Predicción del precio de Mooncat CAT - Pronóstico de CAT
Predicción de precio de Mooncat CAT hasta $0.023478 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.007865 | $0.023478 |
| 2027 | $0.007571 | $0.019891 |
| 2028 | $0.013664 | $0.033469 |
| 2029 | $0.030017 | $0.098744 |
| 2030 | $0.025528 | $0.073811 |
| 2031 | $0.030182 | $0.067381 |
| 2032 | $0.046071 | $0.124988 |
| 2033 | $0.107061 | $0.332924 |
| 2034 | $0.086071 | $0.192811 |
| 2035 | $0.101763 | $0.22718 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Mooncat CAT hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.78, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Cat Token para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Mooncat CAT'
'name_with_ticker' => 'Mooncat CAT <small>CAT</small>'
'name_lang' => 'Cat Token'
'name_lang_with_ticker' => 'Cat Token <small>CAT</small>'
'name_with_lang' => 'Cat Token/Mooncat CAT'
'name_with_lang_with_ticker' => 'Cat Token/Mooncat CAT <small>CAT</small>'
'image' => '/uploads/coins/cat-token.jpg?1717115789'
'price_for_sd' => 0.02276
'ticker' => 'CAT'
'marketcap' => '$148.6K'
'low24h' => '$0.01953'
'high24h' => '$0.02262'
'volume24h' => '$42.71K'
'current_supply' => '6.53M'
'max_supply' => '15M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02276'
'change_24h_pct' => '15.8535%'
'ath_price' => '$2.12'
'ath_days' => 1527
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 nov. 2021'
'ath_pct' => '-99.06%'
'fdv' => '$341.48K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.12'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.022959'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.02012'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007865'
'current_year_max_price_prediction' => '$0.023478'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.025528'
'grand_prediction_max_price' => '$0.073811'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.023196496860052
107 => 0.023283104158999
108 => 0.023478234825805
109 => 0.021810864642417
110 => 0.022559464903341
111 => 0.022999197422276
112 => 0.021012469904124
113 => 0.022959926207058
114 => 0.021781839437088
115 => 0.02138197909309
116 => 0.021920338368688
117 => 0.021710539235416
118 => 0.021530166260447
119 => 0.021429515041213
120 => 0.021824826676668
121 => 0.021806384916374
122 => 0.021159578354089
123 => 0.020315845560796
124 => 0.02059902998081
125 => 0.020496146426151
126 => 0.020123283151824
127 => 0.020374547979037
128 => 0.019268104842209
129 => 0.017364526933206
130 => 0.018622088808061
131 => 0.018573674043843
201 => 0.01854926112429
202 => 0.019494284116787
203 => 0.019403441961448
204 => 0.01923856255998
205 => 0.020120255012316
206 => 0.019798425406776
207 => 0.020790228418458
208 => 0.021443494027748
209 => 0.021277804738303
210 => 0.021892204201348
211 => 0.020605553977895
212 => 0.021032927570679
213 => 0.021121008675837
214 => 0.020109375064315
215 => 0.019418304861525
216 => 0.019372218357776
217 => 0.018173997861479
218 => 0.018814077578903
219 => 0.019377321241938
220 => 0.019107571236818
221 => 0.019022176443749
222 => 0.019458439921667
223 => 0.019492341330245
224 => 0.018719385621952
225 => 0.01888010759003
226 => 0.019550344914719
227 => 0.0188632193291
228 => 0.017528246557568
301 => 0.017197154852786
302 => 0.017152981116137
303 => 0.016255034153553
304 => 0.017219279983676
305 => 0.016798360838646
306 => 0.018128039374411
307 => 0.017368534125991
308 => 0.017335793372736
309 => 0.017286300922166
310 => 0.016513400877748
311 => 0.016682616867115
312 => 0.017245116588095
313 => 0.017445822825553
314 => 0.017424887520648
315 => 0.017242360032591
316 => 0.017325920181932
317 => 0.01705674382662
318 => 0.016961692053138
319 => 0.016661682509978
320 => 0.016220751361285
321 => 0.016282065541899
322 => 0.015408465560427
323 => 0.014932481925062
324 => 0.014800735928156
325 => 0.014624559675049
326 => 0.014820635504731
327 => 0.015405990761442
328 => 0.014699928131804
329 => 0.013489433277823
330 => 0.01356218608113
331 => 0.01372564002966
401 => 0.013421044677931
402 => 0.013132770740269
403 => 0.013383401540662
404 => 0.012870498913359
405 => 0.013787621861749
406 => 0.013762816256202
407 => 0.014104662976859
408 => 0.014318426746686
409 => 0.013825770464076
410 => 0.013701868741284
411 => 0.013772448793606
412 => 0.012605917747735
413 => 0.01400933250322
414 => 0.014021469292304
415 => 0.013917546735713
416 => 0.014664821767439
417 => 0.016241805165309
418 => 0.01564848057702
419 => 0.015418727363104
420 => 0.014981966335501
421 => 0.015563924472478
422 => 0.015519239167519
423 => 0.015317155272097
424 => 0.015194934301606
425 => 0.015420130187236
426 => 0.015167030039244
427 => 0.015121566297938
428 => 0.01484610549066
429 => 0.01474777851513
430 => 0.014674981136958
501 => 0.014594838376512
502 => 0.014771613335723
503 => 0.014371018021468
504 => 0.01388793934332
505 => 0.013847776578216
506 => 0.013958669503815
507 => 0.013909607639245
508 => 0.013847541688883
509 => 0.013729040886988
510 => 0.013693884230435
511 => 0.013808126308648
512 => 0.013679153663072
513 => 0.013869459827123
514 => 0.013817707080622
515 => 0.013528620445625
516 => 0.01316831146484
517 => 0.013165103959137
518 => 0.013087475980252
519 => 0.012988605077697
520 => 0.012961101454466
521 => 0.013362294113719
522 => 0.014192750911688
523 => 0.0140297123711
524 => 0.014147524425536
525 => 0.014727043130488
526 => 0.014911254700057
527 => 0.014780505691268
528 => 0.014601528383788
529 => 0.014609402476992
530 => 0.015221022116764
531 => 0.015259168083469
601 => 0.015355550634976
602 => 0.015479429451369
603 => 0.014801602789366
604 => 0.014577476902168
605 => 0.014471273622782
606 => 0.014144208628117
607 => 0.01449692018443
608 => 0.014291410265181
609 => 0.014319140574506
610 => 0.01430108117418
611 => 0.014310942827929
612 => 0.013787365507193
613 => 0.013978129564456
614 => 0.01366094731996
615 => 0.013236275899957
616 => 0.013234852252449
617 => 0.013338789980863
618 => 0.013276963752918
619 => 0.013110590963218
620 => 0.013134223432737
621 => 0.012927178132493
622 => 0.013159362480863
623 => 0.013166020697179
624 => 0.013076617075889
625 => 0.013434329099819
626 => 0.013580884007888
627 => 0.013522036629145
628 => 0.013576755118921
629 => 0.014036487358536
630 => 0.014111443773117
701 => 0.014144734461131
702 => 0.014100129349363
703 => 0.013585158180318
704 => 0.013607999341492
705 => 0.013440406056149
706 => 0.013298807390579
707 => 0.013304470594614
708 => 0.013377270715255
709 => 0.013695193111765
710 => 0.014364242052671
711 => 0.01438963197091
712 => 0.014420405292492
713 => 0.014295234728187
714 => 0.014257482088271
715 => 0.014307287565103
716 => 0.014558547170385
717 => 0.015204855091489
718 => 0.014976406706716
719 => 0.014790674613885
720 => 0.01495361173231
721 => 0.014928528840072
722 => 0.014716803987051
723 => 0.014710861575598
724 => 0.014304493890119
725 => 0.014154269009343
726 => 0.014028729854828
727 => 0.013891644375381
728 => 0.013810375508017
729 => 0.013935241424327
730 => 0.013963799736757
731 => 0.013690778228463
801 => 0.013653566405732
802 => 0.013876521662983
803 => 0.013778407366877
804 => 0.01387932035354
805 => 0.013902733032061
806 => 0.01389896305158
807 => 0.013796520458089
808 => 0.013861814312298
809 => 0.01370737488206
810 => 0.013539445197728
811 => 0.013432316521514
812 => 0.01333883254296
813 => 0.013390702887582
814 => 0.013205794580154
815 => 0.013146638691138
816 => 0.01383969422365
817 => 0.014351661797119
818 => 0.01434421758584
819 => 0.01429890286417
820 => 0.014231574379526
821 => 0.01455362167237
822 => 0.014441426835082
823 => 0.014523057953401
824 => 0.014543836499061
825 => 0.014606726898675
826 => 0.014629204810924
827 => 0.014561260948193
828 => 0.014333233046221
829 => 0.01376500919475
830 => 0.013500499457999
831 => 0.013413206839114
901 => 0.013416379760018
902 => 0.013328856436937
903 => 0.013354635978104
904 => 0.013319891364575
905 => 0.013254093472174
906 => 0.01338664005314
907 => 0.013401914811839
908 => 0.013370976856028
909 => 0.013378263864592
910 => 0.01312211080425
911 => 0.013141585565093
912 => 0.013033147621989
913 => 0.013012816814895
914 => 0.012738695137499
915 => 0.012253048851419
916 => 0.012522144036733
917 => 0.012197114893383
918 => 0.012074021431801
919 => 0.012656726733969
920 => 0.012598239283361
921 => 0.012498134191803
922 => 0.012350057897659
923 => 0.012295134959768
924 => 0.011961440575629
925 => 0.011941724131224
926 => 0.01210711207851
927 => 0.012030791231489
928 => 0.011923607857308
929 => 0.011535400541026
930 => 0.0110989269865
1001 => 0.011112101379536
1002 => 0.011250935496351
1003 => 0.011654614415324
1004 => 0.011496890077965
1005 => 0.011382459261533
1006 => 0.011361029809393
1007 => 0.011629264268522
1008 => 0.012008872225047
1009 => 0.012186975784999
1010 => 0.012010480566172
1011 => 0.011807732361961
1012 => 0.011820072705707
1013 => 0.011902167484075
1014 => 0.011910794484523
1015 => 0.011778826246434
1016 => 0.011815974532448
1017 => 0.011759542889083
1018 => 0.011413221997915
1019 => 0.011406958151189
1020 => 0.011321965419318
1021 => 0.011319391873175
1022 => 0.011174798033831
1023 => 0.011154568356177
1024 => 0.010867468511941
1025 => 0.011056438498835
1026 => 0.010929687352996
1027 => 0.010738643478644
1028 => 0.010705707442697
1029 => 0.010704717345685
1030 => 0.010900876688016
1031 => 0.011054146262711
1101 => 0.010931892243445
1102 => 0.010904057373053
1103 => 0.011201260966882
1104 => 0.011163439100497
1105 => 0.011130685608131
1106 => 0.011974882496116
1107 => 0.011306634785772
1108 => 0.011015240641815
1109 => 0.010654585054423
1110 => 0.010772016332261
1111 => 0.010796760827926
1112 => 0.009929449153302
1113 => 0.0095775809149238
1114 => 0.0094568329953873
1115 => 0.009387340860569
1116 => 0.009419009299033
1117 => 0.0091022866144647
1118 => 0.0093151294966043
1119 => 0.0090408744236703
1120 => 0.0089948946681897
1121 => 0.0094852967122798
1122 => 0.0095535332918278
1123 => 0.0092624148440326
1124 => 0.0094493600153127
1125 => 0.0093815710974743
1126 => 0.0090455757397359
1127 => 0.0090327431884849
1128 => 0.0088641525287797
1129 => 0.0086003407919255
1130 => 0.0084797717491692
1201 => 0.0084169783448733
1202 => 0.0084428881273048
1203 => 0.008429787348455
1204 => 0.0083442959047517
1205 => 0.0084346876179354
1206 => 0.0082037741431858
1207 => 0.0081118225369441
1208 => 0.0080702901296659
1209 => 0.0078653411299419
1210 => 0.0081915061297366
1211 => 0.0082557647436146
1212 => 0.0083201499668124
1213 => 0.0088805793770904
1214 => 0.00885258190751
1215 => 0.0091056653971963
1216 => 0.0090958310381777
1217 => 0.0090236475272385
1218 => 0.0087191171681971
1219 => 0.0088404975415793
1220 => 0.008466907619007
1221 => 0.0087468265906436
1222 => 0.0086190832616844
1223 => 0.0087036364426243
1224 => 0.0085516021994414
1225 => 0.0086357442269588
1226 => 0.0082710028448025
1227 => 0.0079304124741946
1228 => 0.0080674759817799
1229 => 0.0082164796896386
1230 => 0.0085395576937148
1231 => 0.0083471350998226
]
'min_raw' => 0.0078653411299419
'max_raw' => 0.023478234825805
'avg_raw' => 0.015671787977874
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007865'
'max' => '$0.023478'
'avg' => '$0.015671'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.014899768870058
'max_diff' => 0.00071312482580529
'year' => 2026
]
1 => [
'items' => [
101 => 0.0084163375408901
102 => 0.0081845209476629
103 => 0.0077062171006989
104 => 0.007708924248529
105 => 0.0076353476220893
106 => 0.0075717666744821
107 => 0.0083692371494605
108 => 0.0082700590897543
109 => 0.0081120318317161
110 => 0.0083235575963539
111 => 0.0083794883658894
112 => 0.0083810806362687
113 => 0.0085354043738782
114 => 0.0086177669803045
115 => 0.0086322837466671
116 => 0.0088751154821807
117 => 0.0089565094768968
118 => 0.0092917598218232
119 => 0.0086107790885847
120 => 0.0085967547385155
121 => 0.0083265341976475
122 => 0.0081551560586114
123 => 0.0083382686054477
124 => 0.0085004813245895
125 => 0.0083315745989975
126 => 0.0083536302515442
127 => 0.0081268867726235
128 => 0.0082079368970653
129 => 0.0082777481828655
130 => 0.0082392024941643
131 => 0.0081814977325463
201 => 0.0084871817314693
202 => 0.0084699338422648
203 => 0.0087545938097067
204 => 0.0089765066105571
205 => 0.0093742140213393
206 => 0.0089591856052319
207 => 0.0089440603201604
208 => 0.0090919124079063
209 => 0.0089564868415125
210 => 0.0090420711247417
211 => 0.0093604250701832
212 => 0.0093671513873948
213 => 0.0092544769077303
214 => 0.0092476206554028
215 => 0.0092692610217461
216 => 0.0093960093233435
217 => 0.0093517195721835
218 => 0.0094029727935052
219 => 0.0094670657315851
220 => 0.0097321812983264
221 => 0.0097960997639233
222 => 0.0096408110304478
223 => 0.0096548318643864
224 => 0.0095967496152955
225 => 0.0095406428904421
226 => 0.0096667626141833
227 => 0.0098972488882097
228 => 0.0098958150450613
301 => 0.0099492833806224
302 => 0.0099825937107214
303 => 0.0098396013892846
304 => 0.0097465186460026
305 => 0.0097822124927857
306 => 0.0098392877311029
307 => 0.0097637037622403
308 => 0.0092971644925205
309 => 0.0094386827043095
310 => 0.0094151271539808
311 => 0.0093815811858599
312 => 0.0095238788421418
313 => 0.009510153886056
314 => 0.009099038165551
315 => 0.009125356460116
316 => 0.0091006386682124
317 => 0.0091805069106374
318 => 0.0089521736943163
319 => 0.009022407453809
320 => 0.0090664574093622
321 => 0.0090924031715908
322 => 0.009186137055936
323 => 0.0091751384664805
324 => 0.0091854533681727
325 => 0.0093244359738287
326 => 0.010027362300166
327 => 0.010065621029189
328 => 0.0098772210550067
329 => 0.0099524831286673
330 => 0.0098079964052452
331 => 0.0099049913106554
401 => 0.0099713527615335
402 => 0.0096714781255883
403 => 0.0096537214958179
404 => 0.0095086384242915
405 => 0.0095865978490046
406 => 0.0094625587988051
407 => 0.0094929936430223
408 => 0.009407895165329
409 => 0.009561055482239
410 => 0.0097323125152514
411 => 0.0097755788049355
412 => 0.0096617638240855
413 => 0.0095793542771773
414 => 0.009434670260199
415 => 0.0096752830049276
416 => 0.0097456455040268
417 => 0.0096749134206741
418 => 0.0096585232514347
419 => 0.0096274639103425
420 => 0.0096651126374744
421 => 0.0097452622947456
422 => 0.0097074651965083
423 => 0.0097324308457932
424 => 0.0096372875351848
425 => 0.0098396487256929
426 => 0.010161046997092
427 => 0.010162080345089
428 => 0.010124283043111
429 => 0.010108817201496
430 => 0.010147599527057
501 => 0.01016863734774
502 => 0.010294052277143
503 => 0.010428627493143
504 => 0.011056631306451
505 => 0.010880290348672
506 => 0.011437492691953
507 => 0.011878167401819
508 => 0.012010306478938
509 => 0.011888744745612
510 => 0.011472888622541
511 => 0.011452484737197
512 => 0.012073949354991
513 => 0.011898357135582
514 => 0.011877470999813
515 => 0.011655277802914
516 => 0.011786621501444
517 => 0.01175789470788
518 => 0.011712548058876
519 => 0.011963142686189
520 => 0.012432233457784
521 => 0.012359121261926
522 => 0.012304546399294
523 => 0.012065415237748
524 => 0.012209425608878
525 => 0.012158146274055
526 => 0.012378474839122
527 => 0.012247957078052
528 => 0.01189702685182
529 => 0.011952913647029
530 => 0.011944466470361
531 => 0.012118308767598
601 => 0.012066125624999
602 => 0.011934276874259
603 => 0.012430630156523
604 => 0.012398399735235
605 => 0.012444095103722
606 => 0.012464211618106
607 => 0.012766333114294
608 => 0.012890102624473
609 => 0.012918200470174
610 => 0.013035771932166
611 => 0.012915275185094
612 => 0.013397348086106
613 => 0.013717898435546
614 => 0.01409023416179
615 => 0.014634316732241
616 => 0.014838896811776
617 => 0.014801941251533
618 => 0.01521445844692
619 => 0.015955742677289
620 => 0.014951775988618
621 => 0.016008955349611
622 => 0.015674264569643
623 => 0.01488071875117
624 => 0.014829623755751
625 => 0.015367022197277
626 => 0.0165589202179
627 => 0.016260363282129
628 => 0.016559408550092
629 => 0.016210556360289
630 => 0.016193232908708
701 => 0.016542465577886
702 => 0.017358466745101
703 => 0.016970815177903
704 => 0.016415021600262
705 => 0.016825410928886
706 => 0.016469893712692
707 => 0.015668813921604
708 => 0.016260134981267
709 => 0.015864735428524
710 => 0.015980134038611
711 => 0.016811205087232
712 => 0.01671120841992
713 => 0.016840613366863
