Predicción del precio de Melon Dog - Pronóstico de MELON
Predicción de precio de Melon Dog hasta $0.000193 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000064 | $0.000193 |
| 2027 | $0.000062 | $0.000163 |
| 2028 | $0.000112 | $0.000275 |
| 2029 | $0.000246 | $0.000811 |
| 2030 | $0.0002099 | $0.0006069 |
| 2031 | $0.000248 | $0.000554 |
| 2032 | $0.000378 | $0.001027 |
| 2033 | $0.00088 | $0.002737 |
| 2034 | $0.0007077 | $0.001585 |
| 2035 | $0.000836 | $0.001868 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Melon Dog hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,963.35, equivalente a un ROI del 39.63% en los próximos 90 días.
Predicción del precio a largo plazo de Melon Dog para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Melon Dog'
'name_with_ticker' => 'Melon Dog <small>MELON</small>'
'name_lang' => 'Melon Dog'
'name_lang_with_ticker' => 'Melon Dog <small>MELON</small>'
'name_with_lang' => 'Melon Dog'
'name_with_lang_with_ticker' => 'Melon Dog <small>MELON</small>'
'image' => '/uploads/coins/melon-dog.png?1717200883'
'price_for_sd' => 0.0001871
'ticker' => 'MELON'
'marketcap' => '$76.03K'
'low24h' => '$0.0001768'
'high24h' => '$0.000188'
'volume24h' => '$80.57'
'current_supply' => '407.51M'
'max_supply' => '407.51M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0001871'
'change_24h_pct' => '5.1794%'
'ath_price' => '$0.06778'
'ath_days' => 663
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 mar. 2024'
'ath_pct' => '-99.72%'
'fdv' => '$76.03K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.009229'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000188'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.000165'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000064'
'current_year_max_price_prediction' => '$0.000193'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0002099'
'grand_prediction_max_price' => '$0.0006069'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00019073715203806
107 => 0.00019144929532618
108 => 0.00019305379051726
109 => 0.00017934355478247
110 => 0.00018549904811602
111 => 0.00018911482375775
112 => 0.00017277861786536
113 => 0.00018879190949217
114 => 0.00017910489008085
115 => 0.0001758169701985
116 => 0.00018024372116958
117 => 0.00017851861201099
118 => 0.00017703546445825
119 => 0.00017620784264011
120 => 0.00017945835999059
121 => 0.00017930671947098
122 => 0.00017398824218736
123 => 0.00016705050537974
124 => 0.00016937903757583
125 => 0.00016853305999888
126 => 0.00016546712812676
127 => 0.00016753319602655
128 => 0.00015843527860893
129 => 0.00014278278456053
130 => 0.00015312330157776
131 => 0.00015272520292092
201 => 0.0001525244635258
202 => 0.00016029507627335
203 => 0.00015954811115622
204 => 0.0001581923621543
205 => 0.00016544222873315
206 => 0.00016279592990741
207 => 0.00017095119934193
208 => 0.00017632278724127
209 => 0.00017496037879733
210 => 0.0001800123831798
211 => 0.00016943268225465
212 => 0.00017294683451806
213 => 0.00017367109642914
214 => 0.00016535276650494
215 => 0.00015967032388725
216 => 0.00015929136974924
217 => 0.00014943879733901
218 => 0.00015470196199337
219 => 0.00015933332908465
220 => 0.00015711526365653
221 => 0.00015641309040481
222 => 0.00016000034126507
223 => 0.00016027910137964
224 => 0.00015392334122581
225 => 0.00015524490502254
226 => 0.00016075604574659
227 => 0.00015510603841643
228 => 0.00014412899709737
301 => 0.00014140653908077
302 => 0.0001410433129965
303 => 0.00013365979093462
304 => 0.00014158846674338
305 => 0.00013812738727755
306 => 0.00014906089583999
307 => 0.00014281573438671
308 => 0.00014254651795851
309 => 0.00014213955784181
310 => 0.0001357842553937
311 => 0.00013717566272929
312 => 0.00014180091263014
313 => 0.00014345125390193
314 => 0.00014327910978643
315 => 0.00014177824638232
316 => 0.00014246533396306
317 => 0.00014025198546833
318 => 0.00013947040604797
319 => 0.00013700352640698
320 => 0.00013337789482761
321 => 0.00013388206113601
322 => 0.00012669873627918
323 => 0.00012278487964926
324 => 0.00012170157571791
325 => 0.00012025293642651
326 => 0.00012186520338055
327 => 0.00012667838682239
328 => 0.0001208726664177
329 => 0.0001109191660078
330 => 0.00011151738834237
331 => 0.00011286141631436
401 => 0.0001103568290802
402 => 0.00010798644745714
403 => 0.00011004730196325
404 => 0.00010582987262489
405 => 0.00011337107250089
406 => 0.00011316710417821
407 => 0.00011597799714731
408 => 0.00011773570620622
409 => 0.0001136847558905
410 => 0.00011266595284103
411 => 0.00011324630936003
412 => 0.00010365430886117
413 => 0.00011519412606738
414 => 0.00011529392288578
415 => 0.00011443940193823
416 => 0.00012058399834865
417 => 0.00013355101332232
418 => 0.00012867230069226
419 => 0.00012678311570203
420 => 0.00012319177365461
421 => 0.0001279770237
422 => 0.00012760959115805
423 => 0.00012594792185867
424 => 0.00012494293908168
425 => 0.00012679465066273
426 => 0.0001247134915248
427 => 0.0001243396581572
428 => 0.00012207463468425
429 => 0.00012126612435641
430 => 0.0001206675354974
501 => 0.00012000854797975
502 => 0.00012146211023422
503 => 0.00011816814693356
504 => 0.00011419595010417
505 => 0.00011386570491758
506 => 0.00011477754091323
507 => 0.00011437412136336
508 => 0.00011386377349998
509 => 0.00011288938044382
510 => 0.00011260029883867
511 => 0.00011353967381295
512 => 0.00011247917423595
513 => 0.00011404399913021
514 => 0.00011361845334468
515 => 0.00011124138917917
516 => 0.00010827868712707
517 => 0.00010825231286433
518 => 0.00010761400356701
519 => 0.00010680102070643
520 => 0.00010657486747314
521 => 0.00010987374254493
522 => 0.00011670231521652
523 => 0.00011536170300719
524 => 0.0001163304327199
525 => 0.00012109562411937
526 => 0.00012261033517096
527 => 0.00012153522914444
528 => 0.00012006355770569
529 => 0.00012012830378013
530 => 0.00012515745059159
531 => 0.00012547111230934
601 => 0.000126263634279
602 => 0.00012728224897669
603 => 0.00012170870363207
604 => 0.00011986579029562
605 => 0.00011899251571588
606 => 0.00011630316801005
607 => 0.00011920339894354
608 => 0.00011751355857886
609 => 0.00011774157577722
610 => 0.00011759307927766
611 => 0.00011767416840771
612 => 0.00011336896458183
613 => 0.00011493755458113
614 => 0.00011232946947426
615 => 0.00010883753628746
616 => 0.00010882583010299
617 => 0.00010968047580344
618 => 0.00010917209909852
619 => 0.00010780407045715
620 => 0.00010799839246874
621 => 0.00010629592717195
622 => 0.0001082051025799
623 => 0.00010825985089924
624 => 0.00010752471437369
625 => 0.00011046606250509
626 => 0.00011167113523443
627 => 0.00011118725262516
628 => 0.00011163718474063
629 => 0.00011541741149699
630 => 0.00011603375340114
701 => 0.0001163074917617
702 => 0.00011594071862193
703 => 0.00011170628034628
704 => 0.00011189409569002
705 => 0.00011051603131505
706 => 0.00010935171213503
707 => 0.00010939827879619
708 => 0.00010999689020561
709 => 0.00011261106133866
710 => 0.00011811243037436
711 => 0.00011832120330781
712 => 0.0001185742421935
713 => 0.00011754500587826
714 => 0.00011723457835712
715 => 0.00011764411238565
716 => 0.00011971013734721
717 => 0.00012502451446866
718 => 0.00012314605865863
719 => 0.00012161884484516
720 => 0.00012295862309346
721 => 0.00012275237473366
722 => 0.00012101143101597
723 => 0.00012096256852421
724 => 0.00011762114091658
725 => 0.00011638589121067
726 => 0.00011535362409956
727 => 0.00011422641536226
728 => 0.0001135581682384
729 => 0.00011458489953353
730 => 0.00011481972512865
731 => 0.00011257475920767
801 => 0.00011226877864807
802 => 0.0001141020662801
803 => 0.0001132953047451
804 => 0.00011412507899057
805 => 0.0001143175937332
806 => 0.00011428659442564
807 => 0.00011344424272713
808 => 0.00011398113258047
809 => 0.00011271122802274
810 => 0.0001113303975497
811 => 0.00011044951373668
812 => 0.00010968082577754
813 => 0.00011010733853368
814 => 0.0001085868984362
815 => 0.00010810047904861
816 => 0.00011379924637856
817 => 0.00011800898707728
818 => 0.00011794777578028
819 => 0.00011757516775206
820 => 0.00011702154780291
821 => 0.00011966963659965
822 => 0.00011874709541307
823 => 0.0001194183212072
824 => 0.00011958917634306
825 => 0.00012010630338105
826 => 0.00012029113184856
827 => 0.00011973245184812
828 => 0.00011785745352964
829 => 0.00011318513598947
830 => 0.00011101015956184
831 => 0.00011029238111363
901 => 0.00011031847099697
902 => 0.00010959879554416
903 => 0.0001098107722186
904 => 0.00010952507870749
905 => 0.00010898404431414
906 => 0.00011007393118449
907 => 0.0001101995304933
908 => 0.00010994513787458
909 => 0.00011000505654543
910 => 0.00010789879431497
911 => 0.00010805892885779
912 => 0.00010716727937445
913 => 0.00010700010584532
914 => 0.00010474609359623
915 => 0.00010075278417268
916 => 0.00010296546523325
917 => 0.00010029285766212
918 => 9.9280700678314E-5
919 => 0.00010407209441692
920 => 0.00010359117137814
921 => 0.00010276804018797
922 => 0.00010155045760213
923 => 0.00010109884437716
924 => 9.8354985385622E-5
925 => 9.8192863558484E-5
926 => 9.9552794165116E-5
927 => 9.892523298251E-5
928 => 9.8043899406126E-5
929 => 9.4851798531815E-5
930 => 9.126282028081E-5
1001 => 9.1371148974695E-5
1002 => 9.2512736181025E-5
1003 => 9.583205494744E-5
1004 => 9.4535139680604E-5
1005 => 9.3594212774127E-5
1006 => 9.3418005448702E-5
1007 => 9.562360904141E-5
1008 => 9.8745000213331E-5
1009 => 0.000100209487114
1010 => 9.8758225072565E-5
1011 => 9.7091093380857E-5
1012 => 9.7192563962187E-5
1013 => 9.7867602280153E-5
1014 => 9.7938539262844E-5
1015 => 9.6853407915449E-5
1016 => 9.7158866033547E-5
1017 => 9.669484722048E-5
1018 => 9.3847164621198E-5
1019 => 9.3795659073076E-5
1020 => 9.3096791838127E-5
1021 => 9.3075630416E-5
1022 => 9.188668290875E-5
1023 => 9.172034093368E-5
1024 => 8.935961349408E-5
1025 => 9.0913451443766E-5
1026 => 8.987121852727E-5
1027 => 8.8300327684221E-5
1028 => 8.8029505510774E-5
1029 => 8.8021364269213E-5
1030 => 8.963431792026E-5
1031 => 9.0894603141245E-5
1101 => 8.9889348615071E-5
1102 => 8.9660471645502E-5
1103 => 9.2104278889524E-5
1104 => 9.1793282141925E-5
1105 => 9.1523960964217E-5
1106 => 9.8465513869603E-5
1107 => 9.2970733088862E-5
1108 => 9.0574695037337E-5
1109 => 8.760914295329E-5
1110 => 8.8574741665467E-5
1111 => 8.8778207501719E-5
1112 => 8.1646589320526E-5
1113 => 7.8753292712602E-5
1114 => 7.7760422348346E-5
1115 => 7.7189011416589E-5
1116 => 7.7449410553518E-5
1117 => 7.4845104256542E-5
1118 => 7.659524115936E-5
1119 => 7.4340132042711E-5
1120 => 7.3962055660545E-5
1121 => 7.7994470115526E-5
1122 => 7.8555557029913E-5
1123 => 7.6161785937097E-5
1124 => 7.7698974495023E-5
1125 => 7.71415685554E-5
1126 => 7.437878941596E-5
1127 => 7.4273271574461E-5
1128 => 7.2887006118673E-5
1129 => 7.0717769114251E-5
1130 => 6.9726369594831E-5
1201 => 6.9210040117392E-5
1202 => 6.9423087722844E-5
1203 => 6.9315364334163E-5
1204 => 6.8612396356111E-5
1205 => 6.93556576358E-5
1206 => 6.7456932202961E-5
1207 => 6.6700844436534E-5
1208 => 6.6359337133542E-5
1209 => 6.4674109025338E-5
1210 => 6.7356056369831E-5
1211 => 6.7884433782978E-5
1212 => 6.8413852262854E-5
1213 => 7.3022078680822E-5
1214 => 7.2791864711693E-5
1215 => 7.4872886873869E-5
1216 => 7.4792022179401E-5
1217 => 7.4198480948424E-5
1218 => 7.1694428127728E-5
1219 => 7.2692498951608E-5
1220 => 6.9620592090349E-5
1221 => 7.1922273580166E-5
1222 => 7.0871882268731E-5
1223 => 7.1567135221171E-5
1224 => 7.0317007724252E-5
1225 => 7.1008879897546E-5
1226 => 6.8009731669145E-5
1227 => 6.5209169252619E-5
1228 => 6.6336197322543E-5
1229 => 6.7561405725843E-5
1230 => 7.0217969721494E-5
1231 => 6.8635742121861E-5
]
'min_raw' => 6.4674109025338E-5
'max_raw' => 0.00019305379051726
'avg_raw' => 0.0001288639497713
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000064'
'max' => '$0.000193'
'avg' => '$0.000128'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00012251589097466
'max_diff' => 5.8637905172649E-6
'year' => 2026
]
1 => [
'items' => [
101 => 6.9204770997338E-5
102 => 6.7298619518773E-5
103 => 6.3365684553241E-5
104 => 6.338794453803E-5
105 => 6.2782948177228E-5
106 => 6.2260142990581E-5
107 => 6.8817479994936E-5
108 => 6.8001971482287E-5
109 => 6.6702565398495E-5
110 => 6.8441872077995E-5
111 => 6.8901772370564E-5
112 => 6.8914865085349E-5
113 => 7.0183818340709E-5
114 => 7.0861058920567E-5
115 => 7.0980425508096E-5
116 => 7.2977150872954E-5
117 => 7.3646426877811E-5
118 => 7.6403080022328E-5
119 => 7.0803599788983E-5
120 => 7.0688282178417E-5
121 => 6.8466347689848E-5
122 => 6.7057161709803E-5
123 => 6.8562835859513E-5
124 => 6.9896657611138E-5
125 => 6.8507793249685E-5
126 => 6.8689149614764E-5
127 => 6.68247126839E-5
128 => 6.7491161156773E-5
129 => 6.8065196361915E-5
130 => 6.7748247861865E-5
131 => 6.727376061681E-5
201 => 6.9787299438208E-5
202 => 6.9645475727266E-5
203 => 7.198614086376E-5
204 => 7.3810856720226E-5
205 => 7.708107374199E-5
206 => 7.3668431799511E-5
207 => 7.3544061563104E-5
208 => 7.4759800573596E-5
209 => 7.3646240754502E-5
210 => 7.4349972121391E-5
211 => 7.6967691739139E-5
212 => 7.7023000029714E-5
213 => 7.6096514901884E-5
214 => 7.6040138197656E-5
215 => 7.6218079801093E-5
216 => 7.7260289330325E-5
217 => 7.6896109296947E-5
218 => 7.7317547651482E-5
219 => 7.7844562767121E-5
220 => 8.0024520735183E-5
221 => 8.055010122107E-5
222 => 7.9273213122604E-5
223 => 7.9388501821185E-5
224 => 7.8910910620997E-5
225 => 7.8449563505815E-5
226 => 7.9486604446408E-5
227 => 8.1381817148434E-5
228 => 8.1370027128576E-5
301 => 8.1809679637775E-5
302 => 8.2083579508728E-5
303 => 8.0907800755638E-5
304 => 8.0142412021959E-5
305 => 8.0435910765402E-5
306 => 8.0905221647738E-5
307 => 8.0283719571474E-5
308 => 7.6447520849006E-5
309 => 7.7611178484079E-5
310 => 7.7417488953652E-5
311 => 7.7141651508871E-5
312 => 7.8311718259236E-5
313 => 7.8198862466767E-5
314 => 7.4818393331264E-5
315 => 7.5034799997414E-5
316 => 7.4831553737394E-5
317 => 7.548828398379E-5
318 => 7.3610775165992E-5
319 => 7.4188284233132E-5
320 => 7.4550492506231E-5
321 => 7.4763835961701E-5
322 => 7.5534578813837E-5
323 => 7.5444141036019E-5
324 => 7.5528957074587E-5
325 => 7.6671765255735E-5
326 => 8.2451696871573E-5
327 => 8.2766285796723E-5
328 => 8.1217134873792E-5
329 => 8.1835990111852E-5
330 => 8.064792338354E-5
331 => 8.1445480537611E-5
401 => 8.1991148886672E-5
402 => 7.9525378543257E-5
403 => 7.9379371626237E-5
404 => 7.8186401323918E-5
405 => 7.8827435991092E-5
406 => 7.7807503743594E-5
407 => 7.8057759441415E-5
408 => 7.7358022693409E-5
409 => 7.8617409523623E-5
410 => 8.002559968873E-5
411 => 8.0381364135551E-5
412 => 7.944550104219E-5
413 => 7.8767874486213E-5
414 => 7.7578185477981E-5
415 => 7.9556664812619E-5
416 => 8.0135232463132E-5
417 => 7.9553625843055E-5
418 => 7.9418854880827E-5
419 => 7.9163464150931E-5
420 => 7.9473037231484E-5
421 => 8.0132081459454E-5
422 => 7.9821288372179E-5
423 => 8.0026572681794E-5
424 => 7.9244240581805E-5
425 => 8.0908189987329E-5
426 => 8.3550942094534E-5
427 => 8.3559438974692E-5
428 => 8.3248644212127E-5
429 => 8.3121473691452E-5
430 => 8.3440367978447E-5
501 => 8.3613355047413E-5
502 => 8.4644600696344E-5
503 => 8.5751168364286E-5
504 => 9.0915036837272E-5
505 => 8.9465043233611E-5
506 => 9.4046734542754E-5
507 => 9.7670257510129E-5
508 => 9.8756793610589E-5
509 => 9.775723152364E-5
510 => 9.4337783619469E-5
511 => 9.4170009191953E-5
512 => 9.9280108014451E-5
513 => 9.7836271039742E-5
514 => 9.7664531225851E-5
515 => 9.5837509765052E-5
516 => 9.6917505729394E-5
517 => 9.6681294769408E-5
518 => 9.6308424213233E-5
519 => 9.8368981280028E-5
520 => 0.00010222616016187
521 => 0.00010162498266074
522 => 0.00010117623154397
523 => 9.9209934779762E-5
524 => 0.0001003940846201
525 => 9.997243154285E-5
526 => 0.00010178412075036
527 => 0.00010071091619766
528 => 9.7825332554605E-5
529 => 9.828487126077E-5
530 => 9.8215412909797E-5
531 => 9.9644860850953E-5
601 => 9.9215776060097E-5
602 => 9.8131627217817E-5
603 => 0.00010221297674378
604 => 0.00010194795660722
605 => 0.00010232369456882
606 => 0.0001024891060396
607 => 0.00010497335157461
608 => 0.00010599106748331
609 => 0.00010622210681221
610 => 0.00010718885821251
611 => 0.00010619805315668
612 => 0.00011016197981201
613 => 0.00011279775973627
614 => 0.00011585935375429
615 => 0.00012033316549352
616 => 0.00012201536009254
617 => 0.00012171148669497
618 => 0.00012510347969674
619 => 0.00013119881572115
620 => 0.00012294352837783
621 => 0.00013163636599575
622 => 0.00012888431396956
623 => 0.00012235924812274
624 => 0.00012193911080768
625 => 0.00012635796115671
626 => 0.00013615854593229
627 => 0.00013370361060332
628 => 0.00013616256132703
629 => 0.00013329406469297
630 => 0.0001331516196575
701 => 0.00013602324484812
702 => 0.00014273295363016
703 => 0.00013954542249748
704 => 0.0001349753150041
705 => 0.00013834981125847
706 => 0.00013542651030805
707 => 0.00012883949508634
708 => 0.00013370173336054
709 => 0.00013045049309516
710 => 0.00013139937785003
711 => 0.00013823300130238
712 => 0.00013741076164907
713 => 0.0001384748158978
714 => 0.00013659678799994
715 => 0.00013484241380553
716 => 0.00013156774409012
717 => 0.00013059827582665
718 => 0.00013086620197686
719 => 0.00013059814305576
720 => 0.00012876599544575
721 => 0.00012837034334381
722 => 0.00012771090584
723 => 0.00012791529309659
724 => 0.00012667535766417
725 => 0.00012901537200888
726 => 0.0001294496992914
