Predicción del precio de Prism - Pronóstico de PRISM
Predicción de precio de Prism hasta $0.00065 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000217 | $0.00065 |
| 2027 | $0.0002096 | $0.00055 |
| 2028 | $0.000378 | $0.000926 |
| 2029 | $0.000831 | $0.002734 |
| 2030 | $0.0007069 | $0.002044 |
| 2031 | $0.000835 | $0.001865 |
| 2032 | $0.001275 | $0.003461 |
| 2033 | $0.002964 | $0.009219 |
| 2034 | $0.002383 | $0.005339 |
| 2035 | $0.002818 | $0.006291 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Prism hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.41, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Prism para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Prism'
'name_with_ticker' => 'Prism <small>PRISM</small>'
'name_lang' => 'Prism'
'name_lang_with_ticker' => 'Prism <small>PRISM</small>'
'name_with_lang' => 'Prism'
'name_with_lang_with_ticker' => 'Prism <small>PRISM</small>'
'image' => '/uploads/coins/prism.png?1717211390'
'price_for_sd' => 0.0006304
'ticker' => 'PRISM'
'marketcap' => '$1.15M'
'low24h' => '$0.0006247'
'high24h' => '$0.0006503'
'volume24h' => '$12.22K'
'current_supply' => '1.83B'
'max_supply' => '1.91B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006304'
'change_24h_pct' => '0.5132%'
'ath_price' => '$0.04643'
'ath_days' => 1455
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 ene. 2022'
'ath_pct' => '-98.65%'
'fdv' => '$1.2M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.031084'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000635'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000557'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000217'
'current_year_max_price_prediction' => '$0.00065'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0007069'
'grand_prediction_max_price' => '$0.002044'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00064236612739908
107 => 0.00064476448933988
108 => 0.00065016812125591
109 => 0.00060399467816638
110 => 0.00062472519853251
111 => 0.00063690243706054
112 => 0.00058188523037919
113 => 0.00063581492377826
114 => 0.00060319090124883
115 => 0.00059211781800597
116 => 0.0006070262658247
117 => 0.0006012164292108
118 => 0.00059622147285522
119 => 0.00059343420138457
120 => 0.0006043813200773
121 => 0.00060387062390564
122 => 0.00058595901298016
123 => 0.00056259404669853
124 => 0.00057043609631152
125 => 0.00056758700616751
126 => 0.00055726153594569
127 => 0.00056421965617317
128 => 0.00053357961611541
129 => 0.00048086501972674
130 => 0.00051568989679285
131 => 0.00051434917690798
201 => 0.00051367312514523
202 => 0.0005398430577715
203 => 0.00053732742259256
204 => 0.0005327615201096
205 => 0.00055717767956597
206 => 0.00054826545292071
207 => 0.00057573083545671
208 => 0.0005938213127445
209 => 0.00058923298253868
210 => 0.0006062471638667
211 => 0.00057061676129589
212 => 0.00058245175178628
213 => 0.00058489092692376
214 => 0.0005568763879483
215 => 0.00053773901161922
216 => 0.00053646276680013
217 => 0.00050328119353842
218 => 0.00052100652214253
219 => 0.0005366040777902
220 => 0.00052913405905418
221 => 0.00052676927428282
222 => 0.00053885044682047
223 => 0.00053978925739489
224 => 0.00051838427680741
225 => 0.00052283505007912
226 => 0.00054139551450167
227 => 0.00052236737399692
228 => 0.00048539880522529
301 => 0.00047623008903947
302 => 0.00047500681328732
303 => 0.00045014052781133
304 => 0.00047684278649693
305 => 0.00046518653500463
306 => 0.00050200849380548
307 => 0.00048097598841856
308 => 0.00048006931914847
309 => 0.00047869875556725
310 => 0.00045729531644476
311 => 0.00046198130935307
312 => 0.00047755826347716
313 => 0.00048311629619559
314 => 0.00048253654784743
315 => 0.00047748192790398
316 => 0.00047979590703025
317 => 0.00047234177402075
318 => 0.00046970956451073
319 => 0.00046140158725086
320 => 0.00044919115581614
321 => 0.00045088909119806
322 => 0.0004266970314927
323 => 0.00041351591339542
324 => 0.00040986755363044
325 => 0.00040498881447726
326 => 0.00041041862019963
327 => 0.00042662849842712
328 => 0.00040707594616725
329 => 0.00037355446676978
330 => 0.00037556916479939
331 => 0.00038009559310271
401 => 0.00037166062390479
402 => 0.00036367763345227
403 => 0.00037061819597025
404 => 0.00035641470324369
405 => 0.00038181201734073
406 => 0.00038112509116955
407 => 0.00039059163930556
408 => 0.00039651126612813
409 => 0.00038286844280405
410 => 0.00037943730963216
411 => 0.00038139183902317
412 => 0.0003490878219577
413 => 0.00038795171192584
414 => 0.00038828780846015
415 => 0.00038540994588332
416 => 0.00040610376750338
417 => 0.00044977418568651
418 => 0.00043334361772751
419 => 0.00042698120519725
420 => 0.00041488625432631
421 => 0.00043100205823471
422 => 0.00042976461594025
423 => 0.00042416843259864
424 => 0.00042078384345248
425 => 0.00042702005273145
426 => 0.00042001110810975
427 => 0.00041875210906277
428 => 0.00041112394464257
429 => 0.00040840103700393
430 => 0.00040638510459035
501 => 0.00040416576108444
502 => 0.00040906107983255
503 => 0.00039796764351651
504 => 0.00038459004682234
505 => 0.00038347784440482
506 => 0.00038654873306543
507 => 0.00038519009343388
508 => 0.00038347133976097
509 => 0.00038018977092468
510 => 0.00037921619955057
511 => 0.00038237983420673
512 => 0.00037880827513129
513 => 0.00038407830509999
514 => 0.00038264514855256
515 => 0.00037463965257937
516 => 0.00036466184058255
517 => 0.00036457301712661
518 => 0.00036242331389879
519 => 0.00035968534362811
520 => 0.00035892370293508
521 => 0.00037003368115379
522 => 0.00039303100357284
523 => 0.0003885160789027
524 => 0.00039177857468497
525 => 0.00040782682492299
526 => 0.00041292808108593
527 => 0.00040930733029135
528 => 0.00040435102328554
529 => 0.00040456907564011
530 => 0.00042150627705512
531 => 0.00042256262953178
601 => 0.00042523169144808
602 => 0.00042866219028733
603 => 0.00040989155907757
604 => 0.00040368498059815
605 => 0.00040074395938673
606 => 0.00039168675237402
607 => 0.00040145417363099
608 => 0.00039576311554723
609 => 0.00039653103371696
610 => 0.00039603092600152
611 => 0.00039630401863128
612 => 0.00038180491827384
613 => 0.00038708762839381
614 => 0.00037830409822088
615 => 0.00036654393731685
616 => 0.00036650451313385
617 => 0.00036938279585451
618 => 0.00036767068066505
619 => 0.00036306342271272
620 => 0.00036371786195921
621 => 0.00035798428552667
622 => 0.00036441402194787
623 => 0.00036459840378172
624 => 0.00036212260502946
625 => 0.00037202850111895
626 => 0.00037608695482926
627 => 0.00037445733105376
628 => 0.00037597261608092
629 => 0.0003887036944064
630 => 0.00039077941566935
701 => 0.0003917013139399
702 => 0.00039046609238548
703 => 0.00037620531682194
704 => 0.00037683784285969
705 => 0.00037219678648235
706 => 0.00036827558290597
707 => 0.00036843241048502
708 => 0.00037044841884406
709 => 0.00037925244558533
710 => 0.00039778000083659
711 => 0.00039848310801491
712 => 0.00039933529442612
713 => 0.00039586902401717
714 => 0.00039482356369409
715 => 0.00039620279571643
716 => 0.00040316077133623
717 => 0.00042105857370231
718 => 0.00041473229499211
719 => 0.00040958893192632
720 => 0.00041410104797575
721 => 0.00041340644307707
722 => 0.0004075432787066
723 => 0.0004073787192106
724 => 0.00039612543221663
725 => 0.0003919653482399
726 => 0.00038848887069207
727 => 0.00038469264796557
728 => 0.00038244211988276
729 => 0.00038589995386467
730 => 0.00038669080140823
731 => 0.00037913018697419
801 => 0.00037809970316426
802 => 0.00038427386411829
803 => 0.00038155684607834
804 => 0.00038435136651123
805 => 0.00038499971922262
806 => 0.00038489531950326
807 => 0.00038205844062201
808 => 0.00038386658262397
809 => 0.00037958978775627
810 => 0.00037493941569146
811 => 0.00037197276804253
812 => 0.00036938397450013
813 => 0.00037082038761902
814 => 0.00036569983712886
815 => 0.00036406166997073
816 => 0.00038325402479819
817 => 0.00039743162366182
818 => 0.0003972254757594
819 => 0.00039597060342034
820 => 0.00039410611766605
821 => 0.00040302437259014
822 => 0.00039991743090072
823 => 0.00040217799057344
824 => 0.00040275339788554
825 => 0.00040449498251766
826 => 0.00040511744932939
827 => 0.00040323592229335
828 => 0.00039692128775124
829 => 0.00038118581884974
830 => 0.000373860915599
831 => 0.00037144357552035
901 => 0.00037153144124102
902 => 0.00036910771241491
903 => 0.00036982160917811
904 => 0.0003688594482546
905 => 0.0003670373482372
906 => 0.00037070787807748
907 => 0.00037113087244823
908 => 0.00037027412692394
909 => 0.00037047592150955
910 => 0.00036338243448925
911 => 0.00036392173690116
912 => 0.00036091883254041
913 => 0.00036035582417332
914 => 0.00035276474344215
915 => 0.00033931604358212
916 => 0.00034676792880146
917 => 0.00033776709935013
918 => 0.00033435834885209
919 => 0.00035049484354035
920 => 0.00034887518703034
921 => 0.00034610303913297
922 => 0.00034200245462651
923 => 0.00034048150794514
924 => 0.00033124071738236
925 => 0.00033069472217821
926 => 0.00033527470750346
927 => 0.00033316120186353
928 => 0.00033019303949789
929 => 0.00031944265628734
930 => 0.00030735566622912
1001 => 0.00030772049648286
1002 => 0.00031156514313394
1003 => 0.00032274397179318
1004 => 0.00031837621004031
1005 => 0.00031520734877432
1006 => 0.00031461391631482
1007 => 0.00032204196598048
1008 => 0.00033255421248191
1009 => 0.00033748632334212
1010 => 0.00033259875127008
1011 => 0.0003269841716393
1012 => 0.00032732590508597
1013 => 0.00032959930460737
1014 => 0.00032983820675293
1015 => 0.00032618369260141
1016 => 0.00032721241692862
1017 => 0.00032564969060706
1018 => 0.00031605924205617
1019 => 0.00031588578125353
1020 => 0.00031353213051227
1021 => 0.00031346086290322
1022 => 0.00030945671584665
1023 => 0.00030889650799407
1024 => 0.00030094603097889
1025 => 0.00030617905902654
1026 => 0.00030266901855848
1027 => 0.00029737855963826
1028 => 0.00029646648252632
1029 => 0.00029643906438697
1030 => 0.00030187118277307
1031 => 0.00030611558156047
1101 => 0.0003027300772152
1102 => 0.00030195926350103
1103 => 0.00031018953735527
1104 => 0.00030914215998671
1105 => 0.00030823513794039
1106 => 0.00033161295610703
1107 => 0.00031310758883424
1108 => 0.00030503819245386
1109 => 0.00029505078209633
1110 => 0.00029830273326964
1111 => 0.00029898796716296
1112 => 0.00027497004561914
1113 => 0.00026522597784005
1114 => 0.00026188218097571
1115 => 0.00025995777860594
1116 => 0.00026083475293097
1117 => 0.00025206394906464
1118 => 0.00025795807431852
1119 => 0.00025036329954787
1120 => 0.00024909001084204
1121 => 0.00026267040894401
1122 => 0.00026456004200437
1123 => 0.00025649828030592
1124 => 0.00026167523639699
1125 => 0.00025979800015329
1126 => 0.00025049349016299
1127 => 0.0002501381263207
1128 => 0.00024546945027691
1129 => 0.00023816387630219
1130 => 0.00023482503296102
1201 => 0.00023308613435977
1202 => 0.00023380363781311
1203 => 0.00023344084611113
1204 => 0.000231073384854
1205 => 0.00023357654621914
1206 => 0.00022718200330889
1207 => 0.00022463564479769
1208 => 0.00022348551373325
1209 => 0.00021780998884424
1210 => 0.00022684227286003
1211 => 0.00022862174659685
1212 => 0.00023040472644665
1213 => 0.00024592434874707
1214 => 0.00024514903227494
1215 => 0.00025215751558857
1216 => 0.00025188517881477
1217 => 0.00024988624584382
1218 => 0.0002414530764479
1219 => 0.00024481438746232
1220 => 0.00023446879462363
1221 => 0.00024222041621031
1222 => 0.00023868289983361
1223 => 0.00024102437836493
1224 => 0.00023681418884301
1225 => 0.0002391442815589
1226 => 0.00022904372583398
1227 => 0.0002196119690167
1228 => 0.00022340758329012
1229 => 0.00022753385008647
1230 => 0.00023648064785418
1231 => 0.00023115200891321
]
'min_raw' => 0.00021780998884424
'max_raw' => 0.00065016812125591
'avg_raw' => 0.00043398905505008
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000217'
'max' => '$0.00065'
'avg' => '$0.000433'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00041261001115576
'max_diff' => 1.9748121255912E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00023306838897453
102 => 0.00022664883656726
103 => 0.00021340346629656
104 => 0.00021347843365385
105 => 0.00021144092200378
106 => 0.00020968021445655
107 => 0.00023176406719594
108 => 0.00022901759101375
109 => 0.00022464144066734
110 => 0.00023049909180731
111 => 0.00023204794774214
112 => 0.00023209204149317
113 => 0.00023636563255703
114 => 0.00023864644887389
115 => 0.00023904845263536
116 => 0.00024577304051139
117 => 0.00024802703366798
118 => 0.00025731091248291
119 => 0.00023845293754458
120 => 0.00023806456996056
121 => 0.00023058152097139
122 => 0.00022583565300013
123 => 0.00023090647461165
124 => 0.00023539853032327
125 => 0.00023072110166391
126 => 0.00023133187510091
127 => 0.00022505280928567
128 => 0.00022729727985711
129 => 0.00022923052027607
130 => 0.00022816309854734
131 => 0.00022656511655563
201 => 0.00023503023298165
202 => 0.00023455259793783
203 => 0.00024243550896593
204 => 0.0002485808018247
205 => 0.00025959426523011
206 => 0.00024810114202173
207 => 0.00024768228693099
208 => 0.00025177666262945
209 => 0.00024802640684039
210 => 0.00025039643904465
211 => 0.00025921241640145
212 => 0.00025939868411097
213 => 0.00025627845998422
214 => 0.00025608859406254
215 => 0.00025668786723759
216 => 0.00026019782894184
217 => 0.00025897134047215
218 => 0.00026039066398017
219 => 0.0002621655497604
220 => 0.0002695072298834
221 => 0.00027127728410592
222 => 0.0002669769700131
223 => 0.0002673652402271
224 => 0.00026575680471013
225 => 0.00026420307615437
226 => 0.00026769563104388
227 => 0.00027407834375082
228 => 0.00027403863722633
301 => 0.00027551930251213
302 => 0.00027644174471869
303 => 0.00027248194749917
304 => 0.00026990426511503
305 => 0.0002708927125633
306 => 0.00027247326155867
307 => 0.00027038016182621
308 => 0.00025746058065938
309 => 0.00026137955627936
310 => 0.00026072724710808
311 => 0.00025979827952467
312 => 0.0002637388398151
313 => 0.00026335876316202
314 => 0.00025197399179387
315 => 0.00025270280791906
316 => 0.00025201831351636
317 => 0.00025423005496587
318 => 0.0002479069655438
319 => 0.00024985190526337
320 => 0.00025107175322281
321 => 0.00025179025304223
322 => 0.00025438596706992
323 => 0.00025408138998839
324 => 0.00025436703413089
325 => 0.00025821579279086
326 => 0.0002776814933585
327 => 0.00027874096849175
328 => 0.0002735237254508
329 => 0.00027560791114009
330 => 0.00027160673037796
331 => 0.00027429274982916
401 => 0.00027613045612017
402 => 0.00026782621476169
403 => 0.00026733449148252
404 => 0.00026331679642408
405 => 0.00026547567817461
406 => 0.00026204074208043
407 => 0.00026288355524898
408 => 0.00026052697615459
409 => 0.00026476834933427
410 => 0.00026951086359191
411 => 0.00027070900998095
412 => 0.00026755720266583
413 => 0.00026527508645546
414 => 0.00026126844216587
415 => 0.00026793158091336
416 => 0.0002698800857386
417 => 0.00026792134624701
418 => 0.00026746746350751
419 => 0.0002666073565363
420 => 0.00026764993926744
421 => 0.00026986947376286
422 => 0.00026882278228318
423 => 0.00026951414044584
424 => 0.00026687939605525
425 => 0.00027248325835681
426 => 0.00028138354033461
427 => 0.00028141215619651
428 => 0.00028036545907479
429 => 0.00027993717316398
430 => 0.00028101114792976
501 => 0.00028159373518345
502 => 0.00028506677264271
503 => 0.00028879348020841
504 => 0.00030618439832765
505 => 0.00030130109811065
506 => 0.00031673135525639
507 => 0.00032893468529054
508 => 0.00033259393038083
509 => 0.00032922759707855
510 => 0.00031771155269718
511 => 0.00031714652061964
512 => 0.00033435635287393
513 => 0.00032949378700184
514 => 0.00032891540026391
515 => 0.00032276234257217
516 => 0.00032639956173901
517 => 0.00032560404855243
518 => 0.00032434829206959
519 => 0.00033128785286904
520 => 0.00034427809118674
521 => 0.00034225344072324
522 => 0.00034074213307307
523 => 0.00033412002288508
524 => 0.00033810801232011
525 => 0.0003366879656672
526 => 0.00034278938727197
527 => 0.00033917504027634
528 => 0.00032945694828289
529 => 0.0003310045864641
530 => 0.00033077066406642
531 => 0.00033558477043463
601 => 0.00033413969519636
602 => 0.00033048848993352
603 => 0.00034423369196439
604 => 0.00034334115499934
605 => 0.00034460656835343
606 => 0.0003451636424461
607 => 0.00035353010470467
608 => 0.00035695757659507
609 => 0.00035773567272053
610 => 0.00036099150592622
611 => 0.00035765466462437
612 => 0.00037100440895928
613 => 0.00037988120996282
614 => 0.00039019207112443
615 => 0.00040525901057975
616 => 0.00041092431919194
617 => 0.00040990093189936
618 => 0.00042132451343778
619 => 0.00044185243553037
620 => 0.00041405021187002
621 => 0.00044332602089344
622 => 0.0004340576377621
623 => 0.00041208246808877
624 => 0.00041066752623204
625 => 0.00042554936627178
626 => 0.00045855585515591
627 => 0.00045028810404693
628 => 0.00045856937823488
629 => 0.00044890883200886
630 => 0.00044842910446327
701 => 0.00045810018706743
702 => 0.00048069719871533
703 => 0.00046996220551773
704 => 0.00045457096044064
705 => 0.00046593561629126
706 => 0.00045609049964421
707 => 0.00043390669636375
708 => 0.00045028178185348
709 => 0.00043933222852208
710 => 0.00044252789029445