714 => 0.016612217022626
715 => 0.016398858822311
716 => 0.016000609897235
717 => 0.015882708023955
718 => 0.015915291860064
719 => 0.015882691877024
720 => 0.01565987526354
721 => 0.015611758037073
722 => 0.015531560551563
723 => 0.015556417105754
724 => 0.015405622370395
725 => 0.015690203191801
726 => 0.015743023899971
727 => 0.015950118089719
728 => 0.015971619295507
729 => 0.016548373666155
730 => 0.016230707050766
731 => 0.016443825242385
801 => 0.01642476194538
802 => 0.014897917295297
803 => 0.015108303016614
804 => 0.015435597176307
805 => 0.015288151601002
806 => 0.015079698054472
807 => 0.014911360639077
808 => 0.014656312241369
809 => 0.015015287963372
810 => 0.015487302864995
811 => 0.015983590372356
812 => 0.016579847294404
813 => 0.016446769690599
814 => 0.015972443763946
815 => 0.01599372167852
816 => 0.016125253373868
817 => 0.015954907877478
818 => 0.015904669665053
819 => 0.016118351414941
820 => 0.016119822923715
821 => 0.015923819843177
822 => 0.015705998287345
823 => 0.015705085607072
824 => 0.015666326365119
825 => 0.016217451543328
826 => 0.016520514666303
827 => 0.016555260364942
828 => 0.016518176003946
829 => 0.016532448302667
830 => 0.016356102548948
831 => 0.016759176648241
901 => 0.017129077301649
902 => 0.017029936024761
903 => 0.016881309156942
904 => 0.016762920697885
905 => 0.017002047466246
906 => 0.016991399527672
907 => 0.017125846542136
908 => 0.017119747248956
909 => 0.0170745377748
910 => 0.017029937639333
911 => 0.017206772135086
912 => 0.017155846640185
913 => 0.017104842043923
914 => 0.017002544517708
915 => 0.017016448450503
916 => 0.016867847245209
917 => 0.016799097528111
918 => 0.015765266736601
919 => 0.015488993367714
920 => 0.015575914593629
921 => 0.015604531318109
922 => 0.015484296793915
923 => 0.015656682215894
924 => 0.01562981613048
925 => 0.015734336352691
926 => 0.015669036655594
927 => 0.01567171657794
928 => 0.01586374906374
929 => 0.015919496911333
930 => 0.015891143106107
1001 => 0.015911001139375
1002 => 0.016368621134497
1003 => 0.016303562205055
1004 => 0.016269000945461
1005 => 0.016278574650564
1006 => 0.016395506370801
1007 => 0.016428240868232
1008 => 0.016289542502404
1009 => 0.016354953453534
1010 => 0.016633464981561
1011 => 0.016730928253983
1012 => 0.017041984234529
1013 => 0.016909842125414
1014 => 0.017152394685672
1015 => 0.017897918563642
1016 => 0.018493494623694
1017 => 0.017945778265649
1018 => 0.019039477853779
1019 => 0.019891079865027
1020 => 0.019858393961418
1021 => 0.019709897452847
1022 => 0.018740371204053
1023 => 0.01784819869509
1024 => 0.018594538882483
1025 => 0.018596441457107
1026 => 0.018532330173114
1027 => 0.018134140494379
1028 => 0.01851847403542
1029 => 0.018548981036213
1030 => 0.018531905228235
1031 => 0.018226614135155
1101 => 0.017760491063246
1102 => 0.017851570395756
1103 => 0.018000760200375
1104 => 0.017718312775977
1105 => 0.017628053709789
1106 => 0.017795862486323
1107 => 0.018336577328662
1108 => 0.018234358319865
1109 => 0.018231688968446
1110 => 0.018669025235683
1111 => 0.018355986851415
1112 => 0.017852719197815
1113 => 0.017725637477996
1114 => 0.017274582985144
1115 => 0.017586127929958
1116 => 0.017597339877889
1117 => 0.017426709895527
1118 => 0.017866564880488
1119 => 0.017862511539367
1120 => 0.018280088383813
1121 => 0.019078338475695
1122 => 0.018842256644024
1123 => 0.018567719159421
1124 => 0.018597568996096
1125 => 0.018924948028747
1126 => 0.01872700719227
1127 => 0.01879818809716
1128 => 0.018924840287922
1129 => 0.019001252699206
1130 => 0.018586574426033
1201 => 0.018489893084201
1202 => 0.018292116989354
1203 => 0.018240520897874
1204 => 0.018401605400394
1205 => 0.018359165325179
1206 => 0.01759639755708
1207 => 0.017516684081314
1208 => 0.017519128779811
1209 => 0.017318685454828
1210 => 0.017012961272319
1211 => 0.017816386170111
1212 => 0.017751859906894
1213 => 0.017680627906239
1214 => 0.017689353419875
1215 => 0.01803809293741
1216 => 0.017835806405472
1217 => 0.01837361830474
1218 => 0.018263060346356
1219 => 0.018149666993513
1220 => 0.018133992578104
1221 => 0.018090345811526
1222 => 0.017940664808682
1223 => 0.017759916003314
1224 => 0.017640569985817
1225 => 0.016272493334915
1226 => 0.016526400403586
1227 => 0.016818497341735
1228 => 0.01691932803428
1229 => 0.016746850157411
1230 => 0.017947475286526
1231 => 0.018166841067126
]
'min_raw' => 0.0075717666744821
'max_raw' => 0.019891079865027
'avg_raw' => 0.013731423269754
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.007571'
'max' => '$0.019891'
'avg' => '$0.013731'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00029357445545976
'max_diff' => -0.0035871549607785
'year' => 2027
]
2 => [
'items' => [
101 => 0.017502367808811
102 => 0.017378071992444
103 => 0.017955624099554
104 => 0.017607289576093
105 => 0.017764144590678
106 => 0.017425109844251
107 => 0.018114002274359
108 => 0.018108754068252
109 => 0.017840759353599
110 => 0.018067266651276
111 => 0.018027905434233
112 => 0.017725340061431
113 => 0.018123594136353
114 => 0.018123791665406
115 => 0.017865852579259
116 => 0.017564636196767
117 => 0.017510785821991
118 => 0.017470216798377
119 => 0.017754167097796
120 => 0.018008756048366
121 => 0.018482482967423
122 => 0.018601589170347
123 => 0.019066468609712
124 => 0.01878965553814
125 => 0.018912363187438
126 => 0.019045579698809
127 => 0.019109448593235
128 => 0.019005377657162
129 => 0.019727526778506
130 => 0.019788498290425
131 => 0.01980894151097
201 => 0.019565436890379
202 => 0.01978172598643
203 => 0.019680531481129
204 => 0.019943811471278
205 => 0.019985097135461
206 => 0.019950129646678
207 => 0.019963234368139
208 => 0.019347007488906
209 => 0.019315052874362
210 => 0.018879349437659
211 => 0.019056901808673
212 => 0.018724976161369
213 => 0.018830233203342
214 => 0.018876629504518
215 => 0.018852394709751
216 => 0.019066940353332
217 => 0.018884532727509
218 => 0.018403129012369
219 => 0.01792159413911
220 => 0.017915548861026
221 => 0.017788769228693
222 => 0.017697130775364
223 => 0.017714783592524
224 => 0.017776994422689
225 => 0.017693514968822
226 => 0.01771132954282
227 => 0.018007170169076
228 => 0.018066498896833
229 => 0.017864876698685
301 => 0.017055334479177
302 => 0.016856670787926
303 => 0.016999466309525
304 => 0.01693121924741
305 => 0.013664815360142
306 => 0.014432208502202
307 => 0.013976249555399
308 => 0.014186376415748
309 => 0.013720960401059
310 => 0.013943081317812
311 => 0.013902063695045
312 => 0.015136009158663
313 => 0.015116742797485
314 => 0.015125964585028
315 => 0.014685784638374
316 => 0.015387003245582
317 => 0.015732448746497
318 => 0.015668515978012
319 => 0.015684606478463
320 => 0.015408118370348
321 => 0.015128641594288
322 => 0.014818658838469
323 => 0.015394568483753
324 => 0.015330537162303
325 => 0.015477401975967
326 => 0.015850920547805
327 => 0.015905922576368
328 => 0.015979845860531
329 => 0.015953349625376
330 => 0.016584597442745
331 => 0.016508149166955
401 => 0.01669236751594
402 => 0.016313416395397
403 => 0.015884597232133
404 => 0.015966101735915
405 => 0.015958252196783
406 => 0.01585831855435
407 => 0.015768102930297
408 => 0.015617919334344
409 => 0.016093122454931
410 => 0.016073830076058
411 => 0.016386151265075
412 => 0.01633094546119
413 => 0.015962267591695
414 => 0.015975434993929
415 => 0.016063992101994
416 => 0.016370489264134
417 => 0.016461478489775
418 => 0.016419328655164
419 => 0.016519094187264
420 => 0.016597944796067
421 => 0.016528996609724
422 => 0.017505157529481
423 => 0.017099787457896
424 => 0.01729736201024
425 => 0.017344482376797
426 => 0.017223784548696
427 => 0.017249959585746
428 => 0.017289607634606
429 => 0.0175303428234
430 => 0.018162101616086
501 => 0.018441903284839
502 => 0.019283700410453
503 => 0.018418669651276
504 => 0.01836734230588
505 => 0.018518975388041
506 => 0.019013199414052
507 => 0.019413721567031
508 => 0.019546597871852
509 => 0.019564159669082
510 => 0.019813444450376
511 => 0.019956329838127
512 => 0.019783174721086
513 => 0.01963644388949
514 => 0.019110872263615
515 => 0.019171708610394
516 => 0.0195908107112
517 => 0.020182817113578
518 => 0.020690820194586
519 => 0.020512935221312
520 => 0.021870072000175
521 => 0.022004626568392
522 => 0.021986035477735
523 => 0.022292570808539
524 => 0.021684160601727
525 => 0.021424053450922
526 => 0.019668168760747
527 => 0.02016150073708
528 => 0.020878587737052
529 => 0.020783678583668
530 => 0.020262910836498
531 => 0.020690425145552
601 => 0.02054907554537
602 => 0.020437587251106
603 => 0.020948336740197
604 => 0.020386746696509
605 => 0.020872985446773
606 => 0.020249379220064
607 => 0.020513747784886
608 => 0.020363679401424
609 => 0.020460792037213
610 => 0.019893073552728
611 => 0.020199400666369
612 => 0.01988032933769
613 => 0.019880178056336
614 => 0.019873134539071
615 => 0.020248520542283
616 => 0.020260761866371
617 => 0.019983351042821
618 => 0.019943371809176
619 => 0.020091195989926
620 => 0.019918132589481
621 => 0.019999107865301
622 => 0.019920585248095
623 => 0.019902908153023
624 => 0.019762054051976
625 => 0.01970137023238
626 => 0.019725165921673
627 => 0.019643938966598
628 => 0.019594996788058
629 => 0.019863398707903
630 => 0.019720002389433
701 => 0.019841421165505
702 => 0.019703049145899
703 => 0.019223391440128
704 => 0.018947535221251
705 => 0.018041506279342
706 => 0.018298454963342
707 => 0.018468812206667
708 => 0.018412509138764
709 => 0.018533469915014
710 => 0.018540895924273
711 => 0.018501570342865
712 => 0.018456036357514
713 => 0.018433872931632
714 => 0.01859906095
715 => 0.018694958154635
716 => 0.01848590983512
717 => 0.018436932738755
718 => 0.018648292131659
719 => 0.018777221239232
720 => 0.019729161330544
721 => 0.019658638533853
722 => 0.019835636914146
723 => 0.019815709612787
724 => 0.020001232113387
725 => 0.02030448299421
726 => 0.019687889163217
727 => 0.019794908532067
728 => 0.019768669854263
729 => 0.020055136858375
730 => 0.020056031177092
731 => 0.01988427989804
801 => 0.01997738905276
802 => 0.019925418076911
803 => 0.020019336654569
804 => 0.019657696658908
805 => 0.020098135136998
806 => 0.020347835372847
807 => 0.020351302460864
808 => 0.020469658390913
809 => 0.020589914870556
810 => 0.020820736711098
811 => 0.020583477374702
812 => 0.020156670925256
813 => 0.02018748497233
814 => 0.019937248507182
815 => 0.01994145502737
816 => 0.019919000292935
817 => 0.019986388641287
818 => 0.019672484611795
819 => 0.019746157260095
820 => 0.019643015121049
821 => 0.0197946843212
822 => 0.019631513333655
823 => 0.019768657201178
824 => 0.01982784394801
825 => 0.02004624431802
826 => 0.019599255421428
827 => 0.01868781480279
828 => 0.018879410670977
829 => 0.018596025332398
830 => 0.018622253724408
831 => 0.018675239250485
901 => 0.018503495824684
902 => 0.018536259058069
903 => 0.018535088524821
904 => 0.018525001501665
905 => 0.018480324403568
906 => 0.018415533772233
907 => 0.018673639705966
908 => 0.018717496933631
909 => 0.01881498611797
910 => 0.019105047803017
911 => 0.019076063800556
912 => 0.019123337911105
913 => 0.019020138793208
914 => 0.018627040835505
915 => 0.018648387945859
916 => 0.018382189137673
917 => 0.018808178815948
918 => 0.018707298837344
919 => 0.018642260858874
920 => 0.018624514643876
921 => 0.018915295335736
922 => 0.01900230147617
923 => 0.018948085088217
924 => 0.01883688569478
925 => 0.019050421403328
926 => 0.019107554550587
927 => 0.019120344555269
928 => 0.019498688889406
929 => 0.019141489800666
930 => 0.01922747117158
1001 => 0.01989827328298
1002 => 0.019289948332304
1003 => 0.019612191625942
1004 => 0.019596419493592
1005 => 0.019761268258499
1006 => 0.019582897083294
1007 => 0.019585108207787
1008 => 0.019731482743202
1009 => 0.019525926106998
1010 => 0.019475027393125
1011 => 0.019404711184452
1012 => 0.019558244053622
1013 => 0.019650280064995
1014 => 0.020392022723659
1015 => 0.02087122230873
1016 => 0.020850418990943
1017 => 0.021040522373337
1018 => 0.020954879058421
1019 => 0.020678314202993
1020 => 0.021150376687718
1021 => 0.021000996365618
1022 => 0.021013311097874
1023 => 0.021012852742925
1024 => 0.021112177598067
1025 => 0.021041796835209
1026 => 0.02090306912718
1027 => 0.020995163053921
1028 => 0.02126864909216
1029 => 0.02211755814643
1030 => 0.022592618899749
1031 => 0.022088958892577
1101 => 0.022436376821248
1102 => 0.02222804986171
1103 => 0.022190190655972
1104 => 0.022408394789161
1105 => 0.0226269808598
1106 => 0.022613057872073
1107 => 0.022454375609309
1108 => 0.022364740025486
1109 => 0.023043490696313
1110 => 0.023543582628362
1111 => 0.023509479711255
1112 => 0.023659998896502
1113 => 0.024101927879771
1114 => 0.024142332327566
1115 => 0.02413724229583
1116 => 0.0240370956562
1117 => 0.024472232131958
1118 => 0.024835230635533
1119 => 0.02401391460264
1120 => 0.02432666099615
1121 => 0.024467062928255
1122 => 0.024673214619963
1123 => 0.025021027078909
1124 => 0.025398843662022
1125 => 0.025452271069422
1126 => 0.025414361767135
1127 => 0.025165181574317
1128 => 0.025578592987849
1129 => 0.025820759698205
1130 => 0.025964964432336
1201 => 0.026330643644712
1202 => 0.024467930002789
1203 => 0.023149408704162
1204 => 0.022943502563703
1205 => 0.023362220797186
1206 => 0.02347263345614
1207 => 0.023428126251761
1208 => 0.021944010655444
1209 => 0.022935689002233
1210 => 0.024002651520695
1211 => 0.024043637896371
1212 => 0.024577781642247
1213 => 0.024751720741196
1214 => 0.025181776468447
1215 => 0.025154876365616
1216 => 0.025259588091521
1217 => 0.02523551667909
1218 => 0.026032104354905
1219 => 0.026910858855745
1220 => 0.026880430381649
1221 => 0.026754099025202
1222 => 0.026941722632223
1223 => 0.027848691450145
1224 => 0.02776519229527
1225 => 0.02784630461179
1226 => 0.028915671962642
1227 => 0.030306001634482
1228 => 0.029660053915096
1229 => 0.031061574599715
1230 => 0.031943757579264
1231 => 0.03346940182297
]
'min_raw' => 0.013664815360142
'max_raw' => 0.03346940182297
'avg_raw' => 0.023567108591556
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.013664'
'max' => '$0.033469'
'avg' => '$0.023567'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0060930486856601
'max_diff' => 0.013578321957944
'year' => 2028
]
3 => [
'items' => [
101 => 0.033278383649702
102 => 0.033872305758082
103 => 0.032936421252856
104 => 0.03078744125539
105 => 0.030447356944826
106 => 0.031128214346882
107 => 0.032802035832741
108 => 0.031075499751667
109 => 0.031424775752223
110 => 0.031324184240566
111 => 0.031318824146396
112 => 0.031523397139779
113 => 0.031226653343067
114 => 0.030017665732073
115 => 0.030571737629583
116 => 0.030357783861237
117 => 0.030595181518527
118 => 0.031876318764682
119 => 0.031309897449659
120 => 0.030713218606614
121 => 0.031461586289428
122 => 0.032414515516686
123 => 0.032354882918223
124 => 0.032239170752711
125 => 0.032891434171207
126 => 0.033968782243311
127 => 0.034259985098066
128 => 0.034474945092066
129 => 0.03450458444346
130 => 0.034809888183569
131 => 0.033168193026552
201 => 0.03577360540246
202 => 0.036223488146714
203 => 0.036138928836524
204 => 0.036638954572803
205 => 0.036491834316761
206 => 0.036278680148217
207 => 0.037071327298744
208 => 0.036162621303992
209 => 0.034872827547344
210 => 0.034165221183219
211 => 0.035097054324476
212 => 0.035666092307346
213 => 0.036042190216411
214 => 0.036155997216449
215 => 0.033295633148285
216 => 0.031754055558608
217 => 0.032742189119368
218 => 0.03394778026083
219 => 0.03316149590689
220 => 0.033192316764931
221 => 0.032071281908105
222 => 0.034046966970785
223 => 0.03375912627528
224 => 0.035252444312744
225 => 0.034896051978477
226 => 0.036113794867758
227 => 0.035793122354002
228 => 0.037124216030044
301 => 0.037655225335339
302 => 0.03854687260393
303 => 0.039202771964362
304 => 0.039587928614164
305 => 0.039564805253596
306 => 0.04109098778439
307 => 0.040191051266737
308 => 0.039060518901813
309 => 0.039040071138115
310 => 0.039625589869677
311 => 0.040852676501811
312 => 0.041170842212139
313 => 0.041348653439248
314 => 0.041076329355277
315 => 0.040099512764396
316 => 0.039677728313026
317 => 0.040037100885865
318 => 0.03959761911052
319 => 0.040356287951573
320 => 0.041398102313259
321 => 0.041182971767351
322 => 0.041902120928146
323 => 0.042646364652871
324 => 0.043710666605305
