Predicción del precio de JPY Coin v1 - Pronóstico de JPYC
Predicción de precio de JPY Coin v1 hasta $0.009536 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.003194 | $0.009536 |
| 2027 | $0.003075 | $0.008079 |
| 2028 | $0.00555 | $0.013594 |
| 2029 | $0.012192 | $0.0401072 |
| 2030 | $0.010369 | $0.029979 |
| 2031 | $0.012259 | $0.027368 |
| 2032 | $0.018713 | $0.050766 |
| 2033 | $0.043485 | $0.135224 |
| 2034 | $0.034959 | $0.078314 |
| 2035 | $0.041333 | $0.092274 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en JPY Coin v1 hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.50, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de JPYC para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'JPY Coin v1'
'name_with_ticker' => 'JPY Coin v1 <small>JPYC</small>'
'name_lang' => 'JPYC'
'name_lang_with_ticker' => 'JPYC <small>JPYC</small>'
'name_with_lang' => 'JPYC/JPY Coin v1'
'name_with_lang_with_ticker' => 'JPYC/JPY Coin v1 <small>JPYC</small>'
'image' => '/uploads/coins/jpyc.png?1717274517'
'price_for_sd' => 0.009246
'ticker' => 'JPYC'
'marketcap' => '$0'
'low24h' => '$0.007853'
'high24h' => '$0.01447'
'volume24h' => '$23.95K'
'current_supply' => '0'
'max_supply' => '400M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.009246'
'change_24h_pct' => '17.7315%'
'ath_price' => '$0.01558'
'ath_days' => 67
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '31 oct. 2025'
'ath_pct' => '-40.44%'
'fdv' => '$3.7M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.455918'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.009325'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008172'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.003194'
'current_year_max_price_prediction' => '$0.009536'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.010369'
'grand_prediction_max_price' => '$0.029979'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.00942175706932
107 => 0.009456934490119
108 => 0.0095361910153828
109 => 0.0088589526846429
110 => 0.0091630128124724
111 => 0.009341619650991
112 => 0.0085346674567913
113 => 0.0093256688006608
114 => 0.008847163472024
115 => 0.0086847515765758
116 => 0.0089034177976566
117 => 0.0088182033586416
118 => 0.0087449409879362
119 => 0.0087040593262753
120 => 0.0088646236657269
121 => 0.0088571331473755
122 => 0.0085944187238374
123 => 0.0082517184679417
124 => 0.0083667399225727
125 => 0.0083249515497734
126 => 0.0081735050959412
127 => 0.0082755617201095
128 => 0.0078261559969478
129 => 0.0070529768083248
130 => 0.0075637626634482
131 => 0.007544097963654
201 => 0.0075341821302947
202 => 0.0079180235833358
203 => 0.0078811260843549
204 => 0.0078141567624032
205 => 0.0081722751518256
206 => 0.0080415571223144
207 => 0.0084443992882268
208 => 0.0087097371928944
209 => 0.0086424389174887
210 => 0.008891990499318
211 => 0.0083693897845767
212 => 0.0085429767789123
213 => 0.0085787528178637
214 => 0.0081678560264894
215 => 0.0078871629715072
216 => 0.007868443944875
217 => 0.0073817608694216
218 => 0.0076417430399603
219 => 0.0078705165912411
220 => 0.0077609518137223
221 => 0.0077262668783145
222 => 0.0079034646910684
223 => 0.007917234478716
224 => 0.0076032818610938
225 => 0.0076685625518838
226 => 0.0079407938844902
227 => 0.0076617030207758
228 => 0.0071194750618125
301 => 0.0069849950311016
302 => 0.006967052916046
303 => 0.0066023324070122
304 => 0.006993981629795
305 => 0.0068230162485037
306 => 0.0073630938395231
307 => 0.007054604416027
308 => 0.0070413060535501
309 => 0.0070212036282206
310 => 0.0067072736196807
311 => 0.0067760043402581
312 => 0.0070044757234417
313 => 0.0070859968868759
314 => 0.0070774935616465
315 => 0.007003356089022
316 => 0.0070372958443442
317 => 0.0069279640670566
318 => 0.0068893567409522
319 => 0.006767501399985
320 => 0.0065884077121604
321 => 0.0066133117878978
322 => 0.0062584803299046
323 => 0.0060651493192591
324 => 0.0060116378435742
325 => 0.0059400800618898
326 => 0.0060197204854234
327 => 0.0062574751369663
328 => 0.0059706925847425
329 => 0.0054790240144117
330 => 0.0055085741332511
331 => 0.0055749644767741
401 => 0.005451246510835
402 => 0.0053341578389355
403 => 0.0054359569394479
404 => 0.0052276304846465
405 => 0.0056001397335454
406 => 0.0055900644023078
407 => 0.0057289128144799
408 => 0.0058157375760674
409 => 0.0056156346104586
410 => 0.005565309255744
411 => 0.0055939768649493
412 => 0.0051201651426743
413 => 0.0056901922883011
414 => 0.0056951219067274
415 => 0.0056529115209035
416 => 0.0059564333783361
417 => 0.0065969591683604
418 => 0.0063559676010631
419 => 0.0062626483821969
420 => 0.0060852484789163
421 => 0.0063216233170737
422 => 0.0063034734175251
423 => 0.0062213926886213
424 => 0.0061717500076729
425 => 0.0062632181694481
426 => 0.0061604160901956
427 => 0.0061419500119496
428 => 0.0060300656690704
429 => 0.0059901280490757
430 => 0.0059605598251941
501 => 0.0059280081160142
502 => 0.0059998090750846
503 => 0.0058370986556282
504 => 0.0056408858404629
505 => 0.005624572867934
506 => 0.0056696144193376
507 => 0.0056496868857906
508 => 0.0056244774625701
509 => 0.0055763458082641
510 => 0.0055620661746016
511 => 0.0056084680565113
512 => 0.0055560830372331
513 => 0.0056333799867378
514 => 0.0056123594935078
515 => 0.0054949407270728
516 => 0.0053485934700996
517 => 0.0053472906725388
518 => 0.0053157603960815
519 => 0.0052756018484044
520 => 0.0052644306591437
521 => 0.0054273837031435
522 => 0.005764691627449
523 => 0.0056984700108133
524 => 0.0057463219154969
525 => 0.0059817059257692
526 => 0.0060565274243906
527 => 0.0060034208969134
528 => 0.0059307254066347
529 => 0.0059339236392711
530 => 0.0061823461359749
531 => 0.006197839942373
601 => 0.0062369877926499
602 => 0.0062873038434367
603 => 0.0060119899379352
604 => 0.0059209563790806
605 => 0.0058778196285457
606 => 0.0057449751329217
607 => 0.0058882365322259
608 => 0.0058047642499161
609 => 0.0058160275126189
610 => 0.0058086922980078
611 => 0.0058126978211905
612 => 0.0056000356096186
613 => 0.0056775185423186
614 => 0.0055486881386429
615 => 0.0053761986900126
616 => 0.0053756204448982
617 => 0.0054178369930848
618 => 0.0053927249382897
619 => 0.005325149044526
620 => 0.0053347478812859
621 => 0.0052506519708985
622 => 0.0053449586474126
623 => 0.0053476630254495
624 => 0.0053113498180722
625 => 0.0054566422650557
626 => 0.0055161686991322
627 => 0.0054922665681321
628 => 0.005514491661903
629 => 0.0057012218179572
630 => 0.005731666981002
701 => 0.0057451887113318
702 => 0.0057270713839758
703 => 0.0055179047463703
704 => 0.0055271821761933
705 => 0.0054591105518234
706 => 0.0054015972024418
707 => 0.0054038974347993
708 => 0.0054334667725935
709 => 0.0055625978049595
710 => 0.0058343464498835
711 => 0.0058446591123127
712 => 0.0058571583600185
713 => 0.0058063176379805
714 => 0.0057909835897337
715 => 0.0058112131574249
716 => 0.0059132676605935
717 => 0.0061757795502702
718 => 0.0060829903158789
719 => 0.0060075512239682
720 => 0.006073731645807
721 => 0.0060635436886042
722 => 0.0059775470770149
723 => 0.0059751334385482
724 => 0.0058100784461285
725 => 0.0057490613735513
726 => 0.005698070940657
727 => 0.0056423907190755
728 => 0.005609381617304
729 => 0.0056600985999934
730 => 0.0056716981740002
731 => 0.0055608046049686
801 => 0.0055456902212754
802 => 0.0056362483035506
803 => 0.0055963970678868
804 => 0.0056373850520301
805 => 0.0056468946159397
806 => 0.0056453633571264
807 => 0.0056037540902082
808 => 0.0056302745961357
809 => 0.0055675456934739
810 => 0.0054993374334058
811 => 0.0054558248130071
812 => 0.0054178542805977
813 => 0.0054389225388388
814 => 0.0053638180451214
815 => 0.0053397906060264
816 => 0.0056212900454577
817 => 0.0058292367079946
818 => 0.0058262130811654
819 => 0.0058078075304563
820 => 0.0057804606155322
821 => 0.0059112670634334
822 => 0.0058656967125421
823 => 0.0058988529503457
824 => 0.0059072926044297
825 => 0.0059328368954806
826 => 0.0059419667839253
827 => 0.0059143699199302
828 => 0.0058217514736895
829 => 0.0055909551115556
830 => 0.0054835187819593
831 => 0.005448063003699
901 => 0.0054493517538986
902 => 0.0054138022701579
903 => 0.0054242731863356
904 => 0.0054101609128265
905 => 0.0053834356809258
906 => 0.0054372723310786
907 => 0.0054434765034856
908 => 0.0054309103860399
909 => 0.0054338701615985
910 => 0.0053298280762067
911 => 0.0053377381699915
912 => 0.0052936937626316
913 => 0.0052854359672149
914 => 0.0051740955407943
915 => 0.0049768398363374
916 => 0.0050861386446811
917 => 0.0049541210539401
918 => 0.0049041239919336
919 => 0.0051408023073341
920 => 0.0051170463689025
921 => 0.0050763865287658
922 => 0.0050162421509505
923 => 0.0049939340161719
924 => 0.0048583968511543
925 => 0.0048503885923824
926 => 0.0049175644711764
927 => 0.0048865651144938
928 => 0.004843030277337
929 => 0.0046853515102108
930 => 0.0045080683703153
1001 => 0.0045134194339466
1002 => 0.0045698099022773
1003 => 0.0047337727942396
1004 => 0.0046697096557631
1005 => 0.0046232311137586
1006 => 0.004614527079981
1007 => 0.0047234762858366
1008 => 0.0048776622376867
1009 => 0.0049500028365785
1010 => 0.0048783155000934
1011 => 0.0047959649478596
1012 => 0.0048009772443983
1013 => 0.0048343218077222
1014 => 0.0048378258498608
1015 => 0.0047842241061302
1016 => 0.0047993126830164
1017 => 0.0047763917549979
1018 => 0.0046357260620572
1019 => 0.0046331818657276
1020 => 0.0045986602361393
1021 => 0.0045976149349151
1022 => 0.0045388850311612
1023 => 0.0045306683116454
1024 => 0.0044140565230918
1025 => 0.0044908107554508
1026 => 0.0044393280461624
1027 => 0.0043617314597214
1028 => 0.0043483537789711
1029 => 0.0043479516297337
1030 => 0.0044276259737294
1031 => 0.0044898797143525
1101 => 0.0044402236099321
1102 => 0.0044289178774988
1103 => 0.0045496335216792
1104 => 0.0045342713556098
1105 => 0.0045209678188689
1106 => 0.0048638565768248
1107 => 0.0045924333689593
1108 => 0.0044740773580348
1109 => 0.0043275893193189
1110 => 0.0043752865633816
1111 => 0.0043853370735239
1112 => 0.0040330597468658
1113 => 0.003890140879314
1114 => 0.0038410965097541
1115 => 0.0038128707816868
1116 => 0.0038257336004034
1117 => 0.0036970898568956
1118 => 0.003783540580104
1119 => 0.0036721459722112
1120 => 0.0036534703036885
1121 => 0.0038526576617448
1122 => 0.0038803734189827
1123 => 0.0037621293879951
1124 => 0.0038380611978589
1125 => 0.0038105272680712
1126 => 0.0036740555130416
1127 => 0.0036688432958177
1128 => 0.003600366566358
1129 => 0.0034932137444612
1130 => 0.0034442420295603
1201 => 0.003418737135248
1202 => 0.0034292609517217
1203 => 0.0034239397880785
1204 => 0.0033892155959327
1205 => 0.0034259301381256
1206 => 0.0033321396543189
1207 => 0.0032947915279459
1208 => 0.0032779222457331
1209 => 0.0031946777929759
1210 => 0.0033271567362888
1211 => 0.0033532567570472
1212 => 0.0033794082029092
1213 => 0.0036070386847875
1214 => 0.0035956669091899
1215 => 0.0036984622223126
1216 => 0.0036944677854731
1217 => 0.0036651488969969
1218 => 0.0035414573292385
1219 => 0.0035907585835568
1220 => 0.0034390169858812
1221 => 0.0035527121082854
1222 => 0.0035008264024419
1223 => 0.0035351694989474
1224 => 0.0034734175148384
1225 => 0.0035075936125213
1226 => 0.0033594460402159
1227 => 0.0032211079216898
1228 => 0.0032767792189261
1229 => 0.0033373002858071
1230 => 0.0034685253792862
1231 => 0.0033903687961936
]
'min_raw' => 0.0031946777929759
'max_raw' => 0.0095361910153828
'avg_raw' => 0.0063654344041793
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.003194'
'max' => '$0.009536'
'avg' => '$0.006365'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0060518622070241
'max_diff' => 0.00028965101538282
'year' => 2026
]
1 => [
'items' => [
101 => 0.0034184768589013
102 => 0.0033243195540633
103 => 0.0031300461394782
104 => 0.0031311457059067
105 => 0.0031012609735492
106 => 0.0030754362015499
107 => 0.003399346019939
108 => 0.0033590627137658
109 => 0.0032948765375277
110 => 0.0033807922850797
111 => 0.0034035097723987
112 => 0.0034041565073256
113 => 0.0034668384189332
114 => 0.0035002917663945
115 => 0.0035061880638796
116 => 0.0036048194061264
117 => 0.0036378793310687
118 => 0.0037740484830902
119 => 0.0034974534835879
120 => 0.0034917571915916
121 => 0.0033820012958389
122 => 0.0033123923715806
123 => 0.0033867674784359
124 => 0.0034526536698953
125 => 0.0033840485634646
126 => 0.0033930069420316
127 => 0.0033009101918916
128 => 0.0033338304465118
129 => 0.0033621858046279
130 => 0.0033465296425271
131 => 0.0033230916100954
201 => 0.0034472517535518
202 => 0.0034402461516705
203 => 0.0035558669316865
204 => 0.0036460015978302
205 => 0.0038075390330587
206 => 0.0036389662982608
207 => 0.0036328228377889
208 => 0.0036928761493444
209 => 0.0036378701372196
210 => 0.0036726320381395
211 => 0.0038019383534036
212 => 0.0038046703920869
213 => 0.0037589052241085
214 => 0.0037561204094778
215 => 0.0037649101106042
216 => 0.0038163916646425
217 => 0.0037984024277931
218 => 0.0038192200281069
219 => 0.0038452527560697
220 => 0.0039529351565719
221 => 0.003978897018776
222 => 0.0039158231533024
223 => 0.0039215180171466
224 => 0.0038979266600431
225 => 0.00387513770468
226 => 0.0039263639482766
227 => 0.0040199809153036
228 => 0.0040193985290104
301 => 0.0040411158457069
302 => 0.0040546455540928
303 => 0.0039965661413485
304 => 0.0039587585792912
305 => 0.0039732564043417
306 => 0.0039964387423189
307 => 0.0039657386845794
308 => 0.003776243706561
309 => 0.0038337243779058
310 => 0.0038241567835328
311 => 0.0038105313656864
312 => 0.0038683286252084
313 => 0.0038627539385301
314 => 0.0036957704293673
315 => 0.0037064601718472
316 => 0.003696420508013
317 => 0.0037288607157833
318 => 0.0036361182595403
319 => 0.0036646452144507
320 => 0.0036825370531469
321 => 0.0036930754835905
322 => 0.0037311475206223
323 => 0.0037266802065024
324 => 0.0037308698261042
325 => 0.0037873206063773
326 => 0.00407282928143
327 => 0.0040883688886737
328 => 0.0040118461792612
329 => 0.0040424154923278
330 => 0.0039837290960139
331 => 0.0040231256670241
401 => 0.0040500798003449
402 => 0.00392827925485
403 => 0.0039210670170247
404 => 0.0038621384010773
405 => 0.0038938033014
406 => 0.0038434221681996
407 => 0.0038557839360298
408 => 0.0038212193554971
409 => 0.0038834287187166
410 => 0.0039529884531537
411 => 0.0039705619890696
412 => 0.0039243335819576
413 => 0.0038908611686081
414 => 0.0038320946372647
415 => 0.0039298246885863
416 => 0.0039584039338621
417 => 0.0039296745739774
418 => 0.0039230173535432
419 => 0.0039104019328498
420 => 0.0039256937746803
421 => 0.0039582482851546
422 => 0.0039428961792024
423 => 0.0039530365156531
424 => 0.0039143920097723
425 => 0.0039965853680508
426 => 0.004127128201906
427 => 0.0041275479184628
428 => 0.0041121957297569
429 => 0.004105913944906
430 => 0.0041216662221669
501 => 0.0041302111863887
502 => 0.0041811511625769
503 => 0.004235811786565
504 => 0.0044908890684187
505 => 0.0044192643883824
506 => 0.0046455841274585
507 => 0.0048245736571276
508 => 0.0048782447908118
509 => 0.0048288698732443
510 => 0.0046599609474265
511 => 0.0046516734697033
512 => 0.0049040947163841
513 => 0.0048327741525713
514 => 0.0048242907984459
515 => 0.0047340422434048
516 => 0.004787390316935
517 => 0.004775722310685
518 => 0.0047573037920008
519 => 0.0048590882000375
520 => 0.0050496195255256
521 => 0.0050199234316568
522 => 0.0049977566751459
523 => 0.0049006284007611
524 => 0.0049591213163262
525 => 0.0049382931094515
526 => 0.0050277843040921
527 => 0.0049747717028597
528 => 0.0048322338291547
529 => 0.0048549334553532
530 => 0.0048515024525186
531 => 0.004922112247731
601 => 0.0049009169398511
602 => 0.0048473637284825
603 => 0.0050489683101685
604 => 0.0050358772300174
605 => 0.0050544373886341
606 => 0.0050626081444491
607 => 0.0051853213006502
608 => 0.0052355929543627
609 => 0.0052470054998846
610 => 0.0052947596827623
611 => 0.0052458173323116
612 => 0.0054416216294191
613 => 0.0055718200614981
614 => 0.0057230522403079
615 => 0.0059440431009265
616 => 0.0060271377087989
617 => 0.0060121274116377
618 => 0.006179680160025
619 => 0.0064807687243885
620 => 0.0060729860189471
621 => 0.0065023821979507
622 => 0.0063664403252954
623 => 0.0060441245907197
624 => 0.0060233712572659
625 => 0.0062416472148832
626 => 0.006725762280596
627 => 0.0066044969474226
628 => 0.006725960627239
629 => 0.0065842667928099
630 => 0.0065772304996411
701 => 0.0067190788739673
702 => 0.0070505153323328
703 => 0.0068930622946732
