Predicción del precio de Morpher - Pronóstico de MPH
Predicción de precio de Morpher hasta $0.007666 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002568 | $0.007666 |
| 2027 | $0.002472 | $0.006495 |
| 2028 | $0.004462 | $0.010928 |
| 2029 | $0.0098018 | $0.032243 |
| 2030 | $0.008336 | $0.024102 |
| 2031 | $0.009855 | $0.0220024 |
| 2032 | $0.015044 | $0.040813 |
| 2033 | $0.034959 | $0.108712 |
| 2034 | $0.0281056 | $0.06296 |
| 2035 | $0.033229 | $0.074182 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Morpher hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.52, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Morpher para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Morpher'
'name_with_ticker' => 'Morpher <small>MPH</small>'
'name_lang' => 'Morpher'
'name_lang_with_ticker' => 'Morpher <small>MPH</small>'
'name_with_lang' => 'Morpher'
'name_with_lang_with_ticker' => 'Morpher <small>MPH</small>'
'image' => '/uploads/coins/morpher.png?1717118687'
'price_for_sd' => 0.007433
'ticker' => 'MPH'
'marketcap' => '$0'
'low24h' => '$0.007044'
'high24h' => '$0.007611'
'volume24h' => '$12.1K'
'current_supply' => '0'
'max_supply' => '1.38B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.007433'
'change_24h_pct' => '-0.2649%'
'ath_price' => '$3.45'
'ath_days' => 1754
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 mar. 2021'
'ath_pct' => '-99.78%'
'fdv' => '$10.2M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.36653'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.007497'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00657'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002568'
'current_year_max_price_prediction' => '$0.007666'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.008336'
'grand_prediction_max_price' => '$0.024102'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0075745137574001
107 => 0.0076027942422217
108 => 0.0076665116185622
109 => 0.0071220536140217
110 => 0.0073664992736132
111 => 0.0075100881971623
112 => 0.0068613482167575
113 => 0.0074972646936078
114 => 0.0071125758114723
115 => 0.0069820066270424
116 => 0.0071578008326953
117 => 0.0070892936597869
118 => 0.0070303952153964
119 => 0.0069975288714228
120 => 0.0071266127343558
121 => 0.0071205908178614
122 => 0.0069093845640049
123 => 0.0066338746157173
124 => 0.0067263447976684
125 => 0.006692749513653
126 => 0.0065709958705033
127 => 0.0066530431253953
128 => 0.0062917485380165
129 => 0.0056701599788898
130 => 0.0060808004208213
131 => 0.0060649912104978
201 => 0.0060570194897621
202 => 0.0063656044326055
203 => 0.006335941110617
204 => 0.0062821018907439
205 => 0.0065700070710091
206 => 0.0064649178073411
207 => 0.0067887781558212
208 => 0.0070020935273042
209 => 0.0069479898490667
210 => 0.0071486139869892
211 => 0.006728475123897
212 => 0.0068680284011708
213 => 0.0068967901382044
214 => 0.006566454365775
215 => 0.0063407943969468
216 => 0.006325745449738
217 => 0.0059344821616492
218 => 0.0061434918519793
219 => 0.0063274117300611
220 => 0.006239328381219
221 => 0.0062114438243908
222 => 0.0063538999778037
223 => 0.0063649700409783
224 => 0.0061125714274442
225 => 0.0061650530916225
226 => 0.0063839103555968
227 => 0.0061595384501003
228 => 0.0057236204886631
301 => 0.0056155068071893
302 => 0.0056010824491502
303 => 0.0053078695703891
304 => 0.0056227314803511
305 => 0.0054852858188781
306 => 0.0059194750166193
307 => 0.0056714684754729
308 => 0.0056607774091685
309 => 0.0056446162944109
310 => 0.0053922358571898
311 => 0.0054474911333277
312 => 0.0056311680868262
313 => 0.0056967060931035
314 => 0.0056898699421117
315 => 0.0056302679695495
316 => 0.005657553447377
317 => 0.0055696574164039
318 => 0.0055386194984696
319 => 0.0054406552918171
320 => 0.0052966749713407
321 => 0.0053166963179856
322 => 0.0050314336286217
323 => 0.0048760073754194
324 => 0.0048329874370181
325 => 0.0047754593774609
326 => 0.0048394853844214
327 => 0.0050306255152641
328 => 0.0048000699648269
329 => 0.0044047986451939
330 => 0.0044285551250134
331 => 0.0044819288818057
401 => 0.0043824672391261
402 => 0.0042883351415127
403 => 0.0043701753632091
404 => 0.0042026936943108
405 => 0.0045021682413389
406 => 0.0044940682941095
407 => 0.0046056938858598
408 => 0.0046754956591691
409 => 0.0045146251702838
410 => 0.0044741666773692
411 => 0.0044972136736693
412 => 0.0041162981626469
413 => 0.0045745649620214
414 => 0.0045785280723324
415 => 0.0045445935157761
416 => 0.004788606439043
417 => 0.0053035498166755
418 => 0.0051098074044607
419 => 0.0050347844865558
420 => 0.0048921658647771
421 => 0.0050821967104414
422 => 0.0050676053064374
423 => 0.0050016174439055
424 => 0.0049617077787516
425 => 0.0050352425604948
426 => 0.0049525960055202
427 => 0.0049377504132713
428 => 0.0048478022764066
429 => 0.0048156948839254
430 => 0.0047919238487645
501 => 0.0047657542747459
502 => 0.0048234778339793
503 => 0.0046926686545898
504 => 0.0045349256076281
505 => 0.0045218109800766
506 => 0.004558021619796
507 => 0.0045420011072853
508 => 0.0045217342800262
509 => 0.0044830393874468
510 => 0.0044715594394041
511 => 0.004508863701264
512 => 0.0044667493645977
513 => 0.0045288913624354
514 => 0.0045119921774972
515 => 0.0044175947041602
516 => 0.0042999405019614
517 => 0.0042988931327738
518 => 0.0042735447279016
519 => 0.0042412597231387
520 => 0.0042322787733945
521 => 0.0043632830080087
522 => 0.0046344578530333
523 => 0.0045812197422909
524 => 0.0046196897333633
525 => 0.0048089240142901
526 => 0.0048690759017234
527 => 0.0048263815167988
528 => 0.004767938809439
529 => 0.0047705099919611
530 => 0.00497022641482
531 => 0.0049826824831366
601 => 0.0050141549492926
602 => 0.0050546059624209
603 => 0.0048332704992497
604 => 0.0047600851115501
605 => 0.0047254058146873
606 => 0.0046186070029269
607 => 0.0047337803651724
608 => 0.004666673779207
609 => 0.0046757287503412
610 => 0.0046698316885111
611 => 0.0046730518830279
612 => 0.0045020845320997
613 => 0.0045643760489985
614 => 0.0044608043205159
615 => 0.0043221334025497
616 => 0.0043216685290084
617 => 0.0043556080397257
618 => 0.0043354194906978
619 => 0.004281092624359
620 => 0.0042888094993069
621 => 0.0042212015546863
622 => 0.0042970183278652
623 => 0.0042991924816345
624 => 0.0042699988941931
625 => 0.0043868050939736
626 => 0.0044346606893285
627 => 0.0044154448446874
628 => 0.004433312454443
629 => 0.0045834320261479
630 => 0.0046079080665119
701 => 0.0046187787068452
702 => 0.0046042134888825
703 => 0.0044360563646354
704 => 0.004443514848155
705 => 0.0043887894448693
706 => 0.0043425522459138
707 => 0.0043444014913898
708 => 0.0043681734220681
709 => 0.0044719868375454
710 => 0.0046904560502822
711 => 0.0046987467972067
712 => 0.0047087954243373
713 => 0.0046679226077618
714 => 0.0046555949751825
715 => 0.0046718583045866
716 => 0.004753903854325
717 => 0.0049649472834018
718 => 0.0048903504404494
719 => 0.00482970204596
720 => 0.0048829070386169
721 => 0.0048747165470319
722 => 0.004805580555435
723 => 0.0048036401384154
724 => 0.0046709460664274
725 => 0.0046218920893112
726 => 0.0045808989144064
727 => 0.0045361354375642
728 => 0.0045095981480069
729 => 0.0045503714857494
730 => 0.0045596968305071
731 => 0.0044705452149371
801 => 0.0044583941791615
802 => 0.0045311973129072
803 => 0.0044991593681201
804 => 0.0045321111888364
805 => 0.0045397562938981
806 => 0.0045385252559014
807 => 0.0045050739620092
808 => 0.0045263948192042
809 => 0.0044759646358846
810 => 0.0044211293858932
811 => 0.0043861479127555
812 => 0.0043556219378238
813 => 0.004372559522896
814 => 0.0043121801247944
815 => 0.0042928635401446
816 => 0.004519171792521
817 => 0.0046863481317751
818 => 0.0046839173215933
819 => 0.0046691203897649
820 => 0.0046471351505159
821 => 0.0047522954971364
822 => 0.0047156597351213
823 => 0.0047423153130076
824 => 0.0047491002763108
825 => 0.0047696363167292
826 => 0.0047769761860465
827 => 0.0047547900031027
828 => 0.0046803304633292
829 => 0.0044947843696145
830 => 0.0044084121621181
831 => 0.0043799078950015
901 => 0.0043809439709738
902 => 0.0043523643704087
903 => 0.004360782343623
904 => 0.00434943694286
905 => 0.004327951498562
906 => 0.004371232857255
907 => 0.0043762206306506
908 => 0.0043661182443579
909 => 0.0043684977220416
910 => 0.004284854278324
911 => 0.0042912135076858
912 => 0.0042558045105073
913 => 0.0042491657503982
914 => 0.004159654888945
915 => 0.0040010734230739
916 => 0.0040889429490419
917 => 0.0039828089179977
918 => 0.0039426143522482
919 => 0.0041328891749686
920 => 0.0041137908601696
921 => 0.0040811028470714
922 => 0.0040327504629205
923 => 0.0040148160932972
924 => 0.0039058525407972
925 => 0.0038994143928176
926 => 0.0039534196717
927 => 0.0039284980937039
928 => 0.0038934987596578
929 => 0.0037667347195685
930 => 0.0036242099683767
1001 => 0.0036285118947366
1002 => 0.0036738463663234
1003 => 0.0038056624566485
1004 => 0.003754159629717
1005 => 0.0037167937378513
1006 => 0.0037097962295194
1007 => 0.0037973846965686
1008 => 0.0039213407277944
1009 => 0.0039794981242856
1010 => 0.0039218659106292
1011 => 0.0038556611267194
1012 => 0.0038596907051526
1013 => 0.0038864976851854
1014 => 0.0038893147197566
1015 => 0.0038462222113931
1016 => 0.0038583525000816
1017 => 0.0038399254823469
1018 => 0.0037268389085227
1019 => 0.0037247935310036
1020 => 0.0036970402620198
1021 => 0.0036961999040648
1022 => 0.003648984670146
1023 => 0.0036423789325372
1024 => 0.0035486302198315
1025 => 0.0036103359064317
1026 => 0.0035689469715543
1027 => 0.0035065640840312
1028 => 0.0034958092507087
1029 => 0.0034954859474322
1030 => 0.00355953922436
1031 => 0.0036095874065971
1101 => 0.0035696669497966
1102 => 0.0035605778356086
1103 => 0.0036576257960741
1104 => 0.0036452755584931
1105 => 0.0036345803323984
1106 => 0.0039102418247597
1107 => 0.0036920342434212
1108 => 0.0035968832831043
1109 => 0.0034791159010349
1110 => 0.0035174615544714
1111 => 0.0035255415470653
1112 => 0.0032423322223544
1113 => 0.0031274342345907
1114 => 0.0030880055750295
1115 => 0.0030653138240127
1116 => 0.0030756547398961
1117 => 0.002972233074719
1118 => 0.0030417341441545
1119 => 0.0029521797241268
1120 => 0.0029371656341739
1121 => 0.0030973000308472
1122 => 0.0031195817966527
1123 => 0.0030245208613243
1124 => 0.0030855653707726
1125 => 0.0030634297830645
1126 => 0.0029537148776214
1127 => 0.0029495245752417
1128 => 0.0028944734923558
1129 => 0.0028083292076294
1130 => 0.0027689589579498
1201 => 0.0027484545900884
1202 => 0.0027569150918902
1203 => 0.0027526372032836
1204 => 0.0027247210864502
1205 => 0.002754237322423
1206 => 0.0026788355364632
1207 => 0.0026488099377405
1208 => 0.002635248071386
1209 => 0.0025683246463818
1210 => 0.0026748295765457
1211 => 0.0026958123895018
1212 => 0.0027168365450813
1213 => 0.0028998374656001
1214 => 0.0028906952567662
1215 => 0.0029733363721883
1216 => 0.0029701250904103
1217 => 0.0029465545055946
1218 => 0.0028471140854302
1219 => 0.0028867492645527
1220 => 0.0027647583438881
1221 => 0.0028561622362263
1222 => 0.002814449316881
1223 => 0.0028420590562362
1224 => 0.0027924142554056
1225 => 0.0028198897379689
1226 => 0.0027007881928647
1227 => 0.0025895728458504
1228 => 0.0026343291480673
1229 => 0.0026829843670811
1230 => 0.0027884812790223
1231 => 0.0027256481886007
]
'min_raw' => 0.0025683246463818
'max_raw' => 0.0076665116185622
'avg_raw' => 0.005117418132472
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002568'
'max' => '$0.007666'
'avg' => '$0.005117'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0048653253536182
'max_diff' => 0.00023286161856224
'year' => 2026
]
1 => [
'items' => [
101 => 0.0027482453438985
102 => 0.0026725486563691
103 => 0.002516364768306
104 => 0.0025172487521509
105 => 0.0024932232636233
106 => 0.0024724617337568
107 => 0.0027328653248804
108 => 0.0027004800219526
109 => 0.0026488782802208
110 => 0.0027179492621005
111 => 0.0027362127260134
112 => 0.0027367326611555
113 => 0.0027871250665549
114 => 0.0028140195023499
115 => 0.0028187597632259
116 => 0.0028980533019218
117 => 0.0029246314501856
118 => 0.0030341030814038
119 => 0.0028117376973736
120 => 0.0028071582286211
121 => 0.0027189212324624
122 => 0.0026629599345268
123 => 0.0027227529504091
124 => 0.0027757213999201
125 => 0.0027205671098377
126 => 0.0027277690957519
127 => 0.0026537289675873
128 => 0.0026801948294943
129 => 0.0027029907951052
130 => 0.0026904042027798
131 => 0.0026715614648707
201 => 0.0027713785911044
202 => 0.0027657465176558
203 => 0.0028586985203905
204 => 0.0029311612535836
205 => 0.0030610274257286
206 => 0.0029255053050186
207 => 0.0029205663402883
208 => 0.002968845512762
209 => 0.0029246240588958
210 => 0.0029525704912665
211 => 0.0030565248234235
212 => 0.0030587212146529
213 => 0.0030219288316704
214 => 0.0030196900118223
215 => 0.0030267563914386
216 => 0.0030681443975659
217 => 0.0030536821565001
218 => 0.0030704182280006
219 => 0.0030913469416839
220 => 0.0031779169750686
221 => 0.0031987887170362
222 => 0.0031480812048125
223 => 0.0031526595254183
224 => 0.0031336935238943
225 => 0.0031153726040654
226 => 0.0031565553562853
227 => 0.0032318176454162
228 => 0.0032313494426216
301 => 0.0032488088308101
302 => 0.0032596858850102
303 => 0.0032129936058932
304 => 0.0031825986491107
305 => 0.0031942540096225
306 => 0.0032128911849015
307 => 0.0031882102248651
308 => 0.0030358679061873
309 => 0.0030820788340092
310 => 0.0030743870760207
311 => 0.0030634330772954
312 => 0.0031098985225587
313 => 0.0031054168170099
314 => 0.0029711723360594
315 => 0.0029797662321747
316 => 0.002971694959346
317 => 0.0029977748930824
318 => 0.002923215656887
319 => 0.0029461495757766
320 => 0.002960533514712
321 => 0.0029690057652476
322 => 0.0029996133436587
323 => 0.0029960218976035
324 => 0.0029993900943293
325 => 0.0030447730530119
326 => 0.0032743044844777
327 => 0.0032867973738598
328 => 0.0032252778174826
329 => 0.0032498536668357
330 => 0.0032026734102252
331 => 0.003234345832568
401 => 0.0032560152995427
402 => 0.003158095145083
403 => 0.0031522969490324
404 => 0.0031049219627199
405 => 0.0031303785969079
406 => 0.0030898752615181
407 => 0.0030998133632762
408 => 0.0030720255643723
409 => 0.0031220380699037
410 => 0.0031779598222455
411 => 0.0031920878653039
412 => 0.0031549230665221
413 => 0.0031280133029245
414 => 0.0030807686226743
415 => 0.0031593375788468
416 => 0.0031823135359772
417 => 0.0031592168959251
418 => 0.0031538648997535
419 => 0.0031437228766792
420 => 0.0031560165778932
421 => 0.0031821884039803
422 => 0.0031698462541153
423 => 0.0031779984615418
424 => 0.0031469306533518
425 => 0.0032130090629804
426 => 0.0033179574801059
427 => 0.0033182949064278
428 => 0.0033059526900341
429 => 0.0033009025210025
430 => 0.0033135663840108
501 => 0.0033204360101939
502 => 0.0033613886210074
503 => 0.0034053324040343
504 => 0.0036103988652459
505 => 0.0035528170235244
506 => 0.0037347641873697
507 => 0.0038786607710891
508 => 0.0039218090647116
509 => 0.003882114664863
510 => 0.0037463222672305
511 => 0.0037396596443708
512 => 0.0039425908165053
513 => 0.0038852534655408
514 => 0.0038784333700895
515 => 0.0038058790772209
516 => 0.0038487676503302
517 => 0.0038393872902538
518 => 0.0038245799329702
519 => 0.003906408342819
520 => 0.0040595838211832
521 => 0.0040357099864096
522 => 0.0040178892762264
523 => 0.0039398041117345
524 => 0.0039868288217115
525 => 0.0039700842231877
526 => 0.0040420296448309
527 => 0.0039994107708357
528 => 0.0038848190787144
529 => 0.0039030681833838
530 => 0.0039003098679252
531 => 0.0039570758046086
601 => 0.0039400360794334
602 => 0.0038969825881069
603 => 0.0040590602840505
604 => 0.0040485358599994
605 => 0.0040634570870855
606 => 0.0040700258727031
607 => 0.0041686797100946
608 => 0.0042090950307032
609 => 0.0042182700160511
610 => 0.0042566614447962
611 => 0.0042173148023302
612 => 0.0043747294258751
613 => 0.0044794009651345
614 => 0.0046009823443325
615 => 0.0047786454173348
616 => 0.0048454483762589
617 => 0.0048333810196593
618 => 0.004968083133969
619 => 0.0052101398391237
620 => 0.0048823076004372
621 => 0.0052275157438129
622 => 0.0051182268312398
623 => 0.0048591047855526
624 => 0.0048424203806586
625 => 0.0050179008384668
626 => 0.0054070996045172
627 => 0.0053096097278774
628 => 0.0054072590630306
629 => 0.0052933459266246
630 => 0.0052876891792668
701 => 0.0054017265562542
702 => 0.0056681811034393
703 => 0.005541598535971
704 => 0.0053601113861863
705 => 0.0054941186733345
