Previsão de Preço LORDS - Projeção LORDS
Previsão de Preço LORDS até $0.016101 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.005393 | $0.016101 |
| 2027 | $0.005192 | $0.013641 |
| 2028 | $0.009371 | $0.022952 |
| 2029 | $0.020585 | $0.067717 |
| 2030 | $0.0175072 | $0.050618 |
| 2031 | $0.020699 | $0.046209 |
| 2032 | $0.031595 | $0.085715 |
| 2033 | $0.07342 | $0.228314 |
| 2034 | $0.059026 | $0.132227 |
| 2035 | $0.069788 | $0.155797 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em LORDS hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.65, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de LORDS para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'LORDS'
'name_with_ticker' => 'LORDS <small>LORDS</small>'
'name_lang' => 'LORDS'
'name_lang_with_ticker' => 'LORDS <small>LORDS</small>'
'name_with_lang' => 'LORDS'
'name_with_lang_with_ticker' => 'LORDS <small>LORDS</small>'
'image' => '/uploads/coins/lords.png?1717253286'
'price_for_sd' => 0.01561
'ticker' => 'LORDS'
'marketcap' => '$3.23M'
'low24h' => '$0.01505'
'high24h' => '$0.01574'
'volume24h' => '$1.59K'
'current_supply' => '207.09M'
'max_supply' => '300M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01561'
'change_24h_pct' => '3.4029%'
'ath_price' => '$1.09'
'ath_days' => 1462
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 de jan. de 2022'
'ath_pct' => '-98.57%'
'fdv' => '$4.68M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.769779'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.015745'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013798'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.005393'
'current_year_max_price_prediction' => '$0.016101'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0175072'
'grand_prediction_max_price' => '$0.050618'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.015907839188088
107 => 0.015967233285071
108 => 0.01610105121831
109 => 0.014957591630236
110 => 0.015470971415072
111 => 0.015772533941482
112 => 0.014410063476222
113 => 0.01574560228106
114 => 0.014937686542776
115 => 0.014663467806715
116 => 0.01503266720925
117 => 0.014888789843024
118 => 0.014765092532305
119 => 0.014696067307534
120 => 0.014967166601705
121 => 0.014954519495598
122 => 0.01451094843223
123 => 0.013932328062335
124 => 0.014126532051038
125 => 0.01405597592127
126 => 0.01380027140507
127 => 0.013972585375108
128 => 0.013213801857165
129 => 0.011908354252679
130 => 0.012770772927144
131 => 0.012737570746308
201 => 0.012720828701131
202 => 0.01336891249949
203 => 0.013306614196115
204 => 0.013193542165463
205 => 0.013798194748555
206 => 0.013577488422001
207 => 0.014257653315488
208 => 0.014705653904646
209 => 0.014592026463935
210 => 0.015013373183413
211 => 0.014131006118701
212 => 0.014424093063176
213 => 0.014484497876231
214 => 0.013790733429537
215 => 0.013316806969004
216 => 0.013285201477243
217 => 0.012463478305767
218 => 0.012902436191252
219 => 0.013288700965167
220 => 0.013103710113819
221 => 0.013045147536727
222 => 0.013344331042418
223 => 0.013367580163144
224 => 0.012837497746768
225 => 0.012947718666659
226 => 0.01340735822531
227 => 0.012936136929095
228 => 0.01202063092411
301 => 0.011793572777013
302 => 0.011763279034678
303 => 0.011147479331542
304 => 0.011808745888122
305 => 0.011520085315333
306 => 0.01243196060609
307 => 0.011911102330495
308 => 0.01188864917126
309 => 0.011854707927915
310 => 0.01132466368506
311 => 0.011440709688176
312 => 0.01182646427684
313 => 0.011964105859912
314 => 0.011949748715133
315 => 0.011824573868908
316 => 0.011881878272511
317 => 0.011697280822328
318 => 0.011632095620605
319 => 0.011426353193364
320 => 0.011123968663116
321 => 0.011166017086679
322 => 0.010566914209042
323 => 0.010240491164508
324 => 0.010150141567968
325 => 0.010029322311505
326 => 0.010163788424473
327 => 0.010565217025862
328 => 0.010081008964759
329 => 0.0092508682072425
330 => 0.0093007610812602
331 => 0.0094128555558508
401 => 0.0092039682440304
402 => 0.0090062739339755
403 => 0.0091781530971218
404 => 0.00882641151461
405 => 0.0094553618456321
406 => 0.0094383505017909
407 => 0.0096727842911684
408 => 0.0098193805507318
409 => 0.0094815236335408
410 => 0.0093965535325295
411 => 0.0094449563637413
412 => 0.0086449653824491
413 => 0.0096074079607028
414 => 0.0096157312040859
415 => 0.0095444625410527
416 => 0.010056933501892
417 => 0.011138407072964
418 => 0.010731513213353
419 => 0.01057395161248
420 => 0.010274426894043
421 => 0.010673525797342
422 => 0.010642881228481
423 => 0.010504294866486
424 => 0.010420477402335
425 => 0.010574913650016
426 => 0.010401341042177
427 => 0.010370162632353
428 => 0.010181255391263
429 => 0.010113824100925
430 => 0.010063900658077
501 => 0.010008939852876
502 => 0.010130169693769
503 => 0.0098554469251923
504 => 0.0095241581976942
505 => 0.0094966151245964
506 => 0.0095726639710311
507 => 0.0095390180176545
508 => 0.0094964540407162
509 => 0.0094151878171315
510 => 0.0093910778645721
511 => 0.0094694235139041
512 => 0.0093809758436434
513 => 0.009511485199107
514 => 0.0094759938758329
515 => 0.0092777422290999
516 => 0.0090306472751099
517 => 0.0090284476117202
518 => 0.0089752114092
519 => 0.0089074071011739
520 => 0.0088885454938335
521 => 0.0091636779134116
522 => 0.0097331937879179
523 => 0.0096213841943925
524 => 0.0097021780844226
525 => 0.010099604058719
526 => 0.010225933824932
527 => 0.010136267949159
528 => 0.01001352776805
529 => 0.010018927713101
530 => 0.01043836806793
531 => 0.010464528048365
601 => 0.010530625879394
602 => 0.010615580271511
603 => 0.010150736049489
604 => 0.009997033592047
605 => 0.0099242008406232
606 => 0.0096999041560598
607 => 0.009941788900617
608 => 0.009800853018501
609 => 0.0098198700840537
610 => 0.0098074851951646
611 => 0.0098142481819606
612 => 0.0094551860411965
613 => 0.0095860094135404
614 => 0.0093684901834084
615 => 0.009077256351941
616 => 0.0090762800340181
617 => 0.0091475591016791
618 => 0.0091051595230842
619 => 0.008991063347278
620 => 0.0090072701705325
621 => 0.0088652813452023
622 => 0.0090245101847183
623 => 0.0090290762980874
624 => 0.0089677645216203
625 => 0.0092130785182402
626 => 0.0093135838628126
627 => 0.0092732271381164
628 => 0.0093107523274251
629 => 0.0096260303877935
630 => 0.0096774344681797
701 => 0.0097002647651243
702 => 0.0096696751916533
703 => 0.0093165150316046
704 => 0.0093321791864557
705 => 0.0092172460114882
706 => 0.0091201395900003
707 => 0.0091240233376037
708 => 0.0091739486611997
709 => 0.0093919754774248
710 => 0.0098508000587876
711 => 0.0098682121162539
712 => 0.0098893160378486
713 => 0.0098034757827417
714 => 0.0097775855404208
715 => 0.0098117414528806
716 => 0.00998405184179
717 => 0.010427280943879
718 => 0.010270614176925
719 => 0.010143241656727
720 => 0.010254981696325
721 => 0.010237780193076
722 => 0.010092582194676
723 => 0.010088506970458
724 => 0.0098098255889185
725 => 0.0097068034274315
726 => 0.0096207103982179
727 => 0.009526699057832
728 => 0.0094709659839626
729 => 0.0095565973156551
730 => 0.0095761822143733
731 => 0.0093889478110482
801 => 0.0093634284537298
802 => 0.0095163281092205
803 => 0.0094490426715127
804 => 0.0095182474127937
805 => 0.0095343035063981
806 => 0.0095317181055246
807 => 0.0094614643808745
808 => 0.0095062420099703
809 => 0.009400329568305
810 => 0.0092851656955285
811 => 0.0092116983196598
812 => 0.0091475882901811
813 => 0.0091831602606327
814 => 0.0090563526811581
815 => 0.0090157843843518
816 => 0.0094910723567612
817 => 0.0098421726921867
818 => 0.0098370675542586
819 => 0.0098059913400563
820 => 0.0097598183893315
821 => 0.009980674002851
822 => 0.0099037323232482
823 => 0.0099597138238517
824 => 0.0099739634652914
825 => 0.010017092838212
826 => 0.010032507881937
827 => 0.0099859129133654
828 => 0.0098295345077447
829 => 0.0094398543889504
830 => 0.0092584572417303
831 => 0.0091985931617392
901 => 0.0092007691073488
902 => 0.009140746813587
903 => 0.0091584260691104
904 => 0.0091345986900016
905 => 0.0090894753984315
906 => 0.0091803740245324
907 => 0.0091908492444112
908 => 0.0091696324189216
909 => 0.0091746297493846
910 => 0.0089989634961552
911 => 0.0090123190198612
912 => 0.0089379537667284
913 => 0.0089240111782525
914 => 0.0087360222940561
915 => 0.0084029727362776
916 => 0.0085875145211897
917 => 0.0083646139955176
918 => 0.0082801981889515
919 => 0.0086798094878841
920 => 0.0086396995969634
921 => 0.0085710488990576
922 => 0.0084695002087958
923 => 0.0084318348117756
924 => 0.0082029917828962
925 => 0.0081894705159199
926 => 0.0083028913003141
927 => 0.0082505515108871
928 => 0.0081770466239032
929 => 0.0079108193743185
930 => 0.0076114918009723
1001 => 0.0076205266189056
1002 => 0.0077157371507995
1003 => 0.0079925746131708
1004 => 0.0078844094272856
1005 => 0.0078059343438734
1006 => 0.0077912383197027
1007 => 0.0079751898304103
1008 => 0.0082355197570945
1009 => 0.0083576607341409
1010 => 0.0082366227353645
1011 => 0.0080975807995189
1012 => 0.0081060436378955
1013 => 0.0081623431101969
1014 => 0.0081682593887041
1015 => 0.0080777573822105
1016 => 0.0081032331669199
1017 => 0.0080645331203917
1018 => 0.0078270310062831
1019 => 0.0078227353461662
1020 => 0.007764448497125
1021 => 0.0077626835945007
1022 => 0.0076635231239457
1023 => 0.0076496498886511
1024 => 0.0074527607557539
1025 => 0.0075823537792621
1026 => 0.0074954295830319
1027 => 0.007364414315968
1028 => 0.0073418272345436
1029 => 0.0073411482396012
1030 => 0.0074756716243982
1031 => 0.0075807817951874
1101 => 0.0074969416666408
1102 => 0.0074778528945434
1103 => 0.0076816710402439
1104 => 0.0076557333233598
1105 => 0.0076332714278186
1106 => 0.0082122100674836
1107 => 0.0077539349590433
1108 => 0.0075541008543347
1109 => 0.0073067682022905
1110 => 0.0073873009609556
1111 => 0.0074042703964787
1112 => 0.0068094799533739
1113 => 0.0065681735446827
1114 => 0.00648536627866
1115 => 0.0064377095263411
1116 => 0.0064594273068087
1117 => 0.0062422232365679
1118 => 0.0063881879639934
1119 => 0.0062001075989679
1120 => 0.0061685753137049
1121 => 0.0065048863050569
1122 => 0.0065516820148032
1123 => 0.006352036978738
1124 => 0.0064802414114872
1125 => 0.0064337527019974
1126 => 0.0062033316970029
1127 => 0.0061945313094743
1128 => 0.006078914148858
1129 => 0.0058979956803873
1130 => 0.0058153110856055
1201 => 0.0057722482307427
1202 => 0.0057900168039374
1203 => 0.0057810324696028
1204 => 0.0057224036108318
1205 => 0.0057843930071591
1206 => 0.00562603571533
1207 => 0.0055629765657522
1208 => 0.0055344942108491
1209 => 0.0053939429996452
1210 => 0.005617622480078
1211 => 0.0056616901555631
1212 => 0.0057058446579821
1213 => 0.0060901794559805
1214 => 0.0060709791755913
1215 => 0.0062445403593933
1216 => 0.0062377960909493
1217 => 0.0061882936298242
1218 => 0.0059794508890971
1219 => 0.006062691883287
1220 => 0.0058064890416931
1221 => 0.0059984536307151
1222 => 0.0059108490089183
1223 => 0.0059688344199633
1224 => 0.0058645714225707
1225 => 0.0059222748702414
1226 => 0.0056721402362236
1227 => 0.005438568034467
1228 => 0.0055325643068515
1229 => 0.005634749004711
1230 => 0.0058563114658473
1231 => 0.0057243506918452
]
'min_raw' => 0.0053939429996452
'max_raw' => 0.01610105121831
'avg_raw' => 0.010747497108978
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.005393'
'max' => '$0.016101'
'avg' => '$0.010747'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.010218057000355
'max_diff' => 0.00048905121831049
'year' => 2026
]
1 => [
'items' => [
101 => 0.0057718087761656
102 => 0.0056128321380794
103 => 0.0052848179242758
104 => 0.0052866744491037
105 => 0.0052362166084881
106 => 0.0051926136672309
107 => 0.0057395079741489
108 => 0.0056714930219641
109 => 0.0055631200972344
110 => 0.0057081815635539
111 => 0.0057465381176838
112 => 0.005747630074857
113 => 0.0058534631761053
114 => 0.0059099463212132
115 => 0.0059199017203504
116 => 0.0060864323918402
117 => 0.0061422512763309
118 => 0.0063721613617639
119 => 0.0059051541209766
120 => 0.0058955364141752
121 => 0.005710222875869
122 => 0.005592694100184
123 => 0.0057182701716904
124 => 0.0058295134282018
125 => 0.0057136795139382
126 => 0.0057288049777536
127 => 0.0055733074118332
128 => 0.0056288904748092
129 => 0.0056767660964913
130 => 0.0056503319921974
131 => 0.0056107588586444
201 => 0.0058203927497692
202 => 0.0058085643840701
203 => 0.0060037802829479
204 => 0.006155965036146
205 => 0.0064287073201557
206 => 0.0061440865284148
207 => 0.0061337138154986
208 => 0.0062351087480901
209 => 0.006142235753295
210 => 0.0062009282801387
211 => 0.0064192510466982
212 => 0.0064238638627271
213 => 0.0063465932509654
214 => 0.0063418913272173
215 => 0.006356731993454
216 => 0.0064436542391422
217 => 0.0064132809356479
218 => 0.0064484296914095
219 => 0.0064923837487061
220 => 0.0066741963658191
221 => 0.0067180307722814
222 => 0.0066115358901121
223 => 0.0066211511855994
224 => 0.0065813191763182
225 => 0.0065428419544462
226 => 0.0066293331300675
227 => 0.0067873974535036
228 => 0.0067864141435511
301 => 0.0068230819942569
302 => 0.0068459257614737
303 => 0.0067478635899194
304 => 0.0066840287220836
305 => 0.00670850707233
306 => 0.0067476484874432
307 => 0.0066958140389436
308 => 0.006375867810752
309 => 0.0064729190581412
310 => 0.0064567649850121
311 => 0.0064337596204738
312 => 0.0065313454001987
313 => 0.0065219330136822
314 => 0.0062399954948859
315 => 0.0062580442200952
316 => 0.0062410930976451
317 => 0.0062958656421547
318 => 0.0061392778561433
319 => 0.0061874432044856
320 => 0.0062176520594437
321 => 0.0062354453070895
322 => 0.0062997267185299
323 => 0.0062921840368307
324 => 0.0062992578548451
325 => 0.0063945702183479
326 => 0.0068766274456916
327 => 0.0069028647569766
328 => 0.0067736626403635
329 => 0.0068252763375513
330 => 0.0067261893256254
331 => 0.0067927071005566
401 => 0.0068382168727962
402 => 0.0066325669630713
403 => 0.0066203897100743
404 => 0.006520893730803
405 => 0.0065743572343231
406 => 0.0064892929560606
407 => 0.0065101647545241
408 => 0.0064518053864496
409 => 0.0065568406297494
410 => 0.0066742863525854
411 => 0.0067039577802459
412 => 0.0066259050284239
413 => 0.0065693896921778
414 => 0.0064701673790386
415 => 0.0066351762971025
416 => 0.0066834299333
417 => 0.0066349228412937
418 => 0.006623682688175
419 => 0.0066023826183255
420 => 0.0066282015986855
421 => 0.0066831671336342
422 => 0.0066572464024065
423 => 0.0066743675020469
424 => 0.0066091195254187
425 => 0.0067478960525786
426 => 0.0069683065760984
427 => 0.0069690152319723
428 => 0.0069430943610221
429 => 0.0069324880991022
430 => 0.0069590844857071
501 => 0.0069735119343994
502 => 0.0070595197717363
503 => 0.0071518096079023
504 => 0.0075824860040787
505 => 0.0074615537954118
506 => 0.0078436755151529
507 => 0.0081458841831729
508 => 0.0082365033487287
509 => 0.0081531379803786
510 => 0.0078679495585617
511 => 0.0078539568540241
512 => 0.0082801487596646
513 => 0.0081597300254952
514 => 0.008145406600235
515 => 0.0079930295552753
516 => 0.0080831032611106
517 => 0.0080634028203429
518 => 0.0080323047108125
519 => 0.0082041590669576
520 => 0.0085258550801171
521 => 0.0084757157396201
522 => 0.0084382890478361
523 => 0.0082742961791851
524 => 0.0083730565152463
525 => 0.0083378898512045
526 => 0.0084889881572444
527 => 0.0083994808679836
528 => 0.0081588177351488
529 => 0.0081971441322888
530 => 0.0081913511744631
531 => 0.0083105698360227
601 => 0.0082747833530116
602 => 0.0081843632893026
603 => 0.0085247555581169
604 => 0.0085026523775414
605 => 0.0085339896341069
606 => 0.0085477852635839
607 => 0.0087549760392266
608 => 0.0088398554706421
609 => 0.008859124587597
610 => 0.0089397534826309
611 => 0.0088571184672373
612 => 0.009187717446579
613 => 0.009407546476856
614 => 0.0096628892078211
615 => 0.010036013567417
616 => 0.010176311778218
617 => 0.010150968162198
618 => 0.010433866793234
619 => 0.010942229344723
620 => 0.010253722768495
621 => 0.010978721865087
622 => 0.010749195521623
623 => 0.010204992690273
624 => 0.010169952443664
625 => 0.010538492919379
626 => 0.01135588022381
627 => 0.01115113397478
628 => 0.011356215115325
629 => 0.011116977071353
630 => 0.011105096886013
701 => 0.011344595857518
702 => 0.011904198258849
703 => 0.011638352134359
704 => 0.011257196526759
705 => 0.011538635895973
706 => 0.011294827068376
707 => 0.010745457542005
708 => 0.011150977409182
