Previsão de Preço KDR - Projeção KDR
Previsão de Preço KDR até $0.006337 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002122 | $0.006337 |
| 2027 | $0.002043 | $0.005368 |
| 2028 | $0.003688 | $0.009033 |
| 2029 | $0.0081021 | $0.026652 |
| 2030 | $0.00689 | $0.019922 |
| 2031 | $0.008146 | $0.018187 |
| 2032 | $0.012435 | $0.033735 |
| 2033 | $0.028897 | $0.08986 |
| 2034 | $0.023231 | $0.052042 |
| 2035 | $0.027467 | $0.061318 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em KDR hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.66, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de KDR para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006144
'ticker' => 'KDR'
'marketcap' => '$92.79K'
'low24h' => '$0.004952'
'high24h' => '$0.006138'
'volume24h' => '$1.19K'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006144'
'change_24h_pct' => '21.5189%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de dez. de 2024'
'ath_pct' => '-98.43%'
'fdv' => '$614.46K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.30297'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006197'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00543'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002122'
'current_year_max_price_prediction' => '$0.006337'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.00689'
'grand_prediction_max_price' => '$0.019922'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062610267484457
107 => 0.0062844031495716
108 => 0.0063370713749371
109 => 0.0058870271557285
110 => 0.0060890837975491
111 => 0.0062077731444717
112 => 0.0056715303571201
113 => 0.0061971733487177
114 => 0.0058791928871301
115 => 0.005771265542561
116 => 0.0059165754936769
117 => 0.0058599480644085
118 => 0.0058112631259977
119 => 0.0057840960938511
120 => 0.0058907956846765
121 => 0.0058858180212309
122 => 0.0057112367811423
123 => 0.0054835026702886
124 => 0.0055599377130084
125 => 0.005532168145406
126 => 0.005431527650069
127 => 0.0054993471925464
128 => 0.0052007042501612
129 => 0.0046869045898968
130 => 0.0050263363835767
131 => 0.0050132686287507
201 => 0.005006679274192
202 => 0.0052617528859367
203 => 0.0052372334437169
204 => 0.0051927304159929
205 => 0.0054307103170652
206 => 0.0053438444518924
207 => 0.005611544580183
208 => 0.0057878691984339
209 => 0.0057431475717416
210 => 0.0059089817274574
211 => 0.0055616986220156
212 => 0.0056770521390636
213 => 0.0057008263390541
214 => 0.0054277736820266
215 => 0.0052412451277011
216 => 0.0052288057997088
217 => 0.0049053909917265
218 => 0.0050781565716376
219 => 0.0052301831324338
220 => 0.0051573742075501
221 => 0.0051343250770367
222 => 0.0052520780860832
223 => 0.0052612285033725
224 => 0.0050525980194601
225 => 0.0050959789035336
226 => 0.0052768844015923
227 => 0.0050914205491383
228 => 0.0047310945791683
301 => 0.0046417287567194
302 => 0.0046298057086658
303 => 0.0043874385104918
304 => 0.0046477006082948
305 => 0.0045340892280132
306 => 0.0048929862170493
307 => 0.0046879861817151
308 => 0.0046791490399202
309 => 0.0046657904039703
310 => 0.0044571749444391
311 => 0.0045028484718723
312 => 0.0046546742333351
313 => 0.0047088473754647
314 => 0.0047031966729131
315 => 0.0046539302042757
316 => 0.0046764841413328
317 => 0.0046038300517594
318 => 0.0045781743805669
319 => 0.0044971980251352
320 => 0.0043781851529397
321 => 0.0043947346227669
322 => 0.0041589389815356
323 => 0.004030465001571
324 => 0.0039949050971766
325 => 0.0039473529068698
326 => 0.0040002762436033
327 => 0.0041582710021102
328 => 0.0039676958028931
329 => 0.0036409679911312
330 => 0.0036606048893352
331 => 0.0037047231693521
401 => 0.0036225090464122
402 => 0.0035447002787578
403 => 0.0036123486894084
404 => 0.0034739098083883
405 => 0.0037214528467238
406 => 0.0037147575012682
407 => 0.0038070262380009
408 => 0.003864723772625
409 => 0.0037317496351152
410 => 0.0036983069991318
411 => 0.003717357444471
412 => 0.0034024960184053
413 => 0.003781295342125
414 => 0.0037845712144065
415 => 0.0037565212070924
416 => 0.0039582201528561
417 => 0.0043838678398964
418 => 0.0042237220583933
419 => 0.0041617087713634
420 => 0.0040438214673882
421 => 0.0042008993004797
422 => 0.0041888381736942
423 => 0.0041342931843236
424 => 0.0041013042045616
425 => 0.0041620874112705
426 => 0.0040937724925924
427 => 0.0040815012560294
428 => 0.0040071509136945
429 => 0.0039806112242061
430 => 0.0039609622946842
501 => 0.0039393307539447
502 => 0.0039870445425721
503 => 0.0038789188202708
504 => 0.0037485297988707
505 => 0.0037376893625701
506 => 0.0037676207602971
507 => 0.0037543783449334
508 => 0.00373762596298
509 => 0.0037056411035914
510 => 0.0036961518790591
511 => 0.0037269872552716
512 => 0.0036921759133418
513 => 0.0037435419446311
514 => 0.0037295732263326
515 => 0.0036515451014287
516 => 0.0035542931680866
517 => 0.003553427421887
518 => 0.0035324746523736
519 => 0.0035057881501283
520 => 0.0034983645757081
521 => 0.0036066515289502
522 => 0.0038308022814055
523 => 0.0037867961252256
524 => 0.0038185950829979
525 => 0.0039750144826521
526 => 0.0040247355061067
527 => 0.0039894447013656
528 => 0.0039411364711939
529 => 0.0039432617881531
530 => 0.0041083456345454
531 => 0.004118641711549
601 => 0.0041446565764965
602 => 0.0041780930297541
603 => 0.0039951390739387
604 => 0.003934644673287
605 => 0.0039059790701566
606 => 0.0038177001074996
607 => 0.0039129014002589
608 => 0.0038574316838939
609 => 0.0038649164437468
610 => 0.0038600419840736
611 => 0.0038627037686647
612 => 0.0037213836533997
613 => 0.0037728732758357
614 => 0.0036872617919593
615 => 0.003572637625389
616 => 0.0035722533649902
617 => 0.0036003074673704
618 => 0.0035836197895175
619 => 0.0035387136774949
620 => 0.0035450923787569
621 => 0.0034892082437174
622 => 0.0035518777245656
623 => 0.0035536748610341
624 => 0.0035295436972779
625 => 0.0036260946792463
626 => 0.0036656516953369
627 => 0.0036497680464129
628 => 0.0036645372561858
629 => 0.0037886247796908
630 => 0.0038088564603403
701 => 0.003817842036455
702 => 0.003805802554822
703 => 0.0036668053483248
704 => 0.0036729704654947
705 => 0.0036277349263215
706 => 0.0035895156625237
707 => 0.003591044232642
708 => 0.0036106939023905
709 => 0.0036965051626204
710 => 0.003877089900924
711 => 0.0038839429597369
712 => 0.003892249066936
713 => 0.0038584639546424
714 => 0.0038482740414947
715 => 0.0038617171671762
716 => 0.0039295353001886
717 => 0.00410398195074
718 => 0.0040423208535351
719 => 0.0039921894216953
720 => 0.0040361682027558
721 => 0.0040293980141286
722 => 0.0039722508088382
723 => 0.0039706468771204
724 => 0.0038609631191015
725 => 0.0038204155311402
726 => 0.0037865309317055
727 => 0.0037495298337025
728 => 0.0037275943425184
729 => 0.0037612972264797
730 => 0.0037690054748025
731 => 0.0036953135299954
801 => 0.0036852695902193
802 => 0.0037454480230999
803 => 0.0037189657384672
804 => 0.0037462034249409
805 => 0.0037525228018434
806 => 0.0037515052366145
807 => 0.003723854689987
808 => 0.0037414783238562
809 => 0.0036997931758975
810 => 0.0036544668383991
811 => 0.0036255514590058
812 => 0.0036003189554166
813 => 0.0036143194149296
814 => 0.0035644103331487
815 => 0.0035484434134156
816 => 0.0037355078332456
817 => 0.0038736943314555
818 => 0.0038716850450437
819 => 0.0038594540307582
820 => 0.0038412812245005
821 => 0.0039282058462195
822 => 0.0038979230461253
823 => 0.0039199563134064
824 => 0.0039255647046628
825 => 0.0039425396158564
826 => 0.0039486066875652
827 => 0.003930267783009
828 => 0.0038687201794096
829 => 0.0037153494030106
830 => 0.0036439548925803
831 => 0.0036203935149687
901 => 0.0036212499262954
902 => 0.003597626278715
903 => 0.0036045845016651
904 => 0.0035952064927361
905 => 0.0035774468126088
906 => 0.0036132228047272
907 => 0.0036173456545424
908 => 0.0036089951104907
909 => 0.003610961965909
910 => 0.0035418230277249
911 => 0.0035470795110331
912 => 0.0035178107440111
913 => 0.0035123232030348
914 => 0.0034383343087262
915 => 0.003307252257597
916 => 0.0033798844383652
917 => 0.0032921549776273
918 => 0.0032589305015276
919 => 0.0034162100039174
920 => 0.0034004235041318
921 => 0.0033734038787254
922 => 0.0033334362213659
923 => 0.0033186118284709
924 => 0.0032285435100734
925 => 0.0032232217933267
926 => 0.0032678620839737
927 => 0.0032472621258187
928 => 0.0032183319827549
929 => 0.0031135499371793
930 => 0.0029957402258094
1001 => 0.0029992961604702
1002 => 0.0030367692377294
1003 => 0.0031457272637934
1004 => 0.0031031554780172
1005 => 0.0030722691589816
1006 => 0.0030664850798656
1007 => 0.0031388849397925
1008 => 0.0032413459098287
1009 => 0.0032894183045347
1010 => 0.0032417800213614
1011 => 0.0031870557266792
1012 => 0.0031903865409285
1013 => 0.0032125449558983
1014 => 0.0032148734920085
1015 => 0.0031792536019188
1016 => 0.0031892803923344
1017 => 0.0031740487808242
1018 => 0.0030805724091018
1019 => 0.0030788817179541
1020 => 0.0030559411088233
1021 => 0.003055246476296
1022 => 0.0030162187773614
1023 => 0.0030107585324947
1024 => 0.002933266667448
1025 => 0.0029842720476887
1026 => 0.0029500603165259
1027 => 0.002898495167932
1028 => 0.0028896053168783
1029 => 0.0028893380772208
1030 => 0.0029422839550705
1031 => 0.0029836533442794
1101 => 0.0029506554442368
1102 => 0.0029431424620345
1103 => 0.0030233614563907
1104 => 0.0030131528581465
1105 => 0.0030043122779054
1106 => 0.0032321716537637
1107 => 0.0030518031776831
1108 => 0.0029731522270392
1109 => 0.002875806740207
1110 => 0.0029075029215781
1111 => 0.0029141817727068
1112 => 0.0026800834247183
1113 => 0.0025851097540944
1114 => 0.0025525183693436
1115 => 0.0025337615666449
1116 => 0.0025423092771678
1117 => 0.0024568218343058
1118 => 0.0025142708097409
1119 => 0.0024402459102961
1120 => 0.0024278353950063
1121 => 0.0025602010851389
1122 => 0.0025786189976518
1123 => 0.0025000424608752
1124 => 0.0025505013178715
1125 => 0.0025322042348941
1126 => 0.0024415148547327
1127 => 0.0024380511874765
1128 => 0.0023925464443973
1129 => 0.002321340332933
1130 => 0.0022887972292788
1201 => 0.0022718484983435
1202 => 0.0022788418750516
1203 => 0.0022753058097871
1204 => 0.0022522305920498
1205 => 0.002276628454257
1206 => 0.0022143019982103
1207 => 0.0021894831012142
1208 => 0.002178272981235
1209 => 0.0021229546641167
1210 => 0.0022109907068193
1211 => 0.0022283349162805
1212 => 0.0022457132991923
1213 => 0.0023969802577135
1214 => 0.0023894233879418
1215 => 0.0024577338103334
1216 => 0.002455079392934
1217 => 0.0024355961539125
1218 => 0.0023533995733178
1219 => 0.0023861616653297
1220 => 0.0022853250384766
1221 => 0.002360878695539
1222 => 0.0023263991616519
1223 => 0.0023492211304485
1224 => 0.0023081851727782
1225 => 0.0023308961660861
1226 => 0.0022324478717715
1227 => 0.0021405182397454
1228 => 0.002177513407266
1229 => 0.0022177313852714
1230 => 0.0023049342089374
1231 => 0.0022529969265696
]
'min_raw' => 0.0021229546641167
'max_raw' => 0.0063370713749371
'avg_raw' => 0.0042300130195269
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002122'
'max' => '$0.006337'
'avg' => '$0.00423'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0040216353358833
'max_diff' => 0.00019248137493713
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022716755372751
102 => 0.0022091053181733
103 => 0.0020800050838666
104 => 0.0020807357771726
105 => 0.002060876518726
106 => 0.0020437152199289
107 => 0.0022589625482242
108 => 0.0022321931403939
109 => 0.00218953959251
110 => 0.0022466330613373
111 => 0.0022617294806904
112 => 0.0022621592545263
113 => 0.002303813175587
114 => 0.002326043880724
115 => 0.0023299621388578
116 => 0.0023955054836393
117 => 0.0024174747482725
118 => 0.0025079630400897
119 => 0.0023241577607104
120 => 0.002320372411938
121 => 0.0022474364835278
122 => 0.0022011793646586
123 => 0.0022506037480314
124 => 0.0022943870045987
125 => 0.0022487969513547
126 => 0.0022547500498498
127 => 0.0021935491282139
128 => 0.0022154255779277
129 => 0.0022342685234973
130 => 0.0022238645564909
131 => 0.0022082893143247
201 => 0.0022907972768578
202 => 0.0022861418542604
203 => 0.0023629751658211
204 => 0.0024228722265855
205 => 0.0025302184673556
206 => 0.0024181970690259
207 => 0.002414114564026
208 => 0.0024540217052541
209 => 0.0024174686386971
210 => 0.0024405689149921
211 => 0.0025264966557156
212 => 0.0025283121734739
213 => 0.0024978999118594
214 => 0.0024960493229763
215 => 0.0025018903304931
216 => 0.0025361012939592
217 => 0.0025241469321274
218 => 0.0025379808222866
219 => 0.0025552803137626
220 => 0.00262683834534
221 => 0.0026440907444948
222 => 0.0026021763588921
223 => 0.0026059607586166
224 => 0.0025902836278256
225 => 0.0025751397159154
226 => 0.0026091810182988
227 => 0.0026713921674881
228 => 0.0026710051551577
301 => 0.0026854369325577
302 => 0.0026944278103186
303 => 0.0026558323812441
304 => 0.0026307081761099
305 => 0.0026403423950531
306 => 0.0026557477209492
307 => 0.0026353466554927
308 => 0.0025094218288028
309 => 0.0025476193771114
310 => 0.0025412614373082
311 => 0.0025322069578765
312 => 0.0025706148880737
313 => 0.0025669103495094
314 => 0.0024559450370177
315 => 0.0024630486762974
316 => 0.0024563770328503
317 => 0.0024779344777176
318 => 0.0024163044659288
319 => 0.0024352614424705
320 => 0.0024471510804469
321 => 0.0024541541685555
322 => 0.0024794541248663
323 => 0.0024764854670042
324 => 0.0024792695889254
325 => 0.0025167827451933
326 => 0.002706511416636
327 => 0.00271683792961
328 => 0.0026659864029817
329 => 0.0026863005848677
330 => 0.0026473017978699
331 => 0.0026734819448507
401 => 0.0026913937365113
402 => 0.0026104537942364
403 => 0.0026056610561507
404 => 0.0025665013072863
405 => 0.0025875435382045
406 => 0.0025540638358238
407 => 0.0025622785837177
408 => 0.0025393094324573
409 => 0.0025806493316136
410 => 0.0026268737624412
411 => 0.0026385518791264
412 => 0.0026078317818731
413 => 0.0025855884069087
414 => 0.0025465363678944
415 => 0.0026114807791066
416 => 0.0026304725040902
417 => 0.0026113810236603
418 => 0.0026069571104876
419 => 0.0025985738030192
420 => 0.0026087356687975
421 => 0.0026303690710772
422 => 0.0026201671580683
423 => 0.0026269057013453
424 => 0.0026012253231292
425 => 0.0026558451579371
426 => 0.0027425946005911
427 => 0.0027428735142342
428 => 0.0027326715462332
429 => 0.0027284971207316
430 => 0.0027389649590079
501 => 0.0027446433318595
502 => 0.0027784944013716
503 => 0.0028148179476441
504 => 0.0029843240888933
505 => 0.0029367274427203
506 => 0.003087123375202
507 => 0.0032060670313273
508 => 0.0032417330330236
509 => 0.0032089219896781
510 => 0.0030966771828108
511 => 0.0030911699170938
512 => 0.0032589110470886
513 => 0.0032115164948346
514 => 0.0032058790636522
515 => 0.0031459063204618
516 => 0.003181357639456
517 => 0.0031736039159525
518 => 0.0031613642840771
519 => 0.0032290029311579
520 => 0.0033556164403495
521 => 0.003335882537568
522 => 0.0033211520945711
523 => 0.0032566075813258
524 => 0.0032954777948384
525 => 0.0032816368563165
526 => 0.0033411063118833
527 => 0.0033058779238152
528 => 0.0032111574344874
529 => 0.0032262419846157
530 => 0.0032239619852097
531 => 0.0032708842114224
601 => 0.0032567993237946
602 => 0.003221211684846
603 => 0.0033551836891397
604 => 0.0033464842923723
605 => 0.0033588180480295
606 => 0.0033642477487039
607 => 0.003445794146866
608 => 0.0034792010969993
609 => 0.0034867850595505
610 => 0.0035185190783909
611 => 0.0034859954882527
612 => 0.0036161130377322
613 => 0.0037026336155665
614 => 0.0038031317190293
615 => 0.0039499864595321
616 => 0.0040052052004435
617 => 0.0039952304291416
618 => 0.0041065740173609
619 => 0.0043066559703619
620 => 0.0040356727124051
621 => 0.0043210187410324
622 => 0.0042306814828473
623 => 0.0040164934687884
624 => 0.0040027022857938
625 => 0.0041477528956885
626 => 0.0044694611878311
627 => 0.0043888769094346
628 => 0.004469592994842
629 => 0.0043754333937269
630 => 0.0043707575758922
701 => 0.004465019873184
702 => 0.0046852688687767
703 => 0.0045806368268808
704 => 0.0044306211379937
705 => 0.0045413903881653
706 => 0.0044454318124565
707 => 0.0042292102842704
708 => 0.0043888152881556
709 => 0.0042820919673463
710 => 0.0043132395060823
711 => 0.0045375560525275
712 => 0.0045105656921912
713 => 0.0045454937177064
714 => 0.0044838466668977
715 => 0.0044262586005947
716 => 0.0043187661982943
