Predicción del precio de HANePlatform - Pronóstico de HANEP
Predicción de precio de HANePlatform hasta $0.044438 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.014887 | $0.044438 |
| 2027 | $0.014331 | $0.037648 |
| 2028 | $0.025864 | $0.063349 |
| 2029 | $0.056815 | $0.186898 |
| 2030 | $0.048319 | $0.1397055 |
| 2031 | $0.057128 | $0.127535 |
| 2032 | $0.0872022 | $0.236571 |
| 2033 | $0.202639 | $0.63014 |
| 2034 | $0.162912 | $0.364943 |
| 2035 | $0.192612 | $0.429994 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en HANePlatform hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.45, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de HANePlatform para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'HANePlatform'
'name_with_ticker' => 'HANePlatform <small>HANEP</small>'
'name_lang' => 'HANePlatform'
'name_lang_with_ticker' => 'HANePlatform <small>HANEP</small>'
'name_with_lang' => 'HANePlatform'
'name_with_lang_with_ticker' => 'HANePlatform <small>HANEP</small>'
'image' => '/uploads/coins/haneplatform.png?1717334108'
'price_for_sd' => 0.04308
'ticker' => 'HANEP'
'marketcap' => '$0'
'low24h' => '$0.04234'
'high24h' => '$0.04356'
'volume24h' => '$12.01K'
'current_supply' => '0'
'max_supply' => '225M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.04308'
'change_24h_pct' => '1.1881%'
'ath_price' => '$139.57'
'ath_days' => 502
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '22 ago. 2024'
'ath_pct' => '-99.97%'
'fdv' => '$9.69M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$2.12'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.043457'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0380824'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.014887'
'current_year_max_price_prediction' => '$0.044438'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.048319'
'grand_prediction_max_price' => '$0.1397055'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.043905034978933
107 => 0.044068960442017
108 => 0.044438292880586
109 => 0.041282387630488
110 => 0.042699296435272
111 => 0.043531597611681
112 => 0.039771230617288
113 => 0.043457267246704
114 => 0.04122745034134
115 => 0.040470616992933
116 => 0.041489593391351
117 => 0.0410924972979
118 => 0.040751097395017
119 => 0.040560590383213
120 => 0.04130881418989
121 => 0.041273908654987
122 => 0.040049669283281
123 => 0.038452698929271
124 => 0.038988694598842
125 => 0.0387939623471
126 => 0.03808822754583
127 => 0.038563807591141
128 => 0.036469593757142
129 => 0.032866607703509
130 => 0.035246850652986
131 => 0.035155213888638
201 => 0.035109006476657
202 => 0.036897693268106
203 => 0.036725752305133
204 => 0.036413677773688
205 => 0.038082496052328
206 => 0.037473354931851
207 => 0.039350584333463
208 => 0.04058704902895
209 => 0.040273441586732
210 => 0.04143634260919
211 => 0.039001042856509
212 => 0.039809951747082
213 => 0.03997666674833
214 => 0.038061903093813
215 => 0.036753883973105
216 => 0.036666654010264
217 => 0.034398729111094
218 => 0.035610236286181
219 => 0.036676312464683
220 => 0.036165744706034
221 => 0.036004114206423
222 => 0.036829849375555
223 => 0.03689401607014
224 => 0.035431008633521
225 => 0.035735214207014
226 => 0.037003802018449
227 => 0.035703249049027
228 => 0.03317648707356
301 => 0.032549815168427
302 => 0.032466205584428
303 => 0.030766621675731
304 => 0.032591692381677
305 => 0.031795000109677
306 => 0.034311741451084
307 => 0.032874192294427
308 => 0.032812222423477
309 => 0.032718545874532
310 => 0.031255643795389
311 => 0.031575926378444
312 => 0.032640594464934
313 => 0.033020480032538
314 => 0.032980854855526
315 => 0.032635377010482
316 => 0.03279353499881
317 => 0.03228405301251
318 => 0.032104144319196
319 => 0.031536302995315
320 => 0.030701733119378
321 => 0.030817785179341
322 => 0.029164283878024
323 => 0.02826336861111
324 => 0.028014007139101
325 => 0.027680550557197
326 => 0.028051671947321
327 => 0.029159599716589
328 => 0.027823203766863
329 => 0.025532046648335
330 => 0.025669749095101
331 => 0.025979125608759
401 => 0.025402604522287
402 => 0.024856975697689
403 => 0.025331355692411
404 => 0.0243605622175
405 => 0.026096441362181
406 => 0.026049490696063
407 => 0.026696519095154
408 => 0.027101119231464
409 => 0.026168646908118
410 => 0.025934132640469
411 => 0.026067722625401
412 => 0.023859777749848
413 => 0.026516082893734
414 => 0.026539054730924
415 => 0.026342355914298
416 => 0.027756756399198
417 => 0.03074158258491
418 => 0.02961857090949
419 => 0.02918370684556
420 => 0.028357029942145
421 => 0.029458527832728
422 => 0.029373949980775
423 => 0.028991456859046
424 => 0.028760123825573
425 => 0.029186362032805
426 => 0.028707308194728
427 => 0.02862125696189
428 => 0.028099880115558
429 => 0.027913772302552
430 => 0.027775985486968
501 => 0.027624295741664
502 => 0.027958885521077
503 => 0.027200661061975
504 => 0.026286316693959
505 => 0.026210298853102
506 => 0.026420190795266
507 => 0.026327329235476
508 => 0.02620985426768
509 => 0.025985562561754
510 => 0.02591902000384
511 => 0.026135251035201
512 => 0.025891138807847
513 => 0.02625133969679
514 => 0.026153384985821
515 => 0.025606217933054
516 => 0.024924245198116
517 => 0.024918174210289
518 => 0.024771244303206
519 => 0.024584106975477
520 => 0.024532049652025
521 => 0.025291404732409
522 => 0.02686324702322
523 => 0.026554656770536
524 => 0.026777644853702
525 => 0.027874525523459
526 => 0.028223190904022
527 => 0.02797571647549
528 => 0.027636958214158
529 => 0.02765186185843
530 => 0.028809501386501
531 => 0.028881701943877
601 => 0.029064129459585
602 => 0.029298600371278
603 => 0.028015647885633
604 => 0.02759143491173
605 => 0.027390419270255
606 => 0.026771368897355
607 => 0.027438961651159
608 => 0.02704998394269
609 => 0.027102470324933
610 => 0.027068288499642
611 => 0.027086954087616
612 => 0.026095956148583
613 => 0.026457023712248
614 => 0.025856678857449
615 => 0.025052884488746
616 => 0.025050189888175
617 => 0.025246917421181
618 => 0.0251298961866
619 => 0.024814995053234
620 => 0.024859725272937
621 => 0.024467841480988
622 => 0.024907307060565
623 => 0.024919909360904
624 => 0.024750691174915
625 => 0.025427748534816
626 => 0.025705139487594
627 => 0.025593756452571
628 => 0.025697324556932
629 => 0.026567480088736
630 => 0.026709353407968
701 => 0.026772364164745
702 => 0.026687938097989
703 => 0.025713229402687
704 => 0.025756461878105
705 => 0.025439250658685
706 => 0.02517124060517
707 => 0.025181959601783
708 => 0.025319751608158
709 => 0.025921497381391
710 => 0.02718783588631
711 => 0.02723589250689
712 => 0.027294138532944
713 => 0.027057222672876
714 => 0.0269857665825
715 => 0.027080035610088
716 => 0.02755560577162
717 => 0.028778901343119
718 => 0.028346506986987
719 => 0.027994963644833
720 => 0.028303361931307
721 => 0.02825588643241
722 => 0.027855145444066
723 => 0.027843897979232
724 => 0.027074747897956
725 => 0.026790410625608
726 => 0.026552797118558
727 => 0.026293329371917
728 => 0.026139508194271
729 => 0.02637584743361
730 => 0.026429901013931
731 => 0.025913141136612
801 => 0.025842708674827
802 => 0.026264705945682
803 => 0.026079000680423
804 => 0.026270003151011
805 => 0.026314317362576
806 => 0.026307181753871
807 => 0.026113284128827
808 => 0.02623686869292
809 => 0.025944554356508
810 => 0.025626706419853
811 => 0.025423939238894
812 => 0.025246997980343
813 => 0.025345175274473
814 => 0.024995191147365
815 => 0.024883224181314
816 => 0.026195001023346
817 => 0.027164024680532
818 => 0.027149934692781
819 => 0.027064165515998
820 => 0.02693672991694
821 => 0.027546283063801
822 => 0.027333926935835
823 => 0.027488433761878
824 => 0.027527762233738
825 => 0.027646797673078
826 => 0.0276893426112
827 => 0.027560742258835
828 => 0.027129143769087
829 => 0.026053641367789
830 => 0.025552992096721
831 => 0.025387769498296
901 => 0.025393775025946
902 => 0.025228115763493
903 => 0.025276909840613
904 => 0.025211147174743
905 => 0.025086608595284
906 => 0.025337485368132
907 => 0.025366396579124
908 => 0.025307838942587
909 => 0.025321631385809
910 => 0.024836799165577
911 => 0.024873659906281
912 => 0.024668414618005
913 => 0.024629933600722
914 => 0.024111091384711
915 => 0.023191887191665
916 => 0.023701215543922
917 => 0.0230860185168
918 => 0.022853034080873
919 => 0.023955946164039
920 => 0.023845244380909
921 => 0.023655771049097
922 => 0.023375500501646
923 => 0.0232715454293
924 => 0.022639947317901
925 => 0.022602629132035
926 => 0.022915666210628
927 => 0.022771210369805
928 => 0.022568339659586
929 => 0.021833562511844
930 => 0.021007429721429
1001 => 0.021032365477486
1002 => 0.02129514294737
1003 => 0.022059203881428
1004 => 0.021760672056103
1005 => 0.021544083791572
1006 => 0.021503523320244
1007 => 0.022011222538005
1008 => 0.02272972329741
1009 => 0.023066827778174
1010 => 0.022732767475752
1011 => 0.022349016987413
1012 => 0.02237237410151
1013 => 0.022527758517423
1014 => 0.022544087222518
1015 => 0.022294305104797
1016 => 0.022364617307829
1017 => 0.022257806641942
1018 => 0.021602309782549
1019 => 0.021590453922966
1020 => 0.021429584422356
1021 => 0.021424713357811
1022 => 0.021151034206497
1023 => 0.021112744601373
1024 => 0.020569338035301
1025 => 0.020927009882677
1026 => 0.020687102386072
1027 => 0.020325505200232
1028 => 0.020263165709099
1029 => 0.020261291708718
1030 => 0.020632571166925
1031 => 0.020922671266038
1101 => 0.020691275679689
1102 => 0.020638591390092
1103 => 0.021201121769644
1104 => 0.021129534651268
1105 => 0.021067540668441
1106 => 0.02266538943499
1107 => 0.021400567454573
1108 => 0.020849032877596
1109 => 0.020166404105012
1110 => 0.020388671475478
1111 => 0.020435506476222
1112 => 0.018793907331242
1113 => 0.018127910762571
1114 => 0.017899365837755
1115 => 0.017767835002372
1116 => 0.017827775255716
1117 => 0.017228300230307
1118 => 0.017631157361784
1119 => 0.017112062662142
1120 => 0.017025034746466
1121 => 0.01795324037292
1122 => 0.018082394763343
1123 => 0.017531382008677
1124 => 0.017885221398034
1125 => 0.017756914316718
1126 => 0.017120961050875
1127 => 0.017096672313875
1128 => 0.016777573319914
1129 => 0.016278245184104
1130 => 0.016050038827277
1201 => 0.015931186975263
1202 => 0.01598022756578
1203 => 0.015955431142548
1204 => 0.015793617708009
1205 => 0.015964706099203
1206 => 0.015527645958306
1207 => 0.015353605088567
1208 => 0.015274994865424
1209 => 0.014887078834134
1210 => 0.015504425746958
1211 => 0.015626050865916
1212 => 0.01574791562393
1213 => 0.01680866514184
1214 => 0.016755673093572
1215 => 0.017234695401738
1216 => 0.017216081475708
1217 => 0.017079456553772
1218 => 0.016503058481834
1219 => 0.016732800480001
1220 => 0.016025690319476
1221 => 0.016555505330558
1222 => 0.016313719885104
1223 => 0.016473757428236
1224 => 0.016185995495682
1225 => 0.016345254830556
1226 => 0.015654892693616
1227 => 0.015010242243798
1228 => 0.015269668403324
1229 => 0.01555169430771
1230 => 0.016163198327281
1231 => 0.015798991578023
]
'min_raw' => 0.014887078834134
'max_raw' => 0.044438292880586
'avg_raw' => 0.02966268585736
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.014887'
'max' => '$0.044438'
'avg' => '$0.029662'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.028201451165866
'max_diff' => 0.001349762880586
'year' => 2026
]
1 => [
'items' => [
101 => 0.015929974097238
102 => 0.015491204584076
103 => 0.014585897750109
104 => 0.014591021688473
105 => 0.014451759955248
106 => 0.014331417485197
107 => 0.015840825104366
108 => 0.015653106406719
109 => 0.015354001230034
110 => 0.015754365394994
111 => 0.015860228034843
112 => 0.015863241795374
113 => 0.016155337155234
114 => 0.016311228501152
115 => 0.016338705026542
116 => 0.016798323386419
117 => 0.016952381398137
118 => 0.017586924545299
119 => 0.016298002209603
120 => 0.016271457702298
121 => 0.015759999339839
122 => 0.015435624360531
123 => 0.015782209572187
124 => 0.016089236756116
125 => 0.015769539530279
126 => 0.015811285238796
127 => 0.015382117833333
128 => 0.015535524986583
129 => 0.015667659893137
130 => 0.015594702764268
131 => 0.015485482411188
201 => 0.016064064028325
202 => 0.016031418186007
203 => 0.016570206689419
204 => 0.016990230856964
205 => 0.017742989253507
206 => 0.016957446624532
207 => 0.016928818328883
208 => 0.017208664510975
209 => 0.016952338555145
210 => 0.017114327711158
211 => 0.01771689029613
212 => 0.017729621494045
213 => 0.017516357525751
214 => 0.017503380393899
215 => 0.017544340071862
216 => 0.017784242185044
217 => 0.017700413015251
218 => 0.01779742225283
219 => 0.017918733789882
220 => 0.018420529742153
221 => 0.018541511047423
222 => 0.018247589197231
223 => 0.0182741270494
224 => 0.018164192209093
225 => 0.018057996530836
226 => 0.018296708906925
227 => 0.01873296046613
228 => 0.018730246567821
301 => 0.018831448450038
302 => 0.018894496384258
303 => 0.018623848496679
304 => 0.018447666673864
305 => 0.018515225995472
306 => 0.018623254821974
307 => 0.018480193703013
308 => 0.017597154204434
309 => 0.017865011979521
310 => 0.017820427348171
311 => 0.017756933411451
312 => 0.018026266475584
313 => 0.018000288644506
314 => 0.017222151747454
315 => 0.017271965546945
316 => 0.01722518108959
317 => 0.017376351242503
318 => 0.01694417487079
319 => 0.017077109411976
320 => 0.017160484710025
321 => 0.017209593401094
322 => 0.017387007667383
323 => 0.017366190150942
324 => 0.017385713621332
325 => 0.017648772142608
326 => 0.018979231872438
327 => 0.019051645860039
328 => 0.018695052900921
329 => 0.018837504754604
330 => 0.018564028346329
331 => 0.018747614891336
401 => 0.018873220142838
402 => 0.018305634163804
403 => 0.018272025405728
404 => 0.017997420263036
405 => 0.018144977512288
406 => 0.017910203318986
407 => 0.01796780869397
408 => 0.017806739043569
409 => 0.018096632345643
410 => 0.018420778102227
411 => 0.018502670121244
412 => 0.018287247475941
413 => 0.018131267283698
414 => 0.017857417449188
415 => 0.018312835827119
416 => 0.01844601403945
417 => 0.018312136298666
418 => 0.01828111390084
419 => 0.018222326513015
420 => 0.018293585923072
421 => 0.018445288722304
422 => 0.018373748483697
423 => 0.018421002071674
424 => 0.018240920121995
425 => 0.018623938092391
426 => 0.019232262807674
427 => 0.019234218671105
428 => 0.01916267804687
429 => 0.019133405164797
430 => 0.019206810186711
501 => 0.019246629399867
502 => 0.019484007780557
503 => 0.019738724240609
504 => 0.020927374818173
505 => 0.020593606492455
506 => 0.02164824799801
507 => 0.022482332500844
508 => 0.022732437973149
509 => 0.022502352707
510 => 0.021715243440467
511 => 0.021676624104748
512 => 0.022852897657909
513 => 0.022520546502399
514 => 0.022481014389984
515 => 0.022060459504443
516 => 0.022309059528533
517 => 0.022254687056523
518 => 0.022168857449461
519 => 0.022643168977798
520 => 0.023531037816761
521 => 0.023392655131828
522 => 0.023289358876912
523 => 0.022836744756963
524 => 0.023109319552196
525 => 0.02301226088844
526 => 0.023429286502887
527 => 0.023182249767137
528 => 0.022518028615519
529 => 0.022623808023216
530 => 0.022607819678541
531 => 0.022936858679001
601 => 0.022838089338313
602 => 0.022588533379581
603 => 0.023528003177593
604 => 0.023466999234516
605 => 0.023553488878357
606 => 0.023591564294357
607 => 0.024163403005092
608 => 0.024397667028083
609 => 0.02445084906267
610 => 0.024673381765882
611 => 0.024445312246292
612 => 0.025357752935463
613 => 0.025964472751371
614 => 0.026669209039065
615 => 0.027699018170642
616 => 0.028086235930382
617 => 0.028016288507936
618 => 0.028797078038449
619 => 0.030200139468804
620 => 0.028299887338073
621 => 0.030300857445905
622 => 0.029667373412076
623 => 0.028165394163759
624 => 0.028068684407339
625 => 0.029085842192638
626 => 0.03134180026262
627 => 0.030776708352954
628 => 0.031342724550546
629 => 0.030682436590335
630 => 0.030649647727766
701 => 0.031310655838109
702 => 0.0328551373176
703 => 0.032121412060716
704 => 0.031069436988159
705 => 0.03184619901119
706 => 0.031173295860909
707 => 0.029657056729593
708 => 0.030776276237821
709 => 0.030027886026205
710 => 0.030246306076567
711 => 0.03181931098674
