Predicción del precio de GemPad - Pronóstico de GEMS
Predicción de precio de GemPad hasta $0.002969 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000994 | $0.002969 |
| 2027 | $0.000957 | $0.002515 |
| 2028 | $0.001728 | $0.004232 |
| 2029 | $0.003796 | $0.012488 |
| 2030 | $0.003228 | $0.009335 |
| 2031 | $0.003817 | $0.008521 |
| 2032 | $0.005826 | $0.0158076 |
| 2033 | $0.01354 | $0.0421058 |
| 2034 | $0.010885 | $0.024385 |
| 2035 | $0.01287 | $0.028732 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en GemPad hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.59, equivalente a un ROI del 39.57% en los próximos 90 días.
Predicción del precio a largo plazo de GemPad para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'GemPad'
'name_with_ticker' => 'GemPad <small>GEMS</small>'
'name_lang' => 'GemPad'
'name_lang_with_ticker' => 'GemPad <small>GEMS</small>'
'name_with_lang' => 'GemPad'
'name_with_lang_with_ticker' => 'GemPad <small>GEMS</small>'
'image' => '/uploads/coins/gempad.png?1717146976'
'price_for_sd' => 0.002879
'ticker' => 'GEMS'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$121.5'
'current_supply' => '0'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002879'
'change_24h_pct' => '0%'
'ath_price' => '$0.07164'
'ath_days' => 573
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '12 jun. 2024'
'ath_pct' => '-95.98%'
'fdv' => '$287.92K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.141962'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002903'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002544'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000994'
'current_year_max_price_prediction' => '$0.002969'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003228'
'grand_prediction_max_price' => '$0.009335'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029337287570566
107 => 0.0029446822352919
108 => 0.0029693609810545
109 => 0.0027584838005398
110 => 0.0028531614635622
111 => 0.0029087757204905
112 => 0.0026575084844244
113 => 0.0029038089751192
114 => 0.0027548128979864
115 => 0.0027042413915616
116 => 0.0027723292626733
117 => 0.0027457953530834
118 => 0.0027229830557415
119 => 0.0027102534018597
120 => 0.00276024961982
121 => 0.0027579172364938
122 => 0.002676113720063
123 => 0.0025694043676168
124 => 0.0026052195289128
125 => 0.0025922075450451
126 => 0.002545050436929
127 => 0.0025768286340283
128 => 0.0024368935365804
129 => 0.0021961424746148
130 => 0.0023551900005537
131 => 0.0023490668438155
201 => 0.002345979270525
202 => 0.0024654990905174
203 => 0.0024540100176165
204 => 0.0024331572378001
205 => 0.0025446674592747
206 => 0.0025039647284123
207 => 0.0026294009541606
208 => 0.0027120213651448
209 => 0.0026910661564289
210 => 0.0027687710522986
211 => 0.0026060446378926
212 => 0.0026600958253077
213 => 0.0026712357001223
214 => 0.002543291440451
215 => 0.0024558897720309
216 => 0.0024500610771992
217 => 0.0022985186288506
218 => 0.0023794713815506
219 => 0.002450706453874
220 => 0.002416590382296
221 => 0.002405790253223
222 => 0.0024609657703945
223 => 0.0024652533806251
224 => 0.0023674954129875
225 => 0.0023878223900516
226 => 0.0024725892634875
227 => 0.0023856864823304
228 => 0.0022168485740308
301 => 0.0021749744384058
302 => 0.00216938765682
303 => 0.0020558216799254
304 => 0.0021777726683772
305 => 0.0021245377938347
306 => 0.0022927061246628
307 => 0.0021966492759986
308 => 0.0021925084572391
309 => 0.0021862490023581
310 => 0.0020884980746935
311 => 0.0021098993154565
312 => 0.0021810402992537
313 => 0.0022064242037331
314 => 0.0022037764545317
315 => 0.0021806916696223
316 => 0.0021912597659406
317 => 0.0021572162455305
318 => 0.0021451947699191
319 => 0.002107251686122
320 => 0.0020514858349848
321 => 0.0020592404186173
322 => 0.0019487536755858
323 => 0.001888554634007
324 => 0.0018718923327086
325 => 0.0018496108070469
326 => 0.001874409090321
327 => 0.0019484406805248
328 => 0.001859142876061
329 => 0.0017060480538205
330 => 0.0017152493134981
331 => 0.001735921812115
401 => 0.0016973987477046
402 => 0.001660939900236
403 => 0.0016926379101102
404 => 0.0016277696157135
405 => 0.0017437608355809
406 => 0.0017406235981451
407 => 0.0017838579520627
408 => 0.0018108932808257
409 => 0.0017485856008187
410 => 0.0017329153877948
411 => 0.0017418418533047
412 => 0.0015943072623742
413 => 0.0017718012284279
414 => 0.001773336203617
415 => 0.001760192814138
416 => 0.0018547028715502
417 => 0.0020541485711161
418 => 0.0019791090762548
419 => 0.0019500515157637
420 => 0.0018948130720292
421 => 0.0019684150185712
422 => 0.001962763537446
423 => 0.0019372053965373
424 => 0.0019217477531695
425 => 0.0019502289350319
426 => 0.0019182186195494
427 => 0.0019124686873041
428 => 0.0018776303538856
429 => 0.0018651946538984
430 => 0.0018559877567073
501 => 0.001845851867551
502 => 0.0018682091133236
503 => 0.0018175446530621
504 => 0.0017564482806851
505 => 0.0017513687783938
506 => 0.0017653937308143
507 => 0.0017591887334032
508 => 0.0017513390712534
509 => 0.0017363519284813
510 => 0.0017319055633705
511 => 0.0017463540929111
512 => 0.0017300425454614
513 => 0.0017541111222594
514 => 0.0017475658011454
515 => 0.0017110041694695
516 => 0.0016654348395515
517 => 0.0016650291769303
518 => 0.0016552113395482
519 => 0.0016427068475203
520 => 0.0016392283839022
521 => 0.0016899683921315
522 => 0.0017949986906456
523 => 0.0017743787298853
524 => 0.0017892787647532
525 => 0.0018625721891969
526 => 0.0018858699648174
527 => 0.00186933375552
528 => 0.0018466979723248
529 => 0.0018476938319069
530 => 0.0019250471554024
531 => 0.0019298715873053
601 => 0.0019420613703032
602 => 0.0019577286862878
603 => 0.0018720019671796
604 => 0.0018436561111462
605 => 0.0018302242719893
606 => 0.0017888594061621
607 => 0.0018334678676012
608 => 0.0018074764274454
609 => 0.0018109835607164
610 => 0.0018086995355728
611 => 0.0018099467677463
612 => 0.001743728413671
613 => 0.0017678549015618
614 => 0.0017277399360341
615 => 0.0016740305003086
616 => 0.0016738504474471
617 => 0.0016869957557508
618 => 0.0016791764119958
619 => 0.0016581347590048
620 => 0.0016611236264983
621 => 0.0016349380022205
622 => 0.0016643030353917
623 => 0.0016651451194699
624 => 0.0016538379821748
625 => 0.0016990788673688
626 => 0.0017176140949458
627 => 0.0017101714949558
628 => 0.0017170919022901
629 => 0.0017752355823484
630 => 0.0017847155391845
701 => 0.0017889259098003
702 => 0.0017832845709424
703 => 0.0017181546620257
704 => 0.0017210434504399
705 => 0.0016998474377976
706 => 0.0016819390406957
707 => 0.0016826552826626
708 => 0.0016918625267017
709 => 0.001732071101418
710 => 0.0018166876764834
711 => 0.0018198988136533
712 => 0.0018237908055786
713 => 0.0018079601184599
714 => 0.0018031854317457
715 => 0.001809484475973
716 => 0.0018412620126394
717 => 0.0019230024644626
718 => 0.001894109929527
719 => 0.0018706198488854
720 => 0.0018912269824884
721 => 0.0018880546757943
722 => 0.0018612772147992
723 => 0.0018605256606541
724 => 0.0018091311517324
725 => 0.0017901317719804
726 => 0.0017742544681807
727 => 0.0017569168669189
728 => 0.0017466385557293
729 => 0.0017624307131255
730 => 0.0017660425663693
731 => 0.0017315127382229
801 => 0.0017268064502386
802 => 0.0017550042532811
803 => 0.0017425954514822
804 => 0.0017553582118558
805 => 0.0017583192817395
806 => 0.001757842481289
807 => 0.0017448862670691
808 => 0.001753144171653
809 => 0.0017336117655122
810 => 0.0017123732075067
811 => 0.0016988243307081
812 => 0.0016870011387036
813 => 0.0016935613327957
814 => 0.0016701754387016
815 => 0.0016626938205159
816 => 0.0017503465793887
817 => 0.0018150966147939
818 => 0.0018141551236353
819 => 0.0018084240383391
820 => 0.0017999088080971
821 => 0.0018406390705091
822 => 0.0018264494615121
823 => 0.0018367735876389
824 => 0.0018394015110404
825 => 0.0018473554436969
826 => 0.0018501982909579
827 => 0.0018416052320506
828 => 0.0018127658768039
829 => 0.0017409009454928
830 => 0.0017074476259719
831 => 0.0016964074733208
901 => 0.0016968087619015
902 => 0.0016857394314166
903 => 0.001688999845337
904 => 0.0016846055925116
905 => 0.0016762839407444
906 => 0.0016930474942488
907 => 0.0016949793376269
908 => 0.0016910665239294
909 => 0.0016919881332011
910 => 0.0016595917069706
911 => 0.0016620547368956
912 => 0.0016483402732867
913 => 0.0016457689766903
914 => 0.0016111000069419
915 => 0.0015496789016851
916 => 0.0015837121562883
917 => 0.0015426047705274
918 => 0.0015270367806613
919 => 0.0016007332233687
920 => 0.001593336144542
921 => 0.0015806755610235
922 => 0.001561947919303
923 => 0.0015550016548181
924 => 0.0015127983507277
925 => 0.0015103047543762
926 => 0.0015312218514684
927 => 0.0015215693308737
928 => 0.0015080135362633
929 => 0.0014589158223134
930 => 0.0014037137361392
1001 => 0.0014053799401329
1002 => 0.0014229386966736
1003 => 0.0014739931494365
1004 => 0.001454045291491
1005 => 0.0014395728916763
1006 => 0.0014368626462297
1007 => 0.0014707870422766
1008 => 0.0015187971700637
1009 => 0.0015413224478553
1010 => 0.0015190005816666
1011 => 0.0014933584236838
1012 => 0.0014949191430259
1013 => 0.0015053019095943
1014 => 0.0015063929915562
1015 => 0.0014897025827658
1016 => 0.0014944008350756
1017 => 0.0014872637601997
1018 => 0.0014434635448604
1019 => 0.0014426713378569
1020 => 0.0014319220586387
1021 => 0.001431596574736
1022 => 0.0014133093692526
1023 => 0.0014107508627919
1024 => 0.0013744405063505
1025 => 0.0013983400929181
1026 => 0.0013823095050332
1027 => 0.0013581476278571
1028 => 0.0013539821111248
1029 => 0.0013538568906618
1030 => 0.0013786657360248
1031 => 0.0013980501871157
1101 => 0.0013825883639727
1102 => 0.0013790680065579
1103 => 0.0014166562137419
1104 => 0.0014118727717536
1105 => 0.0014077303418417
1106 => 0.0015144983897
1107 => 0.0014299831486055
1108 => 0.001393129679527
1109 => 0.0013475165132583
1110 => 0.0013623683901969
1111 => 0.0013654978988874
1112 => 0.0012558064564025
1113 => 0.0012113046518476
1114 => 0.0011960333095394
1115 => 0.001187244436136
1116 => 0.0011912496361097
1117 => 0.0011511927924692
1118 => 0.0011781116538746
1119 => 0.0011434258132027
1120 => 0.0011376106191365
1121 => 0.0011996331990091
1122 => 0.0012082632786677
1123 => 0.0011714446776885
1124 => 0.0011950881799072
1125 => 0.0011865147173335
1126 => 0.0011440204023866
1127 => 0.0011423974321227
1128 => 0.0011210752786297
1129 => 0.0010877102371958
1130 => 0.0010724615179569
1201 => 0.0010645198525818
1202 => 0.0010677967384955
1203 => 0.0010661398447032
1204 => 0.001055327491942
1205 => 0.001066759596107
1206 => 0.0010375552940371
1207 => 0.0010259259056378
1208 => 0.0010206731806976
1209 => 0.00099475268167361
1210 => 0.001036003722519
1211 => 0.0010441306972324
1212 => 0.0010522736845966
1213 => 0.0011231528301483
1214 => 0.0011196119083389
1215 => 0.0011516201169968
1216 => 0.0011503763368677
1217 => 0.0011412470772599
1218 => 0.0011027322326647
1219 => 0.0011180835632593
1220 => 0.0010708345538157
1221 => 0.0011062367243112
1222 => 0.001090080652127
1223 => 0.0011007743400542
1224 => 0.0010815461249502
1225 => 0.0010921878131023
1226 => 0.0010460579044279
1227 => 0.001002982444773
1228 => 0.0010203172671892
1229 => 0.001039162201633
1230 => 0.0010800228211071
1231 => 0.0010556865732411
]
'min_raw' => 0.00099475268167361
'max_raw' => 0.0029693609810545
'avg_raw' => 0.0019820568313641
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000994'
'max' => '$0.002969'
'avg' => '$0.001982'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0018844173183264
'max_diff' => 9.0190981054509E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010644388082291
102 => 0.0010351202861257
103 => 0.00097462780060448
104 => 0.00097497018150307
105 => 0.00096566473050607
106 => 0.00095762346222657
107 => 0.0010584818840591
108 => 0.0010459385449685
109 => 0.0010259523757593
110 => 0.0010527046574646
111 => 0.0010597783853633
112 => 0.0010599797644521
113 => 0.0010794975386079
114 => 0.0010899141781737
115 => 0.0010917501560454
116 => 0.0011224617953891
117 => 0.0011327559318008
118 => 0.0011751560227997
119 => 0.0010890303990835
120 => 0.0010872566985396
121 => 0.0010530811169303
122 => 0.0010314064227791
123 => 0.0010545652017823
124 => 0.0010750807184906
125 => 0.0010537185912212
126 => 0.0010565080340635
127 => 0.0010278311235542
128 => 0.0010380817696872
129 => 0.0010469110070481
130 => 0.001042036021136
131 => 0.0010347379312736
201 => 0.0010733986800764
202 => 0.0010712172891163
203 => 0.0011072190672082
204 => 0.0011352850277428
205 => 0.0011855842464113
206 => 0.0011330943895731
207 => 0.0011311814505617
208 => 0.0011498807362438
209 => 0.0011327530690376
210 => 0.0011435771634849
211 => 0.0011838403174559
212 => 0.0011846910144535
213 => 0.0011704407436832
214 => 0.0011695736134118
215 => 0.0011723105337941
216 => 0.0011883407619595
217 => 0.0011827393076793
218 => 0.0011892214523838
219 => 0.0011973274735948
220 => 0.0012308574142054
221 => 0.0012389413693716
222 => 0.0012193015493681
223 => 0.0012210748052166
224 => 0.0012137289734102
225 => 0.0012066329919282
226 => 0.0012225837220149
227 => 0.0012517339947607
228 => 0.0012515526524269
301 => 0.0012583149491035
302 => 0.0012625278039112
303 => 0.0012444431470784
304 => 0.0012326707004715
305 => 0.0012371850056008
306 => 0.0012444034778114
307 => 0.0012348441523511
308 => 0.0011758395672997
309 => 0.0011937377891768
310 => 0.0011907586498781
311 => 0.0011865159932411
312 => 0.0012045127937414
313 => 0.0012027769584296
314 => 0.0011507819516404
315 => 0.0011541105032777
316 => 0.00115098437189
317 => 0.0011610855419499
318 => 0.0011322075727051
319 => 0.0011410902415487
320 => 0.0011466613681776
321 => 0.0011499428045614
322 => 0.0011617976028817
323 => 0.0011604065791264
324 => 0.001161711134892
325 => 0.0011792886712504
326 => 0.0012681898182688
327 => 0.0012730285115516
328 => 0.0012492010161578
329 => 0.0012587196305911
330 => 0.0012404459723713
331 => 0.0012527132015571
401 => 0.0012611061282122
402 => 0.0012231801065249
403 => 0.0012209343736584
404 => 0.0012025852935509
405 => 0.0012124450498556
406 => 0.0011967574686332
407 => 0.0012006066523369
408 => 0.0011898439991355
409 => 0.0012092146320751
410 => 0.0012308740095935
411 => 0.0012363460237094
412 => 0.0012219515104207
413 => 0.001211528934155
414 => 0.0011932303236425
415 => 0.0012236613207359
416 => 0.0012325602716538
417 => 0.0012236145783351
418 => 0.0012215416657259
419 => 0.0012176135000771
420 => 0.0012223750446379
421 => 0.001232511806056
422 => 0.0012277314965678
423 => 0.0012308889752029
424 => 0.0012188559226236
425 => 0.0012444491338523
426 => 0.0012850973126252
427 => 0.0012852280031666
428 => 0.0012804476679108
429 => 0.0012784916577179
430 => 0.0012833965717854
501 => 0.0012860572864569
502 => 0.0013019188791436
503 => 0.0013189390000502
504 => 0.0013983644778608
505 => 0.0013760621215178
506 => 0.0014465331304742
507 => 0.0015022665490434
508 => 0.0015189785643453
509 => 0.0015036042966287
510 => 0.0014510097572716
511 => 0.0014484292182552
512 => 0.0015270276648965
513 => 0.0015048200036834
514 => 0.0015021784730463
515 => 0.001474077050004
516 => 0.0014906884714509
517 => 0.0014870553099056
518 => 0.001481320186666
519 => 0.0015130136216252
520 => 0.0015723409025763
521 => 0.0015630941894723
522 => 0.0015561919470829
523 => 0.001525948330145
524 => 0.001544161742698
525 => 0.0015376762953428
526 => 0.0015655418929473
527 => 0.001549034930225
528 => 0.0015046517588079
529 => 0.0015117199251449
530 => 0.0015106515860222
531 => 0.0015326379294633
601 => 0.0015260381748969
602 => 0.0015093628780208
603 => 0.0015721381283797
604 => 0.0015680618527957
605 => 0.0015738410796075
606 => 0.0015763852739785
607 => 0.001614595462648
608 => 0.0016302489543562
609 => 0.0016338025710269
610 => 0.0016486721774652
611 => 0.0016334326016728
612 => 0.0016944017704757
613 => 0.00173494271008
614 => 0.0017820330976481
615 => 0.001850844810588
616 => 0.0018767186511974
617 => 0.0018720447734791
618 => 0.0019242170288929
619 => 0.0020179694121474
620 => 0.001890994810618
621 => 0.0020246993743469
622 => 0.0019823700531638
623 => 0.0018820079941105
624 => 0.0018755458606984
625 => 0.0019435122123168
626 => 0.0020942550386873
627 => 0.0020564956703925
628 => 0.0020943167994869
629 => 0.0020501964434107
630 => 0.0020480054958559
701 => 0.0020921739722708
702 => 0.0021953760249123
703 => 0.0021463485981734
704 => 0.0020760557599249
705 => 0.0021279588978099
706 => 0.0020829955963653
707 => 0.001981680693775
708 => 0.0020564667965151
709 => 0.0020064594593984
710 => 0.0020210542589053
711 => 0.0021261622434948
712 => 0.0021135153727077
713 => 0.0021298815945749
714 => 0.002100995641358
715 => 0.0020740116061567
716 => 0.0020236439005927
