Predicción del precio de IMPT - Pronóstico de IMPT
Predicción de precio de IMPT hasta $0.002825 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000946 | $0.002825 |
| 2027 | $0.000911 | $0.002393 |
| 2028 | $0.001644 | $0.004027 |
| 2029 | $0.003612 | $0.011883 |
| 2030 | $0.003072 | $0.008882 |
| 2031 | $0.003632 | $0.0081091 |
| 2032 | $0.005544 | $0.015042 |
| 2033 | $0.012884 | $0.040066 |
| 2034 | $0.010358 | $0.0232043 |
| 2035 | $0.012246 | $0.02734 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en IMPT hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.59, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de IMPT para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'IMPT'
'name_with_ticker' => 'IMPT <small>IMPT</small>'
'name_lang' => 'IMPT'
'name_lang_with_ticker' => 'IMPT <small>IMPT</small>'
'name_with_lang' => 'IMPT'
'name_with_lang_with_ticker' => 'IMPT <small>IMPT</small>'
'image' => '/uploads/coins/impt.png?1717220447'
'price_for_sd' => 0.002739
'ticker' => 'IMPT'
'marketcap' => '$3.44M'
'low24h' => '$0.002679'
'high24h' => '$0.002757'
'volume24h' => '$456.68K'
'current_supply' => '1.26B'
'max_supply' => '1.65B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002739'
'change_24h_pct' => '0.9123%'
'ath_price' => '$0.02042'
'ath_days' => 1118
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2022'
'ath_pct' => '-86.63%'
'fdv' => '$4.5M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.135087'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002763'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002421'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000946'
'current_year_max_price_prediction' => '$0.002825'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003072'
'grand_prediction_max_price' => '$0.008882'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0027916362529073
107 => 0.0028020592093117
108 => 0.0028255426623001
109 => 0.0026248791276704
110 => 0.0027149711635473
111 => 0.0027678917941428
112 => 0.0025287944598434
113 => 0.0027631656086002
114 => 0.0026213860219686
115 => 0.0025732639008079
116 => 0.0026380539973434
117 => 0.0026128052337131
118 => 0.0025910978294009
119 => 0.0025789847248141
120 => 0.0026265594210878
121 => 0.0026243400046426
122 => 0.0025464985676882
123 => 0.0024449575864041
124 => 0.0024790380726922
125 => 0.0024666563125175
126 => 0.0024217832163655
127 => 0.0024520222651736
128 => 0.002318864797855
129 => 0.0020897742962561
130 => 0.0022411184988441
131 => 0.0022352919116753
201 => 0.0022323538822101
202 => 0.0023460848676085
203 => 0.0023351522575827
204 => 0.0023153094633335
205 => 0.0024214187878882
206 => 0.0023826874570539
207 => 0.0025020482924359
208 => 0.0025806670583934
209 => 0.0025607267962959
210 => 0.0026346681256764
211 => 0.0024798232182633
212 => 0.0025312564852065
213 => 0.0025418568102401
214 => 0.0024201094152941
215 => 0.0023369409677888
216 => 0.0023313945805299
217 => 0.0021871919538737
218 => 0.0022642238330705
219 => 0.002332008698968
220 => 0.0022995450085212
221 => 0.0022892679739509
222 => 0.0023417711147536
223 => 0.002345851058453
224 => 0.0022528279097344
225 => 0.002272170368013
226 => 0.0023528316344509
227 => 0.0022701379110543
228 => 0.0021094775144377
301 => 0.002069631514773
302 => 0.0020643153239103
303 => 0.0019562498125936
304 => 0.0020722942150017
305 => 0.0020216377235539
306 => 0.0021816609730795
307 => 0.0020902565511724
308 => 0.0020863162892317
309 => 0.0020803600053975
310 => 0.0019873435556772
311 => 0.0020077082466622
312 => 0.0020754035811263
313 => 0.0020995580391056
314 => 0.0020970385312467
315 => 0.0020750718370564
316 => 0.0020851280771691
317 => 0.0020527334239398
318 => 0.0020412941976482
319 => 0.0020051888528646
320 => 0.0019521239703889
321 => 0.001959502967763
322 => 0.0018543675503968
323 => 0.0017970841950568
324 => 0.0017812289172812
325 => 0.0017600265772019
326 => 0.0017836237780104
327 => 0.001854069714969
328 => 0.0017690969690577
329 => 0.0016234171563378
330 => 0.0016321727613086
331 => 0.0016518440061155
401 => 0.0016151867715562
402 => 0.0015804937754542
403 => 0.0016106565208331
404 => 0.0015489300637207
405 => 0.0016593033535559
406 => 0.0016563180653835
407 => 0.0016974584023956
408 => 0.001723184299414
409 => 0.0016638944356447
410 => 0.0016489831952435
411 => 0.0016574773154541
412 => 0.0015170884292598
413 => 0.0016859856352868
414 => 0.0016874462653381
415 => 0.0016749394640644
416 => 0.0017648720121575
417 => 0.0019546577392993
418 => 0.0018832527146354
419 => 0.0018556025308572
420 => 0.0018030395112828
421 => 0.0018730766139824
422 => 0.0018676988572441
423 => 0.0018433786018197
424 => 0.0018286696354552
425 => 0.0018557713569833
426 => 0.0018253114322364
427 => 0.001819839992769
428 => 0.001786689022582
429 => 0.0017748556344983
430 => 0.0017660946650618
501 => 0.0017564496985474
502 => 0.0017777240913024
503 => 0.0017295135184402
504 => 0.0016713762937091
505 => 0.0016665428125262
506 => 0.0016798884790362
507 => 0.0016739840150736
508 => 0.0016665145442244
509 => 0.0016522532901839
510 => 0.0016480222807536
511 => 0.0016617710088082
512 => 0.0016462494964352
513 => 0.0016691523334421
514 => 0.001662924029048
515 => 0.0016281332269991
516 => 0.0015847710064415
517 => 0.0015843849917232
518 => 0.0015750426724323
519 => 0.0015631438241883
520 => 0.0015598338368156
521 => 0.001608116298548
522 => 0.0017080595493617
523 => 0.0016884382977877
524 => 0.0017026166629166
525 => 0.0017723601865074
526 => 0.001794529555396
527 => 0.0017787942624692
528 => 0.0017572548230003
529 => 0.0017582024490224
530 => 0.0018318092341193
531 => 0.0018363999990178
601 => 0.0018479993808796
602 => 0.001862907864557
603 => 0.0017813332417055
604 => 0.001754360291622
605 => 0.0017415790114702
606 => 0.0017022176155803
607 => 0.0017446655064565
608 => 0.0017199329382429
609 => 0.0017232702066797
610 => 0.0017210968062322
611 => 0.0017222836298412
612 => 0.001659272501972
613 => 0.0016822304452002
614 => 0.001644058411817
615 => 0.0015929503441289
616 => 0.0015927790119652
617 => 0.0016052876391271
618 => 0.0015978470182286
619 => 0.0015778244987064
620 => 0.0015806686031009
621 => 0.0015557512558979
622 => 0.0015836940201945
623 => 0.0015844953186905
624 => 0.0015737358323836
625 => 0.001616785516141
626 => 0.0016344230067016
627 => 0.0016273408823239
628 => 0.0016339261059757
629 => 0.0016892536493752
630 => 0.0016982744530593
701 => 0.0017022808981749
702 => 0.0016969127924722
703 => 0.0016349373919029
704 => 0.0016376862644579
705 => 0.0016175168615549
706 => 0.0016004758415011
707 => 0.0016011573929349
708 => 0.0016099186924201
709 => 0.0016481798011152
710 => 0.0017286980487485
711 => 0.0017317536573881
712 => 0.0017354571441977
713 => 0.0017203932021197
714 => 0.0017158497730465
715 => 0.0017218437287526
716 => 0.0017520821491154
717 => 0.0018298635759394
718 => 0.0018023704248529
719 => 0.0017800180650633
720 => 0.0017996271107517
721 => 0.0017966084518688
722 => 0.0017711279330257
723 => 0.0017704127797273
724 => 0.0017215075174527
725 => 0.0017034283555088
726 => 0.0016883200545866
727 => 0.0016718221843917
728 => 0.0016620416939266
729 => 0.0016770689724344
730 => 0.0016805058888267
731 => 0.0016476484817374
801 => 0.0016431701385635
802 => 0.001670002206469
803 => 0.0016581944137841
804 => 0.0016703390213797
805 => 0.0016731566745163
806 => 0.0016727029674653
807 => 0.0016603742757859
808 => 0.0016682322162155
809 => 0.0016496458445348
810 => 0.0016294359569148
811 => 0.0016165433077337
812 => 0.0016052927613615
813 => 0.0016115352183744
814 => 0.001589281998951
815 => 0.0015821627461886
816 => 0.0016655701228072
817 => 0.0017271840486957
818 => 0.0017262881578115
819 => 0.0017208346524583
820 => 0.0017127318497066
821 => 0.0017514893786248
822 => 0.001737987030531
823 => 0.0017478111169282
824 => 0.0017503117592319
825 => 0.0017578804503399
826 => 0.00176058560686
827 => 0.0017524087450042
828 => 0.0017249661978964
829 => 0.0016565819796628
830 => 0.0016247489414754
831 => 0.0016142435086523
901 => 0.0016146253611828
902 => 0.0016040921637279
903 => 0.0016071946624432
904 => 0.0016030132412869
905 => 0.0015950946412113
906 => 0.0016110462671337
907 => 0.0016128845434216
908 => 0.0016091612433236
909 => 0.0016100382152821
910 => 0.0015792108807127
911 => 0.0015815546160065
912 => 0.0015685044000628
913 => 0.0015660576418961
914 => 0.0015330678324027
915 => 0.0014746216029358
916 => 0.0015070064875733
917 => 0.0014678901009351
918 => 0.0014530761326053
919 => 0.001523203154634
920 => 0.0015161643466431
921 => 0.0015041169670591
922 => 0.0014862963817603
923 => 0.0014796865533255
924 => 0.001439527328173
925 => 0.0014371545069098
926 => 0.0014570585032857
927 => 0.0014478734938129
928 => 0.001434974261878
929 => 0.0013882545513841
930 => 0.0013357261284243
1001 => 0.0013373116313315
1002 => 0.001354019945349
1003 => 0.0014026016217779
1004 => 0.0013836199203256
1005 => 0.001369848478132
1006 => 0.0013672695009772
1007 => 0.0013995507995242
1008 => 0.0014452356001093
1009 => 0.0014666698864041
1010 => 0.0014454291596549
1011 => 0.0014210289564475
1012 => 0.0014225140837571
1013 => 0.001432393970399
1014 => 0.0014334322067909
1015 => 0.0014175501828843
1016 => 0.0014220208795845
1017 => 0.0014152294824878
1018 => 0.0013735506910411
1019 => 0.0013727968538687
1020 => 0.0013625682062864
1021 => 0.0013622584869027
1022 => 0.0013448570057095
1023 => 0.0013424224181998
1024 => 0.0013078707210962
1025 => 0.001330612752762
1026 => 0.0013153585919308
1027 => 0.0012923669734655
1028 => 0.001288403209776
1029 => 0.0012882840542532
1030 => 0.0013118913055852
1031 => 0.0013303368882853
1101 => 0.0013156239445894
1102 => 0.0013122740925082
1103 => 0.0013480417488071
1104 => 0.0013434899885137
1105 => 0.0013395481934552
1106 => 0.0014411450272922
1107 => 0.0013607232056104
1108 => 0.0013256547010401
1109 => 0.0012822507673059
1110 => 0.0012963833069914
1111 => 0.0012993612407533
1112 => 0.0011949826042696
1113 => 0.0011526362044477
1114 => 0.0011381045158193
1115 => 0.0011297413235657
1116 => 0.001133552535294
1117 => 0.001095435808717
1118 => 0.0011210508793692
1119 => 0.0010880450160802
1120 => 0.0010825114756894
1121 => 0.001141530047892
1122 => 0.0011497421374325
1123 => 0.0011147068121565
1124 => 0.0011372051626877
1125 => 0.0011290469480346
1126 => 0.0010886108068737
1127 => 0.0010870664437095
1128 => 0.0010667770094741
1129 => 0.0010350279737042
1130 => 0.0010205178124171
1201 => 0.0010129607944357
1202 => 0.0010160789673382
1203 => 0.001014502323701
1204 => 0.0010042136574858
1205 => 0.001015092058005
1206 => 0.00098730223994388
1207 => 0.00097623611047417
1208 => 0.00097123779652496
1209 => 0.00094657273347348
1210 => 0.0009858258173917
1211 => 0.00099355916942092
1212 => 0.0010013077585426
1213 => 0.0010687539366602
1214 => 0.0010653845162024
1215 => 0.0010958424361669
1216 => 0.0010946588974056
1217 => 0.0010859718052461
1218 => 0.0010493223923826
1219 => 0.001063930195137
1220 => 0.0010189696488155
1221 => 0.0010526571471396
1222 => 0.001037283579728
1223 => 0.0010474593285333
1224 => 0.0010291624146711
1225 => 0.0010392886822635
1226 => 0.00099539303407549
1227 => 0.00095440389542596
1228 => 0.00097089912136608
1229 => 0.00098883131842089
1230 => 0.0010277128906746
1231 => 0.0010045553470063
]
'min_raw' => 0.00094657273347348
'max_raw' => 0.0028255426623001
'avg_raw' => 0.0018860576978868
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000946'
'max' => '$0.002825'
'avg' => '$0.001886'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0017931472665265
'max_diff' => 8.5822662300129E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010128836753931
102 => 0.00098498516944267
103 => 0.00092742258285274
104 => 0.00092774838084156
105 => 0.00091889363096381
106 => 0.00091124183425479
107 => 0.0010072152694681
108 => 0.0009952794556838
109 => 0.00097626129853927
110 => 0.0010017178576287
111 => 0.0010084489759019
112 => 0.0010086406013763
113 => 0.0010272130497591
114 => 0.0010371251687903
115 => 0.0010388722227311
116 => 0.0010680963715458
117 => 0.0010778919207526
118 => 0.0011182384016175
119 => 0.0010362841947426
120 => 0.0010345964017835
121 => 0.00100207608362
122 => 0.00098145118371485
123 => 0.0010034882881619
124 => 0.0010230101543372
125 => 0.0010026826824191
126 => 0.0010053370211152
127 => 0.00097804905088058
128 => 0.00098780321622113
129 => 0.00099620481744038
130 => 0.0009915659470704
131 => 0.00098462133360268
201 => 0.0010214095839353
202 => 0.0010193338466772
203 => 0.0010535919111451
204 => 0.0010802985222156
205 => 0.0011281615436316
206 => 0.0010782139856283
207 => 0.0010763936980911
208 => 0.0010941873007505
209 => 0.0010778891966447
210 => 0.0010881890358482
211 => 0.0011265020803011
212 => 0.0011273115745574
213 => 0.0011137515027886
214 => 0.0011129263711891
215 => 0.0011155307313032
216 => 0.0011307845498375
217 => 0.0011254543969391
218 => 0.0011316225848161
219 => 0.0011393359982068
220 => 0.0011712419464106
221 => 0.0011789343625054
222 => 0.0011602457794554
223 => 0.0011619331492576
224 => 0.0011549431061839
225 => 0.0011481908121596
226 => 0.0011633689830328
227 => 0.0011911073886314
228 => 0.0011909348294498
301 => 0.0011973696003911
302 => 0.001201378409379
303 => 0.0011841696665753
304 => 0.0011729674077932
305 => 0.0011772630666285
306 => 0.0011841319186535
307 => 0.0011750355904929
308 => 0.0011188888392566
309 => 0.0011359201769133
310 => 0.0011330853295374
311 => 0.0011290481621448
312 => 0.0011461733038581
313 => 0.0011445215421628
314 => 0.0010950448665929
315 => 0.0010982122028362
316 => 0.0010952374828004
317 => 0.0011048494118066
318 => 0.0010773701209347
319 => 0.0010858225657311
320 => 0.0010911238598706
321 => 0.0010942463628452
322 => 0.0011055269847099
323 => 0.0011042033339345
324 => 0.0011054447047192
325 => 0.0011221708889708
326 => 0.001206766189182
327 => 0.0012113705247235
328 => 0.0011886970925606
329 => 0.001197754681496
330 => 0.001180366091417
331 => 0.0011920391684305
401 => 0.0012000255912591
402 => 0.0011639364821974
403 => 0.0011617995193751
404 => 0.0011443391603994
405 => 0.0011537213683077
406 => 0.001138793600921
407 => 0.0011424563528865
408 => 0.0011322149790779
409 => 0.0011506474128963
410 => 0.001171257738016
411 => 0.0011764647200676
412 => 0.0011627673920365
413 => 0.001152849623844
414 => 0.0011354372900141
415 => 0.0011643943892325
416 => 0.0011728623274956
417 => 0.0011643499107577
418 => 0.0011623773977996
419 => 0.0011586394893081
420 => 0.0011631704127562
421 => 0.0011728162092852
422 => 0.001168267429772
423 => 0.0011712719787797
424 => 0.0011598217362401
425 => 0.0011841753633853
426 => 0.0012228547843113
427 => 0.0012229791449743
428 => 0.0012184303409415
429 => 0.0012165690683367
430 => 0.0012212364173188
501 => 0.001223768262677
502 => 0.0012388616134398
503 => 0.0012550573801539
504 => 0.001330635956642
505 => 0.0013094137947967
506 => 0.0013764716040466
507 => 0.0014295056247965
508 => 0.0014454082087227
509 => 0.001430778579785
510 => 0.001380731409466
511 => 0.0013782758565275
512 => 0.0014530674583544
513 => 0.0014319354051659
514 => 0.0014294218146807
515 => 0.0014026814586971
516 => 0.0014184883209409
517 => 0.0014150311282955
518 => 0.0014095737805731
519 => 0.0014397321726188
520 => 0.0014961859902702
521 => 0.0014873871333687
522 => 0.0014808191948589
523 => 0.0014520404002073
524 => 0.0014693716625641
525 => 0.0014632003319973
526 => 0.0014897162845353
527 => 0.0014740088216521
528 => 0.001431775309079
529 => 0.0014385011351598
530 => 0.0014374845400781
531 => 0.0014584059948212
601 => 0.0014521258934097
602 => 0.0014362582494855
603 => 0.0014959930372588
604 => 0.0014921141924031
605 => 0.0014976135075811
606 => 0.0015000344761943
607 => 0.0015363939888669
608 => 0.0015512893178342
609 => 0.0015546708182892
610 => 0.0015688202287621
611 => 0.0015543187680668
612 => 0.001612334950214
613 => 0.0016509123260038
614 => 0.0016957219331573
615 => 0.0017612008128955
616 => 0.0017858214773905
617 => 0.0017813739747205
618 => 0.0018310193140379
619 => 0.0019202308852373
620 => 0.0017994061839163
621 => 0.0019266348877926
622 => 0.0018863557490714
623 => 0.0017908546357542
624 => 0.0017847054899407
625 => 0.0018493799526698
626 => 0.0019928216863167
627 => 0.0019568911589408
628 => 0.0019928804557877
629 => 0.0019508970293318
630 => 0.0019488121983441
701 => 0.0019908414144735
702 => 0.0020890449688531
703 => 0.0020423921412725
704 => 0.0019755038731932
705 => 0.0020248931294462
706 => 0.0019821075849199
707 => 0.0018856997781823
708 => 0.0019568636835437
709 => 0.0019092784066599
710 => 0.001923166320227
711 => 0.0020231834944611
712 => 0.0020111491634446
713 => 0.002026722702129
714 => 0.0019992358139815
715 => 0.0019735587261675
716 => 0.0019256305349569
