Predicción del precio de Phiat Protocol - Pronóstico de PHIAT
Predicción de precio de Phiat Protocol hasta $0.014545 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004872 | $0.014545 |
| 2027 | $0.004691 | $0.012323 |
| 2028 | $0.008465 | $0.020735 |
| 2029 | $0.018597 | $0.061176 |
| 2030 | $0.015816 | $0.045729 |
| 2031 | $0.018699 | $0.041745 |
| 2032 | $0.028543 | $0.077436 |
| 2033 | $0.066329 | $0.206261 |
| 2034 | $0.053325 | $0.119455 |
| 2035 | $0.063047 | $0.140748 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Phiat Protocol hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.92, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Phiat Protocol para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Phiat Protocol'
'name_with_ticker' => 'Phiat Protocol <small>PHIAT</small>'
'name_lang' => 'Phiat Protocol'
'name_lang_with_ticker' => 'Phiat Protocol <small>PHIAT</small>'
'name_with_lang' => 'Phiat Protocol'
'name_with_lang_with_ticker' => 'Phiat Protocol <small>PHIAT</small>'
'image' => '/uploads/coins/phiat-protocol.png?1717581223'
'price_for_sd' => 0.0141
'ticker' => 'PHIAT'
'marketcap' => '$0'
'low24h' => '$0.01306'
'high24h' => '$0.01444'
'volume24h' => '$31.68'
'current_supply' => '0'
'max_supply' => '50.49M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0141'
'change_24h_pct' => '7.2058%'
'ath_price' => '$0.3323'
'ath_days' => 805
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 oct. 2023'
'ath_pct' => '-95.76%'
'fdv' => '$712.16K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.695426'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014224'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012465'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004872'
'current_year_max_price_prediction' => '$0.014545'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015816'
'grand_prediction_max_price' => '$0.045729'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014371304139275
107 => 0.014424961372148
108 => 0.014545853857616
109 => 0.013512840805567
110 => 0.013976633338267
111 => 0.014249067999745
112 => 0.013018198287931
113 => 0.01422473766309
114 => 0.013494858346578
115 => 0.013247126344134
116 => 0.013580664849215
117 => 0.013450684569408
118 => 0.013338935157528
119 => 0.013276577065601
120 => 0.013521490932431
121 => 0.013510065407808
122 => 0.013109338785941
123 => 0.012586607243422
124 => 0.012762053107169
125 => 0.012698311980056
126 => 0.012467305912629
127 => 0.012622976110296
128 => 0.011937483342655
129 => 0.010758128664742
130 => 0.011537246489582
131 => 0.011507251300843
201 => 0.011492126366507
202 => 0.012077611878639
203 => 0.012021330956097
204 => 0.011919180530577
205 => 0.012465429839957
206 => 0.012266041493943
207 => 0.012880509394554
208 => 0.013285237695189
209 => 0.013182585506559
210 => 0.013563234429527
211 => 0.012766095025519
212 => 0.013030872759849
213 => 0.013085443083928
214 => 0.012458689208271
215 => 0.012030539211062
216 => 0.012001986487516
217 => 0.01125963339506
218 => 0.011656192424985
219 => 0.012005147960592
220 => 0.01183802533908
221 => 0.011785119309755
222 => 0.012055404739656
223 => 0.012076408232397
224 => 0.011597526372042
225 => 0.011697101075026
226 => 0.012112344139387
227 => 0.011686638015208
228 => 0.01085956055463
301 => 0.010654433909166
302 => 0.010627066233427
303 => 0.010070746502129
304 => 0.010668141452467
305 => 0.010407362547455
306 => 0.011231159983776
307 => 0.010760611306264
308 => 0.01074032689325
309 => 0.010709664027903
310 => 0.010230816653897
311 => 0.010335653796466
312 => 0.010684148425514
313 => 0.010808495235231
314 => 0.010795524844234
315 => 0.010682440611711
316 => 0.010734209994275
317 => 0.010567442775387
318 => 0.010508553799438
319 => 0.010322683992655
320 => 0.010049506724528
321 => 0.010087493699155
322 => 0.0095462580502748
323 => 0.009251364143215
324 => 0.0091697413963801
325 => 0.009060592048063
326 => 0.0091820701057078
327 => 0.0095447247976842
328 => 0.0091072862976758
329 => 0.0083573286721545
330 => 0.0084024024033139
331 => 0.0085036696947183
401 => 0.0083149587671364
402 => 0.0081363597114878
403 => 0.0082916371001749
404 => 0.0079738701677248
405 => 0.0085420703103554
406 => 0.0085267020888598
407 => 0.0087384919647714
408 => 0.0088709285205447
409 => 0.0085657051363313
410 => 0.0084889422806135
411 => 0.0085326698919076
412 => 0.0078099498816729
413 => 0.0086794303211678
414 => 0.0086869496241145
415 => 0.0086225647871835
416 => 0.0090855362790177
417 => 0.010062550531217
418 => 0.0096949584692325
419 => 0.0095526157123032
420 => 0.0092820220273285
421 => 0.009642572046294
422 => 0.009614887430294
423 => 0.0094896870976628
424 => 0.0094139655458386
425 => 0.0095534848268242
426 => 0.009396677562933
427 => 0.0093685106695627
428 => 0.0091978499416209
429 => 0.0091369318263141
430 => 0.0090918304789609
501 => 0.009042178327092
502 => 0.0091516986015695
503 => 0.0089035112510114
504 => 0.0086042216363443
505 => 0.0085793389432432
506 => 0.008648042246604
507 => 0.0086176461492262
508 => 0.0085791934184232
509 => 0.008505776683342
510 => 0.0084839955063438
511 => 0.0085547737648632
512 => 0.0084748692376236
513 => 0.0085927727201905
514 => 0.0085607094968295
515 => 0.0083816069375425
516 => 0.0081583788364106
517 => 0.0081563916380737
518 => 0.0081082975098523
519 => 0.0080470424065617
520 => 0.0080300026381532
521 => 0.0082785600716035
522 => 0.0087930665201477
523 => 0.0086920565932026
524 => 0.0087650466173341
525 => 0.0091240852951791
526 => 0.0092382128941963
527 => 0.0091572078276742
528 => 0.0090463230964439
529 => 0.0090512014618685
530 => 0.0094301281555733
531 => 0.0094537613486588
601 => 0.0095134748032286
602 => 0.0095902234673711
603 => 0.0091702784570483
604 => 0.0090314220896473
605 => 0.0089656242393148
606 => 0.0087629923272633
607 => 0.0089815134720636
608 => 0.0088541905589969
609 => 0.0088713707699396
610 => 0.008860182135025
611 => 0.0088662918862606
612 => 0.0085419114868356
613 => 0.0086600986554542
614 => 0.0084635895648475
615 => 0.0082004859517057
616 => 0.0081996039361384
617 => 0.0082639981727163
618 => 0.008225693961053
619 => 0.0081226183123587
620 => 0.0081372597217524
621 => 0.0080089855690486
622 => 0.0081528345263691
623 => 0.0081569595997487
624 => 0.0081015699156747
625 => 0.0083231890817577
626 => 0.0084139866349259
627 => 0.0083775279583064
628 => 0.0084114285969829
629 => 0.0086962540116997
630 => 0.0087426929821026
701 => 0.0087633181051694
702 => 0.0087356831725651
703 => 0.0084166346827026
704 => 0.0084307858399269
705 => 0.0083269540376551
706 => 0.0082392271062611
707 => 0.0082427357234497
708 => 0.008287838769889
709 => 0.0084848064189481
710 => 0.0088993132245159
711 => 0.0089150434547867
712 => 0.008934108952758
713 => 0.008856559990957
714 => 0.0088331704820341
715 => 0.0088640272816478
716 => 0.0090196942440866
717 => 0.0094201119346473
718 => 0.0092785775798048
719 => 0.0091635079462044
720 => 0.0092644550374224
721 => 0.0092489150239788
722 => 0.0091177416715984
723 => 0.0091140600724835
724 => 0.0088622964706079
725 => 0.0087692251993743
726 => 0.0086914478788676
727 => 0.0086065170753027
728 => 0.0085561672480431
729 => 0.0086335274663011
730 => 0.0086512206635159
731 => 0.0084820711942695
801 => 0.00845901674664
802 => 0.0085971478545715
803 => 0.0085363615040176
804 => 0.0085988817729912
805 => 0.008613387011682
806 => 0.0086110513341688
807 => 0.0085475834029227
808 => 0.008588035969658
809 => 0.0084923535898384
810 => 0.0083883133728133
811 => 0.0083219421962859
812 => 0.0082640245419066
813 => 0.0082961606227501
814 => 0.0081816013623598
815 => 0.0081449515493386
816 => 0.0085743315502596
817 => 0.0088915191735529
818 => 0.0088869071398902
819 => 0.0088588325710868
820 => 0.0088171194565634
821 => 0.0090166426699443
822 => 0.0089471327719949
823 => 0.0089977070304994
824 => 0.0090105803018837
825 => 0.0090495438171828
826 => 0.009063469924875
827 => 0.0090213755551257
828 => 0.0088801017088529
829 => 0.0085280607158553
830 => 0.0083641846832984
831 => 0.0083101028629834
901 => 0.0083120686344358
902 => 0.0082578438821871
903 => 0.0082738155019073
904 => 0.0082522896046458
905 => 0.0082115247629064
906 => 0.008293643508645
907 => 0.0083031069291023
908 => 0.008283939432601
909 => 0.0082884540719005
910 => 0.0081297553874144
911 => 0.0081418209037204
912 => 0.0080746385757166
913 => 0.008062042699111
914 => 0.0078922116241518
915 => 0.0075913312574538
916 => 0.0077580481877684
917 => 0.0075566775798963
918 => 0.0074804154794324
919 => 0.0078414284018382
920 => 0.0078051927173684
921 => 0.0077431729768296
922 => 0.0076514328545263
923 => 0.0076174055507734
924 => 0.0074106664249064
925 => 0.0073984511744398
926 => 0.0075009166676455
927 => 0.0074536323681534
928 => 0.007387227303702
929 => 0.0071467148916323
930 => 0.006876299309543
1001 => 0.0068844614561945
1002 => 0.0069704756215964
1003 => 0.0072205734080928
1004 => 0.007122855876173
1005 => 0.0070519606855857
1006 => 0.0070386841474903
1007 => 0.0072048678180694
1008 => 0.0074400525284942
1009 => 0.0075503959326642
1010 => 0.0074410489703107
1011 => 0.0073154370676176
1012 => 0.0073230824821051
1013 => 0.0073739439994838
1014 => 0.0073792888258172
1015 => 0.0072975283902762
1016 => 0.0073205434739665
1017 => 0.0072855814572976
1018 => 0.0070710196255353
1019 => 0.0070671388823816
1020 => 0.0070144819485903
1021 => 0.0070128875175623
1022 => 0.0069233049372954
1023 => 0.0069107717150609
1024 => 0.0067329000646671
1025 => 0.0068499757236013
1026 => 0.0067714475183362
1027 => 0.0066530869900708
1028 => 0.0066326815903851
1029 => 0.0066320681794303
1030 => 0.006753597977029
1031 => 0.0068485555771582
1101 => 0.0067728135500876
1102 => 0.0067555685587212
1103 => 0.0069396999499386
1104 => 0.0069162675520113
1105 => 0.006895975246529
1106 => 0.0074189943172041
1107 => 0.0070049839110777
1108 => 0.0068244517431188
1109 => 0.0066010089031407
1110 => 0.0066737630185342
1111 => 0.0066890933796279
1112 => 0.0061517536280799
1113 => 0.0059337549577982
1114 => 0.0058589460292642
1115 => 0.0058158924332498
1116 => 0.0058355124975866
1117 => 0.0056392881256394
1118 => 0.0057711541488395
1119 => 0.0056012404291665
1120 => 0.0055727538411162
1121 => 0.0058765806201623
1122 => 0.0059188563415363
1123 => 0.0057384949801178
1124 => 0.0058543161720005
1125 => 0.0058123177977889
1126 => 0.0056041531122083
1127 => 0.0055962027523749
1128 => 0.0054917530304931
1129 => 0.0053283094411996
1130 => 0.0052536113351155
1201 => 0.0052147079129082
1202 => 0.0052307602231236
1203 => 0.0052226436838699
1204 => 0.0051696777750011
1205 => 0.0052256796277666
1206 => 0.0050826180355139
1207 => 0.0050256497567533
1208 => 0.0049999185068911
1209 => 0.0048729431094489
1210 => 0.0050750174329951
1211 => 0.0051148286203989
1212 => 0.0051547182481403
1213 => 0.0055019302238231
1214 => 0.0054845844947289
1215 => 0.0056413814380283
1216 => 0.0056352885971427
1217 => 0.0055905675689717
1218 => 0.00540189690737
1219 => 0.0054770976703533
1220 => 0.0052456414106841
1221 => 0.0054190641779241
1222 => 0.0053399212692637
1223 => 0.0053923058808954
1224 => 0.0052981136258516
1225 => 0.0053502435088957
1226 => 0.0051242693298301
1227 => 0.0049132578209611
1228 => 0.0049981750119399
1229 => 0.0050904897099926
1230 => 0.0052906514967185
1231 => 0.0051714367878434
]
'min_raw' => 0.0048729431094489
'max_raw' => 0.014545853857616
'avg_raw' => 0.0097093984835324
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004872'
'max' => '$0.014545'
'avg' => '$0.0097093'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0092310968905511
'max_diff' => 0.00044181385761593
'year' => 2026
]
1 => [
'items' => [
101 => 0.0052143109051621
102 => 0.0050706897891851
103 => 0.0047743584035808
104 => 0.0047760356070418
105 => 0.0047304514792967
106 => 0.0046910601375334
107 => 0.0051851300312398
108 => 0.0051236846298682
109 => 0.0050257794245579
110 => 0.0051568294324639
111 => 0.0051914811345976
112 => 0.0051924676198428
113 => 0.0052880783227207
114 => 0.0053391057719859
115 => 0.0053480995810845
116 => 0.0054985450878689
117 => 0.0055489724373188
118 => 0.0057566755529575
119 => 0.0053347764494247
120 => 0.0053260877150258
121 => 0.0051586735748252
122 => 0.0050524968803971
123 => 0.0051659435839308
124 => 0.0052664418762423
125 => 0.0051617963369052
126 => 0.0051754608351547
127 => 0.0050349827484494
128 => 0.0050851970543382
129 => 0.0051284483791671
130 => 0.005104567539792
131 => 0.0050688167674016
201 => 0.0052582021623402
202 => 0.0052475162961504
203 => 0.0054238763298686
204 => 0.0055613615877789
205 => 0.0058077597483838
206 => 0.005550630422766
207 => 0.005541259608144
208 => 0.0056328608242001
209 => 0.0055489584136499
210 => 0.0056019818409049
211 => 0.0057992168545141
212 => 0.0058033841195528
213 => 0.0057335770609368
214 => 0.005729329295076
215 => 0.0057427365042887
216 => 0.0058212629474142
217 => 0.0057938233953123
218 => 0.0058255771396891
219 => 0.0058652856832629
220 => 0.0060295370555577
221 => 0.0060691375053476
222 => 0.0059729289428374
223 => 0.0059816154988304
224 => 0.0059456308554675
225 => 0.0059108701408652
226 => 0.0059890071508965
227 => 0.0061318040725156
228 => 0.0061309157402774
301 => 0.0061640418505175
302 => 0.0061846791427655
303 => 0.0060960887770156
304 => 0.0060384197064704
305 => 0.0060605336976957
306 => 0.0060958944512451
307 => 0.0060490666819
308 => 0.0057600239967691
309 => 0.0058477010833196
310 => 0.0058331073289271
311 => 0.005812324048011
312 => 0.0059004840365244
313 => 0.0058919807905646
314 => 0.005637275561087
315 => 0.0056535809634891
316 => 0.0056382671466123
317 => 0.0056877492218534
318 => 0.0055462862192006
319 => 0.0055897992860487
320 => 0.0056170902736662
321 => 0.0056331648750322
322 => 0.0056912373576233
323 => 0.0056844232220613
324 => 0.0056908137813893
325 => 0.0057769199425049
326 => 0.0062124153573617
327 => 0.0062361184119259
328 => 0.006119395902267
329 => 0.006166024242626
330 => 0.0060765080256337
331 => 0.0061366008618072
401 => 0.0061777148541245
402 => 0.0059919286286085
403 => 0.0059809275740761
404 => 0.0058910418918136
405 => 0.0059393413660762
406 => 0.0058624934296693
407 => 0.0058813492252369
408 => 0.0058286267770113
409 => 0.0059235166868826
410 => 0.00602961835052
411 => 0.0060564238208365
412 => 0.0059859101689144
413 => 0.0059348536378467
414 => 0.0058452151883587
415 => 0.0059942859275804
416 => 0.0060378787545773
417 => 0.0059940569530182
418 => 0.0059839024840717
419 => 0.0059646597837668
420 => 0.0059879849139075
421 => 0.0060376413386794
422 => 0.0060142242857671
423 => 0.0060296916617711
424 => 0.005970745974333
425 => 0.0060961181041129
426 => 0.0062952392186494
427 => 0.0062958794255923
428 => 0.0062724622464534
429 => 0.0062628804412799
430 => 0.0062869078881497
501 => 0.006299941792419
502 => 0.0063776421497156
503 => 0.0064610177288136
504 => 0.0068500951768489
505 => 0.0067408437863592
506 => 0.0070860564445771
507 => 0.007359074836974
508 => 0.0074409411152064
509 => 0.0073656279913386
510 => 0.0071079858629218
511 => 0.007095344710955
512 => 0.0074803708245106
513 => 0.007371583312118
514 => 0.0073586433836778
515 => 0.0072209844074292
516 => 0.007302357911788
517 => 0.0072845603327075
518 => 0.0072564659834414
519 => 0.0074117209612306
520 => 0.0077023444199445
521 => 0.0076570480284545
522 => 0.0076232363734462
523 => 0.007475083543625
524 => 0.0075643046383099
525 => 0.0075325347154101
526 => 0.0076690384658789
527 => 0.0075881766680295
528 => 0.0073707591397161
529 => 0.0074053835977176
530 => 0.0074001501805454
531 => 0.0075078535351049
601 => 0.0074755236614277
602 => 0.007393837253834
603 => 0.0077013511005575
604 => 0.0076813828618331
605 => 0.0077096932589693
606 => 0.0077221563713168
607 => 0.0079093346308156
608 => 0.007986015574696
609 => 0.0080034234914458
610 => 0.0080762644574151
611 => 0.0080016111418559
612 => 0.0083002776310049
613 => 0.0084988734186162
614 => 0.0087295526455725
615 => 0.0090666369968866
616 => 0.0091933838311853
617 => 0.0091704881500361
618 => 0.009426061658112
619 => 0.0098853215710443
620 => 0.0092633177091832
621 => 0.0099182892860663
622 => 0.0097109328468356
623 => 0.0092192944596027
624 => 0.0091876387435007
625 => 0.0095205819673739
626 => 0.010259017993327
627 => 0.010074048144098
628 => 0.010259320537737
629 => 0.010043190449234
630 => 0.010032457768653
701 => 0.010248823581749
