Predicción del precio de Kepple [OLD] - Pronóstico de QLC
Predicción de precio de Kepple [OLD] hasta $0.013744 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.0046043 | $0.013744 |
| 2027 | $0.004432 | $0.011644 |
| 2028 | $0.007999 | $0.019592 |
| 2029 | $0.017572 | $0.0578047 |
| 2030 | $0.014944 | $0.0432088 |
| 2031 | $0.017668 | $0.039444 |
| 2032 | $0.02697 | $0.073167 |
| 2033 | $0.062673 | $0.194892 |
| 2034 | $0.050386 | $0.112871 |
| 2035 | $0.059572 | $0.13299 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Kepple [OLD] hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.44, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Kepple [OLD] para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Kepple [OLD]'
'name_with_ticker' => 'Kepple [OLD] <small>QLC</small>'
'name_lang' => 'Kepple [OLD]'
'name_lang_with_ticker' => 'Kepple [OLD] <small>QLC</small>'
'name_with_lang' => 'Kepple [OLD]'
'name_with_lang_with_ticker' => 'Kepple [OLD] <small>QLC</small>'
'image' => '/uploads/coins/qlink.png?1717212679'
'price_for_sd' => 0.01332
'ticker' => 'QLC'
'marketcap' => '$8M'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$26.43'
'current_supply' => '600M'
'max_supply' => '600M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01332'
'change_24h_pct' => '0%'
'ath_price' => '$1.36'
'ath_days' => 2919
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '9 ene. 2018'
'ath_pct' => '-99.02%'
'fdv' => '$8M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.657094'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.01344'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.011778'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0046043'
'current_year_max_price_prediction' => '$0.013744'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.014944'
'grand_prediction_max_price' => '$0.0432088'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.013579162628693
107 => 0.013629862292712
108 => 0.013744091224537
109 => 0.012768017508792
110 => 0.013206245951143
111 => 0.013463664104572
112 => 0.012300639522427
113 => 0.013440674847992
114 => 0.012751026236969
115 => 0.012516949140213
116 => 0.012832103113682
117 => 0.012709287303724
118 => 0.012603697482308
119 => 0.012544776547695
120 => 0.012776190843536
121 => 0.012765395090035
122 => 0.012386756386459
123 => 0.011892837632934
124 => 0.012058612978947
125 => 0.011998385241588
126 => 0.011780112151867
127 => 0.011927201859946
128 => 0.011279493225964
129 => 0.010165144186163
130 => 0.01090131729529
131 => 0.010872975431391
201 => 0.010858684178411
202 => 0.01141189792359
203 => 0.011358719186804
204 => 0.011262199258809
205 => 0.011778339487697
206 => 0.011589941361087
207 => 0.012170539995118
208 => 0.012552959806256
209 => 0.012455965772167
210 => 0.012815633452938
211 => 0.0120624321081
212 => 0.012312615381662
213 => 0.012364177807604
214 => 0.011771970397391
215 => 0.011367419885814
216 => 0.011340440978906
217 => 0.010639006142326
218 => 0.011013706970242
219 => 0.011343428192635
220 => 0.01118551731451
221 => 0.011135527447948
222 => 0.011390914834731
223 => 0.011410760621929
224 => 0.010958274570651
225 => 0.011052360749081
226 => 0.011444715753662
227 => 0.011042474409645
228 => 0.010260985183972
301 => 0.010067165051071
302 => 0.010041305872528
303 => 0.0095156503000323
304 => 0.010080117039138
305 => 0.0098337121807505
306 => 0.010612102176014
307 => 0.010167489985309
308 => 0.010148323642403
309 => 0.010119350904009
310 => 0.0096668974382034
311 => 0.009765955992297
312 => 0.010095241713148
313 => 0.010212734568017
314 => 0.010200479100663
315 => 0.010093628033474
316 => 0.010142543904867
317 => 0.0099849688396912
318 => 0.0099293258045361
319 => 0.0097537010797641
320 => 0.0094955812519177
321 => 0.0095314743971207
322 => 0.0090200714774301
323 => 0.0087414320245755
324 => 0.0086643082964343
325 => 0.0085611752239414
326 => 0.008675957451399
327 => 0.009018622737213
328 => 0.0086052957020255
329 => 0.0078966754917169
330 => 0.0079392647737865
331 => 0.0080349502457256
401 => 0.0078566410017898
402 => 0.007687886266765
403 => 0.0078346048173646
404 => 0.0075343530926817
405 => 0.008071234232184
406 => 0.0080567131019524
407 => 0.0082568291902519
408 => 0.0083819658870612
409 => 0.0080935663144026
410 => 0.0080210346017944
411 => 0.0080623519616786
412 => 0.0073794680383492
413 => 0.0082010230048259
414 => 0.0082081278462918
415 => 0.0081472918801864
416 => 0.0085847445371713
417 => 0.0095079060883148
418 => 0.0091605755786873
419 => 0.0090260787072393
420 => 0.0087704000563
421 => 0.0091110766779805
422 => 0.0090849180288186
423 => 0.0089666186969355
424 => 0.0088950708918962
425 => 0.0090268999164565
426 => 0.0088787358168659
427 => 0.0088521214733023
428 => 0.0086908675079979
429 => 0.0086333071789723
430 => 0.0085906918029043
501 => 0.0085437764611539
502 => 0.0086472600144806
503 => 0.0084127526682472
504 => 0.0081299597977285
505 => 0.0081064486304061
506 => 0.0081713650305062
507 => 0.0081426443559195
508 => 0.0081063111268658
509 => 0.0080369410978363
510 => 0.0080163604920793
511 => 0.0080832374764989
512 => 0.0080077372602596
513 => 0.0081191419420302
514 => 0.0080888460328908
515 => 0.007919615547181
516 => 0.0077086917048359
517 => 0.0077068140402113
518 => 0.0076613708443625
519 => 0.0076034921020188
520 => 0.007587391559985
521 => 0.0078222485902645
522 => 0.0083083956142634
523 => 0.0082129533209401
524 => 0.0082819201591858
525 => 0.0086211687443663
526 => 0.0087290056680344
527 => 0.0086524655738723
528 => 0.0085476927721959
529 => 0.0085523022437387
530 => 0.0089103426239509
531 => 0.0089326731632835
601 => 0.0089890952320718
602 => 0.0090616135353396
603 => 0.0086648157544968
604 => 0.0085336131039445
605 => 0.0084714420092668
606 => 0.0082799791009014
607 => 0.0084864554327843
608 => 0.0083661505163942
609 => 0.0083823837598164
610 => 0.0083718118387418
611 => 0.0083775848225187
612 => 0.0080710841629638
613 => 0.0081827568941052
614 => 0.0079970793193002
615 => 0.0077484778899223
616 => 0.0077476444907601
617 => 0.007808489338407
618 => 0.0077722964421675
619 => 0.0076749022889915
620 => 0.0076887366687628
621 => 0.0075675329447485
622 => 0.0077034529953223
623 => 0.0077073506960275
624 => 0.0076550140729414
625 => 0.0078644176642029
626 => 0.0079502104863999
627 => 0.0079157613999255
628 => 0.0079477934466586
629 => 0.0082169193791238
630 => 0.0082607986489033
701 => 0.0082802869220375
702 => 0.0082541752177391
703 => 0.0079527125746626
704 => 0.0079660837248012
705 => 0.0078679750969818
706 => 0.0077850836449069
707 => 0.0077883988682815
708 => 0.0078310158497825
709 => 0.0080171267074502
710 => 0.0084087860355778
711 => 0.008423649220781
712 => 0.0084416638348369
713 => 0.0083683893460517
714 => 0.0083462890590916
715 => 0.00837544504216
716 => 0.0085225316933355
717 => 0.0089008784937953
718 => 0.0087671454655796
719 => 0.0086584184319617
720 => 0.0087538013530424
721 => 0.0087391178999781
722 => 0.0086151747792103
723 => 0.0086116961086158
724 => 0.0083738096328497
725 => 0.0082858684191719
726 => 0.008212378158737
727 => 0.008132128712854
728 => 0.0080845541513487
729 => 0.0081576503000723
730 => 0.0081743682541336
731 => 0.0080145422474474
801 => 0.0079927585533135
802 => 0.0081232759204574
803 => 0.0080658400933552
804 => 0.0081249142658698
805 => 0.008138619980622
806 => 0.0081364130448775
807 => 0.0080764434449201
808 => 0.0081146662796138
809 => 0.0080242578807879
810 => 0.0079259523259672
811 => 0.0078632395066441
812 => 0.0078085142541364
813 => 0.007838879004878
814 => 0.0077306342128684
815 => 0.0076960045253673
816 => 0.0081017172432606
817 => 0.008401421590115
818 => 0.0083970637702158
819 => 0.0083705366623196
820 => 0.0083311227608133
821 => 0.0085196483209463
822 => 0.0084539697854835
823 => 0.008501756407658
824 => 0.0085139201085996
825 => 0.0085507359678775
826 => 0.0085638944731393
827 => 0.0085241203310686
828 => 0.0083906334522768
829 => 0.0080579968418792
830 => 0.0079031536018038
831 => 0.0078520527534607
901 => 0.0078539101722437
902 => 0.0078026742703275
903 => 0.0078177655396739
904 => 0.0077974261427194
905 => 0.0077589082455162
906 => 0.0078365006332663
907 => 0.0078454424331314
908 => 0.0078273314426705
909 => 0.0078315972365515
910 => 0.0076816459708408
911 => 0.0076930464398958
912 => 0.0076295671794963
913 => 0.0076176655834253
914 => 0.0074571955409068
915 => 0.0071728996000807
916 => 0.007330427148573
917 => 0.0071401560217195
918 => 0.007068097462902
919 => 0.0074092114729388
920 => 0.007374973087361
921 => 0.0073163718543203
922 => 0.0072296884170859
923 => 0.0071975366870134
924 => 0.0070021929530936
925 => 0.0069906510031754
926 => 0.0070874686324305
927 => 0.0070427906278204
928 => 0.0069800457884644
929 => 0.0067527903406594
930 => 0.0064972799756336
1001 => 0.0065049922274728
1002 => 0.0065862653206482
1003 => 0.0068225778002255
1004 => 0.0067302464262072
1005 => 0.0066632589549765
1006 => 0.006650714215251
1007 => 0.0068077378971074
1008 => 0.0070299593044125
1009 => 0.0071342206167963
1010 => 0.0070309008226871
1011 => 0.0069122126063472
1012 => 0.0069194366081276
1013 => 0.0069674946555626
1014 => 0.0069725448768438
1015 => 0.0068952910493523
1016 => 0.0069170375492743
1017 => 0.0068840026273511
1018 => 0.0066812673724867
1019 => 0.0066776005346067
1020 => 0.0066278460335153
1021 => 0.006626339486996
1022 => 0.0065416946687977
1023 => 0.0065298522736097
1024 => 0.0063617848495037
1025 => 0.0064724073370053
1026 => 0.0063982075803305
1027 => 0.0062863710450685
1028 => 0.0062670903842355
1029 => 0.0062665107842888
1030 => 0.0063813418998113
1031 => 0.0064710654685625
1101 => 0.0063994983168656
1102 => 0.0063832038636951
1103 => 0.0065571859937897
1104 => 0.0065350451818529
1105 => 0.0065158713815085
1106 => 0.0070100618147341
1107 => 0.0066188715246756
1108 => 0.006448290229849
1109 => 0.0062371634849917
1110 => 0.0063059074177107
1111 => 0.0063203927743931
1112 => 0.0058126710114675
1113 => 0.0056066883554813
1114 => 0.0055360028702395
1115 => 0.0054953223741368
1116 => 0.0055138609870443
1117 => 0.0053284524373009
1118 => 0.0054530500491029
1119 => 0.0052925019172197
1120 => 0.0052655855004406
1121 => 0.0055526654483448
1122 => 0.005592610945999
1123 => 0.0054221910429131
1124 => 0.0055316282091704
1125 => 0.0054919447713951
1126 => 0.0052952540541397
1127 => 0.0052877419154996
1128 => 0.0051890494275938
1129 => 0.0050346147946528
1130 => 0.0049640340233643
1201 => 0.0049272749448669
1202 => 0.0049424424570751
1203 => 0.0049347732987691
1204 => 0.0048847268532039
1205 => 0.0049376419024466
1206 => 0.0048024658176395
1207 => 0.0047486376114816
1208 => 0.004724324659565
1209 => 0.0046043481038535
1210 => 0.0047952841578069
1211 => 0.0048329009657848
1212 => 0.0048705918904948
1213 => 0.005198665657408
1214 => 0.0051822760191398
1215 => 0.0053304303670063
1216 => 0.0053246733614865
1217 => 0.0052824173415337
1218 => 0.0051041461441307
1219 => 0.005175201866037
1220 => 0.0049565033985203
1221 => 0.005120367160434
1222 => 0.0050455865826109
1223 => 0.0050950837718495
1224 => 0.0050060833626168
1225 => 0.005055339863823
1226 => 0.0048418213064479
1227 => 0.0046424406818582
1228 => 0.0047226772654763
1229 => 0.0048099036080356
1230 => 0.0049990325435629
1231 => 0.0048863889098427
]
'min_raw' => 0.0046043481038535
'max_raw' => 0.013744091224537
'avg_raw' => 0.0091742196641953
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0046043'
'max' => '$0.013744'
'avg' => '$0.009174'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0087222818961465
'max_diff' => 0.00041746122453709
'year' => 2026
]
1 => [
'items' => [
101 => 0.0049268998200559
102 => 0.0047911950522863
103 => 0.004511197354227
104 => 0.0045127821107903
105 => 0.0044697105650254
106 => 0.0044324904609358
107 => 0.0048993273862114
108 => 0.0048412688349537
109 => 0.0047487601320399
110 => 0.0048725867070398
111 => 0.0049053284188617
112 => 0.0049062605293679
113 => 0.0049966012020613
114 => 0.0050448160352722
115 => 0.0050533141086006
116 => 0.0051954671090231
117 => 0.0052431149197213
118 => 0.0054393695086166
119 => 0.0050407253435325
120 => 0.0050325155292877
121 => 0.0048743292008866
122 => 0.0047740049305877
123 => 0.0048811984895051
124 => 0.004976157349326
125 => 0.004877279837358
126 => 0.0048901911530028
127 => 0.0047574561717754
128 => 0.0048049026818029
129 => 0.0048457700079736
130 => 0.0048232054725325
131 => 0.0047894252708414
201 => 0.0049683718057172
202 => 0.0049582749409224
203 => 0.0051249140681618
204 => 0.0052548211843233
205 => 0.0054876379601592
206 => 0.0052446815175614
207 => 0.0052358272191287
208 => 0.0053223794065821
209 => 0.0052431016690324
210 => 0.0052932024625893
211 => 0.005479565947762
212 => 0.0054835035145359
213 => 0.0054175441978038
214 => 0.0054135305673863
215 => 0.0054261987756805
216 => 0.0055003968673443
217 => 0.0054744697742399
218 => 0.005504473262774
219 => 0.0055419930846156
220 => 0.0056971909758273
221 => 0.0057346086619785
222 => 0.0056437030834771
223 => 0.0056519108393892
224 => 0.0056179096576158
225 => 0.0055850649420562
226 => 0.0056588950660486
227 => 0.0057938210687795
228 => 0.0057929817011192
301 => 0.005824281911166
302 => 0.0058437816827202
303 => 0.0057600743885042
304 => 0.0057055840179721
305 => 0.0057264790933465
306 => 0.0057598907739057
307 => 0.0057156441356525
308 => 0.0054425333873176
309 => 0.0055253777419803
310 => 0.0055115883904824
311 => 0.0054919506771071
312 => 0.0055752513163368
313 => 0.0055672167664699
314 => 0.0053265508046382
315 => 0.0053419574586758
316 => 0.0053274877342986
317 => 0.0053742423739885
318 => 0.0052405767650535
319 => 0.0052816914061103
320 => 0.0053074781235553
321 => 0.0053226666982333
322 => 0.0053775382448734
323 => 0.0053710997022002
324 => 0.0053771380160207
325 => 0.0054584980341367
326 => 0.0058699890863808
327 => 0.0058923856364506
328 => 0.0057820968327535
329 => 0.00582615503448
330 => 0.0057415729216346
331 => 0.0057983534606386
401 => 0.0058372012633559
402 => 0.0056616555128795
403 => 0.0056512608328188
404 => 0.0055663296195062
405 => 0.0056119668427906
406 => 0.0055393547391126
407 => 0.0055571712094916
408 => 0.0055073548050999
409 => 0.0055970144146578
410 => 0.0056972677898383
411 => 0.0057225957515346
412 => 0.0056559687886846
413 => 0.0056077264766505
414 => 0.0055230288687239
415 => 0.005663882878315
416 => 0.0057050728831677
417 => 0.0056636665247547
418 => 0.0056540717667636
419 => 0.0056358897177078
420 => 0.0056579291744229
421 => 0.0057048485535552
422 => 0.0056827222408213
423 => 0.0056973370601975
424 => 0.0056416404394716
425 => 0.0057601020991017
426 => 0.0059482477239451
427 => 0.0059488526428939
428 => 0.0059267262108908
429 => 0.0059176725516358
430 => 0.0059403756136151
501 => 0.0059526910934105
502 => 0.0060261086328218
503 => 0.006104888577694
504 => 0.0064725202060296
505 => 0.0063692907158947
506 => 0.0066954753670575
507 => 0.0069534450763514
508 => 0.0070307989125204
509 => 0.0069596370230241
510 => 0.0067161960431472
511 => 0.0067042516672779
512 => 0.0070680552693446
513 => 0.0069652640885002
514 => 0.0069530374046176
515 => 0.006822966145415
516 => 0.0068998543692426
517 => 0.0068830377868093
518 => 0.006856491988743
519 => 0.0070031893637259
520 => 0.0072777937539291
521 => 0.0072349940844922
522 => 0.0072030461166772
523 => 0.0070630594216252
524 => 0.0071473626792068
525 => 0.0071173439039045
526 => 0.0072463236129886
527 => 0.0071699188905776
528 => 0.0069644853442074
529 => 0.0069972013135847
530 => 0.0069922563606287
531 => 0.0070940231420596
601 => 0.0070634752802808
602 => 0.0069862914003407
603 => 0.0072768551859767
604 => 0.0072579875899382
605 => 0.0072847375273878
606 => 0.0072965136771224
607 => 0.0074733747331308
608 => 0.0075458290488549
609 => 0.0075622774470156
610 => 0.0076311034431356
611 => 0.0075605649935331
612 => 0.0078427690850053
613 => 0.0080304183387691
614 => 0.008248382603358
615 => 0.0085668869771937
616 => 0.0086866475680861
617 => 0.0086650138892768
618 => 0.0089065002704789
619 => 0.0093404459295582
620 => 0.008752726713958
621 => 0.0093715964750788
622 => 0.0091756694539029
623 => 0.0087111300112716
624 => 0.0086812191477264
625 => 0.0089958106516902
626 => 0.0096935443291717
627 => 0.0095187699565924
628 => 0.009693830197434
629 => 0.0094896131276201
630 => 0.0094794720288273
701 => 0.0096839118301742
702 => 0.010161596569455
703 => 0.0099346664555673
704 => 0.0096093064917628
705 => 0.0098495472258743
706 => 0.0096414284687565
707 => 0.009172478660198
708 => 0.0095186363099236