717 => 0.0020087325060731
718 => 0.0020128534790625
719 => 0.0020087304639235
720 => 0.0019805501955636
721 => 0.0019744646692943
722 => 0.0019643218588992
723 => 0.001967465539959
724 => 0.0019483940890323
725 => 0.0019843858572937
726 => 0.0019910662466415
727 => 0.0020172580541178
728 => 0.0020199773744579
729 => 0.0020929211854624
730 => 0.0020527449601321
731 => 0.0020796986407321
801 => 0.0020772876498413
802 => 0.0018841831442546
803 => 0.0019107912413489
804 => 0.001952185090347
805 => 0.0019335372174814
806 => 0.0019071734881797
807 => 0.0018858833632349
808 => 0.0018536266469164
809 => 0.0018990273556993
810 => 0.0019587244599217
811 => 0.0020214913915362
812 => 0.0020969017472189
813 => 0.0020800710337038
814 => 0.0020200816473911
815 => 0.0020227727274388
816 => 0.0020394079253928
817 => 0.0020178638325753
818 => 0.0020115100590127
819 => 0.0020385350144742
820 => 0.0020387211204898
821 => 0.0020139320380126
822 => 0.0019863835091934
823 => 0.0019862680798518
824 => 0.0019813660852356
825 => 0.0020510684973631
826 => 0.0020893977763244
827 => 0.0020937921663866
828 => 0.0020891019988605
829 => 0.0020909070581952
830 => 0.0020686040952957
831 => 0.0021195820547459
901 => 0.0021663644715351
902 => 0.002153825784475
903 => 0.0021350285100926
904 => 0.0021200555756476
905 => 0.0021502986369665
906 => 0.002148951961053
907 => 0.0021659558679365
908 => 0.002165184472501
909 => 0.0021594666981653
910 => 0.0021538259886748
911 => 0.0021761907642079
912 => 0.0021697500680216
913 => 0.0021632993676553
914 => 0.0021503615005177
915 => 0.0021521199715369
916 => 0.0021333259427689
917 => 0.0021246309651046
918 => 0.0019938793632018
919 => 0.0019589382627416
920 => 0.0019699314442381
921 => 0.0019735506850245
922 => 0.001958344273326
923 => 0.0019801463614951
924 => 0.001976748529148
925 => 0.0019899675071449
926 => 0.0019817088635937
927 => 0.0019820478012058
928 => 0.0020063347109612
929 => 0.002013385304187
930 => 0.0020097993155671
1001 => 0.002012310819076
1002 => 0.0020701873573996
1003 => 0.0020619591644375
1004 => 0.0020575881009203
1005 => 0.0020587989153869
1006 => 0.0020735876118156
1007 => 0.0020777276393827
1008 => 0.0020601860516662
1009 => 0.00206845876584
1010 => 0.0021036829328284
1011 => 0.0021160093977591
1012 => 0.0021553495567792
1013 => 0.0021386371580119
1014 => 0.002169313489245
1015 => 0.0022636020731234
1016 => 0.0023389263181992
1017 => 0.0022696550295214
1018 => 0.0024079784131184
1019 => 0.0025156830085596
1020 => 0.0025115491267951
1021 => 0.0024927683393278
1022 => 0.0023701495208929
1023 => 0.0022573138560255
1024 => 0.0023517056809424
1025 => 0.002351946305116
1026 => 0.0023438379636437
1027 => 0.0022934777511377
1028 => 0.0023420855374106
1029 => 0.0023459438469673
1030 => 0.0023437842196229
1031 => 0.0023051731627703
1101 => 0.0022462212154725
1102 => 0.0022577402848635
1103 => 0.0022766087555085
1104 => 0.0022408868042021
1105 => 0.0022294714762904
1106 => 0.0022506947427333
1107 => 0.0023190805292556
1108 => 0.0023061525924455
1109 => 0.0023058149917695
1110 => 0.0023611261877417
1111 => 0.0023215353083288
1112 => 0.0022578855772177
1113 => 0.0022418131806753
1114 => 0.0021847670006135
1115 => 0.0022241690003737
1116 => 0.002225587008199
1117 => 0.0022040069356091
1118 => 0.0022596366811738
1119 => 0.002259124043275
1120 => 0.0023119362072937
1121 => 0.0024128932295546
1122 => 0.0023830352702787
1123 => 0.0023483137121776
1124 => 0.0023520889082675
1125 => 0.0023934934913966
1126 => 0.0023684593352621
1127 => 0.0023774617923524
1128 => 0.0023934798650996
1129 => 0.0024031439660943
1130 => 0.0023506983928565
1201 => 0.002338470820973
1202 => 0.0023134575001939
1203 => 0.0023069319916984
1204 => 0.0023273048195529
1205 => 0.0023219372991958
1206 => 0.0022254678301321
1207 => 0.0022153862338639
1208 => 0.0022156954220283
1209 => 0.002190344768858
1210 => 0.0021516789379196
1211 => 0.0022532904330091
1212 => 0.0022451296079014
1213 => 0.0022361206885803
1214 => 0.0022372242297929
1215 => 0.0022813303358782
1216 => 0.002255746566937
1217 => 0.0023237652097644
1218 => 0.0023097826216266
1219 => 0.0022954414328643
1220 => 0.002293459043734
1221 => 0.0022879389095932
1222 => 0.0022690083156731
1223 => 0.0022461484859621
1224 => 0.0022310544463024
1225 => 0.0020580297936222
1226 => 0.0020901421627215
1227 => 0.0021270845162358
1228 => 0.0021398368686317
1229 => 0.0021180230874226
1230 => 0.0022698696567118
1231 => 0.0022976134881509
]
'min_raw' => 0.00095762346222657
'max_raw' => 0.0025156830085596
'avg_raw' => 0.0017366532353931
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000957'
'max' => '$0.002515'
'avg' => '$0.001736'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.7129219447043E-5
'max_diff' => -0.00045367797249496
'year' => 2027
]
2 => [
'items' => [
101 => 0.0022135756130365
102 => 0.0021978555578464
103 => 0.0022709002609129
104 => 0.0022268453756121
105 => 0.0022466832877655
106 => 0.0022038045724475
107 => 0.0022909308115914
108 => 0.0022902670556255
109 => 0.0022563729807632
110 => 0.0022850200207402
111 => 0.0022800418925752
112 => 0.002241775565533
113 => 0.002292143922413
114 => 0.0022921689044897
115 => 0.0022595465943554
116 => 0.0022214508780606
117 => 0.0022146402637677
118 => 0.0022095093807753
119 => 0.0022454214050782
120 => 0.0022776200137743
121 => 0.0023375336418455
122 => 0.0023525973514553
123 => 0.0024113920129103
124 => 0.002376382654674
125 => 0.0023919018497331
126 => 0.0024087501312939
127 => 0.0024168278170492
128 => 0.0024036656615834
129 => 0.0024949979716712
130 => 0.0025027092169923
131 => 0.0025052947308464
201 => 0.0024744979897603
202 => 0.0025018527039118
203 => 0.0024890543390532
204 => 0.002522352128927
205 => 0.0025275736475468
206 => 0.0025231512070368
207 => 0.0025248085994628
208 => 0.0024468725849264
209 => 0.0024428311914275
210 => 0.0023877265043053
211 => 0.0024101820716208
212 => 0.0023682024648477
213 => 0.0023815146305933
214 => 0.002387382506411
215 => 0.0023843174610829
216 => 0.0024114516757048
217 => 0.0023883820501224
218 => 0.0023274975152127
219 => 0.0022665963923522
220 => 0.0022658318283637
221 => 0.0022497976377086
222 => 0.0022382078546735
223 => 0.0022404404580557
224 => 0.0022483084435776
225 => 0.0022377505530517
226 => 0.0022400036142941
227 => 0.0022774194429853
228 => 0.0022849229205919
229 => 0.0022594231718869
301 => 0.0021570380012401
302 => 0.0021319124235496
303 => 0.0021499721905317
304 => 0.0021413407851122
305 => 0.0017282291383815
306 => 0.0018252835920092
307 => 0.0017676171313215
308 => 0.0017941924895127
309 => 0.0017353299658081
310 => 0.0017634222473691
311 => 0.0017582346287306
312 => 0.0019142953181139
313 => 0.0019118586451037
314 => 0.0019130249515278
315 => 0.0018573541071081
316 => 0.0019460392738968
317 => 0.0019897287760724
318 => 0.0019816430119781
319 => 0.0019836780245997
320 => 0.0019487097654417
321 => 0.0019133635207133
322 => 0.0018741590955614
323 => 0.0019469960716802
324 => 0.0019388978433044
325 => 0.0019574722655478
326 => 0.0020047122510554
327 => 0.0020116685183687
328 => 0.0020210178121812
329 => 0.0020176667558775
330 => 0.0020975025123634
331 => 0.0020878338754797
401 => 0.0021111325085128
402 => 0.0020632054526921
403 => 0.0020089714397532
404 => 0.0020192795525694
405 => 0.0020182867984126
406 => 0.0020056478985662
407 => 0.0019942380649083
408 => 0.0019752439065685
409 => 0.002035344234162
410 => 0.0020329042706178
411 => 0.0020724044442512
412 => 0.0020654224048772
413 => 0.0020187946371434
414 => 0.0020204599569899
415 => 0.0020316600332833
416 => 0.0020704236252149
417 => 0.0020819312985268
418 => 0.0020766004857473
419 => 0.0020892181241885
420 => 0.0020991905911499
421 => 0.0020904705125001
422 => 0.0022139284371636
423 => 0.0021626600993868
424 => 0.0021876479304964
425 => 0.0021936073809792
426 => 0.0021783423738813
427 => 0.0021816528073219
428 => 0.0021866672119453
429 => 0.0022171136948976
430 => 0.0022970140759252
501 => 0.0023324014107821
502 => 0.0024388659536793
503 => 0.0023294629852377
504 => 0.0023229714658449
505 => 0.0023421489449419
506 => 0.0024046549020389
507 => 0.0024553101093801
508 => 0.0024721153640241
509 => 0.0024743364558499
510 => 0.0025058642307544
511 => 0.0025239353633714
512 => 0.0025020359296181
513 => 0.0024834784524785
514 => 0.0024170078728033
515 => 0.0024247020233941
516 => 0.0024777070910426
517 => 0.002552579871079
518 => 0.0026168285055353
519 => 0.0025943308730397
520 => 0.0027659719281279
521 => 0.002782989437649
522 => 0.0027806381680752
523 => 0.0028194065873093
524 => 0.0027424591701808
525 => 0.0027095626585723
526 => 0.0024874907896724
527 => 0.0025498839266395
528 => 0.0026405760154416
529 => 0.0026285725774107
530 => 0.0025627095583162
531 => 0.0026167785425292
601 => 0.0025989016454549
602 => 0.0025848013950193
603 => 0.002649397375733
604 => 0.0025783714414817
605 => 0.0026398674774154
606 => 0.0025609981752353
607 => 0.0025944336403299
608 => 0.0025754540532507
609 => 0.0025877361721416
610 => 0.0025159351560703
611 => 0.0025546772414713
612 => 0.0025143233579455
613 => 0.0025143042249505
614 => 0.002513413410735
615 => 0.0025608895757466
616 => 0.0025624377717832
617 => 0.0025273528141071
618 => 0.0025222965235759
619 => 0.0025409922797788
620 => 0.0025191044456916
621 => 0.0025293456255006
622 => 0.0025194146405951
623 => 0.0025171789667143
624 => 0.0024993647368638
625 => 0.0024916898768318
626 => 0.0024946993872071
627 => 0.0024844263767871
628 => 0.0024782365164181
629 => 0.0025121820917111
630 => 0.0024940463401926
701 => 0.0025094025276876
702 => 0.0024919022139317
703 => 0.0024312385019301
704 => 0.0023963501596509
705 => 0.0022817620312089
706 => 0.0023142590822889
707 => 0.0023358046607756
708 => 0.0023286838472143
709 => 0.002343982110133
710 => 0.0023449212992289
711 => 0.0023399476780067
712 => 0.0023341888617917
713 => 0.0023313857885407
714 => 0.0023522776000384
715 => 0.0023644059997989
716 => 0.0023379670478194
717 => 0.0023317727712908
718 => 0.0023585040114767
719 => 0.0023748100525479
720 => 0.0024952046982449
721 => 0.002486285474022
722 => 0.002508670976512
723 => 0.0025061507124651
724 => 0.0025296142853648
725 => 0.0025679673106099
726 => 0.002489984886612
727 => 0.0025035199389887
728 => 0.002500201456716
729 => 0.0025364317760172
730 => 0.0025365448831194
731 => 0.0025148229968596
801 => 0.0025265987837984
802 => 0.002520025862581
803 => 0.0025319040196044
804 => 0.0024861663523448
805 => 0.0025418698939909
806 => 0.0025734502126474
807 => 0.0025738887054025
808 => 0.0025888575258088
809 => 0.0026040667142771
810 => 0.002633259427101
811 => 0.0026032525453609
812 => 0.0025492730862214
813 => 0.0025531702288187
814 => 0.0025215220916755
815 => 0.0025220541025786
816 => 0.0025192141866835
817 => 0.0025277369880635
818 => 0.002488036627969
819 => 0.0024973542231312
820 => 0.0024843095353403
821 => 0.002503491582385
822 => 0.0024828548706709
823 => 0.0025001998564433
824 => 0.0025076853773073
825 => 0.0025353071104472
826 => 0.0024787751182276
827 => 0.0023635025592123
828 => 0.002387734248662
829 => 0.0023518936766078
830 => 0.0023552108580061
831 => 0.0023619120923562
901 => 0.0023401911993201
902 => 0.0023443348612074
903 => 0.0023441868204463
904 => 0.0023429110851451
905 => 0.0023372606419657
906 => 0.0023290663814496
907 => 0.0023617097932857
908 => 0.0023672565450552
909 => 0.0023795862871418
910 => 0.0024162712362476
911 => 0.0024126055447413
912 => 0.0024185844396762
913 => 0.0024055325456033
914 => 0.0023558162979384
915 => 0.0023585161293787
916 => 0.0023248491880564
917 => 0.0023787253477586
918 => 0.0023659667620106
919 => 0.0023577412187793
920 => 0.0023554968030995
921 => 0.0023922726870985
922 => 0.0024032766079823
923 => 0.0023964197029332
924 => 0.0023823559906295
925 => 0.0024093624758159
926 => 0.0024165882719396
927 => 0.0024182058612146
928 => 0.0024660561749849
929 => 0.0024208801622037
930 => 0.0024317544774911
1001 => 0.0025165927811532
1002 => 0.0024396561466173
1003 => 0.0024804111978226
1004 => 0.0024784164501452
1005 => 0.0024992653552661
1006 => 0.0024767062313913
1007 => 0.0024769858787686
1008 => 0.0024954982940888
1009 => 0.0024695009455033
1010 => 0.002463063636392
1011 => 0.0024541705399596
1012 => 0.0024735882906723
1013 => 0.0024852283540352
1014 => 0.0025790387160561
1015 => 0.0026396444881939
1016 => 0.002637013431789
1017 => 0.0026610563621981
1018 => 0.0026502248018408
1019 => 0.0026152468362258
1020 => 0.0026749499584222
1021 => 0.0026560573924745
1022 => 0.0026576148726567
1023 => 0.0026575569031666
1024 => 0.002670118807905
1025 => 0.0026612175471162
1026 => 0.0026436722484057
1027 => 0.0026553196364945
1028 => 0.0026899082151008
1029 => 0.0027972722244021
1030 => 0.0028573545463909
1031 => 0.0027936551931767
1101 => 0.0028375941540556
1102 => 0.0028112464345808
1103 => 0.0028064582701755
1104 => 0.0028340551846711
1105 => 0.0028617004039123
1106 => 0.0028599395229603
1107 => 0.0028398705133889
1108 => 0.0028285340391142
1109 => 0.0029143776203191
1110 => 0.0029776257086437
1111 => 0.0029733126130405
1112 => 0.0029923492143391
1113 => 0.0030482412645315
1114 => 0.0030533513331392
1115 => 0.0030527075819482
1116 => 0.0030400417437237
1117 => 0.003095074725638
1118 => 0.0031409842073642
1119 => 0.0030371099681259
1120 => 0.0030766639186142
1121 => 0.0030944209613371
1122 => 0.0031204935683315
1123 => 0.0031644824266073
1124 => 0.0032122659941632
1125 => 0.0032190231145357
1126 => 0.0032142286142734
1127 => 0.0031827140669791
1128 => 0.0032349994167753
1129 => 0.0032656269484436
1130 => 0.0032838649426534
1201 => 0.0033301134614568
1202 => 0.0030945306227877
1203 => 0.002927773380351
1204 => 0.0029017318289407
1205 => 0.0029546883477669
1206 => 0.0029686525594611
1207 => 0.0029630236032368
1208 => 0.0027753231659691
1209 => 0.002900743624984
1210 => 0.0030356854932324
1211 => 0.0030408691599598
1212 => 0.0031084238807064
1213 => 0.003130422466943
1214 => 0.0031848128717436
1215 => 0.0031814107371144
1216 => 0.003194653935143
1217 => 0.0031916095532565
1218 => 0.0032923563248986
1219 => 0.0034034949750603
1220 => 0.0033996465970045
1221 => 0.0033836691011109
1222 => 0.0034073984070807
1223 => 0.0035221054043891
1224 => 0.0035115450222192
1225 => 0.0035218035339661
1226 => 0.0036570495483958
1227 => 0.0038328886056756
1228 => 0.0037511937096164
1229 => 0.0039284481269917
1230 => 0.0040400203868766
1231 => 0.0042329730735604
]
'min_raw' => 0.0017282291383815
'max_raw' => 0.0042329730735604
'avg_raw' => 0.002980601105971
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001728'
'max' => '$0.004232'
'avg' => '$0.00298'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00077060567615496
'max_diff' => 0.0017172900650009
'year' => 2028
]
3 => [
'items' => [
101 => 0.0042088144468756
102 => 0.0042839295118494
103 => 0.0041655654630522
104 => 0.0038937776816928
105 => 0.0038507662249309
106 => 0.0039368762505919
107 => 0.004148569346186
108 => 0.0039302092816598
109 => 0.0039743832383207
110 => 0.0039616611358307
111 => 0.0039609832290544
112 => 0.0039868561734574
113 => 0.0039493261181588
114 => 0.0037964219213443
115 => 0.0038664970136743
116 => 0.0038394376552433
117 => 0.0038694620308313
118 => 0.004031491202885
119 => 0.003959854243627
120 => 0.0038843905263627
121 => 0.0039790387745516
122 => 0.0040995585191627
123 => 0.0040920166101398
124 => 0.0040773821543618
125 => 0.004159875815347
126 => 0.0042961311749196
127 => 0.0043329604510938
128 => 0.0043601470698241
129 => 0.0043638956452253
130 => 0.0044025083015846
131 => 0.0041948783166986
201 => 0.0045243924350288
202 => 0.0045812904206206
203 => 0.0045705959575093
204 => 0.0046338356738613
205 => 0.0046152289450738
206 => 0.004588270714367
207 => 0.0046885191162584
208 => 0.0045735924131187
209 => 0.0044104684268816
210 => 0.0043209753818053
211 => 0.0044388270427598
212 => 0.0045107949396485
213 => 0.0045583611414741
214 => 0.0045727546454062
215 => 0.0042109960413785
216 => 0.0040160282178596
217 => 0.0041410003574246
218 => 0.0042934749928102
219 => 0.0041940313124004
220 => 0.0041979293164007
221 => 0.0040561487614757
222 => 0.0043060194259231
223 => 0.0042696153718562
224 => 0.0044584796687529
225 => 0.0044134056885679
226 => 0.0045674171910174
227 => 0.0045268608009349
228 => 0.00469520810869
301 => 0.0047623664075749
302 => 0.0048751356437573
303 => 0.0049580891529464
304 => 0.0050068010401901
305 => 0.0050038765611937
306 => 0.0051968973266188
307 => 0.0050830797248795
308 => 0.0049400979923458
309 => 0.0049375119039059
310 => 0.0050115641692519
311 => 0.0051667574021702
312 => 0.0052069967494962
313 => 0.0052294850550988
314 => 0.0051950434322449
315 => 0.0050715025829379
316 => 0.0050181582705735
317 => 0.0050636091702415
318 => 0.0050080266255879
