Previsão de Preço KDR - Projeção KDR
Previsão de Preço KDR até $0.006276 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.0021026 | $0.006276 |
| 2027 | $0.002024 | $0.005317 |
| 2028 | $0.003653 | $0.008947 |
| 2029 | $0.008024 | $0.026397 |
| 2030 | $0.006824 | $0.019732 |
| 2031 | $0.008068 | $0.018013 |
| 2032 | $0.012316 | $0.033413 |
| 2033 | $0.02862 | $0.089001 |
| 2034 | $0.0230097 | $0.051544 |
| 2035 | $0.0272046 | $0.060732 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em KDR hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.81, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de KDR para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006085
'ticker' => 'KDR'
'marketcap' => '$92.16K'
'low24h' => '$0.004952'
'high24h' => '$0.006145'
'volume24h' => '$1.16K'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006085'
'change_24h_pct' => '20.9733%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de dez. de 2024'
'ath_pct' => '-98.43%'
'fdv' => '$610.31K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.300073'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006137'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005378'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.0021026'
'current_year_max_price_prediction' => '$0.006276'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006824'
'grand_prediction_max_price' => '$0.019732'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0062011532773534
107 => 0.0062243061326724
108 => 0.0062764706979202
109 => 0.0058307301992724
110 => 0.0060308545969118
111 => 0.0061484089314047
112 => 0.0056172941715024
113 => 0.0061379105002656
114 => 0.0058229708488741
115 => 0.005716075600957
116 => 0.0058599959698993
117 => 0.0058039100621553
118 => 0.0057556906921521
119 => 0.0057287834551763
120 => 0.0058344626902161
121 => 0.0058295326275875
122 => 0.0056566208876067
123 => 0.0054310645715861
124 => 0.0055067686748763
125 => 0.0054792646644212
126 => 0.005379586582444
127 => 0.0054467575745191
128 => 0.0051509705198814
129 => 0.0046420842660506
130 => 0.0049782701129388
131 => 0.0049653273235334
201 => 0.0049588009822064
202 => 0.0052114353546486
203 => 0.0051871503890049
204 => 0.0051430729385626
205 => 0.0053787770655007
206 => 0.0052927418885004
207 => 0.0055578820315782
208 => 0.0057325204779985
209 => 0.0056882265190244
210 => 0.0058524748219836
211 => 0.0055085127445153
212 => 0.005622763149287
213 => 0.0056463099993662
214 => 0.0053758685131617
215 => 0.0051911237097215
216 => 0.0051788033375769
217 => 0.0048584813078137
218 => 0.0050295947505642
219 => 0.0051801674990291
220 => 0.0051080548374317
221 => 0.0050852261230745
222 => 0.0052018530737816
223 => 0.0052109159866939
224 => 0.0050042806118505
225 => 0.0050472466495718
226 => 0.0052264221693787
227 => 0.0050427318861896
228 => 0.0046858516715907
301 => 0.0045973404441152
302 => 0.0045855314147844
303 => 0.0043454819459567
304 => 0.004603255187568
305 => 0.0044907302597113
306 => 0.004846195158555
307 => 0.004643155514732
308 => 0.0046344028814969
309 => 0.0046211719926301
310 => 0.0044145514984915
311 => 0.0044597882552904
312 => 0.0046101621246426
313 => 0.0046638172153104
314 => 0.0046582205497705
315 => 0.0046094252106466
316 => 0.004631763467025
317 => 0.0045598041600658
318 => 0.0045343938310751
319 => 0.0044541918431187
320 => 0.0043363170771874
321 => 0.0043527082863581
322 => 0.0041191675314381
323 => 0.0039919221332116
324 => 0.0039567022840499
325 => 0.0039096048298121
326 => 0.0039620220668276
327 => 0.0041185059398222
328 => 0.0039297531890851
329 => 0.0036061498374124
330 => 0.0036255989502412
331 => 0.0036692953322741
401 => 0.0035878674134363
402 => 0.0035108027219835
403 => 0.0035778042187456
404 => 0.0034406892126543
405 => 0.0036858650256856
406 => 0.0036792337070404
407 => 0.0037706200885679
408 => 0.0038277658683743
409 => 0.0036960633470863
410 => 0.0036629405191439
411 => 0.0036818087872885
412 => 0.0033699583444447
413 => 0.0037451352542585
414 => 0.0037483797997542
415 => 0.0037205980313999
416 => 0.0039203681535882
417 => 0.0043419454212692
418 => 0.0041833310952613
419 => 0.0041219108340877
420 => 0.0040051508726986
421 => 0.004160726588729
422 => 0.0041487808010971
423 => 0.0040947574191203
424 => 0.0040620839091374
425 => 0.0041222858531053
426 => 0.0040546242220544
427 => 0.0040424703339004
428 => 0.0039688309952478
429 => 0.0039425451017252
430 => 0.0039230840726327
501 => 0.0039016593918031
502 => 0.0039489168990154
503 => 0.0038418251704294
504 => 0.0037126830440862
505 => 0.0037019462736179
506 => 0.0037315914408673
507 => 0.0037184756611826
508 => 0.0037018834803108
509 => 0.0036702044884149
510 => 0.003660806008234
511 => 0.0036913465093276
512 => 0.0036568680642147
513 => 0.0037077428881169
514 => 0.0036939077510479
515 => 0.0036166258000335
516 => 0.0035203038756266
517 => 0.0035194464084573
518 => 0.0034986940078434
519 => 0.0034722627055174
520 => 0.0034649101218766
521 => 0.0035721615395707
522 => 0.0037941687644328
523 => 0.0037505834340097
524 => 0.0037820783020447
525 => 0.0039370018811603
526 => 0.0039862474282466
527 => 0.0039512941053694
528 => 0.0039034478411881
529 => 0.0039055528339882
530 => 0.0040690580027448
531 => 0.0040792556195606
601 => 0.0041050217073784
602 => 0.0041381384117197
603 => 0.0039569340233194
604 => 0.00389701812359
605 => 0.0038686266462906
606 => 0.0037811918850931
607 => 0.0038754827789548
608 => 0.0038205435130402
609 => 0.0038279566970047
610 => 0.0038231288512227
611 => 0.0038257651814772
612 => 0.0036857964940491
613 => 0.0037367937272103
614 => 0.0036520009360038
615 => 0.0035384729070159
616 => 0.0035380923212547
617 => 0.0035658781455145
618 => 0.0035493500499854
619 => 0.0035048733698927
620 => 0.0035111910723759
621 => 0.0034558413508245
622 => 0.0035179115307113
623 => 0.0035196914813726
624 => 0.0034957910811307
625 => 0.0035914187572804
626 => 0.0036305974942237
627 => 0.0036148657387883
628 => 0.0036294937123247
629 => 0.0037523946012648
630 => 0.0037724328087037
701 => 0.0037813324567984
702 => 0.0037694081073289
703 => 0.0036317401149622
704 => 0.0036378462758332
705 => 0.0035930433188634
706 => 0.0035551895414432
707 => 0.0035567034940231
708 => 0.0035761652562637
709 => 0.0036611559133856
710 => 0.0038400137408257
711 => 0.0038468012646337
712 => 0.003855027941495
713 => 0.0038215659123035
714 => 0.0038114734441109
715 => 0.0038247880147441
716 => 0.0038919576108328
717 => 0.0040647360483404
718 => 0.0040036646090413
719 => 0.0039540125782576
720 => 0.0039975707953463
721 => 0.0039908653492461
722 => 0.0039342646360379
723 => 0.0039326760425327
724 => 0.0038240411775434
725 => 0.0037838813414531
726 => 0.0037503207765044
727 => 0.0037136735157011
728 => 0.0036919477910696
729 => 0.0037253283782688
730 => 0.0037329629135088
731 => 0.0036599756762049
801 => 0.0036500277854575
802 => 0.0037096307389788
803 => 0.0036834017013562
804 => 0.0037103789169999
805 => 0.0037166378624355
806 => 0.0037156300280646
807 => 0.0036882439004008
808 => 0.0037056990015076
809 => 0.0036644124837739
810 => 0.0036195195967729
811 => 0.0035908807317919
812 => 0.0035658895237018
813 => 0.0035797560984478
814 => 0.0035303242914151
815 => 0.0035145100614796
816 => 0.0036997856060048
817 => 0.0038366506427934
818 => 0.003834660570954
819 => 0.0038225465204365
820 => 0.0038045474986129
821 => 0.0038906408702774
822 => 0.0038606476610808
823 => 0.0038824702267878
824 => 0.0038880249856504
825 => 0.0039048375677413
826 => 0.0039108466207485
827 => 0.003892683089005
828 => 0.0038317240579854
829 => 0.0036798199484951
830 => 0.0036091081754701
831 => 0.0035857721125741
901 => 0.0035866203341389
902 => 0.0035632225967546
903 => 0.0035701142790273
904 => 0.0035608259509078
905 => 0.0035432361045373
906 => 0.0035786699750013
907 => 0.0035827533984829
908 => 0.0035744827097134
909 => 0.0035764307563219
910 => 0.0035079529857678
911 => 0.0035131592019371
912 => 0.0034841703287323
913 => 0.0034787352644725
914 => 0.0034054539173607
915 => 0.0032756253886511
916 => 0.0033475629963164
917 => 0.003260672482215
918 => 0.0032277657279187
919 => 0.0033835411847073
920 => 0.0033679056493843
921 => 0.0033411444095152
922 => 0.0033015589582178
923 => 0.003286876329269
924 => 0.0031976693237319
925 => 0.0031923984979439
926 => 0.0032366118986799
927 => 0.0032162089355305
928 => 0.0031875554480623
929 => 0.0030837754210101
930 => 0.0029670923102172
1001 => 0.0029706142398882
1002 => 0.0030077289664649
1003 => 0.0031156450395896
1004 => 0.0030734803628528
1005 => 0.0030428894060963
1006 => 0.0030371606394566
1007 => 0.0031088681479378
1008 => 0.0032103492956263
1009 => 0.0032579619796091
1010 => 0.0032107792558009
1011 => 0.0031565782831883
1012 => 0.0031598772452481
1013 => 0.003181823761871
1014 => 0.003184130030461
1015 => 0.0031488507692402
1016 => 0.0031587816746244
1017 => 0.0031436957212448
1018 => 0.0030511132532006
1019 => 0.0030494387299359
1020 => 0.0030267174991839
1021 => 0.0030260295093467
1022 => 0.0029873750277609
1023 => 0.0029819669985812
1024 => 0.0029052161792333
1025 => 0.002955733800951
1026 => 0.0029218492325969
1027 => 0.0028707771955257
1028 => 0.0028619723570844
1029 => 0.0028617076730087
1030 => 0.0029141472355823
1031 => 0.0029551210141305
1101 => 0.0029224386691707
1102 => 0.002914997532744
1103 => 0.0029944494021808
1104 => 0.0029843384275751
1105 => 0.0029755823887754
1106 => 0.0032012627719058
1107 => 0.0030226191385982
1108 => 0.0029447203178539
1109 => 0.0028483057345981
1110 => 0.0028796988090707
1111 => 0.0028863137911223
1112 => 0.0026544540984269
1113 => 0.0025603886499767
1114 => 0.0025281089328502
1115 => 0.0025095314992757
1116 => 0.0025179974690363
1117 => 0.0024333275326545
1118 => 0.0024902271302146
1119 => 0.0024169101222795
1120 => 0.0024046182873049
1121 => 0.0025357181797274
1122 => 0.0025539599638835
1123 => 0.0024761348453954
1124 => 0.002526111170207
1125 => 0.0025079890601074
1126 => 0.0024181669319479
1127 => 0.0024147363873391
1128 => 0.0023696668008291
1129 => 0.0022991416251327
1130 => 0.0022669097273963
1201 => 0.002250123075205
1202 => 0.0022570495750645
1203 => 0.0022535473247811
1204 => 0.002230692772669
1205 => 0.0022548573209556
1206 => 0.0021931268855641
1207 => 0.0021685453287953
1208 => 0.0021574424098906
1209 => 0.0021026530954093
1210 => 0.0021898472596678
1211 => 0.0022070256084698
1212 => 0.0022242378039257
1213 => 0.0023740582141039
1214 => 0.0023665736097995
1215 => 0.0024342307875613
1216 => 0.002431601754047
1217 => 0.0024123048309757
1218 => 0.0023308942867278
1219 => 0.0023633430786616
1220 => 0.0022634707407512
1221 => 0.0023383018869725
1222 => 0.0023041520768605
1223 => 0.002326755801822
1224 => 0.0022861122662454
1225 => 0.002308606076964
1226 => 0.0022110992322455
1227 => 0.0021200487126057
1228 => 0.0021566900996391
1229 => 0.0021965234777953
1230 => 0.0022828923909939
1231 => 0.0022314517788209
]
'min_raw' => 0.0021026530954093
'max_raw' => 0.0062764706979202
'avg_raw' => 0.0041895618966648
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.0021026'
'max' => '$0.006276'
'avg' => '$0.004189'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039831769045907
'max_diff' => 0.00019064069792022
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022499517681432
102 => 0.0021879799007743
103 => 0.0020601142370033
104 => 0.0020608379427741
105 => 0.0020411685961078
106 => 0.0020241714088165
107 => 0.002237360351929
108 => 0.0022108469368345
109 => 0.0021686012798714
110 => 0.0022251487704921
111 => 0.0022401008245416
112 => 0.0022405264885003
113 => 0.0022817820779552
114 => 0.0023038001934428
115 => 0.0023076809817294
116 => 0.0023725975431228
117 => 0.0023943567182317
118 => 0.0024839796810315
119 => 0.0023019321101757
120 => 0.0022981829602536
121 => 0.0022259445096496
122 => 0.0021801297422318
123 => 0.0022290814859709
124 => 0.0022724460483444
125 => 0.0022272919674808
126 => 0.0022331881371869
127 => 0.0021725724728514
128 => 0.0021942397206193
129 => 0.0022129024732904
130 => 0.0022025979982113
131 => 0.0021871717002757
201 => 0.0022688906487528
202 => 0.0022642797454205
203 => 0.0023403783089529
204 => 0.0023997025810869
205 => 0.0025060222822331
206 => 0.0023950721315157
207 => 0.0023910286670366
208 => 0.0024305541809114
209 => 0.0023943506670814
210 => 0.0024172300381192
211 => 0.0025023360618452
212 => 0.0025041342180182
213 => 0.0024740127853268
214 => 0.0024721798934101
215 => 0.0024779650440509
216 => 0.0025118488520496
217 => 0.0025000088083906
218 => 0.0025137104066661
219 => 0.0025308444651158
220 => 0.0026017181955542
221 => 0.0026188056120211
222 => 0.0025772920488164
223 => 0.0025810402587661
224 => 0.0025655130465547
225 => 0.002550513954114
226 => 0.0025842297234793
227 => 0.0026458459546795
228 => 0.0026454626433031
301 => 0.0026597564112931
302 => 0.002668661310335
303 => 0.0026304349648629
304 => 0.0026055510195822
305 => 0.0026150931076094
306 => 0.0026303511141645
307 => 0.0026101451417259
308 => 0.0024854245195176
309 => 0.0025232567891114
310 => 0.0025169596495475
311 => 0.0025079917570502
312 => 0.0025460323966751
313 => 0.0025423632841825
314 => 0.002432459120077
315 => 0.0024394948280798
316 => 0.0024328869847836
317 => 0.0024542382783112
318 => 0.002393197627162
319 => 0.0024119733203404
320 => 0.0024237492590907
321 => 0.0024306853774817
322 => 0.0024557433932508
323 => 0.0024528031243188
324 => 0.0024555606220056
325 => 0.0024927150443203
326 => 0.0026806293625297
327 => 0.0026908571242602
328 => 0.0026404918848708
329 => 0.0026606118045965
330 => 0.002621985958466
331 => 0.0026479157477441
401 => 0.0026656562510229
402 => 0.0025854903280085
403 => 0.0025807434223201
404 => 0.0025419581535827
405 => 0.0025627991600923
406 => 0.0025296396202141
407 => 0.0025377758114287
408 => 0.0025150263114922
409 => 0.0025559708819977
410 => 0.0026017532739658
411 => 0.0026133197141784
412 => 0.0025828933896447
413 => 0.0025608627254898
414 => 0.0025221841365856
415 => 0.0025865074919418
416 => 0.0026053176012666
417 => 0.0025864086904452
418 => 0.00258202708264
419 => 0.0025737239437666
420 => 0.0025837886328035
421 => 0.0026052151573716
422 => 0.002595110804071
423 => 0.0026017849074418
424 => 0.0025763501076979
425 => 0.0026304476193738
426 => 0.0027163674871904
427 => 0.0027166437336148
428 => 0.002706539325848
429 => 0.0027024048198923
430 => 0.0027127725554478
501 => 0.0027183966266798
502 => 0.0027519239823486
503 => 0.0027879001707699
504 => 0.0029557853444915
505 => 0.0029086438595139
506 => 0.0030576015731734
507 => 0.0031754077849397
508 => 0.0032107327168072
509 => 0.0031782354416556
510 => 0.0030670640188305
511 => 0.0030616094184554
512 => 0.0032277464595202
513 => 0.0031808051358608
514 => 0.0031752216147776
515 => 0.0031158223839598
516 => 0.003150934686111
517 => 0.0031432551105641
518 => 0.0031311325248657
519 => 0.003198124351426
520 => 0.0033235270703452
521 => 0.0033039818805824
522 => 0.0032893923030997
523 => 0.0032254650215328
524 => 0.0032639635237113
525 => 0.0032502549444758
526 => 0.003309155700551
527 => 0.0032742641974635
528 => 0.0031804495091661
529 => 0.0031953898074947
530 => 0.003193131611458
531 => 0.0032396051258751
601 => 0.0032256549303906
602 => 0.003190407611897
603 => 0.0033230984574849
604 => 0.0033144822520377
605 => 0.0033266980614231
606 => 0.003332075838501
607 => 0.0034128424179353
608 => 0.0034459299012873
609 => 0.0034534413392861
610 => 0.0034848718893927
611 => 0.0034526593185669
612 => 0.0035815325690439
613 => 0.0036672257606485
614 => 0.0037667628124285
615 => 0.0039122131981164
616 => 0.0039669038886264
617 => 0.0039570245049032
618 => 0.0040673033273294
619 => 0.004265471919869
620 => 0.0039970800433123
621 => 0.0042796973410329
622 => 0.0041902239675481
623 => 0.0039780842085731
624 => 0.0039644249090586
625 => 0.0041080884168297
626 => 0.0044267202499659
627 => 0.0043469065896576
628 => 0.0044268507965217
629 => 0.0043335916327282
630 => 0.0043289605291959
701 => 0.0044223214070946
702 => 0.0046404641871414
703 => 0.004536832729301
704 => 0.0043882516230108
705 => 0.0044979615997174
706 => 0.0044029206647151
707 => 0.0041887668378722
708 => 0.0043468455576558
709 => 0.0042411428195592
710 => 0.0042719924980024
711 => 0.0044941639313857
712 => 0.0044674316767283
713 => 0.0045020256895951
714 => 0.0044409681623682
715 => 0.0043839308040499