712 => 0.031630042874293
713 => 0.031874973337554
714 => 0.031442677480844
715 => 0.031038844983877
716 => 0.030285061639294
717 => 0.030061903552032
718 => 0.030123576418964
719 => 0.030061872990022
720 => 0.029640138136354
721 => 0.029549064534858
722 => 0.029397271209006
723 => 0.029444318307876
724 => 0.02915890244657
725 => 0.029697541146781
726 => 0.029797517236008
727 => 0.030189493563282
728 => 0.030230189845911
729 => 0.031321838337935
730 => 0.030720576692936
731 => 0.031123954914834
801 => 0.031087872969925
802 => 0.028197946608469
803 => 0.028596152963042
804 => 0.029215637086718
805 => 0.028936560328693
806 => 0.028542011086749
807 => 0.028223391419488
808 => 0.027740650043053
809 => 0.028420099260158
810 => 0.029313502729283
811 => 0.030252848032228
812 => 0.031381409865375
813 => 0.031129528002125
814 => 0.030231750353769
815 => 0.030272024003247
816 => 0.030520979857225
817 => 0.030198559406299
818 => 0.030103471320926
819 => 0.030507916214472
820 => 0.030510701404174
821 => 0.030139717709571
822 => 0.029727437222319
823 => 0.029725709752024
824 => 0.029652348421475
825 => 0.030695487408066
826 => 0.031269108377445
827 => 0.031334873097147
828 => 0.031264681887823
829 => 0.031291695698502
830 => 0.030957918295297
831 => 0.03172083446041
901 => 0.032420961778108
902 => 0.032233312700926
903 => 0.031952000058343
904 => 0.031727920988673
905 => 0.032180526793447
906 => 0.032160372969428
907 => 0.032414846776765
908 => 0.032403302374952
909 => 0.032317732404789
910 => 0.032233315756899
911 => 0.032568018223757
912 => 0.032471629288459
913 => 0.032375090634521
914 => 0.032181467584721
915 => 0.032207784172927
916 => 0.031926520102938
917 => 0.031796394474393
918 => 0.029839617236114
919 => 0.029316702418506
920 => 0.029481222065038
921 => 0.029535386204427
922 => 0.02930781300567
923 => 0.029634094513929
924 => 0.029583243886485
925 => 0.02978107393125
926 => 0.029657478308063
927 => 0.02966255071555
928 => 0.030026019089978
929 => 0.030131535505379
930 => 0.030077869004884
1001 => 0.030115455182251
1002 => 0.030981612775533
1003 => 0.030858472863929
1004 => 0.030793057240159
1005 => 0.030811177815002
1006 => 0.031032499650713
1007 => 0.031094457680988
1008 => 0.030831937152999
1009 => 0.030955743351612
1010 => 0.031482894431959
1011 => 0.031667367475914
1012 => 0.032256116880131
1013 => 0.032006005669033
1014 => 0.032465095621563
1015 => 0.033876181620342
1016 => 0.03500345475589
1017 => 0.033966767793907
1018 => 0.036036861349974
1019 => 0.037648726120656
1020 => 0.037586860066056
1021 => 0.037305794160184
1022 => 0.035470728972404
1023 => 0.03378207462733
1024 => 0.035194705691036
1025 => 0.035198306778127
1026 => 0.035076960516954
1027 => 0.03432328931054
1028 => 0.035050734392648
1029 => 0.035108476341573
1030 => 0.035076156204999
1031 => 0.034498318258117
1101 => 0.033616066515532
1102 => 0.033788456394221
1103 => 0.034070834532171
1104 => 0.03353623380678
1105 => 0.033365396482417
1106 => 0.033683015571538
1107 => 0.034706450455252
1108 => 0.03451297601884
1109 => 0.034507923619414
1110 => 0.035335689304312
1111 => 0.03474318771694
1112 => 0.03379063078266
1113 => 0.033550097594071
1114 => 0.032696366817154
1115 => 0.033286041705656
1116 => 0.033307263055115
1117 => 0.032984304145014
1118 => 0.033816837118286
1119 => 0.033809165180373
1120 => 0.034599531332315
1121 => 0.036110414566858
1122 => 0.035663572048355
1123 => 0.035143942815664
1124 => 0.035200440921013
1125 => 0.035820085687489
1126 => 0.035445434316563
1127 => 0.03558016156171
1128 => 0.035819881761667
1129 => 0.035964510910219
1130 => 0.035179631012253
1201 => 0.034996637962892
1202 => 0.034622298405731
1203 => 0.034524640202647
1204 => 0.034829531961103
1205 => 0.034749203754734
1206 => 0.033305479482866
1207 => 0.03315460226365
1208 => 0.03315922945256
1209 => 0.03277984151102
1210 => 0.032201183836632
1211 => 0.033721861655068
1212 => 0.033599729944376
1213 => 0.033464905988014
1214 => 0.033481421153374
1215 => 0.034141495853804
1216 => 0.033758619192983
1217 => 0.034776559548025
1218 => 0.034567301613117
1219 => 0.03435267700178
1220 => 0.034323009342868
1221 => 0.034240397178414
1222 => 0.033957089327872
1223 => 0.033614978074179
1224 => 0.033389086591322
1225 => 0.030799667440055
1226 => 0.031280248572572
1227 => 0.031833113359184
1228 => 0.032023960068056
1229 => 0.03169750356634
1230 => 0.033969979820335
1231 => 0.034385183130066
]
'min_raw' => 0.014331417485197
'max_raw' => 0.037648726120656
'avg_raw' => 0.025990071802926
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.014331'
'max' => '$0.037648'
'avg' => '$0.02599'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00055566134893754
'max_diff' => -0.0067895667599302
'year' => 2027
]
2 => [
'items' => [
101 => 0.033127505221849
102 => 0.032892245035873
103 => 0.033985403438961
104 => 0.033326095288719
105 => 0.033622981708403
106 => 0.032981275657235
107 => 0.034285172811324
108 => 0.034275239299635
109 => 0.033767993856842
110 => 0.034196714231624
111 => 0.034122213516215
112 => 0.033549534660592
113 => 0.034303327752516
114 => 0.034303701624485
115 => 0.033815488914264
116 => 0.033245363352229
117 => 0.033143438367502
118 => 0.033066651583206
119 => 0.033604096866582
120 => 0.034085968627109
121 => 0.034982612507309
122 => 0.035208050082525
123 => 0.03608794794682
124 => 0.035564011610082
125 => 0.035796265802047
126 => 0.036048410581786
127 => 0.03616929806151
128 => 0.035972318400479
129 => 0.03733916196414
130 => 0.037454565439918
131 => 0.03749325922711
201 => 0.037032367267902
202 => 0.037441747200785
203 => 0.037250211887427
204 => 0.037748533562741
205 => 0.037826676764321
206 => 0.037760492252608
207 => 0.037785296138196
208 => 0.036618936284339
209 => 0.036558454372878
210 => 0.035733779218508
211 => 0.036069840439605
212 => 0.035441590094598
213 => 0.035640814750695
214 => 0.035728631080821
215 => 0.035682760813496
216 => 0.036088840836823
217 => 0.035743589860327
218 => 0.034832415768839
219 => 0.033920993428578
220 => 0.033909551263525
221 => 0.033669589849275
222 => 0.033496141697897
223 => 0.033529553965256
224 => 0.03364730315346
225 => 0.033489297901022
226 => 0.0335230163327
227 => 0.034082966963276
228 => 0.034195261068853
229 => 0.033813641821963
301 => 0.032281385478306
302 => 0.031905365928198
303 => 0.032175641324024
304 => 0.032046467092784
305 => 0.025864000068084
306 => 0.027316478989708
307 => 0.026453465336003
308 => 0.026851181732979
309 => 0.025970268268848
310 => 0.026390686346562
311 => 0.026313050478818
312 => 0.028648593602813
313 => 0.028612127309366
314 => 0.028629581794286
315 => 0.027796433751655
316 => 0.029123661206001
317 => 0.029777501175567
318 => 0.029656492798588
319 => 0.02968694800005
320 => 0.029163626736013
321 => 0.028634648688045
322 => 0.028047930623711
323 => 0.0291379802667
324 => 0.029016785354167
325 => 0.029294762878964
326 => 0.030001737990799
327 => 0.030105842761554
328 => 0.030245760629176
329 => 0.030195610033665
330 => 0.031390400681115
331 => 0.031245703650226
401 => 0.031594381862491
402 => 0.030877124325583
403 => 0.030065479339861
404 => 0.030219746516973
405 => 0.030204889347279
406 => 0.030015740524806
407 => 0.029844985425294
408 => 0.029560726294556
409 => 0.030460164246646
410 => 0.030423648708358
411 => 0.031014792828575
412 => 0.030910302363259
413 => 0.030212489462724
414 => 0.030237411986982
415 => 0.030405027939972
416 => 0.030985148667075
417 => 0.03115736799651
418 => 0.031077589141362
419 => 0.031266419773977
420 => 0.03141566380675
421 => 0.031285162526691
422 => 0.033132785449479
423 => 0.032365523596117
424 => 0.032739481684872
425 => 0.032828668485551
426 => 0.032600218371008
427 => 0.032649761020667
428 => 0.032724804635336
429 => 0.033180454768564
430 => 0.034376212561581
501 => 0.03490580554831
502 => 0.036499112178541
503 => 0.034861830223052
504 => 0.03476468068756
505 => 0.035051683324915
506 => 0.035987122985496
507 => 0.036745208969017
508 => 0.036996709824781
509 => 0.037029949814697
510 => 0.03750178213957
511 => 0.037772227629036
512 => 0.037444489284908
513 => 0.037166765353895
514 => 0.036171992705371
515 => 0.036287140348113
516 => 0.037080393420188
517 => 0.038200910106866
518 => 0.039162429993926
519 => 0.038825739241829
520 => 0.041394452013704
521 => 0.041649129392784
522 => 0.041613941213701
523 => 0.042194134184322
524 => 0.041042569291883
525 => 0.040550252989846
526 => 0.037226812420081
527 => 0.038160563658806
528 => 0.03951782592158
529 => 0.039338187171629
530 => 0.038352507036679
531 => 0.039161682267156
601 => 0.038894143630711
602 => 0.038683124807959
603 => 0.039649842942998
604 => 0.03858689664293
605 => 0.039507222219125
606 => 0.038326895148106
607 => 0.038827277216824
608 => 0.038543236153862
609 => 0.038727045532362
610 => 0.037652499661496
611 => 0.038232298530289
612 => 0.037628378122353
613 => 0.037628091785447
614 => 0.037614760208969
615 => 0.038325269890713
616 => 0.038348439585926
617 => 0.037823371857597
618 => 0.037747701394846
619 => 0.038027494756134
620 => 0.037699930008063
621 => 0.037853195492017
622 => 0.037704572263438
623 => 0.0376711140442
624 => 0.03740451326087
625 => 0.03728965431307
626 => 0.037334693466053
627 => 0.037180951617648
628 => 0.037088316592898
629 => 0.037596332770957
630 => 0.037324920220334
701 => 0.03755473490497
702 => 0.037292832066902
703 => 0.036384962724525
704 => 0.035862837465179
705 => 0.034147956436961
706 => 0.03463429456926
707 => 0.034956737254128
708 => 0.034850169948703
709 => 0.035079117756829
710 => 0.035093173292811
711 => 0.035018740026542
712 => 0.034932555839696
713 => 0.034890606143823
714 => 0.035203264808116
715 => 0.035384773686345
716 => 0.034989098691281
717 => 0.034896397576019
718 => 0.035296446841844
719 => 0.035540476662896
720 => 0.037342255753035
721 => 0.037208774138367
722 => 0.037543786796738
723 => 0.037506069512594
724 => 0.037857216150268
725 => 0.038431192497224
726 => 0.037264138097552
727 => 0.03746669838763
728 => 0.037417035282303
729 => 0.037959244043898
730 => 0.037960936760467
731 => 0.037635855522555
801 => 0.037812087335468
802 => 0.037713719572167
803 => 0.037891483415653
804 => 0.037206991410024
805 => 0.038040628786534
806 => 0.038513247460609
807 => 0.038519809771357
808 => 0.038743827271935
809 => 0.038971442026741
810 => 0.039408328727524
811 => 0.038959257493777
812 => 0.03815142206047
813 => 0.038209745169462
814 => 0.037736111550489
815 => 0.037744073417193
816 => 0.037701572348745
817 => 0.037829121254488
818 => 0.037234981222137
819 => 0.03737442470018
820 => 0.03717920301434
821 => 0.037466274013811
822 => 0.037157433072916
823 => 0.03741701133325
824 => 0.037529036705255
825 => 0.037942412739685
826 => 0.037096377096525
827 => 0.035371253148545
828 => 0.035733895117517
829 => 0.035197519160496
830 => 0.035247162797445
831 => 0.03534745084481
901 => 0.035022384471095
902 => 0.035084396891181
903 => 0.035082181371161
904 => 0.035063089216548
905 => 0.034978526898085
906 => 0.03485589480617
907 => 0.035344423316193
908 => 0.035427433829648
909 => 0.035611955918233
910 => 0.036160968491334
911 => 0.036106109188673
912 => 0.036195586987403
913 => 0.036000257455171
914 => 0.035256223574227
915 => 0.035296628193617
916 => 0.03479278194238
917 => 0.035599071436788
918 => 0.035408131442011
919 => 0.03528503118524
920 => 0.035251442139664
921 => 0.035801815608743
922 => 0.035966495976738
923 => 0.035863878222692
924 => 0.035653406215305
925 => 0.036057574689951
926 => 0.036165713123267
927 => 0.036189921330495
928 => 0.03690603037595
929 => 0.036229943871157
930 => 0.036392684612582
1001 => 0.037662341420792
1002 => 0.036510937896409
1003 => 0.037120862022637
1004 => 0.03709100941055
1005 => 0.037403025954822
1006 => 0.03706541494684
1007 => 0.037069600039907
1008 => 0.037346649593388
1009 => 0.036957583461674
1010 => 0.036861245216012
1011 => 0.036728154619618
1012 => 0.037018753067822
1013 => 0.037192953694884
1014 => 0.038596882812736
1015 => 0.039503885049815
1016 => 0.039464509690655
1017 => 0.039824326765792
1018 => 0.039662225877896
1019 => 0.039138759350827
1020 => 0.040032252882592
1021 => 0.039749514143784
1022 => 0.039772822781884
1023 => 0.03977195523321
1024 => 0.039959951777067
1025 => 0.039826738996114
1026 => 0.039564162930843
1027 => 0.039738473176882
1028 => 0.040256112290562
1029 => 0.041862879982535
1030 => 0.042762048469803
1031 => 0.041808748910572
1101 => 0.04246632218134
1102 => 0.042072012536193
1103 => 0.042000354743974
1104 => 0.042413359352299
1105 => 0.042827086870518
1106 => 0.042800734216201
1107 => 0.042500389283117
1108 => 0.042330732051388
1109 => 0.04361543344938
1110 => 0.044561979555102
1111 => 0.044497431456418
1112 => 0.044782325771846
1113 => 0.045618784293392
1114 => 0.045695259577762
1115 => 0.045685625449696
1116 => 0.045496073478013
1117 => 0.046319675520339
1118 => 0.047006738833948
1119 => 0.045452197673251
1120 => 0.046044146596806
1121 => 0.046309891539993
1122 => 0.046700083959564
1123 => 0.047358403975222
1124 => 0.048073514122987
1125 => 0.048174638538664
1126 => 0.048102885926492
1127 => 0.047631251560849
1128 => 0.048413733617572
1129 => 0.048872093254937
1130 => 0.049145035929615
1201 => 0.049837173139267
1202 => 0.046311532690292
1203 => 0.043815909144808
1204 => 0.043426181490939
1205 => 0.044218708000363
1206 => 0.044427690920618
1207 => 0.044343450167506
1208 => 0.041534398974897
1209 => 0.043411392417757
1210 => 0.045430879540183
1211 => 0.045508456265175
1212 => 0.046519453744146
1213 => 0.046848675965486
1214 => 0.047662661450526
1215 => 0.047611746436812
1216 => 0.047809938949082
1217 => 0.047764377922727
1218 => 0.049272114628898
1219 => 0.050935372116872
1220 => 0.050877778798899
1221 => 0.050638665856233
1222 => 0.050993789350907
1223 => 0.052710449324001
1224 => 0.052552406782594
1225 => 0.052705931649539
1226 => 0.054729970504533
1227 => 0.057361508932196
1228 => 0.056138895130408
1229 => 0.058791615282643
1230 => 0.060461362003822
1231 => 0.063349016303067
]
'min_raw' => 0.025864000068084
'max_raw' => 0.063349016303067
'avg_raw' => 0.044606508185576
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.025864'
'max' => '$0.063349'
'avg' => '$0.0446065'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.011532582582888
'max_diff' => 0.025700290182411
'year' => 2028
]
3 => [
'items' => [
101 => 0.062987467762804
102 => 0.064111610390914
103 => 0.062340220418277
104 => 0.058272750984121
105 => 0.057629058376518
106 => 0.058917747277832
107 => 0.062085863193287
108 => 0.058817972033287
109 => 0.059479062158844
110 => 0.05928866815821
111 => 0.059278522871038
112 => 0.059665727218506
113 => 0.059104067117284
114 => 0.056815762824182
115 => 0.057864479196649
116 => 0.057459519441743
117 => 0.05790885248156
118 => 0.060333717578415
119 => 0.059261626917532
120 => 0.058132266495864
121 => 0.059548735089776
122 => 0.061352386361243
123 => 0.061239517106147
124 => 0.061020503575573
125 => 0.062255071380242
126 => 0.064294215699129
127 => 0.064845388214578
128 => 0.065252252497257
129 => 0.06530835220781
130 => 0.065886214092282
131 => 0.062778905099531
201 => 0.067710284272382
202 => 0.068561797228932
203 => 0.068401748084697
204 => 0.06934816889876
205 => 0.069069707886884
206 => 0.06866626156987
207 => 0.070166539869641
208 => 0.068446591865169
209 => 0.066005342208255
210 => 0.064666024364028
211 => 0.066429746140994
212 => 0.06750678948478
213 => 0.0682186466222
214 => 0.068434054161868
215 => 0.063020116651264
216 => 0.060102304603788
217 => 0.061972588673437
218 => 0.06425446431852
219 => 0.062766229165108
220 => 0.06282456516552
221 => 0.060702732938072
222 => 0.064442199388876
223 => 0.063897390580857
224 => 0.066723859640609
225 => 0.066049300115668
226 => 0.068354175910998
227 => 0.067747224869288
228 => 0.070266644709251
301 => 0.071271709493981
302 => 0.072959369693386
303 => 0.074200819406081
304 => 0.074929822422525
305 => 0.074886055815839
306 => 0.077774728954849
307 => 0.076071379327327
308 => 0.073931570746477
309 => 0.073892868360259
310 => 0.075001105545603
311 => 0.077323666656062
312 => 0.077925872960114
313 => 0.078262424129584
314 => 0.07774698429811
