Predicción del precio de zkRace - Pronóstico de ZERC
Predicción de precio de zkRace hasta $0.012186 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004082 | $0.012186 |
| 2027 | $0.00393 | $0.010324 |
| 2028 | $0.007092 | $0.017372 |
| 2029 | $0.015581 | $0.051255 |
| 2030 | $0.013251 | $0.038313 |
| 2031 | $0.015667 | $0.034975 |
| 2032 | $0.023914 | $0.064877 |
| 2033 | $0.055572 | $0.17281 |
| 2034 | $0.044677 | $0.100082 |
| 2035 | $0.052822 | $0.117922 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en zkRace hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.15, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de DeRace para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'zkRace'
'name_with_ticker' => 'zkRace <small>ZERC</small>'
'name_lang' => 'DeRace'
'name_lang_with_ticker' => 'DeRace <small>ZERC</small>'
'name_with_lang' => 'DeRace/zkRace'
'name_with_lang_with_ticker' => 'DeRace/zkRace <small>ZERC</small>'
'image' => '/uploads/coins/derace.png?1717083036'
'price_for_sd' => 0.01181
'ticker' => 'ZERC'
'marketcap' => '$1.42M'
'low24h' => '$0.01046'
'high24h' => '$0.01212'
'volume24h' => '$79.23K'
'current_supply' => '120M'
'max_supply' => '120M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01181'
'change_24h_pct' => '6.6774%'
'ath_price' => '$8.24'
'ath_days' => 1503
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '25 nov. 2021'
'ath_pct' => '-99.86%'
'fdv' => '$1.42M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.582643'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.011917'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.010443'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004082'
'current_year_max_price_prediction' => '$0.012186'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.013251'
'grand_prediction_max_price' => '$0.038313'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.012040589680932
107 => 0.012085544872066
108 => 0.012186831213161
109 => 0.011321350518144
110 => 0.011709925941029
111 => 0.01193817759738
112 => 0.010906928310118
113 => 0.01191779311469
114 => 0.011306284424765
115 => 0.011098729190852
116 => 0.011378174969993
117 => 0.011269274678091
118 => 0.011175648601954
119 => 0.01112340364277
120 => 0.011328597781666
121 => 0.011319025229826
122 => 0.010983287792126
123 => 0.010545331991055
124 => 0.010692324333304
125 => 0.010638920637304
126 => 0.010445378753789
127 => 0.010575802614942
128 => 0.010001481936427
129 => 0.0090133930596339
130 => 0.0096661548376244
131 => 0.00964102421924
201 => 0.0096283522218677
202 => 0.010118884657017
203 => 0.010071731281886
204 => 0.0099861474442967
205 => 0.010443806939496
206 => 0.010276755067359
207 => 0.010791569574912
208 => 0.011130659705702
209 => 0.011044655480117
210 => 0.011363571387089
211 => 0.010695710739986
212 => 0.010917547257036
213 => 0.010963267455747
214 => 0.010438159492365
215 => 0.010079446157213
216 => 0.01005552406739
217 => 0.0094335645779792
218 => 0.009765810316941
219 => 0.010058172817964
220 => 0.0099181538682208
221 => 0.0098738280516791
222 => 0.010100279035294
223 => 0.010117876216142
224 => 0.0097166586279334
225 => 0.0098000844694306
226 => 0.010147984096866
227 => 0.0097913182914378
228 => 0.0090983748925185
301 => 0.0089265153488945
302 => 0.0089035861177752
303 => 0.0084374894051146
304 => 0.0089379998253778
305 => 0.0087195136140876
306 => 0.0094097089376867
307 => 0.0090154730704387
308 => 0.0089984783501509
309 => 0.0089727883378524
310 => 0.0085715996430527
311 => 0.0086594344703422
312 => 0.0089514108138743
313 => 0.0090555912625956
314 => 0.0090447243882687
315 => 0.0089499799705039
316 => 0.0089933534797867
317 => 0.0088536322940544
318 => 0.0088042938353273
319 => 0.0086485680879724
320 => 0.0084196942596965
321 => 0.008451520569283
322 => 0.0079980616273735
323 => 0.0077509931289336
324 => 0.0076826078248759
325 => 0.0075911601382714
326 => 0.0076929370844109
327 => 0.0079967770351652
328 => 0.007630281591314
329 => 0.0070019508594976
330 => 0.0070397146071032
331 => 0.0071245585358158
401 => 0.0069664524359586
402 => 0.006816818281283
403 => 0.0069469130385708
404 => 0.0066806810243624
405 => 0.0071567314027944
406 => 0.0071438555741736
407 => 0.0073212977164951
408 => 0.007432255929568
409 => 0.0071765331715829
410 => 0.0071122195894975
411 => 0.0071488555287427
412 => 0.0065433450605832
413 => 0.0072718145930693
414 => 0.0072781144278366
415 => 0.0072241714178184
416 => 0.0076120589548938
417 => 0.0084306226432795
418 => 0.0081226460570607
419 => 0.0080033882142352
420 => 0.0077766789678469
421 => 0.0080787555779962
422 => 0.0080555608074659
423 => 0.0079506652587726
424 => 0.0078872241036288
425 => 0.0080041163771932
426 => 0.0078727398573447
427 => 0.0078491410243945
428 => 0.0077061577725002
429 => 0.0076551192568974
430 => 0.0076173323718469
501 => 0.0075757327242689
502 => 0.0076674911808396
503 => 0.0074595544464202
504 => 0.0072088031289999
505 => 0.0071879558701233
506 => 0.0072455169847914
507 => 0.0072200504764718
508 => 0.0071878339462791
509 => 0.0071263238164914
510 => 0.0071080750749394
511 => 0.0071673746319527
512 => 0.0071004288894636
513 => 0.0071992109792296
514 => 0.0071723477166756
515 => 0.0070222917157531
516 => 0.0068352663807567
517 => 0.0068336014629763
518 => 0.0067933071613343
519 => 0.0067419863099045
520 => 0.0067277100230988
521 => 0.0069359568209758
522 => 0.007367021460279
523 => 0.0072823931570812
524 => 0.007343545779199
525 => 0.0076443561550438
526 => 0.0077399747278413
527 => 0.0076721069297197
528 => 0.0075792053017473
529 => 0.0075832925018943
530 => 0.0079007654879112
531 => 0.0079205658886288
601 => 0.0079705951133907
602 => 0.0080348968054671
603 => 0.0076830577859286
604 => 0.0075667209157144
605 => 0.0075115940524831
606 => 0.0073418246505116
607 => 0.0075249063956094
608 => 0.0074182325030829
609 => 0.0074326264556838
610 => 0.0074232523751695
611 => 0.0074283712570029
612 => 0.0071565983370117
613 => 0.0072556181050923
614 => 0.0070909785354584
615 => 0.0068705446333775
616 => 0.0068698056616437
617 => 0.0069237565468895
618 => 0.0068916644492469
619 => 0.0068053054396541
620 => 0.0068175723293637
621 => 0.0067101014676795
622 => 0.006830621237795
623 => 0.0068340773135614
624 => 0.0067876706373107
625 => 0.006973347971697
626 => 0.0070494201270934
627 => 0.0070188742586578
628 => 0.0070472769475349
629 => 0.007285909845153
630 => 0.007324817419748
701 => 0.007342097594293
702 => 0.0073189444495871
703 => 0.0070516387188388
704 => 0.0070634948646692
705 => 0.0069765023332419
706 => 0.006903002811233
707 => 0.0069059424066591
708 => 0.0069437307152408
709 => 0.0071087544750718
710 => 0.0074560372489542
711 => 0.0074692163763626
712 => 0.0074851898632439
713 => 0.0074202176644664
714 => 0.007400621427615
715 => 0.00742647392224
716 => 0.0075568950728494
717 => 0.0078923736812139
718 => 0.007773793135155
719 => 0.007677385305393
720 => 0.0077619609634586
721 => 0.0077489412038253
722 => 0.0076390413298974
723 => 0.0076359568064692
724 => 0.0074250238112866
725 => 0.0073470466856794
726 => 0.0072818831630354
727 => 0.007210726297445
728 => 0.0071685421223233
729 => 0.007233356187675
730 => 0.0072481799312784
731 => 0.007106462844631
801 => 0.0070871473293835
802 => 0.0072028765615156
803 => 0.0071519484412749
804 => 0.0072043292758991
805 => 0.0072164820788464
806 => 0.0072145251976691
807 => 0.0071613503910804
808 => 0.0071952424271045
809 => 0.0071150776582054
810 => 0.0070279105123867
811 => 0.0069723033040594
812 => 0.006923778639568
813 => 0.0069507029436978
814 => 0.0068547227156585
815 => 0.0068240167090084
816 => 0.0071837605678945
817 => 0.0074495072243519
818 => 0.0074456431627198
819 => 0.0074221216812902
820 => 0.0073871735310442
821 => 0.0075543383979803
822 => 0.0074961015009068
823 => 0.0075384737093834
824 => 0.0075492592147967
825 => 0.0075819036912962
826 => 0.0075935712857573
827 => 0.0075583037116306
828 => 0.0074399414252902
829 => 0.0071449938612784
830 => 0.0070076949740352
831 => 0.0069623840543511
901 => 0.0069640310202239
902 => 0.0069186003490718
903 => 0.006931981717786
904 => 0.006913946855123
905 => 0.0068797931883413
906 => 0.0069485940510166
907 => 0.0069565227095155
908 => 0.006940463766058
909 => 0.0069442462285845
910 => 0.0068112850356209
911 => 0.0068213937863453
912 => 0.0067651069777534
913 => 0.00675455387969
914 => 0.0066122657290228
915 => 0.0063601816451185
916 => 0.0064998606979955
917 => 0.006331148043967
918 => 0.0062672540054725
919 => 0.0065697184461437
920 => 0.006539359405358
921 => 0.0064873979242907
922 => 0.0064105360640707
923 => 0.0063820272524509
924 => 0.0062088167378424
925 => 0.0061985825365972
926 => 0.0062844303447145
927 => 0.006244814535111
928 => 0.0061891789347475
929 => 0.0059876724299211
930 => 0.0057611124019853
1001 => 0.0057679508251232
1002 => 0.0058400153547104
1003 => 0.006049552693711
1004 => 0.0059676828303307
1005 => 0.0059082853050998
1006 => 0.0058971619341071
1007 => 0.0060363942104352
1008 => 0.0062334370515031
1009 => 0.006325885143947
1010 => 0.0062342718920254
1011 => 0.0061290315210255
1012 => 0.0061354370147714
1013 => 0.0061780498949507
1014 => 0.0061825279061438
1015 => 0.0061140272435079
1016 => 0.006133309778795
1017 => 0.0061040178444619
1018 => 0.0059242532975285
1019 => 0.005921001926914
1020 => 0.0058768848080017
1021 => 0.0058755489591743
1022 => 0.0058004947343733
1023 => 0.0057899941294983
1024 => 0.0056409694106901
1025 => 0.0057390579318981
1026 => 0.0056732653017503
1027 => 0.0055741002892051
1028 => 0.0055570042036647
1029 => 0.0055564902746893
1030 => 0.0056583105696821
1031 => 0.0057378681024684
1101 => 0.00567440979272
1102 => 0.0056599615656779
1103 => 0.0058142308308428
1104 => 0.005794598660655
1105 => 0.0057775973278863
1106 => 0.0062157940262702
1107 => 0.0058689271465846
1108 => 0.0057176733885723
1109 => 0.0055304681407225
1110 => 0.0055914231133932
1111 => 0.0056042672217498
1112 => 0.0051540723469533
1113 => 0.0049714283423165
1114 => 0.0049087518027193
1115 => 0.0048726805680649
1116 => 0.004889118682651
1117 => 0.0047247176564729
1118 => 0.0048351978650065
1119 => 0.0046928404728091
1120 => 0.0046689737927362
1121 => 0.004923526444682
1122 => 0.0049589459591253
1123 => 0.0048078353065298
1124 => 0.0049048728080886
1125 => 0.0048696856611012
1126 => 0.0046952807817079
1127 => 0.0046886197981505
1128 => 0.0046011095602988
1129 => 0.0044641729833821
1130 => 0.0044015892932323
1201 => 0.0043689951640257
1202 => 0.0043824441369833
1203 => 0.0043756439247106
1204 => 0.0043312679397904
1205 => 0.0043781875042215
1206 => 0.0042583274056026
1207 => 0.0042105981485542
1208 => 0.0041890399504557
1209 => 0.0040826572140416
1210 => 0.0042519594562941
1211 => 0.0042853141308313
1212 => 0.0043187345243811
1213 => 0.0046096362331604
1214 => 0.0045951036058695
1215 => 0.0047264714789029
1216 => 0.0047213667649268
1217 => 0.0046838985195193
1218 => 0.0045258261553719
1219 => 0.0045888309823521
1220 => 0.0043949119180312
1221 => 0.0045402092662351
1222 => 0.0044739016242771
1223 => 0.0045177905857896
1224 => 0.0044388742756821
1225 => 0.0044825498200702
1226 => 0.0042932237615409
1227 => 0.0041164337519758
1228 => 0.0041875792126469
1229 => 0.0042649224648667
1230 => 0.0044326223423734
1231 => 0.0043327416788244
]
'min_raw' => 0.0040826572140416
'max_raw' => 0.012186831213161
'avg_raw' => 0.0081347442136014
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004082'
'max' => '$0.012186'
'avg' => '$0.008134'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0077340127859584
'max_diff' => 0.00037016121316122
'year' => 2026
]
1 => [
'items' => [
101 => 0.0043686625423426
102 => 0.0042483336626363
103 => 0.004000060813557
104 => 0.0040014660109205
105 => 0.0039632746420076
106 => 0.0039302717232358
107 => 0.0043442141745379
108 => 0.0042927338872567
109 => 0.0042107067870476
110 => 0.0043205033203049
111 => 0.0043495352664035
112 => 0.0043503617650948
113 => 0.0044304664815007
114 => 0.004473218383006
115 => 0.0044807535909437
116 => 0.0046068000929853
117 => 0.004649049217876
118 => 0.0048230673839812
119 => 0.0044695911828542
120 => 0.0044623115731035
121 => 0.0043220483826924
122 => 0.0042330912498605
123 => 0.0043281393536836
124 => 0.0044123389983109
125 => 0.0043246647003566
126 => 0.004336113112764
127 => 0.0042184175310137
128 => 0.0042604881633976
129 => 0.0042967250595328
130 => 0.0042767171753933
131 => 0.0042467644044438
201 => 0.0044054355876515
202 => 0.0043964827376575
203 => 0.0045442409912953
204 => 0.0046594291163
205 => 0.0048658668286487
206 => 0.0046504383139715
207 => 0.0046425872426459
208 => 0.0047193327242053
209 => 0.0046490374685427
210 => 0.0046934616436117
211 => 0.00485870940725
212 => 0.0048622008321017
213 => 0.0048037149673895
214 => 0.0048001560972066
215 => 0.0048113889472898
216 => 0.0048771801010789
217 => 0.0048541906503871
218 => 0.0048807946247494
219 => 0.004914063302064
220 => 0.005051676657064
221 => 0.0050848547710667
222 => 0.00500424915492
223 => 0.0050115269395552
224 => 0.0049813782264427
225 => 0.0049522549473383
226 => 0.0050177198256517
227 => 0.0051373581774848
228 => 0.0051366139135073
301 => 0.0051643676856953
302 => 0.0051816580558438
303 => 0.005107435129842
304 => 0.0050591187342674
305 => 0.0050776463147829
306 => 0.0051072723195052
307 => 0.0050680390007407
308 => 0.0048258727826851
309 => 0.0048993305436052
310 => 0.0048871035802871
311 => 0.0048696908976726
312 => 0.0049435532443099
313 => 0.0049364290407883
314 => 0.004723031486328
315 => 0.0047366925053979
316 => 0.0047238622581444
317 => 0.0047653194118422
318 => 0.0046467986461922
319 => 0.0046832548354566
320 => 0.0047061198156077
321 => 0.0047195874645737
322 => 0.0047682418474924
323 => 0.0047625328172237
324 => 0.004767886966155
325 => 0.0048400285717426
326 => 0.0052048960567948
327 => 0.0052247549889714
328 => 0.0051269623438703
329 => 0.0051660285767136
330 => 0.0050910299525005
331 => 0.0051413770313819
401 => 0.0051758232240753
402 => 0.0050201675029155
403 => 0.0050109505813056
404 => 0.0049356424110919
405 => 0.004976108756092
406 => 0.0049117238915637
407 => 0.004927521685232
408 => 0.0048833496769086
409 => 0.0049628504973316
410 => 0.0050517447677431
411 => 0.0050742029709901
412 => 0.0050151251071116
413 => 0.0049723488402425
414 => 0.0048972478069987
415 => 0.0050221424990188
416 => 0.0050586655130622
417 => 0.0050219506591744
418 => 0.0050134430252931
419 => 0.0049973210744612
420 => 0.0050168633733755
421 => 0.005058466600884
422 => 0.005038847287082
423 => 0.0050518061894961
424 => 0.0050024202166558
425 => 0.0051074597007189
426 => 0.0052742876805396
427 => 0.0052748240597739
428 => 0.0052552046402164
429 => 0.0052471767964398
430 => 0.0052673075115117
501 => 0.005278227598633
502 => 0.0053433266398337
503 => 0.0054131805047022
504 => 0.0057391580124146
505 => 0.005647624832669
506 => 0.0059368514700001
507 => 0.0061655921887506
508 => 0.0062341815286844
509 => 0.0061710825633231
510 => 0.005955224411361
511 => 0.0059446333806201
512 => 0.0062672165926124
513 => 0.0061760720599775
514 => 0.0061652307078401
515 => 0.0060498970378513
516 => 0.0061180735211676
517 => 0.0061031623241776
518 => 0.0060796242702483
519 => 0.0062097002512007
520 => 0.0064531908755808
521 => 0.0064152405783305
522 => 0.0063869124418968
523 => 0.006262786794241
524 => 0.0063375381585969
525 => 0.0063109206295178
526 => 0.0064252864263429
527 => 0.0063575386618163
528 => 0.0061753815504996
529 => 0.0062043906708745
530 => 0.0062000060006881
531 => 0.0062902422024234
601 => 0.0062631555344627
602 => 0.0061947168940433
603 => 0.0064523586510974
604 => 0.0064356288284731
605 => 0.0064593478919845
606 => 0.0064697897572787
607 => 0.0066266117546405
608 => 0.0066908567092155
609 => 0.0067054414386702
610 => 0.0067664691766333
611 => 0.0067039230129547
612 => 0.0069541522623281
613 => 0.0071205401118799
614 => 0.0073138081613748
615 => 0.0075962247272413
616 => 0.0077024159685063
617 => 0.0076832334712527
618 => 0.007897358488317
619 => 0.0082821363842497
620 => 0.0077610080852418
621 => 0.0083097574494954
622 => 0.0081360297363888
623 => 0.0077241244538411
624 => 0.0076976026096893
625 => 0.0079765496493493
626 => 0.0085952273356575
627 => 0.0084402555922215
628 => 0.0085954808139126
629 => 0.0084144023475368
630 => 0.0084054102754321
701 => 0.0085866862369755
702 => 0.0090102474019597
703 => 0.0088090293694286
704 => 0.0085205339791094
705 => 0.0087335544858356
706 => 0.0085490164087921
707 => 0.0081332004722575
708 => 0.0084401370882499
709 => 0.0082348973141874
