Predicción del precio de Gainer - Pronóstico de GNR
Predicción de precio de Gainer hasta $0.000338 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000113 | $0.000338 |
| 2027 | $0.0001091 | $0.000286 |
| 2028 | $0.000197 | $0.000482 |
| 2029 | $0.000432 | $0.001424 |
| 2030 | $0.000368 | $0.001064 |
| 2031 | $0.000435 | $0.000971 |
| 2032 | $0.000664 | $0.0018024 |
| 2033 | $0.001543 | $0.0048011 |
| 2034 | $0.001241 | $0.00278 |
| 2035 | $0.001467 | $0.003276 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Gainer hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,970.71, equivalente a un ROI del 39.71% en los próximos 90 días.
Predicción del precio a largo plazo de Gainer para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Gainer'
'name_with_ticker' => 'Gainer <small>GNR</small>'
'name_lang' => 'Gainer'
'name_lang_with_ticker' => 'Gainer <small>GNR</small>'
'name_with_lang' => 'Gainer'
'name_with_lang_with_ticker' => 'Gainer <small>GNR</small>'
'image' => '/uploads/coins/gainer.png?ts=1572415395'
'price_for_sd' => 0.0003
'ticker' => 'GNR'
'marketcap' => '$7.48K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '27.24M'
'max_supply' => '40M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.0003283'
'change_24h_pct' => '0%'
'ath_price' => '$0.09687'
'ath_days' => 2616
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 nov. 2018'
'ath_pct' => '0.34%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.016187'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.000331'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.00029'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000113'
'current_year_max_price_prediction' => '$0.000338'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.000368'
'grand_prediction_max_price' => '$0.001064'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0003345211123142
107 => 0.00033577009271642
108 => 0.00033858410933713
109 => 0.00031453864541421
110 => 0.00032533435277787
111 => 0.00033167581943304
112 => 0.00030302484238046
113 => 0.00033110948173662
114 => 0.00031412006738364
115 => 0.00030835360497979
116 => 0.00031611738693291
117 => 0.00031309183355526
118 => 0.0003104906404276
119 => 0.0003090391299682
120 => 0.00031473999457723
121 => 0.00031447404242921
122 => 0.0003051463214387
123 => 0.00029297868965313
124 => 0.00029706254626927
125 => 0.00029557884287426
126 => 0.00029020171036923
127 => 0.00029382524844017
128 => 0.00027786902060641
129 => 0.00025041715995097
130 => 0.00026855269997318
131 => 0.00026785450141
201 => 0.00026750243803366
202 => 0.00028113079513084
203 => 0.00027982074305564
204 => 0.00027744298571109
205 => 0.00029015804099094
206 => 0.00028551687477216
207 => 0.00029981985546213
208 => 0.00030924072360334
209 => 0.00030685128670957
210 => 0.00031571165873138
211 => 0.00029715663007747
212 => 0.00030331986629776
213 => 0.00030459010074089
214 => 0.00029000113918249
215 => 0.00028003508377683
216 => 0.00027937046150262
217 => 0.00026209069483624
218 => 0.00027132140671202
219 => 0.00027944405116989
220 => 0.00027555393481724
221 => 0.00027432244019392
222 => 0.0002806138791459
223 => 0.000281102777835
224 => 0.00026995583591236
225 => 0.00027227363811582
226 => 0.0002819392586068
227 => 0.00027203008927888
228 => 0.00025277819192834
301 => 0.0002480034552071
302 => 0.00024736641731263
303 => 0.00023441695263548
304 => 0.0002483225259461
305 => 0.00024225237054982
306 => 0.00026142791871505
307 => 0.0002504749484436
308 => 0.00025000278778662
309 => 0.00024928904770269
310 => 0.00023814290851942
311 => 0.00024058320462646
312 => 0.00024869512055384
313 => 0.000251589543544
314 => 0.00025128763151282
315 => 0.00024865536774036
316 => 0.00024986040461602
317 => 0.00024597856097683
318 => 0.00024460780119424
319 => 0.00024028130626322
320 => 0.00023392255393934
321 => 0.00023480677745047
322 => 0.00022220842523881
323 => 0.00021534417430874
324 => 0.00021344424012067
325 => 0.00021090356872067
326 => 0.00021373121571577
327 => 0.0002221727356899
328 => 0.00021199047163274
329 => 0.00019453369410951
330 => 0.00019558287618356
331 => 0.00019794007679899
401 => 0.00019354744904658
402 => 0.00018939019552422
403 => 0.00019300459017327
404 => 0.00018560792340805
405 => 0.00019883392863957
406 => 0.00019847620226351
407 => 0.00020340603912315
408 => 0.00020648876728191
409 => 0.00019938407692105
410 => 0.00019759726650842
411 => 0.00019861511492546
412 => 0.00018179234787715
413 => 0.00020203126015237
414 => 0.00020220628710616
415 => 0.00020070760006582
416 => 0.00021148419604606
417 => 0.00023422617486895
418 => 0.0002256697276418
419 => 0.00022235641265546
420 => 0.00021605779844441
421 => 0.00022445032790593
422 => 0.00022380591258714
423 => 0.00022089162212832
424 => 0.00021912905016568
425 => 0.00022237664305024
426 => 0.00021872663746777
427 => 0.00021807099616971
428 => 0.00021409852324824
429 => 0.00021268053115128
430 => 0.00021163070625458
501 => 0.00021047495219698
502 => 0.00021302425765208
503 => 0.00020724719610176
504 => 0.00020028062620439
505 => 0.00019970143129676
506 => 0.00020130063936008
507 => 0.0002005931088391
508 => 0.00019969804391283
509 => 0.00019798912121216
510 => 0.00019748212035223
511 => 0.00019912962718516
512 => 0.0001972696880264
513 => 0.00020001412957128
514 => 0.00019926779332795
515 => 0.00019509881974209
516 => 0.0001899027351024
517 => 0.00018985647904995
518 => 0.00018873699113761
519 => 0.00018731115496512
520 => 0.00018691451996064
521 => 0.00019270019593729
522 => 0.00020467637205825
523 => 0.0002023251621201
524 => 0.0002040241522621
525 => 0.0002123815022084
526 => 0.00021503805244204
527 => 0.00021315249601004
528 => 0.00021057143006986
529 => 0.0002106849838721
530 => 0.00021950526753148
531 => 0.00022005537780414
601 => 0.00022144532899084
602 => 0.00022323180906591
603 => 0.00021345674129178
604 => 0.00021022457905899
605 => 0.00020869300127957
606 => 0.00020397633451412
607 => 0.00020906285524421
608 => 0.00020609915744132
609 => 0.00020649906152926
610 => 0.00020623862346737
611 => 0.00020638084025991
612 => 0.00019883023170156
613 => 0.00020158127661192
614 => 0.00019700713087452
615 => 0.00019088286320409
616 => 0.00019086233251141
617 => 0.00019236123834751
618 => 0.00019146963050401
619 => 0.00018907033672248
620 => 0.0001894111450798
621 => 0.00018642530525429
622 => 0.00018977368009499
623 => 0.00018986969950436
624 => 0.00018858039280348
625 => 0.00019373902623227
626 => 0.0001958525225571
627 => 0.00019500387326695
628 => 0.00019579297906057
629 => 0.00020242286550811
630 => 0.00020350382628128
701 => 0.00020398391765247
702 => 0.000203340658815
703 => 0.00019591416121418
704 => 0.00019624355796268
705 => 0.00019382666318035
706 => 0.00019178464177537
707 => 0.00019186631192258
708 => 0.00019291617636894
709 => 0.00019750099597992
710 => 0.00020714947856136
711 => 0.00020751563142238
712 => 0.00020795941937136
713 => 0.00020615431075289
714 => 0.00020560987272099
715 => 0.00020632812701644
716 => 0.00020995158978092
717 => 0.00021927211977169
718 => 0.00021597762197568
719 => 0.00021329914398562
720 => 0.00021564889129539
721 => 0.00021528716611498
722 => 0.00021223384156495
723 => 0.00021214814491425
724 => 0.00020628783889585
725 => 0.00020412141719355
726 => 0.00020231099306527
727 => 0.00020033405717949
728 => 0.00019916206331892
729 => 0.00020096277855045
730 => 0.00020137462342933
731 => 0.00019743732810448
801 => 0.00019690068930051
802 => 0.00020011596965521
803 => 0.00019870104464884
804 => 0.00020015633010634
805 => 0.00020049396881569
806 => 0.000200439601207
807 => 0.00019896225699725
808 => 0.00019990387214151
809 => 0.00019767667161636
810 => 0.00019525492555995
811 => 0.00019371000245608
812 => 0.00019236185214364
813 => 0.00019310988429194
814 => 0.00019044328626852
815 => 0.00018959018789282
816 => 0.00019958487411765
817 => 0.00020696805629291
818 => 0.00020686070190002
819 => 0.00020620720964261
820 => 0.00020523625270417
821 => 0.00020988055823315
822 => 0.00020826257505268
823 => 0.00020943979300349
824 => 0.00020973944437966
825 => 0.00021064639884608
826 => 0.00021097055711246
827 => 0.00020999072568908
828 => 0.00020670229175587
829 => 0.00019850782704922
830 => 0.00019469328160774
831 => 0.00019343441807577
901 => 0.00019348017537424
902 => 0.000192217984813
903 => 0.0001925897565007
904 => 0.00019208869779192
905 => 0.00019113981381662
906 => 0.00019305129338035
907 => 0.0001932715735934
908 => 0.00019282541142275
909 => 0.00019293049876524
910 => 0.00018923646655059
911 => 0.00018951731579685
912 => 0.00018795351150506
913 => 0.00018766031705229
914 => 0.00018370715597865
915 => 0.00017670355811683
916 => 0.00018058423118797
917 => 0.00017589692382324
918 => 0.00017412176949992
919 => 0.00018252507397338
920 => 0.00018168161527563
921 => 0.00018023798062776
922 => 0.00017810254410374
923 => 0.0001773104899248
924 => 0.00017249821946738
925 => 0.0001722138848563
926 => 0.00017459897603722
927 => 0.0001734983385232
928 => 0.00017195262660949
929 => 0.00016635421474435
930 => 0.00016005974623746
1001 => 0.00016024973667606
1002 => 0.00016225188999536
1003 => 0.00016807342079836
1004 => 0.00016579884800012
1005 => 0.00016414861933728
1006 => 0.00016383958111442
1007 => 0.00016770784148883
1008 => 0.00017318224034423
1009 => 0.00017575070580441
1010 => 0.00017320543453883
1011 => 0.00017028156395606
1012 => 0.00017045952641052
1013 => 0.00017164343089147
1014 => 0.00017176784251291
1015 => 0.00016986470334228
1016 => 0.00017040042587111
1017 => 0.00016958661436232
1018 => 0.00016459225463507
1019 => 0.00016450192250489
1020 => 0.00016327622608289
1021 => 0.00016323911248236
1022 => 0.00016115389710424
1023 => 0.00016086216105843
1024 => 0.00015672183936165
1025 => 0.00015944701164052
1026 => 0.00015761910915382
1027 => 0.00015486402894775
1028 => 0.00015438905208177
1029 => 0.00015437477370363
1030 => 0.0001572036250506
1031 => 0.00015941395486549
1101 => 0.00015765090630016
1102 => 0.0001572494943171
1103 => 0.00016153552411684
1104 => 0.00016099008775679
1105 => 0.00016051774338668
1106 => 0.00017269206797046
1107 => 0.000163055140088
1108 => 0.00015885288947464
1109 => 0.00015365180635485
1110 => 0.00015534530524479
1111 => 0.00015570215034358
1112 => 0.00014319448300619
1113 => 0.00013812012392514
1114 => 0.00013637879511171
1115 => 0.00013537663576081
1116 => 0.00013583333236134
1117 => 0.00013126581402544
1118 => 0.00013433526188695
1119 => 0.00013038017709077
1120 => 0.00012971709425374
1121 => 0.00013678927581028
1122 => 0.00013777332855879
1123 => 0.00013357505381243
1124 => 0.00013627102583854
1125 => 0.00013529342890506
1126 => 0.00013044797566782
1127 => 0.0001302629149949
1128 => 0.00012783163688637
1129 => 0.00012402715743474
1130 => 0.00012228840823753
1201 => 0.00012138285255911
1202 => 0.00012175650248095
1203 => 0.00012156757364659
1204 => 0.000120334685206
1205 => 0.00012163824136884
1206 => 0.00011830819403938
1207 => 0.00011698214236078
1208 => 0.00011638319558172
1209 => 0.00011342758690645
1210 => 0.00011813127467394
1211 => 0.00011905796041964
1212 => 0.00011998647202252
1213 => 0.00012806853160379
1214 => 0.00012766477474677
1215 => 0.00013131454009665
1216 => 0.00013117271692664
1217 => 0.00013013174472658
1218 => 0.00012574005424613
1219 => 0.00012749050379728
1220 => 0.0001221028921591
1221 => 0.0001261396571204
1222 => 0.0001242974461714
1223 => 0.00012551680374545
1224 => 0.00012332428888227
1225 => 0.00012453771713427
1226 => 0.00011927771198772
1227 => 0.00011436599319213
1228 => 0.00011634261221748
1229 => 0.00011849142315185
1230 => 0.00012315059276439
1231 => 0.00012037562978047
]
'min_raw' => 0.00011342758690645
'max_raw' => 0.00033858410933713
'avg_raw' => 0.00022600584812179
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000113'
'max' => '$0.000338'
'avg' => '$0.000226'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.00021487241309355
'max_diff' => 1.0284109337134E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00012137361140246
102 => 0.00011803054002892
103 => 0.00011113282888418
104 => 0.00011117186918017
105 => 0.00011011080659535
106 => 0.0001091938936044
107 => 0.00012069436766033
108 => 0.00011926410191589
109 => 0.00011698516064066
110 => 0.00012003561409907
111 => 0.00012084220241068
112 => 0.00012086516484599
113 => 0.00012309069694564
114 => 0.00012427846382618
115 => 0.00012448781288695
116 => 0.00012798973573156
117 => 0.0001291635340776
118 => 0.00013399824334275
119 => 0.00012417769010483
120 => 0.00012397544227349
121 => 0.00012007854023493
122 => 0.0001176070633545
123 => 0.00012024776437138
124 => 0.0001225870649807
125 => 0.00012015122882564
126 => 0.00012046929760418
127 => 0.00011719938658114
128 => 0.00011836822590827
129 => 0.00011937498779645
130 => 0.00011881911305652
131 => 0.00011798694166621
201 => 0.00012239526900777
202 => 0.00012214653390278
203 => 0.00012625166967024
204 => 0.00012945191656205
205 => 0.00013518733110473
206 => 0.00012920212703552
207 => 0.00012898400241021
208 => 0.00013111620561094
209 => 0.0001291632076484
210 => 0.00013039743494552
211 => 0.00013498847800609
212 => 0.00013508547951149
213 => 0.00013346057931668
214 => 0.00013336170399215
215 => 0.00013367378384902
216 => 0.00013550164531837
217 => 0.00013486293435647
218 => 0.00013560206685176
219 => 0.00013652636335513
220 => 0.00014034964558663
221 => 0.00014127142598898
222 => 0.0001390319774996
223 => 0.00013923417462415
224 => 0.00013839655941489
225 => 0.00013758743361803
226 => 0.00013940623024604
227 => 0.00014273011683226
228 => 0.00014270943910632
301 => 0.0001434805161872
302 => 0.00014396089082064
303 => 0.00014189877123819
304 => 0.00014055640721625
305 => 0.0001410711549991
306 => 0.00014189424791363
307 => 0.00014080423706029
308 => 0.0001340761851313
309 => 0.00013611704629693
310 => 0.00013577734720596
311 => 0.00013529357439159
312 => 0.00013734567607515
313 => 0.00013714774586164
314 => 0.00013121896752313
315 => 0.00013159850867648
316 => 0.00013124204867774
317 => 0.00013239384385853
318 => 0.00012910100692876
319 => 0.00013011386139076
320 => 0.00013074911421441
321 => 0.00013112328300778
322 => 0.00013247503725938
323 => 0.00013231642449984
324 => 0.00013246517766754
325 => 0.00013446947237277
326 => 0.00014460650720091
327 => 0.00014515824364049
328 => 0.00014244129162384
329 => 0.00014352666036498
330 => 0.00014144298972603
331 => 0.00014284177178534
401 => 0.00014379878294511
402 => 0.00013947423353679
403 => 0.00013921816178692
404 => 0.00013712589109804
405 => 0.00013825015885398
406 => 0.00013646136801657
407 => 0.00013690027471882
408 => 0.00013567305331613
409 => 0.00013788180750363
410 => 0.00014035153789097
411 => 0.00014097548931942
412 => 0.00013933414173915
413 => 0.00013814569792096
414 => 0.00013605918207394
415 => 0.00013952910442856
416 => 0.00014054381546902
417 => 0.00013952377458344
418 => 0.00013928740882192
419 => 0.00013883949613094
420 => 0.00013938243561673
421 => 0.00014053828913478
422 => 0.00013999320996093
423 => 0.00014035324435831
424 => 0.00013898116450134
425 => 0.00014189945388557
426 => 0.00014653439975231
427 => 0.00014654930186116
428 => 0.00014600421974914
429 => 0.00014578118389286
430 => 0.00014634047121814
501 => 0.00014664386164894
502 => 0.00014845249430317
503 => 0.00015039322920025
504 => 0.00015944979215597
505 => 0.00015690674551843
506 => 0.00016494226695008
507 => 0.00017129732112065
508 => 0.00017320292399357
509 => 0.00017144985901603
510 => 0.00016545271842658
511 => 0.00016515847009839
512 => 0.00017412073006648
513 => 0.00017158848112798
514 => 0.0001712872781743
515 => 0.00016808298763751
516 => 0.00016997712020386
517 => 0.00016956284562635
518 => 0.00016890889293875
519 => 0.00017252276592891
520 => 0.00017928761355383
521 => 0.00017823324861115
522 => 0.00017744621409202
523 => 0.00017399765793149
524 => 0.00017607445900303
525 => 0.00017533494991996
526 => 0.0001785123502449
527 => 0.00017663012868044
528 => 0.00017156929685174
529 => 0.00017237525100118
530 => 0.00017225343265285
531 => 0.0001747604456294
601 => 0.00017400790256173
602 => 0.000172106486541
603 => 0.00017926449204008
604 => 0.00017879969097789
605 => 0.00017945867261576
606 => 0.00017974877671244
607 => 0.00018410572852153
608 => 0.0001858906322708
609 => 0.00018629583667103
610 => 0.00018799135718343
611 => 0.0001862536505761
612 => 0.00019320571596925
613 => 0.00019782843379143
614 => 0.00020319795842478
615 => 0.00021104427710627
616 => 0.00021399456551301
617 => 0.00021346162231934
618 => 0.00021941061159485
619 => 0.00023010081308433
620 => 0.00021562241768492
621 => 0.00023086820319679
622 => 0.00022604156352479
623 => 0.00021459768769002
624 => 0.0002138608370007
625 => 0.00022161076258213
626 => 0.00023879935161906
627 => 0.00023449380501667
628 => 0.00023880639395088
629 => 0.00023377552988248
630 => 0.00023352570507803
701 => 0.00023856205611217
