Previsão de Preço KDR - Projeção KDR
Previsão de Preço KDR até $0.00629 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0021073 | $0.00629 |
| 2027 | $0.002028 | $0.005329 |
| 2028 | $0.003661 | $0.008967 |
| 2029 | $0.008042 | $0.026456 |
| 2030 | $0.006839 | $0.019775 |
| 2031 | $0.008086 | $0.018053 |
| 2032 | $0.012343 | $0.033487 |
| 2033 | $0.028684 | $0.089198 |
| 2034 | $0.02306 | $0.051659 |
| 2035 | $0.027265 | $0.060867 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em KDR hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.10, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de KDR para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006099
'ticker' => 'KDR'
'marketcap' => '$92.1K'
'low24h' => '$0.004952'
'high24h' => '$0.006144'
'volume24h' => '$1.17K'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006099'
'change_24h_pct' => '21.8593%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de dez. de 2024'
'ath_pct' => '-98.43%'
'fdv' => '$609.94K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.30074'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006151'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00539'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0021073'
'current_year_max_price_prediction' => '$0.00629'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006839'
'grand_prediction_max_price' => '$0.019775'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062149396637366
107 => 0.0062381439924179
108 => 0.0062904245297793
109 => 0.0058436930621188
110 => 0.0060442623757515
111 => 0.0061620780567076
112 => 0.005629782523977
113 => 0.0061515562854861
114 => 0.0058359164611546
115 => 0.0057287835640254
116 => 0.0058730238963239
117 => 0.0058168132985489
118 => 0.0057684867273789
119 => 0.0057415196703102
120 => 0.0058474338511257
121 => 0.0058424928279958
122 => 0.0056691966711251
123 => 0.0054431388989422
124 => 0.0055190113073802
125 => 0.005491446150087
126 => 0.0053915464640806
127 => 0.0054588667905149
128 => 0.005162422142936
129 => 0.0046524045346285
130 => 0.0049893377889383
131 => 0.0049763662251602
201 => 0.0049698253744897
202 => 0.0052230214029523
203 => 0.0051986824470419
204 => 0.0051545070037367
205 => 0.0053907351474215
206 => 0.0053045086972597
207 => 0.0055702382991518
208 => 0.005745265001271
209 => 0.0057008725680929
210 => 0.0058654860274135
211 => 0.0055207592544299
212 => 0.0056352636603775
213 => 0.005658862859747
214 => 0.0053878201287972
215 => 0.0052026646012338
216 => 0.0051903168384729
217 => 0.0048692826696813
218 => 0.0050407765313525
219 => 0.0051916840327249
220 => 0.0051194110504627
221 => 0.0050965315833724
222 => 0.0052134178187857
223 => 0.0052225008803403
224 => 0.0050154061143175
225 => 0.0050584676740119
226 => 0.0052380415363265
227 => 0.0050539428734207
228 => 0.0046962692437405
301 => 0.0046075612383551
302 => 0.0045957259552237
303 => 0.0043551428090976
304 => 0.0046134891314488
305 => 0.0045007140384915
306 => 0.0048569692058904
307 => 0.0046534781649069
308 => 0.0046447060728425
309 => 0.004631445769101
310 => 0.0044243659168657
311 => 0.0044697032438941
312 => 0.0046204114240063
313 => 0.0046741858005195
314 => 0.0046685766924887
315 => 0.0046196728717052
316 => 0.0046420607904318
317 => 0.0045699415037454
318 => 0.0045444746825833
319 => 0.0044640943897947
320 => 0.0043459575650181
321 => 0.0043623852150785
322 => 0.0041283252530143
323 => 0.0040007969631793
324 => 0.0039654988133489
325 => 0.0039182966521843
326 => 0.0039708304230525
327 => 0.0041276621905499
328 => 0.0039384898052325
329 => 0.0036141670195059
330 => 0.0036336593715472
331 => 0.0036774528992528
401 => 0.0035958439500967
402 => 0.0035186079286403
403 => 0.0035857583829401
404 => 0.003448338543156
405 => 0.0036940594303596
406 => 0.0036874133689856
407 => 0.0037790029204574
408 => 0.0038362757465995
409 => 0.0037042804246396
410 => 0.00367108395812
411 => 0.0036899941741448
412 => 0.0033774504262807
413 => 0.0037534614283367
414 => 0.0037567131870967
415 => 0.0037288696543938
416 => 0.0039290839049513
417 => 0.0043515984220185
418 => 0.0041926314650907
419 => 0.0041310746545666
420 => 0.0040140551127625
421 => 0.0041699767042836
422 => 0.0041580043588105
423 => 0.004103860872204
424 => 0.0040711147225665
425 => 0.0041314505073254
426 => 0.0040636384511283
427 => 0.0040514575424846
428 => 0.0039776544890631
429 => 0.0039513101568166
430 => 0.0039318058620193
501 => 0.0039103335499
502 => 0.0039576961198684
503 => 0.003850366305255
504 => 0.0037209370705027
505 => 0.0037101764300768
506 => 0.0037398875043779
507 => 0.003726742565729
508 => 0.0037101134971677
509 => 0.0036783640766269
510 => 0.0036689447017715
511 => 0.0036995531004206
512 => 0.0036649980029263
513 => 0.0037159859315927
514 => 0.0037021200362862
515 => 0.0036246662722574
516 => 0.0035281302052213
517 => 0.0035272708317334
518 => 0.0035064722944413
519 => 0.0034799822301189
520 => 0.003472613300235
521 => 0.0035801031589768
522 => 0.0038026039496717
523 => 0.0037589217204656
524 => 0.003790486607802
525 => 0.0039457546125793
526 => 0.0039951096422263
527 => 0.0039600786112208
528 => 0.0039121259753607
529 => 0.0039142356479748
530 => 0.0040781043209589
531 => 0.0040883246090876
601 => 0.0041141479799987
602 => 0.0041473383093032
603 => 0.0039657310678204
604 => 0.0039056819632326
605 => 0.0038772273660814
606 => 0.0037895982201707
607 => 0.0038840987412802
608 => 0.0038290373345455
609 => 0.0038364669994795
610 => 0.0038316284204445
611 => 0.0038342706117809
612 => 0.0036939907463639
613 => 0.0037451013564292
614 => 0.0036601200541297
615 => 0.0035463396299497
616 => 0.0035459581980713
617 => 0.0035738057956967
618 => 0.0035572409549525
619 => 0.0035126653944308
620 => 0.0035189971424122
621 => 0.0034635243675169
622 => 0.0035257325416515
623 => 0.0035275164494941
624 => 0.0035035629139502
625 => 0.0035994031892784
626 => 0.0036386690282786
627 => 0.003622902298049
628 => 0.0036375627924548
629 => 0.0037607369143026
630 => 0.0037808196706275
701 => 0.0037897391043946
702 => 0.0037777882447452
703 => 0.0036398141892882
704 => 0.0036459339253587
705 => 0.003601031362582
706 => 0.0035630934287512
707 => 0.0035646107471462
708 => 0.0035841157767214
709 => 0.0036692953848313
710 => 0.0038485508484862
711 => 0.0038553534622979
712 => 0.0038635984286838
713 => 0.0038300620068039
714 => 0.0038199471010646
715 => 0.0038332912726135
716 => 0.0039006101999578
717 => 0.0040737727579977
718 => 0.004012565544848
719 => 0.0039628031278103
720 => 0.0040064581834037
721 => 0.0039997378297747
722 => 0.0039430112820214
723 => 0.0039414191567596
724 => 0.0038325427750465
725 => 0.0037922936557224
726 => 0.0037586584790209
727 => 0.0037219297441313
728 => 0.0037001557189305
729 => 0.0037336105177565
730 => 0.0037412620260735
731 => 0.0036681125237506
801 => 0.0036581425168807
802 => 0.0037178779795193
803 => 0.0036915906295746
804 => 0.0037186278208876
805 => 0.003724900681193
806 => 0.0037238906062076
807 => 0.0036964435937824
808 => 0.0037139375010205
809 => 0.0036725591952176
810 => 0.0036275665024775
811 => 0.0035988639676531
812 => 0.0035738171991801
813 => 0.0035877146020556
814 => 0.0035381728983697
815 => 0.0035223235102831
816 => 0.0037080109588736
817 => 0.0038451802736239
818 => 0.0038431857774624
819 => 0.0038310447950221
820 => 0.0038130057578243
821 => 0.0038992905320285
822 => 0.0038692306420143
823 => 0.0038911017235875
824 => 0.0038966688317743
825 => 0.00391351879155
826 => 0.0039195412038668
827 => 0.003901337291011
828 => 0.0038402427360465
829 => 0.0036880009137707
830 => 0.0036171319345324
831 => 0.0035937439909676
901 => 0.0035945940982961
902 => 0.0035711443431284
903 => 0.0035780513469696
904 => 0.0035687423690653
905 => 0.0035511134169983
906 => 0.0035866260639426
907 => 0.0035907185656797
908 => 0.0035824294895384
909 => 0.0035843818670386
910 => 0.0035157518568991
911 => 0.0035209696475135
912 => 0.003491916326328
913 => 0.0034864691788487
914 => 0.0034130249128538
915 => 0.0032829077497273
916 => 0.003355005288878
917 => 0.003267921600032
918 => 0.0032349416875329
919 => 0.0033910634638753
920 => 0.0033753931676745
921 => 0.0033485724322928
922 => 0.0033088989747323
923 => 0.0032941837034045
924 => 0.0032047783731057
925 => 0.0031994958292327
926 => 0.0032438075250758
927 => 0.0032233592021166
928 => 0.0031946420122963
929 => 0.0030906312617822
930 => 0.0029736887414283
1001 => 0.0029772185010433
1002 => 0.0030144157409749
1003 => 0.0031225717328074
1004 => 0.0030803133156808
1005 => 0.003049654349196
1006 => 0.0030439128463785
1007 => 0.0031157797747893
1008 => 0.0032174865350776
1009 => 0.0032652050714444
1010 => 0.0032179174511384
1011 => 0.0031635959790772
1012 => 0.0031669022753801
1013 => 0.0031888975834365
1014 => 0.0031912089793163
1015 => 0.003155851285342
1016 => 0.0031658042690869
1017 => 0.0031506847766585
1018 => 0.0030578964795339
1019 => 0.0030562182334738
1020 => 0.003033446488946
1021 => 0.0030327569695717
1022 => 0.0029940165514521
1023 => 0.0029885964991573
1024 => 0.0029116750476054
1025 => 0.0029623049799564
1026 => 0.0029283450795261
1027 => 0.0028771594992469
1028 => 0.0028683350859138
1029 => 0.0028680698133932
1030 => 0.0029206259594536
1031 => 0.00296169083079
1101 => 0.0029289358265336
1102 => 0.0029214781469935
1103 => 0.0030011066536012
1104 => 0.0029909732003054
1105 => 0.002982197695105
1106 => 0.0032083798102233
1107 => 0.0030293390168966
1108 => 0.002951267011715
1109 => 0.0028546380798311
1110 => 0.0028861009472978
1111 => 0.0028927306357588
1112 => 0.002660355473252
1113 => 0.0025660808987635
1114 => 0.0025337294174614
1115 => 0.0025151106825893
1116 => 0.0025235954738699
1117 => 0.0024387372995255
1118 => 0.0024957633961096
1119 => 0.0024222833900103
1120 => 0.0024099642278631
1121 => 0.0025413555811947
1122 => 0.0025596379204336
1123 => 0.0024816397813627
1124 => 0.0025317272133979
1125 => 0.0025135648142746
1126 => 0.0024235429938145
1127 => 0.0024201048224286
1128 => 0.0023749350373417
1129 => 0.0023042530702746
1130 => 0.0022719495146745
1201 => 0.0022551255424457
1202 => 0.00226206744128
1203 => 0.0022585574048038
1204 => 0.0022356520425162
1205 => 0.002259870313358
1206 => 0.0021980026390376
1207 => 0.0021733664326215
1208 => 0.002162238829739
1209 => 0.0021073277078091
1210 => 0.0021947157218863
1211 => 0.0022119322615447
1212 => 0.0022291827231046
1213 => 0.002379336213594
1214 => 0.0023718349695385
1215 => 0.0024396425625461
1216 => 0.002437007684172
1217 => 0.002417667860236
1218 => 0.0023360763242969
1219 => 0.0023685972562929
1220 => 0.0022685028824841
1221 => 0.0023435003930975
1222 => 0.0023092746612244
1223 => 0.0023319286387232
1224 => 0.0022911947445536
1225 => 0.0023137385634483
1226 => 0.0022160149417892
1227 => 0.0021247619988923
1228 => 0.0021614848469535
1229 => 0.002201406782563
1230 => 0.0022879677108846
1231 => 0.0022364127360884
]
'min_raw' => 0.0021073277078091
'max_raw' => 0.0062904245297793
'avg_raw' => 0.0041988761187942
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0021073'
'max' => '$0.00629'
'avg' => '$0.004198'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039920322921909
'max_diff' => 0.00019106452977929
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022549538545346
102 => 0.0021928442114858
103 => 0.0020646942771337
104 => 0.0020654195918451
105 => 0.0020457065163431
106 => 0.0020286715409532
107 => 0.0022423344451195
108 => 0.0022157620854757
109 => 0.0021734225080879
110 => 0.0022300957149294
111 => 0.0022450810103431
112 => 0.0022455076206367
113 => 0.0022868549294011
114 => 0.0023089219955006
115 => 0.0023128114115447
116 => 0.0023778722952533
117 => 0.0023996798452986
118 => 0.0024895020576152
119 => 0.002307049759116
120 => 0.0023032922740945
121 => 0.0022308932231719
122 => 0.0021849766004931
123 => 0.0022340371736101
124 => 0.0022774981439557
125 => 0.0022322436766675
126 => 0.0022381529547214
127 => 0.0021774025298129
128 => 0.0021991179481445
129 => 0.0022178221917945
130 => 0.0022074948078356
131 => 0.0021920342141981
201 => 0.0022739348400098
202 => 0.0022693136857303
203 => 0.0023455814313734
204 => 0.0024050375930609
205 => 0.0025115936638653
206 => 0.0024003968490874
207 => 0.0023963443951895
208 => 0.0024359577820747
209 => 0.0023996737806954
210 => 0.002422604017086
211 => 0.0025078992482827
212 => 0.0025097014021114
213 => 0.0024795130035363
214 => 0.0024776760367394
215 => 0.0024834740489107
216 => 0.0025174331872953
217 => 0.0025055668208848
218 => 0.0025192988805147
219 => 0.0025364710313546
220 => 0.0026075023280696
221 => 0.0026246277332323
222 => 0.0025830218771915
223 => 0.002586778420151
224 => 0.0025712166878855
225 => 0.0025561842495049
226 => 0.0025899749756731
227 => 0.0026517281919038
228 => 0.0026513440283506
301 => 0.0026656695742051
302 => 0.0026745942705933
303 => 0.0026362829404183
304 => 0.0026113436732211
305 => 0.0026209069751913
306 => 0.0026361989033033
307 => 0.002615948009004
308 => 0.0024909501082621
309 => 0.0025288664864504
310 => 0.0025225553471037
311 => 0.0025135675172133
312 => 0.0025516927286802
313 => 0.0025480154590272
314 => 0.0024378669562956
315 => 0.0024449183060646
316 => 0.0024382957722299
317 => 0.0024596945338927
318 => 0.0023985181773409
319 => 0.0024173356125872
320 => 0.0024291377315711
321 => 0.0024360892703209
322 => 0.0024612029949995
323 => 0.00245825618927
324 => 0.0024610198174179
325 => 0.0024982568413389
326 => 0.0026865889301277
327 => 0.0026968394301891
328 => 0.0026463622189423
329 => 0.0026665268692164
330 => 0.0026278151502144
331 => 0.0026538025865264
401 => 0.0026715825304418
402 => 0.0025912383827747
403 => 0.0025864809237791
404 => 0.0025476094277421
405 => 0.0025684967679183
406 => 0.0025352635078451
407 => 0.002543417787417
408 => 0.0025206177108567
409 => 0.0025616533092152
410 => 0.0026075374844674
411 => 0.0026191296391571
412 => 0.0025886356709049
413 => 0.0025665560282399
414 => 0.0025277914492066
415 => 0.002592257808064
416 => 0.0026111097359706
417 => 0.0025921587869122
418 => 0.0025877674379289
419 => 0.0025794458395407
420 => 0.0025895329043657
421 => 0.0026110070643225
422 => 0.0026008802470524
423 => 0.0026075691882709
424 => 0.0025820778419522
425 => 0.0026362956230627
426 => 0.0027224065076859
427 => 0.0027226833682605
428 => 0.002712556496403
429 => 0.0027084127986254
430 => 0.0027188035837012
501 => 0.0027244401583524
502 => 0.0027580420519432
503 => 0.0027940982225246
504 => 0.0029623566380885
505 => 0.0029151103482951
506 => 0.0030643992243212
507 => 0.0031824673425235
508 => 0.0032178708086793
509 => 0.0031853012856778
510 => 0.0030738827068607
511 => 0.0030684159798335
512 => 0.0032349223762969
513 => 0.0031878766928199
514 => 0.0031822807584684
515 => 0.0031227494714491
516 => 0.0031579398351709
517 => 0.0031502431864134
518 => 0.0031380936498169
519 => 0.003205234412416
520 => 0.0033309159263043
521 => 0.003311327283731
522 => 0.0032967052707411
523 => 0.003232635866223
524 => 0.0032712199581625
525 => 0.0032574809020524
526 => 0.0033165126061216
527 => 0.0032815435323434
528 => 0.0031875202754969
529 => 0.0032024937890544
530 => 0.0032002305726027
531 => 0.0032468074068052
601 => 0.0032328261972857
602 => 0.0031975005170536
603 => 0.0033304863605532
604 => 0.0033218509995824
605 => 0.0033340939671206
606 => 0.0033394837000572
607 => 0.003420429839522
608 => 0.0034535908828731
609 => 0.0034611190202796
610 => 0.0034926194466961
611 => 0.0034603352609742
612 => 0.0035894950220962
613 => 0.0036753787265614
614 => 0.0037751370688327
615 => 0.0039209108194057
616 => 0.0039757230981037
617 => 0.0039658217505626
618 => 0.0040763457445542
619 => 0.0042749549049467
620 => 0.0040059663403311
621 => 0.0042892119520266
622 => 0.0041995396615917
623 => 0.003986928274106
624 => 0.0039732386072755
625 => 0.0041172215073498
626 => 0.0044365617218739
627 => 0.0043565706200624
628 => 0.0044366925586604
629 => 0.0043432260613584
630 => 0.0043385846619699
701 => 0.0044321530995076
702 => 0.0046507808539645
703 => 0.0045469190029609
704 => 0.0043980075715765
705 => 0.0045079614551922
706 => 0.0044127092254527
707 => 0.0041980792924291
708 => 0.0043565094523743
709 => 0.0042505717162502
710 => 0.004281489979611
711 => 0.004504155343895
712 => 0.0044773636581649
713 => 0.004512034580343
714 => 0.0044508413101947
715 => 0.0043936771465831
716 => 0.0042869759901357
