177745763213
423 => 0.010390525843656
424 => 0.010608592443359
425 => 0.010563236115022
426 => 0.010570900587882
427 => 0.010688565366893
428 => 0.011210355796205
429 => 0.010897686875954
430 => 0.011136710550005
501 => 0.011263487844857
502 => 0.011381245661692
503 => 0.011092069681286
504 => 0.010715855979618
505 => 0.010596693307922
506 => 0.0096920947493044
507 => 0.009645006465856
508 => 0.0096185743854353
509 => 0.0094519238572751
510 => 0.0093209821915626
511 => 0.0092168525174357
512 => 0.0089435851567738
513 => 0.0090358048691497
514 => 0.0086002737315852
515 => 0.0088789111191232
516 => 0.0081837929073033
517 => 0.0087627080096561
518 => 0.0084476308394852
519 => 0.0086591966852816
520 => 0.0086584585519763
521 => 0.0082688987528527
522 => 0.0080442087906237
523 => 0.0081873899796202
524 => 0.0083408915799613
525 => 0.0083657966981752
526 => 0.0085648155298192
527 => 0.0086203574078355
528 => 0.0084520629244436
529 => 0.0081693881274111
530 => 0.0082350470356361
531 => 0.0080428782149442
601 => 0.0077061097483486
602 => 0.0079479827404709
603 => 0.0080305688143862
604 => 0.008067043529452
605 => 0.007735870420675
606 => 0.0076318086397792
607 => 0.0075764070207932
608 => 0.0081266378377618
609 => 0.0081567807239912
610 => 0.0080025654562671
611 => 0.0086996330896718
612 => 0.0085418652157518
613 => 0.008718130584988
614 => 0.0082290891779188
615 => 0.0082477712182504
616 => 0.0080162511789077
617 => 0.008145886930765
618 => 0.0080542645597076
619 => 0.0081354136431004
620 => 0.0081840540690959
621 => 0.0084155361182783
622 => 0.008765351162823
623 => 0.0083809604193765
624 => 0.0082134758678801
625 => 0.0083173823416596
626 => 0.0085940989739695
627 => 0.0090133388367828
628 => 0.0087651404000088
629 => 0.0088752866515663
630 => 0.008899348707466
701 => 0.0087163363689944
702 => 0.0090200867627483
703 => 0.0091828690664248
704 => 0.0093498500269454
705 => 0.0094948349162651
706 => 0.0092831541593235
707 => 0.0095096829124956
708 => 0.0093271407251468
709 => 0.0091633815122304
710 => 0.0091636298673595
711 => 0.0090609013209567
712 => 0.0088618518176714
713 => 0.0088251440352984
714 => 0.009016102554885
715 => 0.0091692332037544
716 => 0.0091818457774416
717 => 0.0092666267727925
718 => 0.0093167992925275
719 => 0.0098085581921633
720 => 0.01000634768964
721 => 0.010248200943191
722 => 0.010342416415551
723 => 0.01062597120924
724 => 0.010396977684142
725 => 0.01034743349455
726 => 0.009659622315127
727 => 0.0097722513572256
728 => 0.0099525813207116
729 => 0.0096625958898052
730 => 0.0098465249002701
731 => 0.0098828363830849
801 => 0.0096527422958273
802 => 0.0097756454896102
803 => 0.0094492510451802
804 => 0.0087724656697785
805 => 0.0090208402183405
806 => 0.0092037274880512
807 => 0.0089427248043363
808 => 0.0094105620126965
809 => 0.0091372611736927
810 => 0.0090506379284824
811 => 0.0087126897655001
812 => 0.00887218828961
813 => 0.0090879123272676
814 => 0.0089546199526064
815 => 0.0092312216439791
816 => 0.0096229634059394
817 => 0.0099021419141376
818 => 0.0099235737734237
819 => 0.0097440806961596
820 => 0.010031719497985
821 => 0.010033814632634
822 => 0.0097093568891359
823 => 0.0095106283278318
824 => 0.009465476780575
825 => 0.0095782741981047
826 => 0.0097152310865377
827 => 0.0099311739275602
828 => 0.010061663663782
829 => 0.010401911689441
830 => 0.010493973049509
831 => 0.010595120572963
901 => 0.010730284857039
902 => 0.010892584235483
903 => 0.010537482435156
904 => 0.010551591291675
905 => 0.01022092541193
906 => 0.0098675614971382
907 => 0.010135720661031
908 => 0.010486303096103
909 => 0.010405879098138
910 => 0.010396829755454
911 => 0.010412048239771
912 => 0.010351411171708
913 => 0.010077151960173
914 => 0.0099394207010936
915 => 0.010117129164297
916 => 0.010211573303597
917 => 0.010358047927255
918 => 0.010339991838185
919 => 0.010717294738503
920 => 0.010863903236519
921 => 0.010826394508995
922 => 0.010833297017558
923 => 0.011098724700281
924 => 0.011393934872836
925 => 0.011670438155847
926 => 0.011951709171418
927 => 0.011612625983953
928 => 0.011440460453101
929 => 0.011618091334349
930 => 0.011523837888423
1001 => 0.012065446146102
1002 => 0.012102945926753
1003 => 0.01264451501999
1004 => 0.013158528578319
1005 => 0.012835685871842
1006 => 0.013140112002895
1007 => 0.013469373683856
1008 => 0.014104572887212
1009 => 0.013890660142099
1010 => 0.013726806331783
1011 => 0.01357196527277
1012 => 0.01389416493625
1013 => 0.014308669656053
1014 => 0.014397950002621
1015 => 0.01454261827178
1016 => 0.014390517275954
1017 => 0.014573706172051
1018 => 0.015220443472553
1019 => 0.015045689345049
1020 => 0.014797510390866
1021 => 0.015308047376302
1022 => 0.015492808726669
1023 => 0.016789560643815
1024 => 0.018426763505362
1025 => 0.017748950770228
1026 => 0.01732821053265
1027 => 0.017427094468572
1028 => 0.018024945530795
1029 => 0.018216956317137
1030 => 0.017695004809773
1031 => 0.017879366906095
1101 => 0.018895220182913
1102 => 0.019440192873451
1103 => 0.018700046760104
1104 => 0.016658012987999
1105 => 0.014775164591427
1106 => 0.015274580771966
1107 => 0.015217962475781
1108 => 0.016309370091445
1109 => 0.015041521516903
1110 => 0.01506286883532
1111 => 0.016176845604655
1112 => 0.015879655700993
1113 => 0.015398246118268
1114 => 0.01477867941414
1115 => 0.013633353058577
1116 => 0.012618905565667
1117 => 0.014608470712569
1118 => 0.014522677045645
1119 => 0.01439843510203
1120 => 0.014674922103163
1121 => 0.016017464498458
1122 => 0.015986514550861
1123 => 0.015789626775049
1124 => 0.015938964417713
1125 => 0.015372066507472
1126 => 0.015518169006966
1127 => 0.014774866338621
1128 => 0.015110870187774
1129 => 0.015397213229515
1130 => 0.015454700834526
1201 => 0.015584223344004
1202 => 0.014477467681671
1203 => 0.014974368481419
1204 => 0.015266251147963
1205 => 0.013947514641736
1206 => 0.015240183967296
1207 => 0.014458201527899
1208 => 0.014192784942985
1209 => 0.014550133408595
1210 => 0.014410874364014
1211 => 0.014291147615049
1212 => 0.014224338031959
1213 => 0.014486735305993
1214 => 0.014474494159526
1215 => 0.014045161290092
1216 => 0.013485114063761
1217 => 0.013673084295841
1218 => 0.013604792948296
1219 => 0.013357296295034
1220 => 0.013524079156473
1221 => 0.01278965184157
1222 => 0.01152610781849
1223 => 0.012360843703537
1224 => 0.01232870727998
1225 => 0.012312502637952
1226 => 0.01293978358516
1227 => 0.01287948499592
1228 => 0.012770042466003
1229 => 0.013355286297146
1230 => 0.013141664426138
1231 => 0.013799996696941
]
'min_raw' => 0.0059096870237523
'max_raw' => 0.019440192873451
'avg_raw' => 0.012674939948602
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0059096'
'max' => '$0.01944'
'avg' => '$0.012674'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0032194451263112
'max_diff' => 0.012850950011884
'year' => 2029
]
4 => [
'items' => [
101 => 0.014233616908753
102 => 0.014123636796893
103 => 0.01453145870197
104 => 0.013677414750342
105 => 0.013961093892777
106 => 0.01401955977087
107 => 0.013348064479115
108 => 0.012889350590845
109 => 0.012858759604218
110 => 0.012063412936625
111 => 0.012488280706639
112 => 0.012862146762029
113 => 0.012683093934675
114 => 0.012626411158586
115 => 0.012915991168631
116 => 0.012938494015497
117 => 0.012425426722217
118 => 0.012532109659218
119 => 0.012976995241074
120 => 0.012520899684014
121 => 0.011634780519432
122 => 0.011415010715059
123 => 0.011385689371995
124 => 0.010789656232374
125 => 0.011429696784258
126 => 0.01115030193134
127 => 0.012032906924042
128 => 0.011528767685716
129 => 0.011507035250763
130 => 0.011474183487875
131 => 0.010961153142784
201 => 0.01107347418358
202 => 0.011446846430161
203 => 0.011580069854081
204 => 0.011566173559499
205 => 0.011445016702461
206 => 0.011500481691189
207 => 0.011321809637211
208 => 0.011258716816214
209 => 0.0110595785181
210 => 0.010766900233232
211 => 0.010807598943843
212 => 0.010227726678079
213 => 0.009911781491541
214 => 0.0098243320279977
215 => 0.0097073909505831
216 => 0.0098375408338601
217 => 0.010226083972808
218 => 0.0097574185132116
219 => 0.0089539244557937
220 => 0.0090022158177318
221 => 0.0091107121701726
222 => 0.0089085299351743
223 => 0.0087171814176173
224 => 0.0088835434290372
225 => 0.0085430924046342
226 => 0.0091518540499477
227 => 0.0091353887534767
228 => 0.009362297449282
301 => 0.0095041881134042
302 => 0.0091771760702505
303 => 0.009094933425732
304 => 0.0091417825737695
305 => 0.0083674705144756
306 => 0.009299019634587
307 => 0.0093070757100611
308 => 0.0092380947008662
309 => 0.0097341158489732
310 => 0.010780875184355
311 => 0.010387042216587
312 => 0.010234538187803
313 => 0.0099446279176055
314 => 0.010330916139476
315 => 0.010301255231071
316 => 0.0101671173547
317 => 0.010085990348535
318 => 0.010235469344884
319 => 0.010067468246676
320 => 0.010037290633077
321 => 0.0098544471282315
322 => 0.0097891803158511
323 => 0.0097408593663114
324 => 0.0096876627487865
325 => 0.0098050012312752
326 => 0.0095390967927929
327 => 0.0092184421069168
328 => 0.009191783139318
329 => 0.0092653908927387
330 => 0.0092328249413028
331 => 0.0091916272260715
401 => 0.0091129695681649
402 => 0.009089633521319
403 => 0.0091654643525278
404 => 0.0090798557653051
405 => 0.0092061758990933
406 => 0.0091718238123147
407 => 0.0089799358480375
408 => 0.0087407723985246
409 => 0.0087386433421616
410 => 0.0086871159692707
411 => 0.0086214881127018
412 => 0.0086032319443663
413 => 0.0088695328844568
414 => 0.0094207678607277
415 => 0.0093125472449507
416 => 0.0093907477307444
417 => 0.0097754167229839
418 => 0.0098976914282167
419 => 0.0098109037386775
420 => 0.0096921033964049
421 => 0.0096973300085429
422 => 0.010103306741398
423 => 0.010128627012245
424 => 0.010192603168046
425 => 0.01027483060791
426 => 0.0098249074272479
427 => 0.0096761386671946
428 => 0.0096056437753048
429 => 0.0093885467932408
430 => 0.0096226672759083
501 => 0.0094862552966965
502 => 0.009504661933189
503 => 0.0094926745870262
504 => 0.0094992204886119
505 => 0.0091516838886612
506 => 0.0092783079596973
507 => 0.0090677708824573
508 => 0.008785885369929
509 => 0.0087849403908492
510 => 0.0088539314706936
511 => 0.0088128928767809
512 => 0.0087024590757607
513 => 0.0087181456759628
514 => 0.0085807145519761
515 => 0.0087348323026856
516 => 0.0087392518483161
517 => 0.0086799081194423
518 => 0.0089173477785615
519 => 0.009014627000635
520 => 0.0089755656870244
521 => 0.0090118863547425
522 => 0.009317044300123
523 => 0.0093667983601946
524 => 0.0093888958271097
525 => 0.0093592881487968
526 => 0.0090174640817978
527 => 0.0090326254327173
528 => 0.0089213814993839
529 => 0.008827392098314
530 => 0.0088311511814473
531 => 0.0088794739513641
601 => 0.0090905023216838
602 => 0.0095345990862196
603 => 0.0095514522338032
604 => 0.0095718787403156
605 => 0.0094887938727902
606 => 0.0094637346817295
607 => 0.0094967942230646
608 => 0.0096635736183257
609 => 0.010092575503101
610 => 0.0099409375849491
611 => 0.0098176535971065
612 => 0.0099258068915689
613 => 0.00990915753962
614 => 0.0097686202538553
615 => 0.0097646758403179
616 => 0.0094949398564473
617 => 0.0093952246048016
618 => 0.0093118950769692
619 => 0.0092209014079486
620 => 0.0091669573108178
621 => 0.0092498399611644
622 => 0.0092687962039374
623 => 0.0090875718404137
624 => 0.0090628716293124
625 => 0.0092108633565654
626 => 0.0091457377150891
627 => 0.0092127210523857
628 => 0.009228261761211
629 => 0.0092257593491572
630 => 0.0091577606998236
701 => 0.0092011010111599
702 => 0.0090985882544809
703 => 0.0089871210285106
704 => 0.0089160118829951
705 => 0.0088539597222735
706 => 0.0088883898675346
707 => 0.0087656526863748
708 => 0.0087263865919104
709 => 0.0091864182888671
710 => 0.0095262486495831
711 => 0.0095213073815507
712 => 0.0094912286831944
713 => 0.0094465378386781
714 => 0.0096603042046872
715 => 0.009585832277163
716 => 0.0096400168267746
717 => 0.0096538090687692
718 => 0.0096955540313291
719 => 0.0097104742673435
720 => 0.0096653749513378
721 => 0.009514016138405
722 => 0.0091368443673407
723 => 0.0089612698897545
724 => 0.0089033273877269
725 => 0.0089054334876271
726 => 0.0088473378503348
727 => 0.0088644496191812
728 => 0.0088413870754566
729 => 0.0087977121970708
730 => 0.0088856930668669
731 => 0.0088958320425123
801 => 0.0088752962562088
802 => 0.0088801331772896
803 => 0.0087101056376456
804 => 0.0087230324622043
