Predicción del precio de KDR - Pronóstico de KDR
Predicción de precio de KDR hasta $0.006335 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002122 | $0.006335 |
| 2027 | $0.002043 | $0.005367 |
| 2028 | $0.003687 | $0.009031 |
| 2029 | $0.00810036 | $0.026646 |
| 2030 | $0.006889 | $0.019918 |
| 2031 | $0.008144 | $0.018183 |
| 2032 | $0.012432 | $0.033728 |
| 2033 | $0.02889 | $0.08984 |
| 2034 | $0.023226 | $0.05203 |
| 2035 | $0.027461 | $0.0613053 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en KDR hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.96, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de KDR para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006143
'ticker' => 'KDR'
'marketcap' => '$92.79K'
'low24h' => '$0.00579'
'high24h' => '$0.006145'
'volume24h' => '$167.65'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006143'
'change_24h_pct' => '2.7066%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 dic. 2024'
'ath_pct' => '-98.42%'
'fdv' => '$614.49K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.302904'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006195'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005429'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002122'
'current_year_max_price_prediction' => '$0.006335'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006889'
'grand_prediction_max_price' => '$0.019918'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062596511666558
107 => 0.0062830224318587
108 => 0.0063356790857272
109 => 0.0058857337436929
110 => 0.0060877459925651
111 => 0.0062064092627896
112 => 0.0056702842909087
113 => 0.0061958117958687
114 => 0.0058779011963261
115 => 0.0057699975639843
116 => 0.0059152755897099
117 => 0.0058586606017971
118 => 0.0058099863597334
119 => 0.0057828252963322
120 => 0.0058895014446744
121 => 0.0058845248748487
122 => 0.0057099819912126
123 => 0.0054822979147874
124 => 0.0055587161643107
125 => 0.005530952697834
126 => 0.0054303343137638
127 => 0.0054981389559171
128 => 0.0051995616270183
129 => 0.0046858748513469
130 => 0.0050252320700069
131 => 0.0050121671862381
201 => 0.0050055792793965
202 => 0.0052605968500749
203 => 0.0052360827949106
204 => 0.005191589544745
205 => 0.0054295171603325
206 => 0.005342670380065
207 => 0.0056103116931745
208 => 0.0057865975719433
209 => 0.0057418857708368
210 => 0.0059076834918824
211 => 0.0055604766864366
212 => 0.0056758048596865
213 => 0.0056995738363553
214 => 0.0054265811704887
215 => 0.0052400935975059
216 => 0.0052276570025019
217 => 0.0049043132505202
218 => 0.0050770408728893
219 => 0.0052290340326193
220 => 0.0051562411042543
221 => 0.0051331970377608
222 => 0.0052509241758278
223 => 0.0052600725827204
224 => 0.0050514879360654
225 => 0.0050948592891216
226 => 0.0052757250412539
227 => 0.0050903019362216
228 => 0.0047300551318362
301 => 0.0046407089435469
302 => 0.0046287885150522
303 => 0.004386474566276
304 => 0.0046466794830738
305 => 0.0045330930638334
306 => 0.0048919112012398
307 => 0.0046869562055335
308 => 0.004678121005307
309 => 0.0046647653043225
310 => 0.0044561956787476
311 => 0.0045018591714573
312 => 0.0046536515759707
313 => 0.0047078128159649
314 => 0.0047021633549035
315 => 0.0046529077103785
316 => 0.0046754566922123
317 => 0.0046028185651395
318 => 0.0045771685306382
319 => 0.0044962099661542
320 => 0.0043772232417371
321 => 0.0043937690755553
322 => 0.004158025239915
323 => 0.0040295794863858
324 => 0.0039940273946967
325 => 0.0039464856518659
326 => 0.0039993973610532
327 => 0.0041573574072482
328 => 0.0039668240784438
329 => 0.0036401680505675
330 => 0.0036598006344377
331 => 0.0037039092214274
401 => 0.0036217131613795
402 => 0.0035439214887366
403 => 0.0036115550366617
404 => 0.0034731465714202
405 => 0.0037206352231976
406 => 0.003713941348746
407 => 0.003806189813533
408 => 0.0038638746716934
409 => 0.0037309297493283
410 => 0.0036974944608747
411 => 0.003716540720727
412 => 0.0034017484714371
413 => 0.0037804645708755
414 => 0.00378373972343
415 => 0.0037556958788558
416 => 0.0039573505102589
417 => 0.0043829046801764
418 => 0.0042227940835766
419 => 0.0041607944212048
420 => 0.0040429330177145
421 => 0.0041999763399477
422 => 0.0041879178630576
423 => 0.0041333848575193
424 => 0.0041004031256163
425 => 0.0041611729779226
426 => 0.0040928730684054
427 => 0.0040806045279001
428 => 0.0040062705207418
429 => 0.0039797366621681
430 => 0.0039600920496235
501 => 0.0039384652614516
502 => 0.0039861685670989
503 => 0.0038780666006097
504 => 0.0037477062263901
505 => 0.0037368681717926
506 => 0.0037667929934279
507 => 0.0037535534874953
508 => 0.0037368047861318
509 => 0.0037048269539915
510 => 0.0036953398142937
511 => 0.0037261684158056
512 => 0.0036913647221179
513 => 0.0037427194680094
514 => 0.0037287538187146
515 => 0.0036507428370161
516 => 0.0035535122704552
517 => 0.0035526467144648
518 => 0.0035316985483893
519 => 0.0035050179093144
520 => 0.003497595965894
521 => 0.0036058591279008
522 => 0.0038299606332109
523 => 0.003785964145424
524 => 0.0038177561167915
525 => 0.0039741411502489
526 => 0.004023851249723
527 => 0.0039885681985645
528 => 0.003940270581975
529 => 0.0039423954319903
530 => 0.0041074430085596
531 => 0.0041177368234587
601 => 0.0041437459727983
602 => 0.0041771750798844
603 => 0.0039942613200528
604 => 0.0039337802103514
605 => 0.0039051209052107
606 => 0.0038168613379242
607 => 0.0039120417144393
608 => 0.0038565841850741
609 => 0.0038640673004844
610 => 0.0038591939117565
611 => 0.0038618551115391
612 => 0.0037205660450756
613 => 0.0037720443549602
614 => 0.0036864516803947
615 => 0.0035718526973801
616 => 0.0035714685214054
617 => 0.003599516460146
618 => 0.0035828324486672
619 => 0.0035379362027628
620 => 0.0035443135025892
621 => 0.0034884416455996
622 => 0.0035510973576203
623 => 0.0035528940992482
624 => 0.0035287682372405
625 => 0.0036252980064306
626 => 0.0036648463316286
627 => 0.003648966172429
628 => 0.0036637321373259
629 => 0.0037877923981238
630 => 0.0038080196337625
701 => 0.0038170032356971
702 => 0.003804966399204
703 => 0.0036659997311526
704 => 0.0036721634938126
705 => 0.0036269378931344
706 => 0.0035887270263178
707 => 0.0035902552606009
708 => 0.0036099006132096
709 => 0.0036956930202367
710 => 0.0038762380830865
711 => 0.0038830896362449
712 => 0.0038913939185468
713 => 0.003857616229027
714 => 0.0038474285546589
715 => 0.0038608687268123
716 => 0.0039286719598103
717 => 0.0041030802834792
718 => 0.0040414327335544
719 => 0.0039913123158641
720 => 0.004035281434546
721 => 0.0040285127333663
722 => 0.0039713780836292
723 => 0.003969774504304
724 => 0.0038601148444061
725 => 0.0038195761649715
726 => 0.0037856990101683
727 => 0.0037487060415088
728 => 0.003726775369672
729 => 0.0037604708489255
730 => 0.003768177403704
731 => 0.0036945016494199
801 => 0.0036844599163522
802 => 0.0037446251277022
803 => 0.0037181486613723
804 => 0.0037453803635774
805 => 0.0037516983520782
806 => 0.003750681010414
807 => 0.0037230365387627
808 => 0.0037406563006232
809 => 0.0036989803111193
810 => 0.003653663932065
811 => 0.0036247549055385
812 => 0.0035995279456682
813 => 0.0036135253292038
814 => 0.0035636272127208
815 => 0.0035476638010073
816 => 0.0037346871217621
817 => 0.0038728432596432
818 => 0.0038708344146825
819 => 0.0038586060876177
820 => 0.0038404372740249
821 => 0.0039273427979294
822 => 0.0038970666511319
823 => 0.0039190950775838
824 => 0.003924702236646
825 => 0.0039416734183589
826 => 0.0039477391570989
827 => 0.0039294042817002
828 => 0.0038678702004456
829 => 0.0037145331204443
830 => 0.0036431542957781
831 => 0.0036195980947299
901 => 0.0036204543178984
902 => 0.0035968358605624
903 => 0.0036037925547529
904 => 0.0035944166062238
905 => 0.0035766608279952
906 => 0.0036124289599326
907 => 0.0036165509039352
908 => 0.0036082021945437
909 => 0.0036101686178331
910 => 0.0035410448698514
911 => 0.0035463001982816
912 => 0.0035170378617677
913 => 0.003511551526434
914 => 0.0034375788878899
915 => 0.0033065256362036
916 => 0.0033791418592847
917 => 0.0032914316731888
918 => 0.0032582144966881
919 => 0.0034154594439117
920 => 0.0033996764125064
921 => 0.0033726627234593
922 => 0.0033327038472126
923 => 0.0033178827113177
924 => 0.0032278341814219
925 => 0.0032225136338855
926 => 0.0032671441168166
927 => 0.003246548684585
928 => 0.0032176248976318
929 => 0.0031128658732442
930 => 0.0029950820453116
1001 => 0.0029986371987142
1002 => 0.0030361020429335
1003 => 0.0031450361303238
1004 => 0.0031024736978016
1005 => 0.003071594164659
1006 => 0.0030658113563368
1007 => 0.0031381953096189
1008 => 0.00324063376842
1009 => 0.0032886956013582
1010 => 0.003241067784576
1011 => 0.0031863555131204
1012 => 0.0031896855955717
1013 => 0.0032118391422166
1014 => 0.0032141671667347
1015 => 0.0031785551025295
1016 => 0.0031885796900044
1017 => 0.0031733514249625
1018 => 0.0030798955905098
1019 => 0.0030782052708162
1020 => 0.0030552697018626
1021 => 0.0030545752219498
1022 => 0.0030155560976139
1023 => 0.0030100970523929
1024 => 0.0029326222127324
1025 => 0.0029836163868123
1026 => 0.0029494121721538
1027 => 0.0028978583527048
1028 => 0.0028889704548
1029 => 0.0028887032738565
1030 => 0.0029416375192075
1031 => 0.0029829978193356
1101 => 0.0029500071691119
1102 => 0.0029424958375528
1103 => 0.0030226972073577
1104 => 0.0030124908519983
1105 => 0.003003652214081
1106 => 0.0032314615279892
1107 => 0.0030511326798484
1108 => 0.0029724990092482
1109 => 0.0028751749097514
1110 => 0.0029068641272983
1111 => 0.0029135415110469
1112 => 0.0026794945957446
1113 => 0.0025845417913551
1114 => 0.0025519575671096
1115 => 0.002533204885383
1116 => 0.0025417507179272
1117 => 0.0024562820571236
1118 => 0.0025137184107048
1119 => 0.0024397097749349
1120 => 0.0024273019863031
1121 => 0.0025596385949704
1122 => 0.0025780524609672
1123 => 0.0024994931878851
1124 => 0.0025499409587948
1125 => 0.0025316478957865
1126 => 0.0024409784405775
1127 => 0.0024375155343079
1128 => 0.0023920207888695
1129 => 0.002320830321777
1130 => 0.0022882943680205
1201 => 0.002271349360814
1202 => 0.002278341201039
1203 => 0.0022748059126674
1204 => 0.0022517357646814
1205 => 0.002276128266545
1206 => 0.0022138155039613
1207 => 0.0021890020598124
1208 => 0.0021777944027579
1209 => 0.0021224882393761
1210 => 0.0022105049400791
1211 => 0.0022278453389227
1212 => 0.0022452199037088
1213 => 0.0023964536280526
1214 => 0.0023888984185665
1215 => 0.002457193832785
1216 => 0.0024545399985757
1217 => 0.0024350610401282
1218 => 0.0023528825185714
1219 => 0.0023856374125726
1220 => 0.0022848229400775
1221 => 0.0023603599975886
1222 => 0.0023258880390435
1223 => 0.0023487049937289
1224 => 0.0023076780518827
1225 => 0.0023303840554613
1226 => 0.0022319573907749
1227 => 0.0021400479561913
1228 => 0.0021770349956714
1229 => 0.0022172441375673
1230 => 0.0023044278022964
1231 => 0.0022525019308334
]
'min_raw' => 0.0021224882393761
'max_raw' => 0.0063356790857272
'avg_raw' => 0.0042290836625517
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002122'
'max' => '$0.006335'
'avg' => '$0.004229'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040207517606239
'max_diff' => 0.00019243908572724
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022711764377461
102 => 0.0022086199656633
103 => 0.0020795480953836
104 => 0.0020802786281522
105 => 0.0020604237328932
106 => 0.0020432662045273
107 => 0.0022584662418083
108 => 0.0022317027153632
109 => 0.0021890585386968
110 => 0.002246139463777
111 => 0.0022612325663643
112 => 0.0022616622457766
113 => 0.0023033070152432
114 => 0.0023255328361728
115 => 0.0023294502334439
116 => 0.0023949791779944
117 => 0.00241694361586
118 => 0.0025074120269051
119 => 0.0023236471305501
120 => 0.0023198626134395
121 => 0.0022469427094513
122 => 0.0022006957535239
123 => 0.0022501092780896
124 => 0.0022938829152361
125 => 0.002248302878376
126 => 0.0022542546689428
127 => 0.0021930671934839
128 => 0.0022149388368221
129 => 0.0022337776424936
130 => 0.0022233759612956
131 => 0.0022078041410952
201 => 0.0022902939761781
202 => 0.0022856395764024
203 => 0.0023624560072647
204 => 0.0024223399083176
205 => 0.002529662564532
206 => 0.0024176657779156
207 => 0.0024135841698644
208 => 0.0024534825432755
209 => 0.0024169375076269
210 => 0.0024400327086651
211 => 0.0025259415705943
212 => 0.0025277566894735
213 => 0.0024973511095991
214 => 0.0024955009273004
215 => 0.0025013406515159
216 => 0.0025355440986464
217 => 0.0025235923632533
218 => 0.0025374232140312
219 => 0.0025547189047144
220 => 0.0026262612146012
221 => 0.0026435098233096
222 => 0.0026016046465265
223 => 0.0026053882147977
224 => 0.002589714528358
225 => 0.002574573943648
226 => 0.0026086077669713
227 => 0.0026708052480311
228 => 0.0026704183207295
301 => 0.0026848469273891
302 => 0.002693835829805
303 => 0.0026552488803572
304 => 0.0026301301951481
305 => 0.0026397622974008
306 => 0.0026551642386626
307 => 0.0026347676554317
308 => 0.0025088704951143
309 => 0.0025470596512129
310 => 0.0025407031082837
311 => 0.0025316506181706
312 => 0.0025700501099357
313 => 0.0025663463852788
314 => 0.0024554054524726
315 => 0.0024625075310439
316 => 0.0024558373533934
317 => 0.0024773900619722
318 => 0.0024157735906337
319 => 0.0024347264022242
320 => 0.0024466134279821
321 => 0.002453614977474
322 => 0.0024789093752461
323 => 0.0024759413696144
324 => 0.0024787248798487
325 => 0.0025162297942713
326 => 0.0027059167812881
327 => 0.0027162410254707
328 => 0.0026654006712008
329 => 0.00268571038995
330 => 0.0026467201711988
331 => 0.0026728945662582
401 => 0.0026908024226003
402 => 0.002609880263273
403 => 0.0026050885781781
404 => 0.0025659374329245
405 => 0.0025869750407496
406 => 0.0025535026940424
407 => 0.0025617156371114
408 => 0.002538751532299
409 => 0.0025800823488536
410 => 0.0026262966239211
411 => 0.0026379721748602
412 => 0.0026072588269802
413 => 0.0025850203390068
414 => 0.0025459768799388
415 => 0.0026109070225091
416 => 0.0026298945749068
417 => 0.0026108072889796
418 => 0.0026063843477648
419 => 0.0025980028821549
420 => 0.0026081625153157
421 => 0.0026297911646187
422 => 0.0026195914930258
423 => 0.002626328555808
424 => 0.0026006538197113
425 => 0.0026552616542431
426 => 0.0027419920375705
427 => 0.0027422708899348
428 => 0.0027320711633619
429 => 0.0027278976550044
430 => 0.0027383631934394
501 => 0.0027440403187215
502 => 0.0027778839509686
503 => 0.0028141995167595
504 => 0.0029836684165832
505 => 0.0029360822276534
506 => 0.0030864451173269
507 => 0.0032053626408811
508 => 0.0032410208065619
509 => 0.0032082169719819
510 => 0.003095996825912
511 => 0.0030904907701713
512 => 0.0032581950465233
513 => 0.0032108109071114
514 => 0.0032051747145034
515 => 0.0031452151476524
516 => 0.0031806586777982
517 => 0.0031729066578301
518 => 0.0031606697150687
519 => 0.0032282935015691
520 => 0.0033548791930809
521 => 0.0033351496259457
522 => 0.0033204224193075
523 => 0.0032558920868445
524 => 0.0032947537603588
525 => 0.0032809158627667
526 => 0.0033403722525692
527 => 0.0033051516043705
528 => 0.0032104519256518
529 => 0.0032255331616219
530 => 0.0032232536631443
531 => 0.0032701655802875
601 => 0.0032560837871864
602 => 0.0032205039670366
603 => 0.0033544465369489
604 => 0.0033457490514865
605 => 0.0033580800973502
606 => 0.0033635086050896
607 => 0.0034450370870624
608 => 0.0034784366975062
609 => 0.0034860189938195
610 => 0.0035177460405225
611 => 0.0034852295959948
612 => 0.0036153185579376
613 => 0.0037018201267282
614 => 0.0038022961502085
615 => 0.0039491186259223
616 => 0.0040043252349746
617 => 0.0039943526551845
618 => 0.004105671780609
619 => 0.0043057097745116
620 => 0.0040347860530573
621 => 0.0043200693896029
622 => 0.0042297519790071
623 => 0.0040156110232252
624 => 0.0040018228702289
625 => 0.004146841611712
626 => 0.0044684792227848
627 => 0.0043879126491946
628 => 0.004468611000837
629 => 0.0043744720871009
630 => 0.0043697972965688
701 => 0.0044640388839188
702 => 0.0046842394896037
703 => 0.0045796304359391
704 => 0.0044296477063186
705 => 0.0045403926198806
706 => 0.0044444551267953
707 => 0.0042282811036605
708 => 0.0043878510414542
709 => 0.0042811511683417
710 => 0.0043122918637932
711 => 0.0045365591266673
712 => 0.0045095746962607
713 => 0.0045444950478978
714 => 0.0044828615412831
715 => 0.0044252861273929
716 => 0.0043178173417607
717 => 0.004286001132482
