Previsão de Preço KDR - Projeção KDR
Previsão de Preço KDR até $0.0063037 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002111 | $0.0063037 |
| 2027 | $0.002032 | $0.00534 |
| 2028 | $0.003668 | $0.008986 |
| 2029 | $0.008059 | $0.026512 |
| 2030 | $0.006854 | $0.019817 |
| 2031 | $0.0081039 | $0.018091 |
| 2032 | $0.01237 | $0.033558 |
| 2033 | $0.028745 | $0.089388 |
| 2034 | $0.0231098 | $0.051769 |
| 2035 | $0.027323 | $0.060996 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em KDR hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.83, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de KDR para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006112
'ticker' => 'KDR'
'marketcap' => '$92.3K'
'low24h' => '$0.004952'
'high24h' => '$0.006144'
'volume24h' => '$1.18K'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006112'
'change_24h_pct' => '21.021%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de dez. de 2024'
'ath_pct' => '-98.42%'
'fdv' => '$611.23K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.301379'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006164'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005402'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002111'
'current_year_max_price_prediction' => '$0.0063037'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006854'
'grand_prediction_max_price' => '$0.019817'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062281452489197
107 => 0.0062513988824624
108 => 0.0063037905061942
109 => 0.0058561098176612
110 => 0.006057105303598
111 => 0.0061751713208558
112 => 0.0056417447596068
113 => 0.006164627192837
114 => 0.0058483166928734
115 => 0.0057409561583615
116 => 0.0058855029744069
117 => 0.0058291729396176
118 => 0.0057807436835164
119 => 0.0057537193264917
120 => 0.0058598585551456
121 => 0.005854907033265
122 => 0.0056812426544508
123 => 0.0054547045517534
124 => 0.0055307381748784
125 => 0.005503114446778
126 => 0.0054030024926106
127 => 0.005470465862156
128 => 0.005173391325108
129 => 0.0046622900247076
130 => 0.0049999391992083
131 => 0.0049869400732816
201 => 0.004980385324526
202 => 0.0052341193472255
203 => 0.0052097286755829
204 => 0.0051654593677173
205 => 0.0054021894520552
206 => 0.0053157797868029
207 => 0.0055820740144329
208 => 0.0057574726155808
209 => 0.0057129858567793
210 => 0.0058779490889339
211 => 0.0055324898359888
212 => 0.0056472375423976
213 => 0.005670886885655
214 => 0.0053992682395611
215 => 0.0052137192911081
216 => 0.0052013452916592
217 => 0.0048796289852618
218 => 0.005051487239336
219 => 0.0052027153909435
220 => 0.0051302888421022
221 => 0.0051073607604206
222 => 0.0052244953572376
223 => 0.0052335977186002
224 => 0.0050260629149066
225 => 0.005069215972367
226 => 0.0052491713955758
227 => 0.0050646815574202
228 => 0.004706247938128
301 => 0.004617351444811
302 => 0.0046054910139151
303 => 0.0043643966735696
304 => 0.0046232919335696
305 => 0.004510277214618
306 => 0.0048672893576618
307 => 0.0046633659362497
308 => 0.0046545752051292
309 => 0.0046412867257207
310 => 0.0044337668675036
311 => 0.0044792005278781
312 => 0.004630228934705
313 => 0.0046841175717176
314 => 0.0046784965453806
315 => 0.0046294888131183
316 => 0.0046519243019878
317 => 0.0045796517752966
318 => 0.0045541308418994
319 => 0.0044735797560121
320 => 0.0043551919125632
321 => 0.0043716544683096
322 => 0.0041370971725729
323 => 0.0040092979089577
324 => 0.0039739247571562
325 => 0.0039266223002215
326 => 0.0039792676955341
327 => 0.0041364327012247
328 => 0.0039468583599458
329 => 0.003621846448917
330 => 0.0036413802185632
331 => 0.0036852667993299
401 => 0.0036034844464099
402 => 0.0035260843128438
403 => 0.0035933774493082
404 => 0.003455665618049
405 => 0.0037019086162115
406 => 0.0036952484331992
407 => 0.0037870325953494
408 => 0.0038444271155425
409 => 0.003712151328194
410 => 0.0036788843253876
411 => 0.0036978347220871
412 => 0.0033846268771747
413 => 0.0037614368323317
414 => 0.0037646955004713
415 => 0.0037367928054655
416 => 0.0039374324738845
417 => 0.0043608447553304
418 => 0.0042015400233309
419 => 0.0041398524160896
420 => 0.0040225842296307
421 => 0.0041788371253913
422 => 0.0041668393409218
423 => 0.0041125808095259
424 => 0.0040797650804408
425 => 0.0041402290674653
426 => 0.0040722729233231
427 => 0.0040600661325253
428 => 0.0039861062614094
429 => 0.0039597059523807
430 => 0.0039401602146025
501 => 0.0039186422778332
502 => 0.0039661054844105
503 => 0.0038585476140015
504 => 0.0037288433663163
505 => 0.0037180598615407
506 => 0.0037478340663216
507 => 0.0037346611971349
508 => 0.003717996794911
509 => 0.0036861799127856
510 => 0.0036767405235192
511 => 0.0037074139592946
512 => 0.0036727854386766
513 => 0.0037238817071615
514 => 0.0037099863494191
515 => 0.0036323680106182
516 => 0.0035356268224827
517 => 0.0035347656229868
518 => 0.0035139228926903
519 => 0.0034873765419323
520 => 0.0034799919544497
521 => 0.003587710209051
522 => 0.0038106837723396
523 => 0.0037669087265609
524 => 0.0037985406833832
525 => 0.0039541386036504
526 => 0.0040035985035106
527 => 0.0039684930381118
528 => 0.003920438511863
529 => 0.0039225526671371
530 => 0.0040867695304235
531 => 0.0040970115347542
601 => 0.0041228897755019
602 => 0.0041561506280528
603 => 0.0039741575051252
604 => 0.0039139808074136
605 => 0.0038854657495617
606 => 0.0037976504080943
607 => 0.0038923517251485
608 => 0.0038371733232157
609 => 0.0038446187747991
610 => 0.003839769914688
611 => 0.0038424177201871
612 => 0.0037018397862751
613 => 0.0037530589968339
614 => 0.0036678971251506
615 => 0.0035538749388352
616 => 0.0035534926964854
617 => 0.0035813994650509
618 => 0.0035647994271162
619 => 0.0035201291518598
620 => 0.0035264743536222
621 => 0.0034708837094483
622 => 0.003533224064326
623 => 0.0035350117626394
624 => 0.0035110073303094
625 => 0.0036070512483096
626 => 0.0036464005198787
627 => 0.0036306002882944
628 => 0.0036452919335106
629 => 0.0037687277773455
630 => 0.003788853205774
701 => 0.0037977915916708
702 => 0.0037858153386783
703 => 0.0036475481141415
704 => 0.0036536808535074
705 => 0.0036086828811773
706 => 0.0035706643363279
707 => 0.0035721848787409
708 => 0.0035917313528583
709 => 0.0036770919517149
710 => 0.0038567282997264
711 => 0.003863545367821
712 => 0.0038718078532195
713 => 0.0038382001727112
714 => 0.0038280637746878
715 => 0.003841436300107
716 => 0.0039088982675897
717 => 0.0040824287637006
718 => 0.0040210914966628
719 => 0.0039712233437897
720 => 0.0040149711582169
721 => 0.0040082365250926
722 => 0.0039513894440277
723 => 0.0039497939357973
724 => 0.0038406862121226
725 => 0.0038003515709428
726 => 0.0037666449257773
727 => 0.0037298381491909
728 => 0.0037080178582561
729 => 0.0037415437422768
730 => 0.0037492115086189
731 => 0.0036759065772756
801 => 0.0036659153860045
802 => 0.0037257777753363
803 => 0.0036994345696862
804 => 0.0037265292099774
805 => 0.0037328153989385
806 => 0.0037318031777325
807 => 0.0037042978455359
808 => 0.0037218289240572
809 => 0.0036803626970883
810 => 0.0036352744032855
811 => 0.0036065108809392
812 => 0.0035814108927645
813 => 0.0035953378250237
814 => 0.0035456908544771
815 => 0.0035298077894031
816 => 0.003715889789116
817 => 0.0038533505630225
818 => 0.0038513518289294
819 => 0.0038391850491707
820 => 0.0038211076823904
821 => 0.0039075757956127
822 => 0.0038774520339506
823 => 0.0038993695874843
824 => 0.0039049485247355
825 => 0.0039218342875263
826 => 0.0039278694963437
827 => 0.0039096269035756
828 => 0.0038484025341006
829 => 0.0036958372264072
830 => 0.0036248176638338
831 => 0.0036013800252602
901 => 0.0036022319389079
902 => 0.0035787323573933
903 => 0.0035856540373267
904 => 0.0035763252795843
905 => 0.0035586588692891
906 => 0.0035942469739706
907 => 0.0035983481715091
908 => 0.0035900414826302
909 => 0.0035919980085677
910 => 0.003523222172484
911 => 0.0035284510499281
912 => 0.0034993359958653
913 => 0.0034938772742158
914 => 0.0034202769528827
915 => 0.003289883315104
916 => 0.0033621340480501
917 => 0.0032748653226417
918 => 0.0032418153339926
919 => 0.0033982688399298
920 => 0.0033825652472785
921 => 0.003355687522847
922 => 0.0033159297666043
923 => 0.0033011832280753
924 => 0.0032115879281599
925 => 0.0032062941598685
926 => 0.0032507000097832
927 => 0.0032302082379596
928 => 0.0032014300294784
929 => 0.0030971982755595
930 => 0.002980007274207
1001 => 0.0029835445339014
1002 => 0.0030208208110156
1003 => 0.0031292066141158
1004 => 0.0030868584057511
1005 => 0.0030561342946928
1006 => 0.003050380592255
1007 => 0.0031224002244564
1008 => 0.0032243230926008
1009 => 0.0032721430219385
1010 => 0.0032247549242777
1011 => 0.0031703180292413
1012 => 0.0031736313508059
1013 => 0.0031956733947808
1014 => 0.0031979897019449
1015 => 0.0031625568794794
1016 => 0.0031725310114545
1017 => 0.0031573793929306
1018 => 0.0030643939380172
1019 => 0.0030627121259979
1020 => 0.0030398919957691
1021 => 0.0030392010112951
1022 => 0.0030003782770277
1023 => 0.0029949467081348
1024 => 0.0029178618128753
1025 => 0.0029685993243697
1026 => 0.0029345672654982
1027 => 0.0028832729254277
1028 => 0.0028744297618656
1029 => 0.0028741639256905
1030 => 0.0029268317437383
1031 => 0.0029679838702511
1101 => 0.0029351592677326
1102 => 0.0029276857420174
1103 => 0.0030074834443187
1104 => 0.0029973284593286
1105 => 0.0029885343078199
1106 => 0.0032151970176583
1107 => 0.0030357757961094
1108 => 0.0029575379025088
1109 => 0.002860703652205
1110 => 0.0028922333723846
1111 => 0.0028988771476944
1112 => 0.0026660082313993
1113 => 0.0025715333410604
1114 => 0.0025391131189072
1115 => 0.0025204548227034
1116 => 0.0025289576425796
1117 => 0.0024439191604752
1118 => 0.002501066426856
1119 => 0.0024274302894776
1120 => 0.0024150849514133
1121 => 0.002546755486813
1122 => 0.0025650766726058
1123 => 0.0024869128020676
1124 => 0.0025371066605343
1125 => 0.0025189056697075
1126 => 0.0024286925697044
1127 => 0.0024252470928469
1128 => 0.0023799813304091
1129 => 0.0023091491773728
1130 => 0.0022767769827548
1201 => 0.0022599172627295
1202 => 0.0022668739118013
1203 => 0.0022633564171536
1204 => 0.0022404023852523
1205 => 0.0022646721153932
1206 => 0.0022026729838282
1207 => 0.0021779844300781
1208 => 0.0021668331831192
1209 => 0.0021118053853184
1210 => 0.0021993790825923
1211 => 0.0022166322041796
1212 => 0.0022339193197462
1213 => 0.0023843918583384
1214 => 0.0023768746755413
1215 => 0.0024448263470104
1216 => 0.0024421858700123
1217 => 0.0024228049525652
1218 => 0.002341040049862
1219 => 0.0023736300827602
1220 => 0.0022733230271151
1221 => 0.0023484798934212
1222 => 0.0023141814382649
1223 => 0.0023368835512317
1224 => 0.0022960631051504
1225 => 0.0023186548254467
1226 => 0.0022207235593565
1227 => 0.0021292767210116
1228 => 0.0021660775982613
1229 => 0.0022060843605224
1230 => 0.002292829214638
1231 => 0.0022411646951562
]
'min_raw' => 0.0021118053853184
'max_raw' => 0.0063037905061942
'avg_raw' => 0.0042077979457563
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002111'
'max' => '$0.0063037'
'avg' => '$0.0042077'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040005146146816
'max_diff' => 0.00019147050619418
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022597452100136
102 => 0.002197503595582
103 => 0.0020690813665712
104 => 0.0020698082224408
105 => 0.0020500532603378
106 => 0.0020329820888092
107 => 0.0022470989867121
108 => 0.0022204701657707
109 => 0.0021780406246943
110 => 0.0022348342515079
111 => 0.0022498513878735
112 => 0.0022502789046342
113 => 0.0022917140687018
114 => 0.0023138280231923
115 => 0.0023177257035186
116 => 0.0023829248294448
117 => 0.002404778716458
118 => 0.0024947917841876
119 => 0.0023119518086554
120 => 0.0023081863396805
121 => 0.0022356334543064
122 => 0.0021896192673864
123 => 0.0022387840850517
124 => 0.0022823374018362
125 => 0.0022369867772633
126 => 0.0022429086114286
127 => 0.0021820291032216
128 => 0.0022037906627585
129 => 0.0022225346494303
130 => 0.0022121853217107
131 => 0.0021966918772015
201 => 0.0022787665265353
202 => 0.0022741355531668
203 => 0.0023505653535145
204 => 0.002410147848433
205 => 0.0025169303309719
206 => 0.0024054972437459
207 => 0.0024014361791409
208 => 0.0024411337370693
209 => 0.0024047726389687
210 => 0.0024277515978259
211 => 0.0025132280654467
212 => 0.0025150340485155
213 => 0.0024847815052358
214 => 0.0024829406352278
215 => 0.0024887509670913
216 => 0.0025227822622978
217 => 0.0025108906820766
218 => 0.0025246519197666
219 => 0.0025418605582175
220 => 0.0026130427831619
221 => 0.0026302045766097
222 => 0.0025885103159012
223 => 0.0025922748408124
224 => 0.0025766800427744
225 => 0.0025616156632719
226 => 0.0025954781884175
227 => 0.0026573626186907
228 => 0.0026569776388618
301 => 0.0026713336238237
302 => 0.0026802772835236
303 => 0.0026418845489326
304 => 0.0026168922904539
305 => 0.0026264759126534
306 => 0.0026418003332545
307 => 0.0026215064095898
308 => 0.0024962429116715
309 => 0.0025342398550767
310 => 0.0025279153057385
311 => 0.0025189083783894
312 => 0.0025571145988049
313 => 0.0025534295156412
314 => 0.0024430469679286
315 => 0.0024501133004978
316 => 0.0024434766950165
317 => 0.0024649209250484
318 => 0.0024036145801731
319 => 0.0024224719989522
320 => 0.0024342991952331
321 => 0.0024412655047034
322 => 0.0024664325913531
323 => 0.0024634795242122
324 => 0.0024662490245534
325 => 0.0025035651701904
326 => 0.0026922974294677
327 => 0.0027025697099259
328 => 0.0026519852440396
329 => 0.0026721927404267
330 => 0.0026333987662572
331 => 0.0026594414210142
401 => 0.0026772591439873
402 => 0.0025967442800231
403 => 0.0025919767123163
404 => 0.0025530226216155
405 => 0.0025739543434856
406 => 0.0025406504689462
407 => 0.0025488220748381
408 => 0.0025259735523766
409 => 0.0025670963437119
410 => 0.0026130780142605
411 => 0.0026246948001123
412 => 0.002594136037877
413 => 0.0025720094800981
414 => 0.0025331625335796
415 => 0.0025977658714005
416 => 0.0026166578561304
417 => 0.0025976666398473
418 => 0.0025932659600683
419 => 0.0025849266798388
420 => 0.0025950351777913
421 => 0.0026165549663243
422 => 0.0026064066314602
423 => 0.0026131097854286
424 => 0.0025875642747635
425 => 0.0026418972585253
426 => 0.0027281911126837
427 => 0.0027284685615353
428 => 0.0027183201719679
429 => 0.002714167669607
430 => 0.0027245805331589
501 => 0.0027302290844778
502 => 0.0027639023758122
503 => 0.002800035159017
504 => 0.0029686510922656
505 => 0.0029213044129369
506 => 0.0030709104999218
507 => 0.0031892294908078
508 => 0.0032247081827121
509 => 0.0031920694555616
510 => 0.0030804141330891
511 => 0.0030749357902888
512 => 0.0032417959817239
513 => 0.0031946503349625
514 => 0.0031890425102965
515 => 0.0031293847304189
516 => 0.0031646498670863
517 => 0.0031569368643888
518 => 0.0031447615122978
519 => 0.0032120449364685
520 => 0.0033379935000833
521 => 0.0033183632353058
522 => 0.0033037101532712
523 => 0.0032395046132434
524 => 0.0032781706891667
525 => 0.0032644024401303
526 => 0.0033235595755373
527 => 0.0032885161990132
528 => 0.0031942931603193
529 => 0.0032092984897945
530 => 0.0032070304644308
531 => 0.0032537062657006
601 => 0.003239695348724
602 => 0.003204294608024
603 => 0.0033375630215853
604 => 0.0033289093120865
605 => 0.0033411782936424
606 => 0.0033465794787541
607 => 0.003427697613636
608 => 0.0034609291180063
609 => 0.0034684732512978
610 => 0.0035000406102328
611 => 0.0034676878266503
612 => 0.0035971220281241
613 => 0.0036831882194092
614 => 0.0037831585295125
615 => 0.0039292420220596
616 => 0.0039841707666052
617 => 0.0039742483805512
618 => 0.0040850072173726
619 => 0.0042840383851099
620 => 0.0040144782700698
621 => 0.0042983257257502
622 => 0.0042084628984582
623 => 0.0039953997515122
624 => 0.0039816809966984
625 => 0.0041259698335242
626 => 0.004445988586318
627 => 0.0043658275183658
628 => 0.0044461197011082
629 => 0.0043524546049688
630 => 0.004347803343474
701 => 0.0044415705964532
702 => 0.0046606628940257
703 => 0.004556580356001
704 => 0.0044073525156571
705 => 0.0045175400307246
706 => 0.0044220854078
707 => 0.0042069994262842
708 => 0.0043657662207079
709 => 0.0042596033866947
710 => 0.0042905873455864
711 => 0.0045137258321523
712 => 0.0044868772190975
713 => 0.004521621810505
714 => 0.004460298516095
715 => 0.00440301288932
716 => 0.0042960850128581
