Predicción del precio de KDR - Pronóstico de KDR
Predicción de precio de KDR hasta $0.006366 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002132 | $0.006366 |
| 2027 | $0.002053 | $0.005393 |
| 2028 | $0.0037053 | $0.009075 |
| 2029 | $0.008139 | $0.026775 |
| 2030 | $0.006922 | $0.020014 |
| 2031 | $0.008184 | $0.01827 |
| 2032 | $0.012492 | $0.033891 |
| 2033 | $0.02903 | $0.090274 |
| 2034 | $0.023339 | $0.052282 |
| 2035 | $0.027593 | $0.0616016 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en KDR hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.87, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de KDR para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006172
'ticker' => 'KDR'
'marketcap' => '$92.52K'
'low24h' => '$0.005839'
'high24h' => '$0.00616'
'volume24h' => '$89.51'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006172'
'change_24h_pct' => '5.6828%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 dic. 2024'
'ath_pct' => '-98.43%'
'fdv' => '$612.7K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.304367'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006225'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005455'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002132'
'current_year_max_price_prediction' => '$0.006366'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006922'
'grand_prediction_max_price' => '$0.020014'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062899037765388
107 => 0.0063133879940053
108 => 0.0063662991350913
109 => 0.0059141792276476
110 => 0.0061171677925467
111 => 0.0062364045569686
112 => 0.0056976885174401
113 => 0.0062257558729712
114 => 0.005906308825935
115 => 0.0057978837002373
116 => 0.0059438638480652
117 => 0.0058869752424863
118 => 0.0058380657600206
119 => 0.0058107734284332
120 => 0.005917965137757
121 => 0.0059129645163952
122 => 0.0057375780749272
123 => 0.0055087936116981
124 => 0.0055855811871518
125 => 0.0055576835411021
126 => 0.0054565788729501
127 => 0.0055247112118604
128 => 0.0052246908722872
129 => 0.0047085214717518
130 => 0.0050495187884418
131 => 0.005036390762683
201 => 0.0050297710167868
202 => 0.0052860210758057
203 => 0.0052613885453258
204 => 0.0052166802613023
205 => 0.0054557577702534
206 => 0.0053684912634399
207 => 0.0056374260748641
208 => 0.005814563935281
209 => 0.0057696360440698
210 => 0.0059362350579736
211 => 0.0055873502178012
212 => 0.0057032357668762
213 => 0.0057271196179301
214 => 0.005452807590904
215 => 0.005265418731948
216 => 0.005252922031445
217 => 0.0049280155737907
218 => 0.0051015779809163
219 => 0.0052543057166865
220 => 0.0051811609834036
221 => 0.005158005545983
222 => 0.0052763016539632
223 => 0.0052854942746909
224 => 0.0050759015479089
225 => 0.0051194825127453
226 => 0.0053012223808458
227 => 0.0051149031343657
228 => 0.0047529152735309
301 => 0.0046631372791701
302 => 0.0046511592397857
303 => 0.0044076741986968
304 => 0.0046691366740435
305 => 0.004555001296796
306 => 0.0049155535859692
307 => 0.0047096080520741
308 => 0.0047007301517261
309 => 0.0046873099032451
310 => 0.0044777322701395
311 => 0.0045236164524362
312 => 0.0046761424627488
313 => 0.0047305654615568
314 => 0.0047248886969066
315 => 0.004675395002088
316 => 0.0046980529621272
317 => 0.0046250637782842
318 => 0.0045992897783307
319 => 0.0045179399447804
320 => 0.0043983781629265
321 => 0.0044150039620083
322 => 0.0041781207871137
323 => 0.0040490542610895
324 => 0.0040133303477554
325 => 0.0039655588378401
326 => 0.0040187262669155
327 => 0.004177449726842
328 => 0.0039859955591102
329 => 0.0036577608174823
330 => 0.0036774882847389
331 => 0.0037218100465269
401 => 0.0036392167366527
402 => 0.0035610491003879
403 => 0.0036290095181794
404 => 0.0034899321311095
405 => 0.0037386168843042
406 => 0.0037318906586613
407 => 0.0038245849560903
408 => 0.0038825486025512
409 => 0.0037489611634123
410 => 0.0037153642837277
411 => 0.0037345025932891
412 => 0.0034181889673509
413 => 0.003798735384503
414 => 0.0038020263657211
415 => 0.0037738469865194
416 => 0.0039764762056004
417 => 0.0044040870594998
418 => 0.0042432026556561
419 => 0.004180903351731
420 => 0.0040624723294288
421 => 0.0042202746349081
422 => 0.0042081578799468
423 => 0.0041533613188686
424 => 0.0041202201877528
425 => 0.0041812837379962
426 => 0.0041126537381173
427 => 0.0041003259043128
428 => 0.0040256326442728
429 => 0.0039989705487654
430 => 0.0039792309947003
501 => 0.0039574996852431
502 => 0.0040054335388007
503 => 0.0038968091204156
504 => 0.0037658187204261
505 => 0.0037549282860027
506 => 0.0037849977329424
507 => 0.0037716942410787
508 => 0.0037548645940019
509 => 0.0037227322144508
510 => 0.0037131992238376
511 => 0.0037441768185809
512 => 0.0037092049202217
513 => 0.0037608078612685
514 => 0.0037467747166247
515 => 0.0036683867113936
516 => 0.0035706862339191
517 => 0.0035698164947359
518 => 0.0035487670871249
519 => 0.0035219575017326
520 => 0.0035144996883967
521 => 0.00362328608135
522 => 0.0038484706590605
523 => 0.0038042615382457
524 => 0.0038362071587673
525 => 0.0039933479939911
526 => 0.0040432983401189
527 => 0.0040078447675762
528 => 0.0039593137307985
529 => 0.0039614488501176
530 => 0.0041272940941307
531 => 0.0041376376585699
601 => 0.0041637725089474
602 => 0.0041973631773902
603 => 0.0040135654036622
604 => 0.0039527919915036
605 => 0.0039239941772424
606 => 0.0038353080554744
607 => 0.0039309484344277
608 => 0.003875222881341
609 => 0.0038827421623083
610 => 0.003877845220714
611 => 0.0038805192819543
612 => 0.0037385473718475
613 => 0.0037902744740665
614 => 0.003704268133991
615 => 0.0035891152992946
616 => 0.0035887292666149
617 => 0.0036169127597699
618 => 0.0036001481152211
619 => 0.0035550348877987
620 => 0.0035614430088256
621 => 0.0035053011256879
622 => 0.0035682596499201
623 => 0.0035700650751187
624 => 0.0035458226139153
625 => 0.0036428189070972
626 => 0.0036825583675552
627 => 0.0036666014602673
628 => 0.003681438788402
629 => 0.0038060986268077
630 => 0.0038264236197579
701 => 0.0038354506390327
702 => 0.0038233556290554
703 => 0.0036837173414068
704 => 0.0036899108932519
705 => 0.003644466719299
706 => 0.0036060711810979
707 => 0.0036076068012679
708 => 0.0036273470989738
709 => 0.0037135541368088
710 => 0.0038949717657502
711 => 0.0039018564321539
712 => 0.0039102008486752
713 => 0.0038762599131155
714 => 0.0038660230021797
715 => 0.0038795281300749
716 => 0.0039476590530195
717 => 0.0041229102841982
718 => 0.0040609647944635
719 => 0.0040106021470702
720 => 0.0040547837665063
721 => 0.0040479823525011
722 => 0.0039905715735959
723 => 0.0039889602442446
724 => 0.0038787706041893
725 => 0.0038380360031575
726 => 0.0038039951216033
727 => 0.0037668233676059
728 => 0.0037447867058277
729 => 0.0037786450338026
730 => 0.0037863888340105
731 => 0.003712357008151
801 => 0.0037022667438434
802 => 0.0037627227309281
803 => 0.0037361183050385
804 => 0.003763481616824
805 => 0.0037698301398764
806 => 0.0037688078814461
807 => 0.0037410298053184
808 => 0.003758734722688
809 => 0.003716857315019
810 => 0.0036713219239622
811 => 0.0036422731814231
812 => 0.0036169243008012
813 => 0.0036309893330558
814 => 0.0035808500612414
815 => 0.0035648094990838
816 => 0.0037527366950565
817 => 0.0038915605352793
818 => 0.0038895419816622
819 => 0.0038772545556478
820 => 0.0038589979330039
821 => 0.0039463234673597
822 => 0.0039159009973193
823 => 0.0039380358861561
824 => 0.0039436701443634
825 => 0.003960723347027
826 => 0.0039668184012069
827 => 0.0039483949141878
828 => 0.0038865634415124
829 => 0.0037324852903653
830 => 0.0036607614950803
831 => 0.003637091447982
901 => 0.0036379518092382
902 => 0.0036142192049703
903 => 0.0036212095205479
904 => 0.0036117882584852
905 => 0.0035939466673866
906 => 0.0036298876650818
907 => 0.0036340295302526
908 => 0.0036256404719276
909 => 0.0036276163988515
910 => 0.0035581585789343
911 => 0.0035634393061281
912 => 0.0035340355460704
913 => 0.0035285226955272
914 => 0.0034541925505795
915 => 0.003322505924478
916 => 0.0033954730984683
917 => 0.0033073390130253
918 => 0.0032739612994187
919 => 0.0034319662043329
920 => 0.0034161068942534
921 => 0.0033889626492736
922 => 0.0033488106535922
923 => 0.0033339178878205
924 => 0.0032434341574682
925 => 0.003238087895967
926 => 0.0032829340759959
927 => 0.0032622391069754
928 => 0.003233175532673
929 => 0.0031279102126769
930 => 0.0030095571408516
1001 => 0.0030131294761492
1002 => 0.0030507753862596
1003 => 0.0031602359471484
1004 => 0.0031174678123222
1005 => 0.003086439039798
1006 => 0.0030806282834257
1007 => 0.0031533620650675
1008 => 0.0032562956042891
1009 => 0.0033045897178837
1010 => 0.0032567317180255
1011 => 0.0032017550246461
1012 => 0.0032051012012346
1013 => 0.0032273618149646
1014 => 0.0032297010907195
1015 => 0.0031939169150249
1016 => 0.0032039899508759
1017 => 0.0031886880883205
1018 => 0.003094780586063
1019 => 0.003093082097131
1020 => 0.003070035681614
1021 => 0.0030693378453114
1022 => 0.0030301301433191
1023 => 0.0030246447147804
1024 => 0.0029467954427374
1025 => 0.0029980360693454
1026 => 0.0029636665472704
1027 => 0.0029118635705527
1028 => 0.0029029327178408
1029 => 0.002902664245624
1030 => 0.0029558543197794
1031 => 0.0029974145123601
1101 => 0.0029642644198217
1102 => 0.0029567167863383
1103 => 0.003037305765722
1104 => 0.0030270500835106
1105 => 0.0030181687288576
1106 => 0.0032470790348367
1107 => 0.0030658786655603
1108 => 0.0029868649620003
1109 => 0.0028890704995494
1110 => 0.0029209128696459
1111 => 0.002927622524887
1112 => 0.0026924444714694
1113 => 0.0025970327644874
1114 => 0.0025642910621656
1115 => 0.0025454477495796
1116 => 0.0025540348837445
1117 => 0.0024681531567837
1118 => 0.002525867097654
1119 => 0.0024515007815076
1120 => 0.0024390330265968
1121 => 0.0025720092120852
1122 => 0.0025905120714603
1123 => 0.0025115731249783
1124 => 0.0025622647076743
1125 => 0.002543883235123
1126 => 0.0024527755785537
1127 => 0.0024492959362153
1128 => 0.0024035813167378
1129 => 0.00233204678935
1130 => 0.0022993535908062
1201 => 0.0022823266891493
1202 => 0.0022893523206206
1203 => 0.0022857999463608
1204 => 0.0022626183013971
1205 => 0.0022871286911147
1206 => 0.0022245147737786
1207 => 0.0021995814073808
1208 => 0.0021883195842286
1209 => 0.0021327461286702
1210 => 0.0022211882100915
1211 => 0.0022386124142954
1212 => 0.0022560709495643
1213 => 0.0024080355796314
1214 => 0.0024004438561608
1215 => 0.0024690693390155
1216 => 0.0024664026789459
1217 => 0.0024468295795767
1218 => 0.0023642538929563
1219 => 0.0023971670898731
1220 => 0.0022958653856097
1221 => 0.0023717675102902
1222 => 0.0023371289503345
1223 => 0.0023600561783259
1224 => 0.0023188309551326
1225 => 0.0023416466957955
1226 => 0.0022427443395075
1227 => 0.0021503907107996
1228 => 0.0021875565069621
1229 => 0.0022279599778152
1230 => 0.0023155649972376
1231 => 0.0022633881703953
]
'min_raw' => 0.0021327461286702
'max_raw' => 0.0063662991350913
'avg_raw' => 0.0042495226318808
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002132'
'max' => '$0.006366'
'avg' => '$0.004249'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040401838713298
'max_diff' => 0.0001933691350913
'year' => 2026
]
1 => [
'items' => [
101 => 0.002282152930352
102 => 0.0022192941256799
103 => 0.0020895984569113
104 => 0.0020903325203117
105 => 0.0020703816672454
106 => 0.0020531412173238
107 => 0.0022693813066143
108 => 0.0022424884332611
109 => 0.002199638159225
110 => 0.0022569949538246
111 => 0.0022721610006914
112 => 0.0022725927567247
113 => 0.0023144387934714
114 => 0.0023367720307844
115 => 0.0023407083606586
116 => 0.002406554003623
117 => 0.0024286245946196
118 => 0.0025195302353877
119 => 0.0023348772116321
120 => 0.0023310744041221
121 => 0.0022578020815487
122 => 0.002211331616183
123 => 0.0022609839540695
124 => 0.0023049691472169
125 => 0.002259168824108
126 => 0.0022651493794084
127 => 0.0022036661876587
128 => 0.0022256435356562
129 => 0.0022445733884201
130 => 0.0022341214363692
131 => 0.0022184743582687
201 => 0.0023013628629793
202 => 0.0022966859687009
203 => 0.0023738736498858
204 => 0.0024340469671136
205 => 0.0025418883088527
206 => 0.0024293502468516
207 => 0.002425248912574
208 => 0.0024653401130123
209 => 0.0024286184568657
210 => 0.0024518252759619
211 => 0.0025381493315203
212 => 0.0025399732227866
213 => 0.0025094206941251
214 => 0.0025075615699795
215 => 0.002513429517317
216 => 0.0025477982681545
217 => 0.0025357887705668
218 => 0.0025496864652186
219 => 0.0025670657451896
220 => 0.0026389538158119
221 => 0.002656285786263
222 => 0.0026141780836632
223 => 0.002617979937748
224 => 0.0026022305010934
225 => 0.0025870167426249
226 => 0.0026212150498711
227 => 0.0026837131285329
228 => 0.0026833243312292
301 => 0.0026978226706897
302 => 0.0027068550160629
303 => 0.0026680815776404
304 => 0.0026428414949661
305 => 0.0026525201487316
306 => 0.0026679965268763
307 => 0.0026475013678847
308 => 0.0025209957523076
309 => 0.0025593694748637
310 => 0.0025529822110512
311 => 0.0025438859706643
312 => 0.0025824710454297
313 => 0.0025787494208397
314 => 0.0024672723155423
315 => 0.0024744087181368
316 => 0.0024677063038206
317 => 0.0024893631756614
318 => 0.0024274489147145
319 => 0.0024464933243829
320 => 0.0024584377995966
321 => 0.0024654731872593
322 => 0.0024908898317073
323 => 0.0024879074818392
324 => 0.0024907044446521
325 => 0.0025283906186233
326 => 0.002718994354236
327 => 0.002729368495022
328 => 0.0026782824316282
329 => 0.002698690306326
330 => 0.0026595116496178
331 => 0.0026858125443402
401 => 0.0027038069485389
402 => 0.0026224936960897
403 => 0.0026176788529983
404 => 0.0025783384920372
405 => 0.0025994777736658
406 => 0.0025658436566267
407 => 0.0025740962924766
408 => 0.0025510212031883
409 => 0.0025925517697027
410 => 0.0026389893962634
411 => 0.0026507213746101
412 => 0.0026198595905143
413 => 0.0025975136249382
414 => 0.0025582814706052
415 => 0.0026235254176065
416 => 0.0026426047359829
417 => 0.0026234252020694
418 => 0.0026189808849805
419 => 0.0026105589121278
420 => 0.0026207676463344
421 => 0.0026425008259176
422 => 0.002632251859775
423 => 0.0026390214824757
424 => 0.0026132226615452
425 => 0.0026680944132618
426 => 0.0027552439605941
427 => 0.0027555241606392
428 => 0.0027452751392508
429 => 0.002741081460517
430 => 0.002751597578424
501 => 0.0027573021409949
502 => 0.00279130933798
503 => 0.0028278004152516
504 => 0.0029980883505737
505 => 0.0029502721797535
506 => 0.0031013617664459
507 => 0.0032208540129922
508 => 0.0032566845129687
509 => 0.0032237221389456
510 => 0.0031109596380049
511 => 0.0031054269717468
512 => 0.0032739417552521
513 => 0.0032263286104458
514 => 0.0032206651783749
515 => 0.0031604158296596
516 => 0.0031960306567773
517 => 0.0031882411716487
518 => 0.0031759450882985
519 => 0.0032438956974888
520 => 0.0033710931719003
521 => 0.0033512682526629
522 => 0.0033364698701037
523 => 0.0032716276654738
524 => 0.0033106771556917
525 => 0.0032967723801688
526 => 0.0033565161200037
527 => 0.0033211252520114
528 => 0.0032259678940451
529 => 0.003241122016944
530 => 0.0032388315017537
531 => 0.0032859701420625
601 => 0.0032718202922948
602 => 0.0032360685164896
603 => 0.0033706584247609
604 => 0.0033619189047461
605 => 0.0033743095459946
606 => 0.0033797642894655
607 => 0.00346168679489
608 => 0.0034952478241347
609 => 0.0035028667653417
610 => 0.003534747147421
611 => 0.0035020735523932
612 => 0.0036327912283827
613 => 0.0037197108553279
614 => 0.0038206724748678
615 => 0.0039682045369406
616 => 0.0040236779570278
617 => 0.0040136571802124
618 => 0.0041255143059158
619 => 0.0043265190743607
620 => 0.0040542859908614
621 => 0.0043409480888198
622 => 0.0042501941782792
623 => 0.0040350182889807
624 => 0.004021163498467
625 => 0.0041668831089434
626 => 0.0044900751799873
627 => 0.0044091192318049
628 => 0.0044902075949168
629 => 0.0043956137120848
630 => 0.0043909163285023
701 => 0.0044856133811652
702 => 0.0047068782063796
703 => 0.0046017635819082
704 => 0.004451055992565
705 => 0.0045623361312662
706 => 0.0044659349766326
707 => 0.0042487161942589
708 => 0.004409057326317
709 => 0.0043018417775623
710 => 0.004333132974581
711 => 0.0045584841109542
712 => 0.0045313692660207
713 => 0.0045664583861317
714 => 0.0045045270075778
715 => 0.0044466733343265
716 => 0.0043386851569326
717 => 0.0043067151813591
718 => 0.0043155505324484