709 => 0.010879817822542
710 => 0.01095895660556
711 => 0.011528893724733
712 => 0.011460317382688
713 => 0.011549061519293
714 => 0.011392430441023
715 => 0.011246112315465
716 => 0.010972998668385
717 => 0.010892143181824
718 => 0.010914488729434
719 => 0.010892132108481
720 => 0.010739327532983
721 => 0.010706329399453
722 => 0.010651331064555
723 => 0.010668377348277
724 => 0.010564964388338
725 => 0.010760126009951
726 => 0.01079634972668
727 => 0.010938372079761
728 => 0.010953117311599
729 => 0.011348647543368
730 => 0.011130796138325
731 => 0.011276949669213
801 => 0.01126387632176
802 => 0.010216787215796
803 => 0.010361066856052
804 => 0.010585520698846
805 => 0.010484404546907
806 => 0.010341449965602
807 => 0.010226006476458
808 => 0.010051097785702
809 => 0.010297278409117
810 => 0.010620979750517
811 => 0.010961326911806
812 => 0.011370231725664
813 => 0.011278968931388
814 => 0.010953682720739
815 => 0.010968274822527
816 => 0.011058477454
817 => 0.010941656850469
818 => 0.010907204173879
819 => 0.011053744185293
820 => 0.011054753325815
821 => 0.010920337103211
822 => 0.010770958069696
823 => 0.010770332166092
824 => 0.010743751609908
825 => 0.011121705693249
826 => 0.011329542223619
827 => 0.01135337034688
828 => 0.011327938401071
829 => 0.011337726147655
830 => 0.011216790649998
831 => 0.011493213335334
901 => 0.011746886126768
902 => 0.011678896399735
903 => 0.011576970133603
904 => 0.011495780953195
905 => 0.01165977080906
906 => 0.011652468598922
907 => 0.011744670516234
908 => 0.011740487704681
909 => 0.011709483667778
910 => 0.011678897506987
911 => 0.011800168177222
912 => 0.011765244171742
913 => 0.011730265919634
914 => 0.011660111680131
915 => 0.011669646806418
916 => 0.011567738139293
917 => 0.011520590526858
918 => 0.010811603558771
919 => 0.010622139074081
920 => 0.01068174845787
921 => 0.01070137341477
922 => 0.010618918228227
923 => 0.01073713778473
924 => 0.010718713392074
925 => 0.010790391925987
926 => 0.010745610289919
927 => 0.010747448143884
928 => 0.01087914138711
929 => 0.010917372495882
930 => 0.010897927845398
1001 => 0.010911546212073
1002 => 0.011225375724157
1003 => 0.011180759203242
1004 => 0.011157057565746
1005 => 0.011163623081312
1006 => 0.01124381325023
1007 => 0.011266262119306
1008 => 0.011171144683576
1009 => 0.011216002616134
1010 => 0.011407001999645
1011 => 0.011473840974244
1012 => 0.011687158896639
1013 => 0.011596537651782
1014 => 0.011762876868713
1015 => 0.01227414691234
1016 => 0.012682584800386
1017 => 0.012306968439129
1018 => 0.013057012606274
1019 => 0.013641029577841
1020 => 0.013618614033741
1021 => 0.013516777166192
1022 => 0.012851889370957
1023 => 0.012240049708864
1024 => 0.012751879566289
1025 => 0.012753184325855
1026 => 0.012709217687182
1027 => 0.01243614467043
1028 => 0.01269971533812
1029 => 0.012720636620573
1030 => 0.012708926265817
1031 => 0.012499561824126
1101 => 0.012179901018681
1102 => 0.012242361974905
1103 => 0.012344674295369
1104 => 0.012150975728145
1105 => 0.012089077299307
1106 => 0.012204158255175
1107 => 0.012574973073052
1108 => 0.012504872679716
1109 => 0.012503042075148
1110 => 0.012802961285031
1111 => 0.012588283857372
1112 => 0.012243149807591
1113 => 0.012155998908263
1114 => 0.011846671927527
1115 => 0.012060325174906
1116 => 0.01206801417492
1117 => 0.011950998474813
1118 => 0.012252644986744
1119 => 0.012249865261033
1120 => 0.012536233729953
1121 => 0.013083662687443
1122 => 0.012921761007371
1123 => 0.012733486968299
1124 => 0.012753957576619
1125 => 0.012978469624122
1126 => 0.01284272451509
1127 => 0.012891539402746
1128 => 0.012978395736943
1129 => 0.013030798319885
1130 => 0.012746417651363
1201 => 0.012680114914031
1202 => 0.012544482782547
1203 => 0.012509098891137
1204 => 0.012619568432173
1205 => 0.012590463611056
1206 => 0.012067367944242
1207 => 0.012012701536583
1208 => 0.01201437807726
1209 => 0.011876916795956
1210 => 0.011667255347479
1211 => 0.012218233115841
1212 => 0.012173981890113
1213 => 0.012125131961682
1214 => 0.012131115799181
1215 => 0.012370276574058
1216 => 0.01223155124672
1217 => 0.012600375266081
1218 => 0.012524556135565
1219 => 0.012446792530443
1220 => 0.012436043231478
1221 => 0.012406110877986
1222 => 0.012303461700521
1223 => 0.012179506650472
1224 => 0.012097660789628
1225 => 0.011159452598502
1226 => 0.011333578581469
1227 => 0.01153389465279
1228 => 0.011603042957894
1229 => 0.011484759997097
1230 => 0.012308132232756
1231 => 0.012458570274423
]
'min_raw' => 0.0051926136672309
'max_raw' => 0.013641029577841
'avg_raw' => 0.0094168216225358
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005192'
'max' => '$0.013641'
'avg' => '$0.009416'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00020132933241428
'max_diff' => -0.0024600216404698
'year' => 2027
]
2 => [
'items' => [
101 => 0.012002883633383
102 => 0.011917643268407
103 => 0.012313720576893
104 => 0.012074837541394
105 => 0.012182406557652
106 => 0.011949901181608
107 => 0.012422334155526
108 => 0.012418735007806
109 => 0.01223494791057
110 => 0.012390283506634
111 => 0.012363290124197
112 => 0.012155794944064
113 => 0.012428912122838
114 => 0.012429047585552
115 => 0.012252156500337
116 => 0.012045586439245
117 => 0.012008656591289
118 => 0.011980834911681
119 => 0.012175564129969
120 => 0.012350157738183
121 => 0.012675033157643
122 => 0.012756714556945
123 => 0.01307552249626
124 => 0.012885687890875
125 => 0.012969839112672
126 => 0.01306119716785
127 => 0.013104997579084
128 => 0.013033627159439
129 => 0.013528867115777
130 => 0.013570680541852
131 => 0.01358470022193
201 => 0.013417708095089
202 => 0.013566036188718
203 => 0.013496638385819
204 => 0.013677192189697
205 => 0.013705505331571
206 => 0.013681525107673
207 => 0.013690512145796
208 => 0.013267912209377
209 => 0.013245998173281
210 => 0.012947198736168
211 => 0.013068961715406
212 => 0.012841331661973
213 => 0.012913515496766
214 => 0.01294533344335
215 => 0.012928713553707
216 => 0.01307584601156
217 => 0.012950753365209
218 => 0.012620613304355
219 => 0.012290383297062
220 => 0.01228623752832
221 => 0.012199293796444
222 => 0.012136449402836
223 => 0.012148555462569
224 => 0.012191218796088
225 => 0.012133969732334
226 => 0.012146186722687
227 => 0.012349070163932
228 => 0.012389756991175
229 => 0.012251487254833
301 => 0.011696314311194
302 => 0.011560073478279
303 => 0.011658000687205
304 => 0.011611197788658
305 => 0.0093711428322789
306 => 0.0098974105170754
307 => 0.0095847201291312
308 => 0.0097288222460889
309 => 0.0094096463307813
310 => 0.0095619738070091
311 => 0.0095338444842586
312 => 0.010380067348019
313 => 0.010366854741942
314 => 0.010373178917275
315 => 0.010071309551076
316 => 0.010552195648078
317 => 0.010789097431566
318 => 0.010745253216379
319 => 0.010756287860755
320 => 0.01056667611085
321 => 0.010375014773485
322 => 0.01016243285388
323 => 0.010557383784588
324 => 0.01051347198313
325 => 0.010614189856706
326 => 0.010870343766946
327 => 0.010908063403263
328 => 0.010958758976987
329 => 0.010940588222564
330 => 0.011373489312204
331 => 0.011321062133875
401 => 0.011447396549318
402 => 0.011187517071736
403 => 0.010893438774864
404 => 0.010949333444956
405 => 0.010943950338749
406 => 0.010875417218301
407 => 0.010813548581483
408 => 0.010710554732561
409 => 0.011036442510771
410 => 0.011023212062117
411 => 0.011237397647117
412 => 0.01119953826448
413 => 0.010946704041471
414 => 0.010955734065209
415 => 0.011016465314524
416 => 0.011226656861823
417 => 0.011289056023993
418 => 0.011260150245899
419 => 0.011328568078589
420 => 0.011382642743927
421 => 0.011335359024007
422 => 0.012004796785531
423 => 0.011726799553908
424 => 0.011862293470309
425 => 0.011894607970994
426 => 0.01181183505699
427 => 0.011829785538162
428 => 0.011856975625923
429 => 0.012022068514447
430 => 0.012455320023946
501 => 0.01264720416826
502 => 0.013224497083827
503 => 0.012631270861231
504 => 0.012596071272197
505 => 0.012700059158866
506 => 0.013038991212965
507 => 0.013313663808543
508 => 0.013404788554738
509 => 0.013416832194253
510 => 0.013587788275974
511 => 0.013685777113875
512 => 0.013567029711062
513 => 0.01346640372055
514 => 0.013105973912692
515 => 0.013147694644369
516 => 0.013435109113167
517 => 0.013841098978972
518 => 0.014189480519878
519 => 0.014067489446575
520 => 0.0149981952236
521 => 0.0150904708998
522 => 0.015077721384979
523 => 0.015287939107824
524 => 0.014870699738071
525 => 0.01469232182387
526 => 0.013488160201852
527 => 0.013826480500525
528 => 0.0143182489235
529 => 0.014253161528682
530 => 0.01389602615491
531 => 0.014189209600672
601 => 0.014092273984809
602 => 0.014015816842716
603 => 0.014366081832592
604 => 0.01398095108813
605 => 0.014314406949714
606 => 0.013886746358073
607 => 0.014068046691522
608 => 0.013965131853746
609 => 0.014031730366555
610 => 0.013642396821504
611 => 0.013852471751876
612 => 0.013633657013738
613 => 0.013633553267062
614 => 0.01362872291959
615 => 0.013886157488636
616 => 0.01389455242069
617 => 0.013704307885203
618 => 0.013676890675461
619 => 0.013778266469818
620 => 0.013659581964989
621 => 0.013715113697807
622 => 0.013661263964605
623 => 0.013649141255412
624 => 0.013552545446055
625 => 0.013510929315427
626 => 0.013527248072562
627 => 0.013471543741565
628 => 0.013437979867225
629 => 0.013622046220193
630 => 0.013523706993018
701 => 0.013606974323245
702 => 0.013512080691276
703 => 0.013183138019684
704 => 0.012993959610745
705 => 0.012372617397109
706 => 0.012548829278123
707 => 0.01266565793754
708 => 0.0126270460663
709 => 0.012709999306535
710 => 0.012715091961767
711 => 0.012688123017759
712 => 0.012656896435532
713 => 0.012641697062243
714 => 0.012754980738129
715 => 0.012820745724935
716 => 0.012677383256479
717 => 0.012643795435974
718 => 0.012788742806841
719 => 0.012877160619337
720 => 0.013529988069131
721 => 0.013481624503045
722 => 0.013603007563049
723 => 0.013589341693268
724 => 0.01371657047799
725 => 0.013924535770115
726 => 0.013501684183215
727 => 0.013575076597593
728 => 0.013557082472466
729 => 0.013753537612291
730 => 0.013754150923794
731 => 0.013636366253807
801 => 0.013700219234245
802 => 0.013664578252279
803 => 0.013728986323859
804 => 0.013480978578134
805 => 0.013783025241645
806 => 0.013954266236398
807 => 0.013956643917776
808 => 0.014037810790237
809 => 0.014120281033525
810 => 0.014278575483872
811 => 0.014115866287219
812 => 0.013823168281862
813 => 0.01384430013244
814 => 0.013672691398993
815 => 0.013675576172806
816 => 0.013660177024109
817 => 0.013706391028542
818 => 0.013491119953268
819 => 0.013541643644357
820 => 0.013470910180966
821 => 0.013574922836858
822 => 0.013463022413027
823 => 0.013557073795154
824 => 0.013597663253827
825 => 0.013747439230161
826 => 0.013440900379543
827 => 0.012815846912278
828 => 0.012947240729138
829 => 0.01275289895324
830 => 0.012770886024511
831 => 0.012807222771099
901 => 0.012689443486764
902 => 0.012711912062563
903 => 0.012711109326927
904 => 0.012704191784884
905 => 0.012673552844177
906 => 0.012629120318422
907 => 0.01280612582542
908 => 0.012836202510238
909 => 0.012903059254875
910 => 0.013101979577551
911 => 0.013082102746452
912 => 0.013114522682657
913 => 0.013043750143951
914 => 0.012774168959601
915 => 0.012788808514905
916 => 0.012606253025676
917 => 0.012898390900575
918 => 0.012829208795767
919 => 0.012784606642742
920 => 0.012772436532053
921 => 0.012971849939733
922 => 0.013031517556733
923 => 0.012994336701964
924 => 0.012918077684092
925 => 0.01306451754236
926 => 0.013103698670631
927 => 0.013112469880307
928 => 0.0133719332321
929 => 0.013126970999394
930 => 0.013185935843521
1001 => 0.013645962725148
1002 => 0.013228781822883
1003 => 0.013449771851057
1004 => 0.013438955539154
1005 => 0.013552006559673
1006 => 0.01342968205576
1007 => 0.01343119841459
1008 => 0.013531580062072
1009 => 0.013390612142109
1010 => 0.013355706502691
1011 => 0.013307484611832
1012 => 0.013412775346359
1013 => 0.013475892379817
1014 => 0.013984569315139
1015 => 0.014313197813843
1016 => 0.014298931184018
1017 => 0.014429301474605
1018 => 0.01437056846464
1019 => 0.014180904082481
1020 => 0.01450463805572
1021 => 0.014402195080982
1022 => 0.014410640355351
1023 => 0.014410326021818
1024 => 0.014478441644298
1025 => 0.014430175483065
1026 => 0.014335037924857
1027 => 0.01439819467588
1028 => 0.014585747647466
1029 => 0.015167917826097
1030 => 0.015493707970789
1031 => 0.015148304850313
1101 => 0.015386559297685
1102 => 0.015243691528002
1103 => 0.015217728204302
1104 => 0.015367369604117
1105 => 0.015517272931393
1106 => 0.015507724737496
1107 => 0.015398902619514
1108 => 0.015337431766326
1109 => 0.015802909660917
1110 => 0.016145865844443
1111 => 0.016122478531934
1112 => 0.016225702523387
1113 => 0.016528771354893
1114 => 0.016556480170663
1115 => 0.016552989496756
1116 => 0.016484310305753
1117 => 0.01678272092883
1118 => 0.017031660320637
1119 => 0.016468413057368
1120 => 0.016682890241773
1121 => 0.016779175959876
1122 => 0.016920551960736
1123 => 0.017159076971555
1124 => 0.01741817839894
1125 => 0.017454818181675
1126 => 0.017428820502449
1127 => 0.017257936146069
1128 => 0.017541448019636
1129 => 0.017707522626
1130 => 0.01780641625354
1201 => 0.018057194038651
1202 => 0.016779770587691
1203 => 0.015875546777036
1204 => 0.015734339171853
1205 => 0.016021490389709
1206 => 0.016097209875869
1207 => 0.016066687445942
1208 => 0.015048901338618
1209 => 0.015728980738633
1210 => 0.016460688990349
1211 => 0.016488796884273
1212 => 0.01685510533438
1213 => 0.016974390381226
1214 => 0.017269316696708
1215 => 0.017250868975375
1216 => 0.017322678839892
1217 => 0.017306170995613
1218 => 0.017852459890982
1219 => 0.018455097667259
1220 => 0.018434230237337
1221 => 0.018347593926911
1222 => 0.01847626362158
1223 => 0.019098250389287
1224 => 0.019040987814851
1225 => 0.019096613528301
1226 => 0.019829970981066
1227 => 0.020783439988541
1228 => 0.020340457907845
1229 => 0.021301601558295
1230 => 0.021906590538217
1231 => 0.022952856421964
]
'min_raw' => 0.0093711428322789
'max_raw' => 0.022952856421964
'avg_raw' => 0.016161999627121
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009371'
'max' => '$0.022952'
'avg' => '$0.016161'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.004178529165048
'max_diff' => 0.0093118268441232
'year' => 2028
]
3 => [
'items' => [
101 => 0.022821858780351
102 => 0.02322916241104
103 => 0.02258734566183
104 => 0.021113604673079
105 => 0.020880379520355
106 => 0.02134730218231
107 => 0.022495185985078
108 => 0.021311151236389
109 => 0.021550679923958
110 => 0.021481695645824
111 => 0.021478019766807
112 => 0.021618313118023
113 => 0.021414810294875
114 => 0.020585703183913
115 => 0.020965678086908
116 => 0.020818951528968
117 => 0.020981755584192
118 => 0.021860341924735
119 => 0.021471897960699
120 => 0.021062703799211
121 => 0.02157592408517
122 => 0.02222942987082
123 => 0.022188534653217
124 => 0.022109180838192
125 => 0.022556494138657
126 => 0.023295324660526
127 => 0.023495027581725
128 => 0.023642444195408
129 => 0.023662770455811
130 => 0.02387214357066
131 => 0.022746291563297
201 => 0.024533047612913
202 => 0.024841571024542
203 => 0.024783581410141
204 => 0.025126492197516
205 => 0.025025599145063
206 => 0.024879420941694
207 => 0.025423007478901
208 => 0.024799829379165
209 => 0.023915306522531
210 => 0.023430039789503
211 => 0.024069078168905
212 => 0.024459316607839
213 => 0.024717239392149
214 => 0.02479528667084
215 => 0.022833688249739
216 => 0.021776495496002
217 => 0.022454143930408
218 => 0.02328092178918
219 => 0.022741698770547
220 => 0.022762835291993
221 => 0.021994044972738
222 => 0.023348942673587
223 => 0.023151545475057
224 => 0.024175642490221
225 => 0.02393123351866
226 => 0.02476634487931
227 => 0.024546432070422
228 => 0.025459277844958
301 => 0.025823436738734
302 => 0.026434916198189
303 => 0.026884722977733
304 => 0.027148858122114
305 => 0.027133000438792
306 => 0.028179635472436
307 => 0.027562471359739
308 => 0.026787167779778
309 => 0.026773144984068
310 => 0.027174685694266
311 => 0.028016204865528
312 => 0.02823439854303
313 => 0.028356339042225
314 => 0.028169582922929
315 => 0.027499695511146
316 => 0.027210441523145
317 => 0.027456894301417
318 => 0.027155503731519
319 => 0.027675788410421
320 => 0.028390250401364
321 => 0.028242716825523