315 => 0.075898120357603
316 => 0.075099790282045
317 => 0.075779990636269
318 => 0.074948164053335
319 => 0.076384130104796
320 => 0.078356018199249
321 => 0.077948831105436
322 => 0.079309996511155
323 => 0.080718659507298
324 => 0.082733110858796
325 => 0.083259763036995
326 => 0.08413029906077
327 => 0.085026366585421
328 => 0.085314159324642
329 => 0.085863644960657
330 => 0.085860748900122
331 => 0.087516660848903
401 => 0.089343183007733
402 => 0.090032652838606
403 => 0.09161805069711
404 => 0.088903112423389
405 => 0.09096242429097
406 => 0.092819975143447
407 => 0.090605326439291
408 => 0.093657703731002
409 => 0.093776220624404
410 => 0.095565685005029
411 => 0.093751720035371
412 => 0.092674593426769
413 => 0.095784217586395
414 => 0.097288866764994
415 => 0.096835654187159
416 => 0.093386684091967
417 => 0.091379235563279
418 => 0.086125355555801
419 => 0.092348803375385
420 => 0.095380063267843
421 => 0.093378833861144
422 => 0.09438813756932
423 => 0.099894571333303
424 => 0.10199106479544
425 => 0.10155500881091
426 => 0.10162869509421
427 => 0.10275992491233
428 => 0.10777642090553
429 => 0.10477042022494
430 => 0.10706839511255
501 => 0.10828723270698
502 => 0.10941935699124
503 => 0.10663921756065
504 => 0.10302229700981
505 => 0.10187666644337
506 => 0.093179851036569
507 => 0.09272714402629
508 => 0.092473025862994
509 => 0.090870846789142
510 => 0.089611972910876
511 => 0.08861086966389
512 => 0.08598367578906
513 => 0.08687027659973
514 => 0.082683077901229
515 => 0.085361899243319
516 => 0.078679029017063
517 => 0.08424472192405
518 => 0.081215568315781
519 => 0.083249563494909
520 => 0.083242467077343
521 => 0.07949723707381
522 => 0.077337066568728
523 => 0.07871361128966
524 => 0.080189376500755
525 => 0.080428814441185
526 => 0.082342182558783
527 => 0.082876162472694
528 => 0.081258178404404
529 => 0.078540541385722
530 => 0.079171786482461
531 => 0.07732427440699
601 => 0.074086580558254
602 => 0.076411948805128
603 => 0.077205931763835
604 => 0.077556599870611
605 => 0.07437269982203
606 => 0.073372249300933
607 => 0.072839617838093
608 => 0.078129539871155
609 => 0.07841933374145
610 => 0.076936707328297
611 => 0.083638319304153
612 => 0.082121538115929
613 => 0.083816154323588
614 => 0.07911450760633
615 => 0.079294116842536
616 => 0.077068281939355
617 => 0.078314600754794
618 => 0.077433742786772
619 => 0.078213910510869
620 => 0.078681539827941
621 => 0.080907009493517
622 => 0.08427013321281
623 => 0.080574598538353
624 => 0.078964401159661
625 => 0.079963358557308
626 => 0.082623713748308
627 => 0.08665428804375
628 => 0.084268106937981
629 => 0.085327053592738
630 => 0.085558386327545
701 => 0.083798904721377
702 => 0.086719162640267
703 => 0.088284152583134
704 => 0.089889508435476
705 => 0.091283393941015
706 => 0.089248294005519
707 => 0.091426142656616
708 => 0.08967118108587
709 => 0.088096799132319
710 => 0.088099186819866
711 => 0.087111554022353
712 => 0.08519789102743
713 => 0.084844982210309
714 => 0.086680858444446
715 => 0.088153057326097
716 => 0.088274314677347
717 => 0.089089399622538
718 => 0.08957175849706
719 => 0.094299531202466
720 => 0.096201080494768
721 => 0.098526258974908
722 => 0.099432047032802
723 => 0.10215814434407
724 => 0.099956599362422
725 => 0.099480281257275
726 => 0.092867660879775
727 => 0.093950477096145
728 => 0.095684170334777
729 => 0.092896248842721
730 => 0.094664543338361
731 => 0.095013642129399
801 => 0.092801516337232
802 => 0.093983108303141
803 => 0.090845150359289
804 => 0.084338532120937
805 => 0.086726406366382
806 => 0.08848468556081
807 => 0.0859754043561
808 => 0.090473193792949
809 => 0.087845678057162
810 => 0.087012881711916
811 => 0.083763846255775
812 => 0.08529726592423
813 => 0.08737123798227
814 => 0.086089764375532
815 => 0.088749014523744
816 => 0.092515221929721
817 => 0.095199245608749
818 => 0.09540529161917
819 => 0.093679644209176
820 => 0.096445005196627
821 => 0.096465147832407
822 => 0.093345809341731
823 => 0.091435231884742
824 => 0.091001144666624
825 => 0.092085579645294
826 => 0.093402283907139
827 => 0.095478359541907
828 => 0.09673288856762
829 => 0.1000040349159
830 => 0.10088911332663
831 => 0.10186154616101
901 => 0.10316101631493
902 => 0.10472136341201
903 => 0.1013074127942
904 => 0.10144305541665
905 => 0.098264031870702
906 => 0.09486678929377
907 => 0.097444872937396
908 => 0.10081537435334
909 => 0.10004217760445
910 => 0.099955177175225
911 => 0.10010148776528
912 => 0.099518522666858
913 => 0.096881793132404
914 => 0.095557644067001
915 => 0.097266134187825
916 => 0.098174120650897
917 => 0.099582328470379
918 => 0.099408737132967
919 => 0.10303612924547
920 => 0.10444562413375
921 => 0.10408501502564
922 => 0.10415137578008
923 => 0.10670319894905
924 => 0.10954135113541
925 => 0.11219965518511
926 => 0.11490379624127
927 => 0.11164384865364
928 => 0.10998864831426
929 => 0.11169639256174
930 => 0.11079023942579
1001 => 0.11599726412747
1002 => 0.11635778722029
1003 => 0.12156443539482
1004 => 0.12650616450858
1005 => 0.1234023529925
1006 => 0.12632910745342
1007 => 0.1294946310247
1008 => 0.13560143958138
1009 => 0.13354488129961
1010 => 0.13196958988614
1011 => 0.13048094711217
1012 => 0.13357857640942
1013 => 0.13756362701449
1014 => 0.13842196874649
1015 => 0.13981281026409
1016 => 0.13835051047234
1017 => 0.14011168950447
1018 => 0.14632942538916
1019 => 0.14464933826764
1020 => 0.14226334446761
1021 => 0.14717164979087
1022 => 0.1489479464068
1023 => 0.1614149263112
1024 => 0.17715500342574
1025 => 0.1706385081454
1026 => 0.16659350923891
1027 => 0.16754417993059
1028 => 0.17329192325759
1029 => 0.17513791598996
1030 => 0.17011987139151
1031 => 0.17189232957691
1101 => 0.18165874844273
1102 => 0.18689811882001
1103 => 0.17978235010634
1104 => 0.16015022644081
1105 => 0.14204851183164
1106 => 0.14684990167682
1107 => 0.14630557307285
1108 => 0.15679837175861
1109 => 0.14460926874544
1110 => 0.14481450197948
1111 => 0.15552428062999
1112 => 0.15266709529812
1113 => 0.14803882098115
1114 => 0.14208230335611
1115 => 0.13107112961502
1116 => 0.12131822596325
1117 => 0.14044591598395
1118 => 0.13962109520881
1119 => 0.13842663249481
1120 => 0.14108478001044
1121 => 0.15399198981798
1122 => 0.15369443685536
1123 => 0.15180155671999
1124 => 0.15323728961959
1125 => 0.14778713006218
1126 => 0.14919176027795
1127 => 0.14204564442756
1128 => 0.1452759872401
1129 => 0.14802889078313
1130 => 0.14858157692682
1201 => 0.14982680702943
1202 => 0.13918645214045
1203 => 0.1439636591012
1204 => 0.14676982062687
1205 => 0.13409148076483
1206 => 0.14651921061177
1207 => 0.13900122723449
1208 => 0.13644951075992
1209 => 0.13988506082985
1210 => 0.13854622362641
1211 => 0.13739517001806
1212 => 0.13675286232699
1213 => 0.13927555113052
1214 => 0.13915786468257
1215 => 0.1350302561672
1216 => 0.12964595912174
1217 => 0.13145310594372
1218 => 0.13079655256121
1219 => 0.12841711840589
1220 => 0.1300205697326
1221 => 0.12295978157793
1222 => 0.11081206254565
1223 => 0.11883721783307
1224 => 0.1185282580842
1225 => 0.1183724665686
1226 => 0.1244031489681
1227 => 0.1238234380069
1228 => 0.12277125693578
1229 => 0.12839779427539
1230 => 0.12634403245883
1231 => 0.13267324245033
]
'min_raw' => 0.056815762824182
'max_raw' => 0.18689811882001
'avg_raw' => 0.1218569408221
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.056815'
'max' => '$0.186898'
'avg' => '$0.121856'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.030951762756098
'max_diff' => 0.12354910251695
'year' => 2029
]
4 => [
'items' => [
101 => 0.13684206949838
102 => 0.13578472011157
103 => 0.13970552209994
104 => 0.13149473895658
105 => 0.13422203175736
106 => 0.13478412302374
107 => 0.128328363678
108 => 0.12391828588956
109 => 0.12362418397964
110 => 0.11597771684063
111 => 0.12006239786616
112 => 0.12365674813304
113 => 0.12193533328805
114 => 0.12139038477394
115 => 0.12417440854765
116 => 0.12439075103842
117 => 0.11945811932194
118 => 0.12048376965193
119 => 0.12476090202816
120 => 0.12037599689004
121 => 0.11185684247687
122 => 0.10974397439588
123 => 0.10946207884599
124 => 0.10373181303666
125 => 0.10988516634412
126 => 0.1071990627258
127 => 0.11568443187162
128 => 0.11083763452347
129 => 0.11062869877696
130 => 0.11031286175191
131 => 0.10538058525552
201 => 0.1064604403457
202 => 0.11005004313206
203 => 0.111330853846
204 => 0.11119725479516
205 => 0.1100324521201
206 => 0.11056569281999
207 => 0.10884793873228
208 => 0.10824136401195
209 => 0.10632684734307
210 => 0.10351303673854
211 => 0.1039043143612
212 => 0.098329419280035
213 => 0.09529192055774
214 => 0.094451180944998
215 => 0.093326908797913
216 => 0.094578170475585
217 => 0.098313626302719
218 => 0.093807874054034
219 => 0.086083077865435
220 => 0.086547351278782
221 => 0.087590435794559
222 => 0.085646654700103
223 => 0.083807029023381
224 => 0.085406434295742
225 => 0.082133336316443
226 => 0.087985974047947
227 => 0.087827676599137
228 => 0.090009178020752
301 => 0.091373315628603
302 => 0.088229420087301
303 => 0.087438738860661
304 => 0.087889146821813
305 => 0.080444906520097
306 => 0.089400824770014
307 => 0.089478275922942
308 => 0.088815092129615
309 => 0.093583842114742
310 => 0.10364739199378
311 => 0.099861079723929
312 => 0.098394905171149
313 => 0.095607706274547
314 => 0.099321483316774
315 => 0.099036323183878
316 => 0.097746720919152
317 => 0.096966765445642
318 => 0.098403857320325
319 => 0.096788693858777
320 => 0.09649856611936
321 => 0.094740707680582
322 => 0.094113232195401
323 => 0.093648674326692
324 => 0.093137241759757
325 => 0.094265334561361
326 => 0.091708927859959
327 => 0.088626151985708
328 => 0.088369852527861
329 => 0.089077517865055
330 => 0.088764428632835
331 => 0.088368353577072
401 => 0.087612138430996
402 => 0.087387785551135
403 => 0.088116823570138
404 => 0.087293782152241
405 => 0.088508224597735
406 => 0.088177963450726
407 => 0.086333151530336
408 => 0.084033832840679
409 => 0.084013364081357
410 => 0.083517979641308
411 => 0.082887033075358
412 => 0.082711518174812
413 => 0.085271736844808
414 => 0.090571312870801
415 => 0.089530879288792
416 => 0.090282699179716
417 => 0.093980908939565
418 => 0.095156458613174
419 => 0.094322081299267
420 => 0.093179934169839
421 => 0.093230182847039
422 => 0.097133245339743
423 => 0.097376674559819
424 => 0.097991741665708
425 => 0.098782276714719
426 => 0.094456712836483
427 => 0.093026449177365
428 => 0.092348710907668
429 => 0.090261539354721
430 => 0.09251237493401
501 => 0.091200909432347
502 => 0.091377870934563
503 => 0.091262624524095
504 => 0.091325556857138
505 => 0.087984338116423
506 => 0.089201702616253
507 => 0.087177598023559
508 => 0.084467549190344
509 => 0.08445846415639
510 => 0.085121744768995
511 => 0.084727199506445
512 => 0.083665488349607
513 => 0.0838162994083
514 => 0.082495035843292
515 => 0.083976724727341
516 => 0.084019214262798
517 => 0.0834486833343
518 => 0.085731429493843
519 => 0.086666672457951
520 => 0.086291136778857
521 => 0.086640323873604
522 => 0.089574114001401
523 => 0.090052449802469
524 => 0.090264894968214
525 => 0.089980246589706
526 => 0.086693948171506
527 => 0.086839709480773
528 => 0.085770209707519
529 => 0.084866595100229
530 => 0.084902734945687
531 => 0.08536731031551
601 => 0.087396138202514
602 => 0.091665686884778
603 => 0.091827713136271
604 => 0.092024093679719
605 => 0.091225315316562
606 => 0.090984396118955
607 => 0.09130223072712
608 => 0.092905648729973
609 => 0.097030075157054
610 => 0.095572227396545
611 => 0.094386974474498
612 => 0.095426760829026
613 => 0.095266693869861
614 => 0.093915567648817
615 => 0.093877646035858
616 => 0.091284402836491
617 => 0.090325739870975
618 => 0.089524609342311
619 => 0.088649795719052
620 => 0.088131176879166
621 => 0.088928011125278
622 => 0.08911025654523
623 => 0.087367964539826
624 => 0.087130496577479
625 => 0.088553289839077
626 => 0.087927171571727
627 => 0.088571149736683
628 => 0.088720558194895
629 => 0.088696499991954
630 => 0.088042760611616
701 => 0.088459434597854
702 => 0.087473876403906
703 => 0.086402229894041
704 => 0.085718586186684
705 => 0.085122016379837
706 => 0.085453027981516
707 => 0.084273032061858
708 => 0.083895527618534
709 => 0.088318274826778
710 => 0.091585405742053
711 => 0.091537900364619
712 => 0.091248723596881
713 => 0.090819065577388
714 => 0.092874216569673
715 => 0.092158243058002
716 => 0.092679173609331
717 => 0.092811772298031
718 => 0.093213108592555
719 => 0.093356551821828
720 => 0.092922966755238
721 => 0.09146780231381
722 => 0.087841670878653
723 => 0.086153696907032
724 => 0.085596637380967
725 => 0.085616885436733
726 => 0.085058353667411
727 => 0.085222866305114
728 => 0.085001142885733
729 => 0.084581252370081
730 => 0.085427100925395
731 => 0.085524577091771
801 => 0.085327145931823
802 => 0.085373648117103
803 => 0.083739002436686
804 => 0.083863280997504
805 => 0.083171282178312
806 => 0.083041540741883
807 => 0.081292227986195
808 => 0.078193066872556
809 => 0.079910302972361
810 => 0.077836123243732
811 => 0.077050599951549
812 => 0.080769145042808
813 => 0.080395906252032
814 => 0.079757083685225
815 => 0.078812131966629
816 => 0.078461640182302
817 => 0.076332163052949
818 => 0.076206342183828
819 => 0.077261768549855
820 => 0.076774725596937
821 => 0.076090732833451
822 => 0.073613380379337
823 => 0.070828015997703
824 => 0.070912088640209
825 => 0.07179806122646
826 => 0.074374146010666
827 => 0.073367625118757
828 => 0.072637382663181
829 => 0.072500630202259
830 => 0.074212373561365
831 => 0.07663484903582
901 => 0.0777714203286
902 => 0.076645112695638
903 => 0.075351271131601
904 => 0.075430021272519
905 => 0.075953910679365
906 => 0.076008964048627
907 => 0.075166806199501
908 => 0.075403868701062
909 => 0.075043749083741
910 => 0.07283369565697
911 => 0.072793722798635
912 => 0.07225134004578
913 => 0.07223491691158
914 => 0.071312188545255
915 => 0.071183092468286
916 => 0.069350959291339
917 => 0.070556874896616
918 => 0.069748010022007
919 => 0.068528859864037
920 => 0.068318677917278
921 => 0.068312359594156
922 => 0.069564154209404
923 => 0.070542246947706
924 => 0.069762080572806
925 => 0.069584451812131
926 => 0.071481062261407
927 => 0.071239701293748
928 => 0.071030684252368
929 => 0.076417942927026
930 => 0.072153507312997
1001 => 0.070293969979805
1002 => 0.067992439413419
1003 => 0.068741829371159
1004 => 0.068899736846084
1005 => 0.06336497071599
1006 => 0.061119516786322
1007 => 0.060348961615806
1008 => 0.059905496221123
1009 => 0.060107588970168
1010 => 0.05808641706799
1011 => 0.059444678013352
1012 => 0.057694513991473
1013 => 0.057401093297679
1014 => 0.060530603372516
1015 => 0.060966056417096
1016 => 0.059108278444258
1017 => 0.060301272649754
1018 => 0.059868676366981
1019 => 0.057724515530353
1020 => 0.057642624357773
1021 => 0.056566759820851
1022 => 0.054883240148993
1023 => 0.05411382648409
1024 => 0.053713109167053
1025 => 0.053878452941888
1026 => 0.053794850069728
1027 => 0.053249284777728
1028 => 0.05382612123365
1029 => 0.052352542454048
1030 => 0.05176575151058
1031 => 0.051500711654862
1101 => 0.050192825671936
1102 => 0.052274253890308
1103 => 0.052684321470469
1104 => 0.053095197010439
1105 => 0.056671588069236
1106 => 0.056492921678715
1107 => 0.058107978834966
1108 => 0.058045220683774
1109 => 0.057584580220619
1110 => 0.055641213878251
1111 => 0.056415805065145
1112 => 0.054031733790082
1113 => 0.055818042090448
1114 => 0.055002845580179
1115 => 0.055542423330312
1116 => 0.054572213883808
1117 => 0.05510916785047
1118 => 0.052781563706229
1119 => 0.050608079706612
1120 => 0.051482753116011
1121 => 0.052433623143066
1122 => 0.054495351638897
1123 => 0.053267403155671
1124 => 0.053709019864112
1125 => 0.052229677816578
1126 => 0.049177372619352
1127 => 0.049194648335289
1128 => 0.048725117678779
1129 => 0.048319374638956
1130 => 0.053408447810459
1201 => 0.052775541115241
1202 => 0.051767087129192
1203 => 0.053116942863887
1204 => 0.053473866145232
1205 => 0.053484027249277
1206 => 0.054468847148491
1207 => 0.054994445705241
1208 => 0.055087084728942