727 => 0.00013115256659048
728 => 0.00013132936392251
729 => 0.00013607182511165
730 => 0.0001334597571825
731 => 0.00013521215786447
801 => 0.00013505540665324
802 => 0.00012250066608537
803 => 0.00012423059856421
804 => 0.00012692183061856
805 => 0.00012570943422595
806 => 0.00012399538938387
807 => 0.00012261120627262
808 => 0.00012051402731908
809 => 0.00012346576642343
810 => 0.00012734698946319
811 => 0.00013142779814379
812 => 0.00013633062238836
813 => 0.00013523636909214
814 => 0.00013133614325488
815 => 0.00013151110453682
816 => 0.00013259264633706
817 => 0.00013119195143731
818 => 0.00013077885916656
819 => 0.00013253589380253
820 => 0.00013254799353441
821 => 0.00013093632477262
822 => 0.00012914524987615
823 => 0.00012913774520694
824 => 0.00012881904072884
825 => 0.00013335076151161
826 => 0.00013584274973349
827 => 0.00013612845216709
828 => 0.00013582351968335
829 => 0.000135940876094
830 => 0.00013449084305491
831 => 0.00013780518858834
901 => 0.00014084675980462
902 => 0.00014003155374496
903 => 0.00013880944397317
904 => 0.00013783597467516
905 => 0.00013980223531565
906 => 0.00013971468082451
907 => 0.00014082019433345
908 => 0.00014077004185493
909 => 0.00014039829924234
910 => 0.00014003156702106
911 => 0.0001414856188249
912 => 0.00014106687525675
913 => 0.00014064748126418
914 => 0.00013980632240608
915 => 0.00013992064986506
916 => 0.00013869875110775
917 => 0.00013813344483234
918 => 0.00012963259480953
919 => 0.00012736088991015
920 => 0.00012807561451631
921 => 0.00012831092041448
922 => 0.00012732227153099
923 => 0.00012873974006685
924 => 0.000128518829097
925 => 0.00012937826445206
926 => 0.00012884132655457
927 => 0.00012886336267317
928 => 0.00013044238254248
929 => 0.00013090077872817
930 => 0.00013066763472841
1001 => 0.00013083092079413
1002 => 0.00013459377925986
1003 => 0.00013405882111548
1004 => 0.00013377463526338
1005 => 0.00013385335668657
1006 => 0.00013481484770116
1007 => 0.00013508401268979
1008 => 0.00013394354171911
1009 => 0.00013448139442186
1010 => 0.00013677150296653
1011 => 0.00013757291134825
1012 => 0.00014013062220484
1013 => 0.00013904406117327
1014 => 0.00014103849097197
1015 => 0.00014716868822194
1016 => 0.00015206591396261
1017 => 0.00014756222278508
1018 => 0.00015655535419987
1019 => 0.00016355779699436
1020 => 0.00016328903157673
1021 => 0.00016206799370609
1022 => 0.00015409589875413
1023 => 0.0001467598581221
1024 => 0.00015289676761553
1025 => 0.0001529124118599
1026 => 0.00015238524589186
1027 => 0.0001491110633396
1028 => 0.00015227131143624
1029 => 0.00015252216045382
1030 => 0.00015238175171011
1031 => 0.00014987144362402
1101 => 0.00014603866715904
1102 => 0.00014678758250593
1103 => 0.00014801432112159
1104 => 0.00014569184899766
1105 => 0.00014494967843052
1106 => 0.00014632951471856
1107 => 0.00015077563473896
1108 => 0.00014993512150372
1109 => 0.00014991317230637
1110 => 0.00015350924435979
1111 => 0.00015093523285046
1112 => 0.00014679702872681
1113 => 0.00014575207760938
1114 => 0.00014204320510593
1115 => 0.00014460493655462
1116 => 0.00014469712870889
1117 => 0.00014329409457471
1118 => 0.00014691087721424
1119 => 0.00014687754792549
1120 => 0.00015031114475467
1121 => 0.00015687489229199
1122 => 0.0001549336691628
1123 => 0.00015267623786804
1124 => 0.00015292168324156
1125 => 0.00015561361317829
1126 => 0.00015398601088776
1127 => 0.00015457130801948
1128 => 0.00015561272726098
1129 => 0.00015624104134636
1130 => 0.00015283127851388
1201 => 0.00015203629968982
1202 => 0.00015041005201544
1203 => 0.00014998579435254
1204 => 0.00015131033915055
1205 => 0.00015096136839314
1206 => 0.00014468938031531
1207 => 0.00014403392266417
1208 => 0.00014405402461455
1209 => 0.00014240584518543
1210 => 0.00013989197594764
1211 => 0.00014649827420922
1212 => 0.00014596769600373
1213 => 0.00014538197872836
1214 => 0.00014545372575254
1215 => 0.00014832129591967
1216 => 0.00014665796040697
1217 => 0.00015108021048281
1218 => 0.00015017112881222
1219 => 0.00014923873262706
1220 => 0.00014910984707279
1221 => 0.00014875095408981
1222 => 0.00014752017651297
1223 => 0.00014603393863067
1224 => 0.00014505259564505
1225 => 0.00013380335203136
1226 => 0.00013589114621222
1227 => 0.00013829296310887
1228 => 0.00013912206067692
1229 => 0.00013770383191497
1230 => 0.0001475761768287
1231 => 0.00014937994937672
]
'min_raw' => 6.2260142990581E-5
'max_raw' => 0.00016355779699436
'avg_raw' => 0.00011290896999247
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000062'
'max' => '$0.000163'
'avg' => '$0.000112'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.4139660347573E-6
'max_diff' => -2.9495993522901E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00014391620467159
102 => 0.00014289416112049
103 => 0.00014764318183375
104 => 0.00014477894179948
105 => 0.00014606870891154
106 => 0.00014328093788017
107 => 0.00014894547339052
108 => 0.00014890231912063
109 => 0.00014669868686776
110 => 0.00014856118175806
111 => 0.00014823752743712
112 => 0.00014574963205095
113 => 0.00014902434411184
114 => 0.00014902596832817
115 => 0.00014690502019589
116 => 0.00014442821711262
117 => 0.00014398542322082
118 => 0.00014365183750433
119 => 0.00014598666727446
120 => 0.00014808006834553
121 => 0.00015197536874067
122 => 0.00015295473981006
123 => 0.00015677729029432
124 => 0.00015450114759755
125 => 0.00015551013217404
126 => 0.00015660552766141
127 => 0.00015713070053989
128 => 0.00015627495951674
129 => 0.00016221295384334
130 => 0.00016271430249995
131 => 0.00016288240036786
201 => 0.00016088014209068
202 => 0.0001626586160752
203 => 0.00016182652699471
204 => 0.00016399139162115
205 => 0.00016433087003695
206 => 0.00016404334389606
207 => 0.00016415109970354
208 => 0.00015908406907976
209 => 0.0001588213168112
210 => 0.00015523867098535
211 => 0.00015669862564097
212 => 0.00015396931038975
213 => 0.00015483480437097
214 => 0.00015521630587117
215 => 0.00015501703113748
216 => 0.0001567811692867
217 => 0.00015528129147025
218 => 0.00015132286730991
219 => 0.00014736336467955
220 => 0.00014731365634936
221 => 0.00014627118919781
222 => 0.00014551767638463
223 => 0.00014566282968475
224 => 0.00014617436884703
225 => 0.00014548794479859
226 => 0.00014563442817191
227 => 0.00014806702818257
228 => 0.0001485548687662
229 => 0.00014689699585141
301 => 0.00014024039686859
302 => 0.00013860685078139
303 => 0.00013978101131424
304 => 0.00013921983820516
305 => 0.00011236127509443
306 => 0.0001186712960986
307 => 0.00011492209588599
308 => 0.00011664989983637
309 => 0.00011282293726998
310 => 0.00011464936439496
311 => 0.00011431208999541
312 => 0.00012445841704302
313 => 0.00012429999610199
314 => 0.00012437582382301
315 => 0.00012075636913054
316 => 0.00012652225873455
317 => 0.00012936274328817
318 => 0.00012883704519434
319 => 0.00012896935207884
320 => 0.00012669588144953
321 => 0.00012439783598826
322 => 0.00012184894990506
323 => 0.00012658446519581
324 => 0.00012605795673342
325 => 0.00012726557771438
326 => 0.00013033689788205
327 => 0.00013078916144355
328 => 0.00013139700825662
329 => 0.00013117913844361
330 => 0.00013636968129333
331 => 0.00013574107230592
401 => 0.00013725583910242
402 => 0.00013413984887639
403 => 0.00013061381016314
404 => 0.00013128399484764
405 => 0.00013121945067323
406 => 0.00013039772925274
407 => 0.00012965591589596
408 => 0.00012842100566155
409 => 0.00013232844437556
410 => 0.00013216980949959
411 => 0.00013473792374864
412 => 0.00013428398460979
413 => 0.0001312524679428
414 => 0.00013136073915363
415 => 0.0001320889150798
416 => 0.00013460914027445
417 => 0.00013535731470224
418 => 0.00013501073049769
419 => 0.0001358310696023
420 => 0.00013647943218266
421 => 0.00013591249396003
422 => 0.00014393914362564
423 => 0.00014060591906842
424 => 0.00014223050952518
425 => 0.00014261796477648
426 => 0.00014162550629759
427 => 0.00014184073500439
428 => 0.00014216674784887
429 => 0.00014414623400073
430 => 0.00014934097843213
501 => 0.00015164169537898
502 => 0.00015856351582895
503 => 0.00015145065286407
504 => 0.00015102860501169
505 => 0.00015227543389368
506 => 0.00015633927524692
507 => 0.00015963263696651
508 => 0.00016072523504749
509 => 0.00016086963992072
510 => 0.00016291942655519
511 => 0.00016409432602781
512 => 0.00016267052854303
513 => 0.00016146400925248
514 => 0.00015714240691243
515 => 0.00015764264415062
516 => 0.00016108878266037
517 => 0.00016595665628194
518 => 0.00017013379826518
519 => 0.00016867110873075
520 => 0.00017983039738058
521 => 0.00018093679526861
522 => 0.00018078392685461
523 => 0.00018330446589761
524 => 0.0001783017091961
525 => 0.00017616293378236
526 => 0.00016172487241767
527 => 0.00016578137874028
528 => 0.00017167774891045
529 => 0.00017089734220818
530 => 0.00016661524058017
531 => 0.00017013054990711
601 => 0.00016896827870974
602 => 0.00016805154719369
603 => 0.00017225127198584
604 => 0.00016763350206169
605 => 0.00017163168312305
606 => 0.00016650397455597
607 => 0.00016867779017333
608 => 0.00016744382729328
609 => 0.00016824235250548
610 => 0.00016357419043155
611 => 0.00016609301737341
612 => 0.00016346939894963
613 => 0.0001634681550129
614 => 0.00016341023849078
615 => 0.00016649691393145
616 => 0.00016659757030675
617 => 0.00016431651249239
618 => 0.00016398777642452
619 => 0.00016520328596498
620 => 0.00016378024263555
621 => 0.00016444607565286
622 => 0.00016380041003935
623 => 0.00016365505710995
624 => 0.00016249686023873
625 => 0.00016199787718132
626 => 0.00016219354129534
627 => 0.00016152563880243
628 => 0.00016112320339136
629 => 0.00016333018395836
630 => 0.00016215108327075
701 => 0.0001631494698673
702 => 0.0001620116823341
703 => 0.0001580676150336
704 => 0.00015579934022133
705 => 0.00014834936270592
706 => 0.00015046216708762
707 => 0.00015186295857854
708 => 0.00015139999699915
709 => 0.00015239461761403
710 => 0.00015245567924181
711 => 0.00015213231794096
712 => 0.00015175790697971
713 => 0.00015157566443001
714 => 0.00015293395108701
715 => 0.00015372248220923
716 => 0.00015200354674483
717 => 0.00015160082421598
718 => 0.00015333876287552
719 => 0.00015439890445387
720 => 0.00016222639422627
721 => 0.00016164650850147
722 => 0.00016310190787389
723 => 0.00016293805223948
724 => 0.00016446354264508
725 => 0.00016695707473788
726 => 0.00016188702679067
727 => 0.00016276701180524
728 => 0.00016255125980149
729 => 0.00016490678360522
730 => 0.00016491413729343
731 => 0.00016350188310595
801 => 0.00016426748901219
802 => 0.00016384014879862
803 => 0.00016461241032303
804 => 0.00016163876377408
805 => 0.00016526034428539
806 => 0.00016731354706581
807 => 0.00016734205578841
808 => 0.0001683152576111
809 => 0.000169304087027
810 => 0.00017120205898194
811 => 0.00016925115361931
812 => 0.00016574166478873
813 => 0.00016599503854672
814 => 0.00016393742652943
815 => 0.00016397201535918
816 => 0.0001637873774752
817 => 0.0001643414896639
818 => 0.00016176036023907
819 => 0.00016236614615599
820 => 0.00016151804232482
821 => 0.00016276516819314
822 => 0.00016142346691612
823 => 0.00016255115575934
824 => 0.0001630378288806
825 => 0.00016483366317537
826 => 0.00016115822073063
827 => 0.00015366374478025
828 => 0.00015523917448676
829 => 0.0001529089902035
830 => 0.00015312465763055
831 => 0.00015356034015642
901 => 0.00015214815054364
902 => 0.00015241755181855
903 => 0.00015240792690926
904 => 0.00015232498464082
905 => 0.00015195761958119
906 => 0.00015142486756376
907 => 0.00015354718762878
908 => 0.00015390781116394
909 => 0.00015470943261082
910 => 0.00015709451429169
911 => 0.00015685618838767
912 => 0.00015724490782517
913 => 0.00015639633547567
914 => 0.00015316402046808
915 => 0.00015333955072413
916 => 0.00015115068561852
917 => 0.00015465345840883
918 => 0.00015382395557774
919 => 0.0001532891697063
920 => 0.00015314324842653
921 => 0.00015553424226356
922 => 0.00015624966509383
923 => 0.00015580386159625
924 => 0.00015488950561653
925 => 0.00015664533940267
926 => 0.00015711512645116
927 => 0.00015722029444623
928 => 0.00016033129526754
929 => 0.00015739416483324
930 => 0.00015810116132134
1001 => 0.00016361694610046
1002 => 0.00015861489043207
1003 => 0.00016126459087877
1004 => 0.00016113490183028
1005 => 0.00016249039891783
1006 => 0.0001610237115051
1007 => 0.00016104189285339
1008 => 0.00016224548243782
1009 => 0.00016055525793502
1010 => 0.00016013673457844
1011 => 0.00015955854755886
1012 => 0.00016082099776357
1013 => 0.00016157777956559
1014 => 0.00016767688509485
1015 => 0.00017161718541976
1016 => 0.00017144612659085
1017 => 0.00017300928407835
1018 => 0.00017230506731335
1019 => 0.00017003096561617
1020 => 0.0001739125799161
1021 => 0.00017268427473796
1022 => 0.00017278553472446
1023 => 0.0001727817658227
1024 => 0.00017359848138586
1025 => 0.00017301976355848
1026 => 0.00017187905131655
1027 => 0.00017263630933756
1028 => 0.00017488509493525
1029 => 0.00018186539443167
1030 => 0.00018577166250653
1031 => 0.00018163023218871
1101 => 0.00018448693536598
1102 => 0.00018277393140703
1103 => 0.00018246262763024
1104 => 0.00018425684833427
1105 => 0.00018605420958414
1106 => 0.00018593972544273
1107 => 0.00018463493347085
1108 => 0.00018389788959381
1109 => 0.00018947903275859
1110 => 0.00019359112397011
1111 => 0.00019331070691729
1112 => 0.00019454837659191
1113 => 0.00019818221303628
1114 => 0.00019851444550003
1115 => 0.00019847259184587
1116 => 0.00019764911901959
1117 => 0.00020122710291236
1118 => 0.00020421192002435
1119 => 0.00019745850885272
1120 => 0.00020003011941823
1121 => 0.00020118459825321
1122 => 0.00020287971570139
1123 => 0.00020573966297114
1124 => 0.00020884632426964
1125 => 0.00020928564024005
1126 => 0.00020897392453584
1127 => 0.00020692499789794
1128 => 0.00021032434376093
1129 => 0.000212315600843
1130 => 0.00021350134886627
1201 => 0.00021650820856361
1202 => 0.00020119172792146
1203 => 0.00019034996164447
1204 => 0.00018865686328331
1205 => 0.00019209984537853
1206 => 0.00019300773229977
1207 => 0.00019264176422021
1208 => 0.00018043837058519
1209 => 0.00018859261494138
1210 => 0.0001973658962403
1211 => 0.0001977029137053
1212 => 0.0002020950017642
1213 => 0.00020352524567395
1214 => 0.00020706145224551
1215 => 0.00020684026156165
1216 => 0.00020770127158849
1217 => 0.00020750334029393
1218 => 0.00021405341833159
1219 => 0.00022127912710314
1220 => 0.00022102892378473
1221 => 0.00021999014265811
1222 => 0.00022153290976964
1223 => 0.00022899061557588
1224 => 0.00022830402953254
1225 => 0.00022897098939038
1226 => 0.00023776404483383
1227 => 0.00024919626770785
1228 => 0.00024388485240646
1229 => 0.0002554090952919
1230 => 0.00026266299531443
1231 => 0.00027520786533612
]
'min_raw' => 0.00011236127509443
'max_raw' => 0.00027520786533612
'avg_raw' => 0.00019378457021527
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000112'
'max' => '$0.000275'
'avg' => '$0.000193'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 5.0101132103852E-5
'max_diff' => 0.00011165006834175
'year' => 2028
]
3 => [
'items' => [
101 => 0.00027363718582461
102 => 0.00027852081166555
103 => 0.00027082534168832
104 => 0.00025315498710951
105 => 0.00025035858585801
106 => 0.00025595705197967
107 => 0.00026972033464942
108 => 0.00025552359722903
109 => 0.0002583955787193
110 => 0.0002575684478569
111 => 0.00025752437356832
112 => 0.00025920650990025
113 => 0.00025676648341645
114 => 0.00024682537656909
115 => 0.00025138132725393
116 => 0.00024962205589979
117 => 0.00025157409862957
118 => 0.00026210846815855
119 => 0.00025745097228178
120 => 0.00025254467871986
121 => 0.00025869825964021
122 => 0.00026653388275165
123 => 0.00026604354353931
124 => 0.00026509208052147
125 => 0.00027045542773605
126 => 0.00027931410602125
127 => 0.00028170857116469
128 => 0.00028347611638089
129 => 0.00028371983100329
130 => 0.00028623024308173
131 => 0.00027273112463064
201 => 0.00029415457229446
202 => 0.00029785380989521
203 => 0.00029715850654396
204 => 0.00030127005344947
205 => 0.00030006033204999
206 => 0.00029830763554162
207 => 0.00030482531193796
208 => 0.00029735332189892
209 => 0.00028674777273588
210 => 0.00028092935871107
211 => 0.00028859151565702
212 => 0.00029327052753148
213 => 0.00029636305673946
214 => 0.00029729885420923
215 => 0.00027377902276894
216 => 0.00026110313809228
217 => 0.0002692282348407
218 => 0.00027914141363801
219 => 0.0002726760564219
220 => 0.00027292948618423
221 => 0.00026371158586004
222 => 0.00027995699327881
223 => 0.00027759017406328
224 => 0.00028986923634029
225 => 0.00028693873958225
226 => 0.0002969518381987
227 => 0.00029431505375751
228 => 0.00030526019855225
301 => 0.00030962651313884
302 => 0.00031695823489233
303 => 0.00032235147925966
304 => 0.00032551849550849
305 => 0.00032532835973209
306 => 0.00033787765591117
307 => 0.00033047777439338
308 => 0.00032118177918887
309 => 0.00032101364396411
310 => 0.0003258281716058
311 => 0.00033591810074162
312 => 0.00033853427256404
313 => 0.00033999635570805
314 => 0.00033775712447752
315 => 0.00032972508344424
316 => 0.00032625688884945
317 => 0.00032921189112748
318 => 0.00032559817726768
319 => 0.00033183646121872
320 => 0.00034040295750905
321 => 0.0003386340099007
322 => 0.00034454733653998
323 => 0.00035066700751154
324 => 0.00035941841185248
325 => 0.00036170635301077
326 => 0.00036548823274281
327 => 0.00036938102926986
328 => 0.00037063129060053
329 => 0.00037301842741411
330 => 0.00037300584602477
