Previsão de Preço Prism - Projeção PRISM
Previsão de Preço Prism até $0.000656 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000219 | $0.000656 |
| 2027 | $0.000211 | $0.000555 |
| 2028 | $0.000381 | $0.000935 |
| 2029 | $0.000838 | $0.002759 |
| 2030 | $0.000713 | $0.002062 |
| 2031 | $0.000843 | $0.001882 |
| 2032 | $0.001287 | $0.003492 |
| 2033 | $0.002991 | $0.0093023 |
| 2034 | $0.0024049 | $0.005387 |
| 2035 | $0.002843 | $0.006347 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Prism hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,963.12, com um retorno de 39.63% nos próximos 90 dias.
Previsão de preço de longo prazo de Prism para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Prism'
'name_with_ticker' => 'Prism <small>PRISM</small>'
'name_lang' => 'Prism'
'name_lang_with_ticker' => 'Prism <small>PRISM</small>'
'name_with_lang' => 'Prism'
'name_with_lang_with_ticker' => 'Prism <small>PRISM</small>'
'image' => '/uploads/coins/prism.png?1717211390'
'price_for_sd' => 0.000636
'ticker' => 'PRISM'
'marketcap' => '$1.17M'
'low24h' => '$0.0006258'
'high24h' => '$0.0006503'
'volume24h' => '$11.99K'
'current_supply' => '1.83B'
'max_supply' => '1.91B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.000636'
'change_24h_pct' => '1.4146%'
'ath_price' => '$0.04643'
'ath_days' => 1455
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 de jan. de 2022'
'ath_pct' => '-98.63%'
'fdv' => '$1.22M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.031363'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000641'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000562'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000219'
'current_year_max_price_prediction' => '$0.000656'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000713'
'grand_prediction_max_price' => '$0.002062'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00064814357091666
107 => 0.00065056350373435
108 => 0.00065601573593743
109 => 0.00060942700871618
110 => 0.00063034397946535
111 => 0.00064263074012538
112 => 0.00058711870846721
113 => 0.00064153344574428
114 => 0.00060861600262582
115 => 0.00059744332802801
116 => 0.00061248586248601
117 => 0.00060662377217838
118 => 0.00060158389116538
119 => 0.00059877155096397
120 => 0.00060981712808599
121 => 0.00060930183871092
122 => 0.00059122913068518
123 => 0.00056765401980341
124 => 0.00057556660084197
125 => 0.00057269188596982
126 => 0.00056227354842755
127 => 0.00056929425001617
128 => 0.00053837863331565
129 => 0.00048518992163634
130 => 0.00052032801378599
131 => 0.00051897523546112
201 => 0.00051829310328611
202 => 0.00054469840839104
203 => 0.00054216014757923
204 => 0.00053755317935109
205 => 0.00056218893784321
206 => 0.00055319655459587
207 => 0.0005809089608922
208 => 0.00059916214400502
209 => 0.00059453254633899
210 => 0.00061169975328189
211 => 0.00057574889072793
212 => 0.0005876903251701
213 => 0.00059015143825852
214 => 0.00056188493640753
215 => 0.00054257543843925
216 => 0.00054128771506916
217 => 0.00050780770660489
218 => 0.00052569245688531
219 => 0.00054143029701083
220 => 0.00053389309289644
221 => 0.00053150703924139
222 => 0.00054369686989314
223 => 0.00054464412413362
224 => 0.00052304662706517
225 => 0.00052753743060948
226 => 0.00054626482792324
227 => 0.00052706554824673
228 => 0.00048976448401979
301 => 0.00048051330436394
302 => 0.00047927902646479
303 => 0.00045418909351783
304 => 0.00048113151242479
305 => 0.00046937042455996
306 => 0.00050652356020547
307 => 0.00048530188838102
308 => 0.00048438706452388
309 => 0.00048300417408834
310 => 0.00046140823234882
311 => 0.00046613637109608
312 => 0.00048185342440783
313 => 0.00048746144609475
314 => 0.00048687648348763
315 => 0.0004817764022722
316 => 0.00048411119333598
317 => 0.0004765900178244
318 => 0.00047393413421153
319 => 0.00046555143497097
320 => 0.00045323118286711
321 => 0.00045494438948665
322 => 0.00043053474629959
323 => 0.00041723507717346
324 => 0.00041355390404617
325 => 0.00040863128549355
326 => 0.00041410992691028
327 => 0.00043046559684735
328 => 0.0004107371888543
329 => 0.00037691421713713
330 => 0.00037894703536887
331 => 0.00038351417438644
401 => 0.00037500334104184
402 => 0.00036694855154128
403 => 0.00037395153750629
404 => 0.00035962029850937
405 => 0.00038524603615092
406 => 0.00038455293176301
407 => 0.0003941046220708
408 => 0.00040007749004067
409 => 0.00038631196310908
410 => 0.00038284997031173
411 => 0.0003848220787479
412 => 0.0003522275192238
413 => 0.00039144095117368
414 => 0.00039178007056155
415 => 0.00038887632447721
416 => 0.00040975626641163
417 => 0.00045381945651047
418 => 0.00043724111195758
419 => 0.00043082147586358
420 => 0.00041861774295616
421 => 0.00043487849246933
422 => 0.00043362992061393
423 => 0.00042798340517698
424 => 0.00042456837502251
425 => 0.00043086067279266
426 => 0.00042378868969501
427 => 0.00042251836720558
428 => 0.00041482159504409
429 => 0.00041207419756326
430 => 0.0004100401338455
501 => 0.00040780082955521
502 => 0.00041274017681972
503 => 0.00040154696609311
504 => 0.00038804905124079
505 => 0.00038692684567029
506 => 0.00039002535391578
507 => 0.00038865449467396
508 => 0.00038692028252364
509 => 0.00038360919924412
510 => 0.00038262687156518
511 => 0.00038581895996408
512 => 0.00038221527827204
513 => 0.00038753270691135
514 => 0.0003860866605482
515 => 0.00037800916311223
516 => 0.00036794161063443
517 => 0.00036785198829997
518 => 0.00036568295063272
519 => 0.00036292035504649
520 => 0.00036215186415402
521 => 0.00037336176556123
522 => 0.00039656592599005
523 => 0.00039201039406938
524 => 0.00039530223275175
525 => 0.00041149482101656
526 => 0.00041664195789783
527 => 0.00041298864205613
528 => 0.00040798775800529
529 => 0.00040820777152362
530 => 0.00042529730619586
531 => 0.00042636315951092
601 => 0.00042905622698076
602 => 0.00043251757974028
603 => 0.00041357812539839
604 => 0.00040731572492731
605 => 0.00040434825215936
606 => 0.00039520958459058
607 => 0.00040506485407337
608 => 0.00039932261059046
609 => 0.00040009743541928
610 => 0.00039959282973304
611 => 0.00039986837855901
612 => 0.00038523887323499
613 => 0.0003905690960709
614 => 0.00038170656679248
615 => 0.00036984063495427
616 => 0.00036980085619002
617 => 0.00037270502619697
618 => 0.00037097751223665
619 => 0.00036632881658789
620 => 0.00036698914186357
621 => 0.00036120399762168
622 => 0.00036769156311795
623 => 0.00036787760328276
624 => 0.00036537953718661
625 => 0.00037537452694513
626 => 0.00037946948240433
627 => 0.00037782520178609
628 => 0.00037935411529284
629 => 0.00039219969698767
630 => 0.00039429408729595
701 => 0.00039522427712323
702 => 0.00039397794598122
703 => 0.00037958890894526
704 => 0.00038022712392471
705 => 0.00037554432586777
706 => 0.00037158785497075
707 => 0.00037174609305767
708 => 0.00037378023340395
709 => 0.00038266344359692
710 => 0.00040135763575417
711 => 0.00040206706668127
712 => 0.00040292691766046
713 => 0.0003994294716016
714 => 0.00039837460840419
715 => 0.00039976624524486
716 => 0.0004067868009252
717 => 0.0004248455761973
718 => 0.00041846239891109
719 => 0.00041327277641733
720 => 0.00041782547445654
721 => 0.00041712462227863
722 => 0.00041120872458438
723 => 0.00041104268503961
724 => 0.00039968818593743
725 => 0.00039549068614879
726 => 0.00039198294114799
727 => 0.00038815257517912
728 => 0.00038588180583774
729 => 0.0003893707395923
730 => 0.00039016870002182
731 => 0.00038254008539134
801 => 0.00038150033340591
802 => 0.00038773002478824
803 => 0.00038498856987718
804 => 0.00038780822423802
805 => 0.00038846240823628
806 => 0.00038835706954542
807 => 0.00038549467576418
808 => 0.00038731908020253
809 => 0.0003830038198247
810 => 0.00037831162229495
811 => 0.0003753182926052
812 => 0.00037270621544333
813 => 0.00037415554766755
814 => 0.00036898894292582
815 => 0.00036733604208573
816 => 0.00038670101302922
817 => 0.0004010061252737
818 => 0.00040079812327622
819 => 0.00039953196461033
820 => 0.00039765070966371
821 => 0.00040664917540824
822 => 0.00040351428987285
823 => 0.0004057951810283
824 => 0.00040637576355606
825 => 0.00040813301200733
826 => 0.00040876107728805
827 => 0.00040686262779033
828 => 0.0004004911993999
829 => 0.0003846142056282
830 => 0.00037722342216835
831 => 0.00037478434052336
901 => 0.00037487299650868
902 => 0.00037242746865581
903 => 0.00037314778620935
904 => 0.00037217697160665
905 => 0.00037033848361442
906 => 0.00037404202621476
907 => 0.00037446882499856
908 => 0.0003736043739016
909 => 0.00037380798342852
910 => 0.00036665069755761
911 => 0.00036719485045757
912 => 0.00036416493796299
913 => 0.0003635968658964
914 => 0.00035593751095479
915 => 0.00034236785343446
916 => 0.00034988676093925
917 => 0.00034080497799185
918 => 0.00033736556917821
919 => 0.0003536471955642
920 => 0.00035201297185706
921 => 0.00034921589125042
922 => 0.00034507842607052
923 => 0.00034354379998862
924 => 0.00033421989771858
925 => 0.00033366899183138
926 => 0.00033829016956295
927 => 0.00033615765504485
928 => 0.00033316279701503
929 => 0.0003223157248149
930 => 0.00031012002431978
1001 => 0.00031048813585829
1002 => 0.00031436736127671
1003 => 0.0003256467323656
1004 => 0.00032123968694607
1005 => 0.00031804232492918
1006 => 0.00031744355513577
1007 => 0.00032493841270982
1008 => 0.0003355452063983
1009 => 0.0003405216766833
1010 => 0.00033559014576851
1011 => 0.00032992506858609
1012 => 0.00033026987558474
1013 => 0.00033256372207053
1014 => 0.00033280477290294
1015 => 0.00032911739003653
1016 => 0.00033015536671446
1017 => 0.00032857858522611
1018 => 0.00031890188014262
1019 => 0.00031872685923283
1020 => 0.00031635203974739
1021 => 0.00031628013115718
1022 => 0.00031223997078598
1023 => 0.00031167472442173
1024 => 0.00030365274078449
1025 => 0.00030893283470733
1026 => 0.00030539122492126
1027 => 0.00030005318359237
1028 => 0.00029913290325524
1029 => 0.00029910523851703
1030 => 0.00030458621339761
1031 => 0.00030886878632467
1101 => 0.00030545283273979
1102 => 0.00030467508632399
1103 => 0.00031297938329418
1104 => 0.00031192258580937
1105 => 0.00031100740600315
1106 => 0.00033459548435983
1107 => 0.00031592367973981
1108 => 0.00030778170717613
1109 => 0.00029770447000993
1110 => 0.00030098566924508
1111 => 0.00030167706613478
1112 => 0.00027744312730858
1113 => 0.00026761142134494
1114 => 0.00026423755035824
1115 => 0.00026229583990586
1116 => 0.00026318070174148
1117 => 0.00025433101323011
1118 => 0.00026027815027009
1119 => 0.00025261506806479
1120 => 0.00025133032739524
1121 => 0.00026503286765204
1122 => 0.00026693949607969
1123 => 0.0002588052268643
1124 => 0.00026402874451915
1125 => 0.00026213462440517
1126 => 0.00025274642961482
1127 => 0.00025238786962871
1128 => 0.00024767720349392
1129 => 0.00024030592315767
1130 => 0.00023693705024615
1201 => 0.00023518251198393
1202 => 0.00023590646866619
1203 => 0.0002355404140142
1204 => 0.00023315165980105
1205 => 0.00023567733460952
1206 => 0.00022922527915477
1207 => 0.00022665601868494
1208 => 0.00022549554333711
1209 => 0.00021976897275457
1210 => 0.0002288824931689
1211 => 0.00023067797149962
1212 => 0.00023247698747731
1213 => 0.00024813619332274
1214 => 0.00024735390365116
1215 => 0.00025442542129173
1216 => 0.0002541506351199
1217 => 0.00025213372373782
1218 => 0.00024362470638264
1219 => 0.00024701624904176
1220 => 0.00023657760789973
1221 => 0.00024439894760194
1222 => 0.00024082961478881
1223 => 0.0002431921525874
1224 => 0.00023894409660409
1225 => 0.00024129514618318
1226 => 0.00023110374601969
1227 => 0.0002215871599439
1228 => 0.00022541691198726
1229 => 0.00022958029044367
1230 => 0.00023860755574627
1231 => 0.00023323099100537
]
'min_raw' => 0.00021976897275457
'max_raw' => 0.00065601573593743
'avg_raw' => 0.000437892354346
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000219'
'max' => '$0.000656'
'avg' => '$0.000437'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00041632102724543
'max_diff' => 1.9925735937427E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00023516460699662
102 => 0.00022868731710933
103 => 0.00021532281792548
104 => 0.00021539845953948
105 => 0.00021334262250149
106 => 0.00021156607914354
107 => 0.00023384855414274
108 => 0.00023107737614278
109 => 0.00022666186668267
110 => 0.0002325722015604
111 => 0.0002341349879117
112 => 0.00023417947824211
113 => 0.00023849150600108
114 => 0.00024079283598901
115 => 0.00024119845537392
116 => 0.00024798352422019
117 => 0.00025025778980024
118 => 0.00025962516785834
119 => 0.00024059758421804
120 => 0.00024020572365441
121 => 0.00023265537209272
122 => 0.00022786681976595
123 => 0.00023298324836732
124 => 0.00023751570564597
125 => 0.00023279620817454
126 => 0.00023341247491028
127 => 0.000227076935152
128 => 0.00022934159250073
129 => 0.00023129222049175
130 => 0.00023021519836772
131 => 0.00022860284411959
201 => 0.00023714409583658
202 => 0.00023666216494127
203 => 0.00024461597490266
204 => 0.00025081653854997
205 => 0.00026192905708928
206 => 0.00025033256468482
207 => 0.00024990994240972
208 => 0.00025404114293957
209 => 0.00025025715733496
210 => 0.00025264850561833
211 => 0.00026154377391073
212 => 0.00026173171691277
213 => 0.00025858342947775
214 => 0.00025839185590121
215 => 0.0002589965189416
216 => 0.00026253804925544
217 => 0.00026130052974355
218 => 0.00026273261865287
219 => 0.0002645234677629
220 => 0.00027193117898628
221 => 0.00027371715308355
222 => 0.00026937816194859
223 => 0.00026976992426646
224 => 0.00026814702247401
225 => 0.00026657931967741
226 => 0.00027010328661956
227 => 0.00027654340547009
228 => 0.00027650334182497
301 => 0.00027799732422027
302 => 0.00027892806287572
303 => 0.00027493265122418
304 => 0.00027233178515438
305 => 0.00027332912270295
306 => 0.00027492388716229
307 => 0.00027281196208248
308 => 0.00025977618215099
309 => 0.00026373040505336
310 => 0.00026307222901078
311 => 0.00026213490628921
312 => 0.00026611090799465
313 => 0.00026572741293064
314 => 0.00025424024688329
315 => 0.00025497561798363
316 => 0.00025428496723553
317 => 0.00025651660109647
318 => 0.00025013664178287
319 => 0.00025209907429805
320 => 0.00025332989357491
321 => 0.00025405485558458
322 => 0.00025667391547462
323 => 0.0002563665990256
324 => 0.00025665481225265
325 => 0.00026053818666339
326 => 0.00028017896181975
327 => 0.00028124796587658
328 => 0.00027598379893087
329 => 0.00027808672979458
330 => 0.00027404956239669
331 => 0.00027675973991757
401 => 0.00027861397454631
402 => 0.00027023504480784
403 => 0.00026973889896754
404 => 0.00026568506874369
405 => 0.0002678633674853
406 => 0.00026439753756217
407 => 0.00026524793099572
408 => 0.00026287015681954
409 => 0.00026714967692655
410 => 0.00027193484537638
411 => 0.00027314376789883
412 => 0.00026996361321613
413 => 0.00026766097164344
414 => 0.00026361829157909
415 => 0.0002703413586231
416 => 0.00027230738830853
417 => 0.00027033103190613
418 => 0.00026987306694345
419 => 0.00026900522416671
420 => 0.0002700571838911
421 => 0.00027229668088864
422 => 0.00027124057546161
423 => 0.00027193815170235
424 => 0.00026927971041017
425 => 0.00027493397387168
426 => 0.00028391430502117
427 => 0.00028394317825424
428 => 0.00028288706713442
429 => 0.00028245492921842
430 => 0.00028353856331754
501 => 0.00028412639036332
502 => 0.00028763066433537
503 => 0.00029139088992381
504 => 0.00030893822203013
505 => 0.00030401100139146
506 => 0.00031958003833164
507 => 0.0003318931251649
508 => 0.00033558528152016
509 => 0.0003321886714027
510 => 0.00032056905167214
511 => 0.00031999893769384
512 => 0.00033736355524821
513 => 0.00033245725543923
514 => 0.00033187366668867
515 => 0.00032566526837145
516 => 0.00032933520070202
517 => 0.00032853253266666
518 => 0.00032726548190499
519 => 0.00033426745714201
520 => 0.00034737452971507
521 => 0.00034533166953721
522 => 0.00034380676917999
523 => 0.0003371250997065
524 => 0.00034114895713445
525 => 0.00033971613857627
526 => 0.00034587243639134
527 => 0.00034222558194438
528 => 0.0003324200853927
529 => 0.00033398164303789
530 => 0.00033374561674124
531 => 0.00033860302120136
601 => 0.00033714494895062
602 => 0.00033346090473306
603 => 0.00034732973116594
604 => 0.00034642916671985
605 => 0.0003477059612067
606 => 0.000348268045626
607 => 0.00035670975587956
608 => 0.00036016805446584
609 => 0.00036095314879097
610 => 0.00036423826497352
611 => 0.00036087141210767
612 => 0.00037434122409649
613 => 0.00038329786308374
614 => 0.00039370146017185
615 => 0.00040890391174086
616 => 0.00041462017416135
617 => 0.00041358758251937
618 => 0.00042511390779581
619 => 0.00044582645810176
620 => 0.00041777418113068
621 => 0.00044731329689748
622 => 0.0004379615538912
623 => 0.00041578873945399
624 => 0.00041436107160454
625 => 0.00042937675897309
626 => 0.00046268010835018
627 => 0.00045433799705468
628 => 0.00046269375305578
629 => 0.00045294631983839
630 => 0.00045246227762133
701 => 0.00046222034198109
702 => 0.00048502059124208
703 => 0.00047418904747275
704 => 0.00045865937347592
705 => 0.00047012624308669
706 => 0.00046019257942115
707 => 0.00043780925492531
708 => 0.00045433161799939