717 => 0.0042553870380151
718 => 0.0042641170879298
719 => 0.0042553827118359
720 => 0.0041956843954378
721 => 0.0041827925496956
722 => 0.0041613055753204
723 => 0.0041679652871501
724 => 0.0041275634890888
725 => 0.0042038100294679
726 => 0.0042179620592445
727 => 0.0042734479328986
728 => 0.0042792086603687
729 => 0.0044337360287034
730 => 0.0043486249509516
731 => 0.0044057248100444
801 => 0.0044006172612025
802 => 0.0039915362075669
803 => 0.0040479039674052
804 => 0.0041355945125361
805 => 0.0040960900408164
806 => 0.0040402399604274
807 => 0.0039951380260214
808 => 0.0039268039834869
809 => 0.0040229828361152
810 => 0.0041494477998409
811 => 0.0042824160205478
812 => 0.0044421686253041
813 => 0.0044065137036478
814 => 0.0042794295567234
815 => 0.0042851304587194
816 => 0.0043203711916365
817 => 0.0042747312405507
818 => 0.0042612711279778
819 => 0.004318521978863
820 => 0.0043189162340086
821 => 0.004266401954512
822 => 0.0042080419428634
823 => 0.0042077974122837
824 => 0.0041974128119016
825 => 0.0043450734586969
826 => 0.004426271884259
827 => 0.0044355811528919
828 => 0.0044256452963076
829 => 0.0044294692131669
830 => 0.0043822216384175
831 => 0.0044902155834615
901 => 0.0045893215069281
902 => 0.0045627590023498
903 => 0.0045229380319045
904 => 0.0044912187109069
905 => 0.0045552869383773
906 => 0.0045524340810608
907 => 0.0045884559031448
908 => 0.0045868217452229
909 => 0.0045747089613053
910 => 0.0045627594349355
911 => 0.0046101379562787
912 => 0.0045964937030076
913 => 0.0045828282564426
914 => 0.0045554201112812
915 => 0.0045591453334097
916 => 0.0045193312386163
917 => 0.0045009114165959
918 => 0.0042239214887411
919 => 0.0041499007291113
920 => 0.0041731891669224
921 => 0.0041808563253338
922 => 0.0041486423958827
923 => 0.004194828895636
924 => 0.0041876307785731
925 => 0.0042156344413074
926 => 0.0041981389686087
927 => 0.0041988569889109
928 => 0.0042503074436897
929 => 0.0042652437295979
930 => 0.0042576470140344
1001 => 0.0042629674932149
1002 => 0.0043855756902957
1003 => 0.0043681447254602
1004 => 0.0043588848728034
1005 => 0.0043614499152723
1006 => 0.0043927789383758
1007 => 0.0044015493543436
1008 => 0.004364388485602
1009 => 0.004381913766125
1010 => 0.0044565341863024
1011 => 0.0044826471102144
1012 => 0.0045659870284272
1013 => 0.0045305827499215
1014 => 0.00459556883538
1015 => 0.0047953139066904
1016 => 0.0049548840909608
1017 => 0.004808136754989
1018 => 0.0051011670772611
1019 => 0.0053293332158531
1020 => 0.0053205758194233
1021 => 0.005280789775582
1022 => 0.0050210286929056
1023 => 0.0047819926718073
1024 => 0.0049819564534616
1025 => 0.004982466202264
1026 => 0.0049652891360808
1027 => 0.004858603853256
1028 => 0.0049615767194922
1029 => 0.0049697503316715
1030 => 0.00496517528239
1031 => 0.0048833799261852
1101 => 0.004758493535569
1102 => 0.0047828960373597
1103 => 0.0048228678330902
1104 => 0.0047471928847821
1105 => 0.0047230101534909
1106 => 0.0047679704519142
1107 => 0.0049128419012843
1108 => 0.004885454792964
1109 => 0.0048847396048858
1110 => 0.0050019132682212
1111 => 0.0049180422129322
1112 => 0.0047832038310549
1113 => 0.0047491553613311
1114 => 0.0046283062316091
1115 => 0.0047117771559579
1116 => 0.0047147811259248
1117 => 0.0046690649537111
1118 => 0.0047869134464738
1119 => 0.0047858274518662
1120 => 0.004897707056311
1121 => 0.005111578839949
1122 => 0.005048326429536
1123 => 0.0049747707580683
1124 => 0.0049827682990343
1125 => 0.0050704815838192
1126 => 0.0050174481295387
1127 => 0.0050365193294604
1128 => 0.005070452717274
1129 => 0.0050909255726605
1130 => 0.0049798225702036
1201 => 0.0049539191456599
1202 => 0.0049009298299102
1203 => 0.0048871059065235
1204 => 0.0049302645985433
1205 => 0.0049188938080152
1206 => 0.004714528653881
1207 => 0.004693171358197
1208 => 0.0046938263559645
1209 => 0.004640122420483
1210 => 0.0045582110284524
1211 => 0.0047734692760337
1212 => 0.0047561810262157
1213 => 0.0047370961364209
1214 => 0.0047394339265239
1215 => 0.00483287023602
1216 => 0.0047786724578655
1217 => 0.0049227661339304
1218 => 0.0048931448059838
1219 => 0.004862763802747
1220 => 0.0048585642226716
1221 => 0.0048468701284108
1222 => 0.0048067667280097
1223 => 0.0047583394621846
1224 => 0.0047263635865889
1225 => 0.0043598205739944
1226 => 0.0044278488250493
1227 => 0.0045061091269178
1228 => 0.0045331242695143
1229 => 0.004486912998712
1230 => 0.004808591430642
1231 => 0.0048673651799261
]
'min_raw' => 0.0020286715409532
'max_raw' => 0.0053293332158531
'avg_raw' => 0.0036790023784031
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002028'
'max' => '$0.005329'
'avg' => '$0.003679'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8656166855906E-5
'max_diff' => -0.00096109131392619
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046893356596277
102 => 0.0046560336052773
103 => 0.004810774707781
104 => 0.0047174469066408
105 => 0.0047594724097797
106 => 0.0046686362587147
107 => 0.0048532083048198
108 => 0.0048518021750712
109 => 0.0047799994803876
110 => 0.0048406866262506
111 => 0.0048301407412196
112 => 0.004749075675764
113 => 0.0048557782119879
114 => 0.0048558311351146
115 => 0.0047867226026068
116 => 0.0047060189664408
117 => 0.0046915910624291
118 => 0.0046807215748725
119 => 0.0047567991821525
120 => 0.0048250101269512
121 => 0.0049519337842944
122 => 0.0049838454073822
123 => 0.0051083985967708
124 => 0.0050342332368746
125 => 0.0050671097803144
126 => 0.0051028019188893
127 => 0.0051199140426571
128 => 0.0050920307552647
129 => 0.0052855131265234
130 => 0.0053018489668043
131 => 0.005307326232746
201 => 0.0052420850657739
202 => 0.0053000344919304
203 => 0.005272921874515
204 => 0.0053434613729278
205 => 0.0053545228669724
206 => 0.0053451541750407
207 => 0.0053486652678442
208 => 0.0051835621966041
209 => 0.0051750007313723
210 => 0.0050582645454417
211 => 0.0051058354040787
212 => 0.0050169039639874
213 => 0.0050451050397357
214 => 0.0050575358052158
215 => 0.0050510426787687
216 => 0.0051085249890513
217 => 0.0050596532824509
218 => 0.0049306728134801
219 => 0.0048016572038668
220 => 0.004800037517982
221 => 0.0047660699852854
222 => 0.0047415176806098
223 => 0.0047462473255301
224 => 0.0047629152111267
225 => 0.0047405489127983
226 => 0.0047453218965468
227 => 0.0048245852289955
228 => 0.0048404809250378
229 => 0.0047864611390365
301 => 0.0045695639032234
302 => 0.0045163367775093
303 => 0.0045545953799328
304 => 0.0045363102321439
305 => 0.0036611564018376
306 => 0.0038667608129278
307 => 0.0037445976535241
308 => 0.003800896057834
309 => 0.0036761991060796
310 => 0.003735711027384
311 => 0.0037247213485465
312 => 0.0040553271573027
313 => 0.0040501652023324
314 => 0.0040526359570121
315 => 0.0039347003986326
316 => 0.0041225749454306
317 => 0.0042151287029334
318 => 0.0041979994656581
319 => 0.0042023105256454
320 => 0.0041282322318392
321 => 0.0040533531968233
322 => 0.0039703008231898
323 => 0.0041246018678172
324 => 0.0041074462256613
325 => 0.0041467950963617
326 => 0.004246870353469
327 => 0.004261606815227
328 => 0.0042814127692722
329 => 0.0042743137446308
330 => 0.0044434413125341
331 => 0.0044229588481214
401 => 0.0044723156941488
402 => 0.0043707849171574
403 => 0.0042558932056019
404 => 0.0042777303638756
405 => 0.0042756272699305
406 => 0.0042488524701906
407 => 0.0042246813781676
408 => 0.0041844433201123
409 => 0.0043117624899114
410 => 0.0043065935641297
411 => 0.004390272464317
412 => 0.0043754814058955
413 => 0.0042767030977701
414 => 0.0042802309843691
415 => 0.0043039577171917
416 => 0.0043860762103977
417 => 0.0044104545702346
418 => 0.0043991615426485
419 => 0.0044258913012953
420 => 0.0044470174126697
421 => 0.0044285444156206
422 => 0.0046900830977323
423 => 0.0045814740025062
424 => 0.0046344093198222
425 => 0.004647034081089
426 => 0.0046146960205741
427 => 0.0046217089879607
428 => 0.0046323317226321
429 => 0.0046968308874122
430 => 0.0048660953587789
501 => 0.0049410614409249
502 => 0.0051666005978228
503 => 0.004934836551381
504 => 0.0049210846320001
505 => 0.0049617110447874
506 => 0.0050941264056308
507 => 0.0052014366184519
508 => 0.0052370376069194
509 => 0.0052417428652537
510 => 0.0053085326863276
511 => 0.0053468153662108
512 => 0.0053004226453025
513 => 0.0052611096718532
514 => 0.0051202954806634
515 => 0.0051365951067179
516 => 0.0052488833666722
517 => 0.0054074971476031
518 => 0.0055436042725931
519 => 0.0054959443012338
520 => 0.0058595562400087
521 => 0.0058956068785167
522 => 0.0058906258459316
523 => 0.0059727545655071
524 => 0.0058097457823727
525 => 0.0057400563694363
526 => 0.0052696095829341
527 => 0.0054017859406662
528 => 0.005593912039075
529 => 0.0055684834295147
530 => 0.0054289563213049
531 => 0.0055434984287698
601 => 0.005505627225979
602 => 0.0054757566370603
603 => 0.0056125995955955
604 => 0.0054621351414871
605 => 0.005592411041046
606 => 0.0054253308523301
607 => 0.0054961620079684
608 => 0.0054559548183106
609 => 0.005481973797627
610 => 0.0053298673761984
611 => 0.0054119403090266
612 => 0.0053264528723619
613 => 0.0053264123401862
614 => 0.0053245252002836
615 => 0.0054251007904103
616 => 0.0054283805567936
617 => 0.0053540550437287
618 => 0.0053433435761133
619 => 0.0053829494859948
620 => 0.0053365813383278
621 => 0.0053582767027835
622 => 0.0053372384688157
623 => 0.0053325023192166
624 => 0.0052947638734211
625 => 0.0052785051133322
626 => 0.0052848805920997
627 => 0.0052631177962817
628 => 0.0052500049246066
629 => 0.0053219167200613
630 => 0.0052834971486634
701 => 0.0053160283697303
702 => 0.0052789549375572
703 => 0.0051504422695195
704 => 0.0050765332751342
705 => 0.0048337847583415
706 => 0.0049026279365753
707 => 0.0049482710349677
708 => 0.0049331859912213
709 => 0.0049655945023256
710 => 0.0049675841216964
711 => 0.0049570477843707
712 => 0.004944848055536
713 => 0.0049389099022266
714 => 0.0049831680319573
715 => 0.0050088613659261
716 => 0.0049528519305173
717 => 0.0049397297034563
718 => 0.0049963583350202
719 => 0.005030901767561
720 => 0.0052859510651635
721 => 0.0052670561893987
722 => 0.0053144786196362
723 => 0.005309139581748
724 => 0.0053588458436224
725 => 0.0054400945743535
726 => 0.0052748931872748
727 => 0.0053035664358375
728 => 0.0052965364174519
729 => 0.0053732883148157
730 => 0.0053735279258616
731 => 0.0053275113293503
801 => 0.0053524576728531
802 => 0.005338533308277
803 => 0.0053636965170567
804 => 0.0052668038368132
805 => 0.0053848086624313
806 => 0.0054517097944938
807 => 0.0054526387167774
808 => 0.0054843493224148
809 => 0.0055165691342968
810 => 0.0055784122574502
811 => 0.0055148443631575
812 => 0.0054004919095348
813 => 0.0054087477873301
814 => 0.0053417029856111
815 => 0.0053428300208406
816 => 0.005336813818458
817 => 0.0053548688946867
818 => 0.0052707659107204
819 => 0.0052905047129546
820 => 0.0052628702742364
821 => 0.0053035063639646
822 => 0.0052597886488034
823 => 0.0052965330273642
824 => 0.0053123906830556
825 => 0.0053709057739478
826 => 0.0052511459223014
827 => 0.0050069474777652
828 => 0.0050582809514267
829 => 0.004982354711724
830 => 0.0049893819742801
831 => 0.0050035781630239
901 => 0.0049575636706013
902 => 0.0049663417856722
903 => 0.0049660281696313
904 => 0.0049633255960192
905 => 0.0049513554493761
906 => 0.0049339963685222
907 => 0.0050031496038007
908 => 0.0050149000860137
909 => 0.0050410199523965
910 => 0.0051187349574771
911 => 0.0051109693958235
912 => 0.0051236353490706
913 => 0.0050959856442486
914 => 0.0049906645647855
915 => 0.0049963840061153
916 => 0.0049250624810843
917 => 0.0050391961006488
918 => 0.0050121677530458
919 => 0.0049947424015163
920 => 0.0049899877329067
921 => 0.0050678953784531
922 => 0.0050912065670534
923 => 0.0050766805986734
924 => 0.0050468874137358
925 => 0.0051040991363803
926 => 0.0051194065797912
927 => 0.0051228333518541
928 => 0.0052242015551204
929 => 0.0051284987083564
930 => 0.005151535334777
1001 => 0.0053312605180154
1002 => 0.0051682745771981
1003 => 0.0052546118650692
1004 => 0.0052503861041055
1005 => 0.0052945533390858
1006 => 0.0052467631016921
1007 => 0.0052473555189607
1008 => 0.0052865730314756
1009 => 0.0052314991080641
1010 => 0.0052178620301211
1011 => 0.0051990225046134
1012 => 0.0052401579193292
1013 => 0.0052648167400565
1014 => 0.0054635487252104
1015 => 0.0055919386508994
1016 => 0.0055863649056209
1017 => 0.0056372985038524
1018 => 0.0056143524513508
1019 => 0.0055402535949604
1020 => 0.005666731307426
1021 => 0.0056267084671496
1022 => 0.0056300079014743
1023 => 0.0056298850963639
1024 => 0.0056564967862903
1025 => 0.0056376399650519
1026 => 0.005600471234778
1027 => 0.0056251455725258
1028 => 0.0056984195343996
1029 => 0.0059258641603757
1030 => 0.0060531451863124
1031 => 0.0059182016827955
1101 => 0.006011283904556
1102 => 0.0059554677400865
1103 => 0.0059453242826154
1104 => 0.0060037867966031
1105 => 0.0060623516414824
1106 => 0.0060586213140463
1107 => 0.0060161062440021
1108 => 0.005992090559714
1109 => 0.0061739453669876
1110 => 0.006307932891171
1111 => 0.0062987958402855
1112 => 0.0063391238113661
1113 => 0.0064575279817562
1114 => 0.0064683533752073
1115 => 0.0064669896244513
1116 => 0.0064401577572698
1117 => 0.0065567420397432
1118 => 0.0066539986992879
1119 => 0.0064339469552644
1120 => 0.0065177397786997
1121 => 0.006555357076776
1122 => 0.0066105904309013
1123 => 0.0067037783574958
1124 => 0.0068050051626542
1125 => 0.006819319742799
1126 => 0.0068091628631705
1127 => 0.006742401064046
1128 => 0.0068531646421373
1129 => 0.0069180473484576
1130 => 0.006956683515257
1201 => 0.0070546584058152
1202 => 0.0065555893884024
1203 => 0.0062023235325381
1204 => 0.0061471559679241
1205 => 0.006259341379924
1206 => 0.0062889237784065
1207 => 0.0062769991506714
1208 => 0.0058793663123696
1209 => 0.0061450625133224
1210 => 0.0064309292851765
1211 => 0.0064419105921125
1212 => 0.006585021475295
1213 => 0.0066316242451726
1214 => 0.0067468472641067
1215 => 0.0067396400329005
1216 => 0.0067676950044123
1217 => 0.0067612456523062
1218 => 0.0069746720318125
1219 => 0.0072101130225321
1220 => 0.00720196044968
1221 => 0.0071681130216527
1222 => 0.0072183822241173
1223 => 0.0074613825579299
1224 => 0.0074390109811934
1225 => 0.0074607430623865
1226 => 0.0077472541508501
1227 => 0.00811975932158
1228 => 0.0079466932708683
1229 => 0.0083221968024981
1230 => 0.0085585563710721
1231 => 0.0089673158048853
]
'min_raw' => 0.0036611564018376
'max_raw' => 0.0089673158048853
'avg_raw' => 0.0063142361033614
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003661'
'max' => '$0.008967'
'avg' => '$0.006314'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016324848608844
'max_diff' => 0.0036379825890322
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089161371105892
102 => 0.0090752641585574
103 => 0.0088245165664834
104 => 0.0082487494106322
105 => 0.0081576320542706
106 => 0.0083400513091655
107 => 0.0087885112471139
108 => 0.0083259277097861
109 => 0.0084195077569174
110 => 0.0083925566970481
111 => 0.0083911205896023
112 => 0.0084459309697375
113 => 0.0083664256546342
114 => 0.0080425066981701
115 => 0.0081909568470512
116 => 0.0081336331154065
117 => 0.0081972380694336
118 => 0.0085404877736391
119 => 0.0083887288973589
120 => 0.0082288632490877
121 => 0.0084293702490471
122 => 0.0086846845616759
123 => 0.0086687074508355
124 => 0.0086377051778909
125 => 0.0088124633672533
126 => 0.0091011126967348
127 => 0.0091791334506067
128 => 0.0092367267760508
129 => 0.0092446679225824
130 => 0.0093264666672523
131 => 0.0088866142012242
201 => 0.0095846713610233
202 => 0.0097052065490807
203 => 0.0096825509293976
204 => 0.0098165207180273
205 => 0.009777103407727
206 => 0.0097199939094882
207 => 0.0099323645206576
208 => 0.0096888987523765
209 => 0.0093433297457894
210 => 0.0091537437541958
211 => 0.009403405881392
212 => 0.0095558658304632
213 => 0.0096566321585253
214 => 0.0096871239885122
215 => 0.0089207586960625
216 => 0.0085077303079998
217 => 0.008772476769368
218 => 0.0090954857240617
219 => 0.0088848198701717
220 => 0.008893077572801
221 => 0.0085927234271663
222 => 0.0091220604013303
223 => 0.0090449404566193
224 => 0.0094450388662027
225 => 0.0093495521697653
226 => 0.0096758168910498
227 => 0.0095899004556141
228 => 0.0099465347755845
301 => 0.010088805861309
302 => 0.010327701156968
