Predicción del precio de EVO - Pronóstico de EVO
Predicción de precio de EVO hasta $0.002033 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000681 | $0.002033 |
| 2027 | $0.000655 | $0.001723 |
| 2028 | $0.001183 | $0.002899 |
| 2029 | $0.00260024 | $0.008553 |
| 2030 | $0.002211 | $0.006393 |
| 2031 | $0.002614 | $0.005836 |
| 2032 | $0.00399 | $0.010826 |
| 2033 | $0.009274 | $0.028839 |
| 2034 | $0.007455 | $0.016702 |
| 2035 | $0.008815 | $0.019679 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en EVO hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,957.86, equivalente a un ROI del 39.58% en los próximos 90 días.
Predicción del precio a largo plazo de EVO para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'EVO'
'name_with_ticker' => 'EVO <small>EVO</small>'
'name_lang' => 'EVO'
'name_lang_with_ticker' => 'EVO <small>EVO</small>'
'name_with_lang' => 'EVO'
'name_with_lang_with_ticker' => 'EVO <small>EVO</small>'
'image' => '/uploads/coins/evo.png?ts=1630513617'
'price_for_sd' => 0.002
'ticker' => 'EVO'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$0'
'current_supply' => '0'
'max_supply' => '5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => ''
'price' => '$0.001972'
'change_24h_pct' => '0%'
'ath_price' => '$0.2475'
'ath_days' => 2915
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '13 ene. 2018'
'ath_pct' => '0.80%'
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.097233'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.001988'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.001742'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000681'
'current_year_max_price_prediction' => '$0.002033'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002211'
'grand_prediction_max_price' => '$0.006393'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.002009368362728
107 => 0.0020168706147937
108 => 0.0020337735717722
109 => 0.0018893396550619
110 => 0.0019541862433078
111 => 0.0019922775385987
112 => 0.0018201796807014
113 => 0.0019888757172849
114 => 0.0018868253819084
115 => 0.001852187965337
116 => 0.0018988226836178
117 => 0.00188064908855
118 => 0.0018650244987001
119 => 0.0018563057090993
120 => 0.0018905490993186
121 => 0.0018889516042352
122 => 0.0018329227714807
123 => 0.0017598354431799
124 => 0.0017843659495674
125 => 0.0017754537866221
126 => 0.0017431549584165
127 => 0.0017649204688517
128 => 0.0016690761761676
129 => 0.0015041810521575
130 => 0.0016131158219528
131 => 0.0016089219518139
201 => 0.001606807212313
202 => 0.0016886686810783
203 => 0.001680799589722
204 => 0.0016665171118558
205 => 0.00174289264951
206 => 0.0017150145508703
207 => 0.0018009282819718
208 => 0.0018575166218269
209 => 0.0018431639883986
210 => 0.0018963855955476
211 => 0.00178493108289
212 => 0.0018219518012159
213 => 0.0018295817199544
214 => 0.0017419501872308
215 => 0.0016820870703866
216 => 0.0016780948829826
217 => 0.0015743004880203
218 => 0.0016297466160101
219 => 0.0016785369141244
220 => 0.0016551701476077
221 => 0.0016477729273908
222 => 0.0016855637212176
223 => 0.0016885003895542
224 => 0.0016215440402655
225 => 0.0016354663855145
226 => 0.0016935248795998
227 => 0.0016340034604263
228 => 0.0015183630657407
301 => 0.0014896826490052
302 => 0.0014858561527277
303 => 0.0014080725878683
304 => 0.0014915992115922
305 => 0.0014551376019624
306 => 0.0015703193899058
307 => 0.0015045281703648
308 => 0.0015016920423857
309 => 0.0014974048189756
310 => 0.0014304532915026
311 => 0.0014451114210276
312 => 0.0014938372760651
313 => 0.0015112232100785
314 => 0.0015094097147222
315 => 0.0014935984927931
316 => 0.0015008367892257
317 => 0.0014775197144268
318 => 0.0014692859700123
319 => 0.0014432980077705
320 => 0.0014051028826329
321 => 0.0014104141490476
322 => 0.0013347396118518
323 => 0.0012935081076358
324 => 0.0012820957706913
325 => 0.0012668347167748
326 => 0.0012838195473393
327 => 0.0013345252353959
328 => 0.0012733634177879
329 => 0.0011685057715015
330 => 0.0011748078947121
331 => 0.001188966894449
401 => 0.0011625816921104
402 => 0.0011376103124391
403 => 0.0011593209010712
404 => 0.0011148913340258
405 => 0.0011943359953617
406 => 0.0011921872399136
407 => 0.0012217992968347
408 => 0.0012403163237281
409 => 0.0011976405716976
410 => 0.0011869077354694
411 => 0.0011930216467652
412 => 0.0010919723119517
413 => 0.0012135414103578
414 => 0.0012145927449691
415 => 0.0012055905797435
416 => 0.00127032237162
417 => 0.0014069266428314
418 => 0.0013555306211076
419 => 0.0013356285280432
420 => 0.0012977946345793
421 => 0.0013482060512656
422 => 0.0013443352410047
423 => 0.0013268299690437
424 => 0.0013162427259419
425 => 0.0013357500459795
426 => 0.0013138255531113
427 => 0.0013098873117474
428 => 0.001286025853931
429 => 0.0012775083991177
430 => 0.0012712024146635
501 => 0.0012642601453928
502 => 0.0012795730614983
503 => 0.0012448719790212
504 => 0.0012030258753429
505 => 0.0011995468246031
506 => 0.0012091527895768
507 => 0.0012049028651559
508 => 0.0011995264776001
509 => 0.0011892614895839
510 => 0.0011862160869162
511 => 0.0011961121681667
512 => 0.0011849400694123
513 => 0.0012014251097002
514 => 0.0011969420909008
515 => 0.0011719003123101
516 => 0.0011406889845322
517 => 0.001140411138247
518 => 0.0011336867088741
519 => 0.001125122137043
520 => 0.0011227396690904
521 => 0.0011574924958524
522 => 0.0012294298071851
523 => 0.0012153067916565
524 => 0.0012255121177608
525 => 0.0012757122216112
526 => 0.0012916693250555
527 => 0.0012803433509954
528 => 0.0012648396591464
529 => 0.0012655217429052
530 => 0.00131850255124
531 => 0.0013218068992682
601 => 0.0013301559207126
602 => 0.0013408867727017
603 => 0.0012821708614907
604 => 0.0012627562287674
605 => 0.0012535564987003
606 => 0.0012252248908372
607 => 0.0012557781009491
608 => 0.0012379760538358
609 => 0.0012403781581959
610 => 0.0012388137845801
611 => 0.0012396680383568
612 => 0.0011943137889597
613 => 0.0012108384936909
614 => 0.0011833629670562
615 => 0.001146576321165
616 => 0.0011464529994289
617 => 0.0011554564788952
618 => 0.0011501008570024
619 => 0.0011356890161947
620 => 0.0011377361501595
621 => 0.0011198011025326
622 => 0.0011399137896659
623 => 0.0011404905495663
624 => 0.0011327460694745
625 => 0.0011637324390193
626 => 0.0011764275799043
627 => 0.0011713299972051
628 => 0.001176069919913
629 => 0.0012158936667133
630 => 0.0012223866750737
701 => 0.0012252704404833
702 => 0.0012214065768601
703 => 0.0011767978248991
704 => 0.0011787764127396
705 => 0.0011642588479794
706 => 0.0011519930355804
707 => 0.0011524836037506
708 => 0.0011587898257677
709 => 0.0011863294671715
710 => 0.0012442850189552
711 => 0.0012464843897805
712 => 0.0012491500913808
713 => 0.0012383073432979
714 => 0.0012350370667249
715 => 0.0012393514056547
716 => 0.0012611164637465
717 => 0.0013171021023143
718 => 0.0012973130384893
719 => 0.0012812242215645
720 => 0.0012953384515215
721 => 0.0012931656764506
722 => 0.0012748252682488
723 => 0.0012743105140752
724 => 0.0012391094069528
725 => 0.0012260963591401
726 => 0.001215221682378
727 => 0.0012033468192445
728 => 0.0011963070023299
729 => 0.0012071233606503
730 => 0.0012095971897735
731 => 0.0011859470332684
801 => 0.0011827236043271
802 => 0.0012020368326533
803 => 0.0011935378009367
804 => 0.001202279265823
805 => 0.0012043073606596
806 => 0.0012039807906799
807 => 0.0011951068254602
808 => 0.0012007628262658
809 => 0.0011873846982256
810 => 0.0011728379933117
811 => 0.0011635581018684
812 => 0.0011554601657851
813 => 0.0011599533713789
814 => 0.0011439359138639
815 => 0.0011388116068372
816 => 0.0011988467004569
817 => 0.0012431952695998
818 => 0.0012425504238405
819 => 0.0012386250911216
820 => 0.0012327928429261
821 => 0.0012606897984641
822 => 0.0012509710569719
823 => 0.0012580422534355
824 => 0.0012598421697127
825 => 0.0012652899741836
826 => 0.0012672370960273
827 => 0.0012613515414525
828 => 0.0012415989014394
829 => 0.0011923772005515
830 => 0.0011694643659167
831 => 0.0011619027488438
901 => 0.0011621775992629
902 => 0.0011545959977193
903 => 0.0011568291191574
904 => 0.0011538194092162
905 => 0.0011481197467145
906 => 0.0011596014332807
907 => 0.0011609245906981
908 => 0.0011582446278576
909 => 0.0011588758561226
910 => 0.0011366869084306
911 => 0.0011383738859317
912 => 0.0011289805808345
913 => 0.0011272194493668
914 => 0.0011034739920496
915 => 0.0010614054724532
916 => 0.0010847155159996
917 => 0.0010565602612837
918 => 0.001045897439701
919 => 0.0010963735786643
920 => 0.0010913071743026
921 => 0.0010826356923483
922 => 0.0010698087632427
923 => 0.0010650511304651
924 => 0.0010361452597919
925 => 0.0010344373467457
926 => 0.0010487638767755
927 => 0.0010421526761126
928 => 0.0010328680465243
929 => 0.00099924005932335
930 => 0.00096143106786557
1001 => 0.00096257228365884
1002 => 0.00097459862038026
1003 => 0.0010095668163703
1004 => 0.00099590413724105
1005 => 0.00098599170677161
1006 => 0.00098413540651125
1007 => 0.0010073708906975
1008 => 0.0010402539688054
1009 => 0.0010556819733363
1010 => 0.0010403932894017
1011 => 0.0010228304724988
1012 => 0.0010238994397854
1013 => 0.0010310108002375
1014 => 0.0010317581036718
1015 => 0.0010203265153548
1016 => 0.0010235444405051
1017 => 0.0010186561179485
1018 => 0.00098865649144186
1019 => 0.0009881138933282
1020 => 0.00098075150117413
1021 => 0.00098052857086571
1022 => 0.00096800330517685
1023 => 0.00096625093392391
1024 => 0.0009413812586694
1025 => 0.00095775055423423
1026 => 0.00094677089019593
1027 => 0.0009302219466493
1028 => 0.00092736890254419
1029 => 0.00092728313659324
1030 => 0.00094427520133956
1031 => 0.00095755199206441
1101 => 0.00094696188615268
1102 => 0.00094455072431716
1103 => 0.00097029562460677
1104 => 0.00096701935137494
1105 => 0.00096418211988587
1106 => 0.0010373096498256
1107 => 0.00097942350366599
1108 => 0.00095418183991468
1109 => 0.0009229404877605
1110 => 0.00093311282955447
1111 => 0.00093525629143325
1112 => 0.00086012647117943
1113 => 0.00082964631245928
1114 => 0.00081918667060707
1115 => 0.0008131669988435
1116 => 0.00081591023885644
1117 => 0.00078847452104226
1118 => 0.00080691177715828
1119 => 0.0007831547646147
1120 => 0.00077917182414976
1121 => 0.0008216523055068
1122 => 0.00082756321632026
1123 => 0.00080234543441399
1124 => 0.00081853933278586
1125 => 0.0008126672001242
1126 => 0.000783562010408
1127 => 0.00078245040624412
1128 => 0.00076784644514142
1129 => 0.0007449940738998
1130 => 0.00073454992703139
1201 => 0.00072911052466209
1202 => 0.0007313549280915
1203 => 0.00073022008903771
1204 => 0.00072281449657702
1205 => 0.00073064456892888
1206 => 0.00071064196967914
1207 => 0.000702676773486
1208 => 0.00069907907915671
1209 => 0.0006813256210159
1210 => 0.00070957926791659
1211 => 0.00071514559228609
1212 => 0.00072072288403412
1213 => 0.00076926940092195
1214 => 0.00076684415412927
1215 => 0.00078876720399203
1216 => 0.00078791531458827
1217 => 0.00078166250563755
1218 => 0.0007552829332116
1219 => 0.00076579736060991
1220 => 0.0007334355873827
1221 => 0.00075768322827121
1222 => 0.00074661761757539
1223 => 0.00075394193416395
1224 => 0.00074077215253071
1225 => 0.0007480608534535
1226 => 0.00071646557429112
1227 => 0.00068696234716686
1228 => 0.00069883530701455
1229 => 0.00071174257220665
1230 => 0.00073972881185312
1231 => 0.00072306043840114
]
'min_raw' => 0.0006813256210159
'max_raw' => 0.0020337735717722
'avg_raw' => 0.0013575495963941
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000681'
'max' => '$0.002033'
'avg' => '$0.001357'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0012906743789841
'max_diff' => 6.1773571772244E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00072905501579546
102 => 0.00070897418500465
103 => 0.00066754169527747
104 => 0.00066777619866977
105 => 0.0006614027127811
106 => 0.00065589509042911
107 => 0.00072497500160272
108 => 0.00071638382265649
109 => 0.00070269490339138
110 => 0.00072101806580376
111 => 0.00072586300077329
112 => 0.00072600092926069
113 => 0.00073936903556749
114 => 0.0007465035962998
115 => 0.00074776109355182
116 => 0.00076879609766262
117 => 0.00077584675358215
118 => 0.00080488740746851
119 => 0.00074589827866806
120 => 0.00074468343637929
121 => 0.00072127591027502
122 => 0.00070643048716134
123 => 0.00072229238909643
124 => 0.00073634386884537
125 => 0.00072171252891917
126 => 0.00072362307302909
127 => 0.00070398169460255
128 => 0.00071100256317728
129 => 0.00071704988100698
130 => 0.00071371090754633
131 => 0.00070871230266761
201 => 0.00073519180774692
202 => 0.00073369773029633
203 => 0.00075835605418737
204 => 0.0007775789809941
205 => 0.00081202990234096
206 => 0.00077607856994837
207 => 0.00077476836050238
208 => 0.00078757586800113
209 => 0.00077584479281948
210 => 0.00078325842739133
211 => 0.00081083545119708
212 => 0.0008114181102548
213 => 0.00080165782032435
214 => 0.00080106390579507
215 => 0.00080293847624208
216 => 0.00081391789390139
217 => 0.0008100813480078
218 => 0.00081452109604532
219 => 0.00082007306895007
220 => 0.00084303838287185
221 => 0.00084857524230969
222 => 0.00083512354440822
223 => 0.00083633808211645
224 => 0.00083130677784393
225 => 0.00082644660095874
226 => 0.00083737156882482
227 => 0.00085733716233085
228 => 0.00085721295740986
301 => 0.00086184458702758
302 => 0.00086473005390893
303 => 0.00085234351776333
304 => 0.0008442803381981
305 => 0.00084737227431686
306 => 0.00085231634750435
307 => 0.00084576897801671
308 => 0.00080535558050237
309 => 0.00081761442369039
310 => 0.0008155739527571
311 => 0.00081266807401835
312 => 0.00082499443563873
313 => 0.00082380552799009
314 => 0.00078819312810114
315 => 0.00079047291839788
316 => 0.00078833176969999
317 => 0.0007952502591807
318 => 0.00077547117168298
319 => 0.00078155508578309
320 => 0.00078537085967352
321 => 0.00078761837980915
322 => 0.00079573796367801
323 => 0.00079478522422688
324 => 0.00079567874005602
325 => 0.00080771793944287
326 => 0.00086860807858723
327 => 0.00087192219451433
328 => 0.0008556022756083
329 => 0.00086212176131509
330 => 0.00084960577441284
331 => 0.00085800784027015
401 => 0.00086375632034038
402 => 0.00083778004427214
403 => 0.00083624189778802
404 => 0.00082367425295564
405 => 0.00083042739342077
406 => 0.00081968266137276
407 => 0.00082231904278257
408 => 0.00081494749052514
409 => 0.0008282148169271
410 => 0.00084304974937858
411 => 0.00084679763916506
412 => 0.00083693855470484
413 => 0.00082979992781031
414 => 0.0008172668505934
415 => 0.00083810963732296
416 => 0.0008442047033351
417 => 0.00083807762253595
418 => 0.00083665784403542
419 => 0.00083396736634242
420 => 0.0008372286415967
421 => 0.00084417150829661
422 => 0.00084089738057555
423 => 0.00084305999961802
424 => 0.00083481832591121
425 => 0.0008523476182222
426 => 0.00088018835306598
427 => 0.00088027786558092
428 => 0.00087700372021109
429 => 0.0008756640104682
430 => 0.0008790234823094
501 => 0.0008808458579705
502 => 0.00089170977388317
503 => 0.00090336718849496
504 => 0.00095776725595972
505 => 0.000942491934701
506 => 0.00099075891083023
507 => 0.001028931822266
508 => 0.0010403782093065
509 => 0.0010298480718234
510 => 0.0009938250403205
511 => 0.00099205757853802
512 => 0.0010458911961349
513 => 0.0010306807334279
514 => 0.0010288714972882
515 => 0.0010096242815144
516 => 0.0010210017698508
517 => 0.0010185133462539
518 => 0.0010145852478685
519 => 0.0010362927030515
520 => 0.0010769271213163
521 => 0.0010705938661626
522 => 0.0010658663849816
523 => 0.0010451519385955
524 => 0.001057626662059
525 => 0.0010531846519713
526 => 0.0010722703462776
527 => 0.0010609644037704
528 => 0.001030565499213
529 => 0.0010354066249599
530 => 0.0010346748985422
531 => 0.0010497337763667
601 => 0.0010452134750281
602 => 0.0010337922371576
603 => 0.0010767882372922
604 => 0.0010739963161998
605 => 0.0010779546219869
606 => 0.001079697190609
607 => 0.0011058680982164
608 => 0.0011165894816876
609 => 0.0011190234234397
610 => 0.0011292079085158
611 => 0.0011187700241732
612 => 0.0011605290036289
613 => 0.0011882962882629
614 => 0.0012205494182567
615 => 0.0012676799100017
616 => 0.0012854014108793
617 => 0.0012822001803647
618 => 0.0013179339813129
619 => 0.0013821468272991
620 => 0.0012951794324541
621 => 0.0013867563103992
622 => 0.0013577641281477
