Predicción del precio de Integral - Pronóstico de ITGR
Predicción de precio de Integral hasta $0.001999 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000669 | $0.001999 |
| 2027 | $0.000644 | $0.001693 |
| 2028 | $0.001163 | $0.002849 |
| 2029 | $0.002555 | $0.0084076 |
| 2030 | $0.002173 | $0.006284 |
| 2031 | $0.002569 | $0.005737 |
| 2032 | $0.003922 | $0.010642 |
| 2033 | $0.009115 | $0.028346 |
| 2034 | $0.007328 | $0.016416 |
| 2035 | $0.008664 | $0.019343 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Integral hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,958.75, equivalente a un ROI del 39.59% en los próximos 90 días.
Predicción del precio a largo plazo de Integral para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Integral'
'name_with_ticker' => 'Integral <small>ITGR</small>'
'name_lang' => 'Integral'
'name_lang_with_ticker' => 'Integral <small>ITGR</small>'
'name_with_lang' => 'Integral'
'name_with_lang_with_ticker' => 'Integral <small>ITGR</small>'
'image' => '/uploads/coins/integral.png?1717121271'
'price_for_sd' => 0.001938
'ticker' => 'ITGR'
'marketcap' => '$162.71K'
'low24h' => '$0.001775'
'high24h' => '$0.002585'
'volume24h' => '$66.25K'
'current_supply' => '83.94M'
'max_supply' => '299.97M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.001938'
'change_24h_pct' => '8.908%'
'ath_price' => '$3.45'
'ath_days' => 1574
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '15 sept. 2021'
'ath_pct' => '-99.94%'
'fdv' => '$581.45K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.095573'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001954'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001713'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000669'
'current_year_max_price_prediction' => '$0.001999'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002173'
'grand_prediction_max_price' => '$0.006284'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0019750705234332
107 => 0.0019824447198171
108 => 0.0019990591608058
109 => 0.0018570905816393
110 => 0.0019208303057065
111 => 0.0019582714219916
112 => 0.0017891110964963
113 => 0.0019549276662484
114 => 0.0018546192245276
115 => 0.0018205730328253
116 => 0.0018664117447077
117 => 0.0018485483541075
118 => 0.0018331904598429
119 => 0.0018246204909612
120 => 0.0018582793819337
121 => 0.0018567091544387
122 => 0.0018016366758985
123 => 0.0017297968726843
124 => 0.0017539086687041
125 => 0.0017451486271608
126 => 0.00171340110654
127 => 0.0017347951022282
128 => 0.001640586772471
129 => 0.0014785062376465
130 => 0.0015855816036126
131 => 0.0015814593184985
201 => 0.0015793806754132
202 => 0.001659844853591
203 => 0.0016521100794836
204 => 0.0016380713887396
205 => 0.0017131432749752
206 => 0.0016857410266399
207 => 0.0017701882992278
208 => 0.0018258107346613
209 => 0.0018117030858381
210 => 0.0018640162552098
211 => 0.0017544641557855
212 => 0.0017908529687469
213 => 0.0017983526526655
214 => 0.0017122168995522
215 => 0.0016533755841851
216 => 0.0016494515392903
217 => 0.0015474288072765
218 => 0.0016019285272195
219 => 0.0016498860254178
220 => 0.001626918105433
221 => 0.0016196471481129
222 => 0.001656792892183
223 => 0.001659679434629
224 => 0.0015938659609576
225 => 0.0016075506661755
226 => 0.0016646181618273
227 => 0.0016061127117052
228 => 0.0014924461789289
301 => 0.0014642553072377
302 => 0.0014604941252932
303 => 0.0013840382454202
304 => 0.001466139156084
305 => 0.0014302999084116
306 => 0.0015435156623884
307 => 0.0014788474309052
308 => 0.0014760597126967
309 => 0.0014718456677552
310 => 0.0014060369335959
311 => 0.0014204448640136
312 => 0.0014683390191116
313 => 0.0014854281932168
314 => 0.0014836456523502
315 => 0.001468104311623
316 => 0.0014752190578234
317 => 0.0014522999813702
318 => 0.0014442067784552
319 => 0.0014186624038448
320 => 0.001381119229981
321 => 0.0013863398385725
322 => 0.0013119569874426
323 => 0.0012714292623503
324 => 0.0012602117221916
325 => 0.0012452111586781
326 => 0.0012619060757554
327 => 0.001311746270171
328 => 0.0012516284215187
329 => 0.0011485605867811
330 => 0.0011547551392679
331 => 0.0011686724595265
401 => 0.0011427376252968
402 => 0.001118192481244
403 => 0.0011395324925874
404 => 0.0010958612922898
405 => 0.0011739499154409
406 => 0.0011718378370255
407 => 0.0012009444467681
408 => 0.0012191454071679
409 => 0.0011771980860772
410 => 0.0011666484482605
411 => 0.0011726580014152
412 => 0.0010733334742132
413 => 0.0011928275138707
414 => 0.0011938609032877
415 => 0.00118501239571
416 => 0.001248639282863
417 => 0.0013829118604797
418 => 0.0013323931156784
419 => 0.0013128307307541
420 => 0.0012756426227132
421 => 0.0013251935686664
422 => 0.0013213888291324
423 => 0.0013041823540548
424 => 0.0012937758242405
425 => 0.0013129501745051
426 => 0.0012913999100496
427 => 0.0012875288903917
428 => 0.0012640747229759
429 => 0.0012557026523051
430 => 0.0012495043044822
501 => 0.0012426805325662
502 => 0.0012577320730348
503 => 0.0012236233021379
504 => 0.0011824914681603
505 => 0.0011790718012177
506 => 0.0011885138023065
507 => 0.001184336419699
508 => 0.0011790518015169
509 => 0.0011689620262272
510 => 0.0011659686054327
511 => 0.0011756957708135
512 => 0.0011647143682275
513 => 0.0011809180259312
514 => 0.001176511527625
515 => 0.0011518971862896
516 => 0.0011212186035893
517 => 0.0011209454998528
518 => 0.001114335849533
519 => 0.0011059174660831
520 => 0.0011035756643939
521 => 0.0011377352963542
522 => 0.0012084447122004
523 => 0.0011945627619369
524 => 0.0012045938936818
525 => 0.0012539371336906
526 => 0.0012696218658864
527 => 0.0012584892144871
528 => 0.0012432501546196
529 => 0.0012439205959142
530 => 0.0012959970766585
531 => 0.0012992450228842
601 => 0.0013074515351694
602 => 0.0013179992226159
603 => 0.0012602855312687
604 => 0.0012412022862419
605 => 0.0012321595860501
606 => 0.0012043115694246
607 => 0.0012343432678466
608 => 0.0012168450832617
609 => 0.0012192061861853
610 => 0.0012176685148088
611 => 0.0012185081873573
612 => 0.0011739280880792
613 => 0.0011901707331951
614 => 0.0011631641853771
615 => 0.0011270054494761
616 => 0.0011268842327145
617 => 0.0011357340321002
618 => 0.0011304698251329
619 => 0.001116303979539
620 => 0.0011183161710447
621 => 0.0011006872561273
622 => 0.0011204566404975
623 => 0.001121023555703
624 => 0.0011134112658748
625 => 0.0011438687301464
626 => 0.0011563471781094
627 => 0.0011513366058735
628 => 0.0011559956230042
629 => 0.0011951396196436
630 => 0.0012015217990681
701 => 0.0012043563415854
702 => 0.0012005584301172
703 => 0.0011567111034051
704 => 0.001158655918798
705 => 0.0011443861538501
706 => 0.0011323297061799
707 => 0.001132811900859
708 => 0.00113901048219
709 => 0.0011660800504043
710 => 0.0012230463608731
711 => 0.0012252081907135
712 => 0.0012278283915452
713 => 0.0012171707179554
714 => 0.0012139562616205
715 => 0.0012181969592478
716 => 0.0012395905103136
717 => 0.0012946205319472
718 => 0.0012751692469703
719 => 0.0012593550495068
720 => 0.0012732283641593
721 => 0.0012710926761112
722 => 0.0012530653197046
723 => 0.0012525593518522
724 => 0.0012179590912134
725 => 0.0012051681626651
726 => 0.0011944791053857
727 => 0.0011828069338815
728 => 0.0011758872793591
729 => 0.0011865190136323
730 => 0.0011889506170515
731 => 0.0011657041442523
801 => 0.0011625357359084
802 => 0.0011815193074062
803 => 0.0011731653453689
804 => 0.0011817576024926
805 => 0.0011837510798483
806 => 0.0011834300840804
807 => 0.001174707588267
808 => 0.0011802670469899
809 => 0.0011671172697559
810 => 0.0011528188620465
811 => 0.0011436973687503
812 => 0.0011357376560588
813 => 0.0011401541672812
814 => 0.0011244101111963
815 => 0.0011193732707894
816 => 0.0011783836274663
817 => 0.0012219752124118
818 => 0.0012213413735025
819 => 0.0012174830421525
820 => 0.0012117503444003
821 => 0.0012391711277662
822 => 0.0012296182751374
823 => 0.0012365687735924
824 => 0.0012383379671607
825 => 0.001243692783245
826 => 0.0012456066697331
827 => 0.0012398215754863
828 => 0.0012204060926045
829 => 0.0011720245552318
830 => 0.0011495028189813
831 => 0.0011420702708894
901 => 0.0011423404298961
902 => 0.0011348882384479
903 => 0.0011370832428132
904 => 0.0011341249055072
905 => 0.0011285225303482
906 => 0.0011398082364023
907 => 0.0011411088088914
908 => 0.0011384745902442
909 => 0.0011390950440957
910 => 0.0011172848387867
911 => 0.001118943021327
912 => 0.0011097100502306
913 => 0.0011079789794552
914 => 0.0010846388325301
915 => 0.0010432883790441
916 => 0.001066200544261
917 => 0.0010385258706169
918 => 0.0010280450523682
919 => 0.0010776596158561
920 => 0.0010726796897757
921 => 0.0010641562210479
922 => 0.0010515482343529
923 => 0.0010468718094451
924 => 0.0010184593320817
925 => 0.0010167805713444
926 => 0.0010308625623271
927 => 0.0010243642080203
928 => 0.0010152380574543
929 => 0.00098218406520732
930 => 0.00094502043412097
1001 => 0.00094614217054121
1002 => 0.00095796323013584
1003 => 0.0009923345551943
1004 => 0.000978905083864
1005 => 0.00096916184832844
1006 => 0.00096733723319321
1007 => 0.00099017611170109
1008 => 0.0010224979096827
1009 => 0.0010376625741362
1010 => 0.0010226348522205
1011 => 0.0010053718144337
1012 => 0.0010064225355546
1013 => 0.0010134125124404
1014 => 0.0010141470601781
1015 => 0.0010029105972479
1016 => 0.0010060735957448
1017 => 0.0010012687117973
1018 => 0.00097178114788104
1019 => 0.00097124781135587
1020 => 0.00096401108761961
1021 => 0.00096379196250093
1022 => 0.00095148049014021
1023 => 0.00094975803005176
1024 => 0.00092531285442659
1025 => 0.00094140274304989
1026 => 0.00093061049051845
1027 => 0.00091434402031856
1028 => 0.0009115396747249
1029 => 0.00091145537271001
1030 => 0.00092815740048911
1031 => 0.00094120757013089
1101 => 0.0009307982263718
1102 => 0.0009284282205745
1103 => 0.00095373368204883
1104 => 0.00095051333141182
1105 => 0.0009477245285292
1106 => 0.001019603847182
1107 => 0.00096270575765514
1108 => 0.000937894942992
1109 => 0.00090718684840044
1110 => 0.00091718555884311
1111 => 0.000919292434045
1112 => 0.0008454450021024
1113 => 0.0008154851081604
1114 => 0.00080520400157429
1115 => 0.00079928707938048
1116 => 0.00080198349512423
1117 => 0.00077501607663137
1118 => 0.00079313862785851
1119 => 0.00076978712294283
1120 => 0.00076587216715134
1121 => 0.00080762755063694
1122 => 0.00081343756831755
1123 => 0.00078865022786107
1124 => 0.00080456771314003
1125 => 0.00079879581170828
1126 => 0.00077018741747172
1127 => 0.00076909478724099
1128 => 0.00075474010064677
1129 => 0.00073227779574185
1130 => 0.0007220119196562
1201 => 0.00071666536225837
1202 => 0.00071887145604304
1203 => 0.00071775598751793
1204 => 0.00071047680085958
1205 => 0.00071817322197648
1206 => 0.00069851204640358
1207 => 0.0006906828078696
1208 => 0.00068714652246075
1209 => 0.00066969609748477
1210 => 0.00069746748386077
1211 => 0.00070293879683155
1212 => 0.00070842088997906
1213 => 0.00075613876804415
1214 => 0.00075375491770534
1215 => 0.00077530376378596
1216 => 0.00077446641525305
1217 => 0.0007683203352827
1218 => 0.00074239103486885
1219 => 0.00075272599186847
1220 => 0.00072091660063255
1221 => 0.00074475035937485
1222 => 0.00073387362720643
1223 => 0.0007410729252877
1224 => 0.00072812793820303
1225 => 0.0007352922285411
1226 => 0.00070423624810925
1227 => 0.00067523661055142
1228 => 0.00068690691125689
1229 => 0.0006995938627845
1230 => 0.00072710240627149
1231 => 0.00071071854471119
]
'min_raw' => 0.00066969609748477
'max_raw' => 0.0019990591608058
'avg_raw' => 0.0013343776291453
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000669'
'max' => '$0.001999'
'avg' => '$0.001334'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0012686439025152
'max_diff' => 6.0719160805787E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00071661080087067
102 => 0.00069687272908819
103 => 0.00065614744909946
104 => 0.00065637794976144
105 => 0.00065011325268363
106 => 0.00064469963974765
107 => 0.0007126004282995
108 => 0.00070415589189046
109 => 0.00069070062831625
110 => 0.00070871103330125
111 => 0.00071347327024284
112 => 0.00071360884443366
113 => 0.00072674877099487
114 => 0.00073376155215606
115 => 0.00073499758523085
116 => 0.00075567354358183
117 => 0.00076260385209859
118 => 0.00079114881206516
119 => 0.00073316656667011
120 => 0.00073197246048247
121 => 0.00070896447663412
122 => 0.00069437244953566
123 => 0.00070996360521357
124 => 0.00072377524073922
125 => 0.00070939364264968
126 => 0.00071127157574807
127 => 0.00069196545533261
128 => 0.00069886648494374
129 => 0.00070481058131392
130 => 0.00070152860067614
131 => 0.00069661531681173
201 => 0.00072264284413193
202 => 0.00072117426903782
203 => 0.00074541170084866
204 => 0.00076430651218058
205 => 0.00079816939193893
206 => 0.00076283171159925
207 => 0.00076154386607311
208 => 0.00077413276266801
209 => 0.00076260192480411
210 => 0.0007698890163031
211 => 0.00079699532884044
212 => 0.00079756804251079
213 => 0.00078797435063261
214 => 0.00078739057360994
215 => 0.00078923314707864
216 => 0.00080002515743652
217 => 0.00079625409741249
218 => 0.00080061806354385
219 => 0.00080607527001454
220 => 0.0008286485897849
221 => 0.00083409094075992
222 => 0.00082086884942608
223 => 0.00082206265623204
224 => 0.00081711723111867
225 => 0.00081234001242514
226 => 0.00082307850239143
227 => 0.00084270330387037
228 => 0.0008425812189989
301 => 0.00084713379149038
302 => 0.00084997000643703
303 => 0.00083779489564978
304 => 0.00082986934621852
305 => 0.00083290850618628
306 => 0.00083776818915902
307 => 0.00083133257649539
308 => 0.00079160899386966
309 => 0.00080365859128602
310 => 0.00080165294908073
311 => 0.00079879667068596
312 => 0.0008109126340649
313 => 0.00080974401983991
314 => 0.00077473948677666
315 => 0.00077698036341143
316 => 0.00077487576190683
317 => 0.00078167615992916
318 => 0.0007622346809939
319 => 0.00076821474897403
320 => 0.00077196539155151
321 => 0.00077417454884344
322 => 0.00078215553981523
323 => 0.00078121906264094
324 => 0.0007820973270792
325 => 0.00079393102978686
326 => 0.00085378183724582
327 => 0.00085703938464245
328 => 0.00084099802986947
329 => 0.00084740623469954
330 => 0.00083510388274614
331 => 0.00084336253403105
401 => 0.00084901289349319
402 => 0.00082348000558543
403 => 0.0008219681136706
404 => 0.0008096149855345
405 => 0.0008162528568779
406 => 0.00080569152629071
407 => 0.00080828290739714
408 => 0.00080103717991101
409 => 0.0008140780467761
410 => 0.00082865976227712
411 => 0.00083234367946207
412 => 0.00082265287937453
413 => 0.0008156361014563
414 => 0.00080331695090224
415 => 0.00082380397282382
416 => 0.00082979500236438
417 => 0.00082377250449611
418 => 0.00082237696014585
419 => 0.00081973240612381
420 => 0.00082293801478324
421 => 0.00082976237393086
422 => 0.00082654413218297
423 => 0.00082866983755557
424 => 0.00082056884069307
425 => 0.00083779892611806
426 => 0.00086516444841882
427 => 0.00086525243304773
428 => 0.00086203417395232
429 => 0.00086071733166883
430 => 0.00086401946080102
501 => 0.0008658107303948
502 => 0.00087648921050137
503 => 0.00088794764510513
504 => 0.0009414191596942
505 => 0.00092640457236731
506 => 0.00097384768114537
507 => 0.0010113690204722
508 => 0.0010226200295269
509 => 0.0010122696305974
510 => 0.00097686147497709
511 => 0.00097512418193883
512 => 0.0010280389153733
513 => 0.0010130880795297
514 => 0.0010113097251793
515 => 0.00099239103946787
516 => 0.0010035743258481
517 => 0.0010011283770679
518 => 0.00099726732725828
519 => 0.0010186042586374
520 => 0.001058545089418
521 => 0.0010523199363781
522 => 0.0010476731484104
523 => 0.0010273122761953
524 => 0.0010395740690342
525 => 0.0010352078794635
526 => 0.0010539678007118
527 => 0.0010428548389474
528 => 0.0010129748122437
529 => 0.0010177333049821
530 => 0.0010170140683774
531 => 0.0010318159067356
601 => 0.0010273727622647
602 => 0.0010161464731096
603 => 0.0010584085760005
604 => 0.001055664310113
605 => 0.001059555051715
606 => 0.0010612678764934
607 => 0.0010869920737814
608 => 0.0010975304543277
609 => 0.0010999228512121
610 => 0.0011099334976635
611 => 0.0010996737772089
612 => 0.0011407199740842
613 => 0.0011680132998942
614 => 0.0011997159023244
615 => 0.001246041925331
616 => 0.0012634609385211
617 => 0.0012603143496999
618 => 0.0012954382116319
619 => 0.0013585550107642
620 => 0.0012730720593829
621 => 0.0013630858147562
622 => 0.0013345884990638
623 => 0.0012670218762019
624 => 0.0012626713822477
625 => 0.0013084282837144
626 => 0.001409912687229
627 => 0.0013844919951752
628 => 0.0014099542663745
629 => 0.0013802511745123
630 => 0.0013787761656441
701 => 0.0014085116535013
702 => 0.0014779902416768
703 => 0.0014449835688005
704 => 0.0013976604096642
705 => 0.0014326030939406
706 => 0.0014023325070276
707 => 0.001334124402509
708 => 0.001384472556451
709 => 0.0013508061797428
710 => 0.0013606318182693
711 => 0.0014313935346144
