Predicción del precio de dexSHARE - Pronóstico de DEXSHARE
Predicción de precio de dexSHARE hasta $0.02944 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.009862 | $0.02944 |
| 2027 | $0.009494 | $0.024942 |
| 2028 | $0.017135 | $0.041969 |
| 2029 | $0.037641 | $0.123822 |
| 2030 | $0.032012 | $0.092556 |
| 2031 | $0.037848 | $0.084493 |
| 2032 | $0.057772 | $0.156731 |
| 2033 | $0.134251 | $0.417476 |
| 2034 | $0.107931 | $0.24178 |
| 2035 | $0.1276085 | $0.284877 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en dexSHARE hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.48, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de dexSHARE para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'dexSHARE'
'name_with_ticker' => 'dexSHARE <small>DEXSHARE</small>'
'name_lang' => 'dexSHARE'
'name_lang_with_ticker' => 'dexSHARE <small>DEXSHARE</small>'
'name_with_lang' => 'dexSHARE'
'name_with_lang_with_ticker' => 'dexSHARE <small>DEXSHARE</small>'
'image' => '/uploads/coins/dexshare.png?1717112150'
'price_for_sd' => 0.02854
'ticker' => 'DEXSHARE'
'marketcap' => '$559.73'
'low24h' => '$0.02854'
'high24h' => '$0.02944'
'volume24h' => '$64.33'
'current_supply' => '19.61K'
'max_supply' => '67.16K'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02854'
'change_24h_pct' => '-2.7905%'
'ath_price' => '$414.96'
'ath_days' => 1267
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '19 jul. 2022'
'ath_pct' => '-99.99%'
'fdv' => '$1.92K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.40'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.028791'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.02523'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.009862'
'current_year_max_price_prediction' => '$0.02944'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.032012'
'grand_prediction_max_price' => '$0.092556'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.029087706086404
107 => 0.029196309022094
108 => 0.029440996981605
109 => 0.027350165157979
110 => 0.02828888726319
111 => 0.028840298553635
112 => 0.02634900228289
113 => 0.02879105363649
114 => 0.02731376842761
115 => 0.026812355639637
116 => 0.027487441902531
117 => 0.027224360129339
118 => 0.026998177869428
119 => 0.026871964282093
120 => 0.02736767312701
121 => 0.027344547716895
122 => 0.026533471833669
123 => 0.025475456407683
124 => 0.025830561112816
125 => 0.025701548244317
126 => 0.025233988965885
127 => 0.025549067466226
128 => 0.024161621208304
129 => 0.02177459203473
130 => 0.023351536623474
131 => 0.023290825972193
201 => 0.023260212908808
202 => 0.024445243183702
203 => 0.024331329866071
204 => 0.024124576079128
205 => 0.025230191770449
206 => 0.024826627170487
207 => 0.026070318175791
208 => 0.026889493508775
209 => 0.026681724146784
210 => 0.027452162506874
211 => 0.025838742008012
212 => 0.026374655578539
213 => 0.02648510662268
214 => 0.025216548644439
215 => 0.024349967493625
216 => 0.024292176410614
217 => 0.022789644117342
218 => 0.023592284740391
219 => 0.024298575273148
220 => 0.023960316918317
221 => 0.023853234428358
222 => 0.024400295646199
223 => 0.024442806988088
224 => 0.023473543887876
225 => 0.02367508437898
226 => 0.024515541730205
227 => 0.023653907010121
228 => 0.02197989149623
301 => 0.021564712503709
302 => 0.02150931997284
303 => 0.020383321616864
304 => 0.021592456749245
305 => 0.021064636861154
306 => 0.022732013563381
307 => 0.02177961693339
308 => 0.021738561018202
309 => 0.021676498980802
310 => 0.020707305681407
311 => 0.020919497418527
312 => 0.021624855070428
313 => 0.021876534627049
314 => 0.021850282387344
315 => 0.021621398433127
316 => 0.021726180335292
317 => 0.021388641319984
318 => 0.021269449268412
319 => 0.020893246367294
320 => 0.020340332031353
321 => 0.020417218160987
322 => 0.019321750183583
323 => 0.018724881088608
324 => 0.018559675589727
325 => 0.01833875589221
326 => 0.018584629057406
327 => 0.019318646860441
328 => 0.018433265659417
329 => 0.01691534169253
330 => 0.017006571509357
331 => 0.01721153782139
401 => 0.016829584454904
402 => 0.016468097648441
403 => 0.016782381098309
404 => 0.016139216703101
405 => 0.017289261165797
406 => 0.017258155686043
407 => 0.017686821143464
408 => 0.017954874451089
409 => 0.017337098360301
410 => 0.017181729344112
411 => 0.017270234596861
412 => 0.0158074399168
413 => 0.017567279610317
414 => 0.017582498777066
415 => 0.017452183031541
416 => 0.018389243339384
417 => 0.020366732865373
418 => 0.019622721761364
419 => 0.019334618174037
420 => 0.018786933043926
421 => 0.019516690961474
422 => 0.019460656939403
423 => 0.019207249841327
424 => 0.019053988437733
425 => 0.019336377273107
426 => 0.019018997335971
427 => 0.018961987178244
428 => 0.018616567650082
429 => 0.018493268594116
430 => 0.018401982881755
501 => 0.018301486281994
502 => 0.018523156738873
503 => 0.018020822320408
504 => 0.017415056256188
505 => 0.017364693362428
506 => 0.017503749740051
507 => 0.017442227644482
508 => 0.017364398818304
509 => 0.017215802393709
510 => 0.017171717008791
511 => 0.017314973122584
512 => 0.017153245322463
513 => 0.017391883501311
514 => 0.017326987121117
515 => 0.016964481216755
516 => 0.016512664643045
517 => 0.016508642527822
518 => 0.016411299388143
519 => 0.016287318264124
520 => 0.016252829551726
521 => 0.016755913022769
522 => 0.017797280751805
523 => 0.017592835348778
524 => 0.017740568104873
525 => 0.018467267048378
526 => 0.018698262789919
527 => 0.018534307484007
528 => 0.018309875348953
529 => 0.018319749223883
530 => 0.019086701769592
531 => 0.019134535659105
601 => 0.019255396466106
602 => 0.019410736758362
603 => 0.018560762607489
604 => 0.018279715517813
605 => 0.018146539814826
606 => 0.017736410195109
607 => 0.018178699828118
608 => 0.017920996599694
609 => 0.017955769569604
610 => 0.017933123627333
611 => 0.017945489843125
612 => 0.017288939704931
613 => 0.01752815206803
614 => 0.017130415118378
615 => 0.016597889990862
616 => 0.016596104779907
617 => 0.016726439550439
618 => 0.016648911328926
619 => 0.016440284878269
620 => 0.016469919280896
621 => 0.016210290731102
622 => 0.016501442887568
623 => 0.016509792089623
624 => 0.016397682650218
625 => 0.016846242718509
626 => 0.017030018144478
627 => 0.016956225309845
628 => 0.017024840642483
629 => 0.017601330978289
630 => 0.017695324057062
701 => 0.017737069573819
702 => 0.017681136111586
703 => 0.017035377827543
704 => 0.017064019953417
705 => 0.016853863038106
706 => 0.016676302590458
707 => 0.016683404077182
708 => 0.016774693228516
709 => 0.017173358306426
710 => 0.018012325460299
711 => 0.018044163650512
712 => 0.018082752465835
713 => 0.017925792360731
714 => 0.017878451691126
715 => 0.017940906253999
716 => 0.018255978206196
717 => 0.019066428808449
718 => 0.018779961437437
719 => 0.018547059005674
720 => 0.018751377228375
721 => 0.018719924039489
722 => 0.018454427471924
723 => 0.018446975867536
724 => 0.017937403069992
725 => 0.017749025609151
726 => 0.017591603303064
727 => 0.01741970225443
728 => 0.017317793550624
729 => 0.017474371636347
730 => 0.017510182897129
731 => 0.01716782217618
801 => 0.017121159674981
802 => 0.017400738830077
803 => 0.017277706467681
804 => 0.017404248303462
805 => 0.017433607094818
806 => 0.01742887965322
807 => 0.017300419736701
808 => 0.01738229625676
809 => 0.017188633878254
810 => 0.016978055128778
811 => 0.016843719006132
812 => 0.016726492922022
813 => 0.016791536766706
814 => 0.016559667336944
815 => 0.016485487639754
816 => 0.017354558334044
817 => 0.0179965502
818 => 0.017987215384013
819 => 0.017930392092407
820 => 0.017845964207266
821 => 0.018249801780529
822 => 0.018109112844992
823 => 0.018211475800549
824 => 0.018237531468898
825 => 0.018316394129526
826 => 0.018344580752226
827 => 0.018259381201559
828 => 0.017973441103273
829 => 0.017260905564714
830 => 0.016929218348062
831 => 0.016819756041879
901 => 0.01682373478881
902 => 0.016713983186538
903 => 0.016746309952129
904 => 0.016702741256712
905 => 0.016620232687992
906 => 0.016786442095091
907 => 0.016805596180911
908 => 0.01676680091924
909 => 0.016775938607772
910 => 0.016454730410806
911 => 0.016479151172394
912 => 0.016343173268633
913 => 0.016317679050915
914 => 0.015973938751157
915 => 0.015364952984183
916 => 0.015702390214765
917 => 0.015294813491076
918 => 0.01514045801002
919 => 0.015871152850138
920 => 0.01579781135451
921 => 0.015672282594777
922 => 0.015486599396646
923 => 0.01541772769225
924 => 0.014999285018467
925 => 0.014974561192995
926 => 0.015181952681024
927 => 0.015086248645204
928 => 0.01495184393296
929 => 0.014465043689599
930 => 0.01391771904204
1001 => 0.013934239332789
1002 => 0.014108333119841
1003 => 0.014614534285439
1004 => 0.014416752732671
1005 => 0.014273259946856
1006 => 0.01424638806145
1007 => 0.014582745967407
1008 => 0.015058762873497
1009 => 0.015282099355556
1010 => 0.015060779684665
1011 => 0.014806539563443
1012 => 0.014822013981587
1013 => 0.014924958352834
1014 => 0.014935776350697
1015 => 0.014770292168088
1016 => 0.014816874996163
1017 => 0.014746111420694
1018 => 0.014311835488658
1019 => 0.014303980814151
1020 => 0.014197402496784
1021 => 0.014194175347691
1022 => 0.014012859042642
1023 => 0.013987491638185
1024 => 0.013627477109398
1025 => 0.01386443976247
1026 => 0.013705497655887
1027 => 0.013465934410614
1028 => 0.013424633616832
1029 => 0.013423392065099
1030 => 0.013669369952633
1031 => 0.013861565367639
1101 => 0.01370826252188
1102 => 0.013673358435552
1103 => 0.014046042761004
1104 => 0.013998615283497
1105 => 0.013957543393851
1106 => 0.015016140780556
1107 => 0.014178178345594
1108 => 0.013812778894728
1109 => 0.013360527686806
1110 => 0.013507782960554
1111 => 0.013538811810363
1112 => 0.012451229179719
1113 => 0.012009997041917
1114 => 0.011858582799705
1115 => 0.01177144176263
1116 => 0.011811153027473
1117 => 0.011413992352083
1118 => 0.011680890894377
1119 => 0.011336983320645
1120 => 0.011279326096737
1121 => 0.011894275440542
1122 => 0.011979842049251
1123 => 0.011614788313039
1124 => 0.011849211908518
1125 => 0.011764206654066
1126 => 0.011342878628922
1127 => 0.011326786997441
1128 => 0.01111537940482
1129 => 0.010784567458945
1130 => 0.010633377522811
1201 => 0.010554636491381
1202 => 0.010587126575581
1203 => 0.010570698594796
1204 => 0.010463494907863
1205 => 0.010576843384643
1206 => 0.010287284865293
1207 => 0.010171980329756
1208 => 0.010119899946099
1209 => 0.0098629000938093
1210 => 0.010271901147155
1211 => 0.010352479507124
1212 => 0.010433216631354
1213 => 0.011135978176198
1214 => 0.011100870195401
1215 => 0.011418229243525
1216 => 0.011405897254501
1217 => 0.0113153813131
1218 => 0.01093350944548
1219 => 0.011085716765702
1220 => 0.010617246292329
1221 => 0.010968256223876
1222 => 0.010808069949643
1223 => 0.010914097083425
1224 => 0.010723450736804
1225 => 0.010828962296619
1226 => 0.010371587625533
1227 => 0.009944497593108
1228 => 0.010116371089691
1229 => 0.010303217236595
1230 => 0.010708347290596
1231 => 0.010467055172684
]
'min_raw' => 0.0098629000938093
'max_raw' => 0.029440996981605
'avg_raw' => 0.019651948537707
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.009862'
'max' => '$0.02944'
'avg' => '$0.019651'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.018683859906191
'max_diff' => 0.00089423698160499
'year' => 2026
]
1 => [
'items' => [
101 => 0.01055383294255
102 => 0.010263141939921
103 => 0.0096633633697156
104 => 0.0096667580512872
105 => 0.0095744951851476
106 => 0.009494766598204
107 => 0.010494770475027
108 => 0.010370404185222
109 => 0.010172242779076
110 => 0.010437489695824
111 => 0.010507625190646
112 => 0.010509621849585
113 => 0.010703139153031
114 => 0.01080641937257
115 => 0.010824622958905
116 => 0.011129126617095
117 => 0.01123119222682
118 => 0.011651586028411
119 => 0.01079765676752
120 => 0.010780070656336
121 => 0.010441222263896
122 => 0.010226319256429
123 => 0.010455936856675
124 => 0.010659346704564
125 => 0.010447542774872
126 => 0.010475199896665
127 => 0.010190870426071
128 => 0.010292504832863
129 => 0.010380046075626
130 => 0.010331710946809
131 => 0.010259350919523
201 => 0.010642669416692
202 => 0.010621041084845
203 => 0.010977996081863
204 => 0.011256268028136
205 => 0.011754981102916
206 => 0.011234548010882
207 => 0.011215581360474
208 => 0.011400983410558
209 => 0.011231163842732
210 => 0.011338483947626
211 => 0.011737690174855
212 => 0.011746124773376
213 => 0.011604834380792
214 => 0.011596236847563
215 => 0.011623373213006
216 => 0.011782311752996
217 => 0.011726773743436
218 => 0.011791043734149
219 => 0.011871414341674
220 => 0.012203861250827
221 => 0.01228401307513
222 => 0.01208928569603
223 => 0.012106867398093
224 => 0.012034034012923
225 => 0.011963677875449
226 => 0.012121828197802
227 => 0.012410851020355
228 => 0.012409053024376
301 => 0.012476100701407
302 => 0.012517870848745
303 => 0.012338562798755
304 => 0.012221839851552
305 => 0.012266598856784
306 => 0.012338169480874
307 => 0.012243389467996
308 => 0.011658363322141
309 => 0.011835822883178
310 => 0.011806284934893
311 => 0.011764219304596
312 => 0.011942656265474
313 => 0.011925445585297
314 => 0.011409918895311
315 => 0.011442921241381
316 => 0.011411925877282
317 => 0.011512078239741
318 => 0.011225755286487
319 => 0.011313826298493
320 => 0.011369063611609
321 => 0.011401598813388
322 => 0.011519138271808
323 => 0.011505346372997
324 => 0.011518280948013
325 => 0.011692560935583
326 => 0.012574009307044
327 => 0.012621984597096
328 => 0.01238573672274
329 => 0.012480113088762
330 => 0.012298931103843
331 => 0.012420559784133
401 => 0.012503775038154
402 => 0.012127741306606
403 => 0.012105475029462
404 => 0.011923545242041
405 => 0.012021304004771
406 => 0.011865762784163
407 => 0.011903927159099
408 => 0.011797216239667
409 => 0.011989274648713
410 => 0.012204025792886
411 => 0.012258280412683
412 => 0.012115559866078
413 => 0.012012220784593
414 => 0.011830791399516
415 => 0.012132512510317
416 => 0.0122207449579
417 => 0.012132049062832
418 => 0.012111496285901
419 => 0.012072548810755
420 => 0.01211975917687
421 => 0.012220264425041
422 => 0.012172868006044
423 => 0.012204174175809
424 => 0.012084867339447
425 => 0.012338622157181
426 => 0.012741645877165
427 => 0.012742941664326
428 => 0.012695544989844
429 => 0.012676151291822
430 => 0.012724783156111
501 => 0.012751163947504
502 => 0.012908430479055
503 => 0.013077183733185
504 => 0.013864681537394
505 => 0.013643555305195
506 => 0.014342270205544
507 => 0.014894862974944
508 => 0.015060561384535
509 => 0.014908126644424
510 => 0.01438665563287
511 => 0.014361069777234
512 => 0.015140367627879
513 => 0.014920180290969
514 => 0.014893989707874
515 => 0.01461536615343
516 => 0.014780067182305
517 => 0.014744044651272
518 => 0.014687181323753
519 => 0.015001419413673
520 => 0.015589645065775
521 => 0.01549796458155
522 => 0.015429529353011
523 => 0.015129666102749
524 => 0.015310250756288
525 => 0.015245948020034
526 => 0.015522233382507
527 => 0.015358568054248
528 => 0.014918512155332
529 => 0.014988592507677
530 => 0.014978000003402
531 => 0.015195992990788
601 => 0.015130556906893
602 => 0.01496522255781
603 => 0.015587634574445
604 => 0.015547218600122
605 => 0.015604519211333
606 => 0.015629744712469
607 => 0.016008595938864
608 => 0.016163799164432
609 => 0.01619903301385
610 => 0.016346464074291
611 => 0.01619536479476
612 => 0.016799869644844
613 => 0.017201830096314
614 => 0.017668727845392
615 => 0.018350990947079
616 => 0.0186075281846
617 => 0.018561187028818
618 => 0.019078471125956
619 => 0.020008019149933
620 => 0.018749075261259
621 => 0.020074746232988
622 => 0.019655054108946
623 => 0.018659971632781
624 => 0.018595900052568
625 => 0.019269781458572
626 => 0.020764385558406
627 => 0.020390004183057
628 => 0.020764997912218
629 => 0.020327547808187
630 => 0.020305824723403
701 => 0.020743751937072
702 => 0.02176699274198
703 => 0.021280889391176
704 => 0.020583941040368
705 => 0.021098556856887
706 => 0.020652749011172
707 => 0.019648219161018
708 => 0.020389717900675
709 => 0.019893898810134
710 => 0.020038605179947
711 => 0.02108074316074
712 => 0.020955350361735
713 => 0.021117620254707
714 => 0.020831218140955
715 => 0.020563673405242
716 => 0.0200642812879
717 => 0.019916435901689
718 => 0.019957295047518
719 => 0.019916415653926
720 => 0.019637010353924
