Predicción del precio de Prism - Pronóstico de PRISM
Predicción de precio de Prism hasta $0.00065 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000217 | $0.00065 |
| 2027 | $0.0002097 | $0.000551 |
| 2028 | $0.000378 | $0.000927 |
| 2029 | $0.000831 | $0.002735 |
| 2030 | $0.0007072 | $0.002044 |
| 2031 | $0.000836 | $0.001866 |
| 2032 | $0.001276 | $0.003462 |
| 2033 | $0.002965 | $0.009223 |
| 2034 | $0.002384 | $0.005341 |
| 2035 | $0.002819 | $0.006293 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Prism hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,958.90, equivalente a un ROI del 39.59% en los próximos 90 días.
Predicción del precio a largo plazo de Prism para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Prism'
'name_with_ticker' => 'Prism <small>PRISM</small>'
'name_lang' => 'Prism'
'name_lang_with_ticker' => 'Prism <small>PRISM</small>'
'name_with_lang' => 'Prism'
'name_with_lang_with_ticker' => 'Prism <small>PRISM</small>'
'image' => '/uploads/coins/prism.png?1717211390'
'price_for_sd' => 0.0006306
'ticker' => 'PRISM'
'marketcap' => '$1.17M'
'low24h' => '$0.0006258'
'high24h' => '$0.0006503'
'volume24h' => '$12.2K'
'current_supply' => '1.83B'
'max_supply' => '1.91B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006306'
'change_24h_pct' => '0.5752%'
'ath_price' => '$0.04643'
'ath_days' => 1455
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 ene. 2022'
'ath_pct' => '-98.63%'
'fdv' => '$1.22M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.031096'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000636'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000557'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000217'
'current_year_max_price_prediction' => '$0.00065'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0007072'
'grand_prediction_max_price' => '$0.002044'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00064263105426232
107 => 0.00064503040534386
108 => 0.00065043626584448
109 => 0.00060424377974362
110 => 0.00062498284986277
111 => 0.00063716511056969
112 => 0.00058212521350139
113 => 0.00063607714877141
114 => 0.00060343967132961
115 => 0.00059236202128741
116 => 0.00060727661769982
117 => 0.00060146438497298
118 => 0.0005964673685802
119 => 0.00059367894757339
120 => 0.00060463058111473
121 => 0.00060411967432
122 => 0.00058620067622589
123 => 0.00056282607368394
124 => 0.00057067135754219
125 => 0.00056782109236656
126 => 0.00055749136367854
127 => 0.00056445235359807
128 => 0.00053379967686886
129 => 0.00048106333974376
130 => 0.00051590257940629
131 => 0.00051456130657709
201 => 0.00051388497599472
202 => 0.00054006570171526
203 => 0.00053754902902934
204 => 0.00053298124346106
205 => 0.00055740747271448
206 => 0.00054849157045784
207 => 0.00057596828036204
208 => 0.00059406621858713
209 => 0.00058947599604628
210 => 0.0006064971944219
211 => 0.00057085209703704
212 => 0.0005826919685552
213 => 0.00058513214966574
214 => 0.00055710605683708
215 => 0.00053796078780497
216 => 0.00053668401663258
217 => 0.00050348875851149
218 => 0.00052122139745701
219 => 0.00053682538590261
220 => 0.00052935228635559
221 => 0.0005269865262915
222 => 0.00053907268138818
223 => 0.00054001187915011
224 => 0.00051859807064639
225 => 0.00052305067952143
226 => 0.00054161879871501
227 => 0.00052258281055864
228 => 0.00048559899508183
301 => 0.00047642649750232
302 => 0.00047520271724255
303 => 0.00045032617632698
304 => 0.00047703944765059
305 => 0.00046537838884667
306 => 0.00050221553388732
307 => 0.00048117435420167
308 => 0.0004802673109999
309 => 0.0004788961821661
310 => 0.00045748391576311
311 => 0.00046217184128485
312 => 0.00047775521971031
313 => 0.00048331554469184
314 => 0.00048273555724187
315 => 0.00047767885265455
316 => 0.00047999378612011
317 => 0.00047253657885125
318 => 0.00046990328375627
319 => 0.00046159188009164
320 => 0.00044937641278849
321 => 0.00045107504843881
322 => 0.00042687301136038
323 => 0.00041368645706073
324 => 0.00041003659262658
325 => 0.0004051558413669
326 => 0.00041058788646854
327 => 0.00042680445003017
328 => 0.00040724383383897
329 => 0.00037370852939685
330 => 0.0003757240583352
331 => 0.00038025235344376
401 => 0.00037181390546663
402 => 0.00036382762264154
403 => 0.00037077104761035
404 => 0.00035656169703012
405 => 0.00038196948557541
406 => 0.00038128227609976
407 => 0.00039075272846234
408 => 0.00039667479667791
409 => 0.00038302634673338
410 => 0.00037959379848166
411 => 0.00038154913396646
412 => 0.00034923179396637
413 => 0.00038811171231463
414 => 0.00038844794746303
415 => 0.00038556889798816
416 => 0.0004062712542258
417 => 0.00044995968311407
418 => 0.00043352233880332
419 => 0.00042715730226484
420 => 0.00041505736315237
421 => 0.00043117981359644
422 => 0.00042994186095174
423 => 0.00042434336961282
424 => 0.00042095738458268
425 => 0.00042719616582068
426 => 0.00042018433054576
427 => 0.00041892481225803
428 => 0.00041129350180384
429 => 0.0004085694711742
430 => 0.00040655270734279
501 => 0.00040433244852754
502 => 0.00040922978621997
503 => 0.0003981317747105
504 => 0.00038474866078156
505 => 0.00038363599966567
506 => 0.00038670815483281
507 => 0.00038534895486641
508 => 0.00038362949233915
509 => 0.00038034657010687
510 => 0.00037937259720909
511 => 0.00038253753662241
512 => 0.0003789645045522
513 => 0.00038423670800492
514 => 0.00038280296039011
515 => 0.00037479416276254
516 => 0.00036481223568193
517 => 0.00036472337559311
518 => 0.00036257278577724
519 => 0.00035983368630338
520 => 0.00035907173149186
521 => 0.00037018629172626
522 => 0.00039319309878069
523 => 0.00038867631204967
524 => 0.00039194015336175
525 => 0.00040799502227472
526 => 0.0004130983823154
527 => 0.00040947613823823
528 => 0.00040451778713512
529 => 0.0004047359294196
530 => 0.00042168011613389
531 => 0.00042273690427509
601 => 0.00042540706697515
602 => 0.00042883898063261
603 => 0.00041006060797411
604 => 0.0004038514697561
605 => 0.00040090923559853
606 => 0.00039184829318113
607 => 0.0004016197427518
608 => 0.00039592633754216
609 => 0.00039669457241936
610 => 0.00039619425844776
611 => 0.00039646746370734
612 => 0.0003819623835807
613 => 0.00038724727241428
614 => 0.0003784601197074
615 => 0.00036669510863708
616 => 0.00036665566819463
617 => 0.00036953513798661
618 => 0.00036782231668068
619 => 0.00036321315858707
620 => 0.00036386786773965
621 => 0.00035813192664567
622 => 0.00036456431484103
623 => 0.00036474877271828
624 => 0.00036227195288851
625 => 0.00037218193440198
626 => 0.00037624206191383
627 => 0.00037461176604325
628 => 0.00037612767600951
629 => 0.00038886400493041
630 => 0.00039094058226951
701 => 0.00039186286075254
702 => 0.00039062712976376
703 => 0.00037636047272178
704 => 0.0003769932596281
705 => 0.00037235028917022
706 => 0.00036842746839748
707 => 0.0003685843606559
708 => 0.00037060120046409
709 => 0.00037940885819256
710 => 0.00039794405464234
711 => 0.00039864745179855
712 => 0.00039949998967143
713 => 0.00039603228969123
714 => 0.00039498639819579
715 => 0.00039636619904578
716 => 0.00040332704429799
717 => 0.00042123222813771
718 => 0.00041490334032173
719 => 0.00040975785601233
720 => 0.00041427183296428
721 => 0.00041357694159425
722 => 0.00040771135911722
723 => 0.00040754673175302
724 => 0.00039628880363945
725 => 0.00039212700394648
726 => 0.00038864909261773
727 => 0.00038485130423991
728 => 0.00038259984798652
729 => 0.0003860591080603
730 => 0.00038685028176793
731 => 0.0003792865491591
801 => 0.00037825564035347
802 => 0.00038443234767635
803 => 0.00038171420907441
804 => 0.0003845098820331
805 => 0.00038515850214035
806 => 0.0003850540593641
807 => 0.00038221601048744
808 => 0.00038402489820959
809 => 0.00037974633949133
810 => 0.00037509404950396
811 => 0.00037212617833993
812 => 0.00036953631711834
813 => 0.0003709733226477
814 => 0.00036585066032237
815 => 0.00036421181754567
816 => 0.00038341208775058
817 => 0.00039759553378864
818 => 0.00039738930086599
819 => 0.00039613391098813
820 => 0.00039426865627617
821 => 0.00040319058929785
822 => 0.00040008236623278
823 => 0.00040234385821335
824 => 0.00040291950283692
825 => 0.00040466180573941
826 => 0.00040528452927106
827 => 0.00040340222624912
828 => 0.00039708498740356
829 => 0.00038134302882547
830 => 0.00037401510461276
831 => 0.00037159676756634
901 => 0.0003716846695249
902 => 0.00036925994109615
903 => 0.00036997413228712
904 => 0.00036901157454587
905 => 0.00036718872305168
906 => 0.00037086076670459
907 => 0.00037128393552814
908 => 0.00037042683666189
909 => 0.00037062871447232
910 => 0.00036353230193154
911 => 0.00036407182676442
912 => 0.00036106768393545
913 => 0.0003605044433705
914 => 0.00035291023189952
915 => 0.00033945598548012
916 => 0.00034691094403176
917 => 0.00033790640242717
918 => 0.00033449624608045
919 => 0.00035063939583774
920 => 0.00034901907134338
921 => 0.00034624578014717
922 => 0.00034214350446345
923 => 0.00034062193050798
924 => 0.00033137732882635
925 => 0.00033083110844097
926 => 0.00033541298265963
927 => 0.00033329860536038
928 => 0.00033032921885494
929 => 0.0003195744019341
930 => 0.00030748242691758
1001 => 0.00030784740763588
1002 => 0.00031169363990944
1003 => 0.00032287707897992
1004 => 0.00031850751585963
1005 => 0.00031533734768089
1006 => 0.00031474367047592
1007 => 0.00032217478364355
1008 => 0.00033269136564209
1009 => 0.00033762551062055
1010 => 0.00033273592279911
1011 => 0.00032711902758395
1012 => 0.00032746090196951
1013 => 0.00032973523909422
1014 => 0.00032997423976863
1015 => 0.00032631821840972
1016 => 0.00032734736700698
1017 => 0.00032578399618042
1018 => 0.00031618959230352
1019 => 0.00031601605996158
1020 => 0.00031366143851952
1021 => 0.00031359014151804
1022 => 0.00030958434305727
1023 => 0.00030902390416183
1024 => 0.00030107014818338
1025 => 0.00030630533445459
1026 => 0.00030279384636347
1027 => 0.00029750120553387
1028 => 0.00029658875225992
1029 => 0.00029656132281269
1030 => 0.00030199568153186
1031 => 0.00030624183080891
1101 => 0.00030285493020222
1102 => 0.00030208379858638
1103 => 0.00031031746679868
1104 => 0.00030926965746711
1105 => 0.00030836226134362
1106 => 0.000331749721071
1107 => 0.00031323672175054
1108 => 0.00030516399736176
1109 => 0.00029517246796186
1110 => 0.00029842576031613
1111 => 0.00029911127681599
1112 => 0.00027508344971777
1113 => 0.0002653353632565
1114 => 0.00026199018733188
1115 => 0.00026006499129342
1116 => 0.00026094232730323
1117 => 0.00025216790615159
1118 => 0.00025806446228103
1119 => 0.00025046655524706
1120 => 0.00024919274140709
1121 => 0.00026277874038389
1122 => 0.00026466915277326
1123 => 0.00025660406621512
1124 => 0.00026178315740435
1125 => 0.00025990514694438
1126 => 0.00025059679955584
1127 => 0.00025024128915317
1128 => 0.00024557068763783
1129 => 0.00023826210067298
1130 => 0.00023492188031448
1201 => 0.00023318226455065
1202 => 0.00023390006391924
1203 => 0.00023353712259346
1204 => 0.00023116868493975
1205 => 0.00023367287866738
1206 => 0.00022727569849759
1207 => 0.00022472828980839
1208 => 0.00022357768440292
1209 => 0.00021789981879427
1210 => 0.00022693582793592
1211 => 0.00022871603556947
1212 => 0.00023049975076199
1213 => 0.00024602577371879
1214 => 0.00024525013748795
1215 => 0.00025226151126455
1216 => 0.00025198906217268
1217 => 0.00024998930479487
1218 => 0.00024155265736201
1219 => 0.00024491535465997
1220 => 0.00023456549505605
1221 => 0.00024232031359335
1222 => 0.00023878133826189
1223 => 0.00024112378247389
1224 => 0.00023691185657103
1225 => 0.00023924291027183
1226 => 0.00022913818884073
1227 => 0.00021970254214564
1228 => 0.00022349972181944
1229 => 0.00022762769038503
1230 => 0.00023657817802207
1231 => 0.00023124734142537
]
'min_raw' => 0.00021789981879427
'max_raw' => 0.00065043626584448
'avg_raw' => 0.00043416804231938
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000217'
'max' => '$0.00065'
'avg' => '$0.000434'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00041278018120573
'max_diff' => 1.9756265844482E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00023316451184679
102 => 0.00022674231186548
103 => 0.0002134914788933
104 => 0.00021356647716889
105 => 0.00021152812520121
106 => 0.00020976669149687
107 => 0.0002318596521353
108 => 0.00022911204324188
109 => 0.0002247340880684
110 => 0.00023059415504113
111 => 0.00023214364976049
112 => 0.00023218776169682
113 => 0.00023646311528991
114 => 0.00023874487226894
115 => 0.0002391470418262
116 => 0.00024587440308005
117 => 0.0002481293258363
118 => 0.00025741703354069
119 => 0.00023855128113102
120 => 0.0002381627533751
121 => 0.00023067661820094
122 => 0.00022592879292237
123 => 0.0002310017058597
124 => 0.00023549561420051
125 => 0.00023081625645981
126 => 0.00023142728179411
127 => 0.0002251456263448
128 => 0.00022739102258856
129 => 0.00022932506032124
130 => 0.00022825719836274
131 => 0.00022665855732576
201 => 0.00023512716496442
202 => 0.0002346493329327
203 => 0.00024253549505826
204 => 0.00024868332238
205 => 0.00025970132799614
206 => 0.00024820346475408
207 => 0.00024778443691767
208 => 0.00025188050123274
209 => 0.0002481286987502
210 => 0.00025049970841134
211 => 0.00025931932168407
212 => 0.00025950566621475
213 => 0.00025638415523436
214 => 0.00025619421100752
215 => 0.00025679373133689
216 => 0.00026030514063171
217 => 0.00025907814632939
218 => 0.00026049805519973
219 => 0.0002622736729845
220 => 0.00026961838098865
221 => 0.00027138916522306
222 => 0.0002670870775798
223 => 0.00026747550792556
224 => 0.00026586640905203
225 => 0.00026431203970216
226 => 0.00026780603500326
227 => 0.00027419138009068
228 => 0.00027415165719029
301 => 0.0002756329331372
302 => 0.00027655575578057
303 => 0.00027259432544776
304 => 0.00027001557996693
305 => 0.00027100443507412
306 => 0.00027258563592497
307 => 0.00027049167294908
308 => 0.00025756676344383
309 => 0.00026148735534131
310 => 0.00026083477714242
311 => 0.00025990542643098
312 => 0.00026384761190093
313 => 0.00026346737849533
314 => 0.00025207791178034
315 => 0.0002528070284864
316 => 0.00025212225178214
317 => 0.00025433490540572
318 => 0.00024800920819321
319 => 0.00024995495005156
320 => 0.00025117530110492
321 => 0.00025189409725052
322 => 0.00025449088181159
323 => 0.00025418617911532
324 => 0.00025447194106416
325 => 0.00025832228704251
326 => 0.0002777960157218
327 => 0.00027885592780745
328 => 0.00027363653305306
329 => 0.00027572157830943
330 => 0.00027171874736648
331 => 0.00027440587459512
401 => 0.00027624433879933
402 => 0.00026793667257685
403 => 0.00026744474649947
404 => 0.00026342539444932
405 => 0.00026558516657333
406 => 0.00026214881383092
407 => 0.00026299197459539
408 => 0.00026063442359249
409 => 0.00026487754601399
410 => 0.00026962201619578
411 => 0.00027082065672851
412 => 0.0002676675495341
413 => 0.00026538449212546
414 => 0.00026137619540175
415 => 0.000268042082184
416 => 0.00026999139061835
417 => 0.00026803184329664
418 => 0.00026757777336524
419 => 0.00026671731166574
420 => 0.00026776032438246
421 => 0.00026998077426598
422 => 0.00026893365110618
423 => 0.00026962529440116
424 => 0.00026698946338016
425 => 0.00027259563684603
426 => 0.00028149958950895
427 => 0.00028152821717271
428 => 0.00028048108836853
429 => 0.00028005262582256
430 => 0.00028112704352074
501 => 0.00028170987104708
502 => 0.00028518434086848
503 => 0.00028891258541582
504 => 0.00030631067595775
505 => 0.00030142536175316
506 => 0.00031686198269899
507 => 0.00032907034567278
508 => 0.00033273109992161
509 => 0.00032936337826449
510 => 0.00031784258439621
511 => 0.00031727731928619
512 => 0.0003344942492791
513 => 0.00032962967797075
514 => 0.00032905105269256
515 => 0.00032289545733545
516 => 0.00032653417657682
517 => 0.00032573833530194
518 => 0.00032448206091566
519 => 0.00033142448375281
520 => 0.00034442007954959
521 => 0.00034239459407274
522 => 0.00034088266312383
523 => 0.00033425782182222
524 => 0.00033824745599766
525 => 0.0003368268236842
526 => 0.0003429307616584
527 => 0.00033931492402126
528 => 0.00032959282405865
529 => 0.00033114110052216
530 => 0.0003309070816494
531 => 0.00033572317346802
601 => 0.00033427750224682
602 => 0.00033062479114126
603 => 0.00034437566201596
604 => 0.00034348275694772
605 => 0.00034474869218797
606 => 0.00034530599603107
607 => 0.00035367590881498
608 => 0.00035710479427521
609 => 0.00035788321130577
610 => 0.00036114038729347
611 => 0.00035780216979998
612 => 0.00037115741988268
613 => 0.00038003788188724
614 => 0.00039035299548992
615 => 0.0004054261489046
616 => 0.00041109379402298
617 => 0.00041006998466147
618 => 0.00042149827755296
619 => 0.00044203466584229
620 => 0.00041422097589256
621 => 0.00044350885894654
622 => 0.00043423665331652
623 => 0.0004122524205676
624 => 0.00041083689515565
625 => 0.0004257248728154
626 => 0.00045874497435
627 => 0.00045047381342648
628 => 0.00045875850300621
629 => 0.00044909397254426
630 => 0.00044861404714776
701 => 0.00045828911833331
702 => 0.00048089544951902
703 => 0.00047015602895835
704 => 0.00045475843617065
705 => 0.00046612777907201
706 => 0.00045627860206784
707 => 0.00043408564966639
708 => 0.0004504674886256
709 => 0.00043951341944149