711 => 0.00046554222277391
712 => 0.00046277307740161
713 => 0.00046635660792933
714 => 0.00046003177034524
715 => 0.00045412337470635
716 => 0.00044309491548316
717 => 0.00043982993240364
718 => 0.00044073225626503
719 => 0.00043982948525675
720 => 0.00043365916367814
721 => 0.00043232668332072
722 => 0.00043010582434772
723 => 0.00043079416140795
724 => 0.0004266182968035
725 => 0.00043449901608975
726 => 0.00043596174703394
727 => 0.00044169667733302
728 => 0.00044229209682157
729 => 0.0004582637960729
730 => 0.00044946685251877
731 => 0.00045536860174645
801 => 0.00045484069374611
802 => 0.00041255873665013
803 => 0.00041838481728109
804 => 0.00042744837041805
805 => 0.0004233652520152
806 => 0.00041759267789615
807 => 0.00041293101478916
808 => 0.00040586811850256
809 => 0.00041580900939505
810 => 0.00042888022382277
811 => 0.00044262360439025
812 => 0.00045913537564011
813 => 0.00045545014051534
814 => 0.00044231492831208
815 => 0.00044290416433624
816 => 0.00044654658958177
817 => 0.00044182931793958
818 => 0.00044043810244022
819 => 0.00044635545793572
820 => 0.0004463962075109
821 => 0.00044096841638524
822 => 0.00043493641982436
823 => 0.00043491114553853
824 => 0.00043383781001269
825 => 0.00044909977601448
826 => 0.00045749231415666
827 => 0.00045845450512941
828 => 0.00045742755103786
829 => 0.00045782278490934
830 => 0.00045293935188137
831 => 0.00046410143164624
901 => 0.00047434485985376
902 => 0.00047159940227522
903 => 0.0004674835710752
904 => 0.00046420511327909
905 => 0.00047082710180935
906 => 0.00047053223508407
907 => 0.00047425539244454
908 => 0.00047408648852067
909 => 0.00047283453073537
910 => 0.00047159944698658
911 => 0.00047649641444303
912 => 0.00047508616645846
913 => 0.00047367372796925
914 => 0.00047084086634563
915 => 0.00047122589928913
916 => 0.00046711077874539
917 => 0.00046520693568676
918 => 0.00043657770404308
919 => 0.00042892703786076
920 => 0.00043133409318538
921 => 0.00043212655829742
922 => 0.00042879697857027
923 => 0.00043357074060014
924 => 0.00043282675484445
925 => 0.00043572116820273
926 => 0.0004339128643973
927 => 0.00043398707781623
928 => 0.00043930491373699
929 => 0.00044084870412848
930 => 0.00044006351987545
1001 => 0.00044061343601173
1002 => 0.00045328602126718
1003 => 0.00045148438489032
1004 => 0.00045052730147306
1005 => 0.00045079242012046
1006 => 0.00045403053735652
1007 => 0.00045493703338797
1008 => 0.00045109614600437
1009 => 0.00045290753069839
1010 => 0.00046062017682654
1011 => 0.00046331916647343
1012 => 0.00047193304583778
1013 => 0.00046827371678431
1014 => 0.000474990573634
1015 => 0.00049563590164473
1016 => 0.00051212881820773
1017 => 0.00049696125053779
1018 => 0.00052724839144549
1019 => 0.00055083127507445
1020 => 0.00054992612472142
1021 => 0.00054581390347879
1022 => 0.00051896541745061
1023 => 0.00049425904031911
1024 => 0.0005149269738778
1025 => 0.00051497966069084
1026 => 0.00051320426686866
1027 => 0.00050217744831747
1028 => 0.00051282055748509
1029 => 0.00051366536884073
1030 => 0.00051319249913504
1031 => 0.00050473826320559
1101 => 0.00049183020754529
1102 => 0.00049435241072379
1103 => 0.00049848383098173
1104 => 0.0004906621905289
1105 => 0.00048816270247431
1106 => 0.00049280972631485
1107 => 0.00050778340537493
1108 => 0.00050495271808524
1109 => 0.0005048787974004
1110 => 0.00051698967802392
1111 => 0.0005083209011891
1112 => 0.00049438422378309
1113 => 0.00049086502893588
1114 => 0.000478374258042
1115 => 0.000487001677989
1116 => 0.00048731216347379
1117 => 0.00048258701373891
1118 => 0.00049476764364229
1119 => 0.00049465539699337
1120 => 0.00050621909223912
1121 => 0.00052832453442339
1122 => 0.00052178686742676
1123 => 0.00051418427200582
1124 => 0.00051501088492518
1125 => 0.00052407678839604
1126 => 0.00051859533620311
1127 => 0.00052056650462973
1128 => 0.00052407380479655
1129 => 0.00052618984606855
1130 => 0.00051470641915016
1201 => 0.00051202908301968
1202 => 0.00050655219291401
1203 => 0.00050512337451643
1204 => 0.00050958418722844
1205 => 0.00050840892068167
1206 => 0.00048728606837106
1207 => 0.00048507861277816
1208 => 0.00048514631228967
1209 => 0.00047959556024253
1210 => 0.00047112933103751
1211 => 0.00049337807589603
1212 => 0.0004915911903129
1213 => 0.00048961860692309
1214 => 0.00048986023713294
1215 => 0.0004995176631961
1216 => 0.00049391586836776
1217 => 0.00050880915803501
1218 => 0.00050574754541269
1219 => 0.00050260741397913
1220 => 0.00050217335216427
1221 => 0.00050096466946577
1222 => 0.00049681964676161
1223 => 0.00049181428276908
1224 => 0.00048850930790401
1225 => 0.00045062401403713
1226 => 0.00045765530421021
1227 => 0.00046574416263207
1228 => 0.00046853640414523
1229 => 0.00046376008181973
1230 => 0.00049700824507904
1231 => 0.00050308300489379
]
'min_raw' => 0.00020968021445655
'max_raw' => 0.00055083127507445
'avg_raw' => 0.0003802557447655
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0002096'
'max' => '$0.00055'
'avg' => '$0.00038'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.1297743876897E-6
'max_diff' => -9.933684618146E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00048468216116814
102 => 0.00048124011460857
103 => 0.00049723390507845
104 => 0.00048758769426375
105 => 0.00049193138240296
106 => 0.00048254270451636
107 => 0.00050161977314415
108 => 0.00050147443784404
109 => 0.00049405302727269
110 => 0.00050032555266797
111 => 0.00049923554702127
112 => 0.00049085679276435
113 => 0.00050188539459901
114 => 0.00050189086464793
115 => 0.00049474791832838
116 => 0.00048640652081917
117 => 0.00048491527595954
118 => 0.00048379182327837
119 => 0.00049165508191229
120 => 0.00049870525501571
121 => 0.00051182387927502
122 => 0.00051512221310463
123 => 0.00052799582962414
124 => 0.00052033021779178
125 => 0.00052372828423077
126 => 0.00052741736603614
127 => 0.00052918604751513
128 => 0.0005263040759578
129 => 0.00054630210140456
130 => 0.00054799054747593
131 => 0.00054855666883866
201 => 0.00054181344717563
202 => 0.00054780300628308
203 => 0.00054500068993006
204 => 0.00055229153857472
205 => 0.00055343483673644
206 => 0.00055246650386748
207 => 0.00055282940474974
208 => 0.00053576461792437
209 => 0.00053487971870355
210 => 0.00052281405503813
211 => 0.00052773090216667
212 => 0.00051853909213047
213 => 0.00052145390977909
214 => 0.00052273873362519
215 => 0.0005220676145611
216 => 0.00052800889332614
217 => 0.00052295759265279
218 => 0.0005096263796651
219 => 0.00049629153459735
220 => 0.00049612412647986
221 => 0.00049261329715309
222 => 0.00049007561059029
223 => 0.00049056445905156
224 => 0.00049228722479055
225 => 0.00048997548031373
226 => 0.00049046880820628
227 => 0.00049866133824915
228 => 0.0005003042917228
229 => 0.00049472089387598
301 => 0.00047230274584056
302 => 0.000466801276081
303 => 0.00047075562344529
304 => 0.00046886570009775
305 => 0.0003784112134464
306 => 0.00039966215335477
307 => 0.00038703556647495
308 => 0.0003928544786305
309 => 0.00037996600306502
310 => 0.00038611705914775
311 => 0.00038498118368987
312 => 0.0004191520662015
313 => 0.00041861853487159
314 => 0.00041887390808537
315 => 0.00040668427922044
316 => 0.00042610268898677
317 => 0.00043566889590109
318 => 0.0004338984455976
319 => 0.00043434402979614
320 => 0.00042668741697425
321 => 0.00041894804083401
322 => 0.00041036388161304
323 => 0.00042631218841146
324 => 0.00042453900894215
325 => 0.00042860604467491
326 => 0.0004389496616422
327 => 0.00044047279853221
328 => 0.00044251990995852
329 => 0.0004417861662355
330 => 0.00045926691853698
331 => 0.00045714988409156
401 => 0.00046225132799266
402 => 0.00045175727084061
403 => 0.00043988224906803
404 => 0.00044213930248328
405 => 0.00044192193008932
406 => 0.0004391545300257
407 => 0.00043665624498709
408 => 0.00043249730428524
409 => 0.0004456568080733
410 => 0.00044512255625158
411 => 0.00045377147224541
412 => 0.00045224269233241
413 => 0.00044203312591751
414 => 0.00044239776257935
415 => 0.00044485011936859
416 => 0.00045333775421666
417 => 0.00045585746212182
418 => 0.00045469023302715
419 => 0.00045745297771612
420 => 0.0004596365384721
421 => 0.00045772719932838
422 => 0.00048475941516362
423 => 0.00047353375446932
424 => 0.00047900506338408
425 => 0.00048030993832142
426 => 0.00047696752860797
427 => 0.0004776923775921
428 => 0.00047879032629353
429 => 0.00048545685580821
430 => 0.0005029517582306
501 => 0.00051070013142164
502 => 0.0005340114944649
503 => 0.00051005673689069
504 => 0.00050863536071088
505 => 0.00051283444113069
506 => 0.00052652067899546
507 => 0.00053761208930191
508 => 0.00054129174997937
509 => 0.00054177807788247
510 => 0.0005486813659326
511 => 0.00055263820190423
512 => 0.00054784312518881
513 => 0.00054377979973795
514 => 0.00052922547233149
515 => 0.00053091017535891
516 => 0.00054251610857819
517 => 0.00055891017283649
518 => 0.00057297798548178
519 => 0.00056805192780616
520 => 0.00060563427061631
521 => 0.00060936040639584
522 => 0.0006088455749115
523 => 0.0006173342667406
524 => 0.00060048594215186
525 => 0.00059328295696926
526 => 0.00054465833682113
527 => 0.00055831987171027
528 => 0.00057817771498545
529 => 0.00057554945496489
530 => 0.00056112815837678
531 => 0.00057296704563512
601 => 0.00056905273927128
602 => 0.0005659653634374
603 => 0.00058010923064967
604 => 0.00056455746765174
605 => 0.00057802257425307
606 => 0.00056075343575817
607 => 0.00056807442962269
608 => 0.00056391867942856
609 => 0.00056660795911375
610 => 0.00055088648502514
611 => 0.00055936941082614
612 => 0.00055053356742255
613 => 0.00055052937808232
614 => 0.00055033432634946
615 => 0.00056072965692966
616 => 0.00056106864828667
617 => 0.00055338648328143
618 => 0.0005522793632862
619 => 0.00055637296617364
620 => 0.00055158042930875
621 => 0.00055382282714396
622 => 0.00055164834925481
623 => 0.00055115882848045
624 => 0.00054725824366526
625 => 0.00054557776447806
626 => 0.00054623672366797
627 => 0.00054398735623605
628 => 0.00054263203099514
629 => 0.000550064718046
630 => 0.00054609373318846
701 => 0.00054945610766464
702 => 0.00054562425758355
703 => 0.00053234139574487
704 => 0.00052470228143774
705 => 0.00049961218674642
706 => 0.00050672770647672
707 => 0.00051144530341944
708 => 0.00050988613765801
709 => 0.00051323582903061
710 => 0.00051344147287582
711 => 0.00051235245406452
712 => 0.000511091509793
713 => 0.00051047775185621
714 => 0.00051505220067458
715 => 0.00051770782218251
716 => 0.00051191877738594
717 => 0.00051056248518745
718 => 0.0005164155290987
719 => 0.00051998588250337
720 => 0.00054634736603518
721 => 0.00054439442218868
722 => 0.00054929592799754
723 => 0.0005487440936632
724 => 0.00055388165262199
725 => 0.0005622793902252
726 => 0.00054520444163351
727 => 0.00054816806230173
728 => 0.00054744145095388
729 => 0.00055537440312199
730 => 0.00055539916893275
731 => 0.00055064296782761
801 => 0.00055322138160726
802 => 0.00055178218177054
803 => 0.00055438301039501
804 => 0.00054436833943295
805 => 0.00055656512764781
806 => 0.00056347992062197
807 => 0.00056357593252912
808 => 0.00056685348951968
809 => 0.00057018367724538
810 => 0.00057657568258665
811 => 0.00057000540768568
812 => 0.00055818612274221
813 => 0.00055903943693907
814 => 0.00055210979450121
815 => 0.00055222628304254
816 => 0.00055160445807959
817 => 0.0005534706016022
818 => 0.00054477785299381
819 => 0.00054681802371738
820 => 0.00054396177275716
821 => 0.00054816185336996
822 => 0.00054364326092879
823 => 0.00054744110055988
824 => 0.00054908012224429
825 => 0.00055512814754535
826 => 0.00054274996267432
827 => 0.00051751000579286
828 => 0.00052281575073424
829 => 0.00051496813720867
830 => 0.00051569446371843
831 => 0.00051716175886216
901 => 0.00051240577523224
902 => 0.00051331306703056
903 => 0.00051328065218301
904 => 0.00051300131853874
905 => 0.00051176410351179
906 => 0.00050996989694719
907 => 0.00051711746367291
908 => 0.00051833197453909
909 => 0.00052103168174854
910 => 0.00052906417917498
911 => 0.00052826154326275
912 => 0.00052957067573665
913 => 0.00052671284689659
914 => 0.00051582703020187
915 => 0.00051641818242164
916 => 0.00050904650476857
917 => 0.00052084317137716
918 => 0.00051804956501586
919 => 0.00051624850882124
920 => 0.00051575707395187
921 => 0.00052380948238576
922 => 0.00052621888919522
923 => 0.00052471750856084
924 => 0.00052163813307746
925 => 0.00052755144434119
926 => 0.00052913359697279
927 => 0.00052948778259946
928 => 0.00053996503639382
929 => 0.0005300733446988
930 => 0.00053245437320475
1001 => 0.00055103047791363
1002 => 0.0005341845142699
1003 => 0.0005431081969218
1004 => 0.00054267142909259
1005 => 0.00054723648317635
1006 => 0.00054229696141378
1007 => 0.00054235819270599
1008 => 0.00054641165146882
1009 => 0.00054071929968157
1010 => 0.00053930979332732
1011 => 0.00053736257039401
1012 => 0.00054161426043118
1013 => 0.00054416295632106
1014 => 0.00056470357338264
1015 => 0.00057797374877036
1016 => 0.00057739765545918
1017 => 0.00058266206992187
1018 => 0.00058029040298992
1019 => 0.00057263166485253
1020 => 0.00058570419696944
1021 => 0.00058156750082967
1022 => 0.00058190852503335
1023 => 0.00058189583209545
1024 => 0.00058464637339215
1025 => 0.00058269736280003
1026 => 0.00057885566286114
1027 => 0.00058140596256521
1028 => 0.00058897944093745
1029 => 0.00061248775018757
1030 => 0.00062564331148761
1031 => 0.0006116957688787
1101 => 0.00062131659700529
1102 => 0.00061554752838091
1103 => 0.00061449911699693
1104 => 0.00062054170803404
1105 => 0.00062659487582686
1106 => 0.00062620931520702
1107 => 0.00062181502622304
1108 => 0.00061933280387695
1109 => 0.00063812902308707
1110 => 0.00065197775721584
1111 => 0.00065103336639135
1112 => 0.00065520160035831
1113 => 0.00066743966420391
1114 => 0.00066855855938954
1115 => 0.00066841760431366
1116 => 0.00066564430585143
1117 => 0.00067769426902084
1118 => 0.00068774656029568
1119 => 0.00066500236738572
1120 => 0.00067366305830249
1121 => 0.00067755112148506
1122 => 0.00068325995177343
1123 => 0.00069289170538098
1124 => 0.00070335434449523
1125 => 0.00070483387638299
1126 => 0.00070378407770651
1127 => 0.00069688368595982
1128 => 0.00070833203052389
1129 => 0.0007150382022728
1130 => 0.00071903157408127
1201 => 0.00072915810055383
1202 => 0.00067757513283962
1203 => 0.00064106214445166
1204 => 0.00063536011406093
1205 => 0.00064695541708174
1206 => 0.00065001300601752
1207 => 0.0006487804957514
1208 => 0.00060768180770508
1209 => 0.00063514373797394
1210 => 0.00066469046587855
1211 => 0.0006658254760302
1212 => 0.0006806171858122
1213 => 0.00068543397284989
1214 => 0.00069734323801811
1215 => 0.0006965983102393
1216 => 0.00069949802678996
1217 => 0.00069883143217106
1218 => 0.00072089083810355
1219 => 0.00074522563870057
1220 => 0.00074438300193582
1221 => 0.00074088458643371
1222 => 0.00074608033002283
1223 => 0.00077119645211467
1224 => 0.00076888416207011
1225 => 0.000771130354888
1226 => 0.0008007436783169
1227 => 0.0008392452112206
1228 => 0.00082135738369612
1229 => 0.00086016882234051
1230 => 0.00088459856566119
1231 => 0.00092684728065171
]
'min_raw' => 0.0003784112134464
'max_raw' => 0.00092684728065171
'avg_raw' => 0.00065262924704906
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000378'
'max' => '$0.000926'
'avg' => '$0.000652'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00016873099898985
'max_diff' => 0.00037601600557725
'year' => 2028
]
3 => [
'items' => [
101 => 0.00092155753345559
102 => 0.000938004648166
103 => 0.00091208778197098
104 => 0.00085257741852436
105 => 0.00084315967571242
106 => 0.00086201423531716
107 => 0.00090836633030442
108 => 0.00086055444289292
109 => 0.00087022672544593
110 => 0.00086744110741997
111 => 0.00086729267367348
112 => 0.00087295778605328
113 => 0.00086474024507399
114 => 0.00083126050481696
115 => 0.00084660407247941
116 => 0.0008406791841463
117 => 0.00084725328948157
118 => 0.00088273102460874
119 => 0.00086704547222545
120 => 0.00085052201698045
121 => 0.00087124609670593
122 => 0.00089763497176289
123 => 0.0008959836033872
124 => 0.00089277925851991
125 => 0.00091084198276275
126 => 0.00094067631133029
127 => 0.00094874041045806
128 => 0.00095469316357093
129 => 0.0009555139476526
130 => 0.00096396853380833
131 => 0.00091850609321892
201 => 0.0009906561539926
202 => 0.001003114476383
203 => 0.0010007728281182
204 => 0.0010146197291288
205 => 0.0010105456195895
206 => 0.0010046428740752
207 => 0.0010265931574973
208 => 0.0010014289288504
209 => 0.00096571147437445
210 => 0.00094611617243778
211 => 0.00097192084673591
212 => 0.00098767886087075
213 => 0.00099809390581594
214 => 0.0010012454921234
215 => 0.0009220352130669
216 => 0.00087934526585892
217 => 0.000906709032578
218 => 0.00094009471652157
219 => 0.00091832063405893
220 => 0.00091917413686767
221 => 0.00088813001740416
222 => 0.00094284143224972
223 => 0.00093487043930215
224 => 0.00097622396481459
225 => 0.00096635461406827
226 => 0.0010000768087891
227 => 0.00099119662476526
228 => 0.0010280577721636
301 => 0.0010427626818366
302 => 0.0010674545138139
303 => 0.0010856179259302
304 => 0.0010962838289356
305 => 0.001095643488126
306 => 0.0011379071095653
