Previsão de Preço Prism - Projeção PRISM
Previsão de Preço Prism até $0.000657 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00022 | $0.000657 |
| 2027 | $0.000212 | $0.000556 |
| 2028 | $0.000382 | $0.000937 |
| 2029 | $0.00084 | $0.002765 |
| 2030 | $0.000714 | $0.002066 |
| 2031 | $0.000845 | $0.001886 |
| 2032 | $0.00129 | $0.003499 |
| 2033 | $0.002997 | $0.009322 |
| 2034 | $0.00241 | $0.005399 |
| 2035 | $0.002849 | $0.006361 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Prism hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,960.41, com um retorno de 39.6% nos próximos 90 dias.
Previsão de preço de longo prazo de Prism para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Prism'
'name_with_ticker' => 'Prism <small>PRISM</small>'
'name_lang' => 'Prism'
'name_lang_with_ticker' => 'Prism <small>PRISM</small>'
'name_with_lang' => 'Prism'
'name_with_lang_with_ticker' => 'Prism <small>PRISM</small>'
'image' => '/uploads/coins/prism.png?1717211390'
'price_for_sd' => 0.0006374
'ticker' => 'PRISM'
'marketcap' => '$1.17M'
'low24h' => '$0.0006257'
'high24h' => '$0.0006503'
'volume24h' => '$11.91K'
'current_supply' => '1.83B'
'max_supply' => '1.91B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0006374'
'change_24h_pct' => '1.6364%'
'ath_price' => '$0.04643'
'ath_days' => 1455
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 de jan. de 2022'
'ath_pct' => '-98.63%'
'fdv' => '$1.22M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.031431'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000642'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000563'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00022'
'current_year_max_price_prediction' => '$0.000657'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000714'
'grand_prediction_max_price' => '$0.002066'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00064953953169604
107 => 0.00065196467652454
108 => 0.00065742865165413
109 => 0.00061073958241163
110 => 0.00063170160378246
111 => 0.00064401482746203
112 => 0.00058838323491881
113 => 0.00064291516974666
114 => 0.00060992682958993
115 => 0.00059873009147249
116 => 0.00061380502428954
117 => 0.00060793030830988
118 => 0.00060287957248547
119 => 0.00060006117511279
120 => 0.00061113054201401
121 => 0.00061061414281732
122 => 0.00059250251009538
123 => 0.00056887662353422
124 => 0.00057680624655744
125 => 0.00057392534017249
126 => 0.00056348456378912
127 => 0.00057052038644737
128 => 0.00053953818420883
129 => 0.00048623491557217
130 => 0.00052144868755682
131 => 0.00052009299564063
201 => 0.00051940939430075
202 => 0.00054587157071004
203 => 0.00054332784303457
204 => 0.00053871095239533
205 => 0.00056339977097192
206 => 0.00055438802008
207 => 0.00058216011289337
208 => 0.0006004526094066
209 => 0.00059581304059057
210 => 0.00061301722197657
211 => 0.00057698892905631
212 => 0.00058895608276019
213 => 0.00059142249655281
214 => 0.00056309511478304
215 => 0.00054374402834109
216 => 0.00054245353149395
217 => 0.00050890141434758
218 => 0.00052682468450394
219 => 0.00054259642052623
220 => 0.00053504298290771
221 => 0.00053265179021022
222 => 0.00054486787511528
223 => 0.0005458171695361
224 => 0.00052417315613979
225 => 0.00052867363190165
226 => 0.00054744136397043
227 => 0.00052820073320656
228 => 0.00049081933057154
301 => 0.00048154822587973
302 => 0.00048031128961349
303 => 0.00045516731838871
304 => 0.00048216776542675
305 => 0.00047038134672766
306 => 0.00050761450217513
307 => 0.00048634712346895
308 => 0.0004854303292795
309 => 0.00048404446039767
310 => 0.00046240200568014
311 => 0.00046714032781353
312 => 0.00048289123225175
313 => 0.00048851133240195
314 => 0.00048792510991216
315 => 0.00048281404422713
316 => 0.00048515386392485
317 => 0.00047761648943128
318 => 0.00047495488562072
319 => 0.00046655413186278
320 => 0.00045420734460606
321 => 0.00045592424110136
322 => 0.00043146202483318
323 => 0.0004181337111022
324 => 0.00041444460952581
325 => 0.0004095113887197
326 => 0.00041500182994266
327 => 0.00043139272644801
328 => 0.00041162182773988
329 => 0.0003777260086721
330 => 0.00037976320515374
331 => 0.00038434018079892
401 => 0.00037581101696385
402 => 0.00036773887919242
403 => 0.00037475694807144
404 => 0.00036039484269173
405 => 0.00038607577261828
406 => 0.00038538117543374
407 => 0.00039495343801231
408 => 0.00040093917024529
409 => 0.0003871439953521
410 => 0.00038367454617258
411 => 0.0003856509021029
412 => 0.00035298614096182
413 => 0.00039228403014538
414 => 0.00039262387992292
415 => 0.00038971387979884
416 => 0.00041063879260287
417 => 0.00045479688526335
418 => 0.00043818283454932
419 => 0.0004317493719505
420 => 0.00041951935484732
421 => 0.00043581512649075
422 => 0.00043456386548217
423 => 0.00042890518867474
424 => 0.00042548280328546
425 => 0.00043178865330128
426 => 0.00042470143868475
427 => 0.00042342838019599
428 => 0.00041571503085539
429 => 0.00041296171607583
430 => 0.00041092327142566
501 => 0.00040867914415927
502 => 0.00041362912970727
503 => 0.00040241181123066
504 => 0.00038888482479517
505 => 0.00038776020223708
506 => 0.00039086538399779
507 => 0.00038949157222227
508 => 0.00038775362495484
509 => 0.00038443541031954
510 => 0.00038345096691969
511 => 0.00038664993038517
512 => 0.00038303848714379
513 => 0.00038836736837194
514 => 0.00038691820753833
515 => 0.00037882331292352
516 => 0.00036873407711962
517 => 0.00036864426175808
518 => 0.0003664705524538
519 => 0.00036370200683541
520 => 0.00036293186078011
521 => 0.00037416590588543
522 => 0.00039742004304677
523 => 0.00039285469949766
524 => 0.00039615362808712
525 => 0.00041238109167762
526 => 0.00041753931437619
527 => 0.00041387813008395
528 => 0.00040886647521271
529 => 0.00040908696259247
530 => 0.00042621330441858
531 => 0.00042728145335067
601 => 0.00042998032110417
602 => 0.00043344912886736
603 => 0.00041446888304557
604 => 0.00040819299472113
605 => 0.00040521913065998
606 => 0.00039606078038188
607 => 0.0004059372759792
608 => 0.00040018266494835
609 => 0.00040095915858192
610 => 0.0004004534660844
611 => 0.00040072960838282
612 => 0.00038606859427499
613 => 0.00039141029725567
614 => 0.00038252868000996
615 => 0.00037063719152628
616 => 0.00037059732708719
617 => 0.00037350775204691
618 => 0.00037177651739593
619 => 0.00036711780946425
620 => 0.00036777955693746
621 => 0.0003619819527487
622 => 0.00036848349105499
623 => 0.00036866993190999
624 => 0.00036616648552089
625 => 0.00037618300232113
626 => 0.00038028677742689
627 => 0.00037863895538456
628 => 0.00038017116183964
629 => 0.00039304441013341
630 => 0.0003951433113045
701 => 0.00039607550455907
702 => 0.00039482648908989
703 => 0.00038040646118669
704 => 0.00038104605074289
705 => 0.00037635316695384
706 => 0.00037238817467599
707 => 0.00037254675357346
708 => 0.00037458527501719
709 => 0.00038348761771965
710 => 0.00040222207311521
711 => 0.00040293303200277
712 => 0.00040379473491461
713 => 0.00040028975611494
714 => 0.00039923262097083
715 => 0.00040062725509565
716 => 0.00040766293153135
717 => 0.00042576060149151
718 => 0.00041936367622485
719 => 0.00041416287640899
720 => 0.00041872537997306
721 => 0.00041802301831146
722 => 0.00041209437905573
723 => 0.00041192798189776
724 => 0.00040054902766538
725 => 0.00039634248737193
726 => 0.00039282718744863
727 => 0.00038898857170161
728 => 0.00038671291161522
729 => 0.00039020935977693
730 => 0.00039100903884028
731 => 0.00038336399382723
801 => 0.00038232200244137
802 => 0.00038856511122878
803 => 0.00038581775181799
804 => 0.00038864347910322
805 => 0.00038929907207203
806 => 0.00038919350650447
807 => 0.00038632494774739
808 => 0.0003881532815575
809 => 0.00038382872704405
810 => 0.00037912642353776
811 => 0.00037612664686461
812 => 0.00037350894385465
813 => 0.00037496139762637
814 => 0.00036978366513778
815 => 0.00036812720430751
816 => 0.00038753388320145
817 => 0.00040186980555735
818 => 0.00040166135556864
819 => 0.0004003924698714
820 => 0.00039850716310936
821 => 0.00040752500959886
822 => 0.00040438337219945
823 => 0.00040666917590011
824 => 0.0004072510088768
825 => 0.00040901204206039
826 => 0.0004096414600576
827 => 0.00040773892171111
828 => 0.00040135377064482
829 => 0.00038544258126956
830 => 0.00037803587966394
831 => 0.00037559154476571
901 => 0.00037568039169681
902 => 0.00037322959670697
903 => 0.0003739514656684
904 => 0.00037297856014146
905 => 0.00037113611244454
906 => 0.00037484763167297
907 => 0.00037527534968885
908 => 0.00037440903675158
909 => 0.0003746130848093
910 => 0.00036744038369582
911 => 0.00036798570858319
912 => 0.00036494927031378
913 => 0.00036437997474307
914 => 0.00035670412321093
915 => 0.00034310523958926
916 => 0.00035064034119124
917 => 0.00034153899805167
918 => 0.00033809218149686
919 => 0.00035440887497736
920 => 0.00035277113150655
921 => 0.00034996802659449
922 => 0.00034582165021131
923 => 0.00034428371887743
924 => 0.00033493973494267
925 => 0.00033438764252359
926 => 0.00033901877327045
927 => 0.00033688166577825
928 => 0.00033388035747331
929 => 0.00032300992303056
930 => 0.00031078795563975
1001 => 0.00031115686001073
1002 => 0.00031504444043996
1003 => 0.00032634810484959
1004 => 0.00032193156760937
1005 => 0.00031872731916766
1006 => 0.00031812725975388
1007 => 0.00032563825962678
1008 => 0.00033626789805005
1009 => 0.0003412550865735
1010 => 0.00033631293420993
1011 => 0.00033063565567905
1012 => 0.00033098120531725
1013 => 0.00033327999225122
1014 => 0.00033352156225489
1015 => 0.00032982623756494
1016 => 0.00033086644981967
1017 => 0.00032928627228574
1018 => 0.00031958872567674
1019 => 0.00031941332780983
1020 => 0.00031703339347792
1021 => 0.0003169613300122
1022 => 0.00031291246801117
1023 => 0.00031234600422877
1024 => 0.00030430674297738
1025 => 0.00030959820907817
1026 => 0.0003060489714322
1027 => 0.0003006994331192
1028 => 0.00029977717069768
1029 => 0.00029974944637562
1030 => 0.00030524222608819
1031 => 0.00030953402274918
1101 => 0.00030611071194061
1102 => 0.00030533129042759
1103 => 0.00031365347305367
1104 => 0.00031259439945612
1105 => 0.00031167724855094
1106 => 0.00033531613051615
1107 => 0.00031660411087572
1108 => 0.00030844460226775
1109 => 0.00029834566091674
1110 => 0.00030163392714391
1111 => 0.00030232681315266
1112 => 0.00027804067967446
1113 => 0.000268187798347
1114 => 0.00026480666077342
1115 => 0.00026286076829755
1116 => 0.00026374753593379
1117 => 0.00025487878711136
1118 => 0.0002608387329956
1119 => 0.00025315914617205
1120 => 0.00025187163844955
1121 => 0.0002656036910083
1122 => 0.00026751442590036
1123 => 0.00025936263723202
1124 => 0.0002645974052118
1125 => 0.00026269920557362
1126 => 0.00025329079064639
1127 => 0.00025293145839979
1128 => 0.00024821064651108
1129 => 0.00024082349003457
1130 => 0.00023744736130093
1201 => 0.00023568904414356
1202 => 0.00023641456007161
1203 => 0.00023604771701723
1204 => 0.00023365381794523
1205 => 0.00023618493250984
1206 => 0.000229718980726
1207 => 0.00022714418662596
1208 => 0.00022598121186574
1209 => 0.00022024230749128
1210 => 0.0002293754564534
1211 => 0.00023117480185532
1212 => 0.00023297769252353
1213 => 0.00024867062490452
1214 => 0.00024788665035053
1215 => 0.00025497339850749
1216 => 0.0002546980205058
1217 => 0.00025267676513373
1218 => 0.00024414942119932
1219 => 0.00024754826850629
1220 => 0.0002370871447936
1221 => 0.00024492532996641
1222 => 0.00024134830958398
1223 => 0.00024371593577695
1224 => 0.00023945873040174
1225 => 0.00024181484363208
1226 => 0.00023160149340143
1227 => 0.00022206441066176
1228 => 0.000225902411161
1229 => 0.00023007475663228
1230 => 0.00023912146470785
1231 => 0.00023373332001176
]
'min_raw' => 0.00022024230749128
'max_raw' => 0.00065742865165413
'avg_raw' => 0.0004388354795727
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00022'
'max' => '$0.000657'
'avg' => '$0.000438'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00041721769250872
'max_diff' => 1.9968651654125E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00023567110059278
102 => 0.00022917986002691
103 => 0.00021578657660831
104 => 0.00021586238113795
105 => 0.00021380211627254
106 => 0.00021202174662522
107 => 0.00023435221324628
108 => 0.00023157506672952
109 => 0.000227150047219
110 => 0.00023307311167711
111 => 0.00023463926393151
112 => 0.00023468385008444
113 => 0.00023900516501666
114 => 0.00024131145157062
115 => 0.00024171794457178
116 => 0.00024851762698581
117 => 0.00025079679084101
118 => 0.00026018434420125
119 => 0.00024111577926965
120 => 0.0002407230747233
121 => 0.00023315646134073
122 => 0.00022835759551008
123 => 0.00023348504378976
124 => 0.00023802726299907
125 => 0.00023329760075295
126 => 0.00023391519479367
127 => 0.00022756600965585
128 => 0.0002298355445857
129 => 0.00023179037380665
130 => 0.00023071103201039
131 => 0.00022909520510066
201 => 0.00023765485282269
202 => 0.00023717188395269
203 => 0.0002451428246969
204 => 0.00025135674301445
205 => 0.00026249319551028
206 => 0.00025087172677449
207 => 0.0002504481942626
208 => 0.00025458829250304
209 => 0.00025079615701354
210 => 0.00025319265574284
211 => 0.00026210708251526
212 => 0.00026229543030579
213 => 0.00025914036214197
214 => 0.00025894837595747
215 => 0.00025955434131099
216 => 0.00026310349931358
217 => 0.00026186331445287
218 => 0.00026329848777132
219 => 0.00026509319398221
220 => 0.00027251685981009
221 => 0.00027430668050848
222 => 0.00026995834412701
223 => 0.000270350950216
224 => 0.00026872455304482
225 => 0.00026715347375617
226 => 0.00027068503055936
227 => 0.00027713902003013
228 => 0.0002770988700966
301 => 0.00027859607020619
302 => 0.00027952881347099
303 => 0.00027552479656867
304 => 0.00027291832879704
305 => 0.00027391781439454
306 => 0.0002755160136309
307 => 0.00027339953992218
308 => 0.00026033568374596
309 => 0.00026429842318746
310 => 0.00026363882957634
311 => 0.00026269948806477
312 => 0.00026668405321616
313 => 0.0002662997321869
314 => 0.00025478782527351
315 => 0.00025552478020381
316 => 0.00025483264194369
317 => 0.00025706908226031
318 => 0.00025067538189707
319 => 0.00025264204106658
320 => 0.0002538755112614
321 => 0.00025460203468212
322 => 0.00025722673545952
323 => 0.00025691875711748
324 => 0.00025720759109336
325 => 0.00026109932945094
326 => 0.00028078240658023
327 => 0.00028185371304012
328 => 0.00027657820821971
329 => 0.00027868566834073
330 => 0.00027463980575923
331 => 0.00027735582041512
401 => 0.00027921404866338
402 => 0.00027081707252623
403 => 0.00027031985809531
404 => 0.00026625729679975
405 => 0.00026844028712475
406 => 0.00026496699255511
407 => 0.00026581921755181
408 => 0.00026343632216539
409 => 0.00026772505943121
410 => 0.00027252053409679
411 => 0.00027373206037635
412 => 0.00027054505632969
413 => 0.0002682374553661
414 => 0.00026418606824507
415 => 0.0002709236153184
416 => 0.00027289387940568
417 => 0.00027091326635992
418 => 0.00027045431503997
419 => 0.00026958460311797
420 => 0.00027063882853562
421 => 0.00027288314892432
422 => 0.0002718247688751
423 => 0.00027252384754387
424 => 0.00026985968054531
425 => 0.00027552612206487
426 => 0.00028452579490134
427 => 0.0002845547303211
428 => 0.00028349634456682
429 => 0.0002830632759194
430 => 0.00028414924393152
501 => 0.00028473833702935
502 => 0.00028825015844805
503 => 0.00029201848274746
504 => 0.0003096036080041
505 => 0.00030466577520005
506 => 0.00032026834447152
507 => 0.0003326079510252
508 => 0.00033630805948505
509 => 0.00033290413380554
510 => 0.00032125948793241
511 => 0.00032068814605215
512 => 0.0003380901632293
513 => 0.00033317329631387
514 => 0.00033258845063962
515 => 0.00032636668077798
516 => 0.0003300445173474
517 => 0.00032924012053906
518 => 0.00032797034082466
519 => 0.0003349873967988
520 => 0.00034812269916548
521 => 0.00034607543910954
522 => 0.00034454725444745
523 => 0.00033785119410603
524 => 0.00034188371805079
525 => 0.00034044781351197
526 => 0.00034661737065828
527 => 0.00034296266167723
528 => 0.00033313604621112
529 => 0.00033470096711304
530 => 0.0003344644324669
531 => 0.00033933229872348
601 => 0.00033787108610112
602 => 0.00033417910725076
603 => 0.00034807780412998
604 => 0.00034717530006326
605 => 0.00034845484448871
606 => 0.00034901813951603
607 => 0.0003574780313839
608 => 0.00036094377839582
609 => 0.00036173056364396
610 => 0.0003650227552548
611 => 0.00036164865091757
612 => 0.0003751474739621
613 => 0.00038412340360855
614 => 0.00039454940779001
615 => 0.00040978460214487
616 => 0.00041551317615572
617 => 0.00041447836053514
618 => 0.00042602951101812
619 => 0.0004467866716684
620 => 0.0004186739761725
621 => 0.00044827671279264
622 => 0.00043890482815873
623 => 0.00041668425828474
624 => 0.00041525351554817
625 => 0.00043030154345295
626 => 0.00046367662102676
627 => 0.00045531654263151
628 => 0.00046369029512009
629 => 0.00045392186804411
630 => 0.00045343678330502
701 => 0.00046321586442055
702 => 0.00048606522047694
703 => 0.00047521034790985
704 => 0.00045964722636098
705 => 0.00047113879312368
706 => 0.00046118373449954
707 => 0.00043875220117388
708 => 0.00045531014983712
709 => 0.00044423832110924
710 => 0.00044746966934282
