Previsão de Preço LORDS - Projeção LORDS
Previsão de Preço LORDS até $0.016299 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.00546 | $0.016299 |
| 2027 | $0.005256 | $0.0138088 |
| 2028 | $0.009486 | $0.023235 |
| 2029 | $0.020838 | $0.06855 |
| 2030 | $0.017722 | $0.051241 |
| 2031 | $0.020953 | $0.046777 |
| 2032 | $0.031984 | $0.086769 |
| 2033 | $0.074324 | $0.231123 |
| 2034 | $0.059752 | $0.133854 |
| 2035 | $0.070646 | $0.157713 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em LORDS hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.71, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de LORDS para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'LORDS'
'name_with_ticker' => 'LORDS <small>LORDS</small>'
'name_lang' => 'LORDS'
'name_lang_with_ticker' => 'LORDS <small>LORDS</small>'
'name_with_lang' => 'LORDS'
'name_with_lang_with_ticker' => 'LORDS <small>LORDS</small>'
'image' => '/uploads/coins/lords.png?1717253286'
'price_for_sd' => 0.0158
'ticker' => 'LORDS'
'marketcap' => '$3.27M'
'low24h' => '$0.01508'
'high24h' => '$0.01582'
'volume24h' => '$2.44K'
'current_supply' => '207.09M'
'max_supply' => '300M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0158'
'change_24h_pct' => '4.1105%'
'ath_price' => '$1.09'
'ath_days' => 1462
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '5 de jan. de 2022'
'ath_pct' => '-98.55%'
'fdv' => '$4.74M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.779247'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.015939'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.013967'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00546'
'current_year_max_price_prediction' => '$0.016299'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.017722'
'grand_prediction_max_price' => '$0.051241'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.01610350805558
107 => 0.016163632709086
108 => 0.016299096623477
109 => 0.015141572306687
110 => 0.015661266741797
111 => 0.015966538533641
112 => 0.014587309472208
113 => 0.015939275609656
114 => 0.015121422383591
115 => 0.014843830714922
116 => 0.015217571326864
117 => 0.015071924246915
118 => 0.014946705440259
119 => 0.014876831194613
120 => 0.015151265051777
121 => 0.015138462384321
122 => 0.014689435328684
123 => 0.01410369783929
124 => 0.014300290566908
125 => 0.014228866585898
126 => 0.013970016864839
127 => 0.014144450323198
128 => 0.013376333651338
129 => 0.012054828840633
130 => 0.012927855397372
131 => 0.012894244824608
201 => 0.012877296849702
202 => 0.013533352178409
203 => 0.013470287596325
204 => 0.013355824762314
205 => 0.013967914665129
206 => 0.013744493616831
207 => 0.014433024643068
208 => 0.014886535708343
209 => 0.014771510632643
210 => 0.015198039981543
211 => 0.014304819666291
212 => 0.014601511625239
213 => 0.01466265942678
214 => 0.013960361570741
215 => 0.013480605741887
216 => 0.013448611497719
217 => 0.012616781004913
218 => 0.013061138139869
219 => 0.013452154029883
220 => 0.013264887762625
221 => 0.013205604856832
222 => 0.013508468365636
223 => 0.01353200345412
224 => 0.012995400942534
225 => 0.013106977596685
226 => 0.013572270792567
227 => 0.013095253401968
228 => 0.012168486532383
301 => 0.011938635535171
302 => 0.011907969175149
303 => 0.011284595040998
304 => 0.01195399527788
305 => 0.01166178413567
306 => 0.012584875632684
307 => 0.012057610720229
308 => 0.012034881383684
309 => 0.012000522657827
310 => 0.011463958789303
311 => 0.011581432176097
312 => 0.011971931605503
313 => 0.012111266201205
314 => 0.012096732461339
315 => 0.011970017945262
316 => 0.012028027201839
317 => 0.011841159174641
318 => 0.011775172184916
319 => 0.011566899094191
320 => 0.011260795187737
321 => 0.011303360813373
322 => 0.010696888878242
323 => 0.010366450780081
324 => 0.010274989869614
325 => 0.010152684517723
326 => 0.010288804584552
327 => 0.010695170819449
328 => 0.010205006924758
329 => 0.0093646553083081
330 => 0.0094151618723462
331 => 0.0095286351262063
401 => 0.0093171784683386
402 => 0.009117052487879
403 => 0.0092910457911546
404 => 0.0089349777331054
405 => 0.0095716642498863
406 => 0.0095544436639007
407 => 0.0097917610249266
408 => 0.0099401604410185
409 => 0.0095981478318081
410 => 0.0095121325854921
411 => 0.0095611307789686
412 => 0.0087512997856256
413 => 0.0097255805555461
414 => 0.0097340061761023
415 => 0.0096618608975579
416 => 0.010180635329996
417 => 0.011275411192245
418 => 0.01086351247561
419 => 0.010704012842824
420 => 0.010400803924305
421 => 0.010804811805468
422 => 0.010773790303699
423 => 0.010633499308147
424 => 0.010548650876302
425 => 0.010704986713571
426 => 0.010529279135972
427 => 0.010497717226914
428 => 0.010306486397718
429 => 0.010238225692144
430 => 0.010187688183273
501 => 0.01013205135172
502 => 0.010254772338292
503 => 0.0099766704374294
504 => 0.0096413068076547
505 => 0.0096134249505237
506 => 0.0096904092094603
507 => 0.0096563494056849
508 => 0.0096132618852869
509 => 0.0095309960746593
510 => 0.009506589565977
511 => 0.0095858988788397
512 => 0.0094963632886379
513 => 0.0096284779292367
514 => 0.0095925500572303
515 => 0.0093918598847656
516 => 0.0091417256248562
517 => 0.0091394989052687
518 => 0.0090856078892736
519 => 0.0090169695778354
520 => 0.0089978759698251
521 => 0.0092763925604596
522 => 0.0098529135677728
523 => 0.0097397286990587
524 => 0.0098215163663565
525 => 0.010223830741232
526 => 0.01035171438299
527 => 0.01026094560316
528 => 0.010136695698955
529 => 0.010142162064161
530 => 0.010566761599834
531 => 0.01059324335205
601 => 0.010660154196561
602 => 0.010746153540761
603 => 0.010275591663349
604 => 0.010119998642052
605 => 0.010046270036589
606 => 0.0098192144683253
607 => 0.010064074432425
608 => 0.0099214050172931
609 => 0.0099406559956756
610 => 0.0099281187707493
611 => 0.0099349649433225
612 => 0.0095714862830292
613 => 0.0097039188029641
614 => 0.0094837240528626
615 => 0.0091889080004974
616 => 0.009187919673714
617 => 0.0092600754848648
618 => 0.0092171543849352
619 => 0.0091016548086268
620 => 0.0091180609782988
621 => 0.0089743256685894
622 => 0.0091355130473093
623 => 0.0091401353245749
624 => 0.0090780694038318
625 => 0.0093264008003218
626 => 0.0094281423760829
627 => 0.009387289257469
628 => 0.0094252760123749
629 => 0.0097444320413528
630 => 0.00979646839983
701 => 0.0098195795129367
702 => 0.0097886136830095
703 => 0.0094311095987016
704 => 0.0094469664250654
705 => 0.0093306195543774
706 => 0.0092323187089772
707 => 0.0092362502272732
708 => 0.0092867896400243
709 => 0.0095074982196058
710 => 0.0099719664138535
711 => 0.0099895926423033
712 => 0.010010956145378
713 => 0.0099240600419372
714 => 0.0098978513456557
715 => 0.0099324273810894
716 => 0.010106857214271
717 => 0.010555538102453
718 => 0.010396944310181
719 => 0.010268005088404
720 => 0.010381119547667
721 => 0.010363706463284
722 => 0.010216722507182
723 => 0.010212597157079
724 => 0.0099304879517061
725 => 0.0098261986017955
726 => 0.0097390466150876
727 => 0.0096438789207628
728 => 0.0095874603215171
729 => 0.0096741449317533
730 => 0.0096939707277365
731 => 0.0095044333124673
801 => 0.0094786000631309
802 => 0.009633380407889
803 => 0.0095652673489538
804 => 0.0096353233191912
805 => 0.0096515769052153
806 => 0.0096489597035136
807 => 0.0095778418472503
808 => 0.0096231702480675
809 => 0.0095159550670881
810 => 0.0093993746609725
811 => 0.0093250036250867
812 => 0.0092601050323899
813 => 0.0092961145435464
814 => 0.0091677472113504
815 => 0.009126679918257
816 => 0.009607814005792
817 => 0.0099632329293171
818 => 0.0099580649974077
819 => 0.0099266065409934
820 => 0.0098798656558767
821 => 0.010103437827394
822 => 0.010025549753304
823 => 0.010082219834971
824 => 0.010096644749191
825 => 0.010140304620029
826 => 0.010155909271161
827 => 0.010108741177313
828 => 0.0099504392932636
829 => 0.0095559660491035
830 => 0.0093723376890868
831 => 0.009311737271709
901 => 0.0093139399817841
902 => 0.009253179404582
903 => 0.0092710761176661
904 => 0.0092469556581313
905 => 0.0092012773431382
906 => 0.0092932940363137
907 => 0.0093038981030074
908 => 0.0092824203073026
909 => 0.0092874791056987
910 => 0.0091096521305497
911 => 0.0091231719292504
912 => 0.009047891972072
913 => 0.0090337778876145
914 => 0.0088434767112433
915 => 0.0085063305927052
916 => 0.0086931422699409
917 => 0.008467500033537
918 => 0.0083820458995731
919 => 0.008786572478914
920 => 0.0087459692301689
921 => 0.0086764741181254
922 => 0.0085736763633625
923 => 0.0085355476761687
924 => 0.0083038898428545
925 => 0.0082902022622158
926 => 0.008405018139694
927 => 0.0083520345628109
928 => 0.0082776255544174
929 => 0.0080081236687363
930 => 0.0077051143202229
1001 => 0.0077142602678057
1002 => 0.0078106419038784
1003 => 0.0080908845095945
1004 => 0.0079813888752949
1005 => 0.007901948536293
1006 => 0.0078870717487657
1007 => 0.0080732858913335
1008 => 0.0083368179161359
1009 => 0.0084604612459765
1010 => 0.0083379344612082
1011 => 0.0081971822881771
1012 => 0.0082057492207667
1013 => 0.0082627411852322
1014 => 0.0082687302348745
1015 => 0.0081771150397884
1016 => 0.008202904180566
1017 => 0.0081637281175163
1018 => 0.0079233046908934
1019 => 0.0079189561934968
1020 => 0.007859952407252
1021 => 0.0078581657960541
1022 => 0.0077577856364676
1023 => 0.0077437417582462
1024 => 0.0075444308587469
1025 => 0.0076756178963663
1026 => 0.0075876245191598
1027 => 0.0074549977441704
1028 => 0.0074321328381721
1029 => 0.0074314454914876
1030 => 0.0075676235345976
1031 => 0.0076740265766458
1101 => 0.0075891552016296
1102 => 0.0075698316347009
1103 => 0.007776156774926
1104 => 0.007749900020137
1105 => 0.0077271618398275
1106 => 0.0083132215137594
1107 => 0.0078493095510357
1108 => 0.0076470174561191
1109 => 0.0073966425744328
1110 => 0.0074781658984096
1111 => 0.0074953440605983
1112 => 0.0068932376036074
1113 => 0.0066489630889938
1114 => 0.0065651372808693
1115 => 0.0065168943431707
1116 => 0.0065388792556766
1117 => 0.0063190035419815
1118 => 0.0064667636579933
1119 => 0.0062763698755647
1120 => 0.0062444497383456
1121 => 0.0065848974065916
1122 => 0.0066322687107616
1123 => 0.0064301680100618
1124 => 0.0065599493770424
1125 => 0.0065128888492793
1126 => 0.0062796336305012
1127 => 0.0062707249968531
1128 => 0.0061536857273876
1129 => 0.0059705419339425
1130 => 0.0058868403059341
1201 => 0.0058432477713364
1202 => 0.0058612349007129
1203 => 0.0058521400576849
1204 => 0.0057927900549382
1205 => 0.0058555419303697
1206 => 0.0056952368195072
1207 => 0.0056314020326957
1208 => 0.0056025693404488
1209 => 0.0054602893277403
1210 => 0.0056867201001683
1211 => 0.0057313298148363
1212 => 0.0057760274244228
1213 => 0.0061650895995195
1214 => 0.00614565315273
1215 => 0.0063213491657739
1216 => 0.0063145219417913
1217 => 0.0062644105927845
1218 => 0.0060529990542414
1219 => 0.0061372639254563
1220 => 0.0058779097495253
1221 => 0.0060722355325025
1222 => 0.0059835533603904
1223 => 0.0060422520009052
1224 => 0.0059367065526166
1225 => 0.0059951197615643
1226 => 0.0057419084330954
1227 => 0.0055054632573506
1228 => 0.0056006156983353
1229 => 0.0057040572836871
1230 => 0.0059283449971557
1231 => 0.0057947610853473
]
'min_raw' => 0.0054602893277403
'max_raw' => 0.016299096623477
'avg_raw' => 0.010879692975608
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00546'
'max' => '$0.016299'
'avg' => '$0.010879'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.01034374067226
'max_diff' => 0.00049506662347652
'year' => 2026
]
1 => [
'items' => [
101 => 0.0058428029114005
102 => 0.0056818708362267
103 => 0.0053498219971684
104 => 0.0053517013575371
105 => 0.0053006228777251
106 => 0.0052564836135874
107 => 0.0058101048045535
108 => 0.005741253258001
109 => 0.0056315473296372
110 => 0.0057783930742924
111 => 0.0058172214199346
112 => 0.0058183268083488
113 => 0.005925461673012
114 => 0.0059826395694877
115 => 0.0059927174215648
116 => 0.0061612964459143
117 => 0.0062178019112651
118 => 0.0064505399260926
119 => 0.0059777884244515
120 => 0.005968052418378
121 => 0.0057804594950627
122 => 0.0056614850973694
123 => 0.0057886057738598
124 => 0.0059012173395275
125 => 0.0057839586503116
126 => 0.0057992701596571
127 => 0.0056418599497716
128 => 0.0056981266929669
129 => 0.0057465911921555
130 => 0.0057198319443151
131 => 0.0056797720551359
201 => 0.0058919844753481
202 => 0.0058800106189326
203 => 0.0060776277033767
204 => 0.0062316843524342
205 => 0.0065077814084653
206 => 0.0062196597372318
207 => 0.0062091594383521
208 => 0.0063118015442018
209 => 0.0062177861972935
210 => 0.0062772006512401
211 => 0.0064982088213906
212 => 0.0065028783757658
213 => 0.0064246573236007
214 => 0.0064198975654678
215 => 0.0064349207741806
216 => 0.0065229121768531
217 => 0.0064921652770566
218 => 0.0065277463679174
219 => 0.0065722410668757
220 => 0.0067562900071289
221 => 0.0068006635835292
222 => 0.006692858797938
223 => 0.0067025923630379
224 => 0.0066622704139193
225 => 0.0066233199163032
226 => 0.0067108749466808
227 => 0.0068708834855941
228 => 0.006869888080778
301 => 0.0069070069516843
302 => 0.0069301317007496
303 => 0.0068308633494103
304 => 0.0067662433028869
305 => 0.0067910227406044
306 => 0.0068306456011406
307 => 0.0067781735809561
308 => 0.0064542919649731
309 => 0.0065525369576246
310 => 0.0065361841869127
311 => 0.006512895852854
312 => 0.0066116819526712
313 => 0.0066021537923535
314 => 0.0063167483987344
315 => 0.0063350191260384
316 => 0.0063178595021763
317 => 0.0063733057574034
318 => 0.0062147919175522
319 => 0.0062635497070834
320 => 0.0062941301356015
321 => 0.0063121422429286
322 => 0.0063772143256116
323 => 0.0063695788677679
324 => 0.0063767396948314
325 => 0.0064732244150574
326 => 0.0069612110204031
327 => 0.0069877710546503
328 => 0.0068569797321409
329 => 0.0069092282857386
330 => 0.0068089224883336
331 => 0.006876258442122
401 => 0.0069223279915563
402 => 0.0067141485563277
403 => 0.0067018215212468
404 => 0.0066011017261351
405 => 0.0066552228389674
406 => 0.0065691122570056
407 => 0.0065902407817987
408 => 0.0065311635845254
409 => 0.0066374907774647
410 => 0.0067563811007462
411 => 0.0067864174915283
412 => 0.00670740467886
413 => 0.00665019419529
414 => 0.0065497514324461
415 => 0.0067167899855685
416 => 0.0067656371489092
417 => 0.0067165334122144
418 => 0.0067051550034844
419 => 0.0066835929395013
420 => 0.0067097294972888
421 => 0.0067653711167672
422 => 0.0067391315565606
423 => 0.0067564632483586
424 => 0.0066904127115875
425 => 0.0068308962113652
426 => 0.0070540178182076
427 => 0.0070547351906576
428 => 0.00702849548901
429 => 0.007017758768438
430 => 0.0070446822946868
501 => 0.0070592872032158
502 => 0.0071463529501738
503 => 0.0072397779655122
504 => 0.0076757517475685
505 => 0.0075533320541443
506 => 0.0079401539297811
507 => 0.0082460798108756
508 => 0.0083378136060984
509 => 0.008253422830902
510 => 0.0079647265476553
511 => 0.0079505617307009
512 => 0.0083819958622983
513 => 0.008260095959187
514 => 0.0082455963535942
515 => 0.0080913450475569
516 => 0.0081825266738208
517 => 0.0081625839146031
518 => 0.0081311032935448
519 => 0.0083050714846894
520 => 0.0086307244082643
521 => 0.0085799683461714
522 => 0.008542081300325
523 => 0.0083760712941792
524 => 0.0084760463975562
525 => 0.0084404471781406
526 => 0.0085934040165728
527 => 0.0085027957738944
528 => 0.008259172447529
529 => 0.0082979702652457
530 => 0.0082921060531482
531 => 0.0084127911225722
601 => 0.0083765644603187
602 => 0.0082850322159261
603 => 0.0086296113619745
604 => 0.0086072363088801
605 => 0.0086389590185188
606 => 0.0086529243363591
607 => 0.0088626635903932
608 => 0.0089485870518634
609 => 0.0089680931819191
610 => 0.0090497138247568
611 => 0.0089660623859706
612 => 0.0093007277835804
613 => 0.0095232607447237
614 => 0.009781744230533
615 => 0.010159458077112
616 => 0.010301481977474
617 => 0.01027582663108
618 => 0.010562204958767
619 => 0.011076820447789
620 => 0.010379845134831
621 => 0.011113761831764
622 => 0.010881412278991
623 => 0.010330515669155
624 => 0.010295044422126
625 => 0.010668118002348
626 => 0.011495559296278
627 => 0.01128829463691
628 => 0.01149589830701
629 => 0.01125371759832
630 => 0.011241691284874
701 => 0.011484136130547
702 => 0.01205062172744
703 => 0.011781505654751
704 => 0.011395661774583
705 => 0.011680562891304
706 => 0.011433755177647
707 => 0.010877628321648
708 => 0.011288136145531