717 => 0.0042644289401184
718 => 0.0042731775397575
719 => 0.0042644246047469
720 => 0.0042045994405843
721 => 0.0041916802020794
722 => 0.0041701475718998
723 => 0.0041768214343724
724 => 0.0041363337900415
725 => 0.0042127423400681
726 => 0.0042269244402628
727 => 0.0042825282110279
728 => 0.0042883011789671
729 => 0.0044431568890776
730 => 0.0043578649661933
731 => 0.0044150861518144
801 => 0.0044099677503858
802 => 0.0040000174759705
803 => 0.0040565050067631
804 => 0.0041443818779126
805 => 0.004104793466574
806 => 0.0040488247152028
807 => 0.0040036269476161
808 => 0.003935147708013
809 => 0.004031530922727
810 => 0.0041582646008636
811 => 0.0042915153541871
812 => 0.00445160740337
813 => 0.0044158767216693
814 => 0.0042885225446853
815 => 0.0042942355600325
816 => 0.0043295511729203
817 => 0.0042838142454688
818 => 0.0042703255326725
819 => 0.0043276980309154
820 => 0.0043280931237794
821 => 0.0042754672612542
822 => 0.0042169832454885
823 => 0.004216738195327
824 => 0.0042063315296101
825 => 0.0043543059276813
826 => 0.0044356768847213
827 => 0.0044450059338101
828 => 0.0044350489653877
829 => 0.0044388810073556
830 => 0.0043915330403406
831 => 0.0044997564523333
901 => 0.0045990729573639
902 => 0.004572454012428
903 => 0.0045325484298632
904 => 0.004500761711237
905 => 0.0045649660717162
906 => 0.0045621071526111
907 => 0.0045982055143343
908 => 0.0045965678841323
909 => 0.0045844293628128
910 => 0.0045724544459329
911 => 0.0046199336377786
912 => 0.0046062603930195
913 => 0.0045925659099347
914 => 0.0045650995275875
915 => 0.0045688326651168
916 => 0.0045289339728134
917 => 0.004510475012114
918 => 0.0042328965324333
919 => 0.0041587184925241
920 => 0.0041820564139128
921 => 0.0041897398636028
922 => 0.0041574574855726
923 => 0.0042037421230054
924 => 0.0041965287112891
925 => 0.0042245918765726
926 => 0.0042070592292645
927 => 0.0042077787752256
928 => 0.0042593385526044
929 => 0.0042743065753285
930 => 0.0042666937181643
1001 => 0.0042720255023686
1002 => 0.0043948942189522
1003 => 0.0043774262165744
1004 => 0.0043681466884614
1005 => 0.0043707171811661
1006 => 0.0044021127725882
1007 => 0.0044109018240506
1008 => 0.0043736619954086
1009 => 0.004391224513877
1010 => 0.0044660034885004
1011 => 0.0044921718974951
1012 => 0.0045756888974575
1013 => 0.0045402093914772
1014 => 0.0046053335602211
1015 => 0.0048055030524747
1016 => 0.0049654122935622
1017 => 0.0048183531469293
1018 => 0.0051120061038674
1019 => 0.0053406570528585
1020 => 0.0053318810485982
1021 => 0.0052920104668498
1022 => 0.0050316974404234
1023 => 0.0047921535124572
1024 => 0.0049925421797734
1025 => 0.0049930530116967
1026 => 0.0049758394474583
1027 => 0.0048689274783475
1028 => 0.0049721191426784
1029 => 0.0049803101222559
1030 => 0.0049757253518498
1031 => 0.0048937561958009
1101 => 0.0047686044449466
1102 => 0.0047930587974926
1103 => 0.0048331155258182
1104 => 0.0047572797823889
1105 => 0.0047330456673135
1106 => 0.0047781014979677
1107 => 0.0049232807720905
1108 => 0.0048958354712839
1109 => 0.0048951187635646
1110 => 0.0050125413990343
1111 => 0.0049284921334288
1112 => 0.0047933672451919
1113 => 0.0047592464288337
1114 => 0.0046381405172984
1115 => 0.0047217888017603
1116 => 0.0047247991546019
1117 => 0.0046789858440669
1118 => 0.0047970847428502
1119 => 0.004795996440707
1120 => 0.0049081137684004
1121 => 0.005122439989605
1122 => 0.005059053179642
1123 => 0.0049853412161204
1124 => 0.0049933557503662
1125 => 0.0050812554094872
1126 => 0.0050281092690286
1127 => 0.0050472209916855
1128 => 0.005081226481606
1129 => 0.0051017428379838
1130 => 0.0049904037624122
1201 => 0.0049644452979329
1202 => 0.0049113433897912
1203 => 0.0048974900931511
1204 => 0.0049407404893248
1205 => 0.0049293455379921
1206 => 0.0047245461461022
1207 => 0.0047031434701567
1208 => 0.004703799859672
1209 => 0.0046499818133651
1210 => 0.0045678963749361
1211 => 0.0047836120060607
1212 => 0.0047662870219431
1213 => 0.0047471615803245
1214 => 0.0047495043377945
1215 => 0.0048431391819847
1216 => 0.0047888262436814
1217 => 0.0049332260918761
1218 => 0.004903541824144
1219 => 0.0048730962669536
1220 => 0.0048688877635556
1221 => 0.0048571688215301
1222 => 0.0048169802088987
1223 => 0.004768450044185
1224 => 0.0047364062258301
1225 => 0.0043690843778425
1226 => 0.0044372571762161
1227 => 0.0045156837665988
1228 => 0.0045427563113241
1229 => 0.0044964468502084
1230 => 0.004818808788683
1231 => 0.0048777074211993
]
'min_raw' => 0.0020329820888092
'max_raw' => 0.0053406570528585
'avg_raw' => 0.0036868195708339
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002032'
'max' => '$0.00534'
'avg' => '$0.003686'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8823296509254E-5
'max_diff' => -0.00096313345333564
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046992996214448
102 => 0.0046659268064533
103 => 0.0048209967048779
104 => 0.0047274705996037
105 => 0.004769585399082
106 => 0.0046785562381737
107 => 0.0048635204653794
108 => 0.0048621113478679
109 => 0.0047901560858783
110 => 0.0048509721805836
111 => 0.0048404038875179
112 => 0.0047591665739497
113 => 0.0048660958331199
114 => 0.0048661488686984
115 => 0.0047968934934757
116 => 0.0047160183771667
117 => 0.0047015598165557
118 => 0.0046906672333695
119 => 0.0047669064913457
120 => 0.0048352623716532
121 => 0.0049624557180456
122 => 0.004994435147368
123 => 0.0051192529890045
124 => 0.0050449300415804
125 => 0.0050778764415302
126 => 0.0051136444192285
127 => 0.0051307929030609
128 => 0.0051028503688944
129 => 0.0052967438540292
130 => 0.0053131144049175
131 => 0.0053186033090256
201 => 0.0052532235167675
202 => 0.0053112960746236
203 => 0.0052841258479637
204 => 0.0053548152296264
205 => 0.0053659002272784
206 => 0.0053565116286274
207 => 0.0053600301818469
208 => 0.005194576297439
209 => 0.0051859966406937
210 => 0.0050690124121865
211 => 0.005116684350007
212 => 0.0050275639472271
213 => 0.0050558249449905
214 => 0.0050682821235239
215 => 0.0050617752003967
216 => 0.0051193796498449
217 => 0.0050704041000024
218 => 0.0049411495716421
219 => 0.004811859827972
220 => 0.0048102367005574
221 => 0.0047761969932026
222 => 0.0047515925194684
223 => 0.0047563322140002
224 => 0.0047730355157383
225 => 0.0047506216932064
226 => 0.0047554048186533
227 => 0.0048348365708687
228 => 0.0048507660422942
229 => 0.0047966314743442
301 => 0.0045792733724441
302 => 0.0045259331490363
303 => 0.0045642730438392
304 => 0.0045459490435289
305 => 0.0036689356749036
306 => 0.0038749769569389
307 => 0.0037525542236543
308 => 0.003808972251551
309 => 0.0036840103420805
310 => 0.0037436487150947
311 => 0.0037326356852436
312 => 0.0040639439695517
313 => 0.0040587710463918
314 => 0.0040612470509634
315 => 0.0039430609015651
316 => 0.0041313346466603
317 => 0.0042240850635991
318 => 0.0042069194298962
319 => 0.0042112396500802
320 => 0.0041370039537452
321 => 0.0040619658147752
322 => 0.0039787369703706
323 => 0.0041333658758782
324 => 0.0041161737811892
325 => 0.0041556062608854
326 => 0.0042558941592095
327 => 0.0042706619331944
328 => 0.0042905099711901
329 => 0.0042833958624482
330 => 0.0044528827948225
331 => 0.0044323568090011
401 => 0.0044818185291014
402 => 0.0043800720181855
403 => 0.0042649361832167
404 => 0.0042868197413703
405 => 0.0042847121787436
406 => 0.0042578804875586
407 => 0.0042336580364828
408 => 0.0041933344800748
409 => 0.0043209241793131
410 => 0.0043157442705302
411 => 0.0043996009727405
412 => 0.0043847784860843
413 => 0.0042857902925163
414 => 0.004289325675215
415 => 0.0043131028229101
416 => 0.0043953958025659
417 => 0.004419825961861
418 => 0.004408508938702
419 => 0.00443529549309
420 => 0.0044564664935024
421 => 0.0044379542447873
422 => 0.0047000486477157
423 => 0.0045912087784618
424 => 0.0046442565734332
425 => 0.0046569081599581
426 => 0.0046245013871087
427 => 0.0046315292557402
428 => 0.0046421745617374
429 => 0.0047068107751874
430 => 0.0048764349019194
501 => 0.0049515602729785
502 => 0.0051775786584304
503 => 0.0049453221567077
504 => 0.0049315410170685
505 => 0.0049722537533897
506 => 0.0051049504721258
507 => 0.0052124886990924
508 => 0.0052481653330064
509 => 0.0052528805891351
510 => 0.0053198123260955
511 => 0.0053581763495182
512 => 0.0053116850527491
513 => 0.0052722885465789
514 => 0.0051311751515517
515 => 0.0051475094112652
516 => 0.0052600362627846
517 => 0.0054189870683543
518 => 0.0055553833955458
519 => 0.0055076221556552
520 => 0.0058720067018393
521 => 0.005908133941216
522 => 0.0059031423248676
523 => 0.0059854455526219
524 => 0.0058220904062905
525 => 0.0057522529163769
526 => 0.0052808065183823
527 => 0.0054132637261701
528 => 0.0056057980566287
529 => 0.0055803154160259
530 => 0.0054404918387894
531 => 0.0055552773268242
601 => 0.0055173256548058
602 => 0.0054873915964686
603 => 0.0056245253207141
604 => 0.0054737411577632
605 => 0.0056042938692594
606 => 0.0054368586663707
607 => 0.005507840324976
608 => 0.0054675477025551
609 => 0.0054936219673395
610 => 0.0053411923481947
611 => 0.0054234396706654
612 => 0.0053377705891758
613 => 0.0053377299708767
614 => 0.0053358388211546
615 => 0.0054366281156123
616 => 0.0054399148508861
617 => 0.0053654314099977
618 => 0.0053546971825157
619 => 0.0053943872475531
620 => 0.0053479205762388
621 => 0.005369662039289
622 => 0.0053485791030062
623 => 0.0053438328899744
624 => 0.005306014257035
625 => 0.0052897209501198
626 => 0.0052961099755881
627 => 0.0052743009378965
628 => 0.00526116020382
629 => 0.0053332247983994
630 => 0.0052947235925931
701 => 0.0053273239364245
702 => 0.0052901717301372
703 => 0.0051613859966995
704 => 0.0050873199595151
705 => 0.0048440556474952
706 => 0.0049130451046156
707 => 0.0049587851860612
708 => 0.0049436680894163
709 => 0.0049761454625493
710 => 0.0049781393094894
711 => 0.0049675805844162
712 => 0.0049553549334379
713 => 0.0049494041626626
714 => 0.0049937563326469
715 => 0.0050195042601482
716 => 0.0049633758151576
717 => 0.0049502257058167
718 => 0.0050069746626385
719 => 0.0050415914935171
720 => 0.005297182723207
721 => 0.0052782476993628
722 => 0.0053257708934011
723 => 0.0053204205110552
724 => 0.0053702323894458
725 => 0.005451653758544
726 => 0.0052861013493946
727 => 0.0053148355232513
728 => 0.0053077905673906
729 => 0.0053847055481911
730 => 0.0053849456683656
731 => 0.0053388312951875
801 => 0.0053638306450076
802 => 0.0053498766937593
803 => 0.0053750933696546
804 => 0.0052779948105752
805 => 0.0053962503743921
806 => 0.0054632936588561
807 => 0.0054642245549259
808 => 0.0054960025396734
809 => 0.0055282908126337
810 => 0.0055902653408649
811 => 0.005526562376678
812 => 0.0054119669454644
813 => 0.005420240365457
814 => 0.0053530531060653
815 => 0.005354182536034
816 => 0.0053481535503458
817 => 0.0053662469902369
818 => 0.0052819653031489
819 => 0.0053017460466487
820 => 0.0052740528899132
821 => 0.005314775323737
822 => 0.005270964716602
823 => 0.0053077871700996
824 => 0.0053236785203455
825 => 0.0053823179448691
826 => 0.0052623036259216
827 => 0.0050175863053327
828 => 0.0050690288530312
829 => 0.0049929412842602
830 => 0.0049999834784357
831 => 0.0050142098314272
901 => 0.0049680975668086
902 => 0.0049768943337334
903 => 0.004976580051317
904 => 0.0049738717352411
905 => 0.0049618761542737
906 => 0.0049444801886175
907 => 0.0050137803615958
908 => 0.0050255558113873
909 => 0.0050517311776042
910 => 0.0051296113125453
911 => 0.0051218292505247
912 => 0.005134522116555
913 => 0.0051068136612782
914 => 0.0050012687942062
915 => 0.0050070003882799
916 => 0.0049355273183386
917 => 0.0050499034505125
918 => 0.0050228176727225
919 => 0.0050053552955779
920 => 0.0050005905241862
921 => 0.0050786637089181
922 => 0.0051020244294371
923 => 0.0050874675960893
924 => 0.0050576111062023
925 => 0.0051149443930642
926 => 0.0051302843619313
927 => 0.0051337184152444
928 => 0.0052353020069964
929 => 0.0051393958095704
930 => 0.0051624813845165
1001 => 0.0053425884501777
1002 => 0.0051792561946991
1003 => 0.0052657769331701
1004 => 0.0052615421932541
1005 => 0.0053058032753537
1006 => 0.0052579114926377
1007 => 0.0052585051686823
1008 => 0.0052978060110813
1009 => 0.0052426150658762
1010 => 0.0052289490116913
1011 => 0.0052100694557132
1012 => 0.0052512922754968
1013 => 0.0052760034916093
1014 => 0.0054751577450877
1015 => 0.0056038204753721
1016 => 0.0055982348869266
1017 => 0.0056492767095347
1018 => 0.0056262819009602
1019 => 0.0055520255983494
1020 => 0.0056787720523147
1021 => 0.0056386641709832
1022 => 0.0056419706159891
1023 => 0.0056418475499408
1024 => 0.0056685157847344
1025 => 0.0056496188962753
1026 => 0.0056123711893966
1027 => 0.0056370979555004
1028 => 0.005710527610848
1029 => 0.0059384555141437
1030 => 0.0060660069884711
1031 => 0.0059307767552309
1101 => 0.006024056759315
1102 => 0.0059681219959284
1103 => 0.005957956985506
1104 => 0.006016543721409
1105 => 0.0060752330056376
1106 => 0.006071494751953
1107 => 0.0060288893453311
1108 => 0.0060048226322026
1109 => 0.0061870638469521
1110 => 0.0063213360695815
1111 => 0.0063121796041705
1112 => 0.0063525932646523
1113 => 0.0064712490217741
1114 => 0.006482097417163
1115 => 0.0064807307686915
1116 => 0.0064538418888072
1117 => 0.0065706738910908
1118 => 0.0066681372028592
1119 => 0.0064476178900084
1120 => 0.0065315887575322
1121 => 0.006569285985336
1122 => 0.0066246367000155
1123 => 0.0067180226335368
1124 => 0.0068194645267363
1125 => 0.0068338095226885
1126 => 0.0068236310615892
1127 => 0.0067567274061196
1128 => 0.0068677263361121
1129 => 0.0069327469060564
1130 => 0.006971465167489
1201 => 0.0070696482363776
1202 => 0.0065695187905813
1203 => 0.0062155023108003
1204 => 0.0061602175254226
1205 => 0.006272641310455
1206 => 0.0063022865660052
1207 => 0.0062903366006649
1208 => 0.0058918588669013
1209 => 0.0061581196226212
1210 => 0.0064445938079356
1211 => 0.0064555984480964
1212 => 0.0065990134151576
1213 => 0.0066457152072108
1214 => 0.0067611830535245
1215 => 0.006753960508299
1216 => 0.0067820750913817
1217 => 0.0067756120356077
1218 => 0.0069894919062801
1219 => 0.0072254331650999
1220 => 0.0072172632695542
1221 => 0.0071833439220686
1222 => 0.0072337199371929
1223 => 0.0074772366012968
1224 => 0.0074548174891412
1225 => 0.007476595746945
1226 => 0.0077637156179213
1227 => 0.0081370122925159
1228 => 0.0079635785087933
1229 => 0.0083398799152444
1230 => 0.0085767417037249
1231 => 0.0089863696749358
]
'min_raw' => 0.0036689356749036
'max_raw' => 0.0089863696749358
'avg_raw' => 0.0063276526749197
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003668'
'max' => '$0.008986'
'avg' => '$0.006327'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016359535860944
'max_diff' => 0.0036457126220773
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089350822354799
102 => 0.0090945473986834
103 => 0.0088432670148422
104 => 0.0082662764613985
105 => 0.0081749654976849
106 => 0.0083577723594014
107 => 0.0088071851908986
108 => 0.0083436187500131
109 => 0.008437397637254
110 => 0.0084103893114198
111 => 0.008408950152514
112 => 0.0084638769944627
113 => 0.0083842027454247
114 => 0.0080595955217201
115 => 0.0082083610994216
116 => 0.0081509155655612
117 => 0.0082146556682275
118 => 0.0085586347138995
119 => 0.0084065533783716
120 => 0.0082463480454775
121 => 0.0084472810853361
122 => 0.0087031378931597
123 => 0.008687126833945
124 => 0.0086560586869649
125 => 0.0088311882048165
126 => 0.0091204508601732
127 => 0.0091986373935646
128 => 0.0092563530940609
129 => 0.0092643111140445
130 => 0.0093462836657583
131 => 0.0089054965954504
201 => 0.0096050369962439
202 => 0.0097258282990473
203 => 0.0097031245404068
204 => 0.0098373789897978
205 => 0.0097978779250803
206 => 0.0097406470798319
207 => 0.0099534689388569
208 => 0.0097094858513231
209 => 0.0093631825751855
210 => 0.0091731937487943
211 => 0.0094233863613478
212 => 0.0095761702593152
213 => 0.0096771506969908
214 => 0.0097077073164173
215 => 0.0089397136409586
216 => 0.0085258076447683
217 => 0.0087911166428844
218 => 0.0091148119312349
219 => 0.0089036984517799
220 => 0.0089119737004838
221 => 0.0086109813584274
222 => 0.0091414430747258
223 => 0.0090641592645464
224 => 0.0094651078084698
225 => 0.0093694182206494
226 => 0.0096963761934861
227 => 0.0096102772016833
228 => 0.009967669302927
301 => 0.010110242688118
302 => 0.010349645591629