322 => 0.028735899450089
323 => 0.02924629158219
324 => 0.029976175254239
325 => 0.030166993873627
326 => 0.030482409795292
327 => 0.030807076387419
328 => 0.0309113505468
329 => 0.03111044227143
330 => 0.031109392959767
331 => 0.031709369272358
401 => 0.032371161724866
402 => 0.032620973055157
403 => 0.033195400434484
404 => 0.032211713677722
405 => 0.032957851382505
406 => 0.033630886269258
407 => 0.0328284663313
408 => 0.033934415275908
409 => 0.033977356767293
410 => 0.034625722304718
411 => 0.03396847962073
412 => 0.033578211012971
413 => 0.034704901860398
414 => 0.035250072071038
415 => 0.035085862366851
416 => 0.033836218409953
417 => 0.033108872027287
418 => 0.031205266249212
419 => 0.033460169522992
420 => 0.03455846713122
421 => 0.033833374084477
422 => 0.03419906884111
423 => 0.036194180856379
424 => 0.036953790337857
425 => 0.036795796875781
426 => 0.036822495170078
427 => 0.037232366658396
428 => 0.03904996255795
429 => 0.037960816963394
430 => 0.038793427960925
501 => 0.039235041831813
502 => 0.039645237406503
503 => 0.038637926718708
504 => 0.037327430314221
505 => 0.036912341092023
506 => 0.033761277871
507 => 0.033597251345972
508 => 0.033505178286961
509 => 0.032924670673891
510 => 0.032468550704436
511 => 0.032105827170076
512 => 0.0311539322975
513 => 0.031475168873828
514 => 0.029958047122842
515 => 0.030928647855629
516 => 0.02850728490887
517 => 0.030523867922119
518 => 0.029426333470786
519 => 0.030163298336762
520 => 0.030160727135771
521 => 0.028803741162586
522 => 0.028021059972828
523 => 0.028519814889349
524 => 0.029054519751075
525 => 0.029141273815927
526 => 0.029834532626379
527 => 0.030028006258828
528 => 0.029441772120088
529 => 0.028457107543792
530 => 0.028685822667057
531 => 0.028016425068155
601 => 0.026843331524085
602 => 0.027685867787684
603 => 0.027973546711781
604 => 0.02810060211337
605 => 0.02694699934348
606 => 0.026584512307247
607 => 0.026391527250717
608 => 0.028308191912522
609 => 0.028413191129322
610 => 0.027876000290782
611 => 0.030304153819507
612 => 0.029754587893017
613 => 0.030368587679827
614 => 0.028665069166899
615 => 0.028730145868185
616 => 0.02792367290407
617 => 0.028375243875432
618 => 0.028056088067685
619 => 0.028338761403457
620 => 0.028508194635413
621 => 0.02931453526525
622 => 0.030533075036869
623 => 0.029194094864243
624 => 0.02861068202848
625 => 0.028972628070549
626 => 0.02993653807727
627 => 0.031396911079097
628 => 0.03053234086927
629 => 0.030916022447037
630 => 0.030999839802974
701 => 0.030362337738376
702 => 0.031420416689543
703 => 0.031987449795291
704 => 0.03256910843082
705 => 0.033074146326345
706 => 0.032336781180842
707 => 0.033125867583672
708 => 0.032490003235492
709 => 0.031919567180727
710 => 0.031920432296756
711 => 0.031562589426861
712 => 0.030869223775335
713 => 0.030741356511056
714 => 0.031406538167691
715 => 0.031939950863374
716 => 0.031983885287865
717 => 0.032279209963929
718 => 0.032453980065138
719 => 0.034166964645415
720 => 0.034855941214154
721 => 0.035698408720749
722 => 0.036026597293435
723 => 0.037014327235104
724 => 0.036216655087703
725 => 0.036044073701019
726 => 0.033648163946532
727 => 0.034040494034608
728 => 0.03466865235984
729 => 0.03365852204595
730 => 0.034299217230165
731 => 0.034425704031309
801 => 0.033624198204415
802 => 0.034052317097581
803 => 0.032915360245736
804 => 0.030557857589295
805 => 0.031423041263927
806 => 0.032060107666132
807 => 0.031150935360465
808 => 0.032780591528547
809 => 0.031828580038085
810 => 0.031526838100219
811 => 0.030349635221836
812 => 0.030905229665739
813 => 0.031656679106463
814 => 0.03119237071747
815 => 0.032155880340886
816 => 0.033520466926275
817 => 0.034492952589559
818 => 0.034567607963384
819 => 0.033942364833371
820 => 0.034944320939464
821 => 0.034951619095837
822 => 0.033821408515053
823 => 0.033129160827361
824 => 0.032971880696216
825 => 0.033364797300403
826 => 0.033841870594292
827 => 0.034594082210933
828 => 0.035048627936894
829 => 0.036233842117775
830 => 0.036554527092368
831 => 0.036906862653836
901 => 0.037377691620221
902 => 0.037943042512435
903 => 0.036706086945715
904 => 0.036755233496354
905 => 0.03560339759944
906 => 0.034372495753611
907 => 0.035306596820514
908 => 0.036527809707233
909 => 0.036247662121699
910 => 0.036216139795431
911 => 0.03626915160465
912 => 0.036057929473923
913 => 0.035102579604899
914 => 0.034622808881483
915 => 0.035241835517256
916 => 0.035570820624463
917 => 0.036081047835226
918 => 0.036018151561909
919 => 0.037332442062432
920 => 0.037843135608853
921 => 0.037712478345869
922 => 0.037736522426701
923 => 0.038661108698593
924 => 0.039689438788607
925 => 0.040652605618012
926 => 0.04163238028586
927 => 0.040451223682513
928 => 0.039851505202945
929 => 0.040470261591053
930 => 0.040141940741896
1001 => 0.042028569727444
1002 => 0.042159195825042
1003 => 0.04404568838584
1004 => 0.045836194465393
1005 => 0.044711609677074
1006 => 0.045772042480048
1007 => 0.046918987014818
1008 => 0.049131629107435
1009 => 0.048386489092329
1010 => 0.04781572351859
1011 => 0.047276352809327
1012 => 0.048398697632616
1013 => 0.04984257631788
1014 => 0.050153573957388
1015 => 0.050657508943633
1016 => 0.050127682923835
1017 => 0.05076580000626
1018 => 0.053018633710075
1019 => 0.052409898156991
1020 => 0.051545395812488
1021 => 0.053323791657201
1022 => 0.053967386200064
1023 => 0.058484469754954
1024 => 0.064187474334417
1025 => 0.061826392990572
1026 => 0.060360793608829
1027 => 0.06070524422802
1028 => 0.062787788441552
1029 => 0.063456635546289
1030 => 0.061638478550191
1031 => 0.062280682338311
1101 => 0.065819288350936
1102 => 0.067717636944636
1103 => 0.06513942457216
1104 => 0.058026238889886
1105 => 0.051467556835091
1106 => 0.053207214657325
1107 => 0.053009991448151
1108 => 0.056811782158626
1109 => 0.052395380015372
1110 => 0.05246974090097
1111 => 0.056350148617171
1112 => 0.055314922365519
1113 => 0.053637988419602
1114 => 0.051479800308702
1115 => 0.047490189977466
1116 => 0.043956480848576
1117 => 0.05088689821494
1118 => 0.050588046015956
1119 => 0.050155263744413
1120 => 0.051118373857799
1121 => 0.055794963184828
1122 => 0.055687152664198
1123 => 0.055001317137358
1124 => 0.055521517339789
1125 => 0.053546794808985
1126 => 0.054055725768769
1127 => 0.051466517906344
1128 => 0.052636947995032
1129 => 0.053634390472503
1130 => 0.053834641817244
1201 => 0.054285818322032
1202 => 0.050430564487041
1203 => 0.052161460274646
1204 => 0.053178199386861
1205 => 0.048584535088586
1206 => 0.053087397413441
1207 => 0.050363453094939
1208 => 0.049438905480969
1209 => 0.050683687043294
1210 => 0.050198594457866
1211 => 0.049781540338507
1212 => 0.049548816974006
1213 => 0.05046284717185
1214 => 0.050420206570618
1215 => 0.048924675761329
1216 => 0.046973816786246
1217 => 0.047628589093047
1218 => 0.047390704175463
1219 => 0.046528578546374
1220 => 0.047109547126935
1221 => 0.044551255519616
1222 => 0.040149847777651
1223 => 0.043057552550758
1224 => 0.042945609079968
1225 => 0.042889162105763
1226 => 0.045074221879696
1227 => 0.044864178800338
1228 => 0.044482948554556
1229 => 0.046521576953946
1230 => 0.045777450164747
1231 => 0.048070673590736
]
'min_raw' => 0.020585703183913
'max_raw' => 0.067717636944636
'avg_raw' => 0.044151670064274
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.020585'
'max' => '$0.067717'
'avg' => '$0.044151'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.011214560351634
'max_diff' => 0.044764780522672
'year' => 2029
]
4 => [
'items' => [
101 => 0.049581138855483
102 => 0.049198036005911
103 => 0.050618635888118
104 => 0.047643673724541
105 => 0.048631836820516
106 => 0.048835495865062
107 => 0.046496420595945
108 => 0.044898544445768
109 => 0.044791984323673
110 => 0.042021487280162
111 => 0.043501464438135
112 => 0.044803783091534
113 => 0.044180073520566
114 => 0.043982625703191
115 => 0.044991343780954
116 => 0.045069729814682
117 => 0.043282519938698
118 => 0.043654137465491
119 => 0.045203844328493
120 => 0.043615088828682
121 => 0.040528396414286
122 => 0.039762854018655
123 => 0.039660716551332
124 => 0.037584504858446
125 => 0.039814011222114
126 => 0.038840771947317
127 => 0.041915223155204
128 => 0.040159113113872
129 => 0.040083410719882
130 => 0.039968975448241
131 => 0.038181894276949
201 => 0.038573151478529
202 => 0.039873750006734
203 => 0.040337818213889
204 => 0.040289412097884
205 => 0.039867376364407
206 => 0.04006058216202
207 => 0.039438198970546
208 => 0.03921842251185
209 => 0.03852474755393
210 => 0.037505236998386
211 => 0.037647006194156
212 => 0.035627089014174
213 => 0.034526530929401
214 => 0.034221910956659
215 => 0.033814560398162
216 => 0.034267922286159
217 => 0.035621366842592
218 => 0.033988825558254
219 => 0.031189948035711
220 => 0.031358165343871
221 => 0.03173609969114
222 => 0.03103182153529
223 => 0.030365281366364
224 => 0.030944783965132
225 => 0.029758862661881
226 => 0.031879412614832
227 => 0.031822057681377
228 => 0.032612467569907
301 => 0.033106727094049
302 => 0.031967618909323
303 => 0.031681136281341
304 => 0.031844329806149
305 => 0.029147104359136
306 => 0.032392046707313
307 => 0.032420109103489
308 => 0.032179821830254
309 => 0.033907653454303
310 => 0.037553917105246
311 => 0.036182046049146
312 => 0.035650816111201
313 => 0.034640947610843
314 => 0.035986537427512
315 => 0.035883217124063
316 => 0.035415963528805
317 => 0.035133367096473
318 => 0.035654059687924
319 => 0.035068847522142
320 => 0.034963727336612
321 => 0.034326813384194
322 => 0.034099464080919
323 => 0.033931143707811
324 => 0.033745839515837
325 => 0.034154574388404
326 => 0.033228327393617
327 => 0.032111364319017
328 => 0.032018500925072
329 => 0.032274904920387
330 => 0.032161465239492
331 => 0.032017957819523
401 => 0.031743963072881
402 => 0.031662674684523
403 => 0.031926822511165
404 => 0.031628615015662
405 => 0.03206863641948
406 => 0.031948974945136
407 => 0.031280555676687
408 => 0.030447457787692
409 => 0.030440041468998
410 => 0.030260551895368
411 => 0.030031944936912
412 => 0.029968351710889
413 => 0.030895979872628
414 => 0.032816142405855
415 => 0.032439168554987
416 => 0.032711570796073
417 => 0.034051520215809
418 => 0.034477449842658
419 => 0.034175135082217
420 => 0.033761307992162
421 => 0.033779514283917
422 => 0.035193686724612
423 => 0.035281886925079
424 => 0.035504740377196
425 => 0.035791170041545
426 => 0.034223915292612
427 => 0.033705696726183
428 => 0.033460136019737
429 => 0.032703904087838
430 => 0.033519435391965
501 => 0.033044260225582
502 => 0.033108377589823
503 => 0.033066621072248
504 => 0.033089422954407
505 => 0.031878819877903
506 => 0.032319900011556
507 => 0.031586518740458
508 => 0.030604603544369
509 => 0.030601311820328
510 => 0.030841634173493
511 => 0.030698681034016
512 => 0.030313997811345
513 => 0.030368640247472
514 => 0.029889915009527
515 => 0.030426766158958
516 => 0.030442161128978
517 => 0.030235444193968
518 => 0.031062537460848
519 => 0.031401398247133
520 => 0.031265332732203
521 => 0.031391851527883
522 => 0.032454833520426
523 => 0.032628145966366
524 => 0.032705119906475
525 => 0.032601985023822
526 => 0.031411280887363
527 => 0.03146409367908
528 => 0.031076588455299
529 => 0.030749187375498
530 => 0.030762281701698
531 => 0.030930608415877
601 => 0.031665701048926
602 => 0.0332126601591
603 => 0.033271366126518
604 => 0.033342519471604
605 => 0.033053103058335
606 => 0.032965812298752
607 => 0.033080971342299
608 => 0.033661927848835
609 => 0.035156305711797
610 => 0.034628092768884
611 => 0.034198647424172
612 => 0.034575386769118
613 => 0.034517390699945
614 => 0.034027845510936
615 => 0.034014105607962
616 => 0.03307451187319
617 => 0.032727165462959
618 => 0.032436896804142
619 => 0.032119931006369
620 => 0.031932023056659
621 => 0.032220735070049
622 => 0.032286766923451
623 => 0.031655493060352
624 => 0.031569452765449
625 => 0.032084964629048
626 => 0.031858107078097
627 => 0.032091435695047
628 => 0.032145569935635
629 => 0.032136853076083
630 => 0.031899987738467
701 => 0.032050958641237
702 => 0.031693867449592
703 => 0.031305584412041
704 => 0.031057884024972
705 => 0.030841732584565
706 => 0.030961665966498
707 => 0.030534125358877
708 => 0.030397346513807
709 => 0.031999813096331
710 => 0.033183572390261
711 => 0.033166360061307
712 => 0.033061584435452
713 => 0.032905909108391
714 => 0.033650539229019
715 => 0.033391124984341
716 => 0.033579870522129
717 => 0.033627914183122
718 => 0.033773327875121
719 => 0.033825300771281
720 => 0.033668202581587
721 => 0.033140961869045
722 => 0.031827128141933
723 => 0.031215534995336
724 => 0.03101369907007
725 => 0.031021035422612
726 => 0.030818666068572
727 => 0.030878272912895
728 => 0.030797937240655
729 => 0.030645800912719
730 => 0.030952271976957
731 => 0.030987589912135
801 => 0.030916055903685
802 => 0.030932904752244
803 => 0.030340633714855
804 => 0.030385662795483
805 => 0.030134935152529
806 => 0.030087926742042
807 => 0.029454109094009
808 => 0.028331209257182
809 => 0.028953404769309
810 => 0.028201880084587
811 => 0.027917266299026
812 => 0.029264583693348
813 => 0.029129350395725
814 => 0.028897889774697
815 => 0.028555511275576
816 => 0.028428519759809
817 => 0.027656959510632
818 => 0.027611371614997
819 => 0.027993777708368
820 => 0.027817310454067
821 => 0.027569483595654
822 => 0.026671879836286
823 => 0.025662676024365
824 => 0.025693137543818
825 => 0.026014146499486
826 => 0.026947523332045
827 => 0.026582836855981
828 => 0.026318252633301
829 => 0.026268703961766
830 => 0.026888909323201
831 => 0.027766629846672
901 => 0.028178436678395
902 => 0.027770348614917
903 => 0.027301559020615
904 => 0.027330092071059
905 => 0.027519909672626
906 => 0.027539856818675
907 => 0.027234722985133
908 => 0.027320616371944
909 => 0.027190136463123
910 => 0.026389381503538
911 => 0.02637489838554
912 => 0.02617838020454
913 => 0.02617242971212
914 => 0.025838103262481
915 => 0.025791328681087
916 => 0.025127503223164
917 => 0.025564435149818
918 => 0.025271364153374
919 => 0.024829637033274
920 => 0.024753483111272
921 => 0.024751193832418
922 => 0.025204748816384
923 => 0.025559135095757
924 => 0.025276462248832
925 => 0.02521210312097
926 => 0.025899290229328
927 => 0.025811839405939
928 => 0.025736107556883
929 => 0.027688039600718
930 => 0.026142933076866
1001 => 0.025469178440869
1002 => 0.024635279136287
1003 => 0.024906800954744
1004 => 0.024964014591379
1005 => 0.022958637085508
1006 => 0.02214505568113
1007 => 0.021865865202316
1008 => 0.021705187134585
1009 => 0.021778410147718
1010 => 0.021046091460198
1011 => 0.021538221729645
1012 => 0.020904095647609
1013 => 0.020797782346331
1014 => 0.021931678334158
1015 => 0.02208945333674
1016 => 0.021416336158875
1017 => 0.021848586354837
1018 => 0.021691846425054
1019 => 0.020914965919234
1020 => 0.020885294798258
1021 => 0.020495483469107
1022 => 0.019885504221334
1023 => 0.019606727337174
1024 => 0.019461537915451
1025 => 0.019521445900539
1026 => 0.019491154590064
1027 => 0.019293483299381
1028 => 0.01950248487706
1029 => 0.018968572211505
1030 => 0.018755963886055
1031 => 0.018659933637924
1101 => 0.018186055416378
1102 => 0.01894020640146
1103 => 0.019088783646065
1104 => 0.019237653633739
1105 => 0.020533465238589
1106 => 0.020468730152737
1107 => 0.02105390380158
1108 => 0.021031165029651
1109 => 0.020864264025817
1110 => 0.02016013614452
1111 => 0.020440788968132
1112 => 0.019576983200187
1113 => 0.020224205214614
1114 => 0.019928840115867
1115 => 0.020124341977618
1116 => 0.019772812002499
1117 => 0.019967363205046
1118 => 0.019124016822613
1119 => 0.0183365118369
1120 => 0.018653426831855
1121 => 0.018997949674996
1122 => 0.019744962981714
1123 => 0.019300048018959
1124 => 0.019460056263663
1125 => 0.01892405542896
1126 => 0.017818132605901
1127 => 0.017824392008976
1128 => 0.017654269876487
1129 => 0.017507259515778
1130 => 0.019351151854493
1201 => 0.01912183469455
1202 => 0.018756447812468
1203 => 0.019245532674032
1204 => 0.01937485447425
1205 => 0.019378536084097
1206 => 0.019735359773987
1207 => 0.019925796641246
1208 => 0.019959361964501
1209 => 0.020520831750229
1210 => 0.020709029016439
1211 => 0.021484186921286
1212 => 0.019909639403567
1213 => 0.0198772126336
1214 => 0.019252415101022
1215 => 0.018856158628203
1216 => 0.019279547120728
1217 => 0.019654611526813