319 => 0.0051039776913676
320 => 0.005235738998725
321 => 0.0052085308097964
322 => 0.0052994837061051
323 => 0.0053936103852609
324 => 0.0055282157639474
325 => 0.0055634065943588
326 => 0.0056215756988414
327 => 0.0056814508149094
328 => 0.0057006810885108
329 => 0.0057373976476193
330 => 0.005737204133229
331 => 0.0058478519554122
401 => 0.005969899929758
402 => 0.0060159702146564
403 => 0.00612190629445
404 => 0.0059404944702465
405 => 0.0060780974228137
406 => 0.0062022187304547
407 => 0.0060542361905643
408 => 0.0062581956462936
409 => 0.0062661149297775
410 => 0.006385686708178
411 => 0.0062644778035881
412 => 0.0061925043429551
413 => 0.0064002890269921
414 => 0.0065008294904414
415 => 0.0064705458846251
416 => 0.0062400861490765
417 => 0.0061059486981043
418 => 0.0057548851157279
419 => 0.0061707350938709
420 => 0.0063732834877141
421 => 0.0062395615976686
422 => 0.0063070031408698
423 => 0.0066749423325814
424 => 0.0068150297544868
425 => 0.0067858925500155
426 => 0.0067908162579319
427 => 0.0068664048880255
428 => 0.0072016065012793
429 => 0.0070007459247051
430 => 0.0071542963093939
501 => 0.0072357388797657
502 => 0.0073113872779708
503 => 0.0071256187209008
504 => 0.0068839365576348
505 => 0.0068073856714015
506 => 0.006226265591074
507 => 0.0061960157672163
508 => 0.0061790356244216
509 => 0.0060719782259894
510 => 0.0059878604363112
511 => 0.0059209668468658
512 => 0.0057454180920442
513 => 0.0058046606435087
514 => 0.0055248725681958
515 => 0.0057038710637004
516 => 0.0052573225397816
517 => 0.0056292214197623
518 => 0.005426813767556
519 => 0.0055627250622761
520 => 0.0055622508805725
521 => 0.0053119950962774
522 => 0.0051676527826009
523 => 0.0052596333227625
524 => 0.00535824376324
525 => 0.0053742429754421
526 => 0.005502093985517
527 => 0.0055377744542807
528 => 0.005429660968165
529 => 0.0052480688141723
530 => 0.0052902485298688
531 => 0.0051667980120086
601 => 0.0049504557279143
602 => 0.0051058365333248
603 => 0.0051588903719036
604 => 0.0051823219694306
605 => 0.004969574180103
606 => 0.0049027242057171
607 => 0.0048671338402796
608 => 0.0052206057461425
609 => 0.0052399697350634
610 => 0.005140900829952
611 => 0.0055887016751543
612 => 0.0054873505523916
613 => 0.0056005845881455
614 => 0.0052864211627762
615 => 0.0052984226287025
616 => 0.0051496926284404
617 => 0.0052329714904449
618 => 0.0051741126749831
619 => 0.0052262433813727
620 => 0.0052574903118397
621 => 0.0054061959069722
622 => 0.0056309193987896
623 => 0.005383984249954
624 => 0.0052763910694299
625 => 0.0053431412735
626 => 0.0055209058631779
627 => 0.0057902283161417
628 => 0.0056307840033676
629 => 0.0057015426818368
630 => 0.0057170003052478
701 => 0.0055994319719574
702 => 0.0057945632282879
703 => 0.0058991356537988
704 => 0.0060064053241586
705 => 0.0060995445733041
706 => 0.0059635594589063
707 => 0.0061090830240124
708 => 0.0059918167189042
709 => 0.0058866167204544
710 => 0.0058867762654273
711 => 0.005820782769673
712 => 0.0056929120559334
713 => 0.0056693307344311
714 => 0.0057920037468787
715 => 0.0058903758856842
716 => 0.0058984782862069
717 => 0.0059529421567926
718 => 0.0059851733143828
719 => 0.0063010824749001
720 => 0.0064281437525978
721 => 0.0065835118778196
722 => 0.0066440365186613
723 => 0.00682619398831
724 => 0.0066790870374623
725 => 0.0066472595233003
726 => 0.0062054050851867
727 => 0.0062777587246747
728 => 0.0063936038825827
729 => 0.0062073153291722
730 => 0.0063254725385969
731 => 0.0063487992746492
801 => 0.0062009853154115
802 => 0.0062799391377045
803 => 0.0060702611938712
804 => 0.0056354898049814
805 => 0.0057950472531297
806 => 0.0059125352414231
807 => 0.0057448653959639
808 => 0.0060454071042304
809 => 0.0058698368427013
810 => 0.0058141894986554
811 => 0.0055970893698216
812 => 0.0056995522736808
813 => 0.0058381348182779
814 => 0.005752506917667
815 => 0.0059301976685287
816 => 0.0061818551601411
817 => 0.0063612012751269
818 => 0.0063749692428859
819 => 0.0062596617062066
820 => 0.0064444427696181
821 => 0.006445788697935
822 => 0.006237354903554
823 => 0.0061096903650598
824 => 0.0060806847133055
825 => 0.0061531465182809
826 => 0.0062411285267081
827 => 0.00637985163203
828 => 0.0064636790992228
829 => 0.0066822566750086
830 => 0.006741397499906
831 => 0.0068063753360906
901 => 0.0068932057636556
902 => 0.0069974679548122
903 => 0.0067693482162115
904 => 0.0067784118386945
905 => 0.0065659898966423
906 => 0.0063389865871716
907 => 0.0065112538026979
908 => 0.0067364702712512
909 => 0.006684805364523
910 => 0.0066789920070978
911 => 0.0066887684617961
912 => 0.0066498148093411
913 => 0.0064736288829771
914 => 0.0063851494137393
915 => 0.006499310502576
916 => 0.0065599820405672
917 => 0.0066540783048775
918 => 0.00664247895417
919 => 0.0068848608258321
920 => 0.0069790430919127
921 => 0.0069549472379629
922 => 0.0069593814549888
923 => 0.0071298939489962
924 => 0.0073195389109015
925 => 0.0074971664435826
926 => 0.0076778567991058
927 => 0.0074600275230579
928 => 0.0073494272505228
929 => 0.0074635385001994
930 => 0.0074029894648889
1001 => 0.0077509221817937
1002 => 0.0077750122882133
1003 => 0.0081229198456226
1004 => 0.0084531255456652
1005 => 0.008245729261718
1006 => 0.0084412946161465
1007 => 0.0086528144916381
1008 => 0.0090608706493244
1009 => 0.0089234516910044
1010 => 0.0088181909225608
1011 => 0.008718720004998
1012 => 0.0089257031938828
1013 => 0.0091919837597458
1014 => 0.0092493380432291
1015 => 0.0093422738934947
1016 => 0.0092445632105956
1017 => 0.0093622449656689
1018 => 0.0097777132730615
1019 => 0.0096654500689638
1020 => 0.0095060182719345
1021 => 0.0098339905986205
1022 => 0.009952682508688
1023 => 0.010785724492978
1024 => 0.011837474409392
1025 => 0.011402043037834
1026 => 0.011131756734226
1027 => 0.01119528042685
1028 => 0.011579343892343
1029 => 0.011702692887894
1030 => 0.011367387797038
1031 => 0.011485823223674
1101 => 0.012138414068752
1102 => 0.012488508119516
1103 => 0.012013033374675
1104 => 0.01070121741126
1105 => 0.0094916631829931
1106 => 0.0098124914312663
1107 => 0.0097761194643717
1108 => 0.010477246915043
1109 => 0.009662772628674
1110 => 0.0096764862868207
1111 => 0.010392112310665
1112 => 0.010201195556439
1113 => 0.0098919348653642
1114 => 0.0094939211282863
1115 => 0.0087581559234833
1116 => 0.0081064681632586
1117 => 0.0093845779357871
1118 => 0.0093294635183039
1119 => 0.0092496496742891
1120 => 0.0094272667473841
1121 => 0.010289724836847
1122 => 0.010269842386381
1123 => 0.010143360380628
1124 => 0.01023929586723
1125 => 0.0098751169107215
1126 => 0.0099689741200146
1127 => 0.0094914715834236
1128 => 0.0097073226722301
1129 => 0.0098912713308172
1130 => 0.0099282017474349
1201 => 0.010011407861789
1202 => 0.0093004207247087
1203 => 0.0096196330757719
1204 => 0.0098071404258691
1205 => 0.0089599753965543
1206 => 0.0097903946970828
1207 => 0.0092880440204558
1208 => 0.0091175386557546
1209 => 0.009347101666951
1210 => 0.0092576407382304
1211 => 0.0091807274850385
1212 => 0.0091378085682199
1213 => 0.0093063743076976
1214 => 0.0092985105144713
1215 => 0.0090227042474856
1216 => 0.0086629262155045
1217 => 0.0087836795323487
1218 => 0.0087398087202708
1219 => 0.0085808152378531
1220 => 0.0086879576480564
1221 => 0.0082161566970543
1222 => 0.0074044476829348
1223 => 0.0079406875209817
1224 => 0.0079200428705336
1225 => 0.0079096329016173
1226 => 0.008312602319329
1227 => 0.0082738661079022
1228 => 0.0082035595048566
1229 => 0.0085795240019531
1230 => 0.0084422919030768
1231 => 0.0088652088958646
]
'min_raw' => 0.0037964219213443
'max_raw' => 0.012488508119516
'avg_raw' => 0.0081424650204302
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003796'
'max' => '$0.012488'
'avg' => '$0.008142'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0020681927829627
'max_diff' => 0.0082555350459558
'year' => 2029
]
4 => [
'items' => [
101 => 0.0091437693798707
102 => 0.0090731174306391
103 => 0.0093351049122465
104 => 0.0087864614448813
105 => 0.0089686987969847
106 => 0.0090062576626832
107 => 0.0085748846584184
108 => 0.0082802038311505
109 => 0.0082605519795791
110 => 0.0077496160346159
111 => 0.0080225538922844
112 => 0.0082627279120967
113 => 0.0081477031948634
114 => 0.0081112898056531
115 => 0.0082973179140282
116 => 0.008311773891272
117 => 0.0079821760781386
118 => 0.0080507099004943
119 => 0.0083365073325177
120 => 0.008043508538488
121 => 0.0074742597427697
122 => 0.0073330781709512
123 => 0.007314241946778
124 => 0.0069313463267545
125 => 0.0073425125986661
126 => 0.0071630275024057
127 => 0.0077300187709306
128 => 0.0074061563991843
129 => 0.0073921953396339
130 => 0.0073710911504812
131 => 0.0070415170731081
201 => 0.0071136728505276
202 => 0.0073535296443049
203 => 0.0074391132505048
204 => 0.0074301861792124
205 => 0.007352354215162
206 => 0.0073879852897401
207 => 0.0072732051838346
208 => 0.0072326739394981
209 => 0.0071047461833749
210 => 0.0069167277228185
211 => 0.0069428728429431
212 => 0.0065703590748744
213 => 0.0063673938032286
214 => 0.0063112156910763
215 => 0.0062360919716613
216 => 0.0063197011150808
217 => 0.0065693037901734
218 => 0.0062682300078502
219 => 0.0057520601259273
220 => 0.0057830828153416
221 => 0.0058527815877362
222 => 0.0057228983864823
223 => 0.0055999748367663
224 => 0.0057068468901416
225 => 0.0054881389066235
226 => 0.0058792114026546
227 => 0.005868633987605
228 => 0.0060144016303645
301 => 0.0061055531288351
302 => 0.0058954784355083
303 => 0.005842645218239
304 => 0.0058727414199315
305 => 0.0053753182460731
306 => 0.0059737515448562
307 => 0.0059789268208746
308 => 0.0059346129656042
309 => 0.0062532602226509
310 => 0.0069257053235914
311 => 0.0066727044275761
312 => 0.0065747348336464
313 => 0.0063884945639707
314 => 0.0066366486654606
315 => 0.0066175943022732
316 => 0.0065314232457871
317 => 0.0064793067219543
318 => 0.0065753330150961
319 => 0.0064674080015581
320 => 0.0064480217035456
321 => 0.0063305618300903
322 => 0.0062886339993505
323 => 0.0062575923026658
324 => 0.00622341844471
325 => 0.0062987974597656
326 => 0.0061279786947143
327 => 0.0059219880096325
328 => 0.0059048621130181
329 => 0.0059521482192948
330 => 0.005931227637304
331 => 0.0059047619533202
401 => 0.0058542317550952
402 => 0.0058392405246887
403 => 0.0058879547507988
404 => 0.0058329592297363
405 => 0.0059141081168251
406 => 0.0058920401097096
407 => 0.0057687700158627
408 => 0.0056151298384953
409 => 0.0056137621186455
410 => 0.0055806605944521
411 => 0.0055385008265443
412 => 0.0055267729435972
413 => 0.0056978464238967
414 => 0.0060519634083183
415 => 0.0059824417709751
416 => 0.0060326782788195
417 => 0.0062797921765149
418 => 0.0063583422536181
419 => 0.0063025892694508
420 => 0.0062262711460283
421 => 0.0062296287561379
422 => 0.0064904308869397
423 => 0.0065066967959314
424 => 0.0065477955003723
425 => 0.0066006189500714
426 => 0.0063115853313496
427 => 0.0062160152986884
428 => 0.00617072891519
429 => 0.0060312643820509
430 => 0.006181664924256
501 => 0.0060940329691064
502 => 0.00610585751379
503 => 0.0060981567635526
504 => 0.0061023618939047
505 => 0.0058791020899219
506 => 0.0059604462283034
507 => 0.0058251958212891
508 => 0.0056441107088676
509 => 0.0056435036480742
510 => 0.0056878239727962
511 => 0.0056614605093971
512 => 0.0055905171072566
513 => 0.0056005942826872
514 => 0.0055123076222125
515 => 0.0056113138817504
516 => 0.0056141530270125
517 => 0.005576030224183
518 => 0.0057285630272322
519 => 0.0057910558410964
520 => 0.0057659625956045
521 => 0.0057892952320993
522 => 0.005985330708878
523 => 0.0060172930452205
524 => 0.0060314886037104
525 => 0.006012468435885
526 => 0.0057928784007474
527 => 0.0058026181525747
528 => 0.0057311543160929
529 => 0.0056707749049394
530 => 0.0056731897647372
531 => 0.0057042326308442
601 => 0.0058397986477732
602 => 0.0061250893383471
603 => 0.0061359159115096
604 => 0.0061490380340159
605 => 0.0060956637671322
606 => 0.0060795655775171
607 => 0.0061008032449147
608 => 0.0062079434284223
609 => 0.0064835370686801
610 => 0.0063861238699327
611 => 0.0063069254230242
612 => 0.0063764038127109
613 => 0.0063657081592083
614 => 0.0062754260799207
615 => 0.0062728921626489
616 => 0.0060996119875693
617 => 0.0060355542522411
618 => 0.0059820228139624
619 => 0.0059235678808357
620 => 0.005888913837051
621 => 0.0059421581982854
622 => 0.0059543358136685
623 => 0.0058379160872773
624 => 0.0058220485087559
625 => 0.0059171193704213
626 => 0.0058752822288013
627 => 0.0059183127664686
628 => 0.0059282962203165
629 => 0.0059266886543086
630 => 0.0058830058734922
701 => 0.0059108479753453
702 => 0.0058449931043327
703 => 0.0057733858231884
704 => 0.0057277048391095
705 => 0.0056878421217975
706 => 0.0057099602741969
707 => 0.005631113099508
708 => 0.0056058883014449
709 => 0.0059014156977046
710 => 0.0061197249627766
711 => 0.0061165506596025
712 => 0.0060972279053946
713 => 0.0060685182121193
714 => 0.0062058431355376
715 => 0.0061580018781172
716 => 0.0061928103901614
717 => 0.0062016706173853
718 => 0.0062284878566623
719 => 0.0062380727146842
720 => 0.00620910061663
721 => 0.0061118667169164
722 => 0.0058695690835517
723 => 0.0057567788811505
724 => 0.0057195562356887
725 => 0.0057209092081554
726 => 0.0056835881875896
727 => 0.005694580900757
728 => 0.0056797653705596
729 => 0.0056517083406272
730 => 0.0057082278316613
731 => 0.0057147411764874
801 => 0.0057015488519225
802 => 0.0057046561219266
803 => 0.0055954293090443
804 => 0.0056037335863995
805 => 0.0055574943148288
806 => 0.005548825008832
807 => 0.0054319361568152
808 => 0.0052248506121573
809 => 0.0053395961061779
810 => 0.005200999685059
811 => 0.0051485111203028
812 => 0.0053969838222121
813 => 0.0053720440545004
814 => 0.0053293580132344
815 => 0.0052662164616514
816 => 0.0052427966459677
817 => 0.0051005052596865
818 => 0.00509209792549
819 => 0.0051626213787216
820 => 0.005130077231619
821 => 0.0050843729236548
822 => 0.0049188365531796
823 => 0.0047327188655568
824 => 0.004738336588652
825 => 0.0047975371622422
826 => 0.0049696708142406
827 => 0.0049024152184624
828 => 0.0048536205120563
829 => 0.0048444827303099
830 => 0.0049588612001077
831 => 0.0051207306979018
901 => 0.0051966762446409
902 => 0.005121416514323
903 => 0.0050349621884054
904 => 0.0050402242626332
905 => 0.0050752304850202
906 => 0.0050789091440317
907 => 0.0050226362655077
908 => 0.0050384767511919
909 => 0.0050144136049532
910 => 0.0048667381209032
911 => 0.0048640671396807
912 => 0.004827825194306
913 => 0.0048267278026035
914 => 0.0047650712125441
915 => 0.0047564450293829
916 => 0.0046340221275325
917 => 0.0047146012522611
918 => 0.0046605530059871
919 => 0.0045790895501596
920 => 0.0045650452196696
921 => 0.004564623030136
922 => 0.0046482677843753
923 => 0.0047136238146075
924 => 0.0046614931983711
925 => 0.0046496240675636
926 => 0.0047763553324092
927 => 0.0047602276237765
928 => 0.0047462611321131
929 => 0.0051062370597745
930 => 0.0048212880237586
1001 => 0.0046970339797333
1002 => 0.004543246005049
1003 => 0.0045933201450725
1004 => 0.0046038715021176
1005 => 0.0042340391453678
1006 => 0.0040839982042941
1007 => 0.0040325098074912
1008 => 0.0040028775071921
1009 => 0.0040163813185374
1010 => 0.003881326873524
1011 => 0.0039720856941674
1012 => 0.0038551399606538
1013 => 0.0038355336278559
1014 => 0.0040446470861746
1015 => 0.0040737440022765
1016 => 0.0039496075184824
1017 => 0.0040293232369494
1018 => 0.0040004172093019
1019 => 0.0038571446596003
1020 => 0.0038516727020432
1021 => 0.0037797835728766
1022 => 0.0036672910062092
1023 => 0.0036158788846637
1024 => 0.0035891030053823
1025 => 0.0036001512550253
1026 => 0.0035945649219238
1027 => 0.0035581103196951
1028 => 0.0035966544570513
1029 => 0.0034981901136433
1030 => 0.0034589808187171
1031 => 0.0034412708898477
1101 => 0.003353878117677
1102 => 0.0034929588819428
1103 => 0.0035203595445964
1104 => 0.00354781419502
1105 => 0.0037867881828715
1106 => 0.0037748497177719
1107 => 0.0038827676280038
1108 => 0.0038785741364605
1109 => 0.0038477942003081
1110 => 0.003717938712735
1111 => 0.0037696967956301
1112 => 0.0036103934614709
1113 => 0.0037297543509968
1114 => 0.0036752830256471
1115 => 0.0037113375411028
1116 => 0.0036465082714088
1117 => 0.0036823874659924
1118 => 0.0035268572582092
1119 => 0.0033816253385503
1120 => 0.0034400709026051
1121 => 0.0035036079147936
1122 => 0.0036413723461479
1123 => 0.0035593209873652
1124 => 0.0035888297586888
1125 => 0.0034899803144632
1126 => 0.0032860256760781
1127 => 0.0032871800371819
1128 => 0.0032558060594597
1129 => 0.0032286943620319
1130 => 0.0035687455729504
1201 => 0.0035264548294586
1202 => 0.00345907006458
1203 => 0.0035492672501341
1204 => 0.0035731168176164