704 => 0.0066673147561194
705 => 0.0068340032255668
706 => 0.0066896022470419
707 => 0.0063642264271363
708 => 0.0066044042181077
709 => 0.0064438041691548
710 => 0.0064906758014074
711 => 0.0068282332168521
712 => 0.0067876174155596
713 => 0.006840178023354
714 => 0.0067474099263476
715 => 0.0066607498955574
716 => 0.0064989925126291
717 => 0.0064511041260867
718 => 0.0064643387532833
719 => 0.0064510975676627
720 => 0.0063605957985414
721 => 0.0063410519501164
722 => 0.0063084780131725
723 => 0.0063185740383
724 => 0.0062573255070039
725 => 0.0063729141401518
726 => 0.0063943684090276
727 => 0.0064784841769406
728 => 0.0064872173550087
729 => 0.0067214785713333
730 => 0.0065924514299815
731 => 0.0066790139760677
801 => 0.0066712710071875
802 => 0.0060511101500348
803 => 0.0061365628444248
804 => 0.0062695004203631
805 => 0.0062096122225955
806 => 0.0061249443226323
807 => 0.0060565704538064
808 => 0.0059529770509481
809 => 0.006098782776136
810 => 0.006290501800048
811 => 0.0064920796658396
812 => 0.0067342622636834
813 => 0.0066802099271609
814 => 0.0064875522306316
815 => 0.0064961947141614
816 => 0.0065496191466505
817 => 0.0064804296524556
818 => 0.0064600243198781
819 => 0.0065468157672996
820 => 0.0065474134522982
821 => 0.0064678025773973
822 => 0.0063793296585812
823 => 0.0063789589538209
824 => 0.0063632160524646
825 => 0.0065870674199882
826 => 0.0067101630382001
827 => 0.0067242757524496
828 => 0.0067092131400869
829 => 0.0067150101417716
830 => 0.0066433835137609
831 => 0.0068071007451766
901 => 0.0069573438666797
902 => 0.0069170755006407
903 => 0.0068567074954628
904 => 0.0068086214716215
905 => 0.0069057479616195
906 => 0.0069014230719112
907 => 0.0069560316240826
908 => 0.0069535542647218
909 => 0.0069351914625581
910 => 0.0069170761564342
911 => 0.006988901297554
912 => 0.006968216810388
913 => 0.0069475001945002
914 => 0.006905949849782
915 => 0.0069115972317073
916 => 0.0068512396499166
917 => 0.0068233154708052
918 => 0.0064034028164438
919 => 0.0062911884341566
920 => 0.0063264933631585
921 => 0.006338116662478
922 => 0.0062892808195
923 => 0.0063592988734317
924 => 0.0063483866338939
925 => 0.0063908397744889
926 => 0.0063643168953463
927 => 0.0063654054035578
928 => 0.0064434035358422
929 => 0.0064660467254721
930 => 0.0064545302164734
1001 => 0.0064625959846133
1002 => 0.006648468207049
1003 => 0.0066220431208777
1004 => 0.0066080053205207
1005 => 0.0066118938871557
1006 => 0.0066593882251334
1007 => 0.0066726840466724
1008 => 0.0066163487165307
1009 => 0.0066429167838962
1010 => 0.0067560402427488
1011 => 0.0067956270511139
1012 => 0.0069219691406694
1013 => 0.0068682967754747
1014 => 0.0069668147246752
1015 => 0.0072696253132738
1016 => 0.0075115313643452
1017 => 0.0072890645625895
1018 => 0.0077332942188325
1019 => 0.008079190727177
1020 => 0.008065914643066
1021 => 0.0080055995861057
1022 => 0.0076118056074899
1023 => 0.0072494305172302
1024 => 0.0075525726674915
1025 => 0.0075533454391743
1026 => 0.0075273052596233
1027 => 0.0073655719408735
1028 => 0.0075216772907081
1029 => 0.0075340683664867
1030 => 0.0075271326591037
1031 => 0.007403132102822
1101 => 0.0072138061725133
1102 => 0.0072508000061134
1103 => 0.0073113966602041
1104 => 0.0071966745522241
1105 => 0.0071600138874668
1106 => 0.0072281730382274
1107 => 0.007447796023501
1108 => 0.0074062775703243
1109 => 0.0074051933557227
1110 => 0.0075828269049765
1111 => 0.00745567961943
1112 => 0.0072512666168257
1113 => 0.0071996496377919
1114 => 0.0070164441355852
1115 => 0.007142984828515
1116 => 0.0071475388027775
1117 => 0.0070782337584744
1118 => 0.007256890339209
1119 => 0.0072552439873657
1120 => 0.0074248518212504
1121 => 0.0077490782978448
1122 => 0.0076531885744999
1123 => 0.007541679259022
1124 => 0.0075538034134324
1125 => 0.0076867754623513
1126 => 0.0076063775261183
1127 => 0.007635289184542
1128 => 0.0076867317010936
1129 => 0.007717768248575
1130 => 0.0075493377318752
1201 => 0.0075100685214695
1202 => 0.0074297374985995
1203 => 0.0074087806341823
1204 => 0.0074742085761481
1205 => 0.0074569706250434
1206 => 0.0071471560588746
1207 => 0.0071147787129179
1208 => 0.0071157716798942
1209 => 0.0070343573040274
1210 => 0.0069101808391415
1211 => 0.0072365091746703
1212 => 0.0072103004423652
1213 => 0.0071813680302951
1214 => 0.0071849120856877
1215 => 0.0073265601558472
1216 => 0.0072443971217557
1217 => 0.0074628410141446
1218 => 0.0074179355168939
1219 => 0.0073718783630827
1220 => 0.0073655118614907
1221 => 0.0073477837866851
1222 => 0.0072869876218506
1223 => 0.0072135725995298
1224 => 0.0071650976426933
1225 => 0.0066094238297562
1226 => 0.0067125536572315
1227 => 0.0068311951231622
1228 => 0.0068721496817756
1229 => 0.0068020940752981
1230 => 0.0072897538441883
1231 => 0.007378853983171
]
'min_raw' => 0.0030754362015499
'max_raw' => 0.008079190727177
'avg_raw' => 0.0055773134643635
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.003075'
'max' => '$0.008079'
'avg' => '$0.005577'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00011924159142595
'max_diff' => -0.0014570002882058
'year' => 2027
]
2 => [
'items' => [
101 => 0.0071089638503342
102 => 0.0070584784260219
103 => 0.0072930636602013
104 => 0.0071515800871126
105 => 0.0072152901314113
106 => 0.0070775838631685
107 => 0.0073573923688467
108 => 0.0073552606968409
109 => 0.0072464088683703
110 => 0.0073384096884085
111 => 0.0073224222818979
112 => 0.0071995288356449
113 => 0.007361288310294
114 => 0.0073613685409753
115 => 0.0072566010227152
116 => 0.0071342554979463
117 => 0.0071123830077899
118 => 0.0070959050246127
119 => 0.0072112375576684
120 => 0.0073146443461707
121 => 0.0075070587428565
122 => 0.0075554362938367
123 => 0.007744257095988
124 => 0.0076318235018249
125 => 0.0076816638578586
126 => 0.007735772614682
127 => 0.0077617143424868
128 => 0.0077194436891388
129 => 0.0080127601166227
130 => 0.0080375250100854
131 => 0.008045828464648
201 => 0.0079469238156267
202 => 0.008034774292879
203 => 0.0079936719638746
204 => 0.008100608805388
205 => 0.0081173778675754
206 => 0.0081031750684794
207 => 0.0081084978334993
208 => 0.0078582040072054
209 => 0.0078452249519069
210 => 0.0076682546119606
211 => 0.0077403713335874
212 => 0.0076055525791505
213 => 0.0076483049949695
214 => 0.0076671498525026
215 => 0.0076573063683636
216 => 0.0077444487048252
217 => 0.0076703599168296
218 => 0.0074748274239849
219 => 0.0072792416584433
220 => 0.0072767862384776
221 => 0.007225291958786
222 => 0.0071880710262168
223 => 0.0071952410983131
224 => 0.0072205093675879
225 => 0.0071866023884713
226 => 0.0071938381615933
227 => 0.0073140002071227
228 => 0.0073380978483971
229 => 0.0072562046477904
301 => 0.0069273916302221
302 => 0.0068467000909458
303 => 0.0069046995691948
304 => 0.0068769795542366
305 => 0.0055502592265168
306 => 0.0058619524879938
307 => 0.0056767549361272
308 => 0.0057621024885569
309 => 0.0055730637447747
310 => 0.005663282941677
311 => 0.0056466227502867
312 => 0.0061478162910676
313 => 0.0061399908432975
314 => 0.0061437364710315
315 => 0.005964947900103
316 => 0.0062497629482309
317 => 0.0063900730825565
318 => 0.0063641054109261
319 => 0.006370640914424
320 => 0.006258339311172
321 => 0.0061448237960302
322 => 0.0060189176198253
323 => 0.0062528357327402
324 => 0.0062268280316994
325 => 0.0062864803406116
326 => 0.0064381929576489
327 => 0.0064605332168079
328 => 0.0064905587516701
329 => 0.0064797967347851
330 => 0.0067361916387947
331 => 0.0067051405241711
401 => 0.0067799647763986
402 => 0.0066260456126369
403 => 0.0064518714686994
404 => 0.0064849762792801
405 => 0.0064817880198091
406 => 0.0064411978174294
407 => 0.0064045547976316
408 => 0.006343554493775
409 => 0.0065365684815236
410 => 0.0065287324661059
411 => 0.0066555884473463
412 => 0.0066331654204488
413 => 0.0064834189589818
414 => 0.0064887671831485
415 => 0.0065247365609378
416 => 0.0066492269881579
417 => 0.0066861842229115
418 => 0.0066690641592825
419 => 0.0067095860800279
420 => 0.0067416129539733
421 => 0.006713608162301
422 => 0.0071100969555012
423 => 0.0069454471654622
424 => 0.0070256963275013
425 => 0.0070448352797922
426 => 0.0069958112559481
427 => 0.0070064428113012
428 => 0.0070225467207357
429 => 0.0071203265053534
430 => 0.0073769289529988
501 => 0.0074905764303091
502 => 0.0078324904730647
503 => 0.0074811395893677
504 => 0.0074602918819637
505 => 0.0075218809258789
506 => 0.0077226206642535
507 => 0.0078853013676813
508 => 0.0079392719422832
509 => 0.007946405044674
510 => 0.0080476574305231
511 => 0.0081056934098467
512 => 0.0080353627276789
513 => 0.0079757648384711
514 => 0.007762292596891
515 => 0.0077870025901196
516 => 0.0079572299397427
517 => 0.0081976860974263
518 => 0.0084040224959181
519 => 0.0083317706807157
520 => 0.0088830010288769
521 => 0.008937653266323
522 => 0.0089301020942263
523 => 0.009054608024472
524 => 0.0088074891081261
525 => 0.0087018409836847
526 => 0.0079886505785826
527 => 0.0081890279917577
528 => 0.0084802883295606
529 => 0.0084417389316822
530 => 0.0082302178889586
531 => 0.0084038620382396
601 => 0.0083464498521327
602 => 0.0083011664789164
603 => 0.0085086183902341
604 => 0.0082805164920855
605 => 0.0084780128386377
606 => 0.0082247217313463
607 => 0.0083321007209215
608 => 0.0082711472131013
609 => 0.008310591602842
610 => 0.0080800005063995
611 => 0.0082044218647574
612 => 0.0080748241688324
613 => 0.0080747627226504
614 => 0.0080719018463299
615 => 0.0082243729608616
616 => 0.0082293450384325
617 => 0.0081166686544226
618 => 0.0081004302271508
619 => 0.0081604722036788
620 => 0.0080901787741831
621 => 0.0081230686274226
622 => 0.0080911749743323
623 => 0.0080839950412386
624 => 0.0080267841127828
625 => 0.0080021360717569
626 => 0.0080118012037449
627 => 0.0079788091255526
628 => 0.0079589302050661
629 => 0.0080679474287
630 => 0.0080097039238547
701 => 0.008059020776253
702 => 0.0080028179986621
703 => 0.0078079946851477
704 => 0.0076959497373264
705 => 0.0073279465582283
706 => 0.007432311803314
707 => 0.0075015060687795
708 => 0.0074786373644559
709 => 0.0075277681903567
710 => 0.007530784424043
711 => 0.0075148114917131
712 => 0.0074963168823345
713 => 0.0074873147293051
714 => 0.007554409402661
715 => 0.0075933601188469
716 => 0.0075084506390188
717 => 0.0074885575359049
718 => 0.007574405707992
719 => 0.0076267730433723
720 => 0.0080134240251562
721 => 0.0079847796715594
722 => 0.0080566713779168
723 => 0.0080485774750491
724 => 0.0081239314365587
725 => 0.0082471033166665
726 => 0.0079966604450079
727 => 0.0080401286678649
728 => 0.0080294712634483
729 => 0.008145826010348
730 => 0.0081461892571673
731 => 0.0080764287740502
801 => 0.0081142470636826
802 => 0.0080931379319003
803 => 0.0081312849861011
804 => 0.0079843971087535
805 => 0.0081632906877964
806 => 0.0082647118194661
807 => 0.0082661200519777
808 => 0.0083141928634613
809 => 0.0083630376241181
810 => 0.0084567908887167
811 => 0.0083604228964531
812 => 0.0081870662596058
813 => 0.0081995820488477
814 => 0.0080979431160929
815 => 0.008099651684915
816 => 0.0080905312106393
817 => 0.0081179024404981
818 => 0.0079904035544897
819 => 0.0080203272881948
820 => 0.0079784338857746
821 => 0.0080400375997897
822 => 0.0079737621869682
823 => 0.0080294661241252
824 => 0.0080535060967873
825 => 0.0081422141134544
826 => 0.0079606599407802
827 => 0.0075904586925604
828 => 0.0076682794831924
829 => 0.0075531764211564
830 => 0.0075638296477761
831 => 0.0075853508609963
901 => 0.0075155935676468
902 => 0.0075289010609129
903 => 0.0075284256236101
904 => 0.0075243285617861
905 => 0.0075061819956314
906 => 0.0074798658845183
907 => 0.0075847011715208
908 => 0.0076025147296322
909 => 0.0076421120626807
910 => 0.0077599268667057
911 => 0.0077481543895192
912 => 0.0077673557882458
913 => 0.007725439242637
914 => 0.0075657740361073
915 => 0.0075744446249944
916 => 0.0074663222426362
917 => 0.0076393471302716
918 => 0.0075983725530626
919 => 0.0075719559765806
920 => 0.0075647479689396
921 => 0.0076828548130758
922 => 0.0077181942319393
923 => 0.0076961730776438
924 => 0.0076510070477239
925 => 0.0077377391773082
926 => 0.0077609450362501
927 => 0.0077661399722681
928 => 0.0079198126766551
929 => 0.0077747285693525
930 => 0.0078096517559923
1001 => 0.0080821124888922
1002 => 0.007835028201163
1003 => 0.0079659142590103
1004 => 0.0079595080675769
1005 => 0.0080264649458289
1006 => 0.0079540156492354
1007 => 0.0079549137450964
1008 => 0.0080143669169323
1009 => 0.0079308756595248
1010 => 0.0079102020500505
1011 => 0.0078816416066289
1012 => 0.007944002289977
1013 => 0.007981384699313
1014 => 0.0082826594642072
1015 => 0.0084772967021273
1016 => 0.00846884698631
1017 => 0.008546061571675
1018 => 0.0085112756937635
1019 => 0.0083989429179365
1020 => 0.0085906812687506
1021 => 0.0085300072318797
1022 => 0.0085350091257604
1023 => 0.0085348229550203
1024 => 0.0085751658853231
1025 => 0.0085465792218283
1026 => 0.0084902319737193
1027 => 0.00852763790663
1028 => 0.0086387201545093
1029 => 0.0089835228603461
1030 => 0.0091764790225606
1031 => 0.0089719066570978
1101 => 0.0091130179354609
1102 => 0.0090284014515326
1103 => 0.0090130241192805
1104 => 0.0091016524301341
1105 => 0.0091904358731133
1106 => 0.0091847807516169
1107 => 0.0091203285310942
1108 => 0.0090839211071355
1109 => 0.0093596103187327
1110 => 0.0095627334335944
1111 => 0.0095488817989155
1112 => 0.0096100184095953
1113 => 0.0097895173894356
1114 => 0.0098059285265978
1115 => 0.009803861100521
1116 => 0.0097631843847396
1117 => 0.0099399244412803
1118 => 0.010087364105892
1119 => 0.0097537689002995
1120 => 0.0098807975875072
1121 => 0.0099378248578034
1122 => 0.010021557809827
1123 => 0.010162829335163
1124 => 0.010316287682099
1125 => 0.010337988374941
1126 => 0.010322590694896
1127 => 0.01022138078991
1128 => 0.010389296744266
1129 => 0.010487657972215
1130 => 0.010546229832501
1201 => 0.01069475832476
1202 => 0.0099381770388104
1203 => 0.0094026312000857
1204 => 0.0093189979839932
1205 => 0.0094890694176311
1206 => 0.0095339158983872
1207 => 0.0095158383382271
1208 => 0.008913032807045
1209 => 0.009315824337625
1210 => 0.0097491941568552
1211 => 0.009765841656566
1212 => 0.0099827956494082
1213 => 0.010053444762722
1214 => 0.01022812116377
1215 => 0.010217195107325
1216 => 0.010259726031272
1217 => 0.01024994890839
1218 => 0.010573500158875
1219 => 0.010930425235986
1220 => 0.010918066055518
1221 => 0.010866753852737
1222 => 0.010942961223897
1223 => 0.011311346153892
1224 => 0.011277431172786
1225 => 0.011310376688059
1226 => 0.011744723281787
1227 => 0.012309435638717
1228 => 0.012047070052729
1229 => 0.012616327880658
1230 => 0.012974645508278
1231 => 0.013594318794514
]
'min_raw' => 0.0055502592265168
'max_raw' => 0.013594318794514
'avg_raw' => 0.0095722890105152
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00555'
'max' => '$0.013594'
'avg' => '$0.009572'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0024748230249669
'max_diff' => 0.0055151280673366
'year' => 2028
]
3 => [
'items' => [
101 => 0.013516732647122
102 => 0.01375796691008
103 => 0.013377837250573
104 => 0.012504982715463
105 => 0.012366850144129
106 => 0.012643395050014
107 => 0.013323253716273
108 => 0.012621983881202
109 => 0.012763849855501
110 => 0.012722992445359
111 => 0.012720815327605
112 => 0.012803907057284
113 => 0.012683378169611
114 => 0.0121923217985
115 => 0.012417370039567
116 => 0.012330468105987
117 => 0.012426892280262
118 => 0.012947253780473
119 => 0.012717189557361
120 => 0.012474835587212
121 => 0.01277880124843
122 => 0.013165853989094
123 => 0.013141632924184
124 => 0.013094633934638
125 => 0.013359564777918
126 => 0.013797152913562
127 => 0.013915431228256
128 => 0.014002741862068
129 => 0.014014780523346
130 => 0.014138786216491
131 => 0.013471976350992
201 => 0.01453022073243
202 => 0.014712950303694
203 => 0.014678604717661
204 => 0.014881700945684
205 => 0.014821944883346
206 => 0.014735367724456
207 => 0.01505731844568
208 => 0.01468822792388
209 => 0.014164350395391
210 => 0.013876940822139
211 => 0.014255424932866
212 => 0.014486551972012
213 => 0.014639312242447
214 => 0.01468553740798
215 => 0.013523738902687
216 => 0.012897593944632
217 => 0.013298945683979
218 => 0.013788622505798
219 => 0.013469256171523
220 => 0.013481774727186
221 => 0.013026442262505
222 => 0.013828909325457
223 => 0.013711996624195
224 => 0.014318539925156
225 => 0.014173783498567
226 => 0.014668396014626