721 => 0.019576672805991
722 => 0.019476107582654
723 => 0.019507276950468
724 => 0.019318184909201
725 => 0.019675040659481
726 => 0.019741276231336
727 => 0.02000096608709
728 => 0.020027927949402
729 => 0.020751160501225
730 => 0.02035281616511
731 => 0.020620059937171
801 => 0.020596155138802
802 => 0.018681538087393
803 => 0.018945355424268
804 => 0.019355772410005
805 => 0.019170880114237
806 => 0.018909485666157
807 => 0.018698395634248
808 => 0.018378572650843
809 => 0.01882871735833
810 => 0.019420609781122
811 => 0.020042939318016
812 => 0.020790627479947
813 => 0.020623752186253
814 => 0.020028961807909
815 => 0.020055643669787
816 => 0.020220580440991
817 => 0.020006972336196
818 => 0.019943975135967
819 => 0.020211925593067
820 => 0.020213770820602
821 => 0.019967988880634
822 => 0.019694847231981
823 => 0.0196937027585
824 => 0.019645099840357
825 => 0.020336194159353
826 => 0.020716226157284
827 => 0.020759796213394
828 => 0.020713293545359
829 => 0.020731190576661
830 => 0.020510058330499
831 => 0.021015501070495
901 => 0.021479345311822
902 => 0.02135502514656
903 => 0.021168651545678
904 => 0.021020195995608
905 => 0.021320053736948
906 => 0.021306701543746
907 => 0.021475294037023
908 => 0.021467645707691
909 => 0.021410954393286
910 => 0.021355027171185
911 => 0.021576772285089
912 => 0.021512913253402
913 => 0.021448955031001
914 => 0.021320677024461
915 => 0.021338112136022
916 => 0.021151770715171
917 => 0.021065560647481
918 => 0.019769168076312
919 => 0.019422729620447
920 => 0.019531726211067
921 => 0.019567610718794
922 => 0.019416840258829
923 => 0.019633006368666
924 => 0.019599317109425
925 => 0.019730382309576
926 => 0.019648498462711
927 => 0.019651859004348
928 => 0.019892661938502
929 => 0.019962568054736
930 => 0.019927013239808
1001 => 0.019951914613436
1002 => 0.020525756258477
1003 => 0.020444174326975
1004 => 0.020400835551853
1005 => 0.020412840688744
1006 => 0.020559469532356
1007 => 0.020600517602929
1008 => 0.020426594043514
1009 => 0.020508617399574
1010 => 0.020857862439366
1011 => 0.020980078437735
1012 => 0.021370133237524
1013 => 0.021204431025903
1014 => 0.021508584606758
1015 => 0.02244344902071
1016 => 0.023190283402271
1017 => 0.022503463640751
1018 => 0.023874929873704
1019 => 0.024942813061204
1020 => 0.024901825925815
1021 => 0.024715615791492
1022 => 0.023499859173666
1023 => 0.022381101808033
1024 => 0.023316989849332
1025 => 0.023319375620416
1026 => 0.02323898200767
1027 => 0.022739664183451
1028 => 0.023221606829722
1029 => 0.023259861686824
1030 => 0.023238449139634
1031 => 0.022855623334518
1101 => 0.022271119088141
1102 => 0.022385329818777
1103 => 0.022572409325396
1104 => 0.022218228790493
1105 => 0.022105046649037
1106 => 0.022315473783788
1107 => 0.022993513856192
1108 => 0.022865334308123
1109 => 0.022861987022109
1110 => 0.023410393485337
1111 => 0.023017852811188
1112 => 0.022386770381844
1113 => 0.02222741374548
1114 => 0.021661805041881
1115 => 0.022052472988086
1116 => 0.022066532431977
1117 => 0.021852567590371
1118 => 0.022404132449513
1119 => 0.022399049682235
1120 => 0.022922678426395
1121 => 0.023923659919254
1122 => 0.023627620436508
1123 => 0.023283358727078
1124 => 0.023320789520235
1125 => 0.023731312934096
1126 => 0.023483101106738
1127 => 0.02357235981045
1128 => 0.023731177830357
1129 => 0.023826996684997
1130 => 0.023307002661621
1201 => 0.023185767180583
1202 => 0.02293776193425
1203 => 0.022873061994719
1204 => 0.023075057093058
1205 => 0.023021838521238
1206 => 0.022065350790159
1207 => 0.021965392500414
1208 => 0.021968458078453
1209 => 0.021717108206131
1210 => 0.021333739319959
1211 => 0.022341209863053
1212 => 0.022260295878901
1213 => 0.022170973102643
1214 => 0.022181914633066
1215 => 0.022619223449478
1216 => 0.022365562251334
1217 => 0.023039962120852
1218 => 0.022901325781995
1219 => 0.022759133944169
1220 => 0.022739478700912
1221 => 0.022684746974586
1222 => 0.022497051520238
1223 => 0.022270397980364
1224 => 0.022120741680946
1225 => 0.020405214902691
1226 => 0.020723606693975
1227 => 0.021089887427522
1228 => 0.021216326068965
1229 => 0.02100004402349
1230 => 0.022505591653648
1231 => 0.022780669713496
]
'min_raw' => 0.009494766598204
'max_raw' => 0.024942813061204
'avg_raw' => 0.017218789829704
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.009494'
'max' => '$0.024942'
'avg' => '$0.017218'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00036813349560535
'max_diff' => -0.0044981839204007
'year' => 2027
]
2 => [
'items' => [
101 => 0.021947440327319
102 => 0.021791577129697
103 => 0.022515810018936
104 => 0.022079009052855
105 => 0.022275700501135
106 => 0.021850561174422
107 => 0.022714411464104
108 => 0.022707830372242
109 => 0.022371773098612
110 => 0.022655806405063
111 => 0.022606448628351
112 => 0.022227040794095
113 => 0.022726439369188
114 => 0.02272668706465
115 => 0.022403239245297
116 => 0.022025523004124
117 => 0.021957996261462
118 => 0.021907123931807
119 => 0.022263189026571
120 => 0.022582435877149
121 => 0.023176475118069
122 => 0.02332583069726
123 => 0.023908775466009
124 => 0.023561660239285
125 => 0.023715531923397
126 => 0.023882581402979
127 => 0.023962671066532
128 => 0.023832169257621
129 => 0.024737722433126
130 => 0.024814178866571
131 => 0.02483981404736
201 => 0.024534466611617
202 => 0.024805686602014
203 => 0.024678791750369
204 => 0.025008936901944
205 => 0.025060707877216
206 => 0.025016859702966
207 => 0.025033292627667
208 => 0.024260562742899
209 => 0.024220492621899
210 => 0.023674133678818
211 => 0.023896778986605
212 => 0.023480554255364
213 => 0.02361254340523
214 => 0.023670722964852
215 => 0.023640333264567
216 => 0.023909367018253
217 => 0.023680633367655
218 => 0.023076967656433
219 => 0.022473137476892
220 => 0.022465556880857
221 => 0.022306579053072
222 => 0.022191667201825
223 => 0.022213803301092
224 => 0.022291813802166
225 => 0.022187133089687
226 => 0.022209472027142
227 => 0.022580447232444
228 => 0.022654843664193
229 => 0.022402015520547
301 => 0.02138687404088
302 => 0.02113775577548
303 => 0.02131681704442
304 => 0.021231237290889
305 => 0.017135265523878
306 => 0.018097553334129
307 => 0.017525794593484
308 => 0.017789287326528
309 => 0.017205669708538
310 => 0.017484202625863
311 => 0.017432767766427
312 => 0.018980098089144
313 => 0.018955938654438
314 => 0.018967502497343
315 => 0.018415530146059
316 => 0.019294837089337
317 => 0.019728015308451
318 => 0.019647845548758
319 => 0.019668022550083
320 => 0.019321314817715
321 => 0.018970859386058
322 => 0.018582150377647
323 => 0.01930432366939
324 => 0.019224030327257
325 => 0.019408194365477
326 => 0.019876575367185
327 => 0.019945546248893
328 => 0.020038243813343
329 => 0.02000501833515
330 => 0.020796584022421
331 => 0.020700720194774
401 => 0.020931724437498
402 => 0.020456531183881
403 => 0.019918804911654
404 => 0.020021009096408
405 => 0.020011166011542
406 => 0.019885852243832
407 => 0.0197727245775
408 => 0.01958439888658
409 => 0.020180289239609
410 => 0.0201560971795
411 => 0.020547738512478
412 => 0.020478512102673
413 => 0.020016201195421
414 => 0.020032712719916
415 => 0.020143760657318
416 => 0.020528098836588
417 => 0.020642196575935
418 => 0.020589341957061
419 => 0.020714444919494
420 => 0.020813321200143
421 => 0.020726862258017
422 => 0.021950938552737
423 => 0.021442616732868
424 => 0.021690369250991
425 => 0.021749456766721
426 => 0.021598105337656
427 => 0.021630928043132
428 => 0.021680645498276
429 => 0.021982520150236
430 => 0.022774726585113
501 => 0.023125589422388
502 => 0.024181177579599
503 => 0.023096455147999
504 => 0.023032092207936
505 => 0.023222235510758
506 => 0.023841977504395
507 => 0.024344220180832
508 => 0.024510843051681
509 => 0.024532865014708
510 => 0.0248454605973
511 => 0.02502463455568
512 => 0.024807503271494
513 => 0.024623507242739
514 => 0.023964456306167
515 => 0.024040743246611
516 => 0.024566284616154
517 => 0.025308642754865
518 => 0.025945663267079
519 => 0.025722600886108
520 => 0.027424409395417
521 => 0.027593136757851
522 => 0.027569824091971
523 => 0.027954210133593
524 => 0.02719128211983
525 => 0.026865115612912
526 => 0.024663289272599
527 => 0.025281912662898
528 => 0.026181118091174
529 => 0.026062104880895
530 => 0.02540907786305
531 => 0.025945167887527
601 => 0.02576791976035
602 => 0.025628116808414
603 => 0.026268581233369
604 => 0.025564364289302
605 => 0.026174092988459
606 => 0.025392109624955
607 => 0.025723619816274
608 => 0.025535438598338
609 => 0.025657214908965
610 => 0.024945313085334
611 => 0.025329438028926
612 => 0.024929332224795
613 => 0.024929142522549
614 => 0.024920310164747
615 => 0.025391032868966
616 => 0.025406383119451
617 => 0.02505851832981
618 => 0.025008385578954
619 => 0.025193752634509
620 => 0.024976736360163
621 => 0.025078276909045
622 => 0.024979811919947
623 => 0.024957645376912
624 => 0.024781018590676
625 => 0.02470492291471
626 => 0.02473476199
627 => 0.024632905842938
628 => 0.024571533830035
629 => 0.024908101726669
630 => 0.024728287076608
701 => 0.024880542552642
702 => 0.024707028221528
703 => 0.024105551953291
704 => 0.023759636590932
705 => 0.022623503677113
706 => 0.022945709562103
707 => 0.023159332397198
708 => 0.023088730051474
709 => 0.023240411209571
710 => 0.023249723200775
711 => 0.023200410110071
712 => 0.023143311868434
713 => 0.023115519602136
714 => 0.023322660385345
715 => 0.023442912582035
716 => 0.023180772306605
717 => 0.023119356507804
718 => 0.023384394799425
719 => 0.023546068004207
720 => 0.024739772111987
721 => 0.024651338656069
722 => 0.024873289276233
723 => 0.024848301042513
724 => 0.025080940651951
725 => 0.02546120809255
726 => 0.024688018061365
727 => 0.024822217115879
728 => 0.024789314606821
729 => 0.025148535573216
730 => 0.025149657021863
731 => 0.024934286108091
801 => 0.025051042174441
802 => 0.024985872141239
803 => 0.025103643199492
804 => 0.02465015757335
805 => 0.025202454115243
806 => 0.025515570665293
807 => 0.025519918288895
808 => 0.025668333048572
809 => 0.025819131040007
810 => 0.02610857465283
811 => 0.025811058614742
812 => 0.025275856224822
813 => 0.025314496108681
814 => 0.025000707143294
815 => 0.025005981992493
816 => 0.024977824434073
817 => 0.025062327386494
818 => 0.024668701219393
819 => 0.024761084494043
820 => 0.024631747368537
821 => 0.024821935962227
822 => 0.024617324474718
823 => 0.024789298740235
824 => 0.024863517132195
825 => 0.025137384596335
826 => 0.024576874027589
827 => 0.023433955034687
828 => 0.023674210463548
829 => 0.023318853812606
830 => 0.023351743423589
831 => 0.023418185672117
901 => 0.023202824606086
902 => 0.023243908710677
903 => 0.023242440897357
904 => 0.023229792075139
905 => 0.023173768344225
906 => 0.023092522850443
907 => 0.023416179891627
908 => 0.023471175529795
909 => 0.023593424020926
910 => 0.023957152608587
911 => 0.023920807545369
912 => 0.023980087851419
913 => 0.023850679276155
914 => 0.023357746316242
915 => 0.023384514947538
916 => 0.023050709686347
917 => 0.023584887869901
918 => 0.023458387425228
919 => 0.023376831765613
920 => 0.023354578548279
921 => 0.023719208748756
922 => 0.023828311819617
923 => 0.023760326107491
924 => 0.023620885428461
925 => 0.023888652754134
926 => 0.023960295994288
927 => 0.023976334273657
928 => 0.024450766635458
929 => 0.024002849772396
930 => 0.024110667813246
1001 => 0.024951833389939
1002 => 0.024189012284793
1003 => 0.02459309563713
1004 => 0.024573317859781
1005 => 0.024780033229401
1006 => 0.024556361165903
1007 => 0.024559133849198
1008 => 0.024742683093309
1009 => 0.024484921283236
1010 => 0.02442109583415
1011 => 0.024332921433363
1012 => 0.024525447011685
1013 => 0.024640857388705
1014 => 0.025570980267911
1015 => 0.026171882066635
1016 => 0.026145795334786
1017 => 0.026384179231564
1018 => 0.02627678510272
1019 => 0.02592998113154
1020 => 0.026521933222105
1021 => 0.026334614812323
1022 => 0.026350057114433
1023 => 0.026349482351177
1024 => 0.026474032718023
1025 => 0.026385777368239
1026 => 0.02621181701459
1027 => 0.026327300015732
1028 => 0.026670243243196
1029 => 0.027734749544025
1030 => 0.028330461372802
1031 => 0.027698886943935
1101 => 0.028134538527849
1102 => 0.027873302816032
1103 => 0.027825828516106
1104 => 0.028099449905203
1105 => 0.02837355023232
1106 => 0.028356091226451
1107 => 0.028157108464171
1108 => 0.02804470815076
1109 => 0.028895840980776
1110 => 0.029522941151263
1111 => 0.029480177123768
1112 => 0.029668923633521
1113 => 0.030223089223866
1114 => 0.030273755180418
1115 => 0.030267372434436
1116 => 0.030141791574676
1117 => 0.030687439565866
1118 => 0.031142628719879
1119 => 0.030112723234022
1120 => 0.030504897760584
1121 => 0.030680957540631
1122 => 0.030939465532324
1123 => 0.03137561184528
1124 => 0.031849382423246
1125 => 0.031916378777601
1126 => 0.031868841658115
1127 => 0.03155637722631
1128 => 0.032074782645979
1129 => 0.032378452382718
1130 => 0.032559280761588
1201 => 0.033017831443428
1202 => 0.030682044825895
1203 => 0.029028658961877
1204 => 0.02877045888403
1205 => 0.02929551889555
1206 => 0.029433973033312
1207 => 0.029378162343987
1208 => 0.027517126234769
1209 => 0.028760660914065
1210 => 0.030098599669622
1211 => 0.03014999534615
1212 => 0.030819795462162
1213 => 0.03103790983597
1214 => 0.031577186722068
1215 => 0.031543454806013
1216 => 0.031674760146009
1217 => 0.031644575322235
1218 => 0.032643472195585
1219 => 0.033745403784512
1220 => 0.033707247397515
1221 => 0.033548831694144
1222 => 0.033784106027541
1223 => 0.034921417517479
1224 => 0.034816712100531
1225 => 0.03491842449431
1226 => 0.036259378837013
1227 => 0.038002810231058
1228 => 0.037192811310874
1229 => 0.038950275896763
1230 => 0.040056506694385
1231 => 0.041969618472474
]
'min_raw' => 0.017135265523878
'max_raw' => 0.041969618472474
'avg_raw' => 0.029552441998176
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.017135'
'max' => '$0.041969'
'avg' => '$0.029552'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0076404989256742
'max_diff' => 0.01702680541127
'year' => 2028
]
3 => [
'items' => [
101 => 0.041730087455583
102 => 0.04247484783173
103 => 0.041301276943717
104 => 0.038606520967029
105 => 0.038180065518607
106 => 0.03903384012592
107 => 0.041132761687892
108 => 0.038967737616506
109 => 0.039405719166414
110 => 0.039279580450576
111 => 0.039272859054464
112 => 0.039529387406165
113 => 0.039157279652404
114 => 0.037641245722675
115 => 0.038336035138626
116 => 0.038067743578599
117 => 0.038365433066909
118 => 0.039971940458837
119 => 0.039261665246513
120 => 0.038513448008402
121 => 0.03945187846769
122 => 0.040646822922055
123 => 0.040572045445623
124 => 0.040426945886783
125 => 0.041244864502796
126 => 0.04259582642878
127 => 0.042960986008768
128 => 0.043230539345357
129 => 0.043267706196332
130 => 0.04365054786044
131 => 0.041591911744009
201 => 0.04485902013031
202 => 0.045423159496576
203 => 0.045317124676899
204 => 0.045944141839891
205 => 0.045759657484648
206 => 0.045492368598611
207 => 0.046486324172328
208 => 0.04534683431514
209 => 0.043729471920646
210 => 0.042842154923226
211 => 0.044010645523249
212 => 0.044724201957981
213 => 0.045195817370627
214 => 0.045338527909535
215 => 0.041751717805542
216 => 0.039818626093098
217 => 0.041057715717833
218 => 0.042569490577408
219 => 0.041583513758333
220 => 0.041622162182939
221 => 0.040216418349088
222 => 0.042693867714364
223 => 0.042332924180472
224 => 0.0442054998728
225 => 0.043758594655467
226 => 0.045285607439591
227 => 0.04488349379776
228 => 0.04655264504313
301 => 0.047218514665374
302 => 0.048336613395453
303 => 0.049159091372779
304 => 0.049642066172562
305 => 0.049613070177176
306 => 0.051526856951006
307 => 0.050398363753096
308 => 0.048980710331095
309 => 0.04895506945333
310 => 0.049689292248889
311 => 0.051228021804192
312 => 0.051626991990278
313 => 0.051849961895786
314 => 0.051508475723862
315 => 0.050283577237367
316 => 0.049754672281274
317 => 0.050205314627717
318 => 0.049654217762156
319 => 0.050605565562584
320 => 0.051911969289498
321 => 0.051642202085971
322 => 0.052543993401603
323 => 0.05347725254207
324 => 0.054811855028228
325 => 0.055160769538297
326 => 0.05573751195541
327 => 0.056331169352634
328 => 0.056521836109106
329 => 0.056885878107633
330 => 0.056883959426605
331 => 0.057981024492018
