Predicción del precio de IMPT - Pronóstico de IMPT
Predicción de precio de IMPT hasta $0.002821 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000945 | $0.002821 |
| 2027 | $0.00091 | $0.00239 |
| 2028 | $0.001642 | $0.004022 |
| 2029 | $0.0036077 | $0.011867 |
| 2030 | $0.003068 | $0.008871 |
| 2031 | $0.003627 | $0.008098 |
| 2032 | $0.005537 | $0.015021 |
| 2033 | $0.012867 | $0.040012 |
| 2034 | $0.010344 | $0.023173 |
| 2035 | $0.01223 | $0.0273039 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en IMPT hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.79, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de IMPT para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'IMPT'
'name_with_ticker' => 'IMPT <small>IMPT</small>'
'name_lang' => 'IMPT'
'name_lang_with_ticker' => 'IMPT <small>IMPT</small>'
'name_with_lang' => 'IMPT'
'name_with_lang_with_ticker' => 'IMPT <small>IMPT</small>'
'image' => '/uploads/coins/impt.png?1717220447'
'price_for_sd' => 0.002736
'ticker' => 'IMPT'
'marketcap' => '$3.44M'
'low24h' => '$0.002679'
'high24h' => '$0.002757'
'volume24h' => '$488.77K'
'current_supply' => '1.26B'
'max_supply' => '1.65B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002736'
'change_24h_pct' => '0.8085%'
'ath_price' => '$0.02042'
'ath_days' => 1118
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 dic. 2022'
'ath_pct' => '-86.63%'
'fdv' => '$4.5M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1349061'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002759'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002418'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000945'
'current_year_max_price_prediction' => '$0.002821'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003068'
'grand_prediction_max_price' => '$0.008871'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0027878967083377
107 => 0.0027983057026401
108 => 0.0028217576982999
109 => 0.0026213629630994
110 => 0.0027113343159241
111 => 0.0027641840565329
112 => 0.0025254070057723
113 => 0.0027594642019661
114 => 0.0026178745365976
115 => 0.0025698168775661
116 => 0.0026345201843369
117 => 0.0026093052427623
118 => 0.0025876269166675
119 => 0.0025755300382257
120 => 0.0026230410056748
121 => 0.0026208245622554
122 => 0.0025430873980273
123 => 0.0024416824362639
124 => 0.0024757172699361
125 => 0.0024633520957847
126 => 0.002418539109521
127 => 0.0024487376515222
128 => 0.0023157585556813
129 => 0.0020869749329389
130 => 0.0022381164019544
131 => 0.0022322976198076
201 => 0.0022293635259884
202 => 0.0023429421627101
203 => 0.0023320241974943
204 => 0.0023122079837186
205 => 0.0024181751692149
206 => 0.002379495721049
207 => 0.0024986966662722
208 => 0.00257721011823
209 => 0.0025572965671694
210 => 0.0026311388482242
211 => 0.0024765013637632
212 => 0.0025278657331221
213 => 0.0025384518584591
214 => 0.0024168675505947
215 => 0.0023338105116284
216 => 0.0023282715540489
217 => 0.0021842620944462
218 => 0.0022611907853622
219 => 0.0023288848498428
220 => 0.0022964646462282
221 => 0.0022862013782899
222 => 0.0023386341883556
223 => 0.0023427086667544
224 => 0.0022498101274688
225 => 0.0022691266755004
226 => 0.0023496798919011
227 => 0.0022670969411254
228 => 0.0021066517576166
301 => 0.0020668591337782
302 => 0.0020615500642346
303 => 0.0019536293123921
304 => 0.0020695182671789
305 => 0.0020189296327836
306 => 0.0021787385226936
307 => 0.0020874565418492
308 => 0.002083521558098
309 => 0.0020775732530214
310 => 0.0019846814037605
311 => 0.0020050188151636
312 => 0.002072623468143
313 => 0.0020967455699469
314 => 0.0020942294371022
315 => 0.0020722921684618
316 => 0.0020823349377084
317 => 0.0020499836788323
318 => 0.00203855977599
319 => 0.0020025027962274
320 => 0.0019495089969714
321 => 0.0019568781097879
322 => 0.0018518835268798
323 => 0.0017946769056273
324 => 0.0017788428668357
325 => 0.0017576689284136
326 => 0.0017812345195222
327 => 0.0018515860904183
328 => 0.0017667271699992
329 => 0.0016212425031018
330 => 0.0016299863794762
331 => 0.0016496312736091
401 => 0.0016130231433563
402 => 0.0015783766203596
403 => 0.001608498961144
404 => 0.0015468551898891
405 => 0.0016570806288587
406 => 0.0016540993396378
407 => 0.0016951845669902
408 => 0.0017208760028074
409 => 0.0016616655609499
410 => 0.0016467742949447
411 => 0.0016552570368316
412 => 0.0015150562089835
413 => 0.0016837271682604
414 => 0.0016851858417204
415 => 0.0016726957939692
416 => 0.0017625078726525
417 => 0.0019520393717642
418 => 0.0018807299979115
419 => 0.0018531168530185
420 => 0.0018006242443918
421 => 0.0018705675286842
422 => 0.0018651969757357
423 => 0.0018409092985811
424 => 0.0018262200356559
425 => 0.0018532854529931
426 => 0.0018228663309281
427 => 0.0018174022207436
428 => 0.0017842956580364
429 => 0.0017724781214026
430 => 0.0017637288877485
501 => 0.0017540968411774
502 => 0.0017753427357569
503 => 0.0017271967435096
504 => 0.0016691373966693
505 => 0.0016643103901904
506 => 0.0016776381794735
507 => 0.0016717416248529
508 => 0.0016642821597554
509 => 0.0016500400094199
510 => 0.0016458146676507
511 => 0.0016595449785561
512 => 0.0016440442580707
513 => 0.0016669164155148
514 => 0.0016606964542642
515 => 0.0016259522563367
516 => 0.0015826481217694
517 => 0.0015822626241383
518 => 0.0015729328193788
519 => 0.001561049910272
520 => 0.0015577443568027
521 => 0.0016059621416212
522 => 0.0017057715131586
523 => 0.00168617654529
524 => 0.0017003359177482
525 => 0.0017699860161964
526 => 0.0017921256880416
527 => 0.0017764114733727
528 => 0.0017549008871235
529 => 0.0017558472437504
530 => 0.0018293554286613
531 => 0.0018339400439872
601 => 0.0018455238878629
602 => 0.001860412400837
603 => 0.001778947051512
604 => 0.0017520102331232
605 => 0.0017392460741729
606 => 0.0016999374049569
607 => 0.0017423284346357
608 => 0.0017176289970068
609 => 0.0017209617949959
610 => 0.0017187913059333
611 => 0.0017199765397293
612 => 0.0016570498186021
613 => 0.0016799770084497
614 => 0.0016418561085264
615 => 0.0015908165028009
616 => 0.0015906454001457
617 => 0.0016031372713393
618 => 0.0015957066175464
619 => 0.0015757109192493
620 => 0.0015785512138154
621 => 0.0015536672447182
622 => 0.0015815725782026
623 => 0.0015823728033168
624 => 0.0015716277299116
625 => 0.0016146197463381
626 => 0.0016322336105463
627 => 0.0016251609730492
628 => 0.0016317373754453
629 => 0.0016869908046709
630 => 0.0016959995245108
701 => 0.0017000006027811
702 => 0.0016946396879402
703 => 0.0016327473067014
704 => 0.001635492496996
705 => 0.0016153501120761
706 => 0.001598331919371
707 => 0.0015990125578306
708 => 0.0016077621210912
709 => 0.0016459719770054
710 => 0.0017263823661828
711 => 0.0017294338816728
712 => 0.0017331324074658
713 => 0.0017180886443358
714 => 0.0017135513014264
715 => 0.0017195372279115
716 => 0.0017497351423091
717 => 0.0018274123767936
718 => 0.0017999560542387
719 => 0.0017776336366185
720 => 0.001797216414952
721 => 0.0017942017997224
722 => 0.0017687554133835
723 => 0.0017680412180707
724 => 0.0017192014669844
725 => 0.0017011465230351
726 => 0.0016860584604819
727 => 0.0016695826900577
728 => 0.0016598153010774
729 => 0.0016748224497501
730 => 0.0016782547622109
731 => 0.0016454413693581
801 => 0.0016409690251619
802 => 0.0016677651500918
803 => 0.0016559731745704
804 => 0.001668101513821
805 => 0.0016709153925622
806 => 0.0016704622932757
807 => 0.0016581501165316
808 => 0.0016659975308339
809 => 0.0016474360565822
810 => 0.0016272532411767
811 => 0.0016143778623818
812 => 0.0016031423867122
813 => 0.0016093764816234
814 => 0.0015871530715656
815 => 0.0015800433554193
816 => 0.0016633390034407
817 => 0.0017248703942133
818 => 0.0017239757034223
819 => 0.0017185295033283
820 => 0.0017104375547099
821 => 0.001749143165866
822 => 0.0017356589048823
823 => 0.0017454698313957
824 => 0.0017479671239566
825 => 0.0017555256764022
826 => 0.0017582272092219
827 => 0.0017500613007054
828 => 0.0017226555143425
829 => 0.0016543629003899
830 => 0.0016225725042426
831 => 0.0016120811440031
901 => 0.0016124624850219
902 => 0.0016019433973427
903 => 0.0016050417400967
904 => 0.0016008659201754
905 => 0.0015929579274839
906 => 0.0016088881853588
907 => 0.0016107239991783
908 => 0.0016070056866379
909 => 0.001607881483846
910 => 0.0015770954441235
911 => 0.0015794360398598
912 => 0.0015664033053713
913 => 0.0015639598247667
914 => 0.0015310142068699
915 => 0.0014726462692219
916 => 0.0015049877725917
917 => 0.0014659237844245
918 => 0.0014511296601896
919 => 0.0015211627433593
920 => 0.0015141333642244
921 => 0.0015021021227432
922 => 0.001484305409062
923 => 0.0014777044348423
924 => 0.0014375990050982
925 => 0.0014352293623548
926 => 0.0014551066962737
927 => 0.0014459339906074
928 => 0.0014330520378767
929 => 0.0013863949109085
930 => 0.0013339368525525
1001 => 0.0013355202315947
1002 => 0.0013522061639409
1003 => 0.0014007227626419
1004 => 0.0013817664881838
1005 => 0.0013680134935662
1006 => 0.0013654379710878
1007 => 0.0013976760271262
1008 => 0.0014432996305021
1009 => 0.0014647052044355
1010 => 0.0014434929307644
1011 => 0.0014191254129211
1012 => 0.001420608550824
1013 => 0.0014304752028346
1014 => 0.001431512048454
1015 => 0.0014156512993593
1016 => 0.0014201160073246
1017 => 0.0014133337076638
1018 => 0.0013717107471651
1019 => 0.0013709579197975
1020 => 0.0013607429740302
1021 => 0.001360433669532
1022 => 0.0013430554985442
1023 => 0.0013406241722934
1024 => 0.0013061187590175
1025 => 0.0013288303265277
1026 => 0.0013135965994526
1027 => 0.0012906357794776
1028 => 0.0012866773254594
1029 => 0.0012865583295517
1030 => 0.0013101339577206
1031 => 0.0013285548315861
1101 => 0.0013138615966572
1102 => 0.0013105162318803
1103 => 0.0013462359755098
1104 => 0.0013416903125403
1105 => 0.001337753797725
1106 => 0.0014392145372238
1107 => 0.0013589004448303
1108 => 0.0013238789163786
1109 => 0.0012805331245117
1110 => 0.001294646732912
1111 => 0.001297620677574
1112 => 0.0011933818618004
1113 => 0.0011510921872232
1114 => 0.0011365799645611
1115 => 0.0011282279752463
1116 => 0.0011320340816547
1117 => 0.0010939684144512
1118 => 0.00111954917236
1119 => 0.0010865875221724
1120 => 0.001081061394252
1121 => 0.0011400009079523
1122 => 0.001148201996964
1123 => 0.0011132136033613
1124 => 0.0011356818161606
1125 => 0.0011275345298681
1126 => 0.0010871525550592
1127 => 0.0010856102606512
1128 => 0.0010653480051872
1129 => 0.0010336414989318
1130 => 0.001019150774774
1201 => 0.0010116038798183
1202 => 0.0010147178757631
1203 => 0.0010131433441235
1204 => 0.0010028684601215
1205 => 0.0010137322884472
1206 => 0.00098597969631877
1207 => 0.0009749283905154
1208 => 0.00096993677207237
1209 => 0.00094530474917878
1210 => 0.00098450525151277
1211 => 0.00099222824430748
1212 => 0.00099996645378375
1213 => 0.0010673222841747
1214 => 0.001063957377234
1215 => 0.001094374497202
1216 => 0.0010931925438536
1217 => 0.001084517088514
1218 => 0.0010479167694795
1219 => 0.0010625050043087
1220 => 0.0010176046850195
1221 => 0.0010512470571559
1222 => 0.0010358940834519
1223 => 0.0010460562013029
1224 => 0.0010277837971256
1225 => 0.0010378965000464
1226 => 0.00099405965240325
1227 => 0.00095312542087519
1228 => 0.0009695985505868
1229 => 0.0009875067265142
1230 => 0.0010263362148432
1231 => 0.0010032096919308
]
'min_raw' => 0.00094530474917878
'max_raw' => 0.0028217576982999
'avg_raw' => 0.0018835312237394
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000945'
'max' => '$0.002821'
'avg' => '$0.001883'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0017907452508212
'max_diff' => 8.5707698299923E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010115268640807
102 => 0.00098366572965617
103 => 0.00092618025119875
104 => 0.00092650561276391
105 => 0.00091766272429246
106 => 0.00091002117757027
107 => 0.0010058660512856
108 => 0.00099394622615583
109 => 0.00097495354483975
110 => 0.0010003760035205
111 => 0.0010070981051043
112 => 0.0010072894738863
113 => 0.0010258370434911
114 => 0.001035735884714
115 => 0.0010374805983836
116 => 0.0010666655999036
117 => 0.0010764480274536
118 => 0.0011167404620711
119 => 0.0010348960371956
120 => 0.0010332105051245
121 => 0.0010007337496491
122 => 0.00098013647788935
123 => 0.0010021440624682
124 => 0.0010216397780702
125 => 0.0010013395358769
126 => 0.0010039903189459
127 => 0.00097673890239214
128 => 0.00098648000151177
129 => 0.00099487034834135
130 => 0.00099023769198384
131 => 0.00098330238119356
201 => 0.001020041351717
202 => 0.0010179683950189
203 => 0.0010521805689956
204 => 0.0010788514051465
205 => 0.0011266503115111
206 => 0.0010767696609063
207 => 0.0010749518117406
208 => 0.0010927215789272
209 => 0.0010764453069948
210 => 0.0010867313490183
211 => 0.0011249930711196
212 => 0.0011258014810155
213 => 0.0011122595736808
214 => 0.0011114355473887
215 => 0.0011140364188246
216 => 0.0011292698040613
217 => 0.001123946791185
218 => 0.0011301067164477
219 => 0.0011378097973128
220 => 0.0011696730058096
221 => 0.0011773551175058
222 => 0.0011586915688023
223 => 0.0011603766782833
224 => 0.0011533959987423
225 => 0.0011466527497734
226 => 0.0011618105886831
227 => 0.0011895118372187
228 => 0.0011893395091893
301 => 0.0011957656604142
302 => 0.0011997690993902
303 => 0.0011825834086087
304 => 0.0011713961558453
305 => 0.0011756860604182
306 => 0.0011825457112522
307 => 0.0011734615681048
308 => 0.0011173900284146
309 => 0.0011343985516927
310 => 0.001131567501745
311 => 0.0011275357423519
312 => 0.0011446379440311
313 => 0.0011429883949581
314 => 0.0010935779960148
315 => 0.0010967410894435
316 => 0.0010937703542027
317 => 0.001103369407521
318 => 0.0010759269266142
319 => 0.0010843680489132
320 => 0.0010896622416885
321 => 0.0010927805619051
322 => 0.0011040460727795
323 => 0.0011027241951044
324 => 0.0011039639030072
325 => 0.0011206676816494
326 => 0.001205149661977
327 => 0.0012097478297672
328 => 0.0011871047698672
329 => 0.0011961502256826
330 => 0.0011787849285407
331 => 0.0011904423688495
401 => 0.0011984180934418
402 => 0.0011623773276525
403 => 0.0011602432274051
404 => 0.0011428062575047
405 => 0.0011521758974487
406 => 0.0011372681265968
407 => 0.0011409259721122
408 => 0.001130698317166
409 => 0.0011491060597634
410 => 0.0011696887762613
411 => 0.0011748887832848
412 => 0.0011612098035498
413 => 0.001151305320733
414 => 0.0011339163116461
415 => 0.0011628346212969
416 => 0.0011712912163083
417 => 0.0011627902024034
418 => 0.0011608203317308
419 => 0.0011570874303657
420 => 0.001161612284402
421 => 0.0011712451598757
422 => 0.0011667024736936
423 => 0.0011697029979487
424 => 0.0011582680936153
425 => 0.0011825890977874
426 => 0.0012212167055812
427 => 0.0012213408996565
428 => 0.0012167981889876
429 => 0.0012149394096559
430 => 0.001219600506477
501 => 0.0012221289602942
502 => 0.0012372020927145
503 => 0.0012533761643416
504 => 0.0013288534993248
505 => 0.001307659765689
506 => 0.0013746277474529
507 => 0.001427590726324
508 => 0.0014434720078971
509 => 0.0014288619761219
510 => 0.0013788818466374
511 => 0.0013764295830421
512 => 0.0014511209975583
513 => 0.001430017251874
514 => 0.0014275070284764
515 => 0.0014008024926154
516 => 0.0014165881807303
517 => 0.0014131356191775
518 => 0.0014076855818613
519 => 0.0014378035751441
520 => 0.0014941817699176
521 => 0.0014853946995508
522 => 0.0014788355591425
523 => 0.00145009531521
524 => 0.0014674033614232
525 => 0.0014612402976805
526 => 0.0014877207306962
527 => 0.0014720343087911
528 => 0.0014298573702443
529 => 0.0014365741867249
530 => 0.0014355589534262
531 => 0.0014564523827729
601 => 0.0014501806938898
602 => 0.0014343343055148
603 => 0.001493989075377
604 => 0.0014901154264394
605 => 0.0014956073749935
606 => 0.0014980251005911
607 => 0.0015343359077713
608 => 0.0015492112836568
609 => 0.0015525882544129
610 => 0.0015667187110013
611 => 0.0015522366757805
612 => 0.0016101751421799
613 => 0.0016487008415323
614 => 0.0016934504238444
615 => 0.0017588415911563
616 => 0.0017834292749676
617 => 0.0017789877299629
618 => 0.0018285665667197
619 => 0.001917658634296
620 => 0.0017969957840598
621 => 0.0019240540583508
622 => 0.0018838288756686
623 => 0.0017884556911492
624 => 0.0017823147824421
625 => 0.0018469026103041
626 => 0.0019901521961539
627 => 0.0019542697996219
628 => 0.0019902108869001
629 => 0.0019482836994668
630 => 0.0019462016612206
701 => 0.0019881745769897
702 => 0.0020862465825086
703 => 0.0020396562488607
704 => 0.001972857581158
705 => 0.0020221806778873
706 => 0.0019794524468633
707 => 0.0018831737834872
708 => 0.0019542423610295
709 => 0.0019067208271435
710 => 0.0019205901371152
711 => 0.0020204733330487
712 => 0.0020084551226558
713 => 0.0020240077997605
714 => 0.0019965577317552
715 => 0.0019709150397597
716 => 0.0019230510508989
717 => 0.0019088808834634