709 => 0.00044328358434156
710 => 0.00044650798790869
711 => 0.00046972931138647
712 => 0.00046693526030962
713 => 0.00047055102112523
714 => 0.00046416929792662
715 => 0.00045820776215375
716 => 0.00044708011292421
717 => 0.00044378576457383
718 => 0.00044469620393964
719 => 0.00044378531340529
720 => 0.00043755949592974
721 => 0.00043621503123866
722 => 0.00043397419785118
723 => 0.00043466872581768
724 => 0.00043045530347028
725 => 0.0004384069019773
726 => 0.00043988278872945
727 => 0.00044566929901457
728 => 0.00044627007370838
729 => 0.00046238542248662
730 => 0.000453509359187
731 => 0.00045946418877082
801 => 0.00045893153276381
802 => 0.0004162692915767
803 => 0.00042214777200014
804 => 0.00043129284277024
805 => 0.00042717300078416
806 => 0.0004213485081104
807 => 0.0004166449179868
808 => 0.00040951849798276
809 => 0.00041954879728767
810 => 0.00043273757427021
811 => 0.00044660456285745
812 => 0.00046326484104393
813 => 0.00045954646089973
814 => 0.0004462931105454
815 => 0.00044688764616072
816 => 0.00045056283139346
817 => 0.00044580313259127
818 => 0.00044439940449414
819 => 0.00045036998070863
820 => 0.00045041109678565
821 => 0.00044493448808491
822 => 0.00043884823972285
823 => 0.00043882273811998
824 => 0.00043773974901014
825 => 0.00045313898119516
826 => 0.00046160700185893
827 => 0.00046257784678114
828 => 0.00046154165626038
829 => 0.00046194044486689
830 => 0.00045701309022274
831 => 0.00046827556177763
901 => 0.0004786111194194
902 => 0.00047584096918442
903 => 0.00047168812018214
904 => 0.0004683801759235
905 => 0.00047506172264507
906 => 0.00047476420388729
907 => 0.00047852084733994
908 => 0.00047835042429351
909 => 0.00047708720639489
910 => 0.00047584101429791
911 => 0.00048078202509924
912 => 0.00047935909333867
913 => 0.00047793395137204
914 => 0.00047507561097965
915 => 0.00047546410691099
916 => 0.00047131197495663
917 => 0.00046939100872591
918 => 0.00044050428565839
919 => 0.00043278480935384
920 => 0.00043521351374368
921 => 0.0004360131062901
922 => 0.00043265358030958
923 => 0.00043747027757423
924 => 0.00043671960040768
925 => 0.00043964004613127
926 => 0.00043781547843418
927 => 0.00043789035932891
928 => 0.00044325602388719
929 => 0.00044481369913563
930 => 0.00044402145293229
1001 => 0.0004445763150165
1002 => 0.00045736287755439
1003 => 0.00045554503725276
1004 => 0.00045457934582341
1005 => 0.000454846848949
1006 => 0.00045811408982442
1007 => 0.0004590287388848
1008 => 0.00045515330654472
1009 => 0.00045698098283991
1010 => 0.00046476299653817
1011 => 0.00046748626090873
1012 => 0.00047617761353852
1013 => 0.00047248537246491
1014 => 0.00047926264075196
1015 => 0.00050009365292534
1016 => 0.00051673490684584
1017 => 0.00050143092201165
1018 => 0.00053199046558574
1019 => 0.00055578545376433
1020 => 0.00055487216248541
1021 => 0.00055072295590848
1022 => 0.00052363299448964
1023 => 0.00049870440810346
1024 => 0.00051955822913919
1025 => 0.00051961138981764
1026 => 0.00051782002809633
1027 => 0.00050669403429501
1028 => 0.00051743286762903
1029 => 0.00051828527722137
1030 => 0.00051780815452367
1031 => 0.00050927788116247
1101 => 0.00049625373039796
1102 => 0.00049879861828194
1103 => 0.00050296719655019
1104 => 0.00049507520823186
1105 => 0.00049255323977172
1106 => 0.00049724205896325
1107 => 0.00051235041135265
1108 => 0.00050949426485016
1109 => 0.00050941967932239
1110 => 0.00052163948525465
1111 => 0.00051289274140632
1112 => 0.00049883071746801
1113 => 0.00049527987096828
1114 => 0.00048267675803105
1115 => 0.00049138177302754
1116 => 0.00049169505102003
1117 => 0.00048692740326954
1118 => 0.00049921758580696
1119 => 0.00049910432961123
1120 => 0.00051077202877824
1121 => 0.00053307628739789
1122 => 0.00052647982059815
1123 => 0.0005188088474036
1124 => 0.00051964289488287
1125 => 0.00052879033712579
1126 => 0.00052325958472992
1127 => 0.00052524848185325
1128 => 0.00052878732669178
1129 => 0.00053092239964745
1130 => 0.00051933569074145
1201 => 0.00051663427463911
1202 => 0.00051110812536194
1203 => 0.00050966645616598
1204 => 0.00051416738944535
1205 => 0.00051298155254656
1206 => 0.00049166872121783
1207 => 0.0004894414117605
1208 => 0.0004895097201617
1209 => 0.00048390904462846
1210 => 0.00047536667012412
1211 => 0.00049781552028283
1212 => 0.00049601256344363
1213 => 0.00049402223863093
1214 => 0.00049426604206385
1215 => 0.00050401032705562
1216 => 0.00049835814966221
1217 => 0.00051338538963626
1218 => 0.00051029624085777
1219 => 0.00050712786706955
1220 => 0.00050668990130099
1221 => 0.00050547034770547
1222 => 0.00050128804465053
1223 => 0.00049623766239425
1224 => 0.00049290296257203
1225 => 0.00045467692822068
1226 => 0.00046177145784568
1227 => 0.00046993306749251
1228 => 0.00047275042243701
1229 => 0.00046793114184943
1230 => 0.00050147833922199
1231 => 0.0005076077354508
]
'min_raw' => 0.00021156607914354
'max_raw' => 0.00055578545376433
'avg_raw' => 0.00038367576645393
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000211'
'max' => '$0.000555'
'avg' => '$0.000383'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.2028936110301E-6
'max_diff' => -0.0001002302821731
'year' => 2027
]
2 => [
'items' => [
101 => 0.00048904139446312
102 => 0.00048556839012304
103 => 0.00050170602880834
104 => 0.00049197305993501
105 => 0.00049635581522271
106 => 0.00048688269552966
107 => 0.00050613134338895
108 => 0.00050598470094257
109 => 0.00049849654217488
110 => 0.00050482548268863
111 => 0.00050372567352679
112 => 0.00049527156072059
113 => 0.00050639935384424
114 => 0.0005064048730908
115 => 0.0004991976830835
116 => 0.00049078126301175
117 => 0.00048927660588989
118 => 0.00048814304887081
119 => 0.00049607702968432
120 => 0.00050319061207281
121 => 0.00051642722529115
122 => 0.00051975522434841
123 => 0.00053274462622635
124 => 0.00052501006985054
125 => 0.00052843869851266
126 => 0.00053216095993454
127 => 0.00053394554894181
128 => 0.00053103765692078
129 => 0.00055121554468834
130 => 0.00055291917665043
131 => 0.00055349038971096
201 => 0.00054668651948534
202 => 0.00055272994871134
203 => 0.00054990242831384
204 => 0.00055725885088036
205 => 0.00055841243187031
206 => 0.00055743538981166
207 => 0.0005578015546259
208 => 0.00054058328703961
209 => 0.00053969042903167
210 => 0.000527516246739
211 => 0.00053247731601027
212 => 0.00052320283479787
213 => 0.00052614386832806
214 => 0.00052744024788498
215 => 0.00052676309277334
216 => 0.00053275780742334
217 => 0.00052766107533155
218 => 0.00051420996136096
219 => 0.00050075518264337
220 => 0.00050058626885659
221 => 0.00049704386311682
222 => 0.00049448335259094
223 => 0.00049497659775722
224 => 0.00049671485805815
225 => 0.00049438232174227
226 => 0.00049488008662785
227 => 0.00050314630031868
228 => 0.00050480403052243
229 => 0.00049917041557307
301 => 0.0004765506386246
302 => 0.00047099968862404
303 => 0.00047498960140432
304 => 0.00047308268007864
305 => 0.00038181464541278
306 => 0.00040325671635963
307 => 0.00039051656590694
308 => 0.00039638781338167
309 => 0.00038338341881544
310 => 0.00038958979752117
311 => 0.00038844370599488
312 => 0.00042292192156041
313 => 0.00042238359164759
314 => 0.00042264126168907
315 => 0.0004103419992534
316 => 0.00042993505827479
317 => 0.00043958730369234
318 => 0.00043780092995175
319 => 0.00043825052173634
320 => 0.00043052504530813
321 => 0.00042271606118795
322 => 0.00041405469600463
323 => 0.00043014644193815
324 => 0.0004283573144856
325 => 0.000432460929154
326 => 0.00044289757665364
327 => 0.00044443441264293
328 => 0.00044649993579759
329 => 0.00044575959278059
330 => 0.00046339756703815
331 => 0.00046126149197646
401 => 0.0004664088182844
402 => 0.00045582037754038
403 => 0.0004438385517745
404 => 0.0004461159051372
405 => 0.00044589657769505
406 => 0.0004431042876242
407 => 0.00044058353299996
408 => 0.00043638718676882
409 => 0.00044966504718655
410 => 0.00044912599030181
411 => 0.00045785269468066
412 => 0.00045631016491502
413 => 0.00044600877361897
414 => 0.0004463766898244
415 => 0.0004488511031204
416 => 0.00045741507579023
417 => 0.00045995744595836
418 => 0.00045877971880055
419 => 0.00046156731162629
420 => 0.00046377051133644
421 => 0.00046184399958883
422 => 0.00048911934328135
423 => 0.00047779271894989
424 => 0.0004833132368389
425 => 0.00048462984782665
426 => 0.00048125737646687
427 => 0.00048198874474566
428 => 0.0004830965684021
429 => 0.00048982305670989
430 => 0.00050747530835459
501 => 0.00051529337044509
502 => 0.00053881439598074
503 => 0.00051464418922115
504 => 0.0005132100291783
505 => 0.00051744687614419
506 => 0.00053125620808703
507 => 0.0005424473745821
508 => 0.00054616013014241
509 => 0.00054665083208061
510 => 0.00055361620833106
511 => 0.00055760863210124
512 => 0.00055277042844667
513 => 0.00054867055743047
514 => 0.00053398532834514
515 => 0.00053568518359831
516 => 0.00054739550062737
517 => 0.00056393701316513
518 => 0.00057813135177359
519 => 0.00057316098911555
520 => 0.00061108134766716
521 => 0.00061484099632678
522 => 0.00061432153444601
523 => 0.00062288657360336
524 => 0.00060588671511592
525 => 0.00059861894625579
526 => 0.00054955699607968
527 => 0.00056334140286823
528 => 0.0005833778476652
529 => 0.00058072594906351
530 => 0.00056617494727624
531 => 0.00057812031353391
601 => 0.00057417080188298
602 => 0.00057105565817851
603 => 0.00058532673538902
604 => 0.00056963509977253
605 => 0.00058322131159645
606 => 0.0005657968544009
607 => 0.0005731836933135
608 => 0.00056899056628551
609 => 0.00057170403336294
610 => 0.00055584116027354
611 => 0.0005644003815431
612 => 0.00055548506852862
613 => 0.00055548084150944
614 => 0.00055528403548052
615 => 0.00056577286170551
616 => 0.00056611490195214
617 => 0.00055836364352414
618 => 0.00055724656608725
619 => 0.00056137698685541
620 => 0.0005565413458948
621 => 0.00055880391186511
622 => 0.00055660987671313
623 => 0.00055611595318697
624 => 0.00055218028649636
625 => 0.00055048469307263
626 => 0.00055114957894414
627 => 0.00054887998069254
628 => 0.00054751246565099
629 => 0.0005550120023189
630 => 0.00055100530240768
701 => 0.00055439791809334
702 => 0.0005505316043373
703 => 0.00053712927638615
704 => 0.0005294214558544
705 => 0.00050410570075114
706 => 0.00051128521749433
707 => 0.00051604524452281
708 => 0.00051447205561829
709 => 0.00051785187412848
710 => 0.00051805936753526
711 => 0.00051696055408443
712 => 0.00051568826887508
713 => 0.00051506899079696
714 => 0.00051968458222628
715 => 0.00052236408840467
716 => 0.00051652297691606
717 => 0.00051515448622012
718 => 0.0005210601724317
719 => 0.00052466263760917
720 => 0.00055126121642924
721 => 0.00054929070779797
722 => 0.00055423629776967
723 => 0.00055367950023512
724 => 0.00055886326641972
725 => 0.0005673365333085
726 => 0.00055010801256093
727 => 0.00055309828804528
728 => 0.00055236514155206
729 => 0.00056036944272369
730 => 0.00056039443127825
731 => 0.00055559545288136
801 => 0.00055819705692485
802 => 0.00055674491291905
803 => 0.00055936913340656
804 => 0.00054926439045384
805 => 0.00056157087663066
806 => 0.00056854786128046
807 => 0.00056864473671909
808 => 0.00057195177207032
809 => 0.00057531191151775
810 => 0.0005817614065806
811 => 0.00057513203860091
812 => 0.00056320645096141
813 => 0.00056406743986957
814 => 0.00055707547219993
815 => 0.00055719300843966
816 => 0.0005565655907805
817 => 0.00055844851840542
818 => 0.0005496775871813
819 => 0.00055173610720851
820 => 0.00054885416711574
821 => 0.00055309202327035
822 => 0.00054853279059071
823 => 0.00055236478800663
824 => 0.00055401855105861
825 => 0.0005601209723234
826 => 0.00054763145800817
827 => 0.00052216449285362
828 => 0.00052751795768621
829 => 0.00051959976269322
830 => 0.00052033262178652
831 => 0.00052181311378863
901 => 0.00051701435482293
902 => 0.00051792980680732
903 => 0.0005178971004205
904 => 0.00051761525444831
905 => 0.00051636691190447
906 => 0.00051455656823885
907 => 0.00052176842020828
908 => 0.00052299385439004
909 => 0.00052571784277693
910 => 0.00053382258451733
911 => 0.00053301272969449
912 => 0.00053433363651109
913 => 0.00053145010434703
914 => 0.00052046638057344
915 => 0.00052106284961863
916 => 0.00051362487106728
917 => 0.00052552763694252
918 => 0.00052270890487443
919 => 0.00052089164997319
920 => 0.00052039579513664
921 => 0.00052852062696418
922 => 0.00053095170398812
923 => 0.00052943681993031
924 => 0.00052632974853153
925 => 0.0005322962441404
926 => 0.00053389262665909
927 => 0.00053424999783271
928 => 0.00054482148408957
929 => 0.0005348408264799
930 => 0.00053724326996575
1001 => 0.00055598644823463
1002 => 0.00053898897192656
1003 => 0.0005479929142159
1004 => 0.00054755221809509
1005 => 0.00055215833029352
1006 => 0.00054717438245248
1007 => 0.00054723616445918
1008 => 0.00055132608004632
1009 => 0.00054558253122434
1010 => 0.00054416034776431
1011 => 0.00054219561150015
1012 => 0.00054648554125451
1013 => 0.00054905716012541
1014 => 0.00056978251957895
1015 => 0.00058317204697716
1016 => 0.00058259077228044
1017 => 0.00058790253490784
1018 => 0.00058550953719403
1019 => 0.00057778191633521
1020 => 0.00059097202285824
1021 => 0.00058679812125685
1022 => 0.00058714221263358
1023 => 0.00058712940553536
1024 => 0.00058990468521146
1025 => 0.00058793814521029
1026 => 0.0005840618930068
1027 => 0.00058663513011659
1028 => 0.00059427672438359
1029 => 0.00061799646746108
1030 => 0.00063127034993204
1031 => 0.00061719736306915
1101 => 0.00062690472096236
1102 => 0.00062108376531171
1103 => 0.00062002592451156
1104 => 0.00062612286263662
1105 => 0.00063223047264476
1106 => 0.00063184144429116
1107 => 0.0006274076330545
1108 => 0.0006249030855907
1109 => 0.00064386835807153
1110 => 0.00065784164777042
1111 => 0.00065688876309108
1112 => 0.00066109448617099
1113 => 0.00067344261921174
1114 => 0.00067457157774514
1115 => 0.00067442935491875
1116 => 0.00067163111339907
1117 => 0.00068378945398538
1118 => 0.00069393215560813
1119 => 0.00067098340133623
1120 => 0.00067972198654172
1121 => 0.00068364501898009
1122 => 0.0006894051945109
1123 => 0.00069912357614889
1124 => 0.00070968031628117
1125 => 0.00071117315508464
1126 => 0.00071011391451466
1127 => 0.00070315146061702
1128 => 0.00071470277163786
1129 => 0.00072146925872229
1130 => 0.00072549854693277
1201 => 0.0007357161514249
1202 => 0.00068366924629287
1203 => 0.0006468278599414
1204 => 0.00064107454546654
1205 => 0.00065277413668907
1206 => 0.00065585922559196
1207 => 0.00065461563012358
1208 => 0.00061314730031269
1209 => 0.00064085622329216
1210 => 0.00067066869458565
1211 => 0.00067181391302315
1212 => 0.00068673865950205
1213 => 0.00069159876874161
1214 => 0.00070361514588837
1215 => 0.00070286351822613
1216 => 0.00070578931483904
1217 => 0.00070511672486547
1218 => 0.00072737453318309
1219 => 0.00075192820107396
1220 => 0.00075107798563078
1221 => 0.00074754810536566
1222 => 0.00075279057949339
1223 => 0.00077813259608772
1224 => 0.00077579950929726
1225 => 0.00077806590438233
1226 => 0.00080794557016052
1227 => 0.00084679338600506
1228 => 0.00082874467528833
1229 => 0.00086790518416703
1230 => 0.00089255464869679
1231 => 0.00093518334879881
]
'min_raw' => 0.00038181464541278
'max_raw' => 0.00093518334879881
'avg_raw' => 0.00065849899710579
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000381'
'max' => '$0.000935'
'avg' => '$0.000658'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00017024856626924
'max_diff' => 0.00037939789503448
'year' => 2028
]
3 => [
'items' => [
101 => 0.00092984602559526
102 => 0.00094644106572113
103 => 0.00092029110312795
104 => 0.00086024550323461
105 => 0.00085074305720617
106 => 0.00086976719479537
107 => 0.00091653618071022
108 => 0.00086829427299222
109 => 0.00087805354809318
110 => 0.00087524287620756
111 => 0.00087509310744736
112 => 0.00088080917187055
113 => 0.00087251772229484
114 => 0.00083873686512011
115 => 0.00085421843289145
116 => 0.00084824025608899
117 => 0.00085487348895392
118 => 0.00089067031097265
119 => 0.00087484368266852
120 => 0.00085817161540099
121 => 0.00087908208758237
122 => 0.00090570830428708
123 => 0.00090404208349761
124 => 0.00090080891873978
125 => 0.00091903409919666
126 => 0.0009491367578346
127 => 0.00095727338550215
128 => 0.00096327967770031
129 => 0.0009641078439173
130 => 0.00097263847065471
131 => 0.00092676714069291
201 => 0.0009995661194016
202 => 0.0010121364919934
203 => 0.0010097737829347
204 => 0.0010237452230283
205 => 0.0010196344709316
206 => 0.0010136786361006
207 => 0.0010358263404595
208 => 0.0010104357846396
209 => 0.00097439708723525
210 => 0.00095462554507463
211 => 0.00098066230671655
212 => 0.0009965620484935
213 => 0.0010070707663946
214 => 0.0010102506980819
215 => 0.00093032800145891
216 => 0.0008872541006951
217 => 0.00091486397724143
218 => 0.00094854993215984
219 => 0.00092658001351249
220 => 0.00092744119272891
221 => 0.00089611786233084
222 => 0.00095132135186023
223 => 0.00094327866777023
224 => 0.00098500412705643
225 => 0.00097504601133005
226 => 0.0010090715036049
227 => 0.0010001114511705
228 => 0.001037304127876
301 => 0.0010521412935653
302 => 0.0010770552039781