1218 => 0.019264069397607
1219 => 0.019315065954887
1220 => 0.018790795054893
1221 => 0.018978197232402
1222 => 0.019139613233473
1223 => 0.019050488805276
1224 => 0.018917065222593
1225 => 0.019623860522692
1226 => 0.019583980361907
1227 => 0.020242164394512
1228 => 0.02075526591512
1229 => 0.021674835567917
1230 => 0.020715216696973
1231 => 0.020680244371177
]
'min_raw' => 0.017507259515778
'max_raw' => 0.050618635888118
'avg_raw' => 0.034062947701948
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0175072'
'max' => '$0.050618'
'avg' => '$0.034062'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.003078443668135
'max_diff' => -0.017099001056518
'year' => 2030
]
5 => [
'items' => [
101 => 0.021022104465577
102 => 0.02070897667944
103 => 0.020906862631475
104 => 0.021642953081739
105 => 0.021658505513037
106 => 0.021397982250621
107 => 0.021382129386426
108 => 0.021432165728785
109 => 0.02172523014884
110 => 0.021622824435513
111 => 0.021741330919571
112 => 0.021889525092521
113 => 0.022502519024869
114 => 0.022650309786677
115 => 0.022291254856208
116 => 0.022323673496262
117 => 0.022189377095988
118 => 0.022059648456053
119 => 0.022351259493281
120 => 0.022884184395445
121 => 0.022880869097287
122 => 0.023004497316009
123 => 0.023081516672082
124 => 0.022750893214204
125 => 0.022535669500488
126 => 0.022618199967367
127 => 0.022750167981188
128 => 0.022575404519106
129 => 0.021496683472826
130 => 0.0218238985293
131 => 0.021769433943904
201 => 0.02169186975118
202 => 0.022020887020744
203 => 0.021989152502451
204 => 0.021038580473581
205 => 0.021099433010746
206 => 0.021042281117916
207 => 0.021226950575827
208 => 0.020699003922679
209 => 0.020861396757412
210 => 0.020963248021019
211 => 0.021023239197741
212 => 0.021239968464398
213 => 0.021214537786435
214 => 0.021238387657749
215 => 0.021559739945796
216 => 0.023185029543946
217 => 0.023273490470773
218 => 0.022837876514009
219 => 0.023011895697631
220 => 0.022677816918888
221 => 0.022902086241192
222 => 0.023055525615688
223 => 0.022362162587033
224 => 0.022321106128365
225 => 0.021985648487664
226 => 0.022165904422484
227 => 0.021879104269324
228 => 0.021949474995066
301 => 0.021752712311082
302 => 0.022106845967194
303 => 0.022502822421534
304 => 0.022602861711484
305 => 0.022339701409247
306 => 0.022149156007319
307 => 0.02181462105109
308 => 0.022370960138897
309 => 0.022533650642298
310 => 0.022370105594942
311 => 0.022332208633939
312 => 0.022260393961318
313 => 0.022347444456226
314 => 0.022532764594877
315 => 0.022445371039814
316 => 0.022503096022609
317 => 0.022283107913939
318 => 0.022751002664326
319 => 0.023494132132945
320 => 0.0234965214157
321 => 0.023409127389554
322 => 0.023373367636986
323 => 0.023463039211325
324 => 0.023511682361883
325 => 0.02380166379034
326 => 0.024112825416444
327 => 0.025564880955018
328 => 0.025157149570281
329 => 0.026445499627275
330 => 0.027464417251039
331 => 0.027769946094539
401 => 0.027488873934762
402 => 0.026527341259387
403 => 0.026480163879099
404 => 0.027917099644734
405 => 0.027511099475115
406 => 0.027462807046821
407 => 0.026949057201113
408 => 0.027252746989083
409 => 0.027186325577593
410 => 0.027081476130111
411 => 0.027660895090342
412 => 0.028745515658808
413 => 0.028576467371705
414 => 0.028450280667307
415 => 0.027897367261034
416 => 0.028230344629291
417 => 0.028111777766216
418 => 0.028621216254376
419 => 0.028319436179434
420 => 0.027508023624518
421 => 0.027637243748339
422 => 0.027617712386578
423 => 0.028019666427608
424 => 0.027899009801603
425 => 0.027594152243881
426 => 0.028741808543618
427 => 0.028667286127113
428 => 0.028772941875521
429 => 0.028819454803483
430 => 0.02951801296916
501 => 0.02980418989827
502 => 0.02986915707141
503 => 0.030141003020346
504 => 0.029862393296555
505 => 0.030977030837089
506 => 0.03171819976064
507 => 0.03257910560555
508 => 0.033837120434638
509 => 0.034310145647663
510 => 0.034224697876815
511 => 0.035178510362705
512 => 0.03689249019779
513 => 0.034571142206044
514 => 0.037015527278025
515 => 0.036241663186019
516 => 0.034406845345092
517 => 0.034288704707218
518 => 0.035531264651767
519 => 0.038287143016813
520 => 0.037596826743283
521 => 0.038288272126937
522 => 0.03748166435862
523 => 0.037441609484299
524 => 0.038249096988012
525 => 0.040135835554291
526 => 0.03923951678479
527 => 0.03795442404233
528 => 0.038903316525105
529 => 0.038081298040672
530 => 0.036229060326758
531 => 0.037596298871438
601 => 0.036682065393322
602 => 0.036948887325561
603 => 0.038870470114594
604 => 0.03863926018954
605 => 0.038938467242022
606 => 0.038410374626003
607 => 0.037917052850079
608 => 0.036996231120761
609 => 0.036723621202673
610 => 0.036798960776555
611 => 0.036723583868121
612 => 0.036208392573357
613 => 0.036097137062304
614 => 0.035911706336334
615 => 0.035969179072037
616 => 0.035620515057541
617 => 0.036278516090557
618 => 0.03640064688057
619 => 0.036879485159666
620 => 0.036929199738287
621 => 0.038262757529735
622 => 0.037528256307734
623 => 0.038021023141237
624 => 0.037976945437547
625 => 0.034446611411359
626 => 0.034933060291767
627 => 0.035689822093614
628 => 0.035348901927648
629 => 0.034866920576006
630 => 0.03447769479235
701 => 0.033887977929731
702 => 0.034717993089358
703 => 0.035809374761995
704 => 0.036956878978559
705 => 0.038335530107306
706 => 0.038027831224638
707 => 0.036931106054677
708 => 0.036980304344643
709 => 0.037284428814401
710 => 0.036890559993443
711 => 0.03677440038891
712 => 0.03726847026849
713 => 0.037271872656215
714 => 0.036818678977066
715 => 0.036315037136259
716 => 0.036312926858557
717 => 0.036223308657588
718 => 0.037497607237484
719 => 0.038198342610309
720 => 0.038278680791512
721 => 0.038192935210613
722 => 0.038225935281581
723 => 0.037818192807784
724 => 0.038750171190608
725 => 0.039605446717797
726 => 0.039376214606213
727 => 0.039032563083686
728 => 0.038758828093492
729 => 0.039311731341947
730 => 0.039287111430644
731 => 0.039597976632193
801 => 0.039583873991006
802 => 0.039479341715957
803 => 0.03937621833939
804 => 0.039785090870938
805 => 0.039667342148144
806 => 0.039549410529061
807 => 0.039312880612561
808 => 0.03934502895656
809 => 0.039001436770312
810 => 0.038842475303246
811 => 0.036452076240452
812 => 0.035813283502331
813 => 0.03601426070157
814 => 0.036080427613929
815 => 0.035802424195664
816 => 0.036201009684238
817 => 0.03613889055805
818 => 0.036380559739573
819 => 0.036229575327014
820 => 0.036235771779971
821 => 0.036679784744038
822 => 0.036808683596472
823 => 0.036743124599783
824 => 0.036789039873833
825 => 0.037847137984702
826 => 0.037696710269409
827 => 0.037616798543795
828 => 0.037638934637917
829 => 0.037909301391123
830 => 0.037984989320544
831 => 0.037664294245093
901 => 0.037815535896592
902 => 0.038459503653249
903 => 0.038684855922661
904 => 0.039404072191396
905 => 0.039098536337388
906 => 0.039659360620703
907 => 0.041383143268527
908 => 0.042760220124294
909 => 0.041493803337622
910 => 0.04402262961356
911 => 0.045991683607962
912 => 0.045916108036026
913 => 0.045572757927062
914 => 0.043331042304445
915 => 0.041268182166415
916 => 0.042993852265545
917 => 0.042998251353515
918 => 0.042850014761579
919 => 0.041929330020248
920 => 0.04281797692828
921 => 0.042888514492748
922 => 0.042849032214098
923 => 0.04214314538158
924 => 0.041065386658017
925 => 0.041275978132812
926 => 0.041620931264474
927 => 0.040967863021475
928 => 0.040759168147037
929 => 0.041147171624442
930 => 0.042397399672378
1001 => 0.042161051301994
1002 => 0.042154879290884
1003 => 0.043166077846695
1004 => 0.042442277911041
1005 => 0.041278634365716
1006 => 0.040984799023949
1007 => 0.039941881511879
1008 => 0.04066222835221
1009 => 0.040688152352585
1010 => 0.040293625749902
1011 => 0.041310648025164
1012 => 0.041301275985854
1013 => 0.042266787272426
1014 => 0.044112482222873
1015 => 0.043566619404894
1016 => 0.042931840337289
1017 => 0.043000858422452
1018 => 0.04375781646554
1019 => 0.043300142353018
1020 => 0.043464725154898
1021 => 0.043757567349758
1022 => 0.04393424631678
1023 => 0.042975437038032
1024 => 0.042751892730007
1025 => 0.042294599529178
1026 => 0.042175300268863
1027 => 0.042547756039203
1028 => 0.042449627102775
1029 => 0.040685973540736
1030 => 0.040501661930627
1031 => 0.040507314504573
1101 => 0.040043854197415
1102 => 0.039336965985781
1103 => 0.041194625999854
1104 => 0.041045429902789
1105 => 0.04088072895849
1106 => 0.040900903884396
1107 => 0.041707251134566
1108 => 0.041239529007955
1109 => 0.042483044939699
1110 => 0.042227415447643
1111 => 0.041965230023694
1112 => 0.041928988011741
1113 => 0.04182806899213
1114 => 0.04148198012357
1115 => 0.041064057018067
1116 => 0.040788107983935
1117 => 0.03762487356395
1118 => 0.038211951472611
1119 => 0.03888733109269
1120 => 0.039120469431128
1121 => 0.038721670170549
1122 => 0.041497727149088
1123 => 0.042004939509817
1124 => 0.040468560184523
1125 => 0.040181166342715
1126 => 0.041516568641511
1127 => 0.040711157809046
1128 => 0.041073834257589
1129 => 0.040289926149249
1130 => 0.041882766905029
1201 => 0.041870632127208
1202 => 0.04125098109727
1203 => 0.041774705904587
1204 => 0.041683695831081
1205 => 0.040984111344414
1206 => 0.041904944981083
1207 => 0.041905401703078
1208 => 0.041309001059138
1209 => 0.040612535675904
1210 => 0.04048802411516
1211 => 0.040394221379914
1212 => 0.04105076453493
1213 => 0.041639419074761
1214 => 0.04273475923355
1215 => 0.04301015377411
1216 => 0.044085036999968
1217 => 0.043444996374084
1218 => 0.043728718093624
1219 => 0.044036738155073
1220 => 0.044184414299595
1221 => 0.043943783946836
1222 => 0.04561352003618
1223 => 0.045754496921512
1224 => 0.045801765251719
1225 => 0.045238739637056
1226 => 0.045738838160663
1227 => 0.045504858622989
1228 => 0.046113608378627
1229 => 0.046209068113218
1230 => 0.046128217114098
1231 => 0.046158517540587
]
'min_raw' => 0.020699003922679
'max_raw' => 0.046209068113218
'avg_raw' => 0.033454036017949
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.020699'
'max' => '$0.046209'
'avg' => '$0.033454'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0031917444069013
'max_diff' => -0.0044095677749002
'year' => 2031
]
6 => [
'items' => [
101 => 0.044733692349963
102 => 0.044659807647277
103 => 0.043652384483541
104 => 0.044062916869259
105 => 0.043295446251488
106 => 0.043538819090206
107 => 0.043646095518572
108 => 0.043590060400278
109 => 0.04408612775439
110 => 0.043664369163529
111 => 0.042551278898716
112 => 0.041437885373205
113 => 0.041423907624443
114 => 0.041130770762204
115 => 0.040918886501499
116 => 0.040959702927109
117 => 0.041103545334727
118 => 0.040910526119277
119 => 0.040951716555216
120 => 0.041635752242241
121 => 0.041772930720955
122 => 0.041306744651194
123 => 0.039434940310778
124 => 0.038975594830574
125 => 0.039305763252528
126 => 0.039147964012404
127 => 0.031595462331327
128 => 0.033369810573455
129 => 0.032315553099156
130 => 0.032801403447367
131 => 0.031725279564757
201 => 0.032238862286024
202 => 0.032144022310444
203 => 0.034997121777004
204 => 0.034952574553143
205 => 0.034973896951819
206 => 0.033956123307832
207 => 0.035577464358269
208 => 0.036376195261253
209 => 0.036228371428645
210 => 0.036265575502573
211 => 0.035626286249498
212 => 0.034980086669206
213 => 0.034263351885259
214 => 0.035594956522735
215 => 0.035446904818297
216 => 0.035786482160956
217 => 0.036650122953424
218 => 0.036777297340767
219 => 0.036948221007032
220 => 0.036886957039851
221 => 0.03834651328776
222 => 0.038169751395676
223 => 0.038595696697732
224 => 0.037719494894856
225 => 0.036727989385063
226 => 0.036916442167718
227 => 0.036898292649306
228 => 0.036667228448885
229 => 0.036458634020322
301 => 0.036111383067881
302 => 0.037210136464875
303 => 0.037165529083516
304 => 0.037887670737303
305 => 0.037760025185487
306 => 0.03690757695029
307 => 0.036938022305777
308 => 0.037142781952965
309 => 0.037851457429788
310 => 0.038061840561615
311 => 0.037964382712635
312 => 0.038195058212328
313 => 0.038377374721888
314 => 0.038217954358935
315 => 0.040475010510564
316 => 0.039537723435002
317 => 0.039994550634029
318 => 0.040103501229215
319 => 0.039824426570631
320 => 0.039884947871163
321 => 0.039976621150403
322 => 0.040533243350479
323 => 0.041993981063408
324 => 0.042640931852887
325 => 0.044587315223023
326 => 0.042587211595811
327 => 0.042468533723823
328 => 0.042819136143932
329 => 0.043961869227806
330 => 0.044887947060825
331 => 0.045195180504749
401 => 0.045235786476235
402 => 0.04581217684153
403 => 0.046142553049873
404 => 0.045742187890612
405 => 0.045402920338117
406 => 0.044187706076519
407 => 0.044328370436218
408 => 0.045297408384407
409 => 0.046666231562274
410 => 0.047840824250662
411 => 0.047429522829877
412 => 0.050567462336918
413 => 0.050878576221708
414 => 0.050835590342346
415 => 0.051544354071851
416 => 0.050137602406008
417 => 0.04953618881433
418 => 0.045476273833817
419 => 0.046616944341561
420 => 0.048274975913797
421 => 0.048055529217912
422 => 0.046851422370843
423 => 0.047839910827644
424 => 0.047513085630934
425 => 0.047255305038298
426 => 0.048436247906387
427 => 0.047137752712464
428 => 0.048262022430941
429 => 0.046820134887914
430 => 0.047431401620121
501 => 0.047084417059275
502 => 0.047308958594971
503 => 0.04599629336543
504 => 0.046704575660143
505 => 0.045966826493354
506 => 0.045966476704191
507 => 0.045950190850445
508 => 0.046818149473492
509 => 0.046846453573028
510 => 0.046205030839184
511 => 0.046112591802331
512 => 0.046454387370838
513 => 0.046054234276517
514 => 0.046241463390816
515 => 0.046059905255656
516 => 0.046019032695232
517 => 0.045693353179881
518 => 0.045553041489924
519 => 0.045608061318943
520 => 0.045420250277834
521 => 0.045307087332143
522 => 0.045927679892277
523 => 0.04559612232203
524 => 0.045876863939432
525 => 0.045556923433986
526 => 0.044447870250668
527 => 0.043810042036917
528 => 0.041715143382913
529 => 0.042309254042475
530 => 0.042703150024416
531 => 0.042572967404734
601 => 0.042852650045797
602 => 0.04286982028847
603 => 0.042778892610833
604 => 0.042673610008687
605 => 0.042622364260455
606 => 0.04300430808292
607 => 0.043226039327499
608 => 0.042742682755852
609 => 0.042629439073992
610 => 0.043118139254775
611 => 0.04341624608274
612 => 0.045617299408675
613 => 0.045454238268981
614 => 0.04586348973048
615 => 0.045817414296391
616 => 0.046246375026912
617 => 0.046947544528984
618 => 0.045521870881196
619 => 0.045769318530366
620 => 0.045708650081191
621 => 0.046371012301171
622 => 0.046373080123723
623 => 0.045975960885398
624 => 0.046191245667017
625 => 0.046071079607946
626 => 0.046288235918105
627 => 0.045452060488047
628 => 0.046470431902297
629 => 0.047047782871773
630 => 0.047055799390545
701 => 0.047329459167935
702 => 0.04760751335107
703 => 0.048141214142181
704 => 0.047592628725672
705 => 0.046605776965087
706 => 0.04667702447469
707 => 0.046098433648533
708 => 0.046108159864852
709 => 0.046056240559886
710 => 0.046212054302392
711 => 0.04548625284236
712 => 0.045656596994318
713 => 0.045418114184043
714 => 0.045768800115312
715 => 0.045391520023728
716 => 0.045708620825027
717 => 0.04584547101881
718 => 0.046350451180043
719 => 0.045316934043327
720 => 0.043209522638602
721 => 0.043652526065769
722 => 0.042997289199821
723 => 0.043057933866427
724 => 0.043180445744499
725 => 0.042783344664277
726 => 0.04285909903629
727 => 0.042856392557046
728 => 0.042833069581083
729 => 0.042729768253346
730 => 0.042579960890583
731 => 0.043176747315558
801 => 0.043278152958308
802 => 0.04350356514064
803 => 0.044174238896716
804 => 0.044107222772908
805 => 0.044216528851312
806 => 0.043977914295884
807 => 0.04306900251129
808 => 0.0431183607941
809 => 0.042502862216548
810 => 0.043487825458183
811 => 0.043254573161684
812 => 0.043104193888735
813 => 0.043063161510857
814 => 0.043735497737452
815 => 0.043936671274028
816 => 0.043811313426287
817 => 0.043554200823299
818 => 0.044047933029554
819 => 0.044180034939058
820 => 0.044209607684866
821 => 0.045084406490589
822 => 0.044258499220303
823 => 0.044457303309073
824 => 0.046008316058528
825 => 0.044601761519902
826 => 0.045346844828921
827 => 0.045310376878171
828 => 0.045691536286821
829 => 0.045279110681452
830 => 0.045284223191119
831 => 0.045622666924025
901 => 0.045147383739807
902 => 0.045029696939472