709 => 0.01101364125429
710 => 0.011093753456506
711 => 0.01167070088986
712 => 0.011601281048265
713 => 0.011691116751393
714 => 0.011532559086782
715 => 0.011384441225787
716 => 0.011107968238862
717 => 0.011026118217387
718 => 0.011048738618667
719 => 0.011026107007839
720 => 0.010871422912573
721 => 0.010838018896928
722 => 0.010782344074056
723 => 0.010799600029688
724 => 0.010694915074445
725 => 0.010892477214005
726 => 0.010929146488019
727 => 0.011072915737875
728 => 0.011087842338332
729 => 0.011488237652755
730 => 0.011267706641941
731 => 0.011415657883727
801 => 0.01140242373209
802 => 0.010342455269155
803 => 0.010488509571167
804 => 0.010715724230732
805 => 0.01061336433458
806 => 0.010468651389948
807 => 0.010351787928141
808 => 0.0101747278336
809 => 0.010423936516528
810 => 0.01075161943419
811 => 0.011096152917883
812 => 0.011510087323812
813 => 0.011417701983136
814 => 0.011088414702091
815 => 0.011103186288974
816 => 0.011194498426681
817 => 0.011076240911768
818 => 0.011041364461959
819 => 0.011189706938041
820 => 0.011190728491146
821 => 0.011054658928341
822 => 0.01090344250975
823 => 0.010902808907435
824 => 0.010875901406324
825 => 0.011258504382993
826 => 0.011468897334636
827 => 0.011493018547477
828 => 0.011467273784824
829 => 0.011477181922196
830 => 0.011354758899327
831 => 0.011634581626186
901 => 0.011891374631951
902 => 0.011822548620824
903 => 0.01171936864595
904 => 0.011637180826141
905 => 0.011803187782443
906 => 0.011795795753998
907 => 0.011889131769067
908 => 0.011884897508289
909 => 0.011853512116966
910 => 0.011822549741695
911 => 0.011945312059817
912 => 0.011909958483701
913 => 0.011874549993715
914 => 0.011803532846281
915 => 0.011813185256087
916 => 0.01171002309669
917 => 0.011662295561374
918 => 0.010944587944589
919 => 0.010752793017611
920 => 0.010813135605984
921 => 0.010833001952871
922 => 0.010749532554859
923 => 0.01086920623008
924 => 0.010850555214562
925 => 0.010923115405461
926 => 0.010877782948385
927 => 0.010879643408236
928 => 0.011012956498599
929 => 0.011051657855886
930 => 0.011031974033212
1001 => 0.011045759907891
1002 => 0.011363449571218
1003 => 0.011318284260236
1004 => 0.011294291088955
1005 => 0.011300937361372
1006 => 0.011382113881696
1007 => 0.011404838875313
1008 => 0.011308551480501
1009 => 0.011353961172525
1010 => 0.011547309877815
1011 => 0.011614970982077
1012 => 0.01183091274771
1013 => 0.011739176847611
1014 => 0.011907562062481
1015 => 0.012425120806241
1016 => 0.012838582543098
1017 => 0.012458346042855
1018 => 0.013217615868558
1019 => 0.013808816338655
1020 => 0.013786125079917
1021 => 0.013683035603242
1022 => 0.013009969585914
1023 => 0.01239060420192
1024 => 0.012908729645274
1025 => 0.012910050453583
1026 => 0.012865543018496
1027 => 0.012589111161659
1028 => 0.012855923789079
1029 => 0.012877102406522
1030 => 0.012865248012603
1031 => 0.012653308356094
1101 => 0.012329715673602
1102 => 0.012392944909189
1103 => 0.012496515686923
1104 => 0.012300434597545
1105 => 0.012237774808517
1106 => 0.012354271277833
1107 => 0.012729647174975
1108 => 0.012658684536025
1109 => 0.012656831414739
1110 => 0.01296043967701
1111 => 0.012743121683988
1112 => 0.012393742432338
1113 => 0.01230551956355
1114 => 0.0119923878134
1115 => 0.012208669028566
1116 => 0.012216452604462
1117 => 0.012097997593256
1118 => 0.012403354403655
1119 => 0.01240054048689
1120 => 0.012690431332001
1121 => 0.013244593749823
1122 => 0.013080700654196
1123 => 0.012890110815501
1124 => 0.01291083321545
1125 => 0.013138106795652
1126 => 0.013000692000911
1127 => 0.013050107319189
1128 => 0.013138031999649
1129 => 0.013191079142417
1130 => 0.012903200547955
1201 => 0.012836082276761
1202 => 0.01269878184921
1203 => 0.012662962730495
1204 => 0.012774791063868
1205 => 0.012745328248978
1206 => 0.012215798425047
1207 => 0.01216045961217
1208 => 0.012162156774556
1209 => 0.012023004698359
1210 => 0.011810764381836
1211 => 0.01236851926145
1212 => 0.012323723738842
1213 => 0.012274272948781
1214 => 0.012280330388402
1215 => 0.012522432877575
1216 => 0.012382001207386
1217 => 0.012755361818883
1218 => 0.012678610101406
1219 => 0.012599889991987
1220 => 0.012589008474992
1221 => 0.01255870794895
1222 => 0.012454796170822
1223 => 0.012329316454603
1224 => 0.012246463877089
1225 => 0.011296715580983
1226 => 0.011472983340308
1227 => 0.011675763330101
1228 => 0.011745762169987
1229 => 0.011626024310589
1230 => 0.012459524151322
1231 => 0.012611812604028
]
'min_raw' => 0.0052564836135874
'max_raw' => 0.013808816338655
'avg_raw' => 0.0095326499761212
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.005256'
'max' => '$0.0138088'
'avg' => '$0.009532'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00020380571415291
'max_diff' => -0.0024902802848215
'year' => 2027
]
2 => [
'items' => [
101 => 0.012150520947251
102 => 0.012064232112682
103 => 0.012465181232951
104 => 0.012223359899393
105 => 0.012332252031087
106 => 0.012096886803175
107 => 0.012575130775298
108 => 0.012571487357508
109 => 0.012385439650722
110 => 0.012542685898498
111 => 0.012515360493307
112 => 0.012305313090561
113 => 0.01258178965262
114 => 0.012581926781545
115 => 0.01240285990879
116 => 0.012193749004191
117 => 0.012156364913427
118 => 0.012128201022883
119 => 0.012325325440491
120 => 0.012502066576926
121 => 0.012830938013989
122 => 0.012913624107059
123 => 0.013236353433036
124 => 0.013044183832822
125 => 0.013129370127584
126 => 0.013221851900885
127 => 0.013266191063911
128 => 0.013193942777132
129 => 0.013695274261065
130 => 0.013737601998709
131 => 0.013751794123007
201 => 0.013582747967335
202 => 0.013732900519317
203 => 0.013662649112774
204 => 0.013845423756196
205 => 0.013874085154068
206 => 0.013849809969729
207 => 0.013858907549803
208 => 0.0134311095692
209 => 0.013408925987092
210 => 0.013106451270969
211 => 0.013229711953569
212 => 0.012999282015486
213 => 0.013072353722544
214 => 0.013104563034762
215 => 0.013087738717921
216 => 0.013236680927625
217 => 0.013110049622494
218 => 0.012775848788139
219 => 0.012441556900991
220 => 0.012437360138656
221 => 0.012349346985512
222 => 0.012285729596201
223 => 0.012297984562331
224 => 0.012341172661411
225 => 0.012283219425371
226 => 0.012295586686584
227 => 0.012500965625345
228 => 0.012542152906817
229 => 0.012402182431463
301 => 0.011840180775271
302 => 0.011702264159168
303 => 0.011801395887818
304 => 0.011754017306424
305 => 0.009486409329722
306 => 0.010019150187944
307 => 0.0097026136601585
308 => 0.0098484882553072
309 => 0.0095253864271751
310 => 0.0096795875547775
311 => 0.0096511122370329
312 => 0.010507743772105
313 => 0.010494368648943
314 => 0.010500770612605
315 => 0.010195188206796
316 => 0.010681989276716
317 => 0.01092180498856
318 => 0.010877421482786
319 => 0.010888591854984
320 => 0.010696647851406
321 => 0.010502629050128
322 => 0.010287432340232
323 => 0.010687241228102
324 => 0.010642789304737
325 => 0.010744746023641
326 => 0.011004050666354
327 => 0.011042234259997
328 => 0.011093553397071
329 => 0.011075159139575
330 => 0.011513384979166
331 => 0.011460312938485
401 => 0.011588201286659
402 => 0.011325125251552
403 => 0.011027429746421
404 => 0.011084011929547
405 => 0.011078562610307
406 => 0.011009186521941
407 => 0.010946556891379
408 => 0.010842296202283
409 => 0.011172192450263
410 => 0.011158799265056
411 => 0.011375619365678
412 => 0.011337294306815
413 => 0.011081350183995
414 => 0.011090491278413
415 => 0.011151969531431
416 => 0.011364746467074
417 => 0.011427913148531
418 => 0.011398651824923
419 => 0.011467911207473
420 => 0.011522650999507
421 => 0.011474785682563
422 => 0.012152457631465
423 => 0.011871040991158
424 => 0.012008201503559
425 => 0.01204091347757
426 => 0.011957122444
427 => 0.011975293718849
428 => 0.01200281824887
429 => 0.012169941805302
430 => 0.012608522374971
501 => 0.012802766723758
502 => 0.013387160430932
503 => 0.012786637434603
504 => 0.012751004885212
505 => 0.012856271838874
506 => 0.013199372809341
507 => 0.013477423920069
508 => 0.013569669514651
509 => 0.013581861292784
510 => 0.013754920160591
511 => 0.013854114276261
512 => 0.013733906262139
513 => 0.013632042556474
514 => 0.013267179406572
515 => 0.013309413309663
516 => 0.01360036302061
517 => 0.014011346624176
518 => 0.014364013311592
519 => 0.014240521729334
520 => 0.015182675330491
521 => 0.015276086011694
522 => 0.01526317967588
523 => 0.015475983109033
524 => 0.015053611630891
525 => 0.014873039640923
526 => 0.013654066645841
527 => 0.013996548336197
528 => 0.014494365586373
529 => 0.014428477606594
530 => 0.014066949412822
531 => 0.014363739060038
601 => 0.014265611121198
602 => 0.014188213544503
603 => 0.0145427868476
604 => 0.014152918935776
605 => 0.01449047635572
606 => 0.014057555473058
607 => 0.014241085828479
608 => 0.014136905122378
609 => 0.014204322807132
610 => 0.013810200399626
611 => 0.014022859283936
612 => 0.013801353090881
613 => 0.013801248068104
614 => 0.013796358306616
615 => 0.014056959360436
616 => 0.014065457551445
617 => 0.013872872978926
618 => 0.013845118533289
619 => 0.013947741265501
620 => 0.013827596923017
621 => 0.013883811704686
622 => 0.013829299611487
623 => 0.013817027791107
624 => 0.013719243838446
625 => 0.013677115823014
626 => 0.01369363530337
627 => 0.013637245800538
628 => 0.013603269085385
629 => 0.01378959948279
630 => 0.013690050668003
701 => 0.013774342199193
702 => 0.013678281360963
703 => 0.013345292643942
704 => 0.013153787311491
705 => 0.01252480249311
706 => 0.012703181807349
707 => 0.012821447477237
708 => 0.012782360674045
709 => 0.012866334251887
710 => 0.012871489547561
711 => 0.012844188881396
712 => 0.012812578207407
713 => 0.01279719187949
714 => 0.012911868962005
715 => 0.012978442868258
716 => 0.012833317019401
717 => 0.01279931606354
718 => 0.012946046309352
719 => 0.013035551674534
720 => 0.013696409002318
721 => 0.013647450556934
722 => 0.013770326647237
723 => 0.013756492685156
724 => 0.013885286403489
725 => 0.014095809700677
726 => 0.013667756974254
727 => 0.013742052126611
728 => 0.013723836670979
729 => 0.013922708239225
730 => 0.013923329094553
731 => 0.013804095655018
801 => 0.013868734036932
802 => 0.013832654665409
803 => 0.01389785496617
804 => 0.013646796687048
805 => 0.013952558570952
806 => 0.014125905856266
807 => 0.014128312783491
808 => 0.01421047802096
809 => 0.014293962660919
810 => 0.014454204157339
811 => 0.014289493612555
812 => 0.013993195376735
813 => 0.014014587152324
814 => 0.013840867605074
815 => 0.013843787862049
816 => 0.013828199301455
817 => 0.013874981745248
818 => 0.013657062802655
819 => 0.013708207942911
820 => 0.013636604447047
821 => 0.013741896474595
822 => 0.013628619658349
823 => 0.013723827886935
824 => 0.01376491660219
825 => 0.013916534846057
826 => 0.013606225520453
827 => 0.012973483799452
828 => 0.013106493780458
829 => 0.012909761570842
830 => 0.012927969885854
831 => 0.012964753580011
901 => 0.012845525592373
902 => 0.012868270535108
903 => 0.0128674579257
904 => 0.012860455296827
905 => 0.012829439492439
906 => 0.012784460439787
907 => 0.012963643141732
908 => 0.012994089774397
909 => 0.01306176886727
910 => 0.013263135940495
911 => 0.013243014621317
912 => 0.013275833327722
913 => 0.01320419027591
914 => 0.01293129320155
915 => 0.012946112825635
916 => 0.012761311875825
917 => 0.013057043091494
918 => 0.012987010036163
919 => 0.012941859269798
920 => 0.012929539464877
921 => 0.013131405688127
922 => 0.013191807225989
923 => 0.01315416904099
924 => 0.013076972025475
925 => 0.013225213116512
926 => 0.013264876178684
927 => 0.013273755275587
928 => 0.013536410066494
929 => 0.013288434760668
930 => 0.013348124881443
1001 => 0.013813810164432
1002 => 0.013391497872937
1003 => 0.01361520611243
1004 => 0.013604256758228
1005 => 0.013718698323679
1006 => 0.013594869209562
1007 => 0.01359640421984
1008 => 0.013698020577016
1009 => 0.013555318729968
1010 => 0.013519983745818
1011 => 0.013471168718289
1012 => 0.013577754545037
1013 => 0.01364164792771
1014 => 0.014156581667533
1015 => 0.014489252347291
1016 => 0.014474810235726
1017 => 0.014606784100928
1018 => 0.014547328665913
1019 => 0.014355331382696
1020 => 0.014683047333573
1021 => 0.014579344294498
1022 => 0.01458789344704
1023 => 0.014587575247155
1024 => 0.014656528702263
1025 => 0.014607668859828
1026 => 0.014511361095028
1027 => 0.014575294683797
1028 => 0.014765154585766
1029 => 0.015354485547091
1030 => 0.015684282960645
1031 => 0.015334631328689
1101 => 0.01557581634239
1102 => 0.015431191277177
1103 => 0.015404908600604
1104 => 0.015556390612641
1105 => 0.015708137773887
1106 => 0.015698472135737
1107 => 0.015588311488975
1108 => 0.015526084534843
1109 => 0.015997287879094
1110 => 0.0163444624764
1111 => 0.016320787496352
1112 => 0.016425281158768
1113 => 0.016732077783491
1114 => 0.016760127421955
1115 => 0.016756593812222
1116 => 0.016687069856612
1117 => 0.016989150976228
1118 => 0.017241152360823
1119 => 0.016670977069628
1120 => 0.016888092356372
1121 => 0.01698556240361
1122 => 0.017128677351013
1123 => 0.017370136256134
1124 => 0.017632424670907
1125 => 0.017669515128602
1126 => 0.017643197673925
1127 => 0.017470211413692
1128 => 0.017757210526888
1129 => 0.01792532787644
1130 => 0.018025437910802
1201 => 0.018279300301221
1202 => 0.016986164345438
1203 => 0.016070818442908
1204 => 0.015927873962473
1205 => 0.016218557184452
1206 => 0.016295208031933
1207 => 0.016264310171425
1208 => 0.015234005138519
1209 => 0.015922449619702
1210 => 0.016663157995398
1211 => 0.016691611620738
1212 => 0.017062425721093
1213 => 0.017183177992352
1214 => 0.017481731946854
1215 => 0.017463057315712
1216 => 0.017535750452602
1217 => 0.017519039559301
1218 => 0.018072047892062
1219 => 0.01868209820563
1220 => 0.018660974103112
1221 => 0.018573272152749
1222 => 0.018703524504443
1223 => 0.019333161805009
1224 => 0.019275194892105
1225 => 0.019331504810381
1226 => 0.020073882672553
1227 => 0.021039079495395
1228 => 0.020590648667008
1229 => 0.021563614532112
1230 => 0.022176044969491
1231 => 0.023235180084448
]
'min_raw' => 0.009486409329722
'max_raw' => 0.023235180084448
'avg_raw' => 0.016360794707085
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.009486'
'max' => '$0.023235'
'avg' => '$0.01636'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0042299257161346
'max_diff' => 0.0094263637457935
'year' => 2028
]
3 => [
'items' => [
101 => 0.023102571151705
102 => 0.023514884679666
103 => 0.022865173485776
104 => 0.021373305256308
105 => 0.021137211398352
106 => 0.021609877280828
107 => 0.022771880230832
108 => 0.021573281672715
109 => 0.021815756599964
110 => 0.021745923804604
111 => 0.02174220271171
112 => 0.021884221692712
113 => 0.021678215753556
114 => 0.020838910497672
115 => 0.021223559150387
116 => 0.021075027833228
117 => 0.021239834403359
118 => 0.022129227490954
119 => 0.021736005606445
120 => 0.021321778293867
121 => 0.021841311268239
122 => 0.022502855275515
123 => 0.022461457040448
124 => 0.0223811271613
125 => 0.022833942484125
126 => 0.023581860734991
127 => 0.023784020032822
128 => 0.023933249893515
129 => 0.023953826170046
130 => 0.024165774606394
131 => 0.023026074446265
201 => 0.024834807869966
202 => 0.025147126166986
203 => 0.025088423271413
204 => 0.025435551914189
205 => 0.025333417861681
206 => 0.025185441643938
207 => 0.025735714379117
208 => 0.025104871092954
209 => 0.024209468469208
210 => 0.023718232880765
211 => 0.024365131530471
212 => 0.024760169962195
213 => 0.025021265236402
214 => 0.025100272508619
215 => 0.023114546125386
216 => 0.022044349738258
217 => 0.02273033335258
218 => 0.023567280706114
219 => 0.023021425161458
220 => 0.023042821665367
221 => 0.022264575107001
222 => 0.023636138257856
223 => 0.023436313043438
224 => 0.024473006609322
225 => 0.024225591369838
226 => 0.025070974728604
227 => 0.024848356958359
228 => 0.025772430876253
301 => 0.026141068980403
302 => 0.026760069731211
303 => 0.027215409203291
304 => 0.027482793250553
305 => 0.027466740515288
306 => 0.028526249320743
307 => 0.027901493994584
308 => 0.027116654061404
309 => 0.027102458783151
310 => 0.027508938505813
311 => 0.028360808492246
312 => 0.028581685985524
313 => 0.028705126371604
314 => 0.028516073123331
315 => 0.027837945993404
316 => 0.027545134136884
317 => 0.027794618322215
318 => 0.027489520601975
319 => 0.02801620486241
320 => 0.028739454845674