717 => 0.0019114413603707
718 => 0.0019153627377533
719 => 0.0019114394171308
720 => 0.0018846240346313
721 => 0.0018788332553337
722 => 0.0018691817028044
723 => 0.0018721731225097
724 => 0.0018540253800934
725 => 0.0018882739195479
726 => 0.0018946307502678
727 => 0.0019195539811916
728 => 0.0019221415937058
729 => 0.0019915524370687
730 => 0.0019533221109462
731 => 0.0019789703143567
801 => 0.0019766760976335
802 => 0.0017929244344645
803 => 0.0018182437923945
804 => 0.0018576327676814
805 => 0.0018398880877052
806 => 0.0018148012618344
807 => 0.0017945423048732
808 => 0.0017638479134923
809 => 0.0018070496799273
810 => 0.0018638554087937
811 => 0.0019235822807336
812 => 0.0019953402039096
813 => 0.001979324670811
814 => 0.0019222408162736
815 => 0.0019248015562883
816 => 0.0019406310434456
817 => 0.0019201304193164
818 => 0.001914084385041
819 => 0.0019398004111793
820 => 0.001939977503318
821 => 0.0019163890576742
822 => 0.0018901748169811
823 => 0.0018900649783554
824 => 0.0018854004074236
825 => 0.0019517268461381
826 => 0.0019881996810718
827 => 0.001992381232818
828 => 0.0019879182293224
829 => 0.0019896358622376
830 => 0.0019684131232138
831 => 0.0020169220112145
901 => 0.0020614385638757
902 => 0.0020495071768051
903 => 0.0020316203314396
904 => 0.0020173725975587
905 => 0.0020461508635023
906 => 0.002044869412621
907 => 0.0020610497506236
908 => 0.0020603157170297
909 => 0.0020548748779327
910 => 0.0020495073711146
911 => 0.0020707889289329
912 => 0.0020646601820526
913 => 0.0020585219155355
914 => 0.0020462106823141
915 => 0.0020478839833768
916 => 0.0020300002264274
917 => 0.0020217263821575
918 => 0.0018973076160669
919 => 0.001864058856267
920 => 0.001874519592941
921 => 0.001877963539067
922 => 0.0018634936361926
923 => 0.0018842397599014
924 => 0.0018810064984969
925 => 0.0018935852272269
926 => 0.0018857265836213
927 => 0.0018860491050961
928 => 0.0019091597003006
929 => 0.001915868804408
930 => 0.0019124564999099
1001 => 0.0019148463610134
1002 => 0.0019699197014468
1003 => 0.0019620900335835
1004 => 0.0019579306785822
1005 => 0.0019590828483431
1006 => 0.0019731552676096
1007 => 0.0019770947766786
1008 => 0.0019604027999288
1009 => 0.0019682748326591
1010 => 0.0020017929489153
1011 => 0.0020135223926439
1012 => 0.0020509571465732
1013 => 0.0020350541977543
1014 => 0.0020642447485748
1015 => 0.0021539665500049
1016 => 0.0022256425332637
1017 => 0.0021597263369236
1018 => 0.0022913501522969
1019 => 0.00239383817288
1020 => 0.0023899045119472
1021 => 0.002372033354968
1022 => 0.0022553534683192
1023 => 0.0021479828970259
1024 => 0.002237802939108
1025 => 0.0022380319088669
1026 => 0.0022303162875946
1027 => 0.0021823952265226
1028 => 0.0022286487385442
1029 => 0.0022323201743604
1030 => 0.002230265146617
1031 => 0.0021935241814499
1101 => 0.0021374275185051
1102 => 0.0021483886721681
1103 => 0.0021663432654695
1104 => 0.0021323514746294
1105 => 0.0021214890378207
1106 => 0.0021416843745112
1107 => 0.0022067579571933
1108 => 0.0021944561733328
1109 => 0.0021941349240408
1110 => 0.0022467671721641
1111 => 0.0022090938412579
1112 => 0.0021485269274182
1113 => 0.0021332329828943
1114 => 0.0020789497830697
1115 => 0.0021164433825387
1116 => 0.002117792710435
1117 => 0.0020972578491811
1118 => 0.0021501932182349
1119 => 0.00214970540949
1120 => 0.0021999596640166
1121 => 0.0022960269240355
1122 => 0.0022676151080652
1123 => 0.0022345752572884
1124 => 0.0022381676051636
1125 => 0.0022775667946835
1126 => 0.0022537451453037
1127 => 0.0022623115765112
1128 => 0.0022775538283639
1129 => 0.0022867498573505
1130 => 0.0022368444381112
1201 => 0.0022252090976344
1202 => 0.0022014072744684
1203 => 0.0021951978230865
1204 => 0.0022145839114138
1205 => 0.0022094763620602
1206 => 0.0021176793046502
1207 => 0.0021080860013968
1208 => 0.0021083802143115
1209 => 0.0020842573971442
1210 => 0.0020474643108247
1211 => 0.0021441543448715
1212 => 0.0021363887819613
1213 => 0.0021278162015154
1214 => 0.0021288662937056
1215 => 0.002170836160356
1216 => 0.0021464915181697
1217 => 0.0022112157394303
1218 => 0.0021979103853273
1219 => 0.0021842637990973
1220 => 0.0021823774251951
1221 => 0.0021771246537685
1222 => 0.0021591109460768
1223 => 0.0021373583115829
1224 => 0.0021229953381091
1225 => 0.0019583509782967
1226 => 0.0019889080137857
1227 => 0.0020240610977544
1228 => 0.0020361958014732
1229 => 0.0020154385510662
1230 => 0.0021599305688398
1231 => 0.0021863306528467
]
'min_raw' => 0.00091124183425479
'max_raw' => 0.00239383817288
'avg_raw' => 0.0016525400035674
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000911'
'max' => '$0.002393'
'avg' => '$0.001652'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.5330899218682E-5
'max_diff' => -0.00043170448942018
'year' => 2027
]
2 => [
'items' => [
101 => 0.0021063630763548
102 => 0.0020914044078478
103 => 0.0021609112566567
104 => 0.0021189901299582
105 => 0.0021378672107437
106 => 0.0020970652872967
107 => 0.0021799716456941
108 => 0.0021793400381493
109 => 0.0021470875922076
110 => 0.0021743471386623
111 => 0.0021696101216413
112 => 0.0021331971896075
113 => 0.0021811260005882
114 => 0.0021811497726805
115 => 0.0021501074946903
116 => 0.0021138569100262
117 => 0.0021073761616888
118 => 0.0021024937883827
119 => 0.0021366664462053
120 => 0.002167305544354
121 => 0.002224317309932
122 => 0.0022386514223645
123 => 0.0022945984174643
124 => 0.0022612847058921
125 => 0.0022760522427473
126 => 0.0022920844929992
127 => 0.0022997709433364
128 => 0.0022872462849895
129 => 0.0023741549970814
130 => 0.0023814927551961
131 => 0.0023839530420206
201 => 0.0023546479132896
202 => 0.0023806777265535
203 => 0.0023684992389441
204 => 0.0024001842804225
205 => 0.0024051528995012
206 => 0.0024009446559053
207 => 0.0024025217740252
208 => 0.0023283605200021
209 => 0.0023245148677493
210 => 0.0022720791264063
211 => 0.002293447078589
212 => 0.002253500716176
213 => 0.0022661681191903
214 => 0.0022717517897396
215 => 0.0022688351971151
216 => 0.0022946551905452
217 => 0.0022727029214535
218 => 0.0022147672740333
219 => 0.0021568158420847
220 => 0.0021560883090628
221 => 0.0021408307199585
222 => 0.0021298022776029
223 => 0.0021319267468556
224 => 0.002139413653601
225 => 0.0021293671249724
226 => 0.0021315110612273
227 => 0.0021671146880301
228 => 0.002174254741472
229 => 0.0021499900500776
301 => 0.0020525638127507
302 => 0.0020286551697355
303 => 0.0020458402282058
304 => 0.0020376268771165
305 => 0.0016445239200904
306 => 0.0017368776288651
307 => 0.0016820041911468
308 => 0.0017072923958529
309 => 0.0016512808253503
310 => 0.001678012482612
311 => 0.0016730761215996
312 => 0.0018215781523644
313 => 0.0018192594974119
314 => 0.0018203693148372
315 => 0.0017673948375144
316 => 0.0018517846183034
317 => 0.0018933580588784
318 => 0.0018856639214693
319 => 0.0018876003700915
320 => 0.0018543257670009
321 => 0.0018206914857298
322 => 0.0017833858915213
323 => 0.0018526950744498
324 => 0.0018449890764554
325 => 0.001862663863324
326 => 0.0019076158227759
327 => 0.001914235169561
328 => 0.0019231316387671
329 => 0.0019199428878505
330 => 0.0019959118715367
331 => 0.0019867115263528
401 => 0.002008881711126
402 => 0.0019632759589915
403 => 0.0019116687215137
404 => 0.0019214775701905
405 => 0.0019205328991852
406 => 0.001908506153044
407 => 0.00189764894438
408 => 0.0018795747509539
409 => 0.0019367641734313
410 => 0.0019344423873189
411 => 0.0019720294056981
412 => 0.0019653855350988
413 => 0.0019210161412054
414 => 0.0019226008027884
415 => 0.0019332584134966
416 => 0.0019701445258438
417 => 0.0019810948353865
418 => 0.001976022215712
419 => 0.0019880287302249
420 => 0.0019975181897509
421 => 0.0019892204602391
422 => 0.0021066988117637
423 => 0.0020579136096486
424 => 0.0020816911777143
425 => 0.0020873619875924
426 => 0.0020728363273339
427 => 0.0020759864229191
428 => 0.0020807579593809
429 => 0.0021097297944146
430 => 0.0021857602726112
501 => 0.0022194336538474
502 => 0.0023207416827121
503 => 0.0022166375482919
504 => 0.0022104604397811
505 => 0.002228709074989
506 => 0.0022881876124765
507 => 0.0023363893805752
508 => 0.0023523806878802
509 => 0.0023544942031283
510 => 0.0023844949587146
511 => 0.0024016908323357
512 => 0.0023808520778882
513 => 0.0023631934154025
514 => 0.0022999422782527
515 => 0.0023072637696049
516 => 0.0023577015846481
517 => 0.0024289479691691
518 => 0.002490084779011
519 => 0.0024686767990373
520 => 0.0026320045745581
521 => 0.0026481978563669
522 => 0.0026459604684124
523 => 0.0026828511742561
524 => 0.0026096306358179
525 => 0.0025783274370544
526 => 0.0023670114186663
527 => 0.0024263826003649
528 => 0.0025126820997112
529 => 0.0025012600373662
530 => 0.0024385870341487
531 => 0.0024900372359181
601 => 0.0024730261902166
602 => 0.0024596088726828
603 => 0.0025210762053797
604 => 0.0024534903481406
605 => 0.0025120078790848
606 => 0.0024369585403626
607 => 0.0024687745888866
608 => 0.0024507142609752
609 => 0.0024624015065244
610 => 0.0023940781078536
611 => 0.0024309437553196
612 => 0.0023925443757161
613 => 0.0023925261694104
614 => 0.0023916785009773
615 => 0.002436855200792
616 => 0.0024383284113511
617 => 0.0024049427619298
618 => 0.0024001313682664
619 => 0.0024179216123937
620 => 0.0023970938957929
621 => 0.0024068390533023
622 => 0.0023973890666863
623 => 0.0023952616756519
624 => 0.0023783102619438
625 => 0.0023710071268295
626 => 0.0023738708742864
627 => 0.0023640954278529
628 => 0.0023582053677834
629 => 0.0023905068197788
630 => 0.0023732494570145
701 => 0.0023878618814298
702 => 0.0023712091795736
703 => 0.0023134836597033
704 => 0.0022802851027896
705 => 0.002171246946913
706 => 0.0022021700326582
707 => 0.0022226720704995
708 => 0.0022158961471153
709 => 0.0022304534524789
710 => 0.0022313471527987
711 => 0.0022266144244308
712 => 0.0022211345312808
713 => 0.0022184672223525
714 => 0.0022383471578188
715 => 0.0022498881294849
716 => 0.0022247297242788
717 => 0.0022188354619425
718 => 0.0022442719986395
719 => 0.0022597882713305
720 => 0.0023743517110401
721 => 0.0023658644813914
722 => 0.002387165762275
723 => 0.0023847675649423
724 => 0.0024070947008685
725 => 0.0024435901319561
726 => 0.0023693847162719
727 => 0.0023822642106045
728 => 0.0023791064560251
729 => 0.0024135819925151
730 => 0.0024136896213769
731 => 0.0023930198150704
801 => 0.0024042252523985
802 => 0.002397970684687
803 => 0.0024092735338971
804 => 0.002365751129265
805 => 0.0024187567201537
806 => 0.0024488074745827
807 => 0.0024492247293371
808 => 0.0024634685484389
809 => 0.0024779410935927
810 => 0.0025057198837224
811 => 0.002477166358213
812 => 0.0024258013454511
813 => 0.0024295097334645
814 => 0.002399394445276
815 => 0.0023999006887112
816 => 0.002397198321579
817 => 0.0024053083287675
818 => 0.0023675308197776
819 => 0.0023763971256289
820 => 0.0023639842455161
821 => 0.0023822372274273
822 => 0.0023626000362168
823 => 0.0023791049332602
824 => 0.0023862278996782
825 => 0.0024125117991068
826 => 0.0023587178829004
827 => 0.0022490284462276
828 => 0.0022720864956721
829 => 0.002237981829373
830 => 0.0022411383460846
831 => 0.002247515012198
901 => 0.0022268461510093
902 => 0.0022307891183734
903 => 0.0022306482478329
904 => 0.0022294343016195
905 => 0.002224057532555
906 => 0.0022162601536502
907 => 0.0022473225113003
908 => 0.0022526006111549
909 => 0.0022643331733132
910 => 0.0022992413200236
911 => 0.0022957531729764
912 => 0.0023014424855322
913 => 0.0022890227481671
914 => 0.0022417144620803
915 => 0.0022442835296219
916 => 0.0022122472162123
917 => 0.0022635139327519
918 => 0.0022513732975877
919 => 0.0022435461511179
920 => 0.0022414104416856
921 => 0.0022764051189396
922 => 0.0022868760748484
923 => 0.0022803512778058
924 => 0.0022669687287126
925 => 0.002292667179167
926 => 0.002299543000378
927 => 0.0023010822431766
928 => 0.0023466149701927
929 => 0.0023036270168113
930 => 0.0023139746444537
1001 => 0.0023947038814592
1002 => 0.0023214936033684
1003 => 0.0023602747204571
1004 => 0.0023583765865828
1005 => 0.002378215693804
1006 => 0.0023567492007306
1007 => 0.0023570153036396
1008 => 0.0023746310868344
1009 => 0.0023498928963605
1010 => 0.0023437673725052
1011 => 0.002335305005171
1012 => 0.0023537822746558
1013 => 0.0023648585620569
1014 => 0.0024541253038734
1015 => 0.0025117956901449
1016 => 0.002509292066582
1017 => 0.0025321704993597
1018 => 0.0025218635558509
1019 => 0.0024885797164268
1020 => 0.002545391171792
1021 => 0.0025274136502222
1022 => 0.0025288956952577
1023 => 0.0025288405334675
1024 => 0.0025407940136892
1025 => 0.0025323238774317
1026 => 0.0025156283694266
1027 => 0.0025267116267871
1028 => 0.0025596249388109
1029 => 0.0026617888692362
1030 => 0.0027189611581943
1031 => 0.0026583470256533
1101 => 0.0027001578426245
1102 => 0.0026750862511591
1103 => 0.0026705299971746
1104 => 0.0026967902800277
1105 => 0.0027230965280295
1106 => 0.0027214209337568
1107 => 0.0027023239485483
1108 => 0.002691536546172
1109 => 0.00277322237101
1110 => 0.0028334070952689
1111 => 0.0028293029005579
1112 => 0.0028474174812564
1113 => 0.0029006024504501
1114 => 0.0029054650174974
1115 => 0.0029048524458143
1116 => 0.002892800066031
1117 => 0.0029451675751432
1118 => 0.0029888534725632
1119 => 0.002890010288338
1120 => 0.0029276484789386
1121 => 0.002944545475326
1122 => 0.0029693552791357
1123 => 0.0030112135767685
1124 => 0.0030566827903628
1125 => 0.0030631126357095
1126 => 0.0030585503527396
1127 => 0.0030285621840961
1128 => 0.0030783151401715
1129 => 0.0031074592549901
1130 => 0.0031248139084133
1201 => 0.0031688224219557
1202 => 0.0029446498254233
1203 => 0.0027859693194967
1204 => 0.0027611890671219
1205 => 0.0028115806847613
1206 => 0.0028248685524671
1207 => 0.0028195122296564
1208 => 0.0026409028936356
1209 => 0.0027602487259319
1210 => 0.0028886548066
1211 => 0.0028935874071087
1212 => 0.0029578701759357
1213 => 0.0029788032805055
1214 => 0.0030305593351464
1215 => 0.0030273219798369
1216 => 0.0030399237555233
1217 => 0.0030370268255253
1218 => 0.0031328940182244
1219 => 0.0032386497681874
1220 => 0.0032349877828489
1221 => 0.0032197841425465
1222 => 0.0032423641410015
1223 => 0.0033515154084382
1224 => 0.003341466508846
1225 => 0.0033512281588366
1226 => 0.0034799236546403
1227 => 0.003647246105906
1228 => 0.0035695080283937
1229 => 0.0037381772880663
1230 => 0.0038443456462569
1231 => 0.0040279528437345
]
'min_raw' => 0.0016445239200904
'max_raw' => 0.0040279528437345
'avg_raw' => 0.0028362383819124
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001644'
'max' => '$0.004027'
'avg' => '$0.002836'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00073328208583559
'max_diff' => 0.0016341146708545
'year' => 2028
]
3 => [
'items' => [
101 => 0.0040049643183258
102 => 0.0040764412529319
103 => 0.0039638100599942
104 => 0.0037051860744893
105 => 0.0036642578388103
106 => 0.0037461972031077
107 => 0.0039476371347064
108 => 0.0037398531427978
109 => 0.0037818875737425
110 => 0.0037697816548026
111 => 0.0037691365818291
112 => 0.0037937563935248
113 => 0.0037580440725772
114 => 0.0036125456525128
115 => 0.0036792267210007
116 => 0.0036534779581696
117 => 0.0036820481302282
118 => 0.0038362295655929
119 => 0.0037680622777918
120 => 0.0036962535775541
121 => 0.0037863176232784
122 => 0.0039010001028493
123 => 0.0038938234793819
124 => 0.0038798978302595
125 => 0.0039583959852396
126 => 0.0040880519394655
127 => 0.0041230974228929
128 => 0.0041489672822857
129 => 0.0041525342988211
130 => 0.0041892767860242
131 => 0.0039917031720341
201 => 0.0043052575714866
202 => 0.0043593997545066
203 => 0.0043492232680624
204 => 0.0044094000258378
205 => 0.0043916944971633
206 => 0.0043660419640262
207 => 0.0044614349250636
208 => 0.0043520745930493
209 => 0.0041968513698379
210 => 0.0041116928396168
211 => 0.0042238364617546
212 => 0.004292318658521
213 => 0.0043375810342979
214 => 0.0043512774018597
215 => 0.0040070402492682
216 => 0.0038215155162891
217 => 0.0039404347430833
218 => 0.0040855244071389
219 => 0.0039908971916245
220 => 0.0039946063993197
221 => 0.003859692857591
222 => 0.0040974612619574
223 => 0.0040628204053883
224 => 0.0042425372305476
225 => 0.0041996463679057
226 => 0.0043461984622562
227 => 0.0043076063843182
228 => 0.0044677999421848
301 => 0.0045317054894852
302 => 0.0046390128495069
303 => 0.0047179485803584
304 => 0.0047643011513143
305 => 0.0047615183168182
306 => 0.0049451902957047
307 => 0.0048368853467655
308 => 0.0047008288053813
309 => 0.0046983679718006
310 => 0.0047688335825195
311 => 0.0049165101712903
312 => 0.0049548005621515
313 => 0.0049761996669718
314 => 0.0049434261930314
315 => 0.0048258689332435
316 => 0.004775108304496
317 => 0.0048183578308659
318 => 0.0047654673765896
319 => 0.0048567711391108