805 => 0.0086510542603999
806 => 0.0086375592152717
807 => 0.0084556045889691
808 => 0.0081332455937291
809 => 0.0083118637692369
810 => 0.0080961181307397
811 => 0.008014411988361
812 => 0.0084011961584698
813 => 0.0083623737555138
814 => 0.0082959266773461
815 => 0.0081976375999515
816 => 0.0081611812250511
817 => 0.0079396838318425
818 => 0.0079265965842091
819 => 0.008036376673216
820 => 0.0079857169394415
821 => 0.0079145714868807
822 => 0.0076568898696041
823 => 0.0073671704163337
824 => 0.0073759152255164
825 => 0.0074680695931796
826 => 0.0077360208458702
827 => 0.0076313276558403
828 => 0.0075553715452576
829 => 0.0075411472489778
830 => 0.0077191940975012
831 => 0.0079711676901298
901 => 0.0080893880621998
902 => 0.0079722352638845
903 => 0.0078376564371346
904 => 0.0078458476267406
905 => 0.007900339941472
906 => 0.0079060663132704
907 => 0.0078184693319831
908 => 0.0078431273691132
909 => 0.0078056695559344
910 => 0.0075757910255976
911 => 0.0075716332519365
912 => 0.0075152173532998
913 => 0.0075135091023102
914 => 0.0074175315851238
915 => 0.0074041036670081
916 => 0.0072135344812155
917 => 0.0073389676964009
918 => 0.0072548336811939
919 => 0.0071280238750692
920 => 0.0071061618166958
921 => 0.0071055046168219
922 => 0.0072357099335582
923 => 0.0073374461714656
924 => 0.0072562972284093
925 => 0.0072378211870816
926 => 0.007435096971196
927 => 0.0074099918294587
928 => 0.0073882509386251
929 => 0.0079486062185805
930 => 0.007505041289428
1001 => 0.0073116216625165
1002 => 0.0070722281448226
1003 => 0.0071501758813106
1004 => 0.0071666006146791
1005 => 0.0065909023585502
1006 => 0.0063573416477373
1007 => 0.006277192413336
1008 => 0.0062310653957942
1009 => 0.0062520860569147
1010 => 0.0060418540232441
1011 => 0.0061831334267876
1012 => 0.0060010902561003
1013 => 0.0059705701261149
1014 => 0.0062960858661252
1015 => 0.0063413794797122
1016 => 0.0061481428525271
1017 => 0.0062722320493482
1018 => 0.006227235581612
1019 => 0.0060042108637662
1020 => 0.0059956929600032
1021 => 0.0058837869962861
1022 => 0.0057086758323332
1023 => 0.005628645331547
1024 => 0.0055869647518808
1025 => 0.0056041629713894
1026 => 0.0055954670253316
1027 => 0.0055387200951404
1028 => 0.0055987196929446
1029 => 0.0054454455141003
1030 => 0.0053844105010706
1031 => 0.0053568424016866
1101 => 0.0052208027458297
1102 => 0.0054373023354075
1103 => 0.0054799554819443
1104 => 0.005522692668356
1105 => 0.0058946906981535
1106 => 0.0058761067278403
1107 => 0.0060440967687107
1108 => 0.0060375689846363
1109 => 0.0059896555037219
1110 => 0.0057875164091288
1111 => 0.0058680854494507
1112 => 0.0056201064665488
1113 => 0.0058059091814707
1114 => 0.0057211165816872
1115 => 0.0057772407181902
1116 => 0.0056763244602484
1117 => 0.0057321756841236
1118 => 0.0054900701253156
1119 => 0.0052639953610179
1120 => 0.0053549744457051
1121 => 0.0054538791154804
1122 => 0.0056683296399945
1123 => 0.0055406046767723
1124 => 0.0055865394033626
1125 => 0.0054326657586655
1126 => 0.0051151804778219
1127 => 0.0051169774100327
1128 => 0.0050681392163677
1129 => 0.0050259358865481
1130 => 0.0055552754252537
1201 => 0.0054894436859959
1202 => 0.0053845494253336
1203 => 0.0055249545615623
1204 => 0.0055620799081103
1205 => 0.0055631368145345
1206 => 0.0056655727775458
1207 => 0.0057202428693676
1208 => 0.005729878710005
1209 => 0.0058910639110788
1210 => 0.0059450910643946
1211 => 0.0061676212626932
1212 => 0.0057156044940352
1213 => 0.0057062955061426
1214 => 0.005526930349764
1215 => 0.0054131741319378
1216 => 0.0055347193353213
1217 => 0.0056423917929442
1218 => 0.0055302760331582
1219 => 0.0055449159844934
1220 => 0.0053944097371748
1221 => 0.005448208638614
1222 => 0.0054945475000282
1223 => 0.0054689619044277
1224 => 0.0054306590294569
1225 => 0.0056335638792997
1226 => 0.005622115192481
1227 => 0.005811064853417
1228 => 0.0059583646260364
1229 => 0.0062223521515544
1230 => 0.0059468674066955
1231 => 0.0059368276476401
]
'min_raw' => 0.0050259358865481
'max_raw' => 0.01453145870197
'avg_raw' => 0.0097786972942593
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.005025'
'max' => '$0.014531'
'avg' => '$0.009778'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00088375113720412
'max_diff' => -0.0049087341714805
'year' => 2030
]
5 => [
'items' => [
101 => 0.0060349679028341
102 => 0.0059450760396328
103 => 0.0060018845942144
104 => 0.0062131994151545
105 => 0.0062176641643354
106 => 0.0061428738630505
107 => 0.0061383228664203
108 => 0.0061526871618983
109 => 0.0062368192891738
110 => 0.0062074209387846
111 => 0.0062414414541301
112 => 0.0062839846295103
113 => 0.0064599612408153
114 => 0.006502388606035
115 => 0.006399312104618
116 => 0.0064086187585973
117 => 0.0063700653175541
118 => 0.0063328231765796
119 => 0.0064165380707124
120 => 0.0065695286851604
121 => 0.0065685769384882
122 => 0.0066040677873275
123 => 0.0066261782921324
124 => 0.0065312638196312
125 => 0.0064694779881348
126 => 0.0064931706074652
127 => 0.0065310556217324
128 => 0.0064808850079397
129 => 0.0061712087383221
130 => 0.0062651447363274
131 => 0.0062495091930237
201 => 0.0062272422780121
202 => 0.0063216956503921
203 => 0.0063125853922055
204 => 0.0060396977898744
205 => 0.0060571671687939
206 => 0.0060407601606668
207 => 0.0060937745604835
208 => 0.0059422130880643
209 => 0.0059888323761984
210 => 0.0060180715566874
211 => 0.0060352936586213
212 => 0.0060975117001128
213 => 0.0060902111310617
214 => 0.0060970578864901
215 => 0.0061893108170679
216 => 0.0066558944825476
217 => 0.0066812896020008
218 => 0.0065562347459845
219 => 0.0066061916943651
220 => 0.0065102852778581
221 => 0.0065746678977764
222 => 0.0066187168511832
223 => 0.0064196681008642
224 => 0.0064078817256861
225 => 0.0063115794692823
226 => 0.0063633268470351
227 => 0.0062809930482623
228 => 0.0063011948825671
301 => 0.0062447087926866
302 => 0.0063463725082033
303 => 0.0064600483390951
304 => 0.006488767343173
305 => 0.0064132200077527
306 => 0.0063585187580965
307 => 0.0062624813834119
308 => 0.0064221936778448
309 => 0.006468898419881
310 => 0.0064219483577177
311 => 0.0064110690024354
312 => 0.0063904526438339
313 => 0.0064154428603725
314 => 0.0064686440558255
315 => 0.0064435553545217
316 => 0.0064601268837389
317 => 0.0063969733028496
318 => 0.006531295240271
319 => 0.0067446308032307
320 => 0.0067453167119495
321 => 0.0067202278754083
322 => 0.0067099620640421
323 => 0.0067357047328514
324 => 0.0067496690746608
325 => 0.0068329161451918
326 => 0.0069222435685812
327 => 0.0073390956769312
328 => 0.0072220452729672
329 => 0.0075919012621382
330 => 0.0078844093297829
331 => 0.007972119709442
401 => 0.0078914302872479
402 => 0.0076153961326789
403 => 0.0076018525801653
404 => 0.0080143641457054
405 => 0.0078978107342137
406 => 0.0078839470767866
407 => 0.0077364611847816
408 => 0.0078236436134396
409 => 0.0078045755374031
410 => 0.0077744756465371
411 => 0.0079408136472361
412 => 0.0082521835354488
413 => 0.0082036536183625
414 => 0.0081674282864957
415 => 0.0080086994272908
416 => 0.0081042896539063
417 => 0.0080702518051187
418 => 0.0082165000044629
419 => 0.0081298658109657
420 => 0.0078969277274882
421 => 0.0079340238850559
422 => 0.0079284168754667
423 => 0.0080438087354966
424 => 0.0080091709633176
425 => 0.0079216532945324
426 => 0.0082511193070211
427 => 0.0082297256167564
428 => 0.0082600569782733
429 => 0.0082734097816416
430 => 0.0084739499376012
501 => 0.0085561048229286
502 => 0.0085747554202216
503 => 0.0086527962071957
504 => 0.0085728136943481
505 => 0.0088928007723038
506 => 0.0091055735073806
507 => 0.0093527199883572
508 => 0.0097138674237755
509 => 0.0098496622002934
510 => 0.0098251320893673
511 => 0.010098949953183
512 => 0.01059099456783
513 => 0.0099245883740815
514 => 0.010626315714259
515 => 0.010404156940191
516 => 0.0098774224833398
517 => 0.00984350699411
518 => 0.010200217683802
519 => 0.010991367661408
520 => 0.010793193565167
521 => 0.010991691803236
522 => 0.010760133064673
523 => 0.010748634221573
524 => 0.010980445512152
525 => 0.011522085227966
526 => 0.011264772502044
527 => 0.010895851613766
528 => 0.011168257056626
529 => 0.010932274252087
530 => 0.010400538946034
531 => 0.01079304202517
601 => 0.010530586393996
602 => 0.010607184900081
603 => 0.011158827599481
604 => 0.011092452490423
605 => 0.011178348027713
606 => 0.011026744652674
607 => 0.01088512319473
608 => 0.01062077622653
609 => 0.010542516121394
610 => 0.01056414439895
611 => 0.010542505403493
612 => 0.010394605704259
613 => 0.010362666778292
614 => 0.010309433835735
615 => 0.010325932950552
616 => 0.010225839444699
617 => 0.010414736570616
618 => 0.010449797541742
619 => 0.010587261117272
620 => 0.010601533041701
621 => 0.01098436714288
622 => 0.010773508553217
623 => 0.010914970699818
624 => 0.010902316993932
625 => 0.0098888384162184
626 => 0.01002848682223
627 => 0.010245735917901
628 => 0.010147865494775
629 => 0.010009499614628
630 => 0.0098977617477
701 => 0.0097284674535206
702 => 0.0099667459215692
703 => 0.010280056768963
704 => 0.010609479121833
705 => 0.011005258494199
706 => 0.010916925145666
707 => 0.010602080301765
708 => 0.010616204011468
709 => 0.010703511227378
710 => 0.010590440450078
711 => 0.010557093670448
712 => 0.010698929891931
713 => 0.010699906640037
714 => 0.010569805045693
715 => 0.010425220931921
716 => 0.010424615119205
717 => 0.010398887772676
718 => 0.010764709902467
719 => 0.010965875085064
720 => 0.010988938349054
721 => 0.010964322743639
722 => 0.010973796313205
723 => 0.010856742725824
724 => 0.011124292515413
725 => 0.011369822660271
726 => 0.011304015336463
727 => 0.011205360803012
728 => 0.011126777715272
729 => 0.011285503658398
730 => 0.011278435842008
731 => 0.011367678168652
801 => 0.011363629621227
802 => 0.01133362078335
803 => 0.011304016408173
804 => 0.011421394409423
805 => 0.011387591430096
806 => 0.011353735945406
807 => 0.011285833587843
808 => 0.011295062645975
809 => 0.01119642514662
810 => 0.011150790926073
811 => 0.010464561740858
812 => 0.010281178879383
813 => 0.010338874860705
814 => 0.010357869875832
815 => 0.010278061419507
816 => 0.010392486244767
817 => 0.010374653256956
818 => 0.010444030980579
819 => 0.01040068679089
820 => 0.010402465651554
821 => 0.010529931671475
822 => 0.010566935599337
823 => 0.010548115102968
824 => 0.010561296333496
825 => 0.010865052227564
826 => 0.010821867852995
827 => 0.010798927014701
828 => 0.010805281783689
829 => 0.010882897927223
830 => 0.010904626209728
831 => 0.010812561949934
901 => 0.01085597998707
902 => 0.011040848478626
903 => 0.011105541988021
904 => 0.011312012615361
905 => 0.011224300223144
906 => 0.011385300115161
907 => 0.011880158894315
908 => 0.012275486328726
909 => 0.011911926882444
910 => 0.012637895371095
911 => 0.013203165973504
912 => 0.013181469946276
913 => 0.013082901941801
914 => 0.012439356389455
915 => 0.011847156177463
916 => 0.012342556800944
917 => 0.012343819679013
918 => 0.012301264326107
919 => 0.012036956684041
920 => 0.012292066993083
921 => 0.01231231672299
922 => 0.01230098225908
923 => 0.01209833820961
924 => 0.01178893820095
925 => 0.011849394222043
926 => 0.011948422417863
927 => 0.01176094138373
928 => 0.011701029833448
929 => 0.011812416804061
930 => 0.012171328831773
1001 => 0.01210347859197
1002 => 0.012101706748005
1003 => 0.012391998846862
1004 => 0.012184212353036
1005 => 0.011850156766076
1006 => 0.011765803324717
1007 => 0.011466405435179
1008 => 0.011673200623902
1009 => 0.011680642814594
1010 => 0.011567383203126
1011 => 0.011859347159338
1012 => 0.011856656660082
1013 => 0.012133832983405
1014 => 0.012663690010927
1015 => 0.012506985215208
1016 => 0.01232475458722
1017 => 0.012344568109189
1018 => 0.012561873541256
1019 => 0.012430485716428
1020 => 0.012477733694304
1021 => 0.012561802025782
1022 => 0.012612522537462
1023 => 0.012337270208103
1024 => 0.012273095723289
1025 => 0.012141817249542
1026 => 0.01210756914617
1027 => 0.012214492723822
1028 => 0.012186322138776
1029 => 0.011680017327283
1030 => 0.011627105657429
1031 => 0.011628728382803
1101 => 0.011495679473142
1102 => 0.011292747950511
1103 => 0.011826039875573
1104 => 0.011783209070575
1105 => 0.011735927176698
1106 => 0.011741718938911
1107 => 0.01197320288864
1108 => 0.011838930507578
1109 => 0.012195915639443
1110 => 0.012122530228287
1111 => 0.012047262758243
1112 => 0.01203685850118
1113 => 0.012007886946732
1114 => 0.011908532706689