325 => 0.043988914546659
326 => 0.044448847812894
327 => 0.044922270224058
328 => 0.045074320743432
329 => 0.045364632363423
330 => 0.045363102277884
331 => 0.046237975884951
401 => 0.047202988566126
402 => 0.047567258513175
403 => 0.048404877170451
404 => 0.046970484573524
405 => 0.048058487835408
406 => 0.049039894012115
407 => 0.047869821109617
408 => 0.049482494013689
409 => 0.049545110448159
410 => 0.050490544266997
411 => 0.049532165968401
412 => 0.048963083993947
413 => 0.050606002330973
414 => 0.051400958762818
415 => 0.051161511415976
416 => 0.049339305283538
417 => 0.048278703156361
418 => 0.045502902814668
419 => 0.048790958225055
420 => 0.050392474101563
421 => 0.049335157744316
422 => 0.049868406614492
423 => 0.052777639543644
424 => 0.053885287084182
425 => 0.053654904138791
426 => 0.053693835064136
427 => 0.054291501571786
428 => 0.056941884007662
429 => 0.055353713416701
430 => 0.056567810325873
501 => 0.057211762948747
502 => 0.057809902032741
503 => 0.05634106148625
504 => 0.054430121516819
505 => 0.053824846612697
506 => 0.049230028470015
507 => 0.048990848231405
508 => 0.04885658911557
509 => 0.048010104381559
510 => 0.04734499925231
511 => 0.04681608295976
512 => 0.045428048660335
513 => 0.045896469490217
514 => 0.043684232522206
515 => 0.045099543337475
516 => 0.0415687597202
517 => 0.044509301234468
518 => 0.042908898178269
519 => 0.043983525787805
520 => 0.043979776513311
521 => 0.042001046373161
522 => 0.040859756123368
523 => 0.041587030690217
524 => 0.042366726757007
525 => 0.042493229820631
526 => 0.043504126123374
527 => 0.043786245552326
528 => 0.042931410511704
529 => 0.041495592077648
530 => 0.041829099952348
531 => 0.040852997596932
601 => 0.0391424157643
602 => 0.04037098550039
603 => 0.040790473224689
604 => 0.040975742901428
605 => 0.039293582130685
606 => 0.038765010695031
607 => 0.038483603697832
608 => 0.041278446245816
609 => 0.041431554029595
610 => 0.040648232960523
611 => 0.044188918470279
612 => 0.043387552292416
613 => 0.044282874652569
614 => 0.041798837608383
615 => 0.04189373116867
616 => 0.040717748223493
617 => 0.041376220093584
618 => 0.040910833399343
619 => 0.041323022073626
620 => 0.041570086265474
621 => 0.042745876243422
622 => 0.044522726867319
623 => 0.042570252429857
624 => 0.041719531357505
625 => 0.042247313926155
626 => 0.043652868456843
627 => 0.045782355519848
628 => 0.044521656318628
629 => 0.045081133216069
630 => 0.045203354028765
701 => 0.044273761111407
702 => 0.045816630936669
703 => 0.046643467410279
704 => 0.047491630542503
705 => 0.048228066825221
706 => 0.047152855535985
707 => 0.048303485740952
708 => 0.047376280909322
709 => 0.046544482322677
710 => 0.046545743817782
711 => 0.046023944413741
712 => 0.045012892317456
713 => 0.044826438798579
714 => 0.045796393550261
715 => 0.046574205406054
716 => 0.046638269715964
717 => 0.047068906324747
718 => 0.047323752633915
719 => 0.049821592910517
720 => 0.050826244932985
721 => 0.052054714408969
722 => 0.05253327250261
723 => 0.0539735607919
724 => 0.052810411023803
725 => 0.05255875625492
726 => 0.049065087979812
727 => 0.049637175964142
728 => 0.050553144025334
729 => 0.049080191955769
730 => 0.050014441017077
731 => 0.05019888157188
801 => 0.049030141608077
802 => 0.049654416121017
803 => 0.047996528099143
804 => 0.044558864295711
805 => 0.04582045803919
806 => 0.046749415682254
807 => 0.045423678585951
808 => 0.047800011017963
809 => 0.04641180666864
810 => 0.045971812535465
811 => 0.044255238552715
812 => 0.045065395395581
813 => 0.046161144125886
814 => 0.04548409880502
815 => 0.046889069504683
816 => 0.048878882707405
817 => 0.05029694209109
818 => 0.050405803082456
819 => 0.049494085901347
820 => 0.050955118502576
821 => 0.05096576053003
822 => 0.04931770978735
823 => 0.048308287883844
824 => 0.048078945103526
825 => 0.048651888334062
826 => 0.049347547187088
827 => 0.050444407307259
828 => 0.051107216905743
829 => 0.052835472811541
830 => 0.05330308930667
831 => 0.053816858062354
901 => 0.054503411560365
902 => 0.05532779506343
903 => 0.053524090890902
904 => 0.053595755420202
905 => 0.051916171068729
906 => 0.050121294312419
907 => 0.051483382035912
908 => 0.053264130543442
909 => 0.052855624868263
910 => 0.052809659634791
911 => 0.052886960407798
912 => 0.05257896046926
913 => 0.051185888162266
914 => 0.050486295970787
915 => 0.051388948382797
916 => 0.051868667967344
917 => 0.052612671207032
918 => 0.052520957103737
919 => 0.054437429549057
920 => 0.05518211279019
921 => 0.054991590950316
922 => 0.055026651554017
923 => 0.056374864991381
924 => 0.05787435561497
925 => 0.059278826459176
926 => 0.060707514525329
927 => 0.058985175298937
928 => 0.058110677658891
929 => 0.059012936001096
930 => 0.058534185024516
1001 => 0.061285230142706
1002 => 0.061475706537832
1003 => 0.064226552724147
1004 => 0.06683743331963
1005 => 0.065197585996391
1006 => 0.06674388816186
1007 => 0.068416340025679
1008 => 0.071642771016523
1009 => 0.070556222566018
1010 => 0.069723943481316
1011 => 0.068937443767815
1012 => 0.070574024818296
1013 => 0.072679460194718
1014 => 0.07313295080919
1015 => 0.073867778851383
1016 => 0.073095197015515
1017 => 0.07402568673972
1018 => 0.077310724344066
1019 => 0.076423078185543
1020 => 0.075162477944199
1021 => 0.077755699634465
1022 => 0.078694176483278
1023 => 0.08528089849239
1024 => 0.093596907112809
1025 => 0.090154024938099
1026 => 0.088016916871143
1027 => 0.088519187959758
1028 => 0.091555912793278
1029 => 0.092531212428976
1030 => 0.089880011813204
1031 => 0.090816460690924
1101 => 0.095976386076785
1102 => 0.098744520496074
1103 => 0.094985022144628
1104 => 0.084612715296856
1105 => 0.075048974684992
1106 => 0.077585709356111
1107 => 0.077298122368448
1108 => 0.082841818481755
1109 => 0.076401908118226
1110 => 0.076510339692677
1111 => 0.082168673570731
1112 => 0.080659127100467
1113 => 0.078213855146744
1114 => 0.075066827876354
1115 => 0.069249256902249
1116 => 0.064096472055516
1117 => 0.074202269755439
1118 => 0.073766489382417
1119 => 0.07313541482325
1120 => 0.074539802965278
1121 => 0.081359113140441
1122 => 0.08120190596895
1123 => 0.080201834151732
1124 => 0.080960379810864
1125 => 0.078080878425184
1126 => 0.078822991497301
1127 => 0.075047459739617
1128 => 0.076754157774224
1129 => 0.078208608691359
1130 => 0.078500611246487
1201 => 0.079158507913212
1202 => 0.073536852927849
1203 => 0.076060810973158
1204 => 0.07754339986189
1205 => 0.070845009325553
1206 => 0.077410994217954
1207 => 0.073438992421607
1208 => 0.072090835354462
1209 => 0.073905951239185
1210 => 0.07319859881365
1211 => 0.072590458735304
1212 => 0.072251106122413
1213 => 0.073583926901124
1214 => 0.073521749218732
1215 => 0.071340995735395
1216 => 0.068496291715266
1217 => 0.069451067758648
1218 => 0.069104188671014
1219 => 0.067847054109137
1220 => 0.068694211016836
1221 => 0.064963760731627
1222 => 0.058545714907858
1223 => 0.0627856725691
1224 => 0.062622438811329
1225 => 0.062540128948599
1226 => 0.0657263399472
1227 => 0.065420059278079
1228 => 0.064864156864516
1229 => 0.067836844525368
1230 => 0.066751773540865
1231 => 0.070095706640225
]
'min_raw' => 0.030017665732073
'max_raw' => 0.098744520496074
'avg_raw' => 0.064381093114073
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.030017'
'max' => '$0.098744'
'avg' => '$0.064381'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.016352850371931
'max_diff' => 0.065275118673103
'year' => 2029
]
4 => [
'items' => [
101 => 0.072298237251496
102 => 0.071739604244076
103 => 0.073811094929731
104 => 0.069473063870311
105 => 0.070913983776653
106 => 0.071210955372321
107 => 0.067800162021071
108 => 0.065470170583384
109 => 0.065314786718337
110 => 0.061274902657986
111 => 0.063432976114221
112 => 0.06533199144856
113 => 0.064422510472955
114 => 0.064134595966049
115 => 0.065605488740791
116 => 0.065719789706733
117 => 0.06311371557018
118 => 0.063655600906804
119 => 0.065915352841469
120 => 0.063598660955977
121 => 0.059097707051936
122 => 0.057981408253178
123 => 0.057832473415955
124 => 0.054804982538948
125 => 0.058056004676702
126 => 0.056636846391596
127 => 0.061119950410118
128 => 0.058559225438107
129 => 0.05844883770262
130 => 0.058281970450071
131 => 0.055676083988158
201 => 0.056246607510593
202 => 0.058143114592352
203 => 0.058819809684805
204 => 0.058749224842663
205 => 0.058133820673015
206 => 0.058415549550501
207 => 0.057508002675273
208 => 0.057187528984675
209 => 0.056176025863916
210 => 0.054689395711268
211 => 0.054896120752027
212 => 0.051950717421693
213 => 0.05034590536294
214 => 0.049901714536161
215 => 0.049307723998578
216 => 0.049968807347929
217 => 0.051942373464128
218 => 0.049561834012584
219 => 0.045480566098337
220 => 0.045725857254126
221 => 0.046276953653584
222 => 0.045249989159061
223 => 0.044278053451591
224 => 0.045123072693599
225 => 0.043393785675929
226 => 0.046485929727903
227 => 0.046402295896931
228 => 0.047554855982602
301 => 0.048275575457085
302 => 0.046614550404101
303 => 0.046196807095165
304 => 0.04643477266931
305 => 0.042501731803562
306 => 0.047233442634968
307 => 0.047274362666727
308 => 0.046923980511538
309 => 0.04944347045408
310 => 0.054760380081463
311 => 0.052759944807447
312 => 0.051985315805872
313 => 0.050512745507627
314 => 0.052474857997466
315 => 0.052324198371969
316 => 0.051642858409507
317 => 0.0512307818743
318 => 0.051990045525375
319 => 0.051136700705533
320 => 0.050983416527542
321 => 0.050054681183747
322 => 0.049723164920777
323 => 0.049477723477717
324 => 0.049207516565487
325 => 0.0498035256825
326 => 0.048452890611818
327 => 0.046824157120964
328 => 0.04668874555434
329 => 0.047062628795295
330 => 0.046897213293506
331 => 0.046687953608557
401 => 0.046288419881506
402 => 0.046169886759377
403 => 0.0465550619022
404 => 0.046120221623059
405 => 0.046761852141907
406 => 0.046587364143816
407 => 0.045612688370543
408 => 0.044397881485854
409 => 0.044387067156437
410 => 0.044125339005813
411 => 0.043791988854903
412 => 0.043699258468938
413 => 0.045051907529988
414 => 0.04785185060498
415 => 0.0473021547824
416 => 0.047699366349308
417 => 0.049653254123758
418 => 0.050274336291801
419 => 0.049833506880062
420 => 0.049230072392099
421 => 0.049256620447088
422 => 0.051318738764498
423 => 0.051447350554509
424 => 0.051772311056131
425 => 0.052189977134542
426 => 0.049904637219254
427 => 0.049148981142595
428 => 0.048790909371271
429 => 0.047688186906807
430 => 0.048877378544452
501 => 0.048184487503459
502 => 0.048277982177418
503 => 0.04821709364835
504 => 0.048250342902485
505 => 0.046485065410623
506 => 0.047128239748404
507 => 0.046058837666128
508 => 0.044627028323979
509 => 0.044622228397007
510 => 0.044972661705055
511 => 0.044764210260971
512 => 0.044203272784718
513 => 0.04428295130567
514 => 0.043584883620455
515 => 0.044367709361578
516 => 0.044390158002749
517 => 0.04408872745161
518 => 0.045294778514945
519 => 0.045788898619638
520 => 0.04559049057361
521 => 0.045774977782213
522 => 0.047324997125556
523 => 0.047577717910606
524 => 0.047689959789527
525 => 0.047539570540972
526 => 0.045803309290399
527 => 0.045880319860015
528 => 0.045315267397489
529 => 0.044837857610417
530 => 0.044856951498215
531 => 0.045102402187699
601 => 0.046174299744165
602 => 0.048430044959936
603 => 0.048515648841946
604 => 0.048619403244184
605 => 0.048197381947498
606 => 0.048070096286218
607 => 0.048238018928663
608 => 0.049085158230258
609 => 0.051264230510036
610 => 0.050494000831018
611 => 0.049867792112638
612 => 0.050417145983316
613 => 0.050332577260903
614 => 0.049618732136784
615 => 0.049598696881685
616 => 0.048228599858408
617 => 0.047722106184503
618 => 0.047298842160193
619 => 0.046836648895234
620 => 0.046562645234908
621 => 0.046983639389605
622 => 0.047079925733841
623 => 0.046159414656876
624 => 0.046033952398491
625 => 0.046785661614552
626 => 0.046454862415108
627 => 0.046795097595162
628 => 0.046874035075418
629 => 0.046861324323012
630 => 0.046515931966746
701 => 0.046736074754882
702 => 0.046215371433217
703 => 0.045649184778017
704 => 0.045287992966675
705 => 0.044972805206137
706 => 0.045147689694503
707 => 0.044524258426123
708 => 0.044324810216175
709 => 0.046661495331631
710 => 0.048387629750016
711 => 0.048362531071949
712 => 0.048209749324068
713 => 0.047982746637364
714 => 0.049068551569813
715 => 0.048690278842703
716 => 0.048965503857419
717 => 0.049035560174822
718 => 0.049247599547988
719 => 0.049323385398495
720 => 0.049094307921606
721 => 0.048325495929709
722 => 0.046409689542352
723 => 0.045517876497417
724 => 0.045223563338267
725 => 0.045234261062622
726 => 0.044939170068172
727 => 0.045026087591088
728 => 0.044908943700781
729 => 0.044687101512692
730 => 0.045133991564524
731 => 0.045185491479928
801 => 0.045081182001892
802 => 0.045105750660028
803 => 0.04424211273305
804 => 0.044307773248915
805 => 0.043942167152843
806 => 0.043873620417277
807 => 0.042949400043372
808 => 0.041312009683113
809 => 0.042219282888024
810 => 0.041123424438409
811 => 0.040708406238575
812 => 0.042673037848019
813 => 0.042475843324829
814 => 0.042138332019527
815 => 0.041639082455466
816 => 0.041453905935768
817 => 0.040328832021847
818 => 0.040262356652977
819 => 0.040819973664267
820 => 0.040562652599986
821 => 0.040201276370628
822 => 0.038892408300015
823 => 0.03742080723732
824 => 0.037465225623248
825 => 0.03793331454118
826 => 0.039294346200459
827 => 0.038762567585092
828 => 0.038376756098187
829 => 0.03830450520414
830 => 0.039208876410626
831 => 0.040488751139429
901 => 0.041089239726601
902 => 0.040494173773823
903 => 0.039810594047899
904 => 0.039852200378413
905 => 0.040128988655355
906 => 0.040158075189686
907 => 0.03971313506124
908 => 0.039838383101146
909 => 0.039648119875609
910 => 0.038480474811683
911 => 0.038459355815119
912 => 0.038172796885612
913 => 0.038164119995112
914 => 0.037676611770545
915 => 0.037608405999943
916 => 0.03664042883043
917 => 0.037277554334708
918 => 0.036850203997029
919 => 0.036206086236393
920 => 0.036095040091676
921 => 0.036091701910474
922 => 0.036753066828552
923 => 0.037269825900575
924 => 0.036857637939117
925 => 0.036763790730221
926 => 0.03776583339691
927 => 0.037638314333753
928 => 0.037527883647468
929 => 0.040374152395254
930 => 0.038121108584261
1001 => 0.037138652883423
1002 => 0.035922677390359
1003 => 0.036318605142381
1004 => 0.036402032937121
1005 => 0.033477831072359
1006 => 0.032291482740011
1007 => 0.031884372698943
1008 => 0.031650075114618
1009 => 0.031756847465919
1010 => 0.030688994822025
1011 => 0.031406609459374
1012 => 0.030481939333099
1013 => 0.030326915377293
1014 => 0.03198034010772
1015 => 0.032210404499792
1016 => 0.031228878327809
1017 => 0.031859177024875
1018 => 0.031630621955512
1019 => 0.03049779014845
1020 => 0.030454524305967
1021 => 0.029886109126147
1022 => 0.028996649436596
1023 => 0.028590142491081
1024 => 0.028378430144402
1025 => 0.028465786784833
1026 => 0.028421616594274
1027 => 0.028133376223006
1028 => 0.028438138194953
1029 => 0.027659597292971
1030 => 0.027349576032671
1031 => 0.027209546621832
1101 => 0.02651854676018
1102 => 0.027618234829102
1103 => 0.027834887232184
1104 => 0.028051966507428
1105 => 0.029941493392113
1106 => 0.029847097968701
1107 => 0.030700386623904
1108 => 0.03066722939586
1109 => 0.030423857649036
1110 => 0.029397112281897
1111 => 0.029806354685263
1112 => 0.028546770178095
1113 => 0.029490536534286
1114 => 0.029059840981945
1115 => 0.029344917934799
1116 => 0.028832323869216
1117 => 0.0291160145896
1118 => 0.027886263554229
1119 => 0.026737939340465
1120 => 0.027200058525757
1121 => 0.027702434929909
1122 => 0.028791714977238
1123 => 0.028142948767414
1124 => 0.028376269629033
1125 => 0.02759468380005
1126 => 0.025982048985903
1127 => 0.025991176323819
1128 => 0.025743107590822
1129 => 0.025528739986884
1130 => 0.028217467370884
1201 => 0.027883081618194
1202 => 0.027350281684607
1203 => 0.028063455568341
1204 => 0.028252030062791
1205 => 0.028257398513544
1206 => 0.028777711769434
1207 => 0.029055403047373
1208 => 0.029104347338693
1209 => 0.029923071488948
1210 => 0.03019749702488
1211 => 0.031327816969231
1212 => 0.029031842882561
1213 => 0.028984558807154
1214 => 0.028073491387422
1215 => 0.027495678026422
1216 => 0.02811305476259
1217 => 0.028659966270507
1218 => 0.028090485452483
1219 => 0.02816484762492
