Predicción del precio de Minswap - Pronóstico de MIN
Predicción de precio de Minswap hasta $0.010685 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003579 | $0.010685 |
| 2027 | $0.003446 | $0.009052 |
| 2028 | $0.006219 | $0.015232 |
| 2029 | $0.013661 | $0.04494 |
| 2030 | $0.011618 | $0.033592 |
| 2031 | $0.013736 | $0.030666 |
| 2032 | $0.020968 | $0.056884 |
| 2033 | $0.048725 | $0.15152 |
| 2034 | $0.039173 | $0.087752 |
| 2035 | $0.046314 | $0.103394 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Minswap hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.15, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Minswap para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Minswap'
'name_with_ticker' => 'Minswap <small>MIN</small>'
'name_lang' => 'Minswap'
'name_lang_with_ticker' => 'Minswap <small>MIN</small>'
'name_with_lang' => 'Minswap'
'name_with_lang_with_ticker' => 'Minswap <small>MIN</small>'
'image' => '/uploads/coins/minswap.png?1727309651'
'price_for_sd' => 0.01036
'ticker' => 'MIN'
'marketcap' => '$18.16M'
'low24h' => '$0.009702'
'high24h' => '$0.01059'
'volume24h' => '$429.11K'
'current_supply' => '1.75B'
'max_supply' => '2.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01036'
'change_24h_pct' => '6.2334%'
'ath_price' => '$0.06353'
'ath_days' => 399
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 dic. 2024'
'ath_pct' => '-83.69%'
'fdv' => '$25.84M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.510862'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.010449'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.009157'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003579'
'current_year_max_price_prediction' => '$0.010685'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.011618'
'grand_prediction_max_price' => '$0.033592'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010557213226177
107 => 0.010596630028095
108 => 0.010685438095489
109 => 0.0099265828830312
110 => 0.010267286594606
111 => 0.010467418105536
112 => 0.0095632166583089
113 => 0.010449544950153
114 => 0.0099133729020827
115 => 0.0097313880559337
116 => 0.0099764066765931
117 => 0.0098809226818337
118 => 0.0097988311501479
119 => 0.0097530226649556
120 => 0.0099329372982495
121 => 0.0099245440655619
122 => 0.0096301688055675
123 => 0.0092461682791755
124 => 0.0093750514602203
125 => 0.0093282269922605
126 => 0.0091585290798975
127 => 0.0092728849834261
128 => 0.0087693194584846
129 => 0.0079029611458812
130 => 0.0084753039844598
131 => 0.0084532694077637
201 => 0.0084421585750051
202 => 0.0088722583998027
203 => 0.0088309142257397
204 => 0.0087558741449719
205 => 0.0091571509099671
206 => 0.0090106794928097
207 => 0.0094620698874826
208 => 0.0097593847955144
209 => 0.0096839761177078
210 => 0.0099636022257594
211 => 0.0093780206684041
212 => 0.0095725273723033
213 => 0.0096126149344022
214 => 0.0091521992169756
215 => 0.0088376786439284
216 => 0.0088167037075032
217 => 0.0082713683774442
218 => 0.0085626821089687
219 => 0.008819026137329
220 => 0.0086962572408446
221 => 0.0086573922758341
222 => 0.0088559449532903
223 => 0.0088713741968174
224 => 0.0085195858092832
225 => 0.0085927337547409
226 => 0.0088977728471338
227 => 0.0085850475522623
228 => 0.0079774733877139
301 => 0.0078267865945359
302 => 0.0078066821986173
303 => 0.0073980076643982
304 => 0.007836856206593
305 => 0.0076452870575152
306 => 0.008250451704101
307 => 0.0079047849035343
308 => 0.0078898838986373
309 => 0.0078673588442334
310 => 0.0075155957904986
311 => 0.0075926095435583
312 => 0.0078486149882543
313 => 0.0079399606150295
314 => 0.0079304325177842
315 => 0.007847360421912
316 => 0.0078853904020043
317 => 0.0077628825856034
318 => 0.0077196225258526
319 => 0.007583081877662
320 => 0.0073824048451386
321 => 0.0074103102173348
322 => 0.0070127165059041
323 => 0.0067960863500212
324 => 0.0067361259780124
325 => 0.0066559444626458
326 => 0.006745182693528
327 => 0.0070115901728746
328 => 0.0066902462312829
329 => 0.0061393245830806
330 => 0.0061724359128624
331 => 0.00624682724004
401 => 0.0061081994939924
402 => 0.0059769999665032
403 => 0.0060910673111009
404 => 0.0058576345460858
405 => 0.0062750364744538
406 => 0.0062637469220468
407 => 0.0064193285489803
408 => 0.0065166169331582
409 => 0.0062923987051166
410 => 0.0062360084271147
411 => 0.0062681308922598
412 => 0.0057372180970862
413 => 0.006375941646931
414 => 0.0063814653547136
415 => 0.0063341680151385
416 => 0.0066742685870537
417 => 0.0073919868738233
418 => 0.0071219523841894
419 => 0.0070173868679674
420 => 0.0068186077451927
421 => 0.0070834691239536
422 => 0.0070631319025459
423 => 0.0069711592746782
424 => 0.0069155339423717
425 => 0.0070180253227122
426 => 0.0069028341261256
427 => 0.0068821426219763
428 => 0.0067567746194098
429 => 0.0067120239463743
430 => 0.0066788923296344
501 => 0.0066424176750492
502 => 0.0067228716741465
503 => 0.0065405523275869
504 => 0.0063206930686219
505 => 0.0063024141501491
506 => 0.0063528838511515
507 => 0.0063305547654853
508 => 0.0063023072470776
509 => 0.0062483750416834
510 => 0.0062323745084222
511 => 0.006284368479166
512 => 0.0062256703176331
513 => 0.0063122826524292
514 => 0.0062887288898437
515 => 0.0061571594867177
516 => 0.0059931752971907
517 => 0.0059917154939354
518 => 0.0059563853692898
519 => 0.0059113871436338
520 => 0.0058988696666763
521 => 0.0060814608774986
522 => 0.0064594192194058
523 => 0.0063852169531128
524 => 0.0064388356950636
525 => 0.0067025868370421
526 => 0.0067864253938035
527 => 0.0067269187720393
528 => 0.0066454624379599
529 => 0.0066490461032615
530 => 0.0069274070553201
531 => 0.0069447680864555
601 => 0.0069886338112537
602 => 0.0070450136640718
603 => 0.0067365205047676
604 => 0.0066345161032006
605 => 0.0065861807587494
606 => 0.0064373266059722
607 => 0.0065978530479518
608 => 0.0065043211646379
609 => 0.006516941811201
610 => 0.0065087225985702
611 => 0.0065132108444474
612 => 0.0062749198021082
613 => 0.0063617405337281
614 => 0.0062173842282521
615 => 0.0060241073399755
616 => 0.0060234594080744
617 => 0.0060707636526649
618 => 0.0060426252369672
619 => 0.0059669054838295
620 => 0.0059776611173756
621 => 0.0058834304499026
622 => 0.0059891024265081
623 => 0.0059921327206846
624 => 0.0059514432537
625 => 0.0061142455135835
626 => 0.0061809457322917
627 => 0.0061541630534696
628 => 0.0061790665881484
629 => 0.0063883003922804
630 => 0.0064224146318648
701 => 0.0064375659236281
702 => 0.0064172651998268
703 => 0.006182890997992
704 => 0.0061932864904795
705 => 0.0061170112641243
706 => 0.0060525667355395
707 => 0.0060551441787159
708 => 0.0060882770436107
709 => 0.0062329702078235
710 => 0.0065374684417814
711 => 0.0065490239271748
712 => 0.0065630295125688
713 => 0.0065060617581279
714 => 0.0064888797382805
715 => 0.0065115472575148
716 => 0.0066259007844328
717 => 0.0069200491023457
718 => 0.0068160774412897
719 => 0.0067315468624359
720 => 0.0068057029693711
721 => 0.0067942872179632
722 => 0.0066979267876743
723 => 0.0066952222713345
724 => 0.0065102757973171
725 => 0.0064419052969003
726 => 0.0063847697893087
727 => 0.006322379306579
728 => 0.0062853921370688
729 => 0.0063422212398043
730 => 0.0063552187279821
731 => 0.0062309609016483
801 => 0.0062140250190674
802 => 0.0063154966423431
803 => 0.0062708427641829
804 => 0.0063167703852335
805 => 0.0063274259872771
806 => 0.0063257101899288
807 => 0.0062790864126643
808 => 0.0063088030179516
809 => 0.0062385143875007
810 => 0.0061620860588962
811 => 0.0061133295468996
812 => 0.0060707830235698
813 => 0.0060943903075317
814 => 0.0060102346507275
815 => 0.0059833115623971
816 => 0.0062987357007251
817 => 0.0065317429030889
818 => 0.0065283548860855
819 => 0.0065077312039048
820 => 0.0064770885955455
821 => 0.0066236590867703
822 => 0.0065725968583971
823 => 0.0066097488959306
824 => 0.006619205648749
825 => 0.0066478283913385
826 => 0.0066580585616064
827 => 0.0066271358817467
828 => 0.0065233555912504
829 => 0.0062647449744676
830 => 0.0061443610342492
831 => 0.006104632328824
901 => 0.0061060763918107
902 => 0.0060662426880578
903 => 0.0060779754990344
904 => 0.0060621624952129
905 => 0.0060322164915515
906 => 0.0060925412261912
907 => 0.0060994930898946
908 => 0.0060854125760028
909 => 0.0060887290467464
910 => 0.0059721484055883
911 => 0.0059810117785357
912 => 0.0059316593916616
913 => 0.0059224064140746
914 => 0.0057976478776608
915 => 0.0055766200463646
916 => 0.0056990909205934
917 => 0.0055511633265359
918 => 0.0054951409051975
919 => 0.0057603423345394
920 => 0.0057337234665761
921 => 0.0056881635355667
922 => 0.0056207709020823
923 => 0.0055957743187695
924 => 0.0054439029915176
925 => 0.0054349296233016
926 => 0.0055102011539584
927 => 0.0054754659324955
928 => 0.0054266845263045
929 => 0.0052500032179727
930 => 0.0050513549302369
1001 => 0.005057350873385
1002 => 0.005120537197731
1003 => 0.0053042599576037
1004 => 0.0052324762968854
1005 => 0.0051803964274117
1006 => 0.0051706434333744
1007 => 0.0052927225730272
1008 => 0.0054654901320065
1009 => 0.0055465488052233
1010 => 0.0054662221218539
1011 => 0.005373947153095
1012 => 0.0053795635028823
1013 => 0.0054169265618484
1014 => 0.0054208528910605
1015 => 0.0053607913724185
1016 => 0.0053776983381038
1017 => 0.0053520151112224
1018 => 0.0051943971952587
1019 => 0.0051915463869707
1020 => 0.005152864408461
1021 => 0.0051516931335249
1022 => 0.0050858854384081
1023 => 0.0050766784869541
1024 => 0.0049460133140581
1025 => 0.0050320175265489
1026 => 0.0049743304162339
1027 => 0.0048873823339756
1028 => 0.0048723924518215
1029 => 0.0048719418378632
1030 => 0.004961218077107
1031 => 0.0050309742817141
1101 => 0.0049753339082158
1102 => 0.0049626656737136
1103 => 0.0050979292753934
1104 => 0.0050807157491245
1105 => 0.005065808946391
1106 => 0.0054500206920311
1107 => 0.0051458871149406
1108 => 0.0050132675159915
1109 => 0.0048491255785132
1110 => 0.0049025710210316
1111 => 0.0049138327610471
1112 => 0.0045191009902198
1113 => 0.0043589583599559
1114 => 0.0043040034440971
1115 => 0.0042723761130718
1116 => 0.004286789084971
1117 => 0.0041426419348765
1118 => 0.0042395112037138
1119 => 0.0041146919561872
1120 => 0.0040937656031424
1121 => 0.0043169578798576
1122 => 0.0043480137812922
1123 => 0.0042155196574601
1124 => 0.0043006023338105
1125 => 0.0042697501726282
1126 => 0.0041168316239331
1127 => 0.0041109912601656
1128 => 0.0040342621077773
1129 => 0.0039141958419812
1130 => 0.0038593223367044
1201 => 0.0038307437387226
1202 => 0.0038425358252356
1203 => 0.0038365733854508
1204 => 0.0037976644327053
1205 => 0.003838803601077
1206 => 0.0037337100257653
1207 => 0.0036918609172797
1208 => 0.0036729586458687
1209 => 0.0035796820488191
1210 => 0.003728126595016
1211 => 0.003757372040672
1212 => 0.0037866751088902
1213 => 0.0040417383116756
1214 => 0.0040289960748655
1215 => 0.0041441796899072
1216 => 0.0041397038664358
1217 => 0.004106851633575
1218 => 0.0039682534670656
1219 => 0.0040234962259615
1220 => 0.0038534676007108
1221 => 0.0039808646075713
1222 => 0.0039227259338664
1223 => 0.0039612078635094
1224 => 0.0038920138842355
1225 => 0.0039303086893151
1226 => 0.0037643072207715
1227 => 0.0036092973851492
1228 => 0.0036716778680228
1229 => 0.0037394925869799
1230 => 0.003886532176548
1231 => 0.0037989566100515
]
'min_raw' => 0.0035796820488191
'max_raw' => 0.010685438095489
'avg_raw' => 0.0071325600721539
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003579'
'max' => '$0.010685'
'avg' => '$0.007132'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0067811979511809
'max_diff' => 0.00032455809548865
'year' => 2026
]
1 => [
'items' => [
101 => 0.0038304520953625
102 => 0.0037249474918514
103 => 0.0035072613589079
104 => 0.0035084934387798
105 => 0.0034750071697766
106 => 0.0034460701442826
107 => 0.0038090157173456
108 => 0.0037638776980148
109 => 0.0036919561717291
110 => 0.0037882259927104
111 => 0.0038136812613854
112 => 0.0038144059370986
113 => 0.0038846419134029
114 => 0.003922126866547
115 => 0.0039287337520077
116 => 0.0040392515782711
117 => 0.0040762956958693
118 => 0.0042288751735762
119 => 0.0039189465301655
120 => 0.0039125637537087
121 => 0.0037895807065164
122 => 0.0037115829137019
123 => 0.0037949212821204
124 => 0.0038687476997174
125 => 0.0037918746991014
126 => 0.0038019126901043
127 => 0.0036987169675323
128 => 0.0037356045825417
129 => 0.0037673771658862
130 => 0.0037498342128695
131 => 0.003723571563115
201 => 0.0038626947753798
202 => 0.0038548448985155
203 => 0.0039843996322053
204 => 0.0040853968116644
205 => 0.0042664018126604
206 => 0.004077513658117
207 => 0.004070629823003
208 => 0.004137920415444
209 => 0.0040762853940302
210 => 0.0041152365999951
211 => 0.0042601261711962
212 => 0.0042631874595217
213 => 0.0042119069358226
214 => 0.0042087865112951
215 => 0.004218635496819
216 => 0.0042763213126597
217 => 0.0042561641160989
218 => 0.0042794905342769
219 => 0.0043086605773952
220 => 0.0044293202435747
221 => 0.0044584108805992
222 => 0.0043877357143957
223 => 0.0043941168905876
224 => 0.0043676824383507
225 => 0.0043421470887127
226 => 0.0043995468255607
227 => 0.004504445972845
228 => 0.0045037934006941
301 => 0.004528127963916
302 => 0.0045432881952048
303 => 0.0044782093845455
304 => 0.0044358454718205
305 => 0.0044520904916451
306 => 0.0044780666321151
307 => 0.0044436667793883
308 => 0.0042313349527969
309 => 0.0042957428651751
310 => 0.0042850222391694
311 => 0.0042697547640645
312 => 0.0043345174180125
313 => 0.0043282709020497
314 => 0.0041411634975054
315 => 0.0041531415064758
316 => 0.0041418919199032
317 => 0.004178241635568
318 => 0.0040743223900947
319 => 0.0041062872500955
320 => 0.004126335310636
321 => 0.0041381437723109
322 => 0.0041808040330184
323 => 0.0041757983438072
324 => 0.0041804928723487
325 => 0.0042437467770866
326 => 0.0045636633211323
327 => 0.0045810756727686
328 => 0.0044953308850429
329 => 0.0045295842364981
330 => 0.0044638252920885
331 => 0.0045079697120173
401 => 0.0045381722029859
402 => 0.0044016929539038
403 => 0.0043936115385162
404 => 0.0043275811835512
405 => 0.0043630621561589
406 => 0.0043066093775679
407 => 0.0043204609147997
408 => 0.0042817308091441
409 => 0.0043514372882372
410 => 0.0044293799631549
411 => 0.0044490713608887
412 => 0.004397271771131
413 => 0.0043597654543871
414 => 0.0042939167175336
415 => 0.0044034246344557
416 => 0.0044354480865571
417 => 0.0044032564288946
418 => 0.0043957969184126
419 => 0.0043816611595283
420 => 0.004398795886484
421 => 0.0044352736799595
422 => 0.0044180714261956
423 => 0.0044294338178714
424 => 0.0043861320976506
425 => 0.0044782309283398
426 => 0.0046245060362648
427 => 0.0046249763346552
428 => 0.0046077739881647
429 => 0.0046007351586104
430 => 0.0046183858100354
501 => 0.0046279605643658
502 => 0.0046850395344983
503 => 0.0047462875435769
504 => 0.0050321052773468
505 => 0.0049518488014224
506 => 0.0052054432981961
507 => 0.00540600362002
508 => 0.005466142891095
509 => 0.0054108175914774
510 => 0.0052215527300993
511 => 0.0052122664930644
512 => 0.0054951081015266
513 => 0.0054151923921697
514 => 0.0054056866728313
515 => 0.0053045618792378
516 => 0.0053643391568009
517 => 0.0053512649893181
518 => 0.0053306267763364
519 => 0.0054446776578055
520 => 0.0056581707265234
521 => 0.0056248958296384
522 => 0.0056000576626918
523 => 0.0054912240454135
524 => 0.0055567661918835
525 => 0.0055334278889026
526 => 0.0056337040493614
527 => 0.0055743026732945
528 => 0.005414586952072
529 => 0.0054400222071066
530 => 0.0054361777194768
531 => 0.0055152970024757
601 => 0.0054915473575807
602 => 0.0054315402201428
603 => 0.0056574410304242
604 => 0.0056427722883308
605 => 0.0056635692108779
606 => 0.0056727246593493
607 => 0.0058102265017488
608 => 0.0058665566070117
609 => 0.0058793445271036
610 => 0.0059328537703767
611 => 0.0058780131683852
612 => 0.0060974146770376
613 => 0.0062433038778585
614 => 0.0064127616920017
615 => 0.0066603851044312
616 => 0.0067534937981494
617 => 0.0067366745460128
618 => 0.00692441979123
619 => 0.0072617938235429
620 => 0.006804867483836
621 => 0.0072860120290512
622 => 0.007133687221117
623 => 0.0067725278417112
624 => 0.0067492734354668
625 => 0.006993854760347
626 => 0.0075363125988512
627 => 0.0074004330628118
628 => 0.0075365348490946
629 => 0.0073777648859237
630 => 0.0073698806190339
701 => 0.0075288237463646
702 => 0.0079002030269117
703 => 0.007723774651668
704 => 0.0074708213137436
705 => 0.0076575981220771
706 => 0.007495794765321
707 => 0.0071312065166416
708 => 0.0074003291582914