1115 => 0.011788556491572
1116 => 0.011709337802191
1117 => 0.010801245169266
1118 => 0.010969781879805
1119 => 0.011163668002676
1120 => 0.011230596715341
1121 => 0.011116110521001
1122 => 0.011913053319443
1123 => 0.01205866244825
1124 => 0.011617602899245
1125 => 0.011535098665968
1126 => 0.011918462283241
1127 => 0.011687247157729
1128 => 0.01179136331459
1129 => 0.011566321131951
1130 => 0.012023589473053
1201 => 0.012020105854428
1202 => 0.011842218141865
1203 => 0.011992567618401
1204 => 0.011966440696934
1205 => 0.011765605907569
1206 => 0.012029956294099
1207 => 0.012030087408592
1208 => 0.011858874352863
1209 => 0.011658934987128
1210 => 0.011623190550892
1211 => 0.011596261919777
1212 => 0.011784740522091
1213 => 0.011953729847567
1214 => 0.012268177086273
1215 => 0.012347236593165
1216 => 0.012655811111857
1217 => 0.012472070010196
1218 => 0.012553520060717
1219 => 0.01264194561237
1220 => 0.012684340073574
1221 => 0.012615260574054
1222 => 0.013094603815921
1223 => 0.013135075072232
1224 => 0.013148644734398
1225 => 0.012987012890234
1226 => 0.013130579798256
1227 => 0.013063409596429
1228 => 0.013238167801163
1229 => 0.01326557211909
1230 => 0.013242361636742
1231 => 0.0132510601998
]
'min_raw' => 0.0059422130880643
'max_raw' => 0.01326557211909
'avg_raw' => 0.0096038926035769
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.005942'
'max' => '$0.013265'
'avg' => '$0.0096038'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00091627720151617
'max_diff' => -0.0012658865828809
'year' => 2031
]
6 => [
'items' => [
101 => 0.012842025304809
102 => 0.012820814687673
103 => 0.012531606417983
104 => 0.012649460925601
105 => 0.012429137572523
106 => 0.012499004377366
107 => 0.012529800999226
108 => 0.012513714591659
109 => 0.012656124242635
110 => 0.012535046946936
111 => 0.012215504056637
112 => 0.011895874107091
113 => 0.011891861413439
114 => 0.011807708489661
115 => 0.011746881339146
116 => 0.011758598806294
117 => 0.011799892688858
118 => 0.011744481263623
119 => 0.011756306100627
120 => 0.011952677183377
121 => 0.011992058003568
122 => 0.01185822658948
123 => 0.011320874150132
124 => 0.011189006513669
125 => 0.01128379035571
126 => 0.011238489784076
127 => 0.0090703383839136
128 => 0.0095797133947374
129 => 0.0092770600600468
130 => 0.0094165366410826
131 => 0.0091076059580646
201 => 0.0092550438724452
202 => 0.0092278174732296
203 => 0.010046877417132
204 => 0.010034088922688
205 => 0.010040210098226
206 => 0.0097480304411482
207 => 0.010213480568416
208 => 0.010442778038153
209 => 0.010400341179059
210 => 0.010411021622227
211 => 0.010227496222605
212 => 0.010041987025261
213 => 0.0098362287757462
214 => 0.010218502170857
215 => 0.010175999894945
216 => 0.010273484824051
217 => 0.010521416446247
218 => 0.010557925319416
219 => 0.010606993615191
220 => 0.010589406124075
221 => 0.011008411515421
222 => 0.010957667197842
223 => 0.01107994640307
224 => 0.010828408800571
225 => 0.010543770127174
226 => 0.010597870633448
227 => 0.010592660319645
228 => 0.010526327044814
229 => 0.010466444330258
301 => 0.010366756482372
302 => 0.010682183584108
303 => 0.010669377819815
304 => 0.010876688258646
305 => 0.010840044124877
306 => 0.010595325631223
307 => 0.010604065800099
308 => 0.010662847636171
309 => 0.010866292241974
310 => 0.010926688452541
311 => 0.010898710521434
312 => 0.010964932209129
313 => 0.011017271131008
314 => 0.010971505171893
315 => 0.011619454641095
316 => 0.011350380846603
317 => 0.011481525541835
318 => 0.011512802778898
319 => 0.01143268679385
320 => 0.011450061082268
321 => 0.011476378395012
322 => 0.011636171964536
323 => 0.012055516527609
324 => 0.012241241380019
325 => 0.012800003761998
326 => 0.012225819516441
327 => 0.012191749799521
328 => 0.012292399777522
329 => 0.012620452446749
330 => 0.012886308322736
331 => 0.012974508054395
401 => 0.012986165104952
402 => 0.013151633664951
403 => 0.013246477157736
404 => 0.013131541429512
405 => 0.013034145434114
406 => 0.012685285067835
407 => 0.012725666605147
408 => 0.013003855352783
409 => 0.013396813344054
410 => 0.013734012180876
411 => 0.013615936900787
412 => 0.014516767939708
413 => 0.014606081657652
414 => 0.01459374138969
415 => 0.014797211330831
416 => 0.0143933649336
417 => 0.014220712774629
418 => 0.013055203553811
419 => 0.013382664104357
420 => 0.01385864724566
421 => 0.013795649092064
422 => 0.013449977411783
423 => 0.013733749957909
424 => 0.013639925879772
425 => 0.013565922936581
426 => 0.013904944765516
427 => 0.013532176338352
428 => 0.013854928595446
429 => 0.013440995487279
430 => 0.01361647625872
501 => 0.0135168648858
502 => 0.01358132565199
503 => 0.013204489329993
504 => 0.013407821062158
505 => 0.013196030061442
506 => 0.013195929644932
507 => 0.013191254346853
508 => 0.01344042551997
509 => 0.01344855098298
510 => 0.013264413109569
511 => 0.013237875965237
512 => 0.013335997696515
513 => 0.01322112284731
514 => 0.013274872066239
515 => 0.013222750856397
516 => 0.01321101727422
517 => 0.013117522095135
518 => 0.013077241801282
519 => 0.013093036742397
520 => 0.013039120465521
521 => 0.013006633958466
522 => 0.013184791962926
523 => 0.013089609328016
524 => 0.013170203859015
525 => 0.013078356219101
526 => 0.012759972283049
527 => 0.012576866314576
528 => 0.011975468573579
529 => 0.012146024226894
530 => 0.012259102801494
531 => 0.012221730333263
601 => 0.012302020856249
602 => 0.012306950042267
603 => 0.01228084677478
604 => 0.012250622535065
605 => 0.012235911046677
606 => 0.012345558428224
607 => 0.012409212423774
608 => 0.012270451749252
609 => 0.012237942064679
610 => 0.012378236767808
611 => 0.012463816455671
612 => 0.013095688787777
613 => 0.013048877644494
614 => 0.013166364427911
615 => 0.01315313721908
616 => 0.013276282085214
617 => 0.01347757189644
618 => 0.013068293428702
619 => 0.013139330018916
620 => 0.01312191348747
621 => 0.013312062610941
622 => 0.013312656235749
623 => 0.013198652337575
624 => 0.013260455700277
625 => 0.013225958758703
626 => 0.013288299394668
627 => 0.013048252453136
628 => 0.013340603716456
629 => 0.013506348044059
630 => 0.013508649404209
701 => 0.013587210900065
702 => 0.013667033929829
703 => 0.013820247284341
704 => 0.013662760892529
705 => 0.013379458204649
706 => 0.013399911743652
707 => 0.013233811481404
708 => 0.013236603656821
709 => 0.013221698805619
710 => 0.013266429386061
711 => 0.013058068300124
712 => 0.013106970230527
713 => 0.013038507241593
714 => 0.013139181193749
715 => 0.01303087266323
716 => 0.013121905088691
717 => 0.013161191665748
718 => 0.013306159980866
719 => 0.013009460725217
720 => 0.012404470858174
721 => 0.01253164706302
722 => 0.012343543466578
723 => 0.01236095317059
724 => 0.012396123543427
725 => 0.012282124858032
726 => 0.012303872214694
727 => 0.01230309524608
728 => 0.012296399750319
729 => 0.012266744289409
730 => 0.012223738003937
731 => 0.012395061808624
801 => 0.012424173061504
802 => 0.012488883770534
803 => 0.012681418946916
804 => 0.012662180142503
805 => 0.01269355943071
806 => 0.012625058620741
807 => 0.012364130726699
808 => 0.012378300366708
809 => 0.012201604728749
810 => 0.012484365265806
811 => 0.012417403838374
812 => 0.012374233370499
813 => 0.012362453908368
814 => 0.012555466342211
815 => 0.012613218687516
816 => 0.012577231301538
817 => 0.012503420122976
818 => 0.01264515940613
819 => 0.012683082858802
820 => 0.012691572521292
821 => 0.01294270735523
822 => 0.012705608168749
823 => 0.012762680299498
824 => 0.013207940771644
825 => 0.012804150965153
826 => 0.013018047431239
827 => 0.013007578312287
828 => 0.013117000506475
829 => 0.012998602498569
830 => 0.013000070183776
831 => 0.013097229679313
901 => 0.012960786690639
902 => 0.012927001487841
903 => 0.01288032747215
904 => 0.012982238477877
905 => 0.013043329516771
906 => 0.01353567842384
907 => 0.013853758271645
908 => 0.013839949586576
909 => 0.013966135119332
910 => 0.013909287381098
911 => 0.013725711038666
912 => 0.014039053470448
913 => 0.013939898814228
914 => 0.013948073003614
915 => 0.013947768759877
916 => 0.014013697938012
917 => 0.013966981072983
918 => 0.013874897336621
919 => 0.013936026818186
920 => 0.014117559524244
921 => 0.01468104261395
922 => 0.014996375216108
923 => 0.014662059195357
924 => 0.014892665909801
925 => 0.014754384054708
926 => 0.014729254128109
927 => 0.014874092186482
928 => 0.015019183764703
929 => 0.015009942058419
930 => 0.014904613023165
1001 => 0.014845115323776
1002 => 0.015295651836744
1003 => 0.015627599464809
1004 => 0.01560496286198
1005 => 0.015704873465049
1006 => 0.015998214085779
1007 => 0.016025033475875
1008 => 0.016021654849159
1009 => 0.015955180192494
1010 => 0.016244012128696
1011 => 0.01648496081139
1012 => 0.015939793230114
1013 => 0.016147385908296
1014 => 0.016240580949751
1015 => 0.016377418920328
1016 => 0.0166082875134
1017 => 0.016859072040346
1018 => 0.016894535722168
1019 => 0.016869372542822
1020 => 0.016703973405851
1021 => 0.016978384827717
1022 => 0.017139128602906
1023 => 0.017234847842475
1024 => 0.01747757590786
1025 => 0.016241156490599
1026 => 0.01536595737303
1027 => 0.015229282392793
1028 => 0.015507216339583
1029 => 0.015580505304869
1030 => 0.015550962614859
1031 => 0.014565846438412
1101 => 0.015224095959998
1102 => 0.015932317098033
1103 => 0.015959522756267
1104 => 0.016314073066173
1105 => 0.016429529180586
1106 => 0.016714988652032
1107 => 0.016697133084371
1108 => 0.016766637923016
1109 => 0.016750659964267
1110 => 0.017279413524537
1111 => 0.017862707222178
1112 => 0.017842509616189
1113 => 0.017758654245936
1114 => 0.017883193770228
1115 => 0.018485215375745
1116 => 0.018429790873508
1117 => 0.018483631056383
1118 => 0.019193448457739
1119 => 0.020116312049849
1120 => 0.019687549257324
1121 => 0.020617841143933
1122 => 0.0212034105739
1123 => 0.022216092354018
1124 => 0.022089299607584
1125 => 0.022483529193182
1126 => 0.021862314129023
1127 => 0.020435878773436
1128 => 0.020210139918239
1129 => 0.020662074822961
1130 => 0.021773112687058
1201 => 0.020627084286773
1202 => 0.02085892433956
1203 => 0.020792154388761
1204 => 0.020788596501837
1205 => 0.020924386574757
1206 => 0.020727415991652
1207 => 0.019924922401753
1208 => 0.020292700484879
1209 => 0.02015068370483
1210 => 0.020308261910347
1211 => 0.021158646495327
1212 => 0.020782671199671
1213 => 0.02038661176745
1214 => 0.020883358188079
1215 => 0.021515887082129
1216 => 0.021476304560703
1217 => 0.021399497924926
1218 => 0.021832452909335
1219 => 0.022547567699671
1220 => 0.022740860353935
1221 => 0.022883545039618
1222 => 0.022903218847096
1223 => 0.023105871291325
1224 => 0.022016158023716
1225 => 0.023745560965233
1226 => 0.024044181079441
1227 => 0.023988052874505
1228 => 0.024319956563592
1229 => 0.024222302078679
1230 => 0.024080816051559
1231 => 0.0246069539967
]
'min_raw' => 0.0090703383839136
'max_raw' => 0.0246069539967
'avg_raw' => 0.016838646190307
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00907'
'max' => '$0.0246069'
'avg' => '$0.016838'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0031281252958493
'max_diff' => 0.011341381877611
'year' => 2032
]
7 => [
'items' => [
101 => 0.024003779299738
102 => 0.023147648754983
103 => 0.022677958605789
104 => 0.023296484483072
105 => 0.02367419665275
106 => 0.023923840369902
107 => 0.023999382407873
108 => 0.022100749362665
109 => 0.021077491454313
110 => 0.021733388041891
111 => 0.022533627146299
112 => 0.022011712655086
113 => 0.022032170715027
114 => 0.021288057807271
115 => 0.022599464627361
116 => 0.022408403684341
117 => 0.023399628194708
118 => 0.023163064510235
119 => 0.023971369619325
120 => 0.023758515794848
121 => 0.024642060119757
122 => 0.024994529871971
123 => 0.025586381443475
124 => 0.026021749868742
125 => 0.02627740653533
126 => 0.026262057868012
127 => 0.027275096948679
128 => 0.026677743195699
129 => 0.025927326096487
130 => 0.025913753418698
131 => 0.026302405067873
201 => 0.02711691230317
202 => 0.027328102178684
203 => 0.027446128508044
204 => 0.027265367076103
205 => 0.026616982389973
206 => 0.026337013169887
207 => 0.026575555056889
208 => 0.026283838827223
209 => 0.026787422880745
210 => 0.027478951345979
211 => 0.027336153452508
212 => 0.027813505400925
213 => 0.028307514448647
214 => 0.029013969574224
215 => 0.029198663104007
216 => 0.029503954485473
217 => 0.029818199599996
218 => 0.029919126661638
219 => 0.030111827738139
220 => 0.030110812108346