331 => 0.00038019964348531
401 => 0.00038813462485765
402 => 0.00039112989663047
403 => 0.00039801735891181
404 => 0.00038622282112048
405 => 0.00039516911352109
406 => 0.00040323889320666
407 => 0.00039361776918755
408 => 0.0004068782472135
409 => 0.00040739312152636
410 => 0.00041516711236358
411 => 0.00040728668333362
412 => 0.00040260730973085
413 => 0.0004161164859882
414 => 0.00042265315084407
415 => 0.00042068425419234
416 => 0.00040570085345625
417 => 0.00039697987155956
418 => 0.00037415537978414
419 => 0.0004011919762368
420 => 0.00041436071370055
421 => 0.00040566674960756
422 => 0.00041005147939837
423 => 0.00043397314338366
424 => 0.00044308096421621
425 => 0.00044118660115151
426 => 0.00044150671732558
427 => 0.00044642113212818
428 => 0.0004682143537806
429 => 0.00045515535020355
430 => 0.00046513846912667
501 => 0.00047043347940669
502 => 0.00047535178004889
503 => 0.00046327398811652
504 => 0.0004475609582705
505 => 0.00044258398213014
506 => 0.00040480230621781
507 => 0.00040283560590907
508 => 0.00040173163742866
509 => 0.0003947712723191
510 => 0.00038930233194744
511 => 0.00038495322751515
512 => 0.00037353987873233
513 => 0.00037739154890416
514 => 0.00035920105309536
515 => 0.00037083868768225
516 => 0.00034180621714651
517 => 0.00036598532131319
518 => 0.00035282573420423
519 => 0.00036166204302194
520 => 0.0003616312139729
521 => 0.00034536076788525
522 => 0.00033597631413743
523 => 0.00034195645331394
524 => 0.0003483676372152
525 => 0.00034940783023337
526 => 0.00035772009751037
527 => 0.0003600398726358
528 => 0.00035301084570582
529 => 0.00034120458372549
530 => 0.00034394690911136
531 => 0.00033592074100102
601 => 0.00032185519010975
602 => 0.00033195731432082
603 => 0.00033540662368552
604 => 0.0003369300352038
605 => 0.00032309818134167
606 => 0.00031875191255403
607 => 0.00031643799552022
608 => 0.00033941906508487
609 => 0.00034067801995246
610 => 0.00033423702885162
611 => 0.00036335091938723
612 => 0.00035676154930142
613 => 0.00036412349012214
614 => 0.00034369807182628
615 => 0.00034447835031166
616 => 0.00033480862995855
617 => 0.00034022302722534
618 => 0.00033639630575134
619 => 0.0003397855974323
620 => 0.0003418171248913
621 => 0.00035148525853844
622 => 0.0003660957158693
623 => 0.0003500411617754
624 => 0.00034304596265124
625 => 0.00034738574484538
626 => 0.00035894315671818
627 => 0.00037645322731849
628 => 0.00036608691310009
629 => 0.00037068730731879
630 => 0.00037169228879828
701 => 0.00036404855247544
702 => 0.00037673506277962
703 => 0.00038353386671666
704 => 0.00039050803274182
705 => 0.00039656350568977
706 => 0.00038772239746617
707 => 0.0003971836505885
708 => 0.00038955955070791
709 => 0.00038271994495006
710 => 0.00038273031780873
711 => 0.00037843973320613
712 => 0.00037012618489015
713 => 0.00036859303902797
714 => 0.00037656865741802
715 => 0.00038296434807296
716 => 0.00038349112778859
717 => 0.00038703211075762
718 => 0.00038912762800367
719 => 0.00040966654573247
720 => 0.00041792746834983
721 => 0.00042802876815508
722 => 0.00043196379370729
723 => 0.00044380680983469
724 => 0.00043424261246907
725 => 0.0004321733382074
726 => 0.00040344605490336
727 => 0.00040815014593506
728 => 0.00041568184955409
729 => 0.00040357024992194
730 => 0.00041125227218259
731 => 0.00041276886610433
801 => 0.000403158702401
802 => 0.00040829190606561
803 => 0.00039465963902123
804 => 0.00036639286203819
805 => 0.00037676653178289
806 => 0.00038440504445448
807 => 0.00037350394505031
808 => 0.00039304374380148
809 => 0.00038162899675436
810 => 0.00037801106994492
811 => 0.00036389624757722
812 => 0.00037055790040544
813 => 0.00037956788124128
814 => 0.00037400076060743
815 => 0.00038555337183004
816 => 0.00040191495029013
817 => 0.00041357518544963
818 => 0.00041447031351946
819 => 0.00040697356348698
820 => 0.00041898715325765
821 => 0.00041907465914359
822 => 0.00040552328080533
823 => 0.00039722313702753
824 => 0.00039533732689756
825 => 0.00040004845033708
826 => 0.00040576862391401
827 => 0.00041478774334259
828 => 0.00042023780832098
829 => 0.00043444868729352
830 => 0.00043829374368565
831 => 0.00044251829491235
901 => 0.00044816359815457
902 => 0.0004549422321229
903 => 0.00044011096690805
904 => 0.00044070024072397
905 => 0.00042688957190874
906 => 0.00041213089162942
907 => 0.00042333089026595
908 => 0.00043797339860985
909 => 0.00043461439101722
910 => 0.00043423643404476
911 => 0.00043487205283593
912 => 0.00043233947080602
913 => 0.00042088469614663
914 => 0.00041513218002336
915 => 0.00042255439344575
916 => 0.00042649896955504
917 => 0.00043261666309736
918 => 0.00043186252823942
919 => 0.00044762104981211
920 => 0.0004537443347823
921 => 0.00045217773645678
922 => 0.00045246602825097
923 => 0.00046355194320329
924 => 0.00047588176062256
925 => 0.00048743026169842
926 => 0.00049917789301244
927 => 0.00048501566494553
928 => 0.00047782495893795
929 => 0.00048524393205415
930 => 0.00048130732048908
1001 => 0.00050392825821677
1002 => 0.00050549448286508
1003 => 0.0005281137848415
1004 => 0.00054958219587349
1005 => 0.00053609827155083
1006 => 0.00054881300485781
1007 => 0.00056256502557673
1008 => 0.00058909490472846
1009 => 0.00058016057476256
1010 => 0.00057331701802748
1011 => 0.00056684988998065
1012 => 0.00058030695681843
1013 => 0.00059761925832334
1014 => 0.00060134816225234
1015 => 0.00060739041116825
1016 => 0.00060103772524422
1017 => 0.00060868883571431
1018 => 0.00063570061774205
1019 => 0.00062840179579856
1020 => 0.00061803629529463
1021 => 0.00063935950296641
1022 => 0.00064707628893095
1023 => 0.00070123673414231
1024 => 0.00076961653347806
1025 => 0.00074130684754709
1026 => 0.00072373411194188
1027 => 0.00072786412163997
1028 => 0.0007528341095551
1029 => 0.00076085367716563
1030 => 0.00073905372788946
1031 => 0.00074675383851579
1101 => 0.00078918220512501
1102 => 0.00081194366254589
1103 => 0.00078103054609677
1104 => 0.00069574248384561
1105 => 0.00061710299538565
1106 => 0.00063796172890755
1107 => 0.00063559699584802
1108 => 0.00068118098272311
1109 => 0.00062822772130909
1110 => 0.00062911931842509
1111 => 0.00067564593387448
1112 => 0.0006632334305407
1113 => 0.00064312676481331
1114 => 0.00061724979629682
1115 => 0.00056941382666423
1116 => 0.00052704417435594
1117 => 0.00061014081968067
1118 => 0.00060655754123282
1119 => 0.00060136842302823
1120 => 0.00061291624407132
1121 => 0.0006689891851504
1122 => 0.00066769652236813
1123 => 0.00065947326126967
1124 => 0.00066571053233635
1125 => 0.00064203334103855
1126 => 0.00064813549235562
1127 => 0.00061709053848889
1128 => 0.00063112415418845
1129 => 0.00064308362493902
1130 => 0.00064548466575518
1201 => 0.00065089433331419
1202 => 0.00060466931631624
1203 => 0.00062542299185312
1204 => 0.00063761383187462
1205 => 0.00058253517315094
1206 => 0.00063652510388304
1207 => 0.00060386464161169
1208 => 0.00059277919017311
1209 => 0.00060770429013798
1210 => 0.00060188796416654
1211 => 0.00059688742864241
1212 => 0.00059409704389984
1213 => 0.00060505639009087
1214 => 0.0006045451234918
1215 => 0.00058661350600584
1216 => 0.00056322244198164
1217 => 0.00057107325085367
1218 => 0.00056822097838874
1219 => 0.00055788397502535
1220 => 0.00056484986719773
1221 => 0.00053417560342794
1222 => 0.0004814021269215
1223 => 0.00051626590199695
1224 => 0.00051492368458104
1225 => 0.00051424687769522
1226 => 0.00054044604110045
1227 => 0.00053792759605658
1228 => 0.00053335659364127
1229 => 0.00055780002498137
1230 => 0.00054887784373168
1231 => 0.00057637390401293
]
'min_raw' => 0.00024682537656909
'max_raw' => 0.00081194366254589
'avg_raw' => 0.00052938451955749
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000246'
'max' => '$0.000811'
'avg' => '$0.000529'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00013446410147466
'max_diff' => 0.00053673579720978
'year' => 2029
]
4 => [
'items' => [
101 => 0.00059448458764783
102 => 0.00058989113245878
103 => 0.00060692431795394
104 => 0.00057125411763367
105 => 0.00058310232734002
106 => 0.00058554422693959
107 => 0.00055749839683289
108 => 0.0005383396448119
109 => 0.00053706197447786
110 => 0.00050384333871211
111 => 0.00052158846580672
112 => 0.00053720344330671
113 => 0.00052972508085542
114 => 0.00052735765471306
115 => 0.00053945232144228
116 => 0.00054039218063095
117 => 0.00051896329152734
118 => 0.00052341903613664
119 => 0.00054200023186335
120 => 0.00052295083767877
121 => 0.00048594097647901
122 => 0.0004767620192001
123 => 0.00047553737709735
124 => 0.00045064331696468
125 => 0.00047737540101637
126 => 0.00046570612995249
127 => 0.00050256921742395
128 => 0.00048151321956096
129 => 0.00048060553757717
130 => 0.00047923344313069
131 => 0.00045780609721382
201 => 0.00046249732419074
202 => 0.00047809167715607
203 => 0.00048365591797706
204 => 0.00048307552207295
205 => 0.00047801525631907
206 => 0.00048033182006844
207 => 0.0004728693610874
208 => 0.00047023421150354
209 => 0.00046191695456189
210 => 0.00044969288455854
211 => 0.00045139271646708
212 => 0.00042717363518853
213 => 0.00041397779430404
214 => 0.0004103253594656
215 => 0.00040544117095388
216 => 0.00041087704155433
217 => 0.00042710502557423
218 => 0.00040753063388736
219 => 0.00037397171232416
220 => 0.00037598866069173
221 => 0.00038052014483631
222 => 0.00037207575411165
223 => 0.00036408384697475
224 => 0.00037103216182636
225 => 0.00035681280436058
226 => 0.00038223848625226
227 => 0.00038155079281174
228 => 0.00039102791470734
301 => 0.00039695415351878
302 => 0.00038329609170102
303 => 0.00037986112608917
304 => 0.00038181783861216
305 => 0.00034947773923819
306 => 0.00038838503863323
307 => 0.00038872151057406
308 => 0.00038584043353864
309 => 0.0004065573693384
310 => 0.0004502765656502
311 => 0.0004338276453971
312 => 0.00042745812630386
313 => 0.00041534966585151
314 => 0.00043148347047502
315 => 0.0004302446460065
316 => 0.00042464221194959
317 => 0.00042125384235131
318 => 0.00042749701722922
319 => 0.00042048024389378
320 => 0.0004192198385947
321 => 0.00041158315381676
322 => 0.00040885720479806
323 => 0.00040683902066777
324 => 0.00040461719824299
325 => 0.00040951798486839
326 => 0.00039841215762306
327 => 0.00038501961868286
328 => 0.00038390617397926
329 => 0.00038698049270095
330 => 0.00038562033552271
331 => 0.00038389966206998
401 => 0.00038061442785118
402 => 0.00037963976903638
403 => 0.00038280693734723
404 => 0.00037923138898166
405 => 0.00038450730536526
406 => 0.00038307254803869
407 => 0.00037505811024335
408 => 0.00036506915342544
409 => 0.00036498023075722
410 => 0.00036282812639597
411 => 0.00036008709792087
412 => 0.00035932460650533
413 => 0.00037044699412998
414 => 0.00039347000364796
415 => 0.00038895003598566
416 => 0.00039221617584659
417 => 0.00040828235134495
418 => 0.00041338930540912
419 => 0.00040976451037921
420 => 0.00040480266737464
421 => 0.00040502096328506
422 => 0.00042197708288369
423 => 0.00042303461526426
424 => 0.00042570665841708
425 => 0.00042914098898775
426 => 0.00041034939172586
427 => 0.00040413588074393
428 => 0.00040119157452822
429 => 0.00039212425097376
430 => 0.00040190258205368
501 => 0.00039620516728329
502 => 0.00039697394318722
503 => 0.00039647327687126
504 => 0.00039674667453468
505 => 0.000382231379256
506 => 0.00038751998995409
507 => 0.0003787266489256
508 => 0.0003669533523873
509 => 0.00036691388416905
510 => 0.00036979538181758
511 => 0.00036808135426322
512 => 0.00036346895018612
513 => 0.00036412412041534
514 => 0.00035838413980486
515 => 0.00036482105798715
516 => 0.00036500564576822
517 => 0.00036252708164673
518 => 0.00037244404223009
519 => 0.00037650702907256
520 => 0.00037487558507181
521 => 0.00037639256261237
522 => 0.00038913786104846
523 => 0.0003912159008099
524 => 0.00039213882880433
525 => 0.00039090222755632
526 => 0.00037662552327091
527 => 0.0003772587558152
528 => 0.00037261251556158
529 => 0.00036868693215601
530 => 0.00036884393490526
531 => 0.00037086219506584
601 => 0.00037967605555652
602 => 0.00039822430535369
603 => 0.0003989281978749
604 => 0.0003997813361446
605 => 0.0003963111940488
606 => 0.00039526456598792
607 => 0.00039664533855784
608 => 0.00040361108596102
609 => 0.00042152887946396
610 => 0.00041519553455083
611 => 0.00041004642655207
612 => 0.00041456358245653
613 => 0.00041386820171167
614 => 0.00040799848841866
615 => 0.00040783374511621
616 => 0.00039656788864607
617 => 0.0003924031580202
618 => 0.00038892279738453
619 => 0.0003851223344275
620 => 0.0003828692925939
621 => 0.00038633098883951
622 => 0.00038712271972847
623 => 0.00037955366038735
624 => 0.00037852202556779
625 => 0.00038470308281524
626 => 0.00038198302997368
627 => 0.00038478067177529
628 => 0.00038542974867099
629 => 0.00038532523234128
630 => 0.0003824851847786
701 => 0.00038429534640361
702 => 0.00038001377452531
703 => 0.00037535820817897
704 => 0.00037238824690203
705 => 0.00036979656177971
706 => 0.00037123457931519
707 => 0.00036610830937281
708 => 0.0003644683124468
709 => 0.00038368210437499
710 => 0.00039787553905541
711 => 0.00039766916089394
712 => 0.00039641288691214
713 => 0.00039454631860106
714 => 0.00040347453486293
715 => 0.00040036412284261
716 => 0.00040262720747101
717 => 0.0004032032574903
718 => 0.00040494678740353
719 => 0.00040556994948605
720 => 0.00040368632085878
721 => 0.00039736463311982
722 => 0.00038161158832235
723 => 0.00037427850344459
724 => 0.00037185846329275
725 => 0.00037194642715595
726 => 0.00036951999112067
727 => 0.0003702346852783
728 => 0.00036927144965912
729 => 0.00036744731442812
730 => 0.00037112194410496
731 => 0.00037154541094367
801 => 0.00037068770846854
802 => 0.00037088972845072
803 => 0.00036378831828617
804 => 0.00036432822307753
805 => 0.00036132196459147
806 => 0.00036075832736631
807 => 0.00035315876769841
808 => 0.00033969504617293
809 => 0.00034715525485312
810 => 0.00033814437183154
811 => 0.0003347318138941
812 => 0.00035088633240826
813 => 0.00034926486680604
814 => 0.00034648962252918
815 => 0.00034238445783213
816 => 0.00034086181231352
817 => 0.00033161070015342
818 => 0.00033106409509424
819 => 0.00033564919608182
820 => 0.00033353332973974
821 => 0.00033056185205422
822 => 0.00031979946109111
823 => 0.00030769897034339
824 => 0.00030806420809809
825 => 0.00031191314906731
826 => 0.00032310446403571
827 => 0.00031873182366584
828 => 0.00031555942290723
829 => 0.00031496532760716
830 => 0.0003224016741103
831 => 0.000332925662375
901 => 0.00033786328220784
902 => 0.00033297025091124
903 => 0.00032734940001723
904 => 0.00032769151516663
905 => 0.00032996745398533
906 => 0.00033020662297513
907 => 0.00032654802687594
908 => 0.00032757790024751
909 => 0.00032601342842249
910 => 0.00031641226772017
911 => 0.00031623861316867
912 => 0.00031388233349269
913 => 0.00031381098628054
914 => 0.00030980236675019
915 => 0.00030924153316761
916 => 0.00030128217578427
917 => 0.00030652104891714
918 => 0.0003030070878728
919 => 0.00029771071971936
920 => 0.00029679762385338
921 => 0.00029677017508906
922 => 0.00030220836093639
923 => 0.00030645750054925
924 => 0.00030306821472962
925 => 0.00030229654004704
926 => 0.00031053600679143
927 => 0.0003094874595438
928 => 0.00030857942438976
929 => 0.00033198335465401
930 => 0.0003134573176184
1001 => 0.00030537890804165
1002 => 0.00029538034214205
1003 => 0.0002986359256161
1004 => 0.00029932192488856
1005 => 0.00027527717627699
1006 => 0.00026552222475985
1007 => 0.00026217469300677
1008 => 0.00026024814115571
1009 => 0.00026112609502635
1010 => 0.00025234549451924
1011 => 0.00025824620327775
1012 => 0.00025064294544427
1013 => 0.00024936823452535
1014 => 0.00026296380139451
1015 => 0.0002648555451002
1016 => 0.00025678477873301
1017 => 0.00026196751727914
1018 => 0.00026008818423686
1019 => 0.00025077328147716
1020 => 0.00025041752070752
1021 => 0.00024574362993737
1022 => 0.00023842989592567
1023 => 0.00023508732322864
1024 => 0.00023334648234648
1025 => 0.00023406478722277
1026 => 0.00023370159029683
1027 => 0.00023133148467917
1028 => 0.00023383744197648
1029 => 0.00022743575661489
1030 => 0.00022488655392202
1031 => 0.0002237351382067
1101 => 0.00021805327398103
1102 => 0.00022709564670057
1103 => 0.00022887710803913
1104 => 0.00023066207940684
1105 => 0.00024619903651112
1106 => 0.00024542285404117
1107 => 0.00025243916555328
1108 => 0.00025216652459009
1109 => 0.00025016535889012
1110 => 0.00024172276997776
1111 => 0.00024508783544355
1112 => 0.00023473068698713
1113 => 0.00024249096682832
1114 => 0.00023894949918583
1115 => 0.000241293593056
1116 => 0.00023707870091902
1117 => 0.00023941139625625
1118 => 0.00022929955861036
1119 => 0.00021985726689402
1120 => 0.00022365712071835
1121 => 0.0002277879963914
1122 => 0.00023674478737811
1123 => 0.00023141019655834
1124 => 0.00023332871714034
1125 => 0.00022690199434711
1126 => 0.00021364182952207
1127 => 0.00021371688061493
1128 => 0.00021167709314499
1129 => 0.00020991441895712
1130 => 0.00023202293848595
1201 => 0.00022927339459856
1202 => 0.00022489235626543
1203 => 0.00023075655016988
1204 => 0.00023230713611548
1205 => 0.00023235127911749
1206 => 0.00023662964361342
1207 => 0.00023891300751184
1208 => 0.0002393154602956
1209 => 0.00024604755927013
1210 => 0.00024830407004787
1211 => 0.00025759831858798
1212 => 0.00023871928003803
1213 => 0.00023833047866279
1214 => 0.00023083907140407
1215 => 0.00022608790248613
1216 => 0.00023116438800469
1217 => 0.00023566146116475