1205 => 0.0035737957812741
1206 => 0.003639601319528
1207 => 0.0036747217470904
1208 => 0.0036809118746689
1209 => 0.0037844583109343
1210 => 0.0038191657105599
1211 => 0.0039621205776428
1212 => 0.0036717420241845
1213 => 0.003665761868965
1214 => 0.0035505365095061
1215 => 0.0034774587648965
1216 => 0.0035555402052003
1217 => 0.00362470970213
1218 => 0.003552685798585
1219 => 0.0035620905998804
1220 => 0.0034654043939403
1221 => 0.0034999651630551
1222 => 0.003529733553255
1223 => 0.0035132971978917
1224 => 0.0034886911783842
1225 => 0.0036190385921803
1226 => 0.0036116838802583
1227 => 0.0037330663886593
1228 => 0.0038276927341043
1229 => 0.0039972800616243
1230 => 0.0038203068445698
1231 => 0.0038138572371356
]
'min_raw' => 0.0032286943620319
'max_raw' => 0.0093351049122465
'avg_raw' => 0.0062818996371392
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003228'
'max' => '$0.009335'
'avg' => '$0.006281'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00056772755931233
'max_diff' => -0.0031534032072697
'year' => 2030
]
5 => [
'items' => [
101 => 0.0038769031843553
102 => 0.0038191560585539
103 => 0.0038556502486974
104 => 0.0039914002833942
105 => 0.0039942684677153
106 => 0.0039462226848911
107 => 0.0039432990946398
108 => 0.0039525268127945
109 => 0.0040065738462488
110 => 0.0039876881520623
111 => 0.0040095431555022
112 => 0.0040368731719596
113 => 0.0041499217077141
114 => 0.0041771773269604
115 => 0.0041109603026101
116 => 0.0041169389585083
117 => 0.0040921719737033
118 => 0.0040682473767111
119 => 0.0041220263768428
120 => 0.0042203085566124
121 => 0.0042196971482729
122 => 0.0042424967036469
123 => 0.0042567006377631
124 => 0.0041957269546209
125 => 0.0041560353289597
126 => 0.004171255623882
127 => 0.0041955932069175
128 => 0.0041633632737173
129 => 0.0039644251956479
130 => 0.0040247703003205
131 => 0.0040147259241782
201 => 0.0040004215111135
202 => 0.0040610989804967
203 => 0.0040552464905511
204 => 0.0038799416949859
205 => 0.003891164139223
206 => 0.0038806241689898
207 => 0.0039146809690881
208 => 0.0038173168795837
209 => 0.0038472654177581
210 => 0.0038660488601509
211 => 0.0038771124520216
212 => 0.0039170817322342
213 => 0.0039123917985249
214 => 0.0039167901993698
215 => 0.0039760540904263
216 => 0.0042757905144787
217 => 0.0042921045067087
218 => 0.0042117684424058
219 => 0.004243861115536
220 => 0.004182250201022
221 => 0.0042236100206925
222 => 0.0042519073588855
223 => 0.0041240371288565
224 => 0.0041164654837051
225 => 0.0040546002790307
226 => 0.0040878431357984
227 => 0.004034951360435
228 => 0.0040479291520334
301 => 0.0040116421153407
302 => 0.0040769515567106
303 => 0.0041499776602234
304 => 0.004168426937859
305 => 0.0041198948313133
306 => 0.0040847543877525
307 => 0.0040230593448415
308 => 0.0041256595761662
309 => 0.0041556630104909
310 => 0.0041255019808985
311 => 0.0041185130113105
312 => 0.0041052689265699
313 => 0.004121322806497
314 => 0.004155499605344
315 => 0.0041393824581541
316 => 0.0041500281178206
317 => 0.0041094578409285
318 => 0.0041957471394471
319 => 0.0043327953121452
320 => 0.00433323594443
321 => 0.0043171187103627
322 => 0.004310523885433
323 => 0.0043270611456616
324 => 0.0043360319309417
325 => 0.0043895103981061
326 => 0.0044468949240496
327 => 0.0047146834677979
328 => 0.0046394895162865
329 => 0.0048770874431117
330 => 0.005064996555001
331 => 0.005121342281387
401 => 0.0050695068643831
402 => 0.0048921807029073
403 => 0.0048834802354462
404 => 0.0051484803858654
405 => 0.0050736057055961
406 => 0.0050646996006274
407 => 0.0049699536908615
408 => 0.0050259602580423
409 => 0.0050137108002331
410 => 0.0049943744318173
411 => 0.005101231060547
412 => 0.0053012571303721
413 => 0.0052700811915572
414 => 0.0052468097994421
415 => 0.0051448413333942
416 => 0.0052062491254365
417 => 0.005184382986879
418 => 0.0052783337947163
419 => 0.0052226794174187
420 => 0.0050730384562518
421 => 0.0050968692725407
422 => 0.0050932672925996
423 => 0.0051673957845487
424 => 0.0051451442512479
425 => 0.0050889223235982
426 => 0.005300573463011
427 => 0.0052868300152831
428 => 0.0053063150819718
429 => 0.0053148930109238
430 => 0.005443721329773
501 => 0.0054964981699591
502 => 0.00550847943667
503 => 0.0055586133529395
504 => 0.0055072320591622
505 => 0.0057127938685127
506 => 0.0058494804768667
507 => 0.0060082490062984
508 => 0.0062402525007557
509 => 0.0063274879608239
510 => 0.0063117296557769
511 => 0.0064876320574551
512 => 0.0068037247631802
513 => 0.0063756210290403
514 => 0.0068264153006067
515 => 0.0066836990388989
516 => 0.0063453213497457
517 => 0.0063235338157751
518 => 0.0065526871155154
519 => 0.0070609270791518
520 => 0.0069336187326708
521 => 0.0070611353099996
522 => 0.0069123804491038
523 => 0.0069049935164559
524 => 0.007053910618433
525 => 0.0074018635442512
526 => 0.0072365641520153
527 => 0.0069995669401714
528 => 0.0071745619933119
529 => 0.007022965083254
530 => 0.00668137481559
531 => 0.0069335213823775
601 => 0.0067649181538875
602 => 0.0068141255394015
603 => 0.00716850444785
604 => 0.0071258646400152
605 => 0.0071810444996934
606 => 0.0070836534916698
607 => 0.0069926749330235
608 => 0.0068228566971536
609 => 0.0067725818894504
610 => 0.0067864760376014
611 => 0.0067725750042006
612 => 0.0066775632619415
613 => 0.0066570454852468
614 => 0.0066228482918513
615 => 0.006633447432029
616 => 0.0065691467037036
617 => 0.0066904954632621
618 => 0.0067130188623578
619 => 0.0068013263699178
620 => 0.0068104947483016
621 => 0.0070564298998774
622 => 0.0069209729511618
623 => 0.0070118491671505
624 => 0.0070037203430324
625 => 0.0063526550203205
626 => 0.0064423660773922
627 => 0.0065819283293152
628 => 0.0065190557239961
629 => 0.0064301685699987
630 => 0.0063583874273181
701 => 0.0062496316561583
702 => 0.0064027033155961
703 => 0.0066039762704006
704 => 0.0068155993625864
705 => 0.0070698506417533
706 => 0.0070131047160544
707 => 0.0068108463117758
708 => 0.0068199194760419
709 => 0.0068760062073763
710 => 0.0068033687942814
711 => 0.006781946603109
712 => 0.0068730631272693
713 => 0.0068736905966944
714 => 0.0067901124744042
715 => 0.0066972306861134
716 => 0.0066968415080291
717 => 0.0066803140909344
718 => 0.006915320639889
719 => 0.007044550479972
720 => 0.0070593664728732
721 => 0.0070435532456021
722 => 0.0070496391291742
723 => 0.0069744431326151
724 => 0.0071463188820691
725 => 0.0073040490665179
726 => 0.0072617740076718
727 => 0.0071983976847076
728 => 0.0071479153908494
729 => 0.0072498819835891
730 => 0.0072453415717247
731 => 0.0073026714309576
801 => 0.0073000706173895
802 => 0.0072807927420145
803 => 0.0072617746961454
804 => 0.0073371790983141
805 => 0.0073154638414472
806 => 0.0072937148547884
807 => 0.007250093932441
808 => 0.0072560227402548
809 => 0.0071926573601063
810 => 0.0071633416358471
811 => 0.0067225034812467
812 => 0.0066046971215352
813 => 0.00664176140047
814 => 0.0066539639234689
815 => 0.0066026944447495
816 => 0.0066762017071847
817 => 0.0066647456781976
818 => 0.0067093143854335
819 => 0.0066814697921008
820 => 0.0066826125439238
821 => 0.0067644975558218
822 => 0.0067882691231396
823 => 0.0067761787121417
824 => 0.0067846464215696
825 => 0.0069797812113383
826 => 0.0069520392842925
827 => 0.0069373019384665
828 => 0.0069413842839772
829 => 0.0069912454065001
830 => 0.0070052037984902
831 => 0.0069460611107895
901 => 0.0069739531442089
902 => 0.007092713882483
903 => 0.0071342734196033
904 => 0.0072669115123817
905 => 0.0072105644931153
906 => 0.0073139918856206
907 => 0.0076318924291855
908 => 0.0078858533804295
909 => 0.0076523003942853
910 => 0.0081186673395128
911 => 0.0084818009027373
912 => 0.0084678632317502
913 => 0.0084045424955713
914 => 0.0079911245882454
915 => 0.0076106912662104
916 => 0.0079289398941448
917 => 0.0079297511753459
918 => 0.0079024133359655
919 => 0.0077326203634639
920 => 0.0078965049085701
921 => 0.0079095134686194
922 => 0.0079022321342471
923 => 0.0077720522603307
924 => 0.0075732916541227
925 => 0.0076121290008101
926 => 0.0076757453669444
927 => 0.0075553063140879
928 => 0.0075168187390407
929 => 0.0075883744636142
930 => 0.0078189419174174
1001 => 0.0077753544758622
1002 => 0.0077742162316125
1003 => 0.0079607017905374
1004 => 0.0078272183764496
1005 => 0.0076126188641262
1006 => 0.0075584296570448
1007 => 0.0073660944781294
1008 => 0.0074989410712806
1009 => 0.0075037219836659
1010 => 0.0074309632622563
1011 => 0.0076185228333724
1012 => 0.0076167944389054
1013 => 0.0077948543371221
1014 => 0.0081352379862689
1015 => 0.0080345697919541
1016 => 0.0079175036346344
1017 => 0.0079302319718275
1018 => 0.0080698304146227
1019 => 0.0079854260093862
1020 => 0.0080157784219977
1021 => 0.008069784472611
1022 => 0.0081023676638408
1023 => 0.0079255437520363
1024 => 0.0078843176397293
1025 => 0.0077999834823483
1026 => 0.0077779822748592
1027 => 0.0078466706863561
1028 => 0.0078285737167241
1029 => 0.0075033201664926
1030 => 0.0074693293607997
1031 => 0.0074703718102826
1101 => 0.0073849003131932
1102 => 0.0072545357646221
1103 => 0.0075971260146042
1104 => 0.0075696112229832
1105 => 0.0075392370225093
1106 => 0.0075429576887545
1107 => 0.0076916645048109
1108 => 0.007605407041624
1109 => 0.0078347366448265
1110 => 0.007787593372687
1111 => 0.0077392410535049
1112 => 0.0077325572901463
1113 => 0.0077139457724872
1114 => 0.0076501199533935
1115 => 0.0075730464415007
1116 => 0.0075221558329558
1117 => 0.0069387911362489
1118 => 0.0070470602306813
1119 => 0.0071716139547874
1120 => 0.0072146094012311
1121 => 0.0071410627148949
1122 => 0.0076530240248423
1123 => 0.0077465642895517
1124 => 0.0074632247262666
1125 => 0.0074102234626541
1126 => 0.007656498778861
1127 => 0.0075079646572553
1128 => 0.0075748495631195
1129 => 0.0074302809807286
1130 => 0.0077240331789619
1201 => 0.0077217952793809
1202 => 0.0076075190395738
1203 => 0.0077041045349288
1204 => 0.0076873204282586
1205 => 0.0075583028349664
1206 => 0.0077281232667938
1207 => 0.0077282074956093
1208 => 0.0076182190993747
1209 => 0.0074897767321286
1210 => 0.0074668142705383
1211 => 0.0074495151403027
1212 => 0.0075705950375375
1213 => 0.0076791548947912
1214 => 0.0078811578748694
1215 => 0.0079319462235334
1216 => 0.0081301765295412
1217 => 0.008012140033972
1218 => 0.0080644640836293
1219 => 0.008121269241221
1220 => 0.008148503722711
1221 => 0.0081041265966059
1222 => 0.0084120598566851
1223 => 0.008438058858667
1224 => 0.0084467760991411
1225 => 0.0083429427364094
1226 => 0.0084351710650163
1227 => 0.0083920204843423
1228 => 0.0085042863076794
1229 => 0.0085218910222607
1230 => 0.0085069804553163
1231 => 0.0085125684695959
]
'min_raw' => 0.0038173168795837
'max_raw' => 0.0085218910222607
'avg_raw' => 0.0061696039509222
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003817'
'max' => '$0.008521'
'avg' => '$0.006169'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00058862251755175
'max_diff' => -0.00081321388998586
'year' => 2031
]
6 => [
'items' => [
101 => 0.0082498017552678
102 => 0.0082361759149251
103 => 0.0080503866150061
104 => 0.0081260971280083
105 => 0.0079845599528501
106 => 0.0080294428490872
107 => 0.0080492268020886
108 => 0.0080388927877701
109 => 0.0081303776868183
110 => 0.0080525968334972
111 => 0.0078473203732268
112 => 0.007641987985522
113 => 0.0076394102046545
114 => 0.0075853498113895
115 => 0.0075462740487139
116 => 0.0075538014268924
117 => 0.0075803288894047
118 => 0.0075447322243683
119 => 0.0075523285776506
120 => 0.0076784786563729
121 => 0.0077037771549994
122 => 0.0076178029719049
123 => 0.0072726042207649
124 => 0.0071878915813697
125 => 0.0072487813466423
126 => 0.0072196799606451
127 => 0.0058268452011586
128 => 0.0061540710676899
129 => 0.0059596445693374
130 => 0.0060492452449113
131 => 0.0058507861365911
201 => 0.0059455012252146
202 => 0.0059280108067871
203 => 0.0064541803168522
204 => 0.006445964903675
205 => 0.0064498971872129
206 => 0.0062621990484377
207 => 0.0065612072800664
208 => 0.006708509486955
209 => 0.0066812477687812
210 => 0.0066881089559149
211 => 0.0065702110287577
212 => 0.0064510386968599
213 => 0.0063188582402948
214 => 0.0065644331905945
215 => 0.0065371294482254
216 => 0.0065997544096438
217 => 0.0067590273189732
218 => 0.0067824808598908
219 => 0.0068140026567266
220 => 0.0068027043364353
221 => 0.0070718761633821
222 => 0.0070392776790859
223 => 0.0071178306470156
224 => 0.0069562412321562
225 => 0.0067733874710346
226 => 0.006808141993084
227 => 0.0068047948531324
228 => 0.0067621819198805
229 => 0.0067237128690937
301 => 0.0066596727381215
302 => 0.0068623051886737
303 => 0.0068540786812316
304 => 0.0069872562744505
305 => 0.006963715841231
306 => 0.0068065070668695
307 => 0.006812121809001
308 => 0.0068498836481885
309 => 0.0069805778047735
310 => 0.0070193767287846
311 => 0.0070014035213129
312 => 0.0070439447702529
313 => 0.0070775676388687
314 => 0.0070481672848843
315 => 0.0074644142974443
316 => 0.0072915595171889
317 => 0.0073758077343696
318 => 0.0073959004377479
319 => 0.0073444334005485
320 => 0.0073555947580206
321 => 0.007372501173303
322 => 0.0074751536162822
323 => 0.0077445433293834
324 => 0.0078638541995181
325 => 0.0082228068390131
326 => 0.0078539470926409
327 => 0.0078320604817846
328 => 0.0078967186914888
329 => 0.0081074618898681
330 => 0.0082782494580524
331 => 0.0083349095473903
401 => 0.0083423981135525
402 => 0.0084486962078419
403 => 0.0085096242931465
404 => 0.0084357888232778
405 => 0.0083732209934599
406 => 0.0081491107932572
407 => 0.0081750521591625
408 => 0.0083537624454351
409 => 0.0086062012507784
410 => 0.0088228200075442
411 => 0.0087469676688506
412 => 0.0093256674696763
413 => 0.0093830431911514
414 => 0.0093751157216227
415 => 0.0095058261537953
416 => 0.0092463925646493
417 => 0.0091354796790004
418 => 0.0083867488684416
419 => 0.0085971116858757
420 => 0.0089028863951913
421 => 0.0088624159658171
422 => 0.0086403541985307
423 => 0.0088226515537809
424 => 0.0087623783471698
425 => 0.008714838368378
426 => 0.0089326282273016
427 => 0.0086931593311008
428 => 0.0089004975097676
429 => 0.0086345841509886
430 => 0.0087473141559445
501 => 0.0086833231529947
502 => 0.0087247331743456
503 => 0.0084826510356743
504 => 0.0086132726814896
505 => 0.0084772167457642
506 => 0.0084771522375357
507 => 0.0084741487952136
508 => 0.0086342180002301
509 => 0.008639437851259
510 => 0.0085211464669007
511 => 0.008504098830356
512 => 0.0085671328776899
513 => 0.008493336516905
514 => 0.0085278653696475
515 => 0.0084943823606795
516 => 0.0084868446301007
517 => 0.0084267827104099
518 => 0.0084009063839702
519 => 0.008411053158318
520 => 0.0083764169864483
521 => 0.0083555474400517
522 => 0.0084699973171565
523 => 0.0084088513647143
524 => 0.0084606258229883
525 => 0.0084016222933275
526 => 0.0081970903529089
527 => 0.0080794618710882
528 => 0.0076931199957585
529 => 0.0078026860723464
530 => 0.0078753284944785
531 => 0.0078513201743972
601 => 0.0079028993359183
602 => 0.0079060658775271
603 => 0.0078892969663293
604 => 0.0078698807153928
605 => 0.0078604299582229
606 => 0.0079308681593071
607 => 0.0079717599058773
608 => 0.0078826191333697
609 => 0.0078617346975831
610 => 0.0079518609401852
611 => 0.0080068378961083
612 => 0.0084127568497614
613 => 0.0083826850625738
614 => 0.0084581593471244
615 => 0.0084496621009313
616 => 0.0085287711751368
617 => 0.0086580810774734
618 => 0.0083951578904057
619 => 0.0084407922644809
620 => 0.0084296037698092
621 => 0.0085517568208534
622 => 0.0085521381693453
623 => 0.0084789013132469
624 => 0.0085186042010701
625 => 0.0084964431382789
626 => 0.0085364911739899
627 => 0.008382283435522
628 => 0.0085700918152791
629 => 0.0086765670644968
630 => 0.0086780454734354
701 => 0.0087285138965248
702 => 0.0087797927373175
703 => 0.0088782180067733
704 => 0.0087770477099727
705 => 0.0085950521947585
706 => 0.008608191683115
707 => 0.0085014877791345
708 => 0.008503281491038
709 => 0.0084937065163212
710 => 0.008522441736217
711 => 0.0083885892003676
712 => 0.0084200041229908
713 => 0.0083760230473527
714 => 0.0084406966582118
715 => 0.0083711185438583
716 => 0.0084295983743783
717 => 0.0084548363305937
718 => 0.0085479649323626
719 => 0.0083573633736565
720 => 0.0079687138928635
721 => 0.0080504127256456
722 => 0.007929573734656
723 => 0.0079407578433385
724 => 0.007963351522815
725 => 0.0078901180154398
726 => 0.007904088660794
727 => 0.007903589531032
728 => 0.007899288300395
729 => 0.0078802374367145
730 => 0.0078526099152792
731 => 0.0079626694573748
801 => 0.0079813707182278
802 => 0.0080229413045079
803 => 0.0081466271716794
804 => 0.0081342680368354
805 => 0.0081544262985416
806 => 0.0081104209264207
807 => 0.0079427991263408
808 => 0.0079519017965379
809 => 0.0078383913533191