702 => 0.00025032976482066
703 => 0.00024473936751923
704 => 0.00023672416216596
705 => 0.0002426424650684
706 => 0.00023751548338123
707 => 0.00022596295868821
708 => 0.00023449051264633
709 => 0.00022878838016528
710 => 0.00023045256556529
711 => 0.00024243759991224
712 => 0.00024099552887115
713 => 0.00024286170233051
714 => 0.000239567955021
715 => 0.00023649107565765
716 => 0.00023074785183389
717 => 0.00022904756639719
718 => 0.00022951746412203
719 => 0.00022904733353921
720 => 0.00022583405259277
721 => 0.00022514014487832
722 => 0.00022398360162012
723 => 0.00022434206273632
724 => 0.00022216742305223
725 => 0.00022627141743959
726 => 0.00022703315496216
727 => 0.00023001969983254
728 => 0.00023032977282847
729 => 0.00023864725778169
730 => 0.00023406612683911
731 => 0.00023713954499121
801 => 0.00023686462954355
802 => 0.00021484571118023
803 => 0.00021787972385613
804 => 0.00022259969545421
805 => 0.00022047335464705
806 => 0.00021746720623284
807 => 0.00021503958020888
808 => 0.00021136147854508
809 => 0.00021653833600519
810 => 0.00022334535306782
811 => 0.00023050241001447
812 => 0.00023910114498691
813 => 0.00023718200744137
814 => 0.00023034166264531
815 => 0.00023064851551599
816 => 0.00023254535922035
817 => 0.00023008877427678
818 => 0.00022936427941868
819 => 0.00023244582475223
820 => 0.00023246704566135
821 => 0.00022964044779556
822 => 0.00022649920152968
823 => 0.00022648603959313
824 => 0.00022592708516095
825 => 0.00023387496663423
826 => 0.00023824549782309
827 => 0.00023874657218043
828 => 0.00023821177152649
829 => 0.00023841759507271
830 => 0.000235874479272
831 => 0.00024168728785486
901 => 0.00024702169583768
902 => 0.00024559196054528
903 => 0.00024344858409312
904 => 0.00024174128150999
905 => 0.00024518977431555
906 => 0.00024503621835935
907 => 0.00024697510443759
908 => 0.00024688714536553
909 => 0.00024623517090261
910 => 0.00024559198382934
911 => 0.00024814214787228
912 => 0.0002474077415823
913 => 0.0002466721945565
914 => 0.00024519694238963
915 => 0.00024539745366045
916 => 0.00024325444729246
917 => 0.00024226299448933
918 => 0.00022735392315812
919 => 0.00022336973213046
920 => 0.00022462323973345
921 => 0.00022503592698366
922 => 0.00022330200194255
923 => 0.00022578800504271
924 => 0.00022540056409288
925 => 0.0002269078701833
926 => 0.00022596617077763
927 => 0.00022600481844972
928 => 0.00022877415561031
929 => 0.00022957810596964
930 => 0.00022916921032821
1001 => 0.00022945558681935
1002 => 0.00023605501218555
1003 => 0.00023511678493622
1004 => 0.00023461837040958
1005 => 0.00023475643463968
1006 => 0.00023644272931402
1007 => 0.00023691479975456
1008 => 0.0002349146041262
1009 => 0.00023585790794753
1010 => 0.00023987437589568
1011 => 0.00024127991236513
1012 => 0.00024576571007985
1013 => 0.00024386006348194
1014 => 0.00024735796028686
1015 => 0.00025810930254428
1016 => 0.0002666982186758
1017 => 0.00025879949644928
1018 => 0.00027457194713295
1019 => 0.00028685306241386
1020 => 0.00028638169275411
1021 => 0.00028424019623757
1022 => 0.0002702584730006
1023 => 0.00025739228282219
1024 => 0.00026815539723372
1025 => 0.00026818283462581
1026 => 0.00026725827355252
1027 => 0.00026151590413157
1028 => 0.00026705845154398
1029 => 0.00026749839883
1030 => 0.00026725214534126
1031 => 0.00026284948416991
1101 => 0.00025612743430906
1102 => 0.00025744090676156
1103 => 0.00025959240143286
1104 => 0.00025551917317128
1105 => 0.0002542175299361
1106 => 0.00025663753235806
1107 => 0.00026443528438912
1108 => 0.00026296116453695
1109 => 0.00026292266931022
1110 => 0.00026922957916191
1111 => 0.00026471519282444
1112 => 0.00025745747385551
1113 => 0.0002556248040983
1114 => 0.00024912006109449
1115 => 0.00025361291025632
1116 => 0.00025377459989919
1117 => 0.00025131391232906
1118 => 0.0002576571450902
1119 => 0.0002575986910836
1120 => 0.0002636206465247
1121 => 0.00027513236358491
1122 => 0.00027172778239302
1123 => 0.00026776862488422
1124 => 0.00026819909508096
1125 => 0.00027292029064817
1126 => 0.00027006574803382
1127 => 0.00027109226146052
1128 => 0.00027291873689716
1129 => 0.00027402069487692
1130 => 0.00026804054028584
1201 => 0.0002666462801868
1202 => 0.00026379411334296
1203 => 0.00026305003625162
1204 => 0.00026537306663351
1205 => 0.00026476103020176
1206 => 0.0002537610105108
1207 => 0.00025261144724956
1208 => 0.00025264670271359
1209 => 0.00024975607123445
1210 => 0.00024534716439773
1211 => 0.00025693350832249
1212 => 0.00025600296275455
1213 => 0.00025497571246606
1214 => 0.00025510154476499
1215 => 0.0002601307839651
1216 => 0.00025721357124637
1217 => 0.00026496945938088
1218 => 0.00026337508194376
1219 => 0.00026173981474152
1220 => 0.00026151377100271
1221 => 0.00026088433264429
1222 => 0.00025872575430956
1223 => 0.00025611914125994
1224 => 0.00025439802954361
1225 => 0.00023466873482502
1226 => 0.00023833037716477
1227 => 0.00024254276290744
1228 => 0.00024399686158573
1229 => 0.00024150952517595
1230 => 0.00025882396951152
1231 => 0.00026198748533776
]
'min_raw' => 0.0001091938936044
'max_raw' => 0.00028685306241386
'avg_raw' => 0.00019802347800913
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.0001091'
'max' => '$0.000286'
'avg' => '$0.000198'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -4.2336933020503E-6
'max_diff' => -5.1731046923278E-5
'year' => 2027
]
2 => [
'items' => [
101 => 0.00025240498954903
102 => 0.00025061249583769
103 => 0.00025894148510082
104 => 0.00025391808639762
105 => 0.00025618012252608
106 => 0.00025129083768396
107 => 0.00026122548701378
108 => 0.00026114980163097
109 => 0.00025728499865744
110 => 0.00026055150366564
111 => 0.00025998386803573
112 => 0.0002556205149972
113 => 0.00026136381308787
114 => 0.00026136666169207
115 => 0.00025764687285811
116 => 0.00025330297386652
117 => 0.00025252638732514
118 => 0.00025194133368594
119 => 0.00025603623519528
120 => 0.00025970771108413
121 => 0.00026653941747722
122 => 0.00026825707078178
123 => 0.00027496118598015
124 => 0.00027096921179697
125 => 0.00027273880224765
126 => 0.00027465994300572
127 => 0.00027558100853275
128 => 0.00027408018168356
129 => 0.00028449443211052
130 => 0.00028537371393095
131 => 0.00028566852951958
201 => 0.00028215690287072
202 => 0.00028527604924136
203 => 0.00028381670394981
204 => 0.00028761351498062
205 => 0.00028820890343037
206 => 0.00028770463059499
207 => 0.00028789361628651
208 => 0.00027900689074676
209 => 0.00027854606714631
210 => 0.00027226270465565
211 => 0.00027482322131487
212 => 0.00027003645814922
213 => 0.00027155439005817
214 => 0.00027222347998025
215 => 0.00027187398537548
216 => 0.00027496798908501
217 => 0.00027233745386871
218 => 0.00026539503893286
219 => 0.00025845073254071
220 => 0.00025836355243066
221 => 0.0002565352391348
222 => 0.00025521370349417
223 => 0.00025546827814255
224 => 0.00025636543240814
225 => 0.00025516155925732
226 => 0.00025541846663196
227 => 0.00025968484081596
228 => 0.00026054043173217
229 => 0.00025763279949793
301 => 0.00024595823650813
302 => 0.00024309326946701
303 => 0.0002451525509614
304 => 0.0002441683470418
305 => 0.00019706291262088
306 => 0.00020812963571329
307 => 0.00020155416464218
308 => 0.00020458444423463
309 => 0.00019787259098101
310 => 0.000201075839152
311 => 0.00020048431617872
312 => 0.00021827927942317
313 => 0.00021800143554828
314 => 0.00021813442470802
315 => 0.00021178650561224
316 => 0.0002218989130966
317 => 0.0002268806486538
318 => 0.00022595866198676
319 => 0.00022619070616743
320 => 0.00022220341834435
321 => 0.00021817303036992
322 => 0.00021370270983402
323 => 0.00022200801284141
324 => 0.00022108460492324
325 => 0.00022320257045584
326 => 0.00022858915313146
327 => 0.00022938234789208
328 => 0.00023044840969414
329 => 0.00023006630242555
330 => 0.00023916964778353
331 => 0.00023806717259487
401 => 0.00024072382059578
402 => 0.00023525889409754
403 => 0.00022907481102921
404 => 0.00023025020304759
405 => 0.00023013700334432
406 => 0.00022869584119704
407 => 0.00022739482444919
408 => 0.00022522899812323
409 => 0.00023208199310057
410 => 0.00023180377401953
411 => 0.0002363078175473
412 => 0.00023551168410382
413 => 0.00023019491012138
414 => 0.0002303847997443
415 => 0.00023166189871626
416 => 0.0002360819528399
417 => 0.00023739412584403
418 => 0.00023678627502746
419 => 0.00023822501282352
420 => 0.00023936213251545
421 => 0.00023836781754942
422 => 0.00025244522064373
423 => 0.00024659930140585
424 => 0.00024944856176675
425 => 0.000250128093574
426 => 0.00024838748713873
427 => 0.0002487649623481
428 => 0.00024933673443445
429 => 0.00025280842257834
430 => 0.00026191913680896
501 => 0.00026595421012297
502 => 0.00027809392727519
503 => 0.00026561915345518
504 => 0.00026487895200244
505 => 0.00026706568164589
506 => 0.00027419298073381
507 => 0.00027996898721141
508 => 0.00028188522178583
509 => 0.00028213848381843
510 => 0.00028573346726892
511 => 0.00028779404474027
512 => 0.00028529694172058
513 => 0.00028318090836898
514 => 0.00027560153955526
515 => 0.00027647887213339
516 => 0.0002825228235878
517 => 0.00029106026100412
518 => 0.0002983862704763
519 => 0.00029582095729635
520 => 0.00031539248603048
521 => 0.00031733292316194
522 => 0.00031706481749222
523 => 0.00032148542205346
524 => 0.00031271142223987
525 => 0.00030896036733132
526 => 0.00028363841879759
527 => 0.00029075285346671
528 => 0.00030109410207437
529 => 0.00029972539904345
530 => 0.0002922153078822
531 => 0.0002983805733987
601 => 0.00029634214381327
602 => 0.00029473434982472
603 => 0.00030209996577248
604 => 0.00029400116847509
605 => 0.00030101331037607
606 => 0.00029202016585674
607 => 0.00029583267543087
608 => 0.00029366851060626
609 => 0.00029506899047785
610 => 0.00028688181376504
611 => 0.00029129941558679
612 => 0.00028669802700553
613 => 0.00028669584534822
614 => 0.00028659426944026
615 => 0.00029200778270043
616 => 0.00029218431717349
617 => 0.00028818372269486
618 => 0.00028760717452946
619 => 0.00028973897527808
620 => 0.00028724319492095
621 => 0.00028841095484179
622 => 0.00028727856517933
623 => 0.00028702364041454
624 => 0.00028499235651677
625 => 0.0002841172235623
626 => 0.00028446038574315
627 => 0.00028328899630769
628 => 0.00028258319180182
629 => 0.0002864538671592
630 => 0.00028438592145835
701 => 0.00028613692482203
702 => 0.00028414143549488
703 => 0.00027722420009366
704 => 0.00027324602486598
705 => 0.00026018000842113
706 => 0.00026388551447655
707 => 0.00026634226882491
708 => 0.00026553031152743
709 => 0.00026727470998818
710 => 0.00026738180188625
711 => 0.00026681468016463
712 => 0.00026615802586378
713 => 0.00026583840286538
714 => 0.0002682206108332
715 => 0.00026960356273995
716 => 0.0002665888369909
717 => 0.0002658825289284
718 => 0.00026893058310825
719 => 0.00027078989439716
720 => 0.00028451800429769
721 => 0.00028350098157505
722 => 0.00028605350902825
723 => 0.00028576613360875
724 => 0.00028844158902922
725 => 0.00029281482790986
726 => 0.00028392281048869
727 => 0.00028546615725018
728 => 0.00028508776426534
729 => 0.0002892189596538
730 => 0.00028923185679487
731 => 0.00028675499879097
801 => 0.00028809774369732
802 => 0.00028734826032688
803 => 0.00028870267807602
804 => 0.00028348739861654
805 => 0.00028983904604355
806 => 0.00029344002084355
807 => 0.00029349002038214
808 => 0.00029519685385824
809 => 0.00029693109552308
810 => 0.00030025982137813
811 => 0.00029683825916565
812 => 0.00029068320182778
813 => 0.00029112757708686
814 => 0.00028751886922171
815 => 0.00028757953225289
816 => 0.0002872557082382
817 => 0.0002882275284826
818 => 0.00028370065850999
819 => 0.00028476310584439
820 => 0.00028327567335455
821 => 0.00028546292386244
822 => 0.00028310980388141
823 => 0.00028508758179279
824 => 0.00028594112517496
825 => 0.00028909071863065
826 => 0.00028264460636715
827 => 0.00026950054709844
828 => 0.00027226358771303
829 => 0.00026817683361189
830 => 0.00026855507826332
831 => 0.0002693191926564
901 => 0.00026684244790575
902 => 0.00026731493275298
903 => 0.00026729805226941
904 => 0.0002671525853816
905 => 0.00026650828841553
906 => 0.00026557393034447
907 => 0.00026929612531934
908 => 0.0002699285987773
909 => 0.00027133450892746
910 => 0.00027551754389637
911 => 0.00027509956006021
912 => 0.00027578130903896
913 => 0.00027429305484621
914 => 0.0002686241141069
915 => 0.00026893196486314
916 => 0.00026509306099984
917 => 0.00027123633952464
918 => 0.00026978153008265
919 => 0.00026884360497131
920 => 0.00026858768341486
921 => 0.00027278108731837
922 => 0.00027403581948985
923 => 0.00027325395460253
924 => 0.00027165032690798
925 => 0.00027472976615148
926 => 0.00027555369418192
927 => 0.00027573814128264
928 => 0.0002811943171982
929 => 0.00027604308090577
930 => 0.00027728303468024
1001 => 0.00028695680006828
1002 => 0.0002781840297497
1003 => 0.00028283116184358
1004 => 0.00028260370891009
1005 => 0.00028498102443894
1006 => 0.00028240869964808
1007 => 0.00028244058669677
1008 => 0.00028455148183308
1009 => 0.00028158711031607
1010 => 0.00028085309024041
1011 => 0.00027983904676304
1012 => 0.00028205317359785
1013 => 0.00028338044249897
1014 => 0.00029407725507046
1015 => 0.00030098788382556
1016 => 0.00030068787520582
1017 => 0.00030342939239769
1018 => 0.00030219431379333
1019 => 0.00029820591918259
1020 => 0.00030501362245022
1021 => 0.00030285938028994
1022 => 0.00030303697339623
1023 => 0.00030303036337194
1024 => 0.00030446274608141
1025 => 0.0003034477716558
1026 => 0.00030144715287794
1027 => 0.00030277525698766
1028 => 0.00030671925138759
1029 => 0.00031896153102151
1030 => 0.00032581247289328
1031 => 0.00031854909571853
1101 => 0.00032355927603318
1102 => 0.00032055495315417
1103 => 0.00032000897831619
1104 => 0.00032315574180321
1105 => 0.00032630801328314
1106 => 0.00032610722721751
1107 => 0.00032381883999401
1108 => 0.00032252618811713
1109 => 0.00033231458119902
1110 => 0.00033952650248083
1111 => 0.00033903469779874
1112 => 0.00034120536372201
1113 => 0.00034757850600892
1114 => 0.00034816118626881
1115 => 0.00034808778194882
1116 => 0.00034664354812827
1117 => 0.00035291873436684
1118 => 0.00035815360512844
1119 => 0.00034630924972674
1120 => 0.00035081942520971
1121 => 0.0003528441882928
1122 => 0.0003558171412189
1123 => 0.00036083301113
1124 => 0.00036628157624724
1125 => 0.0003670520630953
1126 => 0.00036650536580541
1127 => 0.0003629118906453
1128 => 0.00036887377561148
1129 => 0.00037236610800127
1130 => 0.00037444571201878
1201 => 0.00037971924179408
1202 => 0.00035285669254029
1203 => 0.00033384204502313
1204 => 0.00033087263323848
1205 => 0.00033691104886891
1206 => 0.00033850333091519
1207 => 0.00033786148401888
1208 => 0.0003164587695022
1209 => 0.00033075995237595
1210 => 0.00034614682267049
1211 => 0.0003467378950235
1212 => 0.00035444088401724
1213 => 0.00035694929298978
1214 => 0.00036315120878358
1215 => 0.00036276327726208
1216 => 0.00036427334506384
1217 => 0.00036392620662694
1218 => 0.00037541394966752
1219 => 0.00038808663618762
1220 => 0.0003876478213501
1221 => 0.00038582597272641
1222 => 0.00038853172860394
1223 => 0.0004016112991803
1224 => 0.00040040714191748
1225 => 0.00040157687812844
1226 => 0.00041699842897027
1227 => 0.00043704863875467
1228 => 0.00042773330330167
1229 => 0.00044794490081912
1230 => 0.00046066703008561
1231 => 0.00048266863715928
]
'min_raw' => 0.00019706291262088
'max_raw' => 0.00048266863715928
'avg_raw' => 0.00033986577489008
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.000197'
'max' => '$0.000482'
'avg' => '$0.000339'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 8.7869019016478E-5
'max_diff' => 0.00019581557474543
'year' => 2028
]
3 => [
'items' => [
101 => 0.00047991392759346
102 => 0.00048847899177199
103 => 0.0004749824225454
104 => 0.00044399157149448
105 => 0.00043908715068746
106 => 0.00044890592534283
107 => 0.00047304442473104
108 => 0.00044814571809547
109 => 0.0004531826940197
110 => 0.00045173204461466
111 => 0.00045165474567273
112 => 0.00045460493188873
113 => 0.00045032553291106
114 => 0.00043289049162687
115 => 0.00044088086830207
116 => 0.00043779540013837
117 => 0.00044121895710288
118 => 0.00045969448205807
119 => 0.00045152601207388
120 => 0.00044292119249815
121 => 0.00045371354580844
122 => 0.0004674559202274
123 => 0.00046659594713368
124 => 0.000464927239891
125 => 0.00047433365524731
126 => 0.00048987029759483
127 => 0.00049406978959008
128 => 0.00049716976872614
129 => 0.00049759720347443
130 => 0.00050200004703099
131 => 0.00047832484756793
201 => 0.00051589799713805
202 => 0.0005223858421315
203 => 0.00052116639616636
204 => 0.00052837736282633
205 => 0.0005262557135104
206 => 0.00052318177652819
207 => 0.00053461269250084
208 => 0.00052150806976555
209 => 0.00050290770761894
210 => 0.00049270318107186
211 => 0.00050614132480473
212 => 0.00051434753025581
213 => 0.00051977131004628
214 => 0.00052141254253374