702 => 0.010754374097536
703 => 0.010514205997764
704 => 0.010169866135106
705 => 0.010424121331171
706 => 0.010203861950131
707 => 0.0097075559179311
708 => 0.01007390670114
709 => 0.0098289383654778
710 => 0.0099004331490571
711 => 0.010415320154329
712 => 0.010353367587633
713 => 0.010433539945591
714 => 0.010292037832271
715 => 0.010159852545594
716 => 0.009913118891804
717 => 0.0098400732207389
718 => 0.0098602604163134
719 => 0.0098400632169673
720 => 0.0097020180052712
721 => 0.0096722071549488
722 => 0.0096225210983681
723 => 0.0096379208849087
724 => 0.0095444965623686
725 => 0.0097208075614518
726 => 0.0097535324365289
727 => 0.0098818368785445
728 => 0.0098951578713482
729 => 0.010252483916062
730 => 0.010055674735254
731 => 0.010187711325427
801 => 0.010175900730026
802 => 0.009229949754232
803 => 0.0093602934525002
804 => 0.0095630673428999
805 => 0.0094717179801283
806 => 0.0093425713536283
807 => 0.0092382785283255
808 => 0.0090802642335029
809 => 0.00930266631907
810 => 0.0095951014117657
811 => 0.0099025745078904
812 => 0.010271983286449
813 => 0.010189535547467
814 => 0.0098956686677306
815 => 0.0099088513212857
816 => 0.0099903412983802
817 => 0.0098848043738977
818 => 0.0098536794745423
819 => 0.0099860652151641
820 => 0.0099869768830019
821 => 0.0098655438968213
822 => 0.0097305933546835
823 => 0.0097300279069845
824 => 0.0097060147614787
825 => 0.010047462334474
826 => 0.010235223975378
827 => 0.010256750544915
828 => 0.010233775065734
829 => 0.010242617415807
830 => 0.01013336305401
831 => 0.010383086126703
901 => 0.010612256713258
902 => 0.010550834100545
903 => 0.010458752872351
904 => 0.010385405738861
905 => 0.010533555846901
906 => 0.010526958955799
907 => 0.010610255108108
908 => 0.010606476313497
909 => 0.010578466950403
910 => 0.010550835100848
911 => 0.010660392260971
912 => 0.010628841558289
913 => 0.010597241848652
914 => 0.010533863793302
915 => 0.010542477923622
916 => 0.01045041259455
917 => 0.010407818960698
918 => 0.0097673129039874
919 => 0.009596148756495
920 => 0.0096500004816636
921 => 0.0096677298678486
922 => 0.0095932390115071
923 => 0.0097000397643698
924 => 0.0096833949801661
925 => 0.0097481500986295
926 => 0.009707693911954
927 => 0.0097093542479669
928 => 0.0098283272668111
929 => 0.0098628656403291
930 => 0.009845299144799
1001 => 0.009857602116124
1002 => 0.01014111889755
1003 => 0.010100811877587
1004 => 0.010079399576581
1005 => 0.010085330930294
1006 => 0.010157775546616
1007 => 0.010178056083857
1008 => 0.01009212602248
1009 => 0.010132651136181
1010 => 0.01030520192692
1011 => 0.010365584938149
1012 => 0.010558298524504
1013 => 0.01047643036781
1014 => 0.010626702912593
1015 => 0.011088589483572
1016 => 0.011457576436589
1017 => 0.011118240785564
1018 => 0.011795838334575
1019 => 0.012323445222076
1020 => 0.012303194790958
1021 => 0.012211194326355
1022 => 0.011610527912091
1023 => 0.011057785722252
1024 => 0.011520178034725
1025 => 0.011521356767821
1026 => 0.011481636858105
1027 => 0.011234939910167
1028 => 0.011473052339063
1029 => 0.011491952838971
1030 => 0.011481373585071
1031 => 0.011292231613499
1101 => 0.011003446782188
1102 => 0.011059874646973
1103 => 0.011152304640588
1104 => 0.010977315379758
1105 => 0.01092139570795
1106 => 0.011025361016995
1107 => 0.011360358904769
1108 => 0.011297029494596
1109 => 0.011295375707762
1110 => 0.011566325780331
1111 => 0.011372384003057
1112 => 0.011060586383055
1113 => 0.010981853371899
1114 => 0.010702404223208
1115 => 0.010895420745573
1116 => 0.010902367066592
1117 => 0.010796653889874
1118 => 0.011069164424727
1119 => 0.011066653192174
1120 => 0.011325361387177
1121 => 0.011819914289662
1122 => 0.011673650660927
1123 => 0.011503561974146
1124 => 0.011522055330447
1125 => 0.011724881803574
1126 => 0.011602248287843
1127 => 0.011646348155131
1128 => 0.011724815053143
1129 => 0.011772156080938
1130 => 0.011515243685084
1201 => 0.01145534511607
1202 => 0.011332813665409
1203 => 0.011300847497089
1204 => 0.01140064680695
1205 => 0.011374353214763
1206 => 0.010901783255208
1207 => 0.01085239706508
1208 => 0.010853911669024
1209 => 0.010729727745762
1210 => 0.01054031745523
1211 => 0.011038076389646
1212 => 0.010998099381081
1213 => 0.010953967857599
1214 => 0.010959373717415
1215 => 0.011175434000229
1216 => 0.011050108124891
1217 => 0.011383307504984
1218 => 0.011314811729327
1219 => 0.011244559295483
1220 => 0.011234848269184
1221 => 0.01120780707581
1222 => 0.011115072762145
1223 => 0.011003090505927
1224 => 0.010929150120635
1225 => 0.010081563273596
1226 => 0.01023887046222
1227 => 0.010419838043731
1228 => 0.010482307327687
1229 => 0.010375449294738
1230 => 0.011119292168593
1231 => 0.011255199429495
]
'min_raw' => 0.0046910601375334
'max_raw' => 0.012323445222076
'avg_raw' => 0.0085072526798046
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004691'
'max' => '$0.012323'
'avg' => '$0.0085072'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018188297191547
'max_diff' => -0.00222240863554
'year' => 2027
]
2 => [
'items' => [
101 => 0.010843527471213
102 => 0.010766520456273
103 => 0.011124340735673
104 => 0.010908531365445
105 => 0.011005710311644
106 => 0.010795662584003
107 => 0.011222463350173
108 => 0.011219211843422
109 => 0.011053176705649
110 => 0.011193508467135
111 => 0.011169122370182
112 => 0.010981669108563
113 => 0.011228405952921
114 => 0.011228528331317
115 => 0.011068723121126
116 => 0.010882105621482
117 => 0.010848742820254
118 => 0.01082360843119
119 => 0.010999528792701
120 => 0.011157258438742
121 => 0.01145075420553
122 => 0.011524546014588
123 => 0.011812560357939
124 => 0.011641061839637
125 => 0.011717084911523
126 => 0.011799618710175
127 => 0.011839188448329
128 => 0.011774711683436
129 => 0.012222116510095
130 => 0.012259891185594
131 => 0.01227255670754
201 => 0.012121694317285
202 => 0.012255695429613
203 => 0.012193000746805
204 => 0.012356114894387
205 => 0.012381693275474
206 => 0.012360029296671
207 => 0.012368148278555
208 => 0.011986367186622
209 => 0.011966569822949
210 => 0.011696631364519
211 => 0.011806633281614
212 => 0.011600989970134
213 => 0.011666201582565
214 => 0.011694946239965
215 => 0.011679931662184
216 => 0.011812852624961
217 => 0.011699842652642
218 => 0.011401590755134
219 => 0.011103257599097
220 => 0.011099512269339
221 => 0.011020966415372
222 => 0.010964192149345
223 => 0.010975128887157
224 => 0.011013671377708
225 => 0.010961951989728
226 => 0.010972988943393
227 => 0.011156275913073
228 => 0.0111930328077
229 => 0.011068118517913
301 => 0.010566569619373
302 => 0.010443488261631
303 => 0.010531956700767
304 => 0.010489674484957
305 => 0.0084659859948869
306 => 0.0089414215878332
307 => 0.0086589339027717
308 => 0.0087891172246815
309 => 0.0085007704480651
310 => 0.0086383846434159
311 => 0.0086129723264004
312 => 0.0093774586906961
313 => 0.0093655222876342
314 => 0.0093712356121195
315 => 0.0090985237484474
316 => 0.0095329611522111
317 => 0.0097469806391689
318 => 0.0097073713280772
319 => 0.0097173401383299
320 => 0.0095460429499405
321 => 0.0093728941433402
322 => 0.0091808454694102
323 => 0.0095376481676387
324 => 0.0094979777984208
325 => 0.0095889673524582
326 => 0.009820379407043
327 => 0.0098544557111295
328 => 0.0099002546093895
329 => 0.0098838389645509
330 => 0.010274926223347
331 => 0.01022756297583
401 => 0.01034169477501
402 => 0.010106917004896
403 => 0.009841243672703
404 => 0.0098917394876374
405 => 0.0098868763345975
406 => 0.0098249628147326
407 => 0.0097690700573391
408 => 0.0096760243639656
409 => 0.0099704347059708
410 => 0.0099584821837418
411 => 0.010151979625342
412 => 0.010117777073005
413 => 0.0098893640577165
414 => 0.0098975218732427
415 => 0.0099523871031683
416 => 0.010142276290381
417 => 0.010198648329787
418 => 0.010172534555097
419 => 0.010234343922825
420 => 0.010283195526906
421 => 0.010240478932165
422 => 0.010845255832373
423 => 0.010594110298508
424 => 0.010716516884254
425 => 0.010745710133693
426 => 0.010670932239123
427 => 0.01068714888686
428 => 0.010711712689409
429 => 0.0108608592884
430 => 0.01125226312007
501 => 0.011425613212741
502 => 0.011947145519483
503 => 0.011411218900694
504 => 0.01137941923302
505 => 0.011473362950231
506 => 0.011779557624091
507 => 0.01202769964785
508 => 0.012110022672788
509 => 0.012120903019538
510 => 0.012275346487053
511 => 0.012363870602432
512 => 0.01225659298783
513 => 0.01216568644189
514 => 0.011840070478066
515 => 0.011877761412501
516 => 0.01213741457446
517 => 0.012504189959222
518 => 0.012818921395822
519 => 0.012708713416223
520 => 0.013549522505858
521 => 0.013632885292699
522 => 0.013621367250999
523 => 0.013811280085467
524 => 0.013434341784124
525 => 0.013273193357464
526 => 0.012185341468955
527 => 0.012490983476724
528 => 0.012935252084743
529 => 0.01287645146855
530 => 0.012553811730073
531 => 0.012818676644649
601 => 0.012731104020798
602 => 0.012662031858976
603 => 0.012978464822582
604 => 0.012630533780748
605 => 0.012931781206447
606 => 0.012545428266982
607 => 0.012709216836991
608 => 0.012616242523092
609 => 0.012676408298688
610 => 0.012324680403943
611 => 0.012514464238235
612 => 0.012316784772486
613 => 0.01231669104668
614 => 0.012312327261517
615 => 0.012544896276327
616 => 0.012552480343551
617 => 0.012380611490214
618 => 0.012355842503352
619 => 0.012447426429732
620 => 0.012340205637809
621 => 0.01239037357151
622 => 0.012341725173414
623 => 0.012330773394311
624 => 0.012243507755123
625 => 0.012205911318342
626 => 0.012220653849945
627 => 0.012170329989289
628 => 0.01214000804295
629 => 0.012306295463198
630 => 0.012217454802575
701 => 0.012292679357803
702 => 0.012206951483025
703 => 0.011909781319186
704 => 0.011738875615445
705 => 0.011177548723643
706 => 0.011336740333834
707 => 0.011442284536087
708 => 0.011407402177872
709 => 0.011482342980998
710 => 0.011486943737666
711 => 0.011462579718639
712 => 0.011434369305829
713 => 0.011420638037007
714 => 0.011522979664989
715 => 0.011582392424693
716 => 0.011452877308782
717 => 0.011422533729233
718 => 0.011553480662145
719 => 0.011633358215575
720 => 0.012223129190785
721 => 0.012179437052007
722 => 0.012289095746192
723 => 0.012276749860077
724 => 0.012391689641583
725 => 0.012579567607169
726 => 0.012197559171626
727 => 0.012263862627179
728 => 0.012247606551048
729 => 0.012425086127675
730 => 0.01242564019954
731 => 0.01231923232759
801 => 0.012376917761245
802 => 0.012344719334696
803 => 0.012402906243348
804 => 0.012178853516855
805 => 0.012451725552727
806 => 0.01260642641358
807 => 0.012608574435183
808 => 0.012681901415445
809 => 0.012756405874204
810 => 0.012899410694822
811 => 0.012752417547373
812 => 0.012487991184609
813 => 0.012507081913908
814 => 0.012352048834169
815 => 0.012354654968249
816 => 0.012340743220286
817 => 0.012382493423149
818 => 0.012188015338566
819 => 0.0122336589563
820 => 0.012169757624184
821 => 0.012263723718162
822 => 0.012162631734193
823 => 0.012247598711876
824 => 0.012284267642743
825 => 0.012419576787071
826 => 0.012142646463559
827 => 0.011577966787384
828 => 0.011696669301396
829 => 0.011521098959291
830 => 0.011537348662897
831 => 0.0115701756503
901 => 0.011463772643803
902 => 0.011484070984299
903 => 0.011483345784739
904 => 0.011477096406718
905 => 0.011449416875249
906 => 0.011409276078391
907 => 0.011569184658389
908 => 0.011596356242153
909 => 0.011656755307016
910 => 0.011836461954968
911 => 0.011818505023063
912 => 0.011847793524026
913 => 0.011783856890872
914 => 0.011540314499934
915 => 0.01155354002348
916 => 0.01138861753294
917 => 0.011652537868136
918 => 0.011590038049183
919 => 0.011549744009319
920 => 0.011538749407221
921 => 0.011718901513195
922 => 0.01177280584684
923 => 0.011739216283498
924 => 0.011670323109118
925 => 0.011802618370366
926 => 0.011838015001187
927 => 0.01184593900145
928 => 0.012080340839282
929 => 0.011859039460305
930 => 0.011912308901771
1001 => 0.012327901877658
1002 => 0.011951016396439
1003 => 0.01215066104139
1004 => 0.01214088947492
1005 => 0.01224302091967
1006 => 0.012132511715457
1007 => 0.012133881609487
1008 => 0.012224567413442
1009 => 0.012097215557059
1010 => 0.012065681446465
1011 => 0.012022117298531
1012 => 0.012117238021782
1013 => 0.01217425859343
1014 => 0.012633802523923
1015 => 0.012930688860771
1016 => 0.012917800241906
1017 => 0.013035578091845
1018 => 0.012982518091726
1019 => 0.012811173354822
1020 => 0.013103637927453
1021 => 0.013011089899435
1022 => 0.013018719446419
1023 => 0.013018435474299
1024 => 0.013079971822242
1025 => 0.013036367680001
1026 => 0.01295041943977
1027 => 0.013007475892672
1028 => 0.013176913159734
1029 => 0.013702851635664
1030 => 0.013997173774553
1031 => 0.013685133073341
1101 => 0.013900374570646
1102 => 0.01377130637065
1103 => 0.013747850839265
1104 => 0.013883038405794
1105 => 0.014018462600262
1106 => 0.014009836664529
1107 => 0.013911525653455
1108 => 0.013855992257848
1109 => 0.014276509734433
1110 => 0.014586339847852
1111 => 0.014565211511244
1112 => 0.014658465117727
1113 => 0.014932260590588
1114 => 0.01495729301731
1115 => 0.014954139506907
1116 => 0.014892094025413
1117 => 0.015161681225279
1118 => 0.015386575610343
1119 => 0.014877732289114
1120 => 0.01507149316459
1121 => 0.015158478664176
1122 => 0.015286199185005
1123 => 0.015501685112086
1124 => 0.015735759983717
1125 => 0.015768860737065
1126 => 0.015745374168548
1127 => 0.015590995498437
1128 => 0.015847123016069
1129 => 0.015997156508968
1130 => 0.016086498020534
1201 => 0.016313053228856
1202 => 0.015159015857009
1203 => 0.014342130845836
1204 => 0.014214562455379
1205 => 0.014473977793753
1206 => 0.014542383549683
1207 => 0.014514809275241
1208 => 0.013595330927231
1209 => 0.014209721592167
1210 => 0.014870754288204
1211 => 0.014896147246199
1212 => 0.015227074035378
1213 => 0.015334837363081
1214 => 0.015601276803936
1215 => 0.015584610944366
1216 => 0.015649484708237
1217 => 0.01563457135338
1218 => 0.016128094312119
1219 => 0.016672523424476
1220 => 0.016653671575494
1221 => 0.0165754034492
1222 => 0.016691644963445
1223 => 0.017253554151968
1224 => 0.0172018225583
1225 => 0.017252075395061
1226 => 0.017914597996143
1227 => 0.018775971620291
1228 => 0.018375777091376
1229 => 0.019244084066247
1230 => 0.019790637279953
1231 => 0.020735844548401
]
'min_raw' => 0.0084659859948869
'max_raw' => 0.020735844548401
'avg_raw' => 0.014600915271644
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.008465'
'max' => '$0.020735'
'avg' => '$0.01460091'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0037749258573535
'max_diff' => 0.008412399326325
'year' => 2028
]
3 => [
'items' => [
101 => 0.020617499943147
102 => 0.020985462196503
103 => 0.020405638400479
104 => 0.019074245763086
105 => 0.018863547781852
106 => 0.019285370476004
107 => 0.020322380408722
108 => 0.019252711342818
109 => 0.019469104001711
110 => 0.019406782901392
111 => 0.019403462074804
112 => 0.019530204518903
113 => 0.019346357993296
114 => 0.018597334174612
115 => 0.018940607376689
116 => 0.018808053108034
117 => 0.018955131951682
118 => 0.019748855810924
119 => 0.01939793157274
120 => 0.019028261394583
121 => 0.019491909834371
122 => 0.020082293625111
123 => 0.020045348468509
124 => 0.019973659422822
125 => 0.020377766819843
126 => 0.021045233847364
127 => 0.021225647502803
128 => 0.021358825174853
129 => 0.021377188125774
130 => 0.021566337932766
131 => 0.020549231748681
201 => 0.022163405383963
202 => 0.022442128580129
203 => 0.022389740171143
204 => 0.022699529273217
205 => 0.022608381460796
206 => 0.022476322581251
207 => 0.02296740420207
208 => 0.022404418752044
209 => 0.02160533178363
210 => 0.02116693686861
211 => 0.021744250657018
212 => 0.022096796042123
213 => 0.022329806115581
214 => 0.02240031482302
215 => 0.020628186806421
216 => 0.0196731080922
217 => 0.020285302598016
218 => 0.02103222214652
219 => 0.020545082572876
220 => 0.020564177521886
221 => 0.019869644507898
222 => 0.021093672907121
223 => 0.020915342265054
224 => 0.021840521951562
225 => 0.021619720394346
226 => 0.022374168513425
227 => 0.022175497039361
228 => 0.023000171220626
301 => 0.023329156078694
302 => 0.023881572857795
303 => 0.024287932889243
304 => 0.024526555272138
305 => 0.024512229279319
306 => 0.025457770041548
307 => 0.02490021768874
308 => 0.024199800528613
309 => 0.024187132191974
310 => 0.024549888164192