716 => 0.0042774663390991
717 => 0.0042459474596619
718 => 0.0042546581440078
719 => 0.0042459431430793
720 => 0.0041863772533983
721 => 0.004173514005193
722 => 0.0041520746946323
723 => 0.0041587196334528
724 => 0.0041184074573072
725 => 0.0041944848626146
726 => 0.0042086054994314
727 => 0.004263968290685
728 => 0.0042697162393319
729 => 0.0044239008249331
730 => 0.0043389785461507
731 => 0.0043959517425948
801 => 0.0043908555236523
802 => 0.0039826819204141
803 => 0.0040389246415942
804 => 0.0041264206658121
805 => 0.0040870038255
806 => 0.0040312776354188
807 => 0.0039862757490789
808 => 0.0039180932895949
809 => 0.0040140587919905
810 => 0.0041402432228472
811 => 0.0042729164847345
812 => 0.0044323147157955
813 => 0.0043967388862227
814 => 0.0042699366456799
815 => 0.0042756249015616
816 => 0.0043107874611758
817 => 0.0042652487516199
818 => 0.0042518184971507
819 => 0.0043089423504473
820 => 0.0043093357310302
821 => 0.0042569379421494
822 => 0.0041987073885024
823 => 0.0041984634003565
824 => 0.0041881018357754
825 => 0.0043354349320488
826 => 0.004416453237943
827 => 0.0044257418561462
828 => 0.0044158280399301
829 => 0.0044196434743264
830 => 0.0043725007072431
831 => 0.0044802550930422
901 => 0.0045791411732556
902 => 0.0045526375913654
903 => 0.0045129049544059
904 => 0.0044812559952845
905 => 0.0045451821024148
906 => 0.0045423355734934
907 => 0.0045782774896113
908 => 0.0045766469566856
909 => 0.004564561042139
910 => 0.0045526380229915
911 => 0.0045999114461943
912 => 0.0045862974594998
913 => 0.0045726623265238
914 => 0.0045453149799058
915 => 0.0045490319385025
916 => 0.004509306161943
917 => 0.0044909271999786
918 => 0.004214551709331
919 => 0.0041406951474003
920 => 0.0041639319252727
921 => 0.0041715820758909
922 => 0.0041394396054889
923 => 0.0041855236513222
924 => 0.0041783415015942
925 => 0.0042062830447689
926 => 0.0041888263816741
927 => 0.0041895428092167
928 => 0.0042408791332255
929 => 0.0042557822864856
930 => 0.0042482024224543
1001 => 0.0042535110993992
1002 => 0.0043758473189436
1003 => 0.0043584550206165
1004 => 0.0043492157087716
1005 => 0.0043517750612952
1006 => 0.0043830345883069
1007 => 0.0043917855491633
1008 => 0.0043547071130957
1009 => 0.0043721935178931
1010 => 0.0044466484101651
1011 => 0.0044727034086783
1012 => 0.0045558584568239
1013 => 0.0045205327144085
1014 => 0.0045853746434742
1015 => 0.0047846766271796
1016 => 0.0049438928424117
1017 => 0.0047974710309958
1018 => 0.0050898513342069
1019 => 0.0053175113397201
1020 => 0.0053087733695209
1021 => 0.0052690755816889
1022 => 0.0050098907180665
1023 => 0.0047713849423325
1024 => 0.0049709051512241
1025 => 0.0049714137692683
1026 => 0.0049542748063788
1027 => 0.0048478261798387
1028 => 0.004950570624916
1029 => 0.0049587261058532
1030 => 0.0049541612052457
1031 => 0.0048725472928595
1101 => 0.004747937933418
1102 => 0.0047722863039802
1103 => 0.0048121694316544
1104 => 0.0047366623504751
1105 => 0.0047125332629029
1106 => 0.0047573938274463
1107 => 0.004901943913475
1108 => 0.0048746175570329
1109 => 0.0048739039554317
1110 => 0.0049908176964695
1111 => 0.0049071326894509
1112 => 0.0047725934149073
1113 => 0.00473862047373
1114 => 0.0046180394194659
1115 => 0.0047013251831411
1116 => 0.004704322489505
1117 => 0.0046587077279
1118 => 0.0047762948014142
1119 => 0.004775211215831
1120 => 0.0048868426416065
1121 => 0.0051002400008406
1122 => 0.0050371279010688
1123 => 0.0049637353956111
1124 => 0.0049717151959078
1125 => 0.0050592339093371
1126 => 0.0050063180973398
1127 => 0.0050253469922762
1128 => 0.0050592051068255
1129 => 0.0050796325479829
1130 => 0.0049687760014857
1201 => 0.0049429300376157
1202 => 0.0048900582662381
1203 => 0.0048762650079841
1204 => 0.0049193279625654
1205 => 0.0049079823954699
1206 => 0.0047040705775112
1207 => 0.0046827606579799
1208 => 0.0046834142027884
1209 => 0.0046298293968954
1210 => 0.0045480997060817
1211 => 0.0047628804537139
1212 => 0.0047456305538244
1213 => 0.0047265879993826
1214 => 0.0047289206036464
1215 => 0.0048221496465986
1216 => 0.0047680720935068
1217 => 0.004911846131538
1218 => 0.004882290511562
1219 => 0.0048519769014571
1220 => 0.0048477866371655
1221 => 0.0048361184835108
1222 => 0.0047961040431001
1223 => 0.0047477842018092
1224 => 0.0047158792571959
1225 => 0.0043501493343289
1226 => 0.0044180266806599
1227 => 0.0044961133803989
1228 => 0.0045230685962361
1229 => 0.0044769598343025
1230 => 0.0047979246980575
1231 => 0.0048565680715599
]
'min_raw' => 0.0020241714088165
'max_raw' => 0.0053175113397201
'avg_raw' => 0.0036708413742683
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002024'
'max' => '$0.005317'
'avg' => '$0.00367'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8481686592801E-5
'max_diff' => -0.00095895935820011
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046789334680085
102 => 0.0046457052864571
103 => 0.0048001031321081
104 => 0.0047069823568115
105 => 0.0047489146362257
106 => 0.0046582799838628
107 => 0.0048424426001616
108 => 0.0048410395895822
109 => 0.0047693961723406
110 => 0.0048299486980002
111 => 0.0048194262065424
112 => 0.0047385409649266
113 => 0.0048450068065932
114 => 0.0048450596123224
115 => 0.0047761043808896
116 => 0.0046955797668173
117 => 0.0046811838677276
118 => 0.0046703384915805
119 => 0.0047462473385272
120 => 0.0048143069733388
121 => 0.0049409490803088
122 => 0.0049727899149433
123 => 0.0050970668122862
124 => 0.0050230659708508
125 => 0.0050558695853878
126 => 0.0050914825493223
127 => 0.0051085567138558
128 => 0.0050807352789986
129 => 0.0052737884549838
130 => 0.0052900880580334
131 => 0.0052955531739449
201 => 0.0052304567292042
202 => 0.0052882776081466
203 => 0.0052612251337157
204 => 0.005331608156791
205 => 0.0053426451135048
206 => 0.0053332972038194
207 => 0.0053368005080868
208 => 0.0051720636792974
209 => 0.0051635212056687
210 => 0.0050470439715946
211 => 0.005094509305436
212 => 0.0050057751388921
213 => 0.0050339136571664
214 => 0.0050463168479081
215 => 0.0050398381249395
216 => 0.005097192924195
217 => 0.0050484296280165
218 => 0.0049197352719731
219 => 0.0047910058532385
220 => 0.004789389760247
221 => 0.0047554975765572
222 => 0.0047309997354125
223 => 0.0047357188887245
224 => 0.0047523498005251
225 => 0.0047300331165853
226 => 0.0047347955125884
227 => 0.0048138830179195
228 => 0.0048297434530874
229 => 0.0047758434973149
301 => 0.004559427397162
302 => 0.0045063183433458
303 => 0.0045444920780306
304 => 0.0045262474915546
305 => 0.0036530349848173
306 => 0.003858183310731
307 => 0.003736291141652
308 => 0.0037924646611527
309 => 0.0036680443203471
310 => 0.0037274242284083
311 => 0.0037164589275964
312 => 0.0040463313648854
313 => 0.0040411808605019
314 => 0.0040436461343917
315 => 0.0039259721883952
316 => 0.0041134299795634
317 => 0.0042057784282569
318 => 0.0041886871881781
319 => 0.0041929886850897
320 => 0.0041190747166086
321 => 0.0040443617831745
322 => 0.003961493641758
323 => 0.004115452405698
324 => 0.0040983348193116
325 => 0.0041375964037688
326 => 0.0042374496673836
327 => 0.0042521534397565
328 => 0.0042719154589367
329 => 0.0042648321818169
330 => 0.0044335845798673
331 => 0.0044131475509992
401 => 0.0044623949104368
402 => 0.0043610893556675
403 => 0.0042464525044346
404 => 0.004268241222093
405 => 0.0042661427933687
406 => 0.0042394273872439
407 => 0.0042153099131211
408 => 0.0041751611137626
409 => 0.0043021978558369
410 => 0.0042970403961051
411 => 0.0043805336742731
412 => 0.0043657754263465
413 => 0.0042672162347365
414 => 0.0042707362955463
415 => 0.0042944103961755
416 => 0.0043763467287592
417 => 0.004400671010921
418 => 0.0043894030342686
419 => 0.0044160734992134
420 => 0.0044371527472632
421 => 0.0044187207282266
422 => 0.0046796792480969
423 => 0.0045713110766822
424 => 0.0046241289694088
425 => 0.004636725725603
426 => 0.0046044593994928
427 => 0.0046114568102556
428 => 0.004622055980881
429 => 0.0046864120693876
430 => 0.0048553010672131
501 => 0.0049301008546838
502 => 0.0051551397058458
503 => 0.0049238897735977
504 => 0.0049101683596254
505 => 0.004950704652242
506 => 0.0050828262806557
507 => 0.0051898984509315
508 => 0.0052254204669537
509 => 0.0052301152877756
510 => 0.0052967569512921
511 => 0.0053349547100264
512 => 0.0052886649004915
513 => 0.0052494391336557
514 => 0.0051089373057314
515 => 0.0051252007748874
516 => 0.005237239949666
517 => 0.0053955018831152
518 => 0.0055313070863624
519 => 0.0054837528374744
520 => 0.0058465581884218
521 => 0.0058825288570413
522 => 0.005877558873709
523 => 0.0059595054099774
524 => 0.0057968582236066
525 => 0.0057273234002922
526 => 0.005257920189677
527 => 0.0053898033451517
528 => 0.0055815032568604
529 => 0.005556131054708
530 => 0.0054169134546718
531 => 0.0055312014773288
601 => 0.0054934142829215
602 => 0.0054636099549003
603 => 0.0056001493594186
604 => 0.0054500186754211
605 => 0.0055800055884435
606 => 0.0054132960279499
607 => 0.0054839700612776
608 => 0.0054438520618424
609 => 0.0054698133241541
610 => 0.0053180443151559
611 => 0.0053999351884269
612 => 0.0053146373855956
613 => 0.005314596943331
614 => 0.0053127139896058
615 => 0.0054130664763685
616 => 0.005416338967359
617 => 0.0053421783280173
618 => 0.0053314906212812
619 => 0.0053710086747383
620 => 0.0053247433839346
621 => 0.0053463906223114
622 => 0.0053253990567327
623 => 0.0053206734131709
624 => 0.0052830186812686
625 => 0.0052667959874267
626 => 0.0052731573236894
627 => 0.005251442803531
628 => 0.0052383590196871
629 => 0.0053101112956852
630 => 0.005271776949098
701 => 0.0053042360072788
702 => 0.005267244813822
703 => 0.0051390172210051
704 => 0.0050652721763939
705 => 0.0048230621402668
706 => 0.0048917526060518
707 => 0.0049372944559327
708 => 0.0049222428748188
709 => 0.0049545794952402
710 => 0.0049565647011069
711 => 0.0049460517361751
712 => 0.0049338790695782
713 => 0.0049279540886696
714 => 0.004972114042117
715 => 0.0049977503814489
716 => 0.0049418651898396
717 => 0.0049287720713625
718 => 0.0049852750855854
719 => 0.0050197418916207
720 => 0.0052742254221597
721 => 0.0052553724602464
722 => 0.0053026896949419
723 => 0.0052973625004573
724 => 0.0053469585006448
725 => 0.0054280270001177
726 => 0.0052631920735803
727 => 0.0052918017172642
728 => 0.0052847872933261
729 => 0.0053613689346022
730 => 0.0053616080141271
731 => 0.0053156934946454
801 => 0.0053405845005344
802 => 0.0053266910238962
803 => 0.0053517984139975
804 => 0.0052551206674459
805 => 0.0053728637270278
806 => 0.0054396164546156
807 => 0.0054405433163029
808 => 0.0054721835793971
809 => 0.0055043319191813
810 => 0.0055660378578667
811 => 0.0055026109740423
812 => 0.0053885121845249
813 => 0.0053967497485912
814 => 0.0053298536700443
815 => 0.0053309782052104
816 => 0.0053249753483622
817 => 0.0053429903736378
818 => 0.0052590739524212
819 => 0.0052787689687509
820 => 0.0052511958305554
821 => 0.0052917417786467
822 => 0.0052481210409858
823 => 0.0052847839107585
824 => 0.005300606389959
825 => 0.0053589916788425
826 => 0.005239497486346
827 => 0.0049958407388001
828 => 0.0050470603411868
829 => 0.0049713025260439
830 => 0.0049783142002658
831 => 0.0049924788980935
901 => 0.0049465664780331
902 => 0.004955325120914
903 => 0.0049550122005566
904 => 0.0049523156219704
905 => 0.0049403720282909
906 => 0.0049230514544876
907 => 0.0049920512895285
908 => 0.0050037757060519
909 => 0.0050298376316357
910 => 0.0051073802441999
911 => 0.005099631908624
912 => 0.0051122697654236
913 => 0.0050846813949886
914 => 0.0049795939456449
915 => 0.0049853006997352
916 => 0.0049141373847842
917 => 0.0050280178256754
918 => 0.005001049434124
919 => 0.004983662736651
920 => 0.0049789186151589
921 => 0.0050566534408613
922 => 0.0050799129190555
923 => 0.0050654191731304
924 => 0.0050356920773878
925 => 0.0050927768892405
926 => 0.0051080503766774
927 => 0.0051114695472499
928 => 0.0052126128889258
929 => 0.0051171223364872
930 => 0.0051401078615537
1001 => 0.0053194343666144
1002 => 0.0051568099718905
1003 => 0.0052429557407325
1004 => 0.0052387393536287
1005 => 0.0052828086139544
1006 => 0.0052351243879966
1007 => 0.0052357154911264
1008 => 0.0052748460087854
1009 => 0.0052198942539594
1010 => 0.0052062874266762
1011 => 0.0051874896922385
1012 => 0.005228533857682
1013 => 0.0052531379785974
1014 => 0.0054514291234404
1015 => 0.0055795342461837
1016 => 0.0055739728649522
1017 => 0.0056247934789388
1018 => 0.0056018983268744
1019 => 0.0055279638414223
1020 => 0.005654160992739
1021 => 0.0056142269337493
1022 => 0.0056175190490525
1023 => 0.0056173965163565
1024 => 0.0056439491744886
1025 => 0.0056251341826867
1026 => 0.0055880479025257
1027 => 0.0056126675060408
1028 => 0.0056857789268112
1029 => 0.0059127190202151
1030 => 0.0060397177030403
1031 => 0.0059050735400448
1101 => 0.0059979492807219
1102 => 0.0059422569313257
1103 => 0.0059321359747366
1104 => 0.0059904688033451
1105 => 0.0060489037358481
1106 => 0.0060451816832689
1107 => 0.0060027609229386
1108 => 0.0059787985118151
1109 => 0.0061602499168395
1110 => 0.0062939402211175
1111 => 0.0062848234386369
1112 => 0.0063250619515697
1113 => 0.0064432034700709
1114 => 0.0064540048499249
1115 => 0.0064526441243302
1116 => 0.0064258717773545
1117 => 0.0065421974449337
1118 => 0.0066392383633836
1119 => 0.0064196747525571
1120 => 0.0065032817012611
1121 => 0.006540815554182
1122 => 0.0065959263860622
1123 => 0.0066889075970919
1124 => 0.0067899098543185
1125 => 0.0068041926809237
1126 => 0.0067940583319511
1127 => 0.0067274446282238
1128 => 0.0068379625032886
1129 => 0.0069027012825384
1130 => 0.0069412517440611
1201 => 0.0070390093002975
1202 => 0.0065410473504796
1203 => 0.0061885651320837
1204 => 0.0061335199437763
1205 => 0.0062454564987446
1206 => 0.0062749732756125
1207 => 0.0062630750998679
1208 => 0.0058663243167821
1209 => 0.0061314311330128
1210 => 0.0064166637764628
1211 => 0.0064276207239442
1212 => 0.0065704141491886
1213 => 0.0066169135417484
1214 => 0.0067318809654322
1215 => 0.0067246897217785
1216 => 0.0067526824599143
1217 => 0.0067462474141835
1218 => 0.0069592003573106
1219 => 0.0071941190773977
1220 => 0.0071859845891169
1221 => 0.0071522122436722
1222 => 0.0072023699356982
1223 => 0.0074448312302482
1224 => 0.0074225092796091
1225 => 0.0074441931532757
1226 => 0.0077300686840699
1227 => 0.0081017475394224
1228 => 0.0079290653951642
1229 => 0.008303735960256
1230 => 0.008539571220548
1231 => 0.008947423917402
]
'min_raw' => 0.0036530349848173
'max_raw' => 0.008947423917402
'avg_raw' => 0.0063002294511097
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003653'
'max' => '$0.008947'
'avg' => '$0.00630022'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016288635760008
'max_diff' => 0.0036299125776819
'year' => 2028
]
3 => [
'items' => [
101 => 0.008896358751039
102 => 0.0090551328129629
103 => 0.0088049414456274
104 => 0.0082304514942072
105 => 0.0081395362603358
106 => 0.0083215508608868
107 => 0.0087690159956165
108 => 0.008307458591401
109 => 0.0084008310531401
110 => 0.0083739397778777
111 => 0.0083725068560996
112 => 0.0084271956522583
113 => 0.0083478667010543
114 => 0.0080246662828435
115 => 0.0081727871298775
116 => 0.0081155905574904
117 => 0.0081790544188408
118 => 0.0085215427040618
119 => 0.0083701204692646
120 => 0.0082106094454493
121 => 0.0084106716676436
122 => 0.0086654196253351
123 => 0.0086494779559689
124 => 0.0086185444542975
125 => 0.0087929149835936
126 => 0.0090809240122192
127 => 0.0091587716953427
128 => 0.0092162372634987
129 => 0.0092241607944587
130 => 0.0093057780877935
131 => 0.0088669013313259
201 => 0.0095634100149944
202 => 0.0096836778239999
203 => 0.0096610724604968
204 => 0.0097947450685633
205 => 0.0097554151963234
206 => 0.0096984323821156
207 => 0.0099103318988802
208 => 0.0096674062023189
209 => 0.0093226037595449
210 => 0.0091334383200201
211 => 0.0093825466303271
212 => 0.0095346683827496
213 => 0.0096352111843404
214 => 0.0096656353753521
215 => 0.0089009700846086
216 => 0.0084888579031792
217 => 0.0087530170865997
218 => 0.0090753095216657
219 => 0.0088651109805762
220 => 0.0088733503654284
221 => 0.0085736624850397
222 => 0.0091018252492439
223 => 0.0090248763770474
224 => 0.009424087262123
225 => 0.0093288123805322
226 => 0.0096543533600341
227 => 0.009568627510065
228 => 0.0099244707204191
301 => 0.0100664262111
302 => 0.01030479157356