401 => 0.059191121232445
402 => 0.059647904738152
403 => 0.060698253222337
404 => 0.058899568251771
405 => 0.060263891463749
406 => 0.061494545152178
407 => 0.060027309090937
408 => 0.0620495521792
409 => 0.062128071295816
410 => 0.063313616734527
411 => 0.062111839309369
412 => 0.06139822771052
413 => 0.06345839765772
414 => 0.064455249000425
415 => 0.064154989263357
416 => 0.061869997838618
417 => 0.060540034821527
418 => 0.057059265075093
419 => 0.061182387197807
420 => 0.063190639710659
421 => 0.061864796949767
422 => 0.062533474918694
423 => 0.066181565097595
424 => 0.067570521641374
425 => 0.067281628389807
426 => 0.067330446593734
427 => 0.068079902333412
428 => 0.071403401815961
429 => 0.069411883887903
430 => 0.07093432472315
501 => 0.071741821852597
502 => 0.07249187018873
503 => 0.070649988530397
504 => 0.068253727555521
505 => 0.067494731116585
506 => 0.061732968016702
507 => 0.061433043225284
508 => 0.06126468635121
509 => 0.060203220074725
510 => 0.059369198341491
511 => 0.058705953293982
512 => 0.056965400227581
513 => 0.05755278579302
514 => 0.054778707486834
515 => 0.056553464479833
516 => 0.052125968520698
517 => 0.055813318719219
518 => 0.053806461649404
519 => 0.055154012197537
520 => 0.055149310720621
521 => 0.052668042920219
522 => 0.051236899435685
523 => 0.052148879764968
524 => 0.053126595071048
525 => 0.05328522609003
526 => 0.054552859505343
527 => 0.054906628743868
528 => 0.053834691435231
529 => 0.052034218507995
530 => 0.052452427304576
531 => 0.051228424447771
601 => 0.049083406521809
602 => 0.050623995844655
603 => 0.051150020774405
604 => 0.051382343350362
605 => 0.049272964577152
606 => 0.048610151969768
607 => 0.048257276099133
608 => 0.051761924196817
609 => 0.051953916730904
610 => 0.050971655781507
611 => 0.055411568414588
612 => 0.054406679444072
613 => 0.055529386627913
614 => 0.052414479239744
615 => 0.052533472896751
616 => 0.051058825820586
617 => 0.051884529647285
618 => 0.051300948796251
619 => 0.051817820937852
620 => 0.052127631968384
621 => 0.053602037069474
622 => 0.055830154057103
623 => 0.053381810114449
624 => 0.052315031597703
625 => 0.052976854989702
626 => 0.054739377896662
627 => 0.057409690322594
628 => 0.055828811621396
629 => 0.056530378743926
630 => 0.05668363994965
701 => 0.055517958522698
702 => 0.057452670659516
703 => 0.05848949861121
704 => 0.059553069548335
705 => 0.060476538392459
706 => 0.059128255927621
707 => 0.060571111433697
708 => 0.059408424594083
709 => 0.058365374302593
710 => 0.058366956179333
711 => 0.057712635494948
712 => 0.056444806719241
713 => 0.056210999641017
714 => 0.057427293588516
715 => 0.058402646150944
716 => 0.058482980859609
717 => 0.059022986153594
718 => 0.059342555724077
719 => 0.062474771948575
720 => 0.06373457522512
721 => 0.065275038824823
722 => 0.065875136212679
723 => 0.067681214203304
724 => 0.066222659543392
725 => 0.065907092067981
726 => 0.061526137626332
727 => 0.062243518670726
728 => 0.063392114939777
729 => 0.061545077555754
730 => 0.062716597646515
731 => 0.062947880528619
801 => 0.061482315932223
802 => 0.062265137306466
803 => 0.060186195826837
804 => 0.055875469300268
805 => 0.057457469730427
806 => 0.058622354542611
807 => 0.056959920286363
808 => 0.059939769345597
809 => 0.058199003041763
810 => 0.057647263694966
811 => 0.055494731793833
812 => 0.056510643992617
813 => 0.057884679787933
814 => 0.057035685415234
815 => 0.058797476215731
816 => 0.06129264184168
817 => 0.063070845456413
818 => 0.06320735384991
819 => 0.062064088056026
820 => 0.06389617878695
821 => 0.063909523567786
822 => 0.061842917738994
823 => 0.060577133175768
824 => 0.06028954425977
825 => 0.061007997757062
826 => 0.061880332936607
827 => 0.063255762381231
828 => 0.064086905588253
829 => 0.066254086267872
830 => 0.066840463221838
831 => 0.067484713715862
901 => 0.068345631055372
902 => 0.069379383056129
903 => 0.067117592530006
904 => 0.067207457684114
905 => 0.065101309662811
906 => 0.062850588449869
907 => 0.064558605294132
908 => 0.066791610110046
909 => 0.066279356338024
910 => 0.066221717324277
911 => 0.066318650157671
912 => 0.065932427542211
913 => 0.064185556966562
914 => 0.063308289499459
915 => 0.064440188346821
916 => 0.065041742209173
917 => 0.06597469978867
918 => 0.065859693074651
919 => 0.068262891607106
920 => 0.069196701887867
921 => 0.068957793258053
922 => 0.069001758195596
923 => 0.070692377104321
924 => 0.072572693033119
925 => 0.074333857029979
926 => 0.076125388691339
927 => 0.073965627348899
928 => 0.072869033734769
929 => 0.074000438430504
930 => 0.073400099173273
1001 => 0.076849826617512
1002 => 0.077088678260984
1003 => 0.080538156250664
1004 => 0.083812121619069
1005 => 0.081755802630356
1006 => 0.083694818818071
1007 => 0.085792022915394
1008 => 0.089837869878232
1009 => 0.08847537095576
1010 => 0.087431718134227
1011 => 0.086445471260772
1012 => 0.08849769444215
1013 => 0.091137846779927
1014 => 0.091706510306419
1015 => 0.092627962465523
1016 => 0.091659168190034
1017 => 0.092825974185672
1018 => 0.096945312070805
1019 => 0.095832230611841
1020 => 0.094251476003338
1021 => 0.097503297638235
1022 => 0.098680119246768
1023 => 0.10693966960171
1024 => 0.11736769310984
1025 => 0.11305042290338
1026 => 0.11037055396879
1027 => 0.11100038673576
1028 => 0.11480834791005
1029 => 0.11603134418059
1030 => 0.11270681872518
1031 => 0.11388109731924
1101 => 0.12035148782507
1102 => 0.12382264473646
1103 => 0.11910834741222
1104 => 0.10610178806637
1105 => 0.094109146346253
1106 => 0.097290134966124
1107 => 0.0969295095742
1108 => 0.10388113697506
1109 => 0.095805683987165
1110 => 0.095941653904828
1111 => 0.10303703359843
1112 => 0.10114410794178
1113 => 0.098077810805609
1114 => 0.094131533708715
1115 => 0.086836475508656
1116 => 0.080375039023116
1117 => 0.093047403951212
1118 => 0.092500948532312
1119 => 0.091709600105589
1120 => 0.093470660396418
1121 => 0.102021869283
1122 => 0.1018247362406
1123 => 0.10057067640303
1124 => 0.10152186973705
1125 => 0.097911062015202
1126 => 0.098841649381685
1127 => 0.094107246650532
1128 => 0.096247394411137
1129 => 0.098071231909098
1130 => 0.09843739428919
1201 => 0.09926237682825
1202 => 0.092212991357678
1203 => 0.095377958474881
1204 => 0.097237080138923
1205 => 0.088837500825356
1206 => 0.097071047462601
1207 => 0.092090277240103
1208 => 0.090399729017928
1209 => 0.092675829486294
1210 => 0.091788830920191
1211 => 0.09102624163936
1212 => 0.090600703717709
1213 => 0.092272020697635
1214 => 0.092194051762866
1215 => 0.08945945279506
1216 => 0.085892279918072
1217 => 0.087089540224047
1218 => 0.086654564330511
1219 => 0.085078155579329
1220 => 0.086140464741307
1221 => 0.081462592814319
1222 => 0.073414557298561
1223 => 0.078731336078265
1224 => 0.078526645878789
1225 => 0.078423431798252
1226 => 0.082418844106228
1227 => 0.082034777402661
1228 => 0.081337692574896
1229 => 0.085065353069807
1230 => 0.083704706845055
1231 => 0.08789789790117
]
'min_raw' => 0.037641245722675
'max_raw' => 0.12382264473646
'avg_raw' => 0.080731945229569
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.037641'
'max' => '$0.123822'
'avg' => '$0.080731'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.020505980198797
'max_diff' => 0.081853026263989
'year' => 2029
]
4 => [
'items' => [
101 => 0.090659804729321
102 => 0.089959295819376
103 => 0.092556882540706
104 => 0.087117122683371
105 => 0.088923992702693
106 => 0.089296386109461
107 => 0.085019354317929
108 => 0.082097615465198
109 => 0.081902768793982
110 => 0.076836876263761
111 => 0.079543035162949
112 => 0.081924343005771
113 => 0.080783881346013
114 => 0.080422845254856
115 => 0.0822673003454
116 => 0.082410630302625
117 => 0.079142692088472
118 => 0.079822199925338
119 => 0.082655860563851
120 => 0.079750798947672
121 => 0.074106738766557
122 => 0.072706933806404
123 => 0.072520174021195
124 => 0.068723791949327
125 => 0.072800475467269
126 => 0.071020893863361
127 => 0.076642570827444
128 => 0.073431499095218
129 => 0.07329307621073
130 => 0.073083829718603
131 => 0.069816126842778
201 => 0.070531546099232
202 => 0.072909708669116
203 => 0.073758263865969
204 => 0.073669752606929
205 => 0.072898054375121
206 => 0.073251333873909
207 => 0.072113297517577
208 => 0.071711433193978
209 => 0.070443038847209
210 => 0.068578849560341
211 => 0.068838076514417
212 => 0.065144629745469
213 => 0.06313224391969
214 => 0.062575242045933
215 => 0.061830395861635
216 => 0.06265937440441
217 => 0.06513416667483
218 => 0.062149042140234
219 => 0.057031255507809
220 => 0.057338843204702
221 => 0.058029901436013
222 => 0.056742118993772
223 => 0.055523340987579
224 => 0.056582969581379
225 => 0.054414495918631
226 => 0.058291951118151
227 => 0.058187076821446
228 => 0.059632352339606
301 => 0.060536112781151
302 => 0.058453237559308
303 => 0.057929400073708
304 => 0.058227801712592
305 => 0.053295887319703
306 => 0.05922930971448
307 => 0.059280622197741
308 => 0.05884125356335
309 => 0.062000617814705
310 => 0.068667861815484
311 => 0.066159376433122
312 => 0.0651880150737
313 => 0.063341456419377
314 => 0.065801886188458
315 => 0.065612963570876
316 => 0.064758583847396
317 => 0.064241852324808
318 => 0.06519394599903
319 => 0.064123877382217
320 => 0.063931663655119
321 => 0.062767057599499
322 => 0.062351346223842
323 => 0.062043570071252
324 => 0.061704738768711
325 => 0.062452116190617
326 => 0.06075846062689
327 => 0.058716078048138
328 => 0.058546276035601
329 => 0.059015114321362
330 => 0.058807688280818
331 => 0.058545282959521
401 => 0.058044279739328
402 => 0.057895642786137
403 => 0.05837864077561
404 => 0.057833364206027
405 => 0.058637949487199
406 => 0.058419146810454
407 => 0.057196932844545
408 => 0.055673601721455
409 => 0.055660040879165
410 => 0.055331841687459
411 => 0.054913830671743
412 => 0.054797549569967
413 => 0.056493730616753
414 => 0.060004774621174
415 => 0.059315472670943
416 => 0.05981356397249
417 => 0.062263680197018
418 => 0.063042498467231
419 => 0.062489711706356
420 => 0.061733023093668
421 => 0.061766313552366
422 => 0.064352147607142
423 => 0.06451342290529
424 => 0.064920913554326
425 => 0.065444654195181
426 => 0.062578907002212
427 => 0.06163133711729
428 => 0.061182325936638
429 => 0.059799545289426
430 => 0.061290755666791
501 => 0.060421891239895
502 => 0.060539130735719
503 => 0.060462778360261
504 => 0.060504471920186
505 => 0.0582908672904
506 => 0.05909738847386
507 => 0.057756390579001
508 => 0.055960944931864
509 => 0.05595492596849
510 => 0.056394358747021
511 => 0.056132966935345
512 => 0.055429568291121
513 => 0.055529482748585
514 => 0.054654126966268
515 => 0.055635766789386
516 => 0.055663916707037
517 => 0.055285931904854
518 => 0.05679828349256
519 => 0.057417895172004
520 => 0.057169097477988
521 => 0.057400438862548
522 => 0.059344116278987
523 => 0.059661020506458
524 => 0.059801768430782
525 => 0.059613184857714
526 => 0.057435965717661
527 => 0.057532534644773
528 => 0.056823975932115
529 => 0.056225318485997
530 => 0.056249261644297
531 => 0.056557049391622
601 => 0.057901176535705
602 => 0.060729812869804
603 => 0.060837157550976
604 => 0.060967262436023
605 => 0.060438060483062
606 => 0.060278448110268
607 => 0.060489018029432
608 => 0.061551305113887
609 => 0.064283795903234
610 => 0.063317951161355
611 => 0.062532704351939
612 => 0.063221577504817
613 => 0.063115530882497
614 => 0.062220390668574
615 => 0.062195267064126
616 => 0.060477206799968
617 => 0.059842079038648
618 => 0.0593113187428
619 => 0.058731742355583
620 => 0.058388150045664
621 => 0.058916063993612
622 => 0.059036804159602
623 => 0.057882511086058
624 => 0.057725185205393
625 => 0.058667805846396
626 => 0.05825299364673
627 => 0.058679638280934
628 => 0.058778623495759
629 => 0.058762684596349
630 => 0.05832957301902
701 => 0.058605625422837
702 => 0.057952679192629
703 => 0.057242698236631
704 => 0.056789774620081
705 => 0.056394538693041
706 => 0.05661383855661
707 => 0.055832074585561
708 => 0.055581972557422
709 => 0.058512105079799
710 => 0.060676625478312
711 => 0.060645152494474
712 => 0.060453568799551
713 => 0.060168914290229
714 => 0.061530480863527
715 => 0.061056138294773
716 => 0.061401262146189
717 => 0.061489110651177
718 => 0.061755001617498
719 => 0.061850034783857
720 => 0.061562778550342
721 => 0.060598711545272
722 => 0.058196348229376
723 => 0.05707804162077
724 => 0.056708981813061
725 => 0.056722396436126
726 => 0.056352361246455
727 => 0.056461353193627
728 => 0.05631445829516
729 => 0.056036274895155
730 => 0.05659666151556
731 => 0.056661240853199
801 => 0.056530439919875
802 => 0.056561248274736
803 => 0.055478272412623
804 => 0.05556060871532
805 => 0.055102149719114
806 => 0.055016194184132
807 => 0.053857249764316
808 => 0.051804011732932
809 => 0.052941704914957
810 => 0.051567531534941
811 => 0.051047111253804
812 => 0.053510699922746
813 => 0.053263423949697
814 => 0.05284019497212
815 => 0.052214151105635
816 => 0.051981945345793
817 => 0.0505711366564
818 => 0.050487778552659
819 => 0.051187013434161
820 => 0.050864340595551
821 => 0.050411185724383
822 => 0.048769904716583
823 => 0.04692456145435
824 => 0.046980260768023
825 => 0.047567230125907
826 => 0.049273922697559
827 => 0.048607088383733
828 => 0.048123292438011
829 => 0.048032692000229
830 => 0.049166746163924
831 => 0.050771670397245
901 => 0.051524664939363
902 => 0.050778470216908
903 => 0.049921281897729
904 => 0.049973454978889
905 => 0.050320539113896
906 => 0.05035701274898
907 => 0.049799071273577
908 => 0.049956128530742
909 => 0.049717544195492
910 => 0.048253352570454
911 => 0.048226869986959
912 => 0.047867533748895
913 => 0.047856653190416
914 => 0.047245332608844
915 => 0.047159804633622
916 => 0.045945990514405
917 => 0.046744926643442
918 => 0.046209042234113
919 => 0.045401338026902
920 => 0.045262089517137
921 => 0.045257903538786
922 => 0.046087235160235
923 => 0.046735235420584
924 => 0.046218364172845
925 => 0.046100682608863
926 => 0.047357213832114
927 => 0.047197308780419
928 => 0.047058832036928
929 => 0.050627967035114
930 => 0.047802718180973
1001 => 0.046570748421
1002 => 0.045045951898322
1003 => 0.045542433334797
1004 => 0.045647049268293
1005 => 0.041980188496484
1006 => 0.040492543538039
1007 => 0.039982039849019
1008 => 0.039688237758525
1009 => 0.039822127060497
1010 => 0.038483072114547
1011 => 0.03938293918415
1012 => 0.038223430788454
1013 => 0.038029035432549
1014 => 0.04010238007958
1015 => 0.040390873874911
1016 => 0.039160069716034
1017 => 0.039950445235126
1018 => 0.039663844084862
1019 => 0.038243307231908
1020 => 0.038189053172887
1021 => 0.037476277714359
1022 => 0.036360922142289
1023 => 0.035851174716867
1024 => 0.035585693831878
1025 => 0.035695236419144
1026 => 0.035639848334963
1027 => 0.035278403619744
1028 => 0.035660565922948
1029 => 0.034684299158628
1030 => 0.034295541866761
1031 => 0.034119949217125
1101 => 0.033253456271973
1102 => 0.034632431878871
1103 => 0.034904107445307
1104 => 0.035176318296534
1105 => 0.03754572791022
1106 => 0.037427358901802
1107 => 0.038497357089853
1108 => 0.038455778927866
1109 => 0.038150598111813
1110 => 0.03686309044869
1111 => 0.037376268055593
1112 => 0.035796787147052
1113 => 0.036980241637993
1114 => 0.036440162430569
1115 => 0.036797640314692
1116 => 0.036154862846557
1117 => 0.036510602437054
1118 => 0.034968531800608
1119 => 0.033528567937814
1120 => 0.034108051431368
1121 => 0.034738016260837
1122 => 0.036103940523179
1123 => 0.035290407301158
1124 => 0.035582984610894
1125 => 0.03460289960013
1126 => 0.032580704275482
1127 => 0.032592149681409
1128 => 0.032281078986632
1129 => 0.032012268489279
1130 => 0.035383851378028
1201 => 0.034964541748974
1202 => 0.034296426732964
1203 => 0.035190725231729
1204 => 0.035427191949228
1205 => 0.035433923824242
1206 => 0.036086380923756
1207 => 0.036434597394725
1208 => 0.03649597205699
1209 => 0.037522627400343
1210 => 0.037866748729524
1211 => 0.039284135782545
1212 => 0.036405053660017
1213 => 0.036345760858336
1214 => 0.035203309845584
1215 => 0.034478749351861
1216 => 0.035252921122478
1217 => 0.035938731626259
1218 => 0.035224619889626
1219 => 0.035317867806708
1220 => 0.034359231145351
1221 => 0.034701898643739
1222 => 0.034997050055648
1223 => 0.03483408479419
1224 => 0.034590117910179
1225 => 0.035882502985829
1226 => 0.035809581554963