623 => 0.0012890241855764
624 => 0.0012845981436655
625 => 0.0013311496308619
626 => 0.001434396349049
627 => 0.0014085342171577
628 => 0.0014344386502319
629 => 0.0014042197530559
630 => 0.0014027191301062
701 => 0.0014329709858459
702 => 0.0015036560957245
703 => 0.0014700762496129
704 => 0.0014219313060959
705 => 0.0014574807831705
706 => 0.0014266845361797
707 => 0.0013572919723824
708 => 0.0014085144408728
709 => 0.0013742634349252
710 => 0.0013842596993443
711 => 0.0014562502193937
712 => 0.001447588129558
713 => 0.0014587976758933
714 => 0.0014390131200165
715 => 0.0014205312250895
716 => 0.0013860333957247
717 => 0.0013758202891723
718 => 0.0013786428243943
719 => 0.001375818890464
720 => 0.0013565176719858
721 => 0.0013523495756931
722 => 0.0013454025659302
723 => 0.0013475557347427
724 => 0.0013344933239689
725 => 0.0013591447919308
726 => 0.0013637203216125
727 => 0.0013816596042332
728 => 0.0013835221200662
729 => 0.0014334827668154
730 => 0.0014059652821405
731 => 0.0014244263866057
801 => 0.0014227750516597
802 => 0.0012905139885696
803 => 0.0013087383961142
804 => 0.0013370898551194
805 => 0.0013243175612671
806 => 0.0013062605260163
807 => 0.0012916785018943
808 => 0.0012695852442611
809 => 0.0013006810801165
810 => 0.0013415687975929
811 => 0.0013845591000564
812 => 0.0014362091316302
813 => 0.0014246814458556
814 => 0.0013835935386432
815 => 0.001385436712146
816 => 0.0013968304854783
817 => 0.0013820745137795
818 => 0.0013777226896547
819 => 0.0013962326116704
820 => 0.0013963600793304
821 => 0.0013793815505722
822 => 0.0013605130228953
823 => 0.0013604339630754
824 => 0.0013570764908236
825 => 0.0014048170399108
826 => 0.0014310695147948
827 => 0.0014340793187323
828 => 0.0014308669310089
829 => 0.0014321032515485
830 => 0.0014168275148473
831 => 0.0014517433190673
901 => 0.0014837855138346
902 => 0.0014751975211553
903 => 0.001462322899274
904 => 0.0014520676428197
905 => 0.0014727817086514
906 => 0.0014718593439069
907 => 0.0014835056532163
908 => 0.0014829773093537
909 => 0.0014790610935728
910 => 0.0014751976610157
911 => 0.0014905157344019
912 => 0.0014861043752674
913 => 0.0014816861640737
914 => 0.0014728247651305
915 => 0.0014740291764192
916 => 0.0014611567775228
917 => 0.0014552014167924
918 => 0.0013656470803162
919 => 0.0013417152353374
920 => 0.0013492446809454
921 => 0.0013517235699415
922 => 0.0013413084003372
923 => 0.0013562410781122
924 => 0.0013539138360986
925 => 0.0013629677733825
926 => 0.0013573112664438
927 => 0.0013575434114616
928 => 0.001374177992274
929 => 0.0013790070818524
930 => 0.0013765509679173
1001 => 0.0013782711459267
1002 => 0.0014179119221136
1003 => 0.0014122762713805
1004 => 0.0014092824442512
1005 => 0.0014101117548262
1006 => 0.0014202408230498
1007 => 0.0014230764091258
1008 => 0.0014110618316688
1009 => 0.001416727975853
1010 => 0.0014408536986484
1011 => 0.0014492963362292
1012 => 0.0014762411826911
1013 => 0.0014647945330076
1014 => 0.001485805353901
1015 => 0.0015503854542105
1016 => 0.0016019765069408
1017 => 0.0015545312427596
1018 => 0.0016492716410179
1019 => 0.0017230406307649
1020 => 0.0017202092540697
1021 => 0.0017073459243999
1022 => 0.001623361890823
1023 => 0.0015460785309941
1024 => 0.0016107293431157
1025 => 0.0016108941513314
1026 => 0.0016053405892342
1027 => 0.0015708478920118
1028 => 0.0016041403181381
1029 => 0.0016067829500237
1030 => 0.0016053037789003
1031 => 0.0015788583088123
1101 => 0.0015384809639277
1102 => 0.0015463706004685
1103 => 0.0015592939860664
1104 => 0.0015348273210288
1105 => 0.0015270087390618
1106 => 0.0015415449704846
1107 => 0.0015883837368728
1108 => 0.0015795291394056
1109 => 0.0015792979100815
1110 => 0.0016171816329799
1111 => 0.0015900650632037
1112 => 0.0015464701140513
1113 => 0.0015354618144436
1114 => 0.0014963897669154
1115 => 0.001523376969313
1116 => 0.0015243481906829
1117 => 0.0015095675757323
1118 => 0.001547669479494
1119 => 0.0015473183637431
1120 => 0.0015834904506449
1121 => 0.0016526378951856
1122 => 0.0016321875932958
1123 => 0.0016084061171845
1124 => 0.0016109918230266
1125 => 0.0016393506340487
1126 => 0.0016222042495361
1127 => 0.0016283702089557
1128 => 0.0016393413011307
1129 => 0.0016459604334367
1130 => 0.0016100394317505
1201 => 0.0016016645279573
1202 => 0.0015845324139882
1203 => 0.0015800629652397
1204 => 0.0015940167145942
1205 => 0.0015903403946325
1206 => 0.0015242665632875
1207 => 0.0015173614802806
1208 => 0.0015175732493183
1209 => 0.0015002100897787
1210 => 0.001473727103845
1211 => 0.0015433228096618
1212 => 0.0015377333004934
1213 => 0.0015315629149652
1214 => 0.0015323187519846
1215 => 0.0015625278890624
1216 => 0.0015450050639593
1217 => 0.0015915923664304
1218 => 0.0015820154175848
1219 => 0.0015721928561385
1220 => 0.0015708350789441
1221 => 0.0015670542308088
1222 => 0.0015540882957614
1223 => 0.0015384311500597
1224 => 0.0015280929462687
1225 => 0.0014095849682453
1226 => 0.0014315793596373
1227 => 0.0014568819020818
1228 => 0.0014656162383401
1229 => 0.0014506755517727
1230 => 0.0015546782451316
1231 => 0.0015736805394032
]
'min_raw' => 0.00065589509042911
'max_raw' => 0.0017230406307649
'avg_raw' => 0.001189467860597
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000655'
'max' => '$0.001723'
'avg' => '$0.001189'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.543053058679E-5
'max_diff' => -0.00031073294100732
'year' => 2027
]
2 => [
'items' => [
101 => 0.0015161213505656
102 => 0.0015053543764603
103 => 0.0015553841261615
104 => 0.0015252100712035
105 => 0.0015387974463035
106 => 0.0015094289732341
107 => 0.0015691034431653
108 => 0.0015686488236865
109 => 0.0015454341070743
110 => 0.0015650550265874
111 => 0.0015616454089749
112 => 0.001535436051095
113 => 0.0015699343265589
114 => 0.0015699514372731
115 => 0.0015476077772653
116 => 0.0015215152740322
117 => 0.0015168505507316
118 => 0.001513336308342
119 => 0.0015379331581026
120 => 0.0015599866166857
121 => 0.0016010226355927
122 => 0.0016113400657377
123 => 0.0016516096824638
124 => 0.0016276310863954
125 => 0.0016382604874577
126 => 0.0016498002059314
127 => 0.0016553327713268
128 => 0.0016463177529088
129 => 0.00170887304332
130 => 0.0017141546264753
131 => 0.0017159254956217
201 => 0.0016948322036584
202 => 0.0017135679838683
203 => 0.0017048021327719
204 => 0.0017276084421011
205 => 0.0017311847626095
206 => 0.0017281557463701
207 => 0.0017292909269479
208 => 0.0016759110220914
209 => 0.0016731429924232
210 => 0.0016354007114863
211 => 0.0016507809699449
212 => 0.0016220283139515
213 => 0.0016311460773522
214 => 0.001635165100582
215 => 0.0016330657909243
216 => 0.0016516505466818
217 => 0.0016358497076731
218 => 0.0015941486956308
219 => 0.0015524363221757
220 => 0.0015519126573051
221 => 0.0015409305256589
222 => 0.0015329924559564
223 => 0.0015345216097993
224 => 0.0015399105473921
225 => 0.001532679241107
226 => 0.0015342224069395
227 => 0.0015598492418187
228 => 0.0015649885207915
229 => 0.001547523242796
301 => 0.0014773976314165
302 => 0.0014601886304872
303 => 0.0014725581190859
304 => 0.0014666463002328
305 => 0.0011836980313383
306 => 0.0012501725300841
307 => 0.00121067564019
308 => 0.0012288776242177
309 => 0.001188561527306
310 => 0.0012078024818999
311 => 0.0012042493801536
312 => 0.0013111384070134
313 => 0.00130946948188
314 => 0.0013102683080238
315 => 0.0012721382548503
316 => 0.0013328804648994
317 => 0.0013628042617889
318 => 0.0013572661633807
319 => 0.0013586599834364
320 => 0.0013347095369329
321 => 0.001310500200699
322 => 0.0012836483210255
323 => 0.0013335357944662
324 => 0.0013279891590272
325 => 0.0013407111451079
326 => 0.0013730667376644
327 => 0.0013778312215753
328 => 0.0013842347362682
329 => 0.001381939532084
330 => 0.00143662060746
331 => 0.0014299983684346
401 => 0.0014459560591376
402 => 0.0014131298786487
403 => 0.0013759839395358
404 => 0.0013830441681689
405 => 0.0013823642113768
406 => 0.0013737075809947
407 => 0.0013658927621499
408 => 0.0013528832905848
409 => 0.0013940471836562
410 => 0.0013923760047716
411 => 0.0014194304483804
412 => 0.0014146483126797
413 => 0.0013827120400833
414 => 0.0013838526503069
415 => 0.0013915238022189
416 => 0.0014180737465741
417 => 0.0014259555777168
418 => 0.0014223043994948
419 => 0.0014309464675235
420 => 0.0014377768057279
421 => 0.0014318042528403
422 => 0.0015163630067299
423 => 0.0014812483166992
424 => 0.0014983629722937
425 => 0.0015024447168076
426 => 0.0014919894140651
427 => 0.0014942567948536
428 => 0.001497691258924
429 => 0.001518544652222
430 => 0.001573269990214
501 => 0.0015975074698827
502 => 0.0016704271233222
503 => 0.0015954948845983
504 => 0.0015910487156528
505 => 0.0016041837471998
506 => 0.001646995303098
507 => 0.0016816900480685
508 => 0.0016932002965631
509 => 0.0016947215659152
510 => 0.0017163155572778
511 => 0.0017286928304228
512 => 0.001713693478748
513 => 0.0017009830987013
514 => 0.0016554560950441
515 => 0.0016607259696833
516 => 0.0016970301800644
517 => 0.001748312015535
518 => 0.0017923171653343
519 => 0.0017769080956089
520 => 0.001894468420506
521 => 0.0019061240465286
522 => 0.0019045136158838
523 => 0.0019310668665532
524 => 0.0018783640714499
525 => 0.0018558326054747
526 => 0.0017037312271363
527 => 0.0017464655103148
528 => 0.0018085823006112
529 => 0.0018003609104895
530 => 0.0017552500369897
531 => 0.0017922829446916
601 => 0.0017800387072792
602 => 0.0017703811692182
603 => 0.0018146242232815
604 => 0.0017659771679344
605 => 0.0018080970090211
606 => 0.0017540778771535
607 => 0.0017769784829414
608 => 0.0017639789915185
609 => 0.0017723912556269
610 => 0.0017232133315402
611 => 0.0017497485456508
612 => 0.0017221093793935
613 => 0.00172209627483
614 => 0.001721486138703
615 => 0.0017540034952338
616 => 0.0017550638850628
617 => 0.0017310335094556
618 => 0.0017275703569056
619 => 0.0017403754469947
620 => 0.0017253840401587
621 => 0.0017323984250625
622 => 0.0017255964987318
623 => 0.0017240652418442
624 => 0.0017118639264425
625 => 0.0017066072642853
626 => 0.0017086685369646
627 => 0.0017016323506511
628 => 0.0016973927938873
629 => 0.0017206427841545
630 => 0.0017082212522567
701 => 0.0017187390062414
702 => 0.0017067526981294
703 => 0.0016652029320277
704 => 0.0016413072221618
705 => 0.0015628235656609
706 => 0.0015850814332859
707 => 0.0015998384225487
708 => 0.0015949612376853
709 => 0.0016054393179917
710 => 0.0016060825870231
711 => 0.0016026760563041
712 => 0.0015987317301351
713 => 0.001596811850291
714 => 0.0016111210617212
715 => 0.0016194280405823
716 => 0.0016013194838442
717 => 0.0015970769023661
718 => 0.0016153856530292
719 => 0.001626553980357
720 => 0.0017090146344047
721 => 0.0017029056828084
722 => 0.0017182379524938
723 => 0.0017165117742201
724 => 0.0017325824354725
725 => 0.001758851174652
726 => 0.0017054394830451
727 => 0.0017147099058707
728 => 0.0017124370122792
729 => 0.0017372518685266
730 => 0.0017373293377992
731 => 0.0017224515918849
801 => 0.0017305170593089
802 => 0.0017260151366573
803 => 0.0017341507193601
804 => 0.0017028240940354
805 => 0.0017409765421806
806 => 0.0017626065217895
807 => 0.0017629068540773
808 => 0.0017731592927458
809 => 0.0017835763642142
810 => 0.001803571025762
811 => 0.0017830187239557
812 => 0.0017460471337325
813 => 0.0017487163631291
814 => 0.0017270399333086
815 => 0.00172740431801
816 => 0.0017254592039164
817 => 0.0017312966377328
818 => 0.0017041050824907
819 => 0.0017104868861563
820 => 0.0017015523236527
821 => 0.0017146904838767
822 => 0.0017005559952913
823 => 0.0017124359162211
824 => 0.0017175628962687
825 => 0.0017364815630206
826 => 0.0016977616928298
827 => 0.0016188092564061
828 => 0.0016354060157481
829 => 0.0016108581050339
830 => 0.001613130107631
831 => 0.0016177199144637
901 => 0.0016028428488277
902 => 0.0016056809241208
903 => 0.0016055795281001
904 => 0.0016047057519723
905 => 0.0016008356526209
906 => 0.0015952232428855
907 => 0.0016175813558627
908 => 0.001621380434934
909 => 0.0016298253171031
910 => 0.00165495155822
911 => 0.0016524408542149
912 => 0.0016565359166154
913 => 0.0016475964183879
914 => 0.0016135447853147
915 => 0.0016153939528179
916 => 0.0015923348044218
917 => 0.0016292356428346
918 => 0.0016204970372312
919 => 0.0016148632013507
920 => 0.0016133259570335
921 => 0.0016385144812422
922 => 0.0016460512824672
923 => 0.0016413548537197
924 => 0.0016317223413419
925 => 0.001650219612704
926 => 0.0016551687021832
927 => 0.0016562766208022
928 => 0.0016890502391558
929 => 0.0016581083019987
930 => 0.0016655563338088
1001 => 0.001723663751857
1002 => 0.0016709683419629
1003 => 0.0016988822758317
1004 => 0.0016975160340259
1005 => 0.0017117958580371
1006 => 0.0016963446716601
1007 => 0.0016965362076333
1008 => 0.0017092157239563
1009 => 0.0016914096300436
1010 => 0.0016870005907831
1011 => 0.0016809095346229
1012 => 0.0016942091329118
1013 => 0.0017021816405969
1014 => 0.0017664341973773
1015 => 0.0018079442793299
1016 => 0.0018061422171973
1017 => 0.0018226096917704
1018 => 0.0018151909436505
1019 => 0.0017912338490041
1020 => 0.001832125688309
1021 => 0.0018191857993657
1022 => 0.0018202525480882
1023 => 0.0018202128436475
1024 => 0.00182881673857
1025 => 0.001822720090482
1026 => 0.0018107029712924
1027 => 0.0018186804958259
1028 => 0.0018423708916732
1029 => 0.0019159066072934
1030 => 0.001957058167973
1031 => 0.001913429231669
1101 => 0.0019435238877168
1102 => 0.0019254778179105
1103 => 0.0019221983102026
1104 => 0.0019410999781783
1105 => 0.0019600347310215
1106 => 0.0019588286691226
1107 => 0.0019450830108687
1108 => 0.0019373184373042
1109 => 0.0019961143896572
1110 => 0.002039434245788
1111 => 0.0020364801220198
1112 => 0.0020495186635998
1113 => 0.0020878002249454
1114 => 0.0020913002111547
1115 => 0.0020908592933386
1116 => 0.0020821842123331
1117 => 0.0021198773809668
1118 => 0.0021513216853892
1119 => 0.0020801761817275
1120 => 0.0021072674581589
1121 => 0.0021194296049753
1122 => 0.0021372872448482
1123 => 0.0021674160766018
1124 => 0.0022001439791641
1125 => 0.0022047720634296
1126 => 0.002201488216169
1127 => 0.0021799032846559
1128 => 0.0022157145461646
1129 => 0.002236691943279
1130 => 0.0022491835032015
1201 => 0.0022808600207674
1202 => 0.0021195047142536
1203 => 0.002005289408424
1204 => 0.0019874530391297
1205 => 0.0020237239974703
1206 => 0.0020332883599292
1207 => 0.0020294329774147
1208 => 0.0019008732667022
1209 => 0.0019867761988589
1210 => 0.0020792005309357
1211 => 0.0020827509259407
1212 => 0.0021290204790801
1213 => 0.0021440877422353
1214 => 0.0021813407972014
1215 => 0.0021790106084704
1216 => 0.0021880811345291
1217 => 0.0021859959776678
1218 => 0.0022549994174363
1219 => 0.002331120458611
1220 => 0.0023284846290052
1221 => 0.002317541328713
1222 => 0.0023337939957568
1223 => 0.0024123590678756
1224 => 0.0024051260550145
1225 => 0.0024121523109025
1226 => 0.0025047849586639
1227 => 0.0026252205775943
1228 => 0.0025692661410627
1229 => 0.0026906711678809
1230 => 0.002767089196859
1231 => 0.002899246276205
]
'min_raw' => 0.0011836980313383
'max_raw' => 0.002899246276205
'avg_raw' => 0.0020414721537717
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001183'
'max' => '$0.002899'
'avg' => '$0.002041'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00052780294090921
'max_diff' => 0.0011762056454401
'year' => 2028
]
3 => [
'items' => [
101 => 0.0028826995589836
102 => 0.0029341473401595
103 => 0.0028530774817531
104 => 0.0026669246999303
105 => 0.0026374653096426
106 => 0.0026964437550291
107 => 0.0028414365079793
108 => 0.0026918774172533
109 => 0.002722133026521
110 => 0.0027134194090165
111 => 0.0027129550973702
112 => 0.0027306759844184
113 => 0.0027049709134956
114 => 0.0026002438303021
115 => 0.0026482396353691
116 => 0.0026297061500849
117 => 0.0026502704337706
118 => 0.0027612473914667
119 => 0.002712181833109
120 => 0.0026604952531415
121 => 0.0027253216945911
122 => 0.0028078680313385
123 => 0.0028027024299349
124 => 0.002792679004158
125 => 0.002849180530453
126 => 0.0029425044984984
127 => 0.002967729592055
128 => 0.0029863502404141
129 => 0.0029889177132244
130 => 0.0030153642788459
131 => 0.0028731544301065
201 => 0.0030988451122639
202 => 0.0031378156584932
203 => 0.0031304908109658
204 => 0.0031738049329684
205 => 0.003161060819502