719 => 0.0043067108029979
720 => 0.0042462924102086
721 => 0.0042332450640382
722 => 0.0042114989154703
723 => 0.0042182389562196
724 => 0.0041773498348517
725 => 0.0042545160549965
726 => 0.0042688387854418
727 => 0.0043249939253344
728 => 0.0043308241382456
729 => 0.0044872154035283
730 => 0.004401077722659
731 => 0.0044588663157557
801 => 0.0044536971600618
802 => 0.0040396818029721
803 => 0.0040967294662907
804 => 0.0041854777278714
805 => 0.0041454967563247
806 => 0.0040889730166642
807 => 0.0040433270662772
808 => 0.0039741687839028
809 => 0.0040715077382776
810 => 0.0041994981124367
811 => 0.0043340701853506
812 => 0.0044957497134451
813 => 0.0044596647249316
814 => 0.0043310476990348
815 => 0.0043368173648617
816 => 0.004372483168724
817 => 0.0043262927121424
818 => 0.0043126702447516
819 => 0.0043706116508917
820 => 0.0043710106615118
821 => 0.0043178629589114
822 => 0.0042587990133981
823 => 0.0042585515333098
824 => 0.0042480416746957
825 => 0.0043974833925844
826 => 0.0044796612271614
827 => 0.0044890827834594
828 => 0.0044790270813555
829 => 0.0044828971219987
830 => 0.0044350796507234
831 => 0.0045443762102281
901 => 0.0046446775415391
902 => 0.0046177946421224
903 => 0.0045774933542673
904 => 0.0045453914373178
905 => 0.0046102324507026
906 => 0.0046073451824458
907 => 0.0046438014969111
908 => 0.004642147627905
909 => 0.0046298887405417
910 => 0.0046177950799258
911 => 0.0046657450772625
912 => 0.0046519362480829
913 => 0.0046381059699775
914 => 0.0046103672299276
915 => 0.0046141373853921
916 => 0.0045738430561226
917 => 0.0045552010556595
918 => 0.0042748700971077
919 => 0.0041999565049043
920 => 0.0042235258460183
921 => 0.0042312854850907
922 => 0.0041986829937594
923 => 0.0042454265914356
924 => 0.0042381416512515
925 => 0.0042664830919604
926 => 0.0042487765902478
927 => 0.0042495032712544
928 => 0.004301574317367
929 => 0.0043166907635795
930 => 0.0043090024170312
1001 => 0.0043143870714125
1002 => 0.0044384741589112
1003 => 0.0044208329431506
1004 => 0.0044114613988802
1005 => 0.0044140573806894
1006 => 0.0044457642920025
1007 => 0.004454640496037
1008 => 0.0044170313958231
1009 => 0.0044347680648996
1010 => 0.0045102885507088
1011 => 0.0045367164466528
1012 => 0.0046210616043961
1013 => 0.0045852302822711
1014 => 0.0046510002247748
1015 => 0.0048531546054056
1016 => 0.0050146495126726
1017 => 0.0048661321218906
1018 => 0.005162696952834
1019 => 0.0053936152134218
1020 => 0.0053847521859659
1021 => 0.0053444862459968
1022 => 0.0050815919455972
1023 => 0.0048396726908363
1024 => 0.005042048419878
1025 => 0.0050425643172302
1026 => 0.0050251800626274
1027 => 0.0049172079503226
1028 => 0.0050214228671623
1029 => 0.0050296950688081
1030 => 0.0050250648356424
1031 => 0.0049422828702923
1101 => 0.0048158901098673
1102 => 0.0048405869527128
1103 => 0.0048810408850958
1104 => 0.0048044531515205
1105 => 0.0047799787300288
1106 => 0.0048254813360311
1107 => 0.004972100213415
1108 => 0.0049443827639509
1109 => 0.0049436589493304
1110 => 0.0050622459521655
1111 => 0.0049773632508125
1112 => 0.0048408984589914
1113 => 0.0048064392993071
1114 => 0.0046841324968992
1115 => 0.0047686102409642
1116 => 0.0047716504445803
1117 => 0.0047253828474975
1118 => 0.0048446528194994
1119 => 0.0048435537257103
1120 => 0.0049567828131335
1121 => 0.0051732343013835
1122 => 0.0051092189453771
1123 => 0.0050347760511926
1124 => 0.0050428700578681
1125 => 0.0051316413333866
1126 => 0.005077968193757
1127 => 0.0050972694289902
1128 => 0.0051316121186554
1129 => 0.0051523319160114
1130 => 0.0050398887978881
1201 => 0.0050136729282775
1202 => 0.004960044459574
1203 => 0.0049460537931121
1204 => 0.0049897330618763
1205 => 0.0049782251177683
1206 => 0.0047713949272386
1207 => 0.0047497800215359
1208 => 0.0047504429198348
1209 => 0.0046960912117127
1210 => 0.0046131918109219
1211 => 0.0048310464865342
1212 => 0.0048135497072083
1213 => 0.0047942346169756
1214 => 0.0047966006053188
1215 => 0.004891163936222
1216 => 0.0048363124287354
1217 => 0.0049821441513738
1218 => 0.0049521655333022
1219 => 0.0049214180767967
1220 => 0.0049171678417172
1221 => 0.0049053326942123
1222 => 0.0048647455697537
1223 => 0.0048157341780618
1224 => 0.0047833726119728
1225 => 0.0044124083864253
1226 => 0.0044812571888873
1227 => 0.004560461460354
1228 => 0.0045878024574731
1229 => 0.0045410337899615
1230 => 0.0048665922818054
1231 => 0.004926074955425
]
'min_raw' => 0.0020531412173238
'max_raw' => 0.0053936152134218
'avg_raw' => 0.0037233782153728
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002053'
'max' => '$0.005393'
'avg' => '$0.003723'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9604911346407E-5
'max_diff' => -0.00097268392166955
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047458980570725
102 => 0.004712194315965
103 => 0.0048688018934614
104 => 0.0047743483797334
105 => 0.0048168807911816
106 => 0.0047249489816157
107 => 0.0049117473212061
108 => 0.0049103242308312
109 => 0.0048376554576987
110 => 0.004899074607136
111 => 0.0048884015184702
112 => 0.0048063586525789
113 => 0.004914348226392
114 => 0.0049144017878734
115 => 0.0048444596736887
116 => 0.0047627825966186
117 => 0.0047481806643649
118 => 0.0047371800699053
119 => 0.0048141753192933
120 => 0.0048832090191366
121 => 0.0050116636196395
122 => 0.0050439601582119
123 => 0.0051700156983626
124 => 0.0050949557617357
125 => 0.0051282288594535
126 => 0.0051643515137932
127 => 0.0051816700426502
128 => 0.0051534504292411
129 => 0.0053492665696254
130 => 0.0053657994515253
131 => 0.0053713427838175
201 => 0.005305314683027
202 => 0.0053639630905984
203 => 0.0053365234429268
204 => 0.0054079137832145
205 => 0.0054191087001292
206 => 0.0054096270037731
207 => 0.0054131804471016
208 => 0.005246085915618
209 => 0.0052374211826667
210 => 0.0051192769340543
211 => 0.005167421588642
212 => 0.0050774174645236
213 => 0.0051059586994267
214 => 0.0051185394038212
215 => 0.0051119679577942
216 => 0.0051701436151768
217 => 0.0051206824219
218 => 0.0049901462006696
219 => 0.004859574414933
220 => 0.0048579351925245
221 => 0.0048235579461235
222 => 0.0047987094934824
223 => 0.0048034961870073
224 => 0.0048203651193273
225 => 0.0047977290404699
226 => 0.0048025595955724
227 => 0.0048827789960952
228 => 0.0048988664247714
229 => 0.0048441950563654
301 => 0.0046246816231744
302 => 0.0045708124760615
303 => 0.0046095325507346
304 => 0.0045910268489331
305 => 0.0037053169820433
306 => 0.0039134013773489
307 => 0.0037897646955366
308 => 0.0038467421667659
309 => 0.0037205411301992
310 => 0.0037807708796119
311 => 0.0037696486441336
312 => 0.0041042421941202
313 => 0.0040990179760555
314 => 0.0041015185327836
315 => 0.0039821604449862
316 => 0.0041723011197727
317 => 0.00426597125341
318 => 0.0042486354046236
319 => 0.0042529984642769
320 => 0.0041780266439245
321 => 0.0041022444238849
322 => 0.0040181902790609
323 => 0.0041743524907375
324 => 0.0041569899185769
325 => 0.0041968134122571
326 => 0.0042980957692348
327 => 0.004313009981034
328 => 0.0043330548329372
329 => 0.0043258701804196
330 => 0.0044970377517282
331 => 0.0044763082294427
401 => 0.0045262604138601
402 => 0.0044235049806322
403 => 0.0043072274542995
404 => 0.0043293280106566
405 => 0.004327199549358
406 => 0.0043001017940921
407 => 0.0042756391522606
408 => 0.0042349157459178
409 => 0.0043637706295167
410 => 0.0043585393565592
411 => 0.004443227585051
412 => 0.0044282581180475
413 => 0.0043282883537483
414 => 0.0043318587934376
415 => 0.004355871716243
416 => 0.0044389807162474
417 => 0.0044636531259409
418 => 0.0044522238827453
419 => 0.0044792760536359
420 => 0.004500656986502
421 => 0.0044819611696173
422 => 0.0047466545107166
423 => 0.0046367353811368
424 => 0.0046903092000816
425 => 0.0047030862402247
426 => 0.0046703581205705
427 => 0.0046774556778174
428 => 0.0046882065430778
429 => 0.0047534836917043
430 => 0.0049247898177951
501 => 0.0050006601349205
502 => 0.0052289197273678
503 => 0.0049943601612491
504 => 0.0049804423672996
505 => 0.0050215588126786
506 => 0.0051555713571769
507 => 0.0052641759373345
508 => 0.0053002063421213
509 => 0.0053049683549111
510 => 0.0053725637895472
511 => 0.0054113082321003
512 => 0.0053643559258459
513 => 0.0053245687624067
514 => 0.0051820560815318
515 => 0.0051985523123922
516 => 0.0053121949844954
517 => 0.0054727219523612
518 => 0.0056104707907744
519 => 0.0055622359485938
520 => 0.0059302337459401
521 => 0.0059667192244108
522 => 0.0059616781110029
523 => 0.0060447974607263
524 => 0.0058798224784865
525 => 0.0058092924773393
526 => 0.0053331711987457
527 => 0.0054669418572959
528 => 0.005661385365574
529 => 0.0056356500381277
530 => 0.0054944399649263
531 => 0.0056103636702713
601 => 0.0055720356680148
602 => 0.0055418047824048
603 => 0.0056802983299296
604 => 0.0055280189854247
605 => 0.0056598662626249
606 => 0.0054907707658302
607 => 0.0055624562812899
608 => 0.0055217641156768
609 => 0.0055480969338727
610 => 0.005394155816767
611 => 0.0054772187068479
612 => 0.0053907001274542
613 => 0.0053906591063825
614 => 0.0053887492039471
615 => 0.0054905379289216
616 => 0.0054938572555887
617 => 0.0054186352340383
618 => 0.0054077945655441
619 => 0.0054478781987917
620 => 0.005400950762179
621 => 0.0054229078144123
622 => 0.0054016158189231
623 => 0.0053968225422604
624 => 0.0053586288983037
625 => 0.0053421740263309
626 => 0.0053486264056213
627 => 0.0053266011086739
628 => 0.0053133300705733
629 => 0.0053861092604418
630 => 0.0053472262751992
701 => 0.0053801498852928
702 => 0.0053426292763003
703 => 0.005212566498581
704 => 0.0051377660197257
705 => 0.0048920894894398
706 => 0.0049617630486681
707 => 0.0050079566905189
708 => 0.0049926896921628
709 => 0.0050254891121759
710 => 0.0050275027301788
711 => 0.005016839304382
712 => 0.0050044924233788
713 => 0.0049984826445318
714 => 0.005043274612338
715 => 0.0050692778572778
716 => 0.0050125928404699
717 => 0.0049993123341394
718 => 0.0050566240157978
719 => 0.0050915841085016
720 => 0.0053497097906468
721 => 0.0053305870063785
722 => 0.0053785814422351
723 => 0.0053731780052923
724 => 0.0054234838201831
725 => 0.0055057125667061
726 => 0.0053385185335058
727 => 0.0053675376365347
728 => 0.005360422822621
729 => 0.0054381004953267
730 => 0.005438342996542
731 => 0.0053917713514675
801 => 0.005417018595801
802 => 0.005402926276636
803 => 0.0054283930020584
804 => 0.005330331609936
805 => 0.005449759800468
806 => 0.005517467888717
807 => 0.005518408015588
808 => 0.0055505011120534
809 => 0.0055831095567691
810 => 0.0056456986268038
811 => 0.0055813639815761
812 => 0.0054656322176629
813 => 0.0054739876772061
814 => 0.0054061341863684
815 => 0.0054072748158081
816 => 0.0054011860464662
817 => 0.0054194589016025
818 => 0.0053343414740667
819 => 0.005354318364179
820 => 0.0053263506010372
821 => 0.0053674768400796
822 => 0.0053232318052808
823 => 0.0053604193916423
824 => 0.0053764683211279
825 => 0.0054356892164384
826 => 0.0053144848308924
827 => 0.0050673408839487
828 => 0.005119293537927
829 => 0.0050424514819002
830 => 0.0050495635067438
831 => 0.0050639309287983
901 => 0.0050173614131917
902 => 0.0050262454091954
903 => 0.0050259280103424
904 => 0.0050231928385002
905 => 0.005011078308891
906 => 0.0049935098441709
907 => 0.0050634972003275
908 => 0.0050753894159316
909 => 0.0051018243380858
910 => 0.0051804767354377
911 => 0.005172617506191
912 => 0.0051854362351686
913 => 0.0051574530217845
914 => 0.0050508615677549
915 => 0.0050566499965356
916 => 0.0049844681968862
917 => 0.0050999784871819
918 => 0.0050726241257786
919 => 0.0050549885910312
920 => 0.0050501765719833
921 => 0.0051290239334151
922 => 0.0051526162997365
923 => 0.0051379151202698
924 => 0.0051077625722818
925 => 0.0051656643782194
926 => 0.0051811564588073
927 => 0.0051846245643249
928 => 0.0052872154628764
929 => 0.0051903582559112
930 => 0.0052136727483056
1001 => 0.0053955657625509
1002 => 0.0052306138981506
1003 => 0.005317992579589
1004 => 0.0053137158478293
1005 => 0.0053584158245198
1006 => 0.0053100491450461
1007 => 0.0053106487080051
1008 => 0.0053503392590676
1009 => 0.005294601038329
1010 => 0.0052807994710257
1011 => 0.005261732704645
1012 => 0.0053033642914936
1013 => 0.0053283205449747
1014 => 0.0055294496196836
1015 => 0.0056593881745456
1016 => 0.0056537471991905
1017 => 0.0057052951544729
1018 => 0.005682072328493
1019 => 0.005607079697532
1020 => 0.0057350829742054
1021 => 0.0056945773815813
1022 => 0.005697916613423
1023 => 0.0056977923270471
1024 => 0.0057247250050817
1025 => 0.0057056407343505
1026 => 0.005668023677779
1027 => 0.0056929956354457
1028 => 0.0057671534220773
1029 => 0.0059973414672208
1030 => 0.0061261577468691
1031 => 0.0059895865654395
1101 => 0.0060837915376287
1102 => 0.0060273021229789
1103 => 0.0060170363159225
1104 => 0.0060762040001501
1105 => 0.0061354752495763
1106 => 0.0061316999272245
1107 => 0.0060886720437534
1108 => 0.0060643666841727
1109 => 0.0062484150098107
1110 => 0.0063840186809594
1111 => 0.0063747714196856
1112 => 0.0064155858235776
1113 => 0.0065354181757467
1114 => 0.0065463741442411
1115 => 0.0065449939440309
1116 => 0.0065178384329804
1117 => 0.0066358289458881
1118 => 0.0067342587076013
1119 => 0.0065115527167704
1120 => 0.0065963562426433
1121 => 0.0066344272776066
1122 => 0.0066903268520999
1123 => 0.0067846388041264
1124 => 0.0068870865990371
1125 => 0.0069015738405204
1126 => 0.0068912944494097
1127 => 0.0068237273747215
1128 => 0.0069358269743692
1129 => 0.0070014922907837
1130 => 0.0070405944839845
1201 => 0.0071397511399571
1202 => 0.0066346623913576
1203 => 0.0062771354705593
1204 => 0.0062213024791253
1205 => 0.0063348410627302
1206 => 0.0063647802817736
1207 => 0.0063527118201178
1208 => 0.0059502827658338
1209 => 0.0062191837734391
1210 => 0.0065084986477835
1211 => 0.006519612410379
1212 => 0.0066644494857646
1213 => 0.0067116143745824
1214 => 0.0068282272044973
1215 => 0.0068209330402358
1216 => 0.0068493264086047
1217 => 0.0068427992649213
1218 => 0.0070587999766101
1219 => 0.0072970808380189
1220 => 0.0072888299294751
1221 => 0.0072545742364364
1222 => 0.0073054497820625
1223 => 0.0075513811667654
1224 => 0.0075287397458321
1225 => 0.0075507339576771
1226 => 0.0078407009203273
1227 => 0.008217699219092
1228 => 0.0080425456593054
1229 => 0.0084225784849631
1230 => 0.0086617890040401
1231 => 0.0090754788619545
]
'min_raw' => 0.0037053169820433
'max_raw' => 0.0090754788619545
'avg_raw' => 0.0063903979219989
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0037053'
'max' => '$0.009075'
'avg' => '$0.00639'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016521757647194
'max_diff' => 0.0036818636485327
'year' => 2028
]
3 => [
'items' => [
101 => 0.0090236828542781
102 => 0.0091847292801678
103 => 0.0089309571903844
104 => 0.0083482451764405
105 => 0.0082560287697019
106 => 0.0084406483512839
107 => 0.008894517577688
108 => 0.008426354394161
109 => 0.0085210631964515
110 => 0.0084937870550204
111 => 0.0084923336253597
112 => 0.0085478051239839
113 => 0.0084673408220307
114 => 0.0081395147806221
115 => 0.0082897555235087
116 => 0.0082317403575271
117 => 0.0082961125095008
118 => 0.0086435024646078
119 => 0.0084899130847128
120 => 0.0083281191495814
121 => 0.0085310446491846
122 => 0.0087894385429465
123 => 0.0087732687174533
124 => 0.0087418924975339
125 => 0.0089187586064143
126 => 0.0092108896013771
127 => 0.0092898514354381
128 => 0.0093481394470383
129 => 0.0093561763790539
130 => 0.0094389617737405
131 => 0.0089938038419052
201 => 0.0097002809121943
202 => 0.0098222699861981
203 => 0.0097993410962144
204 => 0.0099349268178846
205 => 0.0098950340590915
206 => 0.0098372357105823
207 => 0.01005216791934
208 => 0.0098057654861342
209 => 0.009456028253403
210 => 0.0092641554905085
211 => 0.0095168290226223
212 => 0.009671127931593
213 => 0.009773109695169
214 => 0.009803969315208
215 => 0.0090283601849515
216 => 0.0086103498809976
217 => 0.0088782896933342
218 => 0.0092051947566028
219 => 0.0089919878677729
220 => 0.009000345174161
221 => 0.0086963681804744
222 => 0.0092320899755358
223 => 0.0091540398161249
224 => 0.0095589641812172
225 => 0.0094623257317669
226 => 0.0097925258324264
227 => 0.0097055730797123
228 => 0.010066509094766
301 => 0.010210496243123
302 => 0.010452273075025
303 => 0.010630125096781
304 => 0.010734563205723
305 => 0.010728293133399
306 => 0.011142128951887
307 => 0.010898104428047