718 => 0.0042947939880994
719 => 0.0042859967751795
720 => 0.0042258689773074
721 => 0.0042128843850817
722 => 0.0041912428291709
723 => 0.0041979504522822
724 => 0.0041572579957094
725 => 0.0042340530687529
726 => 0.0042483069110256
727 => 0.004304191961009
728 => 0.0043099941322899
729 => 0.0044656332010198
730 => 0.0043799098173716
731 => 0.0044374204641237
801 => 0.004432276170567
802 => 0.0040202521070692
803 => 0.0040770253877001
804 => 0.0041653467959249
805 => 0.0041255581212364
806 => 0.004069306244343
807 => 0.0040238798377167
808 => 0.0039550541865894
809 => 0.0040519249688716
810 => 0.0041792997465135
811 => 0.0043132245668512
812 => 0.0044741264633852
813 => 0.0044382150331834
814 => 0.0043102166178166
815 => 0.004315958533227
816 => 0.004351452794934
817 => 0.0043054845010297
818 => 0.0042919275537496
819 => 0.0043495902785588
820 => 0.0043499873700537
821 => 0.0042970952924629
822 => 0.0042383154273688
823 => 0.0042380691375878
824 => 0.0042276098283404
825 => 0.0043763327749805
826 => 0.0044581153580466
827 => 0.0044674915993959
828 => 0.0044574842622978
829 => 0.0044613356891699
830 => 0.0044137482060399
831 => 0.0045225190808452
901 => 0.0046223379918911
902 => 0.0045955843914108
903 => 0.0045554769410425
904 => 0.0045235294249875
905 => 0.004588058571935
906 => 0.0045851851905997
907 => 0.0046214661607833
908 => 0.0046198202464067
909 => 0.0046076203207303
910 => 0.0045955848271086
911 => 0.004643304198888
912 => 0.0046295617861652
913 => 0.0046157980276797
914 => 0.004588192702911
915 => 0.0045919447250229
916 => 0.0045518441997713
917 => 0.0045332918619148
918 => 0.0042543092138346
919 => 0.0041797559342465
920 => 0.0042032119136769
921 => 0.0042109342311396
922 => 0.0041784885483202
923 => 0.0042250073228711
924 => 0.0042177574211329
925 => 0.0042459625477455
926 => 0.0042283412091622
927 => 0.0042290643950443
928 => 0.0042808849945523
929 => 0.00429592873505
930 => 0.004288277367215
1001 => 0.0042936361229731
1002 => 0.0044171263876295
1003 => 0.0043995700209917
1004 => 0.0043902435511268
1005 => 0.0043928270470176
1006 => 0.0044243814572985
1007 => 0.0044332149693702
1008 => 0.0043957867580025
1009 => 0.0044134381188534
1010 => 0.0044885953730654
1011 => 0.0045148961585074
1012 => 0.0045988356405451
1013 => 0.0045631766566702
1014 => 0.0046286302648573
1015 => 0.0048298123416452
1016 => 0.0049905305053242
1017 => 0.004842727440046
1018 => 0.0051378658803077
1019 => 0.0053676734911462
1020 => 0.0053588530922776
1021 => 0.0053187808197821
1022 => 0.0050571509645939
1023 => 0.0048163952711684
1024 => 0.0050177976317456
1025 => 0.0050183110477814
1026 => 0.0050010104063929
1027 => 0.0048935576085813
1028 => 0.0049972712819465
1029 => 0.0050055036967055
1030 => 0.0050008957336163
1031 => 0.0049185119254705
1101 => 0.0047927270775047
1102 => 0.0048173051357109
1103 => 0.0048575644964313
1104 => 0.004781345127605
1105 => 0.0047569884209706
1106 => 0.004802272172657
1107 => 0.004948185855835
1108 => 0.0049206017192506
1109 => 0.0049198813859681
1110 => 0.0050378980197704
1111 => 0.0049534235795516
1112 => 0.0048176151437347
1113 => 0.0047833217225977
1114 => 0.004661603180378
1115 => 0.0047456746110357
1116 => 0.0047487001921556
1117 => 0.0047026551287736
1118 => 0.0048213514468593
1119 => 0.0048202576393921
1120 => 0.004932942127799
1121 => 0.0051483525472719
1122 => 0.0050846450865308
1123 => 0.0050105602410409
1124 => 0.0050186153178956
1125 => 0.0051069596293679
1126 => 0.0050535446419473
1127 => 0.0050727530438462
1128 => 0.0051069305551511
1129 => 0.0051275506963011
1130 => 0.0050156483969101
1201 => 0.0049895586180163
1202 => 0.0049361880866677
1203 => 0.004922264711247
1204 => 0.0049657338954178
1205 => 0.0049542813011777
1206 => 0.0047484459037781
1207 => 0.0047269349594925
1208 => 0.0047275946694432
1209 => 0.0046735043772474
1210 => 0.0045910036984913
1211 => 0.0048078105564029
1212 => 0.0047903979315025
1213 => 0.0047711757412427
1214 => 0.0047735303498692
1215 => 0.0048676388586225
1216 => 0.004813051170952
1217 => 0.00495818148537
1218 => 0.0049283470557423
1219 => 0.0048977474855702
1220 => 0.0048935176928867
1221 => 0.0048817394690031
1222 => 0.0048413475568221
1223 => 0.0047925718956859
1224 => 0.0047603659793284
1225 => 0.0043911859839369
1226 => 0.0044597036436603
1227 => 0.0045385269655909
1228 => 0.0045657364604567
1229 => 0.004519192736649
1230 => 0.0048431853867253
1231 => 0.0049023819659651
]
'min_raw' => 0.0020432662045273
'max_raw' => 0.0053676734911462
'avg_raw' => 0.0037054698478367
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002043'
'max' => '$0.005367'
'avg' => '$0.0037054'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9222034848881E-5
'max_diff' => -0.00096800559458106
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047230716661505
102 => 0.0046895300302464
103 => 0.0048453843707911
104 => 0.0047513851510244
105 => 0.0047937129939297
106 => 0.0047022233496607
107 => 0.0048881232435045
108 => 0.0048867069977809
109 => 0.0048143877403361
110 => 0.0048755114815075
111 => 0.0048648897272976
112 => 0.0047832414637569
113 => 0.0048907116390921
114 => 0.0048907649429582
115 => 0.0048211592300239
116 => 0.0047398749959664
117 => 0.0047253432947649
118 => 0.0047143956099689
119 => 0.0047910205345752
120 => 0.0048597222023773
121 => 0.0049875589735691
122 => 0.0050197001751735
123 => 0.0051451494247965
124 => 0.0050704505046591
125 => 0.005103563568443
126 => 0.0051395124833093
127 => 0.0051567477150738
128 => 0.0051286638298071
129 => 0.0053235381514427
130 => 0.0053399915149837
131 => 0.0053455081854579
201 => 0.0052797976606504
202 => 0.0053381639864193
203 => 0.0053108563154816
204 => 0.0053819032889721
205 => 0.0053930443615887
206 => 0.0053836082694376
207 => 0.005387144621736
208 => 0.0052208537664061
209 => 0.005212230708303
210 => 0.0050946546992044
211 => 0.0051425677919901
212 => 0.0050529965615615
213 => 0.0050814005214163
214 => 0.0050939207162774
215 => 0.0050873808769968
216 => 0.0051452767263679
217 => 0.0050960534270618
218 => 0.0049661450471334
219 => 0.0048362012737538
220 => 0.0048345699355289
221 => 0.0048003580336961
222 => 0.0047756290948934
223 => 0.0047803927658131
224 => 0.0047971805634692
225 => 0.0047746533575751
226 => 0.004779460679111
227 => 0.0048592942476217
228 => 0.0048753043004396
229 => 0.004820895885433
301 => 0.0046024382480847
302 => 0.00454882819592
303 => 0.0045873620382825
304 => 0.0045689453435305
305 => 0.0036874954837925
306 => 0.0038945790536074
307 => 0.0037715370283169
308 => 0.0038282404544622
309 => 0.0037026464082186
310 => 0.003762586470034
311 => 0.0037515177292773
312 => 0.0040845019814912
313 => 0.0040793028903978
314 => 0.0040817914201744
315 => 0.0039630074101046
316 => 0.0041522335634832
317 => 0.0042454531709899
318 => 0.0042282007025999
319 => 0.0042325427772038
320 => 0.0041579315495271
321 => 0.0040825138199504
322 => 0.0039988639511445
323 => 0.0041542750679496
324 => 0.0041369960047171
325 => 0.0041766279589618
326 => 0.004277423177226
327 => 0.0042922656559992
328 => 0.004312214097988
329 => 0.0043050640015618
330 => 0.0044754083065784
331 => 0.0044547784872729
401 => 0.0045044904161949
402 => 0.0044022292067493
403 => 0.0042865109415384
404 => 0.0043085052006399
405 => 0.0043063869766218
406 => 0.0042794195536866
407 => 0.0042550745700556
408 => 0.0042145470314667
409 => 0.0043427821605092
410 => 0.0043375760484549
411 => 0.0044218569511705
412 => 0.0044069594829545
413 => 0.0043074705441793
414 => 0.004311023811091
415 => 0.0043349212387137
416 => 0.004417630508572
417 => 0.0044421842511425
418 => 0.0044308099792864
419 => 0.0044577320370939
420 => 0.0044790101338843
421 => 0.0044604042384475
422 => 0.0047238244814723
423 => 0.0046144340309731
424 => 0.0046677501754126
425 => 0.0046804657617044
426 => 0.0046478950547978
427 => 0.0046549584748563
428 => 0.0046656576315781
429 => 0.0047306208160833
430 => 0.0049011030094739
501 => 0.004976608412415
502 => 0.0052037701425344
503 => 0.0049703387397867
504 => 0.0049564878863828
505 => 0.0049974065736044
506 => 0.0051307745566957
507 => 0.0052388567803735
508 => 0.0052747138893805
509 => 0.0052794529982721
510 => 0.0053467233185048
511 => 0.0053852814115449
512 => 0.0053385549322434
513 => 0.0052989591335018
514 => 0.0051571318972205
515 => 0.0051735487860028
516 => 0.0052866448698676
517 => 0.0054463997496527
518 => 0.0055834860561706
519 => 0.0055354832095681
520 => 0.0059017110444164
521 => 0.005938021038335
522 => 0.0059330041712181
523 => 0.0060157237410164
524 => 0.0058515422405143
525 => 0.0057813514681828
526 => 0.0053075201946211
527 => 0.0054406474551655
528 => 0.0056341557466566
529 => 0.0056085441986589
530 => 0.0054680133048866
531 => 0.0055833794508859
601 => 0.0055452357951856
602 => 0.005515150311353
603 => 0.0056529777451481
604 => 0.0055014308200515
605 => 0.0056326439501514
606 => 0.0054643617535723
607 => 0.005535702482528
608 => 0.0054952060344099
609 => 0.0055214121994003
610 => 0.0053682114943464
611 => 0.0054508748760566
612 => 0.0053647724258953
613 => 0.0053647316021231
614 => 0.0053628308857635
615 => 0.0054641300365416
616 => 0.0054674333982117
617 => 0.0053925731727322
618 => 0.0053817846447041
619 => 0.0054216754873204
620 => 0.0053749737580449
621 => 0.0053968252032357
622 => 0.0053756356160593
623 => 0.0053708653936649
624 => 0.0053328554500399
625 => 0.0053164797212211
626 => 0.0053229010664415
627 => 0.0053009817047739
628 => 0.0052877744965112
629 => 0.0053602036396195
630 => 0.00532150767024
701 => 0.0053542729273337
702 => 0.0053169327815703
703 => 0.0051874955680273
704 => 0.0051130548577449
705 => 0.0048685599601981
706 => 0.0049378984098474
707 => 0.0049838698737007
708 => 0.0049686763051715
709 => 0.0050013179695028
710 => 0.0050033219025882
711 => 0.0049927097647717
712 => 0.0049804222686792
713 => 0.0049744413951225
714 => 0.0050190179265761
715 => 0.005044896103462
716 => 0.0049884837251173
717 => 0.0049752670941641
718 => 0.0050323031232834
719 => 0.0050670950680975
720 => 0.0053239792406998
721 => 0.0053049484314685
722 => 0.0053527120280314
723 => 0.0053473345800506
724 => 0.0053973984385862
725 => 0.0054792316887266
726 => 0.0053128418102545
727 => 0.0053417213398282
728 => 0.0053346407461024
729 => 0.0054119448117686
730 => 0.0054121861466236
731 => 0.0053658384976322
801 => 0.0053909643100552
802 => 0.0053769397708513
803 => 0.0054022840087228
804 => 0.0053046942634087
805 => 0.0054235480390393
806 => 0.0054909304710537
807 => 0.0054918660761876
808 => 0.0055238048141824
809 => 0.0055562564217521
810 => 0.0056185444565427
811 => 0.0055545192422686
812 => 0.0054393441145186
813 => 0.0054476593867288
814 => 0.0053801322514699
815 => 0.0053812673948134
816 => 0.0053752079106831
817 => 0.0053933928786947
818 => 0.0053086848412578
819 => 0.0053285656483322
820 => 0.0053007324020061
821 => 0.0053416608357864
822 => 0.0052976286067513
823 => 0.0053346373316257
824 => 0.0053506090704229
825 => 0.0054095451304313
826 => 0.0052889237027686
827 => 0.0050429684464118
828 => 0.0050946712232172
829 => 0.0050181987551565
830 => 0.0050252765732268
831 => 0.005039574892155
901 => 0.0049932293623897
902 => 0.0050020706289534
903 => 0.0050017547566967
904 => 0.0049990327402365
905 => 0.0049869764779953
906 => 0.0049694925124867
907 => 0.0050391432497922
908 => 0.0050509782672941
909 => 0.0050772860451523
910 => 0.0051555601473223
911 => 0.0051477387186851
912 => 0.0051604957933003
913 => 0.0051326471710431
914 => 0.0050265683909415
915 => 0.0050323289790614
916 => 0.0049604943528988
917 => 0.0050754490722551
918 => 0.0050482262773834
919 => 0.0050306755644348
920 => 0.0050258866898006
921 => 0.0051043548183299
922 => 0.0051278337122231
923 => 0.0051132032411588
924 => 0.0050831957181669
925 => 0.0051408190332391
926 => 0.0051562366014199
927 => 0.0051596880263576
928 => 0.0052617854924907
929 => 0.005165394140553
930 => 0.0051885964970121
1001 => 0.0053696146587007
1002 => 0.0052054561648479
1003 => 0.005292414580213
1004 => 0.0052881584182906
1005 => 0.0053326434010791
1006 => 0.0052845093512826
1007 => 0.005285106030518
1008 => 0.0053246056815604
1009 => 0.005269135545471
1010 => 0.0052554003596969
1011 => 0.0052364252989234
1012 => 0.0052778566499337
1013 => 0.0053026928710856
1014 => 0.0055028545733752
1015 => 0.0056321681615368
1016 => 0.0056265543176344
1017 => 0.0056778543422271
1018 => 0.0056547432112937
1019 => 0.0055801112731015
1020 => 0.0057074988912004
1021 => 0.0056671881187096
1022 => 0.0056705112898161
1023 => 0.0056703876012215
1024 => 0.005697190740899
1025 => 0.0056781982599659
1026 => 0.0056407621305084
1027 => 0.0056656139803133
1028 => 0.0057394150895349
1029 => 0.0059684959970532
1030 => 0.0060966927078188
1031 => 0.0059607783940966
1101 => 0.006054530267737
1102 => 0.005998312550761
1103 => 0.0059880961192542
1104 => 0.0060469792241094
1105 => 0.0061059653960449
1106 => 0.0061022082318968
1107 => 0.0060593873000451
1108 => 0.006035198842183
1109 => 0.0062183619488427
1110 => 0.0063533134057274
1111 => 0.0063441106210939
1112 => 0.0063847287195602
1113 => 0.0065039847129279
1114 => 0.0065148879863967
1115 => 0.0065135144245485
1116 => 0.0064864895236172
1117 => 0.0066039125364353
1118 => 0.0067018688795896
1119 => 0.0064802340398761
1120 => 0.0065646296854259
1121 => 0.0066025176097711
1122 => 0.0066581483235504
1123 => 0.0067520066624863
1124 => 0.0068539617132656
1125 => 0.0068683792753261
1126 => 0.0068581493251003
1127 => 0.0067909072284125
1128 => 0.0069024676615519
1129 => 0.0069678171468709
1130 => 0.007006731269882
1201 => 0.0071054110111455
1202 => 0.0066027515926932
1203 => 0.0062469442725186
1204 => 0.0061913798215534
1205 => 0.0063043723175553
1206 => 0.0063341675376528
1207 => 0.0063221571217915
1208 => 0.0059216636343488
1209 => 0.006189271306226
1210 => 0.0064771946600739
1211 => 0.0064882549686999
1212 => 0.0066323954198295
1213 => 0.0066793334592341
1214 => 0.0067953854153142
1215 => 0.0067881263338639
1216 => 0.0068163831383795
1217 => 0.006809887388361
1218 => 0.007024849199377
1219 => 0.0072619839990655
1220 => 0.0072537727749948
1221 => 0.007219681841888
1222 => 0.0072703126909195
1223 => 0.0075150612171076
1224 => 0.0074925286948314
1225 => 0.007514417120907
1226 => 0.0078029894267052
1227 => 0.0081781744731747
1228 => 0.0080038633511268
1229 => 0.0083820683292966
1230 => 0.0086201283152699
1231 => 0.0090318284451489
]
'min_raw' => 0.0036874954837925
'max_raw' => 0.0090318284451489
'avg_raw' => 0.0063596619644707
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003687'
'max' => '$0.009031'
'avg' => '$0.006359'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016442292792653
'max_diff' => 0.0036641549540028
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089802815612222
102 => 0.009140553400589
103 => 0.008888001880834
104 => 0.0083080925423933
105 => 0.0082163196697813
106 => 0.0084000512848099
107 => 0.0088517375320886
108 => 0.0083858260774682
109 => 0.0084800793579335
110 => 0.0084529344068187
111 => 0.0084514879677324
112 => 0.0085066926645633
113 => 0.0084266153725268
114 => 0.0081003660791405
115 => 0.0082498842077003
116 => 0.0081921480778131
117 => 0.0082562106184365
118 => 0.0086019297287799
119 => 0.0084490790691829
120 => 0.0082880633158767
121 => 0.0084900128027787
122 => 0.0087471638969777
123 => 0.0087310718436477
124 => 0.0086998465342309
125 => 0.008875861968509
126 => 0.0091665878982531
127 => 0.0092451699488315
128 => 0.0093031776120292
129 => 0.0093111758887367
130 => 0.0093935631097248
131 => 0.0089505462582186
201 => 0.0096536253790386
202 => 0.0097750277210354
203 => 0.0097522091123516
204 => 0.0098871427060896
205 => 0.009847441819877
206 => 0.0097899214646331
207 => 0.010003819911906
208 => 0.0097586026028222
209 => 0.0094105475045781
210 => 0.0092195975939321
211 => 0.0094710558397607
212 => 0.0096246126158047
213 => 0.0097261038767246
214 => 0.0097568150709563
215 => 0.0089849363952938
216 => 0.0085689365994657
217 => 0.0088355876991442
218 => 0.0091609204440278
219 => 0.0089487390183944
220 => 0.0089570561285666
221 => 0.0086545411759112
222 => 0.0091876863047711
223 => 0.0091100115439525
224 => 0.0095129883404835
225 => 0.0094168146939005
226 => 0.0097454266280024
227 => 0.0096588920927682
228 => 0.010018092110445
301 => 0.010161386722448
302 => 0.010402000678027
303 => 0.010578997283226
304 => 0.010682933075205
305 => 0.010676693160108