710 => 0.00044271039917976
711 => 0.00046573422330994
712 => 0.00046296393587711
713 => 0.0004665489443369
714 => 0.00046022149824138
715 => 0.00045431066584151
716 => 0.00044327765822296
717 => 0.00044001132858781
718 => 0.00044091402458874
719 => 0.0004400108812565
720 => 0.0004338380148925
721 => 0.00043250498498892
722 => 0.00043028321008157
723 => 0.00043097183102815
724 => 0.00042679424419915
725 => 0.00043467821367895
726 => 0.0004361415478877
727 => 0.0004418788434066
728 => 0.00044247450846012
729 => 0.00045845279481498
730 => 0.00044965222319492
731 => 0.00045555640644245
801 => 0.00045502828072046
802 => 0.00041272888555329
803 => 0.0004185573689966
804 => 0.00042762466015554
805 => 0.00042353985777886
806 => 0.00041776490291479
807 => 0.00041310131722856
808 => 0.00040603550803781
809 => 0.00041598049878695
810 => 0.00042905710409021
811 => 0.0004428061527503
812 => 0.00045932473384205
813 => 0.00045563797883985
814 => 0.00044249734936687
815 => 0.0004430868284058
816 => 0.00044673075587296
817 => 0.00044201153871726
818 => 0.00044061974944798
819 => 0.00044653954539974
820 => 0.00044658031178099
821 => 0.00044115028210692
822 => 0.00043511579780913
823 => 0.00043509051309958
824 => 0.00043401673490499
825 => 0.00044928499529966
826 => 0.00045768099472149
827 => 0.00045864358252437
828 => 0.00045761620489286
829 => 0.00045801160176807
830 => 0.00045312615469773
831 => 0.0004642928379662
901 => 0.00047454049080386
902 => 0.0004717939009342
903 => 0.00046767637226881
904 => 0.00046439656235979
905 => 0.00047102128195349
906 => 0.00047072629361826
907 => 0.00047445098649618
908 => 0.00047428201291237
909 => 0.00047302953879031
910 => 0.00047179394566399
911 => 0.00047669293274472
912 => 0.0004752821031408
913 => 0.00047386908212882
914 => 0.00047103505216659
915 => 0.00047142024390671
916 => 0.00046730342619071
917 => 0.00046539879794252
918 => 0.00043675775893196
919 => 0.00042910393743539
920 => 0.00043151198548612
921 => 0.00043230477742936
922 => 0.00042897382450541
923 => 0.00043374955534675
924 => 0.00043300526275388
925 => 0.00043590086983614
926 => 0.00043409182024379
927 => 0.00043416606427008
928 => 0.00043948609339115
929 => 0.00044103052047801
930 => 0.00044024501239658
1001 => 0.00044079515533117
1002 => 0.00045347296705813
1003 => 0.00045167058764415
1004 => 0.00045071310950323
1005 => 0.00045097833749179
1006 => 0.00045421779020338
1007 => 0.00045512466009506
1008 => 0.00045128218863938
1009 => 0.00045309432039094
1010 => 0.00046081014739533
1011 => 0.00046351025016888
1012 => 0.00047212768209919
1013 => 0.00046846684385255
1014 => 0.00047518647089162
1015 => 0.00049584031352003
1016 => 0.00051234003214881
1017 => 0.00049716620901807
1018 => 0.00052746584105333
1019 => 0.00055105845081685
1020 => 0.00055015292715857
1021 => 0.00054603900993941
1022 => 0.00051917945096563
1023 => 0.00049446288434449
1024 => 0.00051513934184393
1025 => 0.00051519205038624
1026 => 0.00051341592435
1027 => 0.00050238455808011
1028 => 0.00051303205671568
1029 => 0.00051387721649134
1030 => 0.00051340415176309
1031 => 0.00050494642910838
1101 => 0.00049203304986305
1102 => 0.00049455629325732
1103 => 0.00049868941740992
1104 => 0.00049086455112904
1105 => 0.00048836403222693
1106 => 0.00049301297260913
1107 => 0.00050799282716579
1108 => 0.00050516097243425
1109 => 0.00050508702126278
1110 => 0.00051720289669764
1111 => 0.00050853054465585
1112 => 0.00049458811943707
1113 => 0.00049106747319133
1114 => 0.00047857155081045
1115 => 0.00048720252890788
1116 => 0.00048751314244417
1117 => 0.00048278604394667
1118 => 0.00049497169742762
1119 => 0.00049485940448555
1120 => 0.00050642786887054
1121 => 0.00052854242785785
1122 => 0.00052200206457395
1123 => 0.00051439633366427
1124 => 0.00051522328749819
1125 => 0.00052429292996037
1126 => 0.00051880921708794
1127 => 0.00052078119847067
1128 => 0.00052428994513037
1129 => 0.00052640685910744
1130 => 0.00051491869615435
1201 => 0.00051224025582763
1202 => 0.00050676110692397
1203 => 0.00050533169924816
1204 => 0.000509794351704
1205 => 0.00050861860044972
1206 => 0.0004874870365792
1207 => 0.00048527867057982
1208 => 0.0004853463980122
1209 => 0.00047979335670467
1210 => 0.00047132363582808
1211 => 0.00049358155659101
1212 => 0.00049179393405435
1213 => 0.00048982053712486
1214 => 0.00049006226698868
1215 => 0.00049972367600094
1216 => 0.00049411957086098
1217 => 0.00050901900287034
1218 => 0.00050595612756714
1219 => 0.00050281470106969
1220 => 0.00050238046023756
1221 => 0.00050117127904996
1222 => 0.00049702454684117
1223 => 0.00049201711851909
1224 => 0.00048871078060483
1225 => 0.00045080986195384
1226 => 0.00045784405199596
1227 => 0.00046593624645283
1228 => 0.0004687296395519
1229 => 0.00046395134735902
1230 => 0.00049721322294098
1231 => 0.00050329048812921
]
'min_raw' => 0.00020976669149687
'max_raw' => 0.00055105845081685
'avg_raw' => 0.00038041257115686
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0002097'
'max' => '$0.000551'
'avg' => '$0.00038'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.133127297402E-6
'max_diff' => -9.9377815027637E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00048488205546385
102 => 0.00048143858932352
103 => 0.00049743897600786
104 => 0.00048778878686948
105 => 0.00049213426644761
106 => 0.00048274171644995
107 => 0.00050182665290846
108 => 0.00050168125766866
109 => 0.00049425678633346
110 => 0.00050053189866539
111 => 0.00049944144347479
112 => 0.00049105923362301
113 => 0.00050209238391184
114 => 0.00050209785621673
115 => 0.00049495196397853
116 => 0.00048660712628126
117 => 0.00048511526639726
118 => 0.00048399135037784
119 => 0.00049185785200413
120 => 0.00049891093276436
121 => 0.00051203496745212
122 => 0.000515334661592
123 => 0.00052821358749302
124 => 0.00052054481418249
125 => 0.00052394428206381
126 => 0.00052763488533307
127 => 0.0005294042962578
128 => 0.00052652113610778
129 => 0.00054652740920946
130 => 0.00054821655163561
131 => 0.00054878290648007
201 => 0.00054203690375421
202 => 0.00054802893309637
203 => 0.00054522546100233
204 => 0.00055251931656405
205 => 0.00055366308624875
206 => 0.00055269435401659
207 => 0.00055305740456769
208 => 0.00053598557982383
209 => 0.00053510031564982
210 => 0.00052302967582159
211 => 0.00052794855077325
212 => 0.00051875294981892
213 => 0.00052166896960673
214 => 0.00052295432334433
215 => 0.00052228292749499
216 => 0.0005282266565828
217 => 0.00052317327263453
218 => 0.00050983656154181
219 => 0.00049649621687107
220 => 0.00049632873971054
221 => 0.00049281646243537
222 => 0.0004902777292711
223 => 0.00049076677934494
224 => 0.00049249025559294
225 => 0.00049017755769846
226 => 0.00049067108905101
227 => 0.00049886699788549
228 => 0.0005005106289517
229 => 0.00049492492838061
301 => 0.00047249753457493
302 => 0.00046699379588015
303 => 0.00047094977411008
304 => 0.0004690590713138
305 => 0.00037856727910976
306 => 0.00039982698340438
307 => 0.00038719518902386
308 => 0.00039301650103532
309 => 0.00038012270996011
310 => 0.00038627630288269
311 => 0.00038513995896312
312 => 0.00041932493434847
313 => 0.00041879118297772
314 => 0.00041904666151341
315 => 0.00040685200535951
316 => 0.00042627842373366
317 => 0.00043584857597618
318 => 0.00043407739549744
319 => 0.00043452316346535
320 => 0.00042686339287669
321 => 0.00041912082483613
322 => 0.00041053312530648
323 => 0.00042648800956083
324 => 0.00042471409879071
325 => 0.00042878281186443
326 => 0.00043913069478205
327 => 0.00044065445984946
328 => 0.00044270241555255
329 => 0.0004419683692164
330 => 0.0004594563309903
331 => 0.00045733842343019
401 => 0.00046244197128646
402 => 0.00045194358613901
403 => 0.00044006366682882
404 => 0.00044232165110586
405 => 0.00044210418906242
406 => 0.00043933564765809
407 => 0.0004368363322681
408 => 0.00043267567632152
409 => 0.00044584060739772
410 => 0.00044530613523801
411 => 0.00045395861824773
412 => 0.00045242920783003
413 => 0.00044221543075039
414 => 0.00044258021779694
415 => 0.00044503358599566
416 => 0.00045352472134349
417 => 0.00045604546843531
418 => 0.00045487775794798
419 => 0.00045764164205768
420 => 0.00045982610336535
421 => 0.00045791597676536
422 => 0.0004849593413207
423 => 0.00047372905090052
424 => 0.00047920261631146
425 => 0.00048050802940985
426 => 0.00047716424120821
427 => 0.00047788938913706
428 => 0.0004789877906583
429 => 0.00048565706960617
430 => 0.00050315918733681
501 => 0.00051091075613877
502 => 0.00053423173333511
503 => 0.00051026709625681
504 => 0.00050884513386811
505 => 0.00051304594608722
506 => 0.00052673782847762
507 => 0.00053783381314192
508 => 0.00054151499139778
509 => 0.00054200151987392
510 => 0.00054890765500202
511 => 0.00055286612286565
512 => 0.00054806906854808
513 => 0.00054400406728646
514 => 0.00052944373733388
515 => 0.00053112913517236
516 => 0.00054273985495082
517 => 0.00055914068050588
518 => 0.00057321429504719
519 => 0.0005682862057498
520 => 0.00060588404839995
521 => 0.0006096117209253
522 => 0.00060909667711238
523 => 0.00061758886987717
524 => 0.00060073359664404
525 => 0.00059352764078134
526 => 0.00054488296669895
527 => 0.00055855013592563
528 => 0.00057841616904132
529 => 0.00057578682506465
530 => 0.00056135958079545
531 => 0.00057320335068868
601 => 0.00056928742997305
602 => 0.00056619878083294
603 => 0.00058034848130791
604 => 0.00056479030439802
605 => 0.00057826096432525
606 => 0.00056098470363244
607 => 0.0005683087168466
608 => 0.00056415125272359
609 => 0.00056684164153082
610 => 0.00055111368353742
611 => 0.00055960010789606
612 => 0.00055076062038332
613 => 0.00055075642931531
614 => 0.00055056129713854
615 => 0.00056096091499698
616 => 0.00056130004616198
617 => 0.00055361471285164
618 => 0.00055250713625415
619 => 0.00055660242743947
620 => 0.00055180791401993
621 => 0.00055405123667262
622 => 0.00055187586197777
623 => 0.00055138613931355
624 => 0.00054748394580566
625 => 0.00054580277354942
626 => 0.00054646200450956
627 => 0.00054421170938573
628 => 0.00054285582517689
629 => 0.00055029157764229
630 => 0.00054631895505742
701 => 0.00054968271625573
702 => 0.00054584928582975
703 => 0.00053256094582719
704 => 0.00052491868097007
705 => 0.000499818238535
706 => 0.00050693669287259
707 => 0.00051165623546298
708 => 0.00051009642666501
709 => 0.00051344749952892
710 => 0.00051365322818648
711 => 0.00051256376023828
712 => 0.00051130229592375
713 => 0.00051068828485878
714 => 0.00051526462028718
715 => 0.00051792133703573
716 => 0.00051212990470126
717 => 0.00051077305313604
718 => 0.00051662851097994
719 => 0.00052020033688212
720 => 0.00054657269250828
721 => 0.00054461894322191
722 => 0.00054952247052677
723 => 0.000548970408603
724 => 0.00055411008641165
725 => 0.00056251128743889
726 => 0.00054542929673776
727 => 0.00054839413967268
728 => 0.00054766722865326
729 => 0.00055560345255699
730 => 0.00055562822858175
731 => 0.00055087006590768
801 => 0.00055344954308567
802 => 0.00055200974968917
803 => 0.00055461165095639
804 => 0.00054459284970904
805 => 0.00055679466816554
806 => 0.00056371231296257
807 => 0.00056380836446728
808 => 0.00056708727319925
809 => 0.00057041883437251
810 => 0.00057681347592676
811 => 0.00057024049129026
812 => 0.00055841633179635
813 => 0.00055926999792001
814 => 0.00055233749753502
815 => 0.00055245403411895
816 => 0.00055183195270079
817 => 0.00055369886586478
818 => 0.00054500253216291
819 => 0.00054704354430075
820 => 0.00054418611535562
821 => 0.0005483879281802
822 => 0.00054386747216549
823 => 0.00054766687811476
824 => 0.00054930657577016
825 => 0.00055535709541877
826 => 0.00054297380549386
827 => 0.00051772343906196
828 => 0.00052303137221705
829 => 0.00051518052215152
830 => 0.00051590714821538
831 => 0.00051737504850605
901 => 0.00051261710339689
902 => 0.00051352476938364
903 => 0.00051349234116744
904 => 0.00051321289231942
905 => 0.00051197516703597
906 => 0.00051018022049848
907 => 0.00051733073504843
908 => 0.00051854574680739
909 => 0.00052124656743944
910 => 0.00052928237765629
911 => 0.00052847941071817
912 => 0.00052978908310902
913 => 0.0005269300756333
914 => 0.00051603976937235
915 => 0.00051663116539716
916 => 0.00050925644749126
917 => 0.00052105797932196
918 => 0.00051826322081184
919 => 0.00051646142181939
920 => 0.00051596978427075
921 => 0.00052402551370682
922 => 0.00052643591421218
923 => 0.0005249339143732
924 => 0.00052185326888312
925 => 0.00052776901893516
926 => 0.00052935182408363
927 => 0.00052970615578476
928 => 0.00054018773064442
929 => 0.00053029195938365
930 => 0.00053267396988162
1001 => 0.00055125773581194
1002 => 0.00053440482449754
1003 => 0.00054333218748555
1004 => 0.00054289523952304
1005 => 0.00054746217634222
1006 => 0.00054252061740497
1007 => 0.00054258187395041
1008 => 0.00054663700445473
1009 => 0.00054094230500805
1010 => 0.00053953221734031
1011 => 0.00053758419132657
1012 => 0.00054183763486046
1013 => 0.00054438738189233
1014 => 0.00056493647038635
1015 => 0.00057821211870577
1016 => 0.00057763578780019
1017 => 0.00058290237343093
1018 => 0.00058052972836789
1019 => 0.00057286783158719
1020 => 0.00058594575512307
1021 => 0.00058180735291275
1022 => 0.00058214851776281
1023 => 0.00058213581959005
1024 => 0.00058488749527451
1025 => 0.0005829376808647
1026 => 0.00057909439651862
1027 => 0.00058164574802612
1028 => 0.00058922234987854
1029 => 0.00061274035450699
1030 => 0.00062590134146919
1031 => 0.00061194804656644
1101 => 0.00062157284254829
1102 => 0.00061580139462465
1103 => 0.00061475255085122
1104 => 0.00062079763399466
1105 => 0.0006268532982559
1106 => 0.00062646757862182
1107 => 0.00062207147732995
1108 => 0.00061958823125712
1109 => 0.00063839220246907
1110 => 0.00065224664814075
1111 => 0.00065130186782732
1112 => 0.00065547182087176
1113 => 0.00066771493198205
1114 => 0.00066883428862631
1115 => 0.00066869327541725
1116 => 0.00066591883318166
1117 => 0.00067797376603861
1118 => 0.00068803020311424
1119 => 0.00066527662996547
1120 => 0.00067394089275438
1121 => 0.00067783055946543
1122 => 0.00068354174420937
1123 => 0.00069317747017809
1124 => 0.00070364442433022
1125 => 0.00070512456641164
1126 => 0.00070407433477355
1127 => 0.0006971710971434
1128 => 0.00070862416327338
1129 => 0.00071533310080488
1130 => 0.00071932811957358
1201 => 0.00072945882246326
1202 => 0.00067785458072284
1203 => 0.00064132653352173
1204 => 0.00063562215147989
1205 => 0.00064722223667573
1206 => 0.00065028108663293
1207 => 0.00064904806805065
1208 => 0.00060793242994105
1209 => 0.00063540568615432
1210 => 0.00066496459982279
1211 => 0.00066610007807927
1212 => 0.00068089788830944
1213 => 0.00068571666190312
1214 => 0.00069763083873174
1215 => 0.00069688560372723
1216 => 0.00069978651618904
1217 => 0.00069911964665087
1218 => 0.00072118815039997
1219 => 0.00074553298723974
1220 => 0.00074469000295182
1221 => 0.00074119014462106
1222 => 0.00074638803105676
1223 => 0.00077151451162666
1224 => 0.00076920126793943
1225 => 0.00077144838713995
1226 => 0.00080107392379826
1227 => 0.00083959133563752
1228 => 0.00082169613075326
1229 => 0.00086052357614561
1230 => 0.00088496339486565
1231 => 0.00092722953421754
]
'min_raw' => 0.00037856727910976
'max_raw' => 0.00092722953421754
'avg_raw' => 0.00065289840666365
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000378'
'max' => '$0.000927'
'avg' => '$0.000652'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00016880058761289
'max_diff' => 0.00037617108340069
'year' => 2028
]
3 => [
'items' => [
101 => 0.00092193760540556
102 => 0.00093839150329199
103 => 0.00091246394837324
104 => 0.0008529290414564
105 => 0.00084350741454635
106 => 0.00086236975021387
107 => 0.00090874096189269
108 => 0.00086090935573698
109 => 0.00087058562736626
110 => 0.00086779886048607
111 => 0.00086765036552202
112 => 0.00087331781432709
113 => 0.00086509688424109
114 => 0.00083160333615361
115 => 0.00084695323186338
116 => 0.00084102589996731
117 => 0.00084760271661787
118 => 0.00088309508359545
119 => 0.00086740306212231
120 => 0.00085087279221666
121 => 0.00087160541903889
122 => 0.00089800517748711
123 => 0.00089635312804834
124 => 0.00089314746163405
125 => 0.00091121763536819
126 => 0.00094106426831285
127 => 0.00094913169326431
128 => 0.00095508690143224
129 => 0.00095590802402453
130 => 0.00096436609704997
131 => 0.00091888490668334
201 => 0.00099106472383499
202 => 0.0010035281843299
203 => 0.0010011855703143
204 => 0.0010150381821118
205 => 0.0010109623923142
206 => 0.0010050572123692
207 => 0.0010270165486032
208 => 0.0010018419416379
209 => 0.00096610975644567
210 => 0.00094650637294671
211 => 0.00097232168969799
212 => 0.0009880862028076
213 => 0.0009985055431617
214 => 0.0010016584292573
215 => 0.00092241548202315
216 => 0.00087970792847928
217 => 0.00090708298065781
218 => 0.00094048243364079
219 => 0.00091869937103564
220 => 0.00091955322584897
221 => 0.00088849630306217
222 => 0.00094323028217895
223 => 0.00093525600180686
224 => 0.00097662658248353
225 => 0.00096675316138539
226 => 0.0010004892639305
227 => 0.00099160541751047
228 => 0.0010284817673109
301 => 0.0010431927416337
302 => 0.0010678947571018
303 => 0.0010860656602355
304 => 0.0010967359621096
305 => 0.0010960953572084