709 => 0.0092871705475543
710 => 0.0093547245624104
711 => 0.0098412311669768
712 => 0.0097826934051785
713 => 0.0098584466893963
714 => 0.0097247441255606
715 => 0.009599844847979
716 => 0.0093667110712308
717 => 0.009297691653292
718 => 0.0093167661373517
719 => 0.009297682200925
720 => 0.0091672459954443
721 => 0.0091390783092897
722 => 0.0090921309316441
723 => 0.0091066818870658
724 => 0.0090184070821522
725 => 0.0091849998775295
726 => 0.0092159209683622
727 => 0.0093371533121516
728 => 0.0093497400562566
729 => 0.0096873704080756
730 => 0.0095014092839413
731 => 0.0096261680611216
801 => 0.0096150084618154
802 => 0.0087211979896002
803 => 0.0088443571865149
804 => 0.0090359542474291
805 => 0.0089496400311909
806 => 0.0088276119238462
807 => 0.0087290676844322
808 => 0.0085797630850541
809 => 0.0087899064415379
810 => 0.0090662226090595
811 => 0.0093567478902561
812 => 0.0097057949796433
813 => 0.0096278917326481
814 => 0.0093502226977121
815 => 0.009362678727782
816 => 0.0094396770044067
817 => 0.0093399572401465
818 => 0.0093105479349051
819 => 0.0094356366174772
820 => 0.0094364980344865
821 => 0.0093217583941691
822 => 0.0091942462810887
823 => 0.0091937120006791
824 => 0.0091710224517773
825 => 0.0094936495479646
826 => 0.0096710618295891
827 => 0.0096914018617632
828 => 0.0096696927833629
829 => 0.0096780477460366
830 => 0.0095748154483722
831 => 0.0098107738682461
901 => 0.010027312648192
902 => 0.0099692756294899
903 => 0.0098822698880078
904 => 0.009812965624153
905 => 0.0099529497474469
906 => 0.0099467164747921
907 => 0.010025421370853
908 => 0.010021850862146
909 => 0.0099953853658418
910 => 0.0099692765746561
911 => 0.010072794980503
912 => 0.010042983342074
913 => 0.010013125397936
914 => 0.009953240719945
915 => 0.0099613800422631
916 => 0.009874389323549
917 => 0.0098341434366473
918 => 0.0092289418610317
919 => 0.0090672122244952
920 => 0.0091180956604599
921 => 0.0091348478087673
922 => 0.0090644628636845
923 => 0.0091653767945244
924 => 0.0091496494652973
925 => 0.0092108353031401
926 => 0.0091726090480362
927 => 0.0091741778668795
928 => 0.0092865931324432
929 => 0.009319227762285
930 => 0.0093026295261537
1001 => 0.0093142543617858
1002 => 0.0095821437923922
1003 => 0.0095440584819817
1004 => 0.0095238264198945
1005 => 0.009529430839361
1006 => 0.0095978823324951
1007 => 0.0096170450132597
1008 => 0.0095358513883225
1009 => 0.0095741427712176
1010 => 0.0097371826196851
1011 => 0.0097942373393925
1012 => 0.0099763286168794
1013 => 0.0098989730057886
1014 => 0.010040962577818
1015 => 0.010477390114425
1016 => 0.010826038629155
1017 => 0.0105054070465
1018 => 0.011145655643681
1019 => 0.011644181014792
1020 => 0.011625046780712
1021 => 0.011538117351159
1022 => 0.010970559470131
1023 => 0.010448284246198
1024 => 0.010885189647995
1025 => 0.010886303409715
1026 => 0.010848772848228
1027 => 0.010615673754118
1028 => 0.010840661505025
1029 => 0.010858520215656
1030 => 0.010848524086717
1031 => 0.010669807557792
1101 => 0.01039694045046
1102 => 0.010450258030082
1103 => 0.01053759331315
1104 => 0.010372249402253
1105 => 0.01031941200418
1106 => 0.010417646779923
1107 => 0.010734179695396
1108 => 0.010674340981276
1109 => 0.010672778350624
1110 => 0.010928793745192
1111 => 0.010745541974261
1112 => 0.010450930535507
1113 => 0.010376537261774
1114 => 0.010112491257337
1115 => 0.010294868773101
1116 => 0.010301432215213
1117 => 0.010201545913682
1118 => 0.010459035758372
1119 => 0.010456662944123
1120 => 0.01070111122935
1121 => 0.011168404540121
1122 => 0.011030202914018
1123 => 0.010869489459156
1124 => 0.0108869634678
1125 => 0.0110786102131
1126 => 0.010962736216022
1127 => 0.011004405313273
1128 => 0.01107854714193
1129 => 0.011123278747997
1130 => 0.010880527278067
1201 => 0.010823930298281
1202 => 0.01070815274048
1203 => 0.01067794853674
1204 => 0.010772246941791
1205 => 0.010747402643672
1206 => 0.010300880583319
1207 => 0.010254216543586
1208 => 0.010255647663064
1209 => 0.010138308716403
1210 => 0.0099593386581714
1211 => 0.010429661285458
1212 => 0.010391887796326
1213 => 0.01035018878776
1214 => 0.010355296678378
1215 => 0.01055944779017
1216 => 0.010441029835452
1217 => 0.01075586337639
1218 => 0.010691143065136
1219 => 0.01062476292211
1220 => 0.010615587164355
1221 => 0.010590036472578
1222 => 0.01050241364348
1223 => 0.010396603812028
1224 => 0.010326738996213
1225 => 0.0095258708546488
1226 => 0.0096745073232875
1227 => 0.0098455000318159
1228 => 0.0099045260295896
1229 => 0.0098035579759229
1230 => 0.010506400477646
1231 => 0.01063481657547
]
'min_raw' => 0.0044324904609358
'max_raw' => 0.011644181014792
'avg_raw' => 0.0080383357378641
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004432'
'max' => '$0.011644'
'avg' => '$0.008038'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00017185764291777
'max_diff' => -0.0020999102097446
'year' => 2027
]
2 => [
'items' => [
101 => 0.010245835838787
102 => 0.010173073424933
103 => 0.010511170769385
104 => 0.010307256739961
105 => 0.010399079214925
106 => 0.010200609248261
107 => 0.010603884897967
108 => 0.010600812613187
109 => 0.010443929277058
110 => 0.010576525998464
111 => 0.010553484055075
112 => 0.010376363154971
113 => 0.010609499946425
114 => 0.010609615579365
115 => 0.010458618779278
116 => 0.010282287574227
117 => 0.010250763719521
118 => 0.010227014729634
119 => 0.010393238419252
120 => 0.010542274059595
121 => 0.010819592437205
122 => 0.010889316866258
123 => 0.011161455954671
124 => 0.010999410377733
125 => 0.011071243083148
126 => 0.011149227646233
127 => 0.011186616313563
128 => 0.011125693486535
129 => 0.011548437507758
130 => 0.011584130055692
131 => 0.011596097458274
201 => 0.01145355055286
202 => 0.011580165568387
203 => 0.01152092659567
204 => 0.011675049945617
205 => 0.011699218454835
206 => 0.011678748587347
207 => 0.011686420053647
208 => 0.011325682608689
209 => 0.011306976469126
210 => 0.011051916928861
211 => 0.011155855576824
212 => 0.010961547256367
213 => 0.011023164426381
214 => 0.011050324687814
215 => 0.011036137708573
216 => 0.011161732112032
217 => 0.01105495121185
218 => 0.010773138859865
219 => 0.010491249728294
220 => 0.010487710839869
221 => 0.010413494407283
222 => 0.010359849519941
223 => 0.010370183428397
224 => 0.010406601469672
225 => 0.010357732837177
226 => 0.010368161437623
227 => 0.010541345690415
228 => 0.010576076557219
229 => 0.010458047501593
301 => 0.0099841438117465
302 => 0.0098678466575606
303 => 0.0099514387457166
304 => 0.009911487111598
305 => 0.0079993436589119
306 => 0.0084485733998958
307 => 0.0081816563422037
308 => 0.0083046640026515
309 => 0.008032210804585
310 => 0.0081622397511979
311 => 0.0081382281526553
312 => 0.008860576282483
313 => 0.0088492978099931
314 => 0.0088546962179305
315 => 0.0085970161416
316 => 0.009007507499971
317 => 0.0092097303038964
318 => 0.0091723042448755
319 => 0.0091817235776183
320 => 0.0090198682333548
321 => 0.0088562633314612
322 => 0.0086748003166473
323 => 0.009011936168665
324 => 0.0089744524170216
325 => 0.0090604266570635
326 => 0.0092790833560654
327 => 0.0093112813855895
328 => 0.00935455586379
329 => 0.0093390450438422
330 => 0.009708575702837
331 => 0.0096638231017909
401 => 0.0097716639941099
402 => 0.0095498270967016
403 => 0.0092987975903325
404 => 0.0093465100927204
405 => 0.0093419149950608
406 => 0.0092834141278456
407 => 0.0092306021606743
408 => 0.0091426851150135
409 => 0.0094208676567588
410 => 0.0094095739535849
411 => 0.0095924058804762
412 => 0.0095600885614636
413 => 0.0093442655957078
414 => 0.0093519737551518
415 => 0.009403814831828
416 => 0.0095832373901152
417 => 0.0096365022214341
418 => 0.0096118278293306
419 => 0.0096702302852399
420 => 0.0097163892051307
421 => 0.009676027134903
422 => 0.010247468933254
423 => 0.010010166457795
424 => 0.010125826033194
425 => 0.010153410160421
426 => 0.010082753998561
427 => 0.010098076790061
428 => 0.010121286643973
429 => 0.010262212331968
430 => 0.010632042114445
501 => 0.010795837207588
502 => 0.011288622826815
503 => 0.01078223630524
504 => 0.010752189424686
505 => 0.010840954995409
506 => 0.01113027232055
507 => 0.011364736838383
508 => 0.011442522245531
509 => 0.011452802871182
510 => 0.011598733466068
511 => 0.011682378161611
512 => 0.011581013653493
513 => 0.011495117846169
514 => 0.011187449726114
515 => 0.011223063148763
516 => 0.011468404314681
517 => 0.011814963162063
518 => 0.01211234670642
519 => 0.012008213354049
520 => 0.012802677325947
521 => 0.012881445183666
522 => 0.012870562012599
523 => 0.013050006914713
524 => 0.012693845327336
525 => 0.012541579348427
526 => 0.011513689494671
527 => 0.011802484616494
528 => 0.012222265286407
529 => 0.012166705740647
530 => 0.011861849797387
531 => 0.012112115445849
601 => 0.012029369795937
602 => 0.011964104868732
603 => 0.01226309615249
604 => 0.011934342954113
605 => 0.01221898572177
606 => 0.011853928427997
607 => 0.012008689026431
608 => 0.011920839425832
609 => 0.011977688883862
610 => 0.011645348113846
611 => 0.01182467112623
612 => 0.011637887686971
613 => 0.011637799127301
614 => 0.011633675872527
615 => 0.011853425760491
616 => 0.011860591796448
617 => 0.011698196297219
618 => 0.011674792568686
619 => 0.011761328419464
620 => 0.011660017601978
621 => 0.011707420295837
622 => 0.011661453381285
623 => 0.011651105260608
624 => 0.011568649674466
625 => 0.011533125540792
626 => 0.01154705546895
627 => 0.011499505442778
628 => 0.01147085483205
629 => 0.011627976544928
630 => 0.011544032752009
701 => 0.011615110954739
702 => 0.011534108371944
703 => 0.011253318128828
704 => 0.011091832690709
705 => 0.010561445950732
706 => 0.010711862972247
707 => 0.010811589613129
708 => 0.010778629958912
709 => 0.010849440049862
710 => 0.010853787214351
711 => 0.01083076613196
712 => 0.010804110667734
713 => 0.010791136261888
714 => 0.010887836853329
715 => 0.010943974801453
716 => 0.010821598515711
717 => 0.010792927464188
718 => 0.010916656645653
719 => 0.010992131374871
720 => 0.011549394369826
721 => 0.011508110527224
722 => 0.01161172487061
723 => 0.011600059485636
724 => 0.011708663824564
725 => 0.011886186019093
726 => 0.011525233761629
727 => 0.011587882592735
728 => 0.011572522546121
729 => 0.011740219507436
730 => 0.011740743039044
731 => 0.011640200333651
801 => 0.011694706165364
802 => 0.011664282505391
803 => 0.011719262170966
804 => 0.011507559156336
805 => 0.011765390576227
806 => 0.011911564377016
807 => 0.011913594000382
808 => 0.011982879221848
809 => 0.012053277019588
810 => 0.012188399461993
811 => 0.012049508528007
812 => 0.011799657258526
813 => 0.011817695713168
814 => 0.011671208005288
815 => 0.011673670490123
816 => 0.011660525553087
817 => 0.011699974498636
818 => 0.011516215981477
819 => 0.011559343738163
820 => 0.011498964626247
821 => 0.011587751340338
822 => 0.011492231512946
823 => 0.011572515139041
824 => 0.01160716289062
825 => 0.011735013839856
826 => 0.011473347823791
827 => 0.010939793103803
828 => 0.01105195277467
829 => 0.010886059811505
830 => 0.010901413836845
831 => 0.010932431411607
901 => 0.010831893303485
902 => 0.010851072806195
903 => 0.010850387579394
904 => 0.010844482665014
905 => 0.010818328820125
906 => 0.010780400570657
907 => 0.01093149504284
908 => 0.010957168937933
909 => 0.011014238826402
910 => 0.011184040103611
911 => 0.011167072951828
912 => 0.011194747080347
913 => 0.011134334613175
914 => 0.01090421619793
915 => 0.010916712735011
916 => 0.010760880717369
917 => 0.011010253851353
918 => 0.010951199001661
919 => 0.01091312595589
920 => 0.010902737372607
921 => 0.011072959554339
922 => 0.011123892699019
923 => 0.011092154581251
924 => 0.011027058775759
925 => 0.011152061966151
926 => 0.011185507546438
927 => 0.011192994778439
928 => 0.011414476464828
929 => 0.011205373144354
930 => 0.0112557063919
1001 => 0.011648392020999
1002 => 0.011292280342319
1003 => 0.011480920640754
1004 => 0.011471687679782
1005 => 0.011568189673222
1006 => 0.011463771699638
1007 => 0.011465066085564
1008 => 0.011550753318127
1009 => 0.011430421053766
1010 => 0.011400625092874
1011 => 0.011359462186304
1012 => 0.011449339886885
1013 => 0.011503217503564
1014 => 0.01193743152525
1015 => 0.012217953585825
1016 => 0.012205775383351
1017 => 0.012317061357322
1018 => 0.012266926006785
1019 => 0.012105025734865
1020 => 0.012381369757398
1021 => 0.012293922945944
1022 => 0.012301131954832
1023 => 0.012300863635161
1024 => 0.012359008120045
1025 => 0.012317807423641
1026 => 0.012236596621864
1027 => 0.012290508142033
1028 => 0.012450606083215
1029 => 0.012947555005048
1030 => 0.013225654205403
1031 => 0.012930813083995
1101 => 0.013134190541462
1102 => 0.013012236537779
1103 => 0.012990073867493
1104 => 0.013117809940258
1105 => 0.01324576959811
1106 => 0.01323761912109
1107 => 0.013144726980291
1108 => 0.013092254567004
1109 => 0.013489593259958
1110 => 0.013782345640439
1111 => 0.013762381890727
1112 => 0.013850495389396
1113 => 0.014109199346737
1114 => 0.014132851994412
1115 => 0.014129872304455
1116 => 0.014071246749292
1117 => 0.014325974392248
1118 => 0.014538472673509
1119 => 0.014057676627127
1120 => 0.014240757467507
1121 => 0.01432294835525
1122 => 0.014443628963393
1123 => 0.01464723737775
1124 => 0.014868410120206
1125 => 0.014899686371025
1126 => 0.014877494374363
1127 => 0.014731625005271
1128 => 0.014973634859206
1129 => 0.015115398555812
1130 => 0.015199815592936
1201 => 0.015413883153427
1202 => 0.014323455938191
1203 => 0.013551597357498
1204 => 0.01343106049435
1205 => 0.01367617694544
1206 => 0.013740812198825
1207 => 0.013714757809231
1208 => 0.012845960802349
1209 => 0.01342648645791
1210 => 0.01405108325131
1211 => 0.014075076557895
1212 => 0.014387762772375
1213 => 0.01448958622125
1214 => 0.014741339608625
1215 => 0.0147255923657
1216 => 0.014786890309254
1217 => 0.014772798973563
1218 => 0.015239119110745
1219 => 0.015753539471267
1220 => 0.015735726729939
1221 => 0.015661772716768
1222 => 0.015771607037359
1223 => 0.016302543978054
1224 => 0.016253663812646
1225 => 0.016301146729738
1226 => 0.016927151305111
1227 => 0.01774104630121
1228 => 0.017362910361801
1229 => 0.018183356544633
1230 => 0.018699783926743
1231 => 0.019592891684514
]
'min_raw' => 0.0079993436589119
'max_raw' => 0.019592891684514
'avg_raw' => 0.013796117671713
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007999'
'max' => '$0.019592'
'avg' => '$0.013796'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0035668531979761
'max_diff' => 0.0079487106697218
'year' => 2028
]
3 => [
'items' => [
101 => 0.019481070194593
102 => 0.019828750490766
103 => 0.019280886389784
104 => 0.018022879672329
105 => 0.017823795293835
106 => 0.018222367261199
107 => 0.019202217550878
108 => 0.018191508288585
109 => 0.018395973455997
110 => 0.018337087474027
111 => 0.018333949690297
112 => 0.018453706132977
113 => 0.018279993166794
114 => 0.0175722552922
115 => 0.017896607389401
116 => 0.017771359468005
117 => 0.017910331374645
118 => 0.018660305438409
119 => 0.01832872402767
120 => 0.017979429946944
121 => 0.018417522238736
122 => 0.018975364271033
123 => 0.01894045551919
124 => 0.018872717949889
125 => 0.019254551081415
126 => 0.019885227548085
127 => 0.020055696862762
128 => 0.020181533825766
129 => 0.020198884616931
130 => 0.02037760854939
131 => 0.019416564920329
201 => 0.020941765840999
202 => 0.021205125907173
203 => 0.021155625129889
204 => 0.021448338759556
205 => 0.02136221498428
206 => 0.021237435146311
207 => 0.021701448511308
208 => 0.021169494632287
209 => 0.020414453072147
210 => 0.020000222339226
211 => 0.020545714783376
212 => 0.020878827983957
213 => 0.021098994619561
214 => 0.021165616910467
215 => 0.019491168001513
216 => 0.018588732908781
217 => 0.019167183456783
218 => 0.019872933047869
219 => 0.019412644445717
220 => 0.01943068688748
221 => 0.018774436302526
222 => 0.019930996662958
223 => 0.019762495546647
224 => 0.020636679636143
225 => 0.020428048587419
226 => 0.021140911776772
227 => 0.020953191008368
228 => 0.021732409422685
301 => 0.022043260744652
302 => 0.022565228494381
303 => 0.022949190095872
304 => 0.023174659692282
305 => 0.023161123343429
306 => 0.024054546212915
307 => 0.023527725960596
308 => 0.022865915561685
309 => 0.022853945499554
310 => 0.023196706483076
311 => 0.023915039472655
312 => 0.024101292765533
313 => 0.02420538294711
314 => 0.024045965210619
315 => 0.023474139584275
316 => 0.023227228178042
317 => 0.023437603849865
318 => 0.023180332481013
319 => 0.023624455041248
320 => 0.024234330175911