306 => 0.011088538548532
307 => 0.01084568771176
308 => 0.010540609825227
309 => 0.010535091928768
310 => 0.010693096089191
311 => 0.011024229463112
312 => 0.011110087529175
313 => 0.011158070475132
314 => 0.011084582923101
315 => 0.010820985745061
316 => 0.010707165820052
317 => 0.01080414369384
318 => 0.0106855480876
319 => 0.010890277376021
320 => 0.011171414416838
321 => 0.011113360729646
322 => 0.011307425502035
323 => 0.011508262125248
324 => 0.01179546751658
325 => 0.011870553641059
326 => 0.011994668149554
327 => 0.012122422748286
328 => 0.012163454082316
329 => 0.012241795630255
330 => 0.012241382731627
331 => 0.012477470259334
401 => 0.012737882113417
402 => 0.012836181559785
403 => 0.013062215716445
404 => 0.012675140144346
405 => 0.012968741412187
406 => 0.013233577105096
407 => 0.012917829074116
408 => 0.013353014174966
409 => 0.013369911426281
410 => 0.013625039859802
411 => 0.013366418315735
412 => 0.013212849668417
413 => 0.013656196599082
414 => 0.013870718213534
415 => 0.013806102557426
416 => 0.013314374223979
417 => 0.013028167242692
418 => 0.012279108367462
419 => 0.013166400962108
420 => 0.01359857530228
421 => 0.013313254996843
422 => 0.013457153962815
423 => 0.014242220061757
424 => 0.014541122402968
425 => 0.014478952805481
426 => 0.014489458444058
427 => 0.014650740721914
428 => 0.015365955161703
429 => 0.01493738209084
430 => 0.015265010145188
501 => 0.015438782883863
502 => 0.015600192688004
503 => 0.015203821223126
504 => 0.014688147771172
505 => 0.014524812342439
506 => 0.013284885515516
507 => 0.013220341939446
508 => 0.013184111674327
509 => 0.012955684977625
510 => 0.012776204165355
511 => 0.012633474359742
512 => 0.012258908727088
513 => 0.012385313632619
514 => 0.011788334192091
515 => 0.012170260482489
516 => 0.011217466880833
517 => 0.012010981704707
518 => 0.011579107662764
519 => 0.011869099466713
520 => 0.011868087712628
521 => 0.011334120859572
522 => 0.011026139922334
523 => 0.01122239736234
524 => 0.011432800916961
525 => 0.011466938185816
526 => 0.011739731886477
527 => 0.01181586274465
528 => 0.011585182690175
529 => 0.011197722351225
530 => 0.011287720550933
531 => 0.011024316111689
601 => 0.010562709963619
602 => 0.010894243558033
603 => 0.011007443703669
604 => 0.011057439336852
605 => 0.010603502706049
606 => 0.010460865961207
607 => 0.010384927355092
608 => 0.01113912483248
609 => 0.011180441472796
610 => 0.010969059699356
611 => 0.011924525359348
612 => 0.011708274053798
613 => 0.011949879744954
614 => 0.011279554157626
615 => 0.011305161497775
616 => 0.01098781862229
617 => 0.011165509427703
618 => 0.01103992329368
619 => 0.011151153766601
620 => 0.011217824853449
621 => 0.011535115656091
622 => 0.012014604656002
623 => 0.011487722990892
624 => 0.01125815310432
625 => 0.011400576970799
626 => 0.011779870495632
627 => 0.012354519601432
628 => 0.012014315764907
629 => 0.012165292450521
630 => 0.012198274139842
701 => 0.01194742042582
702 => 0.012363768935682
703 => 0.012586893484526
704 => 0.012815773102521
705 => 0.013014502861764
706 => 0.012724353549923
707 => 0.013034854904863
708 => 0.012784645623649
709 => 0.01256018203224
710 => 0.012560522450853
711 => 0.012419713161073
712 => 0.01214687741901
713 => 0.012096562322123
714 => 0.012358307810228
715 => 0.012568202904299
716 => 0.012585490869576
717 => 0.012701699578453
718 => 0.012770470695321
719 => 0.013444521130432
720 => 0.013715629791471
721 => 0.014047136330365
722 => 0.014176276809949
723 => 0.014564943354073
724 => 0.014251063553739
725 => 0.014183153684541
726 => 0.013240375780354
727 => 0.013394755609349
728 => 0.013641932611008
729 => 0.013244451638071
730 => 0.013496561827891
731 => 0.013546333719786
801 => 0.013230945386708
802 => 0.01339940792253
803 => 0.012952021373048
804 => 0.012024356460214
805 => 0.012364801691917
806 => 0.012615483975076
807 => 0.012257729448105
808 => 0.012898990590688
809 => 0.012524379069508
810 => 0.012405645201818
811 => 0.01194242205228
812 => 0.012161045547768
813 => 0.012456736955802
814 => 0.012274034043453
815 => 0.012653170019558
816 => 0.013190127673595
817 => 0.013572795674243
818 => 0.013602172171725
819 => 0.013356142284074
820 => 0.013750406749177
821 => 0.013753278535377
822 => 0.013308546608123
823 => 0.013036150778957
824 => 0.012974261873445
825 => 0.013128872493449
826 => 0.013316598328829
827 => 0.013612589649084
828 => 0.013791451004807
829 => 0.0142578265598
830 => 0.014384014412946
831 => 0.014522656605787
901 => 0.014707925331092
902 => 0.014930387937746
903 => 0.01444365241919
904 => 0.014462991328731
905 => 0.014009749953163
906 => 0.013525396541981
907 => 0.013892960405563
908 => 0.014373501262225
909 => 0.014263264658757
910 => 0.014250860788937
911 => 0.014271720657427
912 => 0.014188605858402
913 => 0.013812680702793
914 => 0.013623893443062
915 => 0.013867477172881
916 => 0.013996931084616
917 => 0.014197702812149
918 => 0.014172953458954
919 => 0.014690119867769
920 => 0.014891075095934
921 => 0.014839662149211
922 => 0.01484912336873
923 => 0.01521294321045
924 => 0.0156175856997
925 => 0.015996586788163
926 => 0.016382122973822
927 => 0.015917344054276
928 => 0.015681357982509
929 => 0.015924835371293
930 => 0.015795642841612
1001 => 0.016538021438151
1002 => 0.01658942212146
1003 => 0.017331747035577
1004 => 0.018036301773481
1005 => 0.017593783566013
1006 => 0.018011058304197
1007 => 0.018462374954452
1008 => 0.019333037996282
1009 => 0.019039829314089
1010 => 0.018815236058695
1011 => 0.018602996517574
1012 => 0.019044633310568
1013 => 0.019612791989435
1014 => 0.019735167927106
1015 => 0.019933463697341
1016 => 0.019724979941393
1017 => 0.0199760756617
1018 => 0.020862553891435
1019 => 0.020623019648601
1020 => 0.020282842516725
1021 => 0.020982631940827
1022 => 0.021235883013046
1023 => 0.023013331666501
1024 => 0.02525743401423
1025 => 0.0243283609067
1026 => 0.023751655247854
1027 => 0.023887194757324
1028 => 0.024706664967056
1029 => 0.024969852789738
1030 => 0.024254417561406
1031 => 0.02450712137894
1101 => 0.02589954425884
1102 => 0.026646534459631
1103 => 0.025632021432787
1104 => 0.022833020227895
1105 => 0.020252213287958
1106 => 0.020936759503681
1107 => 0.02085915320676
1108 => 0.022355137882921
1109 => 0.020617306836128
1110 => 0.02064656745404
1111 => 0.022173487509028
1112 => 0.021766131416394
1113 => 0.021106266716554
1114 => 0.020257031030517
1115 => 0.018687140320085
1116 => 0.017296644338214
1117 => 0.020023727170763
1118 => 0.019906130400145
1119 => 0.019735832849425
1120 => 0.020114811620432
1121 => 0.021955024957441
1122 => 0.021912602083833
1123 => 0.021642729406284
1124 => 0.021847425453656
1125 => 0.021070382509758
1126 => 0.02127064416934
1127 => 0.020251804474953
1128 => 0.02071236256732
1129 => 0.021104850943268
1130 => 0.021183648795629
1201 => 0.021361184380517
1202 => 0.019844162245668
1203 => 0.020525260646785
1204 => 0.020925342147152
1205 => 0.019117759373406
1206 => 0.020889612047537
1207 => 0.01981775426537
1208 => 0.019453949635339
1209 => 0.01994376464206
1210 => 0.01975288325758
1211 => 0.019588774652135
1212 => 0.019497199230553
1213 => 0.01985686531258
1214 => 0.019840086459959
1215 => 0.019251602941585
1216 => 0.018483950181523
1217 => 0.018741599645143
1218 => 0.018647993179533
1219 => 0.018308751272689
1220 => 0.018537359357678
1221 => 0.017530685047292
1222 => 0.015798754218651
1223 => 0.016942920774527
1224 => 0.01689887160674
1225 => 0.016876660018871
1226 => 0.017736469563171
1227 => 0.017653818714668
1228 => 0.017503806615315
1229 => 0.018305996182844
1230 => 0.018013186199723
1231 => 0.018915557572992
]
'min_raw' => 0.0081003660791405
'max_raw' => 0.026646534459631
'avg_raw' => 0.017373450269386
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00810036'
'max' => '$0.026646'
'avg' => '$0.017373'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.004412870595348
'max_diff' => 0.017614706014482
'year' => 2029
]
4 => [
'items' => [
101 => 0.019509917721148
102 => 0.019359168762039
103 => 0.019918167354171
104 => 0.018747535368406
105 => 0.019136372356474
106 => 0.01921651112081
107 => 0.018296097288101
108 => 0.017667341415643
109 => 0.017625410567292
110 => 0.016535234532346
111 => 0.01711759777062
112 => 0.017630053320474
113 => 0.017384626880251
114 => 0.017306932201183
115 => 0.017703857466622
116 => 0.017734701959182
117 => 0.01703144426007
118 => 0.01717767380499
119 => 0.017787475315947
120 => 0.017162308371503
121 => 0.015947711118889
122 => 0.01564647420712
123 => 0.015606283650192
124 => 0.014789305254074
125 => 0.015666604297985
126 => 0.015283639755165
127 => 0.016493420157313
128 => 0.015802400079789
129 => 0.015772611585371
130 => 0.015727581907036
131 => 0.015024374852545
201 => 0.015178332506339
202 => 0.015690111195963
203 => 0.01587271959802
204 => 0.015853672045619
205 => 0.015687603201184
206 => 0.015763628667756
207 => 0.015518724150898
208 => 0.015432243268748
209 => 0.015159285816244
210 => 0.014758113767484
211 => 0.014813899201395
212 => 0.014019072400425
213 => 0.013586008574605
214 => 0.013466142215308
215 => 0.013305851910095
216 => 0.013484247431798
217 => 0.014016820755963
218 => 0.013374424335286
219 => 0.012273080730906
220 => 0.012339273358127
221 => 0.012487988538726
222 => 0.012210858783529
223 => 0.011948578727972
224 => 0.012176609956825
225 => 0.011709956152893
226 => 0.012544381421467
227 => 0.012521812556402
228 => 0.012832834696013
301 => 0.013027323222729
302 => 0.012579090135057
303 => 0.012466360725659
304 => 0.012530576520518
305 => 0.011469232473944
306 => 0.012746100244314
307 => 0.012757142649816
308 => 0.012662590869875
309 => 0.013342483538728
310 => 0.014777269133848
311 => 0.014237445078847
312 => 0.014028408888482
313 => 0.013631030937794
314 => 0.014160513463118
315 => 0.014119857466387
316 => 0.013935995630841
317 => 0.01382479541902
318 => 0.014029685218886
319 => 0.013799407305401
320 => 0.013758043064525
321 => 0.013507420769557
322 => 0.013417960012841
323 => 0.013351726830103
324 => 0.013278810603848
325 => 0.013439645629376
326 => 0.013075172301919
327 => 0.012635653198767
328 => 0.012599111941003
329 => 0.012700005566431
330 => 0.012655367647826
331 => 0.012598898231822
401 => 0.01249108273814
402 => 0.012459096184278
403 => 0.01256303696666
404 => 0.012445693883475
405 => 0.012618839994722
406 => 0.012571753833074
407 => 0.012308734361725
408 => 0.011980914718144
409 => 0.011977996435691
410 => 0.011907368231213
411 => 0.011817412593789
412 => 0.011792388993364
413 => 0.012157405802762
414 => 0.012912979674183
415 => 0.012764642443873
416 => 0.012871831294983
417 => 0.013399094353739
418 => 0.013566695424764
419 => 0.013447736154399
420 => 0.013284897368036
421 => 0.013292061448215
422 => 0.013848530875872
423 => 0.013883237191495
424 => 0.013970928854395
425 => 0.014083637422881
426 => 0.013466930910978
427 => 0.013263014626964
428 => 0.013166387778753
429 => 0.01286881448556
430 => 0.013189721770262
501 => 0.013002742838087
502 => 0.013027972684147
503 => 0.013011541713802
504 => 0.013020514134668
505 => 0.012544148182598
506 => 0.012717710898475
507 => 0.012429129220288
508 => 0.012042750748009
509 => 0.012041455471888
510 => 0.012136021055596
511 => 0.012079769746055
512 => 0.011928398918432
513 => 0.011949900430046
514 => 0.011761524563357
515 => 0.011972772670917
516 => 0.01197883051076
517 => 0.011897488482587
518 => 0.012222945338905
519 => 0.012356285278486
520 => 0.012302744213027
521 => 0.012352528694603
522 => 0.012770806525495
523 => 0.012839004062671
524 => 0.012869292903808
525 => 0.012828709869187
526 => 0.012360174045509
527 => 0.012380955601657
528 => 0.01222847433142
529 => 0.01209964372615
530 => 0.012104796274733
531 => 0.012171031952649
601 => 0.012460287042775
602 => 0.013069007327427
603 => 0.013092107817261
604 => 0.013120106284828
605 => 0.013006222446329
606 => 0.012971873990916
607 => 0.013017188469694
608 => 0.013245791803617
609 => 0.013833821643668
610 => 0.013625972625001
611 => 0.013456988137463
612 => 0.013605233090925
613 => 0.013582411942322
614 => 0.013389778481719
615 => 0.013384371902066
616 => 0.013014646702527
617 => 0.012877967714493
618 => 0.012763748521847
619 => 0.012639024145245
620 => 0.012565083353996
621 => 0.012678690014843
622 => 0.012704673202333
623 => 0.012456270252887
624 => 0.012422413848758
625 => 0.012625265059426
626 => 0.012535997804666
627 => 0.012627811389908
628 => 0.012649112929246
629 => 0.012645682890797
630 => 0.012552477624549
701 => 0.012611883881834
702 => 0.012471370373497
703 => 0.012318583037627
704 => 0.012221114236329
705 => 0.012136059779836
706 => 0.012183252935692
707 => 0.012015017952195
708 => 0.011961196195073
709 => 0.012591758378549
710 => 0.013057561443169
711 => 0.013050788482131
712 => 0.013009559823677
713 => 0.012948302400143
714 => 0.013241310441537
715 => 0.013139232298796
716 => 0.013213502676554
717 => 0.013232407604812
718 => 0.013289627128847
719 => 0.013310078190505
720 => 0.013248260877998
721 => 0.013040794426876
722 => 0.012523807755999
723 => 0.012283149065126
724 => 0.012203727688651
725 => 0.012206614504843
726 => 0.012126983226947
727 => 0.012150438207111
728 => 0.012118826542037
729 => 0.01205896169607
730 => 0.012179556450149
731 => 0.012193453872138
801 => 0.012165305615537
802 => 0.012171935548948
803 => 0.011938880006562
804 => 0.01195659871328
805 => 0.011857938702692
806 => 0.011839441140071
807 => 0.011590037224614
808 => 0.011148182036708
809 => 0.011393012702729
810 => 0.011097291686577
811 => 0.010985297656856
812 => 0.011515459974912
813 => 0.011462246382593
814 => 0.011371167843935
815 => 0.011236443702829
816 => 0.011186473208381
817 => 0.01088286830285
818 => 0.010864929705362
819 => 0.011015404494565
820 => 0.010945965556869
821 => 0.010848446989762
822 => 0.010495244624998
823 => 0.010098128225719
824 => 0.010110114673628
825 => 0.010236430011626
826 => 0.010603708892797
827 => 0.010460206679934
828 => 0.010356094178004
829 => 0.010336597036003
830 => 0.01058064458818
831 => 0.010926023004053
901 => 0.011088066829374
902 => 0.010927486319825
903 => 0.010743020076723
904 => 0.010754247682207
905 => 0.010828939911431
906 => 0.010836789008631
907 => 0.010716720447809
908 => 0.010750519044375
909 => 0.010699175885583
910 => 0.010384083014847
911 => 0.010378383983986
912 => 0.010301055111948
913 => 0.010298713624435
914 => 0.010167157922509
915 => 0.010148752370408
916 => 0.0098875405393716
917 => 0.010059470957582
918 => 0.0099441490597985
919 => 0.0097703317581535
920 => 0.0097403655898342
921 => 0.0097394647706293
922 => 0.0099179362745812
923 => 0.010057385414147
924 => 0.009946155133584
925 => 0.0099208301548082
926 => 0.010191234672586
927 => 0.010156823232907
928 => 0.010127023148075
929 => 0.010895098155055
930 => 0.01028710685339
1001 => 0.010021987942934
1002 => 0.0096938529465287
1003 => 0.0098006953559585
1004 => 0.0098232086214669
1005 => 0.0090341031058915
1006 => 0.0087139630964993
1007 => 0.0086041031094977
1008 => 0.008540877133786
1009 => 0.0085696900048597
1010 => 0.0082815264477289
1011 => 0.0084751771239061
1012 => 0.00822565184129
1013 => 0.0081838181156339
1014 => 0.0086300002312025
1015 => 0.0086920838660257
1016 => 0.0084272157919962
1017 => 0.0085973039737693
1018 => 0.0085356276346558
1019 => 0.0082299292360795
1020 => 0.0082182538058191
1021 => 0.0080648650952318
1022 => 0.0078248414650697
1023 => 0.0077151442253919
1024 => 0.0076580129505325
1025 => 0.0076815864280058
1026 => 0.007669666956435
1027 => 0.0075918843417942
1028 => 0.0076741253648572
1029 => 0.0074640335352682
1030 => 0.007380373275901
1031 => 0.0073425858776481
1101 => 0.0071561172864533
1102 => 0.007452871738003
1103 => 0.0075113361033724
1104 => 0.0075699156616021
1105 => 0.0080798107220287
1106 => 0.0080543378057583
1107 => 0.0082846005630296
1108 => 0.0082756529757081
1109 => 0.0082099783073249
1110 => 0.0079329076843751
1111 => 0.0080433430963739
1112 => 0.007703440063715
1113 => 0.0079581185269426
1114 => 0.0078418939119524
1115 => 0.007918822867703
1116 => 0.0077804976688592
1117 => 0.0078570525452068
1118 => 0.0075252001732864
1119 => 0.0072153210976761
1120 => 0.0073400254836358
1121 => 0.0074755934128504
1122 => 0.0077695392254537
1123 => 0.0075944675244675
1124 => 0.0076574299283361
1125 => 0.0074465164151555
1126 => 0.0070113415929972
1127 => 0.0070138046352308
1128 => 0.0069468624696406
1129 => 0.0068890146648545