712 => 0.0014228792976914
713 => 0.0014338975086668
714 => 0.0014144506546921
715 => 0.0013962842265923
716 => 0.0013623752394874
717 => 0.0013523364600985
718 => 0.0013551108175641
719 => 0.0013523350852647
720 => 0.0013333633186192
721 => 0.0013292663674184
722 => 0.0013224379359255
723 => 0.0013245543523738
724 => 0.0013117149034391
725 => 0.0013359455963443
726 => 0.0013404430264677
727 => 0.001358076104092
728 => 0.0013599068287065
729 => 0.0014090146988991
730 => 0.0013819669092212
731 => 0.0014001129017309
801 => 0.0013984897533642
802 => 0.0012684862497992
803 => 0.0012863995855598
804 => 0.0013142671144889
805 => 0.0013017128304799
806 => 0.0012839640101412
807 => 0.0012696308860861
808 => 0.0012479147375056
809 => 0.001278479799611
810 => 0.0013186696060478
811 => 0.001360926108521
812 => 0.0014116945274868
813 => 0.0014003636073832
814 => 0.0013599770282422
815 => 0.00136178874068
816 => 0.0013729880340883
817 => 0.0013584839315615
818 => 0.0013542063885727
819 => 0.0013724003653677
820 => 0.0013725256572867
821 => 0.0013558369344503
822 => 0.0013372904730217
823 => 0.0013372127626711
824 => 0.0013339125989975
825 => 0.0013808382662985
826 => 0.001406642638594
827 => 0.0014096010682918
828 => 0.0014064435127038
829 => 0.0014076587305307
830 => 0.0013926437348525
831 => 0.0014269635624142
901 => 0.001458458830064
902 => 0.0014500174255356
903 => 0.0014373625601312
904 => 0.0014272823502957
905 => 0.001447642848452
906 => 0.0014467362275195
907 => 0.0014581837463769
908 => 0.0014576644207975
909 => 0.0014538150507687
910 => 0.0014500175630087
911 => 0.0014650741727285
912 => 0.001460738110931
913 => 0.0014563953140318
914 => 0.0014476851700016
915 => 0.0014488690232355
916 => 0.001436216342872
917 => 0.0014303626339886
918 => 0.0013423368973936
919 => 0.0013188135442515
920 => 0.001326214470012
921 => 0.0013286510469373
922 => 0.0013184136535039
923 => 0.0013330914459168
924 => 0.0013308039275169
925 => 0.0013397033234575
926 => 0.0013341433672407
927 => 0.0013343715497832
928 => 0.0013507221955093
929 => 0.0013554688575242
930 => 0.0013530546669131
1001 => 0.0013547454832635
1002 => 0.0013937096324086
1003 => 0.0013881701764035
1004 => 0.0013852274508063
1005 => 0.0013860426059076
1006 => 0.001395998781415
1007 => 0.00139878596697
1008 => 0.0013869764659213
1009 => 0.0013925458948858
1010 => 0.0014162598165508
1011 => 0.0014245583470418
1012 => 0.0014510432728486
1013 => 0.0014397920056338
1014 => 0.0014604441935499
1015 => 0.0015239219783542
1016 => 0.0015746324251844
1017 => 0.0015279970025815
1018 => 0.0016211202802488
1019 => 0.0016936301096536
1020 => 0.0016908470616296
1021 => 0.0016782032956903
1022 => 0.0015956527826865
1023 => 0.0015196885698616
1024 => 0.0015832358595005
1025 => 0.0015833978546104
1026 => 0.0015779390860731
1027 => 0.0015440351435102
1028 => 0.001576759302363
1029 => 0.001579356827256
1030 => 0.0015779029040535
1031 => 0.0015519088307825
1101 => 0.0015122206854055
1102 => 0.0015199756540122
1103 => 0.001532678450787
1104 => 0.0015086294064113
1105 => 0.0015009442795502
1106 => 0.0015152323925401
1107 => 0.00156127166964
1108 => 0.0015525682109916
1109 => 0.0015523409285129
1110 => 0.0015895780154514
1111 => 0.0015629242974697
1112 => 0.0015200734690012
1113 => 0.0015092530696799
1114 => 0.0014708479415836
1115 => 0.001497374500354
1116 => 0.0014983291439799
1117 => 0.0014838008188361
1118 => 0.0015212523625164
1119 => 0.0015209072399482
1120 => 0.0015564619067459
1121 => 0.0016244290759402
1122 => 0.0016043278395482
1123 => 0.0015809522886326
1124 => 0.0015834938591508
1125 => 0.0016113686146055
1126 => 0.0015945149011388
1127 => 0.0016005756140097
1128 => 0.0016113594409907
1129 => 0.0016178655915556
1130 => 0.0015825577242085
1201 => 0.0015743257713594
1202 => 0.0015574860848529
1203 => 0.0015530929249709
1204 => 0.0015668084982589
1205 => 0.0015631949292759
1206 => 0.0014982489098797
1207 => 0.0014914616894965
1208 => 0.0014916698438558
1209 => 0.0014746030554876
1210 => 0.0014485721067277
1211 => 0.0015169798858417
1212 => 0.0015114857838126
1213 => 0.0015054207203821
1214 => 0.0015061636560456
1215 => 0.0015358571544042
1216 => 0.0015186334257986
1217 => 0.0015644255312103
1218 => 0.0015550120509743
1219 => 0.0015453571504906
1220 => 0.0015440225491483
1221 => 0.0015403062361795
1222 => 0.0015275616162303
1223 => 0.0015121717218087
1224 => 0.0015020099804617
1225 => 0.0013855248110287
1226 => 0.0014071437809124
1227 => 0.0014320144351325
1228 => 0.0014405996853064
1229 => 0.0014259140208027
1230 => 0.0015281414957751
1231 => 0.001546819440541
]
'min_raw' => 0.00064469963974765
'max_raw' => 0.0016936301096536
'avg_raw' => 0.0011691648747006
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000644'
'max' => '$0.001693'
'avg' => '$0.001169'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.4996457737119E-5
'max_diff' => -0.0003054290511522
'year' => 2027
]
2 => [
'items' => [
101 => 0.0014902427275129
102 => 0.0014796595345173
103 => 0.0015288353281459
104 => 0.0014991763130916
105 => 0.0015125317657545
106 => 0.0014836645821393
107 => 0.0015423204706009
108 => 0.0015418736110063
109 => 0.0015190551455914
110 => 0.001538341156306
111 => 0.0015349897373389
112 => 0.0015092277460849
113 => 0.0015431371716745
114 => 0.0015431539903265
115 => 0.0015211917134809
116 => 0.0014955445822858
117 => 0.0014909594809863
118 => 0.0014875052230789
119 => 0.0015116822300591
120 => 0.0015333592589181
121 => 0.0015736948354334
122 => 0.001583836157719
123 => 0.0016234184137458
124 => 0.0015998491075069
125 => 0.001610297075689
126 => 0.001621639823106
127 => 0.0016270779533334
128 => 0.001618216811954
129 => 0.0016797043482702
130 => 0.0016848957802647
131 => 0.0016866364225068
201 => 0.0016659031712167
202 => 0.0016843191510402
203 => 0.0016757029239539
204 => 0.0016981199531755
205 => 0.0017016352295925
206 => 0.0016986579155269
207 => 0.0016997737197465
208 => 0.0016473049546454
209 => 0.0016445841723801
210 => 0.001607486113135
211 => 0.0016226038464924
212 => 0.0015943419685926
213 => 0.0016033041012043
214 => 0.0016072545238651
215 => 0.0016051910472516
216 => 0.001623458580454
217 => 0.0016079274454215
218 => 0.0015669382265157
219 => 0.0015259378401247
220 => 0.0015254231136718
221 => 0.001514628435652
222 => 0.0015068258605875
223 => 0.0015083289133562
224 => 0.0015136258673591
225 => 0.0015065179919915
226 => 0.0015080348175796
227 => 0.001533224228898
228 => 0.0015382757856952
229 => 0.0015211086219276
301 => 0.0014521799821906
302 => 0.0014352647211047
303 => 0.001447423075329
304 => 0.0014416121651081
305 => 0.0011634935304586
306 => 0.0012288333782775
307 => 0.0011900106594351
308 => 0.0012079019544251
309 => 0.0011682740115813
310 => 0.0011871865429848
311 => 0.0011836940890096
312 => 0.0012887586307557
313 => 0.0012871181924479
314 => 0.0012879033834558
315 => 0.0012504241708451
316 => 0.0013101295742055
317 => 0.0013395426028377
318 => 0.0013340990340403
319 => 0.0013354690630295
320 => 0.0013119274258714
321 => 0.0012881313179629
322 => 0.0012617377720977
323 => 0.0013107737179745
324 => 0.0013053217578645
325 => 0.0013178265928035
326 => 0.0013496299088664
327 => 0.0013543130679657
328 => 0.0013606072812871
329 => 0.001358351253864
330 => 0.0014120989798499
331 => 0.0014055897755941
401 => 0.0014212750850247
402 => 0.0013890092134786
403 => 0.0013524973171196
404 => 0.0013594370349536
405 => 0.0013587686843205
406 => 0.0013502598136639
407 => 0.0013425783856925
408 => 0.001329790972349
409 => 0.001370252240349
410 => 0.0013686095867591
411 => 0.0013952022390028
412 => 0.0013905017294115
413 => 0.0013591105759509
414 => 0.0013602317171379
415 => 0.0013677719304224
416 => 0.0013938686946929
417 => 0.0014016159911316
418 => 0.0013980271347448
419 => 0.0014065216916124
420 => 0.0014132354430094
421 => 0.0014073648354211
422 => 0.0014904802588564
423 => 0.001455964940259
424 => 0.0014727874663873
425 => 0.0014767995397448
426 => 0.0014665226982043
427 => 0.0014687513771484
428 => 0.0014721272184699
429 => 0.0014926246659168
430 => 0.0015464158990018
501 => 0.0015702396699658
502 => 0.0016419146603551
503 => 0.0015682614374301
504 => 0.0015638911599891
505 => 0.0015768019901356
506 => 0.0016188827970624
507 => 0.0016529853386274
508 => 0.0016642991190873
509 => 0.0016657944219452
510 => 0.0016870198262139
511 => 0.0016991858321104
512 => 0.0016844425038522
513 => 0.0016719490768441
514 => 0.0016271991720425
515 => 0.0016323790953732
516 => 0.0016680636304392
517 => 0.0017184701380284
518 => 0.0017617241654433
519 => 0.0017465781125976
520 => 0.0018621318043628
521 => 0.0018735884809069
522 => 0.0018720055386472
523 => 0.0018981055527965
524 => 0.0018463023398855
525 => 0.0018241554627261
526 => 0.0016746502975697
527 => 0.0017166551507422
528 => 0.001777711671687
529 => 0.0017696306121897
530 => 0.0017252897346341
531 => 0.0017616905289115
601 => 0.0017496552879653
602 => 0.0017401625940885
603 => 0.0017836504649876
604 => 0.0017358337645507
605 => 0.0017772346635222
606 => 0.0017241375823538
607 => 0.0017466472984912
608 => 0.0017338696949392
609 => 0.0017421383704015
610 => 0.0016937998626053
611 => 0.0017198821480612
612 => 0.0016927147537797
613 => 0.0016927018728976
614 => 0.001692102151163
615 => 0.0017240644700565
616 => 0.0017251067601281
617 => 0.0017014865581735
618 => 0.0016980825180549
619 => 0.0017106690385029
620 => 0.0016959335194732
621 => 0.001702828176083
622 => 0.0016961423515982
623 => 0.0016946372316817
624 => 0.0016826441801119
625 => 0.0016774772437397
626 => 0.0016795033326268
627 => 0.0016725872467348
628 => 0.0016684200548192
629 => 0.0016912731918043
630 => 0.0016790636826061
701 => 0.0016894019094107
702 => 0.0016776201951786
703 => 0.0016367796406017
704 => 0.0016132918057835
705 => 0.0015361477841091
706 => 0.0015580257329591
707 => 0.001572530835681
708 => 0.001567736899318
709 => 0.0015780361296329
710 => 0.0015786684187274
711 => 0.0015753200339638
712 => 0.0015714430333621
713 => 0.0015695559238808
714 => 0.0015836208918746
715 => 0.0015917860792
716 => 0.0015739866167924
717 => 0.0015698164517913
718 => 0.0015878126910206
719 => 0.0015987903865543
720 => 0.0016798435225415
721 => 0.0016738388444294
722 => 0.0016889094081323
723 => 0.001687212693936
724 => 0.0017030090456256
725 => 0.0017288294046019
726 => 0.0016763293953172
727 => 0.0016854415816153
728 => 0.0016832074839661
729 => 0.001707598776288
730 => 0.0017076749232402
731 => 0.0016930511250579
801 => 0.0017009789232965
802 => 0.0016965538438075
803 => 0.0017045505605296
804 => 0.0016737586482924
805 => 0.0017112598736158
806 => 0.0017325206518486
807 => 0.001732815857775
808 => 0.0017428932979213
809 => 0.001753132560756
810 => 0.0017727859341154
811 => 0.0017525844388399
812 => 0.0017162439154153
813 => 0.0017188675838274
814 => 0.00169756114824
815 => 0.0016979193132716
816 => 0.0016960074002633
817 => 0.0017017451951233
818 => 0.0016750177715999
819 => 0.0016812906444788
820 => 0.0016725085857145
821 => 0.0016854224911347
822 => 0.0016715292636476
823 => 0.0016832064066166
824 => 0.0016882458744186
825 => 0.0017068416191
826 => 0.0016687826570384
827 => 0.0015911778570295
828 => 0.0016074913268586
829 => 0.0015833624235859
830 => 0.001585595645449
831 => 0.0015901071090271
901 => 0.0015754839795115
902 => 0.0015782736117953
903 => 0.0015781739464998
904 => 0.0015773150848266
905 => 0.0015735110440675
906 => 0.0015679944323603
907 => 0.0015899709154782
908 => 0.0015937051481998
909 => 0.0016020058849663
910 => 0.0016267032471401
911 => 0.001624235398255
912 => 0.0016282605621766
913 => 0.0016194736519361
914 => 0.0015860032450136
915 => 0.0015878208491405
916 => 0.0015651552965532
917 => 0.0016014262758276
918 => 0.0015928368291819
919 => 0.0015872991570517
920 => 0.0015857881519049
921 => 0.0016105467340624
922 => 0.0016179548898872
923 => 0.00161333862432
924 => 0.0016038705289638
925 => 0.0016220520710388
926 => 0.0016269166846804
927 => 0.0016280056922747
928 => 0.0016602198988668
929 => 0.001629806108568
930 => 0.00163712701018
1001 => 0.0016942425947132
1002 => 0.0016424466409535
1003 => 0.0016698841128476
1004 => 0.0016685411913761
1005 => 0.0016825772735637
1006 => 0.0016673898229542
1007 => 0.0016675780896065
1008 => 0.0016800411797025
1009 => 0.0016625390173928
1010 => 0.0016582052358715
1011 => 0.0016522181477388
1012 => 0.0016652907356432
1013 => 0.0016731271608695
1014 => 0.0017362829929737
1015 => 0.0017770845407689
1016 => 0.0017753132379727
1017 => 0.0017914996297902
1018 => 0.0017842075120261
1019 => 0.0017606593402022
1020 => 0.001800853198112
1021 => 0.0017881341796869
1022 => 0.0017891827201122
1023 => 0.0017891436933852
1024 => 0.001797600728722
1025 => 0.00179160814411
1026 => 0.0017797961447135
1027 => 0.0017876375011558
1028 => 0.0018109235264533
1029 => 0.0018832040634792
1030 => 0.0019236532095887
1031 => 0.001880768974094
1101 => 0.0019103499454954
1102 => 0.0018926119034324
1103 => 0.0018893883735285
1104 => 0.0019079674095852
1105 => 0.0019265789657851
1106 => 0.0019253934901151
1107 => 0.001911882456028
1108 => 0.001904250415702
1109 => 0.0019620427819717
1110 => 0.0020046232129719
1111 => 0.0020017195130405
1112 => 0.0020145355002039
1113 => 0.002052163634899
1114 => 0.0020556038799643
1115 => 0.0020551704881592
1116 => 0.0020466434818122
1117 => 0.0020836932670503
1118 => 0.0021146008497248
1119 => 0.0020446697262118
1120 => 0.0020712985825799
1121 => 0.0020832531341318
1122 => 0.0021008059625655
1123 => 0.0021304205263287
1124 => 0.0021625897974507
1125 => 0.0021671388851055
1126 => 0.0021639110897206
1127 => 0.0021426945906592
1128 => 0.0021778945909801
1129 => 0.0021985139256265
1130 => 0.0022107922675434
1201 => 0.0022419280997232
1202 => 0.0020833269613723
1203 => 0.0019710611926595
1204 => 0.0019535292717377
1205 => 0.001989181122341
1206 => 0.0019985822310269
1207 => 0.0019947926559036
1208 => 0.0018684273264602
1209 => 0.0019528639844301
1210 => 0.0020437107287698
1211 => 0.0020472005222049
1212 => 0.0020926803019372
1213 => 0.0021074903824971
1214 => 0.0021441075663526
1215 => 0.0021418171515327
1216 => 0.0021507328530949
1217 => 0.0021486832877041
1218 => 0.0022165089101387
1219 => 0.0022913306438864
1220 => 0.0022887398051653
1221 => 0.0022779832956884
1222 => 0.0022939585465189
1223 => 0.0023711825941308
1224 => 0.0023640730413169
1225 => 0.0023709793662854
1226 => 0.0024620308705764
1227 => 0.0025804107780802
1228 => 0.0025254114258963
1229 => 0.0026447441944981
1230 => 0.0027198578467747
1231 => 0.0028497591414905
]
'min_raw' => 0.0011634935304586
'max_raw' => 0.0028497591414905
'avg_raw' => 0.0020066263359745
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001163'
'max' => '$0.002849'
'avg' => '$0.0020066'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00051879389071093
'max_diff' => 0.0011561290318369
'year' => 2028
]
3 => [
'items' => [
101 => 0.0028334948596147
102 => 0.0028840644803878
103 => 0.002804378400599
104 => 0.0026214030541901
105 => 0.0025924465052194
106 => 0.0026504182495553
107 => 0.0027929361262052
108 => 0.0026459298544416
109 => 0.002675669031758
110 => 0.0026671041466902
111 => 0.0026666477603633
112 => 0.0026840661702016
113 => 0.002658799858248
114 => 0.0025558603580262
115 => 0.0026030369243516
116 => 0.0025848197864886
117 => 0.0026050330591252
118 => 0.0027141157549572
119 => 0.0026658876949232
120 => 0.0026150833514068
121 => 0.0026788032725627
122 => 0.0027599406287346
123 => 0.0027548631988032
124 => 0.0027450108625353
125 => 0.0028005479662263
126 => 0.0028922789906792
127 => 0.0029170735179837
128 => 0.0029353763311381
129 => 0.0029378999798435
130 => 0.0029638951299484
131 => 0.0028241126562133
201 => 0.0030459510318994
202 => 0.0030842563912189
203 => 0.0030770565712613
204 => 0.0031196313660091
205 => 0.003107104781376
206 => 0.0030889557256036
207 => 0.0031564458311973
208 => 0.0030790738713048
209 => 0.0029692541150963
210 => 0.0029090048248518
211 => 0.0029883459504173
212 => 0.0030367968071765
213 => 0.0030688197414411
214 => 0.0030785098620007
215 => 0.0028349635717396
216 => 0.0027037056289854
217 => 0.0027878404654155
218 => 0.0028904907725364
219 => 0.0028235424285743
220 => 0.0028261666769076
221 => 0.0027307159321328
222 => 0.0028989360454727
223 => 0.002874427789913
224 => 0.0030015766631114
225 => 0.0029712315640892
226 => 0.0030749165342917
227 => 0.0030476128067756
228 => 0.003160949053164
301 => 0.0032061619503047
302 => 0.0032820814414295
303 => 0.0033379281281488
304 => 0.0033707223707673
305 => 0.0033687535274486
306 => 0.0034987006547297
307 => 0.0034220753737789
308 => 0.0033258159617125
309 => 0.0033240749326427
310 => 0.0033739290461583
311 => 0.0034784095912789
312 => 0.0035054998764986
313 => 0.0035206396502117
314 => 0.0034974525597508
315 => 0.003414281309062
316 => 0.0033783683847023
317 => 0.0034089672367543
318 => 0.0033715474700841
319 => 0.0034361444854891
320 => 0.0035248499848181