221 => 0.030691529772662
222 => 0.031332079339732
223 => 0.031573871972544
224 => 0.032129860799173
225 => 0.031177749417744
226 => 0.031899936837625
227 => 0.032551367967881
228 => 0.031774704919037
301 => 0.032845153992587
302 => 0.032886717104423
303 => 0.033514270747151
304 => 0.032878124905516
305 => 0.032500383535402
306 => 0.033590908717136
307 => 0.034118579501355
308 => 0.033959640766821
309 => 0.032750109149243
310 => 0.032046109868561
311 => 0.030203607959697
312 => 0.032386131060905
313 => 0.033449174398433
314 => 0.032747356123811
315 => 0.033101312439199
316 => 0.035032383325236
317 => 0.035767610091058
318 => 0.03561468806339
319 => 0.035640529368755
320 => 0.036037244386283
321 => 0.037796497248952
322 => 0.036742312154478
323 => 0.037548197159641
324 => 0.037975635660545
325 => 0.038372664361591
326 => 0.037397687354032
327 => 0.036129256592454
328 => 0.035727491325161
329 => 0.032677574127726
330 => 0.032518812692481
331 => 0.032429695087914
401 => 0.031867821197053
402 => 0.031426342229048
403 => 0.031075261762628
404 => 0.030153921777238
405 => 0.030464846976088
406 => 0.028996423337977
407 => 0.029935868743902
408 => 0.027592229161148
409 => 0.029544081847292
410 => 0.028481777170075
411 => 0.029195086190233
412 => 0.02919259752226
413 => 0.027879169461318
414 => 0.027121611566311
415 => 0.027604356941603
416 => 0.028121898304293
417 => 0.028205867649171
418 => 0.02887687353511
419 => 0.029064136854652
420 => 0.028496720253951
421 => 0.027543662440032
422 => 0.027765036033271
423 => 0.027117125437509
424 => 0.025981687039959
425 => 0.026797178719932
426 => 0.027075623434113
427 => 0.027198600482541
428 => 0.026082027224531
429 => 0.025731175664879
430 => 0.025544385238451
501 => 0.027399526853749
502 => 0.02750115569918
503 => 0.026981208157082
504 => 0.029331420350815
505 => 0.028799494948892
506 => 0.029393785947727
507 => 0.027744948700012
508 => 0.027807936503329
509 => 0.027027350526472
510 => 0.027464426514738
511 => 0.027155515293848
512 => 0.027429115094155
513 => 0.027593109686365
514 => 0.028373567576744
515 => 0.029552993422733
516 => 0.028256993193899
517 => 0.02769230733513
518 => 0.028042635265996
519 => 0.028975604711567
520 => 0.030389101179435
521 => 0.02955228282119
522 => 0.029923648598482
523 => 0.030004775499907
524 => 0.029387736623236
525 => 0.030411852282953
526 => 0.030960684184896
527 => 0.031523672151529
528 => 0.032012498828393
529 => 0.031298802377285
530 => 0.032062559884338
531 => 0.031447106155002
601 => 0.030894980535352
602 => 0.030895817882009
603 => 0.030549461415534
604 => 0.029878352118015
605 => 0.029754589266889
606 => 0.030398419247973
607 => 0.030914709921877
608 => 0.030957234094645
609 => 0.031243079139691
610 => 0.031412239292911
611 => 0.033070238756543
612 => 0.033737099856507
613 => 0.034552524986508
614 => 0.034870179029485
615 => 0.035826203813571
616 => 0.035054136155885
617 => 0.034887094461612
618 => 0.032568091048744
619 => 0.032947827727688
620 => 0.033555822789817
621 => 0.03257811666338
622 => 0.033198246163676
623 => 0.033320672863173
624 => 0.032544894583328
625 => 0.032959271281994
626 => 0.031858809624466
627 => 0.029576980479653
628 => 0.030414392611087
629 => 0.031031009809698
630 => 0.030151021038927
701 => 0.031728366850264
702 => 0.030806913990308
703 => 0.03051485767124
704 => 0.029375441844958
705 => 0.029913202254826
706 => 0.030640530909159
707 => 0.030191126361813
708 => 0.031123708275989
709 => 0.032444492976975
710 => 0.033385762808986
711 => 0.033458021818894
712 => 0.032852848377091
713 => 0.033822642679745
714 => 0.033829706572491
715 => 0.032735774637372
716 => 0.03206574741815
717 => 0.031913515824194
718 => 0.032293820192659
719 => 0.032755579904036
720 => 0.033483646269191
721 => 0.033923601525366
722 => 0.035070771499232
723 => 0.03538116280222
724 => 0.03572218873944
725 => 0.036177904560071
726 => 0.036725108245876
727 => 0.035527857733658
728 => 0.035575426728462
729 => 0.034460563628546
730 => 0.033269172518745
731 => 0.034173289862086
801 => 0.035355303018814
802 => 0.035084147894652
803 => 0.035053637403987
804 => 0.035104947586381
805 => 0.034900505477861
806 => 0.033975821398005
807 => 0.03351145084193
808 => 0.03411060733283
809 => 0.034429032342357
810 => 0.034922881762553
811 => 0.034862004397617
812 => 0.036134107468487
813 => 0.036628408255427
814 => 0.036501944961804
815 => 0.03652521725134
816 => 0.037420125215211
817 => 0.038415446922897
818 => 0.039347697046411
819 => 0.040296021913124
820 => 0.039152779272552
821 => 0.038572311165073
822 => 0.039171206082993
823 => 0.038853424009488
824 => 0.040679494064132
825 => 0.040805927192748
826 => 0.042631865201742
827 => 0.044364897800931
828 => 0.043276411075885
829 => 0.044302805031085
830 => 0.045412933776761
831 => 0.047554552239068
901 => 0.046833330484009
902 => 0.046280885922619
903 => 0.045758828481499
904 => 0.046845147142186
905 => 0.048242678744794
906 => 0.048543693666605
907 => 0.049031452836489
908 => 0.04851863370971
909 => 0.049136267862741
910 => 0.051316787825141
911 => 0.050727592083318
912 => 0.049890839411988
913 => 0.05161215050294
914 => 0.052235086295328
915 => 0.056607175920313
916 => 0.062127119673871
917 => 0.059841826713993
918 => 0.058423271627854
919 => 0.058756665721673
920 => 0.060772362318584
921 => 0.0614197400905
922 => 0.059659944141933
923 => 0.060281533821434
924 => 0.063706554068837
925 => 0.065543967543763
926 => 0.063048513247261
927 => 0.056163653814364
928 => 0.049815498989044
929 => 0.051499315509857
930 => 0.051308422971307
1001 => 0.054988179947163
1002 => 0.050713539959736
1003 => 0.050785513934199
1004 => 0.054541364387386
1005 => 0.053539367878054
1006 => 0.051916261858952
1007 => 0.049827349459221
1008 => 0.045965801687307
1009 => 0.042545521138497
1010 => 0.049253478938281
1011 => 0.048964219600325
1012 => 0.048545329213132
1013 => 0.049477524441156
1014 => 0.05400399986021
1015 => 0.053899649951029
1016 => 0.053235829068616
1017 => 0.053739331357278
1018 => 0.051827995473352
1019 => 0.052320590250948
1020 => 0.049814493408886
1021 => 0.050947353845348
1022 => 0.051912779402409
1023 => 0.052106602876358
1024 => 0.052543297060039
1025 => 0.048811793073268
1026 => 0.050487128812127
1027 => 0.051471231600976
1028 => 0.047025019398988
1029 => 0.051383344281405
1030 => 0.048746835890705
1031 => 0.047851965343875
1101 => 0.049056790644952
1102 => 0.048587269053391
1103 => 0.0481836019602
1104 => 0.047958348786318
1105 => 0.048843039515714
1106 => 0.048801767635753
1107 => 0.047354241891391
1108 => 0.045466003566568
1109 => 0.046099758327689
1110 => 0.045869509281491
1111 => 0.045035057035353
1112 => 0.045597377097102
1113 => 0.043121204128829
1114 => 0.038861077237188
1115 => 0.041675447553022
1116 => 0.041567097357308
1117 => 0.041512462275339
1118 => 0.043627383784206
1119 => 0.04342408288067
1120 => 0.043055089750022
1121 => 0.04502828018714
1122 => 0.044308039134436
1123 => 0.046527652348737
1124 => 0.047989633167258
1125 => 0.047618827541556
1126 => 0.048993827567741
1127 => 0.04611435875738
1128 => 0.047070802791945
1129 => 0.047267924581895
1130 => 0.045003931323437
1201 => 0.043457345422753
1202 => 0.043354205775547
1203 => 0.040672638956427
1204 => 0.04210511030635
1205 => 0.04336562581459
1206 => 0.042761936706098
1207 => 0.042570826769049
1208 => 0.043547165990746
1209 => 0.043623035910052
1210 => 0.041893193709545
1211 => 0.042252882680009
1212 => 0.043752845480157
1213 => 0.042215087465953
1214 => 0.0392274748357
1215 => 0.038486505596421
1216 => 0.038387646641128
1217 => 0.036378079297192
1218 => 0.038536020704071
1219 => 0.037594021450734
1220 => 0.040569785805143
1221 => 0.038870045165249
1222 => 0.038796772743492
1223 => 0.038686010731278
1224 => 0.036956293104171
1225 => 0.037334991335217
1226 => 0.038593841932586
1227 => 0.039043014007694
1228 => 0.038996161680302
1229 => 0.038587672877895
1230 => 0.038774676959836
1231 => 0.038172271655364
]
'min_raw' => 0.021077491454313
'max_raw' => 0.065543967543763
'avg_raw' => 0.043310729499038
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.021077'
'max' => '$0.065543'
'avg' => '$0.04331'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0120071530704
'max_diff' => 0.040937013547063
'year' => 2033
]
8 => [
'items' => [
101 => 0.037959549804372
102 => 0.037288141128889
103 => 0.03630135585731
104 => 0.036438574401629
105 => 0.034483494572218
106 => 0.033418263317215
107 => 0.033123421345353
108 => 0.032729146338284
109 => 0.033167955756527
110 => 0.034477956076704
111 => 0.032897817758499
112 => 0.030188781445751
113 => 0.03035159914412
114 => 0.030717402171348
115 => 0.030035730650138
116 => 0.029390585763668
117 => 0.029951486900195
118 => 0.028803632501889
119 => 0.030856114891444
120 => 0.030800600994822
121 => 0.031565639504988
122 => 0.032044033785566
123 => 0.030941489850822
124 => 0.030664203032829
125 => 0.030822158206341
126 => 0.02821151103769
127 => 0.031352293934828
128 => 0.031379455555746
129 => 0.031146881267146
130 => 0.032819251199079
131 => 0.03634847338072
201 => 0.035020638033354
202 => 0.034506460052817
203 => 0.033529007335956
204 => 0.034831405045774
205 => 0.034731401222229
206 => 0.034279146006836
207 => 0.034005620641444
208 => 0.034509599513924
209 => 0.033943172081856
210 => 0.033841426150672
211 => 0.03322495650836
212 => 0.033004904893636
213 => 0.032841987438602
214 => 0.032662631328548
215 => 0.033058246214569
216 => 0.032161730835371
217 => 0.031080621174545
218 => 0.030990738604016
219 => 0.031238912283803
220 => 0.031129113904855
221 => 0.03099021293162
222 => 0.030725013146285
223 => 0.030646334035073
224 => 0.030902002976834
225 => 0.030613367648012
226 => 0.031039264798469
227 => 0.030923444339509
228 => 0.030276480670758
301 => 0.029470124402866
302 => 0.029462946140693
303 => 0.029289218005465
304 => 0.029067949105052
305 => 0.029006397158904
306 => 0.029904249370957
307 => 0.031762776579451
308 => 0.031397903217637
309 => 0.031661561615274
310 => 0.032958499979341
311 => 0.03337075768498
312 => 0.033078146930376
313 => 0.032677603282029
314 => 0.032695225169763
315 => 0.034064004068974
316 => 0.034149373129939
317 => 0.034365073205896
318 => 0.034642308760335
319 => 0.033125361344098
320 => 0.032623777082875
321 => 0.032386098633072
322 => 0.031654141000816
323 => 0.0324434945539
324 => 0.031983572042007
325 => 0.032045631302052
326 => 0.032005215127534
327 => 0.03202728509175
328 => 0.030855541180786
329 => 0.031282463076895
330 => 0.030572622621751
331 => 0.029622225935643
401 => 0.0296190398727
402 => 0.029851648115198
403 => 0.029713283630599
404 => 0.029340948360217
405 => 0.029393836828002
406 => 0.028930478198346
407 => 0.029450096955021
408 => 0.029464997761677
409 => 0.029264916236532
410 => 0.03006546062476
411 => 0.030393444313799
412 => 0.030261746367787
413 => 0.030384204034827
414 => 0.031413065353125
415 => 0.031580814640374
416 => 0.031655317792874
417 => 0.0315554934383
418 => 0.030403009731018
419 => 0.030454127284175
420 => 0.030079060596138
421 => 0.029762168768301
422 => 0.029774842779535
423 => 0.029937766372098
424 => 0.030649263256161
425 => 0.03214656650364
426 => 0.032203388067367
427 => 0.032272257460207
428 => 0.031992131028544
429 => 0.031907642216306
430 => 0.032019104768061
501 => 0.032581413143349
502 => 0.034027822949826
503 => 0.033516565121754
504 => 0.03310090454933
505 => 0.033465550932632
506 => 0.033409416480115
507 => 0.03293558520916
508 => 0.032922286343528
509 => 0.032012852641543
510 => 0.031676655708723
511 => 0.031395704387754
512 => 0.031088912879676
513 => 0.030907036589943
514 => 0.031186481232269
515 => 0.03125039352826
516 => 0.030639382933959
517 => 0.030556104447718
518 => 0.031055068888604
519 => 0.030835493241439
520 => 0.031061332239762
521 => 0.031113728824584
522 => 0.031105291767632
523 => 0.03087602957389
524 => 0.031022154459484
525 => 0.030676525543128
526 => 0.030300706008376
527 => 0.030060956559589
528 => 0.029851743367372
529 => 0.029967827005956
530 => 0.02955401003044
531 => 0.029421621651482
601 => 0.030972650636159
602 => 0.032118412423511
603 => 0.032101752593351
604 => 0.032000340161815
605 => 0.031849661859314
606 => 0.032570390087004
607 => 0.032319302783893
608 => 0.032501989775953
609 => 0.032548491282781
610 => 0.032689237338592
611 => 0.032739541956012
612 => 0.032587486463365
613 => 0.032077169658027
614 => 0.030805508698592
615 => 0.030213547089191