710 => 0.0082947971914053
711 => 0.0087261806693725
712 => 0.0086742754680044
713 => 0.008741445604867
714 => 0.0086228920714531
715 => 0.0085121443770682
716 => 0.0083054255812671
717 => 0.0082442263369438
718 => 0.0082611396063566
719 => 0.0082442179555674
720 => 0.0081285606891605
721 => 0.0081035845134918
722 => 0.0080619564598125
723 => 0.0080748587343112
724 => 0.0079965858146775
725 => 0.0081443029860367
726 => 0.0081717205947202
727 => 0.0082792168334457
728 => 0.0082903774495552
729 => 0.0085897529442923
730 => 0.0084248619525919
731 => 0.0085354850658279
801 => 0.0085255898933549
802 => 0.00773305169032
803 => 0.0078422564620744
804 => 0.0080121448165791
805 => 0.007935610343153
806 => 0.0078274085040371
807 => 0.0077400297175354
808 => 0.0076076419210458
809 => 0.0077939752023225
810 => 0.0080389836528661
811 => 0.0082965912681865
812 => 0.0086060899388744
813 => 0.0085370134385385
814 => 0.0082908054058208
815 => 0.0083018501183134
816 => 0.0083701241850087
817 => 0.0082817030652852
818 => 0.0082556259508935
819 => 0.0083665415899326
820 => 0.0083673054049805
821 => 0.0082655662206894
822 => 0.0081525017354239
823 => 0.0081520279911023
824 => 0.0081319092580227
825 => 0.0084179814254577
826 => 0.0085752921923885
827 => 0.0085933276182982
828 => 0.008574078264526
829 => 0.0085814865768134
830 => 0.0084899509076426
831 => 0.0086991743033076
901 => 0.0088911783812191
902 => 0.00883971718677
903 => 0.0087625695406509
904 => 0.008701117724583
905 => 0.0088252410918712
906 => 0.0088197140737141
907 => 0.0088895013930992
908 => 0.0088863354371808
909 => 0.0088628685865055
910 => 0.0088397180248451
911 => 0.0089315073850076
912 => 0.0089050735233728
913 => 0.0088785986026497
914 => 0.0088254990960319
915 => 0.0088327162008707
916 => 0.0087555818753804
917 => 0.008719896006982
918 => 0.0081832661686411
919 => 0.0080398611409506
920 => 0.0080849792819405
921 => 0.0080998333454464
922 => 0.008037423293617
923 => 0.0081269032761135
924 => 0.0081129579156242
925 => 0.0081672111555251
926 => 0.0081333160866369
927 => 0.0081347071520871
928 => 0.0082343853224969
929 => 0.0082633223194281
930 => 0.0082486047292387
1001 => 0.0082589124249179
1002 => 0.0084964489212386
1003 => 0.0084626788274514
1004 => 0.0084447391381898
1005 => 0.0084497085547173
1006 => 0.0085104042223672
1007 => 0.0085273956954486
1008 => 0.0084554016300332
1009 => 0.0084893544474758
1010 => 0.0086339212348924
1011 => 0.0086845114287167
1012 => 0.0088459710427332
1013 => 0.0087773801289832
1014 => 0.0089032817197165
1015 => 0.0092902602866156
1016 => 0.0095994055427346
1017 => 0.0093151027892395
1018 => 0.0098828086826911
1019 => 0.010324849153317
1020 => 0.010307882903797
1021 => 0.010230802923163
1022 => 0.00972755159961
1023 => 0.0092644522286215
1024 => 0.0096518545166913
1025 => 0.0096528420847936
1026 => 0.0096195638846783
1027 => 0.009412875841835
1028 => 0.0096123715888097
1029 => 0.0096282068367424
1030 => 0.0096193433088324
1031 => 0.0094608760709902
1101 => 0.0092189258884461
1102 => 0.0092662023749683
1103 => 0.0093436422243059
1104 => 0.0091970324338649
1105 => 0.0091501817224186
1106 => 0.0092372861087099
1107 => 0.0095179545902601
1108 => 0.0094648958396248
1109 => 0.0094635102612185
1110 => 0.009690518096848
1111 => 0.0095280294778944
1112 => 0.0092667986828636
1113 => 0.0092008344619075
1114 => 0.0089667059163369
1115 => 0.0091284193366998
1116 => 0.0091342391148058
1117 => 0.0090456703271441
1118 => 0.0092739855518519
1119 => 0.0092718815868622
1120 => 0.0094886329124857
1121 => 0.0099029800389976
1122 => 0.0097804372049042
1123 => 0.0096379332214761
1124 => 0.0096534273556816
1125 => 0.0098233597651341
1126 => 0.0097206147511995
1127 => 0.0097575625745741
1128 => 0.0098233038401783
1129 => 0.0098629671779811
1130 => 0.0096477204117559
1201 => 0.0095975360941058
1202 => 0.0094948765924957
1203 => 0.009468094644756
1204 => 0.0095517086667566
1205 => 0.0095296793260865
1206 => 0.0091337499849913
1207 => 0.0090923731659168
1208 => 0.0090936421338853
1209 => 0.008989598154962
1210 => 0.0088309061136877
1211 => 0.009247939323147
1212 => 0.0092144457200514
1213 => 0.0091774713744328
1214 => 0.0091820005207984
1215 => 0.0093630205024577
1216 => 0.0092580197713671
1217 => 0.0095371814242529
1218 => 0.009479794180787
1219 => 0.0094209351710681
1220 => 0.0094127990630357
1221 => 0.0093901433659086
1222 => 0.0093124485506463
1223 => 0.0092186273924826
1224 => 0.0091566785372133
1225 => 0.0084465519303832
1226 => 0.0085783472979944
1227 => 0.0087299658549054
1228 => 0.0087823039731778
1229 => 0.0086927760001853
1230 => 0.0093159836606995
1231 => 0.0094298497056539
]
'min_raw' => 0.0039302717232358
'max_raw' => 0.010324849153317
'avg_raw' => 0.0071275604382763
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00393'
'max' => '$0.010324'
'avg' => '$0.007127'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00015238549080578
'max_diff' => -0.0018619820598443
'year' => 2027
]
2 => [
'items' => [
101 => 0.0090849420281887
102 => 0.0090204238842227
103 => 0.0093202134594768
104 => 0.0091394036978135
105 => 0.0092208223224194
106 => 0.0090448397896281
107 => 0.0094024227098114
108 => 0.0093996985270748
109 => 0.009260590694747
110 => 0.0093781636820612
111 => 0.0093577324821862
112 => 0.0092006800820955
113 => 0.0094074015510236
114 => 0.0094075040822931
115 => 0.0092736158181426
116 => 0.0091172636375246
117 => 0.0090893115605038
118 => 0.0090682534253018
119 => 0.0092156433120468
120 => 0.0093477926236262
121 => 0.0095936897298828
122 => 0.0096555141047668
123 => 0.009896818755821
124 => 0.0097531335850285
125 => 0.0098168273602063
126 => 0.0098859759631965
127 => 0.0099191283463256
128 => 0.0098651083170716
129 => 0.010239953765116
130 => 0.010271602205898
131 => 0.010282213654335
201 => 0.010155817878298
202 => 0.010268086910718
203 => 0.010215559948409
204 => 0.010352220511928
205 => 0.010373650633258
206 => 0.01035550008289
207 => 0.010362302341652
208 => 0.010042437879015
209 => 0.010025851219207
210 => 0.0097996909358005
211 => 0.0098918529229812
212 => 0.0097195605053859
213 => 0.0097741962058139
214 => 0.0097982791019745
215 => 0.0097856995637126
216 => 0.0098970636234577
217 => 0.0098023814225
218 => 0.0095524995269776
219 => 0.0093025495513
220 => 0.0092994116329602
221 => 0.0092336042163478
222 => 0.0091860375073665
223 => 0.009195200543036
224 => 0.0092274922758886
225 => 0.00918416065315
226 => 0.0091934076518303
227 => 0.0093469694423536
228 => 0.0093777651642905
229 => 0.0092731092684837
301 => 0.0088529007450458
302 => 0.0087497805193809
303 => 0.0088239012926259
304 => 0.008788476337004
305 => 0.0070929863164172
306 => 0.0074913165471951
307 => 0.0072546422500834
308 => 0.0073637126550533
309 => 0.0071221294842143
310 => 0.0072374256357975
311 => 0.0072161346465414
312 => 0.0078566378701838
313 => 0.00784663729333
314 => 0.0078514240402512
315 => 0.0076229401379013
316 => 0.0079869211983587
317 => 0.0081662313570755
318 => 0.0081330458188824
319 => 0.0081413979038913
320 => 0.0079978814116575
321 => 0.0078528135936075
322 => 0.007691911057613
323 => 0.0079908480813363
324 => 0.0079576113873235
325 => 0.0080338444052039
326 => 0.0082277264335483
327 => 0.0082562762987082
328 => 0.0082946476070073
329 => 0.0082808942244378
330 => 0.0086085555951087
331 => 0.0085688736411411
401 => 0.0086644957329256
402 => 0.0084677938352593
403 => 0.0082452069669342
404 => 0.0082875134536898
405 => 0.008283438998808
406 => 0.0082315665117205
407 => 0.0081847383497535
408 => 0.0081067826538312
409 => 0.0083534460110014
410 => 0.0083434319291605
411 => 0.0085055482740683
412 => 0.0084768926353917
413 => 0.008285523267085
414 => 0.0082923580615122
415 => 0.0083383253387253
416 => 0.0084974186100051
417 => 0.0085446483248168
418 => 0.0085227696391373
419 => 0.00857455486531
420 => 0.0086154837966231
421 => 0.00857969490893
422 => 0.0090863900865796
423 => 0.008875974922155
424 => 0.0089785298092363
425 => 0.0090029885455167
426 => 0.0089403380068462
427 => 0.0089539246653362
428 => 0.0089745047508058
429 => 0.0090994629997831
430 => 0.0094273896020601
501 => 0.0095726260619368
502 => 0.010009577117316
503 => 0.0095605661957331
504 => 0.0095339237458383
505 => 0.0096126318255699
506 => 0.0098691683510442
507 => 0.010077067109691
508 => 0.010146039121901
509 => 0.010155154911918
510 => 0.010284550991997
511 => 0.010358718412004
512 => 0.010268838904421
513 => 0.01019267543252
514 => 0.0099198673299315
515 => 0.0099514456106379
516 => 0.010168988650031
517 => 0.010476281006395
518 => 0.010739969816476
519 => 0.010647635185669
520 => 0.011352083240639
521 => 0.011421926387877
522 => 0.011412276323228
523 => 0.01157138940669
524 => 0.011255582338834
525 => 0.011120568698851
526 => 0.010209142839637
527 => 0.010465216329499
528 => 0.010837434185681
529 => 0.01078816975667
530 => 0.010517855200099
531 => 0.010739764758645
601 => 0.010666394518836
602 => 0.010608524366565
603 => 0.010873638752801
604 => 0.010582134594836
605 => 0.010834526208716
606 => 0.010510831353257
607 => 0.010648056962485
608 => 0.010570161069831
609 => 0.01062056925894
610 => 0.010325884015422
611 => 0.010484889019744
612 => 0.010319268884482
613 => 0.010319190358973
614 => 0.010315534285308
615 => 0.010510385639972
616 => 0.010516739735652
617 => 0.010372744290151
618 => 0.010351992296823
619 => 0.010428723292718
620 => 0.010338891392405
621 => 0.010380923173166
622 => 0.010340164492226
623 => 0.010330988854637
624 => 0.010257875813223
625 => 0.010226376704697
626 => 0.010238728316782
627 => 0.010196565897043
628 => 0.010171161514069
629 => 0.010310480714115
630 => 0.010236048085651
701 => 0.010299072846289
702 => 0.010227248177183
703 => 0.0099782725815434
704 => 0.0098350840836218
705 => 0.0093647922635083
706 => 0.0094981664402973
707 => 0.009586593657494
708 => 0.009557368462738
709 => 0.0096201554897229
710 => 0.0096240101032446
711 => 0.0096035974007339
712 => 0.0095799621062555
713 => 0.0095684577520173
714 => 0.0096542017831688
715 => 0.0097039790792637
716 => 0.0095954685117432
717 => 0.0095700460039973
718 => 0.0096797561787931
719 => 0.0097466793220411
720 => 0.010240802210918
721 => 0.010204195991314
722 => 0.010296070418912
723 => 0.010285726768293
724 => 0.01038202580516
725 => 0.010539434031427
726 => 0.010219379095393
727 => 0.010274929565621
728 => 0.010261309873169
729 => 0.010410006104089
730 => 0.010410470317491
731 => 0.010321319499127
801 => 0.010369649604069
802 => 0.010342673065357
803 => 0.010391423316907
804 => 0.010203707092934
805 => 0.010432325191019
806 => 0.010561936920808
807 => 0.010563736579802
808 => 0.01062517151106
809 => 0.010687592959289
810 => 0.010807405493403
811 => 0.010684251452741
812 => 0.010462709322395
813 => 0.010478703948629
814 => 0.010348813878666
815 => 0.010350997354209
816 => 0.01033934179064
817 => 0.010374321014299
818 => 0.010211383065474
819 => 0.010249624276388
820 => 0.010196086357169
821 => 0.010274813184641
822 => 0.010190116132292
823 => 0.010261303305341
824 => 0.010292025329337
825 => 0.010405390259279
826 => 0.010173372039965
827 => 0.0097002711845314
828 => 0.009799722720137
829 => 0.0096526260872268
830 => 0.009666240440639
831 => 0.00969374360124
901 => 0.0096045968592581
902 => 0.0096216032482916
903 => 0.0096209956604032
904 => 0.0096157597962265
905 => 0.0095925692856265
906 => 0.0095589384571538
907 => 0.009692913326766
908 => 0.0097156782677847
909 => 0.0097662819116899
910 => 0.0099168440311723
911 => 0.0099017993249367
912 => 0.0099263378650058
913 => 0.009872770369813
914 => 0.0096687252831057
915 => 0.0096798059130045
916 => 0.0095416302806122
917 => 0.0097627484501085
918 => 0.0097103847489546
919 => 0.0096766255301746
920 => 0.0096674140145535
921 => 0.009818349348408
922 => 0.0098635115659188
923 => 0.0098353695026898
924 => 0.0097776493099719
925 => 0.0098884891434333
926 => 0.0099181452069105
927 => 0.0099247841058495
928 => 0.010121171039313
929 => 0.0099357599538434
930 => 0.0099803902449437
1001 => 0.010328583035829
1002 => 0.010012820221817
1003 => 0.01018008682675
1004 => 0.010171899996852
1005 => 0.010257467931943
1006 => 0.010164880928634
1007 => 0.010166028655504
1008 => 0.010242007184991
1009 => 0.010135309043127
1010 => 0.010108889082702
1011 => 0.010072390096599
1012 => 0.010152084297467
1013 => 0.010199857366629
1014 => 0.010584873218622
1015 => 0.010833611017865
1016 => 0.010822812654
1017 => 0.010921489486031
1018 => 0.010877034669425
1019 => 0.010733478340016
1020 => 0.010978511489488
1021 => 0.010900972748372
1022 => 0.01090736494798
1023 => 0.010907127029992
1024 => 0.010958683514279
1025 => 0.010922151020079
1026 => 0.010850141724027
1027 => 0.01089794485528
1028 => 0.011039903065167
1029 => 0.011480545704465
1030 => 0.011727135163155
1031 => 0.011465700709425
1101 => 0.011646034694861
1102 => 0.011537898563169
1103 => 0.011518247011269
1104 => 0.0116315100807
1105 => 0.01174497140214
1106 => 0.011737744406471
1107 => 0.011655377313409
1108 => 0.011608850232525
1109 => 0.011961168876689
1110 => 0.012220751252117
1111 => 0.012203049474375
1112 => 0.012281179364401
1113 => 0.012510571137985
1114 => 0.01253154384693
1115 => 0.012528901767655
1116 => 0.012476918720259
1117 => 0.012702784711637
1118 => 0.01289120609538
1119 => 0.012464886146721
1120 => 0.012627223202232
1121 => 0.012700101536625
1122 => 0.01280710855354
1123 => 0.012987647327534
1124 => 0.013183760321637
1125 => 0.013211492849273
1126 => 0.013191815293792
1127 => 0.013062473502381
1128 => 0.013277062680643
1129 => 0.013402763988533
1130 => 0.013477616240758
1201 => 0.013667429098175
1202 => 0.012700551608407
1203 => 0.01201614766422
1204 => 0.011909268105422
1205 => 0.012126611891068
1206 => 0.012183923714059
1207 => 0.012160821390074
1208 => 0.011390462527608
1209 => 0.011905212325441
1210 => 0.012459039826517
1211 => 0.012480314596367
1212 => 0.012757572223393
1213 => 0.012847858671927
1214 => 0.01307108740267
1215 => 0.013057124384784
1216 => 0.013111477028375
1217 => 0.01309898229687
1218 => 0.013512466514218
1219 => 0.013968601008953
1220 => 0.013952806521819
1221 => 0.013887231791462
1222 => 0.013984621448195
1223 => 0.014455401129104
1224 => 0.014412059280177
1225 => 0.01445416219456
1226 => 0.015009237970332
1227 => 0.015730915437445
1228 => 0.015395623798738
1229 => 0.016123110177162
1230 => 0.016581024289984
1231 => 0.017372939398906
]
'min_raw' => 0.0070929863164172
'max_raw' => 0.017372939398906
'avg_raw' => 0.012232962857662
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.007092'
'max' => '$0.017372'
'avg' => '$0.012232'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0031627145931814
'max_diff' => 0.0070480902455896
'year' => 2028
]
3 => [
'items' => [
101 => 0.017273787727005
102 => 0.017582074467567
103 => 0.017096285540724
104 => 0.01598081597055
105 => 0.015804288641224
106 => 0.016157700824919
107 => 0.017026530193075
108 => 0.016130338296214
109 => 0.016311636749746
110 => 0.016259422782933
111 => 0.016256640522536
112 => 0.016362828085597
113 => 0.016208797487006
114 => 0.015581249118771
115 => 0.015868850837767
116 => 0.015757794002294
117 => 0.015881019841087
118 => 0.016546018870853
119 => 0.016252006948197
120 => 0.015942289271267
121 => 0.016330743969992
122 => 0.016825380288984
123 => 0.016794426837089
124 => 0.016734364202872
125 => 0.017072934127174
126 => 0.017632152450442
127 => 0.017783306916099
128 => 0.017894886052431
129 => 0.017910270930186
130 => 0.018068744732713
131 => 0.017216591155987
201 => 0.018568980767107
202 => 0.018802501093939
203 => 0.01875860895092
204 => 0.019018156966156
205 => 0.018941791355976
206 => 0.018831149568222
207 => 0.019242588379817
208 => 0.018770906983724
209 => 0.018101414625006
210 => 0.017734117875956
211 => 0.018217803864089
212 => 0.018513174018726
213 => 0.018708394901872
214 => 0.018767468623156
215 => 0.017282741412378
216 => 0.016482555792515
217 => 0.0169954656007
218 => 0.017621250965831
219 => 0.017213114886687
220 => 0.017229113048285
221 => 0.016647218255701
222 => 0.017672735743191
223 => 0.017523326471223
224 => 0.018298462038491
225 => 0.018113469714511
226 => 0.018745562679029
227 => 0.018579111417729
228 => 0.019270041297219
301 => 0.019545671932327
302 => 0.020008498667157
303 => 0.020348955897341
304 => 0.020548878894814
305 => 0.020536876267938
306 => 0.021329070785169
307 => 0.020861941355527
308 => 0.020275116697942
309 => 0.020264502891294
310 => 0.020568427696827
311 => 0.021205370711525
312 => 0.021370520768093
313 => 0.021462817119529
314 => 0.021321462044445
315 => 0.020814426528036
316 => 0.020595491162779