206 => 0.0031425965985793
207 => 0.0032112586951314
208 => 0.0031325431421799
209 => 0.0030208163247778
210 => 0.0029595207830451
211 => 0.003040239696969
212 => 0.0030895319210005
213 => 0.003122110945511
214 => 0.0031319693386431
215 => 0.0028841937758446
216 => 0.0027506564897589
217 => 0.0028362523591317
218 => 0.0029406852272779
219 => 0.002872574300251
220 => 0.0028752441196394
221 => 0.0027781358369357
222 => 0.0029492771555415
223 => 0.0029243433049457
224 => 0.0030537001659439
225 => 0.003022828112913
226 => 0.0031283136114527
227 => 0.0031005357444832
228 => 0.003215840117234
301 => 0.0032618381532656
302 => 0.0033390760147853
303 => 0.0033958925001339
304 => 0.0034292562270567
305 => 0.0034272531940364
306 => 0.0035594569018475
307 => 0.0034815009941971
308 => 0.0033835700013914
309 => 0.0033817987386998
310 => 0.0034325185875668
311 => 0.003538813476481
312 => 0.0035663741946487
313 => 0.0035817768762021
314 => 0.0035581871332318
315 => 0.0034735715826275
316 => 0.0034370350168871
317 => 0.0034681652294641
318 => 0.0034300956545321
319 => 0.0034958144213009
320 => 0.0035860603248456
321 => 0.0035674249026346
322 => 0.0036297203251073
323 => 0.0036941895336971
324 => 0.0037863833974737
325 => 0.0038104862873938
326 => 0.0038503274478809
327 => 0.0038913370891616
328 => 0.0039045082807001
329 => 0.0039296561721279
330 => 0.0039295236303267
331 => 0.0040053084937926
401 => 0.0040889015450573
402 => 0.0041204559867262
403 => 0.0041930136854217
404 => 0.0040687611691307
405 => 0.0041630081300474
406 => 0.0042480212479488
407 => 0.0041466651041073
408 => 0.00428636093544
409 => 0.0042917850080131
410 => 0.0043736820641112
411 => 0.0042906637081783
412 => 0.0042413676734293
413 => 0.0043836834786513
414 => 0.0044525456138924
415 => 0.0044318037783391
416 => 0.0042739573856281
417 => 0.0041820840147201
418 => 0.003941633682004
419 => 0.0042264574877876
420 => 0.0043651868551604
421 => 0.0042735981100812
422 => 0.0043197901457
423 => 0.0045717989142185
424 => 0.004667747536911
425 => 0.0046477908941225
426 => 0.0046511632382394
427 => 0.0047029353734536
428 => 0.0049325215324287
429 => 0.0047949481842053
430 => 0.0049001178541471
501 => 0.0049558994678668
502 => 0.0050077125394327
503 => 0.0048804760113562
504 => 0.0047149431578045
505 => 0.0046625119544882
506 => 0.0042644914143999
507 => 0.0042437727167728
508 => 0.0042321426839538
509 => 0.0041588169721313
510 => 0.0041012030482416
511 => 0.0040553863168966
512 => 0.0039351495318134
513 => 0.0039757259171911
514 => 0.0037840935771358
515 => 0.0039066931572701
516 => 0.0036008433154171
517 => 0.0038555641520894
518 => 0.0037169311814239
519 => 0.003810019492704
520 => 0.0038096947163554
521 => 0.0036382896216128
522 => 0.0035394267400984
523 => 0.0036024260160003
524 => 0.0036699662406559
525 => 0.0036809244148737
526 => 0.0037684920791199
527 => 0.0037929303319504
528 => 0.0037188812849611
529 => 0.0035945052572609
530 => 0.0036233949717805
531 => 0.0035388412909557
601 => 0.0033906642176207
602 => 0.0034970875786134
603 => 0.0035334251931612
604 => 0.0035494739538537
605 => 0.0034037588204806
606 => 0.0033579719619453
607 => 0.0033335954226501
608 => 0.0035756952633547
609 => 0.003588958039138
610 => 0.0035211038030632
611 => 0.0038278113843241
612 => 0.0037583940126204
613 => 0.0038359502244824
614 => 0.0036207735329955
615 => 0.0036289935723841
616 => 0.0035271254782748
617 => 0.0035841648041475
618 => 0.003543851247084
619 => 0.0035795565902906
620 => 0.00360095822579
621 => 0.0037028096043475
622 => 0.0038567271312264
623 => 0.0036875964048352
624 => 0.0036139037253499
625 => 0.0036596222492392
626 => 0.003781376703073
627 => 0.0039658409331271
628 => 0.0038566343962465
629 => 0.0039050984028668
630 => 0.0039156856322998
701 => 0.0038351607750498
702 => 0.0039688099994734
703 => 0.0040404337046063
704 => 0.0041139048056352
705 => 0.0041776977040452
706 => 0.0040845588322202
707 => 0.0041842307760058
708 => 0.0041039127837811
709 => 0.0040318592416342
710 => 0.0040319685171153
711 => 0.0039867682775922
712 => 0.0038991871179196
713 => 0.0038830358083399
714 => 0.003967056960459
715 => 0.0040344339676258
716 => 0.0040399834606502
717 => 0.0040772868337733
718 => 0.0040993625857323
719 => 0.0043157349654598
720 => 0.0044027617265124
721 => 0.0045091764025953
722 => 0.0045506309161321
723 => 0.0046753941396122
724 => 0.0045746377038784
725 => 0.0045528384152197
726 => 0.0042502036447963
727 => 0.0042997600714993
728 => 0.0043791046921346
729 => 0.0042515120083662
730 => 0.0043324401984298
731 => 0.0043484171374418
801 => 0.0042471764577957
802 => 0.0043012534791462
803 => 0.0041576409431586
804 => 0.0038598574920631
805 => 0.0039691415175803
806 => 0.0040496113449662
807 => 0.0039347709794284
808 => 0.0041406178897191
809 => 0.00402036637427
810 => 0.0039822524169634
811 => 0.0038335562809033
812 => 0.0039037351332845
813 => 0.0039986530359944
814 => 0.0039400048075102
815 => 0.0040617086876907
816 => 0.0042340738392656
817 => 0.0043569115108001
818 => 0.004366341461939
819 => 0.0042873650686272
820 => 0.00441392524293
821 => 0.0044148470956309
822 => 0.0042720867020039
823 => 0.0041846467558005
824 => 0.0041647802160478
825 => 0.0042144107274144
826 => 0.0042746713305114
827 => 0.0043696855060184
828 => 0.004427100582344
829 => 0.0045768086507976
830 => 0.0046173153616545
831 => 0.0046618199560188
901 => 0.0047212918187981
902 => 0.0047927030383373
903 => 0.0046364593554285
904 => 0.0046426672082251
905 => 0.0044971752540415
906 => 0.0043416962353395
907 => 0.004459685429801
908 => 0.0046139406061147
909 => 0.0045785542982315
910 => 0.004574572615718
911 => 0.0045812687012791
912 => 0.004554588580744
913 => 0.0044339153843749
914 => 0.0043733140606126
915 => 0.0044515052293126
916 => 0.0044930603555881
917 => 0.0045575087324536
918 => 0.0045495641096647
919 => 0.0047155762072198
920 => 0.0047800834883844
921 => 0.0047635797654403
922 => 0.0047666168476463
923 => 0.0048834041989256
924 => 0.0050132957526988
925 => 0.0051349563335075
926 => 0.0052587147017497
927 => 0.0051095191584624
928 => 0.005033766862683
929 => 0.0051119238955648
930 => 0.0050704526737778
1001 => 0.0053087586153292
1002 => 0.0053252584016771
1003 => 0.0055635471109965
1004 => 0.0057897114710322
1005 => 0.0056476616886492
1006 => 0.0057816082353737
1007 => 0.0059264823464784
1008 => 0.0062059680117769
1009 => 0.0061118470721287
1010 => 0.0060397519074212
1011 => 0.005971622325134
1012 => 0.0061133891706071
1013 => 0.0062957699525275
1014 => 0.0063350530261318
1015 => 0.0063987066126598
1016 => 0.0063317826496158
1017 => 0.0064123851916695
1018 => 0.0066969475836707
1019 => 0.0066200563134503
1020 => 0.0065108583488488
1021 => 0.0067354930276711
1022 => 0.0068167874446916
1023 => 0.0073873542375588
1024 => 0.0081077183824923
1025 => 0.0078094828963238
1026 => 0.0076243585060601
1027 => 0.0076678671289813
1028 => 0.0079309197288458
1029 => 0.0080154038750501
1030 => 0.0077857468422352
1031 => 0.0078668655887234
1101 => 0.0083138378572922
1102 => 0.0085536241387921
1103 => 0.0082279621609211
1104 => 0.0073294736799164
1105 => 0.0065010262668972
1106 => 0.0067207678263031
1107 => 0.006695855952841
1108 => 0.0071760718944921
1109 => 0.0066182224820852
1110 => 0.0066276152355055
1111 => 0.0071177615342725
1112 => 0.0069869989049963
1113 => 0.0067751801923812
1114 => 0.0065025727779119
1115 => 0.0059986327591316
1116 => 0.0055522790310909
1117 => 0.0064276814809032
1118 => 0.0063899325354513
1119 => 0.0063352664683565
1120 => 0.0064569198851896
1121 => 0.0070476343454062
1122 => 0.0070340164651421
1123 => 0.0069473864588054
1124 => 0.0070130945550899
1125 => 0.0067636612454085
1126 => 0.0068279458888043
1127 => 0.0065008950365943
1128 => 0.0066487356806433
1129 => 0.0067747257245565
1130 => 0.0068000200911866
1201 => 0.0068570095907665
1202 => 0.0063700405565234
1203 => 0.0065886753562389
1204 => 0.0067171028177613
1205 => 0.0061368628743718
1206 => 0.0067056333396942
1207 => 0.0063615635090456
1208 => 0.006244781040768
1209 => 0.0064020132493835
1210 => 0.0063407397047727
1211 => 0.0062880603092196
1212 => 0.0062586643013541
1213 => 0.0063741182822757
1214 => 0.0063687322160683
1215 => 0.0061798270946285
1216 => 0.0059334080644682
1217 => 0.0060161143794189
1218 => 0.0059860663998215
1219 => 0.0058771686454938
1220 => 0.0059505525835457
1221 => 0.0056274068591265
1222 => 0.0050714514359164
1223 => 0.0054387326178641
1224 => 0.0054245926918842
1225 => 0.0054174627000105
1226 => 0.005693464357338
1227 => 0.0056669331664276
1228 => 0.005618778795131
1229 => 0.0058762842527018
1230 => 0.0057822912967513
1231 => 0.0060719554394652
]
'min_raw' => 0.0026002438303021
'max_raw' => 0.0085536241387921
'avg_raw' => 0.0055769339845471
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.00260024'
'max' => '$0.008553'
'avg' => '$0.005576'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0014165457989638
'max_diff' => 0.0056543778625871
'year' => 2029
]
4 => [
'items' => [
101 => 0.0062627469781587
102 => 0.0062143560724863
103 => 0.006393796436803
104 => 0.0060180197658721
105 => 0.0061428377024121
106 => 0.0061685625061428
107 => 0.0058731066753269
108 => 0.0056712739973773
109 => 0.005657814058819
110 => 0.0053078640095106
111 => 0.005494804501153
112 => 0.0056593043976752
113 => 0.0055805217129488
114 => 0.0055555814685301
115 => 0.0056829957683859
116 => 0.0056928969507144
117 => 0.0054671489443448
118 => 0.0055140891033787
119 => 0.005709837369702
120 => 0.0055091567493057
121 => 0.0051192670848688
122 => 0.0050225690574422
123 => 0.0050096677580852
124 => 0.0047474150384868
125 => 0.0050290308820144
126 => 0.0049060980194792
127 => 0.0052944414592661
128 => 0.0050726217691875
129 => 0.0050630595656936
130 => 0.0050486048926423
131 => 0.0048228731433605
201 => 0.0048722940504522
202 => 0.0050365766726415
203 => 0.0050951945630149
204 => 0.0050890802368067
205 => 0.0050357715981687
206 => 0.0050601760199528
207 => 0.0049815608743221
208 => 0.0049538002301671
209 => 0.0048661800010473
210 => 0.0047374024699473
211 => 0.0047553097754852
212 => 0.0045001677899021
213 => 0.0043611528947463
214 => 0.0043226754039541
215 => 0.0042712216951816
216 => 0.004328487237273
217 => 0.0044994450047138
218 => 0.0042932336664666
219 => 0.0039396987910852
220 => 0.0039609468394897
221 => 0.0040086848956525
222 => 0.003919725343812
223 => 0.0038355325938042
224 => 0.0039087313591622
225 => 0.0037589339718952
226 => 0.0040267871942383
227 => 0.0040195425152239
228 => 0.0041193816325812
301 => 0.0041818130815697
302 => 0.0040379288040729
303 => 0.0040017422973869
304 => 0.0040223557761802
305 => 0.0036816608888173
306 => 0.0040915395917769
307 => 0.0040950842398207
308 => 0.0040647328112516
309 => 0.0042829805669924
310 => 0.0047435514047876
311 => 0.00457026612919
312 => 0.0045031648329035
313 => 0.004375605219612
314 => 0.0045455708305825
315 => 0.0045325201235365
316 => 0.004473499876941
317 => 0.0044378042476456
318 => 0.0045035745391101
319 => 0.0044296545806856
320 => 0.004416376524968
321 => 0.0043359259539861
322 => 0.0043072087604133
323 => 0.0042859476935564
324 => 0.0042625413480163
325 => 0.0043141699137799
326 => 0.0041971727914561
327 => 0.0040560857313029
328 => 0.0040443558688343
329 => 0.0040767430504101
330 => 0.0040624141335049
331 => 0.0040442872674929
401 => 0.0040096781437177
402 => 0.0039994103560005
403 => 0.0040327756848589
404 => 0.0039951081738973
405 => 0.0040506886381766
406 => 0.0040355738273
407 => 0.0039511437224204
408 => 0.003845912551712
409 => 0.0038449757735628
410 => 0.0038223038904474
411 => 0.0037934278385595
412 => 0.0037853951815188
413 => 0.0039025667633117
414 => 0.0041451084309727
415 => 0.0040974916980806
416 => 0.0041318996675542
417 => 0.0043011528225452
418 => 0.0043549533108969
419 => 0.0043167669985993
420 => 0.0042644952190971
421 => 0.0042667949121114
422 => 0.004445423406414
423 => 0.0044565642464935
424 => 0.0044847135552031
425 => 0.0045208933718887
426 => 0.0043229285778268
427 => 0.0042574707881138
428 => 0.0042264532558879
429 => 0.0041309312619277
430 => 0.0042339435429769
501 => 0.0041739226982352
502 => 0.0041820215607949
503 => 0.0041767471659283
504 => 0.0041796273421785
505 => 0.0040267123238037
506 => 0.0040824265195227
507 => 0.0039897908631939
508 => 0.0038657621182101
509 => 0.0038653463303668
510 => 0.0038957021899902
511 => 0.0038776453368613
512 => 0.0038290548093756
513 => 0.0038359568644641
514 => 0.003775487599205
515 => 0.003843298928098
516 => 0.00384524351437
517 => 0.0038191324590382
518 => 0.0039236051673579
519 => 0.0039664077211982
520 => 0.0039492208652258
521 => 0.0039652018455665
522 => 0.004099470388309
523 => 0.0041213620193232
524 => 0.0041310848357398
525 => 0.0041180575497679
526 => 0.0039676560280476
527 => 0.0039743269750926
528 => 0.0039253799919196
529 => 0.0038840249490445
530 => 0.0038856789338809
531 => 0.003906940801698
601 => 0.0039997926254472
602 => 0.0041951938146134
603 => 0.0042026091469058
604 => 0.0042115967459648
605 => 0.0041750396637867
606 => 0.0041640136979976
607 => 0.0041785597929166
608 => 0.004251942205861
609 => 0.0044407016950848
610 => 0.0043739814847707
611 => 0.0043197369152234
612 => 0.0043673240269473
613 => 0.0043599983640975
614 => 0.0042981623973588
615 => 0.0042964268677236
616 => 0.0041777438773975
617 => 0.0041338694781549
618 => 0.004097204746206
619 => 0.0040571678160747
620 => 0.0040334325818429
621 => 0.004069900689094
622 => 0.0040782413767003
623 => 0.0039985032228423
624 => 0.003987635207114
625 => 0.0040527511048221
626 => 0.0040240960260061
627 => 0.0040535684851801
628 => 0.0040604063485186
629 => 0.0040593052950317
630 => 0.004029386101733
701 => 0.0040484557033384
702 => 0.0040033504106198
703 => 0.0039543051793842
704 => 0.0039230173774817
705 => 0.0038957146205971
706 => 0.0039108637769622
707 => 0.0038568598006473
708 => 0.0038395828417388
709 => 0.0040419953513941
710 => 0.0041915196485777
711 => 0.0041893455060785
712 => 0.0041761109727589
713 => 0.0041564471407729
714 => 0.0042505036740728
715 => 0.0042177362585909
716 => 0.0042415772911631
717 => 0.0042476458345578
718 => 0.004266013487685
719 => 0.0042725783449248
720 => 0.0042527347867595
721 => 0.0041861373818701
722 => 0.0040201829807771
723 => 0.0039429307590829
724 => 0.0039174362391863
725 => 0.0039183629165636
726 => 0.0038928010176289
727 => 0.0039003301424691
728 => 0.003890182695271
729 => 0.0038709658852089
730 => 0.0039096771930925
731 => 0.0039141383107052
801 => 0.0039051026288795
802 => 0.0039072308590459
803 => 0.0038324192727193
804 => 0.0038381070351455
805 => 0.0038064368511906
806 => 0.0038004990734888
807 => 0.0037204396062891
808 => 0.0035786026553396
809 => 0.0036571940946116
810 => 0.0035622666875997
811 => 0.0035263162401793
812 => 0.0036965000668256
813 => 0.0036794183307949
814 => 0.0036501818239625
815 => 0.0036069349369355
816 => 0.0035908942458585
817 => 0.0034934360847403
818 => 0.0034876777366624
819 => 0.0035359806329042
820 => 0.0035136905082898
821 => 0.0034823867314008
822 => 0.0033690076247218
823 => 0.0032415319702824
824 => 0.0032453796590065
825 => 0.0032859272929148
826 => 0.0034038250070966
827 => 0.0033577603305146
828 => 0.0033243398791231
829 => 0.0033180812331926
830 => 0.0033964212903761
831 => 0.0035072888840403
901 => 0.0035593054784649
902 => 0.0035077586131576
903 => 0.0034485443497728
904 => 0.0034521484476126
905 => 0.0034761248958762
906 => 0.00347864448158
907 => 0.0034401020834411
908 => 0.0034509515427538
909 => 0.0034344702219625
910 => 0.0033333243866882
911 => 0.003331494979265
912 => 0.0033066721600918
913 => 0.0033059205349924
914 => 0.0032636907272363
915 => 0.0032577824852103
916 => 0.0031739326387445
917 => 0.003229122861609
918 => 0.0031921041577283
919 => 0.0031363082391505
920 => 0.0031266890017569
921 => 0.0031263998358653
922 => 0.0031836897685056
923 => 0.0032284533953903
924 => 0.0031927481139313
925 => 0.0031846187134609
926 => 0.0032714194422389
927 => 0.0032603732582957
928 => 0.0032508073342411
929 => 0.0034973619070341
930 => 0.0033021947237752
1001 => 0.003217090692121
1002 => 0.0031117582921316
1003 => 0.0031460550527002
1004 => 0.0031532818840763
1005 => 0.002899976449694
1006 => 0.0027972104665122
1007 => 0.0027619450537387
1008 => 0.0027416493101077
1009 => 0.0027508983353382