1130 => 0.0076145766153342
1201 => 0.007524341517355
1202 => 0.0073805636984028
1203 => 0.0075730160225737
1204 => 0.0076239034717136
1205 => 0.0076253521658513
1206 => 0.007765760413653
1207 => 0.0078406963206743
1208 => 0.0078539040990776
1209 => 0.0080748395107145
1210 => 0.0081488941464867
1211 => 0.0084539147106278
1212 => 0.0078343385325116
1213 => 0.0078215787688467
1214 => 0.0075757242214452
1215 => 0.0074197993806766
1216 => 0.0075864005286922
1217 => 0.0077339864025094
1218 => 0.0075803101259388
1219 => 0.0076003770033756
1220 => 0.0073940791578927
1221 => 0.007467820930437
1222 => 0.0075313372790417
1223 => 0.0074962672846606
1224 => 0.0074437658056652
1225 => 0.0077218860439035
1226 => 0.0077061934101001
1227 => 0.0079651853699042
1228 => 0.0081670881232643
1229 => 0.0085289339517198
1230 => 0.0081513289662768
1231 => 0.0081375675397634
]
'min_raw' => 0.0068890146648545
'max_raw' => 0.019918167354171
'avg_raw' => 0.013403591009513
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006889'
'max' => '$0.019918'
'avg' => '$0.0134035'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.001211351414286
'max_diff' => -0.00672836710546
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082720876913343
102 => 0.0081488735521523
103 => 0.0082267406349078
104 => 0.0085163883608674
105 => 0.0085225081608961
106 => 0.0084199936254997
107 => 0.0084137556067043
108 => 0.0084334446446133
109 => 0.0085487639546222
110 => 0.0085084678443007
111 => 0.0085550995233375
112 => 0.0086134131520226
113 => 0.0088546230447307
114 => 0.0089127779332504
115 => 0.0087714917040002
116 => 0.0087842482685867
117 => 0.0087314033404534
118 => 0.0086803558020217
119 => 0.0087951032135219
120 => 0.0090048063634046
121 => 0.0090035018109928
122 => 0.0090521488657188
123 => 0.0090824555777992
124 => 0.0089523569836811
125 => 0.0088676675827681
126 => 0.0089001428880048
127 => 0.0089520716082983
128 => 0.0088833031038914
129 => 0.0084588320380221
130 => 0.0085875894440902
131 => 0.008566157915805
201 => 0.008535636813364
202 => 0.008665103380817
203 => 0.0086526160145503
204 => 0.0082785709139457
205 => 0.0083025160677001
206 => 0.0082800270980544
207 => 0.00835269355979
208 => 0.0081449493247476
209 => 0.0082088500522679
210 => 0.0082489279895365
211 => 0.0082725342024809
212 => 0.0083578160305679
213 => 0.008347809192361
214 => 0.0083571939914547
215 => 0.0084836444289398
216 => 0.0091231873491896
217 => 0.0091579962592669
218 => 0.0089865844552856
219 => 0.0090550600900278
220 => 0.008923601845298
221 => 0.0090118506456788
222 => 0.0090722282336229
223 => 0.0087993935236461
224 => 0.0087832380228039
225 => 0.0086512372031358
226 => 0.0087221669667168
227 => 0.0086093126128288
228 => 0.0086370031237952
301 => 0.0085595780411179
302 => 0.008698927774757
303 => 0.0088547424297249
304 => 0.008894107364877
305 => 0.008790555168162
306 => 0.008715576553318
307 => 0.0085839388051432
308 => 0.0088028553140965
309 => 0.0088668731726742
310 => 0.0088025190555386
311 => 0.0087876068004331
312 => 0.0087593481039539
313 => 0.0087936020164786
314 => 0.0088665245176678
315 => 0.0088321356127741
316 => 0.0088548500903109
317 => 0.0087682859250082
318 => 0.0089524000517292
319 => 0.0092448175944396
320 => 0.0092457577646545
321 => 0.0092113686743918
322 => 0.0091972973995796
323 => 0.0092325826930936
324 => 0.0092517235173465
325 => 0.0093658296863546
326 => 0.0094882701518906
327 => 0.010059646379587
328 => 0.0098992062212485
329 => 0.010406165201784
330 => 0.010807103935004
331 => 0.01092732793017
401 => 0.010816727511593
402 => 0.010438369454158
403 => 0.010419805402808
404 => 0.010985232079267
405 => 0.010825473144985
406 => 0.010806470328101
407 => 0.010604312462219
408 => 0.010723812798694
409 => 0.010697676322143
410 => 0.010656418615267
411 => 0.010884416932795
412 => 0.011311209429657
413 => 0.011244689816587
414 => 0.011195036011185
415 => 0.010977467489923
416 => 0.011108492335411
417 => 0.011061836897548
418 => 0.01126229826688
419 => 0.011143549392451
420 => 0.01082426281393
421 => 0.010875110253942
422 => 0.010867424765675
423 => 0.011025591569609
424 => 0.01097811382101
425 => 0.010858153973271
426 => 0.011309750699301
427 => 0.011280426519826
428 => 0.011322001501882
429 => 0.011340304094731
430 => 0.011615183063839
501 => 0.011727792182337
502 => 0.011753356423736
503 => 0.011860326376807
504 => 0.011750694913856
505 => 0.012189298931568
506 => 0.012480945010092
507 => 0.012819706938268
508 => 0.013314729165955
509 => 0.013500862102777
510 => 0.013467238853751
511 => 0.013842559057173
512 => 0.014517001119822
513 => 0.013603562877649
514 => 0.014565415564659
515 => 0.014260904109075
516 => 0.013538912925812
517 => 0.013492425205327
518 => 0.013981366017123
519 => 0.015065789678876
520 => 0.014794153851038
521 => 0.015066233977779
522 => 0.014748838057549
523 => 0.014733076674886
524 => 0.015050818766374
525 => 0.015793240482356
526 => 0.015440543754355
527 => 0.01493486650998
528 => 0.015308250718017
529 => 0.014984790761938
530 => 0.014255944950151
531 => 0.01479394613624
601 => 0.014434200064494
602 => 0.014539193093382
603 => 0.015295325828003
604 => 0.015204345936894
605 => 0.0153220823405
606 => 0.015114280669834
607 => 0.014920161142116
608 => 0.014557822628126
609 => 0.014450552057206
610 => 0.014480197783818
611 => 0.014450537366257
612 => 0.014247812297742
613 => 0.014204033838498
614 => 0.014131067821779
615 => 0.014153683041411
616 => 0.014016485583019
617 => 0.014275405533446
618 => 0.01432346335784
619 => 0.014511883705628
620 => 0.014531446131196
621 => 0.015056194117792
622 => 0.014767171744807
623 => 0.014961072905596
624 => 0.014943728560707
625 => 0.013554560664023
626 => 0.013745975743453
627 => 0.014043757537687
628 => 0.013909607243019
629 => 0.013719950112692
630 => 0.013566791811181
701 => 0.013334741323151
702 => 0.013661347928918
703 => 0.01409080088476
704 => 0.014542337766862
705 => 0.015084829744838
706 => 0.014963751850656
707 => 0.014532196256683
708 => 0.014551555525377
709 => 0.014671226906852
710 => 0.01451624159455
711 => 0.01447053340028
712 => 0.014664947302857
713 => 0.014666286124556
714 => 0.014487956792151
715 => 0.014289776373107
716 => 0.014288945989915
717 => 0.014253681698542
718 => 0.014755111496644
719 => 0.015030847185329
720 => 0.015062459837666
721 => 0.01502871940195
722 => 0.015041704756547
723 => 0.014881260234723
724 => 0.015247988833269
725 => 0.015584535260994
726 => 0.015494333629098
727 => 0.015359108559968
728 => 0.015251395279084
729 => 0.015468959803299
730 => 0.015459271997514
731 => 0.015581595821544
801 => 0.01557604650631
802 => 0.01553491360512
803 => 0.015494335098083
804 => 0.015655224291698
805 => 0.015608890787738
806 => 0.015562485315049
807 => 0.015469412035249
808 => 0.015482062239758
809 => 0.015346860519143
810 => 0.015284310016776
811 => 0.014343700540827
812 => 0.014092338953553
813 => 0.014171422425846
814 => 0.014197458758327
815 => 0.014088065873416
816 => 0.014244907169651
817 => 0.014220463619769
818 => 0.014315559173363
819 => 0.014256147600046
820 => 0.014258585871739
821 => 0.014433302640979
822 => 0.014484023662387
823 => 0.01445822654153
824 => 0.014476293960705
825 => 0.014892650009809
826 => 0.014833457493943
827 => 0.01480201264964
828 => 0.01481072308641
829 => 0.014917110983731
830 => 0.014946893786417
831 => 0.014820701958636
901 => 0.014880214754124
902 => 0.015133612684011
903 => 0.015222287618391
904 => 0.015505295442549
905 => 0.015385068688784
906 => 0.015605750098612
907 => 0.016284049516586
908 => 0.016825922026414
909 => 0.016327593672548
910 => 0.017322673529798
911 => 0.018097485934395
912 => 0.018067747343789
913 => 0.017932640879314
914 => 0.017050537556134
915 => 0.016238812926724
916 => 0.016917855046873
917 => 0.016919586064884
918 => 0.01686125574455
919 => 0.016498971134614
920 => 0.016848649025422
921 => 0.016876405186551
922 => 0.016860869117278
923 => 0.01658310635626
924 => 0.016159013959326
925 => 0.016241880598553
926 => 0.016377617844041
927 => 0.016120638920577
928 => 0.016038518583628
929 => 0.016191195914049
930 => 0.016683154084252
1001 => 0.016590152241895
1002 => 0.016587723587941
1003 => 0.016985624908463
1004 => 0.016700813435449
1005 => 0.01624292581225
1006 => 0.016127303148596
1007 => 0.015716920585385
1008 => 0.016000373283528
1009 => 0.016010574241513
1010 => 0.015855330095556
1011 => 0.016255523019095
1012 => 0.016251835170852
1013 => 0.016631758790895
1014 => 0.017358030059624
1015 => 0.017143235907822
1016 => 0.016893453678814
1017 => 0.016920611932817
1018 => 0.017218470946949
1019 => 0.017038378587545
1020 => 0.017103141055635
1021 => 0.017218372921197
1022 => 0.017287895166737
1023 => 0.016910608751571
1024 => 0.0168226452405
1025 => 0.016642702767847
1026 => 0.016595759135517
1027 => 0.01674231852487
1028 => 0.016703705303795
1029 => 0.016009716890494
1030 => 0.015937191239989
1031 => 0.015939415498147
1101 => 0.015757046301546
1102 => 0.015478889503106
1103 => 0.016209868961526
1104 => 0.016151161080964
1105 => 0.016086352124452
1106 => 0.01609429085183
1107 => 0.016411584259538
1108 => 0.016227538059366
1109 => 0.016716855047102
1110 => 0.016616266184639
1111 => 0.016513097597409
1112 => 0.016498836556062
1113 => 0.016459125451909
1114 => 0.016322941299918
1115 => 0.01615849075299
1116 => 0.016049906257445
1117 => 0.014805190127658
1118 => 0.015036202201166
1119 => 0.015301960534324
1120 => 0.01539369924597
1121 => 0.015236773831573
1122 => 0.01632913767175
1123 => 0.01652872307163
1124 => 0.01592416587676
1125 => 0.015811077909507
1126 => 0.016336551700056
1127 => 0.016019626767797
1128 => 0.016162338045387
1129 => 0.015853874322131
1130 => 0.016480648793342
1201 => 0.016475873822006
1202 => 0.016232044396361
1203 => 0.016438127357244
1204 => 0.016402315371338
1205 => 0.016127032550311
1206 => 0.016489375749781
1207 => 0.016489555467488
1208 => 0.016254874946614
1209 => 0.015980819476405
1210 => 0.015931824831233
1211 => 0.015894913947601
1212 => 0.016153260230692
1213 => 0.016384892700284
1214 => 0.016815903299636
1215 => 0.016924269604872
1216 => 0.017347230508563
1217 => 0.017095377884008
1218 => 0.017207020890435
1219 => 0.01732822516678
1220 => 0.017386334954
1221 => 0.017291648174069
1222 => 0.017948680555154
1223 => 0.018004154219069
1224 => 0.018022754058735
1225 => 0.017801206436584
1226 => 0.017997992578921
1227 => 0.017905922859793
1228 => 0.018145462691258
1229 => 0.01818302559543
1230 => 0.018151211151935
1231 => 0.018163134210609
]
'min_raw' => 0.0081449493247476
'max_raw' => 0.01818302559543
'avg_raw' => 0.013163987460089
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008144'
'max' => '$0.018183'
'avg' => '$0.013163'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012559346598932
'max_diff' => -0.0017351417587418
'year' => 2031
]
6 => [
'items' => [
101 => 0.017602472981808
102 => 0.017573399739371
103 => 0.0171769840158
104 => 0.017338526353312
105 => 0.017036530696259
106 => 0.01713229663001
107 => 0.017174509341117
108 => 0.017152459816385
109 => 0.017347659714699
110 => 0.017181699924427
111 => 0.016743704751585
112 => 0.016305590247251
113 => 0.01630009007653
114 => 0.016184742260902
115 => 0.016101366917209
116 => 0.016117427966304
117 => 0.016174029198188
118 => 0.016098077150717
119 => 0.016114285370911
120 => 0.016383449820947
121 => 0.016437428831809
122 => 0.01625398706194
123 => 0.015517441885395
124 => 0.015336691851587
125 => 0.015466611391459
126 => 0.01540451821929
127 => 0.01243264847632
128 => 0.013130845190064
129 => 0.012716000411277
130 => 0.012907179971432
131 => 0.012483730875826
201 => 0.012685822979118
202 => 0.012648503946862
203 => 0.013771183601419
204 => 0.013753654502809
205 => 0.013762044754695
206 => 0.013361556171509
207 => 0.013999545358973
208 => 0.014313841774067
209 => 0.014255673872362
210 => 0.014270313480043
211 => 0.014018756516741
212 => 0.013764480375976
213 => 0.013482449003049
214 => 0.014006428433815
215 => 0.013948170865741
216 => 0.014081792766492
217 => 0.014421630882167
218 => 0.01447167333562
219 => 0.01453893090054
220 => 0.014514823851236
221 => 0.015089151568659
222 => 0.015019596692543
223 => 0.015187203931679
224 => 0.014842423124383
225 => 0.014452270914034
226 => 0.014526426094185
227 => 0.014519284354018
228 => 0.014428361804786
229 => 0.014346280992762
301 => 0.014209639566867
302 => 0.014641993257525
303 => 0.014624440487255
304 => 0.014908599435065
305 => 0.014858371580867
306 => 0.01452293767769
307 => 0.014534917765164
308 => 0.014615489610859
309 => 0.014894349688763
310 => 0.014977134346127
311 => 0.014938785194438
312 => 0.015029554791974
313 => 0.015101295380892
314 => 0.015038564305405
315 => 0.015926704046177
316 => 0.015557886504922
317 => 0.015737645608314
318 => 0.015780517095271
319 => 0.015670702682921
320 => 0.0156945174968
321 => 0.015730590450679
322 => 0.015949618362823
323 => 0.016524410980526
324 => 0.016778982718161
325 => 0.017544874351184
326 => 0.01675784407916
327 => 0.016711144959873
328 => 0.016849105170692
329 => 0.01729876463714
330 => 0.017663171400329
331 => 0.01778406614681
401 => 0.017800044383312
402 => 0.01802685096464
403 => 0.018156852267365
404 => 0.017999310680062
405 => 0.017865810680114
406 => 0.01738763025093
407 => 0.01744298093765
408 => 0.017824292280516
409 => 0.018362917011441
410 => 0.018825113064927
411 => 0.018663268116155
412 => 0.019898030830557
413 => 0.020020452510136
414 => 0.020003537792385
415 => 0.020282432597256
416 => 0.019728883205527
417 => 0.019492230116048
418 => 0.017894674895392
419 => 0.018343522748966
420 => 0.018995949464045
421 => 0.01890959834183
422 => 0.018435788621923
423 => 0.018824753637767
424 => 0.018696149639468
425 => 0.018594714330225
426 => 0.019059409146069
427 => 0.018548458107438
428 => 0.018990852336578
429 => 0.018423477161723
430 => 0.018664007410248
501 => 0.018527470808047
502 => 0.018615826722968
503 => 0.018099299849747
504 => 0.018378005212556
505 => 0.018087704790356
506 => 0.018087567150157
507 => 0.018081158752247
508 => 0.018422695911577
509 => 0.018433833426081
510 => 0.018181436949302
511 => 0.018145062673825
512 => 0.018279557434795
513 => 0.018122099293932
514 => 0.018195772967012
515 => 0.018124330794437
516 => 0.018108247656588
517 => 0.017980094477887
518 => 0.017924882564858
519 => 0.017946532578592
520 => 0.017872629920369
521 => 0.017828100895613
522 => 0.018072300808444
523 => 0.017941834646015
524 => 0.018052304997904
525 => 0.017926410089457
526 => 0.017490003486979
527 => 0.017239021434977
528 => 0.01641468981781
529 => 0.016648469241858
530 => 0.016803465241865
531 => 0.016752239064787
601 => 0.016862292715049
602 => 0.016869049115356
603 => 0.016833269551792
604 => 0.016791841400831
605 => 0.016771676468063
606 => 0.016921969356093
607 => 0.01700921943622
608 => 0.016819021164044
609 => 0.01677446037003
610 => 0.016966761324334
611 => 0.017084064795371
612 => 0.01795016771838
613 => 0.017886004016368
614 => 0.018047042316928
615 => 0.018028911875619
616 => 0.018197705670019
617 => 0.018473612186282
618 => 0.017912617094043
619 => 0.018009986444305
620 => 0.017986113728207
621 => 0.018246749782798
622 => 0.018247563460111
623 => 0.018091299125648
624 => 0.01817601255646
625 => 0.018128727843372
626 => 0.018214177710834
627 => 0.017885147071009
628 => 0.018285870873653
629 => 0.018513055447681
630 => 0.018516209905712
701 => 0.018623893590752
702 => 0.018733306451372
703 => 0.018943314909481
704 => 0.018727449429458
705 => 0.018339128444978
706 => 0.018367163965789
707 => 0.018139491514669
708 => 0.018143318729705
709 => 0.0181228887559
710 => 0.018184200645185
711 => 0.01789860158284
712 => 0.017965631111925
713 => 0.017871789378682
714 => 0.018009782450704
715 => 0.01786132471628
716 => 0.017986102216061
717 => 0.018039952048527
718 => 0.018238659089629
719 => 0.017831975524745
720 => 0.017002720205891
721 => 0.017177039727663
722 => 0.016919207462459
723 => 0.01694307082024
724 => 0.016991278600784
725 => 0.016835021411438
726 => 0.016864830358935
727 => 0.016863765373568
728 => 0.016854587905028
729 => 0.01681393937514
730 => 0.016754990964736
731 => 0.016989823288421
801 => 0.017029725876223
802 => 0.017118424386023
803 => 0.017382330986412
804 => 0.017355960493687
805 => 0.017398971861423
806 => 0.017305078287154
807 => 0.016947426273857
808 => 0.016966848498895
809 => 0.016724653041454
810 => 0.017112230903646
