Previsão de Preço KDR - Projeção KDR
Previsão de Preço KDR até $0.006265 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.002098 | $0.006265 |
| 2027 | $0.00202 | $0.0053081 |
| 2028 | $0.003646 | $0.008931 |
| 2029 | $0.00801 | $0.02635 |
| 2030 | $0.006812 | $0.019697 |
| 2031 | $0.008054 | $0.017981 |
| 2032 | $0.012294 | $0.033354 |
| 2033 | $0.02857 | $0.088844 |
| 2034 | $0.022969 | $0.051453 |
| 2035 | $0.027156 | $0.060625 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em KDR hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.66, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de KDR para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'KDR'
'name_with_ticker' => 'KDR <small>KDR</small>'
'name_lang' => 'KDR'
'name_lang_with_ticker' => 'KDR <small>KDR</small>'
'name_with_lang' => 'KDR'
'name_with_lang_with_ticker' => 'KDR <small>KDR</small>'
'image' => '/uploads/coins/kdr.png?1734513816'
'price_for_sd' => 0.006075
'ticker' => 'KDR'
'marketcap' => '$91.74K'
'low24h' => '$0.004952'
'high24h' => '$0.006145'
'volume24h' => '$1.16K'
'current_supply' => '15.1M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006075'
'change_24h_pct' => '21.9125%'
'ath_price' => '$0.3891'
'ath_days' => 384
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 de dez. de 2024'
'ath_pct' => '-98.44%'
'fdv' => '$607.51K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.299544'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006127'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005369'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002098'
'current_year_max_price_prediction' => '$0.006265'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.006812'
'grand_prediction_max_price' => '$0.019697'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0061902199494974
107 => 0.006213331983739
108 => 0.006265404577015
109 => 0.0058204499687963
110 => 0.0060202215247056
111 => 0.0061375685977388
112 => 0.0056073902526516
113 => 0.0061270886765098
114 => 0.0058127042990019
115 => 0.0057059975193809
116 => 0.0058496641405914
117 => 0.0057936771185853
118 => 0.0057455427647327
119 => 0.0057186829682297
120 => 0.0058241758789404
121 => 0.0058192545085644
122 => 0.0056466476313502
123 => 0.0054214889963806
124 => 0.0054970596248566
125 => 0.0054696041070528
126 => 0.0053701017686997
127 => 0.0054371543307916
128 => 0.0051418887818641
129 => 0.0046338997515021
130 => 0.004969492865084
131 => 0.0049565728952662
201 => 0.00495005806061
202 => 0.0052022470103545
203 => 0.0051780048618255
204 => 0.0051340051248657
205 => 0.0053692936790254
206 => 0.0052834101916795
207 => 0.0055480828629851
208 => 0.0057224134022621
209 => 0.0056781975384993
210 => 0.0058421562533019
211 => 0.0054988006195055
212 => 0.0056128495880157
213 => 0.0056363549223606
214 => 0.00536639025479
215 => 0.0051819711771326
216 => 0.0051696725271842
217 => 0.0048499152610407
218 => 0.0050207270116241
219 => 0.005171034283467
220 => 0.0050990487645697
221 => 0.0050762602997931
222 => 0.0051926816241221
223 => 0.0052017285581037
224 => 0.0049954575045726
225 => 0.0050383477883565
226 => 0.0052172074016515
227 => 0.0050338409850079
228 => 0.0046775899902036
301 => 0.0045892348179368
302 => 0.0045774466092475
303 => 0.0043378203745228
304 => 0.0045951391330343
305 => 0.00448281259923
306 => 0.0048376507736393
307 => 0.004634969111452
308 => 0.0046262319100899
309 => 0.0046130243487621
310 => 0.0044067681496995
311 => 0.0044519251490289
312 => 0.0046020338924052
313 => 0.0046555943831379
314 => 0.0046500075851463
315 => 0.0046012982776711
316 => 0.0046235971492013
317 => 0.0045517647145609
318 => 0.0045263991868265
319 => 0.0044463386039588
320 => 0.0043286716644437
321 => 0.0043450339740766
322 => 0.0041119049776677
323 => 0.0039848839273319
324 => 0.0039497261747094
325 => 0.0039027117585591
326 => 0.0039550365781142
327 => 0.004111244552512
328 => 0.0039228245940178
329 => 0.0035997917913028
330 => 0.003619206613167
331 => 0.0036628259535837
401 => 0.003581541601288
402 => 0.0035046127835187
403 => 0.0035714961491369
404 => 0.0034346228921603
405 => 0.0036793664327696
406 => 0.003672746805882
407 => 0.0037639720629821
408 => 0.0038210170883776
409 => 0.0036895467733874
410 => 0.0036564823447009
411 => 0.0036753173459752
412 => 0.0033640167303943
413 => 0.0037385321612904
414 => 0.0037417709862889
415 => 0.0037140382003042
416 => 0.0039134561053897
417 => 0.0043342900851244
418 => 0.0041759554139406
419 => 0.0041146434435674
420 => 0.0039980893430693
421 => 0.0041533907616854
422 => 0.0041414660358152
423 => 0.0040875379031122
424 => 0.0040549220001875
425 => 0.0041150178013845
426 => 0.0040474754653684
427 => 0.0040353430058806
428 => 0.0039618335016308
429 => 0.003935593953083
430 => 0.0039161672359647
501 => 0.0038947803292473
502 => 0.0039419545161808
503 => 0.0038350516023082
504 => 0.0037061371679997
505 => 0.0036954193276605
506 => 0.0037250122271593
507 => 0.0037119195720633
508 => 0.003695356645065
509 => 0.0036637335067804
510 => 0.0036543515971728
511 => 0.003684838251942
512 => 0.00365042059619
513 => 0.0037012057220789
514 => 0.0036873949779063
515 => 0.0036102492836283
516 => 0.0035140971855637
517 => 0.0035132412302051
518 => 0.0034925254183981
519 => 0.0034661407174188
520 => 0.0034588010972065
521 => 0.0035658634186374
522 => 0.0037874792198937
523 => 0.0037439707352904
524 => 0.0037754100743451
525 => 0.0039300605058368
526 => 0.0039792192275073
527 => 0.0039443275312537
528 => 0.0038965656253957
529 => 0.0038986669068577
530 => 0.0040618837976866
531 => 0.0040720634349617
601 => 0.0040977840942804
602 => 0.0041308424101623
603 => 0.0039499575053966
604 => 0.00389014724411
605 => 0.0038618058241654
606 => 0.0037745252202459
607 => 0.0038686498686996
608 => 0.0038138074668649
609 => 0.0038212075805557
610 => 0.0038163882468066
611 => 0.0038190199289155
612 => 0.0036792980219622
613 => 0.0037302053412887
614 => 0.0036455620492713
615 => 0.0035322341829155
616 => 0.0035318542681696
617 => 0.0035595911029087
618 => 0.0035430921482634
619 => 0.0034986938855399
620 => 0.0035050004492059
621 => 0.0034497483154137
622 => 0.0035117090586204
623 => 0.0035134858710294
624 => 0.0034896276098703
625 => 0.0035850866837152
626 => 0.0036241963441566
627 => 0.0036084923255682
628 => 0.0036230945083487
629 => 0.0037457787092547
630 => 0.0037657815870893
701 => 0.0037746655441075
702 => 0.0037627622186019
703 => 0.0036253369503267
704 => 0.0036314323453521
705 => 0.0035867083810141
706 => 0.0035489213440437
707 => 0.0035504326273557
708 => 0.0035698600763294
709 => 0.0036547008854025
710 => 0.0038332433664579
711 => 0.0038400189231011
712 => 0.0038482310954096
713 => 0.0038148280635238
714 => 0.0038047533894831
715 => 0.0038180444850368
716 => 0.0038850956536036
717 => 0.0040575694633719
718 => 0.0039966056998613
719 => 0.0039470412111697
720 => 0.0039905226302425
721 => 0.0039838290065948
722 => 0.0039273280867842
723 => 0.0039257422941473
724 => 0.0038172989645938
725 => 0.0037772099347931
726 => 0.0037437085408797
727 => 0.0037071258933023
728 => 0.003685438473557
729 => 0.0037187602070418
730 => 0.0037263812817409
731 => 0.0036535227291121
801 => 0.0036435923776104
802 => 0.0037030902444482
803 => 0.0036769074515569
804 => 0.0037038371033476
805 => 0.0037100850135613
806 => 0.0037090789561153
807 => 0.0036817411132623
808 => 0.0036991654390706
809 => 0.0036579517140924
810 => 0.0036131379782799
811 => 0.0035845496068259
812 => 0.0035596024610351
813 => 0.0035734445874564
814 => 0.0035240999342367
815 => 0.0035083135865601
816 => 0.0036932624695465
817 => 0.0038298861979441
818 => 0.0038278996348243
819 => 0.0038158069427348
820 => 0.0037978396552029
821 => 0.0038837812346093
822 => 0.0038538409068002
823 => 0.0038756249968794
824 => 0.0038811699620799
825 => 0.0038979529017053
826 => 0.0039039513600789
827 => 0.0038858198526765
828 => 0.003824968299257
829 => 0.0036733320137274
830 => 0.0036027449134791
831 => 0.003579449994676
901 => 0.0035802967207312
902 => 0.0035569402361788
903 => 0.0035638197676437
904 => 0.003554547815887
905 => 0.0035369889823861
906 => 0.0035723603789672
907 => 0.0035764366029159
908 => 0.0035681804962971
909 => 0.0035701251082812
910 => 0.0035017680717072
911 => 0.0035069651087342
912 => 0.0034780273461601
913 => 0.0034726018645274
914 => 0.0033994497206393
915 => 0.0032698500941686
916 => 0.0033416608677735
917 => 0.0032549235513816
918 => 0.0032220748153791
919 => 0.0033775756225881
920 => 0.0033619676544653
921 => 0.0033352535976598
922 => 0.0032957379399472
923 => 0.003281081198118
924 => 0.0031920314745242
925 => 0.0031867699417925
926 => 0.0032309053893504
927 => 0.0032105383989104
928 => 0.0031819354307503
929 => 0.0030783383795108
930 => 0.0029618609941127
1001 => 0.0029653767142271
1002 => 0.0030024260033834
1003 => 0.0031101518083829
1004 => 0.0030680614726943
1005 => 0.0030375244512212
1006 => 0.0030318057850388
1007 => 0.0031033868651502
1008 => 0.0032046890902078
1009 => 0.0032522178276953
1010 => 0.0032051182923144
1011 => 0.003151012882088
1012 => 0.0031543060277081
1013 => 0.0031762138501638
1014 => 0.0031785160525439
1015 => 0.0031432989926125
1016 => 0.0031532123886981
1017 => 0.0031381530335442
1018 => 0.0030457337987619
1019 => 0.0030440622278692
1020 => 0.0030213810571922
1021 => 0.0030206942803581
1022 => 0.0029821079509533
1023 => 0.0029767094567349
1024 => 0.0029000939576787
1025 => 0.0029505225111706
1026 => 0.0029166976851061
1027 => 0.0028657156937572
1028 => 0.0028569263792324
1029 => 0.0028566621618243
1030 => 0.002909009267575
1031 => 0.0029499108047619
1101 => 0.0029172860824372
1102 => 0.0029098580655675
1103 => 0.0029891698524587
1104 => 0.0029790767046338
1105 => 0.0029703361037113
1106 => 0.0031956185870465
1107 => 0.0030172899224753
1108 => 0.0029395284460779
1109 => 0.0028432838525323
1110 => 0.0028746215774982
1111 => 0.0028812248965954
1112 => 0.0026497739985102
1113 => 0.0025558743979824
1114 => 0.0025236515936131
1115 => 0.002505106914135
1116 => 0.0025135579574426
1117 => 0.0024290373036429
1118 => 0.0024858365808389
1119 => 0.0024126488390014
1120 => 0.0024003786759088
1121 => 0.0025312474245357
1122 => 0.002549457046383
1123 => 0.0024717691422964
1124 => 0.0025216573532492
1125 => 0.0025035671944597
1126 => 0.0024139034327737
1127 => 0.0024104789365992
1128 => 0.0023654888128188
1129 => 0.002295087980907
1130 => 0.0022629129116168
1201 => 0.0022461558561738
1202 => 0.0022530701438381
1203 => 0.0022495740684143
1204 => 0.0022267598114376
1205 => 0.0022508817549188
1206 => 0.0021892601571997
1207 => 0.002164721940469
1208 => 0.002153638597254
1209 => 0.0020989458824715
1210 => 0.0021859863136512
1211 => 0.0022031343751
1212 => 0.0022203162235272
1213 => 0.00236987248354
1214 => 0.0023624010754314
1215 => 0.0024299389660101
1216 => 0.0024273145677765
1217 => 0.0024080516673421
1218 => 0.0023267846590029
1219 => 0.0023591762400818
1220 => 0.0022594799882904
1221 => 0.0023341791988187
1222 => 0.0023000895986472
1223 => 0.0023226534707096
1224 => 0.002282081594239
1225 => 0.0023045357458496
1226 => 0.0022072008166207
1227 => 0.0021163108292461
1228 => 0.0021528876134098
1229 => 0.0021926507608583
1230 => 0.0022788673959883
1231 => 0.0022275174793767
]
'min_raw' => 0.0020989458824715
'max_raw' => 0.006265404577015
'avg_raw' => 0.0041821752297432
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002098'
'max' => '$0.006265'
'avg' => '$0.004182'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0039761541175285
'max_diff' => 0.00019030457701499
'year' => 2026
]
1 => [
'items' => [
101 => 0.0022459848511455
102 => 0.0021841222471206
103 => 0.0020564820248378
104 => 0.0020572044546343
105 => 0.0020375697872295
106 => 0.0020206025678833
107 => 0.0022334156350085
108 => 0.0022069489660347
109 => 0.0021647777928971
110 => 0.0022212255839576
111 => 0.0022361512758609
112 => 0.0022365761893264
113 => 0.0022777590405558
114 => 0.0022997383356394
115 => 0.0023036122816616
116 => 0.0023684143878855
117 => 0.0023901351991313
118 => 0.0024796001466085
119 => 0.0022978735460123
120 => 0.0022941310062616
121 => 0.0022220199201378
122 => 0.002176285929287
123 => 0.0022251513656185
124 => 0.002268439471411
125 => 0.0022233650022499
126 => 0.0022292507763484
127 => 0.002168741984219
128 => 0.002190371030202
129 => 0.0022090008783496
130 => 0.0021987145712144
131 => 0.00218331547157
201 => 0.0022648903403871
202 => 0.0022602875665939
203 => 0.0023362519598345
204 => 0.0023954716366315
205 => 0.0025016038842351
206 => 0.0023908493510615
207 => 0.0023868130156633
208 => 0.0024262688416297
209 => 0.0023901291586499
210 => 0.0024129681907937
211 => 0.0024979241630666
212 => 0.0024997191488889
213 => 0.0024696508236574
214 => 0.0024678211633345
215 => 0.0024735961141066
216 => 0.0025074201811563
217 => 0.0024956010128206
218 => 0.0025092784536435
219 => 0.0025263823028289
220 => 0.0025971310749416
221 => 0.0026141883643791
222 => 0.0025727479942365
223 => 0.0025764895956722
224 => 0.0025609897596753
225 => 0.0025460171123146
226 => 0.0025796734370019
227 => 0.0026411810318844
228 => 0.0026407983963289
301 => 0.0026550669628049
302 => 0.0026639561615122
303 => 0.0026257972133692
304 => 0.0026009571412715
305 => 0.0026104824055286
306 => 0.002625713510509
307 => 0.0026055431634631
308 => 0.0024810424376825
309 => 0.0025188080047472
310 => 0.0025125219677458
311 => 0.0025035698866475
312 => 0.0025415434563635
313 => 0.0025378808129273
314 => 0.0024281704221741
315 => 0.0024351937254356
316 => 0.0024285975325073
317 => 0.0024499111813127
318 => 0.002388978151669
319 => 0.0024077207411972
320 => 0.0024194759176484
321 => 0.0024263998068857
322 => 0.0024514136425661
323 => 0.0024484785576576
324 => 0.0024512311935671
325 => 0.0024883201084733
326 => 0.0026759031126903
327 => 0.0026861128417313
328 => 0.0026358364019006
329 => 0.002655920847954
330 => 0.002617363103517
331 => 0.002643247175672
401 => 0.0026609564004563
402 => 0.0025809318189441
403 => 0.0025761932825821
404 => 0.0025374763966181
405 => 0.0025582806580986
406 => 0.0025251795822037
407 => 0.0025333014284018
408 => 0.002510592038382
409 => 0.0025514644190232
410 => 0.002597166091506
411 => 0.0026087121387889
412 => 0.0025783394592735
413 => 0.0025563476376473
414 => 0.002517737243428
415 => 0.0025819471895034
416 => 0.0026007241344985
417 => 0.0025818485622049
418 => 0.0025774746796651
419 => 0.0025691861801556
420 => 0.0025792331240183
421 => 0.0026006218712235
422 => 0.0025905353330297
423 => 0.0025971976692086
424 => 0.0025718077138657
425 => 0.0026258098455688
426 => 0.002711578227034
427 => 0.002711853986405
428 => 0.002701767393841
429 => 0.0026976401774824
430 => 0.0027079896335588
501 => 0.0027136037889232
502 => 0.0027470720321083
503 => 0.0027829847904796
504 => 0.0029505739638341
505 => 0.0029035155945751
506 => 0.0030522106790998
507 => 0.0031698091853186
508 => 0.0032050718353742
509 => 0.0031726318565589
510 => 0.0030616564414052
511 => 0.0030562114581016
512 => 0.003222055580953
513 => 0.0031751970201054
514 => 0.0031696233433953
515 => 0.0031103288400751
516 => 0.0031453792353045
517 => 0.0031377131997095
518 => 0.0031256119874876
519 => 0.0031924856999535
520 => 0.0033176673198321
521 => 0.0032981565904283
522 => 0.0032835927360049
523 => 0.0032197781653963
524 => 0.0032582087904031
525 => 0.0032445243809283
526 => 0.0033033212883727
527 => 0.0032684913029136
528 => 0.0031748420204203
529 => 0.0031897559773295
530 => 0.0031875017627454
531 => 0.0032338933391507
601 => 0.0032199677394236
602 => 0.0031847825659008
603 => 0.0033172394626644
604 => 0.0033086384485525
605 => 0.0033208327200976
606 => 0.0033262010155521
607 => 0.0034068251944598
608 => 0.0034398543408723
609 => 0.0034473525353645
610 => 0.0034787276698905
611 => 0.0034465718934354
612 => 0.003575217925936
613 => 0.0036607600308447
614 => 0.0037601215876527
615 => 0.0039053155280179
616 => 0.0039599097927143
617 => 0.0039500478274512
618 => 0.0040601322159605
619 => 0.0042579514150734
620 => 0.0039900327434593
621 => 0.0042721517552263
622 => 0.0041828361333215
623 => 0.0039710704005046
624 => 0.0039574351838651
625 => 0.0041008453967795
626 => 0.004418915446302
627 => 0.0043392425064172
628 => 0.0044190457626896
629 => 0.0043259510252483
630 => 0.0043213280868703
701 => 0.0044145243590834
702 => 0.0046322825289735
703 => 0.0045288337850017
704 => 0.0043805146438453
705 => 0.0044900311895737
706 => 0.0043951578223859
707 => 0.0041813815727283
708 => 0.0043391815820216