317 => 0.020782030437146
318 => 0.020553908934097
319 => 0.020947710647948
320 => 0.021488484512573
321 => 0.021376816847979
322 => 0.021750105108563
323 => 0.022136419187197
324 => 0.022688865670094
325 => 0.022833295637757
326 => 0.023072032882125
327 => 0.023317771927679
328 => 0.023396696686258
329 => 0.023547388539299
330 => 0.02354659431885
331 => 0.024000714360722
401 => 0.024501622829834
402 => 0.024690704180866
403 => 0.025125486321558
404 => 0.024380937142207
405 => 0.024945686247509
406 => 0.025455104077078
407 => 0.024847755139834
408 => 0.025684844155673
409 => 0.025717346425273
410 => 0.026208092107769
411 => 0.025710627343062
412 => 0.025415234353743
413 => 0.026268022845677
414 => 0.026680660334337
415 => 0.026556370564598
416 => 0.025610519279934
417 => 0.02505999326279
418 => 0.023619160487386
419 => 0.025325889149196
420 => 0.026157186894406
421 => 0.025608366419601
422 => 0.025885159544112
423 => 0.027395253080973
424 => 0.027970198928494
425 => 0.027850614211384
426 => 0.027870822060044
427 => 0.028181052403361
428 => 0.029556784592599
429 => 0.028732413975585
430 => 0.029362614423714
501 => 0.029696870469045
502 => 0.03000734611224
503 => 0.029244916059388
504 => 0.028253005762948
505 => 0.027938826134504
506 => 0.025553797039451
507 => 0.025429645917397
508 => 0.025359956130424
509 => 0.024920571881376
510 => 0.0245753362191
511 => 0.024300792002679
512 => 0.023580305992948
513 => 0.023823448871144
514 => 0.022675144548749
515 => 0.023409788960811
516 => 0.021577067535492
517 => 0.023103412398108
518 => 0.022272692283771
519 => 0.022830498498403
520 => 0.022828552365068
521 => 0.02180145427131
522 => 0.021209045525821
523 => 0.02158655143534
524 => 0.021991267736801
525 => 0.022056931595084
526 => 0.022581656844104
527 => 0.022728096382174
528 => 0.022284377745214
529 => 0.021539088457564
530 => 0.021712202160847
531 => 0.021205537382149
601 => 0.020317626846061
602 => 0.02095533969451
603 => 0.021173082899225
604 => 0.021269250702984
605 => 0.020396092667956
606 => 0.020121727456166
607 => 0.019975657719557
608 => 0.021426374719891
609 => 0.021505848271978
610 => 0.021099250343074
611 => 0.022937111536917
612 => 0.022521146945796
613 => 0.022985881307877
614 => 0.021696493906766
615 => 0.021745750241879
616 => 0.021135333582842
617 => 0.021477126123847
618 => 0.021235558172353
619 => 0.021449512664193
620 => 0.021577756104435
621 => 0.022188072600104
622 => 0.023110381232124
623 => 0.022096911667913
624 => 0.021655328465634
625 => 0.021929284200769
626 => 0.0226588644249
627 => 0.023764215810981
628 => 0.023109825543151
629 => 0.023400232831747
630 => 0.023463673904984
701 => 0.02298115074833
702 => 0.023782007128031
703 => 0.024211192568058
704 => 0.024651448022112
705 => 0.02503370949719
706 => 0.024475600312338
707 => 0.025072857141939
708 => 0.024591573567304
709 => 0.024159812446674
710 => 0.024160467250071
711 => 0.023889617192077
712 => 0.023364811075409
713 => 0.023268028775525
714 => 0.023771502521778
715 => 0.024175240787132
716 => 0.024208494604443
717 => 0.024432024852963
718 => 0.024564307751493
719 => 0.025860859986968
720 => 0.026382344021718
721 => 0.027020004828223
722 => 0.027268409648951
723 => 0.028016019101284
724 => 0.027412263750654
725 => 0.027281637482746
726 => 0.025468181492574
727 => 0.025765134809373
728 => 0.026240585721301
729 => 0.025476021502992
730 => 0.025960961521085
731 => 0.02605669895309
801 => 0.025450041903418
802 => 0.025774083645752
803 => 0.024913524849794
804 => 0.02312913906224
805 => 0.023783993659506
806 => 0.024266187064768
807 => 0.023578037621441
808 => 0.024811518863543
809 => 0.024090944586128
810 => 0.023862557133853
811 => 0.022971536256522
812 => 0.023392063812083
813 => 0.023960833352355
814 => 0.023609399903023
815 => 0.024338677078385
816 => 0.025371528049815
817 => 0.026107599159394
818 => 0.026164105559357
819 => 0.025690861148831
820 => 0.026449238336904
821 => 0.02645476228678
822 => 0.025599309720572
823 => 0.02507534978695
824 => 0.024956304987609
825 => 0.025253702236469
826 => 0.025614797399145
827 => 0.026184143827791
828 => 0.02652818795049
829 => 0.027425272555589
830 => 0.027667997928297
831 => 0.027934679523169
901 => 0.028291048375475
902 => 0.028718960553767
903 => 0.027782713068718
904 => 0.027819911926682
905 => 0.026948091231833
906 => 0.026016425787652
907 => 0.026723443726048
908 => 0.027647775629847
909 => 0.027435732869819
910 => 0.027411873727676
911 => 0.027451998186787
912 => 0.027292124870396
913 => 0.026569023785538
914 => 0.026205886947575
915 => 0.026674426114635
916 => 0.026923433829649
917 => 0.027309623079879
918 => 0.027262017103322
919 => 0.028256799138219
920 => 0.028643341356332
921 => 0.028544447315865
922 => 0.028562646199329
923 => 0.029262462421561
924 => 0.030040801988866
925 => 0.030769819704599
926 => 0.031511407837081
927 => 0.030617394398696
928 => 0.030163469509767
929 => 0.030631804127284
930 => 0.030383299186942
1001 => 0.031811282285498
1002 => 0.031910152736991
1003 => 0.033338032576115
1004 => 0.034693260572212
1005 => 0.033842066149295
1006 => 0.034644704151467
1007 => 0.035512822590853
1008 => 0.037187563907568
1009 => 0.036623569950208
1010 => 0.036191559417783
1011 => 0.0357833115521
1012 => 0.036632810553062
1013 => 0.037725677446721
1014 => 0.037961070508266
1015 => 0.03834249719504
1016 => 0.037941473672533
1017 => 0.0384244623341
1018 => 0.040129624545403
1019 => 0.039668874664026
1020 => 0.039014535763231
1021 => 0.040360597563534
1022 => 0.040847732096381
1023 => 0.044266697362238
1024 => 0.048583282240793
1025 => 0.046796187756847
1026 => 0.045686880541483
1027 => 0.045947594050213
1028 => 0.047523864722241
1029 => 0.048030112833767
1030 => 0.046653955952452
1031 => 0.047140037827738
1101 => 0.049818396751079
1102 => 0.05125525038141
1103 => 0.049303810156233
1104 => 0.043919863970212
1105 => 0.038955619704491
1106 => 0.040272360826593
1107 => 0.040123083246581
1108 => 0.043000645777631
1109 => 0.039657885931735
1110 => 0.039714169434554
1111 => 0.042651236911355
1112 => 0.041867677662628
1113 => 0.040598412030378
1114 => 0.03896488674826
1115 => 0.035945164181464
1116 => 0.03327051169286
1117 => 0.038516121158694
1118 => 0.038289920940006
1119 => 0.03796234950235
1120 => 0.038691324289921
1121 => 0.042231018935259
1122 => 0.04214941751681
1123 => 0.041630310926051
1124 => 0.042024048699946
1125 => 0.04052938789492
1126 => 0.040914596017169
1127 => 0.038954833342836
1128 => 0.039840727918553
1129 => 0.040595688756387
1130 => 0.040747258321969
1201 => 0.041088752292557
1202 => 0.038170723703374
1203 => 0.039480832871099
1204 => 0.040250399266509
1205 => 0.036773470294981
1206 => 0.040181671559921
1207 => 0.038119927317664
1208 => 0.037420140355483
1209 => 0.038362311310138
1210 => 0.037995146372818
1211 => 0.037679479520358
1212 => 0.037503331992841
1213 => 0.038195158358326
1214 => 0.038162883831465
1215 => 0.03703092161982
1216 => 0.035554323059411
1217 => 0.03604991800398
1218 => 0.035869863714391
1219 => 0.035217323741454
1220 => 0.035657056895237
1221 => 0.033720694629835
1222 => 0.030389283995563
1223 => 0.03259011590443
1224 => 0.032505386269983
1225 => 0.032462661746112
1226 => 0.0341165260991
1227 => 0.033957545202703
1228 => 0.033668993318996
1229 => 0.035212024259825
1230 => 0.034648797209727
1231 => 0.036384530265144
]
'min_raw' => 0.015581249118771
'max_raw' => 0.05125525038141
'avg_raw' => 0.03341824975009
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.015581'
'max' => '$0.051255'
'avg' => '$0.033418'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0084882628023535
'max_diff' => 0.033882310982503
'year' => 2029
]
4 => [
'items' => [
101 => 0.037527796315618
102 => 0.037237827064435
103 => 0.03831307431079
104 => 0.036061335510542
105 => 0.036809272815904
106 => 0.036963421657942
107 => 0.035192983497533
108 => 0.033983556443503
109 => 0.033902901447477
110 => 0.031805921605103
111 => 0.032926111310669
112 => 0.033911831894968
113 => 0.033439748230096
114 => 0.033290300644896
115 => 0.034053795946457
116 => 0.034113126070283
117 => 0.032760392959519
118 => 0.033041669008733
119 => 0.034214636892209
120 => 0.033012113227595
121 => 0.030675806178376
122 => 0.030096369728197
123 => 0.030019062224611
124 => 0.028447584616042
125 => 0.030135090442481
126 => 0.029398448926896
127 => 0.031725490648309
128 => 0.030396296897213
129 => 0.030338998011229
130 => 0.030252382341146
131 => 0.028899746646528
201 => 0.029195887899167
202 => 0.030180306526523
203 => 0.030531558183033
204 => 0.030494919757539
205 => 0.030175482338201
206 => 0.03032171915299
207 => 0.029850639420271
208 => 0.029684291361972
209 => 0.029159251132341
210 => 0.028387587040848
211 => 0.028494891665661
212 => 0.02696602318352
213 => 0.026133014491259
214 => 0.025902448664119
215 => 0.025594126404058
216 => 0.025937274483807
217 => 0.026961692091203
218 => 0.025726027114364
219 => 0.023607566183394
220 => 0.023734889295027
221 => 0.024020946524295
222 => 0.023487880770012
223 => 0.0229833787704
224 => 0.023422002327521
225 => 0.022524382503892
226 => 0.024129419591551
227 => 0.024086007836395
228 => 0.024684266407846
301 => 0.025058369770077
302 => 0.024196182637537
303 => 0.023979344905306
304 => 0.02410286553231
305 => 0.02206134471352
306 => 0.024517430602415
307 => 0.024538670935174
308 => 0.024356798310717
309 => 0.025664588223409
310 => 0.028424432849093
311 => 0.027386068286418
312 => 0.026983982143015
313 => 0.026219616090483
314 => 0.027238088471917
315 => 0.027159885683667
316 => 0.026806223017674
317 => 0.026592326733786
318 => 0.026986437195267
319 => 0.026543492086182
320 => 0.026463926973272
321 => 0.025981848956739
322 => 0.025809769037988
323 => 0.025682367916845
324 => 0.025542111800641
325 => 0.02585148184334
326 => 0.025150408625566
327 => 0.024304983051985
328 => 0.024234695063174
329 => 0.024428766380066
330 => 0.024342904269251
331 => 0.024234283988421
401 => 0.024026898291341
402 => 0.023965371385112
403 => 0.024165303981745
404 => 0.023939591736941
405 => 0.024272642449332
406 => 0.024182071084098
407 => 0.023676146800413
408 => 0.02304557782578
409 => 0.023039964439243
410 => 0.022904109387999
411 => 0.022731077554296
412 => 0.022682944056591
413 => 0.023385062674961
414 => 0.024838427202344
415 => 0.024553096969553
416 => 0.024759277304563
417 => 0.025773480488633
418 => 0.026095865182696
419 => 0.02586704416295
420 => 0.025553819838057
421 => 0.025567600118712
422 => 0.026637982456324
423 => 0.026704740889763
424 => 0.026873417913977
425 => 0.027090215558213
426 => 0.025903965739223
427 => 0.025511727858915
428 => 0.025325863790696
429 => 0.024753474399028
430 => 0.025370747284984
501 => 0.025011088808598
502 => 0.025059619024746
503 => 0.025028013657814
504 => 0.025045272325304
505 => 0.024128970950975
506 => 0.024462823012398
507 => 0.02390772920861
508 => 0.02316452091754
509 => 0.023162029422746
510 => 0.023343928599083
511 => 0.023235727851282
512 => 0.022944562421047
513 => 0.02298592109615
514 => 0.022623575582605
515 => 0.023029916401971
516 => 0.023041568802713
517 => 0.022885105453723
518 => 0.023511129550184
519 => 0.023767612133292
520 => 0.023664624605217
521 => 0.023760386253778
522 => 0.024564953728914
523 => 0.024696133333101
524 => 0.024754394648043
525 => 0.024676332204166
526 => 0.023775092270258
527 => 0.023815066093695
528 => 0.023521764700364
529 => 0.023273955930338
530 => 0.023283866981553
531 => 0.023411272902231
601 => 0.023967662030093
602 => 0.025138550148746
603 => 0.025182984496941
604 => 0.025236840223195
605 => 0.025017781918802
606 => 0.024951711838092
607 => 0.025038875328684
608 => 0.025478599343677
609 => 0.026609688894147
610 => 0.02620988630408
611 => 0.025884840575057
612 => 0.026169993311109
613 => 0.026126096282495
614 => 0.025755561184583
615 => 0.02574516149849
616 => 0.025033986178361
617 => 0.024771080855187
618 => 0.024551377489021
619 => 0.024311467148669
620 => 0.024169240257041
621 => 0.024387765403548
622 => 0.024437744690068
623 => 0.023959935638065
624 => 0.023894812029842
625 => 0.024285001215932
626 => 0.024113293502853
627 => 0.024289899143901
628 => 0.02433087316752
629 => 0.024324275406005
630 => 0.024144992833045
701 => 0.024259262198767
702 => 0.023988981083498
703 => 0.023695090965554
704 => 0.023507607380308
705 => 0.023344003086091
706 => 0.02343478025726
707 => 0.0231111762173
708 => 0.023007648772054
709 => 0.024220550308803
710 => 0.025116533714888
711 => 0.025103505761315
712 => 0.025024201444458
713 => 0.024906371315901
714 => 0.025469979335855
715 => 0.025273629571401
716 => 0.025416490430613
717 => 0.025452854515134
718 => 0.025562917646817
719 => 0.025602255756148
720 => 0.025483348667676
721 => 0.025084281955489
722 => 0.024089845650841
723 => 0.023626932866599
724 => 0.023474163937376
725 => 0.023479716797804
726 => 0.023326544118147
727 => 0.023371660337024
728 => 0.023310854538402
729 => 0.023195703066314
730 => 0.023427669978347
731 => 0.023454402004037
801 => 0.023400258154971
802 => 0.023413010991462
803 => 0.022964723046331
804 => 0.022998805405169
805 => 0.022809030500182
806 => 0.022773449993267
807 => 0.022293715559051
808 => 0.021443796470219
809 => 0.021914734149074
810 => 0.021345907656876
811 => 0.021130484445152
812 => 0.022150264424268
813 => 0.022047906798658
814 => 0.021872715037405
815 => 0.02161356990935
816 => 0.021517450460552
817 => 0.020933459117377
818 => 0.02089895379335
819 => 0.02118839567212
820 => 0.021054828204155
821 => 0.020867248893175
822 => 0.020187855643418
823 => 0.019423992691317
824 => 0.019447048912369
825 => 0.019690019505257
826 => 0.020396489273128
827 => 0.02012045931277
828 => 0.019920196409451
829 => 0.01988269318754
830 => 0.020352124528067
831 => 0.02101646822382
901 => 0.021328163422014
902 => 0.021019282946927
903 => 0.020664457688453
904 => 0.020686054257835
905 => 0.020829726558496
906 => 0.020844824485878
907 => 0.020613869719237
908 => 0.020678882133221
909 => 0.02058012233152
910 => 0.019974033610774
911 => 0.019963071387744
912 => 0.019814327441172
913 => 0.019809823533585
914 => 0.019556772974549
915 => 0.019521369452084
916 => 0.019018922208049
917 => 0.019349634505624
918 => 0.019127810059586
919 => 0.018793468296309
920 => 0.018735827650299
921 => 0.018734094902877
922 => 0.019077389136312
923 => 0.01934562291263
924 => 0.019131668790796
925 => 0.01908295558458
926 => 0.01960308518282
927 => 0.019536893950358
928 => 0.019479572769933
929 => 0.020956983532451
930 => 0.019787497630118
1001 => 0.01927753502478
1002 => 0.018646359461401
1003 => 0.018851873407501
1004 => 0.018895178215572
1005 => 0.017377314763593
1006 => 0.016761517750163
1007 => 0.016550199420975
1008 => 0.016428582734924
1009 => 0.016484004985924
1010 => 0.015929715448051
1011 => 0.016302207184604
1012 => 0.015822239297735
1013 => 0.015741771119551
1014 => 0.016600013157885
1015 => 0.016719432523742
1016 => 0.016209952408307
1017 => 0.016537121119754
1018 => 0.016418485196998
1019 => 0.015830466969564
1020 => 0.015808008998445
1021 => 0.015512962121759
1022 => 0.015051270892077
1023 => 0.014840265611283
1024 => 0.014730372229014
1025 => 0.014775716380318
1026 => 0.014752788989865
1027 => 0.014603172258474
1028 => 0.014761364845773
1029 => 0.014357248154915
1030 => 0.014196325632425
1031 => 0.014123640662391
1101 => 0.013764963839165
1102 => 0.014335778169225
1103 => 0.014448235783176
1104 => 0.014560914973366
1105 => 0.015541710394625
1106 => 0.015492712627078
1107 => 0.015935628582822
1108 => 0.015918417683252
1109 => 0.015792090877911
1110 => 0.015259138865928
1111 => 0.015471564038948
1112 => 0.014817752374594
1113 => 0.0153076325284
1114 => 0.015084071684087
1115 => 0.015232046382056
1116 => 0.014965974532767
1117 => 0.015113229680001
1118 => 0.014474903655346
1119 => 0.013878843795013
1120 => 0.014118715682883
1121 => 0.014379483857676
1122 => 0.014944895703121
1123 => 0.01460814107252
1124 => 0.014729250771787
1125 => 0.014323553552763
1126 => 0.013486484308235
1127 => 0.013491222029254
1128 => 0.013362457162528
1129 => 0.013251185517698
1130 => 0.014646821392803
1201 => 0.014473252009995
1202 => 0.014196691914691
1203 => 0.014566878592317
1204 => 0.014664761825534
1205 => 0.014667548423576
1206 => 0.014937627067671
1207 => 0.015081768088439
1208 => 0.015107173568092
1209 => 0.015532148150011
1210 => 0.01567459402432
1211 => 0.016261308420904
1212 => 0.015069538729884
1213 => 0.015044995017363
1214 => 0.014572087878029
1215 => 0.014272162693898
1216 => 0.014592624011984
1217 => 0.014876508992476
1218 => 0.0145809089757
1219 => 0.014619508097434