321 => 0.0035065326499862
322 => 0.0035677647540409
323 => 0.0036311335399322
324 => 0.0037217537498271
325 => 0.0037454452283503
326 => 0.0037846063414429
327 => 0.0038249159905707
328 => 0.003837862363495
329 => 0.0038625810064312
330 => 0.0038624507269814
331 => 0.0039369420212261
401 => 0.0040191082255814
402 => 0.0040501240655735
403 => 0.0041214432794119
404 => 0.0039993116250369
405 => 0.0040919498878276
406 => 0.004175511919751
407 => 0.0040758858204338
408 => 0.0042131971884386
409 => 0.0042185286777039
410 => 0.0042990278357755
411 => 0.0042174265172973
412 => 0.0041689719148656
413 => 0.0043088585365157
414 => 0.0043765452663449
415 => 0.0043561574724674
416 => 0.0042010053543907
417 => 0.0041107001668826
418 => 0.0038743540726043
419 => 0.0041543162306684
420 => 0.0042906776312534
421 => 0.0042006522113057
422 => 0.0042460557966614
423 => 0.0044937630362
424 => 0.0045880739151602
425 => 0.0045684579116193
426 => 0.0045717726933108
427 => 0.0046226611317343
428 => 0.0048483284924786
429 => 0.0047131033789921
430 => 0.0048164779114642
501 => 0.0048713073907428
502 => 0.0049222360667769
503 => 0.0047971713346106
504 => 0.0046344639556281
505 => 0.0045829276987133
506 => 0.004191700957499
507 => 0.0041713359066071
508 => 0.0041599043864174
509 => 0.0040878302686414
510 => 0.0040311997548319
511 => 0.0039861650676944
512 => 0.0038679806001497
513 => 0.0039078643886046
514 => 0.0037195030143536
515 => 0.0038400099464822
516 => 0.0035393806450332
517 => 0.0037897536605278
518 => 0.0036534870112582
519 => 0.003744986401363
520 => 0.0037446671686107
521 => 0.0035761877815198
522 => 0.0034790123871208
523 => 0.0035409363305548
524 => 0.0036073237134447
525 => 0.0036180948429646
526 => 0.0037041678177694
527 => 0.003728188934905
528 => 0.0036554038285454
529 => 0.0035331507709732
530 => 0.0035615473679518
531 => 0.0034784369309894
601 => 0.0033327890870096
602 => 0.0034373959113233
603 => 0.0034731132803814
604 => 0.0034888881053311
605 => 0.0033456601785448
606 => 0.003300654854319
607 => 0.0032766943973324
608 => 0.0035146618442043
609 => 0.0035276982381251
610 => 0.0034610022036661
611 => 0.0037624746037985
612 => 0.0036942421148187
613 => 0.0037704745223748
614 => 0.0035589706744151
615 => 0.0035670504062348
616 => 0.0034669210951111
617 => 0.0035229868186974
618 => 0.0034833613723493
619 => 0.0035184572622839
620 => 0.003539493594005
621 => 0.003639606474894
622 => 0.0037908967888141
623 => 0.0036246529489595
624 => 0.0035522181272793
625 => 0.0035971562832608
626 => 0.0037168325145206
627 => 0.0038981481309927
628 => 0.0037908056367243
629 => 0.0038384424128869
630 => 0.0038488489292657
701 => 0.0037696985480274
702 => 0.0039010665184479
703 => 0.0039714676810277
704 => 0.0040436847063666
705 => 0.0041063887259934
706 => 0.0040148396383598
707 => 0.0041128102851739
708 => 0.004033863237989
709 => 0.0039630395752684
710 => 0.00396314698553
711 => 0.0039187182673368
712 => 0.0038326320274586
713 => 0.0038167564040252
714 => 0.003899343401996
715 => 0.0039655703533508
716 => 0.0039710251222701
717 => 0.0040076917654037
718 => 0.0040293907071137
719 => 0.0042420698341528
720 => 0.004327611138422
721 => 0.0044322094260682
722 => 0.0044729563539429
723 => 0.0045955899982636
724 => 0.004496553370657
725 => 0.0044751261733048
726 => 0.004177657065342
727 => 0.0042263676151064
728 => 0.0043043579051481
729 => 0.0041789430964992
730 => 0.0042584899260773
731 => 0.0042741941552682
801 => 0.0041746815492919
802 => 0.0042278355318297
803 => 0.0040866743132668
804 => 0.0037939737176296
805 => 0.0039013923778837
806 => 0.0039804886685608
807 => 0.0038676085092623
808 => 0.0040699418257394
809 => 0.0039517428792609
810 => 0.0039142794877772
811 => 0.0037681214409361
812 => 0.003837102412906
813 => 0.0039304001652076
814 => 0.0038727530013131
815 => 0.0039923795221595
816 => 0.0041618025789057
817 => 0.0042825435384605
818 => 0.0042918125300887
819 => 0.004214184182111
820 => 0.0043385841051628
821 => 0.0043394902227917
822 => 0.0041991666014007
823 => 0.0041132191646239
824 => 0.0040936917261532
825 => 0.0041424750960327
826 => 0.0042017071129733
827 => 0.004295099494795
828 => 0.0043515345551626
829 => 0.0044986872617581
830 => 0.0045385025649642
831 => 0.0045822475119419
901 => 0.0046407042515462
902 => 0.0047108965554416
903 => 0.0045573197905686
904 => 0.0045634216817399
905 => 0.0044204131247053
906 => 0.0042675879720122
907 => 0.004383563212982
908 => 0.0045351854130103
909 => 0.0045004031127962
910 => 0.0044964893934842
911 => 0.0045030711837918
912 => 0.004476846465314
913 => 0.0043582330355727
914 => 0.0042986661137159
915 => 0.0043755226400536
916 => 0.0044163684633117
917 => 0.0044797167730548
918 => 0.0044719077567584
919 => 0.0046350861995448
920 => 0.0046984924081517
921 => 0.0046822703866854
922 => 0.0046852556290399
923 => 0.0048000495410473
924 => 0.0049277239803682
925 => 0.0050473079409183
926 => 0.0051689538818405
927 => 0.0050223049521369
928 => 0.004947845669682
929 => 0.0050246686428646
930 => 0.0049839052919323
1001 => 0.0052181435975847
1002 => 0.0052343617496485
1003 => 0.0054685831172053
1004 => 0.0056908870855784
1005 => 0.0055512619460325
1006 => 0.0056829221637699
1007 => 0.0058253234236678
1008 => 0.0061000385577828
1009 => 0.0060075241652078
1010 => 0.0059366595903808
1011 => 0.0058696929095843
1012 => 0.0060090399416605
1013 => 0.0061883076723033
1014 => 0.0062269202244788
1015 => 0.0062894873101333
1016 => 0.0062237056699069
1017 => 0.0063029324099496
1018 => 0.0065826376162943
1019 => 0.0065070588005138
1020 => 0.0063997247322046
1021 => 0.0066205251294401
1022 => 0.0067004319348598
1023 => 0.0072612597428143
1024 => 0.007969328016998
1025 => 0.007676183102059
1026 => 0.007494218593629
1027 => 0.0075369845693659
1028 => 0.0077955471334741
1029 => 0.0078785892227001
1030 => 0.0076528521978591
1031 => 0.0077325863312606
1101 => 0.0081719292455901
1102 => 0.0084076226233196
1103 => 0.0080875193585191
1104 => 0.0072043671464143
1105 => 0.0063900604737208
1106 => 0.0066060512720265
1107 => 0.0065815646184735
1108 => 0.0070535837707757
1109 => 0.006505256270753
1110 => 0.0065144886995891
1111 => 0.006996268708084
1112 => 0.0068677380616179
1113 => 0.0066595348753043
1114 => 0.0063915805873924
1115 => 0.0058962423034154
1116 => 0.0054575073717671
1117 => 0.0063179676073499
1118 => 0.0062808629973461
1119 => 0.0062271300234656
1120 => 0.0063467069423217
1121 => 0.0069273385177863
1122 => 0.0069139530806508
1123 => 0.0068288017589051
1124 => 0.0068933882859599
1125 => 0.0066482125448403
1126 => 0.0067113999158747
1127 => 0.0063899314833835
1128 => 0.0065352486405772
1129 => 0.0066590881647753
1130 => 0.0066839507827336
1201 => 0.0067399675305103
1202 => 0.0062613105539207
1203 => 0.0064762134837789
1204 => 0.0066024488213892
1205 => 0.0060321129735851
1206 => 0.0065911751154477
1207 => 0.0062529782008739
1208 => 0.0061381890885204
1209 => 0.0062927375059888
1210 => 0.0062325098373981
1211 => 0.0061807296246312
1212 => 0.0061518353762103
1213 => 0.0062653186771127
1214 => 0.0062600245454837
1215 => 0.0060743438390478
1216 => 0.005832130926816
1217 => 0.0059134255305288
1218 => 0.005883890438859
1219 => 0.0057768514565449
1220 => 0.0058489828066886
1221 => 0.0055313528454965
1222 => 0.0049848870062344
1223 => 0.0053458990783523
1224 => 0.0053320005062813
1225 => 0.0053249922159931
1226 => 0.0055962828105489
1227 => 0.0055702044796213
1228 => 0.0055228720536279
1229 => 0.0057759821594229
1230 => 0.0056835935659964
1231 => 0.0059683134414467
]
'min_raw' => 0.0025558603580262
'max_raw' => 0.0084076226233196
'avg_raw' => 0.0054817414906729
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.002555'
'max' => '$0.0084076'
'avg' => '$0.005481'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0013923668275677
'max_diff' => 0.0055578634818291
'year' => 2029
]
4 => [
'items' => [
101 => 0.0061558483659452
102 => 0.0061082834429731
103 => 0.006284660945899
104 => 0.0059152983940063
105 => 0.0060379858174916
106 => 0.0060632715254345
107 => 0.0057728588200067
108 => 0.0055744712170772
109 => 0.0055612410257461
110 => 0.005217264261762
111 => 0.0054010138725989
112 => 0.0055627059260597
113 => 0.0054852679802622
114 => 0.0054607534400155
115 => 0.0055859929095807
116 => 0.0055957250889694
117 => 0.0053738303675362
118 => 0.0054199693066141
119 => 0.0056123763525295
120 => 0.0054151211427227
121 => 0.0050318864915237
122 => 0.0049368389993927
123 => 0.0049241579118696
124 => 0.0046663815748988
125 => 0.0049431905273042
126 => 0.0048223560015605
127 => 0.0052040708205648
128 => 0.0049860373631272
129 => 0.004976638376555
130 => 0.0049624304298196
131 => 0.0047405516879824
201 => 0.0047891290313151
202 => 0.0049506075190912
203 => 0.0050082248627151
204 => 0.0050022149017302
205 => 0.0049498161864069
206 => 0.004973804049957
207 => 0.0048965307835362
208 => 0.0048692439848591
209 => 0.0047831193424087
210 => 0.0046565399105464
211 => 0.0046741415569036
212 => 0.0044233545810744
213 => 0.0042867125263705
214 => 0.0042488918065417
215 => 0.0041983163593501
216 => 0.0042546044378782
217 => 0.0044226441330816
218 => 0.0042199526090562
219 => 0.0038724522082718
220 => 0.0038933375744708
221 => 0.0039402607913991
222 => 0.0038528196870814
223 => 0.0037700640202203
224 => 0.0038420133583765
225 => 0.0036947728575474
226 => 0.0039580541024745
227 => 0.0039509330826364
228 => 0.0040490680495423
301 => 0.0041104338582808
302 => 0.0039690055365551
303 => 0.0039334366961039
304 => 0.0039536983241385
305 => 0.0036188187460599
306 => 0.0040217012435725
307 => 0.004025185388141
308 => 0.0039953520270596
309 => 0.0042098745193834
310 => 0.00466258388943
311 => 0.0044922564142263
312 => 0.0044263004676522
313 => 0.0043009181650014
314 => 0.0044679826388191
315 => 0.0044551546938417
316 => 0.0043971418618001
317 => 0.0043620555199703
318 => 0.0044267031805977
319 => 0.0043540449593946
320 => 0.0043409935463521
321 => 0.0042619161833922
322 => 0.0042336891626062
323 => 0.0042127910001664
324 => 0.0041897841767312
325 => 0.0042405314962861
326 => 0.0041255313938088
327 => 0.0039868525438203
328 => 0.0039753228979697
329 => 0.00400715726386
330 => 0.0039930729267434
331 => 0.0039752554675822
401 => 0.0039412370857473
402 => 0.0039311445585446
403 => 0.0039639403757553
404 => 0.0039269158102394
405 => 0.0039815475734905
406 => 0.0039666907567996
407 => 0.0038837017864687
408 => 0.0037802668029845
409 => 0.0037793460146693
410 => 0.003757061117145
411 => 0.003728677949591
412 => 0.0037207824016964
413 => 0.0038359539858
414 => 0.0040743557180992
415 => 0.0040275517535789
416 => 0.004061372414608
417 => 0.0042277365933328
418 => 0.004280618763004
419 => 0.0042430842515542
420 => 0.0041917046972539
421 => 0.0041939651368874
422 => 0.0043695446275804
423 => 0.0043804953050447
424 => 0.0044081641341746
425 => 0.0044437263988168
426 => 0.0042491406589983
427 => 0.0041848001660408
428 => 0.0041543120710029
429 => 0.0040604205386638
430 => 0.0041616745066399
501 => 0.0041026781556274
502 => 0.0041106387789813
503 => 0.0041054544125788
504 => 0.0041082854271999
505 => 0.0039579805100009
506 => 0.0040127437220343
507 => 0.0039216892605291
508 => 0.0037997775579165
509 => 0.0037993688671416
510 => 0.0038292065836438
511 => 0.0038114579423183
512 => 0.0037636968048707
513 => 0.0037704810490189
514 => 0.0037110439315634
515 => 0.0037776977912218
516 => 0.0037796091854178
517 => 0.0037539438187891
518 => 0.003856633286053
519 => 0.0038987052445777
520 => 0.0038818117504572
521 => 0.0038975199519956
522 => 0.004029496669612
523 => 0.0040510146331313
524 => 0.0040605714911297
525 => 0.0040477665674529
526 => 0.0038999322441206
527 => 0.0039064893250004
528 => 0.0038583778161955
529 => 0.0038177286611211
530 => 0.0038193544141474
531 => 0.0038402533638759
601 => 0.0039315203030473
602 => 0.0041235861960536
603 => 0.0041308749562948
604 => 0.0041397091463354
605 => 0.0041037760557324
606 => 0.0040929382917731
607 => 0.0041072360998996
608 => 0.0041793659509678
609 => 0.004364903510979
610 => 0.0042993221456341
611 => 0.0042460034747739
612 => 0.0042927783237287
613 => 0.0042855777023655
614 => 0.0042247972116108
615 => 0.004223091305671
616 => 0.0041064341112144
617 => 0.0040633086025795
618 => 0.0040272696996759
619 => 0.0039879161585245
620 => 0.0039645860601873
621 => 0.0040004316945733
622 => 0.0040086300152704
623 => 0.003930252909211
624 => 0.0039195703992685
625 => 0.0039835748359639
626 => 0.0039554088697002
627 => 0.0039843782644848
628 => 0.0039910994125697
629 => 0.0039900171529269
630 => 0.0039606086493069
701 => 0.0039793527525401
702 => 0.0039350173605075
703 => 0.0038868092806326
704 => 0.0038560555291419
705 => 0.0038292188020731
706 => 0.0038441093780106
707 => 0.0037910271937052
708 => 0.0037740451346126
709 => 0.0039730026721203
710 => 0.0041199747442313
711 => 0.0041178377120954
712 => 0.0041048290785687
713 => 0.0040855008878528
714 => 0.0041779519734291
715 => 0.0041457438638322
716 => 0.0041691779546416
717 => 0.0041751429142782
718 => 0.0041931970505676
719 => 0.0041996498524856
720 => 0.0041801450033303
721 => 0.0041146843472486
722 => 0.0039515626161052
723 => 0.0038756290099193
724 => 0.0038505696551037
725 => 0.0038514805150567
726 => 0.0038263549312935
727 => 0.0038337555417615
728 => 0.0038237813009897
729 => 0.0038048925019958
730 => 0.0038429430479
731 => 0.0038473280188501
801 => 0.0038384465667659
802 => 0.003840538470245
803 => 0.0037670038403057
804 => 0.0037725945185111
805 => 0.003741464911834
806 => 0.0037356284858551
807 => 0.0036569355509404
808 => 0.0035175196100157
809 => 0.0035947695747208
810 => 0.0035014624803458
811 => 0.0034661256698728
812 => 0.0036334046346505
813 => 0.0036166144661831
814 => 0.0035878769962776
815 => 0.003545368288874
816 => 0.0035296013957998
817 => 0.0034338067446732
818 => 0.00342814668564
819 => 0.0034756251014116
820 => 0.0034537154461655
821 => 0.0034229459923648
822 => 0.0033115021497481
823 => 0.0031862023728586
824 => 0.0031899843855166
825 => 0.0032298399132599
826 => 0.0033457252354238
827 => 0.0033004468352179
828 => 0.0032675968363588
829 => 0.0032614450190398
830 => 0.0033384478924887
831 => 0.0034474230910196
901 => 0.0034985518159877
902 => 0.0034478848023468
903 => 0.0033896812651819
904 => 0.0033932238447999
905 => 0.0034167910398948
906 => 0.0034192676188771
907 => 0.0033813830996031
908 => 0.0033920473698689
909 => 0.0033758473681738
910 => 0.003276427987674
911 => 0.003274629806343
912 => 0.0032502306870143
913 => 0.0032494918913779
914 => 0.0032079829027542
915 => 0.0032021755083076
916 => 0.0031197568919797
917 => 0.0031740050748333
918 => 0.0031376182419325
919 => 0.0030827747019649
920 => 0.0030733196550028
921 => 0.0030730354248738
922 => 0.0031293474776293
923 => 0.0031733470357104
924 => 0.0031382512064694
925 => 0.0031302605664553
926 => 0.0032155796965869
927 => 0.0032047220595765
928 => 0.0031953194159498
929 => 0.0034376655572416
930 => 0.0032458296759039
1001 => 0.0031621782820313
1002 => 0.0030586437971452
1003 => 0.0030923551474903
1004 => 0.0030994586243308
1005 => 0.0028504768516733
1006 => 0.0027494649775149
1007 => 0.0027148015088559
1008 => 0.0026948521925731
1009 => 0.0027039433465109
1010 => 0.0026130208122572
1011 => 0.0026741222589956
1012 => 0.0025953910298224
1013 => 0.0025821914830379
1014 => 0.0027229726737274
1015 => 0.00274256155398
1016 => 0.0026589893050341
1017 => 0.0027126562179755
1018 => 0.0026931958493171
1019 => 0.0025967406507742
1020 => 0.0025930567716663
1021 => 0.0025446589436017
1022 => 0.0024689257143467
1023 => 0.0024343135963833
1024 => 0.0024162873048318
1025 => 0.0024237253040514
1026 => 0.0024199644240395
1027 => 0.0023954221380043
1028 => 0.0024213711591468
1029 => 0.0023550821330034
1030 => 0.0023286853086661
1031 => 0.0023167624755146
1101 => 0.0022579271493583
1102 => 0.0023515603174613
1103 => 0.0023700072311371
1104 => 0.0023884904909315
1105 => 0.0025493746483838
1106 => 0.0025413373305314
1107 => 0.0026139907695846
1108 => 0.0026111675905441
1109 => 0.0025904456528184
1110 => 0.0025030232061472
1111 => 0.002537868235235
1112 => 0.0024306206518224
1113 => 0.0025109778334419
1114 => 0.0024743061715469
1115 => 0.0024985791076669
1116 => 0.0024549341799208
1117 => 0.0024790890849904
1118 => 0.002374381678705
1119 => 0.0022766073759888
1120 => 0.0023159546096116
1121 => 0.0023587295524616
1122 => 0.0024514765274132
1123 => 0.002396237194278
1124 => 0.0024161033473039
1125 => 0.0023495550602211
1126 => 0.0022122469353908
1127 => 0.0022130240844657
1128 => 0.0021919022208807
1129 => 0.0021736498469007
1130 => 0.0024025820961849
1201 => 0.0023741107521031
1202 => 0.0023287453915462
1203 => 0.0023894687293994
1204 => 0.0024055249437367
1205 => 0.0024059820415866
1206 => 0.0024502842213881
1207 => 0.0024739283026897
1208 => 0.0024780956744985
1209 => 0.0025478061116281
1210 => 0.0025711721306511
1211 => 0.0026674134561238