306 => 0.0011383764091568
307 => 0.0011134447500102
308 => 0.0010821247101813
309 => 0.0010815582294742
310 => 0.0010977793219101
311 => 0.0011317742816161
312 => 0.0011405886800614
313 => 0.0011455147263099
314 => 0.0011379703150034
315 => 0.0011109087858679
316 => 0.0010992237547923
317 => 0.0011091797398167
318 => 0.0010970044256594
319 => 0.0011180224336846
320 => 0.0011468846479075
321 => 0.0011409247148041
322 => 0.0011608478776058
323 => 0.0011814662551278
324 => 0.0012109514610135
325 => 0.0012186599856661
326 => 0.0012314018837878
327 => 0.0012445174824505
328 => 0.0012487298592657
329 => 0.0012567725936296
330 => 0.0012567302044495
331 => 0.0012809675257937
401 => 0.0013077020418036
402 => 0.0013177937026919
403 => 0.0013409989204471
404 => 0.0013012607982492
405 => 0.001331402620415
406 => 0.0013585912985073
407 => 0.001326175835628
408 => 0.0013708529993729
409 => 0.0013725877124005
410 => 0.0013987798195708
411 => 0.0013722291011531
412 => 0.0013564633693095
413 => 0.0014019784464076
414 => 0.0014240017585039
415 => 0.0014173681576688
416 => 0.0013668861277728
417 => 0.0013375034210972
418 => 0.0012606032102263
419 => 0.0013516948318448
420 => 0.0013960629035561
421 => 0.0013667712251856
422 => 0.0013815442439605
423 => 0.0014621410442289
424 => 0.0014928270875147
425 => 0.0014864446050229
426 => 0.0014875231394994
427 => 0.0015040807714654
428 => 0.0015775064300569
429 => 0.0015335080734354
430 => 0.0015671431684855
501 => 0.0015849831016198
502 => 0.0016015538257451
503 => 0.0015608613645244
504 => 0.0015079210703672
505 => 0.0014911526569253
506 => 0.0013638587450475
507 => 0.0013572325441249
508 => 0.0013535130567525
509 => 0.0013300622150019
510 => 0.0013116362771121
511 => 0.0012969832871909
512 => 0.0012585294658844
513 => 0.0012715065017516
514 => 0.0012102191365254
515 => 0.0012494286209062
516 => 0.00115161250617
517 => 0.0012330766731439
518 => 0.0011887394307812
519 => 0.0012185106965814
520 => 0.0012184068274397
521 => 0.001163588488113
522 => 0.0011319704140189
523 => 0.0011521186814255
524 => 0.0011737192234568
525 => 0.0011772238387285
526 => 0.0012052295053039
527 => 0.0012130452848653
528 => 0.0011893631079104
529 => 0.0011495854846092
530 => 0.0011588249192711
531 => 0.0011317831771704
601 => 0.0010843935642845
602 => 0.0011184296116024
603 => 0.0011300510146161
604 => 0.0011351836882437
605 => 0.0010885814467042
606 => 0.0010739380106286
607 => 0.0010661419681323
608 => 0.0011435697204323
609 => 0.0011478113874866
610 => 0.0011261104191257
611 => 0.0012242008538872
612 => 0.0012019999674845
613 => 0.0012268037969455
614 => 0.0011579865374187
615 => 0.0011606154494073
616 => 0.0011280362559018
617 => 0.0011462784273224
618 => 0.0011333854485349
619 => 0.0011448046401443
620 => 0.0011516492565118
621 => 0.0011842231040922
622 => 0.0012334486141592
623 => 0.0011793576575058
624 => 0.0011557894530952
625 => 0.0011704110345589
626 => 0.0012093502328063
627 => 0.0012683451114121
628 => 0.0012334189558949
629 => 0.0012489185906288
630 => 0.0012523045712874
701 => 0.0012265513172456
702 => 0.0012692946706226
703 => 0.0012922011809438
704 => 0.0013156985206988
705 => 0.0013361006024276
706 => 0.0013063131664831
707 => 0.0013381899928049
708 => 0.0013125028978068
709 => 0.0012894589181105
710 => 0.0012894938663155
711 => 0.0012750380412332
712 => 0.001247028058585
713 => 0.0012418625880344
714 => 0.0012687340181655
715 => 0.0012902823603967
716 => 0.0012920571850724
717 => 0.0013039874545254
718 => 0.0013110476650962
719 => 0.0013802473265802
720 => 0.0014080800028787
721 => 0.001442113272611
722 => 0.0014553711491816
723 => 0.0014952726044476
724 => 0.0014630489386826
725 => 0.001456077145898
726 => 0.0013592892670893
727 => 0.0013751382768221
728 => 0.0014005140706062
729 => 0.0013597077045823
730 => 0.0013855899514938
731 => 0.001390699655295
801 => 0.0013583211198796
802 => 0.0013756158946389
803 => 0.0013296861004215
804 => 0.0012344497581614
805 => 0.0012694006958963
806 => 0.0012951363504276
807 => 0.0012584083982281
808 => 0.0013242418309777
809 => 0.0012857832986433
810 => 0.0012735937902284
811 => 0.0012260381720284
812 => 0.0012484825932352
813 => 0.0012788389942905
814 => 0.0012600822677488
815 => 0.0012990052916596
816 => 0.0013541306739087
817 => 0.0013934163040727
818 => 0.0013964321669451
819 => 0.0013711741386825
820 => 0.0014116502901679
821 => 0.0014119451147427
822 => 0.0013662878505171
823 => 0.0013383230303997
824 => 0.0013319693644305
825 => 0.0013478420677311
826 => 0.0013671144598007
827 => 0.0013975016505759
828 => 0.001415863993546
829 => 0.0014637432453778
830 => 0.0014766979981178
831 => 0.0014909313437434
901 => 0.0015099514829004
902 => 0.001532790036622
903 => 0.0014828205812787
904 => 0.0014848059608942
905 => 0.0014382750959528
906 => 0.0013885501935618
907 => 0.00142628519618
908 => 0.0014756186924262
909 => 0.0014643015338786
910 => 0.0014630281223535
911 => 0.0014651696473239
912 => 0.0014566368793629
913 => 0.0014180434861144
914 => 0.0013986621256324
915 => 0.0014236690253666
916 => 0.0014369590796462
917 => 0.0014575707948194
918 => 0.0014550299658638
919 => 0.0015081235306133
920 => 0.0015287540844089
921 => 0.0015234759059168
922 => 0.0015244472177858
923 => 0.001561797849989
924 => 0.0016033394347424
925 => 0.0016422486107589
926 => 0.0016818286957908
927 => 0.0016341133584478
928 => 0.0016098864528179
929 => 0.0016348824353219
930 => 0.0016216192151614
1001 => 0.0016978336123305
1002 => 0.0017031105318305
1003 => 0.0017793194178313
1004 => 0.0018516507254313
1005 => 0.0018062207270777
1006 => 0.0018490591693131
1007 => 0.0018953924372602
1008 => 0.0019847768284318
1009 => 0.001954675310066
1010 => 0.0019316180187487
1011 => 0.0019098289898659
1012 => 0.0019551685000601
1013 => 0.0020134970556086
1014 => 0.0020260604678097
1015 => 0.0020464179951685
1016 => 0.0020250145443508
1017 => 0.0020507926433479
1018 => 0.0021418006602786
1019 => 0.002117209490754
1020 => 0.0020822860768012
1021 => 0.0021541281656651
1022 => 0.0021801275383459
1023 => 0.002362604751797
1024 => 0.0025929897715366
1025 => 0.0024976088605748
1026 => 0.002438402851218
1027 => 0.0024523176678022
1028 => 0.002536446477986
1029 => 0.0025634659817021
1030 => 0.0024900176564203
1031 => 0.0025159608466004
1101 => 0.0026589103751709
1102 => 0.002735598210879
1103 => 0.002631445829437
1104 => 0.0023440935397818
1105 => 0.0020791416054801
1106 => 0.002149418789398
1107 => 0.0021414515376966
1108 => 0.0022950329728287
1109 => 0.0021166229994936
1110 => 0.0021196269658867
1111 => 0.0022763843024518
1112 => 0.0022345641325573
1113 => 0.002166820813251
1114 => 0.0020796362066803
1115 => 0.0019184673978342
1116 => 0.0017757156893146
1117 => 0.0020556846634767
1118 => 0.0020436118922203
1119 => 0.0020261287303565
1120 => 0.0020650356152086
1121 => 0.0022539564041383
1122 => 0.0022496011684766
1123 => 0.0022218953812573
1124 => 0.0022429099766755
1125 => 0.0021631368530701
1126 => 0.0021836962034235
1127 => 0.00207909963574
1128 => 0.0021263816526715
1129 => 0.0021666754665128
1130 => 0.0021747650462016
1201 => 0.0021929912823046
1202 => 0.0020372500903591
1203 => 0.0021071733132215
1204 => 0.0021482466557331
1205 => 0.0019626758000045
1206 => 0.0021445785165712
1207 => 0.0020345389827002
1208 => 0.0019971899121661
1209 => 0.0020474755152744
1210 => 0.0020278791668388
1211 => 0.00201103137719
1212 => 0.0020016300210842
1213 => 0.0020385542181874
1214 => 0.0020368316602586
1215 => 0.0019764165071198
1216 => 0.001897607402687
1217 => 0.0019240583249553
1218 => 0.0019144484569165
1219 => 0.0018796210554463
1220 => 0.0019030905189607
1221 => 0.0017997428792667
1222 => 0.0016219386367159
1223 => 0.0017394015656362
1224 => 0.0017348793706478
1225 => 0.0017325990748695
1226 => 0.0018208692195162
1227 => 0.0018123840818471
1228 => 0.0017969834738911
1229 => 0.0018793382112038
1230 => 0.0018492776242572
1231 => 0.0019419172700618
]
'min_raw' => 0.00083160333615361
'max_raw' => 0.002735598210879
'avg_raw' => 0.0017836007735163
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000831'
'max' => '$0.002735'
'avg' => '$0.001783'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00045303605704385
'max_diff' => 0.0018083686766615
'year' => 2029
]
4 => [
'items' => [
101 => 0.0020029357323454
102 => 0.0019874594765698
103 => 0.0020448476352753
104 => 0.001924667700781
105 => 0.001964586654238
106 => 0.0019728138952202
107 => 0.001878321966529
108 => 0.0018137723553073
109 => 0.0018094676321582
110 => 0.001697547501784
111 => 0.0017573343320422
112 => 0.0018099442685222
113 => 0.0017847481916443
114 => 0.0017767718664161
115 => 0.001817521182153
116 => 0.00182068775298
117 => 0.0017484896025453
118 => 0.0017635018842388
119 => 0.0018261055944846
120 => 0.0017619244313652
121 => 0.0016372309153575
122 => 0.0016063051993649
123 => 0.0016021791387775
124 => 0.001518306144256
125 => 0.0016083718035846
126 => 0.0015690557296781
127 => 0.0016932547360699
128 => 0.0016223129297115
129 => 0.001619254770229
130 => 0.0016146319136367
131 => 0.0015424389625023
201 => 0.0015582446306994
202 => 0.0016107850790576
203 => 0.0016295321029423
204 => 0.0016275766347613
205 => 0.0016105276021973
206 => 0.0016183325619999
207 => 0.0015931900670474
208 => 0.0015843117287839
209 => 0.0015562892510449
210 => 0.0015151039501756
211 => 0.0015208310188656
212 => 0.0014392321611234
213 => 0.0013947727726464
214 => 0.0013824669998812
215 => 0.001366011206246
216 => 0.0013843257255595
217 => 0.0014390010018118
218 => 0.0013730510186446
219 => 0.0012599843983578
220 => 0.0012667798948932
221 => 0.0012820473580072
222 => 0.0012535965414987
223 => 0.0012266702313694
224 => 0.0012500804734262
225 => 0.0012021726558798
226 => 0.0012878367888753
227 => 0.0012855198141488
228 => 0.0013174501054951
301 => 0.0013374167719495
302 => 0.0012914000700571
303 => 0.0012798269939736
304 => 0.0012864195440778
305 => 0.0011774593759428
306 => 0.0013085457351632
307 => 0.0013096793754412
308 => 0.0012999724591279
309 => 0.0013697718985755
310 => 0.0015170704868009
311 => 0.0014616508328385
312 => 0.0014401906677564
313 => 0.0013993948782479
314 => 0.0014537528455536
315 => 0.0014495790017809
316 => 0.0014307032973576
317 => 0.0014192872124265
318 => 0.0014403216989483
319 => 0.0014166808067682
320 => 0.0014124342529243
321 => 0.0013867047569269
322 => 0.0013775204974734
323 => 0.0013707208374098
324 => 0.0013632350798007
325 => 0.0013797467957519
326 => 0.0013423290751093
327 => 0.0012972069721187
328 => 0.001293455557483
329 => 0.00130381354312
330 => 0.001299230905537
331 => 0.0012934336175773
401 => 0.0012823650160648
402 => 0.0012790811984394
403 => 0.0012897520126404
404 => 0.0012777052855545
405 => 0.0012954808875889
406 => 0.0012906469074045
407 => 0.0012636446870467
408 => 0.0012299899229786
409 => 0.0012296903249851
410 => 0.0012224394612715
411 => 0.0012132043961576
412 => 0.0012106354123125
413 => 0.0012481089281366
414 => 0.0013256779844046
415 => 0.001310449322589
416 => 0.0013214535914468
417 => 0.001375583702902
418 => 0.0013927900375844
419 => 0.0013805773887812
420 => 0.0013638599618561
421 => 0.0013645954437984
422 => 0.0014217239523109
423 => 0.0014252869873116
424 => 0.0014342896272797
425 => 0.0014458605637844
426 => 0.0013825479693021
427 => 0.0013616134262919
428 => 0.0013516934784094
429 => 0.0013211438784344
430 => 0.0013540890028827
501 => 0.0013348932897175
502 => 0.0013374834472425
503 => 0.0013357966037564
504 => 0.0013367177343636
505 => 0.0012878128440043
506 => 0.0013056312156859
507 => 0.0012760047168353
508 => 0.0012363381606048
509 => 0.0012362051843995
510 => 0.0012459135178413
511 => 0.001240138621223
512 => 0.0012245985229092
513 => 0.0012268059205275
514 => 0.0012074667946585
515 => 0.0012291540405542
516 => 0.0012297759531658
517 => 0.0012214251821837
518 => 0.0012548373767491
519 => 0.0012685263801244
520 => 0.0012630297237731
521 => 0.0012681407200618
522 => 0.0013110821422407
523 => 0.0013180834677215
524 => 0.0013211929940184
525 => 0.0013170266407138
526 => 0.0012689256104306
527 => 0.001271059095665
528 => 0.0012554049966044
529 => 0.0012421789324865
530 => 0.0012427079056897
531 => 0.0012495078219142
601 => 0.0012792034548768
602 => 0.0013416961637933
603 => 0.0013440677164151
604 => 0.0013469421073758
605 => 0.0013352505147855
606 => 0.0013317242185868
607 => 0.0013363763134871
608 => 0.0013598452892456
609 => 0.0014202138666613
610 => 0.0013988755795209
611 => 0.0013815272199255
612 => 0.0013967464083748
613 => 0.001394403533605
614 => 0.0013746273127618
615 => 0.0013740722601095
616 => 0.0013361153694711
617 => 0.0013220835712387
618 => 0.0013103575503738
619 => 0.0012975530417049
620 => 0.0012899620997549
621 => 0.0013016252366115
622 => 0.0013042927340048
623 => 0.0012787910814311
624 => 0.0012753153004172
625 => 0.0012961405004002
626 => 0.0012869761063294
627 => 0.0012964019128973
628 => 0.0012985887808741
629 => 0.001298236644762
630 => 0.0012886679648281
701 => 0.0012947667560758
702 => 0.0012803412966378
703 => 0.0012646557761329
704 => 0.0012546493912932
705 => 0.0012459174933662
706 => 0.001250762457837
707 => 0.0012334910441543
708 => 0.0012279655713123
709 => 0.0012927006228282
710 => 0.0013405211014021
711 => 0.0013398257727047
712 => 0.0013355931380829
713 => 0.0013293043015936
714 => 0.0013593852216857
715 => 0.0013489056306126
716 => 0.0013565304087174
717 => 0.001358471234756
718 => 0.0013643455306355
719 => 0.0013664450864996
720 => 0.0013600987704429
721 => 0.0013387997586196
722 => 0.0012857246462051
723 => 0.0012610180381026
724 => 0.0012528644459077
725 => 0.0012531608134981
726 => 0.0012449856723115
727 => 0.0012473936177751
728 => 0.0012441482871468
729 => 0.0012380024160667
730 => 0.0012503829676164
731 => 0.0012518097108497
801 => 0.0012489199421814
802 => 0.0012496005873139
803 => 0.001225674536977
804 => 0.0012274935826195
805 => 0.001217364905329
806 => 0.0012154659004401
807 => 0.0011898614862548
808 => 0.0011444995551063
809 => 0.0011696344683517
810 => 0.0011392750276549
811 => 0.0011277774474423
812 => 0.0011822052039278
813 => 0.0011767421667676
814 => 0.0011673918218746
815 => 0.0011535607129952
816 => 0.0011484306201714
817 => 0.0011172618001643
818 => 0.0011154201799991
819 => 0.0011308682888236
820 => 0.001123739518138
821 => 0.001113728024219
822 => 0.0010774674080931
823 => 0.0010366984700901
824 => 0.001037929028064
825 => 0.0010508968687097
826 => 0.0010886026143386
827 => 0.0010738703272054
828 => 0.0010631818838567
829 => 0.0010611802597109
830 => 0.0010862347765793
831 => 0.0011216921670317
901 => 0.0011383279813176
902 => 0.0011218423945975
903 => 0.0011029046402205
904 => 0.0011040572935803
905 => 0.0011117253799854
906 => 0.0011125311874457
907 => 0.0011002046561788
908 => 0.0011036745025274
909 => 0.0010984034886345
910 => 0.0010660552861037
911 => 0.0010654702096972
912 => 0.0010575314391109
913 => 0.0010572910562926
914 => 0.0010437852271062
915 => 0.0010418956682416
916 => 0.0010150790246467
917 => 0.0010327298206692
918 => 0.0010208905934057
919 => 0.0010030460853283
920 => 0.00099996968540975
921 => 0.00099987720511334
922 => 0.0010181995249498
923 => 0.0010325157136941
924 => 0.0010210965418328
925 => 0.0010184966177513
926 => 0.0010462570049854
927 => 0.0010427242426683
928 => 0.0010396648932856
929 => 0.0011185173466168
930 => 0.0010560994768715
1001 => 0.0010288817229751
1002 => 0.00099519458401702
1003 => 0.0010061632863271
1004 => 0.0010084745530676
1005 => 0.00092746305643661
1006 => 0.00089459670234277
1007 => 0.00088331820816019
1008 => 0.00087682727530361
1009 => 0.00087978527491436
1010 => 0.00085020170139107
1011 => 0.00087008235206587
1012 => 0.00084446547803192
1013 => 0.0008401707257356
1014 => 0.00088597686983005
1015 => 0.00089235052718518
1016 => 0.00086515852476807
1017 => 0.00088262019230517
1018 => 0.00087628834892088
1019 => 0.00084490460581234
1020 => 0.00084370597766878
1021 => 0.00082795871856883
1022 => 0.00080331730734762
1023 => 0.00079205552120219
1024 => 0.00078619028519834
1025 => 0.0007886103958847
1026 => 0.00078738671386507
1027 => 0.00077940136095655
1028 => 0.00078784442494646
1029 => 0.00076627588536716
1030 => 0.00075768711911715
1031 => 0.00075380777265988
1101 => 0.00073466445234443
1102 => 0.00076512998803949
1103 => 0.00077113208236613
1104 => 0.00077714600267273
1105 => 0.0008294930730639
1106 => 0.00082687796135844
1107 => 0.00085051729756472
1108 => 0.00084959871642969
1109 => 0.00084285639481181
1110 => 0.00081441164896401
1111 => 0.0008257492176801
1112 => 0.00079085394342135
1113 => 0.00081699985554401
1114 => 0.00080506795313062
1115 => 0.00081296566733563
1116 => 0.00079876486508684
1117 => 0.00080662417538807
1118 => 0.00077255540159399
1119 => 0.00074074245998566
1120 => 0.00075354491636652
1121 => 0.00076746265059098
1122 => 0.00079763984456234
1123 => 0.00077966655678944
1124 => 0.00078613043071783
1125 => 0.00076447753509715
1126 => 0.00071980142658784
1127 => 0.00072005428851019
1128 => 0.00071318184253797
1129 => 0.00070724304582442
1130 => 0.00078173100509812
1201 => 0.00077246724988206
1202 => 0.00075770666835557
1203 => 0.00077746429329097
1204 => 0.00078268852291956