321 => 0.028590106584171
322 => 0.029089355430835
323 => 0.029606025464622
324 => 0.03034488681804
325 => 0.030538052535781
326 => 0.030857348121771
327 => 0.031186008162891
328 => 0.031291564910463
329 => 0.031493105493912
330 => 0.031492043275554
331 => 0.032099399389023
401 => 0.032769331990432
402 => 0.033022216038489
403 => 0.033603708962888
404 => 0.032607922707797
405 => 0.033363238021051
406 => 0.034044551340375
407 => 0.033232261513826
408 => 0.034351813800468
409 => 0.034395283478798
410 => 0.035051624012006
411 => 0.034386297141968
412 => 0.033991228170338
413 => 0.035131777488392
414 => 0.035683653376432
415 => 0.035517423867639
416 => 0.034252409097966
417 => 0.03351611624298
418 => 0.031589095821198
419 => 0.033871734751886
420 => 0.034983541589534
421 => 0.034249529786849
422 => 0.034619722645207
423 => 0.036639374844968
424 => 0.037408327639841
425 => 0.037248390833894
426 => 0.037275417521315
427 => 0.037690330491948
428 => 0.039530283100482
429 => 0.038427740847681
430 => 0.039270593088477
501 => 0.039717638877865
502 => 0.040132879921182
503 => 0.039113179157076
504 => 0.037786563445353
505 => 0.037366368561912
506 => 0.034176546778864
507 => 0.034010502702362
508 => 0.033917297130571
509 => 0.033329649184621
510 => 0.032867918869423
511 => 0.03250073377983
512 => 0.031537130453988
513 => 0.031862318289587
514 => 0.03032653570784
515 => 0.031309074978849
516 => 0.028857928895614
517 => 0.030899316189932
518 => 0.029788281896125
519 => 0.030534311543245
520 => 0.030531708716086
521 => 0.029158031606824
522 => 0.028365723318112
523 => 0.02887061299678
524 => 0.029411894810504
525 => 0.02949971596369
526 => 0.030201501964084
527 => 0.030397355351954
528 => 0.029803910443186
529 => 0.028807134341232
530 => 0.029038662695673
531 => 0.028361031403399
601 => 0.0271735086284
602 => 0.028026408217563
603 => 0.028317625636651
604 => 0.028446243839211
605 => 0.027278451577911
606 => 0.026911505895407
607 => 0.026716147093014
608 => 0.028656387024805
609 => 0.028762677748113
610 => 0.028218879379678
611 => 0.030676899570081
612 => 0.030120573898211
613 => 0.030742125976788
614 => 0.029017653924273
615 => 0.029083531078989
616 => 0.028267138373438
617 => 0.028724263737166
618 => 0.028401182263921
619 => 0.028687332525178
620 => 0.028858849811933
621 => 0.029675108555475
622 => 0.030908636553608
623 => 0.02955318671902
624 => 0.028962597815691
625 => 0.029328995849718
626 => 0.030304762097701
627 => 0.031783097911952
628 => 0.030907893355635
629 => 0.031296294275791
630 => 0.031381142598091
701 => 0.030735799160096
702 => 0.031806892645019
703 => 0.032380900345136
704 => 0.0329697134713
705 => 0.033480963410579
706 => 0.032734528560432
707 => 0.033533320847322
708 => 0.032889635269909
709 => 0.032312182763978
710 => 0.032313058521067
711 => 0.031950814128862
712 => 0.031248919973233
713 => 0.031119479921947
714 => 0.031792843415215
715 => 0.032332817169055
716 => 0.032377291993722
717 => 0.032676249208701
718 => 0.032853169009022
719 => 0.03458722356297
720 => 0.035284674649419
721 => 0.036137504635856
722 => 0.036469729978438
723 => 0.037469609150231
724 => 0.036662125512792
725 => 0.036487421348522
726 => 0.034062041535736
727 => 0.034459197344207
728 => 0.035095082113405
729 => 0.034072527041369
730 => 0.034721102874843
731 => 0.034849145483085
801 => 0.034037781011307
802 => 0.034471165832673
803 => 0.033320224236768
804 => 0.030933723935239
805 => 0.031809549502072
806 => 0.032454451918959
807 => 0.031534096654166
808 => 0.033183797843639
809 => 0.032220076465494
810 => 0.031914623055406
811 => 0.030722940400651
812 => 0.031285368741624
813 => 0.032046061125987
814 => 0.031576041672432
815 => 0.032551402612335
816 => 0.033932773822499
817 => 0.03491722120894
818 => 0.034992794855339
819 => 0.03435986113871
820 => 0.035374141458937
821 => 0.035381529383755
822 => 0.034237417039082
823 => 0.033536654598414
824 => 0.033377439897478
825 => 0.033775189436298
826 => 0.034258130805041
827 => 0.035019594740203
828 => 0.03547973144847
829 => 0.036679523945976
830 => 0.037004153395055
831 => 0.037360822738093
901 => 0.037837442973144
902 => 0.038409747768242
903 => 0.037157577457897
904 => 0.037207328518665
905 => 0.036041324863149
906 => 0.034795282735392
907 => 0.035740873389016
908 => 0.036977107381975
909 => 0.036693513938073
910 => 0.036661603882346
911 => 0.036715267744968
912 => 0.036501447549562
913 => 0.035534346730286
914 => 0.035048674753217
915 => 0.035675315511771
916 => 0.036008347186372
917 => 0.036524850270263
918 => 0.036461180363116
919 => 0.037791636838838
920 => 0.038308611994388
921 => 0.038176347626984
922 => 0.038200687453706
923 => 0.039136646278877
924 => 0.040177624987081
925 => 0.041152638916553
926 => 0.042144464963435
927 => 0.04094877995229
928 => 0.040341684843229
929 => 0.040968052030032
930 => 0.040635692783958
1001 => 0.042545527596055
1002 => 0.042677760414735
1003 => 0.044587457124037
1004 => 0.046399986703619
1005 => 0.045261569349524
1006 => 0.046335045638992
1007 => 0.047496097767858
1008 => 0.049735955698358
1009 => 0.048981650346518
1010 => 0.04840386426848
1011 => 0.047857859216576
1012 => 0.048994009053727
1013 => 0.050455647668785
1014 => 0.050770470627068
1015 => 0.051280604091112
1016 => 0.050744261129822
1017 => 0.051390227150457
1018 => 0.053670771055152
1019 => 0.053054547961185
1020 => 0.052179412104947
1021 => 0.053979682491939
1022 => 0.054631193346618
1023 => 0.059203837723634
1024 => 0.064976990136135
1025 => 0.062586867128797
1026 => 0.061103240649355
1027 => 0.061451928064115
1028 => 0.063560087891618
1029 => 0.064237161918564
1030 => 0.062396641311912
1031 => 0.063046744305351
1101 => 0.066628875715913
1102 => 0.068550574289145
1103 => 0.065940649508145
1104 => 0.058739970548483
1105 => 0.052100615696162
1106 => 0.053861671577043
1107 => 0.053662022492078
1108 => 0.057510575812733
1109 => 0.053039851244193
1110 => 0.053115126780115
1111 => 0.057043264107753
1112 => 0.055995304414061
1113 => 0.054297743922819
1114 => 0.052113009766381
1115 => 0.048074326614756
1116 => 0.044497152320351
1117 => 0.05151281488572
1118 => 0.051210286758746
1119 => 0.050772181198733
1120 => 0.051747137714571
1121 => 0.056481249809244
1122 => 0.056372113202636
1123 => 0.055677841793384
1124 => 0.056204440538275
1125 => 0.054205428616772
1126 => 0.054720619505598
1127 => 0.052099563988432
1128 => 0.053284390547139
1129 => 0.054294101720418
1130 => 0.054496816187483
1201 => 0.054953542232638
1202 => 0.051050868182816
1203 => 0.052803054254696
1204 => 0.053832299414292
1205 => 0.049182132338975
1206 => 0.053740380562641
1207 => 0.050982931310275
1208 => 0.050047011618524
1209 => 0.051307104185423
1210 => 0.050816044886622
1211 => 0.050393860937483
1212 => 0.050158275039822
1213 => 0.051083547949611
1214 => 0.051040382862429
1215 => 0.049526456794281
1216 => 0.047551601953903
1217 => 0.048214428060734
1218 => 0.047973617122095
1219 => 0.047100887215235
1220 => 0.047689001798648
1221 => 0.045099242811278
1222 => 0.040643697077468
1223 => 0.04358716706628
1224 => 0.04347384667359
1225 => 0.043416705392925
1226 => 0.045628641737982
1227 => 0.045416015096458
1228 => 0.045030095660048
1229 => 0.047093799502144
1230 => 0.046340519839045
1231 => 0.048661950265705
]
'min_raw' => 0.020838910497672
'max_raw' => 0.068550574289145
'avg_raw' => 0.044694742393409
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.020838'
'max' => '$0.06855'
'avg' => '$0.044694'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.01135250116795
'max_diff' => 0.045315394204697
'year' => 2029
]
4 => [
'items' => [
101 => 0.05019099448541
102 => 0.049803179411894
103 => 0.051241252891039
104 => 0.048229698235515
105 => 0.049230015889479
106 => 0.04943617997158
107 => 0.047068333717073
108 => 0.04545080344461
109 => 0.045342932616632
110 => 0.042538358033583
111 => 0.044036539138112
112 => 0.045354876511152
113 => 0.044723495216579
114 => 0.044523618760697
115 => 0.045544744225885
116 => 0.045624094419878
117 => 0.043814901587675
118 => 0.044191090067175
119 => 0.045759858562825
120 => 0.04415156112613
121 => 0.041026901920527
122 => 0.040251943235744
123 => 0.040148549461872
124 => 0.038046800045992
125 => 0.040303729680671
126 => 0.03931851941318
127 => 0.042430786843552
128 => 0.040653076378748
129 => 0.040576442833676
130 => 0.040460599990601
131 => 0.038651537446178
201 => 0.039047607171485
202 => 0.040364203261525
203 => 0.040833979578968
204 => 0.040784978060294
205 => 0.040357751222417
206 => 0.040553333481042
207 => 0.039923294880635
208 => 0.039700815137712
209 => 0.038998607871172
210 => 0.037966557179067
211 => 0.038110070157739
212 => 0.036065307685926
213 => 0.034951212567524
214 => 0.034642845722288
215 => 0.034230484689301
216 => 0.034689422998215
217 => 0.036059515130754
218 => 0.034406893337651
219 => 0.031573589191315
220 => 0.031743875598226
221 => 0.032126458596065
222 => 0.031413517710631
223 => 0.030738778995162
224 => 0.03132540956498
225 => 0.030124901247389
226 => 0.032271534290749
227 => 0.032213473882796
228 => 0.033013605934464
301 => 0.033513944926734
302 => 0.032360825536223
303 => 0.032070819127876
304 => 0.032236019958127
305 => 0.029505618223476
306 => 0.032790473861375
307 => 0.032818881429338
308 => 0.032575638585703
309 => 0.034324722804344
310 => 0.038015836058725
311 => 0.03662709077774
312 => 0.036089326629894
313 => 0.035067036591737
314 => 0.036429177370006
315 => 0.036324586210941
316 => 0.035851585324631
317 => 0.035565512912738
318 => 0.03609261010311
319 => 0.035500199737725
320 => 0.035393786557753
321 => 0.034749038465809
322 => 0.034518892731154
323 => 0.034348501991581
324 => 0.034160918529559
325 => 0.034574680903892
326 => 0.03363704092868
327 => 0.032506339036553
328 => 0.032412333408587
329 => 0.032671891212461
330 => 0.032557056206053
331 => 0.032411783622756
401 => 0.03213441869861
402 => 0.03205213045058
403 => 0.032319527336096
404 => 0.032017651842555
405 => 0.032463085577283
406 => 0.03234195224841
407 => 0.031665311320205
408 => 0.030821966199104
409 => 0.03081445865855
410 => 0.030632761335572
411 => 0.030401342476384
412 => 0.030336967043904
413 => 0.031276005174636
414 => 0.033219786002204
415 => 0.032838175315019
416 => 0.033113928145546
417 => 0.034470359149132
418 => 0.034901527775869
419 => 0.0345954944974
420 => 0.034176577270521
421 => 0.034195007502463
422 => 0.035626574481577
423 => 0.035715859558068
424 => 0.035941454141905
425 => 0.036231406935157
426 => 0.034644874711882
427 => 0.034120281977421
428 => 0.033871700836536
429 => 0.03310616713562
430 => 0.033931729600159
501 => 0.033450709706182
502 => 0.033515615723859
503 => 0.033473345594699
504 => 0.033496427943514
505 => 0.032270934263065
506 => 0.032717439750169
507 => 0.031975037776695
508 => 0.030981044872746
509 => 0.030977712659994
510 => 0.031220991015046
511 => 0.031076279529978
512 => 0.030686864644532
513 => 0.030742179191023
514 => 0.030257565559059
515 => 0.030801020060156
516 => 0.030816604390674
517 => 0.030607344805585
518 => 0.031444611446795
519 => 0.031787640272844
520 => 0.031649901131163
521 => 0.031777976127479
522 => 0.03285403296194
523 => 0.033029477177609
524 => 0.033107397909014
525 => 0.03300299445145
526 => 0.031797644471068
527 => 0.031851106868241
528 => 0.031458835270638
529 => 0.031127407107225
530 => 0.03114066249565
531 => 0.031311059654289
601 => 0.032055194039729
602 => 0.033621180984769
603 => 0.033680609044612
604 => 0.03375263758678
605 => 0.033459661307137
606 => 0.033371296857791
607 => 0.033487872375278
608 => 0.034075974736153
609 => 0.035588733676557
610 => 0.035054023633246
611 => 0.034619296044776
612 => 0.03500066934158
613 => 0.03494195991184
614 => 0.03444639324175
615 => 0.034432484335857
616 => 0.033481333453705
617 => 0.033129714629232
618 => 0.032835875621289
619 => 0.032515011095477
620 => 0.032324791849099
621 => 0.032617055064636
622 => 0.032683899119987
623 => 0.032044860491327
624 => 0.031957761887569
625 => 0.03247961462634
626 => 0.032249966692638
627 => 0.032486165287445
628 => 0.032540965387514
629 => 0.03253214130925
630 => 0.032292362491568
701 => 0.032445190359651
702 => 0.032083706891454
703 => 0.031690647912851
704 => 0.031439900772942
705 => 0.03122109063659
706 => 0.031342499217558
707 => 0.030909699794738
708 => 0.030771238548847
709 => 0.03239341571668
710 => 0.033591735431902
711 => 0.033574311388656
712 => 0.033468247006496
713 => 0.033310656848981
714 => 0.034064446034562
715 => 0.033801840954796
716 => 0.033992908091715
717 => 0.034041542697123
718 => 0.034188744999888
719 => 0.03424135717066
720 => 0.034082326649083
721 => 0.033548600794725
722 => 0.032218606710796
723 => 0.031599490874477
724 => 0.031395172336302
725 => 0.031402598927109
726 => 0.031197740398904
727 => 0.031258080416575
728 => 0.031176756603217
729 => 0.03102274897506
730 => 0.031332989680501
731 => 0.031368742031711
801 => 0.031296328143961
802 => 0.031313384235947
803 => 0.03071382817375
804 => 0.030759411118991
805 => 0.030505599487486
806 => 0.030458012866323
807 => 0.029816399163784
808 => 0.028679687486342
809 => 0.029309536098917
810 => 0.028548767545044
811 => 0.028260652966167
812 => 0.029624542571559
813 => 0.029487645883587
814 => 0.029253338261338
815 => 0.028906748454045
816 => 0.028778194923111
817 => 0.027997144364259
818 => 0.027950995730499
819 => 0.028338105477605
820 => 0.028159467648949
821 => 0.027908592482079
822 => 0.026999948058485
823 => 0.025978330884534
824 => 0.026009167085359
825 => 0.02633412450053
826 => 0.027278982011615
827 => 0.026909809835833
828 => 0.026641971186541
829 => 0.026591813058728
830 => 0.027219647041452
831 => 0.028108163662292
901 => 0.028525035781351
902 => 0.028111928171958
903 => 0.02763737239358
904 => 0.02766625640493
905 => 0.027858408792178
906 => 0.027878601291189
907 => 0.027569714264587
908 => 0.027656664153259
909 => 0.027524579321502
910 => 0.026713974952815
911 => 0.02669931369024
912 => 0.026500378305403
913 => 0.026494354621012
914 => 0.026155915904647
915 => 0.026108565988711
916 => 0.025436575375607
917 => 0.025878881632127
918 => 0.025582205817374
919 => 0.025135045385792
920 => 0.025057954758842
921 => 0.025055637321506
922 => 0.025514771101499
923 => 0.025873516386587
924 => 0.02558736662019
925 => 0.025522215865161
926 => 0.026217855480592
927 => 0.026129328998632
928 => 0.02605266563619
929 => 0.028028606744231
930 => 0.026464495172609
1001 => 0.025782453251015
1002 => 0.024938296856794
1003 => 0.025213158435358
1004 => 0.025271075808518
1005 => 0.023241031851043
1006 => 0.022417443270321
1007 => 0.022134818705698
1008 => 0.021972164273033
1009 => 0.022046287940485
1010 => 0.021304961620529
1011 => 0.021803145167945
1012 => 0.021161219237618
1013 => 0.021053598266391
1014 => 0.022201441349179
1015 => 0.022361157008547
1016 => 0.021679760385917
1017 => 0.022117327325738
1018 => 0.021958659470724
1019 => 0.021172223215254
1020 => 0.021142187134929
1021 => 0.020747581066505
1022 => 0.020130098980213
1023 => 0.019847893097522
1024 => 0.019700917823592
1025 => 0.019761562686107
1026 => 0.019730898787856
1027 => 0.01953079610991
1028 => 0.019742368439124
1029 => 0.019201888565705
1030 => 0.018986665125168
1031 => 0.018889453690223
1101 => 0.018409746693703
1102 => 0.019173173851836
1103 => 0.01932357861939
1104 => 0.019474279730798
1105 => 0.020786030017591
1106 => 0.02072049868023
1107 => 0.021312870054912
1108 => 0.021289851592593
1109 => 0.021120897680754
1110 => 0.020408108918273
1111 => 0.02069221381476
1112 => 0.019817783103078
1113 => 0.020472966047779
1114 => 0.020173967912911
1115 => 0.020371874477615
1116 => 0.020016020629762
1117 => 0.020212964842009
1118 => 0.019359245169426
1119 => 0.018562053751328
1120 => 0.018882866849439
1121 => 0.019231627376513
1122 => 0.019987829061741
1123 => 0.019537441576548
1124 => 0.019699417947259
1125 => 0.019156824219892
1126 => 0.018037298376097
1127 => 0.018043634770793
1128 => 0.017871420109922
1129 => 0.017722601499176
1130 => 0.019589173997116
1201 => 0.019357036200852
1202 => 0.01898715500395
1203 => 0.019482255684498
1204 => 0.019613168162739
1205 => 0.019616895056954
1206 => 0.019978107733083
1207 => 0.020170887003084
1208 => 0.020204865184975
1209 => 0.020773241135381
1210 => 0.020963753256897
1211 => 0.021748445723137
1212 => 0.020154531028898
1213 => 0.020121705404675
1214 => 0.019489222766398
1215 => 0.019088092278048
1216 => 0.019516688514118