303 => 0.010480134104508
304 => 0.010583098592448
305 => 0.010576916990803
306 => 0.010984913588727
307 => 0.010744332249247
308 => 0.010442105386191
309 => 0.010436639055751
310 => 0.010593166630716
311 => 0.010921205486598
312 => 0.011006261189158
313 => 0.011053795723376
314 => 0.010980994929532
315 => 0.010719861128145
316 => 0.010607104876685
317 => 0.010703176469792
318 => 0.010585689166948
319 => 0.010788505212772
320 => 0.011067014962858
321 => 0.011009503800812
322 => 0.011201754992976
323 => 0.01140071475145
324 => 0.01168523614191
325 => 0.011759620569173
326 => 0.011882575198852
327 => 0.012009135901284
328 => 0.012049783787998
329 => 0.012127393216035
330 => 0.01212698417604
331 => 0.012360865411145
401 => 0.012618843656164
402 => 0.012716224471449
403 => 0.012940146286587
404 => 0.01255668802532
405 => 0.012847545521342
406 => 0.013109906263389
407 => 0.012797108970857
408 => 0.013228227166191
409 => 0.013244966508781
410 => 0.013497710708027
411 => 0.013241506042162
412 => 0.013089372529405
413 => 0.013528576280365
414 => 0.013741093140667
415 => 0.013677081332824
416 => 0.013189948314492
417 => 0.012906416003704
418 => 0.012164357257074
419 => 0.013043357897009
420 => 0.013471493467921
421 => 0.013188839546793
422 => 0.013331393743613
423 => 0.014109123218113
424 => 0.014405232247748
425 => 0.014343643639542
426 => 0.014354051100494
427 => 0.014513826158126
428 => 0.015222356753398
429 => 0.0147977887971
430 => 0.015122355091432
501 => 0.015294503883635
502 => 0.015454405275789
503 => 0.015061737994012
504 => 0.014550883629848
505 => 0.014389074608511
506 => 0.013160735184836
507 => 0.013096794783427
508 => 0.013060903098523
509 => 0.012834611102183
510 => 0.012656807579655
511 => 0.012515411617119
512 => 0.012144346387016
513 => 0.012269570009442
514 => 0.01167816947999
515 => 0.012056526580785
516 => 0.011112637055915
517 => 0.011898736300056
518 => 0.011470898221017
519 => 0.011758179984423
520 => 0.011757177685414
521 => 0.011228200876217
522 => 0.010923098092136
523 => 0.011117521460931
524 => 0.011325958745624
525 => 0.011359776993798
526 => 0.011630021374173
527 => 0.011705440771853
528 => 0.01147691647589
529 => 0.011093077043507
530 => 0.011182234189204
531 => 0.010921291325425
601 => 0.010463998993673
602 => 0.010792434329895
603 => 0.010904576593964
604 => 0.01095410500638
605 => 0.010504410518481
606 => 0.010363106747041
607 => 0.01028787780478
608 => 0.011035027132141
609 => 0.011075957658888
610 => 0.010866551297057
611 => 0.01181308790926
612 => 0.011598857522224
613 => 0.011838205352263
614 => 0.011174144112733
615 => 0.01119951214636
616 => 0.010885134913514
617 => 0.011061165157214
618 => 0.010936752654686
619 => 0.011046943653087
620 => 0.011112991683195
621 => 0.011427317329831
622 => 0.011902325394032
623 => 0.01138036756006
624 => 0.011152943057224
625 => 0.011294035939699
626 => 0.011669784878734
627 => 0.012239063755605
628 => 0.011902039202692
629 => 0.012051604976227
630 => 0.012084278444026
701 => 0.011835769016035
702 => 0.012248226652685
703 => 0.012469266050966
704 => 0.012696006735943
705 => 0.012892879319579
706 => 0.012605441520228
707 => 0.012913041168123
708 => 0.012665170150567
709 => 0.012442804223385
710 => 0.012443141460708
711 => 0.012303648066338
712 => 0.012033362037449
713 => 0.01198351714679
714 => 0.012242816562713
715 => 0.012450750138538
716 => 0.012467876543777
717 => 0.012582999255366
718 => 0.012651127690227
719 => 0.013318878967974
720 => 0.013587454055812
721 => 0.013915862589354
722 => 0.01404379622126
723 => 0.01442883058655
724 => 0.014117884065616
725 => 0.014050608829866
726 => 0.013116641403454
727 => 0.013269578517207
728 => 0.013514445592563
729 => 0.013120679171336
730 => 0.013370433333068
731 => 0.01341974009511
801 => 0.01310729913902
802 => 0.013274187353444
803 => 0.012830981734839
804 => 0.011911986065377
805 => 0.012249249757574
806 => 0.012497589356763
807 => 0.012143178128669
808 => 0.012778446537418
809 => 0.012407335847629
810 => 0.01228971157542
811 => 0.011830817353453
812 => 0.012047397761763
813 => 0.012340325865135
814 => 0.012159330353798
815 => 0.012534923216435
816 => 0.013066862876885
817 => 0.013445954756477
818 => 0.013475056723789
819 => 0.013231326042395
820 => 0.013621906014798
821 => 0.013624750963491
822 => 0.013184175159055
823 => 0.012914324931974
824 => 0.012853014392612
825 => 0.013006180140578
826 => 0.013192151634567
827 => 0.01348537684741
828 => 0.013662566702356
829 => 0.014124583869819
830 => 0.014249592468265
831 => 0.014386939017717
901 => 0.014570476363893
902 => 0.014790860005986
903 => 0.014308673143533
904 => 0.014327831326487
905 => 0.013878825596503
906 => 0.013398998580079
907 => 0.013763127474263
908 => 0.014239177565371
909 => 0.014129971148482
910 => 0.014117683195697
911 => 0.014138348123887
912 => 0.014056010051901
913 => 0.0136835980039
914 => 0.013496575004816
915 => 0.01373788238829
916 => 0.01386612652325
917 => 0.014065021992509
918 => 0.014040503927749
919 => 0.014552837296747
920 => 0.014751914551782
921 => 0.014700982070948
922 => 0.01471035487318
923 => 0.015070774734253
924 => 0.015471635745764
925 => 0.015847094981313
926 => 0.016229028242064
927 => 0.01576859278912
928 => 0.015534812061827
929 => 0.015776014098045
930 => 0.015648028902463
1001 => 0.016383469799152
1002 => 0.016434390131176
1003 => 0.017169777847117
1004 => 0.017867748357886
1005 => 0.017429365585513
1006 => 0.017842740794667
1007 => 0.018289839786343
1008 => 0.019152366280483
1009 => 0.018861897701305
1010 => 0.018639403321877
1011 => 0.018429147208403
1012 => 0.018866656803324
1013 => 0.019429505907805
1014 => 0.019550738214008
1015 => 0.019747180864363
1016 => 0.019540645437379
1017 => 0.01978939461005
1018 => 0.020667588495502
1019 => 0.020430292755621
1020 => 0.020093294657796
1021 => 0.020786544387724
1022 => 0.021037428770044
1023 => 0.022798266754342
1024 => 0.025021397446107
1025 => 0.024101006741853
1026 => 0.0235296905309
1027 => 0.023663963392276
1028 => 0.024475775463185
1029 => 0.024736503734734
1030 => 0.02402775441424
1031 => 0.024278096656095
1101 => 0.025657507021828
1102 => 0.02639751642626
1103 => 0.025392484258518
1104 => 0.022619640367873
1105 => 0.020062951666263
1106 => 0.020741100639123
1107 => 0.020664219591013
1108 => 0.022146223944045
1109 => 0.020424633330704
1110 => 0.020453620501367
1111 => 0.02196627113495
1112 => 0.021562721879307
1113 => 0.020909023767849
1114 => 0.020067724385902
1115 => 0.018512504667599
1116 => 0.017135003192588
1117 => 0.019836600804729
1118 => 0.019720103003157
1119 => 0.019551396922474
1120 => 0.01992683404913
1121 => 0.021749850166482
1122 => 0.02170782374445
1123 => 0.021440473089549
1124 => 0.021643256204971
1125 => 0.020873474907274
1126 => 0.021071865075285
1127 => 0.02006254667371
1128 => 0.020518800744082
1129 => 0.020907621225293
1130 => 0.020985682693482
1201 => 0.021161559167228
1202 => 0.01965871395543
1203 => 0.02033344733431
1204 => 0.020729789980434
1205 => 0.018939099486175
1206 => 0.020694393786872
1207 => 0.019632552763821
1208 => 0.019272147972281
1209 => 0.019757385544369
1210 => 0.019568287990617
1211 => 0.019405713018082
1212 => 0.019314993390015
1213 => 0.01967129830924
1214 => 0.019654676258882
1215 => 0.019071692255225
1216 => 0.018311213387922
1217 => 0.018566455057657
1218 => 0.018473723366139
1219 => 0.018137651753451
1220 => 0.018364123442961
1221 => 0.017366856737058
1222 => 0.015651111202963
1223 => 0.016784585257493
1224 => 0.016740947739376
1225 => 0.016718943723938
1226 => 0.017570718148995
1227 => 0.017488839691805
1228 => 0.01734022949025
1229 => 0.018134922410558
1230 => 0.017844848804517
1231 => 0.018738787308398
]
'min_raw' => 0.0080246662828435
'max_raw' => 0.02639751642626
'avg_raw' => 0.017211091354552
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008024'
'max' => '$0.026397'
'avg' => '$0.017211'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0043716312980262
'max_diff' => 0.017450092508858
'year' => 2029
]
4 => [
'items' => [
101 => 0.019327593023371
102 => 0.019178252848184
103 => 0.019732027469061
104 => 0.018572335310212
105 => 0.018957538526608
106 => 0.019036928375638
107 => 0.018125116023278
108 => 0.017502236020009
109 => 0.017460697025143
110 => 0.016380708937627
111 => 0.016957629856619
112 => 0.017465296390722
113 => 0.017222163517401
114 => 0.017145194913096
115 => 0.017538410820039
116 => 0.017568967063675
117 => 0.016872281470569
118 => 0.017017144466539
119 => 0.017621247241204
120 => 0.017001922626586
121 => 0.015798676066484
122 => 0.015500254283394
123 => 0.015460439316525
124 => 0.014651095772654
125 => 0.0155201962539
126 => 0.015140810603391
127 => 0.016339285327609
128 => 0.015654722992685
129 => 0.015625212878643
130 => 0.015580604013078
131 => 0.014883968591307
201 => 0.015036487475184
202 => 0.015543483474474
203 => 0.015724385358739
204 => 0.015705515810124
205 => 0.015540998917486
206 => 0.015616313908473
207 => 0.015373698081022
208 => 0.015288025382737
209 => 0.015017618780818
210 => 0.014620195777728
211 => 0.014675459883844
212 => 0.013888060923337
213 => 0.013459044179226
214 => 0.013340297998806
215 => 0.013181505643604
216 => 0.013358234017857
217 => 0.013885830321013
218 => 0.013249437243607
219 => 0.012158385950177
220 => 0.012223959991973
221 => 0.012371285394781
222 => 0.012096745481304
223 => 0.011836916493586
224 => 0.012062816717815
225 => 0.011600523901714
226 => 0.012427151272977
227 => 0.012404793319181
228 => 0.012712908884894
301 => 0.012905579871303
302 => 0.012461535625604
303 => 0.012349859698634
304 => 0.012413475382024
305 => 0.011362049841273
306 => 0.012626984986726
307 => 0.012637924198392
308 => 0.012544256026724
309 => 0.013217794941186
310 => 0.014639172132758
311 => 0.014104392858524
312 => 0.013897310159751
313 => 0.013503645798008
314 => 0.014028180186554
315 => 0.013987904129525
316 => 0.013805760525398
317 => 0.013695599505299
318 => 0.013898574562552
319 => 0.01367044864948
320 => 0.013629470967011
321 => 0.013381190795409
322 => 0.013292566070176
323 => 0.013226951851864
324 => 0.013154717044624
325 => 0.013314049029604
326 => 0.01295298178977
327 => 0.012517570094389
328 => 0.012481370323138
329 => 0.012581321074279
330 => 0.012537100307357
331 => 0.012481158611119
401 => 0.012374350678185
402 => 0.012342663046074
403 => 0.012445632477781
404 => 0.012329385992875
405 => 0.012500914013628
406 => 0.012454267883062
407 => 0.012193706389563
408 => 0.011868950296443
409 => 0.011866059286015
410 => 0.011796091118459
411 => 0.011706976137292
412 => 0.011682186388206
413 => 0.012043792031017
414 => 0.012792304889689
415 => 0.012645353905137
416 => 0.012751541051618
417 => 0.013273876715025
418 => 0.013439911515241
419 => 0.013322063946798
420 => 0.013160746926591
421 => 0.013167844056783
422 => 0.013719113148812
423 => 0.013753495125881
424 => 0.013840367289889
425 => 0.013952022570711
426 => 0.013341079323933
427 => 0.0131390686848
428 => 0.013043344836856
429 => 0.012748552434978
430 => 0.013066460766813
501 => 0.012881229196045
502 => 0.012906223263353
503 => 0.01288994584423
504 => 0.012898834415745
505 => 0.01242692021378
506 => 0.012598860945896
507 => 0.0123129761303
508 => 0.011930208454293
509 => 0.011928925282828
510 => 0.012022607129264
511 => 0.011966881501233
512 => 0.011816925269038
513 => 0.011838225844048
514 => 0.011651610393443
515 => 0.011860884338533
516 => 0.01186688556646
517 => 0.011786303698371
518 => 0.012108719085021
519 => 0.012240812931998
520 => 0.012187772220191
521 => 0.012237091454262
522 => 0.012651460381989
523 => 0.012719020597392
524 => 0.012749026382297
525 => 0.012708822605529
526 => 0.012244665357593
527 => 0.012265252705288
528 => 0.012114196407822
529 => 0.011986569754383
530 => 0.011991674151207
531 => 0.012057290841378
601 => 0.012343842775723
602 => 0.012946874428392
603 => 0.0129697590388
604 => 0.012997495854206
605 => 0.012884676286543
606 => 0.012850648825398
607 => 0.012895539829881
608 => 0.013122006812726
609 => 0.013704541377788
610 => 0.013498634756319
611 => 0.013331229467938
612 => 0.01347808903799
613 => 0.013455481158304
614 => 0.013264647901987
615 => 0.013259291848072
616 => 0.012893021816117
617 => 0.012757620124868
618 => 0.01264446833702
619 => 0.012520909538591
620 => 0.012447659741155
621 => 0.012560204721455
622 => 0.012585945090043
623 => 0.012339863523666
624 => 0.012306323515472
625 => 0.012507279034614
626 => 0.012418846003017
627 => 0.012509801569049
628 => 0.01253090404057
629 => 0.012527506056624
630 => 0.012435171815167
701 => 0.012494022907225
702 => 0.012354822530153
703 => 0.012203463027308
704 => 0.012106905094523
705 => 0.012022645491617
706 => 0.012069397616506
707 => 0.011902734827877
708 => 0.011849416047535
709 => 0.012474085481427
710 => 0.012935535508572
711 => 0.012928825842423
712 => 0.012887982475327
713 => 0.012827297516597
714 => 0.013117567330011
715 => 0.013016443131146
716 => 0.01309001943503
717 => 0.013108747692356
718 => 0.013165432486693
719 => 0.013185692428445
720 => 0.013124452813035
721 => 0.012918925183928
722 => 0.012406769873176
723 => 0.012168360193484
724 => 0.012089681028158
725 => 0.012092540866385
726 => 0.012013653761215
727 => 0.01203688954916
728 => 0.012005573302414
729 => 0.011946267907293
730 => 0.012065735675476
731 => 0.012079503222839
801 => 0.012051618018212
802 => 0.012058185993361
803 => 0.011827308408972
804 => 0.011844861530274
805 => 0.011747123520325
806 => 0.011728798821709
807 => 0.011481725643581
808 => 0.011043999694698
809 => 0.011286542361466
810 => 0.010993584926671
811 => 0.010882637507085
812 => 0.011407845335542
813 => 0.011355129036563
814 => 0.011264901647934
815 => 0.011131436535117
816 => 0.011081933026508
817 => 0.010781165379105
818 => 0.010763394421963
819 => 0.010912462989426
820 => 0.010843672974678
821 => 0.010747065741157
822 => 0.01039716413426
823 => 0.010003758879667
824 => 0.010015633311446
825 => 0.010140768203367
826 => 0.010504614778367
827 => 0.010362453626905
828 => 0.010259314080408
829 => 0.010239999143712
830 => 0.010481766015015
831 => 0.010823916789634
901 => 0.010984446277894
902 => 0.010825366430382
903 => 0.010642624067027
904 => 0.010653746747938
905 => 0.010727740960989
906 => 0.010735516706559
907 => 0.010616570214234
908 => 0.01065005295509
909 => 0.010599189610003
910 => 0.010287041355091
911 => 0.010281395582992
912 => 0.010204789367166
913 => 0.010202469761396
914 => 0.01007214347796
915 => 0.010053909930004
916 => 0.0097951391840012
917 => 0.0099654628726502
918 => 0.0098512186846995
919 => 0.0096790257459782
920 => 0.0096493396184392
921 => 0.0096484472175983
922 => 0.0098252508640285
923 => 0.0099633968191015
924 => 0.0098532060112611
925 => 0.0098281177002749
926 => 0.010095995225234
927 => 0.010061905368425
928 => 0.010032383772284
929 => 0.01079328094051
930 => 0.010190971458313
1001 => 0.0099283301454517
1002 => 0.0096032616465534
1003 => 0.0097091055889323
1004 => 0.0097314084627626
1005 => 0.0089496773209133
1006 => 0.0086325290940234
1007 => 0.0085236957740336
1008 => 0.0084610606597022
1009 => 0.0084896042678253
1010 => 0.0082041336658477
1011 => 0.0083959746316246
1012 => 0.0081487812205413
1013 => 0.0081073384407362
1014 => 0.0085493508811407
1015 => 0.0086108543300238
1016 => 0.0083484615094648
1017 => 0.0085169601778026
1018 => 0.0084558602183566
1019 => 0.0081530186420862
1020 => 0.0081414523214245
1021 => 0.0079894970638481
1022 => 0.007751716510077
1023 => 0.0076430444164995
1024 => 0.00758644704663
1025 => 0.0076098002244989
1026 => 0.0075979921431494
1027 => 0.0075209364250495
1028 => 0.0076024088867127
1029 => 0.0073942804139088
1030 => 0.0073114019790333
1031 => 0.0072739677127651
1101 => 0.0070892417137237
1102 => 0.0073832229262231
1103 => 0.0074411409285632
1104 => 0.0074991730472597
1105 => 0.0080043030203026
1106 => 0.0079790681543319
1107 => 0.0082071790528292
1108 => 0.0081983150827826
1109 => 0.0081332541593796
1110 => 0.0078587728255449
1111 => 0.0079681761930521
1112 => 0.0076314496329231
1113 => 0.0078837480669521
1114 => 0.0077686095978958
1115 => 0.0078448196347453
1116 => 0.0077077871169079
1117 => 0.0077836265702131
1118 => 0.0074548754355343
1119 => 0.0071478922516245
1120 => 0.0072714312462276
1121 => 0.0074057322617589
1122 => 0.007696931082693
1123 => 0.0075234954672827
1124 => 0.007585869472911