215 => 0.00048016268590759
216 => 0.00045793130100803
217 => 0.00047218136384531
218 => 0.00048956742399358
219 => 0.00047822826712596
220 => 0.00047867274060731
221 => 0.00046250608279208
222 => 0.00049099781448492
223 => 0.00048684680883046
224 => 0.00050838223350882
225 => 0.00050324263157675
226 => 0.00052080393440158
227 => 0.00051617945482446
228 => 0.00053537541099794
301 => 0.00054303319762531
302 => 0.00055589181321198
303 => 0.00056535066318151
304 => 0.00057090508080259
305 => 0.00057057161440272
306 => 0.00059258098421731
307 => 0.00057960282778646
308 => 0.00056329920459269
309 => 0.00056300432348639
310 => 0.00057144820096257
311 => 0.00058914425168798
312 => 0.00059373258017401
313 => 0.00059629682984642
314 => 0.00059236959221095
315 => 0.00057828273355812
316 => 0.00057220009941382
317 => 0.00057738267993564
318 => 0.00057104482930167
319 => 0.00058198573758271
320 => 0.00059700994150447
321 => 0.00059390750280677
322 => 0.00060427849022959
323 => 0.00061501137115251
324 => 0.00063035987291613
325 => 0.00063437253963051
326 => 0.00064100532512134
327 => 0.00064783264014794
328 => 0.00065002538973318
329 => 0.00065421202906165
330 => 0.00065418996340581
331 => 0.00066680668281547
401 => 0.0006807233150316
402 => 0.00068597652152242
403 => 0.00069805598018455
404 => 0.00067737033054037
405 => 0.0006930606334151
406 => 0.00070721367936186
407 => 0.00069033983452253
408 => 0.00071359649853193
409 => 0.00071449950209468
410 => 0.00072813378379701
411 => 0.00071431282727938
412 => 0.00070610598741726
413 => 0.00072979882659291
414 => 0.00074126304515257
415 => 0.00073780992922349
416 => 0.00071153154650188
417 => 0.00069623640062505
418 => 0.00065620605365208
419 => 0.00070362372882387
420 => 0.00072671949520749
421 => 0.00071147173404648
422 => 0.00071916181786679
423 => 0.00076111642167239
424 => 0.00077709001844213
425 => 0.00077376762197789
426 => 0.00077432905228904
427 => 0.00078294811516471
428 => 0.00082116978656001
429 => 0.00079826647508854
430 => 0.00081577519853777
501 => 0.00082506176232285
502 => 0.00083368764031225
503 => 0.00081250521020702
504 => 0.00078494717987181
505 => 0.00077621839485723
506 => 0.00070995564469954
507 => 0.0007065063807893
508 => 0.00070457020443308
509 => 0.00069236288638473
510 => 0.00068277127826456
511 => 0.00067514367537382
512 => 0.00065512656759348
513 => 0.00066188175386098
514 => 0.0006299786619542
515 => 0.00065038912958
516 => 0.00059947102456969
517 => 0.00064187713546194
518 => 0.00061879741727255
519 => 0.00063429482730969
520 => 0.00063424075830602
521 => 0.00060570511296932
522 => 0.00058924634826283
523 => 0.00059973451371851
524 => 0.00061097865963861
525 => 0.00061280298448429
526 => 0.00062738131317194
527 => 0.00063144981134853
528 => 0.00061912207193343
529 => 0.00059841586001965
530 => 0.00060322544078881
531 => 0.00058914888226205
601 => 0.00056448025489091
602 => 0.00058219769374178
603 => 0.00058824720634626
604 => 0.00059091901574553
605 => 0.00056666025393701
606 => 0.00055903762429343
607 => 0.00055497940023125
608 => 0.00059528435849866
609 => 0.00059749235509584
610 => 0.00058619593232537
611 => 0.00063725683441866
612 => 0.00062570017968725
613 => 0.00063861179447138
614 => 0.00060278902174565
615 => 0.00060415749990553
616 => 0.00058719842521177
617 => 0.0005966943738345
618 => 0.00058998294341667
619 => 0.00059592719502657
620 => 0.00059949015493249
621 => 0.00061644644680897
622 => 0.0006420707490779
623 => 0.00061391374224512
624 => 0.00060164533115232
625 => 0.00060925658439413
626 => 0.00062952635477631
627 => 0.00066023609449575
628 => 0.00064205531049073
629 => 0.00065012363370243
630 => 0.00065188620338946
701 => 0.00063848036635337
702 => 0.00066073038682916
703 => 0.00067265435356098
704 => 0.00068488587611057
705 => 0.00069550616442091
706 => 0.00068000033702732
707 => 0.00069659379501151
708 => 0.00068322239701589
709 => 0.00067122687070412
710 => 0.00067124506296599
711 => 0.00066372009408394
712 => 0.00064913951866786
713 => 0.00064645063685497
714 => 0.00066043853961394
715 => 0.00067165551296732
716 => 0.00067257939661838
717 => 0.00067878968941571
718 => 0.00068246487672206
719 => 0.00071848670849922
720 => 0.00073297498722821
721 => 0.00075069098020894
722 => 0.00075759235789359
723 => 0.00077836303044355
724 => 0.00076158902544791
725 => 0.00075795986395367
726 => 0.00070757700638268
727 => 0.00071582719648743
728 => 0.00072903654687007
729 => 0.00070779482370518
730 => 0.00072126780788261
731 => 0.00072392766035605
801 => 0.00070707303808028
802 => 0.00071607582008301
803 => 0.0006921671002226
804 => 0.00064259189383587
805 => 0.00066078557820569
806 => 0.00067418225382982
807 => 0.00065506354591599
808 => 0.00068933308985536
809 => 0.00066931352975296
810 => 0.00066296829030886
811 => 0.00063821324899622
812 => 0.00064989667558686
813 => 0.00066569867734126
814 => 0.00065593487743692
815 => 0.00067619622828036
816 => 0.00070489170457956
817 => 0.00072534180983553
818 => 0.00072691171498711
819 => 0.00071376366735817
820 => 0.00073483349759327
821 => 0.00073498696830408
822 => 0.0007112201137261
823 => 0.00069666304763149
824 => 0.00069335565158646
825 => 0.00070161817536012
826 => 0.00071165040456738
827 => 0.00072746843388735
828 => 0.00073702693771985
829 => 0.0007619504462763
830 => 0.00076869403307868
831 => 0.00077610319044674
901 => 0.00078600410958997
902 => 0.00079789270156498
903 => 0.00077188113914157
904 => 0.00077291462700827
905 => 0.00074869302023419
906 => 0.00072280875966631
907 => 0.0007424516869187
908 => 0.0007681322013121
909 => 0.00076224106293581
910 => 0.00076157818952344
911 => 0.00076269295873729
912 => 0.00075825123278816
913 => 0.00073816147093828
914 => 0.00072807251830584
915 => 0.00074108984116801
916 => 0.00074800796893487
917 => 0.00075873738177713
918 => 0.0007574147551739
919 => 0.00078505257040074
920 => 0.00079579178967374
921 => 0.0007930442378266
922 => 0.00079354985349
923 => 0.0008129926970118
924 => 0.00083461713773378
925 => 0.00085487128006619
926 => 0.00087547466358237
927 => 0.00085063648058986
928 => 0.00083802518307243
929 => 0.00085103682297866
930 => 0.00084413266369232
1001 => 0.0008838060108583
1002 => 0.00088655290733803
1003 => 0.00092622338566944
1004 => 0.00096387539347864
1005 => 0.00094022684197947
1006 => 0.00096252636088903
1007 => 0.00098664510869618
1008 => 0.001033174086342
1009 => 0.00101750476358
1010 => 0.001005502307914
1011 => 0.00099416004530502
1012 => 0.0010177614932608
1013 => 0.0010481243790136
1014 => 0.0010546642537926
1015 => 0.0010652613493591
1016 => 0.0010541197991222
1017 => 0.0010675385691811
1018 => 0.0011149127239955
1019 => 0.0011021118091814
1020 => 0.0010839324522957
1021 => 0.0011213297976594
1022 => 0.0011348637515681
1023 => 0.0012298521278857
1024 => 0.0013497788767608
1025 => 0.001300128415245
1026 => 0.0012693087715718
1027 => 0.0012765521188867
1028 => 0.0013203453077992
1029 => 0.0013344102901516
1030 => 0.0012961768196277
1031 => 0.0013096815277778
1101 => 0.0013840937974386
1102 => 0.0014240135926802
1103 => 0.0013697971487984
1104 => 0.0012202161303836
1105 => 0.0010822956001128
1106 => 0.001118878335383
1107 => 0.0011147309884978
1108 => 0.0011946776891287
1109 => 0.0011018065115966
1110 => 0.0011033702240449
1111 => 0.0011849701377797
1112 => 0.001163200679772
1113 => 0.0011279369458209
1114 => 0.0010825530643958
1115 => 0.00099865676208058
1116 => 0.00092434746749855
1117 => 0.0010700851065824
1118 => 0.0010638006345784
1119 => 0.0010546997878101
1120 => 0.0010749527374786
1121 => 0.0011732953121688
1122 => 0.0011710281975183
1123 => 0.0011566059708042
1124 => 0.0011675451026552
1125 => 0.0011260192631175
1126 => 0.0011367214174921
1127 => 0.0010822737527961
1128 => 0.001106886371174
1129 => 0.0011278612856856
1130 => 0.0011320723103127
1201 => 0.0011415599638178
1202 => 0.0010604890034009
1203 => 0.0010968874845097
1204 => 0.0011182681820847
1205 => 0.0010216694126046
1206 => 0.0011163587350008
1207 => 0.0010590777383467
1208 => 0.0010396357077506
1209 => 0.0010658118406555
1210 => 0.0010556109762053
1211 => 0.0010468408719659
1212 => 0.0010419470031108
1213 => 0.0010611678661618
1214 => 0.0010602711899266
1215 => 0.0010288221273664
1216 => 0.00098779810728443
1217 => 0.0010015671149915
1218 => 0.00099656470540638
1219 => 0.00097843532774626
1220 => 0.00099065233933977
1221 => 0.00093685480316999
1222 => 0.00084429893834248
1223 => 0.00090544417771034
1224 => 0.0009030901525079
1225 => 0.00090190314625429
1226 => 0.00094785210370895
1227 => 0.0009434351716725
1228 => 0.00093541839677561
1229 => 0.00097828809338844
1230 => 0.00096264007744597
1231 => 0.0010108635754444
]
'min_raw' => 0.00043289049162687
'max_raw' => 0.0014240135926802
'avg_raw' => 0.00092845204215355
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.000432'
'max' => '$0.001424'
'avg' => '$0.000928'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.00023582757900599
'max_diff' => 0.00094134495552096
'year' => 2029
]
4 => [
'items' => [
101 => 0.0010426266901265
102 => 0.001034570536814
103 => 0.001064443899697
104 => 0.0010018843251196
105 => 0.0010226641063397
106 => 0.0010269467904496
107 => 0.00097775908798673
108 => 0.00094415783637878
109 => 0.00094191701597884
110 => 0.00088365707622836
111 => 0.00091477906578526
112 => 0.00094216512867991
113 => 0.0009290493297977
114 => 0.00092489725969495
115 => 0.00094610928537581
116 => 0.00094775764143993
117 => 0.00091017494849311
118 => 0.00091798958044585
119 => 0.00095057789476326
120 => 0.00091716843853806
121 => 0.00085225932249616
122 => 0.00083616096427904
123 => 0.00083401314654126
124 => 0.00079035312227952
125 => 0.0008372367335524
126 => 0.00081677078082912
127 => 0.0008814224802622
128 => 0.00084449377628004
129 => 0.00084290185365984
130 => 0.00084049542913512
131 => 0.00080291544268015
201 => 0.00081114307138106
202 => 0.00083849296228611
203 => 0.0008482517114796
204 => 0.00084723379398765
205 => 0.00083835893289999
206 => 0.00084242179885928
207 => 0.00082933389200808
208 => 0.0008247122796977
209 => 0.00081012519997151
210 => 0.00078868622255765
211 => 0.00079166744385994
212 => 0.00074919121978948
213 => 0.00072604791853206
214 => 0.00071964215776781
215 => 0.00071107610675869
216 => 0.00072060971602268
217 => 0.00074907088998354
218 => 0.00071474067581185
219 => 0.00065588393159902
220 => 0.00065942132221322
221 => 0.00066736878866264
222 => 0.0006525587375119
223 => 0.00063854226701111
224 => 0.00065072845091935
225 => 0.00062579007250162
226 => 0.00067038247254991
227 => 0.00066917637309736
228 => 0.00068579766225984
301 => 0.00069619129547633
302 => 0.00067223733589103
303 => 0.00066621297983373
304 => 0.00066964472683569
305 => 0.00061292559320422
306 => 0.00068116249897585
307 => 0.00068175261457056
308 => 0.00067669968657906
309 => 0.00071303373232435
310 => 0.00078970990171996
311 => 0.00076086124250157
312 => 0.00074969016969686
313 => 0.00072845395212911
314 => 0.00075674995115631
315 => 0.00075457725991737
316 => 0.00074475152616619
317 => 0.00073880889173532
318 => 0.00074975837788531
319 => 0.00073745212922874
320 => 0.00073524158881693
321 => 0.000721848119013
322 => 0.00071706725965704
323 => 0.00071352770172139
324 => 0.00070963099622401
325 => 0.00071822615755271
326 => 0.00069874839119424
327 => 0.0006752601143949
328 => 0.00067330731832571
329 => 0.00067869915996433
330 => 0.00067631367141464
331 => 0.0006732958975243
401 => 0.00066753414532582
402 => 0.00066582475652889
403 => 0.00067137944084137
404 => 0.00066510852611079
405 => 0.00067436160239016
406 => 0.00067184527763823
407 => 0.00065778929212506
408 => 0.00064027032998329
409 => 0.00064011437447296
410 => 0.00063633994281637
411 => 0.00063153263661211
412 => 0.00063019535400235
413 => 0.00064970216450063
414 => 0.00069008067844236
415 => 0.00068215340997965
416 => 0.00068788167386311
417 => 0.00071605906269857
418 => 0.00072501580728572
419 => 0.00071865852212989
420 => 0.00070995627810831
421 => 0.00071033913268062
422 => 0.00074007733485077
423 => 0.0007419320700425
424 => 0.00074661838751176
425 => 0.00075264162981291
426 => 0.00071968430633901
427 => 0.0007087868457088
428 => 0.00070362302429411
429 => 0.00068772045298726
430 => 0.00070487001275828
501 => 0.00069487769869707
502 => 0.00069622600324998
503 => 0.0006953479181411
504 => 0.0006958274119864
505 => 0.0006703700080653
506 => 0.00067964534805239
507 => 0.00066422329634207
508 => 0.00064357490030851
509 => 0.00064350567964474
510 => 0.00064855934532139
511 => 0.00064555322722696
512 => 0.00063746384072921
513 => 0.00063861289990039
514 => 0.00062854593246399
515 => 0.0006398352120155
516 => 0.00064015894815805
517 => 0.00063581196059951
518 => 0.00065320465336897
519 => 0.00066033045378771
520 => 0.00065746917345518
521 => 0.00066012969873199
522 => 0.00068248282377375
523 => 0.00068612735849078
524 => 0.00068774602006763
525 => 0.00068557722798621
526 => 0.00066053827282354
527 => 0.00066164885695887
528 => 0.00065350012745802
529 => 0.00064661530972176
530 => 0.0006468906663251
531 => 0.00065043035760519
601 => 0.00066588839702551
602 => 0.00069841892968437
603 => 0.00069965343961926
604 => 0.00070114970167355
605 => 0.00069506365193771
606 => 0.00069322804110173
607 => 0.00069564968560574
608 => 0.00070786644329826
609 => 0.00073929126090077
610 => 0.00072818363156705
611 => 0.00071915295601818
612 => 0.00072707529312718
613 => 0.00072585571142658
614 => 0.00071556121452987
615 => 0.00071527228228886
616 => 0.00069551385139432
617 => 0.00068820960937032
618 => 0.00068210563802202
619 => 0.00067544026065788
620 => 0.00067148880153095
621 => 0.00067756003865597
622 => 0.00067894860241923
623 => 0.0006656737363383
624 => 0.00066386442114378
625 => 0.00067470496334336
626 => 0.00066993444489747
627 => 0.00067484104142223
628 => 0.00067597941390398
629 => 0.00067579610971548
630 => 0.00067081514056742
701 => 0.00067398986176775
702 => 0.00066648069969902
703 => 0.00065831561378895
704 => 0.00065310679768116
705 => 0.00064856141477791
706 => 0.00065108345739184
707 => 0.00064209283597997
708 => 0.00063921655524486
709 => 0.00067291433765857
710 => 0.00069780725183978
711 => 0.00069744529900891
712 => 0.0006952420042377
713 => 0.00069196835512969
714 => 0.00070762695547571
715 => 0.00070217181221875
716 => 0.00070614088473066
717 => 0.00070715118026639
718 => 0.00071020904057149
719 => 0.00071130196279859
720 => 0.000707998392745
721 => 0.00069691120814806
722 => 0.00066928299827034
723 => 0.00065642199199134
724 => 0.00065217764570227
725 => 0.00065233191962872
726 => 0.00064807635602818
727 => 0.00064932981022952
728 => 0.00064764045581008
729 => 0.00064444122723838
730 => 0.00065088591404272
731 => 0.00065162860416051
801 => 0.00065012433725211
802 => 0.00065047864656429
803 => 0.00063802395904348
804 => 0.00063897086188553
805 => 0.00063369838653442
806 => 0.00063270986096672
807 => 0.00061938150240605
808 => 0.00059576838323935
809 => 0.00060885234343864
810 => 0.0005930487594011
811 => 0.00058706370266272
812 => 0.00061539603039495
813 => 0.00061255225050708
814 => 0.00060768493550045
815 => 0.00060048516216831
816 => 0.00059781469620453
817 => 0.00058158979037538
818 => 0.00058063113638248
819 => 0.00058867263782072
820 => 0.00058496176159814
821 => 0.00057975028596292
822 => 0.00056087484949095
823 => 0.00053965260945421
824 => 0.00054029317548267
825 => 0.00054704357518455
826 => 0.00056667127273317
827 => 0.00055900239173831
828 => 0.00055343853058627
829 => 0.00055239658664154
830 => 0.00056543869656718
831 => 0.00058389601451847
901 => 0.000592555775142
902 => 0.00058397421536493
903 => 0.00057411618155701
904 => 0.00057471619439717
905 => 0.00057870781101225
906 => 0.00057912727348007
907 => 0.00057271070689337
908 => 0.00057451693280227
909 => 0.00057177311048189
910 => 0.0005549342779664
911 => 0.0005546297168827
912 => 0.00055049719582055
913 => 0.00055037206472515
914 => 0.00054334161549274
915 => 0.00054235800704592
916 => 0.00052839862337719
917 => 0.00053758673198086
918 => 0.00053142383112687
919 => 0.00052213488585857
920 => 0.0005205334681931
921 => 0.0005204853276443
922 => 0.00053002299746469
923 => 0.0005374752787559
924 => 0.00053153103742579
925 => 0.0005301776488992
926 => 0.00054462829761006
927 => 0.00054278932084101
928 => 0.00054119677881915
929 => 0.00058224336413757
930 => 0.00054975178895305
1001 => 0.00053558360761832
1002 => 0.00051804779275193
1003 => 0.00052375754249568
1004 => 0.00052496067066036
1005 => 0.00048279019697491
1006 => 0.00046568164105272
1007 => 0.00045981062938256
1008 => 0.00045643177916245
1009 => 0.00045797156363668
1010 => 0.00044257185667325
1011 => 0.00045292071444032
1012 => 0.00043958586991482
1013 => 0.00043735023983478
1014 => 0.00046119459371663
1015 => 0.0004645123962626
1016 => 0.00045035761984106
1017 => 0.00045944727775383
1018 => 0.00045615124143896
1019 => 0.00043981445755088