308 => 0.01059155211394
309 => 0.010586007549738
310 => 0.010744775337094
311 => 0.011077509063577
312 => 0.011163782077775
313 => 0.011211996923131
314 => 0.011138154209098
315 => 0.010873283077865
316 => 0.010758913066325
317 => 0.010856359629775
318 => 0.010737190856355
319 => 0.01094290959213
320 => 0.011225405355502
321 => 0.011167071097475
322 => 0.011362073776098
323 => 0.011563881033593
324 => 0.011852474475541
325 => 0.011927923487851
326 => 0.012052637836129
327 => 0.012181009867038
328 => 0.012222239503642
329 => 0.012300959672725
330 => 0.012300544778576
331 => 0.012537773306586
401 => 0.012799443719336
402 => 0.012898218242465
403 => 0.013125344811942
404 => 0.012736398521177
405 => 0.013031418750615
406 => 0.013297534382404
407 => 0.012980260355526
408 => 0.01341754868621
409 => 0.013434527601174
410 => 0.013690889058831
411 => 0.013431017608583
412 => 0.013276706770965
413 => 0.013722196377217
414 => 0.013937754764891
415 => 0.013872826824251
416 => 0.013378721990094
417 => 0.013091131783462
418 => 0.012338452740696
419 => 0.013230033580167
420 => 0.013664296599303
421 => 0.013377597353785
422 => 0.013522191776925
423 => 0.014311052064679
424 => 0.014611398987335
425 => 0.014548928927006
426 => 0.014559485338857
427 => 0.014721547086639
428 => 0.015440218125342
429 => 0.015009573780287
430 => 0.015338785246146
501 => 0.015513397820578
502 => 0.015675587710974
503 => 0.015277300600802
504 => 0.014759134922468
505 => 0.014595010101024
506 => 0.013349090764043
507 => 0.013284235251799
508 => 0.013247829887454
509 => 0.013018299214898
510 => 0.012837950980011
511 => 0.012694531367729
512 => 0.012318155476378
513 => 0.012445171291078
514 => 0.011845306676019
515 => 0.012229078798837
516 => 0.011271680388964
517 => 0.012069030233954
518 => 0.011635068964375
519 => 0.011926462285546
520 => 0.0119254456417
521 => 0.011388898151086
522 => 0.011079428755961
523 => 0.011276634699264
524 => 0.011488055124712
525 => 0.011522357377437
526 => 0.011796469477668
527 => 0.011872968272823
528 => 0.011641173352117
529 => 0.011251840434941
530 => 0.011342273591863
531 => 0.011077596130923
601 => 0.010613759061297
602 => 0.01094689494252
603 => 0.011060642179321
604 => 0.011110879439129
605 => 0.010654748953199
606 => 0.010511422851446
607 => 0.010435117237495
608 => 0.011192959717049
609 => 0.011234476038811
610 => 0.011022072666857
611 => 0.011982156049004
612 => 0.011764859610712
613 => 0.012007632971204
614 => 0.011334067730747
615 => 0.011359798830009
616 => 0.011040922250815
617 => 0.011219471827823
618 => 0.011093278741715
619 => 0.011205046786462
620 => 0.011272040091646
621 => 0.011590864346331
622 => 0.012072670694808
623 => 0.011543242634533
624 => 0.011312563247122
625 => 0.011455675441682
626 => 0.011836802074899
627 => 0.012414228433736
628 => 0.012072380407516
629 => 0.012224086756597
630 => 0.012257227844925
701 => 0.012005161766292
702 => 0.012423522469599
703 => 0.012647725369257
704 => 0.012877711152054
705 => 0.013077401363201
706 => 0.012785849772909
707 => 0.0130978517668
708 => 0.01284643323549
709 => 0.012620884821735
710 => 0.012621226885576
711 => 0.012479737070891
712 => 0.012205582726075
713 => 0.012155024458608
714 => 0.012418034950774
715 => 0.012628944458304
716 => 0.012646315975533
717 => 0.012763086315824
718 => 0.012832189800378
719 => 0.013509497890637
720 => 0.013781916807526
721 => 0.014115025502471
722 => 0.014244790112129
723 => 0.014635335064014
724 => 0.014319938296857
725 => 0.014251700222344
726 => 0.013304365915351
727 => 0.013459491855051
728 => 0.013707863451936
729 => 0.013308461471503
730 => 0.013561790098425
731 => 0.013611802535613
801 => 0.013294889945041
802 => 0.01346416665265
803 => 0.013014617904286
804 => 0.012082469629047
805 => 0.012424560217098
806 => 0.01267645403635
807 => 0.012316970497993
808 => 0.012961330826564
809 => 0.01258490882491
810 => 0.012465601121828
811 => 0.01200013923584
812 => 0.012219819328755
813 => 0.01251693979994
814 => 0.01233335389271
815 => 0.012714322215774
816 => 0.013253874961774
817 => 0.013638392379494
818 => 0.013667910852255
819 => 0.013420691913327
820 => 0.01381686184069
821 => 0.013819747506102
822 => 0.013372866209635
823 => 0.013099153903795
824 => 0.013036965892012
825 => 0.013192323738123
826 => 0.013380956843942
827 => 0.013678378676809
828 => 0.013858104461343
829 => 0.014326733988219
830 => 0.01445353170153
831 => 0.014592843945795
901 => 0.014779008066437
902 => 0.015002545824769
903 => 0.01451345793555
904 => 0.014532890309163
905 => 0.014077458438606
906 => 0.013590764169379
907 => 0.013960104452425
908 => 0.014442967741229
909 => 0.014332198369261
910 => 0.014319734552102
911 => 0.014340695235389
912 => 0.014257178746314
913 => 0.013879436761496
914 => 0.01368973710151
915 => 0.013934498060436
916 => 0.014064577617049
917 => 0.014266319665225
918 => 0.01424145069953
919 => 0.014761116550118
920 => 0.014963042985777
921 => 0.014911381562616
922 => 0.01492088850778
923 => 0.015286466674277
924 => 0.015693064782306
925 => 0.016073897565821
926 => 0.016461297030361
927 => 0.015994271855399
928 => 0.015757145273662
929 => 0.016001799377611
930 => 0.0158719824663
1001 => 0.01661794894489
1002 => 0.016669598045368
1003 => 0.017415510582091
1004 => 0.018123470401054
1005 => 0.017678813523181
1006 => 0.01809810493123
1007 => 0.018551602774365
1008 => 0.019426473691145
1009 => 0.019131847944703
1010 => 0.018906169240303
1011 => 0.018692903955116
1012 => 0.019136675158679
1013 => 0.019707579722645
1014 => 0.019830547097667
1015 => 0.020029801222356
1016 => 0.019820309873881
1017 => 0.020072619128404
1018 => 0.020963381667175
1019 => 0.02072268976622
1020 => 0.020380868573712
1021 => 0.021084040048327
1022 => 0.021338515071481
1023 => 0.023124554053577
1024 => 0.025379502046064
1025 => 0.024445938770388
1026 => 0.023866445919277
1027 => 0.024002640485042
1028 => 0.024826071157091
1029 => 0.02509053095457
1030 => 0.024371638060263
1031 => 0.024625563183873
1101 => 0.026024715580332
1102 => 0.026775315950849
1103 => 0.025755899828608
1104 => 0.022943371177975
1105 => 0.020350091315273
1106 => 0.021037945911775
1107 => 0.020959964547145
1108 => 0.022463179249324
1109 => 0.020716949343985
1110 => 0.020746351377134
1111 => 0.022280650967422
1112 => 0.021871326141288
1113 => 0.021208272345312
1114 => 0.020354932341763
1115 => 0.018777454420805
1116 => 0.017380238234986
1117 => 0.020120500935047
1118 => 0.020002335824576
1119 => 0.019831215233525
1120 => 0.020212025591726
1121 => 0.022061132596241
1122 => 0.022018504694812
1123 => 0.021747327734865
1124 => 0.021953013068941
1125 => 0.021172214711775
1126 => 0.021373444226865
1127 => 0.020349680526493
1128 => 0.02081246447521
1129 => 0.021206849729659
1130 => 0.021286028408463
1201 => 0.021464422014772
1202 => 0.019940068180822
1203 => 0.020624458299588
1204 => 0.021026473375681
1205 => 0.019210154636458
1206 => 0.020990570594117
1207 => 0.019913532571954
1208 => 0.019547969690663
1209 => 0.020040151951074
1210 => 0.019848348045529
1211 => 0.019683446310645
1212 => 0.019591428309208
1213 => 0.019952832641079
1214 => 0.019935972697026
1215 => 0.019344645064526
1216 => 0.018573282273528
1217 => 0.018832176945308
1218 => 0.0187381180839
1219 => 0.018397236636323
1220 => 0.018626949573807
1221 => 0.017615410052184
1222 => 0.015875108880483
1223 => 0.017024805141375
1224 => 0.01698054308596
1225 => 0.016958224150495
1226 => 0.017822189115285
1227 => 0.017739138818984
1228 => 0.017588401717966
1229 => 0.018394468231253
1230 => 0.018100243110778
1231 => 0.019006975603924
]
'min_raw' => 0.0081395147806221
'max_raw' => 0.026775315950849
'avg_raw' => 0.017457415365735
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008139'
'max' => '$0.026775'
'avg' => '$0.017457'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0044341977985788
'max_diff' => 0.017699837088894
'year' => 2029
]
4 => [
'items' => [
101 => 0.01960420826769
102 => 0.019452730745706
103 => 0.020014430952654
104 => 0.018838141355652
105 => 0.019228857575229
106 => 0.019309383646574
107 => 0.018384521495601
108 => 0.017752726874559
109 => 0.017710593376321
110 => 0.016615148570095
111 => 0.01720032634346
112 => 0.017715258567719
113 => 0.017468645992654
114 => 0.017390575818729
115 => 0.017789419405955
116 => 0.017820412968546
117 => 0.017113756456904
118 => 0.017260692722576
119 => 0.017873441376549
120 => 0.017245253028647
121 => 0.016024785682657
122 => 0.01572209290657
123 => 0.015681708110506
124 => 0.014860781294892
125 => 0.01574232028525
126 => 0.015357504892183
127 => 0.016573132108087
128 => 0.015878772361902
129 => 0.015848839901043
130 => 0.015803592596318
131 => 0.015096986974059
201 => 0.015251688698204
202 => 0.015765940790998
203 => 0.015949431731172
204 => 0.015930292122815
205 => 0.015763420675195
206 => 0.015839813569395
207 => 0.015593725440126
208 => 0.0155068265998
209 => 0.015232549956321
210 => 0.014829439061263
211 => 0.014885494103644
212 => 0.014086825940832
213 => 0.013651669137204
214 => 0.013531223469234
215 => 0.013370158488254
216 => 0.013549416187414
217 => 0.014084563414274
218 => 0.013439062320863
219 => 0.012332395972847
220 => 0.01239890850603
221 => 0.012548342420345
222 => 0.012269873309623
223 => 0.012006325666466
224 => 0.012235458959895
225 => 0.011766549839316
226 => 0.012605007847327
227 => 0.012582329907962
228 => 0.012894855203453
301 => 0.013090283684388
302 => 0.012639884306555
303 => 0.012526610081039
304 => 0.012591136227919
305 => 0.011524662753756
306 => 0.012807701568087
307 => 0.012818797341033
308 => 0.012723788596633
309 => 0.013406967155885
310 => 0.014848687004643
311 => 0.014306254004493
312 => 0.014096207551711
313 => 0.01369690909143
314 => 0.014228950581759
315 => 0.014188098096441
316 => 0.014003347664993
317 => 0.013891610027596
318 => 0.014097490050562
319 => 0.013866099214377
320 => 0.013824535062003
321 => 0.013572701520862
322 => 0.01348280840437
323 => 0.013416255119668
324 => 0.013342986492602
325 => 0.013504598826506
326 => 0.013138364016006
327 => 0.012696720736984
328 => 0.012660002876979
329 => 0.012761384116718
330 => 0.012716530465079
331 => 0.012659788134952
401 => 0.012551451573884
402 => 0.01251931043046
403 => 0.012623753553923
404 => 0.012505843356945
405 => 0.012679826275487
406 => 0.012632512548557
407 => 0.012368221916045
408 => 0.01203881793501
409 => 0.012035885548631
410 => 0.011964916001247
411 => 0.011874525612312
412 => 0.011849381073962
413 => 0.012216161993027
414 => 0.012975387518663
415 => 0.012826333381254
416 => 0.012934040271215
417 => 0.013463851568395
418 => 0.013632262647786
419 => 0.013512728452669
420 => 0.013349102673844
421 => 0.013356301377698
422 => 0.013915460196833
423 => 0.013950334246505
424 => 0.014038449719229
425 => 0.01415170300311
426 => 0.013532015976635
427 => 0.013327114174478
428 => 0.013230020333097
429 => 0.012931008881689
430 => 0.013253467096728
501 => 0.013065584503863
502 => 0.013090936284624
503 => 0.013074425904145
504 => 0.013083441688313
505 => 0.012604773481226
506 => 0.012779175017828
507 => 0.012489198637493
508 => 0.0121009528156
509 => 0.012099651279468
510 => 0.012194673894349
511 => 0.012138150724783
512 => 0.011986048328823
513 => 0.012007653756266
514 => 0.011818367477566
515 => 0.012030636537639
516 => 0.012036723654747
517 => 0.011954988504245
518 => 0.012282018278772
519 => 0.012416002644227
520 => 0.01236220281723
521 => 0.012412227904946
522 => 0.012832527253602
523 => 0.01290105438638
524 => 0.012931489612111
525 => 0.012890710441526
526 => 0.012419910205485
527 => 0.01244079219795
528 => 0.012287573992657
529 => 0.012158120754922
530 => 0.012163298205538
531 => 0.012229853997477
601 => 0.012520507044321
602 => 0.013132169246471
603 => 0.013155381379924
604 => 0.013183515162814
605 => 0.013069080928894
606 => 0.013034566468956
607 => 0.013080099950552
608 => 0.013309808114009
609 => 0.013900679875578
610 => 0.013691826332041
611 => 0.013522025150147
612 => 0.013670986564738
613 => 0.01364805512256
614 => 0.013454490673189
615 => 0.013449057963781
616 => 0.01307754589914
617 => 0.012940206347762
618 => 0.012825435138944
619 => 0.012700107975092
620 => 0.012625809831357
621 => 0.012739965548037
622 => 0.012766074311093
623 => 0.012516470841471
624 => 0.012482450810878
625 => 0.012686282392236
626 => 0.012596583712888
627 => 0.012688841029018
628 => 0.012710245517729
629 => 0.012706798902059
630 => 0.012613143178991
701 => 0.012672836544021
702 => 0.012531643940278
703 => 0.01237811819015
704 => 0.012280178326561
705 => 0.012194712805742
706 => 0.012242134043977
707 => 0.012073085988443
708 => 0.012019004113213
709 => 0.012652613775092
710 => 0.013120668044774
711 => 0.013113862350323
712 => 0.013072434435635
713 => 0.013010880957754
714 => 0.013305305093709
715 => 0.013202733611939
716 => 0.013277362935061
717 => 0.013296359229978
718 => 0.013353855293375
719 => 0.013374405194086
720 => 0.013312289121314
721 => 0.013103819994253
722 => 0.012584334750268
723 => 0.012342512966869
724 => 0.012262707750487
725 => 0.012265608518531
726 => 0.012185592386284
727 => 0.012209160723302
728 => 0.012177396280486
729 => 0.012117242110437
730 => 0.012238419693487
731 => 0.012252384281086
801 => 0.012224099985238
802 => 0.012230761960817
803 => 0.011996580071576
804 => 0.012014384411998
805 => 0.011915247582059
806 => 0.011896660621557
807 => 0.011646051348301
808 => 0.011202060694333
809 => 0.011448074615847
810 => 0.011150924393451
811 => 0.011038389101669
812 => 0.011571113670137
813 => 0.011517642898942
814 => 0.011426124181842
815 => 0.01129074892508
816 => 0.011240536925501
817 => 0.010935464711245
818 => 0.01091743941733
819 => 0.011068641444358
820 => 0.010998866911429
821 => 0.010900877041514
822 => 0.010545967665757
823 => 0.010146932020951
824 => 0.010158976398819
825 => 0.01028590221311
826 => 0.010654956136439
827 => 0.010510760383896
828 => 0.010406144710971
829 => 0.010386553340168
830 => 0.010631780363084
831 => 0.01097882797716
901 => 0.011141654952931
902 => 0.01098029836507
903 => 0.010794940604992
904 => 0.010806222472982
905 => 0.01088127568636
906 => 0.01088916271789
907 => 0.010768513871164
908 => 0.010802475814813
909 => 0.010750884516866
910 => 0.010434268816592
911 => 0.010428542242573
912 => 0.010350839643608
913 => 0.010348486839792
914 => 0.010216295335131
915 => 0.010197800829832
916 => 0.0099353265738769
917 => 0.010108087923992
918 => 0.0099922086807128
919 => 0.0098175513279407
920 => 0.0097874403344905
921 => 0.0097865351616673
922 => 0.0099658692102947
923 => 0.01010599230122
924 => 0.0099942244497618
925 => 0.0099687770765134
926 => 0.010240488447049
927 => 0.010205910698444
928 => 0.010175966591155
929 => 0.010947753669771
930 => 0.010336823973749
1001 => 0.010070423755636
1002 => 0.0097407028976917
1003 => 0.0098480616716353
1004 => 0.0098706837427338
1005 => 0.0090777645160291
1006 => 0.0087560772845068
1007 => 0.008645686349176
1008 => 0.0085821548051943
1009 => 0.0086111069275657
1010 => 0.0083215506890467
1011 => 0.0085161372701496
1012 => 0.0082654060431718
1013 => 0.0082233701370189
1014 => 0.0086717086304941
1015 => 0.0087340923127057
1016 => 0.0084679441433002
1017 => 0.0086388543535333
1018 => 0.0085768799354731
1019 => 0.008269704110416
1020 => 0.0082579722533313
1021 => 0.00810384222207
1022 => 0.0078626585686011
1023 => 0.0077524311671444
1024 => 0.0076950237794276
1025 => 0.0077187111864472
1026 => 0.0077067341086115
1027 => 0.0076285755741256
1028 => 0.0077112140643191
1029 => 0.0075001068704565
1030 => 0.0074160422848541
1031 => 0.0073780722618211
1101 => 0.0071907024763913
1102 => 0.0074888911287319
1103 => 0.0075476380497247
1104 => 0.0076065007202996
1105 => 0.0081188600804026
1106 => 0.0080932640546844
1107 => 0.0083246396614071
1108 => 0.0083156488308023
1109 => 0.0082496567597286
1110 => 0.0079712470670378
1111 => 0.0080822162083688
1112 => 0.0077406704397855
1113 => 0.0079965797524629
1114 => 0.0078797934291853
1115 => 0.0079570941790863
1116 => 0.0078181004608368
1117 => 0.007895025323426
1118 => 0.0075615691240592
1119 => 0.0072501924169457
1120 => 0.0073754994935409
1121 => 0.0075117226164023
1122 => 0.0078070890557719
1123 => 0.0076311712412036
1124 => 0.0076944379395114
1125 => 0.0074825050908976
1126 => 0.007045227088582
1127 => 0.0070477020345869
1128 => 0.0069804363405497
1129 => 0.0069223089599495
1130 => 0.0076513775183934
1201 => 0.0075607063182826