303 => 0.010525751341997
304 => 0.010629164006979
305 => 0.010622955498465
306 => 0.01103272799711
307 => 0.01079109947102
308 => 0.010487557094779
309 => 0.010482066970857
310 => 0.010639275868741
311 => 0.01096874259055
312 => 0.011054168517969
313 => 0.011101909957377
314 => 0.011028792281032
315 => 0.010766521833634
316 => 0.010653274784188
317 => 0.010749764551399
318 => 0.010631765857561
319 => 0.010835464707711
320 => 0.011115186736694
321 => 0.01105742524385
322 => 0.011250513254341
323 => 0.011450339031748
324 => 0.011736098868178
325 => 0.011810807071076
326 => 0.01193429688957
327 => 0.012061408477091
328 => 0.01210223329325
329 => 0.012180180534493
330 => 0.012179769714056
331 => 0.012414668971997
401 => 0.012673770127731
402 => 0.012771574815815
403 => 0.012996471303081
404 => 0.01261134394995
405 => 0.012903467471324
406 => 0.01316697019993
407 => 0.012852811383944
408 => 0.013285806122165
409 => 0.013302618326663
410 => 0.013556462654213
411 => 0.013299142797552
412 => 0.013146347088061
413 => 0.013587462576181
414 => 0.013800904465876
415 => 0.013736614031652
416 => 0.0132473606528
417 => 0.012962594201244
418 => 0.012217305470176
419 => 0.013100132166204
420 => 0.013530131297431
421 => 0.013246247058931
422 => 0.01338942175627
423 => 0.014170536480404
424 => 0.014467934393921
425 => 0.014406077706878
426 => 0.01441653046874
427 => 0.01457700098472
428 => 0.015288615625302
429 => 0.014862199637567
430 => 0.015188178682688
501 => 0.015361076792815
502 => 0.015521674193218
503 => 0.015127297735159
504 => 0.014614219757764
505 => 0.014451706424775
506 => 0.013218020366159
507 => 0.013153801649181
508 => 0.013117753737315
509 => 0.012890476752078
510 => 0.012711899298087
511 => 0.012569887876518
512 => 0.01219720749812
513 => 0.012322976185682
514 => 0.011729001446957
515 => 0.012109005435621
516 => 0.011161007410593
517 => 0.01195052833575
518 => 0.011520827991299
519 => 0.011809360215844
520 => 0.011808353554094
521 => 0.011277074249481
522 => 0.010970643434096
523 => 0.011165913076125
524 => 0.011375257632904
525 => 0.011409223082921
526 => 0.011680643765236
527 => 0.011756391443502
528 => 0.011526872442035
529 => 0.011141362258652
530 => 0.0112309074817
531 => 0.010968828803009
601 => 0.010509545999314
602 => 0.010839410927237
603 => 0.010952041316766
604 => 0.011001785313194
605 => 0.010550133424746
606 => 0.010408214595557
607 => 0.01033265820171
608 => 0.011083059671454
609 => 0.011124168357903
610 => 0.010913850505851
611 => 0.01186450714028
612 => 0.011649344265324
613 => 0.011889733912834
614 => 0.011222782191277
615 => 0.01124826064521
616 => 0.01093251501185
617 => 0.011109311468401
618 => 0.010984357431327
619 => 0.011095028061848
620 => 0.011161363581471
621 => 0.01147705740408
622 => 0.011954133052098
623 => 0.011429903274443
624 => 0.01120148885321
625 => 0.011343195875492
626 => 0.01172058034976
627 => 0.012292337146233
628 => 0.011953845615043
629 => 0.012104062408626
630 => 0.012136878095344
701 => 0.011887286971883
702 => 0.012301539926968
703 => 0.012523541450983
704 => 0.012751269077881
705 => 0.012948998595532
706 => 0.01266030965586
707 => 0.012969248203243
708 => 0.012720298269047
709 => 0.012496964442102
710 => 0.01249730314733
711 => 0.0123572025753
712 => 0.012085740063186
713 => 0.01203567821097
714 => 0.012296106288313
715 => 0.012504944943711
716 => 0.01252214589564
717 => 0.012637769705786
718 => 0.01270619468561
719 => 0.01337685250714
720 => 0.013646596630931
721 => 0.013976434639509
722 => 0.014104925132501
723 => 0.014491635450017
724 => 0.014179335461547
725 => 0.014111767394582
726 => 0.013173734656269
727 => 0.013327337464618
728 => 0.013573270381251
729 => 0.013177789999481
730 => 0.013428631274679
731 => 0.013478152655947
801 => 0.013164351727441
802 => 0.013331966361894
803 => 0.012886831587062
804 => 0.011963835773777
805 => 0.012302567485161
806 => 0.0125519880406
807 => 0.012196034154655
808 => 0.012834067717894
809 => 0.012461341681936
810 => 0.012343205422542
811 => 0.01188231375603
812 => 0.012099836881277
813 => 0.012394040022804
814 => 0.012212256686126
815 => 0.012589484404638
816 => 0.013123739457008
817 => 0.013504481422765
818 => 0.013533710063204
819 => 0.013288918486953
820 => 0.013681198550135
821 => 0.013684055882133
822 => 0.013241562368353
823 => 0.012970537554977
824 => 0.012908960147137
825 => 0.013062792584883
826 => 0.013249573563342
827 => 0.013544075107579
828 => 0.013722036222856
829 => 0.014186064428217
830 => 0.014311617155856
831 => 0.014449561538323
901 => 0.014633897773771
902 => 0.014855240687267
903 => 0.014370954993597
904 => 0.014390196567028
905 => 0.013939236434474
906 => 0.013457320858616
907 => 0.013823034709068
908 => 0.014301156919659
909 => 0.014191475156271
910 => 0.014179133717295
911 => 0.014199888594423
912 => 0.0141171921267
913 => 0.013743159068064
914 => 0.013555322007588
915 => 0.013797679737947
916 => 0.013926482085532
917 => 0.01412624329389
918 => 0.014101618508512
919 => 0.014616181928455
920 => 0.014816125713855
921 => 0.014764971537473
922 => 0.014774385137021
923 => 0.015136373809927
924 => 0.015538979662848
925 => 0.015916073172629
926 => 0.016299668887322
927 => 0.015837229281264
928 => 0.015602430968618
929 => 0.015844682893174
930 => 0.015716140612062
1001 => 0.016454782687449
1002 => 0.016505924662139
1003 => 0.017244513325297
1004 => 0.017945521916136
1005 => 0.017505230980103
1006 => 0.017920405501643
1007 => 0.018369450596363
1008 => 0.019235731439018
1009 => 0.018943998527339
1010 => 0.018720535689031
1011 => 0.018509364386594
1012 => 0.018948778344465
1013 => 0.019514077381457
1014 => 0.019635837379658
1015 => 0.019833135092643
1016 => 0.019625700671856
1017 => 0.019875532583542
1018 => 0.0207575490135
1019 => 0.020519220388351
1020 => 0.020180755427401
1021 => 0.020877022689094
1022 => 0.021128999104431
1023 => 0.022897501548334
1024 => 0.025130308936955
1025 => 0.024205912016662
1026 => 0.023632109018134
1027 => 0.023766966333578
1028 => 0.024582312006602
1029 => 0.024844175158999
1030 => 0.024132340841142
1031 => 0.02438377275622
1101 => 0.025769187328542
1102 => 0.026512417797171
1103 => 0.025503010991603
1104 => 0.022718097648695
1105 => 0.020150280360893
1106 => 0.020831381135938
1107 => 0.020754165445065
1108 => 0.022242620569037
1109 => 0.020513536329462
1110 => 0.020542649673573
1111 => 0.022061884473207
1112 => 0.021656578674943
1113 => 0.021000035189399
1114 => 0.020155073854912
1115 => 0.018593084678649
1116 => 0.017209587305942
1117 => 0.019922944254237
1118 => 0.019805939368707
1119 => 0.019636498955307
1120 => 0.02001357025996
1121 => 0.021844521481802
1122 => 0.021802312129928
1123 => 0.021533797768704
1124 => 0.021737463545115
1125 => 0.020964331594085
1126 => 0.021163585301753
1127 => 0.020149873605515
1128 => 0.020608113628555
1129 => 0.020998626541948
1130 => 0.021077027790954
1201 => 0.021253669808232
1202 => 0.019744283110775
1203 => 0.020421953424668
1204 => 0.020820021244959
1205 => 0.019021536351055
1206 => 0.020784470981176
1207 => 0.019718008046455
1208 => 0.019356034508675
1209 => 0.019843384190909
1210 => 0.019653463545779
1211 => 0.019490180927611
1212 => 0.019399066421122
1213 => 0.019756922240933
1214 => 0.019740227839208
1215 => 0.019154706261176
1216 => 0.018390917231547
1217 => 0.018647269900411
1218 => 0.018554134572493
1219 => 0.018216600129424
1220 => 0.018444057589989
1221 => 0.017442450047249
1222 => 0.015719236328996
1223 => 0.016857644094738
1224 => 0.016813816634106
1225 => 0.016791716841039
1226 => 0.017647198813714
1227 => 0.017564963961368
1228 => 0.017415706899115
1229 => 0.018213858906427
1230 => 0.017922522687099
1231 => 0.018820352267623
]
'min_raw' => 0.0080595955217201
'max_raw' => 0.026512417797171
'avg_raw' => 0.017286006659446
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008059'
'max' => '$0.026512'
'avg' => '$0.017286'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0043906598468165
'max_diff' => 0.017526048122235
'year' => 2029
]
4 => [
'items' => [
101 => 0.019411720897332
102 => 0.019261730684067
103 => 0.019817915738641
104 => 0.018653175748142
105 => 0.019040055651728
106 => 0.019119791063665
107 => 0.018204009834551
108 => 0.017578418600228
109 => 0.017536698797161
110 => 0.016452009808627
111 => 0.017031441910998
112 => 0.017541318182555
113 => 0.017297127016476
114 => 0.017219823388299
115 => 0.017614750859544
116 => 0.017645440106385
117 => 0.016945722026115
118 => 0.017091215572192
119 => 0.017697947845627
120 => 0.017075927475617
121 => 0.015867443503137
122 => 0.015567722769363
123 => 0.015527734498529
124 => 0.014714868097385
125 => 0.015587751541965
126 => 0.015206714526584
127 => 0.016410405892648
128 => 0.015722863839878
129 => 0.015693225276156
130 => 0.015648422240058
131 => 0.014948754549506
201 => 0.015101937307535
202 => 0.015611140125619
203 => 0.015792829427691
204 => 0.015773877744948
205 => 0.015608644754015
206 => 0.015684287571135
207 => 0.015440615701489
208 => 0.015354570092726
209 => 0.015082986482759
210 => 0.014683833602996
211 => 0.014739338259074
212 => 0.01394851196023
213 => 0.013517627820292
214 => 0.013398364769319
215 => 0.013238881233211
216 => 0.013416378859092
217 => 0.013946271648688
218 => 0.013307108521408
219 => 0.012211308171768
220 => 0.012277167639934
221 => 0.012425134311052
222 => 0.012149399398321
223 => 0.011888439444098
224 => 0.012115322951944
225 => 0.011651017898121
226 => 0.012481243358563
227 => 0.012458788086538
228 => 0.012768244797393
301 => 0.012961754429381
302 => 0.012515777377135
303 => 0.012403615354545
304 => 0.012467507940092
305 => 0.011411505823497
306 => 0.01268194689534
307 => 0.012692933722485
308 => 0.012598857838169
309 => 0.013275328488458
310 => 0.014702892557054
311 => 0.014165785530817
312 => 0.013957801456112
313 => 0.013562423578062
314 => 0.014089241125348
315 => 0.01404878975735
316 => 0.01386585333054
317 => 0.013755212808808
318 => 0.013959071362522
319 => 0.013729952478
320 => 0.013688796430574
321 => 0.013439435561394
322 => 0.013350425076293
323 => 0.013284525256734
324 => 0.013211976030582
325 => 0.013372001545332
326 => 0.013009362675798
327 => 0.012572055749066
328 => 0.012535698409834
329 => 0.012636084220022
330 => 0.012591670971858
331 => 0.012535485776289
401 => 0.01242821293682
402 => 0.012396387376871
403 => 0.012499805007138
404 => 0.012383052532189
405 => 0.012555327168813
406 => 0.012508478000042
407 => 0.012246782351635
408 => 0.011920612681582
409 => 0.011917709087355
410 => 0.011847436366967
411 => 0.01175793349198
412 => 0.011733035839707
413 => 0.012096215455743
414 => 0.012847986391888
415 => 0.012700395768769
416 => 0.012807045119668
417 => 0.013331654371349
418 => 0.013498411876907
419 => 0.01338005134933
420 => 0.013218032159022
421 => 0.013225160181134
422 => 0.01377882880096
423 => 0.013813360433634
424 => 0.013900610729077
425 => 0.01401275201565
426 => 0.013399149495346
427 => 0.013196259557608
428 => 0.013100119049203
429 => 0.012804043494374
430 => 0.013123335596658
501 => 0.012937297762108
502 => 0.012962400621946
503 => 0.012946052351545
504 => 0.012954979612649
505 => 0.012481011293627
506 => 0.012653700438037
507 => 0.012366571241845
508 => 0.011982137479908
509 => 0.011980848723138
510 => 0.012074938341745
511 => 0.01201897015487
512 => 0.011868361203064
513 => 0.011889754493814
514 => 0.011702326755767
515 => 0.011912511614702
516 => 0.011918538964378
517 => 0.011837606344842
518 => 0.012161425119952
519 => 0.012294093936326
520 => 0.012240822352402
521 => 0.012290356259986
522 => 0.012706528825491
523 => 0.012774383112551
524 => 0.01280451950466
525 => 0.01276414073154
526 => 0.012297963130505
527 => 0.012318640089451
528 => 0.012166926284082
529 => 0.012038744105752
530 => 0.012043870720659
531 => 0.012109773022837
601 => 0.012397572241569
602 => 0.013003228730699
603 => 0.013026212951732
604 => 0.013054070498121
605 => 0.012940759856874
606 => 0.012906584283238
607 => 0.012951670686329
608 => 0.013179123419741
609 => 0.013764193602891
610 => 0.013557390724642
611 => 0.013389256765547
612 => 0.013536755576263
613 => 0.013514049290487
614 => 0.01332238538774
615 => 0.013317006020347
616 => 0.01294914171232
617 => 0.012813150653507
618 => 0.012699506346009
619 => 0.012575409728981
620 => 0.01250184109465
621 => 0.012614875953328
622 => 0.012640728362897
623 => 0.012393575668886
624 => 0.012359889669953
625 => 0.012561719895044
626 => 0.012472901937971
627 => 0.0125642534094
628 => 0.01258544773437
629 => 0.012582034959903
630 => 0.012489298812041
701 => 0.012548406067256
702 => 0.012408599787951
703 => 0.012256581457431
704 => 0.012159603233635
705 => 0.012074976871079
706 => 0.012121932495538
707 => 0.0119545442681
708 => 0.011900993405283
709 => 0.012528381859145
710 => 0.012991840455575
711 => 0.012985101584033
712 => 0.012944080436619
713 => 0.012883131332398
714 => 0.013174664613138
715 => 0.01307310024752
716 => 0.013146996809494
717 => 0.013165806585945
718 => 0.013222738114121
719 => 0.013243086242014
720 => 0.013181580066839
721 => 0.012975157830605
722 => 0.012460773243947
723 => 0.012221325830303
724 => 0.012142304195489
725 => 0.012145176481831
726 => 0.012065946002066
727 => 0.012089282929218
728 => 0.012057830371176
729 => 0.011998266835436
730 => 0.012118254615052
731 => 0.012132082088889
801 => 0.01210407550738
802 => 0.012110672071178
803 => 0.011878789538047
804 => 0.011896419063418
805 => 0.011798255625897
806 => 0.01177985116474
807 => 0.011531702542755
808 => 0.011092071289191
809 => 0.011335669679704
810 => 0.011041437079082
811 => 0.010930006734875
812 => 0.011457500653377
813 => 0.011404554894363
814 => 0.0113139347699
815 => 0.01117988871893
816 => 0.011130169734709
817 => 0.0108280929257
818 => 0.010810244616306
819 => 0.010959962039611
820 => 0.010890872600218
821 => 0.010793844861093
822 => 0.010442420225527
823 => 0.010047302582453
824 => 0.010059228700476
825 => 0.010184908271313
826 => 0.01055033857372
827 => 0.010407558632561
828 => 0.010303970147039
829 => 0.01028457113756
830 => 0.010527390355777
831 => 0.010871030421753
901 => 0.011032258652196
902 => 0.010872486372401
903 => 0.010688948580123
904 => 0.010700119675107
905 => 0.010774435965295
906 => 0.010782245556618
907 => 0.010662781321835
908 => 0.010696409804161
909 => 0.010645325064455
910 => 0.010331818111177
911 => 0.010326147764534
912 => 0.010249208102217
913 => 0.01024687839982
914 => 0.010115984840721
915 => 0.010097671926978
916 => 0.0098377748207154
917 => 0.010008839883098
918 => 0.0098940984205708
919 => 0.0097211559717668
920 => 0.009691340628407
921 => 0.0096904443431825
922 => 0.0098680175688803
923 => 0.010006764836568
924 => 0.0098960943974365
925 => 0.0098708968837026
926 => 0.010139940408309
927 => 0.010105702167417
928 => 0.010076052071617
929 => 0.010840261222922
930 => 0.01023533004768
1001 => 0.0099715455270107
1002 => 0.00964506209136
1003 => 0.0097513667442802
1004 => 0.0097737666965908
1005 => 0.0089886328869135
1006 => 0.0086701041981096
1007 => 0.0085607971556125
1008 => 0.0084978894072807
1009 => 0.0085265572581413
1010 => 0.008239844078529
1011 => 0.0084325200770267
1012 => 0.0081842506987443
1013 => 0.0081426275295368
1014 => 0.0085865639325801
1015 => 0.0086483350896247
1016 => 0.0083848001428781
1017 => 0.0085540322411218
1018 => 0.0084926663297965
1019 => 0.0081885065646586
1020 => 0.0081768898988781
1021 => 0.0080242732204646
1022 => 0.0077854576711597
1023 => 0.0076763125568506
1024 => 0.0076194688336772
1025 => 0.0076429236617206
1026 => 0.0076310641829323
1027 => 0.0075536730617777
1028 => 0.007635500151406
1029 => 0.0074264657506935
1030 => 0.0073432265680252
1031 => 0.0073056293603482
1101 => 0.0071200992981447
1102 => 0.0074153601327037
1103 => 0.0074735302367098
1104 => 0.0075318149537905
1105 => 0.0080391436233112
1106 => 0.0080137989166779
1107 => 0.0082429027212704
1108 => 0.0082340001687188
1109 => 0.0081686560524134
1110 => 0.0078929799743066
1111 => 0.0080028595455864
1112 => 0.0076646673042639
1113 => 0.0079180639262998
1114 => 0.0078024242900985
1115 => 0.0078789660489771
1116 => 0.0077413370650213
1117 => 0.0078175066273039
1118 => 0.0074873245263382
1119 => 0.007179005126244
1120 => 0.0073030818532463
1121 => 0.0074379674453927
1122 => 0.0077304337773756
1123 => 0.0075562432428414
1124 => 0.0076188887459333
1125 => 0.0074090367973061