1217 => 0.019896366270055
1218 => 0.019501020412623
1219 => 0.019552644235397
1220 => 0.019021924722738
1221 => 0.019211631975839
1222 => 0.019375033418537
1223 => 0.019284812746172
1224 => 0.019149748032912
1225 => 0.019865237023856
1226 => 0.019824866330963
1227 => 0.02049114612835
1228 => 0.02101055887654
1229 => 0.021941439377429
1230 => 0.020970017046853
1231 => 0.020934614556073
]
'min_raw' => 0.017722601499176
'max_raw' => 0.051241252891039
'avg_raw' => 0.034481927195107
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.017722'
'max' => '$0.051241'
'avg' => '$0.034481'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0031163089984957
'max_diff' => -0.017309321398106
'year' => 2030
]
5 => [
'items' => [
101 => 0.021280679582188
102 => 0.020963700276145
103 => 0.02116402025581
104 => 0.02190916473177
105 => 0.021924908460364
106 => 0.02166118072177
107 => 0.021645132864909
108 => 0.021695784661971
109 => 0.021992453819445
110 => 0.021888788500101
111 => 0.022008752632131
112 => 0.02215876961619
113 => 0.02277930346814
114 => 0.022928912079038
115 => 0.022565440717727
116 => 0.022598258112037
117 => 0.022462309845395
118 => 0.022330985523246
119 => 0.022626183421061
120 => 0.023165663381446
121 => 0.023162307304612
122 => 0.023287456169429
123 => 0.023365422875422
124 => 0.023030732698186
125 => 0.022812861699705
126 => 0.022896407304015
127 => 0.023029998544692
128 => 0.022853085465161
129 => 0.021761095984182
130 => 0.022092335836152
131 => 0.022037201327983
201 => 0.021958683083765
202 => 0.022291747316324
203 => 0.022259622458578
204 => 0.021297358247623
205 => 0.02135895928035
206 => 0.021301104410452
207 => 0.021488045331084
208 => 0.020953604852943
209 => 0.021117995144507
210 => 0.021221099194313
211 => 0.021281828271732
212 => 0.021501223341685
213 => 0.021475479862475
214 => 0.021499623090872
215 => 0.021824928061462
216 => 0.023470208971522
217 => 0.023559757981349
218 => 0.02311878590595
219 => 0.023294945552282
220 => 0.022956757553204
221 => 0.023183785422648
222 => 0.023339112125039
223 => 0.022637220624542
224 => 0.02259565916512
225 => 0.02225607534387
226 => 0.022438548454399
227 => 0.022148220615266
228 => 0.022219456911752
301 => 0.022020274016507
302 => 0.02237876357103
303 => 0.022779610596631
304 => 0.022880880385226
305 => 0.022614483170817
306 => 0.022421594031152
307 => 0.022082944243534
308 => 0.022646126387646
309 => 0.022810818009249
310 => 0.022645261332669
311 => 0.02260689823322
312 => 0.022534200229086
313 => 0.022622321458463
314 => 0.022809921063308
315 => 0.022721452554084
316 => 0.022779887563041
317 => 0.022557193566816
318 => 0.023030843494561
319 => 0.023783113569884
320 => 0.023785532241184
321 => 0.023697063255082
322 => 0.02366086365206
323 => 0.023751638200548
324 => 0.023800879669336
325 => 0.024094427913941
326 => 0.02440941687588
327 => 0.025879332920801
328 => 0.025466586377351
329 => 0.026770783338101
330 => 0.027802233805274
331 => 0.028111520700517
401 => 0.027826991309967
402 => 0.02685363163487
403 => 0.026805873965552
404 => 0.028260484262002
405 => 0.027849490227882
406 => 0.027800603795296
407 => 0.027280534747509
408 => 0.027587959966556
409 => 0.027520721561494
410 => 0.02741458244969
411 => 0.028001128352205
412 => 0.029099089920399
413 => 0.028927962313377
414 => 0.028800223493117
415 => 0.028240509166948
416 => 0.028577582208022
417 => 0.028457556954305
418 => 0.028973261614184
419 => 0.028667769597928
420 => 0.02784637654385
421 => 0.027977186095059
422 => 0.027957414494546
423 => 0.028364312632072
424 => 0.028242171911019
425 => 0.027933564558472
426 => 0.029095337207122
427 => 0.029019898153438
428 => 0.029126853483794
429 => 0.02917393852792
430 => 0.029881089066423
501 => 0.030170786015754
502 => 0.030236552295111
503 => 0.03051174199101
504 => 0.030229705324785
505 => 0.031358053078419
506 => 0.032108338493668
507 => 0.032979833612815
508 => 0.034253322217694
509 => 0.034732165713556
510 => 0.034645666921991
511 => 0.035611211448085
512 => 0.037346273498627
513 => 0.034996372569728
514 => 0.037470823953864
515 => 0.036687441214562
516 => 0.034830054832129
517 => 0.034710461046247
518 => 0.03596830466913
519 => 0.038758080761722
520 => 0.038059273491906
521 => 0.038759223760074
522 => 0.037942694592209
523 => 0.037902147036776
524 => 0.038719566760918
525 => 0.040629512501607
526 => 0.039722168873451
527 => 0.038421269292705
528 => 0.039381833298889
529 => 0.03854970386073
530 => 0.036674683338195
531 => 0.038058739127157
601 => 0.037133260436717
602 => 0.037403364319741
603 => 0.039348582872479
604 => 0.039114529029804
605 => 0.039417416375028
606 => 0.038882828138649
607 => 0.038383438429044
608 => 0.037451290450899
609 => 0.037175327388911
610 => 0.037251593651134
611 => 0.037175289595139
612 => 0.036653761368249
613 => 0.036541137397307
614 => 0.036353425844902
615 => 0.03641160550409
616 => 0.036058652868616
617 => 0.036724747415491
618 => 0.036848380432996
619 => 0.037333108496536
620 => 0.037383434572116
621 => 0.038733395329404
622 => 0.037989859629459
623 => 0.038488687570766
624 => 0.038444067704545
625 => 0.034870310027124
626 => 0.035362742303542
627 => 0.036128812391887
628 => 0.035783698855471
629 => 0.035295789059109
630 => 0.034901775738479
701 => 0.034304805267794
702 => 0.035145029741481
703 => 0.036249835576468
704 => 0.037411454271299
705 => 0.038807063020866
706 => 0.03849557939464
707 => 0.037385364336491
708 => 0.037435167772987
709 => 0.037743033020475
710 => 0.037344319552471
711 => 0.037226731166945
712 => 0.037726878181996
713 => 0.037730322419613
714 => 0.037271554388542
715 => 0.03676171767567
716 => 0.036759581441227
717 => 0.03666886092261
718 => 0.037958833570934
719 => 0.038668188096567
720 => 0.038749514449749
721 => 0.038662714185023
722 => 0.038696120161937
723 => 0.038283362393031
724 => 0.039226804253235
725 => 0.040092599800888
726 => 0.039860548099093
727 => 0.039512669610009
728 => 0.039235567637356
729 => 0.039795271680763
730 => 0.039770348940766
731 => 0.040085037832082
801 => 0.040070761726241
802 => 0.039964943688139
803 => 0.039860551878188
804 => 0.040274453604729
805 => 0.040155256554544
806 => 0.040035874358416
807 => 0.039796435087583
808 => 0.039828978861154
809 => 0.039481160438196
810 => 0.039320243720648
811 => 0.036900442381911
812 => 0.036253792394911
813 => 0.036457241644596
814 => 0.036524222420149
815 => 0.036242799517102
816 => 0.036646287668459
817 => 0.03658340446747
818 => 0.036828046217077
819 => 0.036675204673033
820 => 0.036681477343313
821 => 0.037130951735096
822 => 0.037261436063231
823 => 0.037195070680803
824 => 0.037241550719783
825 => 0.038312663600075
826 => 0.038160385600759
827 => 0.038079490948636
828 => 0.038101899320118
829 => 0.038375591625951
830 => 0.038452210528539
831 => 0.038127570854361
901 => 0.038280672801423
902 => 0.038932561460483
903 => 0.039160685597451
904 => 0.039888748336856
905 => 0.039579454344873
906 => 0.040147176853088
907 => 0.041892162292473
908 => 0.043286177405262
909 => 0.04200418349743
910 => 0.044564114725313
911 => 0.046557388386545
912 => 0.046480883223456
913 => 0.046133309855369
914 => 0.04386402078598
915 => 0.041775787151133
916 => 0.043522683257766
917 => 0.043527136455194
918 => 0.043377076530389
919 => 0.042445067225205
920 => 0.043344644626816
921 => 0.04341604981417
922 => 0.043376081897424
923 => 0.042661512548351
924 => 0.041570497226807
925 => 0.041783679009115
926 => 0.042132875117326
927 => 0.041471774034543
928 => 0.041260512181067
929 => 0.041653288160891
930 => 0.042918894206011
1001 => 0.042679638714338
1002 => 0.042673390786543
1003 => 0.04369702724004
1004 => 0.042964324453909
1005 => 0.041786367914092
1006 => 0.041488918352451
1007 => 0.040433172794657
1008 => 0.041162380011862
1009 => 0.041188622881426
1010 => 0.04078924354088
1011 => 0.041818775346472
1012 => 0.041809288029638
1013 => 0.042786675253461
1014 => 0.044655072535534
1015 => 0.044102495520979
1016 => 0.043459908573259
1017 => 0.04352977559148
1018 => 0.044296044334864
1019 => 0.0438327407604
1020 => 0.043999347956044
1021 => 0.044295792154919
1022 => 0.044474644300396
1023 => 0.043504041520124
1024 => 0.043277747582745
1025 => 0.042814829605246
1026 => 0.04269406294569
1027 => 0.043071099979262
1028 => 0.042971764041831
1029 => 0.041186417269857
1030 => 0.04099983859861
1031 => 0.041005560700084
1101 => 0.040536399759901
1102 => 0.039820816714595
1103 => 0.041701326232416
1104 => 0.041550295000421
1105 => 0.041383568209188
1106 => 0.041403991289784
1107 => 0.042220256735089
1108 => 0.041746781554419
1109 => 0.043005592923286
1110 => 0.042746819149181
1111 => 0.042481408804212
1112 => 0.04244472100994
1113 => 0.042342560670874
1114 => 0.041992214856027
1115 => 0.041569151232081
1116 => 0.041289807982408
1117 => 0.038087665292779
1118 => 0.038681964349967
1119 => 0.039365651243198
1120 => 0.039601657219038
1121 => 0.039197952666247
1122 => 0.04200815557238
1123 => 0.042521606723119
1124 => 0.04096632969594
1125 => 0.040675400865697
1126 => 0.042027228818056
1127 => 0.041211911308538
1128 => 0.041579048733151
1129 => 0.040785498434571
1130 => 0.042397931376511
1201 => 0.042385647339057
1202 => 0.041758374506193
1203 => 0.042288541209151
1204 => 0.04219641169775
1205 => 0.041488222214351
1206 => 0.042420382246309
1207 => 0.042420844586056
1208 => 0.041817108122511
1209 => 0.041112076107997
1210 => 0.040986033035915
1211 => 0.040891076512605
1212 => 0.041555695249358
1213 => 0.042151590330521
1214 => 0.043260403341648
1215 => 0.043539185277392
1216 => 0.044627289732167
1217 => 0.043979376508193
1218 => 0.0442665880485
1219 => 0.044578396804056
1220 => 0.044727889387857
1221 => 0.044484299244768
1222 => 0.046174573344695
1223 => 0.046317284267389
1224 => 0.046365134005324
1225 => 0.045795183089048
1226 => 0.046301432901374
1227 => 0.046064575379419
1228 => 0.046680812850632
1229 => 0.046777446754634
1230 => 0.046695601275795
1231 => 0.046726274402188
]
'min_raw' => 0.020953604852943
'max_raw' => 0.046777446754634
'avg_raw' => 0.033865525803788
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.020953'
'max' => '$0.046777'
'avg' => '$0.033865'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0032310033537663
'max_diff' => -0.0044638061364051
'year' => 2031
]
6 => [
'items' => [
101 => 0.045283923642684
102 => 0.045209130146797
103 => 0.044189315523278
104 => 0.044604897520451
105 => 0.043827986896099
106 => 0.044074353258147
107 => 0.044182949203073
108 => 0.044126224844209
109 => 0.044628393903037
110 => 0.044201447616673
111 => 0.043074666170489
112 => 0.041947577733454
113 => 0.041933428056234
114 => 0.041636685565526
115 => 0.041422195095842
116 => 0.041463513569761
117 => 0.041609125261106
118 => 0.041413731879633
119 => 0.041455428964266
120 => 0.042147878395397
121 => 0.042286744190487
122 => 0.041814823960403
123 => 0.039919996138851
124 => 0.039455000638626
125 => 0.039789230182926
126 => 0.03962948998789
127 => 0.031984091375107
128 => 0.03378026437338
129 => 0.032713039370077
130 => 0.033204865752261
131 => 0.032115505380464
201 => 0.032635405248154
202 => 0.032539398726295
203 => 0.035427591754895
204 => 0.035382496593333
205 => 0.03540408126079
206 => 0.034373788844522
207 => 0.036015072639124
208 => 0.036823628055002
209 => 0.036673985966529
210 => 0.036711647656285
211 => 0.036064495047121
212 => 0.035410347112652
213 => 0.034684796380681
214 => 0.036032779959902
215 => 0.03588290719674
216 => 0.036226661392916
217 => 0.037100925099897
218 => 0.037229663751755
219 => 0.037402689805391
220 => 0.037340672281995
221 => 0.038818181296129
222 => 0.038639245205599
223 => 0.039070429700349
224 => 0.038183450480601
225 => 0.037179749300616
226 => 0.037370520081468
227 => 0.03735214732119
228 => 0.037118240995582
229 => 0.036907080823481
301 => 0.036555558630944
302 => 0.037667826863629
303 => 0.037622670804622
304 => 0.038353694911764
305 => 0.038224479300038
306 => 0.037361545820503
307 => 0.037392365658542
308 => 0.037599643880868
309 => 0.038317036175
310 => 0.03853000705169
311 => 0.038431350456185
312 => 0.038664863299986
313 => 0.038849422330641
314 => 0.038688041072715
315 => 0.040972859361983
316 => 0.040024043511303
317 => 0.040486489755106
318 => 0.040596780459362
319 => 0.040314273139575
320 => 0.040375538861408
321 => 0.040468339736075
322 => 0.04103180847478
323 => 0.042510513486135
324 => 0.043165421869779
325 => 0.045135746054581
326 => 0.043111040845282
327 => 0.042990903217225
328 => 0.043345818100998
329 => 0.044502606977473
330 => 0.045440075710203
331 => 0.045751088172718
401 => 0.045792193603895
402 => 0.046375673659291
403 => 0.046710113545785
404 => 0.046304823833517
405 => 0.045961383237971
406 => 0.044731221654144
407 => 0.044873616207091
408 => 0.04585457347101
409 => 0.047240233384392
410 => 0.048429273743415
411 => 0.048012913251925
412 => 0.051189449897292
413 => 0.051504390530692
414 => 0.051460875918406
415 => 0.05217835755074
416 => 0.05075430262315
417 => 0.05014549155184
418 => 0.046035638992945
419 => 0.047190339923287
420 => 0.048868765538747
421 => 0.048646619614768
422 => 0.047427702068375
423 => 0.048428349085153
424 => 0.048097503888281
425 => 0.047836552554728
426 => 0.049032021201638
427 => 0.047717554317215
428 => 0.048855652726061
429 => 0.047396029744596
430 => 0.048014815151579
501 => 0.047663562627293
502 => 0.047890866058396
503 => 0.046562054844739
504 => 0.04727904912056
505 => 0.046532225525606
506 => 0.046531871433983
507 => 0.046515385261732
508 => 0.047394019909271
509 => 0.047422672153584
510 => 0.046773359821509
511 => 0.046679783770292
512 => 0.047025783476835
513 => 0.046620708437939
514 => 0.046810240499127
515 => 0.046626449170993
516 => 0.046585073871793
517 => 0.046255388448337
518 => 0.046113350903023
519 => 0.046169047484397
520 => 0.045978926338611
521 => 0.045864371471292
522 => 0.046492597415318
523 => 0.046156961635987
524 => 0.046441156418441
525 => 0.046117280595594
526 => 0.044994585887629
527 => 0.044348912288796
528 => 0.042228246059304
529 => 0.04282966437131
530 => 0.043228405334382
531 => 0.043096621448465
601 => 0.043379744229008
602 => 0.043397125668306
603 => 0.043305079566256
604 => 0.043198501971918
605 => 0.043146625893106
606 => 0.043533267683302
607 => 0.043757726256276
608 => 0.043268424324492
609 => 0.043153787727937
610 => 0.04364849899607
611 => 0.043950272583846
612 => 0.046178399204053
613 => 0.046013332387274
614 => 0.046427617704663
615 => 0.046380975535651
616 => 0.046815212549102
617 => 0.047525006543838
618 => 0.046081796891016
619 => 0.046332288184311
620 => 0.046270873503884
621 => 0.046941382880994
622 => 0.046943476138081
623 => 0.046541472272076
624 => 0.046759405089605
625 => 0.046637760969534
626 => 0.046857588335691
627 => 0.0460111278193
628 => 0.047042025358498
629 => 0.047626477833653
630 => 0.047634592956838
701 => 0.047911618791559
702 => 0.048193093083891
703 => 0.048733358476778
704 => 0.048178025375313
705 => 0.047179035186366
706 => 0.047251159051289
707 => 0.046665451469026
708 => 0.0466752973193
709 => 0.046622739398901
710 => 0.046780469674394
711 => 0.046045740744827
712 => 0.046218180156041
713 => 0.045976763970538
714 => 0.046331763392672
715 => 0.045949842697963
716 => 0.046270843887866
717 => 0.04640937736007
718 => 0.046920568854916
719 => 0.045874339298537
720 => 0.043741006409566
721 => 0.044189458846989
722 => 0.043526162466862
723 => 0.04358755307219
724 => 0.043711571865195
725 => 0.043309586380641
726 => 0.043386272543076
727 => 0.043383532773721
728 => 0.043359922921568
729 => 0.04325535097162
730 => 0.043103700955265
731 => 0.04370782794501
801 => 0.043810480892755
802 => 0.044038665679582
803 => 0.044717588825959
804 => 0.044649748393526
805 => 0.044760398953497
806 => 0.044518849402356
807 => 0.043598757863087
808 => 0.043648723260363
809 => 0.043025653955687
810 => 0.04402273239661
811 => 0.043786611061007
812 => 0.043634382099884
813 => 0.04359284501745
814 => 0.044273451082989
815 => 0.044477099084991
816 => 0.044350199316452
817 => 0.044089924188921
818 => 0.044589729377214
819 => 0.044723456160513
820 => 0.04475339265564
821 => 0.045638951621155
822 => 0.044802885564479
823 => 0.045004134974103
824 => 0.04657422541881
825 => 0.045150370043132
826 => 0.045904617991392
827 => 0.045867701479242
828 => 0.046253549207213
829 => 0.045836050703497
830 => 0.045841226097818
831 => 0.046183832740667
901 => 0.045702703500219