321 => 0.024108393372311
322 => 0.024529381225246
323 => 0.02496505936382
324 => 0.02558809866951
325 => 0.025750984215097
326 => 0.026020227827968
327 => 0.026297367947532
328 => 0.0263863778848
329 => 0.026556325473207
330 => 0.026555429765528
331 => 0.027067578261983
401 => 0.027632493913493
402 => 0.02784573649411
403 => 0.028336076049975
404 => 0.027496386744104
405 => 0.028133300728263
406 => 0.028707813084965
407 => 0.02802285576894
408 => 0.028966909854495
409 => 0.029003565335364
410 => 0.029557019577103
411 => 0.028995987674097
412 => 0.02866284872097
413 => 0.029624608396095
414 => 0.030089973607742
415 => 0.029949801818726
416 => 0.028883087583181
417 => 0.028262214144569
418 => 0.026637268598177
419 => 0.028562086790302
420 => 0.029499609583969
421 => 0.028880659625635
422 => 0.029192821982449
423 => 0.030895878582248
424 => 0.031544292270702
425 => 0.031409426756257
426 => 0.031432216808123
427 => 0.031782089064872
428 => 0.033333615329468
429 => 0.032403904827625
430 => 0.033114633670696
501 => 0.033491601686337
502 => 0.033841750587921
503 => 0.032981895551328
504 => 0.031863236782501
505 => 0.031508910592313
506 => 0.028819117250449
507 => 0.028679101825824
508 => 0.028600506925081
509 => 0.028104977193364
510 => 0.027715626561251
511 => 0.027406000482933
512 => 0.026593449191253
513 => 0.026867661399502
514 => 0.025572624233197
515 => 0.0264011431189
516 => 0.024334232531712
517 => 0.026055617087302
518 => 0.025118745735446
519 => 0.025747829651143
520 => 0.025745634836624
521 => 0.024587291896589
522 => 0.023919183862778
523 => 0.024344928305076
524 => 0.024801360142856
525 => 0.024875414672915
526 => 0.025467190464686
527 => 0.025632342367992
528 => 0.025131924390771
529 => 0.024291400403941
530 => 0.02448663495577
531 => 0.023915227440816
601 => 0.022913857749732
602 => 0.023633058944106
603 => 0.02387862585291
604 => 0.023987082189476
605 => 0.02300235010638
606 => 0.022692925906298
607 => 0.022528191058495
608 => 0.024164283857749
609 => 0.024253912714563
610 => 0.02379535881086
611 => 0.025868065937462
612 => 0.025398948478908
613 => 0.02592306761668
614 => 0.024468919466544
615 => 0.024524469884149
616 => 0.023836052846116
617 => 0.024221520387371
618 => 0.023949084353411
619 => 0.024190378419302
620 => 0.024335009087505
621 => 0.025023313163076
622 => 0.026063476414207
623 => 0.024920503487104
624 => 0.024422493815091
625 => 0.024731456214695
626 => 0.025554263799429
627 => 0.026800859409046
628 => 0.026062849718078
629 => 0.026390365886713
630 => 0.026461913599379
701 => 0.025917732575863
702 => 0.026820924139595
703 => 0.027304951836114
704 => 0.027801464097324
705 => 0.028232571781775
706 => 0.027603146181658
707 => 0.028276721798398
708 => 0.027733938753408
709 => 0.027247006250172
710 => 0.027247744725783
711 => 0.026942284853554
712 => 0.02635041786069
713 => 0.026241268506337
714 => 0.026809077231725
715 => 0.0272644060578
716 => 0.027301909120793
717 => 0.027554002554548
718 => 0.027703188851875
719 => 0.029165417374618
720 => 0.029753537782653
721 => 0.03047268028505
722 => 0.030752826818384
723 => 0.031595967445629
724 => 0.030915062912595
725 => 0.030767744933783
726 => 0.028722561561284
727 => 0.029057460223957
728 => 0.029593665295812
729 => 0.028731403385422
730 => 0.029278310102231
731 => 0.029386281073198
801 => 0.028702104055656
802 => 0.029067552562269
803 => 0.028097029676636
804 => 0.02608463116098
805 => 0.026823164514418
806 => 0.027366973650186
807 => 0.026590890962262
808 => 0.027981989141819
809 => 0.027169338303417
810 => 0.026911767001763
811 => 0.025906889523212
812 => 0.026381153011807
813 => 0.02702260117093
814 => 0.026626260784944
815 => 0.027448726596673
816 => 0.028613557529702
817 => 0.029443685419459
818 => 0.029507412331096
819 => 0.028973695712231
820 => 0.029828980000096
821 => 0.029835209812398
822 => 0.028870445641747
823 => 0.028279532959053
824 => 0.028145276354254
825 => 0.0284806756756
826 => 0.028887912369844
827 => 0.029530011133403
828 => 0.029918017968399
829 => 0.030929734011146
830 => 0.031203475364141
831 => 0.03150423411789
901 => 0.031906140563463
902 => 0.032388732298072
903 => 0.031332849056711
904 => 0.031374801266303
905 => 0.030391577411647
906 => 0.029340861714383
907 => 0.030138223955045
908 => 0.031180669016058
909 => 0.030941530967262
910 => 0.030914623051626
911 => 0.030959874702093
912 => 0.03077957242282
913 => 0.02996407189598
914 => 0.029554532636705
915 => 0.030082942765778
916 => 0.030363769232551
917 => 0.030799306591875
918 => 0.03074561741926
919 => 0.031867514883581
920 => 0.032303450313797
921 => 0.032191919376019
922 => 0.032212443752712
923 => 0.03300168402613
924 => 0.033879481529811
925 => 0.034701654727592
926 => 0.035538004617535
927 => 0.034529752181917
928 => 0.034017823775475
929 => 0.034546003217216
930 => 0.034265743770765
1001 => 0.035876197680428
1002 => 0.035987702014981
1003 => 0.037598039470496
1004 => 0.039126441471198
1005 => 0.038166479558723
1006 => 0.039071680404553
1007 => 0.040050728921425
1008 => 0.041939472355369
1009 => 0.041303410013611
1010 => 0.040816196228193
1011 => 0.040355781555173
1012 => 0.041313831400957
1013 => 0.042546347222339
1014 => 0.042811819325375
1015 => 0.043241985550441
1016 => 0.042789718363007
1017 => 0.043334424374675
1018 => 0.045257475951812
1019 => 0.044737850440424
1020 => 0.043999898680283
1021 => 0.045517963208596
1022 => 0.046067344860066
1023 => 0.049923193003488
1024 => 0.0547913605617
1025 => 0.052775907226489
1026 => 0.05152485030305
1027 => 0.051818878355525
1028 => 0.053596568349913
1029 => 0.05416750595505
1030 => 0.052615500730293
1031 => 0.05316369521331
1101 => 0.056184300712031
1102 => 0.057804758649468
1103 => 0.055603959113892
1104 => 0.049532040480215
1105 => 0.043933454198388
1106 => 0.045418451387954
1107 => 0.045250098791485
1108 => 0.04849536257165
1109 => 0.044725457543829
1110 => 0.044788933076037
1111 => 0.048101305474382
1112 => 0.047217621306943
1113 => 0.045786166129408
1114 => 0.043943905405327
1115 => 0.04053831606837
1116 => 0.037521890620744
1117 => 0.043437795564832
1118 => 0.043182690986268
1119 => 0.042813261752127
1120 => 0.04363538653629
1121 => 0.047627391123996
1122 => 0.047535362497392
1123 => 0.046949923328352
1124 => 0.047393973778244
1125 => 0.04570832193859
1126 => 0.046142752799248
1127 => 0.043932567353716
1128 => 0.044931663480594
1129 => 0.045783094869496
1130 => 0.045954032326476
1201 => 0.046339163145333
1202 => 0.043048262465407
1203 => 0.044525780254926
1204 => 0.045393683531573
1205 => 0.041472464953088
1206 => 0.045316173647956
1207 => 0.042990975206162
1208 => 0.042201767931709
1209 => 0.043264331556608
1210 => 0.042850249478608
1211 => 0.042494246023659
1212 => 0.042295589978881
1213 => 0.04307581943414
1214 => 0.043039420797476
1215 => 0.041762813972662
1216 => 0.040097532410843
1217 => 0.040656455563994
1218 => 0.040453393542522
1219 => 0.039717470581185
1220 => 0.040213393801449
1221 => 0.038029598920406
1222 => 0.034272493331352
1223 => 0.036754552366738
1224 => 0.036658995793836
1225 => 0.036610811836633
1226 => 0.038476010602652
1227 => 0.038296714778757
1228 => 0.037971291102716
1229 => 0.039711493920174
1230 => 0.039076296482771
1231 => 0.041033825313509
]
'min_raw' => 0.0175722552922
'max_raw' => 0.057804758649468
'avg_raw' => 0.037688506970834
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.017572'
'max' => '$0.0578047'
'avg' => '$0.037688'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0095729116332883
'max_diff' => 0.038211866964954
'year' => 2029
]
4 => [
'items' => [
101 => 0.04232318040646
102 => 0.04199615824862
103 => 0.043208802945534
104 => 0.040669332024576
105 => 0.041512842398629
106 => 0.041686688717666
107 => 0.039690020087532
108 => 0.038326049792935
109 => 0.038235088524685
110 => 0.035870152000539
111 => 0.037133482002637
112 => 0.038245160124336
113 => 0.03771275257375
114 => 0.037544208248457
115 => 0.038405264653572
116 => 0.038472176110699
117 => 0.036946587797249
118 => 0.037263805916714
119 => 0.038586658208008
120 => 0.037230473433063
121 => 0.034595627946869
122 => 0.033942149836704
123 => 0.033854963810817
124 => 0.032082679348047
125 => 0.033985818368752
126 => 0.03315504718526
127 => 0.035779443399746
128 => 0.034280402356951
129 => 0.034215781693691
130 => 0.034118098083384
131 => 0.032592619634129
201 => 0.032926602465303
202 => 0.034036812263146
203 => 0.034432947626425
204 => 0.034391627462594
205 => 0.034031371629464
206 => 0.034196294905063
207 => 0.033665019571281
208 => 0.033477415193383
209 => 0.032885284172088
210 => 0.032015015151153
211 => 0.032136031396184
212 => 0.030411800747435
213 => 0.029472348378151
214 => 0.029212320344116
215 => 0.028864599989685
216 => 0.029251596283397
217 => 0.030406916218646
218 => 0.029013355261939
219 => 0.0266241927486
220 => 0.026767785486587
221 => 0.027090395735776
222 => 0.026489213670692
223 => 0.025920245299477
224 => 0.026414917136386
225 => 0.025402597483711
226 => 0.027212729729387
227 => 0.027163770724979
228 => 0.027838476088339
301 => 0.028260383198397
302 => 0.027288023903763
303 => 0.027043478170702
304 => 0.027182782534238
305 => 0.0248803917093
306 => 0.027650321637912
307 => 0.027674276106958
308 => 0.027469163399803
309 => 0.028944065574796
310 => 0.032056569197558
311 => 0.030885520134507
312 => 0.030432054542148
313 => 0.029570016119593
314 => 0.030718631134871
315 => 0.030630435422883
316 => 0.030231580966044
317 => 0.029990352546046
318 => 0.030434823306359
319 => 0.029935277700103
320 => 0.029845545582624
321 => 0.029301866580208
322 => 0.029107797912164
323 => 0.02896411719644
324 => 0.028805938846204
325 => 0.029154840871236
326 => 0.02836418298063
327 => 0.027410727073708
328 => 0.027331457531584
329 => 0.027550327706839
330 => 0.027453493947257
331 => 0.027330993928798
401 => 0.027097108032664
402 => 0.027027719083462
403 => 0.027253199505634
404 => 0.026998645255327
405 => 0.027374253917943
406 => 0.027272109145087
407 => 0.026701536747221
408 => 0.025990392286522
409 => 0.025984061609146
410 => 0.025830846701599
411 => 0.025635704480823
412 => 0.025581420379252
413 => 0.026373257254033
414 => 0.028012335887147
415 => 0.027690545531639
416 => 0.027923072041896
417 => 0.029066872332412
418 => 0.029430452049492
419 => 0.029172391778166
420 => 0.02881914296231
421 => 0.02883468411744
422 => 0.030041842256906
423 => 0.030117131229335
424 => 0.030307362173518
425 => 0.030551862696051
426 => 0.029214031274403
427 => 0.02877167237779
428 => 0.028562058191437
429 => 0.027916527628369
430 => 0.02861267699703
501 => 0.028207060571999
502 => 0.028261792085566
503 => 0.028226148115555
504 => 0.028245612133416
505 => 0.027212223760534
506 => 0.027588736170318
507 => 0.026962711263269
508 => 0.026124534187324
509 => 0.026121724323862
510 => 0.026326866975755
511 => 0.026204840099177
512 => 0.025876468911901
513 => 0.025923112489185
514 => 0.025514465671497
515 => 0.025972729611642
516 => 0.025985870981698
517 => 0.025809414402937
518 => 0.026515433230967
519 => 0.026804689720868
520 => 0.026688542220661
521 => 0.026796540502628
522 => 0.027703917373707
523 => 0.027851859395321
524 => 0.027917565468821
525 => 0.027829528034718
526 => 0.026813125686136
527 => 0.026858207452372
528 => 0.026527427363953
529 => 0.026247953045986
530 => 0.026259130553055
531 => 0.026402816681609
601 => 0.027030302432081
602 => 0.028350809201644
603 => 0.028400921468271
604 => 0.028461658997301
605 => 0.0282146089425
606 => 0.028140096282021
607 => 0.028238397714542
608 => 0.028734310628242
609 => 0.030009933281322
610 => 0.029559043039751
611 => 0.029192462254829
612 => 0.029514052432676
613 => 0.029464546145504
614 => 0.029046663260403
615 => 0.02903493467962
616 => 0.028232883817871
617 => 0.027936383876097
618 => 0.027688606332115
619 => 0.027418039722483
620 => 0.027257638766818
621 => 0.02750408753565
622 => 0.027560453284978
623 => 0.02702158874474
624 => 0.026948143499078
625 => 0.027388191914836
626 => 0.027194543013719
627 => 0.027393715710779
628 => 0.027439925484969
629 => 0.027432484647023
630 => 0.027230292953823
701 => 0.027359163909625
702 => 0.027054345680871
703 => 0.026722901639319
704 => 0.026511460990502
705 => 0.026326950980876
706 => 0.026429327858001
707 => 0.026064372984331
708 => 0.025947616575153
709 => 0.027315505329488
710 => 0.028325979459597
711 => 0.028311286765553
712 => 0.028221848769218
713 => 0.028088962048498
714 => 0.028724589136921
715 => 0.02850314936908
716 => 0.028664265302096
717 => 0.028705276069063
718 => 0.02882940330902
719 => 0.028873768128208
720 => 0.028739666831274
721 => 0.028289606499671
722 => 0.02716809894377
723 => 0.026646034149045
724 => 0.02647374407111
725 => 0.026480006488217
726 => 0.02630726106773
727 => 0.02635814233597
728 => 0.026289566639087
729 => 0.026159700859433
730 => 0.02642130901206
731 => 0.026451456914601
801 => 0.026390394445794
802 => 0.026404776867691
803 => 0.025899205706085
804 => 0.025937643183459
805 => 0.025723618425042
806 => 0.025683491362945
807 => 0.025142455410934
808 => 0.02418393179753
809 => 0.024715046925494
810 => 0.024073534537001
811 => 0.02383058407498
812 => 0.024980673775639
813 => 0.024865236668216
814 => 0.024667658519611
815 => 0.024375399258931
816 => 0.02426699745623
817 => 0.023608382418855
818 => 0.023569467928873
819 => 0.023895895325497
820 => 0.023745260313636
821 => 0.023533711707042
822 => 0.022767504098299
823 => 0.02190603306345
824 => 0.021932035458979
825 => 0.022206053366926
826 => 0.023002797390631
827 => 0.022691495716758
828 => 0.022465642780588
829 => 0.022423347314757
830 => 0.022952763621179
831 => 0.023701998610912
901 => 0.024053522904906
902 => 0.023705173005509
903 => 0.023305007397573
904 => 0.023329363623939
905 => 0.023491394686172
906 => 0.023508421859816
907 => 0.023247955186739
908 => 0.023321275029518
909 => 0.02320989548383
910 => 0.022526359417531
911 => 0.022513996417608
912 => 0.02234624564343
913 => 0.022341166216656
914 => 0.022055780302388
915 => 0.022015852840202
916 => 0.021449201785736
917 => 0.021822173225763
918 => 0.021572003565672
919 => 0.021194938878859
920 => 0.021129932784728
921 => 0.021127978623041
922 => 0.021515139746278
923 => 0.021817649022622
924 => 0.021576355374017
925 => 0.02152141748751
926 => 0.022108010386169
927 => 0.022033361092901
928 => 0.021968715286368
929 => 0.023634912835263
930 => 0.022315987460296
1001 => 0.021740860715183
1002 => 0.021029032154498
1003 => 0.021260807123208
1004 => 0.021309645514598
1005 => 0.019597826142893
1006 => 0.018903341236986
1007 => 0.01866502018839
1008 => 0.018527863055558
1009 => 0.018590367283301
1010 => 0.017965249413029
1011 => 0.018385338960347
1012 => 0.01784403972459
1013 => 0.017753289146175
1014 => 0.018721199233816
1015 => 0.018855878268063
1016 => 0.018281295666471
1017 => 0.018650270713166
1018 => 0.018516475232098
1019 => 0.017853318746364
1020 => 0.017827991046458
1021 => 0.017495242432994
1022 => 0.016974555285752
1023 => 0.016736587287561
1024 => 0.01661265148797
1025 => 0.016663789814342
1026 => 0.016637932711669
1027 => 0.016469197626315
1028 => 0.016647604409248
1029 => 0.016191848801628
1030 => 0.016010363246401
1031 => 0.015928390431538
1101 => 0.015523881097461
1102 => 0.016167635334095
1103 => 0.016294463028514
1104 => 0.01642154061267
1105 => 0.017527664223196
1106 => 0.017472405413487
1107 => 0.017971918141125
1108 => 0.017952507995074
1109 => 0.017810038873582
1110 => 0.01720898508504
1111 => 0.0174485544124
1112 => 0.016711197260128
1113 => 0.017263675374022
1114 => 0.017011547434878
1115 => 0.01717843066418
1116 => 0.016878359570642
1117 => 0.017044431303438
1118 => 0.016324538579858
1119 => 0.015652312883743
1120 => 0.015922836127351
1121 => 0.016216925831238
1122 => 0.016854587241929
1123 => 0.016474801366314
1124 => 0.016611386728479
1125 => 0.016153848629339
1126 => 0.015209816841518
1127 => 0.015215159958915
1128 => 0.015069941235209
1129 => 0.014944451055646
1130 => 0.016518424342727
1201 => 0.016322675883643
1202 => 0.016010776333017
1203 => 0.016428266275925
1204 => 0.016538657243286
1205 => 0.016541799918935
1206 => 0.016846389804305
1207 => 0.017008949480728
1208 => 0.017037601328272
1209 => 0.017516880094001
1210 => 0.017677528014434
1211 => 0.018339214062953
1212 => 0.016995157427925
1213 => 0.016967477466007
1214 => 0.016434141215586
1215 => 0.016095890933857
1216 => 0.016457301501762
1217 => 0.016777461927464
1218 => 0.016444089492457
1219 => 0.016487620894592
1220 => 0.016040095638124
1221 => 0.016200064859291