709 => 0.0072203745119918
710 => 0.0072728948446972
711 => 0.0076511327449855
712 => 0.0076056221601295
713 => 0.0076645170710999
714 => 0.0075605690947853
715 => 0.0074634652938161
716 => 0.0072822138382842
717 => 0.00722855421789
718 => 0.0072433838064961
719 => 0.0072285468690824
720 => 0.0071271383454992
721 => 0.0071052391844866
722 => 0.0070687396233746
723 => 0.0070800523635805
724 => 0.0070114225103668
725 => 0.0071409412230322
726 => 0.0071649810374179
727 => 0.0072592339555315
728 => 0.0072690196061621
729 => 0.0075315126415022
730 => 0.0073869358886531
731 => 0.0074839304566206
801 => 0.0074752543495133
802 => 0.0067803552605939
803 => 0.0068761062239004
804 => 0.0070250646744978
805 => 0.0069579590944121
806 => 0.0068630875044583
807 => 0.0067864736088778
808 => 0.0066703957229003
809 => 0.0068337731183353
810 => 0.0070485970200833
811 => 0.0072744678948239
812 => 0.0075458369511787
813 => 0.0074852705368843
814 => 0.0072693948390757
815 => 0.0072790788651821
816 => 0.007338941704048
817 => 0.0072614138886042
818 => 0.0072385494223071
819 => 0.0073358004774866
820 => 0.0073364701920554
821 => 0.0072472650708377
822 => 0.0071481299029692
823 => 0.0071477145229961
824 => 0.007130074377406
825 => 0.0073809030286363
826 => 0.007518833425176
827 => 0.0075346469228533
828 => 0.0075177690507869
829 => 0.0075242646738865
830 => 0.007444006015229
831 => 0.0076274535089542
901 => 0.0077958030702732
902 => 0.0077506817915759
903 => 0.007683038580441
904 => 0.0076291575046335
905 => 0.0077379891224809
906 => 0.007733143021855
907 => 0.00779433268372
908 => 0.0077915567672092
909 => 0.0077709809853836
910 => 0.0077506825264019
911 => 0.0078311636218306
912 => 0.007807986358834
913 => 0.0077847730951462
914 => 0.0077382153410475
915 => 0.0077445433130719
916 => 0.007676911781491
917 => 0.0076456223403734
918 => 0.007175104219831
919 => 0.0070493664033989
920 => 0.0070889260800777
921 => 0.0071019501528069
922 => 0.0070472288939583
923 => 0.0071256851224092
924 => 0.0071134578023108
925 => 0.0071610271520705
926 => 0.0071313078875617
927 => 0.0071325275765437
928 => 0.0072199255966488
929 => 0.0072452976137031
930 => 0.007232393201052
1001 => 0.0072414310093354
1002 => 0.0074497034866069
1003 => 0.0074200938005178
1004 => 0.0074043642449259
1005 => 0.0074087214393225
1006 => 0.0074619395226777
1007 => 0.0074768376804175
1008 => 0.0074137131391989
1009 => 0.0074434830377562
1010 => 0.0075702394874506
1011 => 0.0076145970710498
1012 => 0.0077561651850508
1013 => 0.0076960245340506
1014 => 0.0078064153017878
1015 => 0.008145718886826
1016 => 0.0084167780685767
1017 => 0.0081675008430443
1018 => 0.0086652665111509
1019 => 0.009052848484016
1020 => 0.0090379724423459
1021 => 0.0089703885604443
1022 => 0.0085291367887372
1023 => 0.008123090329719
1024 => 0.0084627654343311
1025 => 0.0084636313360275
1026 => 0.0084344529432984
1027 => 0.0082532284520217
1028 => 0.0084281467238288
1029 => 0.008442031101035
1030 => 0.0084342595419535
1031 => 0.0082953151493949
1101 => 0.0080831727431742
1102 => 0.0081246248615525
1103 => 0.0081925242770566
1104 => 0.0080639765182054
1105 => 0.0080228977202691
1106 => 0.0080992710211938
1107 => 0.0083453617097824
1108 => 0.008298839690611
1109 => 0.0082976248126802
1110 => 0.0084966657391017
1111 => 0.0083541953915042
1112 => 0.0081251477055133
1113 => 0.0080673101440328
1114 => 0.0078620257648269
1115 => 0.0080038164167423
1116 => 0.0080089192098797
1117 => 0.007931261918891
1118 => 0.0081314491666833
1119 => 0.0081296044059526
1120 => 0.0083196524037918
1121 => 0.008682952796892
1122 => 0.0085755069937257
1123 => 0.0084505592147134
1124 => 0.0084641445027182
1125 => 0.0086131415807823
1126 => 0.0085230545461123
1127 => 0.0085554504718887
1128 => 0.0086130925456687
1129 => 0.0086478694399523
1130 => 0.0084591406428168
1201 => 0.0084151389322626
1202 => 0.0083251268749705
1203 => 0.0083016444093776
1204 => 0.0083749573518788
1205 => 0.0083556419817142
1206 => 0.0080084903398755
1207 => 0.0079722110617698
1208 => 0.0079733236954345
1209 => 0.0078820977256522
1210 => 0.0077429562249927
1211 => 0.0081086117810184
1212 => 0.0080792445225233
1213 => 0.00804682534199
1214 => 0.0080507965066241
1215 => 0.0082095151902782
1216 => 0.0081174503382731
1217 => 0.008362219836461
1218 => 0.0083119025860782
1219 => 0.0082602948880874
1220 => 0.0082531611322162
1221 => 0.0082332965714516
1222 => 0.0081651736013124
1223 => 0.0080829110213135
1224 => 0.0080285941405356
1225 => 0.0074059537047636
1226 => 0.0075215121479101
1227 => 0.0076544516032666
1228 => 0.0077003417705342
1229 => 0.00762184346392
1230 => 0.0081682731929104
1231 => 0.0082681111699248
]
'min_raw' => 0.0034460701442826
'max_raw' => 0.009052848484016
'avg_raw' => 0.0062494593141493
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003446'
'max' => '$0.009052'
'avg' => '$0.006249'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00013361190453654
'max_diff' => -0.0016325896114726
'year' => 2027
]
2 => [
'items' => [
101 => 0.007965695425278
102 => 0.0079091257870081
103 => 0.0081719818889776
104 => 0.0080134475266384
105 => 0.0080848355402925
106 => 0.007930533701928
107 => 0.0082440631248593
108 => 0.008241674555962
109 => 0.0081197045290585
110 => 0.0082227927605826
111 => 0.0082048786434785
112 => 0.0080671747835035
113 => 0.0082484285828384
114 => 0.0082485184824615
115 => 0.008131124983424
116 => 0.0079940350772896
117 => 0.0079695266399919
118 => 0.0079510628247333
119 => 0.0080802945735914
120 => 0.0081961633555203
121 => 0.0084117664323831
122 => 0.0084659741685091
123 => 0.0086775505714224
124 => 0.0085515671249557
125 => 0.0086074139550156
126 => 0.0086680435890621
127 => 0.008697111665205
128 => 0.0086497467950092
129 => 0.0089784120370553
130 => 0.0090061614535269
131 => 0.0090154655928382
201 => 0.0089046415224344
202 => 0.0090030792356496
203 => 0.0089570234895506
204 => 0.0090768477462455
205 => 0.0090956377196881
206 => 0.0090797232806549
207 => 0.0090856875148052
208 => 0.0088052297112405
209 => 0.0087906864945929
210 => 0.0085923887036633
211 => 0.0086731965192104
212 => 0.0085221301812645
213 => 0.0085700348731828
214 => 0.0085911508049278
215 => 0.0085801210405028
216 => 0.0086777652718583
217 => 0.0085947477278076
218 => 0.0083756507797097
219 => 0.0081564941387948
220 => 0.0081537428056893
221 => 0.0080960427305724
222 => 0.0080543361445588
223 => 0.0080623703126457
224 => 0.0080906837688967
225 => 0.0080526905150105
226 => 0.008060798302034
227 => 0.0081954415885264
228 => 0.0082224433394005
229 => 0.0081306808396653
301 => 0.0077622411619628
302 => 0.0076718251408936
303 => 0.0077368143838105
304 => 0.0077057537115395
305 => 0.0062191446546312
306 => 0.0065684014013679
307 => 0.0063608849020954
308 => 0.0064565180523352
309 => 0.0062446974427149
310 => 0.0063457893400951
311 => 0.006327121357934
312 => 0.0068887158714283
313 => 0.0068799473455481
314 => 0.0068841443748668
315 => 0.006683809230179
316 => 0.0070029485553587
317 => 0.0071601680628211
318 => 0.0071310709162515
319 => 0.0071383940411697
320 => 0.0070125584924022
321 => 0.0068853627380418
322 => 0.0067442830711699
323 => 0.007006391654244
324 => 0.0069772496541489
325 => 0.0070440909174065
326 => 0.0072140870694385
327 => 0.0072391196485778
328 => 0.0072727636887964
329 => 0.0072607046953239
330 => 0.0075479988435193
331 => 0.007513205626545
401 => 0.0075970472687614
402 => 0.0074245786496416
403 => 0.0072294140362361
404 => 0.0072665084488325
405 => 0.0072629359586051
406 => 0.007217454057696
407 => 0.0071763950311885
408 => 0.0071080433203624
409 => 0.0073243182475659
410 => 0.0073155378804858
411 => 0.0074576818174519
412 => 0.0074325564958806
413 => 0.0072647634492184
414 => 0.0072707562107058
415 => 0.0073110604117313
416 => 0.0074505537116658
417 => 0.0074919648205144
418 => 0.0074727815449484
419 => 0.007518186935312
420 => 0.0075540735045285
421 => 0.0075226937358862
422 => 0.0079669650857848
423 => 0.0077824726468165
424 => 0.0078723929778795
425 => 0.0078938384469967
426 => 0.0078389063288027
427 => 0.0078508191382673
428 => 0.0078688637985599
429 => 0.0079784274423499
430 => 0.0082659541461505
501 => 0.0083932977660034
502 => 0.0087764173293542
503 => 0.0083827236510834
504 => 0.0083593634974812
505 => 0.0084283748999431
506 => 0.0086533066409545
507 => 0.00883559269028
508 => 0.0088960674891758
509 => 0.00890406023218
510 => 0.0090175149751971
511 => 0.0090825451180888
512 => 0.0090037385852388
513 => 0.0089369583000364
514 => 0.0086977596075155
515 => 0.0087254475074912
516 => 0.0089161896815546
517 => 0.0091856242370771
518 => 0.009416827115603
519 => 0.009335867925777
520 => 0.0099535293958681
521 => 0.010014768007707
522 => 0.010006306811632
523 => 0.010145817482928
524 => 0.0098689172112598
525 => 0.0097505369804315
526 => 0.0089513969556856
527 => 0.0091759227061412
528 => 0.0095022840703634
529 => 0.0094590889200163
530 => 0.0092220765736539
531 => 0.0094166473204848
601 => 0.0093523161467927
602 => 0.0093015754809989
603 => 0.0095340283075624
604 => 0.00927843687612
605 => 0.0094997343503175
606 => 0.00921591805063
607 => 0.0093362377405366
608 => 0.009267938465337
609 => 0.0093121364668355
610 => 0.0090537558531889
611 => 0.0091931717604778
612 => 0.0090479556930887
613 => 0.009047886841765
614 => 0.0090446811890288
615 => 0.0092155272483255
616 => 0.0092210985321856
617 => 0.0090948430362313
618 => 0.0090766476467827
619 => 0.0091439255381636
620 => 0.0090651607474643
621 => 0.0091020142972928
622 => 0.0090662770039453
623 => 0.0090582317864702
624 => 0.0089941261248477
625 => 0.0089665076431989
626 => 0.008977337561494
627 => 0.0089403694671472
628 => 0.0089180948531089
629 => 0.0090402502076527
630 => 0.0089749875294529
701 => 0.00903024776622
702 => 0.008967271752026
703 => 0.0087489694494863
704 => 0.0086234214867908
705 => 0.0082110686739274
706 => 0.0083280114201334
707 => 0.008405544581854
708 => 0.0083799198723678
709 => 0.0084349716637902
710 => 0.0084383513966714
711 => 0.0084204534980934
712 => 0.0083997300244029
713 => 0.0083896429834903
714 => 0.008464823522295
715 => 0.0085084683555318
716 => 0.0084133260718925
717 => 0.0083910355660178
718 => 0.0084872296677266
719 => 0.0085459080141994
720 => 0.0089791559560398
721 => 0.0089470595491359
722 => 0.0090276152318631
723 => 0.0090185458982157
724 => 0.0091029810872404
725 => 0.0092409969363225
726 => 0.0089603721253003
727 => 0.0090090788892179
728 => 0.0089971371155087
729 => 0.0091275142695641
730 => 0.0091279212928079
731 => 0.0090497536761298
801 => 0.0090921296092557
802 => 0.0090684765259078
803 => 0.0091112208444235
804 => 0.0089466308820534
805 => 0.0091470836898317
806 => 0.0092607275149483
807 => 0.0092623054595703
808 => 0.0093161717307424
809 => 0.0093709029819773
810 => 0.0094759548526354
811 => 0.0093679731423217
812 => 0.0091737245572749
813 => 0.0091877486776962
814 => 0.0090738608033561
815 => 0.0090757752790993
816 => 0.009065555657542
817 => 0.0090962255111326
818 => 0.0089533611902011
819 => 0.0089868911607706
820 => 0.008939949005622
821 => 0.0090089768461402
822 => 0.0089347143004535
823 => 0.0089971313568238
824 => 0.0090240684891951
825 => 0.0091234670875601
826 => 0.0089200330466564
827 => 0.00850521726598
828 => 0.0085924165722334
829 => 0.008463441948927
830 => 0.008475379041355
831 => 0.0084994938678338
901 => 0.0084213298253358
902 => 0.0084362410614123
903 => 0.0084357083271309
904 => 0.0084311175109001
905 => 0.0084107840246078
906 => 0.0083812964466263
907 => 0.0084987658815066
908 => 0.008518726227535
909 => 0.0085630956041922
910 => 0.0086951087730886
911 => 0.0086819175444309
912 => 0.0087034329856703
913 => 0.0086564648982487
914 => 0.0084775577562228
915 => 0.008487273274783
916 => 0.0083661206026562
917 => 0.0085599974579776
918 => 0.0085140848595881
919 => 0.0084844847087272
920 => 0.0084764080333213
921 => 0.0086087484373291
922 => 0.0086483467603899
923 => 0.008623671742803
924 => 0.0085730625618471
925 => 0.0086702471505437
926 => 0.0086962496465903
927 => 0.00870207064652
928 => 0.0088742631043939
929 => 0.0087116942920956
930 => 0.0087508262210108
1001 => 0.0090561223597058
1002 => 0.0087792608898968
1003 => 0.0089259205852022
1004 => 0.0089187423562972
1005 => 0.0089937684937219
1006 => 0.0089125880231795
1007 => 0.0089135943524058
1008 => 0.0089802124797282
1009 => 0.0088866593345465
1010 => 0.0088634942601586
1011 => 0.0088314918758032
1012 => 0.0089013679112594
1013 => 0.0089432554342941
1014 => 0.0092808381069584
1015 => 0.0094989319091398
1016 => 0.0094894638820056
1017 => 0.0095759839266078
1018 => 0.0095370058540817
1019 => 0.009411135375999
1020 => 0.0096259809338167
1021 => 0.0095579948098032
1022 => 0.0095635995032637
1023 => 0.0095633908962932
1024 => 0.009608595725312
1025 => 0.0095765639609905
1026 => 0.0095134260655195
1027 => 0.0095553399470553
1028 => 0.00967980919073
1029 => 0.010066165542279
1030 => 0.010282375675146
1031 => 0.010053149420799
1101 => 0.010211266621586
1102 => 0.010116452644033
1103 => 0.01009922212384
1104 => 0.010198531410704
1105 => 0.010298014525328
1106 => 0.010291677881003
1107 => 0.010219458248301
1108 => 0.010178663210293
1109 => 0.010487576905432
1110 => 0.010715179253803
1111 => 0.01069965829951
1112 => 0.010768162744076
1113 => 0.010969293912086
1114 => 0.010987682825431
1115 => 0.010985366245013
1116 => 0.010939787404603
1117 => 0.011137827159691
1118 => 0.011303035407564
1119 => 0.010929237219948
1120 => 0.011071574676414
1121 => 0.011135474546449
1122 => 0.011229298513896
1123 => 0.011387595273703
1124 => 0.011559547540995
1125 => 0.01158386347695
1126 => 0.011566610156765
1127 => 0.011453203014161
1128 => 0.011641355236849
1129 => 0.011751570396187
1130 => 0.011817201001344
1201 => 0.01198362929613
1202 => 0.011135869170292
1203 => 0.010535782416811
1204 => 0.010442070204898
1205 => 0.010632637672875
1206 => 0.010682888794434
1207 => 0.010662632630343
1208 => 0.0099871804318001
1209 => 0.01043851408886
1210 => 0.010924111154646
1211 => 0.010942764915599
1212 => 0.011185864960087
1213 => 0.01126502829958
1214 => 0.011460755699244
1215 => 0.011448512897104
1216 => 0.011496169404219
1217 => 0.011485213998529
1218 => 0.01184775779114
1219 => 0.012247697432664
1220 => 0.012233848794608
1221 => 0.012176352739268
1222 => 0.012261744185982
1223 => 0.012674524756172
1224 => 0.012636522535943
1225 => 0.012673438455874
1226 => 0.013160130011421
1227 => 0.013792898264699
1228 => 0.013498913882157
1229 => 0.014136775400545
1230 => 0.014538275414783
1231 => 0.015232628173533
]
'min_raw' => 0.0062191446546312
'max_raw' => 0.015232628173533
'avg_raw' => 0.010725886414082
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006219'
'max' => '$0.015232'
'avg' => '$0.010725'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0027730745103486
'max_diff' => 0.0061797796895169
'year' => 2028
]
3 => [
'items' => [
101 => 0.015145691788378
102 => 0.015415998221963
103 => 0.01499005751478
104 => 0.014012011554267
105 => 0.013857232037206
106 => 0.014167104550003
107 => 0.014928895885797
108 => 0.014143113029854
109 => 0.014302075878205
110 => 0.014256294567186
111 => 0.01425385507568
112 => 0.014346960544341
113 => 0.014211906205993
114 => 0.013661670535751
115 => 0.013913840300864
116 => 0.013816465444367
117 => 0.013924510107427
118 => 0.014507582592951
119 => 0.014249792348389
120 => 0.013978231266921
121 => 0.01431882912731
122 => 0.014752527245707
123 => 0.014725387196888
124 => 0.014672724158519
125 => 0.014969582948458
126 => 0.015459906697972
127 => 0.015592439237186
128 => 0.015690272048125
129 => 0.015703761539854
130 => 0.015842711688341
131 => 0.01509554171998
201 => 0.016281319648455
202 => 0.016486070740248
203 => 0.016447586021054
204 => 0.016675158242339
205 => 0.016608200721887
206 => 0.016511189780065
207 => 0.016871940156802
208 => 0.016458368960928
209 => 0.01587135671555
210 => 0.01554931018795
211 => 0.015973407034246
212 => 0.016232388179338
213 => 0.01640355824195
214 => 0.016455354199473
215 => 0.015153542397704
216 => 0.014451938038343
217 => 0.014901658388783
218 => 0.015450348254361
219 => 0.015092493720073
220 => 0.015106520940309
221 => 0.014596314416932
222 => 0.015495490210602
223 => 0.015364487860723
224 => 0.016044128283633
225 => 0.015881926642251
226 => 0.016436147023645
227 => 0.016290202223276
228 => 0.016896010929943
301 => 0.017137684424648
302 => 0.017543491835735
303 => 0.017842005419263
304 => 0.018017298305166
305 => 0.018006774377803
306 => 0.018701372122319
307 => 0.018291792099775
308 => 0.01777726306086
309 => 0.017767956853864