1209 => 0.056636720118798
1210 => 0.057156137461293
1211 => 0.059295543984335
1212 => 0.054949852339853
1213 => 0.054860355680197
1214 => 0.053135938102283
1215 => 0.052042285212407
1216 => 0.053210821451314
1217 => 0.054245985037882
1218 => 0.053168103520425
1219 => 0.053308852091284
1220 => 0.051861884220254
1221 => 0.052379107147981
1222 => 0.052824609210792
1223 => 0.052578629157109
1224 => 0.052210385111176
1225 => 0.054161113428633
1226 => 0.054051045691996
1227 => 0.055867608748263
1228 => 0.057283749554293
1229 => 0.059821727044149
1230 => 0.057173215225726
1231 => 0.057076692928181
]
'min_raw' => 0.048319374638956
'max_raw' => 0.13970552209994
'avg_raw' => 0.094012448369448
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.048319'
'max' => '$0.1397055'
'avg' => '$0.094012'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0084963881852258
'max_diff' => -0.047192596720074
'year' => 2030
]
5 => [
'items' => [
101 => 0.058020213869341
102 => 0.057155993013153
103 => 0.057702150762374
104 => 0.059733732587183
105 => 0.059776656709817
106 => 0.059057622351097
107 => 0.059013869045023
108 => 0.059151967458989
109 => 0.059960814183014
110 => 0.05967817828429
111 => 0.060005251701759
112 => 0.060414262018629
113 => 0.062106102105985
114 => 0.062513999023349
115 => 0.061523020984458
116 => 0.06161249520586
117 => 0.061241842216359
118 => 0.06088379607277
119 => 0.061688631515118
120 => 0.063159484105089
121 => 0.063150334007464
122 => 0.063491543219049
123 => 0.063704113731136
124 => 0.062791605482132
125 => 0.062197596165888
126 => 0.062425377135531
127 => 0.062789603866414
128 => 0.062307263315631
129 => 0.059330033994322
130 => 0.060233135184262
131 => 0.060082814986864
201 => 0.059868740746208
202 => 0.060776815976168
203 => 0.060689229904974
204 => 0.058065687028779
205 => 0.058233637731649
206 => 0.058075900667291
207 => 0.0585855813922
208 => 0.057128468581378
209 => 0.057576666668182
210 => 0.05785777230663
211 => 0.058023345687231
212 => 0.058621510272691
213 => 0.058551322562577
214 => 0.058617147306082
215 => 0.059504067476723
216 => 0.063989805345579
217 => 0.064233954160558
218 => 0.063031676102367
219 => 0.063511962472729
220 => 0.062589917668718
221 => 0.063208892522814
222 => 0.063632379397729
223 => 0.061718723641829
224 => 0.061605409367488
225 => 0.060679558956582
226 => 0.061177058524555
227 => 0.060385500940424
228 => 0.060579721484061
301 => 0.06003666391221
302 => 0.061014059419858
303 => 0.062106939469315
304 => 0.062383044128948
305 => 0.061656731639982
306 => 0.061130833531644
307 => 0.06020752969501
308 => 0.061743004552501
309 => 0.062192024193579
310 => 0.06174064604348
311 => 0.061636051863294
312 => 0.06143784608084
313 => 0.061678102157021
314 => 0.062189578736182
315 => 0.061948375826939
316 => 0.062107694597942
317 => 0.061500535731681
318 => 0.062791907560332
319 => 0.064842916809784
320 => 0.064849511139895
321 => 0.064608306930478
322 => 0.064509611364802
323 => 0.064757101521159
324 => 0.064891354778405
325 => 0.06569169256213
326 => 0.066550486890931
327 => 0.070558105302123
328 => 0.069432782089004
329 => 0.0729885795577
330 => 0.075800753692924
331 => 0.076644001754606
401 => 0.075868253215746
402 => 0.073214459369416
403 => 0.073084251582723
404 => 0.077050139992001
405 => 0.075929594867184
406 => 0.075796309590132
407 => 0.074378379431327
408 => 0.075216551769247
409 => 0.075033231183698
410 => 0.074743850671058
411 => 0.076343025104218
412 => 0.079336536883807
413 => 0.078869969999982
414 => 0.078521699464622
415 => 0.076995679358702
416 => 0.077914684311396
417 => 0.077587444250122
418 => 0.078993475225029
419 => 0.078160573622894
420 => 0.075921105635776
421 => 0.076277748294108
422 => 0.076223842473767
423 => 0.077333220436584
424 => 0.0770002127086
425 => 0.076158817370295
426 => 0.079326305385981
427 => 0.079120626332736
428 => 0.079412232205459
429 => 0.079540606128843
430 => 0.081468600266592
501 => 0.082258437775896
502 => 0.08243774471856
503 => 0.083188029264174
504 => 0.082419076955572
505 => 0.085495434443686
506 => 0.087541032662845
507 => 0.089917100259921
508 => 0.093389173646011
509 => 0.094694705357655
510 => 0.094458872739308
511 => 0.097091359154415
512 => 0.10182187872548
513 => 0.09541504599535
514 => 0.10216145641718
515 => 0.10002562076868
516 => 0.094961592868138
517 => 0.09463552917231
518 => 0.098064947661131
519 => 0.10567106780004
520 => 0.10376582097314
521 => 0.10567418410131
522 => 0.10344797714363
523 => 0.10333742720423
524 => 0.10556606219837
525 => 0.11077338933872
526 => 0.10829958340808
527 => 0.1047527760044
528 => 0.10737168339684
529 => 0.10510294344507
530 => 0.099990837353403
531 => 0.1037643640668
601 => 0.10124111421741
602 => 0.1019775326668
603 => 0.10728102854514
604 => 0.10664289788975
605 => 0.10746869804714
606 => 0.1060111823843
607 => 0.1046496329261
608 => 0.10210819975236
609 => 0.10135580668076
610 => 0.10156374105748
611 => 0.10135570363881
612 => 0.099933795135079
613 => 0.09962673412908
614 => 0.099114952333096
615 => 0.099273574911661
616 => 0.098311275408167
617 => 0.10012733339248
618 => 0.10046440975742
619 => 0.10178598531174
620 => 0.10192319566994
621 => 0.10560376477727
622 => 0.10357656916241
623 => 0.1049365870005
624 => 0.10481493420408
625 => 0.095071345708218
626 => 0.096413926234539
627 => 0.098502560208515
628 => 0.097561633434315
629 => 0.096231383118553
630 => 0.095157134665066
701 => 0.093529538410488
702 => 0.095820348883588
703 => 0.098832521055181
704 => 0.10199958932706
705 => 0.10580461434118
706 => 0.1049553770534
707 => 0.10192845703114
708 => 0.10206424245217
709 => 0.1029036144954
710 => 0.10181655143443
711 => 0.10149595531575
712 => 0.10285956951178
713 => 0.10286895997332
714 => 0.10161816254571
715 => 0.10022813009844
716 => 0.10022230581173
717 => 0.099974962963858
718 => 0.10349197888679
719 => 0.10542598203398
720 => 0.10564771237801
721 => 0.10541105781518
722 => 0.10550213676393
723 => 0.10437678294543
724 => 0.10694900806121
725 => 0.10930953619416
726 => 0.1086768642292
727 => 0.10772839901411
728 => 0.10697290078602
729 => 0.10849889285674
730 => 0.10843094283196
731 => 0.10928891904019
801 => 0.10924999628348
802 => 0.10896149115477
803 => 0.10867687453263
804 => 0.10980534726782
805 => 0.1094803652428
806 => 0.10915487843093
807 => 0.1085020648002
808 => 0.10859079301471
809 => 0.10764249156551
810 => 0.10720376392379
811 => 0.10060635284711
812 => 0.098843309030791
813 => 0.09939799850547
814 => 0.09958061668304
815 => 0.098813337754778
816 => 0.099913418640121
817 => 0.099741972199414
818 => 0.10040897000739
819 => 0.099992258734646
820 => 0.10000936071063
821 => 0.10123481971157
822 => 0.10159057567301
823 => 0.10140963531972
824 => 0.1015363597409
825 => 0.10445667053984
826 => 0.10404149573051
827 => 0.1038209423878
828 => 0.10388203717102
829 => 0.10462823919232
830 => 0.10483713501716
831 => 0.10395202872845
901 => 0.10436944997094
902 => 0.10614677664285
903 => 0.10676874039004
904 => 0.10875375011153
905 => 0.1079104827011
906 => 0.10945833652869
907 => 0.11421591149245
908 => 0.11801659157265
909 => 0.11452132910116
910 => 0.12150079405475
911 => 0.12693530866591
912 => 0.12672672294347
913 => 0.12577908961843
914 => 0.11959203921767
915 => 0.11389862319517
916 => 0.11866140745321
917 => 0.11867354876976
918 => 0.11826442137809
919 => 0.11572336628602
920 => 0.11817599816894
921 => 0.11837067918116
922 => 0.11826170958418
923 => 0.11631348860291
924 => 0.11333891525593
925 => 0.11392013976781
926 => 0.11487219737492
927 => 0.11306975370463
928 => 0.11249376373806
929 => 0.11356463867249
930 => 0.11701522083687
1001 => 0.11636290826656
1002 => 0.11634587374914
1003 => 0.11913674354853
1004 => 0.11713908307957
1005 => 0.11392747087024
1006 => 0.11311649643142
1007 => 0.11023808351147
1008 => 0.11222621356784
1009 => 0.11229776282917
1010 => 0.11120888431549
1011 => 0.11401582736047
1012 => 0.11398996088616
1013 => 0.11665473554904
1014 => 0.1217487838608
1015 => 0.12024222311211
1016 => 0.11849025687474
1017 => 0.1186807441815
1018 => 0.12076991977389
1019 => 0.11950675651949
1020 => 0.11996099883286
1021 => 0.12076923222374
1022 => 0.12125685949577
1023 => 0.11861058212121
1024 => 0.11799360827912
1025 => 0.1167314963266
1026 => 0.11640223487663
1027 => 0.11743019872712
1028 => 0.11715936657102
1029 => 0.1122917493908
1030 => 0.1117830563123
1031 => 0.11179865720278
1101 => 0.11051952426985
1102 => 0.10856853952007
1103 => 0.11369561095526
1104 => 0.11328383536569
1105 => 0.11282926698371
1106 => 0.11288494901678
1107 => 0.11511043695422
1108 => 0.11381954156067
1109 => 0.11725159853802
1110 => 0.11654607080055
1111 => 0.11582244893882
1112 => 0.11572242235547
1113 => 0.11544388967521
1114 => 0.11448869747719
1115 => 0.11333524549992
1116 => 0.11257363659422
1117 => 0.10384322913826
1118 => 0.10546354197964
1119 => 0.10732756420749
1120 => 0.10797101721094
1121 => 0.10687034632294
1122 => 0.11453215867251
1123 => 0.11593204561984
1124 => 0.11169169674402
1125 => 0.11089850060166
1126 => 0.11458416047955
1127 => 0.11236125701959
1128 => 0.1133622303115
1129 => 0.1111986735575
1130 => 0.1155948538477
1201 => 0.11556136231951
1202 => 0.11385114889439
1203 => 0.11529660957026
1204 => 0.11504542520679
1205 => 0.11311459846189
1206 => 0.11565606449947
1207 => 0.11565732503492
1208 => 0.11401128179648
1209 => 0.11208906365919
1210 => 0.11174541645701
1211 => 0.11148652445267
1212 => 0.1132985587488
1213 => 0.11492322303263
1214 => 0.1179463204764
1215 => 0.11870639900079
1216 => 0.12167303608277
1217 => 0.11990654814339
1218 => 0.12068960936707
1219 => 0.12153973309615
1220 => 0.12194731367413
1221 => 0.12128318299428
1222 => 0.12589159149914
1223 => 0.12628068237493
1224 => 0.12641114117997
1225 => 0.12485721176105
1226 => 0.12623746478676
1227 => 0.1255916901052
1228 => 0.12727181642523
1229 => 0.12753528168514
1230 => 0.12731213598305
1231 => 0.12739576401506
]
'min_raw' => 0.057128468581378
'max_raw' => 0.12753528168514
'avg_raw' => 0.09233187513326
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.057128'
'max' => '$0.127535'
'avg' => '$0.092331'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0088090939424223
'max_diff' => -0.012170240414797
'year' => 2031
]
6 => [
'items' => [
101 => 0.12346330033513
102 => 0.12325938134793
103 => 0.12047893148799
104 => 0.12161198535797
105 => 0.11949379545674
106 => 0.12016549529419
107 => 0.12046157418235
108 => 0.12030691937351
109 => 0.12167604652375
110 => 0.12051200875185
111 => 0.11743992168625
112 => 0.11436699763258
113 => 0.11432841957424
114 => 0.11351937291252
115 => 0.11293458036039
116 => 0.11304723215256
117 => 0.11344423176158
118 => 0.11291150602141
119 => 0.11302519006796
120 => 0.11491310271345
121 => 0.11529171013053
122 => 0.11400505419583
123 => 0.10883894495447
124 => 0.10757116878843
125 => 0.10848242115549
126 => 0.1080469012162
127 => 0.087202281996366
128 => 0.092099416089459
129 => 0.089189705302304
130 => 0.090530633902381
131 => 0.087560572654651
201 => 0.088978041556315
202 => 0.088716286807854
203 => 0.096590733512816
204 => 0.096467784858465
205 => 0.096526633873004
206 => 0.093717617078735
207 => 0.098192457105124
208 => 0.10039692421217
209 => 0.099988936020645
210 => 0.10009161785869
211 => 0.098327203679865
212 => 0.096543717259074
213 => 0.094565556341824
214 => 0.098240734817996
215 => 0.097832117708834
216 => 0.098769338341455
217 => 0.10115295429044
218 => 0.1015039507934
219 => 0.10197569365284
220 => 0.10180660741867
221 => 0.10583492750417
222 => 0.1053470713621
223 => 0.10652266429869
224 => 0.10410438043568
225 => 0.10136786269908
226 => 0.1018879852573
227 => 0.10183789327238
228 => 0.10120016481147
229 => 0.10062445207172
301 => 0.099666052566097
302 => 0.10269857041832
303 => 0.10257545573155
304 => 0.10456853940523
305 => 0.10421624250612
306 => 0.10186351759223
307 => 0.1019475456228
308 => 0.10251267451088
309 => 0.10446859204504
310 => 0.1050492415382
311 => 0.10478026155809
312 => 0.10541691721968
313 => 0.10592010389606
314 => 0.10548010971904
315 => 0.11170949940013
316 => 0.109122622493
317 => 0.11038344829816
318 => 0.11068414782347
319 => 0.10991391231241
320 => 0.1100809488147
321 => 0.11033396360093
322 => 0.11187021983759
323 => 0.11590180072189
324 => 0.11768736045164
325 => 0.12305930499659
326 => 0.11753909457228
327 => 0.1172115481306
328 => 0.11817919756033
329 => 0.12133309768629
330 => 0.12388903750761
331 => 0.12473699020204
401 => 0.12484906114879
402 => 0.12643987677438
403 => 0.12735170262401
404 => 0.12624670991483
405 => 0.12531034429135
406 => 0.12195639885404
407 => 0.1223446271709
408 => 0.12501913528656
409 => 0.12879703552767
410 => 0.13203886695807
411 => 0.13090369058038
412 => 0.13956428503255
413 => 0.14042294759713
414 => 0.14030430819459
415 => 0.14226046930282
416 => 0.13837788786826
417 => 0.13671800908352
418 => 0.12551279716735
419 => 0.12866100466114
420 => 0.1332371091411
421 => 0.13263144455367
422 => 0.12930815516069
423 => 0.13203634594506
424 => 0.13113432075333
425 => 0.13042285605956
426 => 0.13368221374595
427 => 0.13009841608273
428 => 0.13320135801795
429 => 0.12922180289021
430 => 0.13090887597045
501 => 0.12995121169556
502 => 0.13057093784833
503 => 0.12694803142231
504 => 0.12890286378871
505 => 0.12686670396898
506 => 0.12686573856411
507 => 0.12682079022323
508 => 0.12921632322143
509 => 0.1292944414665
510 => 0.12752413896138
511 => 0.12726901071307
512 => 0.1282123535652
513 => 0.12710794614724
514 => 0.12762469142705
515 => 0.12712359783535
516 => 0.12701079111321
517 => 0.12611192795874
518 => 0.12572467299704
519 => 0.12587652564586
520 => 0.12535817427005
521 => 0.12504584881653
522 => 0.12675866082941
523 => 0.12584357446557
524 => 0.12661841071997
525 => 0.12573538701595
526 => 0.12267444214271
527 => 0.12091406037721
528 => 0.1151322192614
529 => 0.11677194222949
530 => 0.11785908025375
531 => 0.11749978114322
601 => 0.11827169466294
602 => 0.11831908388383
603 => 0.11806812692984
604 => 0.1177775509267
605 => 0.11763611459823
606 => 0.11869026511402
607 => 0.11930223496952
608 => 0.11796818909851
609 => 0.11765564081622
610 => 0.1190044348465
611 => 0.1198271984258
612 => 0.1259020224244
613 => 0.12545197984116
614 => 0.12658149840869
615 => 0.12645433195186
616 => 0.12763824735706
617 => 0.12957344868457
618 => 0.12563864329494
619 => 0.12632158945524
620 => 0.12615414682827
621 => 0.12798224152379
622 => 0.12798794863588
623 => 0.12689191454582
624 => 0.12748609240716
625 => 0.12715443862538
626 => 0.12775378183476
627 => 0.12544596924808
628 => 0.12825663586569
629 => 0.12985010272251
630 => 0.12987222801137
701 => 0.13062751865497
702 => 0.13139493769235
703 => 0.13286793170649
704 => 0.13135385668876
705 => 0.1286301831241
706 => 0.12882682355806
707 => 0.12722993474365
708 => 0.12725677873312
709 => 0.12711348341352
710 => 0.12754352345441
711 => 0.12554033885381
712 => 0.12601048227566
713 => 0.12535227873191
714 => 0.12632015864928
715 => 0.12527887985447
716 => 0.12615406608236
717 => 0.12653176744544
718 => 0.12792549360651
719 => 0.12507302536728
720 => 0.11925664953235
721 => 0.12047932224959
722 => 0.11867089326192
723 => 0.11883827024991
724 => 0.11917639840348
725 => 0.1180804144291
726 => 0.11828949363298
727 => 0.11828202385255
728 => 0.1182176533203
729 => 0.11793254555966
730 => 0.11751908289986
731 => 0.11916619087938
801 => 0.1194460666211
802 => 0.12006819572569
803 => 0.12191922994673
804 => 0.12173426797765
805 => 0.12203594862321
806 => 0.12137738146782
807 => 0.11886881929143
808 => 0.11900504628667
809 => 0.1173062934732
810 => 0.12002475479693
811 => 0.11938098727353
812 => 0.11896594616324
813 => 0.11885269835097
814 => 0.12070832092782
815 => 0.12126355228613
816 => 0.12091756936382
817 => 0.12020794829623
818 => 0.12157063052664
819 => 0.12193522680455
820 => 0.12201684646538
821 => 0.12443125810927
822 => 0.12215178525551
823 => 0.12270047702742
824 => 0.12698121360091
825 => 0.12309917623002
826 => 0.12515557800514
827 => 0.12505492783925
828 => 0.12610691340256
829 => 0.1249686343179
830 => 0.12498274465137