1020 => 0.00043919051257161
1021 => 0.00043099328868229
1022 => 0.00041816622059083
1023 => 0.00041230390627684
1024 => 0.00040925076208317
1025 => 0.00041051054888207
1026 => 0.00040987356212644
1027 => 0.00040571679267146
1028 => 0.00041011182328586
1029 => 0.00039888433621811
1030 => 0.00039441346040172
1031 => 0.00039239406951899
1101 => 0.00038242902851632
1102 => 0.00039828784022542
1103 => 0.00040141222591615
1104 => 0.00040454276761187
1105 => 0.00043179199576152
1106 => 0.00043043070132869
1107 => 0.00044273614002426
1108 => 0.0004422579733048
1109 => 0.00043874826285393
1110 => 0.00042394137178107
1111 => 0.00042984313465525
1112 => 0.00041167842586609
1113 => 0.00042528866077107
1114 => 0.00041907751793744
1115 => 0.00042318866713117
1116 => 0.00041579645019346
1117 => 0.00041988760826394
1118 => 0.0004021531336705
1119 => 0.00038559293082592
1120 => 0.00039225723987304
1121 => 0.00039950210596343
1122 => 0.00041521082160496
1123 => 0.00040585484016296
1124 => 0.00040921960487833
1125 => 0.00039794820633665
1126 => 0.00037469209162933
1127 => 0.00037482371871297
1128 => 0.00037124627212725
1129 => 0.00036815483596143
1130 => 0.00040692948717846
1201 => 0.0004021072463631
1202 => 0.00039442363674309
1203 => 0.00040470845355398
1204 => 0.00040742792236077
1205 => 0.00040750534181458
1206 => 0.00041500887867026
1207 => 0.00041901351763522
1208 => 0.00041971935260989
1209 => 0.00043152632997695
1210 => 0.00043548387305259
1211 => 0.00045178443288869
1212 => 0.0004186737519979
1213 => 0.00041799185931404
1214 => 0.00040485318201803
1215 => 0.00039652042516264
1216 => 0.00040542373300891
1217 => 0.00041331084833798
1218 => 0.00040509825667656
1219 => 0.00040617064777027
1220 => 0.0003951459144582
1221 => 0.00039908673785535
1222 => 0.00040248110585121
1223 => 0.00040060693535562
1224 => 0.00039780121141285
1225 => 0.00041266419482448
1226 => 0.00041182556705189
1227 => 0.00042566631890331
1228 => 0.00043645617473315
1229 => 0.00045579352529766
1230 => 0.00043561399190471
1231 => 0.00043487856950149
]
'min_raw' => 0.00036815483596143
'max_raw' => 0.001064443899697
'avg_raw' => 0.0007162993678292
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.000368'
'max' => '$0.001064'
'avg' => '$0.000716'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -6.4735655665432E-5
'max_diff' => -0.00035956969298327
'year' => 2030
]
5 => [
'items' => [
101 => 0.00044206744145843
102 => 0.00043548277247374
103 => 0.00043964405597702
104 => 0.00045512307819209
105 => 0.00045545012553997
106 => 0.00044997166108626
107 => 0.00044963829602637
108 => 0.00045069049505254
109 => 0.00045685325761365
110 => 0.00045469979901223
111 => 0.00045719183582469
112 => 0.0004603081660181
113 => 0.00047319862899465
114 => 0.00047630647597784
115 => 0.0004687560190426
116 => 0.00046943774076497
117 => 0.00046661366260652
118 => 0.00046388563849104
119 => 0.0004700178383067
120 => 0.0004812245539985
121 => 0.00048115483760181
122 => 0.00048375457781488
123 => 0.00048537419443021
124 => 0.00047842161428538
125 => 0.00047389574026455
126 => 0.00047563124835298
127 => 0.00047840636358083
128 => 0.00047473131588666
129 => 0.0004520472190705
130 => 0.00045892812497881
131 => 0.00045778280577656
201 => 0.00045615173195698
202 => 0.00046307053605625
203 => 0.00046240320052234
204 => 0.00044241391041997
205 => 0.00044369355991723
206 => 0.00044249173014423
207 => 0.00044637508801203
208 => 0.00043527305840479
209 => 0.00043868796793867
210 => 0.00044082976718553
211 => 0.000442091303396
212 => 0.00044664883723173
213 => 0.00044611406323896
214 => 0.00044661559492948
215 => 0.00045337321446353
216 => 0.00048755093513178
217 => 0.00048941115305886
218 => 0.00048025075964316
219 => 0.00048391015613196
220 => 0.00047688491509551
221 => 0.0004816010064683
222 => 0.00048482763640984
223 => 0.0004702471161493
224 => 0.00046938375236626
225 => 0.00046232951566103
226 => 0.00046612006289403
227 => 0.00046008902969633
228 => 0.00046156883428646
301 => 0.00045743117164542
302 => 0.00046487814059889
303 => 0.00047320500903085
304 => 0.00047530870483476
305 => 0.00046977478687266
306 => 0.00046576786556513
307 => 0.00045873303171104
308 => 0.00047043211719188
309 => 0.00047385328630965
310 => 0.00047041414724695
311 => 0.00046961722357944
312 => 0.00046810705466954
313 => 0.00046993761305271
314 => 0.00047383465388791
315 => 0.00047199688139707
316 => 0.00047321076250465
317 => 0.00046858469947132
318 => 0.0004784239158787
319 => 0.00049405095947001
320 => 0.00049410120297043
321 => 0.00049226342057332
322 => 0.00049151143961199
323 => 0.00049339711587739
324 => 0.00049442001789688
325 => 0.00050051794916529
326 => 0.0005070612723686
327 => 0.00053759610668284
328 => 0.00052902204739452
329 => 0.00055611436892354
330 => 0.00057754087775533
331 => 0.00058396575088631
401 => 0.00057805516991945
402 => 0.00055783539171513
403 => 0.00055684331293288
404 => 0.0005870601981403
405 => 0.00057852254404818
406 => 0.00057750701726052
407 => 0.00056670352799933
408 => 0.00057308972819086
409 => 0.00057169297252907
410 => 0.0005694881253853
411 => 0.0005816725504842
412 => 0.00060448070655819
413 => 0.00060092584154053
414 => 0.00059827229971028
415 => 0.00058664525184456
416 => 0.00059364733165488
417 => 0.00059115402515043
418 => 0.00060186685218496
419 => 0.00059552081076788
420 => 0.00057845786292142
421 => 0.00058117519360618
422 => 0.00058076447453969
423 => 0.00058921704382421
424 => 0.00058667979233066
425 => 0.00058026903546414
426 => 0.00060440275076029
427 => 0.00060283564152774
428 => 0.00060505744412846
429 => 0.00060603555034482
430 => 0.00062072531756182
501 => 0.00062674324517051
502 => 0.00062810942009633
503 => 0.00063382598588136
504 => 0.00062796718673193
505 => 0.00065140656058264
506 => 0.00066699237646799
507 => 0.00068509610365756
508 => 0.00071155051490467
509 => 0.00072149761825057
510 => 0.0007197007630642
511 => 0.00073975819575173
512 => 0.00077580095643955
513 => 0.00072698603550118
514 => 0.00077838826578117
515 => 0.00076211491314181
516 => 0.000723531086779
517 => 0.00072104674323467
518 => 0.000747176158415
519 => 0.00080512868642196
520 => 0.00079061223544835
521 => 0.00080515243013538
522 => 0.00078819052068504
523 => 0.00078734821891464
524 => 0.00080432862805307
525 => 0.00084400427955892
526 => 0.00082515586474805
527 => 0.00079813204029574
528 => 0.00081808601173404
529 => 0.0008008000350213
530 => 0.00076184989144726
531 => 0.00079060113499187
601 => 0.00077137599722186
602 => 0.00077698691448769
603 => 0.00081739529455682
604 => 0.00081253325135959
605 => 0.00081882518546988
606 => 0.0008077200864538
607 => 0.0007973461728594
608 => 0.00077798249275851
609 => 0.00077224986169853
610 => 0.00077383415468505
611 => 0.0007722490766016
612 => 0.00076141527554656
613 => 0.00075907571724022
614 => 0.00075517635089792
615 => 0.00075638492757813
616 => 0.00074905297805474
617 => 0.00076288988166345
618 => 0.0007654581329036
619 => 0.00077552747744802
620 => 0.00077657291020239
621 => 0.00080461589143043
622 => 0.00078917028861318
623 => 0.00079953253249218
624 => 0.00079860563586642
625 => 0.00072436731529268
626 => 0.00073459670085749
627 => 0.00075051041463831
628 => 0.00074334130815058
629 => 0.00073320586888949
630 => 0.00072502095825829
701 => 0.00071261998170194
702 => 0.00073007411806534
703 => 0.00075302445134275
704 => 0.00077715496852812
705 => 0.00080614620383222
706 => 0.00079967569760752
707 => 0.00077661299754999
708 => 0.00077764757342726
709 => 0.00078404291440993
710 => 0.00077576036675937
711 => 0.00077331768176269
712 => 0.00078370732700136
713 => 0.00078377887477807
714 => 0.00077424880272679
715 => 0.00076365787162656
716 => 0.00076361349523854
717 => 0.00076172894134551
718 => 0.00078852577863605
719 => 0.00080326132968002
720 => 0.00080495073685968
721 => 0.00080314761911633
722 => 0.00080384156757256
723 => 0.00079526727509579
724 => 0.00081486556507024
725 => 0.00083285089402079
726 => 0.00082803044166153
727 => 0.00082080389830733
728 => 0.00081504760844821
729 => 0.00082667444270825
730 => 0.00082615671808098
731 => 0.00083269380786246
801 => 0.00083239724770992
802 => 0.00083019907028879
803 => 0.00082803052016537
804 => 0.00083662857628292
805 => 0.00083415247420163
806 => 0.00083167252604988
807 => 0.00082669861037048
808 => 0.0008273746481193
809 => 0.00082014935252969
810 => 0.00081680660018291
811 => 0.00076653962527162
812 => 0.00075310664705453
813 => 0.00075733293545512
814 => 0.00075872433933212
815 => 0.00075287828999721
816 => 0.00076126002301661
817 => 0.00075995373880399
818 => 0.00076503572652459
819 => 0.00076186072123102
820 => 0.00076199102455575
821 => 0.00077132803814166
822 => 0.00077403861290814
823 => 0.00077265999270488
824 => 0.00077362553103891
825 => 0.00079587595441824
826 => 0.00079271265574219
827 => 0.00079103221636741
828 => 0.00079149770955855
829 => 0.00079718316978643
830 => 0.00079877478823562
831 => 0.00079203098902537
901 => 0.00079521140371836
902 => 0.00080875320582639
903 => 0.00081349207016458
904 => 0.00082861625034816
905 => 0.00082219122979531
906 => 0.00083398463308844
907 => 0.00087023353414407
908 => 0.00089919166454047
909 => 0.00087256057108259
910 => 0.00092573848975991
911 => 0.00096714512736958
912 => 0.00096555587165175
913 => 0.00095833566663172
914 => 0.00091119531056554
915 => 0.00086781605209032
916 => 0.00090410464378545
917 => 0.00090419715086849
918 => 0.00090107992865912
919 => 0.00088171912923696
920 => 0.0009004062148062
921 => 0.00090188952779716
922 => 0.00090105926696698
923 => 0.0008862153874438
924 => 0.00086355152701941
925 => 0.00086797999109672
926 => 0.00087523390559358
927 => 0.00086150073212594
928 => 0.00085711215108071
929 => 0.00086527135820551
930 => 0.0008915620235999
1001 => 0.00088659192559854
1002 => 0.00088646213625399
1003 => 0.00090772632315334
1004 => 0.00089250575443215
1005 => 0.00086803584821064
1006 => 0.0008618568741713
1007 => 0.0008399256789873
1008 => 0.00085507363361713
1009 => 0.00085561878153687
1010 => 0.00084732240159446
1011 => 0.00086870905371901
1012 => 0.00086851197195464
1013 => 0.00088881541516381
1014 => 0.00092762797295473
1015 => 0.00091614918976598
1016 => 0.00090280061380553
1017 => 0.00090425197412829
1018 => 0.00092016981460651
1019 => 0.00091054552488443
1020 => 0.00091400648657142
1021 => 0.00092016457602649
1022 => 0.00092387990429149
1023 => 0.00090371739556661
1024 => 0.00089901655029857
1025 => 0.00088940027065264
1026 => 0.00088689156278938
1027 => 0.00089472382191073
1028 => 0.00089266029835005
1029 => 0.00085557296396514
1030 => 0.00085169713116993
1031 => 0.00085181599742835
1101 => 0.000842070031579
1102 => 0.00082720509435894
1103 => 0.00086626926183399
1104 => 0.00086313186248307
1105 => 0.00085966841641507
1106 => 0.00086009266879625
1107 => 0.00087704909988969
1108 => 0.0008672135135352
1109 => 0.00089336303187952
1110 => 0.0008879874770344
1111 => 0.00088247405949133
1112 => 0.00088171193724407
1113 => 0.00087958974187267
1114 => 0.00087231194431002
1115 => 0.00086352356642528
1116 => 0.00085772071810952
1117 => 0.00079120202351042
1118 => 0.00080354750630657
1119 => 0.00081774985893737
1120 => 0.00082265245415317
1121 => 0.00081426622578729
1122 => 0.00087264308372057
1123 => 0.00088330909819838
1124 => 0.00085100104461818
1125 => 0.00084495752692246
1126 => 0.00087303929573456
1127 => 0.00085610255628424
1128 => 0.00086372916902167
1129 => 0.00084724460381748
1130 => 0.00088073996764803
1201 => 0.00088048478909573
1202 => 0.00086745433603854
1203 => 0.00087846758573378
1204 => 0.00087655376257647
1205 => 0.0008618424131675
1206 => 0.00088120634366446
1207 => 0.0008812159479324
1208 => 0.00086867442017133
1209 => 0.00085402866143987
1210 => 0.00085141034569606
1211 => 0.00084943779650433
1212 => 0.00086324404283997
1213 => 0.00087562268013349
1214 => 0.00089865625521231
1215 => 0.00090444744325136
1216 => 0.00092705083570903
1217 => 0.00091359161603969
1218 => 0.00091955791379304
1219 => 0.00092603517398863
1220 => 0.00092914061071976
1221 => 0.00092408046821331
1222 => 0.00095919284062758
1223 => 0.00096215740067464
1224 => 0.00096315139201507
1225 => 0.00095131169759451
1226 => 0.00096182811735495
1227 => 0.00095690783281626
1228 => 0.00096970904629152
1229 => 0.00097171644001854
1230 => 0.00097001624894686
1231 => 0.00097065342740037
]
'min_raw' => 0.00043527305840479
'max_raw' => 0.00097171644001854
'avg_raw' => 0.00070349474921167
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.000435'
'max' => '$0.000971'
'avg' => '$0.0007034'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 6.7118222443357E-5
'max_diff' => -9.2727459678434E-5
'year' => 2031
]
6 => [
'items' => [
101 => 0.00094069121179174
102 => 0.00093913751284915
103 => 0.00091795271752155
104 => 0.00092658567820765
105 => 0.00091044677199355
106 => 0.0009155645854032
107 => 0.00091782046878985
108 => 0.00091664212332892
109 => 0.00092707377285205
110 => 0.00091820473971219
111 => 0.00089479790305204
112 => 0.0008713846892149
113 => 0.00087109075538717
114 => 0.0008649264694614
115 => 0.00086047081978235
116 => 0.0008613291359832
117 => 0.00086435395422694
118 => 0.00086029501184721
119 => 0.00086116119299753
120 => 0.0008755455714276
121 => 0.00087843025593706
122 => 0.00086862697085492
123 => 0.00082926536664286
124 => 0.00081960593023811
125 => 0.0008265489415709
126 => 0.00082323062934102
127 => 0.00066441136839449
128 => 0.00070172359795448
129 => 0.00067955393815352
130 => 0.00068977073736681
131 => 0.00066714125551561
201 => 0.00067794123036776
202 => 0.0006759468693645
203 => 0.00073594383034783
204 => 0.0007350070603252
205 => 0.00073545544256226
206 => 0.0007140529901333
207 => 0.00074814767799255
208 => 0.00076494394723733
209 => 0.00076183540481835
210 => 0.00076261775797429
211 => 0.00074917433869524
212 => 0.00073558560424674
213 => 0.00072051360645213
214 => 0.00074851551539929
215 => 0.0007454021811329
216 => 0.0007525430497977
217 => 0.00077070428936773
218 => 0.00077337860088226
219 => 0.00077697290267797
220 => 0.00077568460134403
221 => 0.00080637716579373
222 => 0.00080266009372281
223 => 0.0008116171679391
224 => 0.00079319178670133
225 => 0.00077234171887754
226 => 0.00077630463513077
227 => 0.00077592297442783
228 => 0.00077106399562957
229 => 0.00076667752683011
301 => 0.00075937529215895
302 => 0.0007824806431859
303 => 0.00078154260812954
304 => 0.00079672830534568
305 => 0.00079404408585673
306 => 0.00077611821116962
307 => 0.00077675843729096
308 => 0.00078106426563915
309 => 0.00079596678671531
310 => 0.00080039086961173
311 => 0.00079834145814489
312 => 0.00080319226307375
313 => 0.00080702614150627
314 => 0.00080367373917744
315 => 0.00085113668656279
316 => 0.00083142676170324
317 => 0.00084103324193901
318 => 0.00084332433087057
319 => 0.00083745575474878
320 => 0.00083872843877164
321 => 0.00084065620828064
322 => 0.00085236124724328
323 => 0.00088307865636158
324 => 0.0008966831877596
325 => 0.00093761309170629
326 => 0.00089555352081121
327 => 0.0008930578799341
328 => 0.00090043059159959
329 => 0.00092446077808664
330 => 0.00094393498719374
331 => 0.00095039570584865
401 => 0.00095124959647373
402 => 0.00096337033417079
403 => 0.00097031771498036
404 => 0.00096189855780731
405 => 0.00095476420362566
406 => 0.0009292098324956
407 => 0.00093216782053614
408 => 0.00095254542483991
409 => 0.00098132999115389
410 => 0.001006030143575
411 => 0.00099738101108433
412 => 0.001063367786652
413 => 0.0010699101059177
414 => 0.0010690061689337
415 => 0.0010839105458486
416 => 0.001054328392896
417 => 0.0010416814493815
418 => 0.00095630673197809
419 => 0.00098029354517899
420 => 0.0010151597868626
421 => 0.0010105451090341
422 => 0.00098522431234613
423 => 0.0010060109354801
424 => 0.00099913822781421
425 => 0.00099371743812922
426 => 0.001018551126548
427 => 0.00099124546601986
428 => 0.0010148873920111
429 => 0.00098456637738291
430 => 0.000997420519593
501 => 0.00099012388678965
502 => 0.0009948457024551
503 => 0.00096724206455744
504 => 0.00098213631752659
505 => 0.00096662241466617
506 => 0.00096661505905624
507 => 0.00096627258879074
508 => 0.00098452462670685
509 => 0.00098511982500802
510 => 0.00097163154141072
511 => 0.00096968766901776
512 => 0.0009768751840793
513 => 0.00096846048635541
514 => 0.00097239767045894
515 => 0.00096857973965103
516 => 0.00096772024300825
517 => 0.00096087162752723
518 => 0.0009579210556714
519 => 0.00095907805092294
520 => 0.0009551286296575
521 => 0.00095274896048826
522 => 0.00096579921269757
523 => 0.00095882698938781
524 => 0.00096473061947959
525 => 0.00095800268789249
526 => 0.00093468074579132
527 => 0.00092126805026388
528 => 0.00087721506357996
529 => 0.00088970843595596
530 => 0.00089799155476657
531 => 0.00089525398404908
601 => 0.00090113534524949
602 => 0.00090149641306076
603 => 0.00089958432258113
604 => 0.00089737036675967
605 => 0.00089629273550522