717 => 0.0042869429972845
718 => 0.0042957377851648
719 => 0.0042869386390244
720 => 0.0042267976278435
721 => 0.004213810182205
722 => 0.0041921638704812
723 => 0.0041988729676179
724 => 0.0041581715687253
725 => 0.0042349835177737
726 => 0.0042492404923817
727 => 0.0043051378233142
728 => 0.0043109412696439
729 => 0.0044666145406421
730 => 0.0043808723189593
731 => 0.0044383956038914
801 => 0.0044332501798569
802 => 0.0040211355725279
803 => 0.0040779213292999
804 => 0.0041662621464849
805 => 0.0041264647280862
806 => 0.0040702004896321
807 => 0.0040247641003828
808 => 0.0039559233245609
809 => 0.0040528153945603
810 => 0.0041802181632867
811 => 0.0043141724141053
812 => 0.0044751096694338
813 => 0.0044391903475606
814 => 0.0043111638040626
815 => 0.0043169069812805
816 => 0.0043524090429844
817 => 0.0043064306473754
818 => 0.0042928707209053
819 => 0.0043505461173143
820 => 0.0043509432960715
821 => 0.0042980395952486
822 => 0.0042392468130589
823 => 0.0042390004691548
824 => 0.0042285388614351
825 => 0.0043772944904997
826 => 0.0044590950455948
827 => 0.0044684733474083
828 => 0.0044584638111603
829 => 0.0044623160843979
830 => 0.0044147181437403
831 => 0.0045235129213527
901 => 0.0046233537679782
902 => 0.004596594288294
903 => 0.0045564780241632
904 => 0.0045245234875219
905 => 0.0045890668149911
906 => 0.0045861928022195
907 => 0.0046224817452822
908 => 0.0046208354692098
909 => 0.004608632862554
910 => 0.0045965947240875
911 => 0.0046443245823776
912 => 0.0046305791497081
913 => 0.0046168123665851
914 => 0.0045892009754429
915 => 0.0045929538220758
916 => 0.0045528444845835
917 => 0.0045342880697812
918 => 0.0042552441142192
919 => 0.0041806744512687
920 => 0.0042041355852384
921 => 0.0042118595997093
922 => 0.0041794067868296
923 => 0.0042259357840554
924 => 0.0042186842891242
925 => 0.004246895613919
926 => 0.0042292704029805
927 => 0.0042299937477854
928 => 0.0042818257350642
929 => 0.0042968727814803
930 => 0.0042892197322285
1001 => 0.0042945796655933
1002 => 0.0044180970676979
1003 => 0.0044005368429828
1004 => 0.0043912083235912
1005 => 0.0043937923872149
1006 => 0.0044253537316956
1007 => 0.0044341891849647
1008 => 0.0043967527486073
1009 => 0.0044144079884109
1010 => 0.004489581758711
1011 => 0.0045158883238491
1012 => 0.0045998462519024
1013 => 0.0045641794318322
1014 => 0.0046296474236949
1015 => 0.0048308737109977
1016 => 0.0049916271930952
1017 => 0.0048437916475397
1018 => 0.0051389949455792
1019 => 0.0053688530575009
1020 => 0.0053600307203166
1021 => 0.0053199496417892
1022 => 0.0050582622924603
1023 => 0.0048174536920694
1024 => 0.0050189003115697
1025 => 0.0050194138404307
1026 => 0.0050021093971614
1027 => 0.004894632986195
1028 => 0.0049983694510284
1029 => 0.0050066036748914
1030 => 0.005001994699185
1031 => 0.0049195927868888
1101 => 0.0047937802972316
1102 => 0.004818363756558
1103 => 0.0048586319644238
1104 => 0.0047823958461057
1105 => 0.0047580337869938
1106 => 0.0048033274899543
1107 => 0.0049492732382106
1108 => 0.0049216830399089
1109 => 0.0049209625483305
1110 => 0.0050390051167301
1111 => 0.0049545121129366
1112 => 0.0048186738327073
1113 => 0.0047843728754626
1114 => 0.0046626275851373
1115 => 0.0047467174908068
1116 => 0.0047497437368095
1117 => 0.0047036885548523
1118 => 0.0048224109568985
1119 => 0.004821316909063
1120 => 0.0049340261603083
1121 => 0.0051494839170278
1122 => 0.0050857624563335
1123 => 0.0050116613304213
1124 => 0.0050197181774093
1125 => 0.005108081902875
1126 => 0.0050546551773108
1127 => 0.005073867800328
1128 => 0.005108052822269
1129 => 0.0051286774947723
1130 => 0.0050167506044318
1201 => 0.0049906550922114
1202 => 0.0049372728324886
1203 => 0.004923346397354
1204 => 0.0049668251340408
1205 => 0.0049553700230503
1206 => 0.0047494893925512
1207 => 0.004727973721155
1208 => 0.0047286335760794
1209 => 0.0046745313973393
1210 => 0.00459201258875
1211 => 0.0048088670907807
1212 => 0.0047914506393908
1213 => 0.0047722242249827
1214 => 0.0047745793510433
1215 => 0.0048687085404938
1216 => 0.0048141088569745
1217 => 0.0049592710643227
1218 => 0.0049294300784673
1219 => 0.004898823783925
1220 => 0.0048945930617288
1221 => 0.0048828122495363
1222 => 0.0048424114610813
1223 => 0.0047936250813109
1224 => 0.0047614120875827
1225 => 0.0043921509635044
1226 => 0.0044606836802402
1227 => 0.004539524323891
1228 => 0.0045667397981452
1229 => 0.0045201858461799
1230 => 0.0048442496948546
1231 => 0.0049034592827644
]
'min_raw' => 0.0020437152199289
'max_raw' => 0.0053688530575009
'avg_raw' => 0.0037062841387149
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002043'
'max' => '$0.005368'
'avg' => '$0.0037062'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.9239444187771E-5
'max_diff' => -0.00096821831743621
'year' => 2027
]
2 => [
'items' => [
101 => 0.0047241095788397
102 => 0.0046905605720356
103 => 0.0048464491621554
104 => 0.0047524292857081
105 => 0.0047947664303154
106 => 0.0047032566808543
107 => 0.0048891974268961
108 => 0.0048877808699472
109 => 0.0048154457200747
110 => 0.0048765828934172
111 => 0.004865958805037
112 => 0.0047842925989846
113 => 0.0048917863912933
114 => 0.0048918397068732
115 => 0.0048222186978227
116 => 0.0047409166012504
117 => 0.0047263817066531
118 => 0.0047154316160623
119 => 0.0047920733792828
120 => 0.0048607901445337
121 => 0.0049886550083349
122 => 0.0050208032730887
123 => 0.0051462800906541
124 => 0.0050715647551493
125 => 0.005104685095653
126 => 0.005140641910428
127 => 0.0051578809296992
128 => 0.0051297908728936
129 => 0.0053247080188912
130 => 0.0053411649981205
131 => 0.0053466828809037
201 => 0.0052809579159623
202 => 0.0053393370679499
203 => 0.0053120233960492
204 => 0.0053830859823782
205 => 0.0053942295032872
206 => 0.0053847913375195
207 => 0.0053883284669446
208 => 0.0052220010685763
209 => 0.005213376115524
210 => 0.0050957742686569
211 => 0.0051436978905242
212 => 0.0050541069764823
213 => 0.0050825171782137
214 => 0.0050950401244345
215 => 0.0050884988479997
216 => 0.0051464074202006
217 => 0.0050971733038901
218 => 0.0049672363761086
219 => 0.0048372640470981
220 => 0.0048356323503805
221 => 0.0048014129303542
222 => 0.0047766785572745
223 => 0.0047814432750287
224 => 0.0047982347618663
225 => 0.0047757026055343
226 => 0.004780510983497
227 => 0.0048603620957335
228 => 0.0048763756668205
229 => 0.0048219552953609
301 => 0.0046034496511285
302 => 0.004549827817954
303 => 0.0045883701282727
304 => 0.0045699493863831
305 => 0.0036883058247369
306 => 0.0038954349019419
307 => 0.0037723658377055
308 => 0.003829081724641
309 => 0.0037034600786354
310 => 0.0037634133125038
311 => 0.0037523421393499
312 => 0.0040853995661005
313 => 0.0040801993324873
314 => 0.0040826884091277
315 => 0.0039638782958267
316 => 0.0041531460323613
317 => 0.0042463861252259
318 => 0.0042291298655413
319 => 0.0042334728943324
320 => 0.004158845270559
321 => 0.0040834109676537
322 => 0.0039997427164758
323 => 0.004155187985456
324 => 0.0041379051250846
325 => 0.0041775457885997
326 => 0.0042783631569906
327 => 0.0042932088974541
328 => 0.0043131617231877
329 => 0.0043060100555011
330 => 0.0044763917943167
331 => 0.0044557574415312
401 => 0.0045054802948358
402 => 0.0044031966131064
403 => 0.0042874529183733
404 => 0.0043094520107956
405 => 0.0043073333212898
406 => 0.0042803599721624
407 => 0.0042560096386301
408 => 0.0042154731939628
409 => 0.0043437365031552
410 => 0.0043385292470383
411 => 0.0044228286707979
412 => 0.0044079279288075
413 => 0.0043084171269654
414 => 0.0043119711747207
415 => 0.0043358738538927
416 => 0.0044186012994229
417 => 0.0044431604377702
418 => 0.0044317836663753
419 => 0.0044587116404059
420 => 0.0044799944131377
421 => 0.0044613844289857
422 => 0.0047248625595956
423 => 0.0046154480701352
424 => 0.0046687759309971
425 => 0.0046814943115866
426 => 0.0046489164471452
427 => 0.0046559814194167
428 => 0.0046666829273183
429 => 0.0047316603877266
430 => 0.0049021800452177
501 => 0.0049777020407539
502 => 0.0052049136905144
503 => 0.0049714309903416
504 => 0.0049575770931608
505 => 0.0049985047724171
506 => 0.0051319020636222
507 => 0.0052400080387735
508 => 0.0052758730275145
509 => 0.0052806131778431
510 => 0.0053478982809806
511 => 0.0053864648473061
512 => 0.0053397280996858
513 => 0.005300123599619
514 => 0.0051582651962713
515 => 0.0051746856927264
516 => 0.0052878066298793
517 => 0.0054475966163976
518 => 0.0055847130481448
519 => 0.005536699652737
520 => 0.0059030079675237
521 => 0.0059393259406995
522 => 0.0059343079711073
523 => 0.0060170457188408
524 => 0.005852828138839
525 => 0.0057826219418225
526 => 0.0053086865420636
527 => 0.0054418430578221
528 => 0.0056353938734851
529 => 0.0056097766972538
530 => 0.0054692149212912
531 => 0.0055846064194333
601 => 0.0055464543815217
602 => 0.0055163622862914
603 => 0.0056542200081813
604 => 0.0055026397800803
605 => 0.0056338817447569
606 => 0.0054655625675348
607 => 0.0055369189738829
608 => 0.0054964136265187
609 => 0.005522625550412
610 => 0.0053693911789294
611 => 0.0054520727262273
612 => 0.0053659513547301
613 => 0.0053659105219867
614 => 0.0053640093879376
615 => 0.0054653307995834
616 => 0.0054686348871797
617 => 0.0053937582108852
618 => 0.0053829673120377
619 => 0.0054228669208161
620 => 0.0053761549286606
621 => 0.0053980111757884
622 => 0.0053768169321208
623 => 0.0053720456614522
624 => 0.0053340273649997
625 => 0.0053176480375531
626 => 0.0053240707938882
627 => 0.0053021466153588
628 => 0.0052889365047626
629 => 0.0053613815644463
630 => 0.0053226770914827
701 => 0.0053554495488644
702 => 0.0053181011974641
703 => 0.0051886355396085
704 => 0.0051141784707013
705 => 0.004869629844485
706 => 0.0049389835315183
707 => 0.004984965097773
708 => 0.0049697681904001
709 => 0.0050024170278595
710 => 0.0050044214013166
711 => 0.0049938069314431
712 => 0.0049815167351273
713 => 0.0049755345472513
714 => 0.0050201208745646
715 => 0.0050460047382767
716 => 0.0049895799631006
717 => 0.0049763604277433
718 => 0.0050334089907436
719 => 0.0050682085812179
720 => 0.0053251492050794
721 => 0.0053061142137564
722 => 0.0053538883065486
723 => 0.0053485096768534
724 => 0.0053985845371094
725 => 0.0054804357704131
726 => 0.005314009327142
727 => 0.0053428952031004
728 => 0.0053358130533877
729 => 0.0054131341069118
730 => 0.005413375494801
731 => 0.0053670176607403
801 => 0.0053921489946546
802 => 0.0053781213735057
803 => 0.0054034711808684
804 => 0.0053058599898422
805 => 0.0054247398840352
806 => 0.0054921371235914
807 => 0.0054930729343281
808 => 0.0055250186909802
809 => 0.0055574774299121
810 => 0.0056197791527317
811 => 0.005555739868677
812 => 0.0054405394307613
813 => 0.0054488565302837
814 => 0.0053813145556839
815 => 0.0053824499484793
816 => 0.0053763891327547
817 => 0.0053945780969812
818 => 0.0053098514446357
819 => 0.005329736620592
820 => 0.0053018972578058
821 => 0.0053428346857627
822 => 0.0052987927804803
823 => 0.0053358096381607
824 => 0.0053517848868072
825 => 0.0054107338982356
826 => 0.0052900859635624
827 => 0.0050440766576167
828 => 0.005095790796301
829 => 0.005019301523129
830 => 0.0050263808965763
831 => 0.0050406823576137
901 => 0.0049943266432446
902 => 0.0050031698527098
903 => 0.005002853911039
904 => 0.0050001312964055
905 => 0.0049880723847554
906 => 0.0049705845770799
907 => 0.0050402506203958
908 => 0.0050520882386872
909 => 0.0050784017977781
910 => 0.0051566931009752
911 => 0.0051488699535498
912 => 0.00516162983158
913 => 0.0051337750894837
914 => 0.0050276729981728
915 => 0.0050334348522036
916 => 0.0049615844401127
917 => 0.0050765644211992
918 => 0.0050493356440163
919 => 0.0050317810742329
920 => 0.0050269911472255
921 => 0.00510547651942
922 => 0.005128960572888
923 => 0.0051143268867229
924 => 0.0050843127694655
925 => 0.005141948747477
926 => 0.0051573697037262
927 => 0.0051608218871274
928 => 0.0052629417895611
929 => 0.0051665292552628
930 => 0.0051897367105266
1001 => 0.0053707946516343
1002 => 0.0052066000833376
1003 => 0.0052935776081402
1004 => 0.0052893205109103
1005 => 0.0053338152694403
1006 => 0.0052856706420061
1007 => 0.005286267452364
1008 => 0.0053257757836026
1009 => 0.005270293457743
1010 => 0.0052565552536105
1011 => 0.0052375760229963
1012 => 0.0052790164787012
1013 => 0.0053038581577057
1014 => 0.005504063846279
1015 => 0.0056334058515861
1016 => 0.0056277907740204
1017 => 0.0056791020719857
1018 => 0.0056559858622947
1019 => 0.0055813375234545
1020 => 0.0057087531354596
1021 => 0.0056684335045255
1022 => 0.0056717574059114
1023 => 0.0056716336901358
1024 => 0.0056984427199036
1025 => 0.0056794460653016
1026 => 0.0056420017091145
1027 => 0.0056668590202064
1028 => 0.0057406763474982
1029 => 0.005969807596404
1030 => 0.006098032478877
1031 => 0.0059620882974753
1101 => 0.0060558607734411
1102 => 0.0059996307024111
1103 => 0.0059894120258053
1104 => 0.0060483080704434
1105 => 0.006107307204811
1106 => 0.0061035492150121
1107 => 0.0060607188731002
1108 => 0.0060365250997339
1109 => 0.0062197284571723
1110 => 0.0063547095701452
1111 => 0.0063455047631653
1112 => 0.0063861317876109
1113 => 0.0065054139879298
1114 => 0.0065163196574337
1115 => 0.0065149457937402
1116 => 0.0064879149539857
1117 => 0.0066053637709507
1118 => 0.0067033416403782
1119 => 0.0064816580955786
1120 => 0.0065660722873876
1121 => 0.0066039685377461
1122 => 0.0066596114765831
1123 => 0.0067534904412406
1124 => 0.0068554678970242
1125 => 0.0068698886273979
1126 => 0.0068596564291022
1127 => 0.0067923995557118
1128 => 0.0069039845046743
1129 => 0.0069693483507875
1130 => 0.0070082710253228
1201 => 0.007106972451829
1202 => 0.0066042025720868
1203 => 0.006248317061921
1204 => 0.0061927404004595
1205 => 0.0063057577269857
1206 => 0.0063355594946943
1207 => 0.0063235464394992
1208 => 0.0059229649421125
1209 => 0.006190631421778
1210 => 0.0064786180478612
1211 => 0.0064896807870316
1212 => 0.0066338529135652
1213 => 0.0066808012677797
1214 => 0.0067968787267119
1215 => 0.0067896180500512
1216 => 0.0068178810641054
1217 => 0.0068113838866215
1218 => 0.0070263929363007
1219 => 0.0072635798472496
1220 => 0.0072553668187317
1221 => 0.0072212683940146
1222 => 0.0072719103693648
1223 => 0.0075167126799583
1224 => 0.0074941752060759
1225 => 0.0075160684422152
1226 => 0.0078047041628584
1227 => 0.0081799716576472
1228 => 0.0080056222300774
1229 => 0.0083839103202076
1230 => 0.0086220226207546
1231 => 0.0090338132232792
]
'min_raw' => 0.0036883058247369
'max_raw' => 0.0090338132232792
'avg_raw' => 0.006361059524008
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003688'
'max' => '$0.009033'
'avg' => '$0.006361'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.001644590604808
'max_diff' => 0.0036649601657783
'year' => 2028
]
3 => [
'items' => [
101 => 0.0089822550117316
102 => 0.0091425620714354
103 => 0.0088899550525381
104 => 0.0083099182768482
105 => 0.0082181252368036
106 => 0.0084018972275427
107 => 0.0088536827345662
108 => 0.0083876688941585
109 => 0.0084819428871352
110 => 0.0084547919708158
111 => 0.0084533452138691
112 => 0.0085085620421388
113 => 0.0084284671528175
114 => 0.0081021461649269
115 => 0.0082516971506555
116 => 0.0081939483330375
117 => 0.0082580249516442
118 => 0.008603820035057
119 => 0.008450935785955
120 => 0.0082898846488339
121 => 0.0084918785148921
122 => 0.0087490861190072
123 => 0.0087329905293882
124 => 0.0087017583580928
125 => 0.0088778124724219
126 => 0.0091686022902779
127 => 0.0092472016095563
128 => 0.0093052220201553
129 => 0.009313222054514
130 => 0.0093956273804025
131 => 0.0089525131742839
201 => 0.0096557467993741
202 => 0.0097771758199903
203 => 0.0097543521968317
204 => 0.0098893154427323
205 => 0.0098496058321012
206 => 0.0097920728365439
207 => 0.010006018288802
208 => 0.0097607470922958
209 => 0.0094126155076402
210 => 0.0092216236350361
211 => 0.0094731371397561
212 => 0.0096267276604768
213 => 0.0097282412244814
214 => 0.0097589591676131
215 => 0.0089869108687205
216 => 0.0085708196553791
217 => 0.0088375293526355
218 => 0.0091629335906083
219 => 0.0089507055373119
220 => 0.0089590244752002
221 => 0.0086564430437508
222 => 0.0091897053332498
223 => 0.0091120135031116
224 => 0.0095150788553029
225 => 0.0094188840742009
226 => 0.0097475682220062
227 => 0.0096610146704837
228 => 0.010020293623709
301 => 0.010163619725241
302 => 0.010404286556638
303 => 0.010581322057504