811 => 0.017020447350101
812 => 0.016961273896044
813 => 0.016945127870866
814 => 0.017209688644672
815 => 0.017288849374677
816 => 0.017239521720017
817 => 0.017138349261192
818 => 0.017332630291089
819 => 0.017384611698631
820 => 0.017396248418779
821 => 0.017740477154064
822 => 0.017415486981177
823 => 0.017493715345915
824 => 0.018104030716333
825 => 0.017550558893128
826 => 0.017843745261774
827 => 0.017829395314697
828 => 0.017979379540011
829 => 0.01781709223051
830 => 0.017819103976211
831 => 0.017952279807478
901 => 0.017765258370851
902 => 0.017718949233054
903 => 0.01765497349086
904 => 0.017794662183436
905 => 0.017878399237059
906 => 0.018553258391172
907 => 0.018989248182045
908 => 0.018970320715382
909 => 0.01914328232995
910 => 0.01906536153844
911 => 0.01881373474819
912 => 0.019243230996529
913 => 0.019107320412668
914 => 0.019118524716071
915 => 0.019118107691338
916 => 0.019208476348096
917 => 0.019144441872618
918 => 0.019018223348445
919 => 0.019102013095162
920 => 0.019350838687532
921 => 0.020123200961148
922 => 0.020555425121903
923 => 0.020097180523954
924 => 0.02041327151148
925 => 0.020223729553699
926 => 0.020189284141586
927 => 0.020387812640692
928 => 0.020586688637656
929 => 0.020574021096414
930 => 0.020429647335014
1001 => 0.020348094260547
1002 => 0.02096564146269
1003 => 0.021420639721587
1004 => 0.021389611890677
1005 => 0.021526558645521
1006 => 0.021928638553348
1007 => 0.02196539970109
1008 => 0.02196076864142
1009 => 0.021869652301112
1010 => 0.022265552187041
1011 => 0.022595818837079
1012 => 0.021848561500935
1013 => 0.022133107312222
1014 => 0.022260849094402
1015 => 0.022448411929921
1016 => 0.022764861872624
1017 => 0.023108610444601
1018 => 0.023157220261689
1019 => 0.023122729270271
1020 => 0.022896017846595
1021 => 0.023272151635825
1022 => 0.023492481988133
1023 => 0.023623683670763
1024 => 0.023956389308032
1025 => 0.02226163798416
1026 => 0.021062008762518
1027 => 0.020874669336702
1028 => 0.021255631425857
1029 => 0.021356088090651
1030 => 0.021315594135035
1031 => 0.019965302380559
1101 => 0.020867560330064
1102 => 0.021838314019729
1103 => 0.021875604622468
1104 => 0.022361584217016
1105 => 0.022519839093978
1106 => 0.022911116366391
1107 => 0.022886641866468
1108 => 0.02298191165572
1109 => 0.022960010781013
1110 => 0.023684769535008
1111 => 0.024484286068381
1112 => 0.024456601353137
1113 => 0.024341661392015
1114 => 0.024512366834458
1115 => 0.025337553578297
1116 => 0.025261583606272
1117 => 0.025335381962987
1118 => 0.026308323639461
1119 => 0.027573286218217
1120 => 0.026985584100218
1121 => 0.028260728589546
1122 => 0.029063364453073
1123 => 0.030451440184945
1124 => 0.030277646266897
1125 => 0.030818013963145
1126 => 0.029966518881707
1127 => 0.028011314059177
1128 => 0.027701895411788
1129 => 0.028321359379589
1130 => 0.029844251098016
1201 => 0.028273398099864
1202 => 0.028591179615507
1203 => 0.028499658517623
1204 => 0.028494781747257
1205 => 0.028680908236891
1206 => 0.028410922055972
1207 => 0.027310949785322
1208 => 0.027815060594783
1209 => 0.027620399201861
1210 => 0.027836390530276
1211 => 0.029002006648137
1212 => 0.028486659977613
1213 => 0.02794378412358
1214 => 0.028624670918333
1215 => 0.029491673786141
1216 => 0.029437418304828
1217 => 0.029332139994048
1218 => 0.029925588319722
1219 => 0.03090579108969
1220 => 0.031170735959639
1221 => 0.031366312846075
1222 => 0.031393279594416
1223 => 0.03167105386207
1224 => 0.030177391616768
1225 => 0.032547871960029
1226 => 0.032957188432112
1227 => 0.03288025389979
1228 => 0.033335191931841
1229 => 0.033201337622148
1230 => 0.0330074037285
1231 => 0.033728577277394
]
'min_raw' => 0.01243264847632
'max_raw' => 0.033728577277394
'avg_raw' => 0.023080612876857
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012432'
'max' => '$0.033728'
'avg' => '$0.02308'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042876991515721
'max_diff' => 0.015545551681965
'year' => 2032
]
7 => [
'items' => [
101 => 0.032901809999291
102 => 0.031728317935131
103 => 0.031084516979691
104 => 0.031932326011756
105 => 0.03245005340318
106 => 0.032792238275265
107 => 0.032895783210804
108 => 0.03029334036496
109 => 0.028890768009147
110 => 0.029789800808698
111 => 0.03088668287208
112 => 0.030171298381523
113 => 0.030199340099151
114 => 0.029179389815354
115 => 0.030976925840309
116 => 0.030715039961131
117 => 0.032073704365576
118 => 0.031749448201492
119 => 0.032857386280269
120 => 0.032565629053079
121 => 0.033776696991219
122 => 0.034259824780099
123 => 0.035071071530464
124 => 0.035667827942401
125 => 0.036018254721622
126 => 0.035997216412215
127 => 0.037385781893415
128 => 0.036566993341934
129 => 0.03553840194763
130 => 0.035519797974471
131 => 0.036052520032834
201 => 0.037168959322004
202 => 0.037458435786155
203 => 0.037620213638509
204 => 0.037372445226101
205 => 0.036483708936572
206 => 0.036099957112749
207 => 0.036426924785007
208 => 0.036027071418488
209 => 0.03671733050814
210 => 0.037665203669617
211 => 0.037469471610068
212 => 0.038123774539348
213 => 0.038800909236477
214 => 0.039769242265393
215 => 0.04002240037642
216 => 0.040440861107207
217 => 0.040871594656376
218 => 0.041009934663775
219 => 0.041274068662282
220 => 0.041272676545729
221 => 0.042068662128498
222 => 0.042946658875914
223 => 0.043278082322392
224 => 0.044040172262773
225 => 0.042735119946688
226 => 0.043725017119799
227 => 0.044617929148679
228 => 0.043553362617406
301 => 0.045020619568576
302 => 0.045077589831114
303 => 0.045937773157229
304 => 0.045065812565026
305 => 0.044548045148772
306 => 0.046042820279004
307 => 0.046766094879548
308 => 0.046548238683661
309 => 0.044890342276068
310 => 0.043925375456327
311 => 0.041399871160866
312 => 0.044391440092506
313 => 0.045848546053845
314 => 0.044886568723639
315 => 0.045371734134115
316 => 0.048018639298263
317 => 0.049026409410353
318 => 0.048816800271883
319 => 0.048852220765824
320 => 0.049395995225986
321 => 0.05180739064441
322 => 0.050362426613982
323 => 0.051467047473475
324 => 0.052052934394343
325 => 0.052597138818279
326 => 0.051260744750668
327 => 0.049522115704235
328 => 0.048971418902547
329 => 0.044790919036651
330 => 0.04457330586364
331 => 0.044451152995275
401 => 0.043680996439101
402 => 0.043075864349583
403 => 0.042594640844884
404 => 0.041331766663052
405 => 0.04175794962736
406 => 0.039745191763846
407 => 0.041032882917163
408 => 0.037820472767256
409 => 0.040495863397382
410 => 0.03903976991249
411 => 0.040017497526086
412 => 0.04001408632655
413 => 0.038213779801097
414 => 0.037175400568654
415 => 0.037837096229891
416 => 0.038546486504204
417 => 0.038661582689535
418 => 0.039581325697163
419 => 0.039838006200782
420 => 0.039060252291549
421 => 0.037753902707163
422 => 0.038057337920954
423 => 0.037169251463731
424 => 0.0356129141072
425 => 0.036730702767704
426 => 0.037112364962098
427 => 0.037280928729958
428 => 0.035750449686363
429 => 0.035269539942549
430 => 0.035013507630166
501 => 0.037556337081568
502 => 0.037695639019029
503 => 0.03698295061167
504 => 0.040204369792817
505 => 0.03947526341797
506 => 0.040289853874073
507 => 0.03802980435576
508 => 0.03811614129092
509 => 0.037046197630051
510 => 0.037645294586476
511 => 0.037221872167471
512 => 0.037596893472789
513 => 0.037821679696925
514 => 0.038891447790568
515 => 0.040508078430619
516 => 0.038731660111
517 => 0.037957649210363
518 => 0.038437841219916
519 => 0.039716655820317
520 => 0.041654125401241
521 => 0.040507104414125
522 => 0.041016132850528
523 => 0.041127332918783
524 => 0.040281562107908
525 => 0.041685310177433
526 => 0.04243759017192
527 => 0.043209273783853
528 => 0.04387930504201
529 => 0.04290104637956
530 => 0.043947923376253
531 => 0.043104325315585
601 => 0.042347530645603
602 => 0.042348678390726
603 => 0.041873930039239
604 => 0.040954045286093
605 => 0.040784404424048
606 => 0.041666897611682
607 => 0.042374573575749
608 => 0.042432861157689
609 => 0.0428246669331
610 => 0.043056533555068
611 => 0.045329141657741
612 => 0.046243203436636
613 => 0.047360900877565
614 => 0.047796307020783
615 => 0.049106723410128
616 => 0.048048455748916
617 => 0.047819492883597
618 => 0.044640851356981
619 => 0.045161353728894
620 => 0.045994728247334
621 => 0.044654593395839
622 => 0.045504600502591
623 => 0.045672409911076
624 => 0.044609056126395
625 => 0.045177039327598
626 => 0.043668644340485
627 => 0.04054095731937
628 => 0.041688792187184
629 => 0.042533985006934
630 => 0.041327790641628
701 => 0.04348984735527
702 => 0.04222681845707
703 => 0.04182649893242
704 => 0.040264709742543
705 => 0.041001814121386
706 => 0.041998758348089
707 => 0.041382762723193
708 => 0.042661046137061
709 => 0.044471436356833
710 => 0.045761628238043
711 => 0.045860673150306
712 => 0.04503116620683
713 => 0.046360456377593
714 => 0.046370138805268
715 => 0.044870694062338
716 => 0.043952292506237
717 => 0.043743629740357
718 => 0.044264910240269
719 => 0.044897841000852
720 => 0.045895796402544
721 => 0.046498839951067
722 => 0.048071257696028
723 => 0.048496708853065
724 => 0.048964150685917
725 => 0.049588797128331
726 => 0.050338845338509
727 => 0.048697782554908
728 => 0.048762985038624
729 => 0.047234850096596
730 => 0.045601818754321
731 => 0.046841085982877
801 => 0.048461263031404
802 => 0.048089592626335
803 => 0.048047772113228
804 => 0.048118102616232
805 => 0.047837875268431
806 => 0.046570417360037
807 => 0.045933907933147
808 => 0.046755167484708
809 => 0.047191630386305
810 => 0.047868546283116
811 => 0.047785102110873
812 => 0.0495287647656
813 => 0.050206299347606
814 => 0.050032957008189
815 => 0.050064856170358
816 => 0.051291500167809
817 => 0.052655780571553
818 => 0.053933609202315
819 => 0.055233471369542
820 => 0.053666436792465
821 => 0.052870793275482
822 => 0.053691694290814
823 => 0.053256112657061
824 => 0.055759093926512
825 => 0.055932394918968
826 => 0.058435195194384
827 => 0.060810650683667
828 => 0.059318669651554
829 => 0.060725540564535
830 => 0.062247186160793
831 => 0.065182687394074
901 => 0.064194113850884
902 => 0.063436882009722
903 => 0.062721301578742
904 => 0.064210310860417
905 => 0.066125897513788
906 => 0.066538496531663
907 => 0.067207064565577
908 => 0.066504147026526
909 => 0.067350733778486
910 => 0.070339557021971
911 => 0.069531950598508
912 => 0.068385019647981
913 => 0.070744408549077
914 => 0.071598262220491
915 => 0.077591054453117
916 => 0.085157202196707
917 => 0.082024767348856
918 => 0.080080363955754
919 => 0.080537344874998
920 => 0.083300245900693
921 => 0.084187602020051
922 => 0.081775462197639
923 => 0.082627470761669
924 => 0.087322121717113
925 => 0.089840651332273
926 => 0.086420149831231
927 => 0.076983121848914
928 => 0.068281751064729
929 => 0.070589746424528
930 => 0.070328091376161
1001 => 0.075371908158152
1002 => 0.069512689452402
1003 => 0.069611343668603
1004 => 0.07475946124015
1005 => 0.07338603173314
1006 => 0.071161251827345
1007 => 0.068297994420131
1008 => 0.06300499828364
1009 => 0.058316843999434
1010 => 0.067511394168213
1011 => 0.067114908445731
1012 => 0.066540738363685
1013 => 0.067818491749587
1014 => 0.074022899494904
1015 => 0.073879867814666
1016 => 0.072969973240399
1017 => 0.073660120255538
1018 => 0.07104026571878
1019 => 0.071715461885881
1020 => 0.068280372723141
1021 => 0.069833176486695
1022 => 0.071156478448867
1023 => 0.071422150909593
1024 => 0.072020724529182
1025 => 0.066905978486433
1026 => 0.069202349298573
1027 => 0.070551252009858
1028 => 0.064456860486772
1029 => 0.070430785484409
1030 => 0.066816942137112
1031 => 0.065590349426934
1101 => 0.067241794919887
1102 => 0.0665982250052
1103 => 0.066044921384245
1104 => 0.065736168456789
1105 => 0.066948807763427
1106 => 0.066892236690355
1107 => 0.064908123421549
1108 => 0.062319928545195
1109 => 0.0631886117003
1110 => 0.062873010966103
1111 => 0.061729233192066
1112 => 0.062500001311512
1113 => 0.05910592859029
1114 => 0.053266602881976
1115 => 0.057124240308272
1116 => 0.056975725463662
1117 => 0.056900837544397
1118 => 0.059799745452991
1119 => 0.059521082346764
1120 => 0.059015306080286
1121 => 0.061719944214297
1122 => 0.060732714912866
1123 => 0.063775122999399
1124 => 0.065779049735806
1125 => 0.065270789095215
1126 => 0.067155491876625
1127 => 0.063208624405701
1128 => 0.064519615458703
1129 => 0.064789808897772
1130 => 0.061686569399553
1201 => 0.059566675077228
1202 => 0.059425302294493
1203 => 0.055749697679012
1204 => 0.057713175996158
1205 => 0.059440955660993
1206 => 0.058613483282656
1207 => 0.058351530247708
1208 => 0.059689791492574
1209 => 0.059793785852732
1210 => 0.05742270342029
1211 => 0.05791572654041
1212 => 0.059971714909585
1213 => 0.057863920908629
1214 => 0.053768821470969
1215 => 0.05275318019125
1216 => 0.052617674922553
1217 => 0.049863175220429
1218 => 0.052821050198039
1219 => 0.051529858504191
1220 => 0.055608717594204
1221 => 0.053278895157349
1222 => 0.053178461168653
1223 => 0.053026640464276
1224 => 0.050655728783709
1225 => 0.051174807762455
1226 => 0.05290030534577
1227 => 0.053515982322618
1228 => 0.05345176216984
1229 => 0.052891849466269
1230 => 0.053148174634747
1231 => 0.052322461957472
]
'min_raw' => 0.028890768009147
'max_raw' => 0.089840651332273
'avg_raw' => 0.05936570967071
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.02889'
'max' => '$0.08984'
'avg' => '$0.059365'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016458119532827
'max_diff' => 0.056112074054879
'year' => 2033
]
8 => [
'items' => [
101 => 0.052030885625403
102 => 0.051110590517005
103 => 0.049758010945672
104 => 0.049946095430919
105 => 0.047266281378411
106 => 0.045806176454109
107 => 0.045402038654936
108 => 0.0448616086998
109 => 0.045463081656398
110 => 0.047258689801902
111 => 0.045092805418905
112 => 0.041379548563382
113 => 0.041602721627481
114 => 0.042104125241833
115 => 0.041169762923604
116 => 0.040285467404486
117 => 0.041054290613196
118 => 0.03948093473251
119 => 0.042294257783217
120 => 0.042218165278942
121 => 0.043266798137515
122 => 0.043922529784094
123 => 0.042411280634372
124 => 0.04203120556007
125 => 0.042247713595842
126 => 0.038669318042143
127 => 0.042974366878006
128 => 0.04301159711911
129 => 0.042692809191646
130 => 0.044985114793273
131 => 0.049822594600751
201 => 0.048002540110003
202 => 0.047297759999748
203 => 0.04595797249496
204 => 0.047743159796379
205 => 0.04760608526489
206 => 0.046986182249525
207 => 0.046611262971617
208 => 0.047302063236815
209 => 0.046525665174011
210 => 0.04638620274794
211 => 0.045541212182562
212 => 0.045239588995344
213 => 0.045016279195492
214 => 0.044770437047823
215 => 0.045312703565535
216 => 0.044083856295299
217 => 0.042601986952779
218 => 0.042478785550996
219 => 0.042818955453295
220 => 0.042668455594199
221 => 0.042478065015573
222 => 0.042114557551187
223 => 0.042006712651611
224 => 0.042357156256324
225 => 0.041961525858735
226 => 0.04254530006148
227 => 0.042386545780033
228 => 0.041499757268946
301 => 0.040394490452975
302 => 0.040384651259937
303 => 0.040146523337437
304 => 0.03984323162536
305 => 0.039758862809434
306 => 0.040989542466981
307 => 0.043537012526958
308 => 0.043036883198393
309 => 0.043398277893597
310 => 0.045175982108523
311 => 0.045741060821018
312 => 0.045339981335512
313 => 0.044790958998247
314 => 0.044815113194751
315 => 0.046691288721551
316 => 0.046808303487794
317 => 0.047103962051695
318 => 0.047483966859408
319 => 0.045404697797453
320 => 0.044717179808918
321 => 0.044391395643905
322 => 0.043388106510002
323 => 0.044470067825407
324 => 0.043839655301123
325 => 0.043924719488607
326 => 0.043869321324915
327 => 0.043899572468299
328 => 0.042293471402089
329 => 0.042878650216429
330 => 0.041905676940291
331 => 0.040602974944918
401 => 0.040598607831044
402 => 0.040917442298874
403 => 0.040727787081415
404 => 0.040217429767712
405 => 0.040289923615305
406 => 0.03965480122878
407 => 0.040367038972291
408 => 0.040387463402266
409 => 0.040113213075162
410 => 0.041210513588909
411 => 0.041660078504703
412 => 0.041479561064392
413 => 0.041647412919868
414 => 0.043057665829943
415 => 0.043287598587934
416 => 0.043389719530527
417 => 0.043252890995884
418 => 0.041673189754227
419 => 0.041743256221703
420 => 0.041229154973196
421 => 0.040794793592863
422 => 0.040812165770151
423 => 0.04103548398267
424 => 0.042010727714176
425 => 0.044063070653373