1222 => 0.016337851902741
1223 => 0.016261773996096
1224 => 0.016147881687636
1225 => 0.016751212423618
1226 => 0.016717170139021
1227 => 0.017279005590881
1228 => 0.017716996502845
1229 => 0.018501954517324
1230 => 0.017682809908428
1231 => 0.017652957023075
]
'min_raw' => 0.014944451055646
'max_raw' => 0.043208802945534
'avg_raw' => 0.02907662700059
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.014944'
'max' => '$0.0432088'
'avg' => '$0.029076'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0026278042365538
'max_diff' => -0.014595955703934
'year' => 2030
]
5 => [
'items' => [
101 => 0.017944773765955
102 => 0.017677483338811
103 => 0.017846401662214
104 => 0.018474739163957
105 => 0.018488014945248
106 => 0.018265628503753
107 => 0.018252096268577
108 => 0.018294808017307
109 => 0.018544972063697
110 => 0.018457557059124
111 => 0.018558715915493
112 => 0.018685216614383
113 => 0.019208477140174
114 => 0.019334633481452
115 => 0.019028138976709
116 => 0.019055811998814
117 => 0.018941174640578
118 => 0.018830436388925
119 => 0.01907935980662
120 => 0.019534272245059
121 => 0.01953144225839
122 => 0.019636973101874
123 => 0.019702717943099
124 => 0.019420492956393
125 => 0.019236774867748
126 => 0.01930722407322
127 => 0.019419873886955
128 => 0.019270693256883
129 => 0.018349881300888
130 => 0.018629196826641
131 => 0.018582705065325
201 => 0.018516495143618
202 => 0.018797349064646
203 => 0.018770260018815
204 => 0.017958837925739
205 => 0.018010782535485
206 => 0.017961996849504
207 => 0.018119633381522
208 => 0.017668970448763
209 => 0.017807591331619
210 => 0.017894533049856
211 => 0.017945742389815
212 => 0.018130745640321
213 => 0.018109037644174
214 => 0.018129396240801
215 => 0.018403707222254
216 => 0.019791078034283
217 => 0.019866589566521
218 => 0.019494743164738
219 => 0.019643288467904
220 => 0.019358113969111
221 => 0.019549553520654
222 => 0.019680531599782
223 => 0.019088666845838
224 => 0.01905362045628
225 => 0.018767268940889
226 => 0.018921138025481
227 => 0.018676321248316
228 => 0.018736390722105
301 => 0.018568431236628
302 => 0.018870724870086
303 => 0.019208736123974
304 => 0.019294131115175
305 => 0.019069493658181
306 => 0.018906841334987
307 => 0.018621277436464
308 => 0.019096176563914
309 => 0.019235051541069
310 => 0.01909544711278
311 => 0.019063097716328
312 => 0.019001795668506
313 => 0.019076103235567
314 => 0.019234295198118
315 => 0.019159694789926
316 => 0.019208969673827
317 => 0.019021184628436
318 => 0.019420586384607
319 => 0.020054932494675
320 => 0.020056972021145
321 => 0.019982371210829
322 => 0.019951846166544
323 => 0.020028391125084
324 => 0.020069913625054
325 => 0.020317445985028
326 => 0.020583058069405
327 => 0.021822553771559
328 => 0.021474508338316
329 => 0.022574262663197
330 => 0.023444025548951
331 => 0.023704829408267
401 => 0.023464902129466
402 => 0.022644123869304
403 => 0.022603852572131
404 => 0.023830441816456
405 => 0.023483874173588
406 => 0.023442651055238
407 => 0.023004106723551
408 => 0.02326334073835
409 => 0.02320664245658
410 => 0.023117141445031
411 => 0.023611741886869
412 => 0.024537589760705
413 => 0.024393287687022
414 => 0.024285572882997
415 => 0.023813597967071
416 => 0.024097832285873
417 => 0.023996621889097
418 => 0.02443148598335
419 => 0.024173882127333
420 => 0.023481248582834
421 => 0.023591552757746
422 => 0.023574880503609
423 => 0.023917994312333
424 => 0.023815000063563
425 => 0.023554769223538
426 => 0.024534425313325
427 => 0.024470811895988
428 => 0.02456100117772
429 => 0.024600705288735
430 => 0.025197004687112
501 => 0.025441289471175
502 => 0.025496746393964
503 => 0.02572879804516
504 => 0.025490972737488
505 => 0.026442443534747
506 => 0.027075116095064
507 => 0.027809997830905
508 => 0.028883857564557
509 => 0.029287638758168
510 => 0.029214699299647
511 => 0.030028887493911
512 => 0.031491965580615
513 => 0.029510429211974
514 => 0.0315969918197
515 => 0.030936410188617
516 => 0.029370183024678
517 => 0.029269336459925
518 => 0.030330003679616
519 => 0.032682461487455
520 => 0.032093197487947
521 => 0.03268342531226
522 => 0.031994893203402
523 => 0.031960701780793
524 => 0.032649984844565
525 => 0.034260532293933
526 => 0.033495421571207
527 => 0.032398447737333
528 => 0.033208436145462
529 => 0.032506749225452
530 => 0.030925652204867
531 => 0.032092746888872
601 => 0.031312343910621
602 => 0.031540106988179
603 => 0.033180397972281
604 => 0.032983033821402
605 => 0.033238441308067
606 => 0.032787653779281
607 => 0.032366547144725
608 => 0.031580520339538
609 => 0.031347816553175
610 => 0.031412127507921
611 => 0.03134778468386
612 => 0.030908009910317
613 => 0.030813040589842
614 => 0.030654754228348
615 => 0.030703813790468
616 => 0.030406189122552
617 => 0.030967868363304
618 => 0.031072120979888
619 => 0.031480864291146
620 => 0.031523301377674
621 => 0.03266164568143
622 => 0.03203466476802
623 => 0.032455297695663
624 => 0.032417672327464
625 => 0.029404127916536
626 => 0.029819367747635
627 => 0.030465350615387
628 => 0.030174336209073
629 => 0.02976290992543
630 => 0.029430661142107
701 => 0.028927270261189
702 => 0.029635783259315
703 => 0.030567402509893
704 => 0.031546928779275
705 => 0.032723765410833
706 => 0.032461109174558
707 => 0.031524928637038
708 => 0.031566925012071
709 => 0.031826530077559
710 => 0.031490317930145
711 => 0.031391162404231
712 => 0.031812907630936
713 => 0.031815811958525
714 => 0.031428959250329
715 => 0.030999043258467
716 => 0.030997241894763
717 => 0.030920742496507
718 => 0.032008502276408
719 => 0.032606660170434
720 => 0.032675238009005
721 => 0.032602044335499
722 => 0.032630213675478
723 => 0.032282158776454
724 => 0.03307770906315
725 => 0.033807784677991
726 => 0.033612108817423
727 => 0.033318762885469
728 => 0.033085098721213
729 => 0.033557064966278
730 => 0.033536049052329
731 => 0.033801408104399
801 => 0.033789369885009
802 => 0.033700139616456
803 => 0.033612112004116
804 => 0.033961131536854
805 => 0.033860619516508
806 => 0.033759951373232
807 => 0.03355804600037
808 => 0.033585488293835
809 => 0.033292193012192
810 => 0.033156501194625
811 => 0.031116021828613
812 => 0.030570739067427
813 => 0.03074229612435
814 => 0.030798777161966
815 => 0.0305614694055
816 => 0.030901707768912
817 => 0.030848681980376
818 => 0.031054974304521
819 => 0.030926091816567
820 => 0.030931381198828
821 => 0.03131039711526
822 => 0.031420427048249
823 => 0.03136446493628
824 => 0.031403658881234
825 => 0.032306866799966
826 => 0.032178459516885
827 => 0.032110245707001
828 => 0.032129141398521
829 => 0.032359930386753
830 => 0.032424538702846
831 => 0.032150788727613
901 => 0.032279890798462
902 => 0.032829591030649
903 => 0.033021955001576
904 => 0.03363588845683
905 => 0.033375078613241
906 => 0.033853806368734
907 => 0.035325252278801
908 => 0.036500745088075
909 => 0.035419713321372
910 => 0.037578356167497
911 => 0.03925916926213
912 => 0.039194656856017
913 => 0.03890156821506
914 => 0.036988007193549
915 => 0.035227119811966
916 => 0.036700176877887
917 => 0.036703932003285
918 => 0.036577395094933
919 => 0.035791485224682
920 => 0.036550047135007
921 => 0.036610259024756
922 => 0.03657655637813
923 => 0.035974001123272
924 => 0.035054010619929
925 => 0.035233774562136
926 => 0.035528231566557
927 => 0.034970763027023
928 => 0.034792618050432
929 => 0.035123823455383
930 => 0.036191036279522
1001 => 0.035989285877062
1002 => 0.035984017358716
1003 => 0.036847191135928
1004 => 0.036229344996004
1005 => 0.035236041961131
1006 => 0.034985219844769
1007 => 0.034094970305704
1008 => 0.034709868833296
1009 => 0.034731997936621
1010 => 0.03439522429717
1011 => 0.035263369285907
1012 => 0.035255369177002
1013 => 0.03607954363748
1014 => 0.037655055660121
1015 => 0.037189099228788
1016 => 0.036647242595063
1017 => 0.036706157435204
1018 => 0.03735230781733
1019 => 0.036961630546118
1020 => 0.037102120816745
1021 => 0.03735209516848
1022 => 0.037502910901395
1023 => 0.036684457372159
1024 => 0.036493636703337
1025 => 0.036103284583879
1026 => 0.03600144900218
1027 => 0.036319382658514
1028 => 0.036235618372832
1029 => 0.034730138071175
1030 => 0.034572807003238
1031 => 0.034577632122475
1101 => 0.034182015671464
1102 => 0.033578605624845
1103 => 0.035164331199618
1104 => 0.035036975243749
1105 => 0.034896384125037
1106 => 0.034913605734877
1107 => 0.03560191546166
1108 => 0.035202661059652
1109 => 0.036264144323901
1110 => 0.036045935275879
1111 => 0.035822129989153
1112 => 0.035791193281252
1113 => 0.035705047340032
1114 => 0.035409620854097
1115 => 0.035052875619952
1116 => 0.034817321515626
1117 => 0.032117138661513
1118 => 0.032618276892995
1119 => 0.033194790748128
1120 => 0.033393801020686
1121 => 0.033053380178384
1122 => 0.035423062743841
1123 => 0.035856026583379
1124 => 0.034544550871885
1125 => 0.034299227313465
1126 => 0.035439146115489
1127 => 0.034751635728463
1128 => 0.035061221613644
1129 => 0.034392066264308
1130 => 0.035751738273096
1201 => 0.035741379850462
1202 => 0.035212436729459
1203 => 0.035659495833285
1204 => 0.035581808312411
1205 => 0.034984632831527
1206 => 0.035770669801002
1207 => 0.035771059665532
1208 => 0.035261963411782
1209 => 0.034667450442901
1210 => 0.034561165565835
1211 => 0.034481094188329
1212 => 0.035041528963242
1213 => 0.035544013029995
1214 => 0.036479011301858
1215 => 0.036714092082415
1216 => 0.037631628019144
1217 => 0.037085280042836
1218 => 0.037327469024343
1219 => 0.037590399423491
1220 => 0.037716457925788
1221 => 0.037511052360967
1222 => 0.038936363343566
1223 => 0.039056703260897
1224 => 0.039097052194242
1225 => 0.038616445350332
1226 => 0.039043336715157
1227 => 0.038843608382711
1228 => 0.039363246017606
1229 => 0.039444731833824
1230 => 0.039375716246429
1231 => 0.039401581130663
]
'min_raw' => 0.017668970448763
'max_raw' => 0.039444731833824
'avg_raw' => 0.028556851141294
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.017668'
'max' => '$0.039444'
'avg' => '$0.028556'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.002724519393117
'max_diff' => -0.0037640711117101
'year' => 2031
]
6 => [
'items' => [
101 => 0.038185329649102
102 => 0.038122260593545
103 => 0.037262309545855
104 => 0.037612745954226
105 => 0.03695762188563
106 => 0.037165368476308
107 => 0.037256941193996
108 => 0.037209108802982
109 => 0.037632559102965
110 => 0.037272539842798
111 => 0.036322389822572
112 => 0.035371980934609
113 => 0.035360049325207
114 => 0.035109823441116
115 => 0.034928955958075
116 => 0.034963797451928
117 => 0.035086583420711
118 => 0.034921819414357
119 => 0.03495698016886
120 => 0.035540882968487
121 => 0.035657980510748
122 => 0.035260037309182
123 => 0.033662237931964
124 => 0.033270133957018
125 => 0.033551970518449
126 => 0.033417270794685
127 => 0.026970345642361
128 => 0.028484955078307
129 => 0.027585025582744
130 => 0.027999754498065
131 => 0.027081159518708
201 => 0.027519561190545
202 => 0.027438604409622
203 => 0.029874051562072
204 => 0.029836025404635
205 => 0.029854226513901
206 => 0.028985440145904
207 => 0.030369440420243
208 => 0.031051248722423
209 => 0.03092506415143
210 => 0.030956822089409
211 => 0.030411115495846
212 => 0.029859510146582
213 => 0.029247694922794
214 => 0.030384371985945
215 => 0.030257992900247
216 => 0.030547861053078
217 => 0.031285077379886
218 => 0.031393635284421
219 => 0.031539538209002
220 => 0.031487242396617
221 => 0.032733140813225
222 => 0.032582254294271
223 => 0.032945847391935
224 => 0.032197908804165
225 => 0.031351545297122
226 => 0.031512411330103
227 => 0.031496918637524
228 => 0.031299678879308
229 => 0.031121619644776
301 => 0.030825201187159
302 => 0.031763113048738
303 => 0.031725035539986
304 => 0.032341466146417
305 => 0.032232506049043
306 => 0.031504843851719
307 => 0.031530832449451
308 => 0.031705618258893
309 => 0.032310553941041
310 => 0.032490140038665
311 => 0.032406948602977
312 => 0.032603856560605
313 => 0.032759484581729
314 => 0.032623401043967
315 => 0.034550056963899
316 => 0.033749975099961
317 => 0.034139929433511
318 => 0.034232931244318
319 => 0.033994709061553
320 => 0.034046370922898
321 => 0.034124624565821
322 => 0.034599765362016
323 => 0.035846672294328
324 => 0.036398918886667
325 => 0.038060380007084
326 => 0.036353062494817
327 => 0.036251757339221
328 => 0.036551036658327
329 => 0.037526490219533
330 => 0.038317003711196
331 => 0.038579262642198
401 => 0.038613924489353
402 => 0.039105939678557
403 => 0.039387953609469
404 => 0.039046196093304
405 => 0.038756592381857
406 => 0.037719267834392
407 => 0.037839340975302
408 => 0.038666525845368
409 => 0.039834973195282
410 => 0.040837622577735
411 => 0.040486529709859
412 => 0.043165120458817
413 => 0.043430691790514
414 => 0.043393998419422
415 => 0.043999009435342
416 => 0.042798185777093
417 => 0.042284810398329
418 => 0.038819207991414
419 => 0.039792900907672
420 => 0.041208220744433
421 => 0.04102089785686
422 => 0.039993054759797
423 => 0.040836842866577
424 => 0.040557860130782
425 => 0.040337814872056
426 => 0.041345884860152
427 => 0.040237470499008
428 => 0.041197163463287
429 => 0.039966347309846
430 => 0.040488133472506
501 => 0.040191942410623
502 => 0.040383614327472
503 => 0.039263104218072
504 => 0.039867704274259
505 => 0.039237950867994
506 => 0.039237652282884
507 => 0.039223750441536
508 => 0.039964652531253
509 => 0.039988813321799
510 => 0.039441285558058
511 => 0.039362378253311
512 => 0.039654139915951
513 => 0.0393125634215
514 => 0.039472384913397
515 => 0.039317404251677
516 => 0.039282514840332
517 => 0.039004510074789
518 => 0.038884737977893
519 => 0.038931703703232
520 => 0.038771385470157
521 => 0.038674787935765
522 => 0.039204534760621
523 => 0.038921512402026
524 => 0.039161157525054
525 => 0.038888051661738
526 => 0.037941347752924
527 => 0.037396888323753
528 => 0.035608652399502
529 => 0.03611579388932
530 => 0.036452029221745
531 => 0.036340903446384
601 => 0.036579644611825
602 => 0.036594301380408
603 => 0.036516684193845
604 => 0.036426813435182
605 => 0.03638306932003
606 => 0.036709102115494
607 => 0.03689837512702
608 => 0.036485774935602
609 => 0.036389108483643
610 => 0.036806270057447
611 => 0.037060738376481
612 => 0.038939589470832
613 => 0.038800398113153
614 => 0.039149741106002
615 => 0.039110410446113
616 => 0.039476577557321
617 => 0.04007510603038
618 => 0.038858130293458
619 => 0.039069355201533
620 => 0.039017567731969
621 => 0.03958296974527
622 => 0.03958473486864
623 => 0.03924574811774
624 => 0.039429518334835
625 => 0.039326942841125
626 => 0.039512310622168
627 => 0.038798539127711
628 => 0.039667835761088
629 => 0.040160670935976
630 => 0.040167513952857
701 => 0.040401113914372
702 => 0.040638465004469
703 => 0.041094039752986
704 => 0.040625759271996
705 => 0.039783368272882
706 => 0.039844186182112
707 => 0.03935029264755
708 => 0.039358595087095
709 => 0.039314276014129
710 => 0.039447280888284
711 => 0.038827726218075
712 => 0.038973134460825
713 => 0.038769562069465
714 => 0.039068912674911
715 => 0.038746860907879
716 => 0.039017542758483
717 => 0.039134360071958
718 => 0.039565418473578
719 => 0.038683193231477
720 => 0.036884276241434
721 => 0.037262430402502
722 => 0.036703110694915
723 => 0.036754877863332
724 => 0.036859455782219
725 => 0.036520484531341
726 => 0.036585149563797
727 => 0.036582839273796
728 => 0.036562930442695
729 => 0.03647475092865
730 => 0.036346873187501
731 => 0.036856298749547
801 => 0.036942860079348
802 => 0.037135275192814
803 => 0.03770777205407
804 => 0.037650566117225
805 => 0.037743871373671
806 => 0.037540186522736
807 => 0.036764326219385
808 => 0.036806459166633
809 => 0.03628106063931
810 => 0.037121839571213
811 => 0.036922732022399
812 => 0.036794366090407
813 => 0.036759340256561
814 => 0.037333256226803
815 => 0.03750498088013
816 => 0.03739797360019
817 => 0.03717849854713
818 => 0.037599955530979
819 => 0.037712719640014
820 => 0.037737963365447
821 => 0.038484704334466
822 => 0.037779697890358
823 => 0.037949399948616
824 => 0.039273366963558
825 => 0.038072711575965
826 => 0.038708725512583
827 => 0.038677595940042
828 => 0.039002959148478
829 => 0.03865090666031
830 => 0.038655270772832
831 => 0.03894417125991
901 => 0.038538462629286
902 => 0.038438003466851
903 => 0.038299219853448
904 => 0.038602248796016
905 => 0.038783900942265
906 => 0.040247883832235
907 => 0.041193683544887
908 => 0.041152623884991
909 => 0.041527832315973
910 => 0.0413587974813
911 => 0.040812939411006