311 => 0.025310125164719
312 => 0.025507243557958
313 => 0.025617405848392
314 => 0.025448688465815
315 => 0.024843505346978
316 => 0.024582190344613
317 => 0.024804838297653
318 => 0.024532558983442
319 => 0.025002589467853
320 => 0.025648041716042
321 => 0.025514758379186
322 => 0.025960304591342
323 => 0.026421398048096
324 => 0.027080782400256
325 => 0.027253169886842
326 => 0.027538119846861
327 => 0.027831426956906
328 => 0.027925629295804
329 => 0.028105490790029
330 => 0.028104542831173
331 => 0.028646567550097
401 => 0.029244437600178
402 => 0.02947011970336
403 => 0.029989063255443
404 => 0.029100390608451
405 => 0.029774459019531
406 => 0.030382485599351
407 => 0.029657571244896
408 => 0.03065669679913
409 => 0.030695490580333
410 => 0.031281230618411
411 => 0.030687470875606
412 => 0.030334898235677
413 => 0.031352762236429
414 => 0.031845274563977
415 => 0.031696925842721
416 => 0.030567984749085
417 => 0.029910892610027
418 => 0.028191155738505
419 => 0.030228258349927
420 => 0.031220471608853
421 => 0.030565415156445
422 => 0.030895787528681
423 => 0.032698192067999
424 => 0.03338443101952
425 => 0.033241698114776
426 => 0.033265817626094
427 => 0.033636099708217
428 => 0.035278134378416
429 => 0.034294189141967
430 => 0.035046378407507
501 => 0.03544533688173
502 => 0.035815911746785
503 => 0.034905896999598
504 => 0.03372198118428
505 => 0.033346985348164
506 => 0.030500282702005
507 => 0.030352099466669
508 => 0.030268919726264
509 => 0.029744483229015
510 => 0.029332419797425
511 => 0.029004731657689
512 => 0.028144780123062
513 => 0.028434988521856
514 => 0.027064405261494
515 => 0.027941255860985
516 => 0.025753771883557
517 => 0.027575573541397
518 => 0.026584049726192
519 => 0.027249831301155
520 => 0.02724750845196
521 => 0.026021593486213
522 => 0.025314511318163
523 => 0.025765091595694
524 => 0.026248149420315
525 => 0.026326523927158
526 => 0.026952821005877
527 => 0.027127607058337
528 => 0.026597997159403
529 => 0.025708441140273
530 => 0.025915064714904
531 => 0.025310324098018
601 => 0.024250539427937
602 => 0.025011695280054
603 => 0.025271587353628
604 => 0.025386370499042
605 => 0.024344193993109
606 => 0.024016719508192
607 => 0.0238423748402
608 => 0.025573909240449
609 => 0.025668766603613
610 => 0.025183462922188
611 => 0.02737708158061
612 => 0.026880598118539
613 => 0.027435291787073
614 => 0.025896315791232
615 => 0.025955106746779
616 => 0.025226530847164
617 => 0.025634484667489
618 => 0.025346156056249
619 => 0.025601526030285
620 => 0.025754593739793
621 => 0.026483050087272
622 => 0.02758389134275
623 => 0.026374243000837
624 => 0.025847181895783
625 => 0.026174167641055
626 => 0.027044973770391
627 => 0.02836428963208
628 => 0.027583228088254
629 => 0.027929849938119
630 => 0.028005571392181
701 => 0.027429645526234
702 => 0.02838552484025
703 => 0.02889778833018
704 => 0.029423264672856
705 => 0.029879521057688
706 => 0.029213377866119
707 => 0.029926246568974
708 => 0.029351800232739
709 => 0.028836462483965
710 => 0.028837244038608
711 => 0.028513965140919
712 => 0.027887571540884
713 => 0.027772054950435
714 => 0.028372986842085
715 => 0.028854877310727
716 => 0.028894568117824
717 => 0.02916136744169
718 => 0.029319256533302
719 => 0.030866784270915
720 => 0.031489212728803
721 => 0.032250306465142
722 => 0.032546795368339
723 => 0.033439120669805
724 => 0.032718495517753
725 => 0.032562583733162
726 => 0.030398094429185
727 => 0.030752529431454
728 => 0.031320014067978
729 => 0.030407452041824
730 => 0.030986262604595
731 => 0.03110053207057
801 => 0.030376443533371
802 => 0.030763210507108
803 => 0.029736072093279
804 => 0.027606280153326
805 => 0.028387895907512
806 => 0.028963428191611
807 => 0.028142072659583
808 => 0.029614320659895
809 => 0.02875426377148
810 => 0.028481667027864
811 => 0.027418169943261
812 => 0.027920099629437
813 => 0.02859896671693
814 => 0.028179505783629
815 => 0.029049950202605
816 => 0.030282731638923
817 => 0.031161285103846
818 => 0.031228729529841
819 => 0.030663878510406
820 => 0.031569055873882
821 => 0.03157564910277
822 => 0.030554605339011
823 => 0.029929221718905
824 => 0.029787133244598
825 => 0.030142098111502
826 => 0.030573090990053
827 => 0.031252646635043
828 => 0.031663287879008
829 => 0.032734022455982
830 => 0.033023732532145
831 => 0.033342036071241
901 => 0.03376738776065
902 => 0.03427813152172
903 => 0.033160653249157
904 => 0.033205052744166
905 => 0.032164472449296
906 => 0.031052463169918
907 => 0.031896339599052
908 => 0.032999595773969
909 => 0.032746507588453
910 => 0.03271802999746
911 => 0.032765921406485
912 => 0.032575101179694
913 => 0.031712028366044
914 => 0.031278598602151
915 => 0.031837833577299
916 => 0.032135042077905
917 => 0.03259598654304
918 => 0.032539165408355
919 => 0.03372650884872
920 => 0.034187874606244
921 => 0.034069837502516
922 => 0.034091559170323
923 => 0.03492683983662
924 => 0.035855843726112
925 => 0.036725978461482
926 => 0.037611116887457
927 => 0.036544047967404
928 => 0.036002256177462
929 => 0.036561247008114
930 => 0.036264638605005
1001 => 0.03796903846904
1002 => 0.038087047417642
1003 => 0.039791324034168
1004 => 0.041408885484735
1005 => 0.040392924119257
1006 => 0.041350929926998
1007 => 0.042387091315429
1008 => 0.044386014744839
1009 => 0.043712847656788
1010 => 0.043197212217214
1011 => 0.042709939218348
1012 => 0.043723876976577
1013 => 0.045028291704486
1014 => 0.045309250143349
1015 => 0.045764510148691
1016 => 0.045285859919619
1017 => 0.045862341398943
1018 => 0.047897574339754
1019 => 0.047347636433649
1020 => 0.046566636200049
1021 => 0.04817325714097
1022 => 0.048754687013909
1023 => 0.052835466359381
1024 => 0.057987618851626
1025 => 0.055854593888979
1026 => 0.054530556462379
1027 => 0.054841736664218
1028 => 0.056723128343017
1029 => 0.057327371637861
1030 => 0.055684830067322
1031 => 0.056265003518244
1101 => 0.059461816274221
1102 => 0.061176803751769
1103 => 0.058847620403711
1104 => 0.052421495923168
1105 => 0.046496315674122
1106 => 0.048067940290513
1107 => 0.047889766832204
1108 => 0.051324343327988
1109 => 0.047334520596465
1110 => 0.047401698978793
1111 => 0.050907298879229
1112 => 0.04997206492699
1113 => 0.048457105700077
1114 => 0.046507376553033
1115 => 0.042903121896604
1116 => 0.039710733035328
1117 => 0.045971742755537
1118 => 0.045701756631494
1119 => 0.045310776714178
1120 => 0.046180860211719
1121 => 0.050405738698267
1122 => 0.050308341574555
1123 => 0.049688750765948
1124 => 0.050158704933453
1125 => 0.048374720462318
1126 => 0.048834493881101
1127 => 0.046495377095298
1128 => 0.047552755572627
1129 => 0.048453855277979
1130 => 0.048634764384837
1201 => 0.049042361840038
1202 => 0.045559486212388
1203 => 0.047123195117346
1204 => 0.048041727599299
1205 => 0.043891764429338
1206 => 0.047959696170578
1207 => 0.045498857096409
1208 => 0.044663611354074
1209 => 0.04578815971087
1210 => 0.045349922122567
1211 => 0.044973151178319
1212 => 0.044762906517682
1213 => 0.04558865071904
1214 => 0.045550128765069
1215 => 0.044199050981605
1216 => 0.042436625090051
1217 => 0.043028153068915
1218 => 0.042813245408589
1219 => 0.04203439232393
1220 => 0.04255924526391
1221 => 0.040248058538232
1222 => 0.036271781901736
1223 => 0.038898632044453
1224 => 0.038797501171421
1225 => 0.038746506399319
1226 => 0.040720511680765
1227 => 0.040530756621004
1228 => 0.040186349329452
1229 => 0.042028067013933
1230 => 0.041355815284499
1231 => 0.043427536712188
]
'min_raw' => 0.018597334174612
'max_raw' => 0.061176803751769
'avg_raw' => 0.03988706896319
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018597'
'max' => '$0.061176'
'avg' => '$0.039887'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010131348179725
'max_diff' => 0.040440959203368
'year' => 2029
]
4 => [
'items' => [
101 => 0.044792106435004
102 => 0.044446007414092
103 => 0.045729391833939
104 => 0.043041780678829
105 => 0.043934497296313
106 => 0.044118484953924
107 => 0.042005340503589
108 => 0.040561802895522
109 => 0.040465535394597
110 => 0.037962640113944
111 => 0.039299666570204
112 => 0.040476194521799
113 => 0.039912728935242
114 => 0.039734352563594
115 => 0.04064563876123
116 => 0.040716453503425
117 => 0.039101869876774
118 => 0.039437592939968
119 => 0.040837613922805
120 => 0.039402316003284
121 => 0.03661376660024
122 => 0.035922167793573
123 => 0.035829895764069
124 => 0.033954224948995
125 => 0.035968383732843
126 => 0.035089149447594
127 => 0.037866640019852
128 => 0.036280152300959
129 => 0.03621176198627
130 => 0.03610837999494
131 => 0.034493912641421
201 => 0.034847378387089
202 => 0.036022352360042
203 => 0.036441596310621
204 => 0.036397865731811
205 => 0.03601659434657
206 => 0.036191138434308
207 => 0.035628871112512
208 => 0.035430322818603
209 => 0.034803649788018
210 => 0.0338826135559
211 => 0.03401068929302
212 => 0.032185875514955
213 => 0.031191620118467
214 => 0.030916423328795
215 => 0.03054841868038
216 => 0.030957990433057
217 => 0.032180706046797
218 => 0.030705851603038
219 => 0.028177317108224
220 => 0.028329286339775
221 => 0.028670716083001
222 => 0.028034464015283
223 => 0.027432304829776
224 => 0.027955833386855
225 => 0.026884459988321
226 => 0.028800186439667
227 => 0.02874837140792
228 => 0.029462435761253
301 => 0.029908954855467
302 => 0.028879872905576
303 => 0.028621061578112
304 => 0.028768492272554
305 => 0.026331791299348
306 => 0.029263305306291
307 => 0.029288657161157
308 => 0.029071579188238
309 => 0.030632519896594
310 => 0.033926591660842
311 => 0.032687229359402
312 => 0.032207310816361
313 => 0.031294985315221
314 => 0.032510604876962
315 => 0.03241726426124
316 => 0.031995142598565
317 => 0.03173984209988
318 => 0.032210241096648
319 => 0.031681554458506
320 => 0.031586587810958
321 => 0.031011193251551
322 => 0.030805803572627
323 => 0.03065374123115
324 => 0.030486335534521
325 => 0.030855590786384
326 => 0.03001880980609
327 => 0.029009733974506
328 => 0.028925840237461
329 => 0.029157478221454
330 => 0.029054995656957
331 => 0.02892534959037
401 => 0.028677819942252
402 => 0.028604383183289
403 => 0.028843017023467
404 => 0.028573613331123
405 => 0.028971133154355
406 => 0.028863029758211
407 => 0.028259172975034
408 => 0.027506543846779
409 => 0.027499843868844
410 => 0.027337691157721
411 => 0.027131165300282
412 => 0.027073714531414
413 => 0.027911743272018
414 => 0.029646437684978
415 => 0.029305875663995
416 => 0.029551966626355
417 => 0.030762490595989
418 => 0.03114727976421
419 => 0.030874165526838
420 => 0.03050030991377
421 => 0.030516757663396
422 => 0.031794335467038
423 => 0.031874016427543
424 => 0.032075344508685
425 => 0.032334107988262
426 => 0.030918234066335
427 => 0.030450070129
428 => 0.030228228082745
429 => 0.029545040443955
430 => 0.030281799740308
501 => 0.029852521649502
502 => 0.029910445930179
503 => 0.029872722666399
504 => 0.029893322119259
505 => 0.028799650955082
506 => 0.029198127245644
507 => 0.028535583126837
508 => 0.027648510925821
509 => 0.027645537148756
510 => 0.02786264681324
511 => 0.027733501489303
512 => 0.027385974743218
513 => 0.027435339277219
514 => 0.027002854015563
515 => 0.027487850818383
516 => 0.027501758791286
517 => 0.027315008604246
518 => 0.028062213095651
519 => 0.02836834338544
520 => 0.028245420411754
521 => 0.028359718781919
522 => 0.029320027553512
523 => 0.029476599784491
524 => 0.02954613882691
525 => 0.029452965722225
526 => 0.0283772714634
527 => 0.028424983077984
528 => 0.028074906907319
529 => 0.027779129433226
530 => 0.027790958981041
531 => 0.027943027051105
601 => 0.02860711723175
602 => 0.030004655866663
603 => 0.030057691436271
604 => 0.030121972093792
605 => 0.029860510354784
606 => 0.029781650992447
607 => 0.029885686846698
608 => 0.03041052887888
609 => 0.031760565078876
610 => 0.031283372119911
611 => 0.030895406816322
612 => 0.031235756982265
613 => 0.031183362741971
614 => 0.030741102626189
615 => 0.030728689857732
616 => 0.029879851296435
617 => 0.029566055007442
618 => 0.029303823341115
619 => 0.029017473207216
620 => 0.028847715249298
621 => 0.029108540626273
622 => 0.029168194475982
623 => 0.028597895230779
624 => 0.028520165550986
625 => 0.028985884225383
626 => 0.028780938800523
627 => 0.028991730252394
628 => 0.029040635677363
629 => 0.029032760777555
630 => 0.02881877421617
701 => 0.028955162869226
702 => 0.028632563045334
703 => 0.028281784189778
704 => 0.028058009134228
705 => 0.027862735718807
706 => 0.02797108475904
707 => 0.027584840214362
708 => 0.027461272810953
709 => 0.028908957462412
710 => 0.029978377679678
711 => 0.029962827886182
712 => 0.029868172517358
713 => 0.029727533839426
714 => 0.030400240283605
715 => 0.030165882809643
716 => 0.030336397453173
717 => 0.030379800586428
718 => 0.030511168798605
719 => 0.030558121642979
720 => 0.030416197536434
721 => 0.0299398829003
722 => 0.028752952113691
723 => 0.028200432628467
724 => 0.028018091995402
725 => 0.0280247197311
726 => 0.027841897193042
727 => 0.027895746624032
728 => 0.027823170558524
729 => 0.02768572904849
730 => 0.027962598133095
731 => 0.027994504715882
801 => 0.027929880163196
802 => 0.027945101584796
803 => 0.027410037890063
804 => 0.027450717620676
805 => 0.027224207711291
806 => 0.027181739833899
807 => 0.026609142507447
808 => 0.025594703344329
809 => 0.026156801114689
810 => 0.025477866051001
811 => 0.025220743054837
812 => 0.026437923327845
813 => 0.026315752187761
814 => 0.026106648302454
815 => 0.025797340075018
816 => 0.025682614644705
817 => 0.024985579247779
818 => 0.02494439467799
819 => 0.025289864242245
820 => 0.025130441925223
821 => 0.024906552614171
822 => 0.024095648224838
823 => 0.023183923210011
824 => 0.023211442457309
825 => 0.023501445221279
826 => 0.024344667369722
827 => 0.024015205888434
828 => 0.023776177803625
829 => 0.023731415028498
830 => 0.024291714876428
831 => 0.025084656547698
901 => 0.025456687038787
902 => 0.025088016120851
903 => 0.024664506820979
904 => 0.024690283869709
905 => 0.024861767026589
906 => 0.024879787481736
907 => 0.024604126464978
908 => 0.024681723426502
909 => 0.024563846546332
910 => 0.023840436350317
911 => 0.02382735215383
912 => 0.023649815625163
913 => 0.023644439889632
914 => 0.023342405965806
915 => 0.023300149332001
916 => 0.022700442644096
917 => 0.023095171402154
918 => 0.022830408075439
919 => 0.022431347290724
920 => 0.022362549061024
921 => 0.022360480903163
922 => 0.022770227100707
923 => 0.02309038327927
924 => 0.022835013746862
925 => 0.022776871054463
926 => 0.023397682895596
927 => 0.023318678929986
928 => 0.023250262005289
929 => 0.025013657318096
930 => 0.023617792328557
1001 => 0.02300911551993
1002 => 0.022255762384663
1003 => 0.022501057964242
1004 => 0.022552745347002
1005 => 0.020741066858794
1006 => 0.020006069121758
1007 => 0.019753845596213
1008 => 0.019608687391345
1009 => 0.019674837808085
1010 => 0.019013253638117
1011 => 0.019457849141928
1012 => 0.018884973173053
1013 => 0.018788928652572
1014 => 0.019813301850634
1015 => 0.019955837396843
1016 => 0.019347736474392
1017 => 0.019738235709202
1018 => 0.019596635258315
1019 => 0.018894793487286
1020 => 0.018867988294031
1021 => 0.01851582876426
1022 => 0.01796476729169
1023 => 0.017712917411772
1024 => 0.01758175180765
1025 => 0.017635873292278
1026 => 0.017608507813505
1027 => 0.017429929553792
1028 => 0.017618743710316
1029 => 0.017136401563794
1030 => 0.016944329034555
1031 => 0.016857574329146
1101 => 0.01642946791153
1102 => 0.017110775601745
1103 => 0.017245001799605
1104 => 0.01737949246454
1105 => 0.018550141882121
1106 => 0.01849165954544
1107 => 0.019020311386987
1108 => 0.018999768948552
1109 => 0.018848988879751
1110 => 0.018212872571596
1111 => 0.018466417194344
1112 => 0.017686046255109
1113 => 0.01827075322285
1114 => 0.01800391738072
1115 => 0.018180535756213
1116 => 0.017862959992039
1117 => 0.018038719532315
1118 => 0.017276831810582
1119 => 0.016565391776077
1120 => 0.016851696014191
1121 => 0.017162941463882
1122 => 0.017837800902678
1123 => 0.017435860188401
1124 => 0.017580413268316
1125 => 0.017096184648493
1126 => 0.016097082692732
1127 => 0.016102737501299
1128 => 0.015949047432024
1129 => 0.015816236773054
1130 => 0.017482027914543
1201 => 0.017274860453838
1202 => 0.016944766218611
1203 => 0.017386610469886
1204 => 0.017503441102934
1205 => 0.017506767106812
1206 => 0.017829125266891
1207 => 0.018001167874712