1212 => 0.0024719222675833
1213 => 0.0024678962552019
1214 => 0.002390323231291
1215 => 0.0023411251931458
1216 => 0.0023936918630536
1217 => 0.0024402587565259
1218 => 0.0023917701944759
1219 => 0.0023981017770302
1220 => 0.0023330098441392
1221 => 0.0023562771472876
1222 => 0.0023763180832033
1223 => 0.0023652526563424
1224 => 0.002348687176759
1225 => 0.002436440802303
1226 => 0.0024314893988406
1227 => 0.0025132075923943
1228 => 0.0025769127679934
1229 => 0.0026910838313295
1230 => 0.0025719403748662
1231 => 0.0025675983137603
]
'min_raw' => 0.0021736498469007
'max_raw' => 0.006284660945899
'avg_raw' => 0.0042291553963998
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002173'
'max' => '$0.006284'
'avg' => '$0.004229'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00038221051112559
'max_diff' => -0.0021229616774206
'year' => 2030
]
5 => [
'items' => [
101 => 0.0026100426575587
102 => 0.0025711656326432
103 => 0.0025957345704005
104 => 0.0026871253956225
105 => 0.0026890563397476
106 => 0.0026567105377702
107 => 0.0026547422927802
108 => 0.0026609546578743
109 => 0.00269734067427
110 => 0.002684626282112
111 => 0.0026993396986063
112 => 0.0027177390512322
113 => 0.0027938465748568
114 => 0.0028121958411419
115 => 0.0027676166370729
116 => 0.0027716416400682
117 => 0.0027549677940198
118 => 0.0027388610676599
119 => 0.0027750666363186
120 => 0.0028412330246648
121 => 0.0028408214069969
122 => 0.0028561707230024
123 => 0.0028657332197132
124 => 0.0028246839836549
125 => 0.0027979624404032
126 => 0.0028082091804219
127 => 0.0028245939408567
128 => 0.0028028958234412
129 => 0.0026689649912066
130 => 0.0027095910501719
131 => 0.0027028288874472
201 => 0.0026931987454203
202 => 0.0027340485618619
203 => 0.0027301084974123
204 => 0.0026120882702511
205 => 0.0026196435422783
206 => 0.0026125477313669
207 => 0.0026354757480879
208 => 0.0025699274444969
209 => 0.0025900896612069
210 => 0.0026027352145184
211 => 0.0026101835425666
212 => 0.002637092010843
213 => 0.0026339346126671
214 => 0.0026368957425392
215 => 0.0026767938974208
216 => 0.0028785850734186
217 => 0.002889568121901
218 => 0.0028354835743123
219 => 0.0028570892843035
220 => 0.0028156110457698
221 => 0.0028434556651775
222 => 0.0028625062465996
223 => 0.0027764203323693
224 => 0.0027713228832215
225 => 0.0027296734492428
226 => 0.0027520534959184
227 => 0.0027164452324751
228 => 0.0027251822547999
301 => 0.0027007527786999
302 => 0.0027447209718198
303 => 0.0027938842436944
304 => 0.0028063048276863
305 => 0.0027736316186011
306 => 0.002749974061954
307 => 0.0027084391857654
308 => 0.0027775126105322
309 => 0.0027977117849085
310 => 0.0027774065128682
311 => 0.0027727013376576
312 => 0.0027637850391354
313 => 0.0027745929725391
314 => 0.0027976017758668
315 => 0.0027867512491234
316 => 0.0027939182131991
317 => 0.0027666051366836
318 => 0.0028246975726601
319 => 0.0029169623416969
320 => 0.0029172589880162
321 => 0.0029064084027843
322 => 0.0029019685770865
323 => 0.002913101936003
324 => 0.0029191413265009
325 => 0.0029551445677278
326 => 0.0029937774799968
327 => 0.0031740604246958
328 => 0.0031234376952381
329 => 0.0032833954488555
330 => 0.003409901264052
331 => 0.0034478348266006
401 => 0.0034129377339679
402 => 0.0032935566651755
403 => 0.0032876992604031
404 => 0.0034661049785661
405 => 0.0034156971916855
406 => 0.0034097013458323
407 => 0.0033459156760957
408 => 0.0033836209069189
409 => 0.0033753742198355
410 => 0.0033623564208326
411 => 0.0034342953746742
412 => 0.0035689586742309
413 => 0.0035479701361306
414 => 0.0035323031660689
415 => 0.0034636550638452
416 => 0.0035049965544926
417 => 0.0034902756415172
418 => 0.0035535260257819
419 => 0.003516057899311
420 => 0.0034153153031225
421 => 0.0034313588936174
422 => 0.0034289339371893
423 => 0.0034788393686452
424 => 0.0034638589968511
425 => 0.0034260087791702
426 => 0.0035684984097128
427 => 0.0035592459256743
428 => 0.0035723638326285
429 => 0.0035781387409545
430 => 0.0036648696681169
501 => 0.0037004005538952
502 => 0.0037084666870226
503 => 0.0037422182804547
504 => 0.003707626916631
505 => 0.00384601703515
506 => 0.0039380383886779
507 => 0.0040449259261761
508 => 0.0042011173471225
509 => 0.0042598467662498
510 => 0.0042492378223511
511 => 0.0043676603751246
512 => 0.0045804630700732
513 => 0.0042922513312621
514 => 0.004595738992063
515 => 0.004499658302587
516 => 0.0042718527162571
517 => 0.0042571847221489
518 => 0.0044114573100887
519 => 0.0047536190619529
520 => 0.0046679114238774
521 => 0.0047537592489449
522 => 0.0046536132009279
523 => 0.0046486401055467
524 => 0.0047488953789229
525 => 0.0049831472897966
526 => 0.0048718629877421
527 => 0.0047123096527165
528 => 0.0048301213523745
529 => 0.0047280619551727
530 => 0.0044980935686503
531 => 0.0046678458848618
601 => 0.0045543373452788
602 => 0.004587465171575
603 => 0.0048260432386575
604 => 0.0047973368944269
605 => 0.0048344855619972
606 => 0.0047689191360855
607 => 0.0047076697554075
608 => 0.0045933432379334
609 => 0.0045594967923385
610 => 0.0045688507322334
611 => 0.0045594921569904
612 => 0.0044955275211786
613 => 0.0044817143641651
614 => 0.0044586918306411
615 => 0.0044658274764599
616 => 0.004422538377955
617 => 0.0045042338508179
618 => 0.0045193972504793
619 => 0.0045788484027919
620 => 0.0045850208186466
621 => 0.004750591431603
622 => 0.0046593979202877
623 => 0.004720578400947
624 => 0.0047151058429038
625 => 0.0042767899540798
626 => 0.0043371860162659
627 => 0.0044311433356991
628 => 0.0043888156906506
629 => 0.0043289743036956
630 => 0.0042806491752372
701 => 0.0042074316641247
702 => 0.0043104839049978
703 => 0.0044459866433619
704 => 0.0045884573917051
705 => 0.0047596266607863
706 => 0.0047214236725573
707 => 0.0045852575012825
708 => 0.0045913658162564
709 => 0.004629125015892
710 => 0.0045802234215789
711 => 0.0045658013867435
712 => 0.004627143649771
713 => 0.0046275660802233
714 => 0.0045712988860111
715 => 0.004508768196432
716 => 0.0045085061905595
717 => 0.0044973794583237
718 => 0.0046555926218745
719 => 0.0047425938646724
720 => 0.0047525684169497
721 => 0.0047419224978311
722 => 0.0047460196895784
723 => 0.0046953955833359
724 => 0.004811107278094
725 => 0.0049172957719045
726 => 0.004888834987177
727 => 0.0048461682249315
728 => 0.0048121820936933
729 => 0.0048808289347521
730 => 0.0048777721989799
731 => 0.0049163683080479
801 => 0.0049146173655986
802 => 0.0049016389457922
803 => 0.0048888354506773
804 => 0.0049395998615664
805 => 0.0049249805264818
806 => 0.0049103384835319
807 => 0.0048809716248112
808 => 0.0048849630686432
809 => 0.0048423036734158
810 => 0.0048225674852224
811 => 0.0045257825685318
812 => 0.0044464719410651
813 => 0.0044714246789828
814 => 0.0044796397682029
815 => 0.0044451236814901
816 => 0.0044946108833811
817 => 0.0044868983553863
818 => 0.0045169032901361
819 => 0.0044981575095672
820 => 0.0044989268429406
821 => 0.0045540541865717
822 => 0.0045700578889563
823 => 0.0045619182767578
824 => 0.0045676189821321
825 => 0.0046989893313648
826 => 0.0046803126686912
827 => 0.0046703910638855
828 => 0.0046731394162221
829 => 0.0047067073570631
830 => 0.004716104547757
831 => 0.0046762879904582
901 => 0.0046950657090571
902 => 0.0047750188516038
903 => 0.0048029979265392
904 => 0.0048922937030151
905 => 0.0048543592700622
906 => 0.0049239895635109
907 => 0.005138009346856
908 => 0.0053089831588345
909 => 0.0051517485755474
910 => 0.0054657202078624
911 => 0.0057101921601753
912 => 0.0057008089194561
913 => 0.0056581795798323
914 => 0.0053798547617472
915 => 0.005123736114556
916 => 0.0053379902383036
917 => 0.0053385364161268
918 => 0.0053201317968843
919 => 0.0052058222874358
920 => 0.0053161540737357
921 => 0.005324911810266
922 => 0.0053200098066792
923 => 0.0052323689737978
924 => 0.0050985576207213
925 => 0.0051247040388133
926 => 0.0051675324050206
927 => 0.0050864493728571
928 => 0.0050605384310868
929 => 0.0051087118015963
930 => 0.0052639364386982
1001 => 0.0052345921202092
1002 => 0.0052338258214637
1003 => 0.0053593732598874
1004 => 0.005269508388809
1005 => 0.0051250338288779
1006 => 0.00508855209711
1007 => 0.004959066526373
1008 => 0.0050485026712928
1009 => 0.0050517213189284
1010 => 0.005002738056371
1011 => 0.0051290085506723
1012 => 0.0051278449458378
1013 => 0.005247719987294
1014 => 0.0054768760435488
1015 => 0.0054091033216296
1016 => 0.0053302910196887
1017 => 0.0053388601021378
1018 => 0.0054328417863064
1019 => 0.0053760183146649
1020 => 0.0053964524312545
1021 => 0.0054328108568236
1022 => 0.0054547467976983
1023 => 0.0053357038578209
1024 => 0.0053079492540534
1025 => 0.0052511730752873
1026 => 0.0052363612300248
1027 => 0.005282604242956
1028 => 0.0052704208428384
1029 => 0.0050514508040578
1030 => 0.0050285672166674
1031 => 0.0050292690236225
1101 => 0.0049717271550741
1102 => 0.0048839619939071
1103 => 0.0051146035972686
1104 => 0.0050960798486915
1105 => 0.0050756310638867
1106 => 0.0050781359233461
1107 => 0.0051782496261961
1108 => 0.0051201786226799
1109 => 0.005274569903178
1110 => 0.0052428316973343
1111 => 0.0052102795262699
1112 => 0.0052057798246655
1113 => 0.0051932500160264
1114 => 0.0051502806400666
1115 => 0.005098392536536
1116 => 0.0050641315161146
1117 => 0.0046713936346366
1118 => 0.0047442835009877
1119 => 0.0048281366481044
1120 => 0.0048570824184686
1121 => 0.0048075686752742
1122 => 0.0051522357444378
1123 => 0.0052152097392685
1124 => 0.0050244574012342
1125 => 0.0049887754271547
1126 => 0.005154575048718
1127 => 0.0050545776087359
1128 => 0.0050996064498369
1129 => 0.0050022787248358
1130 => 0.0052000411480076
1201 => 0.0051985345296857
1202 => 0.0051216004804049
1203 => 0.0051866246120354
1204 => 0.0051753250689993
1205 => 0.0050884667168415
1206 => 0.0052027947126974
1207 => 0.005202851417957
1208 => 0.0051288040682147
1209 => 0.005042332974765
1210 => 0.0050268739856122
1211 => 0.0050152277139086
1212 => 0.0050967421809273
1213 => 0.0051698277971671
1214 => 0.0053058220095285
1215 => 0.005340014185659
1216 => 0.0054734685253982
1217 => 0.0053940029638574
1218 => 0.0054292290180371
1219 => 0.0054674718828788
1220 => 0.0054858069186188
1221 => 0.0054559309617928
1222 => 0.0056632404834056
1223 => 0.0056807437588293
1224 => 0.0056866124556762
1225 => 0.0056167088514022
1226 => 0.0056787996131398
1227 => 0.0056497494019527
1228 => 0.0057253299810804
1229 => 0.0057371819809489
1230 => 0.0057271437587074
1231 => 0.0057309057705368
]
'min_raw' => 0.0025699274444969
'max_raw' => 0.0057371819809489
'avg_raw' => 0.0041535547127229
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002569'
'max' => '$0.005737'
'avg' => '$0.004153'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00039627759759627
'max_diff' => -0.00054747896495004
'year' => 2031
]
6 => [
'items' => [
101 => 0.005554003665746
102 => 0.0055448303583796
103 => 0.0054197516615313
104 => 0.005470722155032
105 => 0.0053754352605117
106 => 0.0054056517163278
107 => 0.0054189708421387
108 => 0.0054120136866688
109 => 0.005473603950259
110 => 0.0054212396441478
111 => 0.0052830416308312
112 => 0.0051448059655584
113 => 0.0051430705293852
114 => 0.005106675518781
115 => 0.0050803685921929
116 => 0.0050854362395421
117 => 0.0051032952897845
118 => 0.0050793305917268
119 => 0.0050844446750985
120 => 0.0051693725340267
121 => 0.005186404210457
122 => 0.0051285239192413
123 => 0.0048961261979242
124 => 0.0048390952141875
125 => 0.0048800879543239
126 => 0.0048604960648093
127 => 0.0039227996704653
128 => 0.0041430975292692
129 => 0.0040122040221764
130 => 0.0040725257723654
131 => 0.003938917396333
201 => 0.0040026823163906
202 => 0.003990907263978
203 => 0.0043451397018471
204 => 0.0043396088495606
205 => 0.004342256175864
206 => 0.0042158923938318
207 => 0.0044171933297596
208 => 0.0045163614093451
209 => 0.0044980080370868
210 => 0.0045026271854764
211 => 0.0044232549121734
212 => 0.0043430246729687
213 => 0.0042540369903455
214 => 0.0044193651054495
215 => 0.004400983441295
216 => 0.0044431443653514
217 => 0.0045503714658941
218 => 0.0045661610637652
219 => 0.0045873824434262
220 => 0.0045797760894584
221 => 0.0047609903001664
222 => 0.0047390440635598
223 => 0.0047919281794185
224 => 0.0046831415407696
225 => 0.0045600391330158
226 => 0.0045834368762089
227 => 0.0045811834853866
228 => 0.0045524952338977
229 => 0.0045265967631918
301 => 0.0044834831063155
302 => 0.0046199010962929
303 => 0.0046143627750283
304 => 0.0047040217587077
305 => 0.0046881736624415
306 => 0.0045823361968886
307 => 0.0045861162026761
308 => 0.0046115385582059
309 => 0.0046995256209618
310 => 0.0047256461718038
311 => 0.0047135460919298
312 => 0.0047421860834796
313 => 0.0047648219650541
314 => 0.0047450288016972
315 => 0.0050252582547429
316 => 0.004908887448309
317 => 0.0049656057696621
318 => 0.004979132755101
319 => 0.004944483666341
320 => 0.0049519978130022
321 => 0.0049633796977115
322 => 0.0050324882728649
323 => 0.0052138491707947
324 => 0.0052941726779224
325 => 0.0055358299122082
326 => 0.0052875029288127
327 => 0.0052727682332972
328 => 0.0053162979985414
329 => 0.0054581763770833
330 => 0.005573155476933
331 => 0.0056113006776566
401 => 0.0056163421956408
402 => 0.0056879051280432
403 => 0.0057289236663266
404 => 0.0056792155057576
405 => 0.0056370930443367
406 => 0.0054862156159595
407 => 0.0055036800891198
408 => 0.0056239929905093
409 => 0.0057939420501164
410 => 0.0059397760234453
411 => 0.0058887100488126
412 => 0.0062783073883002
413 => 0.0063169343731479
414 => 0.0063115973728019
415 => 0.0063995953927512
416 => 0.006224937243637
417 => 0.0061502675010484
418 => 0.0056462003986062
419 => 0.0057878226937625
420 => 0.005993679016958
421 => 0.0059664331606615
422 => 0.0058169347962016
423 => 0.00593966261553
424 => 0.0058990849604063
425 => 0.0058670796802418
426 => 0.0060137020732043
427 => 0.0058524847292261
428 => 0.005992070750627
429 => 0.0058130502343478
430 => 0.0058889433138833
501 => 0.0058458627314037
502 => 0.0058737411480256
503 => 0.0057107644941038
504 => 0.0057987027405254
505 => 0.0057071059739385
506 => 0.0057070625451449
507 => 0.0057050405414457
508 => 0.0058128037311329
509 => 0.0058163178848798
510 => 0.0057366807248798
511 => 0.0057252037659576
512 => 0.0057676400984108
513 => 0.0057179582672012
514 => 0.0057412040833304
515 => 0.0057186623592908
516 => 0.0057135877424082
517 => 0.0056731523317122
518 => 0.0056557316449896
519 => 0.0056625627451293
520 => 0.005639244678679
521 => 0.0056251947001913
522 => 0.0057022456470917
523 => 0.0056610804343892
524 => 0.0056959364878528
525 => 0.0056562136157463
526 => 0.0055185168345938
527 => 0.005439325959636
528 => 0.0051792295045372
529 => 0.0052529925365546
530 => 0.0053018975030955
531 => 0.0052857344119454
601 => 0.0053204589860216
602 => 0.0053225907928486
603 => 0.0053113014798413
604 => 0.0052982299016294
605 => 0.0052918673802595
606 => 0.005339288401835
607 => 0.0053668179009778
608 => 0.0053068057707519
609 => 0.0052927457682989
610 => 0.0053534213453178
611 => 0.0053904334122482
612 => 0.0056637097191782
613 => 0.00564346452769
614 => 0.0056942759854073
615 => 0.0056885553950337
616 => 0.0057418138976214
617 => 0.0058288690406297
618 => 0.005651861593893
619 => 0.0056825839661895
620 => 0.0056750515499856
621 => 0.0057572884949943
622 => 0.0057575452297602
623 => 0.0057082400731874
624 => 0.0057349691984503
625 => 0.0057200497340037
626 => 0.0057470112227453
627 => 0.0056431941408148
628 => 0.0057696321402446
629 => 0.0058413143384366
630 => 0.0058423096458281
701 => 0.005876286438866
702 => 0.0059108088283956
703 => 0.0059770715488314
704 => 0.0059089607970868
705 => 0.0057864361851465
706 => 0.0057952820663765
707 => 0.0057234459312258
708 => 0.005724653509636
709 => 0.005718207361443
710 => 0.0057375527374135
711 => 0.0056474393629554
712 => 0.0056685887918247
713 => 0.0056389794675568
714 => 0.0056825196013011
715 => 0.0056356776148342
716 => 0.0056750479176264
717 => 0.0056920388351653
718 => 0.0057547356866721
719 => 0.0056264172388894
720 => 0.0053647672374653
721 => 0.0054197692399643
722 => 0.0053384169579542
723 => 0.0053459464213842
724 => 0.005361157135818
725 => 0.0053118542337019
726 => 0.0053212596737127
727 => 0.0053209236452104
728 => 0.0053180279331153
729 => 0.0053052023441065
730 => 0.0052866027025782
731 => 0.0053606979497591
801 => 0.0053732881760957
802 => 0.0054012746896431
803 => 0.0054845435705266
804 => 0.0054762230457109
805 => 0.0054897941669005
806 => 0.0054601684855421
807 => 0.0053473206717739
808 => 0.0053534488509888
809 => 0.0052770303579825
810 => 0.0053993204969647
811 => 0.0053703605779028
812 => 0.0053516899296881
813 => 0.0053465954703404
814 => 0.0054300707586736
815 => 0.0054550478732577
816 => 0.0054394838116007
817 => 0.0054075614670659
818 => 0.0054688618055666
819 => 0.0054852631900957
820 => 0.005488934855232
821 => 0.0055975473018812
822 => 0.0054950050844659
823 => 0.0055196880153798