902 => 0.045583569134148
903 => 0.045418985860678
904 => 0.045778347417142
905 => 0.045993768417716
906 => 0.047729903473058
907 => 0.048851525896186
908 => 0.04880283330873
909 => 0.04924779240938
910 => 0.049047334259179
911 => 0.048400002013991
912 => 0.049504919222769
913 => 0.049155277186212
914 => 0.04918410125089
915 => 0.049183028417764
916 => 0.049415509805836
917 => 0.04925077543578
918 => 0.048926067082764
919 => 0.049141623641001
920 => 0.049781749556084
921 => 0.051768720037963
922 => 0.05288065504348
923 => 0.051701780154444
924 => 0.052514952267138
925 => 0.052027338762371
926 => 0.05193872488331
927 => 0.052449457063029
928 => 0.052961083211818
929 => 0.052928494837961
930 => 0.052557080526233
1001 => 0.052347278005828
1002 => 0.05393597297934
1003 => 0.055106496373111
1004 => 0.055026674524944
1005 => 0.055378982203297
1006 => 0.056413368443406
1007 => 0.056507939757851
1008 => 0.056496025945928
1009 => 0.05626162107558
1010 => 0.057280108660994
1011 => 0.058129748923331
1012 => 0.056207363120702
1013 => 0.056939382468465
1014 => 0.057268009537866
1015 => 0.057750531575005
1016 => 0.058564627131742
1017 => 0.05944895083454
1018 => 0.059574003902232
1019 => 0.059485272766364
1020 => 0.058902037512472
1021 => 0.05986967506025
1022 => 0.060436494441845
1023 => 0.060774022412154
1024 => 0.061629937185559
1025 => 0.057270039026769
1026 => 0.054183886408979
1027 => 0.053701939113127
1028 => 0.054681997890883
1029 => 0.054940431574755
1030 => 0.054836257280835
1031 => 0.051362511928791
1101 => 0.053683650562756
1102 => 0.056181000566023
1103 => 0.056276933950427
1104 => 0.057527159579188
1105 => 0.057934284292393
1106 => 0.058940879794365
1107 => 0.05887791697165
1108 => 0.059123006957948
1109 => 0.059066665014465
1110 => 0.060931171218178
1111 => 0.062987998442724
1112 => 0.062916777056248
1113 => 0.062621083807444
1114 => 0.063060238705109
1115 => 0.065183104823841
1116 => 0.064987665329865
1117 => 0.065177518150766
1118 => 0.067680496944243
1119 => 0.070934725420345
1120 => 0.069422809573999
1121 => 0.072703231918506
1122 => 0.074768083896656
1123 => 0.078339031883187
1124 => 0.077891931607984
1125 => 0.079282075454314
1126 => 0.077091528802727
1127 => 0.072061590908162
1128 => 0.071265583982518
1129 => 0.072859210005763
1130 => 0.076776984080156
1201 => 0.072735825357986
1202 => 0.073553346504265
1203 => 0.073317900359139
1204 => 0.073305354434647
1205 => 0.073784181344546
1206 => 0.073089617937805
1207 => 0.070259841669171
1208 => 0.07155671145711
1209 => 0.071055927751184
1210 => 0.071611584608807
1211 => 0.074610235499077
1212 => 0.07328446046158
1213 => 0.071887864156794
1214 => 0.073639505852525
1215 => 0.075869947660581
1216 => 0.075730370620723
1217 => 0.07545953282472
1218 => 0.076986231300182
1219 => 0.079507889900963
1220 => 0.080189484087909
1221 => 0.080692622982134
1222 => 0.080761997335046
1223 => 0.081476596285962
1224 => 0.077634017624764
1225 => 0.083732288644504
1226 => 0.084785291588276
1227 => 0.084587370677347
1228 => 0.085757739132212
1229 => 0.085413387043409
1230 => 0.08491447489392
1231 => 0.08676975783939
]
'min_raw' => 0.031984091375107
'max_raw' => 0.08676975783939
'avg_raw' => 0.059376924607249
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.031984'
'max' => '$0.086769'
'avg' => '$0.059376'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.011030486522164
'max_diff' => 0.039992311084757
'year' => 2032
]
7 => [
'items' => [
101 => 0.084642825656022
102 => 0.081623913195047
103 => 0.079967678111638
104 => 0.082148742074144
105 => 0.083480641727404
106 => 0.084360942673481
107 => 0.084627321207871
108 => 0.077932306067814
109 => 0.074324064229885
110 => 0.076636905879421
111 => 0.079458732315658
112 => 0.077618342236433
113 => 0.077690482043219
114 => 0.075066569436249
115 => 0.079690890358837
116 => 0.079017165697076
117 => 0.082512450434087
118 => 0.081678272680187
119 => 0.084528541697047
120 => 0.083777970341991
121 => 0.086893550072949
122 => 0.088136439178582
123 => 0.090223443427183
124 => 0.091758652248089
125 => 0.09266015623159
126 => 0.092606033313877
127 => 0.096178241224011
128 => 0.094071835022844
129 => 0.091425692392353
130 => 0.091377832020641
131 => 0.092748306785103
201 => 0.095620445920025
202 => 0.096365149809785
203 => 0.096781337689788
204 => 0.096143931463959
205 => 0.093857578500084
206 => 0.092870342882356
207 => 0.09371149623163
208 => 0.092682837966599
209 => 0.094458590722575
210 => 0.096897078536852
211 => 0.09639354044603
212 => 0.098076792789
213 => 0.099818781880662
214 => 0.10230990451937
215 => 0.10296117622313
216 => 0.1040377035838
217 => 0.10514580385875
218 => 0.10550169580292
219 => 0.10618120395113
220 => 0.10617762260778
221 => 0.10822536614859
222 => 0.11048409068744
223 => 0.11133670691126
224 => 0.11329725090441
225 => 0.1099398880218
226 => 0.11248648633487
227 => 0.11478358175875
228 => 0.11204488989627
301 => 0.11581953859533
302 => 0.11596609965077
303 => 0.11817899758272
304 => 0.11593580158875
305 => 0.11460379896806
306 => 0.11844924062449
307 => 0.12030992871176
308 => 0.11974947431709
309 => 0.11548438870063
310 => 0.11300192593372
311 => 0.10650484204141
312 => 0.11420091856499
313 => 0.11794945294199
314 => 0.11547468090217
315 => 0.11672281197016
316 => 0.12353221036927
317 => 0.12612478840376
318 => 0.12558555029607
319 => 0.12567667265966
320 => 0.12707558070844
321 => 0.1332791093895
322 => 0.12956181120714
323 => 0.13240354638305
324 => 0.13391079247372
325 => 0.13531080664246
326 => 0.13187281432305
327 => 0.12740003682962
328 => 0.12598332044303
329 => 0.11522861359524
330 => 0.11466878439848
331 => 0.11435453530579
401 => 0.11237323922774
402 => 0.11081648323307
403 => 0.10957849306747
404 => 0.10632963717776
405 => 0.10742603066937
406 => 0.10224803247009
407 => 0.105560732221
408 => 0.097296522067818
409 => 0.10417920185572
410 => 0.10043327216421
411 => 0.1029485632056
412 => 0.10293978759211
413 => 0.098308339311166
414 => 0.095637016598574
415 => 0.097339287400473
416 => 0.099164256826533
417 => 0.099460351975977
418 => 0.10182647247344
419 => 0.10248680584469
420 => 0.10048596490178
421 => 0.097125264681355
422 => 0.097905878693149
423 => 0.095621197480541
424 => 0.091617381534438
425 => 0.094492992046849
426 => 0.095474851907455
427 => 0.095908497157221
428 => 0.091971204015597
429 => 0.090734021027706
430 => 0.090075355185923
501 => 0.096617009579182
502 => 0.096975376173794
503 => 0.095141922007826
504 => 0.10342930869326
505 => 0.10155361784913
506 => 0.10364922407744
507 => 0.097835046153588
508 => 0.098057155580108
509 => 0.095304630574623
510 => 0.096845860653907
511 => 0.095756568910034
512 => 0.096721344494234
513 => 0.097299627001484
514 => 0.1000517003447
515 => 0.10421062611258
516 => 0.099640632360782
517 => 0.097649420639606
518 => 0.098884757192424
519 => 0.10217462122332
520 => 0.10715893363518
521 => 0.10420812036873
522 => 0.10551764118832
523 => 0.10580371323087
524 => 0.10362789277324
525 => 0.10723915923901
526 => 0.10917446627589
527 => 0.11115969084037
528 => 0.11288340570498
529 => 0.1103667484933
530 => 0.11305993245844
531 => 0.1108897015935
601 => 0.10894278015331
602 => 0.10894573282948
603 => 0.10772440057006
604 => 0.10535791541968
605 => 0.10492149924955
606 => 0.10719179127984
607 => 0.10901235049068
608 => 0.10916230046717
609 => 0.11017025559
610 => 0.11076675304893
611 => 0.11661323904539
612 => 0.11896474407783
613 => 0.12184011991979
614 => 0.12296024085754
615 => 0.12633140329457
616 => 0.12360891583424
617 => 0.12301988854695
618 => 0.11484255117353
619 => 0.11618158971032
620 => 0.11832551960573
621 => 0.11487790378785
622 => 0.11706462249252
623 => 0.11749632708586
624 => 0.1147607551216
625 => 0.1162219423048
626 => 0.11234146235803
627 => 0.10429520997129
628 => 0.10724811701806
629 => 0.10942245054224
630 => 0.10631940850984
701 => 0.11188149124861
702 => 0.10863223733732
703 => 0.10760237983913
704 => 0.10358453856799
705 => 0.10548080498708
706 => 0.10804553247081
707 => 0.10646082906743
708 => 0.10974932657384
709 => 0.11440671605317
710 => 0.11772584914848
711 => 0.11798065097369
712 => 0.11584667075806
713 => 0.11926638767249
714 => 0.11929129657683
715 => 0.11543384192739
716 => 0.11307117243301
717 => 0.11253436895278
718 => 0.1138754092929
719 => 0.11550367983551
720 => 0.11807100865662
721 => 0.11962239169426
722 => 0.12366757586644
723 => 0.12476208671892
724 => 0.12596462231083
725 => 0.12757158070986
726 => 0.12950114628358
727 => 0.12527936665851
728 => 0.1254471058334
729 => 0.12151584310105
730 => 0.11731472507144
731 => 0.12050284997916
801 => 0.12467089919752
802 => 0.12371474410155
803 => 0.12360715712077
804 => 0.12378808858029
805 => 0.12306717886303
806 => 0.11980653093002
807 => 0.1181690539508
808 => 0.12028181701893
809 => 0.12140465656137
810 => 0.1231460827698
811 => 0.12293141523257
812 => 0.12741714212997
813 => 0.12916015996096
814 => 0.12871422141185
815 => 0.128796284837
816 => 0.13195193536262
817 => 0.13546166775614
818 => 0.13874899529266
819 => 0.1420930060568
820 => 0.13806167056166
821 => 0.13601480701544
822 => 0.1381266477173
823 => 0.13700607531458
824 => 0.14344521672398
825 => 0.14389104890436
826 => 0.15032972469054
827 => 0.15644079471487
828 => 0.15260254112378
829 => 0.15622184138144
830 => 0.16013640969598
831 => 0.16768824709055
901 => 0.16514505393291
902 => 0.16319700783106
903 => 0.16135611367771
904 => 0.16518672217712
905 => 0.17011473881614
906 => 0.17117618640022
907 => 0.17289613699063
908 => 0.17108781925037
909 => 0.17326573878885
910 => 0.18095475178602
911 => 0.17887711260139
912 => 0.17592653096205
913 => 0.18199626826265
914 => 0.18419288259624
915 => 0.19960987236518
916 => 0.21907445879256
917 => 0.21101599220026
918 => 0.20601384194133
919 => 0.20718946590477
920 => 0.21429727395022
921 => 0.21658007630386
922 => 0.21037463257749
923 => 0.21256650020861
924 => 0.22464390635575
925 => 0.23112304726411
926 => 0.22232350364584
927 => 0.19804591179799
928 => 0.17566086336844
929 => 0.18159838622382
930 => 0.18092525539481
1001 => 0.19390092161281
1002 => 0.17882756159396
1003 => 0.17908135831889
1004 => 0.19232534757281
1005 => 0.18879207829932
1006 => 0.1830686345832
1007 => 0.17570265084151
1008 => 0.16208594862395
1009 => 0.15002525574003
1010 => 0.17367905189709
1011 => 0.17265905719516
1012 => 0.17118195371202
1013 => 0.17446908767446
1014 => 0.1904304771268
1015 => 0.19006251543795
1016 => 0.18772173090917
1017 => 0.18949719534352
1018 => 0.18275738708362
1019 => 0.18449438913478
1020 => 0.1756573174624
1021 => 0.17965204292703
1022 => 0.18305635464352
1023 => 0.1837398206223
1024 => 0.18527970437113
1025 => 0.17212156633616
1026 => 0.17802918401123
1027 => 0.18149935592641
1028 => 0.16582099296768
1029 => 0.1811894451005
1030 => 0.17189251242719
1031 => 0.16873699384262
1101 => 0.17298548390878
1102 => 0.1713298431982
1103 => 0.16990642053774
1104 => 0.16911212623569
1105 => 0.17223174845154
1106 => 0.17208621434641
1107 => 0.16698190690871
1108 => 0.16032354593441
1109 => 0.16255831043064
1110 => 0.16174639953813
1111 => 0.1588039297251
1112 => 0.16078679910392
1113 => 0.15205524586681
1114 => 0.137033062349
1115 => 0.14695717692279
1116 => 0.14657510930705
1117 => 0.14638245348982
1118 => 0.15384015130964
1119 => 0.15312326574263
1120 => 0.15182211141873
1121 => 0.15878003300556
1122 => 0.15624029802912
1123 => 0.1640671627897
1124 => 0.16922244213089
1125 => 0.16791489653415
1126 => 0.17276346167217
1127 => 0.16260979489104
1128 => 0.16598243570133
1129 => 0.16667753229805
1130 => 0.15869417333323
1201 => 0.15324055708726
1202 => 0.15287686305943
1203 => 0.14342104404354
1204 => 0.14847226623713
1205 => 0.15291713273371
1206 => 0.15078838661742
1207 => 0.15011448919148
1208 => 0.15355728499007
1209 => 0.15382481970917
1210 => 0.14772499976159
1211 => 0.14899334548486
1212 => 0.15428255799587
1213 => 0.14886007090031
1214 => 0.13832506423188
1215 => 0.13571223692024
1216 => 0.13536363759291
1217 => 0.12827744269781
1218 => 0.13588683853493
1219 => 0.1325651333329
1220 => 0.14305836026597
1221 => 0.1370646853181
1222 => 0.13680630997051
1223 => 0.13641573773719
1224 => 0.13031635706396
1225 => 0.13165173379553
1226 => 0.13609072943491
1227 => 0.1376746130879
1228 => 0.13750940104652
1229 => 0.13606897593459
1230 => 0.13672839517466
1231 => 0.1346041760455
]
'min_raw' => 0.074324064229885
'max_raw' => 0.23112304726411
'avg_raw' => 0.152723555747
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.074324'
'max' => '$0.231123'
'avg' => '$0.152723'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.042339972854779
'max_diff' => 0.14435328942472
'year' => 2033
]
8 => [
'items' => [
101 => 0.13385407005919
102 => 0.13148652923351
103 => 0.1280068982696
104 => 0.12849076229695
105 => 0.12159670286247
106 => 0.11784045338714
107 => 0.11680077303894
108 => 0.1154104690261
109 => 0.11695781157665
110 => 0.12157717285829
111 => 0.11600524310047
112 => 0.10645256035612
113 => 0.10702669286604
114 => 0.10831659815434
115 => 0.10591286818316
116 => 0.1036379394952
117 => 0.10561580541858
118 => 0.10156820780901
119 => 0.10880573098783
120 => 0.10860997626877
121 => 0.1113076773444
122 => 0.1129946051894
123 => 0.10910678265606
124 => 0.10812900580272
125 => 0.10868599193587
126 => 0.09948025185693
127 => 0.1105553719814
128 => 0.11065115008014
129 => 0.10983103985015
130 => 0.11572819941046
131 => 0.12817304545291
201 => 0.12349079377897
202 => 0.12167768440901
203 => 0.11823096217135
204 => 0.12282351490692
205 => 0.12247087851181
206 => 0.12087612299975
207 => 0.11991160989011
208 => 0.1216887548682
209 => 0.11969140196053
210 => 0.11933262249473
211 => 0.11715880928786
212 => 0.11638285687521
213 => 0.11580837260044
214 => 0.11517592186158
215 => 0.11657095059461
216 => 0.11340963195425
217 => 0.10959739158186
218 => 0.1092804450439
219 => 0.11015556230141
220 => 0.10976838805978
221 => 0.10927859140259
222 => 0.10834343619583
223 => 0.10806599562242
224 => 0.10896754289099
225 => 0.10794974858824
226 => 0.10945155952407
227 => 0.10904315004851
228 => 0.10676180791751
301 => 0.10391841096124
302 => 0.1038930987641
303 => 0.10328049355398
304 => 0.10250024871308
305 => 0.10228320244792
306 => 0.10544923506723
307 => 0.11200282783782
308 => 0.11071620076277
309 => 0.11164592068334
310 => 0.11621922251492
311 => 0.1176729376432
312 => 0.11664112507828
313 => 0.11522871639999
314 => 0.11529085521374
315 => 0.12011748323264
316 => 0.12041851410171
317 => 0.12117912199163
318 => 0.12215671807793
319 => 0.11680761391902
320 => 0.11503891288889
321 => 0.11420080421702
322 => 0.11161975389652
323 => 0.11440319538464
324 => 0.11278140322836
325 => 0.11300023839855
326 => 0.11285772170688
327 => 0.11293554545747
328 => 0.1088037079526
329 => 0.11030913237639
330 => 0.10780607228998
331 => 0.10445475581594
401 => 0.104443521028
402 => 0.10526375098721
403 => 0.10477584611187
404 => 0.10346290663751
405 => 0.10364940349294
406 => 0.10201549479813
407 => 0.10384778959136
408 => 0.10390033324977
409 => 0.1031947999486
410 => 0.10601770288553
411 => 0.10717424852206
412 => 0.10670985138925
413 => 0.10714166518124
414 => 0.11076966592651
415 => 0.11136118834876
416 => 0.11162390353495
417 => 0.11127189998855
418 => 0.10720797837485
419 => 0.10738823057954
420 => 0.10606565950069
421 => 0.10494822630817
422 => 0.10499291777571
423 => 0.10556742369281
424 => 0.10807632472713
425 => 0.11335615904604
426 => 0.11355652489894
427 => 0.11379937415773
428 => 0.11281158417596
429 => 0.11251365726559
430 => 0.11290669976184
501 => 0.11488952793152
502 => 0.11998990031655
503 => 0.11818708807326
504 => 0.11672137365703
505 => 0.11800720035384
506 => 0.1178092574125
507 => 0.11613841978494
508 => 0.11609152493763
509 => 0.11288465333122
510 => 0.11169914591527
511 => 0.1107084471848
512 => 0.10962663003398
513 => 0.10898529256413
514 => 0.10997067840048
515 => 0.1101960478
516 => 0.10804148444722
517 => 0.10774782542362
518 => 0.10950728836698
519 => 0.108733014325
520 => 0.10952937437825
521 => 0.10971413674166
522 => 0.10968438574571
523 => 0.10887595472107
524 => 0.10939122454842
525 => 0.10817245779742
526 => 0.10684723200856
527 => 0.10600182051975
528 => 0.1052640868682
529 => 0.10567342437541
530 => 0.10421421090429
531 => 0.10374737914671
601 => 0.10921666272485
602 => 0.11325688130873
603 => 0.11319813493042