1220 => 0.01422268922632
1221 => 0.01436453330068
1222 => 0.014486708525979
1223 => 0.014419250547696
1224 => 0.014318262689205
1225 => 0.014853233661458
1226 => 0.014823048502635
1227 => 0.015321225770926
1228 => 0.015709590576558
1229 => 0.016405609736762
1230 => 0.01567927745879
1231 => 0.015652807023671
]
'min_raw' => 0.013251185517698
'max_raw' => 0.03831307431079
'avg_raw' => 0.025782129914244
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.013251'
'max' => '$0.038313'
'avg' => '$0.025782'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0023300636010723
'max_diff' => -0.01294217607062
'year' => 2030
]
5 => [
'items' => [
101 => 0.015911559772947
102 => 0.015674554410622
103 => 0.015824333618465
104 => 0.016381477990801
105 => 0.016393249573452
106 => 0.016196060397223
107 => 0.016184061417928
108 => 0.016221933756237
109 => 0.016443753224628
110 => 0.016366242686549
111 => 0.016455939843541
112 => 0.016568107511852
113 => 0.017032080546093
114 => 0.017143942873875
115 => 0.016872175411332
116 => 0.016896712970348
117 => 0.016795064479173
118 => 0.01669687331035
119 => 0.016917592718196
120 => 0.017320961774284
121 => 0.017318452436321
122 => 0.017412026216959
123 => 0.01747032190709
124 => 0.017220074129996
125 => 0.017057172028973
126 => 0.017119639060235
127 => 0.017219525203578
128 => 0.017087247330181
129 => 0.016270767018501
130 => 0.0165184349881
131 => 0.016477210927614
201 => 0.016418502852464
202 => 0.016667534911056
203 => 0.016643515161487
204 => 0.015924030407683
205 => 0.015970089487259
206 => 0.015926831412865
207 => 0.016066607101003
208 => 0.015667006064758
209 => 0.015789920652153
210 => 0.015867011529114
211 => 0.015912418647884
212 => 0.016076460296835
213 => 0.016057211902693
214 => 0.016075263789629
215 => 0.016318494249634
216 => 0.017548670449722
217 => 0.017615626226062
218 => 0.017285911495439
219 => 0.017417626026987
220 => 0.017164762929216
221 => 0.017334511620785
222 => 0.017450649364408
223 => 0.016925845232982
224 => 0.016894769738269
225 => 0.016640862984545
226 => 0.016777298091983
227 => 0.016560220026018
228 => 0.016613483390338
301 => 0.016464554380284
302 => 0.01673259694691
303 => 0.017032310186002
304 => 0.017108029586231
305 => 0.01690884444348
306 => 0.016764621273188
307 => 0.016511412896219
308 => 0.016932504070234
309 => 0.017055643962037
310 => 0.016931857268805
311 => 0.01690317318719
312 => 0.016848816904361
313 => 0.016914705129551
314 => 0.01705497331574
315 => 0.01698882542948
316 => 0.017032517273731
317 => 0.016866009018281
318 => 0.017220156972423
319 => 0.017782629153946
320 => 0.017784437593983
321 => 0.017718289351161
322 => 0.017691222915382
323 => 0.017759095026728
324 => 0.017795912862874
325 => 0.018015398825352
326 => 0.018250916007797
327 => 0.019349971934072
328 => 0.019041361427918
329 => 0.020016509228839
330 => 0.020787724532273
331 => 0.021018978280614
401 => 0.02080623571347
402 => 0.020078454883395
403 => 0.020042746483809
404 => 0.021130358305082
405 => 0.020823058149795
406 => 0.020786505774145
407 => 0.020397650253438
408 => 0.020627512026869
409 => 0.020577237885151
410 => 0.020497877692954
411 => 0.02093643794435
412 => 0.02175738358442
413 => 0.021629431507635
414 => 0.021533921217842
415 => 0.021115422930594
416 => 0.021367452374494
417 => 0.021277709516827
418 => 0.021663301785588
419 => 0.021434885467489
420 => 0.020820730048881
421 => 0.020918536323577
422 => 0.020903753101916
423 => 0.021207990756157
424 => 0.021116666163996
425 => 0.020885920509589
426 => 0.02175457768147
427 => 0.021698171916453
428 => 0.021778142395094
429 => 0.021813347872961
430 => 0.022342084186029
501 => 0.022558690535818
502 => 0.022607863969448
503 => 0.022813623248811
504 => 0.022602744491135
505 => 0.023446409875846
506 => 0.024007398127438
507 => 0.024659014849855
508 => 0.025611202019368
509 => 0.025969233203329
510 => 0.025904558074559
511 => 0.026626495519323
512 => 0.027923801059795
513 => 0.026166780615674
514 => 0.028016927409712
515 => 0.027431192295691
516 => 0.026042424877273
517 => 0.025953004628019
518 => 0.026893494047693
519 => 0.028979409061778
520 => 0.028456911009002
521 => 0.028980263681413
522 => 0.028369744989532
523 => 0.028339427590625
524 => 0.028950612151251
525 => 0.030378678191092
526 => 0.029700257545819
527 => 0.028727575195253
528 => 0.029445788706297
529 => 0.028823605695508
530 => 0.02742165323414
531 => 0.028456511464588
601 => 0.027764531236953
602 => 0.027966487855069
603 => 0.029420927369268
604 => 0.02924592535895
605 => 0.029472394165052
606 => 0.029072682650003
607 => 0.028699289066227
608 => 0.028002322213539
609 => 0.027795984688508
610 => 0.02785300895718
611 => 0.027795956430112
612 => 0.027406009881489
613 => 0.027321800961441
614 => 0.027181449072083
615 => 0.027224949991364
616 => 0.026961047377978
617 => 0.027459086134499
618 => 0.027551526516412
619 => 0.027913957590422
620 => 0.027951586386845
621 => 0.028960951769081
622 => 0.028405010278242
623 => 0.028777983827976
624 => 0.028744621563124
625 => 0.026072523678342
626 => 0.026440715190745
627 => 0.027013505639184
628 => 0.026755464318562
629 => 0.026390654263571
630 => 0.026096050584289
701 => 0.025649695885403
702 => 0.026277931552602
703 => 0.027103994649553
704 => 0.027972536710195
705 => 0.029016033086927
706 => 0.028783136843277
707 => 0.027953029271273
708 => 0.02799026729056
709 => 0.028220458073166
710 => 0.027922340094653
711 => 0.027834419282835
712 => 0.028208379103738
713 => 0.0282109543595
714 => 0.027867933596459
715 => 0.027486728790476
716 => 0.02748513152842
717 => 0.027417299815197
718 => 0.028381812100625
719 => 0.02891219633442
720 => 0.028973004032067
721 => 0.028908103491878
722 => 0.028933081133986
723 => 0.02862446223456
724 => 0.029329873520556
725 => 0.029977228674531
726 => 0.02980372366454
727 => 0.029543614989373
728 => 0.029336425901071
729 => 0.0297549164999
730 => 0.0297362817723
731 => 0.029971574592002
801 => 0.029960900350583
802 => 0.029881780225128
803 => 0.029803726490169
804 => 0.030113200726485
805 => 0.030024077116431
806 => 0.029934815072793
807 => 0.029755786378942
808 => 0.029780119351788
809 => 0.029520055588051
810 => 0.029399738191238
811 => 0.027590453224972
812 => 0.027106953161894
813 => 0.02725907212429
814 => 0.027309153636478
815 => 0.027098733789404
816 => 0.027400421797684
817 => 0.02735340404116
818 => 0.027536322627327
819 => 0.027422043036092
820 => 0.027426733110378
821 => 0.027762805021223
822 => 0.027860368126693
823 => 0.02781074674382
824 => 0.027845499859463
825 => 0.028646370741076
826 => 0.02853251251212
827 => 0.028472027597266
828 => 0.028488782332042
829 => 0.028693422013159
830 => 0.02875070995096
831 => 0.028507976932947
901 => 0.028622451227465
902 => 0.029109868244571
903 => 0.029280436615144
904 => 0.029824808976551
905 => 0.029593549921978
906 => 0.030018035925304
907 => 0.031322761181585
908 => 0.032365065996422
909 => 0.031406519413629
910 => 0.033320579469361
911 => 0.034810949778356
912 => 0.034753746883555
913 => 0.034493866347295
914 => 0.03279711937405
915 => 0.031235747512196
916 => 0.032541901373988
917 => 0.032545231028794
918 => 0.032433031253696
919 => 0.031736168086752
920 => 0.032408781926025
921 => 0.032462171570012
922 => 0.032432287566831
923 => 0.031898004210617
924 => 0.031082252277748
925 => 0.031241648252796
926 => 0.031502742111515
927 => 0.031008436967075
928 => 0.030850476522421
929 => 0.031144155042237
930 => 0.032090448423431
1001 => 0.03191155714122
1002 => 0.031906885566885
1003 => 0.032672258333891
1004 => 0.032124416610496
1005 => 0.031243658746498
1006 => 0.03102125577007
1007 => 0.030231875032345
1008 => 0.030777103119569
1009 => 0.030796724907777
1010 => 0.030498109056501
1011 => 0.031267889777063
1012 => 0.031260796112206
1013 => 0.03199158833964
1014 => 0.033388588605468
1015 => 0.032975426884654
1016 => 0.032494964755216
1017 => 0.032547204310456
1018 => 0.033120143293227
1019 => 0.032773731305319
1020 => 0.032898303471441
1021 => 0.033119954738334
1022 => 0.033253682450942
1023 => 0.032527962950564
1024 => 0.03235876301985
1025 => 0.032012639342714
1026 => 0.031922342136053
1027 => 0.032204252648973
1028 => 0.032129979188864
1029 => 0.030795075772458
1030 => 0.030655570938111
1031 => 0.030659849352213
1101 => 0.030309057813155
1102 => 0.029774016516474
1103 => 0.031180073098495
1104 => 0.031067147077209
1105 => 0.03094248548949
1106 => 0.030957755822676
1107 => 0.031568077329252
1108 => 0.031214060033463
1109 => 0.032155273036612
1110 => 0.031961787938617
1111 => 0.031763340677945
1112 => 0.031735909221669
1113 => 0.031659523957035
1114 => 0.031397570462899
1115 => 0.031081245877766
1116 => 0.030872380987095
1117 => 0.028478139552711
1118 => 0.028922496836271
1119 => 0.029433689386566
1120 => 0.029610151006452
1121 => 0.029308301194864
1122 => 0.031409489333257
1123 => 0.031793396653694
1124 => 0.030630516338435
1125 => 0.030412988911541
1126 => 0.03142375039515
1127 => 0.030814137659968
1128 => 0.031088646237293
1129 => 0.030495308841279
1130 => 0.03170092462232
1201 => 0.031691739850027
1202 => 0.031222728081135
1203 => 0.031619133616548
1204 => 0.031550248399709
1205 => 0.031020735267755
1206 => 0.031717711133078
1207 => 0.031718056824412
1208 => 0.031266643194048
1209 => 0.030739490900934
1210 => 0.030645248521707
1211 => 0.030574249548641
1212 => 0.031071184842235
1213 => 0.031516735472595
1214 => 0.032345794734327
1215 => 0.032554239930689
1216 => 0.03336781540907
1217 => 0.032883370823965
1218 => 0.033098118833935
1219 => 0.033331258176717
1220 => 0.033443033751063
1221 => 0.033260901450875
1222 => 0.034524719049829
1223 => 0.034631423977551
1224 => 0.034667201216822
1225 => 0.034241049033244
1226 => 0.034619571914422
1227 => 0.034442473593679
1228 => 0.034903234224921
1229 => 0.034975487375187
1230 => 0.034914291527392
1231 => 0.034937225817725
]
'min_raw' => 0.015667006064758
'max_raw' => 0.034975487375187
'avg_raw' => 0.025321246719973
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.015667'
'max' => '$0.034975'
'avg' => '$0.025321'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0024158205470598
'max_diff' => -0.0033375869356027
'year' => 2031
]
6 => [
'items' => [
101 => 0.03385878044972
102 => 0.033802857368137
103 => 0.033040342182624
104 => 0.033351072756948
105 => 0.032770176841953
106 => 0.032954384920489
107 => 0.033035582086308
108 => 0.032993169294783
109 => 0.033368640997404
110 => 0.033049413346375
111 => 0.032206919089424
112 => 0.031364195295477
113 => 0.031353615584712
114 => 0.031131741285076
115 => 0.030971366804744
116 => 0.031002260619247
117 => 0.031111134451096
118 => 0.030965038859715
119 => 0.030996215761371
120 => 0.031513960059462
121 => 0.031617789986061
122 => 0.031264935326507
123 => 0.029848172951714
124 => 0.02950049591126
125 => 0.029750399273203
126 => 0.029630961562032
127 => 0.023914498582291
128 => 0.025257496765887
129 => 0.024459532849103
130 => 0.024827271334512
131 => 0.02401275680723
201 => 0.024401485832013
202 => 0.024329701775247
203 => 0.026489203112264
204 => 0.026455485469184
205 => 0.026471624320628
206 => 0.025701274891619
207 => 0.026928462449297
208 => 0.027533019168446
209 => 0.027421131809488
210 => 0.027449291447219
211 => 0.026965415573652
212 => 0.026476309296785
213 => 0.025933815162823
214 => 0.026941702209422
215 => 0.026829642375046
216 => 0.02708666731725
217 => 0.027740354112224
218 => 0.027836611975898
219 => 0.027965983520828
220 => 0.027919613031264
221 => 0.029024346219067
222 => 0.02889055574076
223 => 0.029212952299333
224 => 0.028549758118063
225 => 0.027799290950986
226 => 0.027941930224827
227 => 0.027928192915724
228 => 0.027753301203887
229 => 0.027595416786377
301 => 0.027332583714882
302 => 0.028164226445067
303 => 0.02813046326898
304 => 0.028677049844438
305 => 0.028580435357967
306 => 0.027935220171739
307 => 0.02795826415834
308 => 0.028113246042797
309 => 0.028649640114454
310 => 0.028808878395415
311 => 0.028735112879126
312 => 0.028909710384696
313 => 0.029047705134185
314 => 0.028927040400627
315 => 0.0306353985684
316 => 0.029925969150825
317 => 0.030271740112773
318 => 0.030354204449797
319 => 0.030142973784549
320 => 0.030188782152238
321 => 0.030258169347254
322 => 0.030679474807988
323 => 0.031785102242669
324 => 0.032274777107229
325 => 0.033747988097389
326 => 0.03223411642633
327 => 0.032144289546393
328 => 0.032409659332431
329 => 0.033274590138876
330 => 0.03397553531868
331 => 0.034208079273319
401 => 0.034238813795806
402 => 0.034675081713938
403 => 0.034925142348696
404 => 0.034622107313692
405 => 0.034365316850616
406 => 0.033445525285884
407 => 0.033551993664011
408 => 0.034285455209696
409 => 0.035321512843644
410 => 0.036210558076997
411 => 0.035899245422631
412 => 0.038274341222956
413 => 0.038509822270162
414 => 0.038477286403452
415 => 0.039013747273266
416 => 0.037948981695042
417 => 0.03749377378149
418 => 0.034420837863428
419 => 0.035284207512977
420 => 0.036539166002517
421 => 0.036373067540573
422 => 0.035461683140333
423 => 0.036209866710203
424 => 0.035962493824141
425 => 0.035767380565393
426 => 0.036661232228284
427 => 0.035678405607532
428 => 0.036529361555151
429 => 0.035438001750318
430 => 0.035900667472613
501 => 0.035638036032016
502 => 0.035807990760981
503 => 0.034814438888194
504 => 0.035350535361641
505 => 0.034792135512377
506 => 0.034791870758142
507 => 0.034779544050521
508 => 0.035436498996857
509 => 0.035457922274071
510 => 0.034972431576125
511 => 0.034902464781761
512 => 0.035161168691606
513 => 0.034858294167839
514 => 0.03500000725124
515 => 0.034862586512769
516 => 0.034831650210016
517 => 0.0345851444863
518 => 0.034478943042707
519 => 0.034520587365213
520 => 0.034378433823378
521 => 0.034292781172503
522 => 0.034762505582416
523 => 0.034511550778828
524 => 0.034724043159567
525 => 0.034481881273039
526 => 0.033642442669418
527 => 0.033159672651574
528 => 0.031574050945335
529 => 0.032023731294266
530 => 0.032321869830836
531 => 0.032223335046278
601 => 0.032435025891408
602 => 0.032448021990017
603 => 0.032379199138333
604 => 0.032299511092836
605 => 0.032260723359313
606 => 0.032549815346798
607 => 0.032717642975921
608 => 0.03235179202156
609 => 0.032266078261752
610 => 0.032635973775796
611 => 0.032861609825681
612 => 0.034527579644088
613 => 0.034404159218929
614 => 0.034713920266044
615 => 0.034679045925809
616 => 0.03500372485199
617 => 0.035534437676743
618 => 0.03445535011438
619 => 0.034642642403166
620 => 0.034596722659166
621 => 0.035098062383351
622 => 0.035099627511247
623 => 0.034799049302822
624 => 0.034961997625934
625 => 0.034871044342226
626 => 0.035035409218959
627 => 0.034402510863905
628 => 0.035173312743205
629 => 0.035610307739393
630 => 0.035616375415339
701 => 0.035823507575325
702 => 0.036033965846156
703 => 0.036437922169965
704 => 0.036022699723533
705 => 0.035275754963492
706 => 0.03532968196255
707 => 0.034891748523034
708 => 0.034899110263272
709 => 0.034859812716935
710 => 0.034977747611674
711 => 0.034428390941246
712 => 0.034557323853757
713 => 0.034376817021211
714 => 0.034642250016564
715 => 0.034356687991211
716 => 0.034596700515275
717 => 0.03470028196412
718 => 0.035082499740308
719 => 0.034300234114896
720 => 0.032705141549955
721 => 0.033040449345733
722 => 0.032544502777918
723 => 0.032590404520971
724 => 0.032683133347146
725 => 0.032382568882528
726 => 0.032439907110502
727 => 0.032437858585516
728 => 0.032420205503888
729 => 0.03234201707829
730 => 0.032228628392065
731 => 0.032680334018789
801 => 0.032757087606831
802 => 0.032927701325291
803 => 0.033435332023037
804 => 0.033384607745576
805 => 0.033467341146645
806 => 0.03328673459664
807 => 0.032598782340833
808 => 0.032636141458162
809 => 0.032170272666437
810 => 0.032915788012871
811 => 0.032739240138514
812 => 0.032625418575404
813 => 0.03259436130736
814 => 0.033103250323419
815 => 0.033255517892881
816 => 0.033160634961889
817 => 0.032966027302245
818 => 0.033339731539351
819 => 0.033439719027884
820 => 0.03346210253917
821 => 0.03412423479664
822 => 0.033499108376991
823 => 0.033649582519423
824 => 0.034823538823938
825 => 0.033758922450639
826 => 0.034322873487354
827 => 0.034295271018766
828 => 0.034583769286087
829 => 0.034271605740212
830 => 0.034275475381488
831 => 0.034531642298304
901 => 0.034171902063583
902 => 0.034082825322428
903 => 0.033959766442502
904 => 0.034228461004802
905 => 0.03438953124289
906 => 0.035687639068831
907 => 0.036526275925298
908 => 0.036489868487612
909 => 0.036822564316199
910 => 0.036672681798276