1202 => 0.0074162336276593
1203 => 0.0076096160651751
1204 => 0.0076607494510462
1205 => 0.0076622051466569
1206 => 0.0078032919811453
1207 => 0.0078785900500029
1208 => 0.0078918616609996
1209 => 0.0081138648434499
1210 => 0.0081882773819144
1211 => 0.0084947720965933
1212 => 0.0078722015349387
1213 => 0.0078593801039154
1214 => 0.0076123373526488
1215 => 0.0074556589342042
1216 => 0.0076230652580039
1217 => 0.0077713644076485
1218 => 0.0076169454206105
1219 => 0.0076371092803549
1220 => 0.0074298144067513
1221 => 0.0075039125699342
1222 => 0.0075677358901679
1223 => 0.0075324964040962
1224 => 0.0074797411878365
1225 => 0.0077592055685588
1226 => 0.0077434370929687
1227 => 0.0080036807491557
1228 => 0.0082065592893558
1229 => 0.0085701539022714
1230 => 0.0081907239690781
1231 => 0.0081768960342152
]
'min_raw' => 0.0069223089599495
'max_raw' => 0.020014430952654
'avg_raw' => 0.013468369956302
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006922'
'max' => '$0.020014'
'avg' => '$0.013468'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012172058206726
'max_diff' => -0.0067608849981943
'year' => 2030
]
5 => [
'items' => [
101 => 0.008312066315571
102 => 0.0081882566880486
103 => 0.0082665000988797
104 => 0.0085575476791481
105 => 0.0085636970558924
106 => 0.0084606870724009
107 => 0.0084544189055439
108 => 0.0084742030996792
109 => 0.0085900797426775
110 => 0.0085495888830843
111 => 0.0085964459309087
112 => 0.0086550413867137
113 => 0.0088974170358816
114 => 0.0089558529843371
115 => 0.0088138839251558
116 => 0.0088267021416398
117 => 0.0087736018163681
118 => 0.0087223075675009
119 => 0.008837609548031
120 => 0.0090483261837159
121 => 0.0090470153264616
122 => 0.0090958974901944
123 => 0.0091263506732382
124 => 0.0089956233185216
125 => 0.0089105246175792
126 => 0.0089431568744915
127 => 0.0089953365639325
128 => 0.0089262357044661
129 => 0.0084997131892077
130 => 0.0086290928739733
131 => 0.0086075577680849
201 => 0.0085768891585416
202 => 0.0087069814320369
203 => 0.0086944337148961
204 => 0.008318580871303
205 => 0.0083426417508982
206 => 0.0083200440930833
207 => 0.0083930617485292
208 => 0.008184313495031
209 => 0.0082485230518661
210 => 0.0082887946839859
211 => 0.0083125149846857
212 => 0.0083982089759758
213 => 0.0083881537751742
214 => 0.0083975839305758
215 => 0.0085246454972841
216 => 0.0091672792994304
217 => 0.0092022564393897
218 => 0.0090300162099424
219 => 0.0090988227843183
220 => 0.0089667292078602
221 => 0.0090554045106866
222 => 0.0091160739007719
223 => 0.0088419205930292
224 => 0.0088256870133849
225 => 0.0086930482397486
226 => 0.0087643208036566
227 => 0.0086509210298002
228 => 0.0086787453677489
301 => 0.0086009460931622
302 => 0.0087409692977371
303 => 0.0088975369978581
304 => 0.0089370921819545
305 => 0.0088330395221743
306 => 0.0087576985390891
307 => 0.008625424591654
308 => 0.0088453991141557
309 => 0.0089097263681373
310 => 0.0088450612304755
311 => 0.0088300769051181
312 => 0.0088016816356419
313 => 0.0088361010957705
314 => 0.0089093760280971
315 => 0.0088748209231874
316 => 0.0088976451787629
317 => 0.0088106626527795
318 => 0.0089956665947156
319 => 0.0092894973781334
320 => 0.0092904420921483
321 => 0.0092558868009737
322 => 0.0092417475203292
323 => 0.0092772033460647
324 => 0.0092964366770521
325 => 0.0094110943159943
326 => 0.0095341265307411
327 => 0.010108264193804
328 => 0.0099470486354646
329 => 0.010456457725736
330 => 0.010859334177649
331 => 0.010980139209926
401 => 0.010869004264547
402 => 0.010488817619799
403 => 0.010470163849232
404 => 0.011038323207146
405 => 0.010877792165188
406 => 0.010858697508553
407 => 0.010655562622884
408 => 0.01077564049906
409 => 0.010749377706104
410 => 0.010707920602603
411 => 0.010937020825649
412 => 0.011365875991271
413 => 0.01129903489193
414 => 0.011249141111942
415 => 0.011030521091894
416 => 0.011162179174512
417 => 0.011115298253036
418 => 0.011316728443065
419 => 0.011197405660717
420 => 0.010876575984659
421 => 0.01092766916804
422 => 0.010919946536157
423 => 0.011078877753073
424 => 0.01103117054667
425 => 0.010910630938433
426 => 0.011364410210937
427 => 0.011334944309034
428 => 0.01137672022109
429 => 0.01139511126954
430 => 0.011671318716226
501 => 0.01178447206948
502 => 0.011810159861697
503 => 0.011917646795695
504 => 0.011807485488861
505 => 0.012248209259876
506 => 0.012541264850657
507 => 0.01288166399985
508 => 0.013379078647489
509 => 0.013566111156343
510 => 0.013532325407682
511 => 0.013909459516606
512 => 0.014587161127123
513 => 0.013669308279398
514 => 0.014635809556773
515 => 0.01432982641115
516 => 0.013604345877279
517 => 0.013557633483751
518 => 0.014048937324291
519 => 0.015138601956365
520 => 0.014865653324905
521 => 0.015139048402545
522 => 0.014820118522243
523 => 0.014804280965534
524 => 0.015123558690124
525 => 0.015869568496551
526 => 0.015515167201277
527 => 0.015007046041739
528 => 0.015382234798701
529 => 0.01505721157534
530 => 0.014324843284836
531 => 0.01486544460623
601 => 0.014503959898053
602 => 0.014609460353483
603 => 0.015369247443279
604 => 0.015277827850488
605 => 0.015396133268787
606 => 0.015187327302081
607 => 0.0149922696035
608 => 0.014628179923923
609 => 0.014520390919204
610 => 0.014550179922266
611 => 0.014520376157254
612 => 0.014316671327687
613 => 0.014272681289137
614 => 0.014199362630973
615 => 0.014222087148934
616 => 0.014084226621454
617 => 0.014344397920246
618 => 0.014392688005923
619 => 0.014582018980698
620 => 0.014601675950581
621 => 0.015128960020371
622 => 0.014838540815379
623 => 0.015033379091675
624 => 0.015015950922354
625 => 0.013620069240297
626 => 0.013812409420117
627 => 0.014111630380242
628 => 0.01397683174329
629 => 0.013786258008663
630 => 0.013632359500035
701 => 0.013399187522532
702 => 0.013727372603196
703 => 0.014158901085675
704 => 0.014612620225027
705 => 0.015157734042102
706 => 0.015036070983955
707 => 0.01460242970139
708 => 0.014621882532551
709 => 0.014742132280379
710 => 0.014586397931099
711 => 0.014540468831201
712 => 0.014735822327342
713 => 0.014737167619506
714 => 0.014557976429535
715 => 0.014358838213523
716 => 0.014358003817127
717 => 0.014322569095035
718 => 0.014826422280584
719 => 0.015103490587334
720 => 0.015135256022185
721 => 0.015101352520475
722 => 0.015114400632701
723 => 0.014953180689787
724 => 0.015321681670999
725 => 0.015659854612329
726 => 0.015569217040042
727 => 0.015433338434293
728 => 0.015325104580013
729 => 0.015543720583695
730 => 0.015533985957184
731 => 0.015656900966703
801 => 0.015651324831879
802 => 0.015609993137246
803 => 0.015569218516127
804 => 0.015730885279909
805 => 0.015684327848229
806 => 0.015637698099997
807 => 0.015544175001262
808 => 0.015556886343634
809 => 0.015421031199242
810 => 0.015358178393138
811 => 0.014413022994298
812 => 0.014160446587884
813 => 0.014239912267009
814 => 0.014266074431902
815 => 0.014156152856145
816 => 0.014313752159244
817 => 0.014289190474795
818 => 0.014384745620882
819 => 0.014325046914129
820 => 0.014327496969878
821 => 0.014503058137331
822 => 0.014554024291133
823 => 0.014528102493962
824 => 0.014546257232154
825 => 0.014964625511139
826 => 0.014905146920532
827 => 0.014873550104724
828 => 0.014882302638639
829 => 0.014989204703837
830 => 0.015019131445456
831 => 0.014892329738302
901 => 0.014952130156428
902 => 0.015206752747006
903 => 0.015295856243317
904 => 0.01558023183144
905 => 0.015459424027232
906 => 0.015681171980294
907 => 0.016362749588559
908 => 0.016907240943624
909 => 0.016406504191449
910 => 0.017406393224471
911 => 0.01818495026224
912 => 0.018155067946376
913 => 0.018019308518492
914 => 0.017132942030001
915 => 0.016317294372312
916 => 0.016999618272198
917 => 0.01700135765614
918 => 0.016942745428016
919 => 0.016578709913009
920 => 0.016930077781187
921 => 0.016957968086582
922 => 0.016942356932192
923 => 0.016663251756362
924 => 0.016237109740128
925 => 0.01632037687006
926 => 0.016456770127492
927 => 0.016198549236559
928 => 0.01611603201575
929 => 0.016269447228777
930 => 0.01676378301048
1001 => 0.016670331694441
1002 => 0.016667891302913
1003 => 0.017067715662452
1004 => 0.016781527708519
1005 => 0.016321427135227
1006 => 0.016205245672489
1007 => 0.015792879748983
1008 => 0.016077702361146
1009 => 0.016087952619898
1010 => 0.015931958186033
1011 => 0.016334085223801
1012 => 0.016330379552354
1013 => 0.016712139326004
1014 => 0.0174419206308
1015 => 0.017226088388615
1016 => 0.016975098973435
1017 => 0.017002388482046
1018 => 0.01730168703527
1019 => 0.017120724297669
1020 => 0.017185799759827
1021 => 0.017301588535764
1022 => 0.01737144677916
1023 => 0.016992336955879
1024 => 0.016903948321153
1025 => 0.016723136194699
1026 => 0.016675965685926
1027 => 0.016823233390154
1028 => 0.016784433553134
1029 => 0.016087091125341
1030 => 0.01601421496166
1031 => 0.016016449969556
1101 => 0.015833199390908
1102 => 0.01555369827329
1103 => 0.016288210522245
1104 => 0.016229218909161
1105 => 0.016164096733905
1106 => 0.016172073828792
1107 => 0.016490900701133
1108 => 0.016305965014033
1109 => 0.016797646848553
1110 => 0.016696571844685
1111 => 0.016592904648358
1112 => 0.016578574684045
1113 => 0.016538671657929
1114 => 0.016401829334114
1115 => 0.016236584005159
1116 => 0.016127474725677
1117 => 0.014876742939349
1118 => 0.015108871483719
1119 => 0.015375914214835
1120 => 0.015468096295509
1121 => 0.01531041246771
1122 => 0.01640805565273
1123 => 0.016608605639786
1124 => 0.016001126647441
1125 => 0.015887492131177
1126 => 0.016415505512698
1127 => 0.01609704889663
1128 => 0.016240449891346
1129 => 0.015930495376921
1130 => 0.016560299020693
1201 => 0.016555500972137
1202 => 0.016310493129949
1203 => 0.016517572080425
1204 => 0.016481587016817
1205 => 0.016204973766415
1206 => 0.016569068154117
1207 => 0.016569248740391
1208 => 0.016333434019215
1209 => 0.016058054051362
1210 => 0.016008822617294
1211 => 0.015971733345037
1212 => 0.016231328203985
1213 => 0.016464080142785
1214 => 0.016897173796795
1215 => 0.017006063831464
1216 => 0.017431068885999
1217 => 0.017177999069144
1218 => 0.017290181641153
1219 => 0.017411971692262
1220 => 0.017470362321445
1221 => 0.017375217924606
1222 => 0.018035425713357
1223 => 0.018091167478972
1224 => 0.018109857210818
1225 => 0.017887238859068
1226 => 0.018084976059896
1227 => 0.017992461371997
1228 => 0.018233158888591
1229 => 0.018270903332573
1230 => 0.018238935131318
1231 => 0.018250915813593
]
'min_raw' => 0.008184313495031
'max_raw' => 0.018270903332573
'avg_raw' => 0.013227608413802
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008184'
'max' => '$0.01827'
'avg' => '$0.013227'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012620045350815
'max_diff' => -0.0017435276200816
'year' => 2031
]
6 => [
'items' => [
101 => 0.017687544934528
102 => 0.017658331182431
103 => 0.017259999599666
104 => 0.017422322663961
105 => 0.017118867475608
106 => 0.01721509624177
107 => 0.017257512964992
108 => 0.017235356875909
109 => 0.017431500166469
110 => 0.017264738300066
111 => 0.016824626316439
112 => 0.016384394424598
113 => 0.016378867671801
114 => 0.016262962385417
115 => 0.016179184092474
116 => 0.016195322763889
117 => 0.016252197546957
118 => 0.016175878426689
119 => 0.016192164980476
120 => 0.016462630290078
121 => 0.016516870179048
122 => 0.016332541843434
123 => 0.015592436977492
124 => 0.015410813386978
125 => 0.015541360822087
126 => 0.015478967556436
127 => 0.012492734901929
128 => 0.013194305968691
129 => 0.012777456263923
130 => 0.012969559786213
131 => 0.012544064180353
201 => 0.012747132985605
202 => 0.01270963359216
203 => 0.013837739106516
204 => 0.013820125290567
205 => 0.013828556092159
206 => 0.013426131965835
207 => 0.014067204526075
208 => 0.014383019921474
209 => 0.01432457089694
210 => 0.01433928125718
211 => 0.014086508530496
212 => 0.013831003484687
213 => 0.01354760906694
214 => 0.014074120866506
215 => 0.01401558174225
216 => 0.01414984943158
217 => 0.014491329969439
218 => 0.014541614275797
219 => 0.014609196893475
220 => 0.014584973335896
221 => 0.015162076753101
222 => 0.015092185721427
223 => 0.01526060299874
224 => 0.014914155881457
225 => 0.014522118083188
226 => 0.014596631651958
227 => 0.014589455396085
228 => 0.014498093422302
229 => 0.01441561591744
301 => 0.014278314109737
302 => 0.014712757346152
303 => 0.01469511974414
304 => 0.014980652019243
305 => 0.014930181416106
306 => 0.014593126376105
307 => 0.014605164362798
308 => 0.014686125608565
309 => 0.014966333404565
310 => 0.015049518156419
311 => 0.015010983665021
312 => 0.015102191947901
313 => 0.015174279255828
314 => 0.015111245003901
315 => 0.016003677083716
316 => 0.015633077064029
317 => 0.015813704935006
318 => 0.015856783617913
319 => 0.015746438477494
320 => 0.015770368387288
321 => 0.015806615680115
322 => 0.016026702144214
323 => 0.016604272708541
324 => 0.016860074779826
325 => 0.017629667932338
326 => 0.016838833978742
327 => 0.016791909164732
328 => 0.016930536130986
329 => 0.017382368781219
330 => 0.017748536705751
331 => 0.017870015731052
401 => 0.017886071189645
402 => 0.018113973916884
403 => 0.018244603510002
404 => 0.01808630053136
405 => 0.017952155331974
406 => 0.017471663878486
407 => 0.017527282072562
408 => 0.017910436275836
409 => 0.018451664155631
410 => 0.018916093981658
411 => 0.018753466843597
412 => 0.019994197110135
413 => 0.020117210448134
414 => 0.02010021398232
415 => 0.02038045667312
416 => 0.019824232002313
417 => 0.019586435179198
418 => 0.017981159046694
419 => 0.018432176161565
420 => 0.019087756025337
421 => 0.019000987572068
422 => 0.018524887951297
423 => 0.018915732817403
424 => 0.018786507281819
425 => 0.018684581740332
426 => 0.019151522405123
427 => 0.01863810196332
428 => 0.019082634263683
429 => 0.01851251699037
430 => 0.018754209710665
501 => 0.018617013233264
502 => 0.01870579616831
503 => 0.018186772944163
504 => 0.018466825277336
505 => 0.018175121846376
506 => 0.018174983540969
507 => 0.018168544171563
508 => 0.018511731964476
509 => 0.018522923306082
510 => 0.018269307008591
511 => 0.018232756937892
512 => 0.018367901705936
513 => 0.018209682577027
514 => 0.018283712311624
515 => 0.018211924862273
516 => 0.018195763995349
517 => 0.018066991458153
518 => 0.018011512708455
519 => 0.018033267355723
520 => 0.017959007529308
521 => 0.017914263297797
522 => 0.018159643417719
523 => 0.018028546718251
524 => 0.018139550968334
525 => 0.018013047615511
526 => 0.017574531879737
527 => 0.017322336842874
528 => 0.016494021268427
529 => 0.016728930537818
530 => 0.016884675626455
531 => 0.01683320187559
601 => 0.016943787410146
602 => 0.016950576463829
603 => 0.016914623979259
604 => 0.016872995607925
605 => 0.016852733218953
606 => 0.017003752465687
607 => 0.01709142422149
608 => 0.0169003067297
609 => 0.016855530575392
610 => 0.017048760911477
611 => 0.017166631304864
612 => 0.018036920063976
613 => 0.017972446261705
614 => 0.01813426285306
615 => 0.018116044788151
616 => 0.018285654355296
617 => 0.018562894315226
618 => 0.017999187959176
619 => 0.018097027891087
620 => 0.018073039799237
621 => 0.018334935496046
622 => 0.018335753105824
623 => 0.018178733552927
624 => 0.018263856399904
625 => 0.018216343161945
626 => 0.018302206004737
627 => 0.017971585174768
628 => 0.018374245657357
629 => 0.018602528204116
630 => 0.018605697907499
701 => 0.018713902022901
702 => 0.018823843670908
703 => 0.01903486709036
704 => 0.018817958342273
705 => 0.018427760620106
706 => 0.018455931635316
707 => 0.018227158853577
708 => 0.018231004565369
709 => 0.018210475854428
710 => 0.018272084061291
711 => 0.017985104711644
712 => 0.0180524581914
713 => 0.017958162925321
714 => 0.018096822911594
715 => 0.017947647687681
716 => 0.018073028231453
717 => 0.018127138317714
718 => 0.018326805700924
719 => 0.017918156652836
720 => 0.017084893580676
721 => 0.017260055580782
722 => 0.017000977223946
723 => 0.017024955912252
724 => 0.01707339667881
725 => 0.016916384305563
726 => 0.01694633731835
727 => 0.016945267185958
728 => 0.016936045363128
729 => 0.016895200380741
730 => 0.016835967075346
731 => 0.017071934332989
801 => 0.017112029768187
802 => 0.017201156953857
803 => 0.017466339002864
804 => 0.017439841062745
805 => 0.017483060302468
806 => 0.017388712944818
807 => 0.017029332415579
808 => 0.017048848507349
809 => 0.016805482530258
810 => 0.017194933538661
811 => 0.017102706399369
812 => 0.017043246962695