303 => 0.010503433508933
304 => 0.010606626907231
305 => 0.010600431562666
306 => 0.011009335217471
307 => 0.010768219018238
308 => 0.010465320245277
309 => 0.010459841762108
310 => 0.010616717328733
311 => 0.01094548547967
312 => 0.011030730277826
313 => 0.011078370490686
314 => 0.011005407846323
315 => 0.01074369349301
316 => 0.010630686562171
317 => 0.010726971741371
318 => 0.010609223241089
319 => 0.010812490186971
320 => 0.011091619119143
321 => 0.011033980098445
322 => 0.011226658702914
323 => 0.011426060788159
324 => 0.011711214725768
325 => 0.011785764524279
326 => 0.011908992506342
327 => 0.012035834578169
328 => 0.01207657283315
329 => 0.012154354802246
330 => 0.012153944852875
331 => 0.012388346052078
401 => 0.012646897833601
402 => 0.012744495145638
403 => 0.01296891478312
404 => 0.012584604018534
405 => 0.012876108148117
406 => 0.013139052169822
407 => 0.012825559467235
408 => 0.013257636123319
409 => 0.013274412680768
410 => 0.013527718780201
411 => 0.013270944520849
412 => 0.013118472785298
413 => 0.013558652972792
414 => 0.013771642299975
415 => 0.013707488181263
416 => 0.013219272170185
417 => 0.012935109511168
418 => 0.012191401021637
419 => 0.013072355853302
420 => 0.013501443254002
421 => 0.013218160937477
422 => 0.013361032060384
423 => 0.014140490580846
424 => 0.014437257919236
425 => 0.014375532387411
426 => 0.014385962986201
427 => 0.014546093255288
428 => 0.01525619905377
429 => 0.014830687199196
430 => 0.015155975068393
501 => 0.015328506581302
502 => 0.015488763465778
503 => 0.015095223207214
504 => 0.014583233113076
505 => 0.014421064358381
506 => 0.013189994093983
507 => 0.013125911540454
508 => 0.013089940061258
509 => 0.012863144973194
510 => 0.012684946158379
511 => 0.01254323584474
512 => 0.012171345663469
513 => 0.012296847682697
514 => 0.011704132353265
515 => 0.012083330616494
516 => 0.011137342639109
517 => 0.01192518953686
518 => 0.011496400289417
519 => 0.011784320736825
520 => 0.011783316209508
521 => 0.011253163380568
522 => 0.010947382292843
523 => 0.011142237903119
524 => 0.011351138584993
525 => 0.011385032017801
526 => 0.011655877204716
527 => 0.011731464274587
528 => 0.011502431924057
529 => 0.011117739140937
530 => 0.011207094500547
531 => 0.010945571509333
601 => 0.010487262526565
602 => 0.010816428039296
603 => 0.010928819617728
604 => 0.010978458141571
605 => 0.010527763894162
606 => 0.010386145976577
607 => 0.010310749785545
608 => 0.011059560173172
609 => 0.01110058169655
610 => 0.010890709783089
611 => 0.011839350732805
612 => 0.011624644069379
613 => 0.011864524016835
614 => 0.011198986438241
615 => 0.011224410870009
616 => 0.010909334714589
617 => 0.011085756308228
618 => 0.010961067212177
619 => 0.011071503186894
620 => 0.011137698054794
621 => 0.011452722509317
622 => 0.0119287866101
623 => 0.011405668360951
624 => 0.011177738248606
625 => 0.011319144808377
626 => 0.011695729111387
627 => 0.012266273607443
628 => 0.0119284997825
629 => 0.012078398070238
630 => 0.012111144177598
701 => 0.011862082264152
702 => 0.01227545687545
703 => 0.012496987687894
704 => 0.012724232462119
705 => 0.012921542732325
706 => 0.012633465902074
707 => 0.012941749404634
708 => 0.012693327320935
709 => 0.012470467030453
710 => 0.012470805017521
711 => 0.012331001501833
712 => 0.01206011457381
713 => 0.012010158868132
714 => 0.012270034757782
715 => 0.012478430610942
716 => 0.012495595091557
717 => 0.012610973743633
718 => 0.012679253641436
719 => 0.01334848946193
720 => 0.013617661645142
721 => 0.013946800295605
722 => 0.014075018349198
723 => 0.014460908721798
724 => 0.01414927090544
725 => 0.014081846103577
726 => 0.01314580228343
727 => 0.013299079406541
728 => 0.013544490869684
729 => 0.013149849028067
730 => 0.013400158442543
731 => 0.013449574823239
801 => 0.0131364392493
802 => 0.01330369848913
803 => 0.012859507537051
804 => 0.011938468759021
805 => 0.012276482254903
806 => 0.012525373961984
807 => 0.012170174807853
808 => 0.012806855543528
809 => 0.012434919801505
810 => 0.012317034027348
811 => 0.011857119593048
812 => 0.012074181502307
813 => 0.012367760842608
814 => 0.012186362942564
815 => 0.012562790822187
816 => 0.013095913089383
817 => 0.013475847764966
818 => 0.01350501443169
819 => 0.013260741888936
820 => 0.013652190197626
821 => 0.013655041471201
822 => 0.013213486179885
823 => 0.012943036022545
824 => 0.012881589177765
825 => 0.013035095443389
826 => 0.013221480388675
827 => 0.01351535749898
828 => 0.01369294128191
829 => 0.014155985604629
830 => 0.014281272121836
831 => 0.014418924019748
901 => 0.014602869405631
902 => 0.014823743004013
903 => 0.014340484145095
904 => 0.014359684920467
905 => 0.013909680962216
906 => 0.01342878719573
907 => 0.013793725620239
908 => 0.01427083406456
909 => 0.014161384860275
910 => 0.014149069588948
911 => 0.014169780459348
912 => 0.014087259333594
913 => 0.013714019340183
914 => 0.013526580552098
915 => 0.013768424409462
916 => 0.01389695365642
917 => 0.014096291309522
918 => 0.01407171873627
919 => 0.014585191123361
920 => 0.014784710966386
921 => 0.014733665252604
922 => 0.014743058892424
923 => 0.01510428003791
924 => 0.015506032242485
925 => 0.015882326197942
926 => 0.016265108571635
927 => 0.015803649479898
928 => 0.015569349011954
929 => 0.015811087287856
930 => 0.01568281755595
1001 => 0.016419893482756
1002 => 0.016470927020717
1003 => 0.017207949648543
1004 => 0.017907471885373
1005 => 0.017468114501663
1006 => 0.01788240872541
1007 => 0.018330501706296
1008 => 0.019194945766892
1009 => 0.018903831418792
1010 => 0.018680842390491
1011 => 0.018470118836222
1012 => 0.018908601101234
1013 => 0.019472701530248
1014 => 0.01959420335977
1015 => 0.019791082740868
1016 => 0.019584088144909
1017 => 0.019833390336035
1018 => 0.020713536619644
1019 => 0.020475713324547
1020 => 0.020137966013506
1021 => 0.020832756974268
1022 => 0.021084199122036
1023 => 0.022848951796347
1024 => 0.025077024945962
1025 => 0.024154588031705
1026 => 0.023582001672172
1027 => 0.023716573048592
1028 => 0.024530189937796
1029 => 0.024791497859698
1030 => 0.024081172849724
1031 => 0.024332071651742
1101 => 0.025714548718688
1102 => 0.02645620330993
1103 => 0.025448936757523
1104 => 0.022669928288202
1105 => 0.02010755556352
1106 => 0.020787212195254
1107 => 0.020710160225416
1108 => 0.022195459366323
1109 => 0.020470041317612
1110 => 0.020499092932471
1111 => 0.022015106486653
1112 => 0.021610660061449
1113 => 0.020955508650204
1114 => 0.020112338893856
1115 => 0.018553661615485
1116 => 0.017173097683101
1117 => 0.019880701479392
1118 => 0.019763944680238
1119 => 0.019594863532675
1120 => 0.019971135330086
1121 => 0.021798204371702
1122 => 0.021756084516647
1123 => 0.021488139488529
1124 => 0.021691373430798
1125 => 0.020919880757502
1126 => 0.021118711985972
1127 => 0.020107149670589
1128 => 0.020564418083716
1129 => 0.020954102989519
1130 => 0.021032338003742
1201 => 0.021208605485567
1202 => 0.019702419152554
1203 => 0.020378652596769
1204 => 0.020775876390741
1205 => 0.018981204838452
1206 => 0.020740401504461
1207 => 0.019676199799458
1208 => 0.019314993757007
1209 => 0.01980131010789
1210 => 0.019611792152993
1211 => 0.01944885574424
1212 => 0.019357934428553
1213 => 0.019715031483865
1214 => 0.019698372479411
1215 => 0.01911409238737
1216 => 0.018351922825606
1217 => 0.018607731947897
1218 => 0.018514794095545
1219 => 0.018177975329401
1220 => 0.018404950510129
1221 => 0.017405466683713
1222 => 0.015685906709012
1223 => 0.016821900699846
1224 => 0.016778166166922
1225 => 0.016756113232219
1226 => 0.017609781319763
1227 => 0.017527720830619
1228 => 0.017378780239285
1229 => 0.018175239918641
1230 => 0.017884521421781
1231 => 0.018780447327209
]
'min_raw' => 0.0080425066981701
'max_raw' => 0.02645620330993
'avg_raw' => 0.01724935500405
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008042'
'max' => '$0.026456'
'avg' => '$0.017249'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0043813502963325
'max_diff' => 0.017488887505045
'year' => 2029
]
4 => [
'items' => [
101 => 0.019370562073378
102 => 0.019220889885537
103 => 0.019775895656582
104 => 0.018613625273413
105 => 0.018999684872507
106 => 0.019079251220825
107 => 0.018165411729829
108 => 0.017541146941503
109 => 0.017499515597261
110 => 0.01641712648329
111 => 0.016995330011234
112 => 0.017504125188136
113 => 0.017260451782501
114 => 0.017183312061812
115 => 0.017577402165245
116 => 0.017608026341435
117 => 0.016909791878894
118 => 0.017054976933866
119 => 0.017660422748106
120 => 0.017039721252761
121 => 0.015833799638319
122 => 0.015534714404767
123 => 0.015494810921377
124 => 0.014683668047234
125 => 0.015554700710205
126 => 0.015174471610594
127 => 0.01637561078042
128 => 0.015689526528454
129 => 0.015659950807611
130 => 0.015615242767742
131 => 0.014917058588077
201 => 0.015069916551504
202 => 0.015578039702861
203 => 0.015759343767683
204 => 0.015740432268341
205 => 0.015575549622214
206 => 0.015651032053275
207 => 0.015407876843005
208 => 0.01532201367742
209 => 0.01505100590831
210 => 0.014652699355526
211 => 0.014708086324647
212 => 0.013918936821003
213 => 0.013488966288083
214 => 0.013369956111491
215 => 0.013210810729576
216 => 0.013387932005849
217 => 0.01391670125961
218 => 0.013278893354919
219 => 0.012185416439347
220 => 0.012251136265167
221 => 0.012398789201393
222 => 0.012123638931558
223 => 0.011863232292771
224 => 0.012089634737738
225 => 0.011626314153559
226 => 0.012454779280451
227 => 0.012432371620515
228 => 0.01274117218788
301 => 0.01293427151988
302 => 0.012489240076273
303 => 0.012377315871699
304 => 0.012441072985295
305 => 0.011387309918264
306 => 0.012655057263946
307 => 0.012666020795635
308 => 0.012572144381154
309 => 0.013247180705421
310 => 0.014671717898735
311 => 0.014135749704735
312 => 0.013928206620293
313 => 0.013533667065057
314 => 0.014059367596968
315 => 0.014019001998323
316 => 0.013836453453052
317 => 0.013726047523286
318 => 0.013929473834111
319 => 0.013700840752155
320 => 0.013659771968219
321 => 0.013410939820844
322 => 0.013322118065372
323 => 0.013256357973717
324 => 0.013183962574258
325 => 0.013343648785656
326 => 0.012981778822158
327 => 0.01254539912073
328 => 0.01250911887025
329 => 0.012609291831617
330 => 0.012564972753212
331 => 0.012508906687553
401 => 0.012401861299526
402 => 0.012370103219562
403 => 0.012473301572617
404 => 0.012356796648855
405 => 0.012528706010218
406 => 0.012481956176106
407 => 0.012220815403034
408 => 0.011895337313088
409 => 0.011892439875374
410 => 0.011822316154787
411 => 0.011733003053446
412 => 0.01170815819186
413 => 0.012070567755311
414 => 0.012820744705648
415 => 0.012673467020084
416 => 0.012779890241528
417 => 0.013303387160101
418 => 0.013469791088414
419 => 0.01335168152159
420 => 0.013190005861842
421 => 0.013197118770353
422 => 0.013749613442264
423 => 0.013784071857248
424 => 0.013871137155205
425 => 0.01398304066773
426 => 0.013370739173658
427 => 0.013168279425045
428 => 0.013072342764114
429 => 0.012776894980604
430 => 0.013095510085341
501 => 0.01290986670827
502 => 0.012934916342317
503 => 0.012918602735282
504 => 0.012927511067845
505 => 0.012454547707564
506 => 0.012626870697828
507 => 0.01234035030392
508 => 0.011956731659902
509 => 0.011955445635693
510 => 0.012049335755344
511 => 0.011993486238255
512 => 0.01184319662379
513 => 0.011864544554177
514 => 0.011677514220632
515 => 0.011887253422963
516 => 0.011893267992803
517 => 0.011812506975334
518 => 0.012135639154958
519 => 0.0122680266726
520 => 0.012214868040833
521 => 0.012264296921285
522 => 0.012679587072838
523 => 0.01274729748792
524 => 0.012777369981601
525 => 0.012737076823911
526 => 0.012271887662897
527 => 0.012292520780325
528 => 0.012141128654926
529 => 0.012013218262274
530 => 0.012018334007178
531 => 0.012084096576189
601 => 0.012371285571981
602 => 0.012975657882911
603 => 0.01299859337032
604 => 0.013026391850136
605 => 0.012913321462329
606 => 0.012879218351429
607 => 0.012924209157466
608 => 0.013151179621065
609 => 0.013735009275321
610 => 0.013528644882835
611 => 0.013360867419491
612 => 0.013508053487323
613 => 0.013485395345863
614 => 0.013294137829592
615 => 0.013288769868113
616 => 0.012921685545661
617 => 0.012785982829756
618 => 0.012672579483174
619 => 0.012548745989175
620 => 0.012475333342997
621 => 0.012588128532978
622 => 0.01261392612748
623 => 0.012367297473263
624 => 0.012333682899018
625 => 0.012535085181901
626 => 0.012446455546238
627 => 0.012537613324426
628 => 0.012558762710903
629 => 0.012555357172568
630 => 0.012462817653888
701 => 0.012521799583527
702 => 0.012382289736571
703 => 0.012230593731708
704 => 0.012133821131601
705 => 0.012049374202984
706 => 0.012096230267065
707 => 0.011929196954197
708 => 0.011875759635694
709 => 0.0125018178329
710 => 0.012964293754436
711 => 0.012957569171377
712 => 0.012916635001423
713 => 0.012855815128065
714 => 0.013146730268505
715 => 0.013045381250608
716 => 0.013119121129122
717 => 0.013137891023057
718 => 0.013194701838867
719 => 0.013215006822465
720 => 0.013153631059315
721 => 0.012947646501766
722 => 0.012434352568779
723 => 0.012195412857363
724 => 0.01211655877274
725 => 0.012119424968951
726 => 0.012040362482193
727 => 0.012063649927876
728 => 0.012032264058939
729 => 0.011972826816231
730 => 0.012092560184818
731 => 0.012106358340154
801 => 0.012078411141218
802 => 0.012084993718271
803 => 0.011853602847492
804 => 0.011871194992842
805 => 0.011773239692027
806 => 0.011754874253993
807 => 0.011507251783477
808 => 0.011068552683505
809 => 0.011311634570441
810 => 0.011018025833508
811 => 0.010906831755933
812 => 0.011433207224946
813 => 0.01138037372724
814 => 0.011289945745337
815 => 0.011156183913259
816 => 0.01110657034859
817 => 0.010805134035406
818 => 0.010787323569923
819 => 0.010936723546202
820 => 0.010867780597689
821 => 0.01077095858724
822 => 0.010420279080083
823 => 0.010025999208043
824 => 0.010037900039025
825 => 0.010163313130483
826 => 0.010527968608157
827 => 0.010385491404426
828 => 0.010282122558382
829 => 0.010262764680774
830 => 0.010505069047499
831 => 0.010847980490751
901 => 0.011008866867713
902 => 0.010849433354335
903 => 0.010666284718677
904 => 0.0106774321275
905 => 0.010751590844276
906 => 0.010759383876861
907 => 0.010640172943031
908 => 0.010673730122622
909 => 0.010622753698291
910 => 0.010309911476263
911 => 0.0103042531525
912 => 0.010227476625952
913 => 0.010225151863241
914 => 0.010094535838781
915 => 0.010076261754053
916 => 0.0098169157096616
917 => 0.0099876180614522
918 => 0.0098731198861468
919 => 0.0097005441285724
920 => 0.0096707920029188
921 => 0.0096698976180949
922 => 0.0098470943338905
923 => 0.0099855474146591
924 => 0.0098751116309271
925 => 0.0098499675436791
926 => 0.010118440613192
927 => 0.01008427496791
928 => 0.010054687739441
929 => 0.010817276532093
930 => 0.010213627997163
1001 => 0.0099504027808799
1002 => 0.0096246115906166
1003 => 0.0097306908449481
1004 => 0.0097530433024642
1005 => 0.0089695742181569
1006 => 0.0086517209082282
1007 => 0.00854264563031
1008 => 0.00847987126577
1009 => 0.0085084783319618
1010 => 0.0082223730725513
1011 => 0.0084146405386193
1012 => 0.0081668975678454
1013 => 0.0081253626525698
1014 => 0.0085683577737785
1015 => 0.0086299979569547
1016 => 0.0083670217854211
1017 => 0.0085358950595206
1018 => 0.008474659262818
1019 => 0.0081711444100139
1020 => 0.0081595523751409
1021 => 0.0080072592910667
1022 => 0.0077689501042426
1023 => 0.0076600364111749
1024 => 0.0076033132141932
1025 => 0.0076267183107809
1026 => 0.0076148839777384
1027 => 0.0075376569495845
1028 => 0.0076193105405934
1029 => 0.007410719357159
1030 => 0.007327656667182
1031 => 0.0072901391771592
1101 => 0.0071050024958005
1102 => 0.007399637286498
1103 => 0.0074576840519767
1104 => 0.0075158451875149
1105 => 0.0080220981640816
1106 => 0.0079968071960284
1107 => 0.0082254252300285
1108 => 0.0082165415536288
1109 => 0.0081513359869654
1110 => 0.0078762444270075
1111 => 0.0079858910197712
1112 => 0.0076484158501085
1113 => 0.0079012751933007
1114 => 0.0077858807487264
1115 => 0.0078622602155138
1116 => 0.0077249230473712
1117 => 0.007800931106734
1118 => 0.0074714490934647
1119 => 0.0071637834254109
1120 => 0.0072875970715565
1121 => 0.0074221966647247
1122 => 0.0077140428780518
1123 => 0.0075402216810732
1124 => 0.0076027343564139
1125 => 0.0073933273585181