303 => 0.0010953819778956
304 => 0.0011061438100753
305 => 0.0011054977100378
306 => 0.0011481414506573
307 => 0.0011229959266728
308 => 0.0010914072222034
309 => 0.0010908358822006
310 => 0.0011071961198607
311 => 0.0011414826897844
312 => 0.0011503726985163
313 => 0.0011553410006001
314 => 0.0011477318730109
315 => 0.0011204382089217
316 => 0.00110865294315
317 => 0.0011186943310395
318 => 0.0011064145765169
319 => 0.0011276128779134
320 => 0.0011567226734437
321 => 0.0011507116157793
322 => 0.0011708056803233
323 => 0.001191600923169
324 => 0.0012213390544113
325 => 0.0012291137031178
326 => 0.0012419649017863
327 => 0.001255193006615
328 => 0.0012594415173786
329 => 0.0012675532426617
330 => 0.0012675104898654
331 => 0.0012919557199881
401 => 0.0013189195658192
402 => 0.001329097793406
403 => 0.0013525020665111
404 => 0.0013124230690022
405 => 0.001342823449007
406 => 0.0013702453527423
407 => 0.0013375518286367
408 => 0.0013826122350021
409 => 0.0013843618284721
410 => 0.0014107786126575
411 => 0.0013840001410422
412 => 0.0013680991700769
413 => 0.001414004677452
414 => 0.0014362169064608
415 => 0.0014295264023143
416 => 0.0013786113354078
417 => 0.0013489765826183
418 => 0.0012714167184513
419 => 0.0013632897278939
420 => 0.001408038390821
421 => 0.0013784954471813
422 => 0.0013933951895428
423 => 0.0014746833526092
424 => 0.0015056326220861
425 => 0.0014991953903866
426 => 0.0015002831765779
427 => 0.0015169828406187
428 => 0.0015910383476484
429 => 0.001546662571243
430 => 0.0015805861895763
501 => 0.0015985791544196
502 => 0.0016152920229248
503 => 0.0015742505000322
504 => 0.0015208560817687
505 => 0.0015039438281594
506 => 0.0013755579836641
507 => 0.0013688749429067
508 => 0.0013651235496127
509 => 0.001341471545539
510 => 0.0013228875491663
511 => 0.0013081088652712
512 => 0.0012693251854418
513 => 0.0012824135388773
514 => 0.0012206004480123
515 => 0.0012601462730263
516 => 0.0011614910874765
517 => 0.0012436540575571
518 => 0.0011989364884341
519 => 0.001228963133425
520 => 0.0012288583732893
521 => 0.0011735697999045
522 => 0.0011416805046193
523 => 0.001162001604725
524 => 0.0011837874371292
525 => 0.0011873221151405
526 => 0.001215568015521
527 => 0.0012234508391736
528 => 0.0011995655154923
529 => 0.0011594466780381
530 => 0.0011687653689654
531 => 0.001141491661645
601 => 0.0010936955386341
602 => 0.0011280235486208
603 => 0.0011397446405263
604 => 0.0011449213424477
605 => 0.0010979193448882
606 => 0.001083150296792
607 => 0.0010752873795099
608 => 0.001153379310379
609 => 0.0011576573626345
610 => 0.0011357702424394
611 => 0.0012347021011434
612 => 0.0012123107745881
613 => 0.0012373273723585
614 => 0.0011679197954377
615 => 0.0011705712583458
616 => 0.0011377125991257
617 => 0.0011561112526725
618 => 0.0011431076773619
619 => 0.001154624823285
620 => 0.0011615281530643
621 => 0.0011943814205017
622 => 0.0012440291890983
623 => 0.0011894742379065
624 => 0.0011657038644309
625 => 0.0011804508704455
626 => 0.0012197240908001
627 => 0.0012792250299964
628 => 0.0012439992764242
629 => 0.0012596318676874
630 => 0.0012630468934329
701 => 0.001237072726877
702 => 0.0012801827345664
703 => 0.0013032857379123
704 => 0.0013269846388522
705 => 0.0013475617305102
706 => 0.0013175187766668
707 => 0.0013496690437675
708 => 0.0013237616037705
709 => 0.0013005199518312
710 => 0.0013005551998234
711 => 0.0012859753720556
712 => 0.0012577251185789
713 => 0.0012525153384011
714 => 0.0012796172728085
715 => 0.0013013504576405
716 => 0.0013031405068382
717 => 0.0013151731146526
718 => 0.0013222938880114
719 => 0.0013920871471498
720 => 0.0014201585733353
721 => 0.0014544837819102
722 => 0.0014678553851128
723 => 0.0015080991167677
724 => 0.0014755990350203
725 => 0.0014685674378991
726 => 0.0013709493085287
727 => 0.0013869342717444
728 => 0.0014125277401724
729 => 0.0013713713353964
730 => 0.0013974756013282
731 => 0.0014026291363871
801 => 0.0013699728565108
802 => 0.0013874159865873
803 => 0.0013410922046317
804 => 0.0012450389209566
805 => 0.0012802896693295
806 => 0.0013062460854055
807 => 0.001269203079262
808 => 0.0013356012340119
809 => 0.0012968128027431
810 => 0.001284518732204
811 => 0.0012365551798782
812 => 0.0012591921302895
813 => 0.0012898089298508
814 => 0.0012708913073069
815 => 0.0013101482145807
816 => 0.0013657464647152
817 => 0.0014053690886941
818 => 0.0014084108217671
819 => 0.0013829361290584
820 => 0.0014237594867015
821 => 0.0014240568402941
822 => 0.0013780079261043
823 => 0.0013498032225645
824 => 0.001343395054577
825 => 0.001359403914605
826 => 0.0013788416260776
827 => 0.0014094894794743
828 => 0.0014280093354073
829 => 0.001476299297508
830 => 0.0014893651766708
831 => 0.0015037206165436
901 => 0.0015229039112674
902 => 0.0015459383750791
903 => 0.0014955402796118
904 => 0.0014975426898985
905 => 0.0014506126812086
906 => 0.0014004612364793
907 => 0.001438519931563
908 => 0.0014882766126488
909 => 0.0014768623750315
910 => 0.0014755780401278
911 => 0.001477737935191
912 => 0.0014691319727817
913 => 0.0014302075237561
914 => 0.0014106599091354
915 => 0.0014358813191245
916 => 0.0014492853760578
917 => 0.0014700738994049
918 => 0.0014675112751099
919 => 0.0015210602787274
920 => 0.0015418678022954
921 => 0.0015365443473625
922 => 0.0015375239911863
923 => 0.0015751950187092
924 => 0.0016170929489524
925 => 0.001656335889544
926 => 0.0016962554942373
927 => 0.0016481308526909
928 => 0.0016236961276288
929 => 0.0016489065267393
930 => 0.0016355295341092
1001 => 0.0017123977016353
1002 => 0.0017177198867763
1003 => 0.0017945824958589
1004 => 0.0018675342645076
1005 => 0.001821714565686
1006 => 0.0018649204779102
1007 => 0.0019116511946103
1008 => 0.0020018023289103
1009 => 0.0019714425984332
1010 => 0.0019481875206854
1011 => 0.0019262115845814
1012 => 0.0019719400190322
1013 => 0.0020307689194236
1014 => 0.0020434401011117
1015 => 0.0020639722562103
1016 => 0.0020423852056765
1017 => 0.0020683844303089
1018 => 0.0021601731178991
1019 => 0.0021353710042711
1020 => 0.0021001480157805
1021 => 0.0021726063691538
1022 => 0.0021988287655649
1023 => 0.0023828712763533
1024 => 0.0026152325486407
1025 => 0.0025190334561474
1026 => 0.0024593195751114
1027 => 0.0024733537535871
1028 => 0.002558204224301
1029 => 0.002585455502475
1030 => 0.0025113771343192
1031 => 0.0025375428662936
1101 => 0.0026817186220309
1102 => 0.0027590642892719
1103 => 0.0026540184842496
1104 => 0.0023642012743702
1105 => 0.00209697657105
1106 => 0.0021678565956558
1107 => 0.0021598210005287
1108 => 0.0023147198637766
1109 => 0.0021347794820637
1110 => 0.0021378092166089
1111 => 0.002295911224308
1112 => 0.0022537323192085
1113 => 0.0021854078948133
1114 => 0.0020974754149604
1115 => 0.0019349240931826
1116 => 0.001790947854405
1117 => 0.0020733184143954
1118 => 0.0020611420823911
1119 => 0.0020435089492175
1120 => 0.002082749578991
1121 => 0.002273290938524
1122 => 0.0022688983434646
1123 => 0.0022409548948182
1124 => 0.0022621497543343
1125 => 0.0021816923334645
1126 => 0.002202428042804
1127 => 0.0020969342412917
1128 => 0.0021446218453856
1129 => 0.0021852613012846
1130 => 0.0021934202737337
1201 => 0.0022118028552691
1202 => 0.0020547257087216
1203 => 0.0021252487359787
1204 => 0.0021666744073782
1205 => 0.0019795117169164
1206 => 0.0021629748027617
1207 => 0.0020519913450653
1208 => 0.0020143218926076
1209 => 0.0020650388477689
1210 => 0.0020452744010187
1211 => 0.0020282820903101
1212 => 0.0020188000889697
1213 => 0.0020560410234142
1214 => 0.0020543036893098
1215 => 0.0019933702924048
1216 => 0.0019138851601053
1217 => 0.0019405629795155
1218 => 0.0019308706776179
1219 => 0.001895744525209
1220 => 0.0019194153107848
1221 => 0.0018151811506196
1222 => 0.0016358516956755
1223 => 0.0017543222266213
1224 => 0.001749761240051
1225 => 0.001747461383798
1226 => 0.0018364887135188
1227 => 0.0018279307899761
1228 => 0.0018123980749467
1229 => 0.0018954592547166
1230 => 0.0018651408067701
1231 => 0.0019585751194165
]
'min_raw' => 0.00083873686512011
'max_raw' => 0.0027590642892719
'avg_raw' => 0.001798900577196
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000838'
'max' => '$0.002759'
'avg' => '$0.001798'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00045692221970733
'max_diff' => 0.0018238809404731
'year' => 2029
]
4 => [
'items' => [
101 => 0.002020117000678
102 => 0.0020045079889188
103 => 0.0020623884257029
104 => 0.0019411775825931
105 => 0.0019814389625392
106 => 0.0019897367771462
107 => 0.0018944342926515
108 => 0.0018293309721053
109 => 0.0018249893228571
110 => 0.0017121091368203
111 => 0.0017724088210641
112 => 0.0018254700478282
113 => 0.0018000578379257
114 => 0.0017920130914388
115 => 0.001833111956548
116 => 0.0018363056903549
117 => 0.0017634882210996
118 => 0.0017786292787871
119 => 0.0018417700063356
120 => 0.0017770382944553
121 => 0.001651275152137
122 => 0.0016200841540306
123 => 0.0016159226999191
124 => 0.0015313302392652
125 => 0.0016221684856697
126 => 0.0015825151568005
127 => 0.0017077795475784
128 => 0.0016362291993724
129 => 0.0016331448068672
130 => 0.0016284822952134
131 => 0.0015556700698581
201 => 0.0015716113197526
202 => 0.0016246024623228
203 => 0.0016435102989798
204 => 0.0016415380567091
205 => 0.001624342776815
206 => 0.0016322146878964
207 => 0.0016068565195474
208 => 0.0015979020225188
209 => 0.0015696391667678
210 => 0.0015281005766272
211 => 0.0015338767723572
212 => 0.0014515779561252
213 => 0.0014067371931132
214 => 0.0013943258609032
215 => 0.0013777289087668
216 => 0.0013962005308098
217 => 0.0014513448139191
218 => 0.001384829108977
219 => 0.0012707925983881
220 => 0.0012776463869833
221 => 0.0012930448150485
222 => 0.0012643499462198
223 => 0.0012371926610512
224 => 0.0012608037171651
225 => 0.0012124849443118
226 => 0.0012988839079021
227 => 0.0012965470580673
228 => 0.0013287512488177
301 => 0.0013488891901905
302 => 0.0013024777550622
303 => 0.0012908054046373
304 => 0.0012974545059181
305 => 0.0011875596728031
306 => 0.0013197704964165
307 => 0.0013209138611093
308 => 0.0013111236784529
309 => 0.0013815218604758
310 => 0.0015300839822877
311 => 0.0014741889361646
312 => 0.001452544684869
313 => 0.0014113989473342
314 => 0.0014662231996071
315 => 0.0014620135524241
316 => 0.0014429759314013
317 => 0.0014314619188057
318 => 0.001452676840052
319 => 0.0014288331552882
320 => 0.001424550174324
321 => 0.00139859996961
322 => 0.0013893369271863
323 => 0.001382478939348
324 => 0.0013749289685901
325 => 0.0013915823227466
326 => 0.0013538436312968
327 => 0.0013083344689779
328 => 0.0013045508745471
329 => 0.0013149977114277
330 => 0.0013103757637835
331 => 0.0013045287464399
401 => 0.0012933651979906
402 => 0.0012900532116371
403 => 0.0013008155605385
404 => 0.0012886654961128
405 => 0.0013065935780212
406 => 0.0013017181317481
407 => 0.0012744842851899
408 => 0.0012405408291169
409 => 0.001240238661159
410 => 0.0012329255992265
411 => 0.0012236113153293
412 => 0.001221020294631
413 => 0.0012588152598757
414 => 0.0013370497068243
415 => 0.0013216904128966
416 => 0.0013327890768431
417 => 0.0013873835187083
418 => 0.0014047374500651
419 => 0.0013924200406384
420 => 0.0013755592109105
421 => 0.0013763010018484
422 => 0.001433919561149
423 => 0.0014375131600163
424 => 0.0014465930250148
425 => 0.0014582632175074
426 => 0.0013944075248833
427 => 0.0013732934044682
428 => 0.0013632883628487
429 => 0.0013324767070992
430 => 0.0013657044362334
501 => 0.0013463440614201
502 => 0.001348956437427
503 => 0.0013472551241254
504 => 0.0013481841562304
505 => 0.001298859757631
506 => 0.0013168309760665
507 => 0.0012869503398423
508 => 0.0012469435221969
509 => 0.0012468094053159
510 => 0.001256601017257
511 => 0.0012507765833287
512 => 0.0012351031813873
513 => 0.0012373295141567
514 => 0.0012178244964393
515 => 0.0012396977764573
516 => 0.0012403250238619
517 => 0.0012319026196093
518 => 0.0012656014254081
519 => 0.0012794078536394
520 => 0.001273864046735
521 => 0.0012790188853684
522 => 0.0013223286609024
523 => 0.0013293900440524
524 => 0.0013325262439988
525 => 0.0013283241515375
526 => 0.0012798105085602
527 => 0.0012819622949222
528 => 0.0012661739143307
529 => 0.0012528343964694
530 => 0.0012533679072273
531 => 0.001260226153424
601 => 0.0012901765167955
602 => 0.0013532052908405
603 => 0.0013555971867421
604 => 0.0013584962343513
605 => 0.0013467043507799
606 => 0.0013431478058617
607 => 0.001347839806631
608 => 0.0013715101002668
609 => 0.0014323965219201
610 => 0.0014108751940405
611 => 0.0013933780194749
612 => 0.0014087277587733
613 => 0.0014063647867235
614 => 0.0013864189246126
615 => 0.0013858591106949
616 => 0.0013475766242261
617 => 0.0013334244606286
618 => 0.0013215978534555
619 => 0.0013086835071638
620 => 0.0013010274497893
621 => 0.0013127906335324
622 => 0.0013154810128323
623 => 0.0012897606059928
624 => 0.0012862550095807
625 => 0.0013072588490194
626 => 0.0012980158423845
627 => 0.0013075225039241
628 => 0.0013097281309479
629 => 0.0013093729741971
630 => 0.0012997222137177
701 => 0.0013058733206575
702 => 0.0012913241190117
703 => 0.0012755040474414
704 => 0.0012654118274048
705 => 0.0012566050268842
706 => 0.0012614915516673
707 => 0.0012440719830597
708 => 0.0012384991124755
709 => 0.0013037894640306
710 => 0.0013520201487139
711 => 0.0013513188554571
712 => 0.0013470499131147
713 => 0.0013407071307172
714 => 0.0013710460862277
715 => 0.0013604766007744
716 => 0.0013681667845517
717 => 0.001370124259079
718 => 0.0013760489449196
719 => 0.0013781665108637
720 => 0.0013717657558366
721 => 0.0013502840401794
722 => 0.0012967536471818
723 => 0.0012718351047389
724 => 0.0012636115706816
725 => 0.0012639104805258
726 => 0.0012556652126286
727 => 0.0012580938135513
728 => 0.0012548206443382
729 => 0.0012486220537133
730 => 0.0012611088061634
731 => 0.0012625477880611
801 => 0.0012596332308337
802 => 0.0012603197145692
803 => 0.0012361884255497
804 => 0.0012380230750435
805 => 0.0012278075135263
806 => 0.0012258922188922
807 => 0.0012000681689475
808 => 0.0011543171212145
809 => 0.0011796676428202
810 => 0.0011490477775433
811 => 0.0011374515705962
812 => 0.0011923462107034
813 => 0.0011868363113769
814 => 0.0011774057588257
815 => 0.0011634560061031
816 => 0.0011582819071238
817 => 0.0011268457196463
818 => 0.0011249883019846
819 => 0.0011405689253469
820 => 0.0011333790037617
821 => 0.0011232816308198
822 => 0.0010867099695787
823 => 0.0010455913138828
824 => 0.0010468324276356
825 => 0.0010599115069727
826 => 0.0010979406940994
827 => 0.0010830820327774
828 => 0.0010723019035048
829 => 0.0010702831093415
830 => 0.0010955525449267
831 => 0.0011313140903901
901 => 0.001148092607402
902 => 0.0011314656066143
903 => 0.0011123654033707
904 => 0.0011135279442403
905 => 0.0011212618078184
906 => 0.0011220745275295
907 => 0.0011096422587505
908 => 0.0011131418695894
909 => 0.0011078256407141
910 => 0.0010751999539191
911 => 0.0010746098587022
912 => 0.0010666029890024
913 => 0.00106636054417
914 => 0.0010527388614035
915 => 0.0010508330938222
916 => 0.0010237864159123
917 => 0.0010415886212175
918 => 0.0010296478365565
919 => 0.001011650257526
920 => 0.0010085474681174
921 => 0.0010084541945211
922 => 0.0010269336840004
923 => 0.0010413726776236
924 => 0.0010298555516179
925 => 0.0010272333252766
926 => 0.0010552318422991
927 => 0.0010516687757958
928 => 0.0010485831831833
929 => 0.0011281120362299
930 => 0.0010651587433297
1001 => 0.0010377075143769
1002 => 0.0010037314057008
1003 => 0.0010147941980082
1004 => 0.0010171252908936
1005 => 0.00093541887418146
1006 => 0.00090227059109725
1007 => 0.00089089534950944
1008 => 0.00088434873715335
1009 => 0.00088733211061121
1010 => 0.00085749476792961
1011 => 0.00087754595567574
1012 => 0.00085170933900127
1013 => 0.00084737774613617
1014 => 0.00089357681729276
1015 => 0.00090000514815314
1016 => 0.0008725798915769
1017 => 0.00089019134604458
1018 => 0.00088380518783707
1019 => 0.00085215223363857
1020 => 0.00085094332361156
1021 => 0.00083506098384989
1022 => 0.00081020819754986
1023 => 0.00079884980732147
1024 => 0.00079293425907245
1025 => 0.00079537512957173
1026 => 0.00079414095075543
1027 => 0.00078608709914831
1028 => 0.00079460258810204
1029 => 0.00077284903266823
1030 => 0.00076418659161417
1031 => 0.00076027396795716
1101 => 0.00074096643542171
1102 => 0.0007716933057843
1103 => 0.00077774688633264
1104 => 0.00078381239430471
1105 => 0.00083660850010341
1106 => 0.00083397095585795
1107 => 0.00085781307130073
1108 => 0.00085688661053746
1109 => 0.00085008645299652
1110 => 0.00082139770690289
1111 => 0.00083283252976808
1112 => 0.00079763792235505
1113 => 0.00082400811522957
1114 => 0.00081197386044723
1115 => 0.00081993932158229
1116 => 0.00080561670424477
1117 => 0.00081354343204573
1118 => 0.00077918241485369
1119 => 0.00074709658047232
1120 => 0.00076000885687128
1121 => 0.00077404597801487
1122 => 0.00080448203324611
1123 => 0.00078635456984239
1124 => 0.00079287389115765
1125 => 0.00077103525607273
1126 => 0.00072597591399483
1127 => 0.00072623094497756
1128 => 0.00071929954687001
1129 => 0.00071330980690438
1130 => 0.00078843672707691
1201 => 0.0007790935069726