320 => 0.0049821507064838
321 => 0.0049562603216258
322 => 0.0050428079965026
323 => 0.0051323757349191
324 => 0.0052604616235936
325 => 0.0052939480178998
326 => 0.0053492997543145
327 => 0.0054062748731834
328 => 0.0054245737458416
329 => 0.0054595119715528
330 => 0.0054593278298573
331 => 0.0055646165246518
401 => 0.0056807532155297
402 => 0.0057245921277655
403 => 0.00582539728916
404 => 0.005652771982906
405 => 0.0057837102606762
406 => 0.0059018198648226
407 => 0.0057610047256719
408 => 0.0059550855892717
409 => 0.0059626213094086
410 => 0.0060764017366565
411 => 0.0059610634759484
412 => 0.0058925759849127
413 => 0.00609029680534
414 => 0.0061859676821973
415 => 0.0061571508354925
416 => 0.0059378532092054
417 => 0.0058102125845887
418 => 0.005476152449929
419 => 0.0058718611097573
420 => 0.0060645992549798
421 => 0.0059373540639714
422 => 0.0060015291369053
423 => 0.0063516475259953
424 => 0.0064849499400739
425 => 0.0064572239697998
426 => 0.0064619092023678
427 => 0.0065338367653946
428 => 0.006852803191088
429 => 0.0066616711152287
430 => 0.0068077844256409
501 => 0.0068852823986328
502 => 0.0069572668349567
503 => 0.00678049581026
504 => 0.0065505193044118
505 => 0.0064776760912527
506 => 0.0059247020374542
507 => 0.0058959173365094
508 => 0.0058797596116034
509 => 0.0057778874416265
510 => 0.0056978438211604
511 => 0.0056341901623367
512 => 0.0054671439529918
513 => 0.0055235171449528
514 => 0.0052572803525104
515 => 0.0054276092174624
516 => 0.0050026888682122
517 => 0.0053565751616442
518 => 0.0051639709413645
519 => 0.0052932994952084
520 => 0.0052928482800675
521 => 0.0050547134087855
522 => 0.0049173621847781
523 => 0.0050048877305052
524 => 0.0050987220633112
525 => 0.0051139463681124
526 => 0.0052356050299221
527 => 0.0052695573473889
528 => 0.0051666802403821
529 => 0.0049938833384497
530 => 0.0050340201176909
531 => 0.0049165488142278
601 => 0.0047106848733772
602 => 0.0048585399497357
603 => 0.0049090241735333
604 => 0.0049313208827851
605 => 0.0047288773405919
606 => 0.0046652651843716
607 => 0.0046313986061576
608 => 0.0049677504193297
609 => 0.0049861765309265
610 => 0.0048919059388074
611 => 0.0053180179542902
612 => 0.0052215756816715
613 => 0.0053293253291171
614 => 0.0050303781256686
615 => 0.0050417983114261
616 => 0.0049002719144721
617 => 0.0049795172399691
618 => 0.0049235091981039
619 => 0.0049731150007865
620 => 0.0050028485143821
621 => 0.0051443516882469
622 => 0.00535819090059
623 => 0.0051232158327865
624 => 0.0050208338308396
625 => 0.0050843510490292
626 => 0.0052535057712694
627 => 0.0055097838343341
628 => 0.0053580620629231
629 => 0.0054253936086726
630 => 0.0054401025560469
701 => 0.0053282285388536
702 => 0.0055139087889235
703 => 0.0056134163433996
704 => 0.005715490504105
705 => 0.0058041186377924
706 => 0.0056747198396603
707 => 0.0058131951022507
708 => 0.0057016084847773
709 => 0.0056015037532911
710 => 0.0056016555708474
711 => 0.0055388584104893
712 => 0.0054171809993442
713 => 0.0053947418178626
714 => 0.005511473273686
715 => 0.0056050808467463
716 => 0.0056127908148136
717 => 0.0056646167769906
718 => 0.005695286847557
719 => 0.0059958952330474
720 => 0.0061168024124547
721 => 0.0062646454227781
722 => 0.0063222386072745
723 => 0.0064955734443095
724 => 0.0063555914858366
725 => 0.0063253055085932
726 => 0.0059048518913395
727 => 0.0059737011476105
728 => 0.0060839354498656
729 => 0.0059066696143818
730 => 0.0060191039860254
731 => 0.0060413009126734
801 => 0.0059006461891237
802 => 0.0059757759543034
803 => 0.005776253572409
804 => 0.0053625399432836
805 => 0.005514369370459
806 => 0.0056261669340927
807 => 0.0054666180262472
808 => 0.0057526032681649
809 => 0.0055855365937703
810 => 0.0055325844786018
811 => 0.0053259993985376
812 => 0.005423499604139
813 => 0.0055553700282833
814 => 0.0054738894377444
815 => 0.0056429738974848
816 => 0.0058824425856555
817 => 0.0060531022334529
818 => 0.0060662033621215
819 => 0.0059564806418962
820 => 0.0061323120012983
821 => 0.0061335927407921
822 => 0.0059352542490943
823 => 0.0058137730272828
824 => 0.0057861722380885
825 => 0.0058551244209492
826 => 0.0059388451002173
827 => 0.0060708492771546
828 => 0.0061506166366428
829 => 0.0063586076048495
830 => 0.0064148839972779
831 => 0.0064767146906206
901 => 0.006559339564806
902 => 0.0066585519108486
903 => 0.0064414809458695
904 => 0.006450105579979
905 => 0.0062479721029425
906 => 0.0060319634938562
907 => 0.0061958871022994
908 => 0.0064101954144952
909 => 0.0063610328508879
910 => 0.006355501058182
911 => 0.0063648039991219
912 => 0.0063277370316612
913 => 0.0061600845116023
914 => 0.006075890465589
915 => 0.0061845222651381
916 => 0.0062422552319532
917 => 0.0063317940286398
918 => 0.0063207564820135
919 => 0.0065513988065133
920 => 0.006641019439552
921 => 0.0066180906465376
922 => 0.0066223100962645
923 => 0.0067845639715417
924 => 0.0069650236509046
925 => 0.0071340479543799
926 => 0.0073059867356378
927 => 0.0070987078239466
928 => 0.0069934643757758
929 => 0.0071020487500795
930 => 0.0070444323526382
1001 => 0.0073755132624694
1002 => 0.00739843658633
1003 => 0.007729493555243
1004 => 0.008043706040272
1005 => 0.0078463548081267
1006 => 0.008032448131145
1007 => 0.0082337232324005
1008 => 0.0086220155584308
1009 => 0.0084912523633125
1010 => 0.0083910898051725
1011 => 0.0082964366717121
1012 => 0.0084933948166814
1013 => 0.0087467783237012
1014 => 0.0088013547042362
1015 => 0.0088897892904849
1016 => 0.0087968111363111
1017 => 0.0089087930818057
1018 => 0.0093041385567618
1019 => 0.0091973127196176
1020 => 0.0090456028577626
1021 => 0.0093576901408575
1022 => 0.0094706333154009
1023 => 0.010263327663146
1024 => 0.011264137021745
1025 => 0.010849795375617
1026 => 0.010592600145143
1027 => 0.010653047125057
1028 => 0.011018508823283
1029 => 0.011135883521578
1030 => 0.010816818630126
1031 => 0.010929517743781
1101 => 0.011550500940355
1102 => 0.011883638501791
1103 => 0.011431192947018
1104 => 0.010182913605649
1105 => 0.0090319430445961
1106 => 0.0093372322662673
1107 => 0.0093026219427573
1108 => 0.0099697909182443
1109 => 0.0091947649587314
1110 => 0.0092078144082247
1111 => 0.0098887797315806
1112 => 0.0097071098580104
1113 => 0.0094128279293461
1114 => 0.0090340916283473
1115 => 0.0083339625470832
1116 => 0.0077138386952638
1117 => 0.0089300443746756
1118 => 0.0088775993742528
1119 => 0.0088016512417271
1120 => 0.0089706655922169
1121 => 0.009791351302635
1122 => 0.0097724318407094
1123 => 0.0096520758767334
1124 => 0.0097433648146404
1125 => 0.0093968245371555
1126 => 0.0094861358572388
1127 => 0.0090317607249788
1128 => 0.009237157261142
1129 => 0.009412196532496
1130 => 0.009447338257721
1201 => 0.0095265143590339
1202 => 0.0088499632421493
1203 => 0.0091537148311332
1204 => 0.0093321404319863
1205 => 0.0085260070761531
1206 => 0.0093162057674579
1207 => 0.0088381859923947
1208 => 0.0086759389011222
1209 => 0.0088943832350917
1210 => 0.0088092552656997
1211 => 0.0087360672364985
1212 => 0.0086952270586743
1213 => 0.0088556284687202
1214 => 0.0088481455512204
1215 => 0.0085856977118132
1216 => 0.008243345204049
1217 => 0.0083582499429927
1218 => 0.0083165039740968
1219 => 0.0081652111974809
1220 => 0.0082671642617605
1221 => 0.0078182145639381
1222 => 0.0070458199432094
1223 => 0.0075560874887499
1224 => 0.0075364427433108
1225 => 0.0075265369718422
1226 => 0.0079099889295568
1227 => 0.0078731288715643
1228 => 0.0078062275053734
1229 => 0.0081639825014261
1230 => 0.0080333971153831
1231 => 0.0084358305053811
]
'min_raw' => 0.0036125456525128
'max_raw' => 0.011883638501791
'avg_raw' => 0.0077480920771518
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003612'
'max' => '$0.011883'
'avg' => '$0.007748'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0019680217324224
'max_diff' => 0.0078556856580563
'year' => 2029
]
4 => [
'items' => [
101 => 0.0087008991637935
102 => 0.0086336691779473
103 => 0.0088829675323722
104 => 0.008360897116103
105 => 0.0085343079665581
106 => 0.0085700477024998
107 => 0.0081595678603077
108 => 0.0078791596329079
109 => 0.0078604596010282
110 => 0.0073742703773511
111 => 0.0076339887362571
112 => 0.0078625301442185
113 => 0.0077530765453347
114 => 0.0077184268057613
115 => 0.00789544481063
116 => 0.0079092006256649
117 => 0.0075955665850915
118 => 0.0076607810336251
119 => 0.0079327361250101
120 => 0.0076539284630871
121 => 0.0071122507189436
122 => 0.0069779071491153
123 => 0.006959983240457
124 => 0.0065956328241597
125 => 0.00698688462884
126 => 0.0068160927312006
127 => 0.0073556222894424
128 => 0.0070474458993298
129 => 0.0070341610310963
130 => 0.0070140790042951
131 => 0.0067004675498619
201 => 0.0067691285273351
202 => 0.0069973680738181
203 => 0.0070788065153058
204 => 0.0070703118186532
205 => 0.0069962495755247
206 => 0.0070301548911689
207 => 0.006920934056084
208 => 0.0068823659059804
209 => 0.0067606342152481
210 => 0.0065817222591095
211 => 0.0066066010639414
212 => 0.0062521296639709
213 => 0.0060589948320458
214 => 0.0060055376560451
215 => 0.0059340524861679
216 => 0.0060136120961976
217 => 0.0062511254910317
218 => 0.0059646339455841
219 => 0.0054734642859594
220 => 0.0055029844194152
221 => 0.0055693073946841
222 => 0.0054457149690408
223 => 0.0053287451104955
224 => 0.0054304409124361
225 => 0.0052223258526779
226 => 0.0055944571053745
227 => 0.0055843919978748
228 => 0.0057230995164378
301 => 0.00580983617436
302 => 0.0056099362591757
303 => 0.0055596619710937
304 => 0.0055883004904242
305 => 0.005114969558981
306 => 0.0056844182811273
307 => 0.0056893428973233
308 => 0.005647175343632
309 => 0.0059503892084181
310 => 0.0065902650378928
311 => 0.0063495180118988
312 => 0.0062562934868166
313 => 0.0060790735964885
314 => 0.0063152085780748
315 => 0.0062970770957685
316 => 0.0062150796566191
317 => 0.0061654873495739
318 => 0.0062568626958878
319 => 0.0061541649329594
320 => 0.0061357175927917
321 => 0.0060239467822793
322 => 0.0059840496881742
323 => 0.0059545114680479
324 => 0.0059219927900544
325 => 0.0059937208905584
326 => 0.0058311755781988
327 => 0.0056351618660067
328 => 0.0056188654467357
329 => 0.0056638612931388
330 => 0.0056439539806522
331 => 0.0056187701381824
401 => 0.0055706873244961
402 => 0.0055564221808021
403 => 0.0056027769773436
404 => 0.0055504451147008
405 => 0.0056276636286944
406 => 0.0056066644655834
407 => 0.0054893648474593
408 => 0.0053431660933957
409 => 0.0053418646178223
410 => 0.0053103663360733
411 => 0.0052702485384677
412 => 0.0052590886849446
413 => 0.0054218763756493
414 => 0.0057588420235824
415 => 0.0056926876039886
416 => 0.0057404909519227
417 => 0.0059756361110464
418 => 0.0060503816860702
419 => 0.0059973290473643
420 => 0.0059247073233594
421 => 0.0059279023106541
422 => 0.0061760727256697
423 => 0.0061915508100422
424 => 0.0062306589358322
425 => 0.0062809239294274
426 => 0.0060058893931255
427 => 0.0059149482087277
428 => 0.0058718552303353
429 => 0.0057391455359678
430 => 0.0058822615636738
501 => 0.0057988739831689
502 => 0.0058101258167044
503 => 0.0058027980453535
504 => 0.0058067995040128
505 => 0.0055943530871053
506 => 0.0056717573955714
507 => 0.0055430577199339
508 => 0.0053707433014719
509 => 0.00537016564312
510 => 0.0054123393529209
511 => 0.0053872527800739
512 => 0.0053197454575773
513 => 0.0053293345541124
514 => 0.0052453239783437
515 => 0.0053395349590713
516 => 0.0053422365928955
517 => 0.0053059602336085
518 => 0.0054511052480294
519 => 0.0055105712788647
520 => 0.0054866934020671
521 => 0.005508895943375
522 => 0.005695436618792
523 => 0.0057258508882252
524 => 0.0057393588976536
525 => 0.0057212599544879
526 => 0.0055123055644841
527 => 0.0055215735802234
528 => 0.0054535710301532
529 => 0.005396116041276
530 => 0.0053984139395193
531 => 0.005427953272428
601 => 0.0055569532716988
602 => 0.0058284261651991
603 => 0.0058387283630633
604 => 0.0058512149274111
605 => 0.0058004257949643
606 => 0.0057851073066318
607 => 0.0058053163467797
608 => 0.0059072672922117
609 => 0.0061695128032747
610 => 0.0060768177248762
611 => 0.0060014551832535
612 => 0.006067568449852
613 => 0.006057390830672
614 => 0.0059714814823996
615 => 0.0059690702931235
616 => 0.0058041827869085
617 => 0.0057432276301677
618 => 0.0056922889387806
619 => 0.0056366652175742
620 => 0.005603689611119
621 => 0.0056543551297793
622 => 0.0056659429333537
623 => 0.0055551618913212
624 => 0.0055400628446422
625 => 0.0056305290349408
626 => 0.0055907182375099
627 => 0.0056316646299279
628 => 0.0056411645442005
629 => 0.005639634839201
630 => 0.0055980677944422
701 => 0.0056245613892243
702 => 0.0055618961394438
703 => 0.0054937570923237
704 => 0.0054502886254737
705 => 0.0054123566228917
706 => 0.0054334035025451
707 => 0.005358375219589
708 => 0.0053343721618503
709 => 0.0056155859554369
710 => 0.0058233216083171
711 => 0.0058203010496518
712 => 0.0058019141756019
713 => 0.0057745950104049
714 => 0.005905268725117
715 => 0.0058597446158147
716 => 0.0058928672089987
717 => 0.0059012982991149
718 => 0.0059268166696148
719 => 0.0059359372936904
720 => 0.0059083684330531
721 => 0.0058158439695017
722 => 0.0055852818032934
723 => 0.0054779544925328
724 => 0.0054425346923041
725 => 0.0054438221347706
726 => 0.0054083087241472
727 => 0.0054187690151752
728 => 0.0054046710618093
729 => 0.0053779729487954
730 => 0.0054317549692998
731 => 0.0054379528461488
801 => 0.0054253994799158
802 => 0.0054283562521021
803 => 0.0053244197413056
804 => 0.0053323218084832
805 => 0.005288322094292
806 => 0.0052800726783057
807 => 0.0051688452323238
808 => 0.0049717896890908
809 => 0.0050809775886863
810 => 0.004949093960117
811 => 0.0048991476316147
812 => 0.0051355857824967
813 => 0.0051118539499216
814 => 0.0050712353685327
815 => 0.0050111520210045
816 => 0.004988866522953
817 => 0.0048534668915237
818 => 0.0048454667589699
819 => 0.0049125744724039
820 => 0.0048816065716895
821 => 0.0048381159106254
822 => 0.004680597144829
823 => 0.0045034938994027
824 => 0.0045088395331508
825 => 0.0045651727803978
826 => 0.0047289692943422
827 => 0.0046649711626357
828 => 0.0046185397837886
829 => 0.0046098445822527
830 => 0.0047186832341122
831 => 0.004872712728896
901 => 0.0049449799216328
902 => 0.0048733653284179
903 => 0.0047910983397361
904 => 0.0047961055501487
905 => 0.0048294162777535
906 => 0.0048329167642364
907 => 0.0047793694117877
908 => 0.0047944426778466
909 => 0.0047715450083748
910 => 0.004631022053092
911 => 0.004628480438434
912 => 0.0045939938389689
913 => 0.0045929495984429
914 => 0.0045342792896673
915 => 0.0045260709079009
916 => 0.0044095774487937
917 => 0.0044862537963527
918 => 0.004434823328099
919 => 0.0043573054812197
920 => 0.0043439413751995
921 => 0.0043435396340349
922 => 0.0044231331301065
923 => 0.0044853237000095
924 => 0.0044357179831136
925 => 0.0044244237229428
926 => 0.0045450168733726
927 => 0.0045296702957494
928 => 0.0045163802585026
929 => 0.0048589210770484
930 => 0.004587773290376
1001 => 0.0044695373788123
1002 => 0.0043231979858615
1003 => 0.0043708468301135
1004 => 0.0043808871417046
1005 => 0.0040289672813162
1006 => 0.0038861934377855
1007 => 0.0038371988350045
1008 => 0.0038090017484221
1009 => 0.0038218515148544
1010 => 0.0036933383099752
1011 => 0.0037797013090662
1012 => 0.0036684197365916
1013 => 0.0036497630188247
1014 => 0.0038487482555508
1015 => 0.0038764358887864
1016 => 0.0037583118435301
1017 => 0.0038341666031305
1018 => 0.0038066606128393
1019 => 0.0036703273397542
1020 => 0.003665120411522
1021 => 0.0035967131674342
1022 => 0.0034896690766893
1023 => 0.0034407470548425
1024 => 0.0034152680411042
1025 => 0.0034257811787487
1026 => 0.0034204654146483
1027 => 0.003385776458172
1028 => 0.0034224537450281
1029 => 0.0033287584332119
1030 => 0.0032914482050923
1031 => 0.0032745960406414
1101 => 0.0031914360585036
1102 => 0.0033237805714967
1103 => 0.0033498541077886
1104 => 0.0033759790170015
1105 => 0.0036033785154668
1106 => 0.0035920182791478
1107 => 0.0036947092828122
1108 => 0.0036907188992465
1109 => 0.0036614297615174
1110 => 0.0035378637072678
1111 => 0.0035871149341386
1112 => 0.0034355273131704
1113 => 0.003549107065756
1114 => 0.0034972740098798
1115 => 0.0035315822574249
1116 => 0.0034698929348889
1117 => 0.00350403435307
1118 => 0.0033560371105079
1119 => 0.0032178393677807
1120 => 0.0032734541736977
1121 => 0.003333913828054
1122 => 0.003465005763532
1123 => 0.0033869284882463
1124 => 0.0034150080288677
1125 => 0.0033209462682444
1126 => 0.003126869988665
1127 => 0.0031279684393308
1128 => 0.0030981140318991
1129 => 0.0030723154650632
1130 => 0.003395896602536
1201 => 0.0033556541730305
1202 => 0.0032915331284124
1203 => 0.0033773616947027
1204 => 0.0034000561299124
1205 => 0.0034007022085782
1206 => 0.0034633205149877