903 => 0.044867113467698
904 => 0.045222108530319
905 => 0.045434912015314
906 => 0.047149951817441
907 => 0.048257945744931
908 => 0.048209844806413
909 => 0.048649397343287
910 => 0.048451374899585
911 => 0.047811908193191
912 => 0.048903399886349
913 => 0.048558006244682
914 => 0.048586480076848
915 => 0.048585420279392
916 => 0.048815076856265
917 => 0.048652344123835
918 => 0.048331581204042
919 => 0.048544518599579
920 => 0.049176866537812
921 => 0.051139693940892
922 => 0.05223811815966
923 => 0.0510735674237
924 => 0.05187685892741
925 => 0.051395170267213
926 => 0.051307633108659
927 => 0.051812159535764
928 => 0.052317569069592
929 => 0.052285376667233
930 => 0.05191847529874
1001 => 0.051711222025457
1002 => 0.053280613245701
1003 => 0.054436913962895
1004 => 0.054358062005921
1005 => 0.054706088899975
1006 => 0.055727906624985
1007 => 0.055821328831923
1008 => 0.055809559781134
1009 => 0.055578003093638
1010 => 0.056584115343709
1011 => 0.057423431883579
1012 => 0.055524404410799
1013 => 0.056247529212339
1014 => 0.056572163233376
1015 => 0.057048822290832
1016 => 0.057853026018095
1017 => 0.058726604570407
1018 => 0.058850138156005
1019 => 0.058762485165396
1020 => 0.058186336627095
1021 => 0.059142216702994
1022 => 0.059702148833309
1023 => 0.060035575603093
1024 => 0.06088109041434
1025 => 0.056574168062571
1026 => 0.053525514354059
1027 => 0.053049423054381
1028 => 0.054017573433641
1029 => 0.054272866967797
1030 => 0.05416995846429
1031 => 0.05073842154389
1101 => 0.053031356722668
1102 => 0.055498362179568
1103 => 0.055593129906363
1104 => 0.056828164420738
1105 => 0.057230342284394
1106 => 0.058224706948141
1107 => 0.058162509167687
1108 => 0.058404621139512
1109 => 0.058348963789984
1110 => 0.060190814941391
1111 => 0.062222650278935
1112 => 0.062152294282037
1113 => 0.06186019391268
1114 => 0.062294012771689
1115 => 0.064391084584742
1116 => 0.064198019817088
1117 => 0.064385565793647
1118 => 0.066858131647025
1119 => 0.070072818974808
1120 => 0.068579273961722
1121 => 0.071819836884118
1122 => 0.073859599468907
1123 => 0.077387157943912
1124 => 0.07694549024925
1125 => 0.078318742877149
1126 => 0.076154812896974
1127 => 0.07118599226009
1128 => 0.070399657374421
1129 => 0.0719739197287
1130 => 0.07584409011242
1201 => 0.07185203429055
1202 => 0.07265962198405
1203 => 0.072427036673992
1204 => 0.072414643191243
1205 => 0.072887652019836
1206 => 0.072201528043481
1207 => 0.069406135532462
1208 => 0.07068724744691
1209 => 0.070192548612695
1210 => 0.070741453851498
1211 => 0.07370366903958
1212 => 0.072394003094539
1213 => 0.07101437641006
1214 => 0.072744734436066
1215 => 0.074948074818701
1216 => 0.074810193737339
1217 => 0.074542646809676
1218 => 0.076050794832612
1219 => 0.078541813520592
1220 => 0.079215125862229
1221 => 0.079712151267561
1222 => 0.079780682673643
1223 => 0.080486598748321
1224 => 0.076690710101019
1225 => 0.082714882869622
1226 => 0.083755091092345
1227 => 0.083559575058687
1228 => 0.084715722719591
1229 => 0.084375554749117
1230 => 0.083882704730621
1231 => 0.085715444692813
]
'min_raw' => 0.031595462331327
'max_raw' => 0.085715444692813
'avg_raw' => 0.05865545351207
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.031595'
'max' => '$0.085715'
'avg' => '$0.058655'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.010896458408648
'max_diff' => 0.039506376579595
'year' => 2032
]
7 => [
'items' => [
101 => 0.083614356220649
102 => 0.080632125654094
103 => 0.07899601498345
104 => 0.081150577495837
105 => 0.082466293638283
106 => 0.083335898313176
107 => 0.083599040162369
108 => 0.0769853741312
109 => 0.073420974951134
110 => 0.075705713959637
111 => 0.078493253234273
112 => 0.076675225179602
113 => 0.076746488437363
114 => 0.07415445820077
115 => 0.078722590395118
116 => 0.078057051958441
117 => 0.081509866545239
118 => 0.080685824633532
119 => 0.083501460891576
120 => 0.082760009502586
121 => 0.085837732764293
122 => 0.087065519899419
123 => 0.089127165589104
124 => 0.090643720550844
125 => 0.091534270631452
126 => 0.091480805344982
127 => 0.095009608434637
128 => 0.092928796539657
129 => 0.090314806389852
130 => 0.090267527555076
131 => 0.091621350094186
201 => 0.094458590733086
202 => 0.095194245950581
203 => 0.09560537685723
204 => 0.094975715562127
205 => 0.092717143383258
206 => 0.091741903367643
207 => 0.09257283611637
208 => 0.091556676767542
209 => 0.093310852887576
210 => 0.095719711372184
211 => 0.095222291620771
212 => 0.096885091272407
213 => 0.098605913980225
214 => 0.10106676773939
215 => 0.10171012603718
216 => 0.10277357283872
217 => 0.10386820892157
218 => 0.10421977653011
219 => 0.10489102817984
220 => 0.10488749035231
221 => 0.10691035237922
222 => 0.10914163183772
223 => 0.10998388817907
224 => 0.11192061019371
225 => 0.10860404161447
226 => 0.11111969697982
227 => 0.1133888810903
228 => 0.1106834662463
301 => 0.11441225032794
302 => 0.11455703056422
303 => 0.11674304024109
304 => 0.1145271006448
305 => 0.11321128278606
306 => 0.1170099996412
307 => 0.11884807906895
308 => 0.11829443458652
309 => 0.11408117273848
310 => 0.11162887362762
311 => 0.10521073384133
312 => 0.1128132976612
313 => 0.11651628472803
314 => 0.11407158289656
315 => 0.11530454830054
316 => 0.12203120775429
317 => 0.12459228415534
318 => 0.12405959816719
319 => 0.12414961333043
320 => 0.12553152366961
321 => 0.13165967514545
322 => 0.12798754473169
323 => 0.13079475084091
324 => 0.1322836828391
325 => 0.13366668585811
326 => 0.13027046754602
327 => 0.12585203742236
328 => 0.12445253512911
329 => 0.11382850547922
330 => 0.11327547859813
331 => 0.11296504785134
401 => 0.11100782590412
402 => 0.10946998558182
403 => 0.10824703786118
404 => 0.10503765783912
405 => 0.10612072938422
406 => 0.10100564747872
407 => 0.10427809561449
408 => 0.096114301385329
409 => 0.10291335180783
410 => 0.099212937777751
411 => 0.10169766627663
412 => 0.10168899729297
413 => 0.097113824342647
414 => 0.094474960066321
415 => 0.09615654708933
416 => 0.097959341862539
417 => 0.098251839249163
418 => 0.10058920973039
419 => 0.10124151959009
420 => 0.099264990261762
421 => 0.095945124895695
422 => 0.096716253902166
423 => 0.094459333161617
424 => 0.090504166375009
425 => 0.093344836211738
426 => 0.094314765789433
427 => 0.094743141946613
428 => 0.090853689665958
429 => 0.089631539315259
430 => 0.088980876723382
501 => 0.095443045447913
502 => 0.095797057638164
503 => 0.093985881220561
504 => 0.10217257037092
505 => 0.10031967048029
506 => 0.10238981362962
507 => 0.09664628202742
508 => 0.096865692669315
509 => 0.094146612764657
510 => 0.095669115822281
511 => 0.094593059733716
512 => 0.095546112620893
513 => 0.096117368591882
514 => 0.098836002322284
515 => 0.10294439423803
516 => 0.098429929101408
517 => 0.09646291199305
518 => 0.097683238344151
519 => 0.10093312822986
520 => 0.10585687776551
521 => 0.10294191894071
522 => 0.10423552816794
523 => 0.10451812423543
524 => 0.10236874151566
525 => 0.10593612857223
526 => 0.10784792027725
527 => 0.10980902297705
528 => 0.11151179350243
529 => 0.10902571543317
530 => 0.11168617533257
531 => 0.10954231428805
601 => 0.10761904930283
602 => 0.10762196610193
603 => 0.10641547388228
604 => 0.10407774317892
605 => 0.10364662977
606 => 0.10588933616684
607 => 0.10768777431202
608 => 0.1078359022916
609 => 0.10883161005586
610 => 0.10942085965414
611 => 0.11519630676331
612 => 0.11751923936762
613 => 0.12035967738531
614 => 0.12146618807152
615 => 0.12479638853096
616 => 0.1221069811943
617 => 0.12152511099985
618 => 0.11344713398552
619 => 0.11476990226908
620 => 0.11688778191921
621 => 0.11348205704088
622 => 0.11564220558638
623 => 0.11606866466746
624 => 0.11336633181274
625 => 0.11480976455135
626 => 0.11097643514557
627 => 0.10302795034379
628 => 0.10594497750801
629 => 0.1080928913616
630 => 0.10502755345666
701 => 0.11052205300631
702 => 0.1073122797989
703 => 0.10629493578843
704 => 0.10232591409429
705 => 0.10419913955227
706 => 0.10673270380619
707 => 0.10516725565573
708 => 0.10841579562117
709 => 0.1130165945662
710 => 0.11629539787674
711 => 0.11654710368186
712 => 0.11443905281595
713 => 0.11781721778198
714 => 0.11784182402573
715 => 0.11403124014384
716 => 0.11169727873359
717 => 0.11116699779049
718 => 0.11249174355407
719 => 0.11410022947261
720 => 0.11663636345585
721 => 0.1181688961063
722 => 0.12216492846615
723 => 0.1232461402475
724 => 0.12443406419227
725 => 0.12602149692467
726 => 0.12792761692931
727 => 0.12375713487463
728 => 0.12392283590141
729 => 0.12003934075635
730 => 0.11588926924432
731 => 0.11903865620824
801 => 0.12315606071817
802 => 0.12221152357426
803 => 0.12210524385043
804 => 0.12228397686638
805 => 0.12157182670557
806 => 0.11835079792176
807 => 0.11673321743124
808 => 0.11882030895281
809 => 0.11992950521077
810 => 0.12164977187478
811 => 0.12143771269801
812 => 0.12586893488136
813 => 0.1275907738286
814 => 0.12715025374425
815 => 0.12723132004148
816 => 0.13034862720972
817 => 0.13381571390391
818 => 0.13706309811541
819 => 0.14036647681375
820 => 0.13638412485984
821 => 0.13436213213497
822 => 0.13644831249767
823 => 0.13534135583211
824 => 0.14170225717711
825 => 0.14214267218519
826 => 0.14850311356462
827 => 0.15453992982098
828 => 0.15074831369116
829 => 0.15432363692343
830 => 0.15819064049952
831 => 0.16565071779652
901 => 0.16313842621157
902 => 0.16121405023014
903 => 0.15939552422619
904 => 0.16317958815752
905 => 0.16804772595328
906 => 0.16909627620805
907 => 0.17079532819779
908 => 0.16900898278077
909 => 0.17116043907608
910 => 0.17875602519631
911 => 0.17670363077853
912 => 0.17378890076642
913 => 0.1797848865205
914 => 0.1819548104561
915 => 0.19718447303411
916 => 0.21641255114483
917 => 0.20845200054863
918 => 0.2035106299082
919 => 0.20467196921958
920 => 0.21169341243409
921 => 0.21394847714513
922 => 0.20781843389311
923 => 0.209983668802
924 => 0.22191432603114
925 => 0.22831474085327
926 => 0.21962211783443
927 => 0.19563951567988
928 => 0.17352646121958
929 => 0.17939183902627
930 => 0.17872688720685
1001 => 0.19154489001977
1002 => 0.17665468185044
1003 => 0.17690539476794
1004 => 0.18998846030453
1005 => 0.1864981227199
1006 => 0.18084422284145
1007 => 0.17356774094567
1008 => 0.16011649116821
1009 => 0.14820234412446
1010 => 0.17156873014145
1011 => 0.17056112908738
1012 => 0.16910197344298
1013 => 0.17234916643246
1014 => 0.18811661385758
1015 => 0.18775312316018
1016 => 0.18544078079794
1017 => 0.18719467209965
1018 => 0.18053675721632
1019 => 0.18225265347966
1020 => 0.17352295839877
1021 => 0.1774691451596
1022 => 0.18083209211161
1023 => 0.1815072535015
1024 => 0.18302842658753
1025 => 0.17003016911763
1026 => 0.17586600511283
1027 => 0.17929401201612
1028 => 0.16380615211509
1029 => 0.17898786682314
1030 => 0.16980389837359
1031 => 0.16668672154324
1101 => 0.17088358948849
1102 => 0.16924806596864
1103 => 0.16784193888743
1104 => 0.16705729581579
1105 => 0.17013901244337
1106 => 0.16999524667925
1107 => 0.1649529601411
1108 => 0.15837550290199
1109 => 0.16058311344911
1110 => 0.15978106784088
1111 => 0.15687435109072
1112 => 0.15883312722201
1113 => 0.15020766845372
1114 => 0.13536801495521
1115 => 0.1451715446072
1116 => 0.14479411937979
1117 => 0.14460380446525
1118 => 0.15197088604907
1119 => 0.15126271114228
1120 => 0.14997736675198
1121 => 0.15685074473301
1122 => 0.15434186930995
1123 => 0.16207363219842
1124 => 0.16716627129583
1125 => 0.16587461329111
1126 => 0.17066426497709
1127 => 0.16063397233737
1128 => 0.16396563320679
1129 => 0.1646522838945
1130 => 0.15676592831565
1201 => 0.15137857731518
1202 => 0.15101930242374
1203 => 0.14167837821162
1204 => 0.14666822452843
1205 => 0.15105908279335
1206 => 0.14895620242882
1207 => 0.14829049332717
1208 => 0.1516914567528
1209 => 0.15195574073825
1210 => 0.14593003786236
1211 => 0.14718297229945
1212 => 0.15240791718514
1213 => 0.14705131709416
1214 => 0.13664431811304
1215 => 0.13406323847771
1216 => 0.13371887487562
1217 => 0.12671878219658
1218 => 0.13423571856085
1219 => 0.13095437439648
1220 => 0.1413201012952
1221 => 0.13539925368316
1222 => 0.13514401777645
1223 => 0.1347581912685
1224 => 0.12873292232946
1225 => 0.1300520733013
1226 => 0.13443713204403
1227 => 0.13600177040466
1228 => 0.13583856580494
1229 => 0.13441564286393
1230 => 0.13506704969978
1231 => 0.13296864131632
]
'min_raw' => 0.073420974951134
'max_raw' => 0.22831474085327
'avg_raw' => 0.1508678579022
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.07342'
'max' => '$0.228314'
'avg' => '$0.150867'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.041825512619806
'max_diff' => 0.14259929616046
'year' => 2033
]
8 => [
'items' => [
101 => 0.13222764964152
102 => 0.12988887609006
103 => 0.12645152507208
104 => 0.12692950981363
105 => 0.12011921801521
106 => 0.11640860959389
107 => 0.1153815620879
108 => 0.11400815123962
109 => 0.11553669249772
110 => 0.12009992531421
111 => 0.11459569839367
112 => 0.10515908741503
113 => 0.10572624381405
114 => 0.1070004758524
115 => 0.10462595287882
116 => 0.10237866616294
117 => 0.10433249963427
118 => 0.10033408316197
119 => 0.10748366538042
120 => 0.10729028921788
121 => 0.10995521134172
122 => 0.11162164183546
123 => 0.10778105906066
124 => 0.10681516287884
125 => 0.10736538124154
126 => 0.098271497332667
127 => 0.10921204701419
128 => 0.10930666134215
129 => 0.10849651602411
130 => 0.11432202097795
131 => 0.1266156534511
201 => 0.12199029440448
202 => 0.12019921557941
203 => 0.11679437342369
204 => 0.12133112343667
205 => 0.12098277181999
206 => 0.11940739370098
207 => 0.11845460009912
208 => 0.12021015152479
209 => 0.11823706784965
210 => 0.11788264780488
211 => 0.11573524794639
212 => 0.11496872389737
213 => 0.11440122000769
214 => 0.11377645398692
215 => 0.11515453214674
216 => 0.11203162573531
217 => 0.10826570674543
218 => 0.10795261132923
219 => 0.10881709530099
220 => 0.10843462549675
221 => 0.10795078021095
222 => 0.10702698779294
223 => 0.10675291831622
224 => 0.10764351115596
225 => 0.10663808376469
226 => 0.10812164664897
227 => 0.10771819963372
228 => 0.10546457740261
301 => 0.10265572970482
302 => 0.10263072506855
303 => 0.1020255634395
304 => 0.10125479911824
305 => 0.10104039011676
306 => 0.104167953229
307 => 0.11064191527124
308 => 0.10937092161356
309 => 0.1102893447879
310 => 0.11480707780882
311 => 0.1162431292832
312 => 0.11522385396143
313 => 0.11382860703483
314 => 0.1138899908186
315 => 0.11865797193677
316 => 0.11895534507059
317 => 0.11970671104353
318 => 0.12067242865476
319 => 0.1153883198465
320 => 0.11364110976892
321 => 0.11281318470264
322 => 0.11026349594581
323 => 0.11301311667626
324 => 0.11141103042713
325 => 0.11162720659719
326 => 0.11148642158284
327 => 0.11156329972052
328 => 0.10748166692648
329 => 0.10896879939232
330 => 0.10649615323377
331 => 0.10318555759503
401 => 0.1031744593176
402 => 0.10398472291006
403 => 0.10350274641965
404 => 0.10220576007669
405 => 0.1023899908651
406 => 0.10077593530185
407 => 0.1025859664339
408 => 0.10263787165017
409 => 0.10194091107126
410 => 0.10472951376636
411 => 0.10587200656582
412 => 0.10541325218245
413 => 0.10583981913534
414 => 0.10942373713823
415 => 0.11000807215001
416 => 0.11026759516324
417 => 0.10991986870572
418 => 0.10590532657734
419 => 0.10608338859189
420 => 0.10477688767516
421 => 0.1036730320762
422 => 0.1037171805112
423 => 0.10428470578025
424 => 0.1067631219151
425 => 0.11197880256029
426 => 0.11217673382816
427 => 0.11241663229888
428 => 0.11144084465514
429 => 0.11114653776476
430 => 0.11153480452023
501 => 0.1134935399431
502 => 0.1185319392422
503 => 0.11675103242653
504 => 0.11530312746391
505 => 0.1165733304685
506 => 0.11637779267212
507 => 0.11472725688843
508 => 0.11468093184626
509 => 0.11151302596914
510 => 0.11034192329609
511 => 0.10936326224698
512 => 0.10829458992994
513 => 0.10766104515818
514 => 0.10863445786855
515 => 0.1088570888725
516 => 0.10672870496892
517 => 0.10643861410752
518 => 0.10817669834753
519 => 0.10741183227581
520 => 0.10819851599834
521 => 0.10838103337002
522 => 0.10835164386944
523 => 0.10755303584626
524 => 0.1080620447854
525 => 0.10685808690146
526 => 0.1055489635313
527 => 0.10471382438241
528 => 0.10398505470987
529 => 0.10438941848054
530 => 0.10294793547201
531 => 0.10248677604626
601 => 0.10788960400989
602 => 0.1118807311168
603 => 0.11182269854801
604 => 0.11146944021024