718 => 0.0019127970079533
719 => 0.0019088789428266
720 => 0.0018820994809517
721 => 0.0018763164587095
722 => 0.0018666778349459
723 => 0.0018696652474862
724 => 0.0018515418149317
725 => 0.0018857444766542
726 => 0.0018920927920628
727 => 0.0019169826369992
728 => 0.0019195667832694
729 => 0.0019888846471325
730 => 0.0019507055325561
731 => 0.0019763193788401
801 => 0.0019740282353416
802 => 0.0017905227172545
803 => 0.001815808158564
804 => 0.001855144370233
805 => 0.0018374234601951
806 => 0.0018123702394558
807 => 0.0017921384204402
808 => 0.0017614851458217
809 => 0.0018046290412032
810 => 0.0018613586757881
811 => 0.0019210055404206
812 => 0.0019926673400592
813 => 0.0019766732606152
814 => 0.0019196658729232
815 => 0.0019222231826912
816 => 0.0019380314654123
817 => 0.0019175583029545
818 => 0.0019115203676621
819 => 0.0019372019458219
820 => 0.0019373788007363
821 => 0.0019138219530644
822 => 0.0018876428277346
823 => 0.0018875331362436
824 => 0.0018828748137515
825 => 0.0019491124046896
826 => 0.0019855363823298
827 => 0.001989712332666
828 => 0.0019852553075999
829 => 0.0019869706396549
830 => 0.0019657763296136
831 => 0.0020142202373905
901 => 0.0020586771577724
902 => 0.0020467617534265
903 => 0.0020288988684374
904 => 0.0020146702201505
905 => 0.002043409936083
906 => 0.0020421302017731
907 => 0.0020582888653562
908 => 0.0020575558150391
909 => 0.0020521222642342
910 => 0.0020467619474757
911 => 0.0020680149975205
912 => 0.0020618944604211
913 => 0.0020557644164371
914 => 0.0020434696747644
915 => 0.0020451407343518
916 => 0.0020272809336416
917 => 0.0020190181726242
918 => 0.0018947660720584
919 => 0.0018615618507327
920 => 0.001872008574696
921 => 0.0018754479074738
922 => 0.0018609973878005
923 => 0.0018817157209781
924 => 0.0018784867906985
925 => 0.0018910486695553
926 => 0.001883200553019
927 => 0.0018835226424592
928 => 0.0019066022797978
929 => 0.0019133023967049
930 => 0.0019098946631694
1001 => 0.0019122813229274
1002 => 0.0019672808897054
1003 => 0.0019594617100967
1004 => 0.0019553079267716
1005 => 0.0019564585531401
1006 => 0.0019705121216559
1007 => 0.0019744463535439
1008 => 0.0019577767365808
1009 => 0.0019656382243065
1010 => 0.0019991114412713
1011 => 0.002010825172789
1012 => 0.0020482097808833
1013 => 0.0020323281349064
1014 => 0.0020614795834385
1015 => 0.0021510811977651
1016 => 0.0022226611672492
1017 => 0.0021568332691443
1018 => 0.0022882807674478
1019 => 0.0023906314999008
1020 => 0.0023867031083152
1021 => 0.0023688558906969
1022 => 0.0022523323029342
1023 => 0.002145105560206
1024 => 0.0022348052835861
1025 => 0.0022350339466279
1026 => 0.0022273286608388
1027 => 0.0021794717925653
1028 => 0.0022256633455587
1029 => 0.0022293298632922
1030 => 0.0022272775883672
1031 => 0.0021905858396683
1101 => 0.0021345643211737
1102 => 0.0021455107917909
1103 => 0.002163441333964
1104 => 0.0021294950769274
1105 => 0.002118647190928
1106 => 0.0021388154748957
1107 => 0.0022038018880684
1108 => 0.0021915165830988
1109 => 0.0021911957641372
1110 => 0.0022437575085774
1111 => 0.0022061346430926
1112 => 0.0021456488618409
1113 => 0.0021303754043654
1114 => 0.0020761649197611
1115 => 0.0021136082945684
1116 => 0.0021149558149686
1117 => 0.0020944484612486
1118 => 0.0021473129205728
1119 => 0.0021468257652735
1120 => 0.0021970127015654
1121 => 0.002292951274403
1122 => 0.0022645775175645
1123 => 0.0022315819254172
1124 => 0.0022351694611521
1125 => 0.0022745158733717
1126 => 0.0022507261343525
1127 => 0.0022592810903718
1128 => 0.0022745029244212
1129 => 0.00228368663484
1130 => 0.0022338480665521
1201 => 0.0022222283122299
1202 => 0.0021984583728663
1203 => 0.0021922572393733
1204 => 0.0022116173590089
1205 => 0.002206516651488
1206 => 0.0021148425610968
1207 => 0.0021052621085811
1208 => 0.002105555927382
1209 => 0.0020814654240056
1210 => 0.0020447216239732
1211 => 0.0021412821365999
1212 => 0.0021335269760725
1213 => 0.002124965879052
1214 => 0.002126014564588
1215 => 0.0021679282103799
1216 => 0.0021436161791308
1217 => 0.0022082536988701
1218 => 0.0021949661679934
1219 => 0.0021813378620881
1220 => 0.0021794540150837
1221 => 0.0021742082800226
1222 => 0.002156218702646
1223 => 0.0021344952069578
1224 => 0.0021201514734475
1225 => 0.0019557276634724
1226 => 0.0019862437661945
1227 => 0.002021349760746
1228 => 0.0020334682093867
1229 => 0.0020127387644156
1230 => 0.0021570372274809
1231 => 0.0021834019471775
]
'min_raw' => 0.00091002117757027
'max_raw' => 0.0023906314999008
'avg_raw' => 0.0016503263387355
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00091'
'max' => '$0.00239'
'avg' => '$0.00165'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.5283571608513E-5
'max_diff' => -0.00043112619839913
'year' => 2027
]
2 => [
'items' => [
101 => 0.0021035414914884
102 => 0.0020886028609098
103 => 0.0021580166016146
104 => 0.002116151630485
105 => 0.0021350034244212
106 => 0.002094256157311
107 => 0.0021770514582517
108 => 0.0021764206967786
109 => 0.002144211454696
110 => 0.0021714344855449
111 => 0.002166703814009
112 => 0.0021303396590256
113 => 0.0021782042668263
114 => 0.0021782280070746
115 => 0.0021472273118594
116 => 0.0021110252867728
117 => 0.002104553219741
118 => 0.0020996773866324
119 => 0.0021338042683705
120 => 0.0021644023238249
121 => 0.0022213377191244
122 => 0.0022356526302543
123 => 0.002291524681392
124 => 0.0022582555953003
125 => 0.0022730033502579
126 => 0.0022890141244618
127 => 0.0022966902783918
128 => 0.0022841823974879
129 => 0.0023709746907584
130 => 0.0023783026195576
131 => 0.0023807596106977
201 => 0.0023514937377382
202 => 0.002377488682689
203 => 0.0023653265088086
204 => 0.0023969691064963
205 => 0.0024019310698467
206 => 0.0023977284634158
207 => 0.0023993034689025
208 => 0.0023252415578059
209 => 0.0023214010570078
210 => 0.0022690355561167
211 => 0.002290374884796
212 => 0.0022504820326506
213 => 0.0022631324670078
214 => 0.0022687086579347
215 => 0.0022657959722406
216 => 0.0022915813784223
217 => 0.0022696585155574
218 => 0.0022118004760044
219 => 0.0021539266730673
220 => 0.0021532001146144
221 => 0.0021379629638585
222 => 0.0021269492946854
223 => 0.0021290709180991
224 => 0.0021365477957365
225 => 0.0021265147249649
226 => 0.0021286557893036
227 => 0.0021642117231633
228 => 0.0021713422121255
229 => 0.0021471100245699
301 => 0.0020498142948464
302 => 0.0020259376787244
303 => 0.002043099716899
304 => 0.0020348973680284
305 => 0.0016423209932268
306 => 0.0017345509893187
307 => 0.0016797510574756
308 => 0.0017050053872926
309 => 0.0016490688472543
310 => 0.0016757646960458
311 => 0.0016708349475503
312 => 0.0018191380519822
313 => 0.0018168225029907
314 => 0.0018179308337568
315 => 0.0017650273185512
316 => 0.0018493040547607
317 => 0.0018908218055109
318 => 0.0018831379748062
319 => 0.0018850718294529
320 => 0.001851841799455
321 => 0.0018182525730845
322 => 0.0017809969516947
323 => 0.0018502132913029
324 => 0.0018425176159008
325 => 0.0018601687264566
326 => 0.0019050604703787
327 => 0.0019116709501984
328 => 0.0019205555021129
329 => 0.001917371022697
330 => 0.0019932382419072
331 => 0.0019840502210728
401 => 0.0020061907077096
402 => 0.0019606460468949
403 => 0.0019091079400441
404 => 0.0019189036492487
405 => 0.0019179602436802
406 => 0.0019059496080023
407 => 0.0018951069431441
408 => 0.0018770569610571
409 => 0.0019341697752751
410 => 0.0019318510993181
411 => 0.0019693877678961
412 => 0.0019627527971132
413 => 0.0019184428383722
414 => 0.0019200253772171
415 => 0.0019306687114914
416 => 0.0019675054129382
417 => 0.0019784410539615
418 => 0.0019733752293296
419 => 0.0019853656604806
420 => 0.0019948424083731
421 => 0.0019865557941093
422 => 0.0021038767771619
423 => 0.0020551569254081
424 => 0.0020789026421624
425 => 0.0020845658556904
426 => 0.0020700596533229
427 => 0.0020732055291883
428 => 0.0020779706739244
429 => 0.0021069036996511
430 => 0.0021828323309965
501 => 0.0022164606049557
502 => 0.0023176329263518
503 => 0.0022136682449316
504 => 0.0022074994109847
505 => 0.0022257236011796
506 => 0.0022851224640169
507 => 0.0023332596632951
508 => 0.0023492295493973
509 => 0.0023513402334798
510 => 0.0023813008014655
511 => 0.0023984736403034
512 => 0.0023776628004709
513 => 0.0023600277926986
514 => 0.0022968613837959
515 => 0.0023041730676228
516 => 0.0023545433185422
517 => 0.0024256942647589
518 => 0.002486749178607
519 => 0.0024653698757559
520 => 0.0026284788650737
521 => 0.0026446504551241
522 => 0.0026424160642692
523 => 0.0026792573530593
524 => 0.002606134897409
525 => 0.0025748736309377
526 => 0.0023638406815448
527 => 0.002423132332402
528 => 0.0025093162289996
529 => 0.0024979094671119
530 => 0.0024353204177006
531 => 0.0024867016992005
601 => 0.0024697134406954
602 => 0.0024563140963689
603 => 0.0025176990903192
604 => 0.0024502037679143
605 => 0.0025086429115274
606 => 0.0024336941053681
607 => 0.0024654675346105
608 => 0.0024474313994647
609 => 0.0024591029893296
610 => 0.0023908711134689
611 => 0.0024276873774482
612 => 0.0023893394358467
613 => 0.0023893212539293
614 => 0.002388474720993
615 => 0.0024335909042264
616 => 0.0024350621413419
617 => 0.0024017212137657
618 => 0.0023969162652188
619 => 0.0024146826783722
620 => 0.0023938828616005
621 => 0.0024036149649555
622 => 0.0023941776370969
623 => 0.0023920530958154
624 => 0.0023751243894235
625 => 0.0023678310372453
626 => 0.0023706909485609
627 => 0.0023609285968555
628 => 0.0023550464268333
629 => 0.0023873046093236
630 => 0.0023700703637104
701 => 0.0023846632140095
702 => 0.0023680328193291
703 => 0.0023103846258491
704 => 0.0022772305401601
705 => 0.0021683384466666
706 => 0.0021992201093011
707 => 0.0022196946835772
708 => 0.0022129278369011
709 => 0.0022274656419834
710 => 0.0022283581451443
711 => 0.0022236317565167
712 => 0.0022181592039738
713 => 0.002215495468047
714 => 0.0022353487732872
715 => 0.0022468742852106
716 => 0.0022217495810203
717 => 0.0022158632143605
718 => 0.0022412656774698
719 => 0.002256761165292
720 => 0.0023711711412084
721 => 0.0023626952806531
722 => 0.0023839680273431
723 => 0.0023815730425227
724 => 0.0024038702700682
725 => 0.0024403168135936
726 => 0.0023662107999927
727 => 0.0023790730415606
728 => 0.0023759195169607
729 => 0.0024103488716442
730 => 0.0024104563563314
731 => 0.0023898142383248
801 => 0.0024010046653763
802 => 0.0023947584759895
803 => 0.0024060461844346
804 => 0.0023625820803679
805 => 0.0024155166674611
806 => 0.0024455271673134
807 => 0.002445943863133
808 => 0.002460168601885
809 => 0.0024746217602983
810 => 0.0025023633392678
811 => 0.0024738480627176
812 => 0.0024225518561099
813 => 0.0024262552765413
814 => 0.0023961803293757
815 => 0.0023966858946711
816 => 0.0023939871475027
817 => 0.0024020862909072
818 => 0.0023643593868909
819 => 0.002373213815856
820 => 0.0023608175634533
821 => 0.0023790460945288
822 => 0.0023594352083757
823 => 0.0023759179962356
824 => 0.0023830314210629
825 => 0.0024092801118166
826 => 0.0023555582554092
827 => 0.0022460157535446
828 => 0.002269042915511
829 => 0.0022349839342181
830 => 0.0022381362226084
831 => 0.0022445043468399
901 => 0.0022238631726851
902 => 0.0022278008582357
903 => 0.0022276601763988
904 => 0.0022264478563306
905 => 0.0022210782897329
906 => 0.00221329135583
907 => 0.0022443121038074
908 => 0.0022495831333677
909 => 0.0022612999791379
910 => 0.0022961613645375
911 => 0.002292677890048
912 => 0.0022983595814683
913 => 0.0022859564809991
914 => 0.0022387115668663
915 => 0.0022412771930058
916 => 0.0022092837939343
917 => 0.0022604818359927
918 => 0.0022483574638521
919 => 0.0022405408022594
920 => 0.0022384079537229
921 => 0.002273355753754
922 => 0.0022838126832629
923 => 0.0022772966265314
924 => 0.0022639320040713
925 => 0.0022895960300906
926 => 0.0022964626407751
927 => 0.0022979998216765
928 => 0.0023434715551939
929 => 0.0023005411864521
930 => 0.0023108749528994
1001 => 0.0023914960488176
1002 => 0.0023183838397706
1003 => 0.0023571130074996
1004 => 0.0023552174162761
1005 => 0.0023750299479627
1006 => 0.0023535922103934
1007 => 0.0023538579568434
1008 => 0.002371450142764
1009 => 0.002346745090406
1010 => 0.0023406277720143
1011 => 0.0023321767404691
1012 => 0.0023506292586731
1013 => 0.0023616907088009
1014 => 0.0024508378730903
1015 => 0.0025084310068259
1016 => 0.0025059307369993
1017 => 0.0025287785229049
1018 => 0.0025184853860927
1019 => 0.0024852461321338
1020 => 0.0025419814855465
1021 => 0.0025240280458187
1022 => 0.0025255081055764
1023 => 0.0025254530176783
1024 => 0.0025373904855804
1025 => 0.0025289316955189
1026 => 0.0025122585520308
1027 => 0.0025233269627812
1028 => 0.0025561961856808
1029 => 0.0026582232621121
1030 => 0.002715318965762
1031 => 0.0026547860290609
1101 => 0.002696540838229
1102 => 0.0026715028314879
1103 => 0.0026669526808468
1104 => 0.0026931777866606
1105 => 0.0027194487960504
1106 => 0.002717775446325
1107 => 0.0026987040425392
1108 => 0.0026879310904596
1109 => 0.0027695074928102
1110 => 0.0028296115964443
1111 => 0.0028255128995195
1112 => 0.002843603214778
1113 => 0.0028967169398895
1114 => 0.0029015729932708
1115 => 0.0029009612421598
1116 => 0.0028889250071775
1117 => 0.0029412223672385
1118 => 0.0029848497450858
1119 => 0.0028861389665393
1120 => 0.0029237267387909
1121 => 0.002940601100757
1122 => 0.0029653776705208
1123 => 0.0030071798967476
1124 => 0.0030525882019228
1125 => 0.0030590094341513
1126 => 0.003054453262601
1127 => 0.0030245052646971
1128 => 0.0030741915740536
1129 => 0.0031032966487873
1130 => 0.0031206280547334
1201 => 0.0031645776165419
1202 => 0.0029407053110717
1203 => 0.0027822373660845
1204 => 0.0027574903081698
1205 => 0.0028078144235692
1206 => 0.0028210844914727
1207 => 0.0028157353437401
1208 => 0.0026373652643817
1209 => 0.0027565512266165
1210 => 0.0028847853005409
1211 => 0.0028897112935701
1212 => 0.0029539079522247
1213 => 0.0029748130157926
1214 => 0.0030264997404579
1215 => 0.0030232667217573
1216 => 0.0030358516166979
1217 => 0.0030329585672911
1218 => 0.0031286973408097
1219 => 0.0032343114253461
1220 => 0.0032306543454308
1221 => 0.0032154710712096
1222 => 0.0032380208225611
1223 => 0.0033470258760959
1224 => 0.0033369904375368
1225 => 0.0033467390112803
1226 => 0.0034752621126534
1227 => 0.0036423604266364
1228 => 0.0035647264833949
1229 => 0.0037331698016636
1230 => 0.0038391959417171
1231 => 0.0040225571876322
]
'min_raw' => 0.0016423209932268
'max_raw' => 0.0040225571876322
'avg_raw' => 0.0028324390904295
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001642'
'max' => '$0.004022'
'avg' => '$0.002832'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00073229981565652
'max_diff' => 0.0016319256877314
'year' => 2028
]
3 => [
'items' => [
101 => 0.0039995994565705
102 => 0.0040709806440383
103 => 0.0039585003265469
104 => 0.003700222781564
105 => 0.0036593493714238
106 => 0.0037411789736042
107 => 0.0039423490657489
108 => 0.003734843411499
109 => 0.0037768215350978
110 => 0.0037647318326773
111 => 0.0037640876238132
112 => 0.0037886744559676
113 => 0.0037530099735648
114 => 0.0036077064563378
115 => 0.0036742982020039
116 => 0.0036485839310039
117 => 0.0036771158318043
118 => 0.0038310907329729
119 => 0.003763014758863
120 => 0.0036913022501814
121 => 0.0037812456503478
122 => 0.0038957745066652
123 => 0.003888607496665
124 => 0.0038747005016868
125 => 0.0039530935042322
126 => 0.0040825757774424
127 => 0.0041175743155893
128 => 0.0041434095209356
129 => 0.0041469717592635
130 => 0.0041836650279596
131 => 0.0039863560742864
201 => 0.0042994904510191
202 => 0.0043535601077183
203 => 0.0043433972532165
204 => 0.0044034934010386
205 => 0.0043858115898572
206 => 0.0043601934196466
207 => 0.0044554585967618
208 => 0.0043462447587025
209 => 0.0041912294652172
210 => 0.0041061850093563
211 => 0.0042181784091745
212 => 0.0042865688704125
213 => 0.0043317706148405
214 => 0.0043454486353927
215 => 0.0040016726066935
216 => 0.0038163963939172
217 => 0.0039351563221107
218 => 0.0040800516308792
219 => 0.0039855511735302
220 => 0.0039892554125453
221 => 0.003854522594649
222 => 0.0040919724956487
223 => 0.0040573780423411
224 => 0.0042368541272976
225 => 0.0041940207192372
226 => 0.0043403764992978
227 => 0.0043018361174915
228 => 0.0044618150876056
301 => 0.0045256350300418
302 => 0.0046327986461731
303 => 0.0047116286384337
304 => 0.0047579191176666
305 => 0.0047551400109247
306 => 0.0049385659514705
307 => 0.0048304060827449
308 => 0.0046945317963017
309 => 0.0046920742591378
310 => 0.0047624454774403
311 => 0.0049099242456013
312 => 0.0049481633444566
313 => 0.004969533784043
314 => 0.0049368042119061
315 => 0.0048194044262921
316 => 0.0047687117940944
317 => 0.0048119033854338
318 => 0.0047590837807214
319 => 0.0048502652370185
320 => 0.0049754768518224
321 => 0.0049496211485058