1220 => 0.027400366155015
1221 => 0.02767363230831
1222 => 0.027909005932453
1223 => 0.027779046451823
1224 => 0.02758449081921
1225 => 0.028615125763755
1226 => 0.028556973301092
1227 => 0.029516724255647
1228 => 0.030264918757171
1229 => 0.031605817059668
1230 => 0.030206519778403
1231 => 0.030155523823771
]
'min_raw' => 0.025528739986884
'max_raw' => 0.073811094929731
'avg_raw' => 0.049669917458307
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.025528'
'max' => '$0.073811'
'avg' => '$0.049669'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0044889257451894
'max_diff' => -0.024933425566343
'year' => 2030
]
5 => [
'items' => [
101 => 0.03065401746031
102 => 0.030197420708102
103 => 0.030485974094313
104 => 0.031559326648131
105 => 0.031582004896227
106 => 0.031202115021357
107 => 0.031178998687947
108 => 0.031251960693955
109 => 0.031679301442075
110 => 0.031529975453827
111 => 0.031702779267899
112 => 0.031918873083461
113 => 0.032812728726507
114 => 0.033028234295912
115 => 0.032504667489086
116 => 0.032551939709613
117 => 0.03235611135163
118 => 0.032166943611541
119 => 0.032592165065532
120 => 0.03336926563045
121 => 0.033364431328167
122 => 0.033544703554552
123 => 0.033657011658133
124 => 0.033174903063004
125 => 0.032861068095199
126 => 0.032981412391693
127 => 0.033173845542545
128 => 0.032919008914421
129 => 0.031346039193829
130 => 0.031823177725362
131 => 0.031743758542833
201 => 0.031630655969208
202 => 0.032110422452268
203 => 0.032064147804579
204 => 0.030678042449713
205 => 0.030766776417324
206 => 0.03068343865618
207 => 0.030952720011738
208 => 0.030182878631195
209 => 0.03041967665489
210 => 0.030568194155507
211 => 0.030655672104336
212 => 0.030971702439697
213 => 0.03093461992745
214 => 0.030969397338669
215 => 0.031437986897094
216 => 0.033807952083088
217 => 0.033936944059128
218 => 0.033301740392507
219 => 0.033555491728484
220 => 0.033068344652726
221 => 0.033395369748284
222 => 0.033619112013128
223 => 0.032608063741461
224 => 0.032548196024461
225 => 0.032059038319434
226 => 0.032321883962807
227 => 0.031903677644929
228 => 0.032006290847101
301 => 0.031719375388172
302 => 0.032235766089946
303 => 0.032813171133531
304 => 0.032959046449957
305 => 0.032575311295713
306 => 0.032297461754661
307 => 0.031809649489903
308 => 0.032620892157801
309 => 0.032858124236067
310 => 0.032619646078687
311 => 0.032564385478771
312 => 0.032459666741785
313 => 0.03258660205386
314 => 0.032856832219221
315 => 0.032729396663604
316 => 0.032813570093214
317 => 0.032492787778804
318 => 0.033175062661009
319 => 0.034258679372343
320 => 0.034262163377259
321 => 0.034134727134718
322 => 0.034082582969922
323 => 0.034213340288247
324 => 0.034284270769493
325 => 0.034707115960165
326 => 0.035160845696653
327 => 0.037278204399046
328 => 0.036683658548161
329 => 0.038562305151157
330 => 0.040048070702396
331 => 0.040493586826559
401 => 0.040083732955483
402 => 0.038681645002401
403 => 0.038612851878409
404 => 0.040708163226578
405 => 0.040116141799381
406 => 0.040045722734412
407 => 0.039296582858035
408 => 0.039739417307752
409 => 0.03964256291761
410 => 0.039489673524491
411 => 0.040334570806437
412 => 0.04191614309374
413 => 0.041669640220873
414 => 0.041485637261217
415 => 0.04067938985446
416 => 0.041164930875205
417 => 0.040992039017644
418 => 0.041734892157613
419 => 0.041294842413707
420 => 0.040111656654801
421 => 0.040300082886738
422 => 0.040271602640841
423 => 0.040857724083256
424 => 0.040681784974672
425 => 0.040237247706169
426 => 0.041910737451601
427 => 0.041802070335972
428 => 0.041956135461173
429 => 0.042023959693909
430 => 0.043042583411757
501 => 0.043459880956636
502 => 0.043554614805145
503 => 0.04395101519783
504 => 0.043544752002263
505 => 0.04517009444528
506 => 0.046250852328526
507 => 0.047506208225208
508 => 0.049340620598116
509 => 0.050030376619592
510 => 0.049905778368079
511 => 0.051296608893359
512 => 0.053795900430861
513 => 0.050410956645288
514 => 0.053975310670782
515 => 0.052846877338757
516 => 0.050171382208174
517 => 0.04999911186378
518 => 0.051810988229348
519 => 0.05582955562154
520 => 0.05482295006801
521 => 0.055831202067619
522 => 0.054655022553617
523 => 0.054596615327127
524 => 0.055774077653905
525 => 0.058525282560553
526 => 0.057218288236779
527 => 0.055344391385492
528 => 0.056728047659418
529 => 0.0555293965436
530 => 0.05282850009834
531 => 0.054822180335714
601 => 0.053489063137726
602 => 0.053878137608507
603 => 0.056680151672459
604 => 0.056343005927075
605 => 0.056779303740458
606 => 0.056009249519739
607 => 0.055289897451183
608 => 0.053947173395436
609 => 0.053549658998026
610 => 0.0536595176764
611 => 0.053549604557521
612 => 0.052798362788601
613 => 0.05263613220013
614 => 0.052365740778525
615 => 0.05244954638641
616 => 0.051941131407992
617 => 0.05290061551616
618 => 0.053078704221581
619 => 0.053776936741172
620 => 0.053849429557653
621 => 0.055793997185994
622 => 0.054722962013435
623 => 0.055441504875916
624 => 0.055377231639108
625 => 0.050229368300465
626 => 0.050938698448547
627 => 0.0520421935589
628 => 0.051545070507438
629 => 0.05084225482155
630 => 0.050274693472602
701 => 0.049414779992819
702 => 0.050625091702438
703 => 0.052216522898287
704 => 0.053889790879041
705 => 0.055900112721056
706 => 0.055451432288645
707 => 0.053852209310555
708 => 0.053923949285119
709 => 0.054367417579234
710 => 0.053793085845012
711 => 0.053623704204303
712 => 0.054344147142833
713 => 0.054349108437402
714 => 0.053688270366871
715 => 0.052953869783565
716 => 0.052950792618306
717 => 0.052820113127975
718 => 0.05467827014464
719 => 0.055700068622942
720 => 0.055817216171769
721 => 0.055692183659523
722 => 0.055740303711124
723 => 0.055145741690393
724 => 0.056504734157893
725 => 0.057751880036496
726 => 0.057417618299645
727 => 0.056916512437999
728 => 0.05651735748267
729 => 0.057323590077496
730 => 0.057287689809176
731 => 0.057740987305233
801 => 0.057720423112438
802 => 0.057567996213896
803 => 0.057417623743289
804 => 0.05801383359191
805 => 0.057842134730345
806 => 0.057670169173023
807 => 0.057325265921203
808 => 0.057372144001362
809 => 0.056871124662708
810 => 0.056639330191562
811 => 0.053153697498225
812 => 0.052222222546231
813 => 0.052515283528049
814 => 0.052611766812589
815 => 0.052206387719764
816 => 0.05278759720553
817 => 0.052697016322827
818 => 0.053049413549382
819 => 0.052829251061539
820 => 0.052838286606836
821 => 0.053485737539991
822 => 0.053673695300339
823 => 0.053578098466421
824 => 0.053645051212029
825 => 0.05518794897559
826 => 0.054968598252705
827 => 0.054852072552994
828 => 0.054884350968165
829 => 0.055278594426856
830 => 0.055388961070394
831 => 0.054921329846395
901 => 0.055141867434977
902 => 0.056080888496773
903 => 0.056409492724412
904 => 0.057458239680059
905 => 0.057012713333309
906 => 0.057830496224697
907 => 0.06034408203009
908 => 0.062352108298346
909 => 0.060505444356863
910 => 0.064192928877911
911 => 0.067064164515786
912 => 0.066953961709711
913 => 0.066453295363371
914 => 0.063184469925399
915 => 0.060176448021937
916 => 0.06269278607154
917 => 0.062699200734718
918 => 0.062483045064627
919 => 0.061140520762058
920 => 0.062436328128988
921 => 0.062539184612094
922 => 0.062481612333301
923 => 0.061452302098236
924 => 0.059880735617621
925 => 0.060187815946135
926 => 0.060690819788509
927 => 0.0597385285773
928 => 0.05943421383396
929 => 0.059999992840078
930 => 0.061823050682529
1001 => 0.061478412157669
1002 => 0.061469412252991
1003 => 0.062943922011823
1004 => 0.061888491243621
1005 => 0.060191689212484
1006 => 0.059763224321553
1007 => 0.058242462607282
1008 => 0.059292858140097
1009 => 0.059330660005339
1010 => 0.058755369106799
1011 => 0.060238370898292
1012 => 0.060224704775706
1013 => 0.061632594261041
1014 => 0.06432395017786
1015 => 0.063527983799676
1016 => 0.062602361502743
1017 => 0.062703002311142
1018 => 0.063806783576597
1019 => 0.063139412226627
1020 => 0.063379403617155
1021 => 0.063806420320885
1022 => 0.064064050100473
1023 => 0.062665933350556
1024 => 0.062339965456496
1025 => 0.061673149544432
1026 => 0.061499189719683
1027 => 0.062042297366489
1028 => 0.061899207689832
1029 => 0.059327482904942
1030 => 0.059058723355979
1031 => 0.059066965827646
1101 => 0.058391157162959
1102 => 0.057360386736648
1103 => 0.060069189872889
1104 => 0.059851635071373
1105 => 0.059611471407904
1106 => 0.059640890086324
1107 => 0.06081668971791
1108 => 0.060134666552286
1109 => 0.061947936919497
1110 => 0.061575183043895
1111 => 0.061192869437913
1112 => 0.061140022052009
1113 => 0.06099286393117
1114 => 0.060488203979687
1115 => 0.059878796762911
1116 => 0.059476413332447
1117 => 0.054863847387869
1118 => 0.055719912797121
1119 => 0.056704738017648
1120 => 0.057044695737334
1121 => 0.056463174533452
1122 => 0.06051116598123
1123 => 0.061250773026155
1124 => 0.059010455043703
1125 => 0.058591383020767
1126 => 0.060538640273286
1127 => 0.059364206107499
1128 => 0.059893053740442
1129 => 0.05874997442221
1130 => 0.061072623347255
1201 => 0.061054928653948
1202 => 0.0601513657627
1203 => 0.060915050931051
1204 => 0.060782341839681
1205 => 0.059762221560839
1206 => 0.06110496297965
1207 => 0.061105628962642
1208 => 0.060235969324967
1209 => 0.059220397261137
1210 => 0.059038836962866
1211 => 0.058902055667313
1212 => 0.059859413926581
1213 => 0.06071777834826
1214 => 0.062314981730418
1215 => 0.062716556609309
1216 => 0.064283930095973
1217 => 0.063350635498695
1218 => 0.06376435290548
1219 => 0.064213501674445
1220 => 0.064428840111187
1221 => 0.064077957684214
1222 => 0.06651273386567
1223 => 0.066718303574999
1224 => 0.066787229320366
1225 => 0.065966236491093
1226 => 0.066695470279252
1227 => 0.066354285939457
1228 => 0.067241952807863
1229 => 0.067381150307129
1230 => 0.067263254977346
1231 => 0.067307438460696
]
'min_raw' => 0.030182878631195
'max_raw' => 0.067381150307129
'avg_raw' => 0.048782014469162
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.030182'
'max' => '$0.067381'
'avg' => '$0.048782'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0046541386443116
'max_diff' => -0.0064299446226017
'year' => 2031
]
6 => [
'items' => [
101 => 0.065229786513775
102 => 0.06512204929984
103 => 0.063653044743152
104 => 0.064251674958336
105 => 0.063132564464143
106 => 0.063487445929967
107 => 0.063643874298668
108 => 0.06356216499609
109 => 0.064285520612525
110 => 0.063670520566766
111 => 0.06204743433064
112 => 0.060423905885754
113 => 0.060403523808626
114 => 0.059976077426745
115 => 0.059667111983355
116 => 0.05972662968889
117 => 0.059936377846211
118 => 0.05965492103915
119 => 0.059714984119159
120 => 0.060712431445514
121 => 0.060912462393346
122 => 0.060232679075477
123 => 0.057503250961971
124 => 0.056833442456665
125 => 0.057314887527399
126 => 0.057084787792621
127 => 0.046071879033661
128 => 0.048659198589794
129 => 0.04712190116661
130 => 0.047830358546867
131 => 0.046261175959034
201 => 0.047010072137854
202 => 0.046871778358935
203 => 0.051032111640846
204 => 0.050967153759
205 => 0.050998245659545
206 => 0.04951414823702
207 => 0.051878355728739
208 => 0.053043049353311
209 => 0.05282749556072
210 => 0.052881745806391
211 => 0.051949546846099
212 => 0.051007271383167
213 => 0.049962142879621
214 => 0.051903862457422
215 => 0.051687976386629
216 => 0.052183141359672
217 => 0.053442485302858
218 => 0.053627928482274
219 => 0.053877165995989
220 => 0.053787832089257
221 => 0.055916128177833
222 => 0.055658377478556
223 => 0.056279482503875
224 => 0.055001822343443
225 => 0.053556028595298
226 => 0.053830826720262
227 => 0.053804361451041
228 => 0.053467428198436
229 => 0.053163259923288
301 => 0.052656905444047
302 => 0.054259085942729
303 => 0.054194040340408
304 => 0.055247053034748
305 => 0.055060922812604
306 => 0.053817899635333
307 => 0.053862294451285
308 => 0.054160870923986
309 => 0.055194247505089
310 => 0.055501024032003
311 => 0.055358912921806
312 => 0.055695279378686
313 => 0.05596112971144
314 => 0.055728666087377
315 => 0.059019860781716
316 => 0.057653127283333
317 => 0.058319263680774
318 => 0.05847813328646
319 => 0.058071192132163
320 => 0.05815944309706
321 => 0.05829311926193
322 => 0.059104774758546
323 => 0.061234793636075
324 => 0.062178164497404
325 => 0.065016342278811
326 => 0.062099830679727
327 => 0.061926776951163
328 => 0.062438018474352
329 => 0.064104329283667
330 => 0.065454717686001
331 => 0.065902719424831
401 => 0.06596193025032
402 => 0.066802411294958
403 => 0.067284159355701
404 => 0.066700354789293
405 => 0.066205641546148
406 => 0.064433640115272
407 => 0.064638754105896
408 => 0.066051786099535
409 => 0.068047777017719
410 => 0.069760544872982
411 => 0.069160793266055
412 => 0.073736474668256
413 => 0.074190134789301
414 => 0.07412745362916
415 => 0.075160958898581
416 => 0.07310966140847
417 => 0.07223269198943
418 => 0.06631260416455
419 => 0.067975907366097
420 => 0.070393616251918
421 => 0.070073623414936
422 => 0.06831781859651
423 => 0.06975921293758
424 => 0.069282642891854
425 => 0.06890675232388
426 => 0.07062877988574
427 => 0.068735339844482
428 => 0.0703747277391
429 => 0.068272195806956
430 => 0.069163532880876
501 => 0.068657566848596
502 => 0.068984988880346
503 => 0.067070886373065
504 => 0.068103689623782
505 => 0.067027918362293
506 => 0.067027408306646
507 => 0.067003660596424
508 => 0.068269300714865
509 => 0.06831057319369
510 => 0.067375263233885
511 => 0.06724047045639
512 => 0.067738870002545
513 => 0.067155374665045
514 => 0.067428388460986
515 => 0.067163643974801
516 => 0.067104044414589
517 => 0.066629144978789
518 => 0.066424545244214
519 => 0.066504774072026
520 => 0.066230911721907
521 => 0.066065899749926
522 => 0.066970835561906
523 => 0.066487364862572
524 => 0.066896736743287
525 => 0.066430205818362
526 => 0.064813006374723
527 => 0.063882937873112
528 => 0.060828198038546
529 => 0.061694518466236
530 => 0.062268889806068
531 => 0.06207906008168
601 => 0.062486887784017
602 => 0.062511925092701
603 => 0.06237933614936
604 => 0.062225815138666
605 => 0.062151089600905
606 => 0.062708032537892
607 => 0.06303135665865
608 => 0.062326535654117
609 => 0.062161405954249
610 => 0.062874018904066
611 => 0.063308712391791
612 => 0.066518244871984
613 => 0.066280472339198
614 => 0.066877234735988
615 => 0.066810048448175
616 => 0.067435550511716
617 => 0.06845798202871
618 => 0.066379092878313
619 => 0.066739916152244
620 => 0.066651450618102
621 => 0.067617294122951
622 => 0.067620309380948
623 => 0.06704123795233
624 => 0.067355161968145
625 => 0.067179938194572
626 => 0.067496591236331
627 => 0.06627729674206
628 => 0.067762265821375
629 => 0.068604147600053
630 => 0.068615837129367
701 => 0.069014882410873
702 => 0.069420335528028
703 => 0.070198567478882
704 => 0.069398631061305
705 => 0.067959623318324
706 => 0.0680635150294
707 => 0.067219825316203
708 => 0.067234007892707
709 => 0.067158300187821
710 => 0.067385504709194
711 => 0.066327155357683
712 => 0.066575547835084
713 => 0.066227796912138
714 => 0.066739160209652
715 => 0.066189017832908
716 => 0.066651407957343
717 => 0.066850960206574
718 => 0.067587312302288
719 => 0.066080258029661
720 => 0.063007272349172
721 => 0.063653251195561
722 => 0.062697797741208
723 => 0.062786228596076
724 => 0.062964872996576
725 => 0.062385828045745
726 => 0.06249629157456
727 => 0.062492345039991
728 => 0.062458335937164
729 => 0.062307703981676
730 => 0.062089257844594
731 => 0.062959480020554
801 => 0.063107347725641
802 => 0.063436039317117
803 => 0.064414002539715
804 => 0.064316280951816
805 => 0.064475668916108
806 => 0.064127725884984
807 => 0.062802368675365
808 => 0.062874341948334
809 => 0.061976834081127
810 => 0.06341308802308
811 => 0.063072964132
812 => 0.062853684046783
813 => 0.062793851443916
814 => 0.063774238848183
815 => 0.064067586125229
816 => 0.063884791787978
817 => 0.063509875269311
818 => 0.064229825819269
819 => 0.064422454214163
820 => 0.064465576607918
821 => 0.065741190945617
822 => 0.064536869279087
823 => 0.064826761474149
824 => 0.067088417626643
825 => 0.065037407583546
826 => 0.066123873346357
827 => 0.066070696500962
828 => 0.066626495621219
829 => 0.06602510475054
830 => 0.066032559711143
831 => 0.066526071676837
901 => 0.065833023126371
902 => 0.065661414558912
903 => 0.065424338552051