307 => 0.001112985728581
308 => 0.0010816786005462
309 => 0.0010811123533728
310 => 0.0010973267586074
311 => 0.0011313077037744
312 => 0.0011401184684536
313 => 0.0011450424839226
314 => 0.0011375011828256
315 => 0.0011104508098986
316 => 0.0010987705960172
317 => 0.0011087224766525
318 => 0.0010965521818104
319 => 0.0011175615250895
320 => 0.0011464118407653
321 => 0.0011404543646648
322 => 0.0011603693140741
323 => 0.001180979191599
324 => 0.0012104522421072
325 => 0.0012181575888939
326 => 0.0012308942341243
327 => 0.0012440044258363
328 => 0.0012482150660847
329 => 0.0012562544848037
330 => 0.0012562121130987
331 => 0.0012804394425237
401 => 0.0013071629371374
402 => 0.0013172504377038
403 => 0.0013404460890282
404 => 0.0013007243490078
405 => 0.0013308537451037
406 => 0.0013580312145699
407 => 0.0013256291150767
408 => 0.0013702878605072
409 => 0.0013720218583933
410 => 0.0013982031677774
411 => 0.0013716633949847
412 => 0.0013559041626183
413 => 0.0014014004759692
414 => 0.0014234147088793
415 => 0.001416783842769
416 => 0.0013663226242635
417 => 0.0013369520307099
418 => 0.0012600835222155
419 => 0.0013511375909995
420 => 0.0013954873718206
421 => 0.0013662077690453
422 => 0.0013809746975924
423 => 0.0014615382715526
424 => 0.0014922116644115
425 => 0.00148583181312
426 => 0.001486909902967
427 => 0.0015034607089922
428 => 0.0015768560976033
429 => 0.0015328758794557
430 => 0.0015664971083222
501 => 0.0015843296868826
502 => 0.00160089357967
503 => 0.0015602178940564
504 => 0.0015072994247176
505 => 0.0014905379241118
506 => 0.0013632964895872
507 => 0.0013566730203387
508 => 0.0013529550663378
509 => 0.0013295138922774
510 => 0.0013110955505438
511 => 0.0012964486013681
512 => 0.0012580106327818
513 => 0.0012709823188213
514 => 0.0012097202195223
515 => 0.0012489135396583
516 => 0.0011511377499519
517 => 0.0012325683330427
518 => 0.0011882493688607
519 => 0.0012180083613542
520 => 0.0012179045350328
521 => 0.0011631087947551
522 => 0.0011315037553209
523 => 0.0011516437165349
524 => 0.0011732353536685
525 => 0.0011767385241504
526 => 0.0012047326452935
527 => 0.0012125452027729
528 => 0.0011888727888769
529 => 0.0011491115640377
530 => 0.0011583471897109
531 => 0.0011313165956614
601 => 0.0010839465193065
602 => 0.0011179685351468
603 => 0.0011295851471971
604 => 0.0011347157048623
605 => 0.0010881326752573
606 => 0.0010734952759886
607 => 0.0010657024474377
608 => 0.0011430982798804
609 => 0.0011473381982928
610 => 0.0011256461762308
611 => 0.001223696172873
612 => 0.0012015044388621
613 => 0.0012262980428591
614 => 0.0011575091534843
615 => 0.0011601369816949
616 => 0.001127571219074
617 => 0.0011458058700967
618 => 0.0011329182064841
619 => 0.0011443326904924
620 => 0.0011511744851433
621 => 0.001183734904043
622 => 0.001232940120724
623 => 0.0011788714632536
624 => 0.0011553129749164
625 => 0.0011699285285828
626 => 0.0012088516740118
627 => 0.0012678222317758
628 => 0.0012329104746865
629 => 0.0012484037196427
630 => 0.0012517883044191
701 => 0.0012260456672449
702 => 0.0012687713995274
703 => 0.0012916684665608
704 => 0.0013151561194567
705 => 0.0013355497903571
706 => 0.0013057746343855
707 => 0.001337638319376
708 => 0.0013119618139712
709 => 0.0012889273342348
710 => 0.0012889622680323
711 => 0.0012745124024136
712 => 0.0012465139669771
713 => 0.0012413506259096
714 => 0.0012682109782011
715 => 0.0012897504370541
716 => 0.0012915245300523
717 => 0.0013034498812106
718 => 0.0013105071811853
719 => 0.0013796783148708
720 => 0.0014074995170527
721 => 0.0014415187564524
722 => 0.0014547711674178
723 => 0.0014946561731716
724 => 0.0014624457917236
725 => 0.0014554768730846
726 => 0.001358728895412
727 => 0.001374571371336
728 => 0.0013999367038618
729 => 0.0013591471604027
730 => 0.0013850187372688
731 => 0.0013901263345771
801 => 0.0013577611473243
802 => 0.0013750487922532
803 => 0.0013291379327515
804 => 0.0012339408520012
805 => 0.0012688773810918
806 => 0.001294602426011
807 => 0.0012578896150361
808 => 0.0013236959077265
809 => 0.0012852532300544
810 => 0.0012730687468063
811 => 0.0012255327335735
812 => 0.0012479679019905
813 => 0.001278311788515
814 => 0.0012595627944983
815 => 0.0012984697722586
816 => 0.0013535724288792
817 => 0.001392841863407
818 => 0.0013958564829795
819 => 0.0013706088674259
820 => 0.0014110683324787
821 => 0.001411363035511
822 => 0.0013657245936497
823 => 0.0013377713021256
824 => 0.0013314202554771
825 => 0.0013472864152011
826 => 0.0013665508621607
827 => 0.001396925525712
828 => 0.0014152802987431
829 => 0.0014631398121886
830 => 0.0014760892242871
831 => 0.001490316702167
901 => 0.0015093290002062
902 => 0.0015321581386555
903 => 0.0014822092833921
904 => 0.001484193844528
905 => 0.0014376821620958
906 => 0.0013879777589669
907 => 0.0014256972052004
908 => 0.001475010363543
909 => 0.001463697870533
910 => 0.0014624249839761
911 => 0.0014645656260955
912 => 0.0014560363757975
913 => 0.0014174588928081
914 => 0.0013980855223587
915 => 0.0014230821129124
916 => 0.0014363666883214
917 => 0.0014569699062441
918 => 0.001454430124754
919 => 0.0015075018014987
920 => 0.0015281238502775
921 => 0.0015228478477327
922 => 0.001523818759175
923 => 0.0015611539934516
924 => 0.0016026784525438
925 => 0.0016415715881186
926 => 0.0016811353561243
927 => 0.0016334396895932
928 => 0.0016092227715885
929 => 0.0016342084494127
930 => 0.0016209506970603
1001 => 0.001697133674582
1002 => 0.0017024084186538
1003 => 0.0017785858872791
1004 => 0.0018508873760487
1005 => 0.0018054761063683
1006 => 0.0018482968883084
1007 => 0.0018946110552064
1008 => 0.0019839585973552
1009 => 0.0019538694884439
1010 => 0.0019308217025743
1011 => 0.0019090416562936
1012 => 0.0019543624751187
1013 => 0.0020126669845195
1014 => 0.0020252252174107
1015 => 0.0020455743523088
1016 => 0.0020241797251373
1017 => 0.0020499471970245
1018 => 0.0021409176955871
1019 => 0.0021163366638567
1020 => 0.0020814276472014
1021 => 0.002153240118917
1022 => 0.002179228773267
1023 => 0.0023616307598589
1024 => 0.0025919208025815
1025 => 0.0024965792127284
1026 => 0.0024373976112527
1027 => 0.0024513066914059
1028 => 0.0025354008191983
1029 => 0.002562409184031
1030 => 0.002488991138074
1031 => 0.0025149236330847
1101 => 0.0026578142302201
1102 => 0.0027344704511041
1103 => 0.0026303610068397
1104 => 0.0023431271791546
1105 => 0.0020782844721995
1106 => 0.0021485326841065
1107 => 0.002140568716932
1108 => 0.0022940868375891
1109 => 0.0021157504143794
1110 => 0.002118753142377
1111 => 0.0022754458551907
1112 => 0.0022336429258052
1113 => 0.0021659275339153
1114 => 0.0020787788694986
1115 => 0.0019176765030486
1116 => 0.0017749836444119
1117 => 0.0020548372004011
1118 => 0.0020427694061862
1119 => 0.0020252934518161
1120 => 0.002064184297171
1121 => 0.0022530272028554
1122 => 0.0022486737626546
1123 => 0.0022209793972414
1124 => 0.0022419853293204
1125 => 0.0021622450924597
1126 => 0.0021827959671501
1127 => 0.0020782425197616
1128 => 0.0021255050445188
1129 => 0.0021657822470968
1130 => 0.0021738684918285
1201 => 0.0021920872141029
1202 => 0.0020364102269997
1203 => 0.0021063046237729
1204 => 0.0021473610336578
1205 => 0.0019618666801529
1206 => 0.0021436944066988
1207 => 0.0020337002370043
1208 => 0.001996366563753
1209 => 0.0020466314364484
1210 => 0.0020270431666748
1211 => 0.0020102023225853
1212 => 0.0020008048422209
1213 => 0.0020377138171969
1214 => 0.0020359919693985
1215 => 0.0019756017226145
1216 => 0.0018968251075061
1217 => 0.0019232651252907
1218 => 0.0019136592189531
1219 => 0.0018788461751989
1220 => 0.0019023059633463
1221 => 0.0017990009290723
1222 => 0.0016212699869323
1223 => 0.0017386844913559
1224 => 0.001734164160658
1225 => 0.0017318848049395
1226 => 0.0018201185599153
1227 => 0.0018116369202735
1228 => 0.001796242661271
1229 => 0.00187856344756
1230 => 0.0018485152531937
1231 => 0.0019411167079856
]
'min_raw' => 0.00083126050481696
'max_raw' => 0.0027344704511041
'avg_raw' => 0.0017828654779605
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000831'
'max' => '$0.002734'
'avg' => '$0.001782'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00045284929137056
'max_diff' => 0.0018076231704524
'year' => 2029
]
4 => [
'items' => [
101 => 0.0020021100151982
102 => 0.0019866401395623
103 => 0.0020440046398019
104 => 0.0019238742498991
105 => 0.0019637767466301
106 => 0.0019720005959039
107 => 0.0018775476218355
108 => 0.0018130246214131
109 => 0.001808721672901
110 => 0.0016968476819856
111 => 0.0017566098649173
112 => 0.00180919811277
113 => 0.0017840124230614
114 => 0.0017760393861008
115 => 0.001816771902792
116 => 0.0018199371681893
117 => 0.0017477687816906
118 => 0.0017627748745193
119 => 0.0018253527761701
120 => 0.001761198071956
121 => 0.0016365559612794
122 => 0.0016056429945196
123 => 0.0016015186349148
124 => 0.0015176802173239
125 => 0.0016077087467746
126 => 0.0015684088810548
127 => 0.001692556685979
128 => 0.0016216441256243
129 => 0.0016185872268786
130 => 0.0016139662760748
131 => 0.0015418030867329
201 => 0.0015576022389889
202 => 0.0016101210273665
203 => 0.0016288603227261
204 => 0.0016269056606936
205 => 0.0016098636566519
206 => 0.001617665398833
207 => 0.0015925332689605
208 => 0.0015836585908225
209 => 0.0015556476654464
210 => 0.0015144793433591
211 => 0.0015202040510453
212 => 0.001438638832713
213 => 0.0013941977727718
214 => 0.0013818970731038
215 => 0.0013654480634262
216 => 0.001383755032516
217 => 0.0014384077686976
218 => 0.0013724849736379
219 => 0.0012594649654543
220 => 0.0012662576605229
221 => 0.0012815188295726
222 => 0.0012530797420111
223 => 0.0012261645323459
224 => 0.0012495651234498
225 => 0.001201677056066
226 => 0.001287305873728
227 => 0.0012849898541823
228 => 0.0013169069821561
301 => 0.0013368654172835
302 => 0.0012908676859349
303 => 0.0012792993808918
304 => 0.0012858892131945
305 => 0.0011769739642638
306 => 0.0013080062826815
307 => 0.0013091394556125
308 => 0.0012994365410088
309 => 0.0013692072053972
310 => 0.0015164450692729
311 => 0.0014610482622535
312 => 0.0014395969441983
313 => 0.0013988179728944
314 => 0.0014531535309411
315 => 0.0014489814078499
316 => 0.0014301134850006
317 => 0.0014187021063898
318 => 0.0014397279213721
319 => 0.0014160967752311
320 => 0.0014118519720438
321 => 0.0013861330831196
322 => 0.0013769526099086
323 => 0.0013701557530283
324 => 0.0013626730814485
325 => 0.001379177990388
326 => 0.0013417756953295
327 => 0.0012966721940811
328 => 0.001292922325979
329 => 0.0013032760415008
330 => 0.0012986952931258
331 => 0.0012929003951181
401 => 0.0012818363566747
402 => 0.0012785538928143
403 => 0.0012892203079355
404 => 0.0012771785471543
405 => 0.0012949468211356
406 => 0.0012901148337761
407 => 0.0012631237451766
408 => 0.0012294828554007
409 => 0.0012291833809176
410 => 0.0012219355063975
411 => 0.0012127042484709
412 => 0.0012101363236983
413 => 0.0012475943909366
414 => 0.0013251314690942
415 => 0.0013099090853469
416 => 0.001320908817657
417 => 0.0013750166137875
418 => 0.0013922158550992
419 => 0.0013800082410025
420 => 0.0013632977058941
421 => 0.0013640328846315
422 => 0.0014211378417198
423 => 0.0014246994078471
424 => 0.0014336983364458
425 => 0.0014452645027921
426 => 0.0013819780091448
427 => 0.001361052096472
428 => 0.0013511362381221
429 => 0.0013205992323248
430 => 0.0013535307750322
501 => 0.0013343429753658
502 => 0.0013369320650894
503 => 0.0013352459170104
504 => 0.0013361666678784
505 => 0.0012872819387284
506 => 0.0013050929647249
507 => 0.0012754786795004
508 => 0.0012358284759442
509 => 0.0012356955545587
510 => 0.0012453998857067
511 => 0.0012396273698094
512 => 0.0012240936779546
513 => 0.0012263001655657
514 => 0.0012069690123178
515 => 0.0012286473175718
516 => 0.0012292689737977
517 => 0.0012209216454497
518 => 0.001254320065723
519 => 0.0012680034257595
520 => 0.0012625090354237
521 => 0.0012676179246866
522 => 0.0013105416441165
523 => 0.0013175400832767
524 => 0.0013206483276608
525 => 0.0013164836919496
526 => 0.0012684024914816
527 => 0.0012705350971794
528 => 0.001254887451575
529 => 0.0012416668399476
530 => 0.0012421955950797
531 => 0.0012489927080154
601 => 0.0012786760988511
602 => 0.0013411430449334
603 => 0.0013435136198744
604 => 0.0013463868258576
605 => 0.0013347000531665
606 => 0.0013311752106956
607 => 0.0013358253877538
608 => 0.0013592846883463
609 => 0.0014196283786082
610 => 0.0013982988882501
611 => 0.0013809576805756
612 => 0.0013961705948621
613 => 0.0013938286859505
614 => 0.0013740606179224
615 => 0.0013735057940924
616 => 0.0013355645513129
617 => 0.0013215385377375
618 => 0.0013098173509651
619 => 0.0012970181209989
620 => 0.0012894303084409
621 => 0.0013010886371291
622 => 0.0013037550348374
623 => 0.0012782638954078
624 => 0.0012747895472966
625 => 0.0012956061620192
626 => 0.0012864455460014
627 => 0.0012958674667481
628 => 0.0012980534331811
629 => 0.0012977014422383
630 => 0.0012881367070256
701 => 0.0012942329840257
702 => 0.0012798134715329
703 => 0.0012641344174378
704 => 0.0012541321577647
705 => 0.0012454038595927
706 => 0.0012502468267102
707 => 0.0012329825332272
708 => 0.0012274593382804
709 => 0.0012921677025486
710 => 0.0013399684669657
711 => 0.0013392734249199
712 => 0.0013350425352164
713 => 0.0013287562913215
714 => 0.0013588248104508
715 => 0.0013483495396252
716 => 0.001355971174389
717 => 0.0013579112003154
718 => 0.0013637830744961
719 => 0.0013658817648111
720 => 0.0013595380650451
721 => 0.0013382478338127
722 => 0.0012851946017959
723 => 0.0012604981790776
724 => 0.0012523479482291
725 => 0.001252644193641
726 => 0.0012444724226844
727 => 0.0012468793754642
728 => 0.0012436353827347
729 => 0.0012374920453111
730 => 0.0012498674929358
731 => 0.0012512936479892
801 => 0.0012484050706381
802 => 0.0012490854351723
803 => 0.0012251692484319
804 => 0.0012269875441665
805 => 0.0012168630424582
806 => 0.0012149648204406
807 => 0.0011893709617631
808 => 0.0011440277312268
809 => 0.0011691522825178
810 => 0.0011388053576048
811 => 0.0011273125173093
812 => 0.0011817178357648
813 => 0.0011762570507605
814 => 0.0011669105605793
815 => 0.0011530851536221
816 => 0.0011479571756968
817 => 0.001116801205143
818 => 0.001114960344192
819 => 0.0011304020844805
820 => 0.0011232762526552
821 => 0.001113268886009
822 => 0.0010770232184468
823 => 0.0010362710875788
824 => 0.001037501138251
825 => 0.0010504636328597
826 => 0.0010881538341652
827 => 0.0010734276204681
828 => 0.0010627435834669
829 => 0.0010607427844976
830 => 0.0010857869725552
831 => 0.0011212297455764
901 => 0.0011378587016906
902 => 0.0011213799112103
903 => 0.0011024499639877
904 => 0.0011036021421622
905 => 0.0011112670673723
906 => 0.0011120725426357
907 => 0.0010997510930238
908 => 0.0011032195089163
909 => 0.001097950668017
910 => 0.001065615801144
911 => 0.0010650309659372
912 => 0.0010570954681364
913 => 0.0010568551844168
914 => 0.0010433549230549
915 => 0.0010414661431675
916 => 0.0010146605548262
917 => 0.0010323040742472
918 => 0.001020469727746
919 => 0.0010026325761284
920 => 0.00099955744446632
921 => 0.00099946500229522
922 => 0.0010177797686923
923 => 0.0010320900555385
924 => 0.0010206755912701
925 => 0.0010180767390163
926 => 0.0010458256819352
927 => 0.0010422943760115
928 => 0.0010392362878561
929 => 0.0011180562339921
930 => 0.0010556640962284
1001 => 0.0010284575629447
1002 => 0.00099478431162556
1003 => 0.0010057484920503
1004 => 0.0010080588059632
1005 => 0.00092708070660044
1006 => 0.00089422790177416
1007 => 0.00088295405718962
1008 => 0.00087646580024244
1009 => 0.00087942258040767
1010 => 0.00084985120281436
1011 => 0.00086972365762251
1012 => 0.00084411734423302
1013 => 0.00083982436246312
1014 => 0.00088561162281706
1015 => 0.00089198265261001
1016 => 0.00086480186018946
1017 => 0.00088225632909403
1018 => 0.00087592709603397
1019 => 0.00084455629098151
1020 => 0.00084335815697652
1021 => 0.00082761738973832
1022 => 0.00080298613702366
1023 => 0.00079172899358832
1024 => 0.0007858661755482
1025 => 0.0007882852885356
1026 => 0.00078706211098309
1027 => 0.00077908005006379
1028 => 0.00078751963337152
1029 => 0.00076595998549687
1030 => 0.00075737475999529
1031 => 0.00075349701281195
1101 => 0.00073436158439616
1102 => 0.00076481456056932
1103 => 0.00077081418051192
1104 => 0.00077682562155918
1105 => 0.00082915111169046
1106 => 0.00082653707807381
1107 => 0.0008501666688824
1108 => 0.00084924846643561
1109 => 0.000842508924363
1110 => 0.00081407590495955
1111 => 0.00082540879972393
1112 => 0.00079052791116206
1113 => 0.00081666304454248
1114 => 0.00080473606109692
1115 => 0.00081263051944207
1116 => 0.00079843557152288
1117 => 0.00080629164179639
1118 => 0.00077223691297153
1119 => 0.00074043708635784
1120 => 0.000753234264882
1121 => 0.00076714626147264
1122 => 0.00079731101479195
1123 => 0.00077934513656878
1124 => 0.0007858063457429
1125 => 0.00076416237660295
1126 => 0.00071950468597309
1127 => 0.00071975744365224
1128 => 0.00071288783086951
1129 => 0.00070695148244535
1130 => 0.00078140873380154
1201 => 0.00077214879760044
1202 => 0.00075739430117447
1203 => 0.00077714378096101
1204 => 0.00078236585688296
1205 => 0.00078251452204309
1206 => 0.00079692323268749