1208 => 0.018031491130015
1209 => 0.018538728659909
1210 => 0.018708747989304
1211 => 0.019409033545048
1212 => 0.017986571261433
1213 => 0.017957276586779
1214 => 0.017392828124611
1215 => 0.017034845986326
1216 => 0.017417339467886
1217 => 0.017756176476981
1218 => 0.017403356734988
1219 => 0.017449427544861
1220 => 0.016975795867667
1221 => 0.017145096905822
1222 => 0.017290921767194
1223 => 0.017210405849933
1224 => 0.01708986962478
1225 => 0.017728395706281
1226 => 0.017692367562359
1227 => 0.018286977729104
1228 => 0.018750518875063
1229 => 0.019581267476513
1230 => 0.018714338002996
1231 => 0.018682743647249
]
'min_raw' => 0.015816236773054
'max_raw' => 0.045729391833939
'avg_raw' => 0.030772814303496
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015816'
'max' => '$0.045729'
'avg' => '$0.030772'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027810974015579
'max_diff' => -0.01544741191783
'year' => 2030
]
5 => [
'items' => [
101 => 0.018991583542575
102 => 0.018708700707525
103 => 0.018887472894493
104 => 0.019552464513385
105 => 0.019566514738412
106 => 0.019331155366516
107 => 0.019316833727346
108 => 0.019362037069268
109 => 0.019626794454807
110 => 0.019534280089127
111 => 0.019641340055269
112 => 0.01977522018229
113 => 0.020329005151647
114 => 0.020462520832929
115 => 0.020138146947358
116 => 0.020167434277365
117 => 0.020046109539899
118 => 0.019928911363702
119 => 0.020192355748374
120 => 0.020673805539375
121 => 0.020670810465213
122 => 0.020782497458679
123 => 0.020852077530343
124 => 0.020553388927035
125 => 0.020358953629366
126 => 0.020433512494732
127 => 0.020552733744132
128 => 0.020394850650375
129 => 0.01942032305714
130 => 0.019715932475864
131 => 0.019666728614026
201 => 0.019596656331375
202 => 0.019893893887782
203 => 0.019865224600351
204 => 0.019006468136216
205 => 0.019061442938821
206 => 0.019009811336045
207 => 0.019176643607448
208 => 0.018699691217373
209 => 0.018846398560237
210 => 0.018938412030385
211 => 0.018992608671183
212 => 0.01918840410073
213 => 0.019165429766935
214 => 0.019186975983884
215 => 0.019477288917826
216 => 0.020945592114334
217 => 0.021025508617692
218 => 0.020631970527071
219 => 0.020789181232079
220 => 0.020487371056667
221 => 0.020689978249373
222 => 0.020828596944958
223 => 0.020202205714451
224 => 0.020165114891026
225 => 0.01986205903766
226 => 0.020024904087298
227 => 0.019765805904351
228 => 0.019829379535576
301 => 0.01965162212042
302 => 0.019971550076553
303 => 0.020329279243288
304 => 0.020419655757958
305 => 0.020181914057397
306 => 0.020009773398249
307 => 0.019707551107444
308 => 0.020210153512516
309 => 0.02035712977229
310 => 0.020209381508793
311 => 0.020175145007778
312 => 0.020110266900217
313 => 0.020188909204995
314 => 0.020356329308015
315 => 0.020277377079194
316 => 0.020329526417289
317 => 0.020130786916636
318 => 0.020553487805391
319 => 0.021224838545243
320 => 0.021226997047649
321 => 0.021148044393247
322 => 0.021115738668124
323 => 0.021196748882788
324 => 0.021240693601031
325 => 0.021502665780522
326 => 0.021783772366548
327 => 0.023095574147119
328 => 0.022727225456394
329 => 0.023891134035554
330 => 0.024811634607055
331 => 0.025087652479837
401 => 0.024833729024522
402 => 0.023965070600566
403 => 0.023922450074133
404 => 0.02522059249765
405 => 0.024853807804317
406 => 0.024810179932144
407 => 0.024346053082679
408 => 0.024620409533942
409 => 0.024560403753484
410 => 0.024465681693449
411 => 0.024989134690622
412 => 0.025968991972358
413 => 0.025816272025956
414 => 0.025702273670441
415 => 0.025202766060998
416 => 0.025503581210947
417 => 0.025396466697785
418 => 0.025856698622878
419 => 0.025584067425838
420 => 0.024851029049522
421 => 0.024967767827077
422 => 0.024950122995695
423 => 0.025313252375201
424 => 0.025204249948898
425 => 0.024928838522533
426 => 0.025965642926693
427 => 0.025898318615696
428 => 0.025993769096209
429 => 0.026035789349636
430 => 0.026666873919904
501 => 0.02692540907589
502 => 0.026984101082593
503 => 0.027229689484953
504 => 0.026977990619417
505 => 0.027984965539811
506 => 0.028654545103258
507 => 0.02943229622245
508 => 0.030568799647384
509 => 0.030996135448403
510 => 0.030918941060883
511 => 0.031780624986934
512 => 0.033329051847888
513 => 0.031231922400701
514 => 0.033440204800817
515 => 0.032741088088787
516 => 0.031083494941135
517 => 0.030976765484165
518 => 0.032099306808807
519 => 0.034588995426265
520 => 0.033965356665406
521 => 0.034590015475865
522 => 0.033861317792759
523 => 0.033825131810846
524 => 0.03455462425588
525 => 0.036259123116266
526 => 0.035449379599881
527 => 0.034288413711888
528 => 0.035145652856952
529 => 0.03440303297576
530 => 0.032729702537215
531 => 0.033964879780599
601 => 0.033138951933771
602 => 0.033380001588215
603 => 0.035115979074752
604 => 0.034907101670745
605 => 0.035177408373057
606 => 0.034700324118635
607 => 0.034254652195723
608 => 0.033422772455576
609 => 0.033176493875694
610 => 0.033244556414999
611 => 0.03317646014728
612 => 0.032711031078038
613 => 0.032610521714849
614 => 0.032443001706117
615 => 0.032494923161618
616 => 0.032179936535496
617 => 0.032774381378546
618 => 0.032884715579646
619 => 0.033317302963832
620 => 0.033362215621111
621 => 0.034566965328573
622 => 0.033903409434699
623 => 0.034348580016969
624 => 0.034308759769983
625 => 0.031119420010906
626 => 0.031558882889924
627 => 0.032242549218627
628 => 0.031934558464234
629 => 0.03149913159626
630 => 0.031147501054259
701 => 0.030614744827059
702 => 0.031364588986166
703 => 0.032350554318356
704 => 0.033387221329026
705 => 0.034632708817233
706 => 0.034354730508938
707 => 0.033363937806777
708 => 0.033408384043622
709 => 0.033683133190844
710 => 0.033327308081599
711 => 0.033222368310351
712 => 0.033668716077735
713 => 0.0336717898295
714 => 0.033262370038412
715 => 0.032807374863649
716 => 0.032805468417253
717 => 0.032724506420636
718 => 0.033875720752099
719 => 0.034508772233506
720 => 0.034581350565636
721 => 0.03450388713348
722 => 0.034533699734103
723 => 0.03416534102541
724 => 0.035007299800101
725 => 0.035779964432851
726 => 0.035572873805702
727 => 0.035262415515938
728 => 0.035015120534444
729 => 0.035514618967209
730 => 0.035492377088282
731 => 0.035773215881342
801 => 0.035760475411485
802 => 0.03566603988826
803 => 0.035572877178292
804 => 0.035942256792682
805 => 0.035835881395793
806 => 0.03572934076853
807 => 0.035515657230002
808 => 0.035544700371796
809 => 0.035234295687033
810 => 0.035090688276709
811 => 0.032931177387804
812 => 0.032354085514234
813 => 0.032535650365447
814 => 0.032595426228796
815 => 0.032344275105855
816 => 0.032704361300722
817 => 0.032648242248678
818 => 0.032866568651635
819 => 0.032730167793698
820 => 0.032735765732486
821 => 0.033136891571951
822 => 0.033253340109659
823 => 0.033194113443525
824 => 0.033235593770314
825 => 0.034191490393399
826 => 0.03405559246145
827 => 0.033983399393648
828 => 0.034003397366805
829 => 0.034247649448658
830 => 0.034316026695908
831 => 0.034026307494528
901 => 0.034162940744745
902 => 0.034744707782832
903 => 0.034948293320999
904 => 0.035598040632228
905 => 0.03532201642608
906 => 0.035828670802512
907 => 0.037385953624457
908 => 0.038630018898402
909 => 0.037485925059311
910 => 0.039770492504153
911 => 0.041549355961698
912 => 0.041481080219346
913 => 0.041170894229669
914 => 0.039145705476786
915 => 0.037282096592519
916 => 0.038841084557221
917 => 0.038845058738152
918 => 0.038711140289386
919 => 0.037879384305584
920 => 0.038682196984085
921 => 0.038745921339117
922 => 0.038710252645973
923 => 0.038072547283347
924 => 0.037098889062269
925 => 0.037289139548059
926 => 0.037600773724788
927 => 0.03701078521454
928 => 0.036822248136852
929 => 0.037172774434922
930 => 0.038302243202357
1001 => 0.038088723674441
1002 => 0.038083147816667
1003 => 0.038996674903465
1004 => 0.038342786660802
1005 => 0.037291539215951
1006 => 0.037026085371876
1007 => 0.036083903056546
1008 => 0.036734671737683
1009 => 0.036758091743976
1010 => 0.036401672388012
1011 => 0.037320460682349
1012 => 0.037311993886467
1013 => 0.038184246628349
1014 => 0.039851666267659
1015 => 0.039358528231578
1016 => 0.038785062348881
1017 => 0.038847413990815
1018 => 0.039531257605857
1019 => 0.039117790145571
1020 => 0.039266475927087
1021 => 0.039531032552119
1022 => 0.039690646132572
1023 => 0.038824448052901
1024 => 0.038622495845486
1025 => 0.038209372504708
1026 => 0.038101596336411
1027 => 0.038438076677374
1028 => 0.038349425995556
1029 => 0.036756123383134
1030 => 0.036589614395084
1031 => 0.036594720988027
1101 => 0.036176026220504
1102 => 0.035537416201773
1103 => 0.037215645201575
1104 => 0.037080859926091
1105 => 0.036932067413508
1106 => 0.036950293647302
1107 => 0.037678755975657
1108 => 0.037256211036981
1109 => 0.038379616010204
1110 => 0.038148677720354
1111 => 0.037911816734779
1112 => 0.037879075331611
1113 => 0.037787904060194
1114 => 0.037475243847171
1115 => 0.037097687851979
1116 => 0.036848392680614
1117 => 0.033990694449199
1118 => 0.034521066618483
1119 => 0.035131211454301
1120 => 0.035341831006623
1121 => 0.034981551687947
1122 => 0.037489469870601
1123 => 0.037947690689472
1124 => 0.036559709940105
1125 => 0.036300075412779
1126 => 0.037506491466988
1127 => 0.036778875107935
1128 => 0.037106520709864
1129 => 0.036398330131057
1130 => 0.037837318712478
1201 => 0.037826356030453
1202 => 0.037266556971249
1203 => 0.03773969530275
1204 => 0.037657475874289
1205 => 0.037025464115172
1206 => 0.037857354612541
1207 => 0.037857767219849
1208 => 0.037318972796446
1209 => 0.036689778867177
1210 => 0.036577293853521
1211 => 0.036492551505967
1212 => 0.037085679287166
1213 => 0.037617475801127
1214 => 0.038607017270072
1215 => 0.03885581150629
1216 => 0.039826871973419
1217 => 0.03924865274532
1218 => 0.039504969839944
1219 => 0.039783238304425
1220 => 0.039916650439281
1221 => 0.039699262524823
1222 => 0.041207719134709
1223 => 0.0413350790905
1224 => 0.041377781782017
1225 => 0.040869138700399
1226 => 0.041320932806271
1227 => 0.041109553305982
1228 => 0.041659504042819
1229 => 0.041745743340478
1230 => 0.041672701723413
1231 => 0.041700075437685
]
'min_raw' => 0.018699691217373
'max_raw' => 0.041745743340478
'avg_raw' => 0.030222717278926
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018699'
'max' => '$0.041745'
'avg' => '$0.030222'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0028834544443192
'max_diff' => -0.0039836484934604
'year' => 2031
]
6 => [
'items' => [
101 => 0.040412873831128
102 => 0.040346125637298
103 => 0.039436009278198
104 => 0.039806888421772
105 => 0.039113547639561
106 => 0.039333413143802
107 => 0.039430327763115
108 => 0.039379705065842
109 => 0.039827857372087
110 => 0.039446836360311
111 => 0.038441259264582
112 => 0.037435408200044
113 => 0.037422780559278
114 => 0.037157957728731
115 => 0.036966539326966
116 => 0.037003413302079
117 => 0.037133361999923
118 => 0.036958986472414
119 => 0.036996198332272
120 => 0.037614163147236
121 => 0.037738091583754
122 => 0.037316934334501
123 => 0.035625927206048
124 => 0.035210949815155
125 => 0.03550922733437
126 => 0.035366669891718
127 => 0.028543662858028
128 => 0.0301466271535
129 => 0.029194200200654
130 => 0.029633122359582
131 => 0.028660941070491
201 => 0.029124916938033
202 => 0.029039237536984
203 => 0.03161675668894
204 => 0.031576512272644
205 => 0.031595775145038
206 => 0.030676308056533
207 => 0.032141044094773
208 => 0.032862625737415
209 => 0.032729080179635
210 => 0.032762690719402
211 => 0.03218515028916
212 => 0.031601366998843
213 => 0.030953861486278
214 => 0.032156846694524
215 => 0.032023095275009
216 => 0.032329872909134
217 => 0.03311009480784
218 => 0.0332249854462
219 => 0.03337939962926
220 => 0.033324053136583
221 => 0.034642631134454
222 => 0.034482942638654
223 => 0.034867745968017
224 => 0.03407617632442
225 => 0.03318044013621
226 => 0.033350690301766
227 => 0.033334293841758
228 => 0.033125548086869
229 => 0.032937101753009
301 => 0.032623391701558
302 => 0.033616016724702
303 => 0.033575717961509
304 => 0.034228108095424
305 => 0.034112791802275
306 => 0.033342681373941
307 => 0.033370186018548
308 => 0.03355516797181
309 => 0.034195392624137
310 => 0.034385454890766
311 => 0.034297410476192
312 => 0.034505805074879
313 => 0.034670511668748
314 => 0.034526489687201
315 => 0.036565537230426
316 => 0.035718782528581
317 => 0.036131484878579
318 => 0.03622991195727
319 => 0.035977793064901
320 => 0.036032468624955
321 => 0.036115287200239
322 => 0.036618145371822
323 => 0.03793779071724
324 => 0.038522252657596
325 => 0.040280635242002
326 => 0.038473721229553
327 => 0.038366506429807
328 => 0.038683244231326
329 => 0.039715600952071
330 => 0.0405522291099
331 => 0.040829786936087
401 => 0.040866470784799
402 => 0.041387187718423
403 => 0.04168565295398
404 => 0.041323958986466
405 => 0.041017461219934
406 => 0.039919624264122
407 => 0.040046701881068
408 => 0.040922140645017
409 => 0.042158749462181
410 => 0.043219888474527
411 => 0.042848314576831
412 => 0.045683161125954
413 => 0.045964224581989
414 => 0.045925390700235
415 => 0.046565695080935
416 => 0.045294821280965
417 => 0.044751498109458
418 => 0.041083729515956
419 => 0.042114222884393
420 => 0.04361210551417
421 => 0.043413855131348
422 => 0.042326052727086
423 => 0.043219063278857
424 => 0.04292380606342
425 => 0.042690924447371
426 => 0.043757800276813
427 => 0.042584726477498
428 => 0.043600403205668
429 => 0.04229778729596
430 => 0.042850011895097
501 => 0.042536542504529
502 => 0.04273939561759
503 => 0.041553520463603
504 => 0.042193389911202
505 => 0.041526899790887
506 => 0.04152658378779
507 => 0.041511870981444
508 => 0.042295993652325
509 => 0.042321563864472
510 => 0.041742096025947
511 => 0.041658585657427
512 => 0.041967367259402
513 => 0.041605864873519
514 => 0.041775009564605
515 => 0.041610988093901
516 => 0.041574063406025
517 => 0.041279841210811
518 => 0.041153082199304
519 => 0.041202787673893
520 => 0.041033117264193
521 => 0.040930884705101
522 => 0.041491534352285
523 => 0.041192001862337
524 => 0.0414456267023
525 => 0.041156589187156
526 => 0.040154659232015
527 => 0.039578438719597
528 => 0.037685885913293
529 => 0.038222611541457
530 => 0.038578461188212
531 => 0.038460852882082
601 => 0.038713521032021
602 => 0.038729032804342
603 => 0.03864688781315
604 => 0.038551774436774
605 => 0.038505478505254
606 => 0.038850530449259
607 => 0.039050844716668
608 => 0.038614175460918
609 => 0.038511869963948
610 => 0.038953366690682
611 => 0.039222679438945
612 => 0.041211133458361
613 => 0.041063822361981
614 => 0.041433544305552
615 => 0.041391919288552
616 => 0.041779446786739
617 => 0.042412890464935
618 => 0.041124922353524
619 => 0.041348469083079
620 => 0.04129366058744
621 => 0.041892045371266
622 => 0.041893913463245
623 => 0.041535151893805
624 => 0.04172964236084
625 => 0.041621083117708
626 => 0.04181726434271
627 => 0.041061854932477
628 => 0.041981862052734
629 => 0.04250344680597
630 => 0.042510689010775
701 => 0.042757916044256
702 => 0.043009113028697
703 => 0.043491263765686
704 => 0.042995666106331
705 => 0.04210413416261
706 => 0.042168499889316
707 => 0.041645795036911
708 => 0.041654581799915
709 => 0.041607677370372
710 => 0.04174844109423
711 => 0.041092744654033
712 => 0.04124663529796
713 => 0.04103118749528
714 => 0.041348000741632
715 => 0.041007162059663
716 => 0.041293634157124
717 => 0.041417266017688
718 => 0.041873470244772
719 => 0.040939780324394
720 => 0.039035923371493
721 => 0.039436137185027
722 => 0.038844189518694
723 => 0.038898976528916
724 => 0.039009655008855
725 => 0.03865090984363
726 => 0.038719347115795
727 => 0.038716902054848
728 => 0.038695831840532
729 => 0.038602508367661
730 => 0.038467170868512
731 => 0.039006313810436
801 => 0.039097924702158
802 => 0.039301564366269
803 => 0.039907457876559
804 => 0.039846914826928
805 => 0.039945663052783
806 => 0.03973009623019
807 => 0.038908976055556
808 => 0.038953566831567
809 => 0.038397519140192
810 => 0.039287344976635
811 => 0.039076622473438
812 => 0.038940768304796
813 => 0.038903699236202
814 => 0.039511094639311
815 => 0.039692836863678
816 => 0.039579587305719
817 => 0.03934730915833
818 => 0.039793351868188
819 => 0.039912694080315
820 => 0.039939410400439
821 => 0.040729712562102
822 => 0.039983579512114