1126 => 0.0069612609077073
1127 => 0.0069637063568966
1128 => 0.0068972423465186
1129 => 0.0068398077376477
1130 => 0.0075601871365118
1201 => 0.00747059657075
1202 => 0.0073278457295319
1203 => 0.0075189234031953
1204 => 0.0075694473729223
1205 => 0.0075708857193121
1206 => 0.0077102910575882
1207 => 0.007784691711616
1208 => 0.0077978051493593
1209 => 0.0080171624611885
1210 => 0.0080906881387207
1211 => 0.0083935299987327
1212 => 0.0077783793359302
1213 => 0.0077657107128409
1214 => 0.0075216122579151
1215 => 0.0073668011587572
1216 => 0.0075322123063211
1217 => 0.0076787440021893
1218 => 0.0075261654061612
1219 => 0.0075460889496925
1220 => 0.0073412646506541
1221 => 0.0074144796996813
1222 => 0.0074775423630357
1223 => 0.0074427228669834
1224 => 0.0073905963961105
1225 => 0.0076667300741536
1226 => 0.0076511495298618
1227 => 0.0079082915591413
1228 => 0.0081087521593676
1229 => 0.0084680133915916
1230 => 0.0080931055670542
1231 => 0.0080794424358044
]
'min_raw' => 0.0068398077376477
'max_raw' => 0.019775895656582
'avg_raw' => 0.013307851697115
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006839'
'max' => '$0.019775'
'avg' => '$0.0133078'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012026989605224
'max_diff' => -0.0066803076533488
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082130017354062
102 => 0.0080906676914878
103 => 0.0081679785844166
104 => 0.0084555574115191
105 => 0.008461633498975
106 => 0.0083598512054922
107 => 0.0083536577436838
108 => 0.0083732061465235
109 => 0.0084877017525385
110 => 0.0084476934697022
111 => 0.0084939920674862
112 => 0.0085518891729642
113 => 0.0087913761490856
114 => 0.0088491156482491
115 => 0.0087088385997797
116 => 0.008721504046641
117 => 0.0086690365798224
118 => 0.008618353664291
119 => 0.0087322814567601
120 => 0.0089404867367538
121 => 0.0089391915025128
122 => 0.008987491080539
123 => 0.009017581317514
124 => 0.0088884119930175
125 => 0.008804327512458
126 => 0.0088365708527391
127 => 0.008888128656017
128 => 0.0088198513520147
129 => 0.0083984122025886
130 => 0.0085262499188874
131 => 0.0085049714719503
201 => 0.0084746683759644
202 => 0.0086032101882426
203 => 0.0085908120168686
204 => 0.0082194386495862
205 => 0.0082432127676417
206 => 0.0082208844324475
207 => 0.0082930318514075
208 => 0.0080867714940964
209 => 0.0081502157908206
210 => 0.0081900074589726
211 => 0.0082134450572082
212 => 0.0082981177333467
213 => 0.0082881823720902
214 => 0.0082975001373411
215 => 0.0084230473632966
216 => 0.0090580221495746
217 => 0.0090925824261989
218 => 0.0089223949842739
219 => 0.0089903815105241
220 => 0.0088598622471426
221 => 0.0089474807030537
222 => 0.0090074270253205
223 => 0.0087365411220115
224 => 0.0087205010168525
225 => 0.0085894430540428
226 => 0.0086598661797543
227 => 0.0085478179231454
228 => 0.0085753106460356
301 => 0.0084984385960621
302 => 0.0086367929809419
303 => 0.0087914946813354
304 => 0.00883057844021
305 => 0.0087277658972269
306 => 0.0086533228404304
307 => 0.0085226253557631
308 => 0.0087399781855483
309 => 0.0088035387766849
310 => 0.0087396443288216
311 => 0.0087248385891304
312 => 0.008696781739169
313 => 0.008730790982483
314 => 0.0088031926120552
315 => 0.0087690493405971
316 => 0.0087916015729222
317 => 0.0087056557190599
318 => 0.0088884547534387
319 => 0.0091787836130155
320 => 0.0091797170677726
321 => 0.0091455736122695
322 => 0.0091316028459086
323 => 0.0091666361032529
324 => 0.0091856402082227
325 => 0.0092989313384734
326 => 0.0094204972349501
327 => 0.009987792230451
328 => 0.009828498065782
329 => 0.010331835934321
330 => 0.010729910838092
331 => 0.010849276096028
401 => 0.010739465675297
402 => 0.010363810157818
403 => 0.010345378705971
404 => 0.010906766646753
405 => 0.010748148840285
406 => 0.010729281756924
407 => 0.010528567866397
408 => 0.010647214634597
409 => 0.010621264845949
410 => 0.01058030183506
411 => 0.010806671603781
412 => 0.011230415602658
413 => 0.011164371126587
414 => 0.011115071988915
415 => 0.0108990575184
416 => 0.011029146478229
417 => 0.010982824291324
418 => 0.011181853803055
419 => 0.011063953129349
420 => 0.010746947154397
421 => 0.010797431400773
422 => 0.010789800808493
423 => 0.010946837856898
424 => 0.010899699232866
425 => 0.010780596235603
426 => 0.011228967291737
427 => 0.011199852569323
428 => 0.011241130589154
429 => 0.011259302450049
430 => 0.011532218010734
501 => 0.011644022783622
502 => 0.011669404424486
503 => 0.011775610311439
504 => 0.011666761925267
505 => 0.012102233077537
506 => 0.01239179598335
507 => 0.012728138199223
508 => 0.013219624576878
509 => 0.013404428001379
510 => 0.013371044916854
511 => 0.013743684279136
512 => 0.014413308929848
513 => 0.013506395204065
514 => 0.014461377559473
515 => 0.014159041171552
516 => 0.013442207034591
517 => 0.01339605136709
518 => 0.013881499767256
519 => 0.014958177596146
520 => 0.014688482011588
521 => 0.014958618721506
522 => 0.01464348990023
523 => 0.014627841098139
524 => 0.014943313618038
525 => 0.015680432356291
526 => 0.01533025487423
527 => 0.014828189586653
528 => 0.015198906781999
529 => 0.014877757239134
530 => 0.014154117434961
531 => 0.014688275780457
601 => 0.014331099306778
602 => 0.014435342390343
603 => 0.015186074212026
604 => 0.015095744173051
605 => 0.015212639607821
606 => 0.015006322225138
607 => 0.014813589256447
608 => 0.014453838857848
609 => 0.014347334500303
610 => 0.014376768473103
611 => 0.014347319914288
612 => 0.014146042872549
613 => 0.014102577114549
614 => 0.01403013228027
615 => 0.01405258596367
616 => 0.013916368480743
617 => 0.014173439014995
618 => 0.01422115357145
619 => 0.014408228068374
620 => 0.014427650763241
621 => 0.014948650574338
622 => 0.014661692633432
623 => 0.014854208794948
624 => 0.01483698833743
625 => 0.013457743003971
626 => 0.013647790841737
627 => 0.013943445637004
628 => 0.013810253552487
629 => 0.013621951107127
630 => 0.013469886786361
701 => 0.013239493791025
702 => 0.013563767507655
703 => 0.013990152962357
704 => 0.014438464602015
705 => 0.014977081662522
706 => 0.014856868604811
707 => 0.014428395530723
708 => 0.014447616519827
709 => 0.014566433111286
710 => 0.014412554829721
711 => 0.014367173120427
712 => 0.014560198361313
713 => 0.014561527620062
714 => 0.01438447206031
715 => 0.01418770720647
716 => 0.014186882754548
717 => 0.01415187034933
718 => 0.014649718529338
719 => 0.014923484690214
720 => 0.014954871539362
721 => 0.014921372105189
722 => 0.014934264707857
723 => 0.014774966210869
724 => 0.015139075336481
725 => 0.015473217876804
726 => 0.015383660538083
727 => 0.015249401356015
728 => 0.0151424574507
729 => 0.015358467952717
730 => 0.015348849345094
731 => 0.015470299433214
801 => 0.015464789755687
802 => 0.015423950659021
803 => 0.015383661996576
804 => 0.015543401989147
805 => 0.015497399436632
806 => 0.015451325429447
807 => 0.01535891695446
808 => 0.015371476800953
809 => 0.015237240800626
810 => 0.015175137084653
811 => 0.014241246204072
812 => 0.013991680045015
813 => 0.014070198639042
814 => 0.01409604899893
815 => 0.013987437486681
816 => 0.014143158495238
817 => 0.014118889541004
818 => 0.014213305845066
819 => 0.014154318637367
820 => 0.014156739492947
821 => 0.014330208293389
822 => 0.014380567024147
823 => 0.014354954167239
824 => 0.01437289253426
825 => 0.014786274630949
826 => 0.014727504916015
827 => 0.01469628467628
828 => 0.014704932896049
829 => 0.014810560884766
830 => 0.014840130954532
831 => 0.014714840491081
901 => 0.01477392819794
902 => 0.015025516154399
903 => 0.015113557700515
904 => 0.015394544053377
905 => 0.015275176056547
906 => 0.015494281180854
907 => 0.016167735634532
908 => 0.016705737651634
909 => 0.016210968762834
910 => 0.017198940953098
911 => 0.017968219019412
912 => 0.017938692845927
913 => 0.017804551421343
914 => 0.01692874879516
915 => 0.016122822161065
916 => 0.016797014011938
917 => 0.016798732665615
918 => 0.016740818987713
919 => 0.016381122108141
920 => 0.016728302315992
921 => 0.016755860220118
922 => 0.016740435122046
923 => 0.016464656367832
924 => 0.01604359318258
925 => 0.016125867921096
926 => 0.016260635621143
927 => 0.016005492249466
928 => 0.015923958482533
929 => 0.016075545267695
930 => 0.016563989473848
1001 => 0.016471651926039
1002 => 0.016469240619501
1003 => 0.01686429980624
1004 => 0.016581522687643
1005 => 0.016126905669029
1006 => 0.016012108876167
1007 => 0.015604657597892
1008 => 0.015886085647088
1009 => 0.015896213741562
1010 => 0.015742078475142
1011 => 0.016139412896411
1012 => 0.016135751389769
1013 => 0.016512961287339
1014 => 0.017234044937926
1015 => 0.017020785020076
1016 => 0.01677278693823
1017 => 0.016799751205968
1018 => 0.017095482669566
1019 => 0.016916676675782
1020 => 0.016980976557826
1021 => 0.017095385343993
1022 => 0.017164411005298
1023 => 0.01678981947555
1024 => 0.016702484271182
1025 => 0.016523827093536
1026 => 0.016477218770682
1027 => 0.016622731314071
1028 => 0.016584393899922
1029 => 0.015895362514439
1030 => 0.015823354900922
1031 => 0.015825563271625
1101 => 0.01564449670366
1102 => 0.015368326726558
1103 => 0.01609408493713
1104 => 0.016035796395841
1105 => 0.015971450357434
1106 => 0.015979332379985
1107 => 0.016294359420966
1108 => 0.01611162782795
1109 => 0.016597449717102
1110 => 0.016497579341835
1111 => 0.016395147668288
1112 => 0.016380988490859
1113 => 0.016341561035603
1114 => 0.016206349621221
1115 => 0.016043073713408
1116 => 0.015935264816352
1117 => 0.014699439458174
1118 => 0.014928801456186
1119 => 0.015192661527896
1120 => 0.015283744967297
1121 => 0.015127940441419
1122 => 0.016212501733542
1123 => 0.016410661532706
1124 => 0.015810422575395
1125 => 0.015698142374078
1126 => 0.016219862804848
1127 => 0.015905201607365
1128 => 0.016046893525324
1129 => 0.015740633100031
1130 => 0.016362930639883
1201 => 0.016358189775263
1202 => 0.016116101977033
1203 => 0.016320712926352
1204 => 0.016285156738679
1205 => 0.016011840210714
1206 => 0.016371595261326
1207 => 0.016371773695342
1208 => 0.016138769452989
1209 => 0.015866671509107
1210 => 0.015818026823408
1211 => 0.015781379587227
1212 => 0.01603788055174
1213 => 0.016267858514465
1214 => 0.016695790486725
1215 => 0.016803382751964
1216 => 0.017223322526013
1217 => 0.016973268837063
1218 => 0.017084114398637
1219 => 0.017204452935788
1220 => 0.017262147655802
1221 => 0.017168137205609
1222 => 0.017820476528816
1223 => 0.017875553954855
1224 => 0.017894020939388
1225 => 0.017674055789948
1226 => 0.017869436326135
1227 => 0.017778024243576
1228 => 0.018015853087385
1229 => 0.018053147686846
1230 => 0.018021560487897
1231 => 0.018033398382421
]
'min_raw' => 0.0080867714940964
'max_raw' => 0.018053147686846
'avg_raw' => 0.013069959590471
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008086'
'max' => '$0.018053'
'avg' => '$0.013069'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012469637564487
'max_diff' => -0.0017227479697358
'year' => 2031
]
6 => [
'items' => [
101 => 0.017476741850606
102 => 0.017447876272835
103 => 0.017054292071709
104 => 0.017214680542895
105 => 0.016914841983633
106 => 0.017009923879454
107 => 0.017051835073159
108 => 0.017029943044007
109 => 0.017223748666411
110 => 0.017058974295495
111 => 0.016624107639231
112 => 0.016189122503837
113 => 0.016183661619794
114 => 0.01606913771177
115 => 0.015986357902369
116 => 0.016002304230431
117 => 0.016058501170434
118 => 0.015983091634055
119 => 0.015999184082002
120 => 0.016266425941342
121 => 0.016320019390351
122 => 0.016137887910307
123 => 0.015406603736481
124 => 0.015227144765937
125 => 0.015356136315138
126 => 0.01529448666274
127 => 0.012343844422573
128 => 0.013037054049405
129 => 0.012625172428316
130 => 0.012814986429076
131 => 0.012394561950173
201 => 0.01259521054784
202 => 0.012558158078364
203 => 0.013672818644747
204 => 0.013655414753168
205 => 0.013663745075073
206 => 0.013266117105999
207 => 0.01389954925751
208 => 0.014211600712828
209 => 0.014153848293429
210 => 0.014168383333165
211 => 0.013918623193616
212 => 0.013666163299173
213 => 0.013386146422936
214 => 0.013906383167852
215 => 0.013848541722555
216 => 0.013981209187372
217 => 0.01431861990374
218 => 0.014368304913424
219 => 0.014435082070295
220 => 0.014411147213079
221 => 0.014981372616374
222 => 0.014912314557567
223 => 0.015078724609933
224 => 0.014736406506654
225 => 0.014349041079662
226 => 0.014422666583403
227 => 0.014415575855334
228 => 0.014325302748654
229 => 0.014243808224327
301 => 0.014108142802262
302 => 0.01453740827238
303 => 0.014519980878224
304 => 0.01480211013248
305 => 0.014752241046333
306 => 0.014419203084007
307 => 0.014431097599985
308 => 0.014511093936244
309 => 0.014787962169418
310 => 0.014870155511651
311 => 0.01483208028069
312 => 0.01492220152818
313 => 0.014993429687657
314 => 0.014931146688362
315 => 0.01581294261515
316 => 0.01544675946775
317 => 0.015625234585907
318 => 0.01566779984995
319 => 0.015558769821153
320 => 0.015582414530327
321 => 0.015618229821927
322 => 0.015835693259171
323 => 0.016406380242052
324 => 0.016659133621972
325 => 0.017419554636094
326 => 0.016638145972266
327 => 0.016591780415945
328 => 0.016728755203103
329 => 0.017175202837132
330 => 0.017537006711819
331 => 0.017657037930018
401 => 0.017672902037003
402 => 0.01789808858187
403 => 0.018027161309907
404 => 0.017870745012329
405 => 0.0177381985776
406 => 0.017263433700671
407 => 0.017318389027918
408 => 0.017696976736069
409 => 0.018231754172538
410 => 0.018690648847138
411 => 0.018529959926187
412 => 0.019755902964342
413 => 0.019877450209047
414 => 0.019860656309921
415 => 0.020137559022014
416 => 0.019587963528767
417 => 0.019353000807492
418 => 0.017766856621255
419 => 0.018212498439607
420 => 0.018860264994208
421 => 0.018774530661707
422 => 0.018304105274906
423 => 0.018690291987298
424 => 0.018562606583006
425 => 0.018461895806969
426 => 0.018923271395741
427 => 0.018415969983621
428 => 0.018855204274557
429 => 0.018291881753135
430 => 0.018530693939643
501 => 0.018395132592535
502 => 0.018482857397888
503 => 0.01797001997831
504 => 0.018246734601489
505 => 0.017958507740232
506 => 0.017958371083172
507 => 0.017952008459234
508 => 0.01829110608331
509 => 0.018302164044657
510 => 0.018051570388117
511 => 0.018015455927201
512 => 0.018148990017563
513 => 0.017992656570383
514 => 0.018065804006367
515 => 0.017994872131702
516 => 0.017978903872662
517 => 0.017851666067848
518 => 0.017796848523058
519 => 0.017818343894844
520 => 0.017744969109314
521 => 0.01770075814695
522 => 0.017943213786047
523 => 0.01781367951871
524 => 0.017923360801794
525 => 0.017798365136838
526 => 0.017365075704081
527 => 0.01711588636935
528 => 0.016297442796823
529 => 0.016529552378716
530 => 0.016683441271645
531 => 0.01663258099345
601 => 0.016741848551328
602 => 0.016748556691947
603 => 0.01671303269503
604 => 0.016671900457506
605 => 0.016651879559035
606 => 0.016801098933426
607 => 0.016887725802753
608 => 0.016698886080818
609 => 0.016654643576117
610 => 0.01684557096112
611 => 0.016962036555677
612 => 0.017821953069517
613 => 0.017758247676678
614 => 0.017918135711152
615 => 0.017900134772152
616 => 0.018067722904442
617 => 0.018341658672707
618 => 0.017784670662179
619 => 0.01788134452161
620 => 0.017857642323803
621 => 0.018116416704411
622 => 0.018117224569781
623 => 0.017962076401868
624 => 0.018046184740685
625 => 0.017999237773349
626 => 0.018084077288589
627 => 0.017757396852317
628 => 0.018155258360722
629 => 0.018380820198359
630 => 0.018383952124693
701 => 0.018490866645564
702 => 0.018599497990839
703 => 0.0188080063983
704 => 0.018593682804523
705 => 0.018208135523301
706 => 0.018235970791695
707 => 0.018009924561781
708 => 0.018013724439744
709 => 0.017993440393373
710 => 0.018054314343443
711 => 0.017770755261118
712 => 0.01783730601097
713 => 0.017744134571457
714 => 0.017881141985097
715 => 0.017733744656157
716 => 0.017857630893885
717 => 0.017911096087195
718 => 0.018108383801531
719 => 0.01770460510034
720 => 0.016881272995195
721 => 0.017054347385633
722 => 0.016798356767475
723 => 0.016822049673811
724 => 0.016869913115307
725 => 0.016714772041475
726 => 0.016744368069305
727 => 0.016743310690927
728 => 0.016734198775306
729 => 0.01669384059017
730 => 0.016635313237099
731 => 0.016868468197965
801 => 0.016908085769138
802 => 0.016996150722279
803 => 0.017258172287796