322 => 0.0050360528881896
323 => 0.0051255006458782
324 => 0.0052534149567231
325 => 0.0052868564942311
326 => 0.0053421340840641
327 => 0.0053990328817447
328 => 0.0054173072420941
329 => 0.005452198666202
330 => 0.0054520147711741
331 => 0.0055571624261872
401 => 0.0056731435458185
402 => 0.0057169237335103
403 => 0.0058175938610537
404 => 0.0056451997955376
405 => 0.0057759626745519
406 => 0.0058939140646299
407 => 0.0057532875548138
408 => 0.0059471084368209
409 => 0.0059546340624616
410 => 0.006068262074803
411 => 0.0059530783158019
412 => 0.0058846825673866
413 => 0.0060821385303062
414 => 0.0061776812509585
415 => 0.0061489030059456
416 => 0.0059298991404401
417 => 0.0058024294971982
418 => 0.0054688168537764
419 => 0.0058639954409033
420 => 0.0060564754031753
421 => 0.0059294006638376
422 => 0.0059934897708634
423 => 0.0063431391578335
424 => 0.0064762630062704
425 => 0.0064485741764015
426 => 0.0064532531328524
427 => 0.0065250843451002
428 => 0.0068436234983781
429 => 0.0066527474540542
430 => 0.0067986650379509
501 => 0.0068760591983047
502 => 0.0069479472076647
503 => 0.0067714129771152
504 => 0.0065417445369731
505 => 0.0064689989011549
506 => 0.0059167655853798
507 => 0.005888019443066
508 => 0.005871883362288
509 => 0.0057701476554766
510 => 0.0056902112576782
511 => 0.0056266428663007
512 => 0.0054598204241978
513 => 0.0055161181012834
514 => 0.0052502379471209
515 => 0.00542033864754
516 => 0.0049959875015958
517 => 0.0053493997456005
518 => 0.0051570535288717
519 => 0.0052862088402702
520 => 0.0052857582295559
521 => 0.0050479423525425
522 => 0.0049107751177719
523 => 0.0049981834183964
524 => 0.0050918920551453
525 => 0.0051070959661841
526 => 0.0052285916597748
527 => 0.0052624984963148
528 => 0.0051597591986399
529 => 0.0049871937673066
530 => 0.0050272767812069
531 => 0.0049099628367746
601 => 0.0047043746615726
602 => 0.0048520316782278
603 => 0.0049024482757347
604 => 0.0049247151173639
605 => 0.0047225427590142
606 => 0.0046590158146453
607 => 0.004625194602506
608 => 0.0049610958546155
609 => 0.0049794972834602
610 => 0.0048853529717906
611 => 0.0053108941876673
612 => 0.0052145811045791
613 => 0.0053221864156669
614 => 0.0050236396678257
615 => 0.0050350445556398
616 => 0.0048937077407879
617 => 0.0049728469129756
618 => 0.0049169138968479
619 => 0.0049664532499314
620 => 0.0049961469339112
621 => 0.0051374605567825
622 => 0.0053510133201785
623 => 0.0051163530139195
624 => 0.005014108158085
625 => 0.0050775402915978
626 => 0.0052464684221313
627 => 0.0055024031871615
628 => 0.0053508846550964
629 => 0.0054181260066754
630 => 0.0054328152506358
701 => 0.0053210910946121
702 => 0.0055065226161557
703 => 0.005605896874994
704 => 0.0057078343019566
705 => 0.0057963437135663
706 => 0.0056671182519756
707 => 0.00580540801962
708 => 0.0056939708783288
709 => 0.0055940002424307
710 => 0.0055941518566193
711 => 0.0055314388163824
712 => 0.005409924398572
713 => 0.0053875152755621
714 => 0.0055040903634198
715 => 0.0055975725441798
716 => 0.0056052721843366
717 => 0.0056570287228932
718 => 0.0056876577092763
719 => 0.005987863413918
720 => 0.0061086086317568
721 => 0.00625625359854
722 => 0.0063137696339164
723 => 0.0064868722797596
724 => 0.0063470778345317
725 => 0.0063168324269584
726 => 0.0058969420295867
727 => 0.0059656990586336
728 => 0.0060757856962043
729 => 0.0058987573176928
730 => 0.0060110410775425
731 => 0.0060332082702321
801 => 0.0058927419611318
802 => 0.0059677710860132
803 => 0.0057685159749134
804 => 0.0053553565370991
805 => 0.0055069825807179
806 => 0.0056186303855958
807 => 0.00545929520196
808 => 0.005744897351504
809 => 0.0055780544717654
810 => 0.0055251732887589
811 => 0.0053188649403475
812 => 0.0054162345392612
813 => 0.0055479283159901
814 => 0.0054665568730164
815 => 0.0056354148351705
816 => 0.0058745627423543
817 => 0.0060449937825175
818 => 0.0060580773615306
819 => 0.0059485016206985
820 => 0.006124097444685
821 => 0.0061253764685604
822 => 0.0059273036617737
823 => 0.0058059851704908
824 => 0.005778421354015
825 => 0.005847281171776
826 => 0.0059308897027615
827 => 0.0060627170531145
828 => 0.0061423775600012
829 => 0.0063500899132935
830 => 0.0064062909205146
831 => 0.0064680387883698
901 => 0.0065505529821616
902 => 0.0066496324280136
903 => 0.0064328522410853
904 => 0.0064414653220408
905 => 0.0062396026134991
906 => 0.0060238833593817
907 => 0.0061875873834722
908 => 0.0064016086183368
909 => 0.0063525119105864
910 => 0.0063469875280098
911 => 0.0063562780071678
912 => 0.0063192606928725
913 => 0.0061518327522409
914 => 0.0060677514886101
915 => 0.0061762377701119
916 => 0.0062338934005613
917 => 0.0063233122552888
918 => 0.0063122894940406
919 => 0.0065426228609349
920 => 0.0066321234423906
921 => 0.0066092253637084
922 => 0.006613439161259
923 => 0.0067754756888795
924 => 0.006955693632947
925 => 0.0071244915194185
926 => 0.0072961999795752
927 => 0.007089198728961
928 => 0.0069840962599614
929 => 0.0070925351797465
930 => 0.0070349959625202
1001 => 0.0073656333719429
1002 => 0.0073885259887975
1003 => 0.0077191394893722
1004 => 0.0080329310701409
1005 => 0.0078358442004202
1006 => 0.0080216882415792
1007 => 0.0082226937241797
1008 => 0.0086104659120803
1009 => 0.0084798778811854
1010 => 0.0083798494960953
1011 => 0.0082853231555188
1012 => 0.0084820174646245
1013 => 0.0087350615510208
1014 => 0.0087895648236044
1015 => 0.0088778809470425
1016 => 0.0087850273420291
1017 => 0.0088968592817786
1018 => 0.0092916751705387
1019 => 0.0091849924322595
1020 => 0.009033485793797
1021 => 0.009345155019452
1022 => 0.0094579469006332
1023 => 0.010249579392329
1024 => 0.011249048113802
1025 => 0.010835261500247
1026 => 0.010578410796402
1027 => 0.010638776804386
1028 => 0.011003748947317
1029 => 0.011120966415989
1030 => 0.010802328928853
1031 => 0.010914877076078
1101 => 0.011535028432781
1102 => 0.011867719738814
1103 => 0.011415880258818
1104 => 0.01016927305372
1105 => 0.0090198442786735
1106 => 0.0093247245492681
1107 => 0.0092901605881189
1108 => 0.0099564358554387
1109 => 0.0091824480842338
1110 => 0.0091954800532986
1111 => 0.0098755331875488
1112 => 0.0096941066703931
1113 => 0.0094002189479537
1114 => 0.0090219899842829
1115 => 0.008322798762993
1116 => 0.0077035055999068
1117 => 0.0089180821074165
1118 => 0.0088657073598486
1119 => 0.0087898609638676
1120 => 0.0089586489106861
1121 => 0.0097782352691423
1122 => 0.0097593411508377
1123 => 0.0096391464100479
1124 => 0.0097303130615891
1125 => 0.0093842369931542
1126 => 0.0094734286759955
1127 => 0.0090196622032829
1128 => 0.0092247835999108
1129 => 0.009399588396893
1130 => 0.0094346830479164
1201 => 0.0095137530886494
1202 => 0.0088381082478073
1203 => 0.0091414529454551
1204 => 0.0093196395357687
1205 => 0.008514586038248
1206 => 0.0093037262165671
1207 => 0.0088263467743023
1208 => 0.0086643170215991
1209 => 0.0088824687378173
1210 => 0.0087974548018476
1211 => 0.0087243648118866
1212 => 0.0086835793416429
1213 => 0.0088437658855073
1214 => 0.0088362929917717
1215 => 0.0085741967151412
1216 => 0.0082323028066877
1217 => 0.0083470536246497
1218 => 0.0083053635766894
1219 => 0.0081542734647583
1220 => 0.0082560899575102
1221 => 0.0078077416515786
1222 => 0.0070363816943404
1223 => 0.0075459657094864
1224 => 0.007526347279224
1225 => 0.0075164547770608
1226 => 0.0078993930805753
1227 => 0.0078625823985822
1228 => 0.0077957706503135
1229 => 0.0081530464146069
1230 => 0.0080226359546027
1231 => 0.0084245302637671
]
'min_raw' => 0.0036077064563378
'max_raw' => 0.011867719738814
'avg_raw' => 0.0077377130975761
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0036077'
'max' => '$0.011867'
'avg' => '$0.007737'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.001965385463111
'max_diff' => 0.0078451625511822
'year' => 2029
]
4 => [
'items' => [
101 => 0.008689243848677
102 => 0.0086221039209564
103 => 0.008871068327036
104 => 0.0083496972517314
105 => 0.0085228758091707
106 => 0.0085585676698439
107 => 0.008148637687134
108 => 0.0078686050814017
109 => 0.0078499300992048
110 => 0.007364392151735
111 => 0.007623762604148
112 => 0.0078519978687928
113 => 0.0077426908887999
114 => 0.0077080875643873
115 => 0.0078848684442659
116 => 0.0078986058326583
117 => 0.0075853919214882
118 => 0.0076505190118151
119 => 0.007922109804956
120 => 0.0076436756206581
121 => 0.0071027234825332
122 => 0.0069685598730297
123 => 0.0069506599743961
124 => 0.0065867976247727
125 => 0.006977525326945
126 => 0.0068069622140954
127 => 0.0073457690439275
128 => 0.0070380054724064
129 => 0.0070247383999574
130 => 0.0070046832740943
131 => 0.0066914919188091
201 => 0.0067600609212676
202 => 0.0069879947287935
203 => 0.0070693240791769
204 => 0.0070608407616202
205 => 0.0069868777287878
206 => 0.0070207376264665
207 => 0.0069116630984731
208 => 0.0068731466124487
209 => 0.0067515779877614
210 => 0.0065729056936609
211 => 0.0065977511720164
212 => 0.0062437546052544
213 => 0.0060508784876626
214 => 0.0059974929203796
215 => 0.0059261035086723
216 => 0.0060055565443919
217 => 0.0062427517774581
218 => 0.0059566440026044
219 => 0.0054661322907447
220 => 0.0054956128804188
221 => 0.0055618470125508
222 => 0.0054384201455055
223 => 0.0053216069742789
224 => 0.0054231665493083
225 => 0.0052153302706917
226 => 0.005586963033872
227 => 0.0055769114091168
228 => 0.0057154331216145
301 => 0.005802053591191
302 => 0.0056024214525272
303 => 0.0055522145095159
304 => 0.0055808146660335
305 => 0.0051081177864344
306 => 0.0056768037018668
307 => 0.0056817217212787
308 => 0.0056396106532582
309 => 0.0059424183470181
310 => 0.0065814370289397
311 => 0.0063410124963339
312 => 0.0062479128504389
313 => 0.0060709303555372
314 => 0.006306749021813
315 => 0.0062886418275873
316 => 0.0062067542283491
317 => 0.006157228352825
318 => 0.0062484812970244
319 => 0.0061459211031871
320 => 0.0061274984742082
321 => 0.0060158773866144
322 => 0.0059760337367794
323 => 0.0059465350846628
324 => 0.0059140599671603
325 => 0.0059856919840759
326 => 0.0058233644097685
327 => 0.0056276132683222
328 => 0.0056113386789676
329 => 0.0056562742510521
330 => 0.0056363936054646
331 => 0.0056112434980852
401 => 0.0055632250938736
402 => 0.005548979059095
403 => 0.0055952717609322
404 => 0.0055430099995902
405 => 0.0056201250752958
406 => 0.0055991540416756
407 => 0.0054820115526006
408 => 0.0053360086395089
409 => 0.005334708907331
410 => 0.0053032528191981
411 => 0.0052631887615065
412 => 0.0052520438571981
413 => 0.005414613485172
414 => 0.0057511277497783
415 => 0.0056850619475322
416 => 0.0057328012603508
417 => 0.0059676314300836
418 => 0.0060422768794521
419 => 0.0059892953075647
420 => 0.0059167708642042
421 => 0.0059199615716443
422 => 0.006167799549249
423 => 0.006183256899908
424 => 0.0062223126382929
425 => 0.0062725102992678
426 => 0.0059978441862895
427 => 0.0059070248224233
428 => 0.005863989569357
429 => 0.0057314576466518
430 => 0.0058743819628611
501 => 0.0057911060844354
502 => 0.0058023428455441
503 => 0.0057950248901309
504 => 0.0057990209886245
505 => 0.0055868591549408
506 => 0.0056641597762374
507 => 0.0055356325006297
508 => 0.0053635489064547
509 => 0.0053629720219068
510 => 0.0054050892377905
511 => 0.005380036269736
512 => 0.0053126193768723
513 => 0.0053221956283048
514 => 0.0052382975891505
515 => 0.0053323823692812
516 => 0.0053350803841238
517 => 0.0052988526189409
518 => 0.0054438032039299
519 => 0.0055031895768683
520 => 0.005479343685751
521 => 0.0055015164855792
522 => 0.0056878072798848
523 => 0.0057181808077938
524 => 0.0057316707225283
525 => 0.0057135960238552
526 => 0.0055049215393203
527 => 0.0055141771400619
528 => 0.005446265683008
529 => 0.0053888876581305
530 => 0.0053911824782175
531 => 0.0054206822416256
601 => 0.0055495094385673
602 => 0.005820618679753
603 => 0.0058309070772777
604 => 0.0058433769152114
605 => 0.0057926558174967
606 => 0.0057773578490904
607 => 0.005797539818159
608 => 0.0058993541949016
609 => 0.0061612484142174
610 => 0.0060686775057844
611 => 0.0059934159162764
612 => 0.0060594406206538
613 => 0.0060492766349336
614 => 0.0059634823667818
615 => 0.0059610744074214
616 => 0.0057964077767513
617 => 0.0057355342726703
618 => 0.0056846638163574
619 => 0.0056291146060706
620 => 0.0055961831721863
621 => 0.0056467808217017
622 => 0.0056583531027997
623 => 0.0055477204578386
624 => 0.0055326416371321
625 => 0.0056229866431788
626 => 0.0055832291744189
627 => 0.0056241207169762
628 => 0.0056336079056107
629 => 0.0056320802497321
630 => 0.0055905688862306
701 => 0.0056170269914397
702 => 0.0055544456850793
703 => 0.0054863979138205
704 => 0.0054429876752834
705 => 0.0054051064846272
706 => 0.005426125170871
707 => 0.0053511973922723
708 => 0.0053272264879004
709 => 0.0056080635807211
710 => 0.0058155209606952
711 => 0.0058125044482283
712 => 0.0057941422043697
713 => 0.0057668596346409
714 => 0.0058973583049934
715 => 0.0058518951776458
716 => 0.0058849734013626
717 => 0.0058933931975871
718 => 0.0059188773848786
719 => 0.0059279857913954
720 => 0.0059004538607066
721 => 0.0058080533385729
722 => 0.0055778000225939
723 => 0.0054706164824487
724 => 0.0054352441289178
725 => 0.0054365298467869
726 => 0.0054010640082574
727 => 0.0054115102871718
728 => 0.0053974312187608
729 => 0.0053707688692829
730 => 0.0054244788459232
731 => 0.005430668420388
801 => 0.0054181318700537
802 => 0.0054210846814872
803 => 0.00531728739915
804 => 0.0053251788810902
805 => 0.0052812381068459
806 => 0.005272999741389
807 => 0.0051619212904602
808 => 0.0049651297135608
809 => 0.0050741713501836
810 => 0.0049424643867176
811 => 0.0048925849639669
812 => 0.0051287063934271
813 => 0.0051050063508983
814 => 0.0050644421802498
815 => 0.0050044393175468
816 => 0.0049821836721
817 => 0.0048469654156459
818 => 0.0048389759996933
819 => 0.0049059938187919
820 => 0.0048750674012202
821 => 0.0048316349981994
822 => 0.0046743272371298
823 => 0.0044974612308779
824 => 0.0045027997038665
825 => 0.0045590574897462
826 => 0.0047226345895876
827 => 0.004658722186767
828 => 0.0046123530052104
829 => 0.0046036694513573
830 => 0.00471236230808
831 => 0.0048661854722
901 => 0.0049383558592059
902 => 0.0048668371975303
903 => 0.0047846804098357
904 => 0.0047896809128248
905 => 0.0048229470189463
906 => 0.0048264428163422
907 => 0.0047729671934073
908 => 0.0047880202680282
909 => 0.004765153271197
910 => 0.0046248185538531
911 => 0.0046222803438225
912 => 0.0045878399409833
913 => 0.0045867970992728
914 => 0.0045282053824822
915 => 0.0045200079962778
916 => 0.004403670586327
917 => 0.0044802442218587
918 => 0.0044288826474404
919 => 0.0043514686398213
920 => 0.0043381224357287
921 => 0.0043377212327176
922 => 0.0044172081090871
923 => 0.0044793153714288
924 => 0.0044297761040172
925 => 0.0044184969731059
926 => 0.0045389285826256
927 => 0.0045236025625558
928 => 0.0045103303280175
929 => 0.0048524122950003
930 => 0.0045816277251446
1001 => 0.0044635501968447
1002 => 0.004317406833259
1003 => 0.0043649918493613
1004 => 0.0043750187114234
1005 => 0.0040235702663211
1006 => 0.0038809876759132
1007 => 0.0038320587039968
1008 => 0.0038038993889048
1009 => 0.0038167319423946
1010 => 0.0036883908877577
1011 => 0.0037746381990388
1012 => 0.0036635056941226
1013 => 0.0036448739680169
1014 => 0.0038435926534828
1015 => 0.0038712431976676
1016 => 0.0037532773858243
1017 => 0.0038290305339579
1018 => 0.0038015613893971
1019 => 0.0036654107419497
1020 => 0.0036602107886736
1021 => 0.0035918951797112
1022 => 0.0034849944801935
1023 => 0.0034361379919852
1024 => 0.0034106931087349
1025 => 0.0034211921634749
1026 => 0.003415883520122
1027 => 0.0033812410313395
1028 => 0.0034178691870279
1029 => 0.0033242993850428
1030 => 0.0032870391359492
1031 => 0.0032702095458649
1101 => 0.0031871609609263
1102 => 0.003319328191437
1103 => 0.0033453668008465
1104 => 0.0033714567143603
1105 => 0.0035985515991572
1106 => 0.0035872065804763
1107 => 0.0036897600241041
1108 => 0.0036857749858684
1109 => 0.0036565250824901
1110 => 0.0035331245515126
1111 => 0.0035823098037573
1112 => 0.0034309252424335
1113 => 0.0035443528489268
1114 => 0.0034925892261734
1115 => 0.0035268515160044
1116 => 0.0034652448295821
1117 => 0.0034993405135259
1118 => 0.0033515415211062
1119 => 0.0032135289015726
1120 => 0.0032690692085124
1121 => 0.0033294478739606
1122 => 0.00346036420485
1123 => 0.0033823915182085
1124 => 0.0034104334447985
1125 => 0.0033164976848839
1126 => 0.0031226813807568
1127 => 0.0031237783599897
1128 => 0.0030939639441175
1129 => 0.0030681999358279
1130 => 0.0033913476192343
1201 => 0.0033511590965938
1202 => 0.00328712394551
1203 => 0.0033728375398915
1204 => 0.0033955015747036
1205 => 0.0033961467879128
1206 => 0.0034586812137854
1207 => 0.0034920558480836
1208 => 0.0034979382720326
1209 => 0.0035963375422888