1010 => 0.0026583968972271
1011 => 0.0027205593934704
1012 => 0.002640460967018
1013 => 0.0026270322051605
1014 => 0.0027702581139482
1015 => 0.0027901871624424
1016 => 0.0027051636500961
1017 => 0.0027597625090788
1018 => 0.0027399642038307
1019 => 0.0026418340246431
1020 => 0.0026380861735949
1021 => 0.0025888478991212
1022 => 0.0025117995339784
1023 => 0.0024765863636245
1024 => 0.0024582470387695
1025 => 0.002465814201631
1026 => 0.0024619880125292
1027 => 0.002437019540506
1028 => 0.0024634191761185
1029 => 0.0023959790162111
1030 => 0.0023691238011337
1031 => 0.0023569939235195
1101 => 0.0022971368998909
1102 => 0.0023923960430232
1103 => 0.0024111632942633
1104 => 0.0024299675227859
1105 => 0.0025936454938828
1106 => 0.0025854686049959
1107 => 0.0026593836982267
1108 => 0.0026565114936249
1109 => 0.0026354297116904
1110 => 0.0025464891414933
1111 => 0.0025819392675607
1112 => 0.0024728292896983
1113 => 0.0025545819038701
1114 => 0.0025172734248328
1115 => 0.0025419678695786
1116 => 0.0024975650313174
1117 => 0.0025221393953594
1118 => 0.0024156137057515
1119 => 0.0023161415156525
1120 => 0.0023561720287226
1121 => 0.0023996897744742
1122 => 0.0024940473353792
1123 => 0.0024378487505372
1124 => 0.0024580598867501
1125 => 0.0023903559637401
1126 => 0.0022506634319008
1127 => 0.0022514540764605
1128 => 0.0022299654238043
1129 => 0.0022113960905146
1130 => 0.0024443038340418
1201 => 0.0024153380744076
1202 => 0.0023691849273755
1203 => 0.0024309627487312
1204 => 0.0024472977852435
1205 => 0.0024477628207686
1206 => 0.0024928343245134
1207 => 0.0025168889941415
1208 => 0.0025211287339223
1209 => 0.002592049718899
1210 => 0.0026158214975928
1211 => 0.0027137340897243
1212 => 0.0025148481234842
1213 => 0.00251075219789
1214 => 0.0024318320893682
1215 => 0.0023817797088661
1216 => 0.0024352592186828
1217 => 0.0024826347636994
1218 => 0.0024333041796106
1219 => 0.0024397457124672
1220 => 0.0023735234337848
1221 => 0.002397194782366
1222 => 0.002417583736639
1223 => 0.0024063261544968
1224 => 0.0023894730091567
1225 => 0.0024787505092716
1226 => 0.0024737131228338
1227 => 0.0025568503834216
1228 => 0.0026216618232524
1229 => 0.0027378155098598
1230 => 0.0026166030826564
1231 => 0.0026121856200333
]
'min_raw' => 0.0022113960905146
'max_raw' => 0.006393796436803
'avg_raw' => 0.0043025962636588
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002211'
'max' => '$0.006393'
'avg' => '$0.0043025'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00038884773978748
'max_diff' => -0.002159827701989
'year' => 2030
]
5 => [
'items' => [
101 => 0.002655367025757
102 => 0.0026158148867445
103 => 0.002640810473307
104 => 0.0027337883344344
105 => 0.0027357528101274
106 => 0.0027028453111852
107 => 0.002700842886884
108 => 0.0027071631320244
109 => 0.0027441810052212
110 => 0.0027312458228819
111 => 0.0027462147433637
112 => 0.0027649336076384
113 => 0.0028423627669127
114 => 0.0028610306750786
115 => 0.0028156773364362
116 => 0.0028197722351158
117 => 0.0028028088414866
118 => 0.0027864224157915
119 => 0.0028232567077088
120 => 0.0028905721001676
121 => 0.0028901533346048
122 => 0.002905769197231
123 => 0.0029154977502783
124 => 0.0028737356788631
125 => 0.0028465501060058
126 => 0.0028569747845022
127 => 0.002873644072438
128 => 0.0028515691590877
129 => 0.0027153125677948
130 => 0.0027566441134883
131 => 0.0027497645232756
201 => 0.0027399671502259
202 => 0.0027815263390281
203 => 0.0027775178538838
204 => 0.0026574481612799
205 => 0.0026651346334352
206 => 0.00265791560111
207 => 0.0026812417714278
208 => 0.0026145551969974
209 => 0.0026350675381512
210 => 0.0026479326862317
211 => 0.0026555103572858
212 => 0.0026828861011909
213 => 0.0026796738736133
214 => 0.0026826864246145
215 => 0.0027232774258973
216 => 0.0029285727812363
217 => 0.0029397465544687
218 => 0.0028847228084567
219 => 0.0029067037096931
220 => 0.0028645051860138
221 => 0.0028928333376652
222 => 0.0029122147395681
223 => 0.0028246339111983
224 => 0.0028194479429372
225 => 0.0027770752509398
226 => 0.0027998439355073
227 => 0.0027636173212342
228 => 0.0027725060652236
301 => 0.0027476523621223
302 => 0.0027923840793817
303 => 0.0028424010898838
304 => 0.0028550373619682
305 => 0.0028217967703712
306 => 0.0027977283913933
307 => 0.002755472246525
308 => 0.0028257451571806
309 => 0.0028462950977845
310 => 0.002825637217091
311 => 0.0028208503347507
312 => 0.0028117792013656
313 => 0.0028227748185804
314 => 0.0028461831783946
315 => 0.0028351442281908
316 => 0.0028424356492817
317 => 0.0028146482709639
318 => 0.0028737495038465
319 => 0.0029676164851503
320 => 0.002967918282844
321 => 0.0029568792731361
322 => 0.0029523623482024
323 => 0.0029636890420659
324 => 0.0029698333088415
325 => 0.0030064617598354
326 => 0.0030457655470937
327 => 0.0032291791726426
328 => 0.00317767736053
329 => 0.0033404128404423
330 => 0.0034691154764956
331 => 0.0035077077695638
401 => 0.0034722046758488
402 => 0.0033507505100891
403 => 0.0033447913892892
404 => 0.0035262951895603
405 => 0.0034750120525831
406 => 0.0034689120866212
407 => 0.0034040187548421
408 => 0.0034423787511191
409 => 0.0034339888572261
410 => 0.0034207449992684
411 => 0.0034939331999843
412 => 0.0036309349781686
413 => 0.003609581966244
414 => 0.0035936429333801
415 => 0.0035238027311528
416 => 0.0035658621322675
417 => 0.0035508855851254
418 => 0.0036152343359998
419 => 0.0035771155614812
420 => 0.0034746235323821
421 => 0.0034909457258343
422 => 0.0034884786591297
423 => 0.0035392507170921
424 => 0.0035240102055317
425 => 0.003485502704646
426 => 0.0036304667209848
427 => 0.003621053564096
428 => 0.003634399268417
429 => 0.0036402744601888
430 => 0.0037285115023817
501 => 0.0037646593952977
502 => 0.0037728655998476
503 => 0.0038072033023394
504 => 0.0037720112465287
505 => 0.0039128045612823
506 => 0.0040064239000758
507 => 0.0041151675796915
508 => 0.0042740713231557
509 => 0.00433382060064
510 => 0.0043230274284575
511 => 0.0044435064332087
512 => 0.0046600045266488
513 => 0.0043667878830591
514 => 0.0046755457207447
515 => 0.0045777965541141
516 => 0.0043460350384654
517 => 0.0043311123291464
518 => 0.0044880639183502
519 => 0.0048361674371736
520 => 0.0047489714538658
521 => 0.0048363100585652
522 => 0.0047344249369202
523 => 0.0047293654818753
524 => 0.0048313617256188
525 => 0.0050696815086512
526 => 0.004956464713016
527 => 0.0047941406745757
528 => 0.0049139982185182
529 => 0.0048101665216632
530 => 0.0045762046479866
531 => 0.0047489047767407
601 => 0.0046334251188593
602 => 0.0046671282222654
603 => 0.0049098492868293
604 => 0.0048806444461807
605 => 0.0049184382142754
606 => 0.0048517332028233
607 => 0.0047894202037123
608 => 0.0046731083634474
609 => 0.0046386741616494
610 => 0.0046481905362136
611 => 0.0046386694458068
612 => 0.0045735940401396
613 => 0.0045595410124816
614 => 0.0045361186840411
615 => 0.0045433782430219
616 => 0.0044993374131098
617 => 0.0045824515584536
618 => 0.0045978782762288
619 => 0.0046583618200655
620 => 0.004664641422233
621 => 0.0048330872308889
622 => 0.0047403101100981
623 => 0.0048025530127158
624 => 0.0047969854216527
625 => 0.0043510580132719
626 => 0.0044125028756959
627 => 0.0045080917991677
628 => 0.0044650291187114
629 => 0.0044041485636615
630 => 0.0043549842512499
701 => 0.0042804952906373
702 => 0.0043853370722658
703 => 0.0045231928664268
704 => 0.0046681376726697
705 => 0.0048422793602106
706 => 0.0048034129627842
707 => 0.0046648822149515
708 => 0.0046710966031025
709 => 0.0047095115053804
710 => 0.0046597607165686
711 => 0.0046450882376973
712 => 0.0047074957320947
713 => 0.0047079254982101
714 => 0.0046506812030985
715 => 0.0045870646446774
716 => 0.0045867980889747
717 => 0.0045754781368668
718 => 0.0047364387312528
719 => 0.0048249507832135
720 => 0.0048350985473265
721 => 0.0048242677578355
722 => 0.004828436098852
723 => 0.004776932886046
724 => 0.0048946539577171
725 => 0.0050026864544898
726 => 0.004973731437577
727 => 0.0049303237510266
728 => 0.0048957474378918
729 => 0.0049655863570535
730 => 0.0049624765399199
731 => 0.005001742884876
801 => 0.0049999615366554
802 => 0.0049867577417286
803 => 0.0049737319091261
804 => 0.0050253778630214
805 => 0.0050105046577082
806 => 0.0049956083501991
807 => 0.0049657315249789
808 => 0.0049697922817279
809 => 0.0049263920901266
810 => 0.0049063131756341
811 => 0.0046043744777205
812 => 0.0045236865915064
813 => 0.0045490726430627
814 => 0.0045574303903836
815 => 0.0045223149188989
816 => 0.0045726614845835
817 => 0.0045648150256517
818 => 0.0045953410073302
819 => 0.0045762696992615
820 => 0.004577052392397
821 => 0.0046331370429953
822 => 0.0046494186556651
823 => 0.0046411376960525
824 => 0.0046469373963105
825 => 0.0047805890408552
826 => 0.00476158805094
827 => 0.0047514941537513
828 => 0.0047542902322555
829 => 0.0047884410929602
830 => 0.0047980014693897
831 => 0.0047574934826623
901 => 0.0047765972833768
902 => 0.0048579388421859
903 => 0.0048864037842356
904 => 0.0049772502153109
905 => 0.0049386570367236
906 => 0.0050094964862943
907 => 0.0052272328033266
908 => 0.0054011756395791
909 => 0.0052412106188695
910 => 0.0055606344861607
911 => 0.0058093517854791
912 => 0.005799805601271
913 => 0.0057564359872
914 => 0.0054732779544174
915 => 0.0052127117110025
916 => 0.0054306864378462
917 => 0.0054312421002518
918 => 0.0054125178779037
919 => 0.0052962233410152
920 => 0.005408471080103
921 => 0.0054173808980079
922 => 0.005412393769293
923 => 0.0053232310205275
924 => 0.0051870959831931
925 => 0.005213696443627
926 => 0.0052572685404524
927 => 0.0051747774710703
928 => 0.0051484165760925
929 => 0.0051974264952216
930 => 0.0053553466662778
1001 => 0.0053254927727089
1002 => 0.0053247131668988
1003 => 0.0054524407836077
1004 => 0.005361015375389
1005 => 0.0052140319606195
1006 => 0.0051769167099172
1007 => 0.0050451825737526
1008 => 0.0051361718108224
1009 => 0.0051394463514795
1010 => 0.0050896124762238
1011 => 0.0052180757049464
1012 => 0.0052168918936782
1013 => 0.005338848610122
1014 => 0.0055719840471116
1015 => 0.0055030344264956
1016 => 0.0054228535194167
1017 => 0.0054315714071916
1018 => 0.0055271851185015
1019 => 0.0054693748859948
1020 => 0.0054901638486715
1021 => 0.0055271536519166
1022 => 0.0055494705186196
1023 => 0.0054283603535101
1024 => 0.0054001237806542
1025 => 0.0053423616622815
1026 => 0.005327292603779
1027 => 0.0053743386439475
1028 => 0.0053619436745242
1029 => 0.0051391711390169
1030 => 0.0051158901695617
1031 => 0.0051166041636573
1101 => 0.0050580630590125
1102 => 0.0049687738229541
1103 => 0.0052034206041323
1104 => 0.0051845751837241
1105 => 0.0051637712981131
1106 => 0.0051663196553951
1107 => 0.0052681718701873
1108 => 0.0052090924419477
1109 => 0.0053661647848505
1110 => 0.0053338754331765
1111 => 0.0053007579814709
1112 => 0.005296180140863
1113 => 0.0052834327474045
1114 => 0.0052397171921394
1115 => 0.0051869280322591
1116 => 0.0051520720563874
1117 => 0.0047525141345189
1118 => 0.0048266697606962
1119 => 0.0049119790491151
1120 => 0.0049414274736218
1121 => 0.0048910539057342
1122 => 0.0052417062476301
1123 => 0.0053057738094645
1124 => 0.0051117089856444
1125 => 0.0050754073807222
1126 => 0.0052440861748052
1127 => 0.0051423522418292
1128 => 0.0051881630256191
1129 => 0.0050891451682244
1130 => 0.0052903418099358
1201 => 0.0052888090286225
1202 => 0.0052105389907645
1203 => 0.005276692290792
1204 => 0.0052651965269595
1205 => 0.0051768298469884
1206 => 0.0052931431913077
1207 => 0.0052932008812753
1208 => 0.0052178676715744
1209 => 0.0051298949752038
1210 => 0.0051141675349151
1211 => 0.0051023190213419
1212 => 0.0051852490176071
1213 => 0.0052596037929432
1214 => 0.0053979595957315
1215 => 0.0054327455318053
1216 => 0.0055685173561322
1217 => 0.0054876718453557
1218 => 0.0055235096131583
1219 => 0.0055624165796698
1220 => 0.0055810700101717
1221 => 0.0055506752461671
1222 => 0.0057615847752592
1223 => 0.0057793920016155
1224 => 0.0057853626105809
1225 => 0.0057142451040401
1226 => 0.005777414095108
1227 => 0.0057478594161244
1228 => 0.0058247524803134
1229 => 0.0058368102945981
1230 => 0.0058265977548681
1231 => 0.0058304250954417
]
'min_raw' => 0.0026145551969974
'max_raw' => 0.0058368102945981
'avg_raw' => 0.0042256827457978
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.002614'
'max' => '$0.005836'
'avg' => '$0.004225'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00040315910648279
'max_diff' => -0.00055698614220492
'year' => 2031
]
6 => [
'items' => [
101 => 0.0056504510193522
102 => 0.005641118414068
103 => 0.0055138676788075
104 => 0.0055657232940161
105 => 0.0054687817068879
106 => 0.0054995228827752
107 => 0.0055130733001937
108 => 0.0055059953311137
109 => 0.0055686551326964
110 => 0.0055153815007994
111 => 0.005374783627227
112 => 0.005234147447858
113 => 0.0052323818751858
114 => 0.0051953548515927
115 => 0.0051685910953725
116 => 0.0051737467443158
117 => 0.0051919159236537
118 => 0.0051675350696396
119 => 0.0051727379609842
120 => 0.0052591406239879
121 => 0.0052764680618577
122 => 0.0052175826577091
123 => 0.0049811492629294
124 => 0.0049231279148022
125 => 0.0049648325092227
126 => 0.0049449003992096
127 => 0.0039909205558146
128 => 0.0042150439694372
129 => 0.0040818774475746
130 => 0.004143246707546
131 => 0.0040073181720279
201 => 0.0040721903938021
202 => 0.0040602108631946
203 => 0.0044205946800058
204 => 0.0044149677823981
205 => 0.0044176610805141
206 => 0.0042891029440843
207 => 0.0044938995461508
208 => 0.0045947897165764
209 => 0.0045761176311355
210 => 0.0045808169927667
211 => 0.0045000663902132
212 => 0.0044184429228589
213 => 0.0043279099358014
214 => 0.0044961090355389
215 => 0.0044774081669024
216 => 0.0045203012311942
217 => 0.0046293903704939
218 => 0.0046454541606452
219 => 0.0046670440575113
220 => 0.0046593056163583
221 => 0.0048436666796991
222 => 0.0048213393384751
223 => 0.0048751418068106
224 => 0.0047644660474414
225 => 0.0046392259202757
226 => 0.0046630299740417
227 => 0.0046607374522439
228 => 0.0046315510185242
229 => 0.0046052028111757
301 => 0.0045613404695018
302 => 0.0047001274089632
303 => 0.0046944929126757
304 => 0.0047857088581836
305 => 0.0047695855537906
306 => 0.0046619101810128
307 => 0.0046657558280164
308 => 0.0046916196522705
309 => 0.004781134643322
310 => 0.0048077087873114
311 => 0.0047953985850189
312 => 0.0048245359207476
313 => 0.0048475648828826
314 => 0.0048274280038316
315 => 0.0051125237462742
316 => 0.0049941321172062
317 => 0.0050518353734503
318 => 0.0050655972600572
319 => 0.0050303464768949
320 => 0.0050379911095269
321 => 0.0050495706449266
322 => 0.0051198793163684
323 => 0.0053043896142097
324 => 0.0053861079691195
325 => 0.0056319616717782
326 => 0.0053793223973186
327 => 0.0053643318282974
328 => 0.0054086175042168
329 => 0.0055529596539349
330 => 0.0056699354089128
331 => 0.0057087430153321
401 => 0.0057138720811642
402 => 0.0057866777306877
403 => 0.0058284085712497
404 => 0.0057778372098569
405 => 0.0057349832761188
406 => 0.0055814858046948
407 => 0.0055992535549719
408 => 0.0057216557349507
409 => 0.0058945560236231
410 => 0.0060429224585131
411 => 0.0059909697041069
412 => 0.0063873325472971
413 => 0.0064266303042024
414 => 0.0064212006248467
415 => 0.0065107267633673
416 => 0.006333035610085
417 => 0.0062570691994529
418 => 0.0057442487830058
419 => 0.0058883304023544
420 => 0.0060977614976946
421 => 0.0060700425069
422 => 0.0059179480473548
423 => 0.0060428070812268
424 => 0.0060015247799258
425 => 0.0059689637160853
426 => 0.0061181322618111
427 => 0.0059541153182795
428 => 0.0060961253032164
429 => 0.0059139960286296
430 => 0.0059912070199128
501 => 0.005947378326985
502 => 0.0059757408627519
503 => 0.0058099340582006
504 => 0.0058993993852039
505 => 0.0058062120064626
506 => 0.0058061678235117
507 => 0.0058041107069611
508 => 0.0059137452447941
509 => 0.0059173204231368
510 => 0.0058363003340296
511 => 0.0058246240734176
512 => 0.0058677973286761
513 => 0.0058172527538619
514 => 0.0058409022422937
515 => 0.0058179690727744
516 => 0.0058128063332691
517 => 0.0057716687465236
518 => 0.0057539455430521
519 => 0.0057608952678039
520 => 0.0057371722743971
521 => 0.0057228783127714
522 => 0.00580126727822
523 => 0.0057593872161826
524 => 0.0057948485580681
525 => 0.0057544358834115