1205 => 0.00078283724939268
1206 => 0.00079725190252744
1207 => 0.00080494500548943
1208 => 0.00080630094823029
1209 => 0.00082898271638702
1210 => 0.00083658534589341
1211 => 0.00086789950086579
1212 => 0.00080429229945182
1213 => 0.00080298235099658
1214 => 0.00077774232359164
1215 => 0.00076173469918238
1216 => 0.00077883837933006
1217 => 0.00079398990505574
1218 => 0.00077821312373065
1219 => 0.00078027323830567
1220 => 0.00075909419838713
1221 => 0.00076666470859156
1222 => 0.00077318545183747
1223 => 0.00076958508068865
1224 => 0.00076419515081894
1225 => 0.00079274765273195
1226 => 0.00079113660867586
1227 => 0.00081772535487645
1228 => 0.00083845318391929
1229 => 0.0008756011591067
1230 => 0.00083683531043089
1231 => 0.00083542252882485
]
'min_raw' => 0.00070724304582442
'max_raw' => 0.0020448476352753
'avg_raw' => 0.0013760453405499
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0007072'
'max' => '$0.002044'
'avg' => '$0.001376'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012436029032919
'max_diff' => -0.00069075057560368
'year' => 2030
]
5 => [
'items' => [
101 => 0.00084923269564118
102 => 0.00083658323162882
103 => 0.00084457725623998
104 => 0.0008743131981547
105 => 0.00087494147175007
106 => 0.00086441707954275
107 => 0.00086377666932047
108 => 0.00086579799396812
109 => 0.00087763695556435
110 => 0.00087350005860809
111 => 0.00087828738049929
112 => 0.00088427399983032
113 => 0.00090903719565746
114 => 0.00091500751833598
115 => 0.00090050272948458
116 => 0.00090181234951463
117 => 0.00089638716031885
118 => 0.00089114649553315
119 => 0.00090292674463378
120 => 0.00092445538140655
121 => 0.00092432145287453
122 => 0.00092931567814891
123 => 0.00093242703912046
124 => 0.00091907080017515
125 => 0.00091037637974427
126 => 0.00091371037377782
127 => 0.0009190415028424
128 => 0.00091198156047334
129 => 0.00086840432568804
130 => 0.00088162287499736
131 => 0.00087942266203825
201 => 0.00087628929122944
202 => 0.00088958064477599
203 => 0.00088829866130195
204 => 0.00084989827908519
205 => 0.00085235654696497
206 => 0.000850047774497
207 => 0.00085750789067143
208 => 0.00083618036087339
209 => 0.00084274056539616
210 => 0.00084685506417474
211 => 0.0008492785355644
212 => 0.00085803377601372
213 => 0.0008570064495996
214 => 0.00085796991596139
215 => 0.00087095162624995
216 => 0.00093660866210451
217 => 0.00094018222970199
218 => 0.00092258467588105
219 => 0.00092961455153612
220 => 0.0009161187275432
221 => 0.00092517856460381
222 => 0.00093137707502576
223 => 0.00090336719833396
224 => 0.00090170863521887
225 => 0.0008881571091596
226 => 0.00089543893166618
227 => 0.00088385302847665
228 => 0.00088669580386167
301 => 0.00087874715605645
302 => 0.00089305313954586
303 => 0.00090904945201211
304 => 0.00091309075225461
305 => 0.00090245983120575
306 => 0.00089476234375453
307 => 0.0008812480915002
308 => 0.00090372259418391
309 => 0.00091029482366669
310 => 0.00090368807306032
311 => 0.00090215714458447
312 => 0.00089925603788907
313 => 0.00090277262808432
314 => 0.00091025902989346
315 => 0.00090672858105241
316 => 0.00090906050471043
317 => 0.00090017361639528
318 => 0.00091907522164599
319 => 0.00094909551970315
320 => 0.00094919203987022
321 => 0.00094566157199872
322 => 0.0009442169806107
323 => 0.00094783945489356
324 => 0.00094980449859033
325 => 0.00096151891617291
326 => 0.00097408895296201
327 => 0.00103274782992
328 => 0.0010162766519975
329 => 0.0010683222972668
330 => 0.0011094836453936
331 => 0.0011218261339293
401 => 0.0011104716252355
402 => 0.0010716284643524
403 => 0.0010697226335684
404 => 0.0011277707150872
405 => 0.0011113694732876
406 => 0.0011094185977638
407 => 0.0010886645782474
408 => 0.0011009327742169
409 => 0.0010982495397948
410 => 0.0010940139229912
411 => 0.0011174207862911
412 => 0.0011612363448435
413 => 0.0011544072791434
414 => 0.0011493096983895
415 => 0.0011269735834095
416 => 0.0011404249135794
417 => 0.0011356351525491
418 => 0.0011562150055925
419 => 0.0011440239565492
420 => 0.0011112452177499
421 => 0.0011164653399438
422 => 0.0011156763289756
423 => 0.0011319141187909
424 => 0.0011270399373351
425 => 0.0011147245668185
426 => 0.0011610865880277
427 => 0.0011580760962495
428 => 0.0011623442852968
429 => 0.0011642232741135
430 => 0.0011924430194331
501 => 0.0012040037461594
502 => 0.0012066282335253
503 => 0.0012176100297766
504 => 0.0012063549964304
505 => 0.001251383154518
506 => 0.0012813242521804
507 => 0.0013161023778701
508 => 0.0013669225669817
509 => 0.0013860314282006
510 => 0.0013825795834582
511 => 0.0014211108708398
512 => 0.0014903507377621
513 => 0.0013965749402068
514 => 0.001495321082738
515 => 0.0014640591940916
516 => 0.0013899378184885
517 => 0.0013851652757333
518 => 0.0014353611318586
519 => 0.0015466907095723
520 => 0.0015188039130447
521 => 0.0015467363223813
522 => 0.0015141516831728
523 => 0.0015125335811912
524 => 0.0015451537591852
525 => 0.0016213725831015
526 => 0.0015851638768788
527 => 0.0015332498177695
528 => 0.0015715823511435
529 => 0.0015383751632264
530 => 0.0014635500747425
531 => 0.0015187825885369
601 => 0.001481850179494
602 => 0.0014926290198876
603 => 0.0015702554504145
604 => 0.0015609152329195
605 => 0.0015730023392389
606 => 0.0015516689129597
607 => 0.0015317401288424
608 => 0.0014945415733565
609 => 0.0014835289149437
610 => 0.0014865724175351
611 => 0.001483527406735
612 => 0.001462715156813
613 => 0.0014582207534239
614 => 0.0014507298842044
615 => 0.0014530516178038
616 => 0.00143896659214
617 => 0.0014655479456823
618 => 0.0014704816791339
619 => 0.001489825371541
620 => 0.001491833697857
621 => 0.0015457056058707
622 => 0.0015160338642174
623 => 0.0015359402302533
624 => 0.0015341596175091
625 => 0.0013915442534535
626 => 0.0014111953923144
627 => 0.0014417663975147
628 => 0.00142799420111
629 => 0.0014085235375913
630 => 0.001392799932849
701 => 0.0013689770638434
702 => 0.0014025072944912
703 => 0.0014465959822505
704 => 0.001492951859736
705 => 0.0015486454091773
706 => 0.0015362152572864
707 => 0.0014919107075688
708 => 0.0014938981773046
709 => 0.001506183933171
710 => 0.0014902727630454
711 => 0.0014855802483524
712 => 0.0015055392537107
713 => 0.0015056767004113
714 => 0.0014873689762526
715 => 0.0014670232911284
716 => 0.0014669380419648
717 => 0.0014633177238129
718 => 0.0015147957297295
719 => 0.0015431034279701
720 => 0.0015463488599533
721 => 0.0015428849845394
722 => 0.0015442180927099
723 => 0.0015277464668212
724 => 0.0015653957190938
725 => 0.0015999463961043
726 => 0.0015906860765979
727 => 0.0015768035412259
728 => 0.0015657454331286
729 => 0.0015880811377619
730 => 0.0015870865639943
731 => 0.0015996446260819
801 => 0.0015990749198468
802 => 0.0015948521158993
803 => 0.0015906862274075
804 => 0.0016072035043866
805 => 0.001602446793876
806 => 0.0015976826948801
807 => 0.0015881275649968
808 => 0.0015894262658419
809 => 0.0015755461274853
810 => 0.0015691245403696
811 => 0.0014725592776921
812 => 0.0014467538841436
813 => 0.0014548727862712
814 => 0.0014575457396588
815 => 0.001446315199316
816 => 0.0014624169092784
817 => 0.0014599074748367
818 => 0.0014696702162794
819 => 0.001463570879275
820 => 0.0014638211981932
821 => 0.0014817580478074
822 => 0.0014869651915593
823 => 0.0014843167962203
824 => 0.001486171641534
825 => 0.001528915768908
826 => 0.0015228389208757
827 => 0.0015196107164746
828 => 0.0015205049511556
829 => 0.0015314269921441
830 => 0.0015344845672995
831 => 0.0015215294065139
901 => 0.0015276391352333
902 => 0.0015536535846804
903 => 0.0015627571696966
904 => 0.0015918114430995
905 => 0.0015794686713594
906 => 0.001602124363071
907 => 0.001671760235498
908 => 0.0017273901888285
909 => 0.0016762305847407
910 => 0.0017783879096003
911 => 0.0018579320406014
912 => 0.0018548790043659
913 => 0.001841008645237
914 => 0.0017504497668823
915 => 0.0016671161368636
916 => 0.0017368282569071
917 => 0.0017370059674375
918 => 0.0017310176345012
919 => 0.0016938246129368
920 => 0.0017297233979713
921 => 0.0017325729131621
922 => 0.0017309779424025
923 => 0.0017024621399728
924 => 0.0016589237802638
925 => 0.0016674310715348
926 => 0.0016813661881808
927 => 0.0016549841052001
928 => 0.001646553431141
929 => 0.0016622276582182
930 => 0.0017127332837161
1001 => 0.0017031854877749
1002 => 0.0017029361562372
1003 => 0.0017437856761692
1004 => 0.001714546235776
1005 => 0.0016675383757219
1006 => 0.0016556682711007
1007 => 0.0016135373963561
1008 => 0.0016426373416072
1009 => 0.0016436845968312
1010 => 0.0016277468542114
1011 => 0.0016688316356976
1012 => 0.0016684530322033
1013 => 0.0017074569175617
1014 => 0.0017820176971766
1015 => 0.0017599664057314
1016 => 0.0017343231529542
1017 => 0.0017371112855414
1018 => 0.0017676902183248
1019 => 0.0017492014975148
1020 => 0.001755850170426
1021 => 0.0017676801547621
1022 => 0.001774817478034
1023 => 0.0017360843345597
1024 => 0.0017270537859954
1025 => 0.0017085804529248
1026 => 0.0017037611051477
1027 => 0.0017188072494751
1028 => 0.0017148431220329
1029 => 0.0016435965790848
1030 => 0.0016361509189347
1031 => 0.0016363792667015
1101 => 0.0016176568002322
1102 => 0.0015891005449598
1103 => 0.0016641446788104
1104 => 0.0016581175846202
1105 => 0.0016514641390943
1106 => 0.0016522791482072
1107 => 0.0016848532632301
1108 => 0.0016659586314846
1109 => 0.0017161931067492
1110 => 0.0017058664088214
1111 => 0.0016952748700579
1112 => 0.0016938107967746
1113 => 0.0016897339579782
1114 => 0.0016757529608207
1115 => 0.0016588700666253
1116 => 0.0016477225175063
1117 => 0.0015199369241168
1118 => 0.0015436531869553
1119 => 0.0015709365855456
1120 => 0.0015803547054076
1121 => 0.0015642443596696
1122 => 0.0016763890954642
1123 => 0.0016968790193474
1124 => 0.0016348137033804
1125 => 0.0016232038168732
1126 => 0.0016771502376908
1127 => 0.001644613951256
1128 => 0.0016592650390453
1129 => 0.0016275974009613
1130 => 0.0016919435966989
1201 => 0.0016914533864968
1202 => 0.0016664212630301
1203 => 0.0016875782423716
1204 => 0.0016839016965633
1205 => 0.0016556404908208
1206 => 0.0016928395273296
1207 => 0.0016928579775876
1208 => 0.0016687651029962
1209 => 0.0016406299000819
1210 => 0.0016355999903247
1211 => 0.0016318106289959
1212 => 0.0016583330884505
1213 => 0.001682113042664
1214 => 0.0017263616419047
1215 => 0.0017374867910745
1216 => 0.0017809089889277
1217 => 0.0017550531842946
1218 => 0.0017665147275997
1219 => 0.0017789578541918
1220 => 0.0017849235466608
1221 => 0.0017752027709192
1222 => 0.0018426553174749
1223 => 0.0018483503790968
1224 => 0.0018502598839965
1225 => 0.0018275152648154
1226 => 0.0018477178100927
1227 => 0.0018382657081954
1228 => 0.0018628574514625
1229 => 0.0018667137508099
1230 => 0.0018634476024545
1231 => 0.0018646716527349
]
'min_raw' => 0.00083618036087339
'max_raw' => 0.0018667137508099
'avg_raw' => 0.0013514470558416
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000836'
'max' => '$0.001866'
'avg' => '$0.001351'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00012893731504897
'max_diff' => -0.00017813388446541
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018071128036942
102 => 0.0018041280737244
103 => 0.0017634310687983
104 => 0.0017800153991228
105 => 0.0017490117884889
106 => 0.0017588433527935
107 => 0.0017631770126603
108 => 0.0017609133546789
109 => 0.0017809530522764
110 => 0.0017639152154788
111 => 0.0017189495628902
112 => 0.0016739716594397
113 => 0.0016734069985001
114 => 0.0016615651104475
115 => 0.0016530055943355
116 => 0.0016546544608038
117 => 0.0016604652813032
118 => 0.0016526678588845
119 => 0.0016543318342969
120 => 0.0016819649131525
121 => 0.0016875065300469
122 => 0.0016686739505903
123 => 0.0015930584265438
124 => 0.0015745021872756
125 => 0.0015878400440753
126 => 0.001581465407593
127 => 0.001276366012242
128 => 0.0013480445895764
129 => 0.0013054556128988
130 => 0.0013250825727764
131 => 0.0012816102559506
201 => 0.0013023575241192
202 => 0.0012985262612574
203 => 0.0014137832924879
204 => 0.0014119837124761
205 => 0.0014128450761961
206 => 0.0013717299415695
207 => 0.0014372274674272
208 => 0.0014694939038795
209 => 0.0014635222452356
210 => 0.0014650251830619
211 => 0.0014391997317341
212 => 0.0014130951230166
213 => 0.0013841410944783
214 => 0.0014379341006763
215 => 0.0014319532366643
216 => 0.0014456711868608
217 => 0.0014805597965837
218 => 0.0014856972768944
219 => 0.001492602102531
220 => 0.0014901272140593
221 => 0.0015490890981504
222 => 0.001541948424944
223 => 0.0015591553928597
224 => 0.0015237593543612
225 => 0.0014837053769774
226 => 0.0014913183286149
227 => 0.0014905851401527
228 => 0.0014812508095146
229 => 0.0014728241931807
301 => 0.0014587962511691
302 => 0.0015031827354386
303 => 0.0015013807252365
304 => 0.0015305531758008
305 => 0.0015253966617975
306 => 0.0014909601992704
307 => 0.0014921901042664
308 => 0.0015004618064371
309 => 0.0015290902620945
310 => 0.0015375891369075
311 => 0.0015336521194725
312 => 0.0015429707477166
313 => 0.0015503358115296
314 => 0.001543895686337
315 => 0.0016350742780427
316 => 0.0015972105698172
317 => 0.0016156650777523
318 => 0.0016200663691546
319 => 0.0016087925537769
320 => 0.0016112374406473
321 => 0.0016149407780641
322 => 0.001637426717671
323 => 0.0016964363295587
324 => 0.0017225712849717
325 => 0.0018011995878079
326 => 0.0017204011407408
327 => 0.0017156068952691
328 => 0.0017297702269571
329 => 0.0017759333643731
330 => 0.0018133442513657
331 => 0.001825755600867
401 => 0.0018273959655926
402 => 0.001850680482348
403 => 0.0018640267331216
404 => 0.0018478531295703
405 => 0.0018341476940074
406 => 0.0017850565250025
407 => 0.0017907389614856
408 => 0.0018298853138533
409 => 0.0018851818422813
410 => 0.0019326320162957
411 => 0.0019160166191613
412 => 0.0020427803706538
413 => 0.0020553484788308
414 => 0.0020536119726564
415 => 0.0020822439934688
416 => 0.0020254152629657
417 => 0.0020011198796709
418 => 0.0018371109647394
419 => 0.0018831907799984
420 => 0.0019501704976501
421 => 0.0019413054808579
422 => 0.0018926630195262
423 => 0.0019325951166269
424 => 0.0019193923165333
425 => 0.0019089787203148
426 => 0.0019566854233667
427 => 0.0019042299436777
428 => 0.0019496472141139
429 => 0.001891399094998
430 => 0.0019160925168959
501 => 0.0019020753363402
502 => 0.0019111461700408
503 => 0.001858118261575
504 => 0.0018867308338034
505 => 0.0018569278845009
506 => 0.0018569137540225
507 => 0.0018562558522648
508 => 0.0018913188899527
509 => 0.0018924622943529
510 => 0.0018665506565243
511 => 0.0018628163846973
512 => 0.0018766239448527
513 => 0.0018604589081165
514 => 0.0018680224270638
515 => 0.0018606879994003
516 => 0.0018590368652465
517 => 0.0018458803473922
518 => 0.0018402121577546
519 => 0.0018424348009628
520 => 0.0018348477738422
521 => 0.0018302763155673
522 => 0.001855346474152
523 => 0.0018419524997475
524 => 0.0018532936554779
525 => 0.0018403689771551
526 => 0.0017955664110742
527 => 0.0017697999815426
528 => 0.0016851720874158
529 => 0.0017091724532096
530 => 0.001725084720561
531 => 0.0017198257162963
601 => 0.0017311240924214
602 => 0.0017318177209539
603 => 0.0017281445037023
604 => 0.0017238913886932
605 => 0.0017218212075188
606 => 0.0017372506419252
607 => 0.001746207947929
608 => 0.0017266817294684
609 => 0.0017221070096839
610 => 0.0017418490946196
611 => 0.0017538917550258
612 => 0.0018428079932784
613 => 0.001836220791153
614 => 0.0018527533758147
615 => 0.001850892060495
616 => 0.0018682208430677
617 => 0.0018965460788842
618 => 0.0018389529546088
619 => 0.0018489491295626
620 => 0.0018464982983093
621 => 0.0018732558312902
622 => 0.0018733393653875
623 => 0.0018572968877275
624 => 0.0018659937751265
625 => 0.001861139411167
626 => 0.0018699119029484
627 => 0.0018361328150526
628 => 0.0018772720978825
629 => 0.0019005954202902
630 => 0.0019009192646444
701 => 0.0019119743343603
702 => 0.0019232069254582
703 => 0.0019447669059179
704 => 0.0019226056293048
705 => 0.0018827396500347
706 => 0.0018856178449716
707 => 0.0018622444359119
708 => 0.001862637347141
709 => 0.0018605399562073
710 => 0.0018668343842834
711 => 0.0018375140880489
712 => 0.0018443955029706
713 => 0.0018347614817827
714 => 0.001848928187082
715 => 0.0018336871540203
716 => 0.0018464971164443
717 => 0.0018520254715695
718 => 0.0018724252209986
719 => 0.0018306740944431
720 => 0.0017455407210936
721 => 0.0017634367883141
722 => 0.0017369670991893
723 => 0.001739416969695
724 => 0.0017443660980105
725 => 0.0017283243538859
726 => 0.0017313846131314
727 => 0.0017312752791364
728 => 0.0017303330978348
729 => 0.0017261600206265
730 => 0.0017201082330561
731 => 0.0017442166920943
801 => 0.001748313189069
802 => 0.0017574191943953
803 => 0.0017845124895837
804 => 0.0017818052304905
805 => 0.0017862208823946
806 => 0.0017765815390807
807 => 0.001739864111185
808 => 0.0017418580441726
809 => 0.0017169936678665
810 => 0.0017567833563904
811 => 0.0017473606329497
812 => 0.0017412857418491
813 => 0.0017396281515288
814 => 0.0017667886057556
815 => 0.0017749154393482
816 => 0.0017698513420248
817 => 0.0017594647306712
818 => 0.0017794100949961
819 => 0.0017847466330621
820 => 0.0017859412871311
821 => 0.0018212806485706