1210 => 0.003629319679761
1211 => 0.0037651684362019
1212 => 0.003489224243539
1213 => 0.0034835413544812
1214 => 0.0033740437059411
1215 => 0.0033045985661476
1216 => 0.0033787986740756
1217 => 0.0034445298403751
1218 => 0.0033760861565029
1219 => 0.0033850234566916
1220 => 0.0032931434031476
1221 => 0.0033259861989312
1222 => 0.0033542748390625
1223 => 0.0033386555147114
1224 => 0.003315272630174
1225 => 0.0034391406343269
1226 => 0.0034321515160899
1227 => 0.0035475002492702
1228 => 0.0036374228354512
1229 => 0.0037985801854726
1230 => 0.0036304040894026
1231 => 0.0036242750840224
]
'min_raw' => 0.0030681999358279
'max_raw' => 0.008871068327036
'avg_raw' => 0.0059696341314319
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003068'
'max' => '$0.008871'
'avg' => '$0.005969'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00053950652050991
'max_diff' => -0.0029966514117785
'year' => 2030
]
5 => [
'items' => [
101 => 0.0036841870947375
102 => 0.0036293105075443
103 => 0.003663990616375
104 => 0.0037929926837876
105 => 0.0037957182941932
106 => 0.0037500608081482
107 => 0.0037472825459731
108 => 0.0037560515656062
109 => 0.0038074119874926
110 => 0.0037894650779391
111 => 0.0038102336960346
112 => 0.0038362051709833
113 => 0.0039436342030485
114 => 0.0039695349789801
115 => 0.0039066095214789
116 => 0.0039122909857448
117 => 0.0038887551372969
118 => 0.0038660198025995
119 => 0.0039171255147702
120 => 0.0040105222082473
121 => 0.0040099411922645
122 => 0.0040316074097789
123 => 0.0040451052837977
124 => 0.0039871625274612
125 => 0.0039494439237003
126 => 0.0039639076364794
127 => 0.0039870354281917
128 => 0.0039564076053356
129 => 0.0037673584944802
130 => 0.0038247039182098
131 => 0.0038151588356532
201 => 0.003801565477371
202 => 0.0038592267443701
203 => 0.0038536651745025
204 => 0.0036870745647413
205 => 0.0036977391550763
206 => 0.0036877231138018
207 => 0.0037200869922489
208 => 0.003627562751899
209 => 0.0036560225850703
210 => 0.0036738723256411
211 => 0.0036843859599654
212 => 0.0037223684164114
213 => 0.0037179116135394
214 => 0.0037220913752873
215 => 0.0037784093312
216 => 0.0040632462262178
217 => 0.0040787492699564
218 => 0.0040024066126155
219 => 0.0040329039984309
220 => 0.0039743556867105
221 => 0.004013659560608
222 => 0.0040405502729185
223 => 0.003919036314774
224 => 0.0039118410467917
225 => 0.0038530510853621
226 => 0.0038846414806007
227 => 0.0038343788903462
228 => 0.0038467115718839
301 => 0.0038122283191607
302 => 0.0038742913085154
303 => 0.0039436873742274
304 => 0.00396121956096
305 => 0.0039150999257476
306 => 0.0038817062704218
307 => 0.0038230780122235
308 => 0.0039205781122232
309 => 0.0039490901127248
310 => 0.0039204283508224
311 => 0.0039137867943178
312 => 0.0039012010567426
313 => 0.003916456918041
314 => 0.0039489348302468
315 => 0.0039336188466234
316 => 0.0039437353236395
317 => 0.0039051817453198
318 => 0.0039871817089245
319 => 0.0041174173854947
320 => 0.0041178361144906
321 => 0.0041025200483084
322 => 0.0040962530440158
323 => 0.0041119682573754
324 => 0.0041204931159512
325 => 0.0041713132342787
326 => 0.004225845246007
327 => 0.0044803223505623
328 => 0.0044088661979098
329 => 0.0046346534239819
330 => 0.004813221805003
331 => 0.0048667666546223
401 => 0.0048175079124524
402 => 0.0046489964163941
403 => 0.004640728438471
404 => 0.0048925557573005
405 => 0.0048214030053093
406 => 0.0048129396118661
407 => 0.0047229034047596
408 => 0.0047761259543607
409 => 0.0047644854020352
410 => 0.0047461102207142
411 => 0.0048476551378382
412 => 0.0050377381577172
413 => 0.0050081119364818
414 => 0.0049859973366504
415 => 0.0048890975976525
416 => 0.0049474528838695
417 => 0.0049266736841695
418 => 0.0050159543128866
419 => 0.0049630664462427
420 => 0.0048208639532323
421 => 0.0048435101689497
422 => 0.0048400872390019
423 => 0.0049105308947768
424 => 0.0048893854578322
425 => 0.0048359582530663
426 => 0.0050370884746199
427 => 0.0050240281967773
428 => 0.0050425446847629
429 => 0.0050506962154156
430 => 0.0051731206369632
501 => 0.0052232740053268
502 => 0.0052346596980036
503 => 0.0052823015189482
504 => 0.0052334743260978
505 => 0.005428817910698
506 => 0.0055587099958429
507 => 0.0057095863369244
508 => 0.0059300572229818
509 => 0.0060129563156091
510 => 0.005997981336527
511 => 0.0061651398461363
512 => 0.0064655199721792
513 => 0.0060586967481968
514 => 0.0064870825908943
515 => 0.0063514605790486
516 => 0.0060299032286984
517 => 0.006009198726248
518 => 0.0062269610972628
519 => 0.006709937077322
520 => 0.0065889570721854
521 => 0.0067101349572705
522 => 0.0065687745175764
523 => 0.0065617547802662
524 => 0.006703269396237
525 => 0.0070339260100128
526 => 0.0068768434472857
527 => 0.0066516270753919
528 => 0.0068179233396434
529 => 0.006673862125556
530 => 0.0063492518900222
531 => 0.0065888645610555
601 => 0.0064286423917115
602 => 0.0064754037386051
603 => 0.0068121669073171
604 => 0.0067716466718928
605 => 0.0068240836086046
606 => 0.0067315337878219
607 => 0.0066450776614437
608 => 0.0064837008812426
609 => 0.0064359251724041
610 => 0.0064491286595371
611 => 0.0064359186294116
612 => 0.0063456298040182
613 => 0.006326131940771
614 => 0.0062936346478046
615 => 0.0063037069177586
616 => 0.0062426024995635
617 => 0.0063579191615147
618 => 0.0063793229501398
619 => 0.0064632408000964
620 => 0.0064719534296657
621 => 0.0067056634472989
622 => 0.0065769398969238
623 => 0.0066632987679721
624 => 0.0066555740177043
625 => 0.0060368723515277
626 => 0.0061221239822758
627 => 0.0062547487662844
628 => 0.0061950014808572
629 => 0.0061105327979747
630 => 0.0060423198076229
701 => 0.0059389701521035
702 => 0.0060844328075927
703 => 0.0062757007313322
704 => 0.0064768042998519
705 => 0.0067184170606005
706 => 0.006664491905084
707 => 0.006472287517352
708 => 0.0064809096657803
709 => 0.0065342083946734
710 => 0.0064651816980566
711 => 0.0064448243776631
712 => 0.0065314116114593
713 => 0.0065320078901509
714 => 0.0064525843335383
715 => 0.0063643195847209
716 => 0.0063639497522005
717 => 0.0063482438926848
718 => 0.0065715685550935
719 => 0.0066943745387481
720 => 0.0067084540468624
721 => 0.0066934268756724
722 => 0.0066992102374564
723 => 0.0066277521414129
724 => 0.0067910841587281
725 => 0.0069409737696789
726 => 0.0069008001520196
727 => 0.0068405741881321
728 => 0.0067926013070202
729 => 0.0068894992658298
730 => 0.0068851845522555
731 => 0.0069396646146881
801 => 0.0069371930843641
802 => 0.0069188734884668
803 => 0.0069008008062701
804 => 0.0069724569483366
805 => 0.0069518211301839
806 => 0.0069311532589058
807 => 0.0068897006789648
808 => 0.0068953347730333
809 => 0.0068351192080075
810 => 0.0068072607323498
811 => 0.0063883361002876
812 => 0.0062763857498433
813 => 0.0063116076090526
814 => 0.0063232035596395
815 => 0.0062744826236579
816 => 0.006344335930474
817 => 0.0063334493665996
818 => 0.0063758026182078
819 => 0.0063493421453674
820 => 0.0063504280924026
821 => 0.0064282427010584
822 => 0.0064508326129982
823 => 0.0064393432014627
824 => 0.0064473899914682
825 => 0.0066328248708073
826 => 0.0066064619608389
827 => 0.0065924571903505
828 => 0.0065963366074861
829 => 0.0066437191949259
830 => 0.0066569837324157
831 => 0.006600780954989
901 => 0.0066272865097278
902 => 0.0067401437977499
903 => 0.0067796374613884
904 => 0.0069056822776884
905 => 0.0068521361994562
906 => 0.0069504223434713
907 => 0.0072525204419583
908 => 0.007493857306628
909 => 0.00727191395221
910 => 0.0077150983701115
911 => 0.0080601810104768
912 => 0.0080469361639744
913 => 0.0079867630237214
914 => 0.0075938956121622
915 => 0.0072323731627223
916 => 0.0075348020427328
917 => 0.007535572996143
918 => 0.0075095940871392
919 => 0.0073482413144953
920 => 0.0075039793604036
921 => 0.0075163412809303
922 => 0.0075094218927354
923 => 0.0073857131002608
924 => 0.0071968326393588
925 => 0.0072337394293031
926 => 0.00729419350411
927 => 0.0071797413284593
928 => 0.0071431669234371
929 => 0.0072111657009387
930 => 0.0074302719301569
1001 => 0.0073888511667192
1002 => 0.0073877695031914
1003 => 0.0075649850943153
1004 => 0.0074381369765888
1005 => 0.0072342049421162
1006 => 0.0071827094138788
1007 => 0.0069999349801804
1008 => 0.0071261779325561
1009 => 0.0071307211916661
1010 => 0.0070615792168216
1011 => 0.0072398154323116
1012 => 0.007238172954208
1013 => 0.0074073817138561
1014 => 0.0077308453103954
1015 => 0.0076351812082218
1016 => 0.0075239342656187
1017 => 0.0075360298928228
1018 => 0.0076686890686999
1019 => 0.0075884803026502
1020 => 0.007617323934157
1021 => 0.007668645410409
1022 => 0.0076996089312724
1023 => 0.0075315747186721
1024 => 0.0074923979057095
1025 => 0.0074122558955808
1026 => 0.0073913483410596
1027 => 0.0074566223360916
1028 => 0.0074394249445649
1029 => 0.0071303393483303
1030 => 0.0070980381837877
1031 => 0.0070990288143888
1101 => 0.0070178060003099
1102 => 0.0068939217131306
1103 => 0.0072194822230913
1104 => 0.0071933351579251
1105 => 0.0071644708216036
1106 => 0.0071680065381054
1107 => 0.0073093213212099
1108 => 0.0072273516104417
1109 => 0.0074452815210904
1110 => 0.0074004816830338
1111 => 0.0073545328981763
1112 => 0.0073481813764747
1113 => 0.0073304950144707
1114 => 0.0072698418983534
1115 => 0.0071965996159546
1116 => 0.0071482387169771
1117 => 0.0065938723619424
1118 => 0.0066967595328361
1119 => 0.0068151218444886
1120 => 0.0068559800401638
1121 => 0.0067860892691603
1122 => 0.0072726016119819
1123 => 0.007361492105165
1124 => 0.00709223700313
1125 => 0.0070418703671526
1126 => 0.0072759036402515
1127 => 0.0071347529671688
1128 => 0.0071983131066151
1129 => 0.0070609308506696
1130 => 0.0073400809883747
1201 => 0.0073379543320298
1202 => 0.0072293586235707
1203 => 0.007321142972729
1204 => 0.0073051931833608
1205 => 0.00718258889597
1206 => 0.0073439677629703
1207 => 0.0073440478048749
1208 => 0.0072395267965574
1209 => 0.0071174691414333
1210 => 0.0070956481155703
1211 => 0.0070792089038248
1212 => 0.0071942700682678
1213 => 0.0072974335485204
1214 => 0.0074893952088749
1215 => 0.0075376589311846
1216 => 0.0077260354524572
1217 => 0.0076138664059257
1218 => 0.0076635894914208
1219 => 0.0077175709344856
1220 => 0.0077434516233927
1221 => 0.0077012804296529
1222 => 0.0079939067060588
1223 => 0.0080186133296249
1224 => 0.0080268972467951
1225 => 0.0079282253128342
1226 => 0.0080158690846452
1227 => 0.0079748634662715
1228 => 0.008081548693591
1229 => 0.0080982782994601
1230 => 0.008084108918462
1231 => 0.0080894191594237
]
'min_raw' => 0.003627562751899
'max_raw' => 0.0080982782994601
'avg_raw' => 0.0058629205256795
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003627'
'max' => '$0.008098'
'avg' => '$0.005862'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00055936281607111
'max_diff' => -0.00077279002757593
'year' => 2031
]
6 => [
'items' => [
101 => 0.0078397142553238
102 => 0.0078267657387479
103 => 0.0076502117964509
104 => 0.0077221588329578
105 => 0.0075876572967194
106 => 0.0076303091193799
107 => 0.0076491096364072
108 => 0.0076392893132321
109 => 0.0077262266104534
110 => 0.0076523121476989
111 => 0.0074572397278268
112 => 0.0072621141606045
113 => 0.0072596645180538
114 => 0.0072082914004565
115 => 0.0071711580458895
116 => 0.0071783112473556
117 => 0.007203520062329
118 => 0.0071696928637361
119 => 0.0071769116116384
120 => 0.0072967909250822
121 => 0.0073208318664533
122 => 0.0072391313542724
123 => 0.0069110920085386
124 => 0.0068305903302711
125 => 0.0068884533401921
126 => 0.006860798548305
127 => 0.0055371998918542
128 => 0.005848159762971
129 => 0.0056633979667528
130 => 0.0057485447029317
131 => 0.0055599507528281
201 => 0.0056499576708734
202 => 0.0056333366796368
203 => 0.0061333509504209
204 => 0.0061255439153298
205 => 0.0061292807298888
206 => 0.0059509128347677
207 => 0.0062350577349117
208 => 0.0063750377302428
209 => 0.006349131158554
210 => 0.0063556512845129
211 => 0.0062436139183281
212 => 0.006130365496495
213 => 0.006004755567875
214 => 0.0062381232893946
215 => 0.0062121767824815
216 => 0.0062716887340817
217 => 0.0064230443829564
218 => 0.0064453320771974
219 => 0.0064752869642768
220 => 0.0064645502695929
221 => 0.00672034189604
222 => 0.0066893638423098
223 => 0.0067640120388053
224 => 0.0066104550350417
225 => 0.0064366907095185
226 => 0.0064697176270166
227 => 0.0064665368692759
228 => 0.0064260421725321
229 => 0.006389485370952
301 => 0.0063286285961361
302 => 0.0065211884367615
303 => 0.0065133708588877
304 => 0.0066399283577248
305 => 0.0066175580904914
306 => 0.0064681639709737
307 => 0.0064734996111786
308 => 0.0065093843557783
309 => 0.0066335818665624
310 => 0.0066704521437745
311 => 0.0066533723623434
312 => 0.0066937989381143
313 => 0.0067257504552794
314 => 0.0066978115567361
315 => 0.0070933674421874
316 => 0.0069291050604879
317 => 0.0070091654023979
318 => 0.0070282593222005
319 => 0.006979350648128
320 => 0.006989957188246
321 => 0.0070060232064156
322 => 0.0071035729226926
323 => 0.0073595716044414
324 => 0.0074729516779459
325 => 0.0078140612231587
326 => 0.0074635370411682
327 => 0.0074427383868222
328 => 0.0075041825164364
329 => 0.0077044499295886
330 => 0.0078667478577869
331 => 0.0079205914437624
401 => 0.0079277077625098
402 => 0.0080287219092537
403 => 0.008086621334365
404 => 0.0080164561349032
405 => 0.0079569984749619
406 => 0.0077440285172086
407 => 0.0077686803697165
408 => 0.0079385071874299
409 => 0.0081783975701998
410 => 0.0083842484749568
411 => 0.0083121666627392
412 => 0.00886210000813
413 => 0.0089166236530493
414 => 0.0089090902482819
415 => 0.0090333032256142
416 => 0.0087867657611426
417 => 0.0086813662186425
418 => 0.0079698538959143
419 => 0.0081697598363904
420 => 0.0084603348609368
421 => 0.0084218761668376
422 => 0.0082108528169194
423 => 0.0083840883948229
424 => 0.0083268112951906
425 => 0.0082816344702816
426 => 0.0084885982631483
427 => 0.0082610330712874
428 => 0.0084580647240697
429 => 0.0082053695913449
430 => 0.0083124959263857
501 => 0.0082516858374988
502 => 0.0082910374176128
503 => 0.0080609888843509
504 => 0.0081851174887866
505 => 0.0080558247263094
506 => 0.0080557634247056
507 => 0.0080529092798078
508 => 0.0082050216414903
509 => 0.0082099820201438
510 => 0.0080975707550314
511 => 0.0080813705355347
512 => 0.0081412712378927
513 => 0.0080711432034503
514 => 0.0081039556693853
515 => 0.0080721370596169
516 => 0.0080649740203556
517 => 0.0080078977048306
518 => 0.0079833076587565
519 => 0.0079929500494295
520 => 0.0079600355990692
521 => 0.0079402034521593
522 => 0.0080489641666196
523 => 0.0079908577042782
524 => 0.0080400585179018
525 => 0.00798398798114
526 => 0.0077896230719536
527 => 0.0076778417573089
528 => 0.0073107044614924
529 => 0.0074148241431535
530 => 0.0074838555998145
531 => 0.0074610407037998
601 => 0.007510055928632
602 => 0.0075130650653515
603 => 0.0074971297161075
604 => 0.0074786786231276
605 => 0.0074696976514745
606 => 0.0075366344562052
607 => 0.0075754935243406
608 => 0.0074907838300122
609 => 0.0074709375338456
610 => 0.007556583711762
611 => 0.0076088278308149
612 => 0.0079945690524664
613 => 0.0079659920968387
614 => 0.0080377146475199
615 => 0.0080296397889854
616 => 0.0081048164483976
617 => 0.0082276985145098
618 => 0.0079778449157377
619 => 0.0080212108611971
620 => 0.0080105785328364
621 => 0.0081266595059326
622 => 0.0081270218980599
623 => 0.0080574255560141
624 => 0.0080951548621089
625 => 0.0080740953984961
626 => 0.0081121526956015
627 => 0.0079656104341738
628 => 0.0081440830903332
629 => 0.0082452655858516
630 => 0.0082466705049001
701 => 0.0082946302047419
702 => 0.0083433600374196
703 => 0.0084368927077707
704 => 0.0083407514620085
705 => 0.008167802720044
706 => 0.0081802890605928
707 => 0.0080788892764585
708 => 0.0080805938251492
709 => 0.0080714948106505
710 => 0.0080988016381028
711 => 0.0079716027472034
712 => 0.008001456072656
713 => 0.0079596612422016
714 => 0.0080211200073981
715 => 0.0079550005355445
716 => 0.0080105734056057
717 => 0.0080345568140543
718 => 0.0081230561075556
719 => 0.0079419291179378
720 => 0.0075725989248878
721 => 0.0076502366091626
722 => 0.0075354043758116
723 => 0.0075460325362054
724 => 0.00756750311166
725 => 0.0074979099518765
726 => 0.0075111861336307
727 => 0.0075107118149953
728 => 0.0075066243932439
729 => 0.0074885205245688
730 => 0.0074622663332487
731 => 0.007566854950854
801 => 0.0075846265950281
802 => 0.0076241307585863
803 => 0.0077416683534052
804 => 0.0077299235759554
805 => 0.0077490797952621
806 => 0.0077072618760732
807 => 0.0075479723495399
808 => 0.0075566225371957
809 => 0.0074487545585182
810 => 0.0076213723318512
811 => 0.0075804941646827
812 => 0.0075541397443809
813 => 0.0075469486966296
814 => 0.0076647776444117
815 => 0.0077000339123305
816 => 0.0076780645721236
817 => 0.0076330048144112