1218 => 0.0002309788080027
1219 => 0.00023159026364946
1220 => 0.00022530418436622
1221 => 0.00022755116192246
1222 => 0.00022948656169445
1223 => 0.0002284179476979
1224 => 0.00022681818082355
1225 => 0.00023529275244957
1226 => 0.00023481458390632
1227 => 0.00024270629983403
1228 => 0.0002488584567417
1229 => 0.00025988422174983
1230 => 0.00024837826117771
1231 => 0.00024795893824241
]
'min_raw' => 0.00020991441895712
'max_raw' => 0.00060692431795394
'avg_raw' => 0.00040841936845553
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0002099'
'max' => '$0.0006069'
'avg' => '$0.0004084'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -3.6910957611977E-5
'max_diff' => -0.00020501934459195
'year' => 2030
]
5 => [
'items' => [
101 => 0.00025205788719648
102 => 0.00024830344252014
103 => 0.00025067612195656
104 => 0.00025950194641114
105 => 0.00025968842217432
106 => 0.00025656471288071
107 => 0.00025637463488631
108 => 0.00025697457742579
109 => 0.00026048845961834
110 => 0.00025926060120957
111 => 0.00026068151004577
112 => 0.00026245837830316
113 => 0.00026980825879229
114 => 0.00027158029009532
115 => 0.00026727517272186
116 => 0.00026766387661832
117 => 0.00026605364454254
118 => 0.00026449818053347
119 => 0.00026799463646857
120 => 0.00027438447841297
121 => 0.00027434472753787
122 => 0.00027582704666819
123 => 0.00027675051920619
124 => 0.00027278629904989
125 => 0.00027020573749656
126 => 0.00027119528900151
127 => 0.00027277760340754
128 => 0.00027068216576553
129 => 0.00025774815393789
130 => 0.00026167150689852
131 => 0.00026101846912371
201 => 0.00026008846392028
202 => 0.00026403342566059
203 => 0.00026365292447693
204 => 0.00025225543676977
205 => 0.00025298506695372
206 => 0.00025229980799787
207 => 0.00025451401987503
208 => 0.00024818386781235
209 => 0.0002501309799526
210 => 0.00025135219043393
211 => 0.00025207149278921
212 => 0.00025467010612674
213 => 0.00025436518884466
214 => 0.00025465115204036
215 => 0.00025850420961142
216 => 0.00027799165259616
217 => 0.0002790523111212
218 => 0.00027382924062627
219 => 0.00027591575426848
220 => 0.00027191010434581
221 => 0.00027459912397442
222 => 0.00027643888291063
223 => 0.00026812536604322
224 => 0.00026763309352861
225 => 0.00026361091086381
226 => 0.0002657722039998
227 => 0.00026233343121796
228 => 0.00026317718577546
301 => 0.0002608179744755
302 => 0.00026506408510115
303 => 0.0002698118965595
304 => 0.00027101138123064
305 => 0.0002678560534715
306 => 0.00026557138822765
307 => 0.00026156026867496
308 => 0.00026823084988471
309 => 0.00027018153111272
310 => 0.00026822060378665
311 => 0.00026776621407809
312 => 0.00026690514640143
313 => 0.00026794889365622
314 => 0.00027017090728382
315 => 0.00026912304669119
316 => 0.00026981517707355
317 => 0.00026717748977775
318 => 0.00027278761137172
319 => 0.00028169783461222
320 => 0.0002817264824369
321 => 0.00028067861619592
322 => 0.0002802498519067
323 => 0.00028132502625979
324 => 0.00028190826424038
325 => 0.00028538518094503
326 => 0.00028911605109558
327 => 0.00030652639418203
328 => 0.00030163763951197
329 => 0.00031708513164422
330 => 0.00032930209231502
331 => 0.00033296542463725
401 => 0.0003295953312739
402 => 0.00031806642392676
403 => 0.00031750076073076
404 => 0.00033472981568651
405 => 0.0003298618185208
406 => 0.00032928278574778
407 => 0.00032312285533413
408 => 0.00032676413713082
409 => 0.0003259677353875
410 => 0.00032471057627437
411 => 0.00033165788828857
412 => 0.00034466263618833
413 => 0.0003426357242704
414 => 0.0003411227285494
415 => 0.00033449322172642
416 => 0.00033848566558781
417 => 0.000337064032799
418 => 0.00034317226945021
419 => 0.00033955388537204
420 => 0.00032982493865447
421 => 0.00033137430548627
422 => 0.00033114012180653
423 => 0.00033595960534101
424 => 0.0003345129160109
425 => 0.00033085763249629
426 => 0.00034461818737381
427 => 0.00034372465348029
428 => 0.00034499148025101
429 => 0.0003455491765734
430 => 0.00035392498383917
501 => 0.00035735628408001
502 => 0.00035813524930805
503 => 0.00036139471915057
504 => 0.00035805415072906
505 => 0.00037141880620002
506 => 0.00038030552223894
507 => 0.00039062790022437
508 => 0.00040571166885472
509 => 0.0004113833053924
510 => 0.00041035877501672
511 => 0.00042179511624358
512 => 0.00044234596721267
513 => 0.00041451268956889
514 => 0.00044382119851227
515 => 0.0004345424629638
516 => 0.00041254274789571
517 => 0.00041112622560493
518 => 0.00042602468807099
519 => 0.00045906804389683
520 => 0.00045079105803709
521 => 0.00045908158208054
522 => 0.00044941024540675
523 => 0.00044892998202447
524 => 0.00045861186684512
525 => 0.00048123411846066
526 => 0.00047048713470054
527 => 0.00045507869821188
528 => 0.00046645604793328
529 => 0.00045659993468059
530 => 0.00043439135296989
531 => 0.00045078472878199
601 => 0.0004398229452329
602 => 0.00044302217643299
603 => 0.00046606221501094
604 => 0.00046328997661286
605 => 0.00046687750980234
606 => 0.000460545607625
607 => 0.00045463061254204
608 => 0.00044358983496639
609 => 0.00044032120503
610 => 0.00044122453675143
611 => 0.00044032075738366
612 => 0.00043414354380007
613 => 0.00043280957511483
614 => 0.00043058623553025
615 => 0.00043127534143573
616 => 0.0004270948125558
617 => 0.00043498433429358
618 => 0.00043644869905034
619 => 0.00044219003503958
620 => 0.00044278611958814
621 => 0.00045877565859538
622 => 0.00044996888920348
623 => 0.00045587723045145
624 => 0.00045534873279877
625 => 0.00041301954843021
626 => 0.00041885213656264
627 => 0.00042792581332972
628 => 0.00042383813424523
629 => 0.00041805911238935
630 => 0.00041339224238919
701 => 0.00040632145712698
702 => 0.00041627345160113
703 => 0.00042935926605803
704 => 0.00044311799743765
705 => 0.00045964821168247
706 => 0.00045595886029593
707 => 0.00044280897658052
708 => 0.00044339887075799
709 => 0.00044704536444836
710 => 0.00044232282380045
711 => 0.00044093005436844
712 => 0.00044685401931583
713 => 0.00044689481440667
714 => 0.00044146096065315
715 => 0.00043542222659085
716 => 0.00043539692407464
717 => 0.0004343223896755
718 => 0.00044960140268926
719 => 0.00045800331496437
720 => 0.00045896658066635
721 => 0.00045793847950773
722 => 0.00045833415483981
723 => 0.00045344526721042
724 => 0.0004646198145766
725 => 0.00047487468428801
726 => 0.00047212616014201
727 => 0.00046800573172144
728 => 0.00046472361201773
729 => 0.00047135299704709
730 => 0.00047105780096735
731 => 0.00047478511694723
801 => 0.00047461602436436
802 => 0.00047336266819177
803 => 0.00047212620490331
804 => 0.00047702864207859
805 => 0.00047561681890284
806 => 0.00047420280277575
807 => 0.00047136677695781
808 => 0.00047175223996787
809 => 0.00046763252299736
810 => 0.00046572655342138
811 => 0.00043706534405908
812 => 0.00042940613238544
813 => 0.00043181587629559
814 => 0.00043260922655979
815 => 0.00042927592782388
816 => 0.00043405502195699
817 => 0.00043331020519866
818 => 0.0004362078515021
819 => 0.00043439752789289
820 => 0.00043447182420527
821 => 0.00043979559993828
822 => 0.00044134111468253
823 => 0.00044055505340977
824 => 0.00044110558378061
825 => 0.00045379232381222
826 => 0.00045198867507883
827 => 0.00045103052263727
828 => 0.00045129593741172
829 => 0.00045453767149657
830 => 0.0004554451800482
831 => 0.00045160000254542
901 => 0.00045341341048444
902 => 0.00046113467133306
903 => 0.00046383667564456
904 => 0.00047246017637122
905 => 0.00046879675999203
906 => 0.00047552111930498
907 => 0.00049618950732997
908 => 0.000512700845828
909 => 0.00049751633658529
910 => 0.00052783730703064
911 => 0.00055144653180722
912 => 0.00055054037043708
913 => 0.00054642355600607
914 => 0.00051954508128164
915 => 0.00049481110810474
916 => 0.0005155021269272
917 => 0.00051555487258932
918 => 0.00051377749572252
919 => 0.00050273836065144
920 => 0.00051339335775076
921 => 0.00051423911272723
922 => 0.00051376571484481
923 => 0.00050530203586843
924 => 0.00049237956242085
925 => 0.00049490458280048
926 => 0.00049904061769133
927 => 0.00049121024077568
928 => 0.00048870796089187
929 => 0.00049336017527411
930 => 0.00050835057934105
1001 => 0.00050551673028569
1002 => 0.00050544272703437
1003 => 0.00051756713503221
1004 => 0.00050888867551677
1005 => 0.0004949364313937
1006 => 0.00049141330574513
1007 => 0.00047890858315454
1008 => 0.00048754563958816
1009 => 0.00048785647187295
1010 => 0.00048312604433283
1011 => 0.00049532027951771
1012 => 0.00049520790749372
1013 => 0.00050678451892938
1014 => 0.00052891465201766
1015 => 0.00052236968270574
1016 => 0.00051475859548662
1017 => 0.0005155861316999
1018 => 0.00052466216142612
1019 => 0.00051917458666804
1020 => 0.00052114795681177
1021 => 0.00052465917449406
1022 => 0.00052677757930041
1023 => 0.00051528132584866
1024 => 0.00051260099923969
1025 => 0.00050711799166454
1026 => 0.00050568757733337
1027 => 0.00051015337259662
1028 => 0.00050897679332363
1029 => 0.00048783034762301
1030 => 0.00048562042638958
1031 => 0.00048568820151877
1101 => 0.00048013124950129
1102 => 0.00047165556385334
1103 => 0.00049392915967927
1104 => 0.00049214027821567
1105 => 0.00049016549152829
1106 => 0.00049040739162952
1107 => 0.00050007560465535
1108 => 0.00049446755284391
1109 => 0.00050937747772625
1110 => 0.00050631244540381
1111 => 0.00050316880656772
1112 => 0.00050273425992299
1113 => 0.00050152422717376
1114 => 0.00049737457464329
1115 => 0.00049236361985729
1116 => 0.00048905495346611
1117 => 0.00045112734322545
1118 => 0.00045816648707136
1119 => 0.00046626438042792
1120 => 0.00046905974076434
1121 => 0.00046427808347585
1122 => 0.00049756338361759
1123 => 0.00050364492869861
1124 => 0.00048522353195881
1125 => 0.00048177764076947
1126 => 0.00049778929567028
1127 => 0.00048813231041989
1128 => 0.00049248085028683
1129 => 0.00048308168561863
1130 => 0.00050218006257702
1201 => 0.00050203456494313
1202 => 0.00049460486494991
1203 => 0.00050088439650779
1204 => 0.00049979317336793
1205 => 0.00049140506037412
1206 => 0.00050244598072053
1207 => 0.00050245145687928
1208 => 0.00049530053217141
1209 => 0.00048694981765132
1210 => 0.0004854569071302
1211 => 0.00048433219959685
1212 => 0.00049220424117945
1213 => 0.00049926228904718
1214 => 0.00051239556629056
1215 => 0.00051569758422852
1216 => 0.00052858558006815
1217 => 0.00052091140605078
1218 => 0.00052431326799549
1219 => 0.00052800647035922
1220 => 0.00052977712738542
1221 => 0.00052689193677993
1222 => 0.0005469122992296
1223 => 0.00054860263122841
1224 => 0.00054916938492629
1225 => 0.00054241863135156
1226 => 0.00054841488055947
1227 => 0.00054560943412999
1228 => 0.00055290842636403
1229 => 0.00055405300154454
1230 => 0.00055308358708609
1231 => 0.00055344689331427
]
'min_raw' => 0.00024818386781235
'max_raw' => 0.00055405300154454
'avg_raw' => 0.00040111843467844
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000248'
'max' => '$0.000554'
'avg' => '$0.0004011'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 3.826944885523E-5
'max_diff' => -5.2871316409401E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.00053636304579743
102 => 0.00053547715817921
103 => 0.00052339801764502
104 => 0.0005283203566972
105 => 0.00051911827977299
106 => 0.00052203635315756
107 => 0.00052332261210105
108 => 0.00052265074342352
109 => 0.00052859865836179
110 => 0.00052354171558552
111 => 0.00051019561216056
112 => 0.00049684587259866
113 => 0.00049667827749292
114 => 0.00049316352670874
115 => 0.0004906230056505
116 => 0.00049111240013614
117 => 0.00049283709013628
118 => 0.00049052276353238
119 => 0.00049101664245266
120 => 0.00049921832322733
121 => 0.00050086311181498
122 => 0.00049527347753376
123 => 0.00047283028931428
124 => 0.00046732267463074
125 => 0.00047128143884452
126 => 0.0004693894045274
127 => 0.00037883388379459
128 => 0.00040010856016174
129 => 0.00038746786988413
130 => 0.00039329328153425
131 => 0.00038039041005168
201 => 0.0003865483366206
202 => 0.00038541119243479
203 => 0.00041962024246973
204 => 0.00041908611520644
205 => 0.00041934177366199
206 => 0.00040713852946407
207 => 0.00042657862882554
208 => 0.00043615552081437
209 => 0.00043438309298796
210 => 0.00043482917488641
211 => 0.00042716400993104
212 => 0.00041941598921398
213 => 0.00041082224182691
214 => 0.0004267883622528
215 => 0.00042501320221221
216 => 0.00042908478066291
217 => 0.00043943995104096
218 => 0.00044096478921459
219 => 0.00044301418718334
220 => 0.00044227962389762
221 => 0.00045977990150755
222 => 0.00045766050241844
223 => 0.00046276764443046
224 => 0.00045226186583193
225 => 0.00044037358013003
226 => 0.00044263315458462
227 => 0.00044241553939429
228 => 0.00043964504825434
229 => 0.00043714397273021
301 => 0.00043298038665621
302 => 0.00044615458908916
303 => 0.0004456197405293
304 => 0.00045427831701997
305 => 0.00045274782952032
306 => 0.00044252685942383
307 => 0.00044289190337038
308 => 0.00044534699934509
309 => 0.00045384411454536
310 => 0.00045636663686451
311 => 0.00045519810402115
312 => 0.00045796393458658
313 => 0.00046014993429351
314 => 0.00045823846249353
315 => 0.00048530087224395
316 => 0.00047406267293095
317 => 0.00047954009308122
318 => 0.00048084642551222
319 => 0.00047750028245941
320 => 0.00047822594107117
321 => 0.00047932511613784
322 => 0.00048599909190213
323 => 0.00050351353543809
324 => 0.00051127056325531
325 => 0.00053460796416844
326 => 0.00051062645007813
327 => 0.00050920348627738
328 => 0.00051340725690383
329 => 0.00052710878175461
330 => 0.00053821258072738
331 => 0.00054189635144017
401 => 0.0005423832225523
402 => 0.00054929422130195
403 => 0.00055325547690275
404 => 0.00054845504427643
405 => 0.00054438718025186
406 => 0.00052981659623774
407 => 0.00053150318101176
408 => 0.0005431220775991
409 => 0.0005595344533783
410 => 0.00057361797921352
411 => 0.00056868641932646
412 => 0.00060631074012604
413 => 0.00061004103785175
414 => 0.00060952563132103
415 => 0.00061802380468293
416 => 0.00060115666118246
417 => 0.0005939456305505
418 => 0.00054526669862619
419 => 0.00055894349290909
420 => 0.00057882351660925
421 => 0.00057619232092628
422 => 0.00056175491632066
423 => 0.00057360702714749
424 => 0.00056968834865837
425 => 0.00056659752434788
426 => 0.00058075718970001
427 => 0.00056518805599835
428 => 0.00057866820259081
429 => 0.00056137977515172
430 => 0.00056870894627662
501 => 0.000564548554274
502 => 0.00056724083777816
503 => 0.00055150180342525
504 => 0.00055999420431862
505 => 0.00055114849162766
506 => 0.0005511442976081
507 => 0.00055094902801017
508 => 0.00056135596976319
509 => 0.00056169533976013
510 => 0.00055400459408064
511 => 0.00055289623747619
512 => 0.00055699441275603
513 => 0.00055219652281715
514 => 0.00055444142532199
515 => 0.0005522645186271
516 => 0.00055177445107741
517 => 0.00054786950946336
518 => 0.00054618715324743
519 => 0.00054684684846867
520 => 0.00054459496858236
521 => 0.00054323812949679
522 => 0.00055067911856491
523 => 0.00054670369827446
524 => 0.00055006982838984
525 => 0.00054623369828387
526 => 0.00053293600001425
527 => 0.00052528835311878
528 => 0.00050017023378475
529 => 0.00050729370126895
530 => 0.00051201656758074
531 => 0.00051045566029286
601 => 0.00051380909313815
602 => 0.00051401496667939
603 => 0.00051292473147719
604 => 0.00051166237878082
605 => 0.00051104793530071
606 => 0.00051562749359735
607 => 0.0005182860813294
608 => 0.00051249057039892
609 => 0.00051113276327573
610 => 0.00051699234480537
611 => 0.00052056668615348
612 => 0.00054695761441903
613 => 0.00054500248921154
614 => 0.00054990946980839
615 => 0.00054935701909694
616 => 0.00055450031650575
617 => 0.00056290743404948
618 => 0.00054581341341603
619 => 0.00054878034433124
620 => 0.00054805292138727
621 => 0.00055599473434898
622 => 0.00055601952782217
623 => 0.00055125801422864
624 => 0.00055383930799443
625 => 0.00055239850062846
626 => 0.00055500223427556
627 => 0.00054497637732241
628 => 0.00055718678886697
629 => 0.00056410930539119
630 => 0.00056420542453984
701 => 0.00056748664243184
702 => 0.00057082054984543
703 => 0.00057721969480367
704 => 0.00057064208116568
705 => 0.00055880959454872
706 => 0.00055966386186377
707 => 0.00055272647928958
708 => 0.000552843097944
709 => 0.00055222057842717
710 => 0.00055408880635824
711 => 0.00054538634829371
712 => 0.00054742879780723
713 => 0.00054456935652774
714 => 0.00054877412846434
715 => 0.00054425048893425
716 => 0.0005480525706019
717 => 0.00054969342300866
718 => 0.0005557482037146
719 => 0.00054335619290099
720 => 0.00051808804398667
721 => 0.00052339971523516
722 => 0.00051554333623588
723 => 0.00051627047402361
724 => 0.00051773940807794
725 => 0.00051297811220254
726 => 0.00051388641740989
727 => 0.00051385396635623
728 => 0.00051357432070734
729 => 0.00051233572376018
730 => 0.00051053951313785
731 => 0.00051769506341272
801 => 0.00051891093083946
802 => 0.00052161365351502
803 => 0.00052965512292316
804 => 0.00052885159049838
805 => 0.00053016218522144
806 => 0.00052730116429968
807 => 0.00051640318857856
808 => 0.00051699500109196
809 => 0.00050961508956671
810 => 0.00052142493258501
811 => 0.00051862820587597
812 => 0.00051682513797286
813 => 0.0005163331541902
814 => 0.0005243945568456
815 => 0.00052680665486711
816 => 0.00052530359724998
817 => 0.00052222078222607
818 => 0.00052814069842443
819 => 0.0005297246182579
820 => 0.0005300791994959
821 => 0.00054056815596807
822 => 0.00053066541564492
823 => 0.00053304910366548
824 => 0.00055164595714808
825 => 0.00053478117722972