831 => 0.12591683656392
901 => 0.12460507293711
902 => 0.12428026181574
903 => 0.12383153757791
904 => 0.12481131053497
905 => 0.1253986401114
906 => 0.13013208515144
907 => 0.13319010651863
908 => 0.13305734974612
909 => 0.13427049813657
910 => 0.13372396367551
911 => 0.13195905973223
912 => 0.1349715355563
913 => 0.13401826215822
914 => 0.13409684885893
915 => 0.13409392385801
916 => 0.13472776733112
917 => 0.13427863113952
918 => 0.13339333760298
919 => 0.13398103676746
920 => 0.13572629317964
921 => 0.14114362263406
922 => 0.14417523196682
923 => 0.14096111594563
924 => 0.14317817013832
925 => 0.14184872763989
926 => 0.14160712839043
927 => 0.14299960226246
928 => 0.14439451347567
929 => 0.14430566366176
930 => 0.14329302975045
1001 => 0.14272101854859
1002 => 0.1470524790069
1003 => 0.15024382528809
1004 => 0.15002619686677
1005 => 0.15098673794192
1006 => 0.15380691624698
1007 => 0.15406475800757
1008 => 0.15403227587216
1009 => 0.15339318816553
1010 => 0.1561700199533
1011 => 0.15848650188436
1012 => 0.15324525782647
1013 => 0.15524105495079
1014 => 0.15613703258046
1015 => 0.15745259356541
1016 => 0.15967216546064
1017 => 0.16208320925122
1018 => 0.16242415727896
1019 => 0.16218223833742
1020 => 0.16059209014519
1021 => 0.16323028303058
1022 => 0.16477567454961
1023 => 0.16569591983353
1024 => 0.16802950875935
1025 => 0.15614256583328
1026 => 0.1477283968108
1027 => 0.14641440281587
1028 => 0.14908646127483
1029 => 0.14979106178119
1030 => 0.14950703820057
1031 => 0.140036125983
1101 => 0.1463645404231
1102 => 0.15317338225244
1103 => 0.15343493759699
1104 => 0.15684358618293
1105 => 0.15795358188774
1106 => 0.1606979907812
1107 => 0.1605263272577
1108 => 0.16119454715017
1109 => 0.16104093496885
1110 => 0.16612437454052
1111 => 0.17173216328615
1112 => 0.17153798339357
1113 => 0.17073179741304
1114 => 0.17192912106926
1115 => 0.17771696002192
1116 => 0.17718410855939
1117 => 0.17770172836706
1118 => 0.18452591668055
1119 => 0.19339833221756
1120 => 0.18927620442466
1121 => 0.19822003562493
1122 => 0.20384970327338
1123 => 0.21358563135287
1124 => 0.21236664520686
1125 => 0.21615677056266
1126 => 0.21018440559542
1127 => 0.19647064841652
1128 => 0.1943003938488
1129 => 0.19864529845296
1130 => 0.20932682245271
1201 => 0.1983088992499
1202 => 0.20053781076405
1203 => 0.19989588409803
1204 => 0.19986167855401
1205 => 0.20116716504524
1206 => 0.19927348880011
1207 => 0.19155831111162
1208 => 0.19509413158043
1209 => 0.19372878149337
1210 => 0.19524373920855
1211 => 0.20341934118127
1212 => 0.19980471266712
1213 => 0.19599699515604
1214 => 0.2007727179151
1215 => 0.20685385410376
1216 => 0.20647330752992
1217 => 0.20573488812056
1218 => 0.20989731966877
1219 => 0.2167724371084
1220 => 0.21863075372588
1221 => 0.22000252506129
1222 => 0.22019166915217
1223 => 0.2221399708407
1224 => 0.21166346162625
1225 => 0.22828995080542
1226 => 0.23116088618917
1227 => 0.2306212693251
1228 => 0.23381219317671
1229 => 0.23287334243364
1230 => 0.2315130950081
1231 => 0.23657138804187
]
'min_raw' => 0.087202281996366
'max_raw' => 0.23657138804187
'avg_raw' => 0.16188683501912
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0872022'
'max' => '$0.236571'
'avg' => '$0.161886'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.030073813414988
'max_diff' => 0.10903610635673
'year' => 2032
]
7 => [
'items' => [
101 => 0.23077246326186
102 => 0.22254161960096
103 => 0.21802601598097
104 => 0.22397252709113
105 => 0.22760385392147
106 => 0.23000392996056
107 => 0.23073019151982
108 => 0.21247672321377
109 => 0.20263911618058
110 => 0.20894490950046
111 => 0.21663841255333
112 => 0.21162072382834
113 => 0.21181740772662
114 => 0.20466350223018
115 => 0.21727137445028
116 => 0.21543451351671
117 => 0.22496415128943
118 => 0.22268982675485
119 => 0.23046087642009
120 => 0.228414498607
121 => 0.23690889849771
122 => 0.24029754459081
123 => 0.24598760878178
124 => 0.25017324316338
125 => 0.25263112773068
126 => 0.25248356556056
127 => 0.26222292872945
128 => 0.25647996653618
129 => 0.24926545250918
130 => 0.24913496471193
131 => 0.25287146375697
201 => 0.26070214069692
202 => 0.26273252129573
203 => 0.26386722706085
204 => 0.26212938568218
205 => 0.2558958118232
206 => 0.25320418623583
207 => 0.25549752922017
208 => 0.25269296781953
209 => 0.25753442761798
210 => 0.26418278600126
211 => 0.26280992628557
212 => 0.26739919048449
213 => 0.27214859612569
214 => 0.27894045950177
215 => 0.28071610409025
216 => 0.28365117707329
217 => 0.28667233129409
218 => 0.28764264460742
219 => 0.28949527379311
220 => 0.28948550952282
221 => 0.29506853227021
222 => 0.30122677925241
223 => 0.30355137492445
224 => 0.30889665449334
225 => 0.29974305055255
226 => 0.30668616429066
227 => 0.31294902667985
228 => 0.30548218395195
301 => 0.31577348710113
302 => 0.31617307508182
303 => 0.32220637917751
304 => 0.31609046963532
305 => 0.31245886207184
306 => 0.32294317703305
307 => 0.32801620678995
308 => 0.32648816894148
309 => 0.31485972546614
310 => 0.30809147259609
311 => 0.29037764933669
312 => 0.31136043816767
313 => 0.32158054253089
314 => 0.31483325786484
315 => 0.31823619578429
316 => 0.33680152166648
317 => 0.34386999574659
318 => 0.34239980255029
319 => 0.34264824099902
320 => 0.34646226131077
321 => 0.3633757277924
322 => 0.35324078662552
323 => 0.3609885693986
324 => 0.36509796544473
325 => 0.36891500151151
326 => 0.35954156731814
327 => 0.34734686715567
328 => 0.34348429371553
329 => 0.31416237337924
330 => 0.31263604008709
331 => 0.31177926295758
401 => 0.30637740434951
402 => 0.30213302317717
403 => 0.29875773368516
404 => 0.28989996611136
405 => 0.29288920264502
406 => 0.27877176989214
407 => 0.28780360307634
408 => 0.26527183952541
409 => 0.28403696174559
410 => 0.27382395886656
411 => 0.280681715622
412 => 0.28065778955472
413 => 0.2680304851142
414 => 0.26074731943803
415 => 0.26538843607193
416 => 0.27036408151578
417 => 0.27117136324896
418 => 0.27762241744454
419 => 0.27942276800557
420 => 0.27396762175529
421 => 0.26480491880745
422 => 0.26693320572323
423 => 0.26070418977161
424 => 0.24978807891203
425 => 0.25762822030839
426 => 0.26030518928779
427 => 0.26148749129265
428 => 0.25075274998606
429 => 0.24737966120495
430 => 0.24558385704085
501 => 0.26341919850588
502 => 0.26439625877234
503 => 0.25939748030672
504 => 0.28199243297493
505 => 0.27687849930055
506 => 0.282592016159
507 => 0.26674008599327
508 => 0.26734565107306
509 => 0.25984109329415
510 => 0.26404314419561
511 => 0.26107327005688
512 => 0.26370366000825
513 => 0.26528030489959
514 => 0.27278363125441
515 => 0.28412263767981
516 => 0.27166288451088
517 => 0.26623399162823
518 => 0.26960204623937
519 => 0.2785716195059
520 => 0.29216098214869
521 => 0.28411580595275
522 => 0.28768611853256
523 => 0.28846607299909
524 => 0.28253385792082
525 => 0.29237971138025
526 => 0.29765618423673
527 => 0.30306875357527
528 => 0.30776833587518
529 => 0.30090685435651
530 => 0.30824962313622
531 => 0.30233264767295
601 => 0.29702450899671
602 => 0.29703255925198
603 => 0.29370268632084
604 => 0.28725063792578
605 => 0.28606078120955
606 => 0.29225056610973
607 => 0.29721418742486
608 => 0.29762301505051
609 => 0.30037113085064
610 => 0.30199743747331
611 => 0.31793745323214
612 => 0.32434865943307
613 => 0.33218816101763
614 => 0.33524208869493
615 => 0.3444333161099
616 => 0.33701065349731
617 => 0.33540471375035
618 => 0.31310980246919
619 => 0.31676059294249
620 => 0.32260586073914
621 => 0.31320618878221
622 => 0.31916811713264
623 => 0.32034512807992
624 => 0.31288679152594
625 => 0.31687061133512
626 => 0.3062907670422
627 => 0.28435324937401
628 => 0.29240413410859
629 => 0.29833229517174
630 => 0.28987207839764
701 => 0.3050366895096
702 => 0.29617783675911
703 => 0.29337000573712
704 => 0.28241565585633
705 => 0.28758568732847
706 => 0.29457822892226
707 => 0.29025765118751
708 => 0.29922349872513
709 => 0.31192152994258
710 => 0.32097090316897
711 => 0.32166560167878
712 => 0.31584746095513
713 => 0.32517106859566
714 => 0.32523898089851
715 => 0.31472191339194
716 => 0.30828026810344
717 => 0.30681671274055
718 => 0.31047296098397
719 => 0.31491232133214
720 => 0.32191195528173
721 => 0.32614168748034
722 => 0.33717058577771
723 => 0.34015468943368
724 => 0.3434333146279
725 => 0.34781456897793
726 => 0.35307538815571
727 => 0.34156501529334
728 => 0.34202234386518
729 => 0.33130404402769
730 => 0.31985000349166
731 => 0.3285421924922
801 => 0.33990607333696
802 => 0.3372991865152
803 => 0.33700585849389
804 => 0.33749915486333
805 => 0.33553364733268
806 => 0.32664372961669
807 => 0.32217926859355
808 => 0.32793956231888
809 => 0.33100090207272
810 => 0.33574877305403
811 => 0.33516349774019
812 => 0.34739350350394
813 => 0.35214571392755
814 => 0.35092989514264
815 => 0.35115363505938
816 => 0.35975728503618
817 => 0.36932631328595
818 => 0.37828897098635
819 => 0.38740617135431
820 => 0.37641503046035
821 => 0.37083440695373
822 => 0.37659218591502
823 => 0.37353702735155
824 => 0.39109287467612
825 => 0.39230840345449
826 => 0.40986298129148
827 => 0.42652436601902
828 => 0.41605964879137
829 => 0.42592740579583
830 => 0.43660018952619
831 => 0.45718972093882
901 => 0.4502558911075
902 => 0.44494468612367
903 => 0.43992562307751
904 => 0.45036949652275
905 => 0.4638053728651
906 => 0.46669933194202
907 => 0.47138865122408
908 => 0.46645840538167
909 => 0.47239634345008
910 => 0.49335987409378
911 => 0.48769534306365
912 => 0.47965079838206
913 => 0.49619949246638
914 => 0.50218840052407
915 => 0.54422169368847
916 => 0.59729046261726
917 => 0.57531964381242
918 => 0.56168164758636
919 => 0.56488690019708
920 => 0.58426581811868
921 => 0.59048971149898
922 => 0.5735710237866
923 => 0.57954699030777
924 => 0.61247515338347
925 => 0.63014005641163
926 => 0.60614874538639
927 => 0.53995766977695
928 => 0.47892647515075
929 => 0.49511469623613
930 => 0.49327945434404
1001 => 0.52865665769688
1002 => 0.48756024587197
1003 => 0.48825220404948
1004 => 0.52436097050254
1005 => 0.51472777067384
1006 => 0.49912322067836
1007 => 0.47904040563475
1008 => 0.44191546459109
1009 => 0.40903286900315
1010 => 0.4735232113606
1011 => 0.47074227053007
1012 => 0.46671505609512
1013 => 0.47567718602998
1014 => 0.51919474504873
1015 => 0.51819152446075
1016 => 0.5118095469277
1017 => 0.51665022063835
1018 => 0.49827462717257
1019 => 0.50301043601319
1020 => 0.47891680749771
1021 => 0.48980813382551
1022 => 0.49908974032243
1023 => 0.50095316024322
1024 => 0.50515154047333
1025 => 0.46927684107931
1026 => 0.48538352788139
1027 => 0.49484469738515
1028 => 0.45209878936686
1029 => 0.4939997482222
1030 => 0.46865234237686
1031 => 0.46004905212769
1101 => 0.47163224905089
1102 => 0.46711826594489
1103 => 0.46323740834034
1104 => 0.4610718231154
1105 => 0.469577244545
1106 => 0.46918045646913
1107 => 0.45526393617914
1108 => 0.43711040277077
1109 => 0.44320332445204
1110 => 0.44098970888379
1111 => 0.43296728050236
1112 => 0.43837342859975
1113 => 0.41456748836779
1114 => 0.37361060552382
1115 => 0.4006679768738
1116 => 0.39962629750958
1117 => 0.39910103553774
1118 => 0.41943390229644
1119 => 0.41747936631664
1120 => 0.41393186437443
1121 => 0.43290212784721
1122 => 0.42597772649359
1123 => 0.44731709987129
1124 => 0.46137259132197
1125 => 0.45780766404256
1126 => 0.47102692168802
1127 => 0.4433436930616
1128 => 0.45253895115294
1129 => 0.45443408110149
1130 => 0.43266803774063
1201 => 0.41779915257509
1202 => 0.41680756745225
1203 => 0.39102696963378
1204 => 0.40479875689469
1205 => 0.41691735976901
1206 => 0.41111348943378
1207 => 0.40927615747135
1208 => 0.41866268799876
1209 => 0.41939210181094
1210 => 0.40276138959348
1211 => 0.40621944128965
1212 => 0.42064009171595
1213 => 0.40585607789849
1214 => 0.37713315400611
1215 => 0.37000947175531
1216 => 0.36905904122754
1217 => 0.349739049977
1218 => 0.37048551026652
1219 => 0.36142912437958
1220 => 0.39003813888427
1221 => 0.37369682323241
1222 => 0.37299238177563
1223 => 0.37192751519462
1224 => 0.35529800062649
1225 => 0.35893880745613
1226 => 0.37104140386837
1227 => 0.37535974661377
1228 => 0.37490930808629
1229 => 0.37098209454341
1230 => 0.37277995279275
1231 => 0.36698842495628
]
'min_raw' => 0.20263911618058
'max_raw' => 0.63014005641163
'avg_raw' => 0.4163895862961
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.202639'
'max' => '$0.63014'
'avg' => '$0.416389'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.11543683418421
'max_diff' => 0.39356866836976
'year' => 2033
]
8 => [
'items' => [
101 => 0.36494331593699
102 => 0.35848838932057
103 => 0.34900143041342
104 => 0.35032065023636
105 => 0.33152450224346
106 => 0.32128336322986
107 => 0.31844875092693
108 => 0.31465818888886
109 => 0.31887690499543
110 => 0.33147125511781
111 => 0.31627979682979
112 => 0.29023510715188
113 => 0.29180043737952
114 => 0.2953172696503
115 => 0.28876367597987
116 => 0.28256124957224
117 => 0.28795375611492
118 => 0.27691827775731
119 => 0.29665085448719
120 => 0.29611714358655
121 => 0.30347222793709
122 => 0.30807151312301
123 => 0.29747164980573
124 => 0.29480581284652
125 => 0.29632439473402
126 => 0.27122561881652
127 => 0.30142112247836
128 => 0.30168225444793
129 => 0.29944628398671
130 => 0.31552445750506
131 => 0.34945441853685
201 => 0.33668860236717
202 => 0.33174529249743
203 => 0.32234805682153
204 => 0.33486931540703
205 => 0.33390787810972
206 => 0.32955989403705
207 => 0.32693021970335
208 => 0.3317754752934
209 => 0.32632983891568
210 => 0.32535165298616
211 => 0.31942491053006
212 => 0.31730933312284
213 => 0.31574304383409
214 => 0.31401871322759
215 => 0.31782215686912
216 => 0.30920305319273
217 => 0.29880925910015
218 => 0.29794512758376
219 => 0.30033107067573
220 => 0.29927546847011
221 => 0.29794007376652
222 => 0.29539044160427
223 => 0.294634020206
224 => 0.29709202278688
225 => 0.29431708118352
226 => 0.29841165867817
227 => 0.29729816016293
228 => 0.29107824797269
301 => 0.2833259344772
302 => 0.28325692262606
303 => 0.2815866993998
304 => 0.27945941900142
305 => 0.27886765826017
306 => 0.28749961425482
307 => 0.30536750483104
308 => 0.30185961036854
309 => 0.30439442362118
310 => 0.31686319602727
311 => 0.3208266438261
312 => 0.3180134824579
313 => 0.31416265366887
314 => 0.3143320705923
315 => 0.32749151828957
316 => 0.32831225690074
317 => 0.33038599859086
318 => 0.333051342702
319 => 0.3184674020853
320 => 0.31364516830076
321 => 0.3113601264063
322 => 0.30432308179388
323 => 0.31191193109777
324 => 0.30749023359532
325 => 0.3080868716551
326 => 0.30769831033596
327 => 0.30791049109061
328 => 0.29664533882984
329 => 0.30074976823469
330 => 0.29392535828196
331 => 0.28478823943121
401 => 0.28475760860493
402 => 0.2869939054991
403 => 0.28566366860014
404 => 0.28208403530856
405 => 0.28259250532224
406 => 0.27813777296513
407 => 0.28313339048592
408 => 0.28327664692124
409 => 0.28135306206261
410 => 0.28904950011576
411 => 0.29220273706582
412 => 0.29093659230469
413 => 0.2921139009741
414 => 0.30200537922065
415 => 0.30361812177029
416 => 0.30433439547905
417 => 0.3033746835974
418 => 0.29229469903841
419 => 0.29278614346933
420 => 0.28918025031371
421 => 0.28613365057688
422 => 0.28625549858904
423 => 0.28782184688402
424 => 0.29466218175329
425 => 0.30905726322592
426 => 0.30960354604513
427 => 0.31026565675822
428 => 0.30757251973791
429 => 0.30676024384274
430 => 0.30783184541467
501 => 0.31323788115836
502 => 0.32714367281552
503 => 0.32222843730728
504 => 0.31823227432889
505 => 0.32173798661874
506 => 0.3211983096904
507 => 0.31664289330353
508 => 0.31651503793784
509 => 0.30777173743671
510 => 0.30453953831676
511 => 0.30183847080623
512 => 0.29888897559787
513 => 0.29714041597038
514 => 0.29982699826434
515 => 0.30044145142168
516 => 0.29456719228252
517 => 0.29376655246798
518 => 0.29856359928571
519 => 0.29645259783316
520 => 0.29862381517743
521 => 0.29912755622565
522 => 0.29904644231475
523 => 0.29684231435131
524 => 0.29824715978717
525 => 0.29492428152679
526 => 0.29131115049881
527 => 0.28900619800898
528 => 0.28699482125402
529 => 0.28811084997957
530 => 0.28413241135176