711 => 0.0004707410065186
712 => 0.00046794093766129
713 => 0.00047156448604205
714 => 0.00046516901799479
715 => 0.0004591946423659
716 => 0.00044804302659163
717 => 0.00044474158292888
718 => 0.00044565398318376
719 => 0.00044474113078863
720 => 0.00043850190425156
721 => 0.00043715454387492
722 => 0.00043490888421798
723 => 0.00043560490804719
724 => 0.00043138241090124
725 => 0.00043935113542808
726 => 0.00044083020092043
727 => 0.00044662917409459
728 => 0.00044723124272688
729 => 0.0004633813004737
730 => 0.00045448612005745
731 => 0.0004604537750536
801 => 0.000459919971821
802 => 0.00041716584541257
803 => 0.0004230569868088
804 => 0.00043222175407932
805 => 0.0004280930388465
806 => 0.00042225600147787
807 => 0.00041754228084055
808 => 0.00041040051207234
809 => 0.00042045241446808
810 => 0.00043366959721783
811 => 0.00044756645229309
812 => 0.000464262613108
813 => 0.00046053622437885
814 => 0.00044725432918026
815 => 0.00044785014529644
816 => 0.00045153324608165
817 => 0.00044676329591981
818 => 0.00044535654449659
819 => 0.00045133998003824
820 => 0.00045138118467038
821 => 0.00044589278054144
822 => 0.00043979342371949
823 => 0.0004397678671917
824 => 0.00043868254555803
825 => 0.00045411494435169
826 => 0.0004626012032967
827 => 0.00046357413920845
828 => 0.00046253571695789
829 => 0.00046293536446863
830 => 0.00045799739737048
831 => 0.00046928412584818
901 => 0.00047964194404108
902 => 0.00047686582750288
903 => 0.00047270403416388
904 => 0.00046938896531025
905 => 0.00047608490263536
906 => 0.00047578674308666
907 => 0.00047955147753513
908 => 0.00047938068743439
909 => 0.00047811474883819
910 => 0.00047686587271353
911 => 0.00048181752538126
912 => 0.00048039152893406
913 => 0.00047896331752051
914 => 0.00047609882088241
915 => 0.00047648815354978
916 => 0.00047232707880308
917 => 0.00047040197522744
918 => 0.00044145303641905
919 => 0.00043371693403559
920 => 0.00043615086932831
921 => 0.00043695218402378
922 => 0.00043358542235241
923 => 0.00043841249373904
924 => 0.00043766019977657
925 => 0.0004405869355073
926 => 0.00043875843808683
927 => 0.00043883348025877
928 => 0.00044421070129562
929 => 0.00044577173143895
930 => 0.00044497777890899
1001 => 0.00044553383604587
1002 => 0.00045834793806824
1003 => 0.00045652618253257
1004 => 0.00045555841121318
1005 => 0.00045582649048252
1006 => 0.00045910076828668
1007 => 0.00046001738730291
1008 => 0.00045613360812149
1009 => 0.00045796522083531
1010 => 0.00046576399530448
1011 => 0.00046849312499628
1012 => 0.00047720319691594
1013 => 0.00047350300355529
1014 => 0.00048029486860939
1015 => 0.00050117074626828
1016 => 0.00051784784184306
1017 => 0.00050251089554237
1018 => 0.00053313625775014
1019 => 0.00055698249517617
1020 => 0.00055606723686577
1021 => 0.00055190909379713
1022 => 0.00052476078647262
1023 => 0.00049977850931414
1024 => 0.00052067724496072
1025 => 0.00052073052013575
1026 => 0.00051893530020954
1027 => 0.00050778534342892
1028 => 0.00051854730588251
1029 => 0.00051940155138036
1030 => 0.00051892340106378
1031 => 0.00051037475534253
1101 => 0.00049732255338
1102 => 0.00049987292240092
1103 => 0.00050405047888331
1104 => 0.00049614149293257
1105 => 0.00049361409269896
1106 => 0.00049831301059082
1107 => 0.00051345390309683
1108 => 0.00051059160507379
1109 => 0.00051051685890495
1110 => 0.00052276298365079
1111 => 0.0005139974012119
1112 => 0.00049990509072169
1113 => 0.00049634659646817
1114 => 0.00048371633915715
1115 => 0.00049244010286931
1116 => 0.00049275405559469
1117 => 0.00048797613936425
1118 => 0.00050029279229119
1119 => 0.00050017929216616
1120 => 0.00051187212102844
1121 => 0.00053422441818714
1122 => 0.00052761374402757
1123 => 0.00051992624921929
1124 => 0.00052076209305606
1125 => 0.00052992923690705
1126 => 0.0005243865724692
1127 => 0.00052637975324588
1128 => 0.00052992621998922
1129 => 0.0005320658914293
1130 => 0.00052045422726351
1201 => 0.00051774699289637
1202 => 0.00051220894149133
1203 => 0.00051076416725238
1204 => 0.00051527479456655
1205 => 0.00051408640363208
1206 => 0.00049272766908381
1207 => 0.00049049556248464
1208 => 0.00049056401800732
1209 => 0.00048495127983282
1210 => 0.00047639050690519
1211 => 0.0004988877070218
1212 => 0.00049708086700432
1213 => 0.00049508625546334
1214 => 0.00049533058399601
1215 => 0.00050509585606577
1216 => 0.00049943150510725
1217 => 0.00051449111049934
1218 => 0.0005113953083639
1219 => 0.00050822011058522
1220 => 0.00050778120153332
1221 => 0.00050655902128367
1222 => 0.00050236771045439
1223 => 0.00049730645076929
1224 => 0.00049396456872639
1225 => 0.00045565620378178
1226 => 0.00046276601348599
1227 => 0.00047094520147114
1228 => 0.00047376862438758
1229 => 0.0004689389641141
1230 => 0.00050255841487911
1231 => 0.00050870101249896
]
'min_raw' => 0.00021202174662522
'max_raw' => 0.00055698249517617
'avg_raw' => 0.0003845021209007
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000212'
'max' => '$0.000556'
'avg' => '$0.000384'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.2205608660522E-6
'max_diff' => -0.00010044615647796
'year' => 2027
]
2 => [
'items' => [
101 => 0.00049009468363669
102 => 0.00048661419919796
103 => 0.00050278659485948
104 => 0.00049303266328062
105 => 0.00049742485807334
106 => 0.00048793133533358
107 => 0.0005072214406086
108 => 0.00050707448232617
109 => 0.0004995701956874
110 => 0.00050591276736735
111 => 0.00050481058945493
112 => 0.00049633826832201
113 => 0.00050749002830032
114 => 0.00050749555943413
115 => 0.00050027284670158
116 => 0.00049183829948509
117 => 0.00049033040165789
118 => 0.00048919440320267
119 => 0.00049714547209132
120 => 0.00050427437559454
121 => 0.00051753949760898
122 => 0.00052087466445493
123 => 0.00053389204268932
124 => 0.00052614082775539
125 => 0.00052957684094056
126 => 0.00053330711930681
127 => 0.00053509555193204
128 => 0.00053218139694182
129 => 0.00055240274350647
130 => 0.00055411004472257
131 => 0.00055468248805224
201 => 0.00054786396376476
202 => 0.00055392040922752
203 => 0.00055108679896389
204 => 0.00055845906567026
205 => 0.00055961513122364
206 => 0.00055863598482815
207 => 0.00055900293828205
208 => 0.0005417475862791
209 => 0.00054085280524851
210 => 0.0005286524024057
211 => 0.00053362415674497
212 => 0.0005243297003101
213 => 0.00052727706818911
214 => 0.00052857623986662
215 => 0.00052789762630963
216 => 0.00053390525227575
217 => 0.00052879754292765
218 => 0.00051531745817283
219 => 0.00050183370077794
220 => 0.00050166442318748
221 => 0.00049811438787349
222 => 0.00049554836256288
223 => 0.00049604267007234
224 => 0.00049778467420923
225 => 0.00049544711411565
226 => 0.00049594595107892
227 => 0.0005042299684025
228 => 0.00050589126899783
229 => 0.00050024552046284
301 => 0.00047757702541722
302 => 0.00047201411987341
303 => 0.00047601262606109
304 => 0.00047410159764016
305 => 0.00038263699140818
306 => 0.0004041252439287
307 => 0.00039135765395311
308 => 0.00039724154682243
309 => 0.00038420914360875
310 => 0.0003904288895091
311 => 0.00038928032955006
312 => 0.00042383280371944
313 => 0.00042329331436066
314 => 0.00042355153936757
315 => 0.00041122578698623
316 => 0.00043086104521034
317 => 0.00044053407947259
318 => 0.00043874385827012
319 => 0.00043919441837798
320 => 0.00043145230294789
321 => 0.00042362649996835
322 => 0.00041494648008161
323 => 0.0004310728841483
324 => 0.00042927990330298
325 => 0.00043339235626799
326 => 0.00044385148204441
327 => 0.00044539162804534
328 => 0.00044746159988921
329 => 0.00044671966233381
330 => 0.00046439562496524
331 => 0.00046225494926082
401 => 0.00046741336179404
402 => 0.0004568021158435
403 => 0.00044479448382175
404 => 0.00044707674211001
405 => 0.00044685694228409
406 => 0.0004440586382256
407 => 0.00044153245444223
408 => 0.00043732707019078
409 => 0.00045063352824213
410 => 0.00045009331034569
411 => 0.00045883881015443
412 => 0.00045729295811399
413 => 0.00044696937985372
414 => 0.00044733808847091
415 => 0.00044981783111688
416 => 0.00045840024872776
417 => 0.00046094809461022
418 => 0.00045976783088336
419 => 0.00046256142757989
420 => 0.00046476937250472
421 => 0.00046283871146833
422 => 0.00049017280033978
423 => 0.00047882178091433
424 => 0.00048435418880241
425 => 0.00048567363548488
426 => 0.00048229390055271
427 => 0.00048302684404026
428 => 0.00048413705370876
429 => 0.00049087802941452
430 => 0.00050856830018349
501 => 0.00051640320068532
502 => 0.00053997488541226
503 => 0.00051575262126572
504 => 0.00051431537235296
505 => 0.00051856134456897
506 => 0.00053240041881991
507 => 0.00054361568866215
508 => 0.00054733644069326
509 => 0.0005478281994971
510 => 0.00055480857765838
511 => 0.00055880960024408
512 => 0.00055396097614743
513 => 0.00054985227489762
514 => 0.00053513541701157
515 => 0.00053683893338455
516 => 0.00054857447189851
517 => 0.00056515161126923
518 => 0.0005793765214067
519 => 0.00057439545366473
520 => 0.00061239748445017
521 => 0.00061616523057817
522 => 0.0006156446498891
523 => 0.00062422813628448
524 => 0.00060719166378625
525 => 0.00059990824172714
526 => 0.00055074062274357
527 => 0.00056455471815683
528 => 0.0005846343171134
529 => 0.00058197670689686
530 => 0.00056739436540539
531 => 0.00057936545939305
601 => 0.00057540744135001
602 => 0.00057228558830114
603 => 0.00058658740231899
604 => 0.00057086197032023
605 => 0.00058447744389988
606 => 0.00056701545819994
607 => 0.0005744182067626
608 => 0.00057021604864777
609 => 0.0005729353599452
610 => 0.00055703832166513
611 => 0.00056561597764226
612 => 0.00055668146297576
613 => 0.0005566772268525
614 => 0.00055647999694604
615 => 0.00056699141382948
616 => 0.00056733419075667
617 => 0.00055956623779795
618 => 0.00055844675441836
619 => 0.00056258607121768
620 => 0.00055774001533447
621 => 0.00056000745438151
622 => 0.00055780869375333
623 => 0.00055731370642294
624 => 0.00055336956315925
625 => 0.00055167031779478
626 => 0.00055233663568635
627 => 0.00055006214921201
628 => 0.00054869168883944
629 => 0.00055620737788395
630 => 0.0005521920484095
701 => 0.00055559197105406
702 => 0.00055171733009614
703 => 0.00053828613643528
704 => 0.00053056171492862
705 => 0.00050519143517556
706 => 0.00051238641504179
707 => 0.00051715669413685
708 => 0.00051558011692439
709 => 0.00051896721483115
710 => 0.00051917515513375
711 => 0.00051807397507689
712 => 0.00051679894964095
713 => 0.00051617833777206
714 => 0.00052080387018498
715 => 0.00052348914743895
716 => 0.00051763545546214
717 => 0.00051626401733383
718 => 0.00052218242311358
719 => 0.00052579264722027
720 => 0.0005524485136144
721 => 0.00055047376093461
722 => 0.00055543000263524
723 => 0.00055487200587948
724 => 0.00056006693677297
725 => 0.00056855845324221
726 => 0.00055129282599489
727 => 0.00055428954188455
728 => 0.00055355481635268
729 => 0.00056157635705426
730 => 0.00056160139942875
731 => 0.00055679208507248
801 => 0.00055939929240723
802 => 0.00055794402079796
803 => 0.00056057389328766
804 => 0.00055044738690862
805 => 0.00056278037858947
806 => 0.00056977239015209
807 => 0.00056986947423942
808 => 0.00057318363222806
809 => 0.00057655100868761
810 => 0.00058301439456503
811 => 0.0005763707483635
812 => 0.00056441947559285
813 => 0.00056528231888452
814 => 0.00055827529203189
815 => 0.00055839308141921
816 => 0.0005577643124384
817 => 0.00055965129548133
818 => 0.00055086147357228
819 => 0.00055292442720549
820 => 0.00055003628003836
821 => 0.00055428326361666
822 => 0.00054971421133794
823 => 0.00055355446204579
824 => 0.00055521178694496
825 => 0.00056132735150258
826 => 0.00054881093748037
827 => 0.00052328912200234
828 => 0.00052865411703793
829 => 0.00052071886796903
830 => 0.00052145330548198
831 => 0.000522936986143
901 => 0.00051812789169053
902 => 0.00051904531536008
903 => 0.00051901253853079
904 => 0.00051873008552347
905 => 0.00051747905432034
906 => 0.00051566481156682
907 => 0.00052289219630236
908 => 0.00052412026980377
909 => 0.00052685012507127
910 => 0.00053497232266883
911 => 0.00053416072359423
912 => 0.00053548447535783
913 => 0.00053259473269043
914 => 0.00052158735235634
915 => 0.00052218510606659
916 => 0.00051473110772147
917 => 0.00052665950957471
918 => 0.00052383470656865
919 => 0.00052201353769421
920 => 0.00052151661489381
921 => 0.00052965894584821
922 => 0.00053209525888517
923 => 0.00053057711209542
924 => 0.00052746334873824
925 => 0.00053344269488553
926 => 0.00053504251566619
927 => 0.00053540065653986
928 => 0.00054599491148696
929 => 0.00053599275770391
930 => 0.00053840037553234
1001 => 0.000557183922545
1002 => 0.00054014983735683
1003 => 0.00054917317218643
1004 => 0.00054873152690169
1005 => 0.00055334755966752
1006 => 0.00054835287748299
1007 => 0.00054841479255474
1008 => 0.00055251351693365
1009 => 0.00054675759775231
1010 => 0.00054533235121734
1011 => 0.00054336338333708
1012 => 0.00054766255267038
1013 => 0.00055023971025098
1014 => 0.00057100970763697
1015 => 0.00058442807317527
1016 => 0.00058384554653883
1017 => 0.00058916874955172
1018 => 0.00058677059783946
1019 => 0.00057902633336013
1020 => 0.00059224484851391
1021 => 0.00058806195723309
1022 => 0.00058840678970807
1023 => 0.00058839395502612
1024 => 0.00059117521205317
1025 => 0.00058920443655104
1026 => 0.0005853198357404
1027 => 0.00058789861504524
1028 => 0.00059555666765011
1029 => 0.0006193274979134
1030 => 0.00063262996945035
1031 => 0.0006185266724238
1101 => 0.00062825493786205
1102 => 0.0006224214451345
1103 => 0.00062136132597453
1104 => 0.00062747139558292
1105 => 0.00063359216005931
1106 => 0.00063320229382296
1107 => 0.00062875893311783
1108 => 0.00062624899140161
1109 => 0.00064525511096901
1110 => 0.00065925849610547
1111 => 0.00065830355911905
1112 => 0.00066251834041497
1113 => 0.00067489306865808
1114 => 0.00067602445872348
1115 => 0.00067588192957994
1116 => 0.00067307766125449
1117 => 0.00068526218827135
1118 => 0.00069542673507517
1119 => 0.00067242855416025
1120 => 0.00068118596038436
1121 => 0.00068511744218436
1122 => 0.00069089002388486
1123 => 0.00070062933681063
1124 => 0.00071120881387319
1125 => 0.00071270486792789
1126 => 0.0007116433459833
1127 => 0.00070466589646894
1128 => 0.0007162420865102
1129 => 0.0007230231471413
1130 => 0.00072706111356532
1201 => 0.00073730072456306
1202 => 0.00068514172167752
1203 => 0.00064822098696449
1204 => 0.00064245528109718
1205 => 0.00065418007070354
1206 => 0.0006572718042193
1207 => 0.0006560255303158
1208 => 0.00061446788670994
1209 => 0.00064223648870415
1210 => 0.00067211316959954
1211 => 0.00067326085458935
1212 => 0.00068821774573752
1213 => 0.00069308832259905
1214 => 0.00070513058041786
1215 => 0.00070437733391254
1216 => 0.00070730943205725
1217 => 0.00070663539347064
1218 => 0.00072894114028344
1219 => 0.00075354769145342
1220 => 0.00075269564483045
1221 => 0.00074915816196826
1222 => 0.00075441192724906
1223 => 0.00077980852505476
1224 => 0.000777470413301
1225 => 0.00077974168970989
1226 => 0.00080968570981233
1227 => 0.0008486171954327
1228 => 0.00083052961170479
1229 => 0.00086977446383234
1230 => 0.00089447701796641
1231 => 0.00093719753104952
]
'min_raw' => 0.00038263699140818
'max_raw' => 0.00093719753104952
'avg_raw' => 0.00065991726122885
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000382'
'max' => '$0.000937'
'avg' => '$0.000659'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00017061524478296
'max_diff' => 0.00038021503587335
'year' => 2028
]
3 => [
'items' => [
101 => 0.00093184871240855
102 => 0.0009484794946542
103 => 0.00092227321070908
104 => 0.00086209828560728
105 => 0.00085257537336956
106 => 0.00087164048482802
107 => 0.00091851020100228
108 => 0.00087016439067054
109 => 0.00087994468513493
110 => 0.00087712795967123
111 => 0.00087697786834158
112 => 0.00088270624392869
113 => 0.00087439693636761
114 => 0.00084054332254786
115 => 0.00085605823426085
116 => 0.00085006718176121
117 => 0.00085671470117211
118 => 0.00089258862178721
119 => 0.00087672790635582
120 => 0.00086001993106874
121 => 0.00088097543987526
122 => 0.00090765900368005
123 => 0.00090598919421212
124 => 0.00090274906591812
125 => 0.00092101349946376
126 => 0.00095118099270424
127 => 0.00095933514490434
128 => 0.00096535437335415
129 => 0.00096618432326168
130 => 0.00097473332312024
131 => 0.00092876319625541
201 => 0.0010017189681865
202 => 0.0010143164146365
203 => 0.0010119486168145
204 => 0.0010259501483621
205 => 0.0010218305425962
206 => 0.0010158618801878
207 => 0.0010380572859019
208 => 0.0010126120443276
209 => 0.00097649572737975
210 => 0.00095668160160241
211 => 0.00098277444078594
212 => 0.00099870842716073
213 => 0.0010092397785626
214 => 0.0010124265591336
215 => 0.00093233172634376
216 => 0.00088916505373311
217 => 0.00091683439596963
218 => 0.00095059290313417
219 => 0.0009285756660436
220 => 0.00092943870005341
221 => 0.00089804790599038
222 => 0.00095337029187194
223 => 0.0009453102855835
224 => 0.00098712561246583
225 => 0.0009771460491164
226 => 0.0010112448249273
227 => 0.0010022654744819
228 => 0.0010395382561521
301 => 0.0010544073778807
302 => 0.0010793749474569
303 => 0.0010977411932735
304 => 0.0011085262041073
305 => 0.0011078787125104
306 => 0.0011506142985049