1125 => 0.0073769269953389
1126 => 0.0069458189826395
1127 => 0.0069482590071732
1128 => 0.006881942431618
1129 => 0.0068246352279597
1130 => 0.0075434166340399
1201 => 0.0074540248039413
1202 => 0.0073115906219927
1203 => 0.0075022444346403
1204 => 0.0075526563287872
1205 => 0.0075540914845428
1206 => 0.0076931875847634
1207 => 0.0077674231983854
1208 => 0.0077805075470419
1209 => 0.007999378266109
1210 => 0.0080727408441658
1211 => 0.0083749109205208
1212 => 0.007761124825225
1213 => 0.0077484843045055
1214 => 0.0075049273247664
1215 => 0.0073504596377324
1216 => 0.0075155038594505
1217 => 0.0076617105091098
1218 => 0.0075094703729208
1219 => 0.0075293497207424
1220 => 0.0073249797763848
1221 => 0.007398032414993
1222 => 0.0074609551886155
1223 => 0.0074262129314508
1224 => 0.0073742020909311
1225 => 0.0076497232311564
1226 => 0.0076341772486488
1227 => 0.0078907488686303
1228 => 0.0080907647940184
1229 => 0.0084492290894373
1230 => 0.0080751529100013
1231 => 0.0080615200872045
]
'min_raw' => 0.0068246352279597
'max_raw' => 0.019732027469061
'avg_raw' => 0.013278331348511
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006824'
'max' => '$0.019732'
'avg' => '$0.013278'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012000310548838
'max_diff' => -0.0066654889571988
'year' => 2030
]
5 => [
'items' => [
101 => 0.0081947831168167
102 => 0.0080727204422903
103 => 0.0081498598391307
104 => 0.0084368007400359
105 => 0.0084428633491164
106 => 0.0083413068357862
107 => 0.0083351271127206
108 => 0.0083546321520122
109 => 0.0084688737763719
110 => 0.0084289542425301
111 => 0.0084751501377308
112 => 0.0085329188120559
113 => 0.0087718745424749
114 => 0.0088294859600981
115 => 0.008689520083369
116 => 0.0087021574349062
117 => 0.0086498063548603
118 => 0.008599235867493
119 => 0.008712910937868
120 => 0.0089206543632673
121 => 0.0089193620021998
122 => 0.0089675544389373
123 => 0.0089975779277771
124 => 0.0088686951351398
125 => 0.0087847971762845
126 => 0.0088169689922754
127 => 0.0088684124266559
128 => 0.0088002865798431
129 => 0.0083797822943522
130 => 0.0085073364326524
131 => 0.0084861051869605
201 => 0.0084558693112876
202 => 0.0085841259836954
203 => 0.0085717553147575
204 => 0.0082012057522119
205 => 0.008224927132961
206 => 0.0082026483279429
207 => 0.0082746357047709
208 => 0.0080688328876991
209 => 0.0081321364481273
210 => 0.0081718398477938
211 => 0.0081952254552133
212 => 0.0082797103048735
213 => 0.0082697969828863
214 => 0.0082790940788598
215 => 0.0084043628077326
216 => 0.0090379290513342
217 => 0.0090724126640884
218 => 0.0089026027430983
219 => 0.0089704384571812
220 => 0.0088402087201818
221 => 0.0089276328150929
222 => 0.0089874461604998
223 => 0.0087171611540508
224 => 0.0087011566301041
225 => 0.0085703893886548
226 => 0.0086406562971745
227 => 0.0085288565933501
228 => 0.008556288330081
301 => 0.0084795868027257
302 => 0.0086176342808435
303 => 0.0087719928117887
304 => 0.0088109898725085
305 => 0.0087084053950448
306 => 0.0086341274727146
307 => 0.0085037199097715
308 => 0.008720590593268
309 => 0.0087840101901367
310 => 0.0087202574771242
311 => 0.0087054845804949
312 => 0.0086774899680765
313 => 0.0087114237698586
314 => 0.0087836647933921
315 => 0.0087495972607759
316 => 0.0087720994662616
317 => 0.0086863442631238
318 => 0.0088687378007069
319 => 0.0091584226337842
320 => 0.0091593540178908
321 => 0.0091252863016379
322 => 0.0091113465261464
323 => 0.0091463020704238
324 => 0.0091652640192427
325 => 0.0092783038396851
326 => 0.0093996000707249
327 => 0.0099656366552959
328 => 0.0098066958473804
329 => 0.010308917178879
330 => 0.010706109046816
331 => 0.010825209520915
401 => 0.010715642688854
402 => 0.010340820475059
403 => 0.010322429909066
404 => 0.010882572542334
405 => 0.010724306592278
406 => 0.010705481361117
407 => 0.010505212707293
408 => 0.010623596285458
409 => 0.010597704060331
410 => 0.010556831916277
411 => 0.010782699536745
412 => 0.011205503558919
413 => 0.011139605587032
414 => 0.011090415807937
415 => 0.010874880514874
416 => 0.011004680902849
417 => 0.010958461470854
418 => 0.011157049482281
419 => 0.011039410343574
420 => 0.010723107572047
421 => 0.01077347983096
422 => 0.010765866165361
423 => 0.010922554863895
424 => 0.010875520805847
425 => 0.010756682010657
426 => 0.011204058460736
427 => 0.011175008322506
428 => 0.011216194776729
429 => 0.011234326327612
430 => 0.011506636489117
501 => 0.011618193249333
502 => 0.011643518586978
503 => 0.011749488881073
504 => 0.011640881949524
505 => 0.01207538711115
506 => 0.012364307689553
507 => 0.012699903809084
508 => 0.013190299939453
509 => 0.013374693420889
510 => 0.01334138438891
511 => 0.013713197138141
512 => 0.014381336383578
513 => 0.013476434433244
514 => 0.014429298384219
515 => 0.014127632658684
516 => 0.013412388650174
517 => 0.013366335368199
518 => 0.013850706914915
519 => 0.014924996386498
520 => 0.014655899058357
521 => 0.014925436533326
522 => 0.014611006751449
523 => 0.014595392662556
524 => 0.01491016538064
525 => 0.015645648993811
526 => 0.015296248298384
527 => 0.014795296724925
528 => 0.015165191571098
529 => 0.014844754423191
530 => 0.014122719844248
531 => 0.014655693284702
601 => 0.01429930912328
602 => 0.014403320968007
603 => 0.015152387467173
604 => 0.015062257804209
605 => 0.015178893933866
606 => 0.01497303421792
607 => 0.014780728782129
608 => 0.014421776405436
609 => 0.014315508302835
610 => 0.014344876983268
611 => 0.014315493749176
612 => 0.014114663193358
613 => 0.014071293853951
614 => 0.013999009721551
615 => 0.014021413596719
616 => 0.013885498280338
617 => 0.014141998563886
618 => 0.014189607276786
619 => 0.014376266792804
620 => 0.014395646402976
621 => 0.014915490498154
622 => 0.014629169106155
623 => 0.014821258215708
624 => 0.014804075957737
625 => 0.013427890156648
626 => 0.013617516417848
627 => 0.013912515372276
628 => 0.013779618743168
629 => 0.013591734002631
630 => 0.013440007000905
701 => 0.013210125078407
702 => 0.013533679469831
703 => 0.01395911908838
704 => 0.014406436253785
705 => 0.014943858518636
706 => 0.014823912125406
707 => 0.014396389518366
708 => 0.014415567870213
709 => 0.014534120894923
710 => 0.014380583956245
711 => 0.014335302915631
712 => 0.014527899975281
713 => 0.014529226285381
714 => 0.014352563481873
715 => 0.014156235104725
716 => 0.014155412481656
717 => 0.014120477743249
718 => 0.014617221563803
719 => 0.014890380438643
720 => 0.014921697663426
721 => 0.014888272539893
722 => 0.014901136543345
723 => 0.014742191412721
724 => 0.015105492847613
725 => 0.015438894171059
726 => 0.015349535494295
727 => 0.015215574134742
728 => 0.015108867459404
729 => 0.015324398792772
730 => 0.015314801521775
731 => 0.015435982201351
801 => 0.015430484745752
802 => 0.015389736241047
803 => 0.015349536949552
804 => 0.015508922596405
805 => 0.015463022089767
806 => 0.015417050286964
807 => 0.01532484679851
808 => 0.015337378783929
809 => 0.015203440554693
810 => 0.015141474601252
811 => 0.014209655338613
812 => 0.013960642783564
813 => 0.0140389872025
814 => 0.014064780219426
815 => 0.01395640963635
816 => 0.014111785214362
817 => 0.014087570095113
818 => 0.014181776958742
819 => 0.014122920600333
820 => 0.014125336085812
821 => 0.014298420086395
822 => 0.014348667108117
823 => 0.014323111067326
824 => 0.014341009642286
825 => 0.014753474747722
826 => 0.014694835399621
827 => 0.014663684414667
828 => 0.014672313450389
829 => 0.01477770712818
830 => 0.014807211603679
831 => 0.014682199067744
901 => 0.01474115570238
902 => 0.01499218556995
903 => 0.015080031816539
904 => 0.015360394867062
905 => 0.015241291660144
906 => 0.015459910751108
907 => 0.01613187130399
908 => 0.016668679889766
909 => 0.016175008529734
910 => 0.01716078913535
911 => 0.017928360738652
912 => 0.01789890006206
913 => 0.017765056198774
914 => 0.016891196335361
915 => 0.016087057460533
916 => 0.016759753774867
917 => 0.016761468616113
918 => 0.016703683406127
919 => 0.016344784429742
920 => 0.016691194499708
921 => 0.016718691273085
922 => 0.016703300391976
923 => 0.016428133388264
924 => 0.016008004232959
925 => 0.016090096464259
926 => 0.016224565213764
927 => 0.015969987817831
928 => 0.015888634914443
929 => 0.016039885439865
930 => 0.016527246147076
1001 => 0.016435113428466
1002 => 0.016432707470846
1003 => 0.016826890311411
1004 => 0.016544740467547
1005 => 0.016091131910191
1006 => 0.015976589767097
1007 => 0.015570042323945
1008 => 0.015850846091003
1009 => 0.015860951718674
1010 => 0.015707158365201
1011 => 0.016103611393222
1012 => 0.016099958008775
1013 => 0.016476331154634
1014 => 0.01719581525022
1015 => 0.016983028399493
1016 => 0.016735580443241
1017 => 0.016762484897073
1018 => 0.017057560349762
1019 => 0.016879150995149
1020 => 0.016943308242982
1021 => 0.017057463240083
1022 => 0.017126335784143
1023 => 0.016752575197871
1024 => 0.016665433726176
1025 => 0.016487172857587
1026 => 0.016440667924369
1027 => 0.0165858576823
1028 => 0.016547605310715
1029 => 0.015860102379799
1030 => 0.015788254498288
1031 => 0.015790457970239
1101 => 0.015609793055999
1102 => 0.015334235697236
1103 => 0.016058383983391
1104 => 0.016000224741564
1105 => 0.015936021439754
1106 => 0.015943885977887
1107 => 0.016258214205244
1108 => 0.016075887959421
1109 => 0.016560632166626
1110 => 0.016460983330369
1111 => 0.016358778877472
1112 => 0.016344651108858
1113 => 0.016305311114167
1114 => 0.016170399634603
1115 => 0.016007485916107
1116 => 0.015899916167811
1117 => 0.014666832198417
1118 => 0.014895685410617
1119 => 0.015158960170627
1120 => 0.015249841562775
1121 => 0.015094382652705
1122 => 0.016176538099906
1123 => 0.016374258328019
1124 => 0.015775350860093
1125 => 0.015663319726075
1126 => 0.016183882842401
1127 => 0.015869919647004
1128 => 0.016011297254667
1129 => 0.015705716196316
1130 => 0.016326633314991
1201 => 0.016321902966867
1202 => 0.016080352183653
1203 => 0.016284509251557
1204 => 0.01624903193695
1205 => 0.015976321697615
1206 => 0.016335278716002
1207 => 0.016335456754205
1208 => 0.016102969377129
1209 => 0.015831475018735
1210 => 0.015782938239864
1211 => 0.015746372296984
1212 => 0.016002304274252
1213 => 0.016231772084791
1214 => 0.01665875479031
1215 => 0.016766108387336
1216 => 0.017185116623464
1217 => 0.01693561761999
1218 => 0.017046217296677
1219 => 0.017166288891
1220 => 0.017223855628805
1221 => 0.017130053718753
1222 => 0.01778094598013
1223 => 0.017835901229813
1224 => 0.017854327249671
1225 => 0.017634850041339
1226 => 0.017829797171618
1227 => 0.017738587865331
1228 => 0.017975889141615
1229 => 0.018013101011752
1230 => 0.017981583881597
1231 => 0.017993395516528
]
'min_raw' => 0.0080688328876991
'max_raw' => 0.018013101011752
'avg_raw' => 0.013040966949725
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008068'
'max' => '$0.018013'
'avg' => '$0.01304'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012441976597394
'max_diff' => -0.0017189264573098
'year' => 2031
]
6 => [
'items' => [
101 => 0.017437973796706
102 => 0.01740917225045
103 => 0.017016461123589
104 => 0.017176493810559
105 => 0.016877320372834
106 => 0.016972191351765
107 => 0.017014009575313
108 => 0.016992166108495
109 => 0.017185541818569
110 => 0.017021132960958
111 => 0.016587230954405
112 => 0.01615321073154
113 => 0.016147761961188
114 => 0.016033492097601
115 => 0.015950895915797
116 => 0.015966806870669
117 => 0.016022879150938
118 => 0.015947636892934
119 => 0.015963693643558
120 => 0.016230342689495
121 => 0.016283817254004
122 => 0.016102089789942
123 => 0.015372427798587
124 => 0.01519336691569
125 => 0.015322072327385
126 => 0.015260559430285
127 => 0.01231646249807
128 => 0.013008134401886
129 => 0.012597166443597
130 => 0.012786559386503
131 => 0.012367067520727
201 => 0.012567271026528
202 => 0.012530300749268
203 => 0.013642488702546
204 => 0.01362512341742
205 => 0.013633435260459
206 => 0.013236689335799
207 => 0.013868716366608
208 => 0.014180075608941
209 => 0.014122451299743
210 => 0.014136954096901
211 => 0.013887747991659
212 => 0.013635848120295
213 => 0.013356452395841
214 => 0.013875535117522
215 => 0.013817821979909
216 => 0.013950195153062
217 => 0.014286857402872
218 => 0.014336432198012
219 => 0.014403061225418
220 => 0.01437917946207
221 => 0.014948139954013
222 => 0.014879235084316
223 => 0.015045275995001
224 => 0.014703717244169
225 => 0.014317211096547
226 => 0.014390673279372
227 => 0.014383598280421
228 => 0.014293525423461
229 => 0.014212211675628
301 => 0.014076847195491
302 => 0.014505160440817
303 => 0.014487771705248
304 => 0.014769275121906
305 => 0.014719516658634
306 => 0.014387217462938
307 => 0.014399085593721
308 => 0.014478904476865
309 => 0.014755158542783
310 => 0.014837169558359
311 => 0.01479917878837
312 => 0.014889100123004
313 => 0.01496017027951
314 => 0.014898025440445
315 => 0.01577786530973
316 => 0.015412494453781
317 => 0.015590573666737
318 => 0.015633044509723
319 => 0.015524256338479
320 => 0.01554784859741
321 => 0.015583584441184
322 => 0.015800565486782
323 => 0.016369986534404
324 => 0.016622179240216
325 => 0.01738091343862
326 => 0.016601238146691
327 => 0.016554975441485
328 => 0.016691646382195
329 => 0.017137103676829
330 => 0.017498104974454
331 => 0.017617869931541
401 => 0.017633698847724
402 => 0.017858385869042
403 => 0.017987172279497
404 => 0.017831102954799
405 => 0.017698850543257
406 => 0.017225138820885
407 => 0.017279972242624
408 => 0.017657720142715
409 => 0.018191311300835
410 => 0.018649188025199
411 => 0.018488855554942
412 => 0.019712079125922
413 => 0.019833356746564
414 => 0.019816600100766
415 => 0.02009288856912
416 => 0.019544512224606
417 => 0.019310070713036
418 => 0.017727445015761
419 => 0.018172098282232
420 => 0.018818427918618
421 => 0.01873288376763
422 => 0.018263501909246
423 => 0.018648831956969
424 => 0.018521429792807
425 => 0.018420942420012
426 => 0.018881294555222
427 => 0.018375118472335
428 => 0.018813378424987
429 => 0.018251305502492
430 => 0.01848958794016
501 => 0.018354327304115
502 => 0.018441857512557
503 => 0.017930157702545
504 => 0.018206258499217
505 => 0.017918671001669
506 => 0.01791853464775
507 => 0.017912186137802
508 => 0.018250531553309
509 => 0.018261564985162
510 => 0.01801152721189
511 => 0.017975492862438
512 => 0.018108730738731
513 => 0.017952744080647
514 => 0.018025729256196
515 => 0.017954954727263
516 => 0.017939021890061
517 => 0.017812066332483
518 => 0.017757370387562
519 => 0.017778818076906
520 => 0.017705606056133
521 => 0.017661493165423
522 => 0.017903410973534
523 => 0.017774164047597
524 => 0.017883602028472
525 => 0.01775888363709
526 => 0.017326555355343
527 => 0.017077918788722
528 => 0.016261290741355
529 => 0.016492885442564
530 => 0.016646432969068
531 => 0.016595685512475
601 => 0.016704710685896
602 => 0.016711403946079
603 => 0.016675958750819
604 => 0.016634917755519
605 => 0.016614941268717
606 => 0.016763829634914
607 => 0.016850264342844
608 => 0.016661843517554
609 => 0.016617699154476
610 => 0.016808203011843
611 => 0.016924410254786
612 => 0.017782419245471
613 => 0.017718855168109
614 => 0.017878388528468
615 => 0.017860427520331
616 => 0.018027643897645
617 => 0.01830097200364
618 => 0.017745219540412
619 => 0.017841678951554
620 => 0.017818029331515
621 => 0.018076229681837
622 => 0.018077035755147
623 => 0.017922231747065
624 => 0.018006153511254
625 => 0.017959310684757
626 => 0.018043962003426
627 => 0.017718006231102
628 => 0.018114985177041
629 => 0.018340046658629
630 => 0.01834317163752
701 => 0.018449848993594
702 => 0.018558239365702
703 => 0.018766285246151
704 => 0.018552437079014
705 => 0.018167745044033
706 => 0.01819551856641
707 => 0.017969973767054
708 => 0.01797376521588
709 => 0.01795352616491
710 => 0.018014265080395
711 => 0.017731335007406
712 => 0.017797738130024
713 => 0.017704773369503
714 => 0.01784147686432
715 => 0.017694406501794
716 => 0.017818017926952
717 => 0.017871364520267
718 => 0.018068214598068
719 => 0.017665331585248
720 => 0.016843825849326
721 => 0.017016516314812
722 => 0.016761093551816
723 => 0.016784733900994
724 => 0.016832491168668
725 => 0.016677694238931
726 => 0.016707224614913
727 => 0.016706169582081
728 => 0.016697077879109
729 => 0.016656809219143
730 => 0.016598411695281
731 => 0.016831049456536
801 => 0.016870579145418
802 => 0.016958448747109
803 => 0.017219889079221