1207 => 0.0034967399163435
1208 => 0.0035026302306804
1209 => 0.0036011614887738
1210 => 0.003634187866828
1211 => 0.0037702188439653
1212 => 0.0034939045136268
1213 => 0.0034882140018272
1214 => 0.0033785694786429
1215 => 0.0033090311886281
1216 => 0.0033833308248528
1217 => 0.0034491501596361
1218 => 0.0033806146688453
1219 => 0.0033895639570794
1220 => 0.003297560660248
1221 => 0.0033304475097077
1222 => 0.0033587740947995
1223 => 0.0033431338194715
1224 => 0.0033197195703077
1225 => 0.0034437537247777
1226 => 0.0034367552316887
1227 => 0.0035522586878641
1228 => 0.0036423018916841
1229 => 0.0038036754100777
1230 => 0.0036352737310422
1231 => 0.0036291365045221
]
'min_raw' => 0.0030723154650632
'max_raw' => 0.0088829675323722
'avg_raw' => 0.0059776414987177
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003072'
'max' => '$0.008882'
'avg' => '$0.005977'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00054023018744957
'max_diff' => -0.0030006709694186
'year' => 2030
]
5 => [
'items' => [
101 => 0.0036891288781982
102 => 0.0036341786823082
103 => 0.0036689053092944
104 => 0.0037980804135986
105 => 0.0038008096800011
106 => 0.0037550909512984
107 => 0.0037523089625019
108 => 0.0037610897444573
109 => 0.0038125190586332
110 => 0.0037945480759969
111 => 0.0038153445520732
112 => 0.0038413508638535
113 => 0.0039489239958246
114 => 0.0039748595137557
115 => 0.0039118496512074
116 => 0.003917538736304
117 => 0.0038939713180516
118 => 0.0038712054873186
119 => 0.0039223797501238
120 => 0.0040159017212329
121 => 0.0040153199259044
122 => 0.0040370152053944
123 => 0.0040505311847833
124 => 0.0039925107069447
125 => 0.0039547415093439
126 => 0.0039692246230205
127 => 0.0039923834371906
128 => 0.0039617145317118
129 => 0.0037724118398777
130 => 0.0038298341838774
131 => 0.0038202762980267
201 => 0.0038066647062966
202 => 0.0038644033172222
203 => 0.0038588342873441
204 => 0.0036920202213092
205 => 0.0037026991165898
206 => 0.0036926696403008
207 => 0.0037250769300284
208 => 0.0036324285823112
209 => 0.0036609265900729
210 => 0.0036788002733888
211 => 0.0036893280101739
212 => 0.0037273614143786
213 => 0.0037228986333751
214 => 0.0037270840016454
215 => 0.0037834774996346
216 => 0.004068696460552
217 => 0.0040842202992946
218 => 0.0040077752397489
219 => 0.0040383135332253
220 => 0.0039796866877413
221 => 0.0040190432818804
222 => 0.0040459700640413
223 => 0.0039242931131787
224 => 0.0039170881938255
225 => 0.0038582193744954
226 => 0.003889852143503
227 => 0.0038395221335353
228 => 0.0038518713575124
301 => 0.0038173418506865
302 => 0.0038794880882168
303 => 0.0039489772383247
304 => 0.0039665329418517
305 => 0.0039203514440778
306 => 0.0038869129961806
307 => 0.0038282060969825
308 => 0.0039258369787175
309 => 0.003954387223784
310 => 0.0039256870164344
311 => 0.0039190365512795
312 => 0.0039064339318283
313 => 0.0039217102565726
314 => 0.0039542317330179
315 => 0.0039388952053036
316 => 0.0039490252520537
317 => 0.0039104199599012
318 => 0.0039925299141371
319 => 0.0041229402823002
320 => 0.0041233595729581
321 => 0.0041080229625743
322 => 0.0041017475520371
323 => 0.0041174838449943
324 => 0.004126020138387
325 => 0.0041769084242679
326 => 0.0042315135824968
327 => 0.0044863320298542
328 => 0.0044147800295087
329 => 0.0046408701152214
330 => 0.0048196780188969
331 => 0.0048732946908871
401 => 0.0048239698755154
402 => 0.0046552323466031
403 => 0.0046469532784297
404 => 0.004899118385772
405 => 0.0048278701930542
406 => 0.0048193954472403
407 => 0.0047292384700893
408 => 0.0047825324097444
409 => 0.0047708762433669
410 => 0.0047524764145008
411 => 0.0048541575388747
412 => 0.005044495526566
413 => 0.005014829566206
414 => 0.0049926853029615
415 => 0.0048956555875224
416 => 0.0049540891485882
417 => 0.0049332820767138
418 => 0.0050226824619804
419 => 0.0049697236542095
420 => 0.0048273304179198
421 => 0.0048500070101332
422 => 0.0048465794888391
423 => 0.0049171176341945
424 => 0.0048959438338232
425 => 0.0048424449644893
426 => 0.0050438449720164
427 => 0.0050307671757733
428 => 0.0050493085008456
429 => 0.005057470965552
430 => 0.0051800596010676
501 => 0.0052302802426395
502 => 0.0052416812075124
503 => 0.0052893869328019
504 => 0.0052404942456083
505 => 0.005436099854278
506 => 0.0055661661701397
507 => 0.0057172448891645
508 => 0.0059380115037911
509 => 0.0060210217930961
510 => 0.0060060267273294
511 => 0.0061734094549648
512 => 0.0064741924958165
513 => 0.0060668235796018
514 => 0.0064957840375449
515 => 0.0063599801091468
516 => 0.0060379914379231
517 => 0.0060172591634934
518 => 0.0062353136300114
519 => 0.0067189374497837
520 => 0.0065977951681467
521 => 0.0067191355951584
522 => 0.006577585541673
523 => 0.0065705563884399
524 => 0.0067122608250062
525 => 0.0070433609649503
526 => 0.006886067699566
527 => 0.0066605492337467
528 => 0.0068270685594517
529 => 0.0066828141088899
530 => 0.0063577684574959
531 => 0.006597702532927
601 => 0.0064372654496152
602 => 0.0064840895198301
603 => 0.0068213044057363
604 => 0.0067807298185041
605 => 0.0068332370914881
606 => 0.0067405631290259
607 => 0.0066539910347437
608 => 0.0064923977918378
609 => 0.0064445579990639
610 => 0.0064577791966912
611 => 0.006444551447295
612 => 0.0063541415130077
613 => 0.0063346174963064
614 => 0.006302076613104
615 => 0.0063121623934949
616 => 0.0062509760129033
617 => 0.0063664473548309
618 => 0.0063878798534227
619 => 0.0064719102665668
620 => 0.0064806345828196
621 => 0.006714658087328
622 => 0.00658576187365
623 => 0.0066722365821489
624 => 0.0066645014702892
625 => 0.0060449699087836
626 => 0.0061303358917858
627 => 0.0062631385720161
628 => 0.0062033111445821
629 => 0.0061187291596525
630 => 0.0060504246718227
701 => 0.0059469363882681
702 => 0.0060925941600548
703 => 0.0062841186409771
704 => 0.0064854919597193
705 => 0.0067274288076857
706 => 0.0066734313196749
707 => 0.0064809691186344
708 => 0.0064896028323793
709 => 0.0065429730535095
710 => 0.00647385376795
711 => 0.0064534691412698
712 => 0.0065401725188309
713 => 0.0065407695973408
714 => 0.0064612395059599
715 => 0.0063728563632431
716 => 0.006372486034648
717 => 0.0063567591080814
718 => 0.0065803833269716
719 => 0.0067033540364025
720 => 0.0067174524300615
721 => 0.0067024051021791
722 => 0.006708196221474
723 => 0.0066366422751308
724 => 0.0068001933778076
725 => 0.0069502840431515
726 => 0.00691005653862
727 => 0.0068497497906505
728 => 0.0068017125611262
729 => 0.0068987404939892
730 => 0.0068944199928749
731 => 0.006948973132126
801 => 0.0069464982866153
802 => 0.0069281541177326
803 => 0.006910057193748
804 => 0.0069818094517632
805 => 0.0069611459537608
806 => 0.0069404503596387
807 => 0.0068989421772897
808 => 0.0069045838286488
809 => 0.0068442874934896
810 => 0.0068163916498724
811 => 0.0063969050933572
812 => 0.0062848045783377
813 => 0.0063200736823792
814 => 0.0063316851871916
815 => 0.0062828988993943
816 => 0.0063528459039265
817 => 0.0063419447373624
818 => 0.0063843547994942
819 => 0.0063578588339051
820 => 0.006358946237575
821 => 0.0064368652228372
822 => 0.0064594854357499
823 => 0.006447980612895
824 => 0.0064560381964603
825 => 0.0066417218088296
826 => 0.0066153235369783
827 => 0.0066012999811944
828 => 0.0066051846019853
829 => 0.0066526307460471
830 => 0.0066659130759211
831 => 0.0066096349109126
901 => 0.0066361760188708
902 => 0.0067491846879887
903 => 0.0067887313264432
904 => 0.0069149452129268
905 => 0.0068613273106756
906 => 0.0069597452907861
907 => 0.0072622486084837
908 => 0.007503909190298
909 => 0.0072816681322156
910 => 0.007725447015428
911 => 0.0080709925323088
912 => 0.0080577299198347
913 => 0.0079974760663548
914 => 0.0076040816821889
915 => 0.0072420743046996
916 => 0.0075449088476146
917 => 0.007545680835143
918 => 0.0075196670793359
919 => 0.0073580978761897
920 => 0.007514044821288
921 => 0.0075264233234737
922 => 0.0075194946539591
923 => 0.007395619924726
924 => 0.0072064861090638
925 => 0.0072434424039218
926 => 0.0073039775687872
927 => 0.0071893718727386
928 => 0.0071527484086471
929 => 0.0072208383962924
930 => 0.0074402385235977
1001 => 0.007398762200429
1002 => 0.0073976790860121
1003 => 0.007575132385226
1004 => 0.0074481141198077
1005 => 0.0072439085411504
1006 => 0.0071923439393987
1007 => 0.0070093243412583
1008 => 0.0071357366295873
1009 => 0.0071402859827969
1010 => 0.0070710512643813
1011 => 0.0072495265569755
1012 => 0.0072478818757343
1013 => 0.0074173176035108
1014 => 0.0077412150778664
1015 => 0.0076454226566727
1016 => 0.0075340264930103
1017 => 0.007546138344681
1018 => 0.0076789754629112
1019 => 0.0075986591088528
1020 => 0.0076275414297577
1021 => 0.0076789317460594
1022 => 0.0077099367998339
1023 => 0.0075416771945835
1024 => 0.0075024478318124
1025 => 0.0074221983232179
1026 => 0.0074012627243537
1027 => 0.0074666242746429
1028 => 0.0074494038153993
1029 => 0.0071399036272756
1030 => 0.0071075591355738
1031 => 0.007108551094957
1101 => 0.0070272193326763
1102 => 0.0069031688733386
1103 => 0.00722916607381
1104 => 0.0072029839362842
1105 => 0.0071740808827923
1106 => 0.0071776213419265
1107 => 0.0073191256775809
1108 => 0.0072370460167611
1109 => 0.0074552682476423
1110 => 0.0074104083173338
1111 => 0.007364397899085
1112 => 0.0073580378577713
1113 => 0.0073403277721699
1114 => 0.0072795932990102
1115 => 0.0072062527730937
1116 => 0.0071578270052361
1117 => 0.0066027170510264
1118 => 0.0067057422296017
1119 => 0.006824263306512
1120 => 0.0068651763073181
1121 => 0.0067951917883459
1122 => 0.0072823567143799
1123 => 0.0073713664408043
1124 => 0.0071017501735039
1125 => 0.0070513159782516
1126 => 0.0072856631718242
1127 => 0.0071443231663207
1128 => 0.0072079685621445
1129 => 0.0070704020285435
1130 => 0.0073499266042177
1201 => 0.0073477970952828
1202 => 0.0072390557219967
1203 => 0.0073309631860693
1204 => 0.0073149920024551
1205 => 0.0071922232598332
1206 => 0.0073538185923375
1207 => 0.0073538987416063
1208 => 0.0072492375340597
1209 => 0.0071270161569297
1210 => 0.007105165861439
1211 => 0.0070887045989609
1212 => 0.0072039201006687
1213 => 0.0073072219592304
1214 => 0.0074994411073112
1215 => 0.007547769568153
1216 => 0.0077363987682264
1217 => 0.0076240792637718
1218 => 0.0076738690453154
1219 => 0.0077279228963757
1220 => 0.0077538383003385
1221 => 0.0077116105402783
1222 => 0.0080046293308687
1223 => 0.0080293690946583
1224 => 0.0080376641234588
1225 => 0.0079388598359234
1226 => 0.0080266211686863
1227 => 0.0079855605474364
1228 => 0.0080923888769595
1229 => 0.0081091409230813
1230 => 0.0080949525359875
1231 => 0.0081002698998396
]
'min_raw' => 0.0036324285823112
'max_raw' => 0.0081091409230813
'avg_raw' => 0.0058707847526963
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003632'
'max' => '$0.0081091'
'avg' => '$0.00587'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00056011311724798
'max_diff' => -0.00077382660929089
'year' => 2031
]
6 => [
'items' => [
101 => 0.0078502300541275
102 => 0.0078372641690621
103 => 0.0076604734061777
104 => 0.0077325169488244
105 => 0.0075978349989832
106 => 0.0076405440326557
107 => 0.0076593697677519
108 => 0.0076495362720887
109 => 0.0077365901826324
110 => 0.0076625765747313
111 => 0.0074672424945164
112 => 0.0072718551956621
113 => 0.007269402267284
114 => 0.0072179602403679
115 => 0.0071807770769848
116 => 0.007187939873396
117 => 0.0072131825022072
118 => 0.0071793099295097
119 => 0.0071865383602777
120 => 0.0073065784738094
121 => 0.0073306516624913
122 => 0.0072488415613483
123 => 0.0069203622001181
124 => 0.0068397525409441
125 => 0.0068976931653994
126 => 0.0068700012787639
127 => 0.0055446272135783
128 => 0.0058560041906423
129 => 0.0056709945642339
130 => 0.0057562555119665
131 => 0.005567408591414
201 => 0.0056575362402168
202 => 0.0056408929544176
203 => 0.0061415779192219
204 => 0.0061337604121662
205 => 0.0061375022391005
206 => 0.0059588950902468
207 => 0.0062434211280833
208 => 0.006383588885547
209 => 0.0063576475640845
210 => 0.0063641764358128
211 => 0.0062519887883342
212 => 0.0061385884607581
213 => 0.006012810045291
214 => 0.0062464907945469
215 => 0.0062205094842931
216 => 0.006280101262235
217 => 0.0064316599319725
218 => 0.0064539775218067
219 => 0.0064839725888666
220 => 0.0064732214925199
221 => 0.0067293562250027
222 => 0.0066983366188677
223 => 0.0067730849447034
224 => 0.0066193219672902
225 => 0.0064453245630313
226 => 0.0064783957811772
227 => 0.0064752107569278
228 => 0.0064346617426325
229 => 0.0063980559055955
301 => 0.0063371175005596
302 => 0.0065299356312802
303 => 0.0065221075673002
304 => 0.0066488348240075
305 => 0.0066264345504216
306 => 0.0064768400411381
307 => 0.0064821828383028
308 => 0.0065181157168958
309 => 0.0066424798199808
310 => 0.0066793995531302
311 => 0.0066622968617384
312 => 0.0067027776636869
313 => 0.0067347720390117
314 => 0.0067067956646336
315 => 0.0071028821288754
316 => 0.0069383994138703
317 => 0.0070185671447004
318 => 0.0070376866761277
319 => 0.0069887123984171
320 => 0.0069993331656151
321 => 0.0070154207339343
322 => 0.0071131012984995
323 => 0.0073694433640175
324 => 0.007482975519856
325 => 0.007824542612274
326 => 0.0074735482547575
327 => 0.0074527217021415
328 => 0.007514248249824
329 => 0.0077147842916221
330 => 0.0078772999181067
331 => 0.0079312157271631
401 => 0.0079383415913829
402 => 0.0080394912334279
403 => 0.008097468321919
404 => 0.008027209006384
405 => 0.007967671592925
406 => 0.0077544159679709
407 => 0.0077791008872351
408 => 0.0079491555021091
409 => 0.0081893676617854
410 => 0.0083954946846032
411 => 0.0083233161854644
412 => 0.0088739871838139
413 => 0.0089285839640109
414 => 0.0089210404543129
415 => 0.009045420044692
416 => 0.0087985518872526
417 => 0.0086930109671019
418 => 0.0079805442574932
419 => 0.0081807183417538
420 => 0.0084716831290384
421 => 0.0084331728483793
422 => 0.0082218664423422
423 => 0.0083953343897459
424 => 0.00833798046149
425 => 0.0082927430386579
426 => 0.0084999844423576
427 => 0.0082721140059821
428 => 0.0084694099471238
429 => 0.0082163758618444
430 => 0.0083236458907686
501 => 0.0082627542342837
502 => 0.0083021585986302
503 => 0.0080718014898243
504 => 0.0081960965941332
505 => 0.0080666304048407
506 => 0.0080665690210099
507 => 0.0080637110477057
508 => 0.0082160274452674
509 => 0.0082209944775235
510 => 0.0081084324295881
511 => 0.0080922104799309
512 => 0.0081521915300815
513 => 0.0080819694294171
514 => 0.0081148259083453
515 => 0.0080829646186924
516 => 0.0080757919712901
517 => 0.0080186390964633
518 => 0.0079940160665368
519 => 0.0080036713910283
520 => 0.007970712790878
521 => 0.0079508540421227
522 => 0.0080597606427408
523 => 0.0080015762393103
524 => 0.0080508430484332
525 => 0.0079946973014706
526 => 0.0078000716809607
527 => 0.0076881404284769
528 => 0.0073205106731382
529 => 0.007424770015709
530 => 0.0074938940676975
531 => 0.0074710485689276
601 => 0.0075201295403197
602 => 0.007523142713344
603 => 0.0075071859892232
604 => 0.0074887101468742
605 => 0.0074797171285969
606 => 0.0075467437189943
607 => 0.0075856549107313
608 => 0.007500831591075
609 => 0.0074809586740839
610 => 0.0075667197334802
611 => 0.0076190339301694
612 => 0.0080052925657145
613 => 0.0079766772783944
614 => 0.0080484960341014
615 => 0.0080404103443574
616 => 0.0081156878419634
617 => 0.008238734735905
618 => 0.0079885459960691
619 => 0.0080319701104289
620 => 0.0080213235203971
621 => 0.0081375601986782
622 => 0.0081379230769002
623 => 0.0080682333818179
624 => 0.0081060132961082
625 => 0.0080849255843891
626 => 0.0081230339296407
627 => 0.0079762951037863
628 => 0.0081550071541995
629 => 0.0082563253708336
630 => 0.0082577321743699
701 => 0.0083057562049434
702 => 0.0083545514013703
703 => 0.0084482095317459
704 => 0.0083519393269472
705 => 0.0081787586002298
706 => 0.0081912616893285
707 => 0.0080897258926185
708 => 0.0080914327277051
709 => 0.0080823215082456
710 => 0.0081096649637042
711 => 0.0079822954546036
712 => 0.0080121888238069
713 => 0.0079703379318669
714 => 0.0080318791347631
715 => 0.0079656709735721
716 => 0.008021318386289
717 => 0.0080453339648767
718 => 0.0081339519668837
719 => 0.0079525820226225
720 => 0.0075827564286082
721 => 0.0076604982521719
722 => 0.0075455119886327
723 => 0.0075561544051068
724 => 0.0075776537801126
725 => 0.0075079672715611
726 => 0.0075212612613185
727 => 0.007520786306456
728 => 0.0075166934020423
729 => 0.0074985652497475
730 => 0.0074722758423742
731 => 0.0075770047498963
801 => 0.007594800232061
802 => 0.0076343573845192
803 => 0.0077520526383623
804 => 0.0077402921070581
805 => 0.0077594740215549
806 => 0.0077176000099103
807 => 0.0075580968204095
808 => 0.0075667586109924
809 => 0.0074587459436279
810 => 0.0076315952577692
811 => 0.007590662258681
812 => 0.007564272487884