709 => 0.0042336652096927
710 => 0.0042644604966972
711 => 0.0044862402169566
712 => 0.0044595550942587
713 => 0.0044940881140057
714 => 0.0044331382380387
715 => 0.0043762014429723
716 => 0.0042699246867989
717 => 0.0042384613786767
718 => 0.0042471567051104
719 => 0.0042384570697047
720 => 0.0041789962013595
721 => 0.0041661556325017
722 => 0.0041447541218471
723 => 0.0041513873448962
724 => 0.0041111462436327
725 => 0.0041870895159526
726 => 0.004201185256505
727 => 0.0042564504369561
728 => 0.0042621882513257
729 => 0.0044161009922314
730 => 0.0043313284409391
731 => 0.0043882011872559
801 => 0.0043831139535183
802 => 0.0039756600060646
803 => 0.0040318035650271
804 => 0.0041191453239534
805 => 0.004079797979946
806 => 0.0040241700413802
807 => 0.0039792474984069
808 => 0.0039111852522365
809 => 0.0040069815567016
810 => 0.0041329435102721
811 => 0.0042653828543371
812 => 0.0044245000484617
813 => 0.0043889869430614
814 => 0.0042624082690726
815 => 0.0042680864959219
816 => 0.0043031870600048
817 => 0.004257728640295
818 => 0.0042443220648688
819 => 0.0043013452024132
820 => 0.0043017378894221
821 => 0.0042494324837124
822 => 0.0041913045970543
823 => 0.0041910610390868
824 => 0.0041807177431048
825 => 0.0043277910746258
826 => 0.0044086665361713
827 => 0.0044179387775002
828 => 0.0044080424404525
829 => 0.0044118511478106
830 => 0.0043647914987064
831 => 0.0044723559014531
901 => 0.0045710676344304
902 => 0.0045446107813239
903 => 0.004504948197454
904 => 0.0044733550389927
905 => 0.0045371684372354
906 => 0.0045343269270633
907 => 0.004570205473557
908 => 0.0045685778154436
909 => 0.0045565132097181
910 => 0.0045446112121889
911 => 0.0045918012870512
912 => 0.0045782113033403
913 => 0.004564600210631
914 => 0.0045373010804485
915 => 0.0045410114856309
916 => 0.0045013557500653
917 => 0.0044830091922696
918 => 0.0042071209825705
919 => 0.0041333946380316
920 => 0.0041565904468617
921 => 0.0041642271094074
922 => 0.0041321413097812
923 => 0.0041781441042796
924 => 0.004170974617486
925 => 0.0041988668965902
926 => 0.0041814410115479
927 => 0.0041821561759484
928 => 0.0042334019882675
929 => 0.004248278865599
930 => 0.0042407123657171
1001 => 0.0042460116828699
1002 => 0.0043681322099557
1003 => 0.0043507705761987
1004 => 0.0043415475542955
1005 => 0.004344102394394
1006 => 0.004375306807358
1007 => 0.0043840423392901
1008 => 0.0043470292766587
1009 => 0.0043644848509657
1010 => 0.0044388084709224
1011 => 0.0044648175315548
1012 => 0.0045478259680357
1013 => 0.0045125625088613
1014 => 0.0045772901143427
1015 => 0.0047762407063258
1016 => 0.0049351762055357
1017 => 0.004789012552175
1018 => 0.0050808773561602
1019 => 0.0053081359715821
1020 => 0.0052994134074032
1021 => 0.0052597856112179
1022 => 0.0050010577195429
1023 => 0.0047629724562079
1024 => 0.0049621408886219
1025 => 0.0049626486099155
1026 => 0.0049455398649374
1027 => 0.0048392789192498
1028 => 0.0049418422143614
1029 => 0.0049499833162722
1030 => 0.0049454264640959
1031 => 0.0048639564461792
1101 => 0.0047395667869966
1102 => 0.0047638722286541
1103 => 0.0048036850379067
1104 => 0.0047283110841695
1105 => 0.0047042245388816
1106 => 0.0047490060092246
1107 => 0.0048933012372597
1108 => 0.004866023060245
1109 => 0.0048653107168034
1110 => 0.0049820183258195
1111 => 0.0048984808648423
1112 => 0.0047641787981102
1113 => 0.0047302657550337
1114 => 0.0046098972986754
1115 => 0.0046930362202198
1116 => 0.0046960282419968
1117 => 0.0046504939043261
1118 => 0.0047678736586581
1119 => 0.0047667919835577
1120 => 0.0048782265906251
1121 => 0.0050912477064109
1122 => 0.0050282468803406
1123 => 0.0049549837740911
1124 => 0.004962949505106
1125 => 0.0050503139132401
1126 => 0.0049974913977468
1127 => 0.0050164867426098
1128 => 0.0050502851615106
1129 => 0.0050706765868009
1130 => 0.004960015492813
1201 => 0.0049342150982724
1202 => 0.0048814365457503
1203 => 0.0048676676065556
1204 => 0.0049106546363242
1205 => 0.0048993290727344
1206 => 0.0046957767741522
1207 => 0.004674504426396
1208 => 0.0046751568189318
1209 => 0.004621666489054
1210 => 0.0045400808968402
1211 => 0.0047544829619555
1212 => 0.0047372634755717
1213 => 0.0047182544952865
1214 => 0.0047205829869077
1215 => 0.004813647656614
1216 => 0.0047596654483059
1217 => 0.004903185996603
1218 => 0.0048736824864957
1219 => 0.0048434223226811
1220 => 0.0048392394462948
1221 => 0.004827591864902
1222 => 0.004787647974432
1223 => 0.0047394133264339
1224 => 0.0047075646338118
1225 => 0.0043424795337664
1226 => 0.0044102372047325
1227 => 0.0044881862288729
1228 => 0.0045150939196451
1229 => 0.0044690664526238
1230 => 0.0047894654193708
1231 => 0.0048480053980367
]
'min_raw' => 0.0020206025678833
'max_raw' => 0.0053081359715821
'avg_raw' => 0.0036643692697327
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00202'
'max' => '$0.0053081'
'avg' => '$0.003664'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -7.8343314588138E-5
'max_diff' => -0.00095726860543285
'year' => 2027
]
2 => [
'items' => [
101 => 0.0046706839841892
102 => 0.004637514387644
103 => 0.0047916400125981
104 => 0.0046986834196594
105 => 0.0047405417677679
106 => 0.0046500669144496
107 => 0.0048339048314267
108 => 0.0048325042945121
109 => 0.0047609871926404
110 => 0.0048214329574144
111 => 0.0048109290182877
112 => 0.0047301863864133
113 => 0.0048364645168752
114 => 0.004836517229502
115 => 0.0047676835738663
116 => 0.0046873009337086
117 => 0.0046729304162016
118 => 0.0046621041616675
119 => 0.004737879172814
120 => 0.0048058188108656
121 => 0.0049322376336152
122 => 0.0049640223292915
123 => 0.0050880801125434
124 => 0.0050142097428807
125 => 0.0050469555209708
126 => 0.0050825056952606
127 => 0.0050995497561295
128 => 0.0050717773735783
129 => 0.0052644901751893
130 => 0.0052807610402129
131 => 0.0052862165205129
201 => 0.005221234848096
202 => 0.005278953782352
203 => 0.0052519490044638
204 => 0.0053222079343855
205 => 0.0053332254317083
206 => 0.0053238940034347
207 => 0.0053273911309843
208 => 0.0051629447516772
209 => 0.0051544173393864
210 => 0.0050381454677233
211 => 0.0050855271148643
212 => 0.0049969493965957
213 => 0.0050250383035102
214 => 0.0050374196260373
215 => 0.005030952325783
216 => 0.0050882060021028
217 => 0.0050395286810777
218 => 0.0049110612275998
219 => 0.0047825587732502
220 => 0.0047809455296117
221 => 0.0047471131016381
222 => 0.0047226584529315
223 => 0.0047273692858477
224 => 0.0047439708754879
225 => 0.0047216935383616
226 => 0.0047264475377272
227 => 0.0048053956029273
228 => 0.0048212280743713
229 => 0.0047674231502585
301 => 0.0045513886159322
302 => 0.004498373199327
303 => 0.0045364796294414
304 => 0.0045182672102151
305 => 0.0036465942749409
306 => 0.0038513809013762
307 => 0.0037297036418451
308 => 0.0037857781211385
309 => 0.0036615771473309
310 => 0.0037208523619627
311 => 0.0037099063942044
312 => 0.0040391972294355
313 => 0.0040340558059681
314 => 0.0040365167333039
315 => 0.0039190502596556
316 => 0.0041061775417397
317 => 0.0041983631697737
318 => 0.0041813020634656
319 => 0.0041855959763563
320 => 0.0041118123264812
321 => 0.0040372311203178
322 => 0.0039545090847172
323 => 0.0041081964021105
324 => 0.0040911089959463
325 => 0.0041303013578322
326 => 0.004229978568958
327 => 0.0042446564169332
328 => 0.0042643835934599
329 => 0.0042573128049511
330 => 0.0044257676736208
331 => 0.0044053666775239
401 => 0.0044545272083503
402 => 0.004353400266622
403 => 0.0042389655329989
404 => 0.0042607158347074
405 => 0.004258621105748
406 => 0.0042319528018768
407 => 0.0042078778495623
408 => 0.0041677998370345
409 => 0.0042946125991024
410 => 0.0042894642325497
411 => 0.0043728103027158
412 => 0.0043580780752334
413 => 0.0042596926545184
414 => 0.0042632065090667
415 => 0.0042868388696046
416 => 0.0043686307392558
417 => 0.0043929121349834
418 => 0.0043816640250361
419 => 0.0044082874669636
420 => 0.004429329549938
421 => 0.0044109300286156
422 => 0.0046714284493838
423 => 0.0045632513431943
424 => 0.0046159761120596
425 => 0.0046285506587616
426 => 0.0045963412217987
427 => 0.0046033262953425
428 => 0.0046139067784427
429 => 0.0046781493999564
430 => 0.0048467406275605
501 => 0.0049214085346271
502 => 0.0051460506170866
503 => 0.0049152084043727
504 => 0.0049015111827903
505 => 0.0049419760053822
506 => 0.0050738646885653
507 => 0.0051807480786111
508 => 0.00521620746534
509 => 0.0052208940086669
510 => 0.0052874181754658
511 => 0.0053255485872726
512 => 0.0052793403918571
513 => 0.0052401837844422
514 => 0.005099929676979
515 => 0.0051161644718171
516 => 0.0052280061089804
517 => 0.005385989008913
518 => 0.0055215547723745
519 => 0.0054740843669542
520 => 0.0058362500514279
521 => 0.0058721572997293
522 => 0.0058671960790344
523 => 0.00594899813438
524 => 0.0057866377132178
525 => 0.005717225487586
526 => 0.0052486498874117
527 => 0.0053803005181103
528 => 0.0055716624414012
529 => 0.0055463349732833
530 => 0.0054073628294705
531 => 0.0055214493495415
601 => 0.0054837287781907
602 => 0.0054539769985384
603 => 0.0055902756687919
604 => 0.0054404096820074
605 => 0.0055701674135415
606 => 0.0054037517806771
607 => 0.0054743012077675
608 => 0.0054342539408592
609 => 0.0054601694305573
610 => 0.0053086680073225
611 => 0.0053904144978109
612 => 0.0053052670845607
613 => 0.0053052267136003
614 => 0.0053033470797335
615 => 0.0054035226338209
616 => 0.0054067893550433
617 => 0.0053327594692158
618 => 0.0053220906061039
619 => 0.0053615389848061
620 => 0.0053153552648926
621 => 0.0053369643367633
622 => 0.0053160097816661
623 => 0.0053112924699432
624 => 0.0052737041275512
625 => 0.0052575100361357
626 => 0.0052638601566501
627 => 0.0052421839216231
628 => 0.0052291232059557
629 => 0.0053007489746538
630 => 0.0052624822158137
701 => 0.005294884045039
702 => 0.0052579580711999
703 => 0.0051299565579926
704 => 0.0050563415341557
705 => 0.0048145585414537
706 => 0.0048831278982531
707 => 0.0049285894527512
708 => 0.0049135644092608
709 => 0.0049458440165982
710 => 0.0049478257223246
711 => 0.0049373312929276
712 => 0.0049251800881055
713 => 0.0049192655536018
714 => 0.0049633476481047
715 => 0.0049889387876986
716 => 0.0049331521279422
717 => 0.0049200820940996
718 => 0.0049764854871793
719 => 0.0050108915243747
720 => 0.0052649263719431
721 => 0.0052461066499135
722 => 0.0052933404590239
723 => 0.0052880226569799
724 => 0.0053375312138635
725 => 0.005418456780491
726 => 0.0052539124763931
727 => 0.0052824716780706
728 => 0.0052754696213475
729 => 0.0053519162406117
730 => 0.0053521548986126
731 => 0.0053063213315719
801 => 0.0053311684518294
802 => 0.0053172994709467
803 => 0.0053423625939068
804 => 0.0052458553010519
805 => 0.0053633907664307
806 => 0.0054300258014824
807 => 0.0054309510290087
808 => 0.0054625355067749
809 => 0.0054946271654349
810 => 0.0055562243096383
811 => 0.0054929092545149
812 => 0.0053790116339443
813 => 0.0053872346742625
814 => 0.0053204565409954
815 => 0.0053215790934801
816 => 0.0053155868203409
817 => 0.0053335700831089
818 => 0.0052498016159429
819 => 0.0052694619077528
820 => 0.0052419373840885
821 => 0.0052824118451316
822 => 0.0052388680157173
823 => 0.0052754662447438
824 => 0.0052912608271411
825 => 0.0053495431762202
826 => 0.0052302596653704
827 => 0.0049870325119638
828 => 0.005038161808454
829 => 0.0049625375628254
830 => 0.0049695368746801
831 => 0.0049836765985589
901 => 0.004937845127238
902 => 0.0049465883276504
903 => 0.0049462759590067
904 => 0.0049435841347906
905 => 0.0049316615990046
906 => 0.0049143715633131
907 => 0.0049832497439157
908 => 0.0049949534889795
909 => 0.0050209694644691
910 => 0.0050983753607213
911 => 0.005090640686329
912 => 0.0051032562611715
913 => 0.0050757165321238
914 => 0.0049708143637248
915 => 0.0049765110561684
916 => 0.0049054732101131
917 => 0.0050191528670306
918 => 0.0049922320237744
919 => 0.0049748759809967
920 => 0.0049701402239222
921 => 0.0050477379944192
922 => 0.005070956463548
923 => 0.0050564882717204
924 => 0.0050268135881776
925 => 0.0050837977531125
926 => 0.0050990443116802
927 => 0.0051024574538721
928 => 0.0052034224685069
929 => 0.0051081002766087
930 => 0.0051310452756197
1001 => 0.0053100556079647
1002 => 0.0051477179382651
1003 => 0.005233711822467
1004 => 0.0052295028693259
1005 => 0.0052734944306092
1006 => 0.0052258942772832
1007 => 0.0052264843382319
1008 => 0.005265545864405
1009 => 0.0052106909956783
1010 => 0.0051971081587558
1011 => 0.0051783435668295
1012 => 0.0052193153668117
1013 => 0.0052438761079059
1014 => 0.0054418176432488
1015 => 0.0055696969023109
1016 => 0.0055641453264175
1017 => 0.0056148763379689
1018 => 0.0055920215526222
1019 => 0.0055182174219498
1020 => 0.0056441920735526
1021 => 0.0056043284227822
1022 => 0.0056076147337174
1023 => 0.0056074924170602
1024 => 0.0056339982598817
1025 => 0.0056152164410179
1026 => 0.0055781955481231
1027 => 0.0056027717445194
1028 => 0.0056757542616654
1029 => 0.0059022942342637
1030 => 0.0060290690041851
1031 => 0.0058946622339313
1101 => 0.005987374224274
1102 => 0.0059317800667283
1103 => 0.0059216769545193
1104 => 0.0059799069358168
1105 => 0.0060382388409882
1106 => 0.0060345233508045
1107 => 0.0059921773830266
1108 => 0.005968257220318
1109 => 0.0061493887061899
1110 => 0.0062828432994861
1111 => 0.0062737425909142
1112 => 0.0063139101588414
1113 => 0.0064318433806116
1114 => 0.006442625716423
1115 => 0.00644126738994
1116 => 0.006414542245611
1117 => 0.0065306628180078
1118 => 0.0066275326424484
1119 => 0.0064083561468625
1120 => 0.0064918156871506
1121 => 0.0065292833636844
1122 => 0.0065842970289947
1123 => 0.006677114303734
1124 => 0.0067779384826672
1125 => 0.0067921961270492
1126 => 0.006782079646069
1127 => 0.0067155833897632
1128 => 0.0068259064094345
1129 => 0.0068905310469648
1130 => 0.0069290135397055
1201 => 0.0070265987384198
1202 => 0.0065295147512991
1203 => 0.0061776539985379
1204 => 0.0061227058610634
1205 => 0.0062344450593466
1206 => 0.0062639097948305
1207 => 0.0062520325969026
1208 => 0.0058559813298898
1209 => 0.0061206207331073
1210 => 0.0064053504794563
1211 => 0.0064162881086119
1212 => 0.0065588297730524
1213 => 0.0066052471819745
1214 => 0.0067200119052122
1215 => 0.0067128333405266
1216 => 0.0067407767243294
1217 => 0.0067343530243051
1218 => 0.0069469305075392
1219 => 0.0071814350396083
1220 => 0.0071733148933415
1221 => 0.0071396020923249
1222 => 0.0071896713507213
1223 => 0.0074317051588494
1224 => 0.0074094225643098
1225 => 0.0074310682068782
1226 => 0.0077164397070889
1227 => 0.0080874632509855
1228 => 0.0079150855646908
1229 => 0.0082890955436072
1230 => 0.0085245149999181
1231 => 0.0089316486067815
]
'min_raw' => 0.0036465942749409
'max_raw' => 0.0089316486067815
'avg_raw' => 0.0062891214408612
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003646'
'max' => '$0.008931'
'avg' => '$0.006289'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0016259917070576
'max_diff' => 0.0036235126351994
'year' => 2028
]
3 => [
'items' => [
101 => 0.0088806734740269
102 => 0.0090391675994945
103 => 0.008789417347565
104 => 0.0082159402862812
105 => 0.008125185346151
106 => 0.0083068790345727
107 => 0.0087535552381466
108 => 0.0082928116113365
109 => 0.0083860194469664
110 => 0.0083591755840346
111 => 0.008357745188658
112 => 0.0084123375623431
113 => 0.0083331484769662
114 => 0.0080105178972963
115 => 0.0081583775906851
116 => 0.008101281862262
117 => 0.0081646338297159
118 => 0.0085065182697259
119 => 0.0083553630092904
120 => 0.0081961332212778
121 => 0.0083958427113642
122 => 0.0086501415198705
123 => 0.0086342279574531
124 => 0.0086033489950102
125 => 0.0087774120895308
126 => 0.0090649133259774
127 => 0.0091426237549154
128 => 0.0091999880048377
129 => 0.009207897565725
130 => 0.0092893709586292
131 => 0.0088512679910445
201 => 0.0095465486518836
202 => 0.0096666044152699
203 => 0.0096440389075549
204 => 0.0097774758358399
205 => 0.0097382153065703
206 => 0.0096813329594469
207 => 0.0098928588736273
208 => 0.0096503614822806
209 => 0.0093061669648366
210 => 0.0091173350451712
211 => 0.0093660041496231
212 => 0.009517857694356
213 => 0.0096182232277251
214 => 0.0096485937774801
215 => 0.0088852766772989
216 => 0.0084738910958084
217 => 0.0087375845369986
218 => 0.0090593087343996
219 => 0.0088494807968837
220 => 0.0088577056547775
221 => 0.0085585461576917
222 => 0.00908577771178
223 => 0.0090089645090646
224 => 0.0094074715406319
225 => 0.0093123646393296
226 => 0.0096373316536189
227 => 0.0095517569479259
228 => 0.0099069727668401