310 => 0.018034438734051
311 => 0.01859291164919
312 => 0.018737715550635
313 => 0.018818641177031
314 => 0.018694700763164
315 => 0.018250131003557
316 => 0.018058168035378
317 => 0.018221726045969
318 => 0.018021708653716
319 => 0.018366994787712
320 => 0.018841146398827
321 => 0.01874323596613
322 => 0.019070535863082
323 => 0.019409256823474
324 => 0.019893643009745
325 => 0.020020279495605
326 => 0.020229604791176
327 => 0.020445069280097
328 => 0.020514270667008
329 => 0.02064639758655
330 => 0.020645701212464
331 => 0.02104387457767
401 => 0.021483072129895
402 => 0.021648859038414
403 => 0.022030076893008
404 => 0.021377254676482
405 => 0.021872427826798
406 => 0.022319086403371
407 => 0.021786561634809
408 => 0.022520522965914
409 => 0.022549021021208
410 => 0.022979307821708
411 => 0.022543129716425
412 => 0.022284128549838
413 => 0.023031855213128
414 => 0.023393656592325
415 => 0.023284679072474
416 => 0.022455354765521
417 => 0.021972652447481
418 => 0.020709327374849
419 => 0.022205790494964
420 => 0.022934674028344
421 => 0.022453467133255
422 => 0.022696159901004
423 => 0.024020212948453
424 => 0.024524326622835
425 => 0.024419474502584
426 => 0.024437192784893
427 => 0.02470920337328
428 => 0.025915448121151
429 => 0.025192638307692
430 => 0.025745199326915
501 => 0.026038275699103
502 => 0.026310501366916
503 => 0.025642001164574
504 => 0.024772292223546
505 => 0.024496818894025
506 => 0.022405620591089
507 => 0.022296764637808
508 => 0.022235660492558
509 => 0.021850407500109
510 => 0.021547704177721
511 => 0.021306983257103
512 => 0.020675259676052
513 => 0.020888447840217
514 => 0.019881612302979
515 => 0.020525749999643
516 => 0.018918816171318
517 => 0.020257118413844
518 => 0.019528741348373
519 => 0.020017826958198
520 => 0.02001612058458
521 => 0.019115558912158
522 => 0.018596133733748
523 => 0.018927131673761
524 => 0.019281987740105
525 => 0.01933956194299
526 => 0.019799642095696
527 => 0.019928040576926
528 => 0.019538987184446
529 => 0.018885516039477
530 => 0.019037302482364
531 => 0.018593057786327
601 => 0.017814536044149
602 => 0.018373683951067
603 => 0.018564601630487
604 => 0.018648921754059
605 => 0.017883335034453
606 => 0.017642771065456
607 => 0.01751469682689
608 => 0.018786688407802
609 => 0.018856370977964
610 => 0.018499865096897
611 => 0.020111305484592
612 => 0.019746586895273
613 => 0.020154066917766
614 => 0.019023529453622
615 => 0.019066717507223
616 => 0.01853150295403
617 => 0.018831187340769
618 => 0.018619380075501
619 => 0.018806975803859
620 => 0.018919419909951
621 => 0.019454546639702
622 => 0.020263228701512
623 => 0.019374616551181
624 => 0.018987435512121
625 => 0.019227640451165
626 => 0.019867337857675
627 => 0.020836512174046
628 => 0.020262741472303
629 => 0.020517371166478
630 => 0.020572996426969
701 => 0.02014991915365
702 => 0.020852111636584
703 => 0.02122842229279
704 => 0.021614439159539
705 => 0.02194960678899
706 => 0.021460255534266
707 => 0.021983931522567
708 => 0.021561941117253
709 => 0.021183372099119
710 => 0.021183946232053
711 => 0.020946464356967
712 => 0.020486313299346
713 => 0.020401454384337
714 => 0.020842901176714
715 => 0.021196899699034
716 => 0.021226056712871
717 => 0.021422048483928
718 => 0.021538034395163
719 => 0.022674854000473
720 => 0.023132092249994
721 => 0.023691194526431
722 => 0.023908996372381
723 => 0.024564501842406
724 => 0.024035127937809
725 => 0.023920594563632
726 => 0.022330552707554
727 => 0.022590921972411
728 => 0.023007798287344
729 => 0.022337426844443
730 => 0.022762623226728
731 => 0.022846565999482
801 => 0.022314647879334
802 => 0.02259876833013
803 => 0.021844228648658
804 => 0.020279675604649
805 => 0.020853853431373
806 => 0.021276641578009
807 => 0.020673270763357
808 => 0.021754789594945
809 => 0.021122988620612
810 => 0.020922738043543
811 => 0.020141489147913
812 => 0.020510208553623
813 => 0.021008906829399
814 => 0.020700769274866
815 => 0.021340200967607
816 => 0.022245806774731
817 => 0.022891195402646
818 => 0.022940740327675
819 => 0.022525798677606
820 => 0.023190745319964
821 => 0.023195588730315
822 => 0.022445526201348
823 => 0.021986117078721
824 => 0.021881738359455
825 => 0.022142496864835
826 => 0.022459105829041
827 => 0.022958309921702
828 => 0.023259968499795
829 => 0.024046534084116
830 => 0.02425935617863
831 => 0.024493183136874
901 => 0.024805648062652
902 => 0.02518084232041
903 => 0.024359938644256
904 => 0.024392554677665
905 => 0.023628140540615
906 => 0.022811254407102
907 => 0.023431169156145
908 => 0.024241625226715
909 => 0.024055705708652
910 => 0.024034785964878
911 => 0.024069967171252
912 => 0.023929789926196
913 => 0.02329577344202
914 => 0.022977374332819
915 => 0.023388190415964
916 => 0.023606520880834
917 => 0.023945132391432
918 => 0.023903391375529
919 => 0.024775618262606
920 => 0.025114539256152
921 => 0.025027828762756
922 => 0.025043785580346
923 => 0.025657385850185
924 => 0.026339835546765
925 => 0.026979039744783
926 => 0.027629265709465
927 => 0.026845392930289
928 => 0.026447390675576
929 => 0.026858027409269
930 => 0.026640137778241
1001 => 0.027892196228393
1002 => 0.027978886038929
1003 => 0.029230853951005
1004 => 0.03041912058113
1005 => 0.029672791600756
1006 => 0.030376546213853
1007 => 0.031137714205873
1008 => 0.032606130757535
1009 => 0.032111619722452
1010 => 0.031732832019555
1011 => 0.031374879470606
1012 => 0.032119721901602
1013 => 0.033077949789931
1014 => 0.033284342899284
1015 => 0.033618778584673
1016 => 0.033267160354337
1017 => 0.033690645783299
1018 => 0.035185735436462
1019 => 0.034781749014656
1020 => 0.034208023351633
1021 => 0.035388253042868
1022 => 0.0358153735801
1023 => 0.038813129195151
1024 => 0.042597919490262
1025 => 0.041030991455813
1026 => 0.040058348660379
1027 => 0.040286942788702
1028 => 0.041669020081239
1029 => 0.042112899442662
1030 => 0.040906282323924
1031 => 0.04133247988889
1101 => 0.043680870374676
1102 => 0.044940706524913
1103 => 0.043229679814322
1104 => 0.038509024980107
1105 => 0.034156365632946
1106 => 0.035310886894618
1107 => 0.035180000012511
1108 => 0.037703052621808
1109 => 0.034772114072103
1110 => 0.034821463560469
1111 => 0.037396690225767
1112 => 0.036709663902028
1113 => 0.035596769245253
1114 => 0.034164490995544
1115 => 0.031516792181253
1116 => 0.029171651504893
1117 => 0.033771012424879
1118 => 0.033572679618614
1119 => 0.033285464323867
1120 => 0.033924630882385
1121 => 0.037028242259955
1122 => 0.036956693972293
1123 => 0.03650154027044
1124 => 0.036846770341754
1125 => 0.035536248744588
1126 => 0.0358740000002
1127 => 0.034155676149467
1128 => 0.034932430293541
1129 => 0.035594381473146
1130 => 0.035727277972806
1201 => 0.036026700572404
1202 => 0.033468167242025
1203 => 0.034616873592773
1204 => 0.035291630954608
1205 => 0.032243052645954
1206 => 0.035231370363373
1207 => 0.033423628868966
1208 => 0.032810054254398
1209 => 0.033636151640605
1210 => 0.033314220685794
1211 => 0.033037443355267
1212 => 0.032882996849195
1213 => 0.033489591596584
1214 => 0.033461293226581
1215 => 0.032468786484886
1216 => 0.031174101900095
1217 => 0.031608640543323
1218 => 0.031450768580417
1219 => 0.030878620220955
1220 => 0.031264179133776
1221 => 0.029566372808614
1222 => 0.026645385270465
1223 => 0.028575079110434
1224 => 0.028500787996698
1225 => 0.028463327048319
1226 => 0.029913438636235
1227 => 0.029774043866823
1228 => 0.029521040995384
1229 => 0.030873973624814
1230 => 0.03038013501556
1231 => 0.031902029246271
]
'min_raw' => 0.013661670535751
'max_raw' => 0.044940706524913
'avg_raw' => 0.029301188530332
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.013661'
'max' => '$0.04494'
'avg' => '$0.0293011'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0074425258811195
'max_diff' => 0.02970807835138
'year' => 2029
]
4 => [
'items' => [
101 => 0.032904447216564
102 => 0.032650201594473
103 => 0.033592980540641
104 => 0.031618651436019
105 => 0.032274444368239
106 => 0.03240960238268
107 => 0.030857278646177
108 => 0.029796850575023
109 => 0.029726132112443
110 => 0.027887495973052
111 => 0.028869680557762
112 => 0.029733962346747
113 => 0.029320038440799
114 => 0.029189002497801
115 => 0.02985843671235
116 => 0.029910457484137
117 => 0.028724378374485
118 => 0.028971001779622
119 => 0.029999462376774
120 => 0.028945087211332
121 => 0.026896608496083
122 => 0.026388557452267
123 => 0.026320774077784
124 => 0.024942899352919
125 => 0.026422507852356
126 => 0.025776619091309
127 => 0.02781697394852
128 => 0.026651534196724
129 => 0.026601294418359
130 => 0.026525349624787
131 => 0.025339355929808
201 => 0.025599013175177
202 => 0.026462153405699
203 => 0.02677013156392
204 => 0.026738006918827
205 => 0.026457923547685
206 => 0.026586144280734
207 => 0.026173100624516
208 => 0.026027246312745
209 => 0.025566889984407
210 => 0.024890293358432
211 => 0.024984378269082
212 => 0.023643863311887
213 => 0.022913479616693
214 => 0.022711319036166
215 => 0.022440981459013
216 => 0.022741854384846
217 => 0.02364006580144
218 => 0.022556632266846
219 => 0.020699161465811
220 => 0.020810798625929
221 => 0.021061614179345
222 => 0.020594221054865
223 => 0.020151872687877
224 => 0.020536458704116
225 => 0.019749423839113
226 => 0.021156723582677
227 => 0.021118660068526
228 => 0.021643214386094
301 => 0.021971228965808
302 => 0.021215261555549
303 => 0.021025137796222
304 => 0.021133440930178
305 => 0.019343431374102
306 => 0.021496932416658
307 => 0.0215155559831
308 => 0.021356089700528
309 => 0.022502762523804
310 => 0.024922599837138
311 => 0.024012159702131
312 => 0.023659609763658
313 => 0.022989412072907
314 => 0.023882410703431
315 => 0.023813842341555
316 => 0.023503750205376
317 => 0.023316205513867
318 => 0.023661762358405
319 => 0.023273387196721
320 => 0.023203624345847
321 => 0.02278093737228
322 => 0.022630057353748
323 => 0.022518351794734
324 => 0.022395374950221
325 => 0.022666631225296
326 => 0.02205192881924
327 => 0.021310657977557
328 => 0.021249029327732
329 => 0.021419191448344
330 => 0.021343907377053
331 => 0.021248668896563
401 => 0.02106683270065
402 => 0.021012885785638
403 => 0.021188187088104
404 => 0.020990282138321
405 => 0.021282301672166
406 => 0.021202888517138
407 => 0.020759293088616
408 => 0.020206408944616
409 => 0.02020148711602
410 => 0.020082369134107
411 => 0.019930654474632
412 => 0.019888450927127
413 => 0.020504069942526
414 => 0.021778382880475
415 => 0.021528204759031
416 => 0.021708984091059
417 => 0.022598239480757
418 => 0.022880907028299
419 => 0.022680276298401
420 => 0.022405640580953
421 => 0.022417723158721
422 => 0.023356236543127
423 => 0.023414770471709
424 => 0.023562666825473
425 => 0.023752755435565
426 => 0.022712649210666
427 => 0.022368734249063
428 => 0.02220576826058
429 => 0.021703896091826
430 => 0.022245122198559
501 => 0.021929772923779
502 => 0.021972324314812
503 => 0.02194461266558
504 => 0.021959745099914
505 => 0.021156330213718
506 => 0.021449052372004
507 => 0.020962345009457
508 => 0.020310698486471
509 => 0.020308513938829
510 => 0.020468003502143
511 => 0.020373132869057
512 => 0.020117838434768
513 => 0.020154101804203
514 => 0.019836396529843
515 => 0.02019267697675
516 => 0.020202893825135
517 => 0.020065706446349
518 => 0.020614605632036
519 => 0.020839490076272
520 => 0.020749190404716
521 => 0.020833154410595
522 => 0.021538600789464
523 => 0.021653619330003
524 => 0.021704702968012
525 => 0.021636257660365
526 => 0.020846048675394
527 => 0.020881097804106
528 => 0.020623930553083
529 => 0.020406651325586
530 => 0.020415341355207
531 => 0.020527051122463
601 => 0.02101489422776
602 => 0.022041531282937
603 => 0.022080491408719
604 => 0.022127712217714
605 => 0.021935641456254
606 => 0.021877711076729
607 => 0.021954136200423
608 => 0.022339687100335
609 => 0.023331428690958
610 => 0.022980880976638
611 => 0.022695880228296
612 => 0.022945902720242
613 => 0.022907413717348
614 => 0.022582527798959
615 => 0.022573409333296
616 => 0.021949849383596
617 => 0.021719333467964
618 => 0.021526697115046
619 => 0.021316343246558
620 => 0.021191638422193
621 => 0.021383241709747
622 => 0.021427063648594
623 => 0.021008119711705
624 => 0.020951019201158
625 => 0.021293137863554
626 => 0.021142584195703
627 => 0.02129743237664
628 => 0.02133335848288
629 => 0.021327573552327
630 => 0.021170378232111
701 => 0.021270569841585
702 => 0.021033586816624
703 => 0.020775903370678
704 => 0.020611517386411
705 => 0.020468068812501
706 => 0.020547662418586
707 => 0.020263925746111
708 => 0.020173152674095
709 => 0.021236627178678
710 => 0.022022227229491
711 => 0.02201080429362
712 => 0.021941270109248
713 => 0.021837956415766
714 => 0.022332129060156
715 => 0.022159969192144
716 => 0.022285229880561
717 => 0.022317113982938
718 => 0.022413617557954
719 => 0.02244810929126
720 => 0.022343851317161
721 => 0.021993948822044
722 => 0.021122025071944
723 => 0.020716142212559
724 => 0.020582194108449
725 => 0.02058706286763
726 => 0.020452760754326
727 => 0.020492318745693
728 => 0.02043900409928
729 => 0.020338039057172
730 => 0.020541428111748
731 => 0.020564866805588
801 => 0.020517393369932
802 => 0.020528575082592
803 => 0.020135515311527
804 => 0.020165398792241
805 => 0.019999003774221
806 => 0.019967806714264
807 => 0.019547174598382
808 => 0.018801963833496
809 => 0.019214882936602
810 => 0.018716134725263
811 => 0.01852725122036
812 => 0.019421396355158
813 => 0.01933164898335
814 => 0.019178040495059
815 => 0.018950821526063
816 => 0.018866543800218
817 => 0.018354499017071
818 => 0.01832424467963
819 => 0.01857802790053
820 => 0.018460915676232
821 => 0.01829644575945
822 => 0.017700752392914
823 => 0.017030995821632
824 => 0.01705121156258
825 => 0.017264248666641
826 => 0.017883682778665
827 => 0.017641659154778
828 => 0.017466068238747
829 => 0.017433185338418
830 => 0.017844783681051
831 => 0.018427281568395
901 => 0.018700576544482
902 => 0.018429749523272
903 => 0.018118638023669
904 => 0.018137573939098
905 => 0.018263546101007
906 => 0.018276783994073
907 => 0.01807428239061
908 => 0.018131285405825
909 => 0.018044692613249
910 => 0.017513272805046
911 => 0.017503661105866
912 => 0.017373242114631
913 => 0.017369293079408
914 => 0.017147417840775
915 => 0.017116375961139
916 => 0.016675829207969
917 => 0.016965798415004
918 => 0.016771302294992
919 => 0.016478150765136
920 => 0.016427611330894
921 => 0.016426092054472
922 => 0.016727093128151
923 => 0.016962281042207
924 => 0.01677468563827
925 => 0.016731973801178
926 => 0.017188024478045
927 => 0.017129987872419
928 => 0.017079728546244
929 => 0.018375125271476
930 => 0.017349717682388
1001 => 0.016902581445326
1002 => 0.016349165443094
1003 => 0.016529360483986
1004 => 0.016567330226718
1005 => 0.015236464502082
1006 => 0.014696532443346
1007 => 0.014511248107698
1008 => 0.014404614352996
1009 => 0.014453208694036
1010 => 0.01396720651346
1011 => 0.014293808016541
1012 => 0.013872971208904
1013 => 0.013802416548582
1014 => 0.014554924892314
1015 => 0.014659632032255
1016 => 0.01421291884331
1017 => 0.014499781026909
1018 => 0.014395760811453
1019 => 0.013880185248096
1020 => 0.013860494053893
1021 => 0.013601796359557
1022 => 0.013196984561666
1023 => 0.01301197470748
1024 => 0.01291561996909
1025 => 0.012955377812066
1026 => 0.012935275030047
1027 => 0.01280409077933
1028 => 0.01294279435774
1029 => 0.012588464031177
1030 => 0.012447366840107
1031 => 0.01238363651233
1101 => 0.012069147953013
1102 => 0.012569639104583
1103 => 0.012668242166464
1104 => 0.012767039506837
1105 => 0.013627002902972
1106 => 0.013584041561932
1107 => 0.013972391161908
1108 => 0.013957300610582
1109 => 0.013846537013823
1110 => 0.013379243618821
1111 => 0.013565498437365
1112 => 0.012992235056313
1113 => 0.013421762959518
1114 => 0.013225744362009
1115 => 0.013355488874523
1116 => 0.013122196542432
1117 => 0.013251310151416
1118 => 0.012691624610368
1119 => 0.012168998127127
1120 => 0.012379318280401
1121 => 0.012607960340038
1122 => 0.013103714582243
1123 => 0.012808447445469
1124 => 0.01291463667314
1125 => 0.012558920536306
1126 => 0.011824976540727
1127 => 0.011829130584035
1128 => 0.011716229290155
1129 => 0.011618666088383
1130 => 0.012842362428016
1201 => 0.012690176444406
1202 => 0.012447687997133
1203 => 0.012772268419916
1204 => 0.012858092635484
1205 => 0.012860535930246
1206 => 0.013097341428075
1207 => 0.013223724564716
1208 => 0.013246000140325
1209 => 0.013618618707681
1210 => 0.0137435155365
1211 => 0.014257947898348
1212 => 0.013213001838562