227 => 0.014538147962877
228 => 0.015078800343615
301 => 0.015294481215871
302 => 0.015656642968435
303 => 0.015923050627884
304 => 0.016079490301079
305 => 0.016070098249891
306 => 0.016689990173027
307 => 0.016324461563328
308 => 0.015865271481068
309 => 0.015856966181206
310 => 0.016094787231582
311 => 0.016593194910152
312 => 0.016722424769669
313 => 0.016794646631277
314 => 0.016684036336163
315 => 0.016287281228006
316 => 0.016115964383898
317 => 0.016261931298605
318 => 0.016083426304999
319 => 0.016391576003619
320 => 0.016814731357048
321 => 0.016727351449902
322 => 0.017019449378762
323 => 0.017321740005533
324 => 0.017754029178538
325 => 0.017867045575983
326 => 0.018053857383331
327 => 0.018246148097574
328 => 0.018307906692609
329 => 0.018425823013097
330 => 0.018425201535883
331 => 0.018780550304357
401 => 0.01917251100022
402 => 0.019320467088998
403 => 0.019660683956795
404 => 0.019078074493313
405 => 0.019519990463899
406 => 0.019918609731241
407 => 0.019443359407572
408 => 0.020098381259627
409 => 0.02012381427383
410 => 0.020507822592843
411 => 0.020118556594432
412 => 0.019887411687156
413 => 0.020554718373574
414 => 0.020877607059168
415 => 0.020780350359312
416 => 0.02004022207125
417 => 0.019609435662003
418 => 0.01848198453651
419 => 0.019817499096921
420 => 0.020467989281803
421 => 0.020038537458819
422 => 0.020255127978611
423 => 0.021436775624888
424 => 0.02188667054257
425 => 0.021793095544695
426 => 0.021808908178961
427 => 0.022051663310372
428 => 0.023128173250742
429 => 0.022483103541167
430 => 0.022976235163836
501 => 0.023237790398382
502 => 0.023480737476859
503 => 0.022884136236331
504 => 0.022107966788218
505 => 0.021862121342623
506 => 0.019995836938593
507 => 0.019898688730501
508 => 0.019844156497407
509 => 0.019500338481486
510 => 0.019230191700653
511 => 0.019015360950627
512 => 0.018451580908668
513 => 0.018641840122893
514 => 0.017743292406049
515 => 0.01831815139271
516 => 0.016884047540434
517 => 0.018078411843236
518 => 0.017428373654302
519 => 0.01786485681545
520 => 0.01786333396682
521 => 0.017059630080034
522 => 0.016596070451009
523 => 0.016891468688635
524 => 0.017208159048111
525 => 0.017259540993461
526 => 0.017670138310986
527 => 0.017784727196548
528 => 0.017437517523653
529 => 0.016854328925696
530 => 0.016989790335886
531 => 0.016593325329855
601 => 0.015898535656592
602 => 0.016397545729793
603 => 0.016567929708708
604 => 0.016643180980358
605 => 0.015959935133837
606 => 0.015745244454871
607 => 0.015630944938819
608 => 0.016766130466744
609 => 0.016828318492501
610 => 0.016510155760231
611 => 0.017948281479517
612 => 0.017622789337452
613 => 0.01798644380765
614 => 0.016977498632751
615 => 0.017016041697157
616 => 0.016538390882296
617 => 0.016805843421979
618 => 0.016616816587328
619 => 0.01678423589979
620 => 0.016884586345384
621 => 0.017362158782446
622 => 0.018083864953332
623 => 0.017290825385986
624 => 0.016945286689958
625 => 0.01715965695359
626 => 0.017730553215027
627 => 0.018595490274745
628 => 0.018083430126911
629 => 0.018310673725175
630 => 0.018360316342031
701 => 0.017982742146516
702 => 0.0186094119739
703 => 0.018945249425451
704 => 0.019289749158975
705 => 0.01958886862493
706 => 0.019152148389694
707 => 0.019619501642783
708 => 0.019242897419748
709 => 0.018905044499057
710 => 0.018905556882478
711 => 0.018693616810085
712 => 0.018282956213655
713 => 0.01820722409901
714 => 0.018601192123308
715 => 0.018917117169884
716 => 0.018943138269899
717 => 0.019118050608498
718 => 0.019221561928741
719 => 0.020236113583936
720 => 0.020644174652468
721 => 0.021143144002867
722 => 0.021337520685219
723 => 0.021922524811202
724 => 0.021450086467759
725 => 0.021347871460378
726 => 0.019928842804135
727 => 0.0201612086671
728 => 0.020533248833676
729 => 0.019934977609451
730 => 0.020314442998169
731 => 0.020389357504078
801 => 0.019914648582183
802 => 0.020168211128329
803 => 0.019494824181822
804 => 0.018098542948611
805 => 0.01861096643406
806 => 0.018988282599231
807 => 0.018449805908785
808 => 0.019415004534484
809 => 0.018851155423095
810 => 0.018672442324315
811 => 0.017975218810154
812 => 0.018304281470243
813 => 0.018749343429738
814 => 0.018474346882777
815 => 0.019045006008661
816 => 0.019853211520143
817 => 0.020429186897096
818 => 0.020473403134624
819 => 0.020103089554596
820 => 0.0206965194299
821 => 0.020700841918679
822 => 0.020031450595105
823 => 0.019621452136602
824 => 0.019528299624186
825 => 0.019761012863827
826 => 0.020043569697985
827 => 0.020489083072424
828 => 0.020758297473969
829 => 0.021460265852914
830 => 0.021650198369246
831 => 0.021858876620753
901 => 0.022137735118757
902 => 0.022472576243462
903 => 0.021739962925124
904 => 0.021769071018023
905 => 0.021086871639708
906 => 0.020357843766692
907 => 0.020911085047704
908 => 0.021634374428024
909 => 0.021468451045015
910 => 0.021449781274919
911 => 0.021481178649658
912 => 0.02135607783742
913 => 0.020790251500121
914 => 0.020506097055789
915 => 0.020872728784507
916 => 0.02106757723142
917 => 0.021369770180011
918 => 0.021332518520578
919 => 0.022110935102995
920 => 0.022413404248827
921 => 0.022336019697938
922 => 0.022350260317665
923 => 0.022897866258384
924 => 0.023506916688215
925 => 0.024077372787034
926 => 0.024657665232412
927 => 0.023958100040309
928 => 0.023602903978942
929 => 0.023969375647716
930 => 0.023774920621802
1001 => 0.02489231687981
1002 => 0.024969682972334
1003 => 0.026086998429875
1004 => 0.027147463846531
1005 => 0.02648140451854
1006 => 0.027109468464864
1007 => 0.027788770829618
1008 => 0.029099255304065
1009 => 0.028657930236471
1010 => 0.028319882151139
1011 => 0.028000428343937
1012 => 0.028665161004861
1013 => 0.029520328953775
1014 => 0.029704523939274
1015 => 0.030002990183683
1016 => 0.029689189422403
1017 => 0.030067127875345
1018 => 0.0314014166888
1019 => 0.031040880073312
1020 => 0.030528860120164
1021 => 0.031582152991928
1022 => 0.031963335587646
1023 => 0.034638674671276
1024 => 0.038016400777104
1025 => 0.036617999989946
1026 => 0.035749967495246
1027 => 0.035953975721506
1028 => 0.03718740695211
1029 => 0.03758354591623
1030 => 0.036506703654463
1031 => 0.036887062546021
1101 => 0.038982877434567
1102 => 0.04010721488048
1103 => 0.038580213610265
1104 => 0.034367277667492
1105 => 0.030482758325515
1106 => 0.031513107777193
1107 => 0.031396298124839
1108 => 0.033647989764349
1109 => 0.03103228139427
1110 => 0.031076323214864
1111 => 0.033374577452896
1112 => 0.032761442624242
1113 => 0.031768242726197
1114 => 0.030490009783912
1115 => 0.02812707796786
1116 => 0.026034163363156
1117 => 0.030138850872429
1118 => 0.02996184928314
1119 => 0.029705524751682
1120 => 0.03027594725923
1121 => 0.033045757038627
1122 => 0.032981903958212
1123 => 0.032575703238743
1124 => 0.032883802904372
1125 => 0.031714231365172
1126 => 0.032015656581473
1127 => 0.030482142997805
1128 => 0.031175355182807
1129 => 0.031766111765284
1130 => 0.031884714895517
1201 => 0.032151933803958
1202 => 0.029868577488598
1203 => 0.030893737438376
1204 => 0.031495922864373
1205 => 0.028775227202025
1206 => 0.031442143458831
1207 => 0.029828829335157
1208 => 0.029281246290417
1209 => 0.030018494721579
1210 => 0.029731188290958
1211 => 0.029484179093109
1212 => 0.029346343716553
1213 => 0.029887697597258
1214 => 0.029862442791665
1215 => 0.028976682770571
1216 => 0.027821244931251
1217 => 0.028209047796081
1218 => 0.028068155379617
1219 => 0.027557543086868
1220 => 0.027901634120618
1221 => 0.026386431348472
1222 => 0.023779603732383
1223 => 0.025501753904861
1224 => 0.025435452996559
1225 => 0.025402021072087
1226 => 0.026696169329969
1227 => 0.026571766836054
1228 => 0.026345975091445
1229 => 0.02755339624441
1230 => 0.027112671281472
1231 => 0.028470881769388
]
'min_raw' => 0.0121923217985
'max_raw' => 0.04010721488048
'avg_raw' => 0.02614976833949
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.012192'
'max' => '$0.0401072'
'avg' => '$0.026149'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.006642062571983
'max_diff' => 0.026512896085966
'year' => 2029
]
4 => [
'items' => [
101 => 0.029365487040275
102 => 0.029138586206129
103 => 0.029979966787402
104 => 0.028217981990835
105 => 0.028803242661694
106 => 0.028923864074822
107 => 0.027538496854806
108 => 0.02659212062257
109 => 0.026529008117359
110 => 0.024888122149341
111 => 0.025764670188687
112 => 0.02653599618929
113 => 0.026166590892317
114 => 0.026049648210965
115 => 0.026647083008221
116 => 0.02669350880865
117 => 0.025634995638865
118 => 0.025855094045616
119 => 0.026772940990083
120 => 0.025831966657568
121 => 0.024003807236776
122 => 0.023550398424139
123 => 0.02348990533055
124 => 0.02226022467037
125 => 0.023580697369058
126 => 0.023004275649612
127 => 0.024825184954748
128 => 0.023785091325387
129 => 0.023740254967834
130 => 0.023672478237329
131 => 0.022614041295643
201 => 0.022845771718696
202 => 0.023616078938462
203 => 0.023890933232606
204 => 0.023862263677912
205 => 0.023612304012845
206 => 0.023726734267512
207 => 0.023358114547086
208 => 0.023227947251648
209 => 0.022817103461909
210 => 0.022213276589486
211 => 0.022297242419582
212 => 0.021100903385416
213 => 0.020449074385085
214 => 0.020268656708761
215 => 0.020027394651808
216 => 0.020295907900068
217 => 0.021097514307245
218 => 0.020130606909903
219 => 0.01847291199783
220 => 0.01857254228662
221 => 0.018796381965034
222 => 0.018379258205158
223 => 0.017984485572979
224 => 0.018327708347742
225 => 0.017625321160491
226 => 0.018881262100919
227 => 0.018847292418214
228 => 0.019315429533939
301 => 0.019608165279542
302 => 0.018933504160249
303 => 0.018763828713225
304 => 0.018860483559169
305 => 0.017262994257041
306 => 0.019184880576546
307 => 0.019201501129245
308 => 0.019059185866405
309 => 0.020082530999959
310 => 0.022242108421108
311 => 0.021429588526471
312 => 0.021114956264724
313 => 0.020516840105147
314 => 0.021313794375159
315 => 0.021252600721646
316 => 0.020975859813453
317 => 0.020808486048694
318 => 0.021116877342223
319 => 0.020770272954611
320 => 0.020708013282544
321 => 0.020330787409011
322 => 0.020196134934844
323 => 0.02009644360364
324 => 0.019986693243452
325 => 0.02022877518994
326 => 0.019680185650665
327 => 0.019018640445193
328 => 0.018963640119377
329 => 0.019115500854635
330 => 0.019048313783985
331 => 0.018963318453531
401 => 0.018801039220594
402 => 0.018752894438729
403 => 0.018909341623263
404 => 0.018732721873361
405 => 0.018993333935317
406 => 0.018922461874788
407 => 0.018526576305836
408 => 0.018033156311312
409 => 0.018028763838377
410 => 0.017922457309928
411 => 0.017787059962654
412 => 0.017749395518114
413 => 0.018298803082978
414 => 0.019436060299861
415 => 0.019212789495928
416 => 0.019374125533482
417 => 0.020167739158102
418 => 0.020420005064574
419 => 0.020240952699406
420 => 0.019995854778494
421 => 0.020006637843121
422 => 0.020844211635063
423 => 0.020896450085077
424 => 0.021028439795501
425 => 0.021198083873683
426 => 0.020269843819482
427 => 0.019962917820043
428 => 0.019817479253903
429 => 0.019369584762001
430 => 0.019852600571946
501 => 0.01957116794429
502 => 0.019609142820868
503 => 0.019584411632679
504 => 0.019597916533746
505 => 0.01888091103983
506 => 0.019142150157113
507 => 0.018707789456469
508 => 0.018126229237583
509 => 0.018124279643808
510 => 0.018266615683485
511 => 0.018181948637475
512 => 0.017954111793653
513 => 0.017986474941958
514 => 0.017702939708698
515 => 0.018020901252847
516 => 0.018030019252212
517 => 0.017907586738233
518 => 0.018397450367232
519 => 0.018598147895724
520 => 0.018517560192264
521 => 0.018592493647619
522 => 0.019222067405839
523 => 0.019324715398658
524 => 0.019370304856522
525 => 0.019309221022429
526 => 0.018604001100194
527 => 0.018635280602572
528 => 0.0184057723684
529 => 0.018211862095506
530 => 0.018219617489496
531 => 0.018319312576335
601 => 0.018754686867597
602 => 0.019670906396843
603 => 0.01970567625823
604 => 0.01974781834454
605 => 0.019576405300603
606 => 0.01952470548635
607 => 0.019592910886204
608 => 0.019936994768855
609 => 0.020822071932895
610 => 0.020509226550807
611 => 0.020254878385441
612 => 0.02047801029824
613 => 0.02044366088923
614 => 0.020153717309165
615 => 0.02014557955856
616 => 0.019589085127845
617 => 0.019383361807575
618 => 0.019211444003034
619 => 0.019023714248503
620 => 0.018912421757258
621 => 0.019083417605343
622 => 0.019122526378963
623 => 0.018748640968631
624 => 0.018697681768757
625 => 0.019003004665711
626 => 0.018868643442346
627 => 0.019006837292575
628 => 0.019038899451233
629 => 0.019033736705235
630 => 0.018893448156754
701 => 0.018982863894091
702 => 0.018771369019175
703 => 0.018541400108206
704 => 0.018394694270578
705 => 0.018266673969542
706 => 0.01833770707314
707 => 0.018084487028944
708 => 0.018003476840493
709 => 0.018952571854199
710 => 0.019653678545314
711 => 0.019643484176357
712 => 0.019581428577106
713 => 0.019489226544139
714 => 0.019930249615852
715 => 0.019776605996202
716 => 0.019888394566852
717 => 0.019916849449834
718 => 0.020002973810557
719 => 0.020033755866877
720 => 0.019940711113166
721 => 0.019628441555252
722 => 0.01885029550663
723 => 0.018488066420431
724 => 0.018368524788583
725 => 0.018372869899859
726 => 0.018253012333441
727 => 0.018288315758391
728 => 0.018240735242967
729 => 0.018150629257718
730 => 0.018332143282463
731 => 0.018353061082895
801 => 0.018310693540588
802 => 0.018320672630529
803 => 0.017969887475644
804 => 0.017996556909105
805 => 0.017848058114608
806 => 0.01782021638082
807 => 0.017444824359603
808 => 0.016779762980073
809 => 0.017148271543403
810 => 0.016703165019046
811 => 0.016534596433807
812 => 0.017332573898532
813 => 0.017252479093523
814 => 0.017115391603723
815 => 0.016912610634772
816 => 0.016837397200862
817 => 0.016380424186103
818 => 0.016353423782535
819 => 0.016579911947959
820 => 0.016475395452597
821 => 0.016328614709618
822 => 0.015796989737472
823 => 0.015199267253801
824 => 0.015217308738433
825 => 0.015407433139467
826 => 0.015960245477241
827 => 0.015744252133122
828 => 0.015587546483726
829 => 0.015558200226148
830 => 0.015925530080281
831 => 0.016445378781863
901 => 0.016689280161686
902 => 0.016447581301676
903 => 0.016169930665288
904 => 0.016186829973016
905 => 0.016299253496306
906 => 0.01631106761902
907 => 0.016130345597678
908 => 0.016181217788101
909 => 0.016103938278998
910 => 0.015629674074284
911 => 0.015621096138729
912 => 0.015504704054348
913 => 0.01550117974829
914 => 0.015303167777393
915 => 0.015275464533873
916 => 0.014882299747189
917 => 0.015141082000397
918 => 0.014967504451623
919 => 0.014705882142817
920 => 0.014660778358167
921 => 0.014659422483936
922 => 0.014928050097402
923 => 0.015137942930331
924 => 0.014970523907399
925 => 0.014932405841159
926 => 0.01533940706361
927 => 0.015287612448155
928 => 0.01524275864521
929 => 0.016398832032387
930 => 0.015483709736905
1001 => 0.01508466418272
1002 => 0.014590769532721
1003 => 0.014751584121194
1004 => 0.014785470117843
1005 => 0.013597742515798
1006 => 0.01311588157557
1007 => 0.01295052505943
1008 => 0.012855360046594
1009 => 0.01289872793795
1010 => 0.012464996575094
1011 => 0.012756471224188
1012 => 0.012380896526354
1013 => 0.012317930206037
1014 => 0.012989504290541
1015 => 0.013082949901121
1016 => 0.012684281895111
1017 => 0.012940291293457
1018 => 0.01284745872682
1019 => 0.012387334676584
1020 => 0.012369761322308
1021 => 0.012138887248042
1022 => 0.011777614027846
1023 => 0.011612502471962
1024 => 0.011526510940093
1025 => 0.011561992722084
1026 => 0.011544052047349
1027 => 0.011426977009163
1028 => 0.011550762651494
1029 => 0.011234541487098
1030 => 0.011108619671468
1031 => 0.011051743708712
1101 => 0.010771079224299
1102 => 0.011217741231063
1103 => 0.011305739273295
1104 => 0.011393910698854
1105 => 0.01216138276116
1106 => 0.01212304202578
1107 => 0.012469623600913
1108 => 0.012456156078226
1109 => 0.012357305398749
1110 => 0.011940270642182
1111 => 0.01210649326322
1112 => 0.011594885872397
1113 => 0.011978216915523
1114 => 0.011803280635727
1115 => 0.011919070783354
1116 => 0.011710869657544
1117 => 0.011826096756981
1118 => 0.01132660687362
1119 => 0.010860190248551
1120 => 0.011047889914029
1121 => 0.011251940916464
1122 => 0.011694375480972
1123 => 0.011430865104357
1124 => 0.011525633400218
1125 => 0.011208175473104
1126 => 0.010553169092093
1127 => 0.010556876357077
1128 => 0.010456117895448