1202 => 0.0007642063085468
1203 => 0.00078413341523348
1204 => 0.00078940245852715
1205 => 0.00078955246078232
1206 => 0.00080409076342785
1207 => 0.00081184985815591
1208 => 0.00081321743223157
1209 => 0.00083609376556514
1210 => 0.00084376161075242
1211 => 0.00087534437988476
1212 => 0.00081119155317801
1213 => 0.00080987036792893
1214 => 0.00078441383048996
1215 => 0.00076826889199423
1216 => 0.00078551928824136
1217 => 0.0008008007844024
1218 => 0.00078488866917269
1219 => 0.0007869664554986
1220 => 0.00076560574087029
1221 => 0.00077324119123487
1222 => 0.00077981786969509
1223 => 0.00077618661440865
1224 => 0.0007707504494901
1225 => 0.00079954787598508
1226 => 0.00079792301232421
1227 => 0.0008247398379263
1228 => 0.00084564547117274
1229 => 0.00088311210327929
1230 => 0.0008440137194964
1231 => 0.00084258881898935
]
'min_raw' => 0.00071330980690438
'max_raw' => 0.0020623884257029
'avg_raw' => 0.0013878491163036
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000713'
'max' => '$0.002062'
'avg' => '$0.001387'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012542705821573
'max_diff' => -0.00069667586356908
'year' => 2030
]
5 => [
'items' => [
101 => 0.00085651745000698
102 => 0.00084375947835159
103 => 0.00085182207604758
104 => 0.00088181309414319
105 => 0.00088244675709632
106 => 0.00087183208620274
107 => 0.00087118618251421
108 => 0.00087322484617109
109 => 0.00088516536288598
110 => 0.00088099297945078
111 => 0.00088582136719382
112 => 0.00089185934000138
113 => 0.00091683495558089
114 => 0.00092285649194256
115 => 0.00090822728039235
116 => 0.000909548134399
117 => 0.00090407640769839
118 => 0.00089879078826613
119 => 0.00091067208884712
120 => 0.00093238539918643
121 => 0.00093225032180973
122 => 0.00093728738776201
123 => 0.00094042543812097
124 => 0.00092695462878704
125 => 0.00091818562724605
126 => 0.00092154822042293
127 => 0.00092692508014052
128 => 0.00091980457728402
129 => 0.00087585353511592
130 => 0.00088918547370628
131 => 0.00088696638722635
201 => 0.0008838061382288
202 => 0.00089721150557424
203 => 0.00089591852519116
204 => 0.00085718874285422
205 => 0.00085966809786096
206 => 0.00085733952064406
207 => 0.00086486363001394
208 => 0.00084335315175359
209 => 0.00084996962999119
210 => 0.00085411942311618
211 => 0.00085656368314702
212 => 0.00086539402642318
213 => 0.00086435788755916
214 => 0.00086532961857659
215 => 0.00087842268653094
216 => 0.00094464293124573
217 => 0.00094824715305882
218 => 0.00093049864666896
219 => 0.0009375888248979
220 => 0.00092397723314987
221 => 0.00093311478588006
222 => 0.00093936646738939
223 => 0.00091111632077797
224 => 0.00090944353043758
225 => 0.00089577575880848
226 => 0.0009031200450998
227 => 0.00089143475753744
228 => 0.00089430191837124
301 => 0.00088628508672536
302 => 0.00090071378755269
303 => 0.00091684731707108
304 => 0.00092092328375981
305 => 0.00091020117021574
306 => 0.00090243765338813
307 => 0.00088880747530026
308 => 0.00091147476522871
309 => 0.00091810337157694
310 => 0.00091143994798145
311 => 0.00090989588713569
312 => 0.00090696989462304
313 => 0.00091051665027931
314 => 0.0009180672707632
315 => 0.00091450653758107
316 => 0.00091685846457991
317 => 0.0009078953441569
318 => 0.00092695908818545
319 => 0.00095723690164264
320 => 0.00095733424976382
321 => 0.00095377349738801
322 => 0.0009523165142333
323 => 0.00095597006225541
324 => 0.00095795196218102
325 => 0.00096976686653839
326 => 0.0009824447296404
327 => 0.0010416067849525
328 => 0.0010249943165616
329 => 0.0010774864116009
330 => 0.0011190008435315
331 => 0.0011314492064614
401 => 0.0011199972983066
402 => 0.0010808209391291
403 => 0.0010788987600471
404 => 0.0011374447804906
405 => 0.0011209028481377
406 => 0.0011189352379203
407 => 0.0010980031895373
408 => 0.0011103766226163
409 => 0.0011076703712946
410 => 0.001103398421189
411 => 0.0011270060695629
412 => 0.0011711974798495
413 => 0.0011643098341319
414 => 0.0011591685261124
415 => 0.0011366408109833
416 => 0.0011502075272384
417 => 0.0011453766794333
418 => 0.0011661330673358
419 => 0.0011538374429526
420 => 0.0011207775267307
421 => 0.0011260424273559
422 => 0.0011252466482179
423 => 0.0011416237264884
424 => 0.0011367077340957
425 => 0.0011242867218044
426 => 0.0011710464384134
427 => 0.001168010122508
428 => 0.0011723149242634
429 => 0.0011742100311265
430 => 0.0012026718466278
501 => 0.0012143317417621
502 => 0.0012169787420928
503 => 0.0012280547406618
504 => 0.0012167031611584
505 => 0.001262117572711
506 => 0.001292315506389
507 => 0.0013273919603276
508 => 0.0013786480871938
509 => 0.0013979208650411
510 => 0.001394439410227
511 => 0.0014333012206388
512 => 0.0015031350300994
513 => 0.001408554819744
514 => 0.0015081480109069
515 => 0.0014766179564434
516 => 0.0014018607645119
517 => 0.0013970472826809
518 => 0.0014476737210058
519 => 0.0015599582885962
520 => 0.0015318322779359
521 => 0.0015600042926738
522 => 0.0015271401410373
523 => 0.0015255081589077
524 => 0.001558408154183
525 => 0.001635280786429
526 => 0.0015987614803764
527 => 0.0015464021002489
528 => 0.0015850634517329
529 => 0.0015515714111383
530 => 0.0014761044698468
531 => 0.0015318107705056
601 => 0.0014945615536791
602 => 0.0015054328554264
603 => 0.0015837251687927
604 => 0.0015743048305127
605 => 0.0015864956205469
606 => 0.0015649791952251
607 => 0.0015448794611457
608 => 0.0015073618148607
609 => 0.0014962546893933
610 => 0.00149932429928
611 => 0.0014962531682471
612 => 0.0014752623899556
613 => 0.0014707294333821
614 => 0.0014631743071662
615 => 0.0014655159566956
616 => 0.0014513101090796
617 => 0.0014781194786089
618 => 0.0014830955338369
619 => 0.0015026051572644
620 => 0.0015046307110894
621 => 0.0015589647346329
622 => 0.0015290384675113
623 => 0.0015491155912061
624 => 0.0015473197042896
625 => 0.0014034809795447
626 => 0.0014233006867147
627 => 0.0014541339313046
628 => 0.0014402435964103
629 => 0.0014206059127076
630 => 0.0014047474302117
701 => 0.0013807202076174
702 => 0.001414538062017
703 => 0.0014590049444247
704 => 0.0015057584646087
705 => 0.0015619297556979
706 => 0.0015493929774327
707 => 0.0015047083813938
708 => 0.00150671289973
709 => 0.0015191040433354
710 => 0.0015030563865122
711 => 0.0014983236192276
712 => 0.0015184538337871
713 => 0.0015185924595114
714 => 0.0015001276909122
715 => 0.0014796074796313
716 => 0.0014795214991967
717 => 0.001475870125801
718 => 0.0015277897122528
719 => 0.0015563402351391
720 => 0.0015596135065765
721 => 0.0015561199178913
722 => 0.0015574644615207
723 => 0.001540851541321
724 => 0.001578823750489
725 => 0.0016136708046838
726 => 0.0016043310497608
727 => 0.001590329429407
728 => 0.0015791764643857
729 => 0.0016017037656482
730 => 0.0016007006603842
731 => 0.0016133664460653
801 => 0.0016127918528657
802 => 0.0016085328255254
803 => 0.0016043312018641
804 => 0.0016209901647512
805 => 0.0016161926509745
806 => 0.0016113876853337
807 => 0.0016017505911379
808 => 0.0016030604322943
809 => 0.0015890612295176
810 => 0.0015825845577531
811 => 0.0014851909541244
812 => 0.0014591642008069
813 => 0.001467352747224
814 => 0.00147004862932
815 => 0.0014587217529221
816 => 0.0014749615840409
817 => 0.0014724306235633
818 => 0.0014822771102194
819 => 0.0014761254528414
820 => 0.001476377919006
821 => 0.001494468631683
822 => 0.0014997204425365
823 => 0.0014970493291491
824 => 0.0014989200854052
825 => 0.001542030873731
826 => 0.0015359018982365
827 => 0.0015326460021601
828 => 0.0015335479076244
829 => 0.0015445636383474
830 => 0.0015476474415132
831 => 0.0015345811508046
901 => 0.0015407432890381
902 => 0.0015669808915447
903 => 0.0015761625675023
904 => 0.0016054660697044
905 => 0.0015930174211407
906 => 0.0016158674543443
907 => 0.0016861006662617
908 => 0.0017422078157099
909 => 0.0016906093623513
910 => 0.0017936429971105
911 => 0.0018738694610677
912 => 0.0018707902357568
913 => 0.0018568008960944
914 => 0.00176546519981
915 => 0.0016814167303507
916 => 0.00175172684394
917 => 0.0017519060788789
918 => 0.0017458663777666
919 => 0.0017083543128734
920 => 0.0017445610392205
921 => 0.0017474349976744
922 => 0.0017458263451874
923 => 0.0017170659329855
924 => 0.0016731540993658
925 => 0.001681734366545
926 => 0.0016957890192172
927 => 0.001669180629601
928 => 0.0016606776368594
929 => 0.0016764863181265
930 => 0.0017274251830389
1001 => 0.0017177954856959
1002 => 0.0017175440153817
1003 => 0.0017587439442419
1004 => 0.0017292536866791
1005 => 0.0016818425911919
1006 => 0.0016698706643059
1007 => 0.0016273783891168
1008 => 0.0016567279549422
1009 => 0.0016577841935662
1010 => 0.0016417097363089
1011 => 0.001683146944807
1012 => 0.0016827650936358
1013 => 0.0017221035559901
1014 => 0.0017973039211598
1015 => 0.0017750634727939
1016 => 0.0017492002510983
1017 => 0.0017520123004059
1018 => 0.001782853540582
1019 => 0.0017642062227345
1020 => 0.0017709119282462
1021 => 0.0017828433906935
1022 => 0.0017900419382296
1023 => 0.0017509765401949
1024 => 0.001741868527199
1025 => 0.0017232367290875
1026 => 0.0017183760407392
1027 => 0.0017335512515358
1028 => 0.001729553119639
1029 => 0.0016576954207998
1030 => 0.0016501858914587
1031 => 0.0016504161980024
1101 => 0.0016315331294154
1102 => 0.0016027319173645
1103 => 0.0016784197830033
1104 => 0.0016723409881415
1105 => 0.0016656304690754
1106 => 0.0016664524693713
1107 => 0.0016993060065453
1108 => 0.001680249295841
1109 => 0.0017309146845819
1110 => 0.0017204994037978
1111 => 0.001709817010362
1112 => 0.0017083403781955
1113 => 0.0017042285681017
1114 => 0.0016901276413529
1115 => 0.0016730999249694
1116 => 0.0016618567516975
1117 => 0.0015329750080254
1118 => 0.0015568947099803
1119 => 0.00158441214673
1120 => 0.0015939110556268
1121 => 0.0015776625146544
1122 => 0.0016907692327865
1123 => 0.0017114349201127
1124 => 0.0016488372052122
1125 => 0.0016371277286022
1126 => 0.0016915369041237
1127 => 0.001658721520033
1128 => 0.0016734982854797
1129 => 0.0016415590010425
1130 => 0.0017064571611978
1201 => 0.0017059627459516
1202 => 0.0016807158958598
1203 => 0.0017020543606744
1204 => 0.001698346277299
1205 => 0.0016698426457256
1206 => 0.0017073607771597
1207 => 0.0017073793856848
1208 => 0.0016830798413853
1209 => 0.0016547032934977
1210 => 0.0016496302369595
1211 => 0.0016458083703273
1212 => 0.0016725583405729
1213 => 0.0016965422802501
1214 => 0.0017411704458666
1215 => 0.0017523910270416
1216 => 0.0017961857023642
1217 => 0.0017701081055336
1218 => 0.0017816679664472
1219 => 0.001794217830711
1220 => 0.0018002346971451
1221 => 0.0017904305361736
1222 => 0.0018584616935571
1223 => 0.0018642056076611
1224 => 0.0018661314923755
1225 => 0.0018431917688788
1226 => 0.001863567612453
1227 => 0.0018540344300216
1228 => 0.0018788371223137
1229 => 0.0018827265011617
1230 => 0.0018794323356461
1231 => 0.0018806668858821
]
'min_raw' => 0.00084335315175359
'max_raw' => 0.0018827265011617
'avg_raw' => 0.0013630398264577
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000843'
'max' => '$0.001882'
'avg' => '$0.001363'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00013004334484921
'max_diff' => -0.00017966192454114
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018226142945739
102 => 0.0018196039614627
103 => 0.0017785578558888
104 => 0.0017952844473077
105 => 0.0017640148863764
106 => 0.0017739307862599
107 => 0.0017783016204464
108 => 0.00177601854471
109 => 0.0017962301436901
110 => 0.0017790461556001
111 => 0.0017336947857215
112 => 0.0016883310598925
113 => 0.0016877615552672
114 => 0.0016758180869927
115 => 0.0016671851469856
116 => 0.0016688481575009
117 => 0.001674708823467
118 => 0.0016668445144255
119 => 0.0016685227634901
120 => 0.0016963928800773
121 => 0.0017019820331983
122 => 0.0016829879070701
123 => 0.0016067237498259
124 => 0.0015880083343441
125 => 0.0016014606038496
126 => 0.0015950312854631
127 => 0.0012873147344564
128 => 0.0013596081736913
129 => 0.0013166538669512
130 => 0.0013364491877297
131 => 0.0012926039635118
201 => 0.0013135292026337
202 => 0.0013096650750352
203 => 0.0014259107860066
204 => 0.0014240957691205
205 => 0.0014249645216553
206 => 0.0013834966996463
207 => 0.0014495560660807
208 => 0.0014820992854042
209 => 0.0014760764016171
210 => 0.0014775922317084
211 => 0.0014515452485551
212 => 0.0014252167133881
213 => 0.0013960143159553
214 => 0.00145026876086
215 => 0.0014442365927409
216 => 0.0014580722161006
217 => 0.0014932601018091
218 => 0.0014984416516454
219 => 0.0015054057071716
220 => 0.0015029095890007
221 => 0.0015623772506541
222 => 0.0015551753244476
223 => 0.0015725298944696
224 => 0.0015368302272399
225 => 0.0014964326651259
226 => 0.0015041109209879
227 => 0.0015033714432038
228 => 0.0014939570422784
229 => 0.0014854581420694
301 => 0.0014713098677715
302 => 0.0015160771012005
303 => 0.0015142596332778
304 => 0.0015436823263702
305 => 0.0015384815795693
306 => 0.0015037497195945
307 => 0.0015049901747682
308 => 0.0015133328319537
309 => 0.0015422068637275
310 => 0.001550778642252
311 => 0.0015468078529131
312 => 0.0015562064167486
313 => 0.0015636346583939
314 => 0.0015571392895321
315 => 0.0016491000150951
316 => 0.0016109115103619
317 => 0.001629524321855
318 => 0.001633963367723
319 => 0.0016225928450751
320 => 0.0016250587042895
321 => 0.001628793809093
322 => 0.0016514726340511
323 => 0.0017109884329121
324 => 0.0017373475750899
325 => 0.0018166503548689
326 => 0.001735158815269
327 => 0.0017303234445546
328 => 0.0017446082699074
329 => 0.0017911673966894
330 => 0.0018288991958698
331 => 0.0018414170104577
401 => 0.0018430714463021
402 => 0.0018665556986375
403 => 0.0018800164341208
404 => 0.0018637040927068
405 => 0.0018498810913318
406 => 0.0018003688161807
407 => 0.0018060999968469
408 => 0.0018455821482986
409 => 0.0019013530127112
410 => 0.0019492102163466
411 => 0.0019324522916254
412 => 0.0020603034279971
413 => 0.0020729793459433
414 => 0.0020712279439446
415 => 0.0021001055714555
416 => 0.0020427893616729
417 => 0.0020182855715416
418 => 0.0018528697811269
419 => 0.001899344871011
420 => 0.0019668991435439
421 => 0.0019579580822586
422 => 0.0019088983638144
423 => 0.0019491730001509
424 => 0.0019358569458737
425 => 0.0019253540213817
426 => 0.0019734699545717
427 => 0.0019205645095357
428 => 0.0019663713712591
429 => 0.0019076235972875
430 => 0.001932528840414
501 => 0.0019183914198843
502 => 0.0019275400635841
503 => 0.0018740572794528
504 => 0.0019029152915489
505 => 0.0018728566912732
506 => 0.001872842439583
507 => 0.0018721788943159
508 => 0.0019075427042399
509 => 0.0019086959168119
510 => 0.0018825620078463
511 => 0.001878795703276
512 => 0.0018927217052726
513 => 0.0018764180041603
514 => 0.0018840464032965
515 => 0.0018766490605989
516 => 0.0018749837629458
517 => 0.001861714387919
518 => 0.0018559975763083
519 => 0.0018582392854449
520 => 0.0018505871764814
521 => 0.001845976504042
522 => 0.0018712617155187
523 => 0.0018577528470292
524 => 0.0018691912876783
525 => 0.0018561557409124
526 => 0.0018109688565044
527 => 0.0017849814014388
528 => 0.0016996275656186
529 => 0.0017238338075761
530 => 0.0017398825710371
531 => 0.001734578454809
601 => 0.0017459737488875
602 => 0.0017466733273951
603 => 0.0017429686011289
604 => 0.0017386790027175
605 => 0.0017365910634405
606 => 0.0017521528521948
607 => 0.0017611869943524
608 => 0.0017414932791551
609 => 0.0017368793172288
610 => 0.001756790750613
611 => 0.0017689367134749
612 => 0.0018586156790202
613 => 0.0018519719715934
614 => 0.001868646373473
615 => 0.0018667690917109
616 => 0.0018842465213213
617 => 0.0019128147322215
618 => 0.0018547275716641
619 => 0.001864809494234
620 => 0.0018623376396454
621 => 0.001889324699888
622 => 0.0018894089505444
623 => 0.0018732288598253
624 => 0.0018820003494961
625 => 0.0018771043445951
626 => 0.001885952087186
627 => 0.0018518832408302
628 => 0.0018933754181868
629 => 0.0019168988090511
630 => 0.0019172254313561
701 => 0.0019283753319326
702 => 0.0019397042766771
703 => 0.0019614491995708
704 => 0.0019390978225796
705 => 0.0018988898712351
706 => 0.0019017927554513
707 => 0.0018782188482895
708 => 0.0018786151299279
709 => 0.0018764997474851
710 => 0.0018828481694343
711 => 0.0018532763624454
712 => 0.0018602168064384
713 => 0.001850500144205
714 => 0.0018647883721079
715 => 0.001849416600813
716 => 0.0018623364476423
717 => 0.0018679122252341
718 => 0.0018884869645858
719 => 0.001846377695082
720 => 0.0017605140440167
721 => 0.0017785636244667
722 => 0.0017518668772172
723 => 0.0017543377628168
724 => 0.0017593293449666
725 => 0.0017431499940751
726 => 0.0017462365043552
727 => 0.0017461262324886
728 => 0.0017451759691155
729 => 0.0017409670950724
730 => 0.0017348633950097
731 => 0.00175917865744
801 => 0.0017633102943409
802 => 0.0017724944113701
803 => 0.0017998201140028
804 => 0.0017970896319254
805 => 0.0018015431614803
806 => 0.0017918211314674
807 => 0.0017547887399056
808 => 0.0017567997769357
809 => 0.0017317221129467
810 => 0.0017718531191196
811 => 0.0017623495671545
812 => 0.0017562225653783
813 => 0.0017545507561774
814 => 0.0017819441939416
815 => 0.0017901407398601
816 => 0.0017850332024934