706 => 0.0053780291594178
707 => 0.0051164469931544
708 => 0.0053095351792061
709 => 0.0051804226080282
710 => 0.0052181045202997
711 => 0.0054894799408701
712 => 0.0054568273322967
713 => 0.0054990828313408
714 => 0.005424502981547
715 => 0.0053548336416768
716 => 0.0052247906450959
717 => 0.0051862913248506
718 => 0.005196931151906
719 => 0.0051862860522807
720 => 0.0051135281908506
721 => 0.0050978161376021
722 => 0.005071628693827
723 => 0.0050797452776723
724 => 0.0050305052219684
725 => 0.0051234313805964
726 => 0.0051406792945002
727 => 0.0052083032033511
728 => 0.0052153241419017
729 => 0.0054036557654854
730 => 0.0052999258719999
731 => 0.0053695168401581
801 => 0.0053632919689505
802 => 0.0048647207460094
803 => 0.0049334194615995
804 => 0.0050402931042132
805 => 0.0049921466730796
806 => 0.0049240788839864
807 => 0.0048691104947297
808 => 0.0047858277641994
809 => 0.0049030466081176
810 => 0.0050571769230357
811 => 0.0052192331410418
812 => 0.0054139330686321
813 => 0.005370478311351
814 => 0.005215593361326
815 => 0.0052225413870406
816 => 0.0052654913480608
817 => 0.0052098672461241
818 => 0.0051934626125515
819 => 0.0052632376033183
820 => 0.005263718105332
821 => 0.0051997158536565
822 => 0.0051285890632077
823 => 0.0051282910393586
824 => 0.0051156347140015
825 => 0.0052955974587895
826 => 0.0053945587721371
827 => 0.0054059045272282
828 => 0.0053937951124212
829 => 0.0053984555455749
830 => 0.0053408721378017
831 => 0.0054724907321422
901 => 0.0055932769700389
902 => 0.005560903678061
903 => 0.0055123715112514
904 => 0.0054737133027618
905 => 0.0055517970327163
906 => 0.0055483200871367
907 => 0.0055922220076225
908 => 0.0055902303629194
909 => 0.0055754677982948
910 => 0.0055609042052786
911 => 0.0056186472053939
912 => 0.0056020181486849
913 => 0.0055853632624578
914 => 0.0055519593383938
915 => 0.0055564994864545
916 => 0.0055079756994079
917 => 0.0054855263752226
918 => 0.0051479424029374
919 => 0.0050577289346683
920 => 0.0050861119282503
921 => 0.0050954563467015
922 => 0.0050561953296991
923 => 0.0051124855427528
924 => 0.0051037127726745
925 => 0.0051378424891505
926 => 0.0051165197240363
927 => 0.0051173948177543
928 => 0.0051801005234621
929 => 0.0051983042565983
930 => 0.0051890456910031
1001 => 0.0051955300729809
1002 => 0.0053449599187729
1003 => 0.0053237157731987
1004 => 0.005312430244274
1005 => 0.0053155564129128
1006 => 0.0053537389423247
1007 => 0.0053644279658712
1008 => 0.0053191378220003
1009 => 0.005340496915669
1010 => 0.0054314412256379
1011 => 0.0054632665871248
1012 => 0.005564837863951
1013 => 0.0055216885802697
1014 => 0.0056008909579239
1015 => 0.0058443320647526
1016 => 0.0060388096657306
1017 => 0.0058599600267445
1018 => 0.0062170933743675
1019 => 0.006495172913228
1020 => 0.0064844997573608
1021 => 0.0064360101576649
1022 => 0.0061194239957992
1023 => 0.0058280966896167
1024 => 0.0060718043516492
1025 => 0.0060724256125986
1026 => 0.0060514909082964
1027 => 0.0059214672578363
1028 => 0.006046966367103
1029 => 0.0060569280306508
1030 => 0.0060513521480842
1031 => 0.005951663320133
1101 => 0.0057994569054266
1102 => 0.0058291976745296
1103 => 0.0058779136610155
1104 => 0.0057856841353783
1105 => 0.0057562112135532
1106 => 0.0058110069826788
1107 => 0.0059875703679536
1108 => 0.0059541920827295
1109 => 0.0059533204408101
1110 => 0.0060961268995948
1111 => 0.0059939082946676
1112 => 0.0058295728008711
1113 => 0.0057880759213686
1114 => 0.0056407899547823
1115 => 0.0057425208965181
1116 => 0.0057461820120031
1117 => 0.0056904650148794
1118 => 0.0058340939281138
1119 => 0.0058327703623929
1120 => 0.0059691246391665
1121 => 0.0062297828040298
1122 => 0.0061526933584704
1123 => 0.0060630467205927
1124 => 0.0060727937957616
1125 => 0.0061796951525336
1126 => 0.0061150601519087
1127 => 0.0061383033487846
1128 => 0.0061796599711714
1129 => 0.0062046114482844
1130 => 0.0060692036621865
1201 => 0.0060376336299439
1202 => 0.0059730524235513
1203 => 0.0059562043922688
1204 => 0.0060088044373445
1205 => 0.0059949461838541
1206 => 0.0057458743094231
1207 => 0.0057198449127222
1208 => 0.0057206431971576
1209 => 0.0056551910415229
1210 => 0.0055553607938628
1211 => 0.0058177087241593
1212 => 0.0057966385137996
1213 => 0.0057733786322672
1214 => 0.0057762278350358
1215 => 0.0058901041797812
1216 => 0.0058240501489356
1217 => 0.0059996656159813
1218 => 0.0059635643554409
1219 => 0.0059265372337901
1220 => 0.0059214189577043
1221 => 0.0059071666748743
1222 => 0.0058582902940094
1223 => 0.0057992691271
1224 => 0.0057602982403804
1225 => 0.005313570638538
1226 => 0.005396480682945
1227 => 0.005491861131547
1228 => 0.0055247860801912
1229 => 0.0054684656771982
1230 => 0.0058605141667965
1231 => 0.0059321452037193
]
'min_raw' => 0.0024724617337568
'max_raw' => 0.006495172913228
'avg_raw' => 0.0044838173234924
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002472'
'max' => '$0.006495'
'avg' => '$0.004483'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -9.5862912624997E-5
'max_diff' => -0.0011713387053342
'year' => 2027
]
2 => [
'items' => [
101 => 0.0057151701205031
102 => 0.0056745829414676
103 => 0.005863175055497
104 => 0.005749430956289
105 => 0.0058006499171977
106 => 0.0056899425389868
107 => 0.0059148913845262
108 => 0.0059131776512156
109 => 0.0058256674696007
110 => 0.0058996304758578
111 => 0.0058867775833804
112 => 0.0057879788038652
113 => 0.0059180234820611
114 => 0.005918087982599
115 => 0.00583386133543
116 => 0.0057355030511206
117 => 0.005717918913005
118 => 0.0057046716270315
119 => 0.0057973918969216
120 => 0.0058805246009763
121 => 0.006035213952877
122 => 0.0060741065312732
123 => 0.006225906853979
124 => 0.0061355171528313
125 => 0.0061755857366075
126 => 0.0062190858523438
127 => 0.0062399414074916
128 => 0.0062059583995491
129 => 0.0064417667842168
130 => 0.006461676236865
131 => 0.0064683517041218
201 => 0.0063888384435728
202 => 0.0064594648292507
203 => 0.0064264210822921
204 => 0.0065123917320612
205 => 0.0065258730276733
206 => 0.0065144548499008
207 => 0.0065187340259159
208 => 0.0063175131690516
209 => 0.0063070788060986
210 => 0.0061648055268458
211 => 0.0062227829397723
212 => 0.006114396945236
213 => 0.0061487672606029
214 => 0.0061639173681243
215 => 0.0061560038117162
216 => 0.0062260608957106
217 => 0.0061664980625986
218 => 0.0060093019529798
219 => 0.005852063015386
220 => 0.0058500890086085
221 => 0.0058086907718379
222 => 0.005778767429118
223 => 0.0057845317265134
224 => 0.0058048458623842
225 => 0.0057775867346121
226 => 0.0057834038515951
227 => 0.0058800067527613
228 => 0.0058993797756498
229 => 0.005833542674346
301 => 0.0055691972123627
302 => 0.0055043261729316
303 => 0.0055509541896261
304 => 0.005528669000875
305 => 0.0044620673786299
306 => 0.0047126496086509
307 => 0.0045637621565409
308 => 0.0046323763444555
309 => 0.00448040081007
310 => 0.004552931500799
311 => 0.004539537730618
312 => 0.0049424665412246
313 => 0.0049361753620574
314 => 0.0049391866166029
315 => 0.0047954515913629
316 => 0.0050244253894015
317 => 0.0051372261159468
318 => 0.0051163497035574
319 => 0.0051216038467911
320 => 0.0050313202582257
321 => 0.0049400607590904
322 => 0.0048388399298131
323 => 0.0050268957193377
324 => 0.0050059871257619
325 => 0.0050539439167502
326 => 0.0051759115387623
327 => 0.0051938717344135
328 => 0.0052180104195031
329 => 0.0052093584192071
330 => 0.0054154841676699
331 => 0.0053905209794696
401 => 0.0054506750806329
402 => 0.0053269335306372
403 => 0.0051869082211613
404 => 0.0052135224547205
405 => 0.0052109592900106
406 => 0.0051783272613901
407 => 0.0051488685250282
408 => 0.0050998280289331
409 => 0.0052549994152059
410 => 0.0052486997402994
411 => 0.0053506841544638
412 => 0.0053326574186365
413 => 0.0052122704648912
414 => 0.0052165701084959
415 => 0.0052454872780754
416 => 0.0053455699321606
417 => 0.0053752812780398
418 => 0.0053615177988361
419 => 0.0053940949332182
420 => 0.005419842571957
421 => 0.0053973284402262
422 => 0.0057160810674329
423 => 0.0055837127532611
424 => 0.0056482281485756
425 => 0.0056636146902114
426 => 0.0056242023873555
427 => 0.0056327495045962
428 => 0.0056456960582658
429 => 0.0057243049969524
430 => 0.0059305975977457
501 => 0.0060219631863559
502 => 0.0062968410675883
503 => 0.0060143765460922
504 => 0.005997616270341
505 => 0.0060471300772678
506 => 0.0062085124923299
507 => 0.0063392977818583
508 => 0.0063826868075793
509 => 0.006388421383603
510 => 0.0064698220803034
511 => 0.0065164794416189
512 => 0.0064599378946731
513 => 0.0064120248537832
514 => 0.0062404062885013
515 => 0.0062602716047346
516 => 0.0063971239340952
517 => 0.0065904359098791
518 => 0.0067563176957847
519 => 0.0066982316759245
520 => 0.0071413870051187
521 => 0.0071853240458812
522 => 0.0071792533675024
523 => 0.0072793484850675
524 => 0.007080680060717
525 => 0.0069957454602876
526 => 0.0064223841970597
527 => 0.0065834753249248
528 => 0.0068176307398268
529 => 0.0067866393926268
530 => 0.0066165894713327
531 => 0.0067561886976707
601 => 0.0067100328277719
602 => 0.006673627778174
603 => 0.0068404063678482
604 => 0.0066570264576145
605 => 0.0068158013849439
606 => 0.0066121708983277
607 => 0.0066984970079704
608 => 0.0066494941330131
609 => 0.0066812049986769
610 => 0.0064958239259655
611 => 0.0065958510529294
612 => 0.0064916624686251
613 => 0.0064916130696704
614 => 0.0064893131008972
615 => 0.0066118905082884
616 => 0.0066158877531427
617 => 0.0065253028638765
618 => 0.0065122481661313
619 => 0.0065605182259393
620 => 0.0065040066278528
621 => 0.0065304480489177
622 => 0.0065048075115606
623 => 0.0064990352865291
624 => 0.0064530412154155
625 => 0.0064332257049464
626 => 0.0064409958771842
627 => 0.0064144722735384
628 => 0.0063984908429412
629 => 0.0064861339921047
630 => 0.0064393097930212
701 => 0.0064789575120416
702 => 0.0064337739322768
703 => 0.0062771479592635
704 => 0.0061870707058939
705 => 0.0058912187621071
706 => 0.0059751220063619
707 => 0.0060307499441069
708 => 0.006012364911014
709 => 0.0060518630761609
710 => 0.0060542879427101
711 => 0.0060414466865847
712 => 0.0060265781570583
713 => 0.0060193409791661
714 => 0.006073280973866
715 => 0.006104594956326
716 => 0.0060363329518654
717 => 0.0060203401193073
718 => 0.0060893567746654
719 => 0.0061314568945643
720 => 0.0064423005258835
721 => 0.0064192722256636
722 => 0.0064770687401397
723 => 0.0064705617395695
724 => 0.0065311416944473
725 => 0.0066301643176732
726 => 0.006428823637494
727 => 0.0064637694177362
728 => 0.0064552015194367
729 => 0.0065487435864468
730 => 0.0065490356145695
731 => 0.0064929524726242
801 => 0.0065233560537178
802 => 0.00650638560883
803 => 0.0065370534964355
804 => 0.0064189646686745
805 => 0.0065627841139862
806 => 0.0066443204719575
807 => 0.0066454526043671
808 => 0.006684100190933
809 => 0.0067233683772012
810 => 0.0067987402412047
811 => 0.0067212662968222
812 => 0.0065818982128146
813 => 0.0065919601383238
814 => 0.006510248681663
815 => 0.0065116222660118
816 => 0.0065042899651079
817 => 0.0065262947520704
818 => 0.0064237934819763
819 => 0.0064478503251907
820 => 0.0064141706038138
821 => 0.0064636962045994
822 => 0.0064104148450292
823 => 0.0064551973877367
824 => 0.0064745240486045
825 => 0.0065458398432798
826 => 0.0063998814441705
827 => 0.0061022623878717
828 => 0.006164825521788
829 => 0.0060722897324977
830 => 0.0060808542721051
831 => 0.0060981560051485
901 => 0.0060420754275802
902 => 0.0060527738344781
903 => 0.0060523916121002
904 => 0.0060490978261405
905 => 0.0060345091019803
906 => 0.006013352565657
907 => 0.0060976336947307
908 => 0.006111954700886
909 => 0.0061437885235717
910 => 0.0062385043867963
911 => 0.0062290400385063
912 => 0.0062444767832393
913 => 0.0062107784561607
914 => 0.0060824174408492
915 => 0.0060893880615441
916 => 0.0060024643097821
917 => 0.0061415656878079
918 => 0.0061086246454429
919 => 0.0060873873411361
920 => 0.0060815925458937
921 => 0.0061765431914231
922 => 0.0062049539127345
923 => 0.0061872502577858
924 => 0.0061509395449879
925 => 0.0062206668478584
926 => 0.0062393229325478
927 => 0.0062434993418999
928 => 0.0063670427537022
929 => 0.0062504040462235
930 => 0.0062784801424027
1001 => 0.0064975218301174
1002 => 0.0062988812450469
1003 => 0.0064041055931724
1004 => 0.0063989554088927
1005 => 0.006452784624796
1006 => 0.0063945398420316
1007 => 0.0063952618559197
1008 => 0.0064430585529348
1009 => 0.0063759367121568
1010 => 0.0063593164004436
1011 => 0.0063363555588487
1012 => 0.0063864897164655
1013 => 0.0064165428765839
1014 => 0.006658749275524
1015 => 0.0068152256551931
1016 => 0.0068084326028745
1017 => 0.0068705083850048
1018 => 0.0068425426766061
1019 => 0.0067522340272057
1020 => 0.0069063798797656
1021 => 0.0068576016822793
1022 => 0.0068616228976145
1023 => 0.0068614732277789
1024 => 0.0068939064648433
1025 => 0.0068709245439207
1026 => 0.0068256248187363
1027 => 0.0068556968903633
1028 => 0.0069450001921333
1029 => 0.007222200380987
1030 => 0.0073773252790836
1031 => 0.007212861667341
1101 => 0.0073263064644655
1102 => 0.0072582800107051
1103 => 0.0072459175804452
1104 => 0.007317169296544
1105 => 0.0073885457293397
1106 => 0.0073839993591394
1107 => 0.0073321837341501
1108 => 0.0073029144023665
1109 => 0.0075245515885778
1110 => 0.0076878500918873
1111 => 0.0076767142287286
1112 => 0.0077258643071342
1113 => 0.0078701704574877
1114 => 0.0078833640033724
1115 => 0.0078817019198411
1116 => 0.0078490003397616
1117 => 0.0079910884853062
1118 => 0.0081096209161226
1119 => 0.0078414308688127
1120 => 0.0079435541279628
1121 => 0.0079894005492012
1122 => 0.0080567166975994
1123 => 0.0081702903234436
1124 => 0.0082936614050268
1125 => 0.0083111074286578
1126 => 0.0082987286400225
1127 => 0.0082173620953257
1128 => 0.0083523562049172
1129 => 0.0084314325883145
1130 => 0.0084785207649967
1201 => 0.0085979285463373
1202 => 0.0079896836810908
1203 => 0.0075591377337379
1204 => 0.0074919017668999
1205 => 0.0076286287493888
1206 => 0.0076646825642939
1207 => 0.0076501493167133
1208 => 0.0071655307094427
1209 => 0.0074893503502268
1210 => 0.0078377530561818
1211 => 0.0078511366230322
1212 => 0.0080255543023903
1213 => 0.0080823518484115
1214 => 0.0082227809417426
1215 => 0.00821399706372
1216 => 0.0082481893132312
1217 => 0.0082403291071958
1218 => 0.0085004444317573
1219 => 0.0087873902622482
1220 => 0.0087774542405701
1221 => 0.0087362023824481
1222 => 0.0087974684262463
1223 => 0.0090936272742969
1224 => 0.0090663617134172
1225 => 0.0090928478833369
1226 => 0.0094420358559697
1227 => 0.0098960298918023
1228 => 0.0096851040819021
1229 => 0.010142752397119
1230 => 0.010430817752653
1231 => 0.010928996998535
]
'min_raw' => 0.0044620673786299
'max_raw' => 0.010928996998535
'avg_raw' => 0.0076955321885826
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.004462'
'max' => '$0.010928'
'avg' => '$0.007695'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0019896056448731
'max_diff' => 0.0044338240853072
'year' => 2028
]
3 => [
'items' => [
101 => 0.010866622503366
102 => 0.01106056002798
103 => 0.010754959139064
104 => 0.010053237725982
105 => 0.0099421876262803
106 => 0.01016451273812
107 => 0.01071107733141
108 => 0.010147299474019
109 => 0.010261351000303
110 => 0.010228504153061
111 => 0.010226753884161
112 => 0.010293554529195
113 => 0.010196656709486
114 => 0.0098018775604083
115 => 0.0099828025179826
116 => 0.0099129387031331
117 => 0.009990457814401
118 => 0.010408796486601
119 => 0.010223838987673
120 => 0.010029001287279
121 => 0.01027337100152
122 => 0.010584537622292
123 => 0.010565065374384
124 => 0.010527281074675
125 => 0.010740269193814
126 => 0.011092063166969
127 => 0.01118715166429
128 => 0.011257344049013
129 => 0.011267022392957
130 => 0.01136671535063
131 => 0.010830641191359
201 => 0.011681404649483
202 => 0.011828307996835
203 => 0.011800696256053
204 => 0.011963973143996
205 => 0.011915932941628
206 => 0.011846330225674
207 => 0.012105158823055
208 => 0.011808432722549
209 => 0.011387267379657
210 => 0.011156207742842
211 => 0.01146048571165
212 => 0.011646297649364
213 => 0.011769107520334
214 => 0.011806269713085
215 => 0.010872255102336
216 => 0.010368873029968
217 => 0.010691535167069
218 => 0.011085205243283
219 => 0.010828454334209
220 => 0.010838518483751
221 => 0.010472459160364
222 => 0.011117593370837
223 => 0.011023602742804
224 => 0.011511226287307
225 => 0.011394851014988
226 => 0.011792489086093
227 => 0.011687777655668
228 => 0.012122428949025