804 => 0.017231990154507
805 => 0.017274694300188
806 => 0.01718147138994
807 => 0.016826374017247
808 => 0.016845657513009
809 => 0.016605192011858
810 => 0.016990001478774
811 => 0.016898873517771
812 => 0.016840122728491
813 => 0.016824092031313
814 => 0.017086763097611
815 => 0.017165358397512
816 => 0.017116383080948
817 => 0.017015933277837
818 => 0.017208826595128
819 => 0.017260436709319
820 => 0.017271990310579
821 => 0.017613760285193
822 => 0.017291091455569
823 => 0.017368761049912
824 => 0.017974717053212
825 => 0.017425198574432
826 => 0.017716290768366
827 => 0.017702043320243
828 => 0.017850956236638
829 => 0.017689828114657
830 => 0.017691825490839
831 => 0.017824050072362
901 => 0.017638364494442
902 => 0.017592386134047
903 => 0.017528867358464
904 => 0.017667558281161
905 => 0.017750697216867
906 => 0.018420735979838
907 => 0.018853611578196
908 => 0.018834819306843
909 => 0.019006545489351
910 => 0.0189291812713
911 => 0.018679351803563
912 => 0.019105780241532
913 => 0.018970840441235
914 => 0.01898196471442
915 => 0.018981550668416
916 => 0.019071273838972
917 => 0.019007696749625
918 => 0.018882379780469
919 => 0.018965571032893
920 => 0.019212619311175
921 => 0.01997946474733
922 => 0.020408601612753
923 => 0.019953630169192
924 => 0.02026746337865
925 => 0.020079275283181
926 => 0.020045075908124
927 => 0.020242186355756
928 => 0.020439641819133
929 => 0.020427064759739
930 => 0.020283722232778
1001 => 0.020202751676479
1002 => 0.020815887855899
1003 => 0.021267636148394
1004 => 0.021236829943404
1005 => 0.021372798513512
1006 => 0.021772006440697
1007 => 0.021808505010522
1008 => 0.021803907029635
1009 => 0.021713441516091
1010 => 0.022106513564105
1011 => 0.022434421182003
1012 => 0.021692501363506
1013 => 0.021975014717946
1014 => 0.022101844064766
1015 => 0.022288067174469
1016 => 0.022602256775156
1017 => 0.022943550016177
1018 => 0.022991812622547
1019 => 0.022957567993749
1020 => 0.022732475926841
1021 => 0.023105923063642
1022 => 0.023324679637966
1023 => 0.023454944171822
1024 => 0.023785273355727
1025 => 0.022102627319634
1026 => 0.020911566822353
1027 => 0.02072556552658
1028 => 0.021103806475673
1029 => 0.021203545597534
1030 => 0.021163340882574
1031 => 0.019822694006402
1101 => 0.02071850729823
1102 => 0.021682327078117
1103 => 0.021719351321142
1104 => 0.022201859655475
1105 => 0.022358984147819
1106 => 0.022747466600769
1107 => 0.022723166917565
1108 => 0.022817756212752
1109 => 0.022796011771847
1110 => 0.023515593711307
1111 => 0.024309399449483
1112 => 0.024281912480918
1113 => 0.024167793514172
1114 => 0.024337279639965
1115 => 0.025156572231155
1116 => 0.025081144898255
1117 => 0.025154416127283
1118 => 0.026120408265603
1119 => 0.027376335456199
1120 => 0.026792831183139
1121 => 0.028058867556848
1122 => 0.028855770344394
1123 => 0.030233931314167
1124 => 0.030061378773166
1125 => 0.030597886725286
1126 => 0.029752473711971
1127 => 0.027811234547239
1128 => 0.027504026018656
1129 => 0.028119065272639
1130 => 0.029631079263905
1201 => 0.028071446571253
1202 => 0.028386958233707
1203 => 0.028296090853695
1204 => 0.028291248917175
1205 => 0.02847604594054
1206 => 0.028207988219785
1207 => 0.027115872842767
1208 => 0.027616382884178
1209 => 0.027423111920723
1210 => 0.027637560463981
1211 => 0.028794850806639
1212 => 0.028283185159794
1213 => 0.027744186965185
1214 => 0.028420210314499
1215 => 0.029281020345003
1216 => 0.029227152400319
1217 => 0.029122626072577
1218 => 0.029711835509239
1219 => 0.030685036876438
1220 => 0.030948089295353
1221 => 0.031142269213125
1222 => 0.031169043343089
1223 => 0.03144483352175
1224 => 0.029961840223018
1225 => 0.032315388674075
1226 => 0.032721781476109
1227 => 0.032645396472582
1228 => 0.033097084968419
1229 => 0.032964186754713
1230 => 0.032771638094143
1231 => 0.033487660436943
]
'min_raw' => 0.012343844422573
'max_raw' => 0.033487660436943
'avg_raw' => 0.022915752429758
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012343'
'max' => '$0.033487'
'avg' => '$0.022915'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042570729284763
'max_diff' => 0.015434512750097
'year' => 2032
]
7 => [
'items' => [
101 => 0.032666798600946
102 => 0.03150168856838
103 => 0.030862486161251
104 => 0.031704239453946
105 => 0.032218268816654
106 => 0.032558009526995
107 => 0.032660814860668
108 => 0.030076960771258
109 => 0.028684406724183
110 => 0.029577017902693
111 => 0.030666065145209
112 => 0.029955790510598
113 => 0.029983631931547
114 => 0.028970966959483
115 => 0.030755663525004
116 => 0.030495648247069
117 => 0.031844607968958
118 => 0.031522667905251
119 => 0.032622692192137
120 => 0.032333018931571
121 => 0.033535436440765
122 => 0.034015113339336
123 => 0.034820565507786
124 => 0.035413059401678
125 => 0.035760983148774
126 => 0.035740095112027
127 => 0.037118742332942
128 => 0.036305802233034
129 => 0.035284557872278
130 => 0.035266086783777
131 => 0.035795003709357
201 => 0.036903468484099
202 => 0.037190877272684
203 => 0.037351499576474
204 => 0.037105500926916
205 => 0.036223112712408
206 => 0.035842101955193
207 => 0.036166734159284
208 => 0.035769736869644
209 => 0.036455065569329
210 => 0.037396168252309
211 => 0.037201834269797
212 => 0.037851463637155
213 => 0.038523761689369
214 => 0.039485178098829
215 => 0.039736527949408
216 => 0.040151999694437
217 => 0.040579656595431
218 => 0.040717008466353
219 => 0.040979255805727
220 => 0.0409778736328
221 => 0.041768173641283
222 => 0.042639899024195
223 => 0.042968955175755
224 => 0.043725601652006
225 => 0.042429871077482
226 => 0.043412697602538
227 => 0.044299231729883
228 => 0.043242269195751
301 => 0.044699045808366
302 => 0.044755609143107
303 => 0.045609648342614
304 => 0.044743915999801
305 => 0.044229846898154
306 => 0.04571394513269
307 => 0.046432053519726
308 => 0.046215753429391
309 => 0.044569699061888
310 => 0.043611624817409
311 => 0.041104159720886
312 => 0.044074360442149
313 => 0.045521058571533
314 => 0.04456595246323
315 => 0.045047652429053
316 => 0.047675651250847
317 => 0.048676223051863
318 => 0.048468111111777
319 => 0.048503278603837
320 => 0.049043168986003
321 => 0.051437340263589
322 => 0.050002697337604
323 => 0.051099428099474
324 => 0.051681130141014
325 => 0.052221447415803
326 => 0.05089459895795
327 => 0.049168388609558
328 => 0.048621625330842
329 => 0.044470985983843
330 => 0.044254927180519
331 => 0.044133646826961
401 => 0.043368991353226
402 => 0.042768181607633
403 => 0.042290395391301
404 => 0.041036541680604
405 => 0.041459680500702
406 => 0.039461299385459
407 => 0.040739792804714
408 => 0.037550328292187
409 => 0.040206609113669
410 => 0.038760916228805
411 => 0.039731660119206
412 => 0.039728273285222
413 => 0.037940826008363
414 => 0.036909863722144
415 => 0.037566833016575
416 => 0.038271156250493
417 => 0.038385430325568
418 => 0.03929860378306
419 => 0.039553450866448
420 => 0.03878125230611
421 => 0.037484233729427
422 => 0.037785501562946
423 => 0.036903758539114
424 => 0.035358537805603
425 => 0.036468342313376
426 => 0.036847278366989
427 => 0.037014638115776
428 => 0.035495090994169
429 => 0.035017616297586
430 => 0.034763412775527
501 => 0.037288079277683
502 => 0.037426386207783
503 => 0.03671878839876
504 => 0.039917197592723
505 => 0.039193299086644
506 => 0.040002071077374
507 => 0.037758164664794
508 => 0.037843884911575
509 => 0.036781583655665
510 => 0.037376401375979
511 => 0.036956003383131
512 => 0.037328345982281
513 => 0.037551526600985
514 => 0.038613653543713
515 => 0.040218736897237
516 => 0.038455007197282
517 => 0.037686524909937
518 => 0.038163286998897
519 => 0.039432967268772
520 => 0.04135659787137
521 => 0.040217769837958
522 => 0.040723162380632
523 => 0.040833568167857
524 => 0.039993838537725
525 => 0.041387559900611
526 => 0.042134466501553
527 => 0.042900638123577
528 => 0.043565883475338
529 => 0.042594612329265
530 => 0.043634011681813
531 => 0.042796439282344
601 => 0.042045050253378
602 => 0.042046189800375
603 => 0.041574832486462
604 => 0.040661518295913
605 => 0.040493089146422
606 => 0.041369278852331
607 => 0.042071900020996
608 => 0.042129771265775
609 => 0.042518778446727
610 => 0.042748988889322
611 => 0.045005364182672
612 => 0.045912896991372
613 => 0.047022610931135
614 => 0.047454907050723
615 => 0.048755963383946
616 => 0.047705254728239
617 => 0.04747792730131
618 => 0.044321990209192
619 => 0.044838774731227
620 => 0.045666196613296
621 => 0.044335634091269
622 => 0.045179569758219
623 => 0.045346180535877
624 => 0.044290422085916
625 => 0.04485434829067
626 => 0.043356727483311
627 => 0.040251380938312
628 => 0.041391017039025
629 => 0.042230172806514
630 => 0.041032594059148
701 => 0.043179207611104
702 => 0.04192520028915
703 => 0.041527740171057
704 => 0.039977106545614
705 => 0.040708945927461
706 => 0.04169876917034
707 => 0.041087173485544
708 => 0.04235632636305
709 => 0.044153785308308
710 => 0.045434761593229
711 => 0.04553309904644
712 => 0.044709517113981
713 => 0.046029312416776
714 => 0.046038925684703
715 => 0.044550191191629
716 => 0.043638349603929
717 => 0.043431177276672
718 => 0.043948734368686
719 => 0.044577144224701
720 => 0.045567971419938
721 => 0.046166707542589
722 => 0.047727893805361
723 => 0.048150306045349
724 => 0.048614409029707
725 => 0.049234593740869
726 => 0.049979284498715
727 => 0.048349943515816
728 => 0.048414680270538
729 => 0.046897460507025
730 => 0.045276093598387
731 => 0.046506508975805
801 => 0.04811511340648
802 => 0.047746097772733
803 => 0.047704575975631
804 => 0.04777440412117
805 => 0.047496178384249
806 => 0.046237773687682
807 => 0.045605810727095
808 => 0.046421204177197
809 => 0.046854549506939
810 => 0.047526630321685
811 => 0.047443782175363
812 => 0.049174990177937
813 => 0.049847685258725
814 => 0.049675581070814
815 => 0.049707252383309
816 => 0.05092513469497
817 => 0.052279670302138
818 => 0.053548371644967
819 => 0.054838949142884
820 => 0.053283107597048
821 => 0.05249314721104
822 => 0.053308184685869
823 => 0.052875714329241
824 => 0.055360817277464
825 => 0.055532880413748
826 => 0.058017803660742
827 => 0.060376291721296
828 => 0.058894967627164
829 => 0.060291789527627
830 => 0.061802566297539
831 => 0.064717099801395
901 => 0.063735587451821
902 => 0.062983764374307
903 => 0.062273295198839
904 => 0.063751668769182
905 => 0.065653572749835
906 => 0.066063224651058
907 => 0.066727017230109
908 => 0.066029120497932
909 => 0.066869660241036
910 => 0.069837134886074
911 => 0.069035297042362
912 => 0.067896558402424
913 => 0.070239094635387
914 => 0.071086849391717
915 => 0.077036836244256
916 => 0.084548940427283
917 => 0.081438879968375
918 => 0.079508365080506
919 => 0.07996208187158
920 => 0.082705248018448
921 => 0.08358626592108
922 => 0.081191355556642
923 => 0.082037278384842
924 => 0.086698396337517
925 => 0.08919893657256
926 => 0.085802867066014
927 => 0.076433245987523
928 => 0.067794027447107
929 => 0.070085537233107
930 => 0.069825751137202
1001 => 0.074833540891045
1002 => 0.069016173474975
1003 => 0.069114123022791
1004 => 0.074225468565402
1005 => 0.07286184920528
1006 => 0.070652960481055
1007 => 0.067810154779297
1008 => 0.062554965511896
1009 => 0.057900297825966
1010 => 0.067029173064024
1011 => 0.066635519363976
1012 => 0.066065450470098
1013 => 0.067334077105528
1014 => 0.073494167941222
1015 => 0.073352157909191
1016 => 0.072448762539565
1017 => 0.073133979965265
1018 => 0.070532838553352
1019 => 0.071203211922091
1020 => 0.067792658950751
1021 => 0.069334371331071
1022 => 0.070648221197915
1023 => 0.070911996010564
1024 => 0.071506294132137
1025 => 0.066428081751814
1026 => 0.068708050022097
1027 => 0.070047317776751
1028 => 0.063996457338245
1029 => 0.069927711720881
1030 => 0.066339681372275
1031 => 0.065121849981551
1101 => 0.066761499512076
1102 => 0.066122526495419
1103 => 0.065573175017452
1104 => 0.065266627453689
1105 => 0.066470605107392
1106 => 0.066414438110782
1107 => 0.064444496987332
1108 => 0.061874789096865
1109 => 0.062737267412692
1110 => 0.062423920954774
1111 => 0.061288312968785
1112 => 0.062053575637511
1113 => 0.058683746135015
1114 => 0.052886129624467
1115 => 0.056716212677131
1116 => 0.056568758645932
1117 => 0.056494405636894
1118 => 0.059372607195251
1119 => 0.059095934526823
1120 => 0.058593770924439
1121 => 0.061279090340425
1122 => 0.060298912630947
1123 => 0.063319589372646
1124 => 0.065309202439851
1125 => 0.064804572208767
1126 => 0.066675812915108
1127 => 0.062757137171127
1128 => 0.064058764063295
1129 => 0.064327027561794
1130 => 0.061245953915663
1201 => 0.059141201597046
1202 => 0.059000838613328
1203 => 0.055351488145581
1204 => 0.057300941708924
1205 => 0.059016380170795
1206 => 0.058194818270961
1207 => 0.057934736316937
1208 => 0.059263438615152
1209 => 0.059366690163288
1210 => 0.057012543923659
1211 => 0.057502045472994
1212 => 0.059543348306581
1213 => 0.057450609879031
1214 => 0.053384760961182
1215 => 0.052376374214796
1216 => 0.052241836834573
1217 => 0.049507012002213
1218 => 0.052443759438978
1219 => 0.051161790482892
1220 => 0.055211515054822
1221 => 0.052898334098444
1222 => 0.052798617490711
1223 => 0.052647881212876
1224 => 0.050293904505473
1225 => 0.05080927580137
1226 => 0.052522448482197
1227 => 0.053133727794988
1228 => 0.0530699663546
1229 => 0.052514053001443
1230 => 0.052768547287781
1231 => 0.051948732519798
]
'min_raw' => 0.028684406724183
'max_raw' => 0.08919893657256
'avg_raw' => 0.058941671648371
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028684'
'max' => '$0.089198'
'avg' => '$0.058941'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016340562301611
'max_diff' => 0.055711276135617
'year' => 2033
]
8 => [
'items' => [
101 => 0.051659238862255
102 => 0.050745517247543
103 => 0.049402598895956
104 => 0.049589339929341
105 => 0.046928667281146
106 => 0.045478991609824
107 => 0.04507774049042
108 => 0.044541170724115
109 => 0.045138347473282
110 => 0.04692112992983
111 => 0.044770716048836
112 => 0.041083982283868
113 => 0.041305561265031
114 => 0.041803383448315
115 => 0.040875695103189
116 => 0.039997715939508
117 => 0.040761047589627
118 => 0.039198929892058
119 => 0.041992157908961
120 => 0.041916608919034
121 => 0.042957751591674
122 => 0.043608799471274
123 => 0.04210834488805
124 => 0.04173098461803
125 => 0.041945946177901
126 => 0.038393110426017
127 => 0.042667409113275
128 => 0.042704373425817
129 => 0.042387862540151
130 => 0.04466379463695
131 => 0.049466721242217
201 => 0.04765966705604
202 => 0.046959921056651
203 => 0.0456297034003
204 => 0.047402139446878
205 => 0.047266044012811
206 => 0.046650568847296
207 => 0.046278327546794
208 => 0.046964193556511
209 => 0.046193341158047
210 => 0.046054874885675
211 => 0.045215919927894
212 => 0.044916451177984
213 => 0.044694736437746
214 => 0.044450650293983
215 => 0.044989043504646
216 => 0.04376897365776
217 => 0.042297689027337
218 => 0.042175367629838
219 => 0.042513107762941
220 => 0.042363682895838
221 => 0.042174652241062
222 => 0.041813741241658
223 => 0.041706666657779
224 => 0.042054607110184
225 => 0.041661802625607
226 => 0.042241407039769
227 => 0.042083786710092
228 => 0.041203332361412
301 => 0.040105960257007
302 => 0.040096191343462
303 => 0.039859764323619
304 => 0.039558638966808
305 => 0.039474872781358
306 => 0.040696761927159
307 => 0.043226035890903
308 => 0.042729478891423
309 => 0.043088292212755
310 => 0.044853298623111
311 => 0.045414341085369
312 => 0.045016126434678
313 => 0.044471025660001
314 => 0.044495007327654
315 => 0.046357781687949
316 => 0.046473960639875
317 => 0.046767507370642
318 => 0.047144797875974
319 => 0.045080380639186
320 => 0.044397773461451
321 => 0.044074316311036
322 => 0.043078193481428
323 => 0.044152426552043
324 => 0.043526516945042
325 => 0.043610973535143
326 => 0.043555971070044
327 => 0.043586006135238
328 => 0.041991377144804
329 => 0.042572376137686
330 => 0.041606352625412
331 => 0.040312955583704
401 => 0.040308619663297
402 => 0.040625176756901
403 => 0.040436876210745
404 => 0.03993016428269
405 => 0.040002140320457
406 => 0.039371554492869
407 => 0.040078704857051
408 => 0.04009898339919
409 => 0.03982669199024
410 => 0.040916154694208
411 => 0.041362508452941
412 => 0.041183280414522
413 => 0.04134993333598
414 => 0.042750113076572
415 => 0.042978403468414