817 => 0.0017745574943436
818 => 0.0017946739508563
819 => 0.001800056265974
820 => 0.0018012611678367
821 => 0.0018369036718293
822 => 0.001803253187871
823 => 0.0018113531938168
824 => 0.0018745471279573
825 => 0.0018172389498587
826 => 0.0018475963699224
827 => 0.0018461105321827
828 => 0.0018616403610482
829 => 0.001844836632934
830 => 0.001845044935283
831 => 0.0018588343712339
901 => 0.0018394695953788
902 => 0.0018346746045496
903 => 0.0018280503590615
904 => 0.0018425141567416
905 => 0.0018511845493096
906 => 0.0019210615457056
907 => 0.0019662052721556
908 => 0.0019642454639323
909 => 0.001982154442486
910 => 0.0019740862836201
911 => 0.0019480320703694
912 => 0.0019925034354156
913 => 0.001978430834754
914 => 0.0019795909628543
915 => 0.0019795477828285
916 => 0.0019889048320203
917 => 0.001982274505107
918 => 0.0019692054501716
919 => 0.0019778812987449
920 => 0.0020036454673352
921 => 0.0020836182371805
922 => 0.0021283720586842
923 => 0.0020809240009314
924 => 0.0021136530358145
925 => 0.0020940272774322
926 => 0.0020904606933184
927 => 0.0021110169458816
928 => 0.0021316091794438
929 => 0.0021302975431886
930 => 0.0021153486390453
1001 => 0.0021069043824092
1002 => 0.0021708471226914
1003 => 0.0022179590444951
1004 => 0.0022147463272704
1005 => 0.0022289262162686
1006 => 0.0022705588089346
1007 => 0.0022743651714513
1008 => 0.0022738856572624
1009 => 0.0022644511906119
1010 => 0.0023054438847668
1011 => 0.0023396407114288
1012 => 0.0022622673841702
1013 => 0.002291730134299
1014 => 0.0023049569120624
1015 => 0.0023243777460271
1016 => 0.0023571439482353
1017 => 0.0023927367346394
1018 => 0.002397769944892
1019 => 0.0023941986413565
1020 => 0.0023707242419376
1021 => 0.0024096702935311
1022 => 0.0024324839771573
1023 => 0.0024460690036748
1024 => 0.0024805183705904
1025 => 0.0023050385961389
1026 => 0.0021808252898715
1027 => 0.0021614275884359
1028 => 0.002200873577082
1029 => 0.0022112751697122
1030 => 0.0022070823007654
1031 => 0.0020672689315817
1101 => 0.0021606914999822
1102 => 0.0022612063283885
1103 => 0.0022650675123071
1104 => 0.0023153873370733
1105 => 0.0023317735346964
1106 => 0.0023722875892034
1107 => 0.0023697534240632
1108 => 0.0023796179516162
1109 => 0.0023773502675616
1110 => 0.002452394022295
1111 => 0.0025351784278714
1112 => 0.0025323118671446
1113 => 0.0025204106293823
1114 => 0.0025380859969218
1115 => 0.0026235283751927
1116 => 0.0026156622101878
1117 => 0.0026233035194517
1118 => 0.0027240448987545
1119 => 0.0028550230221423
1120 => 0.0027941705338401
1121 => 0.0029262029236241
1122 => 0.0030093103142568
1123 => 0.0031530359528916
1124 => 0.0031350407950708
1125 => 0.0031909921314838
1126 => 0.0031028257068689
1127 => 0.0029003777745786
1128 => 0.0028683396143541
1129 => 0.0029324808224589
1130 => 0.0030901657237772
1201 => 0.0029275147637635
1202 => 0.0029604188411372
1203 => 0.00295094246464
1204 => 0.0029504375088085
1205 => 0.0029697096190941
1206 => 0.0029417544179591
1207 => 0.0028278598994904
1208 => 0.00288005708612
1209 => 0.0028599012456475
1210 => 0.0028822656533692
1211 => 0.0030029571380596
1212 => 0.0029495965557523
1213 => 0.0028933855169533
1214 => 0.0029638866338353
1215 => 0.0030536587824384
1216 => 0.0030480410027148
1217 => 0.0030371401620015
1218 => 0.0030985876303533
1219 => 0.0032000808456516
1220 => 0.003227514053914
1221 => 0.003247764687406
1222 => 0.0032505569076273
1223 => 0.0032793185112618
1224 => 0.0031246601196616
1225 => 0.0033701069590404
1226 => 0.003412488847869
1227 => 0.0034045228093185
1228 => 0.003451628495049
1229 => 0.0034377688073512
1230 => 0.0034176882943954
1231 => 0.0034923608259449
]
'min_raw' => 0.0012873147344564
'max_raw' => 0.0034923608259449
'avg_raw' => 0.0023898377802007
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.001287'
'max' => '$0.003492'
'avg' => '$0.002389'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00044396158270285
'max_diff' => 0.0016096343247832
'year' => 2032
]
7 => [
'items' => [
101 => 0.003406754794286
102 => 0.0032852478098458
103 => 0.0032185866750463
104 => 0.0033063714347507
105 => 0.0033599785242362
106 => 0.0033954094003349
107 => 0.0034061307620344
108 => 0.0031366658103456
109 => 0.0029914391465966
110 => 0.0030845277730326
111 => 0.0031981023219183
112 => 0.003124029207308
113 => 0.0031269327331618
114 => 0.0030213239377996
115 => 0.0032074463569325
116 => 0.0031803298860008
117 => 0.0033210101851628
118 => 0.0032874357027378
119 => 0.0034021550255267
120 => 0.0033719455831732
121 => 0.0034973432893953
122 => 0.0035473678294147
123 => 0.0036313668178051
124 => 0.0036931568156025
125 => 0.0037294410841635
126 => 0.003727262712778
127 => 0.0038710390615673
128 => 0.0037862591718492
129 => 0.0036797556492776
130 => 0.0036778293365685
131 => 0.003732989020075
201 => 0.0038485885843844
202 => 0.0038785618695046
203 => 0.003895312846856
204 => 0.0038696581419366
205 => 0.0037776356478771
206 => 0.0037379008015068
207 => 0.0037717560418436
208 => 0.0037303539921257
209 => 0.0038018255453022
210 => 0.0038999712533136
211 => 0.0038797045527195
212 => 0.0039474530942522
213 => 0.0040175657073842
214 => 0.0041178298931173
215 => 0.00414404266404
216 => 0.0041873713775929
217 => 0.0042319708565797
218 => 0.0042462950072406
219 => 0.0042736442553751
220 => 0.0042735001113375
221 => 0.0043559189114078
222 => 0.004446829400183
223 => 0.004481146005113
224 => 0.0045600551459209
225 => 0.0044249260075935
226 => 0.0045274230112665
227 => 0.004619877874246
228 => 0.0045096493751353
301 => 0.0046615736812131
302 => 0.0046674725577502
303 => 0.0047565385899919
304 => 0.0046662531033278
305 => 0.0046126418695481
306 => 0.0047674154926833
307 => 0.004842305573595
308 => 0.0048197480717487
309 => 0.0046480843688972
310 => 0.004548168730835
311 => 0.0042866702337391
312 => 0.0045964264994436
313 => 0.0047472997407541
314 => 0.0046476936436505
315 => 0.0046979291652889
316 => 0.0049719978824256
317 => 0.0050763455052759
318 => 0.005054641929168
319 => 0.005058309476259
320 => 0.0051146135595057
321 => 0.0053642968718466
322 => 0.0052146808434781
323 => 0.0053290566911602
324 => 0.005389721228358
325 => 0.0054460698313787
326 => 0.0053076954715187
327 => 0.0051276724624639
328 => 0.0050706516186445
329 => 0.0046377897803151
330 => 0.0046152574418064
331 => 0.0046026093574017
401 => 0.0045228649743373
402 => 0.0044602077330735
403 => 0.0044103803685063
404 => 0.0042796184841714
405 => 0.004323746781579
406 => 0.0041153396300754
407 => 0.0042486711401115
408 => 0.0039160482941451
409 => 0.0041930664842072
410 => 0.0040422980778279
411 => 0.0041435350078083
412 => 0.0041431818016967
413 => 0.003956772516405
414 => 0.0038492555309112
415 => 0.0039177695386915
416 => 0.0039912219936807
417 => 0.004003139407379
418 => 0.0040983724325776
419 => 0.0041249499228836
420 => 0.0040444188864722
421 => 0.0039091554249874
422 => 0.0039405740420592
423 => 0.0038486188336391
424 => 0.0036874708678888
425 => 0.0038032101502642
426 => 0.0038427286299642
427 => 0.0038601822419178
428 => 0.0037017117255713
429 => 0.003651916848773
430 => 0.003625406474185
501 => 0.0038886988713146
502 => 0.0039031226231783
503 => 0.0038293286693304
504 => 0.0041628843381527
505 => 0.0040873904173591
506 => 0.0041717356233452
507 => 0.0039377231318743
508 => 0.0039466627241881
509 => 0.0038358774605093
510 => 0.0038979098054954
511 => 0.003854067343455
512 => 0.0038928982050361
513 => 0.0039161732633622
514 => 0.0040269403482694
515 => 0.0041943312663892
516 => 0.004010395439541
517 => 0.0039302519657737
518 => 0.003979972526155
519 => 0.004112384930549
520 => 0.0043129965012722
521 => 0.0041942304137199
522 => 0.0042469367865967
523 => 0.0042584507843269
524 => 0.0041708770683254
525 => 0.004316225469095
526 => 0.0043941188578757
527 => 0.0044740213569991
528 => 0.0045433984581707
529 => 0.0044421065417556
530 => 0.0045505034119456
531 => 0.0044631546691959
601 => 0.0043847938170023
602 => 0.0043849126580692
603 => 0.0043357557508188
604 => 0.0042405080488522
605 => 0.0042229429112477
606 => 0.0043143189752989
607 => 0.0043875939253225
608 => 0.0043936292011698
609 => 0.0044341979785057
610 => 0.0044582061630415
611 => 0.0046935190090363
612 => 0.0047881637823054
613 => 0.0049038936195249
614 => 0.0049489769132982
615 => 0.0050846614643003
616 => 0.0049750851696056
617 => 0.0049513776489812
618 => 0.0046222513103285
619 => 0.0046761457298449
620 => 0.0047624358955286
621 => 0.004623674203378
622 => 0.0047116865585088
623 => 0.0047290620617681
624 => 0.0046189591341765
625 => 0.0046777698650699
626 => 0.0045215859999836
627 => 0.0041977356478468
628 => 0.0043165860071145
629 => 0.0044040998761339
630 => 0.004279206794661
701 => 0.0045030728091714
702 => 0.004372294905027
703 => 0.0043308445878597
704 => 0.0041691321224849
705 => 0.0042454541812582
706 => 0.0043486808585756
707 => 0.0042848987733827
708 => 0.0044172561770862
709 => 0.0046047095591606
710 => 0.0047383000022687
711 => 0.0047485554176914
712 => 0.0046626657126374
713 => 0.0048003045131271
714 => 0.004801307061525
715 => 0.0046460499323016
716 => 0.0045509558051276
717 => 0.0045293502193539
718 => 0.0045833252086412
719 => 0.0046488608099687
720 => 0.0047521921874605
721 => 0.0048146331747537
722 => 0.0049774461534738
723 => 0.0050214986773016
724 => 0.0050698990450976
725 => 0.0051345768625937
726 => 0.0052122391655498
727 => 0.0050423184679992
728 => 0.0050490697340847
729 => 0.0048908419332378
730 => 0.004721752835871
731 => 0.0048500703835189
801 => 0.0050178285077005
802 => 0.004979344608657
803 => 0.0049750143838598
804 => 0.0049822966208644
805 => 0.0049532810177522
806 => 0.0048220445202443
807 => 0.0047561383727798
808 => 0.0048411741174605
809 => 0.0048863668312527
810 => 0.0049564567891256
811 => 0.0049478167223982
812 => 0.0051283609267668
813 => 0.0051985149452111
814 => 0.0051805665452333
815 => 0.0051838694827816
816 => 0.0053108799821823
817 => 0.0054521417792174
818 => 0.0055844520932766
819 => 0.0057190438275978
820 => 0.0055567882386688
821 => 0.0054744048571441
822 => 0.0055594034778788
823 => 0.0055143020132747
824 => 0.0057734684068529
825 => 0.0057914125256389
826 => 0.006050560178537
827 => 0.0062965221598658
828 => 0.0061420378462598
829 => 0.006287709595864
830 => 0.0064452654698528
831 => 0.0067492163132967
901 => 0.0066468563623444
902 => 0.0065684502440999
903 => 0.0064943568412144
904 => 0.0066485334506226
905 => 0.0068468791955948
906 => 0.0068896009693298
907 => 0.0069588265637543
908 => 0.0068860443157199
909 => 0.0069737025167757
910 => 0.0072831744854678
911 => 0.0071995524277426
912 => 0.0070807956628562
913 => 0.0073250940601348
914 => 0.0074135047004239
915 => 0.0080340168749851
916 => 0.008817439127448
917 => 0.0084930971707005
918 => 0.0082917676516978
919 => 0.0083390848642634
920 => 0.008625164150346
921 => 0.0087170437373331
922 => 0.0084672833471094
923 => 0.0085555029392943
924 => 0.0090416015657924
925 => 0.0093023778829975
926 => 0.008948208617301
927 => 0.007971069659801
928 => 0.007070102915524
929 => 0.0073090798671675
930 => 0.0072819872971694
1001 => 0.0078042396293029
1002 => 0.0071975580693215
1003 => 0.00720777303087
1004 => 0.0077408249881573
1005 => 0.0075986158647771
1006 => 0.0073682552976697
1007 => 0.0070717848025962
1008 => 0.0065237316722512
1009 => 0.0060383057311125
1010 => 0.0069903377886033
1011 => 0.0069492844351263
1012 => 0.0068898330955255
1013 => 0.0070221356185002
1014 => 0.0076645591153387
1015 => 0.0076497491744147
1016 => 0.007555535886354
1017 => 0.0076269958349902
1018 => 0.00735572802317
1019 => 0.0074256399149293
1020 => 0.0070699601977886
1021 => 0.0072307422844333
1022 => 0.0073677610473528
1023 => 0.0073952695926064
1024 => 0.0074572477496838
1025 => 0.0069276511833227
1026 => 0.0071654244934806
1027 => 0.007305094036852
1028 => 0.0066740619586783
1029 => 0.0072926205615893
1030 => 0.0069184320853484
1031 => 0.0067914268963899
1101 => 0.0069624226516612
1102 => 0.0068957854395332
1103 => 0.0068384946776139
1104 => 0.0068065254480827
1105 => 0.0069320858586411
1106 => 0.0069262283154114
1107 => 0.0067207871135123
1108 => 0.0064527974404896
1109 => 0.0065427435712172
1110 => 0.0065100652986744
1111 => 0.0063916350233983
1112 => 0.0064714427296084
1113 => 0.0061200099812147
1114 => 0.0055153882034881
1115 => 0.0059148198699202
1116 => 0.0058994421852606
1117 => 0.0058916880593328
1118 => 0.0061918499171761
1119 => 0.0061629962804568
1120 => 0.0061106266472755
1121 => 0.0063906732140161
1122 => 0.0062884524499979
1123 => 0.0066034727584609
1124 => 0.0068109655078508
1125 => 0.0067583386349182
1126 => 0.0069534865686189
1127 => 0.0065448157484035
1128 => 0.0066805598018516
1129 => 0.0067085364631341
1130 => 0.006387217482853
1201 => 0.006167717092263
1202 => 0.0061530789186983
1203 => 0.0057724954904323
1204 => 0.0059758000858499
1205 => 0.0061546997165016
1206 => 0.0060690206765916
1207 => 0.0060418972521446
1208 => 0.0061804649452913
1209 => 0.0061912328418008
1210 => 0.0059457236602529
1211 => 0.0059967727933614
1212 => 0.0062096561646359
1213 => 0.0059914086786077
1214 => 0.0055673894637795
1215 => 0.0054622268359778
1216 => 0.0054481962028973
1217 => 0.0051629868157459
1218 => 0.0054692543056222
1219 => 0.0053355603388328
1220 => 0.005757897978021
1221 => 0.0055166609835588
1222 => 0.0055062617388819
1223 => 0.0054905417553151
1224 => 0.0052450502539424
1225 => 0.0052987972909442
1226 => 0.0054774606278431
1227 => 0.0055412097192351
1228 => 0.005534560166722
1229 => 0.0054765850800228
1230 => 0.0055031257778332
1231 => 0.0054176289427938
]
'min_raw' => 0.0029914391465966
'max_raw' => 0.0093023778829975
'avg_raw' => 0.0061469085147971
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002991'
'max' => '$0.0093023'
'avg' => '$0.006146'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0017041244121402
'max_diff' => 0.0058100170570526
'year' => 2033
]
8 => [
'items' => [
101 => 0.0053874382308786
102 => 0.0052921480394648
103 => 0.0051520977826737
104 => 0.0051715726298587
105 => 0.0048940964250125
106 => 0.0047429126618355
107 => 0.0047010669887581
108 => 0.0046451092058679
109 => 0.0047073875692335
110 => 0.0048933103697872
111 => 0.0046690480265969
112 => 0.0042845659693715
113 => 0.0043076739961363
114 => 0.004359590871442
115 => 0.0042628441177742
116 => 0.0041712814347672
117 => 0.0042508877589265
118 => 0.0040879776427427
119 => 0.0043792777806706
120 => 0.0043713989282988
121 => 0.0044799776058387
122 => 0.0045478740811631
123 => 0.0043913946872852
124 => 0.0043520405428902
125 => 0.0043744584520837
126 => 0.0040039403496244
127 => 0.0044496983721019
128 => 0.0044535533059908
129 => 0.0044205450216359
130 => 0.0046578974073702
131 => 0.0051587849733352
201 => 0.0049703309228635
202 => 0.0048973558184671
203 => 0.0047586300916649
204 => 0.0049434738859102
205 => 0.0049292807665245
206 => 0.0048650940980819
207 => 0.0048262738007332
208 => 0.0048978013888935
209 => 0.0048174107409994
210 => 0.0048029703716503
211 => 0.0047154774446719
212 => 0.0046842464504151
213 => 0.0046611242656091
214 => 0.0046356690120767
215 => 0.0046918169583153
216 => 0.0045645783252611
217 => 0.0044111410071547
218 => 0.0043983843543689
219 => 0.0044336065942868
220 => 0.0044180233751105
221 => 0.0043983097479108
222 => 0.0043606710648997
223 => 0.0043495044716735
224 => 0.0043857904823977
225 => 0.0043448256918959
226 => 0.0044052714717489
227 => 0.0043888335642465
228 => 0.0042970127491689
301 => 0.0041825700171624
302 => 0.0041815512367958
303 => 0.0041568947379087
304 => 0.0041254909794466
305 => 0.0041167551722631
306 => 0.0042441835363459
307 => 0.0045079564363875
308 => 0.0044561715045588
309 => 0.0044935914249383
310 => 0.0046776603973491
311 => 0.0047361703885314
312 => 0.0046946413826753
313 => 0.0046377939180619
314 => 0.0046402949179992
315 => 0.0048345599134807
316 => 0.0048466759829586
317 => 0.0048772893817371
318 => 0.0049166362505129
319 => 0.0047013423245685
320 => 0.0046301545934482
321 => 0.0045964218970985
322 => 0.0044925382485378
323 => 0.0046045678571996
324 => 0.0045392930018185
325 => 0.004548100809916
326 => 0.0045423647133378
327 => 0.0045454970099427
328 => 0.0043791963563453
329 => 0.0044397875740112
330 => 0.0043390429227818
331 => 0.0042041571439034
401 => 0.0042037049594756
402 => 0.0042367180627635
403 => 0.004217080577125
404 => 0.0041642366081976
405 => 0.0041717428445673
406 => 0.0041059803155362
407 => 0.0041797276062606
408 => 0.0041818424146781
409 => 0.0041534456907072
410 => 0.0042670635672331
411 => 0.0043136129039492
412 => 0.0042949215719147
413 => 0.0043123014702664
414 => 0.0044583234022712
415 => 0.0044821313485716
416 => 0.0044927052656535
417 => 0.0044785376175393
418 => 0.0043149704831272
419 => 0.0043222253810795
420 => 0.0042689937536057
421 => 0.004224018637801
422 => 0.0042258174065698
423 => 0.0042489404624492
424 => 0.0043499202036238
425 => 0.0045624261158451
426 => 0.004570490559874
427 => 0.0045802649012936
428 => 0.0045405077425498
429 => 0.0045285166030479
430 => 0.0045443360112266
501 => 0.0046241420588269
502 => 0.0048294248803852
503 => 0.0047568642208678
504 => 0.0046978712752063
505 => 0.0047496239929354