818 => 0.0077195328699406
819 => 0.0077426841272746
820 => 0.0077478668400062
821 => 0.0079011779642952
822 => 0.0077564352287798
823 => 0.0077912762438375
824 => 0.0080630958975106
825 => 0.0078165929801772
826 => 0.0079471710731598
827 => 0.0079407799550039
828 => 0.008007579288852
829 => 0.0079353004599019
830 => 0.0079361964426121
831 => 0.0079955097256904
901 => 0.0079122149168139
902 => 0.0078915899507585
903 => 0.0078630967078719
904 => 0.0079253106613105
905 => 0.0079626051127019
906 => 0.0082631710011599
907 => 0.0084573502725736
908 => 0.0084489204382901
909 => 0.0085259533436524
910 => 0.0084912493142462
911 => 0.008379180848833
912 => 0.0085704680539999
913 => 0.0085099367784885
914 => 0.0085149269032962
915 => 0.0085147411706016
916 => 0.0085549891770807
917 => 0.0085264697758146
918 => 0.0084702551084627
919 => 0.0085075730280796
920 => 0.0086183939079414
921 => 0.0089623853194324
922 => 0.0091548874705828
923 => 0.0089507964482203
924 => 0.0090915757025583
925 => 0.0090071583147328
926 => 0.0089918171641652
927 => 0.0090802369393946
928 => 0.0091688114817357
929 => 0.0091631696663068
930 => 0.0090988690969203
1001 => 0.0090625473368403
1002 => 0.0093375878728478
1003 => 0.0095402330545849
1004 => 0.0095264140117409
1005 => 0.0095874067726606
1006 => 0.0097664834051557
1007 => 0.0097828559281696
1008 => 0.009780793366588
1009 => 0.0097402123600018
1010 => 0.0099165365607325
1011 => 0.010063629311111
1012 => 0.0097308190294752
1013 => 0.0098575488279157
1014 => 0.0099144419174147
1015 => 0.0099979778522183
1016 => 0.01013891697648
1017 => 0.010292014247685
1018 => 0.01031366388046
1019 => 0.010298302429976
1020 => 0.010197330664141
1021 => 0.010364851525123
1022 => 0.01046298131664
1023 => 0.010521415361827
1024 => 0.010669594377924
1025 => 0.0099147932697667
1026 => 0.0093805075293635
1027 => 0.0092970710958199
1028 => 0.0094667423644065
1029 => 0.0095114833248298
1030 => 0.0094934482997835
1031 => 0.0088920611238254
1101 => 0.0092939049167984
1102 => 0.0097262550500517
1103 => 0.0097428633794713
1104 => 0.0099593068961928
1105 => 0.010029789777557
1106 => 0.010204055178418
1107 => 0.010193154830147
1108 => 0.010235585682088
1109 => 0.010225831564027
1110 => 0.010548621523212
1111 => 0.010904706782967
1112 => 0.010892376682704
1113 => 0.010841185213604
1114 => 0.010917213274659
1115 => 0.011284731423142
1116 => 0.011250896241388
1117 => 0.011283764238388
1118 => 0.011717088847863
1119 => 0.012280472479889
1120 => 0.012018724220021
1121 => 0.012586642627901
1122 => 0.0129441171616
1123 => 0.013562332404076
1124 => 0.013484928810944
1125 => 0.013725595468167
1126 => 0.01334636022462
1127 => 0.012475559449348
1128 => 0.01233775189337
1129 => 0.012613646110281
1130 => 0.013291905121194
1201 => 0.012592285320309
1202 => 0.012733817494841
1203 => 0.012693056219054
1204 => 0.012690884223892
1205 => 0.012773780445098
1206 => 0.012653535152662
1207 => 0.012163634199564
1208 => 0.012388152919365
1209 => 0.012301455459375
1210 => 0.012397652754957
1211 => 0.012916789884431
1212 => 0.012687266984807
1213 => 0.01244548325498
1214 => 0.012748733708288
1215 => 0.013134875743512
1216 => 0.013110711668912
1217 => 0.013063823264387
1218 => 0.013328130745694
1219 => 0.013764689269986
1220 => 0.013882689284868
1221 => 0.013969794483449
1222 => 0.013981804818679
1223 => 0.01410551873593
1224 => 0.01344027782295
1225 => 0.014496032236448
1226 => 0.014678331859032
1227 => 0.014644067085532
1228 => 0.014846685443693
1229 => 0.01478706998279
1230 => 0.014700696533322
1231 => 0.015021889729168
]
'min_raw' => 0.0055371998918542
'max_raw' => 0.015021889729168
'avg_raw' => 0.010279544810511
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005537'
'max' => '$0.015021'
'avg' => '$0.010279'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019096371399553
'max_diff' => 0.0069236114297081
'year' => 2032
]
7 => [
'items' => [
101 => 0.014653667649084
102 => 0.014131022764277
103 => 0.013844289443727
104 => 0.014221883010344
105 => 0.014452466225277
106 => 0.014604867062501
107 => 0.014650983463762
108 => 0.013491918581327
109 => 0.012867246894379
110 => 0.013267654283837
111 => 0.013756178933617
112 => 0.013437564043854
113 => 0.013450053144315
114 => 0.012995792042033
115 => 0.013796370961476
116 => 0.013679733346842
117 => 0.014284849497893
118 => 0.014140433672084
119 => 0.014633882402793
120 => 0.014503940814729
121 => 0.015043321081844
122 => 0.015258494473534
123 => 0.015619804087245
124 => 0.015885584909886
125 => 0.016041656492518
126 => 0.016032286540106
127 => 0.016650719905047
128 => 0.016286051356157
129 => 0.015827941712974
130 => 0.015819655954847
131 => 0.016056917430515
201 => 0.016554152394009
202 => 0.016683078185568
203 => 0.01675513011467
204 => 0.016644780077105
205 => 0.016248958503316
206 => 0.016078044754615
207 => 0.016223668220356
208 => 0.016045583235321
209 => 0.016353007881313
210 => 0.01677516758262
211 => 0.016687993273701
212 => 0.016979403918516
213 => 0.017280983278606
214 => 0.017712255308311
215 => 0.017825005786833
216 => 0.018011378040313
217 => 0.018203216309241
218 => 0.018264829591034
219 => 0.018382468463455
220 => 0.018381848448529
221 => 0.018736361108581
222 => 0.019127399550961
223 => 0.019275007510399
224 => 0.019614423873975
225 => 0.019033185245918
226 => 0.019474061422088
227 => 0.019871742768839
228 => 0.019397610672765
301 => 0.020051091308593
302 => 0.020076464480864
303 => 0.020459569257727
304 => 0.020071219172381
305 => 0.01984061813136
306 => 0.020506354696279
307 => 0.020828483649538
308 => 0.020731455787244
309 => 0.019993068964331
310 => 0.019563296162495
311 => 0.018438497843107
312 => 0.019770870040093
313 => 0.020419829671415
314 => 0.019991388315663
315 => 0.020207469214559
316 => 0.021386336534469
317 => 0.021835172883885
318 => 0.021741818060809
319 => 0.021757593489158
320 => 0.021999777436346
321 => 0.023073754431316
322 => 0.022430202521338
323 => 0.022922173843086
324 => 0.023183113658207
325 => 0.023425489100825
326 => 0.022830291617301
327 => 0.022055948436423
328 => 0.021810681446324
329 => 0.019948788266489
330 => 0.019851868640687
331 => 0.019797464717759
401 => 0.019454455679284
402 => 0.019184944533125
403 => 0.018970619263393
404 => 0.018408165752672
405 => 0.018597977301544
406 => 0.017701543798626
407 => 0.01827505018614
408 => 0.016844320670339
409 => 0.018035874725456
410 => 0.01738736602657
411 => 0.017822822176286
412 => 0.017821302910802
413 => 0.017019490077677
414 => 0.016557021168938
415 => 0.016851724357146
416 => 0.017167669568473
417 => 0.017218930616044
418 => 0.017628561829543
419 => 0.017742881096237
420 => 0.017396488381098
421 => 0.016814671981224
422 => 0.016949814661095
423 => 0.016554282506844
424 => 0.015861127620442
425 => 0.016358963561179
426 => 0.016528946639648
427 => 0.016604020850822
428 => 0.015922382629423
429 => 0.015708197101173
430 => 0.015594166523124
501 => 0.016726681046488
502 => 0.016788722748584
503 => 0.016471308628844
504 => 0.017906050548512
505 => 0.017581324264515
506 => 0.01794412308361
507 => 0.016937551879396
508 => 0.016976004254925
509 => 0.01649947731583
510 => 0.016766300560181
511 => 0.016577718491189
512 => 0.016744743878837
513 => 0.016844858207521
514 => 0.017321306953234
515 => 0.018041315004801
516 => 0.01725014139879
517 => 0.016905415728836
518 => 0.017119281595665
519 => 0.017688834581944
520 => 0.018551736511038
521 => 0.018040881201494
522 => 0.018267590112984
523 => 0.018317115924567
524 => 0.017940430132201
525 => 0.018565625453501
526 => 0.018900672705263
527 => 0.019244361857312
528 => 0.019542777518084
529 => 0.019107084852097
530 => 0.019573338458793
531 => 0.019197620356637
601 => 0.01886056237798
602 => 0.018861073555802
603 => 0.018649632162159
604 => 0.018239937818645
605 => 0.018164383895863
606 => 0.018557424943587
607 => 0.018872606642737
608 => 0.018898566517098
609 => 0.019073067300367
610 => 0.019176335066405
611 => 0.020188499559298
612 => 0.020595600491403
613 => 0.021093395805155
614 => 0.021287315134068
615 => 0.021870942790169
616 => 0.021399616057947
617 => 0.021297641554647
618 => 0.019881951764097
619 => 0.020113770887991
620 => 0.020484935672564
621 => 0.019888072134686
622 => 0.020266644670421
623 => 0.020341382908237
624 => 0.019867790940061
625 => 0.020120756872965
626 => 0.019448954354345
627 => 0.018055958463883
628 => 0.018567176256136
629 => 0.018943604625283
630 => 0.018406394929227
701 => 0.01936932251652
702 => 0.018806800098884
703 => 0.018628507498331
704 => 0.017932924497673
705 => 0.018261212898539
706 => 0.018705227661346
707 => 0.018430878160188
708 => 0.019000194568877
709 => 0.01980649843472
710 => 0.020381118585746
711 => 0.020425230785855
712 => 0.020055788525306
713 => 0.020647822105585
714 => 0.02065213442388
715 => 0.019984318126796
716 => 0.01957528436325
717 => 0.019482351031557
718 => 0.019714516714777
719 => 0.019996408714356
720 => 0.020440873829963
721 => 0.020709454790651
722 => 0.021409771491789
723 => 0.021599257111464
724 => 0.021807444359036
725 => 0.022085646724362
726 => 0.022419699993558
727 => 0.02168881045822
728 => 0.021717850062008
729 => 0.021037255846555
730 => 0.020309943320261
731 => 0.020861882866932
801 => 0.021583470402764
802 => 0.02141793742476
803 => 0.021399311583203
804 => 0.021430635082325
805 => 0.021305828622712
806 => 0.020741333631427
807 => 0.020457847780729
808 => 0.020823616853083
809 => 0.021018006836531
810 => 0.02131948874827
811 => 0.021282324739137
812 => 0.022058909766983
813 => 0.022360667226092
814 => 0.022283464755122
815 => 0.022297671867762
816 => 0.022843989333663
817 => 0.023451606714502
818 => 0.024020720573833
819 => 0.024599647635553
820 => 0.023901728466742
821 => 0.023547368154489
822 => 0.023912977543508
823 => 0.02371898005537
824 => 0.024833747165605
825 => 0.024910931221642
826 => 0.026025617721527
827 => 0.027083587944317
828 => 0.026419095802888
829 => 0.027045681962873
830 => 0.027723385981215
831 => 0.029030786986111
901 => 0.028590500322584
902 => 0.028253247638494
903 => 0.027934545481622
904 => 0.02859771407753
905 => 0.029450869881789
906 => 0.029634631470602
907 => 0.029932395446808
908 => 0.029619333034674
909 => 0.029996382227396
910 => 0.031327531561515
911 => 0.030967843261056
912 => 0.030457028051624
913 => 0.031507842605971
914 => 0.03188812830825
915 => 0.034557172524019
916 => 0.037926951099143
917 => 0.036531840641883
918 => 0.035665850561128
919 => 0.035869378771664
920 => 0.037099907833096
921 => 0.037495114712588
922 => 0.036420806178149
923 => 0.03680027011438
924 => 0.038891153711089
925 => 0.040012845677145
926 => 0.038489437323911
927 => 0.034286414096588
928 => 0.030411034730965
929 => 0.031438959849335
930 => 0.031322425041142
1001 => 0.033568818622765
1002 => 0.030959264814047
1003 => 0.031003203007612
1004 => 0.03329604962953
1005 => 0.032684357460145
1006 => 0.031693494485354
1007 => 0.030418269127236
1008 => 0.028060897108684
1009 => 0.025972906971671
1010 => 0.030067936465764
1011 => 0.029891351347651
1012 => 0.029635629928175
1013 => 0.030204710275272
1014 => 0.032968002904499
1015 => 0.03290430006549
1016 => 0.032499055105188
1017 => 0.032806429835912
1018 => 0.031639610208924
1019 => 0.031940326194787
1020 => 0.030410420851074
1021 => 0.031102001960923
1022 => 0.03169136853843
1023 => 0.031809692604585
1024 => 0.032076282767411
1025 => 0.029798299014495
1026 => 0.030821046841465
1027 => 0.031421815371298
1028 => 0.028707521297366
1029 => 0.031368162504577
1030 => 0.029758644385413
1031 => 0.029212349761618
1101 => 0.029947863503714
1102 => 0.029661233083109
1103 => 0.029414805078975
1104 => 0.029277294018498
1105 => 0.029817374135004
1106 => 0.029792178752034
1107 => 0.028908502856397
1108 => 0.027755783673775
1109 => 0.02814267406818
1110 => 0.028002113160776
1111 => 0.027492702299626
1112 => 0.027835983713539
1113 => 0.026324346097412
1114 => 0.02372365214695
1115 => 0.025441750232035
1116 => 0.025375605324691
1117 => 0.025342252062975
1118 => 0.026633355289173
1119 => 0.026509245504793
1120 => 0.026283985030858
1121 => 0.02748856521437
1122 => 0.027048877243498
1123 => 0.028403891966211
1124 => 0.029296392299447
1125 => 0.029070025345577
1126 => 0.029909426222814
1127 => 0.028151587241459
1128 => 0.028735470838806
1129 => 0.028855808438992
1130 => 0.027473700881888
1201 => 0.026529551400409
1202 => 0.026466587394087
1203 => 0.024829562305015
1204 => 0.025704047893992
1205 => 0.02647355902362
1206 => 0.026105022909004
1207 => 0.02598835538482
1208 => 0.026584384463778
1209 => 0.026630701027856
1210 => 0.025574678458449
1211 => 0.025794258990515
1212 => 0.026709946311453
1213 => 0.025771186019439
1214 => 0.023947328117678
1215 => 0.023494986141233
1216 => 0.023434635383259
1217 => 0.022207848067446
1218 => 0.023525213795057
1219 => 0.022950148351748
1220 => 0.024766773196818
1221 => 0.023729126828069
1222 => 0.023684395967029
1223 => 0.023616778709978
1224 => 0.022560832189312
1225 => 0.022792017368435
1226 => 0.023560512114339
1227 => 0.023834719697391
1228 => 0.023806117599962
1229 => 0.023556746070834
1230 => 0.02367090707988
1231 => 0.02330315469341
]
'min_raw' => 0.012867246894379
'max_raw' => 0.040012845677145
'avg_raw' => 0.026440046285762
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.012867'
'max' => '$0.040012'
'avg' => '$0.02644'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0073300470025251
'max_diff' => 0.024990955947977
'year' => 2033
]
8 => [
'items' => [
101 => 0.023173293671643
102 => 0.02276341656586
103 => 0.022161010451799
104 => 0.02224477871673
105 => 0.021051254576641
106 => 0.02040095928
107 => 0.020220966112644
108 => 0.019980271726823
109 => 0.020248153183986
110 => 0.02104787347271
111 => 0.020083241134384
112 => 0.018429446651415
113 => 0.018528842517771
114 => 0.018752155518573
115 => 0.018336013218941
116 => 0.017942169456515
117 => 0.01828458465439
118 => 0.017583850130369
119 => 0.018836835938002
120 => 0.018802946183358
121 => 0.019269981808321
122 => 0.019562028769146
123 => 0.01888895507577
124 => 0.018719678862071
125 => 0.018816106286569
126 => 0.017222375754359
127 => 0.019139740022622
128 => 0.019156321468434
129 => 0.019014341062502
130 => 0.020035278343372
131 => 0.02218977444433
201 => 0.021379166346745
202 => 0.0210652743906
203 => 0.020468565552516
204 => 0.021263644650198
205 => 0.021202594980662
206 => 0.020926505222621
207 => 0.020759525275505
208 => 0.021067190947951
209 => 0.020721402093904
210 => 0.020659288914075
211 => 0.020282950624117
212 => 0.020148614976903
213 => 0.020049158211762
214 => 0.019939666085762
215 => 0.020181178431981
216 => 0.019633879681854
217 => 0.01897389104156
218 => 0.018919020127295
219 => 0.019070523545879
220 => 0.019003494561259
221 => 0.018918699218305
222 => 0.018756801815968
223 => 0.018708770315085
224 => 0.018864849391382
225 => 0.018688645214218
226 => 0.018948644075962
227 => 0.018877938771961
228 => 0.018482984691417
301 => 0.017990725676331
302 => 0.017986343538548
303 => 0.017880287141214
304 => 0.017745208373524
305 => 0.017707632550536
306 => 0.018255747401499
307 => 0.019390328739295
308 => 0.019167583274455
309 => 0.019328539700675
310 => 0.020120286013248
311 => 0.020371958357373
312 => 0.020193327288699
313 => 0.019948806064414
314 => 0.019959563757317
315 => 0.020795166802306
316 => 0.020847282339251
317 => 0.020978961488
318 => 0.021148206406666
319 => 0.020222150430184
320 => 0.019915946604103
321 => 0.019770850243765
322 => 0.019324009613281
323 => 0.019805888924038
324 => 0.019525118485789
325 => 0.019563004010393
326 => 0.019538331012794
327 => 0.019551804137864
328 => 0.018836485702933
329 => 0.019097110144592
330 => 0.018663771461392
331 => 0.018083579609139
401 => 0.018081634602608
402 => 0.01822363573649
403 => 0.018139167905552
404 => 0.017911867144365
405 => 0.017944154144662
406 => 0.01766128604808
407 => 0.01797849945308
408 => 0.017987595998491
409 => 0.017865451558835
410 => 0.018354162576252
411 => 0.018554387878838
412 => 0.018473989792069
413 => 0.018548746934746
414 => 0.019176839354155
415 => 0.019279245824112
416 => 0.019324728013475
417 => 0.019263787904964
418 => 0.018560227311167
419 => 0.018591433215272
420 => 0.018362464996389
421 => 0.018169010979508
422 => 0.018176748125651
423 => 0.018276208637589
424 => 0.018710558526506
425 => 0.019624622261406
426 => 0.019659310311974
427 => 0.019701353241184
428 => 0.019530343519004
429 => 0.019478765350452
430 => 0.019546810268227
501 => 0.019890084547868
502 => 0.020773079193161
503 => 0.020460969912285
504 => 0.020207220208663
505 => 0.020429827109168
506 => 0.020395558521686
507 => 0.020106297156648
508 => 0.020098178553546
509 => 0.019542993511585
510 => 0.019337754242523
511 => 0.019166240947402
512 => 0.018978952906599
513 => 0.018867922278058
514 => 0.019038515786015