813 => 0.0075570717944226
814 => 0.007675058792035
815 => 0.0077103623509403
816 => 0.0076883635421642
817 => 0.0076432433435568
818 => 0.0077298874634723
819 => 0.0077530697747398
820 => 0.0077582594393018
821 => 0.00791177620743
822 => 0.0077668393212816
823 => 0.0078017270703263
824 => 0.0080739113292256
825 => 0.0078270777652642
826 => 0.0079578310091399
827 => 0.0079514313182592
828 => 0.0080183202533775
829 => 0.0079459444732378
830 => 0.0079468416577742
831 => 0.0080062345007103
901 => 0.0079228279643622
902 => 0.0079021753330137
903 => 0.0078736438707226
904 => 0.0079359412748325
905 => 0.0079732857511271
906 => 0.0082742548035664
907 => 0.0084686945372984
908 => 0.0084602533956588
909 => 0.0085373896290899
910 => 0.0085026390494422
911 => 0.0083904202610203
912 => 0.0085819640492332
913 => 0.0085213515801101
914 => 0.0085263483984205
915 => 0.0085261624165934
916 => 0.0085664644097262
917 => 0.0085379067539682
918 => 0.0084816166830859
919 => 0.0085189846590852
920 => 0.0086299541885072
921 => 0.0089744070127941
922 => 0.009167167376658
923 => 0.0089628025968524
924 => 0.0091037706854089
925 => 0.0090192400643408
926 => 0.0090038783359246
927 => 0.0090924167129979
928 => 0.0091811100647798
929 => 0.0091754606817032
930 => 0.0091110738627636
1001 => 0.0090747033824996
1002 => 0.009350112844063
1003 => 0.0095530298438651
1004 => 0.0095391922648514
1005 => 0.009600266838396
1006 => 0.0097795836752884
1007 => 0.0097959781595821
1008 => 0.009793912831384
1009 => 0.0097532773914746
1010 => 0.0099298381046289
1011 => 0.010077128157832
1012 => 0.0097438714612063
1013 => 0.009870771248631
1014 => 0.0099277406516618
1015 => 0.010011388637371
1016 => 0.010152516810293
1017 => 0.010305819438485
1018 => 0.01032749811099
1019 => 0.010312116055428
1020 => 0.010211008851139
1021 => 0.010378754416188
1022 => 0.010477015834076
1023 => 0.010535528259756
1024 => 0.01068390603574
1025 => 0.0099280924753002
1026 => 0.0093930900708495
1027 => 0.0093095417198661
1028 => 0.0094794405769674
1029 => 0.009524241550667
1030 => 0.0095061823343443
1031 => 0.0089039884878444
1101 => 0.0093063712938912
1102 => 0.0097393013598902
1103 => 0.0097559319668884
1104 => 0.0099726658100682
1105 => 0.010043243233628
1106 => 0.010217742385342
1107 => 0.010206827415891
1108 => 0.010249315182446
1109 => 0.0102395479807
1110 => 0.010562770914119
1111 => 0.01091933380875
1112 => 0.010906987169509
1113 => 0.010855727034746
1114 => 0.010931857076022
1115 => 0.011299868194883
1116 => 0.011265987628316
1117 => 0.011298899712796
1118 => 0.011732805562131
1119 => 0.012296944888654
1120 => 0.012034845532821
1121 => 0.012603525717919
1122 => 0.012961479749997
1123 => 0.013580524235338
1124 => 0.013503016816915
1125 => 0.0137440062923
1126 => 0.013364262361651
1127 => 0.012492293537972
1128 => 0.012354301133862
1129 => 0.012630565421414
1130 => 0.013309734214886
1201 => 0.012609175979151
1202 => 0.012750897997831
1203 => 0.012710082046917
1204 => 0.012707907138349
1205 => 0.012790914552382
1206 => 0.012670507968952
1207 => 0.01217994988733
1208 => 0.012404769765261
1209 => 0.012317956013654
1210 => 0.012414282343455
1211 => 0.012934115817392
1212 => 0.012704285047282
1213 => 0.012462177000908
1214 => 0.012765834219138
1215 => 0.013152494205886
1216 => 0.01312829771881
1217 => 0.013081346420536
1218 => 0.013346008430618
1219 => 0.01378315253258
1220 => 0.013901310826753
1221 => 0.013988532863871
1222 => 0.014000559309162
1223 => 0.014124439170046
1224 => 0.013458305936329
1225 => 0.014515476485752
1226 => 0.01469802063589
1227 => 0.014663709901344
1228 => 0.014866600041591
1229 => 0.014806904615504
1230 => 0.01472041530903
1231 => 0.015042039337291
]
'min_raw' => 0.0055446272135783
'max_raw' => 0.015042039337291
'avg_raw' => 0.010293333275435
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005544'
'max' => '$0.015042'
'avg' => '$0.010293'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019121986312671
'max_diff' => 0.0069328984142101
'year' => 2032
]
7 => [
'items' => [
101 => 0.014673323342611
102 => 0.014149977408214
103 => 0.013862859477995
104 => 0.01424095952965
105 => 0.014471852037322
106 => 0.014624457297372
107 => 0.014670635556857
108 => 0.013510015963024
109 => 0.012884506372862
110 => 0.013285450848674
111 => 0.013774630780874
112 => 0.013455588517106
113 => 0.013468094369819
114 => 0.013013223944518
115 => 0.013814876720299
116 => 0.013698082653829
117 => 0.014304010477282
118 => 0.01415940093934
119 => 0.014653511557383
120 => 0.014523395672202
121 => 0.015063499436907
122 => 0.015278961451373
123 => 0.015640755707647
124 => 0.015906893035329
125 => 0.01606317396454
126 => 0.016053791443745
127 => 0.016673054344129
128 => 0.016307896647171
129 => 0.01584917251873
130 => 0.015840875646502
131 => 0.016078455372793
201 => 0.016576357302284
202 => 0.016705456028422
203 => 0.016777604604361
204 => 0.0166671065488
205 => 0.01627075403984
206 => 0.016099611036024
207 => 0.016245429833765
208 => 0.016067105974479
209 => 0.016374942984445
210 => 0.016797668949564
211 => 0.016710377709407
212 => 0.01700217923782
213 => 0.017304163121311
214 => 0.017736013637648
215 => 0.017848915353997
216 => 0.018035537597854
217 => 0.018227633188996
218 => 0.018289329115749
219 => 0.018407125783044
220 => 0.018406504936461
221 => 0.018761493121983
222 => 0.019153056083682
223 => 0.01930086203702
224 => 0.019640733676653
225 => 0.019058715404304
226 => 0.019500182949625
227 => 0.019898397726154
228 => 0.019423629653108
301 => 0.020077986835028
302 => 0.020103394041597
303 => 0.020487012695959
304 => 0.020098141697321
305 => 0.01986723133965
306 => 0.020533860890148
307 => 0.020856421931
308 => 0.020759263920407
309 => 0.020019886662508
310 => 0.019589537385029
311 => 0.01846323031769
312 => 0.019797389691798
313 => 0.020447219804963
314 => 0.020018203759503
315 => 0.02023457449846
316 => 0.021415023091762
317 => 0.021864461487705
318 => 0.021770981443161
319 => 0.021786778031876
320 => 0.022029286832443
321 => 0.023104704406193
322 => 0.022460289268018
323 => 0.022952920495379
324 => 0.023214210322056
325 => 0.023456910874915
326 => 0.022860915023392
327 => 0.022085533177477
328 => 0.021839937198561
329 => 0.019975546568764
330 => 0.019878496939845
331 => 0.019824020042228
401 => 0.019480550908663
402 => 0.019210678253794
403 => 0.018996065498914
404 => 0.018432857541313
405 => 0.01862292369386
406 => 0.017725287760082
407 => 0.018299563420249
408 => 0.01686691479576
409 => 0.018060067141618
410 => 0.017410688565748
411 => 0.017846728814464
412 => 0.017845207511114
413 => 0.017042319166541
414 => 0.016579229925243
415 => 0.016874328413501
416 => 0.01719069741786
417 => 0.017242027224425
418 => 0.017652207896652
419 => 0.017766680505467
420 => 0.017419823156543
421 => 0.016837226337384
422 => 0.016972550290856
423 => 0.016576487589646
424 => 0.015882402940106
425 => 0.016380906652961
426 => 0.01655111773819
427 => 0.016626292650139
428 => 0.015943740113478
429 => 0.015729267287523
430 => 0.015615083754585
501 => 0.016749117376028
502 => 0.016811242297747
503 => 0.016493402414655
504 => 0.017930068825046
505 => 0.017604906969528
506 => 0.017968192428731
507 => 0.016960271060477
508 => 0.01699877501409
509 => 0.016521608885702
510 => 0.016788790033347
511 => 0.016599955009842
512 => 0.016767204436953
513 => 0.016867453053968
514 => 0.01734454088409
515 => 0.018065514718282
516 => 0.017273279871747
517 => 0.016928091804099
518 => 0.017142244539856
519 => 0.017712561495895
520 => 0.01857662087828
521 => 0.018065080333092
522 => 0.018292093340525
523 => 0.018341685583543
524 => 0.017964494523782
525 => 0.018590528450674
526 => 0.018926025117985
527 => 0.019270175277394
528 => 0.01956899121794
529 => 0.019132714135702
530 => 0.01959959315156
531 => 0.019223371080019
601 => 0.018885860988724
602 => 0.018886372852215
603 => 0.01867464784171
604 => 0.018264403954788
605 => 0.01818874868777
606 => 0.018582316941008
607 => 0.018897921409053
608 => 0.018923916104685
609 => 0.019098650954537
610 => 0.019202057238768
611 => 0.020215579398256
612 => 0.020623226395098
613 => 0.021121689426472
614 => 0.02131586886903
615 => 0.021900279373945
616 => 0.021428320427725
617 => 0.02132620914095
618 => 0.019908620415245
619 => 0.020140750489664
620 => 0.02051241313603
621 => 0.019914748995392
622 => 0.020293829329305
623 => 0.020368667817239
624 => 0.019894440596592
625 => 0.020147745845288
626 => 0.019475042204523
627 => 0.018080177819363
628 => 0.018592081333477
629 => 0.018969014624725
630 => 0.018431084342575
701 => 0.019395303552552
702 => 0.018832026595608
703 => 0.018653494842319
704 => 0.017956978821573
705 => 0.018285707572005
706 => 0.018730317913906
707 => 0.018455600414111
708 => 0.019025680475226
709 => 0.019833065876564
710 => 0.020408456794189
711 => 0.020452628164186
712 => 0.020082690352351
713 => 0.020675518056729
714 => 0.02067983615935
715 => 0.02001112408704
716 => 0.019601541666154
717 => 0.01950848367836
718 => 0.019740960776963
719 => 0.020023230892307
720 => 0.020468292191088
721 => 0.020737233412782
722 => 0.021438489483556
723 => 0.021628229269721
724 => 0.021836695769207
725 => 0.022115271301208
726 => 0.022449772652675
727 => 0.021717902738837
728 => 0.02174698129489
729 => 0.021065474164553
730 => 0.020337186057779
731 => 0.020889865948426
801 => 0.021612421385523
802 => 0.0214466663699
803 => 0.021428015544575
804 => 0.021459381059464
805 => 0.021334407190737
806 => 0.020769155014233
807 => 0.020485288909859
808 => 0.020851548606469
809 => 0.021046199334873
810 => 0.021348085639301
811 => 0.021310871780234
812 => 0.022088498480217
813 => 0.02239066070162
814 => 0.022313354675135
815 => 0.022327580844482
816 => 0.022874631113183
817 => 0.023483063521447
818 => 0.024052940761514
819 => 0.024632644366908
820 => 0.023933789044389
821 => 0.023578953411018
822 => 0.023945053210102
823 => 0.023750795503481
824 => 0.024867057906307
825 => 0.024944345493159
826 => 0.026060527177509
827 => 0.027119916508399
828 => 0.026454533050598
829 => 0.027081959681775
830 => 0.027760572738237
831 => 0.029069727425152
901 => 0.028628850183216
902 => 0.028291145125321
903 => 0.027972015477388
904 => 0.028636073614331
905 => 0.02949037379892
906 => 0.029674381876295
907 => 0.029972545258138
908 => 0.029659062919813
909 => 0.030036617867378
910 => 0.031369552738332
911 => 0.031009381970059
912 => 0.030497881578771
913 => 0.031550105642963
914 => 0.031930901441377
915 => 0.034603525778953
916 => 0.037977824405747
917 => 0.036580842617415
918 => 0.035713690941076
919 => 0.035917492154129
920 => 0.037149671785417
921 => 0.03754540877556
922 => 0.03646965921763
923 => 0.03684963214772
924 => 0.038943320350631
925 => 0.040066516897933
926 => 0.038541065121275
927 => 0.034332404169771
928 => 0.030451826564982
929 => 0.031481130490459
930 => 0.03136443936833
1001 => 0.033613846149434
1002 => 0.031000792016352
1003 => 0.031044789146402
1004 => 0.033340711277577
1005 => 0.03272819861505
1006 => 0.03173600654645
1007 => 0.030459070665108
1008 => 0.028098536586175
1009 => 0.026007745724101
1010 => 0.030108268085007
1011 => 0.029931446104489
1012 => 0.029675381673149
1013 => 0.03024522535603
1014 => 0.033012224527151
1015 => 0.032948436240355
1016 => 0.032542647704824
1017 => 0.032850434732568
1018 => 0.031682049992358
1019 => 0.031983169343536
1020 => 0.030451211861663
1021 => 0.031143720623666
1022 => 0.031733877747887
1023 => 0.031852360528
1024 => 0.032119308281475
1025 => 0.029838268955608
1026 => 0.030862388645126
1027 => 0.03146396301568
1028 => 0.028746028124055
1029 => 0.0314102381817
1030 => 0.029798561135799
1031 => 0.029251533739844
1101 => 0.029988034063119
1102 => 0.029701019170869
1103 => 0.029454260620592
1104 => 0.029316565109687
1105 => 0.029857369662526
1106 => 0.029832140483735
1107 => 0.02894727926965
1108 => 0.027793013887434
1109 => 0.028180423237176
1110 => 0.028039673788433
1111 => 0.027529579629148
1112 => 0.027873321503502
1113 => 0.026359656252627
1114 => 0.02375547386197
1115 => 0.025475876517502
1116 => 0.025409642886702
1117 => 0.025376244886597
1118 => 0.026669079933792
1119 => 0.026544803674783
1120 => 0.026319241047766
1121 => 0.027525436994614
1122 => 0.02708515924839
1123 => 0.02844199151977
1124 => 0.02933568900811
1125 => 0.029109018416982
1126 => 0.029949545224381
1127 => 0.028189348366137
1128 => 0.028774015155605
1129 => 0.028894514170601
1130 => 0.027510552723863
1201 => 0.026565136807708
1202 => 0.026502088344631
1203 => 0.024862867432355
1204 => 0.025738526012364
1205 => 0.026509069325557
1206 => 0.026140038875114
1207 => 0.026023214858975
1208 => 0.026620043421392
1209 => 0.026666422112183
1210 => 0.02560898304716
1211 => 0.025828858113519
1212 => 0.026745773691421
1213 => 0.025805754193518
1214 => 0.023979449860406
1215 => 0.023526501135162
1216 => 0.023466069425713
1217 => 0.022237636559033
1218 => 0.023556769334841
1219 => 0.02298093252764
1220 => 0.024799994102004
1221 => 0.02376095588655
1222 => 0.023716165025781
1223 => 0.023648457070339
1224 => 0.022591094156065
1225 => 0.022822589435372
1226 => 0.023592115001516
1227 => 0.023866690392842
1228 => 0.023838049929997
1229 => 0.023588343906428
1230 => 0.023702658045316
1231 => 0.023334412374272
]
'min_raw' => 0.012884506372862
'max_raw' => 0.040066516897933
'avg_raw' => 0.026475511635397
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.012884'
'max' => '$0.040066'
'avg' => '$0.026475'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0073398791592836
'max_diff' => 0.025024477560641
'year' => 2033
]
8 => [
'items' => [
101 => 0.023204377163456
102 => 0.022793950269117
103 => 0.022190736117761
104 => 0.022274616745235
105 => 0.021079491671831
106 => 0.020428324101753
107 => 0.020248089500606
108 => 0.020007072259429
109 => 0.020275313039319
110 => 0.021076106032658
111 => 0.02011017978498
112 => 0.018454166985185
113 => 0.018553696176161
114 => 0.018777308717803
115 => 0.018360608225799
116 => 0.017966236181138
117 => 0.018309110677555
118 => 0.017607436223451
119 => 0.018862102723292
120 => 0.018828167510633
121 => 0.019295829593718
122 => 0.019588268291663
123 => 0.018914291771053
124 => 0.018744788498746
125 => 0.018841345266146
126 => 0.017245476983875
127 => 0.019165413108231
128 => 0.019182016795562
129 => 0.019039845944247
130 => 0.020062152659089
131 => 0.022219538692867
201 => 0.021407843286308
202 => 0.021093530291265
203 => 0.020496021057926
204 => 0.021292166634762
205 => 0.021231035076267
206 => 0.020954574985296
207 => 0.020787371059669
208 => 0.021095449419389
209 => 0.020749196741547
210 => 0.02068700024622
211 => 0.020310157154988
212 => 0.020175641316687
213 => 0.020076051145238
214 => 0.019966412152002
215 => 0.020208248450747
216 => 0.019660215581575
217 => 0.018999341665679
218 => 0.018944397150327
219 => 0.019096103787985
220 => 0.019028984894052
221 => 0.018944075810886
222 => 0.018781961247507
223 => 0.018733865319583
224 => 0.018890153752511
225 => 0.018713713223917
226 => 0.01897406083507
227 => 0.018903260690527
228 => 0.018507776838424
301 => 0.018014857531827
302 => 0.018010469516066
303 => 0.017904270860009
304 => 0.017769010904446
305 => 0.017731384679137
306 => 0.018280234743822
307 => 0.019416337952019
308 => 0.019193293707604
309 => 0.019354466032687
310 => 0.020147274353983
311 => 0.020399284278745
312 => 0.020220413603331
313 => 0.019975564390562
314 => 0.019986336513293
315 => 0.020823060394223
316 => 0.02087524583633
317 => 0.021007101612874
318 => 0.02117657354817
319 => 0.02024927540673
320 => 0.019942660854222
321 => 0.019797369868916
322 => 0.019349929868861
323 => 0.019832455548314
324 => 0.019551308498706
325 => 0.019589244841049
326 => 0.019564538748331
327 => 0.019578029945574
328 => 0.018861752018435
329 => 0.019122726048625
330 => 0.018688806106689
331 => 0.018107836014235
401 => 0.018105888398771
402 => 0.018248080005839
403 => 0.018163498873997
404 => 0.017935893222989
405 => 0.017968223531446
406 => 0.017684976009811
407 => 0.018002614908935
408 => 0.018011723655995
409 => 0.017889415377925
410 => 0.018378781927746
411 => 0.018579275802493
412 => 0.01849876987377
413 => 0.018573627291921
414 => 0.019202562202944
415 => 0.019305106035794
416 => 0.019350649232681
417 => 0.01928962738217
418 => 0.018585123067543
419 => 0.01861637082968
420 => 0.018387095484332
421 => 0.018193381977953
422 => 0.018201129502315
423 => 0.018300723425586
424 => 0.01873565592962
425 => 0.019650945743689
426 => 0.019685680323064
427 => 0.019727779646547
428 => 0.019556540540519
429 => 0.019504893187603
430 => 0.019573029377412
501 => 0.019916764107924
502 => 0.020800943157869
503 => 0.020488415229285
504 => 0.020234325158559
505 => 0.020457230652777
506 => 0.020422916099133
507 => 0.020133266733433
508 => 0.020125137240445
509 => 0.019569207501163