1207 => 0.00080461316414131
1208 => 0.00080596854789012
1209 => 0.00082864096540989
1210 => 0.0008362404607061
1211 => 0.00086754170631035
1212 => 0.00080396072718402
1213 => 0.00080265131875954
1214 => 0.00077742169664273
1215 => 0.00076142067143171
1216 => 0.00077851730052841
1217 => 0.00079366257998547
1218 => 0.00077789230269277
1219 => 0.00077995156797847
1220 => 0.00075878125919201
1221 => 0.00076634864842756
1222 => 0.00077286670347463
1223 => 0.0007692678165912
1224 => 0.00076388010873862
1225 => 0.00079242083978449
1226 => 0.00079081045988685
1227 => 0.00081738824478533
1228 => 0.00083810752870933
1229 => 0.00087524018951615
1230 => 0.00083649032219484
1231 => 0.00083507812301288
]
'min_raw' => 0.00070695148244535
'max_raw' => 0.0020440046398019
'avg_raw' => 0.0013754780611236
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0007069'
'max' => '$0.002044'
'avg' => '$0.001375'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012430902237161
'max_diff' => -0.0006904658113022
'year' => 2030
]
5 => [
'items' => [
101 => 0.00084888259654042
102 => 0.00083623834731312
103 => 0.00084422907636013
104 => 0.00087395275953048
105 => 0.00087458077411791
106 => 0.00086406072062748
107 => 0.00086342057441652
108 => 0.00086544106576613
109 => 0.00087727514670971
110 => 0.00087313995520345
111 => 0.00087792530350473
112 => 0.00088390945483135
113 => 0.0009086624419458
114 => 0.00091463030333825
115 => 0.00090013149413597
116 => 0.00090144057427065
117 => 0.00089601762162778
118 => 0.00089077911732417
119 => 0.00090255450997657
120 => 0.00092407427149477
121 => 0.00092394039817524
122 => 0.00092893256456307
123 => 0.00093204264286535
124 => 0.0009186919100755
125 => 0.00091000107394936
126 => 0.0009133336935324
127 => 0.00091866262482068
128 => 0.00091160559293715
129 => 0.00086804632301683
130 => 0.00088125942293372
131 => 0.00087906011701997
201 => 0.00087592803795406
202 => 0.00088921391209437
203 => 0.00088793245712243
204 => 0.00084954790559537
205 => 0.00085200516004576
206 => 0.00084969733937717
207 => 0.00085715438009305
208 => 0.00083583564264255
209 => 0.00084239314269843
210 => 0.00084650594526074
211 => 0.00084892841756598
212 => 0.0008576800486373
213 => 0.00085665314574203
214 => 0.00085761621491149
215 => 0.00087059257344532
216 => 0.00093622254196094
217 => 0.00093979463634288
218 => 0.00092220433717406
219 => 0.00092923131473869
220 => 0.00091574105444566
221 => 0.00092479715655726
222 => 0.00093099311162197
223 => 0.0009029947820982
224 => 0.00090133690273146
225 => 0.00088779096333545
226 => 0.00089506978388564
227 => 0.00088348865702456
228 => 0.00088633026046565
301 => 0.00087838488951783
302 => 0.00089268497531633
303 => 0.00090867469324773
304 => 0.00091271432745029
305 => 0.00090208778903521
306 => 0.00089439347489969
307 => 0.00088088479394234
308 => 0.00090335003143499
309 => 0.00090991955149355
310 => 0.00090331552454286
311 => 0.00090178522719754
312 => 0.00089888531649336
313 => 0.0009024004569622
314 => 0.00090988377247644
315 => 0.00090635477907506
316 => 0.00090868574138953
317 => 0.00089980251672467
318 => 0.00091869632972358
319 => 0.00094870425180957
320 => 0.00094880073218587
321 => 0.0009452717197619
322 => 0.00094382772391165
323 => 0.00094744870481702
324 => 0.00094941293841777
325 => 0.00096112252669139
326 => 0.00097368738143957
327 => 0.0010323220760737
328 => 0.001015857688451
329 => 0.001067881877724
330 => 0.0011090262569434
331 => 0.0011213636572457
401 => 0.0011100138294871
402 => 0.0010711866818308
403 => 0.0010692816367321
404 => 0.0011273057877295
405 => 0.0011109113073983
406 => 0.0011089612361297
407 => 0.0010882157725292
408 => 0.0011004789108927
409 => 0.0010977967826432
410 => 0.0010935629119872
411 => 0.0011169601257272
412 => 0.0011607576211648
413 => 0.0011539313707706
414 => 0.0011488358915119
415 => 0.0011265089846721
416 => 0.0011399547694848
417 => 0.0011351669830501
418 => 0.0011557383519782
419 => 0.0011435523287368
420 => 0.0011107871030854
421 => 0.0011160050732659
422 => 0.0011152163875702
423 => 0.0011314474833008
424 => 0.0011265753112431
425 => 0.0011142650177804
426 => 0.0011606079260868
427 => 0.0011575986753942
428 => 0.0011618651048659
429 => 0.001163743319063
430 => 0.0011919514306955
501 => 0.0012035073914724
502 => 0.0012061307968843
503 => 0.0012171080658523
504 => 0.0012058576724324
505 => 0.0012508672675069
506 => 0.0012807960218488
507 => 0.0013155598101365
508 => 0.0013663590484502
509 => 0.0013854600319754
510 => 0.0013820096102678
511 => 0.0014205250129936
512 => 0.0014897363355426
513 => 0.0013959991973824
514 => 0.0014947046314766
515 => 0.0014634556306514
516 => 0.0013893648118404
517 => 0.0013845942365824
518 => 0.0014347693992933
519 => 0.0015460530810056
520 => 0.0015181777809057
521 => 0.0015460986750105
522 => 0.0015135274689317
523 => 0.0015119100340182
524 => 0.0015445167642315
525 => 0.0016207041666754
526 => 0.0015845103876164
527 => 0.0015326177302566
528 => 0.0015709344609119
529 => 0.0015377409627723
530 => 0.0014629467211885
531 => 0.0015181564651891
601 => 0.0014812392816589
602 => 0.0014920136784384
603 => 0.0015696081072023
604 => 0.001560271740244
605 => 0.0015723538636123
606 => 0.0015510292321115
607 => 0.001531108663704
608 => 0.0014939254434506
609 => 0.0014829173250441
610 => 0.0014859595729411
611 => 0.0014829158174572
612 => 0.0014621121474568
613 => 0.0014576195969009
614 => 0.0014501318158181
615 => 0.0014524525922748
616 => 0.0014383733732113
617 => 0.0014649437684992
618 => 0.0014698754680021
619 => 0.0014892111859055
620 => 0.001491218684282
621 => 0.0015450683834163
622 => 0.0015154088740406
623 => 0.0015353070336087
624 => 0.0015335271549281
625 => 0.0013909705845471
626 => 0.0014106136221583
627 => 0.0014411720243566
628 => 0.0014274055055872
629 => 0.0014079428689166
630 => 0.0013922257462845
701 => 0.0013684126983385
702 => 0.0014019291060334
703 => 0.0014459996180795
704 => 0.0014923363851949
705 => 0.0015480069747789
706 => 0.0015355819472608
707 => 0.0014912956622463
708 => 0.0014932823126409
709 => 0.0015055630036622
710 => 0.0014896583929712
711 => 0.0014849678127835
712 => 0.0015049185899732
713 => 0.0015050559800109
714 => 0.0014867558032745
715 => 0.001466418505729
716 => 0.0014663332917097
717 => 0.0014627144660464
718 => 0.0015141712499779
719 => 0.0015424672782725
720 => 0.0015457113723152
721 => 0.0015422489248959
722 => 0.001543581483488
723 => 0.0015271166480837
724 => 0.0015647503793225
725 => 0.0015992868126975
726 => 0.0015900303107897
727 => 0.0015761534985407
728 => 0.0015650999491865
729 => 0.0015874264458487
730 => 0.0015864322820975
731 => 0.0015989851670809
801 => 0.0015984156957091
802 => 0.001594194632627
803 => 0.0015900304615372
804 => 0.0016065409292119
805 => 0.0016017861796716
806 => 0.0015970240446919
807 => 0.0015874728539438
808 => 0.001588771019395
809 => 0.0015748966031732
810 => 0.0015684776633789
811 => 0.0014719522100632
812 => 0.001446157454877
813 => 0.0014542730099592
814 => 0.0014569448614126
815 => 0.0014457189508987
816 => 0.0014618140228758
817 => 0.0014593056229571
818 => 0.001469064339676
819 => 0.0014629675171442
820 => 0.0014632177328676
821 => 0.0014811471879539
822 => 0.0014863521850428
823 => 0.0014837048815139
824 => 0.0014855589621613
825 => 0.0015282854681217
826 => 0.0015222111252909
827 => 0.0015189842517281
828 => 0.0015198781177579
829 => 0.0015307956560974
830 => 0.0015338519707569
831 => 0.0015209021507809
901 => 0.0015270093607436
902 => 0.0015530130856445
903 => 0.0015621129176764
904 => 0.0015911552133551
905 => 0.0015788175299651
906 => 0.0016014638817899
907 => 0.0016710710465888
908 => 0.0017266780662796
909 => 0.0016755395529147
910 => 0.0017776547630656
911 => 0.001857166101725
912 => 0.0018541143241142
913 => 0.0018402496830886
914 => 0.0017497281379431
915 => 0.0016664288625001
916 => 0.0017361122434822
917 => 0.0017362898807509
918 => 0.0017303040165254
919 => 0.0016931263279122
920 => 0.001729010313549
921 => 0.0017318586540173
922 => 0.0017302643407899
923 => 0.0017017602940978
924 => 0.0016582398832275
925 => 0.0016667436673384
926 => 0.0016806730391846
927 => 0.0016543018323084
928 => 0.0016458746338236
929 => 0.0016615423991469
930 => 0.0017120272035268
1001 => 0.0017024833436973
1002 => 0.0017022341149474
1003 => 0.0017430667945243
1004 => 0.001713839408191
1005 => 0.0016668509272889
1006 => 0.0016549857161592
1007 => 0.0016128722100127
1008 => 0.0016419601587113
1009 => 0.0016430069822007
1010 => 0.0016270758099701
1011 => 0.0016681436541137
1012 => 0.0016677652067001
1013 => 0.0017067530125726
1014 => 0.0017812830542495
1015 => 0.001759240853525
1016 => 0.0017336081722671
1017 => 0.001736395155437
1018 => 0.0017669614819502
1019 => 0.0017484803831789
1020 => 0.0017551263151519
1021 => 0.0017669514225362
1022 => 0.001774085803422
1023 => 0.0017353686278194
1024 => 0.0017263418021298
1025 => 0.0017078760847543
1026 => 0.00170305872377
1027 => 0.0017180986652725
1028 => 0.0017141361720556
1029 => 0.0016429190007399
1030 => 0.0016354764100888
1031 => 0.0016357046637185
1101 => 0.0016169899156504
1102 => 0.0015884454327925
1103 => 0.0016634586294407
1104 => 0.0016574340199408
1105 => 0.0016507833173207
1106 => 0.0016515979904433
1107 => 0.0016841586766752
1108 => 0.0016652718343066
1109 => 0.001715485600236
1110 => 0.0017051631595249
1111 => 0.0016945759871597
1112 => 0.0016931125174457
1113 => 0.0016890373593401
1114 => 0.0016750621258968
1115 => 0.0016581861917326
1116 => 0.0016470432382291
1117 => 0.0015193103248902
1118 => 0.0015430168106177
1119 => 0.001570288961533
1120 => 0.0015797031987427
1121 => 0.0015635994945502
1122 => 0.0016756979982916
1123 => 0.0016961794751332
1124 => 0.0016341397458063
1125 => 0.0016225346455146
1126 => 0.0016764588267346
1127 => 0.0016439359534959
1128 => 0.0016585810013239
1129 => 0.0016269264183327
1130 => 0.0016912460871297
1201 => 0.0016907560790184
1202 => 0.0016657342751307
1203 => 0.0016868825324346
1204 => 0.001683207502295
1205 => 0.0016549579473319
1206 => 0.0016921416484098
1207 => 0.0016921600910617
1208 => 0.0016680771488407
1209 => 0.0016399535447606
1210 => 0.001634925708601
1211 => 0.0016311379094495
1212 => 0.0016576494349289
1213 => 0.0016814195857745
1214 => 0.0017256499433778
1215 => 0.0017367705061667
1216 => 0.0017801748030694
1217 => 0.0017543296575807
1218 => 0.0017657864758252
1219 => 0.0017782244726954
1220 => 0.0017841877057872
1221 => 0.0017744709374689
1222 => 0.0018418956764802
1223 => 0.0018475883902933
1224 => 0.0018494971079931
1225 => 0.0018267618653595
1226 => 0.0018469560820679
1227 => 0.0018375078768322
1228 => 0.0018620894820685
1229 => 0.0018659441916433
1230 => 0.0018626793897687
1231 => 0.0018639029354302
]
'min_raw' => 0.00083583564264255
'max_raw' => 0.0018659441916433
'avg_raw' => 0.0013508899171429
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000835'
'max' => '$0.001865'
'avg' => '$0.00135'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0001288841601972
'max_diff' => -0.00017806044815863
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018063678152231
102 => 0.0018033843157184
103 => 0.0017627040882727
104 => 0.0017792815816499
105 => 0.0017482907523612
106 => 0.0017581182635696
107 => 0.0017624501368702
108 => 0.0017601874120896
109 => 0.0017802188482528
110 => 0.001763188035362
111 => 0.0017182409200185
112 => 0.0016732815588634
113 => 0.0016727171307072
114 => 0.0016608801245137
115 => 0.0016523241370917
116 => 0.0016539723238091
117 => 0.0016597807487778
118 => 0.0016519865408733
119 => 0.0016536498303061
120 => 0.0016812715173298
121 => 0.0016868108496736
122 => 0.0016679860340127
123 => 0.0015924016827261
124 => 0.0015738530933314
125 => 0.0015871854515538
126 => 0.0015808134430374
127 => 0.0012758398259618
128 => 0.0013474888535561
129 => 0.0013049174343306
130 => 0.0013245363029265
131 => 0.0012810819077129
201 => 0.0013018206227488
202 => 0.0012979909393383
203 => 0.0014132004554611
204 => 0.0014114016173324
205 => 0.0014122626259522
206 => 0.0013711644411814
207 => 0.0014366349654586
208 => 0.0014688880999615
209 => 0.0014629189031544
210 => 0.0014644212213894
211 => 0.0014386064166928
212 => 0.00141251256969
213 => 0.0013835704775497
214 => 0.0014373413073957
215 => 0.0014313629090155
216 => 0.0014450752039399
217 => 0.0014799494307134
218 => 0.0014850847930801
219 => 0.0014919867721786
220 => 0.0014895129039881
221 => 0.0015484504808397
222 => 0.0015413127514003
223 => 0.0015585126256843
224 => 0.0015231311793246
225 => 0.0014830937143307
226 => 0.0014907035275027
227 => 0.0014899706413
228 => 0.0014806401587718
229 => 0.0014722170163394
301 => 0.0014581948573952
302 => 0.0015025630431839
303 => 0.0015007617758667
304 => 0.0015299221999879
305 => 0.0015247678117752
306 => 0.0014903455457982
307 => 0.0014915749437617
308 => 0.0014998432358947
309 => 0.0015284598893727
310 => 0.0015369552604954
311 => 0.0015330198661094
312 => 0.0015423346527169
313 => 0.001549696680257
314 => 0.0015432592100282
315 => 0.0016344002130457
316 => 0.0015965521142643
317 => 0.001614999014265
318 => 0.0016193984912197
319 => 0.0016081293235112
320 => 0.0016105732024685
321 => 0.0016142750131717
322 => 0.0016367516828727
323 => 0.0016957369678449
324 => 0.0017218611490326
325 => 0.0018004570370803
326 => 0.0017196918994511
327 => 0.0017148996304236
328 => 0.0017290571232294
329 => 0.0017752012297331
330 => 0.0018125966939588
331 => 0.0018250029268386
401 => 0.0018266426153182
402 => 0.0018499175329514
403 => 0.0018632582816872
404 => 0.0018470913457596
405 => 0.0018333915603097
406 => 0.0017843206293082
407 => 0.0017900007231873
408 => 0.0018291309373365
409 => 0.0018844046695804
410 => 0.0019318352820973
411 => 0.0019152267347176
412 => 0.0020419382274174
413 => 0.0020545011543485
414 => 0.0020527653640547
415 => 0.0020813855812181
416 => 0.0020245802785547
417 => 0.0020002949111152
418 => 0.0018363536094232
419 => 0.0018824144281198
420 => 0.0019493665331524
421 => 0.0019405051709939
422 => 0.0018918827626843
423 => 0.0019317983976405
424 => 0.0019186010404467
425 => 0.001908191737269
426 => 0.0019558787730684
427 => 0.0019034449183315
428 => 0.0019488434653416
429 => 0.0018906193592133
430 => 0.001915302601163
501 => 0.0019012911992383
502 => 0.0019103582934564
503 => 0.0018573522459284
504 => 0.0018859530225255
505 => 0.0018561623595914
506 => 0.0018561482349383
507 => 0.0018554906044029
508 => 0.0018905391872328
509 => 0.0018916821202606
510 => 0.0018657811645938
511 => 0.0018620484322332
512 => 0.0018758503001745
513 => 0.0018596919275302
514 => 0.0018672523283909
515 => 0.0018599209243704
516 => 0.0018582704709024
517 => 0.0018451193768679
518 => 0.0018394535239609
519 => 0.0018416752508768
520 => 0.0018340913515342
521 => 0.0018295217778587
522 => 0.0018545816011843
523 => 0.0018411931484918
524 => 0.0018525296287917
525 => 0.0018396102787121
526 => 0.0017948261826432
527 => 0.0017690703754108
528 => 0.0016844773694245
529 => 0.0017084678409849
530 => 0.0017243735484494
531 => 0.0017191167122273
601 => 0.001730410430558
602 => 0.0017311037731397
603 => 0.0017274320701846
604 => 0.0017231807085368
605 => 0.0017211113808017
606 => 0.0017365344543707
607 => 0.0017454880676942
608 => 0.0017259698989844
609 => 0.0017213970651439
610 => 0.0017411310113371
611 => 0.0017531687071151
612 => 0.0018420482893426
613 => 0.0018354638028139
614 => 0.0018519895718607
615 => 0.0018501290238746
616 => 0.0018674506625971
617 => 0.0018957642212376
618 => 0.0018381948399259
619 => 0.0018481868939222
620 => 0.0018457370730325
621 => 0.0018724835751284
622 => 0.0018725670747884
623 => 0.0018565312106951
624 => 0.0018652245127723
625 => 0.0018603721500411
626 => 0.0018691410253325
627 => 0.001835375862982
628 => 0.0018764981860009
629 => 0.0018998118932887
630 => 0.001900135604137
701 => 0.0019111861163624
702 => 0.0019224140767859
703 => 0.0019439651690696
704 => 0.001921813028519
705 => 0.0018819634841359
706 => 0.0018848404925271
707 => 0.0018614767192357
708 => 0.0018618694684858
709 => 0.0018597729422088
710 => 0.0018660647753852
711 => 0.0018367565665437
712 => 0.0018436351445784
713 => 0.001834005095049
714 => 0.0018481659600753
715 => 0.0018329312101818
716 => 0.0018457358916547
717 => 0.0018512619676965
718 => 0.0018716533072587
719 => 0.0018299193927488
720 => 0.0017448211159254
721 => 0.0017627098054306
722 => 0.0017362510285262
723 => 0.0017386998890644
724 => 0.0017436469770847
725 => 0.0017276118462243
726 => 0.0017306708438674
727 => 0.0017305615549458
728 => 0.0017296197620616
729 => 0.0017254484052187
730 => 0.0017193991125186
731 => 0.0017434976327616
801 => 0.0017475924409414
802 => 0.0017566946922856
803 => 0.0017837768181699
804 => 0.0017810706751535
805 => 0.00178548450669
806 => 0.0017758491372285
807 => 0.0017391468462188
808 => 0.0017411399572007
809 => 0.0017162858313192
810 => 0.0017560591164071
811 => 0.0017466402775166
812 => 0.0017405678908107
813 => 0.0017389109838377
814 => 0.0017660602410738
815 => 0.0017741837243513
816 => 0.0017691217147195
817 => 0.0017587393852821
818 => 0.001778676527062
819 => 0.0017840108651218
820 => 0.0017852050266906
821 => 0.0018205298193567
822 => 0.0017871792901911