301 => 0.012295823117659
302 => 0.012586978913443
303 => 0.012801154302039
304 => 0.012926922186744
305 => 0.01291937155469
306 => 0.013417726571206
307 => 0.013123864029165
308 => 0.012754703418277
309 => 0.012748026467513
310 => 0.012939219978938
311 => 0.013339909127506
312 => 0.01344380199394
313 => 0.013501863932951
314 => 0.013412940052205
315 => 0.013093973324137
316 => 0.012956245108156
317 => 0.013073593538543
318 => 0.012930086492045
319 => 0.013177819915266
320 => 0.013518010818351
321 => 0.013447762742125
322 => 0.01368259152877
323 => 0.013925614618239
324 => 0.014273148551029
325 => 0.014364006790205
326 => 0.014514192004533
327 => 0.01466878192335
328 => 0.014718432038959
329 => 0.014813229515182
330 => 0.014812729885689
331 => 0.015098408460893
401 => 0.015413520776073
402 => 0.015532468380186
403 => 0.015805981837036
404 => 0.015337599627235
405 => 0.015692872913756
406 => 0.016013338311265
407 => 0.015631266253117
408 => 0.016157863573902
409 => 0.016178310154572
410 => 0.016487029247404
411 => 0.016174083303397
412 => 0.015988257000805
413 => 0.016524730573568
414 => 0.016784313236669
415 => 0.016706124825989
416 => 0.016111107160078
417 => 0.01576478135701
418 => 0.014858379929122
419 => 0.015932051574083
420 => 0.016455005712912
421 => 0.016109752835195
422 => 0.016283878304555
423 => 0.01723385040501
424 => 0.017595538274725
425 => 0.017520309726214
426 => 0.017533022112545
427 => 0.017728182321944
428 => 0.018593630167109
429 => 0.018075033757362
430 => 0.018471481281177
501 => 0.01868175561831
502 => 0.018877070141356
503 => 0.018397439402545
504 => 0.017773446858526
505 => 0.01757580222641
506 => 0.016075424240697
507 => 0.015997323050729
508 => 0.015953482486092
509 => 0.015677073927426
510 => 0.01545989251499
511 => 0.015287181792393
512 => 0.014833937280509
513 => 0.014986893998138
514 => 0.014264516845677
515 => 0.014726668148347
516 => 0.013573736770614
517 => 0.014533932281531
518 => 0.014011341519671
519 => 0.014362247161227
520 => 0.014361022884501
521 => 0.013714894343662
522 => 0.013342220885666
523 => 0.013579702917769
524 => 0.013834302507531
525 => 0.013875610434394
526 => 0.01420570544825
527 => 0.014297827871249
528 => 0.014018692628778
529 => 0.013549844830445
530 => 0.013658747480718
531 => 0.013340013976934
601 => 0.012781445771459
602 => 0.013182619208296
603 => 0.013319597457983
604 => 0.013380094856524
605 => 0.012830807178431
606 => 0.012658209064358
607 => 0.012566319276665
608 => 0.013478938688862
609 => 0.013528934040384
610 => 0.013273150753367
611 => 0.014429315465051
612 => 0.014167639782919
613 => 0.014459995631959
614 => 0.013648865706669
615 => 0.013679851962147
616 => 0.013295850056581
617 => 0.013510865464681
618 => 0.013358899504506
619 => 0.01349349434453
620 => 0.013574169936686
621 => 0.013958108831317
622 => 0.014538316246978
623 => 0.013900761163693
624 => 0.013622969283949
625 => 0.013795309803781
626 => 0.014254275318863
627 => 0.014949631568225
628 => 0.014537966673254
629 => 0.014720656563119
630 => 0.014760566176747
701 => 0.014457019723858
702 => 0.014960823758917
703 => 0.015230816434202
704 => 0.015507773051932
705 => 0.015748246722959
706 => 0.015397150488404
707 => 0.015772873787046
708 => 0.015470107132431
709 => 0.0151984941438
710 => 0.015198906068587
711 => 0.015028519273186
712 => 0.014698373386979
713 => 0.014637489420216
714 => 0.014954215504116
715 => 0.015208199829331
716 => 0.015229119194859
717 => 0.015369737967484
718 => 0.015452954708635
719 => 0.016268591899589
720 => 0.016596647925096
721 => 0.016997788623302
722 => 0.017154055532305
723 => 0.017624362903615
724 => 0.017244551504785
725 => 0.017162376919522
726 => 0.016021565073093
727 => 0.016208372949037
728 => 0.016507470382701
729 => 0.01602649707961
730 => 0.016331563935628
731 => 0.016391790595205
801 => 0.016010153790818
802 => 0.016214002497594
803 => 0.015672640769326
804 => 0.014550116453284
805 => 0.014962073449372
806 => 0.015265412461718
807 => 0.014832510289669
808 => 0.015608470677439
809 => 0.015155170637978
810 => 0.015011496287708
811 => 0.0144509714237
812 => 0.014715517582931
813 => 0.015073320051227
814 => 0.014852239724822
815 => 0.015311014597491
816 => 0.01596076216798
817 => 0.016423810979847
818 => 0.016459358117923
819 => 0.016161648753753
820 => 0.01663872990979
821 => 0.016642204925171
822 => 0.016104055432227
823 => 0.015774441864227
824 => 0.015699552968065
825 => 0.015886640113511
826 => 0.016113798446276
827 => 0.016471963824449
828 => 0.016688395661228
829 => 0.01725273510497
830 => 0.017405429177567
831 => 0.017573193669401
901 => 0.017797378767144
902 => 0.018066570456864
903 => 0.017477594364848
904 => 0.017500995482973
905 => 0.016952549101017
906 => 0.01636645548673
907 => 0.016811227482374
908 => 0.017392707701138
909 => 0.017259315496475
910 => 0.017244306148495
911 => 0.017269547708552
912 => 0.017168974342418
913 => 0.016714084734817
914 => 0.016485642021639
915 => 0.01678039140359
916 => 0.016937037582311
917 => 0.017179982144525
918 => 0.017150034099295
919 => 0.017775833201217
920 => 0.018018999809041
921 => 0.017956787385074
922 => 0.017968235968309
923 => 0.018408477496624
924 => 0.018898116618686
925 => 0.01935672827007
926 => 0.019823247739686
927 => 0.019260840310499
928 => 0.018975284502426
929 => 0.019269905206017
930 => 0.019113575313605
1001 => 0.020011893245863
1002 => 0.02007409083044
1003 => 0.020972343804087
1004 => 0.021824892838052
1005 => 0.021289422064821
1006 => 0.021794346885845
1007 => 0.022340464246906
1008 => 0.023394013240743
1009 => 0.023039215003919
1010 => 0.02276744511491
1011 => 0.022510623882978
1012 => 0.023045028097405
1013 => 0.02373253058195
1014 => 0.023880612032305
1015 => 0.024120560553346
1016 => 0.02386828402298
1017 => 0.024172123316458
1018 => 0.025244809536183
1019 => 0.02495496025075
1020 => 0.024543327669838
1021 => 0.025390110418432
1022 => 0.025696557803363
1023 => 0.027847366038554
1024 => 0.03056285028094
1025 => 0.029438621973761
1026 => 0.028740777184875
1027 => 0.028904787263363
1028 => 0.02989639018374
1029 => 0.030214861569861
1030 => 0.029349146558713
1031 => 0.029654931736112
1101 => 0.031339838127718
1102 => 0.032243736348546
1103 => 0.031016121154935
1104 => 0.027629179523687
1105 => 0.024506264659696
1106 => 0.025334602308315
1107 => 0.025240694525272
1108 => 0.027050916246699
1109 => 0.024948047441152
1110 => 0.02498345435873
1111 => 0.026831109548298
1112 => 0.026338186820551
1113 => 0.025539715130372
1114 => 0.024512094386676
1115 => 0.022612442398539
1116 => 0.020929867656931
1117 => 0.024229784199045
1118 => 0.02408748579724
1119 => 0.023881416623985
1120 => 0.024340001270051
1121 => 0.026566758139822
1122 => 0.026515424186665
1123 => 0.026188863767494
1124 => 0.026436556967264
1125 => 0.025496293314874
1126 => 0.0257386206675
1127 => 0.024505769974026
1128 => 0.025063069975869
1129 => 0.025538001968737
1130 => 0.025633351597794
1201 => 0.025848179180731
1202 => 0.024012501005578
1203 => 0.024836666613542
1204 => 0.025320786694347
1205 => 0.023133514556833
1206 => 0.025277551356804
1207 => 0.023980545932564
1208 => 0.02354032281121
1209 => 0.024133025249128
1210 => 0.023902048532649
1211 => 0.023703468315228
1212 => 0.023592657141867
1213 => 0.024027872398093
1214 => 0.024007569086195
1215 => 0.023295472455368
1216 => 0.022366571429226
1217 => 0.022678341103736
1218 => 0.02256507225813
1219 => 0.022154571349683
1220 => 0.022431199397908
1221 => 0.021213069471778
1222 => 0.019117340246755
1223 => 0.020501843166727
1224 => 0.020448541310358
1225 => 0.020421664097329
1226 => 0.021462079776838
1227 => 0.021362067815727
1228 => 0.021180545126991
1229 => 0.022151237543153
1230 => 0.021796921753598
1231 => 0.022888839529706
]
'min_raw' => 0.0098018775604083
'max_raw' => 0.032243736348546
'avg_raw' => 0.021022806954477
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0098018'
'max' => '$0.032243'
'avg' => '$0.021022'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0053398101817784
'max_diff' => 0.02131473935001
'year' => 2029
]
4 => [
'items' => [
101 => 0.023608047197865
102 => 0.023425632869289
103 => 0.024102051157424
104 => 0.02268552364735
105 => 0.023156037264978
106 => 0.023253009469467
107 => 0.022139259349414
108 => 0.021378431009434
109 => 0.021327692433235
110 => 0.020008520940314
111 => 0.020713211703852
112 => 0.021333310413681
113 => 0.021036331253277
114 => 0.020942316523093
115 => 0.021422617390295
116 => 0.021459940881176
117 => 0.020608961333737
118 => 0.020785906928667
119 => 0.021523799474283
120 => 0.020767313929755
121 => 0.019297586087949
122 => 0.018933073262604
123 => 0.018884440532399
124 => 0.017895852840186
125 => 0.018957431752579
126 => 0.018494024108774
127 => 0.01995792330308
128 => 0.019121751934341
129 => 0.019085706257869
130 => 0.019031217931131
131 => 0.018180299666401
201 => 0.0183665966877
202 => 0.018985876360335
203 => 0.019206842324217
204 => 0.019183793763863
205 => 0.018982841552093
206 => 0.019074836445599
207 => 0.018778488840469
208 => 0.018673842333155
209 => 0.018343549170784
210 => 0.017858109467913
211 => 0.017925612835971
212 => 0.016963829762376
213 => 0.01643979929819
214 => 0.016294754572314
215 => 0.016100794703036
216 => 0.016316662855656
217 => 0.01696110515177
218 => 0.016183771016597
219 => 0.014851086165492
220 => 0.014931182795828
221 => 0.01511113614329
222 => 0.014775794270805
223 => 0.014458421331609
224 => 0.01473435135296
225 => 0.014169675213073
226 => 0.015179374557023
227 => 0.015152065019419
228 => 0.015528418495455
301 => 0.015763760047571
302 => 0.015221373962676
303 => 0.015084965329092
304 => 0.015162669886208
305 => 0.013878386646124
306 => 0.015423465155382
307 => 0.015436827058491
308 => 0.015322414331826
309 => 0.016145120939059
310 => 0.017881288488945
311 => 0.0172280724195
312 => 0.01697512741385
313 => 0.016494278773209
314 => 0.017134981036896
315 => 0.017085785099558
316 => 0.016863302413906
317 => 0.016728744191436
318 => 0.016976671842118
319 => 0.016698023211822
320 => 0.016647970261069
321 => 0.016344703837651
322 => 0.016236451522235
323 => 0.016156305817549
324 => 0.016068073271644
325 => 0.016262692281729
326 => 0.015821660000612
327 => 0.015289818304513
328 => 0.015245601422089
329 => 0.015367688122049
330 => 0.015313673845603
331 => 0.015245342822514
401 => 0.015114880290592
402 => 0.015076174844261
403 => 0.015201948767622
404 => 0.015059957341223
405 => 0.015269473425549
406 => 0.015212496643666
407 => 0.014894228971689
408 => 0.014497549614622
409 => 0.014494018336281
410 => 0.014408554419485
411 => 0.01429970327186
412 => 0.014269423372768
413 => 0.014711113296193
414 => 0.015625398219016
415 => 0.015445902211682
416 => 0.015575606472472
417 => 0.016213623062532
418 => 0.016416429350684
419 => 0.016272482251084
420 => 0.016075438582881
421 => 0.016084107504268
422 => 0.016757465367692
423 => 0.016799461871677
424 => 0.016905573488659
425 => 0.017041956903621
426 => 0.01629570893639
427 => 0.016048959292121
428 => 0.015932035621517
429 => 0.015571955971211
430 => 0.01596027100317
501 => 0.015734016463355
502 => 0.015764545930732
503 => 0.015744663575052
504 => 0.015755520685692
505 => 0.015179092325479
506 => 0.015389112523758
507 => 0.015039913210031
508 => 0.014572374528414
509 => 0.014570807174813
510 => 0.014685236604777
511 => 0.014617169502211
512 => 0.014434002679369
513 => 0.01446002066203
514 => 0.014232075756506
515 => 0.014487697300637
516 => 0.014495027611864
517 => 0.014396599393575
518 => 0.014790419651283
519 => 0.014951768132193
520 => 0.014886980570378
521 => 0.014947222464146
522 => 0.015453361081163
523 => 0.015535883760113
524 => 0.01557253488296
525 => 0.015523427233688
526 => 0.014956473748933
527 => 0.014981620546854
528 => 0.014797110028871
529 => 0.014641218084414
530 => 0.014647452944647
531 => 0.014727601668632
601 => 0.015077615846935
602 => 0.01581420005071
603 => 0.015842152882808
604 => 0.015876032530751
605 => 0.015738226976018
606 => 0.015696663502089
607 => 0.015751496452644
608 => 0.016028118751825
609 => 0.016739666407539
610 => 0.01648815794334
611 => 0.016283677646983
612 => 0.01646306199438
613 => 0.016435447180159
614 => 0.016202350357569
615 => 0.016195808106112
616 => 0.015748420778
617 => 0.015583031869314
618 => 0.01544482051807
619 => 0.015293897330611
620 => 0.015204425006094
621 => 0.015341895160996
622 => 0.015373336211921
623 => 0.01507275531566
624 => 0.015031787250184
625 => 0.01527724809856
626 => 0.015169229930893
627 => 0.015280329295061
628 => 0.01530610530054
629 => 0.015301954769986
630 => 0.015189171397134
701 => 0.015261056155741
702 => 0.015091027271756
703 => 0.014906146397936
704 => 0.014788203918923
705 => 0.014685283463186
706 => 0.014742389713801
707 => 0.014538816357547
708 => 0.014473689143759
709 => 0.015236703216983
710 => 0.015800349916658
711 => 0.015792154270416
712 => 0.015742265381668
713 => 0.015668140612579
714 => 0.016022696063271
715 => 0.01589917603381
716 => 0.015989047175687
717 => 0.016011923153175
718 => 0.016081161847226
719 => 0.016105908729082
720 => 0.016031106464298
721 => 0.015780060927352
722 => 0.015154479317979
723 => 0.01486326939009
724 => 0.014767165263401
725 => 0.014770658465879
726 => 0.01467430034721
727 => 0.014702682131626
728 => 0.014664430320842
729 => 0.014591990645326
730 => 0.014737916767967
731 => 0.014754733394206
801 => 0.014720672493494
802 => 0.014728695068634
803 => 0.014446685358342
804 => 0.014468125944122
805 => 0.014348742037958
806 => 0.014326358994746
807 => 0.014024566875908
808 => 0.013489898391919
809 => 0.013786156633575
810 => 0.013428318337868
811 => 0.013292799553149
812 => 0.013934324402514
813 => 0.013869933100768
814 => 0.013759723182403
815 => 0.013596699743383
816 => 0.01353623276406
817 => 0.013168854539214
818 => 0.013147147873803
819 => 0.013329230442083
820 => 0.013245205601901
821 => 0.013127202903589
822 => 0.012699809092045
823 => 0.012219276942642
824 => 0.012233781187715
825 => 0.012386629523822
826 => 0.012831056675458
827 => 0.012657411298646
828 => 0.012531429585418
829 => 0.012507836997526
830 => 0.012803147629414
831 => 0.013221074043025
901 => 0.013417155765715
902 => 0.01322284473362
903 => 0.012999630682398
904 => 0.013013216687422
905 => 0.013103598292206
906 => 0.013113096120942
907 => 0.012967806720371
908 => 0.013008704835594
909 => 0.012946576858768
910 => 0.012565297579668
911 => 0.012558401446558
912 => 0.012464829362508
913 => 0.012461996036991
914 => 0.012302806579371
915 => 0.012280534873826
916 => 0.011964454543612
917 => 0.012172499574138
918 => 0.012032953890516
919 => 0.011822625629798
920 => 0.011786364958372
921 => 0.011785274918803
922 => 0.012001235014022
923 => 0.012169975954687
924 => 0.012035381347427
925 => 0.012004736764361
926 => 0.012331940738742
927 => 0.012290301050472
928 => 0.012254241348976
929 => 0.013183653316544
930 => 0.012447951221294
1001 => 0.012127143115358
1002 => 0.011730082164454
1003 => 0.011859367212224
1004 => 0.011886609471381
1005 => 0.010931749460075
1006 => 0.010544362872408
1007 => 0.010411426393876
1008 => 0.010334919571036
1009 => 0.010369784690916
1010 => 0.010021091326102
1011 => 0.010255419034113
1012 => 0.0099534800544998
1013 => 0.0099028590019732
1014 => 0.010442763300584
1015 => 0.01051788782966
1016 => 0.010197383249258
1017 => 0.010403199074855
1018 => 0.010328567395439
1019 => 0.0099586559316879
1020 => 0.0099445280346571
1021 => 0.0097589194651633
1022 => 0.0094684779948066
1023 => 0.0093357384492685
1024 => 0.0092666065414547
1025 => 0.0092951317139727
1026 => 0.0092807085138629
1027 => 0.0091865873769181
1028 => 0.0092861034272583
1029 => 0.0090318810415101
1030 => 0.0089306476390962
1031 => 0.0088849228598229
1101 => 0.0086592858599768
1102 => 0.0090183746679612
1103 => 0.0090891196868158
1104 => 0.0091600040952117
1105 => 0.0097770044754574
1106 => 0.0097461808800853
1107 => 0.010024811170549
1108 => 0.01001398410983
1109 => 0.0099345142374783
1110 => 0.0095992439181856
1111 => 0.0097328766918369
1112 => 0.0093215757856823
1113 => 0.0096297503903163
1114 => 0.0094891123704405
1115 => 0.0095822005343272
1116 => 0.0094148196222376
1117 => 0.0095074551299765
1118 => 0.0091058959552534
1119 => 0.008730925647987
1120 => 0.0088818246456966
1121 => 0.0090458691136006
1122 => 0.0094015593177694
1123 => 0.0091897131665469
1124 => 0.0092659010533164
1125 => 0.0090106843863369
1126 => 0.0084840995033214
1127 => 0.0084870799165723
1128 => 0.0084060763045956
1129 => 0.0083360773571268
1130 => 0.009214046245398