510 => 0.019363692934459
511 => 0.019191949580021
512 => 0.01900441032045
513 => 0.018893230761003
514 => 0.019064053094519
515 => 0.019103122183305
516 => 0.018729616165607
517 => 0.018678708675547
518 => 0.018983721752287
519 => 0.018849496869247
520 => 0.01898755049007
521 => 0.019019580114303
522 => 0.019014422607097
523 => 0.018874276413574
524 => 0.018963601418106
525 => 0.018752321153323
526 => 0.018522585598641
527 => 0.018376028627785
528 => 0.018248138232751
529 => 0.018319099256949
530 => 0.018066136162655
531 => 0.017985208177649
601 => 0.018933340116447
602 => 0.019633735373772
603 => 0.019623551349344
604 => 0.019561558719754
605 => 0.019469450246929
606 => 0.019910025799428
607 => 0.019756538086524
608 => 0.019868213221989
609 => 0.019896639230956
610 => 0.019982676198732
611 => 0.020013427019585
612 => 0.01992047668115
613 => 0.019608523992434
614 => 0.018831167551727
615 => 0.018469306030144
616 => 0.018349885700741
617 => 0.018354226402903
618 => 0.018234490459519
619 => 0.018269758061034
620 => 0.018222225826973
621 => 0.018132211274944
622 => 0.018313541112016
623 => 0.018334437686534
624 => 0.018292113135831
625 => 0.018302082099693
626 => 0.017951652896927
627 => 0.017978295268121
628 => 0.017829947159764
629 => 0.01780213367781
630 => 0.017427122578029
701 => 0.016762736056041
702 => 0.017130870682783
703 => 0.01668621582124
704 => 0.016517818287554
705 => 0.017314986020837
706 => 0.017234972490406
707 => 0.017098024107355
708 => 0.016895448906278
709 => 0.016820311793674
710 => 0.016363802483009
711 => 0.016336829477553
712 => 0.016563087818706
713 => 0.016458677379338
714 => 0.01631204557914
715 => 0.015780960062648
716 => 0.015183844105739
717 => 0.015201867283141
718 => 0.015391798759297
719 => 0.015944050141967
720 => 0.015728275972712
721 => 0.015571729337194
722 => 0.015542412858136
723 => 0.015909369971752
724 => 0.016428691167412
725 => 0.016672345053258
726 => 0.016430891452263
727 => 0.016153522556224
728 => 0.016170404715723
729 => 0.016282714159523
730 => 0.016294516294096
731 => 0.016113977656759
801 => 0.016164798225658
802 => 0.01608759713437
803 => 0.015613814179634
804 => 0.015605244948365
805 => 0.015488970970491
806 => 0.015485450240651
807 => 0.015287639198384
808 => 0.015259964066167
809 => 0.014867198235474
810 => 0.015125717894641
811 => 0.014952316480163
812 => 0.014690959647286
813 => 0.014645901630787
814 => 0.014644547132402
815 => 0.014912902161448
816 => 0.015122582009882
817 => 0.014955332872007
818 => 0.014917253485301
819 => 0.01532384171152
820 => 0.0152720996536
821 => 0.015227291365142
822 => 0.016382191650305
823 => 0.015467997956605
824 => 0.0150693573258
825 => 0.014575963845377
826 => 0.014736615250508
827 => 0.01477046686203
828 => 0.01358394448247
829 => 0.013102572500855
830 => 0.012937383776885
831 => 0.012842315330815
901 => 0.012885639215483
902 => 0.012452347972728
903 => 0.012743526853835
904 => 0.012368333262806
905 => 0.012305430836284
906 => 0.012976323454612
907 => 0.013069674243154
908 => 0.012671410777415
909 => 0.012927160395418
910 => 0.012834422028745
911 => 0.012374764880053
912 => 0.012357209357982
913 => 0.012126569558499
914 => 0.011765662932973
915 => 0.011600718920689
916 => 0.011514814646983
917 => 0.011550260424555
918 => 0.011532337954756
919 => 0.01141538171609
920 => 0.011539041749452
921 => 0.011223141464066
922 => 0.011097347425044
923 => 0.011040529176017
924 => 0.010760149490195
925 => 0.01120635825575
926 => 0.011294267003754
927 => 0.011382348959149
928 => 0.01214904224475
929 => 0.012110740414854
930 => 0.012456970303366
1001 => 0.012443516446574
1002 => 0.012344766073819
1003 => 0.01192815449481
1004 => 0.012094208444815
1005 => 0.011583120197211
1006 => 0.011966062262939
1007 => 0.011791303496184
1008 => 0.011906976148108
1009 => 0.011698986290166
1010 => 0.011814096465242
1011 => 0.011315113429106
1012 => 0.010849170090843
1013 => 0.011036679291894
1014 => 0.011240523237714
1015 => 0.011682508850725
1016 => 0.011419265865918
1017 => 0.011513937997574
1018 => 0.01119680220445
1019 => 0.010542460477875
1020 => 0.010546163980986
1021 => 0.010445507761962
1022 => 0.010358526092677
1023 => 0.01144950248938
1024 => 0.011313822328665
1025 => 0.011097633749947
1026 => 0.011387010753554
1027 => 0.011463526626338
1028 => 0.011465704925668
1029 => 0.011676826917598
1030 => 0.011789502762537
1031 => 0.011809362368572
1101 => 0.012141567384467
1102 => 0.012252918123905
1103 => 0.012711556060703
1104 => 0.011779943004316
1105 => 0.011760757046485
1106 => 0.011391082881433
1107 => 0.011156629681639
1108 => 0.011407136092606
1109 => 0.011629050575187
1110 => 0.011397978382991
1111 => 0.011428151533091
1112 => 0.011117955994359
1113 => 0.011228836303399
1114 => 0.011324341362735
1115 => 0.011271609082498
1116 => 0.011192666306711
1117 => 0.011610856118295
1118 => 0.011587260210226
1119 => 0.011976688176915
1120 => 0.01228027512521
1121 => 0.012824357209214
1122 => 0.012256579190916
1123 => 0.012235887103216
1124 => 0.012438155579598
1125 => 0.012252887157655
1126 => 0.012369970405075
1127 => 0.012805493287954
1128 => 0.012814695200182
1129 => 0.01266055131438
1130 => 0.012651171644921
1201 => 0.012680776664338
1202 => 0.012854174187762
1203 => 0.01279358376511
1204 => 0.012863700536165
1205 => 0.012951382632035
1206 => 0.013314072956992
1207 => 0.013401516366456
1208 => 0.013189074215667
1209 => 0.013208255363269
1210 => 0.013128796167206
1211 => 0.013052039579431
1212 => 0.013224577179351
1213 => 0.013539893034441
1214 => 0.013537931470872
1215 => 0.013611078620388
1216 => 0.013656648688553
1217 => 0.01346102859666
1218 => 0.013333687109988
1219 => 0.013382517938927
1220 => 0.013460599497799
1221 => 0.013357197141742
1222 => 0.012718949899531
1223 => 0.012912553341426
1224 => 0.01288032826197
1225 => 0.012834435830122
1226 => 0.013029105588038
1227 => 0.013010329214987
1228 => 0.012447903944764
1229 => 0.01248390858578
1230 => 0.012450093506235
1231 => 0.012559356946157
]
'min_raw' => 0.010358526092677
'max_raw' => 0.023204377163456
'avg_raw' => 0.016781451628066
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010358'
'max' => '$0.0232043'
'avg' => '$0.016781'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0025259802801853
'max_diff' => -0.016862139734477
'year' => 2034
]
9 => [
'items' => [
101 => 0.012246986573327
102 => 0.012343069596163
103 => 0.012403331967363
104 => 0.012438826966958
105 => 0.012567059244641
106 => 0.012552012666906
107 => 0.012566123928243
108 => 0.012756258543981
109 => 0.013717894184067
110 => 0.013770233890227
111 => 0.013512494034745
112 => 0.013615456023316
113 => 0.013417791520571
114 => 0.013550485025501
115 => 0.013641270551524
116 => 0.013231028216478
117 => 0.013206736327847
118 => 0.013008255993386
119 => 0.013114908082624
120 => 0.012945216940089
121 => 0.012986853210923
122 => 0.012870434567887
123 => 0.013079964946632
124 => 0.013314252467798
125 => 0.013373442747939
126 => 0.013217738603906
127 => 0.013104998542222
128 => 0.012907064132791
129 => 0.013236233466931
130 => 0.013332492611487
131 => 0.013235727858623
201 => 0.013213305351033
202 => 0.013170814739667
203 => 0.013222319935101
204 => 0.013331968363513
205 => 0.013280260189562
206 => 0.013314414349438
207 => 0.01318425391161
208 => 0.01346109335505
209 => 0.013900781016273
210 => 0.013902194684
211 => 0.013850486231323
212 => 0.013829328246562
213 => 0.01388238425694
214 => 0.013911164966099
215 => 0.014082738374853
216 => 0.014266843478232
217 => 0.015125981664353
218 => 0.014884739099587
219 => 0.015647017608673
220 => 0.016249880939884
221 => 0.016430653292896
222 => 0.016264351234122
223 => 0.015695440874516
224 => 0.015667527418143
225 => 0.016517719683153
226 => 0.016277501427015
227 => 0.016248928229816
228 => 0.015944957686792
301 => 0.016124641925203
302 => 0.016085342346454
303 => 0.016023306038797
304 => 0.016366131048773
305 => 0.017007868863248
306 => 0.016907848006683
307 => 0.016833187077091
308 => 0.01650604461709
309 => 0.016703057447924
310 => 0.016632904952396
311 => 0.016934324593058
312 => 0.016755770275193
313 => 0.016275681537464
314 => 0.01635213725134
315 => 0.016340581123995
316 => 0.016578405405877
317 => 0.016507016459618
318 => 0.016326641286486
319 => 0.017005675473164
320 => 0.016961582770068
321 => 0.017024096142063
322 => 0.017051616461705
323 => 0.017464932605211
324 => 0.017634255004564
325 => 0.017672694153623
326 => 0.017833537337144
327 => 0.017668692228693
328 => 0.01832819019507
329 => 0.018766717859938
330 => 0.019276090309109
331 => 0.020020420363756
401 => 0.020300295349741
402 => 0.020249738438587
403 => 0.020814080991098
404 => 0.021828192013331
405 => 0.020454719270724
406 => 0.021900989403741
407 => 0.02144311697762
408 => 0.020357509692058
409 => 0.020287609381337
410 => 0.021022795239279
411 => 0.022653366713178
412 => 0.022244927052755
413 => 0.022654034774143
414 => 0.022176788886108
415 => 0.022153089605223
416 => 0.022630856006594
417 => 0.023747183245089
418 => 0.023216858018981
419 => 0.022456506766274
420 => 0.023017938298897
421 => 0.022531574347304
422 => 0.021435660239666
423 => 0.022244614726644
424 => 0.021703689898899
425 => 0.021861560520781
426 => 0.022998504052205
427 => 0.022861703998524
428 => 0.023038735935331
429 => 0.0227262792006
430 => 0.022434395340457
501 => 0.02188957243992
502 => 0.021728277238515
503 => 0.02177285342939
504 => 0.021728255148769
505 => 0.021423431743099
506 => 0.021357605157667
507 => 0.021247891298018
508 => 0.021281896210773
509 => 0.021075602056712
510 => 0.021464921747972
511 => 0.021537182913344
512 => 0.021820497318075
513 => 0.021849911959434
514 => 0.022638938543883
515 => 0.022204355960222
516 => 0.022495911477397
517 => 0.022469832007714
518 => 0.020381038093785
519 => 0.02066885546554
520 => 0.021116608973923
521 => 0.020914896625312
522 => 0.020629722557796
523 => 0.020399429208211
524 => 0.020050511234886
525 => 0.020541606581965
526 => 0.021187344741207
527 => 0.021866288944783
528 => 0.022681995919192
529 => 0.02249993961838
530 => 0.02185103987029
531 => 0.021880149038968
601 => 0.022060090465698
602 => 0.02182704996868
603 => 0.021758321776618
604 => 0.022050648267502
605 => 0.022052661359385
606 => 0.02178452010368
607 => 0.021486530167297
608 => 0.021485281578583
609 => 0.021432257147645
610 => 0.022186221814577
611 => 0.022600826146964
612 => 0.022648359865504
613 => 0.022597626748978
614 => 0.022617151912003
615 => 0.02237590278617
616 => 0.022927326747619
617 => 0.023433367904821
618 => 0.023297738064698
619 => 0.023094409653437
620 => 0.022932448780243
621 => 0.023259585230165
622 => 0.02324501835901
623 => 0.023428948076774
624 => 0.023420603962346
625 => 0.023358755316209
626 => 0.023297740273508
627 => 0.023539658020989
628 => 0.023469989594795
629 => 0.023400212954292
630 => 0.023260265219493
701 => 0.023279286440938
702 => 0.023075993137193
703 => 0.022981940352812
704 => 0.021567612139905
705 => 0.021189657426909
706 => 0.021308569673595
707 => 0.021347718672759
708 => 0.021183232297301
709 => 0.021419063506625
710 => 0.021382309462459
711 => 0.021525297947913
712 => 0.02143596495004
713 => 0.021439631207433
714 => 0.021702340506374
715 => 0.021778606133502
716 => 0.021739816820006
717 => 0.021766983525559
718 => 0.022393028788677
719 => 0.022304025172063
720 => 0.022256743774644
721 => 0.022269841044856
722 => 0.022429809032144
723 => 0.022474591334657
724 => 0.022284845572115
725 => 0.022374330770637
726 => 0.022755347388581
727 => 0.022888681641189
728 => 0.02331422057144
729 => 0.023133444070518
730 => 0.023465267161784
731 => 0.024485178217509
801 => 0.025299953741299
802 => 0.024550652497599
803 => 0.026046883986002
804 => 0.027211914821383
805 => 0.027167198997461
806 => 0.026964048923663
807 => 0.025637692291529
808 => 0.024417159143776
809 => 0.025438186948446
810 => 0.025440789758297
811 => 0.025353082564371
812 => 0.024808340715562
813 => 0.025334126728829
814 => 0.025375861713188
815 => 0.025352501220175
816 => 0.024934848921908
817 => 0.024297171057501
818 => 0.024421771785821
819 => 0.024625870320595
820 => 0.024239469214853
821 => 0.0241159906487
822 => 0.024345560795937
823 => 0.025085283643175
824 => 0.024945443323827
825 => 0.02494179152795
826 => 0.025540087715643
827 => 0.025111836765653
828 => 0.024423343400032
829 => 0.024249489745101
830 => 0.02363242639195
831 => 0.024058634247876
901 => 0.024073972709847
902 => 0.023840543022896
903 => 0.024442284932624
904 => 0.024436739774991
905 => 0.025008004160815
906 => 0.026100047109404
907 => 0.025777076273336
908 => 0.025401496330116
909 => 0.025442332283647
910 => 0.025890201902151
911 => 0.025619409706934
912 => 0.025716788468365
913 => 0.025890054507733
914 => 0.025994590211238
915 => 0.025427291204625
916 => 0.025295026669136
917 => 0.025024459848068
918 => 0.02495387401482
919 => 0.025174245045018
920 => 0.025116185064384
921 => 0.024072683571512
922 => 0.023963631859519
923 => 0.023966976319836
924 => 0.023692760604904
925 => 0.023274515820321
926 => 0.024373638142108
927 => 0.024285363237461
928 => 0.024187914574666
929 => 0.024199851479824
930 => 0.024676943227
1001 => 0.024400205919927
1002 => 0.025135957407133
1003 => 0.024984709020078
1004 => 0.024829581682607
1005 => 0.024808138359274
1006 => 0.02474842756919
1007 => 0.024543657052587
1008 => 0.024296384348987
1009 => 0.024133113491676
1010 => 0.022261521524519
1011 => 0.022608878107074
1012 => 0.023008480192754
1013 => 0.023146421231426
1014 => 0.022910463539548
1015 => 0.024552974100441
1016 => 0.024853076607542
1017 => 0.023944046538332
1018 => 0.023774004127836
1019 => 0.024564122052564
1020 => 0.024087584355965
1021 => 0.024302169251565
1022 => 0.02383835407894
1023 => 0.024780790701608
1024 => 0.024773610913557
1025 => 0.024406981781442
1026 => 0.024716854213338
1027 => 0.02466300625271
1028 => 0.02424908286552
1029 => 0.024793912811284
1030 => 0.02479418304014
1031 => 0.024441310471684
1101 => 0.024029232565467
1102 => 0.023955562768681
1103 => 0.023900062472947
1104 => 0.024288519581044
1105 => 0.024636809009491
1106 => 0.025284889287557
1107 => 0.025447832067471
1108 => 0.026083808585189
1109 => 0.025705115534022
1110 => 0.025872985258708
1111 => 0.026055231591477
1112 => 0.026142607185294
1113 => 0.026000233344003
1114 => 0.026988166654397
1115 => 0.027071578495289
1116 => 0.02709954576403
1117 => 0.026766420210309
1118 => 0.02706231367102
1119 => 0.026923874919715
1120 => 0.027284054091218
1121 => 0.027340534784308
1122 => 0.02729269764662
1123 => 0.027310625510094
1124 => 0.026467598713051
1125 => 0.026423883326304
1126 => 0.025827820926102
1127 => 0.026070720760055
1128 => 0.025616631162972
1129 => 0.025760627651848
1130 => 0.025824099932096
1201 => 0.025790945614914
1202 => 0.026084453952223
1203 => 0.025834911905719
1204 => 0.025176329416484
1205 => 0.024517567496891
1206 => 0.024509297277607
1207 => 0.024335856892292
1208 => 0.0242104912609
1209 => 0.024234641129091
1210 => 0.024319748414512
1211 => 0.024205544670755
1212 => 0.024229915829762
1213 => 0.024634639453467
1214 => 0.024715803889844
1215 => 0.024439975422042
1216 => 0.023332484321958
1217 => 0.023060703228066
1218 => 0.023256054088702
1219 => 0.023162688959525
1220 => 0.018694097764089
1221 => 0.019743926981907
1222 => 0.019120154109511
1223 => 0.019407617347521
1224 => 0.018770906770007
1225 => 0.019074778430457
1226 => 0.019018664430388
1227 => 0.020706758745934
1228 => 0.020680401475095
1229 => 0.02069301730585
1230 => 0.020090830833537
1231 => 0.021050130235076
]
'min_raw' => 0.012246986573327
'max_raw' => 0.027340534784308
'avg_raw' => 0.019793760678818
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012246'
'max' => '$0.02734'
'avg' => '$0.019793'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0018884604806506
'max_diff' => 0.0041361576208521
'year' => 2035
]
10 => [
'items' => [
101 => 0.021522715615565
102 => 0.021435252639089
103 => 0.021457265185952
104 => 0.021079016699787
105 => 0.020696679578006
106 => 0.02027260886869
107 => 0.021060479829875
108 => 0.020972882028397
109 => 0.021173799868294
110 => 0.021684790504802
111 => 0.021760035817092
112 => 0.021861166279873
113 => 0.021824918207923
114 => 0.022688494341245
115 => 0.022583909573441
116 => 0.022835928772757
117 => 0.02231750615902
118 => 0.021730861762451
119 => 0.021842363683389
120 => 0.02183162515176
121 => 0.021694911319022
122 => 0.021571492183714
123 => 0.021366034096552
124 => 0.022016133886408
125 => 0.021989741022162
126 => 0.022417010815965
127 => 0.022341486729633
128 => 0.021837118397228
129 => 0.021855132010891
130 => 0.021976282219821
131 => 0.022395584476196
201 => 0.022520061934163
202 => 0.022462399016064
203 => 0.022598882866113
204 => 0.022706754136296
205 => 0.022612429836832
206 => 0.023947863004897