822 => 0.0017879163648643
823 => 0.0017959474795648
824 => 0.001858603943876
825 => 0.0018017831767468
826 => 0.0018318824043495
827 => 0.0018304092037871
828 => 0.0018458069501263
829 => 0.0018291461391608
830 => 0.0018293526698805
831 => 0.001843024825496
901 => 0.0018238247487203
902 => 0.0018190705396993
903 => 0.0018125026339872
904 => 0.0018268434158277
905 => 0.0018354400659633
906 => 0.0019047227525124
907 => 0.0019494825276975
908 => 0.0019475393878112
909 => 0.0019652960489665
910 => 0.0019572965104836
911 => 0.001931463890551
912 => 0.0019755570228236
913 => 0.0019616041108376
914 => 0.0019627543719489
915 => 0.0019627115591729
916 => 0.0019719890258589
917 => 0.0019654150904445
918 => 0.0019524571889422
919 => 0.0019610592486794
920 => 0.0019866042908063
921 => 0.0020658968853857
922 => 0.0021102700717995
923 => 0.002063225563847
924 => 0.0020956762354816
925 => 0.0020762173958574
926 => 0.0020726811458474
927 => 0.0020930625657197
928 => 0.0021134796605694
929 => 0.002112179179893
930 => 0.0020973574174615
1001 => 0.0020889849799523
1002 => 0.0021523838817447
1003 => 0.0021990951126133
1004 => 0.0021959097198241
1005 => 0.0022099690076503
1006 => 0.0022512475115453
1007 => 0.0022550215006224
1008 => 0.0022545460647429
1009 => 0.0022451918390402
1010 => 0.0022858358868159
1011 => 0.0023197418665344
1012 => 0.0022430266060596
1013 => 0.0022722387729719
1014 => 0.0022853530558561
1015 => 0.0023046087139625
1016 => 0.0023370962368109
1017 => 0.0023723863035142
1018 => 0.002377376705882
1019 => 0.0023738357765893
1020 => 0.0023505610289506
1021 => 0.0023891758410354
1022 => 0.0024117954923259
1023 => 0.0024252649770278
1024 => 0.0024594213491235
1025 => 0.0022854340452026
1026 => 0.0021622771837572
1027 => 0.0021430444614359
1028 => 0.0021821549585658
1029 => 0.0021924680847585
1030 => 0.0021883108765218
1031 => 0.0020496866320331
1101 => 0.0021423146334776
1102 => 0.0022419745746483
1103 => 0.0022458029188666
1104 => 0.0022956947692077
1105 => 0.0023119416008149
1106 => 0.0023521110798138
1107 => 0.0023495984679655
1108 => 0.0023593790968657
1109 => 0.0023571306996584
1110 => 0.0024315362008222
1111 => 0.0025136165179297
1112 => 0.0025107743375477
1113 => 0.0024989743208333
1114 => 0.0025164993578561
1115 => 0.0026012150413724
1116 => 0.0025934157787754
1117 => 0.0026009920980487
1118 => 0.0027008766632812
1119 => 0.002830740806497
1120 => 0.0027704058738265
1121 => 0.0029013153168124
1122 => 0.0029837158719607
1123 => 0.0031262191117132
1124 => 0.0031083770042529
1125 => 0.0031638524697515
1126 => 0.0030764359081389
1127 => 0.0028757098128743
1128 => 0.00284394413995
1129 => 0.0029075398215793
1130 => 0.0030638835992891
1201 => 0.002902615999639
1202 => 0.0029352402250128
1203 => 0.0029258444459104
1204 => 0.0029253437847715
1205 => 0.0029444519841065
1206 => 0.0029167345443545
1207 => 0.0028038087085327
1208 => 0.0028555619536137
1209 => 0.002835577540293
1210 => 0.002857751736809
1211 => 0.0029774167300719
1212 => 0.0029245099840932
1213 => 0.0028687770249998
1214 => 0.0029386785238367
1215 => 0.0030276871526171
1216 => 0.0030221171525919
1217 => 0.0030113090244637
1218 => 0.0030722338768275
1219 => 0.0031728638836259
1220 => 0.0032000637700993
1221 => 0.0032201421702168
1222 => 0.0032229106423657
1223 => 0.0032514276260948
1224 => 0.0030980846173783
1225 => 0.0033414439103391
1226 => 0.0033834653375686
1227 => 0.0033755670508591
1228 => 0.0034222720986928
1229 => 0.0034085302888274
1230 => 0.0033886205623564
1231 => 0.0034626579976213
]
'min_raw' => 0.001276366012242
'max_raw' => 0.0034626579976213
'avg_raw' => 0.0023695120049316
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001276'
'max' => '$0.003462'
'avg' => '$0.002369'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00044018565136857
'max_diff' => 0.0015959442468114
'year' => 2032
]
7 => [
'items' => [
101 => 0.003377780052603
102 => 0.0032573064954858
103 => 0.0031912123193545
104 => 0.0032782504621493
105 => 0.0033314016187415
106 => 0.0033665311522005
107 => 0.0033771613277993
108 => 0.0031099881986334
109 => 0.0029659967001141
110 => 0.0030582935997991
111 => 0.0031709021874066
112 => 0.0030974590709884
113 => 0.0031003379021058
114 => 0.002995627318605
115 => 0.0031801667506017
116 => 0.0031532809075807
117 => 0.0032927647087338
118 => 0.0032594757801611
119 => 0.0033732194052715
120 => 0.003343266896816
121 => 0.0034675980847928
122 => 0.0035171971618092
123 => 0.0036004817315998
124 => 0.003661746200167
125 => 0.0036977218679121
126 => 0.003695562023762
127 => 0.0038381155423749
128 => 0.0037540567128895
129 => 0.0036484590119108
130 => 0.0036465490826566
131 => 0.0037012396283245
201 => 0.0038158560084258
202 => 0.0038455743681855
203 => 0.003862182877038
204 => 0.0038367463675841
205 => 0.0037455065327282
206 => 0.003706109634634
207 => 0.0037396769332483
208 => 0.0036986270115138
209 => 0.0037694906930013
210 => 0.0038668016633493
211 => 0.0038467073327817
212 => 0.0039138796671587
213 => 0.0039833959665032
214 => 0.0040828073967383
215 => 0.0041087972257963
216 => 0.0041517574249246
217 => 0.0041959775815178
218 => 0.0042101799040489
219 => 0.0042372965444827
220 => 0.0042371536264025
221 => 0.00431887144751
222 => 0.0044090087347819
223 => 0.0044430334740441
224 => 0.0045212714858423
225 => 0.0043872916324247
226 => 0.0044889168902916
227 => 0.0045805854167327
228 => 0.0044712944204599
301 => 0.0046219265972857
302 => 0.004627775303372
303 => 0.0047160838213714
304 => 0.004626566220514
305 => 0.0045734109548752
306 => 0.0047268682150726
307 => 0.0048011213494237
308 => 0.0047787557010651
309 => 0.0046085520127279
310 => 0.004509486165736
311 => 0.0042502117357835
312 => 0.0045573334978841
313 => 0.0047069235493387
314 => 0.0046081646106329
315 => 0.0046579728748517
316 => 0.0049297106140455
317 => 0.0050331707514148
318 => 0.0050116517660829
319 => 0.0050152881203713
320 => 0.0050711133325615
321 => 0.0053186730669185
322 => 0.0051703295357021
323 => 0.005283732606991
324 => 0.0053438811870974
325 => 0.0053997505404171
326 => 0.0052625530663545
327 => 0.0050840611684302
328 => 0.0050275252917774
329 => 0.0045983449805046
330 => 0.0045760042814672
331 => 0.0045634637701051
401 => 0.0044843976198573
402 => 0.0044222732838038
403 => 0.0043728697052454
404 => 0.0042432199619507
405 => 0.0042869729444045
406 => 0.0040803383135971
407 => 0.004212535827706
408 => 0.0038827419675698
409 => 0.0041574040941687
410 => 0.0040079179860154
411 => 0.0041082938872243
412 => 0.004107943685161
413 => 0.0039231198268268
414 => 0.0038165172825152
415 => 0.0038844485727837
416 => 0.003957276308344
417 => 0.0039690923634167
418 => 0.0040635154235691
419 => 0.0040898668700407
420 => 0.0040100207570003
421 => 0.0038759077228553
422 => 0.0039070591218946
423 => 0.003815886000408
424 => 0.0036561086119261
425 => 0.0037708635217793
426 => 0.0038100458934205
427 => 0.0038273510609076
428 => 0.0036702283498928
429 => 0.003620856982792
430 => 0.0035945720812133
501 => 0.0038556251539258
502 => 0.003869926230543
503 => 0.003796759900601
504 => 0.0041274786498548
505 => 0.0040526268113318
506 => 0.0041362546541077
507 => 0.0039042324589453
508 => 0.0039130960192598
509 => 0.0038032529937493
510 => 0.0038647577483216
511 => 0.0038212881701807
512 => 0.0038597887719539
513 => 0.0038828658739129
514 => 0.0039926908752638
515 => 0.0041586581192698
516 => 0.003976286682403
517 => 0.0038968248357531
518 => 0.0039461225185043
519 => 0.0040774087440435
520 => 0.0042763140961536
521 => 0.0041585581243612
522 => 0.0042108162250166
523 => 0.0042222322952087
524 => 0.004135403401172
525 => 0.0042795156013282
526 => 0.0043567465001573
527 => 0.0044359694216733
528 => 0.0045047564646498
529 => 0.0044043260446704
530 => 0.0045118009901835
531 => 0.0044251951559818
601 => 0.0043475007695562
602 => 0.0043476185998696
603 => 0.004298879776331
604 => 0.0042044421642379
605 => 0.0041870264196351
606 => 0.0042776253224253
607 => 0.004350277062715
608 => 0.0043562610080237
609 => 0.0043964847444293
610 => 0.0044202887372967
611 => 0.0046536002273562
612 => 0.0047474400387121
613 => 0.0048621855837413
614 => 0.0049068854402347
615 => 0.0050414159824945
616 => 0.0049327716435833
617 => 0.0049092657574549
618 => 0.0045829386665377
619 => 0.0046363747093942
620 => 0.0047219309698187
621 => 0.0045843494577598
622 => 0.0046716132602624
623 => 0.0046888409833765
624 => 0.0045796744906262
625 => 0.0046379850312098
626 => 0.0044831295232901
627 => 0.0041620335461712
628 => 0.0042798730729409
629 => 0.0043666426289992
630 => 0.0042428117738949
701 => 0.0044647737887535
702 => 0.0043351081618991
703 => 0.004294010383234
704 => 0.0041336732962455
705 => 0.0042093462293636
706 => 0.0043116949549379
707 => 0.0042484553418495
708 => 0.0043796870344837
709 => 0.0045655461094678
710 => 0.0046980003544008
711 => 0.0047081685466359
712 => 0.0046230093408892
713 => 0.004759477511577
714 => 0.0047604715332148
715 => 0.00460653487919
716 => 0.0045122495357228
717 => 0.0044908277073089
718 => 0.0045443436346835
719 => 0.0046093218501015
720 => 0.0047117743853662
721 => 0.0047736843067077
722 => 0.0049351125470812
723 => 0.0049787904004159
724 => 0.0050267791189331
725 => 0.0050909068460447
726 => 0.005167908624454
727 => 0.0049994331170082
728 => 0.0050061269629967
729 => 0.0048492449031653
730 => 0.0046815939230724
731 => 0.0048088201189732
801 => 0.004975151445922
802 => 0.0049369948557402
803 => 0.0049327014598763
804 => 0.0049399217608306
805 => 0.0049111529379113
806 => 0.0047810326180693
807 => 0.004715687008041
808 => 0.0047999995164206
809 => 0.0048448078623063
810 => 0.0049143016990767
811 => 0.0049057351168578
812 => 0.0050847437772851
813 => 0.0051543011297863
814 => 0.0051365053824895
815 => 0.0051397802282707
816 => 0.0052657104924818
817 => 0.0054057708458187
818 => 0.0055369558493101
819 => 0.0056704028693886
820 => 0.0055095272781581
821 => 0.0054278445743584
822 => 0.0055121202745344
823 => 0.0054674024017546
824 => 0.0057243645629298
825 => 0.0057421560654467
826 => 0.0059990996453328
827 => 0.0062429696989171
828 => 0.0060897992876466
829 => 0.0062342320865278
830 => 0.0063904479342967
831 => 0.0066918136497508
901 => 0.0065903242789595
902 => 0.0065125850114747
903 => 0.0064391217793349
904 => 0.0065919871034581
905 => 0.0067886459008595
906 => 0.0068310043222452
907 => 0.0068996411470524
908 => 0.0068274779182792
909 => 0.0069143905788176
910 => 0.0072212304618762
911 => 0.0071383196169232
912 => 0.0070205728885065
913 => 0.0072627935069657
914 => 0.0073504522071772
915 => 0.0079656868724797
916 => 0.0087424460515004
917 => 0.00842086265091
918 => 0.0082212454567321
919 => 0.0082681602323471
920 => 0.0085518063895679
921 => 0.0086429045327882
922 => 0.0083952683761023
923 => 0.0084827376530902
924 => 0.0089647019690829
925 => 0.0092232603613465
926 => 0.0088721033356276
927 => 0.0079032750287589
928 => 0.0070099710839075
929 => 0.007246915516083
930 => 0.007220053370716
1001 => 0.0077378639019773
1002 => 0.0071363422206915
1003 => 0.007146470303116
1004 => 0.007674988607793
1005 => 0.0075339889852028
1006 => 0.0073055876544739
1007 => 0.0070116386663858
1008 => 0.0064682467749146
1009 => 0.0059869494230346
1010 => 0.0069308843662317
1011 => 0.0068901801750467
1012 => 0.0068312344741877
1013 => 0.0069624117528584
1014 => 0.0075993713827632
1015 => 0.0075846874016567
1016 => 0.0074912754056906
1017 => 0.0075621275813354
1018 => 0.0072931669255181
1019 => 0.0073624842106425
1020 => 0.0070098295799986
1021 => 0.007169244201208
1022 => 0.0073050976077984
1023 => 0.0073323721905155
1024 => 0.0073938232180518
1025 => 0.006868730915905
1026 => 0.0071044819436689
1027 => 0.0072429635855961
1028 => 0.0066172984893635
1029 => 0.0072305961983102
1030 => 0.0068595902271495
1031 => 0.0067336652282149
1101 => 0.0069032066499233
1102 => 0.0068371361929991
1103 => 0.0067803326939231
1104 => 0.0067486353654306
1105 => 0.0068731278739294
1106 => 0.0068673201496072
1107 => 0.0066636262427486
1108 => 0.0063979158448773
1109 => 0.0064870969760494
1110 => 0.006454696635017
1111 => 0.0063372736193885
1112 => 0.0064164025542131
1113 => 0.0060679587714828
1114 => 0.0054684793538271
1115 => 0.0058645138196816
1116 => 0.0058492669235488
1117 => 0.005841578747127
1118 => 0.006139187702628
1119 => 0.0061105794685634
1120 => 0.0060586552436035
1121 => 0.0063363199902776
1122 => 0.0062349686226237
1123 => 0.0065473096563476
1124 => 0.0067530376621097
1125 => 0.0067008583852446
1126 => 0.0068943465690336
1127 => 0.006489151529191
1128 => 0.0066237410678234
1129 => 0.0066514797852024
1130 => 0.0063328936504044
1201 => 0.0061152601294604
1202 => 0.0061007464548172
1203 => 0.0057233999212467
1204 => 0.0059249753936452
1205 => 0.0061023534675961
1206 => 0.0060174031352683
1207 => 0.0059905103978722
1208 => 0.0061278995609054
1209 => 0.0061385758755317
1210 => 0.0058951547706273
1211 => 0.0059457697264808
1212 => 0.0061568425064261
1213 => 0.0059404512339831
1214 => 0.0055200383389402
1215 => 0.0054157701283065
1216 => 0.0054018588269636
1217 => 0.005119075170109
1218 => 0.0054227378287189
1219 => 0.0052901809405824
1220 => 0.0057089265619303
1221 => 0.0054697413087942
1222 => 0.005459430510585
1223 => 0.0054438442268266
1224 => 0.005200440651726
1225 => 0.0052537305655689
1226 => 0.0054308743554655
1227 => 0.0054940812553683
1228 => 0.0054874882578696
1229 => 0.0054300062542546
1230 => 0.005456321221154
1231 => 0.0053715515440286
]
'min_raw' => 0.0029659967001141
'max_raw' => 0.0092232603613465
'avg_raw' => 0.0060946285307303
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002965'
'max' => '$0.009223'
'avg' => '$0.006094'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0016896306878721
'max_diff' => 0.0057606023637252
'year' => 2033
]
8 => [
'items' => [
101 => 0.0053416176067074
102 => 0.0052471378665435
103 => 0.0051082787491969
104 => 0.0051275879611364
105 => 0.0048524717152084
106 => 0.0047025737829024
107 => 0.0046610840108632
108 => 0.0046056021537153
109 => 0.0046673508342596
110 => 0.0048516923454502
111 => 0.0046293373727211
112 => 0.0042481253683649
113 => 0.0042710368593803
114 => 0.0043225121772093
115 => 0.0042265882629783
116 => 0.0041358043284425
117 => 0.0042147335939879
118 => 0.0040532090423131
119 => 0.0043420316475865
120 => 0.0043342198055299
121 => 0.0044418750121057
122 => 0.0045091940220848
123 => 0.0043540454988713
124 => 0.0043150260648493
125 => 0.0043372533078026
126 => 0.0039698864935797
127 => 0.0044118533058486
128 => 0.0044156754531942
129 => 0.0043829479071284
130 => 0.0046182815904671
131 => 0.0051149090647284
201 => 0.0049280578321174
202 => 0.0048557033872421
203 => 0.0047181575346432
204 => 0.0049014292165666
205 => 0.0048873568108785
206 => 0.0048237160555555
207 => 0.0047852259281649
208 => 0.0048561451680538
209 => 0.0047764382495142
210 => 0.0047621206967448
211 => 0.0046753719046136
212 => 0.0046444065326413
213 => 0.004621481004
214 => 0.0045962422495818
215 => 0.0046519126527226
216 => 0.0045257561951542
217 => 0.0043736238745969
218 => 0.004360975718237
219 => 0.0043958983899838
220 => 0.004380447707423
221 => 0.0043609017463132
222 => 0.004323583183529
223 => 0.0043125115631358
224 => 0.004348488958227
225 => 0.0043078725767815
226 => 0.0043678042600931
227 => 0.0043515061584036
228 => 0.0042604662872327
301 => 0.0041469969004763
302 => 0.0041459867849241
303 => 0.0041215399916745
304 => 0.0040904033248713
305 => 0.004081741816477
306 => 0.0042080863913953
307 => 0.0044696158803013
308 => 0.0044182713837588
309 => 0.0044553730445064
310 => 0.0046378764945214
311 => 0.004695888853211
312 => 0.0046547130551111
313 => 0.0045983490830595
314 => 0.0046008288117778
315 => 0.0047934415668129
316 => 0.0048054545880808
317 => 0.0048358076172774
318 => 0.0048748198375599
319 => 0.0046613570049189
320 => 0.0045907747315568
321 => 0.0045573289346823
322 => 0.0044543288254615
323 => 0.0045654056126942
324 => 0.004500685925556
325 => 0.0045094188224903
326 => 0.0045037315119054
327 => 0.004506837168059
328 => 0.0043419509157821
329 => 0.0044020267999455
330 => 0.0043021389906145
331 => 0.0041684004268531
401 => 0.0041679520882926
402 => 0.0042006844123059
403 => 0.0041812139451668
404 => 0.004128819418727
405 => 0.0041362618139126
406 => 0.0040710586008307
407 => 0.004144178664523
408 => 0.0041462754863136
409 => 0.0041181202789152
410 => 0.0042307718256577
411 => 0.004276925256273
412 => 0.0042583928956204
413 => 0.0042756249764461
414 => 0.0044204049793966
415 => 0.004444010437072
416 => 0.0044544944220823
417 => 0.0044404472710303
418 => 0.0042782712891236
419 => 0.0042854644835467
420 => 0.0042326855956296
421 => 0.0041880929970418
422 => 0.004189876467128
423 => 0.0042128028594341
424 => 0.0043129237592502
425 => 0.0045236222904639
426 => 0.0045316181457048
427 => 0.0045413093555124
428 => 0.0045018903348132
429 => 0.0044900011809811
430 => 0.0045056860437366
501 => 0.004584813334058
502 => 0.0047883502076143
503 => 0.0047164066827288
504 => 0.0046579154771292
505 => 0.0047092280335558
506 => 0.004701328867695
507 => 0.0046346519583906
508 => 0.0046327805596207
509 => 0.0045048062527681
510 => 0.0044574970653586
511 => 0.004417961967328
512 => 0.0043747906723684