426 => 0.044140955567672
427 => 0.044235354355866
428 => 0.043851387043251
429 => 0.043735578827694
430 => 0.043888359756651
501 => 0.044659111857548
502 => 0.046641695518209
503 => 0.045940918040221
504 => 0.045371175042365
505 => 0.045870993253094
506 => 0.045794050157257
507 => 0.045144572995597
508 => 0.04512634433482
509 => 0.043879790011186
510 => 0.043418967260407
511 => 0.043033869277871
512 => 0.04261335233418
513 => 0.042364055794104
514 => 0.042747088582912
515 => 0.042834692713623
516 => 0.041997184826627
517 => 0.041883035596327
518 => 0.042566962615711
519 => 0.04226599183385
520 => 0.042575547746711
521 => 0.042647367373816
522 => 0.042635802759706
523 => 0.042321554697168
524 => 0.042521847041217
525 => 0.042048095937519
526 => 0.041532962767361
527 => 0.041204339898731
528 => 0.040917572860354
529 => 0.041076687880244
530 => 0.040509471887591
531 => 0.040328008075738
601 => 0.042453992501774
602 => 0.04402448005547
603 => 0.044001644544458
604 => 0.043862639243989
605 => 0.043656105563687
606 => 0.044644002632415
607 => 0.044299839047295
608 => 0.044550246811299
609 => 0.044613986096819
610 => 0.044806905717043
611 => 0.044875857899272
612 => 0.044667436514208
613 => 0.043967948889405
614 => 0.042224892233684
615 => 0.041413494655154
616 => 0.041145719939344
617 => 0.041155453041687
618 => 0.040886970628582
619 => 0.040966050731779
620 => 0.040859469795927
621 => 0.040657631288121
622 => 0.041064224921153
623 => 0.041111081049678
624 => 0.041016177237296
625 => 0.04103853052068
626 => 0.040252767488107
627 => 0.040312507344886
628 => 0.039979868230967
629 => 0.039917502407132
630 => 0.039076619693346
701 => 0.037586874077976
702 => 0.038412337761997
703 => 0.037415293709458
704 => 0.037037698019079
705 => 0.038825177289156
706 => 0.038645763947398
707 => 0.038338686295412
708 => 0.037884454447536
709 => 0.037715975436676
710 => 0.036692350300659
711 => 0.036631869066796
712 => 0.037139205324409
713 => 0.036905087097895
714 => 0.036576296440364
715 => 0.03538545000776
716 => 0.034046544341809
717 => 0.034086957487803
718 => 0.034512838468917
719 => 0.035751144859379
720 => 0.035267317129708
721 => 0.034916294560547
722 => 0.034850558585043
723 => 0.035673381946063
724 => 0.036837849388729
725 => 0.037384191459338
726 => 0.03684278306002
727 => 0.036220842242382
728 => 0.036258696898156
729 => 0.036510526963831
730 => 0.036536990743048
731 => 0.036132171207315
801 => 0.03624612553538
802 => 0.036073018490847
803 => 0.035010660878081
804 => 0.034991446197638
805 => 0.034730726506635
806 => 0.034722832018008
807 => 0.034279282784036
808 => 0.034217227180092
809 => 0.033336533254527
810 => 0.033916208663321
811 => 0.033527392833427
812 => 0.032941355665394
813 => 0.032840322636735
814 => 0.032837285461892
815 => 0.033439014597949
816 => 0.033909177108022
817 => 0.033534156451254
818 => 0.033448771517178
819 => 0.034360459227907
820 => 0.034244438656499
821 => 0.034143965589912
822 => 0.036733584101229
823 => 0.034683698979069
824 => 0.033789832062455
825 => 0.032683502012421
826 => 0.033043728655313
827 => 0.0331196337018
828 => 0.03045910936245
829 => 0.029379734969323
830 => 0.029009334352967
831 => 0.028796163561559
901 => 0.028893308168034
902 => 0.027921744616231
903 => 0.02857465139122
904 => 0.027733359479581
905 => 0.027592314152794
906 => 0.029096648306874
907 => 0.029305967616222
908 => 0.028412946412133
909 => 0.028986410592158
910 => 0.028778464508733
911 => 0.027747781014752
912 => 0.027708416486477
913 => 0.027191255739474
914 => 0.026381999312468
915 => 0.026012147410077
916 => 0.025819525328111
917 => 0.02589900495326
918 => 0.025858817622668
919 => 0.025596568106797
920 => 0.025873849457939
921 => 0.025165510186337
922 => 0.024883443780907
923 => 0.024756040929466
924 => 0.024127349055431
925 => 0.025127877407565
926 => 0.02532499409726
927 => 0.025522499167725
928 => 0.02724164596369
929 => 0.027155762248022
930 => 0.027932109210595
1001 => 0.027901941795239
1002 => 0.027680515065527
1003 => 0.026746352115798
1004 => 0.027118692817707
1005 => 0.025972686011825
1006 => 0.026831352231679
1007 => 0.026439492827697
1008 => 0.026698864173018
1009 => 0.026232491107559
1010 => 0.026490601218056
1011 => 0.025371737776933
1012 => 0.024326958838447
1013 => 0.024747408382292
1014 => 0.02520448512069
1015 => 0.026195543950523
1016 => 0.025605277487532
1017 => 0.02581755962807
1018 => 0.02510644999287
1019 => 0.023639227697028
1020 => 0.023647532015883
1021 => 0.023421831830843
1022 => 0.023226793918201
1023 => 0.025673076691361
1024 => 0.025368842758511
1025 => 0.024884085803667
1026 => 0.025532952251202
1027 => 0.025704522838825
1028 => 0.025709407212255
1029 => 0.026182803422709
1030 => 0.026435455065089
1031 => 0.026479986012114
1101 => 0.027224885177665
1102 => 0.027474565552501
1103 => 0.028502963680358
1104 => 0.026414019338412
1105 => 0.026370998904358
1106 => 0.025542083132777
1107 => 0.025016371645801
1108 => 0.025578079048056
1109 => 0.026075675125748
1110 => 0.025557544829955
1111 => 0.025625201708258
1112 => 0.024929654118957
1113 => 0.025178279653576
1114 => 0.025392429457466
1115 => 0.025274188522902
1116 => 0.025097176120932
1117 => 0.026034877921888
1118 => 0.025981969111395
1119 => 0.026855178586116
1120 => 0.027535907815469
1121 => 0.028755896289376
1122 => 0.027482774717417
1123 => 0.027436377107135
1124 => 0.027889921190053
1125 => 0.027474496117265
1126 => 0.027737030423281
1127 => 0.028713597953912
1128 => 0.028734231286979
1129 => 0.028388596373555
1130 => 0.028367564457661
1201 => 0.028433947423616
1202 => 0.028822754528648
1203 => 0.028686893379315
1204 => 0.028844115340907
1205 => 0.029040723811347
1206 => 0.029853979805349
1207 => 0.030050053072237
1208 => 0.029573696686031
1209 => 0.029616706334169
1210 => 0.029438535969453
1211 => 0.029266425629605
1212 => 0.029653304538886
1213 => 0.030360333349722
1214 => 0.030355934960185
1215 => 0.030519951901622
1216 => 0.030622133097348
1217 => 0.030183496604086
1218 => 0.029897960376082
1219 => 0.030007453135041
1220 => 0.030182534441058
1221 => 0.029950676627187
1222 => 0.028519542792985
1223 => 0.028953657377099
1224 => 0.028881399483183
1225 => 0.028778495455388
1226 => 0.029215001026623
1227 => 0.029172898999415
1228 => 0.027911779827732
1229 => 0.027992512585412
1230 => 0.027916689454122
1231 => 0.028161689503273
]
'min_raw' => 0.023226793918201
'max_raw' => 0.052030885625403
'avg_raw' => 0.037628839771802
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023226'
'max' => '$0.05203'
'avg' => '$0.037628'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056639740909457
'max_diff' => -0.03780976570687
'year' => 2034
]
9 => [
'items' => [
101 => 0.027461265310589
102 => 0.02767671107483
103 => 0.027811836638483
104 => 0.027891426633558
105 => 0.028178960271141
106 => 0.028145221517471
107 => 0.028176863022841
108 => 0.02860319950131
109 => 0.030759463108393
110 => 0.030876823778999
111 => 0.030298896914286
112 => 0.030529767297635
113 => 0.030086546647407
114 => 0.030384083639226
115 => 0.030587650892408
116 => 0.02966776961901
117 => 0.029613300219979
118 => 0.029168250240465
119 => 0.029407394890537
120 => 0.029026898557164
121 => 0.029120259048177
122 => 0.028859214976284
123 => 0.029329042332336
124 => 0.029854382320192
125 => 0.029987103947429
126 => 0.029637970486421
127 => 0.029385174851635
128 => 0.028941348993009
129 => 0.029679441287208
130 => 0.029895281966987
131 => 0.029678307568003
201 => 0.029628029858774
202 => 0.029532753690636
203 => 0.029648243148245
204 => 0.02989410645229
205 => 0.029778161858485
206 => 0.029854745305374
207 => 0.029562888178339
208 => 0.030183641811017
209 => 0.031169547972206
210 => 0.031172717821726
211 => 0.031056772602936
212 => 0.031009330317481
213 => 0.031128297148104
214 => 0.031192831773442
215 => 0.031577548688891
216 => 0.031990365266966
217 => 0.033916800110858
218 => 0.033375864915447
219 => 0.035085112513069
220 => 0.036436905444766
221 => 0.036842249038241
222 => 0.036469352005134
223 => 0.035193691398376
224 => 0.035131101403148
225 => 0.037037476919661
226 => 0.036498838518716
227 => 0.036434769194857
228 => 0.035753179835826
301 => 0.036156083563497
302 => 0.036067962608014
303 => 0.03592885936876
304 => 0.036697571614641
305 => 0.038136532315514
306 => 0.037912256795795
307 => 0.037744845524166
308 => 0.037011298064579
309 => 0.037453057479007
310 => 0.037295755412874
311 => 0.037971624915341
312 => 0.037571254794422
313 => 0.036494757803063
314 => 0.036666193497118
315 => 0.036640281336842
316 => 0.037173551759158
317 => 0.037013477214964
318 => 0.036609024212983
319 => 0.038131614104273
320 => 0.038032745585823
321 => 0.038172918540495
322 => 0.038234627010135
323 => 0.03916140064592
324 => 0.039541070151052
325 => 0.039627261775767
326 => 0.03998791844095
327 => 0.039618288309387
328 => 0.041097072377456
329 => 0.042080377493279
330 => 0.043222536985726
331 => 0.044891538987721
401 => 0.045519099179603
402 => 0.045405736048013
403 => 0.046671154317869
404 => 0.048945082820133
405 => 0.045865362012425
406 => 0.049108315501088
407 => 0.048081633868276
408 => 0.045647390186091
409 => 0.045490653590807
410 => 0.047139151674532
411 => 0.050795361762174
412 => 0.049879522603612
413 => 0.050796859746947
414 => 0.049726737242015
415 => 0.049673596639944
416 => 0.050744886285441
417 => 0.053248012935103
418 => 0.052058871292148
419 => 0.050353945157479
420 => 0.05161283608373
421 => 0.050522268258556
422 => 0.048064913717725
423 => 0.049878822278667
424 => 0.048665913281107
425 => 0.049019904608384
426 => 0.051569258914658
427 => 0.051262513859772
428 => 0.051659470364622
429 => 0.050958852523723
430 => 0.050304364983031
501 => 0.049082715385446
502 => 0.048721045166198
503 => 0.048820997803267
504 => 0.048720995634635
505 => 0.048037493912325
506 => 0.047889891780469
507 => 0.047643881760778
508 => 0.047720130552709
509 => 0.04725755974292
510 => 0.048130526432998
511 => 0.048292556743233
512 => 0.048927829100891
513 => 0.048993785184498
514 => 0.05076300965804
515 => 0.049788550548623
516 => 0.050442301849972
517 => 0.050383824180233
518 => 0.045700147627957
519 => 0.046345516932432
520 => 0.047349509042152
521 => 0.046897211957603
522 => 0.046257769701268
523 => 0.045741385794552
524 => 0.044959011372914
525 => 0.0460601883472
526 => 0.047508118971271
527 => 0.049030507094574
528 => 0.050859556673901
529 => 0.050451334100279
530 => 0.048996314284949
531 => 0.049061585410972
601 => 0.049465065828805
602 => 0.04894252202765
603 => 0.048788413659422
604 => 0.049443893705506
605 => 0.049448407636338
606 => 0.04884715784158
607 => 0.048178978722258
608 => 0.048176179027351
609 => 0.048057283006912
610 => 0.049747888579922
611 => 0.050677550705575
612 => 0.050784134970055
613 => 0.050670376735356
614 => 0.050714157764989
615 => 0.050173207857779
616 => 0.051409658931949
617 => 0.052544348709946
618 => 0.052240227610332
619 => 0.051784306848648
620 => 0.051421144001848
621 => 0.052154677985107
622 => 0.052122014871522
623 => 0.052534438184617
624 => 0.052515728280863
625 => 0.052377045832694
626 => 0.052240232563119
627 => 0.052782681712314
628 => 0.052626465068813
629 => 0.052470005777716
630 => 0.052156202716701
701 => 0.05219885376441
702 => 0.051743011723874
703 => 0.051532118338009
704 => 0.048360787818591
705 => 0.047513304677588
706 => 0.047779940125858
707 => 0.047867723438615
708 => 0.047498897689571
709 => 0.048027699070138
710 => 0.047945285935116
711 => 0.048265907233416
712 => 0.048065596965997
713 => 0.048073817769243
714 => 0.048662887555071
715 => 0.048833897019978
716 => 0.048746920225911
717 => 0.048807835791086
718 => 0.050211609279691
719 => 0.050012037579761
720 => 0.049906019091784
721 => 0.049935386937497
722 => 0.050294081161078
723 => 0.050394495959703
724 => 0.049969031401909
725 => 0.050169682946946
726 => 0.051024031759241
727 => 0.051323005491589
728 => 0.052277186129712
729 => 0.051871833235429
730 => 0.052615876016148
731 => 0.054902809861201
801 => 0.056729770860415
802 => 0.055049622023182
803 => 0.058404603236158
804 => 0.061016937353931
805 => 0.060916671619421
806 => 0.06046115074161
807 => 0.057487077801021
808 => 0.054750291540162
809 => 0.057039729457453
810 => 0.057045565705532
811 => 0.056848900958034
812 => 0.055627433101729
813 => 0.05680639652432
814 => 0.056899978359439
815 => 0.056847597417191
816 => 0.055911100875645
817 => 0.054481243750195
818 => 0.054760634409914
819 => 0.055218282009948
820 => 0.054351859627793
821 => 0.054074985178311
822 => 0.054589747457417
823 => 0.056248418775677
824 => 0.055934856570989
825 => 0.05592666819462
826 => 0.057268220277345
827 => 0.056307958511174
828 => 0.054764158420865
829 => 0.054374328537841
830 => 0.05299069507398
831 => 0.053946375635802
901 => 0.053980768877857
902 => 0.053457352400965
903 => 0.054806630783252
904 => 0.054794196945424
905 => 0.056075135955821
906 => 0.058523810244979
907 => 0.057799616765731
908 => 0.056957458541393
909 => 0.057049024490893
910 => 0.05805327695289
911 => 0.057446082989513
912 => 0.05766443417225
913 => 0.058052946452224
914 => 0.058287345556949
915 => 0.05701529806692
916 => 0.05671872294793
917 => 0.056112034338197
918 => 0.055953760604297
919 => 0.056447895817951
920 => 0.056317708647208
921 => 0.053977878259039
922 => 0.053733352964782
923 => 0.053740852206456
924 => 0.053125981727502
925 => 0.052188156661275
926 => 0.054652704940695
927 => 0.054454767222527
928 => 0.054236259300831
929 => 0.05426302527445
930 => 0.055332802151255
1001 => 0.054712277537681
1002 => 0.056362043924852
1003 => 0.056022901552167
1004 => 0.055675061457323
1005 => 0.055626979360748
1006 => 0.055493090600555
1007 => 0.055033936224042
1008 => 0.054479479723502
1009 => 0.054113379515646
1010 => 0.049916732180765
1011 => 0.050695605515344
1012 => 0.05159162829024
1013 => 0.051900931761548
1014 => 0.051371846770727
1015 => 0.055054827724291
1016 => 0.055727743834594
1017 => 0.053689437043253
1018 => 0.053308153066111
1019 => 0.055079824638355
1020 => 0.054011290102251
1021 => 0.054492451138431
1022 => 0.053452444159224
1023 => 0.055565658048906
1024 => 0.055549558899668
1025 => 0.054727470967482
1026 => 0.055422294058351
1027 => 0.055301551447556
1028 => 0.05437341619683
1029 => 0.055595081591839
1030 => 0.055595687522633
1031 => 0.054804445761636
1101 => 0.053880448609886
1102 => 0.053715259742992
1103 => 0.053590812121789
1104 => 0.054461844652393
1105 => 0.055242809695685
1106 => 0.056695992023599
1107 => 0.057061356587597
1108 => 0.058487398804577
1109 => 0.0576382600971
1110 => 0.058014672287937
1111 => 0.058423320967846
1112 => 0.058619242172552
1113 => 0.058299999083196
1114 => 0.06051522962856
1115 => 0.060702262959498
1116 => 0.06076497361753
1117 => 0.060018010341488
1118 => 0.060681488559545
1119 => 0.060371069073405
1120 => 0.061178694339324
1121 => 0.061305340293298
1122 => 0.061198075675843
1123 => 0.061238275100604
1124 => 0.059347966623583
1125 => 0.059249944156878
1126 => 0.057913400867996
1127 => 0.058458052137444
1128 => 0.057439852695025
1129 => 0.057762734226833
1130 => 0.057905057329525
1201 => 0.057830715817444
1202 => 0.058488845903031
1203 => 0.057929300883188
1204 => 0.056452569578104
1205 => 0.054975435938564
1206 => 0.054956891728967
1207 => 0.05456798851525
1208 => 0.05428688272291
1209 => 0.054341033671278
1210 => 0.054531868676348
1211 => 0.054275791045496
1212 => 0.054330438191504
1213 => 0.055237944927262
1214 => 0.055419938931076
1215 => 0.054801452196467
1216 => 0.052318138709804
1217 => 0.051708727351256
1218 => 0.052146760150628
1219 => 0.051937408685454
1220 => 0.041917542357709
1221 => 0.044271561324635
1222 => 0.042872883189418
1223 => 0.043517458424213
1224 => 0.042089770234104
1225 => 0.042771137869973
1226 => 0.04264531414719
1227 => 0.046430506985521
1228 => 0.046371406405713
1229 => 0.046399694725734
1230 => 0.045049419506305
1231 => 0.047200444594823
]
'min_raw' => 0.027461265310589
'max_raw' => 0.061305340293298
'avg_raw' => 0.044383302801943
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027461'
'max' => '$0.0613053'
'avg' => '$0.044383'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042344713923876
'max_diff' => 0.0092744546678945
'year' => 2035
]
10 => [
'items' => [
101 => 0.048260116901787
102 => 0.048063999760033
103 => 0.048113358219435
104 => 0.047265216354517
105 => 0.046407906592933
106 => 0.045457018128309