606 => 0.00090432451598916
607 => 0.00090898723489739
608 => 0.00089882287655305
609 => 0.00089644150960746
610 => 0.00090671823708319
611 => 0.00091298703490671
612 => 0.00095927231590238
613 => 0.00095584335278673
614 => 0.00096444937730698
615 => 0.00096348047101621
616 => 0.00097250095576065
617 => 0.00098724563597652
618 => 0.00095726557842023
619 => 0.00096246907977961
620 => 0.00096119330141269
621 => 0.00097512191509572
622 => 0.00097516539870728
623 => 0.00096681449901845
624 => 0.00097134165721764
625 => 0.00096881472170694
626 => 0.00097338123571059
627 => 0.00095579755689378
628 => 0.00097721257965182
629 => 0.00098935351760205
630 => 0.00098952209453726
701 => 0.00099527680276923
702 => 0.0010011239196231
703 => 0.0010123469512476
704 => 0.0010008109153624
705 => 0.0009800587098154
706 => 0.00098155695202668
707 => 0.0009693899415074
708 => 0.00096959447115238
709 => 0.0009685026758782
710 => 0.00097177923568251
711 => 0.00095651657751389
712 => 0.0009600986928795
713 => 0.00095508371039081
714 => 0.00096245817818709
715 => 0.00095452446988149
716 => 0.00096119268619373
717 => 0.00096407046729922
718 => 0.00097468954153268
719 => 0.0009529560239831
720 => 0.00090863991046971
721 => 0.00091795569481116
722 => 0.00090417691803108
723 => 0.00090545219628158
724 => 0.00090802846130662
725 => 0.00089967794345901
726 => 0.00090127095910927
727 => 0.00090121404538037
728 => 0.00090072359361194
729 => 0.00089855130140748
730 => 0.00089540104793609
731 => 0.00090795068816921
801 => 0.00091008311659061
802 => 0.00091482324081938
803 => 0.00092892663526723
804 => 0.00092751737358094
805 => 0.00092981593786098
806 => 0.00092479818494355
807 => 0.00090568495544816
808 => 0.00090672289576628
809 => 0.00089377976336744
810 => 0.00091449225582381
811 => 0.0009095872642186
812 => 0.00090642498422186
813 => 0.00090556212682644
814 => 0.00091970048086122
815 => 0.00092393089797997
816 => 0.0009212947859243
817 => 0.00091588804319043
818 => 0.00092627058759945
819 => 0.00092904851847892
820 => 0.00092967039475668
821 => 0.00094806627279403
822 => 0.00093069851998626
823 => 0.00093487911070771
824 => 0.00096749488611419
825 => 0.00093791687848986
826 => 0.00095358500879675
827 => 0.00095281813535124
828 => 0.00096083342063562
829 => 0.00095216064800927
830 => 0.0009522681574202
831 => 0.00095938518775028
901 => 0.00094939060221487
902 => 0.00094691580228213
903 => 0.0009434968838999
904 => 0.00095096196710887
905 => 0.00095543694687597
906 => 0.00099150199728835
907 => 0.0010148016646209
908 => 0.0010137901646135
909 => 0.0010230333812325
910 => 0.0010188692274874
911 => 0.0010054220765965
912 => 0.001028374723462
913 => 0.0010211115456142
914 => 0.0010217103131712
915 => 0.0010216880270128
916 => 0.0010265174053236
917 => 0.0010230953481844
918 => 0.0010163501222961
919 => 0.0010208279180273
920 => 0.0010341253705075
921 => 0.001075401071022
922 => 0.0010984994998601
923 => 0.0010740105166027
924 => 0.0010909026893331
925 => 0.0010807734049914
926 => 0.0010789326127064
927 => 0.0010895421455029
928 => 0.0011001702488821
929 => 0.0010994932846434
930 => 0.0010917778273492
1001 => 0.0010874195612963
1002 => 0.0011204218119756
1003 => 0.0011447373080975
1004 => 0.0011430791542752
1005 => 0.0011503977059865
1006 => 0.0011718852001654
1007 => 0.0011738497473431
1008 => 0.0011736022595533
1009 => 0.0011687329243941
1010 => 0.001189890152917
1011 => 0.0012075398851767
1012 => 0.0011676058139934
1013 => 0.0011828121855246
1014 => 0.0011896388156237
1015 => 0.001199662333979
1016 => 0.0012165736895811
1017 => 0.0012349439072806
1018 => 0.0012375416574825
1019 => 0.0012356984294004
1020 => 0.0012235827770097
1021 => 0.0012436836884187
1022 => 0.0012554583308977
1023 => 0.0012624698610361
1024 => 0.0012802499348596
1025 => 0.0011896809745671
1026 => 0.0011255717629027
1027 => 0.0011155601837531
1028 => 0.0011359191236398
1029 => 0.0011412876137284
1030 => 0.0011391235821052
1031 => 0.0010669628358224
1101 => 0.0011151802723579
1102 => 0.001167058179833
1103 => 0.0011690510215385
1104 => 0.0011950221867364
1105 => 0.0012034794627188
1106 => 0.0012243896548216
1107 => 0.0012230817166123
1108 => 0.0012281730156355
1109 => 0.0012270026141591
1110 => 0.001265734341869
1111 => 0.0013084611892502
1112 => 0.0013069816943885
1113 => 0.0013008392045563
1114 => 0.0013099618494072
1115 => 0.0013540605347919
1116 => 0.0013500006345087
1117 => 0.0013539444818123
1118 => 0.0014059393171739
1119 => 0.0014735399993229
1120 => 0.0014421326954672
1121 => 0.0015102775076259
1122 => 0.0015531710546786
1123 => 0.0016273510090306
1124 => 0.0016180633134018
1125 => 0.0016469410252734
1126 => 0.0016014363998256
1127 => 0.0014969485817952
1128 => 0.0014804129846287
1129 => 0.0015135176689042
1130 => 0.0015949023048877
1201 => 0.0015109545770937
1202 => 0.0015279370930927
1203 => 0.0015230461273425
1204 => 0.001522785508563
1205 => 0.0015327322673656
1206 => 0.0015183039749343
1207 => 0.0014595205159689
1208 => 0.0014864606287997
1209 => 0.0014760577574653
1210 => 0.0014876005187962
1211 => 0.0015498920411026
1212 => 0.0015223514742465
1213 => 0.0014933397242776
1214 => 0.0015297268969613
1215 => 0.0015760602717768
1216 => 0.0015731608124499
1217 => 0.0015675346494758
1218 => 0.0015992490355846
1219 => 0.001651631909993
1220 => 0.0016657907904541
1221 => 0.001676242586545
1222 => 0.0016776837126414
1223 => 0.001692528207089
1224 => 0.0016127056191497
1225 => 0.0017393861161989
1226 => 0.0017612603385612
1227 => 0.0017571488913507
1228 => 0.0017814611688984
1229 => 0.0017743078801009
1230 => 0.00176394388695
1231 => 0.0018024840182328
]
'min_raw' => 0.00066441136839449
'max_raw' => 0.0018024840182328
'avg_raw' => 0.0012334476933136
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.000664'
'max' => '$0.0018024'
'avg' => '$0.001233'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0002291383099897
'max_diff' => 0.00083076757821427
'year' => 2032
]
7 => [
'items' => [
101 => 0.0017583008677453
102 => 0.0016955884481321
103 => 0.0016611831744214
104 => 0.001706490814238
105 => 0.0017341586088553
106 => 0.001752445261095
107 => 0.0017579787910137
108 => 0.0016189020194256
109 => 0.001543947353091
110 => 0.0015919924348545
111 => 0.0016506107505004
112 => 0.0016123799914465
113 => 0.0016138785648211
114 => 0.001559371549277
115 => 0.0016554334119086
116 => 0.0016414380065306
117 => 0.0017140461943891
118 => 0.0016967176676395
119 => 0.0017559268262045
120 => 0.0017403350704393
121 => 0.0018050555768971
122 => 0.0018308743391609
123 => 0.0018742280593712
124 => 0.0019061192324393
125 => 0.0019248463392458
126 => 0.0019237220339968
127 => 0.0019979281609718
128 => 0.0019541714004592
129 => 0.0018992025965788
130 => 0.001898208384341
131 => 0.0019266775067846
201 => 0.0019863409773041
202 => 0.0020018108471417
203 => 0.0020104563939424
204 => 0.0019972154380634
205 => 0.0019497206106023
206 => 0.0019292125849089
207 => 0.0019466860169744
208 => 0.0019253175110674
209 => 0.0019622055472067
210 => 0.0020128606996854
211 => 0.0020024006110107
212 => 0.002037367119186
213 => 0.0020735537765634
214 => 0.0021253023218576
215 => 0.0021388313078406
216 => 0.0021611942072093
217 => 0.0021842129764893
218 => 0.0021916059848089
219 => 0.0022057215316066
220 => 0.0022056471357074
221 => 0.0022481852860683
222 => 0.0022951061832132
223 => 0.0023128177356641
224 => 0.0023535444739044
225 => 0.0022838013619031
226 => 0.0023367023135072
227 => 0.0023844202960508
228 => 0.0023275289500808
301 => 0.0024059404165169
302 => 0.0024089849560744
303 => 0.002454953888749
304 => 0.0024083555689014
305 => 0.002380685635323
306 => 0.0024605676967849
307 => 0.002499220110065
308 => 0.0024875776886213
309 => 0.0023989782865773
310 => 0.0023474096343806
311 => 0.0022124445247316
312 => 0.0023723165271696
313 => 0.0024501855160269
314 => 0.0023987766247079
315 => 0.0024247042792126
316 => 0.0025661571551201
317 => 0.0026200132518701
318 => 0.0026088115602287
319 => 0.0026107044617205
320 => 0.0026397642339696
321 => 0.0027686312676307
322 => 0.0026914111539465
323 => 0.0027504430374756
324 => 0.0027817533356442
325 => 0.002810836085525
326 => 0.0027394180435152
327 => 0.0026465042201998
328 => 0.0026170745120989
329 => 0.0023936650236247
330 => 0.0023820355895314
331 => 0.0023755076357669
401 => 0.0023343498106792
402 => 0.0023020110342373
403 => 0.002276294038549
404 => 0.0022088049621177
405 => 0.0022315805442506
406 => 0.0021240170424842
407 => 0.0021928323590979
408 => 0.0020211584130671
409 => 0.0021641335766404
410 => 0.0020863186953904
411 => 0.0021385692953253
412 => 0.0021383869979044
413 => 0.0020421770773566
414 => 0.0019866852030344
415 => 0.0020220467851286
416 => 0.0020599572081394
417 => 0.0020661080467269
418 => 0.0021152598997237
419 => 0.0021289771253795
420 => 0.0020874132912463
421 => 0.0020176008521174
422 => 0.0020338166894748
423 => 0.0019863565896079
424 => 0.0019031845901176
425 => 0.0019629201721953
426 => 0.0019833165263048
427 => 0.0019923247182342
428 => 0.0019105346091042
429 => 0.0018848343810658
430 => 0.001871151795304
501 => 0.0020070427761049
502 => 0.0020144871907897
503 => 0.001976400512728
504 => 0.0021485559090939
505 => 0.0021095918408071
506 => 0.0021531242515119
507 => 0.002032345272201
508 => 0.0020369591918611
509 => 0.0019797804874863
510 => 0.0020117967412538
511 => 0.001989168685023
512 => 0.0020092101443402
513 => 0.0020212229124209
514 => 0.0020783922343329
515 => 0.0021647863584643
516 => 0.0020698530440682
517 => 0.0020284892395157
518 => 0.0020541511112212
519 => 0.0021224920572548
520 => 0.0022260320888045
521 => 0.0021647343061898
522 => 0.0021919372212103
523 => 0.0021978798479689
524 => 0.002152681132436
525 => 0.002227698629917
526 => 0.0022679011162581
527 => 0.0023091405485117
528 => 0.0023449475920348
529 => 0.002292668612395
530 => 0.002348614614507
531 => 0.0023035320126036
601 => 0.0022630882581425
602 => 0.0022631495946236
603 => 0.0022377786366612
604 => 0.0021886192086626
605 => 0.0021795534558987
606 => 0.0022267146466548
607 => 0.0022645334554597
608 => 0.0022676483936928
609 => 0.0022885868294478
610 => 0.0023009779800445
611 => 0.0024224281008452
612 => 0.0024712763441193
613 => 0.002531007051345
614 => 0.0025542755280476
615 => 0.0026243053007118
616 => 0.0025677505717454
617 => 0.0025555146003876
618 => 0.0023856452784682
619 => 0.0024134613704162
620 => 0.0024579976174787
621 => 0.0023863796647785
622 => 0.0024318047715864
623 => 0.0024407726499056
624 => 0.0023839461141507
625 => 0.0024142996222271
626 => 0.0023336897039642
627 => 0.002166543434401
628 => 0.0022278847114963
629 => 0.0022730525386891
630 => 0.002208592480132
701 => 0.0023241346401468
702 => 0.0022566372955405
703 => 0.0022352438777442
704 => 0.0021517805276169
705 => 0.002191172016078
706 => 0.0022444495682535
707 => 0.0022115302351893
708 => 0.0022798427941603
709 => 0.0023765915959572
710 => 0.0024455405536084
711 => 0.0024508335984343
712 => 0.0024065040378859
713 => 0.0024775424415722
714 => 0.0024780598787886
715 => 0.0023979282692302
716 => 0.0023488481045503
717 => 0.0023376969878695
718 => 0.0023655546636434
719 => 0.0023993790248435
720 => 0.0024527106150753
721 => 0.0024849377781
722 => 0.0025689691273019
723 => 0.0025917056010283
724 => 0.0026166860923856
725 => 0.0026500677325371
726 => 0.0026901509504158
727 => 0.002602451151636
728 => 0.0026059356281344
729 => 0.002524270789797
730 => 0.002437000198111
731 => 0.0025032276987678
801 => 0.0025898113460014
802 => 0.0025699489616596
803 => 0.0025677140376695
804 => 0.0025714725599047
805 => 0.0025564969707558
806 => 0.0024887629360565
807 => 0.0024547473278681
808 => 0.0024986361407384
809 => 0.0025219610915126
810 => 0.0025581360560139
811 => 0.0025536767280783
812 => 0.0026468595517262
813 => 0.0026830675792935
814 => 0.0026738040164129
815 => 0.002675508734923
816 => 0.0027410616393128
817 => 0.0028139699509772
818 => 0.0028822582059499
819 => 0.002951723951957
820 => 0.0028679802838513
821 => 0.0028254604137785
822 => 0.0028693300661661
823 => 0.0028460522110992
824 => 0.0029798136709739
825 => 0.0029890750242375
826 => 0.0031228268116362
827 => 0.0032497731847442
828 => 0.0031700404422756
829 => 0.0032452248271819
830 => 0.0033265428693309
831 => 0.0034834185660131
901 => 0.0034305883503241
902 => 0.0033901212330613
903 => 0.0033518800027837
904 => 0.0034314539323671
905 => 0.0035338245215516
906 => 0.0035558741659686
907 => 0.0035916030135366
908 => 0.0035540384990345
909 => 0.0035992808191568
910 => 0.0037590060896714
911 => 0.0037158469116444
912 => 0.003654553940662
913 => 0.0037806417015552
914 => 0.0038262723720687
915 => 0.0041465323147001
916 => 0.0045508737215506
917 => 0.0043834737240657
918 => 0.0042795631436626
919 => 0.0043039845948493
920 => 0.0044516363888107
921 => 0.0044990574587974
922 => 0.0043701506435504
923 => 0.0044156827099472
924 => 0.0046665688724074
925 => 0.0048011612491756
926 => 0.0046183667233566
927 => 0.0041140438763581
928 => 0.0036490351792459
929 => 0.0037723764253346
930 => 0.0037583933557526
1001 => 0.00402793923863
1002 => 0.0037148175795221
1003 => 0.0037200897452163
1004 => 0.0039952095514975
1005 => 0.0039218123039292
1006 => 0.0038029181628778
1007 => 0.0036499032380517
1008 => 0.0033670409973433
1009 => 0.0031165020225506
1010 => 0.003607866647799
1011 => 0.0035866781116697
1012 => 0.0035559939713893
1013 => 0.0036242782052125
1014 => 0.0039558470618398
1015 => 0.0039482033265109
1016 => 0.0038995777822164
1017 => 0.0039364598289979
1018 => 0.0037964525617549
1019 => 0.0038325356224297
1020 => 0.0036489615194925
1021 => 0.0037319446807518
1022 => 0.0038026630694492
1023 => 0.0038168608329838
1024 => 0.0038488491191831
1025 => 0.003575512715944
1026 => 0.0036982327362632
1027 => 0.0037703192508898
1028 => 0.0034446297552769
1029 => 0.0037638814167331
1030 => 0.0035707545372823
1031 => 0.0035052043737283
1101 => 0.0035934590333764
1102 => 0.003559066106681
1103 => 0.0035294970879288
1104 => 0.0035129970674048
1105 => 0.003577801549139
1106 => 0.003574778342608
1107 => 0.0034687456324829
1108 => 0.003330430284571
1109 => 0.0033768534553767
1110 => 0.0033599874822035
1111 => 0.0032988630196696
1112 => 0.0033400535272217
1113 => 0.0031586713780012
1114 => 0.0028466128176911
1115 => 0.0030527682612442
1116 => 0.0030448315009213
1117 => 0.0030408294264632
1118 => 0.0031957495445753
1119 => 0.0031808575498341
1120 => 0.0031538284335559
1121 => 0.0032983666087527
1122 => 0.003245608230493
1123 => 0.003408197120852
1124 => 0.0035152886796324
1125 => 0.0034881267962767
1126 => 0.0035888469249282
1127 => 0.0033779229514705
1128 => 0.0034479834346521
1129 => 0.0034624228031362
1130 => 0.0032965830301068
1201 => 0.0031832940643461
1202 => 0.0031757389819187
1203 => 0.0029793115274708
1204 => 0.0030842414881298
1205 => 0.003176575511213
1206 => 0.0031323546795658
1207 => 0.0031183556853261
1208 => 0.0031898735108854
1209 => 0.0031954310584402
1210 => 0.0030687183852301
1211 => 0.003095065962459
1212 => 0.0032049397394236
1213 => 0.0030922974251866
1214 => 0.0028734518086416
1215 => 0.002819175069961
1216 => 0.0028119335525023
1217 => 0.0026647307324583
1218 => 0.002822802101174
1219 => 0.0027537997126803
1220 => 0.0029717774311564
1221 => 0.0028472697274008
1222 => 0.0028419024491423
1223 => 0.002833789020846
1224 => 0.0027070854727622
1225 => 0.002734825497362
1226 => 0.0028270375640568
1227 => 0.0028599398682968
1228 => 0.0028565078884039
1229 => 0.0028265856746239
1230 => 0.0028402839108658
1231 => 0.0027961571191485
]
'min_raw' => 0.001543947353091
'max_raw' => 0.0048011612491756
'avg_raw' => 0.0031725543011333
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.001543'
'max' => '$0.0048011'
'avg' => '$0.003172'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.00087953598469655
'max_diff' => 0.0029986772309427
'year' => 2033
]
8 => [
'items' => [
101 => 0.0027805750305734
102 => 0.0027313936728392
103 => 0.0026591106636668
104 => 0.0026691620594296
105 => 0.0025259505043808
106 => 0.0024479212483777
107 => 0.0024263237787251
108 => 0.0023974427396853
109 => 0.0024295859689342
110 => 0.002525544804039
111 => 0.0024097980901001
112 => 0.0022113584677399
113 => 0.0022232850271684
114 => 0.002250080465177
115 => 0.0022001473437175
116 => 0.0021528898348254
117 => 0.0021939764046842
118 => 0.0021098949207069
119 => 0.0022602413108116
120 => 0.0022561748623001
121 => 0.0023122146991728
122 => 0.0023472575592225
123 => 0.0022664951120686
124 => 0.0022461835750143
125 => 0.0022577539496283
126 => 0.0020665214305864
127 => 0.0022965869225441
128 => 0.0022985765384722
129 => 0.0022815402389647
130 => 0.002404043010957
131 => 0.0026625620694335
201 => 0.0025652968007296
202 => 0.0025276327488291
203 => 0.0024560333586341
204 => 0.0025514352949179
205 => 0.0025441099147133
206 => 0.0025109817673604
207 => 0.0024909457604753
208 => 0.0025278627174987
209 => 0.0024863713409582