605 => 0.11094456997615
606 => 0.11345514241626
607 => 0.1125805091786
608 => 0.11321687793705
609 => 0.11337886049439
610 => 0.11386913290942
611 => 0.11404436315746
612 => 0.11351469564266
613 => 0.11173706676955
614 => 0.10730738462965
615 => 0.10524535563583
616 => 0.10456485172206
617 => 0.10458958674687
618 => 0.10390728434074
619 => 0.10410825297799
620 => 0.10383739565018
621 => 0.10332445739872
622 => 0.10435774598893
623 => 0.1044768228732
624 => 0.10423564096937
625 => 0.10429244803863
626 => 0.10229556488503
627 => 0.1024473835742
628 => 0.10160203782074
629 => 0.10144354568276
630 => 0.099306585230679
701 => 0.095520650032452
702 => 0.097618425641891
703 => 0.095084607697576
704 => 0.094125012448457
705 => 0.098667587110108
706 => 0.098211638605487
707 => 0.097431252961626
708 => 0.096276899947737
709 => 0.095848739186061
710 => 0.093247369937345
711 => 0.093093667164366
712 => 0.094382976006908
713 => 0.093788004338483
714 => 0.092952438782623
715 => 0.089926105039222
716 => 0.086523503926971
717 => 0.086626207066562
718 => 0.087708511172725
719 => 0.090855456329987
720 => 0.089625890414341
721 => 0.088733826234896
722 => 0.088566769429437
723 => 0.090657835106871
724 => 0.093617131132243
725 => 0.095005566616831
726 => 0.093629669219017
727 => 0.092049112371985
728 => 0.092145313543669
729 => 0.092785296839996
730 => 0.092852550035563
731 => 0.091823770012014
801 => 0.09211336556253
802 => 0.091673443440124
803 => 0.088973642186957
804 => 0.088924811343449
805 => 0.088262236575746
806 => 0.088242174075103
807 => 0.087114969108218
808 => 0.086957265341351
809 => 0.084719131463149
810 => 0.086192277959475
811 => 0.085204168633402
812 => 0.083714854807583
813 => 0.083458096542655
814 => 0.083450378079167
815 => 0.084979570373805
816 => 0.086174408457173
817 => 0.085221357218175
818 => 0.085004365925177
819 => 0.087321265238877
820 => 0.087026418682203
821 => 0.086771083465679
822 => 0.093352158631014
823 => 0.088142724109952
824 => 0.085871113314643
825 => 0.083059563588257
826 => 0.083975018356232
827 => 0.084167918126673
828 => 0.077406647854645
829 => 0.074663601347345
830 => 0.073722291155567
831 => 0.073180553832026
901 => 0.073427430333073
902 => 0.070958366749238
903 => 0.072617618312117
904 => 0.070479617953266
905 => 0.07012117523545
906 => 0.073944184724497
907 => 0.0744761341612
908 => 0.072206672600488
909 => 0.073664034314918
910 => 0.073135574698422
911 => 0.070516267832986
912 => 0.070416229577043
913 => 0.069101953465055
914 => 0.067045365843797
915 => 0.066105450115269
916 => 0.065615933843129
917 => 0.065817917797496
918 => 0.065715788529357
919 => 0.065049325971852
920 => 0.06575398938302
921 => 0.06395386555451
922 => 0.063237041741414
923 => 0.062913269055225
924 => 0.06131555554616
925 => 0.063858228245504
926 => 0.064359166799021
927 => 0.064861092356237
928 => 0.069230011652667
929 => 0.069011752791055
930 => 0.070984706603649
1001 => 0.070908041246521
1002 => 0.070345322859436
1003 => 0.067971306547008
1004 => 0.06891754713637
1005 => 0.06600516568075
1006 => 0.06818731988999
1007 => 0.067191475837831
1008 => 0.067850624014226
1009 => 0.066665416160073
1010 => 0.067321359122594
1011 => 0.064477957913656
1012 => 0.061822829872483
1013 => 0.06289133090427
1014 => 0.064052913723738
1015 => 0.066571521242141
1016 => 0.065071459382241
1017 => 0.06561093835068
1018 => 0.063803774114098
1019 => 0.060075078103086
1020 => 0.060096182117573
1021 => 0.059522603470337
1022 => 0.059026947775271
1023 => 0.065243759531702
1024 => 0.06447060071654
1025 => 0.063238673333102
1026 => 0.064887657090682
1027 => 0.065323674569077
1028 => 0.065336087373718
1029 => 0.066539143356817
1030 => 0.067181214550656
1031 => 0.067294382381466
1101 => 0.069187416964617
1102 => 0.069821937187159
1103 => 0.072435436183147
1104 => 0.067126739295761
1105 => 0.06701741017685
1106 => 0.064910861673794
1107 => 0.063574855309942
1108 => 0.06500233917253
1109 => 0.066266895003805
1110 => 0.064950154948408
1111 => 0.065122093401743
1112 => 0.063354477458987
1113 => 0.063986316984462
1114 => 0.064530542301776
1115 => 0.064230053069641
1116 => 0.063780206145291
1117 => 0.066163215846445
1118 => 0.066028757100015
1119 => 0.068247870518886
1120 => 0.069977828119218
1121 => 0.073078221405925
1122 => 0.069842799384089
1123 => 0.069724887745976
1124 => 0.070877492922157
1125 => 0.069821760729312
1126 => 0.070488947032553
1127 => 0.072970727377813
1128 => 0.07302316348577
1129 => 0.07214479111738
1130 => 0.072091342078937
1201 => 0.072260043100627
1202 => 0.073248130253947
1203 => 0.072902862241725
1204 => 0.073302415126585
1205 => 0.073802062127272
1206 => 0.075868813968053
1207 => 0.07636710083991
1208 => 0.07515652207342
1209 => 0.075265823781758
1210 => 0.074813034091961
1211 => 0.074375644925055
1212 => 0.075358831896702
1213 => 0.077155625411975
1214 => 0.07714444765277
1215 => 0.077561268823639
1216 => 0.077820944959957
1217 => 0.07670622488833
1218 => 0.075980583111094
1219 => 0.076258840342273
1220 => 0.07670377971458
1221 => 0.076114552500576
1222 => 0.072477569179144
1223 => 0.073580797587472
1224 => 0.073397166435213
1225 => 0.073135653344086
1226 => 0.074244958039673
1227 => 0.074137962895617
1228 => 0.07093304293346
1229 => 0.0711382115111
1230 => 0.070945519914206
1231 => 0.071568145884762
]
'min_raw' => 0.059026947775271
'max_raw' => 0.13222764964152
'avg_raw' => 0.095627298708397
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.059026'
'max' => '$0.132227'
'avg' => '$0.095627'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014394027175862
'max_diff' => -0.096087091211747
'year' => 2034
]
9 => [
'items' => [
101 => 0.069788136883617
102 => 0.070335655663826
103 => 0.070679054310103
104 => 0.070881318750873
105 => 0.071612036604959
106 => 0.071526295298696
107 => 0.071606706804975
108 => 0.072690168480224
109 => 0.078169945834483
110 => 0.078468198025428
111 => 0.0769994951566
112 => 0.077586212983814
113 => 0.076459843056648
114 => 0.077215982734777
115 => 0.077733314298688
116 => 0.075395592438515
117 => 0.075257167721645
118 => 0.074126148865117
119 => 0.074733894334433
120 => 0.073766927594306
121 => 0.074004187409273
122 => 0.073340788282688
123 => 0.074534774629092
124 => 0.075869836891092
125 => 0.07620712634168
126 => 0.075319863009422
127 => 0.074677425883365
128 => 0.073549517921953
129 => 0.075425253998849
130 => 0.075973776389754
131 => 0.075422372844243
201 => 0.075294600594342
202 => 0.07505247241166
203 => 0.075345969232912
204 => 0.075970789019012
205 => 0.075676135546497
206 => 0.07587075935622
207 => 0.075129054088759
208 => 0.076706593907057
209 => 0.079212106794147
210 => 0.079220162427772
211 => 0.078925507366965
212 => 0.078804940864514
213 => 0.079107274838067
214 => 0.07927127861633
215 => 0.080248971248229
216 => 0.081298074395251
217 => 0.086193781022835
218 => 0.084819086192295
219 => 0.089162848359179
220 => 0.092598200266258
221 => 0.093628312093459
222 => 0.092680657682941
223 => 0.089438783135845
224 => 0.089279721304385
225 => 0.094124450561876
226 => 0.092755592643978
227 => 0.092592771350313
228 => 0.090860627876643
301 => 0.091884539199725
302 => 0.091660594773494
303 => 0.091307087540952
304 => 0.093260639019112
305 => 0.096917512991483
306 => 0.096347554888942
307 => 0.095922107604991
308 => 0.094057921452558
309 => 0.095180577897374
310 => 0.094780821440443
311 => 0.096498428871134
312 => 0.095480956278856
313 => 0.092745222198941
314 => 0.093180896868265
315 => 0.093115045518452
316 => 0.094470261631317
317 => 0.094063459392767
318 => 0.093035610852432
319 => 0.096905014193798
320 => 0.096653756663562
321 => 0.097009982395969
322 => 0.097166803980021
323 => 0.099522041607376
324 => 0.10048690710411
325 => 0.10070594846421
326 => 0.10162249606073
327 => 0.10068314392505
328 => 0.10444122221447
329 => 0.10694012498699
330 => 0.10984272914963
331 => 0.11408421397769
401 => 0.11567905150897
402 => 0.11539095838378
403 => 0.11860680377302
404 => 0.12438560645326
405 => 0.11655901962775
406 => 0.12480043455945
407 => 0.12219129774378
408 => 0.11600508129021
409 => 0.1156067618813
410 => 0.11979613948711
411 => 0.12908777580415
412 => 0.1267603262916
413 => 0.12909158267776
414 => 0.12637204827133
415 => 0.12623700046601
416 => 0.12895950096176
417 => 0.13532077176585
418 => 0.13229877045549
419 => 0.12796599055198
420 => 0.13116524780721
421 => 0.12839375509545
422 => 0.12214880632388
423 => 0.12675854653482
424 => 0.12367614453361
425 => 0.12457575330706
426 => 0.13105450384091
427 => 0.13027496343603
428 => 0.13128376090344
429 => 0.12950325977829
430 => 0.12783999096813
501 => 0.12473537621802
502 => 0.12381625284617
503 => 0.12407026547955
504 => 0.12381612697012
505 => 0.12207912355031
506 => 0.12170401782719
507 => 0.12107882518822
508 => 0.12127259852926
509 => 0.12009705346144
510 => 0.12231554988442
511 => 0.12272732236985
512 => 0.12434175905924
513 => 0.12450937523203
514 => 0.12900555843192
515 => 0.12652913628071
516 => 0.12819053406374
517 => 0.12804192300835
518 => 0.11613915535901
519 => 0.11777925172208
520 => 0.12033072697242
521 => 0.11918129083059
522 => 0.11755625705266
523 => 0.11624395514819
524 => 0.11425568357315
525 => 0.11705413763364
526 => 0.12073380714077
527 => 0.12460269772311
528 => 0.12925091625802
529 => 0.12821348799226
530 => 0.12451580251083
531 => 0.12468167798036
601 => 0.12570705486344
602 => 0.12437909863454
603 => 0.12398745841785
604 => 0.12565324951172
605 => 0.12566472089948
606 => 0.12413674676925
607 => 0.12243868313982
608 => 0.12243156819122
609 => 0.12212941416971
610 => 0.12642580080051
611 => 0.12878837903377
612 => 0.12905924482073
613 => 0.12877014760816
614 => 0.12888140965142
615 => 0.12750667743335
616 => 0.13064890761969
617 => 0.13353252877304
618 => 0.13275965670436
619 => 0.13160101160318
620 => 0.13067809497217
621 => 0.13254224687681
622 => 0.13245923912694
623 => 0.13350734285788
624 => 0.1334597948185
625 => 0.13310735695496
626 => 0.13275966929103
627 => 0.13413821157771
628 => 0.13374121353786
629 => 0.13334359885039
630 => 0.13254612172292
701 => 0.13265451210924
702 => 0.13149606706447
703 => 0.13096011737992
704 => 0.12290072004738
705 => 0.12074698573172
706 => 0.12142459439073
707 => 0.12164768075538
708 => 0.12071037282111
709 => 0.12205423162419
710 => 0.12184479265323
711 => 0.12265959717154
712 => 0.1221505426832
713 => 0.12217143445697
714 => 0.12366845516531
715 => 0.12410304664573
716 => 0.12388200991121
717 => 0.12403681646337
718 => 0.12760426811821
719 => 0.12709709057358
720 => 0.12682766261141
721 => 0.12690229599824
722 => 0.12781385638307
723 => 0.12806904352148
724 => 0.12698779768438
725 => 0.12749771947176
726 => 0.12966890172373
727 => 0.13042869263364
728 => 0.13285358049776
729 => 0.13182344503414
730 => 0.13371430326084
731 => 0.13952615680863
801 => 0.14416906757229
802 => 0.13989925495763
803 => 0.14842536930397
804 => 0.15506417232105
805 => 0.15480936400375
806 => 0.15365173513944
807 => 0.1460936344062
808 => 0.13913855742654
809 => 0.14495677464819
810 => 0.14497160648042
811 => 0.14447181646116
812 => 0.1413676635756
813 => 0.14436379866938
814 => 0.14460162099276
815 => 0.14446850373373
816 => 0.14208855699445
817 => 0.13845481821124
818 => 0.13916484207154
819 => 0.1403278756388
820 => 0.13812601046176
821 => 0.13742238112198
822 => 0.13873056193559
823 => 0.14294579308734
824 => 0.14214892805527
825 => 0.1421281186889
826 => 0.14553744521945
827 => 0.14309710320229
828 => 0.13917379774623
829 => 0.13818311137653
830 => 0.13466684217041
831 => 0.1370955418356
901 => 0.13718294641282
902 => 0.13585277242691
903 => 0.13928173403418
904 => 0.13925013554931
905 => 0.14250542426184
906 => 0.14872831364957
907 => 0.14688789904783
908 => 0.14474769710254
909 => 0.14498039639536
910 => 0.14753253328675
911 => 0.1459894530626
912 => 0.14654435546994
913 => 0.1475316933755
914 => 0.14812737884815
915 => 0.14489468642292
916 => 0.14414099118105
917 => 0.14259919522726
918 => 0.1421969694419
919 => 0.14345273007564
920 => 0.14312188151533
921 => 0.13717560039655
922 => 0.13655418093485
923 => 0.13657323898255
924 => 0.13501065019921
925 => 0.13262732724032
926 => 0.13889055767545
927 => 0.13838753261766
928 => 0.1378322318849
929 => 0.13790025305616
930 => 0.14061890910747
1001 => 0.13904195130229
1002 => 0.14323455208567
1003 => 0.14237267940573
1004 => 0.14148870294368
1005 => 0.14136651047004
1006 => 0.14102625494948
1007 => 0.13985939216598
1008 => 0.13845033523732
1009 => 0.1375199538026
1010 => 0.12685488810564
1011 => 0.12883426226316
1012 => 0.13111135180576
1013 => 0.131897393991
1014 => 0.13055281444068
1015 => 0.13991248436194
1016 => 0.14162258624857
1017 => 0.13644257608677
1018 => 0.13547360768391
1019 => 0.13997600976911
1020 => 0.13726051091547
1021 => 0.13848329988299
1022 => 0.13584029896501
1023 => 0.14121067278171
1024 => 0.14116975953107
1025 => 0.13908056282097
1026 => 0.14084633757414
1027 => 0.1405394907572
1028 => 0.13818079281697
1029 => 0.14128544771355
1030 => 0.14128698758364
1031 => 0.13927618117324
1101 => 0.136927999508
1102 => 0.13650820008783
1103 => 0.13619193761685
1104 => 0.13840551870237
1105 => 0.14039020858196
1106 => 0.14408322440152
1107 => 0.14501173632245
1108 => 0.14863578016438
1109 => 0.14647783850801
1110 => 0.14743442609426
1111 => 0.14847293723671
1112 => 0.14897083766838
1113 => 0.14815953563378
1114 => 0.15378916743625
1115 => 0.15426448084784
1116 => 0.1544238493233
1117 => 0.15252556915427
1118 => 0.15421168624238
1119 => 0.15342280789518
1120 => 0.15547525019787
1121 => 0.15579709935782
1122 => 0.15552450456945
1123 => 0.15562666457287
1124 => 0.15082276696456
1125 => 0.15057365953099
1126 => 0.14717706199842
1127 => 0.14856120059932
1128 => 0.14597361982842
1129 => 0.14679416834591
1130 => 0.14715585831394
1201 => 0.14696693200037
1202 => 0.14863945771907
1203 => 0.14721746918374
1204 => 0.14346460764244
1205 => 0.13971072363653
1206 => 0.13966359668068
1207 => 0.13867526528348
1208 => 0.13796088270523
1209 => 0.13809849813388
1210 => 0.13858347285393
1211 => 0.13793269509286
1212 => 0.13807157152346
1213 => 0.14037784560011
1214 => 0.14084035241859
1215 => 0.13926857353632
1216 => 0.1329576545174
1217 => 0.13140893916041
1218 => 0.13252212504665
1219 => 0.13199009389138
1220 => 0.10652630717481
1221 => 0.11250864615418
1222 => 0.10895414347367
1223 => 0.11059222184365
1224 => 0.10696399504086
1225 => 0.10869557504281
1226 => 0.10837581544363
1227 => 0.11799523949218
1228 => 0.11784504541675
1229 => 0.11791693537257
1230 => 0.11448544047318
1231 => 0.11995190502314
]
'min_raw' => 0.069788136883617
'max_raw' => 0.15579709935782
'avg_raw' => 0.11279261812072
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.069788'
'max' => '$0.155797'
'avg' => '$0.112792'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010761189108346
'max_diff' => 0.023569449716301
'year' => 2035
]
10 => [
'items' => [
101 => 0.12264488202816
102 => 0.1221464836558
103 => 0.12227191978855
104 => 0.12011651143806
105 => 0.11793780443689
106 => 0.11552128307199
107 => 0.1200108810769
108 => 0.11951171441875
109 => 0.12065662313806
110 => 0.12356844836734
111 => 0.1239972256933
112 => 0.12457350676762
113 => 0.12436695102496
114 => 0.12928794681775
115 => 0.12869198175746
116 => 0.13012808608189
117 => 0.12717391052904
118 => 0.12383098047807
119 => 0.12446636219214
120 => 0.12440516982366
121 => 0.12362612073955
122 => 0.12292283006006
123 => 0.12175204922962
124 => 0.12545657302009
125 => 0.12530617611945
126 => 0.12774092712352
127 => 0.12731056123364
128 => 0.12443647249264
129 => 0.12453912113429
130 => 0.12522948258065
131 => 0.1276188314289
201 => 0.12832815284633
202 => 0.12799956690421
203 => 0.12877730545667
204 => 0.12939199829758
205 => 0.12885450141351
206 => 0.13646432381136
207 => 0.13330419499681
208 => 0.13484441979298
209 => 0.13521175433134
210 => 0.13427083463555
211 => 0.13447488642576
212 => 0.13478396928714
213 => 0.13666065989682
214 => 0.14158563908141
215 => 0.1437668788368
216 => 0.15032924626136
217 => 0.14358575723944
218 => 0.14318562650821
219 => 0.14436770704588
220 => 0.14822051142124
221 => 0.15134284749195
222 => 0.1523787064985
223 => 0.15251561236638
224 => 0.15445895272526
225 => 0.15557283917782
226 => 0.15422298009077
227 => 0.15307911585063
228 => 0.1489819361241
229 => 0.1494561958337
301 => 0.15272337493209
302 => 0.15733845784445