810 => 0.0080200385872685
811 => 0.0079770221246429
812 => 0.0079492891313496
813 => 0.0079417219271851
814 => 0.0080657143876978
815 => 0.0081028148752269
816 => 0.0080796963411199
817 => 0.008032279553191
818 => 0.0081233338035294
819 => 0.0081476960796496
820 => 0.0081531498948267
821 => 0.0083144805685056
822 => 0.0081621664873251
823 => 0.0081988300005371
824 => 0.008484868264555
825 => 0.008225471029673
826 => 0.0083628795302386
827 => 0.0083561540991753
828 => 0.0084264476384145
829 => 0.008350387977243
830 => 0.0083513308278999
831 => 0.0084137467286475
901 => 0.0083260948528145
902 => 0.0083043910157071
903 => 0.0082744073201891
904 => 0.0083398756224211
905 => 0.0083791209087326
906 => 0.0086954090939162
907 => 0.0088997456860385
908 => 0.0088908748956751
909 => 0.0089719373141733
910 => 0.0089354179521932
911 => 0.0088174872990385
912 => 0.0090187805438625
913 => 0.0089550829387331
914 => 0.0089603340919073
915 => 0.0089601386437239
916 => 0.0090024919825937
917 => 0.008972480760378
918 => 0.008913325560802
919 => 0.0089525955429381
920 => 0.0090692133506068
921 => 0.0094311986038816
922 => 0.0096337703472809
923 => 0.0094190035305724
924 => 0.0095671468048956
925 => 0.0094783136291476
926 => 0.0094621699985561
927 => 0.0095552149225331
928 => 0.0096484227093324
929 => 0.0096424857762616
930 => 0.0095748217093181
1001 => 0.0095365999948139
1002 => 0.0098260276222537
1003 => 0.01003927296788
1004 => 0.010024731064924
1005 => 0.010088914295295
1006 => 0.010277358244777
1007 => 0.010294587197861
1008 => 0.010292416745775
1009 => 0.010249712987901
1010 => 0.010435260528705
1011 => 0.010590047551643
1012 => 0.010239828301783
1013 => 0.010373187207423
1014 => 0.01043305631672
1015 => 0.010520961931533
1016 => 0.010669273438414
1017 => 0.010830379072571
1018 => 0.010853161175674
1019 => 0.010836996183298
1020 => 0.01073074268682
1021 => 0.010907026394104
1022 => 0.01101028925547
1023 => 0.011071779926285
1024 => 0.011227710036399
1025 => 0.010433426047958
1026 => 0.0098711923624632
1027 => 0.0097833914537204
1028 => 0.0099619380542491
1029 => 0.010009019368926
1030 => 0.0099900409500147
1031 => 0.0093571958209405
1101 => 0.0097800596550862
1102 => 0.010235025585226
1103 => 0.01025250267951
1104 => 0.010480268137027
1105 => 0.010554437906416
1106 => 0.010737818953618
1107 => 0.010726348419186
1108 => 0.01077099878595
1109 => 0.010760734439867
1110 => 0.011100409214374
1111 => 0.011475120932847
1112 => 0.011462145857546
1113 => 0.011408276614628
1114 => 0.011488281626433
1115 => 0.011875024276445
1116 => 0.011839419210656
1117 => 0.011874006499237
1118 => 0.012329997879462
1119 => 0.012922851537772
1120 => 0.012647411491953
1121 => 0.013245037135642
1122 => 0.01362121079957
1123 => 0.014271764254251
1124 => 0.014190311757682
1125 => 0.014443567443608
1126 => 0.014044494789174
1127 => 0.013128143308704
1128 => 0.012983127179267
1129 => 0.013273453142793
1130 => 0.013987191194528
1201 => 0.013250974991566
1202 => 0.013399910570575
1203 => 0.013357017113801
1204 => 0.013354731503775
1205 => 0.013441963942221
1206 => 0.013315428740517
1207 => 0.012799901565526
1208 => 0.013036164631804
1209 => 0.01294493211563
1210 => 0.013046161394159
1211 => 0.013592454060254
1212 => 0.013350925050583
1213 => 0.013096493859118
1214 => 0.013415607036016
1215 => 0.013821947769393
1216 => 0.013796519696563
1217 => 0.013747178607162
1218 => 0.014025311744697
1219 => 0.014484706202542
1220 => 0.014608878678501
1221 => 0.014700540261659
1222 => 0.014713178845342
1223 => 0.014843364112106
1224 => 0.014143325121801
1225 => 0.015254304977692
1226 => 0.015446140508605
1227 => 0.015410083379562
1228 => 0.015623300498499
1229 => 0.015560566613311
1230 => 0.01546967505632
1231 => 0.015807669542417
]
'min_raw' => 0.0058268452011586
'max_raw' => 0.015807669542417
'avg_raw' => 0.010817257371788
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005826'
'max' => '$0.0158076'
'avg' => '$0.010817'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0020095283215749
'max_diff' => 0.0072857785201559
'year' => 2032
]
7 => [
'items' => [
101 => 0.015420186138855
102 => 0.014870202230304
103 => 0.014568470180624
104 => 0.014965815283672
105 => 0.015208460072671
106 => 0.015368832843092
107 => 0.015417361546521
108 => 0.014197667155863
109 => 0.01354031952665
110 => 0.013961671820469
111 => 0.014475750699111
112 => 0.014140469387673
113 => 0.01415361178031
114 => 0.013675588740579
115 => 0.014518045131176
116 => 0.014395306321239
117 => 0.015032075484311
118 => 0.014880105413152
119 => 0.0153993659464
120 => 0.01526262724568
121 => 0.01583022194741
122 => 0.016056650840944
123 => 0.016436860194029
124 => 0.016716543741889
125 => 0.016880779270687
126 => 0.01687091918557
127 => 0.01752170217248
128 => 0.017137958181725
129 => 0.016655885287822
130 => 0.016647166110091
131 => 0.016896838492869
201 => 0.017420083312899
202 => 0.01755575308183
203 => 0.017631573974253
204 => 0.017515451638164
205 => 0.017098925039378
206 => 0.016919070965861
207 => 0.017072311847372
208 => 0.016884911417423
209 => 0.017208417134789
210 => 0.017652659581825
211 => 0.017560925273237
212 => 0.01786757931327
213 => 0.018184933983759
214 => 0.018638765415848
215 => 0.018757413757525
216 => 0.018953534954525
217 => 0.019155408088696
218 => 0.019220244298758
219 => 0.019344036741261
220 => 0.019343384293983
221 => 0.019716441151658
222 => 0.020127934418282
223 => 0.020283263600342
224 => 0.020640434489587
225 => 0.020028791858515
226 => 0.020492729820227
227 => 0.020911213474812
228 => 0.02041228000976
301 => 0.021099943554746
302 => 0.021126643971919
303 => 0.021529788571031
304 => 0.021121124286671
305 => 0.02087846073912
306 => 0.021579021308414
307 => 0.021918000500444
308 => 0.021815897209101
309 => 0.021038886120514
310 => 0.020586632339383
311 => 0.019402996960925
312 => 0.020805064195952
313 => 0.021487970247272
314 => 0.021037117558819
315 => 0.02126450143034
316 => 0.02250503410389
317 => 0.022977348627435
318 => 0.022879110508266
319 => 0.022895711133268
320 => 0.023150563477058
321 => 0.024280719119173
322 => 0.023603503661615
323 => 0.024121209504139
324 => 0.024395798816286
325 => 0.024650852672437
326 => 0.024024521012329
327 => 0.023209672725168
328 => 0.02295157606762
329 => 0.020992289144288
330 => 0.020890299751176
331 => 0.020833050014228
401 => 0.020472098520905
402 => 0.020188489520089
403 => 0.019962953112912
404 => 0.019371078229608
405 => 0.019570818628054
406 => 0.018627493597957
407 => 0.019230999522827
408 => 0.017725429997412
409 => 0.018979313036417
410 => 0.018296881505353
411 => 0.018755115924525
412 => 0.018753517187805
413 => 0.017909762338753
414 => 0.017423102150535
415 => 0.017733220963566
416 => 0.018065692948397
417 => 0.018119635409365
418 => 0.018550694016106
419 => 0.018670993207673
420 => 0.018306481040991
421 => 0.017694230415446
422 => 0.01783644227181
423 => 0.017420220231805
424 => 0.016690807116445
425 => 0.017214684350227
426 => 0.017393559071097
427 => 0.017472560338101
428 => 0.016755266312807
429 => 0.016529876956848
430 => 0.016409881554936
501 => 0.017601636764173
502 => 0.01766692380477
503 => 0.017332906074417
504 => 0.018842697888473
505 => 0.018500985501969
506 => 0.018882761959262
507 => 0.017823538036439
508 => 0.017864001816725
509 => 0.017362548236845
510 => 0.017643328734437
511 => 0.017444882128717
512 => 0.017620644444959
513 => 0.017725995652619
514 => 0.018227366948902
515 => 0.018985037891257
516 => 0.018152478796496
517 => 0.017789720876443
518 => 0.018014773849816
519 => 0.018614119575042
520 => 0.019522159028703
521 => 0.018984581396139
522 => 0.019223149220811
523 => 0.019275265677358
524 => 0.018878875833311
525 => 0.019536774487658
526 => 0.019889347721282
527 => 0.020251014904229
528 => 0.020565040385498
529 => 0.020106557078128
530 => 0.020597199938014
531 => 0.02020182840307
601 => 0.019847139263467
602 => 0.019847677180482
603 => 0.019625175502028
604 => 0.019194050463007
605 => 0.019114544391166
606 => 0.01952814501739
607 => 0.019859813551496
608 => 0.01988713136055
609 => 0.020070760102775
610 => 0.020179429700898
611 => 0.021244539491655
612 => 0.021672935460548
613 => 0.02219676994219
614 => 0.022400832994483
615 => 0.023014989621232
616 => 0.02251900826577
617 => 0.022411699579646
618 => 0.020921956492255
619 => 0.021165901839358
620 => 0.021556481877296
621 => 0.020928397013221
622 => 0.021326772294269
623 => 0.02140542001349
624 => 0.020907054929879
625 => 0.02117325325412
626 => 0.020466309427239
627 => 0.019000447334829
628 => 0.019538406411206
629 => 0.019934525366486
630 => 0.019369214776186
701 => 0.020382512128758
702 => 0.019790564734089
703 => 0.019602945828464
704 => 0.018870977586654
705 => 0.019216438420747
706 => 0.019683679145381
707 => 0.019394978700122
708 => 0.019994075472624
709 => 0.02084255627576
710 => 0.021447234223981
711 => 0.021493653888529
712 => 0.0211048864781
713 => 0.021727888734393
714 => 0.021732426625683
715 => 0.021029677535545
716 => 0.020599247630759
717 => 0.020501453050759
718 => 0.020745763085355
719 => 0.021042400569475
720 => 0.021510115204406
721 => 0.021792745362693
722 => 0.022529694920054
723 => 0.022729092340276
724 => 0.02294816965158
725 => 0.023240924500423
726 => 0.023592451757261
727 => 0.022823330131757
728 => 0.02285388876776
729 => 0.022137693359305
730 => 0.02137233585256
731 => 0.021953146797019
801 => 0.022712479844858
802 => 0.022538288004696
803 => 0.022518687864261
804 => 0.022551649863846
805 => 0.022420314904937
806 => 0.021826291753293
807 => 0.021527977045318
808 => 0.021912879126804
809 => 0.022117437453093
810 => 0.022434689577806
811 => 0.022395581557055
812 => 0.023212788959926
813 => 0.023530331045612
814 => 0.023449090191702
815 => 0.023464040463991
816 => 0.02403893524234
817 => 0.024678336471992
818 => 0.025277220099984
819 => 0.025886430249029
820 => 0.025152003636479
821 => 0.024779107095762
822 => 0.02516384114104
823 => 0.024959695841092
824 => 0.026132775288023
825 => 0.026213996763734
826 => 0.02738699138367
827 => 0.028500302955589
828 => 0.027801051904315
829 => 0.028460414150708
830 => 0.029173568178774
831 => 0.030549358003984
901 => 0.030086040391723
902 => 0.029731146361843
903 => 0.029395773218443
904 => 0.030093631490872
905 => 0.030991415009795
906 => 0.031184788980907
907 => 0.031498128688652
908 => 0.031168690299315
909 => 0.031565462552823
910 => 0.032966242958268
911 => 0.032587739727686
912 => 0.032050204292829
913 => 0.033155985890547
914 => 0.033556163952144
915 => 0.036364823163311
916 => 0.039910871437335
917 => 0.038442784167281
918 => 0.037531495023878
919 => 0.037745669588645
920 => 0.039040566377009
921 => 0.039456446127462
922 => 0.038325941603384
923 => 0.038725254913185
924 => 0.040925510509806
925 => 0.042105877044742
926 => 0.040502780745923
927 => 0.036079901637204
928 => 0.032001805108223
929 => 0.033083499946788
930 => 0.032960869320994
1001 => 0.035324769472087
1002 => 0.032578712550816
1003 => 0.032624949106714
1004 => 0.035037732209519
1005 => 0.034394043043265
1006 => 0.033351349031413
1007 => 0.032009417928423
1008 => 0.029528734170944
1009 => 0.02733152338796
1010 => 0.031640759720814
1011 => 0.031454937614304
1012 => 0.031185839666783
1013 => 0.031784688029551
1014 => 0.034692525693078
1015 => 0.034625490623181
1016 => 0.034199047710094
1017 => 0.034522500901175
1018 => 0.033294646123143
1019 => 0.033611092257176
1020 => 0.032001159116897
1021 => 0.03272891613305
1022 => 0.033349111878361
1023 => 0.033473625356387
1024 => 0.033754160580196
1025 => 0.031357017807995
1026 => 0.032433264536299
1027 => 0.033065458658497
1028 => 0.030209182614988
1029 => 0.033008999264744
1030 => 0.031315288885492
1031 => 0.030740418144097
1101 => 0.031514405863924
1102 => 0.03121278209678
1103 => 0.030953463693731
1104 => 0.030808759569174
1105 => 0.031377090728708
1106 => 0.031350577400813
1107 => 0.030420677315492
1108 => 0.029207660561767
1109 => 0.029614788800235
1110 => 0.029466875294352
1111 => 0.02893081766781
1112 => 0.029292055784255
1113 => 0.027701345937861
1114 => 0.024964612325043
1115 => 0.026772582378088
1116 => 0.026702977497739
1117 => 0.026667879560737
1118 => 0.028026519086978
1119 => 0.027895917245677
1120 => 0.027658873624859
1121 => 0.028926464175822
1122 => 0.028463776573222
1123 => 0.029889670741527
1124 => 0.030828856861826
1125 => 0.03059064888223
1126 => 0.031473957967851
1127 => 0.029624168212566
1128 => 0.030238594168588
1129 => 0.030365226506566
1130 => 0.028910822305186
1201 => 0.027917285322094
1202 => 0.027851027732473
1203 => 0.026128371521621
1204 => 0.027048600564663
1205 => 0.027858364040875
1206 => 0.027470550175953
1207 => 0.027347779891929
1208 => 0.027974986647384
1209 => 0.028023725983945
1210 => 0.026912463945181
1211 => 0.027143530512132
1212 => 0.028107116507939
1213 => 0.027119250617345
1214 => 0.025199988558899
1215 => 0.02472398503253
1216 => 0.024660477387627
1217 => 0.0233695180718
1218 => 0.024755793864262
1219 => 0.024150647330971
1220 => 0.026062297978869
1221 => 0.024970373381177
1222 => 0.024923302694173
1223 => 0.024852148446997
1224 => 0.023740966435007
1225 => 0.023984244676332
1226 => 0.024792938602819
1227 => 0.025081489706378
1228 => 0.025051391462248
1229 => 0.024788975561397
1230 => 0.02490910821702
1231 => 0.024522119076268
]
'min_raw' => 0.01354031952665
'max_raw' => 0.042105877044742
'avg_raw' => 0.027823098285696
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.01354'
'max' => '$0.0421058'
'avg' => '$0.027823'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0077134743254912
'max_diff' => 0.026298207502325
'year' => 2033
]
8 => [
'items' => [
101 => 0.024385465156187
102 => 0.023954147794787
103 => 0.023320230427991
104 => 0.023408380525885
105 => 0.022152424348761
106 => 0.021468112764824
107 => 0.021278704337472
108 => 0.021025419472494
109 => 0.021307313536937
110 => 0.022148866382714
111 => 0.021133775105311
112 => 0.019393472310577
113 => 0.019498067473873
114 => 0.019733061751214
115 => 0.019295151470031
116 => 0.018880706139915
117 => 0.019241032729438
118 => 0.018503643493304
119 => 0.019822171717482
120 => 0.019786509224151
121 => 0.020277975008886
122 => 0.020585298649974
123 => 0.019877017154476
124 => 0.019698886273756
125 => 0.019800357719011
126 => 0.018123260759371
127 => 0.020140920407497
128 => 0.020158369211919
129 => 0.02000896195498
130 => 0.021083303429354
131 => 0.023350499035793
201 => 0.022497488850919
202 => 0.022167177524966
203 => 0.021539255452874
204 => 0.022375924331613
205 => 0.022311681215794
206 => 0.02202114948258
207 => 0.021845434983818
208 => 0.022169194335488
209 => 0.02180531761726
210 => 0.021739955360003
211 => 0.021343931195862
212 => 0.021202568587215
213 => 0.021097909339581
214 => 0.02098268979154
215 => 0.021236835403595
216 => 0.020660908011039
217 => 0.019966396034476
218 => 0.019908654878348
219 => 0.020068083287071
220 => 0.01999754808426
221 => 0.019908317182934
222 => 0.019737951091712
223 => 0.019687407111742
224 => 0.019851650526191
225 => 0.019666229287264
226 => 0.019939828425719
227 => 0.01986542459899
228 => 0.019449810871142
301 => 0.018931802286333
302 => 0.018927190923368
303 => 0.018815586823476
304 => 0.018673442222473
305 => 0.018633900846303
306 => 0.019210687029101
307 => 0.020404617165737
308 => 0.020170220111589
309 => 0.020339596005187
310 => 0.021172757764209
311 => 0.021437594833353
312 => 0.021249619754684
313 => 0.020992307873204
314 => 0.021003628290109
315 => 0.021882940882731
316 => 0.021937782530546
317 => 0.022076349681988
318 => 0.022254447630664
319 => 0.021279950605461
320 => 0.020957729567857
321 => 0.020805043364098
322 => 0.020334828953517
323 => 0.020841914882192
324 => 0.020546457627137
325 => 0.020586324905101
326 => 0.020560361288027
327 => 0.020574539178601
328 => 0.019821803161972
329 => 0.020096060603791
330 => 0.019640054413661
331 => 0.019029513314173
401 => 0.019027466566324
402 => 0.019176895635471
403 => 0.019088009377982
404 => 0.018848818744556
405 => 0.018882794645086
406 => 0.018585130005318
407 => 0.018918936521746
408 => 0.01892850889822
409 => 0.018799975206831
410 => 0.019314250201812
411 => 0.019524949086864
412 => 0.019440345457733
413 => 0.019519013070708
414 => 0.020179960367428
415 => 0.020287723615945
416 => 0.020335584932496
417 => 0.020271457108727
418 => 0.019531093973974
419 => 0.019563932227268
420 => 0.019322986913124
421 => 0.019119413512864
422 => 0.019127555381272
423 => 0.019232218571696
424 => 0.019689288862689
425 => 0.020651166344319
426 => 0.020687668891623
427 => 0.020731911043811
428 => 0.02055195597654
429 => 0.020497679806313
430 => 0.02056928408471
501 => 0.020930514693695
502 => 0.021859697893158
503 => 0.021531262492408
504 => 0.021264239399198
505 => 0.021498490640852