823 => 0.001795207094037
824 => 0.0018578377280052
825 => 0.0018010403854328
826 => 0.0018311272045253
827 => 0.0018296546112949
828 => 0.0018450460098602
829 => 0.0018283920673713
830 => 0.001828598512948
831 => 0.0018422650321704
901 => 0.0018230728706924
902 => 0.0018183206216104
903 => 0.00181175542354
904 => 0.0018260902933438
905 => 0.0018346833994808
906 => 0.001903937524004
907 => 0.0019486788468178
908 => 0.0019467365079976
909 => 0.0019644858489082
910 => 0.0019564896082627
911 => 0.0019306676379164
912 => 0.0019747425926436
913 => 0.0019607954327935
914 => 0.0019619452197058
915 => 0.0019619024245795
916 => 0.0019711760665979
917 => 0.001964604841311
918 => 0.0019516522817481
919 => 0.0019602507952566
920 => 0.001985785306352
921 => 0.0020650452122865
922 => 0.0021094001057016
923 => 0.0020623749920093
924 => 0.0020948122857429
925 => 0.0020753614680923
926 => 0.0020718266759134
927 => 0.0020921996934753
928 => 0.0021126083713075
929 => 0.0021113084267587
930 => 0.0020964927746498
1001 => 0.0020881237887067
1002 => 0.0021514965540837
1003 => 0.0021981885280866
1004 => 0.0021950044484866
1005 => 0.002209057940323
1006 => 0.0022503194270127
1007 => 0.0022540918602499
1008 => 0.0022536166203704
1009 => 0.0022442662509795
1010 => 0.0022848935431067
1011 => 0.0023187855449684
1012 => 0.0022421019106236
1013 => 0.0022713020347196
1014 => 0.0022844109111955
1015 => 0.0023036586310906
1016 => 0.002336132760846
1017 => 0.0023714082790979
1018 => 0.002376396624155
1019 => 0.0023728571546227
1020 => 0.0023495920020787
1021 => 0.0023881908950744
1022 => 0.0024108012213358
1023 => 0.0024242651531964
1024 => 0.0024584074442101
1025 => 0.0022844918671539
1026 => 0.0021613857775484
1027 => 0.002142160983983
1028 => 0.0021812553576759
1029 => 0.0021915642322469
1030 => 0.0021874087378336
1031 => 0.0020488416416666
1101 => 0.0021414314568988
1102 => 0.0022410503129159
1103 => 0.0022448770788861
1104 => 0.0022947483611403
1105 => 0.0023109884949352
1106 => 0.0023511414139282
1107 => 0.0023486298379127
1108 => 0.002358406434715
1109 => 0.0023561589644172
1110 => 0.0024305337916572
1111 => 0.0025125802708715
1112 => 0.0025097392621882
1113 => 0.0024979441100712
1114 => 0.0025154619223372
1115 => 0.0026001426815215
1116 => 0.0025923466341973
1117 => 0.002599919830107
1118 => 0.0026997632175837
1119 => 0.0028295738238597
1120 => 0.0027692637644728
1121 => 0.0029001192395904
1122 => 0.0029824858248263
1123 => 0.0031249303171279
1124 => 0.0031070955651378
1125 => 0.0031625481606849
1126 => 0.0030751676368505
1127 => 0.0028745242916094
1128 => 0.0028427717141931
1129 => 0.0029063411782838
1130 => 0.0030626205027333
1201 => 0.002901419386206
1202 => 0.0029340301621307
1203 => 0.0029246382564705
1204 => 0.0029241378017309
1205 => 0.002943238123645
1206 => 0.0029155321105029
1207 => 0.0028026528287455
1208 => 0.0028543847383731
1209 => 0.0028344085636956
1210 => 0.0028565736188228
1211 => 0.0029761892797804
1212 => 0.0029233043447898
1213 => 0.0028675943618005
1214 => 0.002937467043504
1215 => 0.003026438978171
1216 => 0.0030208712743975
1217 => 0.0030100676019572
1218 => 0.0030709673378411
1219 => 0.0031715558595729
1220 => 0.0031987445327995
1221 => 0.0032188146555275
1222 => 0.0032215819863642
1223 => 0.0032500872138686
1224 => 0.0030968074213352
1225 => 0.00334006638859
1226 => 0.0033820704923416
1227 => 0.003374175461728
1228 => 0.003420861255245
1229 => 0.003407125110488
1230 => 0.0033872235918702
1231 => 0.0034612305049477
]
'min_raw' => 0.0012758398259618
'max_raw' => 0.0034612305049477
'avg_raw' => 0.0023685351654547
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001275'
'max' => '$0.003461'
'avg' => '$0.002368'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00044000418331924
'max_diff' => 0.0015952863133044
'year' => 2032
]
7 => [
'items' => [
101 => 0.0033763875511543
102 => 0.0032559636596755
103 => 0.0031898967310957
104 => 0.0032768989921167
105 => 0.0033300282369617
106 => 0.0033651432881497
107 => 0.003375769081422
108 => 0.0031087060952979
109 => 0.0029647739577693
110 => 0.0030570328077398
111 => 0.0031695949720696
112 => 0.0030961821328289
113 => 0.0030990597771383
114 => 0.0029943923609358
115 => 0.0031788557159166
116 => 0.0031519809566769
117 => 0.0032914072551531
118 => 0.0032581320500558
119 => 0.0033718287839654
120 => 0.0033418886235345
121 => 0.0034661685555512
122 => 0.0035157471851775
123 => 0.0035989974206177
124 => 0.0036602366326969
125 => 0.0036961974693492
126 => 0.0036940385156023
127 => 0.0038365332660366
128 => 0.0037525090900929
129 => 0.0036469549221298
130 => 0.0036450457802505
131 => 0.0036997137795527
201 => 0.003814282908657
202 => 0.0038439890169207
203 => 0.0038605906788582
204 => 0.0038351646556928
205 => 0.0037439624347729
206 => 0.0037045817781854
207 => 0.0037381352385654
208 => 0.0036971022398023
209 => 0.0037679367074933
210 => 0.0038652075610589
211 => 0.0038451215144483
212 => 0.0039122661567993
213 => 0.0039817537978102
214 => 0.0040811242453411
215 => 0.0041071033600027
216 => 0.0041500458486411
217 => 0.0041942477753226
218 => 0.0042084442428974
219 => 0.0042355497044028
220 => 0.0042354068452411
221 => 0.0043170909778957
222 => 0.0044071911057608
223 => 0.0044412018182071
224 => 0.0045194075761158
225 => 0.0043854829563538
226 => 0.0044870663188584
227 => 0.004578697054634
228 => 0.0044694511139505
301 => 0.0046200211921432
302 => 0.0046258674870803
303 => 0.0047141395995892
304 => 0.0046246589026708
305 => 0.0045715255504732
306 => 0.004724919547387
307 => 0.004799142070628
308 => 0.0047767856425849
309 => 0.0046066521213038
310 => 0.0045076271145483
311 => 0.0042484595713716
312 => 0.004555454721469
313 => 0.0047049831039102
314 => 0.0046062648789167
315 => 0.0046560526095072
316 => 0.004927678323883
317 => 0.0050310958094547
318 => 0.0050095856953986
319 => 0.0050132205505875
320 => 0.0050690227486418
321 => 0.0053164804256466
322 => 0.0051681980495613
323 => 0.0052815543700439
324 => 0.0053416781536912
325 => 0.0053975244746777
326 => 0.0052603835607458
327 => 0.0050819652467206
328 => 0.0050254526771775
329 => 0.0045964492969647
330 => 0.0045741178079574
331 => 0.0045615824664642
401 => 0.0044825489115089
402 => 0.0044204501864267
403 => 0.0043710669746635
404 => 0.0042414706799216
405 => 0.0042852056250578
406 => 0.004078656180088
407 => 0.0042107991953168
408 => 0.0038811412938342
409 => 0.0041556901900264
410 => 0.0040062657080355
411 => 0.0041066002289338
412 => 0.0041062501712425
413 => 0.0039215025071798
414 => 0.0038149439101339
415 => 0.0038828471954942
416 => 0.00395564490757
417 => 0.0039674560914333
418 => 0.0040618402253543
419 => 0.0040881808083514
420 => 0.0040083676121458
421 => 0.0038743098665606
422 => 0.0039054484233284
423 => 0.0038143128882748
424 => 0.0036546013685712
425 => 0.003769308970318
426 => 0.0038084751888915
427 => 0.0038257732222639
428 => 0.0036687152856273
429 => 0.0036193642720424
430 => 0.0035930902065049
501 => 0.0038540356591899
502 => 0.0038683308401391
503 => 0.0037951946732684
504 => 0.0041257770825799
505 => 0.0040509561019848
506 => 0.0041345494688948
507 => 0.0039026229256807
508 => 0.0039114828319619
509 => 0.0038016850896166
510 => 0.0038631644886422
511 => 0.0038197128309845
512 => 0.0038581975607522
513 => 0.0038812651490965
514 => 0.0039910448747127
515 => 0.0041569436981513
516 => 0.0039746474445369
517 => 0.0038952183563066
518 => 0.0039444957159185
519 => 0.0040757278182595
520 => 0.0042745511709538
521 => 0.0041568437444659
522 => 0.0042090803015395
523 => 0.0042204916654174
524 => 0.004133698566891
525 => 0.0042777513562969
526 => 0.0043549504164222
527 => 0.0044341406780162
528 => 0.0045028993632976
529 => 0.0044025103461044
530 => 0.0045099409847014
531 => 0.0044233708540528
601 => 0.0043457084974054
602 => 0.0043458262791428
603 => 0.0042971075483519
604 => 0.0042027088684894
605 => 0.0041853003035871
606 => 0.004275861856668
607 => 0.0043484836460278
608 => 0.0043544651244344
609 => 0.0043946722784662
610 => 0.0044184664580557
611 => 0.0046516817646507
612 => 0.0047454828902214
613 => 0.0048601811310049
614 => 0.0049048625598287
615 => 0.0050393376414095
616 => 0.0049307380915009
617 => 0.0049072418957549
618 => 0.0045810493343037
619 => 0.0046344633479677
620 => 0.0047199843375295
621 => 0.0045824595439223
622 => 0.0046696873716221
623 => 0.004686907992548
624 => 0.00457778650406
625 => 0.0046360730059226
626 => 0.0044812813377189
627 => 0.0041603177335213
628 => 0.0042781086805407
629 => 0.0043648424655509
630 => 0.0042410626601427
701 => 0.004462933170397
702 => 0.0043333209986434
703 => 0.004292240162679
704 => 0.0041319691752063
705 => 0.0042076109118973
706 => 0.0043099174438574
707 => 0.004246703901517
708 => 0.0043778814934344
709 => 0.0045636639473754
710 => 0.0046960635875901
711 => 0.0047062275879529
712 => 0.0046211034893818
713 => 0.0047575154005968
714 => 0.0047585090124457
715 => 0.0046046358193362
716 => 0.0045103893453262
717 => 0.0044889763481349
718 => 0.0045424702133842
719 => 0.0046074216413093
720 => 0.0047098319401638
721 => 0.0047717163389272
722 => 0.0049330780299533
723 => 0.0049767378769427
724 => 0.0050247068119455
725 => 0.005088808102181
726 => 0.0051657781363422
727 => 0.004997372083504
728 => 0.0050040631699314
729 => 0.004847245785269
730 => 0.0046796639198695
731 => 0.0048068376663333
801 => 0.0049731004226203
802 => 0.004934959562624
803 => 0.0049306679367274
804 => 0.0049378852610878
805 => 0.0049091282982146
806 => 0.0047790616209222
807 => 0.0047137429498465
808 => 0.0047980207001044
809 => 0.0048428105735954
810 => 0.0049122757612925
811 => 0.0049037127106766
812 => 0.0050826475741677
813 => 0.0051521762514109
814 => 0.0051343878404723
815 => 0.005137661336187
816 => 0.0052635396852134
817 => 0.0054035422981877
818 => 0.0055346732202101
819 => 0.0056680652262953
820 => 0.0055072559565809
821 => 0.0054256069267568
822 => 0.0055098478839855
823 => 0.0054651484463026
824 => 0.0057220046739427
825 => 0.0057397888418515
826 => 0.0059966264958627
827 => 0.0062403960131783
828 => 0.0060872887469369
829 => 0.0062316620028998
830 => 0.006387813450148
831 => 0.0066890549265489
901 => 0.0065876073951
902 => 0.0065099001758956
903 => 0.006436467229226
904 => 0.0065892695340934
905 => 0.0067858472582289
906 => 0.0068281882172097
907 => 0.0068967967462497
908 => 0.0068246632670159
909 => 0.0069115400975109
910 => 0.007218253484772
911 => 0.0071353768201001
912 => 0.0070176786331773
913 => 0.0072597993953531
914 => 0.0073474219579639
915 => 0.0079624029906587
916 => 0.0087388419480352
917 => 0.0084173911213083
918 => 0.0082178562200055
919 => 0.0082647516548428
920 => 0.0085482808779593
921 => 0.0086393414656566
922 => 0.0083918073978284
923 => 0.0084792406153059
924 => 0.008961006239851
925 => 0.0092194580405277
926 => 0.008868445780501
927 => 0.0079000168764353
928 => 0.0070070811992087
929 => 0.0072439279502268
930 => 0.0072170768788717
1001 => 0.0077346739409598
1002 => 0.0071334002390568
1003 => 0.0071435241461445
1004 => 0.0076718245673318
1005 => 0.0075308830723212
1006 => 0.0073025759008268
1007 => 0.0070087480942204
1008 => 0.0064655802179261
1009 => 0.0059844812825354
1010 => 0.0069280270853044
1011 => 0.0068873396745623
1012 => 0.0068284182742713
1013 => 0.0069595414746575
1014 => 0.0075962385157632
1015 => 0.0075815605881785
1016 => 0.0074881871016292
1017 => 0.0075590100682207
1018 => 0.0072901602923592
1019 => 0.0073594490011944
1020 => 0.0070069397536353
1021 => 0.0071662886556186
1022 => 0.0073020860561747
1023 => 0.0073293493948512
1024 => 0.00739077508899
1025 => 0.0068658992579514
1026 => 0.007101553096543
1027 => 0.0072399776489368
1028 => 0.0066145704852929
1029 => 0.0072276153601489
1030 => 0.0068567623374764
1031 => 0.0067308892515558
1101 => 0.0069003607792298
1102 => 0.0068343175600788
1103 => 0.0067775374784407
1104 => 0.006745853217281
1105 => 0.0068702944033148
1106 => 0.0068644890732469
1107 => 0.0066608791399022
1108 => 0.0063952782820567
1109 => 0.0064844226480006
1110 => 0.0064520356641203
1111 => 0.006334661056534
1112 => 0.006413757370183
1113 => 0.006065457234601
1114 => 0.0054662249543979
1115 => 0.0058620961536812
1116 => 0.0058468555431338
1117 => 0.0058391705361892
1118 => 0.0061366568013743
1119 => 0.0061080603611526
1120 => 0.0060561575421331
1121 => 0.00633370782056
1122 => 0.0062323982353561
1123 => 0.0065446105054142
1124 => 0.0067502536990981
1125 => 0.0066980959333194
1126 => 0.0068915043509389
1127 => 0.0064864763541457
1128 => 0.0066210104077776
1129 => 0.006648737689775
1130 => 0.0063302828932073
1201 => 0.006112739092431
1202 => 0.0060982314011001
1203 => 0.0057210404299365
1204 => 0.005922532802153
1205 => 0.0060998377513826
1206 => 0.0060149224401215
1207 => 0.005988040789349
1208 => 0.0061253733132269
1209 => 0.0061360452265058
1210 => 0.0058927244727895
1211 => 0.0059433185624532
1212 => 0.0061543043269187
1213 => 0.0059380022625224
1214 => 0.005517762684142
1215 => 0.0054135374584369
1216 => 0.0053996318920758
1217 => 0.0051169648137567
1218 => 0.0054205022863908
1219 => 0.0052880000452875
1220 => 0.0057065730373123
1221 => 0.0054674863891197
1222 => 0.0054571798415726
1223 => 0.0054415999833132
1224 => 0.005198296752174
1225 => 0.0052515646970665
1226 => 0.0054286354588263
1227 => 0.0054918163014671
1228 => 0.0054852260219543
1229 => 0.0054277677154931
1230 => 0.0054540718339569
1231 => 0.0053693371034225
]
'min_raw' => 0.0029647739577693
'max_raw' => 0.0092194580405277
'avg_raw' => 0.0060921159991485
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002964'
'max' => '$0.009219'
'avg' => '$0.006092'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0016889341318075
'max_diff' => 0.0057582275355801
'year' => 2033
]
8 => [
'items' => [
101 => 0.00533941550647
102 => 0.005244974715904
103 => 0.0051061728437064
104 => 0.0051254740953568
105 => 0.0048504712670477
106 => 0.0047006351306801
107 => 0.0046591624629421
108 => 0.0046037034783808
109 => 0.0046654267028191
110 => 0.0048496922185874
111 => 0.0046274289124609
112 => 0.0042463740640651
113 => 0.0042692761097395
114 => 0.0043207302066916
115 => 0.0042248458374243
116 => 0.0041340993288779
117 => 0.004212996055562
118 => 0.0040515380929394
119 => 0.0043402416301001
120 => 0.0043324330085022
121 => 0.0044400438338487
122 => 0.0045073350913343
123 => 0.0043522505286333
124 => 0.0043132471805072
125 => 0.0043354652602032
126 => 0.0039682498942134
127 => 0.0044100345041432
128 => 0.0044138550757954
129 => 0.0043811410217731
130 => 0.0046163776879912
131 => 0.0051128004258674
201 => 0.00492602622332
202 => 0.0048537016068135
203 => 0.0047162124579656
204 => 0.0048994085855075
205 => 0.0048853419812171
206 => 0.0048217274620145
207 => 0.0047832532023113
208 => 0.0048541432054996
209 => 0.0047744691464114
210 => 0.0047601574961024
211 => 0.0046734444664592
212 => 0.0046424918600681
213 => 0.0046195757825548
214 => 0.0045943474329
215 => 0.0046499948857255
216 => 0.0045238904365909
217 => 0.0043718208331061
218 => 0.0043591778909922
219 => 0.0043940861657474
220 => 0.0043786418527837
221 => 0.0043591039495636
222 => 0.0043218007714853
223 => 0.0043107337154057
224 => 0.004346696278692
225 => 0.0043060966414895
226 => 0.0043660036177584
227 => 0.0043497122350175
228 => 0.0042587098953466
301 => 0.0041452872867354
302 => 0.0041442775876068
303 => 0.0041198408726319
304 => 0.0040887170420266
305 => 0.004080059104369
306 => 0.0042063515933016
307 => 0.0044677732657759
308 => 0.0044164499361787
309 => 0.0044535363016391
310 => 0.0046359645139788
311 => 0.0046939529568739
312 => 0.0046527941336385
313 => 0.0045964533978283
314 => 0.0045989321042699
315 => 0.004791465454034
316 => 0.0048034735228926
317 => 0.0048338140389484
318 => 0.0048728101763089
319 => 0.0046594353444551
320 => 0.004588882168878
321 => 0.0045554501601485
322 => 0.0044524925130771
323 => 0.004563523508522
324 => 0.0044988305022975
325 => 0.004507559799065
326 => 0.0045018748330935
327 => 0.0045049792089296
328 => 0.0043401609315776
329 => 0.0044002120492511
330 => 0.0043003654190131
331 => 0.0041666819894348
401 => 0.0041662338357034
402 => 0.0041989526657035
403 => 0.0041794902253315
404 => 0.0041271172987155
405 => 0.0041345566257481
406 => 0.0040693802929151
407 => 0.0041424702126096
408 => 0.0041445661699781
409 => 0.0041164225696609
410 => 0.0042290276754156
411 => 0.0042751620791203
412 => 0.0042566373584972
413 => 0.0042738623353383
414 => 0.0044185826522344
415 => 0.0044421783784786
416 => 0.0044526580414301
417 => 0.0044386166813644
418 => 0.0042765075570643
419 => 0.0042836977860682
420 => 0.0042309406564293
421 => 0.0041863664412937
422 => 0.0041881491761381
423 => 0.0042110661169602
424 => 0.0043111457415909
425 => 0.00452175741161
426 => 0.0045297499705321
427 => 0.0045394371851051
428 => 0.0045000344150329
429 => 0.0044881501625453
430 => 0.0045038285591622
501 => 0.0045829232289859
502 => 0.0047863761937657
503 => 0.0047144623278459
504 => 0.0046559952354471
505 => 0.0047072866380958
506 => 0.0046993907286933
507 => 0.0046327413071741
508 => 0.0046308706798949
509 => 0.0045029491308906
510 => 0.0044556594468564
511 => 0.0044161406473059
512 => 0.0043729871498612
513 => 0.0043474043100577