824 => 0.0057122571963161
825 => 0.0055376235219373
826 => 0.0056301308740514
827 => 0.0056256031205505
828 => 0.0056729267516139
829 => 0.00562172120153
830 => 0.0056223559556926
831 => 0.0056643761340965
901 => 0.0056053663719073
902 => 0.0055907547249331
903 => 0.0055705688392889
904 => 0.0056146439821072
905 => 0.0056410650368796
906 => 0.0058539993342184
907 => 0.0059915646012829
908 => 0.0059855925302371
909 => 0.0060401660803476
910 => 0.0060155801961864
911 => 0.0059361858908012
912 => 0.0060717022889896
913 => 0.0060288192303559
914 => 0.0060323544576067
915 => 0.0060322228762719
916 => 0.0060607363613613
917 => 0.0060405319439529
918 => 0.0060007069633001
919 => 0.0060271446440115
920 => 0.0061056551040804
921 => 0.0063493539811292
922 => 0.0064857311013064
923 => 0.0063411439072544
924 => 0.0064408782176118
925 => 0.0063810731703657
926 => 0.006370204814235
927 => 0.0064328453314471
928 => 0.0064955954925924
929 => 0.0064915985786038
930 => 0.0064460451838688
1001 => 0.0064203132270576
1002 => 0.0066151642248701
1003 => 0.0067587271208581
1004 => 0.0067489370938096
1005 => 0.0067921470893144
1006 => 0.0069190129725514
1007 => 0.0069306119989796
1008 => 0.0069291507882502
1009 => 0.0069004013910147
1010 => 0.0070253173286783
1011 => 0.007129524401564
1012 => 0.0068937467362047
1013 => 0.0069835277846172
1014 => 0.0070238333898143
1015 => 0.0070830139763779
1016 => 0.0071828615457286
1017 => 0.0072913224893032
1018 => 0.0073066600559384
1019 => 0.0072957773184406
1020 => 0.0072242444105665
1021 => 0.007342923669234
1022 => 0.0074124431955903
1023 => 0.0074538404826095
1024 => 0.0075588171146382
1025 => 0.0070240823035103
1026 => 0.0066455704261495
1027 => 0.0065864603307218
1028 => 0.0067066630341637
1029 => 0.0067383595284627
1030 => 0.0067255827113548
1031 => 0.0062995331805908
1101 => 0.0065842172681153
1102 => 0.0068905134093737
1103 => 0.0069022794915898
1104 => 0.007055617744254
1105 => 0.0071055509648689
1106 => 0.0072290083567678
1107 => 0.0072212860632907
1108 => 0.0072513459735819
1109 => 0.007244435720771
1110 => 0.0074731145422428
1111 => 0.0077253812414599
1112 => 0.007716646047825
1113 => 0.0076803797251284
1114 => 0.0077342413986597
1115 => 0.0079946076667941
1116 => 0.0079706373131087
1117 => 0.0079939224699242
1118 => 0.0083009089736545
1119 => 0.0087000350968248
1120 => 0.0085146009410046
1121 => 0.0089169397018935
1122 => 0.0091701906248117
1123 => 0.0096081619093647
1124 => 0.0095533257474846
1125 => 0.0097238247545793
1126 => 0.0094551575730669
1127 => 0.0088382434177185
1128 => 0.0087406143911821
1129 => 0.0089360701746687
1130 => 0.0094165791460741
1201 => 0.0089209372371729
1202 => 0.0090212049498182
1203 => 0.008992327841831
1204 => 0.0089907891034662
1205 => 0.0090495164883505
1206 => 0.0089643293535613
1207 => 0.0086172616415572
1208 => 0.0087763207286859
1209 => 0.0087149003765008
1210 => 0.0087830508364407
1211 => 0.0091508307613489
1212 => 0.0089882264897686
1213 => 0.0088169360985572
1214 => 0.0090317722615171
1215 => 0.00930533252268
1216 => 0.0092882136131715
1217 => 0.0092549957735759
1218 => 0.0094422429961468
1219 => 0.0097515205495454
1220 => 0.0098351170294512
1221 => 0.0098968262418629
1222 => 0.0099053348996687
1223 => 0.0099929793631707
1224 => 0.0095216929936721
1225 => 0.010269636565559
1226 => 0.010398785758899
1227 => 0.010374511063237
1228 => 0.010518054956206
1229 => 0.010475820701538
1230 => 0.010414629892874
1231 => 0.010642177495892
]
'min_raw' => 0.0039227996704653
'max_raw' => 0.010642177495892
'avg_raw' => 0.0072824885831787
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.003922'
'max' => '$0.010642'
'avg' => '$0.007282'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0013528722259684
'max_diff' => 0.0049049955149432
'year' => 2032
]
7 => [
'items' => [
101 => 0.010381312531177
102 => 0.010011047555749
103 => 0.0098079128672188
104 => 0.010075417011484
105 => 0.010238772457778
106 => 0.010346740016421
107 => 0.01037941093443
108 => 0.009558277612956
109 => 0.0091157322948232
110 => 0.009399398769954
111 => 0.0097454914472278
112 => 0.0095197704313752
113 => 0.0095286182678502
114 => 0.0092067994176839
115 => 0.0097739652745627
116 => 0.0096913339798311
117 => 0.010120025283071
118 => 0.01001771466309
119 => 0.010367295779181
120 => 0.010275239355575
121 => 0.010657360423158
122 => 0.010809798862531
123 => 0.011065766727388
124 => 0.011254057730753
125 => 0.011364625809363
126 => 0.011357987716653
127 => 0.0117961135289
128 => 0.011537766044368
129 => 0.011213220715969
130 => 0.011207350714906
131 => 0.011375437339326
201 => 0.011727700791799
202 => 0.011819037579801
203 => 0.0118700823839
204 => 0.01179190548954
205 => 0.011511487811011
206 => 0.011390404879172
207 => 0.011493571045209
208 => 0.011367407689316
209 => 0.011585201036773
210 => 0.011884277820981
211 => 0.01182251964772
212 => 0.012028967961629
213 => 0.012242620247529
214 => 0.012548152612091
215 => 0.012628030086018
216 => 0.012760064512951
217 => 0.012895971309316
218 => 0.012939620909517
219 => 0.013022961539977
220 => 0.013022522293716
221 => 0.013273674893078
222 => 0.013550703987723
223 => 0.013655276057713
224 => 0.013895733766518
225 => 0.013483958366833
226 => 0.013796294737629
227 => 0.014078029962373
228 => 0.013742133612853
301 => 0.014205088476855
302 => 0.014223063965146
303 => 0.014494472496856
304 => 0.014219347954384
305 => 0.014055979879293
306 => 0.014527617390759
307 => 0.014755827926114
308 => 0.014687089055626
309 => 0.014163982857156
310 => 0.013859512612565
311 => 0.013062655254548
312 => 0.014006567216796
313 => 0.014466319199317
314 => 0.014162792210589
315 => 0.014315873568593
316 => 0.015151035821064
317 => 0.015469011534054
318 => 0.01540287480857
319 => 0.015414050826474
320 => 0.015585624749536
321 => 0.016346478011877
322 => 0.015890557100642
323 => 0.016239091554251
324 => 0.016423952971711
325 => 0.016595662558686
326 => 0.016173998082447
327 => 0.015625418794341
328 => 0.015451660706006
329 => 0.014132612433423
330 => 0.014063950242499
331 => 0.014025408074056
401 => 0.01378240515392
402 => 0.013591471422795
403 => 0.013439633830889
404 => 0.013041166647186
405 => 0.013175637624559
406 => 0.012540564100301
407 => 0.012946861635498
408 => 0.011933268956395
409 => 0.012777419058621
410 => 0.012317986536775
411 => 0.012626483118796
412 => 0.012625406803284
413 => 0.012057366786851
414 => 0.011729733160066
415 => 0.011938514058745
416 => 0.012162343755178
417 => 0.01219865937037
418 => 0.012488860414348
419 => 0.012569849287871
420 => 0.012324449220086
421 => 0.011912264501045
422 => 0.012008005610346
423 => 0.011727792969542
424 => 0.011236731094756
425 => 0.011589420306345
426 => 0.011709843909832
427 => 0.011763029833512
428 => 0.011280126878498
429 => 0.011128388285699
430 => 0.011047603932103
501 => 0.011849927793589
502 => 0.011893880905865
503 => 0.011669010569117
504 => 0.012685445814295
505 => 0.012455395213859
506 => 0.012712418098311
507 => 0.011999318108188
508 => 0.012026559488127
509 => 0.011688966524868
510 => 0.011877996026323
511 => 0.0117443960674
512 => 0.011862724310632
513 => 0.011933649771739
514 => 0.012271187339314
515 => 0.012781273195448
516 => 0.012220770482605
517 => 0.011976551424072
518 => 0.012128063554445
519 => 0.012531560323665
520 => 0.013142878583653
521 => 0.012780965869814
522 => 0.012941576586539
523 => 0.01297666288307
524 => 0.012709801846622
525 => 0.013152718130714
526 => 0.013390080565604
527 => 0.013633565308566
528 => 0.013844976288592
529 => 0.013536312147882
530 => 0.013866627023708
531 => 0.013600451542217
601 => 0.013361664618605
602 => 0.013362026759801
603 => 0.013212232234498
604 => 0.0129219864664
605 => 0.012868460693593
606 => 0.013146908523292
607 => 0.013370197313603
608 => 0.013388588447854
609 => 0.013512212595162
610 => 0.013585372092109
611 => 0.014302434617704
612 => 0.014590843097351
613 => 0.014943503526969
614 => 0.015080884639158
615 => 0.015494352532993
616 => 0.015160443628501
617 => 0.015088200336629
618 => 0.014085262470503
619 => 0.014249493489895
620 => 0.014512443197879
621 => 0.014089598414337
622 => 0.014357796104042
623 => 0.014410744009193
624 => 0.014075230310396
625 => 0.014254442673615
626 => 0.013778507769668
627 => 0.012791647275774
628 => 0.013153816788552
629 => 0.013420495454897
630 => 0.013039912116781
701 => 0.013722093019744
702 => 0.013323577019305
703 => 0.013197266579308
704 => 0.012704484519954
705 => 0.012937058683048
706 => 0.013251618568774
707 => 0.013057257130907
708 => 0.013460586297998
709 => 0.014031807962558
710 => 0.014438894537561
711 => 0.014470145589976
712 => 0.014208416194931
713 => 0.014627839220825
714 => 0.014630894259674
715 => 0.014157783373072
716 => 0.013868005589321
717 => 0.013802167467155
718 => 0.01396664400465
719 => 0.014166348885212
720 => 0.014481227820972
721 => 0.014671502567171
722 => 0.015167638191332
723 => 0.015301878265907
724 => 0.015449367408817
725 => 0.015646458387712
726 => 0.015883116640965
727 => 0.015365321855809
728 => 0.015385894807914
729 => 0.014903731473333
730 => 0.014388470801116
731 => 0.014779489423179
801 => 0.015290694256498
802 => 0.015173423302904
803 => 0.015160227924996
804 => 0.015182418890544
805 => 0.015094000421245
806 => 0.014694086961547
807 => 0.014493252925677
808 => 0.014752380070176
809 => 0.014890094615055
810 => 0.015103677864191
811 => 0.01507734922054
812 => 0.01562751673315
813 => 0.015841295192348
814 => 0.015786601514389
815 => 0.01579666646741
816 => 0.016183702156398
817 => 0.016614165442513
818 => 0.017017351114593
819 => 0.017427488897461
820 => 0.016933051792264
821 => 0.016682007122886
822 => 0.01694102114058
823 => 0.016803584656905
824 => 0.017593335458409
825 => 0.017648016090407
826 => 0.018437709783938
827 => 0.019187223134076
828 => 0.018716467227781
829 => 0.019160368844105
830 => 0.01964048463399
831 => 0.020566705888656
901 => 0.020254787154941
902 => 0.020015862293305
903 => 0.019790079453536
904 => 0.02025989770108
905 => 0.020864311371015
906 => 0.020994496286517
907 => 0.021205445584096
908 => 0.020983658191345
909 => 0.021250776676833
910 => 0.022193822308418
911 => 0.02193900305427
912 => 0.02157711874914
913 => 0.022321562704211
914 => 0.022590974077599
915 => 0.024481844187864
916 => 0.026869145810023
917 => 0.025880787262581
918 => 0.025267281218054
919 => 0.025411469691076
920 => 0.026283231428228
921 => 0.026563213629867
922 => 0.02580212549016
923 => 0.026070954687783
924 => 0.027552229997387
925 => 0.028346886675988
926 => 0.027267636169817
927 => 0.024290026826987
928 => 0.021544535026925
929 => 0.022272763083409
930 => 0.022190204621351
1001 => 0.023781650148663
1002 => 0.021932925699333
1003 => 0.021964053477741
1004 => 0.023588408413188
1005 => 0.023155058364904
1006 => 0.022453086785966
1007 => 0.0215496601963
1008 => 0.019879592588457
1009 => 0.01840036713491
1010 => 0.021301468894592
1011 => 0.021176368111403
1012 => 0.020995203638449
1013 => 0.021398365568966
1014 => 0.023356005464047
1015 => 0.023310875528203
1016 => 0.023023781901862
1017 => 0.023241539887115
1018 => 0.022414912758306
1019 => 0.02262795339135
1020 => 0.021544100126997
1021 => 0.022034047068195
1022 => 0.022451580670229
1023 => 0.022535406722528
1024 => 0.022724271098621
1025 => 0.021110445683287
1026 => 0.021835005915347
1027 => 0.02226061716957
1028 => 0.020337690039121
1029 => 0.022222607082883
1030 => 0.021082352573243
1031 => 0.020695333066623
1101 => 0.021216403846344
1102 => 0.021013342056729
1103 => 0.020838761454206
1104 => 0.020741342478323
1105 => 0.021123959350466
1106 => 0.021106109816055
1107 => 0.020480074350493
1108 => 0.019663436606138
1109 => 0.019937527038364
1110 => 0.019837947414725
1111 => 0.01947705801263
1112 => 0.019720253895689
1113 => 0.018649342305315
1114 => 0.016806894575216
1115 => 0.018024071981419
1116 => 0.017977211975315
1117 => 0.017953583035305
1118 => 0.018868258215754
1119 => 0.018780333302301
1120 => 0.01862074872342
1121 => 0.019474127116691
1122 => 0.019162632523588
1123 => 0.020122585462175
1124 => 0.020754872553392
1125 => 0.020594504094715
1126 => 0.021189173160114
1127 => 0.019943841528338
1128 => 0.020357490742381
1129 => 0.020442743272102
1130 => 0.019463596559784
1201 => 0.018794718905528
1202 => 0.018750112391752
1203 => 0.017590370716289
1204 => 0.018209895358214
1205 => 0.018755051405436
1206 => 0.018493963964635
1207 => 0.018411311480642
1208 => 0.018833565096222
1209 => 0.01886637781851
1210 => 0.018118244273003
1211 => 0.018273804927422
1212 => 0.018922518716157
1213 => 0.018257459004374
1214 => 0.016965356621268
1215 => 0.016644897365544
1216 => 0.016602142193595
1217 => 0.015733031276129
1218 => 0.016666311985347
1219 => 0.016258909945406
1220 => 0.017545888108156
1221 => 0.016810773083795
1222 => 0.016779083744351
1223 => 0.016731180659965
1224 => 0.015983100990782
1225 => 0.01614688289539
1226 => 0.016691318890995
1227 => 0.016885579787738
1228 => 0.016865316784675
1229 => 0.016688650857601
1230 => 0.016769527614339
1231 => 0.016508995401555
]
'min_raw' => 0.0091157322948232
'max_raw' => 0.028346886675988
'avg_raw' => 0.018731309485406
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.009115'
'max' => '$0.028346'
'avg' => '$0.018731'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0051929326243579
'max_diff' => 0.017704709180096
'year' => 2033
]
8 => [
'items' => [
101 => 0.016416996054711
102 => 0.016126620809659
103 => 0.015699849417642
104 => 0.015759194597243
105 => 0.014913648798847
106 => 0.014452950571369
107 => 0.014325435373908
108 => 0.014154916722637
109 => 0.014344695909302
110 => 0.014911253473838
111 => 0.014227864849115
112 => 0.013056242986168
113 => 0.013126659456477
114 => 0.013284864358426
115 => 0.012990050570275
116 => 0.012711034061637
117 => 0.012953616278573
118 => 0.012457184650024
119 => 0.013344855749006
120 => 0.013320846733448
121 => 0.013651715625935
122 => 0.013858614734521
123 => 0.013381779273613
124 => 0.013261856444695
125 => 0.013330169938235
126 => 0.012201100060197
127 => 0.013559446528919
128 => 0.013571193565587
129 => 0.013470608305802
130 => 0.014193885866154
131 => 0.015720227114425
201 => 0.015145956139891
202 => 0.014923581061119
203 => 0.014500845873819
204 => 0.015064115411365
205 => 0.015020865099255
206 => 0.0148252707857
207 => 0.014706974734571
208 => 0.014924938835932
209 => 0.01467996657031
210 => 0.014635962820017
211 => 0.014369347969792
212 => 0.014274178598465
213 => 0.014203718984736
214 => 0.014126149873239
215 => 0.014297248004183
216 => 0.01390951712963
217 => 0.013441951704646
218 => 0.013403078698686
219 => 0.01351041048589
220 => 0.013462924159964
221 => 0.013402851352427
222 => 0.013288156002983
223 => 0.013254128342882
224 => 0.013364701730338
225 => 0.013239870822729
226 => 0.013424065626798
227 => 0.013373974832054
228 => 0.013094171724479
301 => 0.012745433456062
302 => 0.01274232895397
303 => 0.012667193866085
304 => 0.012571498035027
305 => 0.012544877644051
306 => 0.01293318668088
307 => 0.013736974766004
308 => 0.013579171931875
309 => 0.013693200651818
310 => 0.014254109095564
311 => 0.014432405022726
312 => 0.014305854796797
313 => 0.014132625042268
314 => 0.014140246272311
315 => 0.014732224783751
316 => 0.014769145757374
317 => 0.014862433146561
318 => 0.01498233380468
319 => 0.01432627439734
320 => 0.014109345933224
321 => 0.014006553192193
322 => 0.013689991335614
323 => 0.014031376157972
324 => 0.013832465841539
325 => 0.01385930563897
326 => 0.013841826185683
327 => 0.013851371149133
328 => 0.013344607626843
329 => 0.013529245619659
330 => 0.013222249145474
331 => 0.012811215328513
401 => 0.012809837399031
402 => 0.012910437343421
403 => 0.012850596560022
404 => 0.012689566550541
405 => 0.012712440103348
406 => 0.012512043712079
407 => 0.012736771853541
408 => 0.012743216252523
409 => 0.012656683677035
410 => 0.013002908385465
411 => 0.013144756931002
412 => 0.013087799336108
413 => 0.013140760634307
414 => 0.01358572935207
415 => 0.013658278668412
416 => 0.013690500282392
417 => 0.013647327588204
418 => 0.013148893845627
419 => 0.013171001501614
420 => 0.01300879019064
421 => 0.012871738726273
422 => 0.012877220066108
423 => 0.012947682334235
424 => 0.013255395191706
425 => 0.013902958759589
426 => 0.013927533323627
427 => 0.013957318412133
428 => 0.013836167488396
429 => 0.013799627210539
430 => 0.013847833268879
501 => 0.014091024097701
502 => 0.014716576935097
503 => 0.014495464783092
504 => 0.014315697161696
505 => 0.014473401830663
506 => 0.014449124433006
507 => 0.014244198764868
508 => 0.014238447183889
509 => 0.013845129308033
510 => 0.013699728644744
511 => 0.013578220967449
512 => 0.01344553775588
513 => 0.013366878700481
514 => 0.013487734759476
515 => 0.013515375970094
516 => 0.0132511220849
517 => 0.0132151052568
518 => 0.013430900683766
519 => 0.013335937162023
520 => 0.013433609499118
521 => 0.013456270319141
522 => 0.013452621405195