813 => 0.01702702290451
814 => 0.017292862288525
815 => 0.017372405598744
816 => 0.017322839545768
817 => 0.017221178125043
818 => 0.017416398106337
819 => 0.017468630737661
820 => 0.017480323697549
821 => 0.017826216074683
822 => 0.017499655239046
823 => 0.017578261677919
824 => 0.018191526674812
825 => 0.017635379947415
826 => 0.017929983272469
827 => 0.01791556397275
828 => 0.018066273065015
829 => 0.017903201428315
830 => 0.017905222896692
831 => 0.018039042360705
901 => 0.017851117057966
902 => 0.017804584110208
903 => 0.017740299176157
904 => 0.017880662977842
905 => 0.017964804728843
906 => 0.018642925446607
907 => 0.019081022356345
908 => 0.019062003414095
909 => 0.019235800944293
910 => 0.019157503565136
911 => 0.018904660674032
912 => 0.01933623265824
913 => 0.019199665224698
914 => 0.01921092367799
915 => 0.019210504637796
916 => 0.019301310042169
917 => 0.019236966090978
918 => 0.019110137558408
919 => 0.019194332257167
920 => 0.019444360412328
921 => 0.020220455477745
922 => 0.020654768558244
923 => 0.020194309284959
924 => 0.020511927925876
925 => 0.020321469920419
926 => 0.020286858035193
927 => 0.020486346013522
928 => 0.020686183169149
929 => 0.020673454406255
930 => 0.020528382893022
1001 => 0.020446435676249
1002 => 0.021066967455982
1003 => 0.021524164700805
1004 => 0.021492986913798
1005 => 0.02163059552609
1006 => 0.022034618667856
1007 => 0.022071557480556
1008 => 0.022066904039185
1009 => 0.021975347337741
1010 => 0.022373160589844
1011 => 0.022705023403606
1012 => 0.021954154606684
1013 => 0.022240075614958
1014 => 0.022368434767371
1015 => 0.022556904085559
1016 => 0.022874883416467
1017 => 0.023220293309685
1018 => 0.023269138055813
1019 => 0.023234480370999
1020 => 0.023006673261305
1021 => 0.023384624888061
1022 => 0.023606020086959
1023 => 0.023737855861363
1024 => 0.024072169449872
1025 => 0.022369227469798
1026 => 0.021163800494594
1027 => 0.020975555665839
1028 => 0.021358358927474
1029 => 0.021459301094768
1030 => 0.021418611433703
1031 => 0.020061793780485
1101 => 0.020968412301695
1102 => 0.021943857599867
1103 => 0.021981328426396
1104 => 0.02246965673826
1105 => 0.022628676453856
1106 => 0.023021844751562
1107 => 0.022997251967492
1108 => 0.02309298219131
1109 => 0.02307097547067
1110 => 0.023799236950817
1111 => 0.024602617511296
1112 => 0.02457479899708
1113 => 0.024459303536344
1114 => 0.02463083399044
1115 => 0.025460008824346
1116 => 0.025383671692896
1117 => 0.025457826713719
1118 => 0.02643547057314
1119 => 0.027706546658606
1120 => 0.027116004202955
1121 => 0.028397311407704
1122 => 0.029203826373918
1123 => 0.030598610612779
1124 => 0.030423976756617
1125 => 0.030966956025406
1126 => 0.0301113457069
1127 => 0.028146691468234
1128 => 0.027835777414571
1129 => 0.028458235223603
1130 => 0.029988487008562
1201 => 0.028410042149191
1202 => 0.02872935948847
1203 => 0.028637396073276
1204 => 0.0286324957337
1205 => 0.028819521764208
1206 => 0.028548230752334
1207 => 0.027442942365642
1208 => 0.027949489519758
1209 => 0.027753887337161
1210 => 0.027970922541861
1211 => 0.029142172029496
1212 => 0.028624334711912
1213 => 0.028078835163525
1214 => 0.028763012653243
1215 => 0.029634205706547
1216 => 0.029579688010955
1217 => 0.029473900894879
1218 => 0.030070217329367
1219 => 0.031055157374819
1220 => 0.031321382711295
1221 => 0.031517904811944
1222 => 0.031545001889355
1223 => 0.031824118627433
1224 => 0.030323237580315
1225 => 0.032705174347449
1226 => 0.033116469027458
1227 => 0.033039162674034
1228 => 0.033496299400938
1229 => 0.033361798179443
1230 => 0.033166927012093
1231 => 0.033891585960006
]
'min_raw' => 0.012492734901929
'max_raw' => 0.033891585960006
'avg_raw' => 0.023192160430968
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012492'
'max' => '$0.033891'
'avg' => '$0.023192'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0043084214068983
'max_diff' => 0.015620682627433
'year' => 2032
]
7 => [
'items' => [
101 => 0.033060822953185
102 => 0.031881659455158
103 => 0.031234747038931
104 => 0.032086653493555
105 => 0.032606883037956
106 => 0.032950721673991
107 => 0.033054767037503
108 => 0.030439746703543
109 => 0.029030395779215
110 => 0.029933773563468
111 => 0.031035956808061
112 => 0.030317114896741
113 => 0.030345292138717
114 => 0.029320412481507
115 => 0.031126635916458
116 => 0.030863484354716
117 => 0.032228715122541
118 => 0.031902891843138
119 => 0.033016184536346
120 => 0.032723017259723
121 => 0.033939938234223
122 => 0.034425400957771
123 => 0.035240568426848
124 => 0.03584020893543
125 => 0.036192329311364
126 => 0.036171189324763
127 => 0.037566465679889
128 => 0.036743719960514
129 => 0.035710157430702
130 => 0.035691463545385
131 => 0.036226760225269
201 => 0.037348595214834
202 => 0.037639470705593
203 => 0.037802030422963
204 => 0.037553064557067
205 => 0.036660033045402
206 => 0.036274426566438
207 => 0.036602974458611
208 => 0.036201188618926
209 => 0.036894783699418
210 => 0.037847237888848
211 => 0.037650559865143
212 => 0.038308025010773
213 => 0.038988432269149
214 => 0.039961445207629
215 => 0.040215826820313
216 => 0.040636309952812
217 => 0.041069125217668
218 => 0.041208133816041
219 => 0.04147354436217
220 => 0.041472145517582
221 => 0.042271978062533
222 => 0.043154218128365
223 => 0.043487243329313
224 => 0.044253016415774
225 => 0.042941656841098
226 => 0.043936338142303
227 => 0.044833565574478
228 => 0.043763854041494
301 => 0.045238202178891
302 => 0.045295447776121
303 => 0.046159788329197
304 => 0.045283613591041
305 => 0.044763343828373
306 => 0.046265343138942
307 => 0.046992113292792
308 => 0.046773204207801
309 => 0.045107295262143
310 => 0.044137664801574
311 => 0.041599954858518
312 => 0.044605981906979
313 => 0.046070129995274
314 => 0.045103503472306
315 => 0.045591013665184
316 => 0.048250711201813
317 => 0.049263351821099
318 => 0.04905272965118
319 => 0.04908832133076
320 => 0.0496347238282
321 => 0.052057773411197
322 => 0.050605825935215
323 => 0.051715785377169
324 => 0.052304503862925
325 => 0.052851338402133
326 => 0.051508485602669
327 => 0.049761453840993
328 => 0.049208095546666
329 => 0.045007391514724
330 => 0.044788726627128
331 => 0.044665983399497
401 => 0.043892104711654
402 => 0.043284048046222
403 => 0.042800498810174
404 => 0.041531521214759
405 => 0.041959763901983
406 => 0.039937278471099
407 => 0.041231192977296
408 => 0.038003257394987
409 => 0.040691578066558
410 => 0.039228447347964
411 => 0.040210900274725
412 => 0.040207472589017
413 => 0.038398465263865
414 => 0.037355067591737
415 => 0.038019961198062
416 => 0.038732779923362
417 => 0.038848432363332
418 => 0.039772620447156
419 => 0.040030541475995
420 => 0.039249028717432
421 => 0.037936365604816
422 => 0.038241267307219
423 => 0.037348888768469
424 => 0.035785029704156
425 => 0.036908220586506
426 => 0.037291727336957
427 => 0.037461105765854
428 => 0.035923229986529
429 => 0.035439996027757
430 => 0.035182726322833
501 => 0.037737845153522
502 => 0.037877820330922
503 => 0.037161687532849
504 => 0.040398675686637
505 => 0.039666045573784
506 => 0.040484572908576
507 => 0.038213600673554
508 => 0.038300354871202
509 => 0.037225240221197
510 => 0.037827232586013
511 => 0.037401763785681
512 => 0.03777859755194
513 => 0.038004470157692
514 => 0.039079408391961
515 => 0.040703852134496
516 => 0.038918848465793
517 => 0.038141096805615
518 => 0.038623609561348
519 => 0.039908604614652
520 => 0.041855437898093
521 => 0.040702873410625
522 => 0.041214361958349
523 => 0.041326099451485
524 => 0.040476241068682
525 => 0.041886773388893
526 => 0.042642689118438
527 => 0.04341810224223
528 => 0.044091371731037
529 => 0.043108385188888
530 => 0.044160321694574
531 => 0.043312646562781
601 => 0.042552194338518
602 => 0.042553347630642
603 => 0.042076304841928
604 => 0.041151974327534
605 => 0.040981513598906
606 => 0.041868271836048
607 => 0.042579367965919
608 => 0.042637937249095
609 => 0.04303163660403
610 => 0.043264623826855
611 => 0.045548215341305
612 => 0.046466694739276
613 => 0.047589793961191
614 => 0.048027304402531
615 => 0.049344053974789
616 => 0.048280671754019
617 => 0.048050602321567
618 => 0.044856598564772
619 => 0.045379616501016
620 => 0.046217018680667
621 => 0.04487040701828
622 => 0.045724522170786
623 => 0.045893142594524
624 => 0.04482464966928
625 => 0.045395377907506
626 => 0.043879692915906
627 => 0.040736889925424
628 => 0.041890272227039
629 => 0.042739549825312
630 => 0.041527525977404
701 => 0.04370003181298
702 => 0.04243089875346
703 => 0.042028644502722
704 => 0.040459307256601
705 => 0.04119997402744
706 => 0.042201736440326
707 => 0.041582763736543
708 => 0.042867225036113
709 => 0.04468636478962
710 => 0.045982792109614
711 => 0.046082315701441
712 => 0.045248799788569
713 => 0.046584514358374
714 => 0.046594243580782
715 => 0.045087552089488
716 => 0.044164711940365
717 => 0.043955040716811
718 => 0.044478840541712
719 => 0.045114830227924
720 => 0.046117608702763
721 => 0.046723566733375
722 => 0.048303583901906
723 => 0.048731091245068
724 => 0.049200792203076
725 => 0.049828457533384
726 => 0.050582130692508
727 => 0.048933136726983
728 => 0.048998654331342
729 => 0.047463133982521
730 => 0.045822210273913
731 => 0.047067466824719
801 => 0.04869547411536
802 => 0.048322007444099
803 => 0.04827998481435
804 => 0.048350655221482
805 => 0.048069073547632
806 => 0.046795490072713
807 => 0.046155904424663
808 => 0.046981133086348
809 => 0.047419705393332
810 => 0.048099892793939
811 => 0.0480160453398
812 => 0.049768135036971
813 => 0.050448944112849
814 => 0.050274764017776
815 => 0.050306817347148
816 => 0.051539389659345
817 => 0.052910263568338
818 => 0.054194267886855
819 => 0.055500412228919
820 => 0.05392580424488
821 => 0.053126315418904
822 => 0.053951183811571
823 => 0.053513497031558
824 => 0.056028575095843
825 => 0.056202713644127
826 => 0.05871760983964
827 => 0.061104545797451
828 => 0.059605354088749
829 => 0.061019024344977
830 => 0.062548023985315
831 => 0.065497712362777
901 => 0.064504361088536
902 => 0.063743469580266
903 => 0.063024430781552
904 => 0.064520636377481
905 => 0.066445480974175
906 => 0.06686007406437
907 => 0.067531873257237
908 => 0.066825558549635
909 => 0.067676236816929
910 => 0.070679504907449
911 => 0.069867995358809
912 => 0.068715521343072
913 => 0.071086313063604
914 => 0.071944293371045
915 => 0.077966048496442
916 => 0.085568763088552
917 => 0.082421189325303
918 => 0.080467388718884
919 => 0.080926578206162
920 => 0.083702832207071
921 => 0.084594476878265
922 => 0.082170679293609
923 => 0.083026805576346
924 => 0.087744145566708
925 => 0.09027484712115
926 => 0.086837814491653
927 => 0.077355177781564
928 => 0.068611753667446
929 => 0.070930903464029
930 => 0.070667983848694
1001 => 0.075736177168188
1002 => 0.069848641124458
1003 => 0.069947772132007
1004 => 0.075120770322039
1005 => 0.073740703092579
1006 => 0.07150517092651
1007 => 0.068628075526246
1008 => 0.063309498579745
1009 => 0.058598686658738
1010 => 0.067837673671026
1011 => 0.067439271751048
1012 => 0.066862326731064
1013 => 0.068146255441067
1014 => 0.07438064880732
1015 => 0.074236925861465
1016 => 0.073322633808033
1017 => 0.074016116272361
1018 => 0.071383600097575
1019 => 0.072062059457097
1020 => 0.068610368664395
1021 => 0.070170677058037
1022 => 0.071500374478511
1023 => 0.071767330922177
1024 => 0.072368797420893
1025 => 0.067229332042743
1026 => 0.069536801110756
1027 => 0.070892223007601
1028 => 0.064768377566986
1029 => 0.070771174272904
1030 => 0.067139865384788
1031 => 0.065907344607732
1101 => 0.067566771461773
1102 => 0.066920091202908
1103 => 0.066364113490674
1104 => 0.066053868374338
1105 => 0.067272368311687
1106 => 0.067215523833188
1107 => 0.065221821435038
1108 => 0.062621117930358
1109 => 0.063493999391711
1110 => 0.063176873373495
1111 => 0.062027567773406
1112 => 0.062802060980178
1113 => 0.059391584859595
1114 => 0.053524037955255
1115 => 0.057400319168084
1116 => 0.057251086557973
1117 => 0.057175836708795
1118 => 0.060088754907692
1119 => 0.059808745035325
1120 => 0.059300524375115
1121 => 0.06201823390243
1122 => 0.061026233366608
1123 => 0.064083345273289
1124 => 0.06609695689663
1125 => 0.065586239855439
1126 => 0.06748005131982
1127 => 0.063514108817608
1128 => 0.064831435830847
1129 => 0.06510293510254
1130 => 0.061984697788722
1201 => 0.059854558113385
1202 => 0.05971250208241
1203 => 0.056019133436705
1204 => 0.057992101155411
1205 => 0.05972823110092
1206 => 0.058896759586147
1207 => 0.058633540544075
1208 => 0.059978269544777
1209 => 0.060082766504956
1210 => 0.057700224738772
1211 => 0.058195630617247
1212 => 0.060261555484862
1213 => 0.0581435746112
1214 => 0.054028683743886
1215 => 0.053008133915975
1216 => 0.052871973756467
1217 => 0.050104161682344
1218 => 0.053076331935425
1219 => 0.051778899970745
1220 => 0.055877472001548
1221 => 0.053536389638636
1222 => 0.053435470257033
1223 => 0.053282915810085
1224 => 0.050900545621011
1225 => 0.051422133284894
1226 => 0.053155970119686
1227 => 0.05377462263541
1228 => 0.05371009210955
1229 => 0.053147473373305
1230 => 0.053405037349683
1231 => 0.052575334040529
]
'min_raw' => 0.029030395779215
'max_raw' => 0.09027484712115
'avg_raw' => 0.059652621450182
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.02903'
'max' => '$0.090274'
'avg' => '$0.059652'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016537660877286
'max_diff' => 0.056383261161144
'year' => 2033
]
8 => [
'items' => [
101 => 0.052282348533285
102 => 0.051357605680412
103 => 0.049998489153422
104 => 0.050187482642446
105 => 0.047494717170294
106 => 0.046027555625186
107 => 0.045621464646378
108 => 0.045078422817806
109 => 0.045682802665894
110 => 0.04748708890404
111 => 0.045310736900157
112 => 0.041579534042843
113 => 0.041803785692228
114 => 0.042307612567484
115 => 0.041368734518593
116 => 0.040480165239381
117 => 0.041252704135752
118 => 0.03967174429753
119 => 0.042498664010808
120 => 0.042422203754915
121 => 0.043475904608483
122 => 0.044134805376337
123 => 0.04261625242809
124 => 0.042234340468209
125 => 0.042451894877488
126 => 0.038856205100547
127 => 0.043182060041974
128 => 0.043219470215142
129 => 0.042899141600099
130 => 0.045202525810621
131 => 0.050063384938374
201 => 0.048234534206908
202 => 0.047526347926378
203 => 0.04618008528941
204 => 0.047973900320004
205 => 0.047836163313528
206 => 0.047213264335035
207 => 0.04683653308928
208 => 0.047530671960795
209 => 0.046750521601404
210 => 0.04661038515976
211 => 0.045761310793345
212 => 0.045458229874957
213 => 0.045233840828981
214 => 0.044986810537374
215 => 0.045531697804546
216 => 0.044296911571246
217 => 0.042807880421474
218 => 0.042684083592911
219 => 0.043025897520902
220 => 0.04287467030282
221 => 0.042683359575172
222 => 0.042318095295715
223 => 0.042209729186636
224 => 0.042561866469379
225 => 0.042164324008042
226 => 0.042750919565004
227 => 0.042591398031323
228 => 0.041700323711624
301 => 0.040589715191313
302 => 0.040579828445902
303 => 0.040340549661964
304 => 0.040035792154813
305 => 0.039951015588231
306 => 0.041187643064686
307 => 0.043747424931801
308 => 0.043244878500898
309 => 0.043608019800255
310 => 0.04539431557894
311 => 0.045962125291196
312 => 0.045559107406747
313 => 0.045007431669453
314 => 0.045031702602092
315 => 0.046916945600029
316 => 0.047034525893325
317 => 0.047331613361641
318 => 0.047713454715337
319 => 0.04562413664041
320 => 0.044933295908652
321 => 0.04460593724356
322 => 0.043597799258826
323 => 0.044684989644143
324 => 0.044051530364753
325 => 0.044137005663593
326 => 0.044081339763091
327 => 0.044111737108877
328 => 0.042497873829135
329 => 0.043085880786116
330 => 0.042108205174311
331 => 0.04079920727934
401 => 0.040794819059403
402 => 0.041115194439741
403 => 0.040924622627226
404 => 0.040411798779797
405 => 0.040484642986864
406 => 0.039846451082682
407 => 0.04056213103887
408 => 0.040582654179187
409 => 0.040307078412704
410 => 0.041409682130014
411 => 0.041861419772634
412 => 0.04168002989973
413 => 0.041848692975603
414 => 0.043265761573963
415 => 0.043496805586533
416 => 0.043599420075006
417 => 0.043461930254267
418 => 0.041874594388232
419 => 0.041944999483764
420 => 0.041428413607265
421 => 0.040991952978102
422 => 0.041009409114334
423 => 0.041233806613634
424 => 0.042213763653816
425 => 0.044276025473256
426 => 0.04435428680181