506 => 0.021462429498322
507 => 0.02115803716471
508 => 0.021149493885716
509 => 0.020565267677399
510 => 0.020349292550372
511 => 0.02016880756877
512 => 0.01997172268054
513 => 0.019854884152452
514 => 0.020034401233756
515 => 0.020075458914234
516 => 0.019682941678541
517 => 0.019629443029717
518 => 0.019949981077457
519 => 0.019808924233509
520 => 0.019954004695551
521 => 0.019987664607222
522 => 0.019982244586189
523 => 0.019834965040833
524 => 0.019928836631104
525 => 0.019706802335645
526 => 0.019465373387806
527 => 0.019311356760639
528 => 0.019176956826096
529 => 0.019251529721151
530 => 0.018985690966753
531 => 0.018900643798944
601 => 0.019897035048498
602 => 0.020633079977554
603 => 0.02062237759278
604 => 0.020557229577896
605 => 0.020460432842572
606 => 0.020923433409597
607 => 0.020762133270034
608 => 0.020879492598643
609 => 0.02090936547333
610 => 0.020999781667872
611 => 0.021032097685887
612 => 0.02093441623453
613 => 0.020606585352991
614 => 0.019789661965422
615 => 0.019409381923265
616 => 0.019283883175289
617 => 0.019288444816422
618 => 0.019162614389914
619 => 0.019199677089844
620 => 0.019149725495396
621 => 0.0190551292601
622 => 0.019245688670186
623 => 0.019267648867015
624 => 0.019223170023686
625 => 0.019233646401447
626 => 0.018865380575842
627 => 0.018893379026731
628 => 0.018737480094308
629 => 0.018708250923868
630 => 0.018314151998374
701 => 0.017615948626309
702 => 0.018002821070674
703 => 0.017535533560379
704 => 0.017358564699669
705 => 0.018196307761966
706 => 0.018112221593887
707 => 0.017968302625514
708 => 0.01775541647595
709 => 0.017676454932253
710 => 0.017196709588938
711 => 0.017168363674713
712 => 0.017406138421074
713 => 0.017296413556958
714 => 0.017142318291684
715 => 0.016584200861246
716 => 0.015956692083104
717 => 0.015975632628737
718 => 0.016175231495848
719 => 0.016755592121548
720 => 0.016528835184746
721 => 0.01636432042536
722 => 0.016333511756223
723 => 0.016719146752796
724 => 0.017264901065976
725 => 0.017520956779156
726 => 0.017267213343922
727 => 0.016975726548043
728 => 0.016993467998689
729 => 0.017111493921523
730 => 0.017123896777216
731 => 0.016934168838425
801 => 0.016987576141857
802 => 0.016906445564278
803 => 0.01640854735943
804 => 0.016399541959757
805 => 0.016277349710594
806 => 0.016273649777851
807 => 0.01606577027974
808 => 0.016036686500952
809 => 0.015623929140069
810 => 0.015895607284946
811 => 0.015713379849105
812 => 0.015438720120186
813 => 0.015391368679395
814 => 0.015389945237906
815 => 0.015671959366715
816 => 0.015892311785655
817 => 0.01571654977337
818 => 0.015676532170176
819 => 0.016103815477698
820 => 0.016049439782042
821 => 0.01600235078029
822 => 0.017216034753117
823 => 0.016255309183683
824 => 0.015836377999111
825 => 0.015317871105329
826 => 0.015486699564483
827 => 0.015522274201433
828 => 0.014275358589781
829 => 0.013769485081427
830 => 0.013595888356801
831 => 0.013495980987481
901 => 0.013541510030238
902 => 0.013086164539675
903 => 0.013392164240052
904 => 0.012997873534621
905 => 0.012931769414723
906 => 0.013636810039279
907 => 0.013734912323399
908 => 0.013316377501355
909 => 0.01358514461174
910 => 0.013487685921372
911 => 0.013004632517083
912 => 0.012986183430139
913 => 0.012743804212015
914 => 0.012364527669516
915 => 0.012191188112246
916 => 0.012100911365816
917 => 0.012138161310852
918 => 0.012119326598775
919 => 0.011996417362181
920 => 0.012126371612344
921 => 0.011794392203983
922 => 0.011662195328634
923 => 0.011602485066983
924 => 0.01130783423404
925 => 0.011776754741071
926 => 0.011869137988262
927 => 0.011961703258987
928 => 0.012767420743659
929 => 0.012727169375059
930 => 0.013091022143994
1001 => 0.013076883494475
1002 => 0.012973106790751
1003 => 0.012535289948178
1004 => 0.012709795938293
1005 => 0.012172693624971
1006 => 0.012575127197519
1007 => 0.012391473321036
1008 => 0.012513033637141
1009 => 0.012294457228132
1010 => 0.012415426437676
1011 => 0.011891045483363
1012 => 0.011401385926464
1013 => 0.011598439226214
1014 => 0.01181265869882
1015 => 0.012277141097536
1016 => 0.012000499212757
1017 => 0.012099990095512
1018 => 0.011766712292857
1019 => 0.011079064989884
1020 => 0.01108295699894
1021 => 0.010977177442588
1022 => 0.010885768461832
1023 => 0.012032274861061
1024 => 0.011889688666733
1025 => 0.011662496227291
1026 => 0.011966602335753
1027 => 0.012047012817643
1028 => 0.012049301991019
1029 => 0.012271169957638
1030 => 0.012389580931195
1031 => 0.012410451378507
1101 => 0.012759565417757
1102 => 0.012876583838788
1103 => 0.013358566153948
1104 => 0.01237953458738
1105 => 0.012359372076536
1106 => 0.011970881732343
1107 => 0.011724495014266
1108 => 0.011987752041723
1109 => 0.012220961829881
1110 => 0.011978128210531
1111 => 0.01200983715472
1112 => 0.011683852860978
1113 => 0.011800376907004
1114 => 0.011900743112926
1115 => 0.011845326793269
1116 => 0.011762365880562
1117 => 0.012201841286742
1118 => 0.012177044362007
1119 => 0.012586293963737
1120 => 0.012905333294005
1121 => 0.013477108808948
1122 => 0.012880431251774
1123 => 0.012858685950012
1124 => 0.013071249762791
1125 => 0.012876551296375
1126 => 0.012999594006387
1127 => 0.013457284726132
1128 => 0.013466955009821
1129 => 0.01330496529858
1130 => 0.013295108209929
1201 => 0.013326220105946
1202 => 0.013508443452681
1203 => 0.013444769016174
1204 => 0.013518454686139
1205 => 0.013610599744746
1206 => 0.013991750775839
1207 => 0.014083644999055
1208 => 0.013860389678333
1209 => 0.01388054713411
1210 => 0.013797043515664
1211 => 0.013716380066543
1212 => 0.013897699720217
1213 => 0.014229064951153
1214 => 0.014227003545249
1215 => 0.014303873838006
1216 => 0.014351763393566
1217 => 0.014146186363806
1218 => 0.014012363276708
1219 => 0.014063679563686
1220 => 0.014145735424086
1221 => 0.014037069954079
1222 => 0.013366336334455
1223 => 0.01356979406802
1224 => 0.01353592875258
1225 => 0.01348770042523
1226 => 0.013692278749621
1227 => 0.013672546671161
1228 => 0.013081494313524
1229 => 0.013119331567795
1230 => 0.013083795322277
1231 => 0.013198620201578
]
'min_raw' => 0.010885768461832
'max_raw' => 0.024385465156187
'avg_raw' => 0.01763561680901
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010885'
'max' => '$0.024385'
'avg' => '$0.017635'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0026545510648173
'max_diff' => -0.017720411888555
'year' => 2034
]
9 => [
'items' => [
101 => 0.01287035037607
102 => 0.012971323963465
103 => 0.013034653650911
104 => 0.013071955323338
105 => 0.013206714542141
106 => 0.013190902103199
107 => 0.013205731618734
108 => 0.013405543965104
109 => 0.014416126245726
110 => 0.014471130009536
111 => 0.014200271359853
112 => 0.014308474047951
113 => 0.01410074854813
114 => 0.0142401960678
115 => 0.014335602519175
116 => 0.013904479111017
117 => 0.013878950780754
118 => 0.013670367923903
119 => 0.013782448536438
120 => 0.013604120223014
121 => 0.013647875753469
122 => 0.013525531475779
123 => 0.013745726817118
124 => 0.013991939423631
125 => 0.014054142451267
126 => 0.013890513065644
127 => 0.013772034606752
128 => 0.013564025462167
129 => 0.013909949305398
130 => 0.014011107978996
131 => 0.01390941796195
201 => 0.013885854163029
202 => 0.013841200806654
203 => 0.013895327583674
204 => 0.014010557047135
205 => 0.013956216960121
206 => 0.013992109544943
207 => 0.013855324023875
208 => 0.014146254418357
209 => 0.014608321901006
210 => 0.014609807523518
211 => 0.014555467143591
212 => 0.014533232230905
213 => 0.01458898875836
214 => 0.014619234387252
215 => 0.014799540773044
216 => 0.014993016708722
217 => 0.015895884480369
218 => 0.015642362822974
219 => 0.016443440821823
220 => 0.017076989511953
221 => 0.017266963062396
222 => 0.017092196334934
223 => 0.016494328801001
224 => 0.016464994567509
225 => 0.017358461076367
226 => 0.017106015864256
227 => 0.017075988309549
228 => 0.016756545859825
301 => 0.016945375911329
302 => 0.016904076009096
303 => 0.01683888209296
304 => 0.017199156677213
305 => 0.017873558537003
306 => 0.017768446682654
307 => 0.017689985559381
308 => 0.01734619175689
309 => 0.017553232415115
310 => 0.017479509202324
311 => 0.017796270910383
312 => 0.01760862829166
313 => 0.017104103343487
314 => 0.01718445060442
315 => 0.017172306277566
316 => 0.017422235663659
317 => 0.017347213065582
318 => 0.017157656911222
319 => 0.017871253504763
320 => 0.017824916511211
321 => 0.017890611773956
322 => 0.01791953286031
323 => 0.018353886531816
324 => 0.018531827333265
325 => 0.018572223010486
326 => 0.018741253009426
327 => 0.018568017390129
328 => 0.019261083382222
329 => 0.019721931825441
330 => 0.020257231007285
331 => 0.021039446986814
401 => 0.02133356743102
402 => 0.021280437205344
403 => 0.021873504433716
404 => 0.022939233059956
405 => 0.021495851431055
406 => 0.023015735791092
407 => 0.022534557950613
408 => 0.021393693946857
409 => 0.021320235754918
410 => 0.022092842103965
411 => 0.023806408625546
412 => 0.023377179647001
413 => 0.023807110690388
414 => 0.023305573291145
415 => 0.023280667731983
416 => 0.023782752138359
417 => 0.024955899721053
418 => 0.024398581279295
419 => 0.023599528632946
420 => 0.024189536672374
421 => 0.023678417105955
422 => 0.022526721669455
423 => 0.02337685142369
424 => 0.022808393867335
425 => 0.022974300003145
426 => 0.024169113234924
427 => 0.024025350145793
428 => 0.024211392895233
429 => 0.023883032312058
430 => 0.023576291749662
501 => 0.023003737711096
502 => 0.02283423268685
503 => 0.022881077777399
504 => 0.022834209472749
505 => 0.022513870750215
506 => 0.022444693633583
507 => 0.022329395408478
508 => 0.022365131149596
509 => 0.022148336754713
510 => 0.022557472569865
511 => 0.022633411782449
512 => 0.022931146709621
513 => 0.022962058537458
514 => 0.02379124607164
515 => 0.023334543511743
516 => 0.023640939018724
517 => 0.023613532120673
518 => 0.021418419929221
519 => 0.021720887021564
520 => 0.022191430897848
521 => 0.021979451519389
522 => 0.021679762273784
523 => 0.021437747139637
524 => 0.021071069464086
525 => 0.021587161251003
526 => 0.022265767070555
527 => 0.022979269100912
528 => 0.02383649503988
529 => 0.023645172189513
530 => 0.022963243858257
531 => 0.022993834665048
601 => 0.023182934995592
602 => 0.02293803288596
603 => 0.022865806472773
604 => 0.023173012195532
605 => 0.023175127752508
606 => 0.022893338277968
607 => 0.022580180843946
608 => 0.022578868702863
609 => 0.022523145362221
610 => 0.023315486349655
611 => 0.023751193778034
612 => 0.02380114693252
613 => 0.023747831532731
614 => 0.023768350514097
615 => 0.023514821961682
616 => 0.024094313050947
617 => 0.024626111380186
618 => 0.024483578067736
619 => 0.024269900370069
620 => 0.024099695791765
621 => 0.024443483278267
622 => 0.024428174962665
623 => 0.024621466585711
624 => 0.024612697761183
625 => 0.024547701058418
626 => 0.024483580388973
627 => 0.024737811595452
628 => 0.024664597090814
629 => 0.024591268863828
630 => 0.024444197878619
701 => 0.024464187268099
702 => 0.024250546464899
703 => 0.024151706453801
704 => 0.022665389837228
705 => 0.022268197470483
706 => 0.022393162274657
707 => 0.022434303932901
708 => 0.022261445305878
709 => 0.022509280173291
710 => 0.022470655371727
711 => 0.022620921879861
712 => 0.022527041889392
713 => 0.022530894756948
714 => 0.022806975791591
715 => 0.022887123290481
716 => 0.022846359625676
717 => 0.022874909099208
718 => 0.02353281966679
719 => 0.023439285822875
720 => 0.023389597832494
721 => 0.023403361745403
722 => 0.023571472001182
723 => 0.023618533694321
724 => 0.023419129993527
725 => 0.02351316993156
726 => 0.023913580052261
727 => 0.024053700933256
728 => 0.024500899523555
729 => 0.024310921614075
730 => 0.024659634288976
731 => 0.025731458166712
801 => 0.026587705244819
802 => 0.025800265045885
803 => 0.02737265376242
804 => 0.028596983924007
805 => 0.028549992093177
806 => 0.028336501810237
807 => 0.026942634471772
808 => 0.025659976965524
809 => 0.026732974434015
810 => 0.026735709725226
811 => 0.026643538291088
812 => 0.026071069429732
813 => 0.026623617615611
814 => 0.026667476884046
815 => 0.026642927356843
816 => 0.026204016823066
817 => 0.025533881562213
818 => 0.025664824388106
819 => 0.025879311408081
820 => 0.025473242732589
821 => 0.025343479186201
822 => 0.025584734307462
823 => 0.026362108575665
824 => 0.026215150473283
825 => 0.026211312803326
826 => 0.026840061885247
827 => 0.026390013235136
828 => 0.025666475996478
829 => 0.025483773301433
830 => 0.024835301817307
831 => 0.025283203381169
901 => 0.025299322561069
902 => 0.025054011451984
903 => 0.025686381640993
904 => 0.025680554238375
905 => 0.026280895616958
906 => 0.027428522854884
907 => 0.027089113009323
908 => 0.026694416286621
909 => 0.026737330764132
910 => 0.027207996660468
911 => 0.026923421315286
912 => 0.027025756593543
913 => 0.027207841763768
914 => 0.027317698267885
915 => 0.026721524103785
916 => 0.026582527387827
917 => 0.026298188888194
918 => 0.026224010281069
919 => 0.026455598056102
920 => 0.026394582859498
921 => 0.025297967806415
922 => 0.025183365431859
923 => 0.025186880123072
924 => 0.024898707003206
925 => 0.024459173825936
926 => 0.025614240772638
927 => 0.025521472731666
928 => 0.02541906399411
929 => 0.025431608480124
930 => 0.025932983892837
1001 => 0.025642160833398
1002 => 0.026415361601877
1003 => 0.026256414768421
1004 => 0.026093391548447
1005 => 0.026070856773638
1006 => 0.026008106742436
1007 => 0.025792913537185
1008 => 0.025533054810738
1009 => 0.02536147357096
1010 => 0.02339461876679
1011 => 0.023759655577776
1012 => 0.024179597154663
1013 => 0.024324559304194
1014 => 0.024076591516345
1015 => 0.025802704816831
1016 => 0.026118082350071
1017 => 0.025162783230319
1018 => 0.024984085769619
1019 => 0.025814420192604
1020 => 0.025313627031289
1021 => 0.025539134161165
1022 => 0.025051711092178
1023 => 0.026042117137645
1024 => 0.026034571902963
1025 => 0.025649281581941
1026 => 0.025974926322915
1027 => 0.025918337535447
1028 => 0.025483345711941
1029 => 0.026055907154331
1030 => 0.026056191137664
1031 => 0.025685357580614
1101 => 0.025252305171884
1102 => 0.025174885629445
1103 => 0.025116560404069
1104 => 0.025524789731124
1105 => 0.025890806869262
1106 => 0.026571874019993
1107 => 0.026743110483444
1108 => 0.027411457800147
1109 => 0.02701348951429
1110 => 0.027189903700858
1111 => 0.027381426255688
1112 => 0.027473249211483
1113 => 0.027323628632507
1114 => 0.028361847118078
1115 => 0.028449504568452
1116 => 0.028478895353329
1117 => 0.028128813921465
1118 => 0.02843976817054
1119 => 0.02829428297512
1120 => 0.028672795036651
1121 => 0.028732150560983
1122 => 0.028681878543507
1123 => 0.028700718923794
1124 => 0.027814782600651
1125 => 0.027768842128609
1126 => 0.027142440532538
1127 => 0.027397703813064
1128 => 0.026920501345208
1129 => 0.027071827163495
1130 => 0.027138530142311
1201 => 0.027103688291538
1202 => 0.027412136015951
1203 => 0.027149892438493
1204 => 0.026457788520747
1205 => 0.02576549603975
1206 => 0.025756804871581
1207 => 0.025574536481312
1208 => 0.025442789819268
1209 => 0.025468168900342
1210 => 0.02555760809229
1211 => 0.02543759145084
1212 => 0.025463203086292
1213 => 0.025888526884221
1214 => 0.025973822538626
1215 => 0.025683954577797
1216 => 0.024520092887321
1217 => 0.024234478309152
1218 => 0.024439772403957
1219 => 0.024341655049273
1220 => 0.019645615413047
1221 => 0.020748880268238
1222 => 0.020093357754618
1223 => 0.020395452688034
1224 => 0.01972633394836
1225 => 0.020045672482451
1226 => 0.01998670231558
1227 => 0.021760719554747
1228 => 0.021733020715638
1229 => 0.02174627868413
1230 => 0.021113441304583
1231 => 0.022121568433608
]
'min_raw' => 0.01287035037607
'max_raw' => 0.028732150560983
'avg_raw' => 0.020801250468527
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.01287'
'max' => '$0.028732'
'avg' => '$0.0208012'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019845819142375
'max_diff' => 0.0043466854047964
'year' => 2035
]
10 => [
'items' => [
101 => 0.022618208108444
102 => 0.022526293322269
103 => 0.022549426293723
104 => 0.022151925200942
105 => 0.021750127363602
106 => 0.021304471725748
107 => 0.022132444816179
108 => 0.022040388342495
109 => 0.022251532772252
110 => 0.022788532506136
111 => 0.022867607756814
112 => 0.022973885695627
113 => 0.022935792619941
114 => 0.023843324227469
115 => 0.023733416161711
116 => 0.023998262977479
117 => 0.023453452983468
118 => 0.022836948761405
119 => 0.022954126058978
120 => 0.022942840942941
121 => 0.022799168463342
122 => 0.022669467372791
123 => 0.022453551600079
124 => 0.023136741054462
125 => 0.023109004810264
126 => 0.023558022363965
127 => 0.023478654149824
128 => 0.022948613791098
129 => 0.022967544286204
130 => 0.023094860963472