912 => 0.041744652576699
913 => 0.041449819546539
914 => 0.041474125223323
915 => 0.041473220564819
916 => 0.041669258755125
917 => 0.041530347730657
918 => 0.041256539842507
919 => 0.04143830629674
920 => 0.041978087683116
921 => 0.043653585668941
922 => 0.044591216539205
923 => 0.043597139113227
924 => 0.04428284041044
925 => 0.043871663972467
926 => 0.043796940982247
927 => 0.044227612069825
928 => 0.044659036990129
929 => 0.044631557087807
930 => 0.044318364749581
1001 => 0.044141450344678
1002 => 0.045481105489274
1003 => 0.046468140579383
1004 => 0.046400831403405
1005 => 0.046697912216056
1006 => 0.047570150670364
1007 => 0.047649897223377
1008 => 0.047639850990651
1009 => 0.047442190838315
1010 => 0.048301022871057
1011 => 0.049017475662482
1012 => 0.047396438224
1013 => 0.048013708059635
1014 => 0.048290820376044
1015 => 0.048697703472052
1016 => 0.049384183456542
1017 => 0.050129882799521
1018 => 0.050235332862795
1019 => 0.050160510996652
1020 => 0.049668702234483
1021 => 0.050484655353614
1022 => 0.050962621554346
1023 => 0.051247239488819
1024 => 0.051968983214736
1025 => 0.04829253172737
1026 => 0.045690156633117
1027 => 0.045283758183398
1028 => 0.046110185411732
1029 => 0.04632810768121
1030 => 0.046240263487635
1031 => 0.043311053721461
1101 => 0.045268336500193
1102 => 0.047374208197098
1103 => 0.047455103305408
1104 => 0.04850934670858
1105 => 0.048852651575549
1106 => 0.049701455697944
1107 => 0.049648362768984
1108 => 0.049855033065363
1109 => 0.049807523143256
1110 => 0.051379754043197
1111 => 0.053114158204379
1112 => 0.053054101303345
1113 => 0.052804760184636
1114 => 0.053175074264897
1115 => 0.054965165229283
1116 => 0.054800362338906
1117 => 0.05496045430903
1118 => 0.057071072441147
1119 => 0.059815176244827
1120 => 0.0585402645245
1121 => 0.061306456111644
1122 => 0.063047627086236
1123 => 0.066058802246354
1124 => 0.065681788285957
1125 => 0.066854016678766
1126 => 0.065006854611658
1127 => 0.060765397132531
1128 => 0.060094170250812
1129 => 0.061437983466185
1130 => 0.064741617128804
1201 => 0.061333940285515
1202 => 0.062023308872745
1203 => 0.061824770673247
1204 => 0.061814191416328
1205 => 0.06221795862395
1206 => 0.061632273230213
1207 => 0.059246085573339
1208 => 0.060339661314592
1209 => 0.059917379203074
1210 => 0.060385932689021
1211 => 0.062914522606516
1212 => 0.061796572729937
1213 => 0.060618903349833
1214 => 0.062095962098239
1215 => 0.063976765457414
1216 => 0.063859068163325
1217 => 0.063630686219141
1218 => 0.064918063280818
1219 => 0.06704443302062
1220 => 0.067619182216843
1221 => 0.068043450323265
1222 => 0.068101949727072
1223 => 0.068704529943463
1224 => 0.065464304250163
1225 => 0.070606625640327
1226 => 0.071494562490647
1227 => 0.071327667163999
1228 => 0.072314571603035
1229 => 0.072024199281721
1230 => 0.071603495346159
1231 => 0.073167948802625
]
'min_raw' => 0.026970345642361
'max_raw' => 0.073167948802625
'avg_raw' => 0.050069147222493
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.02697'
'max' => '$0.073167'
'avg' => '$0.050069'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0093013751935973
'max_diff' => 0.033723216968802
'year' => 2032
]
7 => [
'items' => [
101 => 0.071374429159671
102 => 0.068828753824342
103 => 0.067432145987631
104 => 0.069271311848152
105 => 0.070394426261129
106 => 0.071136733444614
107 => 0.071361355149823
108 => 0.065715833746994
109 => 0.062673210825841
110 => 0.064623497234558
111 => 0.067002981254769
112 => 0.065451086096288
113 => 0.065511917448374
114 => 0.063299322783252
115 => 0.067198746786913
116 => 0.066630633508898
117 => 0.069578006200217
118 => 0.06887459205329
119 => 0.071278060066711
120 => 0.070645146389793
121 => 0.073272335676955
122 => 0.074320392611914
123 => 0.076080243322747
124 => 0.077374796669517
125 => 0.0781349831556
126 => 0.078089344410363
127 => 0.081101581991627
128 => 0.079325370729521
129 => 0.077094030763464
130 => 0.077053672863265
131 => 0.078209315450018
201 => 0.080631225276792
202 => 0.081259191257519
203 => 0.081610138572051
204 => 0.081072650543282
205 => 0.079144700520473
206 => 0.078312221475553
207 => 0.079021517741065
208 => 0.078154109358867
209 => 0.079651499578348
210 => 0.081707736174986
211 => 0.081283131449021
212 => 0.082702521387625
213 => 0.084171440649903
214 => 0.086272061168253
215 => 0.086821241157503
216 => 0.087729014796287
217 => 0.088663412058703
218 => 0.088963515276678
219 => 0.089536505436353
220 => 0.089533485495376
221 => 0.091260229908242
222 => 0.093164882468457
223 => 0.09388384471713
224 => 0.095537058764144
225 => 0.092705987644163
226 => 0.09485338760967
227 => 0.096790396131464
228 => 0.094481014718293
301 => 0.097663958979491
302 => 0.097787545492447
303 => 0.099653555109409
304 => 0.097761996878431
305 => 0.096638795638944
306 => 0.099881435531542
307 => 0.10145044683337
308 => 0.10097784786022
309 => 0.097381346339474
310 => 0.095288028193192
311 => 0.089809410833458
312 => 0.09629906975472
313 => 0.099459993309322
314 => 0.097373160311091
315 => 0.098425637491572
316 => 0.10416761172141
317 => 0.10635378374283
318 => 0.10589907524487
319 => 0.10597591349588
320 => 0.10715553223681
321 => 0.112386611362
322 => 0.10925202749473
323 => 0.11164829941064
324 => 0.11291927339444
325 => 0.11409982486275
326 => 0.11120076357372
327 => 0.10742912743235
328 => 0.10623449194387
329 => 0.0971656658964
330 => 0.096693594116714
331 => 0.096428605921537
401 => 0.094757892834273
402 => 0.093445169994512
403 => 0.09240124405406
404 => 0.089661670643639
405 => 0.090586196248635
406 => 0.086219888025833
407 => 0.08901329729432
408 => 0.082044563942529
409 => 0.08784833215493
410 => 0.08468960498188
411 => 0.086810605324888
412 => 0.086803205354502
413 => 0.082897771259252
414 => 0.080645198377443
415 => 0.08208062548918
416 => 0.083619517297308
417 => 0.083869197315723
418 => 0.085864410714148
419 => 0.086421231886679
420 => 0.084734037738413
421 => 0.081900152433303
422 => 0.082558399355638
423 => 0.080631859024571
424 => 0.077255671197681
425 => 0.079680508237538
426 => 0.080508454215503
427 => 0.080874122326415
428 => 0.07755402935646
429 => 0.076510784062575
430 => 0.075955369021786
501 => 0.081471570122824
502 => 0.081773760071258
503 => 0.080227713569713
504 => 0.087215990358842
505 => 0.085634328094593
506 => 0.087401432360422
507 => 0.082498670346854
508 => 0.082685962458217
509 => 0.080364916350747
510 => 0.081664547078573
511 => 0.080746009969199
512 => 0.081559549758966
513 => 0.082047182154602
514 => 0.084367847401244
515 => 0.087874830424311
516 => 0.084021217400762
517 => 0.082342143021647
518 => 0.083383831322977
519 => 0.086157984541499
520 => 0.09036096867385
521 => 0.087872717474559
522 => 0.088976961103559
523 => 0.089218189212116
524 => 0.087383444897825
525 => 0.09042861831377
526 => 0.092060551486319
527 => 0.093734577240366
528 => 0.095188086897469
529 => 0.093065934541584
530 => 0.095336941760971
531 => 0.093506910828885
601 => 0.091865183897684
602 => 0.091867673719763
603 => 0.090837794434017
604 => 0.088842273544742
605 => 0.088474268875977
606 => 0.090388675636761
607 => 0.091923848563915
608 => 0.092050292759178
609 => 0.092900243371683
610 => 0.093403235388976
611 => 0.098333240942938
612 => 0.10031612995989
613 => 0.10274076911564
614 => 0.10368530271199
615 => 0.10652801020294
616 => 0.10423229303058
617 => 0.1037356001796
618 => 0.096840121649079
619 => 0.09796925587216
620 => 0.09977710870856
621 => 0.096869932476477
622 => 0.098713866656007
623 => 0.099077898322912
624 => 0.096771147740556
625 => 0.098003282895401
626 => 0.094731097226746
627 => 0.087946155130036
628 => 0.090436171893902
629 => 0.092269662362687
630 => 0.089653045395986
701 => 0.094343230031737
702 => 0.091603320992594
703 => 0.090734901366014
704 => 0.087346886788774
705 => 0.088945899252591
706 => 0.091108586505557
707 => 0.089772297222603
708 => 0.092545298129577
709 => 0.096472606946181
710 => 0.099271441084176
711 => 0.09948630081603
712 => 0.097686837972622
713 => 0.1005704886632
714 => 0.10059149291033
715 => 0.097338723151297
716 => 0.095346419785388
717 => 0.094893764268812
718 => 0.096024586497562
719 => 0.097397613444564
720 => 0.099562494255806
721 => 0.10087068638977
722 => 0.10428175766365
723 => 0.10520469574728
724 => 0.10621872488385
725 => 0.10757378052531
726 => 0.10920087225202
727 => 0.10564088818436
728 => 0.10578233298801
729 => 0.10246732511554
730 => 0.098924763783589
731 => 0.10161312624804
801 => 0.10512780255243
802 => 0.10432153192483
803 => 0.10423081000861
804 => 0.10438337910753
805 => 0.10377547738466
806 => 0.10102596042199
807 => 0.099645170216225
808 => 0.10142674185881
809 => 0.10237356789822
810 => 0.10384201251342
811 => 0.10366099571949
812 => 0.10744355134883
813 => 0.10891333808785
814 => 0.10853730374429
815 => 0.10860650311327
816 => 0.1112674817981
817 => 0.11422703736762
818 => 0.11699905170624
819 => 0.11981886375227
820 => 0.11641947027164
821 => 0.11469346790763
822 => 0.11647426177177
823 => 0.11552934748097
824 => 0.1209591052757
825 => 0.12133504992463
826 => 0.12676441508607
827 => 0.13191752914105
828 => 0.12868095053074
829 => 0.13173289838156
830 => 0.13503382881118
831 => 0.14140185916658
901 => 0.13925733057289
902 => 0.13761465527917
903 => 0.13606233506396
904 => 0.13929246700792
905 => 0.14344798015122
906 => 0.14434303788127
907 => 0.14579337334233
908 => 0.14426852294361
909 => 0.14610503729211
910 => 0.1525887399476
911 => 0.15083678625686
912 => 0.1483487303754
913 => 0.15346699092049
914 => 0.15531926951502
915 => 0.16831953073729
916 => 0.18473289754441
917 => 0.17793765591028
918 => 0.1737196301469
919 => 0.17471096625421
920 => 0.18070457218464
921 => 0.18262952818195
922 => 0.17739683420913
923 => 0.17924511018234
924 => 0.18942929251322
925 => 0.19489277958605
926 => 0.18747263029694
927 => 0.16700073269568
928 => 0.14812470816568
929 => 0.1531314798695
930 => 0.1525638673365
1001 => 0.16350550074841
1002 => 0.15079500274075
1003 => 0.15100901492931
1004 => 0.16217690973278
1005 => 0.1591975068654
1006 => 0.15437125579334
1007 => 0.14815994513956
1008 => 0.13667776291936
1009 => 0.12650767392258
1010 => 0.14645356047687
1011 => 0.14559345757941
1012 => 0.14434790112378
1013 => 0.1471197522325
1014 => 0.16057907441281
1015 => 0.16026879347298
1016 => 0.15829494444051
1017 => 0.15979209153493
1018 => 0.15410879866908
1019 => 0.15557351264679
1020 => 0.14812171810696
1021 => 0.15149024045339
1022 => 0.15436090082611
1023 => 0.15493722839679
1024 => 0.15623572384154
1025 => 0.14514022243583
1026 => 0.15012177682019
1027 => 0.15304797331248
1028 => 0.13982731110437
1029 => 0.15278664332829
1030 => 0.14494707444161
1031 => 0.1422862070151
1101 => 0.14586871446227
1102 => 0.14447260782601
1103 => 0.14327231732228
1104 => 0.14260253459759
1105 => 0.14523313267987
1106 => 0.14511041213509
1107 => 0.14080624309539
1108 => 0.13519163004347
1109 => 0.13707607847709
1110 => 0.13639144069436
1111 => 0.13391022504971
1112 => 0.13558226481108
1113 => 0.12821944790196
1114 => 0.11555210409573
1115 => 0.12392053942536
1116 => 0.12359836376827
1117 => 0.12343590819247
1118 => 0.12972455605612
1119 => 0.12912004766782
1120 => 0.12802285902369
1121 => 0.13389007431983
1122 => 0.13174846181156
1123 => 0.13834840693469
1124 => 0.14269555765047
1125 => 0.14159297961336
1126 => 0.14568149587315
1127 => 0.13711949236295
1128 => 0.13996344648108
1129 => 0.14054958148328
1130 => 0.13381767379382
1201 => 0.12921895271623
1202 => 0.12891227044961
1203 => 0.12093872184386
1204 => 0.12519812714881
1205 => 0.12894622755101
1206 => 0.1271511783227
1207 => 0.12658291936259
1208 => 0.12948603114947
1209 => 0.12971162779878
1210 => 0.12456800028681
1211 => 0.12563752332405
1212 => 0.13009761218274
1213 => 0.12552514052822
1214 => 0.11664157501248
1215 => 0.11443832793967
1216 => 0.11414437416626
1217 => 0.10816899336308
1218 => 0.11458555944431
1219 => 0.11178455639658
1220 => 0.12063289146321
1221 => 0.11557876992772
1222 => 0.11536089684987
1223 => 0.11503154973767
1224 => 0.1098882926405
1225 => 0.11101433907374
1226 => 0.11475748891954
1227 => 0.11609308695413
1228 => 0.11595377313689
1229 => 0.11473914544323
1230 => 0.11529519578149
1231 => 0.11350396390118
]
'min_raw' => 0.062673210825841
'max_raw' => 0.19489277958605
'avg_raw' => 0.12878299520595
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.062673'
'max' => '$0.194892'
'avg' => '$0.128782'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.03570286518348
'max_diff' => 0.12172483078343
'year' => 2033
]
8 => [
'items' => [
101 => 0.11287144264298
102 => 0.11087503156341
103 => 0.10794085879909
104 => 0.1083488735183
105 => 0.1025355095041
106 => 0.099368080250588
107 => 0.098491377579262
108 => 0.097319014127238
109 => 0.098623799150709
110 => 0.10251904097426
111 => 0.097820552913404
112 => 0.089765324693683
113 => 0.090249457635129
114 => 0.091337160614199
115 => 0.089310233308578
116 => 0.087391916720922
117 => 0.089059737355945
118 => 0.085646630969052
119 => 0.091749618214746
120 => 0.091584549513174
121 => 0.093859365752169
122 => 0.095281855030342
123 => 0.092003477780527
124 => 0.091178974767874
125 => 0.091648649155454
126 => 0.083885977741381
127 => 0.093224989886029
128 => 0.093305754050867
129 => 0.092614202238179
130 => 0.097586937895552
131 => 0.10808096116776
201 => 0.10413268749165
202 => 0.10260379658705
203 => 0.099697373859806
204 => 0.10357000957755
205 => 0.10327265157696
206 => 0.1019278859286
207 => 0.10111456746854
208 => 0.1026131316689
209 => 0.10092887878024
210 => 0.10062634068127
211 => 0.098793288966165
212 => 0.098138972902413
213 => 0.097654543337884
214 => 0.097121233986403
215 => 0.098297581523359
216 => 0.095631823243211
217 => 0.092417180084859
218 => 0.092149917289163
219 => 0.092887853366065
220 => 0.092561371584915
221 => 0.092148354220001
222 => 0.091359791591794
223 => 0.091125841904979
224 => 0.091886064890874
225 => 0.091027817463552
226 => 0.092294208293722
227 => 0.091949820060516
228 => 0.090026095385018
301 => 0.087628422185252
302 => 0.087607077864484
303 => 0.087090503106567
304 => 0.086432567484824
305 => 0.086249544846383
306 => 0.088919278153993
307 => 0.094445546202352
308 => 0.093360607552073
309 => 0.094144586915885
310 => 0.098000989452945
311 => 0.099226823853407
312 => 0.098356755631438
313 => 0.097165752585737
314 => 0.097218150675305
315 => 0.10128816862361
316 => 0.10154201065066
317 => 0.10218338756047
318 => 0.10300773814267
319 => 0.09849714610018
320 => 0.097005702195735
321 => 0.096298973331651
322 => 0.094122521968764
323 => 0.0964696381688
324 => 0.095102074072575
325 => 0.095286605191798
326 => 0.095166429058324
327 => 0.095232053353475
328 => 0.091747912305432
329 => 0.093017350182276
330 => 0.090906663500497
331 => 0.088080690969293
401 => 0.088071217318454
402 => 0.088762870091914
403 => 0.088351447957884
404 => 0.087244321573841
405 => 0.087401583651205
406 => 0.086023802374561
407 => 0.087568871243725
408 => 0.087613178290371
409 => 0.087018242615272
410 => 0.089398634386637
411 => 0.09037388283758
412 => 0.089982283431473
413 => 0.090346407179323
414 => 0.093405691651196
415 => 0.093904488506051
416 => 0.094126021120307
417 => 0.093829196764651
418 => 0.090402325283461
419 => 0.090554321605835
420 => 0.089439073443403
421 => 0.088496806268103
422 => 0.088534492013575
423 => 0.089018939827837
424 => 0.09113455184521
425 => 0.09558673261363
426 => 0.09575568961929
427 => 0.095960470438973
428 => 0.095127523930728
429 => 0.094876299293616
430 => 0.095207729436547
501 => 0.096879734448622
502 => 0.10118058528461
503 => 0.099660377355003
504 => 0.098424424644786
505 => 0.099508688382104
506 => 0.099341774478484
507 => 0.097932853155715
508 => 0.097893309426743
509 => 0.095189138948955
510 => 0.094189468694299
511 => 0.093354069405486
512 => 0.092441835190754
513 => 0.091901032169893
514 => 0.092731951400513
515 => 0.092921992459703
516 => 0.09110517303997
517 => 0.090857547266439
518 => 0.092341201223364
519 => 0.091688300433116
520 => 0.092359825087046
521 => 0.09251562456699
522 => 0.092490537262353
523 => 0.091808833852156
524 => 0.092243331277127
525 => 0.091215615337153
526 => 0.090098128610375
527 => 0.089385241700573
528 => 0.088763153321045
529 => 0.089108324109996
530 => 0.087877853273081
531 => 0.087484200887867
601 => 0.092096133326048
602 => 0.095503017404762
603 => 0.095453479960983
604 => 0.095151933511977
605 => 0.094703896655217
606 => 0.0968469577619
607 => 0.096100358124191
608 => 0.096643571741112