804 => 0.017193765024856
805 => 0.017236374441403
806 => 0.017143358324322
807 => 0.016789048651889
808 => 0.016808289371737
809 => 0.016568357286916
810 => 0.016952313144259
811 => 0.01686138732927
812 => 0.01680276686484
813 => 0.016786771728005
814 => 0.017048860120133
815 => 0.01712728107479
816 => 0.017078414398482
817 => 0.016978187419706
818 => 0.017170652848402
819 => 0.017222148477656
820 => 0.017233676449961
821 => 0.017574688288024
822 => 0.017252735223539
823 => 0.017330232526099
824 => 0.017934844358088
825 => 0.017386544857204
826 => 0.01767699133136
827 => 0.017662775487861
828 => 0.017811358075866
829 => 0.017650587378843
830 => 0.017652580324315
831 => 0.017784511596608
901 => 0.017599237918603
902 => 0.017553361550419
903 => 0.017489983676346
904 => 0.017628366945751
905 => 0.017711321457223
906 => 0.018379873896306
907 => 0.01881178926165
908 => 0.018793038676544
909 => 0.018964383924782
910 => 0.018887191321108
911 => 0.018637916041466
912 => 0.019063398547934
913 => 0.018928758079943
914 => 0.018939857676536
915 => 0.018939444548997
916 => 0.019028968689736
917 => 0.018965532631255
918 => 0.018840493648411
919 => 0.018923500360548
920 => 0.019170000620152
921 => 0.019935144989515
922 => 0.020363329915424
923 => 0.01990936771933
924 => 0.0202225047634
925 => 0.020034734119095
926 => 0.020000610607332
927 => 0.020197283811654
928 => 0.020394301266384
929 => 0.020381752106248
930 => 0.020238727551072
1001 => 0.020157936608967
1002 => 0.020769712689539
1003 => 0.021220458884371
1004 => 0.021189721015725
1005 => 0.021325387971441
1006 => 0.021723710349445
1007 => 0.021760127955751
1008 => 0.021755540174405
1009 => 0.021665275337391
1010 => 0.022057475447233
1011 => 0.022384655678968
1012 => 0.021644381635625
1013 => 0.021926268300431
1014 => 0.022052816306083
1015 => 0.022238626323483
1016 => 0.022552118968211
1017 => 0.022892655130202
1018 => 0.022940810677297
1019 => 0.022906642012178
1020 => 0.022682049259241
1021 => 0.023054667991134
1022 => 0.023272939305292
1023 => 0.023402914877823
1024 => 0.023732511303888
1025 => 0.022053597823484
1026 => 0.02086517941464
1027 => 0.020679590719129
1028 => 0.021056992629366
1029 => 0.021156510503371
1030 => 0.021116394973144
1031 => 0.019778722007715
1101 => 0.020672548147804
1102 => 0.021634229919503
1103 => 0.021671172032926
1104 => 0.022152610035656
1105 => 0.022309385984155
1106 => 0.022697006679875
1107 => 0.02267276089982
1108 => 0.022767140370835
1109 => 0.022745444164873
1110 => 0.023463429880526
1111 => 0.024255474746801
1112 => 0.02422804875163
1113 => 0.024114182931054
1114 => 0.024283293091617
1115 => 0.025100768274299
1116 => 0.025025508259251
1117 => 0.025098616953238
1118 => 0.026062466264502
1119 => 0.027315607475112
1120 => 0.026733397569464
1121 => 0.027996625538334
1122 => 0.028791760583901
1123 => 0.03016686442671
1124 => 0.029994694653061
1125 => 0.030530012488089
1126 => 0.029686474825313
1127 => 0.027749541844493
1128 => 0.027443014785996
1129 => 0.028056689719608
1130 => 0.029565349662367
1201 => 0.028009176649145
1202 => 0.028323988422956
1203 => 0.02823332261092
1204 => 0.028228491415101
1205 => 0.0284128785096
1206 => 0.028145415412046
1207 => 0.027055722636915
1208 => 0.027555122414158
1209 => 0.027362280177017
1210 => 0.027576253016466
1211 => 0.028730976181857
1212 => 0.028220445545275
1213 => 0.027682642991778
1214 => 0.028357166741804
1215 => 0.029216067267096
1216 => 0.029162318815815
1217 => 0.029058024355222
1218 => 0.029645926768906
1219 => 0.030616969317065
1220 => 0.030879438215868
1221 => 0.031073187391024
1222 => 0.031099902128858
1223 => 0.031375080531674
1224 => 0.029895376905847
1225 => 0.032243704561519
1226 => 0.032649195876411
1227 => 0.032572980315104
1228 => 0.033023666845924
1229 => 0.032891063435743
1230 => 0.032698941899229
1231 => 0.033413375914352
]
'min_raw' => 0.01231646249807
'max_raw' => 0.033413375914352
'avg_raw' => 0.022864919206211
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012316'
'max' => '$0.033413'
'avg' => '$0.022864'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042476296103704
'max_diff' => 0.0154002749026
'year' => 2032
]
7 => [
'items' => [
101 => 0.032594334967865
102 => 0.031431809458715
103 => 0.030794024972248
104 => 0.031633911032635
105 => 0.032146800141729
106 => 0.032485787216966
107 => 0.032588364501111
108 => 0.030010242086144
109 => 0.028620777093701
110 => 0.029511408223608
111 => 0.030598039670173
112 => 0.029889340613296
113 => 0.029917120274581
114 => 0.028906701662311
115 => 0.030687439296972
116 => 0.030428000801962
117 => 0.031773968173009
118 => 0.031452742257846
119 => 0.032550326398782
120 => 0.032261295710423
121 => 0.033461045938312
122 => 0.033939658786157
123 => 0.034743324247831
124 => 0.035334503832946
125 => 0.035681655792788
126 => 0.035660814091254
127 => 0.03703640310657
128 => 0.036225266323657
129 => 0.035206287354058
130 => 0.035187857239336
131 => 0.035715600886735
201 => 0.036821606792284
202 => 0.037108378031862
203 => 0.037268644032734
204 => 0.037023191073499
205 => 0.036142760230344
206 => 0.035762594656156
207 => 0.036086506739821
208 => 0.035690390095581
209 => 0.03637419855424
210 => 0.037313213621585
211 => 0.037119310723446
212 => 0.037767499040376
213 => 0.038438305756999
214 => 0.039397589489585
215 => 0.039648381779457
216 => 0.040062931897838
217 => 0.040489640142273
218 => 0.040626687330275
219 => 0.040888352935417
220 => 0.040886973828517
221 => 0.041675520741739
222 => 0.042545312406288
223 => 0.042873638623932
224 => 0.043628606657391
225 => 0.042335750357328
226 => 0.043316396712189
227 => 0.044200964271444
228 => 0.04314634636086
301 => 0.044599891456141
302 => 0.044656329318387
303 => 0.045508474032182
304 => 0.044644662113577
305 => 0.044131733353695
306 => 0.045612539464285
307 => 0.046329054896244
308 => 0.046113234616942
309 => 0.044470831635092
310 => 0.043514882653677
311 => 0.041012979780528
312 => 0.043976591807934
313 => 0.045420080776736
314 => 0.044467093347384
315 => 0.044947724774781
316 => 0.047569893997394
317 => 0.04856824626448
318 => 0.048360595971935
319 => 0.048395685453161
320 => 0.048934378215105
321 => 0.05132323858509
322 => 0.049891778078046
323 => 0.050986075999879
324 => 0.051566487671835
325 => 0.052105606379442
326 => 0.050781701223778
327 => 0.049059320068287
328 => 0.048513769655701
329 => 0.044372337528864
330 => 0.044156758001334
331 => 0.044035746679803
401 => 0.043272787414943
402 => 0.042673310424894
403 => 0.042196584065253
404 => 0.040945511735013
405 => 0.041367711920856
406 => 0.039373763745542
407 => 0.040649421126923
408 => 0.037467031693561
409 => 0.040117420178878
410 => 0.038674934224697
411 => 0.039643524747394
412 => 0.039640145426307
413 => 0.037856663182117
414 => 0.036827987843993
415 => 0.037483499806089
416 => 0.03818626066406
417 => 0.038300281248894
418 => 0.039211429045189
419 => 0.039465710810078
420 => 0.038695225191182
421 => 0.037401083746091
422 => 0.037701683287562
423 => 0.036821896203879
424 => 0.035280103180247
425 => 0.036387445846944
426 => 0.036765541319774
427 => 0.0369325298202
428 => 0.035416353457583
429 => 0.034939937926658
430 => 0.034686298295507
501 => 0.037205364417004
502 => 0.03734336454561
503 => 0.036637336376411
504 => 0.03982865064953
505 => 0.039106357942549
506 => 0.039913335862257
507 => 0.037674407029909
508 => 0.037759937126422
509 => 0.036699992336762
510 => 0.037293490593435
511 => 0.03687402515496
512 => 0.03724554179936
513 => 0.037468227344193
514 => 0.038527998207342
515 => 0.040129521059802
516 => 0.038369703780632
517 => 0.03760292619105
518 => 0.038078630695105
519 => 0.039345494477013
520 => 0.041264857956166
521 => 0.040128556145717
522 => 0.040632827593538
523 => 0.040742988471412
524 => 0.039905121584567
525 => 0.041295751303404
526 => 0.042041001067185
527 => 0.042805473117115
528 => 0.043469242778048
529 => 0.042500126169272
530 => 0.043537219858072
531 => 0.04270150541658
601 => 0.041951783167991
602 => 0.04195292018717
603 => 0.041482608468936
604 => 0.040571320251767
605 => 0.040403264722851
606 => 0.041277510807344
607 => 0.041978573375694
608 => 0.042036316246687
609 => 0.042424460506421
610 => 0.042654160281128
611 => 0.044905530334958
612 => 0.045811049994918
613 => 0.046918302294507
614 => 0.047349639466518
615 => 0.048647809711334
616 => 0.047599431806413
617 => 0.047372608652077
618 => 0.044223672266403
619 => 0.04473931042315
620 => 0.045564896863785
621 => 0.044237285882727
622 => 0.045079349476284
623 => 0.045245590666997
624 => 0.044192174169607
625 => 0.044754849436303
626 => 0.043260550749548
627 => 0.040162092687726
628 => 0.041299200772968
629 => 0.04213649507015
630 => 0.04094157287043
701 => 0.043083424663553
702 => 0.041832199062806
703 => 0.04143562061679
704 => 0.039888426708457
705 => 0.040618642676235
706 => 0.041606270228341
707 => 0.040996031225166
708 => 0.042262368784601
709 => 0.044055840488651
710 => 0.045333975228044
711 => 0.045432094542673
712 => 0.04461033953362
713 => 0.045927207179997
714 => 0.045936799123144
715 => 0.044451367038468
716 => 0.043541548157525
717 => 0.043334835393499
718 => 0.04385124440646
719 => 0.044478260282557
720 => 0.045466889559987
721 => 0.04606429752694
722 => 0.04762202066405
723 => 0.04804349588153
724 => 0.048506569362238
725 => 0.049125378339038
726 => 0.04986841717505
727 => 0.048242690503079
728 => 0.04830728365449
729 => 0.046793429487269
730 => 0.045175659200944
731 => 0.046403345190351
801 => 0.048008381309278
802 => 0.047640184250189
803 => 0.047598754559458
804 => 0.04766842780763
805 => 0.047390819249268
806 => 0.046135206028453
807 => 0.045504644929514
808 => 0.046318229620438
809 => 0.046750613675175
810 => 0.047421203636221
811 => 0.047338539269085
812 => 0.049065906992635
813 => 0.049737109857118
814 => 0.049565387441993
815 => 0.049596988499107
816 => 0.050812169224425
817 => 0.052163700111956
818 => 0.053429587138338
819 => 0.054717301792686
820 => 0.053164911516511
821 => 0.052376703472391
822 => 0.05318993297769
823 => 0.052758421955144
824 => 0.055238012285176
825 => 0.055409693739737
826 => 0.057889104767165
827 => 0.060242361074967
828 => 0.058764322951003
829 => 0.060158046329602
830 => 0.061665471795492
831 => 0.064573540090161
901 => 0.063594204995592
902 => 0.062844049661291
903 => 0.062135156495099
904 => 0.063610250640322
905 => 0.065507935692947
906 => 0.06591667887748
907 => 0.066578998988339
908 => 0.065882650376421
909 => 0.066721325579193
910 => 0.069682217577536
911 => 0.068882158423067
912 => 0.067745945807794
913 => 0.070083285673395
914 => 0.070929159884578
915 => 0.076865948086419
916 => 0.084361388427733
917 => 0.081258226908714
918 => 0.079331994415463
919 => 0.079784704742222
920 => 0.082521785818202
921 => 0.083400849389196
922 => 0.081011251571851
923 => 0.081855297918605
924 => 0.086506076274028
925 => 0.089001069646878
926 => 0.085612533524232
927 => 0.076263696753142
928 => 0.06764364229336
929 => 0.069930068902206
930 => 0.069670859080841
1001 => 0.074667540227327
1002 => 0.06886307727683
1003 => 0.068960809546541
1004 => 0.07406081676756
1005 => 0.072700222277251
1006 => 0.070496233454726
1007 => 0.067659733850845
1008 => 0.062416201988613
1009 => 0.05777185959153
1010 => 0.066880484560385
1011 => 0.066487704088768
1012 => 0.065918899759063
1013 => 0.067184712243766
1014 => 0.073331138362341
1015 => 0.073189443346268
1016 => 0.072288051947444
1017 => 0.072971749378953
1018 => 0.070376377989354
1019 => 0.071045264291962
1020 => 0.067642276832693
1021 => 0.069180569285592
1022 => 0.070491504684575
1023 => 0.070754694374651
1024 => 0.071347674185191
1025 => 0.066280726628309
1026 => 0.068555637323584
1027 => 0.069891934226753
1028 => 0.063854496203341
1029 => 0.069772593488873
1030 => 0.066192522344284
1031 => 0.064977392426947
1101 => 0.066613404779448
1102 => 0.065975849174604
1103 => 0.065427716304081
1104 => 0.06512184874421
1105 => 0.066323155655793
1106 => 0.066267113252496
1107 => 0.064301541981522
1108 => 0.061737534385472
1109 => 0.062598099495387
1110 => 0.062285448123114
1111 => 0.061152359217167
1112 => 0.061915924330099
1113 => 0.058553570004207
1114 => 0.052768814146479
1115 => 0.056590401057958
1116 => 0.056443274118953
1117 => 0.056369086044631
1118 => 0.059240902987703
1119 => 0.058964844052716
1120 => 0.058463794382538
1121 => 0.061143157047046
1122 => 0.060165153631987
1123 => 0.063179129710614
1124 => 0.065164329287748
1125 => 0.064660818460508
1126 => 0.066527908258105
1127 => 0.062617925177422
1128 => 0.063916664715531
1129 => 0.064184333134361
1130 => 0.061110094127673
1201 => 0.059010010708558
1202 => 0.058869959087207
1203 => 0.055228703847785
1204 => 0.057173833005499
1205 => 0.058885466169374
1206 => 0.058065726711977
1207 => 0.057806221688785
1208 => 0.059131976572501
1209 => 0.059234999081288
1210 => 0.056886074963098
1211 => 0.057374490668023
1212 => 0.059411265349913
1213 => 0.057323169171865
1214 => 0.053266339386491
1215 => 0.052260189509659
1216 => 0.052125950569068
1217 => 0.049397192304345
1218 => 0.052327425255522
1219 => 0.051048300046972
1220 => 0.055089041254507
1221 => 0.052780991547693
1222 => 0.052681496137872
1223 => 0.052531094233126
1224 => 0.050182339271094
1225 => 0.050696567336614
1226 => 0.052405939745549
1227 => 0.053015863078515
1228 => 0.052952243077932
1229 => 0.0523975628882
1230 => 0.052651492638637
1231 => 0.051833496437489
]
'min_raw' => 0.028620777093701
'max_raw' => 0.089001069646878
'avg_raw' => 0.05881092337029
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.02862'
'max' => '$0.089001'
'avg' => '$0.05881'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016304314595631
'max_diff' => 0.055587693732526
'year' => 2033
]
8 => [
'items' => [
101 => 0.051544644953745
102 => 0.05063295021619
103 => 0.049293010814082
104 => 0.049479337606271
105 => 0.046824567036479
106 => 0.045378107130718
107 => 0.044977746092838
108 => 0.044442366580746
109 => 0.04503821863332
110 => 0.046817046405009
111 => 0.044671402712988
112 => 0.040992847102422
113 => 0.041213934562571
114 => 0.041710652444069
115 => 0.040785021958015
116 => 0.039908990385243
117 => 0.04067062876308
118 => 0.039111976257342
119 => 0.041899008152837
120 => 0.041823626750631
121 => 0.042862459892375
122 => 0.04351206357491
123 => 0.042014937398357
124 => 0.041638414213614
125 => 0.041852898931668
126 => 0.038307944312841
127 => 0.042572761470686
128 => 0.042609643786568
129 => 0.042293835006087
130 => 0.044564718481183
131 => 0.049356990919953
201 => 0.047553945259775
202 => 0.046855751482811
203 => 0.045528484602425
204 => 0.04729698891523
205 => 0.047161195376972
206 => 0.046547085498797
207 => 0.046175669928337
208 => 0.046860014505132
209 => 0.046090872061966
210 => 0.045952712944553
211 => 0.04511561901163
212 => 0.044816814562923
213 => 0.044595591644849
214 => 0.044352046948964
215 => 0.044889245860529
216 => 0.04367188245252
217 => 0.042203861522068
218 => 0.042081811465907
219 => 0.042418802401717
220 => 0.042269708998646
221 => 0.042081097664054
222 => 0.041720987261077
223 => 0.041614150197055
224 => 0.041961318825151
225 => 0.041569385685219
226 => 0.042147704382892
227 => 0.041990433696958
228 => 0.041111932429805
301 => 0.040016994588105
302 => 0.040007247344604
303 => 0.039771344782667
304 => 0.039470887401854
305 => 0.039387307032045
306 => 0.040606485703281
307 => 0.043130149065792
308 => 0.042634693561585
309 => 0.042992710939697
310 => 0.044753802097186
311 => 0.045313600018293
312 => 0.044916268713431
313 => 0.04437237711701
314 => 0.044396305586956
315 => 0.046254947819111
316 => 0.046370869055274
317 => 0.046663764621448
318 => 0.04704021819626
319 => 0.044980380385053
320 => 0.044299287411286
321 => 0.043976547774716
322 => 0.042982634610037
323 => 0.044054484746468
324 => 0.043429963573169
325 => 0.043514232816128
326 => 0.043459352361101
327 => 0.043489320800546
328 => 0.041898229120623
329 => 0.04247793930347
330 => 0.041514058687847
331 => 0.040223530744205
401 => 0.040219204442021
402 => 0.040535059327938
403 => 0.040347176482391
404 => 0.039841588575936
405 => 0.039913404951741
406 => 0.039284217930953
407 => 0.039989799647863
408 => 0.040010033206811
409 => 0.039738345812505
410 => 0.040825391798919
411 => 0.041270755426498
412 => 0.041091924963457
413 => 0.041258208204485
414 => 0.042655281974633
415 => 0.042883065957769