1201 => 0.0091048569355073
1202 => 0.00893087806054
1203 => 0.0091637556983294
1204 => 0.009225332242026
1205 => 0.0092270852396586
1206 => 0.009396986752748
1207 => 0.0094876632207403
1208 => 0.0095036453412382
1209 => 0.0097709890430494
1210 => 0.0098605991255479
1211 => 0.010229690373265
1212 => 0.0094799699559524
1213 => 0.009464529957325
1214 => 0.0091670327642655
1215 => 0.0089783553411827
1216 => 0.0091799516688446
1217 => 0.0093585384945101
1218 => 0.0091725819547478
1219 => 0.0091968639530839
1220 => 0.0089472324916606
1221 => 0.0090364639928675
1222 => 0.0091133221824881
1223 => 0.0090708856076952
1224 => 0.0090073560012767
1225 => 0.0093438964113828
1226 => 0.0093249074825321
1227 => 0.0096383016494535
1228 => 0.0098826148136006
1229 => 0.010320467679954
1230 => 0.0098635453881281
1231 => 0.0098468933237123
]
'min_raw' => 0.0083360773571268
'max_raw' => 0.024102051157424
'avg_raw' => 0.016219064257276
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.008336'
'max' => '$0.024102'
'avg' => '$0.016219'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0014658002032815
'max_diff' => -0.0081416851911211
'year' => 2030
]
5 => [
'items' => [
101 => 0.010009669924452
102 => 0.0098605742052984
103 => 0.0099547975531939
104 => 0.010305286841921
105 => 0.010312692128298
106 => 0.01018864404031
107 => 0.010181095702883
108 => 0.010204920495118
109 => 0.010344463047395
110 => 0.01029570259192
111 => 0.010352129425459
112 => 0.010422692044838
113 => 0.010714568956522
114 => 0.010784939491784
115 => 0.010613975574036
116 => 0.010629411701607
117 => 0.010565466503305
118 => 0.010503696242976
119 => 0.010642546767373
120 => 0.010896298829823
121 => 0.010894720251412
122 => 0.010953585797665
123 => 0.010990258545313
124 => 0.010832832266319
125 => 0.010730353547419
126 => 0.010769650409135
127 => 0.010832486946795
128 => 0.010749273366862
129 => 0.010235640603239
130 => 0.010391443972734
131 => 0.010365510673655
201 => 0.010328578502169
202 => 0.010485239994988
203 => 0.010470129611827
204 => 0.010017514971652
205 => 0.010046489892412
206 => 0.010019277032552
207 => 0.010107207349987
208 => 0.0098558256795942
209 => 0.0099331489883256
210 => 0.0099816454427009
211 => 0.010010210226895
212 => 0.010113405814461
213 => 0.010101297003339
214 => 0.01011265311376
215 => 0.010265664927496
216 => 0.011039546174055
217 => 0.011081666822833
218 => 0.010874249343349
219 => 0.010957108535274
220 => 0.010798037006091
221 => 0.010904822789318
222 => 0.010977882910137
223 => 0.010647738272809
224 => 0.010628189250008
225 => 0.010468461176039
226 => 0.010554289995529
227 => 0.01041773017241
228 => 0.010451237176344
301 => 0.010357548672257
302 => 0.010526169326418
303 => 0.01071471341877
304 => 0.01076234710233
305 => 0.010637043388474
306 => 0.010546315241725
307 => 0.010387026503743
308 => 0.010651927224988
309 => 0.010729392268583
310 => 0.010651520334092
311 => 0.010633475705335
312 => 0.010599281166446
313 => 0.010640730238408
314 => 0.010728970377319
315 => 0.010687357957348
316 => 0.010714843693855
317 => 0.010610096409458
318 => 0.010832884380968
319 => 0.011186725296571
320 => 0.011187862952973
321 => 0.011146250308696
322 => 0.011129223311214
323 => 0.01117192040951
324 => 0.011195081833808
325 => 0.011333156420386
326 => 0.011481315952918
327 => 0.012172711844176
328 => 0.011978570644576
329 => 0.012592018210626
330 => 0.013077175589174
331 => 0.01322265307364
401 => 0.013088820633176
402 => 0.012630987083836
403 => 0.012608523585695
404 => 0.013292720200748
405 => 0.013099403318805
406 => 0.013076408890827
407 => 0.012831787026842
408 => 0.012976388845465
409 => 0.012944762306551
410 => 0.012894838267653
411 => 0.013170728464535
412 => 0.01368717028421
413 => 0.013606677983453
414 => 0.013546594214869
415 => 0.013283324631052
416 => 0.0134418717239
417 => 0.013385416140906
418 => 0.013627985153045
419 => 0.013484292643816
420 => 0.013097938753292
421 => 0.013159466883797
422 => 0.013150167030649
423 => 0.013341557349448
424 => 0.013284106726344
425 => 0.013138948874438
426 => 0.013685405142215
427 => 0.013649921311735
428 => 0.013700229270623
429 => 0.013722376389951
430 => 0.014054994690507
501 => 0.014191257765647
502 => 0.014222191869324
503 => 0.014351631251742
504 => 0.014218971299573
505 => 0.014749705693193
506 => 0.015102613095739
507 => 0.015512533204246
508 => 0.016111536658913
509 => 0.016336767498959
510 => 0.016296081563668
511 => 0.016750239146664
512 => 0.017566350227953
513 => 0.016461040946705
514 => 0.017624934303759
515 => 0.017256459104711
516 => 0.016382811036353
517 => 0.016326558400385
518 => 0.01691820301554
519 => 0.018230413828269
520 => 0.017901719902652
521 => 0.01823095145378
522 => 0.017846885361226
523 => 0.017827813242567
524 => 0.018212298220916
525 => 0.019110668330013
526 => 0.018683886366081
527 => 0.018071989769554
528 => 0.018523804694264
529 => 0.018132400792982
530 => 0.017250458256342
531 => 0.017901468556602
601 => 0.017466156508524
602 => 0.017593203706614
603 => 0.018508164883894
604 => 0.018398074334356
605 => 0.018540541699568
606 => 0.01828909052899
607 => 0.018054195485459
608 => 0.017615746443175
609 => 0.017485943297031
610 => 0.017521816216797
611 => 0.017485925520194
612 => 0.01724061731059
613 => 0.017187643026082
614 => 0.017099350231046
615 => 0.017126715860162
616 => 0.016960699574525
617 => 0.017274006606237
618 => 0.017332159152174
619 => 0.017560157882216
620 => 0.017583829466725
621 => 0.018218802684532
622 => 0.017869070106456
623 => 0.018103700914287
624 => 0.018082713326404
625 => 0.016401745639127
626 => 0.01663336815513
627 => 0.016993700102882
628 => 0.016831371048838
629 => 0.016601875745569
630 => 0.01641654598342
701 => 0.016135752442822
702 => 0.016530963959051
703 => 0.017050625076832
704 => 0.017597008930244
705 => 0.018253453329629
706 => 0.018106942581542
707 => 0.017584737158811
708 => 0.017608162912603
709 => 0.017752971704853
710 => 0.017565431161623
711 => 0.017510121794198
712 => 0.017745373047102
713 => 0.017746993093189
714 => 0.017531205033171
715 => 0.017291396093259
716 => 0.017290391285044
717 => 0.017247719600466
718 => 0.017854476559116
719 => 0.018188131536326
720 => 0.018226384541751
721 => 0.018185556804277
722 => 0.018201269780036
723 => 0.018007123300383
724 => 0.018450884580519
725 => 0.018858123814614
726 => 0.018748975000479
727 => 0.018585345411673
728 => 0.01845500656272
729 => 0.018718271309894
730 => 0.018706548545119
731 => 0.018854566935172
801 => 0.018847851966003
802 => 0.018798078948682
803 => 0.01874897677803
804 => 0.018943661334406
805 => 0.018887595308708
806 => 0.018831442196987
807 => 0.018718818534817
808 => 0.018734125960987
809 => 0.018570524625137
810 => 0.018494835161284
811 => 0.017356647229365
812 => 0.017052486222592
813 => 0.017148181467091
814 => 0.017179686826306
815 => 0.017047315566365
816 => 0.017237101949733
817 => 0.017207523942919
818 => 0.017322594664878
819 => 0.017250703473588
820 => 0.017253653913155
821 => 0.017465070577922
822 => 0.017526445735134
823 => 0.017495229834818
824 => 0.017517092381381
825 => 0.018020905539327
826 => 0.017949279419305
827 => 0.017911229470605
828 => 0.017921769566433
829 => 0.018050504630164
830 => 0.018086543419335
831 => 0.017933844537217
901 => 0.018005858212766
902 => 0.018312483303355
903 => 0.018419784731584
904 => 0.018762239382883
905 => 0.018616758560365
906 => 0.01888379490636
907 => 0.019704573594548
908 => 0.020360268404238
909 => 0.019757264359513
910 => 0.020961364375278
911 => 0.02189892895544
912 => 0.021862943665258
913 => 0.021699457594447
914 => 0.020632065246377
915 => 0.019649834893759
916 => 0.020471512291428
917 => 0.020473606916094
918 => 0.020403024098924
919 => 0.019964640283437
920 => 0.020387769292397
921 => 0.02042135573655
922 => 0.020402556259181
923 => 0.020066448415692
924 => 0.019553273861797
925 => 0.019653546941262
926 => 0.01981779629094
927 => 0.019506838005995
928 => 0.019407467992328
929 => 0.019592215753653
930 => 0.020187511534369
1001 => 0.020074974315339
1002 => 0.020072035513751
1003 => 0.020553517459972
1004 => 0.020208880296785
1005 => 0.019654811705912
1006 => 0.01951490207945
1007 => 0.019018317159927
1008 => 0.019361310132616
1009 => 0.019373653839085
1010 => 0.019185800093246
1011 => 0.019670055002066
1012 => 0.01966559250783
1013 => 0.020125320471924
1014 => 0.021004147673332
1015 => 0.020744235225416
1016 => 0.020441985326882
1017 => 0.020474848271334
1018 => 0.020835273659305
1019 => 0.020617352242026
1020 => 0.020695718303081
1021 => 0.020835155042886
1022 => 0.020919280690029
1023 => 0.02046274388533
1024 => 0.020356303317475
1025 => 0.020138563271206
1026 => 0.020081758957445
1027 => 0.020259103681836
1028 => 0.02021237961264
1029 => 0.019372616398353
1030 => 0.019284856470062
1031 => 0.01928754794177
1101 => 0.019066871429325
1102 => 0.018730286779413
1103 => 0.019614811142955
1104 => 0.019543771457652
1105 => 0.019465349143113
1106 => 0.019474955429172
1107 => 0.019858897476074
1108 => 0.019636191699333
1109 => 0.020228291507558
1110 => 0.020106573587136
1111 => 0.019981734061339
1112 => 0.019964477436169
1113 => 0.019916424869545
1114 => 0.01975163473902
1115 => 0.019552640754058
1116 => 0.019421247688623
1117 => 0.017915074389486
1118 => 0.018194611392799
1119 => 0.018516193234511
1120 => 0.018627201997611
1121 => 0.018437313826755
1122 => 0.019759132681387
1123 => 0.020000641723492
1124 => 0.019269095081712
1125 => 0.019132252573887
1126 => 0.019768104053418
1127 => 0.019384607881579
1128 => 0.019557296184276
1129 => 0.019184038529296
1130 => 0.019942469267459
1201 => 0.019936691295953
1202 => 0.019641644608873
1203 => 0.019891016048401
1204 => 0.019847681624053
1205 => 0.019514574641007
1206 => 0.019953029352974
1207 => 0.019953246821041
1208 => 0.019669270799594
1209 => 0.019337648976888
1210 => 0.019278362827547
1211 => 0.019233698677991
1212 => 0.019546311541448
1213 => 0.019826599257308
1214 => 0.020348145207307
1215 => 0.020479274250763
1216 => 0.020991079637126
1217 => 0.020686324448899
1218 => 0.020821418476599
1219 => 0.020968082153886
1220 => 0.021038398114155
1221 => 0.020923822030259
1222 => 0.021718866462782
1223 => 0.021785992572419
1224 => 0.021808499376341
1225 => 0.021540414866961
1226 => 0.021778536657251
1227 => 0.02166712735734
1228 => 0.021956983405315
1229 => 0.022002436534706
1230 => 0.021963939351154
1231 => 0.021978366891851
]
'min_raw' => 0.0098558256795942
'max_raw' => 0.022002436534706
'avg_raw' => 0.01592913110715
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.009855'
'max' => '$0.0220024'
'avg' => '$0.015929'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0015197483224674
'max_diff' => -0.0020996146227188
'year' => 2031
]
6 => [
'items' => [
101 => 0.021299936724142
102 => 0.021264756540942
103 => 0.020785072246738
104 => 0.020980547142273
105 => 0.020615116194425
106 => 0.020730998112344
107 => 0.020782077757599
108 => 0.020755396649662
109 => 0.020991598999579
110 => 0.020790778749197
111 => 0.020260781090536
112 => 0.019730639034366
113 => 0.019723983532695
114 => 0.01958440648709
115 => 0.019483517847929
116 => 0.019502952579048
117 => 0.019571443106424
118 => 0.019479537053969
119 => 0.019499149870015
120 => 0.019824853295896
121 => 0.019890170795146
122 => 0.019668196411501
123 => 0.018776937230413
124 => 0.01855821999182
125 => 0.01871542960557
126 => 0.018640293535793
127 => 0.015044171698647
128 => 0.015889027182255
129 => 0.015387042742476
130 => 0.01561838026752
131 => 0.015105984142746
201 => 0.01535052643047
202 => 0.015305368399182
203 => 0.016663871015733
204 => 0.016642659865935
205 => 0.016652812520874
206 => 0.016168199848018
207 => 0.016940200994546
208 => 0.017320516519588
209 => 0.017250130237673
210 => 0.017267844948418
211 => 0.016963447526171
212 => 0.016655759753301
213 => 0.01631448666038
214 => 0.016948529884398
215 => 0.016878035101366
216 => 0.017039724770419
217 => 0.017450947123541
218 => 0.01751150117712
219 => 0.017592886439208
220 => 0.017563715616147
221 => 0.018258682968329
222 => 0.018174517836438
223 => 0.018377331588335
224 => 0.017960128313166
225 => 0.017488023206013
226 => 0.017577754952604
227 => 0.01756911306383
228 => 0.017459091901041
229 => 0.017359769714653
301 => 0.01719442625817
302 => 0.017717597420709
303 => 0.017696357626933
304 => 0.018040205199613
305 => 0.017979426801185
306 => 0.017573533781484
307 => 0.017588030330088
308 => 0.017685526586258
309 => 0.018022962242054
310 => 0.018123136119066
311 => 0.018076731587995
312 => 0.018186567671027
313 => 0.018273377632678
314 => 0.018197469665661
315 => 0.019272166402886
316 => 0.018825877389995
317 => 0.019043395549619
318 => 0.019095272348998
319 => 0.01896239101824
320 => 0.018991208220758
321 => 0.019034858430354
322 => 0.019299893955437
323 => 0.019995423861901
324 => 0.020303469322842
325 => 0.021230239290778
326 => 0.020277890435511
327 => 0.020221381995651
328 => 0.020388321252648
329 => 0.02093243333239
330 => 0.021373385067173
331 => 0.021519674196716
401 => 0.021539008720155
402 => 0.021813456852296
403 => 0.021970765403484
404 => 0.021780131630351
405 => 0.02161858946781
406 => 0.021039965492936
407 => 0.021106942793568
408 => 0.021568349976732
409 => 0.022220114799699
410 => 0.022779396822376
411 => 0.022583555750981
412 => 0.024077684883476
413 => 0.024225821683993
414 => 0.024205353967998
415 => 0.024542831645287
416 => 0.023873007182002
417 => 0.02358664424671
418 => 0.021653516716932
419 => 0.022196646701553
420 => 0.022986118031104
421 => 0.022881628540272
422 => 0.022308293358123
423 => 0.022778961896228
424 => 0.022623344158365
425 => 0.022500601991926
426 => 0.023062907651122
427 => 0.022444629480592
428 => 0.022979950233395
429 => 0.022293395830742
430 => 0.022584450336499
501 => 0.022419233722309
502 => 0.022526149119876
503 => 0.021901123890336
504 => 0.022238372332566
505 => 0.02188709324637
506 => 0.021886926694345
507 => 0.021879172189047
508 => 0.022292450476148
509 => 0.022305927466253
510 => 0.022000514187657
511 => 0.021956499362759
512 => 0.02211924523951
513 => 0.021928712441048
514 => 0.022017861538249
515 => 0.021931412676384
516 => 0.021911951216687
517 => 0.021756878994724
518 => 0.021690069617702
519 => 0.021716267295898
520 => 0.021626841114388
521 => 0.021572958605341
522 => 0.021868453601795
523 => 0.021710582545424
524 => 0.021844257598216
525 => 0.021691918004423
526 => 0.021163842601132
527 => 0.020860140852404
528 => 0.019862655368203
529 => 0.020145541014146
530 => 0.020333094490072
531 => 0.020271108067397
601 => 0.020404278888864
602 => 0.020412454495733
603 => 0.020369159304158
604 => 0.020319029018772
605 => 0.020294628368225
606 => 0.020476490826326
607 => 0.020582068104462
608 => 0.020351917990523
609 => 0.020297997038969
610 => 0.020530691511098
611 => 0.020672635004673
612 => 0.021720666010075
613 => 0.0216430244881
614 => 0.02183788947188
615 => 0.021815950665153
616 => 0.02202020021258
617 => 0.022354061900326
618 => 0.021675227739944
619 => 0.021793049877867
620 => 0.021764162610559
621 => 0.022079546220382
622 => 0.022080530813586
623 => 0.021891442584918
624 => 0.021993950381285
625 => 0.021936733341507
626 => 0.022040132265733
627 => 0.021641987538238
628 => 0.022126884839259
629 => 0.022401790362846
630 => 0.022405607426308
701 => 0.022535910462703
702 => 0.022668305894324
703 => 0.022922427396107
704 => 0.022661218583564
705 => 0.022191329357963
706 => 0.022225253842318
707 => 0.021949757961275
708 => 0.021954389096807
709 => 0.021929667732385
710 => 0.022003858407954
711 => 0.021658268219422
712 => 0.021739377545914
713 => 0.021625824013849
714 => 0.021792803034665
715 => 0.021613161210888
716 => 0.021764148680244
717 => 0.021829309866704
718 => 0.022069756047561
719 => 0.021577647114474
720 => 0.020574203687064
721 => 0.020785139661081
722 => 0.020473148786847
723 => 0.02050202473009
724 => 0.020560358731014
725 => 0.020371279148322
726 => 0.020407349574117
727 => 0.020406060884684
728 => 0.020394955655356
729 => 0.020345768753298
730 => 0.020274438013981
731 => 0.020558597724974
801 => 0.020606881997087
802 => 0.020714211952839
803 => 0.021033553098551
804 => 0.021001643387511
805 => 0.021053689450138
806 => 0.02094007318765
807 => 0.020507295062648
808 => 0.020530796996994
809 => 0.020237727499106
810 => 0.020706717506868
811 => 0.020595654482664
812 => 0.020524051428452
813 => 0.020504513871713
814 => 0.020824646602358
815 => 0.020920435332832
816 => 0.020860746224143
817 => 0.020738322120812