303 => 0.16129867910079
304 => 0.15991194764447
305 => 0.1704917297764
306 => 0.17154067196024
307 => 0.1713957420668
308 => 0.17378538846513
309 => 0.16904242700747
310 => 0.16701471909377
311 => 0.15332643228276
312 => 0.15717228253869
313 => 0.16276245174455
314 => 0.1620225718881
315 => 0.15796284158515
316 => 0.16129559943131
317 => 0.1601936854624
318 => 0.15932456019666
319 => 0.16330619152722
320 => 0.15892822432287
321 => 0.16271877817272
322 => 0.15785735365203
323 => 0.15991828211695
324 => 0.15874839944437
325 => 0.15950545690896
326 => 0.1550797144402
327 => 0.15746773764752
328 => 0.15498036482368
329 => 0.1549791854851
330 => 0.15492427659215
331 => 0.15785065968869
401 => 0.15794608893641
402 => 0.15578348740655
403 => 0.15547182273991
404 => 0.15662421036253
405 => 0.15527506626724
406 => 0.15590632229801
407 => 0.15529418636934
408 => 0.15515638167824
409 => 0.15405833045401
410 => 0.15358525979507
411 => 0.15377076298997
412 => 0.15313754495232
413 => 0.15275600818014
414 => 0.15484837932502
415 => 0.15373050982833
416 => 0.15467704979215
417 => 0.15359834804051
418 => 0.14985909780133
419 => 0.14770861544692
420 => 0.1406455183738
421 => 0.14264860394199
422 => 0.14397665174604
423 => 0.14353773195473
424 => 0.14448070150589
425 => 0.14453859217785
426 => 0.14423202316433
427 => 0.1438770555206
428 => 0.14370427690257
429 => 0.14499202716648
430 => 0.14573960953836
501 => 0.14410993911017
502 => 0.14372813013036
503 => 0.14537581690982
504 => 0.14638090489346
505 => 0.15380190985449
506 => 0.15325213783744
507 => 0.15463195771291
508 => 0.15447661117
509 => 0.15592288222203
510 => 0.15828692415236
511 => 0.15348016591148
512 => 0.1543144529369
513 => 0.15410990502477
514 => 0.15634310549409
515 => 0.15635007730219
516 => 0.1550111620642
517 => 0.15573700973614
518 => 0.15533186147825
519 => 0.15606401913932
520 => 0.15324479529698
521 => 0.15667830562054
522 => 0.15862488472349
523 => 0.15865191297622
524 => 0.15957457602201
525 => 0.16051205511357
526 => 0.1623114645926
527 => 0.16046187055983
528 => 0.15713463094923
529 => 0.1573748469022
530 => 0.15542408753589
531 => 0.15545688015327
601 => 0.15528183059169
602 => 0.15580716750311
603 => 0.15336007720678
604 => 0.15393440440815
605 => 0.15313034296297
606 => 0.15431270506435
607 => 0.15304067889472
608 => 0.15410980638558
609 => 0.15457120636849
610 => 0.15627378223868
611 => 0.15278920705437
612 => 0.14568392236858
613 => 0.14717753935278
614 => 0.14496836251206
615 => 0.1451728302396
616 => 0.14558588759003
617 => 0.14424703357335
618 => 0.14450244472759
619 => 0.14449331964386
620 => 0.14441468460204
621 => 0.14406639696331
622 => 0.14356131098053
623 => 0.14557341807864
624 => 0.14591531428308
625 => 0.14667530719359
626 => 0.14893653058715
627 => 0.14871058104681
628 => 0.14907911412166
629 => 0.1482746084885
630 => 0.14521014894855
701 => 0.14537656384513
702 => 0.14330136741817
703 => 0.14662223975528
704 => 0.14583581335248
705 => 0.14532879913458
706 => 0.14519045560778
707 => 0.14745728413676
708 => 0.14813555476081
709 => 0.14771290202495
710 => 0.14684602893295
711 => 0.14851068153762
712 => 0.14895607234857
713 => 0.14905577892577
714 => 0.15200522417576
715 => 0.14922062015099
716 => 0.14989090201634
717 => 0.15512024978938
718 => 0.1503779529599
719 => 0.15289005335631
720 => 0.15276709911425
721 => 0.15405220467221
722 => 0.15266168294907
723 => 0.15267892013236
724 => 0.15382000680724
725 => 0.15221755636843
726 => 0.15182076710447
727 => 0.15127260557817
728 => 0.15246949621676
729 => 0.15318697802389
730 => 0.15896935445701
731 => 0.16270503334121
801 => 0.1625428576687
802 => 0.16402483973535
803 => 0.16335719324092
804 => 0.16120118659417
805 => 0.16488122704317
806 => 0.16371670826568
807 => 0.1638127097788
808 => 0.16380913659769
809 => 0.16458343978073
810 => 0.1640347750117
811 => 0.16295330043267
812 => 0.16367123372854
813 => 0.16580323895141
814 => 0.17242104858113
815 => 0.17612446252424
816 => 0.17219809841161
817 => 0.17490645180039
818 => 0.17328240485211
819 => 0.17298726721039
820 => 0.17468831328429
821 => 0.17639233681416
822 => 0.176283797882
823 => 0.17504676430189
824 => 0.17434799542106
825 => 0.17963930749151
826 => 0.18353785608986
827 => 0.18327200121166
828 => 0.18444539818342
829 => 0.18789052798433
830 => 0.18820550747755
831 => 0.18816582730113
901 => 0.18738511776246
902 => 0.19077729545809
903 => 0.19360710977147
904 => 0.18720440606113
905 => 0.18964247181648
906 => 0.19073699808363
907 => 0.19234408737512
908 => 0.1950555163893
909 => 0.19800084746972
910 => 0.19841734957841
911 => 0.19812182140083
912 => 0.19617929637855
913 => 0.19940211279185
914 => 0.20128996306242
915 => 0.20241413469586
916 => 0.20526484691394
917 => 0.19074375750524
918 => 0.18046500867678
919 => 0.17885983362029
920 => 0.18212402021806
921 => 0.1829847601925
922 => 0.18263779698808
923 => 0.17106813067869
924 => 0.17879892172157
925 => 0.18711660286032
926 => 0.18743611886769
927 => 0.19160012396026
928 => 0.19295609470674
929 => 0.19630866459488
930 => 0.19609896043557
1001 => 0.1969152578523
1002 => 0.19672760521249
1003 => 0.2029375349634
1004 => 0.20978800966214
1005 => 0.2095507995065
1006 => 0.20856596271742
1007 => 0.21002861328883
1008 => 0.21709903731942
1009 => 0.21644810597592
1010 => 0.21708043032993
1011 => 0.22541685873363
1012 => 0.23625540150155
1013 => 0.23121981021395
1014 => 0.24214559435569
1015 => 0.24902279632198
1016 => 0.26091620600673
1017 => 0.25942709253792
1018 => 0.26405710965032
1019 => 0.25676126864139
1020 => 0.24000854295216
1021 => 0.23735735998498
1022 => 0.24266509542392
1023 => 0.2557136450793
1024 => 0.24225415015942
1025 => 0.24497698845203
1026 => 0.24419281084059
1027 => 0.24415102534821
1028 => 0.24574580763823
1029 => 0.24343249274831
1030 => 0.23400763172933
1031 => 0.23832698999327
1101 => 0.23665907833495
1102 => 0.23850975067091
1103 => 0.24849706599279
1104 => 0.24408143582113
1105 => 0.23942992813195
1106 => 0.24526395102637
1107 => 0.25269266695873
1108 => 0.25222779126637
1109 => 0.25132573812023
1110 => 0.25641056447509
1111 => 0.26480920789898
1112 => 0.26707932746798
1113 => 0.26875508332326
1114 => 0.26898614174358
1115 => 0.27136618707484
1116 => 0.25856808347998
1117 => 0.27887900256364
1118 => 0.28238613721157
1119 => 0.28172694125359
1120 => 0.28562497381198
1121 => 0.28447807374976
1122 => 0.28281639550271
1123 => 0.28899560624306
1124 => 0.28191163976585
1125 => 0.27185684119802
1126 => 0.26634057984234
1127 => 0.27360483777961
1128 => 0.27804086661423
1129 => 0.28097279948949
1130 => 0.28186000060602
1201 => 0.25956156383052
1202 => 0.24754394313652
1203 => 0.25524710021907
1204 => 0.26464548350329
1205 => 0.2585158749863
1206 => 0.25875614403528
1207 => 0.25001693312284
1208 => 0.26541870975289
1209 => 0.26317480044722
1210 => 0.27481620589443
1211 => 0.27203789105633
1212 => 0.28153100528178
1213 => 0.27903115015731
1214 => 0.28940790901394
1215 => 0.29354747906137
1216 => 0.30049846144365
1217 => 0.30561163237965
1218 => 0.30861418415264
1219 => 0.30843392220647
1220 => 0.32033152819641
1221 => 0.31331592561484
1222 => 0.30450267532181
1223 => 0.30434327142946
1224 => 0.30890777864094
1225 => 0.31847373354481
1226 => 0.3209540464724
1227 => 0.32234020302841
1228 => 0.32021725601042
1229 => 0.31260232222089
1230 => 0.30931423241916
1231 => 0.31211578019536
]
'min_raw' => 0.11552128307199
'max_raw' => 0.32234020302841
'avg_raw' => 0.2189307430502
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.115521'
'max' => '$0.32234'
'avg' => '$0.21893'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.045733146188371
'max_diff' => 0.16654310367058
'year' => 2036
]
11 => [
'items' => [
101 => 0.30868972800481
102 => 0.31460405526617
103 => 0.32272568982815
104 => 0.32104860440753
105 => 0.32665484952598
106 => 0.3324567234294
107 => 0.34075366368974
108 => 0.3429227911086
109 => 0.34650827624745
110 => 0.35019891822584
111 => 0.35138425296371
112 => 0.35364742476607
113 => 0.35363549673354
114 => 0.36045571728898
115 => 0.36797863176628
116 => 0.37081835782559
117 => 0.37734815131557
118 => 0.36616610879524
119 => 0.37464781649695
120 => 0.38229852915482
121 => 0.37317703412225
122 => 0.38574888998887
123 => 0.38623702666374
124 => 0.39360731091161
125 => 0.38613611585078
126 => 0.38169974407255
127 => 0.39450738316761
128 => 0.40070459628885
129 => 0.39883794526214
130 => 0.38463263878093
131 => 0.37636454111461
201 => 0.35472533472492
202 => 0.38035790943766
203 => 0.39284278886778
204 => 0.38460030595933
205 => 0.38875733490176
206 => 0.41143673689045
207 => 0.42007158478521
208 => 0.41827559678524
209 => 0.41857908919276
210 => 0.42323829638319
211 => 0.44389978693786
212 => 0.4315189428679
213 => 0.44098363425801
214 => 0.44600367244384
215 => 0.4506665636806
216 => 0.43921597652502
217 => 0.42431893087813
218 => 0.41960041118633
219 => 0.38378075347567
220 => 0.38191618473494
221 => 0.38086954579856
222 => 0.37427063535466
223 => 0.36908569933945
224 => 0.36496244571582
225 => 0.35414179689966
226 => 0.35779344823164
227 => 0.34054759246361
228 => 0.35158087982839
301 => 0.32405607760687
302 => 0.34697955080087
303 => 0.3345033465438
304 => 0.34288078215598
305 => 0.34285155407233
306 => 0.32742603904193
307 => 0.31852892389468
308 => 0.32419851194741
309 => 0.3302767603924
310 => 0.33126293575291
311 => 0.33914354352036
312 => 0.34134285175515
313 => 0.33467884512783
314 => 0.32348568726054
315 => 0.32608560254437
316 => 0.31847623669443
317 => 0.30514111573246
318 => 0.31471863241622
319 => 0.31798881770574
320 => 0.31943311782794
321 => 0.30631955791083
322 => 0.30219899267563
323 => 0.30000523831931
324 => 0.32179289134828
325 => 0.32298646816405
326 => 0.3168799604198
327 => 0.34448195446663
328 => 0.33823477312003
329 => 0.34521440528077
330 => 0.32584968748338
331 => 0.32658944578129
401 => 0.31742187804264
402 => 0.32255510339919
403 => 0.31892710516875
404 => 0.3221403895179
405 => 0.32406641890791
406 => 0.3332324823389
407 => 0.3470842125216
408 => 0.33186337812359
409 => 0.32523144261002
410 => 0.32934585810322
411 => 0.34030308875295
412 => 0.3569038540776
413 => 0.34707586688387
414 => 0.3514373607104
415 => 0.35239015308214
416 => 0.34514335917735
417 => 0.35717105370559
418 => 0.36361679291609
419 => 0.37022878758827
420 => 0.37596979729824
421 => 0.36758781151532
422 => 0.37655773781351
423 => 0.36932956062231
424 => 0.36284513844659
425 => 0.36285497263838
426 => 0.35878719988525
427 => 0.35090537760372
428 => 0.34945184864615
429 => 0.35701328984387
430 => 0.36307684961329
501 => 0.3635762734384
502 => 0.3669333716837
503 => 0.36892006784441
504 => 0.38839239100181
505 => 0.39622432045922
506 => 0.4058010555489
507 => 0.40953173358155
508 => 0.42075973693773
509 => 0.41169221233377
510 => 0.4097303963483
511 => 0.38249493285813
512 => 0.38695473847889
513 => 0.39409531758495
514 => 0.38261267837755
515 => 0.38989577001543
516 => 0.39133360658172
517 => 0.38222250269117
518 => 0.38708913694667
519 => 0.37416479922055
520 => 0.34736592776589
521 => 0.35720088851038
522 => 0.36444273003032
523 => 0.35410772926875
524 => 0.3726328181141
525 => 0.3618108436461
526 => 0.35838079728613
527 => 0.34499896353607
528 => 0.35131467395208
529 => 0.359856762722
530 => 0.3545787449866
531 => 0.36553142428591
601 => 0.3810433391466
602 => 0.39209805342684
603 => 0.39294669712234
604 => 0.38583925644848
605 => 0.39722897548742
606 => 0.39731193715618
607 => 0.38446428755189
608 => 0.37659517370528
609 => 0.37480729448257
610 => 0.37927376731526
611 => 0.38469688989052
612 => 0.39324764268225
613 => 0.39841468351124
614 => 0.41188758560656
615 => 0.41553296661517
616 => 0.41953813513318
617 => 0.42489027542146
618 => 0.43131689209815
619 => 0.41725582067705
620 => 0.41781449325773
621 => 0.40472101823918
622 => 0.39072876238761
623 => 0.40134714041964
624 => 0.41522925719288
625 => 0.41204468426672
626 => 0.41168635475761
627 => 0.41228896559962
628 => 0.40988790161173
629 => 0.39902797818207
630 => 0.39357419262241
701 => 0.40061096740345
702 => 0.40435070002876
703 => 0.41015069919166
704 => 0.40943572687171
705 => 0.4243759018409
706 => 0.43018120206649
707 => 0.42869595784598
708 => 0.42896927852695
709 => 0.4394794972881
710 => 0.45116902214184
711 => 0.46211780473604
712 => 0.47325537665201
713 => 0.45982859900048
714 => 0.45301130935755
715 => 0.46004501210285
716 => 0.45631283041966
717 => 0.47775905340829
718 => 0.47924394335681
719 => 0.50068861553941
720 => 0.52104216302477
721 => 0.50825846452089
722 => 0.52031291641962
723 => 0.53335078896197
724 => 0.55850296041475
725 => 0.55003259393352
726 => 0.54354442595645
727 => 0.53741313856873
728 => 0.55017137430812
729 => 0.56658464076905
730 => 0.57011990116043
731 => 0.57584837356786
801 => 0.56982558527573
802 => 0.57707937038524
803 => 0.60268841929651
804 => 0.59576862822335
805 => 0.58594141248755
806 => 0.6061572970838
807 => 0.61347334713192
808 => 0.66482121781477
809 => 0.72965002562662
810 => 0.70281047350361
811 => 0.68615029739393
812 => 0.69006583396437
813 => 0.71373911998362
814 => 0.72134222810046
815 => 0.70067435929035
816 => 0.70797459995752
817 => 0.74819964377748
818 => 0.76977908921297
819 => 0.74047130380539
820 => 0.6596122862295
821 => 0.58505657923244
822 => 0.6048321100153
823 => 0.60259017853069
824 => 0.64580696993882
825 => 0.59560359349479
826 => 0.59644888960037
827 => 0.64055935848744
828 => 0.62879144163326
829 => 0.60972892345039
830 => 0.58519575671102
831 => 0.53984392895004
901 => 0.49967455037286
902 => 0.57845595221811
903 => 0.57505875491586
904 => 0.57013910978577
905 => 0.58108724766158
906 => 0.63424829750339
907 => 0.63302276323901
908 => 0.62522653952211
909 => 0.63113990649862
910 => 0.6086922816287
911 => 0.61447754568059
912 => 0.58504476922754
913 => 0.59834961340564
914 => 0.60968802384778
915 => 0.61196437761208
916 => 0.61709311887654
917 => 0.57326858630741
918 => 0.59294451481027
919 => 0.60450227942052
920 => 0.55228387843634
921 => 0.60347008952802
922 => 0.57250569869617
923 => 0.56199591937829
924 => 0.57614595267167
925 => 0.57063167093589
926 => 0.56589081530894
927 => 0.56324533641087
928 => 0.57363555917934
929 => 0.57315084286819
930 => 0.55615042176363
1001 => 0.53397406545855
1002 => 0.54141717854862
1003 => 0.53871302578344
1004 => 0.52891282731978
1005 => 0.53551697780381
1006 => 0.50643564135622
1007 => 0.45640271351447
1008 => 0.48945599819675
1009 => 0.48818348269154
1010 => 0.48754182266983
1011 => 0.51238045258288
1012 => 0.50999279144143
1013 => 0.50565916308966
1014 => 0.52883323683663
1015 => 0.52037438818371
1016 => 0.54644256657662
1017 => 0.56361275485026
1018 => 0.55925783970666
1019 => 0.57540648476874
1020 => 0.54158865284124
1021 => 0.55282158007163
1022 => 0.55513667080565
1023 => 0.52854727236381
1024 => 0.51038344233288
1025 => 0.50917212195263
1026 => 0.47767854380896
1027 => 0.49450215904603
1028 => 0.50930624424615
1029 => 0.50221623627871
1030 => 0.49997175156418
1031 => 0.51143833720137
1101 => 0.51232938911004
1102 => 0.49201331116283
1103 => 0.49623766709457
1104 => 0.51385393357067
1105 => 0.49579378237806
1106 => 0.46070585871976
1107 => 0.452003568524
1108 => 0.45084252259686
1109 => 0.42724122139863
1110 => 0.4525850971665
1111 => 0.44152181622018
1112 => 0.47647058817115
1113 => 0.45650803706678
1114 => 0.45564749138732
1115 => 0.4543466503782
1116 => 0.43403203547941
1117 => 0.43847964508112
1118 => 0.45326417678727
1119 => 0.45853946425969
1120 => 0.45798920855716
1121 => 0.45319172451623
1122 => 0.45538798814308
1123 => 0.44831305777204
1124 => 0.44581475260609
1125 => 0.43792941428936
1126 => 0.42634014534408
1127 => 0.42795170427204
1128 => 0.40499032999427
1129 => 0.39247975463537
1130 => 0.38901699226276
1201 => 0.38438644169931
1202 => 0.38954002527033
1203 => 0.40492528330589
1204 => 0.38636739795043
1205 => 0.3545512051928
1206 => 0.35646341258969
1207 => 0.36075957487103
1208 => 0.35275370488172
1209 => 0.34517682081857
1210 => 0.35176430677944
1211 => 0.33828336648258
1212 => 0.36238868209995
1213 => 0.36173670086687
1214 => 0.3707216718663
1215 => 0.37634015862242
1216 => 0.36339136565626
1217 => 0.36013477924253
1218 => 0.36198987886739
1219 => 0.33132921435393
1220 => 0.36821604144996
1221 => 0.36853504026245
1222 => 0.36580357876015
1223 => 0.38544467543577
1224 => 0.42689351563301