301 => 0.010048677974089
302 => 0.010286623071715
303 => 0.01046165645414
304 => 0.010564439404154
305 => 0.010558268701365
306 => 0.010965545955585
307 => 0.010725388787955
308 => 0.010423694784712
309 => 0.010418238092026
310 => 0.010574489691342
311 => 0.010901950177976
312 => 0.010986855917804
313 => 0.011034306643314
314 => 0.010961634205424
315 => 0.010700960812181
316 => 0.010588403362622
317 => 0.010684305570749
318 => 0.010567025411181
319 => 0.010769483869597
320 => 0.011047502575796
321 => 0.010990092812371
322 => 0.011182005044148
323 => 0.011380614014281
324 => 0.011664633761659
325 => 0.011738887040845
326 => 0.011861624887739
327 => 0.011987962449475
328 => 0.012028538669412
329 => 0.012106011263334
330 => 0.012105602944522
331 => 0.012339071820811
401 => 0.012596595221287
402 => 0.012693804343286
403 => 0.012917331359181
404 => 0.012534549177782
405 => 0.012824893859458
406 => 0.013086792030129
407 => 0.012774546234261
408 => 0.013204904319925
409 => 0.013221614149179
410 => 0.01347391273209
411 => 0.01321815978375
412 => 0.013066294499417
413 => 0.013504723884967
414 => 0.013716866054238
415 => 0.013652967106383
416 => 0.013166692958129
417 => 0.012883660546565
418 => 0.012142910132628
419 => 0.013020360995973
420 => 0.013447741715915
421 => 0.013165586145312
422 => 0.013307889003115
423 => 0.014084247253433
424 => 0.014379834209679
425 => 0.014318354189089
426 => 0.014328743300521
427 => 0.01448823665683
428 => 0.015195518033295
429 => 0.014771698637863
430 => 0.015095692685461
501 => 0.01526753796006
502 => 0.015427157428148
503 => 0.015035182462774
504 => 0.014525228792078
505 => 0.01436370505817
506 => 0.013137531334493
507 => 0.013073703667174
508 => 0.013037875263331
509 => 0.012811982245129
510 => 0.012634492210128
511 => 0.012493345544513
512 => 0.012122934543975
513 => 0.012247937383128
514 => 0.011657579559056
515 => 0.0120352695739
516 => 0.011093044231993
517 => 0.011877757495111
518 => 0.01145067374253
519 => 0.011737448996007
520 => 0.011736448464164
521 => 0.011208404300335
522 => 0.010903839446639
523 => 0.011097920025255
524 => 0.011305989811668
525 => 0.011339748434482
526 => 0.011609516343743
527 => 0.011684802768576
528 => 0.011456681386545
529 => 0.011073518706078
530 => 0.01116251865774
531 => 0.010902035865459
601 => 0.010445549791312
602 => 0.010773406059247
603 => 0.010885350603942
604 => 0.01093479169222
605 => 0.010485890066076
606 => 0.010344835429013
607 => 0.010269739123804
608 => 0.011015571143208
609 => 0.011056429504852
610 => 0.010847392349893
611 => 0.011792260112022
612 => 0.011578407437155
613 => 0.011817333270159
614 => 0.01115444284498
615 => 0.011179766151922
616 => 0.010865943201353
617 => 0.011041663084015
618 => 0.010917469934665
619 => 0.011027466653993
620 => 0.011093398234025
621 => 0.011407169689336
622 => 0.011881340261112
623 => 0.011360302697269
624 => 0.011133279169307
625 => 0.011274123289226
626 => 0.011649209740791
627 => 0.012217484915233
628 => 0.01188105457436
629 => 0.012030356646682
630 => 0.012062972507497
701 => 0.011814901229465
702 => 0.0122266316571
703 => 0.012447281338161
704 => 0.012673622253912
705 => 0.01287014772913
706 => 0.012583216714818
707 => 0.012890274030077
708 => 0.012642840036891
709 => 0.012420866165747
710 => 0.012421202808482
711 => 0.012281955356593
712 => 0.012012145872248
713 => 0.011962388863715
714 => 0.012221231105722
715 => 0.012428798071361
716 => 0.01244589428083
717 => 0.012560814018183
718 => 0.012628822334981
719 => 0.013295396292426
720 => 0.0135634978523
721 => 0.013891327364811
722 => 0.014019035435393
723 => 0.014403390941967
724 => 0.01409299265458
725 => 0.014025836032607
726 => 0.013093515295387
727 => 0.013246182763877
728 => 0.013490618111149
729 => 0.013097545944232
730 => 0.0133468597614
731 => 0.013396079590098
801 => 0.013084189502411
802 => 0.01325078347422
803 => 0.012808359276766
804 => 0.011890983899611
805 => 0.01222765295814
806 => 0.012475554706797
807 => 0.012121768345398
808 => 0.012755916704783
809 => 0.01238546032471
810 => 0.012268043437269
811 => 0.011809958297219
812 => 0.012026156850008
813 => 0.012318568488321
814 => 0.012137892092346
815 => 0.012512822742693
816 => 0.013043824533936
817 => 0.01342224803208
818 => 0.013451298689364
819 => 0.013207997732463
820 => 0.013597889068623
821 => 0.013600729001353
822 => 0.013160929981412
823 => 0.012891555530509
824 => 0.012830353088495
825 => 0.012983248788091
826 => 0.013168892393504
827 => 0.013461600617451
828 => 0.013638478066835
829 => 0.014099680646278
830 => 0.014224468840561
831 => 0.014361573232662
901 => 0.014544786981937
902 => 0.014764782062983
903 => 0.014283445349982
904 => 0.014302569754913
905 => 0.013854355672326
906 => 0.013375374644681
907 => 0.013738861538836
908 => 0.014214072300308
909 => 0.014105058426565
910 => 0.014092792138818
911 => 0.014113420632424
912 => 0.014031227731683
913 => 0.013659472287838
914 => 0.013472779031251
915 => 0.013713660962777
916 => 0.013841678988962
917 => 0.01404022378323
918 => 0.014015748946564
919 => 0.014527179014443
920 => 0.014725905273978
921 => 0.014675062592813
922 => 0.014684418869745
923 => 0.01504420327023
924 => 0.015444357518874
925 => 0.015819154777734
926 => 0.016200414647363
927 => 0.015740790993699
928 => 0.015507422448015
929 => 0.015748199218025
930 => 0.015620439674679
1001 => 0.016354583906687
1002 => 0.016405414460461
1003 => 0.017139505605484
1004 => 0.017836245516059
1005 => 0.017398635661619
1006 => 0.017811282043975
1007 => 0.018257592750046
1008 => 0.01911859851336
1009 => 0.018828642062824
1010 => 0.01860653996591
1011 => 0.018396654557516
1012 => 0.018833392774014
1013 => 0.019395249512475
1014 => 0.019516268072542
1015 => 0.0197123643725
1016 => 0.019506193090609
1017 => 0.019754503690625
1018 => 0.020631149221885
1019 => 0.020394271860975
1020 => 0.020057867928545
1021 => 0.020749895381544
1022 => 0.021000337426595
1023 => 0.022758070856285
1024 => 0.024977281919614
1025 => 0.02405851396727
1026 => 0.023488205050794
1027 => 0.023622241174074
1028 => 0.024432621929367
1029 => 0.024692890507767
1030 => 0.023985390791716
1031 => 0.024235291652157
1101 => 0.025612269962898
1102 => 0.026350974647858
1103 => 0.025347714464408
1104 => 0.022579759408144
1105 => 0.020027578435105
1106 => 0.020704531755362
1107 => 0.020627786257152
1108 => 0.022107177670501
1109 => 0.020388622414257
1110 => 0.020417558477292
1111 => 0.021927542138367
1112 => 0.021524704385265
1113 => 0.020872158816803
1114 => 0.020032342739905
1115 => 0.018479865048175
1116 => 0.017104792262566
1117 => 0.019801626655495
1118 => 0.019685334252596
1119 => 0.019516925619631
1120 => 0.019891700808578
1121 => 0.021711502744309
1122 => 0.021669550419566
1123 => 0.021402671133818
1124 => 0.021605096719892
1125 => 0.020836672632851
1126 => 0.021034713016772
1127 => 0.0200271741566
1128 => 0.020482623799937
1129 => 0.020870758747086
1130 => 0.020948682584162
1201 => 0.021124248967985
1202 => 0.019624053440637
1203 => 0.020297597188989
1204 => 0.020693241038632
1205 => 0.0189057077323
1206 => 0.020657907252523
1207 => 0.019597938374139
1208 => 0.019238169016618
1209 => 0.019722551060512
1210 => 0.019533786906929
1211 => 0.019371498572282
1212 => 0.019280938893081
1213 => 0.019636615606822
1214 => 0.019620022863
1215 => 0.019038066725445
1216 => 0.018278928667571
1217 => 0.018533720317651
1218 => 0.018441152122493
1219 => 0.018105673041704
1220 => 0.018331745436257
1221 => 0.017336237023265
1222 => 0.015623516540738
1223 => 0.016754992153543
1224 => 0.016711431573259
1225 => 0.016689466353364
1226 => 0.017539739004698
1227 => 0.0174580049084
1228 => 0.017309656723276
1229 => 0.018102948510948
1230 => 0.017813386337167
1231 => 0.01870574872733
]
'min_raw' => 0.0080105178972963
'max_raw' => 0.026350974647858
'avg_raw' => 0.017180746272577
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00801'
'max' => '$0.02635'
'avg' => '$0.01718'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0043639236223554
'max_diff' => 0.017419326041076
'year' => 2029
]
4 => [
'items' => [
101 => 0.019293516311872
102 => 0.019144439440143
103 => 0.019697237694332
104 => 0.018539590202662
105 => 0.018924114262639
106 => 0.019003364138473
107 => 0.018093159413427
108 => 0.017471377617377
109 => 0.017429911860412
110 => 0.016351827912869
111 => 0.016927731655657
112 => 0.017434503116794
113 => 0.017191798913963
114 => 0.017114966013929
115 => 0.017507488637181
116 => 0.017537991006737
117 => 0.016842533748372
118 => 0.016987141334653
119 => 0.017590179008457
120 => 0.016971946332509
121 => 0.015770821230876
122 => 0.015472925598817
123 => 0.015433180830194
124 => 0.014625264249651
125 => 0.015492832409394
126 => 0.015114115658285
127 => 0.016310477337316
128 => 0.01562712196247
129 => 0.015597663878066
130 => 0.015553133662927
131 => 0.014857726487439
201 => 0.015009976463439
202 => 0.01551607857199
203 => 0.015696661505969
204 => 0.015677825226483
205 => 0.015513598395555
206 => 0.015588780597777
207 => 0.015346592529206
208 => 0.015261070881485
209 => 0.014991141036695
210 => 0.014594418734877
211 => 0.014649585404184
212 => 0.013863574716245
213 => 0.013435314376711
214 => 0.013316777559108
215 => 0.013158265172616
216 => 0.013334681954948
217 => 0.013861348046723
218 => 0.013226077001598
219 => 0.012136949353814
220 => 0.012202407781229
221 => 0.012349473432849
222 => 0.012075417563992
223 => 0.011816046683884
224 => 0.012041548620713
225 => 0.011580070878631
226 => 0.012405240813244
227 => 0.012382922279025
228 => 0.012690494602482
301 => 0.012882825888359
302 => 0.012439564542405
303 => 0.012328085512604
304 => 0.012391589034418
305 => 0.011342017274672
306 => 0.012604722197771
307 => 0.012615642122381
308 => 0.012522139098192
309 => 0.013194490488101
310 => 0.014613361632467
311 => 0.014079525233997
312 => 0.013872807645219
313 => 0.013479837357842
314 => 0.014003446933505
315 => 0.013963241887676
316 => 0.013781419423126
317 => 0.013671452629245
318 => 0.013874069818736
319 => 0.013646346117202
320 => 0.013605440682978
321 => 0.01335759825713
322 => 0.013269129787215
323 => 0.01320363125412
324 => 0.013131523804936
325 => 0.013290574869779
326 => 0.012930144231935
327 => 0.012495500216145
328 => 0.012459364269146
329 => 0.012559138795916
330 => 0.01251499599516
331 => 0.012459152930399
401 => 0.012352533311815
402 => 0.012320901548549
403 => 0.012423689433614
404 => 0.012307647904282
405 => 0.01247887350192
406 => 0.012432309613707
407 => 0.012172207519309
408 => 0.011848024007559
409 => 0.011845138094306
410 => 0.011775293288467
411 => 0.011686335426994
412 => 0.011661589385013
413 => 0.01202255747657
414 => 0.012769750623226
415 => 0.012623058729721
416 => 0.012729058656369
417 => 0.013250473383491
418 => 0.013416215445755
419 => 0.013298575655776
420 => 0.013137543055546
421 => 0.013144627672702
422 => 0.013694924815571
423 => 0.013729246173363
424 => 0.013815965172016
425 => 0.013927423592069
426 => 0.013317557506671
427 => 0.013115903034924
428 => 0.013020347958846
429 => 0.012726075308995
430 => 0.013043423132829
501 => 0.012858518146069
502 => 0.012883468146037
503 => 0.012867219425827
504 => 0.012876092325795
505 => 0.01240501016143
506 => 0.012576647742775
507 => 0.012291266974133
508 => 0.011909174160415
509 => 0.011907893251324
510 => 0.012001409926171
511 => 0.011945782548664
512 => 0.011796090706104
513 => 0.011817353725814
514 => 0.011631067299153
515 => 0.011839972270836
516 => 0.011845962917926
517 => 0.011765523124697
518 => 0.012087370056905
519 => 0.012219231007632
520 => 0.012166283812542
521 => 0.012215516091279
522 => 0.01262915444017
523 => 0.012696595539346
524 => 0.012726548420691
525 => 0.012686415527685
526 => 0.01222307664097
527 => 0.012243627690865
528 => 0.012092837722572
529 => 0.011965436089219
530 => 0.01197053148642
531 => 0.012036032487016
601 => 0.012322079198202
602 => 0.012924047638518
603 => 0.012946891900795
604 => 0.012974579813089
605 => 0.012861959158961
606 => 0.012827991692041
607 => 0.012872803548655
608 => 0.013098871244841
609 => 0.013680378736212
610 => 0.013474835151182
611 => 0.013307725017076
612 => 0.013454325657255
613 => 0.013431757637794
614 => 0.013241260841884
615 => 0.013235914231292
616 => 0.012870289974431
617 => 0.012735127011531
618 => 0.012622174722959
619 => 0.012498833772533
620 => 0.012425713122695
621 => 0.012538059673588
622 => 0.012563754659022
623 => 0.012318106962013
624 => 0.01228462608861
625 => 0.012485227300662
626 => 0.012396950186405
627 => 0.012487745387585
628 => 0.012508810653086
629 => 0.012505418660166
630 => 0.01241324721432
701 => 0.01247199454531
702 => 0.012333039594096
703 => 0.012181946955009
704 => 0.012085559264675
705 => 0.012001448220887
706 => 0.012048117916543
707 => 0.011881748973079
708 => 0.01182852419972
709 => 0.012452092271427
710 => 0.012912728710484
711 => 0.012906030874228
712 => 0.012865259518564
713 => 0.012804681554214
714 => 0.013094439589432
715 => 0.012993493683857
716 => 0.013066940264475
717 => 0.013085635501786
718 => 0.01314222035448
719 => 0.013162444575686
720 => 0.013101312932577
721 => 0.012896147671704
722 => 0.012384895348133
723 => 0.012146906011412
724 => 0.012068365566268
725 => 0.01207122036228
726 => 0.011992472343914
727 => 0.012015667164561
728 => 0.011984406131867
729 => 0.0119252052988
730 => 0.012044462431925
731 => 0.012058205705561
801 => 0.012030369665673
802 => 0.012036926060746
803 => 0.0118064555394
804 => 0.011823977712582
805 => 0.011726412025694
806 => 0.011708119635574
807 => 0.011461482075136
808 => 0.011024527886133
809 => 0.01126664292301
810 => 0.010974202004988
811 => 0.010863450198131
812 => 0.011387732026355
813 => 0.011335108672116
814 => 0.01124504036448
815 => 0.011111810565607
816 => 0.011062394337229
817 => 0.010762156976879
818 => 0.010744417351926
819 => 0.010893223094806
820 => 0.01082455436456
821 => 0.010728117460412
822 => 0.010378832769243
823 => 0.0099861211321818
824 => 0.0099979746280074
825 => 0.010122888893097
826 => 0.010486093965828
827 => 0.0103441834604
828 => 0.010241225760477
829 => 0.010221944878179
830 => 0.010463285487406
831 => 0.010804833011883
901 => 0.010965079468673
902 => 0.010806280096751
903 => 0.010623859928654
904 => 0.010634962999032
905 => 0.010708826751997
906 => 0.010716588788056
907 => 0.010597852011721
908 => 0.010631275718754
909 => 0.010580502051442
910 => 0.010268904148869
911 => 0.010263268330899
912 => 0.010186797180413
913 => 0.010184481664367
914 => 0.010054385160767
915 => 0.010036183760599
916 => 0.0097778692564081
917 => 0.009947892645315
918 => 0.0098338498826648
919 => 0.0096619605393829
920 => 0.0096323267518121
921 => 0.0096314359243738
922 => 0.0098079278461705
923 => 0.0099458302344502
924 => 0.0098358337053471
925 => 0.0098107896278634
926 => 0.010078194854739
927 => 0.010044165102166
928 => 0.010014695555907
929 => 0.010774251177192
930 => 0.010173003634081
1001 => 0.009910825387274
1002 => 0.0095863300205522
1003 => 0.0096919873482045
1004 => 0.0097142508995699
1005 => 0.00893389803729
1006 => 0.0086173089782498
1007 => 0.0085086675435942
1008 => 0.0084461428619855
1009 => 0.0084746361445301
1010 => 0.008189668859201
1011 => 0.0083811715878661
1012 => 0.0081344140064561
1013 => 0.0080930442949141
1014 => 0.0085342774178737
1015 => 0.008595672429287
1016 => 0.0083337422366628
1017 => 0.0085019438229739
1018 => 0.0084409515896005
1019 => 0.0081386439569521
1020 => 0.0081270980290094
1021 => 0.0079754106855735
1022 => 0.0077380493655539
1023 => 0.0076295688730504
1024 => 0.0075730712906838
1025 => 0.0075963832942842
1026 => 0.0075845960319048
1027 => 0.0075076761716674
1028 => 0.0075890049882544
1029 => 0.0073812434692618
1030 => 0.0072985111583507
1031 => 0.0072611428928871
1101 => 0.0070767425864744
1102 => 0.0073702054771655
1103 => 0.0074280213635798
1104 => 0.0074859511651505
1105 => 0.0079901905374683
1106 => 0.007965000163393
1107 => 0.0081927088768242
1108 => 0.0081838605349497
1109 => 0.0081189143212425
1110 => 0.0078449169287456
1111 => 0.007954127405861
1112 => 0.0076179945323762
1113 => 0.0078698481360047
1114 => 0.0077549126689666
1115 => 0.0078309883389844
1116 => 0.0076941974248258
1117 => 0.0077699031646796
1118 => 0.0074417316550766
1119 => 0.0071352897169071
1120 => 0.0072586108984243
1121 => 0.0073926751262213
1122 => 0.0076833605310152
1123 => 0.0075102307020225
1124 => 0.0075724947352919
1125 => 0.0073639206467127
1126 => 0.0069335727257307
1127 => 0.0069360084482278
1128 => 0.0068698087962238