604 => 0.11284053146079
605 => 0.11230920524213
606 => 0.1148506581092
607 => 0.11396526674827
608 => 0.11460946294027
609 => 0.11477343790796
610 => 0.11526974074907
611 => 0.1154471263561
612 => 0.11491094384944
613 => 0.11311144986792
614 => 0.10862728195674
615 => 0.1065398896893
616 => 0.10585101547278
617 => 0.10587605474219
618 => 0.10518535991158
619 => 0.10538880049397
620 => 0.10511461157938
621 => 0.10459536410858
622 => 0.10564136230729
623 => 0.10576190385555
624 => 0.10551775537722
625 => 0.10557526118217
626 => 0.1035538160588
627 => 0.10370750214118
628 => 0.102851758505
629 => 0.10269131688936
630 => 0.10052807149521
701 => 0.09669556871204
702 => 0.098819147283963
703 => 0.096254162989414
704 => 0.095282764571214
705 => 0.099881213599524
706 => 0.099419656858204
707 => 0.098629672350956
708 => 0.09746112061754
709 => 0.097027693412676
710 => 0.094394326922297
711 => 0.094238733581582
712 => 0.095543901121089
713 => 0.094941611209679
714 => 0.094095768069033
715 => 0.091032209955356
716 => 0.08758775632635
717 => 0.087691722730346
718 => 0.088787339343395
719 => 0.091972992409865
720 => 0.090728302644437
721 => 0.08982526593845
722 => 0.089656154308603
723 => 0.091772940415324
724 => 0.094768636236735
725 => 0.096174149691225
726 => 0.094781328543904
727 => 0.093181330604677
728 => 0.093278715065562
729 => 0.093926570254817
730 => 0.093994650675028
731 => 0.092953216499038
801 => 0.093246374119343
802 => 0.092801040887204
803 => 0.090068031663588
804 => 0.090018600193198
805 => 0.089347875653996
806 => 0.089327566381512
807 => 0.088186496620251
808 => 0.088026853072807
809 => 0.08576118980384
810 => 0.087252456228535
811 => 0.086252193005851
812 => 0.084744560391025
813 => 0.084484643959968
814 => 0.084476830558192
815 => 0.086024832153134
816 => 0.087234366928607
817 => 0.086269593012859
818 => 0.0860499326936
819 => 0.088395330225031
820 => 0.088096857010383
821 => 0.087838381131444
822 => 0.094500404533007
823 => 0.089226893166501
824 => 0.086927341209199
825 => 0.084081208988965
826 => 0.085007923991317
827 => 0.085203196458589
828 => 0.078358761522818
829 => 0.075581975121796
830 => 0.074629086669954
831 => 0.074080685894053
901 => 0.074330599014014
902 => 0.071831165568535
903 => 0.073510826180711
904 => 0.071346528088775
905 => 0.070983676470427
906 => 0.074853709563893
907 => 0.075392202060443
908 => 0.073094825773654
909 => 0.074570113261209
910 => 0.074035153510191
911 => 0.071383628767649
912 => 0.07128236002578
913 => 0.069951918115574
914 => 0.067870034150419
915 => 0.066918557313939
916 => 0.066423019916399
917 => 0.066627488304455
918 => 0.066524102830618
919 => 0.065849442681202
920 => 0.066562773560654
921 => 0.064740507932324
922 => 0.064014867076131
923 => 0.063687111936129
924 => 0.06206974630529
925 => 0.064643694269715
926 => 0.065150794444449
927 => 0.065658893763178
928 => 0.070081551438579
929 => 0.069860607959417
930 => 0.071857829407204
1001 => 0.071780221054398
1002 => 0.071210581144646
1003 => 0.068807364066622
1004 => 0.069765243560697
1005 => 0.066817039365459
1006 => 0.06902603440693
1007 => 0.068017941319841
1008 => 0.068685197120135
1009 => 0.067485411027177
1010 => 0.068149422188973
1011 => 0.065271046708055
1012 => 0.062583260183809
1013 => 0.063664903942545
1014 => 0.06484077440926
1015 => 0.067390361187319
1016 => 0.065871848335941
1017 => 0.066417962978625
1018 => 0.064588570344122
1019 => 0.06081401079897
1020 => 0.060835374396079
1021 => 0.060254740643307
1022 => 0.059752988306996
1023 => 0.066046267803728
1024 => 0.065263599016283
1025 => 0.064016518736648
1026 => 0.06568578524794
1027 => 0.066127165808348
1028 => 0.066139731292395
1029 => 0.067357585049029
1030 => 0.068007553817256
1031 => 0.068122113629782
1101 => 0.070038432829318
1102 => 0.070680757748141
1103 => 0.073326403183547
1104 => 0.067952408508351
1105 => 0.067841734624471
1106 => 0.065709275250992
1107 => 0.064356835803483
1108 => 0.065801877937026
1109 => 0.067081987999422
1110 => 0.065749051838924
1111 => 0.065923105161667
1112 => 0.064133747271084
1113 => 0.064773358519853
1114 => 0.065324277892233
1115 => 0.065020092596349
1116 => 0.064564712485675
1117 => 0.066977033572488
1118 => 0.066840920962808
1119 => 0.06908732981787
1120 => 0.07083856616263
1121 => 0.07397709476338
1122 => 0.070701876553301
1123 => 0.070582514583912
1124 => 0.071749296980948
1125 => 0.070680579119835
1126 => 0.071355971917171
1127 => 0.073868278542197
1128 => 0.073921359622343
1129 => 0.073032183138791
1130 => 0.072978076668958
1201 => 0.073148852739149
1202 => 0.074149093516352
1203 => 0.073799578654503
1204 => 0.074204046101268
1205 => 0.074709838836874
1206 => 0.076802012043014
1207 => 0.077306427919995
1208 => 0.076080958848578
1209 => 0.076191604984731
1210 => 0.075733245912143
1211 => 0.075290476791245
1212 => 0.076285757113786
1213 => 0.078104651465515
1214 => 0.078093336218153
1215 => 0.078515284353501
1216 => 0.078778154546215
1217 => 0.077649723246344
1218 => 0.076915155963696
1219 => 0.077196835801594
1220 => 0.077647247996581
1221 => 0.077050773197264
1222 => 0.073369054421872
1223 => 0.07448585270922
1224 => 0.074299962865559
1225 => 0.074035233123208
1226 => 0.075158182437082
1227 => 0.075049871236306
1228 => 0.071805530265929
1229 => 0.072013222448614
1230 => 0.071818160715456
1231 => 0.072448445081165
]
'min_raw' => 0.059752988306996
'max_raw' => 0.13385407005919
'avg_raw' => 0.096803529183095
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.059752'
'max' => '$0.133854'
'avg' => '$0.0968035'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.014571075922889
'max_diff' => -0.097268977204919
'year' => 2034
]
9 => [
'items' => [
101 => 0.07064654169567
102 => 0.071200795041044
103 => 0.07154841754346
104 => 0.071753169867945
105 => 0.072492875663968
106 => 0.072406079726457
107 => 0.072487480306625
108 => 0.073584268727038
109 => 0.079131448185149
110 => 0.079433368923892
111 => 0.077946600783997
112 => 0.07854053533068
113 => 0.077400310880256
114 => 0.078165751192666
115 => 0.078689446014341
116 => 0.076322969815915
117 => 0.076182842453747
118 => 0.075037911891416
119 => 0.075653132723431
120 => 0.074674272143751
121 => 0.074914450290915
122 => 0.074242891253091
123 => 0.075451563815104
124 => 0.076803047548164
125 => 0.077144485710844
126 => 0.076246308903203
127 => 0.075595969701734
128 => 0.074454188299006
129 => 0.076352996218001
130 => 0.076908265518638
131 => 0.07635007962475
201 => 0.076220735756534
202 => 0.075975629359983
203 => 0.076272736237254
204 => 0.076905241402776
205 => 0.076606963647253
206 => 0.076803981359754
207 => 0.076053153003483
208 => 0.077650096804058
209 => 0.080186427884826
210 => 0.080194582603983
211 => 0.079896303240631
212 => 0.079774253751666
213 => 0.08008030647957
214 => 0.080246327529518
215 => 0.081236045931089
216 => 0.082298053208095
217 => 0.087253977779805
218 => 0.085862373991521
219 => 0.090259565100814
220 => 0.09373717236446
221 => 0.094779954725493
222 => 0.093820644020044
223 => 0.090538893917652
224 => 0.090377875601213
225 => 0.095282195773342
226 => 0.093896500692621
227 => 0.093731676672015
228 => 0.091978227567339
301 => 0.093014733157099
302 => 0.092788034179999
303 => 0.092430178754153
304 => 0.094407759215809
305 => 0.098109613300204
306 => 0.097532644625384
307 => 0.097101964274436
308 => 0.095214848345752
309 => 0.096351313637422
310 => 0.095946640114617
311 => 0.09768537438075
312 => 0.096655386719173
313 => 0.093886002689516
314 => 0.094327036224248
315 => 0.094260374892709
316 => 0.095632260372097
317 => 0.095220454403476
318 => 0.094179963168087
319 => 0.098096960765387
320 => 0.097842612728903
321 => 0.098203220092581
322 => 0.098361970606224
323 => 0.10074617801846
324 => 0.10172291150913
325 => 0.10194464711163
326 => 0.10287246838449
327 => 0.10192156207314
328 => 0.10572586530324
329 => 0.10825550496401
330 => 0.11119381160406
331 => 0.11548746734754
401 => 0.11710192162563
402 => 0.11681028491071
403 => 0.1200656856926
404 => 0.12591556853417
405 => 0.11799271348754
406 => 0.12633549908984
407 => 0.12369426949024
408 => 0.1174319616233
409 => 0.11702874282442
410 => 0.12126965041881
411 => 0.13067557529093
412 => 0.12831949779158
413 => 0.13067942898968
414 => 0.12792644389197
415 => 0.12778973497789
416 => 0.13054572264826
417 => 0.13698523806115
418 => 0.13392606567011
419 => 0.12953999190771
420 => 0.132778600519
421 => 0.12997301802083
422 => 0.12365125541935
423 => 0.12831769614352
424 => 0.12519738012384
425 => 0.12610805422351
426 => 0.13266649438489
427 => 0.13187736551319
428 => 0.13289857134453
429 => 0.13109616978182
430 => 0.12941244250961
501 => 0.12626964052081
502 => 0.12533921179019
503 => 0.12559634881801
504 => 0.12533908436585
505 => 0.12358071553695
506 => 0.12320099595576
507 => 0.12256811335123
508 => 0.12276427013415
509 => 0.12157426568129
510 => 0.12382004995131
511 => 0.12423688730161
512 => 0.12587118181047
513 => 0.12604085968794
514 => 0.13059234663239
515 => 0.12808546410802
516 => 0.12976729733919
517 => 0.12961685834497
518 => 0.11756768482375
519 => 0.11922795462422
520 => 0.12181081341238
521 => 0.12064723902929
522 => 0.11900221708609
523 => 0.11767377366645
524 => 0.11566104604539
525 => 0.11849392152102
526 => 0.12221885152876
527 => 0.12613533006001
528 => 0.13084072239747
529 => 0.12979053360455
530 => 0.12604736602326
531 => 0.12621528178658
601 => 0.12725327096295
602 => 0.12590898066828
603 => 0.12551252321672
604 => 0.12719880379712
605 => 0.12721041628471
606 => 0.1256636478378
607 => 0.12394469776469
608 => 0.12393749530112
609 => 0.12363162473869
610 => 0.12798085758553
611 => 0.13037249589425
612 => 0.13064669337203
613 => 0.13035404021931
614 => 0.1304666708028
615 => 0.12907502916711
616 => 0.1322559092678
617 => 0.13517499940462
618 => 0.13439262089069
619 => 0.13321972427664
620 => 0.1322854556292
621 => 0.13417253688884
622 => 0.13408850813088
623 => 0.13514950369884
624 => 0.13510137081127
625 => 0.13474459790783
626 => 0.13439263363217
627 => 0.1357881322009
628 => 0.13538625102413
629 => 0.13498374561489
630 => 0.13417645939615
701 => 0.13428618300088
702 => 0.13311348890397
703 => 0.13257094695591
704 => 0.12441241779723
705 => 0.1222321922184
706 => 0.12291813556808
707 => 0.12314396592931
708 => 0.12219512896337
709 => 0.12355551743631
710 => 0.12334350233381
711 => 0.12416832907295
712 => 0.12365301313615
713 => 0.12367416188195
714 => 0.12518959617514
715 => 0.12562953319757
716 => 0.12540577767724
717 => 0.12556248837379
718 => 0.1291738202324
719 => 0.128660404326
720 => 0.12838766235848
721 => 0.12846321374744
722 => 0.12938598646514
723 => 0.12964431244458
724 => 0.12854976711747
725 => 0.12906596102122
726 => 0.13126384914866
727 => 0.13203298560356
728 => 0.13448769996118
729 => 0.133444893673
730 => 0.13535900974656
731 => 0.14124234998644
801 => 0.14594236926624
802 => 0.14162003730003
803 => 0.15025102416353
804 => 0.15697148547829
805 => 0.15671354297952
806 => 0.15554167510222
807 => 0.14789060856806
808 => 0.14084998307236
809 => 0.14673976526027
810 => 0.14675477952631
811 => 0.14624884201298
812 => 0.14310650756974
813 => 0.14613949558576
814 => 0.14638024316027
815 => 0.14624548853849
816 => 0.14383626808845
817 => 0.14015783375961
818 => 0.14087659102254
819 => 0.14205393008147
820 => 0.13982498162426
821 => 0.13911269753543
822 => 0.14043696917416
823 => 0.14470404831707
824 => 0.14389738172261
825 => 0.14387631639783
826 => 0.14732757816881
827 => 0.1448572195697
828 => 0.1408856568534
829 => 0.13988278488906
830 => 0.13632326503116
831 => 0.13878183807559
901 => 0.13887031774255
902 => 0.13752378241212
903 => 0.14099492077429
904 => 0.1409629336232
905 => 0.14425826288732
906 => 0.15055769477116
907 => 0.14869464278689
908 => 0.14652811602866
909 => 0.14676367755855
910 => 0.14934720612605
911 => 0.14778514577792
912 => 0.14834687357018
913 => 0.14934635588376
914 => 0.14994936837929
915 => 0.14667691334028
916 => 0.14591394753107
917 => 0.14435318725003
918 => 0.14394601402568
919 => 0.14521722070825
920 => 0.14488230265979
921 => 0.13886288136915
922 => 0.13823381835253
923 => 0.13825311081716
924 => 0.13667130195156
925 => 0.1342586637539
926 => 0.14059893288621
927 => 0.14008972054288
928 => 0.13952758952574
929 => 0.13959644736787
930 => 0.14234854330655
1001 => 0.14075218867794
1002 => 0.14499635909547
1003 => 0.14412388524907
1004 => 0.14322903574065
1005 => 0.1431053402808
1006 => 0.14276089956503
1007 => 0.14157968418991
1008 => 0.14015329564442
1009 => 0.13921147037502
1010 => 0.12841522273048
1011 => 0.13041894349442
1012 => 0.13272404158844
1013 => 0.1335197522134
1014 => 0.13215863412791
1015 => 0.14163342942804
1016 => 0.14336456583077
1017 => 0.13812084074766
1018 => 0.1371399538845
1019 => 0.14169773620749
1020 => 0.1389488363005
1021 => 0.1401866657603
1022 => 0.13751115552472
1023 => 0.14294758576495
1024 => 0.14290616927503
1025 => 0.14079127512424
1026 => 0.14257876917832
1027 => 0.14226814809835
1028 => 0.13988043781086
1029 => 0.14302328043994
1030 => 0.14302483925068
1031 => 0.1409892996123
1101 => 0.13861223495161
1102 => 0.13818727193403
1103 => 0.13786711938604
1104 => 0.1401079278592
1105 => 0.14211702972941
1106 => 0.14585547021128
1107 => 0.14679540297157
1108 => 0.15046402310987
1109 => 0.14827953843939
1110 => 0.1492478922
1111 => 0.15029917718915
1112 => 0.15080320187267
1113 => 0.14998192069833
1114 => 0.1556807978374
1115 => 0.15616195767702
1116 => 0.15632328640923
1117 => 0.15440165710231
1118 => 0.1561085136898
1119 => 0.15530993201766
1120 => 0.15738761967618
1121 => 0.15771342763029
1122 => 0.15743747988411
1123 => 0.15754089647128
1124 => 0.15267791018389
1125 => 0.1524257386906
1126 => 0.14898736248622
1127 => 0.1503885262047
1128 => 0.14776911779253
1129 => 0.14859975918292
1130 => 0.14896589799317
1201 => 0.14877464785689
1202 => 0.15046774589905
1203 => 0.14902826668613
1204 => 0.14522924437096
1205 => 0.14142918701469
1206 => 0.14138148039005
1207 => 0.14038099236472
1208 => 0.13965782277094
1209 => 0.13979713089052
1210 => 0.14028807087418
1211 => 0.13962928844661
1212 => 0.13976987307865
1213 => 0.14210451468098
1214 => 0.14257271040443
1215 => 0.14098159840028
1216 => 0.13459305410726
1217 => 0.13302528931331
1218 => 0.13415216755708
1219 => 0.13361359233681
1220 => 0.10783659712912
1221 => 0.11389251979759
1222 => 0.11029429618769
1223 => 0.11195252317344
1224 => 0.10827966862322
1225 => 0.11003254732538
1226 => 0.10970885463397
1227 => 0.1194465990771
1228 => 0.11929455759145
1229 => 0.11936733180477
1230 => 0.1158936289906
1231 => 0.12142733189488
]
'min_raw' => 0.07064654169567
'max_raw' => 0.15771342763029
'avg_raw' => 0.11417998466298
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.070646'
'max' => '$0.157713'
'avg' => '$0.114179'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.010893553388674
'max_diff' => 0.023859357571093
'year' => 2035
]
10 => [
'items' => [
101 => 0.12415343293105
102 => 0.12364890418209
103 => 0.12377588319856
104 => 0.121593962994
105 => 0.11938845756179
106 => 0.11694221261262
107 => 0.12148703336317
108 => 0.12098172687839
109 => 0.12214071815095
110 => 0.12508835927818
111 => 0.12552241063116
112 => 0.12610578005129
113 => 0.12589668364123
114 => 0.13087820843877
115 => 0.13027491291663
116 => 0.13172868154502
117 => 0.12873816917873
118 => 0.12535412057423
119 => 0.12599731758106
120 => 0.12593537253704
121 => 0.12514674102943
122 => 0.12443479976646
123 => 0.12324961815183
124 => 0.12699970815441
125 => 0.12684746134878
126 => 0.12931216016448
127 => 0.128876500708
128 => 0.12596706023365
129 => 0.12607097146938
130 => 0.12676982446765
131 => 0.12918856267405
201 => 0.12990660885396
202 => 0.12957398125423
203 => 0.13036128611045
204 => 0.13098353976781
205 => 0.13043943158943
206 => 0.13814285597261
207 => 0.13494385708784
208 => 0.13650302688579
209 => 0.13687487969544
210 => 0.13592238654274
211 => 0.13612894820134
212 => 0.13644183282943
213 => 0.13834160702211
214 => 0.14332716420778
215 => 0.14553523354747
216 => 0.15217831910018
217 => 0.14535188412662
218 => 0.14494683172589
219 => 0.14614345203589
220 => 0.15004364649735
221 => 0.15320438778172
222 => 0.15425298801329
223 => 0.15439157784439
224 => 0.15635882158844
225 => 0.1574864090156
226 => 0.15611994645426
227 => 0.15496201250812
228 => 0.15081443684111
229 => 0.15129453001804
301 => 0.1546018959216