427 => 0.044449141815061
428 => 0.044063318805858
429 => 0.043946950894453
430 => 0.044100470206702
501 => 0.044874947317509
502 => 0.046867112714988
503 => 0.046162948411265
504 => 0.045590451871369
505 => 0.046092685680817
506 => 0.046015370722491
507 => 0.045362754667197
508 => 0.04534443790813
509 => 0.044091859044047
510 => 0.043628809157836
511 => 0.043241850014235
512 => 0.042819300731247
513 => 0.042568799352312
514 => 0.042953683321197
515 => 0.043041710838695
516 => 0.042200155314106
517 => 0.042085454405759
518 => 0.042772686813376
519 => 0.04247026145339
520 => 0.042781313435924
521 => 0.042853480164026
522 => 0.042841859658661
523 => 0.042526092849504
524 => 0.042727353197359
525 => 0.042251312476086
526 => 0.041733689690705
527 => 0.041403478602672
528 => 0.041115325632218
529 => 0.041275209647774
530 => 0.040705252325982
531 => 0.040522911507766
601 => 0.042659170720007
602 => 0.044237248368746
603 => 0.044214302494746
604 => 0.044074625387971
605 => 0.043867093539769
606 => 0.044859765070177
607 => 0.044513938158076
608 => 0.044765556131435
609 => 0.044829603466028
610 => 0.045023455458017
611 => 0.045092740883012
612 => 0.044883312206856
613 => 0.044180443990122
614 => 0.042428963220723
615 => 0.041613644194536
616 => 0.041344575335682
617 => 0.041354355477667
618 => 0.041084575501249
619 => 0.041164037794994
620 => 0.041056941758318
621 => 0.040854127774168
622 => 0.041262686455768
623 => 0.041309769037835
624 => 0.041214406559637
625 => 0.041236867875425
626 => 0.040447307285791
627 => 0.040507335862586
628 => 0.040173089118932
629 => 0.040110421883901
630 => 0.039265475222138
701 => 0.037768529733847
702 => 0.038597982846375
703 => 0.037596120125199
704 => 0.037216699531992
705 => 0.039012817608225
706 => 0.038832537169931
707 => 0.038523975425596
708 => 0.038067548295823
709 => 0.037898255033552
710 => 0.036869682763729
711 => 0.036808909226808
712 => 0.03731869741752
713 => 0.037083447708247
714 => 0.036753068020396
715 => 0.035556466281051
716 => 0.034211089744807
717 => 0.0342516982057
718 => 0.034679637450259
719 => 0.035923928519285
720 => 0.035437762472162
721 => 0.035085043426863
722 => 0.035018989752374
723 => 0.035845789781339
724 => 0.037015885042285
725 => 0.037564867559316
726 => 0.037020842557786
727 => 0.036395895928414
728 => 0.03643393353402
729 => 0.036686980682969
730 => 0.03671357236043
731 => 0.03630679635026
801 => 0.036421301414419
802 => 0.0362473577514
803 => 0.035179865812525
804 => 0.035160558268404
805 => 0.034898578530971
806 => 0.034890645888639
807 => 0.034444953001358
808 => 0.034382597485497
809 => 0.033497647206176
810 => 0.034080124159902
811 => 0.033689429200755
812 => 0.033100559741697
813 => 0.032999038424997
814 => 0.032995986571627
815 => 0.033600623837277
816 => 0.034073058621415
817 => 0.03369622550684
818 => 0.033610427911255
819 => 0.034526521767296
820 => 0.034409940473734
821 => 0.034308981825378
822 => 0.036911115845385
823 => 0.0348513237215
824 => 0.033953136786662
825 => 0.032841459893727
826 => 0.033203427495628
827 => 0.033279699387759
828 => 0.030606316855071
829 => 0.029521725894509
830 => 0.029149535148792
831 => 0.028935334112627
901 => 0.029032948214574
902 => 0.028056689140237
903 => 0.028712751384026
904 => 0.027867393546775
905 => 0.027725666554328
906 => 0.029237271087073
907 => 0.029447602027139
908 => 0.028550264892117
909 => 0.029126500598488
910 => 0.028917549521082
911 => 0.027881884780571
912 => 0.027842330005318
913 => 0.027322669843905
914 => 0.02650950231733
915 => 0.026137862937487
916 => 0.025944309921744
917 => 0.026024173668313
918 => 0.025983792114177
919 => 0.025720275158303
920 => 0.025998896597625
921 => 0.025287133954484
922 => 0.025003704334924
923 => 0.024875685751286
924 => 0.024243955437968
925 => 0.025249319298201
926 => 0.025447388643908
927 => 0.025645848247411
928 => 0.027373303601787
929 => 0.02728700481402
930 => 0.028067103826215
1001 => 0.028036790613111
1002 => 0.027814293738067
1003 => 0.026875616021216
1004 => 0.027249756228831
1005 => 0.026098210824089
1006 => 0.026961026938798
1007 => 0.026567273696107
1008 => 0.026827898571364
1009 => 0.026359271546055
1010 => 0.026618629090997
1011 => 0.025494358233663
1012 => 0.024444529926002
1013 => 0.024867011483404
1014 => 0.025326297252926
1015 => 0.026322145825086
1016 => 0.02572902663108
1017 => 0.025942334721564
1018 => 0.025227788325784
1019 => 0.023753475011202
1020 => 0.023761819464452
1021 => 0.023535028480665
1022 => 0.023339047958648
1023 => 0.025797153505383
1024 => 0.025491449223748
1025 => 0.02500434946055
1026 => 0.025656351850165
1027 => 0.025828751630649
1028 => 0.025833659610034
1029 => 0.02630934372288
1030 => 0.026563216419176
1031 => 0.026607962582246
1101 => 0.027356461811644
1102 => 0.027607348880395
1103 => 0.028640717209713
1104 => 0.026541677094606
1105 => 0.026498448744747
1106 => 0.025665526860877
1107 => 0.025137274634153
1108 => 0.025701696742781
1109 => 0.026201697679723
1110 => 0.025681063283735
1111 => 0.025749047144659
1112 => 0.025050138005439
1113 => 0.025299965135979
1114 => 0.025515149916148
1115 => 0.025396337528515
1116 => 0.025218469633644
1117 => 0.026160703304829
1118 => 0.026107538788457
1119 => 0.026984968444924
1120 => 0.027668987607736
1121 => 0.028894872230546
1122 => 0.027615597719833
1123 => 0.027568975872007
1124 => 0.028024711912886
1125 => 0.027607279109582
1126 => 0.027871082231979
1127 => 0.028852369469147
1128 => 0.028873102522176
1129 => 0.028525797170908
1130 => 0.02850466360872
1201 => 0.028571367400535
1202 => 0.028962053592653
1203 => 0.028825535832553
1204 => 0.028983517640748
1205 => 0.029181076310998
1206 => 0.029998262734295
1207 => 0.030195283614381
1208 => 0.029716625019388
1209 => 0.029759842531202
1210 => 0.029580811077203
1211 => 0.029407868935897
1212 => 0.029796617613381
1213 => 0.030507063462359
1214 => 0.030502643815604
1215 => 0.030667453443473
1216 => 0.030770128476279
1217 => 0.03032937207276
1218 => 0.030042455861131
1219 => 0.030152477793622
1220 => 0.030328405259642
1221 => 0.030095426887483
1222 => 0.028657376448438
1223 => 0.029093589088626
1224 => 0.029020981975591
1225 => 0.028917580617301
1226 => 0.029356195800143
1227 => 0.029313890295749
1228 => 0.028046676192368
1229 => 0.0281277991278
1230 => 0.028051609546759
1231 => 0.028297793670025
]
'min_raw' => 0.023339047958648
'max_raw' => 0.052282348533285
'avg_raw' => 0.037810698245967
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023339'
'max' => '$0.052282'
'avg' => '$0.03781'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056913478205673
'max_diff' => -0.037992498587864
'year' => 2034
]
9 => [
'items' => [
101 => 0.027593984359018
102 => 0.027810471362856
103 => 0.027946249982223
104 => 0.028026224632131
105 => 0.028315147906729
106 => 0.028281246095195
107 => 0.028313040522524
108 => 0.028741437465836
109 => 0.030908122197031
110 => 0.03102605006643
111 => 0.03044533010742
112 => 0.03067731627685
113 => 0.030231953561342
114 => 0.030530928535933
115 => 0.030735479620407
116 => 0.02981115260258
117 => 0.029756419955417
118 => 0.029309219069559
119 => 0.029549519494866
120 => 0.02916718423999
121 => 0.029260995938017
122 => 0.028998690251976
123 => 0.029470788262309
124 => 0.029998667194474
125 => 0.03013203025931
126 => 0.029781209452137
127 => 0.029527192067525
128 => 0.029081221218676
129 => 0.029822880679421
130 => 0.030039764507405
131 => 0.029821741481003
201 => 0.029771220781888
202 => 0.029675484148355
203 => 0.029791531761268
204 => 0.0300385833115
205 => 0.029922078362736
206 => 0.029999031933948
207 => 0.029705764274669
208 => 0.030329517981469
209 => 0.031320188982372
210 => 0.031323374151631
211 => 0.031206868574863
212 => 0.031159197002997
213 => 0.031278738794911
214 => 0.031343585313163
215 => 0.031730161547997
216 => 0.032144973249851
217 => 0.034080718465878
218 => 0.033537168955227
219 => 0.035254677268885
220 => 0.036613003354445
221 => 0.037020305955104
222 => 0.036645606727566
223 => 0.035363780911014
224 => 0.035300888421181
225 => 0.03721647736401
226 => 0.036675235748129
227 => 0.036610856780137
228 => 0.035925973330679
301 => 0.036330824273774
302 => 0.036242277433714
303 => 0.03610250191482
304 => 0.036874929312084
305 => 0.038320844444691
306 => 0.038095485011568
307 => 0.037927264648865
308 => 0.037190171987711
309 => 0.037634066405332
310 => 0.037476004105454
311 => 0.038155140054541
312 => 0.037752834963005
313 => 0.036671135310563
314 => 0.036843399545543
315 => 0.036817362152973
316 => 0.037353209847028
317 => 0.037192361669831
318 => 0.036785953964854
319 => 0.038315902463959
320 => 0.038216556118448
321 => 0.038357406522646
322 => 0.038419413226518
323 => 0.039350665917206
324 => 0.039732170347819
325 => 0.039818778532743
326 => 0.040181178235213
327 => 0.039809761698007
328 => 0.041295692662336
329 => 0.042283750047139
330 => 0.043431429544556
331 => 0.04510849775745
401 => 0.045739090919246
402 => 0.045625179908788
403 => 0.046896713887689
404 => 0.049181632183162
405 => 0.046087027224617
406 => 0.049345653760252
407 => 0.048314010221723
408 => 0.045868001950344
409 => 0.04571050785421
410 => 0.047366973054328
411 => 0.051040853439322
412 => 0.050120588071687
413 => 0.051042358663787
414 => 0.049967064305375
415 => 0.049913666877187
416 => 0.050990134016901
417 => 0.053505358164012
418 => 0.052310469453487
419 => 0.050597303488217
420 => 0.051862278577158
421 => 0.0507664400872
422 => 0.048297209263444
423 => 0.050119884362104
424 => 0.048901113430428
425 => 0.049256815581718
426 => 0.051818490801607
427 => 0.051510263261798
428 => 0.051909138239412
429 => 0.051205134344298
430 => 0.050547483695037
501 => 0.049319929920413
502 => 0.048956511765417
503 => 0.049056947469042
504 => 0.04895646199447
505 => 0.048269656939369
506 => 0.048121341453112
507 => 0.047874142478165
508 => 0.047950759777046
509 => 0.047485953383535
510 => 0.048363139081991
511 => 0.048525952477358
512 => 0.049164295077478
513 => 0.049230569923842
514 => 0.051008344978937
515 => 0.050029176352887
516 => 0.050686087204593
517 => 0.050627326914932
518 => 0.04592101436653
519 => 0.046569502711553
520 => 0.047578347069555
521 => 0.047123864053731
522 => 0.046481331402004
523 => 0.045962451835313
524 => 0.045176296233616
525 => 0.046282795146223
526 => 0.04773772355326
527 => 0.049267469309242
528 => 0.051105358602142
529 => 0.050695163107357
530 => 0.049233111247321
531 => 0.049298697825732
601 => 0.049704128246106
602 => 0.049179059014484
603 => 0.04902420584751
604 => 0.049682853798896
605 => 0.04968738954535
606 => 0.049083233937633
607 => 0.048411825538965
608 => 0.048409012313259
609 => 0.048289541673752
610 => 0.049988317866738
611 => 0.050922473007235
612 => 0.051029572388626
613 => 0.050915264365544
614 => 0.050959256986905
615 => 0.050415692693354
616 => 0.051658119479428
617 => 0.052798293161603
618 => 0.052492702258522
619 => 0.052034578052498
620 => 0.051669660056147
621 => 0.052406739175843
622 => 0.052373918202913
623 => 0.052788334739155
624 => 0.052769534411286
625 => 0.052630181717142
626 => 0.052492707235246
627 => 0.053037778016551
628 => 0.052880806385104
629 => 0.052723590933357
630 => 0.052408271276396
701 => 0.052451128454682
702 => 0.05199308335026
703 => 0.051781170726237
704 => 0.048594513310406
705 => 0.047742934321861
706 => 0.048010858407146
707 => 0.048099065972667
708 => 0.047728457705524
709 => 0.048259814759155
710 => 0.048177003325193
711 => 0.04849917417167
712 => 0.048297895813823
713 => 0.048306156347838
714 => 0.048898073081195
715 => 0.049069909027083
716 => 0.048982511878118
717 => 0.049043721845454
718 => 0.050454279707595
719 => 0.0502537434867
720 => 0.050147212616184
721 => 0.050176722395362
722 => 0.05053715017184
723 => 0.050638050270627
724 => 0.050210529461943
725 => 0.050412150746787
726 => 0.051270628588102
727 => 0.051571047246924
728 => 0.052529839396749
729 => 0.052122527450332
730 => 0.052870166156028
731 => 0.055168152648522
801 => 0.057003943267296
802 => 0.055315674347015
803 => 0.058686870031869
804 => 0.061311829441826
805 => 0.061211079127573
806 => 0.060753356738042
807 => 0.057764910237962
808 => 0.055014897213361
809 => 0.057315399880161
810 => 0.057321264334561
811 => 0.057123649115268
812 => 0.055896277960272
813 => 0.057080939259556
814 => 0.057174973371435
815 => 0.057122339274471
816 => 0.056181316687659
817 => 0.054744549127642
818 => 0.055025290069733
819 => 0.05548514945984
820 => 0.05461453969765
821 => 0.054336327126525
822 => 0.054853577228354
823 => 0.056520264829787
824 => 0.0562051871932
825 => 0.05619695924278
826 => 0.057544994985811
827 => 0.056580092318122
828 => 0.05502883111207
829 => 0.054637117198921
830 => 0.053246796697349
831 => 0.054207096019936
901 => 0.054241655482968
902 => 0.053715709358009
903 => 0.055071508741456
904 => 0.055059014811454
905 => 0.05634614454193
906 => 0.058806653162751
907 => 0.058078959689299
908 => 0.057232731352498
909 => 0.057324739836075
910 => 0.058333845804625
911 => 0.057723717300391
912 => 0.057943123764481
913 => 0.058333513706664
914 => 0.05856904565162
915 => 0.057290850413827
916 => 0.056992841960751
917 => 0.056383221252513
918 => 0.056224182588843
919 => 0.05672070593555
920 => 0.056589889576121
921 => 0.054238750893921
922 => 0.053993043820019
923 => 0.054000579305187
924 => 0.053382737185126
925 => 0.052440379652933
926 => 0.054916838982291
927 => 0.054717944640117
928 => 0.054498380679557
929 => 0.054525276011911
930 => 0.055600223071791
1001 => 0.054976699490933
1002 => 0.056634439124149
1003 => 0.056293657691775
1004 => 0.055944136501546
1005 => 0.05589582202638
1006 => 0.055761286187889
1007 => 0.055299912739121
1008 => 0.054742776575488
1009 => 0.054374907021949
1010 => 0.050157977481038
1011 => 0.05094061507508
1012 => 0.051840968287365
1013 => 0.052151766608306
1014 => 0.051620124573747
1015 => 0.055320905207042
1016 => 0.055997073490354
1017 => 0.053948915654835
1018 => 0.053565788949543
1019 => 0.055346022930057
1020 => 0.054272324215054
1021 => 0.054755810680676
1022 => 0.053710777394958
1023 => 0.055834204351423
1024 => 0.055818027395728
1025 => 0.05499196634989
1026 => 0.05569014748921
1027 => 0.055568821334859
1028 => 0.054636200448607
1029 => 0.055863770097003
1030 => 0.055864378956233
1031 => 0.05506931315973
1101 => 0.054140850371697
1102 => 0.053974863154509
1103 => 0.053849814083603
1104 => 0.054725056274881
1105 => 0.055509795686769
1106 => 0.056970001178895
1107 => 0.057337131533242
1108 => 0.058770065747511
1109 => 0.057916823191214
1110 => 0.05829505456508
1111 => 0.058705678225505
1112 => 0.058902546308498
1113 => 0.058581760331784
1114 => 0.060807696985797
1115 => 0.060995634240332
1116 => 0.061058647976127
1117 => 0.060308074660485
1118 => 0.060974759438647
1119 => 0.060662839709224
1120 => 0.061474368191386
1121 => 0.061601626219504
1122 => 0.061493843197023
1123 => 0.06153423690378
1124 => 0.059634792651714
1125 => 0.059536296446878
1126 => 0.058193293704963
1127 => 0.058740577249269
1128 => 0.057717456895173
1129 => 0.058041898898764
1130 => 0.05818490984255
1201 => 0.058110209041316
1202 => 0.058771519839726
1203 => 0.058209270564207
1204 => 0.056725402283774
1205 => 0.05524112972442
1206 => 0.055222495891499
1207 => 0.054831713126208
1208 => 0.054549248762336
1209 => 0.054603661419779
1210 => 0.054795418721764
1211 => 0.054538103479349
1212 => 0.054593014732532
1213 => 0.055504907407141
1214 => 0.055687780979712
1215 => 0.055066305126796
1216 => 0.052570989898801
1217 => 0.051958633282827
1218 => 0.05239878307483
1219 => 0.052188419823529
1220 => 0.042120127936752
1221 => 0.044485523770466
1222 => 0.043080085887326
1223 => 0.043727776324965
1224 => 0.042293188182654
1225 => 0.042977848837372
1226 => 0.042851417014249
1227 => 0.04665490351771
1228 => 0.046595517307483
1229 => 0.04662394234367
1230 => 0.045267141305412
1231 => 0.04742856220052
]
'min_raw' => 0.027593984359018
'max_raw' => 0.061601626219504
'avg_raw' => 0.044597805289261
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027593'
'max' => '$0.0616016'
'avg' => '$0.044597'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042549364003703
'max_diff' => 0.0093192776862187
'year' => 2035
]
10 => [
'items' => [
101 => 0.048493355855631
102 => 0.048296290888636
103 => 0.04834588789523
104 => 0.047493646999188
105 => 0.04663219389845
106 => 0.04567670983305
107 => 0.047451881125164
108 => 0.047254512380665
109 => 0.047707205269512