1227 => 0.037013080249212
1228 => 0.037951293544396
1229 => 0.039632739495054
1230 => 0.037878062989783
1231 => 0.037814115603723
]
'min_raw' => 0.032012268489279
'max_raw' => 0.092556882540706
'avg_raw' => 0.062284575514993
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.032012'
'max' => '$0.092556'
'avg' => '$0.062284'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0056289772333954
'max_diff' => -0.031265762195757
'year' => 2030
]
5 => [
'items' => [
101 => 0.038439211559938
102 => 0.03786665303059
103 => 0.038228490257089
104 => 0.039574441923883
105 => 0.03960287976168
106 => 0.039126509338504
107 => 0.039097522154961
108 => 0.039189014305653
109 => 0.039724886689964
110 => 0.039537636413191
111 => 0.039754327174069
112 => 0.040025302288635
113 => 0.041146170253546
114 => 0.041416407725206
115 => 0.040759870771138
116 => 0.040819148707158
117 => 0.040573585863994
118 => 0.040336375234391
119 => 0.040869590087908
120 => 0.041844050713074
121 => 0.041837988644099
122 => 0.04206404456833
123 => 0.042204875536377
124 => 0.041600325926949
125 => 0.041206786361116
126 => 0.04135769447223
127 => 0.041598999828251
128 => 0.041279442397504
129 => 0.039306985901532
130 => 0.039905303201401
131 => 0.039805713946482
201 => 0.039663886737009
202 => 0.040265499408679
203 => 0.040207472398852
204 => 0.038469338170638
205 => 0.038580607884566
206 => 0.038476104850479
207 => 0.038813775532922
208 => 0.037848417705597
209 => 0.038145355271498
210 => 0.038331591729215
211 => 0.038441286433545
212 => 0.038837578923951
213 => 0.038791078574193
214 => 0.038834688396921
215 => 0.039422285542854
216 => 0.042394150267994
217 => 0.042555902307934
218 => 0.041759376105242
219 => 0.042077572612433
220 => 0.041466704900554
221 => 0.041876784487996
222 => 0.042157350526832
223 => 0.040889526547079
224 => 0.040814454239108
225 => 0.040201065258884
226 => 0.040530665752729
227 => 0.040006247667908
228 => 0.040134921522557
301 => 0.039775138207373
302 => 0.040422676542561
303 => 0.041146725018585
304 => 0.04132964825717
305 => 0.04084845596986
306 => 0.04050004104173
307 => 0.039888339202947
308 => 0.040905612993508
309 => 0.041203094850725
310 => 0.040904050447954
311 => 0.040834755325582
312 => 0.040703441193902
313 => 0.04086261423938
314 => 0.041201474700643
315 => 0.041041674364882
316 => 0.041147225301972
317 => 0.040744973973439
318 => 0.041600526058025
319 => 0.042959348668169
320 => 0.042963717505051
321 => 0.042803916307906
322 => 0.042738529100999
323 => 0.042902494826817
324 => 0.042991439506847
325 => 0.043521674597971
326 => 0.044090637976244
327 => 0.046745741804476
328 => 0.046000199274078
329 => 0.048355965343319
330 => 0.050219070446149
331 => 0.050777734202776
401 => 0.05026378983384
402 => 0.048505613910441
403 => 0.048419349411818
404 => 0.051046806524104
405 => 0.050304429544724
406 => 0.050216126165251
407 => 0.049276727398569
408 => 0.049832028416478
409 => 0.049710575938087
410 => 0.049518857259288
411 => 0.050578332918855
412 => 0.052561576773522
413 => 0.052252469620029
414 => 0.052021735469015
415 => 0.051010725584972
416 => 0.051619579352398
417 => 0.051402778187644
418 => 0.052334293576849
419 => 0.051782484495876
420 => 0.050298805308957
421 => 0.050535086109745
422 => 0.050499372742037
423 => 0.051234351318791
424 => 0.051013728993339
425 => 0.05045629269213
426 => 0.052554798261633
427 => 0.05241853298245
428 => 0.052611725993751
429 => 0.052696775532018
430 => 0.053974098892358
501 => 0.054497377403301
502 => 0.054616170786564
503 => 0.055113244900148
504 => 0.054603803129794
505 => 0.056641933437034
506 => 0.057997171163147
507 => 0.059571349521924
508 => 0.061871647203351
509 => 0.062736580410511
510 => 0.062580337968354
511 => 0.064324397417477
512 => 0.067458433479288
513 => 0.063213816261966
514 => 0.067683408498542
515 => 0.066268387200366
516 => 0.062913397157537
517 => 0.062697375351513
518 => 0.064969413560752
519 => 0.070008575633271
520 => 0.068746322687809
521 => 0.0700106402269
522 => 0.06853574665937
523 => 0.068462505762363
524 => 0.06993900793835
525 => 0.073388935752487
526 => 0.071750004366601
527 => 0.06940019434247
528 => 0.071135257497195
529 => 0.069632185220057
530 => 0.066245342696226
531 => 0.06874535746677
601 => 0.067073668786029
602 => 0.067561556414927
603 => 0.07107519737692
604 => 0.070652426800432
605 => 0.071199531073909
606 => 0.070233906351434
607 => 0.069331860595601
608 => 0.067648125205541
609 => 0.067149654163695
610 => 0.067287413626552
611 => 0.067149585896947
612 => 0.066207551420535
613 => 0.066004119165046
614 => 0.065665056493325
615 => 0.065770146193087
616 => 0.065132609173969
617 => 0.066335773250914
618 => 0.06655909110584
619 => 0.067434653585483
620 => 0.067525557386686
621 => 0.069963986429639
622 => 0.068620940688916
623 => 0.069521971724784
624 => 0.069441375028103
625 => 0.062986109964985
626 => 0.063875588535396
627 => 0.065259338057205
628 => 0.064635960773258
629 => 0.063754651141577
630 => 0.063042946361162
701 => 0.061964640843282
702 => 0.063482335152674
703 => 0.065477941780729
704 => 0.067576169264026
705 => 0.070097052103897
706 => 0.069534420400349
707 => 0.067529043112824
708 => 0.067619002873014
709 => 0.068175098712643
710 => 0.067454904073688
711 => 0.067242504614791
712 => 0.068145918288606
713 => 0.06815213960207
714 => 0.067323468631523
715 => 0.066402552492946
716 => 0.0663986938207
717 => 0.066234825688835
718 => 0.068564898435993
719 => 0.069846202850004
720 => 0.069993102336145
721 => 0.069836315344153
722 => 0.069896656434718
723 => 0.069151093627821
724 => 0.070855229114604
725 => 0.072419112358809
726 => 0.07199995824187
727 => 0.071371586634309
728 => 0.07087105838241
729 => 0.071882049692739
730 => 0.071837031841138
731 => 0.072405453202973
801 => 0.072379666326639
802 => 0.072188527602063
803 => 0.071999965068035
804 => 0.072747594201311
805 => 0.072532289017484
806 => 0.072316649405238
807 => 0.071884151150105
808 => 0.071942934846013
809 => 0.07131467173567
810 => 0.071024008473461
811 => 0.066653130408525
812 => 0.065485088967013
813 => 0.065852578582189
814 => 0.065973565705369
815 => 0.065465232573137
816 => 0.06619405170469
817 => 0.066080466015048
818 => 0.066522361488039
819 => 0.066246284381385
820 => 0.066257614682142
821 => 0.067069498586965
822 => 0.067305191938537
823 => 0.067185316397649
824 => 0.067269273117394
825 => 0.069204020287994
826 => 0.068928961110067
827 => 0.068782841403925
828 => 0.068823317561126
829 => 0.069317686944662
830 => 0.069456083380484
831 => 0.06886968795696
901 => 0.069146235428605
902 => 0.070323739463773
903 => 0.070735799235125
904 => 0.07205089622537
905 => 0.071492219649929
906 => 0.072517694683106
907 => 0.075669655324894
908 => 0.07818765958464
909 => 0.07587199880645
910 => 0.080495992963566
911 => 0.084096435687447
912 => 0.083958244698853
913 => 0.083330424230204
914 => 0.079231415911788
915 => 0.07545944734441
916 => 0.078614859217267
917 => 0.078622903011047
918 => 0.078351850332772
919 => 0.07666836542716
920 => 0.078293268707222
921 => 0.078422247628811
922 => 0.078350053730985
923 => 0.077059329800991
924 => 0.075088632925546
925 => 0.075473702377826
926 => 0.076104453995865
927 => 0.074910309594346
928 => 0.074528708102299
929 => 0.075238177878668
930 => 0.077524237322025
1001 => 0.077092071026499
1002 => 0.077080785418001
1003 => 0.078929776097292
1004 => 0.077606297808083
1005 => 0.075478559336783
1006 => 0.074941277311357
1007 => 0.073034288077635
1008 => 0.074351452333829
1009 => 0.074398854730508
1010 => 0.073677457328482
1011 => 0.075537096760109
1012 => 0.075519959855363
1013 => 0.077285410724891
1014 => 0.080660289714363
1015 => 0.079662171929467
1016 => 0.078501469540539
1017 => 0.078627670073002
1018 => 0.080011778424662
1019 => 0.079174914919128
1020 => 0.079475856870538
1021 => 0.080011322912976
1022 => 0.080334382871252
1023 => 0.078581186716617
1024 => 0.078172432827905
1025 => 0.077336265824721
1026 => 0.077118125461387
1027 => 0.077799166038283
1028 => 0.07761973590779
1029 => 0.074394870742618
1030 => 0.074057854389877
1031 => 0.074068190200267
1101 => 0.073220746557046
1102 => 0.071928191591355
1103 => 0.075324948866744
1104 => 0.075052141719942
1105 => 0.07475098374347
1106 => 0.074787873877204
1107 => 0.076262291083665
1108 => 0.075407054644064
1109 => 0.077680840889239
1110 => 0.077213418793502
1111 => 0.076734009084754
1112 => 0.076667740059828
1113 => 0.076483208223275
1114 => 0.075850379894461
1115 => 0.075086201660331
1116 => 0.074581624998173
1117 => 0.068797606691034
1118 => 0.069871086844752
1119 => 0.07110602791081
1120 => 0.071532324618098
1121 => 0.070803114601448
1122 => 0.075879173550505
1123 => 0.076806618434619
1124 => 0.073997327384906
1125 => 0.073471823732102
1126 => 0.075913625482496
1127 => 0.074440920528885
1128 => 0.075104079479321
1129 => 0.07367069255703
1130 => 0.076583224120793
1201 => 0.076561035510102
1202 => 0.075427994949289
1203 => 0.076385633072561
1204 => 0.076219219882326
1205 => 0.074940019879724
1206 => 0.076623777042543
1207 => 0.076624612165089
1208 => 0.075534085259733
1209 => 0.074260588581313
1210 => 0.074032917453861
1211 => 0.073861397842638
1212 => 0.075061896169304
1213 => 0.076138259215131
1214 => 0.078141103990388
1215 => 0.078644666753306
1216 => 0.080610105741045
1217 => 0.079439782519334
1218 => 0.079958571645296
1219 => 0.080521790628729
1220 => 0.08079181852108
1221 => 0.08035182256099
1222 => 0.083404958315912
1223 => 0.083662736519289
1224 => 0.083749167321109
1225 => 0.082719667122824
1226 => 0.083634104256423
1227 => 0.083206269404587
1228 => 0.084319376833119
1229 => 0.084493926290782
1230 => 0.084346089109918
1231 => 0.084401493862856
]
'min_raw' => 0.037848417705597
'max_raw' => 0.084493926290782
'avg_raw' => 0.06117117199819
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.037848'
'max' => '$0.084493'
'avg' => '$0.061171'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0058361492163177
'max_diff' => -0.0080629562499238
'year' => 2031
]
6 => [
'items' => [
101 => 0.081796181106086
102 => 0.081661081895528
103 => 0.079818994573364
104 => 0.080569658773168
105 => 0.079166328031906
106 => 0.079611338665869
107 => 0.079807495113102
108 => 0.079705034116848
109 => 0.080612100200737
110 => 0.079840908728073
111 => 0.077805607636095
112 => 0.075769752027696
113 => 0.075744193518904
114 => 0.075208188673049
115 => 0.07482075534368
116 => 0.074895388747852
117 => 0.075158406598743
118 => 0.074805468268046
119 => 0.074880785555328
120 => 0.076131554360666
121 => 0.076382387124502
122 => 0.075529959386301
123 => 0.072107339012689
124 => 0.071267419388011
125 => 0.0718711369579
126 => 0.071582598843884
127 => 0.05777274405979
128 => 0.061017164596841
129 => 0.059089440083836
130 => 0.059977824229769
131 => 0.058010116683834
201 => 0.058949209861143
202 => 0.058775793641486
203 => 0.063992725855681
204 => 0.063911270634813
205 => 0.063950258938528
206 => 0.062089245618696
207 => 0.065053890369207
208 => 0.066514380978486
209 => 0.066244083036407
210 => 0.066312111205088
211 => 0.065143161879049
212 => 0.063961576923201
213 => 0.062651017362545
214 => 0.065085875036186
215 => 0.064815160427284
216 => 0.065436082340064
217 => 0.067015261588642
218 => 0.067247801731714
219 => 0.067560338042191
220 => 0.067448316022734
221 => 0.070117135002723
222 => 0.069793923414811
223 => 0.070572770347357
224 => 0.068970623115852
225 => 0.067157641446192
226 => 0.067502229990758
227 => 0.06746904334291
228 => 0.067046539225947
229 => 0.066665121400587
301 => 0.06603016818517
302 => 0.068039254114145
303 => 0.06795768889445
304 => 0.06927813499211
305 => 0.06904473331822
306 => 0.067486019816901
307 => 0.067541689574536
308 => 0.067916095448605
309 => 0.06921191845365
310 => 0.069596606947905
311 => 0.06941840391018
312 => 0.069840197282434
313 => 0.070173565565963
314 => 0.069882063206217
315 => 0.074009121896141
316 => 0.072295279390556
317 => 0.073130594302939
318 => 0.073329811987581
319 => 0.072819520077467
320 => 0.072930184120587
321 => 0.073097809991768
322 => 0.074115601457066
323 => 0.076786580762341
324 => 0.077969539314676
325 => 0.081528528485524
326 => 0.077871311074483
327 => 0.077654306928382
328 => 0.078295388349228
329 => 0.080384891749779
330 => 0.082078237998851
331 => 0.082640018641157
401 => 0.082714267227026
402 => 0.083768205058463
403 => 0.084372302568665
404 => 0.083640229284409
405 => 0.08301987382727
406 => 0.080797837581151
407 => 0.081055044327043
408 => 0.082826943746582
409 => 0.085329856041036
410 => 0.087477615173318
411 => 0.086725544782156
412 => 0.092463310987769
413 => 0.093032187070382
414 => 0.092953586789731
415 => 0.094249571166036
416 => 0.091677306101699
417 => 0.090577612951406
418 => 0.083154001718437
419 => 0.085239733669734
420 => 0.088271467551687
421 => 0.087870206203992
422 => 0.085668480020439
423 => 0.087475944966574
424 => 0.086878340530727
425 => 0.086406985117544
426 => 0.088566355642079
427 => 0.086192039048301
428 => 0.088247781927407
429 => 0.085611270421016
430 => 0.086728980176353
501 => 0.086094514061686
502 => 0.086505091395118
503 => 0.084104864693347
504 => 0.085399968759413
505 => 0.084050984106292
506 => 0.084050344511923
507 => 0.084020565600938
508 => 0.085607640063021
509 => 0.085659394504252
510 => 0.084486544078836
511 => 0.084317518009167
512 => 0.084942495978884
513 => 0.084210810458334
514 => 0.084553161508226
515 => 0.084221179922877
516 => 0.084146443875413
517 => 0.08355093433393
518 => 0.083294372449583
519 => 0.083394976975221
520 => 0.083051561864031
521 => 0.082844641837672
522 => 0.083979403999594
523 => 0.083373146352654
524 => 0.083886486320242
525 => 0.083301470638507
526 => 0.081273551406415
527 => 0.080107273611182
528 => 0.076276722169972
529 => 0.077363061806915
530 => 0.078083306110107
531 => 0.077845265372199
601 => 0.078356668986763
602 => 0.07838806501525
603 => 0.078221802487012
604 => 0.078029291778862
605 => 0.077935588212644
606 => 0.078633977825339
607 => 0.079039416502222
608 => 0.078155592261558
609 => 0.077948524607986
610 => 0.078842119712571
611 => 0.079387212210154
612 => 0.083411868951293
613 => 0.083113709380439
614 => 0.083862031392421
615 => 0.083777781817809
616 => 0.084562142503411
617 => 0.085844240728813
618 => 0.08323737655627
619 => 0.083689838038043
620 => 0.083578904931574
621 => 0.084790043499781
622 => 0.084793824542191
623 => 0.084067686469692
624 => 0.084461337699038
625 => 0.084241612382074
626 => 0.084638685727486
627 => 0.083109727277591
628 => 0.084971833628698
629 => 0.086027527938292
630 => 0.086042186254805
701 => 0.086542576979045
702 => 0.087051002935549
703 => 0.08802688228449
704 => 0.087023786190166
705 => 0.085219313965915
706 => 0.085349591032096
707 => 0.084291629627249
708 => 0.0843094141496
709 => 0.084214478975488
710 => 0.084499386579385
711 => 0.083172248474902
712 => 0.083483725135379
713 => 0.083047655986707
714 => 0.083688890108876
715 => 0.08299902819322
716 => 0.083578851436271
717 => 0.083829083926527
718 => 0.084752447202691
719 => 0.082862646686566
720 => 0.07900921550594
721 => 0.079819253458445
722 => 0.078621143699583
723 => 0.078732033319291
724 => 0.078956047999054
725 => 0.0782299431289
726 => 0.078368461055931
727 => 0.078363512220842
728 => 0.07832086583362
729 => 0.078131977913393
730 => 0.077858053058727
731 => 0.078949285370092
801 => 0.07913470700385
802 => 0.079546876326814
803 => 0.080773212654831
804 => 0.08065067273666
805 => 0.08085054042733
806 => 0.080414230380808
807 => 0.078752272490982
808 => 0.07884252480032
809 => 0.077717077056678
810 => 0.079518096097658
811 => 0.079091591016464
812 => 0.078816620416038
813 => 0.078741592140128
814 => 0.079970968318702
815 => 0.080338816939442
816 => 0.080109598364399
817 => 0.079639464379613
818 => 0.080542260613038
819 => 0.080783810799188
820 => 0.080837884977838
821 => 0.08243746680946
822 => 0.080927283833089
823 => 0.081290799885429
824 => 0.084126848355556
825 => 0.081554943741088
826 => 0.082917338975689
827 => 0.082850656818518
828 => 0.083547612119599
829 => 0.082793486141228
830 => 0.082802834436542
831 => 0.08342168352806
901 => 0.082552621589045
902 => 0.082337429631299
903 => 0.082040143482907
904 => 0.082689256911925
905 => 0.083078371055745
906 => 0.086214345282093
907 => 0.088240327650113
908 => 0.088152374412369
909 => 0.088956102363788
910 => 0.08859401556037