818 => 0.020973412590645
819 => 0.021036312882701
820 => 0.021050393938419
821 => 0.021466929176836
822 => 0.021073673631117
823 => 0.021168334149596
824 => 0.021906848492728
825 => 0.02123711789152
826 => 0.021591889127755
827 => 0.021574524921882
828 => 0.021756013881535
829 => 0.021559637529924
830 => 0.021562071850157
831 => 0.021723221751203
901 => 0.021496915778722
902 => 0.021440879237388
903 => 0.021363465156876
904 => 0.021532495969537
905 => 0.02163382229712
906 => 0.022450438081458
907 => 0.022978009120344
908 => 0.022955105870176
909 => 0.023164398703621
910 => 0.023070110365251
911 => 0.022765628448649
912 => 0.023285341952675
913 => 0.023120882854265
914 => 0.02313444066252
915 => 0.023133936040219
916 => 0.023243286963398
917 => 0.023165801812461
918 => 0.023013070626276
919 => 0.023114460715332
920 => 0.023415553032206
921 => 0.024350152822426
922 => 0.024873167246833
923 => 0.02431866669736
924 => 0.024701153751328
925 => 0.02447179781302
926 => 0.024430117016281
927 => 0.024670347151744
928 => 0.024910997778258
929 => 0.024895669373711
930 => 0.024720969376408
1001 => 0.02462228578078
1002 => 0.025369551028305
1003 => 0.025920123333351
1004 => 0.02588257799323
1005 => 0.026048290914124
1006 => 0.026534829175174
1007 => 0.026579312136269
1008 => 0.0265737083056
1009 => 0.02646345264521
1010 => 0.026942512748191
1011 => 0.027342153114359
1012 => 0.026437931645422
1013 => 0.026782247343665
1014 => 0.026936821753765
1015 => 0.027163782847953
1016 => 0.027546704256944
1017 => 0.027962658471996
1018 => 0.02802147895871
1019 => 0.027979743008567
1020 => 0.027705410022291
1021 => 0.028160552087766
1022 => 0.028427163635327
1023 => 0.028585924710603
1024 => 0.028988516382178
1025 => 0.026937776352699
1026 => 0.02548616063144
1027 => 0.025259469874981
1028 => 0.025720454442415
1029 => 0.025842012396565
1030 => 0.025793012537668
1031 => 0.024159087068264
1101 => 0.025250867595533
1102 => 0.02642553164336
1103 => 0.026470655273407
1104 => 0.027058716656817
1105 => 0.027250213548705
1106 => 0.027723680041317
1107 => 0.027694064583293
1108 => 0.027809346139747
1109 => 0.027782844906317
1110 => 0.028659841883748
1111 => 0.029627299785166
1112 => 0.029593799794367
1113 => 0.029454716274596
1114 => 0.029661279018721
1115 => 0.030659799252073
1116 => 0.030567871509947
1117 => 0.030657171481036
1118 => 0.031834483110294
1119 => 0.033365155698955
1120 => 0.032654004604506
1121 => 0.034196997851244
1122 => 0.035168230309508
1123 => 0.036847876418765
1124 => 0.036637576453455
1125 => 0.037291450357976
1126 => 0.036261095624622
1127 => 0.033895192887792
1128 => 0.033520779723377
1129 => 0.034270364360188
1130 => 0.036113145046387
1201 => 0.03421232863848
1202 => 0.034596861322171
1203 => 0.034486115883399
1204 => 0.034480214729604
1205 => 0.034705437768207
1206 => 0.03437874000387
1207 => 0.033047714540154
1208 => 0.033657715666393
1209 => 0.033422164936892
1210 => 0.033683526032743
1211 => 0.035093984073538
1212 => 0.034470386952582
1213 => 0.033813478042572
1214 => 0.034637387595482
1215 => 0.035686507582375
1216 => 0.035620855539045
1217 => 0.03549346313456
1218 => 0.036211567448594
1219 => 0.037397665390555
1220 => 0.03771826289814
1221 => 0.037954921423911
1222 => 0.037987552636237
1223 => 0.038323674403373
1224 => 0.036516262947889
1225 => 0.03938467134536
1226 => 0.039879966237421
1227 => 0.039786871325583
1228 => 0.040337370752913
1229 => 0.04017539985657
1230 => 0.039940729440224
1231 => 0.040813388127129
]
'min_raw' => 0.015044171698647
'max_raw' => 0.040813388127129
'avg_raw' => 0.027928779912888
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.015044'
'max' => '$0.040813'
'avg' => '$0.027928'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0051883460190524
'max_diff' => 0.018810951592423
'year' => 2032
]
7 => [
'items' => [
101 => 0.039812955362518
102 => 0.038392967004135
103 => 0.037613933306541
104 => 0.038639827722389
105 => 0.039266305643365
106 => 0.039680367697652
107 => 0.039805662625096
108 => 0.036656567154137
109 => 0.034959379352133
110 => 0.03604725727492
111 => 0.037374543422044
112 => 0.036508889806325
113 => 0.036542821789162
114 => 0.035308627222915
115 => 0.037483742255359
116 => 0.037166846290729
117 => 0.03881090311581
118 => 0.038418535760124
119 => 0.039759200279059
120 => 0.039406158380662
121 => 0.040871615562599
122 => 0.041456226108142
123 => 0.042437878201476
124 => 0.043159985477375
125 => 0.043584020681495
126 => 0.043558563198355
127 => 0.045238801930575
128 => 0.044248023853255
129 => 0.043003373079678
130 => 0.042980861274006
131 => 0.04362548354648
201 => 0.044976434986101
202 => 0.045326717038851
203 => 0.045522476919981
204 => 0.045222663847579
205 => 0.044147245254353
206 => 0.043682884958294
207 => 0.044078533384349
208 => 0.04359468935774
209 => 0.044429939890324
210 => 0.045576917271447
211 => 0.045340070977885
212 => 0.046131812627282
213 => 0.046951181940757
214 => 0.048122916859205
215 => 0.048429251756106
216 => 0.04893561169181
217 => 0.049456822396223
218 => 0.049624221227458
219 => 0.049943837537093
220 => 0.049942153001374
221 => 0.050905338263117
222 => 0.051967761434185
223 => 0.05236880158611
224 => 0.053290971301978
225 => 0.051711787980234
226 => 0.052909616670127
227 => 0.053990088132008
228 => 0.052701905512544
301 => 0.054477365145419
302 => 0.054546302219685
303 => 0.055587170195245
304 => 0.054532051095839
305 => 0.053905524742672
306 => 0.055714282848631
307 => 0.056589483920758
308 => 0.05632586623521
309 => 0.054319722631786
310 => 0.053152061007046
311 => 0.050096065309994
312 => 0.053716024222341
313 => 0.055479200612896
314 => 0.054315156430886
315 => 0.054902232607886
316 => 0.058105129869504
317 => 0.059324585774488
318 => 0.059070947470892
319 => 0.059113808168958
320 => 0.059771804440597
321 => 0.06268972227421
322 => 0.060941238271503
323 => 0.062277888777127
324 => 0.062986843385658
325 => 0.063645359936531
326 => 0.06202825141388
327 => 0.059924416985953
328 => 0.059258044309667
329 => 0.054199415177789
330 => 0.053936091562962
331 => 0.053788280038437
401 => 0.052856349284665
402 => 0.052124106989517
403 => 0.051541800730002
404 => 0.050013655213665
405 => 0.050529359466247
406 => 0.048093814461963
407 => 0.049651989845289
408 => 0.045764801210162
409 => 0.04900216741393
410 => 0.047240216174198
411 => 0.048423319044151
412 => 0.048419191309693
413 => 0.046240723823003
414 => 0.044984229240136
415 => 0.045784916491839
416 => 0.046643316784298
417 => 0.046782589343745
418 => 0.047895527729458
419 => 0.04820612491038
420 => 0.04726500095179
421 => 0.045684247865801
422 => 0.046051420754537
423 => 0.044976788493265
424 => 0.043093536790519
425 => 0.044446121041852
426 => 0.044907952774188
427 => 0.045111923977161
428 => 0.04325996222043
429 => 0.042678035628419
430 => 0.04236822279367
501 => 0.045445182858947
502 => 0.045613745677167
503 => 0.044751354466771
504 => 0.048649444513054
505 => 0.047767186681132
506 => 0.048752884837806
507 => 0.046018103663409
508 => 0.046122575987142
509 => 0.044827886752369
510 => 0.045552826212676
511 => 0.045040462368021
512 => 0.045494258268275
513 => 0.045766261659816
514 => 0.047060738448825
515 => 0.049016948259513
516 => 0.046867386783544
517 => 0.045930792066176
518 => 0.046511850161222
519 => 0.04805928443927
520 => 0.050403726582216
521 => 0.049015769647297
522 => 0.049631721365977
523 => 0.049766279414724
524 => 0.048742851355873
525 => 0.050441461834549
526 => 0.051351760989558
527 => 0.052285539562729
528 => 0.053096313333931
529 => 0.051912567866373
530 => 0.053179345199908
531 => 0.052158546285381
601 => 0.051242784130798
602 => 0.051244172963976
603 => 0.050669701987256
604 => 0.04955659208186
605 => 0.049351317537135
606 => 0.050419181642111
607 => 0.051275507527195
608 => 0.051346038628615
609 => 0.05182014463821
610 => 0.052100715691008
611 => 0.05485069342628
612 => 0.055956757220416
613 => 0.057309231091168
614 => 0.057836095885077
615 => 0.059421770023261
616 => 0.058141209374521
617 => 0.057864152023062
618 => 0.054017825233887
619 => 0.054647661030139
620 => 0.055656088910054
621 => 0.0540344538382
622 => 0.05506300804235
623 => 0.055266066430006
624 => 0.053979351298984
625 => 0.054666641446142
626 => 0.052841402582618
627 => 0.049056733478936
628 => 0.050445675253166
629 => 0.051468403911746
630 => 0.050008844014419
701 => 0.052625048637609
702 => 0.051096715906167
703 => 0.050612307803208
704 => 0.04872245908961
705 => 0.049614394935481
706 => 0.050820750938312
707 => 0.0500753631825
708 => 0.051622154696343
709 => 0.053812823994174
710 => 0.05537402539242
711 => 0.055493875050262
712 => 0.05449012714356
713 => 0.056098639569884
714 => 0.056110355826857
715 => 0.054295947238998
716 => 0.053184632081603
717 => 0.052932138939616
718 => 0.053562916312496
719 => 0.054328796491099
720 => 0.05553637606992
721 => 0.056266091118408
722 => 0.058168800953907
723 => 0.058683619680427
724 => 0.059249249377588
725 => 0.060005105086732
726 => 0.060912703662987
727 => 0.058926929647758
728 => 0.059005828151329
729 => 0.057156702883261
730 => 0.055180647342942
731 => 0.056680227179244
801 => 0.058640728334461
802 => 0.058190987203293
803 => 0.058140382138659
804 => 0.058225485820699
805 => 0.05788639569497
806 => 0.056352703623566
807 => 0.055582493066727
808 => 0.056576261186719
809 => 0.057104404714964
810 => 0.057923509268316
811 => 0.057822537342916
812 => 0.059932462706944
813 => 0.060752315902574
814 => 0.060542562371636
815 => 0.060581162069329
816 => 0.062065467118725
817 => 0.063716319604268
818 => 0.065262560806152
819 => 0.066835463769313
820 => 0.064939267855775
821 => 0.063976496511986
822 => 0.064969830783904
823 => 0.064442753637032
824 => 0.067471495264196
825 => 0.067681198763093
826 => 0.070709721377764
827 => 0.073584149968851
828 => 0.071778772871526
829 => 0.073481162158333
830 => 0.075322434969849
831 => 0.078874548959012
901 => 0.077678321932339
902 => 0.076762030777175
903 => 0.075896140063031
904 => 0.077697921182884
905 => 0.080015883809418
906 => 0.080515150758004
907 => 0.081324153949366
908 => 0.080473586013852
909 => 0.081498001405193
910 => 0.08511463788756
911 => 0.084137390785091
912 => 0.082749542799275
913 => 0.085604529956643
914 => 0.086637738710413
915 => 0.093889338839996
916 => 0.10304478355225
917 => 0.099254369323488
918 => 0.09690153689579
919 => 0.09745450832623
920 => 0.10079776680379
921 => 0.10187151531706
922 => 0.098952696714678
923 => 0.099983672789519
924 => 0.10566445232523
925 => 0.1087120082849
926 => 0.10457301795029
927 => 0.093153707771823
928 => 0.082624582272925
929 => 0.085417380487934
930 => 0.08510076384097
1001 => 0.091204052760407
1002 => 0.084114083764894
1003 => 0.08423346065954
1004 => 0.090462959130335
1005 => 0.088801035738968
1006 => 0.086108932688019
1007 => 0.082644237604457
1008 => 0.076239428296987
1009 => 0.07056651008204
1010 => 0.081692409096591
1011 => 0.081212640099949
1012 => 0.080517863495029
1013 => 0.082064013646597
1014 => 0.08957167990023
1015 => 0.08939860389314
1016 => 0.088297582640185
1017 => 0.089132697556595
1018 => 0.085962533005451
1019 => 0.086779556593586
1020 => 0.082622914405651
1021 => 0.084501890271309
1022 => 0.086103156643956
1023 => 0.086424634575419
1024 => 0.087148940770075
1025 => 0.08095982363959
1026 => 0.083738555528246
1027 => 0.085370800180863
1028 => 0.07799625945877
1029 => 0.085225029221743
1030 => 0.080852084879891
1031 => 0.079367841890847
1101 => 0.081366179541451
1102 => 0.080587425415563
1103 => 0.079917898348102
1104 => 0.079544290740523
1105 => 0.081011649362648
1106 => 0.080943195329053
1107 => 0.078542311821221
1108 => 0.075410457157785
1109 => 0.076461610382459
1110 => 0.076079716561321
1111 => 0.074695684088233
1112 => 0.075628354866376
1113 => 0.071521344773313
1114 => 0.064455447372006
1115 => 0.0691233956296
1116 => 0.068943684699433
1117 => 0.068853066299202
1118 => 0.07236090040217
1119 => 0.072023703092671
1120 => 0.071411686674086
1121 => 0.074684443926757
1122 => 0.073489843504735
1123 => 0.077171320522148
1124 => 0.079596179388821
1125 => 0.078981156744266
1126 => 0.081261748228731
1127 => 0.076485826829725
1128 => 0.078072196341766
1129 => 0.078399144899585
1130 => 0.074644058610276
1201 => 0.072078872742695
1202 => 0.071907804090587
1203 => 0.067460125300589
1204 => 0.069836039409797
1205 => 0.071926745503894
1206 => 0.070925459530169
1207 => 0.070608482303455
1208 => 0.072227850210763
1209 => 0.07235368896611
1210 => 0.069484552008425
1211 => 0.070081136435679
1212 => 0.072568992671234
1213 => 0.070018448841724
1214 => 0.065063158809955
1215 => 0.063834178369832
1216 => 0.063670209724516
1217 => 0.060337117299233
1218 => 0.06391630471944
1219 => 0.06235389349426
1220 => 0.067289531834041
1221 => 0.064470321684718
1222 => 0.064348791169864
1223 => 0.064165079972013
1224 => 0.061296149633258
1225 => 0.061924263047411
1226 => 0.064012207700428
1227 => 0.064757209875005
1228 => 0.064679500044574
1229 => 0.064001975632555
1230 => 0.064312142838891
1231 => 0.063312986197863
]
'min_raw' => 0.034959379352133
'max_raw' => 0.1087120082849
'avg_raw' => 0.071835693818518
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.034959'
'max' => '$0.108712'
'avg' => '$0.071835'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.019915207653486
'max_diff' => 0.067898620157775
'year' => 2033
]
8 => [
'items' => [
101 => 0.06296016319227
102 => 0.061846556735002
103 => 0.060209862884454
104 => 0.0604374552028
105 => 0.057194736420623
106 => 0.055427931123982
107 => 0.054938902703991
108 => 0.054284953462874
109 => 0.055012768010867
110 => 0.057185550205739
111 => 0.054564713897266
112 => 0.050071473876681
113 => 0.050341525258027
114 => 0.050948250532936
115 => 0.049817621997032
116 => 0.04874757697426
117 => 0.049677894306064
118 => 0.047774049276005
119 => 0.051178321109091
120 => 0.051086245096368
121 => 0.052355147116984
122 => 0.053148617590966
123 => 0.051319925037554
124 => 0.050860013805681
125 => 0.051122000145156
126 => 0.04679194953542
127 => 0.052001289603319
128 => 0.052046340192549
129 => 0.051660589696558
130 => 0.054434402462383
131 => 0.060288012572173
201 => 0.058085648987949
202 => 0.057232827241346
203 => 0.055611612477644
204 => 0.057771784892069
205 => 0.05760591735458
206 => 0.056855801446661
207 => 0.056402129005047
208 => 0.057238034389077
209 => 0.05629855107741
210 => 0.05612979405936
211 => 0.055107310139422
212 => 0.054742329900059
213 => 0.054472113061116
214 => 0.054174630872398
215 => 0.054830802452767
216 => 0.053343831325091
217 => 0.05155068991469
218 => 0.051401609608474
219 => 0.051813233441211
220 => 0.051631120537015
221 => 0.051400737721953
222 => 0.050960874186973
223 => 0.050830376072341
224 => 0.051254431636208
225 => 0.050775697628578
226 => 0.051482095734827
227 => 0.051289994536718
228 => 0.050216932859908
301 => 0.048879500712288
302 => 0.048867594760815
303 => 0.048579447198439
304 => 0.048212447954476
305 => 0.048110357160611
306 => 0.049599545575245
307 => 0.05268212102588
308 => 0.052076937705141
309 => 0.052514244676056
310 => 0.05466536215434
311 => 0.055349137714327
312 => 0.05486381001796
313 => 0.054199463533464
314 => 0.054228691407166
315 => 0.056498964456045
316 => 0.05664055860133
317 => 0.056998321326463
318 => 0.057458147531993
319 => 0.054942120409106
320 => 0.054110186755941
321 => 0.053715970437149
322 => 0.052501936756187
323 => 0.053811167997723
324 => 0.053048335020151
325 => 0.053151267250911
326 => 0.053084232500595
327 => 0.053120838007138
328 => 0.051177369545734
329 => 0.051885467307375
330 => 0.050708117440828
331 => 0.049131778133248
401 => 0.049126493691153
402 => 0.049512300503485
403 => 0.049282807514888
404 => 0.048665247783377
405 => 0.048752969228438
406 => 0.047984437064859
407 => 0.048846282947821
408 => 0.048870997603911
409 => 0.048539139993908
410 => 0.049866932488425
411 => 0.050410930156804
412 => 0.050192494368822
413 => 0.050395604119614
414 => 0.052102085804357
415 => 0.052380316777986
416 => 0.052503888597565
417 => 0.052338318729457
418 => 0.050426795472179
419 => 0.050511579657064
420 => 0.049889489563569
421 => 0.049363888988806
422 => 0.049384910255384
423 => 0.049655137274105
424 => 0.050835234513462
425 => 0.053318679583159
426 => 0.053412924508179
427 => 0.053527152106622
428 => 0.053062531057563
429 => 0.052922396903343
430 => 0.053107270024454
501 => 0.054039921419293
502 => 0.056438954019204
503 => 0.055590975672396
504 => 0.054901556076871
505 => 0.055506362928335
506 => 0.055413257654185