107 => 0.047223651362213
108 => 0.047027231904038
109 => 0.047477747471602
110 => 0.04862353540534
111 => 0.048792257031008
112 => 0.049019020606912
113 => 0.048937742007081
114 => 0.050874128004653
115 => 0.050639618883661
116 => 0.051204718392374
117 => 0.050042265828749
118 => 0.048726840411998
119 => 0.048976859779226
120 => 0.048952780903633
121 => 0.04864622918089
122 => 0.048369487992451
123 => 0.047908791885046
124 => 0.049366502539069
125 => 0.049307322148608
126 => 0.050265383880494
127 => 0.050096037163268
128 => 0.048965098339461
129 => 0.049005490040802
130 => 0.04927714364391
131 => 0.050217339865953
201 => 0.050496454118095
202 => 0.050367157275723
203 => 0.050673193311148
204 => 0.050915071715453
205 => 0.050703569514703
206 => 0.053697994658653
207 => 0.052454500568293
208 => 0.053060570935758
209 => 0.053205115147225
210 => 0.05283486818899
211 => 0.052915161496682
212 => 0.053036783979218
213 => 0.053775251877052
214 => 0.055713205318376
215 => 0.056571511705444
216 => 0.059153768819027
217 => 0.056500241308199
218 => 0.056342791967095
219 => 0.056807934449946
220 => 0.058323992735295
221 => 0.059552615579456
222 => 0.059960220657817
223 => 0.060014092397749
224 => 0.060778786621827
225 => 0.061217095090365
226 => 0.060685932629569
227 => 0.060235828059072
228 => 0.058623609356587
229 => 0.058810228061326
301 => 0.060095845876108
302 => 0.061911856761999
303 => 0.063470183025824
304 => 0.062924511481386
305 => 0.067087600181371
306 => 0.067500353421282
307 => 0.067443324269436
308 => 0.068383637575871
309 => 0.066517307154072
310 => 0.065719414740304
311 => 0.060333145776117
312 => 0.061846467651998
313 => 0.064046169872868
314 => 0.063755031035475
315 => 0.062157548484471
316 => 0.063468971192059
317 => 0.063035373832951
318 => 0.062693377605851
319 => 0.064260128621425
320 => 0.062537421521217
321 => 0.064028984551741
322 => 0.06211603953685
323 => 0.062927004063037
324 => 0.062466661376033
325 => 0.062764559512002
326 => 0.061023053096183
327 => 0.061962727685481
328 => 0.060983959543905
329 => 0.060983495480367
330 => 0.060961889119393
331 => 0.062113405497434
401 => 0.062150956405181
402 => 0.061299984061964
403 => 0.06117734565262
404 => 0.061630804129357
405 => 0.061099923014062
406 => 0.061348318946583
407 => 0.061107446673813
408 => 0.061053221251666
409 => 0.060621143862306
410 => 0.060434993042754
411 => 0.060507987575616
412 => 0.060258819603697
413 => 0.060108686887816
414 => 0.060932023943419
415 => 0.060492148167933
416 => 0.060864606672119
417 => 0.060440143198588
418 => 0.058968767869397
419 => 0.058122564358068
420 => 0.055343272757791
421 => 0.056131476407929
422 => 0.056654056243426
423 => 0.056481343610912
424 => 0.056852397176469
425 => 0.056875176851822
426 => 0.056754543555216
427 => 0.056614865651828
428 => 0.056546878173132
429 => 0.057053601138239
430 => 0.057347770874994
501 => 0.056706504121134
502 => 0.056556264292981
503 => 0.05720462038644
504 => 0.057600117228908
505 => 0.060520243703207
506 => 0.060303911302107
507 => 0.060846863175779
508 => 0.060785735127079
509 => 0.061354835189704
510 => 0.062285073272465
511 => 0.060393639151554
512 => 0.060721926714073
513 => 0.06064143818501
514 => 0.061520190840092
515 => 0.061522934209962
516 => 0.06099607809629
517 => 0.061281695342776
518 => 0.061122271631287
519 => 0.061410371825355
520 => 0.060301022050999
521 => 0.061652090329256
522 => 0.062418058982111
523 => 0.062428694457599
524 => 0.062791757519949
525 => 0.063160650618492
526 => 0.063868708797326
527 => 0.063140903260183
528 => 0.061831651949304
529 => 0.061926175665094
530 => 0.061158562100562
531 => 0.061171465823262
601 => 0.061102584740204
602 => 0.061309302055588
603 => 0.060346384877002
604 => 0.060572379614165
605 => 0.060255985658714
606 => 0.060721238935405
607 => 0.060220703318807
608 => 0.060641399371005
609 => 0.060822957840838
610 => 0.061492912503198
611 => 0.060121750470453
612 => 0.057325858266177
613 => 0.057913588704432
614 => 0.057044289221023
615 => 0.057124746197869
616 => 0.057287282095731
617 => 0.056760450072324
618 => 0.056860953020005
619 => 0.056857362347485
620 => 0.05682641987155
621 => 0.056689370515044
622 => 0.056490621833721
623 => 0.057282375408494
624 => 0.057416909769178
625 => 0.0577159629877
626 => 0.058605742516283
627 => 0.058516832558931
628 => 0.05866184838821
629 => 0.058345279647123
630 => 0.057139430913827
701 => 0.057204914301558
702 => 0.05638833540725
703 => 0.057695081229452
704 => 0.057385626570553
705 => 0.057186119138838
706 => 0.057131681687672
707 => 0.058023666807603
708 => 0.058290562735641
709 => 0.058124251104007
710 => 0.057783141095442
711 => 0.058438173152009
712 => 0.058613432096762
713 => 0.058652666111191
714 => 0.059813257325488
715 => 0.05871753026751
716 => 0.058981282660956
717 => 0.061039003543178
718 => 0.059172934649074
719 => 0.060161432960583
720 => 0.060113051112132
721 => 0.06061873339934
722 => 0.06007157040482
723 => 0.060078353145906
724 => 0.060527364759063
725 => 0.059896808928056
726 => 0.059740674436772
727 => 0.05952497575532
728 => 0.059995945935092
729 => 0.060278271257717
730 => 0.062553606012971
731 => 0.064023576032736
801 => 0.063959760757408
802 => 0.064542912916717
803 => 0.064280197527887
804 => 0.063431820236535
805 => 0.064879896824283
806 => 0.064421664801822
807 => 0.064459440893002
808 => 0.064458034865001
809 => 0.064762719100599
810 => 0.064546822395778
811 => 0.064121267829233
812 => 0.064403770810306
813 => 0.065242703667427
814 => 0.067846776997537
815 => 0.069304050932449
816 => 0.067759047276848
817 => 0.068824770110058
818 => 0.068185716166005
819 => 0.068069581054162
820 => 0.068738933749717
821 => 0.069409458058557
822 => 0.069366748558841
823 => 0.068879982342426
824 => 0.06860502045801
825 => 0.070687123965803
826 => 0.072221182362637
827 => 0.072116569864431
828 => 0.072578295409705
829 => 0.073933935891266
830 => 0.07405787866746
831 => 0.074042264726452
901 => 0.073735059623563
902 => 0.075069863729821
903 => 0.076183380798905
904 => 0.073663950518253
905 => 0.074623316587361
906 => 0.075054006924628
907 => 0.075686388119801
908 => 0.076753321195452
909 => 0.07791229350563
910 => 0.078076184897774
911 => 0.077959896112123
912 => 0.077195522718712
913 => 0.078463684049925
914 => 0.079206543215706
915 => 0.079648898848899
916 => 0.080770639133719
917 => 0.075056666721527
918 => 0.071012033045322
919 => 0.070380405091564
920 => 0.071664845373073
921 => 0.072003542032087
922 => 0.071867013833528
923 => 0.067314410908953
924 => 0.070356436579349
925 => 0.073629400419911
926 => 0.073755128290592
927 => 0.075393642423624
928 => 0.075927209790303
929 => 0.07724642843235
930 => 0.077163910947106
1001 => 0.077485119693091
1002 => 0.077411279364949
1003 => 0.079854854105083
1004 => 0.082550479917811
1005 => 0.082457138967482
1006 => 0.082069610863705
1007 => 0.082645156181174
1008 => 0.085427330900728
1009 => 0.085171192835993
1010 => 0.085420009148094
1011 => 0.088700349938944
1012 => 0.092965259590085
1013 => 0.090983780867202
1014 => 0.095283019540715
1015 => 0.097989162392842
1016 => 0.1026691566352
1017 => 0.1020831983066
1018 => 0.10390508572177
1019 => 0.10103421060521
1020 => 0.09444210103801
1021 => 0.093398874465419
1022 => 0.095487440482451
1023 => 0.10062197623603
1024 => 0.09532573567931
1025 => 0.096397158246096
1026 => 0.096088588474783
1027 => 0.096072146103007
1028 => 0.096699684557744
1029 => 0.095789407298943
1030 => 0.092080773990834
1031 => 0.093780418780827
1101 => 0.093124104303765
1102 => 0.093852334147551
1103 => 0.097782290269635
1104 => 0.096044762989609
1105 => 0.094214419145356
1106 => 0.096510076511864
1107 => 0.099433237212886
1108 => 0.099250311069641
1109 => 0.098895357894549
1110 => 0.1008962103578
1111 => 0.10420103243232
1112 => 0.10509431255921
1113 => 0.10575371368657
1114 => 0.10584463396136
1115 => 0.10678116929834
1116 => 0.10174518275413
1117 => 0.10973742273309
1118 => 0.11111746179628
1119 => 0.11085807164916
1120 => 0.11239192698698
1121 => 0.11194062783644
1122 => 0.11128676617397
1123 => 0.1137182531448
1124 => 0.11093074954363
1125 => 0.10697423911871
1126 => 0.1048036192487
1127 => 0.10766206659244
1128 => 0.1094076206392
1129 => 0.11056132082602
1130 => 0.11091042980547
1201 => 0.10213611205395
1202 => 0.097407241431848
1203 => 0.100438393284
1204 => 0.10413660774255
1205 => 0.10172463898609
1206 => 0.10181918359488
1207 => 0.098380350002404
1208 => 0.1044408682105
1209 => 0.10355790168456
1210 => 0.10813873358307
1211 => 0.10704548128702
1212 => 0.11078097187338
1213 => 0.10979729201207
1214 => 0.11388049211957
1215 => 0.11550939119069
1216 => 0.11824456624898
1217 => 0.12025657215603
1218 => 0.12143806050819
1219 => 0.12136712837918
1220 => 0.12604877384559
1221 => 0.12328817107828
1222 => 0.11982020337842
1223 => 0.11975747878403
1224 => 0.12155358839727
1225 => 0.12531774140801
1226 => 0.12629373151749
1227 => 0.12683917684167
1228 => 0.1260038083406
1229 => 0.12300737189087
1230 => 0.12171352582415
1231 => 0.12281592015932
]
'min_raw' => 0.045457018128309
'max_raw' => 0.12683917684167
'avg_raw' => 0.086148097484992
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045457'
'max' => '$0.126839'
'avg' => '$0.086148'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.01799575281772
'max_diff' => 0.065533836548377
'year' => 2036
]
11 => [
'items' => [
101 => 0.12146778661723
102 => 0.12379504333035
103 => 0.12699086387266
104 => 0.12633093956831
105 => 0.12853696757635
106 => 0.13081997448376
107 => 0.1340847768976
108 => 0.13493831714386
109 => 0.13634918671371
110 => 0.13780143494759
111 => 0.13826785794112
112 => 0.13915840415833
113 => 0.13915371054018
114 => 0.14183743150643
115 => 0.14479765884012
116 => 0.14591507612916
117 => 0.14848451557058
118 => 0.14408444057105
119 => 0.14742194800261
120 => 0.15043246324911
121 => 0.14684320286326
122 => 0.15179016211474
123 => 0.15198224133242
124 => 0.1548824094725
125 => 0.15194253345754
126 => 0.15019684446428
127 => 0.15523658317772
128 => 0.15767515399087
129 => 0.1569406366162
130 => 0.15135092312737
131 => 0.14809747012279
201 => 0.13958255606556
202 => 0.14966883958326
203 => 0.1545815740638
204 => 0.1513382003319
205 => 0.15297396938649
206 => 0.16189819494843
207 => 0.1652959622416
208 => 0.16458925039681
209 => 0.16470867306511
210 => 0.16654204662267
211 => 0.17467223463414
212 => 0.16980043752138
213 => 0.17352474387133
214 => 0.17550010253035
215 => 0.17733492574079
216 => 0.17282917983779
217 => 0.16696727062053
218 => 0.16511055790522
219 => 0.15101571073417
220 => 0.1502820127281
221 => 0.14987016580397
222 => 0.14727352920421
223 => 0.14523328411543
224 => 0.14361080547138
225 => 0.13935293699628
226 => 0.14078984261559
227 => 0.13400368895248
228 => 0.13834522957962
301 => 0.12751436447589
302 => 0.13653463077517
303 => 0.13162530992965
304 => 0.13492178684166
305 => 0.13491028574426
306 => 0.1288404266003
307 => 0.1253394585208
308 => 0.12757041164078
309 => 0.12996217047867
310 => 0.13035022530327
311 => 0.1334512030679
312 => 0.13431661930671
313 => 0.13169436770069
314 => 0.12728991887051
315 => 0.12831297187898
316 => 0.12531872638424
317 => 0.12007142632669
318 => 0.12384012883709
319 => 0.12512692957229
320 => 0.12569525408438
321 => 0.12053513713426
322 => 0.11891371635695
323 => 0.11805048554014
324 => 0.12662381257023
325 => 0.12709347877813
326 => 0.1246906000544
327 => 0.13555183973594
328 => 0.13309360668857
329 => 0.13584005528421
330 => 0.1282201405416
331 => 0.12851123154634
401 => 0.12490384179264
402 => 0.12692373900884
403 => 0.12549614076075
404 => 0.12676055127478
405 => 0.12751843372353
406 => 0.13112523154007
407 => 0.13657581461255
408 => 0.13058649622239
409 => 0.12797686443118
410 => 0.12959586531732
411 => 0.13390747802656
412 => 0.14043979198845
413 => 0.13657253064794
414 => 0.1382887555605
415 => 0.13866367435436
416 => 0.13581209901567
417 => 0.14054493363863
418 => 0.14308129816256
419 => 0.14568308333742
420 => 0.14794214050438
421 => 0.1446438731241
422 => 0.14817349200906
423 => 0.14532924224939
424 => 0.14277765618182
425 => 0.14278152588464
426 => 0.14118087867173
427 => 0.13807942300219
428 => 0.13750746699187
429 => 0.14048285438768
430 => 0.14286883330889
501 => 0.14306535396091
502 => 0.14438635448771
503 => 0.14516810899209
504 => 0.15283036587868
505 => 0.15591218898398
506 => 0.15968058394122
507 => 0.16114858615216
508 => 0.16556674649919
509 => 0.16199872319352
510 => 0.16122675890743
511 => 0.15050974707477
512 => 0.15226465716199
513 => 0.15507443753527
514 => 0.15055607931822
515 => 0.15342193762424
516 => 0.15398771876102
517 => 0.15040254723498
518 => 0.15231754225316
519 => 0.14723188324133
520 => 0.13668666808151
521 => 0.14055667347761
522 => 0.14340630007888
523 => 0.13933953156245
524 => 0.14662905672247
525 => 0.14237066661033
526 => 0.14102096138355
527 => 0.13575528008925
528 => 0.1382404789655
529 => 0.14160174603025
530 => 0.13952487377347
531 => 0.14383469555023
601 => 0.1499385525736
602 => 0.15428852457942
603 => 0.15462246141621
604 => 0.15182572084195
605 => 0.15630751546076
606 => 0.15634016044167
607 => 0.15128467780299
608 => 0.14818822283585
609 => 0.14748470175231
610 => 0.14924223535241
611 => 0.15137620560153
612 => 0.15474088191336
613 => 0.15677408534035
614 => 0.16207560155019
615 => 0.16351003983019
616 => 0.1650860526054
617 => 0.16719209169742
618 => 0.16972093160473
619 => 0.16418797385448
620 => 0.16440780858062
621 => 0.1592555949326
622 => 0.15374971574751
623 => 0.15792799173146
624 => 0.16339053176772
625 => 0.16213741904783
626 => 0.16199641826807
627 => 0.16223354246927
628 => 0.16128873640131
629 => 0.15701541357207
630 => 0.15486937759965
701 => 0.15763831151624
702 => 0.15910987666184
703 => 0.1613921458687
704 => 0.1611108080161
705 => 0.16698968839515
706 => 0.16927404354234
707 => 0.16868960774262
708 => 0.168797157995
709 => 0.17293287387395
710 => 0.17753264050619
711 => 0.18184092894995
712 => 0.18622350500024
713 => 0.18094013851676
714 => 0.1782575708492
715 => 0.18102529593587
716 => 0.17955670204633
717 => 0.18799567814886
718 => 0.18857997454441
719 => 0.19701834041291
720 => 0.20502735444403
721 => 0.19999703622748
722 => 0.20474039973518
723 => 0.20987073410087
724 => 0.21976798145903
725 => 0.21643493673816
726 => 0.21388187671744
727 => 0.21146924733416
728 => 0.21648954608664
729 => 0.22294808023047
730 => 0.22433918662598
731 => 0.22659331043025
801 => 0.2242233748712
802 => 0.22707770121223
803 => 0.23715472745062
804 => 0.23443182600864
805 => 0.23056486823277
806 => 0.23851971264009
807 => 0.24139853990742
808 => 0.26160365732311
809 => 0.28711345269219
810 => 0.27655222990305
811 => 0.26999653810929
812 => 0.27153728118391
813 => 0.28085259489163
814 => 0.28384437800127
815 => 0.27571168017979
816 => 0.27858428653875
817 => 0.2944126300051
818 => 0.30290402844073
819 => 0.29137156881818
820 => 0.25955397010354
821 => 0.23021669099436
822 => 0.23799825848901
823 => 0.23711607022527
824 => 0.25412165065379
825 => 0.23436688570977
826 => 0.23469950528751
827 => 0.25205674311007
828 => 0.2474261296374
829 => 0.23992512885584
830 => 0.23027145660117
831 => 0.2124257505818
901 => 0.19661931109612
902 => 0.22761937893315
903 => 0.22628259963805
904 => 0.22434674511916
905 => 0.22865477986962
906 => 0.24957337376087
907 => 0.2490911324648
908 => 0.24602335938085
909 => 0.24835023822691
910 => 0.23951721574383
911 => 0.2417936867619
912 => 0.23021204381946
913 => 0.23544743012158
914 => 0.23990903507703
915 => 0.24080476832703
916 => 0.24282290107655
917 => 0.22557817769326
918 => 0.23332055221388
919 => 0.23786847188235
920 => 0.21732080536544
921 => 0.2374623105811
922 => 0.2252779854252
923 => 0.22114244246487
924 => 0.2267104062446
925 => 0.22454056534462
926 => 0.22267506355614
927 => 0.22163408150478
928 => 0.22572257959088
929 => 0.22553184626836
930 => 0.21884226985621
1001 => 0.21011599012859
1002 => 0.21304481603555
1003 => 0.21198074612566
1004 => 0.20812441950448
1005 => 0.21072311803251
1006 => 0.19927976488632
1007 => 0.17959207057204
1008 => 0.19259836448644
1009 => 0.19209763631886
1010 => 0.19184514647055
1011 => 0.20161901687966
1012 => 0.20067948476138
1013 => 0.19897422476678
1014 => 0.2080931010674
1015 => 0.20476458855148
1016 => 0.21502227982937
1017 => 0.22177865873087
1018 => 0.22006502249549
1019 => 0.22641942950876
1020 => 0.21311229026905