513 => 0.0043491972816015
514 => 0.0043885203618076
515 => 0.0043975140155077
516 => 0.0043115334133872
517 => 0.0042998145750274
518 => 0.0043700281907392
519 => 0.0043391297962919
520 => 0.0043709095612243
521 => 0.0043782827392904
522 => 0.0043770954878031
523 => 0.004344834015342
524 => 0.0043653965158377
525 => 0.004316760072189
526 => 0.0042638752446786
527 => 0.0042301380195682
528 => 0.0042006978160658
529 => 0.0042170329520436
530 => 0.0041588011749607
531 => 0.0041401716574978
601 => 0.0043584304033407
602 => 0.0045196604855718
603 => 0.004517316136322
604 => 0.0045030455131818
605 => 0.0044818422618856
606 => 0.0045832621841587
607 => 0.0045479295111941
608 => 0.0045736369829195
609 => 0.0045801806134128
610 => 0.0045999862121006
611 => 0.0046070650112828
612 => 0.0045856679636121
613 => 0.0045138568582002
614 => 0.0043349104111088
615 => 0.004251610356931
616 => 0.0042241199515802
617 => 0.004225119175603
618 => 0.004197556116322
619 => 0.0042056746725699
620 => 0.004194732813775
621 => 0.0041740115803374
622 => 0.0042157534742697
623 => 0.0042205638386928
624 => 0.0042108207818705
625 => 0.0042131156244559
626 => 0.0041324472752814
627 => 0.0041385803146667
628 => 0.0041044307720204
629 => 0.0040980281444531
630 => 0.0040117010743841
701 => 0.003858760156448
702 => 0.0039435042713188
703 => 0.0038411452973807
704 => 0.0038023804029588
705 => 0.0039858873839741
706 => 0.0039674683727715
707 => 0.0039359430321444
708 => 0.0038893104829003
709 => 0.0038720140167733
710 => 0.0037669261639819
711 => 0.0037607170130171
712 => 0.0038128013904712
713 => 0.0037887662423901
714 => 0.0037550117916619
715 => 0.0036327565927579
716 => 0.0034953012718846
717 => 0.0034994501840084
718 => 0.0035431721641311
719 => 0.00367029971805
720 => 0.0036206287834049
721 => 0.0035845919504115
722 => 0.0035778433348551
723 => 0.0036623163877275
724 => 0.0037818634551937
725 => 0.0038379522645339
726 => 0.0037823699579202
727 => 0.0037185199968463
728 => 0.0037224062481246
729 => 0.0037482597368081
730 => 0.0037509765729201
731 => 0.0037094168121431
801 => 0.0037211156413641
802 => 0.003703344050014
803 => 0.0035942798267019
804 => 0.0035923072007486
805 => 0.0035655410814496
806 => 0.0035647306139948
807 => 0.0035191947679459
808 => 0.0035128239883092
809 => 0.0034224098021508
810 => 0.0034819206932796
811 => 0.0034420039119725
812 => 0.0033818399071257
813 => 0.0033714676100129
814 => 0.0033711558062368
815 => 0.0034329307867891
816 => 0.0034811988166647
817 => 0.0034426982814731
818 => 0.0034339324559115
819 => 0.0035275285396397
820 => 0.0035156175848381
821 => 0.0035053027747973
822 => 0.0037711593265058
823 => 0.003560713120783
824 => 0.0034689465632385
825 => 0.0033553680222804
826 => 0.0033923497679291
827 => 0.0034001423651121
828 => 0.0031270064481788
829 => 0.0030161952406959
830 => 0.00297816901012
831 => 0.0029562843768116
901 => 0.0029662574790201
902 => 0.0028665143954272
903 => 0.0029335433972
904 => 0.0028471743178815
905 => 0.0028326942606645
906 => 0.0029871328735617
907 => 0.0030086221043291
908 => 0.0029169423696948
909 => 0.0029758156009309
910 => 0.0029544673488855
911 => 0.0028486548678521
912 => 0.0028446136093806
913 => 0.0027915206258866
914 => 0.0027084403875459
915 => 0.0026704704892837
916 => 0.0026506954365991
917 => 0.0026588550087449
918 => 0.0026547292793809
919 => 0.0026278061045303
920 => 0.0026562724842482
921 => 0.0025835526471892
922 => 0.0025545950221288
923 => 0.0025415155347008
924 => 0.0024769724937133
925 => 0.002579689174345
926 => 0.0025999256544201
927 => 0.0026202020066123
928 => 0.0027966938091919
929 => 0.0027878767774957
930 => 0.0028675784499609
1001 => 0.0028644813895309
1002 => 0.0028417491814623
1003 => 0.0027458457348877
1004 => 0.0027840711393778
1005 => 0.0026664192859042
1006 => 0.002754572054075
1007 => 0.0027143428120294
1008 => 0.0027409705068724
1009 => 0.0026930915106223
1010 => 0.0027195897240224
1011 => 0.0026047244745698
1012 => 0.0024974649208287
1013 => 0.0025406292963557
1014 => 0.0025875539089987
1015 => 0.0026892984253775
1016 => 0.0026287002307963
1017 => 0.0026504936330391
1018 => 0.0025774893836971
1019 => 0.0024268607646717
1020 => 0.0024277133062971
1021 => 0.0024045423748829
1022 => 0.0023845193071297
1023 => 0.0026356606624042
1024 => 0.0026044272649185
1025 => 0.002554660933751
1026 => 0.0026212751456541
1027 => 0.0026388890005909
1028 => 0.0026393904422788
1029 => 0.0026879904517216
1030 => 0.0027139282854732
1031 => 0.002718499941093
1101 => 0.0027949731060239
1102 => 0.0028206059022033
1103 => 0.0029261837619771
1104 => 0.002711727641497
1105 => 0.0027073110588224
1106 => 0.0026222125442242
1107 => 0.0025682417209118
1108 => 0.0026259079726705
1109 => 0.0026769923995004
1110 => 0.0026237998797631
1111 => 0.0026307456998854
1112 => 0.0025593390881267
1113 => 0.0025848635918371
1114 => 0.0026068487329544
1115 => 0.0025947098302563
1116 => 0.0025765373053877
1117 => 0.0026728040590594
1118 => 0.0026673723115448
1119 => 0.0027570181257271
1120 => 0.0028269034485158
1121 => 0.002952150440449
1122 => 0.0028214486750934
1123 => 0.0028166853832713
1124 => 0.0028632473248877
1125 => 0.0028205987738126
1126 => 0.0028475511859141
1127 => 0.0029478079901767
1128 => 0.0029499262584682
1129 => 0.0029144425353516
1130 => 0.0029122833475752
1201 => 0.0029190983847491
1202 => 0.0029590142703407
1203 => 0.0029450664334237
1204 => 0.0029612072234201
1205 => 0.0029813915284671
1206 => 0.0030648823721094
1207 => 0.0030850117318546
1208 => 0.0030361078235501
1209 => 0.0030405232989162
1210 => 0.003022231894768
1211 => 0.0030045626275515
1212 => 0.003044280559865
1213 => 0.0031168658618258
1214 => 0.0031164143124295
1215 => 0.0031332526916278
1216 => 0.0031437428623716
1217 => 0.0030987113702647
1218 => 0.0030693975247569
1219 => 0.0030806383184131
1220 => 0.0030986125922618
1221 => 0.0030748095036551
1222 => 0.0029278858141111
1223 => 0.0029724530759971
1224 => 0.0029650349043915
1225 => 0.0029544705259447
1226 => 0.0029992832523995
1227 => 0.0029949609556116
1228 => 0.0028654913859387
1229 => 0.0028737796077261
1230 => 0.002865995420157
1231 => 0.0028911477226878
]
'min_raw' => 0.0023845193071297
'max_raw' => 0.0053416176067074
'avg_raw' => 0.0038630684569185
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.002384'
'max' => '$0.005341'
'avg' => '$0.003863'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00058147739298442
'max_diff' => -0.0038816427546391
'year' => 2034
]
9 => [
'items' => [
101 => 0.0028192404669331
102 => 0.0028413586545005
103 => 0.0028552309743976
104 => 0.0028634018773892
105 => 0.0028929207818355
106 => 0.0028894570791046
107 => 0.0028927054732105
108 => 0.0029364742158024
109 => 0.0031578414962139
110 => 0.0031698900288673
111 => 0.0031105586475381
112 => 0.0031342603641194
113 => 0.0030887582512789
114 => 0.0031193041244664
115 => 0.0031402028351202
116 => 0.0030457655802666
117 => 0.0030401736189269
118 => 0.0029944837026808
119 => 0.0030190348756623
120 => 0.0029799721941569
121 => 0.0029895568098437
122 => 0.0029627573888115
123 => 0.003010991010958
124 => 0.0030649236952648
125 => 0.003078549221187
126 => 0.0030427063286435
127 => 0.0030167537122803
128 => 0.0029711894672699
129 => 0.0030469638221877
130 => 0.0030691225527473
131 => 0.0030468474318093
201 => 0.003041685799567
202 => 0.0030319045157946
203 => 0.0030437609451584
204 => 0.0030690018715418
205 => 0.0030570987167861
206 => 0.0030649609602089
207 => 0.0030349981957916
208 => 0.0030987262775623
209 => 0.0031999418084123
210 => 0.0032002672328944
211 => 0.0031883640139763
212 => 0.0031834934732534
213 => 0.0031957068982111
214 => 0.0032023321802298
215 => 0.003241828156984
216 => 0.0032842089136303
217 => 0.0034819814127262
218 => 0.0034264476863795
219 => 0.003601923213116
220 => 0.0037407015721191
221 => 0.003782315133942
222 => 0.0037440326151343
223 => 0.0036130701862743
224 => 0.0036066445447252
225 => 0.0038023577043533
226 => 0.0037470597725278
227 => 0.0037404822594937
228 => 0.0036705086336947
301 => 0.0037118717129441
302 => 0.0037028250007525
303 => 0.0036885443229777
304 => 0.0037674621968085
305 => 0.0039151894115724
306 => 0.0038921647397744
307 => 0.003874977890361
308 => 0.003799670119248
309 => 0.0038450222180576
310 => 0.0038288732043338
311 => 0.0038982596157089
312 => 0.0038571566427075
313 => 0.0037466408363072
314 => 0.0037642408427413
315 => 0.0037615806371751
316 => 0.0038163274792236
317 => 0.0037998938361408
318 => 0.0037583717046126
319 => 0.0039146844960124
320 => 0.0039045344127963
321 => 0.0039189249101646
322 => 0.0039252600521471
323 => 0.0040204048937317
324 => 0.0040593826910336
325 => 0.0040682313334236
326 => 0.0041052572262093
327 => 0.0040673100954812
328 => 0.0042191256742393
329 => 0.0043200741754288
330 => 0.0044373310543227
331 => 0.0046086748700647
401 => 0.0046731017298025
402 => 0.0046614635942533
403 => 0.0047913745198289
404 => 0.0050248215653306
405 => 0.0047086499166557
406 => 0.0050415794304351
407 => 0.0049361777902286
408 => 0.0046862723973936
409 => 0.0046701814362861
410 => 0.0048394202697752
411 => 0.0052147757138201
412 => 0.0051207534323331
413 => 0.0052149295005901
414 => 0.0051050681145119
415 => 0.0050996125707086
416 => 0.0052095937782835
417 => 0.0054665708645455
418 => 0.0053444906835044
419 => 0.0051694588086936
420 => 0.0052986996212563
421 => 0.0051867392687419
422 => 0.0049344612587975
423 => 0.0051206815352664
424 => 0.0049961613396397
425 => 0.0050325029525813
426 => 0.0052942258828072
427 => 0.0052627346874095
428 => 0.0053034872102604
429 => 0.0052315600741078
430 => 0.0051643687870729
501 => 0.0050389512601319
502 => 0.005001821313414
503 => 0.0050120826948913
504 => 0.005001816228383
505 => 0.0049316462747061
506 => 0.0049164930798905
507 => 0.0048912370913211
508 => 0.0048990649782497
509 => 0.0048515763308393
510 => 0.004941197220158
511 => 0.0049578316469521
512 => 0.0050230502564363
513 => 0.0050298214688274
514 => 0.0052114543679122
515 => 0.0051114140193132
516 => 0.0051785297222215
517 => 0.0051725262620359
518 => 0.0046916886050358
519 => 0.0047579437917038
520 => 0.0048610160701364
521 => 0.0048145821484137
522 => 0.0047489354469621
523 => 0.0046959222157865
524 => 0.0046156017496743
525 => 0.0047286512633093
526 => 0.0048772993522639
527 => 0.00503359142967
528 => 0.0052213661200109
529 => 0.0051794569950652
530 => 0.0050300811124474
531 => 0.0050367820054225
601 => 0.0050782042890903
602 => 0.0050245586681292
603 => 0.0050087375272209
604 => 0.0050760307072796
605 => 0.005076494118427
606 => 0.0050147683482214
607 => 0.0049461714503346
608 => 0.0049458840268278
609 => 0.0049336778714163
610 => 0.0051072395624435
611 => 0.0052026809434422
612 => 0.0052136231439622
613 => 0.0052019444461643
614 => 0.0052064391134358
615 => 0.00515090387674
616 => 0.0052778409593638
617 => 0.0053943309791558
618 => 0.0053631091654052
619 => 0.0053163032281508
620 => 0.0052790200446483
621 => 0.0053543264322487
622 => 0.0053509731573521
623 => 0.0053933135404566
624 => 0.005391392736109
625 => 0.0053771552577733
626 => 0.0053631096738704
627 => 0.0054187988264047
628 => 0.0054027612448153
629 => 0.0053866987524319
630 => 0.0053544829649125
701 => 0.005358861625484
702 => 0.0053120637699346
703 => 0.0052904129406332
704 => 0.0049648364155444
705 => 0.0048778317295208
706 => 0.0049052051748876
707 => 0.0049142172238535
708 => 0.0048763526729965
709 => 0.0049306407123204
710 => 0.004922179978897
711 => 0.0049550957432838
712 => 0.0049345314027313
713 => 0.0049353753704407
714 => 0.004995850711226
715 => 0.0050134069599365
716 => 0.005004477710146
717 => 0.0050107314506225
718 => 0.0051548462603635
719 => 0.0051343577429505
720 => 0.0051234736264262
721 => 0.0051264886010868
722 => 0.005163313024832
723 => 0.0051736218529417
724 => 0.0051299426238525
725 => 0.0051505420007976
726 => 0.0052382515333794
727 => 0.0052689449058535
728 => 0.005366903417136
729 => 0.0053252889004695
730 => 0.005401674146845
731 => 0.0056364563525538
801 => 0.0058240166241669
802 => 0.0056515284471354
803 => 0.0059959590002963
804 => 0.0062641475915604
805 => 0.0062538540667362
806 => 0.0062070891825354
807 => 0.0059017636015438
808 => 0.0056207984497674
809 => 0.0058558377296389
810 => 0.0058564368930996
811 => 0.0058362468105126
812 => 0.0057108479415746
813 => 0.0058318832016913
814 => 0.0058414905411039
815 => 0.0058361129858306
816 => 0.0057399699670291
817 => 0.0055931773475191
818 => 0.0056218602739995
819 => 0.0056688434926902
820 => 0.0055798944579825
821 => 0.0055514698517813
822 => 0.0056043166027119
823 => 0.005774599845268
824 => 0.0057424087846464
825 => 0.0057415681459593
826 => 0.0058792951544326
827 => 0.0057807123397144
828 => 0.0056222220575578
829 => 0.0055822011710833
830 => 0.0054401539853982
831 => 0.0055382664825056
901 => 0.0055417973766102
902 => 0.0054880621646299
903 => 0.0056265823738584
904 => 0.0056253058857443
905 => 0.0057568102083945
906 => 0.0060081970825336
907 => 0.0059338496138539
908 => 0.0058473915967609
909 => 0.0058567919804397
910 => 0.005959890987272
911 => 0.0058975549742198
912 => 0.0059199714391355
913 => 0.0059598570572676
914 => 0.0059839210409909
915 => 0.0058533295435056
916 => 0.0058228824185284
917 => 0.0057605982863138
918 => 0.0057443495188074
919 => 0.0057950786448951
920 => 0.0057817133124575
921 => 0.005541500618633
922 => 0.0055163970555975
923 => 0.0055171669460362
924 => 0.0054540428431742
925 => 0.005357763434789
926 => 0.0056107799714805
927 => 0.00559045920262
928 => 0.0055680266465006
929 => 0.0055707745066268
930 => 0.0056806004096786
1001 => 0.0056168958395675
1002 => 0.0057862648801814
1003 => 0.0057514476971306
1004 => 0.0057157375847118
1005 => 0.0057108013594189
1006 => 0.0056970560127812
1007 => 0.0056499181047426
1008 => 0.0055929962482368
1009 => 0.005555411508085
1010 => 0.0051245734582671
1011 => 0.0052045344942437
1012 => 0.0052965223774569
1013 => 0.0053282762261238
1014 => 0.0052739590706797
1015 => 0.0056520628771065
1016 => 0.0057211460860396
1017 => 0.005511888539995
1018 => 0.0054727449970593
1019 => 0.0056546291212647
1020 => 0.005544930759939
1021 => 0.005594327925327
1022 => 0.0054875582725629
1023 => 0.0057045059640001
1024 => 0.0057028531860782
1025 => 0.0056184556341233
1026 => 0.0056897878671061
1027 => 0.0056773921362253
1028 => 0.0055821075079302
1029 => 0.0057075266566732
1030 => 0.0057075888630062
1031 => 0.0056263580542106
1101 => 0.005531498253248
1102 => 0.0055145395613243
1103 => 0.0055017634650396
1104 => 0.0055911857888299
1105 => 0.005671361564724
1106 => 0.0058205488064024
1107 => 0.0058580580235617
1108 => 0.0060044589952648
1109 => 0.0059172843447496
1110 => 0.0059559277382223
1111 => 0.0059978806082786
1112 => 0.0060179943569493
1113 => 0.0059852200828537
1114 => 0.0062126410529525
1115 => 0.0062318423508274
1116 => 0.0062382803799142
1117 => 0.0061615953083665
1118 => 0.0062297096002653
1119 => 0.0061978411787941
1120 => 0.0062807539581597
1121 => 0.0062937557406478
1122 => 0.0062827436934322
1123 => 0.0062868706644131
1124 => 0.006092806986242
1125 => 0.0060827437607614
1126 => 0.0059455309672791
1127 => 0.0060014461948489
1128 => 0.0058969153569938
1129 => 0.0059300631624646
1130 => 0.0059446743992722
1201 => 0.0059370423183443
1202 => 0.0060046075579212
1203 => 0.0059471633016143
1204 => 0.0057955584645104
1205 => 0.00564391232277
1206 => 0.0056420085289888
1207 => 0.0056020827766453
1208 => 0.0055732237704672
1209 => 0.0055787830388853
1210 => 0.0055983746258976
1211 => 0.0055720850718145
1212 => 0.0055776952810923
1213 => 0.0056708621357338
1214 => 0.0056895460839966
1215 => 0.0056260507275099
1216 => 0.0053711077088799
1217 => 0.0053085440526319
1218 => 0.0053535135680517
1219 => 0.0053320210360888
1220 => 0.004303357123303
1221 => 0.0045450264512246
1222 => 0.0044014347428885
1223 => 0.0044676084084266
1224 => 0.0043210384571081
1225 => 0.0043909893202666
1226 => 0.0043780719500378
1227 => 0.0047666690778203
1228 => 0.0047606016681678
1229 => 0.0047635058160883
1230 => 0.0046248832691278
1231 => 0.0048457127504481
]
'min_raw' => 0.0028192404669331
'max_raw' => 0.0062937557406478
'avg_raw' => 0.0045564981037904
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002819'
'max' => '$0.006293'
'avg' => '$0.004556'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00043472115980346
'max_diff' => 0.00095213813394034
'year' => 2035
]
10 => [
'items' => [
101 => 0.0049545012937178
102 => 0.0049343674296719
103 => 0.0049394346894852
104 => 0.0048523623772581
105 => 0.0047643488664013
106 => 0.0046667283376788
107 => 0.0048480952137831
108 => 0.0048279303131961
109 => 0.0048741813400404
110 => 0.0049918107235661
111 => 0.0050091320971208
112 => 0.0050324121988344
113 => 0.0050240679395606
114 => 0.0052228620483613
115 => 0.0051987867700997
116 => 0.0052568012637798
117 => 0.0051374610487098
118 => 0.0050024162674808
119 => 0.0050280838654459
120 => 0.0050256118693561
121 => 0.0049941405219076
122 => 0.0049657295966101
123 => 0.0049184334107183
124 => 0.0050680855413984
125 => 0.0050620099381896
126 => 0.0051603668920228
127 => 0.0051429813450443
128 => 0.005026876407357
129 => 0.0050310231179204
130 => 0.0050589117393007