531 => 0.28285962876458
601 => 0.29777122976352
602 => 0.30878658974817
603 => 0.30862642205143
604 => 0.30765144238932
605 => 0.30620282037884
606 => 0.31313190543539
607 => 0.31071795075311
608 => 0.31247430447713
609 => 0.31292137021383
610 => 0.31427450355122
611 => 0.3147581324136
612 => 0.31329627008965
613 => 0.30839008157903
614 => 0.29616432627699
615 => 0.29047320418109
616 => 0.28859503909631
617 => 0.28866330683
618 => 0.28678017797429
619 => 0.28733484381821
620 => 0.28658728782953
621 => 0.28517159764019
622 => 0.28802343509969
623 => 0.2883520828002
624 => 0.28768642986023
625 => 0.28784321522458
626 => 0.28233189318574
627 => 0.28275090703039
628 => 0.28041778469767
629 => 0.27998035238649
630 => 0.27408242229757
701 => 0.26363338422642
702 => 0.2694231656305
703 => 0.26242992386083
704 => 0.25978147723775
705 => 0.27231881163346
706 => 0.27106041099165
707 => 0.2689065761065
708 => 0.26572060541283
709 => 0.26453889789142
710 => 0.25735921707445
711 => 0.25693500322968
712 => 0.26049344691026
713 => 0.25885134759024
714 => 0.2565452182333
715 => 0.24819265147103
716 => 0.23880160099042
717 => 0.23908505777439
718 => 0.24207217620557
719 => 0.25075762591201
720 => 0.2473640704519
721 => 0.24490200702902
722 => 0.24444093655927
723 => 0.2502121988046
724 => 0.25837974399857
725 => 0.26221177346505
726 => 0.25841434864423
727 => 0.25405207147794
728 => 0.25431758307621
729 => 0.25608391278818
730 => 0.25626952906635
731 => 0.25343013508044
801 => 0.25422940785563
802 => 0.25301523942308
803 => 0.24556388999372
804 => 0.24542911871103
805 => 0.24360043739182
806 => 0.24354506564824
807 => 0.24043402253834
808 => 0.23999876610164
809 => 0.23382160118011
810 => 0.23788742983764
811 => 0.23516028543975
812 => 0.23104983556381
813 => 0.23034119245587
814 => 0.23031988978834
815 => 0.23454040273116
816 => 0.2378381106866
817 => 0.23520772528414
818 => 0.23460883751588
819 => 0.24100339206273
820 => 0.24018962670898
821 => 0.23948491116087
822 => 0.25764842990887
823 => 0.24327058750278
824 => 0.23700102755517
825 => 0.22924125656287
826 => 0.23176787712612
827 => 0.23230027320258
828 => 0.21363942276994
829 => 0.20606871807348
830 => 0.20347073751764
831 => 0.2019755629777
901 => 0.20265693279077
902 => 0.19584241060886
903 => 0.2004218822169
904 => 0.19452108202459
905 => 0.19353179366948
906 => 0.20408315538221
907 => 0.20555131572437
908 => 0.19928768758303
909 => 0.20330995083906
910 => 0.20185142226878
911 => 0.19462223430756
912 => 0.19434613250175
913 => 0.19071878010105
914 => 0.18504267598779
915 => 0.18244854409783
916 => 0.18109749768625
917 => 0.18165496576703
918 => 0.18137309284658
919 => 0.17953368137445
920 => 0.18147852575903
921 => 0.17651025202162
922 => 0.17453184538728
923 => 0.17363824500923
924 => 0.16922861610411
925 => 0.17624629666303
926 => 0.17762886813955
927 => 0.17901416370897
928 => 0.19107221585936
929 => 0.19046982964963
930 => 0.19591510761162
1001 => 0.19570351412324
1002 => 0.19415043264082
1003 => 0.18759823733602
1004 => 0.19020982560286
1005 => 0.18217176284845
1006 => 0.18819442599919
1007 => 0.18544593404962
1008 => 0.18726515810631
1009 => 0.18399402921956
1010 => 0.18580440700709
1011 => 0.17795672712665
1012 => 0.17062867407413
1013 => 0.17357769654167
1014 => 0.17678362122551
1015 => 0.18373488279449
1016 => 0.17959476875067
1017 => 0.18108371031587
1018 => 0.17609600531825
1019 => 0.16580494524066
1020 => 0.16586319152309
1021 => 0.16428013613308
1022 => 0.16291214514625
1023 => 0.18007031065171
1024 => 0.17793642154065
1025 => 0.17453634851868
1026 => 0.17908748137212
1027 => 0.18029087313476
1028 => 0.18032513200647
1029 => 0.18364552105461
1030 => 0.18541761328481
1031 => 0.18572995222107
1101 => 0.19095465613005
1102 => 0.19270590796484
1103 => 0.19991906642586
1104 => 0.18526726363999
1105 => 0.1849655194035
1106 => 0.17915152514458
1107 => 0.17546419806995
1108 => 0.17940399958402
1109 => 0.18289412588895
1110 => 0.17925997309756
1111 => 0.17973451673096
1112 => 0.17485596352971
1113 => 0.1765998167419
1114 => 0.17810185805063
1115 => 0.17727251912585
1116 => 0.17603095861501
1117 => 0.18260797533282
1118 => 0.18223687427407
1119 => 0.18836154344665
1120 => 0.19313616104598
1121 => 0.20169312934895
1122 => 0.19276348683995
1123 => 0.19243805517481
1124 => 0.19561920190246
1125 => 0.19270542094785
1126 => 0.19454682993086
1127 => 0.20139644989372
1128 => 0.20154117157004
1129 => 0.19911689702824
1130 => 0.19896937970206
1201 => 0.19943498814647
1202 => 0.20216207134839
1203 => 0.20120914468284
1204 => 0.20231189554537
1205 => 0.20369090238489
1206 => 0.20939505935991
1207 => 0.21077031229525
1208 => 0.20742916064926
1209 => 0.2077308292336
1210 => 0.20648114680134
1211 => 0.20527396923024
1212 => 0.20798752811594
1213 => 0.21294661031467
1214 => 0.21291576012169
1215 => 0.21406617080101
1216 => 0.21478286712372
1217 => 0.21170628185291
1218 => 0.20970353797078
1219 => 0.21047151741309
1220 => 0.21169953326576
1221 => 0.21007328842286
1222 => 0.20003535190255
1223 => 0.20308022061694
1224 => 0.2025734055764
1225 => 0.20185163932784
1226 => 0.20491327836544
1227 => 0.20461797581134
1228 => 0.19577251783434
1229 => 0.19633877535501
1230 => 0.19580695382967
1231 => 0.19752537797847
]
'min_raw' => 0.16291214514625
'max_raw' => 0.36494331593699
'avg_raw' => 0.26392773054162
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.162912'
'max' => '$0.364943'
'avg' => '$0.263927'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.03972697103433
'max_diff' => -0.26519674047464
'year' => 2034
]
9 => [
'items' => [
101 => 0.19261262040442
102 => 0.19412375154627
103 => 0.19507151883247
104 => 0.19562976104513
105 => 0.19764651470752
106 => 0.19740987194253
107 => 0.19763180466099
108 => 0.2006221179391
109 => 0.21574609634816
110 => 0.21656926112379
111 => 0.21251569671023
112 => 0.21413501574042
113 => 0.21102627730859
114 => 0.21311319424462
115 => 0.2145410098103
116 => 0.20808898582211
117 => 0.20770693883481
118 => 0.20458536953363
119 => 0.20626272406137
120 => 0.20359393240168
121 => 0.2042487605246
122 => 0.20241780400604
123 => 0.20571316119965
124 => 0.20939788258884
125 => 0.21032878872581
126 => 0.20787997545974
127 => 0.20610687327044
128 => 0.20299388992222
129 => 0.20817085060768
130 => 0.20968475167712
131 => 0.20816289872985
201 => 0.20781025214882
202 => 0.20714198751499
203 => 0.20795202764997
204 => 0.20967650664677
205 => 0.20886327419801
206 => 0.20940042855773
207 => 0.20735335004965
208 => 0.21170730033065
209 => 0.21862242121207
210 => 0.21864465445644
211 => 0.21783141762405
212 => 0.21749865863367
213 => 0.21833308897504
214 => 0.2187857332051
215 => 0.22148412792073
216 => 0.22437961295939
217 => 0.23789157823571
218 => 0.23409747245512
219 => 0.24608609187868
220 => 0.25556753331531
221 => 0.25841060302898
222 => 0.25579511266917
223 => 0.2468476614343
224 => 0.24640865679065
225 => 0.25977992645202
226 => 0.25600193032973
227 => 0.25555254971247
228 => 0.25077189918534
301 => 0.25359785574196
302 => 0.25297977758875
303 => 0.25200411098648
304 => 0.25739583923867
305 => 0.26748867320388
306 => 0.2659156103804
307 => 0.26474139195496
308 => 0.25959630862453
309 => 0.26269479798542
310 => 0.26159148527166
311 => 0.26633201686951
312 => 0.26352383096658
313 => 0.25597330829335
314 => 0.25717575391591
315 => 0.25699400667904
316 => 0.26073435193498
317 => 0.25961159313022
318 => 0.25677477000278
319 => 0.26745417699461
320 => 0.26676071570655
321 => 0.26774388526571
322 => 0.26817670691118
323 => 0.27467707375485
324 => 0.27734006606216
325 => 0.27794461193816
326 => 0.28047424866689
327 => 0.27788167227191
328 => 0.2882538263275
329 => 0.29515070354251
330 => 0.30316178133779
331 => 0.31486811917141
401 => 0.31926981048654
402 => 0.31847468434847
403 => 0.32735029609134
404 => 0.3432995730995
405 => 0.3216984892391
406 => 0.34444448299563
407 => 0.33724336398744
408 => 0.32016964036162
409 => 0.31907029384609
410 => 0.33063281771551
411 => 0.35627738280619
412 => 0.34985371010922
413 => 0.35628788963351
414 => 0.34878207744686
415 => 0.34840935060785
416 => 0.35592334908889
417 => 0.37348021610658
418 => 0.36513960669579
419 => 0.3531812979041
420 => 0.36201112702399
421 => 0.35436191187823
422 => 0.33712608927433
423 => 0.34984879804778
424 => 0.34134148501285
425 => 0.34382437123008
426 => 0.36170547786217
427 => 0.35955397580466
428 => 0.36233821869081
429 => 0.35742410287308
430 => 0.35283354381438
501 => 0.34426492443193
502 => 0.34172817866062
503 => 0.34242924392926
504 => 0.34172783124749
505 => 0.33693376745269
506 => 0.33589848983265
507 => 0.33417298177602
508 => 0.33470778887433
509 => 0.33146332891269
510 => 0.33758629519993
511 => 0.33872277169824
512 => 0.34317855594908
513 => 0.3436411702515
514 => 0.35605046596597
515 => 0.34921563441618
516 => 0.35380102951074
517 => 0.35339086861407
518 => 0.32053967972465
519 => 0.32506628370512
520 => 0.33210825897215
521 => 0.32893585865952
522 => 0.32445082684482
523 => 0.32082892318225
524 => 0.3153413687748
525 => 0.32306499622414
526 => 0.33322074500381
527 => 0.34389873680009
528 => 0.35672764429358
529 => 0.35386438148598
530 => 0.3436589092981
531 => 0.34411671932534
601 => 0.34694672077217
602 => 0.34328161176578
603 => 0.34220069956837
604 => 0.34679822003479
605 => 0.34682988063149
606 => 0.34261272977641
607 => 0.33792613833146
608 => 0.33790650134219
609 => 0.33707256766166
610 => 0.34893043239604
611 => 0.35545105903459
612 => 0.35619863837019
613 => 0.35540074098891
614 => 0.35570782002355
615 => 0.35191361105478
616 => 0.36058604761967
617 => 0.36854473302671
618 => 0.36641163532511
619 => 0.3632138186327
620 => 0.36066660360949
621 => 0.36581159241729
622 => 0.36558249416465
623 => 0.36847522085268
624 => 0.36834399006091
625 => 0.36737127487668
626 => 0.36641167006383
627 => 0.37021639467797
628 => 0.36912069509111
629 => 0.36802329358014
630 => 0.36582228684614
701 => 0.36612144021614
702 => 0.36292417567188
703 => 0.36144497479683
704 => 0.33920134273527
705 => 0.33325711741677
706 => 0.33512729170783
707 => 0.33574300164351
708 => 0.33315606716717
709 => 0.3368650666773
710 => 0.33628702303245
711 => 0.33853585271034
712 => 0.33713088156043
713 => 0.33718854206649
714 => 0.34132026264696
715 => 0.34251971870906
716 => 0.34190966567508
717 => 0.34233692590869
718 => 0.35218295765691
719 => 0.35078316680069
720 => 0.35003955580718
721 => 0.35024554113431
722 => 0.35276141334728
723 => 0.35346572020539
724 => 0.35048152255684
725 => 0.35188888741934
726 => 0.35788126838264
727 => 0.35997826258041
728 => 0.36667086144537
729 => 0.36382772649608
730 => 0.36904642374351
731 => 0.3850869198971
801 => 0.3979011781425
802 => 0.38611665668841
803 => 0.40964841007014
804 => 0.42797125550735
805 => 0.42726799418118
806 => 0.42407298226415
807 => 0.40321290987193
808 => 0.38401716025045
809 => 0.4000752199034
810 => 0.40011615519983
811 => 0.39873675363445
812 => 0.39016940898074
813 => 0.3984386286113
814 => 0.39909500923618
815 => 0.39872761063194
816 => 0.39215904757314
817 => 0.38213006585574
818 => 0.38408970487733
819 => 0.38729963357025
820 => 0.38122256889328
821 => 0.37928057850665
822 => 0.38289110811418
823 => 0.39452498679334
824 => 0.39232566941952
825 => 0.39226823635475
826 => 0.40167784873568
827 => 0.39494259699238
828 => 0.38411442220102
829 => 0.38138016526013
830 => 0.37167539513612
831 => 0.37837851442798
901 => 0.37861974775796
902 => 0.37494851782603
903 => 0.3844123222767
904 => 0.38432511165261
905 => 0.39330958547712
906 => 0.41048452501532
907 => 0.40540505026643
908 => 0.39949817377875
909 => 0.40014041503288
910 => 0.4071842164042
911 => 0.40292537330075
912 => 0.40445688297446
913 => 0.40718189828088
914 => 0.40882596767357
915 => 0.39990385874806
916 => 0.39782368836372
917 => 0.39356838979796
918 => 0.39245826183106
919 => 0.39592411372316
920 => 0.39501098419995
921 => 0.37859947303068
922 => 0.3768843788007
923 => 0.37693697829214
924 => 0.37262429230259
925 => 0.36604641100528
926 => 0.38333269030972
927 => 0.38194436016025
928 => 0.38041175112346
929 => 0.38059948698552
930 => 0.38810287494521
1001 => 0.38375053099841
1002 => 0.39532195071612
1003 => 0.39294321469088
1004 => 0.39050347306238
1005 => 0.39016622645297
1006 => 0.38922713407497
1007 => 0.38600663688994
1008 => 0.38211769301712
1009 => 0.37954987541774
1010 => 0.35011469714237
1011 => 0.35557769501372
1012 => 0.36186237609679
1013 => 0.36403182282239
1014 => 0.36032083407711
1015 => 0.38615316934434
1016 => 0.39087298592424
1017 => 0.37657635363771
1018 => 0.37390203746455
1019 => 0.38632849706743
1020 => 0.37883382285399
1021 => 0.38220867419339
1022 => 0.37491409154258
1023 => 0.38973612032251
1024 => 0.38962320129689
1025 => 0.3838570973308
1026 => 0.38873056891837
1027 => 0.38788368329978
1028 => 0.38137376612335
1029 => 0.38994249630853
1030 => 0.3899467462918
1031 => 0.38439699659034
1101 => 0.37791610393547
1102 => 0.37675747340063
1103 => 0.37588460093274
1104 => 0.38199400107435
1105 => 0.38747167013772
1106 => 0.39766425423532
1107 => 0.40022691204728
1108 => 0.41022913609316
1109 => 0.40427329867329
1110 => 0.40691344426051
1111 => 0.40977969576684
1112 => 0.41115388214188
1113 => 0.40891471918666
1114 => 0.42445229020958
1115 => 0.42576413726279
1116 => 0.42620398823229
1117 => 0.42096480670452
1118 => 0.42561842614689
1119 => 0.42344115172148
1120 => 0.42910581491213
1121 => 0.42999410643048
1122 => 0.42924175511633
1123 => 0.42952371286498
1124 => 0.41626513701227
1125 => 0.41557760990975
1126 => 0.40620312908216
1127 => 0.41002329931206
1128 => 0.40288167417278
1129 => 0.40514635707134
1130 => 0.40614460771433
1201 => 0.40562317822865
1202 => 0.41023928600513
1203 => 0.40631465138661
1204 => 0.39595689535868
1205 => 0.38559631736704
1206 => 0.3854662487499
1207 => 0.38273849144409
1208 => 0.38076682252567
1209 => 0.38114663590807
1210 => 0.38248514780749
1211 => 0.38068902578079
1212 => 0.38107231948089
1213 => 0.38743754877502
1214 => 0.38871405011522
1215 => 0.38437599979995
1216 => 0.36695810180646
1217 => 0.36268370594937
1218 => 0.3657560569265
1219 => 0.36428767104418
1220 => 0.29400858201966
1221 => 0.3105196115215
1222 => 0.30070931845309
1223 => 0.3052303528489
1224 => 0.29521658398912
1225 => 0.2999956793556
1226 => 0.29911315494603
1227 => 0.32566240178812
1228 => 0.32524787181597
1229 => 0.3254462853772
1230 => 0.31597548913603
1231 => 0.33106272470836
]
'min_raw' => 0.19261262040442
'max_raw' => 0.42999410643048
'avg_raw' => 0.31130336341745
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.192612'
'max' => '$0.429994'
'avg' => '$0.3113033'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.029700475258176
'max_diff' => 0.065050790493487
'year' => 2035
]
10 => [
'items' => [
101 => 0.33849523947073
102 => 0.33711967879819
103 => 0.33746587778417
104 => 0.3315170321928
105 => 0.32550388320606
106 => 0.31883437556276
107 => 0.33122549638794
108 => 0.32984781527567
109 => 0.33300772007321
110 => 0.34104424766395
111 => 0.34222765687948
112 => 0.34381817086612
113 => 0.3432480848224
114 => 0.35682984723897
115 => 0.35518500619497
116 => 0.35914859985795
117 => 0.35099518697463
118 => 0.3417688263681
119 => 0.34352245588695
120 => 0.34335356726249
121 => 0.34120342123174
122 => 0.33926236553469
123 => 0.33603105468817
124 => 0.34625540035059
125 => 0.34584031058854
126 => 0.35256013134701
127 => 0.35137233775509
128 => 0.34343996144589
129 => 0.3437232678176
130 => 0.34562863931979
131 => 0.35222315184403
201 => 0.35418085214987
202 => 0.35327396736734
203 => 0.35542049638028
204 => 0.35711702539107
205 => 0.35563355430382
206 => 0.37663637653571
207 => 0.36791454043337
208 => 0.3721655026635
209 => 0.37317933210727
210 => 0.3705824293056
211 => 0.37114560453517
212 => 0.37199866155189
213 => 0.37717825671175
214 => 0.39077101313916
215 => 0.39679115243184
216 => 0.4149030385223
217 => 0.39629126366797
218 => 0.39518691797129
219 => 0.39844941558274
220 => 0.40908301005569
221 => 0.41770053961328
222 => 0.42055947132474
223 => 0.42093732634622
224 => 0.4263008722951
225 => 0.42937515680879
226 => 0.42564959674165