207 => 0.023393298047441
208 => 0.023663589149067
209 => 0.023728051984157
210 => 0.023562931787581
211 => 0.023598740445708
212 => 0.023652980805494
213 => 0.023982317648764
214 => 0.02484659281989
215 => 0.025229374409862
216 => 0.026380991709402
217 => 0.025197589727391
218 => 0.025127371551183
219 => 0.025334812602341
220 => 0.026010933868242
221 => 0.026558866649414
222 => 0.026740647563929
223 => 0.026764672912658
224 => 0.027105705992856
225 => 0.027301179794534
226 => 0.027064295606859
227 => 0.026863561060613
228 => 0.026144554832048
229 => 0.026227781760793
301 => 0.026801132767675
302 => 0.027611024835101
303 => 0.02830599648386
304 => 0.028062641634672
305 => 0.029919267352229
306 => 0.030103344208488
307 => 0.030077910738871
308 => 0.030497265211739
309 => 0.029664931983148
310 => 0.029309093402228
311 => 0.026906962147945
312 => 0.027581863048738
313 => 0.028562871143581
314 => 0.028433031043637
315 => 0.027720596742741
316 => 0.028305456038557
317 => 0.028112083265119
318 => 0.027959562135665
319 => 0.028658290997371
320 => 0.027890009911725
321 => 0.028555206952047
322 => 0.027702084867252
323 => 0.028063753259124
324 => 0.027858452787966
325 => 0.027991307353485
326 => 0.027214642278126
327 => 0.027633711900311
328 => 0.02719720760407
329 => 0.027197000644199
330 => 0.027187364787666
331 => 0.027700910156437
401 => 0.027717656852476
402 => 0.02733814604903
403 => 0.027283452613181
404 => 0.027485682911506
405 => 0.027248924196366
406 => 0.027359702109039
407 => 0.02725227954649
408 => 0.027228096464995
409 => 0.02703540155723
410 => 0.026952383292708
411 => 0.026984936893344
412 => 0.026873814671841
413 => 0.026806859513919
414 => 0.027174045721519
415 => 0.026977872943048
416 => 0.027143979429704
417 => 0.026954680123849
418 => 0.026298486255973
419 => 0.025921102223433
420 => 0.024681612836219
421 => 0.025033130488851
422 => 0.025266187056218
423 => 0.025189161862093
424 => 0.025354641783866
425 => 0.02536480090709
426 => 0.025311001697654
427 => 0.025248709105232
428 => 0.025218388516238
429 => 0.02544437334541
430 => 0.025575565145044
501 => 0.025289577400648
502 => 0.025222574473529
503 => 0.02551172387293
504 => 0.025688104839528
505 => 0.026990402796985
506 => 0.02689392435793
507 => 0.027136066307021
508 => 0.027108804839525
509 => 0.02736260817841
510 => 0.027777469372194
511 => 0.026933940568217
512 => 0.027080348001556
513 => 0.027044452279943
514 => 0.027436352356154
515 => 0.027437575825414
516 => 0.027202612152865
517 => 0.027329989771604
518 => 0.027258891079246
519 => 0.027387376025902
520 => 0.026892635829556
521 => 0.027495175984801
522 => 0.027836777425995
523 => 0.027841520562337
524 => 0.028003436934347
525 => 0.028167953345872
526 => 0.028483728271435
527 => 0.028159146554585
528 => 0.027575255643365
529 => 0.027617410681199
530 => 0.027275075653589
531 => 0.027280830367251
601 => 0.027250111254718
602 => 0.027342301623856
603 => 0.026912866431268
604 => 0.027013654012625
605 => 0.026872550808513
606 => 0.027080041270748
607 => 0.026856815832786
608 => 0.027044434969939
609 => 0.027125405169862
610 => 0.02742418695074
611 => 0.026812685520818
612 => 0.0255657927102
613 => 0.025827904696106
614 => 0.025440220480499
615 => 0.025476102130671
616 => 0.025548588774542
617 => 0.025313635845604
618 => 0.025358457460228
619 => 0.025356856116748
620 => 0.02534305660376
621 => 0.025281936272631
622 => 0.025193299700204
623 => 0.025546400523854
624 => 0.025606399234413
625 => 0.025739768935718
626 => 0.02613658670127
627 => 0.026096935248884
628 => 0.026161608412848
629 => 0.026020427259038
630 => 0.025482651119479
701 => 0.025511854951176
702 => 0.025147682701954
703 => 0.025730456232535
704 => 0.025592447768258
705 => 0.025503472813541
706 => 0.025479195172799
707 => 0.025876996572839
708 => 0.025996024986504
709 => 0.025921854466808
710 => 0.025769728567011
711 => 0.026061855266605
712 => 0.026140016047581
713 => 0.026157513363983
714 => 0.026675105865925
715 => 0.026186441035106
716 => 0.026304067516795
717 => 0.027221755748972
718 => 0.026389539154707
719 => 0.026830382845334
720 => 0.026808805840717
721 => 0.027034326555505
722 => 0.026790306559648
723 => 0.026793331479952
724 => 0.026993578596587
725 => 0.026712367636031
726 => 0.026642735847519
727 => 0.026546540030402
728 => 0.026756580077824
729 => 0.026882489586959
730 => 0.027897227760247
731 => 0.028552794897873
801 => 0.028524334999493
802 => 0.028784405195986
803 => 0.028667241190496
804 => 0.028288887710466
805 => 0.028934690965586
806 => 0.02873033179411
807 => 0.02874717891591
808 => 0.028746551865195
809 => 0.028882432848838
810 => 0.028786148718618
811 => 0.028596362814591
812 => 0.028722351554621
813 => 0.029096493070713
814 => 0.030257839816724
815 => 0.03090774484159
816 => 0.030218714718182
817 => 0.030693998470828
818 => 0.030408997580157
819 => 0.030357204440281
820 => 0.030655717760135
821 => 0.03095475358804
822 => 0.03093570629857
823 => 0.030718621643171
824 => 0.030595996029655
825 => 0.031524558257791
826 => 0.032208707089836
827 => 0.032162052726082
828 => 0.032367969914879
829 => 0.032972549149963
830 => 0.033027824298386
831 => 0.033020860900169
901 => 0.032883855677439
902 => 0.033479142448914
903 => 0.033975741146753
904 => 0.032852142926838
905 => 0.033279994420001
906 => 0.033472070739796
907 => 0.033754095763731
908 => 0.034229919251991
909 => 0.034746789766189
910 => 0.034819880924094
911 => 0.034768019249827
912 => 0.034427129251488
913 => 0.034992695135671
914 => 0.035323990366474
915 => 0.03552126909486
916 => 0.036021535125997
917 => 0.033473256937756
918 => 0.031669458978475
919 => 0.031387769879975
920 => 0.031960595738652
921 => 0.032111645349384
922 => 0.032050757440698
923 => 0.030020418843392
924 => 0.031377080567449
925 => 0.032836734511176
926 => 0.032892805763783
927 => 0.033623539047937
928 => 0.033861495759028
929 => 0.034449831832173
930 => 0.034413031250611
1001 => 0.03455628172195
1002 => 0.034523350919342
1003 => 0.035613119606068
1004 => 0.036815296299742
1005 => 0.036773668743528
1006 => 0.036600841620303
1007 => 0.036857519369695
1008 => 0.038098294550651
1009 => 0.037984063855006
1010 => 0.038095029245678
1011 => 0.039557973111049
1012 => 0.041460008237371
1013 => 0.04057632195999
1014 => 0.04249366690803
1015 => 0.043700533918733
1016 => 0.045787685621365
1017 => 0.045526363948757
1018 => 0.046338876790365
1019 => 0.045058543615309
1020 => 0.042118639847354
1021 => 0.041653388822575
1022 => 0.042584833156214
1023 => 0.044874698161456
1024 => 0.042512717158261
1025 => 0.042990542838957
1026 => 0.042852929010772
1027 => 0.042845596154689
1028 => 0.043125461446491
1029 => 0.04271950224394
1030 => 0.041065551422078
1031 => 0.041823547336944
1101 => 0.041530848712261
1102 => 0.041855619658475
1103 => 0.043608274509465
1104 => 0.042833384021769
1105 => 0.042017099839973
1106 => 0.043040901351906
1107 => 0.044344552492966
1108 => 0.044262972347445
1109 => 0.044104672767278
1110 => 0.04499699921238
1111 => 0.046470861072572
1112 => 0.046869240010925
1113 => 0.047163315198719
1114 => 0.047203863198675
1115 => 0.04762153279866
1116 => 0.045375618093247
1117 => 0.048939942409918
1118 => 0.049555402756935
1119 => 0.049439721719914
1120 => 0.050123779993093
1121 => 0.04992251269624
1122 => 0.049630907960972
1123 => 0.050715285827328
1124 => 0.049472134108332
1125 => 0.047707636751668
1126 => 0.046739598604001
1127 => 0.048014389326258
1128 => 0.048792859536276
1129 => 0.049307378825093
1130 => 0.049463072051008
1201 => 0.045549962058529
1202 => 0.043441012803612
1203 => 0.044792825096861
1204 => 0.046442129391726
1205 => 0.045366456124613
1206 => 0.045408620480165
1207 => 0.043874993083224
1208 => 0.046577821386381
1209 => 0.046184042036975
1210 => 0.048226969998275
1211 => 0.04773940884479
1212 => 0.049405337291224
1213 => 0.048966642499936
1214 => 0.050787640051477
1215 => 0.051514085276328
1216 => 0.052733899871023
1217 => 0.053631200452419
1218 => 0.05415811251644
1219 => 0.054126478692513
1220 => 0.056214366796712
1221 => 0.05498321212692
1222 => 0.053436591700785
1223 => 0.053408618216802
1224 => 0.054209634851278
1225 => 0.055888345968958
1226 => 0.056323611337519
1227 => 0.056566865298551
1228 => 0.0561943133895
1229 => 0.054857983233091
1230 => 0.054280962646901
1231 => 0.05477260090423
]
'min_raw' => 0.02027260886869
'max_raw' => 0.056566865298551
'avg_raw' => 0.038419737083621
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.020272'
'max' => '$0.056566'
'avg' => '$0.038419'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0080256222953628
'max_diff' => 0.029226330514243
'year' => 2036
]
11 => [
'items' => [
101 => 0.054171369562474
102 => 0.055209263534066
103 => 0.056634513639251
104 => 0.05634020512858
105 => 0.057324034354556
106 => 0.058342194101588
107 => 0.059798208268259
108 => 0.060178864287475
109 => 0.060808074212187
110 => 0.06145573790941
111 => 0.061663750033931
112 => 0.062060909722015
113 => 0.062058816494415
114 => 0.063255683946385
115 => 0.064575865809808
116 => 0.065074203900969
117 => 0.066220104863072
118 => 0.064257789622629
119 => 0.065746228273958
120 => 0.067088837195493
121 => 0.065488123489971
122 => 0.067694334414573
123 => 0.067779996585394
124 => 0.069073393661976
125 => 0.067762287939963
126 => 0.066983757547429
127 => 0.069231345619521
128 => 0.070318882689245
129 => 0.069991307673174
130 => 0.067498445626498
131 => 0.06604749299145
201 => 0.062250070077669
202 => 0.066748281555505
203 => 0.068939229151731
204 => 0.067492771601518
205 => 0.068222280654435
206 => 0.072202245503043
207 => 0.073717558433752
208 => 0.073402383937001
209 => 0.073455643238738
210 => 0.074273278591274
211 => 0.07789912402443
212 => 0.075726433394444
213 => 0.077387373971903
214 => 0.078268330865221
215 => 0.079086612723995
216 => 0.077077171099482
217 => 0.074462917070551
218 => 0.07363487308067
219 => 0.067348949904712
220 => 0.067021740305023
221 => 0.066838067641252
222 => 0.065680037477188
223 => 0.064770142979392
224 => 0.064046561092528
225 => 0.062147666141554
226 => 0.062788487444862
227 => 0.059762045223187
228 => 0.061698255706088
301 => 0.056867980844292
302 => 0.060890777281588
303 => 0.058701352074877
304 => 0.060171492216781
305 => 0.060166363036322
306 => 0.05745936892672
307 => 0.055898031217827
308 => 0.056892976374107
309 => 0.057959636560483
310 => 0.058132698587046
311 => 0.059515651361362
312 => 0.059901603754203
313 => 0.0587321499855
314 => 0.056767884134093
315 => 0.057224138291241
316 => 0.055888785241895
317 => 0.053548630386531
318 => 0.055229370458838
319 => 0.055803249016447
320 => 0.056056706480628
321 => 0.053755432948979
322 => 0.053032322842255
323 => 0.052647345088917
324 => 0.056470818619312
325 => 0.056680277130311
326 => 0.055608657773593
327 => 0.060452478881073
328 => 0.059356172983117
329 => 0.0605810152726
330 => 0.057182738008709
331 => 0.057312556776577
401 => 0.055703757860042
402 => 0.056604577753319
403 => 0.055967907287531
404 => 0.056531800408018
405 => 0.056869795619419
406 => 0.058478330547883
407 => 0.060909144166646
408 => 0.058238069069483
409 => 0.057074243399149
410 => 0.05779627429942
411 => 0.059719137734961
412 => 0.062632374269375
413 => 0.060907679606653
414 => 0.061673069810754
415 => 0.06184027352051
416 => 0.060568547527886
417 => 0.062679264620694
418 => 0.063810415058165
419 => 0.064970741348407
420 => 0.065978220154621
421 => 0.064507281511963
422 => 0.066081396710379
423 => 0.064812937729193
424 => 0.063674998892191
425 => 0.063676724675686
426 => 0.062962879020601
427 => 0.061579713113532
428 => 0.061324636098696
429 => 0.062651578942547
430 => 0.063715661441361
501 => 0.063803304372575
502 => 0.064392435118451
503 => 0.064741076625331
504 => 0.068158237347903
505 => 0.069532647658758
506 => 0.071213250570615
507 => 0.071867940118374
508 => 0.073838320937934
509 => 0.072247078399633
510 => 0.071902803067087
511 => 0.067123303705488
512 => 0.067905946458197
513 => 0.069159033019078
514 => 0.067143966641336
515 => 0.068422062453669
516 => 0.068674385640794
517 => 0.067075495456895
518 => 0.067929531788083
519 => 0.065661464496575
520 => 0.060958581835688
521 => 0.062684500273486
522 => 0.063955357181569
523 => 0.062141687678207
524 => 0.065392620064281
525 => 0.063493492477203
526 => 0.0628915602063
527 => 0.060543207813159
528 => 0.061651539746349
529 => 0.063150574555772
530 => 0.06222434532505
531 => 0.064146410052817
601 => 0.066868566303275
602 => 0.068808536954559
603 => 0.068957463812453
604 => 0.067710192651617
605 => 0.069708952646835
606 => 0.069723511431304
607 => 0.067468901991524
608 => 0.066087966263376
609 => 0.065774214760428
610 => 0.066558027529399
611 => 0.06750972093075
612 => 0.069010276172779
613 => 0.069917030278595
614 => 0.072281364081348
615 => 0.07292108501761
616 => 0.073623944375293
617 => 0.074563181230957
618 => 0.075690975891567
619 => 0.073223425379537
620 => 0.073321465761469
621 => 0.071023716890229
622 => 0.068568242690788
623 => 0.070431641528984
624 => 0.072867787632365
625 => 0.072308933024547
626 => 0.072246050464804
627 => 0.072351801488124
628 => 0.071930443364315
629 => 0.070024656186585
630 => 0.069067581796789
701 => 0.070302451935344
702 => 0.070958730456239
703 => 0.071976561208646
704 => 0.071851092084611
705 => 0.07447291479577
706 => 0.075491675821522
707 => 0.075231033155892
708 => 0.075278997679084
709 => 0.07712341585384
710 => 0.079174788197698
711 => 0.081096169100142
712 => 0.083050680279339
713 => 0.080694440766948
714 => 0.079498087655205
715 => 0.080732418688088
716 => 0.080077465267573
717 => 0.083841021893656
718 => 0.084101602388773
719 => 0.087864886866874
720 => 0.091436691960172
721 => 0.089193305176607
722 => 0.091308717869149
723 => 0.093596709168261
724 => 0.098010615597458
725 => 0.096524167195205
726 => 0.095385571014695
727 => 0.09430960312577
728 => 0.096548521497531
729 => 0.099428854215206
730 => 0.10004925029511
731 => 0.1010545289541
801 => 0.099997601363798
802 => 0.10127055422956
803 => 0.10576463720952
804 => 0.10455029631797
805 => 0.10282573703692
806 => 0.10637338393328
807 => 0.10765726355395
808 => 0.11666820310476
809 => 0.128044886511
810 => 0.12333486487749
811 => 0.12041120245812
812 => 0.12109833247687
813 => 0.12525271213179
814 => 0.12658696702353
815 => 0.12296000228254
816 => 0.1242411075452
817 => 0.13130012349795
818 => 0.13508705907626
819 => 0.12994389190762
820 => 0.1157540976703
821 => 0.10267045934247
822 => 0.10614082939093
823 => 0.10574739712555
824 => 0.11333142913661
825 => 0.10452133468931
826 => 0.10466967408506
827 => 0.11241053584648
828 => 0.1103454066405
829 => 0.10700016180858
830 => 0.10269488333182
831 => 0.094736177877467
901 => 0.087686930511628
902 => 0.10151212794075
903 => 0.10091596028812
904 => 0.10005262118001
905 => 0.10197388894206
906 => 0.1113030198332
907 => 0.11108795317071
908 => 0.10971980879192
909 => 0.11075753424496
910 => 0.10681824351933
911 => 0.10783348843531
912 => 0.10266838682732
913 => 0.10500322846783
914 => 0.10699298441559
915 => 0.10739245738095
916 => 0.10829249036949
917 => 0.10060180702525
918 => 0.10405469806021
919 => 0.10608294805111
920 => 0.096919240803844
921 => 0.1059018110224
922 => 0.10046792933845
923 => 0.098623588280752
924 => 0.10110675054148
925 => 0.10013905979352
926 => 0.099307096113132
927 => 0.098842846084524
928 => 0.10066620639219
929 => 0.10058114445445
930 => 0.097597773092125
1001 => 0.093706086767749
1002 => 0.095012264438458
1003 => 0.094537717845209
1004 => 0.092817899773543
1005 => 0.09397684950222
1006 => 0.088873421428161
1007 => 0.080093238679853
1008 => 0.085893696347656
1009 => 0.08567038503713
1010 => 0.085557781348001
1011 => 0.08991666497248
1012 => 0.089497658888542
1013 => 0.088737158743274
1014 => 0.092803932591984
1015 => 0.091319505431377
1016 => 0.09589416016534
1017 => 0.098907323643245
1018 => 0.098143087919621
1019 => 0.10097698273447
1020 => 0.095042356133884
1021 => 0.097013601034707
1022 => 0.09741987187674
1023 => 0.092753749233959
1024 => 0.08956621346581
1025 => 0.089353641170643
1026 => 0.083826893418158
1027 => 0.086779237457186
1028 => 0.089377178035233
1029 => 0.088132966106682
1030 => 0.087739085779876
1031 => 0.089751334947305
1101 => 0.089907703941363
1102 => 0.086342474305601
1103 => 0.087083798443015
1104 => 0.090175243330915
1105 => 0.08700590196367
1106 => 0.080848389396086
1107 => 0.079321241145054
1108 => 0.07911749141744
1109 => 0.074975744240984
1110 => 0.079423292493531
1111 => 0.077481818494412
1112 => 0.083614911595201
1113 => 0.080111721708468
1114 => 0.079960706194188
1115 => 0.079732424095194
1116 => 0.076167451206998
1117 => 0.076947953703667
1118 => 0.07954246287648
1119 => 0.080468212978578
1120 => 0.080371649658482
1121 => 0.079529748366104