526 => 0.0056143479460874
527 => 0.0055337818919292
528 => 0.0052691687644827
529 => 0.005344212719175
530 => 0.0053939669387745
531 => 0.0053775231694937
601 => 0.0054128507488029
602 => 0.0054150195752538
603 => 0.0054035342190983
604 => 0.0053902356480355
605 => 0.0053837626390993
606 => 0.0054320071444734
607 => 0.0054600147036785
608 => 0.0053989604403369
609 => 0.0053846562806759
610 => 0.0054463855118125
611 => 0.005484040307146
612 => 0.0057620621594867
613 => 0.0057414654026666
614 => 0.0057931592203758
615 => 0.005787339289808
616 => 0.0058415226462382
617 => 0.0059300895344066
618 => 0.0057500082870688
619 => 0.0057812641648656
620 => 0.0057736009454335
621 => 0.0058572659657897
622 => 0.0058575271588509
623 => 0.0058073657997696
624 => 0.0058345590863027
625 => 0.0058193805397687
626 => 0.0058468102248592
627 => 0.005741190320422
628 => 0.0058698239630624
629 => 0.0059427509494707
630 => 0.0059437635407477
701 => 0.0059783303535209
702 => 0.0060134522372732
703 => 0.0060808656346644
704 => 0.0060115721142087
705 => 0.005886919816497
706 => 0.0058959193097673
707 => 0.0058228357132275
708 => 0.0058240642616889
709 => 0.0058175061737186
710 => 0.0058371874893875
711 => 0.0057455092624349
712 => 0.0057670259590569
713 => 0.0057369024577845
714 => 0.0057811986822569
715 => 0.0057335432671529
716 => 0.005773597249997
717 => 0.005790883221182
718 => 0.005854668826995
719 => 0.0057241220813118
720 => 0.0054579284296261
721 => 0.0055138855624965
722 => 0.0054311205676433
723 => 0.0054387807830255
724 => 0.0054542556372118
725 => 0.0054040965717367
726 => 0.0054136653407356
727 => 0.0054133234769725
728 => 0.0054103774797525
729 => 0.0053973291695874
730 => 0.0053784065383185
731 => 0.005453788477215
801 => 0.005466597337547
802 => 0.0054950698473829
803 => 0.0055797847235668
804 => 0.0055713197097217
805 => 0.0055851264985131
806 => 0.0055549863561032
807 => 0.0054401788977879
808 => 0.0054464134951298
809 => 0.005368667966374
810 => 0.0054930817194169
811 => 0.005463618900515
812 => 0.005444624029502
813 => 0.0054394411029599
814 => 0.0055243659709361
815 => 0.0055497768224688
816 => 0.0055339424850524
817 => 0.00550146579705
818 => 0.0055638306388855
819 => 0.0055805168395992
820 => 0.0055842522645756
821 => 0.0056947508070357
822 => 0.0055904279056135
823 => 0.0056155394648663
824 => 0.0058114526817459
825 => 0.005633786428212
826 => 0.0057279002051392
827 => 0.005723293825503
828 => 0.0057714392491424
829 => 0.005719344495505
830 => 0.0057199902724113
831 => 0.0057627401469496
901 => 0.0057027056581411
902 => 0.0056878402744452
903 => 0.0056673038533372
904 => 0.0057121443775166
905 => 0.0057390242437996
906 => 0.0059556562249547
907 => 0.0060956103643994
908 => 0.0060895345861033
909 => 0.0061450558263491
910 => 0.0061200429991021
911 => 0.0060392699818711
912 => 0.0061771396730644
913 => 0.0061335119340579
914 => 0.0061371085518539
915 => 0.0061369746855599
916 => 0.006165983317996
917 => 0.0061454280433129
918 => 0.0061049114869568
919 => 0.0061318082678945
920 => 0.0062116820915043
921 => 0.0064596128908173
922 => 0.006598358250759
923 => 0.006451260245935
924 => 0.0065527264799418
925 => 0.0064918828956536
926 => 0.0064808258064486
927 => 0.0065445540997007
928 => 0.0066083939408939
929 => 0.0066043276189971
930 => 0.0065579831725029
1001 => 0.0065318043706252
1002 => 0.0067300390289855
1003 => 0.0068760949484261
1004 => 0.0068661349138916
1005 => 0.0069100952671503
1006 => 0.0070391642239604
1007 => 0.0070509646718263
1008 => 0.0070494780866254
1009 => 0.0070202294453404
1010 => 0.0071473145950419
1011 => 0.0072533312627734
1012 => 0.0070134592299574
1013 => 0.0071047993598982
1014 => 0.0071458048870239
1015 => 0.007206013166636
1016 => 0.0073075946264209
1017 => 0.0074179390348989
1018 => 0.0074335429441225
1019 => 0.0074224712238125
1020 => 0.0073496961202044
1021 => 0.0074704362886436
1022 => 0.0075411630476099
1023 => 0.0075832792140212
1024 => 0.0076900788045785
1025 => 0.0071460581231994
1026 => 0.0067609732453371
1027 => 0.0067008366809659
1028 => 0.0068231267493684
1029 => 0.0068553736651612
1030 => 0.0068423749738393
1031 => 0.0064089269334199
1101 => 0.0066985546667372
1102 => 0.0070101697551952
1103 => 0.0070221401598353
1104 => 0.0071781411886815
1105 => 0.0072289415183721
1106 => 0.0073545427941156
1107 => 0.0073466864001203
1108 => 0.0073772683120111
1109 => 0.0073702380600723
1110 => 0.0076028879749182
1111 => 0.0078595353798399
1112 => 0.0078506484962962
1113 => 0.0078137523953245
1114 => 0.0078685493969876
1115 => 0.0081334370228742
1116 => 0.0081090504150203
1117 => 0.008132739927304
1118 => 0.0084450573666367
1119 => 0.0088511144644069
1120 => 0.0086624601750266
1121 => 0.0090717856991725
1122 => 0.0093294344192086
1123 => 0.0097750112391362
1124 => 0.0097192228267691
1125 => 0.0098926826129732
1126 => 0.0096193499252391
1127 => 0.0089917228245514
1128 => 0.0088923984334075
1129 => 0.0090912483797717
1130 => 0.0095801015694141
1201 => 0.0090758526531491
1202 => 0.0091778615521743
1203 => 0.0091484829823925
1204 => 0.0091469175232597
1205 => 0.0092066647311758
1206 => 0.0091199982898888
1207 => 0.0087669036170903
1208 => 0.0089287248248339
1209 => 0.0088662378852315
1210 => 0.0089355718034303
1211 => 0.0093097383644665
1212 => 0.0091443104088156
1213 => 0.0089700454958133
1214 => 0.0091886123691982
1215 => 0.0094669231067434
1216 => 0.0094495069209603
1217 => 0.0094157122411402
1218 => 0.0096062110818543
1219 => 0.0099208593557908
1220 => 0.010005907519877
1221 => 0.010068688335872
1222 => 0.010077344749707
1223 => 0.01016651119214
1224 => 0.0096870407583403
1225 => 0.010447972650454
1226 => 0.010579364567903
1227 => 0.01055466833306
1228 => 0.010700704919487
1229 => 0.01065773725117
1230 => 0.010595483841198
1231 => 0.010826982893558
]
'min_raw' => 0.0039909205558146
'max_raw' => 0.010826982893558
'avg_raw' => 0.0074089517246863
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.00399'
'max' => '$0.010826'
'avg' => '$0.0074089'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0013763653588172
'max_diff' => 0.0049901725989599
'year' => 2032
]
7 => [
'items' => [
101 => 0.010561587911038
102 => 0.010184893145649
103 => 0.0099782309471793
104 => 0.010250380401088
105 => 0.010416572575884
106 => 0.010526415031616
107 => 0.010559653292352
108 => 0.0097242606832389
109 => 0.0092740303999254
110 => 0.0095626228496287
111 => 0.0099147255558536
112 => 0.0096850848100292
113 => 0.009694086292498
114 => 0.0093666789374788
115 => 0.0099436938418635
116 => 0.0098596276237538
117 => 0.010295763312017
118 => 0.010191676029806
119 => 0.010547327752894
120 => 0.010453672735018
121 => 0.010842429478042
122 => 0.010997515068002
123 => 0.011257927910691
124 => 0.011449488657844
125 => 0.011561976792546
126 => 0.011555223426871
127 => 0.012000957457924
128 => 0.011738123672573
129 => 0.011407942493005
130 => 0.011401970557175
131 => 0.011572976068776
201 => 0.011931356708022
202 => 0.012024279593553
203 => 0.012076210809791
204 => 0.011996676344383
205 => 0.011711389107852
206 => 0.011588203525557
207 => 0.011693161210702
208 => 0.011564806980886
209 => 0.011786382391385
210 => 0.012090652755954
211 => 0.012027822128886
212 => 0.01223785549508
213 => 0.012455217932936
214 => 0.012766055981429
215 => 0.012847320557605
216 => 0.012981647811808
217 => 0.013119914680588
218 => 0.013164322272443
219 => 0.013249110144162
220 => 0.013248663270225
221 => 0.013504177228531
222 => 0.01378601703715
223 => 0.013892405040298
224 => 0.014137038387266
225 => 0.013718112353557
226 => 0.014035872562401
227 => 0.014322500224832
228 => 0.01398077090941
301 => 0.014451765158
302 => 0.014470052797377
303 => 0.014746174439881
304 => 0.014466272256697
305 => 0.014300067233802
306 => 0.01477989490728
307 => 0.015012068404046
308 => 0.014942135857329
309 => 0.014409945723821
310 => 0.01410018823941
311 => 0.013289493154952
312 => 0.014249796501914
313 => 0.014717532249787
314 => 0.014408734401231
315 => 0.014564474074344
316 => 0.015414139232095
317 => 0.015737636712421
318 => 0.015670351497932
319 => 0.015681721591571
320 => 0.015856274960061
321 => 0.016630340724239
322 => 0.01616650257564
323 => 0.01652108946056
324 => 0.016709161065764
325 => 0.016883852454022
326 => 0.016454865616241
327 => 0.015896760043357
328 => 0.015719984580746
329 => 0.014378030540932
330 => 0.014308176005349
331 => 0.014268964537717
401 => 0.014021741780869
402 => 0.013827492413999
403 => 0.013673018105448
404 => 0.013267631389875
405 => 0.013404437506129
406 => 0.01275833569229
407 => 0.013171688736342
408 => 0.012140494640781
409 => 0.012999303725662
410 => 0.012531892986019
411 => 0.012845746726718
412 => 0.012844651720583
413 => 0.012266747476537
414 => 0.011933424369125
415 => 0.012145830826298
416 => 0.012373547409232
417 => 0.012410493658682
418 => 0.012705734152468
419 => 0.01278812942811
420 => 0.012538467896246
421 => 0.012119125435198
422 => 0.012216529124716
423 => 0.011931450486466
424 => 0.011431861138324
425 => 0.011790674930153
426 => 0.011913189734612
427 => 0.011967299251776
428 => 0.011476010506102
429 => 0.011321636915814
430 => 0.011239449711665
501 => 0.012055706227471
502 => 0.012100422602002
503 => 0.011871647307644
504 => 0.012905733331505
505 => 0.01267168781624
506 => 0.012933173999335
507 => 0.01220769076083
508 => 0.012235405197533
509 => 0.01189194980604
510 => 0.012084261875579
511 => 0.011948341903336
512 => 0.012068724960825
513 => 0.012140882069126
514 => 0.012484281102969
515 => 0.013003224791019
516 => 0.012432988738661
517 => 0.012184528724718
518 => 0.012338671919976
519 => 0.012749175561701
520 => 0.01337110959221
521 => 0.01300291212856
522 => 0.013166311910529
523 => 0.013202007493739
524 => 0.012930512315455
525 => 0.01338112000669
526 => 0.013622604329153
527 => 0.013870317275861
528 => 0.014085399486728
529 => 0.013771375277621
530 => 0.014107426194967
531 => 0.013836628476559
601 => 0.013593694928593
602 => 0.013594063358506
603 => 0.013441667595175
604 => 0.013146381600617
605 => 0.013091926332721
606 => 0.01337520951326
607 => 0.013602375797035
608 => 0.01362108630022
609 => 0.013746857227143
610 => 0.013821287166152
611 => 0.014550801751041
612 => 0.014844218551944
613 => 0.015203003061993
614 => 0.015342769848644
615 => 0.015763417767297
616 => 0.015423710409631
617 => 0.015350212585941
618 => 0.014329858328173
619 => 0.014496941280721
620 => 0.014764457208858
621 => 0.014334269567296
622 => 0.014607124610321
623 => 0.014660991975674
624 => 0.014319651955849
625 => 0.014501976408869
626 => 0.01401777671708
627 => 0.013013779021135
628 => 0.013382237743133
629 => 0.013653547384389
630 => 0.01326635507408
701 => 0.013960382303897
702 => 0.013554945923868
703 => 0.013426442055777
704 => 0.012925102651418
705 => 0.013161715551952
706 => 0.013481737887895
707 => 0.013284001290872
708 => 0.013694334419994
709 => 0.014275475562679
710 => 0.01468963134851
711 => 0.014721425087153
712 => 0.014455150663147
713 => 0.014881857126958
714 => 0.014884965217701
715 => 0.014403638583375
716 => 0.014108828699888
717 => 0.014041847274074
718 => 0.014209180008239
719 => 0.014412352838841
720 => 0.014732699765241
721 => 0.014926278703665
722 => 0.01543102990874
723 => 0.015567601112482
724 => 0.015717651459593
725 => 0.015918164997146
726 => 0.016158932909595
727 => 0.015632146424082
728 => 0.015653076633204
729 => 0.01516254035175
730 => 0.014638331984998
731 => 0.015036140791868
801 => 0.015556222888562
802 => 0.015436915480941
803 => 0.015423490960354
804 => 0.015446067280329
805 => 0.015356113391198
806 => 0.014949255284507
807 => 0.014744933690392
808 => 0.015008560674798
809 => 0.015148666684322
810 => 0.015365958886566
811 => 0.015339173036157
812 => 0.015898894413659
813 => 0.01611638521586
814 => 0.016060741761701
815 => 0.0160709814964
816 => 0.016464738205071
817 => 0.016902676647356
818 => 0.017312863789623
819 => 0.017730123768685
820 => 0.017227100577992
821 => 0.016971696423915
822 => 0.017235208317026
823 => 0.017095385197343
824 => 0.017898850317273
825 => 0.017954480498923
826 => 0.01875788751918
827 => 0.019520416449332
828 => 0.019041485690428
829 => 0.019493095824559
830 => 0.019981549004936
831 => 0.020923854438556
901 => 0.020606519119218
902 => 0.020363445237883
903 => 0.020133741594546
904 => 0.020611718411904
905 => 0.021226627951568
906 => 0.021359073576881
907 => 0.021573686088012
908 => 0.021348047274127
909 => 0.021619804372151
910 => 0.022579226344295
911 => 0.02231998205837
912 => 0.021951813496757
913 => 0.022709184999899
914 => 0.022983274802679
915 => 0.024906980580532
916 => 0.027335738589393
917 => 0.02633021682564
918 => 0.025706057018893
919 => 0.025852749378747
920 => 0.026739649584937
921 => 0.027024493782359
922 => 0.026250189062082
923 => 0.026523686579397
924 => 0.028030684789484
925 => 0.028839140978904
926 => 0.027741148883519
927 => 0.024711832239349
928 => 0.021918663946003
929 => 0.022659537955406
930 => 0.022575545834737
1001 => 0.02419462740962
1002 => 0.022313799167888
1003 => 0.022345467491826
1004 => 0.02399802995904
1005 => 0.023557154624881
1006 => 0.022842993046589
1007 => 0.021923878115863
1008 => 0.020224809158577
1009 => 0.018719896401066
1010 => 0.021671376879255
1011 => 0.021544103674117
1012 => 0.021359793212244
1013 => 0.021769956200667
1014 => 0.023761591245654
1015 => 0.023715677611573
1016 => 0.023423598496895
1017 => 0.023645137931111
1018 => 0.022804156112643
1019 => 0.023020896276062
1020 => 0.021918221493875
1021 => 0.02241667654719
1022 => 0.022841460776588
1023 => 0.022926742499677
1024 => 0.023118886576391
1025 => 0.021477036478348
1026 => 0.022214178970183
1027 => 0.022647181123225
1028 => 0.020690861643028
1029 => 0.022608510977148
1030 => 0.021448455520928
1031 => 0.021054715275638
1101 => 0.021584834644588
1102 => 0.02137824661095
1103 => 0.021200634350885
1104 => 0.021101523658003
1105 => 0.021490784815419
1106 => 0.021472625317158
1107 => 0.02083571851129
1108 => 0.020004899546677
1109 => 0.020283749661904
1110 => 0.020182440800808
1111 => 0.019815284419094
1112 => 0.020062703489738
1113 => 0.018973195118545
1114 => 0.017098752593624
1115 => 0.018337066741314
1116 => 0.018289392993655
1117 => 0.018265353728253
1118 => 0.019195912585752
1119 => 0.019106460823249
1120 => 0.018944104998392
1121 => 0.019812302627049
1122 => 0.019495398813683
1123 => 0.020472021694548
1124 => 0.021115288687893
1125 => 0.020952135370873
1126 => 0.021557131087293
1127 => 0.02029017380536
1128 => 0.020711006192915
1129 => 0.020797739164741
1130 => 0.019801589203078
1201 => 0.019121096237864
1202 => 0.019075715115271
1203 => 0.017895834091296
1204 => 0.018526117010637
1205 => 0.019080739896777
1206 => 0.018815118574791
1207 => 0.018731030799461
1208 => 0.019160617007207
1209 => 0.019193999534706
1210 => 0.018432874370009
1211 => 0.018591136393448
1212 => 0.019251115340065
1213 => 0.018574506617325
1214 => 0.017259966392449
1215 => 0.01693394224174
1216 => 0.016890444610218
1217 => 0.016006241256191
1218 => 0.016955728734435
1219 => 0.016541252005499
1220 => 0.017850579026014
1221 => 0.017102698453958
1222 => 0.017070458817266
1223 => 0.017021723877881
1224 => 0.01626065352509
1225 => 0.016427279563807
1226 => 0.016981169894365
1227 => 0.017178804204329
1228 => 0.01715818932663
1229 => 0.016978455529571
1230 => 0.017060736741479
1231 => 0.01679568028925
]
'min_raw' => 0.0092740303999254
'max_raw' => 0.028839140978904
'avg_raw' => 0.019056585689415
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.009274'
'max' => '$0.028839'
'avg' => '$0.019056'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0052831098441108
'max_diff' => 0.018012158085346
'year' => 2033
]
8 => [
'items' => [
101 => 0.016702083339296
102 => 0.016406665619369
103 => 0.015972483182305
104 => 0.016032858913175
105 => 0.015172629895337
106 => 0.014703931470609
107 => 0.01457420192399
108 => 0.014400722152481
109 => 0.014593796925794
110 => 0.015170192974611
111 => 0.014474937050495
112 => 0.013282969535129
113 => 0.013354608813817
114 => 0.013515561003134
115 => 0.013215627663146
116 => 0.012931765928345
117 => 0.013178560676324
118 => 0.012673508326634
119 => 0.013576594166678
120 => 0.013552168225574
121 => 0.013888782780289
122 => 0.014099274769378
123 => 0.013614158882118
124 => 0.013492153548365
125 => 0.013561653331304