1126 => 0.0069760522860427
1127 => 0.0069785029313544
1128 => 0.0069118976973769
1129 => 0.0068543410506969
1130 => 0.0075762511211412
1201 => 0.0074864701921721
1202 => 0.0073434160320973
1203 => 0.0075348997101037
1204 => 0.0075855310338233
1205 => 0.0075869724364303
1206 => 0.0077266739849948
1207 => 0.0078012327265065
1208 => 0.007814374027854
1209 => 0.0080341974329719
1210 => 0.0081078793388266
1211 => 0.0084113646811885
1212 => 0.0077949069382022
1213 => 0.0077822113966566
1214 => 0.0075375942781373
1215 => 0.0073824542343287
1216 => 0.007548216849665
1217 => 0.0076950598979994
1218 => 0.0075421571009725
1219 => 0.00756212297831
1220 => 0.0073568634659188
1221 => 0.0074302340832409
1222 => 0.0074934307429682
1223 => 0.0074585372619947
1224 => 0.0074063000321139
1225 => 0.0076830204426121
1226 => 0.0076674067925757
1227 => 0.0079250952006063
1228 => 0.0081259817421411
1229 => 0.0084860063373359
1230 => 0.0081103019037435
1231 => 0.0080966097408935
]
'min_raw' => 0.0068543410506969
'max_raw' => 0.019817915738641
'avg_raw' => 0.013336128394669
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006854'
'max' => '$0.019817'
'avg' => '$0.013336'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012052544710232
'max_diff' => -0.0066945020585303
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082304528290441
102 => 0.0081078588481472
103 => 0.0081853340122736
104 => 0.0084735238906338
105 => 0.0084796128886399
106 => 0.0083776143268071
107 => 0.0083714077050499
108 => 0.0083909976445919
109 => 0.00850573653237
110 => 0.0084656432394104
111 => 0.0085120402130612
112 => 0.0085700603390672
113 => 0.0088100561802515
114 => 0.008867918365059
115 => 0.00872734325408
116 => 0.0087400356126487
117 => 0.0086874566622695
118 => 0.0086366660550155
119 => 0.0087508359227499
120 => 0.008959483600049
121 => 0.0089581856136774
122 => 0.0090065878192794
123 => 0.009036741992384
124 => 0.0089072982072153
125 => 0.0088230350628504
126 => 0.0088553469142031
127 => 0.0089070142681767
128 => 0.0088385918876647
129 => 0.0084162572588151
130 => 0.0085443666063675
131 => 0.0085230429467078
201 => 0.0084926754623066
202 => 0.0086214904019109
203 => 0.0086090658867399
204 => 0.0082369034204636
205 => 0.0082607280540764
206 => 0.0082383522753432
207 => 0.0083106529940838
208 => 0.0081039543720645
209 => 0.0081675334760611
210 => 0.0082074096940708
211 => 0.008230897092822
212 => 0.0083157496825715
213 => 0.0083057932105293
214 => 0.0083151307742898
215 => 0.0084409447646352
216 => 0.0090772687536542
217 => 0.0091119024644067
218 => 0.0089413534059765
219 => 0.009009484390888
220 => 0.0088786877984665
221 => 0.0089664924272201
222 => 0.0090265661242175
223 => 0.0087551046389938
224 => 0.0087390304516093
225 => 0.008607694015124
226 => 0.0086782667768152
227 => 0.0085659804386034
228 => 0.0085935315783912
301 => 0.0085164961896793
302 => 0.0086551445517679
303 => 0.0088101749643602
304 => 0.0088493417689175
305 => 0.0087463107684967
306 => 0.0086717095341183
307 => 0.008540734341724
308 => 0.0087585490056482
309 => 0.0088222446511612
310 => 0.0087582144395384
311 => 0.0087433772404176
312 => 0.008715260774894
313 => 0.0087493422814935
314 => 0.0088218977509964
315 => 0.008787681931468
316 => 0.0088102820830717
317 => 0.0087241536103336
318 => 0.0089073410584944
319 => 0.0091982868126339
320 => 0.0091992222508079
321 => 0.0091650062468435
322 => 0.0091510057952153
323 => 0.0091861134916835
324 => 0.0092051579768245
325 => 0.0093186898295523
326 => 0.0094405140308377
327 => 0.010009014422174
328 => 0.0098493817871777
329 => 0.010353789154611
330 => 0.010752709893151
331 => 0.010872328779949
401 => 0.010762285032598
402 => 0.010385831317357
403 => 0.01036736070212
404 => 0.01092994148735
405 => 0.01077098664769
406 => 0.010752079475302
407 => 0.010550939105272
408 => 0.01066983797568
409 => 0.01064383304858
410 => 0.010602782998949
411 => 0.01082963376112
412 => 0.011254278136795
413 => 0.011188093328556
414 => 0.011138689439431
415 => 0.01092221597854
416 => 0.011052581353094
417 => 0.0110061607402
418 => 0.011205613152443
419 => 0.011087461961842
420 => 0.010769782408443
421 => 0.010820373924407
422 => 0.010812727118545
423 => 0.010970097841327
424 => 0.010922859056529
425 => 0.010803502987658
426 => 0.011252826748484
427 => 0.011223650162726
428 => 0.011265015890634
429 => 0.011283226363337
430 => 0.011556721818579
501 => 0.011668764155713
502 => 0.01169419972782
503 => 0.011800631282432
504 => 0.011691551613784
505 => 0.01212794806086
506 => 0.012418126233728
507 => 0.012755183113945
508 => 0.013247713808292
509 => 0.013432909905529
510 => 0.013399455888189
511 => 0.013772887039468
512 => 0.014443934517407
513 => 0.013535093769463
514 => 0.014492105283885
515 => 0.014189126487648
516 => 0.013470769212126
517 => 0.013424515472458
518 => 0.013910995359742
519 => 0.014989960927782
520 => 0.014719692290514
521 => 0.014990402990451
522 => 0.014674604579329
523 => 0.014658922526458
524 => 0.014975065366498
525 => 0.0157137503443
526 => 0.015362828800538
527 => 0.014859696718064
528 => 0.015231201618161
529 => 0.014909369692542
530 => 0.014184192289037
531 => 0.01471948562118
601 => 0.014361550214253
602 => 0.014466014794887
603 => 0.015218341781375
604 => 0.015127819807951
605 => 0.015244963623671
606 => 0.015038207855112
607 => 0.014845065364886
608 => 0.014484550563928
609 => 0.01437781990453
610 => 0.014407316419021
611 => 0.014377805287522
612 => 0.014176100569689
613 => 0.014132542455077
614 => 0.014059943689066
615 => 0.014082445082347
616 => 0.013945938162728
617 => 0.014203554923817
618 => 0.014251370864786
619 => 0.014438842860052
620 => 0.014458306824515
621 => 0.014980413662833
622 => 0.014692845989936
623 => 0.014885771212314
624 => 0.014868514164542
625 => 0.013486338192537
626 => 0.013676789846437
627 => 0.013973072852885
628 => 0.013839597760082
629 => 0.013650895207221
630 => 0.013498507778195
701 => 0.013267625240805
702 => 0.013592587978474
703 => 0.014019879422575
704 => 0.014469143640676
705 => 0.015008905161766
706 => 0.014888436673775
707 => 0.014459053174489
708 => 0.014478315004602
709 => 0.014597384059111
710 => 0.014443178814958
711 => 0.014397700678013
712 => 0.014591136061459
713 => 0.014592468144634
714 => 0.01441503637491
715 => 0.014217853432533
716 => 0.014217027228804
717 => 0.014181940428769
718 => 0.014680846443109
719 => 0.014955194305908
720 => 0.014986647846245
721 => 0.014953077232035
722 => 0.014965997229074
723 => 0.014806360252554
724 => 0.015171243042005
725 => 0.015506095572772
726 => 0.015416347941446
727 => 0.01528180348371
728 => 0.015174632342584
729 => 0.015391101826544
730 => 0.015381462781178
731 => 0.015503170928035
801 => 0.015497649543473
802 => 0.01545672367136
803 => 0.015416349403037
804 => 0.015576428813237
805 => 0.015530328513896
806 => 0.015484156608057
807 => 0.015391551782332
808 => 0.015404138316152
809 => 0.015269617089413
810 => 0.015207381414651
811 => 0.014271506190497
812 => 0.014021409749998
813 => 0.014100095181362
814 => 0.014126000468433
815 => 0.01401715817702
816 => 0.014173210063615
817 => 0.014148889542389
818 => 0.01424350646345
819 => 0.014184393918961
820 => 0.014186819918406
821 => 0.014360657307627
822 => 0.014411123041275
823 => 0.014385455761833
824 => 0.014403432244532
825 => 0.014817692700913
826 => 0.014758798111319
827 => 0.01472751153441
828 => 0.01473617813003
829 => 0.01484203055848
830 => 0.014871663459118
831 => 0.014746106776849
901 => 0.014805320034041
902 => 0.015057442567885
903 => 0.015145671185831
904 => 0.015427254582175
905 => 0.015307632950662
906 => 0.015527203632407
907 => 0.016202089050927
908 => 0.016741234221761
909 => 0.016245414041546
910 => 0.017235485488058
911 => 0.018006398126481
912 => 0.017976809215396
913 => 0.017842382765356
914 => 0.016964719222284
915 => 0.016157080144723
916 => 0.01683270452727
917 => 0.016834426832764
918 => 0.016776390099122
919 => 0.01641592893091
920 => 0.016763846831813
921 => 0.016791463291335
922 => 0.016776005417812
923 => 0.016499640685289
924 => 0.016077682819468
925 => 0.016160132376425
926 => 0.016295186432646
927 => 0.016039500928992
928 => 0.015957793918043
929 => 0.016109702796792
930 => 0.01659918485559
1001 => 0.016506651107751
1002 => 0.016504234677636
1003 => 0.016900133291309
1004 => 0.016616755324187
1005 => 0.016161172329378
1006 => 0.016046131614788
1007 => 0.015637814578701
1008 => 0.015919840609901
1009 => 0.015929990224683
1010 => 0.015775527449631
1011 => 0.016173706132281
1012 => 0.016170036845622
1013 => 0.016548048243722
1014 => 0.017270664062293
1015 => 0.017056951006977
1016 => 0.016808425975558
1017 => 0.016835447537325
1018 => 0.01713180737501
1019 => 0.016952621451909
1020 => 0.017017057959184
1021 => 0.017131709842639
1022 => 0.017200882170573
1023 => 0.016825494703837
1024 => 0.016737973928483
1025 => 0.016558937137726
1026 => 0.016512229780898
1027 => 0.016658051511244
1028 => 0.016619632637256
1029 => 0.015929137188862
1030 => 0.015856976572624
1031 => 0.015859189635703
1101 => 0.015677738335123
1102 => 0.015400981548437
1103 => 0.016128281859559
1104 => 0.016069869466014
1105 => 0.016005386704302
1106 => 0.016013285474678
1107 => 0.016328981889241
1108 => 0.016145862025743
1109 => 0.016632716195607
1110 => 0.016532633614459
1111 => 0.016429984292751
1112 => 0.016415795029716
1113 => 0.016376283798487
1114 => 0.01624078508512
1115 => 0.01607716224652
1116 => 0.015969124275709
1117 => 0.014730673019626
1118 => 0.014960522369015
1119 => 0.015224943094061
1120 => 0.015316220068747
1121 => 0.015160084487372
1122 => 0.016246950269531
1123 => 0.01644553112123
1124 => 0.015844016768323
1125 => 0.015731497992564
1126 => 0.016254326981737
1127 => 0.015938997188021
1128 => 0.016080990174823
1129 => 0.015774079003368
1130 => 0.016397698809182
1201 => 0.016392947871111
1202 => 0.016150345681557
1203 => 0.0163553913909
1204 => 0.016319759652974
1205 => 0.016045862378471
1206 => 0.016406381841325
1207 => 0.016406560654481
1208 => 0.016173061321662
1209 => 0.015900385220506
1210 => 0.015851637173941
1211 => 0.015814912069233
1212 => 0.016071958050355
1213 => 0.016302424673267
1214 => 0.016731265920985
1215 => 0.016839086799678
1216 => 0.017259918867259
1217 => 0.017009333860956
1218 => 0.017120414948631
1219 => 0.017241009182681
1220 => 0.017298826493191
1221 => 0.017204616288363
1222 => 0.017858341710706
1223 => 0.017913536165981
1224 => 0.017932042389405
1225 => 0.017711609855135
1226 => 0.017907405538444
1227 => 0.017815799222295
1228 => 0.018054133407946
1229 => 0.018091507251459
1230 => 0.018059852935616
1231 => 0.018071715983454
]
'min_raw' => 0.0081039543720645
'max_raw' => 0.018091507251459
'avg_raw' => 0.013097730811762
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0081039'
'max' => '$0.018091'
'avg' => '$0.013097'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012496133213676
'max_diff' => -0.0017264084871815
'year' => 2031
]
6 => [
'items' => [
101 => 0.017513876660551
102 => 0.017484949748822
103 => 0.017090529254832
104 => 0.017251258521542
105 => 0.016950782861382
106 => 0.017046066788461
107 => 0.017088067035619
108 => 0.017066128489996
109 => 0.017260345913125
110 => 0.017095221427468
111 => 0.016659430760838
112 => 0.016223521363332
113 => 0.016218048875931
114 => 0.016103281626008
115 => 0.016020325924983
116 => 0.016036306136012
117 => 0.01609262248401
118 => 0.01601705271646
119 => 0.016033179357851
120 => 0.016300989056194
121 => 0.016354696381265
122 => 0.016172177905867
123 => 0.015439339889852
124 => 0.015259499602537
125 => 0.015388765234671
126 => 0.015326984588284
127 => 0.012370072784846
128 => 0.013064755352571
129 => 0.01265199856002
130 => 0.012842215880054
131 => 0.012420898077713
201 => 0.012621973016148
202 => 0.0125848418171
203 => 0.013701870828851
204 => 0.013684429957255
205 => 0.013692777979538
206 => 0.013294305125348
207 => 0.013929083201789
208 => 0.014241797708126
209 => 0.01418392257563
210 => 0.014198488499608
211 => 0.013948197666444
212 => 0.013695201341911
213 => 0.013414589482149
214 => 0.013935931632913
215 => 0.013877967285356
216 => 0.014010916643739
217 => 0.014349044294816
218 => 0.014398834875859
219 => 0.014465753921708
220 => 0.014441768207393
221 => 0.015013205233093
222 => 0.014944000438818
223 => 0.015110764081442
224 => 0.014767718616175
225 => 0.014379530110051
226 => 0.014453312054226
227 => 0.014446206259685
228 => 0.014355741339526
229 => 0.014274073654567
301 => 0.014138119968836
302 => 0.014568297547847
303 => 0.014550833123735
304 => 0.014833561849925
305 => 0.014783586801291
306 => 0.014449841195542
307 => 0.014461760985143
308 => 0.014541927298664
309 => 0.014819383825086
310 => 0.014901751812809
311 => 0.014863595679099
312 => 0.014953908417395
313 => 0.015025287923398
314 => 0.014962872584371
315 => 0.015846542162691
316 => 0.015479580944545
317 => 0.015658435288969
318 => 0.015701090996244
319 => 0.015591829299013
320 => 0.015615524248775
321 => 0.015651415641176
322 => 0.015869341147579
323 => 0.016441240733634
324 => 0.016694531167246
325 => 0.017456567933896
326 => 0.016673498922707
327 => 0.016627034848245
328 => 0.016764300681224
329 => 0.017211696933032
330 => 0.017574269573329
331 => 0.017694555835433
401 => 0.01771045365068
402 => 0.017936118674867
403 => 0.018065465658327
404 => 0.017908717005351
405 => 0.017775888934222
406 => 0.017300115270665
407 => 0.017355187367711
408 => 0.017734579503983
409 => 0.018270493242552
410 => 0.018730362982565
411 => 0.018569332627691
412 => 0.019797880565667
413 => 0.019919686075549
414 => 0.019902856492527
415 => 0.020180347571128
416 => 0.01962958429018
417 => 0.019394122317038
418 => 0.017804607870863
419 => 0.018251196594787
420 => 0.018900339532246
421 => 0.018814423030312
422 => 0.018342998077489
423 => 0.018730005364465
424 => 0.018602048652554
425 => 0.018501123884941
426 => 0.018963479810605
427 => 0.018455100477802
428 => 0.018895268059511
429 => 0.018330748583019
430 => 0.018570068200788
501 => 0.018434218811155
502 => 0.018522130015322
503 => 0.01800820291208
504 => 0.018285505502114
505 => 0.017996666212648
506 => 0.017996529265217
507 => 0.017990153121893
508 => 0.01832997126504
509 => 0.018341052722489
510 => 0.018089926601266
511 => 0.01805373540387
512 => 0.018187553229216
513 => 0.01803088760268
514 => 0.018104190463295
515 => 0.018033107871653
516 => 0.018017105683047
517 => 0.017889597521679
518 => 0.017834663499852
519 => 0.017856204545286
520 => 0.01778267385205
521 => 0.017738368949655
522 => 0.017981339761668
523 => 0.017851530258224
524 => 0.017961444593535
525 => 0.017836183336153
526 => 0.017401973244335
527 => 0.017152254428842
528 => 0.016332071816695
529 => 0.016564674588067
530 => 0.016718890466131
531 => 0.016667922119351
601 => 0.016777421850367
602 => 0.016784144244531
603 => 0.01674854476576
604 => 0.016707325129919
605 => 0.016687261690781
606 => 0.016836798128452
607 => 0.016923609063686
608 => 0.016734368092637
609 => 0.016690031580883
610 => 0.016881364650893
611 => 0.01699807771307
612 => 0.01785982138878
613 => 0.017795980633888
614 => 0.017956208400551
615 => 0.017938169212921
616 => 0.018106113438669
617 => 0.018380631269242
618 => 0.017822459763294
619 => 0.017919339036608
620 => 0.017895586476061
621 => 0.018154910703862
622 => 0.018155720285795
623 => 0.018000242457022
624 => 0.01808452951034
625 => 0.018037482789472
626 => 0.018122502572825
627 => 0.017795128001684
628 => 0.018193834891433
629 => 0.018419876005816
630 => 0.018423014586908
701 => 0.018530156281153
702 => 0.018639018447733
703 => 0.018847969896588
704 => 0.018633190905233
705 => 0.018246824408099
706 => 0.018274718821236
707 => 0.018048192285332
708 => 0.018052000237326
709 => 0.018031673091148
710 => 0.018092676386984
711 => 0.017808514794608
712 => 0.017875206952364
713 => 0.017781837540956
714 => 0.017919136069743
715 => 0.017771425549028
716 => 0.017895575021857
717 => 0.01794915381871
718 => 0.018146860732565
719 => 0.017742224077101
720 => 0.016917142545118
721 => 0.017090584686287
722 => 0.016834050135912
723 => 0.016857793385245
724 => 0.016905758527608
725 => 0.016750287807991
726 => 0.016779946721848
727 => 0.016778887096739
728 => 0.01676975582
729 => 0.016729311881264
730 => 0.016670660168507
731 => 0.016904310540087
801 => 0.016944012291194
802 => 0.0170322643659
803 => 0.017294842678272