1129 => 0.010369047873624
1130 => 0.011461132440984
1201 => 0.011325314461731
1202 => 0.011108906287208
1203 => 0.011398577228526
1204 => 0.011475170823106
1205 => 0.011477351335066
1206 => 0.011688687776362
1207 => 0.011801478072966
1208 => 0.011821357851604
1209 => 0.012153900308209
1210 => 0.012265364153322
1211 => 0.012724467956389
1212 => 0.011791908604321
1213 => 0.011772703158153
1214 => 0.011402653492711
1215 => 0.011167962144634
1216 => 0.011418723010101
1217 => 0.011640862904633
1218 => 0.011409555998447
1219 => 0.011439759797239
1220 => 0.011129249174153
1221 => 0.011240242111023
1222 => 0.01133584418062
1223 => 0.011283058337018
1224 => 0.011204035374284
1225 => 0.011622649966532
1226 => 0.011599030090673
1227 => 0.011988853622882
1228 => 0.012292748942787
1229 => 0.012837383683843
1230 => 0.0122690289391
1231 => 0.012248315833196
]
'min_raw' => 0.010369047873624
'max_raw' => 0.029979966787402
'avg_raw' => 0.020174507330513
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.010369'
'max' => '$0.029979'
'avg' => '$0.020174'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0018232739248755
'max_diff' => -0.010127248093078
'year' => 2030
]
5 => [
'items' => [
101 => 0.012450789765894
102 => 0.012265333155618
103 => 0.012382535331568
104 => 0.012818500601359
105 => 0.012827711860525
106 => 0.012673411401464
107 => 0.012664022204507
108 => 0.012693657295532
109 => 0.012867230949299
110 => 0.012806578981293
111 => 0.01287676697419
112 => 0.012964538134063
113 => 0.013327596865502
114 => 0.013415129096522
115 => 0.013202471155401
116 => 0.013221671786454
117 => 0.013142131878884
118 => 0.013065297324803
119 => 0.013238010181591
120 => 0.013553646322051
121 => 0.013551682766002
122 => 0.013624904215499
123 => 0.013670520571936
124 => 0.013474701776894
125 => 0.013347230941778
126 => 0.013396111371142
127 => 0.013474272242171
128 => 0.013370764854093
129 => 0.012731869305587
130 => 0.012925669402198
131 => 0.012893411589781
201 => 0.012847472542216
202 => 0.01304234003797
203 => 0.013023544592622
204 => 0.012460548033063
205 => 0.012496589246168
206 => 0.012462739818604
207 => 0.012572114244005
208 => 0.01225942657771
209 => 0.012355607197879
210 => 0.012415930781211
211 => 0.012451461835222
212 => 0.012579824366179
213 => 0.012564762504726
214 => 0.012578888099723
215 => 0.012769215846682
216 => 0.013731828278201
217 => 0.013784221148964
218 => 0.013526219491535
219 => 0.01362928606482
220 => 0.013431420782294
221 => 0.013564249072036
222 => 0.013655126814405
223 => 0.013244467771426
224 => 0.013220151208056
225 => 0.013021469265124
226 => 0.013128229687335
227 => 0.012958366179252
228 => 0.013000044742562
301 => 0.012883507846074
302 => 0.013093251057488
303 => 0.013327776558648
304 => 0.013387026961934
305 => 0.013231164659791
306 => 0.013118310081214
307 => 0.012920174617841
308 => 0.013249678309167
309 => 0.013346035229953
310 => 0.013249172187282
311 => 0.013226726903796
312 => 0.013184193132148
313 => 0.013235750644521
314 => 0.013345510449469
315 => 0.013293749752401
316 => 0.013327938604721
317 => 0.01319764595507
318 => 0.013474766601063
319 => 0.013914900879616
320 => 0.01391631598329
321 => 0.013864555007213
322 => 0.013843375531008
323 => 0.013896485433582
324 => 0.013925295377046
325 => 0.01409704306328
326 => 0.014281335173339
327 => 0.015141346038036
328 => 0.014899858428618
329 => 0.015662911230052
330 => 0.016266386925982
331 => 0.016447342900397
401 => 0.016280871918571
402 => 0.015711383682332
403 => 0.015683441872575
404 => 0.016534497729248
405 => 0.01629403546891
406 => 0.016265433248188
407 => 0.015961153943914
408 => 0.016141020698465
409 => 0.016101681200758
410 => 0.016039581879075
411 => 0.016382755117131
412 => 0.017025144783486
413 => 0.016925022329693
414 => 0.016850285562483
415 => 0.016522810804115
416 => 0.016720023752788
417 => 0.01664979999913
418 => 0.016951525809937
419 => 0.01677279012366
420 => 0.016292213730787
421 => 0.016368747105353
422 => 0.016357179239751
423 => 0.016595245094128
424 => 0.016523783633802
425 => 0.016343225242707
426 => 0.017022949165443
427 => 0.016978811674724
428 => 0.017041388545329
429 => 0.017068936819023
430 => 0.017482672792714
501 => 0.017652167183061
502 => 0.017690645377087
503 => 0.017851651938749
504 => 0.017686639387159
505 => 0.018346807245476
506 => 0.018785780349395
507 => 0.019295670198945
508 => 0.02004075631461
509 => 0.020320915586532
510 => 0.020270307321668
511 => 0.020835223111015
512 => 0.021850364227099
513 => 0.020475496365224
514 => 0.021923235562218
515 => 0.021464898047403
516 => 0.020378188044915
517 => 0.020308216732224
518 => 0.021044149362871
519 => 0.022676377106756
520 => 0.022267522569487
521 => 0.022677045846311
522 => 0.022199315190786
523 => 0.022175591837109
524 => 0.022653843534687
525 => 0.023771304694221
526 => 0.023240440784732
527 => 0.022479317197308
528 => 0.023041319009867
529 => 0.022554461029016
530 => 0.02145743373519
531 => 0.022267209926128
601 => 0.021725735648346
602 => 0.021883766628958
603 => 0.023021865022636
604 => 0.022884926012874
605 => 0.023062137771717
606 => 0.022749363655798
607 => 0.022457183311579
608 => 0.021911807001496
609 => 0.021750347962808
610 => 0.021794969432414
611 => 0.021750325850624
612 => 0.0214451928174
613 => 0.021379299367927
614 => 0.021269474065281
615 => 0.02130351351888
616 => 0.02109700981938
617 => 0.021486724966178
618 => 0.021559059531582
619 => 0.021842661715876
620 => 0.021872106235464
621 => 0.022661934281898
622 => 0.022226910266443
623 => 0.022518761934177
624 => 0.022492655974
625 => 0.020401740345862
626 => 0.020689850071114
627 => 0.021138058389795
628 => 0.020936141149761
629 => 0.020650677413711
630 => 0.020420150141254
701 => 0.020070877750857
702 => 0.020562471933158
703 => 0.021208866007672
704 => 0.021888499855906
705 => 0.022705035393185
706 => 0.022522794166786
707 => 0.021873235292007
708 => 0.021902374028626
709 => 0.022082498232738
710 => 0.021849221022404
711 => 0.021780423018964
712 => 0.022073046443531
713 => 0.022075061580233
714 => 0.02180664795725
715 => 0.02150835533448
716 => 0.021507105477499
717 => 0.021454027186442
718 => 0.022208757700851
719 => 0.022623783171914
720 => 0.022671365173325
721 => 0.022620580524106
722 => 0.022640125520019
723 => 0.02239863134287
724 => 0.02295061541896
725 => 0.023457170592747
726 => 0.0233214029852
727 => 0.023117868040983
728 => 0.022955742654343
729 => 0.023283211396526
730 => 0.02326862972892
731 => 0.023452746275213
801 => 0.023444393685165
802 => 0.02338248221562
803 => 0.023321405196253
804 => 0.02356356867421
805 => 0.023493829481585
806 => 0.023423981964731
807 => 0.023283892076561
808 => 0.02330293261901
809 => 0.023099432817971
810 => 0.023005284498493
811 => 0.021589519666948
812 => 0.021211181042509
813 => 0.02133021407555
814 => 0.021369402840719
815 => 0.021204749386509
816 => 0.021440820143844
817 => 0.021404028766374
818 => 0.021547162493873
819 => 0.021457738755076
820 => 0.021461408736508
821 => 0.021724384885161
822 => 0.021800727979895
823 => 0.021761899265749
824 => 0.021789093566167
825 => 0.022415774741293
826 => 0.022326680718326
827 => 0.022279351294334
828 => 0.022292461868235
829 => 0.022452592344676
830 => 0.022497420135279
831 => 0.022307481636499
901 => 0.022397057730545
902 => 0.022778461370094
903 => 0.02291193105836
904 => 0.023337902234219
905 => 0.02315694210768
906 => 0.023489102251714
907 => 0.024510049292734
908 => 0.025325652433262
909 => 0.024575590079007
910 => 0.026073341380154
911 => 0.027239555607761
912 => 0.027194794363274
913 => 0.026991437937669
914 => 0.025663734044949
915 => 0.024441961127917
916 => 0.025464026052232
917 => 0.025466631505914
918 => 0.025378835222491
919 => 0.024833540046466
920 => 0.025359860132361
921 => 0.025401637509465
922 => 0.025378253287788
923 => 0.024960176754842
924 => 0.024321851162492
925 => 0.024446578455301
926 => 0.024650884305292
927 => 0.024264090708595
928 => 0.0241404867178
929 => 0.02437029005331
930 => 0.025110764281747
1001 => 0.024970781918136
1002 => 0.024967126412909
1003 => 0.025566030326196
1004 => 0.025137344375836
1005 => 0.024448151665896
1006 => 0.024274121417301
1007 => 0.023656431275611
1008 => 0.024083072056613
1009 => 0.024098426098788
1010 => 0.023864759303196
1011 => 0.024467112438547
1012 => 0.024461561648363
1013 => 0.025033406301946
1014 => 0.026126558504553
1015 => 0.025803259607489
1016 => 0.025427298165024
1017 => 0.0254681755981
1018 => 0.025916500144842
1019 => 0.025645432889628
1020 => 0.025742910564551
1021 => 0.025916352600706
1022 => 0.026020994487443
1023 => 0.025453119240946
1024 => 0.025320720356374
1025 => 0.025049878704235
1026 => 0.024979221172691
1027 => 0.025199816047062
1028 => 0.025141697091397
1029 => 0.024097135650997
1030 => 0.02398797316859
1031 => 0.023991321026077
1101 => 0.023716826773672
1102 => 0.023298157152585
1103 => 0.024398395919337
1104 => 0.024310031348535
1105 => 0.024212483701245
1106 => 0.024224432731439
1107 => 0.024702009089534
1108 => 0.024424990683654
1109 => 0.025161489518109
1110 => 0.025010087498927
1111 => 0.024854802589244
1112 => 0.024833337484632
1113 => 0.024773566042691
1114 => 0.024568587528298
1115 => 0.024321063654871
1116 => 0.024157626953483
1117 => 0.022284133897259
1118 => 0.022631843310886
1119 => 0.023031851296554
1120 => 0.023169932450275
1121 => 0.02293373508191
1122 => 0.024577914040041
1123 => 0.024878321379394
1124 => 0.023968367953408
1125 => 0.023798152820559
1126 => 0.024589073315813
1127 => 0.024112051571077
1128 => 0.024326854433523
1129 => 0.023862568135798
1130 => 0.024805962048298
1201 => 0.024798774967302
1202 => 0.024431773427821
1203 => 0.024741960615872
1204 => 0.024688057958617
1205 => 0.024273714124428
1206 => 0.024819097486893
1207 => 0.024819367990237
1208 => 0.024466136987789
1209 => 0.024053640509138
1210 => 0.023979895881488
1211 => 0.02392433921075
1212 => 0.024313190898207
1213 => 0.024661834105274
1214 => 0.025310572677645
1215 => 0.025473680968387
1216 => 0.026110303485888
1217 => 0.025731225773304
1218 => 0.025899266013414
1219 => 0.026081697464797
1220 => 0.026169161811284
1221 => 0.026026643352279
1222 => 0.02701558016624
1223 => 0.027099076733579
1224 => 0.027127072410365
1225 => 0.026793608480888
1226 => 0.027089802498469
1227 => 0.026951223126557
1228 => 0.027311768153812
1229 => 0.027368306217755
1230 => 0.027320420488995
1231 => 0.027338366562883
]
'min_raw' => 0.01225942657771
'max_raw' => 0.027368306217755
'avg_raw' => 0.019813866397733
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.012259'
'max' => '$0.027368'
'avg' => '$0.019813'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0018903787040859
'max_diff' => -0.0026116605696468
'year' => 2031
]
6 => [
'items' => [
101 => 0.026494483452576
102 => 0.026450723661469
103 => 0.025854055804665
104 => 0.026097202366659
105 => 0.02564265152333
106 => 0.025786794278142
107 => 0.025850331031021
108 => 0.025817143036996
109 => 0.02611094950846
110 => 0.025861153987019
111 => 0.02520190253575
112 => 0.024542471471865
113 => 0.024534192852018
114 => 0.024360576292822
115 => 0.024235083319983
116 => 0.024259257718654
117 => 0.024344451452688
118 => 0.024230131705287
119 => 0.024254527619553
120 => 0.024659662345502
121 => 0.024740909225502
122 => 0.024464800582056
123 => 0.023356184536332
124 => 0.023084127377959
125 => 0.02327967666827
126 => 0.023186216702488
127 => 0.018713086488926
128 => 0.019763982081724
129 => 0.019139575605526
130 => 0.019427330837318
131 => 0.018789973514393
201 => 0.019094153835652
202 => 0.019037982837203
203 => 0.020727791852161
204 => 0.020701407808649
205 => 0.020714036454065
206 => 0.02011123830456
207 => 0.021071512124475
208 => 0.021544577538495
209 => 0.021457025720588
210 => 0.021479060626925
211 => 0.021100427930914
212 => 0.020717702446213
213 => 0.02029320098265
214 => 0.021081872231983
215 => 0.020994185452125
216 => 0.021195307376413
217 => 0.021706817056991
218 => 0.021782138800493
219 => 0.021883371987597
220 => 0.021847087096289
221 => 0.022711540416078
222 => 0.022606849415205
223 => 0.022859124605652
224 => 0.022340175398737
225 => 0.021752935112001
226 => 0.021864550292178
227 => 0.021853800852774
228 => 0.021716948151534
229 => 0.021593403651952
301 => 0.021387736868594
302 => 0.022038497004094
303 => 0.022012077331021
304 => 0.022439781128574
305 => 0.022364180327864
306 => 0.021859299678064
307 => 0.021877331589243
308 => 0.021998604857761
309 => 0.022418333024778
310 => 0.022542936922021
311 => 0.022485215432211
312 => 0.022621837917155
313 => 0.022729818758706
314 => 0.022635398648351
315 => 0.023972188296589
316 => 0.023417060033992
317 => 0.023687625686624
318 => 0.023752154000512
319 => 0.023586866081373
320 => 0.023622711112518
321 => 0.023677006567515
322 => 0.02400667793812
323 => 0.024871831005768
324 => 0.025255001410133
325 => 0.02640778847696
326 => 0.02522318444204
327 => 0.025152894940986
328 => 0.025360546702556
329 => 0.026037354745687
330 => 0.026585844095298
331 => 0.026767809655674
401 => 0.026791859408401
402 => 0.027133238896508
403 => 0.02732891125274
404 => 0.02709178644748
405 => 0.026890848003024
406 => 0.026171111436381
407 => 0.026254422903747
408 => 0.026828356297896
409 => 0.027639071021639
410 => 0.028334748595101
411 => 0.028091146555686
412 => 0.029949658160185
413 => 0.030133921994432
414 => 0.030108462690502
415 => 0.030528243127052
416 => 0.0296950644473
417 => 0.029338864419629
418 => 0.026934293175463
419 => 0.027609879613888
420 => 0.028591884177937
421 => 0.028461912191557
422 => 0.027748754228087
423 => 0.028334207600835
424 => 0.028140638406985
425 => 0.027987962352602
426 => 0.02868740095544
427 => 0.027918339480266
428 => 0.028584212201421
429 => 0.027730223548968
430 => 0.028092259309282
501 => 0.027886750302029
502 => 0.028019739815958
503 => 0.027242285834947
504 => 0.027661781131472
505 => 0.027224833451439
506 => 0.027224626281346
507 => 0.027214980637091
508 => 0.027729047644928
509 => 0.027745811351598
510 => 0.027365915056095
511 => 0.027311166064817
512 => 0.027513601780678
513 => 0.027276602575403
514 => 0.027387493011896
515 => 0.027279961333758
516 => 0.027255753688046
517 => 0.027062863048418
518 => 0.026979760457227
519 => 0.027012347124523
520 => 0.026901112029464
521 => 0.026834088861142
522 => 0.027201648041963
523 => 0.027005275998946
524 => 0.027171551209999
525 => 0.026982059621399
526 => 0.026325199217756
527 => 0.025947431853448
528 => 0.024706683441957
529 => 0.025058558152312
530 => 0.025291851449319
531 => 0.02521474801605
601 => 0.025380396025779
602 => 0.025390565468239
603 => 0.025336711611694
604 => 0.025274355744922
605 => 0.025244004357473
606 => 0.025470218733093
607 => 0.025601543792166
608 => 0.025315265552735
609 => 0.025248194566694
610 => 0.025537637672614
611 => 0.025714197800019
612 => 0.027017818580213
613 => 0.026921242142177
614 => 0.027163630049479
615 => 0.027136340890863
616 => 0.027390402033138
617 => 0.027805684626507
618 => 0.026961298999347
619 => 0.027107855147564
620 => 0.027071922964497
621 => 0.027464221117299
622 => 0.027465445829311
623 => 0.02723024348996
624 => 0.027357750493845
625 => 0.027286579582248
626 => 0.027415195038828
627 => 0.026919952304967
628 => 0.027523104496661
629 => 0.027865052923082
630 => 0.027869800877315
701 => 0.028031881717568
702 => 0.028196565238355
703 => 0.028512660915593
704 => 0.028187749501478
705 => 0.027603265496974
706 => 0.027645463354227
707 => 0.027302780596241
708 => 0.027308541155313
709 => 0.027277790839521
710 => 0.027370074851988
711 => 0.026940203456123
712 => 0.027041093413518
713 => 0.026899846882354
714 => 0.02710754810519
715 => 0.026884095923661
716 => 0.027071905636911
717 => 0.027152958083158
718 => 0.027452043354747
719 => 0.026839920785869
720 => 0.02559176143087
721 => 0.02585413965976
722 => 0.025466061649866
723 => 0.025501979747199
724 => 0.025574540020134
725 => 0.025339348435307
726 => 0.025384215577954
727 => 0.025382612607893
728 => 0.025368799077906
729 => 0.025307616663163
730 => 0.025218890057213
731 => 0.025572349546708
801 => 0.025632409201583
802 => 0.025765914374554
803 => 0.026163135211891
804 => 0.026123443483129
805 => 0.026188182339534
806 => 0.026046857779494
807 => 0.025508535388211
808 => 0.025537768884005
809 => 0.02517322672302
810 => 0.025756592211895
811 => 0.025618443564081
812 => 0.025529378232126
813 => 0.025505075931117
814 => 0.025903281402079
815 => 0.026022430720097
816 => 0.025948184860921