523 => 0.013353468582004
524 => 0.013416665634726
525 => 0.01326718576509
526 => 0.013104648858011
527 => 0.013000960437702
528 => 0.012910478538709
529 => 0.012960683155109
530 => 0.012781712864643
531 => 0.012724456666763
601 => 0.013395255895242
602 => 0.013890782497627
603 => 0.013883577344578
604 => 0.013839717828409
605 => 0.013774551483959
606 => 0.014086256773708
607 => 0.013977664883503
608 => 0.014056674556783
609 => 0.014076785834659
610 => 0.014137656615658
611 => 0.014159412687844
612 => 0.014093650727132
613 => 0.013872945554836
614 => 0.01332296924949
615 => 0.013066953794719
616 => 0.01298246443037
617 => 0.012985535458296
618 => 0.012900822798426
619 => 0.012925774473313
620 => 0.012892145624172
621 => 0.01282846071959
622 => 0.01295675079171
623 => 0.012971535027418
624 => 0.012941590591632
625 => 0.012948643590264
626 => 0.0127007164514
627 => 0.012719565813298
628 => 0.012614610170987
629 => 0.012594932253313
630 => 0.012329613529082
701 => 0.011859562950545
702 => 0.012120016599968
703 => 0.01180542521679
704 => 0.011686284693143
705 => 0.012250277401935
706 => 0.012193668176695
707 => 0.012096777790523
708 => 0.011953456715648
709 => 0.011900297534839
710 => 0.011577319180397
711 => 0.011558235896194
712 => 0.011718312689805
713 => 0.011644442757459
714 => 0.011540701395715
715 => 0.011164960699572
716 => 0.010742503753639
717 => 0.010755255073367
718 => 0.010889630767777
719 => 0.011280346222308
720 => 0.011127686934777
721 => 0.011016930870109
722 => 0.010996189588512
723 => 0.011255810152514
724 => 0.011623227642767
725 => 0.01179561170869
726 => 0.011624784334742
727 => 0.011428547045549
728 => 0.011440491100066
729 => 0.011519949543738
730 => 0.011528299502686
731 => 0.011400569200941
801 => 0.011436524532697
802 => 0.011381905095935
803 => 0.01104670571334
804 => 0.011040643019438
805 => 0.010958379685129
806 => 0.010955888784059
807 => 0.01081593833085
808 => 0.010796358295014
809 => 0.01051847817578
810 => 0.010701379711758
811 => 0.010578698964186
812 => 0.010393790140131
813 => 0.010361911789168
814 => 0.010360953487444
815 => 0.010550813504891
816 => 0.010699161086912
817 => 0.010580833048314
818 => 0.010553892047618
819 => 0.010841551451648
820 => 0.010804944170411
821 => 0.010773242500952
822 => 0.011590329436385
823 => 0.010943541368901
824 => 0.010661504854106
825 => 0.010312431109766
826 => 0.010426091281105
827 => 0.010450041149222
828 => 0.0096105817193551
829 => 0.009270013133206
830 => 0.0091531428284961
831 => 0.009085882315832
901 => 0.0091165337760574
902 => 0.0088099821038123
903 => 0.0090159898974577
904 => 0.0087505420614613
905 => 0.0087060388679145
906 => 0.0091806924813529
907 => 0.0092467377587766
908 => 0.0089649680866275
909 => 0.0091459098305135
910 => 0.0090802978389021
911 => 0.008755092402728
912 => 0.0087426719471154
913 => 0.008579495290767
914 => 0.0083241554208087
915 => 0.0082074582485543
916 => 0.0081466813480329
917 => 0.0081717590817062
918 => 0.0081590790121697
919 => 0.0080763329813143
920 => 0.0081638219177993
921 => 0.0079403238380046
922 => 0.007851325101784
923 => 0.0078111264373881
924 => 0.0076127590275009
925 => 0.0079284497910191
926 => 0.0079906448483996
927 => 0.0080529624492562
928 => 0.0085953946186798
929 => 0.0085682962403928
930 => 0.0088132523826619
1001 => 0.0088037338374187
1002 => 0.0087338683776172
1003 => 0.0084391174950248
1004 => 0.0085565999433968
1005 => 0.0081950072281338
1006 => 0.0084659370763235
1007 => 0.0083422960079107
1008 => 0.0084241339067214
1009 => 0.0082769819856339
1010 => 0.0083584219345176
1011 => 0.0080053936037891
1012 => 0.0076757407157974
1013 => 0.0078084026610929
1014 => 0.0079526213673629
1015 => 0.008265324268799
1016 => 0.0080790810004466
1017 => 0.0081460611223838
1018 => 0.0079216889262311
1019 => 0.0074587449968188
1020 => 0.0074613652091837
1021 => 0.0073901513714254
1022 => 0.0073286122182116
1023 => 0.0081004732802126
1024 => 0.0080044801558351
1025 => 0.007851527675409
1026 => 0.0080562606485493
1027 => 0.0081103952961968
1028 => 0.0081119364335109
1029 => 0.0082613043257912
1030 => 0.0083410219966768
1031 => 0.0083550725816866
1101 => 0.0085901061874964
1102 => 0.0086688863519957
1103 => 0.0089933707001819
1104 => 0.0083342585092585
1105 => 0.0083206845274273
1106 => 0.0080591416613363
1107 => 0.0078932670408322
1108 => 0.0080704992385141
1109 => 0.0082275027710527
1110 => 0.0080640201987379
1111 => 0.0080853675713767
1112 => 0.0078659055750611
1113 => 0.0079443529120972
1114 => 0.0080119223267502
1115 => 0.0079746144675255
1116 => 0.0079187627965452
1117 => 0.0082146302718292
1118 => 0.0081979362693597
1119 => 0.008473454864308
1120 => 0.008688241311594
1121 => 0.0090731770228005
1122 => 0.0086714765410041
1123 => 0.0086568369788326
1124 => 0.0087999410473183
1125 => 0.0086688644435084
1126 => 0.0087517003325057
1127 => 0.0090598308804452
1128 => 0.0090663411933774
1129 => 0.0089572850636985
1130 => 0.0089506489882966
1201 => 0.0089715944109447
1202 => 0.0090942724056133
1203 => 0.0090514049447621
1204 => 0.0091010122557305
1205 => 0.0091630469577105
1206 => 0.0094196487872685
1207 => 0.0094815146196535
1208 => 0.0093312127207144
1209 => 0.0093447832993296
1210 => 0.0092885662632469
1211 => 0.0092342613107885
1212 => 0.0093563309133136
1213 => 0.0095794155112124
1214 => 0.0095780277135069
1215 => 0.0096297790040745
1216 => 0.0096620196293673
1217 => 0.0095236192640306
1218 => 0.0094335257153189
1219 => 0.0094680733146964
1220 => 0.0095233156784499
1221 => 0.0094501589606691
1222 => 0.008998601809038
1223 => 0.0091355754032604
1224 => 0.0091127762995152
1225 => 0.0090803076033163
1226 => 0.0092180356114924
1227 => 0.0092047514091141
1228 => 0.0088068379733309
1229 => 0.0088323111004628
1230 => 0.0088083870785614
1231 => 0.008885690487719
]
'min_raw' => 0.0073286122182116
'max_raw' => 0.016416996054711
'avg_raw' => 0.011872804136461
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007328'
'max' => '$0.016416'
'avg' => '$0.011872'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0017871200766116
'max_diff' => -0.011929890621277
'year' => 2034
]
9 => [
'items' => [
101 => 0.0086646898057258
102 => 0.0087326681270446
103 => 0.0087753034929185
104 => 0.0088004160509586
105 => 0.0088911398304417
106 => 0.0088804944420493
107 => 0.0088904780981524
108 => 0.009024997512936
109 => 0.0097053505514227
110 => 0.0097423806661932
111 => 0.0095600308379352
112 => 0.0096328759976329
113 => 0.0094930292204985
114 => 0.0095869092988808
115 => 0.0096511396642146
116 => 0.0093608949940604
117 => 0.0093437085883662
118 => 0.0092032846138362
119 => 0.0092787405037282
120 => 0.0091586847574396
121 => 0.0091881422382071
122 => 0.0091057765539242
123 => 0.0092540183867893
124 => 0.0094197757903843
125 => 0.0094616526564906
126 => 0.0093514926508893
127 => 0.0092717295469358
128 => 0.0091316918119933
129 => 0.0093645776861471
130 => 0.0094326806128181
131 => 0.0093642199704656
201 => 0.009348356143738
202 => 0.0093182942207544
203 => 0.0093547339228108
204 => 0.0094323097096536
205 => 0.0093957264011784
206 => 0.0094198903209412
207 => 0.0093278023765312
208 => 0.0095236650803103
209 => 0.0098347421908383
210 => 0.0098357423546148
211 => 0.0097991588489419
212 => 0.0097841896666232
213 => 0.0098217265635164
214 => 0.0098420887902368
215 => 0.0099634762316995
216 => 0.010093729792678
217 => 0.010701566327684
218 => 0.010530888260951
219 => 0.011070196995166
220 => 0.011496720183455
221 => 0.011624615838024
222 => 0.011506957853776
223 => 0.011104456245422
224 => 0.011084707596281
225 => 0.011686214930957
226 => 0.01151626155813
227 => 0.011496046145219
228 => 0.011280988306329
301 => 0.011408114124545
302 => 0.011380309843278
303 => 0.011336419425066
304 => 0.01157896663056
305 => 0.012032993346907
306 => 0.011962229025329
307 => 0.011909406741933
308 => 0.011677954872428
309 => 0.011817340594517
310 => 0.011767708008639
311 => 0.011980961095188
312 => 0.01185463469085
313 => 0.011514973994177
314 => 0.011569066079659
315 => 0.011560890169756
316 => 0.011729149816196
317 => 0.011678642446796
318 => 0.011551027795267
319 => 0.012031441532949
320 => 0.012000246137026
321 => 0.012044474076185
322 => 0.012063944582797
323 => 0.012356363959085
324 => 0.012476158821174
325 => 0.012503354352173
326 => 0.01261715020589
327 => 0.012500523007666
328 => 0.012967114954343
329 => 0.013277371372488
330 => 0.013637750167812
331 => 0.01416436044847
401 => 0.014362370785415
402 => 0.014326601990368
403 => 0.014725871895042
404 => 0.015443351038471
405 => 0.014471625038768
406 => 0.01549485487599
407 => 0.015170912123282
408 => 0.014402849684093
409 => 0.014353395517871
410 => 0.014873536319078
411 => 0.016027158554459
412 => 0.015738189268771
413 => 0.01602763120469
414 => 0.015689981811827
415 => 0.015673214673539
416 => 0.016011232327326
417 => 0.016801028999783
418 => 0.016425826205784
419 => 0.015887880997087
420 => 0.016285091367835
421 => 0.015940990984609
422 => 0.015165636513569
423 => 0.015737968299404
424 => 0.015355266333287
425 => 0.015466959112555
426 => 0.016271341722713
427 => 0.016174556278926
428 => 0.016299805605277
429 => 0.016078743822614
430 => 0.015872237259363
501 => 0.015486777423676
502 => 0.01537266176927
503 => 0.015404199230696
504 => 0.01537264614087
505 => 0.015156984905362
506 => 0.015110412882087
507 => 0.015032790802929
508 => 0.015056849131002
509 => 0.014910896913045
510 => 0.015186338903598
511 => 0.015237463364231
512 => 0.015437907075
513 => 0.015458717805998
514 => 0.016016950687352
515 => 0.015709485397025
516 => 0.015915759659052
517 => 0.015897308547528
518 => 0.014419495926119
519 => 0.014623125466498
520 => 0.014939909128858
521 => 0.014797198518355
522 => 0.014595439104244
523 => 0.014432507559694
524 => 0.014185649609094
525 => 0.014533097434076
526 => 0.01498995437697
527 => 0.015470304451999
528 => 0.016047413593363
529 => 0.015918609551301
530 => 0.01545951579803
531 => 0.015480110408433
601 => 0.015607418186268
602 => 0.015442543046841
603 => 0.015393918149479
604 => 0.015600737872056
605 => 0.015602162125819
606 => 0.015412453352083
607 => 0.015201626766413
608 => 0.015200743395322
609 => 0.015163228840745
610 => 0.015696655567747
611 => 0.015989986332073
612 => 0.016023616231477
613 => 0.015987722771894
614 => 0.016001536739927
615 => 0.015830854031268
616 => 0.016220984088877
617 => 0.016579006009604
618 => 0.016483048486826
619 => 0.016339194519017
620 => 0.016224607904712
621 => 0.016456055522111
622 => 0.01644574952404
623 => 0.016575879000457
624 => 0.016569975575743
625 => 0.016526217927241
626 => 0.01648305004955
627 => 0.01665420580512
628 => 0.016604915696193
629 => 0.016555549026113
630 => 0.016456536611607
701 => 0.016469994043161
702 => 0.016326164913768
703 => 0.016259622977337
704 => 0.015258991909853
705 => 0.014991590592058
706 => 0.015075720490092
707 => 0.015103418236957
708 => 0.014987044840769
709 => 0.01515389439703
710 => 0.015127891070424
711 => 0.015229054802811
712 => 0.015165852094834
713 => 0.015168445956016
714 => 0.015354311643936
715 => 0.015408269243869
716 => 0.015380825973052
717 => 0.015400046299232
718 => 0.015842970603655
719 => 0.015780000931488
720 => 0.015746549548181
721 => 0.015755815809968
722 => 0.015868992466152
723 => 0.015900675750667
724 => 0.015766431447831
725 => 0.015829741837106
726 => 0.016099309439352
727 => 0.016193642843934
728 => 0.016494709788754
729 => 0.016366811199556
730 => 0.01660157459535
731 => 0.017323157237282
801 => 0.017899607381378
802 => 0.017369480006058
803 => 0.018428057285207
804 => 0.019252311540916
805 => 0.019220675289715
806 => 0.019076947494888
807 => 0.018138555938695
808 => 0.017275034038057
809 => 0.017997406775018
810 => 0.017999248251682
811 => 0.017937195792936
812 => 0.017551793300995
813 => 0.017923784621625
814 => 0.017953311941782
815 => 0.017936784494442
816 => 0.017641297307495
817 => 0.017190142988187
818 => 0.017278297462269
819 => 0.017422696289118
820 => 0.017149319185143
821 => 0.01706195863592
822 => 0.01722437851795
823 => 0.017747729219377
824 => 0.017648792800836
825 => 0.017646209171115
826 => 0.018069501125203
827 => 0.017766515438197
828 => 0.017279409372497
829 => 0.017156408666768
830 => 0.016719839024635
831 => 0.017021379231464
901 => 0.017032231126686
902 => 0.016867080637072
903 => 0.017292810424533
904 => 0.017288887249593
905 => 0.017693054321271
906 => 0.018465669964099
907 => 0.018237169500408
908 => 0.017971448321915
909 => 0.018000339581667
910 => 0.018317205391433
911 => 0.018125621089505
912 => 0.018194516140252
913 => 0.018317101110522
914 => 0.0183910596667
915 => 0.01798969808359
916 => 0.017896121499224
917 => 0.017704696648528
918 => 0.017654757478095
919 => 0.017810669024776
920 => 0.017769591840662
921 => 0.017031319066914
922 => 0.016954165454346
923 => 0.016956531645493
924 => 0.016762525218238
925 => 0.016466618849795
926 => 0.017244243118411
927 => 0.017181789006796
928 => 0.017112844501138
929 => 0.01712128980969
930 => 0.017458830148564
1001 => 0.017263039705821
1002 => 0.017783580687275
1003 => 0.017676573110383
1004 => 0.017566821192919
1005 => 0.0175516501348
1006 => 0.01750940501017
1007 => 0.017364530759096
1008 => 0.017189586395331
1009 => 0.017074072972952
1010 => 0.015749929785466
1011 => 0.015995683058877
1012 => 0.01627839979882
1013 => 0.016375992484532
1014 => 0.016209053442413
1015 => 0.017371122529984
1016 => 0.01758344375026
1017 => 0.016940308924675
1018 => 0.01682000465783
1019 => 0.01737900965769
1020 => 0.017041861307192
1021 => 0.017193679188778
1022 => 0.016865531968731
1023 => 0.017532301785787
1024 => 0.017527222116926
1025 => 0.017267833598412
1026 => 0.017487066998044
1027 => 0.017448969799789
1028 => 0.017156120801232
1029 => 0.017541585621386
1030 => 0.017541776807128
1031 => 0.017292120997651
1101 => 0.017000577668866
1102 => 0.016948456607626
1103 => 0.01690919038946
1104 => 0.017184022106172
1105 => 0.017430435363999
1106 => 0.017888949345789
1107 => 0.018004230654834
1108 => 0.018454181278749
1109 => 0.018186257589906
1110 => 0.018305024690977
1111 => 0.018433963179823
1112 => 0.018495781032931
1113 => 0.01839505215862
1114 => 0.019094010684626
1115 => 0.019153024199757
1116 => 0.019172810920915
1117 => 0.018937126038592
1118 => 0.019146469376829
1119 => 0.01904852456159
1120 => 0.019303349760987
1121 => 0.019343309606024
1122 => 0.01930946503889
1123 => 0.019322148924428
1124 => 0.018725711127215
1125 => 0.01869478268097
1126 => 0.01827307112183
1127 => 0.018444921699314
1128 => 0.01812365528172
1129 => 0.01822553217215
1130 => 0.018270438534733
1201 => 0.018246981999333
1202 => 0.018454637873122
1203 => 0.018278087959109
1204 => 0.017812143708535
1205 => 0.017346072511762
1206 => 0.01734022136754
1207 => 0.017217513048269
1208 => 0.017128817408586
1209 => 0.017145903335436
1210 => 0.017206116370207
1211 => 0.017125317717544
1212 => 0.017142560206686
1213 => 0.017428900412536
1214 => 0.017486323898734
1215 => 0.017291176455828
1216 => 0.016507631312916
1217 => 0.016315347369472
1218 => 0.016453557254863
1219 => 0.016387501831503
1220 => 0.013225992970101
1221 => 0.013968742581763
1222 => 0.013527425983907
1223 => 0.0137308049762
1224 => 0.013280335008167
1225 => 0.013495322888066
1226 => 0.013455622476749
1227 => 0.014649941872744
1228 => 0.014631294218108
1229 => 0.01464021986357
1230 => 0.014214175550011
1231 => 0.014892875709874
]
'min_raw' => 0.0086646898057258
'max_raw' => 0.019343309606024
'avg_raw' => 0.014003999705875
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008664'
'max' => '$0.019343'
'avg' => '$0.0140039'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013360775875142
'max_diff' => 0.0029263135513127
'year' => 2035
]
10 => [
'items' => [
101 => 0.015227227813891
102 => 0.015165348137931
103 => 0.015180921919225
104 => 0.014913312758189
105 => 0.014642810905214
106 => 0.014342782720328
107 => 0.014900198003241
108 => 0.014838222939178
109 => 0.014980371438216
110 => 0.015341895094052
111 => 0.015395130825669
112 => 0.015466680188826
113 => 0.015441034835365
114 => 0.016052011198739
115 => 0.015978017929782
116 => 0.016156320418651
117 => 0.015789538671206
118 => 0.015374490308728
119 => 0.015453377433482
120 => 0.015445779968998
121 => 0.015349055526153
122 => 0.015261737023995
123 => 0.015116376319737
124 => 0.015576319097346
125 => 0.015557646260529
126 => 0.015859937783794
127 => 0.015806504820754
128 => 0.015449666416307
129 => 0.015462410969731
130 => 0.015548124216332
131 => 0.015844778741474
201 => 0.015932846002316
202 => 0.01589204973822
203 => 0.015988611469311
204 => 0.016064929924426
205 => 0.015998195892254
206 => 0.016943009058193
207 => 0.016550656759551
208 => 0.016741886539939
209 => 0.016787493715771
210 => 0.016670671893894
211 => 0.016696006363983
212 => 0.016734381182939
213 => 0.016967385569075
214 => 0.017578856498659
215 => 0.017849672810948
216 => 0.018664437048312
217 => 0.017827185286158