911 => 0.036188671610891
912 => 0.037014817982003
913 => 0.036753390702751
914 => 0.036774942450018
915 => 0.036774140292908
916 => 0.036947966579242
917 => 0.036824794724429
918 => 0.036582010355263
919 => 0.036743181949788
920 => 0.037221803965627
921 => 0.038707461388709
922 => 0.039538854965009
923 => 0.038657410451487
924 => 0.039265419073902
925 => 0.038900830556077
926 => 0.038834573976819
927 => 0.03921644832318
928 => 0.039598991090032
929 => 0.039574624769561
930 => 0.039296918364615
1001 => 0.039140049063
1002 => 0.0403279159699
1003 => 0.041203116072119
1004 => 0.041143433292563
1005 => 0.041406853671641
1006 => 0.0421802640519
1007 => 0.042250975004376
1008 => 0.042242067049637
1009 => 0.042066802575999
1010 => 0.042828325535393
1011 => 0.04346360138584
1012 => 0.04202623391423
1013 => 0.042573564630897
1014 => 0.042819279023503
1015 => 0.043180060652025
1016 => 0.043788759733362
1017 => 0.044449968385152
1018 => 0.044543470538299
1019 => 0.044477126286151
1020 => 0.044041041406053
1021 => 0.044764543802701
1022 => 0.045188354538438
1023 => 0.045440724132834
1024 => 0.046080691433924
1025 => 0.042820796471941
1026 => 0.040513280790557
1027 => 0.040152928895978
1028 => 0.040885718643742
1029 => 0.041078949456339
1030 => 0.041001058358072
1031 => 0.038403739668527
1101 => 0.040139254550605
1102 => 0.042006522637486
1103 => 0.042078252009392
1104 => 0.043013045456419
1105 => 0.043317452521249
1106 => 0.044070083772283
1107 => 0.044023006482612
1108 => 0.04420626021526
1109 => 0.044164133355636
1110 => 0.04555822426297
1111 => 0.047096113558262
1112 => 0.047042861342155
1113 => 0.046821771560476
1114 => 0.047150127587678
1115 => 0.048737394150653
1116 => 0.048591264080962
1117 => 0.048733216996337
1118 => 0.050604693728507
1119 => 0.053037879694789
1120 => 0.051907420525574
1121 => 0.054360191641907
1122 => 0.055904081043828
1123 => 0.058574078123308
1124 => 0.058239781338944
1125 => 0.059279191608642
1126 => 0.057641320325089
1127 => 0.053880436789651
1128 => 0.053285262574084
1129 => 0.054476816425861
1130 => 0.057406135300329
1201 => 0.054384561749943
1202 => 0.05499582214388
1203 => 0.054819779109305
1204 => 0.054810398524127
1205 => 0.055168417306766
1206 => 0.054649092389544
1207 => 0.05253326925201
1208 => 0.053502938527318
1209 => 0.053128502652778
1210 => 0.053543967171623
1211 => 0.05578605782923
1212 => 0.054794776104736
1213 => 0.053750541333171
1214 => 0.05506024347096
1215 => 0.056727944354849
1216 => 0.056623582630682
1217 => 0.056421077265981
1218 => 0.057562589403963
1219 => 0.059448033024236
1220 => 0.059957660858469
1221 => 0.060333857706818
1222 => 0.060385728896308
1223 => 0.060920034385814
1224 => 0.058046939106419
1225 => 0.062606615101139
1226 => 0.063393945186919
1227 => 0.063245959762281
1228 => 0.064121044016712
1229 => 0.063863572030313
1230 => 0.063490535518139
1231 => 0.06487773019717
]
'min_raw' => 0.023914498582291
'max_raw' => 0.06487773019717
'avg_raw' => 0.044396114389731
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.023914'
'max' => '$0.064877'
'avg' => '$0.044396'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0082474925175327
'max_diff' => 0.029902242821983
'year' => 2032
]
7 => [
'items' => [
101 => 0.063287423438499
102 => 0.061030183208619
103 => 0.059791816575358
104 => 0.061422597654223
105 => 0.06241845875267
106 => 0.063076659590082
107 => 0.063275830765787
108 => 0.058269969314305
109 => 0.05557208762976
110 => 0.057301398858277
111 => 0.059411277907753
112 => 0.058035218621768
113 => 0.058089157540554
114 => 0.056127258620759
115 => 0.059584862429175
116 => 0.059081118637314
117 => 0.061694542320595
118 => 0.061070827784545
119 => 0.063201973345738
120 => 0.06264077129701
121 => 0.064970289624894
122 => 0.065899597555077
123 => 0.067460050205086
124 => 0.068607925526617
125 => 0.069281979870776
126 => 0.069241512176267
127 => 0.071912451300367
128 => 0.070337491814391
129 => 0.068358971510554
130 => 0.06832318632041
131 => 0.069347890021616
201 => 0.071495387865612
202 => 0.072052202811738
203 => 0.07236338640453
204 => 0.07188679789979
205 => 0.070177292256126
206 => 0.069439136386583
207 => 0.070068066573868
208 => 0.069298938999405
209 => 0.070626668972011
210 => 0.072449925812218
211 => 0.072073430484654
212 => 0.073331997917366
213 => 0.074634482805067
214 => 0.076497094692737
215 => 0.076984050412492
216 => 0.07778896969998
217 => 0.078617496049017
218 => 0.078883596382916
219 => 0.079391664486415
220 => 0.07938898671672
221 => 0.08092008414354
222 => 0.082608932019464
223 => 0.083246432995706
224 => 0.084712331338568
225 => 0.082202031797622
226 => 0.084106122835672
227 => 0.085823660614483
228 => 0.083775941268814
301 => 0.086598245329403
302 => 0.086707829000597
303 => 0.088362412331902
304 => 0.086685175145813
305 => 0.085689237058644
306 => 0.088564472998988
307 => 0.089955709101437
308 => 0.089536657465124
309 => 0.086347653821654
310 => 0.084491516918354
311 => 0.079633648620348
312 => 0.08538800346363
313 => 0.08819078185096
314 => 0.086340395302733
315 => 0.087273622647101
316 => 0.092365008437991
317 => 0.094303478504345
318 => 0.093900290281472
319 => 0.093968422454094
320 => 0.095014385716178
321 => 0.099652762842748
322 => 0.096873339751767
323 => 0.098998104561826
324 => 0.10012507215567
325 => 0.10117186246342
326 => 0.098601276309061
327 => 0.09525698149165
328 => 0.094197702939029
329 => 0.086156410827644
330 => 0.085737826651685
331 => 0.085502862669321
401 => 0.084021447996828
402 => 0.082857461857878
403 => 0.08193181686415
404 => 0.079502647979615
405 => 0.080322421169145
406 => 0.076450832974144
407 => 0.078927737900645
408 => 0.072748589658658
409 => 0.077894767928966
410 => 0.075093937064451
411 => 0.076974619661868
412 => 0.076968058137457
413 => 0.073505125204652
414 => 0.071507777758576
415 => 0.072780565289141
416 => 0.074145094555907
417 => 0.074366484838612
418 => 0.076135632650831
419 => 0.076629363777516
420 => 0.075133335413557
421 => 0.072620540545812
422 => 0.07320420548284
423 => 0.071495949807256
424 => 0.068502297442902
425 => 0.070652390835137
426 => 0.071386527252179
427 => 0.071710763716774
428 => 0.068766850439728
429 => 0.067841808972614
430 => 0.067349324657372
501 => 0.072240518309825
502 => 0.072508468939352
503 => 0.071137595634292
504 => 0.077334072964704
505 => 0.07593161930402
506 => 0.077498503652493
507 => 0.073151244007491
508 => 0.073317315180292
509 => 0.071259252796422
510 => 0.072411630211611
511 => 0.071597166997413
512 => 0.072318529504479
513 => 0.072750911216925
514 => 0.07480863589301
515 => 0.077918263839398
516 => 0.074501280445474
517 => 0.073012451848637
518 => 0.073936112736625
519 => 0.076395943399944
520 => 0.080122712771287
521 => 0.077916390295228
522 => 0.078895518744318
523 => 0.079109414752051
524 => 0.077482554240703
525 => 0.08018269743887
526 => 0.081629726114692
527 => 0.083114078115691
528 => 0.08440289936756
529 => 0.082521195284892
530 => 0.084534888385032
531 => 0.082912207211003
601 => 0.081456494448202
602 => 0.081458702163571
603 => 0.080545512282896
604 => 0.078776091819759
605 => 0.078449783538576
606 => 0.080147280425482
607 => 0.081508512175228
608 => 0.081620629741997
609 => 0.082374277581269
610 => 0.08282027860936
611 => 0.087191694993647
612 => 0.08894991482566
613 => 0.091099832754848
614 => 0.091937346951002
615 => 0.094457964415968
616 => 0.092422361098467
617 => 0.09198194551618
618 => 0.085867752033862
619 => 0.086868950874068
620 => 0.088471966818557
621 => 0.085894185176359
622 => 0.087529194304789
623 => 0.08785197974097
624 => 0.085806593142557
625 => 0.086899122500707
626 => 0.08399768843784
627 => 0.077981507173264
628 => 0.080189395168434
629 => 0.081815143899943
630 => 0.079495000006707
701 => 0.083653768133363
702 => 0.08122430164817
703 => 0.080454277407322
704 => 0.077450138310308
705 => 0.078867976324181
706 => 0.080785622539428
707 => 0.079600740128706
708 => 0.082059549041943
709 => 0.085541878203471
710 => 0.088023593340263
711 => 0.088214108612886
712 => 0.08661853204193
713 => 0.089175453679721
714 => 0.089194078062398
715 => 0.086309860009638
716 => 0.084543292511716
717 => 0.084141924659298
718 => 0.08514462024744
719 => 0.086362077799261
720 => 0.088281669033939
721 => 0.089441637814015
722 => 0.092466221192551
723 => 0.093284586733181
724 => 0.094183722349405
725 => 0.095385244815835
726 => 0.096827980600822
727 => 0.093671356838265
728 => 0.093796775385035
729 => 0.090857371043772
730 => 0.087716195951911
731 => 0.090099956293631
801 => 0.09321640584208
802 => 0.092501488872295
803 => 0.092421046108766
804 => 0.09255632852406
805 => 0.092017304475848
806 => 0.089579318682946
807 => 0.08835497748035
808 => 0.089934689994453
809 => 0.090774236890783
810 => 0.092076300910808
811 => 0.091915794037103
812 => 0.095269771121221
813 => 0.096573025197106
814 => 0.096239597035109
815 => 0.096300955841313
816 => 0.098660435094176
817 => 0.10128466128728
818 => 0.10374259541426
819 => 0.10624291157896
820 => 0.10322868285342
821 => 0.10169824339837
822 => 0.10327726625941
823 => 0.10243941450298
824 => 0.10725395921836
825 => 0.10758730784848
826 => 0.11240150441748
827 => 0.11697075022532
828 => 0.11410088879995
829 => 0.11680703886267
830 => 0.11973396079115
831 => 0.12538046806717
901 => 0.12347892306313
902 => 0.12202236939104
903 => 0.12064593320894
904 => 0.12351007840081
905 => 0.12719475543431
906 => 0.12798839957593
907 => 0.12927440628074
908 => 0.12792232747605
909 => 0.12955075746971
910 => 0.13529983091574
911 => 0.13374638052215
912 => 0.13154023123363
913 => 0.13607857257239
914 => 0.13772098066053
915 => 0.1492482607589
916 => 0.16380192805128
917 => 0.1577766142277
918 => 0.15403650750175
919 => 0.15491552129887
920 => 0.16023002792131
921 => 0.16193687877444
922 => 0.15729706976888
923 => 0.15893592874856
924 => 0.16796620285565
925 => 0.17281065518823
926 => 0.16623123822384
927 => 0.14807888776255
928 => 0.13134159162821
929 => 0.1357810762533
930 => 0.13527777647006
1001 => 0.1449796794485
1002 => 0.13370933124402
1003 => 0.13389909500336
1004 => 0.1438016230609
1005 => 0.14115979834746
1006 => 0.13688038065103
1007 => 0.13137283611328
1008 => 0.12119163064903
1009 => 0.11217385304543
1010 => 0.12985979159624
1011 => 0.12909714176614
1012 => 0.12799271179378
1013 => 0.13045050118546
1014 => 0.14238482881581
1015 => 0.14210970393628
1016 => 0.14035949982267
1017 => 0.14168701421725
1018 => 0.13664766095922
1019 => 0.13794641703776
1020 => 0.13133894035498
1021 => 0.1343257957682
1022 => 0.13687119894264
1023 => 0.13738222631524
1024 => 0.13853359707943
1025 => 0.12869525996075
1026 => 0.13311238448864
1027 => 0.13570703132017
1028 => 0.12398432254124
1029 => 0.13547531105899
1030 => 0.12852399639984
1031 => 0.12616461579928
1101 => 0.12934121095318
1102 => 0.12810328873236
1103 => 0.12703899590014
1104 => 0.12644510221289
1105 => 0.12877764310589
1106 => 0.12866882728525
1107 => 0.12485233765761
1108 => 0.11987388251837
1109 => 0.12154481547532
1110 => 0.12093774986698
1111 => 0.11873766578934
1112 => 0.1202202568185
1113 => 0.1136916762482
1114 => 0.1024595927031
1115 => 0.10987985114102
1116 => 0.10959417926285
1117 => 0.10945013054768
1118 => 0.1150262496829
1119 => 0.11449023449101
1120 => 0.11351736166904
1121 => 0.11871979821703
1122 => 0.11682083889437
1123 => 0.12267298407572
1124 => 0.12652758538517
1125 => 0.12554993380981
1126 => 0.12917520497225
1127 => 0.12158331039584
1128 => 0.12410503324018
1129 => 0.12462475682344
1130 => 0.11865560095758
1201 => 0.11457793320541
1202 => 0.11430599925516
1203 => 0.10723588531014
1204 => 0.1110126831116
1205 => 0.11433610888238
1206 => 0.11274444584644
1207 => 0.11224057287884
1208 => 0.11481475059359
1209 => 0.11501478624836
1210 => 0.11045395212061
1211 => 0.11140229395861
1212 => 0.11535703707175
1213 => 0.11130264457898
1214 => 0.10342562224679
1215 => 0.10147201180005
1216 => 0.10121136415427
1217 => 0.095913017679919
1218 => 0.10160256139165
1219 => 0.099118923091189
1220 => 0.1069647067238
1221 => 0.10248323719063
1222 => 0.10229004999606
1223 => 0.10199801921706
1224 => 0.097437513534647
1225 => 0.098435974443839
1226 => 0.10175501057588
1227 => 0.10293928005942
1228 => 0.10281575104985
1229 => 0.10173874548814
1230 => 0.10223179311913
1231 => 0.10064351491054
]
'min_raw' => 0.05557208762976
'max_raw' => 0.17281065518823
'avg_raw' => 0.11419137140899
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.055572'
'max' => '$0.17281'
'avg' => '$0.114191'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.031657589047469
'max_diff' => 0.10793292499106
'year' => 2033
]
8 => [
'items' => [
101 => 0.10008266081793
102 => 0.098312451026588
103 => 0.095710731666253
104 => 0.09607251670058
105 => 0.090917829870855
106 => 0.088109282906085
107 => 0.08733191412229
108 => 0.086292384096123
109 => 0.08744933180483
110 => 0.090903227290719
111 => 0.086737096549933
112 => 0.079594557614948
113 => 0.080023836375235
114 => 0.080988298295592
115 => 0.079191029887562
116 => 0.077490066172665
117 => 0.078968916119219
118 => 0.075942528214039
119 => 0.081354022815193
120 => 0.081207657051771
121 => 0.0832247275945
122 => 0.084486043199322
123 => 0.081579119085982
124 => 0.080848035532636
125 => 0.081264493950517
126 => 0.074381363975532
127 => 0.082662229028384
128 => 0.082733842293232
129 => 0.082120646041934
130 => 0.086529951039553
131 => 0.095834959881245
201 => 0.092334041261887
202 => 0.090978379756646
203 => 0.0884012662442
204 => 0.091835116985675
205 => 0.091571450825146
206 => 0.090379052454812
207 => 0.089657886199924
208 => 0.090986657136719
209 => 0.089493236775999
210 => 0.089224977442766
211 => 0.087599617752411
212 => 0.087019438292108
213 => 0.086589896517309
214 => 0.086117013229159
215 => 0.087160075927645
216 => 0.084796358626551
217 => 0.081945947279496
218 => 0.081708966417866
219 => 0.082363291412396
220 => 0.082073801311083
221 => 0.081707580450636
222 => 0.081008365093726
223 => 0.080800922833703
224 => 0.0814750095421
225 => 0.080714004950016
226 => 0.081836908679701
227 => 0.081531540998324
228 => 0.079825781953373
301 => 0.07769977463048
302 => 0.077680848705855
303 => 0.077222803915489
304 => 0.076639415007462
305 => 0.076477129559379
306 => 0.078844371501568
307 => 0.083744491476311
308 => 0.082782480675336
309 => 0.083477632069873
310 => 0.086897088914372
311 => 0.087984031418583
312 => 0.087212545374738
313 => 0.086156487694736
314 => 0.086202948873073
315 => 0.089811817656039
316 => 0.090036898375305
317 => 0.090605604739095
318 => 0.091336553132966
319 => 0.087337029046924
320 => 0.086014571648291
321 => 0.085387917965676
322 => 0.083458067168716
323 => 0.085539245800334
324 => 0.084326632136645
325 => 0.084490255148658
326 => 0.084383695447433
327 => 0.084441884249837
328 => 0.081352510192166
329 => 0.082478115726061
330 => 0.080606578211177
331 => 0.078100799568691
401 => 0.078092399320042
402 => 0.078705685092856
403 => 0.078340878717312
404 => 0.077359194140751
405 => 0.077498637801431
406 => 0.07627696460436
407 => 0.077646971046663
408 => 0.077686257929309
409 => 0.077158730824268
410 => 0.079269414773092
411 => 0.08013416370908
412 => 0.079786934067816
413 => 0.080109801151806
414 => 0.082822456567335
415 => 0.083264737761519
416 => 0.08346116985252
417 => 0.083197976872844
418 => 0.08015938351311
419 => 0.080294158049711
420 => 0.079305271924444
421 => 0.078469767354846
422 => 0.078503183155985
423 => 0.07893274111275
424 => 0.080808645903183
425 => 0.084756376944021
426 => 0.084906190451267
427 => 0.085087768792418
428 => 0.084349198424996
429 => 0.084126438535016
430 => 0.084420316329106
501 => 0.085902876546208
502 => 0.089716423935766
503 => 0.08836846159003
504 => 0.087272547220663
505 => 0.08823395957899
506 => 0.088085957682225
507 => 0.086836672729681
508 => 0.086801609461935
509 => 0.084403832217443
510 => 0.0835174285649
511 => 0.082776683326672
512 => 0.081967808864171
513 => 0.081488280969083
514 => 0.082225053757469
515 => 0.082393562411412
516 => 0.080782595833022
517 => 0.080563027041113
518 => 0.081878577124156
519 => 0.081299652581259
520 => 0.081895090830266
521 => 0.08203323761161
522 => 0.082010992798024
523 => 0.081406529086179
524 => 0.081791796230742
525 => 0.080880524580189
526 => 0.079889653528788
527 => 0.079257539531443
528 => 0.078705936231004
529 => 0.07901199780146
530 => 0.077920944187422
531 => 0.07757189417772
601 => 0.081661276390949
602 => 0.084682147000129
603 => 0.084638222345075
604 => 0.084370842303941
605 => 0.083973569798876
606 => 0.085873813588005
607 => 0.085211806648446