506 => 0.0047416570676922
507 => 0.0046744082010095
508 => 0.004672520749301
509 => 0.0045434486733736
510 => 0.0044957336657322
511 => 0.0044558594339406
512 => 0.0044123178137674
513 => 0.0043865048818004
514 => 0.0044261652770695
515 => 0.0044352360787155
516 => 0.0043485179313146
517 => 0.0043366985682584
518 => 0.0044075144793672
519 => 0.0043763510371715
520 => 0.004408403410286
521 => 0.0044158398357887
522 => 0.0044146424000074
523 => 0.0043821041872565
524 => 0.0044028430737604
525 => 0.004353789424619
526 => 0.0043004509487975
527 => 0.0042664243243279
528 => 0.0042367315815014
529 => 0.0042532068409739
530 => 0.0041944755492179
531 => 0.0041756862269579
601 => 0.0043958172056526
602 => 0.0045584303264213
603 => 0.0045560658672434
604 => 0.0045416728300878
605 => 0.0045202876963956
606 => 0.0046225776030975
607 => 0.0045869418449538
608 => 0.0046128698364706
609 => 0.004619469598506
610 => 0.004639445090466
611 => 0.0046465846118901
612 => 0.0046250040194299
613 => 0.004552576915286
614 => 0.0043720954579219
615 => 0.0042880808523185
616 => 0.0042603546330955
617 => 0.0042613624285046
618 => 0.0042335629321229
619 => 0.0042417511296934
620 => 0.004230715411166
621 => 0.0042098164301022
622 => 0.004251916387785
623 => 0.0042567680157197
624 => 0.0042469413825395
625 => 0.0042492559103827
626 => 0.0041678955846606
627 => 0.0041740812335199
628 => 0.004139638754637
629 => 0.0041331812050567
630 => 0.0040461136176904
701 => 0.0038918607660224
702 => 0.0039773318195331
703 => 0.003874094805941
704 => 0.0038349973845977
705 => 0.0040200784963406
706 => 0.0040015014860725
707 => 0.0039697057197259
708 => 0.0039226731544809
709 => 0.0039052283185282
710 => 0.0037992390176432
711 => 0.003792976604316
712 => 0.0038455077637865
713 => 0.0038212664411777
714 => 0.0037872224433282
715 => 0.0036639185341019
716 => 0.0035252841156103
717 => 0.0035294686172796
718 => 0.0035735656464168
719 => 0.0037017837059276
720 => 0.0036516866918818
721 => 0.0036153407333945
722 => 0.0036085342279254
723 => 0.0036937318942563
724 => 0.0038143044415776
725 => 0.003870874383122
726 => 0.0038148152891061
727 => 0.0037504176203367
728 => 0.0037543372080446
729 => 0.0037804124690593
730 => 0.0037831526103075
731 => 0.003741236348126
801 => 0.0037530355304042
802 => 0.0037351114935837
803 => 0.0036251117127019
804 => 0.0036231221654788
805 => 0.0035961264452643
806 => 0.003595309025585
807 => 0.0035493825711021
808 => 0.0035429571426454
809 => 0.0034517673797332
810 => 0.00351178875783
811 => 0.0034715295686665
812 => 0.0034108494744143
813 => 0.0034003882032935
814 => 0.0034000737248512
815 => 0.0034623786138274
816 => 0.0035110606889267
817 => 0.0034722298944984
818 => 0.0034633888753104
819 => 0.0035577878302458
820 => 0.0035457747027647
821 => 0.0035353714118424
822 => 0.0038035084924162
823 => 0.0035912570701448
824 => 0.0034987033351468
825 => 0.0033841505126092
826 => 0.0034214494892529
827 => 0.0034293089316677
828 => 0.003153830043163
829 => 0.0030420682924054
830 => 0.0030037158711981
831 => 0.0029816435105697
901 => 0.0029917021624753
902 => 0.0028911034784475
903 => 0.0029587074578629
904 => 0.0028715975008899
905 => 0.0028569932331231
906 => 0.0030127566270437
907 => 0.0030344301933512
908 => 0.0029419640260341
909 => 0.0030013422743644
910 => 0.0029798108961004
911 => 0.0028730907510815
912 => 0.002869014826522
913 => 0.002815466409146
914 => 0.0027316735049693
915 => 0.0026933778992968
916 => 0.0026734332153648
917 => 0.0026816627806693
918 => 0.0026775016606225
919 => 0.0026503475376272
920 => 0.0026790581031671
921 => 0.0026057144722373
922 => 0.0025765084474312
923 => 0.0025633167636009
924 => 0.0024982200696488
925 => 0.0026018178583579
926 => 0.0026222279278241
927 => 0.0026426782114322
928 => 0.0028206839682388
929 => 0.0028117913036678
930 => 0.0028921766604865
1001 => 0.0028890530333397
1002 => 0.0028661258274186
1003 => 0.0027693997169797
1004 => 0.0028079530206235
1005 => 0.0026892919445214
1006 => 0.0027782008909059
1007 => 0.0027376265607024
1008 => 0.00276448266905
1009 => 0.0027161929647234
1010 => 0.0027429184809308
1011 => 0.0026270679124582
1012 => 0.00251888828168
1013 => 0.0025624229230654
1014 => 0.0026097500570415
1015 => 0.0027123673422312
1016 => 0.0026512493337465
1017 => 0.0026732296807253
1018 => 0.0025995991978117
1019 => 0.0024476784800533
1020 => 0.0024485383348173
1021 => 0.0024251686421629
1022 => 0.0024049738156785
1023 => 0.0026582694722342
1024 => 0.0026267681533297
1025 => 0.0025765749244462
1026 => 0.0026437605559065
1027 => 0.0026615255032439
1028 => 0.00266203124632
1029 => 0.0027110481487214
1030 => 0.0027372084783197
1031 => 0.0027418193497968
1101 => 0.0028189485048055
1102 => 0.0028448011802062
1103 => 0.0029512846913744
1104 => 0.0027349889571253
1105 => 0.0027305344888158
1106 => 0.0026447059955216
1107 => 0.0025902722081797
1108 => 0.0026484331235111
1109 => 0.002699955754738
1110 => 0.0026463069472926
1111 => 0.0026533123489569
1112 => 0.00258129320823
1113 => 0.0026070366622244
1114 => 0.002629210392822
1115 => 0.0026169673620976
1116 => 0.0025986389525338
1117 => 0.0026957314865338
1118 => 0.0026902531452568
1119 => 0.0027806679450652
1120 => 0.0028511527471403
1121 => 0.0029774741131242
1122 => 0.0028456511824382
1123 => 0.0028408470308953
1124 => 0.0028878083828372
1125 => 0.0028447939906679
1126 => 0.0028719776017126
1127 => 0.0029730944131279
1128 => 0.0029752308520154
1129 => 0.002939442748005
1130 => 0.0029372650386236
1201 => 0.0029441385354777
1202 => 0.0029843968212422
1203 => 0.0029703293391839
1204 => 0.0029866085855668
1205 => 0.0030069660324453
1206 => 0.0030911730641134
1207 => 0.0031114750943671
1208 => 0.0030621516862466
1209 => 0.0030666050377491
1210 => 0.0030481567291542
1211 => 0.0030303358942082
1212 => 0.0030703945286429
1213 => 0.0031436024704268
1214 => 0.0031431470476205
1215 => 0.0031601298671553
1216 => 0.0031707100230322
1217 => 0.003125292248861
1218 => 0.0030957269479334
1219 => 0.003107064165598
1220 => 0.0031251926235362
1221 => 0.0031011853510179
1222 => 0.0029530013437844
1223 => 0.002997950905548
1224 => 0.0029904691005493
1225 => 0.0029798141004125
1226 => 0.0030250112323505
1227 => 0.0030206518587159
1228 => 0.0028900716935399
1229 => 0.0028984310120481
1230 => 0.0028905800513853
1231 => 0.0029159481114424
]
'min_raw' => 0.0024049738156785
'max_raw' => 0.0053874382308786
'avg_raw' => 0.0038962060232786
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0024049'
'max' => '$0.005387'
'avg' => '$0.003896'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00058646533091816
'max_diff' => -0.0039149396521189
'year' => 2034
]
9 => [
'items' => [
101 => 0.002843424032174
102 => 0.0028657319504998
103 => 0.00287972326775
104 => 0.0028879642610968
105 => 0.0029177363799672
106 => 0.0029142429654463
107 => 0.0029175192244156
108 => 0.0029616634171526
109 => 0.0031849295955583
110 => 0.0031970814810399
111 => 0.0031372411525853
112 => 0.0031611461835046
113 => 0.0031152537515951
114 => 0.0031460616485886
115 => 0.0031671396292757
116 => 0.0030718922876131
117 => 0.0030662523581899
118 => 0.0030201705118891
119 => 0.003044932285882
120 => 0.0030055345230248
121 => 0.0030152013559547
122 => 0.0029881720483433
123 => 0.0030368194205623
124 => 0.0030912147417407
125 => 0.0031049571480066
126 => 0.0030688067935987
127 => 0.003042631554583
128 => 0.0029966764575311
129 => 0.0030731008081045
130 => 0.0030954496172021
131 => 0.0030729834193245
201 => 0.0030677775103802
202 => 0.0030579123223375
203 => 0.0030698704566592
204 => 0.0030953279007881
205 => 0.0030833226402621
206 => 0.003091252326345
207 => 0.0030610325400537
208 => 0.0031253072840341
209 => 0.0032273910460344
210 => 0.0032277192620216
211 => 0.0032157139367828
212 => 0.0032108016163534
213 => 0.0032231198085925
214 => 0.0032298019225635
215 => 0.0032696366974947
216 => 0.0033123809980832
217 => 0.0035118499981306
218 => 0.0034558399011054
219 => 0.0036328206644114
220 => 0.0037727894701105
221 => 0.0038147599948455
222 => 0.0037761490869551
223 => 0.003644063256782
224 => 0.0036375824958049
225 => 0.0038349744912826
226 => 0.003779202211434
227 => 0.003772568276212
228 => 0.0037019944136596
301 => 0.003743712307171
302 => 0.0037345879918955
303 => 0.0037201848138563
304 => 0.0037997796485823
305 => 0.0039487740737095
306 => 0.0039255518952926
307 => 0.0039082176163502
308 => 0.0038322638519573
309 => 0.0038780049830093
310 => 0.0038617174423553
311 => 0.0039316990533333
312 => 0.0038902434972725
313 => 0.0037787796815606
314 => 0.0037965306616023
315 => 0.003793847636679
316 => 0.0038490640994789
317 => 0.0038324894879032
318 => 0.0037906111777558
319 => 0.0039482648269622
320 => 0.0039380276758984
321 => 0.0039525416155683
322 => 0.0039589311006695
323 => 0.0040548920987725
324 => 0.0040942042492858
325 => 0.0041031287957084
326 => 0.0041404722981853
327 => 0.0041021996553477
328 => 0.00425531751463
329 => 0.004357131956378
330 => 0.0044753946697916
331 => 0.0046482082801095
401 => 0.0047131877962043
402 => 0.0047014498282308
403 => 0.0048324751352794
404 => 0.0050679246995166
405 => 0.0047490409169239
406 => 0.0050848263143044
407 => 0.0049785205343225
408 => 0.0047264714423449
409 => 0.0047102424522852
410 => 0.0048809330237225
411 => 0.0052595082828119
412 => 0.0051646794741751
413 => 0.0052596633887714
414 => 0.0051488596070271
415 => 0.0051433572653359
416 => 0.0052542818964107
417 => 0.0055134633431039
418 => 0.0053903359530512
419 => 0.0052138026473361
420 => 0.0053441520931137
421 => 0.0052312313399094
422 => 0.0049767892784114
423 => 0.0051646069603723
424 => 0.0050390186251846
425 => 0.0050756719780355
426 => 0.0053396399787449
427 => 0.0053078786505269
428 => 0.0053489807502609
429 => 0.0052764366200596
430 => 0.0052086689632924
501 => 0.005082175599444
502 => 0.0050447271504559
503 => 0.0050550765545022
504 => 0.0050447220218053
505 => 0.0049739501472661
506 => 0.0049586669676976
507 => 0.0049331943321787
508 => 0.004941089367056
509 => 0.004893193359998
510 => 0.0049835830211364
511 => 0.0050003601387546
512 => 0.005066138196259
513 => 0.0050729674923994
514 => 0.0052561584462568
515 => 0.0051552599472711
516 => 0.005222951371548
517 => 0.0052168964134243
518 => 0.0047319341104478
519 => 0.0047987576369393
520 => 0.0049027140737823
521 => 0.0048558818398942
522 => 0.0047896720182313
523 => 0.0047362040372925
524 => 0.0046551945787885
525 => 0.0047692138359841
526 => 0.0049191370346
527 => 0.0050767697921272
528 => 0.0052661552217888
529 => 0.0052238865985777
530 => 0.0050732293632535
531 => 0.0050799877367749
601 => 0.0051217653425627
602 => 0.0050676595471718
603 => 0.0050517026918404
604 => 0.0051195731156743
605 => 0.0051200405019824
606 => 0.0050577852454813
607 => 0.0049885999204721
608 => 0.0049883100314342
609 => 0.0049759991710998
610 => 0.0051510496817319
611 => 0.0052473097629767
612 => 0.0052583458261606
613 => 0.0052465669479937
614 => 0.0052511001707132
615 => 0.005195088550383
616 => 0.0053231145047278
617 => 0.0054406037808892
618 => 0.0054091141450857
619 => 0.0053619067045006
620 => 0.0053243037042563
621 => 0.0054002560732686
622 => 0.0053968740338366
623 => 0.0054395776145573
624 => 0.005437640333468
625 => 0.0054232807254345
626 => 0.0054091146579125
627 => 0.0054652815143778
628 => 0.0054491063617279
629 => 0.0054329060845982
630 => 0.0054004139486764
701 => 0.0054048301695854
702 => 0.0053576308800306
703 => 0.00533579432899
704 => 0.0050074249945514
705 => 0.0049196739786118
706 => 0.0049472822345631
707 => 0.0049563715892703
708 => 0.0049181822346774
709 => 0.0049729359591233
710 => 0.0049644026491669
711 => 0.0049976007663877
712 => 0.0049768600240429
713 => 0.0049777112313434
714 => 0.0050387053321871
715 => 0.0050564121791495
716 => 0.0050474063338726
717 => 0.0050537137192022
718 => 0.0051990647519418
719 => 0.0051784004831506
720 => 0.0051674230022094
721 => 0.0051704638394516
722 => 0.0052076041446778
723 => 0.0052180014023557
724 => 0.0051739474909722
725 => 0.0051947235702533
726 => 0.005283185478955
727 => 0.0053141421404902
728 => 0.00541294094407
729 => 0.0053709694563006
730 => 0.0054480099385848
731 => 0.0056848061160905
801 => 0.0058739752877312
802 => 0.0057000074997437
803 => 0.0060473925929132
804 => 0.0063178817173775
805 => 0.0063074998942574
806 => 0.0062603338588808
807 => 0.0059523891820036
808 => 0.0056690138991447
809 => 0.0059060693560062
810 => 0.0059066736591167
811 => 0.0058863103851382
812 => 0.005759835839342
813 => 0.0058819093450939
814 => 0.0058915990966747
815 => 0.0058861754125024
816 => 0.0057892076747757
817 => 0.0056411558619005
818 => 0.0056700848317504
819 => 0.0057174710744994
820 => 0.0056277590311697
821 => 0.0055990905974814
822 => 0.0056523906701005
823 => 0.0058241346095905
824 => 0.0057916674126748
825 => 0.0057908195629531
826 => 0.0059297279995925
827 => 0.0058302995372755
828 => 0.0056704497187036
829 => 0.0056300855313541
830 => 0.005486819858838
831 => 0.0055857739691397
901 => 0.0055893351514048
902 => 0.0055351389964791
903 => 0.0056748474379837
904 => 0.0056735600001001
905 => 0.0058061923724514
906 => 0.006059735653943
907 => 0.0059847504294988
908 => 0.0058975507718394
909 => 0.0059070317924112
910 => 0.0060110151869313
911 => 0.0059481444528945
912 => 0.0059707532072045
913 => 0.0060109809658739
914 => 0.0060352513714782
915 => 0.0059035396545451
916 => 0.0058728313528283
917 => 0.005810012944665
918 => 0.0057936247945363
919 => 0.0058447890772362
920 => 0.0058313090964056
921 => 0.005589035847825
922 => 0.0055637169453527
923 => 0.0055644934399445
924 => 0.0055008278558297
925 => 0.0054037225585636
926 => 0.0056589094819227
927 => 0.0056384144006383
928 => 0.0056157894170936
929 => 0.0056185608484814
930 => 0.0057293288428243
1001 => 0.0056650778121877
1002 => 0.0058358997076721
1003 => 0.0058007838613367
1004 => 0.005764767426047
1005 => 0.0057597888576025
1006 => 0.0057459256027939
1007 => 0.005698383343765
1008 => 0.0056409732091409
1009 => 0.0056030660654813
1010 => 0.0051685322684549
1011 => 0.0052491792136162
1012 => 0.0053419561728239
1013 => 0.0053739824073621
1014 => 0.0053191993170366
1015 => 0.005700546514078
1016 => 0.0057702223217304
1017 => 0.0055591697555106
1018 => 0.0055196904375903
1019 => 0.0057031347715882
1020 => 0.0055924954130297
1021 => 0.0056423163094141
1022 => 0.0055346307820044
1023 => 0.0057534394600128
1024 => 0.0057517725044911
1025 => 0.0056666509867278
1026 => 0.0057385951106544
1027 => 0.0057260930486642
1028 => 0.0056299910647544
1029 => 0.0057564860643167
1030 => 0.0057565488042583
1031 => 0.0056746211941125
1101 => 0.0055789476817221
1102 => 0.0055618435174142
1103 => 0.0055489578272294
1104 => 0.0056391472195358
1105 => 0.0057200107466628
1106 => 0.0058704777228777
1107 => 0.0059083086957053
1108 => 0.0060559655012019
1109 => 0.005968043062808
1110 => 0.0060070179409618
1111 => 0.0060493306845309
1112 => 0.0060696169697975
1113 => 0.0060365615565776
1114 => 0.0062659333534797
1115 => 0.0062852993609085
1116 => 0.0062917926156841
1117 => 0.0062144497363145
1118 => 0.006283148315521
1119 => 0.0062510065253681
1120 => 0.0063346305340994
1121 => 0.0063477438464334
1122 => 0.0063366373374062
1123 => 0.0063407997097205
1124 => 0.0061450713450223
1125 => 0.0061349217967634
1126 => 0.0059965319860731
1127 => 0.0060529268568552
1128 => 0.0059474993490045
1129 => 0.0059809314977677
1130 => 0.0059956680703892
1201 => 0.0059879705211449
1202 => 0.006056115338235
1203 => 0.005998178322642
1204 => 0.0058452730127647
1205 => 0.005692326043938
1206 => 0.0056904059193322
1207 => 0.0056501376821784
1208 => 0.0056210311222117
1209 => 0.005626638078272
1210 => 0.0056463977227552
1211 => 0.0056198826557533
1212 => 0.0056255409896461
1213 => 0.0057195070335494
1214 => 0.005738351253519
1215 => 0.0056743112311502
1216 => 0.0054171813004081
1217 => 0.0053540809704424
1218 => 0.0053994362362879
1219 => 0.005377759340467
1220 => 0.0043402715046645
1221 => 0.0045840138824117
1222 => 0.0044391904382634
1223 => 0.0045059317443332
1224 => 0.0043581045097068
1225 => 0.0044286554143597
1226 => 0.0044156272383769
1227 => 0.004807557768933
1228 => 0.0048014383127812
1229 => 0.0048043673726067
1230 => 0.0046645557155126
1231 => 0.0048872794815636
]
'min_raw' => 0.002843424032174
'max_raw' => 0.0063477438464334
'avg_raw' => 0.0045955839393037
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002843'
'max' => '$0.006347'
'avg' => '$0.004595'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0004384502164955
'max_diff' => 0.00096030561555483
'year' => 2035
]
10 => [
'items' => [
101 => 0.0049970012176079
102 => 0.0049766946444156
103 => 0.0049818053714001
104 => 0.0048939861491566
105 => 0.0048052176546413
106 => 0.0047067597328505
107 => 0.0048896823817709
108 => 0.0048693445058047
109 => 0.0049159922759344
110 => 0.0050346306893403
111 => 0.0050521006463778
112 => 0.0050755804457991
113 => 0.0050671646091125
114 => 0.0052676639822765
115 => 0.0052433821852489
116 => 0.0053018943297356
117 => 0.0051815304091993
118 => 0.0050453272080641
119 => 0.0050712149837818
120 => 0.0050687217828038
121 => 0.0050369804727916