1129 => 0.0068126026315849
1130 => 0.0075301167455312
1201 => 0.0074408825232424
1202 => 0.0072986994687114
1203 => 0.0074890171373311
1204 => 0.0075393401496617
1205 => 0.0075407727750769
1206 => 0.0076796236332918
1207 => 0.0077537283612115
1208 => 0.0077667896406956
1209 => 0.007985274466168
1210 => 0.0080585076977819
1211 => 0.0083601450144444
1212 => 0.0077474410927884
1213 => 0.0077348228587229
1214 => 0.0074916952972214
1215 => 0.0073374999540225
1216 => 0.0075022531842901
1217 => 0.0076482020552485
1218 => 0.007496230335473
1219 => 0.0075160746337776
1220 => 0.0073120650165245
1221 => 0.0073849888551478
1222 => 0.0074478006888721
1223 => 0.0074131196861985
1224 => 0.0073612005466166
1225 => 0.0076362359122089
1226 => 0.0076207173390099
1227 => 0.0078768365944852
1228 => 0.0080764998693919
1229 => 0.0084343321521043
1230 => 0.0080609155108751
1231 => 0.008047306724272
]
'min_raw' => 0.0068126026315849
'max_raw' => 0.019697237694332
'avg_raw' => 0.013254920162958
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.006812'
'max' => '$0.019697'
'avg' => '$0.013254'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0011979152657114
'max_diff' => -0.0066537369535262
'year' => 2030
]
5 => [
'items' => [
101 => 0.0081803347962355
102 => 0.0080584873318771
103 => 0.0081354907233201
104 => 0.008421925715275
105 => 0.0084279776352967
106 => 0.0083266001774754
107 => 0.0083204313499537
108 => 0.0083399019996762
109 => 0.0084539422032553
110 => 0.0084140930520232
111 => 0.008460207498686
112 => 0.0085178743203673
113 => 0.0087564087450667
114 => 0.0088139185873073
115 => 0.0086741994860973
116 => 0.0086868145565681
117 => 0.0086345557773405
118 => 0.0085840744514071
119 => 0.0086975490998996
120 => 0.0089049262503694
121 => 0.0089036361678793
122 => 0.0089517436359525
123 => 0.0089817141900183
124 => 0.0088530586321813
125 => 0.0087693085948254
126 => 0.008801423688301
127 => 0.0088527764221442
128 => 0.0087847706888305
129 => 0.0083650077994981
130 => 0.0084923370455643
131 => 0.0084711432329369
201 => 0.0084409606664997
202 => 0.0085689912080273
203 => 0.0085566423499644
204 => 0.008186746107805
205 => 0.0082104256651026
206 => 0.0081881861401134
207 => 0.0082600465951323
208 => 0.0080546066314802
209 => 0.0081177985806403
210 => 0.0081574319787658
211 => 0.0081807763547398
212 => 0.0082651122481465
213 => 0.0082552164044564
214 => 0.0082644971086083
215 => 0.0083895449746799
216 => 0.0090219941700246
217 => 0.0090564169843067
218 => 0.0088869064572288
219 => 0.0089546225693491
220 => 0.0088246224419638
221 => 0.0089118923984027
222 => 0.0089716002861817
223 => 0.0087017918224752
224 => 0.008685815516297
225 => 0.0085552788321424
226 => 0.0086254218522313
227 => 0.0085138192638082
228 => 0.0085412026353144
301 => 0.0084646363413436
302 => 0.008602440426294
303 => 0.0087565268058585
304 => 0.008795455110392
305 => 0.0086930515008532
306 => 0.0086189045388203
307 => 0.0084887268990184
308 => 0.0087052152152069
309 => 0.0087685229962224
310 => 0.0087048826863842
311 => 0.0086901358360265
312 => 0.0086621905812455
313 => 0.008696064553934
314 => 0.0087681782084509
315 => 0.0087341707407108
316 => 0.0087566332722876
317 => 0.0086710292651789
318 => 0.0088531012225243
319 => 0.0091422753087915
320 => 0.0091432050507636
321 => 0.0091091973997106
322 => 0.0090952822016048
323 => 0.009130176115342
324 => 0.0091491046321211
325 => 0.0092619451506978
326 => 0.0093830275228952
327 => 0.0099480661215625
328 => 0.0097894055440952
329 => 0.010290741403129
330 => 0.010687232977312
331 => 0.010806123463934
401 => 0.010696749810471
402 => 0.010322588450224
403 => 0.01030423030886
404 => 0.01086338534792
405 => 0.010705398438462
406 => 0.010686606398292
407 => 0.010486690840538
408 => 0.010604865695194
409 => 0.010579019120961
410 => 0.010538219039075
411 => 0.010763688429627
412 => 0.011185747000949
413 => 0.011119965214569
414 => 0.011070862162565
415 => 0.010855706882367
416 => 0.010985278417717
417 => 0.010939140475758
418 => 0.011137378354276
419 => 0.011019946626549
420 => 0.010704201532239
421 => 0.010754484979217
422 => 0.010746884737362
423 => 0.01090329717617
424 => 0.010856346044435
425 => 0.010737716775353
426 => 0.011184304450636
427 => 0.011155305531055
428 => 0.011196419368946
429 => 0.011214518951873
430 => 0.01148634900006
501 => 0.011597709073212
502 => 0.011622989759449
503 => 0.011728773216046
504 => 0.011620357770683
505 => 0.012054096851038
506 => 0.012342508030097
507 => 0.012677512456077
508 => 0.013167043963136
509 => 0.013351112338209
510 => 0.013317862033784
511 => 0.01368901923549
512 => 0.014355980476594
513 => 0.013452673969763
514 => 0.014403857914856
515 => 0.014102724059786
516 => 0.013388741106583
517 => 0.013342769021703
518 => 0.013826286567125
519 => 0.014898681946031
520 => 0.014630059066623
521 => 0.014899121316831
522 => 0.01458524590988
523 => 0.014569659350376
524 => 0.014883877088898
525 => 0.015618063962073
526 => 0.015269279299211
527 => 0.01476921095949
528 => 0.015138453639615
529 => 0.014818581458294
530 => 0.014097819907192
531 => 0.01462985365577
601 => 0.014274097839545
602 => 0.014377926299739
603 => 0.015125672110759
604 => 0.015035701356487
605 => 0.015152131843582
606 => 0.014946635081375
607 => 0.014754668701609
608 => 0.014396349198164
609 => 0.014290268458132
610 => 0.014319585358292
611 => 0.014290253930132
612 => 0.014089777461081
613 => 0.014046484586677
614 => 0.013974327899299
615 => 0.013996692273926
616 => 0.013861016591472
617 => 0.014117064636289
618 => 0.014164589409695
619 => 0.014350919824077
620 => 0.014370265265826
621 => 0.014889192817633
622 => 0.014603376242321
623 => 0.014795126677256
624 => 0.014777974713531
625 => 0.013404215282164
626 => 0.013593507211025
627 => 0.013887986049251
628 => 0.013755323731787
629 => 0.013567770253093
630 => 0.013416310763067
701 => 0.013186834148149
702 => 0.013509818076938
703 => 0.013934507597784
704 => 0.014381036092919
705 => 0.014917510822117
706 => 0.014797775907814
707 => 0.01437100707102
708 => 0.014390151609284
709 => 0.014508495611732
710 => 0.014355229375875
711 => 0.014310028170809
712 => 0.014502285660268
713 => 0.014503609631935
714 => 0.014327258304738
715 => 0.014131276076511
716 => 0.014130454903819
717 => 0.014095581759269
718 => 0.014591449764825
719 => 0.01486412702997
720 => 0.014895389038977
721 => 0.014862022847681
722 => 0.014874864170454
723 => 0.0147161992779
724 => 0.015078860171667
725 => 0.015411673671233
726 => 0.015322472543826
727 => 0.015188747373155
728 => 0.015082228833639
729 => 0.015297380161124
730 => 0.01528779981119
731 => 0.015408766835654
801 => 0.015403279072685
802 => 0.015362602412158
803 => 0.015322473996517
804 => 0.015481578628621
805 => 0.015435759049718
806 => 0.015389868300352
807 => 0.015297827376978
808 => 0.015310337267102
809 => 0.015176635185968
810 => 0.015114778485444
811 => 0.014184602124544
812 => 0.013936028606522
813 => 0.014014234895472
814 => 0.01403998243642
815 => 0.013931802922821
816 => 0.014086904556285
817 => 0.014062732131003
818 => 0.014156772897379
819 => 0.014098020309322
820 => 0.01410043153603
821 => 0.014273210370132
822 => 0.014323368800726
823 => 0.014297857818098
824 => 0.014315724835865
825 => 0.014727462719118
826 => 0.014668926758755
827 => 0.014637830696478
828 => 0.014646444518243
829 => 0.014751652375174
830 => 0.014781104830978
831 => 0.014656312706147
901 => 0.014715165393632
902 => 0.014965752667426
903 => 0.015053444031242
904 => 0.015333312770302
905 => 0.015214419555679
906 => 0.015432653196697
907 => 0.016103429007855
908 => 0.016639291139963
909 => 0.016146490177837
910 => 0.017130532741823
911 => 0.017896751030408
912 => 0.017867342296289
913 => 0.017733734414726
914 => 0.016861415264139
915 => 0.016058694176223
916 => 0.016730204451602
917 => 0.016731916269391
918 => 0.016674232941203
919 => 0.016315966743916
920 => 0.016661766054125
921 => 0.016689214347611
922 => 0.016673850602349
923 => 0.016399168748888
924 => 0.015979780328345
925 => 0.016061727821845
926 => 0.016195959487882
927 => 0.015941830940415
928 => 0.015860621471308
929 => 0.016011605325112
930 => 0.016498106760804
1001 => 0.016406136482497
1002 => 0.016403734766849
1003 => 0.016797222618912
1004 => 0.016515570236829
1005 => 0.01606276144217
1006 => 0.015948421249705
1007 => 0.015542590595235
1008 => 0.015822899273797
1009 => 0.015832987084114
1010 => 0.015679464885552
1011 => 0.016075218922475
1012 => 0.016071571979353
1013 => 0.016447281537197
1014 => 0.017165497101728
1015 => 0.016953085418055
1016 => 0.016706073740268
1017 => 0.016732930758534
1018 => 0.017027485960146
1019 => 0.016849391161211
1020 => 0.016913435292629
1021 => 0.017027389021683
1022 => 0.017096140135733
1023 => 0.016723038531242
1024 => 0.016636050699722
1025 => 0.016458104125013
1026 => 0.016411681185202
1027 => 0.016556614957325
1028 => 0.016518430028957
1029 => 0.015832139242719
1030 => 0.015760418037071
1031 => 0.015762617624054
1101 => 0.015582271242296
1102 => 0.015307199722023
1103 => 0.016030071253633
1104 => 0.015972014553064
1105 => 0.015907924448868
1106 => 0.015915775120939
1107 => 0.016229549152421
1108 => 0.016047544368193
1109 => 0.016531433917062
1110 => 0.016431960772865
1111 => 0.016329936517867
1112 => 0.016315833658092
1113 => 0.016276563024218
1114 => 0.016141889408705
1115 => 0.015979262925343
1116 => 0.015871882834564
1117 => 0.014640972930333
1118 => 0.014869422648684
1119 => 0.015132233225801
1120 => 0.015222954383874
1121 => 0.015067769565277
1122 => 0.016148017051206
1123 => 0.016345388676409
1124 => 0.015747537149436
1125 => 0.015635703538857
1126 => 0.016155348844097
1127 => 0.015841939200982
1128 => 0.015983067544086
1129 => 0.015678025259371
1130 => 0.016297847631613
1201 => 0.016293125623623
1202 => 0.016052000721498
1203 => 0.016255797837622
1204 => 0.016220383073495
1205 => 0.01594815365286
1206 => 0.016306477789814
1207 => 0.016306655514116
1208 => 0.016074578038327
1209 => 0.015803562354899
1210 => 0.015755111151807
1211 => 0.01571860967878
1212 => 0.015974090419303
1213 => 0.016203153652388
1214 => 0.016629383539568
1215 => 0.016736547860178
1216 => 0.017154817337849
1217 => 0.016905758229067
1218 => 0.017016162906135
1219 => 0.017136022800787
1220 => 0.017193488041985
1221 => 0.017099851515208
1222 => 0.017749596180617
1223 => 0.01780445453804
1224 => 0.017822848070761
1225 => 0.017603757825332
1226 => 0.017798361241983
1227 => 0.01770731274792
1228 => 0.017944195635473
1229 => 0.017981341896913
1230 => 0.01794988033499
1231 => 0.017961671144685
]
'min_raw' => 0.0080546066314802
'max_raw' => 0.017981341896913
'avg_raw' => 0.013017974264197
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.008054'
'max' => '$0.017981'
'avg' => '$0.013017'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0012420039998953
'max_diff' => -0.0017158957974183
'year' => 2031
]
6 => [
'items' => [
101 => 0.017407228695571
102 => 0.017378477929668
103 => 0.016986459196513
104 => 0.01714620972793
105 => 0.016847563766488
106 => 0.016942267477256
107 => 0.016984011970592
108 => 0.016962207016252
109 => 0.017155241783288
110 => 0.01699112279691
111 => 0.016557985808198
112 => 0.016124730811604
113 => 0.016119291648043
114 => 0.016005223255026
115 => 0.015922772699543
116 => 0.015938655601619
117 => 0.015994629020177
118 => 0.015919519422702
119 => 0.015935547863476
120 => 0.016201726777276
121 => 0.016255107060138
122 => 0.016073700001952
123 => 0.015345324486421
124 => 0.015166579307918
125 => 0.015295057797555
126 => 0.015233653354583
127 => 0.012294747195045
128 => 0.012985199603818
129 => 0.012574956228073
130 => 0.012764015250006
131 => 0.012345262995379
201 => 0.012545113519973
202 => 0.012508208425453
203 => 0.013618435466787
204 => 0.013601100798604
205 => 0.013609397986933
206 => 0.01321335156978
207 => 0.013844264266136
208 => 0.014155074547248
209 => 0.014097551836162
210 => 0.014112029063264
211 => 0.013863262336301
212 => 0.013611806592627
213 => 0.013332903474131
214 => 0.013851070994829
215 => 0.013793459611942
216 => 0.013925599396363
217 => 0.014261668072915
218 => 0.014311155462138
219 => 0.014377667015105
220 => 0.014353827357981
221 => 0.014921784708844
222 => 0.014853001326151
223 => 0.015018749488111
224 => 0.014677792943616
225 => 0.014291968249628
226 => 0.014365300910396
227 => 0.01435823838546
228 => 0.014268324337037
229 => 0.014187153954449
301 => 0.014052028137054
302 => 0.01447958621815
303 => 0.01446222814087
304 => 0.014743235235472
305 => 0.014693564501944
306 => 0.014361851186953
307 => 0.014373698392892
308 => 0.014453376546404
309 => 0.014729143545459
310 => 0.014811009966428
311 => 0.014773086178422
312 => 0.01486284897167
313 => 0.01493379382353
314 => 0.014871758552778
315 => 0.015750047165817
316 => 0.015385320499614
317 => 0.01556308573897
318 => 0.015605481701102
319 => 0.015496885335591
320 => 0.015520435998726
321 => 0.015556108836204
322 => 0.015772707319914
323 => 0.016341124414445
324 => 0.016592872476267
325 => 0.017350268941288
326 => 0.016571968304235
327 => 0.01652578716536
328 => 0.016662217139892
329 => 0.017106889043418
330 => 0.017467253855318
331 => 0.017586807653369
401 => 0.0176026086614
402 => 0.017826899534331
403 => 0.017955458879918
404 => 0.017799664722922
405 => 0.017667645487195
406 => 0.017194768971654
407 => 0.017249505715928
408 => 0.017626587604158
409 => 0.018159237981295
410 => 0.018616307417704
411 => 0.018456257631552
412 => 0.019677324522356
413 => 0.019798388316968
414 => 0.019781661215014
415 => 0.020057462555848
416 => 0.019510053060257
417 => 0.019276024895333
418 => 0.017696189544442
419 => 0.018140058837395
420 => 0.018785248922234
421 => 0.018699855595167
422 => 0.018231301309577
423 => 0.018615951977262
424 => 0.018488774437387
425 => 0.018388464235086
426 => 0.018848004717915
427 => 0.018342721080162
428 => 0.018780208331425
429 => 0.018219126406454
430 => 0.018456988725493
501 => 0.018321966569101
502 => 0.01840934245198
503 => 0.017898544826052
504 => 0.018174158826091
505 => 0.017887078377516
506 => 0.017886942264004
507 => 0.017880604947191
508 => 0.01821835382183
509 => 0.018229367800506
510 => 0.017979770871838
511 => 0.01794380005498
512 => 0.018076803017972
513 => 0.017921091381839
514 => 0.017993947876348
515 => 0.017923298130838
516 => 0.017907393385012
517 => 0.017780661664303
518 => 0.01772606215446
519 => 0.017747472029126
520 => 0.017674389089346
521 => 0.017630353974603
522 => 0.01787184525452
523 => 0.017742826205391
524 => 0.017852071234848
525 => 0.01772757273596
526 => 0.017296006697401
527 => 0.017047808504898
528 => 0.016232620264254
529 => 0.016463806638063
530 => 0.016617083443078
531 => 0.016566425459935
601 => 0.016675258409763
602 => 0.016681939868978
603 => 0.016646557167568
604 => 0.01660558853214
605 => 0.016585647266122
606 => 0.016734273125452
607 => 0.016820555439309
608 => 0.01663246682104
609 => 0.016588400289419
610 => 0.016778568267146
611 => 0.016894570623703
612 => 0.017751066848427
613 => 0.017687614841653
614 => 0.017846866926828
615 => 0.01782893758596
616 => 0.01799585914207
617 => 0.018268705339997
618 => 0.017713932730615
619 => 0.01781022207301
620 => 0.0177866141499
621 => 0.018044359264082
622 => 0.018045163916195
623 => 0.017890632844919
624 => 0.017974406645638
625 => 0.017927646408291
626 => 0.018012148477202
627 => 0.017686767401418
628 => 0.018083046429006
629 => 0.018307711101993
630 => 0.018310830571195
701 => 0.018417319843142
702 => 0.018525519110882
703 => 0.018733198183139
704 => 0.018519727054275
705 => 0.018135713274443
706 => 0.01816343782899
707 => 0.01793829069038
708 => 0.017942075454456
709 => 0.0179218720872
710 => 0.017982503913174
711 => 0.017700072677596
712 => 0.01776635872407
713 => 0.017673557870835
714 => 0.017810020342079
715 => 0.017663209281075
716 => 0.017786602765445
717 => 0.01783985530274
718 => 0.018036358311804
719 => 0.017634185626865
720 => 0.016814128297577
721 => 0.016986514290427
722 => 0.016731541866374
723 => 0.016755140534969
724 => 0.01680281360123
725 => 0.016648289595821
726 => 0.016677767906442
727 => 0.016676714733751
728 => 0.016667639060469
729 => 0.016627441398662
730 => 0.016569146836176
731 => 0.016801374430998
801 => 0.01684083442461
802 => 0.016928549102351
803 => 0.017189528485873
804 => 0.017163450491141
805 => 0.017205984782514
806 => 0.017113132663267
807 => 0.016759447678474
808 => 0.016778654474778
809 => 0.016539145417099
810 => 0.016922424317256
811 => 0.016831658814665
812 => 0.01677314170468