131 => 0.023535505437173
201 => 0.023666318718331
202 => 0.02360572079449
203 => 0.023749151585427
204 => 0.023862513434439
205 => 0.023763388088313
206 => 0.025166793952598
207 => 0.024584001992631
208 => 0.024868050738878
209 => 0.024935794691146
210 => 0.024762269981914
211 => 0.024799901277893
212 => 0.024856902437386
213 => 0.025203002315855
214 => 0.026111268541764
215 => 0.026513533470443
216 => 0.027723767355773
217 => 0.026480130967914
218 => 0.026406338731338
219 => 0.026624338399648
220 => 0.027334873806603
221 => 0.027910696016744
222 => 0.028101729463828
223 => 0.028126977687479
224 => 0.028485369133871
225 => 0.028690792427339
226 => 0.028441850985649
227 => 0.028230899179071
228 => 0.027475295992213
229 => 0.027562759118531
301 => 0.028165293325853
302 => 0.029016408382783
303 => 0.029746753645057
304 => 0.029491012189311
305 => 0.031442138971324
306 => 0.031635585222123
307 => 0.031608857205128
308 => 0.032049556553109
309 => 0.031174858094229
310 => 0.030800907556573
311 => 0.028276509354058
312 => 0.0289857622801
313 => 0.030016703061066
314 => 0.029880254182876
315 => 0.029131557430612
316 => 0.029746185691433
317 => 0.029542970367203
318 => 0.029382686009571
319 => 0.030116979724534
320 => 0.029309593621809
321 => 0.030008648767073
322 => 0.029112103312472
323 => 0.029492180394739
324 => 0.029276430260584
325 => 0.029416047038724
326 => 0.028599850206559
327 => 0.029040250205137
328 => 0.028581528118717
329 => 0.02858131062472
330 => 0.028571184309238
331 => 0.029110868809626
401 => 0.029128467901809
402 => 0.028729640240604
403 => 0.028672162943765
404 => 0.028884686635248
405 => 0.028635877052564
406 => 0.028752293490313
407 => 0.028639403187869
408 => 0.028613989202955
409 => 0.028411486247328
410 => 0.028324242406109
411 => 0.028358452964248
412 => 0.028241674692569
413 => 0.028171311559828
414 => 0.028557187311122
415 => 0.028351029463388
416 => 0.028525590664237
417 => 0.02832665614449
418 => 0.027637062427405
419 => 0.027240469788388
420 => 0.025937891182186
421 => 0.026307300859061
422 => 0.026552219857011
423 => 0.02647127412965
424 => 0.02664517687386
425 => 0.026655853089975
426 => 0.026599315535104
427 => 0.026533852289472
428 => 0.026501988401843
429 => 0.026739475714636
430 => 0.026877345093168
501 => 0.026576800755049
502 => 0.02650638742169
503 => 0.026810254341036
504 => 0.026995612986299
505 => 0.028364197078897
506 => 0.028262807948849
507 => 0.028517274768658
508 => 0.028488625709859
509 => 0.028755347476762
510 => 0.029191324840619
511 => 0.028304860958709
512 => 0.028458720436994
513 => 0.028420997646053
514 => 0.028832845186102
515 => 0.028834130929167
516 => 0.028587207755597
517 => 0.028721068813861
518 => 0.028646351243424
519 => 0.028781375991888
520 => 0.028261453835203
521 => 0.028894662899917
522 => 0.029253651636518
523 => 0.029258636195474
524 => 0.029428794007513
525 => 0.02960168419942
526 => 0.029933531867223
527 => 0.029592429148075
528 => 0.028978818562009
529 => 0.029023119264373
530 => 0.028663359602274
531 => 0.02866940722719
601 => 0.028637124531429
602 => 0.028734007331536
603 => 0.028282714161634
604 => 0.028388631766578
605 => 0.028240346499404
606 => 0.028458398093783
607 => 0.028223810623451
608 => 0.028420979454981
609 => 0.028506070986419
610 => 0.028820060569314
611 => 0.02817743410676
612 => 0.026867075247626
613 => 0.027142528566382
614 => 0.026735111471551
615 => 0.026772819474824
616 => 0.02684899564262
617 => 0.026602083759504
618 => 0.026649186765715
619 => 0.026647503914874
620 => 0.026633002015479
621 => 0.026568770698491
622 => 0.02647562258108
623 => 0.026846696011367
624 => 0.026909748618014
625 => 0.027049906752023
626 => 0.027466922288663
627 => 0.027425252602649
628 => 0.027493217589396
629 => 0.027344850404934
630 => 0.026779701802984
701 => 0.026810392091082
702 => 0.026427683706723
703 => 0.027040120038189
704 => 0.026895087031133
705 => 0.026801583307989
706 => 0.026776069950823
707 => 0.027194119188319
708 => 0.027319206072296
709 => 0.02724126032047
710 => 0.027081391309433
711 => 0.027388387071654
712 => 0.027470526186513
713 => 0.027488914105156
714 => 0.028032851735212
715 => 0.027519314176283
716 => 0.027642927770842
717 => 0.028607325748532
718 => 0.027732749860591
719 => 0.028196032213803
720 => 0.028173356953418
721 => 0.028410356528701
722 => 0.028153916070746
723 => 0.028157094957563
724 => 0.028367534524673
725 => 0.028072010105643
726 => 0.027998834103522
727 => 0.027897741980688
728 => 0.028118472932515
729 => 0.028250791155332
730 => 0.029317178854215
731 => 0.03000611394088
801 => 0.029976205451831
802 => 0.030249513055395
803 => 0.030126385476779
804 => 0.029728774046012
805 => 0.030407448274782
806 => 0.030192687351863
807 => 0.030210391981414
808 => 0.030209733014218
809 => 0.030352530253233
810 => 0.030251345322216
811 => 0.030051899436762
812 => 0.030184300923276
813 => 0.030577486003827
814 => 0.031797944558246
815 => 0.032480929334224
816 => 0.031756828017151
817 => 0.032256303409565
818 => 0.031956796155396
819 => 0.031902366777745
820 => 0.032216074235122
821 => 0.032530330795876
822 => 0.032510314011524
823 => 0.03228217988567
824 => 0.032153312706664
825 => 0.033129138159769
826 => 0.033848109730864
827 => 0.033799080689762
828 => 0.034015478932088
829 => 0.034650830864504
830 => 0.034708919482715
831 => 0.034701601651972
901 => 0.034557622950817
902 => 0.035183209439154
903 => 0.035705084693872
904 => 0.034524296041444
905 => 0.03497392490263
906 => 0.035175777784554
907 => 0.035472157702269
908 => 0.035972200302497
909 => 0.036515379196093
910 => 0.036592190647301
911 => 0.036537689246902
912 => 0.036179448165143
913 => 0.036773800991988
914 => 0.037121958938665
915 => 0.037329279028458
916 => 0.0378550082814
917 => 0.035177024359234
918 => 0.033281414234687
919 => 0.032985387340797
920 => 0.033587369670205
921 => 0.033746107609751
922 => 0.03368212054536
923 => 0.031548439008851
924 => 0.032974153949083
925 => 0.034508103347256
926 => 0.034567028590845
927 => 0.03533495573294
928 => 0.035585024288803
929 => 0.036203306292701
930 => 0.036164632585017
1001 => 0.03631517441395
1002 => 0.0362805674545
1003 => 0.037425804672084
1004 => 0.038689171392452
1005 => 0.038645425020186
1006 => 0.038463801106656
1007 => 0.038733543589727
1008 => 0.040037473435752
1009 => 0.03991742847058
1010 => 0.040034041928839
1011 => 0.041571448703568
1012 => 0.043570296204281
1013 => 0.042641630859192
1014 => 0.04465656744178
1015 => 0.04592486321332
1016 => 0.048118249605969
1017 => 0.047843626826954
1018 => 0.048697496053799
1019 => 0.047351994737013
1020 => 0.044262451742991
1021 => 0.043773519737891
1022 => 0.044752373993831
1023 => 0.047158791666856
1024 => 0.044676587337594
1025 => 0.045178734040574
1026 => 0.045034115756334
1027 => 0.045026409662555
1028 => 0.04532051991915
1029 => 0.0448938976522
1030 => 0.043155761788762
1031 => 0.043952339212076
1101 => 0.043644742414145
1102 => 0.04398604399431
1103 => 0.045827907858984
1104 => 0.045013575939861
1105 => 0.044155743414019
1106 => 0.045231655769702
1107 => 0.046601661922084
1108 => 0.046515929399206
1109 => 0.046349572471407
1110 => 0.047287317763242
1111 => 0.048836198251762
1112 => 0.049254854423903
1113 => 0.049563897851129
1114 => 0.049606509718412
1115 => 0.050045438434555
1116 => 0.047685208103578
1117 => 0.051430954253852
1118 => 0.052077741139856
1119 => 0.051956172011857
1120 => 0.052675048414697
1121 => 0.052463536740847
1122 => 0.052157089510604
1123 => 0.053296661518501
1124 => 0.051990234170166
1125 => 0.050135925023834
1126 => 0.04911861435208
1127 => 0.050458291108757
1128 => 0.051276384955783
1129 => 0.051817092948127
1130 => 0.051980710859905
1201 => 0.047868426065457
1202 => 0.04565213263902
1203 => 0.047072751315511
1204 => 0.048806004146692
1205 => 0.047675579796586
1206 => 0.047719890290934
1207 => 0.046108202237976
1208 => 0.048948602777301
1209 => 0.04853478031025
1210 => 0.050681692001349
1211 => 0.050169314296225
1212 => 0.051920037437685
1213 => 0.051459013361417
1214 => 0.053372698526496
1215 => 0.054136119349804
1216 => 0.055418021729101
1217 => 0.056360994337593
1218 => 0.056914725889492
1219 => 0.05688148192411
1220 => 0.059075642200696
1221 => 0.057781822543715
1222 => 0.056156480124666
1223 => 0.056127082808195
1224 => 0.056968870678301
1225 => 0.058733027120817
1226 => 0.05919044721893
1227 => 0.059446082651377
1228 => 0.05905456808785
1229 => 0.057650219579088
1230 => 0.057043829013212
1231 => 0.057560491344164
]
'min_raw' => 0.021304471725748
'max_raw' => 0.059446082651377
'avg_raw' => 0.040375277188562
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0213044'
'max' => '$0.059446'
'avg' => '$0.040375'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.008434121349678
'max_diff' => 0.030713932090394
'year' => 2036
]
11 => [
'items' => [
101 => 0.05692865771071
102 => 0.058019379823258
103 => 0.059517174249457
104 => 0.059207885623368
105 => 0.060241791129242
106 => 0.06131177455779
107 => 0.062841898916576
108 => 0.063241930084304
109 => 0.063903166392735
110 => 0.064583795758922
111 => 0.064802395567866
112 => 0.065219770430677
113 => 0.065217570659128
114 => 0.066475357900776
115 => 0.067862736178742
116 => 0.068386439360794
117 => 0.069590665950759
118 => 0.067528470116576
119 => 0.069092669345602
120 => 0.070503616204629
121 => 0.068821427192786
122 => 0.071139932845841
123 => 0.071229955166502
124 => 0.072589185329067
125 => 0.071211345162317
126 => 0.070393188069522
127 => 0.072755176940474
128 => 0.073898068953175
129 => 0.073553820577786
130 => 0.070934073443434
131 => 0.069409268245001
201 => 0.065418558927745
202 => 0.070145726499848
203 => 0.072448191930851
204 => 0.070928110614203
205 => 0.07169475121247
206 => 0.075877293732569
207 => 0.07746973512465
208 => 0.077138518447103
209 => 0.077194488613318
210 => 0.078053741083628
211 => 0.081864139735965
212 => 0.079580860539135
213 => 0.081326341932272
214 => 0.08225213896939
215 => 0.083112070852695
216 => 0.081000349931561
217 => 0.078253032040507
218 => 0.077382841139851
219 => 0.07077696848479
220 => 0.070433104125244
221 => 0.070240082640074
222 => 0.069023109479507
223 => 0.068066901932306
224 => 0.067306490189061
225 => 0.065310942696618
226 => 0.065984381395406
227 => 0.062803895195583
228 => 0.06483865755672
301 => 0.059762524786277
302 => 0.063990078995602
303 => 0.06168921344277
304 => 0.063234182779916
305 => 0.063228792527443
306 => 0.060384014144783
307 => 0.058743205342675
308 => 0.059788792572612
309 => 0.060909745081922
310 => 0.061091615855221
311 => 0.062544960043396
312 => 0.062950557166787
313 => 0.061721578947394
314 => 0.059657333217393
315 => 0.06013681042004
316 => 0.058733488752467
317 => 0.056274221508033
318 => 0.058040510177672
319 => 0.058643598787717
320 => 0.058909957075114
321 => 0.056491550188965
322 => 0.055731634239169
323 => 0.05532706136381
324 => 0.059345147257444
325 => 0.059565267073014
326 => 0.058439102974755
327 => 0.063529471486144
328 => 0.062377364317448
329 => 0.063664550297991
330 => 0.060093302889542
331 => 0.060229729349867
401 => 0.058539043594929
402 => 0.059485714646031
403 => 0.058816638059744
404 => 0.059409232980288
405 => 0.059764431932301
406 => 0.061454840262343
407 => 0.064009380743391
408 => 0.061202349627985
409 => 0.059979285973577
410 => 0.060738067786001
411 => 0.062758803743583
412 => 0.065820322158891
413 => 0.064007841638228
414 => 0.064812189715383
415 => 0.064987903987286
416 => 0.063651447953026
417 => 0.065869599199175
418 => 0.067058324472215
419 => 0.068277710630318
420 => 0.069336469464974
421 => 0.067790660983895
422 => 0.069444897641592
423 => 0.068111874907568
424 => 0.066916015709791
425 => 0.066917829334565
426 => 0.066167649391085
427 => 0.064714081221836
428 => 0.064446020949689
429 => 0.065840504337675
430 => 0.066958747956771
501 => 0.067050851857265
502 => 0.067669968982229
503 => 0.068036356119368
504 => 0.071627448142498
505 => 0.073071815061271
506 => 0.074837959589082
507 => 0.075525972417115
508 => 0.077596644363246
509 => 0.075924408594992
510 => 0.075562609867675
511 => 0.070539837037993
512 => 0.071362315807472
513 => 0.072679183674806
514 => 0.070561551704093
515 => 0.071904701777821
516 => 0.072169868054183
517 => 0.07048959538005
518 => 0.071387101615601
519 => 0.069003591146031
520 => 0.064061334758245
521 => 0.065875101343354
522 => 0.067210644057225
523 => 0.065304659933301
524 => 0.068721062703662
525 => 0.066725270734085
526 => 0.066092700494639
527 => 0.063624818462986
528 => 0.064789563784436
529 => 0.066364898509243
530 => 0.065391524801631
531 => 0.067411421397723
601 => 0.070272133664535
602 => 0.072310847584227
603 => 0.072467354724169
604 => 0.071156598257032
605 => 0.073257093860755
606 => 0.073272393678065
607 => 0.070903026056289
608 => 0.069451801580645
609 => 0.069122080326377
610 => 0.069945788665199
611 => 0.070945922653478
612 => 0.07252285519994
613 => 0.073475762511214
614 => 0.075960439396031
615 => 0.076632721719793
616 => 0.077371356170343
617 => 0.078358399582707
618 => 0.079543598271985
619 => 0.076950451013243
620 => 0.077053481588064
621 => 0.07463877876529
622 => 0.072058322495743
623 => 0.074016567145914
624 => 0.076576711531644
625 => 0.075989411580849
626 => 0.075923328338936
627 => 0.076034462021872
628 => 0.075591657038396
629 => 0.073588866509253
630 => 0.07258307764365
701 => 0.073880801884384
702 => 0.074570484563273
703 => 0.07564012225158
704 => 0.075508266829183
705 => 0.078263538643561
706 => 0.079334153955533
707 => 0.079060244744518
708 => 0.079110650631338
709 => 0.081048948514411
710 => 0.083204734401751
711 => 0.085223912366248
712 => 0.087277906917446
713 => 0.084801736317205
714 => 0.083544489595374
715 => 0.084841647290301
716 => 0.084153357158556
717 => 0.088108476415677
718 => 0.088382320291739
719 => 0.09233715354872
720 => 0.096090761242379
721 => 0.093733187502859
722 => 0.095956273351773
723 => 0.098360721948222
724 => 0.1029992933985
725 => 0.10143718572096
726 => 0.10024063572131
727 => 0.099109901753326
728 => 0.10146277964173
729 => 0.10448971945702
730 => 0.10514169330157
731 => 0.10619814000291
801 => 0.10508741547261
802 => 0.10642516082706
803 => 0.11114798976338
804 => 0.10987183969522
805 => 0.10805950144708
806 => 0.11178772130699
807 => 0.11313694958121
808 => 0.12260654020598
809 => 0.13456228953903
810 => 0.12961253080947
811 => 0.12654005583831
812 => 0.12726216033661
813 => 0.13162799526539
814 => 0.13303016287984
815 => 0.1292185879476
816 => 0.13056490065076
817 => 0.13798321601171
818 => 0.14196290419481
819 => 0.13655795309873
820 => 0.12164590738812
821 => 0.10789632021706
822 => 0.1115433298868
823 => 0.11112987217014
824 => 0.11909992657179
825 => 0.10984140393815
826 => 0.10999729371449
827 => 0.11813216040074
828 => 0.11596191743577
829 => 0.11244640177624
830 => 0.10792198737187
831 => 0.099558188887721
901 => 0.092150139328532
902 => 0.10667903048602
903 => 0.10605251828024
904 => 0.10514523576236
905 => 0.10716429482768
906 => 0.11696827252901
907 => 0.11674225911061
908 => 0.11530447705585
909 => 0.11639502207236
910 => 0.11225522396214
911 => 0.11332214419659
912 => 0.1078941422122
913 => 0.11034782580253
914 => 0.11243885905853
915 => 0.11285866494295
916 => 0.11380450903637
917 => 0.10572237481673
918 => 0.10935101580235
919 => 0.11148250242372
920 => 0.10185236832421
921 => 0.11129214563582
922 => 0.10558168284109
923 => 0.10364346600028
924 => 0.10625301963577
925 => 0.10523607404615
926 => 0.10436176394524
927 => 0.10387388388637
928 => 0.10579005207036
929 => 0.10570066053426
930 => 0.10256543747305
1001 => 0.098475666797738
1002 => 0.099848328078518
1003 => 0.099349627366443
1004 => 0.09754227165221
1005 => 0.098760211182641
1006 => 0.09339702187571
1007 => 0.084169933427457
1008 => 0.090265630689735
1009 => 0.09003095297598
1010 => 0.089912617830918
1011 => 0.094493365850823
1012 => 0.094053032624547
1013 => 0.0932538235071
1014 => 0.09752759355002
1015 => 0.095967609994035
1016 => 0.10077511173523
1017 => 0.1039416433117
1018 => 0.10313850847734
1019 => 0.10611664673018
1020 => 0.099879951422041
1021 => 0.10195153143062
1022 => 0.1023784811993
1023 => 0.097474855891091
1024 => 0.094125076586058
1025 => 0.093901684496693
1026 => 0.08809362880979
1027 => 0.091196245276746
1028 => 0.093926419372674
1029 => 0.092618877850793
1030 => 0.092204949266657
1031 => 0.09431962063285
1101 => 0.094483948708939
1102 => 0.090737251159409
1103 => 0.091516308222437
1104 => 0.094765105682723
1105 => 0.091434446861993
1106 => 0.084963520833344
1107 => 0.083358641710688
1108 => 0.083144521251934
1109 => 0.078791961786721
1110 => 0.083465887407692
1111 => 0.081425593620719
1112 => 0.087870857247293
1113 => 0.084189357230436
1114 => 0.08403065512283
1115 => 0.083790753610646