804 => 0.017268604912843
805 => 0.017311399796852
806 => 0.017217978805343
807 => 0.016862126917103
808 => 0.016881451386689
809 => 0.016640474941292
810 => 0.017026102056403
811 => 0.016934780465515
812 => 0.016875904841788
813 => 0.016859840082375
814 => 0.017123069275594
815 => 0.017201831575818
816 => 0.01715275219586
817 => 0.017052088955692
818 => 0.01724539213523
819 => 0.017297111911267
820 => 0.01730869006177
821 => 0.017651186233702
822 => 0.017327831793123
823 => 0.017405666420837
824 => 0.018012909967388
825 => 0.017462223864548
826 => 0.017753934574988
827 => 0.017739656853701
828 => 0.01788888618221
829 => 0.017727415693086
830 => 0.017729417313319
831 => 0.017861922847365
901 => 0.017675842722297
902 => 0.017629766666479
903 => 0.01756611292537
904 => 0.017705098540356
905 => 0.017788414130761
906 => 0.01845987660087
907 => 0.018893671978969
908 => 0.018874839777551
909 => 0.019046930846101
910 => 0.018969402243546
911 => 0.018719041934884
912 => 0.019146376453583
913 => 0.019011149931431
914 => 0.019022297841616
915 => 0.019021882915843
916 => 0.019111796731366
917 => 0.019048084552587
918 => 0.018922501308294
919 => 0.019005869326581
920 => 0.01925344253628
921 => 0.020021917375659
922 => 0.020451966076714
923 => 0.019996027903871
924 => 0.020310527950242
925 => 0.020121939990244
926 => 0.020087667947907
927 => 0.020285197218399
928 => 0.02048307223773
929 => 0.020470468454436
930 => 0.020326821351396
1001 => 0.020245678747799
1002 => 0.020860117727002
1003 => 0.021312825900185
1004 => 0.021281954237768
1005 => 0.021418211715673
1006 => 0.02181826788509
1007 => 0.021854844007554
1008 => 0.021850236256816
1009 => 0.021759578520965
1010 => 0.022153485773614
1011 => 0.022482090133912
1012 => 0.021738593874469
1013 => 0.022021707516984
1014 => 0.022148806352461
1015 => 0.022335425151467
1016 => 0.022650282346331
1017 => 0.0229923007717
1018 => 0.023040665927089
1019 => 0.023006348534855
1020 => 0.022780778189375
1021 => 0.023155018831543
1022 => 0.023374240222701
1023 => 0.023504781544344
1024 => 0.023835812616025
1025 => 0.0221495912716
1026 => 0.020955999993377
1027 => 0.020769603479615
1028 => 0.02114864812003
1029 => 0.021248599168883
1030 => 0.021208309026419
1031 => 0.019864813526207
1101 => 0.02076253025385
1102 => 0.021728397970626
1103 => 0.021765500883248
1104 => 0.022249034457607
1105 => 0.02240649281013
1106 => 0.022795800715684
1107 => 0.022771449400194
1108 => 0.022866239679955
1109 => 0.022844449036177
1110 => 0.023565559952765
1111 => 0.024361052379768
1112 => 0.024333507006532
1113 => 0.024219145558311
1114 => 0.024388991810444
1115 => 0.025210025245261
1116 => 0.025134437643376
1117 => 0.025207864560071
1118 => 0.026175909251136
1119 => 0.027434505052274
1120 => 0.026849760941693
1121 => 0.028118487406068
1122 => 0.028917083463092
1123 => 0.030298172767341
1124 => 0.030125253584441
1125 => 0.030662901515684
1126 => 0.029815692157727
1127 => 0.027870328222597
1128 => 0.027562466933309
1129 => 0.028178813030754
1130 => 0.029694039769149
1201 => 0.028131093148528
1202 => 0.028447275214293
1203 => 0.028356214758082
1204 => 0.028351362533352
1205 => 0.028536552215852
1206 => 0.028267924922542
1207 => 0.027173489004469
1208 => 0.027675062536171
1209 => 0.027481380908042
1210 => 0.027696285114373
1211 => 0.028856034482706
1212 => 0.028343281641994
1213 => 0.027803138176962
1214 => 0.028480597949542
1215 => 0.029343237040472
1216 => 0.029289254636473
1217 => 0.029184506209821
1218 => 0.02977496760641
1219 => 0.030750236844618
1220 => 0.031013848200757
1221 => 0.031208440714562
1222 => 0.031235271734548
1223 => 0.031511647915792
1224 => 0.030025503533478
1225 => 0.032384052835104
1226 => 0.032791309145886
1227 => 0.032714761838503
1228 => 0.033167410087971
1229 => 0.0330342294904
1230 => 0.032841271699915
1231 => 0.033558815456365
]
'min_raw' => 0.012370072784846
'max_raw' => 0.033558815456365
'avg_raw' => 0.022964444120606
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01237'
'max' => '$0.033558'
'avg' => '$0.022964'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042661184127817
'max_diff' => 0.015467308204906
'year' => 2032
]
7 => [
'items' => [
101 => 0.03273620944239
102 => 0.03156862376877
103 => 0.030928063175995
104 => 0.03177160503711
105 => 0.032286726616138
106 => 0.03262718921199
107 => 0.032730212987782
108 => 0.030140868691367
109 => 0.028745355727217
110 => 0.029639863537648
111 => 0.030731224802006
112 => 0.03001944096655
113 => 0.030047341545315
114 => 0.029032524849458
115 => 0.030821013561612
116 => 0.030560445799809
117 => 0.03191227180898
118 => 0.03158964768281
119 => 0.032692009315706
120 => 0.032401720553603
121 => 0.033606692975265
122 => 0.034087389097593
123 => 0.034894552701358
124 => 0.035488305534034
125 => 0.035836968554063
126 => 0.035816036134143
127 => 0.037197612722726
128 => 0.036382945277048
129 => 0.035359530962902
130 => 0.03534102062679
131 => 0.035871061401979
201 => 0.036981881457191
202 => 0.037269900935732
203 => 0.037430864531897
204 => 0.037184343181188
205 => 0.036300080056646
206 => 0.035918259722785
207 => 0.036243581709634
208 => 0.035845740874954
209 => 0.036532525770035
210 => 0.037475628120319
211 => 0.037280881214417
212 => 0.037931890922762
213 => 0.038605617482681
214 => 0.039569076722317
215 => 0.039820960644351
216 => 0.040237315189184
217 => 0.040665880781161
218 => 0.040803524499138
219 => 0.041066329065092
220 => 0.041064943955306
221 => 0.041856923203597
222 => 0.042730500840017
223 => 0.043060256174397
224 => 0.043818510382989
225 => 0.042520026623172
226 => 0.0435049414709
227 => 0.044393359317567
228 => 0.043334150935601
301 => 0.04479402292624
302 => 0.044850706447496
303 => 0.045706560320677
304 => 0.044838988458445
305 => 0.044323827056039
306 => 0.045811078721939
307 => 0.046530712955079
308 => 0.04631395326748
309 => 0.044664401342102
310 => 0.043704291368922
311 => 0.041191498377726
312 => 0.044168010220376
313 => 0.04561778231289
314 => 0.044660646782621
315 => 0.04514337027084
316 => 0.047776953098944
317 => 0.048779650928026
318 => 0.048571096788964
319 => 0.048606339005372
320 => 0.049147376553692
321 => 0.05154663499776
322 => 0.050108943723699
323 => 0.051208004833455
324 => 0.051790942883109
325 => 0.052332408231119
326 => 0.051002740468288
327 => 0.049272862245543
328 => 0.048724937197052
329 => 0.044565478517216
330 => 0.044348960629317
331 => 0.044227422577676
401 => 0.043461142353977
402 => 0.042859055999968
403 => 0.042380254577227
404 => 0.041123736661746
405 => 0.041547774572751
406 => 0.039545147271145
407 => 0.040826357249959
408 => 0.037630115721469
409 => 0.040292040643225
410 => 0.038843275931188
411 => 0.039816082470919
412 => 0.039812688440545
413 => 0.038021443172306
414 => 0.036988290283921
415 => 0.037646655515312
416 => 0.038352475304461
417 => 0.038466992190587
418 => 0.039382105970999
419 => 0.039637494556807
420 => 0.038863655218856
421 => 0.037563880720116
422 => 0.037865788691474
423 => 0.036982172128518
424 => 0.035433668089758
425 => 0.036545830724682
426 => 0.036925571946584
427 => 0.037093287303556
428 => 0.035570511428326
429 => 0.035092022187256
430 => 0.034837278530224
501 => 0.037367309476825
502 => 0.037505910283301
503 => 0.036796808961187
504 => 0.040002014176889
505 => 0.039276577521785
506 => 0.040087068001832
507 => 0.037838393707523
508 => 0.037924296093807
509 => 0.036859737646276
510 => 0.037455819243072
511 => 0.037034527983064
512 => 0.037407661740644
513 => 0.03763131657645
514 => 0.038695700340414
515 => 0.040304194196066
516 => 0.038536716900148
517 => 0.037766601731576
518 => 0.038244376850866
519 => 0.039516754954005
520 => 0.041444472912097
521 => 0.040303225081967
522 => 0.040809691489334
523 => 0.040920331868222
524 => 0.040078817969575
525 => 0.041475500729863
526 => 0.042223994367732
527 => 0.042991793961252
528 => 0.043658452835048
529 => 0.042685117919325
530 => 0.043726725801228
531 => 0.042887373716957
601 => 0.042134388126742
602 => 0.042135530095064
603 => 0.041663171234958
604 => 0.040747916422456
605 => 0.040579129392503
606 => 0.041457180837773
607 => 0.042161294945098
608 => 0.042219289155456
609 => 0.04260912290396
610 => 0.042839822500718
611 => 0.045100992169839
612 => 0.046010453316136
613 => 0.047122525190609
614 => 0.047555739858653
615 => 0.048859560693411
616 => 0.047806619478193
617 => 0.04757880902297
618 => 0.044416166154391
619 => 0.044934048746947
620 => 0.045763228745865
621 => 0.044429839027168
622 => 0.045275567899675
623 => 0.045442532694095
624 => 0.044384530954754
625 => 0.044949655397292
626 => 0.043448852425631
627 => 0.040336907599627
628 => 0.041478965214051
629 => 0.042319904030704
630 => 0.041119780652332
701 => 0.043270955356874
702 => 0.04201428350374
703 => 0.041615978857184
704 => 0.040062050425108
705 => 0.040795444828858
706 => 0.041787371261125
707 => 0.041174476049809
708 => 0.042446325639969
709 => 0.044247603849531
710 => 0.045531301969637
711 => 0.045629848371556
712 => 0.044804516481422
713 => 0.04612711610256
714 => 0.046136749796885
715 => 0.044644852021264
716 => 0.043731072940618
717 => 0.043523460410887
718 => 0.044042117214988
719 => 0.044671862324494
720 => 0.045664794842331
721 => 0.046264803167336
722 => 0.047829306659122
723 => 0.04825261644617
724 => 0.048717705562626
725 => 0.049339208050384
726 => 0.050085481136904
727 => 0.048452678108948
728 => 0.048517552417175
729 => 0.046997108845239
730 => 0.045372296834962
731 => 0.046605326615086
801 => 0.04821734902952
802 => 0.047847549306523
803 => 0.047805939283363
804 => 0.04787591580066
805 => 0.047597098886049
806 => 0.046336020314703
807 => 0.045702714550943
808 => 0.046519840559726
809 => 0.046954106667299
810 => 0.047627615528161
811 => 0.047544591345012
812 => 0.049279477841021
813 => 0.049953602273126
814 => 0.049781132395983
815 => 0.049812871004096
816 => 0.051033341088042
817 => 0.052390754830206
818 => 0.053662151926262
819 => 0.054955471660146
820 => 0.053396324241821
821 => 0.052604685337639
822 => 0.053421454614768
823 => 0.052988065339463
824 => 0.055478448666973
825 => 0.055650877405262
826 => 0.058141080649712
827 => 0.060504580056581
828 => 0.059020108425617
829 => 0.060419898311546
830 => 0.061933885199721
831 => 0.064854611542532
901 => 0.063871013662665
902 => 0.063117593101631
903 => 0.062405614311955
904 => 0.063887129149821
905 => 0.065793074320957
906 => 0.066203596655904
907 => 0.06686879967012
908 => 0.066169420037827
909 => 0.067011745770784
910 => 0.069985525744807
911 => 0.069181984145545
912 => 0.068040825898833
913 => 0.07038833958346
914 => 0.071237895660198
915 => 0.077200525122716
916 => 0.084728591123084
917 => 0.081611922366985
918 => 0.079677305495803
919 => 0.080131986350256
920 => 0.082880981212474
921 => 0.083763871113483
922 => 0.081363872012142
923 => 0.082211592268244
924 => 0.086882614225383
925 => 0.089388467641062
926 => 0.085985182121556
927 => 0.076595652349501
928 => 0.0679380770844
929 => 0.0702344559004
930 => 0.069974117807596
1001 => 0.074992548178686
1002 => 0.069162819944151
1003 => 0.069260977616449
1004 => 0.074383183813003
1005 => 0.073016667016608
1006 => 0.070803084816696
1007 => 0.067954238684156
1008 => 0.062687883121782
1009 => 0.058023325136999
1010 => 0.067171597528707
1011 => 0.066777107388123
1012 => 0.066205827204393
1013 => 0.067477149434311
1014 => 0.073650329311681
1015 => 0.073508017534874
1016 => 0.072602702618937
1017 => 0.073289376003596
1018 => 0.070682707652348
1019 => 0.0713545054392
1020 => 0.067936705680245
1021 => 0.069481693911219
1022 => 0.070798335463465
1023 => 0.07106267074829
1024 => 0.071658231642294
1025 => 0.066569229009805
1026 => 0.068854041786525
1027 => 0.070196155234843
1028 => 0.06413243784884
1029 => 0.070076295038459
1030 => 0.066480640795983
1031 => 0.065260221741172
1101 => 0.06690335522049
1102 => 0.0662630245056
1103 => 0.065712505758419
1104 => 0.065405306838379
1105 => 0.066611842719566
1106 => 0.066555556378586
1107 => 0.064581429498441
1108 => 0.062006261458997
1109 => 0.062870572380044
1110 => 0.062556560119469
1111 => 0.06141853917876
1112 => 0.062185427887626
1113 => 0.058808438127275
1114 => 0.052998502765245
1115 => 0.056836724028535
1116 => 0.056688956685079
1117 => 0.056614445689794
1118 => 0.059498762888512
1119 => 0.059221502342375
1120 => 0.058718271736193
1121 => 0.061409296954039
1122 => 0.060427036550129
1123 => 0.063454131665324
1124 => 0.065447972288428
1125 => 0.064942269812422
1126 => 0.06681748655552
1127 => 0.062890484358002
1128 => 0.064194876964036
1129 => 0.064463710472329
1130 => 0.061376090120568
1201 => 0.059266865596662
1202 => 0.059126204367838
1203 => 0.055469099712429
1204 => 0.057422695500231
1205 => 0.05914177894821
1206 => 0.058318471382893
1207 => 0.058057836803327
1208 => 0.059389362345584
1209 => 0.059492833283963
1210 => 0.057133684923576
1211 => 0.057624226572212
1212 => 0.059669866792792
1213 => 0.057572681687226
1214 => 0.053498193600353
1215 => 0.052487664220604
1216 => 0.052352840973593
1217 => 0.049612205149617
1218 => 0.052555192625793
1219 => 0.051270499725281
1220 => 0.055328829205013
1221 => 0.053010733171448
1222 => 0.052910804684561
1223 => 0.052759748120309
1224 => 0.050400769652372
1225 => 0.050917236015948
1226 => 0.052634048868521
1227 => 0.0532466270356
1228 => 0.053182730114069
1229 => 0.05262563554894
1230 => 0.05288067058807
1231 => 0.052059113866933
]
'min_raw' => 0.028745355727217
'max_raw' => 0.089388467641062
'avg_raw' => 0.05906691168414
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028745'
'max' => '$0.089388'
'avg' => '$0.059066'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016375282942371
'max_diff' => 0.055829652184697
'year' => 2033
]
8 => [
'items' => [
101 => 0.051769005089475
102 => 0.050853341987111
103 => 0.049507570185025
104 => 0.049694708008203
105 => 0.047028381927923
106 => 0.04557562596675
107 => 0.045173522263714
108 => 0.044635812386943
109 => 0.045234258025086
110 => 0.047020828561143
111 => 0.044865845452576
112 => 0.041171278067425
113 => 0.041393327862509
114 => 0.041892207824887
115 => 0.040962548315417
116 => 0.040082703610112
117 => 0.040847657197318
118 => 0.039282220291608
119 => 0.042081383395979
120 => 0.04200567387857
121 => 0.043049028784794
122 => 0.043701460019454
123 => 0.042197817250683
124 => 0.04181965516062
125 => 0.042035073473629
126 => 0.038474688609813
127 => 0.042758069382895
128 => 0.042795112237692
129 => 0.042477928825552
130 => 0.044758696852673
131 => 0.049571828779286
201 => 0.047760934940711
202 => 0.047059702111859
203 => 0.045726657991613
204 => 0.047502860133513
205 => 0.047366475522085
206 => 0.046749692586879
207 => 0.046376660343186
208 => 0.047063983689983
209 => 0.046291493374248
210 => 0.046152732886927
211 => 0.045311995306665
212 => 0.045011890241635
213 => 0.044789704399013
214 => 0.044545099617816
215 => 0.045084636813422
216 => 0.043861974546149
217 => 0.042387563710877
218 => 0.04226498240327
219 => 0.042603440171031
220 => 0.042453697804014
221 => 0.042264265494427
222 => 0.041902587626606
223 => 0.041795285529248
224 => 0.042143965290083
225 => 0.041750326169393
226 => 0.042331162134604
227 => 0.042173206891187
228 => 0.041290881741577
301 => 0.040191177926554
302 => 0.040181388255894
303 => 0.039944458872823
304 => 0.039642693680911
305 => 0.039558749507973
306 => 0.040783234939832
307 => 0.043317883138015
308 => 0.042820271047721
309 => 0.043179846780296
310 => 0.044948603499386
311 => 0.045510838072015
312 => 0.045111777289619
313 => 0.044565518277678
314 => 0.044589550901892
315 => 0.046456283309542
316 => 0.046572709120026
317 => 0.046866879582731
318 => 0.047244971759869
319 => 0.045176168022302
320 => 0.044492110431897
321 => 0.044167965995493
322 => 0.043169726591052
323 => 0.044246242206163
324 => 0.043619002658233
325 => 0.043703638702803
326 => 0.043648519367745
327 => 0.04367861825184
328 => 0.042080600972844
329 => 0.042662834479995
330 => 0.041694758348311
331 => 0.040398613079633
401 => 0.040394267946205
402 => 0.040711497664466
403 => 0.040522797014844
404 => 0.040015008418649
405 => 0.040087137392044
406 => 0.039455211687432
407 => 0.040163864613968
408 => 0.040184186244219
409 => 0.039911316266917
410 => 0.041003093875505
411 => 0.04145039605255
412 => 0.041270787188048
413 => 0.041437794215816
414 => 0.042840949076656
415 => 0.043069724542912
416 => 0.043171331492964