904 => 0.06594198533978
905 => 0.066252291177873
906 => 0.068753128338376
907 => 0.070368783196092
908 => 0.070298643357732
909 => 0.070939590184066
910 => 0.070650837768403
911 => 0.069718380049186
912 => 0.071309971674784
913 => 0.070806325489423
914 => 0.070847845469014
915 => 0.0708463000933
916 => 0.071181180777051
917 => 0.070943887121249
918 => 0.07047615696797
919 => 0.070786658071769
920 => 0.071708735343877
921 => 0.074570891489287
922 => 0.076172591986783
923 => 0.074474467108183
924 => 0.075645810910643
925 => 0.074943422021639
926 => 0.074815777066248
927 => 0.07555146753582
928 => 0.07628844573417
929 => 0.076241503408979
930 => 0.075706495081226
1001 => 0.075404282452213
1002 => 0.077692737727763
1003 => 0.07937883259197
1004 => 0.079263852225954
1005 => 0.079771338167929
1006 => 0.081261332589515
1007 => 0.081397559006207
1008 => 0.081380397608832
1009 => 0.081042746221305
1010 => 0.082509839229581
1011 => 0.083733714028131
1012 => 0.080964589680779
1013 => 0.082019035981751
1014 => 0.082492410898396
1015 => 0.083187465720039
1016 => 0.084360139708865
1017 => 0.085633974697144
1018 => 0.085814108931376
1019 => 0.085686295071971
1020 => 0.084846166654679
1021 => 0.086240012098866
1022 => 0.087056494070372
1023 => 0.087542690399547
1024 => 0.088775603394978
1025 => 0.082495334300725
1026 => 0.078049847686185
1027 => 0.07735562075772
1028 => 0.07876735851588
1029 => 0.079139622504309
1030 => 0.078989563357352
1031 => 0.073985764006728
1101 => 0.077329276789699
1102 => 0.080926615413637
1103 => 0.081064803840805
1104 => 0.082865706772751
1105 => 0.083452154588899
1106 => 0.084902117498859
1107 => 0.084811421924059
1108 => 0.085164464818685
1109 => 0.085083306371061
1110 => 0.08776905733605
1111 => 0.09073183948831
1112 => 0.090629247763447
1113 => 0.090203312775013
1114 => 0.090835898865546
1115 => 0.09389380755771
1116 => 0.093612284327324
1117 => 0.093885760165552
1118 => 0.097491206849795
1119 => 0.10217880040812
1120 => 0.10000094257358
1121 => 0.10472626741282
1122 => 0.10770060892042
1123 => 0.11284442500516
1124 => 0.11220039389752
1125 => 0.11420284375224
1126 => 0.1110474438015
1127 => 0.10380200770305
1128 => 0.10265538970606
1129 => 0.10495094797304
1130 => 0.11059435397509
1201 => 0.10477321703485
1202 => 0.1059508254564
1203 => 0.10561167415177
1204 => 0.10559360222005
1205 => 0.10628333435007
1206 => 0.10528284192147
1207 => 0.10120665578218
1208 => 0.1030747478687
1209 => 0.10235338780094
1210 => 0.10315379057707
1211 => 0.10747323424863
1212 => 0.10556350523876
1213 => 0.10355176086065
1214 => 0.10607493475262
1215 => 0.10928780217371
1216 => 0.10908674670458
1217 => 0.10869661505979
1218 => 0.11089576671482
1219 => 0.11452812095797
1220 => 0.1155099317139
1221 => 0.1162346843417
1222 => 0.11633461548428
1223 => 0.11736396835968
1224 => 0.11182887851831
1225 => 0.12061320824776
1226 => 0.12213001932983
1227 => 0.12184492171178
1228 => 0.12353079339232
1229 => 0.12303476717747
1230 => 0.12231610301628
1231 => 0.12498856822514
]
'min_raw' => 0.046071879033661
'max_raw' => 0.12498856822514
'avg_raw' => 0.085530223629398
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.046071'
'max' => '$0.124988'
'avg' => '$0.08553'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.015889000402466
'max_diff' => 0.057607417918006
'year' => 2032
]
7 => [
'items' => [
101 => 0.12192480252
102 => 0.11757617281894
103 => 0.11519042855879
104 => 0.11833216905305
105 => 0.12025072034126
106 => 0.12151876069999
107 => 0.12190246894637
108 => 0.11225855178631
109 => 0.10706101531321
110 => 0.11039257660259
111 => 0.11445731130772
112 => 0.11180629871179
113 => 0.11191021338652
114 => 0.10813056609857
115 => 0.11479172622533
116 => 0.11382125122403
117 => 0.11885607724748
118 => 0.11765447560998
119 => 0.12176018078128
120 => 0.12067901101252
121 => 0.12516688627528
122 => 0.12695722122197
123 => 0.12996347224085
124 => 0.13217488272798
125 => 0.13347346526356
126 => 0.13339550323899
127 => 0.13854113419622
128 => 0.13550693539539
129 => 0.1316952665958
130 => 0.13162632553288
131 => 0.13360044281595
201 => 0.13773765106865
202 => 0.13881036897464
203 => 0.13940987194122
204 => 0.13849171227905
205 => 0.13519830694374
206 => 0.13377623121789
207 => 0.13498788093781
208 => 0.1335061374486
209 => 0.13606404241478
210 => 0.13957659227236
211 => 0.13885126461689
212 => 0.14127592622191
213 => 0.14378519590125
214 => 0.14737356424107
215 => 0.148311696602
216 => 0.14986239372063
217 => 0.15145857043316
218 => 0.15197121937506
219 => 0.15295002527077
220 => 0.15294486648055
221 => 0.1558945639285
222 => 0.15914817155811
223 => 0.1603763331171
224 => 0.16320042290078
225 => 0.15836426811414
226 => 0.16203254707355
227 => 0.16534142651791
228 => 0.16139644403526
301 => 0.16683368332456
302 => 0.16704479900512
303 => 0.17023239513341
304 => 0.16700115578786
305 => 0.16508245617895
306 => 0.17062167005713
307 => 0.17330192116918
308 => 0.17249460772162
309 => 0.16635091252374
310 => 0.16277501840309
311 => 0.15341621375088
312 => 0.16450212213169
313 => 0.16990174472361
314 => 0.16633692880568
315 => 0.16813481460172
316 => 0.17794349653852
317 => 0.18167800755492
318 => 0.18090125536971
319 => 0.18103251370259
320 => 0.18304758806087
321 => 0.19198353748722
322 => 0.18662890945726
323 => 0.19072232195208
324 => 0.19289345317943
325 => 0.19491012086185
326 => 0.18995782240819
327 => 0.18351495488368
328 => 0.18147422828549
329 => 0.16598247811748
330 => 0.16517606524398
331 => 0.16472340126127
401 => 0.16186941888087
402 => 0.15962697050145
403 => 0.15784369229336
404 => 0.15316383774339
405 => 0.15474315127544
406 => 0.14728443988433
407 => 0.15205625911186
408 => 0.14015197563478
409 => 0.15006621665219
410 => 0.14467034601164
411 => 0.14829352802529
412 => 0.14828088708457
413 => 0.14160946026653
414 => 0.13776152050701
415 => 0.14021357748583
416 => 0.14284237721165
417 => 0.14326889112282
418 => 0.14667719858605
419 => 0.14762838393771
420 => 0.14474624791557
421 => 0.13990528581951
422 => 0.14102973090384
423 => 0.13773873366326
424 => 0.13197138758554
425 => 0.13611359622676
426 => 0.13752792837693
427 => 0.13815257802718
428 => 0.1324810555439
429 => 0.13069894004491
430 => 0.12975015670665
501 => 0.13917316348685
502 => 0.13968937706951
503 => 0.1370483553954
504 => 0.14898602379431
505 => 0.14628416177605
506 => 0.14930280362271
507 => 0.14092769929831
508 => 0.14124763956208
509 => 0.13728273095791
510 => 0.13950281484095
511 => 0.13793373110906
512 => 0.1393234540025
513 => 0.14015644817479
514 => 0.14412070617647
515 => 0.15011148211069
516 => 0.14352857822737
517 => 0.14066031273649
518 => 0.1424397685153
519 => 0.1471786937482
520 => 0.15435840805716
521 => 0.15010787268104
522 => 0.15199418810219
523 => 0.15240626410538
524 => 0.1492720766824
525 => 0.154473970018
526 => 0.15726170691666
527 => 0.16012134813381
528 => 0.16260429447733
529 => 0.15897914454682
530 => 0.1628585746173
531 => 0.15973243879208
601 => 0.15692797178289
602 => 0.15693222500171
603 => 0.15517294188011
604 => 0.15176410914809
605 => 0.15113546809142
606 => 0.1544057382568
607 => 0.15702818523369
608 => 0.15724418252738
609 => 0.15869610391998
610 => 0.15955533604414
611 => 0.16797697893034
612 => 0.17136423336666
613 => 0.17550610397394
614 => 0.17711959599851
615 => 0.18197562852357
616 => 0.17805398787191
617 => 0.17720551624864
618 => 0.16542636973899
619 => 0.16735520432006
620 => 0.17044345458922
621 => 0.16547729384845
622 => 0.16862717978584
623 => 0.16924903399358
624 => 0.1653085456068
625 => 0.16741333071264
626 => 0.16182364549684
627 => 0.15023332197355
628 => 0.15448687336135
629 => 0.15761891891269
630 => 0.1531491037325
701 => 0.16116107443726
702 => 0.15648064655218
703 => 0.15499717561277
704 => 0.14920962658256
705 => 0.15194112694163
706 => 0.15563552028859
707 => 0.15335281471949
708 => 0.15808977152533
709 => 0.16479856566263
710 => 0.16957965188047
711 => 0.16994668431329
712 => 0.16687276618312
713 => 0.1717987396042
714 => 0.17183461994276
715 => 0.16627810180059
716 => 0.16287476537733
717 => 0.16210152018129
718 => 0.16403323828466
719 => 0.16637870067699
720 => 0.17007684115247
721 => 0.17231154998965
722 => 0.17813848543902
723 => 0.17971508710029
724 => 0.18144729433027
725 => 0.18376205738245
726 => 0.18654152391965
727 => 0.18046020937137
728 => 0.18070183133536
729 => 0.17503899542953
730 => 0.16898744313134
731 => 0.17357981698903
801 => 0.17958373491005
802 => 0.17820642950523
803 => 0.17805145451139
804 => 0.17831207946455
805 => 0.1772736361679
806 => 0.17257679562367
807 => 0.17021807170613
808 => 0.1732614273344
809 => 0.17487883540665
810 => 0.17738729427391
811 => 0.17707807377138
812 => 0.18353959442461
813 => 0.18605034596421
814 => 0.18540798827926
815 => 0.18552619755249
816 => 0.19007179328582
817 => 0.19512743061435
818 => 0.19986270212261
819 => 0.20467962368546
820 => 0.1988726367338
821 => 0.1959242068849
822 => 0.19896623387931
823 => 0.19735209153645
824 => 0.20662743222426
825 => 0.20726963668907
826 => 0.21654430666417
827 => 0.22534707287771
828 => 0.21981821313693
829 => 0.22503167884717
830 => 0.2306704670729
831 => 0.24154860442075
901 => 0.23788523045948
902 => 0.23507914341754
903 => 0.23242740472181
904 => 0.23794525199595
905 => 0.24504387436436
906 => 0.24657284963276
907 => 0.24905037368106
908 => 0.2464455600815
909 => 0.24958277115137
910 => 0.26065850478842
911 => 0.25766574379149
912 => 0.2534155420655
913 => 0.26215877004719
914 => 0.26532291026532
915 => 0.28753050338929
916 => 0.31556850705821
917 => 0.30396058943182
918 => 0.29675518037595
919 => 0.29844862241867
920 => 0.30868715221224
921 => 0.31197544302724
922 => 0.30303673505025
923 => 0.30619403782225
924 => 0.32359108651517
925 => 0.33292404497478
926 => 0.32024863380308
927 => 0.28527767709448
928 => 0.25303285790254
929 => 0.26158563595537
930 => 0.26061601634778
1001 => 0.2793069748423
1002 => 0.25759436743148
1003 => 0.25795995205519
1004 => 0.27703741977731
1005 => 0.27194787845964
1006 => 0.26370347334423
1007 => 0.25309305118368
1008 => 0.23347870447465
1009 => 0.21610573060794
1010 => 0.2501781331175
1011 => 0.24870886916464
1012 => 0.24658115722819
1013 => 0.25131614990029
1014 => 0.27430793026488
1015 => 0.27377789531035
1016 => 0.27040608335581
1017 => 0.27296357300554
1018 => 0.26325513304335
1019 => 0.26575721907868
1020 => 0.25302775015843
1021 => 0.25878200173996
1022 => 0.2636857845536
1023 => 0.26467029155519
1024 => 0.26688843609993
1025 => 0.24793463382536
1026 => 0.25644433459224
1027 => 0.26144298654165
1028 => 0.2388588951817
1029 => 0.26099657166886
1030 => 0.24760469029616
1031 => 0.24305928461896
1101 => 0.24917907455165
1102 => 0.24679418646319
1103 => 0.24474379973006
1104 => 0.24359964870286
1105 => 0.24809334701286
1106 => 0.24788371061556
1107 => 0.24053114799115
1108 => 0.23094002977639
1109 => 0.23415912386699
1110 => 0.2329895968047
1111 => 0.228751079859
1112 => 0.23160732851992
1113 => 0.21902985493161
1114 => 0.19739096534313
1115 => 0.21168627862239
1116 => 0.21113592461145
1117 => 0.21085841116257
1118 => 0.2216009439985
1119 => 0.22056829733872
1120 => 0.21869403353953
1121 => 0.22871665753452
1122 => 0.22505826495303
1123 => 0.23633256886347
1124 => 0.24375855459515
1125 => 0.24187508440812
1126 => 0.24885925988167
1127 => 0.23423328529318
1128 => 0.23909144735922
1129 => 0.24009270782791
1130 => 0.22859297991019
1201 => 0.22073725110322
1202 => 0.22021336355366
1203 => 0.20659261238849
1204 => 0.21386870771806
1205 => 0.2202713705028
1206 => 0.21720499189561
1207 => 0.21623426803403
1208 => 0.22119348571853
1209 => 0.22157885940544
1210 => 0.21279229850377
1211 => 0.21461930274942
1212 => 0.22223821416798
1213 => 0.21442732572979
1214 => 0.19925204539575
1215 => 0.19548836605824
1216 => 0.19498622185624
1217 => 0.18477882499175
1218 => 0.19573987310831
1219 => 0.1909550818676
1220 => 0.20607018006638
1221 => 0.19743651703914
1222 => 0.19706433708192
1223 => 0.19650173248965
1224 => 0.18771580434613
1225 => 0.18963936423469
1226 => 0.19603357027074
1227 => 0.19831509502029
1228 => 0.19807711329693
1229 => 0.19600223517282
1230 => 0.19695210375294
1231 => 0.19389224610021
]
'min_raw' => 0.10706101531321
'max_raw' => 0.33292404497478
'avg_raw' => 0.21999253014399
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.107061'
'max' => '$0.332924'
'avg' => '$0.219992'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.060989136279547
'max_diff' => 0.20793547674964
'year' => 2033
]
8 => [
'items' => [
101 => 0.1928117466776
102 => 0.18940139328507
103 => 0.18438911593222
104 => 0.18508610384021
105 => 0.1751554708705
106 => 0.16974473497002
107 => 0.16824711458512
108 => 0.16624443401656
109 => 0.16847332268426
110 => 0.17512733863501
111 => 0.16710118367018
112 => 0.15334090395227
113 => 0.15416792020969
114 => 0.15602598019679
115 => 0.15256349770313
116 => 0.14928654860701
117 => 0.1521355899788
118 => 0.14630517806376
119 => 0.1567305576216
120 => 0.15644858032135
121 => 0.16033451711936
122 => 0.16276447314661
123 => 0.15716421121141
124 => 0.15575576047942
125 => 0.15655807802688
126 => 0.14329755615186
127 => 0.15925084957745
128 => 0.15938881432147
129 => 0.15820747642235
130 => 0.1667021126688
131 => 0.1846284446923
201 => 0.17788383750002
202 => 0.17527212173834
203 => 0.17030724816624
204 => 0.17692264741604
205 => 0.17641468796996
206 => 0.17411750271689
207 => 0.17272815790817
208 => 0.17528806831787
209 => 0.17241095667914
210 => 0.17189414837108
211 => 0.16876285231724
212 => 0.16764512209091
213 => 0.16681759912946
214 => 0.16590657765963
215 => 0.16791606400967
216 => 0.16336230357054
217 => 0.15787091489158
218 => 0.15741436534058
219 => 0.15867493879115
220 => 0.15811722887793
221 => 0.15741169524008
222 => 0.15606463938477
223 => 0.15566499668779
224 => 0.15696364157389
225 => 0.15549754721319
226 => 0.1576608493047
227 => 0.15707255083677
228 => 0.15378636341749
301 => 0.14969055719065
302 => 0.14965409592399
303 => 0.14877166119089
304 => 0.14764774788333
305 => 0.14733510091282
306 => 0.15189565166109
307 => 0.16133585522421
308 => 0.15948251737984
309 => 0.1608217439101
310 => 0.16740941295775
311 => 0.16950343484988
312 => 0.16801714771047
313 => 0.16598262620386
314 => 0.16607213482478
315 => 0.17302471070443
316 => 0.17345833433384
317 => 0.17455396135307
318 => 0.17596215169695
319 => 0.16825696861522
320 => 0.16570922139454
321 => 0.16450195741775
322 => 0.16078405163919
323 => 0.16479349427221
324 => 0.1624573637514
325 => 0.16277258757224
326 => 0.16256729764539
327 => 0.16267939982709
328 => 0.15672764351554
329 => 0.15889615070037
330 => 0.15529058691671
331 => 0.15046314175391
401 => 0.15044695846501
402 => 0.15162846882956
403 => 0.15092566023222
404 => 0.14903442036763
405 => 0.14930306206399
406 => 0.14694947812576
407 => 0.14958882976711
408 => 0.14966451692813
409 => 0.14864822277975
410 => 0.15271450814359
411 => 0.15438046857492
412 => 0.15371152199533
413 => 0.15433353349962
414 => 0.1595595319346
415 => 0.1604115977058
416 => 0.16079002903706
417 => 0.16028298118571
418 => 0.15442905515751
419 => 0.15468870166968
420 => 0.15278358784157
421 => 0.15117396741277
422 => 0.15123834378858
423 => 0.15206589792499
424 => 0.15567987537411
425 => 0.16328527786018
426 => 0.16357389732505
427 => 0.1639237125361
428 => 0.16250083826974
429 => 0.16207168577593
430 => 0.16263784868892
501 => 0.16549403798962
502 => 0.17284093231886
503 => 0.17024404918034
504 => 0.16813274276582
505 => 0.16998492769547
506 => 0.16969979834346
507 => 0.16729301966842
508 => 0.16722546940703
509 => 0.16260609163594
510 => 0.16089841285211
511 => 0.15947134864279
512 => 0.15791303178068
513 => 0.15698920930957
514 => 0.158408620495
515 => 0.15873325662709
516 => 0.15562968926307
517 => 0.15520668449943
518 => 0.15774112460405
519 => 0.15662581200746
520 => 0.15777293867147
521 => 0.15803908189739
522 => 0.15799622670822
523 => 0.15683171226454
524 => 0.15757393904462
525 => 0.15581835144129
526 => 0.15390941360339
527 => 0.15269163019384
528 => 0.15162895265348
529 => 0.15221858791605
530 => 0.15011664586813
531 => 0.14944419230326
601 => 0.15732248931216
602 => 0.16314227201861
603 => 0.16305765007317
604 => 0.16254253574331
605 => 0.16177718033626
606 => 0.16543804747449
607 => 0.16416267456488
608 => 0.1650906149176