304 => 0.010685280689762
305 => 0.01067903940342
306 => 0.011090975296411
307 => 0.010848071092258
308 => 0.010542926163717
309 => 0.010537407054679
310 => 0.010695445937108
311 => 0.011026652078829
312 => 0.011112529012523
313 => 0.011160522502912
314 => 0.011087018801716
315 => 0.010823363697209
316 => 0.010709518759845
317 => 0.010806517944885
318 => 0.010687896276816
319 => 0.010892670555264
320 => 0.011173869377
321 => 0.011115802932292
322 => 0.011309910351142
323 => 0.011510791108955
324 => 0.011798059614748
325 => 0.011873162239684
326 => 0.011997304022806
327 => 0.012125086696091
328 => 0.01216612704691
329 => 0.012244485810697
330 => 0.012244072821333
331 => 0.012480212230159
401 => 0.012740681310722
402 => 0.012839002358762
403 => 0.013065086187274
404 => 0.012677925553869
405 => 0.012971591341688
406 => 0.013236485233232
407 => 0.01292066781544
408 => 0.013355948549846
409 => 0.013372849514395
410 => 0.013628034013345
411 => 0.013369355636225
412 => 0.013215753241621
413 => 0.013659197599435
414 => 0.013873766355815
415 => 0.013809136500175
416 => 0.013317300107585
417 => 0.013031030231242
418 => 0.012281806747518
419 => 0.013169294328035
420 => 0.013601563640137
421 => 0.013316180634495
422 => 0.013460111222803
423 => 0.01424534984296
424 => 0.014544317869081
425 => 0.014482134609592
426 => 0.014492642556822
427 => 0.014653960277063
428 => 0.015369331887904
429 => 0.014940664636504
430 => 0.015268364688344
501 => 0.015442175614229
502 => 0.015603620888779
503 => 0.015207162319787
504 => 0.01469137554666
505 => 0.014528004224355
506 => 0.013287804918868
507 => 0.013223247159105
508 => 0.013187008932249
509 => 0.012958532037925
510 => 0.012779011784074
511 => 0.012636250613053
512 => 0.012261602668197
513 => 0.01238803535168
514 => 0.011790924722684
515 => 0.012172934942814
516 => 0.011219931961196
517 => 0.012013621162924
518 => 0.011581652215043
519 => 0.011871707745778
520 => 0.011870695769356
521 => 0.011336611575084
522 => 0.011028562957881
523 => 0.011224863526194
524 => 0.011435313317785
525 => 0.011469458088432
526 => 0.011742311736531
527 => 0.011818459324746
528 => 0.011587728577464
529 => 0.011200183092654
530 => 0.011290201069804
531 => 0.011026738746447
601 => 0.010565031158697
602 => 0.01089663760886
603 => 0.011009862630652
604 => 0.011059869250563
605 => 0.010605832865485
606 => 0.010463164775684
607 => 0.010387209481776
608 => 0.011141572696885
609 => 0.011182898416687
610 => 0.01097147019131
611 => 0.01192714581846
612 => 0.011710846990876
613 => 0.011952505775787
614 => 0.011282032881901
615 => 0.011307645849359
616 => 0.010990233236588
617 => 0.011167963090221
618 => 0.011042349358174
619 => 0.011153604274409
620 => 0.011220290012478
621 => 0.011537650540962
622 => 0.012017244910376
623 => 0.011490247461048
624 => 0.011260627125633
625 => 0.01140308229029
626 => 0.011782459166296
627 => 0.012357234553389
628 => 0.012016955955797
629 => 0.012167965819103
630 => 0.012200954756274
701 => 0.011950045916208
702 => 0.012366485920215
703 => 0.012589659501515
704 => 0.012818589416662
705 => 0.013017362847515
706 => 0.012727149774276
707 => 0.013037719363051
708 => 0.012787455097411
709 => 0.012562942179287
710 => 0.012563282672708
711 => 0.012422442439559
712 => 0.01214954674082
713 => 0.012099220587002
714 => 0.012361023594659
715 => 0.012570964813962
716 => 0.012588256578335
717 => 0.012704490824511
718 => 0.01277327705409
719 => 0.013447475614308
720 => 0.01371864385249
721 => 0.014050223241188
722 => 0.014179392099876
723 => 0.014568144054929
724 => 0.014254195278334
725 => 0.014186270485687
726 => 0.013243285402525
727 => 0.013397699157066
728 => 0.013644930476797
729 => 0.013247362155926
730 => 0.013499527747905
731 => 0.01354931057736
801 => 0.013233852936515
802 => 0.01340235249261
803 => 0.012954867628257
804 => 0.012026998857584
805 => 0.012367518903402
806 => 0.012618256274932
807 => 0.012260423130064
808 => 0.012901825192185
809 => 0.01252713134872
810 => 0.012408371388818
811 => 0.011945046444257
812 => 0.012163717983077
813 => 0.012459474370406
814 => 0.012276731308407
815 => 0.012655950601064
816 => 0.013193026253556
817 => 0.01357577834693
818 => 0.013605161300008
819 => 0.013359077346367
820 => 0.013753428452564
821 => 0.013756300869849
822 => 0.013311471211088
823 => 0.013039015521919
824 => 0.012977113016088
825 => 0.013131757612355
826 => 0.01331952470119
827 => 0.013615581066646
828 => 0.013794481727822
829 => 0.014260959770591
830 => 0.01438717535399
831 => 0.014525848013972
901 => 0.014711157452773
902 => 0.014933668946418
903 => 0.014446826465909
904 => 0.014466169625248
905 => 0.01401282864819
906 => 0.013528368798532
907 => 0.01389601343565
908 => 0.014376659892965
909 => 0.014266399064589
910 => 0.014253992468973
911 => 0.014274856921497
912 => 0.014191723857684
913 => 0.013815716091114
914 => 0.013626887344675
915 => 0.013870524602932
916 => 0.014000006962649
917 => 0.014200822810521
918 => 0.014176068018562
919 => 0.014693348076633
920 => 0.014894347465463
921 => 0.014842923220551
922 => 0.014852386519208
923 => 0.015216286311702
924 => 0.015621017722655
925 => 0.016000102098026
926 => 0.016385723006706
927 => 0.015920841950252
928 => 0.015684804019662
929 => 0.015928334913513
930 => 0.01579911399329
1001 => 0.016541655730307
1002 => 0.016593067709108
1003 => 0.017335555751906
1004 => 0.018040265318352
1005 => 0.01759764986585
1006 => 0.018015016301721
1007 => 0.018466432130501
1008 => 0.019337286503795
1009 => 0.019044013387896
1010 => 0.018819370777293
1011 => 0.018607084595738
1012 => 0.019048818440071
1013 => 0.019617101973936
1014 => 0.019739504804178
1015 => 0.019937844150651
1016 => 0.019729314579616
1017 => 0.019980465479148
1018 => 0.020867138515795
1019 => 0.020627551634414
1020 => 0.020287299747339
1021 => 0.020987242952788
1022 => 0.021240549677879
1023 => 0.023018388932333
1024 => 0.025262984429958
1025 => 0.024333707155133
1026 => 0.023756874763059
1027 => 0.023892444057843
1028 => 0.024712094349223
1029 => 0.024975340008415
1030 => 0.024259747560512
1031 => 0.024512506910656
1101 => 0.025905235780699
1102 => 0.026652390135386
1103 => 0.025637654165504
1104 => 0.022838037869613
1105 => 0.020256663787685
1106 => 0.020941360435002
1107 => 0.020863737083807
1108 => 0.022360050508203
1109 => 0.020621837566529
1110 => 0.020651104614571
1111 => 0.022178360215961
1112 => 0.0217709146053
1113 => 0.02111090489772
1114 => 0.02026148258896
1115 => 0.018691246889165
1116 => 0.017300445340594
1117 => 0.020028127459809
1118 => 0.01991050484686
1119 => 0.019740169872616
1120 => 0.020119231925627
1121 => 0.021959849656409
1122 => 0.021917417460217
1123 => 0.021647485477135
1124 => 0.021852226507231
1125 => 0.021075012805236
1126 => 0.021275318473067
1127 => 0.020256254884841
1128 => 0.020716914186574
1129 => 0.021109488813313
1130 => 0.021188303981797
1201 => 0.021365878580795
1202 => 0.019848523074649
1203 => 0.020529771149692
1204 => 0.020929940569467
1205 => 0.019121960572635
1206 => 0.020894202618028
1207 => 0.019822109291099
1208 => 0.019458224713637
1209 => 0.019948147359041
1210 => 0.019757224027662
1211 => 0.019593079358736
1212 => 0.019501483813112
1213 => 0.019861228933108
1214 => 0.019844446393271
1215 => 0.01925583355344
1216 => 0.018488012098809
1217 => 0.018745718181863
1218 => 0.018652091145882
1219 => 0.018312774689358
1220 => 0.01854143301183
1221 => 0.017534537480994
1222 => 0.015802226054066
1223 => 0.016946644044828
1224 => 0.016902585197071
1225 => 0.016880368728123
1226 => 0.017740367218791
1227 => 0.017657698207454
1228 => 0.01750765314238
1229 => 0.018310018994072
1230 => 0.018017144664861
1231 => 0.018919714337618
]
'min_raw' => 0.0081021461649269
'max_raw' => 0.026652390135386
'avg_raw' => 0.017377268150156
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0081021'
'max' => '$0.026652'
'avg' => '$0.017377'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.00441384034019
'max_diff' => 0.017618576912106
'year' => 2029
]
4 => [
'items' => [
101 => 0.019514205098643
102 => 0.019363423011886
103 => 0.019922544446052
104 => 0.018751655209523
105 => 0.019140577645976
106 => 0.019220734021105
107 => 0.01830011792401
108 => 0.017671223880093
109 => 0.017629283817281
110 => 0.016538868212068
111 => 0.017121359426846
112 => 0.017633927590726
113 => 0.017388447217124
114 => 0.017310735464359
115 => 0.017707747955612
116 => 0.017738599226364
117 => 0.017035186983738
118 => 0.017181448663149
119 => 0.017791384180272
120 => 0.017166079853051
121 => 0.015951215688141
122 => 0.015649912578432
123 => 0.015609713189479
124 => 0.014792555259298
125 => 0.01567004709296
126 => 0.015286998392247
127 => 0.01649704464817
128 => 0.015805872716395
129 => 0.015776077675844
130 => 0.015731038102069
131 => 0.015027676515193
201 => 0.015181668001759
202 => 0.015693559156666
203 => 0.015876207687604
204 => 0.015857155949432
205 => 0.015691050610746
206 => 0.0157670927842
207 => 0.015522134448656
208 => 0.015435634562009
209 => 0.015162617126083
210 => 0.014761356918262
211 => 0.014817154611232
212 => 0.014022153144095
213 => 0.013588994150877
214 => 0.013469101450498
215 => 0.013308775920891
216 => 0.013487210645677
217 => 0.014019901004825
218 => 0.013377363415129
219 => 0.012275777786366
220 => 0.012341984959665
221 => 0.012490732820982
222 => 0.012213542165484
223 => 0.011951204472902
224 => 0.012179285812472
225 => 0.011712529459619
226 => 0.01254713809627
227 => 0.012524564271612
228 => 0.012835654759504
301 => 0.013030186025802
302 => 0.01258185443723
303 => 0.012469100255122
304 => 0.012533330161643
305 => 0.011471752880739
306 => 0.012748901247585
307 => 0.012759946079696
308 => 0.012665373521647
309 => 0.01334541559946
310 => 0.014780516494089
311 => 0.01424057381073
312 => 0.01403149168388
313 => 0.013634026407898
314 => 0.01416362528899
315 => 0.014122960357952
316 => 0.01393905811808
317 => 0.013827833469595
318 => 0.014032768294762
319 => 0.013802439776843
320 => 0.013761066446021
321 => 0.013510389075864
322 => 0.013420908659811
323 => 0.013354660922084
324 => 0.013281728672215
325 => 0.013442599041842
326 => 0.013078045620007
327 => 0.012638429930886
328 => 0.012601880643043
329 => 0.012702796440223
330 => 0.012658148712268
331 => 0.012601666886899
401 => 0.012493827700358
402 => 0.012461834117331
403 => 0.012565797741089
404 => 0.012448428871322
405 => 0.012621613032076
406 => 0.012574516523068
407 => 0.012311439252204
408 => 0.011983547569028
409 => 0.011980628645272
410 => 0.011909984919982
411 => 0.01182000951447
412 => 0.011794980415015
413 => 0.012160077438224
414 => 0.012915817349833
415 => 0.012767447521861
416 => 0.012874659928122
417 => 0.01340203885491
418 => 0.013569676756899
419 => 0.013450691344789
420 => 0.013287816773992
421 => 0.013294982428504
422 => 0.013851574142402
423 => 0.013886288084869
424 => 0.01397399901834
425 => 0.014086732354956
426 => 0.013469890319487
427 => 0.013265929224106
428 => 0.013169281141783
429 => 0.012871642455745
430 => 0.013192620261025
501 => 0.013005600239528
502 => 0.013030835629942
503 => 0.013014401048829
504 => 0.013023375441418
505 => 0.012546904806147
506 => 0.01272050566308
507 => 0.012431860567988
508 => 0.012045397187593
509 => 0.01204410162683
510 => 0.01213868799168
511 => 0.012082424320702
512 => 0.011931020228773
513 => 0.011952526465425
514 => 0.011764109202434
515 => 0.011975403732557
516 => 0.011981462903632
517 => 0.011900103000244
518 => 0.012225631376925
519 => 0.012359000618457
520 => 0.012305447787149
521 => 0.012355243209051
522 => 0.012773612958063
523 => 0.012841825481903
524 => 0.012872120979127
525 => 0.012831529026231
526 => 0.012362890240051
527 => 0.012383676363024
528 => 0.012231161584457
529 => 0.012102302668179
530 => 0.012107456349054
531 => 0.012173706582508
601 => 0.012463025237524
602 => 0.013071879290738
603 => 0.013094984856991
604 => 0.013122989477326
605 => 0.013009080612427
606 => 0.012974724608813
607 => 0.013020049045617
608 => 0.013248702615979
609 => 0.013836861677789
610 => 0.013628966983523
611 => 0.01345994536101
612 => 0.013608222891856
613 => 0.01358539672822
614 => 0.013392720935693
615 => 0.013387313167924
616 => 0.013017506719887
617 => 0.012880797696134
618 => 0.012766553403392
619 => 0.012641801618141
620 => 0.012567844578127
621 => 0.012681476204463
622 => 0.012707465101856
623 => 0.012459007564931
624 => 0.012425143720731
625 => 0.012628039508711
626 => 0.012538752637138
627 => 0.012630586398759
628 => 0.012651892619191
629 => 0.012648461826977
630 => 0.012555236078523
701 => 0.012614655390556
702 => 0.012474111003849
703 => 0.012321290092389
704 => 0.012223799871958
705 => 0.012138726724429
706 => 0.012185930251158
707 => 0.012017658297393
708 => 0.011963824712738
709 => 0.012594525464616
710 => 0.013060430891204
711 => 0.013053656441782
712 => 0.013012418723177
713 => 0.012951147838094
714 => 0.013244220269103
715 => 0.013142119694308
716 => 0.01321640639326
717 => 0.013235315475946
718 => 0.013292547574186
719 => 0.013313003130041
720 => 0.013251172232949
721 => 0.013043660190297
722 => 0.012526559909662
723 => 0.012285848333141
724 => 0.01220640950352
725 => 0.012209296954101
726 => 0.012129648176933
727 => 0.012153108311417
728 => 0.012121489699562
729 => 0.012061611698071
730 => 0.012182232953298
731 => 0.012196133429298
801 => 0.012167978987012
802 => 0.012174610377376
803 => 0.011941503620161
804 => 0.011959226220631
805 => 0.011860544529136
806 => 0.011842042901607
807 => 0.011592584178706
808 => 0.011150631891467
809 => 0.011395516359944
810 => 0.011099730357991
811 => 0.010987711717162
812 => 0.011517990540373
813 => 0.011464765254168
814 => 0.01137366670066
815 => 0.01123891295342
816 => 0.011188931477769
817 => 0.010885259853922
818 => 0.01086731731436
819 => 0.011017825170962
820 => 0.010948370973799
821 => 0.010850830976622
822 => 0.010497550994315
823 => 0.01010034732722
824 => 0.010112336409196
825 => 0.010238679505462
826 => 0.010606039097544
827 => 0.010462505349532
828 => 0.010358369968489
829 => 0.010338868541918
830 => 0.010582969724459
831 => 0.010928424038532
901 => 0.011090503473591
902 => 0.010929887675873
903 => 0.010745380895624
904 => 0.010756610968416
905 => 0.010831319611537
906 => 0.010839170433606
907 => 0.010719075487267
908 => 0.010752881511202
909 => 0.010701527069558
910 => 0.010386364955984
911 => 0.010380664672739
912 => 0.010303318807393
913 => 0.010300976805329
914 => 0.010169392193544
915 => 0.010150982596754
916 => 0.0098897133634397
917 => 0.010061681564003
918 => 0.009946334323801
919 => 0.0097724788251529
920 => 0.0097425060716559
921 => 0.0097416050544926
922 => 0.009920115778226
923 => 0.010059595562262
924 => 0.0099483408384287
925 => 0.009923010294394
926 => 0.010193474234577
927 => 0.010159055232856
928 => 0.010129248599343
929 => 0.010897492393683
930 => 0.010289367483652
1001 => 0.010024190312322
1002 => 0.0096959832070228
1003 => 0.0098028490954722
1004 => 0.0098253673083551
1005 => 0.0090360883838869
1006 => 0.0087158780225286
1007 => 0.0086059938933834
1008 => 0.0085427540235267
1009 => 0.0085715732263367
1010 => 0.0082833463441849
1011 => 0.0084770395758235
1012 => 0.008227459459092
1013 => 0.008185616540318
1014 => 0.0086318967060776
1015 => 0.0086939939840122
1016 => 0.0084290677042313
1017 => 0.0085991932635194
1018 => 0.0085375033707994
1019 => 0.008231737793855
1020 => 0.008220059797875
1021 => 0.008066637379544
1022 => 0.0078265610032902
1023 => 0.0077168396572331
1024 => 0.0076596958275621
1025 => 0.0076832744853954
1026 => 0.007671352394476
1027 => 0.0075935526868143
1028 => 0.0076758117826501
1029 => 0.0074656737845947
1030 => 0.0073819951405721
1031 => 0.0073441994383969
1101 => 0.0071576898700308
1102 => 0.0074545095344828
1103 => 0.0075129867476154
1104 => 0.0075715791789225
1105 => 0.0080815862906984
1106 => 0.0080561077766592
1107 => 0.0082864211350339
1108 => 0.0082774715814466
1109 => 0.0082117824808091
1110 => 0.007934650970552
1111 => 0.0080451106511463
1112 => 0.0077051329235228
1113 => 0.0079598673532967
1114 => 0.007843617197512
1115 => 0.0079205630586887
1116 => 0.0077822074623644
1117 => 0.0078587791619328
1118 => 0.0075268538642108
1119 => 0.0072169066915128
1120 => 0.0073416384817285
1121 => 0.0074772362025033
1122 => 0.0077712466107999
1123 => 0.0075961364371517
1124 => 0.0076591126772443
1125 => 0.0074481528150292
1126 => 0.0070128823615738