1021 => 0.21753238813472
1022 => 0.21844336417884
1023 => 0.20798057554934
1024 => 0.20083320383532
1025 => 0.200356555628
1026 => 0.18796399804438
1027 => 0.19458400227632
1028 => 0.20040933204604
1029 => 0.19761945115019
1030 => 0.19673625820389
1031 => 0.20124829942537
1101 => 0.2015989236713
1102 => 0.19360465370663
1103 => 0.19526691557789
1104 => 0.20219882390909
1105 => 0.19509224927339
1106 => 0.18128533560861
1107 => 0.17786103012422
1108 => 0.17740416465014
1109 => 0.1681171765914
1110 => 0.17808985859064
1111 => 0.17373651564671
1112 => 0.18748867384554
1113 => 0.17963351483667
1114 => 0.17929489463171
1115 => 0.17878302052712
1116 => 0.17078932626432
1117 => 0.1725394372821
1118 => 0.17835707285464
1119 => 0.18043287076727
1120 => 0.18021634803848
1121 => 0.17832856326653
1122 => 0.17919278146811
1123 => 0.17640883352725
1124 => 0.17542576356648
1125 => 0.17232292435556
1126 => 0.16776260789672
1127 => 0.16839674787037
1128 => 0.1593615676937
1129 => 0.15443872200014
1130 => 0.15307614319423
1201 => 0.15125404586887
1202 => 0.15328195393554
1203 => 0.15933597216347
1204 => 0.15203354174898
1205 => 0.13951403700926
1206 => 0.14026648057632
1207 => 0.14195699786899
1208 => 0.13880673007799
1209 => 0.13582526599574
1210 => 0.13841740712143
1211 => 0.1331127279215
1212 => 0.1425980430069
1213 => 0.14234149181613
1214 => 0.14587703071201
1215 => 0.14808787574017
1216 => 0.14299259371984
1217 => 0.14171114407084
1218 => 0.14244111602955
1219 => 0.13037630558466
1220 => 0.14489107830368
1221 => 0.14501660266089
1222 => 0.14394178690639
1223 => 0.15167045528594
1224 => 0.16798035619891
1225 => 0.1618439154112
1226 => 0.1594677000633
1227 => 0.15495051294993
1228 => 0.16096939657446
1229 => 0.16050724022131
1230 => 0.15841719392476
1231 => 0.15715312740327
]
'min_raw' => 0.11805048554014
'max_raw' => 0.30290402844073
'avg_raw' => 0.21047725699044
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.11805'
'max' => '$0.302904'
'avg' => '$0.210477'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072593467411833
'max_diff' => 0.17606485159906
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037054698478367
]
1 => [
'year' => 2028
'avg' => 0.0063596619644707
]
2 => [
'year' => 2029
'avg' => 0.017373450269386
]
3 => [
'year' => 2030
'avg' => 0.013403591009513
]
4 => [
'year' => 2031
'avg' => 0.013163987460089
]
5 => [
'year' => 2032
'avg' => 0.023080612876857
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037054698478367
'min' => '$0.0037054'
'max_raw' => 0.023080612876857
'max' => '$0.02308'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023080612876857
]
1 => [
'year' => 2033
'avg' => 0.05936570967071
]
2 => [
'year' => 2034
'avg' => 0.037628839771802
]
3 => [
'year' => 2035
'avg' => 0.044383302801943
]
4 => [
'year' => 2036
'avg' => 0.086148097484992
]
5 => [
'year' => 2037
'avg' => 0.21047725699044
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023080612876857
'min' => '$0.02308'
'max_raw' => 0.21047725699044
'max' => '$0.210477'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21047725699044
]
]
]
]
'prediction_2025_max_price' => '$0.006335'
'last_price' => 0.00614324
'sma_50day_nextmonth' => '$0.005636'
'sma_200day_nextmonth' => '$0.007751'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.005358'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0058096'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00563'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005626'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055055'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005658'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00561'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0056091'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00559'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005755'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00677'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013947'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007468'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015884'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005774'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005761'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006088'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008861'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026583'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01707'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.47'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.67
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005618'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005266'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 40.15
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 79.48
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000396'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -59.85
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.87
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767702756
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de KDR para 2026
La previsión del precio de KDR para 2026 sugiere que el precio medio podría oscilar entre $0.002122 en el extremo inferior y $0.006335 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, KDR podría potencialmente ganar 3.13% para 2026 si KDR alcanza el objetivo de precio previsto.
Predicción de precio de KDR 2027-2032
La predicción del precio de KDR para 2027-2032 está actualmente dentro de un rango de precios de $0.0037054 en el extremo inferior y $0.02308 en el extremo superior. Considerando la volatilidad de precios en el mercado, si KDR alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de KDR | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002043 | $0.0037054 | $0.005367 |
| 2028 | $0.003687 | $0.006359 | $0.009031 |
| 2029 | $0.00810036 | $0.017373 | $0.026646 |
| 2030 | $0.006889 | $0.0134035 | $0.019918 |
| 2031 | $0.008144 | $0.013163 | $0.018183 |
| 2032 | $0.012432 | $0.02308 | $0.033728 |
Predicción de precio de KDR 2032-2037
La predicción de precio de KDR para 2032-2037 se estima actualmente entre $0.02308 en el extremo inferior y $0.210477 en el extremo superior. Comparado con el precio actual, KDR podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de KDR | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012432 | $0.02308 | $0.033728 |
| 2033 | $0.02889 | $0.059365 | $0.08984 |
| 2034 | $0.023226 | $0.037628 | $0.05203 |
| 2035 | $0.027461 | $0.044383 | $0.0613053 |
| 2036 | $0.045457 | $0.086148 | $0.126839 |
| 2037 | $0.11805 | $0.210477 | $0.302904 |
KDR Histograma de precios potenciales
Pronóstico de precio de KDR basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para KDR es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 11 indicando señales bajistas. La predicción de precio de KDR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de KDR
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de KDR aumentar durante el próximo mes, alcanzando $0.007751 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para KDR alcance $0.005636 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 53.47, lo que sugiere que el mercado de KDR está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de KDR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.005358 | BUY |
| SMA 5 | $0.0058096 | BUY |
| SMA 10 | $0.00563 | BUY |
| SMA 21 | $0.005626 | BUY |
| SMA 50 | $0.0055055 | BUY |
| SMA 100 | $0.006241 | SELL |
| SMA 200 | $0.008066 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.005658 | BUY |
| EMA 5 | $0.00561 | BUY |
| EMA 10 | $0.0056091 | BUY |
| EMA 21 | $0.00559 | BUY |
| EMA 50 | $0.005755 | BUY |
| EMA 100 | $0.00677 | SELL |
| EMA 200 | $0.013947 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.007468 | SELL |
| SMA 50 | $0.015884 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.008861 | SELL |
| EMA 50 | $0.026583 | SELL |
| EMA 100 | $0.01707 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 53.47 | NEUTRAL |
| Stoch RSI (14) | 18.67 | NEUTRAL |
| Estocástico Rápido (14) | 40.15 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 79.48 | NEUTRAL |
| Índice Direccional Medio (14) | 10.42 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000396 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -59.85 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.87 | NEUTRAL |
| VWMA (10) | 0.005618 | BUY |
| Promedio Móvil de Hull (9) | 0.005266 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Predicción de precios de KDR basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de KDR
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de KDR por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.008632 | $0.012129 | $0.017044 | $0.02395 | $0.033654 | $0.047289 |
| Amazon.com acción | $0.012818 | $0.026746 | $0.0558071 | $0.116444 | $0.242969 | $0.506969 |
| Apple acción | $0.008713 | $0.012359 | $0.017531 | $0.024866 | $0.035271 | $0.05003 |
| Netflix acción | $0.009693 | $0.015294 | $0.024131 | $0.038076 | $0.060078 | $0.094793 |
| Google acción | $0.007955 | $0.0103022 | $0.013341 | $0.017277 | $0.022373 | $0.028973 |
| Tesla acción | $0.013926 | $0.031569 | $0.071566 | $0.162235 | $0.367775 | $0.833719 |
| Kodak acción | $0.0046067 | $0.003454 | $0.00259 | $0.001942 | $0.001456 | $0.001092 |
| Nokia acción | $0.004069 | $0.002695 | $0.001785 | $0.001183 | $0.000783 | $0.000519 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de KDR
Podría preguntarse cosas como: "¿Debo invertir en KDR ahora?", "¿Debería comprar KDR hoy?", "¿Será KDR una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de KDR regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como KDR, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de KDR a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de KDR es de $0.006143 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de KDR basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si KDR ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0063029 | $0.006466 | $0.006634 | $0.0068073 |
| Si KDR ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.006462 | $0.006798 | $0.007152 | $0.007523 |
| Si KDR ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.006941 | $0.007843 | $0.008863 | $0.010015 |
| Si KDR ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.00774 | $0.009751 | $0.012286 | $0.01548 |
| Si KDR ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.009336 | $0.01419 | $0.021568 | $0.03278 |
| Si KDR ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.014127 | $0.032488 | $0.074711 | $0.171811 |
| Si KDR ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.022111 | $0.079586 | $0.286456 | $1.03 |
Cuadro de preguntas
¿Es KDR una buena inversión?
La decisión de adquirir KDR depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de KDR ha experimentado un aumento de 2.7066% durante las últimas 24 horas, y KDR ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en KDR dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede KDR subir?
Parece que el valor medio de KDR podría potencialmente aumentar hasta $0.006335 para el final de este año. Mirando las perspectivas de KDR en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.019918. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de KDR la próxima semana?
Basado en nuestro nuevo pronóstico experimental de KDR, el precio de KDR aumentará en un 0.86% durante la próxima semana y alcanzará $0.006195 para el 13 de enero de 2026.
¿Cuál será el precio de KDR el próximo mes?
Basado en nuestro nuevo pronóstico experimental de KDR, el precio de KDR disminuirá en un -11.62% durante el próximo mes y alcanzará $0.005429 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de KDR este año en 2026?
Según nuestra predicción más reciente sobre el valor de KDR en 2026, se anticipa que KDR fluctúe dentro del rango de $0.002122 y $0.006335. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de KDR no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará KDR en 5 años?
El futuro de KDR parece estar en una tendencia alcista, con un precio máximo de $0.019918 proyectada después de un período de cinco años. Basado en el pronóstico de KDR para 2030, el valor de KDR podría potencialmente alcanzar su punto más alto de aproximadamente $0.019918, mientras que su punto más bajo se anticipa que esté alrededor de $0.006889.
¿Cuánto será KDR en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de KDR, se espera que el valor de KDR en 2026 crezca en un 3.13% hasta $0.006335 si ocurre lo mejor. El precio estará entre $0.006335 y $0.002122 durante 2026.
¿Cuánto será KDR en 2027?
Según nuestra última simulación experimental para la predicción de precios de KDR, el valor de KDR podría disminuir en un -12.62% hasta $0.005367 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.005367 y $0.002043 a lo largo del año.
¿Cuánto será KDR en 2028?
Nuestro nuevo modelo experimental de predicción de precios de KDR sugiere que el valor de KDR en 2028 podría aumentar en un 47.02% , alcanzando $0.009031 en el mejor escenario. Se espera que el precio oscile entre $0.009031 y $0.003687 durante el año.
¿Cuánto será KDR en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de KDR podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.026646 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.026646 y $0.00810036.
¿Cuánto será KDR en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de KDR, se espera que el valor de KDR en 2030 aumente en un 224.23% , alcanzando $0.019918 en el mejor escenario. Se pronostica que el precio oscile entre $0.019918 y $0.006889 durante el transcurso de 2030.
¿Cuánto será KDR en 2031?
Nuestra simulación experimental indica que el precio de KDR podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.018183 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.018183 y $0.008144 durante el año.
¿Cuánto será KDR en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de KDR, KDR podría experimentar un 449.04% aumento en valor, alcanzando $0.033728 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.033728 y $0.012432 a lo largo del año.
¿Cuánto será KDR en 2033?
Según nuestra predicción experimental de precios de KDR, se anticipa que el valor de KDR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.08984. A lo largo del año, el precio de KDR podría oscilar entre $0.08984 y $0.02889.
¿Cuánto será KDR en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de KDR sugieren que KDR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.05203 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.05203 y $0.023226.
¿Cuánto será KDR en 2035?
Basado en nuestra predicción experimental para el precio de KDR, KDR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.0613053 en 2035. El rango de precios esperado para el año está entre $0.0613053 y $0.027461.
¿Cuánto será KDR en 2036?
Nuestra reciente simulación de predicción de precios de KDR sugiere que el valor de KDR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.126839 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.126839 y $0.045457.
¿Cuánto será KDR en 2037?
Según la simulación experimental, el valor de KDR podría aumentar en un 4830.69% en 2037, con un máximo de $0.302904 bajo condiciones favorables. Se espera que el precio caiga entre $0.302904 y $0.11805 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de KDR?
Los traders de KDR utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de KDR
Las medias móviles son herramientas populares para la predicción de precios de KDR. Una media móvil simple (SMA) calcula el precio de cierre promedio de KDR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de KDR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de KDR.
¿Cómo leer gráficos de KDR y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de KDR en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de KDR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de KDR?
La acción del precio de KDR está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de KDR. La capitalización de mercado de KDR puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de KDR, grandes poseedores de KDR, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de KDR.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