826 => 0.00054371482728195
827 => 0.00054327757160036
828 => 0.00054784772466885
829 => 0.00054290268565598
830 => 0.00054296398534112
831 => 0.00054702197165695
901 => 0.00054132326173805
902 => 0.00053991218102099
903 => 0.00053796278311673
904 => 0.00054221922212339
905 => 0.00054477076480571
906 => 0.00056533432492357
907 => 0.00057861932257197
908 => 0.00057804258578737
909 => 0.00058331288039265
910 => 0.0005809385644026
911 => 0.00057327127175784
912 => 0.00058635840537572
913 => 0.0005822170887101
914 => 0.00058255849382431
915 => 0.00058254578670891
916 => 0.00058529940025136
917 => 0.00058334821269156
918 => 0.00057950222172589
919 => 0.00058205537001378
920 => 0.00058963730766161
921 => 0.00061317187476272
922 => 0.00062634213030405
923 => 0.00061237900884208
924 => 0.0006220105830529
925 => 0.0006162350706072
926 => 0.0006151854881892
927 => 0.00062123482856135
928 => 0.00062729475750301
929 => 0.00062690876622721
930 => 0.00062250956899636
1001 => 0.00062002457410615
1002 => 0.00063884178794919
1003 => 0.00065270599056587
1004 => 0.0006517605448942
1005 => 0.00065593343461352
1006 => 0.00066818516789207
1007 => 0.00066930531283933
1008 => 0.00066916420032222
1009 => 0.00066638780419537
1010 => 0.0006784512266967
1011 => 0.00068851474598304
1012 => 0.0006657451487098
1013 => 0.00067441551327554
1014 => 0.00067830791927079
1015 => 0.00068402312609665
1016 => 0.00069366563799175
1017 => 0.0007041399634598
1018 => 0.00070562114792612
1019 => 0.00070457017666606
1020 => 0.00069766207745491
1021 => 0.00070912320936673
1022 => 0.00071583687164407
1023 => 0.00071983470389079
1024 => 0.00072997254129262
1025 => 0.00067833195744509
1026 => 0.00064177818549425
1027 => 0.00063606978616126
1028 => 0.00064767804067661
1029 => 0.00065073904481822
1030 => 0.00064950515788691
1031 => 0.0006083605642327
1101 => 0.00063585316839074
1102 => 0.00066543289882099
1103 => 0.00066656917673406
1104 => 0.00068137740827044
1105 => 0.0006861995754686
1106 => 0.00069812214281466
1107 => 0.000697376382981
1108 => 0.00070027933840028
1109 => 0.00069961199922157
1110 => 0.00072169604463739
1111 => 0.00074605802624353
1112 => 0.00074521444828686
1113 => 0.0007417121251931
1114 => 0.00074691367222217
1115 => 0.00077205784802831
1116 => 0.00076974297524729
1117 => 0.00077199167697366
1118 => 0.00080163807731275
1119 => 0.00084018261490484
1120 => 0.00082227480738501
1121 => 0.00086112959687023
1122 => 0.00088558662724729
1123 => 0.00092788253238028
1124 => 0.0009225868767459
1125 => 0.00093905236223249
1126 => 0.00091310654792369
1127 => 0.00085352971375648
1128 => 0.00084410145169856
1129 => 0.00086297707110014
1130 => 0.00090938093954291
1201 => 0.00086151564814553
1202 => 0.00087119873425533
1203 => 0.00086841000480429
1204 => 0.00086826140526318
1205 => 0.00087393284534929
1206 => 0.00086570612570197
1207 => 0.00083218898990018
1208 => 0.00084754969572042
1209 => 0.00084161818952154
1210 => 0.00084819963787227
1211 => 0.0008837170002254
1212 => 0.00086801392770092
1213 => 0.00085147201641039
1214 => 0.00087221924411269
1215 => 0.00089863759449863
1216 => 0.00089698438160982
1217 => 0.00089377645761615
1218 => 0.00091185935720706
1219 => 0.00094172700953879
1220 => 0.00094980011594611
1221 => 0.0009557595180486
1222 => 0.00095658121891361
1223 => 0.00096504524850745
1224 => 0.00091953202817127
1225 => 0.00099176267770719
1226 => 0.0010042349155506
1227 => 0.0010018906517573
1228 => 0.0010157530192083
1229 => 0.0010116743590499
1230 => 0.0010057650204026
1231 => 0.0010277398214225
]
'min_raw' => 0.00037883388379459
'max_raw' => 0.0010277398214225
'avg_raw' => 0.00070328685260854
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000378'
'max' => '$0.001027'
'avg' => '$0.0007032'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.00013065001598225
'max_diff' => 0.00047368681987794
'year' => 2032
]
7 => [
'items' => [
101 => 0.0010025474853282
102 => 0.0009667901358692
103 => 0.00094717294675583
104 => 0.00097300644385382
105 => 0.00098878205906676
106 => 0.00099920873720493
107 => 0.0010023638437096
108 => 0.00092306508990644
109 => 0.00088032745971706
110 => 0.00090772179068053
111 => 0.00094114476511168
112 => 0.00091934636186073
113 => 0.00092020081799833
114 => 0.00088912202348208
115 => 0.00094389454881259
116 => 0.00093591465258138
117 => 0.00097731436834508
118 => 0.0009674339939246
119 => 0.0010011938550022
120 => 0.0009923037521643
121 => 0.0010292060720054
122 => 0.0010439274064804
123 => 0.0010686468182568
124 => 0.0010868305181855
125 => 0.0010975083345825
126 => 0.0010968672785375
127 => 0.0011391781067691
128 => 0.0011142288895887
129 => 0.001082886792731
130 => 0.0010823199130819
131 => 0.0010985524291654
201 => 0.0011325713297032
202 => 0.0011413919356578
203 => 0.0011463214510572
204 => 0.0011387717266253
205 => 0.0011116911395024
206 => 0.0010999978792845
207 => 0.0011099608757765
208 => 0.0010977769871968
209 => 0.0011188097970808
210 => 0.0011476923374173
211 => 0.0011417282070518
212 => 0.0011616654006714
213 => 0.0011822982986138
214 => 0.0012118042693528
215 => 0.0012195182227069
216 => 0.0012322690942659
217 => 0.0012453939295432
218 => 0.0012496092729101
219 => 0.0012576576713416
220 => 0.0012576152523091
221 => 0.0012818696427022
222 => 0.0013086229864017
223 => 0.001318721754307
224 => 0.0013419433142558
225 => 0.0013021772066239
226 => 0.0013323402560628
227 => 0.0013595480816867
228 => 0.0013271097903309
301 => 0.0013718184178124
302 => 0.0013735543525056
303 => 0.001399764905376
304 => 0.0013731954887075
305 => 0.0013574186539023
306 => 0.0014029657848345
307 => 0.0014250046067715
308 => 0.0014183663342462
309 => 0.0013678487525568
310 => 0.0013384453532126
311 => 0.0012614909856366
312 => 0.0013526467582117
313 => 0.0013970460759826
314 => 0.0013677337690499
315 => 0.0013825171916717
316 => 0.0014631707519553
317 => 0.00149387840578
318 => 0.0014874914284472
319 => 0.0014885707224778
320 => 0.0015051400150983
321 => 0.0015786173834535
322 => 0.001534588041143
323 => 0.0015682468235914
324 => 0.0015860993204363
325 => 0.0016026817144363
326 => 0.0015619605956918
327 => 0.0015089830185172
328 => 0.0014922027959786
329 => 0.0013648192378078
330 => 0.0013581883704063
331 => 0.001354466263598
401 => 0.0013309989066739
402 => 0.0013125599923816
403 => 0.0012978966831434
404 => 0.0012594157808675
405 => 0.0012724019557669
406 => 0.0012110714291277
407 => 0.0012503085266511
408 => 0.0011524235252575
409 => 0.0012339450630866
410 => 0.0011895765963757
411 => 0.001219368828486
412 => 0.0012192648861947
413 => 0.0011644079412439
414 => 0.0011327676002315
415 => 0.0011529300569851
416 => 0.0011745458111228
417 => 0.0011780528945075
418 => 0.0012060782839759
419 => 0.0012138995677728
420 => 0.0011902007127273
421 => 0.0011503950761738
422 => 0.0011596410176753
423 => 0.0011325802315221
424 => 0.0010851572446668
425 => 0.0011192172617522
426 => 0.0011308468490984
427 => 0.0011359831373934
428 => 0.0010893480763881
429 => 0.0010746943277238
430 => 0.0010668927948917
501 => 0.001144375075416
502 => 0.0011486197296495
503 => 0.0011269034784574
504 => 0.0012250629930651
505 => 0.0012028464717657
506 => 0.001227667769237
507 => 0.0011588020453954
508 => 0.0011614328087861
509 => 0.0011288306714973
510 => 0.0011470856899035
511 => 0.0011341836312807
512 => 0.0011456108648158
513 => 0.0011524603014806
514 => 0.0011850570890795
515 => 0.00123431726604
516 => 0.0011801882160193
517 => 0.0011566034137829
518 => 0.0011712352924444
519 => 0.0012102019134862
520 => 0.0012692383390293
521 => 0.001234287586889
522 => 0.0012497981371866
523 => 0.0012531865024103
524 => 0.0012274151117292
525 => 0.0012701885669636
526 => 0.0012931112091147
527 => 0.0013166250967892
528 => 0.0013370415466128
529 => 0.0013072331329705
530 => 0.0013391324084361
531 => 0.001313427223391
601 => 0.0012903670150524
602 => 0.0012904019878696
603 => 0.0012759359823229
604 => 0.0012479062737422
605 => 0.001242737165427
606 => 0.0012696275196689
607 => 0.0012911910372449
608 => 0.0012929671118348
609 => 0.0013049057831384
610 => 0.0013119709658378
611 => 0.0013812193609419
612 => 0.0014090716383055
613 => 0.0014431288758491
614 => 0.0014563960892331
615 => 0.0014963256449596
616 => 0.0014640792857905
617 => 0.0014571025831451
618 => 0.0013602465418107
619 => 0.0013761067131533
620 => 0.0014015003777516
621 => 0.0013606652739869
622 => 0.0013865657483803
623 => 0.0013916790506727
624 => 0.0013592777127867
625 => 0.0013765846673308
626 => 0.0013306225272162
627 => 0.0012353191150945
628 => 0.0012702946669053
629 => 0.0012960484456814
630 => 0.0012592946279498
701 => 0.0013251744236646
702 => 0.001286688807043
703 => 0.0012744907142094
704 => 0.0012269016051313
705 => 0.0012493618327434
706 => 0.0012797396121882
707 => 0.0012609696762872
708 => 0.0012999201116018
709 => 0.0013550843157089
710 => 0.0013943976126408
711 => 0.0013974155994241
712 => 0.0013721397832832
713 => 0.001412644439957
714 => 0.001412939472161
715 => 0.0013672500539665
716 => 0.0013392655397221
717 => 0.0013329073992059
718 => 0.0013487912808023
719 => 0.0013680772453867
720 => 0.001398485836235
721 => 0.001416861110821
722 => 0.0014647740814488
723 => 0.0014777379575282
724 => 0.0014919813269377
725 => 0.0015110148609614
726 => 0.0015338694986547
727 => 0.0014838648524969
728 => 0.0014858516303091
729 => 0.0014392879961684
730 => 0.0013895280751886
731 => 0.0014272896525506
801 => 0.0014766578917393
802 => 0.0014653327631224
803 => 0.0014640584548016
804 => 0.0014662014879335
805 => 0.0014576627108004
806 => 0.0014190421382894
807 => 0.001399647128552
808 => 0.001424671639308
809 => 0.001437971053062
810 => 0.0014585972839636
811 => 0.0014560546656381
812 => 0.0015091856213452
813 => 0.0015298307041363
814 => 0.0015245488085054
815 => 0.0015255208044174
816 => 0.001562897740673
817 => 0.0016044685809425
818 => 0.0016434051586103
819 => 0.001683013117779
820 => 0.0016352641770762
821 => 0.0016110202097326
822 => 0.00163603379557
823 => 0.001622761234833
824 => 0.0016990293057253
825 => 0.0017043099414774
826 => 0.0017805724973201
827 => 0.0018529547439911
828 => 0.0018074927517197
829 => 0.0018503613627785
830 => 0.0018967272607677
831 => 0.0019861746005848
901 => 0.0019560518833298
902 => 0.0019329783539956
903 => 0.0019111739802653
904 => 0.0019565454206512
905 => 0.0020149150538813
906 => 0.0020274873138217
907 => 0.002047859177898
908 => 0.0020264406537748
909 => 0.0020522369069082
910 => 0.0021433090159171
911 => 0.0021187005281472
912 => 0.002083752519502
913 => 0.0021556452029062
914 => 0.0021816628855545
915 => 0.0023642686079461
916 => 0.0025948158755317
917 => 0.0024993677928963
918 => 0.0024401200879141
919 => 0.0024540447039593
920 => 0.002538232761564
921 => 0.0025652712936713
922 => 0.0024917712426628
923 => 0.002517732703244
924 => 0.002660782903521
925 => 0.0027375247463697
926 => 0.0026332990159766
927 => 0.0023457443594745
928 => 0.002080605833698
929 => 0.0021509325100773
930 => 0.0021429596474668
1001 => 0.0022966492417884
1002 => 0.0021181136238524
1003 => 0.0021211197057784
1004 => 0.0022779874381505
1005 => 0.0022361378165474
1006 => 0.0021683467892449
1007 => 0.0020811007832193
1008 => 0.0019198184718023
1009 => 0.0017769662308902
1010 => 0.0020571323722251
1011 => 0.0020450510987616
1012 => 0.0020275556244422
1013 => 0.0020664899093321
1014 => 0.0022555437450679
1015 => 0.0022511854422467
1016 => 0.0022234601433234
1017 => 0.0022444895381971
1018 => 0.0021646602346479
1019 => 0.002185234063852
1020 => 0.0020805638344009
1021 => 0.0021278791495277
1022 => 0.0021682013401468
1023 => 0.0021762966168938
1024 => 0.0021945356887599
1025 => 0.0020386848166237
1026 => 0.0021086572826717
1027 => 0.0021497595509414
1028 => 0.0019640580075854
1029 => 0.0021460888285053
1030 => 0.0020359717996767
1031 => 0.0019985964261901
1101 => 0.0020489174427588
1102 => 0.0020293072936632
1103 => 0.0020124476390173
1104 => 0.0020030396620393
1105 => 0.0020399898628795
1106 => 0.0020382660918453
1107 => 0.0019778083915458
1108 => 0.0018989437860763
1109 => 0.0019254133363143
1110 => 0.0019157967005594
1111 => 0.0018809447720133
1112 => 0.0019044307638155
1113 => 0.0018010103419069
1114 => 0.001623080881339
1115 => 0.001740626533117
1116 => 0.0017361011533886
1117 => 0.0017338192517199
1118 => 0.0018221515603078
1119 => 0.0018136604470102
1120 => 0.0017982489932297
1121 => 0.0018806617285788
1122 => 0.0018505799715687
1123 => 0.0019432848585205
1124 => 0.0020043462928431
1125 => 0.0019888591379684
1126 => 0.0020462877120844
1127 => 0.0019260231412908
1128 => 0.0019659702075313
1129 => 0.0019742032425193
1130 => 0.0018796447682172
1201 => 0.001815049698157
1202 => 0.0018107419434217
1203 => 0.0016987429936864
1204 => 0.0017585719286111
1205 => 0.0018112189154553
1206 => 0.0017860050943281
1207 => 0.0017780231518008
1208 => 0.001818801165101
1209 => 0.0018219699659745
1210 => 0.0017497209702444
1211 => 0.0017647438242848
1212 => 0.001827391622975
1213 => 0.0017631652604955
1214 => 0.0016383839295145
1215 => 0.0016074364341944
1216 => 0.0016033074678431
1217 => 0.0015193754060581
1218 => 0.0016095044938129
1219 => 0.0015701607316985
1220 => 0.0016944472048071
1221 => 0.0016234554379292
1222 => 0.0016203951247485
1223 => 0.0016157690125256
1224 => 0.0015435252197574
1225 => 0.0015593420190411
1226 => 0.0016119194688267
1227 => 0.0016306796952375
1228 => 0.0016287228499248
1229 => 0.0016116618106392
1230 => 0.0016194722670575
1231 => 0.0015943120655907
]
'min_raw' => 0.00088032745971706
'max_raw' => 0.0027375247463697
'avg_raw' => 0.0018089261030434
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.00088'
'max' => '$0.002737'
'avg' => '$0.0018089'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00050149357592247
'max_diff' => 0.0017097849249472
'year' => 2033
]
8 => [
'items' => [
101 => 0.0015854274747884
102 => 0.0015573852623173
103 => 0.0015161709568437
104 => 0.0015219020588018
105 => 0.0014402457353489
106 => 0.0013957550365027
107 => 0.00138344059744
108 => 0.0013669732148696
109 => 0.0013853006321194
110 => 0.0014400144132441
111 => 0.0013740179850315
112 => 0.0012608717379721
113 => 0.0012676720202122
114 => 0.0012829502353837
115 => 0.001254479382487
116 => 0.0012275341095978
117 => 0.0012509608382359
118 => 0.0012030192817762
119 => 0.0012887437434384
120 => 0.0012864251369905
121 => 0.001318377915133
122 => 0.0013383586430425
123 => 0.0012923095340485
124 => 0.0012807283076666
125 => 0.0012873255005511
126 => 0.0011782885975981
127 => 0.0013094672739294
128 => 0.0013106017125696
129 => 0.0013008879601943
130 => 0.0013707365556535
131 => 0.0015181388783955
201 => 0.0014626801953353
202 => 0.0014412049170068
203 => 0.001400380397206
204 => 0.0014547766459204
205 => 0.0014505998627328
206 => 0.0014317108651605
207 => 0.0014202867404915
208 => 0.0014413360404769
209 => 0.001417678499281
210 => 0.0014134289548165
211 => 0.0013876813389114
212 => 0.0013784906114751
213 => 0.0013716861627747
214 => 0.0013641951333469
215 => 0.0013807184776164
216 => 0.0013432744056747
217 => 0.0012981205256006
218 => 0.0012943664690442
219 => 0.0013047317492565
220 => 0.0013001458843669
221 => 0.0012943445136874
222 => 0.001283268117151
223 => 0.0012799819869084
224 => 0.0012906603159931
225 => 0.0012786051050417
226 => 0.0012963932254817
227 => 0.0012915558409837
228 => 0.0012645346044065
301 => 0.0012308561390882
302 => 0.0012305563301039
303 => 0.0012233003599949
304 => 0.0012140587911186
305 => 0.0012114879980756
306 => 0.0012489879044924
307 => 0.0013266115884975
308 => 0.00131137220195
309 => 0.0013223842205257
310 => 0.001376552452923
311 => 0.0013937709051065
312 => 0.001381549655588
313 => 0.0013648204554733
314 => 0.0013655564553762
315 => 0.0014227251964415
316 => 0.0014262907406971
317 => 0.0014352997207429
318 => 0.0014468788060393
319 => 0.0013835216238834
320 => 0.0013625723377943
321 => 0.0013526454038232
322 => 0.001322074289399
323 => 0.0013550426153362
324 => 0.001335833383657
325 => 0.0013384253652914
326 => 0.0013367373338517
327 => 0.0013376591131619
328 => 0.0012887197817043
329 => 0.0013065507019119
330 => 0.0012769033387029
331 => 0.0012372088474387
401 => 0.0012370757775853
402 => 0.0012467909480871
403 => 0.0012410119845179
404 => 0.0012254609421442
405 => 0.0012276698943146
406 => 0.0012083171489337
407 => 0.0012300196679966
408 => 0.0012306420185879
409 => 0.0012222853666045
410 => 0.0012557210915914
411 => 0.0012694197353995
412 => 0.0012639192080472
413 => 0.0012690338037371
414 => 0.0013120054672627
415 => 0.0013190117234025
416 => 0.0013221234395725
417 => 0.0013179541521281
418 => 0.0012698192468622
419 => 0.0012719542345962
420 => 0.0012562891111909
421 => 0.0012430537326636
422 => 0.0012435830783942
423 => 0.0012503877834361
424 => 0.0012801043294445
425 => 0.0013426410486331
426 => 0.0013450142714126
427 => 0.0013478906866531
428 => 0.0013361908602995
429 => 0.001332662080719
430 => 0.001337317451841
501 => 0.0013608029555437
502 => 0.0014212140473193
503 => 0.0013998607327646
504 => 0.0013825001556476
505 => 0.0013977300621572
506 => 0.001395385537426
507 => 0.0013755953892483
508 => 0.0013750399457021
509 => 0.001337056324056
510 => 0.0013230146439787
511 => 0.0013112803651045
512 => 0.0012984668389051
513 => 0.0012908705510607
514 => 0.0013025419016407
515 => 0.0013052112776097
516 => 0.0012796916655863
517 => 0.0012762134367657
518 => 0.0012970533028231
519 => 0.0012878824547598