302 => 0.15927374506325
303 => 0.16328267764984
304 => 0.16187888918342
305 => 0.17258880426198
306 => 0.17365064859594
307 => 0.17350393604253
308 => 0.17592297545891
309 => 0.1711216748462
310 => 0.16906902581345
311 => 0.15521237097039
312 => 0.15910552577568
313 => 0.16476445492214
314 => 0.16401547442971
315 => 0.15990580881994
316 => 0.16327956009995
317 => 0.16216409241983
318 => 0.16128427677971
319 => 0.16531488278772
320 => 0.16088306591375
321 => 0.16472024415866
322 => 0.15979902336903
323 => 0.16188530157089
324 => 0.16070102916159
325 => 0.16146739854938
326 => 0.15698721876789
327 => 0.15940461502777
328 => 0.15688664713582
329 => 0.15688545329119
330 => 0.15682986901042
331 => 0.15979224706891
401 => 0.15988885011105
402 => 0.15769964824991
403 => 0.15738415005997
404 => 0.1585507122275
405 => 0.15718497345243
406 => 0.15782399402943
407 => 0.15720432873473
408 => 0.15706482902474
409 => 0.15595327160166
410 => 0.15547438210089
411 => 0.1556621670136
412 => 0.15502116029675
413 => 0.15463493056362
414 => 0.15675303819524
415 => 0.15562141873188
416 => 0.15657960128277
417 => 0.15548763133376
418 => 0.15170238774181
419 => 0.14952545412385
420 => 0.14237547987093
421 => 0.14440320369955
422 => 0.14574758669575
423 => 0.14530326812352
424 => 0.14625783634513
425 => 0.14631643908125
426 => 0.14600609922174
427 => 0.14564676542142
428 => 0.14547186159983
429 => 0.14677545138994
430 => 0.14753222913992
501 => 0.14588251351494
502 => 0.14549600822598
503 => 0.14716396180613
504 => 0.14818141252648
505 => 0.15569369698934
506 => 0.15513716269197
507 => 0.15653395456403
508 => 0.15637669723475
509 => 0.15784075764306
510 => 0.16023387765255
511 => 0.15536799554638
512 => 0.15621254443047
513 => 0.15600548054757
514 => 0.15826614972597
515 => 0.15827320728838
516 => 0.15691782318713
517 => 0.15765259889701
518 => 0.15724246725327
519 => 0.15798363056613
520 => 0.15512972983713
521 => 0.1586054728655
522 => 0.16057599519066
523 => 0.16060335589505
524 => 0.16153736783814
525 => 0.16248637806665
526 => 0.16430792055889
527 => 0.16243557623518
528 => 0.15906741106588
529 => 0.159310581712
530 => 0.1573358277056
531 => 0.15736902367721
601 => 0.15719182097911
602 => 0.15772361961531
603 => 0.15524642973214
604 => 0.15582782124639
605 => 0.15501386972182
606 => 0.15621077505881
607 => 0.15492310277175
608 => 0.1560053806951
609 => 0.15647245596873
610 => 0.15819597378385
611 => 0.15466853778911
612 => 0.1474758570094
613 => 0.14898784571212
614 => 0.14675149565664
615 => 0.14695847836866
616 => 0.147376616388
617 => 0.14602129426109
618 => 0.1462798470118
619 => 0.14627060968813
620 => 0.14619100742321
621 => 0.14583843579298
622 => 0.14532713717497
623 => 0.1473639934997
624 => 0.14771009508002
625 => 0.14847943602016
626 => 0.15076847280907
627 => 0.15053974405466
628 => 0.15091281014297
629 => 0.15009840896685
630 => 0.14699625610347
701 => 0.14716471792885
702 => 0.14506399626683
703 => 0.1484257158442
704 => 0.14762961627575
705 => 0.14711636570503
706 => 0.14697632053158
707 => 0.14927103139994
708 => 0.14995764485694
709 => 0.14952979342745
710 => 0.14865225766315
711 => 0.15033738575077
712 => 0.15078825493717
713 => 0.15088918792058
714 => 0.15387491180057
715 => 0.15105605671822
716 => 0.15173458315355
717 => 0.1570282527081
718 => 0.15222762489859
719 => 0.15477062451606
720 => 0.15464615791792
721 => 0.1559470704718
722 => 0.15453944511771
723 => 0.15455689432099
724 => 0.15571201653739
725 => 0.15408985571185
726 => 0.15368818587895
727 => 0.1531332818816
728 => 0.15434489445904
729 => 0.1550712014027
730 => 0.16092470195486
731 => 0.16470633026361
801 => 0.1645421598054
802 => 0.16604237047929
803 => 0.16536651183034
804 => 0.1631839859704
805 => 0.16690929148265
806 => 0.16573044894517
807 => 0.16582763129167
808 => 0.16582401415988
809 => 0.1666078413911
810 => 0.16605242796107
811 => 0.16495765107846
812 => 0.16568441506423
813 => 0.1678426442791
814 => 0.1745418539846
815 => 0.17829082048853
816 => 0.17431616149373
817 => 0.17705782804554
818 => 0.17541380507013
819 => 0.17511503719005
820 => 0.17683700639215
821 => 0.17856198967339
822 => 0.17845211569569
823 => 0.17719986641238
824 => 0.17649250256689
825 => 0.18184889858922
826 => 0.18579539993466
827 => 0.18552627500058
828 => 0.18671410493548
829 => 0.19020161036255
830 => 0.19052046415196
831 => 0.19048029590327
901 => 0.18968998351726
902 => 0.19312388552002
903 => 0.19598850698448
904 => 0.18950704903422
905 => 0.19197510337316
906 => 0.19308309248166
907 => 0.19470994921849
908 => 0.19745472922636
909 => 0.20043628833186
910 => 0.2008579134805
911 => 0.20055875026092
912 => 0.19859233188223
913 => 0.20185478943286
914 => 0.20376586055198
915 => 0.20490385966932
916 => 0.20778963608592
917 => 0.19308993504519
918 => 0.18268475602601
919 => 0.18105983706956
920 => 0.18436417366429
921 => 0.18523550087273
922 => 0.18488426996756
923 => 0.17317229498399
924 => 0.18099817594512
925 => 0.18941816584055
926 => 0.18974161194392
927 => 0.19395683493925
928 => 0.19532948433436
929 => 0.19872329134752
930 => 0.19851100779481
1001 => 0.19933734579525
1002 => 0.19914738499913
1003 => 0.20543369784061
1004 => 0.21236843443126
1005 => 0.21212830655424
1006 => 0.21113135612125
1007 => 0.21261199751954
1008 => 0.21976938885263
1009 => 0.21911045095354
1010 => 0.21975055299431
1011 => 0.22818952074892
1012 => 0.23916137925907
1013 => 0.23406384942452
1014 => 0.2451240223908
1015 => 0.25208581499849
1016 => 0.26412551545071
1017 => 0.26261808565732
1018 => 0.26730505269196
1019 => 0.25991947171706
1020 => 0.24296068492648
1021 => 0.24027689200124
1022 => 0.24564991340203
1023 => 0.2588589622241
1024 => 0.24523391344761
1025 => 0.24799024306979
1026 => 0.24719641995317
1027 => 0.24715412049282
1028 => 0.24876851885017
1029 => 0.24642674983148
1030 => 0.23688596157311
1031 => 0.2412584486077
1101 => 0.23957002137957
1102 => 0.24144345726977
1103 => 0.25155361810543
1104 => 0.24708367500385
1105 => 0.24237495305503
1106 => 0.2482807353279
1107 => 0.25580082560824
1108 => 0.2553302318734
1109 => 0.25441708333488
1110 => 0.25956445383559
1111 => 0.2680664018647
1112 => 0.27036444425338
1113 => 0.27206081216329
1114 => 0.2722947126377
1115 => 0.27470403289242
1116 => 0.26174851065591
1117 => 0.28230925716665
1118 => 0.2858595301099
1119 => 0.2851922259403
1120 => 0.2891382048984
1121 => 0.2879771977891
1122 => 0.28629508064417
1123 => 0.29255029662654
1124 => 0.28537919627265
1125 => 0.27520072213674
1126 => 0.26961660991838
1127 => 0.27697021934499
1128 => 0.28146081201622
1129 => 0.28442880811657
1130 => 0.28532692194322
1201 => 0.26275421096749
1202 => 0.25058877169151
1203 => 0.25838667879037
1204 => 0.26790066363377
1205 => 0.26169565998973
1206 => 0.26193888438495
1207 => 0.25309217983483
1208 => 0.26868340068511
1209 => 0.26641189095003
1210 => 0.27819648747385
1211 => 0.27538399893614
1212 => 0.28499387992591
1213 => 0.28246327619912
1214 => 0.29296767078488
1215 => 0.29715815818027
1216 => 0.30419463871441
1217 => 0.30937070243895
1218 => 0.31241018606032
1219 => 0.31222770686451
1220 => 0.32427165523712
1221 => 0.3171697596653
1222 => 0.30824810503882
1223 => 0.30808674045409
1224 => 0.31270739180597
1225 => 0.32239100942571
1226 => 0.3249018305836
1227 => 0.32630503707834
1228 => 0.32415597748567
1229 => 0.31644737883991
1230 => 0.31311884502814
1231 => 0.31595485227267
]
'min_raw' => 0.11694221261262
'max_raw' => 0.32630503707834
'avg_raw' => 0.22162362484548
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.116942'
'max' => '$0.326305'
'avg' => '$0.221623'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.046295670916949
'max_diff' => 0.16859160944805
'year' => 2036
]
11 => [
'items' => [
101 => 0.31248665911349
102 => 0.31847373350937
103 => 0.32669526542498
104 => 0.32499755159587
105 => 0.33067275439112
106 => 0.33654599223545
107 => 0.34494498613647
108 => 0.34714079415604
109 => 0.35077038131329
110 => 0.35450641875536
111 => 0.35570633329273
112 => 0.35799734245617
113 => 0.357985267707
114 => 0.36488937802374
115 => 0.37250482550559
116 => 0.37537948063198
117 => 0.38198959158569
118 => 0.37067000822337
119 => 0.37925604223369
120 => 0.38700085983337
121 => 0.37776716900968
122 => 0.39049366063611
123 => 0.39098780146711
124 => 0.39844874134425
125 => 0.39088564943564
126 => 0.38639470960255
127 => 0.39935988462736
128 => 0.40563332442268
129 => 0.40374371330139
130 => 0.38936367936671
131 => 0.38099388282805
201 => 0.35908851087322
202 => 0.38503637019537
203 => 0.39767481556175
204 => 0.38933094884643
205 => 0.3935391098839
206 => 0.41649747200351
207 => 0.42523852985479
208 => 0.42342045092633
209 => 0.42372767633711
210 => 0.42844419249224
211 => 0.44935982255698
212 => 0.43682669220168
213 => 0.44640780075087
214 => 0.45148958617811
215 => 0.4562098316939
216 => 0.44461840055603
217 => 0.42953811895759
218 => 0.42476156074821
219 => 0.38850131574123
220 => 0.38661381251836
221 => 0.38555429976216
222 => 0.37887422170536
223 => 0.37362551018009
224 => 0.36945153990304
225 => 0.358497795443
226 => 0.36219436264772
227 => 0.34473638020258
228 => 0.35590537869807
301 => 0.32804201717789
302 => 0.35124745261616
303 => 0.33861778912879
304 => 0.34709826848685
305 => 0.34706868089328
306 => 0.33145342965666
307 => 0.32244687862536
308 => 0.32818620348272
309 => 0.33433921531798
310 => 0.33533752078703
311 => 0.34331506124148
312 => 0.34554142130566
313 => 0.33879544637238
314 => 0.32746461094262
315 => 0.33009650558412
316 => 0.32239354336446
317 => 0.30889439836467
318 => 0.31858971997598
319 => 0.32190012904728
320 => 0.32336219428301
321 => 0.31008733556299
322 => 0.30591608674196
323 => 0.30369534886981
324 => 0.32575099338041
325 => 0.3269592513745
326 => 0.32077763264626
327 => 0.34871913546306
328 => 0.34239511282553
329 => 0.34946059553481
330 => 0.32985768873162
331 => 0.33060654617031
401 => 0.32132621593916
402 => 0.32652258075672
403 => 0.32284995759033
404 => 0.32610276583094
405 => 0.32805248567853
406 => 0.3373312930988
407 => 0.35135340169214
408 => 0.33594534869117
409 => 0.32923183935127
410 => 0.33339686278754
411 => 0.34448886905869
412 => 0.36129382634884
413 => 0.35134495340178
414 => 0.35576009427287
415 => 0.35672460613725
416 => 0.34938867555339
417 => 0.36156431257332
418 => 0.368089335367
419 => 0.3747826585901
420 => 0.38059428360206
421 => 0.37210919810546
422 => 0.38118945587605
423 => 0.37387237099423
424 => 0.3673081894289
425 => 0.36731814458276
426 => 0.36320033759944
427 => 0.35522156769219
428 => 0.353750160105
429 => 0.36140460819186
430 => 0.36754275067858
501 => 0.36804831749351
502 => 0.37144670856331
503 => 0.3734578413922
504 => 0.39316967711788
505 => 0.4010979405116
506 => 0.4107924709151
507 => 0.41456903686106
508 => 0.42593514638457
509 => 0.41675608983405
510 => 0.41477014321038
511 => 0.38719967933243
512 => 0.39171434124792
513 => 0.39894275057469
514 => 0.38731887313984
515 => 0.39469154792448
516 => 0.39614707010157
517 => 0.38692389823254
518 => 0.39185039283752
519 => 0.37876708377053
520 => 0.35163858207725
521 => 0.3615945143508
522 => 0.36892543163471
523 => 0.35846330877499
524 => 0.37721625906096
525 => 0.36626117264337
526 => 0.36278893618588
527 => 0.34924250382353
528 => 0.35563589844856
529 => 0.36428305622351
530 => 0.35894011805858
531 => 0.370027516997
601 => 0.3857302307951
602 => 0.3969209197604
603 => 0.39778000190382
604 => 0.39058513861706
605 => 0.40211495295109
606 => 0.40219893506113
607 => 0.38919325739167
608 => 0.38122735223504
609 => 0.37941748182305
610 => 0.3839388929582
611 => 0.38942872077482
612 => 0.39808464914038
613 => 0.40331524536589
614 => 0.41695386622813
615 => 0.42064408598355
616 => 0.42469851869004
617 => 0.43011649112664
618 => 0.4366221561764
619 => 0.42238813141524
620 => 0.42295367575454
621 => 0.40969914898044
622 => 0.39553478623089
623 => 0.40628377194506
624 => 0.42033664088868
625 => 0.41711289722597
626 => 0.41675016020881
627 => 0.41736018325682
628 => 0.41492958581276
629 => 0.40393608365544
630 => 0.398415215695
701 => 0.4055385438876
702 => 0.4093242757991
703 => 0.41519561584333
704 => 0.41447184925392
705 => 0.42959579067196
706 => 0.43547249698276
707 => 0.43396898403002
708 => 0.43424566659738
709 => 0.44488516266501
710 => 0.45671847047146
711 => 0.46780192477469
712 => 0.47907649053738
713 => 0.46548456145667
714 => 0.45858341810313
715 => 0.46570363647347
716 => 0.46192554838184
717 => 0.48363556321011
718 => 0.48513871753327
719 => 0.50684716248036
720 => 0.52745106172869
721 => 0.51451012176801
722 => 0.52671284527819
723 => 0.5399110856571
724 => 0.56537263268534
725 => 0.55679807939426
726 => 0.55023010595366
727 => 0.54402340278852
728 => 0.5569385667888
729 => 0.57355371895038
730 => 0.57713246358804
731 => 0.58293139708671
801 => 0.57683452757271
802 => 0.58417753535418
803 => 0.61010157950388
804 => 0.60309667393676
805 => 0.5931485819367
806 => 0.61361312502122
807 => 0.62101916360961
808 => 0.67299862099547
809 => 0.7386248331094
810 => 0.71145515036929
811 => 0.69459005153232
812 => 0.6985537498045
813 => 0.72251822088103
814 => 0.73021484839652
815 => 0.70929276162282
816 => 0.71668279637245
817 => 0.7574026144151
818 => 0.77924749034681
819 => 0.74957921467329
820 => 0.66772561875093
821 => 0.59225286509652
822 => 0.61227163794806
823 => 0.61000213036154
824 => 0.65375049494762
825 => 0.60292960925566
826 => 0.60378530263329
827 => 0.64843833706869
828 => 0.63652567302814
829 => 0.61722868294118
830 => 0.59239375447948
831 => 0.5464840922652
901 => 0.50582062415637
902 => 0.58557104935521
903 => 0.5821320660039
904 => 0.57715190848242
905 => 0.58823471013715
906 => 0.64204964906435
907 => 0.64080904054012
908 => 0.63291692207299
909 => 0.63890302437236
910 => 0.61617929026572
911 => 0.62203571395481
912 => 0.59224090982674
913 => 0.60570940563356
914 => 0.61718728026717
915 => 0.6194916335327
916 => 0.62468345910315
917 => 0.58031987804637
918 => 0.60023782349456
919 => 0.61193775038626
920 => 0.55907705504255
921 => 0.61089286439941
922 => 0.57954760680023
923 => 0.5689085555811
924 => 0.58323263645925
925 => 0.57765052821041
926 => 0.57285135933045
927 => 0.57017334063525
928 => 0.58069136474104
929 => 0.58020068634475
930 => 0.56299115744716
1001 => 0.5405420285504
1002 => 0.54807669307569
1003 => 0.5453392788158
1004 => 0.53541853640447
1005 => 0.5421039189547
1006 => 0.51266487759819
1007 => 0.46201653705253
1008 => 0.49547638221762
1009 => 0.49418821457607
1010 => 0.49353866203745
1011 => 0.51868281091682
1012 => 0.51626578117628
1013 => 0.51187884852958
1014 => 0.53533796694614
1015 => 0.52677507315443
1016 => 0.55316389414898
1017 => 0.57054527837792
1018 => 0.56613679710858
1019 => 0.58248407298743
1020 => 0.54825027652847
1021 => 0.55962137049062
1022 => 0.56196493719656
1023 => 0.53504848506635
1024 => 0.51666123713375
1025 => 0.51543501732661
1026 => 0.48355406333033
1027 => 0.50058461162108
1028 => 0.51557078934496
1029 => 0.50839357318959
1030 => 0.50612148096803
1031 => 0.51772910737129
1101 => 0.51863111935542
1102 => 0.49806515052631
1103 => 0.50234146668541
1104 => 0.52017441594728
1105 => 0.50189212211865
1106 => 0.46637261160536
1107 => 0.45756328190241
1108 => 0.45638795493188
1109 => 0.43249635410073
1110 => 0.45815196343661
1111 => 0.44695260243391
1112 => 0.48233124965248
1113 => 0.46212315610073
1114 => 0.46125202557712
1115 => 0.45993518402361
1116 => 0.43937069623864
1117 => 0.44387301212217
1118 => 0.4588393958411
1119 => 0.46417957016039
1120 => 0.46362254622813
1121 => 0.458766052396
1122 => 0.46098933040308
1123 => 0.45382737730086
1124 => 0.45129834259731
1125 => 0.44331601340709
1126 => 0.43158419467219
1127 => 0.43321557602271
1128 => 0.40997177331152
1129 => 0.39730731595248
1130 => 0.39380196107036
1201 => 0.38911445402313
1202 => 0.39433142746433
1203 => 0.40990592653886
1204 => 0.39111977634067
1205 => 0.35891223952109
1206 => 0.36084796736292
1207 => 0.36519697310075
1208 => 0.35709262967985
1209 => 0.34942254877795
1210 => 0.35609106182882
1211 => 0.3424443038939
1212 => 0.36684611859903
1213 => 0.36618611789655
1214 => 0.37528160542053
1215 => 0.38096920042746
1216 => 0.36786113531723
1217 => 0.36456449238998
1218 => 0.36644241002541
1219 => 0.33540461462503
1220 => 0.37274515536488
1221 => 0.37306807791179
1222 => 0.37030301901312
1223 => 0.39018570419723
1224 => 0.43214437150074