1225 => 0.41129879467507
1226 => 0.40526004736722
1227 => 0.39378038432071
1228 => 0.40907635373525
1229 => 0.4079018619385
1230 => 0.40259036462085
1231 => 0.39937795447025
]
'min_raw' => 0.30000523831931
'max_raw' => 0.76977908921297
'avg_raw' => 0.53489216376614
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.3000052'
'max' => '$0.769779'
'avg' => '$0.534892'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.18448395524732
'max_diff' => 0.44743888618456
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0094168216225358
]
1 => [
'year' => 2028
'avg' => 0.016161999627121
]
2 => [
'year' => 2029
'avg' => 0.044151670064274
]
3 => [
'year' => 2030
'avg' => 0.034062947701948
]
4 => [
'year' => 2031
'avg' => 0.033454036017949
]
5 => [
'year' => 2032
'avg' => 0.05865545351207
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0094168216225358
'min' => '$0.009416'
'max_raw' => 0.05865545351207
'max' => '$0.058655'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.05865545351207
]
1 => [
'year' => 2033
'avg' => 0.1508678579022
]
2 => [
'year' => 2034
'avg' => 0.095627298708397
]
3 => [
'year' => 2035
'avg' => 0.11279261812072
]
4 => [
'year' => 2036
'avg' => 0.2189307430502
]
5 => [
'year' => 2037
'avg' => 0.53489216376614
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.05865545351207
'min' => '$0.058655'
'max_raw' => 0.53489216376614
'max' => '$0.534892'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.53489216376614
]
]
]
]
'prediction_2025_max_price' => '$0.016101'
'last_price' => 0.015612
'sma_50day_nextmonth' => '$0.0148072'
'sma_200day_nextmonth' => '$0.018168'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.015485'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.015271'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015527'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015523'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.01684'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.019664'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.018229'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.015442'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.01540063'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.015467'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015776'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.0171012'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.018349'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022176'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018486'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.021799'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.071753'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.103225'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.015847'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.0163018'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.017425'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.019186'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032759'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.062683'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.110941'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.86'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 59.64
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.015665'
'vwma_10_action' => 'SELL'
'hma_9' => '0.01540087'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 46.51
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 15.52
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.86
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000683'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -53.49
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 46
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009355'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 20
'buy_signals' => 13
'sell_pct' => 60.61
'buy_pct' => 39.39
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767678385
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de LORDS para 2026
A previsão de preço para LORDS em 2026 sugere que o preço médio poderia variar entre $0.005393 na extremidade inferior e $0.016101 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, LORDS poderia potencialmente ganhar 3.13% até 2026 se LORDS atingir a meta de preço prevista.
Previsão de preço de LORDS 2027-2032
A previsão de preço de LORDS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.009416 na extremidade inferior e $0.058655 na extremidade superior. Considerando a volatilidade de preços no mercado, se LORDS atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de LORDS | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005192 | $0.009416 | $0.013641 |
| 2028 | $0.009371 | $0.016161 | $0.022952 |
| 2029 | $0.020585 | $0.044151 | $0.067717 |
| 2030 | $0.0175072 | $0.034062 | $0.050618 |
| 2031 | $0.020699 | $0.033454 | $0.046209 |
| 2032 | $0.031595 | $0.058655 | $0.085715 |
Previsão de preço de LORDS 2032-2037
A previsão de preço de LORDS para 2032-2037 é atualmente estimada entre $0.058655 na extremidade inferior e $0.534892 na extremidade superior. Comparado ao preço atual, LORDS poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de LORDS | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.031595 | $0.058655 | $0.085715 |
| 2033 | $0.07342 | $0.150867 | $0.228314 |
| 2034 | $0.059026 | $0.095627 | $0.132227 |
| 2035 | $0.069788 | $0.112792 | $0.155797 |
| 2036 | $0.115521 | $0.21893 | $0.32234 |
| 2037 | $0.3000052 | $0.534892 | $0.769779 |
LORDS Histograma de preços potenciais
Previsão de preço de LORDS baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para LORDS é Baixista, com 13 indicadores técnicos mostrando sinais de alta e 20 indicando sinais de baixa. A previsão de preço de LORDS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de LORDS
De acordo com nossos indicadores técnicos, o SMA de 200 dias de LORDS está projetado para aumentar no próximo mês, alcançando $0.018168 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para LORDS é esperado para alcançar $0.0148072 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 46.86, sugerindo que o mercado de LORDS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de LORDS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.015485 | BUY |
| SMA 5 | $0.015271 | BUY |
| SMA 10 | $0.015527 | BUY |
| SMA 21 | $0.015523 | BUY |
| SMA 50 | $0.01684 | SELL |
| SMA 100 | $0.019664 | SELL |
| SMA 200 | $0.018229 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.015442 | BUY |
| EMA 5 | $0.01540063 | BUY |
| EMA 10 | $0.015467 | BUY |
| EMA 21 | $0.015776 | SELL |
| EMA 50 | $0.0171012 | SELL |
| EMA 100 | $0.018349 | SELL |
| EMA 200 | $0.022176 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.018486 | SELL |
| SMA 50 | $0.021799 | SELL |
| SMA 100 | $0.071753 | SELL |
| SMA 200 | $0.103225 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.019186 | SELL |
| EMA 50 | $0.032759 | SELL |
| EMA 100 | $0.062683 | SELL |
| EMA 200 | $0.110941 | SELL |
Osciladores de LORDS
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 46.86 | NEUTRAL |
| Stoch RSI (14) | 59.64 | NEUTRAL |
| Estocástico Rápido (14) | 46.51 | NEUTRAL |
| Índice de Canal de Commodities (20) | 15.52 | NEUTRAL |
| Índice Direcional Médio (14) | 13.86 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000683 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -53.49 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 46 | NEUTRAL |
| VWMA (10) | 0.015665 | SELL |
| Média Móvel de Hull (9) | 0.01540087 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.009355 | SELL |
Previsão do preço de LORDS com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do LORDS
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de LORDS por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.021937 | $0.030825 | $0.043315 | $0.060865 | $0.085526 | $0.120178 |
| Amazon.com stock | $0.032575 | $0.06797 | $0.141824 | $0.295924 | $0.617465 | $1.28 |
| Apple stock | $0.022144 | $0.03141 | $0.044552 | $0.063194 | $0.089637 | $0.127143 |
| Netflix stock | $0.024633 | $0.038867 | $0.061326 | $0.096764 | $0.152678 | $0.2409027 |
| Google stock | $0.020217 | $0.026181 | $0.0339049 | $0.0439067 | $0.056859 | $0.073632 |
| Tesla stock | $0.035391 | $0.080229 | $0.181873 | $0.412293 | $0.934638 | $2.11 |
| Kodak stock | $0.0117073 | $0.008779 | $0.006583 | $0.004936 | $0.0037021 | $0.002776 |
| Nokia stock | $0.010342 | $0.006851 | $0.004538 | $0.0030067 | $0.001991 | $0.001319 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para LORDS
Você pode fazer perguntas como: 'Devo investir em LORDS agora?', 'Devo comprar LORDS hoje?', 'LORDS será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para LORDS regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como LORDS, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre LORDS para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de LORDS é de $0.01561 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de LORDS com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se LORDS tiver 1% da média anterior do crescimento anual do Bitcoin | $0.016017 | $0.016434 | $0.016861 | $0.017299 |
| Se LORDS tiver 2% da média anterior do crescimento anual do Bitcoin | $0.016423 | $0.017277 | $0.018175 | $0.01912 |
| Se LORDS tiver 5% da média anterior do crescimento anual do Bitcoin | $0.017641 | $0.019933 | $0.022524 | $0.025451 |
| Se LORDS tiver 10% da média anterior do crescimento anual do Bitcoin | $0.01967 | $0.024782 | $0.031224 | $0.039341 |
| Se LORDS tiver 20% da média anterior do crescimento anual do Bitcoin | $0.023728 | $0.036063 | $0.054811 | $0.0833062 |
| Se LORDS tiver 50% da média anterior do crescimento anual do Bitcoin | $0.0359023 | $0.082563 | $0.189867 | $0.436629 |
| Se LORDS tiver 100% da média anterior do crescimento anual do Bitcoin | $0.056192 | $0.202255 | $0.727981 | $2.62 |
Perguntas Frequentes sobre LORDS
LORDS é um bom investimento?
A decisão de adquirir LORDS depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de LORDS experimentou uma escalada de 3.4029% nas últimas 24 horas, e LORDS registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em LORDS dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
LORDS pode subir?
Parece que o valor médio de LORDS pode potencialmente subir para $0.016101 até o final deste ano. Observando as perspectivas de LORDS em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.050618. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de LORDS na próxima semana?
Com base na nossa nova previsão experimental de LORDS, o preço de LORDS aumentará 0.86% na próxima semana e atingirá $0.015745 até 13 de janeiro de 2026.
Qual será o preço de LORDS no próximo mês?
Com base na nossa nova previsão experimental de LORDS, o preço de LORDS diminuirá -11.62% no próximo mês e atingirá $0.013798 até 5 de fevereiro de 2026.
Até onde o preço de LORDS pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de LORDS em 2026, espera-se que LORDS fluctue dentro do intervalo de $0.005393 e $0.016101. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de LORDS não considera flutuações repentinas e extremas de preço.
Onde estará LORDS em 5 anos?
O futuro de LORDS parece seguir uma tendência de alta, com um preço máximo de $0.050618 projetada após um período de cinco anos. Com base na previsão de LORDS para 2030, o valor de LORDS pode potencialmente atingir seu pico mais alto de aproximadamente $0.050618, enquanto seu pico mais baixo está previsto para cerca de $0.0175072.
Quanto será LORDS em 2026?
Com base na nossa nova simulação experimental de previsão de preços de LORDS, espera-se que o valor de LORDS em 2026 aumente 3.13% para $0.016101 se o melhor cenário ocorrer. O preço ficará entre $0.016101 e $0.005393 durante 2026.
Quanto será LORDS em 2027?
De acordo com nossa última simulação experimental para previsão de preços de LORDS, o valor de LORDS pode diminuir -12.62% para $0.013641 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.013641 e $0.005192 ao longo do ano.
Quanto será LORDS em 2028?
Nosso novo modelo experimental de previsão de preços de LORDS sugere que o valor de LORDS em 2028 pode aumentar 47.02%, alcançando $0.022952 no melhor cenário. O preço é esperado para variar entre $0.022952 e $0.009371 durante o ano.
Quanto será LORDS em 2029?
Com base no nosso modelo de previsão experimental, o valor de LORDS pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.067717 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.067717 e $0.020585.
Quanto será LORDS em 2030?
Usando nossa nova simulação experimental para previsões de preços de LORDS, espera-se que o valor de LORDS em 2030 aumente 224.23%, alcançando $0.050618 no melhor cenário. O preço está previsto para variar entre $0.050618 e $0.0175072 ao longo de 2030.
Quanto será LORDS em 2031?
Nossa simulação experimental indica que o preço de LORDS poderia aumentar 195.98% em 2031, potencialmente atingindo $0.046209 sob condições ideais. O preço provavelmente oscilará entre $0.046209 e $0.020699 durante o ano.
Quanto será LORDS em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de LORDS, LORDS poderia ver um 449.04% aumento em valor, atingindo $0.085715 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.085715 e $0.031595 ao longo do ano.
Quanto será LORDS em 2033?
De acordo com nossa previsão experimental de preços de LORDS, espera-se que o valor de LORDS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.228314. Ao longo do ano, o preço de LORDS poderia variar entre $0.228314 e $0.07342.
Quanto será LORDS em 2034?
Os resultados da nossa nova simulação de previsão de preços de LORDS sugerem que LORDS pode aumentar 746.96% em 2034, atingindo potencialmente $0.132227 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.132227 e $0.059026.
Quanto será LORDS em 2035?
Com base em nossa previsão experimental para o preço de LORDS, LORDS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.155797 em 2035. A faixa de preço esperada para o ano está entre $0.155797 e $0.069788.
Quanto será LORDS em 2036?
Nossa recente simulação de previsão de preços de LORDS sugere que o valor de LORDS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.32234 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.32234 e $0.115521.
Quanto será LORDS em 2037?
De acordo com a simulação experimental, o valor de LORDS poderia aumentar 4830.69% em 2037, com um pico de $0.769779 sob condições favoráveis. O preço é esperado para cair entre $0.769779 e $0.3000052 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Bad Idea AI
Previsão de Preço do Vector ETH
Previsão de Preço do Terracoin
Previsão de Preço do Phantasma
Previsão de Preço do Bifrost Native Coin
Previsão de Preço do NvirWorld
Previsão de Preço do OPEN Ticketing Ecosystem
Previsão de Preço do BabyBonk [OLD]
Previsão de Preço do Everest
Previsão de Preço do Saros
Previsão de Preço do Kasta
Previsão de Preço do UX Chain
Previsão de Preço do Guacamole
Previsão de Preço do RMRK
Previsão de Preço do Cult DAO
Previsão de Preço do Wrapped Ampleforth
Previsão de Preço do SpaceN
Previsão de Preço do Polaris Share
Previsão de Preço do Prisma mkUSD
Previsão de Preço do Source
Previsão de Preço do VLaunch
Previsão de Preço do agEUR
Previsão de Preço do Solve.CarePrevisão de Preço do Hubble
Previsão de Preço do NumberGoUpTech
Como ler e prever os movimentos de preço de LORDS?
Traders de LORDS utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de LORDS
Médias móveis são ferramentas populares para a previsão de preço de LORDS. Uma média móvel simples (SMA) calcula o preço médio de fechamento de LORDS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de LORDS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de LORDS.
Como ler gráficos de LORDS e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de LORDS em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de LORDS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de LORDS?
A ação de preço de LORDS é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de LORDS. A capitalização de mercado de LORDS pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de LORDS, grandes detentores de LORDS, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de LORDS.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