520 => 0.001297314899419
521 => 0.00129950330749
522 => 0.0012991509233872
523 => 0.0012895755047439
524 => 0.0012956785910441
525 => 0.0012812429725266
526 => 0.0012655464055486
527 => 0.0012555329737473
528 => 0.0012467949264117
529 => 0.0012516433029318
530 => 0.0012343597259163
531 => 0.0012288303617794
601 => 0.0012936110027294
602 => 0.0013414651587084
603 => 0.0013407693403281
604 => 0.0013365337248882
605 => 0.0013302404595078
606 => 0.0013603425639828
607 => 0.0013498555926943
608 => 0.0013574857405225
609 => 0.001359427933381
610 => 0.0013653063662128
611 => 0.0013674074006818
612 => 0.0013610566152543
613 => 0.0013397426036762
614 => 0.0012866301132991
615 => 0.0012619061056541
616 => 0.0012537467713203
617 => 0.0012540433476266
618 => 0.0012458624491253
619 => 0.001248272090376
620 => 0.001245024474235
621 => 0.0012388742749467
622 => 0.0012512635454566
623 => 0.0012526912934688
624 => 0.001249799489691
625 => 0.0012504806141655
626 => 0.0012265377139911
627 => 0.0012283580406901
628 => 0.0012182222303141
629 => 0.0012163218880576
630 => 0.001190699442053
701 => 0.0011453055649228
702 => 0.0011704581793432
703 => 0.0011400773581162
704 => 0.0011285716807729
705 => 0.0011830377678159
706 => 0.0011775708833308
707 => 0.0011682139534901
708 => 0.0011543731041005
709 => 0.0011492393984268
710 => 0.001118048627887
711 => 0.0011162057107672
712 => 0.0011316646988684
713 => 0.001124530907771
714 => 0.0011145123632923
715 => 0.001078226210754
716 => 0.0010374285613688
717 => 0.0010386599859589
718 => 0.0010516369591611
719 => 0.0010893692589297
720 => 0.0010746265966347
721 => 0.0010639306259871
722 => 0.0010619275922045
723 => 0.001086999753629
724 => 0.0011224821148248
725 => 0.0011391296448248
726 => 0.0011226324481878
727 => 0.0011036813569634
728 => 0.0011048348220753
729 => 0.0011125083087035
730 => 0.0011133146836509
731 => 0.0011009794714674
801 => 0.0011044517614431
802 => 0.0010991770354571
803 => 0.0010668060518176
804 => 0.0010662205633731
805 => 0.0010582762019353
806 => 0.0010580356498283
807 => 0.0010445203092088
808 => 0.001042629419629
809 => 0.0010157938905065
810 => 0.0010334571170404
811 => 0.0010216095520424
812 => 0.0010037524770325
813 => 0.0010006739105701
814 => 0.0010005813651447
815 => 0.001018916588411
816 => 0.0010332428592812
817 => 0.001021815645508
818 => 0.001019213890439
819 => 0.0010469938278289
820 => 0.0010434585775763
821 => 0.0010403970736575
822 => 0.0011193050585537
823 => 0.0010568432312415
824 => 0.0010296063093369
825 => 0.00099589544632884
826 => 0.0010068718733092
827 => 0.0010091847677512
828 => 0.00092811621905656
829 => 0.00089522671894758
830 => 0.00088394028192484
831 => 0.00087744477785146
901 => 0.00088040486062311
902 => 0.00085080045297143
903 => 0.00087069510452507
904 => 0.000845060189897
905 => 0.00084076241303638
906 => 0.0008866008159479
907 => 0.00089297896192898
908 => 0.00086576780963908
909 => 0.00088324177449459
910 => 0.0008769054719317
911 => 0.00084549962693163
912 => 0.00084430015465839
913 => 0.00082854180560618
914 => 0.00080388304075713
915 => 0.00079261332353813
916 => 0.0007867439569623
917 => 0.00078916577200316
918 => 0.00078794122820973
919 => 0.00077995025164431
920 => 0.00078839926163256
921 => 0.00076681553248455
922 => 0.00075822071762589
923 => 0.00075433863915242
924 => 0.00073518183722046
925 => 0.00076566882816269
926 => 0.0007716751494433
927 => 0.00077769330503229
928 => 0.00083007724066505
929 => 0.0008274602872763
930 => 0.00085111627140259
1001 => 0.00085019704336
1002 => 0.00084344997348565
1003 => 0.00081498519552488
1004 => 0.00082633074868416
1005 => 0.00079141089955033
1006 => 0.00081757522484033
1007 => 0.00080563491942632
1008 => 0.00081353819556899
1009 => 0.00079932739245479
1010 => 0.00080719223764787
1011 => 0.00077309947103877
1012 => 0.00074126412527736
1013 => 0.00075407559774343
1014 => 0.00076800313348363
1015 => 0.00079820157963851
1016 => 0.00078021563424044
1017 => 0.00078668406032948
1018 => 0.00076501591573264
1019 => 0.00072030834422987
1020 => 0.00072056138422935
1021 => 0.00071368409836103
1022 => 0.00070774111927063
1023 => 0.00078228153642963
1024 => 0.00077301125724629
1025 => 0.00075824028063179
1026 => 0.00077801181980558
1027 => 0.00078323972857965
1028 => 0.00078338855979288
1029 => 0.00079781336439678
1030 => 0.00080551188519968
1031 => 0.00080686878285849
1101 => 0.00082956652457127
1102 => 0.00083717450820294
1103 => 0.00086851071605965
1104 => 0.00080485871949612
1105 => 0.00080354784851426
1106 => 0.00077829004590812
1107 => 0.00076227114818525
1108 => 0.00077938687353997
1109 => 0.00079454906967475
1110 => 0.00077876117760649
1111 => 0.00078082274301001
1112 => 0.00075962878782654
1113 => 0.00076720462953635
1114 => 0.00077372996499293
1115 => 0.00077012705829529
1116 => 0.00076473333258628
1117 => 0.00079330594249911
1118 => 0.00079169376387086
1119 => 0.00081830123510314
1120 => 0.00083904366164723
1121 => 0.00087621779816649
1122 => 0.00083742464877708
1123 => 0.00083601087222452
1124 => 0.00084983076480263
1125 => 0.00083717239244939
1126 => 0.00084517204682447
1127 => 0.00087492893017249
1128 => 0.00087555764622735
1129 => 0.00086502584225355
1130 => 0.00086438498102461
1201 => 0.00086640772918309
1202 => 0.0008782550283267
1203 => 0.00087411521797519
1204 => 0.00087890591132113
1205 => 0.00088489674670792
1206 => 0.00090967738192928
1207 => 0.00091565190918671
1208 => 0.00090113690538839
1209 => 0.00090244744771377
1210 => 0.00089701843784744
1211 => 0.00089177408234185
1212 => 0.00090356262764179
1213 => 0.00092510642588186
1214 => 0.00092497240303114
1215 => 0.00092997014547124
1216 => 0.00093308369760789
1217 => 0.00091971805257793
1218 => 0.00091101750913181
1219 => 0.00091435385111901
1220 => 0.00091968873461263
1221 => 0.0009126238203038
1222 => 0.00086901589640302
1223 => 0.00088224375482955
1224 => 0.00088004199237815
1225 => 0.00087690641490388
1226 => 0.00089020712883976
1227 => 0.00088892424253334
1228 => 0.00085049681698145
1229 => 0.00085295681608781
1230 => 0.00085064641767488
1231 => 0.00085811178761009
]
'min_raw' => 0.00070774111927063
'max_raw' => 0.0015854274747884
'avg_raw' => 0.0011465842970295
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0007077'
'max' => '$0.001585'
'avg' => '$0.001146'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00017258634044643
'max_diff' => -0.0011520972715813
'year' => 2034
]
9 => [
'items' => [
101 => 0.00083676923797363
102 => 0.00084333406249754
103 => 0.00084745145889753
104 => 0.00084987663700845
105 => 0.0008586380433053
106 => 0.00085760999340014
107 => 0.00085857413827975
108 => 0.00087156499089247
109 => 0.00093726826548533
110 => 0.00094084434975531
111 => 0.00092323440291853
112 => 0.00093026922933898
113 => 0.00091676390095913
114 => 0.00092583011837836
115 => 0.00093203299407964
116 => 0.00090400339152996
117 => 0.00090234366037758
118 => 0.00088878259070339
119 => 0.00089606954140805
120 => 0.00088447547888664
121 => 0.00088732025628631
122 => 0.00087936601067361
123 => 0.00089368206910196
124 => 0.00090968964691543
125 => 0.00091373379322951
126 => 0.00090309538539161
127 => 0.00089539247701173
128 => 0.00088186870739242
129 => 0.00090435903766619
130 => 0.00091093589561864
131 => 0.00090432449223122
201 => 0.00090279248560434
202 => 0.00089988933581468
203 => 0.00090340840255629
204 => 0.00091090007663778
205 => 0.00090736714149045
206 => 0.00090970070739757
207 => 0.00090080756052235
208 => 0.00091972247716258
209 => 0.00094976391690984
210 => 0.0009498605050509
211 => 0.00094632755085973
212 => 0.00094488194212327
213 => 0.00094850696752099
214 => 0.00095047339509293
215 => 0.0009621960625132
216 => 0.00097477495170683
217 => 0.0010334751389742
218 => 0.0010169923612821
219 => 0.0010690746595154
220 => 0.001110264995378
221 => 0.0011226161760681
222 => 0.0011112536710011
223 => 0.0010723831549577
224 => 0.001070475981999
225 => 0.0011285649436765
226 => 0.0011121521513596
227 => 0.0011101999019386
228 => 0.0010894312664764
301 => 0.0011017081022801
302 => 0.0010990229781995
303 => 0.0010947843784775
304 => 0.0011182077259792
305 => 0.0011620541414858
306 => 0.00115522026644
307 => 0.0011501190957327
308 => 0.0011277672506216
309 => 0.0011412280538438
310 => 0.0011364349196411
311 => 0.0011570292659741
312 => 0.001144829631427
313 => 0.0011120278083154
314 => 0.0011172516067621
315 => 0.0011164620401357
316 => 0.0011327112653578
317 => 0.0011278336512767
318 => 0.0011155096077035
319 => 0.0011619042792043
320 => 0.0011588916672977
321 => 0.0011631628622023
322 => 0.0011650431742903
323 => 0.001193282793267
324 => 0.0012048516615948
325 => 0.0012074779972467
326 => 0.0012184675273897
327 => 0.0012072045677255
328 => 0.0012522644367363
329 => 0.0012822266203122
330 => 0.0013170292383755
331 => 0.0013678852174279
401 => 0.0013870075359957
402 => 0.0013835532603036
403 => 0.0014221116832098
404 => 0.0014914003120667
405 => 0.0013975584732333
406 => 0.0014963741573907
407 => 0.0014650902526684
408 => 0.0013909166773453
409 => 0.0013861407735435
410 => 0.0014363719799252
411 => 0.0015477799611055
412 => 0.0015198735253987
413 => 0.0015478256060371
414 => 0.0015152180192102
415 => 0.0015135987776859
416 => 0.0015462419283264
417 => 0.0016225144290833
418 => 0.0015862802230056
419 => 0.0015343296036014
420 => 0.0015726891325283
421 => 0.001539458558565
422 => 0.0014645807747737
423 => 0.0015198521858732
424 => 0.0014828937673102
425 => 0.0014936801986644
426 => 0.0015713612973341
427 => 0.0015620145020235
428 => 0.0015741101206454
429 => 0.0015527616703752
430 => 0.0015328188514812
501 => 0.0014955940990425
502 => 0.0014845736850035
503 => 0.0014876193309709
504 => 0.0014845721757326
505 => 0.0014637452688562
506 => 0.0014592477002992
507 => 0.0014517515556612
508 => 0.0014540749243334
509 => 0.0014399799793395
510 => 0.0014665800527072
511 => 0.0014715172607233
512 => 0.0014908745758583
513 => 0.0014928843165311
514 => 0.0015467941636479
515 => 0.0015171015257741
516 => 0.0015370219107989
517 => 0.0015352400440644
518 => 0.0013925242436365
519 => 0.0014121892217433
520 => 0.0014427817564673
521 => 0.0014289998610413
522 => 0.0014095154853758
523 => 0.0013937808073398
524 => 0.0013699411611618
525 => 0.0014034950053575
526 => 0.0014476147424213
527 => 0.0014940032658716
528 => 0.0015497360373008
529 => 0.0015372971315188
530 => 0.0014929613804767
531 => 0.0014949502498811
601 => 0.0015072446579483
602 => 0.0014913222824366
603 => 0.0014866264630565
604 => 0.0015065995244746
605 => 0.0015067370679716
606 => 0.0014884164506621
607 => 0.0014680564371601
608 => 0.0014679711279601
609 => 0.0014643482602119
610 => 0.0015158625193344
611 => 0.0015441901531727
612 => 0.00154743787074
613 => 0.0015439715559039
614 => 0.0015453056029112
615 => 0.0015288223769375
616 => 0.0015664981435646
617 => 0.0016010731527687
618 => 0.0015918063117147
619 => 0.0015779139996156
620 => 0.0015668481038843
621 => 0.0015891995383596
622 => 0.0015882042641668
623 => 0.0016007711702259
624 => 0.0016002010627771
625 => 0.0015959752849347
626 => 0.0015918064626305
627 => 0.0016083353718442
628 => 0.0016035753114368
629 => 0.0015988078573409
630 => 0.0015892459982907
701 => 0.0015905456137413
702 => 0.0015766557003457
703 => 0.0015702295908498
704 => 0.001473596322423
705 => 0.0014477727555163
706 => 0.0014558973753523
707 => 0.001458572211158
708 => 0.0014473337617464
709 => 0.0014634468112819
710 => 0.0014609356095797
711 => 0.001470705226399
712 => 0.0014646015939577
713 => 0.0014648520891622
714 => 0.0014828015707401
715 => 0.0014880123816048
716 => 0.0014853621211426
717 => 0.0014872182727247
718 => 0.0015299925025012
719 => 0.0015239113748698
720 => 0.0015206808970171
721 => 0.0015215757614598
722 => 0.0015325054942575
723 => 0.0015355652226996
724 => 0.0015226009382872
725 => 0.0015287149697617
726 => 0.001554747739794
727 => 0.0015638577359782
728 => 0.0015929324707517
729 => 0.0015805810066577
730 => 0.0016032526535611
731 => 0.0016729375668081
801 => 0.0017286066973391
802 => 0.0016774110642787
803 => 0.0017796403330777
804 => 0.0018592404827554
805 => 0.0018561852964298
806 => 0.0018423051691489
807 => 0.0017516825150203
808 => 0.0016682901975835
809 => 0.0017380514121442
810 => 0.0017382292478266
811 => 0.0017322366976277
812 => 0.0016950174830078
813 => 0.0017309415496363
814 => 0.0017337930715882
815 => 0.001732196977576
816 => 0.001703661092992
817 => 0.0016600920715452
818 => 0.0016686053540464
819 => 0.0016825502844496
820 => 0.001656149621979
821 => 0.0016477130106472
822 => 0.0016633982762441
823 => 0.0017139394701524
824 => 0.0017043849502092
825 => 0.0017041354430807
826 => 0.0017450137311445
827 => 0.0017157536989775
828 => 0.001668712733802
829 => 0.0016568342697011
830 => 0.001614673724435
831 => 0.001643794163221
901 => 0.0016448421559708
902 => 0.0016288931892514
903 => 0.0016700069045515
904 => 0.0016696280344271
905 => 0.0017086593881356
906 => 0.0017832726769193
907 => 0.001761205855929
908 => 0.0017355445439806
909 => 0.0017383346401004
910 => 0.0017689351079905
911 => 0.0017504333665634
912 => 0.0017570867217793
913 => 0.0017689250373405
914 => 0.0017760673870474
915 => 0.0017373069658921
916 => 0.0017282700575955
917 => 0.0017097837147445
918 => 0.0017049609729586
919 => 0.0017200177134806
920 => 0.0017160507943155
921 => 0.0016447540762382
922 => 0.0016373031725079
923 => 0.0016375316810879
924 => 0.001618796029387
925 => 0.0015902196634714
926 => 0.0016653166468913
927 => 0.0016592853081411
928 => 0.0016526271769494
929 => 0.0016534427600296
930 => 0.0016860398152593
1001 => 0.0016671318770353
1002 => 0.0017174017297539
1003 => 0.001707067759285
1004 => 0.0016964687614673
1005 => 0.0016950036571155
1006 => 0.0016909239472197
1007 => 0.0016769331039937
1008 => 0.001660038320079
1009 => 0.0016488829203374
1010 => 0.0015210073343899
1011 => 0.0015447402993237
1012 => 0.0015720429121522
1013 => 0.0015814676646923
1014 => 0.0015653459732995
1015 => 0.0016775696866328
1016 => 0.0016980740404734
1017 => 0.0016359650152243
1018 => 0.001624346952495
1019 => 0.0016783313648911
1020 => 0.0016457721648902
1021 => 0.001660433570657
1022 => 0.0016287436307494
1023 => 0.0016931351420708
1024 => 0.0016926445866398
1025 => 0.0016675948343875
1026 => 0.0016887667134578
1027 => 0.001685087578455
1028 => 0.0016568064698571
1029 => 0.0016940317036574
1030 => 0.001694050166909
1031 => 0.0016699403249948
1101 => 0.001641785307962
1102 => 0.0016367518559084
1103 => 0.0016329598259351
1104 => 0.0016595009637392
1105 => 0.0016832976649025
1106 => 0.0017275774260647
1107 => 0.001738710410082
1108 => 0.0017821631878665
1109 => 0.0017562891743732
1110 => 0.0017677587894302
1111 => 0.0017802106790507
1112 => 0.0017861805728378
1113 => 0.0017764529512738
1114 => 0.00184395300105
1115 => 0.0018496520733991
1116 => 0.001851562923061
1117 => 0.0018288022860613
1118 => 0.0018490190589105
1119 => 0.0018395603004035
1120 => 0.0018641693623199
1121 => 0.0018680283774527
1122 => 0.0018647599289237
1123 => 0.0018659848412372
1124 => 0.001808385456578
1125 => 0.0018053986246225
1126 => 0.0017646729589728
1127 => 0.001781268968754
1128 => 0.0017502435239355
1129 => 0.001760082012085
1130 => 0.0017644187239167
1201 => 0.001762153471762
1202 => 0.0017822072822466
1203 => 0.0017651574466119
1204 => 0.0017201601271195
1205 => 0.0016751505481374
1206 => 0.0016745854895373
1207 => 0.0016627352618764
1208 => 0.001654169717755
1209 => 0.0016558197454318
1210 => 0.0016616346581813
1211 => 0.0016538317444551
1212 => 0.0016554968917164
1213 => 0.0016831494310712
1214 => 0.00168869495063
1215 => 0.001669849108395
1216 => 0.0015941803323797
1217 => 0.0015756110249448
1218 => 0.0015889582748836
1219 => 0.0015825791490858
1220 => 0.0012772648885506
1221 => 0.0013489939452729
1222 => 0.0013063749754571
1223 => 0.0013260157575528
1224 => 0.0012825128254996
1225 => 0.0013032747048594
1226 => 0.0012994407438441
1227 => 0.0014147789444364
1228 => 0.0014129780970767
1229 => 0.0014138400674091
1230 => 0.0013726959775925
1231 => 0.0014382396298541
]
'min_raw' => 0.00083676923797363
'max_raw' => 0.0018680283774527
'avg_raw' => 0.0013523988077132
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.000836'
'max' => '$0.001868'
'avg' => '$0.001352'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.000129028118703
'max_diff' => 0.00028260090266426
'year' => 2035
]
10 => [
'items' => [
101 => 0.0014705287898317
102 => 0.001464552925668
103 => 0.001466056921933
104 => 0.0014402132831213
105 => 0.0014140902903242
106 => 0.0013851158710124
107 => 0.0014389467607472
108 => 0.0014329616847326
109 => 0.0014466892957477
110 => 0.0014816024756522
111 => 0.0014867435740154
112 => 0.0014936532623514
113 => 0.0014911766309481
114 => 0.0015501800387403
115 => 0.0015430343367397
116 => 0.0015602534226025
117 => 0.0015248324565675
118 => 0.0014847502713099
119 => 0.001492368584342
120 => 0.0014916348795344
121 => 0.0014822939752266
122 => 0.0014738614244775
123 => 0.0014598236033367
124 => 0.0015042413466328
125 => 0.0015024380673713
126 => 0.0015316310625321
127 => 0.0015264709170718
128 => 0.0014920102027861
129 => 0.0014932409739385
130 => 0.0015015185014265
131 => 0.0015301671185739
201 => 0.0015386719786898
202 => 0.001534732188624
203 => 0.0015440573794795
204 => 0.001551427630113
205 => 0.0015449829694847
206 => 0.0016362257733954
207 => 0.0015983353997856
208 => 0.0016168029042435
209 => 0.0016212072952398