817 => 0.025795904437655
818 => 0.026088327867992
819 => 0.026166568041596
820 => 0.02618408313108
821 => 0.026702201383006
822 => 0.026213040185787
823 => 0.026330786147801
824 => 0.027249406531375
825 => 0.026416344604421
826 => 0.026857636086626
827 => 0.026836037164943
828 => 0.027061786954749
829 => 0.026817519093036
830 => 0.026820547085934
831 => 0.027020997605667
901 => 0.026739501002144
902 => 0.026669798484416
903 => 0.026573504955394
904 => 0.026783758353186
905 => 0.026909795756218
906 => 0.027925564660392
907 => 0.028581797697177
908 => 0.028553308890359
909 => 0.028813643255867
910 => 0.028696360239816
911 => 0.028317622443291
912 => 0.028964081679805
913 => 0.028759514928369
914 => 0.028776379162809
915 => 0.028775751475161
916 => 0.02891177048133
917 => 0.0288153885495
918 => 0.028625409868461
919 => 0.028751526582869
920 => 0.029126048137109
921 => 0.030288574533193
922 => 0.030939139705869
923 => 0.030249409692925
924 => 0.030725176220001
925 => 0.030439885836702
926 => 0.030388040087403
927 => 0.030686856625277
928 => 0.030986196201944
929 => 0.03096712956499
930 => 0.030749824403588
1001 => 0.030627074231826
1002 => 0.031556579656732
1003 => 0.032241423420091
1004 => 0.032194721666681
1005 => 0.03240084801801
1006 => 0.03300604136076
1007 => 0.033061372655491
1008 => 0.03305440218413
1009 => 0.032917257796916
1010 => 0.033513149237139
1011 => 0.034010252360286
1012 => 0.032885512833758
1013 => 0.033313798921538
1014 => 0.033506070344859
1015 => 0.033788381838654
1016 => 0.034264688649587
1017 => 0.034782084180403
1018 => 0.034855249581413
1019 => 0.034803335228109
1020 => 0.034462098967198
1021 => 0.035028239330829
1022 => 0.035359871078218
1023 => 0.035557350194531
1024 => 0.036058124376109
1025 => 0.033507257747712
1026 => 0.031701627561836
1027 => 0.031419652334695
1028 => 0.031993060047213
1029 => 0.032144263088164
1030 => 0.032083313331949
1031 => 0.030050912397031
1101 => 0.031408952164388
1102 => 0.032870088766837
1103 => 0.032926216974403
1104 => 0.033657692508515
1105 => 0.033895890926617
1106 => 0.034484824608267
1107 => 0.03444798664613
1108 => 0.03459138262563
1109 => 0.034558418373215
1110 => 0.035649294003854
1111 => 0.036852691821047
1112 => 0.036811021981208
1113 => 0.03663801930703
1114 => 0.036894957779524
1115 => 0.038136993290815
1116 => 0.038022646564149
1117 => 0.038133724669074
1118 => 0.03959815453494
1119 => 0.041502121673284
1120 => 0.040617537782348
1121 => 0.042536830293522
1122 => 0.043744923191982
1123 => 0.045834194940731
1124 => 0.045572607827908
1125 => 0.046385945987911
1126 => 0.045104312301075
1127 => 0.042161422295196
1128 => 0.041695698686836
1129 => 0.042628089144774
1130 => 0.044920280104285
1201 => 0.042555899894244
1202 => 0.04303421093136
1203 => 0.042896457320493
1204 => 0.042889117015985
1205 => 0.043169266583877
1206 => 0.04276289502403
1207 => 0.041107264184366
1208 => 0.041866030041491
1209 => 0.041573034105126
1210 => 0.041898134940817
1211 => 0.043652570069257
1212 => 0.042876892478463
1213 => 0.042059779147494
1214 => 0.043084620596494
1215 => 0.044389595934801
1216 => 0.044307932923396
1217 => 0.044149472548779
1218 => 0.045042705383778
1219 => 0.04651806433453
1220 => 0.046916847930446
1221 => 0.04721122182818
1222 => 0.04725181101519
1223 => 0.047669904867429
1224 => 0.045421708850722
1225 => 0.048989653667004
1226 => 0.04960573917429
1227 => 0.049489940633048
1228 => 0.050174693745555
1229 => 0.049973222009345
1230 => 0.049681321073525
1231 => 0.050766800408012
]
'min_raw' => 0.018713086488926
'max_raw' => 0.050766800408012
'avg_raw' => 0.034739943448469
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.018713'
'max' => '$0.050766'
'avg' => '$0.034739'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0064536599112157
'max_diff' => 0.023398494190257
'year' => 2032
]
7 => [
'items' => [
101 => 0.049522385944688
102 => 0.047756096281425
103 => 0.04678707483891
104 => 0.048063160443144
105 => 0.048842421392398
106 => 0.049357463309551
107 => 0.049513314682485
108 => 0.045596229907706
109 => 0.043485138465581
110 => 0.044838323876271
111 => 0.04648930346918
112 => 0.045412537575724
113 => 0.04545474476016
114 => 0.04391955956519
115 => 0.046625133294394
116 => 0.046230953959505
117 => 0.048275957046196
118 => 0.047787900647382
119 => 0.049455521278016
120 => 0.049016380877917
121 => 0.05083922812672
122 => 0.051566411245886
123 => 0.052787464879982
124 => 0.053685676903805
125 => 0.054213124184252
126 => 0.054181458227939
127 => 0.056271467126262
128 => 0.05503906189827
129 => 0.053490870476302
130 => 0.05346286857796
131 => 0.054264698853439
201 => 0.055945115139451
202 => 0.056380822633351
203 => 0.056624323682132
204 => 0.056251393349592
205 => 0.054913705801885
206 => 0.054336099101015
207 => 0.054828236745033
208 => 0.054226394696269
209 => 0.055265342919491
210 => 0.05669204073734
211 => 0.056397433279729
212 => 0.057382261840505
213 => 0.058401455793922
214 => 0.059858948922173
215 => 0.060239991596712
216 => 0.06086984064797
217 => 0.06151816221635
218 => 0.061726385631357
219 => 0.062123948738537
220 => 0.06212185338472
221 => 0.063319936567291
222 => 0.064641459419214
223 => 0.065140303702491
224 => 0.066287368625452
225 => 0.064323060142831
226 => 0.065813010691248
227 => 0.067156983381802
228 => 0.065554643734634
301 => 0.067763095641
302 => 0.067848844824065
303 => 0.069143555682221
304 => 0.067831118190892
305 => 0.067051796997989
306 => 0.069301668081114
307 => 0.070390309827963
308 => 0.070062402074152
309 => 0.067567007876845
310 => 0.06611458142152
311 => 0.062313301235796
312 => 0.06681608181887
313 => 0.069009254892975
314 => 0.067561328088415
315 => 0.068291578147763
316 => 0.072275585687188
317 => 0.073792437812815
318 => 0.073476943174282
319 => 0.07353025657471
320 => 0.074348722448885
321 => 0.077978250872368
322 => 0.075803353309207
323 => 0.077465981004386
324 => 0.078347832738859
325 => 0.079166945775969
326 => 0.077155463040161
327 => 0.074538553555426
328 => 0.073709668471223
329 => 0.06741736030322
330 => 0.067089818336966
331 => 0.06690595910577
401 => 0.065746752660486
402 => 0.064835933927861
403 => 0.064111617055146
404 => 0.062210793281815
405 => 0.062852265506047
406 => 0.059822749144111
407 => 0.06176092635301
408 => 0.05692574508913
409 => 0.060952627723876
410 => 0.05876097858567
411 => 0.060232612037761
412 => 0.060227477647283
413 => 0.057517733880173
414 => 0.055954810226213
415 => 0.056950766008415
416 => 0.058018509666003
417 => 0.058191747482126
418 => 0.059576105005151
419 => 0.059962449433161
420 => 0.058791807779592
421 => 0.056825546704653
422 => 0.057282264306721
423 => 0.055945554858584
424 => 0.053603022966511
425 => 0.055285470268081
426 => 0.055859931748823
427 => 0.056113646665067
428 => 0.053810035590819
429 => 0.053086190977461
430 => 0.052700822178953
501 => 0.056528179442476
502 => 0.056737850713143
503 => 0.055665142847884
504 => 0.060513884117188
505 => 0.059416464635078
506 => 0.060642551070896
507 => 0.057240821971421
508 => 0.057370772604056
509 => 0.055760339533238
510 => 0.056662074443719
511 => 0.056024757273264
512 => 0.056589223174071
513 => 0.056927561707634
514 => 0.058537730522232
515 => 0.060971013265289
516 => 0.058297224995729
517 => 0.057132217157329
518 => 0.05785498146802
519 => 0.059779798072157
520 => 0.062695993756973
521 => 0.060969547217654
522 => 0.061735714874841
523 => 0.061903088423509
524 => 0.06063007066194
525 => 0.062742931737656
526 => 0.063875231152985
527 => 0.065036736056762
528 => 0.066045238220084
529 => 0.064572805456153
530 => 0.066148519578505
531 => 0.064878772146876
601 => 0.063739677436628
602 => 0.063741404973105
603 => 0.063026834221848
604 => 0.061642263349579
605 => 0.061386927237604
606 => 0.062715217937493
607 => 0.063780381289207
608 => 0.063868113244642
609 => 0.06445784240622
610 => 0.064806838049348
611 => 0.068227469788575
612 => 0.069603276171041
613 => 0.07128558617284
614 => 0.071940940728337
615 => 0.073913322982771
616 => 0.072320464123261
617 => 0.071975839089454
618 => 0.067191484901514
619 => 0.067974922631765
620 => 0.069229282028393
621 => 0.067212168825956
622 => 0.068491562877444
623 => 0.068744142364479
624 => 0.067143628091195
625 => 0.067998531918695
626 => 0.065728160814174
627 => 0.06102050115116
628 => 0.062748172708617
629 => 0.064020320502864
630 => 0.062204808745782
701 => 0.065459043300343
702 => 0.063557986654605
703 => 0.062955442964718
704 => 0.060604705208134
705 => 0.061714162941047
706 => 0.063214720410718
707 => 0.062287550352991
708 => 0.064211567438059
709 => 0.066936488747128
710 => 0.06887842994384
711 => 0.069027508075744
712 => 0.067778969986213
713 => 0.069779760242749
714 => 0.069794333815456
715 => 0.067537434232615
716 => 0.066155095804594
717 => 0.065841025605283
718 => 0.066625634540252
719 => 0.067578294634104
720 => 0.069080374080775
721 => 0.069988049231535
722 => 0.072354784631014
723 => 0.072995155370492
724 => 0.0736987286649
725 => 0.074638919560199
726 => 0.075767859790002
727 => 0.073297802837795
728 => 0.073395942805269
729 => 0.07109585997164
730 => 0.068637891598664
731 => 0.07050318320367
801 => 0.072941803847871
802 => 0.072382381577655
803 => 0.072319435144296
804 => 0.072425293585321
805 => 0.072003507462602
806 => 0.070095784461664
807 => 0.069137737913571
808 => 0.070373862384352
809 => 0.071030807527002
810 => 0.072049672151615
811 => 0.071924075581008
812 => 0.074548561435938
813 => 0.075568357278831
814 => 0.075307449862695
815 => 0.075355463106352
816 => 0.077201754768111
817 => 0.079255210814828
818 => 0.08117854337997
819 => 0.083135039874288
820 => 0.08077640698703
821 => 0.079578838667133
822 => 0.08081442348464
823 => 0.080158804788355
824 => 0.083926184286345
825 => 0.084187029468819
826 => 0.087954136542391
827 => 0.091529569733976
828 => 0.089283904206881
829 => 0.091401465651935
830 => 0.093691781002079
831 => 0.098110170902781
901 => 0.096622212625056
902 => 0.095482459903597
903 => 0.094405399089063
904 => 0.096646591665518
905 => 0.099529850111202
906 => 0.1001508763649
907 => 0.10115717614617
908 => 0.10009917497064
909 => 0.10137342085156
910 => 0.10587206874319
911 => 0.10465649437221
912 => 0.10293018335208
913 => 0.10648143380779
914 => 0.10776661754258
915 => 0.11678671004924
916 => 0.12817494944035
917 => 0.12346014355322
918 => 0.12053351139324
919 => 0.12122133937148
920 => 0.12537993888088
921 => 0.12671554905595
922 => 0.12308490018768
923 => 0.12436730674638
924 => 0.13143349296823
925 => 0.13522427516586
926 => 0.13007588377151
927 => 0.11587167610265
928 => 0.1027747479327
929 => 0.10624864304573
930 => 0.10585481114743
1001 => 0.11344654671813
1002 => 0.10462750332548
1003 => 0.10477599339851
1004 => 0.11252471802103
1005 => 0.11045749113851
1006 => 0.10710884833925
1007 => 0.10279919673096
1008 => 0.094832407138514
1009 => 0.08777599942612
1010 => 0.10161523994377
1011 => 0.10101846672762
1012 => 0.1001542506738
1013 => 0.10207746998363
1014 => 0.11141607703681
1015 => 0.11120079191811
1016 => 0.10983125783239
1017 => 0.11087003736589
1018 => 0.1069267452646
1019 => 0.1079430214262
1020 => 0.10277267331236
1021 => 0.10510988659263
1022 => 0.10710166365576
1023 => 0.10750154238994
1024 => 0.10840248959638
1025 => 0.1007039943603
1026 => 0.10416039270535
1027 => 0.10619070291234
1028 => 0.097017687533835
1029 => 0.1060093818918
1030 => 0.10056998068584
1031 => 0.098723766219474
1101 => 0.10120945077818
1102 => 0.10024077708824
1103 => 0.099407968332065
1104 => 0.098943246736647
1105 => 0.10076845914157
1106 => 0.10068331080128
1107 => 0.097696909048367
1108 => 0.093801269703005
1109 => 0.095108774137311
1110 => 0.094633745518408
1111 => 0.092912180523593
1112 => 0.094072307467548
1113 => 0.08896369553318
1114 => 0.080174594222643
1115 => 0.085980943765838
1116 => 0.085757405624518
1117 => 0.085644687557017
1118 => 0.090007998763014
1119 => 0.089588567069274
1120 => 0.088827294438049
1121 => 0.092898199154724
1122 => 0.091412264171742
1123 => 0.095991565658977
1124 => 0.099007789789121
1125 => 0.098242777785088
1126 => 0.10107955115816
1127 => 0.095138896398689
1128 => 0.097112143612087
1129 => 0.097518827127966
1130 => 0.09284796482243
1201 => 0.089657191281569
1202 => 0.089444403063875
1203 => 0.083912041459701
1204 => 0.086867384372988
1205 => 0.089467963836281
1206 => 0.088222488086483
1207 => 0.087828207671626
1208 => 0.08984250080214
1209 => 0.089999028629635
1210 => 0.086430177574675
1211 => 0.087172254719816
1212 => 0.090266839775113
1213 => 0.087094279116309
1214 => 0.080930511991095
1215 => 0.079401812523294
1216 => 0.079197855834768
1217 => 0.075051901635408
1218 => 0.079503967531493
1219 => 0.077560521459904
1220 => 0.083699844313996
1221 => 0.080193096025587
1222 => 0.080041927115723
1223 => 0.079813413136805
1224 => 0.076244819090205
1225 => 0.077026114390428
1226 => 0.079623258963002
1227 => 0.080549949405424
1228 => 0.080453288000128
1229 => 0.079610531537729
1230 => 0.079996341130604
1231 => 0.07875351400698
]
'min_raw' => 0.043485138465581
'max_raw' => 0.13522427516586
'avg_raw' => 0.08935470681572
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.043485'
'max' => '$0.135224'
'avg' => '$0.089354'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.024772051976655
'max_diff' => 0.084457474757847
'year' => 2033
]
8 => [
'items' => [
101 => 0.078314645882419
102 => 0.076929457361116
103 => 0.074893612902897
104 => 0.075176709561372
105 => 0.07114316898196
106 => 0.068945481998095
107 => 0.06833719120601
108 => 0.067523759336612
109 => 0.068429070500118
110 => 0.071131742468286
111 => 0.067871746670832
112 => 0.062282712538213
113 => 0.062618623012834
114 => 0.063373314116593
115 => 0.06196695223752
116 => 0.060635948745983
117 => 0.061793148294147
118 => 0.059425000853222
119 => 0.06365949342087
120 => 0.063544962263944
121 => 0.065123319233899
122 => 0.066110298238358
123 => 0.063835631171328
124 => 0.063263558555323
125 => 0.06358943711665
126 => 0.058203390401383
127 => 0.064683164309413
128 => 0.064739201663249
129 => 0.064259375818448
130 => 0.067709655383899
131 => 0.074990821436185
201 => 0.072251353883089
202 => 0.071190549245685
203 => 0.069173958854537
204 => 0.071860945817453
205 => 0.071654627142227
206 => 0.070721575848823
207 => 0.070157263515275
208 => 0.071197026292598
209 => 0.07002842540062
210 => 0.069818512569415
211 => 0.06854666919973
212 => 0.068092678981939
213 => 0.067756562698557
214 => 0.067386531696658
215 => 0.068202727880867
216 => 0.066353119947899
217 => 0.064122674100042
218 => 0.063937236661551
219 => 0.064449245733051
220 => 0.064222719833505
221 => 0.063936152142695
222 => 0.063389016378873
223 => 0.063226692885453
224 => 0.063754165490905
225 => 0.063158679672913
226 => 0.064037351435151
227 => 0.063798401334948
228 => 0.062463645499379
301 => 0.060800045538356
302 => 0.060785236009183
303 => 0.060426816126432
304 => 0.059970314516957
305 => 0.059843326212544
306 => 0.061695692175893
307 => 0.065530034283378
308 => 0.064777261179648
309 => 0.065321216894384
310 => 0.067996940638123
311 => 0.068847472754438
312 => 0.068243785204235
313 => 0.067417420451691
314 => 0.067453776306931
315 => 0.070277714823996
316 => 0.070453840405392
317 => 0.070898852929314
318 => 0.071470819783077
319 => 0.068341193632686
320 => 0.06730637119669
321 => 0.066816014916752
322 => 0.065305907366307
323 => 0.066934428892626
324 => 0.065985559139484
325 => 0.06611359408719
326 => 0.066030211159532
327 => 0.066075743876362
328 => 0.063658309793898
329 => 0.064539095716953
330 => 0.063074618288635
331 => 0.061113847407424
401 => 0.061107274215895
402 => 0.06158717011125
403 => 0.061301709254365
404 => 0.060533541428357
405 => 0.060642656042391
406 => 0.059686697207656
407 => 0.060758726753121
408 => 0.060789468724579
409 => 0.060376678955731
410 => 0.06202828838209
411 => 0.062704954111654
412 => 0.062433247042984
413 => 0.0626858904194
414 => 0.064808542300675
415 => 0.065154627175118
416 => 0.065308335215261
417 => 0.065102386803882
418 => 0.062724688599183
419 => 0.062830149625315
420 => 0.06205634659005
421 => 0.061402564566606
422 => 0.061428712418908
423 => 0.061764841364673
424 => 0.063232736184527
425 => 0.066321834295785
426 => 0.066439063311005
427 => 0.066581148297265
428 => 0.066003217251955
429 => 0.065828907718635
430 => 0.066058866986193
501 => 0.067218969819718
502 => 0.070203069272394
503 => 0.069148289224517
504 => 0.068290736626964
505 => 0.069043041449538
506 => 0.068927230018863