823 => 0.040163181153171
824 => 0.041564381887146
825 => 0.040293686173914
826 => 0.040966802033109
827 => 0.040933856514527
828 => 0.041278199811092
829 => 0.040905610313581
830 => 0.040910229006947
831 => 0.041215982526462
901 => 0.040786606851242
902 => 0.040680287395733
903 => 0.040533407829423
904 => 0.04085411398898
905 => 0.041046362827343
906 => 0.042595747273332
907 => 0.043596720285955
908 => 0.043553265407599
909 => 0.043950361651654
910 => 0.043771466156722
911 => 0.043193765413342
912 => 0.044179830139192
913 => 0.043867798001232
914 => 0.043893521551567
915 => 0.043892564119739
916 => 0.044100038213159
917 => 0.043953023803249
918 => 0.043663243310598
919 => 0.043855613125109
920 => 0.044426882700741
921 => 0.046200120992192
922 => 0.047192448632371
923 => 0.04614038162225
924 => 0.046866083358093
925 => 0.046430920910555
926 => 0.046351838948876
927 => 0.046807633267922
928 => 0.047264225394587
929 => 0.04723514245002
930 => 0.046903680012327
1001 => 0.046716445291822
1002 => 0.048134249323719
1003 => 0.049178863182759
1004 => 0.049107627520752
1005 => 0.04942203856577
1006 => 0.05034515911831
1007 => 0.05042955769271
1008 => 0.050418925412215
1009 => 0.050209734739482
1010 => 0.051118666805809
1011 => 0.051876913926677
1012 => 0.050161313142844
1013 => 0.050814591462464
1014 => 0.051107869147455
1015 => 0.051538487800589
1016 => 0.052265013648492
1017 => 0.053054213420779
1018 => 0.053165814921715
1019 => 0.053086628316177
1020 => 0.052566129851525
1021 => 0.053429681659473
1022 => 0.053935530055787
1023 => 0.054236751199657
1024 => 0.055000597902093
1025 => 0.051109680330593
1026 => 0.048355495482335
1027 => 0.047925389747368
1028 => 0.048800026672496
1029 => 0.049030661454554
1030 => 0.048937692863098
1031 => 0.045837607416852
1101 => 0.047909068439071
1102 => 0.05013778632559
1103 => 0.05022340045635
1104 => 0.051339143230635
1105 => 0.051702474813784
1106 => 0.052600793990831
1107 => 0.052544603881721
1108 => 0.052763330305952
1109 => 0.052713048888835
1110 => 0.054376996000895
1111 => 0.056212576764035
1112 => 0.056149016438997
1113 => 0.05588512998669
1114 => 0.056277046367692
1115 => 0.058171562428042
1116 => 0.057997145748206
1117 => 0.058166576695889
1118 => 0.060400317901288
1119 => 0.063304499214287
1120 => 0.061955215419362
1121 => 0.064882773008396
1122 => 0.066725515327533
1123 => 0.069912347625368
1124 => 0.069513340526199
1125 => 0.070753950953691
1126 => 0.068799034543392
1127 => 0.064310151311555
1128 => 0.063599768357362
1129 => 0.065021973021418
1130 => 0.068518324411298
1201 => 0.064911860473692
1202 => 0.065641443431201
1203 => 0.065431323490357
1204 => 0.065420127091662
1205 => 0.065847448090818
1206 => 0.065227596693977
1207 => 0.062702210594111
1208 => 0.063859580161486
1209 => 0.063412664190071
1210 => 0.063908550780149
1211 => 0.066584646187612
1212 => 0.065401480617826
1213 => 0.064155111802622
1214 => 0.065718334888269
1215 => 0.067708855058029
1216 => 0.067584291883114
1217 => 0.067342587260411
1218 => 0.068705063563345
1219 => 0.070955475247692
1220 => 0.071563752483084
1221 => 0.07201277030257
1222 => 0.072074682273659
1223 => 0.07271241405395
1224 => 0.069283169542222
1225 => 0.07472546865158
1226 => 0.075665203367287
1227 => 0.075488572188747
1228 => 0.076533047775174
1229 => 0.076225736561859
1230 => 0.075780490829418
1231 => 0.077436206800232
]
'min_raw' => 0.028543662858028
'max_raw' => 0.077436206800232
'avg_raw' => 0.05298993482913
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.028543'
'max' => '$0.077436'
'avg' => '$0.052989'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0098439716406552
'max_diff' => 0.035690463459754
'year' => 2032
]
7 => [
'items' => [
101 => 0.075538062049083
102 => 0.072843884544605
103 => 0.071365805480859
104 => 0.073312259225236
105 => 0.074500890605053
106 => 0.075286500335957
107 => 0.075524225365851
108 => 0.069549372031861
109 => 0.066329257465398
110 => 0.068393313983812
111 => 0.070911605389849
112 => 0.06926918030631
113 => 0.069333560260063
114 => 0.066991893712656
115 => 0.071118790919572
116 => 0.070517536709193
117 => 0.073636844616239
118 => 0.072892396750212
119 => 0.075436071257572
120 => 0.074766236511969
121 => 0.077546683091014
122 => 0.078655878508981
123 => 0.080518390248229
124 => 0.081888461465407
125 => 0.08269299348942
126 => 0.082644692404422
127 => 0.085832649099824
128 => 0.083952822415269
129 => 0.081591317058335
130 => 0.081548604876882
131 => 0.082771661964028
201 => 0.08533485408936
202 => 0.085999452514529
203 => 0.086370872368015
204 => 0.085802029933184
205 => 0.083761612795491
206 => 0.082880571020585
207 => 0.083631244139043
208 => 0.082713235421246
209 => 0.084297976015917
210 => 0.086474163334726
211 => 0.086024789258969
212 => 0.087526979420297
213 => 0.089081588202258
214 => 0.091304748582312
215 => 0.091885965029048
216 => 0.092846693713822
217 => 0.093835599113386
218 => 0.094153208875978
219 => 0.094759624461288
220 => 0.094756428351819
221 => 0.096583902534628
222 => 0.09859966315043
223 => 0.09936056611793
224 => 0.10111022053526
225 => 0.098113998660785
226 => 0.10038666737069
227 => 0.10243667143562
228 => 0.099992572077666
301 => 0.10336119364049
302 => 0.10349198958231
303 => 0.10546685301575
304 => 0.1034649505879
305 => 0.10227622731654
306 => 0.10570802686008
307 => 0.10736856655852
308 => 0.10686839848743
309 => 0.10306209477008
310 => 0.10084666274654
311 => 0.095048449816009
312 => 0.10191668349638
313 => 0.10526199977297
314 => 0.10305343120909
315 => 0.10416730472795
316 => 0.11024423747213
317 => 0.11255794000885
318 => 0.11207670605522
319 => 0.1121580266716
320 => 0.11340645856374
321 => 0.11894269309752
322 => 0.11562525303597
323 => 0.11816131166091
324 => 0.11950642801115
325 => 0.12075584704139
326 => 0.11768766878605
327 => 0.11369601395634
328 => 0.1124316893135
329 => 0.10283383259154
330 => 0.10233422246779
331 => 0.10205377616559
401 => 0.10028560190013
402 => 0.098896301271169
403 => 0.097791477829595
404 => 0.0948920911907
405 => 0.09587054906894
406 => 0.091249531915561
407 => 0.0942058949315
408 => 0.086830639976347
409 => 0.092972971459883
410 => 0.089629979690937
411 => 0.091874708754309
412 => 0.091866877106073
413 => 0.087733619208408
414 => 0.085349642311926
415 => 0.086868805176133
416 => 0.088497468357861
417 => 0.088761713479616
418 => 0.090873317807185
419 => 0.091462621186226
420 => 0.089677004435787
421 => 0.086677804210472
422 => 0.087374450018339
423 => 0.085335524806865
424 => 0.081762386799884
425 => 0.084328676897502
426 => 0.08520492116864
427 => 0.085591920557309
428 => 0.082078149705115
429 => 0.08097404661568
430 => 0.080386231395186
501 => 0.086224220517498
502 => 0.086544038740134
503 => 0.084907803495391
504 => 0.092303741955822
505 => 0.090629813300082
506 => 0.092500001731022
507 => 0.08731123671317
508 => 0.087509454524451
509 => 0.085053010011352
510 => 0.086428454799006
511 => 0.085456334755747
512 => 0.086317332452574
513 => 0.086833410922025
514 => 0.089289452356751
515 => 0.093001015507874
516 => 0.088922601668167
517 => 0.087145578354245
518 => 0.088248033623843
519 => 0.091184017286642
520 => 0.09563218282602
521 => 0.092998779299034
522 => 0.094167439066218
523 => 0.094422739235294
524 => 0.092480964968392
525 => 0.095703778812959
526 => 0.097430910934355
527 => 0.099202591111272
528 => 0.10074089136754
529 => 0.098494943088529
530 => 0.10089842969111
531 => 0.098961643761929
601 => 0.097224146562206
602 => 0.09722678162825
603 => 0.09613682425408
604 => 0.094024894498158
605 => 0.09363542224835
606 => 0.095661506076773
607 => 0.097286233436315
608 => 0.097420053763566
609 => 0.098319586311315
610 => 0.09885192040715
611 => 0.10406951821945
612 => 0.10616807922179
613 => 0.10873415989172
614 => 0.10973379292904
615 => 0.1127423299831
616 => 0.11031269197051
617 => 0.10978702450335
618 => 0.10248929769518
619 => 0.10368430005119
620 => 0.10559761412374
621 => 0.10252084753952
622 => 0.10447234776316
623 => 0.10485761524574
624 => 0.10241630018832
625 => 0.10372031204348
626 => 0.10025724316875
627 => 0.093076500945868
628 => 0.095711773031777
629 => 0.097652220309998
630 => 0.094882962788552
701 => 0.099846749710678
702 => 0.096947007864133
703 => 0.096027928910934
704 => 0.092442274239199
705 => 0.094134565219753
706 => 0.096423413002224
707 => 0.095009171179772
708 => 0.097943935310838
709 => 0.10210034399343
710 => 0.10506244833907
711 => 0.10528984193013
712 => 0.10338540728146
713 => 0.10643727595989
714 => 0.10645950549141
715 => 0.1030169851549
716 => 0.10090846061682
717 => 0.10042939940539
718 => 0.10162618823702
719 => 0.10307931081801
720 => 0.10537048012016
721 => 0.10675498574424
722 => 0.11036504212681
723 => 0.1113418198755
724 => 0.11241500248081
725 => 0.11384910539876
726 => 0.1155711136482
727 => 0.11180345763241
728 => 0.11195315362971
729 => 0.10844476451456
730 => 0.10469554759112
731 => 0.10754073588952
801 => 0.11126044111014
802 => 0.11040713662262
803 => 0.11031112243634
804 => 0.11047259166554
805 => 0.10982922794827
806 => 0.10691931769924
807 => 0.10545797898917
808 => 0.10734347875242
809 => 0.10834553796265
810 => 0.10989964440896
811 => 0.10970806798625
812 => 0.11371127929311
813 => 0.11526680615613
814 => 0.11486883581983
815 => 0.1149420719394
816 => 0.11775827902325
817 => 0.12089048049765
818 => 0.12382420050882
819 => 0.12680850651039
820 => 0.12321080914605
821 => 0.12138412029957
822 => 0.12326879691261
823 => 0.12226876097299
824 => 0.12801526411198
825 => 0.12841313952131
826 => 0.13415922712272
827 => 0.13961294848785
828 => 0.13618756381198
829 => 0.13941754727861
830 => 0.14291103774218
831 => 0.14965054764481
901 => 0.14738091780842
902 => 0.14564241692338
903 => 0.14399954198739
904 => 0.14741810393013
905 => 0.15181602925661
906 => 0.15276330024913
907 => 0.15429824114237
908 => 0.15268443847677
909 => 0.15462808603296
910 => 0.16149001598833
911 => 0.15963586194246
912 => 0.15700266512718
913 => 0.16241949980019
914 => 0.16437983121094
915 => 0.17813846368511
916 => 0.19550930552452
917 => 0.18831766293991
918 => 0.18385357831478
919 => 0.18490274409119
920 => 0.19124598749084
921 => 0.19328323594632
922 => 0.18774529236266
923 => 0.18970138765886
924 => 0.20047966505997
925 => 0.20626186507713
926 => 0.19840886080076
927 => 0.17674273345693
928 => 0.1567655745644
929 => 0.16206441668589
930 => 0.16146369243152
1001 => 0.17304360688153
1002 => 0.15959164098167
1003 => 0.15981813758794
1004 => 0.17163751240543
1005 => 0.1684843058395
1006 => 0.16337651503489
1007 => 0.15680286708989
1008 => 0.14465087087472
1009 => 0.13388750894345
1010 => 0.15499694034487
1011 => 0.15408666327784
1012 => 0.15276844718926
1013 => 0.15570199444851
1014 => 0.1699464672375
1015 => 0.16961808603486
1016 => 0.16752909236519
1017 => 0.16911357565209
1018 => 0.16309874745383
1019 => 0.16464890563562
1020 => 0.15676241008036
1021 => 0.16032743544048
1022 => 0.16336555600985
1023 => 0.16397550369429
1024 => 0.16534974697205
1025 => 0.15360698862682
1026 => 0.15887914237455
1027 => 0.16197603876735
1028 => 0.14798414819865
1029 => 0.16169946407816
1030 => 0.1534025733293
1031 => 0.15058648399402
1101 => 0.15437797729242
1102 => 0.15290042866669
1103 => 0.15163011912285
1104 => 0.1509212645707
1105 => 0.15370531879719
1106 => 0.15357543933986
1107 => 0.14902018626368
1108 => 0.14307804432166
1109 => 0.14507242220156
1110 => 0.1443478460204
1111 => 0.14172188846768
1112 => 0.14349146679889
1113 => 0.13569913939136
1114 => 0.12229284509664
1115 => 0.13114945375363
1116 => 0.13080848395448
1117 => 0.13063655151999
1118 => 0.13729204814704
1119 => 0.13665227571478
1120 => 0.13549108248556
1121 => 0.14170056224341
1122 => 0.13943401860251
1123 => 0.14641897203893
1124 => 0.15101971413062
1125 => 0.14985281711775
1126 => 0.15417983729231
1127 => 0.14511836863983
1128 => 0.14812822504316
1129 => 0.14874855227641
1130 => 0.14162393822707
1201 => 0.1367569503969
1202 => 0.13643237779635
1203 => 0.12799369161105
1204 => 0.13250156965654
1205 => 0.1364683157879
1206 => 0.13456855222292
1207 => 0.13396714383206
1208 => 0.13703960887136
1209 => 0.1372783657188
1210 => 0.13183468429492
1211 => 0.13296659804191
1212 => 0.13768686653189
1213 => 0.13284765938693
1214 => 0.12344587038426
1215 => 0.1211140967217
1216 => 0.120802995132
1217 => 0.11447904002382
1218 => 0.12126991698764
1219 => 0.11830551720874
1220 => 0.12767002059131
1221 => 0.12232106648203
1222 => 0.1220904837612
1223 => 0.12174192415953
1224 => 0.11629863475863
1225 => 0.11749036919834
1226 => 0.12145187598221
1227 => 0.12286538623226
1228 => 0.12271794553264
1229 => 0.12143246243778
1230 => 0.12202095001586
1231 => 0.12012522648418
]
'min_raw' => 0.066329257465398
'max_raw' => 0.20626186507713
'avg_raw' => 0.13629556127126
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.066329'
'max' => '$0.206261'
'avg' => '$0.136295'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.03778559460737
'max_diff' => 0.1288256582769
'year' => 2033
]
8 => [
'items' => [
101 => 0.11945580704907
102 => 0.11734293517353
103 => 0.11423759721225
104 => 0.11466941350191
105 => 0.10851692644474
106 => 0.10516472495879
107 => 0.10423687976878
108 => 0.10299612640338
109 => 0.10437702616292
110 => 0.10849949722192
111 => 0.10352692249374
112 => 0.095001791907834
113 => 0.095514166782162
114 => 0.096665320999313
115 => 0.094520152731299
116 => 0.09248993099595
117 => 0.094255044077741
118 => 0.090642833863681
119 => 0.097101839346144
120 => 0.096927141348997
121 => 0.09933465917064
122 => 0.10084012947175
123 => 0.097370507829486
124 => 0.096497907369311
125 => 0.096994980248907
126 => 0.088779472792713
127 => 0.098663276938892
128 => 0.098748752487582
129 => 0.098016858945987
130 => 0.10327967952561
131 => 0.11438587246352
201 => 0.1102072759347
202 => 0.10858919705999
203 => 0.10551322793637
204 => 0.10961177416063
205 => 0.10929706975788
206 => 0.10787385710058
207 => 0.10701309364476
208 => 0.10859907670457
209 => 0.10681657279235
210 => 0.10649638610978
211 => 0.10455640317997
212 => 0.10386391753763
213 => 0.10335122873669
214 => 0.10278680874261
215 => 0.10403177860485
216 => 0.1012105131076
217 => 0.097808343489993
218 => 0.097525489898274
219 => 0.098306473533752
220 => 0.097960946412447
221 => 0.097523835647351
222 => 0.096689272156751
223 => 0.096441674996717
224 => 0.097246245649761
225 => 0.096337932291858
226 => 0.097678198129833
227 => 0.097313719982195
228 => 0.095277774677778
301 => 0.092740233024979
302 => 0.092717643581596
303 => 0.092170934394903
304 => 0.091474618047373
305 => 0.09128091876905
306 => 0.094106391177293
307 => 0.099955034503083
308 => 0.098806805872057
309 => 0.099636518733177
310 => 0.10371788481288
311 => 0.10501522835866
312 => 0.10409440463913
313 => 0.10283392433791
314 => 0.10288937907412
315 => 0.10719682183673
316 => 0.10746547175822
317 => 0.10814426344007
318 => 0.10901670257775
319 => 0.10424298479682
320 => 0.10266453739593
321 => 0.10191658144846
322 => 0.099613166625645
323 => 0.10209720203219
324 => 0.1006498609778
325 => 0.10084515673425
326 => 0.10071797011666
327 => 0.10078742261018
328 => 0.097100033922477
329 => 0.098443524556833
330 => 0.096209710802922
331 => 0.093218884943796
401 => 0.093208858646798
402 => 0.093940859038718
403 => 0.093505436562426
404 => 0.092333725874457
405 => 0.092500161847365
406 => 0.091042007592535
407 => 0.092677208174636
408 => 0.092724099876302
409 => 0.092094458582215
410 => 0.094613710693138
411 => 0.095645850338498
412 => 0.095231406950507
413 => 0.095616771885575
414 => 0.098854519955618
415 => 0.099382414163887
416 => 0.099616869900466
417 => 0.099302730272883
418 => 0.095675951976677
419 => 0.095836815016366
420 => 0.094656508765433
421 => 0.093659274361003
422 => 0.093699158507375
423 => 0.09421186662265
424 => 0.09645089303199
425 => 0.10116279211263
426 => 0.10134160523839
427 => 0.10155833196315
428 => 0.10067679545541
429 => 0.10041091560951
430 => 0.10076167975566
501 => 0.10253122131047
502 => 0.10708296261527
503 => 0.10547407323757
504 => 0.10416602112965
505 => 0.10531353547662
506 => 0.10513688463742
507 => 0.10364577377944
508 => 0.10360392326396
509 => 0.10074200479053
510 => 0.099684018693633
511 => 0.09879988632218
512 => 0.097834436853413
513 => 0.097262086046169
514 => 0.098141477014886
515 => 0.09834260413408
516 => 0.096419800411857
517 => 0.096157729369521