514 => 0.0043867111791887
515 => 0.0043957011252242
516 => 0.0043097559689027
517 => 0.0042980419616744
518 => 0.0043682266315815
519 => 0.0043373409751036
520 => 0.0043691076387186
521 => 0.0043764777771666
522 => 0.0043752910151278
523 => 0.0043430428425698
524 => 0.0043635968661039
525 => 0.0043149804729964
526 => 0.0042621174474381
527 => 0.0042283941306148
528 => 0.0041989660639376
529 => 0.0042152944656994
530 => 0.004157086694867
531 => 0.0041384648574868
601 => 0.0043566336254107
602 => 0.0045177972399857
603 => 0.0045154538572019
604 => 0.0045011891171752
605 => 0.0044799946069923
606 => 0.0045813727185535
607 => 0.0045460546116049
608 => 0.0045717514853366
609 => 0.0045782924181957
610 => 0.0045980898519573
611 => 0.0046051657328802
612 => 0.0045837775062161
613 => 0.0045119960051795
614 => 0.0043331233293765
615 => 0.0042498576159327
616 => 0.0042223785435961
617 => 0.0042233773556853
618 => 0.0041958256593704
619 => 0.0042039408687156
620 => 0.0041930035207396
621 => 0.0041722908297018
622 => 0.0042140155153947
623 => 0.0042188238967284
624 => 0.0042090848565148
625 => 0.0042113787530435
626 => 0.0041307436596735
627 => 0.0041368741706922
628 => 0.0041027387063124
629 => 0.0040963387182503
630 => 0.004010047236813
701 => 0.0038571693692966
702 => 0.0039418785481144
703 => 0.0038395617720155
704 => 0.0038008128585547
705 => 0.0039842441881857
706 => 0.0039658327702838
707 => 0.0039343204260869
708 => 0.0038877071012716
709 => 0.0038704177656724
710 => 0.0037653732357098
711 => 0.0037591666444888
712 => 0.0038112295499792
713 => 0.0037872043104706
714 => 0.0037534637751308
715 => 0.0036312589763532
716 => 0.0034938603219089
717 => 0.0034980075236294
718 => 0.0035417114792153
719 => 0.0036687866243627
720 => 0.0036191361667313
721 => 0.0035831141900463
722 => 0.0035763683566299
723 => 0.0036608065851956
724 => 0.0037803043689719
725 => 0.0038363700555075
726 => 0.0037808106628909
727 => 0.0037169870241831
728 => 0.003720871673341
729 => 0.0037467145038349
730 => 0.0037494302199218
731 => 0.0037078875922991
801 => 0.0037195815986376
802 => 0.0037018173336871
803 => 0.0035927980724764
804 => 0.0035908262597449
805 => 0.0035640711748707
806 => 0.0035632610415339
807 => 0.0035177439677942
808 => 0.0035113758145333
809 => 0.0034209989019343
810 => 0.0034804852594935
811 => 0.0034405849340167
812 => 0.003380445731988
813 => 0.0033700777108904
814 => 0.0033697660356564
815 => 0.0034315155492605
816 => 0.0034797636804747
817 => 0.0034412790172612
818 => 0.0034325168054414
819 => 0.003526074303862
820 => 0.0035141682593924
821 => 0.0035038577016675
822 => 0.0037696046530979
823 => 0.0035592452045475
824 => 0.0034675164780821
825 => 0.0033539847602683
826 => 0.0033909512600651
827 => 0.0033987406447231
828 => 0.0031257173290113
829 => 0.00301495180383
830 => 0.0029769412496985
831 => 0.0029550656384054
901 => 0.0029650346291683
902 => 0.0028653326650048
903 => 0.002932334033841
904 => 0.0028460005604726
905 => 0.002831526472709
906 => 0.0029859014177567
907 => 0.0030073817895147
908 => 0.0029157398501665
909 => 0.0029745888107104
910 => 0.0029532493595554
911 => 0.0028474805000814
912 => 0.0028434409076326
913 => 0.0027903698119037
914 => 0.0027073238236771
915 => 0.0026693695786362
916 => 0.002649602678285
917 => 0.0026577588866191
918 => 0.0026536348581013
919 => 0.0026267227824222
920 => 0.0026551774267771
921 => 0.0025824875687211
922 => 0.0025535418815413
923 => 0.002540467786177
924 => 0.0024759513532802
925 => 0.0025786256886069
926 => 0.0025988538261234
927 => 0.0026191218193197
928 => 0.0027955408625464
929 => 0.0027867274657018
930 => 0.0028663962808783
1001 => 0.0028633004972221
1002 => 0.0028405776605845
1003 => 0.0027447137505358
1004 => 0.0027829233964713
1005 => 0.0026653200453791
1006 => 0.002753436472268
1007 => 0.0027132238148658
1008 => 0.00273984053235
1009 => 0.0026919812743808
1010 => 0.0027184685638013
1011 => 0.002603650667943
1012 => 0.002496435332322
1013 => 0.0025395819131867
1014 => 0.0025864871809966
1015 => 0.0026881897528485
1016 => 0.0026276165400815
1017 => 0.0026494009579193
1018 => 0.0025764268048302
1019 => 0.0024258602829713
1020 => 0.0024267124731335
1021 => 0.0024035510940155
1022 => 0.0023835362808408
1023 => 0.0026345741022275
1024 => 0.0026033535808174
1025 => 0.0025536077659912
1026 => 0.0026201945159562
1027 => 0.0026378011095207
1028 => 0.0026383023444875
1029 => 0.0026868823184092
1030 => 0.0027128094591996
1031 => 0.0027173792301386
1101 => 0.0027938208687441
1102 => 0.0028194430977151
1103 => 0.002924977432653
1104 => 0.0027106097224464
1105 => 0.0027061949605233
1106 => 0.0026211315280805
1107 => 0.0025671829544257
1108 => 0.0026248254330737
1109 => 0.0026758888001728
1110 => 0.0026227182092349
1111 => 0.002629661165919
1112 => 0.0025582839917816
1113 => 0.0025837979729275
1114 => 0.0026057740505948
1115 => 0.0025936401522011
1116 => 0.0025754751190183
1117 => 0.0026717021863897
1118 => 0.0026662726781317
1119 => 0.0027558815355186
1120 => 0.0028257380478425
1121 => 0.0029509334062723
1122 => 0.0028202855231692
1123 => 0.0028155241950306
1124 => 0.0028620669413263
1125 => 0.0028194359722632
1126 => 0.00284637727314
1127 => 0.0029465927461902
1128 => 0.0029487101412183
1129 => 0.0029132410463886
1130 => 0.0029110827487448
1201 => 0.0029178949763962
1202 => 0.0029577944065266
1203 => 0.0029438523196534
1204 => 0.0029599864555535
1205 => 0.0029801624395513
1206 => 0.0030636188638061
1207 => 0.0030837399251535
1208 => 0.0030348561776534
1209 => 0.0030392698327246
1210 => 0.0030209859692707
1211 => 0.0030033239862704
1212 => 0.0030430255447296
1213 => 0.00311558092315
1214 => 0.0031151295599065
1215 => 0.0031319609974249
1216 => 0.0031424468435598
1217 => 0.0030974339158405
1218 => 0.0030681321550664
1219 => 0.0030793683146666
1220 => 0.0030973351785592
1221 => 0.0030735419028576
1222 => 0.0029266787831102
1223 => 0.0029712276719891
1224 => 0.0029638125585503
1225 => 0.0029532525353048
1226 => 0.002998046787559
1227 => 0.0029937262726527
1228 => 0.0028643100772554
1229 => 0.0028725948821949
1230 => 0.0028648139036839
1231 => 0.0028899558370914
]
'min_raw' => 0.0023835362808408
'max_raw' => 0.00533941550647
'avg_raw' => 0.0038614758936554
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002383'
'max' => '$0.005339'
'avg' => '$0.003861'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00058123767692847
'max_diff' => -0.0038800425340578
'year' => 2034
]
9 => [
'items' => [
101 => 0.0028180782253504
102 => 0.0028401872946188
103 => 0.0028540538956043
104 => 0.0028622214301131
105 => 0.0028917281652894
106 => 0.0028882658904819
107 => 0.0028915129454261
108 => 0.0029352636442034
109 => 0.0031565396651918
110 => 0.0031685832307962
111 => 0.0031092763090331
112 => 0.0031329682545001
113 => 0.0030874849000623
114 => 0.0031180181806084
115 => 0.0031389082756968
116 => 0.0030445099529265
117 => 0.0030389202968921
118 => 0.0029932492164711
119 => 0.0030177902681471
120 => 0.0029787436903666
121 => 0.0029883243547626
122 => 0.0029615359818839
123 => 0.0030097497195537
124 => 0.0030636601699259
125 => 0.0030772800786781
126 => 0.0030414519624904
127 => 0.0030155100451826
128 => 0.0029699645841889
129 => 0.0030457077008682
130 => 0.0030678572964149
131 => 0.0030455913584722
201 => 0.0030404318541305
202 => 0.003030654602726
203 => 0.003042506144236
204 => 0.0030677366649607
205 => 0.0030558384173215
206 => 0.0030636974195073
207 => 0.0030337470073428
208 => 0.0030974488169925
209 => 0.0031986226213916
210 => 0.0031989479117164
211 => 0.0031870495999412
212 => 0.0031821810671155
213 => 0.0031943894570468
214 => 0.0032010120077701
215 => 0.003240491702172
216 => 0.0032828549872056
217 => 0.0034805459539082
218 => 0.0034250351215313
219 => 0.0036004383078781
220 => 0.0037391594550253
221 => 0.0037807558615141
222 => 0.0037424891248065
223 => 0.0036115806856584
224 => 0.0036051576931021
225 => 0.0038007901693068
226 => 0.0037455150342439
227 => 0.0037389402328122
228 => 0.0036689954538812
301 => 0.0037103414810588
302 => 0.0037012984984055
303 => 0.0036870237078893
304 => 0.003765909047555
305 => 0.0039135753612664
306 => 0.0038905601814685
307 => 0.0038733804173929
308 => 0.0037981036921677
309 => 0.0038434370944185
310 => 0.0038272947381811
311 => 0.0038966525447694
312 => 0.0038555665166101
313 => 0.0037450962707312
314 => 0.0037626890215021
315 => 0.0037600299126148
316 => 0.0038147541850894
317 => 0.0037983273168324
318 => 0.0037568223029458
319 => 0.0039130706538595
320 => 0.0039029247550502
321 => 0.0039173093198864
322 => 0.0039236418501848
323 => 0.0040187474679812
324 => 0.004057709196552
325 => 0.0040665541910587
326 => 0.0041035648197927
327 => 0.0040656333328998
328 => 0.0042173863251632
329 => 0.0043182932099857
330 => 0.0044355017493279
331 => 0.0046067749279923
401 => 0.0046711752275355
402 => 0.0046595418898478
403 => 0.0047893992591973
404 => 0.0050227500653512
405 => 0.0047067087595264
406 => 0.0050395010219682
407 => 0.0049341428339505
408 => 0.0046843404654736
409 => 0.0046682561379201
410 => 0.0048374252021179
411 => 0.0052126259045894
412 => 0.0051186423841114
413 => 0.0052127796279603
414 => 0.0051029635326165
415 => 0.00509751023788
416 => 0.0052074461053235
417 => 0.0054643172518976
418 => 0.0053422873988312
419 => 0.005167327681513
420 => 0.005296515214106
421 => 0.0051846010176322
422 => 0.0049324270101654
423 => 0.0051185705166846
424 => 0.004994101654937
425 => 0.0050304282859236
426 => 0.005292043319971
427 => 0.0052605651069269
428 => 0.00530130082941
429 => 0.0052294033454668
430 => 0.0051622397582712
501 => 0.0050368739351373
502 => 0.0049997592953677
503 => 0.0050100164465551
504 => 0.0049997542124329
505 => 0.0049296131865609
506 => 0.004914466238702
507 => 0.0048892206620008
508 => 0.0048970453218561
509 => 0.0048495762518039
510 => 0.0049391601946026
511 => 0.0049557877637971
512 => 0.0050209794866852
513 => 0.0050277479076206
514 => 0.0052093059279178
515 => 0.0051093068212967
516 => 0.0051763948555256
517 => 0.0051703938702871
518 => 0.0046897544402655
519 => 0.0047559823130049
520 => 0.004859012099536
521 => 0.0048125973203573
522 => 0.0047469776819843
523 => 0.0046939863056957
524 => 0.004613698951972
525 => 0.004726701860556
526 => 0.0048752886688244
527 => 0.0050315163142839
528 => 0.0052192135938626
529 => 0.0051773217460978
530 => 0.0050280074442017
531 => 0.0050347055747106
601 => 0.0050761107818994
602 => 0.0050224872765301
603 => 0.0050066726579415
604 => 0.0050739380961553
605 => 0.0050744013162598
606 => 0.0050127009927154
607 => 0.0049441323741358
608 => 0.0049438450691203
609 => 0.0049316439457383
610 => 0.0051051340853612
611 => 0.0052005361203222
612 => 0.0052114738098825
613 => 0.0051997999266679
614 => 0.0052042927409973
615 => 0.0051487803988939
616 => 0.0052756651512686
617 => 0.0053921071476492
618 => 0.0053608982051988
619 => 0.005314111563853
620 => 0.0052768437504712
621 => 0.0053521190927542
622 => 0.0053487672002567
623 => 0.0053910901283926
624 => 0.0053891701159032
625 => 0.005374938507017
626 => 0.0053608987134543
627 => 0.0054165649079439
628 => 0.0054005339379026
629 => 0.005384478067337
630 => 0.0053522755608869
701 => 0.0053566524163405
702 => 0.005309873853368
703 => 0.0052882319496956
704 => 0.0049627896446494
705 => 0.004875820826607
706 => 0.0049031829871767
707 => 0.0049121913208944
708 => 0.0048743423798288
709 => 0.0049286080387217
710 => 0.0049201507932648
711 => 0.0049530529880145
712 => 0.0049324971251821
713 => 0.0049333407449629
714 => 0.0049937911545809
715 => 0.0050113401656674
716 => 0.0050024145969909
717 => 0.0050086657593414
718 => 0.0051527211572562
719 => 0.005132241086305
720 => 0.0051213614567952
721 => 0.0051243751885221
722 => 0.0051611844312719
723 => 0.0051714890095317
724 => 0.0051278277873551
725 => 0.0051484186721361
726 => 0.0052360920461614
727 => 0.005266772765187
728 => 0.0053646908927362
729 => 0.0053230935317974
730 => 0.0053994472880922
731 => 0.0056341327040289
801 => 0.0058216156532747
802 => 0.0056491985850877
803 => 0.0059934871455679
804 => 0.0062615651751625
805 => 0.0062512758938794
806 => 0.006204530288663
807 => 0.0058993305791927
808 => 0.0056184812562668
809 => 0.0058534236403865
810 => 0.0058540225568399
811 => 0.005833840797684
812 => 0.0057084936248612
813 => 0.0058294789877755
814 => 0.0058390823665293
815 => 0.0058337070281717
816 => 0.0057376036446605
817 => 0.0055908715409129
818 => 0.0056195426427582
819 => 0.0056665064924553
820 => 0.0055775941272933
821 => 0.0055491812392338
822 => 0.0056020062039095
823 => 0.0057722192466129
824 => 0.0057400414568668
825 => 0.0057392011647359
826 => 0.0058768713947761
827 => 0.0057783292211625
828 => 0.00561990427717
829 => 0.0055798998894437
830 => 0.0054379112631996
831 => 0.0055359833130925
901 => 0.0055395127515738
902 => 0.0054857996921196
903 => 0.0056242627959152
904 => 0.0056229868340378
905 => 0.0057544369435784
906 => 0.0060057201826137
907 => 0.0059314033639337
908 => 0.0058449809894559
909 => 0.0058543774977941
910 => 0.0059574340017061
911 => 0.0058951236868898
912 => 0.0059175309105407
913 => 0.0059574000856894
914 => 0.0059814541489526
915 => 0.0058509164882616
916 => 0.0058204819152164
917 => 0.0057582234598496
918 => 0.0057419813909535
919 => 0.0057926896037845
920 => 0.0057793297812511
921 => 0.0055392161159362
922 => 0.0055141229019309
923 => 0.0055148924749796
924 => 0.0054517943952462
925 => 0.0053555546783783
926 => 0.0056084669081321
927 => 0.0055881545165784
928 => 0.0055657312083575
929 => 0.0055684779356689
930 => 0.0056782585626142
1001 => 0.0056145802549314
1002 => 0.0057838794725756
1003 => 0.0057490766430283
1004 => 0.0057133812522262
1005 => 0.0057084470619091
1006 => 0.0056947073818379
1007 => 0.0056475889065641
1008 => 0.0055906905162895
1009 => 0.0055531212705761
1010 => 0.0051224608352267
1011 => 0.005202388906991
1012 => 0.0052943388678829
1013 => 0.0053260796259164
1014 => 0.0052717848629065
1015 => 0.0056497327947382
1016 => 0.0057187875238807
1017 => 0.0055096162449794
1018 => 0.005470488839104
1019 => 0.0056522979809534
1020 => 0.0055426448431546
1021 => 0.0055920216443912
1022 => 0.0054852960077838
1023 => 0.0057021542617888
1024 => 0.0057005021652302
1025 => 0.0056161394064565
1026 => 0.0056874422324808
1027 => 0.0056750516117827
1028 => 0.0055798062649035
1029 => 0.0057051737091709
1030 => 0.0057052358898592
1031 => 0.005624038568744
1101 => 0.0055292178740607
1102 => 0.0055122661734161
1103 => 0.005499495344121
1104 => 0.0055888808032507
1105 => 0.0056690235264053
1106 => 0.00581814926513
1107 => 0.0058556430189855
1108 => 0.0060019836363843
1109 => 0.0059148449239187
1110 => 0.0059534723865194
1111 => 0.0059954079613607
1112 => 0.0060155134180694
1113 => 0.0059827526552809
1114 => 0.0062100798703024
1115 => 0.0062292732523761
1116 => 0.0062357086273633
1117 => 0.0061590551695002
1118 => 0.0062271413810478
1119 => 0.006195286097443
1120 => 0.0062781646957301
1121 => 0.0062911611181885
1122 => 0.0062801536107274
1123 => 0.0062842788803503
1124 => 0.0060902952055982
1125 => 0.0060802361287169
1126 => 0.0059430799016809
1127 => 0.0059989720780057
1128 => 0.0058944843333481
1129 => 0.0059276184735221
1130 => 0.0059422236867971
1201 => 0.0059345947522208
1202 => 0.0060021321377952
1203 => 0.0059447115630806
1204 => 0.0057931692255925
1205 => 0.0056415856004958
1206 => 0.00563968259156
1207 => 0.0055997732987453
1208 => 0.0055709261897918
1209 => 0.0055764831663824
1210 => 0.0055960666766956
1211 => 0.0055697879605715
1212 => 0.0055753958570213
1213 => 0.0056685243033064
1214 => 0.0056872005490472
1215 => 0.0056237313687398
1216 => 0.0053688934512463
1217 => 0.0053063555870809
1218 => 0.0053513065636633
1219 => 0.0053298228920706
1220 => 0.0043015830495222
1221 => 0.0045431527484318
1222 => 0.0043996202362716
1223 => 0.0044657666214884
1224 => 0.0043192570941366
1225 => 0.0043891791198111
1226 => 0.0043762670748126
1227 => 0.0047647040020921
1228 => 0.0047586390937501
1229 => 0.0047615420444256
1230 => 0.0046229766450871
1231 => 0.0048437150886939
]
'min_raw' => 0.0028180782253504
'max_raw' => 0.0062911611181885
'avg_raw' => 0.0045546196717695
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002818'
'max' => '$0.006291'
'avg' => '$0.004554'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00043454194450957
'max_diff' => 0.00095174561171857
'year' => 2035
]
10 => [
'items' => [
101 => 0.0049524587835124
102 => 0.0049323332197212
103 => 0.0049373983905392
104 => 0.0048503619741724
105 => 0.0047623847471882
106 => 0.0046648044628647
107 => 0.0048460965698502
108 => 0.0048259399823129
109 => 0.0048721719420122
110 => 0.0049897528324198
111 => 0.0050070670651787
112 => 0.0050303375695902
113 => 0.005021996750266
114 => 0.0052207089055114
115 => 0.0051966435523661
116 => 0.0052546341293715
117 => 0.0051353431127158
118 => 0.0050003540041626
119 => 0.0050260110205721
120 => 0.0050235400435712
121 => 0.0049920816702939
122 => 0.0049636824574981
123 => 0.0049164057696217
124 => 0.005065996205696
125 => 0.0050599231071756
126 => 0.0051582395130161
127 => 0.0051408611332892
128 => 0.0050248040602619
129 => 0.0050289490613296
130 => 0.0050568261855298