1127 => 0.0070153459450702
1128 => 0.0069483890686883
1129 => 0.0068905285516304
1130 => 0.0076162499470664
1201 => 0.0075259950195864
1202 => 0.00738218560492
1203 => 0.00757468022121
1204 => 0.0076255788530575
1205 => 0.0076270278655511
1206 => 0.0077674669685911
1207 => 0.0078424193430587
1208 => 0.0078556300239208
1209 => 0.0080766139869419
1210 => 0.0081506848964977
1211 => 0.0084557724900503
1212 => 0.0078360601577482
1213 => 0.0078232975900775
1214 => 0.0075773890152184
1215 => 0.007421429909382
1216 => 0.0075880676686238
1217 => 0.0077356859749896
1218 => 0.0075819759274816
1219 => 0.0076020472146899
1220 => 0.0073957040344828
1221 => 0.0074694620120578
1222 => 0.007532992318618
1223 => 0.0074979146174743
1224 => 0.0074454016010822
1225 => 0.0077235829572846
1226 => 0.0077078868749661
1227 => 0.0079669357492235
1228 => 0.0081688828714699
1229 => 0.0085308082169015
1230 => 0.0081531202513486
1231 => 0.0081393558007102
]
'min_raw' => 0.0068905285516304
'max_raw' => 0.019922544446052
'avg_raw' => 0.013406536498841
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.00689'
'max' => '$0.019922'
'avg' => '$0.0134065'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012116176132965
'max_diff' => -0.0067298456893331
'year' => 2030
]
5 => [
'items' => [
101 => 0.0082739055135883
102 => 0.0081506642976377
103 => 0.0082285484919763
104 => 0.0085182598691086
105 => 0.0085243810139862
106 => 0.0084218439506367
107 => 0.0084156045610133
108 => 0.0084352979256621
109 => 0.0085506425775213
110 => 0.0085103376119786
111 => 0.0085569795385016
112 => 0.008615305981825
113 => 0.0088565688813105
114 => 0.0089147365495847
115 => 0.0087734192721565
116 => 0.0087861786400458
117 => 0.0087333220990417
118 => 0.0086822633427222
119 => 0.0087970359703959
120 => 0.0090067852033312
121 => 0.0090054803642391
122 => 0.0090541381093376
123 => 0.0090844514814314
124 => 0.00895432429766
125 => 0.008869616285934
126 => 0.0089020987277406
127 => 0.0089540388595649
128 => 0.0088852552430216
129 => 0.0084606908980457
130 => 0.008589476599036
131 => 0.0085680403610922
201 => 0.0085375125515246
202 => 0.0086670075697407
203 => 0.0086545174593286
204 => 0.0082803901609121
205 => 0.0083043405767037
206 => 0.0082818466650227
207 => 0.0083545290954854
208 => 0.0081467392078693
209 => 0.0082106539778138
210 => 0.0082507407223592
211 => 0.0082743521228573
212 => 0.0083596526919455
213 => 0.0083496436546984
214 => 0.0083590305161369
215 => 0.0084855087415793
216 => 0.0091251922037812
217 => 0.0091600087632468
218 => 0.0089885592908796
219 => 0.009057049973399
220 => 0.0089255628402275
221 => 0.0090138310336128
222 => 0.009074221889758
223 => 0.0088013272233317
224 => 0.0087851681722577
225 => 0.008653138344915
226 => 0.0087240836955773
227 => 0.0086112045415224
228 => 0.0086389011375823
301 => 0.008561459040453
302 => 0.008700839396718
303 => 0.00885668829254
304 => 0.008896061878284
305 => 0.0087924869255859
306 => 0.0087174918339105
307 => 0.0085858251578474
308 => 0.0088047897745236
309 => 0.0088688217012654
310 => 0.0088044534420716
311 => 0.0087895379099422
312 => 0.0087612730035086
313 => 0.0087955344434589
314 => 0.0088684729696408
315 => 0.0088340765076565
316 => 0.0088567959767848
317 => 0.0087702127886825
318 => 0.0089543673751725
319 => 0.0092468491777332
320 => 0.009247789554554
321 => 0.00921339290716
322 => 0.0091993185401324
323 => 0.0092346115877218
324 => 0.0092537566182425
325 => 0.0093678878625086
326 => 0.0094903552347955
327 => 0.010061857024558
328 => 0.0099013816088939
329 => 0.010408451995565
330 => 0.010809478836572
331 => 0.010929729251412
401 => 0.010819104527979
402 => 0.010440663324943
403 => 0.010422095194073
404 => 0.010987646125163
405 => 0.010827852083256
406 => 0.010808845090432
407 => 0.010606642799602
408 => 0.010726169396723
409 => 0.010700027176584
410 => 0.010658760403172
411 => 0.010886808824184
412 => 0.011313695110297
413 => 0.011247160879292
414 => 0.011197496162281
415 => 0.010979879829521
416 => 0.01111093346821
417 => 0.01106426777764
418 => 0.011264773199108
419 => 0.011145998229169
420 => 0.010826641486227
421 => 0.010877500100154
422 => 0.010869812922972
423 => 0.011028014484654
424 => 0.010980526302641
425 => 0.010860540093276
426 => 0.011312236059379
427 => 0.011282905435805
428 => 0.011324489554119
429 => 0.011342796169032
430 => 0.011617735543823
501 => 0.011730369408597
502 => 0.011755939267833
503 => 0.011862932727952
504 => 0.011753277173077
505 => 0.012191977575664
506 => 0.012483687744506
507 => 0.012822524116885
508 => 0.01331765512756
509 => 0.013503828967792
510 => 0.013470198329932
511 => 0.013845601011374
512 => 0.014520191285193
513 => 0.013606552311545
514 => 0.014568616369285
515 => 0.014264037996168
516 => 0.013541888152639
517 => 0.013495390216303
518 => 0.013984438474673
519 => 0.015069100442588
520 => 0.014797404921759
521 => 0.015069544839127
522 => 0.014752079169955
523 => 0.01473631432367
524 => 0.015054126240172
525 => 0.015796711106107
526 => 0.015443936871679
527 => 0.014938148502835
528 => 0.015311614763451
529 => 0.014988083725835
530 => 0.01425907774745
531 => 0.014797197161315
601 => 0.014437372034022
602 => 0.014542388135522
603 => 0.015298687033143
604 => 0.015207687148863
605 => 0.015325449425484
606 => 0.015117602089623
607 => 0.014923439903412
608 => 0.014561021764176
609 => 0.014453727620147
610 => 0.014483379861518
611 => 0.014453712925968
612 => 0.014250943307861
613 => 0.014207155228136
614 => 0.014134173176862
615 => 0.014156793366273
616 => 0.014019565758225
617 => 0.014278542607281
618 => 0.014326610992562
619 => 0.014515072746428
620 => 0.014534639470912
621 => 0.015059502772844
622 => 0.014770416886109
623 => 0.014964360657405
624 => 0.014947012501031
625 => 0.013557539329498
626 => 0.01374899647311
627 => 0.014046843706008
628 => 0.01391266393131
629 => 0.013722965123118
630 => 0.013569773164497
701 => 0.013337671682503
702 => 0.013664350061295
703 => 0.014093897391033
704 => 0.014545533500055
705 => 0.015088144692676
706 => 0.014967040191173
707 => 0.014535389761242
708 => 0.014554753284208
709 => 0.014674450963917
710 => 0.014519431593012
711 => 0.014473713354195
712 => 0.014668169979955
713 => 0.014669509095865
714 => 0.014491140574922
715 => 0.014292916604989
716 => 0.014292086039317
717 => 0.014256813998484
718 => 0.014758353987662
719 => 0.015034150270297
720 => 0.015065769869633
721 => 0.01503202201933
722 => 0.015045010227507
723 => 0.014884530447398
724 => 0.015251339635927
725 => 0.015587960020991
726 => 0.015497738566948
727 => 0.015362483781603
728 => 0.015254746830322
729 => 0.015472359165156
730 => 0.015462669230439
731 => 0.015585019935588
801 => 0.015579469400871
802 => 0.015538327460572
803 => 0.015497740036256
804 => 0.015658664585874
805 => 0.015612320899953
806 => 0.015565905229488
807 => 0.015472811496486
808 => 0.015485464480924
809 => 0.015350233049225
810 => 0.015287668801151
811 => 0.014346852622747
812 => 0.014095435797822
813 => 0.014174536649004
814 => 0.014200578703066
815 => 0.01409116177866
816 => 0.014248037541357
817 => 0.014223588619913
818 => 0.014318705071111
819 => 0.014259280441879
820 => 0.014261719249391
821 => 0.014436474413295
822 => 0.014487206580838
823 => 0.014461403790967
824 => 0.014479475180525
825 => 0.01489592272543
826 => 0.014836717201788
827 => 0.014805265447362
828 => 0.014813977798283
829 => 0.014920389074743
830 => 0.014950178422311
831 => 0.014823958863404
901 => 0.014883484737051
902 => 0.015136938352083
903 => 0.015225632773112
904 => 0.015508702789299
905 => 0.015388449615254
906 => 0.015609179520649
907 => 0.016287627997461
908 => 0.016829619585802
909 => 0.016331181722414
910 => 0.01732648025219
911 => 0.018101462924715
912 => 0.018071717798942
913 => 0.017936581644315
914 => 0.017054284475626
915 => 0.016242381466688
916 => 0.016921572808887
917 => 0.016923304207295
918 => 0.016864961068655
919 => 0.016502596845319
920 => 0.016852351579153
921 => 0.016880113839802
922 => 0.01686457435642
923 => 0.016586750555995
924 => 0.016162564963169
925 => 0.01624544981265
926 => 0.016381216886906
927 => 0.016124181491361
928 => 0.01604204310816
929 => 0.016194753989997
930 => 0.01668682026985
1001 => 0.01659379798999
1002 => 0.01659136880233
1003 => 0.016989357563158
1004 => 0.016704483501755
1005 => 0.016246495256036
1006 => 0.016130847183869
1007 => 0.015720374437553
1008 => 0.016003889425487
1009 => 0.016014092625171
1010 => 0.015858814363732
1011 => 0.016259095231165
1012 => 0.016255406572503
1013 => 0.016635413682185
1014 => 0.017361844551745
1015 => 0.017147003198124
1016 => 0.016897166078536
1017 => 0.016924330300667
1018 => 0.017222254770433
1019 => 0.017042122835058
1020 => 0.017106899534943
1021 => 0.017222156723139
1022 => 0.017291694246453
1023 => 0.016914324921184
1024 => 0.016826342079802
1025 => 0.016646360064117
1026 => 0.016599406115748
1027 => 0.016745997712076
1028 => 0.016707376005601
1029 => 0.016013235085746
1030 => 0.015940693497458
1031 => 0.015942918244405
1101 => 0.01576050897149
1102 => 0.015482291047051
1103 => 0.016213431140946
1104 => 0.016154710359107
1105 => 0.016089887160585
1106 => 0.016097827632527
1107 => 0.01641519076665
1108 => 0.016231104121637
1109 => 0.016720528638613
1110 => 0.01661991767137
1111 => 0.016516726412458
1112 => 0.016502462237193
1113 => 0.016462742406376
1114 => 0.016326528327408
1115 => 0.016162041641855
1116 => 0.016053433284461
1117 => 0.014808443623643
1118 => 0.015039506462919
1119 => 0.015305323197466
1120 => 0.015397082069038
1121 => 0.015240122169693
1122 => 0.016332726060915
1123 => 0.016532355320435
1124 => 0.015927665271856
1125 => 0.015814552453099
1126 => 0.016340141718482
1127 => 0.016023147140782
1128 => 0.01616588977971
1129 => 0.015857358270396
1130 => 0.016484270477644
1201 => 0.01647949445699
1202 => 0.016235611448916
1203 => 0.016441739697301
1204 => 0.016405919841577
1205 => 0.016130576526119
1206 => 0.016492999351865
1207 => 0.016493179109065
1208 => 0.016258447016267
1209 => 0.015984331321343
1210 => 0.015935325909414
1211 => 0.015898406914476
1212 => 0.016156809970131
1213 => 0.016388493341826
1214 => 0.016819598657371
1215 => 0.016927988776509
1216 => 0.017351042627442
1217 => 0.01709913465733
1218 => 0.017210802197726
1219 => 0.017332033109165
1220 => 0.017390155666228
1221 => 0.017295448078522
1222 => 0.017952624844934
1223 => 0.018008110699395
1224 => 0.018026714626445
1225 => 0.017805118318374
1226 => 0.018001947705203
1227 => 0.01790985775341
1228 => 0.018149450224649
1229 => 0.01818702138341
1230 => 0.018155199948573
1231 => 0.018167125627384
]
'min_raw' => 0.0081467392078693
'max_raw' => 0.01818702138341
'avg_raw' => 0.01316688029564
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008146'
'max' => '$0.018187'
'avg' => '$0.013166'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012562106562389
'max_diff' => -0.0017355230626424
'year' => 2031
]
6 => [
'items' => [
101 => 0.017606341191177
102 => 0.017577261559786
103 => 0.017180758722375
104 => 0.017342336559421
105 => 0.017040274537691
106 => 0.017136061516365
107 => 0.017178283503873
108 => 0.017156229133675
109 => 0.017351471927898
110 => 0.017185475667341
111 => 0.016747384243419
112 => 0.016309173461782
113 => 0.016303672082377
114 => 0.016188298918635
115 => 0.016104905252898
116 => 0.016120969831468
117 => 0.016177583501685
118 => 0.016101614763467
119 => 0.016117826545479
120 => 0.016387050145411
121 => 0.016441041018362
122 => 0.016257558936477
123 => 0.015520851901371
124 => 0.015340062147066
125 => 0.015470010237244
126 => 0.015407903419868
127 => 0.01243538059739
128 => 0.013133730742477
129 => 0.012718794799996
130 => 0.012910016372576
131 => 0.012486474222445
201 => 0.012688610736233
202 => 0.01265128350298
203 => 0.013774209870597
204 => 0.013756676919901
205 => 0.013765069015576
206 => 0.013364492423525
207 => 0.014002621811502
208 => 0.014316987294411
209 => 0.014258806610091
210 => 0.01427344943488
211 => 0.014021837190994
212 => 0.013767505172094
213 => 0.013485411821717
214 => 0.014009506398926
215 => 0.013951236028533
216 => 0.014084887293197
217 => 0.014424800089571
218 => 0.01447485354004
219 => 0.014542125885063
220 => 0.014518013538144
221 => 0.015092467466234
222 => 0.015022897305173
223 => 0.015190541376628
224 => 0.014845684802458
225 => 0.014455446854699
226 => 0.014529618330729
227 => 0.014522475021138
228 => 0.014431532491336
229 => 0.014349433641745
301 => 0.014212762188385
302 => 0.014645210890386
303 => 0.014627654262829
304 => 0.014911875655632
305 => 0.014861636763675
306 => 0.014526129147642
307 => 0.014538111867785
308 => 0.014618701419445
309 => 0.014897622777895
310 => 0.014980425627498
311 => 0.014942068048439
312 => 0.015032857592934
313 => 0.015104613947115
314 => 0.015041869086239
315 => 0.015930203999046
316 => 0.015561305408755
317 => 0.015741104014883
318 => 0.015783984923009
319 => 0.015674146378531
320 => 0.015697966425805
321 => 0.015734047306851
322 => 0.015953123351199
323 => 0.016528042281733
324 => 0.01678266996246
325 => 0.017548729903038
326 => 0.016761526678164
327 => 0.016714817296571
328 => 0.016852807824663
329 => 0.017302566105463
330 => 0.017667052948403
331 => 0.017787974261957
401 => 0.017803956009737
402 => 0.018030812432661
403 => 0.018160842303659
404 => 0.018003266096001
405 => 0.017869736758928
406 => 0.017391451247804
407 => 0.017446814098045
408 => 0.017828209235507
409 => 0.018366952331234
410 => 0.018829249954034
411 => 0.018667369439228
412 => 0.019902403497361
413 => 0.020024852079564
414 => 0.02000793364474
415 => 0.020286889737789
416 => 0.019733218701507
417 => 0.019496513606626
418 => 0.017898607317226
419 => 0.018347553806797
420 => 0.019000123895091
421 => 0.018913753796893
422 => 0.018439839955525
423 => 0.018828890447888
424 => 0.018700258188379
425 => 0.018598800588347
426 => 0.019063597522618
427 => 0.018552534200582
428 => 0.01899502564751
429 => 0.018427525789836
430 => 0.018668108895784
501 => 0.018531542289153
502 => 0.018619917620617
503 => 0.018103277238681
504 => 0.018382043848037
505 => 0.018091679631232
506 => 0.018091541960787
507 => 0.018085132154608
508 => 0.018426744368007
509 => 0.018437884330021
510 => 0.018185432388172
511 => 0.018149050119311
512 => 0.018283574436009
513 => 0.01812608169313
514 => 0.018199771556276
515 => 0.018128313684016
516 => 0.018112227011837
517 => 0.017984045670995
518 => 0.01792882162494
519 => 0.017950476396347
520 => 0.017876557497737
521 => 0.017832018687562
522 => 0.018076272264238
523 => 0.017945777431381
524 => 0.018056272059543
525 => 0.017930349485219
526 => 0.017493846980755
527 => 0.017242809774508
528 => 0.01641829700738
529 => 0.016652127805332
530 => 0.01680715786629
531 => 0.016755920432069
601 => 0.016865998267032
602 => 0.016872756152084
603 => 0.016836968725826
604 => 0.016795531470874
605 => 0.016775362106787
606 => 0.016925688022241
607 => 0.017012957275901
608 => 0.016822717206942
609 => 0.016778146620527
610 => 0.016970489833686
611 => 0.0170878190826
612 => 0.01795411233497
613 => 0.017889934532744
614 => 0.018051008222073
615 => 0.018032873796532
616 => 0.018201704684
617 => 0.018477671831754
618 => 0.017916553458743
619 => 0.018013944206284
620 => 0.017990066244068
621 => 0.018250759574408
622 => 0.018251573430529
623 => 0.018095274756393
624 => 0.018180006803299
625 => 0.018132711699218
626 => 0.018218180344608
627 => 0.017889077399068
628 => 0.018289889262269
629 => 0.018517123760958
630 => 0.018520278912192
701 => 0.018627986261126
702 => 0.018737423165632
703 => 0.018947477773886
704 => 0.018731564856615
705 => 0.018343158537145
706 => 0.018371200218866
707 => 0.018143477735872
708 => 0.018147305791953
709 => 0.018126871328585
710 => 0.018188196691387
711 => 0.017902534867579
712 => 0.017969579126654
713 => 0.017875716771338
714 => 0.018013740167854
715 => 0.017865249809287
716 => 0.017990054729391
717 => 0.018043916395559
718 => 0.018242667103278
719 => 0.017835894168158
720 => 0.017006456617341
721 => 0.017180814446481
722 => 0.016922925521671
723 => 0.016946794123515
724 => 0.016995012497898
725 => 0.01683872097045
726 => 0.016868536468575
727 => 0.016867471249174
728 => 0.01685829176385
729 => 0.016817634301296
730 => 0.016758672936758
731 => 0.016993556865725
801 => 0.017033468222271
802 => 0.0171221862239
803 => 0.017386150818753
804 => 0.017359774531014
805 => 0.017402795350659