227 => 0.42249257466714
228 => 0.41118451346026
229 => 0.41249345233578
301 => 0.42151074317592
302 => 0.4342481976034
303 => 0.44517825860844
304 => 0.44135093219556
305 => 0.47055073105446
306 => 0.47344577184084
307 => 0.47304577081203
308 => 0.47964110456324
309 => 0.46655071018346
310 => 0.46095431297166
311 => 0.42317515867337
312 => 0.43378956003951
313 => 0.44921821578713
314 => 0.44717617534445
315 => 0.43597147313137
316 => 0.44516975883706
317 => 0.44212851792577
318 => 0.43972976503784
319 => 0.45071891703859
320 => 0.43863589300428
321 => 0.44909767837936
322 => 0.4356803304225
323 => 0.44136841510022
324 => 0.43813958313545
325 => 0.44022903312742
326 => 0.42801415116884
327 => 0.43460500497419
328 => 0.42773994998183
329 => 0.4277366950519
330 => 0.42758514858245
331 => 0.43566185533666
401 => 0.43592523645395
402 => 0.42995653795936
403 => 0.4290963552577
404 => 0.43227690154575
405 => 0.42855331482883
406 => 0.43029555761771
407 => 0.42860608558806
408 => 0.42822574984846
409 => 0.42519516996654
410 => 0.42388951282588
411 => 0.42440149463338
412 => 0.42265383677969
413 => 0.4216008097073
414 => 0.42737567499345
415 => 0.42429039742846
416 => 0.4269028119575
417 => 0.42392563588866
418 => 0.41360544654019
419 => 0.40767019651186
420 => 0.38817631551466
421 => 0.39370475598338
422 => 0.39737011773373
423 => 0.3961587156971
424 => 0.39876127602213
425 => 0.39892105208897
426 => 0.39807493319734
427 => 0.39709523591538
428 => 0.39661837345918
429 => 0.40017251552162
430 => 0.40223581461579
501 => 0.39773798582159
502 => 0.39668420746642
503 => 0.40123176070929
504 => 0.40400576556041
505 => 0.42448745880235
506 => 0.42297010881199
507 => 0.4267783595229
508 => 0.42634960893522
509 => 0.43034126238217
510 => 0.43686592876932
511 => 0.42359945767883
512 => 0.42590205834009
513 => 0.42533751383276
514 => 0.43150106273221
515 => 0.4315203046591
516 => 0.42782494920178
517 => 0.42982826134549
518 => 0.42871006746486
519 => 0.43073079494012
520 => 0.42294984367779
521 => 0.43242620241352
522 => 0.43779868717362
523 => 0.43787328412973
524 => 0.44041979926734
525 => 0.44300720613136
526 => 0.4479735082912
527 => 0.44286869865958
528 => 0.4336856430755
529 => 0.43434863002759
530 => 0.42896460789859
531 => 0.42905511428328
601 => 0.42857198410868
602 => 0.43002189413099
603 => 0.42326801739217
604 => 0.42485313876331
605 => 0.42263395956125
606 => 0.4258972342779
607 => 0.42238649012142
608 => 0.42533724159231
609 => 0.42661068810818
610 => 0.4313097331671
611 => 0.42169243734554
612 => 0.40208212013171
613 => 0.40620444656217
614 => 0.40010720196976
615 => 0.40067152517064
616 => 0.40181154784778
617 => 0.39811636135896
618 => 0.39882128649232
619 => 0.39879610160607
620 => 0.39857907186239
621 => 0.39761781114177
622 => 0.39622379291725
623 => 0.40177713246758
624 => 0.40272075307111
625 => 0.40481830478288
626 => 0.41105919589421
627 => 0.41043558370184
628 => 0.41145272106101
629 => 0.40923231591692
630 => 0.400774523397
701 => 0.4012338222225
702 => 0.39550635850876
703 => 0.40467184065863
704 => 0.40250133350708
705 => 0.4011019934265
706 => 0.40072017052072
707 => 0.40697653159398
708 => 0.40884853288355
709 => 0.40768202730523
710 => 0.40528949033168
711 => 0.40988386861095
712 => 0.41111313041722
713 => 0.41138831680222
714 => 0.41952867422842
715 => 0.41184327235425
716 => 0.41369322497169
717 => 0.42812602720068
718 => 0.41503746716955
719 => 0.42197076932776
720 => 0.42163142026628
721 => 0.42517826304027
722 => 0.42134047563423
723 => 0.42138804960867
724 => 0.42453740570803
725 => 0.42011470305585
726 => 0.41901957968256
727 => 0.41750667458578
728 => 0.42081004751607
729 => 0.42279027018907
730 => 0.43874941062014
731 => 0.44905974316384
801 => 0.44861214443655
802 => 0.45270235893427
803 => 0.45085967984098
804 => 0.44490918297455
805 => 0.45506595553975
806 => 0.45185192772271
807 => 0.4521168882709
808 => 0.45210702642606
809 => 0.45424407394921
810 => 0.45272977992153
811 => 0.44974495095388
812 => 0.45172641971874
813 => 0.45761067356233
814 => 0.47587557804378
815 => 0.4860968605694
816 => 0.47526024400152
817 => 0.48273519700196
818 => 0.47825288879978
819 => 0.47743832006233
820 => 0.4821331429413
821 => 0.48683618348622
822 => 0.48653662013531
823 => 0.4831224542035
824 => 0.48119387849987
825 => 0.495797699848
826 => 0.50655754664769
827 => 0.50582379723088
828 => 0.50906232852859
829 => 0.51857075658266
830 => 0.51944008808043
831 => 0.51933057229307
901 => 0.5171758434705
902 => 0.52653812571514
903 => 0.53434830627731
904 => 0.51667708600417
905 => 0.52340605535092
906 => 0.52642690648453
907 => 0.53086241219482
908 => 0.53834585380513
909 => 0.5464748562788
910 => 0.54762438635855
911 => 0.54680873975688
912 => 0.54144744410619
913 => 0.55034229561204
914 => 0.55555269101423
915 => 0.55865536223846
916 => 0.56652322022783
917 => 0.52644556223271
918 => 0.49807660391493
919 => 0.49364638142088
920 => 0.50265541307242
921 => 0.50503102287325
922 => 0.5040734175413
923 => 0.47214157576178
924 => 0.49347826688236
925 => 0.51643475248816
926 => 0.51731660459351
927 => 0.52880910128525
928 => 0.53255152930144
929 => 0.54180449549426
930 => 0.54122571993959
1001 => 0.54347866996069
1002 => 0.5429607557665
1003 => 0.5600999271968
1004 => 0.57900697847602
1005 => 0.57835228741096
1006 => 0.5756341750915
1007 => 0.57967103539292
1008 => 0.59918513851582
1009 => 0.5973885926074
1010 => 0.59913378392802
1011 => 0.62214201127657
1012 => 0.65205597971187
1013 => 0.63815793806035
1014 => 0.6683126893904
1015 => 0.68729350691798
1016 => 0.72011886817878
1017 => 0.71600897128061
1018 => 0.72878764353581
1019 => 0.70865139807153
1020 => 0.66241450827891
1021 => 0.65509734348153
1022 => 0.66974649270602
1023 => 0.70575999663135
1024 => 0.66861229930623
1025 => 0.67612723009384
1026 => 0.67396292952145
1027 => 0.67384760314163
1028 => 0.67824914199297
1029 => 0.67186448032028
1030 => 0.645852220087
1031 => 0.6577734856607
1101 => 0.6531701125165
1102 => 0.65827789822419
1103 => 0.68584251107752
1104 => 0.67365553867677
1105 => 0.66081755324181
1106 => 0.67691923595428
1107 => 0.69742221118572
1108 => 0.69613917184312
1109 => 0.69364953924965
1110 => 0.70768346782614
1111 => 0.73086340627924
1112 => 0.73712885049858
1113 => 0.74175387332992
1114 => 0.74239158583797
1115 => 0.74896042100691
1116 => 0.71363813874389
1117 => 0.76969550783585
1118 => 0.77937506692446
1119 => 0.77755571099242
1120 => 0.7883141335413
1121 => 0.78514873271258
1122 => 0.78056256354794
1123 => 0.79761695167002
1124 => 0.77806547190621
1125 => 0.75031460784435
1126 => 0.73508993497016
1127 => 0.75513901235023
1128 => 0.76738228428985
1129 => 0.7754743082236
1130 => 0.77792294977662
1201 => 0.71638010696632
1202 => 0.68321192801411
1203 => 0.70447235044854
1204 => 0.73041153313451
1205 => 0.71349404527437
1206 => 0.71415717876944
1207 => 0.69003728691848
1208 => 0.73254560836206
1209 => 0.72635250347899
1210 => 0.75848234256778
1211 => 0.75081429861117
1212 => 0.77701493511491
1213 => 0.77011542944453
1214 => 0.79875489173612
1215 => 0.81017994862672
1216 => 0.82936439731416
1217 => 0.8434765558634
1218 => 0.85176348528608
1219 => 0.85126596912704
1220 => 0.88410291203157
1221 => 0.86474011403617
1222 => 0.84041587629285
1223 => 0.83997592757406
1224 => 0.85257379497844
1225 => 0.87897546900188
1226 => 0.88582103894743
1227 => 0.88964677865716
1228 => 0.88378752511675
1229 => 0.86277059563697
1230 => 0.85369559204586
1231 => 0.86142775803365
]
'min_raw' => 0.31883437556276
'max_raw' => 0.88964677865716
'avg_raw' => 0.60424057710996
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.318834'
'max' => '$0.889646'
'avg' => '$0.60424'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.12622175515834
'max_diff' => 0.45965267222668
'year' => 2036
]
11 => [
'items' => [
101 => 0.85197198346318
102 => 0.86829530319357
103 => 0.89071070765636
104 => 0.88608201527491
105 => 0.90155503993375
106 => 0.91756799264599
107 => 0.9404672342112
108 => 0.9464539439128
109 => 0.95634974739538
110 => 0.96653577978105
111 => 0.96980725886205
112 => 0.97605352750804
113 => 0.97602060658903
114 => 0.99484415757608
115 => 1.0156071172316
116 => 1.023444653838
117 => 1.0414666371
118 => 1.0106046223294
119 => 1.0340138150502
120 => 1.0551294928544
121 => 1.029954511279
122 => 1.0646523583623
123 => 1.0659995971375
124 => 1.086341303128
125 => 1.0657210871073
126 => 1.0534768686563
127 => 1.0888254685395
128 => 1.1059295425525
129 => 1.1007776562622
130 => 1.0615715472131
131 => 1.0387519101174
201 => 0.9790285182587
202 => 1.0497734557739
203 => 1.0842312511794
204 => 1.0614823098474
205 => 1.0729555526284
206 => 1.1355498450299
207 => 1.159381698896
208 => 1.1544248398891
209 => 1.1552624674644
210 => 1.1681217032319
211 => 1.2251466363352
212 => 1.1909759745921
213 => 1.2170981651445
214 => 1.2309532808229
215 => 1.2438226844189
216 => 1.2122194966037
217 => 1.1711042135992
218 => 1.1580812775695
219 => 1.0592203759646
220 => 1.0540742367049
221 => 1.0511855527945
222 => 1.0329728093517
223 => 1.0186625818959
224 => 1.0072825577184
225 => 0.97741797591372
226 => 0.9874963955888
227 => 0.9398984854148
228 => 0.97034994157777
301 => 0.89438252764833
302 => 0.95765044735266
303 => 0.92321659509691
304 => 0.94633800079116
305 => 0.94625733238486
306 => 0.9036834938534
307 => 0.8791277922818
308 => 0.89477564104543
309 => 0.91155137704782
310 => 0.91427318377385
311 => 0.93602336339246
312 => 0.94209337100547
313 => 0.9237009645565
314 => 0.89280827184835
315 => 0.89998393977716
316 => 0.87898237760025
317 => 0.84217794769865
318 => 0.86861153179768
319 => 0.87763711961174
320 => 0.88162333336682
321 => 0.84543040357593
322 => 0.8340577992489
323 => 0.82800312013058
324 => 0.8881362191037
325 => 0.89143044600824
326 => 0.87457671540785
327 => 0.95075717585792
328 => 0.93351519143132
329 => 0.95277871242458
330 => 0.89933282312441
331 => 0.90137452807011
401 => 0.87607238756704
402 => 0.89023989555912
403 => 0.88022675755041
404 => 0.8890953009194
405 => 0.8944110692484
406 => 0.91970905791919
407 => 0.95793930974656
408 => 0.91593038202535
409 => 0.89762649063829
410 => 0.90898212190983
411 => 0.93922366441352
412 => 0.9850411493427
413 => 0.95791627610181
414 => 0.9699538342359
415 => 0.97258350517451
416 => 0.95258262786407
417 => 0.98577861021809
418 => 1.0035686068453
419 => 1.0218174622637
420 => 1.0376624321022
421 => 1.0145284681087
422 => 1.0392851257052
423 => 1.0193356298207
424 => 1.0014388696714
425 => 1.0014660116691
426 => 0.99023911259746
427 => 0.96848558096587
428 => 0.96447389597395
429 => 0.98534318792188
430 => 1.0020783837348
501 => 1.0034567746181
502 => 1.0127222389056
503 => 1.018205445229
504 => 1.0719483212563
505 => 1.0935641505788
506 => 1.1199955775077
507 => 1.1302921078901
508 => 1.1612809728307
509 => 1.1362549475986
510 => 1.1308404096186
511 => 1.0556715596532
512 => 1.067980454624
513 => 1.0876881831039
514 => 1.055996532837
515 => 1.076097590519
516 => 1.0800659651041
517 => 1.0549196626879
518 => 1.068351389316
519 => 1.0326807056212
520 => 0.95871683317438
521 => 0.98586095315182
522 => 1.0058481620672
523 => 0.97732395053986
524 => 1.0284524956632
525 => 0.99858425510955
526 => 0.98911745678243
527 => 0.95218410135106
528 => 0.96961522341945
529 => 0.99319106560657
530 => 0.97862393612076
531 => 1.0088529170693
601 => 1.0516652158672
602 => 1.082175809507
603 => 1.0845180340352
604 => 1.0649017663758
605 => 1.0963369604893
606 => 1.0965659315598
607 => 1.0611069041832
608 => 1.0393884473517
609 => 1.0344539682636
610 => 1.0467812644874
611 => 1.0617488778475
612 => 1.0853486324073
613 => 1.0996094698254
614 => 1.1367941704481
615 => 1.1468552842677
616 => 1.1579093980163
617 => 1.1726811029468
618 => 1.1904183221034
619 => 1.1516102963693
620 => 1.1531522115789
621 => 1.1170147153491
622 => 1.0783966179863
623 => 1.1077029400708
624 => 1.1460170577398
625 => 1.1372277568132
626 => 1.1362387809098
627 => 1.1379019640602
628 => 1.1312751181933
629 => 1.1013021399396
630 => 1.0862498979014
701 => 1.1056711303672
702 => 1.1159926510832
703 => 1.1320004295824
704 => 1.1300271329992
705 => 1.1712614513034
706 => 1.1872838605354
707 => 1.1831846426163
708 => 1.1839389973666
709 => 1.212946803951
710 => 1.2452094507833
711 => 1.275427676973
712 => 1.3061669545562
713 => 1.2691095556553
714 => 1.250294093876
715 => 1.2697068476393
716 => 1.2594061672382
717 => 1.3185969322031
718 => 1.3226951723449
719 => 1.3818816571438
720 => 1.4380566790134
721 => 1.4027741542571
722 => 1.4360439859425
723 => 1.4720280214394
724 => 1.5414470641122
725 => 1.5180691727314
726 => 1.5001620743119
727 => 1.483239952832
728 => 1.5184522013206
729 => 1.5637521964717
730 => 1.5735093815493
731 => 1.5893197489066
801 => 1.5726970808302
802 => 1.5927172536014
803 => 1.6633972607936
804 => 1.6442988989406
805 => 1.6171761548945
806 => 1.6729712323927
807 => 1.6931632540414
808 => 1.834881436616
809 => 2.0138064962025
810 => 1.9397303466484
811 => 1.8937488901977
812 => 1.9045556231584
813 => 1.9698929979239
814 => 1.9908772889939
815 => 1.9338347521466
816 => 1.9539831405014
817 => 2.065002741282
818 => 2.1245611951656
819 => 2.0436728150242
820 => 1.8205049822936
821 => 1.6147340485495
822 => 1.6693137661643
823 => 1.6631261199926
824 => 1.7824028310542
825 => 1.6438434093267
826 => 1.6461763946331
827 => 1.7679196217632
828 => 1.7354406159722
829 => 1.6828287861875
830 => 1.6151181731306
831 => 1.4899488424213
901 => 1.3790828756071
902 => 1.5965165674371
903 => 1.5871404312679
904 => 1.5735623966293
905 => 1.6037788434207
906 => 1.7505013319513
907 => 1.7471189036963
908 => 1.7256016208682
909 => 1.7419222902487
910 => 1.6799676939359
911 => 1.6959348040856
912 => 1.6147014533823
913 => 1.6514223205046
914 => 1.68271590483
915 => 1.6889985551928
916 => 1.7031536872601
917 => 1.5821996335617
918 => 1.6365044526478
919 => 1.6684034461875
920 => 1.5242826328799
921 => 1.6655546410922
922 => 1.5800940925852
923 => 1.5510874988476
924 => 1.5901410559872
925 => 1.5749218467891
926 => 1.5618372644225
927 => 1.5545358426403
928 => 1.5832124648197
929 => 1.5818746661191
930 => 1.5349541463409
1001 => 1.4737482410154
1002 => 1.494290951858
1003 => 1.48682759242
1004 => 1.4597794150239
1005 => 1.4780066207795
1006 => 1.3977432312098
1007 => 1.259654241183
1008 => 1.3508800577748
1009 => 1.3473679630706
1010 => 1.34559700566
1011 => 1.4141506855323
1012 => 1.4075608310151
1013 => 1.3956001805383
1014 => 1.4595597482982
1015 => 1.4362136456883
1016 => 1.5081608328986
1017 => 1.5555499036477
1018 => 1.5435305024299
1019 => 1.5881001525206
1020 => 1.4947642144254
1021 => 1.5257666690728
1022 => 1.532156232008
1023 => 1.4587704971603
1024 => 1.4086390127122
1025 => 1.4052958142403
1026 => 1.3183747287515
1027 => 1.3648072710171
1028 => 1.4056659867017
1029 => 1.3860978326532
1030 => 1.3799031396635
1031 => 1.4115504826833
1101 => 1.4140097522771
1102 => 1.3579381449167
1103 => 1.3695972076438
1104 => 1.4182174373737
1105 => 1.3683721026012
1106 => 1.2715307593276
1107 => 1.2475127672594
1108 => 1.2443083243781
1109 => 1.1791696249982
1110 => 1.2491177643359
1111 => 1.2185835270214
1112 => 1.3150408168416
1113 => 1.2599449302071
1114 => 1.257569856653
1115 => 1.2539795846285
1116 => 1.1979120152265
1117 => 1.2101872496456
1118 => 1.2509919984258
1119 => 1.265551592489
1120 => 1.2640329075449
1121 => 1.2507920328958
1122 => 1.2568536375059
1123 => 1.2373270970537
1124 => 1.2304318692102
1125 => 1.2086686334544
1126 => 1.1766826891406
1127 => 1.1811305308786
1128 => 1.1177580056154
1129 => 1.0832292904176
1130 => 1.0736721971319
1201 => 1.060892052572
1202 => 1.0751157484667
1203 => 1.1175784792137
1204 => 1.0663594169619
1205 => 0.97854792733066
1206 => 0.983825547481
1207 => 0.99568279301931
1208 => 0.97358689440219
1209 => 0.95267498072928
1210 => 0.97085619303069
1211 => 0.93364930727552
1212 => 1.0001790674048
1213 => 0.99837962384083
1214 => 1.0231778042443
1215 => 1.0386846153604
1216 => 1.0029464361274
1217 => 0.9939583806966
1218 => 0.99907838555432
1219 => 0.9144561102079
1220 => 1.0162623589865
1221 => 1.0171427836536