131 => 0.0051533092306819
201 => 0.0051819519675496
202 => 0.0051686835106168
203 => 0.0052000889640017
204 => 0.0052249105538536
205 => 0.0052032061735272
206 => 0.0055104944284625
207 => 0.005382886920951
208 => 0.0054450819322248
209 => 0.0054599150759393
210 => 0.005421920290222
211 => 0.0054301599987528
212 => 0.0054426409119908
213 => 0.0055184225731586
214 => 0.0057172955796633
215 => 0.0058053750804699
216 => 0.0060703666044125
217 => 0.0057980613040537
218 => 0.0057819038344418
219 => 0.0058296368098812
220 => 0.0059852148866371
221 => 0.006111296305142
222 => 0.0061531247854717
223 => 0.0061586531096602
224 => 0.0062371261194633
225 => 0.0062821053852475
226 => 0.0062275974320282
227 => 0.0061814076488954
228 => 0.0060159615790006
229 => 0.0060351124120856
301 => 0.0061670426610739
302 => 0.0063534019084228
303 => 0.0065133175300232
304 => 0.0064573206529608
305 => 0.0068845372973121
306 => 0.006926894082576
307 => 0.0069210417444114
308 => 0.0070175368047774
309 => 0.0068260137608282
310 => 0.0067441339489557
311 => 0.006191394404285
312 => 0.0063466916703844
313 => 0.0065724253669486
314 => 0.0065425486657504
315 => 0.0063786148214265
316 => 0.006513193171502
317 => 0.0064686973603129
318 => 0.0064336016678952
319 => 0.0065943818384955
320 => 0.0064175974364351
321 => 0.006570661807305
322 => 0.0063743551684162
323 => 0.0064575764419784
324 => 0.0064103360221444
325 => 0.0064409063633451
326 => 0.0062621927733404
327 => 0.0063586222884798
328 => 0.0062581809884798
329 => 0.0062581333662258
330 => 0.0062559161189613
331 => 0.0063740848629864
401 => 0.0063779383414866
402 => 0.0062906114611091
403 => 0.0062780262933444
404 => 0.0063245602547238
405 => 0.0062700811732123
406 => 0.0062955715925643
407 => 0.006270853252047
408 => 0.0062652886329486
409 => 0.006220948801231
410 => 0.0062018459825781
411 => 0.0062093366899909
412 => 0.0061837670438665
413 => 0.0061683604071821
414 => 0.0062528513511454
415 => 0.0062077112481407
416 => 0.0062459329829597
417 => 0.006202374492166
418 => 0.006051381785544
419 => 0.0059645442832468
420 => 0.0056793330574691
421 => 0.0057602186072962
422 => 0.0058138458105138
423 => 0.0057961220201703
424 => 0.0058341995800245
425 => 0.0058365372329464
426 => 0.005824157830083
427 => 0.005809824067467
428 => 0.0058028471845322
429 => 0.0058548471538746
430 => 0.0058850348863163
501 => 0.0058192280177961
502 => 0.0058038103892377
503 => 0.0058703447666084
504 => 0.0059109306983689
505 => 0.0062105944152232
506 => 0.0061883943591776
507 => 0.0062441121433111
508 => 0.0062378391758768
509 => 0.0062962402901878
510 => 0.0063917014299339
511 => 0.0061976022414756
512 => 0.006231291149147
513 => 0.0062230314069765
514 => 0.0063132091061737
515 => 0.0063134906311074
516 => 0.0062594245957285
517 => 0.0062887346706287
518 => 0.0062723745908992
519 => 0.0063019394661677
520 => 0.0061880978638944
521 => 0.0063267446470217
522 => 0.0064053484388535
523 => 0.0064064398525794
524 => 0.0064436974260694
525 => 0.0064815532785484
526 => 0.0065542142908319
527 => 0.0064795268023526
528 => 0.0063451712812588
529 => 0.0063548713159161
530 => 0.0062760987230576
531 => 0.0062774229045749
601 => 0.0062703543198572
602 => 0.0062915676746934
603 => 0.0061927530023505
604 => 0.0062159446084414
605 => 0.0061834762241043
606 => 0.0062312205692204
607 => 0.0061798555462984
608 => 0.0062230274238787
609 => 0.006241658975072
610 => 0.0063104098000837
611 => 0.0061697009935446
612 => 0.0058827862118627
613 => 0.0059430991774777
614 => 0.0058538915638519
615 => 0.0058621480681303
616 => 0.0058788275207856
617 => 0.0058247639575524
618 => 0.0058350775816786
619 => 0.005834709106449
620 => 0.0058315337859863
621 => 0.0058174697651555
622 => 0.0057970741524691
623 => 0.0058783239959732
624 => 0.0058921299276417
625 => 0.0059228188035476
626 => 0.0060141280817801
627 => 0.0060050041316636
628 => 0.0060198856728527
629 => 0.0059873993519933
630 => 0.0058636550153819
701 => 0.0058703749282119
702 => 0.005786577507543
703 => 0.0059206759150988
704 => 0.0058889196421771
705 => 0.0058684461664377
706 => 0.0058628597888967
707 => 0.0059543954051688
708 => 0.0059817842962024
709 => 0.0059647173773104
710 => 0.0059297126287413
711 => 0.0059969320942189
712 => 0.0060149171874191
713 => 0.006018943386522
714 => 0.0061380433912942
715 => 0.0060255997537527
716 => 0.0060526660549026
717 => 0.0062638296100576
718 => 0.0060723334041107
719 => 0.0061737732152758
720 => 0.0061688082643865
721 => 0.0062207014392425
722 => 0.0061645515094001
723 => 0.0061652475550755
724 => 0.0062113251787995
725 => 0.0061466174664224
726 => 0.0061305949268513
727 => 0.0061084599031893
728 => 0.0061567909175616
729 => 0.006185763174854
730 => 0.0064192582908526
731 => 0.0065701067844586
801 => 0.0065635580535166
802 => 0.0066234011956161
803 => 0.0065964413119999
804 => 0.0065093807361452
805 => 0.006657982523223
806 => 0.0066109587000287
807 => 0.0066148352868789
808 => 0.0066146910001227
809 => 0.006645957731653
810 => 0.00662380238681
811 => 0.0065801319279248
812 => 0.0066091224165478
813 => 0.0066952138034685
814 => 0.0069624441100766
815 => 0.0071119897299852
816 => 0.0069534412759831
817 => 0.0070628058765054
818 => 0.0069972260867836
819 => 0.0069853082881614
820 => 0.0070539973392699
821 => 0.0071228066214694
822 => 0.007118423767664
823 => 0.0070684717621829
824 => 0.0070402551417718
825 => 0.0072539208447857
826 => 0.007411346095066
827 => 0.0074006107483892
828 => 0.007447993077299
829 => 0.0075871090604586
830 => 0.0075998280825005
831 => 0.0075982257780666
901 => 0.0075667003548432
902 => 0.007703678106757
903 => 0.0078179473572977
904 => 0.007559403130224
905 => 0.0076578533873012
906 => 0.0077020508795724
907 => 0.0077669459110314
908 => 0.0078764347067731
909 => 0.0079953685794173
910 => 0.0080121871330527
911 => 0.0080002535644065
912 => 0.0079218134782835
913 => 0.008051952340907
914 => 0.0081281846345
915 => 0.0081735792207896
916 => 0.008288692338681
917 => 0.007702323828238
918 => 0.0072872630521405
919 => 0.0072224453184026
920 => 0.0073542547287901
921 => 0.0073890118191489
922 => 0.007375001279607
923 => 0.0069078126404344
924 => 0.0072199856669043
925 => 0.0075558575951323
926 => 0.007568759803777
927 => 0.0077369043137987
928 => 0.0077916590587382
929 => 0.0079270374285104
930 => 0.0079185694746216
1001 => 0.0079515319533208
1002 => 0.0079439544502984
1003 => 0.0081947143730225
1004 => 0.008471339805996
1005 => 0.0084617611468671
1006 => 0.0084219929679936
1007 => 0.0084810554951029
1008 => 0.0087665625869145
1009 => 0.0087402776690584
1010 => 0.0087658112278117
1011 => 0.0091024401795321
1012 => 0.0095401057016788
1013 => 0.0093367661257417
1014 => 0.0097779544961384
1015 => 0.010055659188913
1016 => 0.010535920739864
1017 => 0.010475789628347
1018 => 0.010662751925811
1019 => 0.01036814238899
1020 => 0.0096916593420382
1021 => 0.009584603310385
1022 => 0.0097989321968451
1023 => 0.0103258388503
1024 => 0.0097823380312262
1025 => 0.009892287539068
1026 => 0.0098606220734129
1027 => 0.0098589347553177
1028 => 0.0099233328241927
1029 => 0.0098299200665121
1030 => 0.0094493396870872
1031 => 0.0096237574322034
1101 => 0.009556406364586
1102 => 0.0096311373954622
1103 => 0.01003442994768
1104 => 0.0098561246970506
1105 => 0.0096682945998553
1106 => 0.0099038752245736
1107 => 0.010203850314125
1108 => 0.010185078412128
1109 => 0.010148653076208
1110 => 0.010353980787624
1111 => 0.010693122011509
1112 => 0.010784790521545
1113 => 0.010852458341574
1114 => 0.010861788590698
1115 => 0.010957895955401
1116 => 0.010441102433221
1117 => 0.01126126702512
1118 => 0.011402886793551
1119 => 0.011376268146624
1120 => 0.011533672558964
1121 => 0.011487360187889
1122 => 0.01142026082839
1123 => 0.011669780302828
1124 => 0.011383726360568
1125 => 0.010977708802719
1126 => 0.010754959540367
1127 => 0.011048293737703
1128 => 0.011227422696063
1129 => 0.011345815542798
1130 => 0.011381641146685
1201 => 0.010481219643225
1202 => 0.0099959423925267
1203 => 0.01030699954651
1204 => 0.010686510742387
1205 => 0.010438994229366
1206 => 0.010448696408066
1207 => 0.010095802906694
1208 => 0.010717733986832
1209 => 0.010627123859719
1210 => 0.011097209359465
1211 => 0.010985019682279
1212 => 0.011368356158707
1213 => 0.011267410817459
1214 => 0.011686429285202
1215 => 0.011853587096456
1216 => 0.012134271077588
1217 => 0.012340743356698
1218 => 0.012461987828177
1219 => 0.012454708764886
1220 => 0.012935139764641
1221 => 0.012651846389066
1222 => 0.012295963142222
1223 => 0.012289526337084
1224 => 0.012473843313529
1225 => 0.012860121131265
1226 => 0.012960277349291
1227 => 0.013016251011604
1228 => 0.012930525399314
1229 => 0.012623030743946
1230 => 0.012490256110792
1231 => 0.012603383945091
]
'min_raw' => 0.0046648044628647
'max_raw' => 0.013016251011604
'avg_raw' => 0.0088405277372345
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004664'
'max' => '$0.013016'
'avg' => '$0.00884'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0018467262375143
'max_diff' => 0.0067250898934158
'year' => 2036
]
11 => [
'items' => [
101 => 0.012465038324929
102 => 0.012703861678254
103 => 0.013031817152284
104 => 0.012964095643774
105 => 0.013190478493349
106 => 0.01342476092649
107 => 0.013759795328163
108 => 0.013847385727049
109 => 0.013992169325642
110 => 0.014141199207528
111 => 0.014189063589123
112 => 0.014280451545031
113 => 0.014279969885393
114 => 0.014555373641642
115 => 0.014859152513329
116 => 0.014973822004894
117 => 0.015237498177835
118 => 0.014785961971989
119 => 0.015128457370997
120 => 0.015437396794119
121 => 0.015069066477796
122 => 0.01557672400889
123 => 0.015596435200445
124 => 0.015894050790731
125 => 0.015592360373728
126 => 0.015413217567142
127 => 0.015930396137364
128 => 0.016180642556522
129 => 0.016105266298498
130 => 0.015531649253156
131 => 0.015197779529175
201 => 0.014323978062855
202 => 0.015359033645125
203 => 0.015863179026263
204 => 0.015530343638412
205 => 0.015698206448166
206 => 0.016614011508486
207 => 0.016962690781469
208 => 0.01689016793014
209 => 0.016902423098187
210 => 0.017090564104912
211 => 0.017924884939877
212 => 0.017424940556161
213 => 0.017807129304953
214 => 0.018009840839229
215 => 0.018198130609501
216 => 0.017735750443306
217 => 0.017134200640801
218 => 0.016943664567005
219 => 0.015497249718558
220 => 0.015421957544235
221 => 0.015379693765202
222 => 0.015113226616723
223 => 0.014903856429514
224 => 0.014737357483229
225 => 0.014300414527382
226 => 0.014447869948385
227 => 0.013751474073848
228 => 0.014197003475622
301 => 0.013085538844794
302 => 0.014011199616698
303 => 0.013507404543181
304 => 0.013845689385522
305 => 0.013844509141576
306 => 0.013221619493519
307 => 0.012862349743895
308 => 0.013091290411343
309 => 0.01333673298018
310 => 0.013376555211206
311 => 0.01369477790841
312 => 0.013783587023026
313 => 0.013514491259639
314 => 0.013062506210786
315 => 0.013167492028953
316 => 0.01286022220964
317 => 0.012321743670257
318 => 0.012708488358175
319 => 0.012840539998594
320 => 0.012898861525819
321 => 0.012369329727014
322 => 0.012202939339135
323 => 0.012114354492778
324 => 0.012994150305136
325 => 0.013042347505764
326 => 0.012795763812955
327 => 0.013910345486475
328 => 0.013658081326565
329 => 0.013939922199404
330 => 0.013157965666364
331 => 0.01318783745897
401 => 0.012817646704819
402 => 0.013024928790989
403 => 0.012878428493498
404 => 0.013008182446828
405 => 0.013085956431458
406 => 0.013456086440949
407 => 0.014015425906858
408 => 0.013400801360279
409 => 0.013133000643749
410 => 0.013299142702116
411 => 0.013741600897491
412 => 0.014411947712503
413 => 0.014015088906029
414 => 0.014191208105243
415 => 0.014229682315273
416 => 0.013937053323891
417 => 0.014422737360817
418 => 0.014683019381896
419 => 0.014950014877748
420 => 0.015181839585752
421 => 0.014843371005348
422 => 0.015205580903945
423 => 0.01491370366433
424 => 0.014651859606681
425 => 0.014652256716032
426 => 0.014487998113737
427 => 0.014169726373875
428 => 0.01411103218188
429 => 0.014416366780898
430 => 0.014661216214016
501 => 0.014681383186077
502 => 0.014816944413069
503 => 0.014897168150812
504 => 0.015683469839569
505 => 0.015999726883417
506 => 0.016386440010193
507 => 0.016537086567031
508 => 0.016990478693331
509 => 0.016624327728635
510 => 0.016545108664226
511 => 0.015445327669256
512 => 0.015625416745571
513 => 0.015913756732764
514 => 0.015450082289442
515 => 0.015744177000585
516 => 0.015802237526342
517 => 0.015434326809286
518 => 0.015630843819749
519 => 0.015108952903191
520 => 0.014026801702676
521 => 0.014423942104453
522 => 0.014716371116174
523 => 0.01429903886021
524 => 0.015047090776037
525 => 0.014610094289737
526 => 0.014471587383111
527 => 0.013931222559083
528 => 0.014186253955475
529 => 0.014531187570792
530 => 0.014318058699363
531 => 0.014760333109039
601 => 0.015386711623418
602 => 0.01583310625425
603 => 0.015867374891101
604 => 0.015580373049593
605 => 0.01604029533223
606 => 0.016043645363951
607 => 0.015524851150299
608 => 0.015207092583095
609 => 0.015134897168057
610 => 0.015315255469568
611 => 0.015534243743581
612 => 0.015879527216228
613 => 0.016088174787289
614 => 0.016632216994497
615 => 0.016779419216855
616 => 0.016941149830301
617 => 0.017157271805739
618 => 0.01741678164979
619 => 0.016848988884911
620 => 0.016871548349957
621 => 0.016342827588928
622 => 0.015777813629541
623 => 0.016206588794732
624 => 0.016767155285648
625 => 0.016638560713261
626 => 0.016624091196918
627 => 0.016648424909897
628 => 0.016551468801823
629 => 0.016112939918366
630 => 0.015892713458431
701 => 0.01617686177751
702 => 0.016327873963114
703 => 0.016562080693339
704 => 0.016533209770334
705 => 0.017136501155428
706 => 0.017370921945091
707 => 0.017310947075664
708 => 0.017321983895014
709 => 0.017746391537302
710 => 0.018218420121616
711 => 0.018660537180483
712 => 0.019110277642132
713 => 0.018568097961945
714 => 0.01829281255734
715 => 0.018576836826152
716 => 0.018426129551189
717 => 0.019292138255807
718 => 0.019352098819562
719 => 0.020218044901893
720 => 0.021039930848967
721 => 0.020523719011226
722 => 0.021010483523524
723 => 0.021536959030067
724 => 0.022552615699761
725 => 0.02221057826464
726 => 0.021948582949748
727 => 0.021700998643127
728 => 0.022216182282304
729 => 0.022878957803845
730 => 0.0230217133032
731 => 0.023253031748953
801 => 0.023009828687517
802 => 0.023302739987078
803 => 0.024336845586274
804 => 0.024057421125068
805 => 0.023660593470433
806 => 0.024476920524441
807 => 0.024772346111895
808 => 0.02684579760023
809 => 0.029463615754262
810 => 0.028379821848972
811 => 0.027707075998148
812 => 0.027865187230836
813 => 0.028821125801952
814 => 0.02912814293102
815 => 0.028293564539061
816 => 0.028588351736179
817 => 0.030212658175134
818 => 0.031084046465644
819 => 0.029900584124071
820 => 0.026635458460466
821 => 0.023624863481919
822 => 0.024423408839088
823 => 0.024332878577333
824 => 0.026077993209636
825 => 0.02405075694408
826 => 0.024084890403655
827 => 0.025866092158446
828 => 0.025390898067796
829 => 0.024621144499205
830 => 0.02363048353483
831 => 0.021799155117133
901 => 0.020177096467209
902 => 0.023358327017508
903 => 0.023221146571487
904 => 0.023022488956645
905 => 0.023464579981477
906 => 0.025611248508333
907 => 0.025561760850701
908 => 0.025246945621671
909 => 0.025485730198236
910 => 0.024579284408427
911 => 0.024812896127848
912 => 0.023624386588293
913 => 0.024161642536714
914 => 0.024619492953761
915 => 0.024711413203574
916 => 0.024918514219968
917 => 0.023148858709961
918 => 0.023943382079598
919 => 0.024410090122488
920 => 0.022301486205729
921 => 0.024368409802732
922 => 0.02311805294466
923 => 0.022693663047301
924 => 0.023265048134978
925 => 0.02304237881062
926 => 0.022850940801119
927 => 0.022744115102494
928 => 0.023163677249413
929 => 0.023144104173774
930 => 0.022457619067911
1001 => 0.021562127232025
1002 => 0.021862683685666
1003 => 0.021753488708327
1004 => 0.021357752024016
1005 => 0.021624430767812
1006 => 0.020450112543158
1007 => 0.018429759073392
1008 => 0.01976446646062
1009 => 0.019713081678094
1010 => 0.01968717114063
1011 => 0.020690166853529
1012 => 0.020593751958782
1013 => 0.020418757980719
1014 => 0.021354538122377
1015 => 0.021012965782653
1016 => 0.022065611249118
1017 => 0.022758951634172
1018 => 0.022583098085311
1019 => 0.023235188068659
1020 => 0.021869607899319
1021 => 0.022323198854007
1022 => 0.022416683321118
1023 => 0.021342990740686
1024 => 0.020609526627946
1025 => 0.020560612933729
1026 => 0.019288887239818
1027 => 0.019968232840494
1028 => 0.020566028855858
1029 => 0.020279730955344
1030 => 0.020189097592947
1031 => 0.020652123785453
1101 => 0.020688104886161
1102 => 0.019867731976894
1103 => 0.020038313482562
1104 => 0.020749666718013
1105 => 0.020020389206173
1106 => 0.018603522127473
1107 => 0.018252119502236
1108 => 0.018205235914394
1109 => 0.017252204124656
1110 => 0.018275601905951
1111 => 0.01782886134906
1112 => 0.019240109415505
1113 => 0.018434012088627
1114 => 0.018399262843991
1115 => 0.018346734264119
1116 => 0.017526420433444
1117 => 0.017706017028698
1118 => 0.018303023464657