416 => 0.043079794980453
417 => 0.042943943786122
418 => 0.041375526051292
419 => 0.041445092047259
420 => 0.040934662926618
421 => 0.040503404107371
422 => 0.040520652198487
423 => 0.040742375291301
424 => 0.041710653041511
425 => 0.043748336483737
426 => 0.043825665080843
427 => 0.043919389596369
428 => 0.043538164889557
429 => 0.043423183870154
430 => 0.043574873513866
501 => 0.044340120278461
502 => 0.046308542719468
503 => 0.045612770762302
504 => 0.04504709733079
505 => 0.045543345434688
506 => 0.045466951928814
507 => 0.044822113859531
508 => 0.044804015402626
509 => 0.043566364980471
510 => 0.043108833799337
511 => 0.042726486498766
512 => 0.042308973227971
513 => 0.042061457365873
514 => 0.042441754224004
515 => 0.042528732614998
516 => 0.041697206888243
517 => 0.04158387300428
518 => 0.042262914862477
519 => 0.041964093857917
520 => 0.042271438671512
521 => 0.042342745304621
522 => 0.042331263294359
523 => 0.042019259846224
524 => 0.042218121539988
525 => 0.041747754350711
526 => 0.04123630067924
527 => 0.04091002510153
528 => 0.040625306385804
529 => 0.040783284877238
530 => 0.040220120401009
531 => 0.040039952750802
601 => 0.042150751672671
602 => 0.043710021531168
603 => 0.043687349129887
604 => 0.043549336717956
605 => 0.043344278268622
606 => 0.044325118975662
607 => 0.043983413685858
608 => 0.044232032834623
609 => 0.044295316842496
610 => 0.044486858474405
611 => 0.044555318144253
612 => 0.044348385473675
613 => 0.043653894156517
614 => 0.041923287824412
615 => 0.041117685905135
616 => 0.040851823853412
617 => 0.040861487434049
618 => 0.040594922739979
619 => 0.040673437988974
620 => 0.040567618340564
621 => 0.040367221526997
622 => 0.040770910938704
623 => 0.040817432382776
624 => 0.040723206450354
625 => 0.040745400068468
626 => 0.03996524959244
627 => 0.040024562738735
628 => 0.039694299603016
629 => 0.03963237924645
630 => 0.038797502798655
701 => 0.037318398154108
702 => 0.038137965707349
703 => 0.037148043351671
704 => 0.036773144755805
705 => 0.038547856399943
706 => 0.03836972457371
707 => 0.038064840319243
708 => 0.03761385296344
709 => 0.03744657736625
710 => 0.036430263790741
711 => 0.036370214562878
712 => 0.036873927013675
713 => 0.036641481049319
714 => 0.036315038881193
715 => 0.035132698439151
716 => 0.033803356322829
717 => 0.033843480805374
718 => 0.034266319799287
719 => 0.035495781201695
720 => 0.035015409361876
721 => 0.034666894080456
722 => 0.034601627644577
723 => 0.035418573734143
724 => 0.036574723606377
725 => 0.037117163259034
726 => 0.036579622037388
727 => 0.035962123625236
728 => 0.035999707892372
729 => 0.036249739183576
730 => 0.03627601393703
731 => 0.035874085950582
801 => 0.03598722632446
802 => 0.035815355750766
803 => 0.034760586357253
804 => 0.034741508923634
805 => 0.034482651504012
806 => 0.034474813404223
807 => 0.034034432358436
808 => 0.03397282000592
809 => 0.033098416710291
810 => 0.033673951607411
811 => 0.033287913015362
812 => 0.032706061799845
813 => 0.032605750430977
814 => 0.032602734950099
815 => 0.033200166048884
816 => 0.03366697027718
817 => 0.033294628321948
818 => 0.033209853276287
819 => 0.03411502897434
820 => 0.033999837115903
821 => 0.033900081709405
822 => 0.036471203066081
823 => 0.03443595988517
824 => 0.033548477690674
825 => 0.032450049946686
826 => 0.032807703558882
827 => 0.032883066429997
828 => 0.03024154571219
829 => 0.029169881085956
830 => 0.028802126171062
831 => 0.028590478018249
901 => 0.028686928739196
902 => 0.027722304881862
903 => 0.028370548067397
904 => 0.02753526534457
905 => 0.027395227477843
906 => 0.02888881645793
907 => 0.029096640639089
908 => 0.028209998116353
909 => 0.028779366150335
910 => 0.028572905386406
911 => 0.027549583869446
912 => 0.027510500514542
913 => 0.026997033748823
914 => 0.026193557687229
915 => 0.02582634756694
916 => 0.025635101348029
917 => 0.025714013265266
918 => 0.025674112985166
919 => 0.025413736667927
920 => 0.025689037450885
921 => 0.024985757712564
922 => 0.024705706054055
923 => 0.024579213217056
924 => 0.023955011970025
925 => 0.024948393737605
926 => 0.025144102460113
927 => 0.025340196789261
928 => 0.027047064045209
929 => 0.026961793780659
930 => 0.027732595443891
1001 => 0.027702643508672
1002 => 0.027482798388159
1003 => 0.026555307987481
1004 => 0.026924989130265
1005 => 0.025787168033983
1006 => 0.026639700963631
1007 => 0.026250640537166
1008 => 0.026508159242084
1009 => 0.026045117391116
1010 => 0.026301383869971
1011 => 0.025190512258534
1012 => 0.02415319597816
1013 => 0.024570642330532
1014 => 0.025024454256342
1015 => 0.026008434140627
1016 => 0.025422383839205
1017 => 0.025633149688611
1018 => 0.024927119374876
1019 => 0.023470377170051
1020 => 0.023478622172729
1021 => 0.02325453412137
1022 => 0.023060889327606
1023 => 0.02548969876616
1024 => 0.02518763791868
1025 => 0.024706343490968
1026 => 0.025350575208341
1027 => 0.025520920299747
1028 => 0.025525769785022
1029 => 0.02599578461599
1030 => 0.026246631615532
1031 => 0.026290844486435
1101 => 0.027030422978305
1102 => 0.027278319933504
1103 => 0.028299372408278
1104 => 0.026225349000192
1105 => 0.026182635852951
1106 => 0.025359640869759
1107 => 0.024837684440382
1108 => 0.025395379673031
1109 => 0.025889421516167
1110 => 0.025374992126961
1111 => 0.025442165744994
1112 => 0.024751586320411
1113 => 0.024998435969917
1114 => 0.025211056142311
1115 => 0.025093659780351
1116 => 0.024917911744449
1117 => 0.025848915719009
1118 => 0.02579638482613
1119 => 0.026663357130929
1120 => 0.027339224040305
1121 => 0.028550498367566
1122 => 0.02728647046191
1123 => 0.027240404260972
1124 => 0.027690708764392
1125 => 0.027278250994231
1126 => 0.027538910067414
1127 => 0.028508502161103
1128 => 0.028528988114179
1129 => 0.028185822005489
1130 => 0.028164940316589
1201 => 0.028230849121589
1202 => 0.028616879051096
1203 => 0.028481988332225
1204 => 0.028638087287118
1205 => 0.028833291420484
1206 => 0.029640738480924
1207 => 0.029835411233597
1208 => 0.029362457370852
1209 => 0.029405159809218
1210 => 0.029228262081677
1211 => 0.029057381093395
1212 => 0.029441496599889
1213 => 0.030143475237816
1214 => 0.030139108265142
1215 => 0.030301953664626
1216 => 0.030403404999421
1217 => 0.029967901603567
1218 => 0.029684404906769
1219 => 0.029793115579685
1220 => 0.029966946313088
1221 => 0.029736744615675
1222 => 0.028315833099443
1223 => 0.028746846885289
1224 => 0.028675105115826
1225 => 0.028572936112015
1226 => 0.029006323806614
1227 => 0.028964522506214
1228 => 0.027712411269961
1229 => 0.027792567368841
1230 => 0.027717285827819
1231 => 0.027960535888014
]
'min_raw' => 0.023060889327606
'max_raw' => 0.051659238862255
'avg_raw' => 0.03736006409493
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.02306'
'max' => '$0.051659'
'avg' => '$0.03736'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056235173965775
'max_diff' => -0.037539697710305
'year' => 2034
]
9 => [
'items' => [
101 => 0.027265114692702
102 => 0.027479021568647
103 => 0.027613181955987
104 => 0.027692203454799
105 => 0.027977683294057
106 => 0.027944185529916
107 => 0.027975601026005
108 => 0.028398892263742
109 => 0.030539754088202
110 => 0.030656276473762
111 => 0.030082477631204
112 => 0.030311698951124
113 => 0.02987164414207
114 => 0.030167055883499
115 => 0.03036916909434
116 => 0.029455858358684
117 => 0.029401778024256
118 => 0.028959906952469
119 => 0.029197343437591
120 => 0.028819564917474
121 => 0.028912258552179
122 => 0.028653079068658
123 => 0.029119550536875
124 => 0.02964113812068
125 => 0.029772911742467
126 => 0.029426272075657
127 => 0.029175282112219
128 => 0.028734626417656
129 => 0.029467446658367
130 => 0.029681745629043
131 => 0.029466321037104
201 => 0.029416402452031
202 => 0.029321806823519
203 => 0.029436471361802
204 => 0.029680578510825
205 => 0.029565462087297
206 => 0.029641498513128
207 => 0.029351726066283
208 => 0.029968045773312
209 => 0.030946909793489
210 => 0.030950057001374
211 => 0.030834939957326
212 => 0.030787836543132
213 => 0.030905953616212
214 => 0.030970027282942
215 => 0.031351996238317
216 => 0.031761864145748
217 => 0.033674538830351
218 => 0.033137467432606
219 => 0.034834506198312
220 => 0.036176643529081
221 => 0.036579091830026
222 => 0.036208858329812
223 => 0.034942309525202
224 => 0.034880166598457
225 => 0.036772925235658
226 => 0.036238134226811
227 => 0.036174522537999
228 => 0.03549780164269
301 => 0.035897827505331
302 => 0.035810335981146
303 => 0.035672226329989
304 => 0.036435447809865
305 => 0.037864130286942
306 => 0.03764145672479
307 => 0.037475241240173
308 => 0.036746933371181
309 => 0.037185537381766
310 => 0.037029358894503
311 => 0.037700400789101
312 => 0.037302890436139
313 => 0.036234082658937
314 => 0.036404293820293
315 => 0.036378566745672
316 => 0.036908028118344
317 => 0.036749096956307
318 => 0.03634753288553
319 => 0.037859247205553
320 => 0.037761084886207
321 => 0.037900256612009
322 => 0.037961524309735
323 => 0.038881678176939
324 => 0.039258635774692
325 => 0.039344211748954
326 => 0.039702292311873
327 => 0.039335302378345
328 => 0.040803523771846
329 => 0.041779805325432
330 => 0.04291380658891
331 => 0.044570887225657
401 => 0.045193964873927
402 => 0.045081411473719
403 => 0.046337791100501
404 => 0.048595477362077
405 => 0.045537754416904
406 => 0.048757544102903
407 => 0.047738195862575
408 => 0.04532133952205
409 => 0.045165722466585
410 => 0.046802445640667
411 => 0.050432540112015
412 => 0.049523242619133
413 => 0.050434027396967
414 => 0.049371548574442
415 => 0.049318787545629
416 => 0.050382425172054
417 => 0.052867672462064
418 => 0.051687024632681
419 => 0.049994276462538
420 => 0.051244175369293
421 => 0.050161397263578
422 => 0.047721595140894
423 => 0.049522547296477
424 => 0.048318301878203
425 => 0.048669764712463
426 => 0.051200909463689
427 => 0.050896355430643
428 => 0.051290476550348
429 => 0.050594863090014
430 => 0.049945050429887
501 => 0.048732126844038
502 => 0.048373039966679
503 => 0.048472278660989
504 => 0.04837299078891
505 => 0.047694371189971
506 => 0.047547823352193
507 => 0.047303570535486
508 => 0.047379274696735
509 => 0.046920007942646
510 => 0.047786739196966
511 => 0.047947612155378
512 => 0.048578346882884
513 => 0.048643831854676
514 => 0.050400419092834
515 => 0.049432920360306
516 => 0.050082002039908
517 => 0.050023942065091
518 => 0.045373720127499
519 => 0.046014479681243
520 => 0.047011300465445
521 => 0.046562234053321
522 => 0.045927359211934
523 => 0.045414663737679
524 => 0.044637877668379
525 => 0.045731189144064
526 => 0.047168777473876
527 => 0.048680291467102
528 => 0.050496276491643
529 => 0.050090969774562
530 => 0.048646342890241
531 => 0.048711147796971
601 => 0.049111746230585
602 => 0.048592934860849
603 => 0.048439927259513
604 => 0.049090725335753
605 => 0.049095207024432
606 => 0.048498251843102
607 => 0.047834845400699
608 => 0.047832065703483
609 => 0.047714018934803
610 => 0.049392548832348
611 => 0.050315570557483
612 => 0.050421393510746
613 => 0.050308447829576
614 => 0.050351916139604
615 => 0.049814830135144
616 => 0.051042449473433
617 => 0.052169034377217
618 => 0.051867085557027
619 => 0.051414421351008
620 => 0.051053852507652
621 => 0.051782146996575
622 => 0.051749717189425
623 => 0.052159194640894
624 => 0.052140618378439
625 => 0.052002926512736
626 => 0.051867090474437
627 => 0.052405665012082
628 => 0.052250564194483
629 => 0.052095222462474
630 => 0.051783660837301
701 => 0.051826007236652
702 => 0.051373421189491
703 => 0.051164034175145
704 => 0.048015355869086
705 => 0.047173926139675
706 => 0.047438657061429
707 => 0.047525813354606
708 => 0.047159622058045
709 => 0.047684646310488
710 => 0.047602821836883
711 => 0.047921152997963
712 => 0.047722273508852
713 => 0.047730435592458
714 => 0.048315297764355
715 => 0.048485085741038
716 => 0.04839873020574
717 => 0.048459210662568
718 => 0.049852957262971
719 => 0.049654811065901
720 => 0.049549549847908
721 => 0.04957870792466
722 => 0.049934840063327
723 => 0.05003453761806
724 => 0.049612112073034
725 => 0.049811330402081
726 => 0.050659576762595
727 => 0.050956414982188
728 => 0.051903780088702
729 => 0.051501322553383
730 => 0.052240050777415
731 => 0.054510649487081
801 => 0.056324560849842
802 => 0.05465641299759
803 => 0.057987430215081
804 => 0.060581104924938
805 => 0.060481555369582
806 => 0.060029288191142
807 => 0.057076458490379
808 => 0.054359220575527
809 => 0.056632305471317
810 => 0.056638100032181
811 => 0.056442840023733
812 => 0.055230096881021
813 => 0.05640063919114
814 => 0.056493552588932
815 => 0.056441545793835
816 => 0.055511738469744
817 => 0.054092094542976
818 => 0.054369489568119
819 => 0.054823868278009
820 => 0.053963634586859
821 => 0.053688737799139
822 => 0.054199823228764
823 => 0.055846646971893
824 => 0.055535324482655
825 => 0.055527194594308
826 => 0.056859164224551
827 => 0.055905761426334
828 => 0.054372988407728
829 => 0.053985943005737
830 => 0.052612192573696
831 => 0.053561046890238
901 => 0.053595194467878
902 => 0.053075516655763
903 => 0.054415157398073
904 => 0.054402812372794
905 => 0.055674601878406
906 => 0.058105785750812
907 => 0.057386765048449
908 => 0.05655062220083
909 => 0.056641534112093
910 => 0.057638613388925
911 => 0.057035756497046
912 => 0.057252548038634
913 => 0.057638285248962
914 => 0.05787101008527
915 => 0.05660804858958
916 => 0.056313591850503
917 => 0.055711236702624
918 => 0.055554093488033
919 => 0.056044699187429
920 => 0.055915441918993
921 => 0.053592324496203
922 => 0.053349545799818
923 => 0.053356991475828
924 => 0.052746512900271
925 => 0.051815386540899
926 => 0.054262331018661
927 => 0.054065807132131
928 => 0.053848859971142
929 => 0.05387543476048
930 => 0.054937570423633
1001 => 0.054321478099868
1002 => 0.055959460518145
1003 => 0.055622740575205
1004 => 0.05527738503629
1005 => 0.055229646381025
1006 => 0.055096713962893
1007 => 0.054640839239143
1008 => 0.054090343116391
1009 => 0.053726857892993
1010 => 0.049560186415323
1011 => 0.050333496405166
1012 => 0.051223119059056
1013 => 0.05153021323424
1014 => 0.051004907397318
1015 => 0.054661581515362
1016 => 0.055329691113317
1017 => 0.0533059435614
1018 => 0.052927383023504
1019 => 0.054686399881203
1020 => 0.053625497684945
1021 => 0.05410322187896
1022 => 0.053070643472663
1023 => 0.055168763075702
1024 => 0.055152778919639
1025 => 0.054336563005876
1026 => 0.055026423106983
1027 => 0.054906542937792
1028 => 0.053985037181405
1029 => 0.05519797645184
1030 => 0.055198578054585
1031 => 0.054412987983653
1101 => 0.053495590768584
1102 => 0.053331581814484
1103 => 0.053208023099074
1104 => 0.054072834009256
1105 => 0.054848220767132
1106 => 0.05629102328886
1107 => 0.056653778122965
1108 => 0.058069634390433
1109 => 0.057226560919946
1110 => 0.057600284469784
1111 => 0.058006014249556
1112 => 0.058200536026198
1113 => 0.057883573229774
1114 => 0.060082980802842
1115 => 0.060268678190116
1116 => 0.060330940917792
1117 => 0.059589313058981
1118 => 0.060248052177767
1119 => 0.059939849959234
1120 => 0.060741706510815
1121 => 0.060867447856722
1122 => 0.060760949410117
1123 => 0.060800861698
1124 => 0.05892405533647
1125 => 0.058826733025683
1126 => 0.057499736412417
1127 => 0.058040497340987
1128 => 0.057029570704372
1129 => 0.057350145954541
1130 => 0.057491452470262
1201 => 0.057417641965524
1202 => 0.058071071152537
1203 => 0.057515522856812
1204 => 0.056049339563798
1205 => 0.054582756810126
1206 => 0.054564345058307
1207 => 0.054178219706601
1208 => 0.053899121799703
1209 => 0.053952885958102
1210 => 0.054142357864868
1211 => 0.053888109348041
1212 => 0.053942366159833
1213 => 0.054843390746828
1214 => 0.055024084801936
1215 => 0.054410015800953
1216 => 0.05194444015227
1217 => 0.051339381703655
1218 => 0.051774285717689
1219 => 0.051566429610386
1220 => 0.0416181332904
1221 => 0.043955337945616
1222 => 0.042566650303457
1223 => 0.04320662145941
1224 => 0.041789130975688
1225 => 0.042465631731562
1226 => 0.042340706743804
1227 => 0.046098862666477
1228 => 0.046040184230919
1229 => 0.046068270492827
1230 => 0.044727640033594
1231 => 0.046863300757235
]
'min_raw' => 0.027265114692702
'max_raw' => 0.060867447856722
'avg_raw' => 0.044066281274712
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027265'
'max' => '$0.060867'