126 => 0.012412976732002
127 => 0.013794911395848
128 => 0.013806862424207
129 => 0.013704530463717
130 => 0.014440368009769
131 => 0.015993214745424
201 => 0.015408971340356
202 => 0.015182734635063
203 => 0.014752658492923
204 => 0.01532570941693
205 => 0.015281708046953
206 => 0.015082717164894
207 => 0.014962366858535
208 => 0.015184115988143
209 => 0.014934889687388
210 => 0.014890121795492
211 => 0.014618877078547
212 => 0.014522055055446
213 => 0.014450371884138
214 => 0.01437145575597
215 => 0.014545525070034
216 => 0.014151061103641
217 => 0.01367537622995
218 => 0.013635828179684
219 => 0.013745023823568
220 => 0.013696712879809
221 => 0.013635596885472
222 => 0.013518909808332
223 => 0.01348429124517
224 => 0.013596784780909
225 => 0.01346978613784
226 => 0.013657179553662
227 => 0.013606218913509
228 => 0.013321556920186
301 => 0.012966762681137
302 => 0.012963604268203
303 => 0.012887164431379
304 => 0.012789806806377
305 => 0.012762724142343
306 => 0.013157776311016
307 => 0.013975522477253
308 => 0.013814979337814
309 => 0.013930988209182
310 => 0.014501637038112
311 => 0.014683029140819
312 => 0.014554281322825
313 => 0.014378043368734
314 => 0.014385796944291
315 => 0.014988055384276
316 => 0.015025617504432
317 => 0.015120524864069
318 => 0.015242507642018
319 => 0.014575055517378
320 => 0.014354360009244
321 => 0.014249782233769
322 => 0.013927723162
323 => 0.014275036259645
324 => 0.014072671791077
325 => 0.014099977671641
326 => 0.014082194681102
327 => 0.014091905396417
328 => 0.013576341735781
329 => 0.013764186036488
330 => 0.013451858453561
331 => 0.013033686880437
401 => 0.013032285022695
402 => 0.013134631922793
403 => 0.01307375198178
404 => 0.012909925625879
405 => 0.012933196386497
406 => 0.012729320036846
407 => 0.012957950666645
408 => 0.012964506975027
409 => 0.01287647172896
410 => 0.013228708759112
411 => 0.013373020557763
412 => 0.013315073872904
413 => 0.01336895486388
414 => 0.013821650630066
415 => 0.013895459792456
416 => 0.013928240946829
417 => 0.013884318542639
418 => 0.01337722931146
419 => 0.013399720875173
420 => 0.013234692704036
421 => 0.013095261289666
422 => 0.013100837815019
423 => 0.013172523686821
424 => 0.013485580093298
425 => 0.014144388845048
426 => 0.014169390155594
427 => 0.014199692473315
428 => 0.014076437718418
429 => 0.014039262904951
430 => 0.014088306079547
501 => 0.014335720008185
502 => 0.01497213580487
503 => 0.01474718395754
504 => 0.014564294604076
505 => 0.014724737873679
506 => 0.01470003888992
507 => 0.014491554610811
508 => 0.014485703151475
509 => 0.014085555163409
510 => 0.01393762956315
511 => 0.013814011859534
512 => 0.013679024554307
513 => 0.013598999554953
514 => 0.013721954324673
515 => 0.013750075535265
516 => 0.013481232782393
517 => 0.013444590508584
518 => 0.013664133303954
519 => 0.013567520705092
520 => 0.013666889158899
521 => 0.013689943492549
522 => 0.013686231213845
523 => 0.013585356564747
524 => 0.013649651057956
525 => 0.013497575414405
526 => 0.013332215993065
527 => 0.013226726984506
528 => 0.013134673833452
529 => 0.013185750271818
530 => 0.013003672095235
531 => 0.012945421622036
601 => 0.013627869530329
602 => 0.014132001137736
603 => 0.014124670864507
604 => 0.014080049711414
605 => 0.014013751728988
606 => 0.014330869897826
607 => 0.014220392268781
608 => 0.014300773974626
609 => 0.014321234492373
610 => 0.01438316231728
611 => 0.014405296191808
612 => 0.014338392250021
613 => 0.014113854449754
614 => 0.013554327599902
615 => 0.013293866340883
616 => 0.013207909787081
617 => 0.013211034144557
618 => 0.013124850417624
619 => 0.013150235387689
620 => 0.013116022560989
621 => 0.013051231744189
622 => 0.013181749621456
623 => 0.013196790590953
624 => 0.013166326158826
625 => 0.013173501635421
626 => 0.012921269148942
627 => 0.012940445837069
628 => 0.012833667600723
629 => 0.012813647968639
630 => 0.012543721885402
701 => 0.012065508702536
702 => 0.012330485227121
703 => 0.01201043084676
704 => 0.011889221403302
705 => 0.012463008056696
706 => 0.012405415791059
707 => 0.012306842867046
708 => 0.012161032968033
709 => 0.012106950658142
710 => 0.011778363663621
711 => 0.011758948991041
712 => 0.011921805578121
713 => 0.011846652866736
714 => 0.011741109997395
715 => 0.01135884442335
716 => 0.010929051354342
717 => 0.010942024105512
718 => 0.01107873328418
719 => 0.011476233658899
720 => 0.01132092338567
721 => 0.011208244000462
722 => 0.011187142538743
723 => 0.011451271511065
724 => 0.011825069343632
725 => 0.012000446923417
726 => 0.011826653068146
727 => 0.011627008044937
728 => 0.011639159512434
729 => 0.011719997781737
730 => 0.011728492740849
731 => 0.011598544354579
801 => 0.011635124064137
802 => 0.0115795561404
803 => 0.011238535894996
804 => 0.011232367920144
805 => 0.011148676052227
806 => 0.011146141895728
807 => 0.011003761150487
808 => 0.010983841099996
809 => 0.010701135488427
810 => 0.010887213178074
811 => 0.010762402033376
812 => 0.010574282198344
813 => 0.010541850267878
814 => 0.010540875324886
815 => 0.010734032332638
816 => 0.010884956025976
817 => 0.010764573176674
818 => 0.010737164335412
819 => 0.01102981905272
820 => 0.010992576072336
821 => 0.010960323891514
822 => 0.011791599847576
823 => 0.011133580063081
824 => 0.010846645878585
825 => 0.010491510337948
826 => 0.010607144260728
827 => 0.010631510027274
828 => 0.0097774730700332
829 => 0.0094309903828442
830 => 0.0093120905815256
831 => 0.0092436620648703
901 => 0.0092748457991813
902 => 0.0089629707423455
903 => 0.0091725559384765
904 => 0.008902498501399
905 => 0.00885722249323
906 => 0.0093401186444215
907 => 0.0094073108228214
908 => 0.0091206481147938
909 => 0.0093047319798244
910 => 0.0092379806114072
911 => 0.0089071278610458
912 => 0.0088944917195701
913 => 0.0087284814394753
914 => 0.0084687074970514
915 => 0.0083499838346983
916 => 0.0082881515205387
917 => 0.0083136647384487
918 => 0.0083007644747561
919 => 0.0082165815280868
920 => 0.0083055897427181
921 => 0.0080782105350688
922 => 0.007987666302464
923 => 0.0079467695732067
924 => 0.007744957438959
925 => 0.0080661302908105
926 => 0.0081294053886542
927 => 0.0081928051579874
928 => 0.0087446568651716
929 => 0.0087170879133974
930 => 0.0089662978108119
1001 => 0.008956613972466
1002 => 0.0088855352727907
1003 => 0.0085856659307391
1004 => 0.0087051885058238
1005 => 0.0083373165976453
1006 => 0.0086129512441109
1007 => 0.008487163102242
1008 => 0.0085704221468136
1009 => 0.0084207148775086
1010 => 0.0085035690616036
1011 => 0.0081444102617044
1012 => 0.0078090328278591
1013 => 0.0079439984975161
1014 => 0.0080907216156297
1015 => 0.0084088547200552
1016 => 0.0082193772676005
1017 => 0.0082875205244389
1018 => 0.0080592520210736
1019 => 0.0075882688969565
1020 => 0.0075909346102904
1021 => 0.0075184841175701
1022 => 0.0074558763139146
1023 => 0.0082411410323159
1024 => 0.0081434809513846
1025 => 0.0079878723938559
1026 => 0.0081961606317463
1027 => 0.0082512353478234
1028 => 0.0082528032475642
1029 => 0.0084047649692315
1030 => 0.008485866967326
1031 => 0.0085001615460063
1101 => 0.0087392765984002
1102 => 0.0088194248099588
1103 => 0.0091495439503692
1104 => 0.0084789860294158
1105 => 0.0084651763303067
1106 => 0.0081990916743993
1107 => 0.0080303365789909
1108 => 0.0082106464801582
1109 => 0.0083703764378364
1110 => 0.0082040549294299
1111 => 0.0082257730071891
1112 => 0.0080024999711198
1113 => 0.0080823095755418
1114 => 0.0081510523583847
1115 => 0.0081130966342129
1116 => 0.0080562750780498
1117 => 0.0083572804028432
1118 => 0.008340296502769
1119 => 0.0086205995812992
1120 => 0.0088391158756789
1121 => 0.0092307361396672
1122 => 0.0088220599785693
1123 => 0.0088071661949183
1124 => 0.0089527553191451
1125 => 0.0088194025210224
1126 => 0.0089036768862538
1127 => 0.0092171582365518
1128 => 0.0092237816035062
1129 => 0.0091128316732944
1130 => 0.0091060803599579
1201 => 0.0091273895077143
1202 => 0.0092521978517027
1203 => 0.0092085859813401
1204 => 0.0092590547418412
1205 => 0.0093221666996528
1206 => 0.0095832245160774
1207 => 0.0096461646718103
1208 => 0.0094932527241086
1209 => 0.0095070589609036
1210 => 0.0094498656949364
1211 => 0.0093946177166415
1212 => 0.0095188071035291
1213 => 0.0097457656490145
1214 => 0.0097443537516822
1215 => 0.0097970037227911
1216 => 0.0098298042186161
1217 => 0.009689000479105
1218 => 0.0095973424221802
1219 => 0.0096324899535589
1220 => 0.009688691621647
1221 => 0.0096142645100651
1222 => 0.0091548658993897
1223 => 0.0092942180913717
1224 => 0.0092710230726518
1225 => 0.0092379905453841
1226 => 0.0093781102520007
1227 => 0.0093645953644732
1228 => 0.0089597720128608
1229 => 0.0089856874903849
1230 => 0.0089613480188838
1231 => 0.0090399938306912
]
'min_raw' => 0.0074558763139146
'max_raw' => 0.016702083339296
'avg_raw' => 0.012078979826605
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.007455'
'max' => '$0.016702'
'avg' => '$0.012078'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0018181540860108
'max_diff' => -0.012137057639608
'year' => 2034
]
9 => [
'items' => [
101 => 0.0088151553890913
102 => 0.0088843141794174
103 => 0.0089276899243865
104 => 0.0089532385714015
105 => 0.009045537803291
106 => 0.0090347075537425
107 => 0.0090448645797727
108 => 0.0091817199745709
109 => 0.0098738875983602
110 => 0.0099115607549413
111 => 0.0097260443536264
112 => 0.0098001544968025
113 => 0.0096578792280111
114 => 0.0097533895691122
115 => 0.009818735318794
116 => 0.0095234504412472
117 => 0.0095059655871819
118 => 0.009363103097746
119 => 0.0094398693074238
120 => 0.0093177287481406
121 => 0.0093476977690934
122 => 0.0092639017738573
123 => 0.009414717881666
124 => 0.0095833537246499
125 => 0.0096259577982188
126 => 0.0095138848228658
127 => 0.0094327366027412
128 => 0.0092902670600879
129 => 0.0095271970846612
130 => 0.0095964826441581
131 => 0.0095268331571129
201 => 0.0095106938490932
202 => 0.0094801098895589
203 => 0.0095171823806881
204 => 0.0095961053001212
205 => 0.009558886708794
206 => 0.0095834702440728
207 => 0.0094897831580215
208 => 0.0096890470910016
209 => 0.010005526172051
210 => 0.010006543704046
211 => 0.0099693249120967
212 => 0.0099540957843211
213 => 0.0099922845234862
214 => 0.010013000347899
215 => 0.010136495727742
216 => 0.010269011190586
217 => 0.010887403034655
218 => 0.010713761079375
219 => 0.011262435111728
220 => 0.011696365034913
221 => 0.01182648164542
222 => 0.011706780486213
223 => 0.011297289286695
224 => 0.011277197694866
225 => 0.011889150429671
226 => 0.011716245752878
227 => 0.011695679291751
228 => 0.01147688689295
301 => 0.011606220298607
302 => 0.011577933185584
303 => 0.011533280593823
304 => 0.011780039722373
305 => 0.01224195078268
306 => 0.012169957612157
307 => 0.012116218050028
308 => 0.011880746932132
309 => 0.012022553139484
310 => 0.011972058665165
311 => 0.012189014971424
312 => 0.012060494861767
313 => 0.011714935829894
314 => 0.011769967244698
315 => 0.011761649357058
316 => 0.01193283089527
317 => 0.011881446446486
318 => 0.011751615718742
319 => 0.012240372020892
320 => 0.012208634905236
321 => 0.012253630879122
322 => 0.012273439498373
323 => 0.01257093684664
324 => 0.012692811991372
325 => 0.01272047978295
326 => 0.012836251744284
327 => 0.012717599271087
328 => 0.013192293761654
329 => 0.01350793789869
330 => 0.013874574806755
331 => 0.01441032987215
401 => 0.01461177873275
402 => 0.014575388799181
403 => 0.014981592175275
404 => 0.015711530612723
405 => 0.014722930227128
406 => 0.015763928833668
407 => 0.015434360693745
408 => 0.014652960562663
409 => 0.014602647606323
410 => 0.015131820847334
411 => 0.016305476164859
412 => 0.016011488819307
413 => 0.016305957022838
414 => 0.01596244422182
415 => 0.015945385915896
416 => 0.016289273372828
417 => 0.017092785160277
418 => 0.016711066829249
419 => 0.016163780000545
420 => 0.016567888078134
421 => 0.016217812262889
422 => 0.015428993471092
423 => 0.016011264012725
424 => 0.015621916283645
425 => 0.015735548649855
426 => 0.016553899665275
427 => 0.016455433506012
428 => 0.01658285783382
429 => 0.016357957230514
430 => 0.016147864603456
501 => 0.01575571111337
502 => 0.015639613797889
503 => 0.015671698919144
504 => 0.015639597898096
505 => 0.015420191624469
506 => 0.01537281086057
507 => 0.015293840844938
508 => 0.015318316954887
509 => 0.015169830222006
510 => 0.015450055365877
511 => 0.015502067621915
512 => 0.015705992112787
513 => 0.015727164229923
514 => 0.016295091034317
515 => 0.015982286494079
516 => 0.016192142785915
517 => 0.016173371263929
518 => 0.014669895872916
519 => 0.014877061516522
520 => 0.015199346245812
521 => 0.015054157412113
522 => 0.014848894370218
523 => 0.01468313345838
524 => 0.014431988727021
525 => 0.014785470113601
526 => 0.015250260548399
527 => 0.01573895208237
528 => 0.016326082940099
529 => 0.01619504216761
530 => 0.015727976079385
531 => 0.01574892832291
601 => 0.015878446847983
602 => 0.015710708590015
603 => 0.015661239303101
604 => 0.015871650527614
605 => 0.015873099514077
606 => 0.015680096376439
607 => 0.015465608708156
608 => 0.015464709996994
609 => 0.015426543988128
610 => 0.015969233870011
611 => 0.01626765843291
612 => 0.016301872328112
613 => 0.016265355565161
614 => 0.016279409417922
615 => 0.016105762740108
616 => 0.01650266755227
617 => 0.016866906657727
618 => 0.016769282796631
619 => 0.016622930750798
620 => 0.016506354297023
621 => 0.016741821088974
622 => 0.016731336123388
623 => 0.016863725346896
624 => 0.016857719407
625 => 0.016813201890545
626 => 0.016769284386491
627 => 0.016943412325855
628 => 0.016893266275727
629 => 0.016843042334933
630 => 0.01674231053277
701 => 0.016756001657662
702 => 0.016609674881574
703 => 0.016541977419498
704 => 0.015523970018795
705 => 0.015251925176976
706 => 0.015337516022195
707 => 0.015365694750807
708 => 0.015247300487012
709 => 0.015417047448303
710 => 0.015390592564192
711 => 0.015493513042677
712 => 0.015429212796008
713 => 0.01543185170056
714 => 0.015620945015757
715 => 0.015675839609619
716 => 0.015647919776127
717 => 0.015667473870469
718 => 0.016118089721312
719 => 0.016054026557206
720 => 0.0160199942781
721 => 0.016029421451993
722 => 0.016144563463196
723 => 0.016176796939812
724 => 0.016040221434384
725 => 0.016104631232278
726 => 0.016378879976889
727 => 0.016474851516368
728 => 0.016781146601434
729 => 0.016651027005337
730 => 0.016889867155417
731 => 0.017623980350155
801 => 0.018210440766882
802 => 0.017671107531158
803 => 0.018748067401193
804 => 0.019586635140732
805 => 0.019554449514181
806 => 0.019408225832371
807 => 0.018453538755382
808 => 0.017575021473554
809 => 0.018309938483617
810 => 0.018311811938213
811 => 0.018248681915283
812 => 0.017856586764738
813 => 0.01823503785396
814 => 0.01826507792709
815 => 0.018248263474437
816 => 0.01794764504183
817 => 0.017488656258812
818 => 0.01757834156835
819 => 0.017725247934903
820 => 0.017447123535139
821 => 0.017358245937262
822 => 0.01752348630137
823 => 0.01805592518372
824 => 0.01795527069722
825 => 0.017952642201801
826 => 0.018383284779192
827 => 0.018075037632265
828 => 0.017579472787315
829 => 0.017454336128268
830 => 0.017010185290806
831 => 0.017316961856252
901 => 0.017328002198699
902 => 0.017159983808984
903 => 0.017593106553638
904 => 0.017589115251297
905 => 0.018000300835533
906 => 0.01878633323834
907 => 0.018553864778524
908 => 0.018283529252256
909 => 0.018312922219552
910 => 0.01863529052277
911 => 0.018440379287692
912 => 0.018510470726795
913 => 0.018635184430982
914 => 0.018710427305185
915 => 0.018302095927876
916 => 0.018206894351078
917 => 0.018012145336162
918 => 0.017961338953333
919 => 0.018119957962411
920 => 0.018078167457611
921 => 0.017327074300666
922 => 0.017248580886723
923 => 0.017250988167666
924 => 0.017053612746146
925 => 0.0167525678528
926 => 0.017543695858057
927 => 0.017480157207406
928 => 0.017410015454587
929 => 0.017418607419084
930 => 0.017762009272351
1001 => 0.017562818855247
1002 => 0.018092399225784
1003 => 0.017983533422245
1004 => 0.017871875621633
1005 => 0.017856441112409
1006 => 0.017813462385369
1007 => 0.01766607233867
1008 => 0.017488090000512
1009 => 0.017370570644294
1010 => 0.016023433214471
1011 => 0.016273454085508
1012 => 0.016561080307517
1013 => 0.016660367726765
1014 => 0.016490529725662
1015 => 0.017672778578128
1016 => 0.017888786835907