507 => 0.054627355442522
508 => 0.05460529778497
509 => 0.053096900172654
510 => 0.052539279919933
511 => 0.052073290699606
512 => 0.051564442635966
513 => 0.051262780447099
514 => 0.051726270672212
515 => 0.051832276370551
516 => 0.050818846892918
517 => 0.050680720199868
518 => 0.051508308587697
519 => 0.051144117793818
520 => 0.05151869705682
521 => 0.051605602658917
522 => 0.051591608855374
523 => 0.051211351839518
524 => 0.051453716321997
525 => 0.050880452068605
526 => 0.050257113294547
527 => 0.049859461992077
528 => 0.04951245848988
529 => 0.04970499620086
530 => 0.049018634417211
531 => 0.048799053468888
601 => 0.051371608688707
602 => 0.053271982889216
603 => 0.05324435069571
604 => 0.053076146824164
605 => 0.052826229989956
606 => 0.054021638446235
607 => 0.053605182043014
608 => 0.053908188872454
609 => 0.053985316827703
610 => 0.054218759918789
611 => 0.05430219575874
612 => 0.05404999470049
613 => 0.05320357714524
614 => 0.051094385072523
615 => 0.050112550469018
616 => 0.049788528696112
617 => 0.049800306272152
618 => 0.04947542814755
619 => 0.049571119315262
620 => 0.04944215066455
621 => 0.04919791524097
622 => 0.049689915351692
623 => 0.049746613781154
624 => 0.049631775076348
625 => 0.049658823748552
626 => 0.048708008321011
627 => 0.048780296752905
628 => 0.048377785578153
629 => 0.048302319585231
630 => 0.047284806386116
701 => 0.045482134262986
702 => 0.046480989608817
703 => 0.045274512811369
704 => 0.044817601767069
705 => 0.04698054758654
706 => 0.046763447817043
707 => 0.046391867382667
708 => 0.045842222476076
709 => 0.045638353833619
710 => 0.044399712499023
711 => 0.04432652696108
712 => 0.044940431052636
713 => 0.044657135437533
714 => 0.044259281101489
715 => 0.042818293026186
716 => 0.041198145334789
717 => 0.041247047409707
718 => 0.041762386246421
719 => 0.043260803417077
720 => 0.042675345905622
721 => 0.04225058976371
722 => 0.042171045706452
723 => 0.043166706119792
724 => 0.044575774201973
725 => 0.045236877420011
726 => 0.044581744208938
727 => 0.043829162450936
728 => 0.043874968615417
729 => 0.04417969650619
730 => 0.044211719098889
731 => 0.043721865741084
801 => 0.043859756591974
802 => 0.043650287780469
803 => 0.042364778070912
804 => 0.042341527276661
805 => 0.042026042462291
806 => 0.042016489707494
807 => 0.041479771336876
808 => 0.041404680726667
809 => 0.040338993825329
810 => 0.041040432170987
811 => 0.040569944155886
812 => 0.039860807740225
813 => 0.039738552354875
814 => 0.039734877210364
815 => 0.040463001749247
816 => 0.041031923611815
817 => 0.040578128496342
818 => 0.040474808144997
819 => 0.041577999189276
820 => 0.041437608073082
821 => 0.041316030271884
822 => 0.044449607610008
823 => 0.041969136630793
824 => 0.040887509703522
825 => 0.039548790985642
826 => 0.03998468455059
827 => 0.040076533729333
828 => 0.036857156535017
829 => 0.03555105560823
830 => 0.035102850989532
831 => 0.034844902894789
901 => 0.034962453080672
902 => 0.033786809056205
903 => 0.034576861284004
904 => 0.033558852933532
905 => 0.033388180520689
906 => 0.035208505558369
907 => 0.035461793153178
908 => 0.034381189583437
909 => 0.035075112009037
910 => 0.034823486091271
911 => 0.033576303764839
912 => 0.033528670573622
913 => 0.032902878322797
914 => 0.031923634627513
915 => 0.031476093982153
916 => 0.031243010928323
917 => 0.031339185539031
918 => 0.031290556712865
919 => 0.030973220728328
920 => 0.031308746040039
921 => 0.030451617517248
922 => 0.030110302033119
923 => 0.029956137747398
924 => 0.029195386848944
925 => 0.030406079835844
926 => 0.030644601606171
927 => 0.030883593338069
928 => 0.032963853197659
929 => 0.032859929293827
930 => 0.033799350771472
1001 => 0.033762846580336
1002 => 0.033494908357292
1003 => 0.032364521067971
1004 => 0.032815073294279
1005 => 0.031428343573066
1006 => 0.032467375768654
1007 => 0.031993204865609
1008 => 0.032307058109361
1009 => 0.031742721678089
1010 => 0.032055048760035
1011 => 0.03070116396649
1012 => 0.029436925395951
1013 => 0.02994569190216
1014 => 0.030498779278918
1015 => 0.03169801363577
1016 => 0.030983759546297
1017 => 0.031240632325809
1018 => 0.030380151514429
1019 => 0.028604733816359
1020 => 0.028614782487721
1021 => 0.02834167315445
1022 => 0.028105666815888
1023 => 0.031065800220525
1024 => 0.030697660838874
1025 => 0.030111078915105
1026 => 0.030896242129909
1027 => 0.031103851746119
1028 => 0.031109762100028
1029 => 0.031682596913554
1030 => 0.031988318956219
1031 => 0.032042203791313
1101 => 0.032943571747311
1102 => 0.033245698396831
1103 => 0.034490115307638
1104 => 0.03196238057686
1105 => 0.031910323543501
1106 => 0.03090729098651
1107 => 0.030271151881549
1108 => 0.030950847975268
1109 => 0.031552965926533
1110 => 0.030926000469653
1111 => 0.031007868922359
1112 => 0.030166219021458
1113 => 0.030467069257721
1114 => 0.030726202010095
1115 => 0.030583124135353
1116 => 0.030368929631818
1117 => 0.031503599120992
1118 => 0.031439576621607
1119 => 0.032496206935864
1120 => 0.033319925826187
1121 => 0.034796177335009
1122 => 0.033255631926821
1123 => 0.033199488329034
1124 => 0.033748301003125
1125 => 0.03324561437647
1126 => 0.033563294972363
1127 => 0.034744994079687
1128 => 0.034769961519728
1129 => 0.034351724730317
1130 => 0.034326274983672
1201 => 0.034406601934088
1202 => 0.034877079391638
1203 => 0.034712680111658
1204 => 0.034902927120531
1205 => 0.035140833918293
1206 => 0.036124917304229
1207 => 0.036362176476979
1208 => 0.035785759691973
1209 => 0.035837803673794
1210 => 0.035622207973207
1211 => 0.035413945227846
1212 => 0.035882089465086
1213 => 0.036737632260039
1214 => 0.036732309972714
1215 => 0.036930779271768
1216 => 0.03705442400087
1217 => 0.036523650310091
1218 => 0.036178136154483
1219 => 0.03631062826738
1220 => 0.036522486041205
1221 => 0.036241925646676
1222 => 0.034510176923427
1223 => 0.035035478861524
1224 => 0.034948042933072
1225 => 0.034823523538385
1226 => 0.035351718699181
1227 => 0.035300772987382
1228 => 0.033774751127486
1229 => 0.033872442095791
1230 => 0.033780692038831
1231 => 0.034077155243163
]
'min_raw' => 0.028105666815888
'max_raw' => 0.06296016319227
'avg_raw' => 0.045532915004079
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0281056'
'max' => '$0.06296'
'avg' => '$0.045532'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0068537125362445
'max_diff' => -0.045751845092634
'year' => 2034
]
9 => [
'items' => [
101 => 0.033229604390527
102 => 0.033490305324455
103 => 0.033653814506296
104 => 0.033750122670537
105 => 0.034098053798902
106 => 0.034057228096794
107 => 0.034095516015937
108 => 0.034611406028889
109 => 0.037220600682328
110 => 0.037362613390451
111 => 0.036663290876945
112 => 0.036942656427564
113 => 0.036406335660905
114 => 0.0367663713846
115 => 0.037012698682836
116 => 0.035899592988122
117 => 0.035833682092878
118 => 0.035295147739635
119 => 0.035584525596923
120 => 0.035124104618974
121 => 0.03523707582212
122 => 0.03492119848947
123 => 0.035489714797691
124 => 0.036125404368785
125 => 0.036286004658585
126 => 0.035863534438893
127 => 0.035557638157691
128 => 0.035020585056401
129 => 0.035913716332856
130 => 0.036174895135774
131 => 0.035912344471791
201 => 0.035851505746101
202 => 0.035736216470852
203 => 0.035875964910853
204 => 0.036173472699922
205 => 0.036033173520703
206 => 0.036125843600331
207 => 0.035772680817762
208 => 0.036523826018268
209 => 0.037716825369607
210 => 0.037720661057597
211 => 0.037580361122113
212 => 0.037522953411318
213 => 0.037666909659236
214 => 0.037745000018337
215 => 0.038210528127043
216 => 0.038710058335143
217 => 0.04104114785424
218 => 0.040386587245283
219 => 0.042454868543762
220 => 0.044090610518144
221 => 0.044581098013934
222 => 0.044129872597028
223 => 0.042586254820508
224 => 0.042510517568175
225 => 0.04481733422491
226 => 0.044165552860486
227 => 0.044088025541139
228 => 0.043263265847759
301 => 0.043750800975021
302 => 0.04364416989098
303 => 0.04347584750825
304 => 0.044406030569076
305 => 0.046147250220929
306 => 0.045875864809133
307 => 0.045673288188434
308 => 0.044785656405701
309 => 0.045320208998643
310 => 0.045129865058977
311 => 0.045947703419031
312 => 0.045463234091873
313 => 0.044160614975606
314 => 0.04436806136336
315 => 0.044336706259175
316 => 0.044981992081453
317 => 0.044788293294584
318 => 0.044298883462284
319 => 0.046141298921453
320 => 0.046021662709588
321 => 0.046191279505367
322 => 0.046265950064443
323 => 0.047387395887437
324 => 0.047846816358854
325 => 0.047951112849153
326 => 0.048387526764145
327 => 0.047940254473384
328 => 0.049729662536165
329 => 0.05091951448306
330 => 0.052301588748599
331 => 0.054321170717093
401 => 0.055080552219424
402 => 0.054943376747988
403 => 0.05647460074733
404 => 0.05922617623695
405 => 0.055499548824995
406 => 0.059423696538742
407 => 0.058181356679034
408 => 0.055235791220405
409 => 0.055046131530804
410 => 0.057040902658106
411 => 0.061465113028856
412 => 0.060356898509962
413 => 0.061466925670801
414 => 0.060172020025118
415 => 0.060107717045488
416 => 0.061404034993874
417 => 0.064432952538892
418 => 0.062994027350531
419 => 0.060930975254083
420 => 0.062454300817454
421 => 0.061134655237336
422 => 0.05816112439979
423 => 0.060356051079205
424 => 0.058888366116593
425 => 0.059316714615107
426 => 0.062401570104855
427 => 0.062030392130813
428 => 0.062510730799378
429 => 0.061662945622013
430 => 0.060870980582902
501 => 0.059392719025305
502 => 0.058955078655515
503 => 0.059076026709074
504 => 0.058955018719666
505 => 0.058127944964116
506 => 0.057949338465351
507 => 0.05765165314248
508 => 0.057743918271653
509 => 0.057184182773741
510 => 0.058240519305555
511 => 0.058436584674265
512 => 0.059205298310963
513 => 0.059285108710834
514 => 0.061425965247083
515 => 0.06024681744255
516 => 0.061037891592554
517 => 0.060967130474699
518 => 0.055299630555629
519 => 0.056080562039701
520 => 0.057295446359119
521 => 0.056748142619958
522 => 0.055974383182136
523 => 0.055349530949739
524 => 0.054402815923236
525 => 0.055735299142987
526 => 0.057487372883168
527 => 0.059329544192247
528 => 0.06154279231626
529 => 0.061048821100029
530 => 0.059288169058072
531 => 0.059367150622517
601 => 0.059855383575816
602 => 0.059223077540652
603 => 0.059036598146802
604 => 0.059829764170687
605 => 0.059835226269177
606 => 0.059107681758984
607 => 0.058299149175144
608 => 0.058295761394096
609 => 0.0581518908303
610 => 0.060197614278807
611 => 0.061322555329516
612 => 0.061451528008046
613 => 0.06131387444065
614 => 0.061366851835466
615 => 0.060712273424443
616 => 0.062208445562844
617 => 0.063581481073129
618 => 0.063213478225748
619 => 0.062661789642835
620 => 0.062222343113623
621 => 0.063109958589277
622 => 0.063070434469382
623 => 0.063569488805757
624 => 0.063546848818381
625 => 0.063379035615442
626 => 0.063213484218886
627 => 0.063869876793149
628 => 0.063680846273103
629 => 0.063491522136448
630 => 0.063111803596312
701 => 0.063163413652373
702 => 0.062611820326273
703 => 0.062356628014426
704 => 0.058519147936214
705 => 0.057493647866037
706 => 0.057816291064094
707 => 0.057922513582321
708 => 0.057476214637566
709 => 0.058116092679553
710 => 0.058016368364507
711 => 0.058404337337575
712 => 0.058161951166857
713 => 0.058171898779851
714 => 0.058884704825752
715 => 0.05909163545337
716 => 0.058986388866028
717 => 0.059060099968161
718 => 0.060758741205288
719 => 0.060517248740858
720 => 0.060388960682252
721 => 0.060424497351222
722 => 0.060858536606587
723 => 0.060980043900425
724 => 0.060465208958269
725 => 0.060708008093215
726 => 0.061741815994016
727 => 0.062103590250837
728 => 0.063258200017113
729 => 0.062767701266847
730 => 0.06366803295125
731 => 0.066435345603414
801 => 0.068646066433433
802 => 0.066612996196245
803 => 0.070672703466976
804 => 0.07383376790766
805 => 0.073712440989398
806 => 0.073161236287427
807 => 0.069562448462955
808 => 0.066250790251971
809 => 0.069021132965894
810 => 0.069028195139198
811 => 0.068790220243177
812 => 0.06731217860228
813 => 0.068738787597914
814 => 0.068852026639305
815 => 0.068788642888818
816 => 0.067655431828194
817 => 0.065925227991034
818 => 0.066263305679292
819 => 0.066817083829257
820 => 0.065768666261149
821 => 0.065433633322278
822 => 0.066056523298264
823 => 0.068063604585172
824 => 0.067684177494112
825 => 0.067674269119379
826 => 0.06929761911706
827 => 0.068135650859577
828 => 0.066267569921616
829 => 0.06579585484782
830 => 0.064121584121195
831 => 0.065278008875623
901 => 0.065319626543791
902 => 0.064686264524166
903 => 0.066318963758851
904 => 0.066303918147972
905 => 0.067853923076095
906 => 0.0708169503434
907 => 0.069940637378741
908 => 0.068921580743423
909 => 0.069032380455057
910 => 0.070247579814699
911 => 0.069512842541557
912 => 0.069777059187749
913 => 0.07024717989116
914 => 0.070530815383969
915 => 0.068991569672545
916 => 0.068632697866578
917 => 0.067898572098459
918 => 0.067707052388663
919 => 0.06830498250876
920 => 0.068147449047297
921 => 0.065316128739933
922 => 0.065020240014496
923 => 0.065029314499274
924 => 0.06428528823042
925 => 0.063150469583654
926 => 0.066132705230855
927 => 0.065893189972024
928 => 0.065628783663283
929 => 0.065661171927422
930 => 0.066955659344528
1001 => 0.066204791269425
1002 => 0.068201097111944
1003 => 0.067790716645168
1004 => 0.067369811467928
1005 => 0.067311629551348
1006 => 0.067149616968052
1007 => 0.066594015537705
1008 => 0.065923093424091
1009 => 0.065480092530405
1010 => 0.060401924094703
1011 => 0.061344402618022
1012 => 0.062428638249481
1013 => 0.062802912044659
1014 => 0.062162690819049
1015 => 0.066619295373886
1016 => 0.067433559970965
1017 => 0.064967099393248
1018 => 0.064505725324079
1019 => 0.066649542981051
1020 => 0.065356558862847
1021 => 0.065938789532103
1022 => 0.064680325288319
1023 => 0.06723742747398
1024 => 0.067217946639643
1025 => 0.066223176134649
1026 => 0.067063949353575
1027 => 0.066917844316374
1028 => 0.065794750866247
1029 => 0.067273031539574
1030 => 0.067273764748345
1031 => 0.066316319765464
1101 => 0.065198233637116
1102 => 0.064998346245384
1103 => 0.064847757946806
1104 => 0.065901754041884
1105 => 0.066846763644971
1106 => 0.068605192228567
1107 => 0.069047302953716
1108 => 0.070772890546949
1109 => 0.069745387152514
1110 => 0.070200866098871
1111 => 0.070695352926572
1112 => 0.070932428095922
1113 => 0.07054612682962
1114 => 0.073226674642101
1115 => 0.073452995007337
1116 => 0.073528878268138
1117 => 0.072625012627701
1118 => 0.073427856868796
1119 => 0.073052232635794
1120 => 0.074029502538647
1121 => 0.074182750937823
1122 => 0.074052954995691
1123 => 0.074101598456451
1124 => 0.071814223779536
1125 => 0.071695611335675
1126 => 0.07007832224728
1127 => 0.070737379505198
1128 => 0.069505303550956
1129 => 0.069896007527835
1130 => 0.070068226118079
1201 => 0.069978268899854
1202 => 0.070774641613719
1203 => 0.070097562118737
1204 => 0.068310638009304
1205 => 0.066523227053592
1206 => 0.066500787565036
1207 => 0.066030193810821
1208 => 0.065690040720069
1209 => 0.065755566272927
1210 => 0.065986486867831
1211 => 0.065676619195303
1212 => 0.065742745173926
1213 => 0.066840877014171
1214 => 0.067061099523214
1215 => 0.066312697390997
1216 => 0.063307754836232
1217 => 0.062570334395965
1218 => 0.063100377584746
1219 => 0.062847051079662
1220 => 0.050722475232513
1221 => 0.053570964481425
1222 => 0.051878488895277
1223 => 0.052658459512431
1224 => 0.050930880203402
1225 => 0.05175537159986
1226 => 0.051603118144539
1227 => 0.056183404563865
1228 => 0.056111889691405
1229 => 0.056146120076369
1230 => 0.054512214615259
1231 => 0.057115070380175
]
'min_raw' => 0.033229604390527
'max_raw' => 0.074182750937823
'avg_raw' => 0.053706177664175
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.033229'
'max' => '$0.074182'
'avg' => '$0.0537061'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0051239375746384
'max_diff' => 0.011222587745553
'year' => 2035
]
10 => [
'items' => [
101 => 0.058397330725638
102 => 0.058160018461947
103 => 0.058219744846026
104 => 0.05719344768457
105 => 0.056156056876266
106 => 0.055005430816557
107 => 0.057143151813818
108 => 0.056905473731037
109 => 0.057450621739062
110 => 0.058837086613238
111 => 0.059041248832628
112 => 0.059315644925898
113 => 0.059217293459305
114 => 0.061560424408259
115 => 0.061276655789865
116 => 0.061960456514391
117 => 0.060553826543954
118 => 0.058962091213862
119 => 0.059264628062364
120 => 0.059235491331006
121 => 0.05886454729923
122 => 0.05852967561337