609 => 0.1653268146829
610 => 0.16604172023364
611 => 0.16629723751982
612 => 0.16552488681281
613 => 0.16293278350539
614 => 0.15647350851309
615 => 0.15346669856769
616 => 0.15247440120333
617 => 0.15251046932789
618 => 0.1515155494375
619 => 0.1518085979344
620 => 0.15141363912951
621 => 0.15066568270383
622 => 0.15217240371445
623 => 0.15234603927485
624 => 0.151994352587
625 => 0.15207718753323
626 => 0.14916537196515
627 => 0.14938675097866
628 => 0.14815408449995
629 => 0.14792297439521
630 => 0.14480690087758
701 => 0.13928632495902
702 => 0.14234525991317
703 => 0.1386504966399
704 => 0.13725123380352
705 => 0.14387512644095
706 => 0.14321027133834
707 => 0.14207232840823
708 => 0.1403890736465
709 => 0.13976473808173
710 => 0.13597147283079
711 => 0.13574734648349
712 => 0.13762739116863
713 => 0.13675981523482
714 => 0.13554141004706
715 => 0.13112846996474
716 => 0.12616686423795
717 => 0.1263166239273
718 => 0.12789481839504
719 => 0.13248363165849
720 => 0.13069070292918
721 => 0.12938991256458
722 => 0.12914631363091
723 => 0.13219546429476
724 => 0.13651065130092
725 => 0.13853524049734
726 => 0.13652893409137
727 => 0.13422419731941
728 => 0.1343644759676
729 => 0.13529768696805
730 => 0.1353957542493
731 => 0.13389560754152
801 => 0.1343178900526
802 => 0.13367640430395
803 => 0.12973960744855
804 => 0.12966840327715
805 => 0.12870224983941
806 => 0.12867299509729
807 => 0.12702932708142
808 => 0.12679936656386
809 => 0.12353576395485
810 => 0.1256838770752
811 => 0.12424303557507
812 => 0.12207134757422
813 => 0.12169694774431
814 => 0.12168569283332
815 => 0.12391553082964
816 => 0.12565782011994
817 => 0.12426809962984
818 => 0.12395168721284
819 => 0.12733014402397
820 => 0.12690020459944
821 => 0.1265278798306
822 => 0.1361242736339
823 => 0.12852797912264
824 => 0.1252155611344
825 => 0.12111581486284
826 => 0.12245071292158
827 => 0.12273199555628
828 => 0.11287284480798
829 => 0.10887298857728
830 => 0.1075003886503
831 => 0.10671043798661
901 => 0.10707042842363
902 => 0.10347008867965
903 => 0.10588957653173
904 => 0.10277198664259
905 => 0.10224931255216
906 => 0.10782394946922
907 => 0.10859962762967
908 => 0.10529034361287
909 => 0.10741543967607
910 => 0.10664485030251
911 => 0.10282542877321
912 => 0.10267955496456
913 => 0.10076310350031
914 => 0.097764228056897
915 => 0.096393661508686
916 => 0.095679858550573
917 => 0.095974387562833
918 => 0.095825464681498
919 => 0.094853642145469
920 => 0.095881168411688
921 => 0.093256263404665
922 => 0.092211005080571
923 => 0.091738886145387
924 => 0.089409131867758
925 => 0.093116806969895
926 => 0.093847265673076
927 => 0.094579163605553
928 => 0.10094983541982
929 => 0.10063157465931
930 => 0.10350849693504
1001 => 0.10339670502572
1002 => 0.10257616018964
1003 => 0.099114416499254
1004 => 0.10049420583459
1005 => 0.096247428727293
1006 => 0.099429402888855
1007 => 0.097977282763936
1008 => 0.098938439613918
1009 => 0.097210192933631
1010 => 0.098166676004058
1011 => 0.094020484529832
1012 => 0.090148829269688
1013 => 0.091706896367032
1014 => 0.093400693488432
1015 => 0.097073277219105
1016 => 0.094885916647274
1017 => 0.095672574222165
1018 => 0.093037403031168
1019 => 0.087600292164703
1020 => 0.087631065621738
1021 => 0.086794684568832
1022 => 0.086071929225487
1023 => 0.095137161321595
1024 => 0.094009756410332
1025 => 0.092213384235341
1026 => 0.094617899776559
1027 => 0.09525369185045
1028 => 0.095271791956976
1029 => 0.09702606442632
1030 => 0.097962319957679
1031 => 0.098127339053045
1101 => 0.10088772468712
1102 => 0.1018129695413
1103 => 0.1056239221501
1104 => 0.097882885217097
1105 => 0.097723463655592
1106 => 0.09465173624127
1107 => 0.092703598153018
1108 => 0.094785126922877
1109 => 0.096629077255961
1110 => 0.09470903291811
1111 => 0.094959750174285
1112 => 0.092382247524108
1113 => 0.093303583438774
1114 => 0.094097162045836
1115 => 0.093658994583411
1116 => 0.093003036684616
1117 => 0.09647789435678
1118 => 0.09628182926884
1119 => 0.099517696619792
1120 => 0.10204028661895
1121 => 0.10656121886435
1122 => 0.10184339038475
1123 => 0.10167145396328
1124 => 0.10335216006259
1125 => 0.10181271223395
1126 => 0.10278559012172
1127 => 0.106404473196
1128 => 0.1064809344928
1129 => 0.10520010925661
1130 => 0.10512217092458
1201 => 0.10536816742189
1202 => 0.10680897659015
1203 => 0.10630551359517
1204 => 0.10688813371909
1205 => 0.10761670910544
1206 => 0.11063040581298
1207 => 0.11135699788635
1208 => 0.10959175584287
1209 => 0.10975113743482
1210 => 0.10909088845358
1211 => 0.10845309621059
1212 => 0.10988676003074
1213 => 0.11250680884079
1214 => 0.11249050965312
1215 => 0.11309831005058
1216 => 0.11347696466291
1217 => 0.11185150187468
1218 => 0.11079338536947
1219 => 0.11119913456727
1220 => 0.11184793637062
1221 => 0.11098873688678
1222 => 0.10568535965256
1223 => 0.10729406552437
1224 => 0.10702629820561
1225 => 0.10664496498206
1226 => 0.10826253117592
1227 => 0.10810651297045
1228 => 0.10343316199173
1229 => 0.10373233475874
1230 => 0.10345135567859
1231 => 0.10435925656948
]
'min_raw' => 0.086071929225487
'max_raw' => 0.1928117466776
'avg_raw' => 0.13944183795155
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.086071'
'max' => '$0.192811'
'avg' => '$0.139441'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.020989086087721
'max_diff' => -0.14011229829717
'year' => 2034
]
9 => [
'items' => [
101 => 0.10176368260637
102 => 0.10256206367596
103 => 0.10306280079845
104 => 0.10335773881045
105 => 0.10442325715065
106 => 0.10429823087159
107 => 0.1044154853416
108 => 0.1059953677537
109 => 0.11398587084397
110 => 0.11442077629712
111 => 0.1122791427866
112 => 0.1131346831322
113 => 0.11149223275476
114 => 0.1125948206966
115 => 0.11334918336371
116 => 0.10994036352664
117 => 0.10973851533895
118 => 0.10808928598455
119 => 0.10897548842248
120 => 0.10756547662352
121 => 0.10791144419887
122 => 0.10694408869729
123 => 0.10868513600157
124 => 0.11063189741915
125 => 0.11112372623317
126 => 0.1098299363691
127 => 0.10889314724261
128 => 0.10724845413401
129 => 0.10998361542799
130 => 0.11078345994287
131 => 0.10997941418525
201 => 0.10979309921447
202 => 0.10944003268149
203 => 0.10986800394849
204 => 0.11077910381787
205 => 0.11034944594484
206 => 0.11063324253958
207 => 0.10955170257024
208 => 0.1118520399705
209 => 0.11550552936847
210 => 0.11551727593429
211 => 0.11508761574524
212 => 0.11491180805305
213 => 0.11535266548096
214 => 0.11559181255069
215 => 0.11701746463315
216 => 0.11854724611812
217 => 0.1256860688125
218 => 0.12368151596638
219 => 0.1300155041513
220 => 0.13502486644014
221 => 0.13652695515769
222 => 0.13514510421628
223 => 0.1304178667918
224 => 0.13018592597128
225 => 0.1372504144716
226 => 0.13525437289619
227 => 0.13501695010215
228 => 0.13249117270566
301 => 0.1339842199706
302 => 0.13365766863208
303 => 0.13314219136878
304 => 0.13599082154371
305 => 0.1413232029322
306 => 0.14049210128605
307 => 0.13987172246089
308 => 0.13715340303861
309 => 0.13879043848945
310 => 0.13820752152076
311 => 0.14071210274651
312 => 0.13922844431164
313 => 0.1352392509181
314 => 0.13587454311457
315 => 0.1357785199771
316 => 0.1377546693419
317 => 0.13716147835363
318 => 0.13566268991627
319 => 0.14130497743232
320 => 0.14093859866508
321 => 0.14145803999118
322 => 0.14168671412719
323 => 0.14512107510995
324 => 0.14652802291729
325 => 0.14684742470165
326 => 0.14818391630137
327 => 0.14681417157313
328 => 0.15229412709755
329 => 0.15593797775702
330 => 0.16017049780883
331 => 0.16635534719867
401 => 0.16868090778231
402 => 0.16826081607816
403 => 0.17295009829882
404 => 0.18137663421247
405 => 0.16996405991019
406 => 0.18198152836239
407 => 0.17817693659877
408 => 0.1691563179689
409 => 0.16857549647525
410 => 0.17468436414293
411 => 0.18823324467312
412 => 0.18483940377044
413 => 0.18823879578103
414 => 0.18427322443134
415 => 0.18407630038936
416 => 0.18804619683189
417 => 0.19732207625765
418 => 0.19291545364361
419 => 0.1865974795782
420 => 0.19126257330954
421 => 0.18722123738541
422 => 0.17811497644965
423 => 0.18483680856426
424 => 0.18034211085597
425 => 0.18165390259852
426 => 0.19110108864552
427 => 0.18996437822619
428 => 0.19143538676535
429 => 0.18883909519673
430 => 0.18641374947403
501 => 0.18188666157408
502 => 0.18054641402964
503 => 0.18091681023387
504 => 0.18054623047968
505 => 0.17801336640574
506 => 0.17746639465013
507 => 0.17655475109407
508 => 0.17683730755217
509 => 0.17512315095603
510 => 0.17835811861576
511 => 0.17895855711985
512 => 0.18131269680868
513 => 0.18155711140074
514 => 0.18811335692507
515 => 0.1845022870635
516 => 0.18692490449141
517 => 0.1867082027861
518 => 0.16935182212752
519 => 0.17174337824563
520 => 0.17546388905375
521 => 0.17378780397773
522 => 0.17141821182373
523 => 0.16950463910989
524 => 0.16660538077556
525 => 0.1706860312058
526 => 0.17605165259278
527 => 0.18169319241374
528 => 0.18847113286028
529 => 0.18695837545654
530 => 0.18156648353172
531 => 0.18180835986469
601 => 0.18330354418027
602 => 0.18136714463978
603 => 0.18079606261228
604 => 0.18322508627925
605 => 0.18324181363028
606 => 0.18101375193724
607 => 0.17853766909642
608 => 0.1785272942189
609 => 0.1780866991935
610 => 0.18435160530757
611 => 0.18779667021685
612 => 0.1881916413567
613 => 0.18777008551218
614 => 0.18793232562578
615 => 0.18592771826189
616 => 0.19050965624789
617 => 0.19471449565055
618 => 0.19358750886735
619 => 0.19189799546871
620 => 0.19055221666871
621 => 0.19327048615153
622 => 0.19314944589041
623 => 0.19467777004659
624 => 0.19460843643484
625 => 0.19409451850429
626 => 0.19358752722097
627 => 0.19559769035164
628 => 0.19501879565224
629 => 0.19443900176948
630 => 0.19327613637559
701 => 0.19343418909577
702 => 0.19174496741545
703 => 0.19096345617261
704 => 0.17921140218791
705 => 0.17607086935376
706 => 0.17705894491483
707 => 0.1773842450449
708 => 0.17601748113078
709 => 0.17797706949079
710 => 0.1776716697206
711 => 0.17885980157352
712 => 0.1781175083745
713 => 0.17814797234631
714 => 0.18033089837102
715 => 0.18096461108283
716 => 0.18064229968292
717 => 0.18086803553923
718 => 0.18607002307076
719 => 0.18533046679397
720 => 0.18493759226183
721 => 0.18504642119218
722 => 0.18637564053836
723 => 0.1867477493826
724 => 0.18517109806192
725 => 0.18591465593927
726 => 0.18908063100947
727 => 0.19018854310537
728 => 0.19372446668751
729 => 0.19222234350378
730 => 0.19497955561788
731 => 0.20345428565372
801 => 0.21022448641306
802 => 0.20399833000439
803 => 0.21643094151905
804 => 0.22611151293541
805 => 0.22573995648062
806 => 0.22405192493852
807 => 0.2130308517523
808 => 0.20288909589139
809 => 0.21137310531074
810 => 0.21139473279551
811 => 0.21066594886229
812 => 0.20613953444412
813 => 0.21050843945211
814 => 0.21085522726611
815 => 0.21066111830859
816 => 0.20719072698692
817 => 0.20189208087426
818 => 0.20292742364151
819 => 0.20462333621468
820 => 0.20141261990924
821 => 0.20038660150549
822 => 0.20229416492605
823 => 0.20844073172371
824 => 0.20727875887525
825 => 0.20724841506827
826 => 0.21221982766716
827 => 0.20866136914434
828 => 0.20294048262943
829 => 0.20149588333519
830 => 0.19636852903934
831 => 0.19991001091449
901 => 0.2000374625424
902 => 0.19809782911245
903 => 0.20309787319234
904 => 0.20305179690591
905 => 0.20779859460142
906 => 0.21687268897944
907 => 0.2141890327628
908 => 0.2110682325638
909 => 0.21140755007584
910 => 0.21512902567587
911 => 0.21287893657506
912 => 0.21368808430389
913 => 0.21512780093387
914 => 0.21599641772289
915 => 0.21128256948715
916 => 0.21018354597397
917 => 0.20793532957085
918 => 0.20734881187622
919 => 0.20917993722599
920 => 0.20869750039094
921 => 0.20002675072659
922 => 0.19912060914307
923 => 0.19914839921177
924 => 0.19686986311532
925 => 0.19339454865692
926 => 0.20252746755335
927 => 0.20179396635085
928 => 0.20098423779178
929 => 0.20108342492002
930 => 0.20504771546962
1001 => 0.20274822674938
1002 => 0.20886179439092
1003 => 0.20760502867449
1004 => 0.20631603165963
1005 => 0.20613785300837
1006 => 0.20564169912971
1007 => 0.20394020286906
1008 => 0.20188554389024
1009 => 0.20052888006092
1010 => 0.1849772919397
1011 => 0.18786357623557
1012 => 0.19118398322488
1013 => 0.19233017441189
1014 => 0.19036953507249
1015 => 0.20401762086041
1016 => 0.20651125765009
1017 => 0.19895786915825
1018 => 0.19754493857425
1019 => 0.20411025235427
1020 => 0.20015056556795
1021 => 0.20193361228538
1022 => 0.19807964055671
1023 => 0.20591061356967
1024 => 0.20585095467578
1025 => 0.20280452930319
1026 => 0.20537934716708
1027 => 0.20493190920007
1028 => 0.20149250245744
1029 => 0.20601964889817
1030 => 0.20602189430632
1031 => 0.2030897761202
1101 => 0.19966570400203
1102 => 0.19905356078027
1103 => 0.19859239309255
1104 => 0.20182019330429
1105 => 0.20471422888107
1106 => 0.21009931159719
1107 => 0.21145324933844
1108 => 0.21673775847925
1109 => 0.21359109058398
1110 => 0.21498596770578
1111 => 0.21650030413891
1112 => 0.21722633271283
1113 => 0.21604330811247
1114 => 0.22425232599889
1115 => 0.22494541862631
1116 => 0.22517780658906
1117 => 0.22240977194528
1118 => 0.22486843457553
1119 => 0.22371810775318
1120 => 0.22671093857494
1121 => 0.22718025266217
1122 => 0.22678276032662
1123 => 0.22693172802552
1124 => 0.21992677942945
1125 => 0.2195635358907
1126 => 0.2146106844652
1127 => 0.21662900803072
1128 => 0.21285584886575
1129 => 0.21405235650481
1130 => 0.21457976567136
1201 => 0.21430427705296
1202 => 0.21674312101685
1203 => 0.21466960542464
1204 => 0.20919725685928
1205 => 0.20372341735621
1206 => 0.20365469776014
1207 => 0.20221353244028
1208 => 0.20117183387661
1209 => 0.20137250197621
1210 => 0.20207968253277
1211 => 0.20113073125708
1212 => 0.2013332381248
1213 => 0.20469620142515
1214 => 0.20537061973148
1215 => 0.20307868281433
1216 => 0.19387622536706
1217 => 0.19161791922688
1218 => 0.19324114489629
1219 => 0.19246534757543
1220 => 0.15533455679786
1221 => 0.16405788532225
1222 => 0.15887477972931
1223 => 0.16126339324976
1224 => 0.15597278459805
1225 => 0.1584977403512
1226 => 0.15803147322021
1227 => 0.17205832734537
1228 => 0.17183931731151
1229 => 0.17194414582496
1230 => 0.16694040774855
1231 => 0.17491149837057
]
'min_raw' => 0.10176368260637
'max_raw' => 0.22718025266217
'avg_raw' => 0.16447196763427
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.101763'
'max' => '$0.22718'
'avg' => '$0.164471'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.01569175338088
'max_diff' => 0.034368505984567
'year' => 2035
]
10 => [
'items' => [
101 => 0.17883834424213
102 => 0.17811158958093
103 => 0.17829449807184
104 => 0.17515152419316
105 => 0.17197457668231
106 => 0.16845085296406
107 => 0.17499749608715
108 => 0.17426962112679
109 => 0.17593910440472
110 => 0.18018507043376
111 => 0.18081030506039
112 => 0.18165062673909
113 => 0.18134943123544
114 => 0.18852513009096
115 => 0.18765610561277
116 => 0.1897502045698
117 => 0.18544248413552
118 => 0.18056788957156
119 => 0.18149439063567
120 => 0.18140516113274
121 => 0.18026916714766
122 => 0.17924364257164
123 => 0.17753643309234
124 => 0.18293829650432
125 => 0.18271899071475
126 => 0.18626929653272
127 => 0.18564174549356
128 => 0.18145080606629
129 => 0.18160048628782
130 => 0.18260715771147
131 => 0.18609125900271
201 => 0.18712557748165
202 => 0.18664643995174
203 => 0.18778052294547
204 => 0.18867685590343
205 => 0.18789308856481
206 => 0.19898958126065
207 => 0.19438154384856
208 => 0.19662746922069
209 => 0.19716310918819
210 => 0.19579107867475
211 => 0.19608862296438
212 => 0.19653932148722
213 => 0.19927587466203
214 => 0.20645738202079
215 => 0.20963802274381
216 => 0.21920713728907
217 => 0.20937391480842
218 => 0.20879045208034
219 => 0.21051413856952
220 => 0.21613222180123
221 => 0.22068515058081
222 => 0.22219561972175
223 => 0.22239525315386
224 => 0.22522899367637
225 => 0.22685324089774
226 => 0.22488490304216
227 => 0.22321694280312
228 => 0.21724251626173
229 => 0.21793407240172
301 => 0.22269820842302
302 => 0.22942783115932
303 => 0.23520254756497
304 => 0.23318044314889
305 => 0.24860767246029
306 => 0.25013721923193
307 => 0.24992588532426
308 => 0.25341042049714
309 => 0.24649432779221
310 => 0.24353756416787
311 => 0.22357757473896
312 => 0.22918551761109