608 => 0.085693472009506
609 => 0.085816076059327
610 => 0.086187161592159
611 => 0.086319792774267
612 => 0.085918889223658
613 => 0.084573407941569
614 => 0.081220596511125
615 => 0.079659853739512
616 => 0.079144782628653
617 => 0.079163504485274
618 => 0.078647072101634
619 => 0.078799184583492
620 => 0.078594173588112
621 => 0.07820593236035
622 => 0.078988024999681
623 => 0.079078153890666
624 => 0.078895604123335
625 => 0.07893860120194
626 => 0.077427167096466
627 => 0.077542078148843
628 => 0.076902238807018
629 => 0.076782276643804
630 => 0.075164818504856
701 => 0.072299256957403
702 => 0.073887056221482
703 => 0.071969217988837
704 => 0.071242903590143
705 => 0.074681162988496
706 => 0.074336057107372
707 => 0.073745385852809
708 => 0.072871659960634
709 => 0.072547586528168
710 => 0.070578618941681
711 => 0.070462281832638
712 => 0.071438155335098
713 => 0.070987823291469
714 => 0.070355386548134
715 => 0.068064764772856
716 => 0.065489347498637
717 => 0.06556708315765
718 => 0.066386275475237
719 => 0.068768187621757
720 => 0.067837533338613
721 => 0.067162332978165
722 => 0.067035888247101
723 => 0.068618608786338
724 => 0.070858489939562
725 => 0.071909392062139
726 => 0.070867979975037
727 => 0.069671661842984
728 => 0.069744476184478
729 => 0.070228877377035
730 => 0.070279781093309
731 => 0.069501100972833
801 => 0.069720294865602
802 => 0.069387319298976
803 => 0.067343848861219
804 => 0.067306888960914
805 => 0.066805388360077
806 => 0.066790203121192
807 => 0.065937025493979
808 => 0.065817660046194
809 => 0.064123624083183
810 => 0.06523864368405
811 => 0.064490747076945
812 => 0.063363490479062
813 => 0.063169151016699
814 => 0.063163308937788
815 => 0.06432074941385
816 => 0.065225118318192
817 => 0.064503757058628
818 => 0.064339517082825
819 => 0.066093170337579
820 => 0.065870001976007
821 => 0.065676739614168
822 => 0.070657933149522
823 => 0.066714929778911
824 => 0.06499555525056
825 => 0.062867502771358
826 => 0.063560407389158
827 => 0.063706412573015
828 => 0.058588829970827
829 => 0.056512627346473
830 => 0.05580015284584
831 => 0.055390113697815
901 => 0.055576973686517
902 => 0.05370814781032
903 => 0.054964029706652
904 => 0.053345784465784
905 => 0.053074480384927
906 => 0.055968103337716
907 => 0.056370734067297
908 => 0.054652986287343
909 => 0.055756058440178
910 => 0.05535606914371
911 => 0.053373524635793
912 => 0.053297806018201
913 => 0.052303034873937
914 => 0.050746410658815
915 => 0.0500349916227
916 => 0.049664478411868
917 => 0.049817359383816
918 => 0.049740058086164
919 => 0.049235614830374
920 => 0.049768972183106
921 => 0.04840646454535
922 => 0.047863903025526
923 => 0.047618840574353
924 => 0.046409536622831
925 => 0.048334076989611
926 => 0.048713235686587
927 => 0.049093141443324
928 => 0.052399961683046
929 => 0.052234762288847
930 => 0.053728084357042
1001 => 0.053670056607515
1002 => 0.053244136963452
1003 => 0.051447252045531
1004 => 0.052163458347421
1005 => 0.049959086673376
1006 => 0.051610751814274
1007 => 0.050857000819154
1008 => 0.051355907844618
1009 => 0.0504588280282
1010 => 0.050955309038124
1011 => 0.0488031482795
1012 => 0.046793490844817
1013 => 0.047602235662091
1014 => 0.048481433769657
1015 => 0.05038775928237
1016 => 0.049252367533842
1017 => 0.049660697340528
1018 => 0.048292860841714
1019 => 0.04547062344148
1020 => 0.045486596998672
1021 => 0.04505245726043
1022 => 0.044677297141149
1023 => 0.049382780934248
1024 => 0.048797579641885
1025 => 0.047865137971757
1026 => 0.049113248200983
1027 => 0.049443268355763
1028 => 0.049452663565616
1029 => 0.050363252570471
1030 => 0.050849234085594
1031 => 0.050934890433999
1101 => 0.052367721907717
1102 => 0.052847988118203
1103 => 0.054826136669376
1104 => 0.0508080019494
1105 => 0.050725251109049
1106 => 0.049130811671463
1107 => 0.048119592973055
1108 => 0.049200050680878
1109 => 0.050157188712824
1110 => 0.049160552618127
1111 => 0.049290692251958
1112 => 0.047952789722988
1113 => 0.04843102692293
1114 => 0.048842949225028
1115 => 0.048615509941483
1116 => 0.048275022325831
1117 => 0.050078714309263
1118 => 0.049976942938831
1119 => 0.051656582380502
1120 => 0.052965981437454
1121 => 0.055312658630589
1122 => 0.052863778644503
1123 => 0.052774531724394
1124 => 0.053646934684119
1125 => 0.052847854557855
1126 => 0.053352845614345
1127 => 0.055231296764257
1128 => 0.05527098547703
1129 => 0.054606148402063
1130 => 0.054565693005631
1201 => 0.054693382238399
1202 => 0.055441262063022
1203 => 0.055179929872273
1204 => 0.05548235009953
1205 => 0.055860531224537
1206 => 0.057424848703041
1207 => 0.057802000351136
1208 => 0.056885717376974
1209 => 0.056968447470356
1210 => 0.056625732485489
1211 => 0.056294674104314
1212 => 0.057038844998001
1213 => 0.058398831932931
1214 => 0.058390371524793
1215 => 0.058705862059328
1216 => 0.058902410048679
1217 => 0.058058682196463
1218 => 0.057509446389404
1219 => 0.057720058346613
1220 => 0.058056831452722
1221 => 0.057610847367216
1222 => 0.054858026991552
1223 => 0.055693056842682
1224 => 0.055554067044581
1225 => 0.055356128670347
1226 => 0.056195757642753
1227 => 0.056114773380076
1228 => 0.053688980299803
1229 => 0.053844271702336
1230 => 0.053698424084332
1231 => 0.054169687575717
]
'min_raw' => 0.044677297141149
'max_raw' => 0.10008266081793
'avg_raw' => 0.072379978979539
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.044677'
'max' => '$0.100082'
'avg' => '$0.072379'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.010894790488611
'max_diff' => -0.0727279943703
'year' => 2034
]
9 => [
'items' => [
101 => 0.052822404782765
102 => 0.053236819895789
103 => 0.053496737169777
104 => 0.053649830440935
105 => 0.054202908313395
106 => 0.054138011008663
107 => 0.054198874205813
108 => 0.055018942683526
109 => 0.059166567630282
110 => 0.059392313704915
111 => 0.058280657470673
112 => 0.058724742209803
113 => 0.05787219662133
114 => 0.058444516186431
115 => 0.058836082697532
116 => 0.057066668927775
117 => 0.05696189572773
118 => 0.056105831380346
119 => 0.056565831870668
120 => 0.055833938015361
121 => 0.056013519166893
122 => 0.055511394611606
123 => 0.056415118839121
124 => 0.05742562295003
125 => 0.057680916194462
126 => 0.057009349579013
127 => 0.056523091091031
128 => 0.055669381369639
129 => 0.057089119662476
130 => 0.057504294405042
131 => 0.057086938926299
201 => 0.056990228542477
202 => 0.056806962539885
203 => 0.057029109291281
204 => 0.057502033274231
205 => 0.057279011057406
206 => 0.057426321160765
207 => 0.056864926952281
208 => 0.05805896150549
209 => 0.059955375736049
210 => 0.059961473017895
211 => 0.059738449598898
212 => 0.05964719322095
213 => 0.059876028783035
214 => 0.060000162688139
215 => 0.060740174934654
216 => 0.061534237558553
217 => 0.065239781347623
218 => 0.064199279479625
219 => 0.067487058373075
220 => 0.070087264613136
221 => 0.070866952771292
222 => 0.070149676352952
223 => 0.067695912472319
224 => 0.067575519110036
225 => 0.07124247830009
226 => 0.070206394371529
227 => 0.070083155485018
228 => 0.06877210194793
301 => 0.069547096965489
302 => 0.069377594186658
303 => 0.069110025757913
304 => 0.070588662264794
305 => 0.073356537806884
306 => 0.072925138446677
307 => 0.072603118836322
308 => 0.07119212264225
309 => 0.072041857508491
310 => 0.071739283198222
311 => 0.07303933445354
312 => 0.072269212889551
313 => 0.070198545016753
314 => 0.070528305700507
315 => 0.070478463036544
316 => 0.071504221529012
317 => 0.071196314290464
318 => 0.070418339206483
319 => 0.073347077509187
320 => 0.073156901534308
321 => 0.073426527586406
322 => 0.073545225313003
323 => 0.075327896707701
324 => 0.076058200138987
325 => 0.07622399180365
326 => 0.076917723579677
327 => 0.076206731125087
328 => 0.079051207872476
329 => 0.080942618929669
330 => 0.083139590203723
331 => 0.086349955725323
401 => 0.087557082858986
402 => 0.087339026146866
403 => 0.089773088645948
404 => 0.09414704485063
405 => 0.088223127752026
406 => 0.09446102684125
407 => 0.09248618000961
408 => 0.087803853697769
409 => 0.087502367084287
410 => 0.090673292825592
411 => 0.097706100929515
412 => 0.095944462264931
413 => 0.09770898233928
414 => 0.09565057594455
415 => 0.095548358717441
416 => 0.097609010135137
417 => 0.10242383449285
418 => 0.10013649192149
419 => 0.096857025466044
420 => 0.099278532462597
421 => 0.09718079900229
422 => 0.092454018397593
423 => 0.095943115173045
424 => 0.093610055523055
425 => 0.094290966361195
426 => 0.099194710729041
427 => 0.098604679233003
428 => 0.099368234624321
429 => 0.098020579344369
430 => 0.096761656807162
501 => 0.094411784402649
502 => 0.093716103030983
503 => 0.093908364334118
504 => 0.093716007755829
505 => 0.092401275741947
506 => 0.092117359488725
507 => 0.0916441532947
508 => 0.091790819681192
509 => 0.090901053595069
510 => 0.092580226034636
511 => 0.092891895236236
512 => 0.094113856906392
513 => 0.09424072502069
514 => 0.097643870878539
515 => 0.095769475327578
516 => 0.097026981690688
517 => 0.096914498485463
518 => 0.087905333907001
519 => 0.089146717297381
520 => 0.091077920285245
521 => 0.090207915956896
522 => 0.088977933386271
523 => 0.087984656512999
524 => 0.086479740482216
525 => 0.08859788089619
526 => 0.091383010301446
527 => 0.094311360498571
528 => 0.097829581387311
529 => 0.09704435544155
530 => 0.094245589806279
531 => 0.094371140388178
601 => 0.095147244683142
602 => 0.094142119104652
603 => 0.093845687949174
604 => 0.095106519594389
605 => 0.095115202248989
606 => 0.093958683797453
607 => 0.092673425179212
608 => 0.092668039898673
609 => 0.092439340541683
610 => 0.0956912610521
611 => 0.097479488526582
612 => 0.097684505924659
613 => 0.097465689222199
614 => 0.097549903086451
615 => 0.096509372919954
616 => 0.098887716320931
617 => 0.10107031941945
618 => 0.10048533516453
619 => 0.099608360606001
620 => 0.098909808129312
621 => 0.10032077840134
622 => 0.1002579501162
623 => 0.10105125628545
624 => 0.10101526733525
625 => 0.10074850830829
626 => 0.10048534469134
627 => 0.10152875868588
628 => 0.10122827221217
629 => 0.10092731899997
630 => 0.10032371125926
701 => 0.10040575157609
702 => 0.099528928439577
703 => 0.09912326993593
704 => 0.093023139351923
705 => 0.09139298513236
706 => 0.091905864834684
707 => 0.092074718149604
708 => 0.091365272944151
709 => 0.092382435127251
710 => 0.092223911478456
711 => 0.092840634262684
712 => 0.092455332642089
713 => 0.092471145554997
714 => 0.093604235466199
715 => 0.093933176287931
716 => 0.09376587433112
717 => 0.093883046886895
718 => 0.096583238979276
719 => 0.096199358011021
720 => 0.095995428897668
721 => 0.096051918655743
722 => 0.096741875628118
723 => 0.096935025910129
724 => 0.096116634592819
725 => 0.096502592669126
726 => 0.098145953172668
727 => 0.098721036342759
728 => 0.10055642576611
729 => 0.099776719717623
730 => 0.1012079039145
731 => 0.10560687620906
801 => 0.10912107966369
802 => 0.10588927293621
803 => 0.11234266004952
804 => 0.11736754760063
805 => 0.11717468404703
806 => 0.11629847867475
807 => 0.11057777779136
808 => 0.10531350354762
809 => 0.1097172924854
810 => 0.10972851864905
811 => 0.10935022927377
812 => 0.10700070645298
813 => 0.10926847097249
814 => 0.10944847788474
815 => 0.10934772188158
816 => 0.10754634824363
817 => 0.10479598364798
818 => 0.10533339830653
819 => 0.10621369448019
820 => 0.10454711017443
821 => 0.10401453550683
822 => 0.10500469314037
823 => 0.10819518734316
824 => 0.10759204289539
825 => 0.10757629235637
826 => 0.11015680007695
827 => 0.10830971345743
828 => 0.10534017682641
829 => 0.1045903296637
830 => 0.10192887739366
831 => 0.10376715195635
901 => 0.10383330818524
902 => 0.10282650399397
903 => 0.10542187343772
904 => 0.10539795665139
905 => 0.10786187366847
906 => 0.11257195760015
907 => 0.1111789540124
908 => 0.1095590423982
909 => 0.10973517170594
910 => 0.11166687548768
911 => 0.11049892328473
912 => 0.11091892704016
913 => 0.11166623976169
914 => 0.11211711208132
915 => 0.10967029811768
916 => 0.10909982873811
917 => 0.10793284859506
918 => 0.10762840525846
919 => 0.10857888623513
920 => 0.10832846807877
921 => 0.10382774801037
922 => 0.10335739772146
923 => 0.10337182269331
924 => 0.10218910452789
925 => 0.10038517544074
926 => 0.10512579337476
927 => 0.10474505540975
928 => 0.10432475016316
929 => 0.10437623515764
930 => 0.10643397672835
1001 => 0.1052403826989
1002 => 0.10841374805241
1003 => 0.10776139953582
1004 => 0.10709232074132
1005 => 0.10699983367128
1006 => 0.10674229541852
1007 => 0.10585910092403
1008 => 0.10479259050018
1009 => 0.1040883879388
1010 => 0.096016035782174
1011 => 0.097514217387731
1012 => 0.099237738761375
1013 => 0.099832691432978
1014 => 0.098814983718729
1015 => 0.10589928622759
1016 => 0.107193656562
1017 => 0.10327292438939
1018 => 0.10253951548234
1019 => 0.10594736839344
1020 => 0.10389201649497
1021 => 0.104817541329
1022 => 0.10281706287284
1023 => 0.10688188065203
1024 => 0.10685091355098
1025 => 0.10526960762681
1026 => 0.10660611656561
1027 => 0.10637386524762
1028 => 0.10458857475381
1029 => 0.10693847754505
1030 => 0.10693964306751
1031 => 0.10541767049605
1101 => 0.10364033973522
1102 => 0.10332259497386
1103 => 0.10308321697918
1104 => 0.10475866901645
1105 => 0.10626087407406
1106 => 0.10905610525806
1107 => 0.10975889279077
1108 => 0.11250191931816
1109 => 0.11086858057663
1110 => 0.11159261848547
1111 => 0.11237866405693
1112 => 0.11275552320976
1113 => 0.11214145144361
1114 => 0.11640250071541
1115 => 0.11676226382912
1116 => 0.11688288928921
1117 => 0.11544608744928
1118 => 0.1167223037708
1119 => 0.1161252044178
1120 => 0.11767869105532
1121 => 0.11792229759599
1122 => 0.11771597152259
1123 => 0.11779329608367
1124 => 0.11415724223079
1125 => 0.11396869365681
1126 => 0.11139782047174
1127 => 0.11244547029759
1128 => 0.11048693916333
1129 => 0.11110800956111
1130 => 0.11138177147467
1201 => 0.11123877378688
1202 => 0.11250470284686
1203 => 0.11142840453366
1204 => 0.10858787632528
1205 => 0.10574657421689
1206 => 0.10571090398339
1207 => 0.1049628392914
1208 => 0.10442212553397
1209 => 0.1045262861865
1210 => 0.10489336191191
1211 => 0.10440079042551
1212 => 0.10450590552614
1213 => 0.10625151657491
1214 => 0.10660158642161
1215 => 0.1054119123014
1216 => 0.10063519903959
1217 => 0.099462981623666
1218 => 0.10030554825615
1219 => 0.099902855674064
1220 => 0.080629401627166
1221 => 0.0851574137683
1222 => 0.082467022710801
1223 => 0.083706878689037
1224 => 0.080960686092718
1225 => 0.082271313139968
1226 => 0.082029288180777
1227 => 0.0893101977101
1228 => 0.089196516322364
1229 => 0.089250929586788
1230 => 0.086653642702804
1231 => 0.090791191233014
]
'min_raw' => 0.052822404782765
'max_raw' => 0.11792229759599
'avg_raw' => 0.085372351189378
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.052822'
'max' => '$0.117922'
'avg' => '$0.085372'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0081451076416166
'max_diff' => 0.017839636778063
'year' => 2035
]
10 => [
'items' => [
101 => 0.092829496420429
102 => 0.092452260377974
103 => 0.092547202562629
104 => 0.090915781271761
105 => 0.089266725310994
106 => 0.08743766846261
107 => 0.090835830008648
108 => 0.090458012453281
109 => 0.091324589990828
110 => 0.093528540659037
111 => 0.093853080766925
112 => 0.094289265963088
113 => 0.09413292462004
114 => 0.097857609692727
115 => 0.097406525754161
116 => 0.098493508260398
117 => 0.096257502775507
118 => 0.093727250325763
119 => 0.094208168596275
120 => 0.094161852299524
121 => 0.093572192682517
122 => 0.093039874345745
123 => 0.092153714294781
124 => 0.094957655823041
125 => 0.094843820917592
126 => 0.096686675718207
127 => 0.096360933231661
128 => 0.094185545183805
129 => 0.094263239593512
130 => 0.094785771837448
131 => 0.096594261899878
201 => 0.097131144881801
202 => 0.096882439293487
203 => 0.097471106973525
204 => 0.097936365905913
205 => 0.097529536332181
206 => 0.10328938516859
207 => 0.10089749435645
208 => 0.10206328529562
209 => 0.10234131956537
210 => 0.10162914062983
211 => 0.10178358673973
212 => 0.10201753051219
213 => 0.10343799128766
214 => 0.10716569137613
215 => 0.10881666437
216 => 0.11378369807963
217 => 0.10867957404551
218 => 0.10837671644829
219 => 0.10927142920945
220 => 0.11218760381092
221 => 0.11455088942306
222 => 0.11533492760182
223 => 0.1154385511902
224 => 0.11690945893544
225 => 0.1177525558242
226 => 0.11673085204645
227 => 0.11586506507165
228 => 0.11276392359336
229 => 0.1131228891636
301 => 0.11559580597353
302 => 0.11908894662162
303 => 0.12208642469703
304 => 0.12103681234768
305 => 0.12904461366237