813 => 0.016757174769063
814 => 0.017018801069997
815 => 0.017097083759726
816 => 0.017048303240843
817 => 0.016948252973458
818 => 0.017140379064043
819 => 0.017191783900735
820 => 0.017203291547933
821 => 0.017543702143927
822 => 0.017222316718759
823 => 0.017299677384893
824 => 0.017903223218496
825 => 0.01735589043105
826 => 0.017645824815538
827 => 0.017631634036163
828 => 0.017779954656423
829 => 0.017619467416147
830 => 0.017621456847833
831 => 0.017753155510514
901 => 0.017568208490757
902 => 0.01752241300775
903 => 0.017459146875968
904 => 0.017597286160168
905 => 0.017680094413543
906 => 0.018347468119788
907 => 0.018778621969961
908 => 0.018759904444238
909 => 0.018930947591609
910 => 0.018853891087143
911 => 0.018605055307741
912 => 0.019029787640889
913 => 0.018895384559126
914 => 0.018906464585886
915 => 0.018906052186737
916 => 0.018995418486388
917 => 0.018932094272784
918 => 0.018807275747673
919 => 0.018890136109679
920 => 0.019136201761713
921 => 0.019899997095844
922 => 0.020327427083766
923 => 0.019874265273874
924 => 0.020186850222259
925 => 0.019999410638634
926 => 0.019965347290444
927 => 0.020161673737876
928 => 0.020358343828765
929 => 0.020345816794204
930 => 0.020203044407339
1001 => 0.020122395908715
1002 => 0.020733093359529
1003 => 0.021183044838328
1004 => 0.021152361163987
1005 => 0.021287788923664
1006 => 0.021685409014697
1007 => 0.021721762412684
1008 => 0.021717182720111
1009 => 0.021627077030115
1010 => 0.022018585647231
1011 => 0.022345189023567
1012 => 0.021606220166285
1013 => 0.021887609833326
1014 => 0.022013934720669
1015 => 0.022199417134194
1016 => 0.022512357056273
1017 => 0.022852292814865
1018 => 0.022900363458336
1019 => 0.022866255036402
1020 => 0.022642058265646
1021 => 0.023014020028975
1022 => 0.023231906506357
1023 => 0.023361652917394
1024 => 0.02369066822804
1025 => 0.022014714860167
1026 => 0.020828391766099
1027 => 0.020643130284248
1028 => 0.021019866792641
1029 => 0.021119209205487
1030 => 0.021079164403434
1031 => 0.019743849905284
1101 => 0.020636100129765
1102 => 0.021596086348776
1103 => 0.021632963329115
1104 => 0.022113552502718
1105 => 0.022270052037659
1106 => 0.022656989314672
1107 => 0.022632786282643
1108 => 0.022726999352078
1109 => 0.022705341398958
1110 => 0.023422061225368
1111 => 0.024212709627822
1112 => 0.024185331987753
1113 => 0.024071666925373
1114 => 0.024240478925781
1115 => 0.025056512808146
1116 => 0.024981385484934
1117 => 0.025054365280104
1118 => 0.026016515217066
1119 => 0.02726744699935
1120 => 0.026686263594982
1121 => 0.027947264351442
1122 => 0.028740997484855
1123 => 0.030113676865556
1124 => 0.029941810646504
1125 => 0.030476184656224
1126 => 0.029634134244838
1127 => 0.02770061629383
1128 => 0.027394629676874
1129 => 0.028007222632836
1130 => 0.029513222639122
1201 => 0.027959793333239
1202 => 0.028274050058628
1203 => 0.028183544100575
1204 => 0.028178721422696
1205 => 0.028362783422093
1206 => 0.028095791891939
1207 => 0.027008020367234
1208 => 0.027506539646729
1209 => 0.027314037412054
1210 => 0.027527632993418
1211 => 0.028680320252521
1212 => 0.028170689738639
1213 => 0.027633835391286
1214 => 0.028307169880384
1215 => 0.029164556067838
1216 => 0.029110902381099
1217 => 0.029006791803322
1218 => 0.029593657679196
1219 => 0.030562988170571
1220 => 0.030824994307304
1221 => 0.031018401880961
1222 => 0.03104506951772
1223 => 0.031319762750188
1224 => 0.029842668007603
1225 => 0.032186855298568
1226 => 0.032591631686851
1227 => 0.032515550502116
1228 => 0.032965442422098
1229 => 0.032833072806583
1230 => 0.032641290001858
1231 => 0.033354464389784
]
'min_raw' => 0.012294747195045
'max_raw' => 0.033354464389784
'avg_raw' => 0.022824605792415
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.012294'
'max' => '$0.033354'
'avg' => '$0.022824'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0042401405635651
'max_diff' => 0.015373122492871
'year' => 2032
]
7 => [
'items' => [
101 => 0.032536867504232
102 => 0.031376391657775
103 => 0.0307397316568
104 => 0.031578136903982
105 => 0.032090121732125
106 => 0.032428511135177
107 => 0.03253090756408
108 => 0.029957330667721
109 => 0.028570315457701
110 => 0.029459376305162
111 => 0.030544091898766
112 => 0.029836642357712
113 => 0.029864373040342
114 => 0.028855735909269
115 => 0.030633333904009
116 => 0.030374352828127
117 => 0.031717947107929
118 => 0.031397287550037
119 => 0.032492936527185
120 => 0.032204415432306
121 => 0.033402050366152
122 => 0.033879819365934
123 => 0.034682067875376
124 => 0.03527220514466
125 => 0.035618745036711
126 => 0.035597940081431
127 => 0.036971103779225
128 => 0.036161397121322
129 => 0.035144214725788
130 => 0.035125817105422
131 => 0.035652630281655
201 => 0.036756686174902
202 => 0.037042951804662
203 => 0.037202935238622
204 => 0.036957915040449
205 => 0.036079036495493
206 => 0.035699541195796
207 => 0.036022882186175
208 => 0.03562746393995
209 => 0.036310066767699
210 => 0.037247426246295
211 => 0.037053865220686
212 => 0.037700910709006
213 => 0.038370534718247
214 => 0.039328127126157
215 => 0.039578477241129
216 => 0.039992296461215
217 => 0.040418252371217
218 => 0.040555057929675
219 => 0.040816262189045
220 => 0.040814885513664
221 => 0.041602042130349
222 => 0.042470300254763
223 => 0.042798047596507
224 => 0.043551684536755
225 => 0.042261107687169
226 => 0.043240025052658
227 => 0.044123033020221
228 => 0.043070274519147
301 => 0.044521256851605
302 => 0.044577595207578
303 => 0.045428237494789
304 => 0.044565948573357
305 => 0.044053924164335
306 => 0.045532119447878
307 => 0.046247371582869
308 => 0.046031931818895
309 => 0.044392424577477
310 => 0.043438161041198
311 => 0.040940669303068
312 => 0.043899056150498
313 => 0.045340000086553
314 => 0.044388692880789
315 => 0.044868476901141
316 => 0.04748602294569
317 => 0.048482615005898
318 => 0.048275330824079
319 => 0.048310358438619
320 => 0.048848101424882
321 => 0.051232749966444
322 => 0.04980381328462
323 => 0.050896181836638
324 => 0.051475570177801
325 => 0.052013738358737
326 => 0.05069216739616
327 => 0.048972822991581
328 => 0.048428234445483
329 => 0.044294104127392
330 => 0.044078904690717
331 => 0.043958106725701
401 => 0.043196492643488
402 => 0.042598072598524
403 => 0.042122186760856
404 => 0.040873320211274
405 => 0.041294776010896
406 => 0.03930434338957
407 => 0.040577751644093
408 => 0.037400973119781
409 => 0.040046688673312
410 => 0.03860674598345
411 => 0.039573628772558
412 => 0.039570255409592
413 => 0.037789917644377
414 => 0.036763055976102
415 => 0.037417412197181
416 => 0.038118934009039
417 => 0.03823275356281
418 => 0.039142294903477
419 => 0.039396128341131
420 => 0.038627001174688
421 => 0.037335141445929
422 => 0.037635210996736
423 => 0.036756975076233
424 => 0.035217900406407
425 => 0.036323290703941
426 => 0.0367007195521
427 => 0.036867413633095
428 => 0.035353910459241
429 => 0.034878334902263
430 => 0.034625142466194
501 => 0.037139767191943
502 => 0.037277524010864
503 => 0.036572740648414
504 => 0.039758428276992
505 => 0.039037409052961
506 => 0.039842964180202
507 => 0.037607982830181
508 => 0.037693362127553
509 => 0.036635286139288
510 => 0.037227737992054
511 => 0.036809012118134
512 => 0.037179873737073
513 => 0.037402166662346
514 => 0.038460069030753
515 => 0.040058768219027
516 => 0.038302053694848
517 => 0.037536628020048
518 => 0.038011493803776
519 => 0.039276123962927
520 => 0.041192103389267
521 => 0.040057805006194
522 => 0.040561187366966
523 => 0.040671154018872
524 => 0.039834764385203
525 => 0.041222942268074
526 => 0.041966878073042
527 => 0.042730002273114
528 => 0.043392601633783
529 => 0.042425193686144
530 => 0.043460458862599
531 => 0.042626217879281
601 => 0.041877817474997
602 => 0.041878952489484
603 => 0.041409469983492
604 => 0.040499788469528
605 => 0.040332029241335
606 => 0.041204733932051
607 => 0.041904560448564
608 => 0.041962201512407
609 => 0.042349661430333
610 => 0.042578956218607
611 => 0.044826356854842
612 => 0.045730279982209
613 => 0.046835580071965
614 => 0.047266156748224
615 => 0.048562038173483
616 => 0.047515508676243
617 => 0.047289085436536
618 => 0.044145700978441
619 => 0.044660430007358
620 => 0.045484560846619
621 => 0.044159290592434
622 => 0.044999869533551
623 => 0.045165817622424
624 => 0.044114258416318
625 => 0.04467594162349
626 => 0.043184277552705
627 => 0.040091282419523
628 => 0.041226385655837
629 => 0.042062203709382
630 => 0.04086938829135
701 => 0.043007463759841
702 => 0.041758444209985
703 => 0.041362564976192
704 => 0.03981809894403
705 => 0.040547027459262
706 => 0.041532913713363
707 => 0.040923750629907
708 => 0.042187855494374
709 => 0.043978165106913
710 => 0.045254046351589
711 => 0.045351992670875
712 => 0.044531686507953
713 => 0.04584623236916
714 => 0.045855807400636
715 => 0.044372994299118
716 => 0.043464779530775
717 => 0.043258431224508
718 => 0.043773929750533
719 => 0.044399840127404
720 => 0.045386726340677
721 => 0.045983081010465
722 => 0.047538057707194
723 => 0.047958789816653
724 => 0.048421046846944
725 => 0.049038764794201
726 => 0.049780493569513
727 => 0.048157633235772
728 => 0.048222112502222
729 => 0.046710927429473
730 => 0.045096009453379
731 => 0.046321530894866
801 => 0.047923737155326
802 => 0.047556189268896
803 => 0.047514832623351
804 => 0.047584383029781
805 => 0.047307263926404
806 => 0.046053864492346
807 => 0.045424415143258
808 => 0.046236565393237
809 => 0.046668187106452
810 => 0.04733759474228
811 => 0.047255076121683
812 => 0.048979398302443
813 => 0.04964941776109
814 => 0.049477998111819
815 => 0.04950954345273
816 => 0.05072258167831
817 => 0.052071729665493
818 => 0.053335384791248
819 => 0.054620829060415
820 => 0.05307117582219
821 => 0.052284357477143
822 => 0.05309615316773
823 => 0.052665402947453
824 => 0.055140621481979
825 => 0.055312000242905
826 => 0.057787039790958
827 => 0.060136147044287
828 => 0.058660714867099
829 => 0.060051980955263
830 => 0.061556748661201
831 => 0.064459689705716
901 => 0.06348208128862
902 => 0.062733248562202
903 => 0.062025605254071
904 => 0.063498098643081
905 => 0.065392437864387
906 => 0.065800460388901
907 => 0.066461612755214
908 => 0.0657664918839
909 => 0.066603688408345
910 => 0.069559360022427
911 => 0.068760711461867
912 => 0.067626502116709
913 => 0.069959720990308
914 => 0.070804103830504
915 => 0.076730424809731
916 => 0.084212649850114
917 => 0.081114959552457
918 => 0.07919212322286
919 => 0.079644035370603
920 => 0.082376290666049
921 => 0.083253804349498
922 => 0.080868419660778
923 => 0.081710977859276
924 => 0.086353556371497
925 => 0.088844150791552
926 => 0.08546158903766
927 => 0.076129235313017
928 => 0.067524378974831
929 => 0.069806774357449
930 => 0.069548021552035
1001 => 0.074535892989952
1002 => 0.068741663957829
1003 => 0.068839223914601
1004 => 0.073930239251606
1005 => 0.072572043641792
1006 => 0.070371940698444
1007 => 0.067540442161097
1008 => 0.062306155232897
1009 => 0.057670001331701
1010 => 0.066762566774425
1011 => 0.066370478818777
1012 => 0.06580267735482
1013 => 0.067066258070321
1014 => 0.073201847351152
1015 => 0.073060402159265
1016 => 0.072160600014447
1017 => 0.072843092010799
1018 => 0.070252296551683
1019 => 0.070920003532813
1020 => 0.067523015921623
1021 => 0.069058596192615
1022 => 0.070367220265644
1023 => 0.070629945922815
1024 => 0.071221880243525
1025 => 0.066163866282765
1026 => 0.068434766055659
1027 => 0.0697687069177
1028 => 0.063741913573813
1029 => 0.069649576590909
1030 => 0.066075817512774
1031 => 0.064862830005594
1101 => 0.066495957885059
1102 => 0.065859526362163
1103 => 0.065312359911289
1104 => 0.065007031630189
1105 => 0.066206220503121
1106 => 0.066150276908858
1107 => 0.064188171160211
1108 => 0.061628684196762
1109 => 0.062487732033991
1110 => 0.06217563190111
1111 => 0.061044540757828
1112 => 0.061806759619934
1113 => 0.058450333501356
1114 => 0.052675776816191
1115 => 0.056490625841866
1116 => 0.056343758304135
1117 => 0.056269701031698
1118 => 0.05913645463981
1119 => 0.058860882427649
1120 => 0.058360716164165
1121 => 0.061035354812164
1122 => 0.060059075726678
1123 => 0.063067737827864
1124 => 0.06504943727577
1125 => 0.064546814194519
1126 => 0.066410612103659
1127 => 0.062507522761128
1128 => 0.063803972475953
1129 => 0.064071168965376
1130 => 0.061002350186421
1201 => 0.058905969449617
1202 => 0.058766164754963
1203 => 0.055131329456406
1204 => 0.057073029133529
1205 => 0.058781644496406
1206 => 0.057963350331497
1207 => 0.057704302844729
1208 => 0.059027720274079
1209 => 0.059130561142644
1210 => 0.056785778440791
1211 => 0.057273333014117
1212 => 0.059306516634092
1213 => 0.057222102003506
1214 => 0.053172424863474
1215 => 0.052168048941579
1216 => 0.052034046679277
1217 => 0.049310099521039
1218 => 0.05223516614329
1219 => 0.050958296175766
1220 => 0.054991913103924
1221 => 0.052687932747282
1222 => 0.052588612759014
1223 => 0.052438476029673
1224 => 0.050093862185738
1225 => 0.050607183609576
1226 => 0.052313542203477
1227 => 0.052922390173286
1228 => 0.05285888234189
1229 => 0.052305180115466
1230 => 0.052558662159309
1231 => 0.051742108177092
]
'min_raw' => 0.028570315457701
'max_raw' => 0.088844150791552
'avg_raw' => 0.058707233124627
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.02857'
'max' => '$0.088844'
'avg' => '$0.0587072'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.016275568262656
'max_diff' => 0.055489686401768
'year' => 2033
]
8 => [
'items' => [
101 => 0.05145376597087
102 => 0.050543678653261
103 => 0.049206101714414
104 => 0.049392099991596
105 => 0.046742010079696
106 => 0.045298100444775
107 => 0.044898445288252
108 => 0.044364009710211
109 => 0.044958811208871
110 => 0.046734502707941
111 => 0.044592642026095
112 => 0.040920572121129
113 => 0.04114126977932
114 => 0.041637111891553
115 => 0.040713113395731
116 => 0.039838626364751
117 => 0.040598921888812
118 => 0.039043017462036
119 => 0.041825135508107
120 => 0.041749887011757
121 => 0.042786888574306
122 => 0.043435346932783
123 => 0.041940860357381
124 => 0.041565001025189
125 => 0.04177910758266
126 => 0.038240403115917
127 => 0.042497700923385
128 => 0.042534518211613
129 => 0.042219266237388
130 => 0.044486145890542
131 => 0.049269969016191
201 => 0.047470102327482
202 => 0.046773139544356
203 => 0.045448212784155
204 => 0.047213599025756
205 => 0.047078044906716
206 => 0.046465017773047
207 => 0.046094257049843
208 => 0.046777395050491
209 => 0.046009608691609
210 => 0.045871693164195
211 => 0.045036075121644
212 => 0.044737797498651
213 => 0.044516964621362
214 => 0.044273849322057
215 => 0.044810101091766
216 => 0.043594884031809
217 => 0.042129451386699
218 => 0.042007616518459
219 => 0.042344013301501
220 => 0.0421951827668
221 => 0.042006903975118
222 => 0.04164742848712
223 => 0.041540779788809
224 => 0.041887336319726
225 => 0.041496094201822
226 => 0.04207339325885
227 => 0.041916399858752
228 => 0.041039447487739
301 => 0.039946440144104
302 => 0.039936710086086
303 => 0.039701223446791
304 => 0.039401295805996
305 => 0.039317862797741
306 => 0.040534891920413
307 => 0.043054105781725
308 => 0.042559523821071
309 => 0.042916909974442
310 => 0.044674896130949
311 => 0.045233707065615
312 => 0.044837076300352
313 => 0.044294143645739
314 => 0.044318029927112
315 => 0.046173395164815
316 => 0.046289112018853
317 => 0.046581491177335
318 => 0.046957281022326
319 => 0.044901074935915
320 => 0.044221182805354
321 => 0.043899012194915
322 => 0.04290685141048
323 => 0.043976811755056
324 => 0.043353391682541
325 => 0.043437512349386
326 => 0.043382728654748
327 => 0.043412644256477
328 => 0.041824357849414
329 => 0.042403045938272
330 => 0.041440864752144
331 => 0.040152612153827
401 => 0.040148293479398
402 => 0.04046359147777
403 => 0.040276039890726
404 => 0.039771343392384
405 => 0.039843033147873
406 => 0.039214955454282
407 => 0.039919293151589
408 => 0.039939491036506
409 => 0.039668282657509
410 => 0.040753412060083
411 => 0.041197990461698
412 => 0.041019475296796
413 => 0.041185465361844
414 => 0.04258007593444
415 => 0.042807458308898
416 => 0.042908446539596
417 => 0.042773135688838
418 => 0.041210956282988
419 => 0.041280245582537
420 => 0.040771846676618
421 => 0.040342303174873
422 => 0.040359482662284
423 => 0.040580323858927
424 => 0.041544750316835
425 => 0.043574328941455
426 => 0.043651349966657
427 => 0.043744701696063
428 => 0.043364993297748
429 => 0.043250469611496
430 => 0.043401555914734