417 => 0.043035191640235
418 => 0.041463441310864
419 => 0.041533155121571
420 => 0.041021641434449
421 => 0.040589466270817
422 => 0.040606751010902
423 => 0.040828945223848
424 => 0.041799280383301
425 => 0.043841293521989
426 => 0.04391878642791
427 => 0.044012710090514
428 => 0.043630675352453
429 => 0.043515450019874
430 => 0.043667461975728
501 => 0.044434334746669
502 => 0.046406939717455
503 => 0.045709689374923
504 => 0.045142813993096
505 => 0.045640116531464
506 => 0.045563560703668
507 => 0.044917352474012
508 => 0.044899215561269
509 => 0.043658935363289
510 => 0.04320043201391
511 => 0.042817272296788
512 => 0.042398871888328
513 => 0.042150830101284
514 => 0.04253193501916
515 => 0.042619098222978
516 => 0.041785805659471
517 => 0.041672230962186
518 => 0.042352715657416
519 => 0.042053259714072
520 => 0.042361257577951
521 => 0.042432715724328
522 => 0.042421209316941
523 => 0.042108542919793
524 => 0.042307827157489
525 => 0.041836460525848
526 => 0.041323920110918
527 => 0.040996951258589
528 => 0.040711627568807
529 => 0.040869941735008
530 => 0.040305580639525
531 => 0.040125030166736
601 => 0.042240314141795
602 => 0.043802897157306
603 => 0.04378017658141
604 => 0.043641870918899
605 => 0.043436376758686
606 => 0.044419301568905
607 => 0.044076870219227
608 => 0.044326017637215
609 => 0.044389436111777
610 => 0.044581384733853
611 => 0.044649989867704
612 => 0.044442617503878
613 => 0.043746650522475
614 => 0.042012366975373
615 => 0.041205053302588
616 => 0.040938626343697
617 => 0.040948310457636
618 => 0.040681179363413
619 => 0.040759861442637
620 => 0.040653816947253
621 => 0.040452994327912
622 => 0.040857541504167
623 => 0.040904161797613
624 => 0.040809735652696
625 => 0.0408319764281
626 => 0.040050168278125
627 => 0.04010960745377
628 => 0.039778642570615
629 => 0.039716590644865
630 => 0.03887994024066
701 => 0.037397692775196
702 => 0.038219001756306
703 => 0.037226976000644
704 => 0.036851280815331
705 => 0.038629763390011
706 => 0.038451253066941
707 => 0.038145720990418
708 => 0.037693775370776
709 => 0.037526144344206
710 => 0.036507671292303
711 => 0.036447494471054
712 => 0.036952277216663
713 => 0.036719337348078
714 => 0.036392201551358
715 => 0.035207348856863
716 => 0.033875182137004
717 => 0.033915391876575
718 => 0.034339129324319
719 => 0.035571203102415
720 => 0.03508981056222
721 => 0.034740554750966
722 => 0.034675149636109
723 => 0.035493831583425
724 => 0.036652438058047
725 => 0.037196030293581
726 => 0.036657346897309
727 => 0.036038536416444
728 => 0.036076200543123
729 => 0.036326763104089
730 => 0.036353093686483
731 => 0.035950311678186
801 => 0.036063692454212
802 => 0.035891456687672
803 => 0.03483444610634
804 => 0.03481532813674
805 => 0.034555920693483
806 => 0.034548065939197
807 => 0.034106749165997
808 => 0.034045005898747
809 => 0.033168744659546
810 => 0.033745502460752
811 => 0.033358643608847
812 => 0.032775556068248
813 => 0.03267503155647
814 => 0.032672009668259
815 => 0.033270710196465
816 => 0.033738506296499
817 => 0.033365373184204
818 => 0.033280418007416
819 => 0.034187517034646
820 => 0.03407208041504
821 => 0.033972113046947
822 => 0.036548697555952
823 => 0.034509129863678
824 => 0.033619761935393
825 => 0.032519000237751
826 => 0.032877413797026
827 => 0.032952936800156
828 => 0.030305803344536
829 => 0.029231861631271
830 => 0.028863325305918
831 => 0.028651227440339
901 => 0.028747883101041
902 => 0.027781209598303
903 => 0.028430830179447
904 => 0.027593772636953
905 => 0.027453437215933
906 => 0.028950199793443
907 => 0.029158465562144
908 => 0.028269939089765
909 => 0.028840516924402
910 => 0.028633617469937
911 => 0.027608121586018
912 => 0.027568955186289
913 => 0.027054397399662
914 => 0.026249214101611
915 => 0.02588122372845
916 => 0.025689571147068
917 => 0.025768650737381
918 => 0.025728665676644
919 => 0.025467736108395
920 => 0.025743621854062
921 => 0.025038847777744
922 => 0.024758201061804
923 => 0.024631439451168
924 => 0.024005911893153
925 => 0.025001404411322
926 => 0.025197528978286
927 => 0.025394039971232
928 => 0.027104534001078
929 => 0.027019082553153
930 => 0.027791522025853
1001 => 0.027761506448369
1002 => 0.027541194198065
1003 => 0.026611733053639
1004 => 0.026982199699755
1005 => 0.025841960946308
1006 => 0.026696305349089
1007 => 0.026306418241935
1008 => 0.026564484125969
1009 => 0.026100458397613
1010 => 0.026357269394838
1011 => 0.025244037388854
1012 => 0.024204517005264
1013 => 0.024622850353112
1014 => 0.025077626544445
1015 => 0.026063697202073
1016 => 0.025476401653296
1017 => 0.02568761534074
1018 => 0.024980084844548
1019 => 0.02352024733481
1020 => 0.023528509856577
1021 => 0.023303945659993
1022 => 0.023109889407235
1023 => 0.025543859611889
1024 => 0.025241156941565
1025 => 0.024758839853151
1026 => 0.025404440442513
1027 => 0.0255751474854
1028 => 0.025580007274925
1029 => 0.02605102079956
1030 => 0.026302400802092
1031 => 0.026346707617082
1101 => 0.027087857575017
1102 => 0.027336281264912
1103 => 0.028359503285355
1104 => 0.026281072965172
1105 => 0.026238269060477
1106 => 0.025413525366767
1107 => 0.024890459877534
1108 => 0.025449340108317
1109 => 0.025944431698031
1110 => 0.025428909242522
1111 => 0.025496225591938
1112 => 0.02480417881515
1113 => 0.025051552974024
1114 => 0.025264624924545
1115 => 0.025146979117258
1116 => 0.024970857649628
1117 => 0.025903839833624
1118 => 0.025851197322416
1119 => 0.026720011781322
1120 => 0.027397314781557
1121 => 0.028611162840371
1122 => 0.027344449111668
1123 => 0.027298285028663
1124 => 0.027749546344988
1125 => 0.027336212179156
1126 => 0.027597425104152
1127 => 0.028569077399818
1128 => 0.028589606881716
1129 => 0.028245711609184
1130 => 0.028224785550597
1201 => 0.028290834399489
1202 => 0.028677684570446
1203 => 0.028542507234009
1204 => 0.028698937870006
1205 => 0.02889455677567
1206 => 0.029703719510198
1207 => 0.029898805906085
1208 => 0.029424847104779
1209 => 0.029467640277845
1210 => 0.029290366675697
1211 => 0.029119122597253
1212 => 0.029504054277405
1213 => 0.030207524488735
1214 => 0.03020314823706
1215 => 0.030366339652582
1216 => 0.030468006552501
1217 => 0.030031577793328
1218 => 0.029747478719037
1219 => 0.029856420381814
1220 => 0.030030620473035
1221 => 0.029799929640041
1222 => 0.028375998952413
1223 => 0.028807928561995
1224 => 0.028736034354681
1225 => 0.028633648260833
1226 => 0.02906795682328
1227 => 0.02902606670293
1228 => 0.027771294964325
1229 => 0.027851621379934
1230 => 0.027776179879708
1231 => 0.028019946800817
]
'min_raw' => 0.023109889407235
'max_raw' => 0.051769005089475
'avg_raw' => 0.037439447248355
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0231098'
'max' => '$0.051769'
'avg' => '$0.037439'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056354663199825
'max_diff' => -0.037619462551588
'year' => 2034
]
9 => [
'items' => [
101 => 0.027323047965441
102 => 0.027537409353518
103 => 0.027671854806606
104 => 0.027751044211333
105 => 0.028037130641892
106 => 0.028003561701263
107 => 0.02803504394941
108 => 0.028459234601911
109 => 0.030604645357611
110 => 0.030721415331462
111 => 0.03014639727361
112 => 0.030376105645992
113 => 0.029935115802717
114 => 0.030231155238882
115 => 0.030433697902521
116 => 0.029518446552254
117 => 0.029464251307223
118 => 0.029021441341996
119 => 0.02925938233527
120 => 0.028880801106407
121 => 0.028973691697761
122 => 0.02871396150628
123 => 0.029181424139181
124 => 0.029704119999114
125 => 0.029836173615218
126 => 0.029488797403904
127 => 0.029237274133705
128 => 0.028795682128152
129 => 0.029530059474907
130 => 0.029744813790842
131 => 0.029528931461909
201 => 0.029478906809173
202 => 0.029384110182631
203 => 0.029499018361626
204 => 0.029743644192717
205 => 0.029628283168304
206 => 0.029704481157328
207 => 0.029414092998194
208 => 0.030031722269407
209 => 0.031012666192672
210 => 0.031015820087786
211 => 0.030900458441535
212 => 0.03085325494139
213 => 0.030971622991174
214 => 0.03103583280247
215 => 0.031418613370483
216 => 0.031829352170611
217 => 0.03374609093143
218 => 0.033207878357346
219 => 0.034908523013245
220 => 0.03625351213499
221 => 0.036656815563355
222 => 0.036285795386151
223 => 0.035016555402055
224 => 0.034954280433207
225 => 0.036851060828745
226 => 0.03631513348896
227 => 0.036251386637199
228 => 0.03557322783647
301 => 0.035974103679302
302 => 0.035886426251981
303 => 0.035748023143628
304 => 0.036512866326499
305 => 0.037944584486812
306 => 0.037721437784959
307 => 0.037554869123504
308 => 0.036825013736414
309 => 0.037264549698544
310 => 0.037108039361187
311 => 0.03778050709439
312 => 0.037382152106224
313 => 0.036311073312262
314 => 0.036481646140522
315 => 0.036455864400675
316 => 0.036986450779806
317 => 0.036827181918755
318 => 0.036424764599381
319 => 0.037939691029787
320 => 0.03784132013386
321 => 0.037980787573567
322 => 0.0380421854537
323 => 0.03896429447589
324 => 0.039342053038084
325 => 0.039427810845296
326 => 0.039786652262484
327 => 0.03941888254394
328 => 0.040890223633485
329 => 0.0418685796029
330 => 0.043004990407113
331 => 0.044665592030497
401 => 0.045289993602313
402 => 0.045177201047166
403 => 0.046436250245831
404 => 0.048698733668741
405 => 0.045634513633813
406 => 0.0488611447711
407 => 0.047839630606282
408 => 0.045417638897756
409 => 0.045261691185133
410 => 0.046901892090049
411 => 0.050539699833667
412 => 0.049628470253564
413 => 0.05054119027882
414 => 0.049476453887381
415 => 0.049423580751243
416 => 0.050489478408824
417 => 0.052980006384821
418 => 0.05179684989947
419 => 0.050100504955847
420 => 0.051353059664168
421 => 0.050267980857355
422 => 0.04782299461117
423 => 0.049627773453478
424 => 0.048420969238769
425 => 0.048773178865862
426 => 0.0513097018266
427 => 0.051004500673157
428 => 0.051399459226579
429 => 0.050702367717654
430 => 0.050051174327078
501 => 0.048835673505311
502 => 0.048475823635452
503 => 0.048575273193439
504 => 0.04847577435319
505 => 0.047795712814441
506 => 0.047648853589897
507 => 0.047404081781607
508 => 0.04747994680005
509 => 0.047019704189946
510 => 0.047888277086186
511 => 0.048049491869567
512 => 0.048681566790482
513 => 0.048747190905599
514 => 0.050507510563324
515 => 0.049537956076819
516 => 0.050188416933673
517 => 0.050130233592261
518 => 0.045470130802201
519 => 0.046112251850236
520 => 0.047111190692294
521 => 0.046661170097976
522 => 0.046024946266213
523 => 0.045511161409901
524 => 0.044732724815388
525 => 0.045828359373614
526 => 0.047269002309935
527 => 0.048783727987887
528 => 0.050603571641189
529 => 0.050197403723087
530 => 0.048749707276645
531 => 0.04881464988169
601 => 0.049216099512101
602 => 0.048696185765173
603 => 0.048542853051282
604 => 0.049195033951797
605 => 0.049199525163226
606 => 0.04860130156371
607 => 0.047936485506611
608 => 0.047933699903057
609 => 0.047815402307058
610 => 0.049497498766909
611 => 0.050422481740694
612 => 0.050528529547953
613 => 0.05041534387832
614 => 0.050458904550383
615 => 0.049920677338547
616 => 0.051150905138483
617 => 0.052279883824623
618 => 0.051977293419626
619 => 0.051523667386774
620 => 0.051162332402018
621 => 0.051892174380608
622 => 0.051859675666179
623 => 0.052270023180699
624 => 0.052251407447158
625 => 0.052113423011976
626 => 0.051977298347485
627 => 0.052517017255359
628 => 0.052361586877512
629 => 0.052205915073357
630 => 0.051893691437962
701 => 0.051936127815498
702 => 0.051482580107577
703 => 0.051272748184961
704 => 0.048117379526004
705 => 0.047274161915686
706 => 0.047539455341169
707 => 0.047626796825179
708 => 0.047259827440556
709 => 0.047785967271405
710 => 0.047703968936087
711 => 0.048022976491388
712 => 0.047823674420534
713 => 0.047831853847041
714 => 0.04841795874174
715 => 0.04858810748614
716 => 0.04850156846147
717 => 0.048562177427965
718 => 0.049958885479395
719 => 0.049760318258691
720 => 0.049654833380283
721 => 0.049684053412499
722 => 0.050040942265398
723 => 0.050140851658801
724 => 0.049717528538445
725 => 0.049917170169206
726 => 0.050767218894694
727 => 0.051064687840024
728 => 0.052014065920322
729 => 0.051610753237962
730 => 0.052351051121398
731 => 0.054626474428936
801 => 0.056444240014314
802 => 0.054772547659661
803 => 0.058110642666155
804 => 0.060709828450001
805 => 0.060610067370446
806 => 0.060156839208782
807 => 0.057197735296804
808 => 0.054474723759248
809 => 0.056752638535591
810 => 0.056758445408813
811 => 0.056562770509342
812 => 0.05534745051412
813 => 0.056520480007868
814 => 0.056613590829264
815 => 0.056561473529448
816 => 0.055629690538579
817 => 0.054207030133804
818 => 0.05448501457153
819 => 0.054940358751252
820 => 0.05407829722429
821 => 0.053802816332276
822 => 0.054314987722915
823 => 0.055965310658699
824 => 0.055653326667359
825 => 0.055645179504519
826 => 0.056979979321274
827 => 0.056024550720307
828 => 0.054488520845519
829 => 0.05410065304439
830 => 0.05272398364944
831 => 0.05367485410406
901 => 0.05370907423892
902 => 0.053188292208585
903 => 0.054530779437087
904 => 0.054518408180936
905 => 0.055792900001544
906 => 0.058229249685279
907 => 0.057508701198311
908 => 0.056670781703421
909 => 0.056761886785503
910 => 0.05776108466944
911 => 0.057156946819343
912 => 0.057374199002436
913 => 0.057760755832241
914 => 0.057993975165328
915 => 0.056728330112514
916 => 0.056433247707902
917 => 0.055829612667916
918 => 0.055672135553365
919 => 0.056163783698175
920 => 0.056034251782203
921 => 0.053706198169092
922 => 0.053462903613354
923 => 0.053470365110033
924 => 0.052858589381604
925 => 0.051925484552751
926 => 0.054377628330183
927 => 0.054180686867125
928 => 0.053963278733967
929 => 0.053989909989765
930 => 0.055054302492685
1001 => 0.054436901087882
1002 => 0.056078363912651
1003 => 0.055740928502767
1004 => 0.055394839147881
1005 => 0.055346999056896
1006 => 0.055213784182221
1007 => 0.054756940809888
1008 => 0.054205274985766
1009 => 0.053841017424205
1010 => 0.049665492548416
1011 => 0.050440445677452
1012 => 0.051331958613207
1013 => 0.051639705306116
1014 => 0.051113283292473
1015 => 0.054777727159567
1016 => 0.055447256365545
1017 => 0.053419208728328
1018 => 0.053039843820044
1019 => 0.054802598259796
1020 => 0.05373944184466
1021 => 0.054218181113298
1022 => 0.053183408670882
1023 => 0.055285986385928
1024 => 0.055269968266521
1025 => 0.054452018046496
1026 => 0.055143343971379
1027 => 0.055023209079235
1028 => 0.05409974529535
1029 => 0.05531526183503
1030 => 0.055315864716069
1031 => 0.054528605413066
1101 => 0.053609258900381
1102 => 0.053444901457909
1103 => 0.053321080203321
1104 => 0.05418772867505
1105 => 0.054964762984863
1106 => 0.056410631192283
1107 => 0.05677415681261
1108 => 0.058193021510016
1109 => 0.057348156665979
1110 => 0.057722674308509
1111 => 0.058129266188231
1112 => 0.058324201287291
1113 => 0.058006565004167
1114 => 0.060210645907247
1115 => 0.060396737866761
1116 => 0.060459132891097
1117 => 0.0597159292117
1118 => 0.060376068027991
1119 => 0.060067210937348
1120 => 0.060870771284231
1121 => 0.060996779806996
1122 => 0.060890055071097
1123 => 0.060930052165132
1124 => 0.059049257940868
1125 => 0.05895172883836
1126 => 0.057621912605314
1127 => 0.058163822549785
1128 => 0.057150747883015
1129 => 0.057472004295674
1130 => 0.05761361106133
1201 => 0.057539643723064
1202 => 0.058194461324971
1203 => 0.057637732592952
1204 => 0.056168433934477
1205 => 0.054698734966566
1206 => 0.054680284093214
1207 => 0.054293338297305
1208 => 0.05401364735952
1209 => 0.054067525756706
1210 => 0.054257400255861
1211 => 0.054002611508456
1212 => 0.054056983605832
1213 => 0.054959922701669
1214 => 0.055141000697872
1215 => 0.054525626915034
1216 => 0.052054812378925
1217 => 0.051448468294195
1218 => 0.051884296397973
1219 => 0.051675998635292
1220 => 0.041706564045011
1221 => 0.044048734823284
1222 => 0.042657096479438
1223 => 0.043298427454484
1224 => 0.04187792506842
1225 => 0.042555863261959
1226 => 0.042430672831951
1227 => 0.046196814133542
1228 => 0.046138011017276
1229 => 0.046166156957241
1230 => 0.044822677908853
1231 => 0.046962876512366
]
'min_raw' => 0.027323047965441
'max_raw' => 0.060996779806996
'avg_raw' => 0.044159913886219
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027323'
'max' => '$0.060996'
'avg' => '$0.044159'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042131585582068