131 => 0.0051554345763244
201 => 0.005184089126129
202 => 0.0051708151969731
203 => 0.0052022336027039
204 => 0.0052270654295619
205 => 0.0052053520978397
206 => 0.0055127670856616
207 => 0.0053851069498198
208 => 0.0054473276117756
209 => 0.0054621668730266
210 => 0.0054241564173681
211 => 0.0054323995241481
212 => 0.0054448855848076
213 => 0.0055206985001105
214 => 0.0057196535265094
215 => 0.0058077693533688
216 => 0.0060728701660336
217 => 0.0058004525605796
218 => 0.0057842884272481
219 => 0.0058320410888866
220 => 0.0059876833296918
221 => 0.0061138167471321
222 => 0.0061556624785084
223 => 0.0061611930827075
224 => 0.0062396984566212
225 => 0.00628469627291
226 => 0.0062301658393318
227 => 0.0061839570064486
228 => 0.0060184427027127
229 => 0.0060376014340506
301 => 0.0061695860941692
302 => 0.0063560222004444
303 => 0.0065160037749993
304 => 0.0064599838035109
305 => 0.0068873766420304
306 => 0.0069297508962264
307 => 0.0069238961444202
308 => 0.0070204310016133
309 => 0.0068288289690669
310 => 0.0067469153880387
311 => 0.0061939478806105
312 => 0.0063493091949463
313 => 0.0065751359893835
314 => 0.0065452469663327
315 => 0.0063812455118449
316 => 0.0065158793651897
317 => 0.006471365202884
318 => 0.0064362550361793
319 => 0.0065971015162944
320 => 0.0064202442041986
321 => 0.0065733717024065
322 => 0.0063769841020537
323 => 0.0064602396980219
324 => 0.0064129797951303
325 => 0.006443562744257
326 => 0.0062647754485745
327 => 0.0063612447335086
328 => 0.0062607620091597
329 => 0.0062607143672651
330 => 0.0062584962055559
331 => 0.0063767136851437
401 => 0.0063805687529089
402 => 0.0062932058568768
403 => 0.0062806154986937
404 => 0.0063271686517706
405 => 0.0062726671018076
406 => 0.0062981680340066
407 => 0.0062734394990657
408 => 0.0062678725849879
409 => 0.0062235144664833
410 => 0.0062044037693797
411 => 0.006211897566136
412 => 0.0061863173744896
413 => 0.0061709043837467
414 => 0.0062554301737578
415 => 0.0062102714539155
416 => 0.0062485089522747
417 => 0.0062049324969374
418 => 0.0060538775173803
419 => 0.0059670042012596
420 => 0.0056816753476803
421 => 0.0057625942566061
422 => 0.0058162435769405
423 => 0.00579851247689
424 => 0.0058366057408233
425 => 0.0058389443578482
426 => 0.0058265598494286
427 => 0.0058122201752325
428 => 0.0058052404148676
429 => 0.0058572618302174
430 => 0.0058874620127883
501 => 0.0058216280039714
502 => 0.0058062040168213
503 => 0.0058727658345304
504 => 0.0059133685048814
505 => 0.0062131558100838
506 => 0.0061909465982141
507 => 0.0062466873616692
508 => 0.0062404118071159
509 => 0.0062988370074168
510 => 0.0063943375175768
511 => 0.0062001582780589
512 => 0.0062338610798263
513 => 0.0062255979311442
514 => 0.0063158128217405
515 => 0.0063160944627817
516 => 0.0062620061293012
517 => 0.006291328292364
518 => 0.0062749614653538
519 => 0.0063045385338705
520 => 0.0061906499806493
521 => 0.0063293539449631
522 => 0.006407990154843
523 => 0.0064090820186935
524 => 0.006446354958081
525 => 0.0064842264232019
526 => 0.0065569174025918
527 => 0.0064821991112398
528 => 0.0063477881787766
529 => 0.0063574922139557
530 => 0.0062786871334316
531 => 0.0062800118610725
601 => 0.0062729403611046
602 => 0.0062941624648261
603 => 0.0061953070389937
604 => 0.0062185082098472
605 => 0.0061860264347865
606 => 0.0062337904707909
607 => 0.0061824042637282
608 => 0.0062255939464038
609 => 0.0062442331816859
610 => 0.006313012361151
611 => 0.0061722455229985
612 => 0.0058852124109285
613 => 0.0059455502510257
614 => 0.0058563058460869
615 => 0.0058645657555414
616 => 0.0058812520871943
617 => 0.0058271662268792
618 => 0.005837484104586
619 => 0.0058371154773885
620 => 0.0058339388473492
621 => 0.0058198690261862
622 => 0.0057994650018706
623 => 0.0058807483547166
624 => 0.0058945599802752
625 => 0.0059252615129936
626 => 0.0060166084493149
627 => 0.0060074807362673
628 => 0.0060223684149531
629 => 0.0059898686959727
630 => 0.0058660733242935
701 => 0.0058727960085732
702 => 0.0057889640278818
703 => 0.0059231177407673
704 => 0.0058913483708135
705 => 0.0058708664513323
706 => 0.0058652777698382
707 => 0.0059568511375462
708 => 0.0059842513244011
709 => 0.0059671773667113
710 => 0.0059321581813625
711 => 0.0059994053697249
712 => 0.0060173978803996
713 => 0.0060214257400014
714 => 0.0061405748644102
715 => 0.0060280848524742
716 => 0.0060551623164017
717 => 0.0062664129603615
718 => 0.0060748377768862
719 => 0.0061763194242095
720 => 0.006171352425658
721 => 0.0062232670024769
722 => 0.0061670939150859
723 => 0.0061677902478269
724 => 0.0062138868750441
725 => 0.0061491524756882
726 => 0.0061331233280457
727 => 0.0061109791753806
728 => 0.0061593301225972
729 => 0.0061883143287284
730 => 0.0064219057435914
731 => 0.0065728164506557
801 => 0.0065662650188634
802 => 0.0066261328416789
803 => 0.0065991618391741
804 => 0.0065120653574951
805 => 0.0066607284314367
806 => 0.0066136852145144
807 => 0.0066175634001599
808 => 0.0066174190538965
809 => 0.0066486986805604
810 => 0.0066265341983334
811 => 0.0065828457287263
812 => 0.006611848173707
813 => 0.0066979750667357
814 => 0.0069653155853925
815 => 0.0071149228814237
816 => 0.006956309038319
817 => 0.0070657187433686
818 => 0.0070001119070028
819 => 0.0069881891932008
820 => 0.0070569065732857
821 => 0.0071257442340477
822 => 0.0071213595726505
823 => 0.0070713869657903
824 => 0.0070431587081829
825 => 0.0072569125319461
826 => 0.0074144027080935
827 => 0.0074036629339077
828 => 0.0074510648044018
829 => 0.007590238162257
830 => 0.007602962429922
831 => 0.0076013594646601
901 => 0.0075698210396125
902 => 0.0077068552843652
903 => 0.0078211716622261
904 => 0.0075625208054467
905 => 0.0076610116657199
906 => 0.0077052273860739
907 => 0.0077701491817667
908 => 0.0078796831332567
909 => 0.0079986660570206
910 => 0.0080154915470222
911 => 0.0080035530566922
912 => 0.0079250806200372
913 => 0.0080552731549812
914 => 0.0081315368885607
915 => 0.0081769501966428
916 => 0.0082921107898851
917 => 0.00770550044731
918 => 0.0072902684904096
919 => 0.0072254240243174
920 => 0.0073572877959985
921 => 0.0073920592209969
922 => 0.0073780429031797
923 => 0.0069106615844504
924 => 0.0072229633584011
925 => 0.0075589738080931
926 => 0.0075718813379114
927 => 0.0077400951946744
928 => 0.0077948725217554
929 => 0.0079303067247438
930 => 0.0079218352784721
1001 => 0.0079548113516709
1002 => 0.0079472307235085
1003 => 0.0081980940655084
1004 => 0.0084748335853012
1005 => 0.0084652509757085
1006 => 0.0084254663955049
1007 => 0.0084845532813862
1008 => 0.0087701781230216
1009 => 0.0087438823646486
1010 => 0.0087694264540406
1011 => 0.0091061942394394
1012 => 0.0095440402651166
1013 => 0.0093406168271673
1014 => 0.0097819871539999
1015 => 0.010059806378705
1016 => 0.010540266000789
1017 => 0.010480110089791
1018 => 0.010667149494893
1019 => 0.010372418454186
1020 => 0.0096956564097533
1021 => 0.0095885562256807
1022 => 0.0098029735064026
1023 => 0.010330097468525
1024 => 0.0097863724969604
1025 => 0.009896367350559
1026 => 0.0098646888253229
1027 => 0.0098630008113381
1028 => 0.0099274254394877
1029 => 0.0098339741561941
1030 => 0.0094532368164909
1031 => 0.0096277264955777
1101 => 0.0095603476507997
1102 => 0.0096351095025065
1103 => 0.010038568382035
1104 => 0.0098601895941371
1105 => 0.0096722820314025
1106 => 0.009907959815098
1107 => 0.010208058621415
1108 => 0.010189278977445
1109 => 0.010152838618861
1110 => 0.010358251012244
1111 => 0.010697532105927
1112 => 0.010789238422208
1113 => 0.010856934150033
1114 => 0.010866268247171
1115 => 0.010962415248806
1116 => 0.010445408588852
1117 => 0.011265911435872
1118 => 0.011407589611619
1119 => 0.011380959986537
1120 => 0.01153842931615
1121 => 0.011492097844767
1122 => 0.011424970811917
1123 => 0.011674593194041
1124 => 0.011388421276424
1125 => 0.010982236267408
1126 => 0.010759395138033
1127 => 0.011052850313275
1128 => 0.01123205314862
1129 => 0.011350494823343
1130 => 0.01138633520255
1201 => 0.010485542344135
1202 => 0.010000064953711
1203 => 0.010311250394963
1204 => 0.010690918110162
1205 => 0.010443299515524
1206 => 0.01045300569563
1207 => 0.010099966652697
1208 => 0.010722154231806
1209 => 0.010631506734951
1210 => 0.011101786108986
1211 => 0.010989550162145
1212 => 0.011373044735531
1213 => 0.011272057762056
1214 => 0.011691249042846
1215 => 0.011858475793904
1216 => 0.012139275535696
1217 => 0.012345832968819
1218 => 0.012467127444362
1219 => 0.012459845379015
1220 => 0.012940474519787
1221 => 0.012657064307377
1222 => 0.012301034285931
1223 => 0.012294594826104
1224 => 0.012478987819195
1225 => 0.012865424946966
1226 => 0.012965622471766
1227 => 0.013021619218931
1228 => 0.012935858251387
1229 => 0.012628236778009
1230 => 0.01249540738548
1231 => 0.012608581876352
]
'min_raw' => 0.0046667283376788
'max_raw' => 0.013021619218931
'avg_raw' => 0.0088441737783051
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004666'
'max' => '$0.013021'
'avg' => '$0.008844'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0018474878707457
'max_diff' => 0.0067278634782835
'year' => 2036
]
11 => [
'items' => [
101 => 0.012470179199211
102 => 0.01270910104889
103 => 0.013037191779453
104 => 0.012969442341003
105 => 0.013195918556178
106 => 0.013430297612891
107 => 0.013765470190613
108 => 0.013853096713834
109 => 0.01399794002458
110 => 0.014147031369887
111 => 0.014194915491875
112 => 0.014286341138321
113 => 0.014285859280035
114 => 0.014561376619255
115 => 0.014865280776477
116 => 0.014979997560431
117 => 0.015243782479612
118 => 0.01479206004964
119 => 0.015134696701787
120 => 0.015443763538775
121 => 0.015075281314388
122 => 0.015583148215359
123 => 0.015602867536273
124 => 0.015900605870211
125 => 0.015598791029001
126 => 0.015419574339718
127 => 0.015936966206517
128 => 0.01618731583317
129 => 0.01611190848821
130 => 0.015538054869739
131 => 0.015204047450049
201 => 0.014329885607502
202 => 0.01536536807098
203 => 0.015869721373503
204 => 0.015536748716528
205 => 0.015704680756843
206 => 0.016620863516658
207 => 0.016969686593155
208 => 0.016897133831701
209 => 0.016909394054067
210 => 0.017097612654558
211 => 0.017932277583011
212 => 0.0174321270105
213 => 0.0178144733829
214 => 0.018017268520169
215 => 0.01820563594556
216 => 0.017743065082936
217 => 0.017141267187178
218 => 0.016950652531834
219 => 0.015503641147965
220 => 0.015428317921383
221 => 0.015386036711775
222 => 0.015119459665993
223 => 0.014910003129606
224 => 0.014743435515248
225 => 0.014306312353874
226 => 0.014453828588953
227 => 0.013757145504416
228 => 0.01420285865297
301 => 0.013090935628049
302 => 0.014016978164174
303 => 0.013512975313749
304 => 0.013851399672696
305 => 0.01385021894199
306 => 0.013227072399626
307 => 0.012867654478728
308 => 0.013096689566679
309 => 0.013342233361791
310 => 0.013382072016439
311 => 0.01370042595615
312 => 0.013789271697729
313 => 0.013520064952935
314 => 0.013067893494842
315 => 0.013172922611624
316 => 0.012865526067028
317 => 0.012326825446461
318 => 0.012713729636963
319 => 0.012845835738577
320 => 0.012904181318968
321 => 0.012374431128824
322 => 0.012207972117645
323 => 0.012119350736819
324 => 0.012999509397613
325 => 0.013047726475897
326 => 0.012801041086188
327 => 0.013916082439342
328 => 0.013663714239773
329 => 0.013945671350402
330 => 0.01316339232014
331 => 0.013193276432574
401 => 0.01282293300307
402 => 0.013030300577235
403 => 0.012883739859584
404 => 0.013013547326489
405 => 0.013091353386936
406 => 0.013461636046727
407 => 0.014021206197356
408 => 0.013406328165193
409 => 0.013138417001363
410 => 0.013304627580614
411 => 0.01374726825613
412 => 0.014417891537898
413 => 0.01402086905754
414 => 0.014197060892444
415 => 0.014235550970141
416 => 0.013942801291697
417 => 0.014428685636116
418 => 0.014689075003607
419 => 0.014956180614666
420 => 0.01518810093262
421 => 0.014849492759831
422 => 0.01521185204229
423 => 0.014919854425652
424 => 0.01465790237737
425 => 0.014658299650498
426 => 0.014493973304101
427 => 0.014175570301506
428 => 0.014116851902649
429 => 0.01442231242882
430 => 0.014667262843589
501 => 0.014687438132983
502 => 0.014823055268606
503 => 0.0149033120925
504 => 0.015689938070524
505 => 0.016006325546197
506 => 0.016393198162541
507 => 0.016543906849553
508 => 0.016997485965404
509 => 0.016631183991459
510 => 0.016551932255249
511 => 0.015451697684792
512 => 0.015631861034068
513 => 0.015920319939436
514 => 0.015456454265895
515 => 0.015750670268597
516 => 0.015808754739877
517 => 0.015440692287809
518 => 0.015637290346498
519 => 0.015115184189881
520 => 0.014032586684819
521 => 0.014429890876616
522 => 0.014722440492924
523 => 0.014304936119345
524 => 0.015053296549334
525 => 0.014616119835429
526 => 0.014477555805305
527 => 0.013936968122145
528 => 0.014192104699468
529 => 0.014537180573502
530 => 0.014323963802725
531 => 0.014766420616746
601 => 0.015393057464321
602 => 0.015839636198773
603 => 0.015873918968814
604 => 0.015586798761013
605 => 0.01604691072639
606 => 0.016050262139742
607 => 0.015531253963184
608 => 0.015213364344892
609 => 0.01514113915477
610 => 0.015321571840276
611 => 0.015540650430192
612 => 0.015886076305844
613 => 0.01609480992806
614 => 0.016639076511039
615 => 0.016786339443048
616 => 0.016948136757994
617 => 0.017164347867205
618 => 0.017423964739205
619 => 0.016855937803267
620 => 0.016878506572366
621 => 0.016349567754489
622 => 0.015784320770088
623 => 0.016213272772217
624 => 0.016774070453908
625 => 0.016645422846102
626 => 0.016630947362191
627 => 0.016655291110964
628 => 0.016558295015916
629 => 0.016119585272858
630 => 0.015899267986363
701 => 0.016183533494876
702 => 0.016334607961449
703 => 0.016568911284025
704 => 0.016540028453974
705 => 0.017143568650591
706 => 0.017378086120887
707 => 0.017318086516417
708 => 0.017329127887611
709 => 0.017753710565569
710 => 0.018225933825546
711 => 0.018668233223862
712 => 0.01911815916903
713 => 0.018575755881221
714 => 0.018300356942456
715 => 0.018584498349541
716 => 0.018433728919362
717 => 0.019300094786289
718 => 0.019360080079187
719 => 0.020226383298001
720 => 0.021048608210124
721 => 0.020532183474509
722 => 0.021019148739913
723 => 0.021545841377308
724 => 0.022561916927644
725 => 0.02221973842826
726 => 0.021957635060352
727 => 0.021709948644154
728 => 0.022225344757151
729 => 0.022888393622869
730 => 0.023031207997941
731 => 0.023262621844849
801 => 0.023019318480765
802 => 0.023312350583818
803 => 0.024346882672426
804 => 0.024067342970017
805 => 0.023670351654346
806 => 0.024487015380785
807 => 0.024782562808683
808 => 0.026856869437063
809 => 0.029475767240725
810 => 0.028391526353399
811 => 0.027718503046401
812 => 0.027876679487871
813 => 0.028833012310484
814 => 0.02914015606062
815 => 0.028305233468949
816 => 0.028600142243224
817 => 0.030225118584267
818 => 0.031096866255754
819 => 0.029912915826543
820 => 0.026646443548502
821 => 0.023634606929946
822 => 0.024433481625958
823 => 0.024342914027398
824 => 0.026088748385922
825 => 0.024060676040565
826 => 0.024094823577579
827 => 0.025876759941767
828 => 0.025401369869925
829 => 0.024631298836901
830 => 0.023640229300699
831 => 0.021808145600193
901 => 0.020185417975222
902 => 0.023367960539644
903 => 0.023230723517188
904 => 0.023031983971284
905 => 0.023474257324828
906 => 0.025621811188153
907 => 0.02557230312065
908 => 0.025257358054433
909 => 0.02549624111136
910 => 0.024589421482039
911 => 0.024823129548414
912 => 0.023634129839638
913 => 0.024171607365019
914 => 0.02462964661032
915 => 0.024721604770201
916 => 0.024928791199914
917 => 0.023158405842452
918 => 0.023953256892169
919 => 0.024420157416406
920 => 0.022310683861916
921 => 0.024378459906709
922 => 0.02312758737213
923 => 0.02270302244642
924 => 0.023274643186714
925 => 0.023051882028302
926 => 0.022860365065273
927 => 0.022753495309224
928 => 0.023173230493417
929 => 0.023153649345382
930 => 0.022466881116954
1001 => 0.021571019959224
1002 => 0.021871700369398
1003 => 0.021762460357488
1004 => 0.021366560462083
1005 => 0.02163334919045
1006 => 0.020458546649407
1007 => 0.018437359938464
1008 => 0.019772617790336
1009 => 0.01972121181552
1010 => 0.019695290591943
1011 => 0.020698699963808
1012 => 0.020602245305296
1013 => 0.02042717915561
1014 => 0.021363345234956
1015 => 0.021021632022784
1016 => 0.022074711624939
1017 => 0.022768337959836
1018 => 0.022592411884845
1019 => 0.023244770805403
1020 => 0.021878627438759
1021 => 0.022332405465
1022 => 0.022425928487299
1023 => 0.021351793090854
1024 => 0.020618026480304
1025 => 0.020569092612932
1026 => 0.019296842429505
1027 => 0.019976468208247
1028 => 0.020574510768714
1029 => 0.020288094792228
1030 => 0.020197424050506
1031 => 0.020660641205877
1101 => 0.020696637146036
1102 => 0.019875925895733
1103 => 0.020046577753216
1104 => 0.020758224367432
1105 => 0.020028646084435
1106 => 0.018611194656506
1107 => 0.018259647104581
1108 => 0.018212744180847
1109 => 0.017259319338438
1110 => 0.018283139192991
1111 => 0.017836214389812
1112 => 0.019248044488072
1113 => 0.018441614707743
1114 => 0.018406851131703
1115 => 0.018354300887812
1116 => 0.017533648740466
1117 => 0.01771331940557
1118 => 0.018310572060991