501 => 0.044163758935967
502 => 0.04612435204268
503 => 0.045431347495157
504 => 0.044867924010762
505 => 0.045362198304457
506 => 0.045286108651193
507 => 0.044643835403721
508 => 0.044625808932822
509 => 0.043393081223745
510 => 0.042937369857551
511 => 0.042556543330555
512 => 0.042140690704803
513 => 0.041894159328752
514 => 0.042272943568874
515 => 0.042359576006233
516 => 0.041531357645191
517 => 0.041418474542952
518 => 0.042094815534915
519 => 0.041797183080886
520 => 0.042103305440784
521 => 0.04217432845415
522 => 0.042162892113199
523 => 0.041852129648323
524 => 0.042050200376365
525 => 0.04158170405682
526 => 0.041072284675187
527 => 0.040747306847654
528 => 0.040463720591078
529 => 0.040621070728357
530 => 0.040060146219959
531 => 0.039880695180543
601 => 0.041983098470437
602 => 0.043536166385326
603 => 0.043513584162761
604 => 0.043376120690573
605 => 0.04317187785435
606 => 0.044148817300347
607 => 0.043808471131882
608 => 0.044056101406314
609 => 0.044119133704167
610 => 0.044309913485654
611 => 0.04437810085946
612 => 0.044171991256644
613 => 0.043480262255426
614 => 0.041756539352012
615 => 0.040954141687372
616 => 0.04068933709305
617 => 0.040698962237118
618 => 0.040433457795186
619 => 0.040511660752409
620 => 0.040406261998105
621 => 0.040206662256149
622 => 0.040608746006748
623 => 0.040655082413336
624 => 0.040561231261403
625 => 0.040583336605144
626 => 0.039806289151491
627 => 0.039865366381733
628 => 0.039536416856569
629 => 0.039474742786147
630 => 0.038643187031444
701 => 0.037169965476054
702 => 0.037986273226816
703 => 0.037000288254135
704 => 0.03662688080487
705 => 0.038394533592917
706 => 0.038217110280054
707 => 0.037913438692492
708 => 0.037464245123783
709 => 0.037297634859675
710 => 0.036285363637354
711 => 0.036225553253282
712 => 0.036727262204687
713 => 0.036495740786364
714 => 0.036170597031022
715 => 0.034992959308467
716 => 0.033668904605864
717 => 0.033708869494624
718 => 0.034130026660609
719 => 0.03535459792149
720 => 0.034876136744566
721 => 0.034529007670998
722 => 0.03446400083018
723 => 0.035277697544053
724 => 0.036429248868915
725 => 0.036969530986031
726 => 0.03643412781658
727 => 0.03581908548367
728 => 0.035856520260642
729 => 0.036105557060765
730 => 0.036131727307267
731 => 0.035731397975915
801 => 0.035844088337748
802 => 0.035672901373501
803 => 0.034622327289904
804 => 0.034603325736138
805 => 0.034345497913228
806 => 0.034337690989218
807 => 0.033899061544283
808 => 0.033837694252834
809 => 0.032966768867011
810 => 0.033540014593365
811 => 0.033155511456878
812 => 0.032575974535072
813 => 0.032476062151312
814 => 0.032473058664409
815 => 0.033068113501019
816 => 0.033533061031141
817 => 0.033162200053557
818 => 0.0330777621978
819 => 0.033979337589848
820 => 0.033864603903168
821 => 0.033765245270456
822 => 0.036326140078099
823 => 0.034298992008735
824 => 0.033415039744926
825 => 0.03232098096048
826 => 0.032677212017419
827 => 0.032752275135239
828 => 0.030121260977566
829 => 0.029053858861469
830 => 0.028687566679425
831 => 0.028476760350048
901 => 0.028572827441484
902 => 0.027612040343217
903 => 0.028257705163204
904 => 0.027425744749416
905 => 0.027286263878612
906 => 0.028773912158583
907 => 0.028980909726026
908 => 0.028097793794211
909 => 0.028664897185919
910 => 0.028459257612759
911 => 0.02744000632284
912 => 0.02740107842067
913 => 0.026889653951804
914 => 0.026089373689319
915 => 0.025723624134978
916 => 0.025533138591493
917 => 0.025611736639224
918 => 0.025571995061152
919 => 0.025312654381988
920 => 0.025586860165308
921 => 0.024886377698578
922 => 0.024607439936156
923 => 0.024481450220177
924 => 0.023859731712688
925 => 0.024849162337578
926 => 0.0250440926352
927 => 0.025239407005725
928 => 0.026939485254363
929 => 0.026854554149432
930 => 0.02762228997488
1001 => 0.027592457172479
1002 => 0.027373486478565
1003 => 0.026449685139875
1004 => 0.026817895888302
1005 => 0.0256846004373
1006 => 0.02653374244579
1007 => 0.026146229494133
1008 => 0.026402723927032
1009 => 0.02594152380951
1010 => 0.026196770997033
1011 => 0.025090317840203
1012 => 0.024057127450572
1013 => 0.024472913424067
1014 => 0.02492492032815
1015 => 0.02590498646542
1016 => 0.025321267159432
1017 => 0.025531194694736
1018 => 0.024827972592913
1019 => 0.02337702453139
1020 => 0.023385236739846
1021 => 0.023162039991202
1022 => 0.022969165413115
1023 => 0.025388314343521
1024 => 0.02508745493294
1025 => 0.024608074837685
1026 => 0.025249744144991
1027 => 0.025419411694504
1028 => 0.025424241891114
1029 => 0.025892387253843
1030 => 0.026142236517851
1031 => 0.026186273533541
1101 => 0.026922910376745
1102 => 0.027169821330112
1103 => 0.028186812602885
1104 => 0.0261210385534
1105 => 0.026078495296271
1106 => 0.025258773748044
1107 => 0.024738893382874
1108 => 0.025294370401425
1109 => 0.025786447209686
1110 => 0.025274063946136
1111 => 0.025340970383354
1112 => 0.024653137715289
1113 => 0.024899005528587
1114 => 0.025110780011371
1115 => 0.024993850589507
1116 => 0.024818801585528
1117 => 0.025746102522978
1118 => 0.025693780569966
1119 => 0.026557304521476
1120 => 0.027230483192869
1121 => 0.028436939717086
1122 => 0.027177939440064
1123 => 0.027132056465897
1124 => 0.027580569898245
1125 => 0.027169752665042
1126 => 0.027429374975497
1127 => 0.028395110549126
1128 => 0.028415515020011
1129 => 0.028073713843018
1130 => 0.028052915210335
1201 => 0.028118561865272
1202 => 0.028503056373671
1203 => 0.028368702178114
1204 => 0.028524180254645
1205 => 0.028718607970112
1206 => 0.029522843436928
1207 => 0.029716741885251
1208 => 0.029245669180645
1209 => 0.029288201771494
1210 => 0.029112007648736
1211 => 0.028941806333859
1212 => 0.029324394033798
1213 => 0.030023580575217
1214 => 0.030019230972031
1215 => 0.030181428659396
1216 => 0.030282476474906
1217 => 0.029848705279215
1218 => 0.029566336181028
1219 => 0.029674614460885
1220 => 0.029847753788371
1221 => 0.029618467710495
1222 => 0.028203207822202
1223 => 0.028632507265159
1224 => 0.02856105084618
1225 => 0.028459288216158
1226 => 0.028890952125725
1227 => 0.028849317088596
1228 => 0.027602186082825
1229 => 0.027682023363508
1230 => 0.027607041252293
1231 => 0.027849323793525
]
'min_raw' => 0.022969165413115
'max_raw' => 0.05145376597087
'avg_raw' => 0.037211465691993
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.022969'
'max' => '$0.051453'
'avg' => '$0.037211'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0056011500445864
'max_diff' => -0.037390384820682
'year' => 2034
]
9 => [
'items' => [
101 => 0.027156668612712
102 => 0.027369724681227
103 => 0.027503351450122
104 => 0.027582058643571
105 => 0.027866402996335
106 => 0.027833038468429
107 => 0.027864329010435
108 => 0.028285936621459
109 => 0.030418283239756
110 => 0.030534342161432
111 => 0.029962825584542
112 => 0.030191135184343
113 => 0.029752830678545
114 => 0.030047067429672
115 => 0.030248376741991
116 => 0.029338698669179
117 => 0.029284833437469
118 => 0.028844719893062
119 => 0.029081211982521
120 => 0.028704936063808
121 => 0.028797261012687
122 => 0.028539112406877
123 => 0.029003728500461
124 => 0.02952324148713
125 => 0.029654490983752
126 => 0.029309230064601
127 => 0.029059238405331
128 => 0.028620335404026
129 => 0.029350240876788
130 => 0.029563687480489
131 => 0.029349119732645
201 => 0.029299399697072
202 => 0.029205180319503
203 => 0.029319388783427
204 => 0.029562525004446
205 => 0.029447866452634
206 => 0.029523600446129
207 => 0.029234980559481
208 => 0.029848848875529
209 => 0.030823819496869
210 => 0.030826954186841
211 => 0.030712295016977
212 => 0.030665378955035
213 => 0.030783026221416
214 => 0.030846845037283
215 => 0.031227294723938
216 => 0.031635532395503
217 => 0.033540599480645
218 => 0.033005664266386
219 => 0.034695953117272
220 => 0.036032752141785
221 => 0.0364335997181
222 => 0.036064838809226
223 => 0.034803327660042
224 => 0.034741431904706
225 => 0.036626662157857
226 => 0.036093998262326
227 => 0.036030639586875
228 => 0.035356610326249
301 => 0.035755045099427
302 => 0.035667901569847
303 => 0.035530341245199
304 => 0.036290527037216
305 => 0.037713526977617
306 => 0.037491739092097
307 => 0.037326184724
308 => 0.03660077367515
309 => 0.037037633152981
310 => 0.036882075860417
311 => 0.037550448708367
312 => 0.037154519439513
313 => 0.036089962809428
314 => 0.036259496961594
315 => 0.036233872215549
316 => 0.036761227673355
317 => 0.036602928654689
318 => 0.036202961791546
319 => 0.037708663318521
320 => 0.037610891436511
321 => 0.037749509611437
322 => 0.037810533618949
323 => 0.038727027604982
324 => 0.039102485866523
325 => 0.039187721465215
326 => 0.039544377774695
327 => 0.039178847531328
328 => 0.04064122912344
329 => 0.041613627549863
330 => 0.042743118361318
331 => 0.044393608015364
401 => 0.045014207393168
402 => 0.044902101670338
403 => 0.046153484089257
404 => 0.048402190479388
405 => 0.045356629524759
406 => 0.048563612605183
407 => 0.047548318788321
408 => 0.045141075412897
409 => 0.044986077319055
410 => 0.046616290481562
411 => 0.050231946373801
412 => 0.049326265581225
413 => 0.050233427743126
414 => 0.049175174894513
415 => 0.049122623720924
416 => 0.050182030764334
417 => 0.052657393066532
418 => 0.051481441224326
419 => 0.049795425903302
420 => 0.051040353379042
421 => 0.049961881986957
422 => 0.047531784095453
423 => 0.049325573024191
424 => 0.048126117451712
425 => 0.048476182354327
426 => 0.050997259562127
427 => 0.050693916882542
428 => 0.051086470398701
429 => 0.050393623717594
430 => 0.049746395665546
501 => 0.048538296442614
502 => 0.048180637821275
503 => 0.048279481797004
504 => 0.04818058883911
505 => 0.047504668426884
506 => 0.047358703478218
507 => 0.047115422168905
508 => 0.04719082521939
509 => 0.046733385183424
510 => 0.047596669043226
511 => 0.047756902134837
512 => 0.048385128136102
513 => 0.048450352643613
514 => 0.050199953114897
515 => 0.049236302576155
516 => 0.049882802555128
517 => 0.049824973511915
518 => 0.045193247676243
519 => 0.045831458630335
520 => 0.046824314593273
521 => 0.046377034327754
522 => 0.045744684679774
523 => 0.045234028434586
524 => 0.044460332005845
525 => 0.045549294871774
526 => 0.046981165242181
527 => 0.048486667239152
528 => 0.050295429244115
529 => 0.049891734620918
530 => 0.048452853691618
531 => 0.048517400839003
601 => 0.048916405905772
602 => 0.048399658090873
603 => 0.048247259072144
604 => 0.048895468620845
605 => 0.048899932483757
606 => 0.048305351671656
607 => 0.047644583906146
608 => 0.047641815265082
609 => 0.047524238023469
610 => 0.049196091624596
611 => 0.050115442061752
612 => 0.050220844107765
613 => 0.050108347664256
614 => 0.050151643080538
615 => 0.049616693317662
616 => 0.050839429841173
617 => 0.051961533791256
618 => 0.051660785962379
619 => 0.05120992221307
620 => 0.050850787520205
621 => 0.051576185242205
622 => 0.051543884423526
623 => 0.051951733192154
624 => 0.05193323081616
625 => 0.051796086615239
626 => 0.051660790860231
627 => 0.0521972232357
628 => 0.052042739326405
629 => 0.05188801546093
630 => 0.05157769306168
701 => 0.051619871029647
702 => 0.051169085128321
703 => 0.050960530943808
704 => 0.047824376400193
705 => 0.046986293429334
706 => 0.047249971392718
707 => 0.04733678102466
708 => 0.046972046241709
709 => 0.047494982227782
710 => 0.047413483208279
711 => 0.047730548217834
712 => 0.047532459765226
713 => 0.047540589384417
714 => 0.048123125286626
715 => 0.048292237937322
716 => 0.048206225878271
717 => 0.048266465776109
718 => 0.049654668796116
719 => 0.049457310718905
720 => 0.049352468173879
721 => 0.049381510275358
722 => 0.049736225910378
723 => 0.049835526921428
724 => 0.049414781559851
725 => 0.04961320750467
726 => 0.050458079993711
727 => 0.050753737549233
728 => 0.051697334542784
729 => 0.051296477768825
730 => 0.052032267726102
731 => 0.054293835205492
801 => 0.056100531796594
802 => 0.054439018946522
803 => 0.057756787154659
804 => 0.060340145610276
805 => 0.06024099200994
806 => 0.059790523709046
807 => 0.056849438789464
808 => 0.054143008597359
809 => 0.056407052374151
810 => 0.056412823887343
811 => 0.056218340519035
812 => 0.055010421021532
813 => 0.056176307538839
814 => 0.056268851376705
815 => 0.056217051436893
816 => 0.055290942390275
817 => 0.05387694504965
818 => 0.054153236745377
819 => 0.054605808179175
820 => 0.053748996038703
821 => 0.053475192643745
822 => 0.0539842452482
823 => 0.05562451880508
824 => 0.055314434590609
825 => 0.055306337038621
826 => 0.056633008804296
827 => 0.055683398133759
828 => 0.054156721668468
829 => 0.053771215726594
830 => 0.052402929340859
831 => 0.053348009621155
901 => 0.053382021377949
902 => 0.052864410566917
903 => 0.054198722933068
904 => 0.054186427009712
905 => 0.055453158015186
906 => 0.057874671935213
907 => 0.057158511113597
908 => 0.056325693996135
909 => 0.056416244308317
910 => 0.05740935773574
911 => 0.056808898686946
912 => 0.057024827947441
913 => 0.057409030900942
914 => 0.057640830082013
915 => 0.056382891973348
916 => 0.056089606426083
917 => 0.055489647125618
918 => 0.055333128942898
919 => 0.055821783274565
920 => 0.055693040122583
921 => 0.05337916282149
922 => 0.053137349769234
923 => 0.053144765830318
924 => 0.052536715412836
925 => 0.051609292577355
926 => 0.054046504415458
927 => 0.053850762196101
928 => 0.053634677935175
929 => 0.053661147024178
930 => 0.054719058078326
1001 => 0.054105416241131
1002 => 0.055736883639231
1003 => 0.055401502988581
1004 => 0.055057521089749
1005 => 0.055009972313385
1006 => 0.054877568629491
1007 => 0.054423507132178
1008 => 0.053875200589306
1009 => 0.053513161116203
1010 => 0.049363062434703
1011 => 0.050133296609976
1012 => 0.051019380819574
1013 => 0.051325253537967
1014 => 0.050802037087407
1015 => 0.054444166906688
1016 => 0.055109619121106
1017 => 0.053093920957258
1018 => 0.052716866131216
1019 => 0.05446888655831
1020 => 0.053412204064986
1021 => 0.053888028127028
1022 => 0.052859556766739
1023 => 0.054949331169368
1024 => 0.05493341058975
1025 => 0.054120441147432
1026 => 0.054807557353105
1027 => 0.05468815400327
1028 => 0.053770313505148
1029 => 0.054978428350281
1030 => 0.054979027560172
1031 => 0.05419656214742
1101 => 0.053282813849031
1102 => 0.05311945723505
1103 => 0.052996389970289
1104 => 0.053857761124058
1105 => 0.054630063807089
1106 => 0.056067127630137
1107 => 0.056428439619046
1108 => 0.057838664365658
1109 => 0.056998944191647
1110 => 0.05737118126859
1111 => 0.05777529727176
1112 => 0.057969045344553
1113 => 0.057653343257031
1114 => 0.059844002760183
1115 => 0.060028961542321
1116 => 0.060090976622085
1117 => 0.059352298563229
1118 => 0.060008417569246
1119 => 0.059701441214708
1120 => 0.060500108408728
1121 => 0.060625349622644
1122 => 0.060519274770042
1123 => 0.060559028308138
1124 => 0.058689686881016
1125 => 0.058592751666458
1126 => 0.057271033137752
1127 => 0.05780964320785
1128 => 0.056802737498055
1129 => 0.057122037670909
1130 => 0.057262782144699
1201 => 0.05718926521877
1202 => 0.057840095413089
1203 => 0.057286756792093
1204 => 0.055826405193993
1205 => 0.054365655724076
1206 => 0.054347317204382
1207 => 0.053962727653323
1208 => 0.053684739848997
1209 => 0.053738290162257
1210 => 0.053927008450864
1211 => 0.053673771198992
1212 => 0.053727812206133
1213 => 0.054625252998028
1214 => 0.054805228348588
1215 => 0.054193601786478
1216 => 0.051737832882311
1217 => 0.051135181033399
1218 => 0.051568355231292
1219 => 0.05136132586469
1220 => 0.041452598559933
1221 => 0.043780507061956
1222 => 0.042397342878357
1223 => 0.043034768570483
1224 => 0.041622916107658
1225 => 0.042296726104446
1226 => 0.04217229800164
1227 => 0.045915505985073
1228 => 0.045857060941026
1229 => 0.045885035490768
1230 => 0.044549737344261
1231 => 0.046676903548943
]
'min_raw' => 0.027156668612712
'max_raw' => 0.060625349622644
'avg_raw' => 0.043891009117678
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.027156'
'max' => '$0.060625'
'avg' => '$0.043891'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0041875031995973
'max_diff' => 0.0091715836517743
'year' => 2035
]
10 => [
'items' => [
101 => 0.047724822111792
102 => 0.047530880275258
103 => 0.047579691257201
104 => 0.046740956868905
105 => 0.04589315627303
106 => 0.044952814936628
107 => 0.04669985290996
108 => 0.046505612110259
109 => 0.046951130619141
110 => 0.0480842096257
111 => 0.048251059813564
112 => 0.048475308158082
113 => 0.048394931089656
114 => 0.050309838951607
115 => 0.050077930974556