307 => 0.0011254146165116
308 => 0.0010937578768189
309 => 0.0010931853062736
310 => 0.0011095807803399
311 => 0.0011439411961042
312 => 0.0011528503519882
313 => 0.0011578293547179
314 => 0.001150203838717
315 => 0.0011228513899907
316 => 0.0011110407413108
317 => 0.0011211037561735
318 => 0.0011087975537211
319 => 0.0011300415116646
320 => 0.0011592140033854
321 => 0.0011531899992056
322 => 0.0011733273420096
323 => 0.0011941673733015
324 => 0.0012239695540332
325 => 0.0012317609476481
326 => 0.0012446398250133
327 => 0.0012578964203128
328 => 0.0012621540814478
329 => 0.0012702832776291
330 => 0.0012702404327526
331 => 0.001294738312603
401 => 0.0013217602327141
402 => 0.0013319603819972
403 => 0.0013554150628341
404 => 0.0013152497438509
405 => 0.0013457155996856
406 => 0.0013731965642583
407 => 0.0013404326253876
408 => 0.0013855900821022
409 => 0.0013873434438175
410 => 0.0014138171240306
411 => 0.0013869809773911
412 => 0.0013710457591807
413 => 0.0014170501370695
414 => 0.0014393102064056
415 => 0.0014326052923631
416 => 0.0013815805654374
417 => 0.0013518819858131
418 => 0.0012741550745082
419 => 0.0013662259585016
420 => 0.0014110710003502
421 => 0.0013814644276128
422 => 0.00139639626079
423 => 0.0014778595009421
424 => 0.0015088754284378
425 => 0.0015024243323364
426 => 0.0015035144613834
427 => 0.0015202500928812
428 => 0.0015944650994229
429 => 0.0015499937472127
430 => 0.0015839904296677
501 => 0.0016020221474576
502 => 0.0016187710118594
503 => 0.0015776410944215
504 => 0.0015241316761532
505 => 0.001507182997215
506 => 0.0013785206374358
507 => 0.001371823202857
508 => 0.0013680637298749
509 => 0.0013443607845105
510 => 0.0013257367622374
511 => 0.0013109262482601
512 => 0.0012720590367899
513 => 0.0012851755797022
514 => 0.0012232293568362
515 => 0.0012628603549865
516 => 0.0011639926875486
517 => 0.0012463326188595
518 => 0.0012015187377842
519 => 0.0012316100536608
520 => 0.0012315050678945
521 => 0.0011760974149053
522 => 0.0011441394369894
523 => 0.0011645043043405
524 => 0.0011863370587061
525 => 0.0011898793496478
526 => 0.0012181860855759
527 => 0.0012260858871222
528 => 0.0012021491196305
529 => 0.0011619438748953
530 => 0.0011712826362633
531 => 0.0011439501872884
601 => 0.0010960511217873
602 => 0.0011304530668676
603 => 0.0011421994034648
604 => 0.0011473872548801
605 => 0.0011002840252047
606 => 0.0010854831677797
607 => 0.001077603315478
608 => 0.0011558634394412
609 => 0.0011601507056942
610 => 0.0011382164453857
611 => 0.0012373613818718
612 => 0.001214921829252
613 => 0.0012399923073522
614 => 0.0011704352415534
615 => 0.0011730924151379
616 => 0.0011401629854873
617 => 0.0011586012657464
618 => 0.0011455696835528
619 => 0.0011571116349121
620 => 0.0011640298329676
621 => 0.0011969538592228
622 => 0.0012467085583527
623 => 0.0011920361076198
624 => 0.0011682145379115
625 => 0.0011829933057809
626 => 0.0012223511121404
627 => 0.0012819802034641
628 => 0.0012466785812532
629 => 0.00126234484173
630 => 0.0012657672227007
701 => 0.0012397371134195
702 => 0.0012829399707223
703 => 0.0013060927329302
704 => 0.0013298426761665
705 => 0.0013504640864202
706 => 0.0013203564265654
707 => 0.0013525759383735
708 => 0.0013266126993657
709 => 0.0013033209899453
710 => 0.0013033563138541
711 => 0.0012887450842971
712 => 0.0012604339858971
713 => 0.0012552129849819
714 => 0.0012823732910823
715 => 0.0013041532844841
716 => 0.0013059471890599
717 => 0.0013180057125036
718 => 0.001325141822465
719 => 0.0013950854011572
720 => 0.0014232172871109
721 => 0.0014576164247456
722 => 0.0014710168274836
723 => 0.0015113472354144
724 => 0.0014787771555347
725 => 0.0014717304138773
726 => 0.0013739020362129
727 => 0.001389921427575
728 => 0.0014155700187871
729 => 0.001374324972035
730 => 0.0014004854608981
731 => 0.0014056500955546
801 => 0.001372923481129
802 => 0.0013904041799272
803 => 0.0013439806265851
804 => 0.0012477204649547
805 => 0.0012830471357996
806 => 0.0013090594563703
807 => 0.0012719366676199
808 => 0.0013384778296046
809 => 0.0012996058564615
810 => 0.001287285307159
811 => 0.0012392184517366
812 => 0.001261904157233
813 => 0.0012925868987449
814 => 0.0012736285317421
815 => 0.0013129699898861
816 => 0.0013686879866015
817 => 0.0014083959491251
818 => 0.0014114442334319
819 => 0.0013859146737561
820 => 0.001426825956064
821 => 0.0014271239500917
822 => 0.001380975856521
823 => 0.0013527104061626
824 => 0.0013462884363701
825 => 0.001362331776013
826 => 0.0013818113521033
827 => 0.0014125252143339
828 => 0.0014310849580228
829 => 0.001479478926236
830 => 0.0014925729464707
831 => 0.0015069593048498
901 => 0.0015261839162328
902 => 0.0015492679912873
903 => 0.0014987613492452
904 => 0.0015007680722897
905 => 0.0014537369865321
906 => 0.0014034775264602
907 => 0.0014416181917246
908 => 0.0014914820379178
909 => 0.0014800432165064
910 => 0.0014787561154237
911 => 0.0014809206624328
912 => 0.0014722961646456
913 => 0.0014332878807929
914 => 0.0014136981648469
915 => 0.0014389738962868
916 => 0.0014524068226537
917 => 0.0014732401199746
918 => 0.0014706719763422
919 => 0.0015243363129079
920 => 0.001545188651372
921 => 0.001539853730871
922 => 0.0015408354846352
923 => 0.001578587647387
924 => 0.0016205758166914
925 => 0.0016599032780719
926 => 0.0016999088609419
927 => 0.0016516805693476
928 => 0.0016271932171835
929 => 0.0016524579140298
930 => 0.0016390521102568
1001 => 0.0017160858351561
1002 => 0.0017214194831304
1003 => 0.0017984476376145
1004 => 0.001871556528562
1005 => 0.0018256381440397
1006 => 0.0018689371124347
1007 => 0.0019157684769707
1008 => 0.0020061137772755
1009 => 0.0019756886585188
1010 => 0.0019523834943736
1011 => 0.0019303602268661
1012 => 0.001976187150454
1013 => 0.0020351427555468
1014 => 0.002047841228214
1015 => 0.0020684176051248
1016 => 0.0020467840607627
1017 => 0.0020728392820901
1018 => 0.0021648256626201
1019 => 0.0021399701306146
1020 => 0.0021046712794407
1021 => 0.0021772856924032
1022 => 0.002203564566173
1023 => 0.0023880034646421
1024 => 0.0026208651927503
1025 => 0.0025244589082609
1026 => 0.0024646164164671
1027 => 0.0024786808215215
1028 => 0.0025637140417597
1029 => 0.0025910240132806
1030 => 0.0025167860963749
1031 => 0.0025430081836651
1101 => 0.002687494462733
1102 => 0.0027650067157781
1103 => 0.0026597346648584
1104 => 0.002369293251521
1105 => 0.0021014930041056
1106 => 0.0021725256889225
1107 => 0.0021644727868651
1108 => 0.0023197052686932
1109 => 0.0021393773343966
1110 => 0.0021424135943333
1111 => 0.0023008561194915
1112 => 0.0022585863701719
1113 => 0.0021901147897745
1114 => 0.0021019929224177
1115 => 0.0019390915003225
1116 => 0.0017948051679306
1117 => 0.002077783892909
1118 => 0.0020655813357245
1119 => 0.0020479102246037
1120 => 0.0020872353701891
1121 => 0.0022781871145145
1122 => 0.0022737850587573
1123 => 0.0022457814259787
1124 => 0.0022670219346286
1125 => 0.0021863912259118
1126 => 0.0022071715954753
1127 => 0.0021014505831782
1128 => 0.002149240896036
1129 => 0.0021899678805151
1130 => 0.0021981444256226
1201 => 0.0022165665992546
1202 => 0.0020591511425768
1203 => 0.0021298260611501
1204 => 0.0021713409544676
1205 => 0.0019837751561344
1206 => 0.0021676333817046
1207 => 0.0020564108896938
1208 => 0.0020186603053996
1209 => 0.0020694864938905
1210 => 0.0020496794788055
1211 => 0.0020326505703424
1212 => 0.0020231481468262
1213 => 0.0020604692901721
1214 => 0.0020587282142266
1215 => 0.0019976635799908
1216 => 0.0019180072539431
1217 => 0.0019447425315945
1218 => 0.0019350293545792
1219 => 0.001899827548051
1220 => 0.0019235493153687
1221 => 0.0018190906574132
1222 => 0.0016393749656893
1223 => 0.0017581006564826
1224 => 0.0017535298465358
1225 => 0.0017512250368908
1226 => 0.0018404441121849
1227 => 0.0018318677567297
1228 => 0.0018163015875985
1229 => 0.0018995416631477
1230 => 0.0018691579158352
1231 => 0.0019627934657411
]
'min_raw' => 0.00084054332254786
'max_raw' => 0.0027650067157781
'avg_raw' => 0.001802775019163
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00084'
'max' => '$0.002765'
'avg' => '$0.0018027'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00045790633113968
'max_diff' => 0.0018278091847286
'year' => 2029
]
4 => [
'items' => [
101 => 0.0020244678948768
102 => 0.0020088252646892
103 => 0.0020668303633897
104 => 0.0019453584583939
105 => 0.0019857065526266
106 => 0.0019940222389279
107 => 0.0018985144935365
108 => 0.0018332709545477
109 => 0.001828919954328
110 => 0.001715796648835
111 => 0.0017762262055299
112 => 0.0018294017146765
113 => 0.0018039347723815
114 => 0.0017958726992542
115 => 0.0018370600824114
116 => 0.0018402606948288
117 => 0.0017672863925264
118 => 0.0017824600607707
119 => 0.0018457367797618
120 => 0.0017808656498034
121 => 0.0016548316409333
122 => 0.001623573464177
123 => 0.0016194030471952
124 => 0.0015346283927149
125 => 0.0016256622850147
126 => 0.0015859235514692
127 => 0.0017114577345962
128 => 0.0016397532824474
129 => 0.0016366622468291
130 => 0.0016319896931358
131 => 0.0015590206460277
201 => 0.0015749962299195
202 => 0.001628101503926
203 => 0.0016470500639652
204 => 0.0016450735739122
205 => 0.0016278412591119
206 => 0.0016357301245837
207 => 0.001610317340236
208 => 0.0016013435571614
209 => 0.0015730198293446
210 => 0.0015313917740835
211 => 0.0015371804104872
212 => 0.0014547043404417
213 => 0.0014097670001445
214 => 0.0013973289366149
215 => 0.0013806962382406
216 => 0.0013992076441542
217 => 0.0014544706960978
218 => 0.0013878117307433
219 => 0.0012735296102257
220 => 0.0012803981603961
221 => 0.0012958297533381
222 => 0.0012670730819809
223 => 0.0012398573059059
224 => 0.0012635192151174
225 => 0.0012150963740996
226 => 0.0013016814223322
227 => 0.0012993395394293
228 => 0.001331613091027
301 => 0.001351794405161
302 => 0.0013052830098602
303 => 0.0012935855197222
304 => 0.0013002489417261
305 => 0.0011901174189582
306 => 0.0013226129960315
307 => 0.001323758823284
308 => 0.001313947554696
309 => 0.0013844973591455
310 => 0.0015333794515699
311 => 0.0014773640196316
312 => 0.0014556731513097
313 => 0.0014144387947738
314 => 0.001469381126604
315 => 0.0014651624127534
316 => 0.0014460837888209
317 => 0.0014345449775376
318 => 0.0014558055911263
319 => 0.0014319105522332
320 => 0.0014276183466562
321 => 0.0014016122508255
322 => 0.001392329257816
323 => 0.0013854564993583
324 => 0.0013778902675996
325 => 0.0013945794894717
326 => 0.0013567595170596
327 => 0.0013111523378683
328 => 0.0013073605943951
329 => 0.0013178299314982
330 => 0.0013131980291806
331 => 0.0013073384186288
401 => 0.0012961508263156
402 => 0.0012928317066613
403 => 0.0013036172353297
404 => 0.0012914410022985
405 => 0.0013094076974098
406 => 0.0013045217504821
407 => 0.0012772292481208
408 => 0.0012432126852
409 => 0.0012429098664378
410 => 0.0012355810537549
411 => 0.0012262467089088
412 => 0.0012236501077135
413 => 0.0012615264751221
414 => 0.0013399294221135
415 => 0.0013245370475956
416 => 0.0013356596156588
417 => 0.0013903716421195
418 => 0.0014077629500833
419 => 0.0013954190116263
420 => 0.0013785218673254
421 => 0.0013792652559202
422 => 0.0014370079131099
423 => 0.0014406092518102
424 => 0.0014497086728701
425 => 0.0014614040004281
426 => 0.0013974107764815
427 => 0.0013762511808271
428 => 0.0013662245905164
429 => 0.0013353465731382
430 => 0.0013686458675994
501 => 0.0013492437947348
502 => 0.0013518617972334
503 => 0.0013501568196717
504 => 0.0013510878527105
505 => 0.0013016572200466
506 => 0.0013196671445918
507 => 0.0012897221519532
508 => 0.0012496291682932
509 => 0.0012494947625536
510 => 0.0012593074635047
511 => 0.0012534704850079
512 => 0.0012377633259557
513 => 0.0012399944537633
514 => 0.0012204474264651
515 => 0.0012423678167877
516 => 0.0012429964151472
517 => 0.0012345558708613
518 => 0.0012683272565842
519 => 0.0012821634208697
520 => 0.0012766076738067
521 => 0.0012817736148453
522 => 0.0013251766702492
523 => 0.0013322532620881
524 => 0.0013353962167296
525 => 0.0013311850738717
526 => 0.0012825669430219
527 => 0.0012847233638654
528 => 0.0012689009785239
529 => 0.0012555327302322
530 => 0.0012560673900567
531 => 0.0012629404074292
601 => 0.0012929552773923
602 => 0.0013561198017563
603 => 0.0013585168492833
604 => 0.0013614221408127
605 => 0.0013496048600798
606 => 0.0013460406551347
607 => 0.0013507427614567
608 => 0.0013744640357749
609 => 0.0014354815935846
610 => 0.001413913913429
611 => 0.0013963790537415
612 => 0.0014117618530516
613 => 0.0014093937916722
614 => 0.0013894049704971
615 => 0.0013888439508616
616 => 0.0013504790122139
617 => 0.0013362963679233
618 => 0.0013244442888014
619 => 0.0013115021278068
620 => 0.001303829580944
621 => 0.0013156181000354
622 => 0.0013183142738293
623 => 0.0012925384708078
624 => 0.0012890253241009
625 => 0.0013100744012576
626 => 0.0013008114871896
627 => 0.0013103386240177
628 => 0.0013125490014841
629 => 0.0013121930798027
630 => 0.0013025215336768
701 => 0.0013086858887678
702 => 0.001294105351295
703 => 0.0012782512067192
704 => 0.0012681372502279
705 => 0.0012593114817677
706 => 0.0012642085310661
707 => 0.0012467514444831
708 => 0.0012411665711434
709 => 0.0013065975439654
710 => 0.0013549321070904
711 => 0.0013542293034
712 => 0.001349951166681
713 => 0.0013435947233048
714 => 0.0013739990223501
715 => 0.0013634067725159
716 => 0.0013711135192824
717 => 0.0013730752097856
718 => 0.0013790126561155
719 => 0.0013811347828376
720 => 0.0013747202419715
721 => 0.0013531922593544
722 => 0.001299546573492
723 => 0.0012745743619092
724 => 0.0012663331161419
725 => 0.0012666326697731
726 => 0.0012583696433559
727 => 0.0012608034749586
728 => 0.0012575232560484
729 => 0.0012513113150027
730 => 0.0012638249612113
731 => 0.0012652670423642
801 => 0.0012623462078122
802 => 0.0012630341700849
803 => 0.0012388509074988
804 => 0.00124068950843
805 => 0.0012304519448073
806 => 0.0012285325250437
807 => 0.0012026528556922
808 => 0.001156803270118
809 => 0.0011822083912531
810 => 0.0011515225774226
811 => 0.001139901394759
812 => 0.0011949142660237
813 => 0.0011893924995682
814 => 0.0011799416356507
815 => 0.001165961838184
816 => 0.0011607765953169
817 => 0.0011292727011047
818 => 0.001127411282968
819 => 0.0011430254636162
820 => 0.0011358200564982
821 => 0.0011257009360034
822 => 0.0010890505073302
823 => 0.0010478432909616
824 => 0.0010490870778044
825 => 0.0010621943266438
826 => 0.0011003054203975
827 => 0.0010854147567393
828 => 0.0010746114094046
829 => 0.0010725882671962
830 => 0.001097912127669
831 => 0.0011337506957507
901 => 0.0011505653500519
902 => 0.001133902538308
903 => 0.0011147611973662
904 => 0.0011159262420969
905 => 0.001123676762741
906 => 0.0011244912328742
907 => 0.0011120321876828
908 => 0.0011155393359249
909 => 0.0011102116570447
910 => 0.0010775157015914
911 => 0.0010769243354373
912 => 0.0010689002206755
913 => 0.0010686572536695
914 => 0.0010550062327505
915 => 0.0010530963605589
916 => 0.0010259914299666
917 => 0.0010438319773637
918 => 0.0010318654748405
919 => 0.0010138291329254
920 => 0.0010107196607809
921 => 0.0010106261862934
922 => 0.001029145476588
923 => 0.0010436155686742
924 => 0.0010320736372752
925 => 0.0010294457632266
926 => 0.0010575045829866
927 => 0.0010539338424103
928 => 0.0010508416041001
929 => 0.0011305417450598
930 => 0.0010674528644106
1001 => 0.0010399425114602
1002 => 0.0010058932256096
1003 => 0.001016979844774
1004 => 0.0010193159583282
1005 => 0.0009374335637028
1006 => 0.00090421388640107
1007 => 0.00089281414500824
1008 => 0.00088625343266798
1009 => 0.00088924323166568
1010 => 0.0008593416258146
1011 => 0.00087943599947344
1012 => 0.00085354373632623
1013 => 0.00084920281414889
1014 => 0.00089550138809201
1015 => 0.00090194356418385
1016 => 0.00087445923954883
1017 => 0.00089210862527249
1018 => 0.00088570871266428
1019 => 0.00085398758486259
1020 => 0.00085277607110538
1021 => 0.00083685952422605
1022 => 0.00081195321041069
1023 => 0.00080057035667145
1024 => 0.00079464206761358
1025 => 0.00079708819521891
1026 => 0.00079585135824892
1027 => 0.00078778016039096
1028 => 0.00079631398986233
1029 => 0.00077451358198476
1030 => 0.00076583248391009
1031 => 0.00076191143330971
1101 => 0.00074256231653371
1102 => 0.00077335536591561
1103 => 0.00077942198456446
1104 => 0.00078550055632612
1105 => 0.00083841037349419
1106 => 0.00083576714855006
1107 => 0.0008596606147422
1108 => 0.00085873215858324
1109 => 0.00085191735497675
1110 => 0.00082316681954176
1111 => 0.00083462627053713
1112 => 0.00079935586156747
1113 => 0.00082578285012222
1114 => 0.00081372267616326
1115 => 0.00082170529317526
1116 => 0.00080735182802413
1117 => 0.00081529562827882
1118 => 0.00078086060490282
1119 => 0.00074870566458817
1120 => 0.00076164575123201
1121 => 0.00077571310529227
1122 => 0.00080621471319006
1123 => 0.00078804820715894
1124 => 0.00079458156967938
1125 => 0.00077269589890758
1126 => 0.00072753950877257
1127 => 0.00072779508903677
1128 => 0.00072084876219993
1129 => 0.00071484612163258
1130 => 0.00079013484890887
1201 => 0.00078077150553342
1202 => 0.00076585224330872
1203 => 0.0007858222686644
1204 => 0.00079110266033536
1205 => 0.00079125298566287
1206 => 0.00080582260066142