1213 => 0.013191481862107
1214 => 0.012776835932096
1215 => 0.01251386092799
1216 => 0.012794842055612
1217 => 0.013043752976936
1218 => 0.012784570288258
1219 => 0.012818414075754
1220 => 0.012470482492207
1221 => 0.012594851661623
1222 => 0.012701975144659
1223 => 0.012642827853754
1224 => 0.012554281496507
1225 => 0.01302334511993
1226 => 0.012996878712021
1227 => 0.013433681541879
1228 => 0.013774200583823
1229 => 0.014384471582047
1230 => 0.013747621981254
1231 => 0.013724412650553
]
'min_raw' => 0.011618666088383
'max_raw' => 0.033592980540641
'avg_raw' => 0.022605823314512
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.011618'
'max' => '$0.033592'
'avg' => '$0.0226058'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0020430044473678
'max_diff' => -0.011347725984272
'year' => 2030
]
5 => [
'items' => [
101 => 0.013951287581047
102 => 0.013743480803131
103 => 0.013874807513528
104 => 0.014363312818699
105 => 0.014373634166021
106 => 0.014200738300077
107 => 0.014190217570922
108 => 0.01422342411325
109 => 0.014417915868852
110 => 0.014349954473317
111 => 0.014428601120802
112 => 0.014526949957763
113 => 0.014933762446476
114 => 0.015031843560248
115 => 0.01479355730301
116 => 0.01481507188406
117 => 0.014725946282749
118 => 0.014639852068624
119 => 0.014833379288928
120 => 0.015187054087822
121 => 0.015184853895254
122 => 0.015266899574141
123 => 0.015318013352385
124 => 0.01509859559859
125 => 0.014955762709084
126 => 0.015010533927613
127 => 0.015098114298804
128 => 0.014982132793615
129 => 0.014266241215727
130 => 0.014483396989127
131 => 0.014447251650059
201 => 0.014395776291801
202 => 0.014614128101171
203 => 0.014593067536485
204 => 0.013962221858642
205 => 0.014002606552163
206 => 0.013964677785613
207 => 0.014087233389833
208 => 0.01373686239831
209 => 0.013844634155517
210 => 0.013912227591341
211 => 0.013952040644318
212 => 0.014095872691738
213 => 0.014078995661076
214 => 0.014094823591815
215 => 0.014308088547886
216 => 0.015386709511996
217 => 0.015445416471229
218 => 0.015156321932902
219 => 0.015271809498826
220 => 0.015050098626606
221 => 0.015198934620461
222 => 0.015300764427432
223 => 0.014840615110475
224 => 0.014813368054269
225 => 0.014590742102413
226 => 0.014710368678762
227 => 0.014520034194335
228 => 0.014566735619196
301 => 0.014436154363928
302 => 0.014671174624941
303 => 0.01493396379521
304 => 0.015000354717479
305 => 0.014825708784079
306 => 0.01469925361857
307 => 0.014477240004856
308 => 0.014846453592358
309 => 0.014954422896923
310 => 0.014845886475565
311 => 0.014820736215168
312 => 0.014773076517163
313 => 0.014830847445402
314 => 0.014953834872903
315 => 0.014895836273315
316 => 0.014934145370147
317 => 0.014788150597193
318 => 0.015098668234996
319 => 0.015591844973968
320 => 0.015593430617826
321 => 0.015535431705604
322 => 0.015511699800326
323 => 0.015571210203935
324 => 0.015603492156648
325 => 0.015795937889576
326 => 0.016002439828384
327 => 0.016966094272946
328 => 0.016695503961038
329 => 0.017550515512313
330 => 0.018226718640017
331 => 0.018429482391237
401 => 0.018242949280886
402 => 0.0176048295867
403 => 0.017573520390192
404 => 0.018527140620493
405 => 0.018257699226859
406 => 0.018225650030442
407 => 0.017884700728534
408 => 0.018086243993354
409 => 0.018042163524877
410 => 0.017972580348895
411 => 0.018357110858546
412 => 0.019076917645339
413 => 0.018964729007312
414 => 0.018880985393306
415 => 0.018514045254131
416 => 0.018735025176962
417 => 0.018656338459033
418 => 0.018994426535078
419 => 0.018794150648397
420 => 0.0182556579433
421 => 0.018341414681482
422 => 0.018328452723024
423 => 0.018595208909587
424 => 0.018515135323676
425 => 0.01831281707024
426 => 0.019074457423994
427 => 0.019025000735888
428 => 0.01909511901225
429 => 0.019125987245984
430 => 0.019589584307706
501 => 0.019779505190442
502 => 0.019822620555856
503 => 0.020003030705448
504 => 0.019818131786985
505 => 0.020557859291531
506 => 0.021049734917757
507 => 0.021621073769307
508 => 0.022455953392828
509 => 0.02276987585434
510 => 0.022713168571479
511 => 0.023346164773683
512 => 0.024483644878329
513 => 0.022943085822429
514 => 0.024565298249061
515 => 0.024051724524133
516 => 0.022834050461123
517 => 0.0227556466069
518 => 0.023580269619856
519 => 0.02540920409557
520 => 0.024951076753007
521 => 0.025409953427783
522 => 0.024874649411987
523 => 0.024848067055706
524 => 0.025383954906556
525 => 0.026636086079794
526 => 0.026041245494824
527 => 0.025188395655374
528 => 0.025818126705011
529 => 0.025272595390958
530 => 0.024043360655797
531 => 0.024950726431662
601 => 0.02434399677763
602 => 0.024521072746199
603 => 0.025796328234748
604 => 0.025642886120459
605 => 0.025841454424707
606 => 0.025490986565146
607 => 0.025163594320608
608 => 0.024552492383709
609 => 0.024371575227155
610 => 0.024421574220509
611 => 0.024371550450137
612 => 0.024029644532759
613 => 0.023955809982455
614 => 0.023832749163848
615 => 0.023870890857282
616 => 0.023639500515589
617 => 0.024076181898048
618 => 0.024157233810656
619 => 0.024475014104604
620 => 0.024508007108918
621 => 0.025393020704245
622 => 0.024905570087988
623 => 0.025232594045835
624 => 0.025203341944976
625 => 0.02286044115038
626 => 0.023183272208286
627 => 0.023685496024422
628 => 0.023459244876001
629 => 0.023139378686749
630 => 0.022881069588788
701 => 0.022489704891916
702 => 0.02304054318727
703 => 0.02376483697054
704 => 0.024526376394528
705 => 0.025441316114411
706 => 0.025237112220006
707 => 0.024509272232884
708 => 0.024541922603019
709 => 0.024743754343745
710 => 0.024482363901157
711 => 0.02440527475669
712 => 0.02473316347908
713 => 0.024735421468506
714 => 0.024434660174219
715 => 0.024100419034353
716 => 0.024099018551773
717 => 0.024039543569321
718 => 0.024885229879241
719 => 0.025350271841167
720 => 0.025403588152649
721 => 0.025346683228602
722 => 0.025368583675392
723 => 0.025097986004248
724 => 0.025716492037237
725 => 0.026284094337015
726 => 0.02613196479562
727 => 0.025903900986581
728 => 0.025722237177639
729 => 0.026089170575593
730 => 0.026072831608988
731 => 0.026279136826092
801 => 0.026269777629768
802 => 0.026200404944787
803 => 0.026131967273137
804 => 0.026403314905386
805 => 0.026325171145008
806 => 0.026246906005786
807 => 0.026089933287284
808 => 0.026111268486769
809 => 0.025883244056162
810 => 0.025777749520874
811 => 0.024191364826939
812 => 0.023767431000105
813 => 0.023900809211996
814 => 0.023944720782514
815 => 0.02376022423779
816 => 0.024024744889651
817 => 0.023983519626255
818 => 0.024143903010156
819 => 0.024043702434932
820 => 0.02404781470149
821 => 0.024342483228209
822 => 0.024428026755125
823 => 0.024384518626915
824 => 0.024414990228542
825 => 0.025117195426783
826 => 0.025017364302851
827 => 0.024964331007971
828 => 0.024979021593089
829 => 0.025158450076688
830 => 0.025208680255664
831 => 0.024995851457731
901 => 0.025096222749185
902 => 0.025523590969182
903 => 0.025673145659235
904 => 0.026150452439559
905 => 0.025947684035826
906 => 0.026319874216489
907 => 0.027463859942865
908 => 0.028377754898885
909 => 0.027537299329023
910 => 0.029215551031933
911 => 0.030522310713557
912 => 0.030472155100455
913 => 0.030244291324067
914 => 0.028756580168542
915 => 0.027387566182703
916 => 0.028532804513262
917 => 0.028535723961287
918 => 0.02843734697303
919 => 0.027826335948001
920 => 0.028416085113802
921 => 0.028462897260929
922 => 0.028436694906893
923 => 0.027968234186594
924 => 0.027252981252711
925 => 0.027392739963918
926 => 0.027621667583876
927 => 0.027188259839991
928 => 0.027049759804719
929 => 0.027307257721
930 => 0.028136969659079
1001 => 0.027980117423379
1002 => 0.027976021377616
1003 => 0.028647101757639
1004 => 0.028166753033753
1005 => 0.027394502768836
1006 => 0.027199499392214
1007 => 0.026507368775224
1008 => 0.026985425857664
1009 => 0.027002630280992
1010 => 0.026740803302565
1011 => 0.027415748585124
1012 => 0.027409528845524
1013 => 0.028050288938966
1014 => 0.029275181579127
1015 => 0.028912920552125
1016 => 0.02849165039161
1017 => 0.028537454138612
1018 => 0.029039808189949
1019 => 0.028736073462883
1020 => 0.02884529858845
1021 => 0.02903964286464
1022 => 0.029156895591763
1023 => 0.028520583275596
1024 => 0.028372228436361
1025 => 0.02806874650076
1026 => 0.02798957372852
1027 => 0.028236753432709
1028 => 0.028171630313643
1029 => 0.02700118431583
1030 => 0.026878866196759
1031 => 0.026882617518841
1101 => 0.026575042792526
1102 => 0.026105917508503
1103 => 0.0273387507449
1104 => 0.027239736982527
1105 => 0.027130433451924
1106 => 0.027143822510745
1107 => 0.02767895363407
1108 => 0.027368550557772
1109 => 0.028193808010173
1110 => 0.028024159887469
1111 => 0.027850160930559
1112 => 0.027826108974576
1113 => 0.027759134221059
1114 => 0.027529452871041
1115 => 0.027252098839185
1116 => 0.027068965683359
1117 => 0.024969689982786
1118 => 0.025359303341887
1119 => 0.025807517997158
1120 => 0.02596223990005
1121 => 0.025697577378724
1122 => 0.02753990336052
1123 => 0.027876514070489
1124 => 0.02685689827342
1125 => 0.026666169788426
1126 => 0.027552407488243
1127 => 0.027017897817101
1128 => 0.027258587489288
1129 => 0.026738348068232
1130 => 0.02779543440757
1201 => 0.027787381180768
1202 => 0.027376150719388
1203 => 0.027723719889362
1204 => 0.027663321192822
1205 => 0.027199043014739
1206 => 0.027810152853933
1207 => 0.027810455956789
1208 => 0.027414655578632
1209 => 0.026952447388788
1210 => 0.026869815481314
1211 => 0.026807563439067
1212 => 0.027243277303015
1213 => 0.027633936990988
1214 => 0.028360857817557
1215 => 0.02854362298457
1216 => 0.029256967598785
1217 => 0.028832205613138
1218 => 0.029020497099787
1219 => 0.029224914144001
1220 => 0.029322919192185
1221 => 0.02916322522541
1222 => 0.030271343035643
1223 => 0.030364902130679
1224 => 0.030396271685961
1225 => 0.030022620595105
1226 => 0.030354510217912
1227 => 0.03019923005443
1228 => 0.030603225901739
1229 => 0.030666577609075
1230 => 0.030612920966764
1231 => 0.030633029798611
]
'min_raw' => 0.01373686239831
'max_raw' => 0.030666577609075
'avg_raw' => 0.022201720003692
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.013736'
'max' => '$0.030666'
'avg' => '$0.0222017'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0021181963099267
'max_diff' => -0.0029264029315659
'year' => 2031
]
6 => [
'items' => [
101 => 0.029687446732954
102 => 0.029638413262652
103 => 0.028969838415823
104 => 0.029242287607761
105 => 0.028732956902262
106 => 0.028894470915663
107 => 0.028965664753809
108 => 0.028928477132976
109 => 0.029257691476294
110 => 0.028977792030427
111 => 0.028239091373055
112 => 0.027500189457182
113 => 0.027490913145525
114 => 0.027296373313778
115 => 0.027155756647172
116 => 0.027182844405805
117 => 0.027278305200337
118 => 0.027150208292256
119 => 0.027177544262273
120 => 0.027631503503176
121 => 0.02772254179145
122 => 0.02741315811694
123 => 0.026170938019929
124 => 0.025866094092249
125 => 0.026085209862148
126 => 0.025980486636999
127 => 0.020968280409903
128 => 0.022145823915853
129 => 0.021446167550217
130 => 0.021768601393144
131 => 0.021054433418966
201 => 0.021395271808994
202 => 0.021332331403781
203 => 0.023225786515304
204 => 0.0231962228181
205 => 0.023210373395475
206 => 0.022534929468207
207 => 0.023610929984646
208 => 0.024141006530772
209 => 0.024042903469614
210 => 0.02406759389656
211 => 0.023643330558333
212 => 0.023214481191983
213 => 0.022738821245257
214 => 0.023622538632928
215 => 0.023524284344978
216 => 0.023749644330759
217 => 0.024322798226087
218 => 0.024407197314374
219 => 0.024520630544923
220 => 0.024479972806498
221 => 0.025448605085376
222 => 0.025331297325162
223 => 0.025613975275531
224 => 0.025032485284795
225 => 0.02437447416474
226 => 0.024499540566658
227 => 0.024487495666433
228 => 0.024334150262073
229 => 0.024195716887553
301 => 0.023965264322339
302 => 0.024694450339238
303 => 0.024664846718602
304 => 0.025144094926256
305 => 0.025059383150385
306 => 0.024493657178627
307 => 0.024513862192383
308 => 0.024649750620089
309 => 0.02512006201993
310 => 0.025259682464644
311 => 0.02519500471174
312 => 0.025348092155454
313 => 0.025469086229088
314 => 0.025363287148245
315 => 0.026861179022463
316 => 0.026239149883631
317 => 0.026542322557847
318 => 0.02661462745425
319 => 0.026429419982521
320 => 0.026469584851357
321 => 0.026530423683371
322 => 0.026899825157898
323 => 0.027869241514236
324 => 0.028298589419417
325 => 0.029590303775808
326 => 0.028262938052703
327 => 0.02818417766388
328 => 0.028416854425502
329 => 0.029175227494555
330 => 0.029789817636661
331 => 0.029993712643354
401 => 0.030020660734428
402 => 0.030403181321667
403 => 0.030622434988686
404 => 0.030356733261086
405 => 0.030131578867076
406 => 0.029325103774922
407 => 0.029418455462798
408 => 0.030061556019846
409 => 0.03096997343511
410 => 0.031749490082129
411 => 0.031476530521241
412 => 0.0335590192914
413 => 0.033765489546757
414 => 0.033736962033449
415 => 0.034207332002047
416 => 0.033273743403559
417 => 0.032874616190278
418 => 0.030180259802672
419 => 0.03093726404622
420 => 0.032037614171518
421 => 0.031891978706334
422 => 0.031092875032899
423 => 0.031748883890336
424 => 0.031531986846773
425 => 0.031360911149449
426 => 0.032144642083547
427 => 0.031282897727614
428 => 0.032029017612368
429 => 0.03107211114255
430 => 0.031477777377523
501 => 0.031247501602684
502 => 0.031396518250542
503 => 0.030525369972074
504 => 0.030995420437206
505 => 0.030505814327342
506 => 0.030505582190297
507 => 0.030494774108286
508 => 0.031070793525295
509 => 0.031089577497804
510 => 0.030663898278317
511 => 0.03060255125243
512 => 0.030829383360413
513 => 0.030563822369388
514 => 0.030688076685668
515 => 0.030567585906048
516 => 0.030540460893632
517 => 0.030324324179757
518 => 0.030231206540617
519 => 0.03026772036627
520 => 0.03014307985515
521 => 0.030067979438756
522 => 0.030479834745215
523 => 0.03025979706917
524 => 0.030446110815576
525 => 0.030233782786876
526 => 0.029497761332484
527 => 0.029074467610777
528 => 0.027684191312654
529 => 0.028078471946169
530 => 0.028339880414103
531 => 0.02825348491701
601 => 0.028439095875384
602 => 0.028450490880758
603 => 0.028390146866111
604 => 0.028320276227697
605 => 0.028286267065006
606 => 0.028539743500523
607 => 0.028686895102966
608 => 0.028366116251054
609 => 0.028290962254224
610 => 0.028615287384193
611 => 0.028813125526117
612 => 0.030273851210438
613 => 0.030165635933661
614 => 0.030437235042194
615 => 0.030406657150601
616 => 0.030691336285475
617 => 0.031156666356614
618 => 0.030210520213654
619 => 0.0303747384688
620 => 0.030334475944991
621 => 0.030774051622531
622 => 0.030775423929815
623 => 0.030511876352696
624 => 0.030654749769824
625 => 0.03057500174791
626 => 0.030719117202099
627 => 0.030164190652664
628 => 0.030840031289257
629 => 0.031223189379996
630 => 0.031228509530458
701 => 0.031410123424537
702 => 0.03159465365929
703 => 0.031948843375701
704 => 0.031584775500336
705 => 0.030929852833848
706 => 0.030977136134981
707 => 0.030593155215246
708 => 0.030599610003878
709 => 0.030565153836287
710 => 0.030668559388968
711 => 0.030186882356479
712 => 0.030299930993242
713 => 0.030141662239762
714 => 0.030374394423439
715 => 0.030124013065811
716 => 0.030334456529183
717 => 0.030425276951664
718 => 0.03076040626584
719 => 0.030074514193622
720 => 0.028675933827558
721 => 0.028969932376653
722 => 0.028535085429454
723 => 0.028575332169997
724 => 0.028656636991113
725 => 0.028393101464592
726 => 0.028443375738094
727 => 0.028441579587269
728 => 0.028426101329827
729 => 0.028357545561154
730 => 0.028258126133232
731 => 0.028654182534385
801 => 0.028721480234606
802 => 0.028871074685777
803 => 0.029316166301576
804 => 0.029271691153175
805 => 0.029344231965474
806 => 0.029185875779525
807 => 0.028582677859286
808 => 0.028615434408428
809 => 0.028206959715743
810 => 0.028860629069509
811 => 0.028705831538523
812 => 0.028606032563279
813 => 0.028578801488253
814 => 0.029024996400077
815 => 0.029158504910943
816 => 0.029075311366395
817 => 0.028904678979381
818 => 0.029232343605383
819 => 0.029320012836241
820 => 0.029339638743913
821 => 0.029920197637728
822 => 0.029372085536872
823 => 0.029504021567314
824 => 0.03053334881402
825 => 0.029599891038709
826 => 0.030094364440884
827 => 0.030070162540962
828 => 0.030323118401448
829 => 0.030049412777174
830 => 0.03005280568642
831 => 0.030277413353817
901 => 0.029961992393165
902 => 0.029883889727532
903 => 0.029775991454343