518 => 0.09772793239569
519 => 0.097036944586942
520 => 0.097747642683912
521 => 0.097912530738665
522 => 0.097885979964156
523 => 0.097164509332379
524 => 0.097624353198509
525 => 0.096536685369056
526 => 0.095354009966951
527 => 0.09459953674369
528 => 0.093941158790043
529 => 0.094306465143877
530 => 0.093004214694763
531 => 0.092587598566968
601 => 0.097468568443479
602 => 0.10107419337053
603 => 0.1010217661561
604 => 0.10070262897149
605 => 0.10022845584976
606 => 0.10249653259317
607 => 0.10170638000739
608 => 0.10228128203301
609 => 0.10242761872709
610 => 0.10287053582628
611 => 0.10302884061922
612 => 0.10255033358518
613 => 0.10094440553423
614 => 0.096942585518321
615 => 0.095079727498207
616 => 0.094464953323215
617 => 0.094487299196853
618 => 0.093870900245529
619 => 0.094052457361757
620 => 0.0938077620898
621 => 0.093344368442858
622 => 0.094277851891988
623 => 0.0943854271635
624 => 0.094167540972177
625 => 0.094218861057828
626 => 0.092414856454081
627 => 0.092552011006012
628 => 0.091788317032102
629 => 0.091645133618463
630 => 0.089714581754862
701 => 0.086294329290526
702 => 0.088189481167708
703 => 0.085900404198753
704 => 0.085033496065433
705 => 0.089137304336693
706 => 0.088725395808182
707 => 0.088020387459704
708 => 0.086977533175691
709 => 0.086590728377516
710 => 0.084240624871324
711 => 0.084101768218864
712 => 0.085266542974665
713 => 0.084729039502315
714 => 0.083974181058652
715 => 0.081240160294478
716 => 0.07816621575238
717 => 0.07825899881598
718 => 0.07923676338205
719 => 0.082079745727414
720 => 0.080968943340986
721 => 0.080163043464644
722 => 0.080012122643067
723 => 0.081901212699251
724 => 0.084574670905355
725 => 0.085828997680403
726 => 0.084585997940801
727 => 0.083158106767805
728 => 0.083245015887295
729 => 0.083823183323288
730 => 0.083883940545963
731 => 0.082954530181927
801 => 0.083216153755351
802 => 0.082818723623959
803 => 0.080379695641207
804 => 0.08033558135924
805 => 0.079737004557634
806 => 0.079718879889971
807 => 0.078700551428457
808 => 0.078558080237319
809 => 0.076536127268864
810 => 0.077866982835739
811 => 0.076974314794533
812 => 0.075628853497332
813 => 0.075396895462559
814 => 0.075389922523936
815 => 0.076771410436521
816 => 0.077850839345139
817 => 0.076989843137294
818 => 0.076793810990478
819 => 0.078886921456555
820 => 0.078620554070621
821 => 0.078389881632288
822 => 0.084335292045745
823 => 0.079629035777334
824 => 0.07757683942059
825 => 0.075036856727601
826 => 0.075863887900143
827 => 0.076038155519813
828 => 0.069929955009468
829 => 0.067451858823149
830 => 0.066601469597089
831 => 0.066112058574753
901 => 0.066335089323269
902 => 0.06410451210389
903 => 0.065603496885654
904 => 0.063672005559671
905 => 0.063348184753253
906 => 0.066801930509973
907 => 0.06728249905553
908 => 0.065232244339238
909 => 0.066548839773186
910 => 0.066071423966791
911 => 0.063705115434739
912 => 0.063614739854202
913 => 0.062427409412585
914 => 0.060569467183932
915 => 0.059720337730192
916 => 0.059278103738204
917 => 0.059460578102267
918 => 0.059368313479989
919 => 0.058766224409431
920 => 0.059402824520733
921 => 0.057776574297683
922 => 0.057128988355276
923 => 0.056836488808971
924 => 0.055393098132543
925 => 0.057690174577486
926 => 0.058142727574947
927 => 0.058596172241613
928 => 0.062543098485119
929 => 0.062345921203891
930 => 0.06412830779696
1001 => 0.064059047531552
1002 => 0.06355068200246
1003 => 0.061405971457293
1004 => 0.062260814854807
1005 => 0.059629739749419
1006 => 0.061601120114092
1007 => 0.060701464442468
1008 => 0.061296945626544
1009 => 0.060226216765201
1010 => 0.060818802326379
1011 => 0.058250044679254
1012 => 0.055851374931764
1013 => 0.056816669659689
1014 => 0.057866055423786
1015 => 0.060141391138868
1016 => 0.058786219958077
1017 => 0.059273590759385
1018 => 0.05764098015989
1019 => 0.054272438160969
1020 => 0.05429150374286
1021 => 0.053773326944003
1022 => 0.053325546534739
1023 => 0.058941877670094
1024 => 0.058243398112356
1025 => 0.057130462351845
1026 => 0.058620171093598
1027 => 0.059014073729775
1028 => 0.059025287584065
1029 => 0.0601121406271
1030 => 0.060692194290996
1031 => 0.060794431263355
1101 => 0.062504618009584
1102 => 0.063077850049012
1103 => 0.065438911692579
1104 => 0.060642980790224
1105 => 0.06054421174934
1106 => 0.058641134350606
1107 => 0.057434172577865
1108 => 0.058723776055786
1109 => 0.059866188688794
1110 => 0.058676632295576
1111 => 0.058831963247625
1112 => 0.057235080980057
1113 => 0.057805891250418
1114 => 0.0582975499517
1115 => 0.058026084915215
1116 => 0.05761968861654
1117 => 0.05977252388079
1118 => 0.059651052478151
1119 => 0.061655822169689
1120 => 0.063218683506699
1121 => 0.066019610417501
1122 => 0.063096697170457
1123 => 0.062990174594207
1124 => 0.064031449863811
1125 => 0.063077690635193
1126 => 0.06368043354503
1127 => 0.065922499216357
1128 => 0.065969870530992
1129 => 0.065176339976375
1130 => 0.065128053570011
1201 => 0.065280459793298
1202 => 0.066173107803413
1203 => 0.065861189160376
1204 => 0.066222149310912
1205 => 0.066673535506375
1206 => 0.068540660194593
1207 => 0.068990817635801
1208 => 0.067897168433538
1209 => 0.067995912711432
1210 => 0.067586857888443
1211 => 0.067191716054879
1212 => 0.068079937190902
1213 => 0.069703178775014
1214 => 0.069693080673365
1215 => 0.070069641169572
1216 => 0.070304235239113
1217 => 0.069297185759288
1218 => 0.068641633578158
1219 => 0.068893013998272
1220 => 0.069294976764388
1221 => 0.06876266289074
1222 => 0.065476975070805
1223 => 0.066473642864823
1224 => 0.066307748609333
1225 => 0.066071495016085
1226 => 0.067073652189973
1227 => 0.066976991685773
1228 => 0.064081634310481
1229 => 0.064266985695684
1230 => 0.064092906142118
1231 => 0.064655392793013
]
'min_raw' => 0.053325546534739
'max_raw' => 0.11945580704907
'avg_raw' => 0.086390676791903
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.053325'
'max' => '$0.119455'
'avg' => '$0.08639'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.013003710930659
'max_diff' => -0.086806058028064
'year' => 2034
]
9 => [
'items' => [
101 => 0.063047314510121
102 => 0.063541948559366
103 => 0.063852178398146
104 => 0.064034906156486
105 => 0.064695044117205
106 => 0.064617584546798
107 => 0.06469022912155
108 => 0.065669039447336
109 => 0.070619526188021
110 => 0.070888970258683
111 => 0.069562129110204
112 => 0.070092175978237
113 => 0.069074601900121
114 => 0.069757706195914
115 => 0.070225068806127
116 => 0.068113147039233
117 => 0.067988092738457
118 => 0.066966318770149
119 => 0.067515362224482
120 => 0.066641794611017
121 => 0.066856137547264
122 => 0.066256816011438
123 => 0.067335475452197
124 => 0.068541584313697
125 => 0.068846295042795
126 => 0.068044732300757
127 => 0.067464348049962
128 => 0.066445384496025
129 => 0.068139943595307
130 => 0.068635484316689
131 => 0.068137340730855
201 => 0.068021909977365
202 => 0.06780316890808
203 => 0.06806831692927
204 => 0.068632785495498
205 => 0.068366592543762
206 => 0.0685424176781
207 => 0.067872353576097
208 => 0.069297519134569
209 => 0.071561025026193
210 => 0.071568302567755
211 => 0.07130210818114
212 => 0.071193187173376
213 => 0.071466318768068
214 => 0.071614481453745
215 => 0.072497738947212
216 => 0.073445509428234
217 => 0.077868340718505
218 => 0.076626427390442
219 => 0.080550626426581
220 => 0.083654158370697
221 => 0.084584771899733
222 => 0.08372865124177
223 => 0.080799908717607
224 => 0.080656210637068
225 => 0.085032988451366
226 => 0.083796348249703
227 => 0.083649253832672
228 => 0.082084417755399
301 => 0.083009429685786
302 => 0.082807116007504
303 => 0.082487753968812
304 => 0.084252612295101
305 => 0.087556269531924
306 => 0.087041363570064
307 => 0.086657010155335
308 => 0.084972885375592
309 => 0.085987104655885
310 => 0.085625960596263
311 => 0.087177664664081
312 => 0.08625846954876
313 => 0.083786979483906
314 => 0.084180572422872
315 => 0.084121081641946
316 => 0.085345397697833
317 => 0.084977888407248
318 => 0.084049319554647
319 => 0.087544977990642
320 => 0.087317989375682
321 => 0.087639807334873
322 => 0.08778148155306
323 => 0.08990922724264
324 => 0.090780896571393
325 => 0.090978780769739
326 => 0.091806799214729
327 => 0.09095817891652
328 => 0.094353265165373
329 => 0.096610799412086
330 => 0.099233041611293
331 => 0.10306484225659
401 => 0.10450563474536
402 => 0.1042453684783
403 => 0.10715059599583
404 => 0.11237122526525
405 => 0.10530060691715
406 => 0.1127459852065
407 => 0.11038886440112
408 => 0.10480017337435
409 => 0.10444032755857
410 => 0.10822505400793
411 => 0.1166192130062
412 => 0.11451657138289
413 => 0.11662265217464
414 => 0.11416579706
415 => 0.11404379349556
416 => 0.11650332820553
417 => 0.12225016511763
418 => 0.11952005831765
419 => 0.11560578077023
420 => 0.11849602239834
421 => 0.11599222762083
422 => 0.11035047721908
423 => 0.11451496353247
424 => 0.11173029013245
425 => 0.11254300587195
426 => 0.11839597516989
427 => 0.11769173041893
428 => 0.11860308833798
429 => 0.11699456546524
430 => 0.11549195146132
501 => 0.11268721083743
502 => 0.11185686541074
503 => 0.11208634301398
504 => 0.11185675169303
505 => 0.11028752509086
506 => 0.10994865075553
507 => 0.10938384535022
508 => 0.10955890216248
509 => 0.10849690276085
510 => 0.110501115052
511 => 0.1108731145143
512 => 0.11233161308237
513 => 0.11248303924209
514 => 0.11654493699373
515 => 0.11430771196955
516 => 0.11580863566849
517 => 0.11567437892561
518 => 0.10492129725529
519 => 0.10640297703422
520 => 0.1087080057935
521 => 0.10766959346184
522 => 0.10620152137593
523 => 0.10501597445351
524 => 0.10321974963766
525 => 0.10574790157253
526 => 0.10907215252791
527 => 0.11256734773217
528 => 0.11676659575582
529 => 0.11582937248157
530 => 0.1124888457113
531 => 0.11263869930196
601 => 0.11356503523419
602 => 0.11236534603546
603 => 0.11201153427003
604 => 0.11351642693077
605 => 0.11352679029945
606 => 0.11214640288902
607 => 0.11061235489056
608 => 0.11060592717343
609 => 0.11033295814925
610 => 0.114214357643
611 => 0.1163487349108
612 => 0.11659343782484
613 => 0.116332264455
614 => 0.11643277971945
615 => 0.11519083261511
616 => 0.11802955540766
617 => 0.1206346481627
618 => 0.11993642765466
619 => 0.11888969585522
620 => 0.11805592355953
621 => 0.11974001739946
622 => 0.11966502735178
623 => 0.12061189495012
624 => 0.12056893956649
625 => 0.12025054360666
626 => 0.11993643902558
627 => 0.12118182818476
628 => 0.12082317610726
629 => 0.12046396694401
630 => 0.11974351797496
701 => 0.11984143895524
702 => 0.1187948878888
703 => 0.11831070547854
704 => 0.11102976374436
705 => 0.10908405820136
706 => 0.10969621677367
707 => 0.10989775527037
708 => 0.10905098172457
709 => 0.11026503747098
710 => 0.1100758281689
711 => 0.11081193087953
712 => 0.11035204586379
713 => 0.11037091970526
714 => 0.11172334347872
715 => 0.11211595785378
716 => 0.11191627101384
717 => 0.11205612483167
718 => 0.11527899703497
719 => 0.11482080766932
720 => 0.11457740370086
721 => 0.11464482826358
722 => 0.11546834121068
723 => 0.11569887987373
724 => 0.11472207135873
725 => 0.11518273990126
726 => 0.11714420808785
727 => 0.11783061094367
728 => 0.12002127936739
729 => 0.11909064448496
730 => 0.12079886508858
731 => 0.12604935284879
801 => 0.13024380577775
802 => 0.12638641352118
803 => 0.13408899216487
804 => 0.14008655450826
805 => 0.13985635807606
806 => 0.13881054435537
807 => 0.13198247908086
808 => 0.12569919161454
809 => 0.1309554283826
810 => 0.13096882761107
811 => 0.13051731221117
812 => 0.12771298884043
813 => 0.13041972783659
814 => 0.13063457894868
815 => 0.13051431945943
816 => 0.12836425130617
817 => 0.12508149463516
818 => 0.12572293743087
819 => 0.12677363381531
820 => 0.12478444636133
821 => 0.12414878044066
822 => 0.12533060432757
823 => 0.12913868713397
824 => 0.12841879113814
825 => 0.12839999174436
826 => 0.13148001209793
827 => 0.12927538223477
828 => 0.12573102807871
829 => 0.12483603191001
830 => 0.12165939845281
831 => 0.12385351049648
901 => 0.12393247268283
902 => 0.12273077993979
903 => 0.1258285388219
904 => 0.12579999242845
905 => 0.12874085344645
906 => 0.1343626751759
907 => 0.13270002585745
908 => 0.13076654559583
909 => 0.13097676850986
910 => 0.13328239500242
911 => 0.13188836059269
912 => 0.13238966508598
913 => 0.13328163621803
914 => 0.13381978454839
915 => 0.13089933724676
916 => 0.13021844127961
917 => 0.12882556709282
918 => 0.12846219221672
919 => 0.12959665917858
920 => 0.12929776721544
921 => 0.12392583621682
922 => 0.12336443953832
923 => 0.12338165677296
924 => 0.12196999813192
925 => 0.11981687986745
926 => 0.12547514611048
927 => 0.12502070814378
928 => 0.12451904379925
929 => 0.124580494819
930 => 0.12703655641866
1001 => 0.12561191665677
1002 => 0.12939955495762
1003 => 0.1286209303898
1004 => 0.12782233703983
1005 => 0.12771194711311
1006 => 0.12740455680616
1007 => 0.12635040106871
1008 => 0.1250774446708
1009 => 0.12423692859531
1010 => 0.11460199948998
1011 => 0.11639018628812
1012 => 0.11844733220103
1013 => 0.11915745072668
1014 => 0.11794274384986
1015 => 0.12639836509993
1016 => 0.12794328858271
1017 => 0.1232636145805
1018 => 0.12238823864452
1019 => 0.12645575460056
1020 => 0.12400254524546
1021 => 0.12510722526785
1022 => 0.12271951128712
1023 => 0.12757116175635
1024 => 0.12753420030851
1025 => 0.12564679869649
1026 => 0.1272420176146
1027 => 0.12696480907117
1028 => 0.12483393729966
1029 => 0.12763871419228
1030 => 0.12764010532662
1031 => 0.12582352231069
1101 => 0.12370215104925
1102 => 0.12332289997225
1103 => 0.12303718523095
1104 => 0.12503695695612
1105 => 0.12682994603179
1106 => 0.13016625418192
1107 => 0.13100508131958
1108 => 0.13427907948179
1109 => 0.13232957298427
1110 => 0.13319376396429
1111 => 0.13413196552037
1112 => 0.13458177384757
1113 => 0.13384883531644
1114 => 0.13893470209375
1115 => 0.13936410507668
1116 => 0.13950808018254
1117 => 0.13779315452054
1118 => 0.13931640989175
1119 => 0.13860372914847
1120 => 0.14045792645405
1121 => 0.14074868826715
1122 => 0.14050242335561
1123 => 0.14059471574445
1124 => 0.1362548256584
1125 => 0.13602977946269
1126 => 0.13296125861569
1127 => 0.1342117035422
1128 => 0.13187405668747
1129 => 0.13261534858554
1130 => 0.13294210299092
1201 => 0.1327714250327
1202 => 0.1342824018222
1203 => 0.13299776287896
1204 => 0.12960738949355
1205 => 0.12621609240319
1206 => 0.12617351743071
1207 => 0.12528064876818
1208 => 0.12463526826222
1209 => 0.12475959144378
1210 => 0.12519772255129
1211 => 0.12460980328578
1212 => 0.12473526566934
1213 => 0.12681877718792
1214 => 0.12723661056404
1215 => 0.12581664949393
1216 => 0.120115300898
1217 => 0.11871617565181
1218 => 0.11972183913291
1219 => 0.11924119676197
1220 => 0.096236952180743
1221 => 0.10164145821832
1222 => 0.098430284250474
1223 => 0.099910140953867
1224 => 0.096632363862166
1225 => 0.098196690893342
1226 => 0.097907816810761
1227 => 0.10659810258822
1228 => 0.1064624157289
1229 => 0.10652736184807
1230 => 0.10342731436403
1231 => 0.10836577418157
]
'min_raw' => 0.063047314510121
'max_raw' => 0.14074868826715
'avg_raw' => 0.10189800138864
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.063047'
'max' => '$0.140748'
'avg' => '$0.101898'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0097217679753827
'max_diff' => 0.021292881218082
'year' => 2035
]
10 => [
'items' => [
101 => 0.11079863706895
102 => 0.11034837889705
103 => 0.11046169917848
104 => 0.10851448129534
105 => 0.10654621517359
106 => 0.10436310513058
107 => 0.10841905374993
108 => 0.10796810150081
109 => 0.10900242371279
110 => 0.11163299631763
111 => 0.11202035812627
112 => 0.11254097632531
113 => 0.11235437176108
114 => 0.11680004954108
115 => 0.1162616486284
116 => 0.11755903991945
117 => 0.11489020760044
118 => 0.11187017050358
119 => 0.11244418082324
120 => 0.11238889901356
121 => 0.11168509812679
122 => 0.11104973815528
123 => 0.10999204281428
124 => 0.11333874738267
125 => 0.113202877289
126 => 0.11540245617392
127 => 0.11501365924044
128 => 0.11241717816392
129 => 0.11250991199352
130 => 0.11313359156397
131 => 0.11529215367835
201 => 0.11593296188001
202 => 0.11563611398921
203 => 0.11633873092833
204 => 0.11689405070901
205 => 0.11640847054293
206 => 0.12328326169667
207 => 0.12042836910087
208 => 0.12181982388785
209 => 0.12215167765561
210 => 0.12130164120761