1017 => 0.017234483733225
1018 => 0.017112090337732
1019 => 0.017680802668761
1020 => 0.017337799610896
1021 => 0.01749225386685
1022 => 0.017158408247438
1023 => 0.017836756772069
1024 => 0.017831588892855
1025 => 0.017567695995578
1026 => 0.017790736465296
1027 => 0.017751977694926
1028 => 0.017454043263839
1029 => 0.01784620182495
1030 => 0.017846396330704
1031 => 0.0175924051546
1101 => 0.017295799066729
1102 => 0.017242772903741
1103 => 0.017202824812992
1104 => 0.017482429085388
1105 => 0.017733121401718
1106 => 0.018199597650513
1107 => 0.018316880862662
1108 => 0.018774645047666
1109 => 0.01850206876363
1110 => 0.018622898299889
1111 => 0.01875407585388
1112 => 0.018816967197159
1113 => 0.018714489128222
1114 => 0.019425585330789
1115 => 0.019485623637711
1116 => 0.019505753962692
1117 => 0.019265976324124
1118 => 0.019478954987828
1119 => 0.019379309324193
1120 => 0.019638559658608
1121 => 0.019679213421319
1122 => 0.019644781130602
1123 => 0.019657685276563
1124 => 0.019050890113638
1125 => 0.019019424583341
1126 => 0.018590389845047
1127 => 0.018765224672167
1128 => 0.018438379342918
1129 => 0.018542025363703
1130 => 0.018587711542089
1201 => 0.018563847675168
1202 => 0.018775109570972
1203 => 0.018595493801585
1204 => 0.018121458254605
1205 => 0.017647293556958
1206 => 0.017641340805426
1207 => 0.017516501610237
1208 => 0.017426265737555
1209 => 0.017443648367923
1210 => 0.017504907024593
1211 => 0.017422705273067
1212 => 0.01744024718449
1213 => 0.017731559795248
1214 => 0.017789980461789
1215 => 0.017591444210455
1216 => 0.016794292512702
1217 => 0.01659866948657
1218 => 0.016739279438381
1219 => 0.016672076937856
1220 => 0.013455667291104
1221 => 0.01421131502793
1222 => 0.01376233480208
1223 => 0.013969245546739
1224 => 0.013510952999012
1225 => 0.013729674223958
1226 => 0.013689284400131
1227 => 0.014904343599704
1228 => 0.014885372121562
1229 => 0.014894452764201
1230 => 0.014461010031585
1231 => 0.015151496073894
]
'min_raw' => 0.0088151553890913
'max_raw' => 0.019679213421319
'avg_raw' => 0.014247184405205
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.008815'
'max' => '$0.019679'
'avg' => '$0.014247'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0013592790751767
'max_diff' => 0.0029771300820231
'year' => 2035
]
10 => [
'items' => [
101 => 0.015491654327411
102 => 0.015428700087704
103 => 0.015444544313542
104 => 0.015172288019206
105 => 0.014897088800253
106 => 0.014591850513577
107 => 0.015158945521628
108 => 0.015095894237367
109 => 0.015240511198325
110 => 0.015608312847835
111 => 0.015662473037867
112 => 0.01573526488251
113 => 0.015709174187882
114 => 0.016330760384614
115 => 0.016255482194832
116 => 0.016436880973193
117 => 0.016063729923346
118 => 0.01564147409062
119 => 0.015721731119838
120 => 0.015714001722538
121 => 0.01561559762352
122 => 0.015526762802872
123 => 0.015378877855547
124 => 0.015846807711736
125 => 0.015827810614115
126 => 0.016135351542888
127 => 0.016080990696434
128 => 0.015717955659459
129 => 0.015730921526827
130 => 0.015818123216054
131 => 0.016119929258121
201 => 0.016209525839929
202 => 0.016168021133429
203 => 0.016266259695142
204 => 0.016343903448811
205 => 0.016276010555178
206 => 0.017237230755573
207 => 0.01683806511233
208 => 0.01703261566947
209 => 0.017079014830989
210 => 0.016960164354427
211 => 0.016985938767077
212 => 0.017024979979134
213 => 0.017262030573695
214 => 0.017884119924964
215 => 0.018159639063936
216 => 0.018988551987407
217 => 0.018136761034856
218 => 0.018086219284793
219 => 0.018235531533082
220 => 0.018722191168504
221 => 0.019116583093398
222 => 0.019247425647902
223 => 0.019264718651454
224 => 0.019510187981951
225 => 0.01965088642446
226 => 0.019480381548745
227 => 0.01933589651918
228 => 0.018818369077423
229 => 0.018878274287987
301 => 0.019290961783633
302 => 0.019873907178405
303 => 0.02037413497225
304 => 0.020198972633544
305 => 0.02153533763253
306 => 0.021667832763618
307 => 0.021649526220582
308 => 0.021951369847119
309 => 0.021352271717828
310 => 0.021096145660576
311 => 0.019367135822547
312 => 0.019852917061638
313 => 0.02055902862159
314 => 0.020465572108848
315 => 0.019952775019595
316 => 0.020373745969674
317 => 0.020234559808599
318 => 0.02012477790852
319 => 0.02062771007505
320 => 0.020074715498636
321 => 0.020553512077671
322 => 0.019939450512542
323 => 0.020199772760353
324 => 0.020052001262125
325 => 0.020147627531672
326 => 0.019588598313866
327 => 0.019890236910127
328 => 0.019576049156566
329 => 0.019575900190662
330 => 0.019568964478588
331 => 0.019938604977331
401 => 0.019950658940725
402 => 0.019677494053658
403 => 0.019638126725794
404 => 0.019783688370159
405 => 0.019613273807263
406 => 0.019693009708665
407 => 0.019615688926488
408 => 0.019598282389795
409 => 0.019459584143948
410 => 0.019399829126049
411 => 0.019423260608264
412 => 0.019343276879707
413 => 0.019295083790113
414 => 0.019559377660066
415 => 0.019418176106934
416 => 0.019537736496933
417 => 0.019401482342805
418 => 0.01892916608149
419 => 0.018657532004953
420 => 0.017765370371069
421 => 0.018018386303715
422 => 0.018186136128824
423 => 0.018130694812626
424 => 0.01824980421276
425 => 0.018257116562562
426 => 0.018218392882402
427 => 0.018173555821587
428 => 0.018151731620027
429 => 0.01831439133822
430 => 0.018408820779505
501 => 0.018202972067977
502 => 0.018154744594995
503 => 0.018362869007569
504 => 0.01848982477901
505 => 0.019427194865043
506 => 0.019357751461404
507 => 0.019532040776957
508 => 0.019512418474714
509 => 0.019695101443879
510 => 0.019993710890882
511 => 0.019386554392611
512 => 0.019491935766819
513 => 0.019466098687474
514 => 0.019748181144911
515 => 0.019749061775552
516 => 0.019579939251256
517 => 0.019671623315377
518 => 0.019620447786005
519 => 0.019712928884367
520 => 0.019356824002411
521 => 0.019790521309487
522 => 0.020036399735762
523 => 0.020039813757949
524 => 0.020156358180592
525 => 0.020274774063795
526 => 0.020502063039752
527 => 0.020268435097616
528 => 0.019848161172936
529 => 0.019878503592821
530 => 0.019632097144554
531 => 0.019636239281466
601 => 0.019614128230003
602 => 0.019680485159886
603 => 0.019371385616946
604 => 0.019443930661855
605 => 0.019342367174159
606 => 0.019491714987632
607 => 0.019331041428414
608 => 0.019466086228052
609 => 0.019524367086771
610 => 0.019739424710138
611 => 0.019299277242584
612 => 0.018401786760879
613 => 0.018590450141153
614 => 0.018311402182538
615 => 0.018337229133519
616 => 0.018389403684828
617 => 0.018220288893584
618 => 0.018252550666334
619 => 0.018251398048789
620 => 0.018241465413478
621 => 0.018197472124753
622 => 0.018133673152294
623 => 0.018387828622282
624 => 0.018431014589178
625 => 0.018527011643977
626 => 0.018812633763634
627 => 0.018784093378447
628 => 0.018830643930817
629 => 0.018729024336364
630 => 0.018341942975053
701 => 0.018362963355277
702 => 0.018100838877058
703 => 0.018520308531732
704 => 0.018420972580777
705 => 0.018356930046977
706 => 0.01833945544828
707 => 0.018625785569926
708 => 0.018711460029998
709 => 0.01865807345588
710 => 0.01854857603483
711 => 0.018758843453253
712 => 0.018815102143952
713 => 0.018827696390059
714 => 0.019200249940726
715 => 0.018848517994988
716 => 0.018933183370242
717 => 0.019593718459176
718 => 0.018994704281124
719 => 0.019312015450848
720 => 0.019296484720298
721 => 0.019458810377504
722 => 0.019283169278476
723 => 0.019285346560403
724 => 0.019429480747109
725 => 0.019227070276617
726 => 0.019176950597619
727 => 0.019107710620046
728 => 0.019258893577982
729 => 0.019349520923848
730 => 0.020079910773074
731 => 0.020551775925498
801 => 0.020531291014775
802 => 0.020718484752633
803 => 0.02063415225923
804 => 0.020361820392244
805 => 0.020826657681856
806 => 0.020679563713804
807 => 0.020691689961812
808 => 0.020691238622255
809 => 0.020789043251832
810 => 0.020719739708114
811 => 0.020583135309584
812 => 0.020673819684388
813 => 0.020943119857301
814 => 0.02177903585716
815 => 0.022246825525096
816 => 0.021750874331777
817 => 0.022092974823877
818 => 0.021887836431486
819 => 0.02185055668325
820 => 0.022065421073317
821 => 0.022280661555055
822 => 0.022266951666878
823 => 0.022110698129857
824 => 0.022022434471581
825 => 0.022690796462545
826 => 0.023183234192237
827 => 0.023149653240417
828 => 0.023297868640642
829 => 0.023733033639834
830 => 0.023772819673695
831 => 0.0237678075479
901 => 0.023669193711733
902 => 0.024097670166753
903 => 0.024455112763858
904 => 0.023646367457888
905 => 0.023954327083148
906 => 0.024092580080766
907 => 0.024295576499086
908 => 0.024638065482942
909 => 0.025010099360126
910 => 0.025062709029504
911 => 0.025025379951476
912 => 0.024780013608666
913 => 0.025187097516368
914 => 0.025425557722207
915 => 0.02556755531772
916 => 0.025927637593793
917 => 0.024093433884213
918 => 0.022795093332732
919 => 0.022592338707354
920 => 0.023004648210993
921 => 0.023113370938996
922 => 0.023069544943664
923 => 0.021608144613015
924 => 0.022584644737057
925 => 0.023635276764063
926 => 0.023675635819054
927 => 0.024201604179453
928 => 0.024372881037771
929 => 0.024796354508141
930 => 0.02476986612727
1001 => 0.024872975178371
1002 => 0.024849272193123
1003 => 0.025633667624124
1004 => 0.026498972268367
1005 => 0.026469009520037
1006 => 0.026344611739607
1007 => 0.026529363656519
1008 => 0.027422450781059
1009 => 0.027340229630061
1010 => 0.027420100474675
1011 => 0.028473100526692
1012 => 0.029842150381826
1013 => 0.029206089273758
1014 => 0.030586158856611
1015 => 0.031454839504672
1016 => 0.032957132862238
1017 => 0.03276903833492
1018 => 0.033353870114683
1019 => 0.032432309874509
1020 => 0.030316221285015
1021 => 0.029981342165666
1022 => 0.030651778643093
1023 => 0.032299981302612
1024 => 0.030599870875889
1025 => 0.030943801000987
1026 => 0.030844749101821
1027 => 0.030839471047058
1028 => 0.031040912929964
1029 => 0.030748710972307
1030 => 0.029558227630684
1031 => 0.030103819130588
1101 => 0.029893140051019
1102 => 0.030126904196966
1103 => 0.031388432880975
1104 => 0.030830680978687
1105 => 0.030243134657712
1106 => 0.030980048131181
1107 => 0.03191839221385
1108 => 0.031859672327523
1109 => 0.03174573120504
1110 => 0.032388011346712
1111 => 0.03344886997033
1112 => 0.033735615793419
1113 => 0.033947285697762
1114 => 0.033976471401379
1115 => 0.034277102287444
1116 => 0.032660534244332
1117 => 0.035226069245163
1118 => 0.035669066268332
1119 => 0.035585801188322
1120 => 0.03607817373541
1121 => 0.035933305241771
1122 => 0.035723413523658
1123 => 0.036503928741437
1124 => 0.035609131028583
1125 => 0.034339078327087
1126 => 0.033642302296253
1127 => 0.034559873180975
1128 => 0.035120201701464
1129 => 0.03549054320992
1130 => 0.035602608326613
1201 => 0.03278602381974
1202 => 0.031268040985474
1203 => 0.03224105057853
1204 => 0.033428189435593
1205 => 0.032653939628041
1206 => 0.032684288754649
1207 => 0.03158041199835
1208 => 0.033525858034377
1209 => 0.033242422910704
1210 => 0.034712884833705
1211 => 0.034361947294587
1212 => 0.035561051909791
1213 => 0.035245287478236
1214 => 0.03655600797947
1215 => 0.037078889873753
1216 => 0.037956889954322
1217 => 0.038602750387693
1218 => 0.038982011987509
1219 => 0.038959242543631
1220 => 0.040462065949482
1221 => 0.039575903491702
1222 => 0.038462674592275
1223 => 0.038442539793677
1224 => 0.039019096815266
1225 => 0.040227402161821
1226 => 0.040540698158055
1227 => 0.040715787879324
1228 => 0.040447631876284
1229 => 0.039485766040199
1230 => 0.039070437248948
1231 => 0.039424309412328
]
'min_raw' => 0.014591850513577
'max_raw' => 0.040715787879324
'avg_raw' => 0.027653819196451
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.014591'
'max' => '$0.040715'
'avg' => '$0.027653'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0057766951244855
'max_diff' => 0.021036574458006
'year' => 2036
]
11 => [
'items' => [
101 => 0.038991554165096
102 => 0.039738611131494
103 => 0.040764479909116
104 => 0.040552642063262
105 => 0.041260784221447
106 => 0.041993636856442
107 => 0.043041649038955
108 => 0.043315638231243
109 => 0.043768531947218
110 => 0.044234708348793
111 => 0.044384431645172
112 => 0.044670299874371
113 => 0.044668793207695
114 => 0.045530276357537
115 => 0.046480518949725
116 => 0.046839213530109
117 => 0.047664011939168
118 => 0.046251573568038
119 => 0.047322924297463
120 => 0.048289309473052
121 => 0.04713714522733
122 => 0.048725135220219
123 => 0.04878679327318
124 => 0.049717756669081
125 => 0.048774046916329
126 => 0.048213675077573
127 => 0.049831447579203
128 => 0.050614236733385
129 => 0.050378454269596
130 => 0.048584138078145
131 => 0.047539769092878
201 => 0.044806454014703
202 => 0.048044183795226
203 => 0.049621187525446
204 => 0.04858005401946
205 => 0.04910514120076
206 => 0.051969846601842
207 => 0.053060540942636
208 => 0.05283368414428
209 => 0.052872019208821
210 => 0.053460538077611
211 => 0.056070354845084
212 => 0.054506492142935
213 => 0.055702006581911
214 => 0.056336103129595
215 => 0.056925087341669
216 => 0.055478728267187
217 => 0.053597036362521
218 => 0.05300102554826
219 => 0.048476533810788
220 => 0.048241014366981
221 => 0.048108810166202
222 => 0.047275281380949
223 => 0.04662035607849
224 => 0.046099535162157
225 => 0.044732745547408
226 => 0.045193996919856
227 => 0.043015619545108
228 => 0.044409268192518
301 => 0.04093252530366
302 => 0.043828060093474
303 => 0.04225215215119
304 => 0.043310331950525
305 => 0.043306640060892
306 => 0.041358195554105
307 => 0.040234373425589
308 => 0.040950516625691
309 => 0.041718278983718
310 => 0.041842845843245
311 => 0.042838269781075
312 => 0.043116071205557
313 => 0.042274319920067
314 => 0.040860477535088
315 => 0.041188880874807
316 => 0.040227718342392
317 => 0.038543317974917
318 => 0.039753083725646
319 => 0.04016615094259
320 => 0.040348584957513
321 => 0.038692170650791
322 => 0.038171689313115
323 => 0.037894589416197
324 => 0.04064665524845
325 => 0.040797419627178
326 => 0.04002608774967
327 => 0.043512580976697
328 => 0.042723480181444
329 => 0.04360509910413
330 => 0.041159081713888
331 => 0.041252522872195
401 => 0.040094539040487
402 => 0.040742932609736
403 => 0.040284668933691
404 => 0.04069054881689
405 => 0.040933831545375
406 => 0.042091625363331
407 => 0.043841280239085
408 => 0.041918689575949
409 => 0.041080989292016
410 => 0.041600693836763
411 => 0.042984735525289
412 => 0.045081629531195
413 => 0.043840226075774
414 => 0.044391139848892
415 => 0.044511489999871
416 => 0.043596125051097
417 => 0.04511538034252
418 => 0.045929561595601
419 => 0.046764743090191
420 => 0.04748990778069
421 => 0.046431153235217
422 => 0.047564172365375
423 => 0.046651158951268
424 => 0.045832091533222
425 => 0.045833333720399
426 => 0.045319520764393
427 => 0.044323943417533
428 => 0.044140343679875
429 => 0.045095452701263
430 => 0.045861359687254
501 => 0.045924443455068
502 => 0.046348488916234
503 => 0.046599434652137
504 => 0.049059044008171
505 => 0.050048319238123
506 => 0.051257986263287
507 => 0.051729219742686
508 => 0.053147463569126
509 => 0.052002116495144
510 => 0.051754313451117
511 => 0.048314117832195
512 => 0.04887744967207
513 => 0.049779398301148
514 => 0.04832899063288
515 => 0.049248940460571
516 => 0.049430558043759
517 => 0.048279706335318
518 => 0.048894425958163
519 => 0.047261912891553
520 => 0.043876864562793
521 => 0.045119148868977
522 => 0.046033888266704
523 => 0.044728442359593
524 => 0.047068403620356
525 => 0.045701446558423
526 => 0.045268186795301
527 => 0.043577885991105
528 => 0.044375642905041
529 => 0.045454620553919
530 => 0.044787937811527
531 => 0.046171404604907
601 => 0.048130762541449
602 => 0.049527117688811
603 => 0.049634312498415
604 => 0.04873654968719
605 => 0.050175220321623
606 => 0.050185699466563
607 => 0.04856287311378
608 => 0.047568901008635
609 => 0.047343068455011
610 => 0.047907242451044
611 => 0.048592253834493
612 => 0.049672325862759
613 => 0.050324990768907
614 => 0.05202679469742
615 => 0.052487254045934
616 => 0.052993159267399
617 => 0.053669204658668
618 => 0.054480970485367
619 => 0.052704873070404
620 => 0.05277544073176
621 => 0.051121563410688
622 => 0.049354158303124
623 => 0.050695398469608
624 => 0.052448891569585
625 => 0.052046638315012
626 => 0.052001376606585