1207 => 0.00081359840679789
1208 => 0.00081496892633171
1209 => 0.00083789453032929
1210 => 0.00084557889039325
1211 => 0.00087722968196535
1212 => 0.00081293868397374
1213 => 0.00081161465317797
1214 => 0.00078610328787456
1215 => 0.00076992357668041
1216 => 0.00078721112654237
1217 => 0.00080252553573418
1218 => 0.0007865791492569
1219 => 0.00078866141068424
1220 => 0.00076725468970613
1221 => 0.00077490658517597
1222 => 0.00078149742837622
1223 => 0.0007778583521529
1224 => 0.0007724104789133
1225 => 0.00080126992882367
1226 => 0.00079964156555863
1227 => 0.00082651614879106
1228 => 0.00084746680824061
1229 => 0.00088501413535257
1230 => 0.00084583154212481
1231 => 0.00084440357269089
]
'min_raw' => 0.00071484612163258
'max_raw' => 0.0020668303633897
'avg_raw' => 0.0013908382425111
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000714'
'max' => '$0.002066'
'avg' => '$0.00139'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00012569720091528
'max_diff' => -0.00069817635238841
'year' => 2030
]
5 => [
'items' => [
101 => 0.00085836220296098
102 => 0.00084557675339968
103 => 0.0008536567161837
104 => 0.00088371232843232
105 => 0.00088434735615812
106 => 0.00087370982356396
107 => 0.00087306252873887
108 => 0.00087510558323543
109 => 0.00088707181723545
110 => 0.00088289044739061
111 => 0.00088772923443439
112 => 0.00089378021172677
113 => 0.00091880961936927
114 => 0.00092484412481521
115 => 0.00091018340511392
116 => 0.00091150710395382
117 => 0.00090602359233978
118 => 0.00090072658882882
119 => 0.00091263347915623
120 => 0.00093439355526007
121 => 0.00093425818695598
122 => 0.00093930610165664
123 => 0.00094245091069596
124 => 0.00092895108815826
125 => 0.00092016320008845
126 => 0.00092353303556227
127 => 0.00092892147587036
128 => 0.00092178563699393
129 => 0.00087773993380653
130 => 0.00089110058650317
131 => 0.00088887672059191
201 => 0.00088570966510294
202 => 0.00089914390470429
203 => 0.0008978481395217
204 => 0.00085903494162752
205 => 0.0008615196366276
206 => 0.00085918604416004
207 => 0.0008667263588308
208 => 0.00084516955166226
209 => 0.00085180028035999
210 => 0.00085595901123999
211 => 0.00085840853567718
212 => 0.00086725789759896
213 => 0.00086621952711639
214 => 0.00086719335103182
215 => 0.00088031461861689
216 => 0.00094667748738685
217 => 0.00095028947191259
218 => 0.0009325027390866
219 => 0.00093960818802279
220 => 0.00092596727985618
221 => 0.00093512451289457
222 => 0.00094138965917093
223 => 0.00091307866786638
224 => 0.00091140227469814
225 => 0.00089770506565118
226 => 0.00090506516994344
227 => 0.00089335471480422
228 => 0.00089622805088105
301 => 0.0008881939527173
302 => 0.00090265372983907
303 => 0.00091882200748342
304 => 0.00092290675292101
305 => 0.00091216154626818
306 => 0.00090438130850791
307 => 0.00089072177397051
308 => 0.00091343788432878
309 => 0.00092008076725846
310 => 0.00091340299209272
311 => 0.00091185560567454
312 => 0.00090892331120817
313 => 0.00091247770580743
314 => 0.0009200445886914
315 => 0.00091647618646171
316 => 0.00091883317900157
317 => 0.00090985075395976
318 => 0.00092895555716125
319 => 0.0009592985824665
320 => 0.00095939614025444
321 => 0.00095582771878973
322 => 0.00095436759760908
323 => 0.0009580290145818
324 => 0.00096001518309031
325 => 0.00097185553419101
326 => 0.00098456070266247
327 => 0.0010438501802195
328 => 0.0010272019321721
329 => 0.0010798070838075
330 => 0.001121410928827
331 => 0.0011338861028327
401 => 0.0011224095297498
402 => 0.0010831487931853
403 => 0.0010812224741462
404 => 0.001139894590029
405 => 0.0011233170299389
406 => 0.0011213451819156
407 => 0.001100368050437
408 => 0.0011127681332091
409 => 0.0011100560532086
410 => 0.0011057749022483
411 => 0.0011294333963803
412 => 0.0011737199853871
413 => 0.0011668175051734
414 => 0.0011616651238907
415 => 0.0011390888889456
416 => 0.0011526848249672
417 => 0.0011478435725629
418 => 0.0011686446652264
419 => 0.0011563225587332
420 => 0.0011231914386168
421 => 0.0011284676786969
422 => 0.0011276701856231
423 => 0.0011440825365708
424 => 0.0011391559561959
425 => 0.0011267081917361
426 => 0.0011735686186404
427 => 0.0011705257631687
428 => 0.001174839836534
429 => 0.0011767390250466
430 => 0.0012052621411299
501 => 0.0012169471491514
502 => 0.0012195998505471
503 => 0.0012306997044165
504 => 0.0012193236760711
505 => 0.0012648359004234
506 => 0.0012950988739058
507 => 0.001330250874924
508 => 0.0013816173963787
509 => 0.0014009316836126
510 => 0.0013974427304993
511 => 0.0014363882408282
512 => 0.0015063724571793
513 => 0.0014115885415491
514 => 0.001511396234861
515 => 0.0014797982714937
516 => 0.0014048800687729
517 => 0.0014000562197453
518 => 0.001450791696446
519 => 0.0015633181006596
520 => 0.001535131512668
521 => 0.00156336420382
522 => 0.0015304292699235
523 => 0.0015287937728581
524 => 0.0015617646275928
525 => 0.001638802826828
526 => 0.0016022048661051
527 => 0.0015497327152206
528 => 0.0015884773348766
529 => 0.0015549131596853
530 => 0.0014792836789582
531 => 0.0015351099589154
601 => 0.0014977805153489
602 => 0.001508675231524
603 => 0.001587136169565
604 => 0.001577695541918
605 => 0.0015899125882718
606 => 0.0015683498212331
607 => 0.0015482067966828
608 => 0.0015106083455189
609 => 0.0014994772977105
610 => 0.0015025535188716
611 => 0.001499475773288
612 => 0.0014784397854094
613 => 0.0014738970658299
614 => 0.0014663256675096
615 => 0.0014686723604446
616 => 0.0014544359165117
617 => 0.0014813030276125
618 => 0.001486289800185
619 => 0.0015058414431131
620 => 0.0015078713595419
621 => 0.0015623224067964
622 => 0.0015323316849813
623 => 0.0015524520504492
624 => 0.0015506522955815
625 => 0.0014065037733977
626 => 0.0014263661679215
627 => 0.0014572658206377
628 => 0.0014433455689725
629 => 0.0014236655899552
630 => 0.001407772951725
701 => 0.0013836939797006
702 => 0.0014175846704293
703 => 0.0014621473248643
704 => 0.001509001541998
705 => 0.0015652938138742
706 => 0.0015527300341057
707 => 0.0015079491971313
708 => 0.0015099580327656
709 => 0.0015223758642088
710 => 0.0015062936442109
711 => 0.0015015506835713
712 => 0.00152172425425
713 => 0.0015218631785441
714 => 0.0015033586408353
715 => 0.0014827942334666
716 => 0.0014827080678488
717 => 0.0014790488301862
718 => 0.0015310802401747
719 => 0.0015596922546994
720 => 0.0015629725760541
721 => 0.001559471462936
722 => 0.001560818902421
723 => 0.0015441702015917
724 => 0.0015822241946685
725 => 0.0016171463018657
726 => 0.0016077864311348
727 => 0.0015937546543253
728 => 0.0015825776682345
729 => 0.0016051534884216
730 => 0.0016041482226863
731 => 0.0016168412877247
801 => 0.0016162654569758
802 => 0.0016119972566137
803 => 0.0016077865835657
804 => 0.0016244814262483
805 => 0.0016196735796667
806 => 0.0016148582651714
807 => 0.0016052004147632
808 => 0.0016065130770336
809 => 0.0015924837230082
810 => 0.0015859931018964
811 => 0.0014883897335536
812 => 0.0014623069242503
813 => 0.0014705131070217
814 => 0.0014732147954635
815 => 0.0014618635234286
816 => 0.001478138331624
817 => 0.0014756019200061
818 => 0.0014854696138604
819 => 0.0014793047071457
820 => 0.0014795577170677
821 => 0.0014976873932189
822 => 0.0015029505153348
823 => 0.0015002736489481
824 => 0.0015021484344078
825 => 0.0015453520740282
826 => 0.0015392098980488
827 => 0.0015359469894778
828 => 0.0015368508374511
829 => 0.0015478902936706
830 => 0.0015509807386801
831 => 0.0015378863060131
901 => 0.0015440617161569
902 => 0.0015703558287727
903 => 0.0015795572800704
904 => 0.0016089238956654
905 => 0.0015964484354107
906 => 0.0016193476826334
907 => 0.0016897321616676
908 => 0.0017459601537556
909 => 0.0016942505685115
910 => 0.0017975061153894
911 => 0.0018779053697624
912 => 0.0018748195124676
913 => 0.0018608000427995
914 => 0.0017692676292206
915 => 0.0016850381375739
916 => 0.0017554996839095
917 => 0.0017556793048816
918 => 0.0017496265955621
919 => 0.0017120337378111
920 => 0.0017483184455996
921 => 0.0017511985939372
922 => 0.0017495864767614
923 => 0.0017207641208648
924 => 0.0016767577106726
925 => 0.0016853564578877
926 => 0.0016994413812357
927 => 0.001672775682915
928 => 0.0016642543765699
929 => 0.0016800971063103
930 => 0.0017311456824977
1001 => 0.0017214952448737
1002 => 0.0017212432329469
1003 => 0.0017625318975246
1004 => 0.0017329781243385
1005 => 0.001685464915627
1006 => 0.0016734672038052
1007 => 0.0016308834094647
1008 => 0.0016602961878939
1009 => 0.001661354701427
1010 => 0.0016452456232726
1011 => 0.0016867720785371
1012 => 0.0016863894049412
1013 => 0.0017258125938176
1014 => 0.0018011749242757
1015 => 0.0017788865748042
1016 => 0.0017529676493344
1017 => 0.0017557857551868
1018 => 0.0017866934207099
1019 => 0.0017680059405813
1020 => 0.0017747260887293
1021 => 0.0017866832489609
1022 => 0.0017938973006081
1023 => 0.0017547477641727
1024 => 0.0017456201344908
1025 => 0.0017269482075243
1026 => 0.0017220770503068
1027 => 0.0017372849452184
1028 => 0.0017332782022121
1029 => 0.0016612657374634
1030 => 0.0016537400342235
1031 => 0.0016539708367977
1101 => 0.0016350470981735
1102 => 0.0016061838545539
1103 => 0.0016820347354514
1104 => 0.0016759428481829
1105 => 0.0016692178761132
1106 => 0.0016700416468196
1107 => 0.0017029659433923
1108 => 0.0016838681886633
1109 => 0.0017346426996708
1110 => 0.0017242049866292
1111 => 0.0017134995856331
1112 => 0.001712019773121
1113 => 0.0017078991070794
1114 => 0.0016937678099905
1115 => 0.0016767034195963
1116 => 0.0016654360309659
1117 => 0.0015362767039505
1118 => 0.0015602479237593
1119 => 0.0015878246271039
1120 => 0.0015973439945918
1121 => 0.0015810604577836
1122 => 0.001694410783273
1123 => 0.0017151209800108
1124 => 0.0016523884431992
1125 => 0.0016406537469144
1126 => 0.0016951801080078
1127 => 0.0016622940466919
1128 => 0.0016771026380888
1129 => 0.0016450945633551
1130 => 0.001710132500082
1201 => 0.0017096370199725
1202 => 0.0016843357936373
1203 => 0.0017057202168805
1204 => 0.0017020041470972
1205 => 0.0016734391248789
1206 => 0.0017110380622368
1207 => 0.0017110567108407
1208 => 0.0016867048305892
1209 => 0.0016582671657675
1210 => 0.001653183182965
1211 => 0.0016493530848604
1212 => 0.0016761606687443
1213 => 0.0017001962646296
1214 => 0.0017449205496425
1215 => 0.0017561652975176
1216 => 0.0018000542970791
1217 => 0.0017739205347568
1218 => 0.0017855052931054
1219 => 0.001798082187057
1220 => 0.0018041120125173
1221 => 0.001794286735508
1222 => 0.00186246441726
1223 => 0.0018682207025101
1224 => 0.0018701507351627
1225 => 0.0018471616044734
1226 => 0.0018675813331986
1227 => 0.0018580276183584
1228 => 0.0018828837302741
1229 => 0.0018867814860013
1230 => 0.0018834802255671
1231 => 0.0018847174347568
]
'min_raw' => 0.00084516955166226
'max_raw' => 0.0018867814860013
'avg_raw' => 0.0013659755188318
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000845'
'max' => '$0.001886'
'avg' => '$0.001365'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00013032343002967
'max_diff' => -0.00018004887738841
'year' => 2031
]
6 => [
'items' => [
101 => 0.0018265398107486
102 => 0.0018235229940324
103 => 0.0017823884840429
104 => 0.0017991511009146
105 => 0.0017678141921261
106 => 0.0017777514487089
107 => 0.0017821316967249
108 => 0.0017798437037382
109 => 0.0018000988341221
110 => 0.001782877835446
111 => 0.0017374287885457
112 => 0.001691967359083
113 => 0.0016913966278681
114 => 0.0016794274359515
115 => 0.0016707759024626
116 => 0.0016724424947422
117 => 0.0016783157833125
118 => 0.0016704345362538
119 => 0.0016721163999032
120 => 0.0017000465426812
121 => 0.0017056477336267
122 => 0.0016866126982674
123 => 0.0016101842845573
124 => 0.0015914285601267
125 => 0.0016049098029052
126 => 0.0015984666371603
127 => 0.0012900873313943
128 => 0.0013625364750291
129 => 0.0013194896540218
130 => 0.001339327609631
131 => 0.0012953879523027
201 => 0.0013163582598545
202 => 0.0013124858097627
203 => 0.0014289818888015
204 => 0.0014271629627624
205 => 0.0014280335864019
206 => 0.0013864764516917
207 => 0.0014526780956842
208 => 0.0014852914060491
209 => 0.0014792555502757
210 => 0.0014807746451364
211 => 0.0014546715624266
212 => 0.001428286321301
213 => 0.0013990210282333
214 => 0.0014533923254537
215 => 0.0014473471653517
216 => 0.0014612125876456
217 => 0.0014964762604336
218 => 0.0015016689702053
219 => 0.0015086480247978
220 => 0.0015061465305293
221 => 0.0015657422726374
222 => 0.0015585248350428
223 => 0.0015759167830474
224 => 0.0015401402264716
225 => 0.0014996556567642
226 => 0.0015073504499253
227 => 0.0015066093794662
228 => 0.0014971747019617
229 => 0.0014886574969635
301 => 0.0014744787503492
302 => 0.0015193424026966
303 => 0.0015175210203419
304 => 0.0015470070835384
305 => 0.0015417951354561
306 => 0.0015069884705824
307 => 0.0015082315974277
308 => 0.0015165922228886
309 => 0.001545528443069
310 => 0.0015541186833466
311 => 0.0015501393417881
312 => 0.0015595581480932
313 => 0.001567002388561
314 => 0.0015604930300824
315 => 0.0016526518191176
316 => 0.0016143810646218
317 => 0.0016330339640769
318 => 0.0016374825706877
319 => 0.0016260875583983
320 => 0.0016285587285391
321 => 0.0016323018779488
322 => 0.0016550295481806
323 => 0.0017146735311735
324 => 0.0017410894452307
325 => 0.00182056302601
326 => 0.0017388959712955
327 => 0.0017340501862406
328 => 0.0017483657780112
329 => 0.0017950251830616
330 => 0.0018328382483598
331 => 0.0018453830236073
401 => 0.0018470410227479
402 => 0.0018705758550731
403 => 0.0018840655820633
404 => 0.0018677181074013
405 => 0.0018538653342772
406 => 0.0018042464204162
407 => 0.0018099899448034
408 => 0.0018495571322524
409 => 0.0019054481150197
410 => 0.0019534083926997
411 => 0.0019366143750406
412 => 0.0020647408750507
413 => 0.0020774440941769
414 => 0.0020756889200379
415 => 0.0021046287436999
416 => 0.0020471890872235
417 => 0.002022632521239
418 => 0.0018568604610623
419 => 0.0019034356482175
420 => 0.0019711354180124
421 => 0.0019621750996189
422 => 0.0019130097171738
423 => 0.0019533710963483
424 => 0.0019400263621762
425 => 0.0019295008166611
426 => 0.0019777203811431
427 => 0.0019247009892447
428 => 0.0019706065090205
429 => 0.0019117322050762
430 => 0.0019366910886986
501 => 0.0019225232192292
502 => 0.0019316915671247
503 => 0.0018780935926677
504 => 0.0019070137586674
505 => 0.0018768904186814
506 => 0.0018768761362961
507 => 0.0018762111618963
508 => 0.0019116511378025
509 => 0.0019128068341444
510 => 0.0018866166384029
511 => 0.0018828422220288
512 => 0.0018967982176156
513 => 0.0018804594018645
514 => 0.0018881042309192
515 => 0.0018806909559487
516 => 0.0018790220716054
517 => 0.0018657241172206
518 => 0.0018599949928367
519 => 0.001862241530129
520 => 0.0018545729401811
521 => 0.0018499523373526
522 => 0.0018752920076948
523 => 0.0018617540440303
524 => 0.0018732171206015
525 => 0.001860153498093
526 => 0.0018148692909295
527 => 0.0017888258645179
528 => 0.0017032881950341
529 => 0.0017275465719905
530 => 0.0017436299010098
531 => 0.0017383143608648
601 => 0.0017497341979371
602 => 0.0017504352831852
603 => 0.0017467225777416
604 => 0.0017424237404649
605 => 0.0017403313042192
606 => 0.0017559266096937
607 => 0.0017649802094356
608 => 0.001745244078244
609 => 0.0017406201788437
610 => 0.00176057449714
611 => 0.0017727466197735
612 => 0.0018626187343745
613 => 0.0018559607178417
614 => 0.0018726710327691
615 => 0.001870789707749
616 => 0.0018883047799549
617 => 0.0019169345205897
618 => 0.0018587222528777
619 => 0.0018688258897238
620 => 0.0018663487112962
621 => 0.0018933938958176
622 => 0.0018934783279316
623 => 0.0018772633888038
624 => 0.0018860537703623
625 => 0.0018811472205279
626 => 0.0018900140192387
627 => 0.0018558717959717
628 => 0.0018974533384857
629 => 0.0019210273936357
630 => 0.0019213547194143
701 => 0.0019325286344602
702 => 0.0019438819792963
703 => 0.0019656737360412
704 => 0.0019432742190281
705 => 0.0019029796684707
706 => 0.0019058888048703
707 => 0.0018822641246217
708 => 0.0018826612597648
709 => 0.0018805413212468
710 => 0.001886903416321
711 => 0.0018572679180689
712 => 0.001864223310274
713 => 0.0018544857204561
714 => 0.0018688047221052
715 => 0.0018533998433465
716 => 0.0018663475167257
717 => 0.001871935303334
718 => 0.0018925543562151
719 => 0.0018503543924711
720 => 0.0017643058097107
721 => 0.0017823942650452
722 => 0.001755640018788
723 => 0.0017581162261397
724 => 0.0017631185590756
725 => 0.0017469043613688
726 => 0.0017499975193232
727 => 0.0017498870099548
728 => 0.0017489346999204
729 => 0.0017447167608748
730 => 0.001738599914765
731 => 0.0017629675470008
801 => 0.0017671080825521
802 => 0.0017763119801789
803 => 0.0018036965364528
804 => 0.0018009601735087
805 => 0.0018054232950011
806 => 0.0017956803258426
807 => 0.0017585681745354
808 => 0.0017605835429034
809 => 0.0017354518670613
810 => 0.0017756693067239
811 => 0.0017661452861675
812 => 0.0017600050881574
813 => 0.0017583296782418
814 => 0.0017857821155339
815 => 0.001793996315036
816 => 0.0017888777771407
817 => 0.001778379506586
818 => 0.0017985392895862
819 => 0.0018039331970441
820 => 0.0018051406940043
821 => 0.0018408599642257
822 => 0.001807137004418
823 => 0.0018152544560211