416 => 0.042984232556513
417 => 0.042848682716202
418 => 0.041283744148359
419 => 0.041353155828476
420 => 0.040843858975154
421 => 0.040413556802478
422 => 0.040430766632748
423 => 0.04065199788487
424 => 0.04161812773793
425 => 0.04365129105723
426 => 0.043728448118974
427 => 0.043821964728639
428 => 0.043441585679451
429 => 0.043326859718479
430 => 0.043478212874284
501 => 0.044241762118364
502 => 0.046205818075736
503 => 0.045511589525514
504 => 0.044947170907872
505 => 0.045442318201711
506 => 0.045366094156917
507 => 0.044722686509691
508 => 0.044704628199969
509 => 0.043469723215075
510 => 0.043013206959586
511 => 0.042631707806849
512 => 0.042215120691349
513 => 0.041968153885153
514 => 0.042347607143875
515 => 0.042434392593704
516 => 0.0416047114118
517 => 0.041491628932484
518 => 0.042169164495539
519 => 0.04187100635531
520 => 0.042177669396502
521 => 0.042248817852565
522 => 0.042237361312451
523 => 0.041926049970808
524 => 0.042124470536533
525 => 0.041655146746575
526 => 0.041144827615149
527 => 0.040819275803305
528 => 0.04053518866929
529 => 0.040692816722483
530 => 0.040130901494595
531 => 0.039951133504075
601 => 0.042057250113469
602 => 0.043613061097399
603 => 0.043590438989523
604 => 0.043452732725768
605 => 0.043248129150522
606 => 0.044226794092438
607 => 0.043885846795698
608 => 0.044133914441176
609 => 0.044197058068317
610 => 0.044388174810028
611 => 0.04445648261815
612 => 0.044250008979181
613 => 0.043557058228167
614 => 0.041830290840423
615 => 0.041026475960109
616 => 0.040761203661009
617 => 0.040770845805258
618 => 0.040504872422458
619 => 0.040583213503784
620 => 0.040477628591451
621 => 0.040277676311227
622 => 0.04068047023263
623 => 0.040726888479786
624 => 0.040632871565502
625 => 0.040655015952278
626 => 0.039876596057154
627 => 0.039935777631141
628 => 0.03960624710675
629 => 0.039544464105976
630 => 0.03871143963582
701 => 0.037235616038111
702 => 0.038053365572905
703 => 0.037065639127859
704 => 0.036691572156623
705 => 0.038462347019108
706 => 0.038284610336564
707 => 0.037980402396327
708 => 0.037530415450227
709 => 0.037363510914726
710 => 0.036349451792582
711 => 0.036289535769851
712 => 0.036792130852685
713 => 0.036560200515198
714 => 0.036234482482478
715 => 0.035054764785476
716 => 0.033728371502939
717 => 0.033768406978728
718 => 0.034190308003478
719 => 0.035417042134046
720 => 0.034937735886517
721 => 0.03458999370453
722 => 0.034524872046935
723 => 0.035340005933157
724 => 0.03649359115799
725 => 0.037034827535467
726 => 0.036498478722981
727 => 0.035882350086267
728 => 0.035919850981519
729 => 0.03616932763693
730 => 0.036195544106004
731 => 0.03579450770255
801 => 0.035907397101038
802 => 0.035735907781912
803 => 0.03468347814698
804 => 0.034664443032174
805 => 0.034406159827041
806 => 0.034398339114238
807 => 0.033958934950542
808 => 0.033897459270584
809 => 0.033024995633639
810 => 0.033599253841539
811 => 0.033214071585589
812 => 0.032633511070563
813 => 0.032533422218946
814 => 0.032530413427206
815 => 0.033126519265182
816 => 0.033592287997753
817 => 0.033220771995842
818 => 0.033136185003742
819 => 0.034039352781752
820 => 0.033924416449444
821 => 0.033824882326924
822 => 0.03639030025374
823 => 0.034359571782608
824 => 0.033474058259265
825 => 0.032378067119672
826 => 0.032734927361191
827 => 0.032810123057446
828 => 0.030174461933976
829 => 0.029105174544435
830 => 0.028738235407589
831 => 0.028527056746577
901 => 0.028623293514215
902 => 0.027660809448726
903 => 0.028307614658752
904 => 0.027474184814792
905 => 0.027334457589236
906 => 0.028824733392383
907 => 0.029032096564326
908 => 0.02814742085013
909 => 0.028715525874632
910 => 0.028509523095497
911 => 0.027488471577378
912 => 0.027449474919732
913 => 0.026937147159636
914 => 0.026135453421288
915 => 0.025769057870549
916 => 0.025578235886532
917 => 0.025656972756183
918 => 0.025617160985499
919 => 0.025357362252067
920 => 0.02563205234479
921 => 0.024930332667666
922 => 0.024650902238096
923 => 0.024524689995795
924 => 0.02390187339287
925 => 0.024893051575925
926 => 0.02508832616452
927 => 0.025283985504379
928 => 0.026987066475541
929 => 0.026901985363079
930 => 0.027671077183557
1001 => 0.027641191689682
1002 => 0.02742183424402
1003 => 0.026496401263322
1004 => 0.026865262355171
1005 => 0.025729965248199
1006 => 0.026580607033442
1007 => 0.026192409646307
1008 => 0.02644935710636
1009 => 0.025987342405167
1010 => 0.026243040416927
1011 => 0.025134633013686
1012 => 0.024099617776253
1013 => 0.024516138121774
1014 => 0.024968943372235
1015 => 0.025950740527867
1016 => 0.025365990241623
1017 => 0.025576288556413
1018 => 0.024871824405381
1019 => 0.023418313641564
1020 => 0.023426540354637
1021 => 0.023202949390077
1022 => 0.023009734151882
1023 => 0.025433155846196
1024 => 0.025131765049881
1025 => 0.024651538261004
1026 => 0.02529434090137
1027 => 0.025464308122132
1028 => 0.025469146849961
1029 => 0.025938119063234
1030 => 0.026188409617526
1031 => 0.026232524412542
1101 => 0.026970462322942
1102 => 0.027217809376872
1103 => 0.028236596886144
1104 => 0.026167174212677
1105 => 0.026124555814539
1106 => 0.025303386452743
1107 => 0.024782587861319
1108 => 0.025339045977861
1109 => 0.025831991905009
1110 => 0.025318703656781
1111 => 0.025385728265893
1112 => 0.024696680729838
1113 => 0.024942982801278
1114 => 0.025155131325674
1115 => 0.025037995380016
1116 => 0.024862637199923
1117 => 0.025791575960464
1118 => 0.025739161595054
1119 => 0.02660421072508
1120 => 0.027278578382192
1121 => 0.028487165781375
1122 => 0.027225941825242
1123 => 0.027179977811369
1124 => 0.027629283419834
1125 => 0.027217740590524
1126 => 0.027477821452673
1127 => 0.028445262733648
1128 => 0.028465703243441
1129 => 0.028123298368299
1130 => 0.028102463000529
1201 => 0.028168225602299
1202 => 0.028553399214923
1203 => 0.028418807719483
1204 => 0.028574560405446
1205 => 0.028769331524213
1206 => 0.029574987452677
1207 => 0.029769228369495
1208 => 0.029297323643997
1209 => 0.029339931357016
1210 => 0.029163426035606
1211 => 0.028992924106729
1212 => 0.029376187543038
1213 => 0.030076609005954
1214 => 0.030072251720386
1215 => 0.030234735885535
1216 => 0.030335962174331
1217 => 0.029901424840645
1218 => 0.029618557014796
1219 => 0.029727026538574
1220 => 0.029900471669254
1221 => 0.029670780620329
1222 => 0.028253021063125
1223 => 0.02868307874595
1224 => 0.028611496118781
1225 => 0.028509553752949
1226 => 0.028941980078567
1227 => 0.02890027150455
1228 => 0.027650937783483
1229 => 0.027730916074852
1230 => 0.027655801528278
1231 => 0.027898511995251
]
'min_raw' => 0.023009734151882
'max_raw' => 0.051544644953745
'avg_raw' => 0.037277189552814
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0230097'
'max' => '$0.051544'
'avg' => '$0.037277'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.005611042941819
'max_diff' => -0.037456424693133
'year' => 2034
]
9 => [
'items' => [
101 => 0.0272046334288
102 => 0.027418065802497
103 => 0.027551928586475
104 => 0.027630774794621
105 => 0.027915621363794
106 => 0.027882197906589
107 => 0.027913543714766
108 => 0.028335895980144
109 => 0.030472008804629
110 => 0.030588272712599
111 => 0.030015746708231
112 => 0.0302444595544
113 => 0.029805380903756
114 => 0.030100137343504
115 => 0.030301802213578
116 => 0.029390517443639
117 => 0.029336557073752
118 => 0.028895666189329
119 => 0.029132575977282
120 => 0.028755635470232
121 => 0.028848123485843
122 => 0.028589518931234
123 => 0.029054955641876
124 => 0.029575386205926
125 => 0.029706867518831
126 => 0.029360996790843
127 => 0.029110563589787
128 => 0.028670885386559
129 => 0.029402080037395
130 => 0.029615903636053
131 => 0.029400956913059
201 => 0.029351149060663
202 => 0.029256763270372
203 => 0.029371173452263
204 => 0.029614739106814
205 => 0.029499878042079
206 => 0.029575745798928
207 => 0.029286616144312
208 => 0.029901568690583
209 => 0.030878261330453
210 => 0.030881401556995
211 => 0.030766539873117
212 => 0.030719540946803
213 => 0.030837396004852
214 => 0.030901327539176
215 => 0.031282449185986
216 => 0.031691407897569
217 => 0.033599839761863
218 => 0.033063959731082
219 => 0.034757234014203
220 => 0.036096394128004
221 => 0.036497949691759
222 => 0.036128537467754
223 => 0.03486479820469
224 => 0.034802793127458
225 => 0.03669135312343
226 => 0.03615774842304
227 => 0.036094277841845
228 => 0.035419058093166
301 => 0.035818196592228
302 => 0.035730899147475
303 => 0.035593095860194
304 => 0.036354624312175
305 => 0.03778013759217
306 => 0.037557957979104
307 => 0.037392111204566
308 => 0.03666541891581
309 => 0.03710304998624
310 => 0.036947217944331
311 => 0.037616771289829
312 => 0.037220142720379
313 => 0.03615370584262
314 => 0.036323539430425
315 => 0.036297869425286
316 => 0.03682615631205
317 => 0.03666757770153
318 => 0.036266904406486
319 => 0.037775265342752
320 => 0.037677320773495
321 => 0.037816183779456
322 => 0.037877315569161
323 => 0.038795428290765
324 => 0.039171549696476
325 => 0.039256935840504
326 => 0.039614222085656
327 => 0.039248046233244
328 => 0.040713010721849
329 => 0.041687126623723
330 => 0.042818612371296
331 => 0.044472017163198
401 => 0.045093712659802
402 => 0.044981408932921
403 => 0.046235001576093
404 => 0.048487679690074
405 => 0.045436739586289
406 => 0.048649386923836
407 => 0.047632299868566
408 => 0.045220804757135
409 => 0.045065532901619
410 => 0.046698625389114
411 => 0.05032066734705
412 => 0.049413386917447
413 => 0.050322151332809
414 => 0.049262029370425
415 => 0.049209385379584
416 => 0.050270663575333
417 => 0.052750397926963
418 => 0.051572369087956
419 => 0.049883375882716
420 => 0.05113050218182
421 => 0.050050125965446
422 => 0.047615735971693
423 => 0.049412693137201
424 => 0.04821111905502
425 => 0.048561802251392
426 => 0.051087332251482
427 => 0.050783453800148
428 => 0.051176700654561
429 => 0.050482630249583
430 => 0.049834259046477
501 => 0.048624026047201
502 => 0.048265735719881
503 => 0.048364754276417
504 => 0.048265686651202
505 => 0.047588572410723
506 => 0.04744234965496
507 => 0.047198638655855
508 => 0.047274174885174
509 => 0.046815926906691
510 => 0.047680735520952
511 => 0.047841251620427
512 => 0.048470587210833
513 => 0.048535926919569
514 => 0.050288617580819
515 => 0.049323265017373
516 => 0.049970906861463
517 => 0.049912975679086
518 => 0.045273069168492
519 => 0.04591240734741
520 => 0.046907016918434
521 => 0.046458946654849
522 => 0.045825480134435
523 => 0.045313921954874
524 => 0.04453885900333
525 => 0.045629745223863
526 => 0.047064144601047
527 => 0.048572305654894
528 => 0.050384262342465
529 => 0.0499798547033
530 => 0.048538432384991
531 => 0.04860309353723
601 => 0.049002803337151
602 => 0.048485142828789
603 => 0.04833247463894
604 => 0.048981829072245
605 => 0.048986300819348
606 => 0.048390669843116
607 => 0.047728735012352
608 => 0.047725961481242
609 => 0.047608176571639
610 => 0.049282983044183
611 => 0.050203957262049
612 => 0.050309545471903
613 => 0.050196850334243
614 => 0.050240222220018
615 => 0.049704327614924
616 => 0.05092922376756
617 => 0.052053309606893
618 => 0.051752030589361
619 => 0.051300370512744
620 => 0.050940601506821
621 => 0.051667280445189
622 => 0.051634922575962
623 => 0.052043491697718
624 => 0.052024956642345
625 => 0.051887570213761
626 => 0.051752035495863
627 => 0.052289415332179
628 => 0.052134658569376
629 => 0.051979661426576
630 => 0.051668790927814
701 => 0.051711043391608
702 => 0.051259461300471
703 => 0.05105053876212
704 => 0.04790884506059
705 => 0.047069281845738
706 => 0.047333425524015
707 => 0.047420388481392
708 => 0.047055009494359
709 => 0.047578869103604
710 => 0.047497226138407
711 => 0.047814851156449
712 => 0.047616412834852
713 => 0.047624556812788
714 => 0.048208121605094
715 => 0.048377532946962
716 => 0.048291368971171
717 => 0.048351715266287
718 => 0.049742370166658
719 => 0.049544663510466
720 => 0.049439635789803
721 => 0.049468729186199
722 => 0.049824071329221
723 => 0.049923547728306
724 => 0.049502059235302
725 => 0.049700835645199
726 => 0.050547200370056
727 => 0.050843380123661
728 => 0.051788643722821
729 => 0.051387078945177
730 => 0.052124168473859
731 => 0.054389730392691
801 => 0.056199618018414
802 => 0.05453517056103
803 => 0.057858798697871
804 => 0.060446719948541
805 => 0.060347391220532
806 => 0.059896127290781
807 => 0.056949847750339
808 => 0.05423863739067
809 => 0.056506679980605
810 => 0.056512461687594
811 => 0.056317634817692
812 => 0.055107581861281
813 => 0.05627552759775
814 => 0.056368234888955
815 => 0.056316343458739
816 => 0.055388598694179
817 => 0.053972103914588
818 => 0.05424888360391
819 => 0.054702254381174
820 => 0.053843928916762
821 => 0.053569641923109
822 => 0.054079593629546
823 => 0.055722764280344
824 => 0.05541213238705
825 => 0.055404020532954
826 => 0.056733035500888
827 => 0.055781747603228
828 => 0.054252374682164
829 => 0.053866187849645
830 => 0.052495484760823
831 => 0.053442234266549
901 => 0.053476306095794
902 => 0.052957781067054
903 => 0.054294450130492
904 => 0.054282132489756
905 => 0.055551100828556
906 => 0.057976891689597
907 => 0.057259465966069
908 => 0.056425177905302
909 => 0.056515888149806
910 => 0.057510755640055
911 => 0.056909236044834
912 => 0.057125546685219
913 => 0.057510428227993
914 => 0.05774263681882
915 => 0.056482476907073
916 => 0.056188673351228
917 => 0.055587654387006
918 => 0.055430859757791
919 => 0.055920377163478
920 => 0.055791406621984
921 => 0.053473442490479
922 => 0.053231202341706
923 => 0.05323863150123
924 => 0.052629507129249
925 => 0.051700446255378
926 => 0.054141962760568
927 => 0.0539458748162
928 => 0.053729408901619
929 => 0.053755924741017
930 => 0.054815704305248
1001 => 0.054200978637844
1002 => 0.055835327576195
1003 => 0.055499354567496
1004 => 0.055154765118866
1005 => 0.055107132360614
1006 => 0.054974494821882
1007 => 0.054519631349315
1008 => 0.053970356373132
1009 => 0.053607677456473
1010 => 0.049450248762488
1011 => 0.050221843345441
1012 => 0.05110949258007
1013 => 0.051415905538833
1014 => 0.050891764969738
1015 => 0.054540327613657
1016 => 0.055206955167125
1017 => 0.05318769682463
1018 => 0.052809976034524
1019 => 0.054565090925773
1020 => 0.05350654209228
1021 => 0.053983206567186
1022 => 0.052952918693968
1023 => 0.055046384110628
1024 => 0.055030435411667
1025 => 0.054216030081525
1026 => 0.054904359889754
1027 => 0.05478474564661
1028 => 0.053865284034671
1029 => 0.055075532683741
1030 => 0.055076132951971
1031 => 0.054292285528409
1101 => 0.053376923343953
1102 => 0.053213278205262
1103 => 0.053089993575889
1104 => 0.053952886105846
1105 => 0.05472655285001
1106 => 0.056166154852648
1107 => 0.056528105000211
1108 => 0.057940820522535
1109 => 0.057099617212861
1110 => 0.057472511744633
1111 => 0.057877341508023
1112 => 0.058071431783714
1113 => 0.057755172094934
1114 => 0.059949700798012
1115 => 0.060134986259174
1116 => 0.060197110871588
1117 => 0.059457128140287
1118 => 0.060114406000797
1119 => 0.059806887456619
1120 => 0.060606965277458
1121 => 0.060732427695672
1122 => 0.0606261654909
1123 => 0.06066598924273
1124 => 0.058793346136046
1125 => 0.058696239711985
1126 => 0.057372186729556
1127 => 0.057911748106801
1128 => 0.056903063973891
1129 => 0.057222928103035
1130 => 0.057363921163384
1201 => 0.057290274389943
1202 => 0.057942254097519
1203 => 0.057387938155425
1204 => 0.05592500724626
1205 => 0.054461677762548
1206 => 0.054443306852882
1207 => 0.054058038029731
1208 => 0.053779559236098
1209 => 0.053833204131318
1210 => 0.054022255739086
1211 => 0.053768571212977
1212 => 0.053822707668755
1213 => 0.054721733543973
1214 => 0.054902026771689
1215 => 0.054289319938799
1216 => 0.051829213591572
1217 => 0.051225497323252
1218 => 0.051659436604706
1219 => 0.05145204157744
1220 => 0.041525813220193
1221 => 0.043857833334902
1222 => 0.042472226170662
1223 => 0.043110777700664
1224 => 0.041696431587211
1225 => 0.042371431684782
1226 => 0.042246783813817
1227 => 0.045996603148777
1228 => 0.04593805487757
1229 => 0.045966078836691
1230 => 0.044628422251786
1231 => 0.046759345512874
]
'min_raw' => 0.0272046334288
'max_raw' => 0.060732427695672
'avg_raw' => 0.043968530562236
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0272046'
'max' => '$0.060732'
'avg' => '$0.043968'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0041948992769181