904 => 0.030011583386473
905 => 0.030152810094878
906 => 0.031290993645035
907 => 0.032026312125912
908 => 0.031994390011393
909 => 0.032286098382406
910 => 0.032154681089522
911 => 0.03173029998467
912 => 0.03245466678289
913 => 0.032225446819139
914 => 0.032244343434448
915 => 0.032243640101483
916 => 0.03239605133862
917 => 0.032288054008824
918 => 0.032075180186096
919 => 0.032216495764028
920 => 0.032636152509242
921 => 0.033938779923028
922 => 0.0346677474813
923 => 0.033894895160701
924 => 0.034427998342546
925 => 0.034108326397525
926 => 0.034050232495698
927 => 0.034385060689912
928 => 0.034720474956556
929 => 0.034699110517807
930 => 0.034455616983936
1001 => 0.034318073665073
1002 => 0.0353595977559
1003 => 0.036126974964122
1004 => 0.036074644983084
1005 => 0.036305612500767
1006 => 0.036983740276241
1007 => 0.037045739781456
1008 => 0.037037929268841
1009 => 0.036884257026186
1010 => 0.037551961887159
1011 => 0.038108973029333
1012 => 0.036848686342029
1013 => 0.03732858701419
1014 => 0.037544029887357
1015 => 0.037860363944186
1016 => 0.038394072521801
1017 => 0.0389738215963
1018 => 0.039055804472059
1019 => 0.038997633698466
1020 => 0.038615273599343
1021 => 0.039249641954504
1022 => 0.039621240059189
1023 => 0.039842518226657
1024 => 0.040403642842181
1025 => 0.037545360389196
1026 => 0.035522126003118
1027 => 0.035206168737873
1028 => 0.035848680261154
1029 => 0.03601810542591
1030 => 0.035949810354438
1031 => 0.033672476108485
1101 => 0.035194179044374
1102 => 0.036831403454973
1103 => 0.03689429591239
1104 => 0.037713924685085
1105 => 0.037980829411192
1106 => 0.03864073800441
1107 => 0.038599460542231
1108 => 0.03876013778324
1109 => 0.038723200868074
1110 => 0.039945542576861
1111 => 0.041293967001154
1112 => 0.041247275351068
1113 => 0.041053423386242
1114 => 0.04134132661068
1115 => 0.042733045122493
1116 => 0.04260491798376
1117 => 0.042729382585196
1118 => 0.044370297144442
1119 => 0.046503719488836
1120 => 0.045512530617764
1121 => 0.047663125261076
1122 => 0.049016810590918
1123 => 0.051357869395204
1124 => 0.051064757302949
1125 => 0.051976114315975
1126 => 0.050540025483475
1127 => 0.047242475242616
1128 => 0.046720625294485
1129 => 0.047765382105989
1130 => 0.050333814781192
1201 => 0.047684493020771
1202 => 0.04822044736242
1203 => 0.048066092475969
1204 => 0.048057867560036
1205 => 0.048371779148045
1206 => 0.047916434017111
1207 => 0.046061276038661
1208 => 0.04691148400767
1209 => 0.046583177880495
1210 => 0.046947458005439
1211 => 0.048913327599206
1212 => 0.048044169791324
1213 => 0.047128582645366
1214 => 0.04827693211145
1215 => 0.049739175597462
1216 => 0.049647671028012
1217 => 0.049470113917335
1218 => 0.050470994053632
1219 => 0.052124154808431
1220 => 0.052570997517515
1221 => 0.052900847670064
1222 => 0.052946328433237
1223 => 0.05341480856005
1224 => 0.05089567284598
1225 => 0.054893605920203
1226 => 0.055583938521449
1227 => 0.055454184603769
1228 => 0.056221460236418
1229 => 0.055995708281388
1230 => 0.055668629117948
1231 => 0.056884924199902
]
'min_raw' => 0.020968280409903
'max_raw' => 0.056884924199902
'avg_raw' => 0.038926602304903
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.020968'
'max' => '$0.056884'
'avg' => '$0.038926'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0072314180115933
'max_diff' => 0.026218346590827
'year' => 2032
]
7 => [
'items' => [
101 => 0.055490540038393
102 => 0.053511387269215
103 => 0.052425584916841
104 => 0.053855457043625
105 => 0.054728630055791
106 => 0.055305741872599
107 => 0.055480375559665
108 => 0.051091226180404
109 => 0.048725718098367
110 => 0.050241981658347
111 => 0.052091927848445
112 => 0.050885396301488
113 => 0.050932690053863
114 => 0.049212493138816
115 => 0.052244127105622
116 => 0.051802443536713
117 => 0.054093898673536
118 => 0.053547024515057
119 => 0.055415617225359
120 => 0.054923554141375
121 => 0.056966080492116
122 => 0.057780899552619
123 => 0.059149107571665
124 => 0.060155566960084
125 => 0.060746579163464
126 => 0.060711097007604
127 => 0.063052981798505
128 => 0.061672054156533
129 => 0.059937283578561
130 => 0.059905907051936
131 => 0.060804369316158
201 => 0.06268729974088
202 => 0.063175516204487
203 => 0.063448362603929
204 => 0.063030488845333
205 => 0.061531590861948
206 => 0.060884374312308
207 => 0.06143582156427
208 => 0.060761448961523
209 => 0.061925605269397
210 => 0.063524240530479
211 => 0.063194128670754
212 => 0.064297643124677
213 => 0.065439664491381
214 => 0.067072806337156
215 => 0.067499770090709
216 => 0.068205524939355
217 => 0.068931978507002
218 => 0.069165295814458
219 => 0.0696107709485
220 => 0.06960842307465
221 => 0.07095089237502
222 => 0.072431677586141
223 => 0.072990639723082
224 => 0.074275942335628
225 => 0.072074906654019
226 => 0.073744417502195
227 => 0.075250358077816
228 => 0.073454913640918
301 => 0.075929515512281
302 => 0.076025598695378
303 => 0.077476340684927
304 => 0.076005735749983
305 => 0.07513249523395
306 => 0.077653507883842
307 => 0.07887334649397
308 => 0.078505921177223
309 => 0.075709796374757
310 => 0.074082331808288
311 => 0.069822943123367
312 => 0.074868373012554
313 => 0.077325854734369
314 => 0.075703432090782
315 => 0.076521687701518
316 => 0.080985824993422
317 => 0.082685479442694
318 => 0.082331963198727
319 => 0.082391701624584
320 => 0.083308804314501
321 => 0.087375742699269
322 => 0.084938738948222
323 => 0.086801737003109
324 => 0.087789864453882
325 => 0.0887076922991
326 => 0.086453797193713
327 => 0.083521512777898
328 => 0.082592735214484
329 => 0.075542114133332
330 => 0.075175098686763
331 => 0.074969081794898
401 => 0.073670174433353
402 => 0.072649589047849
403 => 0.07183798165739
404 => 0.069708081498344
405 => 0.070426860278147
406 => 0.067032243969338
407 => 0.069203999185899
408 => 0.063786109591162
409 => 0.068298289039117
410 => 0.06584251490922
411 => 0.067491501189613
412 => 0.067485748031824
413 => 0.064449441478045
414 => 0.062698163223927
415 => 0.06381414588822
416 => 0.065010567891157
417 => 0.065204683335887
418 => 0.066755875692504
419 => 0.067188780136468
420 => 0.065877059460882
421 => 0.063673835871721
422 => 0.064185594461304
423 => 0.062687792452443
424 => 0.060062952044037
425 => 0.061948158250671
426 => 0.062591850536281
427 => 0.062876141719948
428 => 0.060294912643238
429 => 0.059483834426126
430 => 0.059052023188941
501 => 0.063340631611605
502 => 0.063575571261984
503 => 0.062373586793523
504 => 0.067806670567812
505 => 0.066576996380083
506 => 0.067950843725267
507 => 0.064139157733299
508 => 0.064284769271308
509 => 0.062480256037732
510 => 0.063490662870917
511 => 0.062776539888154
512 => 0.06340903198383
513 => 0.063788145138116
514 => 0.065592362268826
515 => 0.068318890300596
516 => 0.065322872394837
517 => 0.064017464489531
518 => 0.06482733221209
519 => 0.066984116680385
520 => 0.070251755553618
521 => 0.068317247573303
522 => 0.069175749364891
523 => 0.069363293814267
524 => 0.067936859248961
525 => 0.070304350230686
526 => 0.071573107881255
527 => 0.072874590698336
528 => 0.074004631761687
529 => 0.072354749840973
530 => 0.07412035999742
531 => 0.072697589883472
601 => 0.071421218007991
602 => 0.071423153737263
603 => 0.070622467014955
604 => 0.069071035597465
605 => 0.068784927840852
606 => 0.070273296522182
607 => 0.07146682725557
608 => 0.071565132163398
609 => 0.072225932103225
610 => 0.072616986700834
611 => 0.076449853370347
612 => 0.077991464051961
613 => 0.079876516412242
614 => 0.080610850542302
615 => 0.082820933000424
616 => 0.081036111921369
617 => 0.080649954653864
618 => 0.075289017522923
619 => 0.076166870677789
620 => 0.077572398278961
621 => 0.075312194155378
622 => 0.076745773444516
623 => 0.077028792363553
624 => 0.075235393284136
625 => 0.076193325220653
626 => 0.073649342004291
627 => 0.068374342182809
628 => 0.070310222813426
629 => 0.071735682567935
630 => 0.069701375740331
701 => 0.073347791990265
702 => 0.071217630894363
703 => 0.070542472092728
704 => 0.067908436896055
705 => 0.069151600115572
706 => 0.070832996170351
707 => 0.06979408889177
708 => 0.07194997748754
709 => 0.075003290693637
710 => 0.077179263512247
711 => 0.077346307686098
712 => 0.075947302942588
713 => 0.078189216972392
714 => 0.078205546868545
715 => 0.07567665868444
716 => 0.074127728752583
717 => 0.073775808613089
718 => 0.074654974119553
719 => 0.075722443347306
720 => 0.07740554479903
721 => 0.078422607756201
722 => 0.081074568539993
723 => 0.081792113090412
724 => 0.082580477005409
725 => 0.083633974318272
726 => 0.084898967953531
727 => 0.082131233895712
728 => 0.082241201129531
729 => 0.079663925496777
730 => 0.076909736864467
731 => 0.078999822721931
801 => 0.081732331948095
802 => 0.081105491312458
803 => 0.081034958935757
804 => 0.081153574829319
805 => 0.08068095746075
806 => 0.078543326618732
807 => 0.077469821792147
808 => 0.078854916898731
809 => 0.079591033304389
810 => 0.080732685653469
811 => 0.080591952904087
812 => 0.083532726750805
813 => 0.084675422543254
814 => 0.084383072060836
815 => 0.084436871585408
816 => 0.086505667735373
817 => 0.088806594534512
818 => 0.090961716115939
819 => 0.093153998353191
820 => 0.090511116549951
821 => 0.089169224160554
822 => 0.090553714577944
823 => 0.089819084474363
824 => 0.094040486954981
825 => 0.094332767703693
826 => 0.098553864928863
827 => 0.10256018883446
828 => 0.1000438885701
829 => 0.10241664638274
830 => 0.10498297741088
831 => 0.10993384633638
901 => 0.10826656785594
902 => 0.10698945866951
903 => 0.10578259665928
904 => 0.10829388491862
905 => 0.11152461714546
906 => 0.11222048592355
907 => 0.11334805918639
908 => 0.11216255377361
909 => 0.11359036446417
910 => 0.11863116361363
911 => 0.11726909518708
912 => 0.11533473905795
913 => 0.11931396586296
914 => 0.12075403257484
915 => 0.1308611749276
916 => 0.14362185965318
917 => 0.13833885238562
918 => 0.13505951929306
919 => 0.13583024035663
920 => 0.14049001044198
921 => 0.14198658069968
922 => 0.13791838684054
923 => 0.13935534168699
924 => 0.1472731041692
925 => 0.15152072970868
926 => 0.14575188369385
927 => 0.1298358663347
928 => 0.11516057145277
929 => 0.1190531204926
930 => 0.11861182623134
1001 => 0.1271184742575
1002 => 0.11723661030557
1003 => 0.11740299555107
1004 => 0.12608555204971
1005 => 0.12376919483257
1006 => 0.12001699279743
1007 => 0.11518796668007
1008 => 0.10626106527126
1009 => 0.098354259748415
1010 => 0.11386132620727
1011 => 0.1131926333038
1012 => 0.11222426688483
1013 => 0.11437926156205
1014 => 0.12484330400876
1015 => 0.12460207396156
1016 => 0.12306749147795
1017 => 0.12423145876658
1018 => 0.11981294370404
1019 => 0.12095169564337
1020 => 0.11515824681109
1021 => 0.11777712763907
1022 => 0.12000894225707
1023 => 0.12045701208421
1024 => 0.12146653628377
1025 => 0.1128402625293
1026 => 0.11671320619097
1027 => 0.11898819774645
1028 => 0.10870970313388
1029 => 0.11878502495584
1030 => 0.11269009829497
1031 => 0.11062138864354
1101 => 0.11340663365741
1102 => 0.11232122096677
1103 => 0.11138804687292
1104 => 0.11086731969459
1105 => 0.1129124962365
1106 => 0.11281708630631
1107 => 0.10947078053207
1108 => 0.10510566106246
1109 => 0.10657073843662
1110 => 0.10603846209142
1111 => 0.10410942395137
1112 => 0.10540936274481
1113 => 0.099685090182471
1114 => 0.089836776760767
1115 => 0.096342874269143
1116 => 0.096092396592343
1117 => 0.095966094389442
1118 => 0.10085524685166
1119 => 0.10038526765436
1120 => 0.0995322508092
1121 => 0.10409375762806
1122 => 0.10242874627825
1123 => 0.10755991893236
1124 => 0.11093964110579
1125 => 0.11008243424005
1126 => 0.11326107927977
1127 => 0.10660449086029
1128 => 0.10881554251727
1129 => 0.10927123719939
1130 => 0.10403746934198
1201 => 0.10046216206337
1202 => 0.10022372982937
1203 => 0.094024639715936
1204 => 0.097336143617224
1205 => 0.10025013001102
1206 => 0.098854556662869
1207 => 0.098412759832413
1208 => 0.10066980402517
1209 => 0.10084519568922
1210 => 0.09684624716163
1211 => 0.097677755190747
1212 => 0.10114528189887
1213 => 0.097590382414459
1214 => 0.090683793405782
1215 => 0.088970863840566
1216 => 0.088742327461011
1217 => 0.084096726625989
1218 => 0.089085329984806
1219 => 0.086907670932424
1220 => 0.093786869786536
1221 => 0.089857508294951
1222 => 0.089688121374564
1223 => 0.08943206820074
1224 => 0.085433407654683
1225 => 0.086308860186135
1226 => 0.089218997735865
1227 => 0.090257367598655
1228 => 0.090149057114853
1229 => 0.089204736474252
1230 => 0.089637041627815
1231 => 0.088244436103088
]
'min_raw' => 0.048725718098367
'max_raw' => 0.15152072970868
'avg_raw' => 0.10012322390352
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.048725'
'max' => '$0.15152'
'avg' => '$0.100123'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.027757437688464
'max_diff' => 0.094635805508773
'year' => 2033
]
8 => [
'items' => [
101 => 0.087752678107729
102 => 0.086200554605685
103 => 0.08391936184274
104 => 0.084236575687796
105 => 0.079716935917847
106 => 0.077254396295742
107 => 0.076572797784093
108 => 0.075661335768354
109 => 0.076675749844079
110 => 0.079704132346242
111 => 0.076051260541445
112 => 0.069788668051284
113 => 0.070165060530881
114 => 0.071010702680606
115 => 0.069434854129077
116 => 0.067943445725999
117 => 0.069240104330687
118 => 0.066586561334308
119 => 0.071331370674266
120 => 0.071203036878795
121 => 0.07297160838369
122 => 0.074077532440442
123 => 0.071528735536794
124 => 0.070887720008207
125 => 0.071252871585822
126 => 0.065217729393037
127 => 0.072478408510656
128 => 0.072541199165171
129 => 0.072003547459898
130 => 0.075869634941712
131 => 0.084028285391265
201 => 0.080958672911189
202 => 0.079770026179375
203 => 0.077510407873302
204 => 0.080521215103286
205 => 0.080290032083932
206 => 0.07924453479686
207 => 0.078612214775489
208 => 0.079777283802856
209 => 0.07846784982975
210 => 0.078232639507341
211 => 0.076807520864897
212 => 0.076298818348311
213 => 0.075922195257062
214 => 0.075507570239817
215 => 0.076422129709742
216 => 0.074349617630573
217 => 0.071850371233959
218 => 0.071642585938301
219 => 0.072216299408282
220 => 0.07196247390576
221 => 0.071641370719449
222 => 0.071028297289531
223 => 0.070846411499116
224 => 0.071437452079525
225 => 0.07077020172405
226 => 0.071754765970561
227 => 0.071487018973934
228 => 0.069991406015829
301 => 0.068127318523193
302 => 0.068110724234452
303 => 0.06770910964188
304 => 0.067197593075081
305 => 0.067055300868111
306 => 0.069130903359675
307 => 0.073427338399658
308 => 0.072583845396332
309 => 0.073193355535875
310 => 0.076191542168068
311 => 0.077144575539824
312 => 0.076468135026384
313 => 0.075542181530553
314 => 0.075582918785076
315 => 0.078747182185515
316 => 0.078944533412436
317 => 0.079443176294946
318 => 0.080084073315434
319 => 0.07657728256029
320 => 0.075417749255869
321 => 0.074868298047776
322 => 0.073176200991228
323 => 0.075000982597278
324 => 0.073937760500372
325 => 0.074081225486083
326 => 0.073987793725931
327 => 0.074038813784802
328 => 0.071330044403356
329 => 0.072316977597228
330 => 0.070676009743576
331 => 0.068478937994821
401 => 0.068471572639927
402 => 0.069009302837845
403 => 0.068689439874739
404 => 0.067828696865448
405 => 0.067950961347325
406 => 0.066879795833346
407 => 0.0680810202348
408 => 0.068115467052446
409 => 0.067652930226751
410 => 0.069503582154214
411 => 0.070261795758885
412 => 0.069957344111713
413 => 0.070240434619713
414 => 0.072618896338763
415 => 0.073006689378528
416 => 0.073178921430622
417 => 0.072948153297191
418 => 0.070283908533734
419 => 0.070402079118236
420 => 0.069535021776569
421 => 0.068802449691112
422 => 0.068831748732696
423 => 0.069208386012326
424 => 0.070853183101954
425 => 0.074314561610993
426 => 0.074445918395176
427 => 0.074605126649554
428 => 0.073957546667342
429 => 0.073762230348201
430 => 0.074019902988567
501 => 0.075319814765926
502 => 0.078663540779899
503 => 0.077481644686609
504 => 0.076520744765456
505 => 0.077363713053066
506 => 0.077233944692592
507 => 0.076138569135932
508 => 0.076107825592318
509 => 0.074005449686338
510 => 0.073228249182681
511 => 0.072578762269375
512 => 0.07186953951533
513 => 0.07144908849337
514 => 0.072095092354672
515 => 0.072242841081045
516 => 0.070830342348093
517 => 0.070637823990154
518 => 0.071791300946385
519 => 0.071283698743903
520 => 0.071805780197085
521 => 0.071926907572555
522 => 0.071907403275304
523 => 0.071377408278171
524 => 0.071715211284666
525 => 0.070916206470383
526 => 0.070047408741494
527 => 0.069493169918474
528 => 0.069009523036278
529 => 0.069277878436242