1225 => 0.41635783307768
1226 => 0.41024480824962
1227 => 0.39862394358289
1228 => 0.41410805577264
1229 => 0.41291911754625
1230 => 0.40754228799506
1231 => 0.40429036470577
]
'min_raw' => 0.30369534886981
'max_raw' => 0.77924749034681
'avg_raw' => 0.54147141960831
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.303695'
'max' => '$0.779247'
'avg' => '$0.541471'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.18675313625719
'max_diff' => 0.45294245326848
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0095326499761212
]
1 => [
'year' => 2028
'avg' => 0.016360794707085
]
2 => [
'year' => 2029
'avg' => 0.044694742393409
]
3 => [
'year' => 2030
'avg' => 0.034481927195107
]
4 => [
'year' => 2031
'avg' => 0.033865525803788
]
5 => [
'year' => 2032
'avg' => 0.059376924607249
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0095326499761212
'min' => '$0.009532'
'max_raw' => 0.059376924607249
'max' => '$0.059376'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.059376924607249
]
1 => [
'year' => 2033
'avg' => 0.152723555747
]
2 => [
'year' => 2034
'avg' => 0.096803529183095
]
3 => [
'year' => 2035
'avg' => 0.11417998466298
]
4 => [
'year' => 2036
'avg' => 0.22162362484548
]
5 => [
'year' => 2037
'avg' => 0.54147141960831
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.059376924607249
'min' => '$0.059376'
'max_raw' => 0.54147141960831
'max' => '$0.541471'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.54147141960831
]
]
]
]
'prediction_2025_max_price' => '$0.016299'
'last_price' => 0.01580403
'sma_50day_nextmonth' => '$0.014917'
'sma_200day_nextmonth' => '$0.018195'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.015549'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0153097'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.015546'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015532'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.016844'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.019666'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.01823'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.015538'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.015464'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.015502'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.015793'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.0171087'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.018353'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.022178'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.018495'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0218032'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.071755'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.103226'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.015943'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.016365'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.01746'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0192039'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.032767'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.062686'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.110943'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '48.22'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 63.17
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.015677'
'vwma_10_action' => 'BUY'
'hma_9' => '0.015458'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 55.09
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 35.77
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.67
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000650'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -44.91
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 48.27
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.009355'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767706989
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de LORDS para 2026
A previsão de preço para LORDS em 2026 sugere que o preço médio poderia variar entre $0.00546 na extremidade inferior e $0.016299 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, LORDS poderia potencialmente ganhar 3.13% até 2026 se LORDS atingir a meta de preço prevista.
Previsão de preço de LORDS 2027-2032
A previsão de preço de LORDS para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.009532 na extremidade inferior e $0.059376 na extremidade superior. Considerando a volatilidade de preços no mercado, se LORDS atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de LORDS | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.005256 | $0.009532 | $0.0138088 |
| 2028 | $0.009486 | $0.01636 | $0.023235 |
| 2029 | $0.020838 | $0.044694 | $0.06855 |
| 2030 | $0.017722 | $0.034481 | $0.051241 |
| 2031 | $0.020953 | $0.033865 | $0.046777 |
| 2032 | $0.031984 | $0.059376 | $0.086769 |
Previsão de preço de LORDS 2032-2037
A previsão de preço de LORDS para 2032-2037 é atualmente estimada entre $0.059376 na extremidade inferior e $0.541471 na extremidade superior. Comparado ao preço atual, LORDS poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de LORDS | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.031984 | $0.059376 | $0.086769 |
| 2033 | $0.074324 | $0.152723 | $0.231123 |
| 2034 | $0.059752 | $0.0968035 | $0.133854 |
| 2035 | $0.070646 | $0.114179 | $0.157713 |
| 2036 | $0.116942 | $0.221623 | $0.326305 |
| 2037 | $0.303695 | $0.541471 | $0.779247 |
LORDS Histograma de preços potenciais
Previsão de preço de LORDS baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para LORDS é Baixista, com 16 indicadores técnicos mostrando sinais de alta e 17 indicando sinais de baixa. A previsão de preço de LORDS foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de LORDS
De acordo com nossos indicadores técnicos, o SMA de 200 dias de LORDS está projetado para aumentar no próximo mês, alcançando $0.018195 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para LORDS é esperado para alcançar $0.014917 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 48.22, sugerindo que o mercado de LORDS está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de LORDS para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.015549 | BUY |
| SMA 5 | $0.0153097 | BUY |
| SMA 10 | $0.015546 | BUY |
| SMA 21 | $0.015532 | BUY |
| SMA 50 | $0.016844 | SELL |
| SMA 100 | $0.019666 | SELL |
| SMA 200 | $0.01823 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.015538 | BUY |
| EMA 5 | $0.015464 | BUY |
| EMA 10 | $0.015502 | BUY |
| EMA 21 | $0.015793 | BUY |
| EMA 50 | $0.0171087 | SELL |
| EMA 100 | $0.018353 | SELL |
| EMA 200 | $0.022178 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.018495 | SELL |
| SMA 50 | $0.0218032 | SELL |
| SMA 100 | $0.071755 | SELL |
| SMA 200 | $0.103226 | SELL |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.0192039 | SELL |
| EMA 50 | $0.032767 | SELL |
| EMA 100 | $0.062686 | SELL |
| EMA 200 | $0.110943 | SELL |
Osciladores de LORDS
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 48.22 | NEUTRAL |
| Stoch RSI (14) | 63.17 | NEUTRAL |
| Estocástico Rápido (14) | 55.09 | NEUTRAL |
| Índice de Canal de Commodities (20) | 35.77 | NEUTRAL |
| Índice Direcional Médio (14) | 13.67 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000650 | NEUTRAL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Williams Percent Range (14) | -44.91 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 48.27 | NEUTRAL |
| VWMA (10) | 0.015677 | BUY |
| Média Móvel de Hull (9) | 0.015458 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.009355 | SELL |
Previsão do preço de LORDS com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do LORDS
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de LORDS por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0222073 | $0.0312049 | $0.043848 | $0.061614 | $0.086578 | $0.121656 |
| Amazon.com stock | $0.032976 | $0.0688064 | $0.143568 | $0.299564 | $0.625059 | $1.30 |
| Apple stock | $0.022416 | $0.031796 | $0.04510095 | $0.063972 | $0.090739 | $0.1287074 |
| Netflix stock | $0.024936 | $0.039345 | $0.062081 | $0.097954 | $0.154556 | $0.243865 |
| Google stock | $0.020466 | $0.0265035 | $0.034322 | $0.044446 | $0.057558 | $0.074537 |
| Tesla stock | $0.035826 | $0.081216 | $0.18411 | $0.417364 | $0.946134 | $2.14 |
| Kodak stock | $0.011851 | $0.008887 | $0.006664 | $0.004997 | $0.003747 | $0.00281 |
| Nokia stock | $0.010469 | $0.006935 | $0.004594 | $0.003043 | $0.002016 | $0.001335 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para LORDS
Você pode fazer perguntas como: 'Devo investir em LORDS agora?', 'Devo comprar LORDS hoje?', 'LORDS será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para LORDS regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como LORDS, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre LORDS para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de LORDS é de $0.0158 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de LORDS com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se LORDS tiver 1% da média anterior do crescimento anual do Bitcoin | $0.016214 | $0.016636 | $0.017068 | $0.017512 |
| Se LORDS tiver 2% da média anterior do crescimento anual do Bitcoin | $0.016625 | $0.017489 | $0.018399 | $0.019355 |
| Se LORDS tiver 5% da média anterior do crescimento anual do Bitcoin | $0.017858 | $0.020178 | $0.0228015 | $0.025764 |
| Se LORDS tiver 10% da média anterior do crescimento anual do Bitcoin | $0.019912 | $0.025087 | $0.0316088 | $0.039825 |
| Se LORDS tiver 20% da média anterior do crescimento anual do Bitcoin | $0.024019 | $0.0365071 | $0.055485 | $0.08433 |
| Se LORDS tiver 50% da média anterior do crescimento anual do Bitcoin | $0.036343 | $0.083578 | $0.1922025 | $0.44200058 |
| Se LORDS tiver 100% da média anterior do crescimento anual do Bitcoin | $0.056883 | $0.204743 | $0.736935 | $2.65 |
Perguntas Frequentes sobre LORDS
LORDS é um bom investimento?
A decisão de adquirir LORDS depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de LORDS experimentou uma escalada de 4.1105% nas últimas 24 horas, e LORDS registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em LORDS dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
LORDS pode subir?
Parece que o valor médio de LORDS pode potencialmente subir para $0.016299 até o final deste ano. Observando as perspectivas de LORDS em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.051241. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de LORDS na próxima semana?
Com base na nossa nova previsão experimental de LORDS, o preço de LORDS aumentará 0.86% na próxima semana e atingirá $0.015939 até 13 de janeiro de 2026.
Qual será o preço de LORDS no próximo mês?
Com base na nossa nova previsão experimental de LORDS, o preço de LORDS diminuirá -11.62% no próximo mês e atingirá $0.013967 até 5 de fevereiro de 2026.
Até onde o preço de LORDS pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de LORDS em 2026, espera-se que LORDS fluctue dentro do intervalo de $0.00546 e $0.016299. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de LORDS não considera flutuações repentinas e extremas de preço.
Onde estará LORDS em 5 anos?
O futuro de LORDS parece seguir uma tendência de alta, com um preço máximo de $0.051241 projetada após um período de cinco anos. Com base na previsão de LORDS para 2030, o valor de LORDS pode potencialmente atingir seu pico mais alto de aproximadamente $0.051241, enquanto seu pico mais baixo está previsto para cerca de $0.017722.
Quanto será LORDS em 2026?
Com base na nossa nova simulação experimental de previsão de preços de LORDS, espera-se que o valor de LORDS em 2026 aumente 3.13% para $0.016299 se o melhor cenário ocorrer. O preço ficará entre $0.016299 e $0.00546 durante 2026.
Quanto será LORDS em 2027?
De acordo com nossa última simulação experimental para previsão de preços de LORDS, o valor de LORDS pode diminuir -12.62% para $0.0138088 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0138088 e $0.005256 ao longo do ano.
Quanto será LORDS em 2028?
Nosso novo modelo experimental de previsão de preços de LORDS sugere que o valor de LORDS em 2028 pode aumentar 47.02%, alcançando $0.023235 no melhor cenário. O preço é esperado para variar entre $0.023235 e $0.009486 durante o ano.
Quanto será LORDS em 2029?
Com base no nosso modelo de previsão experimental, o valor de LORDS pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.06855 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.06855 e $0.020838.
Quanto será LORDS em 2030?
Usando nossa nova simulação experimental para previsões de preços de LORDS, espera-se que o valor de LORDS em 2030 aumente 224.23%, alcançando $0.051241 no melhor cenário. O preço está previsto para variar entre $0.051241 e $0.017722 ao longo de 2030.
Quanto será LORDS em 2031?
Nossa simulação experimental indica que o preço de LORDS poderia aumentar 195.98% em 2031, potencialmente atingindo $0.046777 sob condições ideais. O preço provavelmente oscilará entre $0.046777 e $0.020953 durante o ano.
Quanto será LORDS em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de LORDS, LORDS poderia ver um 449.04% aumento em valor, atingindo $0.086769 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.086769 e $0.031984 ao longo do ano.
Quanto será LORDS em 2033?
De acordo com nossa previsão experimental de preços de LORDS, espera-se que o valor de LORDS seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.231123. Ao longo do ano, o preço de LORDS poderia variar entre $0.231123 e $0.074324.
Quanto será LORDS em 2034?
Os resultados da nossa nova simulação de previsão de preços de LORDS sugerem que LORDS pode aumentar 746.96% em 2034, atingindo potencialmente $0.133854 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.133854 e $0.059752.
Quanto será LORDS em 2035?
Com base em nossa previsão experimental para o preço de LORDS, LORDS poderia aumentar 897.93%, com o valor potencialmente atingindo $0.157713 em 2035. A faixa de preço esperada para o ano está entre $0.157713 e $0.070646.
Quanto será LORDS em 2036?
Nossa recente simulação de previsão de preços de LORDS sugere que o valor de LORDS pode aumentar 1964.7% em 2036, possivelmente atingindo $0.326305 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.326305 e $0.116942.
Quanto será LORDS em 2037?
De acordo com a simulação experimental, o valor de LORDS poderia aumentar 4830.69% em 2037, com um pico de $0.779247 sob condições favoráveis. O preço é esperado para cair entre $0.779247 e $0.303695 ao longo do ano.
Previsões relacionadas
Previsão de Preço do Bad Idea AI
Previsão de Preço do Vector ETH
Previsão de Preço do Terracoin
Previsão de Preço do Phantasma
Previsão de Preço do Bifrost Native Coin
Previsão de Preço do NvirWorld
Previsão de Preço do OPEN Ticketing Ecosystem
Previsão de Preço do BabyBonk [OLD]
Previsão de Preço do Everest
Previsão de Preço do Saros
Previsão de Preço do Kasta
Previsão de Preço do UX Chain
Previsão de Preço do Guacamole
Previsão de Preço do RMRK
Previsão de Preço do Cult DAO
Previsão de Preço do Wrapped Ampleforth
Previsão de Preço do SpaceN
Previsão de Preço do Polaris Share
Previsão de Preço do Prisma mkUSD
Previsão de Preço do Source
Previsão de Preço do VLaunch
Previsão de Preço do agEUR
Previsão de Preço do Solve.CarePrevisão de Preço do Hubble
Previsão de Preço do NumberGoUpTech
Como ler e prever os movimentos de preço de LORDS?
Traders de LORDS utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de LORDS
Médias móveis são ferramentas populares para a previsão de preço de LORDS. Uma média móvel simples (SMA) calcula o preço médio de fechamento de LORDS em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de LORDS acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de LORDS.
Como ler gráficos de LORDS e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de LORDS em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de LORDS dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de LORDS?
A ação de preço de LORDS é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de LORDS. A capitalização de mercado de LORDS pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de LORDS, grandes detentores de LORDS, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de LORDS.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