806 => 0.017308881142925
807 => 0.016951150534259
808 => 0.016970577027403
809 => 0.016728328346604
810 => 0.017115991380483
811 => 0.017024187657158
812 => 0.016965001199512
813 => 0.016948851626185
814 => 0.017213470538212
815 => 0.017292648664084
816 => 0.017243310169487
817 => 0.017142115477635
818 => 0.017336439201516
819 => 0.017388432032167
820 => 0.017400071309528
821 => 0.017744375690367
822 => 0.017419314099672
823 => 0.017497559655387
824 => 0.018108009144893
825 => 0.017554415694182
826 => 0.017847666491631
827 => 0.017833313391099
828 => 0.017983330576008
829 => 0.017821007603263
830 => 0.017823019791053
831 => 0.017956224888207
901 => 0.017769162352919
902 => 0.017722843038516
903 => 0.017658853237412
904 => 0.017798572627102
905 => 0.017882328082256
906 => 0.018557335539196
907 => 0.018993421140459
908 => 0.018974489514414
909 => 0.019147489137945
910 => 0.019069551223049
911 => 0.018817869136869
912 => 0.019247459768618
913 => 0.019111519317897
914 => 0.019122726083487
915 => 0.019122308967112
916 => 0.019212697482721
917 => 0.019148648935426
918 => 0.01902240267426
919 => 0.019106210834088
920 => 0.019355091106814
921 => 0.020127623109933
922 => 0.020559942253566
923 => 0.02010159695465
924 => 0.020417757404354
925 => 0.020228173794018
926 => 0.020193720812396
927 => 0.020392292938884
928 => 0.020591212639593
929 => 0.020578542314611
930 => 0.020434136826536
1001 => 0.020352565830477
1002 => 0.02097024874093
1003 => 0.021425346987398
1004 => 0.021394312338007
1005 => 0.021531289187413
1006 => 0.021933457453806
1007 => 0.021970226679948
1008 => 0.021965594602585
1009 => 0.02187445823912
1010 => 0.022270445125532
1011 => 0.022600784352903
1012 => 0.02185336280416
1013 => 0.022137971145455
1014 => 0.02226574099937
1015 => 0.022453345052525
1016 => 0.022769864536288
1017 => 0.023113688648301
1018 => 0.023162309147579
1019 => 0.023127810576636
1020 => 0.022901049332275
1021 => 0.023277265778315
1022 => 0.023497644549043
1023 => 0.023628875063734
1024 => 0.023961653814313
1025 => 0.02226653006249
1026 => 0.021066637217833
1027 => 0.020879256623477
1028 => 0.021260302430478
1029 => 0.021360781171
1030 => 0.021320278316685
1031 => 0.019969689830539
1101 => 0.020872146054608
1102 => 0.021843113071032
1103 => 0.02188041186852
1104 => 0.022366498258905
1105 => 0.022524787912969
1106 => 0.022916151170028
1107 => 0.022891671291742
1108 => 0.022986962016887
1109 => 0.022965056329381
1110 => 0.023689974351827
1111 => 0.024489666581953
1112 => 0.024461975782889
1113 => 0.024347010563279
1114 => 0.024517753518882
1115 => 0.0253431216006
1116 => 0.025267134933889
1117 => 0.02534094950807
1118 => 0.026314104992121
1119 => 0.027579345551141
1120 => 0.026991514283401
1121 => 0.028266938990506
1122 => 0.02906975123627
1123 => 0.030458132002984
1124 => 0.030284299893072
1125 => 0.030824786337145
1126 => 0.029973104136473
1127 => 0.02801746965036
1128 => 0.027707983007065
1129 => 0.028327583104392
1130 => 0.029850809483979
1201 => 0.028279611284997
1202 => 0.028597462634318
1203 => 0.02850592142433
1204 => 0.028501043582275
1205 => 0.028687210973902
1206 => 0.028417165462509
1207 => 0.027316951468832
1208 => 0.027821173058533
1209 => 0.02762646888804
1210 => 0.027842507681359
1211 => 0.029008379947727
1212 => 0.028492920027842
1213 => 0.027949924874807
1214 => 0.028630961296984
1215 => 0.029498154691919
1216 => 0.029443887287761
1217 => 0.029338585841677
1218 => 0.029932164579844
1219 => 0.030912582753042
1220 => 0.031177585845618
1221 => 0.031373205710808
1222 => 0.031400178385193
1223 => 0.031678013694783
1224 => 0.030184023211608
1225 => 0.032555024476803
1226 => 0.032964430897714
1227 => 0.032887479458741
1228 => 0.033342517465127
1229 => 0.033208633740448
1230 => 0.033014657229101
1231 => 0.033735989258584
]
'min_raw' => 0.01243538059739
'max_raw' => 0.033735989258584
'avg_raw' => 0.023085684927987
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012435'
'max' => '$0.033735'
'avg' => '$0.023085'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042886413895206
'max_diff' => 0.015548967875174
'year' => 2032
]
7 => [
'items' => [
101 => 0.032909040295275
102 => 0.031735290351838
103 => 0.031091347918726
104 => 0.031939343260002
105 => 0.03245718442396
106 => 0.032799444492452
107 => 0.032903012182378
108 => 0.030299997439971
109 => 0.02889711686363
110 => 0.029796347229006
111 => 0.03089347033633
112 => 0.030177928637352
113 => 0.030205976517252
114 => 0.029185802095559
115 => 0.030983733135789
116 => 0.030721789706208
117 => 0.032080752682245
118 => 0.031756425261655
119 => 0.032864606813974
120 => 0.03257278547204
121 => 0.033784119546897
122 => 0.034267353504918
123 => 0.035078778529795
124 => 0.035675666081188
125 => 0.036026169868006
126 => 0.036005126935352
127 => 0.037393997559018
128 => 0.036575029075686
129 => 0.03554621164457
130 => 0.035527603583118
131 => 0.036060442709149
201 => 0.037177127340034
202 => 0.037466667417722
203 => 0.037628480821366
204 => 0.037380657960921
205 => 0.036491726368264
206 => 0.03610789021354
207 => 0.036434929738169
208 => 0.036034988502375
209 => 0.036725399279046
210 => 0.037673480739201
211 => 0.0374777056668
212 => 0.038132152381599
213 => 0.038809435881614
214 => 0.03977798170534
215 => 0.04003119544881
216 => 0.04044974813791
217 => 0.04088057634239
218 => 0.041018946750523
219 => 0.041283138793466
220 => 0.04128174637099
221 => 0.042077906874573
222 => 0.042956096565062
223 => 0.043287592843084
224 => 0.044049850255584
225 => 0.042744511149364
226 => 0.043734625856087
227 => 0.044627734105729
228 => 0.043562933631974
301 => 0.045030513018354
302 => 0.045087495800321
303 => 0.045947868154944
304 => 0.045075715946135
305 => 0.044557834748552
306 => 0.046052938361218
307 => 0.046776371904064
308 => 0.046558467833462
309 => 0.044900207096923
310 => 0.043935028222109
311 => 0.04140896893762
312 => 0.044401195277738
313 => 0.04585862144357
314 => 0.044896432715242
315 => 0.045381704742635
316 => 0.048029191574107
317 => 0.049037183147453
318 => 0.04882752794659
319 => 0.048862956224317
320 => 0.049406850180954
321 => 0.051818775512553
322 => 0.050373493945867
323 => 0.051478357549931
324 => 0.052064373221645
325 => 0.052608697236541
326 => 0.051272009491328
327 => 0.04953299837465
328 => 0.048982180555278
329 => 0.044800762008877
330 => 0.044583101014557
331 => 0.044460921302641
401 => 0.043690595501679
402 => 0.043085330432118
403 => 0.042604001176752
404 => 0.041340849473588
405 => 0.041767126093199
406 => 0.039753925918605
407 => 0.041041900046876
408 => 0.037828783957807
409 => 0.040504762515044
410 => 0.039048349048155
411 => 0.040026291521056
412 => 0.040022879571896
413 => 0.038222177422341
414 => 0.037183570002172
415 => 0.037845411073509
416 => 0.038554957238992
417 => 0.038670078717142
418 => 0.03959002384174
419 => 0.039846760751861
420 => 0.039068835928294
421 => 0.037762199268693
422 => 0.038065701163509
423 => 0.037177419545961
424 => 0.035620740178466
425 => 0.036738774477215
426 => 0.037120520543306
427 => 0.037289121353686
428 => 0.035758305981588
429 => 0.035277290556056
430 => 0.035021201979614
501 => 0.037564590227312
502 => 0.037703922776895
503 => 0.03699107775359
504 => 0.040213204853668
505 => 0.039483938254964
506 => 0.040298707720371
507 => 0.038038161547711
508 => 0.038124517455736
509 => 0.037054338670739
510 => 0.037653567280965
511 => 0.037230051813297
512 => 0.037605155530951
513 => 0.037829991152703
514 => 0.038899994331891
515 => 0.040516980232581
516 => 0.038740171538382
517 => 0.037965990545951
518 => 0.038446288079496
519 => 0.039725383704196
520 => 0.041663279051317
521 => 0.040516006002043
522 => 0.041025146299351
523 => 0.041136370804237
524 => 0.04029041413206
525 => 0.04169447068048
526 => 0.042446915991314
527 => 0.043218769183611
528 => 0.043888947683647
529 => 0.042910474045192
530 => 0.043957581097025
531 => 0.043113797652524
601 => 0.042356836674078
602 => 0.042357984671422
603 => 0.041883131992208
604 => 0.040963045090941
605 => 0.040793366949682
606 => 0.041676054068499
607 => 0.04238388554701
608 => 0.042442185937864
609 => 0.042834077814062
610 => 0.043065995389588
611 => 0.045339102906404
612 => 0.046253365553799
613 => 0.047371308612927
614 => 0.047806810438276
615 => 0.04911751479653
616 => 0.048059014577036
617 => 0.04783000139627
618 => 0.044650661351273
619 => 0.045171278105531
620 => 0.046004835761144
621 => 0.044664406409996
622 => 0.045514600308993
623 => 0.045682446594224
624 => 0.044618859133565
625 => 0.045186967151204
626 => 0.043678240688643
627 => 0.040549866346591
628 => 0.041697953455416
629 => 0.042543332009454
630 => 0.041336872578418
701 => 0.043499404412121
702 => 0.04223609795859
703 => 0.041835690462225
704 => 0.040273558063324
705 => 0.041010824423615
706 => 0.042007987732546
707 => 0.041391856740304
708 => 0.04267042106174
709 => 0.044481209121543
710 => 0.045771684527252
711 => 0.045870751205006
712 => 0.045041061974272
713 => 0.046370644261529
714 => 0.046380328816953
715 => 0.044880554565425
716 => 0.043961951187142
717 => 0.043753242566838
718 => 0.044274637620092
719 => 0.04490770746958
720 => 0.04590588217571
721 => 0.046509058245311
722 => 0.048081821534962
723 => 0.048507366186484
724 => 0.04897491074143
725 => 0.049599694452239
726 => 0.05034990748832
727 => 0.048708484075026
728 => 0.048773700887232
729 => 0.047245230131827
730 => 0.045611839924797
731 => 0.046851379486969
801 => 0.048471912575471
802 => 0.048100160494439
803 => 0.048058330791117
804 => 0.048128676749512
805 => 0.047848387820702
806 => 0.046580651383685
807 => 0.045944002081465
808 => 0.046765442107888
809 => 0.047202000923842
810 => 0.047879065575458
811 => 0.047795603066045
812 => 0.049539648897172
813 => 0.050217332369939
814 => 0.050043951937894
815 => 0.050075858110024
816 => 0.051302771667087
817 => 0.05266735187656
818 => 0.05394546131495
819 => 0.055245609131757
820 => 0.053678230192963
821 => 0.052882411830337
822 => 0.053703493241741
823 => 0.053267815887292
824 => 0.055771347196253
825 => 0.05594468627225
826 => 0.058448036547402
827 => 0.060824014051926
828 => 0.059331705151393
829 => 0.060738885229527
830 => 0.062260865213103
831 => 0.065197011533776
901 => 0.064208220747847
902 => 0.063450822502152
903 => 0.062735084819691
904 => 0.064224421316734
905 => 0.066140428927447
906 => 0.066553118615501
907 => 0.067221833569745
908 => 0.066518761561932
909 => 0.067365534354501
910 => 0.070355014403089
911 => 0.06954723050509
912 => 0.06840004751219
913 => 0.070759954897834
914 => 0.071613996206791
915 => 0.077608105377957
916 => 0.085175915810853
917 => 0.082042792598711
918 => 0.080097961915681
919 => 0.080555043258194
920 => 0.083318551441737
921 => 0.084206102560926
922 => 0.081793432661753
923 => 0.082645628457857
924 => 0.087341311080432
925 => 0.089860394151909
926 => 0.08643914098285
927 => 0.077000039178286
928 => 0.068296756235281
929 => 0.070605258785705
930 => 0.070343546237661
1001 => 0.075388471417281
1002 => 0.069527965126275
1003 => 0.069626641022109
1004 => 0.074775889911775
1005 => 0.073402158588487
1006 => 0.071176889778974
1007 => 0.06831300316022
1008 => 0.063018843868003
1009 => 0.058329659344333
1010 => 0.067526230049951
1011 => 0.067129657198246
1012 => 0.066555360940174
1013 => 0.067833395117169
1014 => 0.074039166304326
1015 => 0.073896103192341
1016 => 0.072986008665334
1017 => 0.073676307342864
1018 => 0.071055877083258
1019 => 0.071731221627247
1020 => 0.068295377590796
1021 => 0.069848522588794
1022 => 0.071172115351528
1023 => 0.071437846194773
1024 => 0.072036551353157
1025 => 0.066920681325808
1026 => 0.069217556774035
1027 => 0.070566755911743
1028 => 0.064471025123292
1029 => 0.070446262913324
1030 => 0.066831625410415
1031 => 0.065604763151894
1101 => 0.067256571556181
1102 => 0.066612860214594
1103 => 0.066059435003096
1104 => 0.065750614226028
1105 => 0.066963520014695
1106 => 0.066906936509918
1107 => 0.06492238722479
1108 => 0.062333623582918
1109 => 0.0632024976344
1110 => 0.062886827545759
1111 => 0.061742798422271
1112 => 0.062513735920899
1113 => 0.059118917339484
1114 => 0.053278308417474
1115 => 0.057136793574043
1116 => 0.056988246092739
1117 => 0.056913341716574
1118 => 0.059812886671039
1119 => 0.059534162327551
1120 => 0.059028274914843
1121 => 0.061733507403215
1122 => 0.060746061154448
1123 => 0.063789137821553
1124 => 0.065793504928367
1125 => 0.065285132595595
1126 => 0.067170249547501
1127 => 0.063222514737667
1128 => 0.064533793885864
1129 => 0.064804046700953
1130 => 0.061700125254231
1201 => 0.059579765077188
1202 => 0.059438361227255
1203 => 0.055761948883892
1204 => 0.057725858682753
1205 => 0.059454018033641
1206 => 0.058626363815148
1207 => 0.05836435321504
1208 => 0.059702908547827
1209 => 0.059806925761136
1210 => 0.057435322274448
1211 => 0.057928453738245
1212 => 0.059984893918565
1213 => 0.057876636721983
1214 => 0.053780637370883
1215 => 0.052764772900188
1216 => 0.052629237853701
1217 => 0.04987413283995
1218 => 0.052832657821665
1219 => 0.051541182383607
1220 => 0.055620937818182
1221 => 0.05329060339412
1222 => 0.053190147334679
1223 => 0.053038293267134
1224 => 0.050666860569844
1225 => 0.05118605361814
1226 => 0.052911930386012
1227 => 0.053527742660181
1228 => 0.053463508394784
1229 => 0.0529034726483
1230 => 0.053159854145194
1231 => 0.052333960014465
]
'min_raw' => 0.02889711686363
'max_raw' => 0.089860394151909
'avg_raw' => 0.059378755507769
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.028897'
'max' => '$0.08986'
'avg' => '$0.059378'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.01646173626624
'max_diff' => 0.056124404893325
'year' => 2033
]
8 => [
'items' => [
101 => 0.052042319607405
102 => 0.05112182226071
103 => 0.04976894545495
104 => 0.049957071272467
105 => 0.047276668320784
106 => 0.045816242532956
107 => 0.045412015922987
108 => 0.044871467206345
109 => 0.045473072338877
110 => 0.047269075075997
111 => 0.045102714731794
112 => 0.041388641874169
113 => 0.041611863981385
114 => 0.042113377781059
115 => 0.041178810133211
116 => 0.04029432028684
117 => 0.04106331244733
118 => 0.039489610815797
119 => 0.042303552104782
120 => 0.042227442878894
121 => 0.043276306178465
122 => 0.043932181924529
123 => 0.042420600672147
124 => 0.042040442074923
125 => 0.042256997689146
126 => 0.038677815769622
127 => 0.042983810656092
128 => 0.04302104907868
129 => 0.042702191096375
130 => 0.044995000440744
131 => 0.049833543302529
201 => 0.04801308884799
202 => 0.047308153859665
203 => 0.045968071931555
204 => 0.04775365153457
205 => 0.04761654688044
206 => 0.046996507639065
207 => 0.046621505971242
208 => 0.047312458042385
209 => 0.046535889363199
210 => 0.046396396289737
211 => 0.045551220034518
212 => 0.045249530564474
213 => 0.045026171691457
214 => 0.044780275519056
215 => 0.045322661201865
216 => 0.04409354388784
217 => 0.042611348898981
218 => 0.042488120423229
219 => 0.042828365079138
220 => 0.042677832147134
221 => 0.042487399729465
222 => 0.042123812382952
223 => 0.042015943784056
224 => 0.042366464400063
225 => 0.041970747061213
226 => 0.042554649550525
227 => 0.042395860382231
228 => 0.041508876996047
301 => 0.040403367293553
302 => 0.040393525938315
303 => 0.040155345686312
304 => 0.039851987324746
305 => 0.039767599968457
306 => 0.040998550072467
307 => 0.043546579948533
308 => 0.043046340714674
309 => 0.043407814827715
310 => 0.045185909699802
311 => 0.04575111259046
312 => 0.045349944966235
313 => 0.044800801979255
314 => 0.044824961483734
315 => 0.046701549307133
316 => 0.046818589787809
317 => 0.047114313323787
318 => 0.04749440163898
319 => 0.045414675649861
320 => 0.044727006576673
321 => 0.044401150819369
322 => 0.043397641208921
323 => 0.044479840289377
324 => 0.043849289229581
325 => 0.043934372110239
326 => 0.043878961772593
327 => 0.043909219563778
328 => 0.042302765550843
329 => 0.042888072960419
330 => 0.04191488586976
331 => 0.040611897600744
401 => 0.04060752952718
402 => 0.040926434060079
403 => 0.040736737165175
404 => 0.040226267698541
405 => 0.040298777476929
406 => 0.03966351551988
407 => 0.040375909780303
408 => 0.040396338698623
409 => 0.040122028103983
410 => 0.041219569753627
411 => 0.041669233462996
412 => 0.041488676353301
413 => 0.041656565094851
414 => 0.043067127913285
415 => 0.04329711119986
416 => 0.043399254583914
417 => 0.043262395980687
418 => 0.041682347593766
419 => 0.04175242945861