116 => 0.050636762474771
117 => 0.049487203680181
118 => 0.048186368786981
119 => 0.048433614972681
120 => 0.04840980317677
121 => 0.048106651684913
122 => 0.047832980072883
123 => 0.047377393945352
124 => 0.04881893586692
125 => 0.048760411897469
126 => 0.049707846936208
127 => 0.049540378590218
128 => 0.048421983989241
129 => 0.048461927671209
130 => 0.048730568128727
131 => 0.049660335819478
201 => 0.049936354173505
202 => 0.04980849147449
203 => 0.050111132998964
204 => 0.050350328520219
205 => 0.050141172273715
206 => 0.053102383652728
207 => 0.051872682233225
208 => 0.052472030148883
209 => 0.052614971095205
210 => 0.052248830866926
211 => 0.052328233571941
212 => 0.052448507034097
213 => 0.053178783944348
214 => 0.055095241864174
215 => 0.055944028031095
216 => 0.058497643092647
217 => 0.055873548155606
218 => 0.055717845221626
219 => 0.056177828405999
220 => 0.057677070774736
221 => 0.058892065897923
222 => 0.059295149875034
223 => 0.059348424076801
224 => 0.060104636414378
225 => 0.060538083223751
226 => 0.060012812346237
227 => 0.059567700275696
228 => 0.057973364088365
229 => 0.058157912843282
301 => 0.059429270756465
302 => 0.061225138691444
303 => 0.062766180207868
304 => 0.062226561179535
305 => 0.066343473454048
306 => 0.066751648489987
307 => 0.0666952518979
308 => 0.067625135374359
309 => 0.065779506041064
310 => 0.064990463743696
311 => 0.059663938557584
312 => 0.061160474868742
313 => 0.063335778285507
314 => 0.063047868721329
315 => 0.061468105234048
316 => 0.062764981815602
317 => 0.06233619386066
318 => 0.061997991010168
319 => 0.063547363832118
320 => 0.061843764769657
321 => 0.063318783581674
322 => 0.061427056698146
323 => 0.062229026113803
324 => 0.06177378948658
325 => 0.062068383376096
326 => 0.060346193517529
327 => 0.061275445361416
328 => 0.060307533585727
329 => 0.060307074669519
330 => 0.060285707963424
331 => 0.061424451875145
401 => 0.061461586273224
402 => 0.060620052801916
403 => 0.060498774681477
404 => 0.060947203457176
405 => 0.060422210804515
406 => 0.060667851562431
407 => 0.060429651012834
408 => 0.060376027051849
409 => 0.059948742207352
410 => 0.059764656147902
411 => 0.059836841035125
412 => 0.05959043680117
413 => 0.059441969337381
414 => 0.060256174048005
415 => 0.059821177316043
416 => 0.060189504560101
417 => 0.059769749178893
418 => 0.058314694148914
419 => 0.057477876614246
420 => 0.054729412546288
421 => 0.055508873546502
422 => 0.056025656996054
423 => 0.05585486006906
424 => 0.05622179795788
425 => 0.056244324964108
426 => 0.056125029715963
427 => 0.05598690110128
428 => 0.055919667730643
429 => 0.0564207701921
430 => 0.056711677037309
501 => 0.056077523128887
502 => 0.0559289497409
503 => 0.056570114354911
504 => 0.056961224399069
505 => 0.059848961219382
506 => 0.059635028348466
507 => 0.060171957872259
508 => 0.060111507847735
509 => 0.060674295528251
510 => 0.061594215534075
511 => 0.059723760948556
512 => 0.060048407189149
513 => 0.059968811428132
514 => 0.060837817075785
515 => 0.060840530016562
516 => 0.060319517720742
517 => 0.060601966938765
518 => 0.060444311533854
519 => 0.060729216158935
520 => 0.059632171144546
521 => 0.06096825355338
522 => 0.06172572618394
523 => 0.06173624369215
524 => 0.062095279707361
525 => 0.062460081092779
526 => 0.063160285584584
527 => 0.062440552769539
528 => 0.06114582349985
529 => 0.061239298771172
530 => 0.060480199474076
531 => 0.060492960070403
601 => 0.060424843007145
602 => 0.060629267441595
603 => 0.059677030812125
604 => 0.059900518845758
605 => 0.059587634289927
606 => 0.06004772703923
607 => 0.059552743297037
608 => 0.059968773044646
609 => 0.06014831769211
610 => 0.060810841306571
611 => 0.059454888020499
612 => 0.056690007480231
613 => 0.057271218890731
614 => 0.05641156156143
615 => 0.056491126120203
616 => 0.05665185919153
617 => 0.05613087071877
618 => 0.056230258901139
619 => 0.056226708055881
620 => 0.056196108789768
621 => 0.056060579566474
622 => 0.055864035379058
623 => 0.056647006928615
624 => 0.056780049052086
625 => 0.057075785212132
626 => 0.057955695424673
627 => 0.057867771644729
628 => 0.058011178977741
629 => 0.057698121574973
630 => 0.056505647955247
701 => 0.056570405009962
702 => 0.055762883500007
703 => 0.057055135071566
704 => 0.056749112842534
705 => 0.056551818320684
706 => 0.056497984682477
707 => 0.057380076022241
708 => 0.057644011576187
709 => 0.057479544651024
710 => 0.057142218189249
711 => 0.057789984717473
712 => 0.05796329971335
713 => 0.058002098549316
714 => 0.059149816640417
715 => 0.058066243241051
716 => 0.058327070128072
717 => 0.060361967044289
718 => 0.05851659633786
719 => 0.059494130357733
720 => 0.059446285154302
721 => 0.059946358480921
722 => 0.059405264545472
723 => 0.059411972053297
724 => 0.059856003289434
725 => 0.059232441499735
726 => 0.059078038831437
727 => 0.058864732651035
728 => 0.059330478892292
729 => 0.059609672700034
730 => 0.061859769745184
731 => 0.063313435053242
801 => 0.063250327608449
802 => 0.063827011521664
803 => 0.063567210136942
804 => 0.06272824293353
805 => 0.064160257648603
806 => 0.063707108274713
807 => 0.06374446535852
808 => 0.063743074925995
809 => 0.064044379644626
810 => 0.063830877637304
811 => 0.063410043265341
812 => 0.063689412760968
813 => 0.064519040286557
814 => 0.067094229582067
815 => 0.068535339628555
816 => 0.067007472947757
817 => 0.068061374925221
818 => 0.067429409282414
819 => 0.067314562325767
820 => 0.067976490650358
821 => 0.068639577592857
822 => 0.068597341821224
823 => 0.068115974750861
824 => 0.06784406270705
825 => 0.069903071800003
826 => 0.071420114625386
827 => 0.071316662475079
828 => 0.071773266622093
829 => 0.073113870519959
830 => 0.073236438539385
831 => 0.073220997786131
901 => 0.072917200161334
902 => 0.074237198798197
903 => 0.075338364884235
904 => 0.07284687978875
905 => 0.073795604697176
906 => 0.074221517874576
907 => 0.074846884781745
908 => 0.075901983577801
909 => 0.077048100721453
910 => 0.0772101742521
911 => 0.077095175326173
912 => 0.076339280260653
913 => 0.077593375315257
914 => 0.078327994786097
915 => 0.078765443869514
916 => 0.079874741960473
917 => 0.074224148169362
918 => 0.070224377031279
919 => 0.069599755010672
920 => 0.070869948451624
921 => 0.071204888332401
922 => 0.071069874486439
923 => 0.066567768427245
924 => 0.069576052354003
925 => 0.072812712915498
926 => 0.07293704622938
927 => 0.074557386181845
928 => 0.075085035290347
929 => 0.076389621334894
930 => 0.076308019122607
1001 => 0.076625665063956
1002 => 0.076552643762901
1003 => 0.078969114697422
1004 => 0.081634840987606
1005 => 0.081542535362667
1006 => 0.081159305669011
1007 => 0.081728467114463
1008 => 0.084479782322523
1009 => 0.084226485307092
1010 => 0.084472541781795
1011 => 0.087716497469427
1012 => 0.091934101310665
1013 => 0.089974600885907
1014 => 0.094226152976573
1015 => 0.096902279652554
1016 => 0.101530364022
1017 => 0.10095090506515
1018 => 0.10275258434772
1019 => 0.099913552595654
1020 => 0.093394561829917
1021 => 0.092362906587545
1022 => 0.094428306508446
1023 => 0.099505890675202
1024 => 0.094268395313446
1025 => 0.095327933803801
1026 => 0.0950227866473
1027 => 0.095006526652122
1028 => 0.095627104533887
1029 => 0.094726923949221
1030 => 0.091059426307896
1031 => 0.092740218864216
1101 => 0.092091184139933
1102 => 0.092811336555269
1103 => 0.096697702127389
1104 => 0.094979447268571
1105 => 0.093169405354496
1106 => 0.095439599595202
1107 => 0.098330336986998
1108 => 0.098149439836174
1109 => 0.097798423754432
1110 => 0.099777083028606
1111 => 0.10304524845677
1112 => 0.10392862043945
1113 => 0.10458070757732
1114 => 0.10467061937653
1115 => 0.10559676678826
1116 => 0.10061663873618
1117 => 0.1085202298536
1118 => 0.10988496170728
1119 => 0.10962844868112
1120 => 0.11114529069979
1121 => 0.11069899729933
1122 => 0.11005238818336
1123 => 0.1124569054245
1124 => 0.10970032044206
1125 => 0.1057876951039
1126 => 0.10364115146043
1127 => 0.10646789328689
1128 => 0.10819408588061
1129 => 0.10933498937859
1130 => 0.10968022608773
1201 => 0.10100323190026
1202 => 0.096326813281367
1203 => 0.099324344000826
1204 => 0.10298153835709
1205 => 0.10059632283687
1206 => 0.10068981876946
1207 => 0.097289128261245
1208 => 0.10328242400844
1209 => 0.10240925122962
1210 => 0.10693927315073
1211 => 0.10585814706356
1212 => 0.10955220408579
1213 => 0.1085794350705
1214 => 0.11261734486617
1215 => 0.1142281764057
1216 => 0.11693301326648
1217 => 0.11892270227194
1218 => 0.12009108571264
1219 => 0.12002094035335
1220 => 0.1246506576317
1221 => 0.12192067510266
1222 => 0.11849117363871
1223 => 0.11842914477716
1224 => 0.12020533218176
1225 => 0.12392773370856
1226 => 0.12489289826572
1227 => 0.12543229358301
1228 => 0.1246061908781
1229 => 0.12164299050244
1230 => 0.120363495604
1231 => 0.12145366232801
]
'min_raw' => 0.044952814936628
'max_raw' => 0.12543229358301
'avg_raw' => 0.085192554259817
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.044952'
'max' => '$0.125432'
'avg' => '$0.085192'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.017796146323916
'max_diff' => 0.064806943960361
'year' => 2036
]
11 => [
'items' => [
101 => 0.12012048210364
102 => 0.1224219251952
103 => 0.12558229812164
104 => 0.1249296936098
105 => 0.12711125264894
106 => 0.12936893674775
107 => 0.13259752640799
108 => 0.13344159929951
109 => 0.13483681969196
110 => 0.13627295978182
111 => 0.13673420927363
112 => 0.13761487767079
113 => 0.13761023611363
114 => 0.1402641896043
115 => 0.14319158249061
116 => 0.14429660553589
117 => 0.14683754509718
118 => 0.14248627514361
119 => 0.14578676338718
120 => 0.14876388639946
121 => 0.14521443761184
122 => 0.15010652585008
123 => 0.15029647455066
124 => 0.15316447441194
125 => 0.15025720711024
126 => 0.14853088106682
127 => 0.15351471966958
128 => 0.15592624218002
129 => 0.15519987197425
130 => 0.14967215884307
131 => 0.14645479270596
201 => 0.13803432494154
202 => 0.14800873274563
203 => 0.15286697582953
204 => 0.14965957716715
205 => 0.15127720248922
206 => 0.16010244172964
207 => 0.16346252144047
208 => 0.16276364834935
209 => 0.16288174639732
210 => 0.16469478441952
211 => 0.17273479346824
212 => 0.1679170336803
213 => 0.17160003052017
214 => 0.173553478764
215 => 0.17536795035973
216 => 0.17091218159026
217 => 0.16511529188943
218 => 0.1632791735843
219 => 0.1493406645811
220 => 0.1486151046556
221 => 0.14820782588271
222 => 0.14563999083033
223 => 0.14362237586838
224 => 0.14201789354139
225 => 0.1378072527764
226 => 0.13922822042993
227 => 0.13251733787956
228 => 0.13681072271621
301 => 0.1260999921259
302 => 0.13502020683259
303 => 0.13016533952013
304 => 0.13342525234921
305 => 0.13341387882045
306 => 0.12741134574581
307 => 0.12394920993803
308 => 0.12615541762309
309 => 0.12852064739046
310 => 0.12890439796263
311 => 0.13197098009483
312 => 0.13282679725197
313 => 0.13023363131156
314 => 0.12587803604128
315 => 0.12688974148202
316 => 0.12392870775957
317 => 0.11873961005549
318 => 0.12246651061951
319 => 0.12373903833232
320 => 0.1243010590646
321 => 0.11919817744454
322 => 0.11759474125056
323 => 0.11674108527502
324 => 0.12521931810338
325 => 0.12568377483624
326 => 0.12330754852334
327 => 0.1340483167807
328 => 0.13161735012692
329 => 0.13433333548048
330 => 0.12679793981747
331 => 0.12708580207955
401 => 0.12351842501261
402 => 0.12551591779787
403 => 0.12410415427945
404 => 0.12535454012043
405 => 0.12610401623799
406 => 0.12967080793345
407 => 0.13506093386433
408 => 0.12913804819617
409 => 0.12655736209327
410 => 0.12815840523718
411 => 0.13242219411242
412 => 0.13888205251773
413 => 0.13505768632502
414 => 0.1367548750994
415 => 0.13712563534392
416 => 0.13430568929915
417 => 0.13898602795073
418 => 0.14149425945712
419 => 0.14406718597729
420 => 0.146301185983
421 => 0.14303950254527
422 => 0.14652997136759
423 => 0.14371726964749
424 => 0.1411939854328
425 => 0.14119781221339
426 => 0.13961491916621
427 => 0.13654786442995
428 => 0.13598225247952
429 => 0.13892463727457
430 => 0.14128415123531
501 => 0.14147849210643
502 => 0.14278484027131
503 => 0.14355792365882
504 => 0.15113519181239
505 => 0.15418283174621
506 => 0.15790942816841
507 => 0.15936114749432
508 => 0.16373030219513
509 => 0.16020185492883
510 => 0.15943845316779
511 => 0.14884031300323
512 => 0.15057575786146
513 => 0.153354372525
514 => 0.14888613133561
515 => 0.15172020192293
516 => 0.15227970749069
517 => 0.14873430220978
518 => 0.15062805635823
519 => 0.14559880679892
520 => 0.13517055776137
521 => 0.13899763757298
522 => 0.14181565649546
523 => 0.13779399603386
524 => 0.14500266675154
525 => 0.14079151013544
526 => 0.1394567756593
527 => 0.13424950060069
528 => 0.13670713398196
529 => 0.14003111832004
530 => 0.13797728245376
531 => 0.14223930026129
601 => 0.14827545411539
602 => 0.152577176811
603 => 0.15290740966487
604 => 0.15014169016463
605 => 0.15457377331435
606 => 0.15460605620148
607 => 0.149606648303
608 => 0.14654453880201
609 => 0.14584882108065
610 => 0.1475868603521
611 => 0.14969716088739
612 => 0.15302451665763
613 => 0.15503516806298
614 => 0.160277880561
615 => 0.16169640824262
616 => 0.163254940094
617 => 0.16533761928087
618 => 0.16783840963269
619 => 0.16236682271299
620 => 0.16258421906162
621 => 0.15748915308128
622 => 0.1520443443749
623 => 0.15617627547805
624 => 0.16157822574766
625 => 0.16033901238719
626 => 0.1601995755693
627 => 0.16043406962044
628 => 0.15949974321557
629 => 0.15527381951408
630 => 0.15315158708688
701 => 0.15588980835721
702 => 0.15734505109818
703 => 0.15960200567892
704 => 0.15932378838831
705 => 0.16513746100907
706 => 0.16739647839317
707 => 0.16681852507751
708 => 0.16692488239682
709 => 0.17101472546598
710 => 0.17556347209928
711 => 0.17982397358134
712 => 0.18415793868169
713 => 0.17893317459568
714 => 0.17628036161146
715 => 0.17901738746003
716 => 0.17756508301835
717 => 0.18591045512175
718 => 0.18648827057949
719 => 0.19483303921749
720 => 0.20275321833152
721 => 0.19777869573475
722 => 0.20246944648609
723 => 0.20754287586619
724 => 0.21733034427464
725 => 0.21403426924196
726 => 0.21150952742301
727 => 0.20912365860357
728 => 0.21408827287082
729 => 0.220475169814
730 => 0.22185084624262
731 => 0.22407996760583
801 => 0.2217363190564
802 => 0.22455898558976
803 => 0.23452423879504
804 => 0.23183153941325
805 => 0.22800747341809
806 => 0.23587408375056
807 => 0.23872097944921
808 => 0.25870198439319
809 => 0.28392882850912
810 => 0.27348474939674
811 => 0.26700177246335
812 => 0.26852542582097
813 => 0.27773741530954
814 => 0.28069601395933
815 => 0.27265352293907
816 => 0.27549426673085
817 => 0.29114704431928
818 => 0.29954425729424
819 => 0.28813971417808
820 => 0.25667503203131
821 => 0.22766315811523
822 => 0.23535841349949
823 => 0.23448601035049
824 => 0.25130296714549
825 => 0.23176731942353
826 => 0.23209624962921
827 => 0.24926096328126
828 => 0.24468171195659
829 => 0.2372639112768
830 => 0.22771731626923
831 => 0.21006955244456
901 => 0.19443843588075
902 => 0.22509465509353
903 => 0.22377270317636
904 => 0.221858320898
905 => 0.2261185715007
906 => 0.24680513913418
907 => 0.24632824679435
908 => 0.24329450104091
909 => 0.24559557045669
910 => 0.23686052268271
911 => 0.23911174338741
912 => 0.22765856248618
913 => 0.23283587858062
914 => 0.23724799600805
915 => 0.23813379390412
916 => 0.24012954179393
917 => 0.22307609458597
918 => 0.23073259171944
919 => 0.23523006646859
920 => 0.2149103119324
921 => 0.2348284102544
922 => 0.22277923201058
923 => 0.21868955994204
924 => 0.224195764609
925 => 0.22204999129532
926 => 0.22020518140426
927 => 0.21917574578719
928 => 0.22321889479698
929 => 0.22303027706306
930 => 0.21641490054165
1001 => 0.20778541154671
1002 => 0.21068175130673
1003 => 0.20962948391859
1004 => 0.20581593115875
1005 => 0.20838580526876
1006 => 0.19706938027179
1007 => 0.17760005924108
1008 => 0.1904620890754
1009 => 0.18996691491797
1010 => 0.18971722565344
1011 => 0.19938268559353
1012 => 0.1984535746404
1013 => 0.19676722916257
1014 => 0.2057849601016
1015 => 0.20249336700326
1016 => 0.21263728133549
1017 => 0.21931871938194
1018 => 0.21762409057148
1019 => 0.22390801534836
1020 => 0.21074847712502
1021 => 0.21511954785378
1022 => 0.21602041947293
1023 => 0.2056736827016
1024 => 0.19860558868284
1025 => 0.19813422739396
1026 => 0.18587912640878
1027 => 0.19242570243534
1028 => 0.198186418423
1029 => 0.19542748251453
1030 => 0.19455408582677
1031 => 0.19901608008788
1101 => 0.19936281525637
1102 => 0.19145721666957