616 => 0.030018189898189
617 => 0.030025290761046
618 => 0.029829417263807
619 => 0.029887110787178
620 => 0.029809353810835
621 => 0.029662100909075
622 => 0.02995873455422
623 => 0.02999291881849
624 => 0.029923680981205
625 => 0.029939988998332
626 => 0.029366729277478
627 => 0.029410312969
628 => 0.029167633436259
629 => 0.029122133949415
630 => 0.028508661223169
701 => 0.027421805364332
702 => 0.028024029013779
703 => 0.027296627530706
704 => 0.027021149567135
705 => 0.028325219401066
706 => 0.028194326959006
707 => 0.027970295995777
708 => 0.027638907509017
709 => 0.027515992295737
710 => 0.02676919837008
711 => 0.026725073800962
712 => 0.027095205035649
713 => 0.026924402206279
714 => 0.026684530345753
715 => 0.025815738782349
716 => 0.024838929418082
717 => 0.024868413152785
718 => 0.025179118037374
719 => 0.026082534393579
720 => 0.025729553993948
721 => 0.025473462664032
722 => 0.025425504456016
723 => 0.026025801836647
724 => 0.026875348396429
725 => 0.027273936634745
726 => 0.026878947795878
727 => 0.026425205885497
728 => 0.026452823053145
729 => 0.026636547696793
730 => 0.026655854559114
731 => 0.026360515220878
801 => 0.026443651514631
802 => 0.026317359882278
803 => 0.025542308367641
804 => 0.025528290143456
805 => 0.02533808000237
806 => 0.025332320514893
807 => 0.025008725614762
808 => 0.024963452451328
809 => 0.024320935136313
810 => 0.024743841978777
811 => 0.024460178272458
812 => 0.02403263015753
813 => 0.023958920701364
814 => 0.023956704906105
815 => 0.024395701222127
816 => 0.024738712051229
817 => 0.024465112724076
818 => 0.024402819460784
819 => 0.025067948540281
820 => 0.024983304802129
821 => 0.024910003870782
822 => 0.026799280819908
823 => 0.025303770692556
824 => 0.024651642916297
825 => 0.02384451095747
826 => 0.024107317193177
827 => 0.024162694328467
828 => 0.02222168746396
829 => 0.021434221220766
830 => 0.021163992481141
831 => 0.021008472021014
901 => 0.021079344647597
902 => 0.020370532668145
903 => 0.020846866041005
904 => 0.020233094781184
905 => 0.020130194032091
906 => 0.021227693076319
907 => 0.021380403656827
908 => 0.020728892876921
909 => 0.021147268267635
910 => 0.020995559535109
911 => 0.020243616127803
912 => 0.020214897420566
913 => 0.019837598650868
914 => 0.01924719913573
915 => 0.018977370714778
916 => 0.018836841730389
917 => 0.018894826728203
918 => 0.018865507738938
919 => 0.018674181501854
920 => 0.018876474334889
921 => 0.018359699739654
922 => 0.018153915931896
923 => 0.018060968160079
924 => 0.017602300962372
925 => 0.018332244444153
926 => 0.018476052505649
927 => 0.018620143913451
928 => 0.019874361242986
929 => 0.019811704089584
930 => 0.020378094241069
1001 => 0.020356085361307
1002 => 0.020194541715191
1003 => 0.01951301564487
1004 => 0.019784659789466
1005 => 0.018948581335272
1006 => 0.019575028160963
1007 => 0.019289143990762
1008 => 0.019478370435444
1009 => 0.019138124226046
1010 => 0.019326430526749
1011 => 0.018510154731957
1012 => 0.017747927880092
1013 => 0.018054670216071
1014 => 0.018388134215522
1015 => 0.019111169131379
1016 => 0.018680535500403
1017 => 0.018835407638163
1018 => 0.018316611901952
1019 => 0.017246188111473
1020 => 0.017252246593879
1021 => 0.017087585214164
1022 => 0.016945293741135
1023 => 0.018729998953187
1024 => 0.018508042648054
1025 => 0.018154384324748
1026 => 0.018627770044317
1027 => 0.018752940742212
1028 => 0.018756504176012
1029 => 0.019101874177155
1030 => 0.019286198208677
1031 => 0.019318686118138
1101 => 0.01986213327715
1102 => 0.020044289596609
1103 => 0.020794565696736
1104 => 0.019270559602402
1105 => 0.01923917369979
1106 => 0.018634431552184
1107 => 0.018250894521577
1108 => 0.0186606926608
1109 => 0.019023717869126
1110 => 0.018645711757335
1111 => 0.018695071375391
1112 => 0.018187629054545
1113 => 0.018369015806867
1114 => 0.018525250513401
1115 => 0.018438986891505
1116 => 0.018309846074319
1117 => 0.018993953941929
1118 => 0.018955353894998
1119 => 0.019592410868887
1120 => 0.020089042336416
1121 => 0.02097909470972
1122 => 0.020050278658697
1123 => 0.020016428910089
1124 => 0.020347315632409
1125 => 0.020044238939576
1126 => 0.020235772947595
1127 => 0.020948235619924
1128 => 0.020963288833506
1129 => 0.020711128111032
1130 => 0.020695784108153
1201 => 0.02074421433324
1202 => 0.021027871674267
1203 => 0.020928753083402
1204 => 0.021043455626126
1205 => 0.02118689291219
1206 => 0.0217802103435
1207 => 0.021923257167522
1208 => 0.021575727546423
1209 => 0.021607105580084
1210 => 0.021477119961892
1211 => 0.021351555483433
1212 => 0.021633806093789
1213 => 0.022149624631864
1214 => 0.02214641575151
1215 => 0.022266075626263
1216 => 0.022340622736919
1217 => 0.022020611966165
1218 => 0.021812296721526
1219 => 0.021892178041764
1220 => 0.022019910012413
1221 => 0.021850756285211
1222 => 0.020806661121288
1223 => 0.021123372896965
1224 => 0.021070656571077
1225 => 0.02099558211249
1226 => 0.021314038251993
1227 => 0.021283322380459
1228 => 0.020363262776795
1229 => 0.020422162007496
1230 => 0.020366844634094
1231 => 0.020545586384424
]
'min_raw' => 0.016945293741135
'max_raw' => 0.037959549804372
'avg_raw' => 0.027452421772754
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.016945'
'max' => '$0.037959'
'avg' => '$0.027452'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0041321977131782
'max_diff' => -0.027584417739391
'year' => 2034
]
9 => [
'items' => [
101 => 0.020034586298478
102 => 0.020191766483277
103 => 0.02029034842171
104 => 0.020348413940789
105 => 0.020558186411602
106 => 0.020533572033337
107 => 0.020556656347289
108 => 0.020867693543626
109 => 0.022440812947622
110 => 0.022526434365889
111 => 0.022104803187779
112 => 0.022273236527127
113 => 0.021949881347901
114 => 0.022166951846007
115 => 0.022315465967818
116 => 0.021644359208978
117 => 0.021604620622166
118 => 0.021279930841092
119 => 0.021454400738072
120 => 0.021176806587147
121 => 0.021244918481953
122 => 0.021054471686188
123 => 0.021397238000986
124 => 0.021780504001431
125 => 0.021877332128776
126 => 0.021622619012861
127 => 0.021438189930525
128 => 0.021114393216661
129 => 0.021652874368098
130 => 0.021810342666694
131 => 0.021652047254162
201 => 0.021615366748255
202 => 0.021545857255842
203 => 0.021630113515663
204 => 0.021809485060521
205 => 0.021724896752438
206 => 0.021780768820181
207 => 0.021567842112971
208 => 0.022020717903045
209 => 0.022739993648178
210 => 0.022742306237312
211 => 0.022657717473266
212 => 0.022623105573509
213 => 0.022709898778695
214 => 0.022756980532065
215 => 0.023037653842485
216 => 0.023338827487084
217 => 0.024744273474071
218 => 0.024349629864908
219 => 0.025596625154918
220 => 0.026582836527244
221 => 0.026878558196008
222 => 0.026606508175525
223 => 0.025675839751306
224 => 0.025630176718426
225 => 0.027020988262282
226 => 0.026628020297938
227 => 0.026581278008993
228 => 0.026084019026962
301 => 0.026377960672066
302 => 0.026313671322418
303 => 0.026212187438856
304 => 0.026773007621561
305 => 0.027822812938821
306 => 0.027659190935114
307 => 0.027537054699553
308 => 0.027001889268649
309 => 0.02732417839158
310 => 0.027209417407946
311 => 0.027702503422758
312 => 0.027410410190776
313 => 0.026625043179114
314 => 0.026750115464324
315 => 0.026731211040025
316 => 0.027120262752519
317 => 0.027003479085285
318 => 0.026708407154687
319 => 0.027819224818375
320 => 0.027747094497988
321 => 0.02784935880101
322 => 0.02789437870983
323 => 0.028570513846914
324 => 0.028847504778666
325 => 0.028910386569583
326 => 0.0291735065315
327 => 0.028903839905233
328 => 0.029982698679345
329 => 0.030700076810975
330 => 0.031533348426803
331 => 0.032750982219825
401 => 0.033208823789744
402 => 0.033126118808119
403 => 0.034049314853325
404 => 0.035708277625067
405 => 0.033461442615849
406 => 0.035827365336297
407 => 0.035078341518894
408 => 0.033302419522196
409 => 0.033188071082353
410 => 0.034390746077396
411 => 0.037058163463222
412 => 0.03639000566167
413 => 0.037059256330024
414 => 0.036278539876047
415 => 0.036239770723712
416 => 0.037021338674446
417 => 0.038847514792388
418 => 0.037979966971942
419 => 0.03673612443988
420 => 0.037654558409221
421 => 0.036858925907926
422 => 0.035066143198994
423 => 0.036389494733991
424 => 0.03550460724942
425 => 0.035762864460624
426 => 0.037622766336113
427 => 0.037398978021764
428 => 0.037688580822771
429 => 0.037177439459218
430 => 0.036699952826065
501 => 0.035808688566662
502 => 0.035544829158249
503 => 0.035617750406068
504 => 0.0355447930221
505 => 0.035046138860106
506 => 0.0349384545413
507 => 0.034758975958866
508 => 0.034814603876401
509 => 0.034477131633113
510 => 0.03511401148152
511 => 0.03523222199355
512 => 0.035695690035849
513 => 0.035743808825497
514 => 0.037034560726243
515 => 0.036323636269517
516 => 0.036800585773353
517 => 0.036757922920507
518 => 0.033340909136931
519 => 0.03381174348774
520 => 0.03454421398164
521 => 0.034214237016978
522 => 0.033747726791665
523 => 0.033370994772028
524 => 0.032800207239452
525 => 0.033603579730549
526 => 0.034659929127202
527 => 0.035770599589438
528 => 0.037104997375802
529 => 0.036807175323988
530 => 0.035745653951009
531 => 0.035793273024359
601 => 0.036087635398394
602 => 0.035706409378377
603 => 0.035593978382658
604 => 0.036072189106078
605 => 0.03607548228051
606 => 0.035636835671777
607 => 0.035149360237652
608 => 0.035147317697784
609 => 0.035060576152735
610 => 0.036293971004213
611 => 0.036972213462241
612 => 0.037049972867012
613 => 0.036966979634746
614 => 0.036998920435962
615 => 0.036604266093688
616 => 0.037506328889016
617 => 0.038334150914773
618 => 0.038112276928032
619 => 0.037779656280662
620 => 0.03751470791385
621 => 0.038049863512992
622 => 0.038026033876575
623 => 0.038326920611555
624 => 0.03831327065125
625 => 0.038212093759199
626 => 0.038112280541378
627 => 0.038508028667663
628 => 0.038394059562814
629 => 0.038279913432465
630 => 0.038050975893152
701 => 0.038082092306995
702 => 0.037749529091269
703 => 0.037595670130616
704 => 0.035282000521671
705 => 0.034663712400826
706 => 0.034858238430059
707 => 0.034922281449749
708 => 0.034653201667199
709 => 0.035038992954451
710 => 0.034978867790987
711 => 0.035212779629981
712 => 0.035066641668249
713 => 0.035072639221173
714 => 0.03550239980673
715 => 0.035627161133049
716 => 0.035563706515535
717 => 0.035608147954545
718 => 0.036632282158956
719 => 0.036486683025057
720 => 0.036409336387071
721 => 0.03643076193439
722 => 0.036692450181302
723 => 0.036765708602788
724 => 0.036455307523171
725 => 0.036601694466726
726 => 0.037224991493113
727 => 0.037443110176792
728 => 0.038139240312188
729 => 0.037843511857946
730 => 0.038386334234536
731 => 0.04005478515839
801 => 0.041387659204386
802 => 0.040161893148338
803 => 0.042609546593324
804 => 0.04451539589528
805 => 0.044442246224712
806 => 0.044109917315828
807 => 0.041940158555177
808 => 0.039943514194346
809 => 0.041613791984179
810 => 0.041618049865761
811 => 0.041474571522318
812 => 0.040583439853723
813 => 0.041443562071891
814 => 0.041511835450064
815 => 0.041473620513644
816 => 0.040790391952701
817 => 0.039747228221885
818 => 0.039951059917905
819 => 0.04028494039404
820 => 0.039652834997953
821 => 0.039450839023286
822 => 0.039826387971498
823 => 0.041036484931367
824 => 0.040807723110718
825 => 0.040801749215082
826 => 0.041780489293926
827 => 0.041079922622802
828 => 0.039953630888351
829 => 0.03966922737144
830 => 0.038659786483568
831 => 0.039357010900326
901 => 0.039382102765841
902 => 0.039000240078243
903 => 0.039984616940885
904 => 0.039975545734799
905 => 0.040910065060717
906 => 0.042696515022441
907 => 0.042168173862895
908 => 0.041553770577699
909 => 0.041620573250355
910 => 0.042353233686346
911 => 0.041910250461735
912 => 0.042069550317894
913 => 0.042352992566935
914 => 0.042524000313257
915 => 0.041595967867319
916 => 0.041379599111247
917 => 0.040936984571439
918 => 0.040821514699795
919 => 0.041182015007013
920 => 0.041087035912725
921 => 0.039379993891705
922 => 0.039201598502616
923 => 0.039207069634509
924 => 0.038758485946407
925 => 0.03807428814963
926 => 0.039872319108232
927 => 0.039727912058829
928 => 0.039568497852506
929 => 0.039588025183176
930 => 0.040368489481382
1001 => 0.039915780774031
1002 => 0.041119381070021
1003 => 0.040871957032702
1004 => 0.040618187502443
1005 => 0.040583108823352
1006 => 0.0404854292048
1007 => 0.040150449447803
1008 => 0.039745941262067