1119 => 0.018523678536978
1120 => 0.018501449785603
1121 => 0.01830764519715
1122 => 0.018396367945303
1123 => 0.018110561060445
1124 => 0.018009636700846
1125 => 0.017691091660519
1126 => 0.017222918451551
1127 => 0.017288020807731
1128 => 0.016360447176581
1129 => 0.015855055832273
1130 => 0.015715170169119
1201 => 0.015528109214125
1202 => 0.015736299201735
1203 => 0.016357819477028
1204 => 0.015608134162143
1205 => 0.014322851274084
1206 => 0.014400098965672
1207 => 0.014573651593624
1208 => 0.0142502374196
1209 => 0.013944153045981
1210 => 0.014210268575433
1211 => 0.013665677272177
1212 => 0.014639462850807
1213 => 0.014613124679907
1214 => 0.014976091725124
1215 => 0.015203062467332
1216 => 0.014679968389194
1217 => 0.014548411643139
1218 => 0.014623352344612
1219 => 0.013384749481728
1220 => 0.01487487144643
1221 => 0.014887758083059
1222 => 0.014777414876534
1223 => 0.015570858820384
1224 => 0.017245273023279
1225 => 0.016615291046994
1226 => 0.016371342984471
1227 => 0.015907597539289
1228 => 0.016525510810514
1229 => 0.016478064712233
1230 => 0.016263495462406
1231 => 0.016133723310613
]
'min_raw' => 0.012119350736819
'max_raw' => 0.031096866255754
'avg_raw' => 0.021608108496287
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.012119'
'max' => '$0.031096'
'avg' => '$0.0216081'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0074526223991404
'max_diff' => 0.018075247036823
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00038041257115686
]
1 => [
'year' => 2028
'avg' => 0.00065289840666365
]
2 => [
'year' => 2029
'avg' => 0.0017836007735163
]
3 => [
'year' => 2030
'avg' => 0.0013760453405499
]
4 => [
'year' => 2031
'avg' => 0.0013514470558416
]
5 => [
'year' => 2032
'avg' => 0.0023695120049316
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00038041257115686
'min' => '$0.00038'
'max_raw' => 0.0023695120049316
'max' => '$0.002369'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0023695120049316
]
1 => [
'year' => 2033
'avg' => 0.0060946285307303
]
2 => [
'year' => 2034
'avg' => 0.0038630684569185
]
3 => [
'year' => 2035
'avg' => 0.0045564981037904
]
4 => [
'year' => 2036
'avg' => 0.0088441737783051
]
5 => [
'year' => 2037
'avg' => 0.021608108496287
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0023695120049316
'min' => '$0.002369'
'max_raw' => 0.021608108496287
'max' => '$0.0216081'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.021608108496287
]
]
]
]
'prediction_2025_max_price' => '$0.00065'
'last_price' => 0.00063068
'sma_50day_nextmonth' => '$0.0006094'
'sma_200day_nextmonth' => '$0.000725'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.000631'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.000633'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.000645'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000656'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000683'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000632'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.000635'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000642'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000656'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000696'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000728'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000779'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000645'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001239'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.003594'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000641'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000658'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000697'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000719'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000863'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001795'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.004319'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.46'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 5.21
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000646'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000624'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 5.7
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -104.31
'cci_20_action' => 'BUY'
'adx_14' => 11.1
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000038'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -94.3
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 41.6
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000158'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 31
'buy_signals' => 2
'sell_pct' => 93.94
'buy_pct' => 6.06
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767698078
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Prism para 2026
La previsión del precio de Prism para 2026 sugiere que el precio medio podría oscilar entre $0.000217 en el extremo inferior y $0.00065 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Prism podría potencialmente ganar 3.13% para 2026 si PRISM alcanza el objetivo de precio previsto.
Predicción de precio de Prism 2027-2032
La predicción del precio de PRISM para 2027-2032 está actualmente dentro de un rango de precios de $0.00038 en el extremo inferior y $0.002369 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Prism alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Prism | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0002097 | $0.00038 | $0.000551 |
| 2028 | $0.000378 | $0.000652 | $0.000927 |
| 2029 | $0.000831 | $0.001783 | $0.002735 |
| 2030 | $0.0007072 | $0.001376 | $0.002044 |
| 2031 | $0.000836 | $0.001351 | $0.001866 |
| 2032 | $0.001276 | $0.002369 | $0.003462 |
Predicción de precio de Prism 2032-2037
La predicción de precio de Prism para 2032-2037 se estima actualmente entre $0.002369 en el extremo inferior y $0.0216081 en el extremo superior. Comparado con el precio actual, Prism podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Prism | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001276 | $0.002369 | $0.003462 |
| 2033 | $0.002965 | $0.006094 | $0.009223 |
| 2034 | $0.002384 | $0.003863 | $0.005341 |
| 2035 | $0.002819 | $0.004556 | $0.006293 |
| 2036 | $0.004666 | $0.008844 | $0.013021 |
| 2037 | $0.012119 | $0.0216081 | $0.031096 |
Prism Histograma de precios potenciales
Pronóstico de precio de Prism basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Prism es Bajista, con 2 indicadores técnicos mostrando señales alcistas y 31 indicando señales bajistas. La predicción de precio de PRISM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Prism
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Prism aumentar durante el próximo mes, alcanzando $0.000725 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Prism alcance $0.0006094 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 43.46, lo que sugiere que el mercado de PRISM está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PRISM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.000631 | SELL |
| SMA 5 | $0.000633 | SELL |
| SMA 10 | $0.000645 | SELL |
| SMA 21 | $0.000656 | SELL |
| SMA 50 | $0.000683 | SELL |
| SMA 100 | $0.000786 | SELL |
| SMA 200 | $0.000692 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000632 | SELL |
| EMA 5 | $0.000635 | SELL |
| EMA 10 | $0.000642 | SELL |
| EMA 21 | $0.000656 | SELL |
| EMA 50 | $0.000696 | SELL |
| EMA 100 | $0.000728 | SELL |
| EMA 200 | $0.00074 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.000779 | SELL |
| SMA 50 | $0.000645 | SELL |
| SMA 100 | $0.001239 | SELL |
| SMA 200 | $0.003594 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000719 | SELL |
| EMA 50 | $0.000863 | SELL |
| EMA 100 | $0.001795 | SELL |
| EMA 200 | $0.004319 | SELL |
Osciladores de Prism
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 43.46 | NEUTRAL |
| Stoch RSI (14) | 5.21 | BUY |
| Estocástico Rápido (14) | 5.7 | BUY |
| Índice de Canal de Materias Primas (20) | -104.31 | BUY |
| Índice Direccional Medio (14) | 11.1 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000038 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -94.3 | BUY |
| Oscilador Ultimate (7, 14, 28) | 41.6 | NEUTRAL |
| VWMA (10) | 0.000646 | SELL |
| Promedio Móvil de Hull (9) | 0.000624 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000158 | SELL |
Predicción de precios de Prism basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Prism
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Prism por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000886 | $0.001245 | $0.001749 | $0.002458 | $0.003455 | $0.004854 |
| Amazon.com acción | $0.001315 | $0.002745 | $0.005729 | $0.011954 | $0.024943 | $0.052046 |
| Apple acción | $0.000894 | $0.001268 | $0.001799 | $0.002552 | $0.003621 | $0.005136 |
| Netflix acción | $0.000995 | $0.00157 | $0.002477 | $0.0039089 | $0.006167 | $0.009731 |
| Google acción | $0.000816 | $0.001057 | $0.001369 | $0.001773 | $0.002296 | $0.002974 |
| Tesla acción | $0.001429 | $0.003241 | $0.007347 | $0.016655 | $0.037756 | $0.085591 |
| Kodak acción | $0.000472 | $0.000354 | $0.000265 | $0.000199 | $0.000149 | $0.000112 |
| Nokia acción | $0.000417 | $0.000276 | $0.000183 | $0.000121 | $0.00008 | $0.000053 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Prism
Podría preguntarse cosas como: "¿Debo invertir en Prism ahora?", "¿Debería comprar PRISM hoy?", "¿Será Prism una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Prism regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Prism, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Prism a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Prism es de $0.0006306 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Prism basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Prism ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000647 | $0.000663 | $0.000681 | $0.000698 |
| Si Prism ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000663 | $0.000697 | $0.000734 | $0.000772 |
| Si Prism ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000712 | $0.0008052 | $0.0009099 | $0.001028 |
| Si Prism ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000794 | $0.0010011 | $0.001261 | $0.001589 |
| Si Prism ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000958 | $0.001456 | $0.002214 | $0.003365 |
| Si Prism ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00145 | $0.003335 | $0.00767 | $0.017638 |
| Si Prism ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.00227 | $0.00817 | $0.0294083 | $0.10585 |
Cuadro de preguntas
¿Es PRISM una buena inversión?
La decisión de adquirir Prism depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Prism ha experimentado un aumento de 0.5752% durante las últimas 24 horas, y Prism ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Prism dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Prism subir?
Parece que el valor medio de Prism podría potencialmente aumentar hasta $0.00065 para el final de este año. Mirando las perspectivas de Prism en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.002044. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Prism la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Prism, el precio de Prism aumentará en un 0.86% durante la próxima semana y alcanzará $0.000636 para el 13 de enero de 2026.
¿Cuál será el precio de Prism el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Prism, el precio de Prism disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000557 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Prism este año en 2026?
Según nuestra predicción más reciente sobre el valor de Prism en 2026, se anticipa que PRISM fluctúe dentro del rango de $0.000217 y $0.00065. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Prism no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Prism en 5 años?
El futuro de Prism parece estar en una tendencia alcista, con un precio máximo de $0.002044 proyectada después de un período de cinco años. Basado en el pronóstico de Prism para 2030, el valor de Prism podría potencialmente alcanzar su punto más alto de aproximadamente $0.002044, mientras que su punto más bajo se anticipa que esté alrededor de $0.0007072.
¿Cuánto será Prism en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Prism, se espera que el valor de PRISM en 2026 crezca en un 3.13% hasta $0.00065 si ocurre lo mejor. El precio estará entre $0.00065 y $0.000217 durante 2026.
¿Cuánto será Prism en 2027?
Según nuestra última simulación experimental para la predicción de precios de Prism, el valor de PRISM podría disminuir en un -12.62% hasta $0.000551 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000551 y $0.0002097 a lo largo del año.
¿Cuánto será Prism en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Prism sugiere que el valor de PRISM en 2028 podría aumentar en un 47.02% , alcanzando $0.000927 en el mejor escenario. Se espera que el precio oscile entre $0.000927 y $0.000378 durante el año.
¿Cuánto será Prism en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Prism podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.002735 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.002735 y $0.000831.
¿Cuánto será Prism en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Prism, se espera que el valor de PRISM en 2030 aumente en un 224.23% , alcanzando $0.002044 en el mejor escenario. Se pronostica que el precio oscile entre $0.002044 y $0.0007072 durante el transcurso de 2030.
¿Cuánto será Prism en 2031?
Nuestra simulación experimental indica que el precio de Prism podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.001866 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.001866 y $0.000836 durante el año.
¿Cuánto será Prism en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Prism, PRISM podría experimentar un 449.04% aumento en valor, alcanzando $0.003462 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.003462 y $0.001276 a lo largo del año.
¿Cuánto será Prism en 2033?
Según nuestra predicción experimental de precios de Prism, se anticipa que el valor de PRISM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.009223. A lo largo del año, el precio de PRISM podría oscilar entre $0.009223 y $0.002965.
¿Cuánto será Prism en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Prism sugieren que PRISM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.005341 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.005341 y $0.002384.
¿Cuánto será Prism en 2035?
Basado en nuestra predicción experimental para el precio de Prism, PRISM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.006293 en 2035. El rango de precios esperado para el año está entre $0.006293 y $0.002819.
¿Cuánto será Prism en 2036?
Nuestra reciente simulación de predicción de precios de Prism sugiere que el valor de PRISM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.013021 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.013021 y $0.004666.
¿Cuánto será Prism en 2037?
Según la simulación experimental, el valor de Prism podría aumentar en un 4830.69% en 2037, con un máximo de $0.031096 bajo condiciones favorables. Se espera que el precio caiga entre $0.031096 y $0.012119 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Napoli Fan Token
Predicción de precios de Karlsen
Predicción de precios de Reflexer Ungovernance Token
Predicción de precios de Champignons of Arborethia
Predicción de precios de SANSHU!
Predicción de precios de Digits DAO
Predicción de precios de Nash Exchange
Predicción de precios de Inscribe
Predicción de precios de BigShortBets
Predicción de precios de UniCoin
Predicción de precios de AthenaDAO
Predicción de precios de Codex Multichain
Predicción de precios de Spheroid Universe
Predicción de precios de DeFinity
Predicción de precios de IXO
Predicción de precios de Mysterium
Predicción de precios de UFC Fan Token
Predicción de precios de MEME (Ordinals)
Predicción de precios de Galaxia
Predicción de precios de MetaTrace
Predicción de precios de Yield Yak
Predicción de precios de Gamestarter
Predicción de precios de QHUB
Predicción de precios de Piteas
Predicción de precios de MetFi
¿Cómo leer y predecir los movimientos de precio de Prism?
Los traders de Prism utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Prism
Las medias móviles son herramientas populares para la predicción de precios de Prism. Una media móvil simple (SMA) calcula el precio de cierre promedio de PRISM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PRISM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PRISM.
¿Cómo leer gráficos de Prism y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Prism en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PRISM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Prism?
La acción del precio de Prism está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PRISM. La capitalización de mercado de Prism puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PRISM, grandes poseedores de Prism, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Prism.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