1103 => 0.19310104095351
1104 => 0.19995606148061
1105 => 0.1929283120244
1106 => 0.17927454280735
1107 => 0.1758882192634
1108 => 0.17543642128031
1109 => 0.16625244325639
1110 => 0.17611450959494
1111 => 0.17180945335122
1112 => 0.18540907444265
1113 => 0.17764104381145
1114 => 0.17730617953671
1115 => 0.17679998307152
1116 => 0.16889495380098
1117 => 0.17062565282041
1118 => 0.1763787599539
1119 => 0.17843153339252
1120 => 0.178217412305
1121 => 0.17635056659035
1122 => 0.17720519899872
1123 => 0.1744521302377
1124 => 0.17347996435801
1125 => 0.17041154142642
1126 => 0.16590180739046
1127 => 0.16652891356797
1128 => 0.15759395040662
1129 => 0.15272570826194
1130 => 0.15137824299869
1201 => 0.14957635613422
1202 => 0.15158177091467
1203 => 0.15756863877861
1204 => 0.15034720594983
1205 => 0.1379665658895
1206 => 0.13871066345271
1207 => 0.14038242975269
1208 => 0.13726710431251
1209 => 0.13431871023283
1210 => 0.13688209967434
1211 => 0.13163625926968
1212 => 0.14101636450329
1213 => 0.14076265894417
1214 => 0.14425898211344
1215 => 0.14644530474296
1216 => 0.14140653891227
1217 => 0.14013930293212
1218 => 0.14086117813908
1219 => 0.128930188965
1220 => 0.14328396575792
1221 => 0.14340809781568
1222 => 0.14234520377439
1223 => 0.14998814679348
1224 => 0.16611714045747
1225 => 0.16004876425381
1226 => 0.15769890557012
1227 => 0.15323182249467
1228 => 0.15918394546355
1229 => 0.15872691528713
1230 => 0.15666005150577
1231 => 0.1554100058418
]
'min_raw' => 0.11674108527502
'max_raw' => 0.29954425729424
'avg_raw' => 0.20814267128463
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.116741'
'max' => '$0.299544'
'avg' => '$0.208142'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.071788270338393
'max_diff' => 0.17411196371124
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0036643692697327
]
1 => [
'year' => 2028
'avg' => 0.0062891214408612
]
2 => [
'year' => 2029
'avg' => 0.017180746272577
]
3 => [
'year' => 2030
'avg' => 0.013254920162958
]
4 => [
'year' => 2031
'avg' => 0.013017974264197
]
5 => [
'year' => 2032
'avg' => 0.022824605792415
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0036643692697327
'min' => '$0.003664'
'max_raw' => 0.022824605792415
'max' => '$0.022824'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.022824605792415
]
1 => [
'year' => 2033
'avg' => 0.058707233124627
]
2 => [
'year' => 2034
'avg' => 0.037211465691993
]
3 => [
'year' => 2035
'avg' => 0.043891009117678
]
4 => [
'year' => 2036
'avg' => 0.085192554259817
]
5 => [
'year' => 2037
'avg' => 0.20814267128463
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.022824605792415
'min' => '$0.022824'
'max_raw' => 0.20814267128463
'max' => '$0.208142'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.20814267128463
]
]
]
]
'prediction_2025_max_price' => '$0.006265'
'last_price' => 0.0060751
'sma_50day_nextmonth' => '$0.005597'
'sma_200day_nextmonth' => '$0.007741'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.005335'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.005796'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.005623'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.005623'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.0055041'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.006241'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.008066'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.005624'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.005587'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.005596'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.005584'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.005752'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.006768'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.013946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007465'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.015883'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.00574'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.005738'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006076'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.008855'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.02658'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.01707'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.008535'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '53.10'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 18.15
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.005671'
'vwma_10_action' => 'BUY'
'hma_9' => '0.005246'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 37.86
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 70.37
'cci_20_action' => 'NEUTRAL'
'adx_14' => 10.37
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000384'
'ao_5_34_action' => 'BUY'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -62.14
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 55.51
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0008073'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 19
'sell_pct' => 38.71
'buy_pct' => 61.29
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767690730
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de KDR para 2026
A previsão de preço para KDR em 2026 sugere que o preço médio poderia variar entre $0.002098 na extremidade inferior e $0.006265 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, KDR poderia potencialmente ganhar 3.13% até 2026 se KDR atingir a meta de preço prevista.
Previsão de preço de KDR 2027-2032
A previsão de preço de KDR para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.003664 na extremidade inferior e $0.022824 na extremidade superior. Considerando a volatilidade de preços no mercado, se KDR atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00202 | $0.003664 | $0.0053081 |
| 2028 | $0.003646 | $0.006289 | $0.008931 |
| 2029 | $0.00801 | $0.01718 | $0.02635 |
| 2030 | $0.006812 | $0.013254 | $0.019697 |
| 2031 | $0.008054 | $0.013017 | $0.017981 |
| 2032 | $0.012294 | $0.022824 | $0.033354 |
Previsão de preço de KDR 2032-2037
A previsão de preço de KDR para 2032-2037 é atualmente estimada entre $0.022824 na extremidade inferior e $0.208142 na extremidade superior. Comparado ao preço atual, KDR poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de KDR | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.012294 | $0.022824 | $0.033354 |
| 2033 | $0.02857 | $0.0587072 | $0.088844 |
| 2034 | $0.022969 | $0.037211 | $0.051453 |
| 2035 | $0.027156 | $0.043891 | $0.060625 |
| 2036 | $0.044952 | $0.085192 | $0.125432 |
| 2037 | $0.116741 | $0.208142 | $0.299544 |
KDR Histograma de preços potenciais
Previsão de preço de KDR baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para KDR é Altista, com 19 indicadores técnicos mostrando sinais de alta e 12 indicando sinais de baixa. A previsão de preço de KDR foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de KDR
De acordo com nossos indicadores técnicos, o SMA de 200 dias de KDR está projetado para aumentar no próximo mês, alcançando $0.007741 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para KDR é esperado para alcançar $0.005597 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 53.10, sugerindo que o mercado de KDR está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de KDR para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.005335 | BUY |
| SMA 5 | $0.005796 | BUY |
| SMA 10 | $0.005623 | BUY |
| SMA 21 | $0.005623 | BUY |
| SMA 50 | $0.0055041 | BUY |
| SMA 100 | $0.006241 | SELL |
| SMA 200 | $0.008066 | SELL |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.005624 | BUY |
| EMA 5 | $0.005587 | BUY |
| EMA 10 | $0.005596 | BUY |
| EMA 21 | $0.005584 | BUY |
| EMA 50 | $0.005752 | BUY |
| EMA 100 | $0.006768 | SELL |
| EMA 200 | $0.013946 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.007465 | SELL |
| SMA 50 | $0.015883 | SELL |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.008855 | SELL |
| EMA 50 | $0.02658 | SELL |
| EMA 100 | $0.01707 | SELL |
| EMA 200 | $0.008535 | SELL |
Osciladores de KDR
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 53.10 | NEUTRAL |
| Stoch RSI (14) | 18.15 | NEUTRAL |
| Estocástico Rápido (14) | 37.86 | NEUTRAL |
| Índice de Canal de Commodities (20) | 70.37 | NEUTRAL |
| Índice Direcional Médio (14) | 10.37 | NEUTRAL |
| Oscilador Impressionante (5, 34) | 0.000384 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Williams Percent Range (14) | -62.14 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 55.51 | NEUTRAL |
| VWMA (10) | 0.005671 | BUY |
| Média Móvel de Hull (9) | 0.005246 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.0008073 | NEUTRAL |
Previsão do preço de KDR com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do KDR
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de KDR por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.008536 | $0.011995 | $0.016855 | $0.023684 | $0.03328 | $0.046765 |
| Amazon.com stock | $0.012676 | $0.026449 | $0.055188 | $0.115153 | $0.240274 | $0.501346 |
| Apple stock | $0.008617 | $0.012222 | $0.017336 | $0.024591 | $0.03488 | $0.049475 |
| Netflix stock | $0.009585 | $0.015124 | $0.023864 | $0.037653 | $0.059411 | $0.093742 |
| Google stock | $0.007867 | $0.010188 | $0.013193 | $0.017085 | $0.022125 | $0.028652 |
| Tesla stock | $0.013771 | $0.031219 | $0.070772 | $0.160435 | $0.363696 | $0.824471 |
| Kodak stock | $0.004555 | $0.003416 | $0.002561 | $0.001921 | $0.00144 | $0.00108 |
| Nokia stock | $0.004024 | $0.002666 | $0.001766 | $0.00117 | $0.000775 | $0.000513 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para KDR
Você pode fazer perguntas como: 'Devo investir em KDR agora?', 'Devo comprar KDR hoje?', 'KDR será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para KDR regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como KDR, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre KDR para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de KDR é de $0.006075 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão do preço de KDR com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se KDR tiver 1% da média anterior do crescimento anual do Bitcoin | $0.006233 | $0.006395 | $0.006561 | $0.006731 |
| Se KDR tiver 2% da média anterior do crescimento anual do Bitcoin | $0.00639 | $0.006723 | $0.007072 | $0.00744 |
| Se KDR tiver 5% da média anterior do crescimento anual do Bitcoin | $0.006864 | $0.007756 | $0.008764 | $0.0099041 |
| Se KDR tiver 10% da média anterior do crescimento anual do Bitcoin | $0.007654 | $0.009643 | $0.01215 | $0.0153088 |
| Se KDR tiver 20% da média anterior do crescimento anual do Bitcoin | $0.009233 | $0.014033 | $0.021328 | $0.032416 |
| Se KDR tiver 50% da média anterior do crescimento anual do Bitcoin | $0.01397 | $0.032127 | $0.073883 | $0.1699058 |
| Se KDR tiver 100% da média anterior do crescimento anual do Bitcoin | $0.021866 | $0.0787036 | $0.283279 | $1.01 |
Perguntas Frequentes sobre KDR
KDR é um bom investimento?
A decisão de adquirir KDR depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de KDR experimentou uma escalada de 21.9125% nas últimas 24 horas, e KDR registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em KDR dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
KDR pode subir?
Parece que o valor médio de KDR pode potencialmente subir para $0.006265 até o final deste ano. Observando as perspectivas de KDR em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.019697. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de KDR na próxima semana?
Com base na nossa nova previsão experimental de KDR, o preço de KDR aumentará 0.86% na próxima semana e atingirá $0.006127 até 13 de janeiro de 2026.
Qual será o preço de KDR no próximo mês?
Com base na nossa nova previsão experimental de KDR, o preço de KDR diminuirá -11.62% no próximo mês e atingirá $0.005369 até 5 de fevereiro de 2026.
Até onde o preço de KDR pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de KDR em 2026, espera-se que KDR fluctue dentro do intervalo de $0.002098 e $0.006265. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de KDR não considera flutuações repentinas e extremas de preço.
Onde estará KDR em 5 anos?
O futuro de KDR parece seguir uma tendência de alta, com um preço máximo de $0.019697 projetada após um período de cinco anos. Com base na previsão de KDR para 2030, o valor de KDR pode potencialmente atingir seu pico mais alto de aproximadamente $0.019697, enquanto seu pico mais baixo está previsto para cerca de $0.006812.
Quanto será KDR em 2026?
Com base na nossa nova simulação experimental de previsão de preços de KDR, espera-se que o valor de KDR em 2026 aumente 3.13% para $0.006265 se o melhor cenário ocorrer. O preço ficará entre $0.006265 e $0.002098 durante 2026.
Quanto será KDR em 2027?
De acordo com nossa última simulação experimental para previsão de preços de KDR, o valor de KDR pode diminuir -12.62% para $0.0053081 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0053081 e $0.00202 ao longo do ano.
Quanto será KDR em 2028?
Nosso novo modelo experimental de previsão de preços de KDR sugere que o valor de KDR em 2028 pode aumentar 47.02%, alcançando $0.008931 no melhor cenário. O preço é esperado para variar entre $0.008931 e $0.003646 durante o ano.
Quanto será KDR em 2029?
Com base no nosso modelo de previsão experimental, o valor de KDR pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.02635 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.02635 e $0.00801.
Quanto será KDR em 2030?
Usando nossa nova simulação experimental para previsões de preços de KDR, espera-se que o valor de KDR em 2030 aumente 224.23%, alcançando $0.019697 no melhor cenário. O preço está previsto para variar entre $0.019697 e $0.006812 ao longo de 2030.
Quanto será KDR em 2031?
Nossa simulação experimental indica que o preço de KDR poderia aumentar 195.98% em 2031, potencialmente atingindo $0.017981 sob condições ideais. O preço provavelmente oscilará entre $0.017981 e $0.008054 durante o ano.
Quanto será KDR em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de KDR, KDR poderia ver um 449.04% aumento em valor, atingindo $0.033354 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.033354 e $0.012294 ao longo do ano.
Quanto será KDR em 2033?
De acordo com nossa previsão experimental de preços de KDR, espera-se que o valor de KDR seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.088844. Ao longo do ano, o preço de KDR poderia variar entre $0.088844 e $0.02857.
Quanto será KDR em 2034?
Os resultados da nossa nova simulação de previsão de preços de KDR sugerem que KDR pode aumentar 746.96% em 2034, atingindo potencialmente $0.051453 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.051453 e $0.022969.
Quanto será KDR em 2035?
Com base em nossa previsão experimental para o preço de KDR, KDR poderia aumentar 897.93%, com o valor potencialmente atingindo $0.060625 em 2035. A faixa de preço esperada para o ano está entre $0.060625 e $0.027156.
Quanto será KDR em 2036?
Nossa recente simulação de previsão de preços de KDR sugere que o valor de KDR pode aumentar 1964.7% em 2036, possivelmente atingindo $0.125432 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.125432 e $0.044952.
Quanto será KDR em 2037?
De acordo com a simulação experimental, o valor de KDR poderia aumentar 4830.69% em 2037, com um pico de $0.299544 sob condições favoráveis. O preço é esperado para cair entre $0.299544 e $0.116741 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de KDR?
Traders de KDR utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de KDR
Médias móveis são ferramentas populares para a previsão de preço de KDR. Uma média móvel simples (SMA) calcula o preço médio de fechamento de KDR em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de KDR acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de KDR.
Como ler gráficos de KDR e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de KDR em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de KDR dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de KDR?
A ação de preço de KDR é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de KDR. A capitalização de mercado de KDR pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de KDR, grandes detentores de KDR, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de KDR.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