1009 => 0.039478849919944
1010 => 0.036417152207038
1011 => 0.036985385493477
1012 => 0.037639086093431
1013 => 0.037864740920995
1014 => 0.037478742723609
1015 => 0.040165691009323
1016 => 0.040656622353201
1017 => 0.039169559289935
1018 => 0.038891390507183
1019 => 0.04018392770841
1020 => 0.039404369769824
1021 => 0.039755404661836
1022 => 0.038996659231125
1023 => 0.040538371368608
1024 => 0.040526626105195
1025 => 0.039926865262566
1026 => 0.040433779019771
1027 => 0.040345690279922
1028 => 0.03966856176574
1029 => 0.04055983755028
1030 => 0.04056027961195
1031 => 0.039983022840845
1101 => 0.03930891330995
1102 => 0.039188398447583
1103 => 0.039097606687682
1104 => 0.039733075454537
1105 => 0.040302834763839
1106 => 0.041363015583139
1107 => 0.041629570230387
1108 => 0.04266995076414
1109 => 0.042050454811498
1110 => 0.042325069343489
1111 => 0.042623202264561
1112 => 0.042766138150399
1113 => 0.042533231794789
1114 => 0.044149371001419
1115 => 0.044285822667685
1116 => 0.044331573731081
1117 => 0.04378662068371
1118 => 0.044270666537625
1119 => 0.044044197512492
1120 => 0.04463340700098
1121 => 0.044725802572179
1122 => 0.044647546810441
1123 => 0.044676874623105
1124 => 0.043297784916739
1125 => 0.043226271840186
1126 => 0.042251185967051
1127 => 0.042648540667824
1128 => 0.041905705100435
1129 => 0.042141265910909
1130 => 0.042245098871659
1201 => 0.042190862425432
1202 => 0.04267100650642
1203 => 0.042262785950625
1204 => 0.041185424786208
1205 => 0.040107770095463
1206 => 0.04009424101866
1207 => 0.039810513560772
1208 => 0.039605430575995
1209 => 0.039644936834572
1210 => 0.039784162042683
1211 => 0.039597338553802
1212 => 0.039637206817346
1213 => 0.040299285633029
1214 => 0.040432060817784
1215 => 0.039980838861372
1216 => 0.038169117595362
1217 => 0.037724516652325
1218 => 0.03804408699336
1219 => 0.037891352953311
1220 => 0.030581279132168
1221 => 0.032298672544588
1222 => 0.031278255696098
1223 => 0.031748510727004
1224 => 0.030706929360357
1225 => 0.031204026582478
1226 => 0.031112230876636
1227 => 0.033873748662442
1228 => 0.03383063136056
1229 => 0.033851269331254
1230 => 0.032866165218083
1231 => 0.034435462818856
]
'min_raw' => 0.020034586298478
'max_raw' => 0.044725802572179
'avg_raw' => 0.032380194435329
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.020034'
'max' => '$0.044725'
'avg' => '$0.03238'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0030892925573431
'max_diff' => 0.006766252767807
'year' => 2035
]
10 => [
'items' => [
101 => 0.035208555247113
102 => 0.035065476413831
103 => 0.035101486273656
104 => 0.034482717575497
105 => 0.033857260364813
106 => 0.033163532060991
107 => 0.034452393502083
108 => 0.034309094111432
109 => 0.034637771356092
110 => 0.035473690130359
111 => 0.035596782345216
112 => 0.035762219530262
113 => 0.035702922076044
114 => 0.037115628006989
115 => 0.036944539997418
116 => 0.037356812875105
117 => 0.036508736286484
118 => 0.035549057126291
119 => 0.035731460760368
120 => 0.035713893823609
121 => 0.035490246556275
122 => 0.035288347803271
123 => 0.03495224326414
124 => 0.036015727760062
125 => 0.035972552231679
126 => 0.036671513850149
127 => 0.036547965594734
128 => 0.035722880107682
129 => 0.035752348197266
130 => 0.035950535261598
131 => 0.036636462954112
201 => 0.036840092994769
202 => 0.036745763446683
203 => 0.036969034490199
204 => 0.0371454988195
205 => 0.036991195693066
206 => 0.039175802566868
207 => 0.038268601482606
208 => 0.038710764978811
209 => 0.038816218367277
210 => 0.038546101730166
211 => 0.038604680356604
212 => 0.038693411013937
213 => 0.039232166190018
214 => 0.04064601566212
215 => 0.041272199968916
216 => 0.043156106351299
217 => 0.041220204079143
218 => 0.041105335649873
219 => 0.041444684077863
220 => 0.042550736556065
221 => 0.043447088203421
222 => 0.043744459756617
223 => 0.043783762316441
224 => 0.044341651119122
225 => 0.044661422576808
226 => 0.044273908744544
227 => 0.04394553134609
228 => 0.042769324264528
229 => 0.042905473436925
301 => 0.043843406222097
302 => 0.045168291525118
303 => 0.046305180945932
304 => 0.04590708189536
305 => 0.048944296637096
306 => 0.04924542407283
307 => 0.049203817997827
308 => 0.049889831110199
309 => 0.048528234786282
310 => 0.047946125978121
311 => 0.044016530266877
312 => 0.045120586375611
313 => 0.046725396768596
314 => 0.046512994095355
315 => 0.045347537891264
316 => 0.046304296842892
317 => 0.045987962412865
318 => 0.045738456323175
319 => 0.04688149208918
320 => 0.045624677311136
321 => 0.046712859079772
322 => 0.045317254705698
323 => 0.045908900378289
324 => 0.045573053679845
325 => 0.045790387653562
326 => 0.044519857684077
327 => 0.045205404815239
328 => 0.044491336669551
329 => 0.044490998108275
330 => 0.044475235014382
331 => 0.045315333021122
401 => 0.045342728586961
402 => 0.044721894890663
403 => 0.044632423055781
404 => 0.044963247323426
405 => 0.044575938749027
406 => 0.044757157993297
407 => 0.044581427695325
408 => 0.044541867103805
409 => 0.044226641579895
410 => 0.044090833756888
411 => 0.044144087503626
412 => 0.043962305011823
413 => 0.043852774485151
414 => 0.044453446635784
415 => 0.044132531736746
416 => 0.044404261824939
417 => 0.044094591094372
418 => 0.043021137425114
419 => 0.042403782868357
420 => 0.040376128396336
421 => 0.040951168689303
422 => 0.041332420998463
423 => 0.04120641711256
424 => 0.041477122216511
425 => 0.041493741311317
426 => 0.041405732322511
427 => 0.041303829188123
428 => 0.0412542283779
429 => 0.041623912180122
430 => 0.041838526070297
501 => 0.041370684768185
502 => 0.041261076096896
503 => 0.041734089483557
504 => 0.04202262737617
505 => 0.044153029059783
506 => 0.043995202021954
507 => 0.044391316914912
508 => 0.044346720456844
509 => 0.044761911970715
510 => 0.04544057462287
511 => 0.044060663693978
512 => 0.044300168517504
513 => 0.044241447465749
514 => 0.044882548511318
515 => 0.044884549958803
516 => 0.044500177856613
517 => 0.044708552208935
518 => 0.04459224336192
519 => 0.04480242916856
520 => 0.043993094145641
521 => 0.04497877684124
522 => 0.045537595413654
523 => 0.045545354610074
524 => 0.04581023017834
525 => 0.046079359096257
526 => 0.046595928618009
527 => 0.046064952252664
528 => 0.045109777460915
529 => 0.045178737995683
530 => 0.044618719364766
531 => 0.044628133379127
601 => 0.044577880632677
602 => 0.044728692907625
603 => 0.044026188959082
604 => 0.04419106523166
605 => 0.043960237484537
606 => 0.044299666743061
607 => 0.043934496970556
608 => 0.04424141914868
609 => 0.044373876586127
610 => 0.044862647381912
611 => 0.043862305126611
612 => 0.041822539550834
613 => 0.042251323004629
614 => 0.041617118596253
615 => 0.041675816628834
616 => 0.041794395996372
617 => 0.041410041469427
618 => 0.041483364200765
619 => 0.041480744596838
620 => 0.041458170265415
621 => 0.041358184808481
622 => 0.041213186114406
623 => 0.041790816283355
624 => 0.041888966904922
625 => 0.042107143578376
626 => 0.042756289367923
627 => 0.042691424395636
628 => 0.042797221856659
629 => 0.042566266593273
630 => 0.041686529981107
701 => 0.041734303911688
702 => 0.041138562231816
703 => 0.042091909124212
704 => 0.041866143996528
705 => 0.041720591750022
706 => 0.04168087647103
707 => 0.042331631367431
708 => 0.042526347431768
709 => 0.042405013447382
710 => 0.04215615390553
711 => 0.042634037794605
712 => 0.042761899363019
713 => 0.042790522852834
714 => 0.043637241479128
715 => 0.042837845018173
716 => 0.043030267691643
717 => 0.044531494460576
718 => 0.043170088936287
719 => 0.043891255805469
720 => 0.043855958439994
721 => 0.044224883007311
722 => 0.043825695857373
723 => 0.043830644260517
724 => 0.04415822428318
725 => 0.043698197220719
726 => 0.043584288050678
727 => 0.0434269233481
728 => 0.043770523419107
729 => 0.043976496121981
730 => 0.045636484836867
731 => 0.046708913251365
801 => 0.046662356305563
802 => 0.047087799639244
803 => 0.046896133520807
804 => 0.046277193065405
805 => 0.047333648951028
806 => 0.046999342104825
807 => 0.047026901955043
808 => 0.047025876176042
809 => 0.047248161003155
810 => 0.04709065183104
811 => 0.046780185084817
812 => 0.046986287399836
813 => 0.047598337592518
814 => 0.049498160170596
815 => 0.05056132605459
816 => 0.049434156249429
817 => 0.050211662887624
818 => 0.049745435958649
819 => 0.049660708656604
820 => 0.05014904028268
821 => 0.050638226668622
822 => 0.050607067610648
823 => 0.050251943414453
824 => 0.050051342766965
825 => 0.051570358075891
826 => 0.052689542679756
827 => 0.052613221792881
828 => 0.052950077366665
829 => 0.053939095749844
830 => 0.05402951919602
831 => 0.054018127920161
901 => 0.053794003974103
902 => 0.054767821012609
903 => 0.055580196318811
904 => 0.053742125756154
905 => 0.054442038964303
906 => 0.054756252553237
907 => 0.055217611324762
908 => 0.055996000905033
909 => 0.056841538446847
910 => 0.056961106726107
911 => 0.056876267310103
912 => 0.056318612572008
913 => 0.057243809839621
914 => 0.057785768700444
915 => 0.058108492799555
916 => 0.058926867418733
917 => 0.054758193029391
918 => 0.051807398100054
919 => 0.051346588861843
920 => 0.052283662568174
921 => 0.05253076143151
922 => 0.052431156189535
923 => 0.049109768222028
924 => 0.051329102441571
925 => 0.053716919454877
926 => 0.053808645231049
927 => 0.055004036354809
928 => 0.055393304705444
929 => 0.056355751243567
930 => 0.056295549950561
1001 => 0.056529890366725
1002 => 0.056476019563259
1003 => 0.058258749108104
1004 => 0.060225364533966
1005 => 0.060157266895223
1006 => 0.059874542659818
1007 => 0.06029443636104
1008 => 0.062324194235848
1009 => 0.062137326656942
1010 => 0.062318852592506
1011 => 0.064712051519045
1012 => 0.067823550552123
1013 => 0.066377946861863
1014 => 0.069514490908471
1015 => 0.071488779124755
1016 => 0.074903106449606
1017 => 0.074475615852618
1018 => 0.075804788424692
1019 => 0.07371031846403
1020 => 0.068900992072133
1021 => 0.068139897761253
1022 => 0.069663627845612
1023 => 0.0734095695746
1024 => 0.069545654809891
1025 => 0.070327319734418
1026 => 0.070102200183569
1027 => 0.070090204519401
1028 => 0.070548030230811
1029 => 0.069883930157827
1030 => 0.067178266991168
1031 => 0.068418256475875
1101 => 0.067939436986644
1102 => 0.068470722908303
1103 => 0.071337853908518
1104 => 0.070070226949457
1105 => 0.068734884921738
1106 => 0.070409700160615
1107 => 0.072542315488663
1108 => 0.072408860254112
1109 => 0.072149901319122
1110 => 0.073609639277009
1111 => 0.076020698720347
1112 => 0.076672398399459
1113 => 0.077153469779167
1114 => 0.077219801394661
1115 => 0.07790305825912
1116 => 0.074229013896025
1117 => 0.080059816656407
1118 => 0.08106663522045
1119 => 0.080877395058764
1120 => 0.081996431519295
1121 => 0.081667182605392
1122 => 0.081190152586718
1123 => 0.082964063402541
1124 => 0.080930417799421
1125 => 0.078043913894654
1126 => 0.076460320763925
1127 => 0.078545723943283
1128 => 0.079819206894375
1129 => 0.080660898116319
1130 => 0.080915593371516
1201 => 0.074514219501269
1202 => 0.071064234021677
1203 => 0.073275635159932
1204 => 0.075973697171356
1205 => 0.074214026025323
1206 => 0.07428300180275
1207 => 0.071774173181949
1208 => 0.076195672835381
1209 => 0.075551497526542
1210 => 0.078893480168328
1211 => 0.078095889189779
1212 => 0.080821146299137
1213 => 0.080103494768932
1214 => 0.083082426147458
1215 => 0.0842708025257
1216 => 0.086266271420781
1217 => 0.087734146463023
1218 => 0.088596110763803
1219 => 0.088544361660331
1220 => 0.091959893648929
1221 => 0.089945873764851
1222 => 0.087415790122409
1223 => 0.087370028891629
1224 => 0.088680395061612
1225 => 0.091426563072495
1226 => 0.092138604482597
1227 => 0.092536538492369
1228 => 0.091927088704221
1229 => 0.08974101446616
1230 => 0.088797078693813
1231 => 0.089601339320305
]
'min_raw' => 0.033163532060991
'max_raw' => 0.092536538492369
'avg_raw' => 0.06285003527668
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.033163'
'max' => '$0.092536'
'avg' => '$0.06285'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.013128945762513
'max_diff' => 0.047810735920189
'year' => 2036
]
11 => [
'items' => [
101 => 0.088617797685009
102 => 0.090315666480572
103 => 0.092647202982085
104 => 0.092165749914417
105 => 0.093775175336153
106 => 0.095440761331158
107 => 0.097822624110163
108 => 0.098445331240718
109 => 0.099474642448094
110 => 0.1005341417916
111 => 0.10087442442643
112 => 0.10152412955981
113 => 0.10152070529306
114 => 0.10347863544271