911 => 0.087424741758458
912 => 0.089420549560572
913 => 0.088788992463838
914 => 0.088841057263551
915 => 0.088839119409105
916 => 0.089259049666753
917 => 0.088961490593166
918 => 0.088374971115315
919 => 0.088764330116431
920 => 0.089920587151355
921 => 0.093509644466059
922 => 0.095518128488052
923 => 0.093388731206008
924 => 0.094857560937396
925 => 0.09397678649611
926 => 0.093816723579358
927 => 0.094739257196334
928 => 0.095663405586284
929 => 0.095604541329047
930 => 0.094933657053489
1001 => 0.094554691549284
1002 => 0.09742434530988
1003 => 0.09953865731741
1004 => 0.099394475413024
1005 => 0.10003084744852
1006 => 0.10189925542697
1007 => 0.10207007923687
1008 => 0.10204855936316
1009 => 0.10162515472671
1010 => 0.10346484502493
1011 => 0.10499954703798
1012 => 0.1015271487867
1013 => 0.10284939258376
1014 => 0.10344299042429
1015 => 0.10431456816673
1016 => 0.10578506591163
1017 => 0.10738241649285
1018 => 0.10760829937909
1019 => 0.10744802466181
1020 => 0.10639452901441
1021 => 0.10814236908073
1022 => 0.10916621279969
1023 => 0.10977588830408
1024 => 0.1113219239429
1025 => 0.10344665628247
1026 => 0.097872150406218
1027 => 0.097001610816801
1028 => 0.098771887304159
1029 => 0.099238695096185
1030 => 0.099050525460546
1031 => 0.092775912284926
1101 => 0.096968576276992
1102 => 0.10147953020325
1103 => 0.101652814315
1104 => 0.10391109217008
1105 => 0.10464648000964
1106 => 0.10646468968223
1107 => 0.10635096017216
1108 => 0.1067936652934
1109 => 0.10669189505261
1110 => 0.11005974560186
1111 => 0.11377498488834
1112 => 0.11364633796558
1113 => 0.11311222836144
1114 => 0.11390547220281
1115 => 0.11773999729569
1116 => 0.11738697567215
1117 => 0.11772990610911
1118 => 0.12225102729798
1119 => 0.12812912796549
1120 => 0.12539816005377
1121 => 0.13132357460736
1122 => 0.13505330897611
1123 => 0.14150349890513
1124 => 0.14069590335816
1125 => 0.14320691496385
1126 => 0.13925013877881
1127 => 0.13016458086156
1128 => 0.12872675654303
1129 => 0.13160531724023
1130 => 0.13868197782844
1201 => 0.13138244801461
1202 => 0.13285913338902
1203 => 0.13243384790185
1204 => 0.13241118624558
1205 => 0.13327608949358
1206 => 0.13202150222204
1207 => 0.12691008798185
1208 => 0.12925261900638
1209 => 0.12834805528023
1210 => 0.12935173617408
1211 => 0.13476818800873
1212 => 0.13237344554055
1213 => 0.1298507788834
1214 => 0.13301476269601
1215 => 0.13704360135226
1216 => 0.13679148386967
1217 => 0.13630227057652
1218 => 0.13905994029566
1219 => 0.14361480275026
1220 => 0.14484596376882
1221 => 0.14575478166274
1222 => 0.14588009229571
1223 => 0.1471708696954
1224 => 0.14023003429947
1225 => 0.15124531832611
1226 => 0.15314735358643
1227 => 0.15278984978877
1228 => 0.15490388193074
1229 => 0.15428188004675
1230 => 0.15338069690596
1231 => 0.15673188751851
]
'min_raw' => 0.05777274405979
'max_raw' => 0.15673188751851
'avg_raw' => 0.10725231578915
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.057772'
'max' => '$0.156731'
'avg' => '$0.107252'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.019924326354193
'max_diff' => 0.072237961227731
'year' => 2032
]
7 => [
'items' => [
101 => 0.15289001790836
102 => 0.14743696767469
103 => 0.14444531646739
104 => 0.14838496410678
105 => 0.1507907694454
106 => 0.15238085373627
107 => 0.15286201228193
108 => 0.14076883159323
109 => 0.13425127792058
110 => 0.13842895510085
111 => 0.14352600958865
112 => 0.14020171990444
113 => 0.14033202576634
114 => 0.13559246228462
115 => 0.14394535578963
116 => 0.14272840946484
117 => 0.14904192915059
118 => 0.14753515700842
119 => 0.15268358722273
120 => 0.15132783300461
121 => 0.1569554929648
122 => 0.15920051888573
123 => 0.16297026681735
124 => 0.16574330874148
125 => 0.16737169199917
126 => 0.16727392997629
127 => 0.17372639570059
128 => 0.16992160209495
129 => 0.16514188460528
130 => 0.1650554345957
131 => 0.16753091801273
201 => 0.1727188521391
202 => 0.1740640079767
203 => 0.17481576658038
204 => 0.17366442210994
205 => 0.16953459134304
206 => 0.1677513513566
207 => 0.16927072349048
208 => 0.16741266193189
209 => 0.17062019746201
210 => 0.1750248288375
211 => 0.17411528987626
212 => 0.17715574225797
213 => 0.18030229060813
214 => 0.18480199606918
215 => 0.18597838570031
216 => 0.18792291302648
217 => 0.18992447038906
218 => 0.19056731667043
219 => 0.19179470968506
220 => 0.19178824071802
221 => 0.1954870721807
222 => 0.1995669978273
223 => 0.2011070753084
224 => 0.20464839855582
225 => 0.19858400659738
226 => 0.20318391756057
227 => 0.2073331523926
228 => 0.20238626357298
301 => 0.20920439733356
302 => 0.20946913001726
303 => 0.21346627923602
304 => 0.20941440274168
305 => 0.20700841141339
306 => 0.21395441822684
307 => 0.21731537212671
308 => 0.21630302545972
309 => 0.20859901733821
310 => 0.20411495417103
311 => 0.19237929595135
312 => 0.20628069005527
313 => 0.21305165361407
314 => 0.20858148217833
315 => 0.21083597663617
316 => 0.22313576737586
317 => 0.22781873133706
318 => 0.22684470756952
319 => 0.22700930155244
320 => 0.22953614390409
321 => 0.24074155444883
322 => 0.23402701271104
323 => 0.2391600282805
324 => 0.24188256123008
325 => 0.24441140156206
326 => 0.23820136895491
327 => 0.23012220777652
328 => 0.22756319829121
329 => 0.2081370117265
330 => 0.20712579435215
331 => 0.20655816739691
401 => 0.20297935973654
402 => 0.2001673972334
403 => 0.19793122024943
404 => 0.19206282406452
405 => 0.19404323550835
406 => 0.18469023681909
407 => 0.19067395393056
408 => 0.17574634218644
409 => 0.18817850082332
410 => 0.18141224209815
411 => 0.18595560285416
412 => 0.18593975149649
413 => 0.17757398387085
414 => 0.1727487836935
415 => 0.17582358904611
416 => 0.17912002446246
417 => 0.17965486001822
418 => 0.18392877458129
419 => 0.18512153226835
420 => 0.18150742079201
421 => 0.17543700061283
422 => 0.17684702076891
423 => 0.17272020968004
424 => 0.16548813198229
425 => 0.17068233644477
426 => 0.17245586622132
427 => 0.1732391580064
428 => 0.1661272402004
429 => 0.1638925212185
430 => 0.16270277558365
501 => 0.17451894133171
502 => 0.17516625756488
503 => 0.17185449619471
504 => 0.18682397162195
505 => 0.18343591829875
506 => 0.18722120395398
507 => 0.17671907621888
508 => 0.17712027164135
509 => 0.17214839606749
510 => 0.174932314168
511 => 0.17296473058443
512 => 0.1747074010967
513 => 0.17575195061645
514 => 0.18072301035445
515 => 0.1882352623404
516 => 0.17998049979983
517 => 0.17638378155052
518 => 0.17861516532368
519 => 0.18455763435992
520 => 0.19356077913921
521 => 0.18823073622469
522 => 0.19059611876015
523 => 0.19111284961561
524 => 0.18718267329936
525 => 0.19370569034593
526 => 0.19720142817408
527 => 0.20078733184475
528 => 0.20390087152725
529 => 0.19935504306297
530 => 0.20421973113866
531 => 0.2002996512827
601 => 0.1967829344015
602 => 0.19678826780937
603 => 0.19458217993876
604 => 0.19030760670448
605 => 0.18951930981636
606 => 0.19362012977928
607 => 0.19690859904045
608 => 0.1971794531195
609 => 0.19900011867014
610 => 0.20007756978866
611 => 0.21063805547391
612 => 0.21488557017743
613 => 0.22007935075557
614 => 0.22210262099619
615 => 0.22819193903792
616 => 0.22327432016899
617 => 0.22221036239342
618 => 0.20743966862493
619 => 0.20985836890205
620 => 0.21373094141559
621 => 0.20750352591932
622 => 0.21145338769824
623 => 0.21223317408291
624 => 0.20729192072371
625 => 0.20993125764181
626 => 0.20292196129619
627 => 0.18838804584654
628 => 0.19372187074857
629 => 0.1976493612225
630 => 0.19204434806011
701 => 0.20209111720974
702 => 0.19622200207994
703 => 0.194361774351
704 => 0.18710436276135
705 => 0.19052958166828
706 => 0.1951622392843
707 => 0.19229979548185
708 => 0.19823979617004
709 => 0.20665242128482
710 => 0.21264775892211
711 => 0.21310800650149
712 => 0.20925340605715
713 => 0.21543042786894
714 => 0.21547542072924
715 => 0.20850771489165
716 => 0.20424003386248
717 => 0.20327040775337
718 => 0.20569272388032
719 => 0.20863386284265
720 => 0.21327121924462
721 => 0.21607347659566
722 => 0.22338027756472
723 => 0.22535728840454
724 => 0.22752942392528
725 => 0.23043206684277
726 => 0.23391743388758
727 => 0.22629164921558
728 => 0.22659463585684
729 => 0.21949361075646
730 => 0.21190514704669
731 => 0.21766384508705
801 => 0.22519257672732
802 => 0.22346547737054
803 => 0.22327114341146
804 => 0.22359795922688
805 => 0.22229578271365
806 => 0.21640608660524
807 => 0.21344831809105
808 => 0.21726459408158
809 => 0.21929277492765
810 => 0.22243830654394
811 => 0.22205055337812
812 => 0.23015310501625
813 => 0.23330151157439
814 => 0.23249601444891
815 => 0.23264424530537
816 => 0.23834428499137
817 => 0.24468390142478
818 => 0.25062178880074
819 => 0.25666206287776
820 => 0.249380276722
821 => 0.24568303479024
822 => 0.24949764471407
823 => 0.24747355899396
824 => 0.2591045559245
825 => 0.25990986091655
826 => 0.27154001679362
827 => 0.28257841961416
828 => 0.27564539657611
829 => 0.28218292503077
830 => 0.28925379506701
831 => 0.30289465057423
901 => 0.29830089033049
902 => 0.29478214197717
903 => 0.29145694178576
904 => 0.29837615552342
905 => 0.30727761345979
906 => 0.30919490224218
907 => 0.31230164253033
908 => 0.30903528499146
909 => 0.31296925286955
910 => 0.32685788815226
911 => 0.3231050563005
912 => 0.31777543177317
913 => 0.32873917545016
914 => 0.33270691166639
915 => 0.36055456235147
916 => 0.39571337167046
917 => 0.38115739374721
918 => 0.37212202853178
919 => 0.37424555367913
920 => 0.38708436064163
921 => 0.39120777795461
922 => 0.37999890827073
923 => 0.38395807053613
924 => 0.40577344387477
925 => 0.41747669174997
926 => 0.40158210917955
927 => 0.35772958625606
928 => 0.31729555739717
929 => 0.3280204826186
930 => 0.32680460893166
1001 => 0.35024250606078
1002 => 0.32301555250198
1003 => 0.32347398457249
1004 => 0.34739655259307
1005 => 0.34101442158183
1006 => 0.33067618670519
1007 => 0.31737103795274
1008 => 0.29277523990655
1009 => 0.27099005567246
1010 => 0.3137158187838
1011 => 0.31187340618668
1012 => 0.3092053197158
1013 => 0.31514285743963
1014 => 0.34397385522707
1015 => 0.34330920741124
1016 => 0.3390810571132
1017 => 0.34228807184905
1018 => 0.33011398151631
1019 => 0.33325152179394
1020 => 0.31728915244041
1021 => 0.32450481003564
1022 => 0.33065400549628
1023 => 0.3318885475254
1024 => 0.33467003375428
1025 => 0.31090253846787
1026 => 0.32157344607447
1027 => 0.32784160456452
1028 => 0.29952183646893
1029 => 0.32728181380427
1030 => 0.31048879925284
1031 => 0.30478899789147
1101 => 0.31246302953283
1102 => 0.30947245193895
1103 => 0.30690132893635
1104 => 0.30546659812339
1105 => 0.31110156000884
1106 => 0.31083868230164
1107 => 0.30161879095808
1108 => 0.28959181855126
1109 => 0.2936284652629
1110 => 0.2921619136688
1111 => 0.28684694150284
1112 => 0.29042859101051
1113 => 0.27465681921008
1114 => 0.24752230557281
1115 => 0.26544819643422
1116 => 0.26475806913567
1117 => 0.26441007565696
1118 => 0.27788088720408
1119 => 0.27658597949833
1120 => 0.27423570933261
1121 => 0.28680377694815
1122 => 0.28221626320411
1123 => 0.29635389960905
1124 => 0.30566586131034
1125 => 0.30330404661249
1126 => 0.31206199160117
1127 => 0.29372146145026
1128 => 0.29981344987204
1129 => 0.30106900024264
1130 => 0.28664868894466
1201 => 0.27679784241338
1202 => 0.27614090325762
1203 => 0.25906089290266
1204 => 0.26818489656925
1205 => 0.27621364221893
1206 => 0.27236849610857
1207 => 0.2711512377205
1208 => 0.27736994683401
1209 => 0.27785319379177
1210 => 0.26683511194259
1211 => 0.26912612005631
1212 => 0.27868000473892
1213 => 0.26888538667505
1214 => 0.24985604371872
1215 => 0.2451365035643
1216 => 0.24450682990932
1217 => 0.23170706269909
1218 => 0.24545188580478
1219 => 0.23945190218079
1220 => 0.25840577855814
1221 => 0.24757942602308
1222 => 0.24711272360365
1223 => 0.24640723444632
1224 => 0.23538994605674
1225 => 0.23780203202886
1226 => 0.24582017317123
1227 => 0.24868113626165
1228 => 0.24838271437214
1229 => 0.24578087990535
1230 => 0.2469719864007
1231 => 0.24313501737016
]
'min_raw' => 0.13425127792058
'max_raw' => 0.41747669174997
'avg_raw' => 0.27586398483527
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.134251'
'max' => '$0.417476'
'avg' => '$0.275863'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.076478533860786
'max_diff' => 0.26074480423146
'year' => 2033
]
8 => [
'items' => [
101 => 0.24178010374588
102 => 0.23750362364928
103 => 0.23121837931506
104 => 0.23209238108938
105 => 0.21963966743965
106 => 0.21285476812775
107 => 0.21097679742175
108 => 0.20846549650789
109 => 0.21126045554229
110 => 0.21960439046649
111 => 0.20953983468336
112 => 0.19228485973968
113 => 0.19332191313484
114 => 0.19565186420986
115 => 0.19131001579574
116 => 0.1872008206555
117 => 0.1907734324404
118 => 0.18346227208845
119 => 0.19653538300891
120 => 0.19618179199548
121 => 0.20105463931087
122 => 0.20410173073808
123 => 0.19707917150593
124 => 0.19531301685006
125 => 0.1963190988093
126 => 0.1796908050984
127 => 0.19969575296072
128 => 0.19986875658056
129 => 0.19838739455397
130 => 0.20903941170718
131 => 0.23151849034792
201 => 0.22306095674443
202 => 0.21978594410285
203 => 0.21356014267719
204 => 0.22185565342537
205 => 0.22121868763004
206 => 0.21833808674144
207 => 0.21659589033599
208 => 0.21980594063168
209 => 0.2161981295803
210 => 0.21555006757945
211 => 0.21162351695273
212 => 0.21022191702566
213 => 0.20918422823896
214 => 0.208041834846
215 => 0.21056167000418
216 => 0.20485139202382
217 => 0.19796535656496
218 => 0.19739285722449
219 => 0.19897357823818
220 => 0.19827422686046
221 => 0.19738950899915
222 => 0.19570034166334
223 => 0.19519920179816
224 => 0.19682766324151
225 => 0.19498922521717
226 => 0.19770194066699
227 => 0.19696423216603
228 => 0.19284345244771
301 => 0.18770743521063
302 => 0.18766171388406
303 => 0.18655516739509
304 => 0.185145814071
305 => 0.18475376421788
306 => 0.1904725570407
307 => 0.20231028703487
308 => 0.19998625738414
309 => 0.20166560698293
310 => 0.20992634489558
311 => 0.21255218506895
312 => 0.21068842591033
313 => 0.20813719742234
314 => 0.2082494385281
315 => 0.21696775858095
316 => 0.21751150950853
317 => 0.21888539268185
318 => 0.2206512208189
319 => 0.21098915407772
320 => 0.20779435605349
321 => 0.20628048350896
322 => 0.20161834201422
323 => 0.2066460619145
324 => 0.20371662483704
325 => 0.20411190598261
326 => 0.203854478618
327 => 0.20399505136624
328 => 0.19653172880797
329 => 0.19925097128752
330 => 0.19472970325952
331 => 0.18867623290619
401 => 0.18865593955094
402 => 0.19013751784397
403 => 0.18925621710111
404 => 0.18688465946239
405 => 0.18722152803153
406 => 0.18427020489606
407 => 0.18757987209561
408 => 0.18767478150834
409 => 0.18640037935772
410 => 0.19149937832468
411 => 0.19358844236184
412 => 0.19274960356596
413 => 0.19352958719574
414 => 0.20008283130849
415 => 0.20115129603696
416 => 0.20162583749052
417 => 0.20099001480744
418 => 0.19364936846817
419 => 0.19397495734815
420 => 0.19158600217843
421 => 0.18956758680192
422 => 0.18964831283178
423 => 0.19068604071095
424 => 0.19521785922118
425 => 0.20475480411068
426 => 0.20511672419782
427 => 0.20555538190139
428 => 0.20377114056928
429 => 0.20323299631062
430 => 0.20394294749461
501 => 0.20752452256636
502 => 0.21673730603906
503 => 0.21348089305869
504 => 0.21083337861656
505 => 0.21315596254708
506 => 0.21279841895599
507 => 0.20978039122805
508 => 0.20969568524158
509 => 0.20390312510983
510 => 0.20176174751934
511 => 0.19997225212539
512 => 0.19801816987115
513 => 0.19685972440941
514 => 0.19863962314269
515 => 0.19904670704214
516 => 0.19515492735452
517 => 0.19462449216371
518 => 0.19780260346652
519 => 0.19640403517409
520 => 0.19784249734568
521 => 0.19817623290839
522 => 0.19812249379621
523 => 0.19666222787437
524 => 0.1975929578272
525 => 0.1953915040248
526 => 0.19299775366237
527 => 0.19147069006705
528 => 0.19013812454455
529 => 0.19087750934559
530 => 0.18824173753619
531 => 0.18739850108675
601 => 0.19727764746126
602 => 0.20457547910684
603 => 0.20446936574445
604 => 0.20382342794107
605 => 0.20286369538895
606 => 0.20745431215237
607 => 0.20585503306427
608 => 0.2070186422251
609 => 0.20731482959306
610 => 0.20821129954992
611 => 0.20853171050531
612 => 0.20756320605842
613 => 0.20431278684181
614 => 0.19621305119462
615 => 0.19244260238603
616 => 0.19119829147741
617 => 0.19124351981565
618 => 0.18999592033864