123 => 0.057972208605927
124 => 0.059736116707071
125 => 0.059664505259439
126 => 0.0608238113574
127 => 0.060618892743687
128 => 0.059250396089219
129 => 0.059299272214957
130 => 0.059627987649604
131 => 0.060765675522125
201 => 0.061103418742387
202 => 0.060946962626021
203 => 0.061317282648474
204 => 0.061609968495057
205 => 0.061354039484535
206 => 0.06497745456702
207 => 0.063472760001154
208 => 0.064206137662959
209 => 0.064381043913988
210 => 0.063933025229861
211 => 0.064030184440101
212 => 0.064177354169316
213 => 0.065070939946322
214 => 0.067415967586314
215 => 0.068454564364923
216 => 0.071579234016831
217 => 0.068368323360425
218 => 0.068177801210143
219 => 0.068740648570435
220 => 0.070575160435979
221 => 0.072061859996065
222 => 0.0725550840099
223 => 0.07262027170557
224 => 0.073545592744438
225 => 0.074075969507701
226 => 0.07343323443196
227 => 0.072888583752437
228 => 0.070937712622915
229 => 0.071163531268203
301 => 0.07271919780066
302 => 0.074916668406059
303 => 0.076802326793339
304 => 0.076142034947943
305 => 0.081179595634917
306 => 0.08167904920044
307 => 0.081610040866952
308 => 0.08274787041787
309 => 0.080489510474256
310 => 0.079524017844698
311 => 0.073006343411397
312 => 0.074837544074669
313 => 0.077499301781379
314 => 0.077147008167817
315 => 0.075213968572217
316 => 0.076800860409466
317 => 0.076276184341376
318 => 0.075862350557643
319 => 0.077758203346549
320 => 0.075673635327806
321 => 0.077478506620781
322 => 0.075163740518538
323 => 0.076145051105474
324 => 0.075588011755677
325 => 0.075948484483171
326 => 0.073841168283909
327 => 0.074978224952822
328 => 0.073793862988187
329 => 0.073793301446407
330 => 0.073767156590395
331 => 0.075160553189522
401 => 0.075205991802595
402 => 0.074176269610535
403 => 0.074027870555375
404 => 0.074576579641394
405 => 0.073934185008803
406 => 0.074234757414209
407 => 0.073943289040765
408 => 0.073877673370639
409 => 0.073354836547494
410 => 0.073129584068385
411 => 0.073217911369485
412 => 0.072916404754986
413 => 0.07273473611378
414 => 0.073731018125126
415 => 0.073198744836365
416 => 0.073649439609749
417 => 0.073135816033263
418 => 0.071355372942021
419 => 0.070331421292404
420 => 0.06696832934021
421 => 0.06792209804595
422 => 0.0685544476846
423 => 0.068345456132798
424 => 0.068794450855063
425 => 0.068822015484426
426 => 0.068676042723258
427 => 0.068507024966095
428 => 0.068424756469176
429 => 0.069037918443894
430 => 0.069393879608301
501 => 0.068617912430586
502 => 0.068436114177781
503 => 0.069220659836774
504 => 0.069699232235542
505 => 0.073232741941442
506 => 0.072970968129343
507 => 0.073627969027196
508 => 0.073554000808598
509 => 0.074242642417999
510 => 0.07536828040771
511 => 0.073079543641295
512 => 0.073476789205382
513 => 0.073379393766808
514 => 0.074442731626707
515 => 0.074446051251438
516 => 0.073808527086763
517 => 0.074154139279082
518 => 0.073961228034704
519 => 0.074309844726813
520 => 0.072967471980487
521 => 0.074602337085328
522 => 0.075529200251393
523 => 0.075542069747353
524 => 0.075981395532027
525 => 0.076427775973289
526 => 0.077284564358749
527 => 0.076403880610242
528 => 0.074819616279511
529 => 0.074933995047047
530 => 0.0740051414496
531 => 0.074020755646384
601 => 0.073937405840243
602 => 0.074187544882752
603 => 0.073022363433779
604 => 0.073295829190921
605 => 0.072912975529508
606 => 0.073475956956292
607 => 0.072870282005237
608 => 0.073379346799778
609 => 0.073599042289337
610 => 0.074409723375515
611 => 0.072750543749663
612 => 0.069367364175967
613 => 0.070078549539445
614 => 0.069026650524456
615 => 0.069124007783155
616 => 0.06932068494002
617 => 0.068683189925858
618 => 0.068804803884784
619 => 0.068800458978387
620 => 0.068763016922365
621 => 0.068597179847956
622 => 0.068356683280198
623 => 0.069314747585207
624 => 0.069477541379737
625 => 0.069839411819091
626 => 0.070916092787546
627 => 0.070808506968912
628 => 0.070983983902797
629 => 0.070600918741386
630 => 0.069141777077335
701 => 0.069221015489836
702 => 0.068232911216248
703 => 0.069814143771254
704 => 0.069439687030979
705 => 0.069198272334538
706 => 0.069132400097922
707 => 0.070211749950244
708 => 0.070534708342795
709 => 0.070333462345489
710 => 0.069920700933731
711 => 0.070713324866264
712 => 0.070925397592491
713 => 0.070972872854952
714 => 0.072377250492837
715 => 0.07105136196422
716 => 0.071370516511257
717 => 0.073860469180553
718 => 0.071602425699483
719 => 0.072798561691784
720 => 0.072740017059352
721 => 0.073351919757979
722 => 0.072689823177964
723 => 0.072698030658588
724 => 0.07324135880109
725 => 0.072478352414694
726 => 0.072289421303239
727 => 0.072028414325915
728 => 0.072598313512153
729 => 0.07293994229998
730 => 0.075693219431167
731 => 0.077471962022605
801 => 0.077394742115611
802 => 0.078100387515929
803 => 0.077782487800114
804 => 0.076755905760042
805 => 0.078508156124103
806 => 0.077953670791645
807 => 0.077999381888753
808 => 0.077997680519435
809 => 0.078366364791571
810 => 0.078105118195346
811 => 0.077590174337772
812 => 0.077932018101853
813 => 0.07894717186979
814 => 0.082098240314189
815 => 0.083861619961779
816 => 0.081992082645239
817 => 0.083281664452086
818 => 0.082508374892959
819 => 0.082367845176694
820 => 0.08317779785074
821 => 0.083989168239723
822 => 0.083937487453595
823 => 0.083348474215524
824 => 0.083015755582996
825 => 0.085535212537421
826 => 0.087391505503613
827 => 0.087264918768065
828 => 0.087823631450563
829 => 0.089464029166711
830 => 0.089614006575742
831 => 0.089595112869396
901 => 0.089223378212588
902 => 0.090838562796697
903 => 0.09218597819323
904 => 0.089137332379984
905 => 0.090298216795964
906 => 0.090819375211657
907 => 0.091584590386629
908 => 0.092875636651762
909 => 0.094278055328805
910 => 0.094476372706477
911 => 0.094335657036658
912 => 0.093410724220111
913 => 0.094945267470866
914 => 0.095844166917691
915 => 0.096379440967327
916 => 0.097736806896095
917 => 0.090822593708609
918 => 0.085928369955814
919 => 0.085164066243367
920 => 0.086718307897387
921 => 0.087128149026707
922 => 0.086962942581375
923 => 0.081454048784248
924 => 0.085135063057617
925 => 0.089095524907292
926 => 0.089247662376426
927 => 0.091230352387725
928 => 0.091875997528614
929 => 0.09347232286483
930 => 0.093372472280417
1001 => 0.093761152096702
1002 => 0.093671801337934
1003 => 0.096628657877317
1004 => 0.099890509737702
1005 => 0.09977756217983
1006 => 0.09930863238242
1007 => 0.10000507309599
1008 => 0.10337165377719
1009 => 0.10306171297642
1010 => 0.10336279406368
1011 => 0.10733218241899
1012 => 0.11249295191981
1013 => 0.11009525635389
1014 => 0.11529756581362
1015 => 0.11857214385594
1016 => 0.12423518798244
1017 => 0.12352614696672
1018 => 0.12573072848784
1019 => 0.12225681556726
1020 => 0.11428000930799
1021 => 0.11301764918347
1022 => 0.1155449261208
1023 => 0.12175798986316
1024 => 0.11534925463314
1025 => 0.11664573342342
1026 => 0.1162723474446
1027 => 0.11625245129258
1028 => 0.1170118064918
1029 => 0.11591032217003
1030 => 0.11142267688988
1031 => 0.11347933827591
1101 => 0.11268516254577
1102 => 0.11356635972808
1103 => 0.11832181748766
1104 => 0.11621931625619
1105 => 0.11400450200218
1106 => 0.11678237058334
1107 => 0.12031955186637
1108 => 0.12009820141861
1109 => 0.11966868903263
1110 => 0.12208982786384
1111 => 0.12608883988587
1112 => 0.1271697567661
1113 => 0.12796766750871
1114 => 0.1280776859193
1115 => 0.12921094392447
1116 => 0.12311713001287
1117 => 0.13278816919083
1118 => 0.13445809049979
1119 => 0.13414421450485
1120 => 0.13600026175874
1121 => 0.13545416557327
1122 => 0.1346629578804
1123 => 0.13760518757038
1124 => 0.13423215865651
1125 => 0.1294445687658
1126 => 0.12681800226397
1127 => 0.13027687691266
1128 => 0.13238909096252
1129 => 0.13378513008744
1130 => 0.13420757068313
1201 => 0.12359017543997
1202 => 0.11786798827164
1203 => 0.12153584464153
1204 => 0.12601088255471
1205 => 0.12309227095131
1206 => 0.1232066750005
1207 => 0.11904550185169
1208 => 0.12637905404526
1209 => 0.12531061717554
1210 => 0.13085366954568
1211 => 0.12953077561177
1212 => 0.13405091963956
1213 => 0.13286061423052
1214 => 0.13780150543437
1215 => 0.13977256070488
1216 => 0.14308226927432
1217 => 0.14551690437093
1218 => 0.14694656866681
1219 => 0.14686073698502
1220 => 0.15252577918122
1221 => 0.14918530171962
1222 => 0.14498887473776
1223 => 0.14491297461322
1224 => 0.14708636361095
1225 => 0.15164119071005
1226 => 0.15282219110681
1227 => 0.15348220921356
1228 => 0.15247136850768
1229 => 0.14884551963729
1230 => 0.14727989647852
1231 => 0.14861385277026
]
'min_raw' => 0.055005430816557
'max_raw' => 0.15348220921356
'avg_raw' => 0.10424382001506
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0550054'
'max' => '$0.153482'
'avg' => '$0.104243'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.02177582642603
'max_diff' => 0.079299458275737
'year' => 2036
]
11 => [
'items' => [
101 => 0.14698253885364
102 => 0.14979864433957
103 => 0.15366575865943
104 => 0.15286721484461
105 => 0.15553662709319
106 => 0.15829918794011
107 => 0.16224977402557
108 => 0.16328260351809
109 => 0.16498983139424
110 => 0.16674712967394
111 => 0.16731152652086
112 => 0.16838913522369
113 => 0.16838345569391
114 => 0.17163090205132
115 => 0.17521293594859
116 => 0.17656507082054
117 => 0.17967423040142
118 => 0.1743499035771
119 => 0.17838846663481
120 => 0.18203135160464
121 => 0.17768815396508
122 => 0.18367424007595
123 => 0.18390666623488
124 => 0.18741602528556
125 => 0.18385861757585
126 => 0.18174624023347
127 => 0.18784459447117
128 => 0.19079539599043
129 => 0.18990659055841
130 => 0.18314273733499
131 => 0.17920588464365
201 => 0.16890238178823
202 => 0.18110732599867
203 => 0.18705199830047
204 => 0.18312734206986
205 => 0.18510671038896
206 => 0.19590550212565
207 => 0.200016982849
208 => 0.19916182359996
209 => 0.19930633143593
210 => 0.20152481180559
211 => 0.21136277550414
212 => 0.20546763961376
213 => 0.20997425011543
214 => 0.21236454007572
215 => 0.21458477460315
216 => 0.20913258031611
217 => 0.20203935565733
218 => 0.19979263365458
219 => 0.18273711235424
220 => 0.18184929840218
221 => 0.18135094152738
222 => 0.17820887192571
223 => 0.17574006590409
224 => 0.17377677969481
225 => 0.16862453039477
226 => 0.17036326328767
227 => 0.16215165326141
228 => 0.16740515035462
301 => 0.15429922247645
302 => 0.16521422865814
303 => 0.15927368703788
304 => 0.16326260096553
305 => 0.16324868402061
306 => 0.15590382879349
307 => 0.15166746958171
308 => 0.15436704255303
309 => 0.15726119907065
310 => 0.15773076622852
311 => 0.16148311569883
312 => 0.16253031577951
313 => 0.15935725064595
314 => 0.15402763125188
315 => 0.15526558028144
316 => 0.15164238258414
317 => 0.14529286798389
318 => 0.14985320022168
319 => 0.15141029815131
320 => 0.15209800130295
321 => 0.14585398294029
322 => 0.14389197680651
323 => 0.14284742120371
324 => 0.15322160689028
325 => 0.15378992820059
326 => 0.15088231602451
327 => 0.16402499877151
328 => 0.16105040489391
329 => 0.16437375504838
330 => 0.15515324938258
331 => 0.15550548511607
401 => 0.15114034996872
402 => 0.1535845339728
403 => 0.15185706349844
404 => 0.15338706805917
405 => 0.15430414648442
406 => 0.15866856535605
407 => 0.16526406331099
408 => 0.15801666671717
409 => 0.15485887223661
410 => 0.15681795017224
411 => 0.16203523287909
412 => 0.16993968324775
413 => 0.16526008953762
414 => 0.16733681376152
415 => 0.16779048561741
416 => 0.16433992646353
417 => 0.17006691028558
418 => 0.17313604744176
419 => 0.17628434709554
420 => 0.17901792747156
421 => 0.17502684698122
422 => 0.1792978752048
423 => 0.17585618039457
424 => 0.17276862435392
425 => 0.17277330690195
426 => 0.17083643789566
427 => 0.16708351013476
428 => 0.16639141267541
429 => 0.16999179106123
430 => 0.17287895356955
501 => 0.17311675410231
502 => 0.17471523561469
503 => 0.17566120050804
504 => 0.18493294243983
505 => 0.18866211374466
506 => 0.19322207382661
507 => 0.1949984352638
508 => 0.20034464632892
509 => 0.19602714669581
510 => 0.19509302849184
511 => 0.18212486918017
512 => 0.18424840454097
513 => 0.18764838954429
514 => 0.18218093368058
515 => 0.18564877599124
516 => 0.18633340152231
517 => 0.18199515162248
518 => 0.18431239833869
519 => 0.17815847807621
520 => 0.16539820195599
521 => 0.17008111612062
522 => 0.17352931719766
523 => 0.1686083091006
524 => 0.17742902564526
525 => 0.17227614513642
526 => 0.170642929397
527 => 0.16427117251408
528 => 0.16727839649141
529 => 0.17134570998004
530 => 0.16883258312001
531 => 0.17404769870247
601 => 0.18143369318775
602 => 0.18669739270154
603 => 0.18710147419059
604 => 0.1837172680437
605 => 0.1891404799918
606 => 0.18917998217019
607 => 0.18306257693826
608 => 0.17931570029556
609 => 0.17846440203884
610 => 0.18059111199098
611 => 0.18317333048518
612 => 0.18724476934569
613 => 0.18970505457874
614 => 0.19612017363209
615 => 0.19785592091205
616 => 0.19976298092703
617 => 0.20231140122257
618 => 0.20537143318892
619 => 0.19867625745426
620 => 0.19894226926757
621 => 0.19270781432447
622 => 0.1860454051065
623 => 0.19110134322191
624 => 0.19771130974455
625 => 0.19619497612089
626 => 0.19602435761234
627 => 0.19631129061809
628 => 0.19516802458468
629 => 0.18999707468698
630 => 0.18740025602021
701 => 0.19075081461944
702 => 0.19253148739872
703 => 0.1952931555884
704 => 0.19495272169228
705 => 0.20206648236738
706 => 0.20483067465677
707 => 0.20412347598269
708 => 0.20425361755841
709 => 0.20925805566332
710 => 0.21482402007717
711 => 0.22003728024443
712 => 0.22534043240131
713 => 0.21894727549064
714 => 0.21570122468651
715 => 0.21905032053666
716 => 0.21727324313663
717 => 0.2274848569926
718 => 0.22819188698017
719 => 0.23840276242023
720 => 0.24809409910127
721 => 0.24200714417024
722 => 0.24774686850773
723 => 0.25395484834532
724 => 0.26593104866046
725 => 0.26189788572213
726 => 0.25880854611909
727 => 0.25588913512179
728 => 0.26196396596372
729 => 0.26977913879406
730 => 0.27146245216892
731 => 0.2741900629114
801 => 0.27132231373206
802 => 0.27477620174636
803 => 0.28696994415216
804 => 0.28367508731697
805 => 0.27899586093634
806 => 0.28862164946624
807 => 0.29210518491591
808 => 0.31655446104335
809 => 0.34742268210347
810 => 0.33464303589291
811 => 0.32671029709341
812 => 0.32857467887838
813 => 0.33984670825431
814 => 0.34346692633352
815 => 0.3336259256302
816 => 0.33710193344698
817 => 0.35625507827097
818 => 0.36653012596259
819 => 0.35257523107436
820 => 0.31407422953689
821 => 0.27857454779729
822 => 0.28799066196613
823 => 0.28692316683543
824 => 0.30750083154533
825 => 0.28359650607113
826 => 0.28399899360606
827 => 0.30500218263004
828 => 0.29939889188426
829 => 0.29032227849135
830 => 0.27864081711984
831 => 0.25704655537019
901 => 0.237919915538
902 => 0.27543166085102
903 => 0.27381408618244
904 => 0.2714715983512
905 => 0.27668455153597
906 => 0.30199717247861
907 => 0.30141363463693
908 => 0.29770146461174
909 => 0.30051711285828
910 => 0.28982868174027
911 => 0.29258333381044
912 => 0.27856892446633
913 => 0.2849040227833
914 => 0.29030280415552
915 => 0.29138668944632
916 => 0.29382873835105
917 => 0.27296169783526
918 => 0.28233038640273
919 => 0.28783361320871
920 => 0.26296983429018
921 => 0.28734213624263
922 => 0.27259844908486
923 => 0.26759422022076
924 => 0.27433175512925
925 => 0.27170613122294
926 => 0.26944877397011
927 => 0.26818912983671
928 => 0.27313643187891
929 => 0.27290563432533
930 => 0.26481088795434
1001 => 0.25425162129746
1002 => 0.25779565778362
1003 => 0.25650807610268
1004 => 0.2518417139896
1005 => 0.25498627863511
1006 => 0.24113920736406
1007 => 0.21731604095035
1008 => 0.23305435440657
1009 => 0.23244844645849
1010 => 0.23214292019534
1011 => 0.24396982778265
1012 => 0.24283294351131
1013 => 0.24076948742643
1014 => 0.25180381700042
1015 => 0.24777613827324
1016 => 0.26018849506996
1017 => 0.26836407603719
1018 => 0.26629048425156
1019 => 0.27397965766725
1020 => 0.25787730522632
1021 => 0.26322586079295
1022 => 0.26432819068245
1023 => 0.25166765508629
1024 => 0.24301895183819
1025 => 0.24244218193397
1026 => 0.22744652236648
1027 => 0.2354570826667
1028 => 0.24250604423139
1029 => 0.23913013866342
1030 => 0.23806142781291
1031 => 0.24352123977305
1101 => 0.24394551392249
1102 => 0.23427201835291
1103 => 0.23628344440159
1104 => 0.24467142539634
1105 => 0.23607208880186
1106 => 0.21936498249245
1107 => 0.2152213891339
1108 => 0.21466855739829
1109 => 0.20343080357737