627 => 0.052077494245609
628 => 0.051774208428025
629 => 0.050402457915388
630 => 0.049713573395554
701 => 0.050602410179324
702 => 0.051074787372324
703 => 0.051807403203046
704 => 0.051717092838266
705 => 0.05360423254101
706 => 0.054337517965355
707 => 0.054149912174755
708 => 0.054184436155211
709 => 0.055512014389709
710 => 0.056988554423758
711 => 0.058371529012264
712 => 0.059778350163833
713 => 0.058082372356453
714 => 0.057221259419234
715 => 0.05810970816467
716 => 0.05763828475452
717 => 0.060347223502507
718 => 0.060534784543917
719 => 0.063243527404799
720 => 0.065814446930876
721 => 0.064199698439354
722 => 0.06572233353699
723 => 0.067369187537343
724 => 0.070546236096457
725 => 0.069476317911663
726 => 0.068656777349867
727 => 0.067882315478961
728 => 0.069493847689957
729 => 0.071567058134549
730 => 0.072013607807351
731 => 0.072737188872395
801 => 0.071976431857784
802 => 0.072892679887246
803 => 0.076127438051032
804 => 0.075253377841177
805 => 0.074012071830992
806 => 0.076565602731825
807 => 0.077489715638236
808 => 0.083975623977116
809 => 0.092164351174462
810 => 0.088774164344679
811 => 0.086669765978787
812 => 0.087164349511768
813 => 0.09015459547833
814 => 0.091114967577127
815 => 0.088504345152483
816 => 0.089426461127096
817 => 0.09450741080766
818 => 0.097233177294899
819 => 0.093531220285948
820 => 0.083317667719995
821 => 0.073900305806198
822 => 0.076398214255071
823 => 0.076115028956093
824 => 0.081573875526477
825 => 0.075232531794243
826 => 0.075339303759411
827 => 0.080911033495852
828 => 0.079424591525799
829 => 0.077016745903418
830 => 0.073917885743923
831 => 0.068189356129226
901 => 0.063115437697623
902 => 0.073066560195626
903 => 0.07263744969857
904 => 0.07201603410822
905 => 0.073398927260353
906 => 0.080113863866044
907 => 0.079959062843155
908 => 0.078974297715705
909 => 0.079721233385554
910 => 0.076885804469112
911 => 0.077616559062396
912 => 0.073898814047956
913 => 0.07557939006123
914 => 0.077011579748131
915 => 0.077299113031707
916 => 0.077946940201417
917 => 0.072411327965553
918 => 0.074896655342419
919 => 0.076356552332645
920 => 0.069760684619297
921 => 0.076226173235284
922 => 0.072314965272152
923 => 0.070987442545093
924 => 0.072774777009258
925 => 0.072078251030333
926 => 0.071479418895031
927 => 0.071145260274291
928 => 0.072457681443867
929 => 0.072396455427624
930 => 0.070249079664225
1001 => 0.067447915519104
1002 => 0.068388078151285
1003 => 0.068046508252942
1004 => 0.066808614877953
1005 => 0.06764280554888
1006 => 0.063969452008356
1007 => 0.057649638166188
1008 => 0.061824700771458
1009 => 0.061663965402749
1010 => 0.061582915341077
1011 => 0.064720359498683
1012 => 0.064418766636081
1013 => 0.063871372637253
1014 => 0.066798561557893
1015 => 0.065730098225613
1016 => 0.069022850454079
1017 => 0.071191670033609
1018 => 0.070641587234276
1019 => 0.072681372531639
1020 => 0.068409737599469
1021 => 0.069828603375689
1022 => 0.070121029645705
1023 => 0.066762440500988
1024 => 0.064468110958265
1025 => 0.064315105335037
1026 => 0.06033705408604
1027 => 0.062462096953546
1028 => 0.064332046736703
1029 => 0.063436485904536
1030 => 0.063152978099191
1031 => 0.064601357991358
1101 => 0.064713909513515
1102 => 0.062147722880675
1103 => 0.062681314342204
1104 => 0.064906479438981
1105 => 0.062625245890951
1106 => 0.058193181744515
1107 => 0.057093968558118
1108 => 0.056947313256534
1109 => 0.053966159915327
1110 => 0.057167423239325
1111 => 0.055769986009877
1112 => 0.060184473473835
1113 => 0.057662941909793
1114 => 0.057554243723789
1115 => 0.057389930473086
1116 => 0.054823928642416
1117 => 0.055385719965409
1118 => 0.057253199886272
1119 => 0.057919537760703
1120 => 0.057850033261255
1121 => 0.05724404821586
1122 => 0.057521465066496
1123 => 0.056627808732159
1124 => 0.056312240080656
1125 => 0.055316218612517
1126 => 0.053852342212306
1127 => 0.054055903204232
1128 => 0.051155581011318
1129 => 0.04957533154887
1130 => 0.049137939325017
1201 => 0.048553040163402
1202 => 0.049204005241679
1203 => 0.051147364762952
1204 => 0.048803260873575
1205 => 0.044784459175007
1206 => 0.045025996004796
1207 => 0.045568657548403
1208 => 0.044557411351956
1209 => 0.04360035169448
1210 => 0.044432437417951
1211 => 0.042729618159341
1212 => 0.045774435120491
1213 => 0.045692081354692
1214 => 0.046827000827591
1215 => 0.047536689264887
1216 => 0.04590108718128
1217 => 0.045489737680392
1218 => 0.04572406105089
1219 => 0.041851217698306
1220 => 0.046510506901058
1221 => 0.046550800627565
1222 => 0.046205781278185
1223 => 0.048686708939235
1224 => 0.053922240124794
1225 => 0.051952422694033
1226 => 0.051189649846795
1227 => 0.049739618106612
1228 => 0.05167169930604
1229 => 0.051523345615086
1230 => 0.050852433963125
1231 => 0.050446664502647
]
'min_raw' => 0.037894589416197
'max_raw' => 0.097233177294899
'avg_raw' => 0.067563883355548
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.037894'
'max' => '$0.097233'
'avg' => '$0.067563'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.023302738902621
'max_diff' => 0.056517389415575
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.001189467860597
]
1 => [
'year' => 2028
'avg' => 0.0020414721537717
]
2 => [
'year' => 2029
'avg' => 0.0055769339845471
]
3 => [
'year' => 2030
'avg' => 0.0043025962636588
]
4 => [
'year' => 2031
'avg' => 0.0042256827457978
]
5 => [
'year' => 2032
'avg' => 0.0074089517246863
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.001189467860597
'min' => '$0.001189'
'max_raw' => 0.0074089517246863
'max' => '$0.0074089'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.0074089517246863
]
1 => [
'year' => 2033
'avg' => 0.019056585689415
]
2 => [
'year' => 2034
'avg' => 0.012078979826605
]
3 => [
'year' => 2035
'avg' => 0.014247184405205
]
4 => [
'year' => 2036
'avg' => 0.027653819196451
]
5 => [
'year' => 2037
'avg' => 0.067563883355548
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.0074089517246863
'min' => '$0.0074089'
'max_raw' => 0.067563883355548
'max' => '$0.067563'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.067563883355548
]
]
]
]
'prediction_2025_max_price' => '$0.002033'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767676925
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de EVO para 2026
La previsión del precio de EVO para 2026 sugiere que el precio medio podría oscilar entre $0.000681 en el extremo inferior y $0.002033 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, EVO podría potencialmente ganar 3.13% para 2026 si EVO alcanza el objetivo de precio previsto.
Predicción de precio de EVO 2027-2032
La predicción del precio de EVO para 2027-2032 está actualmente dentro de un rango de precios de $0.001189 en el extremo inferior y $0.0074089 en el extremo superior. Considerando la volatilidad de precios en el mercado, si EVO alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de EVO | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000655 | $0.001189 | $0.001723 |
| 2028 | $0.001183 | $0.002041 | $0.002899 |
| 2029 | $0.00260024 | $0.005576 | $0.008553 |
| 2030 | $0.002211 | $0.0043025 | $0.006393 |
| 2031 | $0.002614 | $0.004225 | $0.005836 |
| 2032 | $0.00399 | $0.0074089 | $0.010826 |
Predicción de precio de EVO 2032-2037
La predicción de precio de EVO para 2032-2037 se estima actualmente entre $0.0074089 en el extremo inferior y $0.067563 en el extremo superior. Comparado con el precio actual, EVO podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de EVO | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.00399 | $0.0074089 | $0.010826 |
| 2033 | $0.009274 | $0.019056 | $0.028839 |
| 2034 | $0.007455 | $0.012078 | $0.016702 |
| 2035 | $0.008815 | $0.014247 | $0.019679 |
| 2036 | $0.014591 | $0.027653 | $0.040715 |
| 2037 | $0.037894 | $0.067563 | $0.097233 |
EVO Histograma de precios potenciales
Pronóstico de precio de EVO basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para EVO es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de EVO se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de EVO
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de EVO disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para EVO alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de EVO está en un estado —.
Promedios Móviles y Osciladores Populares de EVO para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de EVO
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de EVO basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de EVO
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de EVO por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.002772 | $0.003895 | $0.005473 | $0.007691 | $0.0108074 | $0.015186 |
| Amazon.com acción | $0.004116 | $0.008589 | $0.017921 | $0.037394 | $0.078025 | $0.1628057 |
| Apple acción | $0.002798 | $0.003969 | $0.005629 | $0.007985 | $0.011327 | $0.016066 |
| Netflix acción | $0.003112 | $0.004911 | $0.007749 | $0.012227 | $0.019293 | $0.030441 |
| Google acción | $0.002554 | $0.0033084 | $0.004284 | $0.005548 | $0.007184 | $0.0093045 |
| Tesla acción | $0.004472 | $0.010138 | $0.022982 | $0.052099 | $0.1181055 | $0.267736 |
| Kodak acción | $0.001479 | $0.0011093 | $0.000831 | $0.000623 | $0.000467 | $0.00035 |
| Nokia acción | $0.0013069 | $0.000865 | $0.000573 | $0.000379 | $0.000251 | $0.000166 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de EVO
Podría preguntarse cosas como: "¿Debo invertir en EVO ahora?", "¿Debería comprar EVO hoy?", "¿Será EVO una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de EVO regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como EVO, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de EVO a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de EVO es de $0.001972 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de EVO basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si EVO ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002024 | $0.002076 | $0.00213 | $0.002186 |
| Si EVO ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002075 | $0.002183 | $0.002296 | $0.002416 |
| Si EVO ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.002229 | $0.002518 | $0.002846 | $0.003216 |
| Si EVO ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.002485 | $0.003131 | $0.003945 | $0.004971 |
| Si EVO ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.002998 | $0.004557 | $0.006926 | $0.010526 |
| Si EVO ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.004536 | $0.010433 | $0.023992 | $0.055174 |
| Si EVO ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.00710077 | $0.025557 | $0.091991 | $0.3311064 |
Cuadro de preguntas
¿Es EVO una buena inversión?
La decisión de adquirir EVO depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de EVO ha experimentado una caída de 0% durante las últimas 24 horas, y EVO ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en EVO dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede EVO subir?
Parece que el valor medio de EVO podría potencialmente aumentar hasta $0.002033 para el final de este año. Mirando las perspectivas de EVO en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.006393. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de EVO la próxima semana?
Basado en nuestro nuevo pronóstico experimental de EVO, el precio de EVO aumentará en un 0.86% durante la próxima semana y alcanzará $0.001988 para el 13 de enero de 2026.
¿Cuál será el precio de EVO el próximo mes?
Basado en nuestro nuevo pronóstico experimental de EVO, el precio de EVO disminuirá en un -11.62% durante el próximo mes y alcanzará $0.001742 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de EVO este año en 2026?
Según nuestra predicción más reciente sobre el valor de EVO en 2026, se anticipa que EVO fluctúe dentro del rango de $0.000681 y $0.002033. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de EVO no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará EVO en 5 años?
El futuro de EVO parece estar en una tendencia alcista, con un precio máximo de $0.006393 proyectada después de un período de cinco años. Basado en el pronóstico de EVO para 2030, el valor de EVO podría potencialmente alcanzar su punto más alto de aproximadamente $0.006393, mientras que su punto más bajo se anticipa que esté alrededor de $0.002211.
¿Cuánto será EVO en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de EVO, se espera que el valor de EVO en 2026 crezca en un 3.13% hasta $0.002033 si ocurre lo mejor. El precio estará entre $0.002033 y $0.000681 durante 2026.
¿Cuánto será EVO en 2027?
Según nuestra última simulación experimental para la predicción de precios de EVO, el valor de EVO podría disminuir en un -12.62% hasta $0.001723 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.001723 y $0.000655 a lo largo del año.
¿Cuánto será EVO en 2028?
Nuestro nuevo modelo experimental de predicción de precios de EVO sugiere que el valor de EVO en 2028 podría aumentar en un 47.02% , alcanzando $0.002899 en el mejor escenario. Se espera que el precio oscile entre $0.002899 y $0.001183 durante el año.
¿Cuánto será EVO en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de EVO podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.008553 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.008553 y $0.00260024.
¿Cuánto será EVO en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de EVO, se espera que el valor de EVO en 2030 aumente en un 224.23% , alcanzando $0.006393 en el mejor escenario. Se pronostica que el precio oscile entre $0.006393 y $0.002211 durante el transcurso de 2030.
¿Cuánto será EVO en 2031?
Nuestra simulación experimental indica que el precio de EVO podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.005836 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.005836 y $0.002614 durante el año.
¿Cuánto será EVO en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de EVO, EVO podría experimentar un 449.04% aumento en valor, alcanzando $0.010826 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.010826 y $0.00399 a lo largo del año.
¿Cuánto será EVO en 2033?
Según nuestra predicción experimental de precios de EVO, se anticipa que el valor de EVO aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.028839. A lo largo del año, el precio de EVO podría oscilar entre $0.028839 y $0.009274.
¿Cuánto será EVO en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de EVO sugieren que EVO podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.016702 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.016702 y $0.007455.
¿Cuánto será EVO en 2035?
Basado en nuestra predicción experimental para el precio de EVO, EVO podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.019679 en 2035. El rango de precios esperado para el año está entre $0.019679 y $0.008815.
¿Cuánto será EVO en 2036?
Nuestra reciente simulación de predicción de precios de EVO sugiere que el valor de EVO podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.040715 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.040715 y $0.014591.
¿Cuánto será EVO en 2037?
Según la simulación experimental, el valor de EVO podría aumentar en un 4830.69% en 2037, con un máximo de $0.097233 bajo condiciones favorables. Se espera que el precio caiga entre $0.097233 y $0.037894 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de EVO?
Los traders de EVO utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de EVO
Las medias móviles son herramientas populares para la predicción de precios de EVO. Una media móvil simple (SMA) calcula el precio de cierre promedio de EVO durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de EVO por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de EVO.
¿Cómo leer gráficos de EVO y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de EVO en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de EVO dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de EVO?
La acción del precio de EVO está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de EVO. La capitalización de mercado de EVO puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de EVO, grandes poseedores de EVO, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de EVO.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