'max_diff' => 0.0092277747175212
'year' => 2035
]
10 => [
'items' => [
101 => 0.048017215303509
102 => 0.047822085253587
103 => 0.04787119528324
104 => 0.04702732226448
105 => 0.046174327492677
106 => 0.045228225015794
107 => 0.046985966476043
108 => 0.04679053563131
109 => 0.047238783675328
110 => 0.048378804658254
111 => 0.048546677078508
112 => 0.048772299313724
113 => 0.048691429803283
114 => 0.050618069631889
115 => 0.050384740836266
116 => 0.050946996100441
117 => 0.049790394363623
118 => 0.048481589712768
119 => 0.048730350688848
120 => 0.048706393006442
121 => 0.048401384212067
122 => 0.048126035910369
123 => 0.047667658566946
124 => 0.049118032308619
125 => 0.049059149783401
126 => 0.050012389423239
127 => 0.049843895057622
128 => 0.048718648446464
129 => 0.048758836849317
130 => 0.049029123172389
131 => 0.049964587222616
201 => 0.050242296643972
202 => 0.050113650575193
203 => 0.050418146277794
204 => 0.05065880726584
205 => 0.050448369592611
206 => 0.053427723271756
207 => 0.052190487904361
208 => 0.052793507813801
209 => 0.052937324509003
210 => 0.052568941068382
211 => 0.052648830245831
212 => 0.052769840581168
213 => 0.053504591641079
214 => 0.055432791024218
215 => 0.056286777405313
216 => 0.058856037567784
217 => 0.056215865724428
218 => 0.05605920885336
219 => 0.056522010192845
220 => 0.058030437892024
221 => 0.059252876862799
222 => 0.059658430393601
223 => 0.059712030987656
224 => 0.06047287637213
225 => 0.060908978757584
226 => 0.060380489730234
227 => 0.059932650614663
228 => 0.058328546490525
229 => 0.058514225910725
301 => 0.059793372986478
302 => 0.061600243572366
303 => 0.063150726507902
304 => 0.062607801423663
305 => 0.066749936571027
306 => 0.067160612351783
307 => 0.06710387023762
308 => 0.068039450782934
309 => 0.066182513928152
310 => 0.065388637446275
311 => 0.06002947851464
312 => 0.061535183577177
313 => 0.063723814312533
314 => 0.063434140827765
315 => 0.061844698685482
316 => 0.063149520773508
317 => 0.062718105785647
318 => 0.062377830885297
319 => 0.063936696169336
320 => 0.062222659754879
321 => 0.063706715488129
322 => 0.061803398659645
323 => 0.062610281459715
324 => 0.062152255757866
325 => 0.062448654520481
326 => 0.060715913410654
327 => 0.061650858453604
328 => 0.060677016623053
329 => 0.060676554895227
330 => 0.060655057282843
331 => 0.06180077787781
401 => 0.061838139785279
402 => 0.06099145053451
403 => 0.060869429385703
404 => 0.061320605526718
405 => 0.060792396428808
406 => 0.061039542141211
407 => 0.060799882220665
408 => 0.06074592972454
409 => 0.060316027056154
410 => 0.060130813166193
411 => 0.060203440304821
412 => 0.059955526438828
413 => 0.059806149367132
414 => 0.060625342423516
415 => 0.060187680619643
416 => 0.060558264475118
417 => 0.060135937400393
418 => 0.058671967760249
419 => 0.057830023339004
420 => 0.055064720398829
421 => 0.055848956882315
422 => 0.056368906482218
423 => 0.056197063142551
424 => 0.056566249130699
425 => 0.056588914151967
426 => 0.056468888023814
427 => 0.056329913143713
428 => 0.056262267857873
429 => 0.056766440397783
430 => 0.057059129526869
501 => 0.056421090380596
502 => 0.056271606735741
503 => 0.056916699539729
504 => 0.057310205777504
505 => 0.060215634745181
506 => 0.060000391182844
507 => 0.060540610284895
508 => 0.060479789904342
509 => 0.061046025586943
510 => 0.061971581618943
511 => 0.060089667416352
512 => 0.060416302650224
513 => 0.060336219233988
514 => 0.061210548973459
515 => 0.061213278535469
516 => 0.060689074180647
517 => 0.06097325386564
518 => 0.060814632561539
519 => 0.061101282697005
520 => 0.059997516473841
521 => 0.061341784589454
522 => 0.062103897988283
523 => 0.062114479933565
524 => 0.062475715636104
525 => 0.062842752031244
526 => 0.063547246429583
527 => 0.062823104064839
528 => 0.061520442444503
529 => 0.06161449040592
530 => 0.060850740374543
531 => 0.060863579150553
601 => 0.060795044758018
602 => 0.061000721629044
603 => 0.060042650980818
604 => 0.060267508246992
605 => 0.059952706757585
606 => 0.060415618333266
607 => 0.059917601999859
608 => 0.06033618061534
609 => 0.06051682526968
610 => 0.061183407933199
611 => 0.059819147198475
612 => 0.05703732720804
613 => 0.057622099496337
614 => 0.056757175349074
615 => 0.056837227371901
616 => 0.056998945198198
617 => 0.05647476481239
618 => 0.05657476191118
619 => 0.056571189311142
620 => 0.056540402574094
621 => 0.056404043010938
622 => 0.056206294666445
623 => 0.056994063207175
624 => 0.057127920432922
625 => 0.057425468464357
626 => 0.058310769577149
627 => 0.058222307119143
628 => 0.058366593058423
629 => 0.058051617663106
630 => 0.056851838177119
701 => 0.056916991975521
702 => 0.056104523065425
703 => 0.057404691807647
704 => 0.0570967946881
705 => 0.056898291412138
706 => 0.056844127954172
707 => 0.057731623557186
708 => 0.057997176151397
709 => 0.057831701595257
710 => 0.057492308452949
711 => 0.058144043618756
712 => 0.058318420454627
713 => 0.058357456997408
714 => 0.059512206753395
715 => 0.058421994681098
716 => 0.058684419562676
717 => 0.060731783576262
718 => 0.058875106932861
719 => 0.059858629959701
720 => 0.059810491625543
721 => 0.06031362872547
722 => 0.059769219697878
723 => 0.059775968300243
724 => 0.060222719959519
725 => 0.059595337826153
726 => 0.059439989187037
727 => 0.059225376154726
728 => 0.059693975859316
729 => 0.059974880189276
730 => 0.062238762787259
731 => 0.063701334191145
801 => 0.063637840109245
802 => 0.064218057161874
803 => 0.063956664065485
804 => 0.063112556805233
805 => 0.06455334497057
806 => 0.06409741930992
807 => 0.064135005267434
808 => 0.064133606316218
809 => 0.064436757022837
810 => 0.064221946963843
811 => 0.063798534287766
812 => 0.064079615381988
813 => 0.064914325743498
814 => 0.067505292317667
815 => 0.068955231538313
816 => 0.067418004155987
817 => 0.068478363020021
818 => 0.067842525546095
819 => 0.067726974962557
820 => 0.068392958689074
821 => 0.069060108131944
822 => 0.069017613596599
823 => 0.068533297359579
824 => 0.068259719406356
825 => 0.0703313433235
826 => 0.071857680536458
827 => 0.071753594571229
828 => 0.072212996171182
829 => 0.0735618134774
830 => 0.073685132427952
831 => 0.073669597074636
901 => 0.073363938188691
902 => 0.074692023992724
903 => 0.075799936535893
904 => 0.07329318698793
905 => 0.074247724400033
906 => 0.074676246997601
907 => 0.075305445307756
908 => 0.076367008322869
909 => 0.077520147322965
910 => 0.077683213821105
911 => 0.077567510337224
912 => 0.076806984168621
913 => 0.078068762622335
914 => 0.078807882848175
915 => 0.079248012028198
916 => 0.080364106398222
917 => 0.074678893407277
918 => 0.070654617078867
919 => 0.070026168218931
920 => 0.071304143688142
921 => 0.071641135627709
922 => 0.071505294599421
923 => 0.066975605720599
924 => 0.070002320344425
925 => 0.073258810786268
926 => 0.073383905846614
927 => 0.075014173051804
928 => 0.075545054880725
929 => 0.07685763366491
930 => 0.076775531504583
1001 => 0.077095123550842
1002 => 0.077021654873969
1003 => 0.079452930675601
1004 => 0.082134988932752
1005 => 0.082042117783729
1006 => 0.081656540176591
1007 => 0.082229188673943
1008 => 0.084997360222152
1009 => 0.084742511345039
1010 => 0.084990075321179
1011 => 0.08825390558383
1012 => 0.092497349199717
1013 => 0.090525843605364
1014 => 0.094803443459657
1015 => 0.097495965822109
1016 => 0.10215240483596
1017 => 0.10156939573798
1018 => 0.10338211327555
1019 => 0.10052568777493
1020 => 0.093966757446665
1021 => 0.092928781615641
1022 => 0.095006835515086
1023 => 0.10011552825334
1024 => 0.094845944600464
1025 => 0.09591197451032
1026 => 0.095604957824566
1027 => 0.095588598210119
1028 => 0.096212978154198
1029 => 0.095307282479844
1030 => 0.091617315370986
1031 => 0.093308405551863
1101 => 0.092655394420206
1102 => 0.093379958955984
1103 => 0.097290134922434
1104 => 0.095561352920714
1105 => 0.093740221516747
1106 => 0.096024324438732
1107 => 0.098932772361338
1108 => 0.098750766917325
1109 => 0.098397600283565
1110 => 0.10038838210686
1111 => 0.10367657043461
1112 => 0.10456535452659
1113 => 0.10522143677289
1114 => 0.10531189943006
1115 => 0.10624372102109
1116 => 0.10123308147683
1117 => 0.10918509511592
1118 => 0.11055818820145
1119 => 0.11030010361025
1120 => 0.11182623878622
1121 => 0.11137721110314
1122 => 0.11072664044063
1123 => 0.11314588931281
1124 => 0.11037241570417
1125 => 0.10643581908733
1126 => 0.10427612432628
1127 => 0.10712018460524
1128 => 0.10885695297358
1129 => 0.11000484638583
1130 => 0.1103521982388
1201 => 0.10162204316119
1202 => 0.09691697377096
1203 => 0.09993286930637
1204 => 0.10361247000556
1205 => 0.10121264110916
1206 => 0.10130670985842
1207 => 0.097885184516102
1208 => 0.10391519907742
1209 => 0.10303667667625
1210 => 0.10759445244764
1211 => 0.10650670268136
1212 => 0.1102233918911
1213 => 0.10924466306236
1214 => 0.11330731171048
1215 => 0.11492801224804
1216 => 0.1176494206925
1217 => 0.11965129982236
1218 => 0.12082684153727
1219 => 0.12075626642205
1220 => 0.12541434834906
1221 => 0.12266764017769
1222 => 0.11921712736504
1223 => 0.11915471847449
1224 => 0.1209417879543
1225 => 0.12468699532543
1226 => 0.12565807310621
1227 => 0.1262007731088
1228 => 0.12536960916331
1229 => 0.12238825430164
1230 => 0.12110092038818
1231 => 0.1221977661801
]
'min_raw' => 0.045228225015794
'max_raw' => 0.1262007731088
'avg_raw' => 0.085714499062297
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045228'
'max' => '$0.12620077'
'avg' => '$0.085714'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017905177050353
'max_diff' => 0.065203993301804
'year' => 2036
]
11 => [
'items' => [
101 => 0.12085641802962
102 => 0.12317196125317
103 => 0.12635169667246
104 => 0.12569509388241
105 => 0.12789001856614
106 => 0.130161534701
107 => 0.13340990479401
108 => 0.13425914902312
109 => 0.13566291743997
110 => 0.13710785625482
111 => 0.13757193165995
112 => 0.13845799560249
113 => 0.13845332560814
114 => 0.14112353893798
115 => 0.14406886693042
116 => 0.14518066006306
117 => 0.14773716706695
118 => 0.14335923841348
119 => 0.14667994758716
120 => 0.14967531038455
121 => 0.14610411537318
122 => 0.15102617571463
123 => 0.15121728816406
124 => 0.1541028592513
125 => 0.15117778014585
126 => 0.14944087751022
127 => 0.15445525033839
128 => 0.15688154739869
129 => 0.15615072697827
130 => 0.15058914749382
131 => 0.1473520696865
201 => 0.13888001267908
202 => 0.14891553017
203 => 0.15380353799976
204 => 0.15057648873439
205 => 0.1522040246776
206 => 0.16108333305343
207 => 0.16446399879031
208 => 0.16376084394968
209 => 0.16387966554283
210 => 0.16570381141103
211 => 0.17379307876608
212 => 0.16894580225918
213 => 0.17265136352472
214 => 0.17461677985856
215 => 0.17644236808328
216 => 0.17195930038646
217 => 0.16612689518223
218 => 0.16427952762634
219 => 0.15025562228314
220 => 0.14952561710729
221 => 0.14911584308067
222 => 0.14653227580649
223 => 0.14450229962763
224 => 0.14288798720201
225 => 0.13865154932268
226 => 0.14008122274502
227 => 0.13332922497868
228 => 0.13764891387347
301 => 0.12687256240571
302 => 0.13584742812908
303 => 0.13096281675292
304 => 0.13424270192081
305 => 0.13423125871044
306 => 0.12819195022782
307 => 0.1247086031322
308 => 0.12692832747543
309 => 0.12930804817331
310 => 0.12969414985019
311 => 0.13277951985206
312 => 0.13364058029977
313 => 0.13103152694413
314 => 0.12664924647427
315 => 0.12766715027825
316 => 0.1246879753441
317 => 0.11946708586432
318 => 0.12321681983668
319 => 0.12449714387901
320 => 0.12506260791456
321 => 0.1199284627344
322 => 0.11831520285108
323 => 0.11745631682577
324 => 0.12598649280335
325 => 0.12645379509919
326 => 0.1240630104838
327 => 0.13486958364882
328 => 0.13242372331777
329 => 0.13515634855789
330 => 0.1275747861772
331 => 0.12786441207007
401 => 0.12427517893912
402 => 0.12628490965981
403 => 0.12486449676307
404 => 0.12612254327812
405 => 0.12687661117212
406 => 0.13046525534523
407 => 0.13588840468102
408 => 0.1299292315765
409 => 0.12733273451794
410 => 0.12894358668982
411 => 0.13323349829915
412 => 0.13973293398383
413 => 0.13588513724517
414 => 0.13759272409796
415 => 0.13796575586005
416 => 0.13512853299813
417 => 0.13983754643772
418 => 0.14236114499596
419 => 0.14494983493156
420 => 0.1471975218692
421 => 0.14391585524477
422 => 0.14742770894134
423 => 0.14459777478753
424 => 0.14205903129835
425 => 0.14206288152428
426 => 0.14047029064839
427 => 0.13738444514699
428 => 0.13681536789116
429 => 0.13977577964249
430 => 0.14214974951501
501 => 0.14234528104426
502 => 0.14365963274466
503 => 0.14443745254206
504 => 0.15206114395133
505 => 0.15512745570262
506 => 0.15887688366978
507 => 0.16033749716918
508 => 0.16473342014343
509 => 0.16118335532231
510 => 0.16041527646731
511 => 0.14975220522722
512 => 0.15149828254543
513 => 0.15429392080328
514 => 0.1497983042724
515 => 0.15264973821296
516 => 0.15321267167446
517 => 0.14964554494295
518 => 0.15155090145669
519 => 0.14649083945502
520 => 0.1359987002051
521 => 0.13984922718805
522 => 0.14268451112086
523 => 0.13863821136074
524 => 0.14589104706733
525 => 0.14165409017646
526 => 0.14031117825185
527 => 0.13507200005129
528 => 0.1375446904875
529 => 0.14088903970798
530 => 0.13882262071205
531 => 0.14311075040297
601 => 0.14918388564774
602 => 0.15351196348462
603 => 0.15384421955898
604 => 0.15106155546856
605 => 0.15552079243218
606 => 0.1555532731052
607 => 0.15052323559372
608 => 0.1474423656253
609 => 0.14674238548627
610 => 0.14849107311276
611 => 0.15061430271686
612 => 0.15396204402508
613 => 0.15598501398408
614 => 0.16125984673678
615 => 0.16268706523836
616 => 0.16425514566598
617 => 0.16635058469537
618 => 0.1688666965097
619 => 0.16336158710228
620 => 0.16358031536184
621 => 0.15845403370508
622 => 0.15297586657168
623 => 0.15713311256276
624 => 0.16256815868083
625 => 0.16132135309615
626 => 0.16118106199795
627 => 0.16141699271162
628 => 0.16047694201764
629 => 0.15622512756865
630 => 0.15408989297014
701 => 0.15684489035866
702 => 0.15830904885984
703 => 0.16057983100712
704 => 0.16029990917707
705 => 0.16614920012427
706 => 0.16842205771298
707 => 0.16784056348073
708 => 0.1679475724139
709 => 0.17206247251243
710 => 0.17663908771573
711 => 0.1809256917912
712 => 0.18528620957069
713 => 0.18002943519361
714 => 0.17736036935769
715 => 0.18011416400055
716 => 0.17865296180058
717 => 0.18704946306229
718 => 0.18763081859203
719 => 0.19602671269113
720 => 0.20399541595564
721 => 0.19899041620935
722 => 0.20370990553997
723 => 0.20881441803664
724 => 0.21866185082003
725 => 0.21534558189545
726 => 0.21280537187177
727 => 0.21040488567361
728 => 0.21539991638554
729 => 0.22182594359887
730 => 0.22321004831289
731 => 0.22545282671831
801 => 0.22309481945891
802 => 0.22593477947688
803 => 0.23596108628199
804 => 0.23325188967859
805 => 0.22940439497668
806 => 0.23731920126257
807 => 0.2401835388894
808 => 0.26028696041978
809 => 0.2856683605328
810 => 0.27516029422275
811 => 0.26863759837092
812 => 0.27017058661652
813 => 0.27943901472318
814 => 0.28241573966583
815 => 0.27432397513307
816 => 0.27718212316246
817 => 0.2929307998113
818 => 0.30137945955536
819 => 0.28990504481653
820 => 0.25824758963402
821 => 0.22905797017512
822 => 0.23680037168132
823 => 0.23592262362521
824 => 0.25284261199696
825 => 0.23318727623559
826 => 0.23351822168089
827 => 0.25078809749359
828 => 0.24618079070739
829 => 0.23871754377301
830 => 0.22911246013707
831 => 0.21135657467332
901 => 0.19562969175859
902 => 0.22647373083921
903 => 0.22514367978781
904 => 0.22321756876286
905 => 0.22750392042191
906 => 0.24831722737612
907 => 0.24783741328472
908 => 0.24478508083857
909 => 0.24710024809695
910 => 0.23831168375895
911 => 0.24057669690074
912 => 0.22905334639027
913 => 0.23426238207863
914 => 0.23870153099701
915 => 0.23959275586509
916 => 0.24160073099996
917 => 0.22444280332171
918 => 0.23214620911895
919 => 0.23667123831332
920 => 0.21622699179119
921 => 0.23626712129285
922 => 0.22414412197377
923 => 0.22002939392354
924 => 0.22556933316898
925 => 0.22341041345726
926 => 0.22155430106515
927 => 0.22051855845829
928 => 0.22458647841936
929 => 0.22439670509096
930 => 0.21774079848541
1001 => 0.20905843964794
1002 => 0.21197252426251
1003 => 0.21091381000235
1004 => 0.20707689294666
1005 => 0.20966251177106
1006 => 0.19827675502014
1007 => 0.17868815231032
1008 => 0.19162898327556