210 => 0.0024789183496247
211 => 0.0024337613310786
212 => 0.0024176423299711
213 => 0.0024057084632669
214 => 0.0023925704486233
215 => 0.002421549635138
216 => 0.0023558789859662
217 => 0.0022766866208381
218 => 0.0022701026325509
219 => 0.0022882816030819
220 => 0.0022802387618871
221 => 0.0022700641265216
222 => 0.0022506379767117
223 => 0.0022448746530372
224 => 0.0022636026590124
225 => 0.0022424598321769
226 => 0.002273657224882
227 => 0.0022651732602967
228 => 0.0022177825237814
301 => 0.0021587161197856
302 => 0.002158190304894
303 => 0.0021454645450415
304 => 0.0021292563765384
305 => 0.0021247476348535
306 => 0.0021905162083705
307 => 0.0023266551872628
308 => 0.0022999278481766
309 => 0.0023192410897943
310 => 0.0024142431235355
311 => 0.002444441413251
312 => 0.0024230073824966
313 => 0.0023936671592066
314 => 0.0023949579801272
315 => 0.0024952224049989
316 => 0.0025014757741912
317 => 0.0025172760207271
318 => 0.0025375838026748
319 => 0.0024264658855757
320 => 0.0023897243362245
321 => 0.0023723141517984
322 => 0.0023186975223552
323 => 0.0023765184604673
324 => 0.0023428286759688
325 => 0.0023473745789046
326 => 0.002344414053654
327 => 0.0023460307006307
328 => 0.0022601992859315
329 => 0.0022914717422815
330 => 0.0022394752182069
331 => 0.0021698577093548
401 => 0.0021696243270541
402 => 0.0021866631137186
403 => 0.0021765277766827
404 => 0.0021492538453226
405 => 0.002153127978543
406 => 0.002119186494978
407 => 0.0021572490891782
408 => 0.0021583405881854
409 => 0.0021436844161348
410 => 0.002202325094126
411 => 0.0022263502277453
412 => 0.002216703221336
413 => 0.0022256733680587
414 => 0.0023010384897823
415 => 0.0023133262930341
416 => 0.0023187837235518
417 => 0.002311471489629
418 => 0.0022270509041341
419 => 0.0022307953160848
420 => 0.0022033213056466
421 => 0.0021801086619662
422 => 0.0021810370459791
423 => 0.0021929713622633
424 => 0.0022450892214147
425 => 0.0023547681834834
426 => 0.0023589304199196
427 => 0.0023639751719013
428 => 0.0023434556303025
429 => 0.0023372667402107
430 => 0.0023454314837298
501 => 0.0023866211352369
502 => 0.0024925721017945
503 => 0.0024551219539859
504 => 0.0024246744008713
505 => 0.0024513851135542
506 => 0.0024472732087022
507 => 0.0024125645936761
508 => 0.0024115904384529
509 => 0.0023449735092024
510 => 0.0023203467472525
511 => 0.0022997667816861
512 => 0.0022772939965411
513 => 0.0022639713762126
514 => 0.0022844409760598
515 => 0.0022891226157341
516 => 0.0022443654779207
517 => 0.00223826524542
518 => 0.0022748148903084
519 => 0.0022587307543011
520 => 0.002275273687052
521 => 0.0022791117893528
522 => 0.0022784937664834
523 => 0.0022617000812405
524 => 0.0022724038754194
525 => 0.0022470862112318
526 => 0.0022195570540179
527 => 0.0022019951668425
528 => 0.0021866700910357
529 => 0.0021951733337919
530 => 0.0021648608259967
531 => 0.0021551632446828
601 => 0.0022687776707946
602 => 0.0023527058689244
603 => 0.0023514855196843
604 => 0.0023440569575341
605 => 0.0023330196210075
606 => 0.0023858136853227
607 => 0.0023674212889659
608 => 0.0023808032940516
609 => 0.0023842095759869
610 => 0.0023945193654985
611 => 0.0023982042290926
612 => 0.002387066012009
613 => 0.0023496847950579
614 => 0.0022565343565152
615 => 0.0022131725759188
616 => 0.0021988624660744
617 => 0.0021993826113884
618 => 0.0021850346815953
619 => 0.0021892607899485
620 => 0.0021835650135764
621 => 0.0021727785910839
622 => 0.0021945073025984
623 => 0.0021970113341835
624 => 0.0021919395932772
625 => 0.0021931341718603
626 => 0.0021511423233254
627 => 0.002154334872368
628 => 0.0021365583536093
629 => 0.0021332254706411
630 => 0.0020882879791975
701 => 0.0020086746993117
702 => 0.0020527881846165
703 => 0.001999505297663
704 => 0.0019793262610062
705 => 0.0020748506820554
706 => 0.002065262679617
707 => 0.0020488521872471
708 => 0.0020245776487857
709 => 0.0020155739863428
710 => 0.0019608705835531
711 => 0.0019576384146849
712 => 0.0019847508982237
713 => 0.0019722394199541
714 => 0.0019546685659964
715 => 0.0018910287140902
716 => 0.0018194764501169
717 => 0.0018216361632047
718 => 0.0018443956070975
719 => 0.0019105717597447
720 => 0.0018847155920464
721 => 0.0018659566457159
722 => 0.00186244365896
723 => 0.0019064160431454
724 => 0.0019686461792669
725 => 0.0019978431668144
726 => 0.0019689098388806
727 => 0.0019356727896312
728 => 0.0019376957748134
729 => 0.0019511537889169
730 => 0.0019525680359131
731 => 0.0019309341336757
801 => 0.0019370239504342
802 => 0.0019277729619135
803 => 0.0018709996624377
804 => 0.0018699728134803
805 => 0.0018560397301958
806 => 0.0018556178419713
807 => 0.0018319141915339
808 => 0.0018285978869822
809 => 0.00178153285033
810 => 0.0018125111999805
811 => 0.0017917325494713
812 => 0.0017604142219658
813 => 0.0017550149304992
814 => 0.0017548526212779
815 => 0.0017870095409762
816 => 0.0018121354276512
817 => 0.001792094002993
818 => 0.001787530959085
819 => 0.0018362523301258
820 => 0.0018300520915557
821 => 0.0018246827249412
822 => 0.0019630741531234
823 => 0.0018535265388994
824 => 0.0018057575263385
825 => 0.001746634302205
826 => 0.0017658851221081
827 => 0.001769941552715
828 => 0.0016277608564361
829 => 0.0015700781656632
830 => 0.0015502836399163
831 => 0.0015388916104954
901 => 0.0015440831013546
902 => 0.0014921619141542
903 => 0.00152705381065
904 => 0.0014820944513232
905 => 0.0014745568684216
906 => 0.0015549497722939
907 => 0.0015661359752192
908 => 0.001518412158259
909 => 0.0015490585745316
910 => 0.0015379457579741
911 => 0.0014828651504976
912 => 0.0014807614764376
913 => 0.0014531239637828
914 => 0.0014098766081552
915 => 0.0013901114061519
916 => 0.0013798175173392
917 => 0.0013840649764872
918 => 0.0013819173311676
919 => 0.0013679024927337
920 => 0.0013827206453014
921 => 0.0013448663887744
922 => 0.0013297925188128
923 => 0.0013229840014624
924 => 0.0012893861699849
925 => 0.001342855260889
926 => 0.001353389345383
927 => 0.0013639441852775
928 => 0.0014558168604644
929 => 0.0014512271612416
930 => 0.001492715806942
1001 => 0.0014911036344628
1002 => 0.0014792704006375
1003 => 0.0014293479336012
1004 => 0.0014492461391795
1005 => 0.0013880025552774
1006 => 0.0014338904124957
1007 => 0.001412949110784
1008 => 0.001426810137322
1009 => 0.0014018867618084
1010 => 0.0014156803868785
1011 => 0.0013558873676052
1012 => 0.0013000534875183
1013 => 0.0013225226707579
1014 => 0.001346949242602
1015 => 0.0013999122741349
1016 => 0.0013683679294895
1017 => 0.0013797124686477
1018 => 0.0013417101615205
1019 => 0.0012633005470947
1020 => 0.0012637443369971
1021 => 0.001251682726064
1022 => 0.0012412597331938
1023 => 0.0013719911769317
1024 => 0.0013557326553446
1025 => 0.0013298268290583
1026 => 0.0013645028069992
1027 => 0.0013736716859485
1028 => 0.0013739327110423
1029 => 0.0013992314094314
1030 => 0.0014127333292967
1031 => 0.0014151131011937
1101 => 0.0014549211497235
1102 => 0.0014682642825099
1103 => 0.001523222758066
1104 => 0.0014115877857288
1105 => 0.001409288736937
1106 => 0.0013649907691203
1107 => 0.0013368962976079
1108 => 0.0013669144216207
1109 => 0.0013935063816134
1110 => 0.0013658170554421
1111 => 0.0013694326968865
1112 => 0.0013322620388026
1113 => 0.0013455488000255
1114 => 0.0013569931487108
1115 => 0.0013506742520345
1116 => 0.0013412145578721
1117 => 0.0013913261441447
1118 => 0.0013884986520584
1119 => 0.0014351637132558
1120 => 0.0014715424655098
1121 => 0.0015367396930288
1122 => 0.0014687029873044
1123 => 0.0014662234593264
1124 => 0.0014904612430402
1125 => 0.0014682605718315
1126 => 0.0014822906296943
1127 => 0.0015344792338032
1128 => 0.0015355818967703
1129 => 0.0015171108713705
1130 => 0.0015159869077962
1201 => 0.0015195344702752
1202 => 0.0015403126545203
1203 => 0.0015330521184959
1204 => 0.0015414541945976
1205 => 0.0015519611194199
1206 => 0.0015954222153287
1207 => 0.0016059005384155
1208 => 0.0015804436457023
1209 => 0.0015827421180855
1210 => 0.0015732205414035
1211 => 0.0015640228176336
1212 => 0.0015846979574486
1213 => 0.0016224821818314
1214 => 0.0016222471281325
1215 => 0.0016310123337689
1216 => 0.0016364729842656
1217 => 0.0016130318748936
1218 => 0.0015977725746459
1219 => 0.0016036239613354
1220 => 0.0016129804560785
1221 => 0.0016005897761939
1222 => 0.0015241087600252
1223 => 0.0015473082147045
1224 => 0.0015434466910505
1225 => 0.0015379474117899
1226 => 0.001561274642866
1227 => 0.0015590246745216
1228 => 0.0014916293873338
1229 => 0.0014959438149561
1230 => 0.0014918917619673
1231 => 0.001504984774146
]
'min_raw' => 0.0012412597331938
'max_raw' => 0.0027805750305734
'avg_raw' => 0.0020109173818836
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.001241'
'max' => '$0.00278'
'avg' => '$0.00201'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.00030268761989723
'max_diff' => -0.0020205862186021
'year' => 2034
]
9 => [
'items' => [
101 => 0.0014675535062062
102 => 0.0014790671121211
103 => 0.0014862883378175
104 => 0.0014905416952288
105 => 0.0015059077387528
106 => 0.0015041047108994
107 => 0.0015057956600098
108 => 0.0015285794460708
109 => 0.0016438120175161
110 => 0.0016500838721335
111 => 0.0016191989661742
112 => 0.0016315368769271
113 => 0.001607850786286
114 => 0.0016237514176164
115 => 0.0016346302257404
116 => 0.0015854709837026
117 => 0.0015825600924299
118 => 0.0015587762408672
119 => 0.0015715563355108
120 => 0.0015512222860115
121 => 0.0015562115505037
122 => 0.0015422611320271
123 => 0.0015673691077845
124 => 0.0015954437260662
125 => 0.0016025364833444
126 => 0.0015838784925694
127 => 0.0015703688776267
128 => 0.0015466504441313
129 => 0.001586094727634
130 => 0.001597629438173
131 => 0.00158603414071
201 => 0.0015833472569256
202 => 0.0015782556170092
203 => 0.0015844274724036
204 => 0.0015975666176622
205 => 0.0015913704394001
206 => 0.0015954631243048
207 => 0.0015798660298065
208 => 0.0016130396348762
209 => 0.0016657273033896
210 => 0.0016658967028592
211 => 0.0016597004911974
212 => 0.0016571651348847
213 => 0.0016635228240672
214 => 0.0016669716096427
215 => 0.0016875312106581
216 => 0.0017095924816782
217 => 0.0018125428074428
218 => 0.0017836347679305
219 => 0.0018749784214911
220 => 0.0019472193919685
221 => 0.0019688813002999
222 => 0.0019489533639066
223 => 0.0018807809699909
224 => 0.0018774361071118
225 => 0.0019793144452642
226 => 0.0019505291484126
227 => 0.0019471052289462
228 => 0.0019106805106266
301 => 0.0019322120304426
302 => 0.0019275027712105
303 => 0.0019200689751278
304 => 0.0019611496150381
305 => 0.0020380489056562
306 => 0.0020260634300563
307 => 0.0020171168285113
308 => 0.0019779154248575
309 => 0.0020015234258076
310 => 0.0019931170688507
311 => 0.0020292361131433
312 => 0.0020078399914392
313 => 0.0019503110714779
314 => 0.0019594727415995
315 => 0.0019580879735913
316 => 0.0019865864010736
317 => 0.0019780318805179
318 => 0.0019564175661577
319 => 0.0020377860722408
320 => 0.0020325024540512
321 => 0.0020399934166408
322 => 0.0020432911700385
323 => 0.0020928187458174
324 => 0.0021131086089084
325 => 0.0021177147630541
326 => 0.0021369885637162
327 => 0.0021172352133356
328 => 0.0021962626987581
329 => 0.0022488113651824
330 => 0.002309849345364
331 => 0.0023990422398716
401 => 0.0024325795932869
402 => 0.0024265213705736
403 => 0.0024941464052449
404 => 0.002615667089329
405 => 0.0024510841752364
406 => 0.0026243903834145
407 => 0.0025695236388217
408 => 0.0024394355744027
409 => 0.0024310594366917
410 => 0.0025191565842697
411 => 0.0027145475785614
412 => 0.0026656043505977
413 => 0.002714627632149
414 => 0.0026574393701945
415 => 0.0026545994909679
416 => 0.0027118501259124
417 => 0.0028456193550299
418 => 0.0027820706085408
419 => 0.0026909578976567
420 => 0.0027582341055027
421 => 0.0026999532281473
422 => 0.0025686300996753
423 => 0.0026655669246336
424 => 0.0026007480303858
425 => 0.0026196656296893
426 => 0.0027559053043154
427 => 0.0027395125862189
428 => 0.0027607262813606
429 => 0.0027232846646946
430 => 0.0026883082907275
501 => 0.0026230222913384
502 => 0.0026036943254802
503 => 0.002609035879896
504 => 0.0026036916784711
505 => 0.0025671647618222
506 => 0.0025592767776496
507 => 0.0025461297917815
508 => 0.0025502045924389
509 => 0.0025254844127204
510 => 0.002572136499299
511 => 0.0025807955376647
512 => 0.0026147450358154
513 => 0.0026182697853365
514 => 0.0027128186544453
515 => 0.0026607427261694
516 => 0.0026956797548762
517 => 0.0026925546581886
518 => 0.0024422549772202
519 => 0.0024767440648449
520 => 0.0025303982619169
521 => 0.0025062271188625
522 => 0.00247205477776
523 => 0.0024444587801147
524 => 0.0024026480218464
525 => 0.0024614958612045
526 => 0.0025388745121904
527 => 0.0026202322356197
528 => 0.0027179782095509
529 => 0.002696162446058
530 => 0.0026184049426278
531 => 0.0026218930874298
601 => 0.0026434554260613
602 => 0.0026155302383884
603 => 0.0026072945553793
604 => 0.0026423239696833
605 => 0.0026425651980078
606 => 0.0026104338947185
607 => 0.0025747258310789
608 => 0.0025745762129885
609 => 0.0025682223079628
610 => 0.0026585697157833
611 => 0.0027082516549313
612 => 0.0027139476091882
613 => 0.0027078682718268
614 => 0.0027102079674969
615 => 0.0026812991417735
616 => 0.0027473761447313
617 => 0.0028080149369836
618 => 0.0027917624453012
619 => 0.0027673976498413
620 => 0.00274798991669
621 => 0.0027871906001573
622 => 0.0027854450554301
623 => 0.0028074853100334
624 => 0.0028064854367739
625 => 0.0027990741281268
626 => 0.0027917627099823
627 => 0.0028207516564798
628 => 0.0028124033054367
629 => 0.0028040419870987
630 => 0.0027872720831179
701 => 0.0027895513915875
702 => 0.0027651908030531
703 => 0.0027539204801324
704 => 0.0025844418646909
705 => 0.0025391516407714
706 => 0.002553400867184
707 => 0.0025580920825
708 => 0.0025383817190092
709 => 0.002566641317078
710 => 0.0025622370886533
711 => 0.0025793713650664
712 => 0.0025686666130473
713 => 0.0025691059398041
714 => 0.0026005863329985
715 => 0.00260972522507
716 => 0.0026050771108025
717 => 0.0026083324907074
718 => 0.0026833513466058
719 => 0.002672686064265
720 => 0.0026670203455884
721 => 0.0026685897883821
722 => 0.0026877587144865
723 => 0.0026931249672112
724 => 0.0026703877773368
725 => 0.0026811107675237
726 => 0.0027267678987893
727 => 0.0027427453107625
728 => 0.002793737540188
729 => 0.0027720751348134
730 => 0.0028118374174053
731 => 0.0029340531181319
801 => 0.0030316874765554
802 => 0.0029418988856386
803 => 0.0031211919512229
804 => 0.003260797320843
805 => 0.0032554390342321
806 => 0.0032310956089084
807 => 0.0030721586071967
808 => 0.0029259024086044
809 => 0.0030482519290931
810 => 0.0030485638231822
811 => 0.0030380538908658
812 => 0.0029727776038862
813 => 0.0030357824175735
814 => 0.0030407835108841
815 => 0.0030379842285282
816 => 0.0029879370523493
817 => 0.0029115242645882
818 => 0.0029264551404104
819 => 0.0029509122195887
820 => 0.002904609866423
821 => 0.002889813459028
822 => 0.0029173227955069
823 => 0.0030059636094398
824 => 0.002989206577027
825 => 0.0029887689831903
826 => 0.0030604626739396
827 => 0.0030091454638299
828 => 0.0029266434665698
829 => 0.0029058106241939
830 => 0.0028318680684439
831 => 0.0028829404550748
901 => 0.0028847784593473
902 => 0.0028568066351367
903 => 0.0029289132259429
904 => 0.0029282487510145
905 => 0.0029967032273354
906 => 0.0031275624757338
907 => 0.0030888609567898
908 => 0.0030438553009713
909 => 0.0030487486636303
910 => 0.0031024167741507
911 => 0.0030699678094063
912 => 0.0030816366833706
913 => 0.0031023991119124
914 => 0.0031149256005538
915 => 0.0030469462946865
916 => 0.0030310970666628
917 => 0.0029986751084493
918 => 0.0029902168247359
919 => 0.0030166238331944
920 => 0.003009666519439
921 => 0.0028846239822053
922 => 0.0028715563413342
923 => 0.0028719571072234
924 => 0.0028390979029208
925 => 0.0027889797292465
926 => 0.0029206872972617
927 => 0.0029101093363039
928 => 0.0028984320860756
929 => 0.0028998624825991
930 => 0.0029570322738908
1001 => 0.002923870907798
1002 => 0.0030120358345969
1003 => 0.0029939117761273
1004 => 0.0029753229039463
1005 => 0.00297275335558
1006 => 0.0029655982257184
1007 => 0.0029410606231163
1008 => 0.002911429993493
1009 => 0.0028918652852545
1010 => 0.0026675928622266
1011 => 0.0027092165194079
1012 => 0.0027571007428793
1013 => 0.0027736301849376
1014 => 0.0027453554304943
1015 => 0.0029421770827584
1016 => 0.0029781382952477
1017 => 0.0028692094369258
1018 => 0.0028488332950697
1019 => 0.0029435129392262
1020 => 0.0028864095396841
1021 => 0.0029121231970014
1022 => 0.0028565443344999
1023 => 0.0029694762922262
1024 => 0.0029686159399211
1025 => 0.0029246828576816
1026 => 0.0029618147979497
1027 => 0.0029553622095559
1028 => 0.00290576186791
1029 => 0.0029710487115269
1030 => 0.0029710810929868
1031 => 0.0029287964565189
1101 => 0.0028794172584215
1102 => 0.0028705894240863
1103 => 0.0028639388367674
1104 => 0.0029104875602094