122 => 0.0050083258373624
123 => 0.0049606239427662
124 => 0.0051115597958205
125 => 0.0051054320758277
126 => 0.0052046327398154
127 => 0.0051870980588717
128 => 0.0050699971680657
129 => 0.0050741794492896
130 => 0.0051023073004563
131 => 0.0051996581145021
201 => 0.0052285584642598
202 => 0.0052151706707722
203 => 0.0052468585849304
204 => 0.0052719034202607
205 => 0.0052500038306509
206 => 0.0055600558373795
207 => 0.0054313006274352
208 => 0.0054940550208891
209 => 0.0055090215739575
210 => 0.0054706850629855
211 => 0.0054789988794878
212 => 0.0054915920461093
213 => 0.0055680552878406
214 => 0.0057687169589607
215 => 0.0058575886471497
216 => 0.0061249635059179
217 => 0.0058502090905992
218 => 0.005833906300641
219 => 0.0058820685866523
220 => 0.0060390459332524
221 => 0.0061662613285394
222 => 0.0062084660143883
223 => 0.0062140440603467
224 => 0.0062932228567137
225 => 0.0063386066661941
226 => 0.0062836084682257
227 => 0.0062370032539987
228 => 0.00607006916149
229 => 0.0060893922372443
301 => 0.0062225090674194
302 => 0.0064105444305839
303 => 0.0065718983339242
304 => 0.0065153978207257
305 => 0.006946456853284
306 => 0.0069891945956439
307 => 0.0069832896215264
308 => 0.0070806525588511
309 => 0.006887406955879
310 => 0.0068047907166512
311 => 0.0062470798303062
312 => 0.0064037738406377
313 => 0.0066315377869711
314 => 0.0066013923746029
315 => 0.0064359841086279
316 => 0.0065717728569219
317 => 0.0065268768502291
318 => 0.0064914655070135
319 => 0.0066536917351109
320 => 0.0064753173334317
321 => 0.0066297583658651
322 => 0.0064316861442814
323 => 0.0065156559103107
324 => 0.0064679906099519
325 => 0.0064988359009235
326 => 0.006318514960176
327 => 0.00641581176276
328 => 0.0063144670933063
329 => 0.0063144190427375
330 => 0.0063121818535423
331 => 0.0064314134077235
401 => 0.0064353015444248
402 => 0.006347189245736
403 => 0.0063344908869221
404 => 0.0063814433749362
405 => 0.0063264743083478
406 => 0.0063521939886333
407 => 0.0063272533312626
408 => 0.0063216386639578
409 => 0.0062769000396166
410 => 0.0062576254101362
411 => 0.0062651834890015
412 => 0.0062393838693777
413 => 0.0062238386653413
414 => 0.0063090895211923
415 => 0.0062635434279208
416 => 0.0063021089291755
417 => 0.0062581586731415
418 => 0.0061058079375126
419 => 0.0060181894183726
420 => 0.0057304130016902
421 => 0.0058120260364758
422 => 0.0058661355629735
423 => 0.0058482523647888
424 => 0.0058866723943685
425 => 0.0058890310721501
426 => 0.0058765403288879
427 => 0.0058620776483536
428 => 0.0058550380153059
429 => 0.0059075056725803
430 => 0.0059379649136083
501 => 0.0058715661778496
502 => 0.0058560098830783
503 => 0.0059231426709051
504 => 0.0059640936326981
505 => 0.0062664525262196
506 => 0.0062440528027812
507 => 0.0063002717128879
508 => 0.0062939423263594
509 => 0.006352868700526
510 => 0.0064491884181446
511 => 0.0062533435008094
512 => 0.0062873354066511
513 => 0.0062790013763264
514 => 0.0063699901341107
515 => 0.0063702741910808
516 => 0.0063157218855635
517 => 0.0063452955753945
518 => 0.0063287883530426
519 => 0.0063586191349174
520 => 0.0062437536408182
521 => 0.0063836474136671
522 => 0.0064629581683169
523 => 0.0064640593982222
524 => 0.0065016520664771
525 => 0.0065398483946446
526 => 0.0066131629203631
527 => 0.0065378036923138
528 => 0.0064022397771263
529 => 0.006412027053934
530 => 0.0063325459800604
531 => 0.0063338820712717
601 => 0.0063267499116747
602 => 0.0063481540595091
603 => 0.0062484506476082
604 => 0.006271850839097
605 => 0.0062390904339813
606 => 0.0062872641919283
607 => 0.0062354371917848
608 => 0.0062789973574047
609 => 0.0062977964808438
610 => 0.0063671656510505
611 => 0.0062251913089429
612 => 0.0059356960145677
613 => 0.0059965514352365
614 => 0.0059065414879771
615 => 0.005914872251288
616 => 0.0059317017190072
617 => 0.0058771519078702
618 => 0.0058875582927731
619 => 0.0058871865034757
620 => 0.0058839826241681
621 => 0.0058697921114778
622 => 0.0058492130605693
623 => 0.0059311936654907
624 => 0.0059451237677637
625 => 0.0059760886595422
626 => 0.0060682191737882
627 => 0.0060590131628278
628 => 0.0060740285486578
629 => 0.0060412500456988
630 => 0.0059163927520293
701 => 0.0059231731037821
702 => 0.0058386220087767
703 => 0.0059739264979461
704 => 0.0059418846089788
705 => 0.0059212269947168
706 => 0.0059155903732739
707 => 0.0060079492612447
708 => 0.0060355844880737
709 => 0.0060183640692449
710 => 0.0059830444878272
711 => 0.0060508685254461
712 => 0.0060690153766464
713 => 0.0060730777874001
714 => 0.0061932489780914
715 => 0.0060797940220243
716 => 0.006107103757595
717 => 0.0063201665186091
718 => 0.0061269479950205
719 => 0.0062293001562526
720 => 0.0062242905505753
721 => 0.0062766504528533
722 => 0.0062199955103174
723 => 0.0062206978162305
724 => 0.0062671898622864
725 => 0.0062019001684856
726 => 0.0061857335221294
727 => 0.0061633994159762
728 => 0.0062121651196849
729 => 0.0062413979535752
730 => 0.0064769931255805
731 => 0.006629198351141
801 => 0.0066225907208867
802 => 0.0066829720924455
803 => 0.0066557697315283
804 => 0.0065679261325063
805 => 0.0067178644446511
806 => 0.006670417689003
807 => 0.0066743291418909
808 => 0.006674183557419
809 => 0.0067057315020576
810 => 0.0066833768919545
811 => 0.0066393136607876
812 => 0.0066685648899811
813 => 0.0067554305831799
814 => 0.0070250643602339
815 => 0.0071759549940458
816 => 0.0070159805546146
817 => 0.0071263287807911
818 => 0.0070601591661784
819 => 0.0070481341788278
820 => 0.0071174410195365
821 => 0.0071868691726952
822 => 0.0071824468994851
823 => 0.0071320456254671
824 => 0.0071035752246592
825 => 0.0073191626378601
826 => 0.0074780037714707
827 => 0.007467171871043
828 => 0.0075149803568084
829 => 0.0076553475496766
830 => 0.0076681809666536
831 => 0.0076665642510872
901 => 0.0076347552880813
902 => 0.0077729650184434
903 => 0.0078882620070802
904 => 0.0076273924321947
905 => 0.0077267281512776
906 => 0.0077713231559709
907 => 0.0078368018536024
908 => 0.0079472753920106
909 => 0.0080672789563807
910 => 0.0080842487761548
911 => 0.0080722078769445
912 => 0.0079930623003734
913 => 0.0081243716324475
914 => 0.0082012895595938
915 => 0.0082470924249739
916 => 0.0083632408707078
917 => 0.007771598559538
918 => 0.0073528047251611
919 => 0.0072874040204669
920 => 0.0074203989252183
921 => 0.0074554686209867
922 => 0.0074413320705961
923 => 0.0069699415349354
924 => 0.0072849222468532
925 => 0.0076238150085462
926 => 0.0076368332597071
927 => 0.0078064900621241
928 => 0.0078617372714584
929 => 0.0079983332348295
930 => 0.0079897891201295
1001 => 0.0080230480634939
1002 => 0.0080154024083791
1003 => 0.0082684176668505
1004 => 0.0085475310700739
1005 => 0.0085378662604466
1006 => 0.0084977404064133
1007 => 0.0085573341421275
1008 => 0.0088454090858642
1009 => 0.0088188877613518
1010 => 0.0088446509690345
1011 => 0.0091843075628924
1012 => 0.0096259094504948
1013 => 0.0094207410375988
1014 => 0.0098658974579625
1015 => 0.010146099827854
1016 => 0.010630680853114
1017 => 0.01057000892214
1018 => 0.010758652759254
1019 => 0.010461393503081
1020 => 0.0097788261649013
1021 => 0.0096708072708715
1022 => 0.0098870638321932
1023 => 0.010418709486196
1024 => 0.0098703204185824
1025 => 0.0099812588127372
1026 => 0.0099493085477574
1027 => 0.0099476060539165
1028 => 0.01001258331928
1029 => 0.0099183304068838
1030 => 0.0095343270860051
1031 => 0.0097103135450181
1101 => 0.0096423567216293
1102 => 0.0097177598836959
1103 => 0.01012467965074
1104 => 0.0099447707219742
1105 => 0.0097552512801339
1106 => 0.0099929507179325
1107 => 0.010295623784639
1108 => 0.01027668304808
1109 => 0.010239930102543
1110 => 0.010447104532216
1111 => 0.010789295993624
1112 => 0.010881788970606
1113 => 0.010950065395279
1114 => 0.010959479560702
1115 => 0.011056451315426
1116 => 0.010535009750242
1117 => 0.011362550905759
1118 => 0.011505444402953
1119 => 0.011478586347809
1120 => 0.011637406456064
1121 => 0.011590677551338
1122 => 0.011522974699931
1123 => 0.01177473835352
1124 => 0.011486111640959
1125 => 0.011076442359573
1126 => 0.010851689689464
1127 => 0.011147662135744
1128 => 0.011328402180672
1129 => 0.011447859853143
1130 => 0.011484007672655
1201 => 0.010575487774594
1202 => 0.010085845938362
1203 => 0.010399700741632
1204 => 0.010782625262721
1205 => 0.010532882585193
1206 => 0.010542672025327
1207 => 0.010186604598393
1208 => 0.010814129329152
1209 => 0.010722704254194
1210 => 0.011197017704803
1211 => 0.011083818993212
1212 => 0.011470603199442
1213 => 0.011368749955391
1214 => 0.011791537076907
1215 => 0.011960198306184
1216 => 0.012243406760165
1217 => 0.012451736051779
1218 => 0.012574070996519
1219 => 0.012566726465303
1220 => 0.013051478463391
1221 => 0.012765637146063
1222 => 0.012406553083875
1223 => 0.012400058386085
1224 => 0.012586033110153
1225 => 0.012975785112126
1226 => 0.013076842135577
1227 => 0.013133319225233
1228 => 0.013046822596443
1229 => 0.012736562332916
1230 => 0.01260259352418
1231 => 0.012716738830673
]
'min_raw' => 0.0047067597328505
'max_raw' => 0.013133319225233
'avg_raw' => 0.0089200394790418
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0047067'
'max' => '$0.013133'
'avg' => '$0.00892'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0018633357006765
'max_diff' => 0.0067855753787997
'year' => 2036
]
11 => [
'items' => [
101 => 0.01257714892945
102 => 0.01281812026097
103 => 0.013149025367845
104 => 0.013080694771816
105 => 0.013309113709645
106 => 0.013545503279926
107 => 0.013883550982347
108 => 0.01397192916963
109 => 0.014118014952488
110 => 0.014268385209728
111 => 0.014316680083762
112 => 0.014408889983311
113 => 0.014408403991624
114 => 0.014686284730358
115 => 0.014992795790431
116 => 0.015108496619862
117 => 0.015374544297356
118 => 0.01491894697307
119 => 0.015264522777066
120 => 0.015576240802593
121 => 0.015204597721933
122 => 0.015716821126891
123 => 0.015736709600982
124 => 0.016037001947077
125 => 0.015732598125258
126 => 0.015551844107553
127 => 0.016073674183902
128 => 0.016326171320355
129 => 0.016250117127965
130 => 0.015671340968624
131 => 0.015334468419011
201 => 0.01445280797881
202 => 0.015497172855124
203 => 0.016005852521836
204 => 0.015670023611176
205 => 0.015839396179712
206 => 0.016763437994405
207 => 0.017115253290163
208 => 0.01704207816802
209 => 0.017054443559097
210 => 0.017244276706789
211 => 0.018086101426678
212 => 0.017581660541176
213 => 0.017967286697103
214 => 0.018171821419728
215 => 0.018361804668947
216 => 0.017895265853689
217 => 0.017288305709856
218 => 0.017096055953851
219 => 0.015636632044475
220 => 0.015560662692035
221 => 0.015518018792404
222 => 0.015249155037327
223 => 0.015037901773817
224 => 0.014869905335343
225 => 0.014429032512805
226 => 0.014577814148454
227 => 0.013875154886637
228 => 0.014324691381632
301 => 0.013203230233471
302 => 0.014137216402058
303 => 0.013628890193636
304 => 0.013970217571202
305 => 0.013969026712136
306 => 0.013340534792095
307 => 0.012978033768906
308 => 0.013209033529633
309 => 0.013456683609915
310 => 0.013496864002246
311 => 0.013817948795661
312 => 0.013907556659809
313 => 0.013636040648051
314 => 0.013179990443861
315 => 0.013285920504897
316 => 0.0129758870996
317 => 0.012432565482082
318 => 0.012822788553269
319 => 0.01295602786667
320 => 0.013014873937944
321 => 0.012480579528023
322 => 0.01231269262433
323 => 0.012223311045512
324 => 0.013111019744922
325 => 0.013159650431365
326 => 0.012910848963838
327 => 0.014035455189385
328 => 0.013780922164612
329 => 0.014065297915389
330 => 0.013276308462164
331 => 0.013306448921792
401 => 0.012932928670519
402 => 0.0131420750526
403 => 0.012994257130848
404 => 0.013125178091753
405 => 0.013203651575912
406 => 0.013577110536187
407 => 0.014141480703489
408 => 0.013521328221281
409 => 0.013251118904036
410 => 0.01341875524474
411 => 0.013865192910893
412 => 0.014541568827839
413 => 0.014141140671673
414 => 0.014318843887668
415 => 0.014357664134898
416 => 0.014062403237197
417 => 0.014552455518293
418 => 0.01481507851691
419 => 0.015084475371318
420 => 0.015318385111673
421 => 0.014976872343504
422 => 0.015342339959377
423 => 0.015047837574702
424 => 0.014783638490552
425 => 0.014784039171506
426 => 0.014618303226685
427 => 0.014297168949523
428 => 0.01423794686173
429 => 0.014546027641352
430 => 0.01479307925125
501 => 0.014813427605139
502 => 0.014950208070349
503 => 0.015031153340709
504 => 0.015824527029999
505 => 0.016143628490962
506 => 0.016533819717147
507 => 0.016685821189719
508 => 0.017143291126615
509 => 0.01677384699868
510 => 0.016693915437688
511 => 0.015584243008053
512 => 0.015765951806241
513 => 0.016056885124431
514 => 0.015589040391313
515 => 0.015885780191463
516 => 0.015944362913821
517 => 0.015573143206305
518 => 0.015771427691546
519 => 0.015244842885998
520 => 0.014152958813259
521 => 0.014553671097397
522 => 0.014848730216819
523 => 0.014427644472877
524 => 0.015182424370625
525 => 0.01474149753618
526 => 0.014601744897882
527 => 0.014056520030467
528 => 0.014313845180257
529 => 0.01466188112989
530 => 0.014446835376539
531 => 0.014893087604024
601 => 0.015525099769265
602 => 0.015975509275191
603 => 0.016010086124299
604 => 0.015720502987082
605 => 0.016184561812567
606 => 0.016187941974486
607 => 0.015664481723603
608 => 0.015343865234576
609 => 0.015271020493686
610 => 0.015453000938481
611 => 0.015673958793906
612 => 0.016022347747486
613 => 0.016232871895636
614 => 0.01678180722063
615 => 0.016930333380364
616 => 0.017093518599594
617 => 0.017311584376943
618 => 0.017573428253569
619 => 0.017000528758293
620 => 0.017023291123258
621 => 0.016489815045591
622 => 0.015919719348395
623 => 0.016352350919135
624 => 0.016917959147311
625 => 0.016788207994826
626 => 0.016773608339596
627 => 0.016798160910086
628 => 0.016700332778389
629 => 0.016257859764401
630 => 0.016035652586804
701 => 0.016322356537001
702 => 0.016474726926806
703 => 0.016711040113299
704 => 0.016681909525098
705 => 0.01729062691532
706 => 0.017527156086502
707 => 0.01746664180286
708 => 0.017477777887408
709 => 0.017906002653727
710 => 0.018382276665015
711 => 0.018828370126476
712 => 0.019282155555635
713 => 0.018735099509237
714 => 0.018457338186603
715 => 0.018743916970824
716 => 0.018591854234028
717 => 0.019465651824397
718 => 0.019526151673702
719 => 0.020399886078559
720 => 0.021229164071126
721 => 0.020708309422053
722 => 0.021199451896321
723 => 0.021730662525674
724 => 0.022755454015515
725 => 0.022410340294336
726 => 0.022145988592534
727 => 0.02189617751167
728 => 0.022415994714556
729 => 0.023084731241788
730 => 0.023228770684675
731 => 0.023462169609453
801 => 0.023216779178711
802 => 0.023512324923671
803 => 0.024555731272759
804 => 0.024273793666833
805 => 0.023873396942686
806 => 0.02469706604548
807 => 0.024995148691849
808 => 0.027087248811158
809 => 0.029728611632132
810 => 0.028635070080125
811 => 0.02795627355043
812 => 0.028115806836177
813 => 0.029080343122622
814 => 0.029390121564977
815 => 0.028548036971624
816 => 0.028845475485971
817 => 0.030484390943532
818 => 0.03136361650381
819 => 0.030169510097205
820 => 0.026875017880331
821 => 0.023837345598512
822 => 0.024643073075816
823 => 0.024551728584524
824 => 0.026312538784806
825 => 0.024267069548175
826 => 0.024301510004221
827 => 0.026098731894714
828 => 0.025619263906514
829 => 0.02484258717125
830 => 0.023843016198201
831 => 0.021995216805395
901 => 0.020358569353489
902 => 0.023568411904075
903 => 0.023429997656574
904 => 0.02322955331435
905 => 0.023675620507626
906 => 0.025841596179793
907 => 0.025791663429971
908 => 0.025474016751513
909 => 0.025714948957514
910 => 0.024800350590648
911 => 0.025036063414807
912 => 0.023836864415702
913 => 0.024378952446272
914 => 0.0248409207718
915 => 0.024933667752707
916 => 0.025142631436471
917 => 0.023357059637733
918 => 0.024158728953732
919 => 0.024629634570625
920 => 0.02250206586181
921 => 0.024587579377907
922 => 0.023325976805255
923 => 0.022897769943463
924 => 0.023474294070902
925 => 0.023249622057751
926 => 0.023056462254027
927 => 0.022948675764642
928 => 0.023372011455188
929 => 0.023352262339228
930 => 0.022659602983579
1001 => 0.021756057090541
1002 => 0.022059316750128
1003 => 0.021949139672725
1004 => 0.021549843731094
1005 => 0.021818920984578
1006 => 0.020634040937117
1007 => 0.018595516400168
1008 => 0.019942228150972
1009 => 0.019890381213507
1010 => 0.019864237636565
1011 => 0.020876254296915
1012 => 0.02077897224622
1013 => 0.020602404371618
1014 => 0.021546600923611
1015 => 0.021201956480898
1016 => 0.022264069444896
1017 => 0.022963645736145
1018 => 0.022786210559762
1019 => 0.023444165443028
1020 => 0.022066303240186
1021 => 0.022523973793733
1022 => 0.022618299060516
1023 => 0.021534949684723
1024 => 0.020794888792821
1025 => 0.020745535168643
1026 => 0.019462371568757
1027 => 0.020147827206482
1028 => 0.020750999801597
1029 => 0.020462126936621
1030 => 0.020370678417401
1031 => 0.020837869069332
1101 => 0.020874173784205
1102 => 0.020046422437712
1103 => 0.020218538154124
1104 => 0.020936289303419
1105 => 0.020200452666722
1106 => 0.018770842279852
1107 => 0.018416279137999