507 => 0.06794966499546
508 => 0.067922228001134
509 => 0.06604596817478
510 => 0.065352357637345
511 => 0.064772724756416
512 => 0.064139780782142
513 => 0.063764550377717
514 => 0.064341074818082
515 => 0.06447293277883
516 => 0.06321235201405
517 => 0.063040539513817
518 => 0.064069956977862
519 => 0.063616948732487
520 => 0.064082878946919
521 => 0.064190978753342
522 => 0.064173572194758
523 => 0.063700579558921
524 => 0.06400205096016
525 => 0.06328898122328
526 => 0.062513624984034
527 => 0.062018996009795
528 => 0.061587366626759
529 => 0.061826859694915
530 => 0.060973110636648
531 => 0.060699979130335
601 => 0.063899919232742
602 => 0.066263749391543
603 => 0.066229378364855
604 => 0.066020153579399
605 => 0.06570928798791
606 => 0.067196228065439
607 => 0.066678207874733
608 => 0.067055110845507
609 => 0.067151048470137
610 => 0.067441422765327
611 => 0.067545206617344
612 => 0.06723149973403
613 => 0.06617866111756
614 => 0.063555087386208
615 => 0.062333806732062
616 => 0.061930763774155
617 => 0.061945413620187
618 => 0.061541305466823
619 => 0.061660333428846
620 => 0.061499912399129
621 => 0.061196113778862
622 => 0.061808100986195
623 => 0.061878626810785
624 => 0.061735781683891
625 => 0.061769426882344
626 => 0.060586730241612
627 => 0.060676648098525
628 => 0.060175974045026
629 => 0.060082103695711
630 => 0.058816443287143
701 => 0.056574142412956
702 => 0.057816594762668
703 => 0.056315887039453
704 => 0.055747546285239
705 => 0.058437983020567
706 => 0.058167937793439
707 => 0.057705737750435
708 => 0.057022047555902
709 => 0.056768460212239
710 => 0.055227743788141
711 => 0.055136710042403
712 => 0.055900330705029
713 => 0.055547946043809
714 => 0.05505306452095
715 => 0.05326065381049
716 => 0.051245390725141
717 => 0.051306218850195
718 => 0.051947236542342
719 => 0.053811081935273
720 => 0.053082845295402
721 => 0.052554501257623
722 => 0.052455558301311
723 => 0.053694036550671
724 => 0.055446742742732
725 => 0.056269073273456
726 => 0.055454168692058
727 => 0.054518050186526
728 => 0.054575027382403
729 => 0.054954071140334
730 => 0.054993903279902
731 => 0.054384586367338
801 => 0.054556105509131
802 => 0.054295552248709
803 => 0.052696537370445
804 => 0.052667616261828
805 => 0.052275192223104
806 => 0.05226330977917
807 => 0.051595698594536
808 => 0.051502295174828
809 => 0.050176712646635
810 => 0.051049215080925
811 => 0.050463986256437
812 => 0.049581908376409
813 => 0.049429837817417
814 => 0.049425266392784
815 => 0.050330963146567
816 => 0.051038631487035
817 => 0.050474166562397
818 => 0.05034564884075
819 => 0.051717881878163
820 => 0.051543252715971
821 => 0.051392024987749
822 => 0.055289807127083
823 => 0.052204408416067
824 => 0.050858998469663
825 => 0.049193798174568
826 => 0.049735995787319
827 => 0.049850244790866
828 => 0.045845738256078
829 => 0.044221110453643
830 => 0.043663599414655
831 => 0.043342743929668
901 => 0.043488961803226
902 => 0.0420266062312
903 => 0.04300933336073
904 => 0.041743057045195
905 => 0.041530761700076
906 => 0.043795020613787
907 => 0.044110079014022
908 => 0.04276594199765
909 => 0.043629095558177
910 => 0.043316104078398
911 => 0.041764763718192
912 => 0.041705513927319
913 => 0.040927105866818
914 => 0.039709047981636
915 => 0.039152362843251
916 => 0.038862436389818
917 => 0.038982065695059
918 => 0.038921577457612
919 => 0.038526850792452
920 => 0.038944202728008
921 => 0.037878040994389
922 => 0.037453486801412
923 => 0.037261725522028
924 => 0.03631544561746
925 => 0.03782139775821
926 => 0.038118089301423
927 => 0.038415365418629
928 => 0.04100295105988
929 => 0.040873682593684
930 => 0.042042206571798
1001 => 0.041996799878786
1002 => 0.041663517911394
1003 => 0.040257456113193
1004 => 0.040817887285314
1005 => 0.039092967247866
1006 => 0.040385394623084
1007 => 0.039795584742092
1008 => 0.040185979309025
1009 => 0.03948401467722
1010 => 0.03987251088787
1011 => 0.03818844587285
1012 => 0.036615889657258
1013 => 0.03724873218419
1014 => 0.037936704385286
1015 => 0.03942840340932
1016 => 0.038539959776855
1017 => 0.038859477702863
1018 => 0.037789146137392
1019 => 0.03558074639273
1020 => 0.035593245695454
1021 => 0.035253531507341
1022 => 0.034959968849728
1023 => 0.038642008215492
1024 => 0.038184088415931
1025 => 0.037454453146391
1026 => 0.038431098949223
1027 => 0.038689339600945
1028 => 0.038696691349256
1029 => 0.039409226916125
1030 => 0.039789507275892
1031 => 0.03985653333753
1101 => 0.040977723447348
1102 => 0.041353531583304
1103 => 0.042901432108949
1104 => 0.039757243144237
1105 => 0.039692490641599
1106 => 0.038444842358519
1107 => 0.037653564092851
1108 => 0.038499021858338
1109 => 0.039247982022065
1110 => 0.038468114638525
1111 => 0.038569948854916
1112 => 0.037523040610019
1113 => 0.037897261045959
1114 => 0.038219590098326
1115 => 0.038041618941235
1116 => 0.037775187505168
1117 => 0.039186575829668
1118 => 0.039106939769125
1119 => 0.040421257024577
1120 => 0.041445861312931
1121 => 0.043282135367585
1122 => 0.041365887664422
1123 => 0.041296051981724
1124 => 0.041978706982093
1125 => 0.041353427072381
1126 => 0.04174858239139
1127 => 0.043218469736616
1128 => 0.043249526140002
1129 => 0.042729291369363
1130 => 0.042697635036291
1201 => 0.042797551814737
1202 => 0.043382767506939
1203 => 0.043178275162221
1204 => 0.043414918880641
1205 => 0.043710845474142
1206 => 0.044934923335137
1207 => 0.045230044363327
1208 => 0.044513053267535
1209 => 0.044577789535676
1210 => 0.044309615184004
1211 => 0.044050562120504
1212 => 0.044632875575591
1213 => 0.045697064860161
1214 => 0.045690444593854
1215 => 0.04593731582299
1216 => 0.046091114553551
1217 => 0.045430897814434
1218 => 0.045001120994111
1219 => 0.045165924774432
1220 => 0.045429449608125
1221 => 0.045080467222564
1222 => 0.042926386274514
1223 => 0.043579796830929
1224 => 0.043471037364198
1225 => 0.043316150657969
1226 => 0.043973160025119
1227 => 0.043909789868872
1228 => 0.042011607661155
1229 => 0.042133123127456
1230 => 0.042018997419133
1231 => 0.042387760930649
]
'min_raw' => 0.034959968849728
'max_raw' => 0.078314645882419
'avg_raw' => 0.056637307366074
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.034959'
'max' => '$0.078314'
'avg' => '$0.056637'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0085251696158531
'max_diff' => -0.05690962928344
'year' => 2034
]
9 => [
'items' => [
101 => 0.04133351263258
102 => 0.041657792308595
103 => 0.041861177481459
104 => 0.041980972910754
105 => 0.042413756145863
106 => 0.042362974028388
107 => 0.04241059945814
108 => 0.043052302745268
109 => 0.046297817765589
110 => 0.04647446398732
111 => 0.045604593386197
112 => 0.045952089533907
113 => 0.045284972919358
114 => 0.045732812771997
115 => 0.046039213425274
116 => 0.044654647790573
117 => 0.044572662799442
118 => 0.043902792757319
119 => 0.044262742974577
120 => 0.043690036297582
121 => 0.043830558483688
122 => 0.043437646200833
123 => 0.044144810081917
124 => 0.044935529183126
125 => 0.045135296054535
126 => 0.044609795420903
127 => 0.044229298329975
128 => 0.043561270781838
129 => 0.044672215482354
130 => 0.044997089568212
131 => 0.044670509057084
201 => 0.044594833216731
202 => 0.044451427636005
203 => 0.044625257388604
204 => 0.04499532023417
205 => 0.044820805430189
206 => 0.044936075532773
207 => 0.044496784767735
208 => 0.045431116373646
209 => 0.046915059822979
210 => 0.046919830943818
211 => 0.046745315199137
212 => 0.046673907116408
213 => 0.046852970860951
214 => 0.046950105596787
215 => 0.047529164911965
216 => 0.048150518627893
217 => 0.05105010530226
218 => 0.050235912966981
219 => 0.052808598761663
220 => 0.054843259203815
221 => 0.055453364905499
222 => 0.054892096367642
223 => 0.052972027018762
224 => 0.052877819256332
225 => 0.055747213495927
226 => 0.054936478196659
227 => 0.05484004381255
228 => 0.053814144894087
301 => 0.054420578214951
302 => 0.054287942351838
303 => 0.054078570153146
304 => 0.055235602684843
305 => 0.057401464295174
306 => 0.057063894451883
307 => 0.05681191422328
308 => 0.055707810211884
309 => 0.056372727437303
310 => 0.056135963148982
311 => 0.05715325278594
312 => 0.056550632940731
313 => 0.054930336079387
314 => 0.055188373695124
315 => 0.055149371828605
316 => 0.055952027477865
317 => 0.055711090175096
318 => 0.055102324953334
319 => 0.05739406161565
320 => 0.057245248984108
321 => 0.05745623127233
322 => 0.05754911220045
323 => 0.058944051921872
324 => 0.059515514092646
325 => 0.059645246010265
326 => 0.06018809087403
327 => 0.059631739535534
328 => 0.061857541561299
329 => 0.063337570029284
330 => 0.065056699256417
331 => 0.067568809115633
401 => 0.068513385661014
402 => 0.068342756362667
403 => 0.070247409387611
404 => 0.073670028535377
405 => 0.069034565548857
406 => 0.073915719329446
407 => 0.072370402398142
408 => 0.068706483753085
409 => 0.068470570587106
410 => 0.070951818832509
411 => 0.07645498862952
412 => 0.075076507011804
413 => 0.076457243331619
414 => 0.074846541072427
415 => 0.074766556129194
416 => 0.076379015118045
417 => 0.08014661343606
418 => 0.078356768701482
419 => 0.075790587386531
420 => 0.077685415735287
421 => 0.076043940061509
422 => 0.072345235948374
423 => 0.07507545291289
424 => 0.073249834580821
425 => 0.073782647065327
426 => 0.077619825259105
427 => 0.077158125826915
428 => 0.077755607644385
429 => 0.076701067875373
430 => 0.075715961445457
501 => 0.073877187139056
502 => 0.073332816717409
503 => 0.073483261117556
504 => 0.073332742164635
505 => 0.072303964839412
506 => 0.072081800473981
507 => 0.071711516798351
508 => 0.07182628319272
509 => 0.071130041552227
510 => 0.072443993378701
511 => 0.072687874416199
512 => 0.073644058981018
513 => 0.073743333234558
514 => 0.076406293637145
515 => 0.074939579796632
516 => 0.075923578070828
517 => 0.075835560003433
518 => 0.068785891980096
519 => 0.069757274033964
520 => 0.071268439673302
521 => 0.070587661601117
522 => 0.069625200684583
523 => 0.068847961890592
524 => 0.067670365640948
525 => 0.069327809748589
526 => 0.071507172500605
527 => 0.073798605470446
528 => 0.076551612043073
529 => 0.075937173024592
530 => 0.073747139927522
531 => 0.073845383212436
601 => 0.074452684542469
602 => 0.073666174140932
603 => 0.073434216869012
604 => 0.074420817175254
605 => 0.074427611349337
606 => 0.073522636079411
607 => 0.072516921675615
608 => 0.072512707695542
609 => 0.072333750531435
610 => 0.074878377154366
611 => 0.076277664506209
612 => 0.076438090546033
613 => 0.076266866555521
614 => 0.076332763873832
615 => 0.075518549394988
616 => 0.077379602245822
617 => 0.0790874883808
618 => 0.07862973841296
619 => 0.077943506138177
620 => 0.077396889077888
621 => 0.078500972805296
622 => 0.078451809694904
623 => 0.079072571485338
624 => 0.07904441014483
625 => 0.078835671302739
626 => 0.078629745867682
627 => 0.079446216940927
628 => 0.079211086383957
629 => 0.078975590604286
630 => 0.078503267765558
701 => 0.078567464283793
702 => 0.077881350496687
703 => 0.077563922864341
704 => 0.072790572889243
705 => 0.071514977802187
706 => 0.071916305983707
707 => 0.072048433641545
708 => 0.071493293024939
709 => 0.072289222065229
710 => 0.072165177367397
711 => 0.072647762722939
712 => 0.072346264344217
713 => 0.072358637942847
714 => 0.073245280388437
715 => 0.073502676462438
716 => 0.07337176274176
717 => 0.073463450224263
718 => 0.075576349559684
719 => 0.075275962840904
720 => 0.075116388383482
721 => 0.075160591598739
722 => 0.075700482680012
723 => 0.075851622705808
724 => 0.075211231796089
725 => 0.075513243851168
726 => 0.07679917285066
727 => 0.077249175223204
728 => 0.078685366782972
729 => 0.078075247082113
730 => 0.079195148198401
731 => 0.082637342427447
801 => 0.085387205359332
802 => 0.082858317764279
803 => 0.087908090845753
804 => 0.091840063536606
805 => 0.091689147875688
806 => 0.09100351748887
807 => 0.086527071117237
808 => 0.082407778426004
809 => 0.085853741676627
810 => 0.085862526145621
811 => 0.085566514846319
812 => 0.083728014089057
813 => 0.085502539005148
814 => 0.085643394348859
815 => 0.08556455281284
816 => 0.08415497859284
817 => 0.082002819291763
818 => 0.082423346067652
819 => 0.083112177505072
820 => 0.081808075888744
821 => 0.081391336404024
822 => 0.08216613439405
823 => 0.084662694953485
824 => 0.084190734641314
825 => 0.084178409850222
826 => 0.086197656208008
827 => 0.084752311596471
828 => 0.082428650257009
829 => 0.081841895123467
830 => 0.079759309685012
831 => 0.081197758865268
901 => 0.081249526090444
902 => 0.080461702175012
903 => 0.082492577825801
904 => 0.08247386294915
905 => 0.084401877123625
906 => 0.088087516096166
907 => 0.086997491292706
908 => 0.085729911040644
909 => 0.085867732160231
910 => 0.087379289670593
911 => 0.086465367494327
912 => 0.086794020281004
913 => 0.087378792215239
914 => 0.087731599642233
915 => 0.085816968600885
916 => 0.085370576517758
917 => 0.08445741497801
918 => 0.084219188177257
919 => 0.084962939197641
920 => 0.084766987080881
921 => 0.08124517525562
922 => 0.080877126324704
923 => 0.080888413859963
924 => 0.079962937323402
925 => 0.078551363465328
926 => 0.082260895283651
927 => 0.081962967963775
928 => 0.081634079260375
929 => 0.081674366249929
930 => 0.083284548284564
1001 => 0.082350561388334
1002 => 0.084833718629404
1003 => 0.084323256151179
1004 => 0.083799702236539
1005 => 0.083727331137694
1006 => 0.083525807548078
1007 => 0.082834708175662
1008 => 0.082000164154835
1009 => 0.081449125905321
1010 => 0.075132513263153
1011 => 0.076304839827494
1012 => 0.077653494678839
1013 => 0.078119044929129
1014 => 0.077322689010912
1015 => 0.08286615316116
1016 => 0.083878997479559
1017 => 0.080811025972926
1018 => 0.080237133768486
1019 => 0.08290377743854
1020 => 0.081295465321567
1021 => 0.082019688169362
1022 => 0.080454314501147
1023 => 0.083635032942801
1024 => 0.083610801197436
1025 => 0.082373429883849
1026 => 0.08341924764494
1027 => 0.083237511072639
1028 => 0.08184052190711
1029 => 0.083679319991112
1030 => 0.083680232012021
1031 => 0.082489289025465
1101 => 0.081098528348112
1102 => 0.080849893187302
1103 => 0.080662579993066
1104 => 0.081973620606087
1105 => 0.083149095520204
1106 => 0.085336362910432
1107 => 0.085886293900527
1108 => 0.088032711165846
1109 => 0.086754624191508
1110 => 0.087321183593235
1111 => 0.087936263968529
1112 => 0.088231156119278
1113 => 0.087750645184419
1114 => 0.091084914698052
1115 => 0.091366429204381
1116 => 0.091460818583262
1117 => 0.09033652166332
1118 => 0.091335160473199
1119 => 0.090867930445498
1120 => 0.092083533177336
1121 => 0.092274155207282
1122 => 0.092112705129493
1123 => 0.092173211570562
1124 => 0.089328000746125
1125 => 0.089180461555195
1126 => 0.087168754217963
1127 => 0.087988539827675
1128 => 0.086455989923665
1129 => 0.08694197728524
1130 => 0.087156195883564
1201 => 0.087044300244598
1202 => 0.088034889276051
1203 => 0.087192686235347
1204 => 0.084969973939928
1205 => 0.082746656068031
1206 => 0.082718744123225
1207 => 0.082133383772374
1208 => 0.081710275452805
1209 => 0.081791781125728
1210 => 0.082079017748061
1211 => 0.081693580738148
1212 => 0.081775833266365
1213 => 0.083141773280503
1214 => 0.0834157028089
1215 => 0.082484783240232
1216 => 0.078747006840974
1217 => 0.077829747137095
1218 => 0.078489055222193
1219 => 0.078173948422395
1220 => 0.06309247760339
1221 => 0.066635645465697
1222 => 0.064530415436526
1223 => 0.065500602290944
1224 => 0.063351707577834
1225 => 0.064377272768152
1226 => 0.064187888325144
1227 => 0.069885197397774
1228 => 0.069796241752997
1229 => 0.069838820112723
1230 => 0.067806444065645
1231 => 0.071044074293664
]
'min_raw' => 0.04133351263258
'max_raw' => 0.092274155207282
'avg_raw' => 0.066803833919931
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.041333'
'max' => '$0.092274'
'avg' => '$0.0668038'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0063735437828519
'max_diff' => 0.013959509324863
'year' => 2035
]
10 => [
'items' => [
101 => 0.072639047365404
102 => 0.072343860298659
103 => 0.072418152523803
104 => 0.07114156595391
105 => 0.0698511802612
106 => 0.068419943939051
107 => 0.071079004119448
108 => 0.070783362019059
109 => 0.071461458628682
110 => 0.073186049229217
111 => 0.073440001746228
112 => 0.073781316504424
113 => 0.073658979460049
114 => 0.076573544181921
115 => 0.076220571163185
116 => 0.077071134581071
117 => 0.075321461098079
118 => 0.073341539471542
119 => 0.073717857844232
120 => 0.073681615358781
121 => 0.073220206921797