115 => 0.10563829302983
116 => 0.10645351377278
117 => 0.10832806891966
118 => 0.10511795892288
119 => 0.10755286423052
120 => 0.10974920976765
121 => 0.10713063607359
122 => 0.11073972986143
123 => 0.11087986279483
124 => 0.11299570371568
125 => 0.11085089359632
126 => 0.10957731219393
127 => 0.11325409398218
128 => 0.11503317287197
129 => 0.11449729983174
130 => 0.11041927953627
131 => 0.1080456968098
201 => 0.10183357298468
202 => 0.10919210199931
203 => 0.1127762268311
204 => 0.11040999751882
205 => 0.11160338594859
206 => 0.11811412626393
207 => 0.12059299463679
208 => 0.12007740734383
209 => 0.12016453310905
210 => 0.12150208548841
211 => 0.12743352934201
212 => 0.12387927069514
213 => 0.12659636825514
214 => 0.12803750700374
215 => 0.12937611698898
216 => 0.12608891393727
217 => 0.1218123110656
218 => 0.12045773141657
219 => 0.110174722647
220 => 0.1096394473837
221 => 0.10933898115791
222 => 0.10744458410609
223 => 0.10595610694238
224 => 0.10477241463819
225 => 0.10166605255155
226 => 0.10271435856757
227 => 0.097763465749617
228 => 0.10093087152568
301 => 0.093029127044731
302 => 0.099609934650069
303 => 0.096028300263089
304 => 0.098433271426198
305 => 0.098424880708372
306 => 0.093996566300286
307 => 0.091442406966267
308 => 0.093070016703273
309 => 0.094814943541165
310 => 0.095098052049974
311 => 0.097360395242551
312 => 0.097991766598695
313 => 0.096078681913668
314 => 0.092865380953668
315 => 0.093611757479084
316 => 0.091427281669802
317 => 0.087599071838682
318 => 0.090348558973524
319 => 0.091287354767774
320 => 0.091701980472531
321 => 0.087937375776495
322 => 0.086754455247457
323 => 0.086124678283461
324 => 0.092379417761291
325 => 0.092722066509163
326 => 0.090969027069401
327 => 0.098892931567144
328 => 0.097099507936717
329 => 0.099103201531362
330 => 0.093544031632551
331 => 0.093756399409101
401 => 0.091124599289355
402 => 0.092598231499465
403 => 0.091556715750742
404 => 0.092479176579605
405 => 0.093032095796977
406 => 0.095663464064221
407 => 0.099639980648856
408 => 0.095270425393494
409 => 0.093366547595549
410 => 0.094547702673579
411 => 0.097693274297168
412 => 0.10245897632576
413 => 0.09963758480614
414 => 0.10088967045221
415 => 0.10116319546446
416 => 0.099082805811491
417 => 0.1025356832597
418 => 0.10438610833532
419 => 0.10628426157139
420 => 0.10793237484122
421 => 0.10552609742762
422 => 0.10810115918649
423 => 0.10602611396843
424 => 0.1041645838936
425 => 0.10416740706631
426 => 0.10299964205776
427 => 0.10073695020582
428 => 0.1003196751124
429 => 0.1024903928444
430 => 0.10423110289773
501 => 0.10437447611516
502 => 0.1053382226416
503 => 0.10590855790856
504 => 0.11149861885802
505 => 0.11374698761531
506 => 0.11649625037227
507 => 0.11756724315607
508 => 0.12079054746313
509 => 0.1181874674512
510 => 0.11762427471648
511 => 0.10980559280235
512 => 0.11108590152777
513 => 0.1131357993286
514 => 0.10983939486206
515 => 0.11193020476836
516 => 0.11234297493328
517 => 0.10972738429967
518 => 0.11112448427008
519 => 0.10741420095994
520 => 0.099720854685982
521 => 0.10254424815336
522 => 0.10462321608931
523 => 0.10165627250981
524 => 0.1069744040395
525 => 0.10386766138837
526 => 0.10288297311791
527 => 0.09904135310813
528 => 0.10085444987523
529 => 0.10330668921378
530 => 0.10179149040598
531 => 0.10493575544042
601 => 0.10938887327403
602 => 0.11256243023002
603 => 0.11280605652689
604 => 0.11076567201599
605 => 0.11403540121626
606 => 0.11405921762384
607 => 0.1103709497287
608 => 0.10811190617929
609 => 0.10759864673179
610 => 0.10888086946208
611 => 0.11043772456801
612 => 0.11289245115011
613 => 0.11437579101299
614 => 0.11824355467274
615 => 0.11929006062159
616 => 0.1204398533786
617 => 0.12197633108492
618 => 0.12382126651615
619 => 0.11978465282484
620 => 0.11994503501199
621 => 0.11618619623336
622 => 0.1121693379264
623 => 0.11521763267293
624 => 0.11920287255636
625 => 0.1182886541238
626 => 0.11818578587435
627 => 0.11835878173666
628 => 0.11766949089409
629 => 0.11455185395947
630 => 0.11298619620835
701 => 0.11500629414919
702 => 0.11607988630053
703 => 0.11774493410019
704 => 0.11753968181399
705 => 0.12182866613282
706 => 0.12349523574697
707 => 0.12306885592314
708 => 0.12314732007213
709 => 0.1261645647528
710 => 0.1295203613814
711 => 0.13266350776045
712 => 0.13586085125851
713 => 0.13200632887716
714 => 0.13004924012581
715 => 0.13206845615508
716 => 0.13099703170743
717 => 0.1371537543888
718 => 0.13758003250921
719 => 0.14373630998945
720 => 0.14957935039409
721 => 0.14590944140488
722 => 0.14937000028537
723 => 0.15311287685814
724 => 0.16033349302683
725 => 0.15790184352555
726 => 0.15603923811638
727 => 0.15427908500476
728 => 0.15794168421361
729 => 0.16265355958435
730 => 0.16366845240942
731 => 0.16531296650494
801 => 0.16358396101512
802 => 0.1656663576839
803 => 0.17301813297618
804 => 0.17103161839629
805 => 0.16821044834469
806 => 0.17401396886594
807 => 0.17611424038196
808 => 0.19085504580215
809 => 0.20946592155744
810 => 0.20176089678915
811 => 0.19697813927588
812 => 0.19810220074002
813 => 0.20489826254795
814 => 0.20708094190444
815 => 0.20114766699881
816 => 0.20324340000126
817 => 0.21479109489265
818 => 0.22098606270748
819 => 0.21257246431977
820 => 0.18935968005622
821 => 0.16795643284864
822 => 0.17363353780887
823 => 0.17298993028746
824 => 0.18539648784399
825 => 0.17098424068054
826 => 0.17122690596051
827 => 0.18389001798853
828 => 0.18051171680015
829 => 0.17503930153511
830 => 0.16799638753621
831 => 0.15497690961855
901 => 0.14344519495187
902 => 0.1660615430085
903 => 0.16508628495514
904 => 0.16367396676873
905 => 0.1668169280638
906 => 0.18207825596756
907 => 0.18172643296328
908 => 0.17948831451173
909 => 0.18118590763136
910 => 0.1747417052535
911 => 0.17640252293803
912 => 0.16795304246493
913 => 0.17177256052025
914 => 0.17502756018974
915 => 0.17568104956448
916 => 0.17715339449377
917 => 0.16457236827709
918 => 0.17022087968886
919 => 0.17353885094932
920 => 0.1585481360857
921 => 0.17324253271529
922 => 0.16435336060091
923 => 0.16133624207441
924 => 0.16539839469521
925 => 0.16381536986831
926 => 0.16245437808048
927 => 0.16169492127806
928 => 0.16467771783935
929 => 0.16453856681455
930 => 0.15965813270442
1001 => 0.15329180535969
1002 => 0.15542855378415
1003 => 0.15465225304942
1004 => 0.15183883904197
1005 => 0.15373474039009
1006 => 0.14538615034668
1007 => 0.13102283509895
1008 => 0.14051168111185
1009 => 0.14014637086223
1010 => 0.13996216486887
1011 => 0.14709277039512
1012 => 0.14640732720483
1013 => 0.14516324110257
1014 => 0.15181599042507
1015 => 0.14938764743026
1016 => 0.15687122835072
1017 => 0.1618003987526
1018 => 0.16055020169673
1019 => 0.16518611028445
1020 => 0.15547778015222
1021 => 0.15870249799155
1022 => 0.15936710786897
1023 => 0.15173389653111
1024 => 0.14651947418778
1025 => 0.14617173166625
1026 => 0.13713064191456
1027 => 0.14196031908279
1028 => 0.1462102351252
1029 => 0.14417485514769
1030 => 0.14353051465206
1031 => 0.14682231050384
1101 => 0.14707811123385
1102 => 0.14124582748111
1103 => 0.14245854395771
1104 => 0.14751577326247
1105 => 0.14233111475475
1106 => 0.13225817018339
1107 => 0.12975994066034
1108 => 0.12942663079046
1109 => 0.12265123418687
1110 => 0.12992688430282
1111 => 0.12675086805191
1112 => 0.13678386533403
1113 => 0.13105307109453
1114 => 0.13080602800886
1115 => 0.13043258615152
1116 => 0.1246007224067
1117 => 0.12587752993254
1118 => 0.13012183261171
1119 => 0.13163624762313
1120 => 0.1314782817302
1121 => 0.13010103321311
1122 => 0.13073153053158
1123 => 0.12870047898896
1124 => 0.12798327241658
1125 => 0.12571957119093
1126 => 0.12239255575265
1127 => 0.12285519765511
1128 => 0.11626350951094
1129 => 0.11267200796263
1130 => 0.11167792766928
1201 => 0.11034860195555
1202 => 0.11182807854585
1203 => 0.11624483608663
1204 => 0.11091728942507
1205 => 0.10178358435776
1206 => 0.10233253559538
1207 => 0.10356586604123
1208 => 0.10126756291469
1209 => 0.099092411887376
1210 => 0.10098352923004
1211 => 0.09711345798552
1212 => 0.10403354566165
1213 => 0.10384637668333
1214 => 0.10642575743364
1215 => 0.10803869715103
1216 => 0.10432139329788
1217 => 0.10338650143147
1218 => 0.10391905832705
1219 => 0.095117079128373
1220 => 0.10570644794853
1221 => 0.10579802524982
1222 => 0.10501388479799
1223 => 0.11065239678464
1224 => 0.12255141577247
1225 => 0.11807452619232
1226 => 0.11634093923218
1227 => 0.11304538915371
1228 => 0.11743651396287
1229 => 0.11709934408974
1230 => 0.11557453405559
1231 => 0.11465232418924
]
'min_raw' => 0.086124678283461
'max_raw' => 0.22098606270748
'avg_raw' => 0.15355537049547
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.086124'
'max' => '$0.220986'
'avg' => '$0.153555'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.05296114622247
'max_diff' => 0.12844952421511
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0027033552388523
]
1 => [
'year' => 2028
'avg' => 0.0046397423795038
]
2 => [
'year' => 2029
'avg' => 0.012674939948602
]
3 => [
'year' => 2030
'avg' => 0.0097786972942593
]
4 => [
'year' => 2031
'avg' => 0.0096038926035769
]
5 => [
'year' => 2032
'avg' => 0.016838646190307
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0027033552388523
'min' => '$0.0027033'
'max_raw' => 0.016838646190307
'max' => '$0.016838'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.016838646190307
]
1 => [
'year' => 2033
'avg' => 0.043310729499038
]
2 => [
'year' => 2034
'avg' => 0.027452421772754
]
3 => [
'year' => 2035
'avg' => 0.032380194435329
]
4 => [
'year' => 2036
'avg' => 0.06285003527668
]
5 => [
'year' => 2037
'avg' => 0.15355537049547
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.016838646190307
'min' => '$0.016838'
'max_raw' => 0.15355537049547
'max' => '$0.153555'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.15355537049547
]
]
]
]
'prediction_2025_max_price' => '$0.004622'
'last_price' => 0.00448185
'sma_50day_nextmonth' => '$0.004167'
'sma_200day_nextmonth' => '$0.011358'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.004417'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.004334'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.004259'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.004257'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.004599'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.006548'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014633'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.004423'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.004368'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00431'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.004365'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0051002'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.008469'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0265056'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.009875'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.031984'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.004426'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.004557'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005732'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013274'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.051763'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.032562'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.016281'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.14
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.004258'
'vwma_10_action' => 'BUY'
'hma_9' => '0.004464'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 205.78
'cci_20_action' => 'SELL'
'adx_14' => 21.66
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000179'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 70.49
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.0015014'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 15
'buy_signals' => 17
'sell_pct' => 46.88
'buy_pct' => 53.13
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767679000
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Sentio AI para 2026
A previsão de preço para Sentio AI em 2026 sugere que o preço médio poderia variar entre $0.001548 na extremidade inferior e $0.004622 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Sentio AI poderia potencialmente ganhar 3.13% até 2026 se SEN atingir a meta de preço prevista.