'avg' => '$0.044066'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042042253650961
'max_diff' => 0.0092082089944669
'year' => 2035
]
10 => [
'items' => [
101 => 0.047915404025577
102 => 0.047720687711428
103 => 0.047769693612701
104 => 0.046927609864516
105 => 0.046076423704213
106 => 0.045132327255827
107 => 0.046886341763081
108 => 0.046691325291901
109 => 0.047138622912077
110 => 0.048276226699578
111 => 0.048443743178624
112 => 0.048668887025247
113 => 0.048588188983063
114 => 0.05051074374214
115 => 0.050277909675391
116 => 0.050838972785323
117 => 0.049684823400232
118 => 0.048378793818136
119 => 0.048627027344368
120 => 0.048603120459624
121 => 0.048298758377786
122 => 0.048023993899251
123 => 0.047566588456902
124 => 0.049013886959763
125 => 0.048955129283624
126 => 0.049906347761984
127 => 0.04973821065629
128 => 0.048615349914341
129 => 0.048655453105408
130 => 0.048925166338271
131 => 0.049858646916741
201 => 0.050135767508635
202 => 0.050007394209123
203 => 0.0503112442871
204 => 0.050551394999766
205 => 0.050341403519185
206 => 0.053314440051374
207 => 0.052079828003825
208 => 0.052681569325425
209 => 0.052825081084961
210 => 0.052457478730637
211 => 0.052537198518437
212 => 0.052657952274611
213 => 0.053391145436091
214 => 0.055315256442967
215 => 0.056167432110045
216 => 0.058731244650058
217 => 0.056096670783752
218 => 0.055940346073476
219 => 0.056402166131654
220 => 0.05790739549976
221 => 0.059127242523605
222 => 0.059531936156078
223 => 0.059585423100373
224 => 0.060344655258415
225 => 0.060779832972563
226 => 0.06025246450464
227 => 0.059805574945856
228 => 0.058204872016264
229 => 0.058390157738934
301 => 0.059666592629117
302 => 0.061469632093141
303 => 0.063016827527557
304 => 0.062475053611629
305 => 0.066608406157377
306 => 0.067018211179057
307 => 0.066961589375643
308 => 0.067895186202194
309 => 0.066042186625178
310 => 0.065249993405828
311 => 0.059902197540877
312 => 0.06140471004517
313 => 0.063588700209625
314 => 0.063299640921816
315 => 0.061713568886165
316 => 0.063015624349691
317 => 0.06258512409441
318 => 0.062245570681598
319 => 0.063801130691358
320 => 0.062090728561744
321 => 0.063571637639992
322 => 0.061672356429096
323 => 0.062477528389242
324 => 0.062020473842877
325 => 0.062316244148873
326 => 0.060587176983601
327 => 0.061520139655249
328 => 0.060548362669164
329 => 0.060547901920343
330 => 0.060526449889515
331 => 0.061669741204125
401 => 0.061707023892849
402 => 0.060862129883935
403 => 0.060740367457525
404 => 0.061190586966232
405 => 0.060663497834212
406 => 0.060910119521625
407 => 0.060670967753887
408 => 0.060617129653662
409 => 0.060188138511273
410 => 0.060003317331775
411 => 0.060075790478511
412 => 0.059828402266232
413 => 0.059679341919911
414 => 0.060496798034837
415 => 0.060060064208717
416 => 0.060429862312339
417 => 0.060008430701021
418 => 0.058547565127178
419 => 0.057707405887288
420 => 0.054947966240609
421 => 0.055730539901333
422 => 0.056249387048024
423 => 0.056077908069138
424 => 0.056446311269341
425 => 0.056468928233787
426 => 0.056349156597975
427 => 0.056210476387401
428 => 0.05614297453039
429 => 0.056646078069313
430 => 0.056938146607344
501 => 0.056301460300474
502 => 0.056152293606962
503 => 0.056796018615623
504 => 0.057188690499038
505 => 0.060087959062904
506 => 0.059873171883179
507 => 0.060412245554434
508 => 0.06035155413181
509 => 0.060916589220456
510 => 0.061840182788747
511 => 0.059962258823589
512 => 0.060288201490215
513 => 0.060208287875474
514 => 0.061080763766746
515 => 0.061083487541244
516 => 0.060560394661024
517 => 0.060843971797604
518 => 0.060685686819497
519 => 0.060971729168435
520 => 0.059870303269444
521 => 0.061211721122836
522 => 0.061972218606652
523 => 0.061982778114953
524 => 0.0623432478866
525 => 0.062709506051596
526 => 0.063412506704941
527 => 0.062689899744928
528 => 0.061390000168235
529 => 0.061483848719022
530 => 0.060721718072822
531 => 0.060734529626675
601 => 0.060666140548149
602 => 0.060871381320894
603 => 0.059915342077372
604 => 0.060139722576922
605 => 0.059825588563581
606 => 0.06028751862422
607 => 0.059790558238747
608 => 0.060208249338709
609 => 0.060388510970774
610 => 0.061053680273847
611 => 0.05969231219185
612 => 0.056916390516143
613 => 0.057499922907174
614 => 0.056636832665359
615 => 0.056716714953255
616 => 0.056878089887977
617 => 0.05635502092595
618 => 0.056454806000107
619 => 0.056451240975081
620 => 0.056420519515392
621 => 0.056284449076487
622 => 0.056087120019359
623 => 0.056873218248278
624 => 0.0570067916555
625 => 0.057303708793512
626 => 0.058187132795416
627 => 0.058098857905054
628 => 0.058242837913725
629 => 0.057928530363208
630 => 0.056731294779068
701 => 0.056796310431361
702 => 0.055985564205462
703 => 0.05728297618971
704 => 0.056975731906839
705 => 0.056777649518929
706 => 0.056723600904168
707 => 0.057609214743299
708 => 0.057874204284263
709 => 0.057709080585121
710 => 0.057370407060752
711 => 0.05802076034738
712 => 0.058194767450679
713 => 0.058233721223972
714 => 0.059386022555002
715 => 0.058298122067906
716 => 0.058559990527951
717 => 0.060603013499573
718 => 0.05875027358221
719 => 0.059731711237468
720 => 0.059683674971398
721 => 0.060185745265788
722 => 0.059642490552924
723 => 0.059649224846175
724 => 0.060095029254406
725 => 0.059468977364294
726 => 0.059313958112115
727 => 0.059099800125499
728 => 0.059567406254463
729 => 0.059847714980771
730 => 0.062106797450738
731 => 0.063566267753014
801 => 0.063502908298114
802 => 0.064081895111978
803 => 0.063821056249421
804 => 0.062978738756408
805 => 0.064416472007306
806 => 0.063961513049407
807 => 0.063999019313121
808 => 0.063997623328113
809 => 0.064300131261913
810 => 0.06408577666637
811 => 0.063663261755509
812 => 0.063943746871284
813 => 0.064776687389872
814 => 0.067362160317308
815 => 0.06880902522046
816 => 0.067275057233401
817 => 0.068333167810225
818 => 0.067698678507478
819 => 0.067583372926748
820 => 0.068247944562751
821 => 0.068913679443428
822 => 0.06887127500958
823 => 0.068387985672072
824 => 0.068114987788328
825 => 0.070182219225044
826 => 0.071705320133248
827 => 0.071601454862306
828 => 0.072059882389446
829 => 0.073405839787759
830 => 0.073528897264173
831 => 0.073513394850589
901 => 0.073208384055576
902 => 0.074533653908869
903 => 0.075639217336391
904 => 0.07313778286914
905 => 0.074090296368087
906 => 0.074517910365833
907 => 0.07514577458188
908 => 0.076205086756612
909 => 0.077355780747049
910 => 0.077518501494014
911 => 0.077403043337138
912 => 0.07664412971813
913 => 0.0779032328131
914 => 0.078640785876533
915 => 0.079079981847205
916 => 0.080193709753589
917 => 0.074520551164306
918 => 0.070504807540534
919 => 0.069877691185642
920 => 0.071152956953449
921 => 0.071489234366366
922 => 0.071353681362875
923 => 0.066833596818883
924 => 0.069853893875971
925 => 0.073103479555607
926 => 0.073228309375916
927 => 0.074855119912775
928 => 0.075384876108793
929 => 0.076694671821895
930 => 0.076612743743422
1001 => 0.07693165815616
1002 => 0.0768583452555
1003 => 0.079284466003995
1004 => 0.081960837472002
1005 => 0.081868163238405
1006 => 0.081483403174489
1007 => 0.082054837480744
1008 => 0.084817139653125
1009 => 0.084562831134082
1010 => 0.084809870198384
1011 => 0.088066780136149
1012 => 0.09230122634528
1013 => 0.09033390094969
1014 => 0.094602430975488
1015 => 0.097289244361673
1016 => 0.10193581029139
1017 => 0.10135403735217
1018 => 0.10316291137053
1019 => 0.10031254237129
1020 => 0.093767518994407
1021 => 0.092731743991672
1022 => 0.094805391777148
1023 => 0.099903252514147
1024 => 0.094644842000793
1025 => 0.095708611599076
1026 => 0.095402245883207
1027 => 0.095385920956179
1028 => 0.096008977022569
1029 => 0.095105201701851
1030 => 0.091423058459174
1031 => 0.093110563008287
1101 => 0.09245893646125
1102 => 0.093181964697164
1103 => 0.097083849886868
1104 => 0.095358733435175
1105 => 0.093541463390396
1106 => 0.095820723311055
1107 => 0.098723004428736
1108 => 0.098541384892292
1109 => 0.098188967080514
1110 => 0.10017552783351
1111 => 0.10345674418977
1112 => 0.10434364378588
1113 => 0.10499833493585
1114 => 0.10508860578434
1115 => 0.10601845162675
1116 => 0.10101843618079
1117 => 0.10895358910303
1118 => 0.11032377080853
1119 => 0.11006623343611
1120 => 0.11158913273571
1121 => 0.11114105712954
1122 => 0.11049186587711
1123 => 0.11290598519694
1124 => 0.11013839220614
1125 => 0.10621014238596
1126 => 0.10405502684263
1127 => 0.10689305683829
1128 => 0.10862614272304
1129 => 0.1097716022479
1130 => 0.11011821760802
1201 => 0.10140657314664
1202 => 0.096711479951908
1203 => 0.099720980860377
1204 => 0.10339277967337
1205 => 0.10099803915299
1206 => 0.10109190844754
1207 => 0.097677637792218
1208 => 0.10369486686641
1209 => 0.10281820720316
1210 => 0.10736631908687
1211 => 0.10628087568495
1212 => 0.10998968436942
1213 => 0.10901303074709
1214 => 0.11306706532944
1215 => 0.11468432948295
1216 => 0.11739996770375
1217 => 0.11939760223361
1218 => 0.1205706514382
1219 => 0.12050022596396
1220 => 0.12514843132334
1221 => 0.12240754701884
1222 => 0.11896435035555
1223 => 0.11890207379106
1224 => 0.12068535413345
1225 => 0.12442262051203
1226 => 0.12539163930898
1227 => 0.12593318862051
1228 => 0.12510378699844
1229 => 0.12212875352685
1230 => 0.12084414915758
1231 => 0.12193866929877
]
'min_raw' => 0.045132327255827
'max_raw' => 0.12593318862051
'avg_raw' => 0.085532757938166
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045132'
'max' => '$0.125933'
'avg' => '$0.085532'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017867212563125
'max_diff' => 0.065065740763784
'year' => 2036
]
11 => [
'items' => [
101 => 0.12060016521928
102 => 0.12291079877839
103 => 0.12608379217975
104 => 0.12542858158975
105 => 0.12761885235747
106 => 0.12988555217886
107 => 0.1331270347273
108 => 0.13397447829722
109 => 0.13537527029289
110 => 0.13681714539264
111 => 0.13728023681506
112 => 0.13816442202928
113 => 0.13815976193676
114 => 0.14082431359235
115 => 0.14376339658276
116 => 0.14487283237171
117 => 0.14742391879376
118 => 0.14305527269673
119 => 0.14636894094471
120 => 0.14935795265089
121 => 0.1457943296723
122 => 0.15070595373063
123 => 0.15089666096283
124 => 0.15377611375108
125 => 0.15085723671378
126 => 0.14912401684642
127 => 0.15412775766059
128 => 0.15654891022421
129 => 0.15581963936806
130 => 0.15026985214418
131 => 0.14703963793831
201 => 0.13858554429976
202 => 0.14859978340428
203 => 0.15347742715274
204 => 0.15025722022522
205 => 0.15188130529121
206 => 0.16074178679991
207 => 0.16411528448472
208 => 0.16341362054881
209 => 0.16353219020361
210 => 0.16535246832102
211 => 0.1734245839391
212 => 0.16858758515057
213 => 0.17228528948552
214 => 0.17424653853171
215 => 0.17606825594741
216 => 0.17159469373415
217 => 0.16577465502439
218 => 0.16393120445641
219 => 0.14993703410962
220 => 0.14920857676947
221 => 0.14879967158992
222 => 0.14622158227369
223 => 0.14419591026922
224 => 0.14258502068289
225 => 0.138357565356
226 => 0.13978420743057
227 => 0.13304652597802
228 => 0.13735705580259
301 => 0.12660355351731
302 => 0.13555938976254
303 => 0.13068513526617
304 => 0.13395806606783
305 => 0.13394664712059
306 => 0.12792014383108
307 => 0.1244441825036
308 => 0.12665920034791
309 => 0.12903387530534
310 => 0.12941915832782
311 => 0.13249798639549
312 => 0.13335722112998
313 => 0.13075369977062
314 => 0.12638071108439
315 => 0.12739645661895
316 => 0.12442359845276
317 => 0.11921377886587
318 => 0.1229555622479
319 => 0.12423317160913
320 => 0.12479743668685
321 => 0.11967417747495
322 => 0.11806433819921
323 => 0.11720727327666
324 => 0.12571936265527
325 => 0.12618567412638
326 => 0.12379995871036
327 => 0.1345836186136
328 => 0.13214294425938
329 => 0.13486977549278
330 => 0.12730428835823
331 => 0.12759330015505
401 => 0.12401167730324
402 => 0.12601714677612
403 => 0.12459974559199
404 => 0.12585512466115
405 => 0.12660759369909
406 => 0.13018862884183
407 => 0.13560027943157
408 => 0.1296537416085
409 => 0.127062749923
410 => 0.12867018659239
411 => 0.13295100226852
412 => 0.13943665714878
413 => 0.1355970189237
414 => 0.1373009851667
415 => 0.13767322598662
416 => 0.13484201891058
417 => 0.13954104779206
418 => 0.1420592955445
419 => 0.14464249666054
420 => 0.14688541780995
421 => 0.14361070932898
422 => 0.14711511681464
423 => 0.1442911829924
424 => 0.14175782242093
425 => 0.14176166448319
426 => 0.14017245039022
427 => 0.13709314783122
428 => 0.13652527719436
429 => 0.13947941196145
430 => 0.14184834828704
501 => 0.14204346522926
502 => 0.14335503009945
503 => 0.14413120067944
504 => 0.15173872751606
505 => 0.15479853774251
506 => 0.15854001576818
507 => 0.15999753231732
508 => 0.16438413458164
509 => 0.16084159699078
510 => 0.1600751466994
511 => 0.14943468445283
512 => 0.15117705954961
513 => 0.15396677019376
514 => 0.14948068575384
515 => 0.15232607377667
516 => 0.15288781364593
517 => 0.14932825032119
518 => 0.15122956689259
519 => 0.14618023378003
520 => 0.13571034109519
521 => 0.1395527037756
522 => 0.14238197603367
523 => 0.13834425567465
524 => 0.14558171313684
525 => 0.14135373989888
526 => 0.14001367536095
527 => 0.13478560583099
528 => 0.13725305340228
529 => 0.1405903115729
530 => 0.13852827402136
531 => 0.14280731155729
601 => 0.14886756988581
602 => 0.15318647086533
603 => 0.15351802245453
604 => 0.15074125846859
605 => 0.15519104047713
606 => 0.15522345228112
607 => 0.1502040799976
608 => 0.14712974242192
609 => 0.14643124645627
610 => 0.14817622632667
611 => 0.1502949540304
612 => 0.15363559709649
613 => 0.15565427773643
614 => 0.16091792621991
615 => 0.16234211857891
616 => 0.16390687419331
617 => 0.1659978702469
618 => 0.16850864712963
619 => 0.16301521024883
620 => 0.16323347473715
621 => 0.15811806237557
622 => 0.15265151064287
623 => 0.15679994199269
624 => 0.16222346413989
625 => 0.16097930216686
626 => 0.16083930852898
627 => 0.16107473899691
628 => 0.16013668149978
629 => 0.15589388220629
630 => 0.15376317496243
701 => 0.1565123309084
702 => 0.15797338494283
703 => 0.16023935233293
704 => 0.15996002402333
705 => 0.16579691267309
706 => 0.16806495110404
707 => 0.16748468981857
708 => 0.16759147185986
709 => 0.17169764710346
710 => 0.17626455847368
711 => 0.18054207362893
712 => 0.18489334576839
713 => 0.17964771737122
714 => 0.17698431077652
715 => 0.17973226652701
716 => 0.17827416252552
717 => 0.1866528606198
718 => 0.18723298349685
719 => 0.19561107571589
720 => 0.20356288287642
721 => 0.19856849527032
722 => 0.20327797783072
723 => 0.20837166718954
724 => 0.21819822038402
725 => 0.21488898297043
726 => 0.21235415897398
727 => 0.20995876254551
728 => 0.21494320225467
729 => 0.22135560431214
730 => 0.2227367742981
731 => 0.22497479732289
801 => 0.22262178976475
802 => 0.22545572819324
803 => 0.23546077614145
804 => 0.23275732386884
805 => 0.2289179870401
806 => 0.23681601150019
807 => 0.23967427584951
808 => 0.25973507193766
809 => 0.2850626556691
810 => 0.2745768696944
811 => 0.26806800396571
812 => 0.26959774180431
813 => 0.27884651799022
814 => 0.28181693135965
815 => 0.27374232385864
816 => 0.27659441173436
817 => 0.29230969634067
818 => 0.30074044232526
819 => 0.28929035687794
820 => 0.25770002524576
821 => 0.22857229676577
822 => 0.23629828199737
823 => 0.23542239503734
824 => 0.25230650782514
825 => 0.23269284742623
826 => 0.23302309116531
827 => 0.25025634952498
828 => 0.24565881164746
829 => 0.23821138909405
830 => 0.22862667119222
831 => 0.21090843367158
901 => 0.19521489658995
902 => 0.22599353681277
903 => 0.22466630587904
904 => 0.22274427880239
905 => 0.22702154207643
906 => 0.24779071841278
907 => 0.24731192167496
908 => 0.24426606111322
909 => 0.24657631950432
910 => 0.23780638962816
911 => 0.24006660024484
912 => 0.22856768278476
913 => 0.23376567371393
914 => 0.23819541027006
915 => 0.23908474546708
916 => 0.24108846307653
917 => 0.2239669154868
918 => 0.23165398769236
919 => 0.23616942243187
920 => 0.21576852400586
921 => 0.23576616226388
922 => 0.22366886743527
923 => 0.21956286387517
924 => 0.22509105674401
925 => 0.22293671460668
926 => 0.22108453774422
927 => 0.22005099123053
928 => 0.22411028594902
929 => 0.2239209149985
930 => 0.21727912096389
1001 => 0.2086151713999
1002 => 0.21152307725802
1003 => 0.21046660779801
1004 => 0.20663782618762
1005 => 0.20921796270417
1006 => 0.19785634726252