210 => 0.001609925540317
211 => 0.0016123721489904
212 => 0.0016160780944697
213 => 0.0016385798697211
214 => 0.0016976310389219
215 => 0.0017237843997861
216 => 0.00180246807633
217 => 0.0017216127272387
218 => 0.0017168151054363
219 => 0.0017309884116013
220 => 0.0017771840592456
221 => 0.0018146212927248
222 => 0.0018270413828756
223 => 0.0018286829028224
224 => 0.0018519838176174
225 => 0.0018653394674415
226 => 0.0018491544736864
227 => 0.0018354393861183
228 => 0.001786313644829
229 => 0.0017920000831482
301 => 0.0018311740041979
302 => 0.001886509475013
303 => 0.0019339930656468
304 => 0.001917365967177
305 => 0.002044218991599
306 => 0.0020567959508223
307 => 0.0020550582217194
308 => 0.0020837104065326
309 => 0.0020268416545944
310 => 0.0020025291613607
311 => 0.0018384047437234
312 => 0.0018845170105315
313 => 0.0019515438984155
314 => 0.0019426726384661
315 => 0.0018939959208509
316 => 0.0019339561399915
317 => 0.001920744041872
318 => 0.0019103231119148
319 => 0.0019580634122458
320 => 0.0019055709909684
321 => 0.0019510202463587
322 => 0.0018927311062083
323 => 0.0019174419183623
324 => 0.0019034148662562
325 => 0.0019124920880597
326 => 0.0018594268348745
327 => 0.001888059557407
328 => 0.0018582356194815
329 => 0.0018582214790518
330 => 0.0018575631139691
331 => 0.0018926508446788
401 => 0.0018937950543176
402 => 0.0018678651683084
403 => 0.0018641282666336
404 => 0.001877945550715
405 => 0.0018617691298081
406 => 0.0018693379753373
407 => 0.0018619983824287
408 => 0.0018603460854695
409 => 0.0018471803021834
410 => 0.001841508120743
411 => 0.0018437323292399
412 => 0.0018361399589819
413 => 0.0018315652812735
414 => 0.0018566530954299
415 => 0.0018432496883656
416 => 0.0018545988310654
417 => 0.001841665050583
418 => 0.0017968309324514
419 => 0.0017710463570016
420 => 0.0016863588639758
421 => 0.0017103761319434
422 => 0.0017262996054536
423 => 0.0017210368975535
424 => 0.0017323432305206
425 => 0.0017330373475385
426 => 0.0017293615434365
427 => 0.001725105433186
428 => 0.0017230337940938
429 => 0.0017384740946255
430 => 0.0017474377087807
501 => 0.001727897739049
502 => 0.001723319797534
503 => 0.0017430757857642
504 => 0.0017551269271719
505 => 0.0018441057843749
506 => 0.0018375139432354
507 => 0.0018540581709121
508 => 0.0018521955447676
509 => 0.0018695365310749
510 => 0.0018978817148398
511 => 0.0018402480308078
512 => 0.0018502512455329
513 => 0.0018477986882902
514 => 0.0018745750651703
515 => 0.0018746586580962
516 => 0.0018586048825774
517 => 0.0018673078947289
518 => 0.0018624501121006
519 => 0.0018712287818786
520 => 0.0018374259051781
521 => 0.0018785941602043
522 => 0.0019019339079804
523 => 0.0019022579804009
524 => 0.0019133208356111
525 => 0.001924561337222
526 => 0.0019461365012227
527 => 0.0019239596176079
528 => 0.001884065562861
529 => 0.0018869457847567
530 => 0.0018635559150553
531 => 0.0018639491029907
601 => 0.0018618502349768
602 => 0.0018681490958819
603 => 0.0018388081509311
604 => 0.0018456944120652
605 => 0.0018360536061516
606 => 0.0018502302883036
607 => 0.0018349785217975
608 => 0.0018477975055929
609 => 0.0018533297540429
610 => 0.0018737438699243
611 => 0.0018319633402836
612 => 0.0017467700120532
613 => 0.0017646786825165
614 => 0.0017381903522056
615 => 0.001740641948024
616 => 0.0017455945617459
617 => 0.0017295415202789
618 => 0.0017326039347014
619 => 0.0017324945237083
620 => 0.0017315516788788
621 => 0.0017273756627954
622 => 0.0017213196132748
623 => 0.0017454450506111
624 => 0.0017495444325295
625 => 0.0017586568507282
626 => 0.0017857692262752
627 => 0.0017830600606042
628 => 0.0017874788222158
629 => 0.001777832690428
630 => 0.0017410894044119
701 => 0.0017430847416199
702 => 0.0017182028546635
703 => 0.0017580205649366
704 => 0.0017485912055759
705 => 0.0017425120362544
706 => 0.0017408532785819
707 => 0.0017680328604637
708 => 0.0017761654173506
709 => 0.0017710977536543
710 => 0.0017607038275659
711 => 0.001780663238344
712 => 0.0017860035346483
713 => 0.0017871990300483
714 => 0.0018225632791098
715 => 0.001789175498723
716 => 0.0017972122693081
717 => 0.0018599128592156
718 => 0.0018030520762595
719 => 0.0018331725011381
720 => 0.0018316982630794
721 => 0.0018471068532277
722 => 0.0018304343089442
723 => 0.0018306409851125
724 => 0.0018443227692958
725 => 0.0018251091709331
726 => 0.001820351613777
727 => 0.0018137790826402
728 => 0.0018281299639262
729 => 0.0018367326682226
730 => 0.0019060641468619
731 => 0.0019508554439624
801 => 0.0019489109356267
802 => 0.0019666801018486
803 => 0.0019586749297187
804 => 0.0019328241172536
805 => 0.0019769483019608
806 => 0.0019629855636851
807 => 0.0019641366348639
808 => 0.0019640937919371
809 => 0.0019733777922466
810 => 0.0019667992271612
811 => 0.0019538322001019
812 => 0.0019624403178097
813 => 0.0019880033499433
814 => 0.0020673517860557
815 => 0.0021117562221312
816 => 0.0020646785832481
817 => 0.002097152108155
818 => 0.0020776795647109
819 => 0.0020741408243091
820 => 0.0020945365977252
821 => 0.0021149680712428
822 => 0.0021136666747074
823 => 0.0020988344741014
824 => 0.0020904561403323
825 => 0.00215389969058
826 => 0.0022006438176698
827 => 0.0021974561815789
828 => 0.0022115253706095
829 => 0.0022528329447468
830 => 0.0022566095916425
831 => 0.0022561338209389
901 => 0.0022467730075554
902 => 0.0022874456787599
903 => 0.0023213755366463
904 => 0.0022446062497171
905 => 0.002273838989196
906 => 0.0022869625077681
907 => 0.0023062317266045
908 => 0.0023387421286775
909 => 0.002374057048287
910 => 0.0023790509651282
911 => 0.0023755075421485
912 => 0.00235221640335
913 => 0.0023908584097814
914 => 0.0024134939908824
915 => 0.0024269729614219
916 => 0.0024611533880234
917 => 0.002287043554151
918 => 0.0021637999599159
919 => 0.002144553693017
920 => 0.002183691733578
921 => 0.0021940121227539
922 => 0.0021898519868177
923 => 0.0020511301166888
924 => 0.0021438233510799
925 => 0.0022435534774163
926 => 0.0022473845177327
927 => 0.0022973115042353
928 => 0.0023135697776168
929 => 0.0023537675458311
930 => 0.0023512531644847
1001 => 0.0023610406813586
1002 => 0.0023587907007255
1003 => 0.0024332486017037
1004 => 0.0025153867235881
1005 => 0.0025125425416104
1006 => 0.0025007342147754
1007 => 0.0025182715937444
1008 => 0.002603046937985
1009 => 0.0025952421827846
1010 => 0.0026028238376544
1011 => 0.0027027787462432
1012 => 0.0028327343458286
1013 => 0.0027723569224923
1014 => 0.0029033585579965
1015 => 0.0029858171434481
1016 => 0.0031284207406098
1017 => 0.0031105660679076
1018 => 0.0031660806018091
1019 => 0.0030786024773881
1020 => 0.0028777350214716
1021 => 0.0028459469776831
1022 => 0.0029095874463492
1023 => 0.0030660413286186
1024 => 0.0029046601568244
1025 => 0.0029373073576951
1026 => 0.002927904961648
1027 => 0.0029274039479203
1028 => 0.0029465256041379
1029 => 0.0029187886444757
1030 => 0.0028057832810283
1031 => 0.0028575729731515
1101 => 0.0028375744858774
1102 => 0.002859764298494
1103 => 0.0029795135654106
1104 => 0.0029265695600408
1105 => 0.0028707973512054
1106 => 0.0029407480779289
1107 => 0.0030298193907254
1108 => 0.0030242454680472
1109 => 0.0030134297283324
1110 => 0.0030743974868109
1111 => 0.0031750983619402
1112 => 0.0032023174038388
1113 => 0.0032224099440995
1114 => 0.0032251803659352
1115 => 0.0032537174326505
1116 => 0.0031002664326555
1117 => 0.0033437971105487
1118 => 0.0033858481312217
1119 => 0.0033779442821714
1120 => 0.003424682221872
1121 => 0.003410930734385
1122 => 0.0033910069865586
1123 => 0.0034650965624288
1124 => 0.0033801588424141
1125 => 0.0032596004422148
1126 => 0.0031934597194907
1127 => 0.0032805591585937
1128 => 0.0033337477467024
1129 => 0.0033689020200127
1130 => 0.0033795396818756
1201 => 0.0031121783969661
1202 => 0.0029680854929366
1203 => 0.003060447392391
1204 => 0.0031731352842032
1205 => 0.0030996404457267
1206 => 0.0031025213042509
1207 => 0.0029977369786872
1208 => 0.0031824063719346
1209 => 0.0031555015946525
1210 => 0.0032950836267857
1211 => 0.0032617712546013
1212 => 0.0033755949832626
1213 => 0.0033456213808575
1214 => 0.0034700401286394
1215 => 0.0035196741356328
1216 => 0.0036030173582909
1217 => 0.0036643249721462
1218 => 0.0037003259756298
1219 => 0.003698164610417
1220 => 0.0038408185218477
1221 => 0.003756700494225
1222 => 0.0036510284264341
1223 => 0.0036491171521189
1224 => 0.0037038462134126
1225 => 0.0038185433116995
1226 => 0.0038482826005104
1227 => 0.0038649028058473
1228 => 0.0038394483828203
1229 => 0.0037481442926293
1230 => 0.003708719649407
1231 => 0.0037423105876743
]
'min_raw' => 0.0013851158710124
'max_raw' => 0.0038649028058473
'avg_raw' => 0.0026250093384298
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.001385'
'max' => '$0.003864'
'avg' => '$0.002625'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.00054834663303876
'max_diff' => 0.0019968744283946
'year' => 2036
]
11 => [
'items' => [
101 => 0.0037012317566757
102 => 0.0037721453436635
103 => 0.0038695248449226
104 => 0.0038494163629929
105 => 0.0039166360032519
106 => 0.0039862012592076
107 => 0.0040856826995953
108 => 0.0041116908318998
109 => 0.0041546812855983
110 => 0.0041989325840825
111 => 0.0042131449085496
112 => 0.0042402806457828
113 => 0.004240137627053
114 => 0.0043219129976508
115 => 0.0044121137637926
116 => 0.0044461624648586
117 => 0.0045244555755035
118 => 0.0043903813672419
119 => 0.0044920781943419
120 => 0.0045838112780227
121 => 0.0044744433139473
122 => 0.0046251815729578
123 => 0.004631034397975
124 => 0.0047194051069399
125 => 0.0046298244636246
126 => 0.0045766317635755
127 => 0.0047301970955127
128 => 0.0048045025223745
129 => 0.0047821211230861
130 => 0.0046117975693955
131 => 0.0045126619556267
201 => 0.004253204932562
202 => 0.0045605429840914
203 => 0.0047102383838176
204 => 0.004611409894474
205 => 0.004661253235989
206 => 0.004933182345537
207 => 0.0050367153443469
208 => 0.0050151812043447
209 => 0.005018820119523
210 => 0.0050746846464239
211 => 0.0053224187238597
212 => 0.0051739707222292
213 => 0.0052874536572352
214 => 0.0053476445967693
215 => 0.005403553295886
216 => 0.0052662592009812
217 => 0.0050876416007608
218 => 0.0050310659089143
219 => 0.0046015833489054
220 => 0.0045792269165087
221 => 0.0045666775735352
222 => 0.0044875557412272
223 => 0.0044253876543269
224 => 0.0043759492834707
225 => 0.0042462082347968
226 => 0.0042899920301358
227 => 0.004083211877611
228 => 0.0042155024913577
301 => 0.0038854763750467
302 => 0.0041603319314895
303 => 0.0040107405482664
304 => 0.0041111871388534
305 => 0.0041108366901614
306 => 0.0039258826702702
307 => 0.0038192050514889
308 => 0.0038871841821314
309 => 0.0039600632063703
310 => 0.0039718875828585
311 => 0.0040663771401214
312 => 0.0040927471445072
313 => 0.0040128448001204
314 => 0.0038786373173393
315 => 0.0039098106546426
316 => 0.0038185733248034
317 => 0.0036586834136535
318 => 0.0037735191392514
319 => 0.0038127291049409
320 => 0.0038300464595319
321 => 0.0036728130953964
322 => 0.0036234069586826
323 => 0.0035971035460538
324 => 0.0038583404644814
325 => 0.0038726516125819
326 => 0.0037994337555075
327 => 0.0041303854122859
328 => 0.0040554808596169
329 => 0.0041391675970092
330 => 0.0039069820010258
331 => 0.0039158518034717
401 => 0.0038059314213939
402 => 0.0038674794904749
403 => 0.0038239792990353
404 => 0.003862507014723
405 => 0.0038856003686505
406 => 0.0039955027138752
407 => 0.0041615868397334
408 => 0.0039790869684189
409 => 0.0038995691610408
410 => 0.003948901561513
411 => 0.0040802802449183
412 => 0.0042793256754283
413 => 0.0041614867744037
414 => 0.0042137816776441
415 => 0.0042252057875638
416 => 0.0041383157445816
417 => 0.0042825294352517
418 => 0.0043598147236717
419 => 0.0044390934376536
420 => 0.004507928923665
421 => 0.004407427775913
422 => 0.0045149784102813
423 => 0.0044283115842231
424 => 0.0043505624817971
425 => 0.0043506803950921
426 => 0.0043019072474071
427 => 0.0042074031279554
428 => 0.0041899751183752
429 => 0.0042806378251265
430 => 0.0043533407301507
501 => 0.0043593288896319
502 => 0.0043995809534635
503 => 0.0044234017102097
504 => 0.0046568775090718
505 => 0.0047507834067872
506 => 0.0048656097609659
507 => 0.0049103410971772
508 => 0.0050449663821018
509 => 0.0049362455307942
510 => 0.0049127230907275
511 => 0.0045861661850957
512 => 0.0046396398600988
513 => 0.0047252563732211
514 => 0.0045875779698625
515 => 0.0046749032275935
516 => 0.0046921430832714
517 => 0.0045828997103997
518 => 0.004641251315978
519 => 0.0044862867516074
520 => 0.0041649646437674
521 => 0.0042828871586125
522 => 0.0043697178218278
523 => 0.004245799759276
524 => 0.0044679180901088
525 => 0.0043381611466893
526 => 0.0042970344250571
527 => 0.0041365844212347
528 => 0.0042123106467519
529 => 0.0043147314510589
530 => 0.0042514473016936
531 => 0.0043827714137893
601 => 0.0045687613793782
602 => 0.0047013089047508
603 => 0.0047114842578997
604 => 0.0046262650790797
605 => 0.0047628293570004
606 => 0.0047638240786744
607 => 0.0046097790152984
608 => 0.0045154272717071
609 => 0.0044939903570454
610 => 0.004547543972825
611 => 0.0046125679489244
612 => 0.0047150926360294
613 => 0.0047770461572169
614 => 0.0049385880828652
615 => 0.0049822966961757
616 => 0.0050303192105803
617 => 0.0050944920994199
618 => 0.0051715481060628
619 => 0.0050029539503291
620 => 0.0050096525104352
621 => 0.0048526599669608
622 => 0.0046848909192504
623 => 0.0048122067137556
624 => 0.0049786551789608
625 => 0.0049404717171335
626 => 0.0049361752976606
627 => 0.0049434006834866
628 => 0.0049146116002241
629 => 0.0047843996436011
630 => 0.004719008014155
701 => 0.0048033798993244
702 => 0.0048482198013313
703 => 0.0049177625788936
704 => 0.0049091899636891
705 => 0.0050883246903407
706 => 0.0051579310283645
707 => 0.0051401227484749
708 => 0.0051433999005547
709 => 0.0052694188507148
710 => 0.0054095778410666
711 => 0.0055408552311388
712 => 0.0056743962308154
713 => 0.0055134073435114
714 => 0.0054316671149526
715 => 0.0055160021659963
716 => 0.0054712528008107
717 => 0.0057283959266908
718 => 0.0057461999588113
719 => 0.0060033244903166
720 => 0.0062473662885348
721 => 0.0060940880075369
722 => 0.0062386225227126
723 => 0.0063949483849469
724 => 0.0066965263361541
725 => 0.0065949654918278
726 => 0.0065171714767351
727 => 0.0064436565083705
728 => 0.0065966294873647
729 => 0.0067934267810376
730 => 0.0068358150331937
731 => 0.0069045001952452
801 => 0.0068322861457701
802 => 0.0069192600142463
803 => 0.0072263159882214
804 => 0.0071433467535953
805 => 0.0070255171024561
806 => 0.0072679083039403
807 => 0.0073556287374855
808 => 0.0079712966796533
809 => 0.0087486028886144
810 => 0.0084267930140368
811 => 0.0082270352401467
812 => 0.0082739830553286
813 => 0.0085578289693655
814 => 0.0086489912681351
815 => 0.0084011807145503
816 => 0.0084887115914712
817 => 0.0089710153291511
818 => 0.0092297558102598
819 => 0.0088783514834314
820 => 0.0079088408826095
821 => 0.0070149078315732
822 => 0.0072520191310379
823 => 0.0072251380680989
824 => 0.0077433132656193
825 => 0.0071413679647892
826 => 0.0071515031798804
827 => 0.0076803936917285
828 => 0.0075392947706463
829 => 0.0073107325890775
830 => 0.0070165765884407
831 => 0.0064728020151267
901 => 0.0059911657112667
902 => 0.0069357654173525
903 => 0.006895032560383
904 => 0.0068360453472199
905 => 0.0069673150070313
906 => 0.0076047232135319
907 => 0.0075900288912831
908 => 0.0074965511102449
909 => 0.007567453183287
910 => 0.0072983031128667
911 => 0.0073676692144472
912 => 0.0070147662280107
913 => 0.0071742931164106
914 => 0.0073102421972884
915 => 0.0073375359880351
916 => 0.0073990302922431
917 => 0.0068735681956754
918 => 0.0071094852502777
919 => 0.0072480644174178
920 => 0.0066219586987253
921 => 0.0072356883204426
922 => 0.0068644210696218
923 => 0.0067384073884463
924 => 0.0069080682091091
925 => 0.0068419512222962
926 => 0.0067851077195543
927 => 0.0067533880683289
928 => 0.0068779682502422
929 => 0.0068721564358504
930 => 0.0066683190782689
1001 => 0.0064024215547775
1002 => 0.0064916654914499
1003 => 0.0064592423325904
1004 => 0.006341736622213
1005 => 0.0064209212833138
1006 => 0.0060722321102659
1007 => 0.0054723305113229
1008 => 0.0058686438830675
1009 => 0.0058533862493614
1010 => 0.0058456926585681
1011 => 0.0061435112041371
1012 => 0.0061148828228236
1013 => 0.0060629220304095
1014 => 0.0063407823215122
1015 => 0.0062393595775114
1016 => 0.006551920576318
1017 => 0.00675779346531
1018 => 0.0067055774413713
1019 => 0.0068992018885383
1020 => 0.0064937214915034
1021 => 0.0066284058143485
1022 => 0.0066561640666225
1023 => 0.0063373535686511
1024 => 0.0061195667800596
1025 => 0.0061050428842117
1026 => 0.0057274306056622
1027 => 0.0059291480368836
1028 => 0.0061066510287239
1029 => 0.006021640870421
1030 => 0.0059947291939085
1031 => 0.0061322151127801
1101 => 0.0061428989461637
1102 => 0.005899306412796
1103 => 0.0059499570140554
1104 => 0.0061611784412692
1105 => 0.005944634776028
1106 => 0.0055239258066713
1107 => 0.0054195841655142
1108 => 0.0054056630671859
1109 => 0.0051226802609281
1110 => 0.0054265567729053
1111 => 0.005293906532043
1112 => 0.0057129470535331
1113 => 0.0054735933550174
1114 => 0.0054632752954645
1115 => 0.0054476780351202
1116 => 0.0052041030439015
1117 => 0.0052574304869802
1118 => 0.0054346990297725
1119 => 0.0054979504429139
1120 => 0.0054913528023197
1121 => 0.0054338303172043
1122 => 0.0054601638163273
1123 => 0.0053753344404527