609 => 0.096781842405222
610 => 0.097200346061023
611 => 0.097349925146367
612 => 0.096897793261103
613 => 0.095380383430895
614 => 0.091599142405014
615 => 0.089838964500202
616 => 0.089258076473532
617 => 0.089279190650038
618 => 0.088696767404167
619 => 0.088868317152455
620 => 0.08863710940261
621 => 0.088199257859567
622 => 0.089081288011047
623 => 0.089182933769325
624 => 0.088977057392494
625 => 0.089025548732072
626 => 0.087320980262864
627 => 0.08745057490145
628 => 0.086728975485714
629 => 0.086593684294274
630 => 0.084769543808143
701 => 0.08153781452357
702 => 0.083328506258775
703 => 0.081165602452008
704 => 0.080346478007045
705 => 0.084224085729514
706 => 0.083834881462275
707 => 0.08316873293979
708 => 0.082183360437517
709 => 0.081817876191336
710 => 0.079597309609795
711 => 0.079466106689896
712 => 0.080566679448049
713 => 0.080058802988557
714 => 0.079345552091575
715 => 0.07676222964379
716 => 0.073857719903811
717 => 0.073945388795764
718 => 0.074869259303726
719 => 0.07755553740654
720 => 0.076505962078687
721 => 0.075744483135841
722 => 0.075601881019819
723 => 0.077386845059587
724 => 0.079912943137387
725 => 0.081098131837232
726 => 0.079923645830402
727 => 0.078574459544573
728 => 0.078656578262264
729 => 0.079202877301229
730 => 0.079260285605972
731 => 0.078382104032488
801 => 0.078629307001446
802 => 0.078253783086886
803 => 0.075949193516395
804 => 0.075907510798998
805 => 0.075341927351872
806 => 0.07532480170987
807 => 0.074362603174907
808 => 0.074227984948502
809 => 0.072317481356056
810 => 0.073574980606141
811 => 0.072731516130858
812 => 0.07146021621345
813 => 0.071241043628507
814 => 0.071234455035945
815 => 0.072539795793663
816 => 0.073559726939381
817 => 0.072746188556524
818 => 0.072560961636526
819 => 0.074538700548961
820 => 0.074287015244863
821 => 0.074069057394711
822 => 0.079686758761006
823 => 0.075239909774879
824 => 0.073300829799662
825 => 0.070900850109029
826 => 0.071682295598047
827 => 0.071846957644406
828 => 0.066075439117291
829 => 0.063733934769637
830 => 0.062930418715252
831 => 0.062467983865904
901 => 0.062678721233643
902 => 0.060571092689687
903 => 0.061987453928184
904 => 0.060162425762525
905 => 0.059856453851396
906 => 0.063119830289202
907 => 0.063573910056154
908 => 0.061636664698811
909 => 0.06288068982976
910 => 0.062429589024035
911 => 0.060193710632276
912 => 0.060108316523719
913 => 0.058986431341661
914 => 0.057230898271517
915 => 0.05642857255122
916 => 0.056010714349978
917 => 0.056183130787704
918 => 0.05609595176076
919 => 0.055527049639781
920 => 0.056128560564401
921 => 0.05459194871347
922 => 0.053980057493107
923 => 0.053703680424637
924 => 0.052339848962857
925 => 0.054510311317152
926 => 0.054937919743713
927 => 0.055366370690968
928 => 0.059095743670944
929 => 0.058909434735963
930 => 0.060593576772059
1001 => 0.060528134109475
1002 => 0.060047789519488
1003 => 0.058021294707184
1004 => 0.058829019420572
1005 => 0.056342968301054
1006 => 0.058205686834841
1007 => 0.057355619885006
1008 => 0.057918278344011
1009 => 0.056906567701852
1010 => 0.057466490143732
1011 => 0.055039321564877
1012 => 0.052772865697126
1013 => 0.05368495370028
1014 => 0.054676497669624
1015 => 0.056826417635867
1016 => 0.055545943040427
1017 => 0.056006450125052
1018 => 0.054463828479513
1019 => 0.051280959396677
1020 => 0.051298974090028
1021 => 0.050809359024206
1022 => 0.050386260122365
1023 => 0.055693020951061
1024 => 0.055033041354539
1025 => 0.053981450243475
1026 => 0.055389046734204
1027 => 0.055761237587913
1028 => 0.055771833338279
1029 => 0.056798779402591
1030 => 0.057346860701205
1031 => 0.057443462405606
1101 => 0.059059384226439
1102 => 0.059601019906258
1103 => 0.061831940616283
1104 => 0.057300359832249
1105 => 0.057207034908091
1106 => 0.055408854503448
1107 => 0.054268420062717
1108 => 0.05548694102529
1109 => 0.05656638425343
1110 => 0.055442395813483
1111 => 0.055589164975049
1112 => 0.05408030232765
1113 => 0.054619649725509
1114 => 0.055084208362485
1115 => 0.054827706388641
1116 => 0.054443710518961
1117 => 0.056477882218531
1118 => 0.056363106279258
1119 => 0.058257373731303
1120 => 0.059734090670537
1121 => 0.062380631420372
1122 => 0.059618828180629
1123 => 0.0595181770934
1124 => 0.060502057616014
1125 => 0.059600869279277
1126 => 0.06017038920013
1127 => 0.062288872956379
1128 => 0.062333633179885
1129 => 0.06158384176586
1130 => 0.061538216890176
1201 => 0.061682222533058
1202 => 0.062525668081358
1203 => 0.062230942290318
1204 => 0.062572006437253
1205 => 0.062998512375555
1206 => 0.064762721771143
1207 => 0.065188066683716
1208 => 0.064154699062215
1209 => 0.06424800058831
1210 => 0.063861492731293
1211 => 0.063488130984344
1212 => 0.064327393666381
1213 => 0.065861162713553
1214 => 0.065851621215913
1215 => 0.066207425822647
1216 => 0.066429089144998
1217 => 0.065477547897999
1218 => 0.064858129535345
1219 => 0.065095653950201
1220 => 0.065475460662165
1221 => 0.064972487752418
1222 => 0.061867905953744
1223 => 0.062809637750009
1224 => 0.062652887530778
1225 => 0.062429656157116
1226 => 0.063376574760456
1227 => 0.063285242151141
1228 => 0.060549475912653
1229 => 0.060724610791069
1230 => 0.060560126444674
1231 => 0.061091609018207
]
'min_raw' => 0.050386260122365
'max_raw' => 0.11287144264298
'avg_raw' => 0.081628851382673
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.050386'
'max' => '$0.112871'
'avg' => '$0.081628'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.012286950703476
'max_diff' => -0.08202133694307
'year' => 2034
]
9 => [
'items' => [
101 => 0.059572167476129
102 => 0.060039537460877
103 => 0.06033266753399
104 => 0.060505323398984
105 => 0.06112907477458
106 => 0.061055884749965
107 => 0.061124525179887
108 => 0.062049383805637
109 => 0.066727001361529
110 => 0.066981593764515
111 => 0.065727887659416
112 => 0.066228718520144
113 => 0.065267232787216
114 => 0.065912684601125
115 => 0.066354286339503
116 => 0.064358772998904
117 => 0.064240611649648
118 => 0.063275157523081
119 => 0.063793937884581
120 => 0.062968521027806
121 => 0.063171049452603
122 => 0.062604762320761
123 => 0.063623966411433
124 => 0.064763594953109
125 => 0.065051510128031
126 => 0.064294129258087
127 => 0.063745735594416
128 => 0.062782936973113
129 => 0.064384092537707
130 => 0.064852319219126
131 => 0.06438163314228
201 => 0.064272564893581
202 => 0.064065880759378
203 => 0.064316413909711
204 => 0.064849769156062
205 => 0.064598248671408
206 => 0.064764382382743
207 => 0.064131251991473
208 => 0.065477862897746
209 => 0.06761660509647
210 => 0.067623481502358
211 => 0.067371959661915
212 => 0.067269042343919
213 => 0.067527119015835
214 => 0.067667115023491
215 => 0.068501687657302
216 => 0.069397217344221
217 => 0.073576263642861
218 => 0.072402804164926
219 => 0.076110702653656
220 => 0.079043168947882
221 => 0.07992248736831
222 => 0.079113555796645
223 => 0.076346244587602
224 => 0.076210467097531
225 => 0.080345998372497
226 => 0.079177521367987
227 => 0.079038534746364
228 => 0.077559951913894
301 => 0.07843397749393
302 => 0.078242815278394
303 => 0.077941056369196
304 => 0.079608636290755
305 => 0.082730197038028
306 => 0.082243672521754
307 => 0.081880504539578
308 => 0.080289208158295
309 => 0.081247524008742
310 => 0.080906286089729
311 => 0.082372460744743
312 => 0.081503931358858
313 => 0.079168669005449
314 => 0.079540567232355
315 => 0.079484355563513
316 => 0.080641187725068
317 => 0.080293935424509
318 => 0.079416548978629
319 => 0.082719527882751
320 => 0.082505050804851
321 => 0.082809130265027
322 => 0.082942995447366
323 => 0.084953460501288
324 => 0.085777083706174
325 => 0.085964060593236
326 => 0.086746438936573
327 => 0.085944594307324
328 => 0.089152544529853
329 => 0.091285644238749
330 => 0.09376334931894
331 => 0.097383942385441
401 => 0.098745318870803
402 => 0.098499398393931
403 => 0.10124449073569
404 => 0.10617736065387
405 => 0.099496472440543
406 => 0.10653146395164
407 => 0.10430426686211
408 => 0.099023622628397
409 => 0.098683611394452
410 => 0.10225972497906
411 => 0.11019120072155
412 => 0.10820445600611
413 => 0.11019445032417
414 => 0.10787301624738
415 => 0.10775773747888
416 => 0.1100817034526
417 => 0.11551177662298
418 => 0.11293215240298
419 => 0.1092336285338
420 => 0.1119645610034
421 => 0.10959877456237
422 => 0.1042679955688
423 => 0.10820293677987
424 => 0.1055717536527
425 => 0.10633967277059
426 => 0.11187002834495
427 => 0.11120460133074
428 => 0.11206572550401
429 => 0.11054586387773
430 => 0.1091260734586
501 => 0.10647592920627
502 => 0.10569135214369
503 => 0.10590818101766
504 => 0.10569124469407
505 => 0.10420851334098
506 => 0.10388831764645
507 => 0.10335464412747
508 => 0.10352005186639
509 => 0.10251658951902
510 => 0.1044103302944
511 => 0.1047618252699
512 => 0.10613993188135
513 => 0.10628301148145
514 => 0.11012101877822
515 => 0.10800710885425
516 => 0.10942530213745
517 => 0.10929844558165
518 => 0.099138070201255
519 => 0.10053808028292
520 => 0.10271605662263
521 => 0.10173488123377
522 => 0.1003477287936
523 => 0.099227528823757
524 => 0.097530311323115
525 => 0.099919112363094
526 => 0.10306013171
527 => 0.10636267291556
528 => 0.11033045978297
529 => 0.10944489594429
530 => 0.10628849790001
531 => 0.10643009161052
601 => 0.10730536821386
602 => 0.10617180548527
603 => 0.10583749570684
604 => 0.10725943918398
605 => 0.10726923132722
606 => 0.10596493041235
607 => 0.10451543863001
608 => 0.10450936520651
609 => 0.10425144214428
610 => 0.10791890018717
611 => 0.10993563128893
612 => 0.11016684625963
613 => 0.10992006867918
614 => 0.11001504357564
615 => 0.10884155218317
616 => 0.11152380551831
617 => 0.113985306426
618 => 0.11332557160044
619 => 0.1123365353101
620 => 0.1115487202664
621 => 0.11313998741326
622 => 0.1130691307921
623 => 0.11396380736293
624 => 0.11392321966578
625 => 0.11362237358549
626 => 0.1133255823446
627 => 0.11450232606699
628 => 0.11416344277287
629 => 0.11382403309939
630 => 0.1131432950382
701 => 0.11323581864658
702 => 0.1122469531273
703 => 0.11178945869067
704 => 0.10490984004644
705 => 0.10307138114667
706 => 0.10364979774182
707 => 0.10384022750352
708 => 0.1030401278343
709 => 0.10418726523123
710 => 0.10400848508303
711 => 0.10470401405676
712 => 0.10426947775033
713 => 0.10428731127192
714 => 0.10556518989622
715 => 0.10593616349733
716 => 0.10574748332968
717 => 0.10587962845153
718 => 0.10892485700949
719 => 0.10849192288948
720 => 0.10826193526692
721 => 0.10832564341013
722 => 0.10910376459713
723 => 0.10932159604565
724 => 0.10839862889153
725 => 0.10883390553702
726 => 0.11068725824868
727 => 0.11133582680709
728 => 0.11340574631494
729 => 0.11252640771812
730 => 0.11414047176947
731 => 0.11910155438833
801 => 0.12306481046509
802 => 0.11942003638842
803 => 0.12669805145576
804 => 0.13236503015494
805 => 0.13214752207362
806 => 0.13115935325784
807 => 0.12470764867324
808 => 0.11877069392501
809 => 0.12373720866832
810 => 0.12374986933578
811 => 0.12332324131474
812 => 0.12067349131672
813 => 0.12323103575848
814 => 0.12343404434863
815 => 0.12332041352248
816 => 0.12128885641166
817 => 0.11818704419796
818 => 0.11879313087983
819 => 0.11978591322856
820 => 0.11790636912631
821 => 0.11730574090005
822 => 0.11842242304687
823 => 0.12202060559387
824 => 0.12134039002621
825 => 0.12132262684877
826 => 0.12423287750351
827 => 0.12214976610612
828 => 0.11880077557384
829 => 0.11795511129669
830 => 0.11495357282049
831 => 0.11702674613711
901 => 0.11710135595398
902 => 0.11596590011578
903 => 0.11889291155726
904 => 0.11886593863154
905 => 0.12164470036706
906 => 0.12695664915013
907 => 0.12538564450985
908 => 0.12355873703803
909 => 0.12375737253486
910 => 0.12593591366098
911 => 0.12461871796487
912 => 0.12509239072101
913 => 0.12593519670054
914 => 0.12644368247368
915 => 0.12368420925726
916 => 0.12304084404965
917 => 0.12172474462538
918 => 0.12138139885175
919 => 0.1224533343715
920 => 0.12217091723409
921 => 0.11709508528777
922 => 0.11656463260772
923 => 0.11658090083411
924 => 0.11524705234847
925 => 0.11321261324754
926 => 0.11855899773472
927 => 0.11812960823779
928 => 0.1176555954653
929 => 0.11771365932525
930 => 0.12003434362535
1001 => 0.11868822953392
1002 => 0.12226709446973
1003 => 0.12153138742946
1004 => 0.12077681227968
1005 => 0.12067250700906
1006 => 0.12038205995372
1007 => 0.11938600893037
1008 => 0.11818321746629
1009 => 0.11738903035769
1010 => 0.10828517534431
1011 => 0.1099747978801
1012 => 0.1119185545936
1013 => 0.11258953162198
1014 => 0.11144177898473
1015 => 0.11943132920012
1016 => 0.1208910970137
1017 => 0.11646936508808
1018 => 0.11564223958293
1019 => 0.11948555541054
1020 => 0.11716756614024
1021 => 0.11821135656672
1022 => 0.1159552525875
1023 => 0.1205394816944
1024 => 0.12050455754929
1025 => 0.11872118888719
1026 => 0.12022847986841
1027 => 0.11996655096782
1028 => 0.11795313214056
1029 => 0.12060331066249
1030 => 0.12060462511798
1031 => 0.11888817155449
1101 => 0.11688372957234
1102 => 0.11652538268874
1103 => 0.11625541644907
1104 => 0.118144961421
1105 => 0.11983912153437
1106 => 0.12299153348745
1107 => 0.12378412475192
1108 => 0.12687766122291
1109 => 0.12503561087599
1110 => 0.12585216793624
1111 => 0.12673865613418
1112 => 0.1271636711758
1113 => 0.12647113197304
1114 => 0.13127666746291
1115 => 0.13168240189606
1116 => 0.1318184411419
1117 => 0.13019804161276
1118 => 0.13163733565387
1119 => 0.13096393763644
1120 => 0.13271593220243
1121 => 0.13299066732097
1122 => 0.13275797644955
1123 => 0.13284518171258
1124 => 0.12874450492653
1125 => 0.12853186320238
1126 => 0.12563247820522
1127 => 0.12681399902274
1128 => 0.12460520248616
1129 => 0.12530563462104
1130 => 0.12561437843213
1201 => 0.12545310818627
1202 => 0.12688080043702
1203 => 0.12566697036562
1204 => 0.12246347323508
1205 => 0.11925910331388
1206 => 0.11921887505974
1207 => 0.11837522102132
1208 => 0.11776541367448
1209 => 0.11788288420356
1210 => 0.11829686566995
1211 => 0.11774135231908
1212 => 0.11785989925773
1213 => 0.11982856831346
1214 => 0.12022337085268
1215 => 0.1188816775651
1216 => 0.11349458541002
1217 => 0.11217257948266
1218 => 0.11312281112673
1219 => 0.11266866160362
1220 => 0.09093240334262
1221 => 0.096039014802566
1222 => 0.093004839677206
1223 => 0.094403127170657
1224 => 0.091306020063504
1225 => 0.092784121908328
1226 => 0.092511170469226
1227 => 0.1007224505812
1228 => 0.1005942427365
1229 => 0.10065560904715
1230 => 0.097726435150721
1231 => 0.10239268870347
]
'min_raw' => 0.059572167476129
'max_raw' => 0.13299066732097
'avg_raw' => 0.096281417398549
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.059572'
'max' => '$0.13299'
'avg' => '$0.096281'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0091859073537635
'max_diff' => 0.020119224677988
'year' => 2035
]
10 => [
'items' => [
101 => 0.1046914529966
102 => 0.10426601290558
103 => 0.10437308701074
104 => 0.10253319913052
105 => 0.10067342318363
106 => 0.098610645441049
107 => 0.10244303151972
108 => 0.10201693560879
109 => 0.102994246324
110 => 0.10547982264064
111 => 0.10584583319505
112 => 0.10633775509189
113 => 0.10616143610926
114 => 0.1103620696067
115 => 0.10985334517349
116 => 0.11107922468752
117 => 0.10855749751945
118 => 0.10570392386424
119 => 0.10624629492574
120 => 0.10619406023105
121 => 0.10552905261538
122 => 0.10492871347446
123 => 0.10392931794933
124 => 0.10709155327355
125 => 0.10696317229431
126 => 0.10904151112171
127 => 0.10867414454606
128 => 0.10622078064403
129 => 0.10630840301575
130 => 0.10689770557544
131 => 0.10893728846306
201 => 0.1095427755295
202 => 0.10926228979584
203 => 0.10992617872265
204 => 0.11045088946147
205 => 0.10999207431286
206 => 0.11648792926173
207 => 0.11379039739753
208 => 0.11510515565884
209 => 0.11541871775715
210 => 0.11461553503582
211 => 0.11478971660826
212 => 0.11505355422887
213 => 0.11665552459651
214 => 0.12085955837506
215 => 0.12272149631776
216 => 0.12832322848476
217 => 0.12256688829105
218 => 0.12222533088606
219 => 0.12323437200544
220 => 0.12652318179104
221 => 0.12918845322007
222 => 0.13007267751628
223 => 0.13018954235397
224 => 0.13184840591578
225 => 0.13279923557343
226 => 0.13164697624693
227 => 0.1306705571143
228 => 0.12717314497883
229 => 0.12757797995665
301 => 0.13036689149828
302 => 0.13430639331691
303 => 0.13768689571259
304 => 0.13650316159603
305 => 0.14553421731937
306 => 0.14642960960579
307 => 0.1463058953433
308 => 0.14834573222399
309 => 0.14429707142138