515 => 0.019077532539687
516 => 0.018704526853076
517 => 0.018653687556295
518 => 0.018958292051868
519 => 0.018824246970166
520 => 0.018962115660855
521 => 0.01899410237971
522 => 0.018988951781258
523 => 0.018848993320981
524 => 0.01893819866994
525 => 0.018727201426259
526 => 0.018497773614516
527 => 0.018351412964482
528 => 0.018223693885404
529 => 0.018294559853553
530 => 0.018041935616717
531 => 0.017961116039032
601 => 0.018907977904897
602 => 0.019607434945691
603 => 0.019597264563303
604 => 0.019535354976123
605 => 0.019443369887474
606 => 0.019883355265693
607 => 0.019730073157707
608 => 0.019841598698416
609 => 0.019869986629238
610 => 0.019955908345941
611 => 0.019986617974441
612 => 0.019893792147905
613 => 0.019582257336333
614 => 0.018805942205737
615 => 0.018444565416822
616 => 0.018325305057273
617 => 0.018329639944835
618 => 0.018210064394087
619 => 0.018245284752783
620 => 0.018197816190666
621 => 0.018107922217895
622 => 0.018289009154049
623 => 0.018309877736499
624 => 0.018267609881773
625 => 0.01827756549168
626 => 0.017927605707385
627 => 0.017954212389712
628 => 0.017806063001501
629 => 0.017778286777178
630 => 0.017403778024622
701 => 0.016740281483557
702 => 0.017107922974475
703 => 0.016663863751663
704 => 0.016495691795388
705 => 0.017291791680285
706 => 0.017211885332215
707 => 0.017075120398774
708 => 0.016872816557905
709 => 0.016797780095441
710 => 0.016341882303169
711 => 0.016314945429481
712 => 0.016540900685607
713 => 0.016436630109551
714 => 0.016290194730412
715 => 0.015759820631089
716 => 0.01516350454262
717 => 0.015181503577022
718 => 0.015371180629909
719 => 0.015922692242612
720 => 0.015707207114281
721 => 0.01555087018127
722 => 0.015521592973188
723 => 0.015888058528321
724 => 0.016406684065743
725 => 0.016650011564308
726 => 0.016408881403196
727 => 0.01613188405748
728 => 0.016148743602431
729 => 0.016260902601785
730 => 0.016272688926774
731 => 0.0160923921305
801 => 0.016143144622557
802 => 0.016066046946218
803 => 0.015592898648836
804 => 0.015584340896506
805 => 0.015468222673781
806 => 0.015464706660145
807 => 0.015267160596243
808 => 0.015239522536331
809 => 0.014847282836264
810 => 0.015105456194659
811 => 0.014932287060557
812 => 0.014671280328996
813 => 0.014626282670096
814 => 0.014624929986133
815 => 0.014892925539409
816 => 0.015102324510585
817 => 0.014935299411785
818 => 0.014897271034434
819 => 0.015303314614196
820 => 0.015251641867502
821 => 0.015206893602118
822 => 0.016360246837201
823 => 0.015447277754358
824 => 0.015049171123785
825 => 0.014556438570052
826 => 0.014716874774121
827 => 0.014750681039616
828 => 0.013565748069607
829 => 0.013085020911248
830 => 0.01292005346632
831 => 0.012825112369467
901 => 0.012868378219498
902 => 0.012435667393303
903 => 0.012726456224883
904 => 0.012351765225534
905 => 0.012288947060143
906 => 0.012958940982287
907 => 0.013052166722505
908 => 0.012654436751766
909 => 0.012909843779614
910 => 0.012817229640893
911 => 0.012358188227289
912 => 0.01234065622177
913 => 0.012110325376509
914 => 0.011749902204517
915 => 0.011585179143472
916 => 0.011499389943088
917 => 0.011534788239165
918 => 0.011516889777463
919 => 0.011400090207871
920 => 0.011523584592071
921 => 0.011208107471843
922 => 0.011082481940597
923 => 0.011025739802623
924 => 0.010745735700235
925 => 0.011191346745523
926 => 0.011279137735105
927 => 0.011367101700057
928 => 0.012132767959408
929 => 0.012094517436841
930 => 0.012440283532085
1001 => 0.012426847697447
1002 => 0.012328229606044
1003 => 0.011912176100304
1004 => 0.012078007612251
1005 => 0.011567603994416
1006 => 0.01195003308897
1007 => 0.011775508420836
1008 => 0.011891026123118
1009 => 0.011683314878604
1010 => 0.011798270857505
1011 => 0.011299956235566
1012 => 0.010834637053075
1013 => 0.011021895075623
1014 => 0.011225465961685
1015 => 0.011666859511565
1016 => 0.011403969154675
1017 => 0.011498514467998
1018 => 0.01118180349506
1019 => 0.010528338293873
1020 => 0.010532036835946
1021 => 0.010431515451256
1022 => 0.010344650298522
1023 => 0.011434165274578
1024 => 0.011298666864623
1025 => 0.011082767881952
1026 => 0.011371757249741
1027 => 0.011448170625463
1028 => 0.011450346006845
1029 => 0.011661185189689
1030 => 0.011773710099367
1031 => 0.011793543102409
1101 => 0.012125303112096
1102 => 0.012236504691322
1103 => 0.01269452825832
1104 => 0.011764163146949
1105 => 0.011745002889724
1106 => 0.011375823922789
1107 => 0.011141684785471
1108 => 0.011391855629836
1109 => 0.011613472846218
1110 => 0.011382710187458
1111 => 0.011412842919026
1112 => 0.011103062903642
1113 => 0.011213794682638
1114 => 0.01130917180789
1115 => 0.011256510165334
1116 => 0.011177673137575
1117 => 0.011595302761764
1118 => 0.011571738461664
1119 => 0.011960644768972
1120 => 0.012263825046476
1121 => 0.01280717830372
1122 => 0.01224016085414
1123 => 0.012219496484587
1124 => 0.012421494011636
1125 => 0.012236473766554
1126 => 0.012353400174764
1127 => 0.012788339651682
1128 => 0.012797529237461
1129 => 0.012643591835556
1130 => 0.012634224730661
1201 => 0.012663790092587
1202 => 0.012836955340848
1203 => 0.012776446082275
1204 => 0.012846468928202
1205 => 0.012934033569262
1206 => 0.013296238051325
1207 => 0.013383564325713
1208 => 0.013171406752433
1209 => 0.013190562205872
1210 => 0.01311120944961
1211 => 0.013034555681347
1212 => 0.013206862158018
1213 => 0.013521755630825
1214 => 0.013519796694873
1215 => 0.01359284585991
1216 => 0.013638354884556
1217 => 0.013442996836134
1218 => 0.013315825930125
1219 => 0.013364591347584
1220 => 0.013442568312073
1221 => 0.013339304468947
1222 => 0.012701912192711
1223 => 0.012895256292544
1224 => 0.012863074380289
1225 => 0.012817243423782
1226 => 0.013011652411251
1227 => 0.012992901190146
1228 => 0.012431229318351
1229 => 0.012467185729243
1230 => 0.012433415946789
1231 => 0.012542533022547
]
'min_raw' => 0.010344650298522
'max_raw' => 0.023173293671643
'avg_raw' => 0.016758971985083
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010344'
'max' => '$0.023173'
'avg' => '$0.016758'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0025225965958569
'max_diff' => -0.016839552005502
'year' => 2034
]
9 => [
'items' => [
101 => 0.012230581086371
102 => 0.01232653540091
103 => 0.012386717047474
104 => 0.012422164499637
105 => 0.012550225003395
106 => 0.012535198581348
107 => 0.012549290939902
108 => 0.012739170860256
109 => 0.013699518338486
110 => 0.013751787932838
111 => 0.013494393333539
112 => 0.013597217399075
113 => 0.013399817678398
114 => 0.013532333433352
115 => 0.013622997347356
116 => 0.013213304553638
117 => 0.013189045205278
118 => 0.012990830745734
119 => 0.013097339968853
120 => 0.012927876136587
121 => 0.012969456633432
122 => 0.012853193939332
123 => 0.013062443641041
124 => 0.013296417321668
125 => 0.013355528313295
126 => 0.013200032743206
127 => 0.013087443702804
128 => 0.012889774436995
129 => 0.013218502831383
130 => 0.013314633031718
131 => 0.013217997900365
201 => 0.01319560542891
202 => 0.013153171735967
203 => 0.013204607937465
204 => 0.013314109486002
205 => 0.013262470577888
206 => 0.013296578986458
207 => 0.013166592905429
208 => 0.013443061507776
209 => 0.013882160184097
210 => 0.013883571958142
211 => 0.013831932771675
212 => 0.013810803129154
213 => 0.013863788068197
214 => 0.013892530224072
215 => 0.014063873801161
216 => 0.014247732286006
217 => 0.015105719611038
218 => 0.014864800203461
219 => 0.015626057600124
220 => 0.016228113363983
221 => 0.016408643562856
222 => 0.016242564274495
223 => 0.015674416000437
224 => 0.015646539935618
225 => 0.016495593323073
226 => 0.016255696852008
227 => 0.01622716193012
228 => 0.015923598571733
301 => 0.016103042113593
302 => 0.01606379517871
303 => 0.016001841971972
304 => 0.016344207749695
305 => 0.01698508592239
306 => 0.016885199049058
307 => 0.016810638131734
308 => 0.016483933896379
309 => 0.016680682818096
310 => 0.01661062429555
311 => 0.016911640168644
312 => 0.016733325033741
313 => 0.016253879400295
314 => 0.016330232697695
315 => 0.016318692050395
316 => 0.016556197754059
317 => 0.016484904437073
318 => 0.016304770886036
319 => 0.016982895470468
320 => 0.016938861831882
321 => 0.017001291463905
322 => 0.017028774918623
323 => 0.017441537403271
324 => 0.017610632986305
325 => 0.017649020644088
326 => 0.017809648369649
327 => 0.017645024079948
328 => 0.018303638613881
329 => 0.018741578847723
330 => 0.019250268965529
331 => 0.019993601950657
401 => 0.02027310202928
402 => 0.020222612841785
403 => 0.020786199427567
404 => 0.021798951994392
405 => 0.020427319091244
406 => 0.021871651868843
407 => 0.021414392787079
408 => 0.020330239729956
409 => 0.020260433054402
410 => 0.020994634091962
411 => 0.022623021329038
412 => 0.022215128795165
413 => 0.0226236884951
414 => 0.0221470819032
415 => 0.022123414368757
416 => 0.022600540776737
417 => 0.02371537263579
418 => 0.023185757808401
419 => 0.022426425086456
420 => 0.022987104551814
421 => 0.022501392110486
422 => 0.021406946037821
423 => 0.022214816887432
424 => 0.021674616657134
425 => 0.021832275802959
426 => 0.022967696338325
427 => 0.02283107953556
428 => 0.023007874328713
429 => 0.022695836146322
430 => 0.022404343280064
501 => 0.021860250198649
502 => 0.021699171060707
503 => 0.021743687539414
504 => 0.021699149000551
505 => 0.021394733921972
506 => 0.021328995514737
507 => 0.021219428622612
508 => 0.021253387983986
509 => 0.021047370171867
510 => 0.021436168348788
511 => 0.021508332716502
512 => 0.021791267606588
513 => 0.021820642845477
514 => 0.02260861248704
515 => 0.022174612049759
516 => 0.022465777012882
517 => 0.022439732478029
518 => 0.020353736614144
519 => 0.02064116843929
520 => 0.021088322158141
521 => 0.020886880013901
522 => 0.020602087952148
523 => 0.020372103092698
524 => 0.020023652513472
525 => 0.020514090012332
526 => 0.021158963171119
527 => 0.021836997892986
528 => 0.022651612184715
529 => 0.022469799757957
530 => 0.021821769245436
531 => 0.021850839420841
601 => 0.022030539806503
602 => 0.02179781147957
603 => 0.02172917535256
604 => 0.022021110256632
605 => 0.022023120651871
606 => 0.021755338585576
607 => 0.02145774782249
608 => 0.021456500906327
609 => 0.021403547504421
610 => 0.022156502195762
611 => 0.022570551143694
612 => 0.022618021188301
613 => 0.022567356031471
614 => 0.022586855039507
615 => 0.022345929079651
616 => 0.022896614379507
617 => 0.023401977667786
618 => 0.023266529511015
619 => 0.023063473468926
620 => 0.022901729550898
621 => 0.023228427784223
622 => 0.023213880426164
623 => 0.023397563760332
624 => 0.023389230823288
625 => 0.023327465026687
626 => 0.023266531716866
627 => 0.023508125402716
628 => 0.023438550301067
629 => 0.023368867130068
630 => 0.02322910686267
701 => 0.023248102604182
702 => 0.023045081622581
703 => 0.022951154826885
704 => 0.021538721181503
705 => 0.021161272758856
706 => 0.021280025716292
707 => 0.021319122273299
708 => 0.02115485623605
709 => 0.021390371536983
710 => 0.021353666726805
711 => 0.021496463671611
712 => 0.021407250340019
713 => 0.021410911686266
714 => 0.021673269072192
715 => 0.021749432537474
716 => 0.021710695184317
717 => 0.021737825498629
718 => 0.022363032140971
719 => 0.022274147749413
720 => 0.022226929687929
721 => 0.022240009413654
722 => 0.022399763115354
723 => 0.022444485429602
724 => 0.022254993841555
725 => 0.022344359169915
726 => 0.022724865395926
727 => 0.022858021040243
728 => 0.023282989938566
729 => 0.023102455597339
730 => 0.023433834194005
731 => 0.02445237902487
801 => 0.025266063113705
802 => 0.024517765598695
803 => 0.026011992805798
804 => 0.02717546302069
805 => 0.027130807095982
806 => 0.026927929152464
807 => 0.025603349245265
808 => 0.024384451066287
809 => 0.025404111150153
810 => 0.025406710473402
811 => 0.025319120767906
812 => 0.024775108629646
813 => 0.025300190324709
814 => 0.025341869402847
815 => 0.025318540202451
816 => 0.024901447371551
817 => 0.024264623710407
818 => 0.024389057529454
819 => 0.024592882663435
820 => 0.024206999162433
821 => 0.024083686002357
822 => 0.024312948628226
823 => 0.025051680577544
824 => 0.024912027581708
825 => 0.024908380677605
826 => 0.025505875415877
827 => 0.025078198130709
828 => 0.024390627038405
829 => 0.024217006269649
830 => 0.023600769505532
831 => 0.024026406433468
901 => 0.024041724348757
902 => 0.023808607353231
903 => 0.024409543197811
904 => 0.02440400546821
905 => 0.024974504615142
906 => 0.026065084714381
907 => 0.025742546514849
908 => 0.025367469680849
909 => 0.025408250932457
910 => 0.025855520605895
911 => 0.025585091151161
912 => 0.025682339468584
913 => 0.025855373408919
914 => 0.025959769081314
915 => 0.025393230001758
916 => 0.025261142641617
917 => 0.024990938259131
918 => 0.024920446979344
919 => 0.025140522810879
920 => 0.025082540604664
921 => 0.024040436937291
922 => 0.023931531305841
923 => 0.023934871286076
924 => 0.023661022897613
925 => 0.023243338374064
926 => 0.024340988363305
927 => 0.024252831707567
928 => 0.024155513582416
929 => 0.024167434497457
930 => 0.024643887154977
1001 => 0.02436752055218
1002 => 0.025102286461312
1003 => 0.02495124067948
1004 => 0.024796321143291
1005 => 0.024774906544425
1006 => 0.024715275740106
1007 => 0.024510779524451
1008 => 0.024263838055731
1009 => 0.024100785908378
1010 => 0.022231701037756
1011 => 0.022578592317777
1012 => 0.022977659115306
1013 => 0.023115415374653
1014 => 0.022879773760597
1015 => 0.024520084091627
1016 => 0.02481978459553
1017 => 0.023911972220228
1018 => 0.023742157590544
1019 => 0.024531217110478
1020 => 0.024055317761354
1021 => 0.024269615209125
1022 => 0.023806421341482
1023 => 0.024747595520395
1024 => 0.024740425350049
1025 => 0.024374287337069
1026 => 0.024683744678435
1027 => 0.024629968850002
1028 => 0.024216599935105
1029 => 0.02476070005231
1030 => 0.02476096991918
1031 => 0.024408570042213
1101 => 0.023997044136169
1102 => 0.023923473023976
1103 => 0.023868047073828
1104 => 0.024255983823061
1105 => 0.024603806699377
1106 => 0.025251018839597
1107 => 0.02541374334903
1108 => 0.026048867942529
1109 => 0.025670682170756
1110 => 0.025838327025057
1111 => 0.026020329229214
1112 => 0.026107587778796
1113 => 0.025965404654804
1114 => 0.026952014576221
1115 => 0.027035314682535
1116 => 0.027063244487639
1117 => 0.026730565173236
1118 => 0.027026062268989
1119 => 0.026887808963721
1120 => 0.027247505656154
1121 => 0.027303910690365
1122 => 0.027256137633055
1123 => 0.027274041481207
1124 => 0.026432143963194
1125 => 0.026388487135522
1126 => 0.025793223192465
1127 => 0.02603579764923
1128 => 0.025582316329205
1129 => 0.02572611992716
1130 => 0.025789507182928
1201 => 0.02575639727771
1202 => 0.02604951244506
1203 => 0.02580030467334
1204 => 0.02514260439022
1205 => 0.024484724917097
1206 => 0.024476465776209
1207 => 0.024303257723473
1208 => 0.024178060025983
1209 => 0.024202177544146
1210 => 0.024287170823852
1211 => 0.024173120062057
1212 => 0.024197458574606
1213 => 0.024601640049589
1214 => 0.024682695761906
1215 => 0.024407236780941
1216 => 0.023301229223823
1217 => 0.023029812195097
1218 => 0.023224901372912
1219 => 0.023131661311268
1220 => 0.018669056030338
1221 => 0.019717478946332
1222 => 0.019094541650726
1223 => 0.019381619816509
1224 => 0.018745762146525
1225 => 0.019049226754797
1226 => 0.018993187922403
1227 => 0.020679020946233
1228 => 0.020652698982353
1229 => 0.020665297913535
1230 => 0.020063918101886
1231 => 0.021021932471085
]
'min_raw' => 0.012230581086371
'max_raw' => 0.027303910690365
'avg_raw' => 0.019767245888368
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01223'
'max' => '$0.0273039'
'avg' => '$0.019767'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0018859307878484
'max_diff' => 0.0041306170187218
'year' => 2035
]
10 => [
'items' => [
101 => 0.021493884798434
102 => 0.021406538983246
103 => 0.021428522043138
104 => 0.021050780240846
105 => 0.020668955279884
106 => 0.020245452635736
107 => 0.021032268202054
108 => 0.020944787742469
109 => 0.021145436442281
110 => 0.021655742579776
111 => 0.021730887096986
112 => 0.021831882090158
113 => 0.021795682574419
114 => 0.022658101901787
115 => 0.022553657230817
116 => 0.022805338837072
117 => 0.022287610677875
118 => 0.021701752122536
119 => 0.021813104680747
120 => 0.02180238053395
121 => 0.021665849836629
122 => 0.021542596027788
123 => 0.021337413162612
124 => 0.021986642109379
125 => 0.021960284599771
126 => 0.022386982043063
127 => 0.022311559125243
128 => 0.021807866420925
129 => 0.021825855904399
130 => 0.021946843826209
131 => 0.022365584405011
201 => 0.022489895118832
202 => 0.022432309443265
203 => 0.02256861046597
204 => 0.022676337236876
205 => 0.022582139289805
206 => 0.023915783574435
207 => 0.023361961486101
208 => 0.023631890518486
209 => 0.023696267002195
210 => 0.023531367992865
211 => 0.023567128683398