1105 => 0.0029522230000933
1106 => 0.0030298823066244
1107 => 0.0030494077014259
1108 => 0.0031256166172154
1109 => 0.0030802379184076
1110 => 0.0031003537078366
1111 => 0.0031221922428139
1112 => 0.0031326624395675
1113 => 0.0031156018158192
1114 => 0.0032339856308814
1115 => 0.0032439808520591
1116 => 0.0032473321632616
1117 => 0.0032074138069016
1118 => 0.0032428706503569
1119 => 0.0032262815675114
1120 => 0.0032694417524955
1121 => 0.0032762098205979
1122 => 0.0032704775076961
1123 => 0.0032726257993385
1124 => 0.0031716060975189
1125 => 0.0031663676930582
1126 => 0.003094941676536
1127 => 0.0031240483062233
1128 => 0.00306963485714
1129 => 0.0030868899223649
1130 => 0.0030944957907038
1201 => 0.0030905229167128
1202 => 0.0031256939513945
1203 => 0.0030957913869474
1204 => 0.0030168736029346
1205 => 0.0029379343178243
1206 => 0.0029369432994022
1207 => 0.0029161599790268
1208 => 0.0029011374450504
1209 => 0.0029040313180473
1210 => 0.0029142297039421
1211 => 0.0029005446963225
1212 => 0.0029034650865456
1213 => 0.0029519630227079
1214 => 0.0029616889379338
1215 => 0.0029286364778358
1216 => 0.0027959260810954
1217 => 0.0027633586168565
1218 => 0.0027867674643105
1219 => 0.0027755795429504
1220 => 0.0022401093162624
1221 => 0.0023659101032806
1222 => 0.0022911635474255
1223 => 0.0023256101992872
1224 => 0.0022493133212859
1225 => 0.0022857261905301
1226 => 0.0022790020631658
1227 => 0.0024812860059751
1228 => 0.0024781276204406
1229 => 0.0024796393724579
1230 => 0.0024074795098222
1231 => 0.0025224321303547
]
'min_raw' => 0.0014675535062062
'max_raw' => 0.0032762098205979
'avg_raw' => 0.002371881663402
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.001467'
'max' => '$0.003276'
'avg' => '$0.002371'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.00022629377301242
'max_diff' => 0.00049563479002444
'year' => 2035
]
10 => [
'items' => [
101 => 0.0025790619247916
102 => 0.0025685812569945
103 => 0.0025712190152819
104 => 0.002525893588593
105 => 0.0024800782216648
106 => 0.0024292619288069
107 => 0.0025236723198532
108 => 0.0025131754960079
109 => 0.0025372514332709
110 => 0.0025984833204585
111 => 0.0026074999484441
112 => 0.0026196183878945
113 => 0.0026152747900008
114 => 0.0027187569139294
115 => 0.0027062245459246
116 => 0.0027364239470078
117 => 0.0026743014877456
118 => 0.0026040040283725
119 => 0.0026173652772022
120 => 0.0026160784814955
121 => 0.0025996960952341
122 => 0.0025849068094233
123 => 0.0025602868154037
124 => 0.0026381881195552
125 => 0.0026350254688711
126 => 0.0026862251072669
127 => 0.0026771750738537
128 => 0.0026167367358015
129 => 0.0026188953028687
130 => 0.002633412703768
131 => 0.0026836575940371
201 => 0.0026985736984019
202 => 0.0026916639645561
203 => 0.0027080187920462
204 => 0.0027209449808543
205 => 0.0027096421223454
206 => 0.0028696667632122
207 => 0.0028032133754453
208 => 0.0028356022942632
209 => 0.0028433268605547
210 => 0.0028235405464292
211 => 0.0028278314894682
212 => 0.0028343310989603
213 => 0.0028737954550426
214 => 0.002977361344506
215 => 0.0030232299719524
216 => 0.0031612280007433
217 => 0.0030194212209651
218 => 0.0030110069935079
219 => 0.0030358646056344
220 => 0.0031168840571095
221 => 0.00318254271276
222 => 0.0032043254767779
223 => 0.0032072044286371
224 => 0.0032480703420256
225 => 0.0032714939214758
226 => 0.0032431081452601
227 => 0.0032190541720319
228 => 0.0031328958256177
229 => 0.0031428688888165
301 => 0.0032115734044456
302 => 0.0033086225794474
303 => 0.0033919008678446
304 => 0.0033627397137893
305 => 0.0035852187346651
306 => 0.0036072766208396
307 => 0.0036042289341871
308 => 0.0036544800815463
309 => 0.0035547417875066
310 => 0.0035121017344661
311 => 0.003224254914068
312 => 0.0033051281294807
313 => 0.0034226820976004
314 => 0.003407123389115
315 => 0.0033217525552399
316 => 0.0033918361064117
317 => 0.003368664292679
318 => 0.0033503877217886
319 => 0.0034341162361252
320 => 0.0033420532952343
321 => 0.0034217636993405
322 => 0.0033195342815758
323 => 0.0033628729194847
324 => 0.0033382718125536
325 => 0.0033541917437362
326 => 0.0032611241513398
327 => 0.0033113411651088
328 => 0.0032590349584688
329 => 0.0032590101585164
330 => 0.0032578554961058
331 => 0.0033193935162565
401 => 0.0033214002688843
402 => 0.0032759235790141
403 => 0.0032693696775244
404 => 0.0032936028863707
405 => 0.0032652321454992
406 => 0.0032785066365897
407 => 0.0032656342163114
408 => 0.0032627363633721
409 => 0.0032396457781228
410 => 0.0032296977191085
411 => 0.0032335986093779
412 => 0.0032202828598417
413 => 0.0032122596390944
414 => 0.0032562594755576
415 => 0.0032327521378836
416 => 0.0032526566389164
417 => 0.0032299729478413
418 => 0.0031513413917612
419 => 0.0031061195523459
420 => 0.0029575918320598
421 => 0.0029997141092848
422 => 0.0030276412226637
423 => 0.0030184113118586
424 => 0.0030382407317693
425 => 0.003039458097104
426 => 0.003033011350554
427 => 0.0030255468439285
428 => 0.0030219135349163
429 => 0.0030489932435789
430 => 0.0030647139259186
501 => 0.0030304440821079
502 => 0.0030224151371891
503 => 0.0030570638413717
504 => 0.0030781995309072
505 => 0.0032342535873192
506 => 0.0032226925987723
507 => 0.0032517084112957
508 => 0.0032484416760895
509 => 0.0032788548701955
510 => 0.003328567588984
511 => 0.0032274877317922
512 => 0.0032450316999222
513 => 0.0032407303240861
514 => 0.0032876916175833
515 => 0.0032878382256156
516 => 0.0032596825842734
517 => 0.0032749462142181
518 => 0.0032664264747188
519 => 0.0032818227955059
520 => 0.0032225381947218
521 => 0.0032947404390997
522 => 0.0033356744590521
523 => 0.0033362428279588
524 => 0.0033556452285438
525 => 0.0033753591912494
526 => 0.0034131984259385
527 => 0.0033743038755312
528 => 0.0033043363656567
529 => 0.0033093877938759
530 => 0.0032683658684366
531 => 0.0032690554544144
601 => 0.0032653743904208
602 => 0.0032764215405632
603 => 0.0032249624229429
604 => 0.0032370397749934
605 => 0.0032201314113978
606 => 0.0032449949444419
607 => 0.0032182458929757
608 => 0.0032407282498325
609 => 0.0032504308897499
610 => 0.0032862338399281
611 => 0.0032129577681239
612 => 0.0030635428973613
613 => 0.0030949517146758
614 => 0.0030484956067583
615 => 0.0030527952964169
616 => 0.0030614813538179
617 => 0.0030333269998802
618 => 0.0030386979633658
619 => 0.0030385060747552
620 => 0.0030368524823757
621 => 0.0030295284475438
622 => 0.0030189071480213
623 => 0.0030612191362552
624 => 0.0030684087675593
625 => 0.0030843904273416
626 => 0.00313194100639
627 => 0.0031271895822232
628 => 0.003134939352174
629 => 0.0031180216478846
630 => 0.0030535800601978
701 => 0.003057079548447
702 => 0.0030134408739037
703 => 0.0030832744883204
704 => 0.0030667369666678
705 => 0.0030560751188755
706 => 0.003053165934924
707 => 0.0031008343826606
708 => 0.0031150975293348
709 => 0.0031062096934916
710 => 0.0030879804828777
711 => 0.0031229859562388
712 => 0.0031323519441479
713 => 0.0031344486434364
714 => 0.0031964716305985
715 => 0.0031379150394293
716 => 0.0031520101929262
717 => 0.0032619765568699
718 => 0.0031622522390939
719 => 0.0032150784343375
720 => 0.0032124928669746
721 => 0.0032395169609202
722 => 0.0032102761024968
723 => 0.0032106385779818
724 => 0.0032346341426349
725 => 0.0032009366997026
726 => 0.0031925927389443
727 => 0.0031810656169174
728 => 0.0032062346661519
729 => 0.0032213223728698
730 => 0.0033429182083165
731 => 0.0034214746634589
801 => 0.0034180643205632
802 => 0.003449228470735
803 => 0.0034351887356517
804 => 0.0033898507275728
805 => 0.0034672371789824
806 => 0.0034427488677698
807 => 0.0034447676543929
808 => 0.0034446925150539
809 => 0.003460975101205
810 => 0.0034494373966399
811 => 0.0034266953966209
812 => 0.0034417925975582
813 => 0.0034866258869939
814 => 0.0036257897930557
815 => 0.0037036677585644
816 => 0.0036211014417456
817 => 0.0036780545814801
818 => 0.0036439029921181
819 => 0.0036376966324092
820 => 0.0036734674129664
821 => 0.0037093008055398
822 => 0.0037070183733449
823 => 0.0036810051704017
824 => 0.0036663109721197
825 => 0.0037775803644287
826 => 0.0038595617572574
827 => 0.0038539711758767
828 => 0.0038786461839365
829 => 0.0039510927707696
830 => 0.0039577163787394
831 => 0.0039568819563771
901 => 0.0039404646529219
902 => 0.0040117977260371
903 => 0.0040713050306158
904 => 0.0039366645215135
905 => 0.003987933864806
906 => 0.0040109503248051
907 => 0.0040447453167597
908 => 0.0041017631328854
909 => 0.0041636996044267
910 => 0.0041724581006015
911 => 0.0041662435284329
912 => 0.0041253947605096
913 => 0.0041931663867259
914 => 0.0042328654159233
915 => 0.0042565052793141
916 => 0.0043164520395752
917 => 0.0040110924666263
918 => 0.0037949437835375
919 => 0.0037611890454484
920 => 0.0038298306326922
921 => 0.0038479308718419
922 => 0.0038406346881364
923 => 0.0035973396939415
924 => 0.003759908147655
925 => 0.0039348181347069
926 => 0.0039415371396529
927 => 0.0040291007363664
928 => 0.0040576150328095
929 => 0.0041281152053868
930 => 0.004123705400397
1001 => 0.0041408710705168
1002 => 0.0041369249802242
1003 => 0.004267511704361
1004 => 0.0044115682534001
1005 => 0.0044065800331786
1006 => 0.0043858701998545
1007 => 0.0044166278338921
1008 => 0.0045653096305384
1009 => 0.0045516213932805
1010 => 0.0045649183498153
1011 => 0.0047402225674001
1012 => 0.0049681429869946
1013 => 0.004862251069257
1014 => 0.0050920060611691
1015 => 0.005236624649789
1016 => 0.005486727544966
1017 => 0.0054554134307071
1018 => 0.0055527766524596
1019 => 0.0053993546307308
1020 => 0.0050470666571351
1021 => 0.0049913157368094
1022 => 0.0051029304911396
1023 => 0.005377324473452
1024 => 0.0050942888481514
1025 => 0.0051515465865233
1026 => 0.0051350563540202
1027 => 0.0051341776596091
1028 => 0.0051677138513728
1029 => 0.0051190678560895
1030 => 0.0049208753200576
1031 => 0.0050117057913651
1101 => 0.0049766317843558
1102 => 0.005015549010073
1103 => 0.0052255692265842
1104 => 0.005132714282608
1105 => 0.0050348991420521
1106 => 0.0051575810352265
1107 => 0.0053137972433098
1108 => 0.0053040215137554
1109 => 0.0052850525124821
1110 => 0.0053919797794754
1111 => 0.0055685922977988
1112 => 0.0056163299518151
1113 => 0.0056515689120565
1114 => 0.0056564277693067
1115 => 0.0057064770187465
1116 => 0.0054373495904738
1117 => 0.0058644617308251
1118 => 0.005938212198729
1119 => 0.0059243501674068
1120 => 0.0060063207085878
1121 => 0.0059822028959805
1122 => 0.0059472599694812
1123 => 0.0060772007128873
1124 => 0.0059282341362495
1125 => 0.0057167948350826
1126 => 0.0056007950526672
1127 => 0.0057535529235873
1128 => 0.0058468368248432
1129 => 0.0059084915496029
1130 => 0.0059271482320623
1201 => 0.0054582411866231
1202 => 0.0052055262959083
1203 => 0.0053675136434744
1204 => 0.0055651493872745
1205 => 0.0054362517139381
1206 => 0.0054413042586973
1207 => 0.0052575300502323
1208 => 0.0055814093269198
1209 => 0.0055342228405599
1210 => 0.0057790264152665
1211 => 0.0057206020774913
1212 => 0.0059202298894445
1213 => 0.0058676611963007
1214 => 0.0060858709024645
1215 => 0.0061729206620452
1216 => 0.0063190907565944
1217 => 0.0064266140731641
1218 => 0.0064897538212471
1219 => 0.0064859631476035
1220 => 0.006736154285606
1221 => 0.0065886253125385
1222 => 0.0064032941524564
1223 => 0.0063999420964828
1224 => 0.0064959277304522
1225 => 0.0066970872868793
1226 => 0.0067492450331083
1227 => 0.0067783940977598
1228 => 0.0067337512905599
1229 => 0.0065736191637918
1230 => 0.0065044749233417
1231 => 0.0065633878195067
]
'min_raw' => 0.0024292619288069
'max_raw' => 0.0067783940977598
'avg_raw' => 0.0046038280132833
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.002429'
'max' => '$0.006778'
'avg' => '$0.0046038'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.00096170842260071
'max_diff' => 0.0035021842771619
'year' => 2036
]
11 => [
'items' => [
101 => 0.0064913424099397
102 => 0.0066157129992239
103 => 0.0067865003824355
104 => 0.0067512334631688
105 => 0.0068691254867653
106 => 0.0069911313285851
107 => 0.0071656051620126
108 => 0.0072112190828179
109 => 0.007286617159367
110 => 0.007364226547114
111 => 0.0073891525908266
112 => 0.0074367441423713
113 => 0.0074364933114028
114 => 0.0075799136552634
115 => 0.0077381107358999
116 => 0.0077978264715694
117 => 0.0079351395129965
118 => 0.0076999957415755
119 => 0.0078783549933353
120 => 0.0080392395030442
121 => 0.0078474263580794
122 => 0.0081117960916825
123 => 0.0081220609693636
124 => 0.0082770484353243
125 => 0.0081199389465674
126 => 0.0080266478336548
127 => 0.008295975781061
128 => 0.0084262950910601
129 => 0.0083870418543147
130 => 0.0080883227845106
131 => 0.007914455473221
201 => 0.0074594111830766
202 => 0.0079984308012031
203 => 0.0082609715337748
204 => 0.0080876428674384
205 => 0.0081750597648121
206 => 0.0086519780118585
207 => 0.008833557602164
208 => 0.0087957903167176
209 => 0.0088021723662556
210 => 0.0089001494172818
211 => 0.0093346336184793
212 => 0.0090742806138568
213 => 0.0092733107306498
214 => 0.0093788755869403
215 => 0.0094769301086562
216 => 0.0092361391937716
217 => 0.0089228737514278
218 => 0.0088236494358489
219 => 0.0080704087475059
220 => 0.0080311992985192
221 => 0.008009189846635
222 => 0.0078704233658041
223 => 0.0077613909232091
224 => 0.0076746842767425
225 => 0.0074471401436177
226 => 0.0075239296089192
227 => 0.0071612717528697
228 => 0.0073932873973649
301 => 0.0068144767024298
302 => 0.0072965274486244
303 => 0.0070341691436286
304 => 0.0072103356893293
305 => 0.0072097210608473
306 => 0.0068853425965581
307 => 0.006698247867962
308 => 0.0068174719108592
309 => 0.0069452895488613
310 => 0.006966027530597
311 => 0.0071317464346485
312 => 0.0071779950186533
313 => 0.0070378596499787
314 => 0.006802482137307
315 => 0.0068571549651111
316 => 0.0066971399248515
317 => 0.0064167197216862
318 => 0.0066181224072666
319 => 0.0066868901391747
320 => 0.0067172618871966
321 => 0.0064415008238614
322 => 0.0063548507106976
323 => 0.006308718917514
324 => 0.0067668848468895
325 => 0.0067919842107518
326 => 0.0066635723165399
327 => 0.0072440062548933
328 => 0.00711263617828
329 => 0.0072594087403072
330 => 0.0068521939790414
331 => 0.0068677501313091
401 => 0.0066749681374198
402 => 0.0067829131723003
403 => 0.0067066211008777
404 => 0.0067741922802156
405 => 0.0068146941665044
406 => 0.0070074445267654
407 => 0.0072987283481195
408 => 0.0069786540506005
409 => 0.0068391930956231
410 => 0.0069257138877329
411 => 0.0071561301586979
412 => 0.0075052226040018
413 => 0.0072985528502417
414 => 0.0073902693774804
415 => 0.0074103053584978
416 => 0.0072579147334052
417 => 0.0075108414637167
418 => 0.0076463869532636
419 => 0.0077854285783519
420 => 0.0079061545255581
421 => 0.0077298922957008
422 => 0.0079185181478462
423 => 0.0077665190079622
424 => 0.0076301600661039
425 => 0.0076303668663322
426 => 0.0075448269102183
427 => 0.0073790824665194
428 => 0.0073485166481253
429 => 0.0075075238954485
430 => 0.0076350326497594
501 => 0.0076455348814902
502 => 0.0077161302795131
503 => 0.0077579079088726
504 => 0.0081673854705286
505 => 0.0083320807332028
506 => 0.0085334669828789
507 => 0.0086119182766349
508 => 0.008848028544495
509 => 0.0086573503272596
510 => 0.0086160958955385
511 => 0.0080433696167899
512 => 0.0081371535128503
513 => 0.0082873105792429
514 => 0.0080458456515085
515 => 0.008198999570591
516 => 0.0082292353984614
517 => 0.0080376407656617
518 => 0.0081399797373555
519 => 0.0078681977699274
520 => 0.007304652452315
521 => 0.0075114688507531
522 => 0.0076637553336506
523 => 0.007446423745768
524 => 0.0078359822051536
525 => 0.0076084101952994
526 => 0.0075362807935586
527 => 0.0072548782813791
528 => 0.0073876894349518
529 => 0.0075673184218314
530 => 0.007456328592051
531 => 0.0076866491540522
601 => 0.0080128444940962
602 => 0.0082453107186799
603 => 0.0082631565888588
604 => 0.0081136963804789
605 => 0.00835320731825
606 => 0.0083549518939516
607 => 0.008084782577715
608 => 0.0079193053758291
609 => 0.0078817086073936
610 => 0.0079756327062261
611 => 0.0080896739015538
612 => 0.0082694850815131
613 => 0.0083781412116796
614 => 0.0086614587723951
615 => 0.0087381163809737
616 => 0.0088223398516669
617 => 0.0089348883820693
618 => 0.0090700317496684
619 => 0.0087743457550778
620 => 0.0087860939108706
621 => 0.0085107552067591
622 => 0.0082165163138517
623 => 0.0084398069561726
624 => 0.0087317297678979
625 => 0.0086647623523421
626 => 0.0086572271500719
627 => 0.0086698992701996
628 => 0.0086194080258218
629 => 0.008391037998794
630 => 0.0082763520008927
701 => 0.0084243261977039
702 => 0.0085029678977353
703 => 0.008624934316207
704 => 0.0086098993807316
705 => 0.0089240717764776
706 => 0.0090461496693844
707 => 0.0090149169203712
708 => 0.0090206644978477
709 => 0.0092416806917553
710 => 0.0094874961548275
711 => 0.009717734774202
712 => 0.0099519433868085
713 => 0.0096695957629936
714 => 0.0095262370524009