420 => 0.041238215234429
421 => 0.040803758401556
422 => 0.040821134396445
423 => 0.041044501683976
424 => 0.042019959728946
425 => 0.044072753678191
426 => 0.044150655707992
427 => 0.044245075240673
428 => 0.043861023549803
429 => 0.043745189884957
430 => 0.043898004388094
501 => 0.044668925864653
502 => 0.0466519452055
503 => 0.045951013729036
504 => 0.045381145528022
505 => 0.045881073575675
506 => 0.045804113571304
507 => 0.045154493684606
508 => 0.045136261018012
509 => 0.043889432759397
510 => 0.043428508741092
511 => 0.043043326131832
512 => 0.042622716777967
513 => 0.042373365454042
514 => 0.04275648241574
515 => 0.042844105797787
516 => 0.042006413865296
517 => 0.041892239550275
518 => 0.042576316865184
519 => 0.042275279943866
520 => 0.042584903882798
521 => 0.042656739292535
522 => 0.042645172137058
523 => 0.042330855017331
524 => 0.042531191376374
525 => 0.042057336164095
526 => 0.041542089791494
527 => 0.041213394706758
528 => 0.04092656465025
529 => 0.041085714636261
530 => 0.040518373995769
531 => 0.040336870306565
601 => 0.042463321925641
602 => 0.04403415459986
603 => 0.044011314070658
604 => 0.043872278223254
605 => 0.043665699156402
606 => 0.044653813319211
607 => 0.044309574102855
608 => 0.044560036894903
609 => 0.044623790187369
610 => 0.044816752202402
611 => 0.044885719537131
612 => 0.044677252350687
613 => 0.043977611010859
614 => 0.042234171311909
615 => 0.041422595425722
616 => 0.041154761865415
617 => 0.041164497106644
618 => 0.040895955693523
619 => 0.040975053174869
620 => 0.040868448817457
621 => 0.040666565954883
622 => 0.041073248938389
623 => 0.041120115363723
624 => 0.041025190695873
625 => 0.041047548891475
626 => 0.040261613184533
627 => 0.040321366169369
628 => 0.039988653956759
629 => 0.0399262744278
630 => 0.039085206926888
701 => 0.037595133934339
702 => 0.038420779017096
703 => 0.037423515860393
704 => 0.037045837191946
705 => 0.038833709267288
706 => 0.038654256498776
707 => 0.038347111365327
708 => 0.0378927796983
709 => 0.037724263663546
710 => 0.036700413582072
711 => 0.036639919057231
712 => 0.037147366803887
713 => 0.036913197129016
714 => 0.036584334218506
715 => 0.035393226092938
716 => 0.034054026197453
717 => 0.034094448224387
718 => 0.034520422794441
719 => 0.035759001307371
720 => 0.035275067254743
721 => 0.034923967547059
722 => 0.034858217125828
723 => 0.035681221305363
724 => 0.036845944644112
725 => 0.037392406775437
726 => 0.036850879399595
727 => 0.036228801908133
728 => 0.036266664882609
729 => 0.036518550288885
730 => 0.036545019883616
731 => 0.036140111387274
801 => 0.036254090757229
802 => 0.036080945671775
803 => 0.035018354601944
804 => 0.034999135699004
805 => 0.034738358713871
806 => 0.034730462490401
807 => 0.034286815784824
808 => 0.034224746543928
809 => 0.033343859082574
810 => 0.033923661877211
811 => 0.033534760603582
812 => 0.032948594651686
813 => 0.03284753942064
814 => 0.032844501578367
815 => 0.033446362946655
816 => 0.033916628776701
817 => 0.033541525707739
818 => 0.033456122010004
819 => 0.034368010067522
820 => 0.034251964000159
821 => 0.034151468854239
822 => 0.036741656443924
823 => 0.03469132085183
824 => 0.033797257504613
825 => 0.032690684334407
826 => 0.033050990138452
827 => 0.033126911865358
828 => 0.030465802865819
829 => 0.029386191276126
830 => 0.029015709262848
831 => 0.02880249162636
901 => 0.028899657580726
902 => 0.027927880524193
903 => 0.028580930777892
904 => 0.027739453989204
905 => 0.027598377667179
906 => 0.029103042404323
907 => 0.029312407712373
908 => 0.02841919026353
909 => 0.028992780464457
910 => 0.028784788684101
911 => 0.027753878693562
912 => 0.027714505514784
913 => 0.02719723111977
914 => 0.026387796855633
915 => 0.026017863676901
916 => 0.025825199265511
917 => 0.025904696356605
918 => 0.025864500194696
919 => 0.025602193048513
920 => 0.02587953533327
921 => 0.02517104040146
922 => 0.024888912010881
923 => 0.024761481162186
924 => 0.024132651130757
925 => 0.025133399352744
926 => 0.025330559359569
927 => 0.025528107832514
928 => 0.027247632417426
929 => 0.02716172982849
930 => 0.027938247396216
1001 => 0.027908073351458
1002 => 0.027686597962392
1003 => 0.026752229726856
1004 => 0.027124652252028
1005 => 0.025978393606859
1006 => 0.026837248521831
1007 => 0.026445303005277
1008 => 0.026704731348423
1009 => 0.026238255795736
1010 => 0.026496422626896
1011 => 0.025377313311342
1012 => 0.02433230477877
1013 => 0.024752846717978
1014 => 0.025210023900701
1015 => 0.026201300519424
1016 => 0.025610904343167
1017 => 0.0258232331335
1018 => 0.025111967229294
1019 => 0.023644422505857
1020 => 0.023652728649617
1021 => 0.023426978866116
1022 => 0.023231898093163
1023 => 0.025678718446125
1024 => 0.025374417656728
1025 => 0.024889554174728
1026 => 0.025538563213094
1027 => 0.025710171503997
1028 => 0.025715056950786
1029 => 0.026188557191831
1030 => 0.026441264355356
1031 => 0.026485805088223
1101 => 0.027230867948156
1102 => 0.027480603191189
1103 => 0.028509227313387
1104 => 0.026419823918097
1105 => 0.026376794030142
1106 => 0.025547696101216
1107 => 0.025021869087171
1108 => 0.025583699926732
1109 => 0.026081405353025
1110 => 0.025563161196159
1111 => 0.025630832942315
1112 => 0.024935132503825
1113 => 0.025183812674837
1114 => 0.025398009538949
1115 => 0.025279742620496
1116 => 0.025102691319388
1117 => 0.026040599183827
1118 => 0.025987678746425
1119 => 0.026861080112198
1120 => 0.02754195893435
1121 => 0.028762215505293
1122 => 0.0274888141601
1123 => 0.027442406353769
1124 => 0.027896050104699
1125 => 0.027480533740694
1126 => 0.027743125739608
1127 => 0.028719907874612
1128 => 0.028740545741931
1129 => 0.028394834873939
1130 => 0.028373798336204
1201 => 0.028440195890064
1202 => 0.028829088436914
1203 => 0.028693197431584
1204 => 0.028850453943291
1205 => 0.029047105619178
1206 => 0.029860540329231
1207 => 0.030056656683955
1208 => 0.029580195616648
1209 => 0.029623214716318
1210 => 0.029445005197997
1211 => 0.029272857036257
1212 => 0.029659820963628
1213 => 0.030367005146693
1214 => 0.030362605790593
1215 => 0.030526658775368
1216 => 0.030628862425794
1217 => 0.030190129540519
1218 => 0.02990453056486
1219 => 0.030014047385263
1220 => 0.030189167166053
1221 => 0.029957258400558
1222 => 0.028525810069336
1223 => 0.028960020051755
1224 => 0.028887746278897
1225 => 0.028784819637557
1226 => 0.029221421132526
1227 => 0.02917930985324
1228 => 0.027917913545895
1229 => 0.027998664044901
1230 => 0.027922824251193
1231 => 0.028167878140024
]
'min_raw' => 0.023231898093163
'max_raw' => 0.052042319607405
'avg_raw' => 0.037637108850284
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.023231'
'max' => '$0.052042'
'avg' => '$0.037637'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056652187704671
'max_diff' => -0.037818074544504
'year' => 2034
]
9 => [
'items' => [
101 => 0.027467300026499
102 => 0.027682793135754
103 => 0.027817948393756
104 => 0.027897555879031
105 => 0.028185152703207
106 => 0.02815140653532
107 => 0.028183054994029
108 => 0.028609485161536
109 => 0.030766222615623
110 => 0.030883609076676
111 => 0.03030555521037
112 => 0.030536476328351
113 => 0.030093158278725
114 => 0.030390760655411
115 => 0.03059437264326
116 => 0.029674289222507
117 => 0.029619807853622
118 => 0.029174660072708
119 => 0.029413857275712
120 => 0.029033277326845
121 => 0.029126658334175
122 => 0.028865556896869
123 => 0.029335487499242
124 => 0.029860942932529
125 => 0.029993693725841
126 => 0.029644483541447
127 => 0.029391632353873
128 => 0.028947708962853
129 => 0.029685963455597
130 => 0.029901851567174
131 => 0.029684829487254
201 => 0.02963454072931
202 => 0.029539243623877
203 => 0.029654758460726
204 => 0.029900675794154
205 => 0.02978470572109
206 => 0.029861305997478
207 => 0.029569384733746
208 => 0.03019027477936
209 => 0.031176397597121
210 => 0.031179568143227
211 => 0.031063597445041
212 => 0.031016144733966
213 => 0.031135137707996
214 => 0.03119968651506
215 => 0.031584487973492
216 => 0.031997395269556
217 => 0.033924253454721
218 => 0.033383199386774
219 => 0.035092822597958
220 => 0.036444912591215
221 => 0.036850345260463
222 => 0.036477366281836
223 => 0.035201425343882
224 => 0.035138821594268
225 => 0.037045616043941
226 => 0.03650685927519
227 => 0.036442775871856
228 => 0.035761036731011
301 => 0.036164028998286
302 => 0.036075888677893
303 => 0.035936754870181
304 => 0.036705636043457
305 => 0.038144912961333
306 => 0.037920588156229
307 => 0.037753140095347
308 => 0.037019431435958
309 => 0.037461287928672
310 => 0.03730395129482
311 => 0.037979969322142
312 => 0.037579511218389
313 => 0.036502777662784
314 => 0.036674251030475
315 => 0.036648333175905
316 => 0.037181720786393
317 => 0.037021611065219
318 => 0.036617069183176
319 => 0.038139993669297
320 => 0.03804110342412
321 => 0.038181307182324
322 => 0.038243029212631
323 => 0.039170006510394
324 => 0.039549759449322
325 => 0.03963597001497
326 => 0.039996705935805
327 => 0.039626994576636
328 => 0.041106103613043
329 => 0.042089624813848
330 => 0.043232035300122
331 => 0.044901404071559
401 => 0.045529102172143
402 => 0.04541571412858
403 => 0.046681410478841
404 => 0.048955838685411
405 => 0.045875441097519
406 => 0.049119107237359
407 => 0.048092199987412
408 => 0.045657421371061
409 => 0.045500650332322
410 => 0.047149510679676
411 => 0.05080652423318
412 => 0.049890483815531
413 => 0.05080802254714
414 => 0.049737664878779
415 => 0.049684512598862
416 => 0.050756037664271
417 => 0.05325971438539
418 => 0.052070311424105
419 => 0.050365010625532
420 => 0.051624178197779
421 => 0.050533370716241
422 => 0.048075476162546
423 => 0.049889783336688
424 => 0.048676607797832
425 => 0.049030676916029
426 => 0.051580591452462
427 => 0.051273778989201
428 => 0.051670822726729
429 => 0.050970050922436
430 => 0.050315419555655
501 => 0.049093501495995
502 => 0.048731751798362
503 => 0.048831726400397
504 => 0.048731702255914
505 => 0.048048050331541
506 => 0.047900415763563
507 => 0.047654351682249
508 => 0.047730617230138
509 => 0.047267944768681
510 => 0.048141103296459
511 => 0.048303169213461
512 => 0.048938581174599
513 => 0.049004551752303
514 => 0.050774165019549
515 => 0.049799491769093
516 => 0.050453386734739
517 => 0.050394896214313
518 => 0.045710190406572
519 => 0.046355701533369
520 => 0.047359914274115
521 => 0.046907517795587
522 => 0.046267935019422
523 => 0.045751437635409
524 => 0.04496889128406
525 => 0.046070310246112
526 => 0.047518559058361
527 => 0.049041281732156
528 => 0.050870733251978
529 => 0.050462420969917
530 => 0.049007081408533
531 => 0.04907236687813
601 => 0.049475935962296
602 => 0.048953277330183
603 => 0.048799135096065
604 => 0.049454759186344
605 => 0.049459274109129
606 => 0.048857892187477
607 => 0.048189566233291
608 => 0.04818676592314
609 => 0.048067843774855
610 => 0.049758820864772
611 => 0.050688687287159
612 => 0.050795294973931
613 => 0.050681511740434
614 => 0.050725302391112
615 => 0.050184233608133
616 => 0.051420956397059
617 => 0.052555895527384
618 => 0.052251707596019
619 => 0.05179568664404
620 => 0.051432443990844
621 => 0.052166139170944
622 => 0.052133468879517
623 => 0.05254598282418
624 => 0.052527268808854
625 => 0.052388555884698
626 => 0.052251712549894
627 => 0.052794280904322
628 => 0.052638029931628
629 => 0.052481536258016
630 => 0.052167664237604
701 => 0.05221032465804
702 => 0.051754382444508
703 => 0.051543442714032
704 => 0.048371415282853
705 => 0.047523745904256
706 => 0.047790439946664
707 => 0.047878242550133
708 => 0.047509335750249
709 => 0.048038253336901
710 => 0.047955822091283
711 => 0.048276513847314
712 => 0.048076159560964
713 => 0.048084382170762
714 => 0.048673581406882
715 => 0.04884462845176
716 => 0.048757632544216
717 => 0.048818561495814
718 => 0.050222643468902
719 => 0.050023027912343
720 => 0.049916986126406
721 => 0.049946360425813
722 => 0.050305133473794
723 => 0.050405570338947
724 => 0.049980012283722
725 => 0.050180707922688
726 => 0.051035244481334
727 => 0.05133428391428
728 => 0.052288674237172
729 => 0.051883232265072
730 => 0.052627438551979
731 => 0.054914874959311
801 => 0.056742237440048
802 => 0.055061719383814
803 => 0.058417437866478
804 => 0.061030346054459
805 => 0.060930058286178
806 => 0.060474437305948
807 => 0.05749971080169
808 => 0.054762323121799
809 => 0.057052264151649
810 => 0.057058101682264
811 => 0.056861393716952
812 => 0.05563965743851
813 => 0.056818879942729
814 => 0.056912482342807
815 => 0.056860089889651
816 => 0.055923387549482
817 => 0.054493216207573
818 => 0.054772668264436
819 => 0.055230416434244
820 => 0.054363803652525
821 => 0.054086868358846
822 => 0.054601743758891
823 => 0.056260779576386
824 => 0.055947148465229
825 => 0.055938958289433
826 => 0.057280805183254
827 => 0.056320332395962
828 => 0.054776193049802
829 => 0.054386277500201
830 => 0.053002339977703
831 => 0.053958230553909
901 => 0.053992631354007
902 => 0.053469099854384
903 => 0.05481867474565
904 => 0.054806238175439
905 => 0.056087458676981
906 => 0.058536671071486
907 => 0.057812318448009
908 => 0.056969975156246
909 => 0.057061561227707
910 => 0.058066034377944
911 => 0.057458706981419
912 => 0.057677106147646
913 => 0.058065703804649
914 => 0.058300154419455
915 => 0.057027827392226
916 => 0.056731187099742
917 => 0.056124365167915
918 => 0.055966056652769
919 => 0.056460300454487
920 => 0.056330084674626
921 => 0.053989740099965
922 => 0.053745161070359
923 => 0.053752661960019
924 => 0.053137656360975
925 => 0.052199625204176
926 => 0.054664715077312
927 => 0.054466733861589
928 => 0.054248177921959
929 => 0.054274949777501
930 => 0.055344961741781
1001 => 0.054724300765599
1002 => 0.056374429695113
1003 => 0.056035212794621
1004 => 0.055687296260614
1005 => 0.055639203597817
1006 => 0.055505285415068
1007 => 0.055046030137661
1008 => 0.054491451793229
1009 => 0.054125271133481
1010 => 0.049927701569629
1011 => 0.050706746064541
1012 => 0.051602965743797
1013 => 0.051912337185701
1014 => 0.051383135926472
1015 => 0.055066926228895
1016 => 0.055739990215035
1017 => 0.053701235498141
1018 => 0.053319867732417
1019 => 0.055091928636126
1020 => 0.054023159285554
1021 => 0.054504426058675
1022 => 0.053464190534038
1023 => 0.055577868810388
1024 => 0.055561766123302
1025 => 0.054739497534213
1026 => 0.055434473315059
1027 => 0.055313704170623
1028 => 0.054385364958699
1029 => 0.055607298819255
1030 => 0.055607904883204
1031 => 0.054816489243867
1101 => 0.053892289040282
1102 => 0.053727063872515
1103 => 0.053602588903481
1104 => 0.054473812846747
1105 => 0.055254949510032
1106 => 0.056708451180205
1107 => 0.057073896034435
1108 => 0.058500251629533
1109 => 0.057650926320645
1110 => 0.058027421229471
1111 => 0.058436159711458
1112 => 0.058632123970583
1113 => 0.058312810726361
1114 => 0.060528528076935
1115 => 0.060715602509149
1116 => 0.060778326948083
1117 => 0.060031199524062
1118 => 0.060694823543943
1119 => 0.060384335841959
1120 => 0.061192138586555
1121 => 0.061318812371451
1122 => 0.061211524182195
1123 => 0.06125173244093
1124 => 0.059361008561541
1125 => 0.059262964554032
1126 => 0.057926127554756
1127 => 0.058470898513361
1128 => 0.0574524753178
1129 => 0.057775427804034
1130 => 0.057917782182762
1201 => 0.057843424333854
1202 => 0.058501699045993
1203 => 0.057942031064036
1204 => 0.056464975241717
1205 => 0.054987516996527
1206 => 0.05496896871177
1207 => 0.054579980035115
1208 => 0.054298812468724
1209 => 0.054352975316966
1210 => 0.054543852258743
1211 => 0.054287718353873
1212 => 0.054342377508795
1213 => 0.055250083672557
1214 => 0.055432117670236
1215 => 0.054813495020851
1216 => 0.052329635816747
1217 => 0.051720090537771
1218 => 0.052158219596491
1219 => 0.051948822125548
1220 => 0.041926753894648
1221 => 0.044281290166059
1222 => 0.042882304666083
1223 => 0.0435270215487
1224 => 0.042099019618764
1225 => 0.042780536987723
1226 => 0.042654685614705
1227 => 0.04644071026334
1228 => 0.046381596695959
1229 => 0.046409891232444
1230 => 0.045059319284978
1231 => 0.047210817069316
]
'min_raw' => 0.027467300026499
'max_raw' => 0.061318812371451
'avg_raw' => 0.044393056198975
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027467'
'max' => '$0.061318'
'avg' => '$0.044393'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0042354019333366
'max_diff' => 0.0092764927640459