122 => 0.072803668015854
123 => 0.072110248096567
124 => 0.074304331328029
125 => 0.074215255555698
126 => 0.075657288770476
127 => 0.075402395392601
128 => 0.073700155032159
129 => 0.073760950879646
130 => 0.074169832171486
131 => 0.075584974991068
201 => 0.07600508573019
202 => 0.07581047369731
203 => 0.076271105943974
204 => 0.076635170890247
205 => 0.076316826895983
206 => 0.08082390652669
207 => 0.078952252831525
208 => 0.079864483819666
209 => 0.08008204553516
210 => 0.079524765775751
211 => 0.079645619800875
212 => 0.079828680718187
213 => 0.080940190761102
214 => 0.083857114731734
215 => 0.085149000502154
216 => 0.089035702582983
217 => 0.085041727372838
218 => 0.084804741412581
219 => 0.085504853824497
220 => 0.087786759395142
221 => 0.089636029531658
222 => 0.090249539122894
223 => 0.090330624543315
224 => 0.091481609321821
225 => 0.092141332332265
226 => 0.091341849495805
227 => 0.090664371501248
228 => 0.088237729416408
229 => 0.088518619845255
301 => 0.090453676354377
302 => 0.093187057647771
303 => 0.095532583157356
304 => 0.094711261873716
305 => 0.10097736350542
306 => 0.10159862188748
307 => 0.10151278406676
308 => 0.10292810311673
309 => 0.10011898302726
310 => 0.098918029764881
311 => 0.090810849933373
312 => 0.093088636778459
313 => 0.096399533727522
314 => 0.095961324101087
315 => 0.093556862236148
316 => 0.095530759157418
317 => 0.094878127105783
318 => 0.094363369128929
319 => 0.096721575211639
320 => 0.094128630753933
321 => 0.096373667123057
322 => 0.093494384757728
323 => 0.094715013600157
324 => 0.09402212563402
325 => 0.094470509065266
326 => 0.091849268688181
327 => 0.093263626368643
328 => 0.091790426758697
329 => 0.091789728270266
330 => 0.091757207307224
331 => 0.093490420115158
401 => 0.0935469401226
402 => 0.092266093238798
403 => 0.092081503192253
404 => 0.092764029341889
405 => 0.091964969974548
406 => 0.092338844823307
407 => 0.091976294262844
408 => 0.091894676495201
409 => 0.091244332236501
410 => 0.090964146048265
411 => 0.091074014272181
412 => 0.090698977383004
413 => 0.090473004091598
414 => 0.091712255531898
415 => 0.091050173478606
416 => 0.091610781961638
417 => 0.090971897840792
418 => 0.08875724712938
419 => 0.08748357808574
420 => 0.083300308190112
421 => 0.084486678343182
422 => 0.085273242982056
423 => 0.0850132833736
424 => 0.085571777203577
425 => 0.085606064188839
426 => 0.085424492151543
427 => 0.085214254993172
428 => 0.085111923171322
429 => 0.085874620732507
430 => 0.086317392337995
501 => 0.085352185266444
502 => 0.085126050754262
503 => 0.086101928394143
504 => 0.086697213190724
505 => 0.091092461667044
506 => 0.090766847463453
507 => 0.091584075215907
508 => 0.091492067912363
509 => 0.092348652791525
510 => 0.093748807049175
511 => 0.090901901954084
512 => 0.091396026240021
513 => 0.091274878376105
514 => 0.092597538987658
515 => 0.092601668189714
516 => 0.091808667081291
517 => 0.092238565847141
518 => 0.091998608149699
519 => 0.092432244141204
520 => 0.090762498687246
521 => 0.092796068412283
522 => 0.093948971406041
523 => 0.093964979465228
524 => 0.094511446334265
525 => 0.095066688322434
526 => 0.096132426967337
527 => 0.095036965450058
528 => 0.093066336821501
529 => 0.093208609843391
530 => 0.092053230999493
531 => 0.092072653126595
601 => 0.091968976289984
602 => 0.092280118281082
603 => 0.09083077685726
604 => 0.091170934392529
605 => 0.090694711851193
606 => 0.09139499102522
607 => 0.090641606394261
608 => 0.091274819954937
609 => 0.091548093936363
610 => 0.092556480810992
611 => 0.090492666832984
612 => 0.086284410423902
613 => 0.087169036941268
614 => 0.085860604836171
615 => 0.08598170520905
616 => 0.086226347235247
617 => 0.085433382386452
618 => 0.085584655090407
619 => 0.085579250564932
620 => 0.08553267728415
621 => 0.085326396501223
622 => 0.08502724855457
623 => 0.086218961901155
624 => 0.086421457220798
625 => 0.086871579232503
626 => 0.088210837018659
627 => 0.088077013583948
628 => 0.088295285158242
629 => 0.087818799537102
630 => 0.086003808010421
701 => 0.086102370782507
702 => 0.084873291435228
703 => 0.086840148910246
704 => 0.086374371098911
705 => 0.08607408111388
706 => 0.085992144209297
707 => 0.087334721756463
708 => 0.0877364420009
709 => 0.08748611690301
710 => 0.086972692824087
711 => 0.087958618835822
712 => 0.088222411043682
713 => 0.08828146439074
714 => 0.090028336250972
715 => 0.088379095122402
716 => 0.088776083854095
717 => 0.091873276613339
718 => 0.089064550164091
719 => 0.090552395206332
720 => 0.090479572933886
721 => 0.091240704111566
722 => 0.090417137961562
723 => 0.090427347051026
724 => 0.091103179973314
725 => 0.090154094521071
726 => 0.089919087616077
727 => 0.089594427259979
728 => 0.090303311270057
729 => 0.090728255174033
730 => 0.094152990953174
731 => 0.096365526453424
801 => 0.096269474452211
802 => 0.097147209941487
803 => 0.096751782064432
804 => 0.09547484114082
805 => 0.09765442359107
806 => 0.096964712506208
807 => 0.097021571450045
808 => 0.097019455157315
809 => 0.097478052733159
810 => 0.097153094320823
811 => 0.096512567933812
812 => 0.096937779241625
813 => 0.098200504810004
814 => 0.10212004371941
815 => 0.10431346962009
816 => 0.10198799672604
817 => 0.10359207678903
818 => 0.1026302003434
819 => 0.10245539877989
820 => 0.10346287960003
821 => 0.10447212388199
822 => 0.10440783938431
823 => 0.10367517986088
824 => 0.10326131908664
825 => 0.10639521152271
826 => 0.10870421008514
827 => 0.1085467518629
828 => 0.10924172124769
829 => 0.11128217285602
830 => 0.11146872617931
831 => 0.11144522474846
901 => 0.11098283287185
902 => 0.11299192246638
903 => 0.1146679403527
904 => 0.1108758025122
905 => 0.11231979895913
906 => 0.11296805548682
907 => 0.11391988839851
908 => 0.11552579006625
909 => 0.1172702252218
910 => 0.11751690747955
911 => 0.11734187461284
912 => 0.11619137273482
913 => 0.11810015449746
914 => 0.11921827408757
915 => 0.11988408871578
916 => 0.1215724838319
917 => 0.11297205889844
918 => 0.10688425066168
919 => 0.1059335514965
920 => 0.1078668356333
921 => 0.10837662724253
922 => 0.10817113088407
923 => 0.10131874923429
924 => 0.10589747512524
925 => 0.1108237991937
926 => 0.11101303936426
927 => 0.11347926019751
928 => 0.11428236279462
929 => 0.11626799382034
930 => 0.11614379205905
1001 => 0.11662726161552
1002 => 0.11651612033702
1003 => 0.12019408368822
1004 => 0.12425142344744
1005 => 0.12411093067313
1006 => 0.12352764007847
1007 => 0.12439392607736
1008 => 0.12858153551983
1009 => 0.12819600754744
1010 => 0.12857051513342
1011 => 0.13350794266941
1012 => 0.13992730080708
1013 => 0.13694486445911
1014 => 0.14341589316126
1015 => 0.14748906271477
1016 => 0.15453318828398
1017 => 0.15365122906966
1018 => 0.15639345546157
1019 => 0.1520723380056
1020 => 0.14215017888476
1021 => 0.14057995922339
1022 => 0.14372357874975
1023 => 0.1514518606054
1024 => 0.14348018765149
1025 => 0.14509284670774
1026 => 0.14462840079105
1027 => 0.14460365244192
1028 => 0.14554819626949
1029 => 0.14417808618351
1030 => 0.13859601121513
1031 => 0.14115424327776
1101 => 0.14016638702198
1102 => 0.14126248718733
1103 => 0.14717768771361
1104 => 0.14456243656018
1105 => 0.14180748191578
1106 => 0.14526280641323
1107 => 0.1496626218768
1108 => 0.14938728933232
1109 => 0.14885302911595
1110 => 0.15186462598267
1111 => 0.15683890169141
1112 => 0.15818342842722
1113 => 0.15917593057596
1114 => 0.15931277985381
1115 => 0.16072241246701
1116 => 0.15314246263265
1117 => 0.1651720376867
1118 => 0.16724921298823
1119 => 0.16685879012164
1120 => 0.16916748304839
1121 => 0.16848820702345
1122 => 0.16750404263846
1123 => 0.17116381200043
1124 => 0.16696818175509
1125 => 0.16101301283699
1126 => 0.15774588938864
1127 => 0.16204830109676
1128 => 0.16467563379344
1129 => 0.16641213357619
1130 => 0.16693759736124
1201 => 0.15373087256094
1202 => 0.14661318037212
1203 => 0.15117553946065
1204 => 0.15674193242586
1205 => 0.15311154103868
1206 => 0.15325384550781
1207 => 0.14807786143977
1208 => 0.1571998921649
1209 => 0.1558708890166
1210 => 0.16276575970094
1211 => 0.16112024347733
1212 => 0.16674274286306
1213 => 0.16526215034433
1214 => 0.17140800711079
1215 => 0.17385975576737
1216 => 0.17797662334596
1217 => 0.18100500789544
1218 => 0.18278333322667
1219 => 0.18267656924411
1220 => 0.18972318016457
1221 => 0.18556803989461
1222 => 0.18034820442417
1223 => 0.18025379406888
1224 => 0.18295722082466
1225 => 0.18862286165587
1226 => 0.19009187989168
1227 => 0.19091286067834
1228 => 0.18965550002502
1229 => 0.18514539306356
1230 => 0.18319795174437
1231 => 0.18485722817113
]
'min_raw' => 0.068419943939051
'max_raw' => 0.19091286067834
'avg_raw' => 0.1296664023087
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.068419'
'max' => '$0.190912'
'avg' => '$0.129666'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.027086431306471
'max_diff' => 0.098638705471059
'year' => 2036
]
11 => [
'items' => [
101 => 0.18282807568445
102 => 0.18633096215609
103 => 0.19114117345783
104 => 0.19014788384566
105 => 0.19346830209685
106 => 0.19690458566864
107 => 0.20181862550946
108 => 0.20310333749022
109 => 0.20522691754119
110 => 0.20741277897335
111 => 0.20811481875474
112 => 0.20945523052757
113 => 0.20944816589588
114 => 0.21348758699342
115 => 0.21794319355446
116 => 0.21962508188372
117 => 0.223492491357
118 => 0.2168696881642
119 => 0.22189316046322
120 => 0.2264244582226
121 => 0.22102205823038
122 => 0.22846800802189
123 => 0.22875711737941
124 => 0.23312232543151
125 => 0.22869735079803
126 => 0.22606981498569
127 => 0.23365541242343
128 => 0.23732584407947
129 => 0.23622028019371
130 => 0.22780688443463
131 => 0.22290992723532
201 => 0.21009364569225
202 => 0.22527508480218
203 => 0.23266952094398
204 => 0.22778773463139
205 => 0.23024982369091
206 => 0.2436821832646
207 => 0.24879635610939
208 => 0.24773264390844
209 => 0.24791239376021
210 => 0.25067190859845
211 => 0.26290911708381
212 => 0.25557629810311
213 => 0.26118196345837
214 => 0.26415518815006
215 => 0.26691688494333
216 => 0.26013503046231
217 => 0.25131193742774
218 => 0.24851729349544
219 => 0.22730233719209
220 => 0.22619800658462
221 => 0.22557811235
222 => 0.22166976688651
223 => 0.21859887793813
224 => 0.21615679303159
225 => 0.20974803296852
226 => 0.21191080135868
227 => 0.20169657543034
228 => 0.20823127520935
301 => 0.1919291239966
302 => 0.20550603994762
303 => 0.1981167418621
304 => 0.20307845679199
305 => 0.20306114583602
306 => 0.19392505553694
307 => 0.18865554931777
308 => 0.19201348377288
309 => 0.19561345606192
310 => 0.19619753945406
311 => 0.20086499749569
312 => 0.20216758470843
313 => 0.19822068464183
314 => 0.19159129814771
315 => 0.19313115343009
316 => 0.18862434419962
317 => 0.18072633437515
318 => 0.18639882291711
319 => 0.18833565990705
320 => 0.18919107746098
321 => 0.18142429189116
322 => 0.17898379924
323 => 0.17768450143025
324 => 0.19058870366177
325 => 0.1912956249896
326 => 0.18767891552781
327 => 0.20402678524557
328 => 0.20032675884226
329 => 0.20446059486324
330 => 0.19299142770321
331 => 0.19342956533401
401 => 0.1879998777989
402 => 0.19104014000671
403 => 0.18889138067045
404 => 0.19079451686477
405 => 0.19193524885272
406 => 0.19736404542954
407 => 0.20556802808413
408 => 0.19655316425537
409 => 0.19262525898996
410 => 0.19506210932524
411 => 0.2015517628925
412 => 0.21138392024614
413 => 0.20556308520217
414 => 0.20814627295049
415 => 0.20871058455548
416 => 0.20441851629309
417 => 0.21154217492511
418 => 0.21535980145851
419 => 0.21927589633528
420 => 0.22267613179029
421 => 0.21771172192473
422 => 0.22302435210108
423 => 0.21874330998441
424 => 0.21490277263976
425 => 0.2149085971496
426 => 0.212499371972
427 => 0.2078311946085
428 => 0.20697031107998
429 => 0.21144873591295
430 => 0.21504000852058
501 => 0.21533580293358
502 => 0.21732411597541
503 => 0.21850077915232
504 => 0.230033677882
505 => 0.23467230515622
506 => 0.24034433078242
507 => 0.24255390442167
508 => 0.24920392889983
509 => 0.24383349404514
510 => 0.2426715666827
511 => 0.22654078250512
512 => 0.22918219751054
513 => 0.23341135779285
514 => 0.22661051980048
515 => 0.23092408616952
516 => 0.23177567554459
517 => 0.22637942992788
518 => 0.22926179786977
519 => 0.22160708317863
520 => 0.20573487994648
521 => 0.21155984522462
522 => 0.21584898033145
523 => 0.20972785568746
524 => 0.22069973469157
525 => 0.21429018948292
526 => 0.21225867136421
527 => 0.20433299489462
528 => 0.208073609101
529 => 0.21313284337557
530 => 0.210006824793
531 => 0.21649378272589
601 => 0.22568104516735
602 => 0.23222843549407
603 => 0.23273106282408
604 => 0.22852152948509
605 => 0.23526733352571
606 => 0.23531646934359
607 => 0.22770717482834
608 => 0.22304652430648
609 => 0.22198761470182
610 => 0.22463297850572
611 => 0.22784493852474
612 => 0.23290930425103
613 => 0.23596959439367
614 => 0.24394920803321
615 => 0.24610826269061
616 => 0.24848040917463
617 => 0.25165032842016
618 => 0.25545662922503
619 => 0.2471286597568
620 => 0.24745954550905
621 => 0.23970465564882
622 => 0.23141744366945
623 => 0.23770640454623
624 => 0.24592838430721
625 => 0.24404225306557
626 => 0.24383002477071
627 => 0.24418693389543
628 => 0.24276485253452
629 => 0.23633283124389
630 => 0.23310271041832
701 => 0.23727039037501
702 => 0.2394853267899
703 => 0.24292050000664
704 => 0.24249704239997
705 => 0.25134567969562
706 => 0.2547839925798
707 => 0.25390432501032
708 => 0.25406620501349
709 => 0.26029110625508
710 => 0.26721447668431
711 => 0.27369912671048
712 => 0.28029559123929
713 => 0.27234329578541
714 => 0.26830561058333
715 => 0.27247147106133
716 => 0.27026100685297
717 => 0.28296298986048
718 => 0.28384244760482
719 => 0.29654351211439
720 => 0.30859833474859
721 => 0.30102691663663
722 => 0.30816642289205
723 => 0.31588838099977
724 => 0.33078529103212
725 => 0.32576853581284
726 => 0.32192577993744
727 => 0.31829439420326
728 => 0.32585073144985
729 => 0.33557183860214
730 => 0.33766567197514
731 => 0.34105848194531
801 => 0.33749135711474
802 => 0.34178756606725
803 => 0.35695507151947
804 => 0.352856677659
805 => 0.34703629952746
806 => 0.35900958837927
807 => 0.36334267506976
808 => 0.39375454671874
809 => 0.43215079092734
810 => 0.41625449370165
811 => 0.40638714904335
812 => 0.4087062090946
813 => 0.42272721768468
814 => 0.42723032063925
815 => 0.41498933449606
816 => 0.41931305774348
817 => 0.44313719793583
818 => 0.4559180847791
819 => 0.43855992374383
820 => 0.39066944588217
821 => 0.34651223815885
822 => 0.35822471807205
823 => 0.35689688633046
824 => 0.38249295284513
825 => 0.35275893232086
826 => 0.35325957696934
827 => 0.37938494303282
828 => 0.37241514326925
829 => 0.36112496027677
830 => 0.34659466898916
831 => 0.31973408165473
901 => 0.29594291038974
902 => 0.34260287601991
903 => 0.34059081345629
904 => 0.33767704869321
905 => 0.34416131687117
906 => 0.37564708255169
907 => 0.37492123374328
908 => 0.37030375395546
909 => 0.37380607167792
910 => 0.36051098704656
911 => 0.36393743307952
912 => 0.34650524343154
913 => 0.35438532118497
914 => 0.36110073661475
915 => 0.3624489556857
916 => 0.36548656209433
917 => 0.3395305479141
918 => 0.35118403625248
919 => 0.35802936886709
920 => 0.32710190707896
921 => 0.35741803238691
922 => 0.33907871145414
923 => 0.3328540704822
924 => 0.34123472951683
925 => 0.33796877854058
926 => 0.33516090567427
927 => 0.33359406436949
928 => 0.33974789542494
929 => 0.33946081185078
930 => 0.32939194983694
1001 => 0.3162575297992
1002 => 0.3206658722865
1003 => 0.31906428013243
1004 => 0.31325990355659
1005 => 0.31717135254561
1006 => 0.29994731073699
1007 => 0.27031424203305
1008 => 0.28989075490432
1009 => 0.28913708045392
1010 => 0.28875704361962
1011 => 0.3034682519873
1012 => 0.30205410874807
1013 => 0.29948742492154
1014 => 0.31321276439529
1015 => 0.3082028308555
1016 => 0.32364226553634
1017 => 0.33381167577716
1018 => 0.33123238439413
1019 => 0.34079676387865
1020 => 0.32076743159381
1021 => 0.3274203723415
1022 => 0.32879153420902
1023 => 0.31304339583672
1024 => 0.30228548007101
1025 => 0.30156804973866
1026 => 0.28291530633303
1027 => 0.29287945130063
1028 => 0.30164748652778
1029 => 0.297448278081
1030 => 0.29611893413453
1031 => 0.30291026405751
1101 => 0.30343800855634
1102 => 0.29140537805531
1103 => 0.29390734296033
1104 => 0.30434095253129
1105 => 0.29364444276902
1106 => 0.27286287156588
1107 => 0.2677087545798
1108 => 0.26702110036464
1109 => 0.25304272632022
1110 => 0.26805317732218
1111 => 0.26150071320475