211 => 0.12148598367566
212 => 0.12176521228444
213 => 0.12346063371837
214 => 0.12790991013514
215 => 0.12988046437288
216 => 0.13580897402255
217 => 0.12971683727487
218 => 0.12935535509203
219 => 0.13042325870378
220 => 0.13390392146462
221 => 0.13672467171025
222 => 0.13766047729971
223 => 0.13778415945682
224 => 0.13953979295383
225 => 0.14054608933369
226 => 0.13932661286955
227 => 0.1382932342507
228 => 0.13459180030565
229 => 0.13502025136346
301 => 0.1379718542773
302 => 0.14214116724164
303 => 0.14571887150812
304 => 0.14446608416958
305 => 0.15402396723261
306 => 0.15497159229786
307 => 0.15484066115423
308 => 0.15699949207838
309 => 0.15271465233221
310 => 0.15088280032586
311 => 0.13851666243744
312 => 0.14199104277588
313 => 0.147041258641
314 => 0.14637284363391
315 => 0.14270524188
316 => 0.14571608930331
317 => 0.14472060898726
318 => 0.14393543235948
319 => 0.14753247870533
320 => 0.14357737848954
321 => 0.14700180349085
322 => 0.14260994300553
323 => 0.14447180679661
324 => 0.14341492286058
325 => 0.14409885629402
326 => 0.14010059541719
327 => 0.14225795993403
328 => 0.14001084196053
329 => 0.14000977653403
330 => 0.13996017128022
331 => 0.14260389561079
401 => 0.1426901073663
402 => 0.14073639109156
403 => 0.14045483005359
404 => 0.14149590878309
405 => 0.14027707824979
406 => 0.14084736138509
407 => 0.140294351545
408 => 0.14016985738183
409 => 0.13917786670873
410 => 0.1387504898514
411 => 0.1389180753293
412 => 0.13834601969699
413 => 0.13800133548636
414 => 0.13989160491515
415 => 0.1388817102126
416 => 0.13973682406805
417 => 0.13876231390579
418 => 0.13538423710952
419 => 0.13344146942147
420 => 0.1270605955012
421 => 0.12887020342954
422 => 0.1300699753582
423 => 0.12967345074294
424 => 0.13052533905119
425 => 0.13057763807456
426 => 0.13030068050158
427 => 0.12997999911252
428 => 0.12982390914712
429 => 0.13098727586709
430 => 0.13166264940516
501 => 0.13019038852212
502 => 0.12984545839635
503 => 0.13133399543485
504 => 0.13224200216843
505 => 0.13894621372432
506 => 0.13844954407794
507 => 0.13969608742385
508 => 0.13955574577287
509 => 0.14086232178932
510 => 0.14299802137598
511 => 0.1386555469653
512 => 0.13940925037152
513 => 0.13922445970187
514 => 0.14124195577843
515 => 0.14124825418097
516 => 0.14003866450166
517 => 0.14069440269016
518 => 0.14032838762258
519 => 0.14098982631961
520 => 0.13844291075201
521 => 0.1415447789908
522 => 0.14330333840222
523 => 0.14332775600135
524 => 0.14416129920558
525 => 0.14500822737663
526 => 0.14663383224908
527 => 0.14496289013904
528 => 0.14195702794601
529 => 0.14217404148747
530 => 0.1404117055835
531 => 0.14044133076844
601 => 0.14028318920948
602 => 0.14075778393227
603 => 0.13854705760489
604 => 0.13906591065519
605 => 0.13833951334637
606 => 0.13940767132564
607 => 0.13825850991278
608 => 0.13922437059021
609 => 0.13964120403981
610 => 0.14117932844258
611 => 0.13803132768788
612 => 0.13161234104813
613 => 0.13296168986249
614 => 0.13096589697698
615 => 0.13115061520706
616 => 0.13152377542949
617 => 0.13031424105815
618 => 0.13054498209939
619 => 0.1305367384057
620 => 0.13046569870706
621 => 0.13015105210264
622 => 0.12969475227529
623 => 0.13151251034575
624 => 0.13182138286326
625 => 0.13250796820848
626 => 0.13455078048055
627 => 0.13434665536174
628 => 0.13467959189959
629 => 0.13395279330682
630 => 0.13118432930927
701 => 0.13133467022382
702 => 0.12945991661033
703 => 0.13246002654356
704 => 0.13174956091185
705 => 0.13129151909724
706 => 0.1311665381444
707 => 0.13321441415297
708 => 0.13382717075126
709 => 0.13344534195977
710 => 0.13266219996871
711 => 0.1341660641067
712 => 0.1345684347071
713 => 0.13465851064567
714 => 0.13732306956085
715 => 0.13480742988947
716 => 0.13541296936168
717 => 0.14013721546499
718 => 0.13585297615068
719 => 0.13812243326541
720 => 0.13801135514933
721 => 0.13917233261498
722 => 0.13791612111075
723 => 0.1379316933579
724 => 0.13896256269597
725 => 0.13751489262892
726 => 0.13715642916168
727 => 0.13666121444906
728 => 0.137742497657
729 => 0.13839067803792
730 => 0.14361453587214
731 => 0.14698938626991
801 => 0.14684287511361
802 => 0.14818171282481
803 => 0.14757855417357
804 => 0.14563079578348
805 => 0.14895538185152
806 => 0.14790334371301
807 => 0.14799007245892
808 => 0.14798684441066
809 => 0.14868635780201
810 => 0.14819068845478
811 => 0.14721367329198
812 => 0.14786226155244
813 => 0.14978833681145
814 => 0.15576693351462
815 => 0.15911263543558
816 => 0.15556551805799
817 => 0.15801227212726
818 => 0.15654509155331
819 => 0.15627846119819
820 => 0.15781520356739
821 => 0.15935463580069
822 => 0.15925658062258
823 => 0.15813903187192
824 => 0.15750775693943
825 => 0.16228798222089
826 => 0.16580997077925
827 => 0.16556979477128
828 => 0.16662985356104
829 => 0.16974221895414
830 => 0.17002677464026
831 => 0.16999092716424
901 => 0.1692856262059
902 => 0.17235015412713
903 => 0.17490663723426
904 => 0.16912236941214
905 => 0.17132494287718
906 => 0.17231374906812
907 => 0.17376560992199
908 => 0.17621514254262
909 => 0.17887598467505
910 => 0.17925225692722
911 => 0.17898527375802
912 => 0.17723037684441
913 => 0.18014190205616
914 => 0.18184740524154
915 => 0.18286299335869
916 => 0.18543835584602
917 => 0.17231985559852
918 => 0.16303392909158
919 => 0.16158379757711
920 => 0.16453269703538
921 => 0.16531029830549
922 => 0.16499684820854
923 => 0.15454469368547
924 => 0.16152876914667
925 => 0.16904304710518
926 => 0.16933170112443
927 => 0.1730935057866
928 => 0.17431850358619
929 => 0.17734724941025
930 => 0.17715780053431
1001 => 0.1778952519446
1002 => 0.17772572463625
1003 => 0.18333583849764
1004 => 0.18952462719672
1005 => 0.18931032912322
1006 => 0.1884206175253
1007 => 0.18974199096658
1008 => 0.19612948413494
1009 => 0.19554142612149
1010 => 0.19611267439089
1011 => 0.20364388881972
1012 => 0.21343553887996
1013 => 0.20888633436139
1014 => 0.21875679916836
1015 => 0.22496973355349
1016 => 0.23571436114317
1017 => 0.23436908085053
1018 => 0.23855188552348
1019 => 0.23196074835825
1020 => 0.21682616513829
1021 => 0.21443105941087
1022 => 0.2192261217309
1023 => 0.23101431454934
1024 => 0.21885486958843
1025 => 0.22131470946752
1026 => 0.22060627541686
1027 => 0.22056852597695
1028 => 0.22200926856021
1029 => 0.21991939629912
1030 => 0.21140488074659
1031 => 0.21530703304796
1101 => 0.21380022464766
1102 => 0.2154721409078
1103 => 0.22449478341308
1104 => 0.22050565808856
1105 => 0.21630343860941
1106 => 0.22157395438342
1107 => 0.22828513210945
1108 => 0.2278651586685
1109 => 0.22705023465778
1110 => 0.23164391863818
1111 => 0.23923133875068
1112 => 0.24128218791836
1113 => 0.24279608284618
1114 => 0.24300482337926
1115 => 0.24515498060153
1116 => 0.23359304330803
1117 => 0.25194213472442
1118 => 0.25511051592861
1119 => 0.25451499157817
1120 => 0.25803651394076
1121 => 0.25700039272928
1122 => 0.2554992156563
1123 => 0.26108157765029
1124 => 0.25468185009756
1125 => 0.24559824253974
1126 => 0.24061479578014
1127 => 0.24717740047637
1128 => 0.25118495416101
1129 => 0.25383369221828
1130 => 0.254635198754
1201 => 0.23449056358751
1202 => 0.22363372250546
1203 => 0.23059283316512
1204 => 0.23908342846206
1205 => 0.23354587762245
1206 => 0.2337629391314
1207 => 0.22586784687688
1208 => 0.23978196894076
1209 => 0.23775479839224
1210 => 0.24827176278396
1211 => 0.24576180482796
1212 => 0.25433798102321
1213 => 0.25207958641204
1214 => 0.26145405617787
1215 => 0.2651937859711
1216 => 0.27147337433639
1217 => 0.27609266510042
1218 => 0.27880520099002
1219 => 0.27864235050967
1220 => 0.28939076908425
1221 => 0.28305280217196
1222 => 0.27509082198602
1223 => 0.27494681488418
1224 => 0.27907043724461
1225 => 0.28771241845153
1226 => 0.28995315844277
1227 => 0.2912054264105
1228 => 0.28928753442616
1229 => 0.28240812558905
1230 => 0.27943763173259
1231 => 0.28196857856179
]
'min_raw' => 0.10436310513058
'max_raw' => 0.2912054264105
'avg_raw' => 0.19778426577054
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.104363'
'max' => '$0.2912054'
'avg' => '$0.197784'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.041315790620461
'max_diff' => 0.15045673814335
'year' => 2036
]
11 => [
'items' => [
101 => 0.27887344807641
102 => 0.2842165116344
103 => 0.29155367911631
104 => 0.2900385830456
105 => 0.29510332205409
106 => 0.30034479410179
107 => 0.30784033453924
108 => 0.30979994636865
109 => 0.3130391102053
110 => 0.3163732738031
111 => 0.31744411729248
112 => 0.31948868977694
113 => 0.31947791387072
114 => 0.32563937066823
115 => 0.33243564832032
116 => 0.3350010857998
117 => 0.3409001678248
118 => 0.33079819658547
119 => 0.33846065781359
120 => 0.34537238964519
121 => 0.3371319380183
122 => 0.34848948080699
123 => 0.34893046845673
124 => 0.35558885840314
125 => 0.34883930459928
126 => 0.34483144109589
127 => 0.3564019928575
128 => 0.36200061838597
129 => 0.36031426681367
130 => 0.347481048083
131 => 0.34001156433911
201 => 0.32046248462552
202 => 0.34361921400366
203 => 0.35489818139269
204 => 0.34745183828226
205 => 0.35120734061925
206 => 0.37169614364414
207 => 0.37949695328427
208 => 0.3778744394109
209 => 0.37814861754664
210 => 0.38235779283375
211 => 0.40102359409192
212 => 0.38983861330814
213 => 0.3983891120241
214 => 0.40292426571194
215 => 0.40713676920406
216 => 0.39679219200281
217 => 0.38333404905601
218 => 0.37907129025035
219 => 0.34671144621131
220 => 0.3450269757974
221 => 0.34408143150939
222 => 0.33811990852341
223 => 0.33343578445501
224 => 0.32971079508543
225 => 0.31993531060368
226 => 0.32323424965392
227 => 0.30765416769219
228 => 0.3176217520071
301 => 0.29275556500194
302 => 0.31346486444257
303 => 0.30219373429334
304 => 0.30976199505248
305 => 0.30973559010366
306 => 0.29580002252683
307 => 0.28776227797639
308 => 0.29288424163763
309 => 0.29837539326446
310 => 0.29926631414146
311 => 0.30638573555937
312 => 0.30837261304565
313 => 0.30235228150377
314 => 0.29224026854664
315 => 0.29458905852612
316 => 0.28771467982243
317 => 0.27566759556336
318 => 0.28432002180013
319 => 0.2872743405377
320 => 0.28857913599603
321 => 0.27673221224421
322 => 0.27300965159216
323 => 0.27102779153632
324 => 0.29071097945758
325 => 0.29178926892419
326 => 0.28627258755824
327 => 0.31120851044552
328 => 0.30556474311273
329 => 0.31187021398003
330 => 0.29437593045434
331 => 0.29504423564419
401 => 0.2867621614648
402 => 0.29139956959687
403 => 0.28812199899976
404 => 0.29102491284755
405 => 0.29276490743876
406 => 0.30104562261127
407 => 0.31355941690835
408 => 0.29980875990202
409 => 0.29381740173132
410 => 0.29753440664374
411 => 0.3074332805467
412 => 0.32243058122371
413 => 0.31355187737412
414 => 0.3174920953724
415 => 0.31835285771693
416 => 0.31180603020572
417 => 0.32267197209235
418 => 0.32849511862415
419 => 0.33446846203539
420 => 0.33965494875008
421 => 0.3320825773203
422 => 0.34018610020697
423 => 0.33365609122467
424 => 0.32779799810762
425 => 0.32780688241677
426 => 0.32413201503136
427 => 0.31701149640904
428 => 0.31569836352673
429 => 0.32252944661091
430 => 0.32800732833845
501 => 0.32845851291481
502 => 0.3314913497029
503 => 0.33328615127339
504 => 0.3508776465786
505 => 0.35795309151484
506 => 0.36660481165155
507 => 0.36997514422903
508 => 0.38011863695613
509 => 0.37192694276479
510 => 0.37015461819833
511 => 0.34554982275355
512 => 0.34957885662924
513 => 0.35602972860818
514 => 0.34565619525648
515 => 0.35223581450989
516 => 0.35353477072591
517 => 0.34530370656267
518 => 0.34970027357554
519 => 0.33802429508062
520 => 0.31381392133277
521 => 0.32269892515923
522 => 0.32924127863546
523 => 0.31990453355852
524 => 0.336640287727
525 => 0.32686360563786
526 => 0.32376486677911
527 => 0.31167558171094
528 => 0.31738125890386
529 => 0.32509826900471
530 => 0.3203300539611
531 => 0.33022481612768
601 => 0.34423843819224
602 => 0.35422537980107
603 => 0.35499205316944
604 => 0.34857111878809
605 => 0.35886070711206
606 => 0.35893565552961
607 => 0.34732895786596
608 => 0.34021992017334
609 => 0.33860473185204
610 => 0.34263978895498
611 => 0.34753909319059
612 => 0.3552639304571
613 => 0.35993188783179
614 => 0.37210344497171
615 => 0.37539671934788
616 => 0.37901502942889
617 => 0.38385020754262
618 => 0.38965607858237
619 => 0.37695316327581
620 => 0.37745787378214
621 => 0.3656290949325
622 => 0.35298834831318
623 => 0.36258109930593
624 => 0.37512234515877
625 => 0.37224536950328
626 => 0.37192165097076
627 => 0.37246605575043
628 => 0.37029691005943
629 => 0.36048594449135
630 => 0.35555893900296
701 => 0.36191603309614
702 => 0.36529454568497
703 => 0.37053432407297
704 => 0.36988841078834
705 => 0.38338551720472
706 => 0.38863008462682
707 => 0.38728829985255
708 => 0.38753522054287
709 => 0.39703025934738
710 => 0.40759069530166
711 => 0.4174819371451
712 => 0.42754373318697
713 => 0.41541384533991
714 => 0.40925503635865
715 => 0.41560935514342
716 => 0.41223766415271
717 => 0.43161240069387
718 => 0.43295386541521
719 => 0.45232720094238
720 => 0.47071480329156
721 => 0.45916587970416
722 => 0.47005599447213
723 => 0.48183454147779
724 => 0.50455726965207
725 => 0.49690505419819
726 => 0.49104357708602
727 => 0.48550450953747
728 => 0.49703042980379
729 => 0.51185834209534
730 => 0.51505213238296
731 => 0.5202272927707
801 => 0.51478624441149
802 => 0.52133938784834
803 => 0.54447486377752
804 => 0.53822345395896
805 => 0.52934544705233
806 => 0.5476086833437
807 => 0.55421807756101
808 => 0.60060626754473
809 => 0.65917327359973
810 => 0.63492614852126
811 => 0.61987517553522
812 => 0.62341251120079
813 => 0.64479919919381
814 => 0.65166792459762
815 => 0.63299636115843
816 => 0.63959147301978
817 => 0.67593118779294
818 => 0.6954262788511
819 => 0.66894932665407
820 => 0.59590046563363
821 => 0.52854607966676
822 => 0.54641149583271
823 => 0.5443861120679
824 => 0.58342860211991
825 => 0.53807435990227
826 => 0.53883800902378
827 => 0.57868785642334
828 => 0.56805660033648
829 => 0.55083532702416
830 => 0.52867181402015
831 => 0.4877005103554
901 => 0.45141108413021
902 => 0.52258300591355
903 => 0.51951394322851
904 => 0.51506948565096
905 => 0.52496014504925
906 => 0.57298637957467
907 => 0.57187921942311
908 => 0.56483603141695
909 => 0.57017822744381
910 => 0.54989881423151
911 => 0.55512528076998
912 => 0.5285354103879
913 => 0.54055514229168
914 => 0.5507983779061
915 => 0.55285485910939
916 => 0.55748821626694
917 => 0.51789668665278
918 => 0.5356721211033
919 => 0.54611352351
920 => 0.49893888757503
921 => 0.54518103263559
922 => 0.5172074862054
923 => 0.50771284439843
924 => 0.52049612876758
925 => 0.51551447041677
926 => 0.51123153309953
927 => 0.50884158048631
928 => 0.51822821368741
929 => 0.51779031602912
930 => 0.50243196224514
1001 => 0.48239761582052
1002 => 0.48912180008563
1003 => 0.48667884090255
1004 => 0.47782524167508
1005 => 0.48379149856675
1006 => 0.45751912266934
1007 => 0.41231886545712
1008 => 0.44217953989284
1009 => 0.44102993640922
1010 => 0.44045025420242
1011 => 0.46288972575244
1012 => 0.46073268832959
1013 => 0.45681764428536
1014 => 0.47775333882099
1015 => 0.47011152869066
1016 => 0.49366178687543
1017 => 0.50917351005113
1018 => 0.50523923530209
1019 => 0.5198280859235
1020 => 0.48927671171015
1021 => 0.49942465271544
1022 => 0.50151612929219
1023 => 0.47749499560018
1024 => 0.4610856063285
1025 => 0.45999128714481
1026 => 0.43153966750085
1027 => 0.44673829306121
1028 => 0.46011245459246
1029 => 0.45370726909585
1030 => 0.4516795787171
1031 => 0.46203860910976
1101 => 0.46284359449036
1102 => 0.44448984250404
1103 => 0.44830616872973
1104 => 0.46422088350231
1105 => 0.44790515875041
1106 => 0.41620637071598
1107 => 0.40834463301341
1108 => 0.40729573228331
1109 => 0.38597407611165
1110 => 0.40886999191905
1111 => 0.39887531109673
1112 => 0.43044838805979
1113 => 0.4124140158283
1114 => 0.41163659008624
1115 => 0.41046139705356
1116 => 0.39210896680009
1117 => 0.39612698266781
1118 => 0.40948347937322
1119 => 0.41424922786941
1120 => 0.41375212125663
1121 => 0.40941802525275
1122 => 0.41140215220916
1123 => 0.4050105879669
1124 => 0.40275359360404
1125 => 0.39562989855968
1126 => 0.38516003481545
1127 => 0.38661593358449
1128 => 0.36587239391829
1129 => 0.35457021256517
1130 => 0.35144191772699
1201 => 0.34725863112892
1202 => 0.35191443107954
1203 => 0.36581363007671
1204 => 0.34904824720656
1205 => 0.32030517423056