715 => 0.0096741466483069
716 => 0.0095956637347409
717 => 0.010046649835635
718 => 0.010077875134771
719 => 0.010528828624237
720 => 0.010956837184283
721 => 0.010688012676288
722 => 0.010941502079206
723 => 0.011215671535755
724 => 0.011744588899831
725 => 0.011566468139148
726 => 0.011430030427972
727 => 0.011301097450174
728 => 0.011569386509439
729 => 0.01191453609816
730 => 0.011988878013769
731 => 0.012109340317854
801 => 0.011982688934539
802 => 0.012135226575549
803 => 0.012673751476751
804 => 0.012528237294756
805 => 0.01232158376375
806 => 0.012746697452768
807 => 0.012900544444236
808 => 0.013980323200653
809 => 0.015343588484065
810 => 0.01477918770505
811 => 0.014428845928416
812 => 0.014511184556143
813 => 0.015009002888203
814 => 0.015168886336496
815 => 0.014734268008905
816 => 0.014887782549709
817 => 0.015733662762756
818 => 0.016187450357969
819 => 0.015571145851864
820 => 0.013870786162512
821 => 0.012302976874328
822 => 0.012718830496927
823 => 0.012671685601565
824 => 0.013580478364778
825 => 0.01252476682964
826 => 0.012542542304368
827 => 0.013470127939497
828 => 0.013222663994888
829 => 0.01282180409741
830 => 0.012305903595198
831 => 0.011352213801838
901 => 0.010507504156252
902 => 0.01216417429626
903 => 0.012092735667363
904 => 0.01198928194611
905 => 0.012219507007898
906 => 0.013337414557415
907 => 0.013311643170085
908 => 0.013147698752569
909 => 0.013272049148315
910 => 0.01280000487181
911 => 0.012921661430114
912 => 0.012302728525327
913 => 0.012582512047212
914 => 0.012820944032105
915 => 0.012868812783118
916 => 0.01297666352339
917 => 0.012055090756131
918 => 0.012468849872676
919 => 0.012711894589659
920 => 0.011613809716286
921 => 0.012690188982324
922 => 0.012039048224568
923 => 0.011818041271579
924 => 0.012115598018326
925 => 0.011999639864736
926 => 0.011899945853569
927 => 0.011844314882378
928 => 0.01206280771705
929 => 0.012052614765157
930 => 0.011695118080003
1001 => 0.011228778227648
1002 => 0.011385297189182
1003 => 0.011328432383084
1004 => 0.011122346990077
1005 => 0.011261223662118
1006 => 0.010649681082324
1007 => 0.0095975538590059
1008 => 0.010292621330258
1009 => 0.010265861988703
1010 => 0.010252368715251
1011 => 0.010774692709644
1012 => 0.010724483309648
1013 => 0.010633352757003
1014 => 0.011120673306012
1015 => 0.010942794750238
1016 => 0.011490974545677
1017 => 0.011852041212999
1018 => 0.011760463026883
1019 => 0.012100047972686
1020 => 0.011388903069932
1021 => 0.011625116880446
1022 => 0.011673800219414
1023 => 0.011114659846082
1024 => 0.010732698188437
1025 => 0.010707225700554
1026 => 0.010044956823756
1027 => 0.010398735512094
1028 => 0.010710046117474
1029 => 0.010560952496176
1030 => 0.010513753909718
1031 => 0.010754881251807
1101 => 0.010773618911403
1102 => 0.010346398286879
1103 => 0.010435230983035
1104 => 0.010805678093214
1105 => 0.010425896666328
1106 => 0.0096880433908338
1107 => 0.0095050455768915
1108 => 0.0094806302951927
1109 => 0.0089843257100416
1110 => 0.0095172743658572
1111 => 0.0092846279954577
1112 => 0.010019555092018
1113 => 0.0095997686759559
1114 => 0.009581672522576
1115 => 0.0095543175326136
1116 => 0.0091271276740898
1117 => 0.0092206551037747
1118 => 0.0095315545246771
1119 => 0.0096424869405877
1120 => 0.0096309157807658
1121 => 0.0095300309479041
1122 => 0.0095762155077742
1123 => 0.0094274389486652
1124 => 0.0093749028491274
1125 => 0.0092090844677938
1126 => 0.0089653772557303
1127 => 0.008999266238311
1128 => 0.0085164184817524
1129 => 0.0082533373973093
1130 => 0.0081805200204884
1201 => 0.0080831455809558
1202 => 0.0081915187225371
1203 => 0.0085150506347247
1204 => 0.0081248025075023
1205 => 0.0074557494661028
1206 => 0.0074959606939018
1207 => 0.0075863033839455
1208 => 0.0074179503787258
1209 => 0.007258618388082
1210 => 0.0073971446269338
1211 => 0.0071136580333224
1212 => 0.0076205613844103
1213 => 0.0076068510693436
1214 => 0.0077957932919362
1215 => 0.0079139427412081
1216 => 0.0076416465119748
1217 => 0.0075731647466899
1218 => 0.0076121750725189
1219 => 0.0069674212831409
1220 => 0.0077431031519358
1221 => 0.0077498112809481
1222 => 0.0076923722077221
1223 => 0.0081053988563646
1224 => 0.0089770139112424
1225 => 0.008649077266963
1226 => 0.0085220902863605
1227 => 0.0082806879434082
1228 => 0.0086023422323393
1229 => 0.008577644201538
1230 => 0.0084659503398042
1231 => 0.0083983975437216
]
'min_raw' => 0.006308718917514
'max_raw' => 0.016187450357969
'avg_raw' => 0.011248084637742
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.0063087'
'max' => '$0.016187'
'avg' => '$0.011248'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.0038794569887071
'max_diff' => 0.0094090562602096
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.00019802347800913
]
1 => [
'year' => 2028
'avg' => 0.00033986577489008
]
2 => [
'year' => 2029
'avg' => 0.00092845204215355
]
3 => [
'year' => 2030
'avg' => 0.0007162993678292
]
4 => [
'year' => 2031
'avg' => 0.00070349474921167
]
5 => [
'year' => 2032
'avg' => 0.0012334476933136
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.00019802347800913
'min' => '$0.000198'
'max_raw' => 0.0012334476933136
'max' => '$0.001233'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0012334476933136
]
1 => [
'year' => 2033
'avg' => 0.0031725543011333
]
2 => [
'year' => 2034
'avg' => 0.0020109173818836
]
3 => [
'year' => 2035
'avg' => 0.002371881663402
]
4 => [
'year' => 2036
'avg' => 0.0046038280132833
]
5 => [
'year' => 2037
'avg' => 0.011248084637742
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0012334476933136
'min' => '$0.001233'
'max_raw' => 0.011248084637742
'max' => '$0.011248'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.011248084637742
]
]
]
]
'prediction_2025_max_price' => '$0.000338'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767703890
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Gainer para 2026
La previsión del precio de Gainer para 2026 sugiere que el precio medio podría oscilar entre $0.000113 en el extremo inferior y $0.000338 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Gainer podría potencialmente ganar 3.13% para 2026 si GNR alcanza el objetivo de precio previsto.
Predicción de precio de Gainer 2027-2032
La predicción del precio de GNR para 2027-2032 está actualmente dentro de un rango de precios de $0.000198 en el extremo inferior y $0.001233 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Gainer alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Gainer | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.0001091 | $0.000198 | $0.000286 |
| 2028 | $0.000197 | $0.000339 | $0.000482 |
| 2029 | $0.000432 | $0.000928 | $0.001424 |
| 2030 | $0.000368 | $0.000716 | $0.001064 |
| 2031 | $0.000435 | $0.0007034 | $0.000971 |
| 2032 | $0.000664 | $0.001233 | $0.0018024 |
Predicción de precio de Gainer 2032-2037
La predicción de precio de Gainer para 2032-2037 se estima actualmente entre $0.001233 en el extremo inferior y $0.011248 en el extremo superior. Comparado con el precio actual, Gainer podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Gainer | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.000664 | $0.001233 | $0.0018024 |
| 2033 | $0.001543 | $0.003172 | $0.0048011 |
| 2034 | $0.001241 | $0.00201 | $0.00278 |
| 2035 | $0.001467 | $0.002371 | $0.003276 |
| 2036 | $0.002429 | $0.0046038 | $0.006778 |
| 2037 | $0.0063087 | $0.011248 | $0.016187 |
Gainer Histograma de precios potenciales
Pronóstico de precio de Gainer basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Gainer es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de GNR se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Gainer
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Gainer disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Gainer alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de GNR está en un estado —.
Promedios Móviles y Osciladores Populares de GNR para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Gainer
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Gainer basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Gainer
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Gainer por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.000461 | $0.000648 | $0.000911 | $0.00128 | $0.001799 | $0.002527 |
| Amazon.com acción | $0.000685 | $0.001429 | $0.002983 | $0.006224 | $0.012988 | $0.02710087 |
| Apple acción | $0.000465 | $0.00066 | $0.000937 | $0.001329 | $0.001885 | $0.002674 |
| Netflix acción | $0.000518 | $0.000817 | $0.00129 | $0.002035 | $0.003211 | $0.005067 |
| Google acción | $0.000425 | $0.00055 | $0.000713 | $0.000923 | $0.001196 | $0.001548 |
| Tesla acción | $0.000744 | $0.001687 | $0.003825 | $0.008672 | $0.01966 | $0.044567 |
| Kodak acción | $0.000246 | $0.000184 | $0.000138 | $0.0001038 | $0.000077 | $0.000058 |
| Nokia acción | $0.000217 | $0.000144 | $0.000095 | $0.000063 | $0.000041 | $0.000027 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Gainer
Podría preguntarse cosas como: "¿Debo invertir en Gainer ahora?", "¿Debería comprar GNR hoy?", "¿Será Gainer una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Gainer regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Gainer, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Gainer a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Gainer es de $0.0003283 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Gainer basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Gainer ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.000336 | $0.000345 | $0.000354 | $0.000363 |
| Si Gainer ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.000345 | $0.000363 | $0.000382 | $0.0004021 |
| Si Gainer ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.000371 | $0.000419 | $0.000473 | $0.000535 |
| Si Gainer ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.000413 | $0.000521 | $0.000656 | $0.000827 |
| Si Gainer ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.000499 | $0.000758 | $0.001152 | $0.001752 |
| Si Gainer ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.000755 | $0.001736 | $0.003993 | $0.009184 |
| Si Gainer ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.001182 | $0.004254 | $0.015313 | $0.055116 |
Cuadro de preguntas
¿Es GNR una buena inversión?
La decisión de adquirir Gainer depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Gainer ha experimentado una caída de 0% durante las últimas 24 horas, y Gainer ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Gainer dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Gainer subir?
Parece que el valor medio de Gainer podría potencialmente aumentar hasta $0.000338 para el final de este año. Mirando las perspectivas de Gainer en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.001064. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Gainer la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Gainer, el precio de Gainer aumentará en un 0.86% durante la próxima semana y alcanzará $0.000331 para el 13 de enero de 2026.
¿Cuál será el precio de Gainer el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Gainer, el precio de Gainer disminuirá en un -11.62% durante el próximo mes y alcanzará $0.00029 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Gainer este año en 2026?
Según nuestra predicción más reciente sobre el valor de Gainer en 2026, se anticipa que GNR fluctúe dentro del rango de $0.000113 y $0.000338. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Gainer no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Gainer en 5 años?
El futuro de Gainer parece estar en una tendencia alcista, con un precio máximo de $0.001064 proyectada después de un período de cinco años. Basado en el pronóstico de Gainer para 2030, el valor de Gainer podría potencialmente alcanzar su punto más alto de aproximadamente $0.001064, mientras que su punto más bajo se anticipa que esté alrededor de $0.000368.
¿Cuánto será Gainer en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Gainer, se espera que el valor de GNR en 2026 crezca en un 3.13% hasta $0.000338 si ocurre lo mejor. El precio estará entre $0.000338 y $0.000113 durante 2026.
¿Cuánto será Gainer en 2027?
Según nuestra última simulación experimental para la predicción de precios de Gainer, el valor de GNR podría disminuir en un -12.62% hasta $0.000286 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.000286 y $0.0001091 a lo largo del año.
¿Cuánto será Gainer en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Gainer sugiere que el valor de GNR en 2028 podría aumentar en un 47.02% , alcanzando $0.000482 en el mejor escenario. Se espera que el precio oscile entre $0.000482 y $0.000197 durante el año.
¿Cuánto será Gainer en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Gainer podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.001424 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.001424 y $0.000432.
¿Cuánto será Gainer en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Gainer, se espera que el valor de GNR en 2030 aumente en un 224.23% , alcanzando $0.001064 en el mejor escenario. Se pronostica que el precio oscile entre $0.001064 y $0.000368 durante el transcurso de 2030.
¿Cuánto será Gainer en 2031?
Nuestra simulación experimental indica que el precio de Gainer podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.000971 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.000971 y $0.000435 durante el año.
¿Cuánto será Gainer en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Gainer, GNR podría experimentar un 449.04% aumento en valor, alcanzando $0.0018024 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0018024 y $0.000664 a lo largo del año.
¿Cuánto será Gainer en 2033?
Según nuestra predicción experimental de precios de Gainer, se anticipa que el valor de GNR aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.0048011. A lo largo del año, el precio de GNR podría oscilar entre $0.0048011 y $0.001543.
¿Cuánto será Gainer en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Gainer sugieren que GNR podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.00278 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.00278 y $0.001241.
¿Cuánto será Gainer en 2035?
Basado en nuestra predicción experimental para el precio de Gainer, GNR podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.003276 en 2035. El rango de precios esperado para el año está entre $0.003276 y $0.001467.
¿Cuánto será Gainer en 2036?
Nuestra reciente simulación de predicción de precios de Gainer sugiere que el valor de GNR podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.006778 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.006778 y $0.002429.
¿Cuánto será Gainer en 2037?
Según la simulación experimental, el valor de Gainer podría aumentar en un 4830.69% en 2037, con un máximo de $0.016187 bajo condiciones favorables. Se espera que el precio caiga entre $0.016187 y $0.0063087 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de YodeSwap
Predicción de precios de Eggplant Finance
Predicción de precios de Axe
Predicción de precios de Instadapp DAI
Predicción de precios de dexSHARE
Predicción de precios de Xenon
Predicción de precios de MainCoin
Predicción de precios de Sing Token
Predicción de precios de Mecha Tracker
Predicción de precios de AOK
Predicción de precios de Fractionalized WAVE-999
Predicción de precios de ImageCoin
Predicción de precios de Pioneer Coin
Predicción de precios de SLT
Predicción de precios de Guncoin
Predicción de precios de Cockapoo
Predicción de precios de Babylon Finance
Predicción de precios de BoostCoin
Predicción de precios de Levin
Predicción de precios de NFTEarth
Predicción de precios de MEMEX
Predicción de precios de Atrofarm
Predicción de precios de noob.finance
Predicción de precios de Catex Token
Predicción de precios de Fabric
¿Cómo leer y predecir los movimientos de precio de Gainer?
Los traders de Gainer utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Gainer
Las medias móviles son herramientas populares para la predicción de precios de Gainer. Una media móvil simple (SMA) calcula el precio de cierre promedio de GNR durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de GNR por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de GNR.
¿Cómo leer gráficos de Gainer y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Gainer en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de GNR dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Gainer?
La acción del precio de Gainer está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de GNR. La capitalización de mercado de Gainer puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de GNR, grandes poseedores de Gainer, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Gainer.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