1112 => 0.28219986884115
1113 => 0.27037662215344
1114 => 0.26986694561955
1115 => 0.2690964947853
1116 => 0.2570647308059
1117 => 0.2596989224589
1118 => 0.26845537671218
1119 => 0.27157977823826
1120 => 0.27125387756163
1121 => 0.26841246530927
1122 => 0.26971324928801
1123 => 0.2655229708693
1124 => 0.26404329634654
1125 => 0.2593730365362
1126 => 0.25250904480719
1127 => 0.25346352495642
1128 => 0.23986416128012
1129 => 0.23245450617641
1130 => 0.23040361130139
1201 => 0.22766106896172
1202 => 0.23071338875628
1203 => 0.23982563599149
1204 => 0.22883433255474
1205 => 0.20999051376271
1206 => 0.21112305938042
1207 => 0.21366755312759
1208 => 0.20892590586324
1209 => 0.20443833466383
1210 => 0.20833991373356
1211 => 0.20035553929771
1212 => 0.21463242663236
1213 => 0.21424627684047
1214 => 0.21956781756204
1215 => 0.22289548618425
1216 => 0.21522628735557
1217 => 0.21329750458988
1218 => 0.21439622691151
1219 => 0.19623679436921
1220 => 0.2180838045035
1221 => 0.21827273835436
1222 => 0.21665497201825
1223 => 0.22828783046399
1224 => 0.25283679016405
1225 => 0.24360048404527
1226 => 0.24002390714725
1227 => 0.23322483184965
1228 => 0.24228419599456
1229 => 0.24158857817633
1230 => 0.23844273059706
1231 => 0.23654011216547
]
'min_raw' => 0.17768450143025
'max_raw' => 0.4559180847791
'avg_raw' => 0.31680129310467
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.177684'
'max' => '$0.455918'
'avg' => '$0.3168012'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.10926455749119
'max_diff' => 0.26500522410076
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0055773134643635
]
1 => [
'year' => 2028
'avg' => 0.0095722890105152
]
2 => [
'year' => 2029
'avg' => 0.02614976833949
]
3 => [
'year' => 2030
'avg' => 0.020174507330513
]
4 => [
'year' => 2031
'avg' => 0.019813866397733
]
5 => [
'year' => 2032
'avg' => 0.034739943448469
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0055773134643635
'min' => '$0.005577'
'max_raw' => 0.034739943448469
'max' => '$0.034739'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.034739943448469
]
1 => [
'year' => 2033
'avg' => 0.08935470681572
]
2 => [
'year' => 2034
'avg' => 0.056637307366074
]
3 => [
'year' => 2035
'avg' => 0.066803833919931
]
4 => [
'year' => 2036
'avg' => 0.1296664023087
]
5 => [
'year' => 2037
'avg' => 0.31680129310467
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.034739943448469
'min' => '$0.034739'
'max_raw' => 0.31680129310467
'max' => '$0.3168012'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.31680129310467
]
]
]
]
'prediction_2025_max_price' => '$0.009536'
'last_price' => 0.00924654
'sma_50day_nextmonth' => '$0.008127'
'sma_200day_nextmonth' => '$0.00819'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.008216'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.007968'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.0077059'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.007561'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.007559'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007961'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.008014'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.00846'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.008165'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.00786'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.007686'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.007718'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.00785'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.007833'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.008072'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.007513'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.007553'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.007788'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.008436'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.008188'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.008051'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.00797'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.007751'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.007691'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00789'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '79.21'
'rsi_14_action' => 'SELL'
'stoch_rsi_14' => 126.28
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.008976'
'vwma_10_action' => 'BUY'
'hma_9' => '0.008244'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 496.87
'cci_20_action' => 'SELL'
'adx_14' => 13.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000360'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 84.91
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.001614'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 2
'buy_signals' => 34
'sell_pct' => 5.56
'buy_pct' => 94.44
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767709350
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de JPYC para 2026
La previsión del precio de JPYC para 2026 sugiere que el precio medio podría oscilar entre $0.003194 en el extremo inferior y $0.009536 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, JPYC podría potencialmente ganar 3.13% para 2026 si JPYC alcanza el objetivo de precio previsto.
Predicción de precio de JPYC 2027-2032
La predicción del precio de JPYC para 2027-2032 está actualmente dentro de un rango de precios de $0.005577 en el extremo inferior y $0.034739 en el extremo superior. Considerando la volatilidad de precios en el mercado, si JPYC alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de JPYC | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.003075 | $0.005577 | $0.008079 |
| 2028 | $0.00555 | $0.009572 | $0.013594 |
| 2029 | $0.012192 | $0.026149 | $0.0401072 |
| 2030 | $0.010369 | $0.020174 | $0.029979 |
| 2031 | $0.012259 | $0.019813 | $0.027368 |
| 2032 | $0.018713 | $0.034739 | $0.050766 |
Predicción de precio de JPYC 2032-2037
La predicción de precio de JPYC para 2032-2037 se estima actualmente entre $0.034739 en el extremo inferior y $0.3168012 en el extremo superior. Comparado con el precio actual, JPYC podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de JPYC | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.018713 | $0.034739 | $0.050766 |
| 2033 | $0.043485 | $0.089354 | $0.135224 |
| 2034 | $0.034959 | $0.056637 | $0.078314 |
| 2035 | $0.041333 | $0.0668038 | $0.092274 |
| 2036 | $0.068419 | $0.129666 | $0.190912 |
| 2037 | $0.177684 | $0.3168012 | $0.455918 |
JPYC Histograma de precios potenciales
Pronóstico de precio de JPYC basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para JPYC es Alcista, con 34 indicadores técnicos mostrando señales alcistas y 2 indicando señales bajistas. La predicción de precio de JPYC se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de JPYC
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de JPYC aumentar durante el próximo mes, alcanzando $0.00819 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para JPYC alcance $0.008127 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 79.21, lo que sugiere que el mercado de JPYC está en un estado SELL.
Promedios Móviles y Osciladores Populares de JPYC para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.008216 | BUY |
| SMA 5 | $0.007968 | BUY |
| SMA 10 | $0.0077059 | BUY |
| SMA 21 | $0.007561 | BUY |
| SMA 50 | $0.007559 | BUY |
| SMA 100 | $0.007961 | BUY |
| SMA 200 | $0.008014 | BUY |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.00846 | BUY |
| EMA 5 | $0.008165 | BUY |
| EMA 10 | $0.00786 | BUY |
| EMA 21 | $0.007686 | BUY |
| EMA 50 | $0.007718 | BUY |
| EMA 100 | $0.00785 | BUY |
| EMA 200 | $0.007833 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.008072 | BUY |
| SMA 50 | $0.007513 | BUY |
| SMA 100 | $0.007553 | BUY |
| SMA 200 | $0.007788 | BUY |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.00797 | BUY |
| EMA 50 | $0.007751 | BUY |
| EMA 100 | $0.007691 | BUY |
| EMA 200 | $0.00789 | BUY |
Osciladores de JPYC
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 79.21 | SELL |
| Stoch RSI (14) | 126.28 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 496.87 | SELL |
| Índice Direccional Medio (14) | 13.94 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000360 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 84.91 | SELL |
| VWMA (10) | 0.008976 | BUY |
| Promedio Móvil de Hull (9) | 0.008244 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.001614 | NEUTRAL |
Predicción de precios de JPYC basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de JPYC
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de JPYC por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.012992 | $0.018257 | $0.025654 | $0.036048 | $0.050654 | $0.071178 |
| Amazon.com acción | $0.019293 | $0.040256 | $0.083998 | $0.175267 | $0.3657068 | $0.763069 |
| Apple acción | $0.013115 | $0.0186033 | $0.026387 | $0.037428 | $0.053089 | $0.0753034 |
| Netflix acción | $0.014589 | $0.02302 | $0.036322 | $0.05731 | $0.090427 | $0.142679 |
| Google acción | $0.011974 | $0.0155065 | $0.02008 | $0.0260047 | $0.033676 | $0.04361 |
| Tesla acción | $0.020961 | $0.047517 | $0.107718 | $0.244189 | $0.553559 | $1.25 |
| Kodak acción | $0.006933 | $0.005199 | $0.003899 | $0.002924 | $0.002192 | $0.001644 |
| Nokia acción | $0.006125 | $0.004057 | $0.002688 | $0.00178 | $0.001179 | $0.000781 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de JPYC
Podría preguntarse cosas como: "¿Debo invertir en JPYC ahora?", "¿Debería comprar JPYC hoy?", "¿Será JPYC una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de JPYC/JPY Coin v1 regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como JPYC, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de JPYC a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de JPYC es de $0.009246 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de JPYC basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si JPYC ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.009486 | $0.009733 | $0.009986 | $0.010246 |
| Si JPYC ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.009727 | $0.010232 | $0.010764 | $0.011324 |
| Si JPYC ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.010448 | $0.0118061 | $0.01334 | $0.015074 |
| Si JPYC ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.01165 | $0.014678 | $0.018493 | $0.02330064 |
| Si JPYC ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.014053 | $0.021359 | $0.032463 | $0.049339 |
| Si JPYC ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.021263 | $0.048899 | $0.112452 | $0.2586034 |
| Si JPYC ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.033281 | $0.119789 | $0.431162 | $1.55 |
Cuadro de preguntas
¿Es JPYC una buena inversión?
La decisión de adquirir JPYC depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de JPYC ha experimentado un aumento de 17.7315% durante las últimas 24 horas, y JPYC ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en JPYC dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede JPYC subir?
Parece que el valor medio de JPYC podría potencialmente aumentar hasta $0.009536 para el final de este año. Mirando las perspectivas de JPYC en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.029979. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de JPYC la próxima semana?
Basado en nuestro nuevo pronóstico experimental de JPYC, el precio de JPYC aumentará en un 0.86% durante la próxima semana y alcanzará $0.009325 para el 13 de enero de 2026.
¿Cuál será el precio de JPYC el próximo mes?
Basado en nuestro nuevo pronóstico experimental de JPYC, el precio de JPYC disminuirá en un -11.62% durante el próximo mes y alcanzará $0.008172 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de JPYC este año en 2026?
Según nuestra predicción más reciente sobre el valor de JPYC en 2026, se anticipa que JPYC fluctúe dentro del rango de $0.003194 y $0.009536. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de JPYC no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará JPYC en 5 años?
El futuro de JPYC parece estar en una tendencia alcista, con un precio máximo de $0.029979 proyectada después de un período de cinco años. Basado en el pronóstico de JPYC para 2030, el valor de JPYC podría potencialmente alcanzar su punto más alto de aproximadamente $0.029979, mientras que su punto más bajo se anticipa que esté alrededor de $0.010369.
¿Cuánto será JPYC en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de JPYC, se espera que el valor de JPYC en 2026 crezca en un 3.13% hasta $0.009536 si ocurre lo mejor. El precio estará entre $0.009536 y $0.003194 durante 2026.
¿Cuánto será JPYC en 2027?
Según nuestra última simulación experimental para la predicción de precios de JPYC, el valor de JPYC podría disminuir en un -12.62% hasta $0.008079 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.008079 y $0.003075 a lo largo del año.
¿Cuánto será JPYC en 2028?
Nuestro nuevo modelo experimental de predicción de precios de JPYC sugiere que el valor de JPYC en 2028 podría aumentar en un 47.02% , alcanzando $0.013594 en el mejor escenario. Se espera que el precio oscile entre $0.013594 y $0.00555 durante el año.
¿Cuánto será JPYC en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de JPYC podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0401072 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0401072 y $0.012192.
¿Cuánto será JPYC en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de JPYC, se espera que el valor de JPYC en 2030 aumente en un 224.23% , alcanzando $0.029979 en el mejor escenario. Se pronostica que el precio oscile entre $0.029979 y $0.010369 durante el transcurso de 2030.
¿Cuánto será JPYC en 2031?
Nuestra simulación experimental indica que el precio de JPYC podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.027368 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.027368 y $0.012259 durante el año.
¿Cuánto será JPYC en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de JPYC, JPYC podría experimentar un 449.04% aumento en valor, alcanzando $0.050766 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.050766 y $0.018713 a lo largo del año.
¿Cuánto será JPYC en 2033?
Según nuestra predicción experimental de precios de JPYC, se anticipa que el valor de JPYC aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.135224. A lo largo del año, el precio de JPYC podría oscilar entre $0.135224 y $0.043485.
¿Cuánto será JPYC en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de JPYC sugieren que JPYC podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.078314 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.078314 y $0.034959.
¿Cuánto será JPYC en 2035?
Basado en nuestra predicción experimental para el precio de JPYC, JPYC podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.092274 en 2035. El rango de precios esperado para el año está entre $0.092274 y $0.041333.
¿Cuánto será JPYC en 2036?
Nuestra reciente simulación de predicción de precios de JPYC sugiere que el valor de JPYC podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.190912 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.190912 y $0.068419.
¿Cuánto será JPYC en 2037?
Según la simulación experimental, el valor de JPYC podría aumentar en un 4830.69% en 2037, con un máximo de $0.455918 bajo condiciones favorables. Se espera que el precio caiga entre $0.455918 y $0.177684 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de JPYC?
Los traders de JPYC utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de JPYC
Las medias móviles son herramientas populares para la predicción de precios de JPYC. Una media móvil simple (SMA) calcula el precio de cierre promedio de JPYC durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de JPYC por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de JPYC.
¿Cómo leer gráficos de JPYC y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de JPYC en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de JPYC dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de JPYC?
La acción del precio de JPYC está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de JPYC. La capitalización de mercado de JPYC puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de JPYC, grandes poseedores de JPYC, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de JPYC.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