1222 => 1.0096040531331
1223 => 1.0638127376924
1224 => 1.1782099702254
1225 => 1.1351691297285
1226 => 1.1185024153718
1227 => 1.0868189791964
1228 => 1.1290352767238
1229 => 1.1257937237505
1230 => 1.1111341918829
1231 => 1.1022680612689
]
'min_raw' => 0.82800312013058
'max_raw' => 2.1245611951656
'avg_raw' => 1.4762821576481
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.8280031'
'max' => '$2.12'
'avg' => '$1.47'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.50916874456782
'max_diff' => 1.2349144165085
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.025990071802926
]
1 => [
'year' => 2028
'avg' => 0.044606508185576
]
2 => [
'year' => 2029
'avg' => 0.1218569408221
]
3 => [
'year' => 2030
'avg' => 0.094012448369448
]
4 => [
'year' => 2031
'avg' => 0.09233187513326
]
5 => [
'year' => 2032
'avg' => 0.16188683501912
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.025990071802926
'min' => '$0.02599'
'max_raw' => 0.16188683501912
'max' => '$0.161886'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.16188683501912
]
1 => [
'year' => 2033
'avg' => 0.4163895862961
]
2 => [
'year' => 2034
'avg' => 0.26392773054162
]
3 => [
'year' => 2035
'avg' => 0.31130336341745
]
4 => [
'year' => 2036
'avg' => 0.60424057710996
]
5 => [
'year' => 2037
'avg' => 1.4762821576481
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.16188683501912
'min' => '$0.161886'
'max_raw' => 1.4762821576481
'max' => '$1.47'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.4762821576481
]
]
]
]
'prediction_2025_max_price' => '$0.044438'
'last_price' => 0.04308853
'sma_50day_nextmonth' => '$0.040962'
'sma_200day_nextmonth' => '$0.272792'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.04261'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.0425018'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.041983'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.043058'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.068374'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.110673'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.484023'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.042668'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0425055'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.042537'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.045472'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.070681'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.202300082'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$1.38'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.167652'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$1.81'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$21.34'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.043418'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.047198'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.084938'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.472753'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$6.34'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$21.73'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$11.08'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '46.62'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 83.33
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.041997'
'vwma_10_action' => 'BUY'
'hma_9' => '0.042875'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 68.91
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 9.02
'cci_20_action' => 'NEUTRAL'
'adx_14' => 9.94
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.002043'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -31.09
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 58.98
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.234331'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 14
'sell_pct' => 54.84
'buy_pct' => 45.16
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767694378
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de HANePlatform para 2026
La previsión del precio de HANePlatform para 2026 sugiere que el precio medio podría oscilar entre $0.014887 en el extremo inferior y $0.044438 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, HANePlatform podría potencialmente ganar 3.13% para 2026 si HANEP alcanza el objetivo de precio previsto.
Predicción de precio de HANePlatform 2027-2032
La predicción del precio de HANEP para 2027-2032 está actualmente dentro de un rango de precios de $0.02599 en el extremo inferior y $0.161886 en el extremo superior. Considerando la volatilidad de precios en el mercado, si HANePlatform alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de HANePlatform | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.014331 | $0.02599 | $0.037648 |
| 2028 | $0.025864 | $0.0446065 | $0.063349 |
| 2029 | $0.056815 | $0.121856 | $0.186898 |
| 2030 | $0.048319 | $0.094012 | $0.1397055 |
| 2031 | $0.057128 | $0.092331 | $0.127535 |
| 2032 | $0.0872022 | $0.161886 | $0.236571 |
Predicción de precio de HANePlatform 2032-2037
La predicción de precio de HANePlatform para 2032-2037 se estima actualmente entre $0.161886 en el extremo inferior y $1.47 en el extremo superior. Comparado con el precio actual, HANePlatform podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de HANePlatform | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0872022 | $0.161886 | $0.236571 |
| 2033 | $0.202639 | $0.416389 | $0.63014 |
| 2034 | $0.162912 | $0.263927 | $0.364943 |
| 2035 | $0.192612 | $0.3113033 | $0.429994 |
| 2036 | $0.318834 | $0.60424 | $0.889646 |
| 2037 | $0.8280031 | $1.47 | $2.12 |
HANePlatform Histograma de precios potenciales
Pronóstico de precio de HANePlatform basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para HANePlatform es Bajista, con 14 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de HANEP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de HANePlatform
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de HANePlatform aumentar durante el próximo mes, alcanzando $0.272792 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para HANePlatform alcance $0.040962 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 46.62, lo que sugiere que el mercado de HANEP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de HANEP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.04261 | BUY |
| SMA 5 | $0.0425018 | BUY |
| SMA 10 | $0.041983 | BUY |
| SMA 21 | $0.043058 | BUY |
| SMA 50 | $0.068374 | SELL |
| SMA 100 | $0.110673 | SELL |
| SMA 200 | $0.484023 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.042668 | BUY |
| EMA 5 | $0.0425055 | BUY |
| EMA 10 | $0.042537 | BUY |
| EMA 21 | $0.045472 | SELL |
| EMA 50 | $0.070681 | SELL |
| EMA 100 | $0.202300082 | SELL |
| EMA 200 | $1.38 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.167652 | SELL |
| SMA 50 | $1.81 | SELL |
| SMA 100 | $21.34 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.472753 | SELL |
| EMA 50 | $6.34 | SELL |
| EMA 100 | $21.73 | SELL |
| EMA 200 | $11.08 | SELL |
Osciladores de HANePlatform
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 46.62 | NEUTRAL |
| Stoch RSI (14) | 83.33 | NEUTRAL |
| Estocástico Rápido (14) | 68.91 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 9.02 | NEUTRAL |
| Índice Direccional Medio (14) | 9.94 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.002043 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -31.09 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 58.98 | NEUTRAL |
| VWMA (10) | 0.041997 | BUY |
| Promedio Móvil de Hull (9) | 0.042875 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.234331 | SELL |
Predicción de precios de HANePlatform basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de HANePlatform
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de HANePlatform por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.060546 | $0.085078 | $0.119548 | $0.167986 | $0.236048 | $0.331687 |
| Amazon.com acción | $0.0899067 | $0.187595 | $0.391429 | $0.816741 | $1.70 | $3.55 |
| Apple acción | $0.061117 | $0.08669 | $0.122964 | $0.174415 | $0.247395 | $0.350911 |
| Netflix acción | $0.067986 | $0.107272 | $0.169259 | $0.267065 | $0.421386 | $0.664882 |
| Google acción | $0.055799 | $0.07226 | $0.093576 | $0.121181 | $0.156928 | $0.203222 |
| Tesla acción | $0.097678 | $0.221429 | $0.501964 | $1.13 | $2.57 | $5.84 |
| Kodak acción | $0.032311 | $0.02423 | $0.01817 | $0.013625 | $0.010217 | $0.007662 |
| Nokia acción | $0.028544 | $0.0189094 | $0.012526 | $0.008298 | $0.005497 | $0.003641 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de HANePlatform
Podría preguntarse cosas como: "¿Debo invertir en HANePlatform ahora?", "¿Debería comprar HANEP hoy?", "¿Será HANePlatform una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de HANePlatform regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como HANePlatform, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de HANePlatform a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de HANePlatform es de $0.04308 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de HANePlatform basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si HANePlatform ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0442085 | $0.045357 | $0.046536 | $0.047746 |
| Si HANePlatform ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.045328 | $0.047685 | $0.050163 | $0.052771 |
| Si HANePlatform ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.048688 | $0.055016 | $0.062166 | $0.070246 |
| Si HANePlatform ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.054288 | $0.068399 | $0.086179 | $0.10858 |
| Si HANePlatform ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.065488 | $0.099533 | $0.151278 | $0.229922 |
| Si HANePlatform ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.099088 | $0.227871 | $0.524026 | $1.20 |
| Si HANePlatform ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.155089 | $0.558216 | $2.00 | $7.23 |
Cuadro de preguntas
¿Es HANEP una buena inversión?
La decisión de adquirir HANePlatform depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de HANePlatform ha experimentado un aumento de 1.1881% durante las últimas 24 horas, y HANePlatform ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en HANePlatform dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede HANePlatform subir?
Parece que el valor medio de HANePlatform podría potencialmente aumentar hasta $0.044438 para el final de este año. Mirando las perspectivas de HANePlatform en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.1397055. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de HANePlatform la próxima semana?
Basado en nuestro nuevo pronóstico experimental de HANePlatform, el precio de HANePlatform aumentará en un 0.86% durante la próxima semana y alcanzará $0.043457 para el 13 de enero de 2026.
¿Cuál será el precio de HANePlatform el próximo mes?
Basado en nuestro nuevo pronóstico experimental de HANePlatform, el precio de HANePlatform disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0380824 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de HANePlatform este año en 2026?
Según nuestra predicción más reciente sobre el valor de HANePlatform en 2026, se anticipa que HANEP fluctúe dentro del rango de $0.014887 y $0.044438. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de HANePlatform no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará HANePlatform en 5 años?
El futuro de HANePlatform parece estar en una tendencia alcista, con un precio máximo de $0.1397055 proyectada después de un período de cinco años. Basado en el pronóstico de HANePlatform para 2030, el valor de HANePlatform podría potencialmente alcanzar su punto más alto de aproximadamente $0.1397055, mientras que su punto más bajo se anticipa que esté alrededor de $0.048319.
¿Cuánto será HANePlatform en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de HANePlatform, se espera que el valor de HANEP en 2026 crezca en un 3.13% hasta $0.044438 si ocurre lo mejor. El precio estará entre $0.044438 y $0.014887 durante 2026.
¿Cuánto será HANePlatform en 2027?
Según nuestra última simulación experimental para la predicción de precios de HANePlatform, el valor de HANEP podría disminuir en un -12.62% hasta $0.037648 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.037648 y $0.014331 a lo largo del año.
¿Cuánto será HANePlatform en 2028?
Nuestro nuevo modelo experimental de predicción de precios de HANePlatform sugiere que el valor de HANEP en 2028 podría aumentar en un 47.02% , alcanzando $0.063349 en el mejor escenario. Se espera que el precio oscile entre $0.063349 y $0.025864 durante el año.
¿Cuánto será HANePlatform en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de HANePlatform podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.186898 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.186898 y $0.056815.
¿Cuánto será HANePlatform en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de HANePlatform, se espera que el valor de HANEP en 2030 aumente en un 224.23% , alcanzando $0.1397055 en el mejor escenario. Se pronostica que el precio oscile entre $0.1397055 y $0.048319 durante el transcurso de 2030.
¿Cuánto será HANePlatform en 2031?
Nuestra simulación experimental indica que el precio de HANePlatform podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.127535 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.127535 y $0.057128 durante el año.
¿Cuánto será HANePlatform en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de HANePlatform, HANEP podría experimentar un 449.04% aumento en valor, alcanzando $0.236571 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.236571 y $0.0872022 a lo largo del año.
¿Cuánto será HANePlatform en 2033?
Según nuestra predicción experimental de precios de HANePlatform, se anticipa que el valor de HANEP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.63014. A lo largo del año, el precio de HANEP podría oscilar entre $0.63014 y $0.202639.
¿Cuánto será HANePlatform en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de HANePlatform sugieren que HANEP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.364943 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.364943 y $0.162912.
¿Cuánto será HANePlatform en 2035?
Basado en nuestra predicción experimental para el precio de HANePlatform, HANEP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.429994 en 2035. El rango de precios esperado para el año está entre $0.429994 y $0.192612.
¿Cuánto será HANePlatform en 2036?
Nuestra reciente simulación de predicción de precios de HANePlatform sugiere que el valor de HANEP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.889646 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.889646 y $0.318834.
¿Cuánto será HANePlatform en 2037?
Según la simulación experimental, el valor de HANePlatform podría aumentar en un 4830.69% en 2037, con un máximo de $2.12 bajo condiciones favorables. Se espera que el precio caiga entre $2.12 y $0.8280031 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de HANePlatform?
Los traders de HANePlatform utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de HANePlatform
Las medias móviles son herramientas populares para la predicción de precios de HANePlatform. Una media móvil simple (SMA) calcula el precio de cierre promedio de HANEP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de HANEP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de HANEP.
¿Cómo leer gráficos de HANePlatform y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de HANePlatform en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de HANEP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de HANePlatform?
La acción del precio de HANePlatform está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de HANEP. La capitalización de mercado de HANePlatform puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de HANEP, grandes poseedores de HANePlatform, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de HANePlatform.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