110 => 0.048858530744312
111 => 0.049028067793937
112 => 0.049255927307907
113 => 0.049174255892293
114 => 0.051120000355475
115 => 0.050884357862548
116 => 0.051452188471529
117 => 0.050284117827443
118 => 0.048962335019377
119 => 0.049213562718855
120 => 0.049189367471149
121 => 0.048881334197849
122 => 0.048603255531811
123 => 0.048140332901036
124 => 0.049605088604465
125 => 0.049545622197864
126 => 0.050508314198602
127 => 0.05033814903638
128 => 0.049201744436586
129 => 0.049242331349186
130 => 0.049515297841824
131 => 0.05046003798952
201 => 0.05074050118817
202 => 0.050610579460029
203 => 0.050918094553718
204 => 0.05116114194537
205 => 0.050948617564086
206 => 0.053957514628802
207 => 0.052708010787961
208 => 0.053317010265995
209 => 0.053462253053073
210 => 0.0530902167081
211 => 0.053170898069702
212 => 0.053293108348174
213 => 0.054035145227829
214 => 0.055982464710147
215 => 0.056844919253014
216 => 0.059439656297986
217 => 0.056773304409176
218 => 0.056615094122555
219 => 0.057082484617906
220 => 0.058605869944115
221 => 0.059840430666699
222 => 0.060250005681897
223 => 0.060304137781502
224 => 0.061072527738046
225 => 0.061512954531512
226 => 0.060979224986659
227 => 0.060526945081209
228 => 0.058906934598935
229 => 0.0590944552234
301 => 0.060386286370711
302 => 0.062211073954762
303 => 0.063776931538667
304 => 0.063228622788429
305 => 0.067411831507086
306 => 0.067826579564665
307 => 0.067769274793518
308 => 0.068714132591471
309 => 0.066838782279479
310 => 0.066037033687902
311 => 0.060624733130362
312 => 0.06214536882216
313 => 0.064355702103991
314 => 0.064063156205816
315 => 0.062457953094173
316 => 0.063775713848164
317 => 0.063340020932706
318 => 0.062996371853368
319 => 0.064570694905466
320 => 0.062839662040058
321 => 0.064338433726987
322 => 0.062416243535693
323 => 0.063231127416615
324 => 0.062768559914305
325 => 0.06306789777844
326 => 0.061317974741183
327 => 0.062262190735106
328 => 0.061278692251542
329 => 0.061278225945205
330 => 0.06125651516167
331 => 0.062413596766084
401 => 0.062451329155663
402 => 0.061596244101748
403 => 0.06147301298654
404 => 0.061928663007507
405 => 0.061395216167884
406 => 0.061644812586669
407 => 0.061402776189141
408 => 0.061348288697991
409 => 0.060914123098226
410 => 0.060727072620215
411 => 0.06080041993234
412 => 0.060550047742926
413 => 0.060399189442446
414 => 0.061226505648656
415 => 0.060784503973518
416 => 0.061158762552745
417 => 0.060732247666518
418 => 0.059253761247166
419 => 0.058403468072686
420 => 0.055610744282293
421 => 0.056402757284885
422 => 0.056927862725001
423 => 0.056754315380175
424 => 0.057127162230768
425 => 0.057150051999257
426 => 0.057028835687406
427 => 0.056888482727053
428 => 0.056820166667959
429 => 0.05732933860215
430 => 0.057624930047886
501 => 0.056980564080921
502 => 0.056829598150499
503 => 0.057481087719521
504 => 0.057878495980271
505 => 0.06081273529324
506 => 0.060595357367467
507 => 0.061140933302893
508 => 0.061079509825109
509 => 0.061651360322498
510 => 0.062586094203677
511 => 0.060685518867536
512 => 0.06101539302894
513 => 0.060934515502471
514 => 0.061817515129236
515 => 0.061820271757689
516 => 0.06129086937234
517 => 0.06157786699401
518 => 0.061417672794962
519 => 0.061707165364187
520 => 0.060592454152739
521 => 0.061950052082643
522 => 0.06271972262722
523 => 0.062730409503478
524 => 0.063095227233125
525 => 0.063465903175264
526 => 0.064177383367129
527 => 0.063446060378869
528 => 0.062130481515848
529 => 0.062225462060465
530 => 0.061454138654427
531 => 0.061467104740234
601 => 0.061397890758028
602 => 0.061605607128812
603 => 0.060638036215221
604 => 0.060865123174688
605 => 0.060547200101615
606 => 0.061014701926268
607 => 0.060511747243761
608 => 0.060934476500879
609 => 0.061116912434554
610 => 0.061790104957379
611 => 0.060412316160784
612 => 0.057602911536426
613 => 0.058193482449205
614 => 0.057319981680861
615 => 0.057400827502623
616 => 0.0575641489291
617 => 0.057034770750443
618 => 0.057135759424307
619 => 0.05713215139823
620 => 0.057101059378714
621 => 0.05696334766889
622 => 0.056763638444214
623 => 0.057559218528066
624 => 0.057694403087207
625 => 0.057994901616356
626 => 0.058888981409002
627 => 0.058799641753863
628 => 0.058945358438061
629 => 0.058627259734621
630 => 0.057415583189146
701 => 0.057481383055117
702 => 0.056660857672088
703 => 0.057973918937519
704 => 0.057662968698303
705 => 0.05746249705623
706 => 0.057407796511333
707 => 0.058304092554851
708 => 0.05857227837879
709 => 0.058405162970592
710 => 0.058062404392843
711 => 0.058720602189599
712 => 0.058896708152875
713 => 0.058936131783514
714 => 0.060102332082456
715 => 0.059001309425356
716 => 0.059266336522144
717 => 0.061334002275963
718 => 0.059458914755619
719 => 0.060452190434587
720 => 0.060403574758859
721 => 0.060911700985602
722 => 0.060361893577173
723 => 0.060368709098938
724 => 0.060819890764835
725 => 0.060186287486126
726 => 0.060029398403934
727 => 0.059812657260548
728 => 0.060285903617816
729 => 0.060569593405907
730 => 0.062855924750726
731 => 0.064332999068856
801 => 0.0642688753772
802 => 0.064854845884418
803 => 0.064590860804041
804 => 0.06373838334376
805 => 0.065193458419909
806 => 0.064733011782888
807 => 0.064770970444202
808 => 0.064769557620932
809 => 0.065075714381607
810 => 0.064858774257814
811 => 0.06443116300537
812 => 0.064715031310524
813 => 0.065558018692054
814 => 0.068174677390336
815 => 0.069638994264011
816 => 0.06808652367589
817 => 0.069157397099167
818 => 0.068515254636416
819 => 0.068398558248851
820 => 0.069071145895593
821 => 0.069744910817974
822 => 0.069701994905184
823 => 0.069212876169747
824 => 0.068936585407027
825 => 0.07102875162654
826 => 0.072570224057955
827 => 0.072465105972295
828 => 0.072929063016167
829 => 0.074291255246625
830 => 0.074415797032629
831 => 0.074400107630153
901 => 0.07409141781895
902 => 0.075432672972849
903 => 0.076551571619371
904 => 0.074019965046562
905 => 0.074983967688324
906 => 0.075416739532437
907 => 0.076052176997214
908 => 0.077124266511978
909 => 0.078288840082711
910 => 0.078453523554512
911 => 0.078336672750439
912 => 0.077568605175123
913 => 0.078842895472471
914 => 0.079589344842873
915 => 0.080033838360757
916 => 0.081160999965443
917 => 0.075419412184013
918 => 0.071355230976888
919 => 0.070720550393908
920 => 0.07201119831698
921 => 0.07235153188157
922 => 0.072214343848426
923 => 0.067639738400617
924 => 0.070696466042961
925 => 0.073985247969163
926 => 0.074111583476935
927 => 0.075758016474379
928 => 0.076294162547915
929 => 0.077619756913764
930 => 0.077536840625259
1001 => 0.07785960175853
1002 => 0.077785404563435
1003 => 0.080240788989343
1004 => 0.082949442639236
1005 => 0.082855650576331
1006 => 0.082466249566824
1007 => 0.083044576468681
1008 => 0.085840197312336
1009 => 0.085582821343963
1010 => 0.085832840174004
1011 => 0.089129034702959
1012 => 0.093414556468806
1013 => 0.09142350134922
1014 => 0.095743518048044
1015 => 0.098462739565709
1016 => 0.10316535200776
1017 => 0.10257656176916
1018 => 0.10440725428348
1019 => 0.10152250435784
1020 => 0.094898535424396
1021 => 0.093850266985145
1022 => 0.095948926946911
1023 => 0.10110827767867
1024 => 0.095786440631797
1025 => 0.096863041335204
1026 => 0.096552980260196
1027 => 0.096536458423183
1028 => 0.097167029742781
1029 => 0.096252353155317
1030 => 0.092525796190812
1031 => 0.094233655286907
1101 => 0.093574168871775
1102 => 0.094305918217333
1103 => 0.098254867638924
1104 => 0.096508942968442
1105 => 0.094669753155492
1106 => 0.096976505329823
1107 => 0.099913793533793
1108 => 0.099729983316803
1109 => 0.099373314669132
1110 => 0.10138383716149
1111 => 0.10470463129105
1112 => 0.10560222860024
1113 => 0.10626481658331
1114 => 0.10635617627166
1115 => 0.1072972378414
1116 => 0.10223691260287
1117 => 0.11026777871478
1118 => 0.11165448744411
1119 => 0.11139384367618
1120 => 0.1129351120672
1121 => 0.11248163180836
1122 => 0.11182461006217
1123 => 0.11426784829913
1124 => 0.11146687281961
1125 => 0.10749124075945
1126 => 0.10531013038215
1127 => 0.10818239247213
1128 => 0.10993638270234
1129 => 0.11109565866978
1130 => 0.11144645487708
1201 => 0.10262973124624
1202 => 0.097878006207132
1203 => 0.10092380747856
1204 => 0.10463989523968
1205 => 0.10221626954773
1206 => 0.10231127108633
1207 => 0.098855817767228
1208 => 0.10494562618466
1209 => 0.10405839232159
1210 => 0.10866136317268
1211 => 0.10756282723792
1212 => 0.11131637128068
1213 => 0.11032793733926
1214 => 0.1144308713675
1215 => 0.11606764283387
1216 => 0.11881603686904
1217 => 0.12083776670928
1218 => 0.122024965141
1219 => 0.12195369020023
1220 => 0.12665796184662
1221 => 0.12388401721148
1222 => 0.12039928898118
1223 => 0.12033626124168
1224 => 0.12214105137113
1225 => 0.12592339636246
1226 => 0.12690410338783
1227 => 0.1274521848245
1228 => 0.12661277902539
1229 => 0.12360186093435
1230 => 0.12230176176833
1231 => 0.12340948392527
]
'min_raw' => 0.04567670983305
'max_raw' => 0.1274521848245
'avg_raw' => 0.086564447328777
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045676'
'max' => '$0.127452'
'avg' => '$0.086564'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.018082725474032
'max_diff' => 0.065850558604999
'year' => 2036
]
11 => [
'items' => [
101 => 0.12205483491498
102 => 0.12439333915413
103 => 0.12760460495202
104 => 0.12694149126348
105 => 0.12915818090472
106 => 0.13145222148085
107 => 0.13473280253653
108 => 0.13559046790405
109 => 0.13700815614247
110 => 0.13846742302612
111 => 0.13893610022081
112 => 0.13983095040746
113 => 0.13982623410526
114 => 0.14252292537309
115 => 0.14549745935108
116 => 0.14662027706715
117 => 0.14920213449272
118 => 0.1447807941305
119 => 0.14813443158395
120 => 0.15115949651394
121 => 0.14755288939561
122 => 0.15252375707655
123 => 0.15271676460437
124 => 0.15563094912539
125 => 0.15267686482313
126 => 0.15092273899422
127 => 0.15598683453605
128 => 0.15843719085123
129 => 0.15769912358743
130 => 0.1520823952671
131 => 0.14881321847186
201 => 0.14025715222159
202 => 0.15039218228959
203 => 0.15532865979283
204 => 0.15206961098293
205 => 0.15371328563509
206 => 0.16268064157399
207 => 0.16609483012222
208 => 0.16538470277117
209 => 0.16550470260381
210 => 0.16734693677253
211 => 0.17551641761352
212 => 0.17062107532652
213 => 0.17436338107996
214 => 0.1763482865577
215 => 0.1781919773854
216 => 0.17366445541702
217 => 0.16777421585867
218 => 0.1659085297351
219 => 0.15174556280762
220 => 0.1510083188724
221 => 0.15059448151078
222 => 0.14798529548423
223 => 0.14593518998357
224 => 0.1443048699739
225 => 0.14002642341377
226 => 0.1414702735327
227 => 0.13465132269705
228 => 0.13901384579292
301 => 0.1281306356099
302 => 0.13719449644666
303 => 0.13226144907639
304 => 0.13557385771164
305 => 0.13556230102996
306 => 0.12946310653235
307 => 0.12594521843308
308 => 0.12818695364819
309 => 0.13059027174795
310 => 0.13098020202391
311 => 0.13409616667327
312 => 0.13496576542947
313 => 0.1323308406005
314 => 0.1279051052691
315 => 0.12893310264631
316 => 0.12592438609904
317 => 0.12065172607855
318 => 0.12443864255708
319 => 0.12573166234181
320 => 0.12630273354046
321 => 0.12111767797941
322 => 0.11948842094909
323 => 0.11862101817694
324 => 0.12723577970731
325 => 0.12770771579067
326 => 0.12529322406317
327 => 0.13620695562296
328 => 0.13373684204688
329 => 0.13649656410388
330 => 0.12883982265929
331 => 0.12913232049364
401 => 0.12550749638904
402 => 0.12753715567678
403 => 0.12610265791118
404 => 0.12737317926382
405 => 0.12813472452403
406 => 0.13175895383066
407 => 0.13723587932366
408 => 0.13121761482965
409 => 0.12859537080647
410 => 0.13022219625039
411 => 0.13455464678809
412 => 0.14111853112678
413 => 0.13723257948779
414 => 0.13895709883744
415 => 0.13933382959681
416 => 0.13646847272397
417 => 0.14122418092178
418 => 0.14377280358029
419 => 0.14638716306478
420 => 0.14865713815246
421 => 0.14534293039568
422 => 0.14888960776846
423 => 0.14603161187883
424 => 0.14346769411165
425 => 0.14347158251656
426 => 0.14186319944835
427 => 0.13874675458438
428 => 0.13817203433662
429 => 0.14116180164463
430 => 0.14355931189363
501 => 0.14375678232104
502 => 0.14508416718341
503 => 0.14586969987181
504 => 0.15356898809805
505 => 0.1566657055145
506 => 0.16045231295347
507 => 0.16192740995245
508 => 0.16636692306783
509 => 0.16278165566753
510 => 0.16200596051309
511 => 0.15123715384883
512 => 0.15300054533682
513 => 0.15582390525107
514 => 0.15128371001391
515 => 0.154163418883
516 => 0.15473193441433
517 => 0.15112943591708
518 => 0.15305368601923
519 => 0.1479434482483
520 => 0.1373472685424
521 => 0.14123597749887
522 => 0.14409937621612
523 => 0.14001295319209
524 => 0.14733770829625
525 => 0.14305873757804
526 => 0.14170250928718
527 => 0.13641137919425
528 => 0.13890858892384
529 => 0.14228610083971
530 => 0.14019919115361
531 => 0.14452984210333
601 => 0.15066319879056
602 => 0.15503419401359
603 => 0.15536974475195
604 => 0.15255948765748
605 => 0.15706294258619
606 => 0.15709574533881
607 => 0.15201582978207
608 => 0.14890440978866
609 => 0.14819748861967
610 => 0.14996351629986
611 => 0.1521077999303
612 => 0.15548873756998
613 => 0.15753176737683
614 => 0.16285890557381
615 => 0.16430027642889
616 => 0.16588390600228
617 => 0.16800012348562
618 => 0.17054118516138
619 => 0.16498148687753
620 => 0.16520238405492
621 => 0.16002526999226
622 => 0.15449278114305
623 => 0.15869125054513
624 => 0.16418019078937
625 => 0.1629210218326
626 => 0.16277933960248
627 => 0.16301760981417
628 => 0.16206823754138
629 => 0.15777426193693
630 => 0.15561785427009
701 => 0.15840017031859
702 => 0.15987884747172
703 => 0.16217214678204
704 => 0.16188944923637
705 => 0.16779674197737
706 => 0.17009213730927
707 => 0.16950487695787
708 => 0.16961294699573
709 => 0.17376865060176
710 => 0.17839064769729
711 => 0.18271975790349
712 => 0.18712351474484
713 => 0.18181461399103
714 => 0.17911908159573
715 => 0.18190018297208
716 => 0.18042449143495
717 => 0.18890425272583
718 => 0.18949137299933
719 => 0.19797052110695
720 => 0.20601824233926
721 => 0.20096361282315
722 => 0.20572990079132
723 => 0.21088502983007
724 => 0.22083011013535
725 => 0.21748095696067
726 => 0.21491555811679
727 => 0.21249126860524
728 => 0.21753583023366
729 => 0.22402557817977
730 => 0.22542340772933
731 => 0.2276884256116
801 => 0.2253070362616
802 => 0.22817515743224
803 => 0.23830088548091
804 => 0.23556482437989
805 => 0.23167917777266
806 => 0.23967246758183
807 => 0.24256520809064
808 => 0.26286797592143
809 => 0.28850105897331
810 => 0.27788879427394
811 => 0.27130141911939
812 => 0.27284960853534
813 => 0.28220994273126
814 => 0.28521618499284
815 => 0.27704418221203
816 => 0.2799306717471
817 => 0.29583551287877
818 => 0.30436794985751
819 => 0.29277975438121
820 => 0.26080838265659
821 => 0.23132931780946
822 => 0.23914849326651
823 => 0.23826204142695
824 => 0.25534980905358
825 => 0.2354995702275
826 => 0.23583379734056
827 => 0.25327492190545
828 => 0.24862192888811
829 => 0.24108467611034
830 => 0.23138434809596
831 => 0.21345239458965
901 => 0.19756956329959
902 => 0.22871945305699
903 => 0.22737621316825
904 => 0.22543100275236
905 => 0.22975985803918
906 => 0.25077955054494
907 => 0.25029497859858
908 => 0.2472123791066
909 => 0.24955050365248
910 => 0.24067479157278
911 => 0.24296226467193
912 => 0.23132464817498
913 => 0.23658533686139
914 => 0.24106850455103
915 => 0.24196856683916
916 => 0.24399645313263
917 => 0.22666838678418
918 => 0.23444817984933
919 => 0.23901807940708
920 => 0.21837110695081
921 => 0.2386099551467
922 => 0.22636674370052
923 => 0.22221121384883
924 => 0.22780608734471
925 => 0.22562575970217
926 => 0.22375124202825
927 => 0.2227052289579
928 => 0.22681348656962
929 => 0.22662183144161
930 => 0.21989992461039
1001 => 0.21113147116904
1002 => 0.21407445195863
1003 => 0.21300523944718
1004 => 0.20913027537453
1005 => 0.21174153329455
1006 => 0.20024287494216
1007 => 0.18046003089514
1008 => 0.1935291836375
1009 => 0.19302603547342
1010 => 0.19277232535314
1011 => 0.20259343243418
1012 => 0.20164935959983
1013 => 0.1999358581611
1014 => 0.20909880557686
1015 => 0.20575420651107
1016 => 0.21606147274518
1017 => 0.22285050491915
1018 => 0.22112858675765
1019 => 0.22751370433151
1020 => 0.21414225229204
1021 => 0.21858371229001
1022 => 0.21949909103999