1009 => 0.19113077536031
1010 => 0.19087955633751
1011 => 0.20060423314959
1012 => 0.19966942986057
1013 => 0.19797275273739
1014 => 0.20704573214074
1015 => 0.20373397260972
1016 => 0.21394003513564
1017 => 0.22066240800194
1018 => 0.21895739679707
1019 => 0.22527982096987
1020 => 0.2120396588864
1021 => 0.21643750962743
1022 => 0.21734390057
1023 => 0.20693377298327
1024 => 0.19982237523956
1025 => 0.19934812608593
1026 => 0.18701794240932
1027 => 0.1936046270036
1028 => 0.19940063687104
1029 => 0.19662479793307
1030 => 0.19574605025114
1031 => 0.200235381581
1101 => 0.20058424107386
1102 => 0.19263020766633
1103 => 0.19428410308324
1104 => 0.20118112190896
1105 => 0.19411031590476
1106 => 0.18037289484819
1107 => 0.17696582449146
1108 => 0.1765112585011
1109 => 0.16727101347548
1110 => 0.17719350122423
1111 => 0.17286206941577
1112 => 0.1865450106002
1113 => 0.17872938797874
1114 => 0.17839247210841
1115 => 0.1778831743556
1116 => 0.16992971375234
1117 => 0.17167101615566
1118 => 0.17745937055216
1119 => 0.17952472061131
1120 => 0.17930928767923
1121 => 0.17743100445779
1122 => 0.1782908728982
1123 => 0.17552093705362
1124 => 0.17454281505568
1125 => 0.1714555929765
1126 => 0.16691822938698
1127 => 0.16754917762337
1128 => 0.15855947308677
1129 => 0.15366140493549
1130 => 0.15230568422672
1201 => 0.15049275783548
1202 => 0.15251045908662
1203 => 0.15853400638331
1204 => 0.15126833037666
1205 => 0.13881183849117
1206 => 0.13956049487831
1207 => 0.14124250350216
1208 => 0.13810809155922
1209 => 0.13514163370649
1210 => 0.13772072813311
1211 => 0.1324427483102
1212 => 0.14188032214791
1213 => 0.14162506222409
1214 => 0.14514280613514
1215 => 0.14734252359409
1216 => 0.1422728870182
1217 => 0.14099788712911
1218 => 0.14172418501145
1219 => 0.12972009886496
1220 => 0.1441618161975
1221 => 0.1442867087687
1222 => 0.14321730274963
1223 => 0.15090707139121
1224 => 0.16713488172393
1225 => 0.1610293267146
1226 => 0.15866507127361
1227 => 0.15417061995203
1228 => 0.16015920948392
1229 => 0.15969937924442
1230 => 0.15761985251597
1231 => 0.15636214826208
]
'min_raw' => 0.11745631682577
'max_raw' => 0.30137945955536
'avg_raw' => 0.20941788819056
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.117456'
'max' => '$0.301379'
'avg' => '$0.209417'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072228091809973
'max_diff' => 0.17517868644656
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036868195708339
]
1 => [
'year' => 2028
'avg' => 0.0063276526749197
]
2 => [
'year' => 2029
'avg' => 0.017286006659446
]
3 => [
'year' => 2030
'avg' => 0.013336128394669
]
4 => [
'year' => 2031
'avg' => 0.013097730811762
]
5 => [
'year' => 2032
'avg' => 0.022964444120606
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036868195708339
'min' => '$0.003686'
'max_raw' => 0.022964444120606
'max' => '$0.022964'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022964444120606
]
1 => [
'year' => 2033
'avg' => 0.05906691168414
]
2 => [
'year' => 2034
'avg' => 0.037439447248355
]
3 => [
'year' => 2035
'avg' => 0.044159913886219
]
4 => [
'year' => 2036
'avg' => 0.085714499062297
]
5 => [
'year' => 2037
'avg' => 0.20941788819056
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022964444120606
'min' => '$0.022964'
'max_raw' => 0.20941788819056
'max' => '$0.209417'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20941788819056
]
]
]
]
'prediction_2025_max_price' => '$0.0063037'
'last_price' => 0.00611232
'sma_50day_nextmonth' => '$0.005619'
'sma_200day_nextmonth' => '$0.007746'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005348'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0058034'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005627'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005625'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055049'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005643'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005599'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0056034'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005587'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005754'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006769'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013947'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007467'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005759'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.00575'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006083'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008858'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026582'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01707'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.30'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.44
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005678'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005257'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 39.11
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 75.36
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.4
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000391'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -60.89
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.71
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767676675
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de KDR para 2026
A previsão de preço para KDR em 2026 sugere que o preço médio poderia variar entre $0.002111 na extremidade inferior e $0.0063037 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, KDR poderia potencialmente ganhar 3.13% até 2026 se KDR atingir a meta de preço prevista.
Previsão de preço de KDR 2027-2032
A previsão de preço de KDR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.003686 na extremidade inferior e $0.022964 na extremidade superior. Considerando a volatilidade de preços no mercado, se KDR atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002032 | $0.003686 | $0.00534 |
| 2028 | $0.003668 | $0.006327 | $0.008986 |
| 2029 | $0.008059 | $0.017286 | $0.026512 |
| 2030 | $0.006854 | $0.013336 | $0.019817 |
| 2031 | $0.0081039 | $0.013097 | $0.018091 |
| 2032 | $0.01237 | $0.022964 | $0.033558 |
Previsão de preço de KDR 2032-2037
A previsão de preço de KDR para 2032-2037 é atualmente estimada entre $0.022964 na extremidade inferior e $0.209417 na extremidade superior. Comparado ao preço atual, KDR poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.01237 | $0.022964 | $0.033558 |
| 2033 | $0.028745 | $0.059066 | $0.089388 |
| 2034 | $0.0231098 | $0.037439 | $0.051769 |
| 2035 | $0.027323 | $0.044159 | $0.060996 |
| 2036 | $0.045228 | $0.085714 | $0.12620077 |
| 2037 | $0.117456 | $0.209417 | $0.301379 |
KDR Histograma de preços potenciais
Previsão de preço de KDR baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para KDR é Altista, com 20 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de KDR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de KDR
De acordo com nossos indicadores técnicos, o SMA de 200 dias de KDR está projetado para aumentar no próximo mês, alcançando $0.007746 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para KDR é esperado para alcançar $0.005619 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.30, sugerindo que o mercado de KDR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KDR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005348 | BUY |
| SMA 5 | $0.0058034 | BUY |
| SMA 10 | $0.005627 | BUY |
| SMA 21 | $0.005625 | BUY |
| SMA 50 | $0.0055049 | BUY |
| SMA 100 | $0.006241 | SELL |
| SMA 200 | $0.008066 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005643 | BUY |
| EMA 5 | $0.005599 | BUY |
| EMA 10 | $0.0056034 | BUY |
| EMA 21 | $0.005587 | BUY |
| EMA 50 | $0.005754 | BUY |
| EMA 100 | $0.006769 | SELL |
| EMA 200 | $0.013947 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007467 | SELL |
| SMA 50 | $0.015883 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.008858 | SELL |
| EMA 50 | $0.026582 | SELL |
| EMA 100 | $0.01707 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.30 | NEUTRAL |
| Stoch RSI (14) | 18.44 | NEUTRAL |
| Estocástico Rápido (14) | 39.11 | NEUTRAL |
| Índice de Canal de Commodities (20) | 75.36 | NEUTRAL |
| Índice Direcional Médio (14) | 10.4 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000391 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -60.89 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.71 | NEUTRAL |
| VWMA (10) | 0.005678 | BUY |
| Média Móvel de Hull (9) | 0.005257 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Previsão do preço de KDR com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do KDR
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de KDR por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.008588 | $0.012068 | $0.016958 | $0.023829 | $0.033484 | $0.047051 |
| Amazon.com stock | $0.012753 | $0.026611 | $0.055526 | $0.115858 | $0.241746 | $0.504418 |
| Apple stock | $0.008669 | $0.012297 | $0.017443 | $0.024741 | $0.035094 | $0.049778 |
| Netflix stock | $0.009644 | $0.015217 | $0.02401 | $0.037884 | $0.059775 | $0.094316 |
| Google stock | $0.007915 | $0.01025 | $0.013274 | $0.01719 | $0.022261 | $0.028828 |
| Tesla stock | $0.013856 | $0.03141 | $0.071206 | $0.161418 | $0.365924 | $0.829522 |
| Kodak stock | $0.004583 | $0.003437 | $0.002577 | $0.001932 | $0.001449 | $0.001086 |
| Nokia stock | $0.004049 | $0.002682 | $0.001776 | $0.001177 | $0.000779 | $0.000516 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para KDR
Você pode fazer perguntas como: 'Devo investir em KDR agora?', 'Devo comprar KDR hoje?', 'KDR será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para KDR regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como KDR, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre KDR para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de KDR é de $0.006112 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de KDR com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se KDR tiver 1% da média anterior do crescimento anual do Bitcoin | $0.006271 | $0.006434 | $0.0066014 | $0.006773 |
| Se KDR tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00643 | $0.006764 | $0.007116 | $0.007485 |
| Se KDR tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0069067 | $0.0078043 | $0.008818 | $0.009964 |
| Se KDR tiver 10% da média anterior do crescimento anual do Bitcoin | $0.0077011 | $0.0097028 | $0.012224 | $0.0154026 |
| Se KDR tiver 20% da média anterior do crescimento anual do Bitcoin | $0.009289 | $0.014119 | $0.021459 | $0.032615 |
| Se KDR tiver 50% da média anterior do crescimento anual do Bitcoin | $0.014056 | $0.032324 | $0.074335 | $0.170946 |
| Se KDR tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0220002 | $0.079185 | $0.285015 | $1.02 |
Perguntas Frequentes sobre KDR
KDR é um bom investimento?
A decisão de adquirir KDR depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de KDR experimentou uma escalada de 21.021% nas últimas 24 horas, e KDR registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em KDR dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
KDR pode subir?
Parece que o valor médio de KDR pode potencialmente subir para $0.0063037 até o final deste ano. Observando as perspectivas de KDR em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.019817. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de KDR na próxima semana?
Com base na nossa nova previsão experimental de KDR, o preço de KDR aumentará 0.86% na próxima semana e atingirá $0.006164 até 13 de janeiro de 2026.
Qual será o preço de KDR no próximo mês?
Com base na nossa nova previsão experimental de KDR, o preço de KDR diminuirá -11.62% no próximo mês e atingirá $0.005402 até 5 de fevereiro de 2026.
Até onde o preço de KDR pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de KDR em 2026, espera-se que KDR fluctue dentro do intervalo de $0.002111 e $0.0063037. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de KDR não considera flutuações repentinas e extremas de preço.
Onde estará KDR em 5 anos?
O futuro de KDR parece seguir uma tendência de alta, com um preço máximo de $0.019817 projetada após um período de cinco anos. Com base na previsão de KDR para 2030, o valor de KDR pode potencialmente atingir seu pico mais alto de aproximadamente $0.019817, enquanto seu pico mais baixo está previsto para cerca de $0.006854.
Quanto será KDR em 2026?
Com base na nossa nova simulação experimental de previsão de preços de KDR, espera-se que o valor de KDR em 2026 aumente 3.13% para $0.0063037 se o melhor cenário ocorrer. O preço ficará entre $0.0063037 e $0.002111 durante 2026.
Quanto será KDR em 2027?
De acordo com nossa última simulação experimental para previsão de preços de KDR, o valor de KDR pode diminuir -12.62% para $0.00534 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.00534 e $0.002032 ao longo do ano.
Quanto será KDR em 2028?
Nosso novo modelo experimental de previsão de preços de KDR sugere que o valor de KDR em 2028 pode aumentar 47.02%, alcançando $0.008986 no melhor cenário. O preço é esperado para variar entre $0.008986 e $0.003668 durante o ano.
Quanto será KDR em 2029?
Com base no nosso modelo de previsão experimental, o valor de KDR pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.026512 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.026512 e $0.008059.
Quanto será KDR em 2030?
Usando nossa nova simulação experimental para previsões de preços de KDR, espera-se que o valor de KDR em 2030 aumente 224.23%, alcançando $0.019817 no melhor cenário. O preço está previsto para variar entre $0.019817 e $0.006854 ao longo de 2030.
Quanto será KDR em 2031?
Nossa simulação experimental indica que o preço de KDR poderia aumentar 195.98% em 2031, potencialmente atingindo $0.018091 sob condições ideais. O preço provavelmente oscilará entre $0.018091 e $0.0081039 durante o ano.
Quanto será KDR em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de KDR, KDR poderia ver um 449.04% aumento em valor, atingindo $0.033558 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.033558 e $0.01237 ao longo do ano.
Quanto será KDR em 2033?
De acordo com nossa previsão experimental de preços de KDR, espera-se que o valor de KDR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.089388. Ao longo do ano, o preço de KDR poderia variar entre $0.089388 e $0.028745.
Quanto será KDR em 2034?
Os resultados da nossa nova simulação de previsão de preços de KDR sugerem que KDR pode aumentar 746.96% em 2034, atingindo potencialmente $0.051769 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.051769 e $0.0231098.
Quanto será KDR em 2035?
Com base em nossa previsão experimental para o preço de KDR, KDR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.060996 em 2035. A faixa de preço esperada para o ano está entre $0.060996 e $0.027323.
Quanto será KDR em 2036?
Nossa recente simulação de previsão de preços de KDR sugere que o valor de KDR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.12620077 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.12620077 e $0.045228.
Quanto será KDR em 2037?
De acordo com a simulação experimental, o valor de KDR poderia aumentar 4830.69% em 2037, com um pico de $0.301379 sob condições favoráveis. O preço é esperado para cair entre $0.301379 e $0.117456 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de KDR?
Traders de KDR utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de KDR
Médias móveis são ferramentas populares para a previsão de preço de KDR. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KDR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KDR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KDR.
Como ler gráficos de KDR e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de KDR em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KDR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de KDR?
A ação de preço de KDR é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KDR. A capitalização de mercado de KDR pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KDR, grandes detentores de KDR, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de KDR.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