1119 => 0.018516042086766
1120 => 0.01849382249927
1121 => 0.018300097807425
1122 => 0.018388783979321
1123 => 0.018103094919334
1124 => 0.01800221216615
1125 => 0.017683798447111
1126 => 0.017215818244159
1127 => 0.017280893761669
1128 => 0.016353702525941
1129 => 0.015848519530953
1130 => 0.015708691536145
1201 => 0.015521707697673
1202 => 0.015729811858245
1203 => 0.016351075909665
1204 => 0.015601699655131
1205 => 0.014316946629365
1206 => 0.014394162475326
1207 => 0.014567643555611
1208 => 0.014244362710193
1209 => 0.01393840452091
1210 => 0.014204410343319
1211 => 0.013660043549702
1212 => 0.014633427681876
1213 => 0.014607100368978
1214 => 0.014969917779782
1215 => 0.01519679495252
1216 => 0.014673916521715
1217 => 0.014542414010382
1218 => 0.014617323817293
1219 => 0.013379231572701
1220 => 0.014868739229496
1221 => 0.014881620553565
1222 => 0.014771322836406
1223 => 0.01556443968026
1224 => 0.017238163600138
1225 => 0.016608441336091
1226 => 0.016364593841996
1227 => 0.01590103957747
1228 => 0.016518698111823
1229 => 0.016471271573358
1230 => 0.016256790780443
1231 => 0.016127072127667
]
'min_raw' => 0.012114354492778
'max_raw' => 0.031084046465644
'avg_raw' => 0.021599200479211
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.012114'
'max' => '$0.031084'
'avg' => '$0.021599'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0074495500299138
'max_diff' => 0.01806779545404
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0003802557447655
]
1 => [
'year' => 2028
'avg' => 0.00065262924704906
]
2 => [
'year' => 2029
'avg' => 0.0017828654779605
]
3 => [
'year' => 2030
'avg' => 0.0013754780611236
]
4 => [
'year' => 2031
'avg' => 0.0013508899171429
]
5 => [
'year' => 2032
'avg' => 0.0023685351654547
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0003802557447655
'min' => '$0.00038'
'max_raw' => 0.0023685351654547
'max' => '$0.002368'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0023685351654547
]
1 => [
'year' => 2033
'avg' => 0.0060921159991485
]
2 => [
'year' => 2034
'avg' => 0.0038614758936554
]
3 => [
'year' => 2035
'avg' => 0.0045546196717695
]
4 => [
'year' => 2036
'avg' => 0.0088405277372345
]
5 => [
'year' => 2037
'avg' => 0.021599200479211
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0023685351654547
'min' => '$0.002368'
'max_raw' => 0.021599200479211
'max' => '$0.021599'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.021599200479211
]
]
]
]
'prediction_2025_max_price' => '$0.00065'
'last_price' => 0.00063042
'sma_50day_nextmonth' => '$0.0006092'
'sma_200day_nextmonth' => '$0.000725'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000631'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000633'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000645'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000656'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000683'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000631'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000635'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000642'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000656'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000696'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000727'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000779'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000645'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001239'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.003594'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000641'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000658'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000697'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000719'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000863'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001795'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.004319'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.41'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 5.06
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000646'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000624'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 5.38
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -105.34
'cci_20_action' => 'BUY'
'adx_14' => 11.1
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000038'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -94.62
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 41.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000158'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 32
'buy_signals' => 2
'sell_pct' => 94.12
'buy_pct' => 5.88
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767712418
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Prism para 2026
La previsión del precio de Prism para 2026 sugiere que el precio medio podría oscilar entre $0.000217 en el extremo inferior y $0.00065 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Prism podría potencialmente ganar 3.13% para 2026 si PRISM alcanza el objetivo de precio previsto.
Predicción de precio de Prism 2027-2032
La predicción del precio de PRISM para 2027-2032 está actualmente dentro de un rango de precios de $0.00038 en el extremo inferior y $0.002368 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Prism alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Prism | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0002096 | $0.00038 | $0.00055 |
| 2028 | $0.000378 | $0.000652 | $0.000926 |
| 2029 | $0.000831 | $0.001782 | $0.002734 |
| 2030 | $0.0007069 | $0.001375 | $0.002044 |
| 2031 | $0.000835 | $0.00135 | $0.001865 |
| 2032 | $0.001275 | $0.002368 | $0.003461 |
Predicción de precio de Prism 2032-2037
La predicción de precio de Prism para 2032-2037 se estima actualmente entre $0.002368 en el extremo inferior y $0.021599 en el extremo superior. Comparado con el precio actual, Prism podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Prism | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001275 | $0.002368 | $0.003461 |
| 2033 | $0.002964 | $0.006092 | $0.009219 |
| 2034 | $0.002383 | $0.003861 | $0.005339 |
| 2035 | $0.002818 | $0.004554 | $0.006291 |
| 2036 | $0.004664 | $0.00884 | $0.013016 |
| 2037 | $0.012114 | $0.021599 | $0.031084 |
Prism Histograma de precios potenciales
Pronóstico de precio de Prism basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Prism es Bajista, con 2 indicadores técnicos mostrando señales alcistas y 32 indicando señales bajistas. La predicción de precio de PRISM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Prism
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Prism aumentar durante el próximo mes, alcanzando $0.000725 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Prism alcance $0.0006092 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 43.41, lo que sugiere que el mercado de PRISM está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PRISM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000631 | SELL |
| SMA 5 | $0.000633 | SELL |
| SMA 10 | $0.000645 | SELL |
| SMA 21 | $0.000656 | SELL |
| SMA 50 | $0.000683 | SELL |
| SMA 100 | $0.000786 | SELL |
| SMA 200 | $0.000692 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000631 | SELL |
| EMA 5 | $0.000635 | SELL |
| EMA 10 | $0.000642 | SELL |
| EMA 21 | $0.000656 | SELL |
| EMA 50 | $0.000696 | SELL |
| EMA 100 | $0.000727 | SELL |
| EMA 200 | $0.00074 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.000779 | SELL |
| SMA 50 | $0.000645 | SELL |
| SMA 100 | $0.001239 | SELL |
| SMA 200 | $0.003594 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000719 | SELL |
| EMA 50 | $0.000863 | SELL |
| EMA 100 | $0.001795 | SELL |
| EMA 200 | $0.004319 | SELL |
Osciladores de Prism
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 43.41 | NEUTRAL |
| Stoch RSI (14) | 5.06 | BUY |
| Estocástico Rápido (14) | 5.38 | BUY |
| Índice de Canal de Materias Primas (20) | -105.34 | BUY |
| Índice Direccional Medio (14) | 11.1 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000038 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -94.62 | BUY |
| Oscilador Ultimate (7, 14, 28) | 41.52 | NEUTRAL |
| VWMA (10) | 0.000646 | SELL |
| Promedio Móvil de Hull (9) | 0.000624 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000158 | SELL |
Predicción de precios de Prism basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Prism
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Prism por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000885 | $0.001244 | $0.001749 | $0.002457 | $0.003453 | $0.004852 |
| Amazon.com acción | $0.001315 | $0.002744 | $0.005726 | $0.011949 | $0.024933 | $0.052025 |
| Apple acción | $0.000894 | $0.001268 | $0.001799 | $0.002551 | $0.003619 | $0.005134 |
| Netflix acción | $0.000994 | $0.001569 | $0.002476 | $0.0039073 | $0.006165 | $0.009727 |
| Google acción | $0.000816 | $0.001057 | $0.001369 | $0.001772 | $0.002295 | $0.002973 |
| Tesla acción | $0.001429 | $0.003239 | $0.007344 | $0.016648 | $0.037741 | $0.085556 |
| Kodak acción | $0.000472 | $0.000354 | $0.000265 | $0.000199 | $0.000149 | $0.000112 |
| Nokia acción | $0.000417 | $0.000276 | $0.000183 | $0.000121 | $0.00008 | $0.000053 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Prism
Podría preguntarse cosas como: "¿Debo invertir en Prism ahora?", "¿Debería comprar PRISM hoy?", "¿Será Prism una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Prism regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Prism, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Prism a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Prism es de $0.0006304 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Prism basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Prism ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000646 | $0.000663 | $0.00068 | $0.000698 |
| Si Prism ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000663 | $0.000697 | $0.000733 | $0.000772 |
| Si Prism ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000712 | $0.0008049 | $0.0009095 | $0.001027 |
| Si Prism ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000794 | $0.00100074 | $0.00126 | $0.001588 |
| Si Prism ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000958 | $0.001456 | $0.002213 | $0.003363 |
| Si Prism ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.001449 | $0.003333 | $0.007666 | $0.017631 |
| Si Prism ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.002269 | $0.008167 | $0.029396 | $0.1058065 |
Cuadro de preguntas
¿Es PRISM una buena inversión?
La decisión de adquirir Prism depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Prism ha experimentado un aumento de 0.5132% durante las últimas 24 horas, y Prism ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Prism dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Prism subir?
Parece que el valor medio de Prism podría potencialmente aumentar hasta $0.00065 para el final de este año. Mirando las perspectivas de Prism en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002044. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Prism la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Prism, el precio de Prism aumentará en un 0.86% durante la próxima semana y alcanzará $0.000635 para el 13 de enero de 2026.
¿Cuál será el precio de Prism el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Prism, el precio de Prism disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000557 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Prism este año en 2026?
Según nuestra predicción más reciente sobre el valor de Prism en 2026, se anticipa que PRISM fluctúe dentro del rango de $0.000217 y $0.00065. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Prism no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Prism en 5 años?
El futuro de Prism parece estar en una tendencia alcista, con un precio máximo de $0.002044 proyectada después de un período de cinco años. Basado en el pronóstico de Prism para 2030, el valor de Prism podría potencialmente alcanzar su punto más alto de aproximadamente $0.002044, mientras que su punto más bajo se anticipa que esté alrededor de $0.0007069.
¿Cuánto será Prism en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Prism, se espera que el valor de PRISM en 2026 crezca en un 3.13% hasta $0.00065 si ocurre lo mejor. El precio estará entre $0.00065 y $0.000217 durante 2026.
¿Cuánto será Prism en 2027?
Según nuestra última simulación experimental para la predicción de precios de Prism, el valor de PRISM podría disminuir en un -12.62% hasta $0.00055 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00055 y $0.0002096 a lo largo del año.
¿Cuánto será Prism en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Prism sugiere que el valor de PRISM en 2028 podría aumentar en un 47.02% , alcanzando $0.000926 en el mejor escenario. Se espera que el precio oscile entre $0.000926 y $0.000378 durante el año.
¿Cuánto será Prism en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Prism podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.002734 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.002734 y $0.000831.
¿Cuánto será Prism en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Prism, se espera que el valor de PRISM en 2030 aumente en un 224.23% , alcanzando $0.002044 en el mejor escenario. Se pronostica que el precio oscile entre $0.002044 y $0.0007069 durante el transcurso de 2030.
¿Cuánto será Prism en 2031?
Nuestra simulación experimental indica que el precio de Prism podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.001865 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.001865 y $0.000835 durante el año.
¿Cuánto será Prism en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Prism, PRISM podría experimentar un 449.04% aumento en valor, alcanzando $0.003461 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.003461 y $0.001275 a lo largo del año.
¿Cuánto será Prism en 2033?
Según nuestra predicción experimental de precios de Prism, se anticipa que el valor de PRISM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.009219. A lo largo del año, el precio de PRISM podría oscilar entre $0.009219 y $0.002964.
¿Cuánto será Prism en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Prism sugieren que PRISM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.005339 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.005339 y $0.002383.
¿Cuánto será Prism en 2035?
Basado en nuestra predicción experimental para el precio de Prism, PRISM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.006291 en 2035. El rango de precios esperado para el año está entre $0.006291 y $0.002818.
¿Cuánto será Prism en 2036?
Nuestra reciente simulación de predicción de precios de Prism sugiere que el valor de PRISM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.013016 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.013016 y $0.004664.
¿Cuánto será Prism en 2037?
Según la simulación experimental, el valor de Prism podría aumentar en un 4830.69% en 2037, con un máximo de $0.031084 bajo condiciones favorables. Se espera que el precio caiga entre $0.031084 y $0.012114 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Napoli Fan Token
Predicción de precios de Karlsen
Predicción de precios de Reflexer Ungovernance Token
Predicción de precios de Champignons of Arborethia
Predicción de precios de SANSHU!
Predicción de precios de Digits DAO
Predicción de precios de Nash Exchange
Predicción de precios de Inscribe
Predicción de precios de BigShortBets
Predicción de precios de UniCoin
Predicción de precios de AthenaDAO
Predicción de precios de Codex Multichain
Predicción de precios de Spheroid Universe
Predicción de precios de DeFinity
Predicción de precios de IXO
Predicción de precios de Mysterium
Predicción de precios de UFC Fan Token
Predicción de precios de MEME (Ordinals)
Predicción de precios de Galaxia
Predicción de precios de MetaTrace
Predicción de precios de Yield Yak
Predicción de precios de Gamestarter
Predicción de precios de QHUB
Predicción de precios de Piteas
Predicción de precios de MetFi
¿Cómo leer y predecir los movimientos de precio de Prism?
Los traders de Prism utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Prism
Las medias móviles son herramientas populares para la predicción de precios de Prism. Una media móvil simple (SMA) calcula el precio de cierre promedio de PRISM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PRISM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PRISM.
¿Cómo leer gráficos de Prism y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Prism en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PRISM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Prism?
La acción del precio de Prism está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PRISM. La capitalización de mercado de Prism puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PRISM, grandes poseedores de Prism, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Prism.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