619 => 0.19036339429811
620 => 0.18986812789205
621 => 0.18893021313679
622 => 0.19081959575243
623 => 0.19103732949807
624 => 0.19059632501914
625 => 0.19070019753852
626 => 0.18704886880845
627 => 0.18732647140153
628 => 0.18578074488723
629 => 0.18549093979982
630 => 0.18158347777349
701 => 0.17466084239818
702 => 0.17849665439258
703 => 0.17386353290013
704 => 0.1721088995877
705 => 0.1804150607873
706 => 0.17958135257991
707 => 0.1781544065331
708 => 0.17604365592826
709 => 0.17526075799687
710 => 0.17050411800106
711 => 0.17022307033442
712 => 0.17258058955643
713 => 0.17149267555276
714 => 0.16996483226635
715 => 0.16443113875797
716 => 0.1582094351116
717 => 0.15839722923645
718 => 0.16037623740745
719 => 0.16613047057024
720 => 0.1638821921243
721 => 0.16225104031574
722 => 0.16194557461424
723 => 0.16576911740427
724 => 0.17118023150914
725 => 0.17371900518029
726 => 0.17120315757588
727 => 0.16831308731079
728 => 0.16848899249653
729 => 0.16965921089035
730 => 0.16978218429754
731 => 0.16790104565899
801 => 0.16843057516691
802 => 0.16762617142319
803 => 0.16268954713278
804 => 0.16260025925357
805 => 0.16138873203888
806 => 0.16135204747631
807 => 0.1592909374545
808 => 0.15900257391467
809 => 0.15491011486593
810 => 0.15760378380492
811 => 0.15579701210462
812 => 0.1530737809779
813 => 0.1526042949052
814 => 0.15259018158694
815 => 0.15538633105074
816 => 0.15757110917044
817 => 0.15582844167189
818 => 0.15543167006266
819 => 0.15966815281006
820 => 0.15912902176405
821 => 0.15866213775523
822 => 0.17069572559067
823 => 0.16117020182635
824 => 0.15701652976722
825 => 0.15187557183312
826 => 0.15354949365943
827 => 0.15390221358326
828 => 0.14153913647906
829 => 0.13652343763761
830 => 0.13480223880785
831 => 0.13381166454714
901 => 0.13426308167659
902 => 0.12974836443649
903 => 0.13278232908837
904 => 0.12887296557799
905 => 0.12821754806331
906 => 0.13520797429707
907 => 0.13618065127002
908 => 0.13203090911637
909 => 0.13469571536124
910 => 0.13372941957327
911 => 0.12893998039482
912 => 0.12875705904694
913 => 0.12635388682412
914 => 0.12259338764124
915 => 0.120874738607
916 => 0.11997965126798
917 => 0.12034898174897
918 => 0.12016223695608
919 => 0.11894360086345
920 => 0.12023208775042
921 => 0.11694053619375
922 => 0.11562981384205
923 => 0.11503779096432
924 => 0.11211634950313
925 => 0.11676566203879
926 => 0.11768163517881
927 => 0.11859941306888
928 => 0.12658804300832
929 => 0.12618895363218
930 => 0.12979652722808
1001 => 0.12965634355205
1002 => 0.12862740512368
1003 => 0.12428648314655
1004 => 0.12601669727714
1005 => 0.12069136711815
1006 => 0.12468146656052
1007 => 0.12286055180556
1008 => 0.12406581345019
1009 => 0.12189864433908
1010 => 0.12309804520539
1011 => 0.11789884639068
1012 => 0.1130439076922
1013 => 0.11499767674896
1014 => 0.11712164715426
1015 => 0.12172695617053
1016 => 0.11898407211341
1017 => 0.11997051694028
1018 => 0.11666609189914
1019 => 0.10984811917692
1020 => 0.1098867081621
1021 => 0.10883791159639
1022 => 0.10793159823682
1023 => 0.11929912534264
1024 => 0.11788539365302
1025 => 0.11563279723024
1026 => 0.11864798705675
1027 => 0.11944525110438
1028 => 0.11946794809099
1029 => 0.1216677527551
1030 => 0.12284178889867
1031 => 0.12304871785754
1101 => 0.12651015802644
1102 => 0.12767038711356
1103 => 0.13244920652162
1104 => 0.12274218013443
1105 => 0.12254227031387
1106 => 0.11869041696099
1107 => 0.11624751066921
1108 => 0.11885768484479
1109 => 0.12116994284005
1110 => 0.1187622652623
1111 => 0.1190766571251
1112 => 0.11584454669146
1113 => 0.11699987408656
1114 => 0.11799499767862
1115 => 0.11744554892175
1116 => 0.11662299753908
1117 => 0.12098036405308
1118 => 0.1207345043577
1119 => 0.12479218423096
1120 => 0.12795543585963
1121 => 0.13362454827708
1122 => 0.12770853393196
1123 => 0.1274929308552
1124 => 0.12960048551438
1125 => 0.12767006445792
1126 => 0.12889002392973
1127 => 0.13342799394567
1128 => 0.13352387410127
1129 => 0.13191775796041
1130 => 0.13182002564728
1201 => 0.13212849782112
1202 => 0.13393522897823
1203 => 0.1333039015967
1204 => 0.13403448962586
1205 => 0.1349481011435
1206 => 0.1387271857437
1207 => 0.13963831024678
1208 => 0.13742475006819
1209 => 0.13762460976814
1210 => 0.13679667749776
1211 => 0.13599690529854
1212 => 0.13779467640504
1213 => 0.14108013843746
1214 => 0.14105969974867
1215 => 0.14182186307993
1216 => 0.14229668452121
1217 => 0.14025840330471
1218 => 0.13893155718245
1219 => 0.13944035441514
1220 => 0.14025393227037
1221 => 0.13917652208182
1222 => 0.13252624729313
1223 => 0.13454351584282
1224 => 0.13420774371676
1225 => 0.13372956337797
1226 => 0.13575794250375
1227 => 0.13556230038881
1228 => 0.12970205948573
1229 => 0.13007721309484
1230 => 0.12972487381925
1231 => 0.13086335410052
]
'min_raw' => 0.10793159823682
'max_raw' => 0.24178010374588
'avg_raw' => 0.17485585099135
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.107931'
'max' => '$0.24178'
'avg' => '$0.174855'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.026319679683757
'max_diff' => -0.17569658800409
'year' => 2034
]
9 => [
'items' => [
101 => 0.12760858278656
102 => 0.12860972852151
103 => 0.12923763774132
104 => 0.12960748109561
105 => 0.13094360889527
106 => 0.13078682971951
107 => 0.13093386328158
108 => 0.13291498808382
109 => 0.14293483749359
110 => 0.14348019578942
111 => 0.14079465208536
112 => 0.14186747382512
113 => 0.1398078906851
114 => 0.14119050264501
115 => 0.14213645063344
116 => 0.13786189356906
117 => 0.13760878204135
118 => 0.13554069826907
119 => 0.13665196934604
120 => 0.13488385715937
121 => 0.13531769004404
122 => 0.13410465547763
123 => 0.1362878761844
124 => 0.13872905617276
125 => 0.13934579464294
126 => 0.1377234212505
127 => 0.13654871599476
128 => 0.13448632053764
129 => 0.13791613014631
130 => 0.13891911099744
131 => 0.13791086191488
201 => 0.13767722857178
202 => 0.13723449380876
203 => 0.13777115684469
204 => 0.13891364854832
205 => 0.1383748705594
206 => 0.13873074291313
207 => 0.13737452447469
208 => 0.14025907806061
209 => 0.14484044336068
210 => 0.14485517319925
211 => 0.14431639230611
212 => 0.14409593477283
213 => 0.14464875666515
214 => 0.14494863986379
215 => 0.14673636449335
216 => 0.14865466424695
217 => 0.15760653217726
218 => 0.15509288348391
219 => 0.16303551326069
220 => 0.16931710219272
221 => 0.17120067605285
222 => 0.16946787673053
223 => 0.16354006385287
224 => 0.16324921707297
225 => 0.17210787217024
226 => 0.16960489635315
227 => 0.16930717534411
228 => 0.16613992681552
301 => 0.16801216296728
302 => 0.16760267745684
303 => 0.1669562845459
304 => 0.17052838070236
305 => 0.17721502582403
306 => 0.17617284947486
307 => 0.17539491317537
308 => 0.17198622276486
309 => 0.17403901575055
310 => 0.17330805548701
311 => 0.17644872465804
312 => 0.17458826181546
313 => 0.16958593384959
314 => 0.17038257106605
315 => 0.17026216095339
316 => 0.17274019253948
317 => 0.17199634896586
318 => 0.17011691355738
319 => 0.17719217159794
320 => 0.17673274369543
321 => 0.17738410742134
322 => 0.17767085787758
323 => 0.18197744276683
324 => 0.18374171280061
325 => 0.18414223298618
326 => 0.18581815306473
327 => 0.18410053456789
328 => 0.19097223319647
329 => 0.19554151180973
330 => 0.20084896405197
331 => 0.20860457828656
401 => 0.21152076098221
402 => 0.21099397867998
403 => 0.21687419687904
404 => 0.22744081827284
405 => 0.21312979497493
406 => 0.22819933725751
407 => 0.22342849415708
408 => 0.21211691098976
409 => 0.21138857838859
410 => 0.21904891383968
411 => 0.23603880059024
412 => 0.23178302665692
413 => 0.2360457615118
414 => 0.23107305487509
415 => 0.23082611807732
416 => 0.23580424824975
417 => 0.24743592074138
418 => 0.24191014914733
419 => 0.23398760059247
420 => 0.23983748715687
421 => 0.23476977403335
422 => 0.22335079800246
423 => 0.2317797723468
424 => 0.22614355724611
425 => 0.22778850445016
426 => 0.2396349902681
427 => 0.23820958975257
428 => 0.2400541900082
429 => 0.23679851883861
430 => 0.233757208594
501 => 0.22808037717176
502 => 0.22639974725204
503 => 0.22686421289912
504 => 0.22639951708593
505 => 0.22322338207796
506 => 0.22253749602539
507 => 0.22139432255509
508 => 0.22174863981496
509 => 0.21959913924359
510 => 0.22365569093125
511 => 0.22440862267068
512 => 0.22736064270062
513 => 0.22766713121308
514 => 0.23588846497707
515 => 0.23136029249377
516 => 0.23439818153917
517 => 0.23412644414923
518 => 0.21236206729671
519 => 0.21536100639827
520 => 0.22002641452135
521 => 0.21792465448571
522 => 0.21495325753143
523 => 0.21255369517462
524 => 0.2089181128362
525 => 0.21403512516235
526 => 0.22076345223764
527 => 0.22783777269114
528 => 0.23633710518818
529 => 0.23444015311798
530 => 0.22767888358212
531 => 0.22798218919439
601 => 0.22985710514307
602 => 0.22742891863545
603 => 0.22671279903052
604 => 0.22975872130612
605 => 0.22977969689882
606 => 0.22698577486566
607 => 0.22388084180814
608 => 0.22386783202525
609 => 0.22331533917776
610 => 0.23117134212529
611 => 0.23549134941495
612 => 0.23598663128867
613 => 0.23545801299865
614 => 0.23566145719836
615 => 0.23314774014138
616 => 0.23889335191401
617 => 0.24416609345869
618 => 0.24275288608902
619 => 0.24063428734263
620 => 0.23894672139558
621 => 0.24235534918351
622 => 0.2422035683538
623 => 0.24412004066113
624 => 0.24403309840719
625 => 0.2433886608524
626 => 0.24275290910392
627 => 0.24527359292455
628 => 0.24454767646515
629 => 0.24382063245699
630 => 0.24236243439374
701 => 0.24256062772864
702 => 0.24044239478819
703 => 0.2394624033062
704 => 0.2247256827453
705 => 0.2207875494752
706 => 0.22202656637007
707 => 0.22243448290292
708 => 0.22072060225691
709 => 0.22317786684347
710 => 0.22279490476054
711 => 0.22428478619989
712 => 0.22335397295972
713 => 0.22339217385977
714 => 0.22612949712881
715 => 0.22692415371922
716 => 0.22651998496367
717 => 0.22680305090596
718 => 0.23332618607138
719 => 0.23239880484897
720 => 0.23190615205797
721 => 0.23204262024792
722 => 0.23370942114028
723 => 0.23417603438619
724 => 0.23219896127496
725 => 0.23313136038354
726 => 0.23710139744881
727 => 0.23849068573702
728 => 0.24292462705677
729 => 0.24104100997711
730 => 0.24449847064785
731 => 0.25512552601451
801 => 0.26361515317768
802 => 0.25580774118974
803 => 0.27139786032742
804 => 0.28353700434587
805 => 0.28307108377964
806 => 0.28095434323656
807 => 0.2671342505074
808 => 0.25441679513205
809 => 0.26505548656521
810 => 0.26508260677754
811 => 0.26416873374844
812 => 0.25849274685201
813 => 0.26397122170786
814 => 0.26440608314702
815 => 0.26416267638008
816 => 0.25981091053464
817 => 0.25316656842942
818 => 0.25446485697247
819 => 0.25659148009036
820 => 0.25256533886814
821 => 0.25127874279514
822 => 0.25367076967976
823 => 0.26137837870061
824 => 0.25992129986236
825 => 0.25988324964537
826 => 0.26611725081301
827 => 0.26165505135864
828 => 0.25448123254869
829 => 0.25266974868814
830 => 0.24624020134491
831 => 0.25068111259614
901 => 0.25084093308607
902 => 0.24840869137878
903 => 0.25467859555839
904 => 0.25462081728758
905 => 0.26057315815404
906 => 0.27195179829357
907 => 0.26858657449543
908 => 0.26467318535351
909 => 0.26509867925975
910 => 0.26976529720273
911 => 0.26694375346588
912 => 0.26795840026615
913 => 0.26976376141327
914 => 0.27085298061793
915 => 0.26494195737833
916 => 0.26356381510425
917 => 0.2607446196737
918 => 0.26000914420865
919 => 0.26230532006239
920 => 0.26170035885002
921 => 0.25082750079274
922 => 0.24969122662975
923 => 0.2497260745361
924 => 0.24686885912636
925 => 0.24251091981622
926 => 0.25396332412422
927 => 0.25304353578199
928 => 0.25202816063813
929 => 0.25215253829961
930 => 0.25712363885171
1001 => 0.25424014948489
1002 => 0.26190637856119
1003 => 0.26033043233104
1004 => 0.25871406902668
1005 => 0.25849063838239
1006 => 0.25786847641185
1007 => 0.25573485151859
1008 => 0.253158371249
1009 => 0.25145715580411
1010 => 0.23195593425433
1011 => 0.23557524754058
1012 => 0.23973893756563
1013 => 0.24117622667734
1014 => 0.23871764419439
1015 => 0.25583193134025
1016 => 0.25895887651917
1017 => 0.24948715560663
1018 => 0.24771538335171
1019 => 0.25594808843432
1020 => 0.25098276086224
1021 => 0.25321864756391
1022 => 0.24838588347953
1023 => 0.25820568699321
1024 => 0.25813087654311
1025 => 0.25431075118597
1026 => 0.25753949497873
1027 => 0.25697842128926
1028 => 0.25266550916959
1029 => 0.25834241400021
1030 => 0.25834522967418
1031 => 0.25466844207461
1101 => 0.25037475911062
1102 => 0.24960715000893
1103 => 0.24902885966457
1104 => 0.25307642358904
1105 => 0.25670545674732
1106 => 0.26345818774126
1107 => 0.26515598475406
1108 => 0.27178259952379
1109 => 0.26783677307244
1110 => 0.26958590683131
1111 => 0.27148483895666
1112 => 0.27239525684846
1113 => 0.27091177974948
1114 => 0.28120564011033
1115 => 0.28207475732052
1116 => 0.28236616480326
1117 => 0.27889513300733
1118 => 0.28197822164722
1119 => 0.28053574657378
1120 => 0.28428866598376
1121 => 0.28487717166692
1122 => 0.28437872828998
1123 => 0.28456552928275
1124 => 0.27578153542617
1125 => 0.27532603900544
1126 => 0.26911531298834
1127 => 0.27164622974768
1128 => 0.26691480217609
1129 => 0.26841518659814
1130 => 0.2690765417552
1201 => 0.26873108735273
1202 => 0.27178932398389
1203 => 0.26918919809094
1204 => 0.26232703835915
1205 => 0.25546300903653
1206 => 0.2553768367397
1207 => 0.25356965897924
1208 => 0.25226340045954
1209 => 0.25251503219244
1210 => 0.25340181524004
1211 => 0.25221185901673
1212 => 0.25246579650928
1213 => 0.25668285086237
1214 => 0.25752855103823
1215 => 0.25465453140428
1216 => 0.24311492785492
1217 => 0.24028308019901
1218 => 0.2423185561361
1219 => 0.24134572973961
1220 => 0.19478484016177
1221 => 0.20572363052064
1222 => 0.19922417273562
1223 => 0.20221942190863
1224 => 0.19558515853656
1225 => 0.19875137674925
1226 => 0.19816669185714
1227 => 0.21575594305187
1228 => 0.21548131108769
1229 => 0.21561276287575
1230 => 0.20933822653613
1231 => 0.21933373329737
]
'min_raw' => 0.12760858278656
'max_raw' => 0.28487717166692
'avg_raw' => 0.20624287722674
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.1276085'
'max' => '$0.284877'
'avg' => '$0.206242'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.019676984549742
'max_diff' => 0.043097067921043
'year' => 2035
]
10 => [
'items' => [
101 => 0.22425787935475
102 => 0.22334655097143
103 => 0.22357591269171
104 => 0.21963471842553
105 => 0.21565092225127
106 => 0.21123227919217
107 => 0.21944157183519
108 => 0.21852883863058
109 => 0.2206223202109
110 => 0.22594663330226
111 => 0.22673065863006
112 => 0.22778439662142
113 => 0.22740670656169
114 => 0.23640481608372
115 => 0.23531508564916
116 => 0.23794102245959
117 => 0.23253927121023
118 => 0.22642667693263
119 => 0.22758848126904
120 => 0.2274765901688
121 => 0.22605208804016
122 => 0.22476611121222
123 => 0.22262532211543
124 => 0.22939909559486
125 => 0.22912409276196
126 => 0.23357606897083
127 => 0.23278913893172
128 => 0.22753382753612
129 => 0.22772152201073
130 => 0.22898385755533
131 => 0.23335281528832
201 => 0.23464981940479
202 => 0.23404899542136
203 => 0.23547110122459
204 => 0.23659507566754
205 => 0.23561225510961
206 => 0.24952692162472
207 => 0.24374858196048
208 => 0.2465649045074
209 => 0.24723658084011
210 => 0.24551609603772
211 => 0.24588920758541
212 => 0.24645436991336
213 => 0.24988592489855
214 => 0.2588913181081
215 => 0.26287974545883
216 => 0.27487912592903
217 => 0.26254856208894
218 => 0.26181691745961
219 => 0.26397836822887
220 => 0.2710232748283
221 => 0.27673250993271
222 => 0.27862659259051
223 => 0.27887692688164
224 => 0.28243035186392
225 => 0.28446710879631
226 => 0.28199887260671
227 => 0.27990730087114
228 => 0.27241555052973
229 => 0.27328274103111
301 => 0.27925682363415
302 => 0.28769556718266
303 => 0.2949368870489
304 => 0.29240122921722
305 => 0.31174650857749
306 => 0.31366451400768
307 => 0.31339950767376
308 => 0.31776900948122
309 => 0.30909643822699
310 => 0.30538874599266
311 => 0.28035952242072
312 => 0.28739171331567
313 => 0.29761341576757
314 => 0.29626053511865
315 => 0.28883726157118
316 => 0.29493125583025
317 => 0.29291639075138
318 => 0.29132718306685
319 => 0.29860765155276
320 => 0.29060247738734
321 => 0.29753355803163
322 => 0.28864437541248
323 => 0.2924128118886
324 => 0.29027366508599