530 => 0.068321240435129
531 => 0.068015192685254
601 => 0.071600771226874
602 => 0.074249476647033
603 => 0.074210963421222
604 => 0.073976524063891
605 => 0.073628194733185
606 => 0.075294332305776
607 => 0.074713883290957
608 => 0.075136208447376
609 => 0.075243707924615
610 => 0.075569076465448
611 => 0.075685367752425
612 => 0.075333854713689
613 => 0.074154134021991
614 => 0.071214382222757
615 => 0.069845919824506
616 => 0.069394304439539
617 => 0.069410719801043
618 => 0.068957910849366
619 => 0.069091283379109
620 => 0.068911529326418
621 => 0.068571118637798
622 => 0.069256859035472
623 => 0.06933588422819
624 => 0.069175824225386
625 => 0.069213524150303
626 => 0.067888295689601
627 => 0.067989049931223
628 => 0.06742803751064
629 => 0.067322854444887
630 => 0.065904663898593
701 => 0.063392133775828
702 => 0.06478431936104
703 => 0.063102754945021
704 => 0.062465921020816
705 => 0.065480593770009
706 => 0.065178004239996
707 => 0.064660102497121
708 => 0.063894017879228
709 => 0.06360986964246
710 => 0.061883474906254
711 => 0.061781470295281
712 => 0.062637118143124
713 => 0.062242266102389
714 => 0.061687744295036
715 => 0.059679322519778
716 => 0.057421191478791
717 => 0.057489350260812
718 => 0.058207619730929
719 => 0.060296085087128
720 => 0.059480085541643
721 => 0.058888068508879
722 => 0.058777201514608
723 => 0.060164934063674
724 => 0.062128866359559
725 => 0.06305029945228
726 => 0.062137187241733
727 => 0.061088253099709
728 => 0.061152096860641
729 => 0.061576820799614
730 => 0.061621453280327
731 => 0.060938704986041
801 => 0.061130894631662
802 => 0.060838940985775
803 => 0.059047221999872
804 => 0.059014815485019
805 => 0.058575098750507
806 => 0.05856178430254
807 => 0.057813716444655
808 => 0.057709056580188
809 => 0.056223722443884
810 => 0.057201373870405
811 => 0.056545616622498
812 => 0.055557235772405
813 => 0.055386838541306
814 => 0.055381716194778
815 => 0.05639656232991
816 => 0.057189514802444
817 => 0.056557023800579
818 => 0.056413017859778
819 => 0.057950624557275
820 => 0.057754950089423
821 => 0.057585497262227
822 => 0.061953017763061
823 => 0.058495784484776
824 => 0.056988233443468
825 => 0.05512235275367
826 => 0.055729892914855
827 => 0.055857910553439
828 => 0.05137080384475
829 => 0.049550385211868
830 => 0.048925686138092
831 => 0.048566162989185
901 => 0.04873000220275
902 => 0.047091411919347
903 => 0.048192571689575
904 => 0.046773691010738
905 => 0.046535811047493
906 => 0.049072945466843
907 => 0.049425972899571
908 => 0.047919848194526
909 => 0.048887024074606
910 => 0.048536312655739
911 => 0.046798013647542
912 => 0.046731623411491
913 => 0.045859406073342
914 => 0.044494554833697
915 => 0.043870781193331
916 => 0.043545914465578
917 => 0.043679960808975
918 => 0.043612182875868
919 => 0.04316988601558
920 => 0.043637534814165
921 => 0.042442885379606
922 => 0.04196716634882
923 => 0.041752295099212
924 => 0.040691974964585
925 => 0.04237941582528
926 => 0.042711862932657
927 => 0.043044965063534
928 => 0.04594439169433
929 => 0.04579954453355
930 => 0.047108892323573
1001 => 0.047058013476189
1002 => 0.046684566276446
1003 => 0.045109053969816
1004 => 0.045737025094432
1005 => 0.043804227581243
1006 => 0.04525241089558
1007 => 0.044591520508498
1008 => 0.045028963190912
1009 => 0.044242401805315
1010 => 0.044677717352428
1011 => 0.042790698474791
1012 => 0.041028626797926
1013 => 0.041737735878775
1014 => 0.042508618546118
1015 => 0.044180088586169
1016 => 0.043184574819643
1017 => 0.043542599214629
1018 => 0.042343277423986
1019 => 0.039868734000557
1020 => 0.039882739647599
1021 => 0.039502085052764
1022 => 0.039173143906345
1023 => 0.043298921551167
1024 => 0.042785815882141
1025 => 0.041968249152157
1026 => 0.043062594709051
1027 => 0.043351957043893
1028 => 0.04336019478277
1029 => 0.044158601051933
1030 => 0.044584710620907
1031 => 0.044659814279303
1101 => 0.04591612379454
1102 => 0.046337222172924
1103 => 0.048071666797415
1104 => 0.044548558201042
1105 => 0.044476002097945
1106 => 0.043077994395259
1107 => 0.042191355808588
1108 => 0.043138703297841
1109 => 0.04397792384749
1110 => 0.043104071317055
1111 => 0.043218178009496
1112 => 0.042045102383761
1113 => 0.042464421721623
1114 => 0.042825596023804
1115 => 0.042626176802984
1116 => 0.042327636577416
1117 => 0.043909117332764
1118 => 0.043819883990674
1119 => 0.04529259522814
1120 => 0.046440678952335
1121 => 0.048498250230606
1122 => 0.046351067338113
1123 => 0.046272815459232
1124 => 0.047037740127294
1125 => 0.046337105066943
1126 => 0.046779882239985
1127 => 0.048426911982721
1128 => 0.048461711125829
1129 => 0.047878780642598
1130 => 0.047843309269717
1201 => 0.047955267445582
1202 => 0.048611009978575
1203 => 0.048381873388615
1204 => 0.048647036051546
1205 => 0.048978626021856
1206 => 0.050350222730292
1207 => 0.050680910053178
1208 => 0.049877511300286
1209 => 0.049950049212397
1210 => 0.049649556025027
1211 => 0.049359283371195
1212 => 0.050011773906091
1213 => 0.051204213183348
1214 => 0.051196795080492
1215 => 0.051473417815108
1216 => 0.051645751487107
1217 => 0.050905969210928
1218 => 0.050424398151683
1219 => 0.05060906313896
1220 => 0.050904346475096
1221 => 0.050513306732781
1222 => 0.048099628295978
1223 => 0.048831784147328
1224 => 0.048709917613072
1225 => 0.048536364848813
1226 => 0.04927255321894
1227 => 0.049201546054698
1228 => 0.047074605807611
1229 => 0.047210765621389
1230 => 0.047082886136862
1231 => 0.047496090913049
]
'min_raw' => 0.039173143906345
'max_raw' => 0.087752678107729
'avg_raw' => 0.063462911007037
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.039173'
'max' => '$0.087752'
'avg' => '$0.063462'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0095525741920221
'max_diff' => -0.063768051600946
'year' => 2034
]
9 => [
'items' => [
101 => 0.046314790653006
102 => 0.046678150656817
103 => 0.046906046644918
104 => 0.047040279132689
105 => 0.047525218922597
106 => 0.047468316835406
107 => 0.047521681808963
108 => 0.048240719498039
109 => 0.051877365385446
110 => 0.05207529999729
111 => 0.051100597577384
112 => 0.051489971968981
113 => 0.050742458283933
114 => 0.051244269228613
115 => 0.051587595532346
116 => 0.050036169983625
117 => 0.049944304631299
118 => 0.049193705691367
119 => 0.049597035045589
120 => 0.048955309042615
121 => 0.049112766157122
122 => 0.048672502338095
123 => 0.049464889556692
124 => 0.050350901591608
125 => 0.050574743221303
126 => 0.049985912263455
127 => 0.049559559844122
128 => 0.048811025444992
129 => 0.050055854832923
130 => 0.050419880881443
131 => 0.050053942759061
201 => 0.049969146900199
202 => 0.049808458900879
203 => 0.050003237618876
204 => 0.050417898317404
205 => 0.050222351989559
206 => 0.050351513784183
207 => 0.049859282214139
208 => 0.050906214109643
209 => 0.052568993917585
210 => 0.05257434002656
211 => 0.052378792644647
212 => 0.052298778869096
213 => 0.052499422349746
214 => 0.052608263207171
215 => 0.05325710743187
216 => 0.053953343136066
217 => 0.057202371376112
218 => 0.056290057247504
219 => 0.059172788387628
220 => 0.061452654443676
221 => 0.062136286587425
222 => 0.061507377182554
223 => 0.059355912081509
224 => 0.059250350939545
225 => 0.062465548125643
226 => 0.06155710765521
227 => 0.061449051551886
228 => 0.060299517176182
301 => 0.060979034364825
302 => 0.060830413987753
303 => 0.060595809451787
304 => 0.06189228091214
305 => 0.064319159749116
306 => 0.063940907923248
307 => 0.063658560481834
308 => 0.062421396183665
309 => 0.063166445421813
310 => 0.062901147658587
311 => 0.064041035211527
312 => 0.063365791076766
313 => 0.06155022532517
314 => 0.061839360155295
315 => 0.06179565800738
316 => 0.062695045114699
317 => 0.062425071429242
318 => 0.061742941312372
319 => 0.064310864941087
320 => 0.06414411826418
321 => 0.064380526928436
322 => 0.064484601333623
323 => 0.066047651194532
324 => 0.066687982710529
325 => 0.066833349175242
326 => 0.067441614590422
327 => 0.066818214977595
328 => 0.069312257905296
329 => 0.070970650920778
330 => 0.072896959748385
331 => 0.07571181468852
401 => 0.076770226184874
402 => 0.076579033621532
403 => 0.078713224511646
404 => 0.082548318100784
405 => 0.077354215685418
406 => 0.082823618141065
407 => 0.081092068470895
408 => 0.076986595352171
409 => 0.076722251283674
410 => 0.079502525345197
411 => 0.085668905622192
412 => 0.084124297301311
413 => 0.085671432048065
414 => 0.083866617185076
415 => 0.083776992914955
416 => 0.085583776218592
417 => 0.08980542389017
418 => 0.0877998773275
419 => 0.084924434549719
420 => 0.087047616749987
421 => 0.085208319836879
422 => 0.081063869104854
423 => 0.084123116168438
424 => 0.08207748477936
425 => 0.082674508770439
426 => 0.086974121685577
427 => 0.086456780884263
428 => 0.087126267785632
429 => 0.085944640928239
430 => 0.084840815117981
501 => 0.082780442271953
502 => 0.082170467447398
503 => 0.08233904254431
504 => 0.082170383909952
505 => 0.081017624238404
506 => 0.080768685897088
507 => 0.080353777755323
508 => 0.080482375137705
509 => 0.079702226445529
510 => 0.08117452821461
511 => 0.081447800396831
512 => 0.08251921884459
513 => 0.082630457062131
514 => 0.085614342188454
515 => 0.083970868403027
516 => 0.085073452508991
517 => 0.08497482700863
518 => 0.077075573403537
519 => 0.078164020854614
520 => 0.079857303514864
521 => 0.079094481971612
522 => 0.078016030782204
523 => 0.077145123623863
524 => 0.075825610224148
525 => 0.077682799995237
526 => 0.080124807054106
527 => 0.082692390391069
528 => 0.085777173535705
529 => 0.085088685848657
530 => 0.08263472251591
531 => 0.082744805518396
601 => 0.083425295323697
602 => 0.082543999196814
603 => 0.082284087764052
604 => 0.083389587484047
605 => 0.083397200453047
606 => 0.082383162750873
607 => 0.081256245411846
608 => 0.081251523587048
609 => 0.081050999531299
610 => 0.083902289969127
611 => 0.085470211411954
612 => 0.085649971078543
613 => 0.085458112154143
614 => 0.085531951039536
615 => 0.084619612098746
616 => 0.086704948371683
617 => 0.088618659154112
618 => 0.088105743783953
619 => 0.087336810728869
620 => 0.086724318513661
621 => 0.087961460083333
622 => 0.087906372116677
623 => 0.088601944559912
624 => 0.088570389376066
625 => 0.088336494525209
626 => 0.088105752137075
627 => 0.089020619624088
628 => 0.088757152480151
629 => 0.088493276098967
630 => 0.087964031619051
701 => 0.088035964733691
702 => 0.08726716444574
703 => 0.086911482254627
704 => 0.081562875501183
705 => 0.080133553005895
706 => 0.080583246959455
707 => 0.080731297885265
708 => 0.080109254903589
709 => 0.081001104749581
710 => 0.080862110895786
711 => 0.081402854672218
712 => 0.081065021437069
713 => 0.08107888623088
714 => 0.082072381741814
715 => 0.08236079771527
716 => 0.082214107023368
717 => 0.082316844155713
718 => 0.084684378007984
719 => 0.084347790403661
720 => 0.084168984947305
721 => 0.084218515280694
722 => 0.084823470940447
723 => 0.084992825495824
724 => 0.08427525834436
725 => 0.084613667161197
726 => 0.086054568952813
727 => 0.086558803031901
728 => 0.088168076166259
729 => 0.087484428336234
730 => 0.088739293515829
731 => 0.092596321262839
801 => 0.095677581913169
802 => 0.092843927280644
803 => 0.098502270068798
804 => 0.10290810157044
805 => 0.10273899841911
806 => 0.10197073978808
807 => 0.096954817758552
808 => 0.092339091523793
809 => 0.096200342513257
810 => 0.096210185636103
811 => 0.095878500751734
812 => 0.09381843442142
813 => 0.095806814908891
814 => 0.09596464533125
815 => 0.095876302265226
816 => 0.094296854239855
817 => 0.091885329035903
818 => 0.09235653528838
819 => 0.093128380742284
820 => 0.091667116274214
821 => 0.09120015373553
822 => 0.092068325938202
823 => 0.094865757666075
824 => 0.094336919402339
825 => 0.09432310929807
826 => 0.096585703652656
827 => 0.094966174393195
828 => 0.092362478708235
829 => 0.091705011209256
830 => 0.089371444511055
831 => 0.090983247341382
901 => 0.091041253255808
902 => 0.090158485317864
903 => 0.092434110461187
904 => 0.092413140174876
905 => 0.094573507566357
906 => 0.098703318621932
907 => 0.097481930277139
908 => 0.096061588518818
909 => 0.096216019049753
910 => 0.097909740807076
911 => 0.096885677968692
912 => 0.097253938105394
913 => 0.097909183401253
914 => 0.098304509157071
915 => 0.096159137757209
916 => 0.095658949058925
917 => 0.094635738524612
918 => 0.094368801995339
919 => 0.095202185625549
920 => 0.094982618482867
921 => 0.09103637808331
922 => 0.090623974004883
923 => 0.090636621849191
924 => 0.089599612185238
925 => 0.088017923536875
926 => 0.092174506867053
927 => 0.091840675054293
928 => 0.091472150569536
929 => 0.091517292716147
930 => 0.093321524660098
1001 => 0.092274979016709
1002 => 0.095057392135115
1003 => 0.094485411644965
1004 => 0.093898762013523
1005 => 0.093817669164673
1006 => 0.093591859107162
1007 => 0.092817472399736
1008 => 0.091882353917093
1009 => 0.091264907696276
1010 => 0.084187053105046
1011 => 0.085500661747192
1012 => 0.087011848750786
1013 => 0.087533504448725
1014 => 0.086641176279925
1015 => 0.092852706954644
1016 => 0.093987613464714
1017 => 0.090549907617592
1018 => 0.089906853214201
1019 => 0.092894865494274
1020 => 0.091092728819744
1021 => 0.091904230853939
1022 => 0.090150207323891
1023 => 0.093714247720381
1024 => 0.09368709570396
1025 => 0.092300603492222
1026 => 0.093472457215294
1027 => 0.093268818793007
1028 => 0.091703472500734
1029 => 0.093763871989903
1030 => 0.093764893922344
1031 => 0.092430425313487
1101 => 0.090872058131083
1102 => 0.09059345888586
1103 => 0.090383571779126
1104 => 0.091852611491996
1105 => 0.093169747904987
1106 => 0.095620612223755
1107 => 0.096236817744594
1108 => 0.09864190891555
1109 => 0.097209794225009
1110 => 0.097844632118336
1111 => 0.098533838454845
1112 => 0.098864269317291
1113 => 0.098325849958833
1114 => 0.10206194652235
1115 => 0.10237738754335
1116 => 0.10248315218914
1117 => 0.10122336144883
1118 => 0.10234235048392
1119 => 0.10181881257142
1120 => 0.10318091277671
1121 => 0.10339450748107
1122 => 0.10321360036533
1123 => 0.10328139869586
1124 => 0.1000932993715
1125 => 0.099927979602964
1126 => 0.097673832828475
1127 => 0.098592414300891
1128 => 0.096875170266965
1129 => 0.097419726039697
1130 => 0.097659761035599
1201 => 0.097534380375606
1202 => 0.098644349519113
1203 => 0.097700648995417
1204 => 0.095210068154653
1205 => 0.092718808756805
1206 => 0.0926875330244
1207 => 0.092031628399328
1208 => 0.091557529490325
1209 => 0.091648857759761
1210 => 0.091970710493388
1211 => 0.09153882282435
1212 => 0.0916309879558
1213 => 0.093161543230928
1214 => 0.093468485175934
1215 => 0.092425376516844
1216 => 0.088237144730734
1217 => 0.087209342145038
1218 => 0.087948106261425
1219 => 0.087595024596295
1220 => 0.070696021360576
1221 => 0.07466619150435
1222 => 0.072307251219158
1223 => 0.073394359432198
1224 => 0.070986492245643
1225 => 0.072135652674199
1226 => 0.071923444703664
1227 => 0.078307360808978
1228 => 0.078207684739783
1229 => 0.078255394399366
1230 => 0.075978088040592
1231 => 0.079605898905725
]
'min_raw' => 0.046314790653006
'max_raw' => 0.10339450748107
'avg_raw' => 0.074854649067039
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.046314'
'max' => '$0.103394'
'avg' => '$0.074854'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0071416467466615
'max_diff' => 0.015641829373343
'year' => 2035
]
10 => [
'items' => [
101 => 0.081393088989749
102 => 0.08106232766972
103 => 0.081145573167999
104 => 0.079715139702045
105 => 0.07826924412209
106 => 0.076665523402185
107 => 0.079645038273896
108 => 0.079313767082177
109 => 0.080073584008368
110 => 0.082006012382795
111 => 0.082290569801511
112 => 0.082673017857962
113 => 0.08253593745423
114 => 0.085801748810213
115 => 0.085406237506486
116 => 0.0863593059521
117 => 0.084398771849996
118 => 0.082180241417861
119 => 0.082601911523786
120 => 0.082561301301729
121 => 0.082044286564695
122 => 0.081577548777392
123 => 0.080800561864088
124 => 0.083259063430208
125 => 0.083159252756374
126 => 0.08477507154852
127 => 0.084489459881782
128 => 0.082582075270274
129 => 0.082650197884821
130 => 0.083108355206262
131 => 0.084694042926917
201 => 0.08516478300426
202 => 0.084946717444686
203 => 0.085462862449392
204 => 0.085870802416185
205 => 0.085514093428467
206 => 0.090564340461865
207 => 0.088467125791604
208 => 0.089489293629563
209 => 0.089733074635954
210 => 0.089108634714246
211 => 0.089244053373748
212 => 0.089449175743516
213 => 0.090694638605672
214 => 0.093963093533552
215 => 0.095410669971985
216 => 0.099765775109174
217 => 0.09529046890001