306 => 0.12983855445378
307 => 0.12972885750759
308 => 0.13153757278467
309 => 0.12794764129813
310 => 0.12641287603599
311 => 0.11605225804271
312 => 0.1189631690947
313 => 0.12319434926059
314 => 0.12263433669952
315 => 0.11956154056328
316 => 0.12208409370561
317 => 0.12125005874923
318 => 0.12059222077499
319 => 0.12360590406315
320 => 0.12029223549253
321 => 0.12316129288177
322 => 0.11948169710347
323 => 0.12104160688848
324 => 0.12015612665016
325 => 0.12072914088473
326 => 0.11737931137805
327 => 0.11918679806734
328 => 0.11730411398931
329 => 0.11730322135192
330 => 0.11726166099655
331 => 0.11947663046525
401 => 0.11954886054011
402 => 0.1179119947561
403 => 0.11767609682398
404 => 0.11854833511815
405 => 0.11752717251525
406 => 0.11800496807003
407 => 0.11754164445586
408 => 0.11743734055123
409 => 0.11660622929324
410 => 0.11624816371142
411 => 0.11638857045226
412 => 0.11590928986112
413 => 0.11562050596862
414 => 0.11720421461175
415 => 0.11635810297035
416 => 0.11707453586776
417 => 0.11625807016012
418 => 0.11342784430028
419 => 0.11180015147919
420 => 0.10645411719204
421 => 0.10797024588414
422 => 0.10897544077555
423 => 0.10864322386994
424 => 0.10935695433407
425 => 0.10940077158789
426 => 0.10916873053838
427 => 0.10890005672935
428 => 0.1087692811777
429 => 0.10974397499726
430 => 0.1103098175662
501 => 0.10907632553068
502 => 0.10878733560514
503 => 0.11003446415602
504 => 0.11079521185161
505 => 0.11641214540867
506 => 0.11599602482831
507 => 0.11704040582548
508 => 0.11692282455253
509 => 0.11801750222051
510 => 0.11980683756235
511 => 0.11616861850636
512 => 0.11680008753433
513 => 0.11664526591142
514 => 0.11833556779393
515 => 0.11834084473191
516 => 0.1173274243165
517 => 0.11787681596456
518 => 0.11757016061838
519 => 0.11812432827588
520 => 0.11599046728426
521 => 0.11858927963599
522 => 0.12006263877565
523 => 0.12008309636874
524 => 0.12078145690763
525 => 0.12149103166147
526 => 0.12285299861052
527 => 0.12145304714247
528 => 0.11893467073397
529 => 0.11911648937636
530 => 0.1176399662095
531 => 0.11766478683069
601 => 0.11753229240955
602 => 0.11792991814111
603 => 0.11607772377191
604 => 0.11651243008825
605 => 0.11590383869973
606 => 0.11679876457551
607 => 0.11583597226972
608 => 0.11664519125174
609 => 0.11699442333835
610 => 0.11828309725636
611 => 0.11564563408424
612 => 0.11026766813574
613 => 0.11139818177965
614 => 0.10972606330037
615 => 0.10988082423183
616 => 0.1101934659434
617 => 0.1091800918662
618 => 0.10937341170505
619 => 0.10936650496003
620 => 0.10930698636282
621 => 0.10904336862698
622 => 0.10866107075483
623 => 0.11018402781241
624 => 0.11044280789325
625 => 0.11101804395691
626 => 0.11272955629601
627 => 0.11255853585309
628 => 0.11283747729106
629 => 0.11222854969817
630 => 0.10990907063642
701 => 0.11003502950883
702 => 0.1084643203516
703 => 0.11097787739233
704 => 0.11038263390775
705 => 0.10999887656096
706 => 0.1098941648134
707 => 0.11160991966054
708 => 0.11212330040196
709 => 0.11180339597561
710 => 0.11114726266405
711 => 0.11240723259064
712 => 0.11274434738914
713 => 0.1128198149602
714 => 0.11505224009486
715 => 0.11294458272608
716 => 0.11345191680306
717 => 0.11740999244675
718 => 0.11382056401503
719 => 0.11572196430912
720 => 0.11562890065913
721 => 0.11660159270971
722 => 0.11554911152023
723 => 0.11556215828596
724 => 0.11642584293101
725 => 0.11521295361338
726 => 0.11491262516144
727 => 0.11449772355607
728 => 0.11540364603252
729 => 0.1159467055858
730 => 0.12032336675196
731 => 0.12315088946529
801 => 0.12302813924724
802 => 0.12414984646141
803 => 0.12364450708777
804 => 0.12201263294849
805 => 0.12479804311839
806 => 0.12391662279412
807 => 0.12398928601473
808 => 0.12398658148603
809 => 0.12457264894656
810 => 0.12415736643848
811 => 0.12333880198717
812 => 0.12388220327075
813 => 0.12549591081348
814 => 0.13050490854069
815 => 0.13330801002923
816 => 0.1303361583114
817 => 0.13238610183168
818 => 0.13115686618907
819 => 0.13093347750622
820 => 0.13222099352659
821 => 0.13351076317331
822 => 0.13342861042264
823 => 0.13249230388952
824 => 0.13196340808686
825 => 0.1359683842977
826 => 0.13891918254685
827 => 0.13871795788866
828 => 0.13960609808814
829 => 0.14221370518297
830 => 0.14245211209613
831 => 0.14242207830479
901 => 0.14183116189535
902 => 0.14439868972078
903 => 0.1465405666041
904 => 0.14169438181978
905 => 0.14353974554443
906 => 0.14436818877433
907 => 0.14558458922386
908 => 0.1476368606746
909 => 0.14986617180823
910 => 0.15018142084567
911 => 0.14995773656755
912 => 0.14848744594783
913 => 0.15092678479145
914 => 0.15235569227651
915 => 0.1532065739839
916 => 0.15536426842061
917 => 0.14437330495769
918 => 0.1365933547323
919 => 0.13537840316076
920 => 0.1378490549571
921 => 0.13850054613271
922 => 0.13823793085672
923 => 0.12948088955592
924 => 0.13533229915063
925 => 0.14162792387404
926 => 0.1418697644594
927 => 0.14502148583125
928 => 0.14604781550335
929 => 0.14858536431324
930 => 0.14842663994429
1001 => 0.14904449269828
1002 => 0.14890245904985
1003 => 0.15360273387625
1004 => 0.15878783500733
1005 => 0.15860829144277
1006 => 0.15786287180784
1007 => 0.15896994707864
1008 => 0.16432152711512
1009 => 0.16382883938269
1010 => 0.16430744354771
1011 => 0.17061725801255
1012 => 0.17882091437749
1013 => 0.17500949236234
1014 => 0.18327918142807
1015 => 0.18848451233756
1016 => 0.19748659390427
1017 => 0.19635948895593
1018 => 0.19986393324953
1019 => 0.19434173586451
1020 => 0.18166165444828
1021 => 0.17965498302676
1022 => 0.18367239002965
1023 => 0.19354879313343
1024 => 0.18336134694878
1025 => 0.18542225404378
1026 => 0.18482871266177
1027 => 0.18479708536392
1028 => 0.18600417068566
1029 => 0.18425323046913
1030 => 0.17711958503888
1031 => 0.18038889270073
1101 => 0.17912645600744
1102 => 0.18052722363954
1103 => 0.18808658882943
1104 => 0.18474441328622
1105 => 0.18122370284774
1106 => 0.18563945504578
1107 => 0.19126222501097
1108 => 0.19091036217164
1109 => 0.19022760119607
1110 => 0.19407628906712
1111 => 0.20043319387033
1112 => 0.20215143969453
1113 => 0.20341981363396
1114 => 0.20359470097086
1115 => 0.20539614923275
1116 => 0.19570930790516
1117 => 0.21108257386777
1118 => 0.21373711222161
1119 => 0.21323816903043
1120 => 0.21618857669068
1121 => 0.21532049191241
1122 => 0.21406277326704
1123 => 0.21873979697823
1124 => 0.2133779667097
1125 => 0.20576752367918
1126 => 0.20159228411514
1127 => 0.20709057638004
1128 => 0.21044819160225
1129 => 0.2126673616797
1130 => 0.21333888120428
1201 => 0.19646126982252
1202 => 0.18736517336299
1203 => 0.19319566690659
1204 => 0.20030927142895
1205 => 0.19566979147286
1206 => 0.19585165030344
1207 => 0.18923697111995
1208 => 0.20089452376221
1209 => 0.19919611639768
1210 => 0.20800745680928
1211 => 0.20590455970463
1212 => 0.21308986575602
1213 => 0.21119773386686
1214 => 0.2190518675511
1215 => 0.22218509411992
1216 => 0.22744626917675
1217 => 0.23131641096538
1218 => 0.23358903224769
1219 => 0.23345259259029
1220 => 0.2424578503262
1221 => 0.23714776445907
1222 => 0.23047704511881
1223 => 0.2303563928518
1224 => 0.23381125292294
1225 => 0.24105169183749
1226 => 0.24292903230393
1227 => 0.24397820951317
1228 => 0.2423713580951
1229 => 0.23660764046361
1230 => 0.23411889641305
1231 => 0.23623937844998
]
'min_raw' => 0.08743766846261
'max_raw' => 0.24397820951317
'avg_raw' => 0.16570793898789
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.087437'
'max' => '$0.243978'
'avg' => '$0.1657079'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.034615263679845
'max_diff' => 0.12605591191718
'year' => 2036
]
11 => [
'items' => [
101 => 0.23364621113391
102 => 0.2381227454357
103 => 0.24426998316818
104 => 0.24300060288524
105 => 0.24724395085499
106 => 0.25163536959047
107 => 0.25791529561316
108 => 0.25955710082048
109 => 0.26227094239591
110 => 0.26506437682755
111 => 0.26596155268183
112 => 0.26767453976495
113 => 0.26766551147747
114 => 0.27282771334981
115 => 0.27852178187507
116 => 0.28067116092537
117 => 0.28561353953408
118 => 0.27714988936827
119 => 0.28356966524245
120 => 0.28936046377836
121 => 0.28245643503724
122 => 0.2919720302245
123 => 0.29234149922281
124 => 0.29792004244363
125 => 0.29226512016977
126 => 0.2889072453747
127 => 0.29860130409013
128 => 0.30329195374254
129 => 0.30187909189346
130 => 0.29112714346038
131 => 0.28486904829956
201 => 0.2684904061673
202 => 0.28789161527765
203 => 0.29734137829427
204 => 0.29110267085706
205 => 0.29424911200445
206 => 0.31141507466764
207 => 0.31795076183601
208 => 0.31659138459289
209 => 0.31682109696973
210 => 0.32034763513467
211 => 0.33598624745804
212 => 0.32661522845368
213 => 0.33377902135713
214 => 0.33757867128215
215 => 0.34110799788929
216 => 0.33244108719727
217 => 0.32116556372916
218 => 0.31759413213254
219 => 0.29048235435392
220 => 0.28907106858006
221 => 0.28827887110885
222 => 0.28328417811147
223 => 0.27935971757709
224 => 0.27623884085426
225 => 0.2680487283609
226 => 0.27081265090413
227 => 0.25775932099903
228 => 0.26611037889071
301 => 0.2452769491785
302 => 0.26262764851153
303 => 0.25318445170406
304 => 0.25952530438631
305 => 0.25950318174865
306 => 0.24782766159144
307 => 0.24109346522665
308 => 0.24538475724914
309 => 0.24998536294043
310 => 0.25073179573555
311 => 0.2566966011024
312 => 0.25836125006723
313 => 0.25331728598877
314 => 0.24484522265443
315 => 0.24681308973981
316 => 0.24105358646298
317 => 0.23096027850642
318 => 0.23820946849307
319 => 0.24068466067889
320 => 0.24177784655674
321 => 0.23185223740572
322 => 0.22873339551501
323 => 0.22707295026202
324 => 0.2435639511535
325 => 0.24446736540866
326 => 0.23984537034934
327 => 0.26073722629305
328 => 0.25600875585987
329 => 0.26129161583712
330 => 0.24663452642802
331 => 0.24719444698183
401 => 0.24025554596529
402 => 0.24414086687702
403 => 0.24139484728635
404 => 0.24382697134284
405 => 0.24528477647428
406 => 0.25222253888545
407 => 0.26270686661399
408 => 0.25118626853521
409 => 0.24616657897428
410 => 0.24928076614608
411 => 0.25757425696735
412 => 0.27013932009756
413 => 0.26270054982901
414 => 0.26600174975568
415 => 0.2667229150795
416 => 0.26123784128172
417 => 0.27034156259231
418 => 0.27522032080116
419 => 0.28022491720668
420 => 0.28457026803998
421 => 0.27822597134888
422 => 0.28501527822757
423 => 0.27954429535734
424 => 0.27463625814294
425 => 0.27464370160945
426 => 0.27156481816987
427 => 0.26559909354141
428 => 0.26449892238929
429 => 0.27022215165894
430 => 0.27481163954137
501 => 0.27518965174553
502 => 0.27773062805365
503 => 0.27923435165866
504 => 0.29397288720083
505 => 0.29990084811945
506 => 0.30714944652018
507 => 0.30997318410589
508 => 0.31847162187291
509 => 0.31160844316667
510 => 0.31012355128216
511 => 0.28950912107716
512 => 0.29288473286839
513 => 0.29828941304423
514 => 0.2895982422626
515 => 0.29511078969179
516 => 0.29619908332603
517 => 0.28930291960515
518 => 0.29298645861412
519 => 0.28320407109951
520 => 0.26292009592963
521 => 0.27036414445516
522 => 0.27584546980959
523 => 0.26802294268627
524 => 0.28204451978121
525 => 0.27385340390645
526 => 0.27125721341706
527 => 0.26112854870918
528 => 0.26590888856324
529 => 0.27237436666373
530 => 0.26837945289013
531 => 0.27666949880967
601 => 0.28841041470622
602 => 0.29677769055773
603 => 0.29742002610073
604 => 0.29204042829215
605 => 0.30066126811253
606 => 0.30072406151904
607 => 0.29099971898449
608 => 0.28504361332744
609 => 0.2836903735904
610 => 0.28707103177179
611 => 0.29117577490793
612 => 0.29764781077723
613 => 0.30155872650569
614 => 0.31175632053609
615 => 0.31451549709278
616 => 0.31754699559853
617 => 0.32159801248172
618 => 0.32646229690939
619 => 0.3158195195055
620 => 0.31624237689238
621 => 0.30633196993315
622 => 0.2957412788011
623 => 0.30377829322204
624 => 0.3142856204582
625 => 0.31187522798066
626 => 0.31160400958709
627 => 0.31206012369537
628 => 0.31024276648336
629 => 0.30202292716786
630 => 0.29789497532253
701 => 0.30322108635584
702 => 0.30605167733211
703 => 0.31044167708283
704 => 0.3099005169519
705 => 0.32120868485821
706 => 0.32560269696535
707 => 0.32447852063796
708 => 0.32468539613702
709 => 0.33264054517162
710 => 0.34148830699929
711 => 0.3497754035159
712 => 0.35820539403167
713 => 0.34804271143678
714 => 0.34288272796221
715 => 0.34820651378205
716 => 0.34538163808834
717 => 0.361614211737
718 => 0.36273811991712
719 => 0.37896951976596
720 => 0.39437505102164
721 => 0.38469911285871
722 => 0.39382308673253
723 => 0.40369140836557
724 => 0.42272900187319
725 => 0.41631781013043
726 => 0.41140693773167
727 => 0.406766187044
728 => 0.41642285252662
729 => 0.428845998401
730 => 0.43152182503493
731 => 0.43585768642635
801 => 0.43129905833718
802 => 0.43678942375417
803 => 0.45617282626495
804 => 0.45093525980451
805 => 0.44349707344986
806 => 0.45879840813036
807 => 0.4643359016688
808 => 0.50320093132944
809 => 0.55226963671031
810 => 0.53195487048014
811 => 0.51934483952766
812 => 0.52230849591543
813 => 0.54022672604002
814 => 0.54598149285984
815 => 0.53033805285648
816 => 0.53586358032795
817 => 0.56630977995362
818 => 0.58264318922177
819 => 0.5604602255661
820 => 0.49925830862923
821 => 0.44282734615159
822 => 0.45779537852002
823 => 0.45609846816156
824 => 0.48880911141859
825 => 0.45081034557661
826 => 0.45145014734012
827 => 0.48483721205853
828 => 0.47593011559086
829 => 0.46150176004794
830 => 0.44293268911443
831 => 0.40860604406265
901 => 0.37820197727098
902 => 0.43783135388785
903 => 0.43526002673915
904 => 0.43153636397849
905 => 0.43982297250994
906 => 0.4800603913438
907 => 0.47913278860386
908 => 0.47323185323947
909 => 0.47770766070491
910 => 0.46071712935904
911 => 0.46509597615408
912 => 0.44281840719882
913 => 0.45288879876006
914 => 0.46147080327705
915 => 0.46319376774259
916 => 0.46707569466018
917 => 0.43390505417379
918 => 0.44879769791334
919 => 0.45754573085832
920 => 0.41802179975675
921 => 0.45676446981957
922 => 0.43332762712093
923 => 0.42537281069945
924 => 0.43608292304361
925 => 0.43190918184716
926 => 0.42832084425677
927 => 0.42631849022586
928 => 0.43418281469944
929 => 0.43381593456285
930 => 0.42094837332447
1001 => 0.4041631642379
1002 => 0.40979683136306
1003 => 0.40775006728058
1004 => 0.40033233020784
1005 => 0.40533098937388
1006 => 0.38331942417017
1007 => 0.34544967029881
1008 => 0.37046758968816
1009 => 0.36950442700593
1010 => 0.3690187567056
1011 => 0.3878190316822
1012 => 0.38601181903934
1013 => 0.38273171039627
1014 => 0.40027208844032
1015 => 0.39386961450287
1016 => 0.41360053056552
1017 => 0.42659658800002
1018 => 0.42330036745622
1019 => 0.43552322228876
1020 => 0.40992661967521
1021 => 0.41842878430598
1022 => 0.4201810686529
1023 => 0.40005564289798
1024 => 0.38630750137789
1025 => 0.38539065707879
1026 => 0.36155327429355
1027 => 0.37428701176879
1028 => 0.38549217378915
1029 => 0.3801257707371
1030 => 0.37842692784755
1031 => 0.38710594773618
1101 => 0.38778038191231
1102 => 0.37240321122332
1103 => 0.37560061194123
1104 => 0.38893430445853
1105 => 0.37526463710052
1106 => 0.3487067063514
1107 => 0.34211997233349
1108 => 0.34124118059791
1109 => 0.3233774355409
1110 => 0.34256012939627
1111 => 0.33418636946416
1112 => 0.36063897675662
1113 => 0.34552938933935
1114 => 0.34487804522494
1115 => 0.3438934430646
1116 => 0.32851737975202
1117 => 0.33188376041767
1118 => 0.34307412246456
1119 => 0.34706696971135
1120 => 0.34665048303107
1121 => 0.34301928358565
1122 => 0.34468162809702
1123 => 0.33932663722669
1124 => 0.33743567849588
1125 => 0.33146729259228
1126 => 0.32269541412267
1127 => 0.32391519762492
1128 => 0.30653581108976
1129 => 0.29706659891155
1130 => 0.29444564578284
1201 => 0.29094079772194
1202 => 0.29484152769736
1203 => 0.30648657747131
1204 => 0.2924401768088
1205 => 0.26835860811335
1206 => 0.26980595142494
1207 => 0.27305770212601
1208 => 0.26699808620706
1209 => 0.26126316828479
1210 => 0.26624921412961
1211 => 0.25604553601163
1212 => 0.27429076787791
1213 => 0.2737972854876
1214 => 0.28059797964978
1215 => 0.28485059327369
1216 => 0.2750496956706
1217 => 0.27258479642787
1218 => 0.27398891505995
1219 => 0.2507819617845
1220 => 0.27870147646173
1221 => 0.27894292558404
1222 => 0.27687549161079
1223 => 0.29174177125811
1224 => 0.32311425822285
1225 => 0.31131066667135
1226 => 0.30673995925716
1227 => 0.29805104112164
1228 => 0.30962850864032
1229 => 0.30873953977151
1230 => 0.30471928541534
1231 => 0.30228782303676
]
'min_raw' => 0.22707295026202
'max_raw' => 0.58264318922177