313 => 0.23733699191868
314 => 0.23625811372761
315 => 0.23033829519591
316 => 0.23519805685177
317 => 0.23359126766954
318 => 0.23232392637578
319 => 0.23812986252871
320 => 0.23174599723385
321 => 0.23727330797896
322 => 0.23018447477565
323 => 0.23318967995154
324 => 0.23148378014828
325 => 0.2325877063882
326 => 0.22613417614654
327 => 0.22961634441435
328 => 0.22598930649829
329 => 0.22598758681006
330 => 0.22590751974704
331 => 0.23017471377053
401 => 0.23031386681444
402 => 0.22716040398371
403 => 0.22670594072345
404 => 0.22838632959046
405 => 0.22641903432173
406 => 0.22733951939596
407 => 0.22644691487692
408 => 0.22624597079855
409 => 0.22464481419434
410 => 0.22395499190452
411 => 0.22422548899889
412 => 0.223302142965
413 => 0.2227457935807
414 => 0.22579684785139
415 => 0.22416679263374
416 => 0.225547018511
417 => 0.22397407692547
418 => 0.21852157609198
419 => 0.21538578520349
420 => 0.20508651657613
421 => 0.20800737638264
422 => 0.20994390945621
423 => 0.20930388528695
424 => 0.210678904859
425 => 0.21076331989328
426 => 0.21031628701374
427 => 0.20979868020769
428 => 0.20954673783996
429 => 0.21142450983652
430 => 0.21251461968343
501 => 0.21013826645761
502 => 0.20958152014552
503 => 0.21198414445888
504 => 0.21344974390207
505 => 0.22427090674145
506 => 0.22346924004641
507 => 0.22548126613181
508 => 0.22525474287165
509 => 0.22736366675004
510 => 0.23081086599347
511 => 0.2238017460795
512 => 0.22501828693944
513 => 0.22472001921461
514 => 0.22797642802425
515 => 0.2279865941771
516 => 0.22603421442604
517 => 0.22709263116284
518 => 0.2265018519765
519 => 0.2275694698148
520 => 0.22345853329894
521 => 0.22846521022709
522 => 0.23130367342221
523 => 0.23134308548643
524 => 0.23268849451348
525 => 0.2340555080058
526 => 0.23667937136252
527 => 0.23398232988088
528 => 0.22913061480711
529 => 0.22948089296449
530 => 0.22663633419191
531 => 0.22668415173879
601 => 0.22642889792602
602 => 0.22719493383275
603 => 0.22362663510253
604 => 0.2244641076823
605 => 0.22329164116639
606 => 0.22501573822621
607 => 0.2231608947933
608 => 0.22471987538088
609 => 0.22539267972146
610 => 0.22787534222262
611 => 0.22279420352329
612 => 0.21243341775251
613 => 0.21461138053391
614 => 0.21139000250493
615 => 0.21168815330617
616 => 0.212290465375
617 => 0.21033817489565
618 => 0.21071061039537
619 => 0.21069730437853
620 => 0.21058264031391
621 => 0.2100747741592
622 => 0.2093382677566
623 => 0.21227228257982
624 => 0.21277082887132
625 => 0.21387903552049
626 => 0.21717630680469
627 => 0.21684683164839
628 => 0.21738421929811
629 => 0.21621110507607
630 => 0.21174257071035
701 => 0.21198523362518
702 => 0.20895922318889
703 => 0.21380165363024
704 => 0.21265490218477
705 => 0.21191558406781
706 => 0.21171385426987
707 => 0.21501929885182
708 => 0.21600833967723
709 => 0.21539203580689
710 => 0.21412797858838
711 => 0.2165553421329
712 => 0.21720480221517
713 => 0.21735019237642
714 => 0.22165101517653
715 => 0.21759056059477
716 => 0.21856795237004
717 => 0.22619328399197
718 => 0.21927816043472
719 => 0.22294125560865
720 => 0.22276196616172
721 => 0.22463588170032
722 => 0.22260825039205
723 => 0.22263338531221
724 => 0.22429729536046
725 => 0.22196063378546
726 => 0.22138204351894
727 => 0.22058272520969
728 => 0.22232800749546
729 => 0.22337422529346
730 => 0.23180597238297
731 => 0.23725326553718
801 => 0.23701678417514
802 => 0.2391777811496
803 => 0.23820423222014
804 => 0.23506038591768
805 => 0.24042654820477
806 => 0.23872846992737
807 => 0.23886845743739
808 => 0.23886324709528
809 => 0.23999232070117
810 => 0.23919226857332
811 => 0.23761528370566
812 => 0.23866215985561
813 => 0.24177100775591
814 => 0.25142096702951
815 => 0.25682121208398
816 => 0.25109586549649
817 => 0.2550451329071
818 => 0.25267697972859
819 => 0.2522466158496
820 => 0.25472704763203
821 => 0.25721182108194
822 => 0.25705355175516
823 => 0.25524973382505
824 => 0.25423080284652
825 => 0.26194648958288
826 => 0.26763127613694
827 => 0.26724361180524
828 => 0.26895463609015
829 => 0.27397825631061
830 => 0.27443755318551
831 => 0.2743796923361
901 => 0.27324127710898
902 => 0.27818768361555
903 => 0.28231406294707
904 => 0.27297776687588
905 => 0.2765329061987
906 => 0.27812892278015
907 => 0.2804723486385
908 => 0.28442610086531
909 => 0.28872092446461
910 => 0.28932825961189
911 => 0.28889732626123
912 => 0.28606477464644
913 => 0.29076422187669
914 => 0.29351704784858
915 => 0.29515629271753
916 => 0.29931314496087
917 => 0.27813877923521
918 => 0.26315051074032
919 => 0.26080987618163
920 => 0.26556964859764
921 => 0.26682476262527
922 => 0.26631882773452
923 => 0.24944816886977
924 => 0.26072105565417
925 => 0.27284973398293
926 => 0.27331564591314
927 => 0.27938751588322
928 => 0.28136476563984
929 => 0.28625341682395
930 => 0.28594763036135
1001 => 0.28713793912925
1002 => 0.28686430775678
1003 => 0.29591950464839
1004 => 0.30590873152958
1005 => 0.30556283636648
1006 => 0.30412676681514
1007 => 0.30625957498512
1008 => 0.31656952763712
1009 => 0.31562035241055
1010 => 0.31654239529261
1011 => 0.32869841051278
1012 => 0.34450295947201
1013 => 0.33716015972968
1014 => 0.35309192233683
1015 => 0.36312012239159
1016 => 0.38046285745105
1017 => 0.37829146160684
1018 => 0.38504286109862
1019 => 0.3744042098617
1020 => 0.34997571619559
1021 => 0.34610981356441
1022 => 0.35384944853228
1023 => 0.37287658587825
1024 => 0.35325021626542
1025 => 0.35722060527666
1026 => 0.35607713297432
1027 => 0.35601620219477
1028 => 0.3583416822267
1029 => 0.35496845215151
1030 => 0.34122530599268
1031 => 0.3475237088884
1101 => 0.34509159305622
1102 => 0.34779020689827
1103 => 0.36235351281086
1104 => 0.35591472812105
1105 => 0.34913199149474
1106 => 0.35763904843389
1107 => 0.36847145525935
1108 => 0.36779358270792
1109 => 0.3664782266294
1110 => 0.37389281997421
1111 => 0.38613955590784
1112 => 0.38944979941933
1113 => 0.39189335350456
1114 => 0.39223027832873
1115 => 0.39570081341528
1116 => 0.37703887156744
1117 => 0.40665585255262
1118 => 0.41176988701617
1119 => 0.41080866049203
1120 => 0.4164926945668
1121 => 0.41482030755198
1122 => 0.41239728115698
1123 => 0.42140768419421
1124 => 0.41107798421406
1125 => 0.3964162755653
1126 => 0.38837257222487
1127 => 0.39896516965058
1128 => 0.40543369926776
1129 => 0.40970898586896
1130 => 0.41100268501128
1201 => 0.37848754498935
1202 => 0.36096368788987
1203 => 0.37219627937921
1204 => 0.38590081622826
1205 => 0.37696274217329
1206 => 0.37731309775423
1207 => 0.36456975303638
1208 => 0.38702831947108
1209 => 0.38375629524782
1210 => 0.4007315627062
1211 => 0.39668027889223
1212 => 0.41052295052845
1213 => 0.40687771116819
1214 => 0.42200889595005
1215 => 0.42804513522001
1216 => 0.4381809204199
1217 => 0.44563684527301
1218 => 0.45001510695587
1219 => 0.44975225254687
1220 => 0.46710110657567
1221 => 0.45687109347768
1222 => 0.44401978599764
1223 => 0.44378734639069
1224 => 0.45044322063903
1225 => 0.46439210711364
1226 => 0.46800885042846
1227 => 0.47003011653625
1228 => 0.4669344771314
1229 => 0.45583053110517
1230 => 0.45103590350933
1231 => 0.45512106513472
]
'min_raw' => 0.16845085296406
'max_raw' => 0.47003011653625
'avg_raw' => 0.31924048475016
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.16845'
'max' => '$0.47003'
'avg' => '$0.31924'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.066687170357696
'max_diff' => 0.24284986387408
'year' => 2036
]
11 => [
'items' => [
101 => 0.45012526350881
102 => 0.4587494186895
103 => 0.47059222577273
104 => 0.46814673294157
105 => 0.47632164882734
106 => 0.48478182674288
107 => 0.49688026113246
108 => 0.50004323988562
109 => 0.50527152348729
110 => 0.51065314471511
111 => 0.51238157641472
112 => 0.51568168883015
113 => 0.51566429560874
114 => 0.52560940649581
115 => 0.53657917177869
116 => 0.54072000422233
117 => 0.55024162009964
118 => 0.53393618658696
119 => 0.54630404520965
120 => 0.55746016327489
121 => 0.54415937940474
122 => 0.56249141128456
123 => 0.56320320254118
124 => 0.57395040543858
125 => 0.56305605638712
126 => 0.55658702669636
127 => 0.57526287302221
128 => 0.58429952677564
129 => 0.58157761312238
130 => 0.56086371582361
131 => 0.54880733913487
201 => 0.51725347583908
202 => 0.5546303899384
203 => 0.57283559449665
204 => 0.56081656874186
205 => 0.5668782662276
206 => 0.5999489221978
207 => 0.61254008682485
208 => 0.60992121260131
209 => 0.61036375923475
210 => 0.6171577231217
211 => 0.6472859005007
212 => 0.62923239824952
213 => 0.64303362426872
214 => 0.65035374478529
215 => 0.65715308067582
216 => 0.64045606068085
217 => 0.61873348299533
218 => 0.61185303079055
219 => 0.55962151349965
220 => 0.55690263619467
221 => 0.55537644797298
222 => 0.5457540471188
223 => 0.53819347584483
224 => 0.53218102886175
225 => 0.51640257250951
226 => 0.52172733834695
227 => 0.49657977214125
228 => 0.51266829382463
301 => 0.47253217095112
302 => 0.50595872673151
303 => 0.48776617213924
304 => 0.49998198326076
305 => 0.49993936344656
306 => 0.47744618214539
307 => 0.46447258459159
308 => 0.47273986589284
309 => 0.48160304770539
310 => 0.48304106913515
311 => 0.49453241570783
312 => 0.4977394035306
313 => 0.48802208070767
314 => 0.47170043901562
315 => 0.47549158412367
316 => 0.46439575715698
317 => 0.44495074719268
318 => 0.45891649282634
319 => 0.46368501241617
320 => 0.4657910623236
321 => 0.44666912829819
322 => 0.44066060147002
323 => 0.43746171220313
324 => 0.4692320374559
325 => 0.4709724875907
326 => 0.46206809862621
327 => 0.50231678109453
328 => 0.49320726466196
329 => 0.50338482640285
330 => 0.47514757744202
331 => 0.47622627837882
401 => 0.46285831219877
402 => 0.47034348001178
403 => 0.46505320465977
404 => 0.46973875242235
405 => 0.47254725043201
406 => 0.48591302306035
407 => 0.50611134238519
408 => 0.48391662233892
409 => 0.47424606498051
410 => 0.48024562437638
411 => 0.4962232416603
412 => 0.5204301497246
413 => 0.50609917294111
414 => 0.51245901708185
415 => 0.51384836009684
416 => 0.50328122837828
417 => 0.52081977494386
418 => 0.53021882453126
419 => 0.53986030454866
420 => 0.54823173149963
421 => 0.53600928540902
422 => 0.54908905474479
423 => 0.53854906955026
424 => 0.52909361322712
425 => 0.52910795325132
426 => 0.52317640737764
427 => 0.5116832898245
428 => 0.50956378261165
429 => 0.52058972679718
430 => 0.52943148987318
501 => 0.53015973982931
502 => 0.53505499417437
503 => 0.53795195527065
504 => 0.56634611224181
505 => 0.5777664770644
506 => 0.59173108299301
507 => 0.59717108400427
508 => 0.61354353669987
509 => 0.60032145144258
510 => 0.59746077012635
511 => 0.5577465552753
512 => 0.56424975573233
513 => 0.57466200712954
514 => 0.55791824946577
515 => 0.56853830982168
516 => 0.57063493469957
517 => 0.55734930298743
518 => 0.56444573292314
519 => 0.54559971895873
520 => 0.5065221339894
521 => 0.52086327946686
522 => 0.53142318971563
523 => 0.51635289576308
524 => 0.54336581437211
525 => 0.52758542498054
526 => 0.52258379913569
527 => 0.50307067350657
528 => 0.51228011767443
529 => 0.524736022778
530 => 0.51703972157839
531 => 0.53301070217303
601 => 0.55562986999998
602 => 0.5717496359882
603 => 0.57298711146084
604 => 0.56262318187086
605 => 0.57923144518052
606 => 0.57935241824708
607 => 0.56061822938704
608 => 0.54914364302266
609 => 0.54653659285794
610 => 0.55304951531171
611 => 0.56095740552239
612 => 0.57342594433142
613 => 0.58096042119835
614 => 0.60060634088955
615 => 0.60592196346533
616 => 0.61176222108005
617 => 0.61956660632205
618 => 0.62893777180839
619 => 0.60843419522504
620 => 0.60924884054614
621 => 0.59015619392307
622 => 0.56975296284383
623 => 0.58523647193431
624 => 0.60547910038523
625 => 0.60083541905247
626 => 0.60031291004073
627 => 0.60119162526656
628 => 0.59769044119012
629 => 0.5818547153723
630 => 0.57390211300348
701 => 0.5841629989845
702 => 0.58961620322392
703 => 0.59807364742987
704 => 0.5970310889165
705 => 0.61881655692783
706 => 0.62728173103868
707 => 0.6251159772559
708 => 0.62551452807371
709 => 0.64084032145198
710 => 0.65788575567842
711 => 0.67385105417464
712 => 0.69009164153051
713 => 0.67051297959209
714 => 0.66057214250375
715 => 0.67082854890295
716 => 0.66538635529816
717 => 0.69665881401073
718 => 0.6988240512011
719 => 0.73009424855896
720 => 0.7597733894374
721 => 0.74113245280869
722 => 0.75871001644334
723 => 0.777721584634
724 => 0.81439798418956
725 => 0.80204666311054
726 => 0.79258574473389
727 => 0.78364522258278
728 => 0.80224902991132
729 => 0.82618253083641
730 => 0.83133757770345
731 => 0.83969072300752
801 => 0.8309084120943
802 => 0.84148573824946
803 => 0.87882834748982
804 => 0.86873804484075
805 => 0.85440819298197
806 => 0.88388659655491
807 => 0.89455471621357
808 => 0.96942916691566
809 => 1.0639612538363
810 => 1.02482434912
811 => 1.0005308094226
812 => 1.006240367502
813 => 1.0407602855323
814 => 1.0518469875962
815 => 1.0217095095711
816 => 1.0323545763028
817 => 1.0910099405941
818 => 1.122476661647
819 => 1.0797406279127
820 => 0.96183360577542
821 => 0.85311794660839
822 => 0.88195423494942
823 => 0.87868509474576
824 => 0.94170296627107
825 => 0.86849739445965
826 => 0.8697299885428
827 => 0.93405100291417
828 => 0.91689125902124
829 => 0.88909467156864
830 => 0.85332089245834
831 => 0.78718975309889
901 => 0.72861555876497
902 => 0.84349304268511
903 => 0.83853931668732
904 => 0.83136558734147
905 => 0.84732994572208
906 => 0.92484833845615
907 => 0.92306128860108
908 => 0.91169298918396
909 => 0.92031574409625
910 => 0.88758306094211
911 => 0.89601901870027
912 => 0.85310072549253
913 => 0.87250158644868
914 => 0.88903503257605
915 => 0.89235436666797
916 => 0.89983299586647
917 => 0.83592892818554
918 => 0.86461997844942
919 => 0.8814732824916
920 => 0.80532944170061
921 => 0.87996816358027
922 => 0.83481650054094
923 => 0.81949134795016
924 => 0.84012464697831
925 => 0.8320838302805
926 => 0.82517080825632
927 => 0.82131322318603
928 => 0.83646404077819
929 => 0.83575723702838
930 => 0.81096755880063
1001 => 0.77863043410908
1002 => 0.7894838345855
1003 => 0.78554069244125
1004 => 0.77125023663501
1005 => 0.7808802784122
1006 => 0.73847444807807
1007 => 0.66551742105145
1008 => 0.71371506783941
1009 => 0.71185951086703
1010 => 0.71092385489874
1011 => 0.74714305437477
1012 => 0.74366141406426
1013 => 0.73734220280835
1014 => 0.77113417936471
1015 => 0.75879965335541
1016 => 0.79681175613624
1017 => 0.82184898549635
1018 => 0.8154987342611
1019 => 0.83904636948972
1020 => 0.78973387501169
1021 => 0.80611350760341
1022 => 0.80948932717937
1023 => 0.7707171916194
1024 => 0.74423105347723
1025 => 0.74246473002723
1026 => 0.69654141650338
1027 => 0.72107327990778
1028 => 0.74266030450618
1029 => 0.73232179494433
1030 => 0.72904893167123
1031 => 0.74576928033603
1101 => 0.74706859462739
1102 => 0.7174440910893
1103 => 0.72360396346088
1104 => 0.74929165524398
1105 => 0.72295669953578
1106 => 0.67179218238533
1107 => 0.65910267472722
1108 => 0.65740966049161
1109 => 0.62299470930528
1110 => 0.65995064830618
1111 => 0.6438183905747
1112 => 0.69477999945433
1113 => 0.66567100177487
1114 => 0.66441617106433
1115 => 0.6625193104017
1116 => 0.6328969402519
1117 => 0.63938235671487
1118 => 0.66094086879461
1119 => 0.66863318877869
1120 => 0.66783081678303
1121 => 0.66083522032422
1122 => 0.66403776855981
1123 => 0.65372124485119
1124 => 0.65007826560981
1125 => 0.63858002104361
1126 => 0.62168077800243
1127 => 0.62403072139639
1128 => 0.59054889900435
1129 => 0.57230622515035
1130 => 0.56725689346214
1201 => 0.56050471610257
1202 => 0.56801956986176
1203 => 0.59045404920828
1204 => 0.56339330737608
1205 => 0.5169995635951
1206 => 0.51978790664743
1207 => 0.52605248561953
1208 => 0.51437848414936
1209 => 0.50333002148251
1210 => 0.51293576338122
1211 => 0.49327812254331
1212 => 0.52842801759931
1213 => 0.52747731144448
1214 => 0.54057901866643
1215 => 0.54877178506641
1216 => 0.52989011095407
1217 => 0.5251414209763
1218 => 0.52784649060357
1219 => 0.48313771528188
1220 => 0.53692535788963
1221 => 0.53739051565648
1222 => 0.53340755245122
1223 => 0.56204781163269
1224 => 0.62248769162645
1225 => 0.59974777758426
1226 => 0.59094219554958
1227 => 0.57420277766482
1228 => 0.59650705810798
1229 => 0.59479443737092
1230 => 0.58704931690582
1231 => 0.58236504388228
]
'min_raw' => 0.43746171220313
'max_raw' => 1.122476661647