212 => 0.02362129638535
213 => 0.023950192064482
214 => 0.024813309493255
215 => 0.02519557832702
216 => 0.026345652974212
217 => 0.025163836221814
218 => 0.025093712106571
219 => 0.025300875279458
220 => 0.025976090845125
221 => 0.026523289641325
222 => 0.02670482705068
223 => 0.026728820216183
224 => 0.027069396464512
225 => 0.027264608418684
226 => 0.02702804154992
227 => 0.026827575898227
228 => 0.026109532816574
229 => 0.026192648258442
301 => 0.026765231231293
302 => 0.027574038405413
303 => 0.028268079102852
304 => 0.028025050240369
305 => 0.029879188909474
306 => 0.030063019185039
307 => 0.0300376197849
308 => 0.030456412510249
309 => 0.029625194236087
310 => 0.029269832319787
311 => 0.026870918847505
312 => 0.027544915682807
313 => 0.028524609665366
314 => 0.02839494349311
315 => 0.027683463535681
316 => 0.028267539381504
317 => 0.028074425641135
318 => 0.027922108821809
319 => 0.028619901699209
320 => 0.027852649766756
321 => 0.028516955740422
322 => 0.02766497645783
323 => 0.028026160375742
324 => 0.027821134915435
325 => 0.027953811515229
326 => 0.027178186823861
327 => 0.027596695080098
328 => 0.027160775504474
329 => 0.027160568821836
330 => 0.027150945873044
331 => 0.027663803320602
401 => 0.027680527583555
402 => 0.027301525154924
403 => 0.027246904983828
404 => 0.027448864383962
405 => 0.027212422819656
406 => 0.027323052339449
407 => 0.027215773675111
408 => 0.027191622988134
409 => 0.0269991862054
410 => 0.026916279148239
411 => 0.026948789141603
412 => 0.0268378157742
413 => 0.026770950306257
414 => 0.02713764464849
415 => 0.026941734653843
416 => 0.027107618632066
417 => 0.026918572902654
418 => 0.026263258041207
419 => 0.02588637953456
420 => 0.024648550509007
421 => 0.024999597285132
422 => 0.025232341660887
423 => 0.025155419646088
424 => 0.025320677898744
425 => 0.025330823413285
426 => 0.025277096270738
427 => 0.025214887122542
428 => 0.025184607149582
429 => 0.02541028926011
430 => 0.025541305321382
501 => 0.025255700672712
502 => 0.025188787499562
503 => 0.025477549568033
504 => 0.025653694262987
505 => 0.026954247723377
506 => 0.026857898522299
507 => 0.027099716109429
508 => 0.027072491160112
509 => 0.027325954515987
510 => 0.027740259981236
511 => 0.026897861128755
512 => 0.027044072441585
513 => 0.027008224804191
514 => 0.0273995999095
515 => 0.027400821739858
516 => 0.027166172813589
517 => 0.027293379803264
518 => 0.027222376351369
519 => 0.027350689185635
520 => 0.026856611719978
521 => 0.027458344740782
522 => 0.027799488588759
523 => 0.027804225371419
524 => 0.027965924847875
525 => 0.028130220880956
526 => 0.028445572809287
527 => 0.028121425886833
528 => 0.027538317128404
529 => 0.027580415697332
530 => 0.027238539245617
531 => 0.027244286250535
601 => 0.02721360828788
602 => 0.027305675163137
603 => 0.026876815221727
604 => 0.026977467792783
605 => 0.026836553603884
606 => 0.027043766121658
607 => 0.026820839705989
608 => 0.027008207517375
609 => 0.027089069253428
610 => 0.02738745080029
611 => 0.026776768508911
612 => 0.025531545977233
613 => 0.025793306850255
614 => 0.025406141958182
615 => 0.025441975542984
616 => 0.025514365087157
617 => 0.025279726890107
618 => 0.025324488463805
619 => 0.02532288926541
620 => 0.0253091082376
621 => 0.025248069780391
622 => 0.025159551941346
623 => 0.025512179767746
624 => 0.025572098106856
625 => 0.025705289152385
626 => 0.026101575359529
627 => 0.026061977022363
628 => 0.0261265635532
629 => 0.025985571519021
630 => 0.025448515759075
701 => 0.025477680470693
702 => 0.02511399604948
703 => 0.02569598892406
704 => 0.025558165329429
705 => 0.025469309561375
706 => 0.025445064441818
707 => 0.02584233296582
708 => 0.025961201934622
709 => 0.025887130770265
710 => 0.025735208651165
711 => 0.026026944031578
712 => 0.026105000112049
713 => 0.026122473989869
714 => 0.026639373149251
715 => 0.026151362910845
716 => 0.026268831825634
717 => 0.027185290765836
718 => 0.026354188969762
719 => 0.026794442126924
720 => 0.026772894025848
721 => 0.026998112643697
722 => 0.026754419525545
723 => 0.026757440393808
724 => 0.026957419268828
725 => 0.026676585005243
726 => 0.026607046492198
727 => 0.026510979534471
728 => 0.026720738222129
729 => 0.02684647906881
730 => 0.027859857946587
731 => 0.028514546917322
801 => 0.028486125142483
802 => 0.028745846961178
803 => 0.028628839903076
804 => 0.028250993247565
805 => 0.028895931415032
806 => 0.028691845993486
807 => 0.028708670547675
808 => 0.028708044336928
809 => 0.028843743300798
810 => 0.028747588148269
811 => 0.028558056472509
812 => 0.028683876443951
813 => 0.029057516777672
814 => 0.030217307838227
815 => 0.030866342280902
816 => 0.030178235149827
817 => 0.030652882234721
818 => 0.030368263117833
819 => 0.03031653935761
820 => 0.030614652803067
821 => 0.030913288056647
822 => 0.03089426628203
823 => 0.030677472423021
824 => 0.030555011073007
825 => 0.031482329442873
826 => 0.032165561821334
827 => 0.032118969953571
828 => 0.03232461130539
829 => 0.032928380674579
830 => 0.032983581779013
831 => 0.032976627708637
901 => 0.032839806011657
902 => 0.033434295364983
903 => 0.033930228842572
904 => 0.032808135741965
905 => 0.033235414105399
906 => 0.033427233128794
907 => 0.033708880365277
908 => 0.034184066462781
909 => 0.034700244601559
910 => 0.034773237849987
911 => 0.034721445647179
912 => 0.034381012289042
913 => 0.034945820567778
914 => 0.035276672011078
915 => 0.035473686474162
916 => 0.035973282372463
917 => 0.033428417737779
918 => 0.03162703606137
919 => 0.031345724300332
920 => 0.031917782828442
921 => 0.032068630100223
922 => 0.032007823754114
923 => 0.02998020490286
924 => 0.031335049306706
925 => 0.032792747966692
926 => 0.032848744108886
927 => 0.033578498537117
928 => 0.033816136492593
929 => 0.034403684458418
930 => 0.034366933173184
1001 => 0.034509991752932
1002 => 0.034477105062877
1003 => 0.035565413946747
1004 => 0.036765980261088
1005 => 0.03672440846719
1006 => 0.036551812855047
1007 => 0.036808146771004
1008 => 0.03804725986791
1009 => 0.037933182190329
1010 => 0.038043998936985
1011 => 0.039504983111591
1012 => 0.041404470361154
1013 => 0.04052196782833
1014 => 0.042436744391294
1015 => 0.043641994739736
1016 => 0.045726350592154
1017 => 0.045465378973762
1018 => 0.046276803411399
1019 => 0.044998185310421
1020 => 0.042062219699222
1021 => 0.041597591902825
1022 => 0.042527788517462
1023 => 0.044814586127288
1024 => 0.042455769122707
1025 => 0.042932954730604
1026 => 0.042795525243427
1027 => 0.042788202210093
1028 => 0.04306769260752
1029 => 0.042662277208814
1030 => 0.04101054194165
1031 => 0.041767522480854
1101 => 0.041475215941477
1102 => 0.041799551839812
1103 => 0.043549858916832
1104 => 0.042776006435972
1105 => 0.041960815710057
1106 => 0.042983245785658
1107 => 0.04428515061699
1108 => 0.044203679752393
1109 => 0.044045592222896
1110 => 0.044936723349479
1111 => 0.046408610893672
1112 => 0.046806456182345
1113 => 0.047100137440854
1114 => 0.047140631124617
1115 => 0.047557741234058
1116 => 0.045314835050307
1117 => 0.048874384765836
1118 => 0.049489020671132
1119 => 0.049373494594984
1120 => 0.050056636535888
1121 => 0.049855638847235
1122 => 0.04956442473195
1123 => 0.050647350016739
1124 => 0.049405863565292
1125 => 0.047643729846262
1126 => 0.046676988436949
1127 => 0.047950071509537
1128 => 0.048727498917491
1129 => 0.049241328980478
1130 => 0.049396813647074
1201 => 0.045488945472617
1202 => 0.04338282126689
1203 => 0.044732822735998
1204 => 0.046379917700434
1205 => 0.045305685354616
1206 => 0.045347793228781
1207 => 0.04381622020694
1208 => 0.046515427928477
1209 => 0.046122176067359
1210 => 0.048162367418489
1211 => 0.047675459378983
1212 => 0.049339156226057
1213 => 0.04890104908967
1214 => 0.050719607318574
1215 => 0.051445079431583
1216 => 0.052663260020043
1217 => 0.053559358619801
1218 => 0.054085564857214
1219 => 0.054053973408469
1220 => 0.056139064676005
1221 => 0.05490955920308
1222 => 0.053365010556894
1223 => 0.053337074544873
1224 => 0.054137018175156
1225 => 0.055813480570412
1226 => 0.056248162877966
1227 => 0.056491090987437
1228 => 0.056119038131393
1229 => 0.054784498059984
1230 => 0.054208250423421
1231 => 0.054699230105274
]
'min_raw' => 0.020245452635736
'max_raw' => 0.056491090987437
'avg_raw' => 0.038368271811587
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.020245'
'max' => '$0.056491'
'avg' => '$0.038368'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0080148715493655
'max_diff' => 0.029187180297072
'year' => 2036
]
11 => [
'items' => [
101 => 0.054098804144733
102 => 0.055135307802396
103 => 0.056558648709603
104 => 0.056264734440765
105 => 0.057247245775401
106 => 0.058264041643544
107 => 0.059718105402147
108 => 0.060098251512471
109 => 0.060726618577174
110 => 0.061373414694582
111 => 0.061581148175849
112 => 0.061977775847502
113 => 0.061975685423892
114 => 0.063170949608539
115 => 0.064489363018456
116 => 0.064987033559359
117 => 0.066131399526452
118 => 0.064171712911172
119 => 0.065658157720119
120 => 0.066998968145916
121 => 0.065400398681155
122 => 0.067603654269412
123 => 0.06768920169122
124 => 0.068980866193936
125 => 0.067671516767456
126 => 0.066894029257604
127 => 0.06913860656647
128 => 0.070224686822708
129 => 0.069897550610715
130 => 0.067408027884741
131 => 0.065959018877571
201 => 0.062166682812844
202 => 0.066658868698239
203 => 0.068846881404157
204 => 0.067402361460417
205 => 0.068130893297332
206 => 0.072105526772298
207 => 0.073618809861105
208 => 0.073304057557281
209 => 0.073357245515363
210 => 0.074173785602053
211 => 0.077794774023273
212 => 0.075624993827423
213 => 0.077283709487037
214 => 0.078163486291953
215 => 0.078980672018852
216 => 0.076973922147789
217 => 0.074363170050546
218 => 0.073536235269432
219 => 0.067258732420389
220 => 0.066931961135283
221 => 0.06674853451077
222 => 0.065592055589426
223 => 0.064683379943486
224 => 0.063960767332871
225 => 0.062064416052224
226 => 0.062704378941467
227 => 0.059681990799389
228 => 0.061615607625831
301 => 0.056791803172961
302 => 0.060809210861435
303 => 0.058622718505712
304 => 0.060090889317056
305 => 0.060085767007406
306 => 0.057382399059741
307 => 0.055823152845377
308 => 0.05681676521994
309 => 0.05788199655852
310 => 0.058054826759336
311 => 0.059435926995188
312 => 0.059821362384364
313 => 0.058653475160903
314 => 0.056691840547605
315 => 0.057147483528152
316 => 0.05581391925492
317 => 0.053476899160888
318 => 0.055155387792878
319 => 0.055728497609775
320 => 0.055981615554262
321 => 0.053683424700354
322 => 0.052961283237905
323 => 0.052576821182651
324 => 0.05639517296781
325 => 0.056604350898043
326 => 0.055534167032193
327 => 0.060371499584834
328 => 0.059276662246674
329 => 0.060499863795058
330 => 0.057106138703491
331 => 0.057235783572246
401 => 0.055629139727041
402 => 0.056528752924375
403 => 0.055892935312386
404 => 0.056456073068182
405 => 0.056793615517101
406 => 0.058399995727861
407 => 0.060827553143078
408 => 0.058160056092433
409 => 0.056997789428205
410 => 0.057718853129856
411 => 0.059639140788016
412 => 0.062548474887844
413 => 0.06082609054494
414 => 0.061590455468338
415 => 0.061757435199872
416 => 0.060487412751549
417 => 0.062595302427055
418 => 0.063724937628624
419 => 0.064883709600365
420 => 0.065889838835374
421 => 0.06442087059291
422 => 0.065992877180673
423 => 0.064726117367454
424 => 0.063589702859774
425 => 0.063591426331491
426 => 0.062878536910456
427 => 0.061497223827354
428 => 0.061242488501686
429 => 0.06256765383534
430 => 0.063630310939307
501 => 0.063717836468174
502 => 0.064306178042223
503 => 0.064654352525345
504 => 0.068066935780201
505 => 0.069439504995673
506 => 0.071117856650947
507 => 0.071771669207393
508 => 0.073739410597519
509 => 0.07215029961285
510 => 0.07180648545534
511 => 0.067033388486196
512 => 0.0678149828475
513 => 0.069066390832585
514 => 0.067054023742948
515 => 0.068330407478269
516 => 0.068582392665125
517 => 0.066985644279284
518 => 0.067838536583587
519 => 0.065573507488303
520 => 0.060876924587744
521 => 0.062600531066413
522 => 0.06386968559438
523 => 0.062058445597346
524 => 0.065305023187361
525 => 0.063408439582239
526 => 0.062807313631484
527 => 0.060462106980711
528 => 0.061568954244594
529 => 0.06306598101752
530 => 0.062140992519894
531 => 0.064060482540191
601 => 0.066778992318221
602 => 0.068716364276102
603 => 0.068865091638585
604 => 0.067619491263508
605 => 0.069615573813884
606 => 0.06963011309609
607 => 0.067378523825029
608 => 0.065999437933406
609 => 0.065686106717208
610 => 0.066468869527475
611 => 0.067419288085125
612 => 0.068917833253957
613 => 0.069823372714639
614 => 0.072184539367078
615 => 0.072823403363275
616 => 0.073525321203635
617 => 0.0744632999018
618 => 0.07558958382175
619 => 0.073125338724279
620 => 0.073223247775929
621 => 0.070928576860961
622 => 0.068476391899221
623 => 0.070337294616011
624 => 0.0727701773727
625 => 0.072212071380219
626 => 0.072149273054994
627 => 0.072254882419219
628 => 0.071834088726926
629 => 0.069930854452027
630 => 0.06897506211405
701 => 0.070208278078671
702 => 0.07086367747974
703 => 0.071880144793963
704 => 0.071754843742463
705 => 0.074373154383282
706 => 0.075390550724701
707 => 0.075130257203722
708 => 0.075178157475895
709 => 0.07702010495485
710 => 0.079068729376838
711 => 0.080987536487833
712 => 0.082939429495819
713 => 0.080586346291011
714 => 0.079391595757605
715 => 0.080624273338715
716 => 0.079970197262985
717 => 0.083728712405698
718 => 0.083988943839445
719 => 0.087747187198733
720 => 0.091314207669992
721 => 0.089073826021804
722 => 0.09118640500704
723 => 0.093471331420664
724 => 0.097879325188495
725 => 0.09639486796258
726 => 0.09525779699194
727 => 0.094183270418971
728 => 0.096419189641029
729 => 0.099295664000524
730 => 0.09991522902703
731 => 0.10091916106203
801 => 0.099863649282197
802 => 0.10113489696019
803 => 0.10562295987806
804 => 0.10441024566042
805 => 0.10268799651784
806 => 0.10623089115335
807 => 0.10751305094929
808 => 0.11651191986947
809 => 0.12787336360593
810 => 0.12316965129577
811 => 0.12024990527701
812 => 0.12093611484872
813 => 0.12508492949213
814 => 0.1264173970788
815 => 0.12279529084911
816 => 0.12407468000344
817 => 0.13112424003058
818 => 0.13490610280817
819 => 0.12976982518426
820 => 0.11559903892763
821 => 0.10253292682609
822 => 0.10599864813012
823 => 0.10560574288809
824 => 0.11317961568672
825 => 0.1043813228274
826 => 0.10452946351467
827 => 0.11225995598191
828 => 0.11019759312584
829 => 0.1068568294265
830 => 0.10255731809821
831 => 0.094609273751202
901 => 0.087569469225447
902 => 0.10137614707061
903 => 0.10078077801611
904 => 0.099918595396449
905 => 0.10183728951861
906 => 0.11115392354498
907 => 0.11093914497567
908 => 0.10957283329871
909 => 0.11060916866356
910 => 0.10667515482643
911 => 0.10768903976809
912 => 0.10253085708718
913 => 0.10486257108369
914 => 0.10684966164801
915 => 0.10724859949818
916 => 0.10814742684487
917 => 0.10046704557817
918 => 0.10391531128277
919 => 0.10594084432542
920 => 0.096789412349203
921 => 0.10575994993935
922 => 0.10033334722762
923 => 0.098491476762426
924 => 0.10097131269583
925 => 0.10000491822086
926 => 0.099174068999874
927 => 0.09871044085876
928 => 0.10053135867875
929 => 0.10044641068598
930 => 0.097467035707558
1001 => 0.093580562503066
1002 => 0.094884990479628
1003 => 0.094411079566665
1004 => 0.092693565282366
1005 => 0.093850962536518
1006 => 0.088754370774576
1007 => 0.079985949545943
1008 => 0.085778637193584
1009 => 0.085555625020382
1010 => 0.085443172169856
1011 => 0.089796216838931
1012 => 0.089377772035827
1013 => 0.08861829062077
1014 => 0.092679616810586
1015 => 0.091197178118757
1016 => 0.095765704860489
1017 => 0.098774832046378
1018 => 0.098011620056969
1019 => 0.10084171871967
1020 => 0.094915041865633
1021 => 0.096883646179541
1022 => 0.09728937280027
1023 => 0.092629500675827
1024 => 0.089446234780609
1025 => 0.089233947237286
1026 => 0.08371460285604
1027 => 0.086662992073911
1028 => 0.089257452573
1029 => 0.088014907332204
1030 => 0.087621554628952
1031 => 0.089631108282078
1101 => 0.089787267811589
1102 => 0.086226813989692
1103 => 0.086967145084173
1104 => 0.090054448817963
1105 => 0.086889352951287
1106 => 0.08074008869781
1107 => 0.079214986142717
1108 => 0.079011509348651
1109 => 0.074875310261832
1110 => 0.07931690078801
1111 => 0.077378027496108
1112 => 0.083502904993959
1113 => 0.080004407815563
1114 => 0.07985359459456
1115 => 0.079625618291525
1116 => 0.076065420873267
1117 => 0.076844877845516
1118 => 0.079435911535921
1119 => 0.080360421546741
1120 => 0.080263987578326
1121 => 0.079423214057305
1122 => 0.079808115869771
1123 => 0.078568213023136
1124 => 0.078130377521643
1125 => 0.076748448242788
1126 => 0.074717393970579
1127 => 0.07499982452431
1128 => 0.070975774556804