824 => 0.0018785844961997
825 => 0.0018211528887059
826 => 0.001851575692073
827 => 0.0018500866541608
828 => 0.0018656499309119
829 => 0.0018488100112092
830 => 0.0018490187621964
831 => 0.0018628378976037
901 => 0.0018434314142184
902 => 0.0018386260960182
903 => 0.001831987583341
904 => 0.0018464825329066
905 => 0.001855171599621
906 => 0.0019251990959227
907 => 0.0019704400521755
908 => 0.00196847602295
909 => 0.0019864235735621
910 => 0.0019783380376307
911 => 0.0019522277092513
912 => 0.0019967948559795
913 => 0.0019826919459861
914 => 0.0019838545727509
915 => 0.0019838112997247
916 => 0.0019931885019725
917 => 0.001986543894772
918 => 0.0019734466919247
919 => 0.0019821412263956
920 => 0.0020079608854211
921 => 0.0020881058992801
922 => 0.0021329561108159
923 => 0.0020854058602301
924 => 0.0021182053863609
925 => 0.0020985373583486
926 => 0.0020949630925856
927 => 0.0021155636188617
928 => 0.002136200203632
929 => 0.0021348857423965
930 => 0.0021199046415536
1001 => 0.0021114421978188
1002 => 0.0021755226569052
1003 => 0.002222736047578
1004 => 0.0022195164108567
1005 => 0.0022337268402625
1006 => 0.0022754491005101
1007 => 0.0022792636611067
1008 => 0.0022787831141482
1009 => 0.0022693283277012
1010 => 0.002310409311235
1011 => 0.0023446797904501
1012 => 0.0022671398178137
1013 => 0.0022966660243209
1014 => 0.0023099212896969
1015 => 0.0023293839519289
1016 => 0.0023622207254353
1017 => 0.0023978901709872
1018 => 0.0024029342216838
1019 => 0.0023993552263345
1020 => 0.0023758302681468
1021 => 0.0024148602010947
1022 => 0.002437723020451
1023 => 0.0024513373061714
1024 => 0.0024858608695571
1025 => 0.0023100031497032
1026 => 0.0021855223148949
1027 => 0.0021660828350145
1028 => 0.002205613781771
1029 => 0.0022160377771773
1030 => 0.0022118358776996
1031 => 0.0020717213808204
1101 => 0.0021653451611858
1102 => 0.0022660764767478
1103 => 0.0022699459768198
1104 => 0.0023203741795826
1105 => 0.0023367956695241
1106 => 0.0023773969825238
1107 => 0.0023748573593411
1108 => 0.0023847431329486
1109 => 0.002382470564794
1110 => 0.0024576759475108
1111 => 0.002540638652755
1112 => 0.0025377659180776
1113 => 0.0025258390476286
1114 => 0.002543552484079
1115 => 0.0026291788867147
1116 => 0.0026212957796952
1117 => 0.0026289535466832
1118 => 0.0027299119010833
1119 => 0.0028611721229619
1120 => 0.0028001885715885
1121 => 0.0029325053305246
1122 => 0.0030157917164649
1123 => 0.0031598269089755
1124 => 0.0031417929934849
1125 => 0.0031978648369503
1126 => 0.003109508520965
1127 => 0.0029066245597052
1128 => 0.0028745173962272
1129 => 0.002938796750593
1130 => 0.0030968212710136
1201 => 0.0029338199960834
1202 => 0.0029667949417085
1203 => 0.0029572981551501
1204 => 0.0029567921117531
1205 => 0.0029761057299875
1206 => 0.002948090319408
1207 => 0.0028339504968309
1208 => 0.0028862601048878
1209 => 0.0028660608531033
1210 => 0.0028884734289121
1211 => 0.0030094248569031
1212 => 0.0029559493474664
1213 => 0.0028996172422724
1214 => 0.0029702702032805
1215 => 0.0030602357016352
1216 => 0.0030546058224317
1217 => 0.00304368150367
1218 => 0.0031052613165512
1219 => 0.0032069731262386
1220 => 0.0032344654196859
1221 => 0.0032547596686536
1222 => 0.0032575579027121
1223 => 0.0032863814526073
1224 => 0.0031313899603507
1225 => 0.0033773654390257
1226 => 0.0034198386092574
1227 => 0.0034118554135864
1228 => 0.0034590625547547
1229 => 0.0034451730162934
1230 => 0.0034250492542648
1231 => 0.0034998826142635
]
'min_raw' => 0.0012900873313943
'max_raw' => 0.0034998826142635
'avg_raw' => 0.0023949849728289
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00129'
'max' => '$0.003499'
'avg' => '$0.002394'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00044491777973206
'max_diff' => 0.0016131011282622
'year' => 2032
]
7 => [
'items' => [
101 => 0.0034140922057658
102 => 0.0032923235216154
103 => 0.003225518813179
104 => 0.0033134926422301
105 => 0.0033672151897681
106 => 0.003402722376295
107 => 0.003413466829484
108 => 0.0031434215086904
109 => 0.0029978820581828
110 => 0.003091171177345
111 => 0.0032049903411939
112 => 0.0031307576891487
113 => 0.0031336674685679
114 => 0.0030278312147491
115 => 0.0032143545012344
116 => 0.0031871796273013
117 => 0.003328162921338
118 => 0.0032945161267545
119 => 0.0034094825301015
120 => 0.0033792080231565
121 => 0.0035048758088603
122 => 0.003555008090897
123 => 0.0036391879949033
124 => 0.0037011110749642
125 => 0.0037374734919758
126 => 0.0037352904288504
127 => 0.0038793764407343
128 => 0.0037944139535082
129 => 0.0036876810454314
130 => 0.0036857505838623
131 => 0.0037410290693723
201 => 0.0038568776100893
202 => 0.0038869154511695
203 => 0.0039037025064957
204 => 0.003877992546902
205 => 0.0037857718563344
206 => 0.0037459514297168
207 => 0.0037798795869038
208 => 0.0037383883661439
209 => 0.0038100138535559
210 => 0.0039083709461512
211 => 0.0038880605954764
212 => 0.0039559550526844
213 => 0.0040262186731895
214 => 0.0041266988062485
215 => 0.0041529680337986
216 => 0.0041963900680098
217 => 0.0042410856046083
218 => 0.0042554406063852
219 => 0.0042828487588729
220 => 0.0042827043043802
221 => 0.0043653006166832
222 => 0.0044564069069482
223 => 0.0044907974224078
224 => 0.004569876516403
225 => 0.0044344563391981
226 => 0.0045371740992029
227 => 0.0046298280899195
228 => 0.0045193621825115
301 => 0.004671613700618
302 => 0.0046775252820567
303 => 0.0047667831432286
304 => 0.0046763032011938
305 => 0.0046225765004357
306 => 0.004777683472411
307 => 0.0048527348503261
308 => 0.0048301287645097
309 => 0.0046580953352469
310 => 0.0045579645005551
311 => 0.0042959027923711
312 => 0.0046063262059384
313 => 0.0047575243955119
314 => 0.0046577037684627
315 => 0.0047080474865272
316 => 0.0049827064882816
317 => 0.0050872788532962
318 => 0.0050655285323892
319 => 0.0050692039785817
320 => 0.0051256293286209
321 => 0.0053758504047027
322 => 0.0052259121358354
323 => 0.0053405343243047
324 => 0.0054013295197678
325 => 0.005457799485467
326 => 0.0053191270972257
327 => 0.0051387163576259
328 => 0.005081572703267
329 => 0.0046477785743522
330 => 0.0046251977060698
331 => 0.0046125223804325
401 => 0.00453260624525
402 => 0.0044698140538682
403 => 0.0044198793719568
404 => 0.0042888358548631
405 => 0.0043330591950595
406 => 0.0041242031797197
407 => 0.0042578218569314
408 => 0.0039244826134443
409 => 0.0042020974406494
410 => 0.004051004311799
411 => 0.0041524592841854
412 => 0.0041521053173444
413 => 0.0039652945468527
414 => 0.0038575459930744
415 => 0.0039262075651784
416 => 0.0039998182208362
417 => 0.0040117613020607
418 => 0.0041071994385558
419 => 0.0041338341710157
420 => 0.0040531296882054
421 => 0.0039175748985402
422 => 0.0039490611845039
423 => 0.0038569079244943
424 => 0.0036954128809514
425 => 0.0038114014406569
426 => 0.0038510050345973
427 => 0.0038684962378483
428 => 0.003709684410355
429 => 0.0036597822861841
430 => 0.0036332148139948
501 => 0.0038970742858844
502 => 0.0039115291033836
503 => 0.0038375762133525
504 => 0.0041718502887938
505 => 0.0040961937704566
506 => 0.0041807206377362
507 => 0.0039462041340763
508 => 0.0039551629803345
509 => 0.0038441391092082
510 => 0.0039063050584212
511 => 0.0038623681692195
512 => 0.0039012826640606
513 => 0.0039246078518179
514 => 0.0040356135050195
515 => 0.0042033649468982
516 => 0.0040190329621435
517 => 0.0039387168767032
518 => 0.0039885445243955
519 => 0.0041212421164108
520 => 0.0043222857609788
521 => 0.0042032638770141
522 => 0.004256083767995
523 => 0.0042676225643809
524 => 0.004179860233575
525 => 0.0043255216832985
526 => 0.0044035828375568
527 => 0.0044836574293459
528 => 0.0045531839537573
529 => 0.0044516738765073
530 => 0.0045603042100628
531 => 0.0044727673370523
601 => 0.0043942377125663
602 => 0.004394356809591
603 => 0.0043450940290162
604 => 0.0042496411841427
605 => 0.0042320382150387
606 => 0.0043236110833279
607 => 0.004397043851713
608 => 0.0044030921262364
609 => 0.0044437482799262
610 => 0.0044678081728882
611 => 0.0047036278317538
612 => 0.0047984764493521
613 => 0.0049144555435589
614 => 0.004959635936976
615 => 0.005095612723094
616 => 0.0049858004248091
617 => 0.0049620418433234
618 => 0.0046322066378688
619 => 0.0046862171342843
620 => 0.0047726931502832
621 => 0.0046336325955216
622 => 0.0047218345101904
623 => 0.004739247436518
624 => 0.0046289073710829
625 => 0.0046878447675446
626 => 0.0045313245162627
627 => 0.0042067766606556
628 => 0.0043258829978387
629 => 0.004413585352765
630 => 0.0042884232786628
701 => 0.0045127714520498
702 => 0.0043817118806434
703 => 0.0043401722884765
704 => 0.0041781115294994
705 => 0.0042545979694459
706 => 0.0043580469746539
707 => 0.0042941275166731
708 => 0.0044267699895383
709 => 0.0046146271055708
710 => 0.0047485052735402
711 => 0.0047587827769051
712 => 0.0046727080840414
713 => 0.0048106433286768
714 => 0.0048116480363466
715 => 0.0046560565169158
716 => 0.0045607575776017
717 => 0.0045391054580788
718 => 0.004593196697795
719 => 0.0046588734486042
720 => 0.004762427379488
721 => 0.0048250028511351
722 => 0.0049881664937249
723 => 0.0050323138971414
724 => 0.0050808185088398
725 => 0.0051456356283372
726 => 0.005223465199062
727 => 0.0050531785291559
728 => 0.0050599443360054
729 => 0.0049013757467682
730 => 0.0047319224681324
731 => 0.0048605163839676
801 => 0.0050286358227904
802 => 0.004990069037769
803 => 0.0049857294866061
804 => 0.0049930274079709
805 => 0.0049639493115382
806 => 0.0048324301590576
807 => 0.0047663820640353
808 => 0.0048516009572802
809 => 0.0048968910063833
810 => 0.0049671319228348
811 => 0.0049584732472763
812 => 0.0051394063047317
813 => 0.0052097114197272
814 => 0.0051917243627858
815 => 0.0051950344141458
816 => 0.0053223184666352
817 => 0.0054638845109653
818 => 0.0055964797927653
819 => 0.0057313614085122
820 => 0.0055687563562103
821 => 0.0054861955387368
822 => 0.0055713772280787
823 => 0.0055261786246948
824 => 0.0057859032065155
825 => 0.0058038859730444
826 => 0.0060635917738217
827 => 0.0063100835039508
828 => 0.0061552664646147
829 => 0.006301251959596
830 => 0.0064591471747904
831 => 0.0067637526624756
901 => 0.0066611722503735
902 => 0.0065825972623432
903 => 0.0065083442783262
904 => 0.0066628529507364
905 => 0.0068616258894556
906 => 0.0069044396766322
907 => 0.0069738143679838
908 => 0.0069008753627613
909 => 0.0069887223605839
910 => 0.0072988608648247
911 => 0.0072150587033105
912 => 0.0070960461620907
913 => 0.0073408707251702
914 => 0.0074294717828173
915 => 0.0080513204061186
916 => 0.0088364299803219
917 => 0.0085113894612944
918 => 0.0083096263221419
919 => 0.0083570454457284
920 => 0.0086437408845912
921 => 0.0087358183602955
922 => 0.0084855200403219
923 => 0.0085739296383885
924 => 0.0090610752159758
925 => 0.00932241318885
926 => 0.0089674811193144
927 => 0.0079882376162756
928 => 0.0070853303848983
929 => 0.0073248220411021
930 => 0.0072976711195799
1001 => 0.007821048270049
1002 => 0.0072130600494736
1003 => 0.0072232970118354
1004 => 0.0077574970475101
1005 => 0.0076149816364993
1006 => 0.0073841249226564
1007 => 0.0070870158943907
1008 => 0.0065377823763827
1009 => 0.0060513109329733
1010 => 0.0070053934611816
1011 => 0.0069642516876788
1012 => 0.0069046723027775
1013 => 0.0070372597767126
1014 => 0.0076810669145307
1015 => 0.0076662250762036
1016 => 0.0075718088731394
1017 => 0.0076434227310174
1018 => 0.0073715706671225
1019 => 0.0074416331339446
1020 => 0.0070851873597797
1021 => 0.0072463157361927
1022 => 0.0073836296078315
1023 => 0.0074111974005296
1024 => 0.0074733090451248
1025 => 0.0069425718425395
1026 => 0.0071808572648747
1027 => 0.0073208276261719
1028 => 0.0066884364416656
1029 => 0.0073083272857469
1030 => 0.0069333328886261
1031 => 0.0068060541580165
1101 => 0.0069774182010847
1102 => 0.006910637466844
1103 => 0.0068532233130402
1104 => 0.0068211852287173
1105 => 0.0069470160691873
1106 => 0.006941145910079
1107 => 0.0067352622323564
1108 => 0.0064666953676595
1109 => 0.0065568352228586
1110 => 0.0065240865683991
1111 => 0.0064054012199775
1112 => 0.00648538081469
1113 => 0.0061331911563224
1114 => 0.0055272671543265
1115 => 0.0059275591099991
1116 => 0.0059121483051396
1117 => 0.0059043774785051
1118 => 0.006205185819936
1119 => 0.0061762700387366
1120 => 0.0061237876127156
1121 => 0.0064044373390664
1122 => 0.0063019964136768
1123 => 0.0066176952076098
1124 => 0.0068256348514119
1125 => 0.0067728946316009
1126 => 0.0069684628716562
1127 => 0.0065589118630654
1128 => 0.0066949482797848
1129 => 0.0067229851967323
1130 => 0.0064009741650073
1201 => 0.0061810010181483
1202 => 0.0061663313171303
1203 => 0.0057849281946438
1204 => 0.0059886706640976
1205 => 0.0061679556057808
1206 => 0.0060820920317881
1207 => 0.0060549101893633
1208 => 0.0061937763272892
1209 => 0.0062045674155141
1210 => 0.0059585294603984
1211 => 0.0060096885422757
1212 => 0.0062230304181936
1213 => 0.0060043128743815
1214 => 0.0055793804140623
1215 => 0.0054739912887523
1216 => 0.0054599304367289
1217 => 0.0051741067703711
1218 => 0.0054810338940432
1219 => 0.0053470519794248
1220 => 0.0057702992423544
1221 => 0.0055285426756896
1222 => 0.0055181210332934
1223 => 0.005502367192289
1224 => 0.0052563469554279
1225 => 0.0053102097518988
1226 => 0.0054892578909036
1227 => 0.0055531442840221
1228 => 0.0055464804098141
1229 => 0.0054883804573431
1230 => 0.0055149783180644
1231 => 0.005429297341372
]
'min_raw' => 0.0029978820581828
'max_raw' => 0.00932241318885
'avg_raw' => 0.0061601476235164
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.002997'
'max' => '$0.009322'
'avg' => '$0.00616'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0017077947267885
'max_diff' => 0.0058225305745866
'year' => 2033
]
8 => [
'items' => [
101 => 0.0053990416052066
102 => 0.0053035461793728
103 => 0.0051631942846817
104 => 0.0051827110764667
105 => 0.0049046372480128
106 => 0.004753127867776
107 => 0.004711192068188
108 => 0.0046551137643613
109 => 0.004717526261824
110 => 0.004903849499795
111 => 0.0046791041441219
112 => 0.0042937939958741
113 => 0.0043169517923203
114 => 0.0043689804853235
115 => 0.0042720253601163
116 => 0.0041802654709345
117 => 0.0042600432498629
118 => 0.0040967822605964
119 => 0.0043887097958878
120 => 0.0043808139741756
121 => 0.0044896265066546
122 => 0.0045576692162716
123 => 0.0044008527996932
124 => 0.0043614138950004
125 => 0.0043838800875117
126 => 0.0040125639693622
127 => 0.0044592820580108
128 => 0.0044631452945918
129 => 0.0044300659175463
130 => 0.004667929508878
131 => 0.0051698958781026
201 => 0.0049810359384499
202 => 0.0049079036614945
203 => 0.0047688791495428
204 => 0.0049541210572597
205 => 0.0049398973689709
206 => 0.0048755724563557
207 => 0.0048366685485
208 => 0.004908350191583
209 => 0.0048277863996564
210 => 0.0048133149288815
211 => 0.0047256335611007
212 => 0.004694335302051
213 => 0.0046711633170702
214 => 0.0046456532384386
215 => 0.0047019221151845
216 => 0.0045744094376911
217 => 0.004420641648856
218 => 0.0044078575210049
219 => 0.0044431556219938
220 => 0.0044275388399408
221 => 0.0044077827538607
222 => 0.0043700630052838
223 => 0.0043588723616359
224 => 0.004395236524563
225 => 0.0043541835047808
226 => 0.0044147594717431
227 => 0.0043982861605505
228 => 0.0043062675833376
301 => 0.0041915783664896
302 => 0.0041905573918908
303 => 0.004165847788249
304 => 0.0041343763928972
305 => 0.0041256217706784
306 => 0.0042533245878399
307 => 0.0045176655975405
308 => 0.004465769132192
309 => 0.00450326964697
310 => 0.0046877350640541
311 => 0.0047463710730765
312 => 0.0047047526227423
313 => 0.0046477827210108
314 => 0.0046502891075599
315 => 0.0048449725077386
316 => 0.0048571146726042
317 => 0.0048877940060088
318 => 0.0049272256194123
319 => 0.0047114679970121
320 => 0.0046401269429476
321 => 0.0046063215936808
322 => 0.0045022142022558
323 => 0.0046144850984145
324 => 0.0045490696551419
325 => 0.0045578964333491
326 => 0.0045521479824621
327 => 0.004555287025355
328 => 0.0043886281961922
329 => 0.0044493499142089
330 => 0.0043483882808352
331 => 0.004213211987223
401 => 0.0042127588288879
402 => 0.0042458430352453
403 => 0.0042261632547188
404 => 0.0041732054713353
405 => 0.0041807278745112
406 => 0.0041148237072454
407 => 0.0041887298336508
408 => 0.0041908491969072
409 => 0.0041623913125473
410 => 0.0042762538973548
411 => 0.0043229034912535
412 => 0.0043041719021408
413 => 0.0043215892330268
414 => 0.0044679256646258
415 => 0.0044917848880825
416 => 0.0045023815790902
417 => 0.0044881834169325
418 => 0.0043242639943628
419 => 0.004331534517793
420 => 0.0042781882409305
421 => 0.0042331162584738
422 => 0.0042349189014007
423 => 0.004258091759331
424 => 0.0043592889889828
425 => 0.0045722525928824
426 => 0.0045803344059761
427 => 0.0045901297992087
428 => 0.0045502870121615
429 => 0.004538270046344
430 => 0.0045541235260994
501 => 0.0046341014586297
502 => 0.0048398264148947
503 => 0.0047671094754428
504 => 0.0047079894717618
505 => 0.0047598536536286
506 => 0.0047518695693551
507 => 0.0046844758631884
508 => 0.004682584346318
509 => 0.0045532342771129
510 => 0.0045054165016863
511 => 0.0044654563894414
512 => 0.0044218209900551
513 => 0.0043959524626271