1023 => 0.20898573622808
1024 => 0.20180382159108
1025 => 0.20132486976461
1026 => 0.18887241951285
1027 => 0.19552441792467
1028 => 0.20137790124868
1029 => 0.19857453698514
1030 => 0.19768707560742
1031 => 0.20222092331927
1101 => 0.20257324211626
1102 => 0.19454033620781
1103 => 0.19621063171523
1104 => 0.20317604164466
1105 => 0.19603512125641
1106 => 0.18216147940475
1107 => 0.17872062440744
1108 => 0.17826155092325
1109 => 0.16892967927288
1110 => 0.17895055879144
1111 => 0.17457617633872
1112 => 0.18839479809373
1113 => 0.18050167545802
1114 => 0.18016141871698
1115 => 0.17964707074809
1116 => 0.17161474332385
1117 => 0.17337331254872
1118 => 0.17921906448984
1119 => 0.18130489463954
1120 => 0.18108732546623
1121 => 0.17919041711619
1122 => 0.1800588120451
1123 => 0.17726140941025
1124 => 0.17627358831698
1125 => 0.17315575322503
1126 => 0.1685733969638
1127 => 0.16921060170715
1128 => 0.16013175491491
1129 => 0.15518511733163
1130 => 0.15381595324421
1201 => 0.15198504980521
1202 => 0.15402275865949
1203 => 0.16010603568264
1204 => 0.15276831295351
1205 => 0.14018830201581
1206 => 0.14094438210846
1207 => 0.14264306959445
1208 => 0.13947757670225
1209 => 0.13648170333946
1210 => 0.13908637216551
1211 => 0.13375605569186
1212 => 0.14328721287441
1213 => 0.14302942178338
1214 => 0.14658204777823
1215 => 0.14880357772003
1216 => 0.14368367043303
1217 => 0.14239602759606
1218 => 0.1431295274761
1219 => 0.1310064083501
1220 => 0.14559133030667
1221 => 0.1457174613174
1222 => 0.14463745102715
1223 => 0.15240347171008
1224 => 0.16879219763365
1225 => 0.16262609970623
1226 => 0.16023840021743
1227 => 0.15569938174384
1228 => 0.16174735435965
1229 => 0.16128296442583
1230 => 0.15918281703042
1231 => 0.15791264133282
]
'min_raw' => 0.11862101817694
'max_raw' => 0.30436794985751
'avg_raw' => 0.21149448401723
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118621'
'max' => '$0.304367'
'avg' => '$0.211494'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072944308343892
'max_diff' => 0.17691576503301
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037233782153728
]
1 => [
'year' => 2028
'avg' => 0.0063903979219989
]
2 => [
'year' => 2029
'avg' => 0.017457415365735
]
3 => [
'year' => 2030
'avg' => 0.013468369956302
]
4 => [
'year' => 2031
'avg' => 0.013227608413802
]
5 => [
'year' => 2032
'avg' => 0.023192160430968
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037233782153728
'min' => '$0.003723'
'max_raw' => 0.023192160430968
'max' => '$0.023192'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023192160430968
]
1 => [
'year' => 2033
'avg' => 0.059652621450182
]
2 => [
'year' => 2034
'avg' => 0.037810698245967
]
3 => [
'year' => 2035
'avg' => 0.044597805289261
]
4 => [
'year' => 2036
'avg' => 0.086564447328777
]
5 => [
'year' => 2037
'avg' => 0.21149448401723
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023192160430968
'min' => '$0.023192'
'max_raw' => 0.21149448401723
'max' => '$0.211494'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21149448401723
]
]
]
]
'prediction_2025_max_price' => '$0.006366'
'last_price' => 0.00617293
'sma_50day_nextmonth' => '$0.005653'
'sma_200day_nextmonth' => '$0.007755'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.005368'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005815'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005633'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005627'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055061'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006242'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005673'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00562'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005614'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005592'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005756'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00677'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013947'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00747'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015885'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005789'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005771'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006094'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008864'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026584'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.017071'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.89
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005613'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005275'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 41.14
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 83.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.45
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.0004014'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -58.86
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 56.03
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767709435
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de KDR para 2026
La previsión del precio de KDR para 2026 sugiere que el precio medio podría oscilar entre $0.002132 en el extremo inferior y $0.006366 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, KDR podría potencialmente ganar 3.13% para 2026 si KDR alcanza el objetivo de precio previsto.
Predicción de precio de KDR 2027-2032
La predicción del precio de KDR para 2027-2032 está actualmente dentro de un rango de precios de $0.003723 en el extremo inferior y $0.023192 en el extremo superior. Considerando la volatilidad de precios en el mercado, si KDR alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de KDR | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002053 | $0.003723 | $0.005393 |
| 2028 | $0.0037053 | $0.00639 | $0.009075 |
| 2029 | $0.008139 | $0.017457 | $0.026775 |
| 2030 | $0.006922 | $0.013468 | $0.020014 |
| 2031 | $0.008184 | $0.013227 | $0.01827 |
| 2032 | $0.012492 | $0.023192 | $0.033891 |
Predicción de precio de KDR 2032-2037
La predicción de precio de KDR para 2032-2037 se estima actualmente entre $0.023192 en el extremo inferior y $0.211494 en el extremo superior. Comparado con el precio actual, KDR podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de KDR | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012492 | $0.023192 | $0.033891 |
| 2033 | $0.02903 | $0.059652 | $0.090274 |
| 2034 | $0.023339 | $0.03781 | $0.052282 |
| 2035 | $0.027593 | $0.044597 | $0.0616016 |
| 2036 | $0.045676 | $0.086564 | $0.127452 |
| 2037 | $0.118621 | $0.211494 | $0.304367 |
KDR Histograma de precios potenciales
Pronóstico de precio de KDR basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para KDR es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 11 indicando señales bajistas. La predicción de precio de KDR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de KDR
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de KDR aumentar durante el próximo mes, alcanzando $0.007755 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para KDR alcance $0.005653 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 53.63, lo que sugiere que el mercado de KDR está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de KDR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.005368 | BUY |
| SMA 5 | $0.005815 | BUY |
| SMA 10 | $0.005633 | BUY |
| SMA 21 | $0.005627 | BUY |
| SMA 50 | $0.0055061 | BUY |
| SMA 100 | $0.006242 | SELL |
| SMA 200 | $0.008066 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.005673 | BUY |
| EMA 5 | $0.00562 | BUY |
| EMA 10 | $0.005614 | BUY |
| EMA 21 | $0.005592 | BUY |
| EMA 50 | $0.005756 | BUY |
| EMA 100 | $0.00677 | SELL |
| EMA 200 | $0.013947 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00747 | SELL |
| SMA 50 | $0.015885 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.008864 | SELL |
| EMA 50 | $0.026584 | SELL |
| EMA 100 | $0.017071 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 53.63 | NEUTRAL |
| Stoch RSI (14) | 18.89 | NEUTRAL |
| Estocástico Rápido (14) | 41.14 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 83.39 | NEUTRAL |
| Índice Direccional Medio (14) | 10.45 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.0004014 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -58.86 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 56.03 | NEUTRAL |
| VWMA (10) | 0.005613 | BUY |
| Promedio Móvil de Hull (9) | 0.005275 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Predicción de precios de KDR basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de KDR
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de KDR por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.008673 | $0.012188 | $0.017126 | $0.024065 | $0.033816 | $0.047518 |
| Amazon.com acción | $0.01288 | $0.026875 | $0.056076 | $0.1170076 | $0.244143 | $0.509419 |
| Apple acción | $0.008755 | $0.012419 | $0.017616 | $0.024987 | $0.035442 | $0.050272 |
| Netflix acción | $0.009739 | $0.015368 | $0.024248 | $0.03826 | $0.060368 | $0.095252 |
| Google acción | $0.007993 | $0.010352 | $0.0134059 | $0.01736 | $0.022481 | $0.029113 |
| Tesla acción | $0.013993 | $0.031722 | $0.071912 | $0.163019 | $0.369552 | $0.837748 |
| Kodak acción | $0.004629 | $0.003471 | $0.002603 | $0.001952 | $0.001463 | $0.001097 |
| Nokia acción | $0.004089 | $0.0027089 | $0.001794 | $0.001188 | $0.000787 | $0.000521 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de KDR
Podría preguntarse cosas como: "¿Debo invertir en KDR ahora?", "¿Debería comprar KDR hoy?", "¿Será KDR una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de KDR regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como KDR, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de KDR a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de KDR es de $0.006172 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de KDR basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si KDR ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.006333 | $0.006498 | $0.006666 | $0.00684 |
| Si KDR ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.006493 | $0.006831 | $0.007186 | $0.00756 |
| Si KDR ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.006975 | $0.007881 | $0.008906 | $0.010063 |
| Si KDR ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.007777 | $0.009799 | $0.012346 | $0.015555 |
| Si KDR ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.009382 | $0.014259 | $0.021672 | $0.032939 |
| Si KDR ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.014195 | $0.032645 | $0.075072 | $0.172641 |
| Si KDR ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.022218 | $0.079971 | $0.287841 | $1.03 |
Cuadro de preguntas
¿Es KDR una buena inversión?
La decisión de adquirir KDR depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de KDR ha experimentado un aumento de 5.6828% durante las últimas 24 horas, y KDR ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en KDR dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede KDR subir?
Parece que el valor medio de KDR podría potencialmente aumentar hasta $0.006366 para el final de este año. Mirando las perspectivas de KDR en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.020014. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de KDR la próxima semana?
Basado en nuestro nuevo pronóstico experimental de KDR, el precio de KDR aumentará en un 0.86% durante la próxima semana y alcanzará $0.006225 para el 13 de enero de 2026.
¿Cuál será el precio de KDR el próximo mes?
Basado en nuestro nuevo pronóstico experimental de KDR, el precio de KDR disminuirá en un -11.62% durante el próximo mes y alcanzará $0.005455 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de KDR este año en 2026?
Según nuestra predicción más reciente sobre el valor de KDR en 2026, se anticipa que KDR fluctúe dentro del rango de $0.002132 y $0.006366. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de KDR no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará KDR en 5 años?
El futuro de KDR parece estar en una tendencia alcista, con un precio máximo de $0.020014 proyectada después de un período de cinco años. Basado en el pronóstico de KDR para 2030, el valor de KDR podría potencialmente alcanzar su punto más alto de aproximadamente $0.020014, mientras que su punto más bajo se anticipa que esté alrededor de $0.006922.
¿Cuánto será KDR en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de KDR, se espera que el valor de KDR en 2026 crezca en un 3.13% hasta $0.006366 si ocurre lo mejor. El precio estará entre $0.006366 y $0.002132 durante 2026.
¿Cuánto será KDR en 2027?
Según nuestra última simulación experimental para la predicción de precios de KDR, el valor de KDR podría disminuir en un -12.62% hasta $0.005393 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.005393 y $0.002053 a lo largo del año.
¿Cuánto será KDR en 2028?
Nuestro nuevo modelo experimental de predicción de precios de KDR sugiere que el valor de KDR en 2028 podría aumentar en un 47.02% , alcanzando $0.009075 en el mejor escenario. Se espera que el precio oscile entre $0.009075 y $0.0037053 durante el año.
¿Cuánto será KDR en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de KDR podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.026775 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.026775 y $0.008139.
¿Cuánto será KDR en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de KDR, se espera que el valor de KDR en 2030 aumente en un 224.23% , alcanzando $0.020014 en el mejor escenario. Se pronostica que el precio oscile entre $0.020014 y $0.006922 durante el transcurso de 2030.
¿Cuánto será KDR en 2031?
Nuestra simulación experimental indica que el precio de KDR podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.01827 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.01827 y $0.008184 durante el año.
¿Cuánto será KDR en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de KDR, KDR podría experimentar un 449.04% aumento en valor, alcanzando $0.033891 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.033891 y $0.012492 a lo largo del año.
¿Cuánto será KDR en 2033?
Según nuestra predicción experimental de precios de KDR, se anticipa que el valor de KDR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.090274. A lo largo del año, el precio de KDR podría oscilar entre $0.090274 y $0.02903.
¿Cuánto será KDR en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de KDR sugieren que KDR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.052282 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.052282 y $0.023339.
¿Cuánto será KDR en 2035?
Basado en nuestra predicción experimental para el precio de KDR, KDR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0616016 en 2035. El rango de precios esperado para el año está entre $0.0616016 y $0.027593.
¿Cuánto será KDR en 2036?
Nuestra reciente simulación de predicción de precios de KDR sugiere que el valor de KDR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.127452 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.127452 y $0.045676.
¿Cuánto será KDR en 2037?
Según la simulación experimental, el valor de KDR podría aumentar en un 4830.69% en 2037, con un máximo de $0.304367 bajo condiciones favorables. Se espera que el precio caiga entre $0.304367 y $0.118621 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de KDR?
Los traders de KDR utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de KDR
Las medias móviles son herramientas populares para la predicción de precios de KDR. Una media móvil simple (SMA) calcula el precio de cierre promedio de KDR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de KDR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de KDR.
¿Cómo leer gráficos de KDR y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de KDR en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de KDR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de KDR?
La acción del precio de KDR está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de KDR. La capitalización de mercado de KDR puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de KDR, grandes poseedores de KDR, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de KDR.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