325 => 0.29165795523125
326 => 0.28356542332776
327 => 0.28793195710778
328 => 0.28338376116668
329 => 0.28338160472961
330 => 0.28328120305213
331 => 0.28863213540704
401 => 0.28880662911903
402 => 0.28485228202394
403 => 0.28428239882902
404 => 0.28638955568849
405 => 0.28392262687131
406 => 0.2850768873382
407 => 0.28395758824499
408 => 0.28370561044306
409 => 0.2816978084468
410 => 0.28083279214114
411 => 0.28117198732332
412 => 0.28001413929946
413 => 0.2793164939839
414 => 0.28314242383938
415 => 0.28109838385517
416 => 0.28282914539614
417 => 0.28085672418068
418 => 0.27401945290488
419 => 0.27008726589134
420 => 0.25717229426674
421 => 0.2608349641985
422 => 0.26326331815257
423 => 0.26246074718524
424 => 0.2641849801768
425 => 0.26429083407884
426 => 0.26373026835681
427 => 0.26308120506361
428 => 0.26276527694794
429 => 0.26511994628714
430 => 0.26648691109308
501 => 0.26350703595904
502 => 0.26280889290802
503 => 0.26582171119195
504 => 0.26765952860469
505 => 0.2812289398
506 => 0.28022367399003
507 => 0.28274669389961
508 => 0.28246264057668
509 => 0.28510716739051
510 => 0.28942985107069
511 => 0.28064062650751
512 => 0.28216613198316
513 => 0.2817921132696
514 => 0.2858755515113
515 => 0.28588829955977
516 => 0.283440074351
517 => 0.2847672969546
518 => 0.28402647770772
519 => 0.28536523821455
520 => 0.28021024805226
521 => 0.28648846962313
522 => 0.29004781669415
523 => 0.29009723823169
524 => 0.29178434049462
525 => 0.29349853410414
526 => 0.29678877946282
527 => 0.29340677094687
528 => 0.28732286685858
529 => 0.28776210508287
530 => 0.28419511434192
531 => 0.2842550761007
601 => 0.28393499553302
602 => 0.28489558141117
603 => 0.28042104263408
604 => 0.28147120794149
605 => 0.28000097036136
606 => 0.2821629359738
607 => 0.27983701836054
608 => 0.28179193290645
609 => 0.28263560921802
610 => 0.28574879297078
611 => 0.279377198589
612 => 0.26638508632555
613 => 0.26911618583746
614 => 0.26507667513611
615 => 0.26545054723102
616 => 0.26620582836404
617 => 0.2637577150993
618 => 0.2642247379613
619 => 0.26420805261828
620 => 0.26406426734628
621 => 0.2634274185355
622 => 0.26250386176317
623 => 0.26618302768835
624 => 0.26680818967229
625 => 0.2681978473214
626 => 0.27233252587138
627 => 0.27191937398181
628 => 0.27259324185521
629 => 0.27112219207117
630 => 0.26551878501143
701 => 0.26582307697358
702 => 0.26202855132963
703 => 0.26810081276943
704 => 0.26666282111055
705 => 0.26573573853339
706 => 0.26548277546284
707 => 0.26962770308121
708 => 0.27086793038841
709 => 0.27009510395912
710 => 0.26851001440571
711 => 0.27155385493792
712 => 0.27236825825502
713 => 0.27255057312368
714 => 0.27794367494823
715 => 0.27285198760578
716 => 0.27407760735613
717 => 0.28363954277975
718 => 0.27496818680742
719 => 0.27956159746027
720 => 0.27933677391177
721 => 0.28168660736923
722 => 0.27914401898176
723 => 0.27917553741209
724 => 0.28126203033081
725 => 0.27833192732745
726 => 0.27760639261769
727 => 0.27660407161253
728 => 0.27879260285811
729 => 0.28010452836109
730 => 0.29067768441195
731 => 0.2975084254153
801 => 0.29721188493354
802 => 0.29992170983625
803 => 0.29870090889843
804 => 0.29475862063919
805 => 0.30148762598687
806 => 0.29935828714132
807 => 0.2995338272486
808 => 0.29952729363704
809 => 0.3009431178193
810 => 0.29993987662779
811 => 0.29796238525873
812 => 0.29927513631517
813 => 0.30317353763571
814 => 0.31527429495221
815 => 0.32204603906024
816 => 0.31486662745405
817 => 0.31981888944385
818 => 0.31684929692134
819 => 0.31630963362228
820 => 0.31942002012115
821 => 0.32253585093985
822 => 0.3223373859868
823 => 0.32007545281211
824 => 0.31879774415616
825 => 0.32847298216284
826 => 0.33560153271278
827 => 0.33511541335568
828 => 0.33726098610342
829 => 0.34356045405085
830 => 0.34413639845246
831 => 0.34406384269579
901 => 0.34263630440282
902 => 0.34883894868635
903 => 0.35401330367281
904 => 0.34230587053354
905 => 0.34676390781142
906 => 0.34876526437445
907 => 0.35170384958472
908 => 0.3566617353985
909 => 0.36204731440653
910 => 0.36280889432814
911 => 0.3622685169288
912 => 0.35871658280087
913 => 0.36460954761478
914 => 0.36806150819574
915 => 0.37011707172499
916 => 0.375329638822
917 => 0.34877762407124
918 => 0.32998278830989
919 => 0.32704770330504
920 => 0.33301631407893
921 => 0.33459018914122
922 => 0.33395576207708
923 => 0.31280046567598
924 => 0.32693632504768
925 => 0.34214532115482
926 => 0.34272956063588
927 => 0.35034350209222
928 => 0.35282291353641
929 => 0.35895313439089
930 => 0.35856968740736
1001 => 0.36006229863231
1002 => 0.35971917316012
1003 => 0.37107411642274
1004 => 0.3836003050668
1005 => 0.3831665629849
1006 => 0.38136577516418
1007 => 0.3840402521579
1008 => 0.39696862122653
1009 => 0.39577838417558
1010 => 0.39693459808643
1011 => 0.41217787382929
1012 => 0.43199630062571
1013 => 0.42278865164125
1014 => 0.44276660050789
1015 => 0.45534166033388
1016 => 0.47708892601746
1017 => 0.47436606124634
1018 => 0.48283211218815
1019 => 0.46949156502699
1020 => 0.43885897217557
1021 => 0.43401124709998
1022 => 0.44371651546526
1023 => 0.46757597071509
1024 => 0.44296509631085
1025 => 0.44794384414956
1026 => 0.44650996443707
1027 => 0.44643355908079
1028 => 0.44934964076703
1029 => 0.44511971218855
1030 => 0.4278862222102
1031 => 0.43578422910969
1101 => 0.43273442935235
1102 => 0.43611840956075
1103 => 0.45438035508585
1104 => 0.4463063136588
1105 => 0.43780096689725
1106 => 0.44846855922377
1107 => 0.46205207003785
1108 => 0.46120203834302
1109 => 0.45955262156937
1110 => 0.4688502975618
1111 => 0.48420733433784
1112 => 0.48835827966883
1113 => 0.49142242264983
1114 => 0.49184491619779
1115 => 0.49619686232005
1116 => 0.47279535118902
1117 => 0.50993415034739
1118 => 0.51634699502342
1119 => 0.51514164600951
1120 => 0.52226925297316
1121 => 0.52017213019452
1122 => 0.51713372831675
1123 => 0.52843250143961
1124 => 0.51547936981822
1125 => 0.49709403023559
1126 => 0.48700746931977
1127 => 0.50029026639338
1128 => 0.50840160706049
1129 => 0.5137626872633
1130 => 0.51538494689342
1201 => 0.47461194388256
1202 => 0.45263755663413
1203 => 0.46672288692351
1204 => 0.48390796199413
1205 => 0.4726998872293
1206 => 0.47313922254039
1207 => 0.45715945335599
1208 => 0.48532181698855
1209 => 0.48121879749005
1210 => 0.5025052699064
1211 => 0.49742508242963
1212 => 0.51478337434907
1213 => 0.51021235434697
1214 => 0.52918640281339
1215 => 0.53675566444851
1216 => 0.54946563279536
1217 => 0.55881513725019
1218 => 0.56430534509359
1219 => 0.56397573360792
1220 => 0.58573067229414
1221 => 0.57290254501054
1222 => 0.55678739378488
1223 => 0.55649592154186
1224 => 0.56484218671509
1225 => 0.58233366883215
1226 => 0.58686895565439
1227 => 0.58940356227281
1228 => 0.58552172400641
1229 => 0.57159771124022
1230 => 0.56558539312413
1231 => 0.57070806235267
]
'min_raw' => 0.21123227919217
'max_raw' => 0.58940356227281
'avg_raw' => 0.40031792073249
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.211232'
'max' => '$0.5894035'
'avg' => '$0.400317'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.083623696405608
'max_diff' => 0.30452639060589
'year' => 2036
]
11 => [
'items' => [
101 => 0.56444347808216
102 => 0.57525790806496
103 => 0.59010843026894
104 => 0.58704185615915
105 => 0.59729295364171
106 => 0.60790176108925
107 => 0.62307283221059
108 => 0.62703911198484
109 => 0.63359522162758
110 => 0.64034361201978
111 => 0.64251101313953
112 => 0.64664925438221
113 => 0.64662744380817
114 => 0.65909831232875
115 => 0.67285406649759
116 => 0.67804654524989
117 => 0.68998636382585
118 => 0.66953984293566
119 => 0.68504876390358
120 => 0.6990381988301
121 => 0.68235941779399
122 => 0.7053472317947
123 => 0.70623979652084
124 => 0.71971646418391
125 => 0.70605527969026
126 => 0.69794331194598
127 => 0.72136225887226
128 => 0.73269394959997
129 => 0.72928075213243
130 => 0.70330615087407
131 => 0.68818781883865
201 => 0.64862022779349
202 => 0.69548974857921
203 => 0.71831852495127
204 => 0.70324702985829
205 => 0.71084821532668
206 => 0.7523178185495
207 => 0.76810675849879
208 => 0.76482276936236
209 => 0.76537770946735
210 => 0.77389713487445
211 => 0.81167695886281
212 => 0.78903841259952
213 => 0.80634473296766
214 => 0.81552394288834
215 => 0.8240501046256
216 => 0.80311254611999
217 => 0.77587309013801
218 => 0.76724521099395
219 => 0.701748466698
220 => 0.69833907671945
221 => 0.6964252828094
222 => 0.68435908291807
223 => 0.6748783550138
224 => 0.66733892818746
225 => 0.64755322073171
226 => 0.65423031618249
227 => 0.62269602809611
228 => 0.64287054810722
301 => 0.59254106289935
302 => 0.6344569537292
303 => 0.6116440400322
304 => 0.62696229802839
305 => 0.6269088540693
306 => 0.59870308444021
307 => 0.58243458515755
308 => 0.59280150607993
309 => 0.60391566823592
310 => 0.6057189036532
311 => 0.62012870499777
312 => 0.62415017081539
313 => 0.6119649416437
314 => 0.59149809618638
315 => 0.59625207758707
316 => 0.5823382458762
317 => 0.55795479099069
318 => 0.57546741398374
319 => 0.58144699344924
320 => 0.58408791639034
321 => 0.56010958896916
322 => 0.55257507789861
323 => 0.54856376742532
324 => 0.58840279522325
325 => 0.59058526709754
326 => 0.57941943241824
327 => 0.62989006395656
328 => 0.61846700563106
329 => 0.63122936049788
330 => 0.59582070360384
331 => 0.59717336198127
401 => 0.58041033635873
402 => 0.58979651060157
403 => 0.58316266517725
404 => 0.58903820047873
405 => 0.5925599721127
406 => 0.60932024708769
407 => 0.63464832914701
408 => 0.60681682091234
409 => 0.59469023421995
410 => 0.6022135004014
411 => 0.622248949647
412 => 0.65260368084988
413 => 0.63463306903188
414 => 0.64260812139593
415 => 0.64435031555209
416 => 0.63109945170571
417 => 0.65309225910073
418 => 0.66487838325297
419 => 0.67696850783842
420 => 0.68746602425836
421 => 0.67213944621145
422 => 0.68854108170031
423 => 0.6753242587747
424 => 0.6634674022804
425 => 0.6634853842374
426 => 0.65604740495749
427 => 0.64163538285695
428 => 0.63897758486152
429 => 0.65280378567662
430 => 0.66389108938424
501 => 0.66480429282221
502 => 0.67094279384098
503 => 0.6745754955123
504 => 0.71018091030968
505 => 0.72450170268463
506 => 0.74201289652199
507 => 0.74883449339845
508 => 0.76936505431876
509 => 0.75278495896497
510 => 0.74919775104149
511 => 0.69939732574412
512 => 0.70755214259669
513 => 0.72060879120045
514 => 0.69961262507053
515 => 0.71292985982871
516 => 0.71555896406757
517 => 0.69889918337972
518 => 0.70779789207173
519 => 0.684165560069
520 => 0.63516344940496
521 => 0.65314681245789
522 => 0.6663886207994
523 => 0.64749092759287
524 => 0.68136431122386
525 => 0.66157617979521
526 => 0.65530429213015
527 => 0.63083542225935
528 => 0.64238378694519
529 => 0.65800311553945
530 => 0.64835218641004
531 => 0.66837931344786
601 => 0.69674306637309
602 => 0.7169567657983
603 => 0.71850852264567
604 => 0.70551246812794
605 => 0.72633872843231
606 => 0.72649042500208
607 => 0.70299831830098
608 => 0.68860953375115
609 => 0.68534037162717
610 => 0.69350737956987
611 => 0.70342363492514
612 => 0.71905880580425
613 => 0.72850681211065
614 => 0.75314220172238
615 => 0.75980783179935
616 => 0.76713133836116
617 => 0.77691780161353
618 => 0.78866895994567
619 => 0.76295809450876
620 => 0.76397963512362
621 => 0.74003803321993
622 => 0.71445299801282
623 => 0.73386885051536
624 => 0.7592524948798
625 => 0.75342945881616
626 => 0.75277424830517
627 => 0.75387613064442
628 => 0.74948575161501
629 => 0.72962822998006
630 => 0.71965590692965
701 => 0.73252274787562
702 => 0.7393609012012
703 => 0.74996628065953
704 => 0.74865894378889
705 => 0.77597726233896
706 => 0.78659233486444
707 => 0.78387654506786
708 => 0.78437631574956
709 => 0.80359439751499
710 => 0.82496885693812
711 => 0.84498885879622
712 => 0.86535406456536
713 => 0.84080301414315
714 => 0.82833750483703
715 => 0.84119872852276
716 => 0.83437438220028
717 => 0.87358910040184
718 => 0.87630424240716
719 => 0.91551612493825
720 => 0.95273287072437
721 => 0.92935769950336
722 => 0.95139943312394
723 => 0.9752393651235
724 => 1.0212304618402
725 => 1.0057422784523
726 => 0.99387857270796
727 => 0.98266742810455
728 => 1.0059960403052
729 => 1.0360079272176
730 => 1.0424722002082
731 => 1.0529467919954
801 => 1.0419340395033
802 => 1.0551976868651
803 => 1.1020241903944
804 => 1.0893712557918
805 => 1.0714020545954
806 => 1.1083670818665
807 => 1.121744581538
808 => 1.2156348800837
809 => 1.3341752604123
810 => 1.2850987645781
811 => 1.2546353999253
812 => 1.2617950132194
813 => 1.3050819472703
814 => 1.3189843366288
815 => 1.2811928499113
816 => 1.294541441909
817 => 1.3680934962209
818 => 1.4075518135269
819 => 1.3539621186664
820 => 1.2061102759445
821 => 1.0697841246329
822 => 1.1059439588074
823 => 1.1018445557823
824 => 1.1808670623348
825 => 1.0890694874861
826 => 1.0906151232186
827 => 1.1712717315203
828 => 1.1497539312297
829 => 1.1148978505506
830 => 1.0700386125959
831 => 0.98711216225941
901 => 0.91366189262119
902 => 1.0577147859686
903 => 1.0515029632643
904 => 1.0425073234479
905 => 1.0625261464294
906 => 1.1597318683857
907 => 1.1574909618704
908 => 1.1432354579406
909 => 1.1540481320291
910 => 1.1130023365044
911 => 1.1235807726065
912 => 1.0697625298741
913 => 1.0940906232375
914 => 1.1148230650562
915 => 1.1189854097003
916 => 1.1283633847182
917 => 1.0482296149665
918 => 1.0842073249811
919 => 1.1053408589592
920 => 1.0098587836018
921 => 1.1034534853276
922 => 1.0468346643167
923 => 1.0276173860794
924 => 1.053490919542
925 => 1.0434079783888
926 => 1.0347392576754
927 => 1.0299019625698
928 => 1.0489006299871
929 => 1.0480143194438
930 => 1.0169288120667
1001 => 0.97637903490069
1002 => 0.98998887111866
1003 => 0.98504429002777
1004 => 0.96712449029075
1005 => 0.97920027166864
1006 => 0.92602464189355
1007 => 0.83453873469423
1008 => 0.89497712727922
1009 => 0.89265031490902
1010 => 0.89147703059942
1011 => 0.93689481223257
1012 => 0.93252894049504
1013 => 0.92460484054069
1014 => 0.96697895798094
1015 => 0.95151183510294
1016 => 0.99917786330045
1017 => 1.0305737923167
1018 => 1.0226107691663
1019 => 1.0521387921558
1020 => 0.99030241425712
1021 => 1.0108419785502
1022 => 1.0150751542844
1023 => 0.96645606794929
1024 => 0.93324325110495
1025 => 0.93102833487526
1026 => 0.87344188747526
1027 => 0.90420410285478
1028 => 0.93127357936179
1029 => 0.91830940079117
1030 => 0.91420532914953
1031 => 0.93517214110213
1101 => 0.93680144195945
1102 => 0.89965320974704
1103 => 0.90737750355551
1104 => 0.93958909279387
1105 => 0.90656585415313
1106 => 0.84240709578958
1107 => 0.82649483665118
1108 => 0.824371847961
1109 => 0.78121653916048
1110 => 0.82755816989424
1111 => 0.80732880620046
1112 => 0.87123312372411
1113 => 0.83473132028033
1114 => 0.8331578004891
1115 => 0.83077919453949
1116 => 0.79363363753153
1117 => 0.80176615379297
1118 => 0.82879987646321
1119 => 0.83844581326863
1120 => 0.837439663033
1121 => 0.82866739647393
1122 => 0.8326832951834
1123 => 0.81974668620834
1124 => 0.81517850032701
1125 => 0.80076004910703
1126 => 0.77956890901247
1127 => 0.78251566701543
1128 => 0.74053047352468
1129 => 0.71765471178804
1130 => 0.71132300243703
1201 => 0.70285597607252
1202 => 0.7122793755948
1203 => 0.74041153474668
1204 => 0.70647818223901
1205 => 0.64830182951254
1206 => 0.65179832743908
1207 => 0.65965392016047
1208 => 0.64501507509411
1209 => 0.63116063678393
1210 => 0.64320594684852
1211 => 0.618555859273
1212 => 0.66263276547678
1213 => 0.66144060868807
1214 => 0.67786975362325
1215 => 0.68814323511121
1216 => 0.66446618636059
1217 => 0.65851147262936
1218 => 0.66190354819732
1219 => 0.60584009500065
1220 => 0.6732881734193
1221 => 0.67387146720231
1222 => 0.66887695170428
1223 => 0.70479097123641
1224 => 0.78058075431282
1225 => 0.75206558928251
1226 => 0.74102365550735
1227 => 0.72003293132917
1228 => 0.74800182499072
1229 => 0.74585425034023
1230 => 0.73614210332717
1231 => 0.73026816650993
]
'min_raw' => 0.54856376742532
'max_raw' => 1.4075518135269
'avg_raw' => 0.97805779047609
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.548563'
'max' => '$1.40'
'avg' => '$0.978057'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.33733148823315
'max_diff' => 0.81814825125404
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.017218789829704
]
1 => [
'year' => 2028
'avg' => 0.029552441998176
]