514 => 0.004435698277792
515 => 0.0044447886159789
516 => 0.0043578836964829
517 => 0.0043460388770803
518 => 0.0044170073103137
519 => 0.0043857767488175
520 => 0.004417898155797
521 => 0.0044253505977486
522 => 0.0044241505829501
523 => 0.0043915422899409
524 => 0.0044123258435116
525 => 0.0043631665434414
526 => 0.0043097131881031
527 => 0.0042756132776589
528 => 0.0042458565830997
529 => 0.0042623673267104
530 => 0.0042035095404809
531 => 0.0041846797500928
601 => 0.0044052848432066
602 => 0.0045682481973942
603 => 0.0045658786456838
604 => 0.0045514546090456
605 => 0.0045300234164102
606 => 0.0046325336334018
607 => 0.0045968211235584
608 => 0.0046228049583495
609 => 0.004629418934842
610 => 0.0046494374496823
611 => 0.0046565923480883
612 => 0.0046349652757091
613 => 0.00456238217928
614 => 0.0043815120039725
615 => 0.0042973164491172
616 => 0.0042695305136271
617 => 0.0042705404796091
618 => 0.0042426811091372
619 => 0.0042508869423106
620 => 0.0042398274552372
621 => 0.0042188834622977
622 => 0.004261074094165
623 => 0.0042659361714548
624 => 0.0042560883738364
625 => 0.004258407886671
626 => 0.0041768723284405
627 => 0.0041830712998469
628 => 0.0041485546393292
629 => 0.0041420831815867
630 => 0.0040548280695074
701 => 0.0039002429906282
702 => 0.0039858981302639
703 => 0.0038824387665192
704 => 0.0038432571378039
705 => 0.0040287368741487
706 => 0.0040101198530268
707 => 0.0039782556054905
708 => 0.0039311217422934
709 => 0.0039136393339448
710 => 0.0038074217550769
711 => 0.0038011458538686
712 => 0.0038537901540715
713 => 0.0038294966209076
714 => 0.0037953792996651
715 => 0.0036718098205421
716 => 0.0035328768135593
717 => 0.0035370703277383
718 => 0.0035812623323191
719 => 0.0037097565457413
720 => 0.0036595516335848
721 => 0.0036231273937802
722 => 0.0036163062285735
723 => 0.0037016873922128
724 => 0.0038225196266692
725 => 0.0038792114076073
726 => 0.0038230315744527
727 => 0.0037584952070616
728 => 0.003762423236712
729 => 0.0037885546581875
730 => 0.0037913007011062
731 => 0.0037492941603804
801 => 0.00376111875554
802 => 0.0037431561142289
803 => 0.0036329194176593
804 => 0.0036309255853827
805 => 0.0036038717222377
806 => 0.0036030525420136
807 => 0.0035570271719014
808 => 0.0035505879044644
809 => 0.0034592017385664
810 => 0.0035193523897033
811 => 0.0034790064909716
812 => 0.0034181957049476
813 => 0.0034077119025161
814 => 0.0034073967467554
815 => 0.0034698358269591
816 => 0.0035186227526973
817 => 0.0034797083251536
818 => 0.0034708482643264
819 => 0.0035654505341516
820 => 0.0035534115329975
821 => 0.0035429858356413
822 => 0.0038117004253732
823 => 0.0035989918595395
824 => 0.0035062387838555
825 => 0.0033914392393652
826 => 0.0034288185499208
827 => 0.0034366949198712
828 => 0.0031606227095453
829 => 0.0030486202481987
830 => 0.0030101852241883
831 => 0.0029880653244788
901 => 0.0029981456405407
902 => 0.0028973302887503
903 => 0.0029650798724854
904 => 0.0028777822995445
905 => 0.0028631465773501
906 => 0.0030192454518625
907 => 0.0030409656983346
908 => 0.0029483003789333
909 => 0.0030078065151414
910 => 0.0029862287629552
911 => 0.0028792787658734
912 => 0.0028751940626558
913 => 0.0028215303135943
914 => 0.0027375569376625
915 => 0.0026991788515552
916 => 0.0026791912110967
917 => 0.0026874385011012
918 => 0.0026832684189037
919 => 0.0026560558118125
920 => 0.0026848282136882
921 => 0.0026113266164731
922 => 0.0025820576882194
923 => 0.0025688375923612
924 => 0.0025036006942388
925 => 0.0026074216101319
926 => 0.0026278756384643
927 => 0.002648369967551
928 => 0.0028267591101786
929 => 0.0028178472927355
930 => 0.0028984057821908
1001 => 0.0028952754274281
1002 => 0.0028722988412744
1003 => 0.0027753644037571
1004 => 0.0028140007428613
1005 => 0.0026950840965188
1006 => 0.0027841845335045
1007 => 0.0027435228149874
1008 => 0.0027704367655719
1009 => 0.002722043055688
1010 => 0.002748826132865
1011 => 0.0026327260473763
1012 => 0.0025243134211192
1013 => 0.0025679418266869
1014 => 0.0026153708930524
1015 => 0.0027182091936341
1016 => 0.0026569595502052
1017 => 0.0026789872380877
1018 => 0.0026051981710718
1019 => 0.0024529502490131
1020 => 0.0024538119557179
1021 => 0.0024303919298105
1022 => 0.0024101536080467
1023 => 0.0026639948085498
1024 => 0.0026324256426317
1025 => 0.0025821243084115
1026 => 0.0026494546431608
1027 => 0.0026672578523446
1028 => 0.0026677646846817
1029 => 0.0027168871588673
1030 => 0.0027431038321459
1031 => 0.0027477246344408
1101 => 0.0028250199089332
1102 => 0.0028509282653937
1103 => 0.0029576411189667
1104 => 0.0027408795305839
1105 => 0.0027364154683151
1106 => 0.002650402119048
1107 => 0.0025958510931255
1108 => 0.0026541372744633
1109 => 0.0027057708742714
1110 => 0.0026520065189221
1111 => 0.0026590270087032
1112 => 0.002586852754356
1113 => 0.0026126516541708
1114 => 0.0026348731421785
1115 => 0.0026226037426194
1116 => 0.0026042358576337
1117 => 0.002701537507909
1118 => 0.0026960473674722
1119 => 0.0027866569011638
1120 => 0.0028572935122263
1121 => 0.0029838869470549
1122 => 0.0028517800983463
1123 => 0.0028469655997021
1124 => 0.0028940280962182
1125 => 0.0028509210603707
1126 => 0.002878163219022
1127 => 0.0029794978141341
1128 => 0.0029816388544478
1129 => 0.0029457736706178
1130 => 0.0029435912709223
1201 => 0.002950479571799
1202 => 0.0029908245651858
1203 => 0.00297672678482
1204 => 0.0029930410931715
1205 => 0.0030134423855785
1206 => 0.0030978307809426
1207 => 0.0031181765373693
1208 => 0.0030687468973176
1209 => 0.0030732098403741
1210 => 0.0030547217981208
1211 => 0.0030368625809586
1212 => 0.00307700749301
1213 => 0.0031503731088341
1214 => 0.0031499167051457
1215 => 0.0031669361019931
1216 => 0.0031775390452328
1217 => 0.0031320234510194
1218 => 0.0031023944728413
1219 => 0.0031137561084157
1220 => 0.0031319236111233
1221 => 0.0031078646321431
1222 => 0.0029593614686739
1223 => 0.0030044078420516
1224 => 0.0029969099228665
1225 => 0.0029862319741687
1226 => 0.0030315264509333
1227 => 0.0030271576881527
1228 => 0.0028962962816016
1229 => 0.0029046736042702
1230 => 0.0028968057343396
1231 => 0.0029222284317
]
'min_raw' => 0.0024101536080467
'max_raw' => 0.0053990416052066
'avg_raw' => 0.0039045976066267
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.00241'
'max' => '$0.005399'
'avg' => '$0.0039045'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00058772845013613
'max_diff' => -0.0039233715836434
'year' => 2034
]
9 => [
'items' => [
101 => 0.002849548151283
102 => 0.0028719041160301
103 => 0.0028859255675454
104 => 0.0028941843102057
105 => 0.0029240205517677
106 => 0.002920519613189
107 => 0.0029238029285101
108 => 0.0029680421982708
109 => 0.0031917892436363
110 => 0.0032039673016455
111 => 0.0031439980900927
112 => 0.0031679546072676
113 => 0.0031219633330061
114 => 0.0031528375835326
115 => 0.0031739609616219
116 => 0.0030785084778283
117 => 0.0030728564012196
118 => 0.0030266753046091
119 => 0.0030514904100966
120 => 0.0030120077929968
121 => 0.0030216954461898
122 => 0.0029946079233079
123 => 0.0030433600714233
124 => 0.0030978725483344
125 => 0.003111644552765
126 => 0.0030754163383286
127 => 0.003049184723521
128 => 0.0030031306491499
129 => 0.003079719601211
130 => 0.0031021165447997
131 => 0.003079601959601
201 => 0.0030743848382571
202 => 0.0030644984027375
203 => 0.0030764822922888
204 => 0.0031019945662349
205 => 0.0030899634489797
206 => 0.0030979102138878
207 => 0.0030676253407264
208 => 0.003132038518575
209 => 0.003234342146874
210 => 0.0032346710697673
211 => 0.0032226398876598
212 => 0.0032177169871569
213 => 0.0032300617101124
214 => 0.0032367582159086
215 => 0.0032766787863116
216 => 0.0033195151488596
217 => 0.0035194137619021
218 => 0.003463283031267
219 => 0.0036406449727801
220 => 0.0037809152409511
221 => 0.0038229761611002
222 => 0.0037842820936823
223 => 0.003651911779258
224 => 0.0036454170601264
225 => 0.0038432341951815
226 => 0.0037873417939297
227 => 0.0037806935706489
228 => 0.0037099677072921
301 => 0.0037517754521046
302 => 0.0037426314850315
303 => 0.0037281972856684
304 => 0.0038079635504178
305 => 0.0039572788772451
306 => 0.0039340066832888
307 => 0.0039166350700665
308 => 0.0038405177177266
309 => 0.0038863573652613
310 => 0.0038700347447748
311 => 0.0039401670809758
312 => 0.0038986222386318
313 => 0.0037869183540185
314 => 0.003804707565824
315 => 0.0038020187622465
316 => 0.0038573541493402
317 => 0.0038407438396434
318 => 0.0037987753326923
319 => 0.0039567685336907
320 => 0.0039465093340222
321 => 0.0039610545335726
322 => 0.0039674577802399
323 => 0.0040636254575351
324 => 0.0041030222779005
325 => 0.0041119660458619
326 => 0.0041493899781496
327 => 0.0041110349043342
328 => 0.0042644825463001
329 => 0.0043665162742894
330 => 0.0044850336999565
331 => 0.0046582195133371
401 => 0.0047233389812265
402 => 0.004711575732214
403 => 0.0048428832393768
404 => 0.0050788399109464
405 => 0.0047592693217977
406 => 0.0050957779281493
407 => 0.004989243188557
408 => 0.004736651237462
409 => 0.0047203872936749
410 => 0.0048914454956094
411 => 0.0052708361237581
412 => 0.0051758030744197
413 => 0.0052709915637822
414 => 0.0051599491347066
415 => 0.0051544349421639
416 => 0.0052655984808533
417 => 0.0055253381482102
418 => 0.0054019455684448
419 => 0.0052250320482492
420 => 0.0053556622384824
421 => 0.005242498278449
422 => 0.0049875082038959
423 => 0.0051757304044379
424 => 0.0050498715791951
425 => 0.0050866038754241
426 => 0.0053511404059972
427 => 0.0053193106707618
428 => 0.0053605012955105
429 => 0.0052878009209754
430 => 0.0052198873073627
501 => 0.0050931215042235
502 => 0.0050555923993926
503 => 0.0050659640938121
504 => 0.0050555872596959
505 => 0.0049846629578774
506 => 0.0049693468616525
507 => 0.0049438193635974
508 => 0.0049517314026687
509 => 0.004903732237992
510 => 0.0049943165788703
511 => 0.0050111298307638
512 => 0.0050770495599479
513 => 0.0050838935649121
514 => 0.0052674790723811
515 => 0.0051663632598963
516 => 0.0052342004768303
517 => 0.0052281324776391
518 => 0.004742125670968
519 => 0.0048090931208529
520 => 0.0049132734573304
521 => 0.0048663403569604
522 => 0.0047999879336914
523 => 0.0047464047943098
524 => 0.0046652208589893
525 => 0.0047794856889535
526 => 0.0049297317896463
527 => 0.0050877040539694
528 => 0.0052774973788009
529 => 0.0052351377181364
530 => 0.0050841559997792
531 => 0.0050909289293725
601 => 0.0051327965150686
602 => 0.0050785741875208
603 => 0.0050625829645814
604 => 0.0051305995665987
605 => 0.0051310679595555
606 => 0.0050686786187246
607 => 0.0049993442835199
608 => 0.0049990537701238
609 => 0.0049867163948643
610 => 0.0051621439263576
611 => 0.005258611330955
612 => 0.005269671163427
613 => 0.0052578669161094
614 => 0.0052624099024082
615 => 0.0052062776451872
616 => 0.0053345793396906
617 => 0.0054523216622893
618 => 0.005420764204635
619 => 0.0053734550894543
620 => 0.0053357711004971
621 => 0.0054118870544511
622 => 0.0054084977308392
623 => 0.0054512932858176
624 => 0.0054493518322447
625 => 0.0054349612967277
626 => 0.0054207647185664
627 => 0.0054770525462674
628 => 0.0054608425558444
629 => 0.0054446073868289
630 => 0.0054120452698883
701 => 0.00541647100238
702 => 0.005369170055785
703 => 0.0053472864735461
704 => 0.0050182099027287
705 => 0.0049302698901192
706 => 0.0049579376082702
707 => 0.0049670465394775
708 => 0.0049287749332916
709 => 0.0049836465853931
710 => 0.0049750948965366
711 => 0.0050083645153068
712 => 0.0049875791018981
713 => 0.0049884321425146
714 => 0.0050495576114323
715 => 0.0050673025951054
716 => 0.0050582773531897
717 => 0.0050645983232603
718 => 0.0052102624106224
719 => 0.0051895536354748
720 => 0.0051785525114188
721 => 0.0051815998979654
722 => 0.0052188201953596
723 => 0.0052292398464771
724 => 0.0051850910525164
725 => 0.0052059118789694
726 => 0.0052945643154501
727 => 0.005325587650925
728 => 0.005424599245715
729 => 0.0053825373604574
730 => 0.0054597437712434
731 => 0.0056970499563946
801 => 0.0058866265574323
802 => 0.0057122840805336
803 => 0.0060604173659049
804 => 0.0063314890653201
805 => 0.006321084882003
806 => 0.0062738172612086
807 => 0.0059652093382383
808 => 0.0056812237264361
809 => 0.0059187897493747
810 => 0.005919395354023
811 => 0.0058989882219657
812 => 0.0057722412774087
813 => 0.0058945777030351
814 => 0.0059042883242407
815 => 0.0058988529586281
816 => 0.0058016763734102
817 => 0.0056533056890174
818 => 0.0056822969655986
819 => 0.0057297852680444
820 => 0.0056398800044167
821 => 0.0056111498251356
822 => 0.0056645646945594
823 => 0.0058366785332729
824 => 0.0058041414090517
825 => 0.0058032917332454
826 => 0.0059424993485517
827 => 0.005842856738876
828 => 0.0056826626384392
829 => 0.0056422115153783
830 => 0.0054986372796536
831 => 0.0055978045156625
901 => 0.0056013733679424
902 => 0.005547060486245
903 => 0.0056870698294535
904 => 0.0056857796187077
905 => 0.0058186976524436
906 => 0.0060727870112131
907 => 0.005997640284847
908 => 0.0059102528180238
909 => 0.0059197542586591
910 => 0.0060239616108746
911 => 0.0059609554669026
912 => 0.0059836129155694
913 => 0.0060239273161124
914 => 0.0060482499949103
915 => 0.0059162545994848
916 => 0.0058854801587416
917 => 0.0058225264533418
918 => 0.0058061030066895
919 => 0.0058573774861655
920 => 0.0058438684723777
921 => 0.0056010734197276
922 => 0.0055756999858267
923 => 0.0055764781528196
924 => 0.0055126754468349
925 => 0.0054153610058042
926 => 0.0056710975464894
927 => 0.0056505583232418
928 => 0.0056278846103861
929 => 0.0056306620108365
930 => 0.0057416685754324
1001 => 0.0056772791620009
1002 => 0.0058484689708259
1003 => 0.0058132774925682
1004 => 0.0057771834856827
1005 => 0.0057721941944808
1006 => 0.0057583010812259
1007 => 0.005710656426475
1008 => 0.0056531226428633
1009 => 0.005615133855432
1010 => 0.0051796641667834
1011 => 0.005260484807986
1012 => 0.0053534615886562
1013 => 0.0053855568007625
1014 => 0.0053306557195336
1015 => 0.0057128242557879
1016 => 0.0057826501300292
1017 => 0.0055711430023232
1018 => 0.0055315786545085
1019 => 0.0057154180878439
1020 => 0.005604540436086
1021 => 0.0056544686358834
1022 => 0.0055465511771865
1023 => 0.0057658311216648
1024 => 0.0057641605758822
1025 => 0.005678855724818
1026 => 0.0057509548007951
1027 => 0.0057384258120729
1028 => 0.005642116845318
1029 => 0.0057688842876941
1030 => 0.0057689471627639
1031 => 0.005686843098302
1101 => 0.0055909635259013
1102 => 0.0055738225229305
1103 => 0.0055609090797617
1104 => 0.0056512927204724
1105 => 0.0057323304101112
1106 => 0.0058831214595821
1107 => 0.0059210339121261
1108 => 0.00606900873838
1109 => 0.0059808969341093
1110 => 0.0060199557557036
1111 => 0.0060623596317519
1112 => 0.0060826896092803
1113 => 0.0060495630018645
1114 => 0.0062794288159052
1115 => 0.0062988365335168
1116 => 0.0063053437733559
1117 => 0.0062278343141868
1118 => 0.0062966808552438
1119 => 0.006264469838641
1120 => 0.0063482739553633
1121 => 0.00636141551093
1122 => 0.0063502850808894
1123 => 0.0063544564180516
1124 => 0.0061583064968761
1125 => 0.0061481350886899
1126 => 0.0060094472163407
1127 => 0.006065963549452
1128 => 0.0059603089735988
1129 => 0.0059938131279645
1130 => 0.0060085814399697
1201 => 0.0060008673118725
1202 => 0.0060691588981297
1203 => 0.0060110970987618
1204 => 0.0058578624639862
1205 => 0.0057045860805369
1206 => 0.0057026618203989
1207 => 0.0056623068541896
1208 => 0.005633137605001
1209 => 0.0056387566372294
1210 => 0.0056585588397043
1211 => 0.0056319866649947
1212 => 0.0056376571857124
1213 => 0.005731825612109
1214 => 0.0057507104184443
1215 => 0.0056865324677467
1216 => 0.0054288487348617
1217 => 0.005365612500461
1218 => 0.0054110654517192
1219 => 0.0053893418685627
1220 => 0.0043496195088171
1221 => 0.0045938868548196
1222 => 0.0044487514923602
1223 => 0.0045156365447384
1224 => 0.0043674909222873
1225 => 0.0044381937782983
1226 => 0.0044251375424479
1227 => 0.0048179122064237
1228 => 0.0048117795702896
1229 => 0.0048147149386751
1230 => 0.0046746021575731
1231 => 0.0048978056223452
]
'min_raw' => 0.002849548151283
'max_raw' => 0.00636141551093
'avg_raw' => 0.0046054818311065
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.002849'
'max' => '$0.006361'
'avg' => '$0.0046054'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00043939454323637
'max_diff' => 0.00096237390572336
'year' => 2035
]
10 => [
'items' => [
101 => 0.0050077636752289
102 => 0.0049874133660789
103 => 0.0049925351004618
104 => 0.0049045267346466
105 => 0.004815567052033
106 => 0.0047168970732174
107 => 0.0049002136978788
108 => 0.0048798320185356
109 => 0.0049265802578521
110 => 0.005045474192688
111 => 0.0050629817762267
112 => 0.0050865121460471
113 => 0.0050780781834722
114 => 0.0052790093888317
115 => 0.0052546752940759
116 => 0.0053133134610405
117 => 0.0051926903027058
118 => 0.0050561937493948
119 => 0.0050821372817707
120 => 0.0050796387109782
121 => 0.0050478290370635
122 => 0.0050191126857599
123 => 0.0049713080516213
124 => 0.0051225689877906
125 => 0.0051164280700171
126 => 0.0052158423907351
127 => 0.005198269943889
128 => 0.0050809168431435
129 => 0.0050851081320948
130 => 0.0051132965645567
131 => 0.0052108570511571