218 => 0.095024922750216
219 => 0.095809408696999
220 => 0.098366316447227
221 => 0.10043845002065
222 => 0.10112589627121
223 => 0.10121675364172
224 => 0.10250644850834
225 => 0.10324567755449
226 => 0.10234984562919
227 => 0.10159072187
228 => 0.098871634790514
229 => 0.099186376523793
301 => 0.10135463495173
302 => 0.10441742769097
303 => 0.10704562249051
304 => 0.10612532027355
305 => 0.11314657655686
306 => 0.11384270543809
307 => 0.11374652293525
308 => 0.11533240812456
309 => 0.11218474898368
310 => 0.11083906371793
311 => 0.10175485304316
312 => 0.10430714570263
313 => 0.10801705297407
314 => 0.10752603283525
315 => 0.10483179900863
316 => 0.10704357867255
317 => 0.10631229514692
318 => 0.10573550148926
319 => 0.10837790505192
320 => 0.10547247379082
321 => 0.1079880690747
322 => 0.10476179210263
323 => 0.10612952413655
324 => 0.10535313328434
325 => 0.10585555331661
326 => 0.10291841607412
327 => 0.10450322403519
328 => 0.10285248285258
329 => 0.10285170018632
330 => 0.10281525998322
331 => 0.10475734966406
401 => 0.10482068113883
402 => 0.10338547393036
403 => 0.10317863814947
404 => 0.10394341843844
405 => 0.10304806101633
406 => 0.10346699311882
407 => 0.10306075004294
408 => 0.10296929616977
409 => 0.10224057614876
410 => 0.10192662352713
411 => 0.10204973243963
412 => 0.10162949825427
413 => 0.10137629195705
414 => 0.1027648908776
415 => 0.10202301849027
416 => 0.10265118829429
417 => 0.10193530952126
418 => 0.099453761800398
419 => 0.09802659746424
420 => 0.093339183859127
421 => 0.094668528542818
422 => 0.095549885443412
423 => 0.095258596993024
424 => 0.095884397298125
425 => 0.095922816354319
426 => 0.095719362295851
427 => 0.095483788560225
428 => 0.095369124293767
429 => 0.096223737793274
430 => 0.096719869694706
501 => 0.095638341399421
502 => 0.095384954452025
503 => 0.096478439271372
504 => 0.097145464379488
505 => 0.10207040300878
506 => 0.10170554764778
507 => 0.10262126300465
508 => 0.10251816750826
509 => 0.10347798308715
510 => 0.1050468759103
511 => 0.1018568781315
512 => 0.10241055144408
513 => 0.10227480353402
514 => 0.10375686362104
515 => 0.10376149045086
516 => 0.1028729213943
517 => 0.10335462909524
518 => 0.10308575307153
519 => 0.10357164838715
520 => 0.101700674782
521 => 0.10397931867395
522 => 0.10527116292813
523 => 0.10528910018685
524 => 0.10590142411061
525 => 0.10652358068057
526 => 0.10771775603819
527 => 0.10649027577799
528 => 0.10428215828268
529 => 0.10444157723367
530 => 0.10314695875409
531 => 0.10316872152462
601 => 0.10305255014993
602 => 0.10340118919035
603 => 0.10177718144569
604 => 0.10215833281734
605 => 0.10162471866501
606 => 0.10240939147112
607 => 0.10156521324281
608 => 0.10227473807226
609 => 0.10258094546754
610 => 0.10371085734826
611 => 0.10139832433932
612 => 0.096682912989378
613 => 0.097674149623973
614 => 0.09620803278145
615 => 0.096343727477126
616 => 0.096617852358042
617 => 0.095729323930913
618 => 0.09589882715406
619 => 0.095892771306154
620 => 0.095840585280528
621 => 0.095609444720036
622 => 0.095274245177555
623 => 0.096609576985818
624 => 0.096836475880689
625 => 0.097340844017163
626 => 0.098841501475134
627 => 0.098691550407143
628 => 0.098936126820446
629 => 0.098402217883443
630 => 0.096368493981426
701 => 0.096478934973846
702 => 0.095101734028667
703 => 0.097305625892625
704 => 0.096783715209288
705 => 0.096447235996511
706 => 0.096355424525847
707 => 0.097859801823396
708 => 0.098309935089048
709 => 0.098029442245214
710 => 0.097454143239226
711 => 0.098558887402606
712 => 0.098854470335312
713 => 0.098920640453266
714 => 0.10087803529709
715 => 0.099030037081091
716 => 0.099474868619205
717 => 0.10294531729681
718 => 0.099798099235403
719 => 0.10146525083387
720 => 0.10138365243856
721 => 0.102236510783
722 => 0.10131369316125
723 => 0.10132513259166
724 => 0.10208241302389
725 => 0.10101894923306
726 => 0.10075562064293
727 => 0.10039183408165
728 => 0.10118614872933
729 => 0.10166230443685
730 => 0.10549976974165
731 => 0.10797894733822
801 => 0.10787131970039
802 => 0.10885483483969
803 => 0.10841175226147
804 => 0.10698092173712
805 => 0.10942317497099
806 => 0.10865034385958
807 => 0.10871405511741
808 => 0.10871168378121
809 => 0.10922554890823
810 => 0.10886142837069
811 => 0.10814370941499
812 => 0.10862016475233
813 => 0.11003506676831
814 => 0.11442696604043
815 => 0.11688473105804
816 => 0.11427900550031
817 => 0.11607640009798
818 => 0.11499860381656
819 => 0.11480273617056
820 => 0.11593163280431
821 => 0.11706250542218
822 => 0.11699047372532
823 => 0.1161695182757
824 => 0.11570578137318
825 => 0.1192173525623
826 => 0.12180461839638
827 => 0.12162818421175
828 => 0.12240690732325
829 => 0.12469326246363
830 => 0.12490229812414
831 => 0.12487596443554
901 => 0.12435784774038
902 => 0.12660906129681
903 => 0.12848706325193
904 => 0.12423791869527
905 => 0.12585593731706
906 => 0.12658231800568
907 => 0.12764886036402
908 => 0.1294482960958
909 => 0.13140296057725
910 => 0.13167937156674
911 => 0.13148324474222
912 => 0.13019409097249
913 => 0.1323329081721
914 => 0.1335857771262
915 => 0.13433183191697
916 => 0.13622370273467
917 => 0.12658680388553
918 => 0.11976532789515
919 => 0.11870005591595
920 => 0.12086632837541
921 => 0.12143755714727
922 => 0.1212072955456
923 => 0.11352910413696
924 => 0.11865963182722
925 => 0.12417964823491
926 => 0.12439169454611
927 => 0.1271551301779
928 => 0.12805501809666
929 => 0.13027994599204
930 => 0.13014077614641
1001 => 0.1306825106826
1002 => 0.13055797529426
1003 => 0.13467918570661
1004 => 0.1392254927971
1005 => 0.13906806863893
1006 => 0.13841448320521
1007 => 0.13938516902716
1008 => 0.14407744515642
1009 => 0.14364545556263
1010 => 0.14406509665621
1011 => 0.14959755465771
1012 => 0.15679053704262
1013 => 0.1534486745612
1014 => 0.16069955455086
1015 => 0.16526359915171
1016 => 0.17315664235786
1017 => 0.1721683944744
1018 => 0.17524109827273
1019 => 0.17039922450943
1020 => 0.15928130364477
1021 => 0.15752185011025
1022 => 0.16104432064282
1023 => 0.16970397072952
1024 => 0.16077159744452
1025 => 0.16257860492652
1026 => 0.16205818665014
1027 => 0.16203045577183
1028 => 0.16308883060741
1029 => 0.16155360270728
1030 => 0.15529880805994
1031 => 0.15816534358708
1101 => 0.15705843655771
1102 => 0.15828663243218
1103 => 0.1649146990202
1104 => 0.16198427278827
1105 => 0.15889730680142
1106 => 0.16276904720152
1107 => 0.16769910320519
1108 => 0.16739058916064
1109 => 0.16679194296535
1110 => 0.1701664802241
1111 => 0.1757402271289
1112 => 0.17724678852014
1113 => 0.17835890133886
1114 => 0.17851224290726
1115 => 0.18009175636305
1116 => 0.17159831442263
1117 => 0.18507762490914
1118 => 0.18740512947173
1119 => 0.18696765507914
1120 => 0.18955457844409
1121 => 0.18879343996621
1122 => 0.18769066973073
1123 => 0.19179149351855
1124 => 0.18709022996523
1125 => 0.18041737822391
1126 => 0.17675651978458
1127 => 0.18157743349052
1128 => 0.18452139726403
1129 => 0.18646717004706
1130 => 0.18705595971554
1201 => 0.17225763614273
1202 => 0.16428216048965
1203 => 0.16939434894426
1204 => 0.17563157168329
1205 => 0.17156366633539
1206 => 0.17172312052346
1207 => 0.16592335652407
1208 => 0.17614472210508
1209 => 0.17465555511514
1210 => 0.18238135609323
1211 => 0.18053753168638
1212 => 0.18683762247014
1213 => 0.18517859742774
1214 => 0.1920651176239
1215 => 0.19481233697524
1216 => 0.19942534583668
1217 => 0.20281869393349
1218 => 0.20481133284034
1219 => 0.20469170227457
1220 => 0.21258753035227
1221 => 0.20793163639407
1222 => 0.20208273627262
1223 => 0.20197694812247
1224 => 0.20500617637492
1225 => 0.21135460776388
1226 => 0.21300066365712
1227 => 0.21392058434236
1228 => 0.21251169379024
1229 => 0.20745805458954
1230 => 0.20527591880522
1231 => 0.20713516171602
]
'min_raw' => 0.076665523402185
'max_raw' => 0.21392058434236
'avg_raw' => 0.14529305387227
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.076665'
'max' => '$0.21392'
'avg' => '$0.145293'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.030350732749178
'max_diff' => 0.11052607686129
'year' => 2036
]
11 => [
'items' => [
101 => 0.20486146740267
102 => 0.20878650167347
103 => 0.21417641206935
104 => 0.21306341688662
105 => 0.21678399291294
106 => 0.22063439768416
107 => 0.22614064943952
108 => 0.22758018754428
109 => 0.22995968929072
110 => 0.23240897821341
111 => 0.23319562380519
112 => 0.23469757432169
113 => 0.23468965830109
114 => 0.2392158872755
115 => 0.24420845799991
116 => 0.2460930378701
117 => 0.25042652536526
118 => 0.24300557989331
119 => 0.24863445227946
120 => 0.25371183607158
121 => 0.24765836979865
122 => 0.25600166277914
123 => 0.25632561393926
124 => 0.2612168918446
125 => 0.25625864463208
126 => 0.25331445326457
127 => 0.26181422342516
128 => 0.26592699446562
129 => 0.26468819435739
130 => 0.25526086436668
131 => 0.24977375395488
201 => 0.23541292762265
202 => 0.25242394675471
203 => 0.2607095179557
204 => 0.25523940673891
205 => 0.25799821265929
206 => 0.27304936321506
207 => 0.27877986685687
208 => 0.27758796215861
209 => 0.2777893744322
210 => 0.28088145018132
211 => 0.29459341689013
212 => 0.28637688859731
213 => 0.29265811660973
214 => 0.29598965729887
215 => 0.29908417795972
216 => 0.29148501324997
217 => 0.28159861161649
218 => 0.27846717321626
219 => 0.25469551198251
220 => 0.25345809378021
221 => 0.25276349344564
222 => 0.24838413658938
223 => 0.24494316170715
224 => 0.2422067707256
225 => 0.2350256636345
226 => 0.23744907647414
227 => 0.22600389058444
228 => 0.23332611492419
301 => 0.21505932189056
302 => 0.23027244992965
303 => 0.22199263599403
304 => 0.22755230836692
305 => 0.22753291119376
306 => 0.21729579165954
307 => 0.21139123475544
308 => 0.21515384822352
309 => 0.21918766853794
310 => 0.21984214231256
311 => 0.22507209564368
312 => 0.22653166320093
313 => 0.22210910536178
314 => 0.21468078320677
315 => 0.21640621302139
316 => 0.21135626897531
317 => 0.20250643627787
318 => 0.20886254062443
319 => 0.21103279410653
320 => 0.21199130168083
321 => 0.20328850763305
322 => 0.20055390079638
323 => 0.19909801906212
324 => 0.2135573617802
325 => 0.21434947721442
326 => 0.21029690265913
327 => 0.22861492392994
328 => 0.2244689915529
329 => 0.22910101379615
330 => 0.21624964835081
331 => 0.21674058781748
401 => 0.21065654546339
402 => 0.21406320264582
403 => 0.21165548715096
404 => 0.21378797841072
405 => 0.21506618487923
406 => 0.22114922890184
407 => 0.23034190852106
408 => 0.2202406249765
409 => 0.21583935108309
410 => 0.21856987665286
411 => 0.2258416260696
412 => 0.23685869866997
413 => 0.2303363699513
414 => 0.23323086868032
415 => 0.23386318788533
416 => 0.22905386415792
417 => 0.23703602529574
418 => 0.24131373029647
419 => 0.24570177048088
420 => 0.24951178282292
421 => 0.24394909073616
422 => 0.24990196864958
423 => 0.24510499987577
424 => 0.24080162298415
425 => 0.24080814943053
426 => 0.23810857824411
427 => 0.23287781890256
428 => 0.23191318662573
429 => 0.23693132554942
430 => 0.24095539774669
501 => 0.24128683960687
502 => 0.24351477273957
503 => 0.24483324061797
504 => 0.25775601819644
505 => 0.26295366624132
506 => 0.26930925188416
507 => 0.27178511067323
508 => 0.27923655798382
509 => 0.27321890910356
510 => 0.27191695291552
511 => 0.25384217908988
512 => 0.25680192229126
513 => 0.26154075672941
514 => 0.25392032072434
515 => 0.25875373338698
516 => 0.25970795143226
517 => 0.25366138122488
518 => 0.25689111562952
519 => 0.24831389860032
520 => 0.23052886841347
521 => 0.23705582511846
522 => 0.24186186220321
523 => 0.23500305470318
524 => 0.24729720167448
525 => 0.24011521481655
526 => 0.23783886977876
527 => 0.22895803621071
528 => 0.23314944780019
529 => 0.23881839199021
530 => 0.23531564356628
531 => 0.24258437248625
601 => 0.25287883113613
602 => 0.26021527541564
603 => 0.26077847651043
604 => 0.2560616343423
605 => 0.26362040401922
606 => 0.26367546140422
607 => 0.25514913833017
608 => 0.24992681292208
609 => 0.2487402896015
610 => 0.25170445748792
611 => 0.25530350451761
612 => 0.26097819857249
613 => 0.26440729734166
614 => 0.2733485682782
615 => 0.2757678198273
616 => 0.27842584380852
617 => 0.28197778355167
618 => 0.28624279791198
619 => 0.27691118929903
620 => 0.27728195150552
621 => 0.26859248677005
622 => 0.2593065475049
623 => 0.26635341789848
624 => 0.27556626353219
625 => 0.27345282656453
626 => 0.27321502173207
627 => 0.27361494349871
628 => 0.27202148104349
629 => 0.264814309415
630 => 0.26119491294246
701 => 0.26586485779856
702 => 0.26834672565424
703 => 0.27219588625678
704 => 0.2717213959666
705 => 0.28163642030908
706 => 0.2854890989538
707 => 0.28450341889106
708 => 0.28468480774432
709 => 0.29165989840266
710 => 0.29941763375154
711 => 0.3066837766291
712 => 0.31407520925226
713 => 0.30516454873252
714 => 0.30064026485373
715 => 0.305308170958
716 => 0.30283131427354
717 => 0.31706406746585
718 => 0.31804951241652
719 => 0.33228123641878
720 => 0.3457888371791
721 => 0.33730495515535
722 => 0.3453048737813
723 => 0.35395743801821
724 => 0.37064963825916
725 => 0.36502829245669
726 => 0.36072242966972
727 => 0.35665341014181
728 => 0.36512039384073
729 => 0.37601303310603
730 => 0.37835920327537
731 => 0.38216089525569
801 => 0.37816388098716
802 => 0.38297784441692
803 => 0.3999732506867
804 => 0.39538094189001
805 => 0.38885912514822
806 => 0.40227536614204
807 => 0.40713065160339
808 => 0.44120758770387
809 => 0.48423112717873
810 => 0.46641909932835
811 => 0.45536259885106
812 => 0.45796113872692
813 => 0.47367187890442
814 => 0.47871767001547
815 => 0.46500147038715
816 => 0.46984626397693
817 => 0.49654155298624
818 => 0.51086271905232
819 => 0.49141265194537
820 => 0.43775068819815
821 => 0.38827190690737
822 => 0.40139590776424
823 => 0.39990805335223
824 => 0.42858881108761
825 => 0.39527141684398
826 => 0.39583239631583
827 => 0.42510624174772
828 => 0.41729648166725
829 => 0.4046456705354
830 => 0.38836427182886
831 => 0.35826660047271
901 => 0.33160825361691
902 => 0.38389141085175
903 => 0.38163686604103
904 => 0.37837195105029
905 => 0.38563766606149
906 => 0.42091791574667
907 => 0.4201045918004
908 => 0.41493063981577
909 => 0.41885503679499
910 => 0.40395770477076
911 => 0.40779708643935
912 => 0.38826406921562
913 => 0.3970938087716
914 => 0.40461852757648
915 => 0.40612922628192
916 => 0.40953290760348
917 => 0.38044882337309
918 => 0.39350672332869
919 => 0.40117701619283
920 => 0.36652235398498
921 => 0.40049200494422
922 => 0.37994253417289
923 => 0.37296773515041
924 => 0.38235838317428
925 => 0.37869883850667
926 => 0.37555257689714
927 => 0.37379690885938
928 => 0.38069236436011
929 => 0.38037068311915
930 => 0.36908837956971
1001 => 0.354371074515
1002 => 0.35931068517043
1003 => 0.35751607831022
1004 => 0.3510121915399
1005 => 0.35539502594081
1006 => 0.33609524134094
1007 => 0.30289096505238
1008 => 0.32482672704309
1009 => 0.32398222406797
1010 => 0.32355638737275
1011 => 0.34004050624884
1012 => 0.33845593857223
1013 => 0.33557993272306
1014 => 0.35095937143709
1015 => 0.34534566942383
1016 => 0.36264577627417
1017 => 0.37404074554656
1018 => 0.37115061275044
1019 => 0.38186763642779
1020 => 0.35942448382332
1021 => 0.36687919885553
1022 => 0.36841560529188
1023 => 0.35076959155065
1024 => 0.3387151934408
1025 => 0.33791130251708
1026 => 0.31701063739299
1027 => 0.328175603998
1028 => 0.3380003125727
1029 => 0.33329503959361
1030 => 0.33180549073446
1031 => 0.33941527281212
1101 => 0.34000661805293
1102 => 0.32652388389449
1103 => 0.32932737126869
1104 => 0.34101837966011
1105 => 0.32903278785327
1106 => 0.30574674080786
1107 => 0.29997147918582
1108 => 0.29920095282625
1109 => 0.28353798526548
1110 => 0.30035740978289
1111 => 0.29301528024849
1112 => 0.31620897947545
1113 => 0.30296086286731
1114 => 0.30238976303901
1115 => 0.3015264618864
1116 => 0.28804469867781
1117 => 0.29099634800974
1118 => 0.30080807993797
1119 => 0.30430901642704
1120 => 0.3039438400689
1121 => 0.30075999709875
1122 => 0.30221754410657
1123 => 0.29752227735134
1124 => 0.29586428093655
1125 => 0.2906311881836
1126 => 0.28293998751554
1127 => 0.28400949614131
1128 => 0.26877121510575
1129 => 0.2604685908408
1130 => 0.25817053387109
1201 => 0.25509747604878
1202 => 0.25851764392921
1203 => 0.26872804697017
1204 => 0.25641213464493
1205 => 0.23529736682411
1206 => 0.23656640034796
1207 => 0.2394175418966
1208 => 0.23410445848289
1209 => 0.2290760709251
1210 => 0.23344784594062
1211 => 0.22450124046387
1212 => 0.24049869642555
1213 => 0.24006601007414
1214 => 0.24602887238061
1215 => 0.24975757255111