'max_diff' => 0.0091877827419265
'year' => 2035
]
10 => [
'items' => [
101 => 0.047809114936809
102 => 0.047614830555147
103 => 0.047663727748319
104 => 0.046823511965479
105 => 0.04597421396209
106 => 0.045032211770305
107 => 0.046782335407651
108 => 0.046587751534785
109 => 0.047034056930073
110 => 0.048169137210313
111 => 0.048336282093329
112 => 0.048560926511119
113 => 0.04848040747862
114 => 0.050398697500759
115 => 0.050166379921793
116 => 0.050726198444772
117 => 0.04957460926947
118 => 0.048271476807768
119 => 0.048519159686127
120 => 0.048495305833201
121 => 0.048191618907276
122 => 0.047917463929311
123 => 0.047461073133684
124 => 0.048905161144175
125 => 0.048846533808163
126 => 0.049795642231368
127 => 0.049627878098419
128 => 0.048507508159741
129 => 0.048547522391282
130 => 0.048816637328579
131 => 0.049748047199265
201 => 0.050024553064104
202 => 0.049896464530657
203 => 0.050199640588481
204 => 0.050439258583102
205 => 0.050229732919382
206 => 0.053196174467134
207 => 0.051964301116924
208 => 0.052564707616496
209 => 0.052707901028844
210 => 0.052341114114149
211 => 0.052420657062292
212 => 0.052541142954572
213 => 0.05327270969894
214 => 0.055192552516707
215 => 0.056042837831884
216 => 0.058600963154931
217 => 0.055972233473001
218 => 0.05581625553244
219 => 0.056277051151105
220 => 0.0577789415208
221 => 0.058996082600049
222 => 0.059399878514589
223 => 0.059453246810639
224 => 0.060210794790161
225 => 0.06064500716459
226 => 0.060118808539958
227 => 0.059672910300874
228 => 0.058075758155403
229 => 0.058260632865142
301 => 0.059534236283817
302 => 0.061333276127561
303 => 0.062877039471687
304 => 0.062336467354159
305 => 0.06646065102646
306 => 0.066869546991789
307 => 0.06681305079057
308 => 0.067744576651468
309 => 0.065895687519528
310 => 0.065105251595084
311 => 0.059769318561324
312 => 0.06126849809393
313 => 0.063447643588301
314 => 0.063159225510745
315 => 0.061576671804007
316 => 0.06287583896279
317 => 0.062446293671383
318 => 0.0621074934782
319 => 0.06365960284282
320 => 0.061952994839281
321 => 0.063430618867979
322 => 0.061535550767111
323 => 0.062338936642057
324 => 0.061882895964035
325 => 0.062178010172959
326 => 0.060452778537766
327 => 0.061383671650486
328 => 0.060414050323784
329 => 0.060413590597027
330 => 0.060392186152499
331 => 0.061532941343404
401 => 0.061570141329225
402 => 0.060727121519561
403 => 0.060605629194544
404 => 0.061054849996837
405 => 0.060528930088466
406 => 0.060775004703492
407 => 0.060536383437875
408 => 0.060482664764852
409 => 0.060054625238723
410 => 0.059870214041675
411 => 0.059942526423729
412 => 0.059695686984192
413 => 0.059546957293298
414 => 0.060362600073508
415 => 0.059926835038978
416 => 0.060295812832216
417 => 0.059875316068111
418 => 0.058417691082004
419 => 0.05757939553839
420 => 0.054826077061542
421 => 0.055606914766095
422 => 0.056124610972049
423 => 0.05595351237907
424 => 0.056321098363155
425 => 0.056343665157168
426 => 0.056224159206647
427 => 0.056085786625603
428 => 0.056018434505634
429 => 0.056520422027322
430 => 0.056811842679785
501 => 0.056176568712198
502 => 0.05602773291002
503 => 0.056670029965688
504 => 0.057061830798602
505 => 0.059954668014971
506 => 0.059740357290241
507 => 0.060278235152957
508 => 0.060217678360024
509 => 0.060781460050813
510 => 0.061703004843335
511 => 0.059829246612163
512 => 0.06015446625141
513 => 0.060074729906284
514 => 0.060945270414367
515 => 0.060947988146811
516 => 0.060426055625492
517 => 0.060709003712687
518 => 0.060551069852689
519 => 0.060836477683746
520 => 0.059737495039853
521 => 0.061075937272269
522 => 0.061834747770737
523 => 0.061845283855244
524 => 0.062204954009225
525 => 0.062570399716361
526 => 0.063271840927594
527 => 0.062550836901687
528 => 0.061253820847409
529 => 0.061347461217191
530 => 0.060587021179127
531 => 0.060599804313552
601 => 0.060531566940161
602 => 0.060736352434376
603 => 0.059782433939746
604 => 0.060006316703771
605 => 0.059692879523081
606 => 0.060153784900192
607 => 0.059657926904809
608 => 0.060074691455005
609 => 0.060254553218905
610 => 0.060918246999847
611 => 0.059559898793731
612 => 0.056790134849371
613 => 0.057372372810617
614 => 0.056511197132129
615 => 0.0565909022199
616 => 0.056751919182168
617 => 0.056230010525985
618 => 0.056329574250353
619 => 0.056326017133499
620 => 0.056295363822165
621 => 0.056159595223623
622 => 0.055962703894739
623 => 0.056747058349059
624 => 0.056880335454998
625 => 0.057176593951959
626 => 0.058058058284858
627 => 0.057969979211641
628 => 0.058113639834423
629 => 0.057800029501509
630 => 0.056605449703788
701 => 0.056670321134101
702 => 0.055861373358603
703 => 0.057155907338577
704 => 0.056849344605105
705 => 0.056651701616528
706 => 0.056597772895945
707 => 0.05748142220843
708 => 0.057745823932232
709 => 0.057581066521298
710 => 0.057243144264732
711 => 0.057892054895086
712 => 0.058065676004427
713 => 0.058104543367909
714 => 0.059254288588624
715 => 0.05816880135367
716 => 0.058430088919939
717 => 0.060468579924141
718 => 0.05861994987586
719 => 0.059599210441804
720 => 0.059551280732927
721 => 0.060052237302093
722 => 0.059510187672428
723 => 0.059516907027229
724 => 0.059961722522911
725 => 0.059337059382123
726 => 0.059182384003806
727 => 0.058968701076468
728 => 0.059435269930878
729 => 0.059714956858002
730 => 0.061969028083213
731 => 0.063425260892836
801 => 0.06336204198603
802 => 0.063939744453407
803 => 0.063679484200705
804 => 0.062839035191546
805 => 0.064273579168342
806 => 0.063819629430215
807 => 0.063857052495077
808 => 0.063855659606734
809 => 0.064157496497614
810 => 0.063943617397481
811 => 0.063522039736879
812 => 0.063801902662192
813 => 0.064632995497545
814 => 0.067212733159525
815 => 0.068656388532147
816 => 0.067125823293386
817 => 0.068181586699998
818 => 0.067548504862997
819 => 0.067433455060661
820 => 0.068096552500316
821 => 0.06876081060426
822 => 0.068718500234705
823 => 0.068236282961273
824 => 0.067963890659322
825 => 0.070026536427814
826 => 0.071546258693785
827 => 0.071442623823593
828 => 0.071900034436755
829 => 0.073243006144175
830 => 0.073365790646432
831 => 0.073350322621318
901 => 0.073045988421235
902 => 0.074368318474104
903 => 0.075471429468391
904 => 0.072975543846977
905 => 0.07392594441807
906 => 0.074352609854427
907 => 0.074979081300931
908 => 0.076036043639987
909 => 0.077184185085618
910 => 0.07734654487476
911 => 0.077231342834732
912 => 0.076474112687641
913 => 0.077730422757625
914 => 0.078466339732526
915 => 0.078904561449919
916 => 0.080015818812086
917 => 0.074355244794908
918 => 0.070348409156766
919 => 0.069722683912462
920 => 0.070995120802184
921 => 0.07133065226251
922 => 0.071195399951573
923 => 0.066685342155286
924 => 0.069698939391543
925 => 0.072941316627302
926 => 0.073065869541925
927 => 0.074689071381057
928 => 0.07521765243717
929 => 0.0765245426756
930 => 0.076442796335358
1001 => 0.07676100331125
1002 => 0.076687853038069
1003 => 0.079108592006553
1004 => 0.081779026572007
1005 => 0.081686557914467
1006 => 0.081302651350535
1007 => 0.08187281806377
1008 => 0.084628992716478
1009 => 0.084375248321256
1010 => 0.084621739387318
1011 => 0.087871424634057
1012 => 0.092096477717154
1013 => 0.090133516371661
1014 => 0.094392577664469
1015 => 0.097073430985153
1016 => 0.10170968959787
1017 => 0.1011292071855
1018 => 0.10293406864099
1019 => 0.10009002251703
1020 => 0.09355951773985
1021 => 0.092526040361093
1022 => 0.09459508824518
1023 => 0.099681640573466
1024 => 0.094434894610859
1025 => 0.095496304485718
1026 => 0.095190618370354
1027 => 0.095174329656348
1028 => 0.095796003618947
1029 => 0.094894233111864
1030 => 0.091220257840593
1031 => 0.092904019056544
1101 => 0.092253837990211
1102 => 0.092975262357517
1103 => 0.09686849212983
1104 => 0.095147202444484
1105 => 0.093333963587192
1106 => 0.095608167504151
1107 => 0.098504010591691
1108 => 0.098322793935603
1109 => 0.097971157880106
1110 => 0.099953311913875
1111 => 0.10322724966102
1112 => 0.10411218187833
1113 => 0.1047654207495
1114 => 0.10485549135327
1115 => 0.10578327455071
1116 => 0.10079435046663
1117 => 0.10871190111272
1118 => 0.11007904339138
1119 => 0.10982207730524
1120 => 0.11134159840982
1121 => 0.11089451675432
1122 => 0.11024676558047
1123 => 0.11265552974265
1124 => 0.10989407600795
1125 => 0.10597454008891
1126 => 0.1038242051641
1127 => 0.10665593965567
1128 => 0.10838518109575
1129 => 0.10952809968724
1130 => 0.10987394616245
1201 => 0.10118162644163
1202 => 0.096496948210258
1203 => 0.099499773246621
1204 => 0.1031634270349
1205 => 0.10077399868485
1206 => 0.10086765975239
1207 => 0.097460962855942
1208 => 0.10346484411833
1209 => 0.10259012911899
1210 => 0.10712815208292
1211 => 0.10604511648267
1212 => 0.10974569804471
1213 => 0.10877121089943
1214 => 0.11281625255664
1215 => 0.11442992918883
1216 => 0.117139543403
1217 => 0.11913274664905
1218 => 0.12030319371904
1219 => 0.12023292446719
1220 => 0.12487081887289
1221 => 0.12213601457754
1222 => 0.1187004558387
1223 => 0.11863831742016
1224 => 0.12041764197325
1225 => 0.12414661810268
1226 => 0.12511348735864
1227 => 0.12565383537
1228 => 0.12482627358096
1229 => 0.12185783952354
1230 => 0.12057608474785
1231 => 0.12166817695275
]
'min_raw' => 0.045032211770305
'max_raw' => 0.12565383537
'avg_raw' => 0.08534302357015
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.045032'
'max' => '$0.125653'
'avg' => '$0.085343'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017827578341505
'max_diff' => 0.064921407674323
'year' => 2036
]
11 => [
'items' => [
101 => 0.12033264203071
102 => 0.12263814999107
103 => 0.12580410485056
104 => 0.12515034769161
105 => 0.12733575985721
106 => 0.12959743153653
107 => 0.132831723616
108 => 0.13367728733106
109 => 0.13507497199814
110 => 0.13651364863607
111 => 0.13697571279875
112 => 0.1378579366554
113 => 0.1378532869002
114 => 0.14051192787271
115 => 0.14344449119666
116 => 0.14455146596245
117 => 0.14709689339744
118 => 0.14273793811743
119 => 0.14604425576939
120 => 0.14902663705395
121 => 0.14547091913735
122 => 0.15037164790936
123 => 0.15056193210229
124 => 0.15343499749969
125 => 0.1505225953067
126 => 0.14879322018121
127 => 0.15378586136965
128 => 0.15620164317401
129 => 0.15547399003425
130 => 0.14993651371203
131 => 0.14671346497896
201 => 0.13827812476486
202 => 0.14827014962804
203 => 0.15313697346754
204 => 0.14992390981402
205 => 0.1515443922281
206 => 0.16038521883615
207 => 0.16375123320736
208 => 0.16305112574837
209 => 0.16316943238419
210 => 0.16498567264141
211 => 0.17303988216372
212 => 0.16821361312284
213 => 0.17190311496774
214 => 0.17386001344279
215 => 0.17567768980555
216 => 0.17121405114113
217 => 0.16540692282258
218 => 0.16356756151743
219 => 0.14960443395624
220 => 0.14887759252789
221 => 0.14846959440861
222 => 0.14589722397902
223 => 0.14387604545292
224 => 0.14226872924742
225 => 0.13805065153894
226 => 0.13947412894258
227 => 0.1327513934565
228 => 0.13705236138138
301 => 0.12632271321946
302 => 0.13525868304192
303 => 0.13039524093625
304 => 0.13366091150835
305 => 0.13364951789137
306 => 0.12763638298633
307 => 0.12416813226402
308 => 0.12637823661061
309 => 0.12874764390846
310 => 0.12913207227089
311 => 0.13220407068041
312 => 0.13306139940412
313 => 0.13046365334642
314 => 0.12610036511023
315 => 0.12711385745148
316 => 0.12414759387408
317 => 0.11894933105035
318 => 0.12268281416331
319 => 0.12395758944774
320 => 0.12452060283569
321 => 0.11940870837308
322 => 0.11780244014829
323 => 0.11694727642332
324 => 0.12544048372752
325 => 0.12590576079598
326 => 0.12352533753021
327 => 0.13428507641248
328 => 0.13184981612203
329 => 0.13457059851972
330 => 0.12702189364444
331 => 0.12731026433635
401 => 0.12373658647503
402 => 0.12573760728413
403 => 0.12432335027217
404 => 0.12557594457723
405 => 0.12632674443904
406 => 0.12989983589499
407 => 0.13529948200681
408 => 0.12936613518357
409 => 0.12678089100559
410 => 0.12838476195365
411 => 0.13265608164395
412 => 0.13912734961959
413 => 0.13529622873161
414 => 0.13699641512504
415 => 0.13736783021598
416 => 0.13454290350898
417 => 0.13923150869671
418 => 0.14174417030698
419 => 0.14432164119705
420 => 0.1465595869518
421 => 0.14329214264375
422 => 0.14678877642311
423 => 0.1439711068359
424 => 0.14144336593085
425 => 0.14144719947039
426 => 0.13986151067625
427 => 0.13678903882796
428 => 0.13622242787895
429 => 0.13917000959073
430 => 0.14153369098655
501 => 0.14172837510758
502 => 0.14303703057864
503 => 0.1438114794062
504 => 0.15140213072832
505 => 0.15445515348324
506 => 0.15818833191719
507 => 0.15964261530762
508 => 0.16401948692337
509 => 0.16048480762152
510 => 0.15972005752039
511 => 0.14910319864438
512 => 0.15084170869056
513 => 0.15362523101576
514 => 0.14914909790228
515 => 0.15198817409896
516 => 0.15254866788004
517 => 0.1489970006119
518 => 0.1508940995583
519 => 0.1458559672073
520 => 0.13540929952444
521 => 0.13924313882418
522 => 0.14206613500515
523 => 0.13803737138199
524 => 0.14525877424182
525 => 0.14104017977112
526 => 0.13970308785216
527 => 0.13448661556858
528 => 0.136948589686
529 => 0.14027844493187
530 => 0.13822098152714
531 => 0.14249052702164
601 => 0.14853734208805
602 => 0.15284666259843
603 => 0.15317747871817
604 => 0.15040687433204
605 => 0.15484678554257
606 => 0.15487912544858
607 => 0.14987088746554
608 => 0.14680336958691
609 => 0.14610642307077
610 => 0.14784753211249
611 => 0.14996155991561
612 => 0.15329479254836
613 => 0.15530899521863
614 => 0.16056096753215
615 => 0.16198200065434
616 => 0.16354328522531
617 => 0.16562964289445
618 => 0.16813485020739
619 => 0.16265359922822
620 => 0.16287137954796
621 => 0.15776731452924
622 => 0.15231288905979
623 => 0.15645211808737
624 => 0.16186360942238
625 => 0.16062220733096
626 => 0.16048252423613
627 => 0.16071743245677
628 => 0.15978145582025
629 => 0.15554806818215
630 => 0.15342208741271
701 => 0.15616514500083
702 => 0.15762295802947
703 => 0.15988389890223
704 => 0.15960519021699
705 => 0.1654291310979
706 => 0.16769213841739
707 => 0.16711316430552
708 => 0.1672197094759
709 => 0.17131677613252
710 => 0.1758735568807
711 => 0.18014158337156
712 => 0.18448320323406
713 => 0.1792492110335
714 => 0.17659171258183
715 => 0.17933357263681
716 => 0.17787870309716
717 => 0.18623881501433
718 => 0.1868176510248
719 => 0.19517715841072
720 => 0.20311132635159
721 => 0.19812801762332
722 => 0.20282705330092
723 => 0.20790944350426
724 => 0.21771419879458
725 => 0.21441230214825
726 => 0.21188310106447
727 => 0.20949301826132
728 => 0.21446640115972
729 => 0.22086457880679
730 => 0.22224268499098
731 => 0.22447574348645
801 => 0.22212795552386
802 => 0.22495560752444
803 => 0.23493846161973
804 => 0.23224100632209
805 => 0.22841018616187
806 => 0.2362906907066
807 => 0.23914261466666
808 => 0.25915891058248
809 => 0.28443031100815
810 => 0.27396778529096
811 => 0.26747335795471
812 => 0.2689997024286
813 => 0.27822796237317
814 => 0.28119178657703
815 => 0.27313509069946
816 => 0.27598085188698
817 => 0.29166127581926
818 => 0.3000733201707
819 => 0.28864863405316
820 => 0.25712837816449
821 => 0.22806526272035
822 => 0.23577410966528
823 => 0.2349001656551
824 => 0.25174682499762
825 => 0.23217667290535
826 => 0.23250618407613
827 => 0.24970121449293
828 => 0.24511387517518
829 => 0.23768297298245
830 => 0.22811951652989
831 => 0.21044058276467
901 => 0.19478185811528
902 => 0.22549222314166
903 => 0.22416793635854
904 => 0.22225017284829
905 => 0.22651794801667
906 => 0.24724105280522
907 => 0.2467633181657
908 => 0.24372421413143
909 => 0.24602934775599
910 => 0.23727887191291
911 => 0.2395340687823
912 => 0.22806065897438
913 => 0.23324711937948
914 => 0.23766702960374
915 => 0.23855439201915
916 => 0.24055366485091
917 => 0.2234700973999
918 => 0.23114011763821
919 => 0.23564553594452
920 => 0.21528989212812
921 => 0.23524317031465
922 => 0.22317271049808
923 => 0.21907581514412
924 => 0.22459174501331
925 => 0.22244218177887
926 => 0.22059411353649
927 => 0.21956285970339
928 => 0.22361314982836
929 => 0.22342419895289
930 => 0.216797138181
1001 => 0.20815240755762
1002 => 0.21105386290844
1003 => 0.2099997369782
1004 => 0.20617944862206
1005 => 0.20875386171072
1006 => 0.19741744934889
1007 => 0.17791374109581
1008 => 0.19079848818254