201 => 0.0052398196460046
202 => 0.0052264030181114
203 => 0.0052581591811689
204 => 0.0052832579576466
205 => 0.005261311201067
206 => 0.0055720309926204
207 => 0.0054429984718591
208 => 0.0055058880246757
209 => 0.0055208868124557
210 => 0.0054824677329478
211 => 0.0054907994556089
212 => 0.0055034197451821
213 => 0.0055800476721641
214 => 0.0057811415250344
215 => 0.0058702046235785
216 => 0.0061381553498442
217 => 0.0058628091730626
218 => 0.0058464712704281
219 => 0.0058947372875653
220 => 0.0060520527293482
221 => 0.0061795421190252
222 => 0.0062218377046204
223 => 0.0062274277644808
224 => 0.0063067770948147
225 => 0.0063522586511848
226 => 0.0062971419990176
227 => 0.00625043640726
228 => 0.0060831427748957
229 => 0.0061025074683673
301 => 0.0062359110033441
302 => 0.0064243513539279
303 => 0.0065860527786057
304 => 0.0065294305755471
305 => 0.006961418015838
306 => 0.0070042478060324
307 => 0.0069983301138804
308 => 0.0070959027498706
309 => 0.0069022409377519
310 => 0.0068194467610502
311 => 0.006260534686329
312 => 0.0064175661815984
313 => 0.0066458206821088
314 => 0.0066156103430558
315 => 0.0064498458235249
316 => 0.0065859270313532
317 => 0.0065409343283923
318 => 0.0065054467168181
319 => 0.0066680223450514
320 => 0.0064892637635702
321 => 0.0066440374285154
322 => 0.0064455386022946
323 => 0.0065296892210012
324 => 0.0064819212599159
325 => 0.0065128329849592
326 => 0.0063321236719863
327 => 0.0064296300307959
328 => 0.0063280670868887
329 => 0.0063280189328294
330 => 0.0063257769252135
331 => 0.0064452652783213
401 => 0.0064491617892264
402 => 0.0063608597157428
403 => 0.0063481340074162
404 => 0.0063951876209134
405 => 0.0063401001628691
406 => 0.0063658752377717
407 => 0.0063408808636304
408 => 0.0063352541035491
409 => 0.0062904191219072
410 => 0.0062711029790524
411 => 0.0062786773363815
412 => 0.0062528221499685
413 => 0.0062372434649318
414 => 0.0063226779326499
415 => 0.0062770337429647
416 => 0.0063156823059508
417 => 0.0062716373905906
418 => 0.0061189585244962
419 => 0.0060311512940556
420 => 0.0057427550693415
421 => 0.005824543880916
422 => 0.0058787699476066
423 => 0.0058608482328888
424 => 0.0058993510108854
425 => 0.0059017147687478
426 => 0.0058891971231318
427 => 0.0058747032931181
428 => 0.0058676484982265
429 => 0.0059202291594634
430 => 0.0059507540030951
501 => 0.0058842122588501
502 => 0.0058686224591915
503 => 0.0059358998364935
504 => 0.0059769389977829
505 => 0.0062799491068307
506 => 0.0062575011392427
507 => 0.0063138411326975
508 => 0.0063074981140421
509 => 0.0063665514028475
510 => 0.0064630785722625
511 => 0.0062668118474209
512 => 0.0063008769644607
513 => 0.0062925249844409
514 => 0.0063837097122895
515 => 0.0063839943810567
516 => 0.0063293245816965
517 => 0.0063589619668458
518 => 0.0063424191915146
519 => 0.0063723142224283
520 => 0.0062572013329497
521 => 0.0063973964066661
522 => 0.0064768779794924
523 => 0.0064779815812082
524 => 0.006515655215923
525 => 0.0065539338107031
526 => 0.0066274062400205
527 => 0.0065518847045267
528 => 0.0064160288140466
529 => 0.0064258371705274
530 => 0.0063461849116467
531 => 0.0063475238805088
601 => 0.0063403763597858
602 => 0.0063618266075158
603 => 0.0062619084560743
604 => 0.0062853590465041
605 => 0.0062525280825759
606 => 0.0063008055963568
607 => 0.0062488669720875
608 => 0.0062925209568633
609 => 0.00631136056954
610 => 0.0063808791459049
611 => 0.0062385990218346
612 => 0.0059484802173376
613 => 0.0060094667073934
614 => 0.0059192628982155
615 => 0.005927611604185
616 => 0.0059444773189302
617 => 0.0058898100193227
618 => 0.0059002388173232
619 => 0.0058998662272723
620 => 0.005896655447503
621 => 0.0058824343715239
622 => 0.0058618109977999
623 => 0.0059439681711765
624 => 0.0059579282758708
625 => 0.0059889598593151
626 => 0.0060812888027213
627 => 0.0060720629640086
628 => 0.0060871106897254
629 => 0.006054261588975
630 => 0.0059291353797554
701 => 0.0059359303349164
702 => 0.0058511971351771
703 => 0.0059867930408916
704 => 0.0059546821406399
705 => 0.0059339800343539
706 => 0.0059283312728501
707 => 0.0060208890818485
708 => 0.0060485838289667
709 => 0.006031326321088
710 => 0.0059959306689468
711 => 0.0060639007848431
712 => 0.006082086720428
713 => 0.006086157880734
714 => 0.0062065878941252
715 => 0.006092888580672
716 => 0.0061202571354942
717 => 0.0063337787875183
718 => 0.0061401441131063
719 => 0.0062427167187109
720 => 0.0062376963234286
721 => 0.0062901689975882
722 => 0.0062333920325849
723 => 0.0062340958511127
724 => 0.0062806880309596
725 => 0.0062152577173086
726 => 0.0061990562515
727 => 0.0061766740425226
728 => 0.0062255447769881
729 => 0.0062548405720669
730 => 0.006490943165012
731 => 0.0066434762076409
801 => 0.0066368543459831
802 => 0.0066973657659298
803 => 0.0066701048170227
804 => 0.0065820720219269
805 => 0.0067323332686999
806 => 0.0066847843230233
807 => 0.0066887042003329
808 => 0.0066885583023036
809 => 0.0067201741943776
810 => 0.0066977714372893
811 => 0.0066536133034723
812 => 0.0066829275334738
813 => 0.0067699803165493
814 => 0.0070401948263213
815 => 0.0071914104458558
816 => 0.0070310914561534
817 => 0.0071416773484933
818 => 0.0070753652188717
819 => 0.0070633143323045
820 => 0.0071327704449272
821 => 0.0072023481312806
822 => 0.0071979163334525
823 => 0.0071474065060137
824 => 0.0071188747861329
825 => 0.0073349265278975
826 => 0.0074941097708842
827 => 0.0074832545408905
828 => 0.0075311659957728
829 => 0.0076718355091526
830 => 0.0076846965665283
831 => 0.007683076368907
901 => 0.0076511988962887
902 => 0.0077897063004558
903 => 0.0079052516138178
904 => 0.0076438201824063
905 => 0.0077433698490991
906 => 0.0077880609017674
907 => 0.0078536806263223
908 => 0.0079643921007893
909 => 0.0080846541268287
910 => 0.0081016604959167
911 => 0.0080895936632191
912 => 0.0080102776242293
913 => 0.008141869768146
914 => 0.0082189533598369
915 => 0.0082648548746622
916 => 0.0083812534789753
917 => 0.007788336898494
918 => 0.0073686410729633
919 => 0.0073030995093254
920 => 0.0074363808562777
921 => 0.0074715260845701
922 => 0.0074573590871138
923 => 0.0069849532784038
924 => 0.0073006123905092
925 => 0.0076402350537626
926 => 0.007653281343415
927 => 0.0078233035498147
928 => 0.0078786697496641
929 => 0.0080155599111359
930 => 0.0080069973942646
1001 => 0.0080403279701848
1002 => 0.0080326658479858
1003 => 0.0082862260464879
1004 => 0.0085659405994896
1005 => 0.0085562549739569
1006 => 0.0085160426975306
1007 => 0.0085757647852357
1008 => 0.0088644601799666
1009 => 0.0088378817342692
1010 => 0.0088637004303176
1011 => 0.0092040885708648
1012 => 0.0096466415732245
1013 => 0.0094410312720334
1014 => 0.0098871464628477
1015 => 0.010167952327915
1016 => 0.010653577035681
1017 => 0.010592774430516
1018 => 0.010781824565571
1019 => 0.010483925077386
1020 => 0.0097998876370922
1021 => 0.0096916360937757
1022 => 0.0099083584248611
1023 => 0.010441149128379
1024 => 0.0098915789495662
1025 => 0.010002756280978
1026 => 0.0099707372020523
1027 => 0.0099690310414086
1028 => 0.01003414825372
1029 => 0.0099396923409772
1030 => 0.0095548619601705
1031 => 0.0097312274558745
1101 => 0.0096631242682164
1102 => 0.009738689832352
1103 => 0.010146486016383
1104 => 0.0099661896027758
1105 => 0.0097762619771324
1106 => 0.010014473368003
1107 => 0.010317798326897
1108 => 0.010298816796097
1109 => 0.01026198469268
1110 => 0.010469605331174
1111 => 0.010812533798827
1112 => 0.010905225985635
1113 => 0.010973649462929
1114 => 0.010983083904424
1115 => 0.011080264515291
1116 => 0.010557699877988
1117 => 0.0113870233778
1118 => 0.011530224636618
1119 => 0.011503308735045
1120 => 0.011662470907391
1121 => 0.011615641358732
1122 => 0.011547792690056
1123 => 0.01180009858799
1124 => 0.011510850236045
1125 => 0.011100298615814
1126 => 0.010875061877165
1127 => 0.011171671783948
1128 => 0.01135280110376
1129 => 0.011472516062168
1130 => 0.011508741736249
1201 => 0.010598265083231
1202 => 0.010107568664605
1203 => 0.010422099443098
1204 => 0.010805848700615
1205 => 0.010555568131486
1206 => 0.010565378655953
1207 => 0.010208544336951
1208 => 0.010837420619977
1209 => 0.010745798635222
1210 => 0.011221133654206
1211 => 0.011107691137123
1212 => 0.011495308392706
1213 => 0.011393235778842
1214 => 0.011816933492187
1215 => 0.011985957981198
1216 => 0.012269776404809
1217 => 0.012478554392565
1218 => 0.012601152820263
1219 => 0.012593792470519
1220 => 0.01307958851935
1221 => 0.012793131561775
1222 => 0.012433274110341
1223 => 0.01242676542438
1224 => 0.012613140697697
1225 => 0.013003732141012
1226 => 0.013105006819389
1227 => 0.013161605548456
1228 => 0.013074922624673
1229 => 0.012763994127782
1230 => 0.012629736779267
1231 => 0.012744127930011
]
'min_raw' => 0.0047168970732174
'max_raw' => 0.013161605548456
'avg_raw' => 0.0089392513108365
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.004716'
'max' => '$0.013161'
'avg' => '$0.008939'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0018673489219344
'max_diff' => 0.0068001900375256
'year' => 2036
]
11 => [
'items' => [
101 => 0.012604237382395
102 => 0.012845727713936
103 => 0.013177345518694
104 => 0.013108867753371
105 => 0.013337778656087
106 => 0.013574677358269
107 => 0.013913453142177
108 => 0.014002021676921
109 => 0.014148422096893
110 => 0.014299116219078
111 => 0.014347515109803
112 => 0.014439923609491
113 => 0.014439436571084
114 => 0.014717915804704
115 => 0.01502508702317
116 => 0.015141037047111
117 => 0.015407657733642
118 => 0.014951079151461
119 => 0.015297399250842
120 => 0.015609788649438
121 => 0.015237345130129
122 => 0.015750671753286
123 => 0.015770603062841
124 => 0.016071542173566
125 => 0.015766482731888
126 => 0.015585339409204
127 => 0.016108293394442
128 => 0.016361334355002
129 => 0.016285116358366
130 => 0.015705093640616
131 => 0.015367495540541
201 => 0.014483936194834
202 => 0.015530550406747
203 => 0.016040325659214
204 => 0.015703773445865
205 => 0.015873510806205
206 => 0.016799542806699
207 => 0.017152115836355
208 => 0.017078783110858
209 => 0.017091175134308
210 => 0.017281417141457
211 => 0.018125054969345
212 => 0.017619527627503
213 => 0.018005984338593
214 => 0.018210959584682
215 => 0.018401352016643
216 => 0.017933808377891
217 => 0.017325540973455
218 => 0.017132877153141
219 => 0.015670309960966
220 => 0.015594176987006
221 => 0.015551441241657
222 => 0.015281998412323
223 => 0.015070290155068
224 => 0.014901931888676
225 => 0.014460109521628
226 => 0.014609211600675
227 => 0.013905038963096
228 => 0.014355543662273
301 => 0.013231667129854
302 => 0.014167664902224
303 => 0.013658243869319
304 => 0.01400030639208
305 => 0.013999112968162
306 => 0.013369267412738
307 => 0.013005985640911
308 => 0.013237482925057
309 => 0.01348566638994
310 => 0.013525933322127
311 => 0.013847709662598
312 => 0.013937510522665
313 => 0.013665409724263
314 => 0.013208377286773
315 => 0.013314535498202
316 => 0.013003834348145
317 => 0.012459342533616
318 => 0.012850406060725
319 => 0.01298393234273
320 => 0.013042905155688
321 => 0.012507459991406
322 => 0.012339211495709
323 => 0.012249637408341
324 => 0.013139258039897
325 => 0.013187993466299
326 => 0.012938656134333
327 => 0.014065684517954
328 => 0.013810603284211
329 => 0.014095591518721
330 => 0.013304902753213
331 => 0.013335108128859
401 => 0.012960783395917
402 => 0.013170380233977
403 => 0.013022243944458
404 => 0.013153446880738
405 => 0.013232089379774
406 => 0.01360635268971
407 => 0.014171938388036
408 => 0.013550450231787
409 => 0.013279658942236
410 => 0.013447656335286
411 => 0.013895055531415
412 => 0.014572888215495
413 => 0.014171597623866
414 => 0.014349683574075
415 => 0.014388587431703
416 => 0.01409269060602
417 => 0.014583798353521
418 => 0.014846986985158
419 => 0.015116964062005
420 => 0.015351377593245
421 => 0.015009129280589
422 => 0.015375384034499
423 => 0.015080247355515
424 => 0.014815479243797
425 => 0.014815880787731
426 => 0.014649787883606
427 => 0.01432796195281
428 => 0.014268612313475
429 => 0.014577356632326
430 => 0.014824940337849
501 => 0.014845332517681
502 => 0.014982407578369
503 => 0.015063527187298
504 => 0.015858609631566
505 => 0.016178398367918
506 => 0.016569429981438
507 => 0.016721758832238
508 => 0.017180214060231
509 => 0.016809974229713
510 => 0.016729870513463
511 => 0.015617808089914
512 => 0.015799908249472
513 => 0.016091468174975
514 => 0.015622615805698
515 => 0.015919994719065
516 => 0.01597870361591
517 => 0.015606684381598
518 => 0.015805395928646
519 => 0.015277676973554
520 => 0.014183441219168
521 => 0.014585016550719
522 => 0.014880711163536
523 => 0.014458718492163
524 => 0.015215124022227
525 => 0.014773247526944
526 => 0.014633193891751
527 => 0.014086794728139
528 => 0.014344674100531
529 => 0.014693459644169
530 => 0.014477950728872
531 => 0.014925164086939
601 => 0.015558537469408
602 => 0.016009917059792
603 => 0.016044568379939
604 => 0.015754361543406
605 => 0.016219419851025
606 => 0.016222807293081
607 => 0.015698219622267
608 => 0.01537691259481
609 => 0.015303910962136
610 => 0.015486283353369
611 => 0.015707717104126
612 => 0.016056856412005
613 => 0.016267833983543
614 => 0.016817951596257
615 => 0.016966797649149
616 => 0.017130334333974
617 => 0.017348869777746
618 => 0.017611277609332
619 => 0.017037144212708
620 => 0.017059955602874
621 => 0.016525330533356
622 => 0.015954006973585
623 => 0.016387570338964
624 => 0.016954396764679
625 => 0.016824366156333
626 => 0.016809735056609
627 => 0.016834340508015
628 => 0.016736301675725
629 => 0.016292875670762
630 => 0.016070189907064
701 => 0.016357511355432
702 => 0.016510209918033
703 => 0.016747032071914
704 => 0.016717838742739
705 => 0.017327867178292
706 => 0.017564905782046
707 => 0.017504261163752
708 => 0.017515421233013
709 => 0.017944568302669
710 => 0.018421868104954
711 => 0.01886892235505
712 => 0.019323685139674
713 => 0.018775450853116
714 => 0.018497091292792
715 => 0.018784287305604
716 => 0.018631897058629
717 => 0.019507576619629
718 => 0.019568206772498
719 => 0.020443823011898
720 => 0.021274887089532
721 => 0.02075291063243
722 => 0.021245110921141
723 => 0.02177746566306
724 => 0.022804464331667
725 => 0.022458607310329
726 => 0.022193686252255
727 => 0.021943337132464
728 => 0.022464273908945
729 => 0.023134450749721
730 => 0.02327880042235
731 => 0.023512702037828
801 => 0.023266783089282
802 => 0.023562965375722
803 => 0.024608618995949
804 => 0.024326074157524
805 => 0.023924815065611
806 => 0.024750258173139
807 => 0.025048982824924
808 => 0.027145588874469
809 => 0.029792640618495
810 => 0.028696743814989
811 => 0.028016485304685
812 => 0.028176362190554
813 => 0.029142975879116
814 => 0.029453421517097
815 => 0.028609523256035
816 => 0.028907602388478
817 => 0.030550047714732
818 => 0.031431166936312
819 => 0.030234488683307
820 => 0.026932900844213
821 => 0.023888686074655
822 => 0.024696148914319
823 => 0.024604607686791
824 => 0.026369210290623
825 => 0.024319335556571
826 => 0.024353850189896
827 => 0.026154942906828
828 => 0.025674442248497
829 => 0.024896092719875
830 => 0.023894368887587
831 => 0.022042589735363
901 => 0.020402417299557
902 => 0.023619173155326
903 => 0.023480460793535
904 => 0.02327958473764
905 => 0.023726612662974
906 => 0.025897253377307
907 => 0.025847213083163
908 => 0.025528882262603
909 => 0.025770333384359
910 => 0.024853765170832
911 => 0.025089985669328
912 => 0.023888203855482
913 => 0.024431459426182
914 => 0.024894422731361
915 => 0.024987369469164
916 => 0.025196783215414
917 => 0.023407365682009
918 => 0.024210761619969
919 => 0.024682681465501
920 => 0.022550530434796
921 => 0.024640535695012
922 => 0.023376215903847
923 => 0.02294708677728
924 => 0.023524852612739
925 => 0.023299696704765
926 => 0.023106120876687
927 => 0.022998102238565
928 => 0.023422349702438
929 => 0.023402558051163
930 => 0.022708406857382
1001 => 0.021802914922317
1002 => 0.022106827737484
1003 => 0.021996413362536
1004 => 0.021596257423986
1005 => 0.021865914211556
1006 => 0.020678482189273
1007 => 0.018635567112281
1008 => 0.019985179388323
1009 => 0.019933220783791
1010 => 0.019907020899251
1011 => 0.020921217224153
1012 => 0.020823725649004
1013 => 0.020646777485468
1014 => 0.021593007632198
1015 => 0.02124762090005
1016 => 0.022312021425181
1017 => 0.023013104452142
1018 => 0.022835287118845
1019 => 0.02349465909433
1020 => 0.022113829274928
1021 => 0.022572485551657
1022 => 0.02266701397462
1023 => 0.021581331299067
1024 => 0.020839676476397
1025 => 0.020790216555209
1026 => 0.01950428929903
1027 => 0.020191221259639
1028 => 0.020795692957799
1029 => 0.020506197923279
1030 => 0.020414552443768
1031 => 0.020882749323109
1101 => 0.020919132230469
1102 => 0.020089598086975
1103 => 0.020262084503338
1104 => 0.020981381533049
1105 => 0.020243960063715
1106 => 0.018811270605912
1107 => 0.018455943811895
1108 => 0.018408536667601
1109 => 0.017444862220905
1110 => 0.018479688447333
1111 => 0.018027959067878
1112 => 0.019454966765026
1113 => 0.018639867621611
1114 => 0.018604730326656
1115 => 0.018551615151812
1116 => 0.01772214074665
1117 => 0.017903742925532
1118 => 0.018507416226929