1216 => 0.24116412583914
1217 => 0.23900289723023
1218 => 0.24023403126823
1219 => 0.21988612800508
1220 => 0.24436601457456
1221 => 0.24457771765017
1222 => 0.24276498738819
1223 => 0.25579977125474
1224 => 0.28330723086419
1225 => 0.27295781807411
1226 => 0.26895021262914
1227 => 0.2613317517487
1228 => 0.27148289853244
1229 => 0.27070344884201
1230 => 0.26717848174435
1231 => 0.26504657064512
]
'min_raw' => 0.19909801906212
'max_raw' => 0.51086271905232
'avg_raw' => 0.35498036905722
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.199098'
'max' => '$0.510862'
'avg' => '$0.35498'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.12243249565993
'max_diff' => 0.29694213470996
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0062494593141493
]
1 => [
'year' => 2028
'avg' => 0.010725886414082
]
2 => [
'year' => 2029
'avg' => 0.029301188530332
]
3 => [
'year' => 2030
'avg' => 0.022605823314512
]
4 => [
'year' => 2031
'avg' => 0.022201720003692
]
5 => [
'year' => 2032
'avg' => 0.038926602304903
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0062494593141493
'min' => '$0.006249'
'max_raw' => 0.038926602304903
'max' => '$0.038926'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.038926602304903
]
1 => [
'year' => 2033
'avg' => 0.10012322390352
]
2 => [
'year' => 2034
'avg' => 0.063462911007037
]
3 => [
'year' => 2035
'avg' => 0.074854649067039
]
4 => [
'year' => 2036
'avg' => 0.14529305387227
]
5 => [
'year' => 2037
'avg' => 0.35498036905722
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.038926602304903
'min' => '$0.038926'
'max_raw' => 0.35498036905722
'max' => '$0.35498'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.35498036905722
]
]
]
]
'prediction_2025_max_price' => '$0.010685'
'last_price' => 0.01036088
'sma_50day_nextmonth' => '$0.009223'
'sma_200day_nextmonth' => '$0.015814'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.009877'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0096021'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.009138'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.008733'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.009196'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.0124094'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.017048'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.009944'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.009677'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0093092'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.009098'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0099022'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.012283'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.015918'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.015154'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.020029'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.02406'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00979'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.009691'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.010679'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.013668'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.018529'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.022064'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.019669'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '60.58'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 109.72
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.008733'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010154'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 185.63
'cci_20_action' => 'SELL'
'adx_14' => 15.23
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0006026'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 69.5
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002013'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 21
'sell_pct' => 38.24
'buy_pct' => 61.76
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767690739
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Minswap para 2026
La previsión del precio de Minswap para 2026 sugiere que el precio medio podría oscilar entre $0.003579 en el extremo inferior y $0.010685 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Minswap podría potencialmente ganar 3.13% para 2026 si MIN alcanza el objetivo de precio previsto.
Predicción de precio de Minswap 2027-2032
La predicción del precio de MIN para 2027-2032 está actualmente dentro de un rango de precios de $0.006249 en el extremo inferior y $0.038926 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Minswap alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Minswap | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003446 | $0.006249 | $0.009052 |
| 2028 | $0.006219 | $0.010725 | $0.015232 |
| 2029 | $0.013661 | $0.0293011 | $0.04494 |
| 2030 | $0.011618 | $0.0226058 | $0.033592 |
| 2031 | $0.013736 | $0.0222017 | $0.030666 |
| 2032 | $0.020968 | $0.038926 | $0.056884 |
Predicción de precio de Minswap 2032-2037
La predicción de precio de Minswap para 2032-2037 se estima actualmente entre $0.038926 en el extremo inferior y $0.35498 en el extremo superior. Comparado con el precio actual, Minswap podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Minswap | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.020968 | $0.038926 | $0.056884 |
| 2033 | $0.048725 | $0.100123 | $0.15152 |
| 2034 | $0.039173 | $0.063462 | $0.087752 |
| 2035 | $0.046314 | $0.074854 | $0.103394 |
| 2036 | $0.076665 | $0.145293 | $0.21392 |
| 2037 | $0.199098 | $0.35498 | $0.510862 |
Minswap Histograma de precios potenciales
Pronóstico de precio de Minswap basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Minswap es Alcista, con 21 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de MIN se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Minswap
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Minswap aumentar durante el próximo mes, alcanzando $0.015814 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Minswap alcance $0.009223 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 60.58, lo que sugiere que el mercado de MIN está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de MIN para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.009877 | BUY |
| SMA 5 | $0.0096021 | BUY |
| SMA 10 | $0.009138 | BUY |
| SMA 21 | $0.008733 | BUY |
| SMA 50 | $0.009196 | BUY |
| SMA 100 | $0.0124094 | SELL |
| SMA 200 | $0.017048 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.009944 | BUY |
| EMA 5 | $0.009677 | BUY |
| EMA 10 | $0.0093092 | BUY |
| EMA 21 | $0.009098 | BUY |
| EMA 50 | $0.0099022 | BUY |
| EMA 100 | $0.012283 | SELL |
| EMA 200 | $0.015918 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.015154 | SELL |
| SMA 50 | $0.020029 | SELL |
| SMA 100 | $0.02406 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.013668 | SELL |
| EMA 50 | $0.018529 | SELL |
| EMA 100 | $0.022064 | SELL |
| EMA 200 | $0.019669 | SELL |
Osciladores de Minswap
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 60.58 | NEUTRAL |
| Stoch RSI (14) | 109.72 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 185.63 | SELL |
| Índice Direccional Medio (14) | 15.23 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0006026 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 69.5 | NEUTRAL |
| VWMA (10) | 0.008733 | BUY |
| Promedio Móvil de Hull (9) | 0.010154 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002013 | NEUTRAL |
Predicción de precios de Minswap basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Minswap
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Minswap por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.014558 | $0.020457 | $0.028746 | $0.040393 | $0.056759 | $0.079756 |
| Amazon.com acción | $0.021618 | $0.0451084 | $0.094121 | $0.19639 | $0.409779 | $0.855029 |
| Apple acción | $0.014696 | $0.020845 | $0.029567 | $0.041939 | $0.059487 | $0.084378 |
| Netflix acción | $0.016347 | $0.025794 | $0.040699 | $0.064217 | $0.101324 | $0.159874 |
| Google acción | $0.013417 | $0.017375 | $0.02250098 | $0.029138 | $0.037734 | $0.048865 |
| Tesla acción | $0.023487 | $0.053244 | $0.12070013 | $0.273618 | $0.620271 | $1.40 |
| Kodak acción | $0.007769 | $0.005826 | $0.004369 | $0.003276 | $0.002456 | $0.001842 |
| Nokia acción | $0.006863 | $0.004546 | $0.003012 | $0.001995 | $0.001321 | $0.000875 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Minswap
Podría preguntarse cosas como: "¿Debo invertir en Minswap ahora?", "¿Debería comprar MIN hoy?", "¿Será Minswap una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Minswap regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Minswap, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Minswap a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Minswap es de $0.01036 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Minswap
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Minswap
basado en el historial de precios del último mes
Predicción de precios de Minswap basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Minswap ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.01063 | $0.0109065 | $0.01119 | $0.01148 |
| Si Minswap ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010899 | $0.011466 | $0.012062 | $0.012689 |
| Si Minswap ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.0117074 | $0.013229 | $0.014948 | $0.016891 |
| Si Minswap ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.013054 | $0.016447 | $0.020722 | $0.0261086 |
| Si Minswap ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.015747 | $0.023933 | $0.036375 | $0.055286 |
| Si Minswap ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.023826 | $0.054792 | $0.126005 | $0.289768 |
| Si Minswap ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.037292 | $0.134226 | $0.483123 | $1.73 |
Cuadro de preguntas
¿Es MIN una buena inversión?
La decisión de adquirir Minswap depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Minswap ha experimentado un aumento de 6.2334% durante las últimas 24 horas, y Minswap ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Minswap dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Minswap subir?
Parece que el valor medio de Minswap podría potencialmente aumentar hasta $0.010685 para el final de este año. Mirando las perspectivas de Minswap en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.033592. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Minswap la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Minswap, el precio de Minswap aumentará en un 0.86% durante la próxima semana y alcanzará $0.010449 para el 13 de enero de 2026.
¿Cuál será el precio de Minswap el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Minswap, el precio de Minswap disminuirá en un -11.62% durante el próximo mes y alcanzará $0.009157 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Minswap este año en 2026?
Según nuestra predicción más reciente sobre el valor de Minswap en 2026, se anticipa que MIN fluctúe dentro del rango de $0.003579 y $0.010685. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Minswap no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Minswap en 5 años?
El futuro de Minswap parece estar en una tendencia alcista, con un precio máximo de $0.033592 proyectada después de un período de cinco años. Basado en el pronóstico de Minswap para 2030, el valor de Minswap podría potencialmente alcanzar su punto más alto de aproximadamente $0.033592, mientras que su punto más bajo se anticipa que esté alrededor de $0.011618.
¿Cuánto será Minswap en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Minswap, se espera que el valor de MIN en 2026 crezca en un 3.13% hasta $0.010685 si ocurre lo mejor. El precio estará entre $0.010685 y $0.003579 durante 2026.
¿Cuánto será Minswap en 2027?
Según nuestra última simulación experimental para la predicción de precios de Minswap, el valor de MIN podría disminuir en un -12.62% hasta $0.009052 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.009052 y $0.003446 a lo largo del año.
¿Cuánto será Minswap en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Minswap sugiere que el valor de MIN en 2028 podría aumentar en un 47.02% , alcanzando $0.015232 en el mejor escenario. Se espera que el precio oscile entre $0.015232 y $0.006219 durante el año.
¿Cuánto será Minswap en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Minswap podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.04494 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.04494 y $0.013661.
¿Cuánto será Minswap en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Minswap, se espera que el valor de MIN en 2030 aumente en un 224.23% , alcanzando $0.033592 en el mejor escenario. Se pronostica que el precio oscile entre $0.033592 y $0.011618 durante el transcurso de 2030.
¿Cuánto será Minswap en 2031?
Nuestra simulación experimental indica que el precio de Minswap podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.030666 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.030666 y $0.013736 durante el año.
¿Cuánto será Minswap en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Minswap, MIN podría experimentar un 449.04% aumento en valor, alcanzando $0.056884 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.056884 y $0.020968 a lo largo del año.
¿Cuánto será Minswap en 2033?
Según nuestra predicción experimental de precios de Minswap, se anticipa que el valor de MIN aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.15152. A lo largo del año, el precio de MIN podría oscilar entre $0.15152 y $0.048725.
¿Cuánto será Minswap en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Minswap sugieren que MIN podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.087752 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.087752 y $0.039173.
¿Cuánto será Minswap en 2035?
Basado en nuestra predicción experimental para el precio de Minswap, MIN podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.103394 en 2035. El rango de precios esperado para el año está entre $0.103394 y $0.046314.
¿Cuánto será Minswap en 2036?
Nuestra reciente simulación de predicción de precios de Minswap sugiere que el valor de MIN podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.21392 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.21392 y $0.076665.
¿Cuánto será Minswap en 2037?
Según la simulación experimental, el valor de Minswap podría aumentar en un 4830.69% en 2037, con un máximo de $0.510862 bajo condiciones favorables. Se espera que el precio caiga entre $0.510862 y $0.199098 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Rubycoin
Predicción de precios de Melon
Predicción de precios de Aventus
Predicción de precios de Creo Engine
Predicción de precios de XSGD
Predicción de precios de Thought
Predicción de precios de Stader
Predicción de precios de Ternoa
Predicción de precios de Atlas Navi
Predicción de precios de Altered State Machine
Predicción de precios de Whales MarketPredicción de precios de Scallop
Predicción de precios de Cream
Predicción de precios de Badmad Robots
Predicción de precios de Rivex
Predicción de precios de VIDT DAO
Predicción de precios de Vectorspace AI
Predicción de precios de Swarm
Predicción de precios de Inspect
Predicción de precios de Snowbank
Predicción de precios de Synesis One
Predicción de precios de Fidu
Predicción de precios de Aviator
Predicción de precios de DeRace
Predicción de precios de Datamall Coin
¿Cómo leer y predecir los movimientos de precio de Minswap?
Los traders de Minswap utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Minswap
Las medias móviles son herramientas populares para la predicción de precios de Minswap. Una media móvil simple (SMA) calcula el precio de cierre promedio de MIN durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de MIN por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de MIN.
¿Cómo leer gráficos de Minswap y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Minswap en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de MIN dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Minswap?
La acción del precio de Minswap está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de MIN. La capitalización de mercado de Minswap puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de MIN, grandes poseedores de Minswap, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Minswap.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