'year' => 2035
]
10 => [
'items' => [
101 => 0.048270722243238
102 => 0.048074562004008
103 => 0.048123931310116
104 => 0.047275603062847
105 => 0.046418104904231
106 => 0.045467007478306
107 => 0.04723402893648
108 => 0.047037566314393
109 => 0.04748818088444
110 => 0.048634220609369
111 => 0.048802979312246
112 => 0.049029792720295
113 => 0.048948496259187
114 => 0.050885307784836
115 => 0.050650747129586
116 => 0.051215970821032
117 => 0.050053262804102
118 => 0.048737548317689
119 => 0.048987622627609
120 => 0.048963538460593
121 => 0.048656919371961
122 => 0.048380117368609
123 => 0.047919320021509
124 => 0.049377351012908
125 => 0.049318157617334
126 => 0.050276429886875
127 => 0.050107045955073
128 => 0.048975858603224
129 => 0.049016259180793
130 => 0.049287972480797
131 => 0.050228375314482
201 => 0.050507550903026
202 => 0.050378225647189
203 => 0.050684328935178
204 => 0.050926260493169
205 => 0.050714711814018
206 => 0.05370979499411
207 => 0.052466027641265
208 => 0.053072231194964
209 => 0.053216807170563
210 => 0.052846478849172
211 => 0.052926789801619
212 => 0.053048439011151
213 => 0.053787069190071
214 => 0.055725448503923
215 => 0.056583943507034
216 => 0.05916676808129
217 => 0.056512657447853
218 => 0.056355173506667
219 => 0.05682041820632
220 => 0.058336809651156
221 => 0.059565702489789
222 => 0.059973397140892
223 => 0.060027280719341
224 => 0.060792142987839
225 => 0.061230547776305
226 => 0.060699268590568
227 => 0.060249065107906
228 => 0.058636492114323
229 => 0.05882315182922
301 => 0.060109052163333
302 => 0.061925462124419
303 => 0.063484130836276
304 => 0.062938339378473
305 => 0.067102342932793
306 => 0.067515186876774
307 => 0.067458145192559
308 => 0.068398665136365
309 => 0.066531924581465
310 => 0.06573385682785
311 => 0.060346404210884
312 => 0.061860058644915
313 => 0.064060244258587
314 => 0.063769041442345
315 => 0.062171207838566
316 => 0.063482918736206
317 => 0.063049226092454
318 => 0.062707154710403
319 => 0.064274250025381
320 => 0.062551164353835
321 => 0.064043055160922
322 => 0.062129689769199
323 => 0.062940832507878
324 => 0.062480388658844
325 => 0.062778352259045
326 => 0.061036463140668
327 => 0.061976344226976
328 => 0.060997360997435
329 => 0.060996896831917
330 => 0.060975285722865
331 => 0.062127055150943
401 => 0.062164614310643
402 => 0.061313454963066
403 => 0.061190789603472
404 => 0.061644347729408
405 => 0.061113349950999
406 => 0.061361800469456
407 => 0.061120875264102
408 => 0.061066637925716
409 => 0.060634465585731
410 => 0.060448273858839
411 => 0.060521284432523
412 => 0.060272061705009
413 => 0.060121895996902
414 => 0.060945413983906
415 => 0.060505441544071
416 => 0.060877981897409
417 => 0.060453425146439
418 => 0.058981726477009
419 => 0.058135337009288
420 => 0.055355434649272
421 => 0.056143811510115
422 => 0.056666506184488
423 => 0.056493755597726
424 => 0.056864890703694
425 => 0.056887675384966
426 => 0.056767015578741
427 => 0.056627306980611
428 => 0.056559304561412
429 => 0.057066138880788
430 => 0.057360373262444
501 => 0.056718965587814
502 => 0.056568692743895
503 => 0.057217191316035
504 => 0.057612775070415
505 => 0.060533543253445
506 => 0.060317163312489
507 => 0.060860234501869
508 => 0.060799093020051
509 => 0.061368318144547
510 => 0.06229876065061
511 => 0.060406910879967
512 => 0.060735270584908
513 => 0.060654764368189
514 => 0.061533710132458
515 => 0.061536454105194
516 => 0.061009482212917
517 => 0.061295162224863
518 => 0.061135703479416
519 => 0.061423866984581
520 => 0.060314273426457
521 => 0.061665638607029
522 => 0.062431775584364
523 => 0.062442413397038
524 => 0.062805556243856
525 => 0.063174530408038
526 => 0.06388274418531
527 => 0.063154778710174
528 => 0.061845239686416
529 => 0.061939784174146
530 => 0.061172001923658
531 => 0.061184908482
601 => 0.061116012262065
602 => 0.061322775004353
603 => 0.060359646221111
604 => 0.060585690621464
605 => 0.060269227137256
606 => 0.060734582655097
607 => 0.060233937043923
608 => 0.060654725545654
609 => 0.060836323913641
610 => 0.061506425801047
611 => 0.06013496245031
612 => 0.05733845583825
613 => 0.05792631543247
614 => 0.057056824917243
615 => 0.057137299574811
616 => 0.057299871190546
617 => 0.056772923393828
618 => 0.056873448427408
619 => 0.056869856965825
620 => 0.056838907690165
621 => 0.056701828216549
622 => 0.056503035859459
623 => 0.057294963425045
624 => 0.05742952735016
625 => 0.057728646286746
626 => 0.058618621347713
627 => 0.058529691852065
628 => 0.058674739549116
629 => 0.058358101240862
630 => 0.057151987517791
701 => 0.057217485295742
702 => 0.056400726955163
703 => 0.057707759939654
704 => 0.057398237276934
705 => 0.057198686002714
706 => 0.057144236588714
707 => 0.058036417725717
708 => 0.058303372305134
709 => 0.058137024125896
710 => 0.057795839157129
711 => 0.058451015159444
712 => 0.058626312618007
713 => 0.058665555254257
714 => 0.059826401512821
715 => 0.058730433664718
716 => 0.05899424401874
717 => 0.061052417092833
718 => 0.0591859381231
719 => 0.060174653660816
720 => 0.060126261180272
721 => 0.060632054593057
722 => 0.06008477135742
723 => 0.060091555589039
724 => 0.060540665874179
725 => 0.059909971476166
726 => 0.059753802673743
727 => 0.059538056591698
728 => 0.060009130268931
729 => 0.060291517633603
730 => 0.062567352402192
731 => 0.064037645453375
801 => 0.063973816154401
802 => 0.064557096463581
803 => 0.06429432334206
804 => 0.063445759616621
805 => 0.064894154424623
806 => 0.064435821703959
807 => 0.064473606096576
808 => 0.064472199759596
809 => 0.064776950950696
810 => 0.064561006801765
811 => 0.06413535871801
812 => 0.064417923780171
813 => 0.06525704099593
814 => 0.067861686580908
815 => 0.069319280757225
816 => 0.067773937581284
817 => 0.068839894611079
818 => 0.068200700232527
819 => 0.068084539599559
820 => 0.068754039387876
821 => 0.069424711046945
822 => 0.069381992161655
823 => 0.068895118976542
824 => 0.068620096668221
825 => 0.070702657726059
826 => 0.072237053237971
827 => 0.072132417750777
828 => 0.07259424476197
829 => 0.073950183150604
830 => 0.074074153163687
831 => 0.074058535791457
901 => 0.073751263179096
902 => 0.075086360613556
903 => 0.076200122382187
904 => 0.073680138447294
905 => 0.074639715340689
906 => 0.075070500323771
907 => 0.07570302048708
908 => 0.07677018802527
909 => 0.077929415023955
910 => 0.078093342431846
911 => 0.077977028091299
912 => 0.077212486723972
913 => 0.078480926738387
914 => 0.079223949150253
915 => 0.079666401992753
916 => 0.080788388784201
917 => 0.075073160705169
918 => 0.071027638205565
919 => 0.070395871449198
920 => 0.07168059399127
921 => 0.072019365080144
922 => 0.071882806879002
923 => 0.067329203502882
924 => 0.070371897669813
925 => 0.073645580756438
926 => 0.07377133625629
927 => 0.07541021045894
928 => 0.075943895079046
929 => 0.077263403624331
930 => 0.07718086800556
1001 => 0.07750214733837
1002 => 0.07742829078354
1003 => 0.079872402508376
1004 => 0.082568620694973
1005 => 0.08247525923262
1006 => 0.082087645968091
1007 => 0.082663317763799
1008 => 0.085446103876668
1009 => 0.085189909524634
1010 => 0.085438780515052
1011 => 0.088719842173078
1012 => 0.092985689054089
1013 => 0.091003774893835
1014 => 0.095303958341149
1015 => 0.098010695878304
1016 => 0.10269171856693
1017 => 0.10210563147179
1018 => 0.10392791925354
1019 => 0.10105641325142
1020 => 0.094462855043454
1021 => 0.093419399217916
1022 => 0.095508424205153
1023 => 0.1006440882922
1024 => 0.095346683866775
1025 => 0.096418341882684
1026 => 0.096109704302008
1027 => 0.096093258316959
1028 => 0.096720934675623
1029 => 0.095810457379984
1030 => 0.092101009085815
1031 => 0.093801027379117
1101 => 0.093144568674489
1102 => 0.093872958549512
1103 => 0.097803778294173
1104 => 0.09606586918602
1105 => 0.094235123116851
1106 => 0.096531284962664
1107 => 0.099455088039199
1108 => 0.099272121697248
1109 => 0.098917090519867
1110 => 0.10091838267794
1111 => 0.10422393099949
1112 => 0.10511740742803
1113 => 0.10577695346127
1114 => 0.10586789371613
1115 => 0.10680463486025
1116 => 0.10176754163914
1117 => 0.10976153794277
1118 => 0.11114188027471
1119 => 0.11088243312564
1120 => 0.11241662553391
1121 => 0.11196522720869
1122 => 0.11131122185767
1123 => 0.11374324315687
1124 => 0.11095512699134
1125 => 0.10699774710844
1126 => 0.10482665023658
1127 => 0.10768572573483
1128 => 0.10943166337363
1129 => 0.11058561709039
1130 => 0.11093480278784
1201 => 0.10215855684713
1202 => 0.097428647037999
1203 => 0.10046046499713
1204 => 0.10415949215216
1205 => 0.10174699335652
1206 => 0.10184155874185
1207 => 0.098401969452809
1208 => 0.10446381948248
1209 => 0.10358065892134
1210 => 0.10816249747482
1211 => 0.10706900493248
1212 => 0.11080531640689
1213 => 0.10982142037824
1214 => 0.11390551778427
1215 => 0.11553477481205
1216 => 0.11827055093531
1217 => 0.12028299898819
1218 => 0.12146474697684
1219 => 0.12139379926023
1220 => 0.12607647353577
1221 => 0.12331526411566
1222 => 0.11984653431691
1223 => 0.11978379593855
1224 => 0.12158030025361
1225 => 0.12534528045107
1226 => 0.12632148503804
1227 => 0.12686705022587
1228 => 0.12603149814944
1229 => 0.12303440322158
1230 => 0.12174027282734
1231 => 0.1228429094178
]
'min_raw' => 0.045467007478306
'max_raw' => 0.12686705022587
'avg_raw' => 0.086167028852089
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045467'
'max' => '$0.126867'
'avg' => '$0.086167'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017999707451807
'max_diff' => 0.065548237854421
'year' => 2036
]
11 => [
'items' => [
101 => 0.12149447961831
102 => 0.1238222477548
103 => 0.12701877059065
104 => 0.12635870126547
105 => 0.12856521405642
106 => 0.13084872266315
107 => 0.13411424252955
108 => 0.13496797034448
109 => 0.13637914995819
110 => 0.13783171732906
111 => 0.1382982428208
112 => 0.13918898473888
113 => 0.13918429008929
114 => 0.14186860081327
115 => 0.144829478668
116 => 0.14594714151368
117 => 0.14851714559903
118 => 0.14411610366655
119 => 0.14745434452786
120 => 0.15046552134636
121 => 0.1468754722071
122 => 0.1518235185714
123 => 0.15201563999921
124 => 0.15491644546211
125 => 0.15197592339838
126 => 0.15022985078342
127 => 0.15527069699832
128 => 0.15770980369655
129 => 0.15697512490894
130 => 0.15138418305963
131 => 0.14813001509656
201 => 0.13961322985507
202 => 0.14970172987135
203 => 0.1546155439437
204 => 0.15137145746827
205 => 0.15300758598924
206 => 0.16193377268317
207 => 0.16533228664843
208 => 0.16462541950107
209 => 0.16474486841295
210 => 0.16657864486121
211 => 0.17471061951195
212 => 0.16983775180353
213 => 0.17356287658374
214 => 0.17553866933523
215 => 0.17737389575494
216 => 0.1728671596974
217 => 0.16700396230364
218 => 0.16514684156876
219 => 0.15104889700225
220 => 0.15031503776329
221 => 0.14990310033425
222 => 0.14730589311388
223 => 0.1452651996736
224 => 0.14364236448379
225 => 0.13938356032614
226 => 0.14082078171084
227 => 0.13403313676505
228 => 0.138375631462
301 => 0.1275423862351
302 => 0.13656463477168
303 => 0.13165423508452
304 => 0.13495143640967
305 => 0.13493993278487
306 => 0.12886873976663
307 => 0.12536700233628
308 => 0.12759844571656
309 => 0.12999073015242
310 => 0.13037887025352
311 => 0.13348052946962
312 => 0.13434613588689
313 => 0.13172330803126
314 => 0.12731789130696
315 => 0.12834116913516
316 => 0.12534626564375
317 => 0.12009781247236
318 => 0.12386734316925
319 => 0.12515442668374
320 => 0.12572287608727
321 => 0.12056162518212
322 => 0.11893984809152
323 => 0.11807642757651
324 => 0.12665163862732
325 => 0.12712140804613
326 => 0.1247180012808
327 => 0.13558162776045
328 => 0.13312285450715
329 => 0.13586990664516
330 => 0.12824831739774
331 => 0.12853947237082
401 => 0.12493128987971
402 => 0.12695163097589
403 => 0.12552371900774
404 => 0.12678840738072
405 => 0.12754645637698
406 => 0.13115404680085
407 => 0.13660582765937
408 => 0.13061519309406
409 => 0.12800498782648
410 => 0.12962434449414
411 => 0.13393690469642
412 => 0.14047065415877
413 => 0.13660254297309
414 => 0.13831914503251
415 => 0.13869414621618
416 => 0.13584194423312
417 => 0.14057581891422
418 => 0.14311274081375
419 => 0.14571509774065
420 => 0.14797465134389
421 => 0.14467565915699
422 => 0.14820605368893
423 => 0.14536117889471
424 => 0.14280903210655
425 => 0.14281290265975
426 => 0.14121190369862
427 => 0.13810976647259
428 => 0.13753768477278
429 => 0.14051372602112
430 => 0.14290022927014
501 => 0.1430967931083
502 => 0.14441808392992
503 => 0.14520001022778
504 => 0.15286395092402
505 => 0.15594645127149
506 => 0.15971567434763
507 => 0.16118399915756
508 => 0.16560313041187
509 => 0.16203432301973
510 => 0.16126218909158
511 => 0.15054282215544
512 => 0.15229811789072
513 => 0.15510851572376
514 => 0.15058916458057
515 => 0.15345565266969
516 => 0.154021558139
517 => 0.15043559875808
518 => 0.15235101460359
519 => 0.14726423799914
520 => 0.13671670548879
521 => 0.14058756133308
522 => 0.14343781415046
523 => 0.13937015194642
524 => 0.1466612790069
525 => 0.14240195309758
526 => 0.14105195126802
527 => 0.13578511282053
528 => 0.13827085782854
529 => 0.14163286354432
530 => 0.13955553488709
531 => 0.14386630376332
601 => 0.14997150213213
602 => 0.15432243006059
603 => 0.15465644028126
604 => 0.15185908511278
605 => 0.15634186462274
606 => 0.15637451677751
607 => 0.15131792317759
608 => 0.14822078775287
609 => 0.14751711206794
610 => 0.14927503189263
611 => 0.1514094710897
612 => 0.15477488680175
613 => 0.15680853703282
614 => 0.1621112182707
615 => 0.16354597177389
616 => 0.16512233088381
617 => 0.1672288327858
618 => 0.16975822841515
619 => 0.16422405477671
620 => 0.16444393781236
621 => 0.15929059194609
622 => 0.15378350282342
623 => 0.15796269699917
624 => 0.16342643744907
625 => 0.16217304935296
626 => 0.16203201758776
627 => 0.16226919389789
628 => 0.16132418020525
629 => 0.15704991829732
630 => 0.15490341072545
701 => 0.15767295312565
702 => 0.1591448416532
703 => 0.16142761239727
704 => 0.16114621271961
705 => 0.16702638500465
706 => 0.16931124214743
707 => 0.16872667791576
708 => 0.16883425180271
709 => 0.17297087652072
710 => 0.17757165396891
711 => 0.18188088917519
712 => 0.18626442831297
713 => 0.18097990078993
714 => 0.17829674361807
715 => 0.18106507692269
716 => 0.17959616030415
717 => 0.18803699090328
718 => 0.18862141570016
719 => 0.19706163593116
720 => 0.20507240997312
721 => 0.20004098632529
722 => 0.2047853922049
723 => 0.20991685398077
724 => 0.21981627629611
725 => 0.21648249912618
726 => 0.21392887806096
727 => 0.21151571849334
728 => 0.21653712047527
729 => 0.22299707390617
730 => 0.22438848600252
731 => 0.22664310515894
801 => 0.22427264879768
802 => 0.22712760238761
803 => 0.23720684309026
804 => 0.23448334328049
805 => 0.23061553572617
806 => 0.23857212824034
807 => 0.24145158814074
808 => 0.26166114570667
809 => 0.28717654694883
810 => 0.27661300329142
811 => 0.27005587085984
812 => 0.27159695251852
813 => 0.28091431330132
814 => 0.2839067538665
815 => 0.27577226885421
816 => 0.27864550647918
817 => 0.29447732828329
818 => 0.30297059273553
819 => 0.29143559881178
820 => 0.25961100806065
821 => 0.2302672819745
822 => 0.23805055949775
823 => 0.23716817736984
824 => 0.25417749483836
825 => 0.23441838871074
826 => 0.23475108138288
827 => 0.25211213352347
828 => 0.24748050245614
829 => 0.23997785330156
830 => 0.23032205961626
831 => 0.21247243193615
901 => 0.19666251892618
902 => 0.22766939914424
903 => 0.22633232608688
904 => 0.22439604615671
905 => 0.22870502761394
906 => 0.24962821844455
907 => 0.24914587117415
908 => 0.24607742393557
909 => 0.24840481412198
910 => 0.23956985054912
911 => 0.24184682183023
912 => 0.23026263377836
913 => 0.23549917057623
914 => 0.23996175598609
915 => 0.24085768607682
916 => 0.24287626231857
917 => 0.22562774934273
918 => 0.23337182527915
919 => 0.23792074437001
920 => 0.21736856242641
921 => 0.23751449381328
922 => 0.2253274911063
923 => 0.22119103934491
924 => 0.22676022670554
925 => 0.22458990897489
926 => 0.22272399723541
927 => 0.22168278642434
928 => 0.22577218297321
929 => 0.22558140773632
930 => 0.21889036126471
1001 => 0.21016216390443
1002 => 0.21309163343185
1003 => 0.21202732968861
1004 => 0.20817015562521
1005 => 0.21076942522697
1006 => 0.19932355736107
1007 => 0.17963153660222
1008 => 0.19264068869842
1009 => 0.19213985049395
1010 => 0.19188730516006