1119 => 0.018722813661733
1120 => 0.018700345944584
1121 => 0.018504457898419
1122 => 0.018594134442844
1123 => 0.018305255047871
1124 => 0.018203245721002
1125 => 0.017881276225525
1126 => 0.017408070013518
1127 => 0.01747387223964
1128 => 0.016536326912513
1129 => 0.016025502458997
1130 => 0.015884112982822
1201 => 0.015695041066208
1202 => 0.015905469158905
1203 => 0.016533670964397
1204 => 0.015775926306526
1205 => 0.014476826240213
1206 => 0.014554904367757
1207 => 0.014730322738745
1208 => 0.014403431764918
1209 => 0.014094056892071
1210 => 0.014363033243635
1211 => 0.013812587419804
1212 => 0.014796841486769
1213 => 0.014770220172598
1214 => 0.015137089222899
1215 => 0.015366499968963
1216 => 0.014837782471896
1217 => 0.014704811451188
1218 => 0.014780557787779
1219 => 0.013528639570975
1220 => 0.015034780795714
1221 => 0.01504780596757
1222 => 0.014936276538333
1223 => 0.015738250243613
1224 => 0.017430664903627
1225 => 0.016793910431307
1226 => 0.01654733985362
1227 => 0.016078609005193
1228 => 0.016703165030238
1229 => 0.016655208872106
1230 => 0.016438332938202
1231 => 0.016307165696682
]
'min_raw' => 0.012249637408341
'max_raw' => 0.031431166936312
'avg_raw' => 0.021840402172327
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.012249'
'max' => '$0.031431'
'avg' => '$0.02184'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.007532740335124
'max_diff' => 0.018269561387856
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0003845021209007
]
1 => [
'year' => 2028
'avg' => 0.00065991726122885
]
2 => [
'year' => 2029
'avg' => 0.001802775019163
]
3 => [
'year' => 2030
'avg' => 0.0013908382425111
]
4 => [
'year' => 2031
'avg' => 0.0013659755188318
]
5 => [
'year' => 2032
'avg' => 0.0023949849728289
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0003845021209007
'min' => '$0.000384'
'max_raw' => 0.0023949849728289
'max' => '$0.002394'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0023949849728289
]
1 => [
'year' => 2033
'avg' => 0.0061601476235164
]
2 => [
'year' => 2034
'avg' => 0.0039045976066267
]
3 => [
'year' => 2035
'avg' => 0.0046054818311065
]
4 => [
'year' => 2036
'avg' => 0.0089392513108365
]
5 => [
'year' => 2037
'avg' => 0.021840402172327
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0023949849728289
'min' => '$0.002394'
'max_raw' => 0.021840402172327
'max' => '$0.02184'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.021840402172327
]
]
]
]
'prediction_2025_max_price' => '$0.000657'
'last_price' => 0.00063746
'sma_50day_nextmonth' => '$0.000613'
'sma_200day_nextmonth' => '$0.000726'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.000634'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000634'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000646'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.000657'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.000684'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000786'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000692'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000635'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000637'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.000644'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.000657'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000696'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000728'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.00074'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.000779'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000646'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.001239'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.003594'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.000645'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000661'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000698'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000719'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.000863'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.001795'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.00432'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '44.80'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 8.98
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000647'
'vwma_10_action' => 'SELL'
'hma_9' => '0.000626'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 14.05
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -76.92
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.91
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000037'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -85.95
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 43.75
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000158'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 25
'buy_signals' => 9
'sell_pct' => 73.53
'buy_pct' => 26.47
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767680734
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Prism para 2026
A previsão de preço para Prism em 2026 sugere que o preço médio poderia variar entre $0.00022 na extremidade inferior e $0.000657 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Prism poderia potencialmente ganhar 3.13% até 2026 se PRISM atingir a meta de preço prevista.
Previsão de preço de Prism 2027-2032
A previsão de preço de PRISM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.000384 na extremidade inferior e $0.002394 na extremidade superior. Considerando a volatilidade de preços no mercado, se Prism atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Prism | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000212 | $0.000384 | $0.000556 |
| 2028 | $0.000382 | $0.000659 | $0.000937 |
| 2029 | $0.00084 | $0.0018027 | $0.002765 |
| 2030 | $0.000714 | $0.00139 | $0.002066 |
| 2031 | $0.000845 | $0.001365 | $0.001886 |
| 2032 | $0.00129 | $0.002394 | $0.003499 |
Previsão de preço de Prism 2032-2037
A previsão de preço de Prism para 2032-2037 é atualmente estimada entre $0.002394 na extremidade inferior e $0.02184 na extremidade superior. Comparado ao preço atual, Prism poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Prism | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00129 | $0.002394 | $0.003499 |
| 2033 | $0.002997 | $0.00616 | $0.009322 |
| 2034 | $0.00241 | $0.0039045 | $0.005399 |
| 2035 | $0.002849 | $0.0046054 | $0.006361 |
| 2036 | $0.004716 | $0.008939 | $0.013161 |
| 2037 | $0.012249 | $0.02184 | $0.031431 |
Prism Histograma de preços potenciais
Previsão de preço de Prism baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Prism é Baixista, com 9 indicadores técnicos mostrando sinais de alta e 25 indicando sinais de baixa. A previsão de preço de PRISM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Prism
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Prism está projetado para aumentar no próximo mês, alcançando $0.000726 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Prism é esperado para alcançar $0.000613 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 44.80, sugerindo que o mercado de PRISM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de PRISM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.000634 | BUY |
| SMA 5 | $0.000634 | BUY |
| SMA 10 | $0.000646 | SELL |
| SMA 21 | $0.000657 | SELL |
| SMA 50 | $0.000684 | SELL |
| SMA 100 | $0.000786 | SELL |
| SMA 200 | $0.000692 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.000635 | BUY |
| EMA 5 | $0.000637 | SELL |
| EMA 10 | $0.000644 | SELL |
| EMA 21 | $0.000657 | SELL |
| EMA 50 | $0.000696 | SELL |
| EMA 100 | $0.000728 | SELL |
| EMA 200 | $0.00074 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.000779 | SELL |
| SMA 50 | $0.000646 | SELL |
| SMA 100 | $0.001239 | SELL |
| SMA 200 | $0.003594 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.000719 | SELL |
| EMA 50 | $0.000863 | SELL |
| EMA 100 | $0.001795 | SELL |
| EMA 200 | $0.00432 | SELL |
Osciladores de Prism
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 44.80 | NEUTRAL |
| Stoch RSI (14) | 8.98 | BUY |
| Estocástico Rápido (14) | 14.05 | BUY |
| Índice de Canal de Commodities (20) | -76.92 | NEUTRAL |
| Índice Direcional Médio (14) | 10.91 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000037 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -85.95 | BUY |
| Oscilador Ultimate (7, 14, 28) | 43.75 | NEUTRAL |
| VWMA (10) | 0.000647 | SELL |
| Média Móvel de Hull (9) | 0.000626 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.000158 | SELL |
Previsão do preço de Prism com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Prism
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Prism por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.000895 | $0.001258 | $0.001768 | $0.002485 | $0.003492 | $0.004907 |
| Amazon.com stock | $0.00133 | $0.002775 | $0.00579 | $0.012083 | $0.025211 | $0.0526062 |
| Apple stock | $0.0009041 | $0.001282 | $0.001819 | $0.00258 | $0.00366 | $0.005191 |
| Netflix stock | $0.0010058 | $0.001587 | $0.002504 | $0.003951 | $0.006234 | $0.009836 |
| Google stock | $0.000825 | $0.001069 | $0.001384 | $0.001792 | $0.002321 | $0.0030065 |
| Tesla stock | $0.001445 | $0.003275 | $0.007426 | $0.016834 | $0.038162 | $0.086511 |
| Kodak stock | $0.000478 | $0.000358 | $0.000268 | $0.0002015 | $0.000151 | $0.000113 |
| Nokia stock | $0.000422 | $0.000279 | $0.000185 | $0.000122 | $0.000081 | $0.000053 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Prism
Você pode fazer perguntas como: 'Devo investir em Prism agora?', 'Devo comprar PRISM hoje?', 'Prism será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Prism regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Prism, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Prism para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Prism é de $0.0006374 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de Prism com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Prism tiver 1% da média anterior do crescimento anual do Bitcoin | $0.000654 | $0.000671 | $0.000688 | $0.0007063 |
| Se Prism tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00067 | $0.0007054 | $0.000742 | $0.00078 |
| Se Prism tiver 5% da média anterior do crescimento anual do Bitcoin | $0.00072 | $0.000813 | $0.000919 | $0.001039 |
| Se Prism tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0008031 | $0.001011 | $0.001274 | $0.0016063 |
| Se Prism tiver 20% da média anterior do crescimento anual do Bitcoin | $0.000968 | $0.001472 | $0.002238 | $0.0034015 |
| Se Prism tiver 50% da média anterior do crescimento anual do Bitcoin | $0.001465 | $0.003371 | $0.007752 | $0.017828 |
| Se Prism tiver 100% da média anterior do crescimento anual do Bitcoin | $0.002294 | $0.008258 | $0.029724 | $0.106988 |
Perguntas Frequentes sobre Prism
PRISM é um bom investimento?
A decisão de adquirir Prism depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Prism experimentou uma escalada de 1.6364% nas últimas 24 horas, e Prism registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Prism dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Prism pode subir?
Parece que o valor médio de Prism pode potencialmente subir para $0.000657 até o final deste ano. Observando as perspectivas de Prism em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.002066. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Prism na próxima semana?
Com base na nossa nova previsão experimental de Prism, o preço de Prism aumentará 0.86% na próxima semana e atingirá $0.000642 até 13 de janeiro de 2026.
Qual será o preço de Prism no próximo mês?
Com base na nossa nova previsão experimental de Prism, o preço de Prism diminuirá -11.62% no próximo mês e atingirá $0.000563 até 5 de fevereiro de 2026.
Até onde o preço de Prism pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Prism em 2026, espera-se que PRISM fluctue dentro do intervalo de $0.00022 e $0.000657. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Prism não considera flutuações repentinas e extremas de preço.
Onde estará Prism em 5 anos?
O futuro de Prism parece seguir uma tendência de alta, com um preço máximo de $0.002066 projetada após um período de cinco anos. Com base na previsão de Prism para 2030, o valor de Prism pode potencialmente atingir seu pico mais alto de aproximadamente $0.002066, enquanto seu pico mais baixo está previsto para cerca de $0.000714.
Quanto será Prism em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Prism, espera-se que o valor de PRISM em 2026 aumente 3.13% para $0.000657 se o melhor cenário ocorrer. O preço ficará entre $0.000657 e $0.00022 durante 2026.
Quanto será Prism em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Prism, o valor de PRISM pode diminuir -12.62% para $0.000556 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.000556 e $0.000212 ao longo do ano.
Quanto será Prism em 2028?
Nosso novo modelo experimental de previsão de preços de Prism sugere que o valor de PRISM em 2028 pode aumentar 47.02%, alcançando $0.000937 no melhor cenário. O preço é esperado para variar entre $0.000937 e $0.000382 durante o ano.
Quanto será Prism em 2029?
Com base no nosso modelo de previsão experimental, o valor de Prism pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.002765 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.002765 e $0.00084.
Quanto será Prism em 2030?
Usando nossa nova simulação experimental para previsões de preços de Prism, espera-se que o valor de PRISM em 2030 aumente 224.23%, alcançando $0.002066 no melhor cenário. O preço está previsto para variar entre $0.002066 e $0.000714 ao longo de 2030.
Quanto será Prism em 2031?
Nossa simulação experimental indica que o preço de Prism poderia aumentar 195.98% em 2031, potencialmente atingindo $0.001886 sob condições ideais. O preço provavelmente oscilará entre $0.001886 e $0.000845 durante o ano.
Quanto será Prism em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Prism, PRISM poderia ver um 449.04% aumento em valor, atingindo $0.003499 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.003499 e $0.00129 ao longo do ano.
Quanto será Prism em 2033?
De acordo com nossa previsão experimental de preços de Prism, espera-se que o valor de PRISM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.009322. Ao longo do ano, o preço de PRISM poderia variar entre $0.009322 e $0.002997.
Quanto será Prism em 2034?
Os resultados da nossa nova simulação de previsão de preços de Prism sugerem que PRISM pode aumentar 746.96% em 2034, atingindo potencialmente $0.005399 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.005399 e $0.00241.
Quanto será Prism em 2035?
Com base em nossa previsão experimental para o preço de Prism, PRISM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.006361 em 2035. A faixa de preço esperada para o ano está entre $0.006361 e $0.002849.
Quanto será Prism em 2036?
Nossa recente simulação de previsão de preços de Prism sugere que o valor de PRISM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.013161 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.013161 e $0.004716.
Quanto será Prism em 2037?
De acordo com a simulação experimental, o valor de Prism poderia aumentar 4830.69% em 2037, com um pico de $0.031431 sob condições favoráveis. O preço é esperado para cair entre $0.031431 e $0.012249 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Napoli Fan Token
Previsão de Preço do Karlsen
Previsão de Preço do Reflexer Ungovernance Token
Previsão de Preço do Champignons of Arborethia
Previsão de Preço do SANSHU!
Previsão de Preço do Digits DAO
Previsão de Preço do Nash Exchange
Previsão de Preço do Inscribe
Previsão de Preço do BigShortBets
Previsão de Preço do UniCoin
Previsão de Preço do AthenaDAO
Previsão de Preço do Codex Multichain
Previsão de Preço do Spheroid Universe
Previsão de Preço do DeFinity
Previsão de Preço do IXO
Previsão de Preço do Mysterium
Previsão de Preço do UFC Fan Token
Previsão de Preço do MEME (Ordinals)
Previsão de Preço do Galaxia
Previsão de Preço do MetaTrace
Previsão de Preço do Yield Yak
Previsão de Preço do Gamestarter
Previsão de Preço do QHUB
Previsão de Preço do Piteas
Previsão de Preço do MetFi
Como ler e prever os movimentos de preço de Prism?
Traders de Prism utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Prism
Médias móveis são ferramentas populares para a previsão de preço de Prism. Uma média móvel simples (SMA) calcula o preço médio de fechamento de PRISM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de PRISM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de PRISM.
Como ler gráficos de Prism e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Prism em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de PRISM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Prism?
A ação de preço de Prism é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de PRISM. A capitalização de mercado de Prism pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de PRISM, grandes detentores de Prism, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Prism.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