'avg_raw' => 0.40485806974189
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.227072'
'max' => '$0.582643'
'avg' => '$0.404858'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.13963528179941
'max_diff' => 0.33866497970859
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0071275604382763
]
1 => [
'year' => 2028
'avg' => 0.012232962857662
]
2 => [
'year' => 2029
'avg' => 0.03341824975009
]
3 => [
'year' => 2030
'avg' => 0.025782129914244
]
4 => [
'year' => 2031
'avg' => 0.025321246719973
]
5 => [
'year' => 2032
'avg' => 0.044396114389731
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0071275604382763
'min' => '$0.007127'
'max_raw' => 0.044396114389731
'max' => '$0.044396'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.044396114389731
]
1 => [
'year' => 2033
'avg' => 0.11419137140899
]
2 => [
'year' => 2034
'avg' => 0.072379978979539
]
3 => [
'year' => 2035
'avg' => 0.085372351189378
]
4 => [
'year' => 2036
'avg' => 0.16570793898789
]
5 => [
'year' => 2037
'avg' => 0.40485806974189
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.044396114389731
'min' => '$0.044396'
'max_raw' => 0.40485806974189
'max' => '$0.404858'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.40485806974189
]
]
]
]
'prediction_2025_max_price' => '$0.012186'
'last_price' => 0.01181667
'sma_50day_nextmonth' => '$0.0111051'
'sma_200day_nextmonth' => '$0.016821'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.011069'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.010986'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.011341'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.011432'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.010941'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.01305'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.019818'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.011327'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.011219'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.011265'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.011311'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.011774'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.01406'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022525'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.015524'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0314074'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.106338'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.218375'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.011474'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.01151'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.012397'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.016834'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.042161'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.155643'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.503139'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '54.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 30.98
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.011153'
'vwma_10_action' => 'BUY'
'hma_9' => '0.010925'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 68.72
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 39.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.91
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000187'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -31.28
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 50.72
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.002119'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 19
'sell_pct' => 40.63
'buy_pct' => 59.38
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767679092
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de DeRace para 2026
La previsión del precio de DeRace para 2026 sugiere que el precio medio podría oscilar entre $0.004082 en el extremo inferior y $0.012186 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, DeRace podría potencialmente ganar 3.13% para 2026 si ZERC alcanza el objetivo de precio previsto.
Predicción de precio de DeRace 2027-2032
La predicción del precio de ZERC para 2027-2032 está actualmente dentro de un rango de precios de $0.007127 en el extremo inferior y $0.044396 en el extremo superior. Considerando la volatilidad de precios en el mercado, si DeRace alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de DeRace | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00393 | $0.007127 | $0.010324 |
| 2028 | $0.007092 | $0.012232 | $0.017372 |
| 2029 | $0.015581 | $0.033418 | $0.051255 |
| 2030 | $0.013251 | $0.025782 | $0.038313 |
| 2031 | $0.015667 | $0.025321 | $0.034975 |
| 2032 | $0.023914 | $0.044396 | $0.064877 |
Predicción de precio de DeRace 2032-2037
La predicción de precio de DeRace para 2032-2037 se estima actualmente entre $0.044396 en el extremo inferior y $0.404858 en el extremo superior. Comparado con el precio actual, DeRace podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de DeRace | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.023914 | $0.044396 | $0.064877 |
| 2033 | $0.055572 | $0.114191 | $0.17281 |
| 2034 | $0.044677 | $0.072379 | $0.100082 |
| 2035 | $0.052822 | $0.085372 | $0.117922 |
| 2036 | $0.087437 | $0.1657079 | $0.243978 |
| 2037 | $0.227072 | $0.404858 | $0.582643 |
DeRace Histograma de precios potenciales
Pronóstico de precio de DeRace basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para DeRace es Alcista, con 19 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de ZERC se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de DeRace
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de DeRace aumentar durante el próximo mes, alcanzando $0.016821 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para DeRace alcance $0.0111051 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 54.15, lo que sugiere que el mercado de ZERC está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ZERC para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.011069 | BUY |
| SMA 5 | $0.010986 | BUY |
| SMA 10 | $0.011341 | BUY |
| SMA 21 | $0.011432 | BUY |
| SMA 50 | $0.010941 | BUY |
| SMA 100 | $0.01305 | SELL |
| SMA 200 | $0.019818 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.011327 | BUY |
| EMA 5 | $0.011219 | BUY |
| EMA 10 | $0.011265 | BUY |
| EMA 21 | $0.011311 | BUY |
| EMA 50 | $0.011774 | BUY |
| EMA 100 | $0.01406 | SELL |
| EMA 200 | $0.022525 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.015524 | SELL |
| SMA 50 | $0.0314074 | SELL |
| SMA 100 | $0.106338 | SELL |
| SMA 200 | $0.218375 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.016834 | SELL |
| EMA 50 | $0.042161 | SELL |
| EMA 100 | $0.155643 | SELL |
| EMA 200 | $0.503139 | SELL |
Osciladores de DeRace
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 54.15 | NEUTRAL |
| Stoch RSI (14) | 30.98 | NEUTRAL |
| Estocástico Rápido (14) | 68.72 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 39.39 | NEUTRAL |
| Índice Direccional Medio (14) | 13.91 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000187 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -31.28 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 50.72 | NEUTRAL |
| VWMA (10) | 0.011153 | BUY |
| Promedio Móvil de Hull (9) | 0.010925 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.002119 | NEUTRAL |
Predicción de precios de DeRace basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de DeRace
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de DeRace por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0166043 | $0.023331 | $0.032785 | $0.046068 | $0.064734 | $0.090962 |
| Amazon.com acción | $0.024656 | $0.051446 | $0.107346 | $0.223984 | $0.467357 | $0.975168 |
| Apple acción | $0.016761 | $0.023774 | $0.033721 | $0.047832 | $0.067846 | $0.096234 |
| Netflix acción | $0.018644 | $0.029418 | $0.046418 | $0.07324 | $0.115561 | $0.182338 |
| Google acción | $0.0153025 | $0.019816 | $0.025662 | $0.033232 | $0.043036 | $0.055732 |
| Tesla acción | $0.026787 | $0.060725 | $0.137659 | $0.312063 | $0.707424 | $1.60 |
| Kodak acción | $0.008861 | $0.006644 | $0.004983 | $0.003736 | $0.0028021 | $0.0021013 |
| Nokia acción | $0.007828 | $0.005185 | $0.003435 | $0.002275 | $0.0015076 | $0.000998 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de DeRace
Podría preguntarse cosas como: "¿Debo invertir en DeRace ahora?", "¿Debería comprar ZERC hoy?", "¿Será DeRace una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de DeRace/zkRace regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como DeRace, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de DeRace a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de DeRace es de $0.01181 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de DeRace
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de DeRace
basado en el historial de precios del último mes
Predicción de precios de DeRace basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si DeRace ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.012123 | $0.012438 | $0.012762 | $0.013094 |
| Si DeRace ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.01243 | $0.013077 | $0.013757 | $0.014472 |
| Si DeRace ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.013352 | $0.015087 | $0.017048 | $0.019264 |
| Si DeRace ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.014888 | $0.018758 | $0.023633 | $0.029777 |
| Si DeRace ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.017959 | $0.027296 | $0.041486 | $0.063054 |
| Si DeRace ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.027174 | $0.062491 | $0.1437097 | $0.330483 |
| Si DeRace ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.042531 | $0.153086 | $0.5510067 | $1.98 |
Cuadro de preguntas
¿Es ZERC una buena inversión?
La decisión de adquirir DeRace depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de DeRace ha experimentado un aumento de 6.6774% durante las últimas 24 horas, y DeRace ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en DeRace dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede DeRace subir?
Parece que el valor medio de DeRace podría potencialmente aumentar hasta $0.012186 para el final de este año. Mirando las perspectivas de DeRace en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.038313. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de DeRace la próxima semana?
Basado en nuestro nuevo pronóstico experimental de DeRace, el precio de DeRace aumentará en un 0.86% durante la próxima semana y alcanzará $0.011917 para el 13 de enero de 2026.
¿Cuál será el precio de DeRace el próximo mes?
Basado en nuestro nuevo pronóstico experimental de DeRace, el precio de DeRace disminuirá en un -11.62% durante el próximo mes y alcanzará $0.010443 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de DeRace este año en 2026?
Según nuestra predicción más reciente sobre el valor de DeRace en 2026, se anticipa que ZERC fluctúe dentro del rango de $0.004082 y $0.012186. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de DeRace no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará DeRace en 5 años?
El futuro de DeRace parece estar en una tendencia alcista, con un precio máximo de $0.038313 proyectada después de un período de cinco años. Basado en el pronóstico de DeRace para 2030, el valor de DeRace podría potencialmente alcanzar su punto más alto de aproximadamente $0.038313, mientras que su punto más bajo se anticipa que esté alrededor de $0.013251.
¿Cuánto será DeRace en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de DeRace, se espera que el valor de ZERC en 2026 crezca en un 3.13% hasta $0.012186 si ocurre lo mejor. El precio estará entre $0.012186 y $0.004082 durante 2026.
¿Cuánto será DeRace en 2027?
Según nuestra última simulación experimental para la predicción de precios de DeRace, el valor de ZERC podría disminuir en un -12.62% hasta $0.010324 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.010324 y $0.00393 a lo largo del año.
¿Cuánto será DeRace en 2028?
Nuestro nuevo modelo experimental de predicción de precios de DeRace sugiere que el valor de ZERC en 2028 podría aumentar en un 47.02% , alcanzando $0.017372 en el mejor escenario. Se espera que el precio oscile entre $0.017372 y $0.007092 durante el año.
¿Cuánto será DeRace en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de DeRace podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.051255 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.051255 y $0.015581.
¿Cuánto será DeRace en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de DeRace, se espera que el valor de ZERC en 2030 aumente en un 224.23% , alcanzando $0.038313 en el mejor escenario. Se pronostica que el precio oscile entre $0.038313 y $0.013251 durante el transcurso de 2030.
¿Cuánto será DeRace en 2031?
Nuestra simulación experimental indica que el precio de DeRace podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.034975 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.034975 y $0.015667 durante el año.
¿Cuánto será DeRace en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de DeRace, ZERC podría experimentar un 449.04% aumento en valor, alcanzando $0.064877 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.064877 y $0.023914 a lo largo del año.
¿Cuánto será DeRace en 2033?
Según nuestra predicción experimental de precios de DeRace, se anticipa que el valor de ZERC aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.17281. A lo largo del año, el precio de ZERC podría oscilar entre $0.17281 y $0.055572.
¿Cuánto será DeRace en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de DeRace sugieren que ZERC podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.100082 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.100082 y $0.044677.
¿Cuánto será DeRace en 2035?
Basado en nuestra predicción experimental para el precio de DeRace, ZERC podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.117922 en 2035. El rango de precios esperado para el año está entre $0.117922 y $0.052822.
¿Cuánto será DeRace en 2036?
Nuestra reciente simulación de predicción de precios de DeRace sugiere que el valor de ZERC podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.243978 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.243978 y $0.087437.
¿Cuánto será DeRace en 2037?
Según la simulación experimental, el valor de DeRace podría aumentar en un 4830.69% en 2037, con un máximo de $0.582643 bajo condiciones favorables. Se espera que el precio caiga entre $0.582643 y $0.227072 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Datamall Coin
Predicción de precios de Alpaca Finance
Predicción de precios de Vite
Predicción de precios de Passage
Predicción de precios de Ascendia (ex AirDAO)
Predicción de precios de GET Protocol
Predicción de precios de ISKRA Token
Predicción de precios de Instadapp
Predicción de precios de Evmos
Predicción de precios de Hive Dollar
Predicción de precios de Onomy Protocol
Predicción de precios de FEED EVERY GORILLA
Predicción de precios de Pluton
Predicción de precios de Shuffle
Predicción de precios de Advertise Coin
Predicción de precios de Frax Price Index Share
Predicción de precios de Decimal
Predicción de precios de WAGMI Games
Predicción de precios de Alkimi
Predicción de precios de RabbitX
Predicción de precios de GameGPT
Predicción de precios de Gamer Arena
Predicción de precios de Troll
Predicción de precios de Orange
Predicción de precios de KRYLL
¿Cómo leer y predecir los movimientos de precio de DeRace?
Los traders de DeRace utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de DeRace
Las medias móviles son herramientas populares para la predicción de precios de DeRace. Una media móvil simple (SMA) calcula el precio de cierre promedio de ZERC durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ZERC por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ZERC.
¿Cómo leer gráficos de DeRace y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de DeRace en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ZERC dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de DeRace?
La acción del precio de DeRace está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ZERC. La capitalización de mercado de DeRace puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ZERC, grandes poseedores de DeRace, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de DeRace.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