2 => [
'year' => 2029
'avg' => 0.080731945229569
]
3 => [
'year' => 2030
'avg' => 0.062284575514993
]
4 => [
'year' => 2031
'avg' => 0.06117117199819
]
5 => [
'year' => 2032
'avg' => 0.10725231578915
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.017218789829704
'min' => '$0.017218'
'max_raw' => 0.10725231578915
'max' => '$0.107252'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.10725231578915
]
1 => [
'year' => 2033
'avg' => 0.27586398483527
]
2 => [
'year' => 2034
'avg' => 0.17485585099135
]
3 => [
'year' => 2035
'avg' => 0.20624287722674
]
4 => [
'year' => 2036
'avg' => 0.40031792073249
]
5 => [
'year' => 2037
'avg' => 0.97805779047609
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.10725231578915
'min' => '$0.107252'
'max_raw' => 0.97805779047609
'max' => '$0.978057'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.97805779047609
]
]
]
]
'prediction_2025_max_price' => '$0.02944'
'last_price' => 0.02854676
'sma_50day_nextmonth' => '$0.027533'
'sma_200day_nextmonth' => '$0.048093'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.028121'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.02823'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.029048'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.02890054'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0321059'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.0285064'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.05602'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.0283074'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.028423'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.028932'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.029919'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.031137'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.035978'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.15006'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.030952'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.051697'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.096611'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.028553'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.028891'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.029855'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.033001'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.647424'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$10.71'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$26.45'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '43.77'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 7.65
'stoch_rsi_14_action' => 'BUY'
'momentum_10' => -0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.028931'
'vwma_10_action' => 'SELL'
'hma_9' => '0.027715'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 17.46
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -32.74
'cci_20_action' => 'NEUTRAL'
'adx_14' => 13.39
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.004047'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -82.54
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 25.73
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.004578'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 21
'buy_signals' => 12
'sell_pct' => 63.64
'buy_pct' => 36.36
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767710242
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de dexSHARE para 2026
La previsión del precio de dexSHARE para 2026 sugiere que el precio medio podría oscilar entre $0.009862 en el extremo inferior y $0.02944 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, dexSHARE podría potencialmente ganar 3.13% para 2026 si DEXSHARE alcanza el objetivo de precio previsto.
Predicción de precio de dexSHARE 2027-2032
La predicción del precio de DEXSHARE para 2027-2032 está actualmente dentro de un rango de precios de $0.017218 en el extremo inferior y $0.107252 en el extremo superior. Considerando la volatilidad de precios en el mercado, si dexSHARE alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de dexSHARE | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.009494 | $0.017218 | $0.024942 |
| 2028 | $0.017135 | $0.029552 | $0.041969 |
| 2029 | $0.037641 | $0.080731 | $0.123822 |
| 2030 | $0.032012 | $0.062284 | $0.092556 |
| 2031 | $0.037848 | $0.061171 | $0.084493 |
| 2032 | $0.057772 | $0.107252 | $0.156731 |
Predicción de precio de dexSHARE 2032-2037
La predicción de precio de dexSHARE para 2032-2037 se estima actualmente entre $0.107252 en el extremo inferior y $0.978057 en el extremo superior. Comparado con el precio actual, dexSHARE podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de dexSHARE | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.057772 | $0.107252 | $0.156731 |
| 2033 | $0.134251 | $0.275863 | $0.417476 |
| 2034 | $0.107931 | $0.174855 | $0.24178 |
| 2035 | $0.1276085 | $0.206242 | $0.284877 |
| 2036 | $0.211232 | $0.400317 | $0.5894035 |
| 2037 | $0.548563 | $0.978057 | $1.40 |
dexSHARE Histograma de precios potenciales
Pronóstico de precio de dexSHARE basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para dexSHARE es Bajista, con 12 indicadores técnicos mostrando señales alcistas y 21 indicando señales bajistas. La predicción de precio de DEXSHARE se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de dexSHARE
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de dexSHARE aumentar durante el próximo mes, alcanzando $0.048093 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para dexSHARE alcance $0.027533 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 43.77, lo que sugiere que el mercado de DEXSHARE está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de DEXSHARE para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.028121 | BUY |
| SMA 5 | $0.02823 | BUY |
| SMA 10 | $0.029048 | SELL |
| SMA 21 | $0.02890054 | SELL |
| SMA 50 | $0.0321059 | SELL |
| SMA 100 | $0.0285064 | BUY |
| SMA 200 | $0.05602 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0283074 | BUY |
| EMA 5 | $0.028423 | BUY |
| EMA 10 | $0.028932 | SELL |
| EMA 21 | $0.029919 | SELL |
| EMA 50 | $0.031137 | SELL |
| EMA 100 | $0.035978 | SELL |
| EMA 200 | $0.15006 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.030952 | SELL |
| SMA 50 | $0.051697 | SELL |
| SMA 100 | $0.096611 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.033001 | SELL |
| EMA 50 | $0.647424 | SELL |
| EMA 100 | $10.71 | SELL |
| EMA 200 | $26.45 | SELL |
Osciladores de dexSHARE
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 43.77 | NEUTRAL |
| Stoch RSI (14) | 7.65 | BUY |
| Estocástico Rápido (14) | 17.46 | BUY |
| Índice de Canal de Materias Primas (20) | -32.74 | NEUTRAL |
| Índice Direccional Medio (14) | 13.39 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.004047 | SELL |
| Momentum (10) | -0 | BUY |
| MACD (12, 26) | -0 | NEUTRAL |
| Rango Percentil de Williams (14) | -82.54 | BUY |
| Oscilador Ultimate (7, 14, 28) | 25.73 | BUY |
| VWMA (10) | 0.028931 | SELL |
| Promedio Móvil de Hull (9) | 0.027715 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.004578 | NEUTRAL |
Predicción de precios de dexSHARE basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de dexSHARE
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de dexSHARE por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.040112 | $0.056365 | $0.0792028 | $0.111293 | $0.156385 | $0.219747 |
| Amazon.com acción | $0.059564 | $0.124284 | $0.259327 | $0.5411029 | $1.12 | $2.35 |
| Apple acción | $0.040491 | $0.057433 | $0.081465 | $0.115552 | $0.1639029 | $0.232483 |
| Netflix acción | $0.045042 | $0.071069 | $0.112136 | $0.176934 | $0.279174 | $0.440493 |
| Google acción | $0.036967 | $0.047873 | $0.061995 | $0.080284 | $0.103967 | $0.134637 |
| Tesla acción | $0.064713 | $0.14670026 | $0.332558 | $0.753884 | $1.70 | $3.87 |
| Kodak acción | $0.021407 | $0.016052 | $0.012038 | $0.009027 | $0.006769 | $0.005076 |
| Nokia acción | $0.018911 | $0.012527 | $0.008299 | $0.005497 | $0.003642 | $0.002412 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de dexSHARE
Podría preguntarse cosas como: "¿Debo invertir en dexSHARE ahora?", "¿Debería comprar DEXSHARE hoy?", "¿Será dexSHARE una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de dexSHARE regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como dexSHARE, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de dexSHARE a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de dexSHARE es de $0.02854 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de dexSHARE basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si dexSHARE ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.029288 | $0.03005 | $0.030831 | $0.031632 |
| Si dexSHARE ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.03003 | $0.031591 | $0.033234 | $0.034962 |
| Si dexSHARE ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.032256 | $0.036449 | $0.041186 | $0.046539 |
| Si dexSHARE ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.035966 | $0.045315 | $0.057095 | $0.071935 |
| Si dexSHARE ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.043387 | $0.065942 | $0.100223 | $0.152326 |
| Si dexSHARE ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.065647 | $0.150967 | $0.347174 | $0.798384 |
| Si dexSHARE ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.102748 | $0.369826 | $1.33 | $4.79 |
Cuadro de preguntas
¿Es DEXSHARE una buena inversión?
La decisión de adquirir dexSHARE depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de dexSHARE ha experimentado una caída de -2.7905% durante las últimas 24 horas, y dexSHARE ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en dexSHARE dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede dexSHARE subir?
Parece que el valor medio de dexSHARE podría potencialmente aumentar hasta $0.02944 para el final de este año. Mirando las perspectivas de dexSHARE en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.092556. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de dexSHARE la próxima semana?
Basado en nuestro nuevo pronóstico experimental de dexSHARE, el precio de dexSHARE aumentará en un 0.86% durante la próxima semana y alcanzará $0.028791 para el 13 de enero de 2026.
¿Cuál será el precio de dexSHARE el próximo mes?
Basado en nuestro nuevo pronóstico experimental de dexSHARE, el precio de dexSHARE disminuirá en un -11.62% durante el próximo mes y alcanzará $0.02523 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de dexSHARE este año en 2026?
Según nuestra predicción más reciente sobre el valor de dexSHARE en 2026, se anticipa que DEXSHARE fluctúe dentro del rango de $0.009862 y $0.02944. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de dexSHARE no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará dexSHARE en 5 años?
El futuro de dexSHARE parece estar en una tendencia alcista, con un precio máximo de $0.092556 proyectada después de un período de cinco años. Basado en el pronóstico de dexSHARE para 2030, el valor de dexSHARE podría potencialmente alcanzar su punto más alto de aproximadamente $0.092556, mientras que su punto más bajo se anticipa que esté alrededor de $0.032012.
¿Cuánto será dexSHARE en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de dexSHARE, se espera que el valor de DEXSHARE en 2026 crezca en un 3.13% hasta $0.02944 si ocurre lo mejor. El precio estará entre $0.02944 y $0.009862 durante 2026.
¿Cuánto será dexSHARE en 2027?
Según nuestra última simulación experimental para la predicción de precios de dexSHARE, el valor de DEXSHARE podría disminuir en un -12.62% hasta $0.024942 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.024942 y $0.009494 a lo largo del año.
¿Cuánto será dexSHARE en 2028?
Nuestro nuevo modelo experimental de predicción de precios de dexSHARE sugiere que el valor de DEXSHARE en 2028 podría aumentar en un 47.02% , alcanzando $0.041969 en el mejor escenario. Se espera que el precio oscile entre $0.041969 y $0.017135 durante el año.
¿Cuánto será dexSHARE en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de dexSHARE podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.123822 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.123822 y $0.037641.
¿Cuánto será dexSHARE en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de dexSHARE, se espera que el valor de DEXSHARE en 2030 aumente en un 224.23% , alcanzando $0.092556 en el mejor escenario. Se pronostica que el precio oscile entre $0.092556 y $0.032012 durante el transcurso de 2030.
¿Cuánto será dexSHARE en 2031?
Nuestra simulación experimental indica que el precio de dexSHARE podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.084493 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.084493 y $0.037848 durante el año.
¿Cuánto será dexSHARE en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de dexSHARE, DEXSHARE podría experimentar un 449.04% aumento en valor, alcanzando $0.156731 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.156731 y $0.057772 a lo largo del año.
¿Cuánto será dexSHARE en 2033?
Según nuestra predicción experimental de precios de dexSHARE, se anticipa que el valor de DEXSHARE aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.417476. A lo largo del año, el precio de DEXSHARE podría oscilar entre $0.417476 y $0.134251.
¿Cuánto será dexSHARE en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de dexSHARE sugieren que DEXSHARE podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.24178 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.24178 y $0.107931.
¿Cuánto será dexSHARE en 2035?
Basado en nuestra predicción experimental para el precio de dexSHARE, DEXSHARE podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.284877 en 2035. El rango de precios esperado para el año está entre $0.284877 y $0.1276085.
¿Cuánto será dexSHARE en 2036?
Nuestra reciente simulación de predicción de precios de dexSHARE sugiere que el valor de DEXSHARE podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.5894035 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.5894035 y $0.211232.
¿Cuánto será dexSHARE en 2037?
Según la simulación experimental, el valor de dexSHARE podría aumentar en un 4830.69% en 2037, con un máximo de $1.40 bajo condiciones favorables. Se espera que el precio caiga entre $1.40 y $0.548563 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de Xenon
Predicción de precios de MainCoin
Predicción de precios de Sing Token
Predicción de precios de Mecha Tracker
Predicción de precios de AOK
Predicción de precios de Fractionalized WAVE-999
Predicción de precios de ImageCoin
Predicción de precios de Pioneer Coin
Predicción de precios de SLT
Predicción de precios de Guncoin
Predicción de precios de Cockapoo
Predicción de precios de Babylon Finance
Predicción de precios de BoostCoin
Predicción de precios de Levin
Predicción de precios de NFTEarth
Predicción de precios de MEMEX
Predicción de precios de Atrofarm
Predicción de precios de noob.finance
Predicción de precios de Catex Token
Predicción de precios de Fabric
Predicción de precios de VIBE
Predicción de precios de WorldCoin
Predicción de precios de Solex Finance
Predicción de precios de Sphere
Predicción de precios de 1Million Token
¿Cómo leer y predecir los movimientos de precio de dexSHARE?
Los traders de dexSHARE utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de dexSHARE
Las medias móviles son herramientas populares para la predicción de precios de dexSHARE. Una media móvil simple (SMA) calcula el precio de cierre promedio de DEXSHARE durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de DEXSHARE por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de DEXSHARE.
¿Cómo leer gráficos de dexSHARE y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de dexSHARE en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de DEXSHARE dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de dexSHARE?
La acción del precio de dexSHARE está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de DEXSHARE. La capitalización de mercado de dexSHARE puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de DEXSHARE, grandes poseedores de dexSHARE, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de dexSHARE.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