310 => 0.14256619048915
311 => 0.1308816700136
312 => 0.13416454366184
313 => 0.13893639330595
314 => 0.13830482111203
315 => 0.13483937634857
316 => 0.13768426686199
317 => 0.1367436570903
318 => 0.13600175913744
319 => 0.1394005374835
320 => 0.13566344107788
321 => 0.13889911291058
322 => 0.13474933031641
323 => 0.13650856879376
324 => 0.13550993994923
325 => 0.13615617519899
326 => 0.13237829713363
327 => 0.13441674843489
328 => 0.13229349085769
329 => 0.13229248415714
330 => 0.13224561312844
331 => 0.13474361625205
401 => 0.13482507604423
402 => 0.13297904796161
403 => 0.13271300647453
404 => 0.13369670129027
405 => 0.13254505229112
406 => 0.13308390160943
407 => 0.13256137348803
408 => 0.13244374140178
409 => 0.13150642892508
410 => 0.13110260893817
411 => 0.1312609571602
412 => 0.13072043304432
413 => 0.1303947477129
414 => 0.13218082611864
415 => 0.13122659647665
416 => 0.13203457674043
417 => 0.13111378125461
418 => 0.12792190292929
419 => 0.1260862199509
420 => 0.12005705768164
421 => 0.12176692062205
422 => 0.12290056152052
423 => 0.12252589321034
424 => 0.123330825718
425 => 0.12338024203658
426 => 0.12311855027302
427 => 0.12281554473562
428 => 0.12266805839726
429 => 0.12376730073005
430 => 0.12440544790303
501 => 0.12301433755084
502 => 0.12268841985903
503 => 0.1240949092304
504 => 0.12495286693443
505 => 0.13128754457623
506 => 0.13081825119579
507 => 0.13199608548652
508 => 0.13186347942073
509 => 0.13309803740114
510 => 0.13511601793598
511 => 0.13101289927242
512 => 0.13172505879724
513 => 0.13155045372792
514 => 0.13345674609087
515 => 0.13346269732755
516 => 0.1323197798296
517 => 0.13293937394696
518 => 0.13259353350832
519 => 0.13321851392407
520 => 0.13081198349658
521 => 0.13374287778836
522 => 0.13540450598915
523 => 0.13542757769833
524 => 0.136215176278
525 => 0.13701542204959
526 => 0.13855142412143
527 => 0.13697258378547
528 => 0.1341324037181
529 => 0.13433745554523
530 => 0.13267225901091
531 => 0.1327002512655
601 => 0.13255082641674
602 => 0.13299926163605
603 => 0.13091038980951
604 => 0.13140064385203
605 => 0.13071428532159
606 => 0.13172356678784
607 => 0.13063774677035
608 => 0.13155036952807
609 => 0.13194422725637
610 => 0.13339757075297
611 => 0.13042308675423
612 => 0.12435791252593
613 => 0.12563288568185
614 => 0.12374710023726
615 => 0.12392163685985
616 => 0.12427422861478
617 => 0.12313136337622
618 => 0.12334938604791
619 => 0.12334159674388
620 => 0.12327447272983
621 => 0.12297716934173
622 => 0.12254602060931
623 => 0.1242635844587
624 => 0.12455543202565
625 => 0.12520417301469
626 => 0.12713438615287
627 => 0.12694151234281
628 => 0.12725609752928
629 => 0.12656935983353
630 => 0.12395349265195
701 => 0.12409554682522
702 => 0.1223241290082
703 => 0.12515887387842
704 => 0.12448756887635
705 => 0.12405477417441
706 => 0.12393668213018
707 => 0.12587167989338
708 => 0.12645066155151
709 => 0.12608987903618
710 => 0.12534990357153
711 => 0.12677087521776
712 => 0.12715106728431
713 => 0.12723617826707
714 => 0.1297538675799
715 => 0.12737688913162
716 => 0.12794905146925
717 => 0.13241289869655
718 => 0.1283648052302
719 => 0.13050917062259
720 => 0.13040421509537
721 => 0.13150119986874
722 => 0.13031423032536
723 => 0.13032894423542
724 => 0.131302992398
725 => 0.12993511742418
726 => 0.12959641234419
727 => 0.12912849370204
728 => 0.13015017693871
729 => 0.13076262983234
730 => 0.1356985503579
731 => 0.13888738012273
801 => 0.1387489446127
802 => 0.14001398603397
803 => 0.13944407328723
804 => 0.13760367469264
805 => 0.14074501068091
806 => 0.13975096053514
807 => 0.13983290882139
808 => 0.13982985870208
809 => 0.14049081514765
810 => 0.14002246693019
811 => 0.13909930451864
812 => 0.13971214280962
813 => 0.14153205344011
814 => 0.14718111187886
815 => 0.15034239982125
816 => 0.1469907983753
817 => 0.14930268817298
818 => 0.14791637810494
819 => 0.14766444432642
820 => 0.14911648196668
821 => 0.15057106120661
822 => 0.15047841079735
823 => 0.14942246096263
824 => 0.14882598169473
825 => 0.15334272254647
826 => 0.15667058026536
827 => 0.15644364267918
828 => 0.15744527138055
829 => 0.16038608422699
830 => 0.1606549552982
831 => 0.16062108372316
901 => 0.15995465871937
902 => 0.16285027087949
903 => 0.16526584148692
904 => 0.15980040058586
905 => 0.16188156893311
906 => 0.16281587245524
907 => 0.16418770722111
908 => 0.16650222241731
909 => 0.16901639981523
910 => 0.16937193206585
911 => 0.16911966492025
912 => 0.16746149734161
913 => 0.17021254025079
914 => 0.17182403666709
915 => 0.17278364590456
916 => 0.17521705526702
917 => 0.16282164239572
918 => 0.15404755307342
919 => 0.15267735232636
920 => 0.155463709426
921 => 0.15619844957239
922 => 0.15590227674066
923 => 0.14602624150311
924 => 0.15262535704473
925 => 0.15972545049811
926 => 0.15999819400369
927 => 0.16355264924241
928 => 0.16471012557018
929 => 0.16757192793044
930 => 0.16739292141362
1001 => 0.16808972474713
1002 => 0.16792954172771
1003 => 0.17323042797651
1004 => 0.17907809269817
1005 => 0.17887560666329
1006 => 0.17803493567313
1007 => 0.17928347544923
1008 => 0.18531889211582
1009 => 0.18476324766474
1010 => 0.18530300891928
1011 => 0.19241910531036
1012 => 0.20167104287168
1013 => 0.1973725889951
1014 => 0.20669899706049
1015 => 0.212569476566
1016 => 0.22272186385187
1017 => 0.22145073496212
1018 => 0.22540298483085
1019 => 0.21917514895686
1020 => 0.20487477893688
1021 => 0.2026116906416
1022 => 0.20714245071927
1023 => 0.21828088226512
1024 => 0.20679166187158
1025 => 0.2091159161936
1026 => 0.2084465307925
1027 => 0.20841086208918
1028 => 0.2097721914198
1029 => 0.20779751222357
1030 => 0.19975231394012
1031 => 0.20343938090277
1101 => 0.20201562728099
1102 => 0.20359538807222
1103 => 0.21212070551957
1104 => 0.20835145945791
1105 => 0.20438086492064
1106 => 0.20936087161584
1107 => 0.2157021314548
1108 => 0.21530530681041
1109 => 0.21453530114048
1110 => 0.21887578278572
1111 => 0.22604498682186
1112 => 0.22798279386463
1113 => 0.22941324340688
1114 => 0.22961047823112
1115 => 0.23164211950148
1116 => 0.22071747235119
1117 => 0.23805516794354
1118 => 0.24104890902817
1119 => 0.24048620978211
1120 => 0.24381362700179
1121 => 0.24283461644733
1122 => 0.24141618375598
1123 => 0.2466908478111
1124 => 0.24064387111534
1125 => 0.2320609489889
1126 => 0.22735218815939
1127 => 0.23355306426459
1128 => 0.23733972292129
1129 => 0.23984246341664
1130 => 0.24059979117834
1201 => 0.22156552161099
1202 => 0.21130710600317
1203 => 0.21788263279481
1204 => 0.22590522929922
1205 => 0.22067290642254
1206 => 0.22087800357321
1207 => 0.21341808618132
1208 => 0.22656526645876
1209 => 0.22464983287752
1210 => 0.2345871056853
1211 => 0.23221549577812
1212 => 0.24031895599015
1213 => 0.2381850433398
1214 => 0.24704279544596
1215 => 0.25057639257518
1216 => 0.25650985211561
1217 => 0.26087452910707
1218 => 0.26343755091942
1219 => 0.26328367670346
1220 => 0.27343964601641
1221 => 0.2674510257351
1222 => 0.25992790725236
1223 => 0.25979183777414
1224 => 0.26368816743977
1225 => 0.27185380551308
1226 => 0.27397103666029
1227 => 0.27515428003359
1228 => 0.27334210161838
1229 => 0.26684188351131
1230 => 0.26403512228953
1231 => 0.26642656417019
]
'min_raw' => 0.098610645441049
'max_raw' => 0.27515428003359
'avg_raw' => 0.18688246273732
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.09861'
'max' => '$0.275154'
'avg' => '$0.186882'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.03903847796492
'max_diff' => 0.14216361271262
'year' => 2036
]
11 => [
'items' => [
101 => 0.26350203624909
102 => 0.26855059191851
103 => 0.27548333716593
104 => 0.27405175268739
105 => 0.27883732496403
106 => 0.28378988881347
107 => 0.29087227755173
108 => 0.29272387622801
109 => 0.2957844984299
110 => 0.29893488403767
111 => 0.29994670298961
112 => 0.30187857931785
113 => 0.301868397376
114 => 0.30769023672142
115 => 0.31411190580678
116 => 0.31653593722452
117 => 0.32210986380775
118 => 0.31256470986766
119 => 0.31980481877804
120 => 0.32633557824689
121 => 0.31854933757652
122 => 0.32928085637922
123 => 0.32969753693619
124 => 0.33598891864041
125 => 0.32961139800029
126 => 0.32582444660195
127 => 0.33675723339373
128 => 0.34204726454272
129 => 0.34045386410894
130 => 0.32832800813202
131 => 0.32127023985103
201 => 0.30279869891783
202 => 0.32467903706439
203 => 0.33533631151736
204 => 0.3283004083658
205 => 0.3318489086614
206 => 0.35120837566912
207 => 0.358579207273
208 => 0.3570461258254
209 => 0.35730519135337
210 => 0.36128235829677
211 => 0.37891930678963
212 => 0.36835083843144
213 => 0.37643003649832
214 => 0.38071521402128
215 => 0.38469552572014
216 => 0.37492113817817
217 => 0.36220480360034
218 => 0.35817700664413
219 => 0.32760082645987
220 => 0.32600920349566
221 => 0.32511577729474
222 => 0.31948285147556
223 => 0.31505691476992
224 => 0.31153724557711
225 => 0.30230058255297
226 => 0.30541768517853
227 => 0.29069637215945
228 => 0.30011454653776
301 => 0.27661897550077
302 => 0.29618678523504
303 => 0.28553691603581
304 => 0.29268801677578
305 => 0.29266306725897
306 => 0.27949562353813
307 => 0.2719009167975
308 => 0.27674055952304
309 => 0.28192904069614
310 => 0.28277085431033
311 => 0.28949785558447
312 => 0.29137521704367
313 => 0.28568672417666
314 => 0.27613208201492
315 => 0.27835140747091
316 => 0.27185594223797
317 => 0.2604728892617
318 => 0.26864839663829
319 => 0.27143987430835
320 => 0.27267274987442
321 => 0.26147882462472
322 => 0.25796145027933
323 => 0.25608882969147
324 => 0.27468708683248
325 => 0.27570594134186
326 => 0.27049333762038
327 => 0.29405480072083
328 => 0.28872211596878
329 => 0.2946800313763
330 => 0.27815002694765
331 => 0.27878149537742
401 => 0.27095592637582
402 => 0.27533772211201
403 => 0.27224081011754
404 => 0.27498371631828
405 => 0.27662780298557
406 => 0.2844520878883
407 => 0.2962761260003
408 => 0.28328340064074
409 => 0.27762228414232
410 => 0.28113440897861
411 => 0.29048766024005
412 => 0.30465831468525
413 => 0.29626900204269
414 => 0.29999203653369
415 => 0.3008053539437
416 => 0.29461938539031
417 => 0.30488640016939
418 => 0.31038857679857
419 => 0.31603267150509
420 => 0.32093328079482
421 => 0.31377829596301
422 => 0.32143515535983
423 => 0.31526507830362
424 => 0.30972988133336
425 => 0.30973827594234
426 => 0.30626596602657
427 => 0.29953792802556
428 => 0.29829717459155
429 => 0.30475173064515
430 => 0.3099276733514
501 => 0.31035398878378
502 => 0.3132196566155
503 => 0.31491552931958
504 => 0.33153738724676
505 => 0.33822283600829
506 => 0.34639767620482
507 => 0.34958223717012
508 => 0.35916662394737
509 => 0.35142645321891
510 => 0.34975181859385
511 => 0.32650323130125
512 => 0.330310186168
513 => 0.33640548822618
514 => 0.32660374058715
515 => 0.33282069341281
516 => 0.33404805159366
517 => 0.32627068095306
518 => 0.33042491065255
519 => 0.31939250821397
520 => 0.29651660222539
521 => 0.30491186759218
522 => 0.31109360871791
523 => 0.30227150192831
524 => 0.31808478688598
525 => 0.30884699226617
526 => 0.30591905486403
527 => 0.29449612717324
528 => 0.29988730933449
529 => 0.30717896040186
530 => 0.30267356778765
531 => 0.31202293395025
601 => 0.32526412982137
602 => 0.33470059452599
603 => 0.33542500911296
604 => 0.32935799450193
605 => 0.33908042413527
606 => 0.33915124142093
607 => 0.32818430107723
608 => 0.32146711118089
609 => 0.31994095150335
610 => 0.32375359759907
611 => 0.32838285381256
612 => 0.33568190061482
613 => 0.34009256172953
614 => 0.3515932266828
615 => 0.35470497686925
616 => 0.35812384690045
617 => 0.36269251160261
618 => 0.36817836495913
619 => 0.35617563012487
620 => 0.35665252115573
621 => 0.34547574066723
622 => 0.33353174780282
623 => 0.34259574954718
624 => 0.35444572609431
625 => 0.35172732838134
626 => 0.3514214531068
627 => 0.35193585047584
628 => 0.34988626737483
629 => 0.34061607897005
630 => 0.33596064838762
701 => 0.34196734156597
702 => 0.3451596316631
703 => 0.3501105952068
704 => 0.34950028444788
705 => 0.36225343484179
706 => 0.36720892344961
707 => 0.36594109740642
708 => 0.3661744079103
709 => 0.37514608332978
710 => 0.38512443156202
711 => 0.39447047144052
712 => 0.40397766462669
713 => 0.3925163721687
714 => 0.38669703469277
715 => 0.39270110553678
716 => 0.38951526103354
717 => 0.40782206853206
718 => 0.40908959216354
719 => 0.42739507587151
720 => 0.44476915968683
721 => 0.43385680893147
722 => 0.4441466641907
723 => 0.45527598159776
724 => 0.47674624054266
725 => 0.46951581266284
726 => 0.46397741822214
727 => 0.45874366223701
728 => 0.4696342776067
729 => 0.48364488029798
730 => 0.4866626299258
731 => 0.49155253719195
801 => 0.48641139761101
802 => 0.4926033339583
803 => 0.51446359013896
804 => 0.50855675595313
805 => 0.50016810183827
806 => 0.51742467461157
807 => 0.523669761215
808 => 0.56750104957513
809 => 0.62283986171
810 => 0.59992923011193
811 => 0.58570786175755
812 => 0.5890502206562
813 => 0.60925808151084
814 => 0.61574820505191
815 => 0.59810581198754
816 => 0.60433740347373
817 => 0.63867408523919
818 => 0.65709461335372
819 => 0.6320770619672
820 => 0.56305462990229
821 => 0.49941279531748
822 => 0.51629347567853
823 => 0.51437973039409
824 => 0.55127021136279
825 => 0.50841587991131
826 => 0.5091374369469
827 => 0.54679077399433
828 => 0.5367455092117
829 => 0.52047346676413
830 => 0.49953159923506
831 => 0.46081862021929
901 => 0.42652945511373
902 => 0.49377840420884
903 => 0.49087850723958
904 => 0.48667902668744
905 => 0.49602451622497
906 => 0.54140356065575
907 => 0.54035742680399
908 => 0.53370245698126
909 => 0.53875019293759
910 => 0.51958857424554
911 => 0.52452695968443
912 => 0.49940271412572
913 => 0.51075992239944
914 => 0.52043855426919
915 => 0.52238168291163
916 => 0.52675965096167
917 => 0.48935039330912
918 => 0.50614605171701
919 => 0.51601192749128
920 => 0.4714375418195
921 => 0.51513083520413
922 => 0.48869918136147
923 => 0.47972788105716
924 => 0.49180655503798
925 => 0.48709948404076
926 => 0.48305262080583
927 => 0.4807944015868
928 => 0.48966364668372
929 => 0.48924988579891
930 => 0.47473807937406
1001 => 0.45580801946976
1002 => 0.46216156893168
1003 => 0.45985326484732
1004 => 0.45148767306845
1005 => 0.457125071862
1006 => 0.43230082059743
1007 => 0.38959198654902
1008 => 0.41780675052836
1009 => 0.41672051280692
1010 => 0.4161727824908
1011 => 0.43737539782248
1012 => 0.4353372555859
1013 => 0.43163800746897
1014 => 0.4514197334758
1015 => 0.44419913738154
1016 => 0.46645131315763
1017 => 0.48110803530426
1018 => 0.47739061647258
1019 => 0.49117533449357
1020 => 0.46230794187891
1021 => 0.47189653174673
1022 => 0.47387272682928
1023 => 0.45117563004751
1024 => 0.43567072086194
1025 => 0.43463672018817
1026 => 0.40775334436848
1027 => 0.42211422673633
1028 => 0.43475120892634
1029 => 0.42869907512676
1030 => 0.42678315036817
1031 => 0.43657119444644
1101 => 0.43733180930025
1102 => 0.41998971002703
1103 => 0.42359568161879
1104 => 0.43863318259934
1105 => 0.42321677517633
1106 => 0.39326521380928
1107 => 0.38583681247752
1108 => 0.38484572680726
1109 => 0.36469931324158
1110 => 0.38633321377479
1111 => 0.37688943643956
1112 => 0.40672221588774
1113 => 0.38968189226334
1114 => 0.38894731796996
1115 => 0.38783690118689
1116 => 0.37049605079304
1117 => 0.37429259496076
1118 => 0.38691288600426
1119 => 0.39141594802633
1120 => 0.39094624176493
1121 => 0.38685103969317
1122 => 0.38872580223079
1123 => 0.38268653888654
1124 => 0.38055394930328
1125 => 0.37382290996356
1126 => 0.36393014163123
1127 => 0.36530579174372
1128 => 0.34570562909375
1129 => 0.33502642022268
1130 => 0.33207055595687
1201 => 0.32811785072657
1202 => 0.33251702453038
1203 => 0.34565010429559
1204 => 0.32980882376045
1205 => 0.30265005941959
1206 => 0.30428234743275
1207 => 0.30794961396768
1208 => 0.30111568704124
1209 => 0.29464794873337
1210 => 0.30027112244787
1211 => 0.28876359596898
1212 => 0.3093402435648
1213 => 0.30878370291272
1214 => 0.31645340468509
1215 => 0.32124942660148
1216 => 0.31019614881474
1217 => 0.30741627934262
1218 => 0.30899981933196
1219 => 0.282827430687
1220 => 0.31431456216169
1221 => 0.31458686418222
1222 => 0.31225524896313
1223 => 0.32902117441728
1224 => 0.36440250654883
1225 => 0.35109062619015
1226 => 0.34593586376156
1227 => 0.3361366566167
1228 => 0.34919351831788
1229 => 0.348190955058
1230 => 0.34365698378601
1231 => 0.34091482381385
]
'min_raw' => 0.25608882969147
'max_raw' => 0.65709461335372
'avg_raw' => 0.45659172152259
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.256088'