1129 => 0.068783258562011
1130 => 0.068176399031549
1201 => 0.067364881105009
1202 => 0.068268062140718
1203 => 0.070964374928842
1204 => 0.067712049651696
1205 => 0.062136166088123
1206 => 0.062471286191137
1207 => 0.063224201564558
1208 => 0.061821148747221
1209 => 0.06049327700491
1210 => 0.06164775375121
1211 => 0.05928517837975
1212 => 0.063509707510862
1213 => 0.063395445836971
1214 => 0.064970089053921
1215 => 0.065954745772411
1216 => 0.063685430822689
1217 => 0.063114704249714
1218 => 0.063439816043757
1219 => 0.058066442283697
1220 => 0.064530969780244
1221 => 0.06458687528248
1222 => 0.064108178431125
1223 => 0.067550339753142
1224 => 0.074814373779637
1225 => 0.072081351983778
1226 => 0.0710230433384
1227 => 0.069011197829918
1228 => 0.071691862518404
1229 => 0.071486029295212
1230 => 0.070555173400005
1231 => 0.069992188850136
]
'min_raw' => 0.052576821182651
'max_raw' => 0.13490610280817
'avg_raw' => 0.093741461995411
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.052576'
'max' => '$0.1349061'
'avg' => '$0.093741'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.032331368546915
'max_diff' => 0.078415011820733
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0016503263387355
]
1 => [
'year' => 2028
'avg' => 0.0028324390904295
]
2 => [
'year' => 2029
'avg' => 0.0077377130975761
]
3 => [
'year' => 2030
'avg' => 0.0059696341314319
]
4 => [
'year' => 2031
'avg' => 0.0058629205256795
]
5 => [
'year' => 2032
'avg' => 0.010279544810511
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0016503263387355
'min' => '$0.00165'
'max_raw' => 0.010279544810511
'max' => '$0.010279'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010279544810511
]
1 => [
'year' => 2033
'avg' => 0.026440046285762
]
2 => [
'year' => 2034
'avg' => 0.016758971985083
]
3 => [
'year' => 2035
'avg' => 0.019767245888368
]
4 => [
'year' => 2036
'avg' => 0.038368271811587
]
5 => [
'year' => 2037
'avg' => 0.093741461995411
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010279544810511
'min' => '$0.010279'
'max_raw' => 0.093741461995411
'max' => '$0.093741'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.093741461995411
]
]
]
]
'prediction_2025_max_price' => '$0.002821'
'last_price' => 0.00273605
'sma_50day_nextmonth' => '$0.002559'
'sma_200day_nextmonth' => '$0.003423'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.0027058'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002649'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002594'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002629'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.002825'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.00342'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003426'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002698'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002666'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002638'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002678'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.00289'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003166'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003326'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003583'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003197'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.003552'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002724'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002777'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.002977'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003215'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003397'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.004033'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.003822'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '51.40'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 122.16
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002597'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002735'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 110.84
'cci_20_action' => 'SELL'
'adx_14' => 20.21
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000135'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 76.53
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000456'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 16
'buy_signals' => 17
'sell_pct' => 48.48
'buy_pct' => 51.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767697747
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de IMPT para 2026
La previsión del precio de IMPT para 2026 sugiere que el precio medio podría oscilar entre $0.000945 en el extremo inferior y $0.002821 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, IMPT podría potencialmente ganar 3.13% para 2026 si IMPT alcanza el objetivo de precio previsto.
Predicción de precio de IMPT 2027-2032
La predicción del precio de IMPT para 2027-2032 está actualmente dentro de un rango de precios de $0.00165 en el extremo inferior y $0.010279 en el extremo superior. Considerando la volatilidad de precios en el mercado, si IMPT alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de IMPT | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00091 | $0.00165 | $0.00239 |
| 2028 | $0.001642 | $0.002832 | $0.004022 |
| 2029 | $0.0036077 | $0.007737 | $0.011867 |
| 2030 | $0.003068 | $0.005969 | $0.008871 |
| 2031 | $0.003627 | $0.005862 | $0.008098 |
| 2032 | $0.005537 | $0.010279 | $0.015021 |
Predicción de precio de IMPT 2032-2037
La predicción de precio de IMPT para 2032-2037 se estima actualmente entre $0.010279 en el extremo inferior y $0.093741 en el extremo superior. Comparado con el precio actual, IMPT podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de IMPT | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005537 | $0.010279 | $0.015021 |
| 2033 | $0.012867 | $0.02644 | $0.040012 |
| 2034 | $0.010344 | $0.016758 | $0.023173 |
| 2035 | $0.01223 | $0.019767 | $0.0273039 |
| 2036 | $0.020245 | $0.038368 | $0.056491 |
| 2037 | $0.052576 | $0.093741 | $0.1349061 |
IMPT Histograma de precios potenciales
Pronóstico de precio de IMPT basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para IMPT es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 16 indicando señales bajistas. La predicción de precio de IMPT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de IMPT
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de IMPT aumentar durante el próximo mes, alcanzando $0.003423 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para IMPT alcance $0.002559 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.40, lo que sugiere que el mercado de IMPT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de IMPT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.0027058 | BUY |
| SMA 5 | $0.002649 | BUY |
| SMA 10 | $0.002594 | BUY |
| SMA 21 | $0.002629 | BUY |
| SMA 50 | $0.002825 | SELL |
| SMA 100 | $0.00342 | SELL |
| SMA 200 | $0.003426 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.002698 | BUY |
| EMA 5 | $0.002666 | BUY |
| EMA 10 | $0.002638 | BUY |
| EMA 21 | $0.002678 | BUY |
| EMA 50 | $0.00289 | SELL |
| EMA 100 | $0.003166 | SELL |
| EMA 200 | $0.003326 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.003583 | SELL |
| SMA 50 | $0.003197 | SELL |
| SMA 100 | $0.003552 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003215 | SELL |
| EMA 50 | $0.003397 | SELL |
| EMA 100 | $0.004033 | SELL |
| EMA 200 | $0.003822 | SELL |
Osciladores de IMPT
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.40 | NEUTRAL |
| Stoch RSI (14) | 122.16 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 110.84 | SELL |
| Índice Direccional Medio (14) | 20.21 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000135 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 76.53 | SELL |
| VWMA (10) | 0.002597 | BUY |
| Promedio Móvil de Hull (9) | 0.002735 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000456 | SELL |
Predicción de precios de IMPT basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de IMPT
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de IMPT por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.003844 | $0.0054023 | $0.007591 | $0.010666 | $0.014988 | $0.021061 |
| Amazon.com acción | $0.0057089 | $0.011912 | $0.024855 | $0.051861 | $0.108212 | $0.225792 |
| Apple acción | $0.00388 | $0.0055047 | $0.007808 | $0.011075 | $0.0157091 | $0.022282 |
| Netflix acción | $0.004317 | $0.006811 | $0.010747 | $0.016958 | $0.026757 | $0.042218 |
| Google acción | $0.003543 | $0.004588 | $0.005941 | $0.007694 | $0.009964 | $0.0129042 |
| Tesla acción | $0.0062024 | $0.01406 | $0.031873 | $0.072255 | $0.163798 | $0.371318 |
| Kodak acción | $0.002051 | $0.001538 | $0.001153 | $0.000865 | $0.000648 | $0.000486 |
| Nokia acción | $0.001812 | $0.00120071 | $0.000795 | $0.000526 | $0.000349 | $0.000231 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de IMPT
Podría preguntarse cosas como: "¿Debo invertir en IMPT ahora?", "¿Debería comprar IMPT hoy?", "¿Será IMPT una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de IMPT regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como IMPT, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de IMPT a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de IMPT es de $0.002736 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de IMPT basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si IMPT ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0028071 | $0.00288 | $0.002955 | $0.003031 |
| Si IMPT ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002878 | $0.003027 | $0.003185 | $0.00335 |
| Si IMPT ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003091 | $0.003493 | $0.003947 | $0.00446 |
| Si IMPT ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003447 | $0.004343 | $0.005472 | $0.006894 |
| Si IMPT ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004158 | $0.00632 | $0.0096059 | $0.014599 |
| Si IMPT ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006291 | $0.014469 | $0.033274 | $0.07652 |
| Si IMPT ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.009847 | $0.035445 | $0.12758 | $0.4592048 |
Cuadro de preguntas
¿Es IMPT una buena inversión?
La decisión de adquirir IMPT depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de IMPT ha experimentado un aumento de 0.8085% durante las últimas 24 horas, y IMPT ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en IMPT dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede IMPT subir?
Parece que el valor medio de IMPT podría potencialmente aumentar hasta $0.002821 para el final de este año. Mirando las perspectivas de IMPT en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.008871. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de IMPT la próxima semana?
Basado en nuestro nuevo pronóstico experimental de IMPT, el precio de IMPT aumentará en un 0.86% durante la próxima semana y alcanzará $0.002759 para el 13 de enero de 2026.
¿Cuál será el precio de IMPT el próximo mes?
Basado en nuestro nuevo pronóstico experimental de IMPT, el precio de IMPT disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002418 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de IMPT este año en 2026?
Según nuestra predicción más reciente sobre el valor de IMPT en 2026, se anticipa que IMPT fluctúe dentro del rango de $0.000945 y $0.002821. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de IMPT no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará IMPT en 5 años?
El futuro de IMPT parece estar en una tendencia alcista, con un precio máximo de $0.008871 proyectada después de un período de cinco años. Basado en el pronóstico de IMPT para 2030, el valor de IMPT podría potencialmente alcanzar su punto más alto de aproximadamente $0.008871, mientras que su punto más bajo se anticipa que esté alrededor de $0.003068.
¿Cuánto será IMPT en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de IMPT, se espera que el valor de IMPT en 2026 crezca en un 3.13% hasta $0.002821 si ocurre lo mejor. El precio estará entre $0.002821 y $0.000945 durante 2026.
¿Cuánto será IMPT en 2027?
Según nuestra última simulación experimental para la predicción de precios de IMPT, el valor de IMPT podría disminuir en un -12.62% hasta $0.00239 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00239 y $0.00091 a lo largo del año.
¿Cuánto será IMPT en 2028?
Nuestro nuevo modelo experimental de predicción de precios de IMPT sugiere que el valor de IMPT en 2028 podría aumentar en un 47.02% , alcanzando $0.004022 en el mejor escenario. Se espera que el precio oscile entre $0.004022 y $0.001642 durante el año.
¿Cuánto será IMPT en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de IMPT podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.011867 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.011867 y $0.0036077.
¿Cuánto será IMPT en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de IMPT, se espera que el valor de IMPT en 2030 aumente en un 224.23% , alcanzando $0.008871 en el mejor escenario. Se pronostica que el precio oscile entre $0.008871 y $0.003068 durante el transcurso de 2030.
¿Cuánto será IMPT en 2031?
Nuestra simulación experimental indica que el precio de IMPT podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.008098 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.008098 y $0.003627 durante el año.
¿Cuánto será IMPT en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de IMPT, IMPT podría experimentar un 449.04% aumento en valor, alcanzando $0.015021 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.015021 y $0.005537 a lo largo del año.
¿Cuánto será IMPT en 2033?
Según nuestra predicción experimental de precios de IMPT, se anticipa que el valor de IMPT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.040012. A lo largo del año, el precio de IMPT podría oscilar entre $0.040012 y $0.012867.
¿Cuánto será IMPT en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de IMPT sugieren que IMPT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.023173 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.023173 y $0.010344.
¿Cuánto será IMPT en 2035?
Basado en nuestra predicción experimental para el precio de IMPT, IMPT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0273039 en 2035. El rango de precios esperado para el año está entre $0.0273039 y $0.01223.
¿Cuánto será IMPT en 2036?
Nuestra reciente simulación de predicción de precios de IMPT sugiere que el valor de IMPT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.056491 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.056491 y $0.020245.
¿Cuánto será IMPT en 2037?
Según la simulación experimental, el valor de IMPT podría aumentar en un 4830.69% en 2037, con un máximo de $0.1349061 bajo condiciones favorables. Se espera que el precio caiga entre $0.1349061 y $0.052576 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Wam
Predicción de precios de DogeGF
Predicción de precios de Bitsdaq Token
Predicción de precios de BuildAI
Predicción de precios de PolkaBridge
Predicción de precios de KI
Predicción de precios de ExeedmePredicción de precios de MiamiCoin
Predicción de precios de AutoAir AI
Predicción de precios de GroveCoin
Predicción de precios de Unfettered Ecosystem
Predicción de precios de Astra DAO
Predicción de precios de X2Y2
Predicción de precios de Qmall
Predicción de precios de Chain Guardians
Predicción de precios de ApeBond
Predicción de precios de Biometric Financial
Predicción de precios de CSP DAO Network
Predicción de precios de Bonsai3
Predicción de precios de xFund
Predicción de precios de AsMatch
Predicción de precios de Bondly
Predicción de precios de Orchai
Predicción de precios de Wefi
Predicción de precios de Degen Zoo
¿Cómo leer y predecir los movimientos de precio de IMPT?
Los traders de IMPT utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de IMPT
Las medias móviles son herramientas populares para la predicción de precios de IMPT. Una media móvil simple (SMA) calcula el precio de cierre promedio de IMPT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de IMPT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de IMPT.
¿Cómo leer gráficos de IMPT y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de IMPT en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de IMPT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de IMPT?
La acción del precio de IMPT está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de IMPT. La capitalización de mercado de IMPT puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de IMPT, grandes poseedores de IMPT, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de IMPT.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