1122 => 0.079915166466522
1123 => 0.078673600476506
1124 => 0.07823517768447
1125 => 0.076851394755115
1126 => 0.074817616128753
1127 => 0.075100425520638
1128 => 0.07107097789469
1129 => 0.068875520969102
1130 => 0.068267847427757
1201 => 0.067455240971844
1202 => 0.068359633489215
1203 => 0.071059562975839
1204 => 0.067802875192977
1205 => 0.062219512419346
1206 => 0.062555082035628
1207 => 0.063309007331902
1208 => 0.061904072530011
1209 => 0.060574419647262
1210 => 0.061730444950664
1211 => 0.059364700539306
1212 => 0.063594896241537
1213 => 0.063480481302778
1214 => 0.065057236667022
1215 => 0.066043214154562
1216 => 0.063770855259786
1217 => 0.063199363142861
1218 => 0.06352491102553
1219 => 0.058144329691888
1220 => 0.064617528380815
1221 => 0.064673508871883
1222 => 0.064194169920623
1223 => 0.067640948384889
1224 => 0.074914726021654
1225 => 0.072178038287676
1226 => 0.071118310080255
1227 => 0.06910376598329
1228 => 0.071788026380703
1229 => 0.071581917063167
1230 => 0.070649812564631
1231 => 0.070086072855574
]
'min_raw' => 0.052647345088917
'max_raw' => 0.13508705907626
'avg_raw' => 0.093867202082588
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.052647'
'max' => '$0.135087'
'avg' => '$0.093867'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.032374736220227
'max_diff' => 0.078520193777708
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0016525400035674
]
1 => [
'year' => 2028
'avg' => 0.0028362383819124
]
2 => [
'year' => 2029
'avg' => 0.0077480920771518
]
3 => [
'year' => 2030
'avg' => 0.0059776414987177
]
4 => [
'year' => 2031
'avg' => 0.0058707847526963
]
5 => [
'year' => 2032
'avg' => 0.010293333275435
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0016525400035674
'min' => '$0.001652'
'max_raw' => 0.010293333275435
'max' => '$0.010293'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010293333275435
]
1 => [
'year' => 2033
'avg' => 0.026475511635397
]
2 => [
'year' => 2034
'avg' => 0.016781451628066
]
3 => [
'year' => 2035
'avg' => 0.019793760678818
]
4 => [
'year' => 2036
'avg' => 0.038419737083621
]
5 => [
'year' => 2037
'avg' => 0.093867202082588
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010293333275435
'min' => '$0.010293'
'max_raw' => 0.093867202082588
'max' => '$0.093867'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.093867202082588
]
]
]
]
'prediction_2025_max_price' => '$0.002825'
'last_price' => 0.00273972
'sma_50day_nextmonth' => '$0.002561'
'sma_200day_nextmonth' => '$0.003423'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002707'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00265'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002595'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002629'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002825'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.00342'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003426'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00270064'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002667'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002639'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002678'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00289'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003166'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003326'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003583'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003197'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003552'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002726'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002778'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002977'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003215'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003397'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004033'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003822'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.64'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.6
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002596'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002736'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 113.96
'cci_20_action' => 'SELL'
'adx_14' => 20.24
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000134'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.65
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000456'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767698442
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de IMPT para 2026
La previsión del precio de IMPT para 2026 sugiere que el precio medio podría oscilar entre $0.000946 en el extremo inferior y $0.002825 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, IMPT podría potencialmente ganar 3.13% para 2026 si IMPT alcanza el objetivo de precio previsto.
Predicción de precio de IMPT 2027-2032
La predicción del precio de IMPT para 2027-2032 está actualmente dentro de un rango de precios de $0.001652 en el extremo inferior y $0.010293 en el extremo superior. Considerando la volatilidad de precios en el mercado, si IMPT alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de IMPT | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000911 | $0.001652 | $0.002393 |
| 2028 | $0.001644 | $0.002836 | $0.004027 |
| 2029 | $0.003612 | $0.007748 | $0.011883 |
| 2030 | $0.003072 | $0.005977 | $0.008882 |
| 2031 | $0.003632 | $0.00587 | $0.0081091 |
| 2032 | $0.005544 | $0.010293 | $0.015042 |
Predicción de precio de IMPT 2032-2037
La predicción de precio de IMPT para 2032-2037 se estima actualmente entre $0.010293 en el extremo inferior y $0.093867 en el extremo superior. Comparado con el precio actual, IMPT podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de IMPT | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005544 | $0.010293 | $0.015042 |
| 2033 | $0.012884 | $0.026475 | $0.040066 |
| 2034 | $0.010358 | $0.016781 | $0.0232043 |
| 2035 | $0.012246 | $0.019793 | $0.02734 |
| 2036 | $0.020272 | $0.038419 | $0.056566 |
| 2037 | $0.052647 | $0.093867 | $0.135087 |
IMPT Histograma de precios potenciales
Pronóstico de precio de IMPT basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para IMPT es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de IMPT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de IMPT
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de IMPT aumentar durante el próximo mes, alcanzando $0.003423 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para IMPT alcance $0.002561 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.64, lo que sugiere que el mercado de IMPT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IMPT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002707 | BUY |
| SMA 5 | $0.00265 | BUY |
| SMA 10 | $0.002595 | BUY |
| SMA 21 | $0.002629 | BUY |
| SMA 50 | $0.002825 | SELL |
| SMA 100 | $0.00342 | SELL |
| SMA 200 | $0.003426 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00270064 | BUY |
| EMA 5 | $0.002667 | BUY |
| EMA 10 | $0.002639 | BUY |
| EMA 21 | $0.002678 | BUY |
| EMA 50 | $0.00289 | SELL |
| EMA 100 | $0.003166 | SELL |
| EMA 200 | $0.003326 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.003583 | SELL |
| SMA 50 | $0.003197 | SELL |
| SMA 100 | $0.003552 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003215 | SELL |
| EMA 50 | $0.003397 | SELL |
| EMA 100 | $0.004033 | SELL |
| EMA 200 | $0.003822 | SELL |
Osciladores de IMPT
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.64 | NEUTRAL |
| Stoch RSI (14) | 122.6 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 113.96 | SELL |
| Índice Direccional Medio (14) | 20.24 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000134 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.65 | SELL |
| VWMA (10) | 0.002596 | BUY |
| Promedio Móvil de Hull (9) | 0.002736 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000456 | SELL |
Predicción de precios de IMPT basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de IMPT
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de IMPT por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.003849 | $0.0054095 | $0.0076013 | $0.010681 | $0.0150087 | $0.021089 |
| Amazon.com acción | $0.005716 | $0.011928 | $0.024888 | $0.051931 | $0.108357 | $0.226094 |
| Apple acción | $0.003886 | $0.005512 | $0.007818 | $0.011089 | $0.01573 | $0.022312 |
| Netflix acción | $0.004322 | $0.00682 | $0.010762 | $0.01698 | $0.026793 | $0.042275 |
| Google acción | $0.003547 | $0.004594 | $0.005949 | $0.0077051 | $0.009978 | $0.012921 |
| Tesla acción | $0.00621 | $0.014079 | $0.031916 | $0.072352 | $0.164017 | $0.371816 |
| Kodak acción | $0.002054 | $0.00154 | $0.001155 | $0.000866 | $0.000649 | $0.000487 |
| Nokia acción | $0.001814 | $0.0012023 | $0.000796 | $0.000527 | $0.000349 | $0.000231 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de IMPT
Podría preguntarse cosas como: "¿Debo invertir en IMPT ahora?", "¿Debería comprar IMPT hoy?", "¿Será IMPT una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de IMPT regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como IMPT, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de IMPT a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de IMPT es de $0.002739 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de IMPT basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si IMPT ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00281 | $0.002883 | $0.002958 | $0.003035 |
| Si IMPT ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002882 | $0.003031 | $0.003189 | $0.003355 |
| Si IMPT ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003095 | $0.003498 | $0.003952 | $0.004466 |
| Si IMPT ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003451 | $0.004349 | $0.005479 | $0.0069039 |
| Si IMPT ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004164 | $0.006328 | $0.009618 | $0.014619 |
| Si IMPT ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.00630042 | $0.014488 | $0.033319 | $0.076623 |
| Si IMPT ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.009861 | $0.035493 | $0.127752 | $0.45982 |
Cuadro de preguntas
¿Es IMPT una buena inversión?
La decisión de adquirir IMPT depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de IMPT ha experimentado un aumento de 0.9123% durante las últimas 24 horas, y IMPT ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en IMPT dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede IMPT subir?
Parece que el valor medio de IMPT podría potencialmente aumentar hasta $0.002825 para el final de este año. Mirando las perspectivas de IMPT en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.008882. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de IMPT la próxima semana?
Basado en nuestro nuevo pronóstico experimental de IMPT, el precio de IMPT aumentará en un 0.86% durante la próxima semana y alcanzará $0.002763 para el 13 de enero de 2026.
¿Cuál será el precio de IMPT el próximo mes?
Basado en nuestro nuevo pronóstico experimental de IMPT, el precio de IMPT disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002421 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de IMPT este año en 2026?
Según nuestra predicción más reciente sobre el valor de IMPT en 2026, se anticipa que IMPT fluctúe dentro del rango de $0.000946 y $0.002825. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de IMPT no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará IMPT en 5 años?
El futuro de IMPT parece estar en una tendencia alcista, con un precio máximo de $0.008882 proyectada después de un período de cinco años. Basado en el pronóstico de IMPT para 2030, el valor de IMPT podría potencialmente alcanzar su punto más alto de aproximadamente $0.008882, mientras que su punto más bajo se anticipa que esté alrededor de $0.003072.
¿Cuánto será IMPT en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de IMPT, se espera que el valor de IMPT en 2026 crezca en un 3.13% hasta $0.002825 si ocurre lo mejor. El precio estará entre $0.002825 y $0.000946 durante 2026.
¿Cuánto será IMPT en 2027?
Según nuestra última simulación experimental para la predicción de precios de IMPT, el valor de IMPT podría disminuir en un -12.62% hasta $0.002393 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002393 y $0.000911 a lo largo del año.
¿Cuánto será IMPT en 2028?
Nuestro nuevo modelo experimental de predicción de precios de IMPT sugiere que el valor de IMPT en 2028 podría aumentar en un 47.02% , alcanzando $0.004027 en el mejor escenario. Se espera que el precio oscile entre $0.004027 y $0.001644 durante el año.
¿Cuánto será IMPT en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de IMPT podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.011883 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.011883 y $0.003612.
¿Cuánto será IMPT en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de IMPT, se espera que el valor de IMPT en 2030 aumente en un 224.23% , alcanzando $0.008882 en el mejor escenario. Se pronostica que el precio oscile entre $0.008882 y $0.003072 durante el transcurso de 2030.
¿Cuánto será IMPT en 2031?
Nuestra simulación experimental indica que el precio de IMPT podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.0081091 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.0081091 y $0.003632 durante el año.
¿Cuánto será IMPT en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de IMPT, IMPT podría experimentar un 449.04% aumento en valor, alcanzando $0.015042 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.015042 y $0.005544 a lo largo del año.
¿Cuánto será IMPT en 2033?
Según nuestra predicción experimental de precios de IMPT, se anticipa que el valor de IMPT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.040066. A lo largo del año, el precio de IMPT podría oscilar entre $0.040066 y $0.012884.
¿Cuánto será IMPT en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de IMPT sugieren que IMPT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0232043 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0232043 y $0.010358.
¿Cuánto será IMPT en 2035?
Basado en nuestra predicción experimental para el precio de IMPT, IMPT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.02734 en 2035. El rango de precios esperado para el año está entre $0.02734 y $0.012246.
¿Cuánto será IMPT en 2036?
Nuestra reciente simulación de predicción de precios de IMPT sugiere que el valor de IMPT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.056566 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.056566 y $0.020272.
¿Cuánto será IMPT en 2037?
Según la simulación experimental, el valor de IMPT podría aumentar en un 4830.69% en 2037, con un máximo de $0.135087 bajo condiciones favorables. Se espera que el precio caiga entre $0.135087 y $0.052647 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Wam
Predicción de precios de DogeGF
Predicción de precios de Bitsdaq Token
Predicción de precios de BuildAI
Predicción de precios de PolkaBridge
Predicción de precios de KI
Predicción de precios de ExeedmePredicción de precios de MiamiCoin
Predicción de precios de AutoAir AI
Predicción de precios de GroveCoin
Predicción de precios de Unfettered Ecosystem
Predicción de precios de Astra DAO
Predicción de precios de X2Y2
Predicción de precios de Qmall
Predicción de precios de Chain Guardians
Predicción de precios de ApeBond
Predicción de precios de Biometric Financial
Predicción de precios de CSP DAO Network
Predicción de precios de Bonsai3
Predicción de precios de xFund
Predicción de precios de AsMatch
Predicción de precios de Bondly
Predicción de precios de Orchai
Predicción de precios de Wefi
Predicción de precios de Degen Zoo
¿Cómo leer y predecir los movimientos de precio de IMPT?
Los traders de IMPT utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de IMPT
Las medias móviles son herramientas populares para la predicción de precios de IMPT. Una media móvil simple (SMA) calcula el precio de cierre promedio de IMPT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IMPT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IMPT.
¿Cómo leer gráficos de IMPT y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de IMPT en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IMPT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de IMPT?
La acción del precio de IMPT está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IMPT. La capitalización de mercado de IMPT puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IMPT, grandes poseedores de IMPT, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de IMPT.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