1206 => 0.32203268189223
1207 => 0.32591387870638
1208 => 0.3186812941199
1209 => 0.31183625979362
1210 => 0.31778746178513
1211 => 0.30560864285197
1212 => 0.32738563078946
1213 => 0.32679662429505
1214 => 0.33491373871824
1215 => 0.33998953694703
1216 => 0.32829146533888
1217 => 0.32534943196438
1218 => 0.32702534788245
1219 => 0.29932619090548
1220 => 0.3326501266495
1221 => 0.33293831342962
1222 => 0.33047068325495
1223 => 0.34821465027755
1224 => 0.38565995517734
1225 => 0.37157152524014
1226 => 0.3661160593434
1227 => 0.3557452146858
1228 => 0.36956374943224
1229 => 0.36850270156643
1230 => 0.36370424072681
1231 => 0.3608021166389
]
'min_raw' => 0.27102779153632
'max_raw' => 0.6954262788511
'avg_raw' => 0.48322703519371
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.271027'
'max' => '$0.695426'
'avg' => '$0.483227'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16666468640574
'max_diff' => 0.40422085244059
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0085072526798046
]
1 => [
'year' => 2028
'avg' => 0.014600915271644
]
2 => [
'year' => 2029
'avg' => 0.03988706896319
]
3 => [
'year' => 2030
'avg' => 0.030772814303496
]
4 => [
'year' => 2031
'avg' => 0.030222717278926
]
5 => [
'year' => 2032
'avg' => 0.05298993482913
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0085072526798046
'min' => '$0.0085072'
'max_raw' => 0.05298993482913
'max' => '$0.052989'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.05298993482913
]
1 => [
'year' => 2033
'avg' => 0.13629556127126
]
2 => [
'year' => 2034
'avg' => 0.086390676791903
]
3 => [
'year' => 2035
'avg' => 0.10189800138864
]
4 => [
'year' => 2036
'avg' => 0.19778426577054
]
5 => [
'year' => 2037
'avg' => 0.48322703519371
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.05298993482913
'min' => '$0.052989'
'max_raw' => 0.48322703519371
'max' => '$0.483227'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.48322703519371
]
]
]
]
'prediction_2025_max_price' => '$0.014545'
'last_price' => 0.01410404
'sma_50day_nextmonth' => '$0.013126'
'sma_200day_nextmonth' => '$0.018454'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.013516'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.013285'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.012922'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.013395'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.013654'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.016152'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.018565'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.013626'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.013385'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.013235'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.013422'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.014231'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.015817'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.018165'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.01798'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.01863'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.0344044'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.013841'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.013957'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.014771'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016572'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.024532'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.051152'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.0368066'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.41'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 102.87
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.013122'
'vwma_10_action' => 'BUY'
'hma_9' => '0.013762'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 93.55
'cci_20_action' => 'NEUTRAL'
'adx_14' => 14.15
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000565'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 65.25
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002039'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 19
'sell_pct' => 42.42
'buy_pct' => 57.58
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767689911
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Phiat Protocol para 2026
La previsión del precio de Phiat Protocol para 2026 sugiere que el precio medio podría oscilar entre $0.004872 en el extremo inferior y $0.014545 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Phiat Protocol podría potencialmente ganar 3.13% para 2026 si PHIAT alcanza el objetivo de precio previsto.
Predicción de precio de Phiat Protocol 2027-2032
La predicción del precio de PHIAT para 2027-2032 está actualmente dentro de un rango de precios de $0.0085072 en el extremo inferior y $0.052989 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Phiat Protocol alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Phiat Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004691 | $0.0085072 | $0.012323 |
| 2028 | $0.008465 | $0.01460091 | $0.020735 |
| 2029 | $0.018597 | $0.039887 | $0.061176 |
| 2030 | $0.015816 | $0.030772 | $0.045729 |
| 2031 | $0.018699 | $0.030222 | $0.041745 |
| 2032 | $0.028543 | $0.052989 | $0.077436 |
Predicción de precio de Phiat Protocol 2032-2037
La predicción de precio de Phiat Protocol para 2032-2037 se estima actualmente entre $0.052989 en el extremo inferior y $0.483227 en el extremo superior. Comparado con el precio actual, Phiat Protocol podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Phiat Protocol | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.028543 | $0.052989 | $0.077436 |
| 2033 | $0.066329 | $0.136295 | $0.206261 |
| 2034 | $0.053325 | $0.08639 | $0.119455 |
| 2035 | $0.063047 | $0.101898 | $0.140748 |
| 2036 | $0.104363 | $0.197784 | $0.2912054 |
| 2037 | $0.271027 | $0.483227 | $0.695426 |
Phiat Protocol Histograma de precios potenciales
Pronóstico de precio de Phiat Protocol basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Phiat Protocol es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de PHIAT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Phiat Protocol
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Phiat Protocol aumentar durante el próximo mes, alcanzando $0.018454 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Phiat Protocol alcance $0.013126 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.41, lo que sugiere que el mercado de PHIAT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de PHIAT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.013516 | BUY |
| SMA 5 | $0.013285 | BUY |
| SMA 10 | $0.012922 | BUY |
| SMA 21 | $0.013395 | BUY |
| SMA 50 | $0.013654 | BUY |
| SMA 100 | $0.016152 | SELL |
| SMA 200 | $0.018565 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.013626 | BUY |
| EMA 5 | $0.013385 | BUY |
| EMA 10 | $0.013235 | BUY |
| EMA 21 | $0.013422 | BUY |
| EMA 50 | $0.014231 | SELL |
| EMA 100 | $0.015817 | SELL |
| EMA 200 | $0.018165 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.01798 | SELL |
| SMA 50 | $0.01863 | SELL |
| SMA 100 | $0.0344044 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.016572 | SELL |
| EMA 50 | $0.024532 | SELL |
| EMA 100 | $0.051152 | SELL |
| EMA 200 | $0.0368066 | SELL |
Osciladores de Phiat Protocol
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.41 | NEUTRAL |
| Stoch RSI (14) | 102.87 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 93.55 | NEUTRAL |
| Índice Direccional Medio (14) | 14.15 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000565 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 65.25 | NEUTRAL |
| VWMA (10) | 0.013122 | BUY |
| Promedio Móvil de Hull (9) | 0.013762 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002039 | NEUTRAL |
Predicción de precios de Phiat Protocol basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Phiat Protocol
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Phiat Protocol por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.019818 | $0.027848 | $0.039131 | $0.054986 | $0.077265 | $0.10857 |
| Amazon.com acción | $0.029428 | $0.0614051 | $0.128125 | $0.267341 | $0.557824 | $1.16 |
| Apple acción | $0.0200055 | $0.028376 | $0.040249 | $0.05709 | $0.080979 | $0.114862 |
| Netflix acción | $0.022253 | $0.035113 | $0.0554032 | $0.087417 | $0.137931 | $0.217633 |
| Google acción | $0.018264 | $0.023652 | $0.03063 | $0.039665 | $0.051367 | $0.06652 |
| Tesla acción | $0.031972 | $0.072479 | $0.1643064 | $0.37247 | $0.844362 | $1.91 |
| Kodak acción | $0.010576 | $0.007931 | $0.005947 | $0.00446 | $0.003344 | $0.002508 |
| Nokia acción | $0.009343 | $0.006189 | $0.00410033 | $0.002716 | $0.001799 | $0.001192 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Phiat Protocol
Podría preguntarse cosas como: "¿Debo invertir en Phiat Protocol ahora?", "¿Debería comprar PHIAT hoy?", "¿Será Phiat Protocol una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Phiat Protocol regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Phiat Protocol, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Phiat Protocol a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Phiat Protocol es de $0.0141 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Phiat Protocol basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Phiat Protocol ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.01447 | $0.014846 | $0.015232 | $0.015628 |
| Si Phiat Protocol ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.014837 | $0.0156085 | $0.01642 | $0.017273 |
| Si Phiat Protocol ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.015937 | $0.0180083 | $0.020348 | $0.022993 |
| Si Phiat Protocol ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01777 | $0.022389 | $0.0282088 | $0.035541 |
| Si Phiat Protocol ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.021436 | $0.03258 | $0.049517 | $0.075259 |
| Si Phiat Protocol ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.032434 | $0.074588 | $0.171527 | $0.394455 |
| Si Phiat Protocol ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.050764 | $0.182719 | $0.657665 | $2.36 |
Cuadro de preguntas
¿Es PHIAT una buena inversión?
La decisión de adquirir Phiat Protocol depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Phiat Protocol ha experimentado un aumento de 7.2058% durante las últimas 24 horas, y Phiat Protocol ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Phiat Protocol dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Phiat Protocol subir?
Parece que el valor medio de Phiat Protocol podría potencialmente aumentar hasta $0.014545 para el final de este año. Mirando las perspectivas de Phiat Protocol en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.045729. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Phiat Protocol la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Phiat Protocol, el precio de Phiat Protocol aumentará en un 0.86% durante la próxima semana y alcanzará $0.014224 para el 13 de enero de 2026.
¿Cuál será el precio de Phiat Protocol el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Phiat Protocol, el precio de Phiat Protocol disminuirá en un -11.62% durante el próximo mes y alcanzará $0.012465 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Phiat Protocol este año en 2026?
Según nuestra predicción más reciente sobre el valor de Phiat Protocol en 2026, se anticipa que PHIAT fluctúe dentro del rango de $0.004872 y $0.014545. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Phiat Protocol no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Phiat Protocol en 5 años?
El futuro de Phiat Protocol parece estar en una tendencia alcista, con un precio máximo de $0.045729 proyectada después de un período de cinco años. Basado en el pronóstico de Phiat Protocol para 2030, el valor de Phiat Protocol podría potencialmente alcanzar su punto más alto de aproximadamente $0.045729, mientras que su punto más bajo se anticipa que esté alrededor de $0.015816.
¿Cuánto será Phiat Protocol en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Phiat Protocol, se espera que el valor de PHIAT en 2026 crezca en un 3.13% hasta $0.014545 si ocurre lo mejor. El precio estará entre $0.014545 y $0.004872 durante 2026.
¿Cuánto será Phiat Protocol en 2027?
Según nuestra última simulación experimental para la predicción de precios de Phiat Protocol, el valor de PHIAT podría disminuir en un -12.62% hasta $0.012323 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.012323 y $0.004691 a lo largo del año.
¿Cuánto será Phiat Protocol en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Phiat Protocol sugiere que el valor de PHIAT en 2028 podría aumentar en un 47.02% , alcanzando $0.020735 en el mejor escenario. Se espera que el precio oscile entre $0.020735 y $0.008465 durante el año.
¿Cuánto será Phiat Protocol en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Phiat Protocol podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.061176 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.061176 y $0.018597.
¿Cuánto será Phiat Protocol en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Phiat Protocol, se espera que el valor de PHIAT en 2030 aumente en un 224.23% , alcanzando $0.045729 en el mejor escenario. Se pronostica que el precio oscile entre $0.045729 y $0.015816 durante el transcurso de 2030.
¿Cuánto será Phiat Protocol en 2031?
Nuestra simulación experimental indica que el precio de Phiat Protocol podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.041745 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.041745 y $0.018699 durante el año.
¿Cuánto será Phiat Protocol en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Phiat Protocol, PHIAT podría experimentar un 449.04% aumento en valor, alcanzando $0.077436 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.077436 y $0.028543 a lo largo del año.
¿Cuánto será Phiat Protocol en 2033?
Según nuestra predicción experimental de precios de Phiat Protocol, se anticipa que el valor de PHIAT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.206261. A lo largo del año, el precio de PHIAT podría oscilar entre $0.206261 y $0.066329.
¿Cuánto será Phiat Protocol en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Phiat Protocol sugieren que PHIAT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.119455 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.119455 y $0.053325.
¿Cuánto será Phiat Protocol en 2035?
Basado en nuestra predicción experimental para el precio de Phiat Protocol, PHIAT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.140748 en 2035. El rango de precios esperado para el año está entre $0.140748 y $0.063047.
¿Cuánto será Phiat Protocol en 2036?
Nuestra reciente simulación de predicción de precios de Phiat Protocol sugiere que el valor de PHIAT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.2912054 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.2912054 y $0.104363.
¿Cuánto será Phiat Protocol en 2037?
Según la simulación experimental, el valor de Phiat Protocol podría aumentar en un 4830.69% en 2037, con un máximo de $0.695426 bajo condiciones favorables. Se espera que el precio caiga entre $0.695426 y $0.271027 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Phiat Protocol?
Los traders de Phiat Protocol utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Phiat Protocol
Las medias móviles son herramientas populares para la predicción de precios de Phiat Protocol. Una media móvil simple (SMA) calcula el precio de cierre promedio de PHIAT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de PHIAT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de PHIAT.
¿Cómo leer gráficos de Phiat Protocol y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Phiat Protocol en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de PHIAT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Phiat Protocol?
La acción del precio de Phiat Protocol está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de PHIAT. La capitalización de mercado de Phiat Protocol puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de PHIAT, grandes poseedores de Phiat Protocol, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Phiat Protocol.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