1110 => 0.21549828385548
1111 => 0.21023050532572
1112 => 0.22687135458356
1113 => 0.21736619073415
1114 => 0.21695644211833
1115 => 0.21633704698847
1116 => 0.20666424804903
1117 => 0.20878197627833
1118 => 0.21582162745162
1119 => 0.21833345429759
1120 => 0.21807145017877
1121 => 0.2157871293204
1122 => 0.21683287971175
1123 => 0.21346415333763
1124 => 0.21227458594096
1125 => 0.20851998402076
1126 => 0.20300175643332
1127 => 0.20376909982461
1128 => 0.19283604705111
1129 => 0.18687913963908
1130 => 0.1852303461782
1201 => 0.1830255106545
1202 => 0.18547938821745
1203 => 0.19280507508627
1204 => 0.1839687424913
1205 => 0.1688194700539
1206 => 0.16972996714049
1207 => 0.17177558376505
1208 => 0.16796359071829
1209 => 0.16435585921586
1210 => 0.16749248905271
1211 => 0.16107354261166
1212 => 0.17255128277558
1213 => 0.17224084207014
1214 => 0.17651903382456
1215 => 0.17919427492593
1216 => 0.17302871030686
1217 => 0.17147808747862
1218 => 0.17236139271346
1219 => 0.15776232476826
1220 => 0.17532597851169
1221 => 0.17547786971861
1222 => 0.17417728498914
1223 => 0.18352938839054
1224 => 0.2032652435617
1225 => 0.19583982097338
1226 => 0.19296447291259
1227 => 0.18749843414717
1228 => 0.19478160626083
1229 => 0.19422237227768
1230 => 0.19169330412271
1231 => 0.19016371581141
]
'min_raw' => 0.14284742120371
'max_raw' => 0.36653012596259
'avg_raw' => 0.25468877358315
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.142847'
'max' => '$0.36653'
'avg' => '$0.254688'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.087841990387153
'max_diff' => 0.21304791674903
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0044838173234924
]
1 => [
'year' => 2028
'avg' => 0.0076955321885826
]
2 => [
'year' => 2029
'avg' => 0.021022806954477
]
3 => [
'year' => 2030
'avg' => 0.016219064257276
]
4 => [
'year' => 2031
'avg' => 0.01592913110715
]
5 => [
'year' => 2032
'avg' => 0.027928779912888
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0044838173234924
'min' => '$0.004483'
'max_raw' => 0.027928779912888
'max' => '$0.027928'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.027928779912888
]
1 => [
'year' => 2033
'avg' => 0.071835693818518
]
2 => [
'year' => 2034
'avg' => 0.045532915004079
]
3 => [
'year' => 2035
'avg' => 0.053706177664175
]
4 => [
'year' => 2036
'avg' => 0.10424382001506
]
5 => [
'year' => 2037
'avg' => 0.25468877358315
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.027928779912888
'min' => '$0.027928'
'max_raw' => 0.25468877358315
'max' => '$0.254688'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.25468877358315
]
]
]
]
'prediction_2025_max_price' => '$0.007666'
'last_price' => 0.00743365
'sma_50day_nextmonth' => '$0.006681'
'sma_200day_nextmonth' => '$0.011939'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.007235'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007121'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00691'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.0064044'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.008355'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.01138'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.012946'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.007266'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.007153'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006934'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.006881'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.008287'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.01023'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011948'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011919'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012621'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.016831'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.017575'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.007111'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.007349'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008725'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.010716'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.012968'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0152046'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.017941'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '55.70'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 109.91
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006915'
'vwma_10_action' => 'BUY'
'hma_9' => '0.007316'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 136.66
'cci_20_action' => 'SELL'
'adx_14' => 20.61
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000779'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 83.68
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.002378'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 18
'sell_pct' => 47.06
'buy_pct' => 52.94
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767677497
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Morpher para 2026
La previsión del precio de Morpher para 2026 sugiere que el precio medio podría oscilar entre $0.002568 en el extremo inferior y $0.007666 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Morpher podría potencialmente ganar 3.13% para 2026 si MPH alcanza el objetivo de precio previsto.
Predicción de precio de Morpher 2027-2032
La predicción del precio de MPH para 2027-2032 está actualmente dentro de un rango de precios de $0.004483 en el extremo inferior y $0.027928 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Morpher alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Morpher | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002472 | $0.004483 | $0.006495 |
| 2028 | $0.004462 | $0.007695 | $0.010928 |
| 2029 | $0.0098018 | $0.021022 | $0.032243 |
| 2030 | $0.008336 | $0.016219 | $0.024102 |
| 2031 | $0.009855 | $0.015929 | $0.0220024 |
| 2032 | $0.015044 | $0.027928 | $0.040813 |
Predicción de precio de Morpher 2032-2037
La predicción de precio de Morpher para 2032-2037 se estima actualmente entre $0.027928 en el extremo inferior y $0.254688 en el extremo superior. Comparado con el precio actual, Morpher podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Morpher | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.015044 | $0.027928 | $0.040813 |
| 2033 | $0.034959 | $0.071835 | $0.108712 |
| 2034 | $0.0281056 | $0.045532 | $0.06296 |
| 2035 | $0.033229 | $0.0537061 | $0.074182 |
| 2036 | $0.0550054 | $0.104243 | $0.153482 |
| 2037 | $0.142847 | $0.254688 | $0.36653 |
Morpher Histograma de precios potenciales
Pronóstico de precio de Morpher basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Morpher es Alcista, con 18 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de MPH se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Morpher
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Morpher aumentar durante el próximo mes, alcanzando $0.011939 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Morpher alcance $0.006681 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 55.70, lo que sugiere que el mercado de MPH está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de MPH para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.007235 | BUY |
| SMA 5 | $0.007121 | BUY |
| SMA 10 | $0.00691 | BUY |
| SMA 21 | $0.0064044 | BUY |
| SMA 50 | $0.008355 | SELL |
| SMA 100 | $0.01138 | SELL |
| SMA 200 | $0.012946 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.007266 | BUY |
| EMA 5 | $0.007153 | BUY |
| EMA 10 | $0.006934 | BUY |
| EMA 21 | $0.006881 | BUY |
| EMA 50 | $0.008287 | SELL |
| EMA 100 | $0.01023 | SELL |
| EMA 200 | $0.011948 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.011919 | SELL |
| SMA 50 | $0.012621 | SELL |
| SMA 100 | $0.016831 | SELL |
| SMA 200 | $0.017575 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.010716 | SELL |
| EMA 50 | $0.012968 | SELL |
| EMA 100 | $0.0152046 | SELL |
| EMA 200 | $0.017941 | SELL |
Osciladores de Morpher
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 55.70 | NEUTRAL |
| Stoch RSI (14) | 109.91 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 136.66 | SELL |
| Índice Direccional Medio (14) | 20.61 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000779 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 83.68 | SELL |
| VWMA (10) | 0.006915 | BUY |
| Promedio Móvil de Hull (9) | 0.007316 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002378 | SELL |
Predicción de precios de Morpher basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Morpher
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Morpher por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.010445 | $0.014677 | $0.020624 | $0.028981 | $0.040723 | $0.057222 |
| Amazon.com acción | $0.01551 | $0.032364 | $0.067529 | $0.1409045 | $0.2940058 | $0.61346 |
| Apple acción | $0.010544 | $0.014955 | $0.021213 | $0.03009 | $0.04268 | $0.060539 |
| Netflix acción | $0.011729 | $0.0185067 | $0.02920072 | $0.046074 | $0.072697 | $0.1147057 |
| Google acción | $0.009626 | $0.012466 | $0.016143 | $0.0209062 | $0.027073 | $0.035059 |
| Tesla acción | $0.016851 | $0.0382011 | $0.086599 | $0.196313 | $0.445027 | $1.00 |
| Kodak acción | $0.005574 | $0.00418 | $0.003134 | $0.00235 | $0.001762 | $0.001321 |
| Nokia acción | $0.004924 | $0.003262 | $0.002161 | $0.001431 | $0.000948 | $0.000628 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Morpher
Podría preguntarse cosas como: "¿Debo invertir en Morpher ahora?", "¿Debería comprar MPH hoy?", "¿Será Morpher una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Morpher regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Morpher, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Morpher a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Morpher es de $0.007433 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Morpher basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Morpher ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.007626 | $0.007825 | $0.008028 | $0.008237 |
| Si Morpher ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00782 | $0.008226 | $0.008654 | $0.0091042 |
| Si Morpher ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.008399 | $0.009491 | $0.010725 | $0.012118 |
| Si Morpher ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.009365 | $0.01180039 | $0.014867 | $0.018732 |
| Si Morpher ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.011298 | $0.017171 | $0.026098 | $0.039666 |
| Si Morpher ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.017094 | $0.039312 | $0.0904051 | $0.2079012 |
| Si Morpher ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.026756 | $0.0963037 | $0.346628 | $1.24 |
Cuadro de preguntas
¿Es MPH una buena inversión?
La decisión de adquirir Morpher depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Morpher ha experimentado una caída de -0.2649% durante las últimas 24 horas, y Morpher ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Morpher dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Morpher subir?
Parece que el valor medio de Morpher podría potencialmente aumentar hasta $0.007666 para el final de este año. Mirando las perspectivas de Morpher en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.024102. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Morpher la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Morpher, el precio de Morpher aumentará en un 0.86% durante la próxima semana y alcanzará $0.007497 para el 13 de enero de 2026.
¿Cuál será el precio de Morpher el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Morpher, el precio de Morpher disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00657 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Morpher este año en 2026?
Según nuestra predicción más reciente sobre el valor de Morpher en 2026, se anticipa que MPH fluctúe dentro del rango de $0.002568 y $0.007666. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Morpher no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Morpher en 5 años?
El futuro de Morpher parece estar en una tendencia alcista, con un precio máximo de $0.024102 proyectada después de un período de cinco años. Basado en el pronóstico de Morpher para 2030, el valor de Morpher podría potencialmente alcanzar su punto más alto de aproximadamente $0.024102, mientras que su punto más bajo se anticipa que esté alrededor de $0.008336.
¿Cuánto será Morpher en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Morpher, se espera que el valor de MPH en 2026 crezca en un 3.13% hasta $0.007666 si ocurre lo mejor. El precio estará entre $0.007666 y $0.002568 durante 2026.
¿Cuánto será Morpher en 2027?
Según nuestra última simulación experimental para la predicción de precios de Morpher, el valor de MPH podría disminuir en un -12.62% hasta $0.006495 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.006495 y $0.002472 a lo largo del año.
¿Cuánto será Morpher en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Morpher sugiere que el valor de MPH en 2028 podría aumentar en un 47.02% , alcanzando $0.010928 en el mejor escenario. Se espera que el precio oscile entre $0.010928 y $0.004462 durante el año.
¿Cuánto será Morpher en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Morpher podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.032243 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.032243 y $0.0098018.
¿Cuánto será Morpher en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Morpher, se espera que el valor de MPH en 2030 aumente en un 224.23% , alcanzando $0.024102 en el mejor escenario. Se pronostica que el precio oscile entre $0.024102 y $0.008336 durante el transcurso de 2030.
¿Cuánto será Morpher en 2031?
Nuestra simulación experimental indica que el precio de Morpher podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0220024 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0220024 y $0.009855 durante el año.
¿Cuánto será Morpher en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Morpher, MPH podría experimentar un 449.04% aumento en valor, alcanzando $0.040813 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.040813 y $0.015044 a lo largo del año.
¿Cuánto será Morpher en 2033?
Según nuestra predicción experimental de precios de Morpher, se anticipa que el valor de MPH aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.108712. A lo largo del año, el precio de MPH podría oscilar entre $0.108712 y $0.034959.
¿Cuánto será Morpher en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Morpher sugieren que MPH podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.06296 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.06296 y $0.0281056.
¿Cuánto será Morpher en 2035?
Basado en nuestra predicción experimental para el precio de Morpher, MPH podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.074182 en 2035. El rango de precios esperado para el año está entre $0.074182 y $0.033229.
¿Cuánto será Morpher en 2036?
Nuestra reciente simulación de predicción de precios de Morpher sugiere que el valor de MPH podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.153482 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.153482 y $0.0550054.
¿Cuánto será Morpher en 2037?
Según la simulación experimental, el valor de Morpher podría aumentar en un 4830.69% en 2037, con un máximo de $0.36653 bajo condiciones favorables. Se espera que el precio caiga entre $0.36653 y $0.142847 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Morpher?
Los traders de Morpher utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Morpher
Las medias móviles son herramientas populares para la predicción de precios de Morpher. Una media móvil simple (SMA) calcula el precio de cierre promedio de MPH durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de MPH por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de MPH.
¿Cómo leer gráficos de Morpher y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Morpher en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de MPH dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Morpher?
La acción del precio de Morpher está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de MPH. La capitalización de mercado de Morpher puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de MPH, grandes poseedores de Morpher, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Morpher.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