1011 => 0.2016633234138
1012 => 0.20072358482982
1013 => 0.19901795009794
1014 => 0.20813883030579
1015 => 0.20480958633677
1016 => 0.21506953178075
1017 => 0.22182739542181
1018 => 0.22011338260845
1019 => 0.22646918602646
1020 => 0.21315912249307
1021 => 0.2175801916918
1022 => 0.21849136792632
1023 => 0.20802628005982
1024 => 0.2008773376841
1025 => 0.20040058473155
1026 => 0.18800530383699
1027 => 0.19462676283965
1028 => 0.2004533727474
1029 => 0.19766287876478
1030 => 0.19677949173352
1031 => 0.20129252449296
1101 => 0.20164322578988
1102 => 0.19364719905445
1103 => 0.19530982621398
1104 => 0.202243257858
1105 => 0.1951351215259
1106 => 0.18132517374013
1107 => 0.17790011575179
1108 => 0.1774431498798
1109 => 0.16815412097065
1110 => 0.17812899450412
1111 => 0.17377469489677
1112 => 0.18752987518387
1113 => 0.17967298997439
1114 => 0.17933429535637
1115 => 0.17882230876553
1116 => 0.17082685785847
1117 => 0.1725773534697
1118 => 0.17839626748945
1119 => 0.18047252156645
1120 => 0.18025595125597
1121 => 0.17836775163625
1122 => 0.17923215975301
1123 => 0.17644760002918
1124 => 0.17546431403509
1125 => 0.17236079296363
1126 => 0.16779947435817
1127 => 0.16843375368646
1128 => 0.1593965879951
1129 => 0.15447266048776
1130 => 0.15310978225005
1201 => 0.15128728451199
1202 => 0.15331563821905
1203 => 0.15937098684016
1204 => 0.15206695168923
1205 => 0.13954469574146
1206 => 0.14029730466081
1207 => 0.14198819345098
1208 => 0.13883723337683
1209 => 0.13585511410669
1210 => 0.1384478248651
1211 => 0.13314197994204
1212 => 0.14262937946096
1213 => 0.1423727718921
1214 => 0.14590908773591
1215 => 0.14812041860554
1216 => 0.1430240168779
1217 => 0.14174228562554
1218 => 0.14247241799832
1219 => 0.13040495626614
1220 => 0.14492291866084
1221 => 0.1450484706025
1222 => 0.14397341865321
1223 => 0.15170378543658
1224 => 0.16801727051136
1225 => 0.16187948121781
1226 => 0.15950274368769
1227 => 0.15498456390553
1228 => 0.16100477020228
1229 => 0.16054251228854
1230 => 0.15845200669649
1231 => 0.15718766239164
]
'min_raw' => 0.11807642757651
'max_raw' => 0.30297059273553
'avg_raw' => 0.21052351015602
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.118076'
'max' => '$0.30297'
'avg' => '$0.210523'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.072609420098202
'max_diff' => 0.17610354250966
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0037062841387149
]
1 => [
'year' => 2028
'avg' => 0.006361059524008
]
2 => [
'year' => 2029
'avg' => 0.017377268150156
]
3 => [
'year' => 2030
'avg' => 0.013406536498841
]
4 => [
'year' => 2031
'avg' => 0.01316688029564
]
5 => [
'year' => 2032
'avg' => 0.023085684927987
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0037062841387149
'min' => '$0.0037062'
'max_raw' => 0.023085684927987
'max' => '$0.023085'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.023085684927987
]
1 => [
'year' => 2033
'avg' => 0.059378755507769
]
2 => [
'year' => 2034
'avg' => 0.037637108850284
]
3 => [
'year' => 2035
'avg' => 0.044393056198975
]
4 => [
'year' => 2036
'avg' => 0.086167028852089
]
5 => [
'year' => 2037
'avg' => 0.21052351015602
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.023085684927987
'min' => '$0.023085'
'max_raw' => 0.21052351015602
'max' => '$0.210523'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.21052351015602
]
]
]
]
'prediction_2025_max_price' => '$0.006337'
'last_price' => 0.00614459
'sma_50day_nextmonth' => '$0.005637'
'sma_200day_nextmonth' => '$0.007751'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005358'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0058099'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00563'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005626'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055055'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005659'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.00561'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.0056093'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00559'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005755'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00677'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013947'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007468'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015884'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005775'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005761'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006088'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008861'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026583'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01707'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.48'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.68
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005683'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005267'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 40.19
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 79.65
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.42
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000396'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -59.81
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.88
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767675789
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de KDR para 2026
A previsão de preço para KDR em 2026 sugere que o preço médio poderia variar entre $0.002122 na extremidade inferior e $0.006337 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, KDR poderia potencialmente ganhar 3.13% até 2026 se KDR atingir a meta de preço prevista.
Previsão de preço de KDR 2027-2032
A previsão de preço de KDR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0037062 na extremidade inferior e $0.023085 na extremidade superior. Considerando a volatilidade de preços no mercado, se KDR atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002043 | $0.0037062 | $0.005368 |
| 2028 | $0.003688 | $0.006361 | $0.009033 |
| 2029 | $0.0081021 | $0.017377 | $0.026652 |
| 2030 | $0.00689 | $0.0134065 | $0.019922 |
| 2031 | $0.008146 | $0.013166 | $0.018187 |
| 2032 | $0.012435 | $0.023085 | $0.033735 |
Previsão de preço de KDR 2032-2037
A previsão de preço de KDR para 2032-2037 é atualmente estimada entre $0.023085 na extremidade inferior e $0.210523 na extremidade superior. Comparado ao preço atual, KDR poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012435 | $0.023085 | $0.033735 |
| 2033 | $0.028897 | $0.059378 | $0.08986 |
| 2034 | $0.023231 | $0.037637 | $0.052042 |
| 2035 | $0.027467 | $0.044393 | $0.061318 |
| 2036 | $0.045467 | $0.086167 | $0.126867 |
| 2037 | $0.118076 | $0.210523 | $0.30297 |
KDR Histograma de preços potenciais
Previsão de preço de KDR baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para KDR é Altista, com 20 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de KDR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de KDR
De acordo com nossos indicadores técnicos, o SMA de 200 dias de KDR está projetado para aumentar no próximo mês, alcançando $0.007751 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para KDR é esperado para alcançar $0.005637 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.48, sugerindo que o mercado de KDR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KDR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005358 | BUY |
| SMA 5 | $0.0058099 | BUY |
| SMA 10 | $0.00563 | BUY |
| SMA 21 | $0.005626 | BUY |
| SMA 50 | $0.0055055 | BUY |
| SMA 100 | $0.006241 | SELL |
| SMA 200 | $0.008066 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005659 | BUY |
| EMA 5 | $0.00561 | BUY |
| EMA 10 | $0.0056093 | BUY |
| EMA 21 | $0.00559 | BUY |
| EMA 50 | $0.005755 | BUY |
| EMA 100 | $0.00677 | SELL |
| EMA 200 | $0.013947 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007468 | SELL |
| SMA 50 | $0.015884 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.008861 | SELL |
| EMA 50 | $0.026583 | SELL |
| EMA 100 | $0.01707 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.48 | NEUTRAL |
| Stoch RSI (14) | 18.68 | NEUTRAL |
| Estocástico Rápido (14) | 40.19 | NEUTRAL |
| Índice de Canal de Commodities (20) | 79.65 | NEUTRAL |
| Índice Direcional Médio (14) | 10.42 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000396 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -59.81 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.88 | NEUTRAL |
| VWMA (10) | 0.005683 | BUY |
| Média Móvel de Hull (9) | 0.005267 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Previsão do preço de KDR com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do KDR
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de KDR por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.008634 | $0.012132 | $0.017048 | $0.023955 | $0.033661 | $0.047299 |
| Amazon.com stock | $0.012821 | $0.026751 | $0.055819 | $0.11647 | $0.243022 | $0.507081 |
| Apple stock | $0.008715 | $0.012362 | $0.017535 | $0.024872 | $0.035279 | $0.050041 |
| Netflix stock | $0.009695 | $0.015297 | $0.024137 | $0.038084 | $0.060091 | $0.094814 |
| Google stock | $0.007957 | $0.0103045 | $0.013344 | $0.01728 | $0.022378 | $0.02898 |
| Tesla stock | $0.013929 | $0.031576 | $0.071582 | $0.162271 | $0.367856 | $0.8339022 |
| Kodak stock | $0.0046077 | $0.003455 | $0.002591 | $0.001943 | $0.001457 | $0.001092 |
| Nokia stock | $0.00407 | $0.002696 | $0.001786 | $0.001183 | $0.000783 | $0.000519 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para KDR
Você pode fazer perguntas como: 'Devo investir em KDR agora?', 'Devo comprar KDR hoje?', 'KDR será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para KDR regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como KDR, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre KDR para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de KDR é de $0.006144 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de KDR com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se KDR tiver 1% da média anterior do crescimento anual do Bitcoin | $0.0063043 | $0.006468 | $0.006636 | $0.0068088 |
| Se KDR tiver 2% da média anterior do crescimento anual do Bitcoin | $0.006464 | $0.006800066 | $0.007153 | $0.007525 |
| Se KDR tiver 5% da média anterior do crescimento anual do Bitcoin | $0.006943 | $0.007845 | $0.008865 | $0.010017 |
| Se KDR tiver 10% da média anterior do crescimento anual do Bitcoin | $0.007741 | $0.009754 | $0.012289 | $0.015483 |
| Se KDR tiver 20% da média anterior do crescimento anual do Bitcoin | $0.009338 | $0.014193 | $0.021572 | $0.032787 |
| Se KDR tiver 50% da média anterior do crescimento anual do Bitcoin | $0.01413 | $0.032495 | $0.074728 | $0.171849 |
| Se KDR tiver 100% da média anterior do crescimento anual do Bitcoin | $0.022116 | $0.0796038 | $0.286519 | $1.03 |
Perguntas Frequentes sobre KDR
KDR é um bom investimento?
A decisão de adquirir KDR depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de KDR experimentou uma escalada de 21.5189% nas últimas 24 horas, e KDR registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em KDR dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
KDR pode subir?
Parece que o valor médio de KDR pode potencialmente subir para $0.006337 até o final deste ano. Observando as perspectivas de KDR em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.019922. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de KDR na próxima semana?
Com base na nossa nova previsão experimental de KDR, o preço de KDR aumentará 0.86% na próxima semana e atingirá $0.006197 até 13 de janeiro de 2026.
Qual será o preço de KDR no próximo mês?
Com base na nossa nova previsão experimental de KDR, o preço de KDR diminuirá -11.62% no próximo mês e atingirá $0.00543 até 5 de fevereiro de 2026.
Até onde o preço de KDR pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de KDR em 2026, espera-se que KDR fluctue dentro do intervalo de $0.002122 e $0.006337. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de KDR não considera flutuações repentinas e extremas de preço.
Onde estará KDR em 5 anos?
O futuro de KDR parece seguir uma tendência de alta, com um preço máximo de $0.019922 projetada após um período de cinco anos. Com base na previsão de KDR para 2030, o valor de KDR pode potencialmente atingir seu pico mais alto de aproximadamente $0.019922, enquanto seu pico mais baixo está previsto para cerca de $0.00689.
Quanto será KDR em 2026?
Com base na nossa nova simulação experimental de previsão de preços de KDR, espera-se que o valor de KDR em 2026 aumente 3.13% para $0.006337 se o melhor cenário ocorrer. O preço ficará entre $0.006337 e $0.002122 durante 2026.
Quanto será KDR em 2027?
De acordo com nossa última simulação experimental para previsão de preços de KDR, o valor de KDR pode diminuir -12.62% para $0.005368 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.005368 e $0.002043 ao longo do ano.
Quanto será KDR em 2028?
Nosso novo modelo experimental de previsão de preços de KDR sugere que o valor de KDR em 2028 pode aumentar 47.02%, alcançando $0.009033 no melhor cenário. O preço é esperado para variar entre $0.009033 e $0.003688 durante o ano.
Quanto será KDR em 2029?
Com base no nosso modelo de previsão experimental, o valor de KDR pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.026652 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.026652 e $0.0081021.
Quanto será KDR em 2030?
Usando nossa nova simulação experimental para previsões de preços de KDR, espera-se que o valor de KDR em 2030 aumente 224.23%, alcançando $0.019922 no melhor cenário. O preço está previsto para variar entre $0.019922 e $0.00689 ao longo de 2030.
Quanto será KDR em 2031?
Nossa simulação experimental indica que o preço de KDR poderia aumentar 195.98% em 2031, potencialmente atingindo $0.018187 sob condições ideais. O preço provavelmente oscilará entre $0.018187 e $0.008146 durante o ano.
Quanto será KDR em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de KDR, KDR poderia ver um 449.04% aumento em valor, atingindo $0.033735 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.033735 e $0.012435 ao longo do ano.
Quanto será KDR em 2033?
De acordo com nossa previsão experimental de preços de KDR, espera-se que o valor de KDR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.08986. Ao longo do ano, o preço de KDR poderia variar entre $0.08986 e $0.028897.
Quanto será KDR em 2034?
Os resultados da nossa nova simulação de previsão de preços de KDR sugerem que KDR pode aumentar 746.96% em 2034, atingindo potencialmente $0.052042 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.052042 e $0.023231.
Quanto será KDR em 2035?
Com base em nossa previsão experimental para o preço de KDR, KDR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.061318 em 2035. A faixa de preço esperada para o ano está entre $0.061318 e $0.027467.
Quanto será KDR em 2036?
Nossa recente simulação de previsão de preços de KDR sugere que o valor de KDR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.126867 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.126867 e $0.045467.
Quanto será KDR em 2037?
De acordo com a simulação experimental, o valor de KDR poderia aumentar 4830.69% em 2037, com um pico de $0.30297 sob condições favoráveis. O preço é esperado para cair entre $0.30297 e $0.118076 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de KDR?
Traders de KDR utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de KDR
Médias móveis são ferramentas populares para a previsão de preço de KDR. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KDR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KDR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KDR.
Como ler gráficos de KDR e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de KDR em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KDR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de KDR?
A ação de preço de KDR é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KDR. A capitalização de mercado de KDR pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KDR, grandes detentores de KDR, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de KDR.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