1124 => 0.0053453794222607
1125 => 0.0052508331450695
1126 => 0.0051118762366743
1127 => 0.0051311990470589
1128 => 0.004855889051475
1129 => 0.0047058855540735
1130 => 0.0046643665630071
1201 => 0.004608845632955
1202 => 0.004670637799792
1203 => 0.0048551091328484
1204 => 0.0046325975674059
1205 => 0.0042511170958263
1206 => 0.0042740447221794
1207 => 0.0043255562913213
1208 => 0.0042295648230085
1209 => 0.0041387169542037
1210 => 0.0042177018054089
1211 => 0.0040560635006324
1212 => 0.0043450895082174
1213 => 0.0043372721646982
1214 => 0.0044450031870775
1215 => 0.0045123696062344
1216 => 0.0043571118202149
1217 => 0.0043180649068928
1218 => 0.0043403078033043
1219 => 0.0039726822722849
1220 => 0.0044149603381385
1221 => 0.004418785177218
1222 => 0.0043860345828922
1223 => 0.0046215339991559
1224 => 0.0051185112215823
1225 => 0.004931528399643
1226 => 0.0048591229994024
1227 => 0.004721480280617
1228 => 0.0049048810309826
1229 => 0.0048907987148519
1230 => 0.0048271131407492
1231 => 0.0047885959068208
]
'min_raw' => 0.0035971035460538
'max_raw' => 0.0092297558102598
'avg_raw' => 0.0064134296781568
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.003597'
'max' => '$0.009229'
'avg' => '$0.006413'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0022119876750414
'max_diff' => 0.0053648530044125
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00011290896999247
]
1 => [
'year' => 2028
'avg' => 0.00019378457021527
]
2 => [
'year' => 2029
'avg' => 0.00052938451955749
]
3 => [
'year' => 2030
'avg' => 0.00040841936845553
]
4 => [
'year' => 2031
'avg' => 0.00040111843467844
]
5 => [
'year' => 2032
'avg' => 0.00070328685260854
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00011290896999247
'min' => '$0.000112'
'max_raw' => 0.00070328685260854
'max' => '$0.0007032'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.00070328685260854
]
1 => [
'year' => 2033
'avg' => 0.0018089261030434
]
2 => [
'year' => 2034
'avg' => 0.0011465842970295
]
3 => [
'year' => 2035
'avg' => 0.0013523988077132
]
4 => [
'year' => 2036
'avg' => 0.0026250093384298
]
5 => [
'year' => 2037
'avg' => 0.0064134296781568
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.00070328685260854
'min' => '$0.0007032'
'max_raw' => 0.0064134296781568
'max' => '$0.006413'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.0064134296781568
]
]
]
]
'prediction_2025_max_price' => '$0.000193'
'last_price' => 0.00018719
'sma_50day_nextmonth' => '$0.000176'
'sma_200day_nextmonth' => '$0.000361'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00018'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.000176'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.000175'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.000185'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.000219'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.000253'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.000427'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.000181'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.000178'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.000178'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.000188'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.000215'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.000281'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.000538'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00034'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.000566'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003556'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.000187'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.000196'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.000229'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.000352'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.001153'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.0033084'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.001931'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.03'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 107.48
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.000172'
'vwma_10_action' => 'BUY'
'hma_9' => '0.000180'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 18.09
'cci_20_action' => 'NEUTRAL'
'adx_14' => 25.24
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000031'
'ao_5_34_action' => 'SELL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 61.52
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '0.000016'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 18
'buy_signals' => 15
'sell_pct' => 54.55
'buy_pct' => 45.45
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767710925
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Melon Dog para 2026
La previsión del precio de Melon Dog para 2026 sugiere que el precio medio podría oscilar entre $0.000064 en el extremo inferior y $0.000193 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Melon Dog podría potencialmente ganar 3.13% para 2026 si MELON alcanza el objetivo de precio previsto.
Predicción de precio de Melon Dog 2027-2032
La predicción del precio de MELON para 2027-2032 está actualmente dentro de un rango de precios de $0.000112 en el extremo inferior y $0.0007032 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Melon Dog alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Melon Dog | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000062 | $0.000112 | $0.000163 |
| 2028 | $0.000112 | $0.000193 | $0.000275 |
| 2029 | $0.000246 | $0.000529 | $0.000811 |
| 2030 | $0.0002099 | $0.0004084 | $0.0006069 |
| 2031 | $0.000248 | $0.0004011 | $0.000554 |
| 2032 | $0.000378 | $0.0007032 | $0.001027 |
Predicción de precio de Melon Dog 2032-2037
La predicción de precio de Melon Dog para 2032-2037 se estima actualmente entre $0.0007032 en el extremo inferior y $0.006413 en el extremo superior. Comparado con el precio actual, Melon Dog podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Melon Dog | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.000378 | $0.0007032 | $0.001027 |
| 2033 | $0.00088 | $0.0018089 | $0.002737 |
| 2034 | $0.0007077 | $0.001146 | $0.001585 |
| 2035 | $0.000836 | $0.001352 | $0.001868 |
| 2036 | $0.001385 | $0.002625 | $0.003864 |
| 2037 | $0.003597 | $0.006413 | $0.009229 |
Melon Dog Histograma de precios potenciales
Pronóstico de precio de Melon Dog basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Melon Dog es Bajista, con 15 indicadores técnicos mostrando señales alcistas y 18 indicando señales bajistas. La predicción de precio de MELON se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Melon Dog
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Melon Dog aumentar durante el próximo mes, alcanzando $0.000361 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Melon Dog alcance $0.000176 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.03, lo que sugiere que el mercado de MELON está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de MELON para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00018 | BUY |
| SMA 5 | $0.000176 | BUY |
| SMA 10 | $0.000175 | BUY |
| SMA 21 | $0.000185 | BUY |
| SMA 50 | $0.000219 | SELL |
| SMA 100 | $0.000253 | SELL |
| SMA 200 | $0.000427 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.000181 | BUY |
| EMA 5 | $0.000178 | BUY |
| EMA 10 | $0.000178 | BUY |
| EMA 21 | $0.000188 | SELL |
| EMA 50 | $0.000215 | SELL |
| EMA 100 | $0.000281 | SELL |
| EMA 200 | $0.000538 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00034 | SELL |
| SMA 50 | $0.000566 | SELL |
| SMA 100 | $0.003556 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.000352 | SELL |
| EMA 50 | $0.001153 | SELL |
| EMA 100 | $0.0033084 | SELL |
| EMA 200 | $0.001931 | SELL |
Osciladores de Melon Dog
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.03 | NEUTRAL |
| Stoch RSI (14) | 107.48 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 18.09 | NEUTRAL |
| Índice Direccional Medio (14) | 25.24 | SELL |
| Oscilador Asombroso (5, 34) | -0.000031 | SELL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 61.52 | NEUTRAL |
| VWMA (10) | 0.000172 | BUY |
| Promedio Móvil de Hull (9) | 0.000180 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000016 | NEUTRAL |
Predicción de precios de Melon Dog basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Melon Dog
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Melon Dog por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000263 | $0.000369 | $0.000519 | $0.000729 | $0.001025 | $0.00144 |
| Amazon.com acción | $0.00039 | $0.000814 | $0.00170049 | $0.003548 | $0.0074034 | $0.015447 |
| Apple acción | $0.000265 | $0.000376 | $0.000534 | $0.000757 | $0.001074 | $0.001524 |
| Netflix acción | $0.000295 | $0.000466 | $0.000735 | $0.00116 | $0.00183 | $0.002888 |
| Google acción | $0.000242 | $0.000313 | $0.0004065 | $0.000526 | $0.000681 | $0.000882 |
| Tesla acción | $0.000424 | $0.000961 | $0.00218 | $0.004943 | $0.0112064 | $0.0254041 |
| Kodak acción | $0.00014 | $0.0001052 | $0.000078 | $0.000059 | $0.000044 | $0.000033 |
| Nokia acción | $0.000124 | $0.000082 | $0.000054 | $0.000036 | $0.000023 | $0.000015 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Melon Dog
Podría preguntarse cosas como: "¿Debo invertir en Melon Dog ahora?", "¿Debería comprar MELON hoy?", "¿Será Melon Dog una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Melon Dog regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Melon Dog, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Melon Dog a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Melon Dog es de $0.0001871 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Melon Dog basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Melon Dog ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000192 | $0.000197 | $0.0002021 | $0.0002074 |
| Si Melon Dog ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000196 | $0.0002071 | $0.000217 | $0.000229 |
| Si Melon Dog ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000211 | $0.000239 | $0.00027 | $0.0003051 |
| Si Melon Dog ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000235 | $0.000297 | $0.000374 | $0.000471 |
| Si Melon Dog ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000284 | $0.000432 | $0.000657 | $0.000998 |
| Si Melon Dog ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00043 | $0.000989 | $0.002276 | $0.005235 |
| Si Melon Dog ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.000673 | $0.002425 | $0.008728 | $0.031417 |
Cuadro de preguntas
¿Es MELON una buena inversión?
La decisión de adquirir Melon Dog depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Melon Dog ha experimentado un aumento de 5.1794% durante las últimas 24 horas, y Melon Dog ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Melon Dog dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Melon Dog subir?
Parece que el valor medio de Melon Dog podría potencialmente aumentar hasta $0.000193 para el final de este año. Mirando las perspectivas de Melon Dog en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0006069. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Melon Dog la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Melon Dog, el precio de Melon Dog aumentará en un 0.86% durante la próxima semana y alcanzará $0.000188 para el 13 de enero de 2026.
¿Cuál será el precio de Melon Dog el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Melon Dog, el precio de Melon Dog disminuirá en un -11.62% durante el próximo mes y alcanzará $0.000165 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Melon Dog este año en 2026?
Según nuestra predicción más reciente sobre el valor de Melon Dog en 2026, se anticipa que MELON fluctúe dentro del rango de $0.000064 y $0.000193. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Melon Dog no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Melon Dog en 5 años?
El futuro de Melon Dog parece estar en una tendencia alcista, con un precio máximo de $0.0006069 proyectada después de un período de cinco años. Basado en el pronóstico de Melon Dog para 2030, el valor de Melon Dog podría potencialmente alcanzar su punto más alto de aproximadamente $0.0006069, mientras que su punto más bajo se anticipa que esté alrededor de $0.0002099.
¿Cuánto será Melon Dog en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Melon Dog, se espera que el valor de MELON en 2026 crezca en un 3.13% hasta $0.000193 si ocurre lo mejor. El precio estará entre $0.000193 y $0.000064 durante 2026.
¿Cuánto será Melon Dog en 2027?
Según nuestra última simulación experimental para la predicción de precios de Melon Dog, el valor de MELON podría disminuir en un -12.62% hasta $0.000163 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000163 y $0.000062 a lo largo del año.
¿Cuánto será Melon Dog en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Melon Dog sugiere que el valor de MELON en 2028 podría aumentar en un 47.02% , alcanzando $0.000275 en el mejor escenario. Se espera que el precio oscile entre $0.000275 y $0.000112 durante el año.
¿Cuánto será Melon Dog en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Melon Dog podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.000811 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.000811 y $0.000246.
¿Cuánto será Melon Dog en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Melon Dog, se espera que el valor de MELON en 2030 aumente en un 224.23% , alcanzando $0.0006069 en el mejor escenario. Se pronostica que el precio oscile entre $0.0006069 y $0.0002099 durante el transcurso de 2030.
¿Cuánto será Melon Dog en 2031?
Nuestra simulación experimental indica que el precio de Melon Dog podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.000554 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.000554 y $0.000248 durante el año.
¿Cuánto será Melon Dog en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Melon Dog, MELON podría experimentar un 449.04% aumento en valor, alcanzando $0.001027 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.001027 y $0.000378 a lo largo del año.
¿Cuánto será Melon Dog en 2033?
Según nuestra predicción experimental de precios de Melon Dog, se anticipa que el valor de MELON aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.002737. A lo largo del año, el precio de MELON podría oscilar entre $0.002737 y $0.00088.
¿Cuánto será Melon Dog en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Melon Dog sugieren que MELON podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.001585 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.001585 y $0.0007077.
¿Cuánto será Melon Dog en 2035?
Basado en nuestra predicción experimental para el precio de Melon Dog, MELON podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.001868 en 2035. El rango de precios esperado para el año está entre $0.001868 y $0.000836.
¿Cuánto será Melon Dog en 2036?
Nuestra reciente simulación de predicción de precios de Melon Dog sugiere que el valor de MELON podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.003864 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.003864 y $0.001385.
¿Cuánto será Melon Dog en 2037?
Según la simulación experimental, el valor de Melon Dog podría aumentar en un 4830.69% en 2037, con un máximo de $0.009229 bajo condiciones favorables. Se espera que el precio caiga entre $0.009229 y $0.003597 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Rai Reflex Index
Predicción de precios de CheckDot
Predicción de precios de EtherlandPredicción de precios de B-cube.ai
Predicción de precios de IMPT
Predicción de precios de Wam
Predicción de precios de DogeGF
Predicción de precios de Bitsdaq Token
Predicción de precios de BuildAI
Predicción de precios de PolkaBridge
Predicción de precios de KI
Predicción de precios de ExeedmePredicción de precios de MiamiCoin
Predicción de precios de AutoAir AI
Predicción de precios de GroveCoin
Predicción de precios de Unfettered Ecosystem
Predicción de precios de Astra DAO
Predicción de precios de X2Y2
Predicción de precios de Qmall
Predicción de precios de Chain Guardians
Predicción de precios de ApeBond
Predicción de precios de Biometric Financial
Predicción de precios de CSP DAO Network
Predicción de precios de Bonsai3
Predicción de precios de xFund
¿Cómo leer y predecir los movimientos de precio de Melon Dog?
Los traders de Melon Dog utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Melon Dog
Las medias móviles son herramientas populares para la predicción de precios de Melon Dog. Una media móvil simple (SMA) calcula el precio de cierre promedio de MELON durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de MELON por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de MELON.
¿Cómo leer gráficos de Melon Dog y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Melon Dog en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de MELON dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Melon Dog?
La acción del precio de Melon Dog está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de MELON. La capitalización de mercado de Melon Dog puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de MELON, grandes poseedores de Melon Dog, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Melon Dog.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