1108 => 0.01836897387898
1109 => 0.017407370517516
1110 => 0.018439972742547
1111 => 0.017989214199302
1112 => 0.019413155036497
1113 => 0.018599807667039
1114 => 0.018564745887558
1115 => 0.018511744865429
1116 => 0.017684053128882
1117 => 0.017865265016631
1118 => 0.018467640930862
1119 => 0.018682575443309
1120 => 0.018660156012755
1121 => 0.018464688960257
1122 => 0.018554172775937
1123 => 0.018265914227403
1124 => 0.018164124134333
1125 => 0.017842846601033
1126 => 0.017370657382265
1127 => 0.017436318189239
1128 => 0.01650078779183
1129 => 0.015991061178966
1130 => 0.015849975570614
1201 => 0.015661309998752
1202 => 0.015871285848976
1203 => 0.016498137551758
1204 => 0.015742021404195
1205 => 0.014445713304579
1206 => 0.014523623630168
1207 => 0.014698664999982
1208 => 0.014372476565348
1209 => 0.014063766586887
1210 => 0.014332164866727
1211 => 0.013782902035992
1212 => 0.014765040788942
1213 => 0.014738476688086
1214 => 0.015104557280133
1215 => 0.01533347498707
1216 => 0.014805893785568
1217 => 0.014673208540122
1218 => 0.014748792086136
1219 => 0.013499564434947
1220 => 0.015002468729561
1221 => 0.01501546590831
1222 => 0.014904176173043
1223 => 0.015704426312961
1224 => 0.017393203712465
1225 => 0.016757817723858
1226 => 0.016511777064426
1227 => 0.016044053590992
1228 => 0.016667267348671
1229 => 0.01661941425573
1230 => 0.016403004421706
1231 => 0.016272119078848
]
'min_raw' => 0.012223311045512
'max_raw' => 0.03136361650381
'avg_raw' => 0.021793463774661
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.012223'
'max' => '$0.031363'
'avg' => '$0.021793'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0075165513126613
'max_diff' => 0.018230297278577
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00038367576645393
]
1 => [
'year' => 2028
'avg' => 0.00065849899710579
]
2 => [
'year' => 2029
'avg' => 0.001798900577196
]
3 => [
'year' => 2030
'avg' => 0.0013878491163036
]
4 => [
'year' => 2031
'avg' => 0.0013630398264577
]
5 => [
'year' => 2032
'avg' => 0.0023898377802007
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00038367576645393
'min' => '$0.000383'
'max_raw' => 0.0023898377802007
'max' => '$0.002389'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0023898377802007
]
1 => [
'year' => 2033
'avg' => 0.0061469085147971
]
2 => [
'year' => 2034
'avg' => 0.0038962060232786
]
3 => [
'year' => 2035
'avg' => 0.0045955839393037
]
4 => [
'year' => 2036
'avg' => 0.0089200394790418
]
5 => [
'year' => 2037
'avg' => 0.021793463774661
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0023898377802007
'min' => '$0.002389'
'max_raw' => 0.021793463774661
'max' => '$0.021793'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.021793463774661
]
]
]
]
'prediction_2025_max_price' => '$0.000656'
'last_price' => 0.00063609
'sma_50day_nextmonth' => '$0.000612'
'sma_200day_nextmonth' => '$0.000725'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000633'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000634'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000646'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000656'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000683'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000634'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000637'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000643'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000657'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000696'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000728'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000779'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000646'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001239'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.003594'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000644'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.00066'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000698'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000719'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000863'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001795'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.004319'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.53'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 8.24
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000646'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000625'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 12.36
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -82.54
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000037'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -87.64
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 43.33
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000158'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 9
'sell_pct' => 73.53
'buy_pct' => 26.47
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767688217
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Prism para 2026
A previsão de preço para Prism em 2026 sugere que o preço médio poderia variar entre $0.000219 na extremidade inferior e $0.000656 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Prism poderia potencialmente ganhar 3.13% até 2026 se PRISM atingir a meta de preço prevista.
Previsão de preço de Prism 2027-2032
A previsão de preço de PRISM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000383 na extremidade inferior e $0.002389 na extremidade superior. Considerando a volatilidade de preços no mercado, se Prism atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Prism | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000211 | $0.000383 | $0.000555 |
| 2028 | $0.000381 | $0.000658 | $0.000935 |
| 2029 | $0.000838 | $0.001798 | $0.002759 |
| 2030 | $0.000713 | $0.001387 | $0.002062 |
| 2031 | $0.000843 | $0.001363 | $0.001882 |
| 2032 | $0.001287 | $0.002389 | $0.003492 |
Previsão de preço de Prism 2032-2037
A previsão de preço de Prism para 2032-2037 é atualmente estimada entre $0.002389 na extremidade inferior e $0.021793 na extremidade superior. Comparado ao preço atual, Prism poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Prism | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.001287 | $0.002389 | $0.003492 |
| 2033 | $0.002991 | $0.006146 | $0.0093023 |
| 2034 | $0.0024049 | $0.003896 | $0.005387 |
| 2035 | $0.002843 | $0.004595 | $0.006347 |
| 2036 | $0.0047067 | $0.00892 | $0.013133 |
| 2037 | $0.012223 | $0.021793 | $0.031363 |
Prism Histograma de preços potenciais
Previsão de preço de Prism baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Prism é Baixista, com 9 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de PRISM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Prism
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Prism está projetado para aumentar no próximo mês, alcançando $0.000725 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Prism é esperado para alcançar $0.000612 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 44.53, sugerindo que o mercado de PRISM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PRISM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000633 | BUY |
| SMA 5 | $0.000634 | BUY |
| SMA 10 | $0.000646 | SELL |
| SMA 21 | $0.000656 | SELL |
| SMA 50 | $0.000683 | SELL |
| SMA 100 | $0.000786 | SELL |
| SMA 200 | $0.000692 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000634 | BUY |
| EMA 5 | $0.000637 | SELL |
| EMA 10 | $0.000643 | SELL |
| EMA 21 | $0.000657 | SELL |
| EMA 50 | $0.000696 | SELL |
| EMA 100 | $0.000728 | SELL |
| EMA 200 | $0.00074 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.000779 | SELL |
| SMA 50 | $0.000646 | SELL |
| SMA 100 | $0.001239 | SELL |
| SMA 200 | $0.003594 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.000719 | SELL |
| EMA 50 | $0.000863 | SELL |
| EMA 100 | $0.001795 | SELL |
| EMA 200 | $0.004319 | SELL |
Osciladores de Prism
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 44.53 | NEUTRAL |
| Stoch RSI (14) | 8.24 | BUY |
| Estocástico Rápido (14) | 12.36 | BUY |
| Índice de Canal de Commodities (20) | -82.54 | NEUTRAL |
| Índice Direcional Médio (14) | 10.94 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000037 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -87.64 | BUY |
| Oscilador Ultimate (7, 14, 28) | 43.33 | NEUTRAL |
| VWMA (10) | 0.000646 | SELL |
| Média Móvel de Hull (9) | 0.000625 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000158 | SELL |
Previsão do preço de Prism com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Prism
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Prism por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000893 | $0.001255 | $0.001764 | $0.002479 | $0.003484 | $0.004896 |
| Amazon.com stock | $0.001327 | $0.002769 | $0.005778 | $0.012057 | $0.025157 | $0.052493 |
| Apple stock | $0.0009022 | $0.001279 | $0.001815 | $0.002574 | $0.003652 | $0.00518 |
| Netflix stock | $0.0010036 | $0.001583 | $0.002498 | $0.003942 | $0.00622 | $0.009815 |
| Google stock | $0.000823 | $0.001066 | $0.001381 | $0.001788 | $0.002316 | $0.003000048 |
| Tesla stock | $0.001441 | $0.003268 | $0.00741 | $0.016798 | $0.03808 | $0.086325 |
| Kodak stock | $0.000476 | $0.000357 | $0.000268 | $0.0002011 | $0.00015 | $0.000113 |
| Nokia stock | $0.000421 | $0.000279 | $0.000184 | $0.000122 | $0.000081 | $0.000053 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Prism
Você pode fazer perguntas como: 'Devo investir em Prism agora?', 'Devo comprar PRISM hoje?', 'Prism será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Prism regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Prism, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Prism para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Prism é de $0.000636 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Prism com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Prism tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000652 | $0.000669 | $0.000686 | $0.0007048 |
| Se Prism tiver 2% da média anterior do crescimento anual do Bitcoin | $0.000669 | $0.0007039 | $0.00074 | $0.000779 |
| Se Prism tiver 5% da média anterior do crescimento anual do Bitcoin | $0.000718 | $0.000812 | $0.000917 | $0.001037 |
| Se Prism tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0008014 | $0.0010097 | $0.001272 | $0.0016029 |
| Se Prism tiver 20% da média anterior do crescimento anual do Bitcoin | $0.000966 | $0.001469 | $0.002233 | $0.003394 |
| Se Prism tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001462 | $0.003363 | $0.007735 | $0.017789 |
| Se Prism tiver 100% da média anterior do crescimento anual do Bitcoin | $0.002289 | $0.00824 | $0.02966 | $0.106758 |
Perguntas Frequentes sobre Prism
PRISM é um bom investimento?
A decisão de adquirir Prism depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Prism experimentou uma escalada de 1.4146% nas últimas 24 horas, e Prism registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Prism dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Prism pode subir?
Parece que o valor médio de Prism pode potencialmente subir para $0.000656 até o final deste ano. Observando as perspectivas de Prism em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.002062. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Prism na próxima semana?
Com base na nossa nova previsão experimental de Prism, o preço de Prism aumentará 0.86% na próxima semana e atingirá $0.000641 até 13 de janeiro de 2026.
Qual será o preço de Prism no próximo mês?
Com base na nossa nova previsão experimental de Prism, o preço de Prism diminuirá -11.62% no próximo mês e atingirá $0.000562 até 5 de fevereiro de 2026.
Até onde o preço de Prism pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Prism em 2026, espera-se que PRISM fluctue dentro do intervalo de $0.000219 e $0.000656. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Prism não considera flutuações repentinas e extremas de preço.
Onde estará Prism em 5 anos?
O futuro de Prism parece seguir uma tendência de alta, com um preço máximo de $0.002062 projetada após um período de cinco anos. Com base na previsão de Prism para 2030, o valor de Prism pode potencialmente atingir seu pico mais alto de aproximadamente $0.002062, enquanto seu pico mais baixo está previsto para cerca de $0.000713.
Quanto será Prism em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Prism, espera-se que o valor de PRISM em 2026 aumente 3.13% para $0.000656 se o melhor cenário ocorrer. O preço ficará entre $0.000656 e $0.000219 durante 2026.
Quanto será Prism em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Prism, o valor de PRISM pode diminuir -12.62% para $0.000555 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000555 e $0.000211 ao longo do ano.
Quanto será Prism em 2028?
Nosso novo modelo experimental de previsão de preços de Prism sugere que o valor de PRISM em 2028 pode aumentar 47.02%, alcançando $0.000935 no melhor cenário. O preço é esperado para variar entre $0.000935 e $0.000381 durante o ano.
Quanto será Prism em 2029?
Com base no nosso modelo de previsão experimental, o valor de Prism pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.002759 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.002759 e $0.000838.
Quanto será Prism em 2030?
Usando nossa nova simulação experimental para previsões de preços de Prism, espera-se que o valor de PRISM em 2030 aumente 224.23%, alcançando $0.002062 no melhor cenário. O preço está previsto para variar entre $0.002062 e $0.000713 ao longo de 2030.
Quanto será Prism em 2031?
Nossa simulação experimental indica que o preço de Prism poderia aumentar 195.98% em 2031, potencialmente atingindo $0.001882 sob condições ideais. O preço provavelmente oscilará entre $0.001882 e $0.000843 durante o ano.
Quanto será Prism em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Prism, PRISM poderia ver um 449.04% aumento em valor, atingindo $0.003492 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.003492 e $0.001287 ao longo do ano.
Quanto será Prism em 2033?
De acordo com nossa previsão experimental de preços de Prism, espera-se que o valor de PRISM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.0093023. Ao longo do ano, o preço de PRISM poderia variar entre $0.0093023 e $0.002991.
Quanto será Prism em 2034?
Os resultados da nossa nova simulação de previsão de preços de Prism sugerem que PRISM pode aumentar 746.96% em 2034, atingindo potencialmente $0.005387 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.005387 e $0.0024049.
Quanto será Prism em 2035?
Com base em nossa previsão experimental para o preço de Prism, PRISM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.006347 em 2035. A faixa de preço esperada para o ano está entre $0.006347 e $0.002843.
Quanto será Prism em 2036?
Nossa recente simulação de previsão de preços de Prism sugere que o valor de PRISM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.013133 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.013133 e $0.0047067.
Quanto será Prism em 2037?
De acordo com a simulação experimental, o valor de Prism poderia aumentar 4830.69% em 2037, com um pico de $0.031363 sob condições favoráveis. O preço é esperado para cair entre $0.031363 e $0.012223 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Napoli Fan Token
Previsão de Preço do Karlsen
Previsão de Preço do Reflexer Ungovernance Token
Previsão de Preço do Champignons of Arborethia
Previsão de Preço do SANSHU!
Previsão de Preço do Digits DAO
Previsão de Preço do Nash Exchange
Previsão de Preço do Inscribe
Previsão de Preço do BigShortBets
Previsão de Preço do UniCoin
Previsão de Preço do AthenaDAO
Previsão de Preço do Codex Multichain
Previsão de Preço do Spheroid Universe
Previsão de Preço do DeFinity
Previsão de Preço do IXO
Previsão de Preço do Mysterium
Previsão de Preço do UFC Fan Token
Previsão de Preço do MEME (Ordinals)
Previsão de Preço do Galaxia
Previsão de Preço do MetaTrace
Previsão de Preço do Yield Yak
Previsão de Preço do Gamestarter
Previsão de Preço do QHUB
Previsão de Preço do Piteas
Previsão de Preço do MetFi
Como ler e prever os movimentos de preço de Prism?
Traders de Prism utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Prism
Médias móveis são ferramentas populares para a previsão de preço de Prism. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PRISM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PRISM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PRISM.
Como ler gráficos de Prism e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Prism em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PRISM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Prism?
A ação de preço de Prism é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PRISM. A capitalização de mercado de Prism pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PRISM, grandes detentores de Prism, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Prism.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