'max' => '$0.657094'
'avg' => '$0.456591'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.15747818425042
'max_diff' => 0.38194033332013
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0080383357378641
]
1 => [
'year' => 2028
'avg' => 0.013796117671713
]
2 => [
'year' => 2029
'avg' => 0.037688506970834
]
3 => [
'year' => 2030
'avg' => 0.02907662700059
]
4 => [
'year' => 2031
'avg' => 0.028556851141294
]
5 => [
'year' => 2032
'avg' => 0.050069147222493
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0080383357378641
'min' => '$0.008038'
'max_raw' => 0.050069147222493
'max' => '$0.050069'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.050069147222493
]
1 => [
'year' => 2033
'avg' => 0.12878299520595
]
2 => [
'year' => 2034
'avg' => 0.081628851382673
]
3 => [
'year' => 2035
'avg' => 0.096281417398549
]
4 => [
'year' => 2036
'avg' => 0.18688246273732
]
5 => [
'year' => 2037
'avg' => 0.45659172152259
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.050069147222493
'min' => '$0.050069'
'max_raw' => 0.45659172152259
'max' => '$0.456591'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.45659172152259
]
]
]
]
'prediction_2025_max_price' => '$0.013744'
'last_price' => 0.013326629179773
'sma_50day_nextmonth' => '$0.010791'
'sma_200day_nextmonth' => '$0.013063'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.01332'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.011268'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.008857'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.008755'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.011613'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.013031'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.013461'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.012687'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011626'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.010111'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009747'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0110067'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012187'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.013268'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.012292'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.013032'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.015535'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.022814'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.011755'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.010987'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.010977'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.011794'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.013393'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.016775'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0243091'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '66.32'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.83
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011175'
'vwma_10_action' => 'BUY'
'hma_9' => '0.014643'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 130.5
'cci_20_action' => 'SELL'
'adx_14' => 34.91
'adx_14_action' => 'SELL'
'ao_5_34' => '0.000691'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 85.86
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000548'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 7
'buy_signals' => 27
'sell_pct' => 20.59
'buy_pct' => 79.41
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767710573
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Kepple [OLD] para 2026
La previsión del precio de Kepple [OLD] para 2026 sugiere que el precio medio podría oscilar entre $0.0046043 en el extremo inferior y $0.013744 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Kepple [OLD] podría potencialmente ganar 3.13% para 2026 si QLC alcanza el objetivo de precio previsto.
Predicción de precio de Kepple [OLD] 2027-2032
La predicción del precio de QLC para 2027-2032 está actualmente dentro de un rango de precios de $0.008038 en el extremo inferior y $0.050069 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Kepple [OLD] alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Kepple [OLD] | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004432 | $0.008038 | $0.011644 |
| 2028 | $0.007999 | $0.013796 | $0.019592 |
| 2029 | $0.017572 | $0.037688 | $0.0578047 |
| 2030 | $0.014944 | $0.029076 | $0.0432088 |
| 2031 | $0.017668 | $0.028556 | $0.039444 |
| 2032 | $0.02697 | $0.050069 | $0.073167 |
Predicción de precio de Kepple [OLD] 2032-2037
La predicción de precio de Kepple [OLD] para 2032-2037 se estima actualmente entre $0.050069 en el extremo inferior y $0.456591 en el extremo superior. Comparado con el precio actual, Kepple [OLD] podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Kepple [OLD] | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.02697 | $0.050069 | $0.073167 |
| 2033 | $0.062673 | $0.128782 | $0.194892 |
| 2034 | $0.050386 | $0.081628 | $0.112871 |
| 2035 | $0.059572 | $0.096281 | $0.13299 |
| 2036 | $0.09861 | $0.186882 | $0.275154 |
| 2037 | $0.256088 | $0.456591 | $0.657094 |
Kepple [OLD] Histograma de precios potenciales
Pronóstico de precio de Kepple [OLD] basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Kepple [OLD] es Alcista, con 27 indicadores técnicos mostrando señales alcistas y 7 indicando señales bajistas. La predicción de precio de QLC se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Kepple [OLD]
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Kepple [OLD] aumentar durante el próximo mes, alcanzando $0.013063 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Kepple [OLD] alcance $0.010791 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 66.32, lo que sugiere que el mercado de QLC está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de QLC para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.01332 | BUY |
| SMA 5 | $0.011268 | BUY |
| SMA 10 | $0.008857 | BUY |
| SMA 21 | $0.008755 | BUY |
| SMA 50 | $0.011613 | BUY |
| SMA 100 | $0.013031 | BUY |
| SMA 200 | $0.013461 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.012687 | BUY |
| EMA 5 | $0.011626 | BUY |
| EMA 10 | $0.010111 | BUY |
| EMA 21 | $0.009747 | BUY |
| EMA 50 | $0.0110067 | BUY |
| EMA 100 | $0.012187 | BUY |
| EMA 200 | $0.013268 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.012292 | BUY |
| SMA 50 | $0.013032 | BUY |
| SMA 100 | $0.015535 | SELL |
| SMA 200 | $0.022814 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.011794 | BUY |
| EMA 50 | $0.013393 | SELL |
| EMA 100 | $0.016775 | SELL |
| EMA 200 | $0.0243091 | SELL |
Osciladores de Kepple [OLD]
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 66.32 | NEUTRAL |
| Stoch RSI (14) | 108.83 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 130.5 | SELL |
| Índice Direccional Medio (14) | 34.91 | SELL |
| Oscilador Asombroso (5, 34) | 0.000691 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 85.86 | SELL |
| VWMA (10) | 0.011175 | BUY |
| Promedio Móvil de Hull (9) | 0.014643 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000548 | SELL |
Predicción de precios de Kepple [OLD] basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Kepple [OLD]
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Kepple [OLD] por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.018726 | $0.026313 | $0.036974 | $0.051955 | $0.0730062 | $0.102585 |
| Amazon.com acción | $0.0278068 | $0.05802 | $0.121063 | $0.2526058 | $0.527077 | $1.09 |
| Apple acción | $0.0189028 | $0.026812 | $0.038031 | $0.053944 | $0.076515 | $0.108531 |
| Netflix acción | $0.021027 | $0.033177 | $0.052349 | $0.082599 | $0.130328 | $0.205638 |
| Google acción | $0.017257 | $0.022348 | $0.028941 | $0.037479 | $0.048535 | $0.062853 |
| Tesla acción | $0.03021 | $0.068484 | $0.155249 | $0.351939 | $0.797821 | $1.80 |
| Kodak acción | $0.009993 | $0.007494 | $0.005619 | $0.004214 | $0.00316 | $0.002369 |
| Nokia acción | $0.008828 | $0.005848 | $0.003874 | $0.002566 | $0.00170025 | $0.001126 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Kepple [OLD]
Podría preguntarse cosas como: "¿Debo invertir en Kepple [OLD] ahora?", "¿Debería comprar QLC hoy?", "¿Será Kepple [OLD] una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Kepple [OLD] regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Kepple [OLD], con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Kepple [OLD] a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Kepple [OLD] es de $0.01332 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Kepple [OLD] basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Kepple [OLD] ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.013673 | $0.014028 | $0.014393 | $0.014767 |
| Si Kepple [OLD] ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.014019 | $0.014748 | $0.015514 | $0.016321 |
| Si Kepple [OLD] ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.015058 | $0.017015 | $0.019227 | $0.021726 |
| Si Kepple [OLD] ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01679 | $0.021155 | $0.026653 | $0.033582 |
| Si Kepple [OLD] ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.020254 | $0.030784 | $0.046788 | $0.071111 |
| Si Kepple [OLD] ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.030646 | $0.070477 | $0.162073 | $0.372713 |
| Si Kepple [OLD] ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.047966 | $0.172648 | $0.621415 | $2.23 |
Cuadro de preguntas
¿Es QLC una buena inversión?
La decisión de adquirir Kepple [OLD] depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Kepple [OLD] ha experimentado una caída de 0% durante las últimas 24 horas, y Kepple [OLD] ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Kepple [OLD] dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Kepple [OLD] subir?
Parece que el valor medio de Kepple [OLD] podría potencialmente aumentar hasta $0.013744 para el final de este año. Mirando las perspectivas de Kepple [OLD] en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0432088. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Kepple [OLD] la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Kepple [OLD], el precio de Kepple [OLD] aumentará en un 0.86% durante la próxima semana y alcanzará $0.01344 para el 13 de enero de 2026.
¿Cuál será el precio de Kepple [OLD] el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Kepple [OLD], el precio de Kepple [OLD] disminuirá en un -11.62% durante el próximo mes y alcanzará $0.011778 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Kepple [OLD] este año en 2026?
Según nuestra predicción más reciente sobre el valor de Kepple [OLD] en 2026, se anticipa que QLC fluctúe dentro del rango de $0.0046043 y $0.013744. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Kepple [OLD] no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Kepple [OLD] en 5 años?
El futuro de Kepple [OLD] parece estar en una tendencia alcista, con un precio máximo de $0.0432088 proyectada después de un período de cinco años. Basado en el pronóstico de Kepple [OLD] para 2030, el valor de Kepple [OLD] podría potencialmente alcanzar su punto más alto de aproximadamente $0.0432088, mientras que su punto más bajo se anticipa que esté alrededor de $0.014944.
¿Cuánto será Kepple [OLD] en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Kepple [OLD], se espera que el valor de QLC en 2026 crezca en un 3.13% hasta $0.013744 si ocurre lo mejor. El precio estará entre $0.013744 y $0.0046043 durante 2026.
¿Cuánto será Kepple [OLD] en 2027?
Según nuestra última simulación experimental para la predicción de precios de Kepple [OLD], el valor de QLC podría disminuir en un -12.62% hasta $0.011644 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.011644 y $0.004432 a lo largo del año.
¿Cuánto será Kepple [OLD] en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Kepple [OLD] sugiere que el valor de QLC en 2028 podría aumentar en un 47.02% , alcanzando $0.019592 en el mejor escenario. Se espera que el precio oscile entre $0.019592 y $0.007999 durante el año.
¿Cuánto será Kepple [OLD] en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Kepple [OLD] podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0578047 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0578047 y $0.017572.
¿Cuánto será Kepple [OLD] en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Kepple [OLD], se espera que el valor de QLC en 2030 aumente en un 224.23% , alcanzando $0.0432088 en el mejor escenario. Se pronostica que el precio oscile entre $0.0432088 y $0.014944 durante el transcurso de 2030.
¿Cuánto será Kepple [OLD] en 2031?
Nuestra simulación experimental indica que el precio de Kepple [OLD] podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.039444 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.039444 y $0.017668 durante el año.
¿Cuánto será Kepple [OLD] en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Kepple [OLD], QLC podría experimentar un 449.04% aumento en valor, alcanzando $0.073167 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.073167 y $0.02697 a lo largo del año.
¿Cuánto será Kepple [OLD] en 2033?
Según nuestra predicción experimental de precios de Kepple [OLD], se anticipa que el valor de QLC aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.194892. A lo largo del año, el precio de QLC podría oscilar entre $0.194892 y $0.062673.
¿Cuánto será Kepple [OLD] en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Kepple [OLD] sugieren que QLC podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.112871 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.112871 y $0.050386.
¿Cuánto será Kepple [OLD] en 2035?
Basado en nuestra predicción experimental para el precio de Kepple [OLD], QLC podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.13299 en 2035. El rango de precios esperado para el año está entre $0.13299 y $0.059572.
¿Cuánto será Kepple [OLD] en 2036?
Nuestra reciente simulación de predicción de precios de Kepple [OLD] sugiere que el valor de QLC podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.275154 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.275154 y $0.09861.
¿Cuánto será Kepple [OLD] en 2037?
Según la simulación experimental, el valor de Kepple [OLD] podría aumentar en un 4830.69% en 2037, con un máximo de $0.657094 bajo condiciones favorables. Se espera que el precio caiga entre $0.657094 y $0.256088 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de BTU Protocol
Predicción de precios de Pika Protocol
Predicción de precios de Oggy Inu
Predicción de precios de Smilek
Predicción de precios de Wasder
Predicción de precios de Comtech Gold
Predicción de precios de BABB
Predicción de precios de Ferro
Predicción de precios de PLEARN
Predicción de precios de Comsats
Predicción de precios de r/FortNiteBR Bricks
Predicción de precios de Script Network
Predicción de precios de BitSharesPredicción de precios de Ispolink
Predicción de precios de Increment Staked FLOW
Predicción de precios de Goldcoin
Predicción de precios de Chappyz
Predicción de precios de SIX Network
Predicción de precios de MindAI
Predicción de precios de EML Protocol
Predicción de precios de OpenOcean
Predicción de precios de Unisocks
Predicción de precios de Argentine Football Association Fan Token
Predicción de precios de Trabzonspor Fan Token
Predicción de precios de Lithium Finance
¿Cómo leer y predecir los movimientos de precio de Kepple [OLD]?
Los traders de Kepple [OLD] utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Kepple [OLD]
Las medias móviles son herramientas populares para la predicción de precios de Kepple [OLD]. Una media móvil simple (SMA) calcula el precio de cierre promedio de QLC durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de QLC por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de QLC.
¿Cómo leer gráficos de Kepple [OLD] y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Kepple [OLD] en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de QLC dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Kepple [OLD]?
La acción del precio de Kepple [OLD] está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de QLC. La capitalización de mercado de Kepple [OLD] puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de QLC, grandes poseedores de Kepple [OLD], ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Kepple [OLD].
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