1007 => 0.17830927842055
1008 => 0.19122267084047
1009 => 0.19072551927937
1010 => 0.19047483291823
1011 => 0.20017889042185
1012 => 0.19924606920357
1013 => 0.19755298955819
1014 => 0.20660673145221
1015 => 0.20330199387088
1016 => 0.21348641640243
1017 => 0.22019453576886
1018 => 0.21849313971261
1019 => 0.22480215839989
1020 => 0.21159006953585
1021 => 0.21597859547948
1022 => 0.21688306459423
1023 => 0.20649500968261
1024 => 0.19939869029128
1025 => 0.19892544669184
1026 => 0.18662140680032
1027 => 0.19319412559563
1028 => 0.19897784613792
1029 => 0.19620789283301
1030 => 0.19533100836667
1031 => 0.19981082093214
1101 => 0.20015894073547
1102 => 0.19222177232732
1103 => 0.19387216097681
1104 => 0.20075455599946
1105 => 0.19369874228065
1106 => 0.17999044878561
1107 => 0.17659060246686
1108 => 0.17613700029633
1109 => 0.16691634743466
1110 => 0.17681779645487
1111 => 0.17249554861521
1112 => 0.18614947775222
1113 => 0.17835042665665
1114 => 0.17801422515169
1115 => 0.1775060072669
1116 => 0.16956941044848
1117 => 0.17130702075467
1118 => 0.17708310205798
1119 => 0.17914407293921
1120 => 0.17892909679126
1121 => 0.17705479610846
1122 => 0.17791284136308
1123 => 0.17514877863518
1124 => 0.17417273055697
1125 => 0.17109205433897
1126 => 0.16656431135703
1127 => 0.16719392178893
1128 => 0.1582232781933
1129 => 0.15333559545432
1130 => 0.15198274929079
1201 => 0.15017366686159
1202 => 0.15218708996495
1203 => 0.1581978654871
1204 => 0.15094759495023
1205 => 0.1385175146621
1206 => 0.13926458366725
1207 => 0.14094302591502
1208 => 0.1378152598903
1209 => 0.1348550918414
1210 => 0.13742871779389
1211 => 0.13216192891296
1212 => 0.1415794921889
1213 => 0.1413247734947
1214 => 0.14483505870577
1215 => 0.14703011208655
1216 => 0.14197122470082
1217 => 0.14069892820399
1218 => 0.14142368611124
1219 => 0.12944505232269
1220 => 0.14385614876878
1221 => 0.14398077652928
1222 => 0.14291363798018
1223 => 0.15058710194504
1224 => 0.16678050432432
1225 => 0.16068789497113
1226 => 0.15832865247949
1227 => 0.15384373077827
1228 => 0.15981962265684
1229 => 0.159360767399
1230 => 0.15728564990737
1231 => 0.15603061237366
]
'min_raw' => 0.11720727327666
'max_raw' => 0.30074044232526
'avg_raw' => 0.20897385780096
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.1172072'
'max' => '$0.30074'
'avg' => '$0.208973'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072074946020836
'max_diff' => 0.17480725370476
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036790023784031
]
1 => [
'year' => 2028
'avg' => 0.0063142361033614
]
2 => [
'year' => 2029
'avg' => 0.01724935500405
]
3 => [
'year' => 2030
'avg' => 0.013307851697115
]
4 => [
'year' => 2031
'avg' => 0.013069959590471
]
5 => [
'year' => 2032
'avg' => 0.022915752429758
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036790023784031
'min' => '$0.003679'
'max_raw' => 0.022915752429758
'max' => '$0.022915'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022915752429758
]
1 => [
'year' => 2033
'avg' => 0.058941671648371
]
2 => [
'year' => 2034
'avg' => 0.03736006409493
]
3 => [
'year' => 2035
'avg' => 0.044066281274712
]
4 => [
'year' => 2036
'avg' => 0.085532757938166
]
5 => [
'year' => 2037
'avg' => 0.20897385780096
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022915752429758
'min' => '$0.022915'
'max_raw' => 0.20897385780096
'max' => '$0.208973'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20897385780096
]
]
]
]
'prediction_2025_max_price' => '$0.00629'
'last_price' => 0.00609936
'sma_50day_nextmonth' => '$0.005611'
'sma_200day_nextmonth' => '$0.007745'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005343'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.00580087'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005626'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005624'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055046'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005636'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005595'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0056011'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005586'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005753'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006769'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007466'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005753'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005746'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.00608'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008857'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026581'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01707'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.23'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.34
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005675'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005253'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 38.67
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 73.63
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.39
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000388'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.33
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.64
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767679536
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de KDR para 2026
A previsão de preço para KDR em 2026 sugere que o preço médio poderia variar entre $0.0021073 na extremidade inferior e $0.00629 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, KDR poderia potencialmente ganhar 3.13% até 2026 se KDR atingir a meta de preço prevista.
Previsão de preço de KDR 2027-2032
A previsão de preço de KDR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.003679 na extremidade inferior e $0.022915 na extremidade superior. Considerando a volatilidade de preços no mercado, se KDR atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002028 | $0.003679 | $0.005329 |
| 2028 | $0.003661 | $0.006314 | $0.008967 |
| 2029 | $0.008042 | $0.017249 | $0.026456 |
| 2030 | $0.006839 | $0.0133078 | $0.019775 |
| 2031 | $0.008086 | $0.013069 | $0.018053 |
| 2032 | $0.012343 | $0.022915 | $0.033487 |
Previsão de preço de KDR 2032-2037
A previsão de preço de KDR para 2032-2037 é atualmente estimada entre $0.022915 na extremidade inferior e $0.208973 na extremidade superior. Comparado ao preço atual, KDR poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012343 | $0.022915 | $0.033487 |
| 2033 | $0.028684 | $0.058941 | $0.089198 |
| 2034 | $0.02306 | $0.03736 | $0.051659 |
| 2035 | $0.027265 | $0.044066 | $0.060867 |
| 2036 | $0.045132 | $0.085532 | $0.125933 |
| 2037 | $0.1172072 | $0.208973 | $0.30074 |
KDR Histograma de preços potenciais
Previsão de preço de KDR baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para KDR é Altista, com 20 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de KDR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de KDR
De acordo com nossos indicadores técnicos, o SMA de 200 dias de KDR está projetado para aumentar no próximo mês, alcançando $0.007745 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para KDR é esperado para alcançar $0.005611 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.23, sugerindo que o mercado de KDR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KDR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005343 | BUY |
| SMA 5 | $0.00580087 | BUY |
| SMA 10 | $0.005626 | BUY |
| SMA 21 | $0.005624 | BUY |
| SMA 50 | $0.0055046 | BUY |
| SMA 100 | $0.006241 | SELL |
| SMA 200 | $0.008066 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005636 | BUY |
| EMA 5 | $0.005595 | BUY |
| EMA 10 | $0.0056011 | BUY |
| EMA 21 | $0.005586 | BUY |
| EMA 50 | $0.005753 | BUY |
| EMA 100 | $0.006769 | SELL |
| EMA 200 | $0.013946 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007466 | SELL |
| SMA 50 | $0.015883 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.008857 | SELL |
| EMA 50 | $0.026581 | SELL |
| EMA 100 | $0.01707 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.23 | NEUTRAL |
| Stoch RSI (14) | 18.34 | NEUTRAL |
| Estocástico Rápido (14) | 38.67 | NEUTRAL |
| Índice de Canal de Commodities (20) | 73.63 | NEUTRAL |
| Índice Direcional Médio (14) | 10.39 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000388 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -61.33 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.64 | NEUTRAL |
| VWMA (10) | 0.005675 | BUY |
| Média Móvel de Hull (9) | 0.005253 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Previsão do preço de KDR com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do KDR
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de KDR por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.00857 | $0.012043 | $0.016922 | $0.023779 | $0.033413 | $0.046951 |
| Amazon.com stock | $0.012726 | $0.026554 | $0.0554085 | $0.115613 | $0.241233 | $0.503348 |
| Apple stock | $0.008651 | $0.012271 | $0.0174061 | $0.024689 | $0.035019 | $0.049672 |
| Netflix stock | $0.009623 | $0.015184 | $0.023959 | $0.0378041 | $0.059649 | $0.094116 |
| Google stock | $0.007898 | $0.010228 | $0.013246 | $0.017153 | $0.022213 | $0.028766 |
| Tesla stock | $0.013826 | $0.031344 | $0.071055 | $0.161076 | $0.365148 | $0.827763 |
| Kodak stock | $0.004573 | $0.003429 | $0.002572 | $0.001928 | $0.001446 | $0.001084 |
| Nokia stock | $0.00404 | $0.002676 | $0.001773 | $0.001174 | $0.000778 | $0.000515 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para KDR
Você pode fazer perguntas como: 'Devo investir em KDR agora?', 'Devo comprar KDR hoje?', 'KDR será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para KDR regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como KDR, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre KDR para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de KDR é de $0.006099 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de KDR com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se KDR tiver 1% da média anterior do crescimento anual do Bitcoin | $0.006257 | $0.00642 | $0.006587 | $0.006758 |
| Se KDR tiver 2% da média anterior do crescimento anual do Bitcoin | $0.006416 | $0.00675 | $0.00710092 | $0.00747 |
| Se KDR tiver 5% da média anterior do crescimento anual do Bitcoin | $0.006892 | $0.007787 | $0.008799 | $0.009943 |
| Se KDR tiver 10% da média anterior do crescimento anual do Bitcoin | $0.007684 | $0.009682 | $0.012199 | $0.015369 |
| Se KDR tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00927 | $0.014089 | $0.021414 | $0.032546 |
| Se KDR tiver 50% da média anterior do crescimento anual do Bitcoin | $0.014026 | $0.032256 | $0.074178 | $0.170584 |
| Se KDR tiver 100% da média anterior do crescimento anual do Bitcoin | $0.021953 | $0.079017 | $0.28441 | $1.02 |
Perguntas Frequentes sobre KDR
KDR é um bom investimento?
A decisão de adquirir KDR depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de KDR experimentou uma escalada de 21.8593% nas últimas 24 horas, e KDR registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em KDR dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
KDR pode subir?
Parece que o valor médio de KDR pode potencialmente subir para $0.00629 até o final deste ano. Observando as perspectivas de KDR em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.019775. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de KDR na próxima semana?
Com base na nossa nova previsão experimental de KDR, o preço de KDR aumentará 0.86% na próxima semana e atingirá $0.006151 até 13 de janeiro de 2026.
Qual será o preço de KDR no próximo mês?
Com base na nossa nova previsão experimental de KDR, o preço de KDR diminuirá -11.62% no próximo mês e atingirá $0.00539 até 5 de fevereiro de 2026.
Até onde o preço de KDR pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de KDR em 2026, espera-se que KDR fluctue dentro do intervalo de $0.0021073 e $0.00629. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de KDR não considera flutuações repentinas e extremas de preço.
Onde estará KDR em 5 anos?
O futuro de KDR parece seguir uma tendência de alta, com um preço máximo de $0.019775 projetada após um período de cinco anos. Com base na previsão de KDR para 2030, o valor de KDR pode potencialmente atingir seu pico mais alto de aproximadamente $0.019775, enquanto seu pico mais baixo está previsto para cerca de $0.006839.
Quanto será KDR em 2026?
Com base na nossa nova simulação experimental de previsão de preços de KDR, espera-se que o valor de KDR em 2026 aumente 3.13% para $0.00629 se o melhor cenário ocorrer. O preço ficará entre $0.00629 e $0.0021073 durante 2026.
Quanto será KDR em 2027?
De acordo com nossa última simulação experimental para previsão de preços de KDR, o valor de KDR pode diminuir -12.62% para $0.005329 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.005329 e $0.002028 ao longo do ano.
Quanto será KDR em 2028?
Nosso novo modelo experimental de previsão de preços de KDR sugere que o valor de KDR em 2028 pode aumentar 47.02%, alcançando $0.008967 no melhor cenário. O preço é esperado para variar entre $0.008967 e $0.003661 durante o ano.
Quanto será KDR em 2029?
Com base no nosso modelo de previsão experimental, o valor de KDR pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.026456 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.026456 e $0.008042.
Quanto será KDR em 2030?
Usando nossa nova simulação experimental para previsões de preços de KDR, espera-se que o valor de KDR em 2030 aumente 224.23%, alcançando $0.019775 no melhor cenário. O preço está previsto para variar entre $0.019775 e $0.006839 ao longo de 2030.
Quanto será KDR em 2031?
Nossa simulação experimental indica que o preço de KDR poderia aumentar 195.98% em 2031, potencialmente atingindo $0.018053 sob condições ideais. O preço provavelmente oscilará entre $0.018053 e $0.008086 durante o ano.
Quanto será KDR em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de KDR, KDR poderia ver um 449.04% aumento em valor, atingindo $0.033487 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.033487 e $0.012343 ao longo do ano.
Quanto será KDR em 2033?
De acordo com nossa previsão experimental de preços de KDR, espera-se que o valor de KDR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.089198. Ao longo do ano, o preço de KDR poderia variar entre $0.089198 e $0.028684.
Quanto será KDR em 2034?
Os resultados da nossa nova simulação de previsão de preços de KDR sugerem que KDR pode aumentar 746.96% em 2034, atingindo potencialmente $0.051659 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.051659 e $0.02306.
Quanto será KDR em 2035?
Com base em nossa previsão experimental para o preço de KDR, KDR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.060867 em 2035. A faixa de preço esperada para o ano está entre $0.060867 e $0.027265.
Quanto será KDR em 2036?
Nossa recente simulação de previsão de preços de KDR sugere que o valor de KDR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.125933 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.125933 e $0.045132.
Quanto será KDR em 2037?
De acordo com a simulação experimental, o valor de KDR poderia aumentar 4830.69% em 2037, com um pico de $0.30074 sob condições favoráveis. O preço é esperado para cair entre $0.30074 e $0.1172072 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de KDR?
Traders de KDR utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de KDR
Médias móveis são ferramentas populares para a previsão de preço de KDR. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KDR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KDR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KDR.
Como ler gráficos de KDR e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de KDR em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KDR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de KDR?
A ação de preço de KDR é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KDR. A capitalização de mercado de KDR pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KDR, grandes detentores de KDR, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de KDR.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