'avg_raw' => 0.77996918692507
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.437461'
'max' => '$1.12'
'avg' => '$0.779969'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.26901085923907
'max_diff' => 0.65244654511075
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.013731423269754
]
1 => [
'year' => 2028
'avg' => 0.023567108591556
]
2 => [
'year' => 2029
'avg' => 0.064381093114073
]
3 => [
'year' => 2030
'avg' => 0.049669917458307
]
4 => [
'year' => 2031
'avg' => 0.048782014469162
]
5 => [
'year' => 2032
'avg' => 0.085530223629398
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.013731423269754
'min' => '$0.013731'
'max_raw' => 0.085530223629398
'max' => '$0.08553'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.085530223629398
]
1 => [
'year' => 2033
'avg' => 0.21999253014399
]
2 => [
'year' => 2034
'avg' => 0.13944183795155
]
3 => [
'year' => 2035
'avg' => 0.16447196763427
]
4 => [
'year' => 2036
'avg' => 0.31924048475016
]
5 => [
'year' => 2037
'avg' => 0.77996918692507
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.085530223629398
'min' => '$0.08553'
'max_raw' => 0.77996918692507
'max' => '$0.779969'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.77996918692507
]
]
]
]
'prediction_2025_max_price' => '$0.023478'
'last_price' => 0.02276511
'sma_50day_nextmonth' => '$0.020537'
'sma_200day_nextmonth' => '$0.02487'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.021257'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.020273'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.020148'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.019964'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.019955'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.02288'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.024518'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.021626'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.020996'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.020397'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.020168'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.02074'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.022172'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.024532'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.024428'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.02411'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.050757'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.071771'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.021222'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.020854'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.02132'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.0229044'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.029151'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.043114'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.06858'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '56.81'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 108.26
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.020222'
'vwma_10_action' => 'BUY'
'hma_9' => '0.021186'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 185.33
'cci_20_action' => 'SELL'
'adx_14' => 5.9
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000013'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 58.65
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003250'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 12
'buy_signals' => 23
'sell_pct' => 34.29
'buy_pct' => 65.71
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767698162
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Cat Token para 2026
La previsión del precio de Cat Token para 2026 sugiere que el precio medio podría oscilar entre $0.007865 en el extremo inferior y $0.023478 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Cat Token podría potencialmente ganar 3.13% para 2026 si CAT alcanza el objetivo de precio previsto.
Predicción de precio de Cat Token 2027-2032
La predicción del precio de CAT para 2027-2032 está actualmente dentro de un rango de precios de $0.013731 en el extremo inferior y $0.08553 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Cat Token alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Cat Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.007571 | $0.013731 | $0.019891 |
| 2028 | $0.013664 | $0.023567 | $0.033469 |
| 2029 | $0.030017 | $0.064381 | $0.098744 |
| 2030 | $0.025528 | $0.049669 | $0.073811 |
| 2031 | $0.030182 | $0.048782 | $0.067381 |
| 2032 | $0.046071 | $0.08553 | $0.124988 |
Predicción de precio de Cat Token 2032-2037
La predicción de precio de Cat Token para 2032-2037 se estima actualmente entre $0.08553 en el extremo inferior y $0.779969 en el extremo superior. Comparado con el precio actual, Cat Token podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Cat Token | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.046071 | $0.08553 | $0.124988 |
| 2033 | $0.107061 | $0.219992 | $0.332924 |
| 2034 | $0.086071 | $0.139441 | $0.192811 |
| 2035 | $0.101763 | $0.164471 | $0.22718 |
| 2036 | $0.16845 | $0.31924 | $0.47003 |
| 2037 | $0.437461 | $0.779969 | $1.12 |
Cat Token Histograma de precios potenciales
Pronóstico de precio de Cat Token basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Cat Token es Alcista, con 23 indicadores técnicos mostrando señales alcistas y 12 indicando señales bajistas. La predicción de precio de CAT se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Cat Token
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Cat Token aumentar durante el próximo mes, alcanzando $0.02487 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Cat Token alcance $0.020537 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 56.81, lo que sugiere que el mercado de CAT está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de CAT para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.021257 | BUY |
| SMA 5 | $0.020273 | BUY |
| SMA 10 | $0.020148 | BUY |
| SMA 21 | $0.019964 | BUY |
| SMA 50 | $0.019955 | BUY |
| SMA 100 | $0.02288 | SELL |
| SMA 200 | $0.024518 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.021626 | BUY |
| EMA 5 | $0.020996 | BUY |
| EMA 10 | $0.020397 | BUY |
| EMA 21 | $0.020168 | BUY |
| EMA 50 | $0.02074 | BUY |
| EMA 100 | $0.022172 | BUY |
| EMA 200 | $0.024532 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.024428 | SELL |
| SMA 50 | $0.02411 | SELL |
| SMA 100 | $0.050757 | SELL |
| SMA 200 | $0.071771 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0229044 | SELL |
| EMA 50 | $0.029151 | SELL |
| EMA 100 | $0.043114 | SELL |
| EMA 200 | $0.06858 | SELL |
Osciladores de Cat Token
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 56.81 | NEUTRAL |
| Stoch RSI (14) | 108.26 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 185.33 | SELL |
| Índice Direccional Medio (14) | 5.9 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000013 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 58.65 | NEUTRAL |
| VWMA (10) | 0.020222 | BUY |
| Promedio Móvil de Hull (9) | 0.021186 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.003250 | NEUTRAL |
Predicción de precios de Cat Token basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Cat Token
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Cat Token por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.031988 | $0.044949 | $0.063161 | $0.088752 | $0.124712 | $0.175241 |
| Amazon.com acción | $0.04750075 | $0.099113 | $0.2068054 | $0.431511 | $0.900375 | $1.87 |
| Apple acción | $0.03229 | $0.0458017 | $0.064966 | $0.092149 | $0.1307072 | $0.185398 |
| Netflix acción | $0.035919 | $0.056675 | $0.089425 | $0.141099 | $0.222632 | $0.351279 |
| Google acción | $0.02948 | $0.038177 | $0.049439 | $0.064024 | $0.08291 | $0.107369 |
| Tesla acción | $0.0516067 | $0.116988 | $0.2652044 | $0.601198 | $1.36 | $3.08 |
| Kodak acción | $0.017071 | $0.0128017 | $0.009599 | $0.007198 | $0.005398 | $0.004048 |
| Nokia acción | $0.01508 | $0.00999 | $0.006618 | $0.004384 | $0.0029044 | $0.001924 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Cat Token
Podría preguntarse cosas como: "¿Debo invertir en Cat Token ahora?", "¿Debería comprar CAT hoy?", "¿Será Cat Token una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Cat Token/Mooncat CAT regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Cat Token, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Cat Token a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Cat Token es de $0.02276 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Cat Token basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Cat Token ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.023356 | $0.023963 | $0.024586 | $0.025225 |
| Si Cat Token ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.023948 | $0.025193 | $0.0265033 | $0.027881 |
| Si Cat Token ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.025723 | $0.029067 | $0.032844 | $0.037113 |
| Si Cat Token ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.028682 | $0.036137 | $0.045531 | $0.057366 |
| Si Cat Token ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.034599 | $0.052587 | $0.079925 | $0.121475 |
| Si Cat Token ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.052352 | $0.120391 | $0.27686 | $0.636685 |
| Si Cat Token ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.081938 | $0.294924 | $1.06 | $3.82 |
Cuadro de preguntas
¿Es CAT una buena inversión?
La decisión de adquirir Cat Token depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Cat Token ha experimentado un aumento de 15.8535% durante las últimas 24 horas, y Cat Token ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Cat Token dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Cat Token subir?
Parece que el valor medio de Cat Token podría potencialmente aumentar hasta $0.023478 para el final de este año. Mirando las perspectivas de Cat Token en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.073811. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Cat Token la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Cat Token, el precio de Cat Token aumentará en un 0.86% durante la próxima semana y alcanzará $0.022959 para el 13 de enero de 2026.
¿Cuál será el precio de Cat Token el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Cat Token, el precio de Cat Token disminuirá en un -11.62% durante el próximo mes y alcanzará $0.02012 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Cat Token este año en 2026?
Según nuestra predicción más reciente sobre el valor de Cat Token en 2026, se anticipa que CAT fluctúe dentro del rango de $0.007865 y $0.023478. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Cat Token no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Cat Token en 5 años?
El futuro de Cat Token parece estar en una tendencia alcista, con un precio máximo de $0.073811 proyectada después de un período de cinco años. Basado en el pronóstico de Cat Token para 2030, el valor de Cat Token podría potencialmente alcanzar su punto más alto de aproximadamente $0.073811, mientras que su punto más bajo se anticipa que esté alrededor de $0.025528.
¿Cuánto será Cat Token en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Cat Token, se espera que el valor de CAT en 2026 crezca en un 3.13% hasta $0.023478 si ocurre lo mejor. El precio estará entre $0.023478 y $0.007865 durante 2026.
¿Cuánto será Cat Token en 2027?
Según nuestra última simulación experimental para la predicción de precios de Cat Token, el valor de CAT podría disminuir en un -12.62% hasta $0.019891 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.019891 y $0.007571 a lo largo del año.
¿Cuánto será Cat Token en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Cat Token sugiere que el valor de CAT en 2028 podría aumentar en un 47.02% , alcanzando $0.033469 en el mejor escenario. Se espera que el precio oscile entre $0.033469 y $0.013664 durante el año.
¿Cuánto será Cat Token en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Cat Token podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.098744 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.098744 y $0.030017.
¿Cuánto será Cat Token en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Cat Token, se espera que el valor de CAT en 2030 aumente en un 224.23% , alcanzando $0.073811 en el mejor escenario. Se pronostica que el precio oscile entre $0.073811 y $0.025528 durante el transcurso de 2030.
¿Cuánto será Cat Token en 2031?
Nuestra simulación experimental indica que el precio de Cat Token podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.067381 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.067381 y $0.030182 durante el año.
¿Cuánto será Cat Token en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Cat Token, CAT podría experimentar un 449.04% aumento en valor, alcanzando $0.124988 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.124988 y $0.046071 a lo largo del año.
¿Cuánto será Cat Token en 2033?
Según nuestra predicción experimental de precios de Cat Token, se anticipa que el valor de CAT aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.332924. A lo largo del año, el precio de CAT podría oscilar entre $0.332924 y $0.107061.
¿Cuánto será Cat Token en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Cat Token sugieren que CAT podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.192811 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.192811 y $0.086071.
¿Cuánto será Cat Token en 2035?
Basado en nuestra predicción experimental para el precio de Cat Token, CAT podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.22718 en 2035. El rango de precios esperado para el año está entre $0.22718 y $0.101763.
¿Cuánto será Cat Token en 2036?
Nuestra reciente simulación de predicción de precios de Cat Token sugiere que el valor de CAT podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.47003 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.47003 y $0.16845.
¿Cuánto será Cat Token en 2037?
Según la simulación experimental, el valor de Cat Token podría aumentar en un 4830.69% en 2037, con un máximo de $1.12 bajo condiciones favorables. Se espera que el precio caiga entre $1.12 y $0.437461 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Superpower Squad
Predicción de precios de Plant vs Undead Token
Predicción de precios de Concentrator
Predicción de precios de Scala
Predicción de precios de sTSLA
Predicción de precios de Port Finance
Predicción de precios de Rentible
Predicción de precios de Illumicati
Predicción de precios de Wagie Bot
Predicción de precios de Mad Meerkat Optimizer
Predicción de precios de Curio
Predicción de precios de Lamden
Predicción de precios de BUILD
Predicción de precios de Football World Community
Predicción de precios de Onigiri Kitty
Predicción de precios de FreeRossDAO
Predicción de precios de Decentral Games (Old)
Predicción de precios de TOSHE
Predicción de precios de EurocoinToken
Predicción de precios de Patientory
Predicción de precios de Mirrored Ether
Predicción de precios de Croatian Football Federation TokenPredicción de precios de Shih Tzu
Predicción de precios de Wanaka Farm
Predicción de precios de Brokoli
¿Cómo leer y predecir los movimientos de precio de Cat Token?
Los traders de Cat Token utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Cat Token
Las medias móviles son herramientas populares para la predicción de precios de Cat Token. Una media móvil simple (SMA) calcula el precio de cierre promedio de CAT durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de CAT por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de CAT.
¿Cómo leer gráficos de Cat Token y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Cat Token en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de CAT dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Cat Token?
La acción del precio de Cat Token está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de CAT. La capitalización de mercado de Cat Token puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de CAT, grandes poseedores de Cat Token, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Cat Token.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