218 => 0.017777506231484
219 => 0.017924269874156
220 => 0.018402622733042
221 => 0.018790282795769
222 => 0.018918892003222
223 => 0.018935889833093
224 => 0.019177169256052
225 => 0.019315466121698
226 => 0.019147871587826
227 => 0.019005852768249
228 => 0.01849715898455
229 => 0.01855604167514
301 => 0.018961685022154
302 => 0.019534680142084
303 => 0.020026369564965
304 => 0.019854197066178
305 => 0.021167751697078
306 => 0.021297985273342
307 => 0.021279991204058
308 => 0.021576682672143
309 => 0.020987810528162
310 => 0.020736056277749
311 => 0.019036558849024
312 => 0.019514048304897
313 => 0.02020810727098
314 => 0.020116245964231
315 => 0.019612201790812
316 => 0.020025987202261
317 => 0.01988917680497
318 => 0.019781268768357
319 => 0.020275616403079
320 => 0.019732060872021
321 => 0.020202684888759
322 => 0.019599104719311
323 => 0.01985498353565
324 => 0.01970973434403
325 => 0.019803728372079
326 => 0.019254241204715
327 => 0.019550731142178
328 => 0.019241906248548
329 => 0.019241759825339
330 => 0.019234942498695
331 => 0.019598273616511
401 => 0.019610121831219
402 => 0.01934161958619
403 => 0.019302924217888
404 => 0.019446001275564
405 => 0.019278495512966
406 => 0.019356870405017
407 => 0.019280869408605
408 => 0.019263759983487
409 => 0.019127429173215
410 => 0.019068694111656
411 => 0.019091725642709
412 => 0.019013107153657
413 => 0.018965736670247
414 => 0.019225519317247
415 => 0.019086727928557
416 => 0.019204247546382
417 => 0.019070319109713
418 => 0.018606064798375
419 => 0.018339067234524
420 => 0.017462133876804
421 => 0.017710831089221
422 => 0.017875717598349
423 => 0.017821222608066
424 => 0.017938298933956
425 => 0.017945486469511
426 => 0.017907423762512
427 => 0.017863352023943
428 => 0.017841900338927
429 => 0.018001783623999
430 => 0.018094601252407
501 => 0.017892266165437
502 => 0.017844861885529
503 => 0.018049433829681
504 => 0.018174222597437
505 => 0.019095592745794
506 => 0.019027334669218
507 => 0.019198649046454
508 => 0.019179361676611
509 => 0.019358926436475
510 => 0.019652438929124
511 => 0.019055645964185
512 => 0.019159228587351
513 => 0.019133832520223
514 => 0.01941110012192
515 => 0.019411965721108
516 => 0.019245729943346
517 => 0.019335849055338
518 => 0.019285547039313
519 => 0.019376449580996
520 => 0.01902642304099
521 => 0.019452717583687
522 => 0.019694399119583
523 => 0.019697754867943
524 => 0.019812309997854
525 => 0.01992870464443
526 => 0.020152114032694
527 => 0.019922473877847
528 => 0.019509373594295
529 => 0.019539198100461
530 => 0.019296997555362
531 => 0.019301068990282
601 => 0.019279335351594
602 => 0.019344559637329
603 => 0.019040736103829
604 => 0.019112042879868
605 => 0.019012212975842
606 => 0.019159011576636
607 => 0.01900108054886
608 => 0.01913382027347
609 => 0.01919110633822
610 => 0.01940249315043
611 => 0.018969858544823
612 => 0.018087687297202
613 => 0.018273130388744
614 => 0.017998845490112
615 => 0.018024231601757
616 => 0.018075515587449
617 => 0.017909287410745
618 => 0.017940998508409
619 => 0.017939865564852
620 => 0.017930102469352
621 => 0.017886860100554
622 => 0.017824150110556
623 => 0.018073967409592
624 => 0.018116416236707
625 => 0.018210774721088
626 => 0.018491521566634
627 => 0.018463468336298
628 => 0.018509224318894
629 => 0.018409339265795
630 => 0.018028864982893
701 => 0.018049526566972
702 => 0.017791876282432
703 => 0.018204186024036
704 => 0.018106545635001
705 => 0.018043596241002
706 => 0.018026419915628
707 => 0.018307862678302
708 => 0.018392074763968
709 => 0.018339599443444
710 => 0.018231971030098
711 => 0.018438649401206
712 => 0.018493947814254
713 => 0.018506327089608
714 => 0.018872521536565
715 => 0.01852679329128
716 => 0.018610013516164
717 => 0.019259273954441
718 => 0.01867048432874
719 => 0.018982379325049
720 => 0.018967113688003
721 => 0.019126668614164
722 => 0.018954025526999
723 => 0.018956165644975
724 => 0.019097839610219
725 => 0.018898884077068
726 => 0.018849619889142
727 => 0.018781561766359
728 => 0.018930164187599
729 => 0.019019244618423
730 => 0.019737167468499
731 => 0.020200978370907
801 => 0.02018084311642
802 => 0.020364841650821
803 => 0.02028194862584
804 => 0.0200142651821
805 => 0.020471168180045
806 => 0.020326584953862
807 => 0.02033850421936
808 => 0.020338060583703
809 => 0.02043419578943
810 => 0.02036607518551
811 => 0.020231802482748
812 => 0.020320938969086
813 => 0.020585642466633
814 => 0.021407290245116
815 => 0.02186709522734
816 => 0.021379609407838
817 => 0.021715870598435
818 => 0.02151423370619
819 => 0.021477590284691
820 => 0.021688787161893
821 => 0.02190035371127
822 => 0.021886877836702
823 => 0.021733291385917
824 => 0.02164653429698
825 => 0.022303488040167
826 => 0.022787520367232
827 => 0.02275451260752
828 => 0.02290019812419
829 => 0.023327935307016
830 => 0.023367042234437
831 => 0.023362115660445
901 => 0.023265185060446
902 => 0.023686347865631
903 => 0.024037689287371
904 => 0.023242748427141
905 => 0.023545451500177
906 => 0.023681344662146
907 => 0.023880876141602
908 => 0.024217519192802
909 => 0.024583202836565
910 => 0.024634914513311
911 => 0.024598222604028
912 => 0.024357044410863
913 => 0.024757179817381
914 => 0.02499156975419
915 => 0.025131143597642
916 => 0.025485079641761
917 => 0.023682183892051
918 => 0.022406004670673
919 => 0.022206710857004
920 => 0.022611982663943
921 => 0.022718849607451
922 => 0.022675771676523
923 => 0.021239315937723
924 => 0.022199148214821
925 => 0.023231847039987
926 => 0.02327151720766
927 => 0.023788507832252
928 => 0.023956861171781
929 => 0.024373106388089
930 => 0.024347070136477
1001 => 0.02444841922274
1002 => 0.02442512082293
1003 => 0.025196127435367
1004 => 0.026046662224476
1005 => 0.026017210909264
1006 => 0.025894936470259
1007 => 0.026076534863072
1008 => 0.026954377914279
1009 => 0.026873560193272
1010 => 0.026952067725193
1011 => 0.027987094155633
1012 => 0.029332775745998
1013 => 0.028707571543051
1014 => 0.030064084765783
1015 => 0.030917937933817
1016 => 0.032394588697866
1017 => 0.032209704749548
1018 => 0.032784554055829
1019 => 0.031878723895616
1020 => 0.029798754749288
1021 => 0.02946959167008
1022 => 0.030128584490392
1023 => 0.03174865403555
1024 => 0.030077562735077
1025 => 0.030415622328728
1026 => 0.030318261143014
1027 => 0.030313073179186
1028 => 0.030511076657539
1029 => 0.030223862285021
1030 => 0.029053699262505
1031 => 0.02958997807991
1101 => 0.029382895074286
1102 => 0.029612669108087
1103 => 0.030852664802489
1104 => 0.030304433148189
1105 => 0.029726915635106
1106 => 0.030451250757907
1107 => 0.031373578277786
1108 => 0.031315860679174
1109 => 0.031203864413782
1110 => 0.031835181497863
1111 => 0.032877932362216
1112 => 0.033159783730738
1113 => 0.033367840648783
1114 => 0.033396528182631
1115 => 0.033692027610469
1116 => 0.032103052711541
1117 => 0.034624796683909
1118 => 0.035060232206166
1119 => 0.034978388374935
1120 => 0.035462356631996
1121 => 0.035319960893679
1122 => 0.035113651810064
1123 => 0.035880844440506
1124 => 0.035001319998958
1125 => 0.033752945783229
1126 => 0.033068062998437
1127 => 0.033969971897369
1128 => 0.034520736189663
1129 => 0.034884756351682
1130 => 0.034994908632762
1201 => 0.032226400309714
1202 => 0.030734327872101
1203 => 0.031690729197966
1204 => 0.032857604822813
1205 => 0.032096570658528
1206 => 0.03212640175694
1207 => 0.031041367034929
1208 => 0.032953606319652
1209 => 0.032675009140332
1210 => 0.034120371799475
1211 => 0.03377542440111
1212 => 0.034954061540986
1213 => 0.034643686881625
1214 => 0.03593203473982
1215 => 0.03644599158108
1216 => 0.03730900510855
1217 => 0.037943841372455
1218 => 0.038316629369102
1219 => 0.038294248576076
1220 => 0.039771420341034
1221 => 0.038900383759689
1222 => 0.037806156525959
1223 => 0.037786365407543
1224 => 0.038353081197212
1225 => 0.039540762021473
1226 => 0.039848710379151
1227 => 0.040020811500005
1228 => 0.039757232642534
1229 => 0.038811784861237
1230 => 0.038403545302802
1231 => 0.038751377234427
]
'min_raw' => 0.014342782720328
'max_raw' => 0.040020811500005
'avg_raw' => 0.027181797110166
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014342'
'max' => '$0.04002'
'avg' => '$0.027181'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.005678092914602
'max_diff' => 0.020677501893981
'year' => 2036
]
11 => [
'items' => [
101 => 0.038326008671589
102 => 0.039060314148388
103 => 0.040068672407219
104 => 0.039860450414251
105 => 0.040556505318357
106 => 0.041276848916995
107 => 0.042306972615704
108 => 0.042576285095916
109 => 0.043021448384671
110 => 0.043479667637322
111 => 0.043626835311919
112 => 0.043907824066171
113 => 0.043906343116736
114 => 0.0447531216404
115 => 0.045687144574548
116 => 0.046039716609509
117 => 0.046850436562965
118 => 0.045462107053687
119 => 0.046515170934455
120 => 0.047465060914806
121 => 0.046332562920864
122 => 0.047893447567322
123 => 0.047954053181103
124 => 0.048869125994902
125 => 0.047941524391378
126 => 0.047390717520215
127 => 0.048980876318799
128 => 0.049750304071902
129 => 0.049518546170857
130 => 0.047754857100604
131 => 0.046728314413534
201 => 0.044041654196176
202 => 0.047224119278721
203 => 0.048774205186649
204 => 0.047750842752576
205 => 0.048266967238885
206 => 0.051082775082259
207 => 0.05215485239896
208 => 0.051931867811472
209 => 0.051969548536119
210 => 0.052548021996631
211 => 0.055113291891694
212 => 0.053576122708082
213 => 0.054751230952323
214 => 0.055374504127901
215 => 0.055953434988769
216 => 0.054531763767454
217 => 0.052682190397023
218 => 0.052096352870799
219 => 0.047649089526776
220 => 0.047417590156234
221 => 0.0472876425444
222 => 0.04646834123324
223 => 0.045824594828185
224 => 0.045312663786113
225 => 0.043969203856168
226 => 0.044422582144844
227 => 0.04228138741839
228 => 0.043651247925094
301 => 0.040233849440718
302 => 0.04307996044705
303 => 0.041530951623092
304 => 0.042571069387921
305 => 0.042567440515025
306 => 0.040652253940336
307 => 0.03954761429298
308 => 0.040251533669494
309 => 0.041006191118306
310 => 0.041128631750403
311 => 0.042107064831363
312 => 0.04238012447291
313 => 0.041552741011087
314 => 0.040163031453023
315 => 0.040485829287461
316 => 0.039541072805168
317 => 0.037885423409483
318 => 0.039074539710329
319 => 0.039480556297191
320 => 0.039659876352204
321 => 0.038031735324166
322 => 0.037520138064494
323 => 0.037247767976162
324 => 0.039952858891623
325 => 0.040101049878369
326 => 0.039342883838081
327 => 0.042769866232439
328 => 0.04199423457145
329 => 0.042860805171146
330 => 0.040456538767393
331 => 0.04054838498179
401 => 0.039410166736175
402 => 0.040047492897949
403 => 0.039597051308788
404 => 0.039996003242257
405 => 0.040235133386238
406 => 0.041373164861439
407 => 0.043092954938452
408 => 0.041203180909049
409 => 0.040379779302376
410 => 0.04089061302817
411 => 0.04225103055684
412 => 0.044312132751266
413 => 0.043091918768618
414 => 0.04363342901354
415 => 0.043751724911942
416 => 0.042851984295914
417 => 0.044345307471156
418 => 0.045145591492504
419 => 0.045966517302962
420 => 0.046679304182364
421 => 0.04563862148172
422 => 0.046752301147415
423 => 0.04585487192779
424 => 0.045049785143259
425 => 0.045051006127586
426 => 0.044545963427208
427 => 0.043567379555751
428 => 0.043386913675684
429 => 0.04432571997412
430 => 0.045078553720179
501 => 0.045140560713334
502 => 0.045557368157147
503 => 0.045804030508937
504 => 0.048221656877686
505 => 0.049194046202852
506 => 0.050383065463276
507 => 0.050846255474665
508 => 0.052240291346136
509 => 0.051114494161865
510 => 0.050870920859452
511 => 0.047489445820922
512 => 0.048043162169047
513 => 0.048929715468077
514 => 0.047504064758285
515 => 0.048408311994089
516 => 0.048586829553012
517 => 0.047455621692698
518 => 0.048059848687498
519 => 0.046455200930128
520 => 0.043127931874566
521 => 0.044349011672765
522 => 0.045248137415255
523 => 0.043964974119317
524 => 0.046264994662009
525 => 0.04492137014303
526 => 0.044495505675864
527 => 0.042834056557808
528 => 0.04361819658649
529 => 0.044678757203085
530 => 0.044023454045434
531 => 0.045383306491823
601 => 0.04730922021531
602 => 0.048681741024812
603 => 0.048787106129907
604 => 0.04790466720115
605 => 0.049318781216134
606 => 0.049329081492909
607 => 0.047733955107182
608 => 0.046756949077626
609 => 0.046534971252072
610 => 0.047089515381621
611 => 0.047762834329387
612 => 0.048824470645447
613 => 0.049465995236817
614 => 0.051138751132758
615 => 0.051591350916529
616 => 0.052088620859214
617 => 0.052753126855011
618 => 0.053551036678807
619 => 0.051805255409374
620 => 0.051874618553752
621 => 0.050248971207644
622 => 0.048511733876915
623 => 0.049830080461248
624 => 0.051553643247966
625 => 0.051158256040325
626 => 0.051113766902438
627 => 0.051188585292107
628 => 0.050890476249684
629 => 0.049542140099246
630 => 0.048865014125526
701 => 0.049738679384884
702 => 0.050202993587865
703 => 0.050923104424236
704 => 0.050834335563957
705 => 0.05268926374419
706 => 0.053410032744911
707 => 0.053225629191082
708 => 0.053259563882906
709 => 0.054564481730298
710 => 0.056015818753422
711 => 0.057375187396365
712 => 0.058757995566209
713 => 0.057090966345541
714 => 0.056244551715354
715 => 0.05711783555979
716 => 0.056654458859572
717 => 0.059317158825482
718 => 0.059501518393943
719 => 0.062164025816338
720 => 0.064691062405676
721 => 0.063103876000476
722 => 0.064600521292134
723 => 0.066219265198344
724 => 0.069342084825156
725 => 0.068290429036964
726 => 0.067484877184757
727 => 0.06672363457682
728 => 0.068307659600077
729 => 0.07034548248708
730 => 0.070784410018915
731 => 0.071495640303711
801 => 0.07074786862435
802 => 0.071648477247791
803 => 0.074828021436023
804 => 0.07396888052975
805 => 0.07274876232905
806 => 0.075258707098988
807 => 0.076167046354066
808 => 0.082542246947162
809 => 0.090591201042346
810 => 0.087258881194657
811 => 0.085190402731908
812 => 0.085676544235619
813 => 0.08861574979689
814 => 0.089559729337448
815 => 0.086993667536949
816 => 0.087900043945789
817 => 0.09289426707146
818 => 0.095573507544521
819 => 0.091934739112102
820 => 0.081895521322706
821 => 0.072638904034679
822 => 0.075094175770373
823 => 0.074815824151497
824 => 0.080181493858008
825 => 0.073948390303272
826 => 0.074053339781449
827 => 0.079529965855147
828 => 0.078068895911824
829 => 0.075702149723342
830 => 0.072656183901053
831 => 0.067025434360814
901 => 0.062038122467956
902 => 0.071819389599183
903 => 0.071397603574404
904 => 0.070786794905338
905 => 0.072146083501944
906 => 0.078746403086262
907 => 0.078594244356694
908 => 0.077626288151247
909 => 0.078360474401904
910 => 0.075573443323864
911 => 0.076291724692193
912 => 0.072637437739207
913 => 0.07428932805846
914 => 0.075697071748982
915 => 0.075979697136855
916 => 0.076616466566945
917 => 0.071175341505451
918 => 0.073618246915023
919 => 0.075053224973864
920 => 0.068569941899071
921 => 0.07492507131282
922 => 0.071080623623541
923 => 0.069775760336134
924 => 0.071532586849962
925 => 0.070847949848953
926 => 0.07025933915872
927 => 0.069930884279954
928 => 0.071220903777843
929 => 0.07116072282636
930 => 0.069050000545818
1001 => 0.066296649374899
1002 => 0.067220764403531
1003 => 0.066885024750004
1004 => 0.065668260934347
1005 => 0.066488212833477
1006 => 0.062877559637869
1007 => 0.056665618480248
1008 => 0.060769417085876
1009 => 0.060611425303633
1010 => 0.060531758682669
1011 => 0.063615649914136
1012 => 0.063319204929707
1013 => 0.062781154380169
1014 => 0.06565837921406
1015 => 0.064608153445555
1016 => 0.067844701799777
1017 => 0.06997650187269
1018 => 0.069435808417691
1019 => 0.071440776690151
1020 => 0.06724205414734
1021 => 0.068636701352552
1022 => 0.068924136208649
1023 => 0.06562287470623
1024 => 0.063367706995356
1025 => 0.063217313019835
1026 => 0.059307162990434
1027 => 0.061395933574512
1028 => 0.0632339652493
1029 => 0.062353690714097
1030 => 0.062075022093705
1031 => 0.063498679639437
1101 => 0.063609310023543
1102 => 0.06108692554185
1103 => 0.061611409149122
1104 => 0.063798592979591
1105 => 0.06155629772833
1106 => 0.057199884331979
1107 => 0.056119433577557
1108 => 0.055975281530258
1109 => 0.053045013392635
1110 => 0.056191634463343
1111 => 0.054818050041777
1112 => 0.059157186771437
1113 => 0.056678695142712
1114 => 0.056571852322296
1115 => 0.056410343728804
1116 => 0.053888140894899
1117 => 0.054440343021172
1118 => 0.056275946991662
1119 => 0.056930911167892
1120 => 0.056862593038347
1121 => 0.056266951530796
1122 => 0.056539633162775
1123 => 0.055661230617592
1124 => 0.055351048396521
1125 => 0.054372027984476
1126 => 0.052933138440062
1127 => 0.053133224856435
1128 => 0.050282408163022
1129 => 0.048729131924156
1130 => 0.04829920553309
1201 => 0.047724289995096
1202 => 0.048364143772898
1203 => 0.050274332157515
1204 => 0.047970239696595
1205 => 0.04402003478564
1206 => 0.04425744883161