1009 => 0.1903024394356
1010 => 0.19005230916338
1011 => 0.19973484049081
1012 => 0.19880408851768
1013 => 0.1971147645725
1014 => 0.20614842286302
1015 => 0.20285101606713
1016 => 0.21301284684531
1017 => 0.21970608582182
1018 => 0.21800846391378
1019 => 0.22430348752243
1020 => 0.2111207065796
1021 => 0.21549949760744
1022 => 0.21640196036953
1023 => 0.20603694892197
1024 => 0.19895637105129
1025 => 0.19848417723181
1026 => 0.18620743096777
1027 => 0.19276556972759
1028 => 0.198536460442
1029 => 0.19577265162901
1030 => 0.19489771232525
1031 => 0.19936758747695
1101 => 0.19971493505813
1102 => 0.19179537339701
1103 => 0.19344210104626
1104 => 0.20030922908932
1105 => 0.19326906703881
1106 => 0.17959118217861
1107 => 0.17619887762173
1108 => 0.17574628166126
1109 => 0.16654608265593
1110 => 0.17642556763316
1111 => 0.17211290768686
1112 => 0.18573654878361
1113 => 0.1779547980542
1114 => 0.17761934233344
1115 => 0.17711225181086
1116 => 0.16919326047154
1117 => 0.1709270162967
1118 => 0.17669028471799
1119 => 0.17874668381857
1120 => 0.1785321845448
1121 => 0.17666204155858
1122 => 0.17751818344099
1123 => 0.17476025213815
1124 => 0.17378636919374
1125 => 0.17071252673358
1126 => 0.16619482748779
1127 => 0.16682304127658
1128 => 0.15787229695036
1129 => 0.15299545638948
1130 => 0.15164561119796
1201 => 0.14984054179393
1202 => 0.15184949859025
1203 => 0.15784694061629
1204 => 0.15061275310458
1205 => 0.13821024603501
1206 => 0.13895565784273
1207 => 0.14063037685994
1208 => 0.13750954905075
1209 => 0.13455594744058
1210 => 0.13712386440735
1211 => 0.13186875866261
1212 => 0.14126543128262
1213 => 0.14101127762212
1214 => 0.14451377608853
1215 => 0.14670396025808
1216 => 0.14165629482782
1217 => 0.14038682062244
1218 => 0.14110997082421
1219 => 0.129157908826
1220 => 0.14353703763371
1221 => 0.14366138893674
1222 => 0.14259661758429
1223 => 0.15025305976859
1224 => 0.16641054088168
1225 => 0.16033144655377
1226 => 0.1579774374884
1227 => 0.15350246453436
1228 => 0.15946510029801
1229 => 0.15900726290297
1230 => 0.15693674857292
1231 => 0.15568449504571
]
'min_raw' => 0.11694727642332
'max_raw' => 0.3000733201707
'avg_raw' => 0.20851029829701
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.116947'
'max' => '$0.300073'
'avg' => '$0.20851'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.07191506465301
'max_diff' => 0.1744194848007
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036708413742683
]
1 => [
'year' => 2028
'avg' => 0.0063002294511097
]
2 => [
'year' => 2029
'avg' => 0.017211091354552
]
3 => [
'year' => 2030
'avg' => 0.013278331348511
]
4 => [
'year' => 2031
'avg' => 0.013040966949725
]
5 => [
'year' => 2032
'avg' => 0.022864919206211
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036708413742683
'min' => '$0.00367'
'max_raw' => 0.022864919206211
'max' => '$0.022864'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022864919206211
]
1 => [
'year' => 2033
'avg' => 0.05881092337029
]
2 => [
'year' => 2034
'avg' => 0.037277189552814
]
3 => [
'year' => 2035
'avg' => 0.043968530562236
]
4 => [
'year' => 2036
'avg' => 0.08534302357015
]
5 => [
'year' => 2037
'avg' => 0.20851029829701
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022864919206211
'min' => '$0.022864'
'max_raw' => 0.20851029829701
'max' => '$0.20851'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20851029829701
]
]
]
]
'prediction_2025_max_price' => '$0.006276'
'last_price' => 0.00608583
'sma_50day_nextmonth' => '$0.005604'
'sma_200day_nextmonth' => '$0.007743'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005339'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005798'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005624'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005623'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055043'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.00563'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005591'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005598'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005585'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005753'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006768'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007466'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.005746'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005742'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006078'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.008856'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.026581'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01707'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.23
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005673'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005249'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 38.22
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 71.81
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.38
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000386'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -61.78
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.57
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 20
'sell_pct' => 35.48
'buy_pct' => 64.52
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767688416
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de KDR para 2026
A previsão de preço para KDR em 2026 sugere que o preço médio poderia variar entre $0.0021026 na extremidade inferior e $0.006276 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, KDR poderia potencialmente ganhar 3.13% até 2026 se KDR atingir a meta de preço prevista.
Previsão de preço de KDR 2027-2032
A previsão de preço de KDR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00367 na extremidade inferior e $0.022864 na extremidade superior. Considerando a volatilidade de preços no mercado, se KDR atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002024 | $0.00367 | $0.005317 |
| 2028 | $0.003653 | $0.00630022 | $0.008947 |
| 2029 | $0.008024 | $0.017211 | $0.026397 |
| 2030 | $0.006824 | $0.013278 | $0.019732 |
| 2031 | $0.008068 | $0.01304 | $0.018013 |
| 2032 | $0.012316 | $0.022864 | $0.033413 |
Previsão de preço de KDR 2032-2037
A previsão de preço de KDR para 2032-2037 é atualmente estimada entre $0.022864 na extremidade inferior e $0.20851 na extremidade superior. Comparado ao preço atual, KDR poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012316 | $0.022864 | $0.033413 |
| 2033 | $0.02862 | $0.05881 | $0.089001 |
| 2034 | $0.0230097 | $0.037277 | $0.051544 |
| 2035 | $0.0272046 | $0.043968 | $0.060732 |
| 2036 | $0.045032 | $0.085343 | $0.125653 |
| 2037 | $0.116947 | $0.20851 | $0.300073 |
KDR Histograma de preços potenciais
Previsão de preço de KDR baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para KDR é Altista, com 20 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de KDR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de KDR
De acordo com nossos indicadores técnicos, o SMA de 200 dias de KDR está projetado para aumentar no próximo mês, alcançando $0.007743 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para KDR é esperado para alcançar $0.005604 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.16, sugerindo que o mercado de KDR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KDR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005339 | BUY |
| SMA 5 | $0.005798 | BUY |
| SMA 10 | $0.005624 | BUY |
| SMA 21 | $0.005623 | BUY |
| SMA 50 | $0.0055043 | BUY |
| SMA 100 | $0.006241 | SELL |
| SMA 200 | $0.008066 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.00563 | BUY |
| EMA 5 | $0.005591 | BUY |
| EMA 10 | $0.005598 | BUY |
| EMA 21 | $0.005585 | BUY |
| EMA 50 | $0.005753 | BUY |
| EMA 100 | $0.006768 | SELL |
| EMA 200 | $0.013946 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007466 | SELL |
| SMA 50 | $0.015883 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.008856 | SELL |
| EMA 50 | $0.026581 | SELL |
| EMA 100 | $0.01707 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.16 | NEUTRAL |
| Stoch RSI (14) | 18.23 | NEUTRAL |
| Estocástico Rápido (14) | 38.22 | NEUTRAL |
| Índice de Canal de Commodities (20) | 71.81 | NEUTRAL |
| Índice Direcional Médio (14) | 10.38 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000386 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -61.78 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.57 | NEUTRAL |
| VWMA (10) | 0.005673 | BUY |
| Média Móvel de Hull (9) | 0.005249 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Previsão do preço de KDR com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do KDR
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de KDR por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.008551 | $0.012016 | $0.016885 | $0.023726 | $0.033339 | $0.046847 |
| Amazon.com stock | $0.012698 | $0.026496 | $0.055285 | $0.115356 | $0.240698 | $0.502232 |
| Apple stock | $0.008632 | $0.012244 | $0.017367 | $0.024634 | $0.034942 | $0.049562 |
| Netflix stock | $0.0096024 | $0.015151 | $0.0239062 | $0.03772 | $0.059516 | $0.093908 |
| Google stock | $0.007881 | $0.010206 | $0.013216 | $0.017115 | $0.022164 | $0.0287031 |
| Tesla stock | $0.013796 | $0.031274 | $0.070897 | $0.160719 | $0.364338 | $0.825927 |
| Kodak stock | $0.004563 | $0.003422 | $0.002566 | $0.001924 | $0.001443 | $0.001082 |
| Nokia stock | $0.004031 | $0.00267 | $0.001769 | $0.001172 | $0.000776 | $0.000514 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para KDR
Você pode fazer perguntas como: 'Devo investir em KDR agora?', 'Devo comprar KDR hoje?', 'KDR será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para KDR regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como KDR, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre KDR para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de KDR é de $0.006085 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de KDR com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se KDR tiver 1% da média anterior do crescimento anual do Bitcoin | $0.006244 | $0.0064063 | $0.006572 | $0.006743 |
| Se KDR tiver 2% da média anterior do crescimento anual do Bitcoin | $0.0064022 | $0.006735 | $0.007085 | $0.007453 |
| Se KDR tiver 5% da média anterior do crescimento anual do Bitcoin | $0.006876 | $0.00777 | $0.00878 | $0.009921 |
| Se KDR tiver 10% da média anterior do crescimento anual do Bitcoin | $0.007667 | $0.00966 | $0.012171 | $0.015335 |
| Se KDR tiver 20% da média anterior do crescimento anual do Bitcoin | $0.009249 | $0.014058 | $0.021366 | $0.032474 |
| Se KDR tiver 50% da média anterior do crescimento anual do Bitcoin | $0.013995 | $0.032184 | $0.074013 | $0.1702059 |
| Se KDR tiver 100% da média anterior do crescimento anual do Bitcoin | $0.0219048 | $0.078842 | $0.283779 | $1.02 |
Perguntas Frequentes sobre KDR
KDR é um bom investimento?
A decisão de adquirir KDR depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de KDR experimentou uma escalada de 20.9733% nas últimas 24 horas, e KDR registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em KDR dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
KDR pode subir?
Parece que o valor médio de KDR pode potencialmente subir para $0.006276 até o final deste ano. Observando as perspectivas de KDR em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.019732. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de KDR na próxima semana?
Com base na nossa nova previsão experimental de KDR, o preço de KDR aumentará 0.86% na próxima semana e atingirá $0.006137 até 13 de janeiro de 2026.
Qual será o preço de KDR no próximo mês?
Com base na nossa nova previsão experimental de KDR, o preço de KDR diminuirá -11.62% no próximo mês e atingirá $0.005378 até 5 de fevereiro de 2026.
Até onde o preço de KDR pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de KDR em 2026, espera-se que KDR fluctue dentro do intervalo de $0.0021026 e $0.006276. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de KDR não considera flutuações repentinas e extremas de preço.
Onde estará KDR em 5 anos?
O futuro de KDR parece seguir uma tendência de alta, com um preço máximo de $0.019732 projetada após um período de cinco anos. Com base na previsão de KDR para 2030, o valor de KDR pode potencialmente atingir seu pico mais alto de aproximadamente $0.019732, enquanto seu pico mais baixo está previsto para cerca de $0.006824.
Quanto será KDR em 2026?
Com base na nossa nova simulação experimental de previsão de preços de KDR, espera-se que o valor de KDR em 2026 aumente 3.13% para $0.006276 se o melhor cenário ocorrer. O preço ficará entre $0.006276 e $0.0021026 durante 2026.
Quanto será KDR em 2027?
De acordo com nossa última simulação experimental para previsão de preços de KDR, o valor de KDR pode diminuir -12.62% para $0.005317 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.005317 e $0.002024 ao longo do ano.
Quanto será KDR em 2028?
Nosso novo modelo experimental de previsão de preços de KDR sugere que o valor de KDR em 2028 pode aumentar 47.02%, alcançando $0.008947 no melhor cenário. O preço é esperado para variar entre $0.008947 e $0.003653 durante o ano.
Quanto será KDR em 2029?
Com base no nosso modelo de previsão experimental, o valor de KDR pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.026397 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.026397 e $0.008024.
Quanto será KDR em 2030?
Usando nossa nova simulação experimental para previsões de preços de KDR, espera-se que o valor de KDR em 2030 aumente 224.23%, alcançando $0.019732 no melhor cenário. O preço está previsto para variar entre $0.019732 e $0.006824 ao longo de 2030.
Quanto será KDR em 2031?
Nossa simulação experimental indica que o preço de KDR poderia aumentar 195.98% em 2031, potencialmente atingindo $0.018013 sob condições ideais. O preço provavelmente oscilará entre $0.018013 e $0.008068 durante o ano.
Quanto será KDR em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de KDR, KDR poderia ver um 449.04% aumento em valor, atingindo $0.033413 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.033413 e $0.012316 ao longo do ano.
Quanto será KDR em 2033?
De acordo com nossa previsão experimental de preços de KDR, espera-se que o valor de KDR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.089001. Ao longo do ano, o preço de KDR poderia variar entre $0.089001 e $0.02862.
Quanto será KDR em 2034?
Os resultados da nossa nova simulação de previsão de preços de KDR sugerem que KDR pode aumentar 746.96% em 2034, atingindo potencialmente $0.051544 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.051544 e $0.0230097.
Quanto será KDR em 2035?
Com base em nossa previsão experimental para o preço de KDR, KDR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.060732 em 2035. A faixa de preço esperada para o ano está entre $0.060732 e $0.0272046.
Quanto será KDR em 2036?
Nossa recente simulação de previsão de preços de KDR sugere que o valor de KDR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.125653 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.125653 e $0.045032.
Quanto será KDR em 2037?
De acordo com a simulação experimental, o valor de KDR poderia aumentar 4830.69% em 2037, com um pico de $0.300073 sob condições favoráveis. O preço é esperado para cair entre $0.300073 e $0.116947 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de KDR?
Traders de KDR utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de KDR
Médias móveis são ferramentas populares para a previsão de preço de KDR. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KDR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KDR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KDR.
Como ler gráficos de KDR e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de KDR em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KDR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de KDR?
A ação de preço de KDR é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KDR. A capitalização de mercado de KDR pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KDR, grandes detentores de KDR, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de KDR.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