1116 => 0.08004432587697
1117 => 0.080864555452742
1118 => 0.083591123487099
1119 => 0.084563993678745
1120 => 0.084462515347266
1121 => 0.083577761816257
1122 => 0.083982797452082
1123 => 0.082678036545319
1124 => 0.082217298312892
1125 => 0.080763081715315
1126 => 0.078625785054466
1127 => 0.078922989263959
1128 => 0.074688445324725
1129 => 0.072381241042373
1130 => 0.071742637305482
1201 => 0.070888669699423
1202 => 0.071839095218907
1203 => 0.074676449393788
1204 => 0.071253998280614
1205 => 0.06538644590411
1206 => 0.065739095799761
1207 => 0.066531395412594
1208 => 0.065054950325666
1209 => 0.063657618959531
1210 => 0.064872485213308
1211 => 0.062386325920807
1212 => 0.066831835885326
1213 => 0.066711597299184
1214 => 0.068368608505464
1215 => 0.069404771618045
1216 => 0.067016751105338
1217 => 0.066416170404287
1218 => 0.066758288466477
1219 => 0.061103838975878
1220 => 0.067906519348033
1221 => 0.067965349210379
1222 => 0.067461612212328
1223 => 0.071083829501307
1224 => 0.078727837778958
1225 => 0.075851854385385
1226 => 0.074738186688336
1227 => 0.072621103582158
1228 => 0.075441991121183
1229 => 0.075225390970887
1230 => 0.074245842948079
1231 => 0.073653409247508
]
'min_raw' => 0.05532706136381
'max_raw' => 0.14196290419481
'avg_raw' => 0.098644982779308
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.055327'
'max' => '$0.141962'
'avg' => '$0.098644'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.034022589638062
'max_diff' => 0.082516821543429
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017366532353931
]
1 => [
'year' => 2028
'avg' => 0.002980601105971
]
2 => [
'year' => 2029
'avg' => 0.0081424650204302
]
3 => [
'year' => 2030
'avg' => 0.0062818996371392
]
4 => [
'year' => 2031
'avg' => 0.0061696039509222
]
5 => [
'year' => 2032
'avg' => 0.010817257371788
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017366532353931
'min' => '$0.001736'
'max_raw' => 0.010817257371788
'max' => '$0.010817'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010817257371788
]
1 => [
'year' => 2033
'avg' => 0.027823098285696
]
2 => [
'year' => 2034
'avg' => 0.01763561680901
]
3 => [
'year' => 2035
'avg' => 0.020801250468527
]
4 => [
'year' => 2036
'avg' => 0.040375277188562
]
5 => [
'year' => 2037
'avg' => 0.098644982779308
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010817257371788
'min' => '$0.010817'
'max_raw' => 0.098644982779308
'max' => '$0.098644'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.098644982779308
]
]
]
]
'prediction_2025_max_price' => '$0.002969'
'last_price' => 0.0028791737341819
'sma_50day_nextmonth' => '$0.002736'
'sma_200day_nextmonth' => '$0.003724'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.00285'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.002816'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.002789'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002872'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.003478'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003874'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.003925'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002847'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.002829'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.002831'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.002952'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.003339'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003677'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.004188'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.003673'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.003942'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.006549'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002854'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.002897'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.0031059'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003465'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.004229'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.005041'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.005768'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '38.62'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 125.51
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.002814'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002858'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 68.67
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 7.39
'cci_20_action' => 'NEUTRAL'
'adx_14' => 36.74
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000290'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -31.33
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 71.31
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000395'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 17
'buy_signals' => 16
'sell_pct' => 51.52
'buy_pct' => 48.48
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767703979
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de GemPad para 2026
La previsión del precio de GemPad para 2026 sugiere que el precio medio podría oscilar entre $0.000994 en el extremo inferior y $0.002969 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, GemPad podría potencialmente ganar 3.13% para 2026 si GEMS alcanza el objetivo de precio previsto.
Predicción de precio de GemPad 2027-2032
La predicción del precio de GEMS para 2027-2032 está actualmente dentro de un rango de precios de $0.001736 en el extremo inferior y $0.010817 en el extremo superior. Considerando la volatilidad de precios en el mercado, si GemPad alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de GemPad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000957 | $0.001736 | $0.002515 |
| 2028 | $0.001728 | $0.00298 | $0.004232 |
| 2029 | $0.003796 | $0.008142 | $0.012488 |
| 2030 | $0.003228 | $0.006281 | $0.009335 |
| 2031 | $0.003817 | $0.006169 | $0.008521 |
| 2032 | $0.005826 | $0.010817 | $0.0158076 |
Predicción de precio de GemPad 2032-2037
La predicción de precio de GemPad para 2032-2037 se estima actualmente entre $0.010817 en el extremo inferior y $0.098644 en el extremo superior. Comparado con el precio actual, GemPad podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de GemPad | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005826 | $0.010817 | $0.0158076 |
| 2033 | $0.01354 | $0.027823 | $0.0421058 |
| 2034 | $0.010885 | $0.017635 | $0.024385 |
| 2035 | $0.01287 | $0.0208012 | $0.028732 |
| 2036 | $0.0213044 | $0.040375 | $0.059446 |
| 2037 | $0.055327 | $0.098644 | $0.141962 |
GemPad Histograma de precios potenciales
Pronóstico de precio de GemPad basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para GemPad es Bajista, con 16 indicadores técnicos mostrando señales alcistas y 17 indicando señales bajistas. La predicción de precio de GEMS se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de GemPad
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de GemPad aumentar durante el próximo mes, alcanzando $0.003724 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para GemPad alcance $0.002736 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 38.62, lo que sugiere que el mercado de GEMS está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de GEMS para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.00285 | BUY |
| SMA 5 | $0.002816 | BUY |
| SMA 10 | $0.002789 | BUY |
| SMA 21 | $0.002872 | BUY |
| SMA 50 | $0.003478 | SELL |
| SMA 100 | $0.003874 | SELL |
| SMA 200 | $0.003925 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.002847 | BUY |
| EMA 5 | $0.002829 | BUY |
| EMA 10 | $0.002831 | BUY |
| EMA 21 | $0.002952 | SELL |
| EMA 50 | $0.003339 | SELL |
| EMA 100 | $0.003677 | SELL |
| EMA 200 | $0.004188 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.003673 | SELL |
| SMA 50 | $0.003942 | SELL |
| SMA 100 | $0.006549 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003465 | SELL |
| EMA 50 | $0.004229 | SELL |
| EMA 100 | $0.005041 | SELL |
| EMA 200 | $0.005768 | SELL |
Osciladores de GemPad
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 38.62 | NEUTRAL |
| Stoch RSI (14) | 125.51 | SELL |
| Estocástico Rápido (14) | 68.67 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 7.39 | NEUTRAL |
| Índice Direccional Medio (14) | 36.74 | SELL |
| Oscilador Asombroso (5, 34) | -0.000290 | NEUTRAL |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -31.33 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 71.31 | SELL |
| VWMA (10) | 0.002814 | BUY |
| Promedio Móvil de Hull (9) | 0.002858 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000395 | SELL |
Predicción de precios de GemPad basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de GemPad
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de GemPad por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.004045 | $0.005684 | $0.007988 | $0.011224 | $0.015772 | $0.022163 |
| Amazon.com acción | $0.0060075 | $0.012535 | $0.026155 | $0.054574 | $0.113873 | $0.2376029 |
| Apple acción | $0.004083 | $0.005792 | $0.008216 | $0.011654 | $0.01653 | $0.023447 |
| Netflix acción | $0.004542 | $0.007167 | $0.0113099 | $0.017845 | $0.028157 | $0.044427 |
| Google acción | $0.003728 | $0.004828 | $0.006252 | $0.008097 | $0.010485 | $0.013579 |
| Tesla acción | $0.006526 | $0.014795 | $0.033541 | $0.076035 | $0.172366 | $0.390741 |
| Kodak acción | $0.002159 | $0.001619 | $0.001214 | $0.00091 | $0.000682 | $0.000511 |
| Nokia acción | $0.0019073 | $0.001263 | $0.000837 | $0.000554 | $0.000367 | $0.000243 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de GemPad
Podría preguntarse cosas como: "¿Debo invertir en GemPad ahora?", "¿Debería comprar GEMS hoy?", "¿Será GemPad una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de GemPad regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como GemPad, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de GemPad a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de GemPad es de $0.002879 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de GemPad basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si GemPad ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002954 | $0.00303 | $0.0031095 | $0.00319 |
| Si GemPad ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.003028 | $0.003186 | $0.003351 | $0.003526 |
| Si GemPad ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003253 | $0.003676 | $0.004153 | $0.004693 |
| Si GemPad ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.003627 | $0.00457 | $0.005758 | $0.007255 |
| Si GemPad ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004375 | $0.00665 | $0.0101083 | $0.015363 |
| Si GemPad ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006621 | $0.015226 | $0.035015 | $0.080523 |
| Si GemPad ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.010363 | $0.037299 | $0.134254 | $0.483225 |
Cuadro de preguntas
¿Es GEMS una buena inversión?
La decisión de adquirir GemPad depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de GemPad ha experimentado una caída de 0% durante las últimas 24 horas, y GemPad ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en GemPad dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede GemPad subir?
Parece que el valor medio de GemPad podría potencialmente aumentar hasta $0.002969 para el final de este año. Mirando las perspectivas de GemPad en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.009335. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de GemPad la próxima semana?
Basado en nuestro nuevo pronóstico experimental de GemPad, el precio de GemPad aumentará en un 0.86% durante la próxima semana y alcanzará $0.002903 para el 13 de enero de 2026.
¿Cuál será el precio de GemPad el próximo mes?
Basado en nuestro nuevo pronóstico experimental de GemPad, el precio de GemPad disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002544 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de GemPad este año en 2026?
Según nuestra predicción más reciente sobre el valor de GemPad en 2026, se anticipa que GEMS fluctúe dentro del rango de $0.000994 y $0.002969. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de GemPad no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará GemPad en 5 años?
El futuro de GemPad parece estar en una tendencia alcista, con un precio máximo de $0.009335 proyectada después de un período de cinco años. Basado en el pronóstico de GemPad para 2030, el valor de GemPad podría potencialmente alcanzar su punto más alto de aproximadamente $0.009335, mientras que su punto más bajo se anticipa que esté alrededor de $0.003228.
¿Cuánto será GemPad en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de GemPad, se espera que el valor de GEMS en 2026 crezca en un 3.13% hasta $0.002969 si ocurre lo mejor. El precio estará entre $0.002969 y $0.000994 durante 2026.
¿Cuánto será GemPad en 2027?
Según nuestra última simulación experimental para la predicción de precios de GemPad, el valor de GEMS podría disminuir en un -12.62% hasta $0.002515 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002515 y $0.000957 a lo largo del año.
¿Cuánto será GemPad en 2028?
Nuestro nuevo modelo experimental de predicción de precios de GemPad sugiere que el valor de GEMS en 2028 podría aumentar en un 47.02% , alcanzando $0.004232 en el mejor escenario. Se espera que el precio oscile entre $0.004232 y $0.001728 durante el año.
¿Cuánto será GemPad en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de GemPad podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.012488 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.012488 y $0.003796.
¿Cuánto será GemPad en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de GemPad, se espera que el valor de GEMS en 2030 aumente en un 224.23% , alcanzando $0.009335 en el mejor escenario. Se pronostica que el precio oscile entre $0.009335 y $0.003228 durante el transcurso de 2030.
¿Cuánto será GemPad en 2031?
Nuestra simulación experimental indica que el precio de GemPad podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.008521 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.008521 y $0.003817 durante el año.
¿Cuánto será GemPad en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de GemPad, GEMS podría experimentar un 449.04% aumento en valor, alcanzando $0.0158076 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0158076 y $0.005826 a lo largo del año.
¿Cuánto será GemPad en 2033?
Según nuestra predicción experimental de precios de GemPad, se anticipa que el valor de GEMS aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0421058. A lo largo del año, el precio de GEMS podría oscilar entre $0.0421058 y $0.01354.
¿Cuánto será GemPad en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de GemPad sugieren que GEMS podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.024385 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.024385 y $0.010885.
¿Cuánto será GemPad en 2035?
Basado en nuestra predicción experimental para el precio de GemPad, GEMS podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.028732 en 2035. El rango de precios esperado para el año está entre $0.028732 y $0.01287.
¿Cuánto será GemPad en 2036?
Nuestra reciente simulación de predicción de precios de GemPad sugiere que el valor de GEMS podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.059446 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.059446 y $0.0213044.
¿Cuánto será GemPad en 2037?
Según la simulación experimental, el valor de GemPad podría aumentar en un 4830.69% en 2037, con un máximo de $0.141962 bajo condiciones favorables. Se espera que el precio caiga entre $0.141962 y $0.055327 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de GemPad?
Los traders de GemPad utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de GemPad
Las medias móviles son herramientas populares para la predicción de precios de GemPad. Una media móvil simple (SMA) calcula el precio de cierre promedio de GEMS durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de GEMS por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de GEMS.
¿Cómo leer gráficos de GemPad y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de GemPad en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de GEMS dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de GemPad?
La acción del precio de GemPad está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de GEMS. La capitalización de mercado de GemPad puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de GEMS, grandes poseedores de GemPad, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de GemPad.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