1207 => 0.044790847704042
1208 => 0.043796862434052
1209 => 0.042856138794867
1210 => 0.043674021675817
1211 => 0.042000267780415
1212 => 0.044993112865848
1213 => 0.044912164793638
1214 => 0.046027712365189
1215 => 0.04672528715502
1216 => 0.045117603106979
1217 => 0.044713274916537
1218 => 0.044943598629504
1219 => 0.041136860706559
1220 => 0.045716620662575
1221 => 0.045756226616853
1222 => 0.04541709639085
1223 => 0.047855677183203
1224 => 0.053001843267492
1225 => 0.051065648582531
1226 => 0.05031589547872
1227 => 0.04889061428031
1228 => 0.050789716852368
1229 => 0.050643895405449
1230 => 0.049984435521341
1231 => 0.049585592125791
]
'min_raw' => 0.037247767976162
'max_raw' => 0.095573507544521
'avg_raw' => 0.066410637760342
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.037247'
'max' => '$0.095573'
'avg' => '$0.06641'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.022904985255834
'max_diff' => 0.055552696044516
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0011691648747006
]
1 => [
'year' => 2028
'avg' => 0.0020066263359745
]
2 => [
'year' => 2029
'avg' => 0.0054817414906729
]
3 => [
'year' => 2030
'avg' => 0.0042291553963998
]
4 => [
'year' => 2031
'avg' => 0.0041535547127229
]
5 => [
'year' => 2032
'avg' => 0.0072824885831787
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0011691648747006
'min' => '$0.001169'
'max_raw' => 0.0072824885831787
'max' => '$0.007282'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0072824885831787
]
1 => [
'year' => 2033
'avg' => 0.018731309485406
]
2 => [
'year' => 2034
'avg' => 0.011872804136461
]
3 => [
'year' => 2035
'avg' => 0.014003999705875
]
4 => [
'year' => 2036
'avg' => 0.027181797110166
]
5 => [
'year' => 2037
'avg' => 0.066410637760342
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0072824885831787
'min' => '$0.007282'
'max_raw' => 0.066410637760342
'max' => '$0.06641'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.066410637760342
]
]
]
]
'prediction_2025_max_price' => '$0.001999'
'last_price' => 0.00193834
'sma_50day_nextmonth' => '$0.001779'
'sma_200day_nextmonth' => '$0.003053'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.001825'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.001777'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.001783'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.001765'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.001821'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.002454'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003382'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.001848'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.001817'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.001794'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00179'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.001957'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.002422'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.003099'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.002968'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.0039021'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.004994'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.01332'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.00186'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.001866'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.002086'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.002681'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.003828'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011451'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.038596'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '58.02'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 94.5
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.001830'
'vwma_10_action' => 'BUY'
'hma_9' => '0.001810'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 178.87
'cci_20_action' => 'SELL'
'adx_14' => 11.84
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000018'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 62.86
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.000487'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 14
'buy_signals' => 20
'sell_pct' => 41.18
'buy_pct' => 58.82
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767681610
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Integral para 2026
La previsión del precio de Integral para 2026 sugiere que el precio medio podría oscilar entre $0.000669 en el extremo inferior y $0.001999 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Integral podría potencialmente ganar 3.13% para 2026 si ITGR alcanza el objetivo de precio previsto.
Predicción de precio de Integral 2027-2032
La predicción del precio de ITGR para 2027-2032 está actualmente dentro de un rango de precios de $0.001169 en el extremo inferior y $0.007282 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Integral alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Integral | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000644 | $0.001169 | $0.001693 |
| 2028 | $0.001163 | $0.0020066 | $0.002849 |
| 2029 | $0.002555 | $0.005481 | $0.0084076 |
| 2030 | $0.002173 | $0.004229 | $0.006284 |
| 2031 | $0.002569 | $0.004153 | $0.005737 |
| 2032 | $0.003922 | $0.007282 | $0.010642 |
Predicción de precio de Integral 2032-2037
La predicción de precio de Integral para 2032-2037 se estima actualmente entre $0.007282 en el extremo inferior y $0.06641 en el extremo superior. Comparado con el precio actual, Integral podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Integral | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.003922 | $0.007282 | $0.010642 |
| 2033 | $0.009115 | $0.018731 | $0.028346 |
| 2034 | $0.007328 | $0.011872 | $0.016416 |
| 2035 | $0.008664 | $0.0140039 | $0.019343 |
| 2036 | $0.014342 | $0.027181 | $0.04002 |
| 2037 | $0.037247 | $0.06641 | $0.095573 |
Integral Histograma de precios potenciales
Pronóstico de precio de Integral basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Integral es Alcista, con 20 indicadores técnicos mostrando señales alcistas y 14 indicando señales bajistas. La predicción de precio de ITGR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Integral
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Integral aumentar durante el próximo mes, alcanzando $0.003053 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Integral alcance $0.001779 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 58.02, lo que sugiere que el mercado de ITGR está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ITGR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.001825 | BUY |
| SMA 5 | $0.001777 | BUY |
| SMA 10 | $0.001783 | BUY |
| SMA 21 | $0.001765 | BUY |
| SMA 50 | $0.001821 | BUY |
| SMA 100 | $0.002454 | SELL |
| SMA 200 | $0.003382 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.001848 | BUY |
| EMA 5 | $0.001817 | BUY |
| EMA 10 | $0.001794 | BUY |
| EMA 21 | $0.00179 | BUY |
| EMA 50 | $0.001957 | SELL |
| EMA 100 | $0.002422 | SELL |
| EMA 200 | $0.003099 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.002968 | SELL |
| SMA 50 | $0.0039021 | SELL |
| SMA 100 | $0.004994 | SELL |
| SMA 200 | $0.01332 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.002681 | SELL |
| EMA 50 | $0.003828 | SELL |
| EMA 100 | $0.011451 | SELL |
| EMA 200 | $0.038596 | SELL |
Osciladores de Integral
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 58.02 | NEUTRAL |
| Stoch RSI (14) | 94.5 | NEUTRAL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 178.87 | SELL |
| Índice Direccional Medio (14) | 11.84 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000018 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 62.86 | NEUTRAL |
| VWMA (10) | 0.001830 | BUY |
| Promedio Móvil de Hull (9) | 0.001810 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000487 | NEUTRAL |
Predicción de precios de Integral basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Integral
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Integral por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.002723 | $0.003827 | $0.005377 | $0.007556 | $0.010618 | $0.01492 |
| Amazon.com acción | $0.004044 | $0.008439 | $0.0176084 | $0.036741 | $0.076662 | $0.159961 |
| Apple acción | $0.002749 | $0.003899 | $0.005531 | $0.007846 | $0.011129 | $0.015785 |
| Netflix acción | $0.003058 | $0.004825 | $0.007614 | $0.012013 | $0.018956 | $0.0299097 |
| Google acción | $0.00251 | $0.00325 | $0.0042095 | $0.005451 | $0.007059 | $0.009141 |
| Tesla acción | $0.004394 | $0.009961 | $0.02258 | $0.051189 | $0.116041 | $0.263058 |
| Kodak acción | $0.001453 | $0.00109 | $0.000817 | $0.000612 | $0.000459 | $0.000344 |
| Nokia acción | $0.001284 | $0.00085 | $0.000563 | $0.000373 | $0.000247 | $0.000163 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Integral
Podría preguntarse cosas como: "¿Debo invertir en Integral ahora?", "¿Debería comprar ITGR hoy?", "¿Será Integral una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Integral regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Integral, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Integral a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Integral es de $0.001938 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Integral basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Integral ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.001988 | $0.00204 | $0.002093 | $0.002147 |
| Si Integral ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002039 | $0.002145 | $0.002256 | $0.002373 |
| Si Integral ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.00219 | $0.002474 | $0.002796 | $0.00316 |
| Si Integral ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.002442 | $0.003076 | $0.003876 | $0.004884 |
| Si Integral ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.002946 | $0.004477 | $0.0068052 | $0.010343 |
| Si Integral ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.004457 | $0.01025 | $0.023573 | $0.05421 |
| Si Integral ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.006976 | $0.025111 | $0.090384 | $0.325321 |
Cuadro de preguntas
¿Es ITGR una buena inversión?
La decisión de adquirir Integral depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Integral ha experimentado un aumento de 8.908% durante las últimas 24 horas, y Integral ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Integral dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Integral subir?
Parece que el valor medio de Integral podría potencialmente aumentar hasta $0.001999 para el final de este año. Mirando las perspectivas de Integral en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.006284. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Integral la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Integral, el precio de Integral aumentará en un 0.86% durante la próxima semana y alcanzará $0.001954 para el 13 de enero de 2026.
¿Cuál será el precio de Integral el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Integral, el precio de Integral disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001713 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Integral este año en 2026?
Según nuestra predicción más reciente sobre el valor de Integral en 2026, se anticipa que ITGR fluctúe dentro del rango de $0.000669 y $0.001999. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Integral no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Integral en 5 años?
El futuro de Integral parece estar en una tendencia alcista, con un precio máximo de $0.006284 proyectada después de un período de cinco años. Basado en el pronóstico de Integral para 2030, el valor de Integral podría potencialmente alcanzar su punto más alto de aproximadamente $0.006284, mientras que su punto más bajo se anticipa que esté alrededor de $0.002173.
¿Cuánto será Integral en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Integral, se espera que el valor de ITGR en 2026 crezca en un 3.13% hasta $0.001999 si ocurre lo mejor. El precio estará entre $0.001999 y $0.000669 durante 2026.
¿Cuánto será Integral en 2027?
Según nuestra última simulación experimental para la predicción de precios de Integral, el valor de ITGR podría disminuir en un -12.62% hasta $0.001693 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001693 y $0.000644 a lo largo del año.
¿Cuánto será Integral en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Integral sugiere que el valor de ITGR en 2028 podría aumentar en un 47.02% , alcanzando $0.002849 en el mejor escenario. Se espera que el precio oscile entre $0.002849 y $0.001163 durante el año.
¿Cuánto será Integral en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Integral podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0084076 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0084076 y $0.002555.
¿Cuánto será Integral en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Integral, se espera que el valor de ITGR en 2030 aumente en un 224.23% , alcanzando $0.006284 en el mejor escenario. Se pronostica que el precio oscile entre $0.006284 y $0.002173 durante el transcurso de 2030.
¿Cuánto será Integral en 2031?
Nuestra simulación experimental indica que el precio de Integral podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.005737 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.005737 y $0.002569 durante el año.
¿Cuánto será Integral en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Integral, ITGR podría experimentar un 449.04% aumento en valor, alcanzando $0.010642 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.010642 y $0.003922 a lo largo del año.
¿Cuánto será Integral en 2033?
Según nuestra predicción experimental de precios de Integral, se anticipa que el valor de ITGR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.028346. A lo largo del año, el precio de ITGR podría oscilar entre $0.028346 y $0.009115.
¿Cuánto será Integral en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Integral sugieren que ITGR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.016416 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.016416 y $0.007328.
¿Cuánto será Integral en 2035?
Basado en nuestra predicción experimental para el precio de Integral, ITGR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.019343 en 2035. El rango de precios esperado para el año está entre $0.019343 y $0.008664.
¿Cuánto será Integral en 2036?
Nuestra reciente simulación de predicción de precios de Integral sugiere que el valor de ITGR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.04002 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.04002 y $0.014342.
¿Cuánto será Integral en 2037?
Según la simulación experimental, el valor de Integral podría aumentar en un 4830.69% en 2037, con un máximo de $0.095573 bajo condiciones favorables. Se espera que el precio caiga entre $0.095573 y $0.037247 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de e-Money
Predicción de precios de Wagerr
Predicción de precios de Yel.Finance
Predicción de precios de Idexo Token
Predicción de precios de ACryptoS
Predicción de precios de Akropolis
Predicción de precios de Neurashi
Predicción de precios de CATO
Predicción de precios de Dentacoin
Predicción de precios de Pou
Predicción de precios de UpBots
Predicción de precios de Wrapped BMX Liquidity Token
Predicción de precios de SpaceDawgsPredicción de precios de EarthFund
Predicción de precios de 88mph
Predicción de precios de Cat Token
Predicción de precios de Superpower Squad
Predicción de precios de Plant vs Undead Token
Predicción de precios de Concentrator
Predicción de precios de Scala
Predicción de precios de sTSLA
Predicción de precios de Port Finance
Predicción de precios de Rentible
Predicción de precios de Illumicati
Predicción de precios de Wagie Bot
¿Cómo leer y predecir los movimientos de precio de Integral?
Los traders de Integral utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Integral
Las medias móviles son herramientas populares para la predicción de precios de Integral. Una media móvil simple (SMA) calcula el precio de cierre promedio de ITGR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ITGR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ITGR.
¿Cómo leer gráficos de Integral y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Integral en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ITGR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Integral?
La acción del precio de Integral está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ITGR. La capitalización de mercado de Integral puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ITGR, grandes poseedores de Integral, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Integral.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