Previsão de preço de Sentio AI 2027-2032
A previsão de preço de SEN para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0027033 na extremidade inferior e $0.016838 na extremidade superior. Considerando a volatilidade de preços no mercado, se Sentio AI atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Sentio AI | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00149 | $0.0027033 | $0.003916 |
| 2028 | $0.00269 | $0.004639 | $0.006589 |
| 2029 | $0.0059096 | $0.012674 | $0.01944 |
| 2030 | $0.005025 | $0.009778 | $0.014531 |
| 2031 | $0.005942 | $0.0096038 | $0.013265 |
| 2032 | $0.00907 | $0.016838 | $0.0246069 |
Previsão de preço de Sentio AI 2032-2037
A previsão de preço de Sentio AI para 2032-2037 é atualmente estimada entre $0.016838 na extremidade inferior e $0.153555 na extremidade superior. Comparado ao preço atual, Sentio AI poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Sentio AI | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00907 | $0.016838 | $0.0246069 |
| 2033 | $0.021077 | $0.04331 | $0.065543 |
| 2034 | $0.016945 | $0.027452 | $0.037959 |
| 2035 | $0.020034 | $0.03238 | $0.044725 |
| 2036 | $0.033163 | $0.06285 | $0.092536 |
| 2037 | $0.086124 | $0.153555 | $0.220986 |
Sentio AI Histograma de preços potenciais
Previsão de preço de Sentio AI baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Sentio AI é Altista, com 17 indicadores técnicos mostrando sinais de alta e 15 indicando sinais de baixa. A previsão de preço de SEN foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Sentio AI
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Sentio AI está projetado para aumentar no próximo mês, alcançando $0.011358 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Sentio AI é esperado para alcançar $0.004167 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 51.35, sugerindo que o mercado de SEN está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de SEN para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.004417 | BUY |
| SMA 5 | $0.004334 | BUY |
| SMA 10 | $0.004259 | BUY |
| SMA 21 | $0.004257 | BUY |
| SMA 50 | $0.004599 | SELL |
| SMA 100 | $0.006548 | SELL |
| SMA 200 | $0.014633 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.004423 | BUY |
| EMA 5 | $0.004368 | BUY |
| EMA 10 | $0.00431 | BUY |
| EMA 21 | $0.004365 | BUY |
| EMA 50 | $0.0051002 | SELL |
| EMA 100 | $0.008469 | SELL |
| EMA 200 | $0.0265056 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.009875 | SELL |
| SMA 50 | $0.031984 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.013274 | SELL |
| EMA 50 | $0.051763 | SELL |
| EMA 100 | $0.032562 | SELL |
| EMA 200 | $0.016281 | SELL |
Osciladores de Sentio AI
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 51.35 | NEUTRAL |
| Stoch RSI (14) | 114.14 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Commodities (20) | 205.78 | SELL |
| Índice Direcional Médio (14) | 21.66 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000179 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 70.49 | SELL |
| VWMA (10) | 0.004258 | BUY |
| Média Móvel de Hull (9) | 0.004464 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0015014 | SELL |
Previsão do preço de Sentio AI com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Sentio AI
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Sentio AI por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.006297 | $0.008849 | $0.012434 | $0.017473 | $0.024552 | $0.03450046 |
| Amazon.com stock | $0.009351 | $0.019512 | $0.040714 | $0.084953 | $0.17726 | $0.369863 |
| Apple stock | $0.006357 | $0.009017 | $0.01279 | $0.018141 | $0.025732 | $0.036500023 |
| Netflix stock | $0.007071 | $0.011157 | $0.0176055 | $0.027778 | $0.04383 | $0.069157 |
| Google stock | $0.0058039 | $0.007516 | $0.009733 | $0.0126046 | $0.016322 | $0.021138 |
| Tesla stock | $0.01016 | $0.023031 | $0.052211 | $0.11836 | $0.268313 | $0.608246 |
| Kodak stock | $0.00336 | $0.00252 | $0.001889 | $0.001417 | $0.001062 | $0.000796 |
| Nokia stock | $0.002969 | $0.001966 | $0.0013029 | $0.000863 | $0.000571 | $0.000378 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Sentio AI
Você pode fazer perguntas como: 'Devo investir em Sentio AI agora?', 'Devo comprar SEN hoje?', 'Sentio AI será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Sentio AI regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Sentio AI, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Sentio AI para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Sentio AI é de $0.004481 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Sentio AI com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Sentio AI tiver 1% da média anterior do crescimento anual do Bitcoin | $0.004598 | $0.004717 | $0.00484 | $0.004966 |
| Se Sentio AI tiver 2% da média anterior do crescimento anual do Bitcoin | $0.004714 | $0.004959 | $0.005217 | $0.005489 |
| Se Sentio AI tiver 5% da média anterior do crescimento anual do Bitcoin | $0.005064 | $0.005722 | $0.006466 | $0.0073066 |
| Se Sentio AI tiver 10% da média anterior do crescimento anual do Bitcoin | $0.005646 | $0.007114 | $0.008963 | $0.011293 |
| Se Sentio AI tiver 20% da média anterior do crescimento anual do Bitcoin | $0.006811 | $0.010353 | $0.015735 | $0.023915 |
| Se Sentio AI tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0103067 | $0.0237019 | $0.0545065 | $0.125346 |
| Se Sentio AI tiver 100% da média anterior do crescimento anual do Bitcoin | $0.016131 | $0.058062 | $0.208986 | $0.752211 |
Perguntas Frequentes sobre Sentio AI
SEN é um bom investimento?
A decisão de adquirir Sentio AI depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Sentio AI experimentou uma escalada de 1.136% nas últimas 24 horas, e Sentio AI registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Sentio AI dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Sentio AI pode subir?
Parece que o valor médio de Sentio AI pode potencialmente subir para $0.004622 até o final deste ano. Observando as perspectivas de Sentio AI em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.014531. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Sentio AI na próxima semana?
Com base na nossa nova previsão experimental de Sentio AI, o preço de Sentio AI aumentará 0.86% na próxima semana e atingirá $0.00452 até 13 de janeiro de 2026.
Qual será o preço de Sentio AI no próximo mês?
Com base na nossa nova previsão experimental de Sentio AI, o preço de Sentio AI diminuirá -11.62% no próximo mês e atingirá $0.003961 até 5 de fevereiro de 2026.
Até onde o preço de Sentio AI pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Sentio AI em 2026, espera-se que SEN fluctue dentro do intervalo de $0.001548 e $0.004622. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Sentio AI não considera flutuações repentinas e extremas de preço.
Onde estará Sentio AI em 5 anos?
O futuro de Sentio AI parece seguir uma tendência de alta, com um preço máximo de $0.014531 projetada após um período de cinco anos. Com base na previsão de Sentio AI para 2030, o valor de Sentio AI pode potencialmente atingir seu pico mais alto de aproximadamente $0.014531, enquanto seu pico mais baixo está previsto para cerca de $0.005025.
Quanto será Sentio AI em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Sentio AI, espera-se que o valor de SEN em 2026 aumente 3.13% para $0.004622 se o melhor cenário ocorrer. O preço ficará entre $0.004622 e $0.001548 durante 2026.
Quanto será Sentio AI em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Sentio AI, o valor de SEN pode diminuir -12.62% para $0.003916 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.003916 e $0.00149 ao longo do ano.
Quanto será Sentio AI em 2028?
Nosso novo modelo experimental de previsão de preços de Sentio AI sugere que o valor de SEN em 2028 pode aumentar 47.02%, alcançando $0.006589 no melhor cenário. O preço é esperado para variar entre $0.006589 e $0.00269 durante o ano.
Quanto será Sentio AI em 2029?
Com base no nosso modelo de previsão experimental, o valor de Sentio AI pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.01944 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.01944 e $0.0059096.
Quanto será Sentio AI em 2030?
Usando nossa nova simulação experimental para previsões de preços de Sentio AI, espera-se que o valor de SEN em 2030 aumente 224.23%, alcançando $0.014531 no melhor cenário. O preço está previsto para variar entre $0.014531 e $0.005025 ao longo de 2030.
Quanto será Sentio AI em 2031?
Nossa simulação experimental indica que o preço de Sentio AI poderia aumentar 195.98% em 2031, potencialmente atingindo $0.013265 sob condições ideais. O preço provavelmente oscilará entre $0.013265 e $0.005942 durante o ano.
Quanto será Sentio AI em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Sentio AI, SEN poderia ver um 449.04% aumento em valor, atingindo $0.0246069 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.0246069 e $0.00907 ao longo do ano.
Quanto será Sentio AI em 2033?
De acordo com nossa previsão experimental de preços de Sentio AI, espera-se que o valor de SEN seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.065543. Ao longo do ano, o preço de SEN poderia variar entre $0.065543 e $0.021077.
Quanto será Sentio AI em 2034?
Os resultados da nossa nova simulação de previsão de preços de Sentio AI sugerem que SEN pode aumentar 746.96% em 2034, atingindo potencialmente $0.037959 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.037959 e $0.016945.
Quanto será Sentio AI em 2035?
Com base em nossa previsão experimental para o preço de Sentio AI, SEN poderia aumentar 897.93%, com o valor potencialmente atingindo $0.044725 em 2035. A faixa de preço esperada para o ano está entre $0.044725 e $0.020034.
Quanto será Sentio AI em 2036?
Nossa recente simulação de previsão de preços de Sentio AI sugere que o valor de SEN pode aumentar 1964.7% em 2036, possivelmente atingindo $0.092536 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.092536 e $0.033163.
Quanto será Sentio AI em 2037?
De acordo com a simulação experimental, o valor de Sentio AI poderia aumentar 4830.69% em 2037, com um pico de $0.220986 sob condições favoráveis. O preço é esperado para cair entre $0.220986 e $0.086124 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Sentio AI?
Traders de Sentio AI utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Sentio AI
Médias móveis são ferramentas populares para a previsão de preço de Sentio AI. Uma média móvel simples (SMA) calcula o preço médio de fechamento de SEN em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de SEN acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de SEN.
Como ler gráficos de Sentio AI e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Sentio AI em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de SEN dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Sentio AI?
A ação de preço de Sentio AI é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de SEN. A capitalização de mercado de Sentio AI pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de SEN, grandes detentores de Sentio AI, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Sentio AI.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


