Predicción del precio de Aave [OLD] - Pronóstico de LEND
Predicción de precio de Aave [OLD] hasta $0.010328 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.00346 | $0.010328 |
| 2027 | $0.00333 | $0.00875 |
| 2028 | $0.006011 | $0.014723 |
| 2029 | $0.0132053 | $0.043439 |
| 2030 | $0.01123 | $0.032471 |
| 2031 | $0.013278 | $0.029642 |
| 2032 | $0.020267 | $0.054985 |
| 2033 | $0.047098 | $0.14646 |
| 2034 | $0.037864 | $0.084821 |
| 2035 | $0.044767 | $0.099941 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Aave [OLD] hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.47, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Aave para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Aave [OLD]'
'name_with_ticker' => 'Aave [OLD] <small>LEND</small>'
'name_lang' => 'Aave'
'name_lang_with_ticker' => 'Aave <small>LEND</small>'
'name_with_lang' => 'Aave/Aave [OLD]'
'name_with_lang_with_ticker' => 'Aave/Aave [OLD] <small>LEND</small>'
'image' => '/uploads/coins/ethlend.png?1717084978'
'price_for_sd' => 0.01001
'ticker' => 'LEND'
'marketcap' => '$360K'
'low24h' => '$0.01001'
'high24h' => '$0.01001'
'volume24h' => '$0'
'current_supply' => '35.95M'
'max_supply' => '1.3B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.02 USD 0.5x'
'price' => '$0.01001'
'change_24h_pct' => '0%'
'ath_price' => '$23.59'
'ath_days' => 1586
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '3 sept. 2021'
'ath_pct' => '-99.96%'
'fdv' => '$13.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.49380056'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.0101'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.008851'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.00346'
'current_year_max_price_prediction' => '$0.010328'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.01123'
'grand_prediction_max_price' => '$0.032471'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.010204615950194
107 => 0.010242716281877
108 => 0.010328558274608
109 => 0.0095950478453853
110 => 0.0099243724933717
111 => 0.010117819870517
112 => 0.0092438175828982
113 => 0.010100543655422
114 => 0.009582279060726
115 => 0.009406372273213
116 => 0.0096432075886422
117 => 0.0095509126358895
118 => 0.0094715628552543
119 => 0.0094272843142575
120 => 0.0096011900313488
121 => 0.0095930771217842
122 => 0.0093085336149777
123 => 0.0089373582098257
124 => 0.009061936859212
125 => 0.0090166762679589
126 => 0.0088526460465251
127 => 0.008963182610687
128 => 0.0084764355233928
129 => 0.0076390124586151
130 => 0.0081922397861694
131 => 0.0081709411358541
201 => 0.0081602013905483
202 => 0.0085759364371251
203 => 0.0085359731050361
204 => 0.0084634392659726
205 => 0.0088513139056889
206 => 0.0087097344445424
207 => 0.0091460489834798
208 => 0.009433433957879
209 => 0.0093605438324413
210 => 0.009630830789916
211 => 0.0090648068996804
212 => 0.0092528173310798
213 => 0.00929156602042
214 => 0.0088465275928431
215 => 0.0085425116004007
216 => 0.0085222371997409
217 => 0.0079951153648303
218 => 0.0082766995942607
219 => 0.0085244820634124
220 => 0.0084058134893851
221 => 0.0083682465639709
222 => 0.0085601678386402
223 => 0.0085750817653765
224 => 0.0082350426552804
225 => 0.0083057475539075
226 => 0.0086005987348941
227 => 0.0082983180606569
228 => 0.0077110360878818
301 => 0.007565382038825
302 => 0.0075459491037441
303 => 0.0071509237707339
304 => 0.0075751153388549
305 => 0.0073899443517429
306 => 0.0079748972813409
307 => 0.00764077530512
308 => 0.0076263719745262
309 => 0.0076045992278245
310 => 0.0072645846054116
311 => 0.0073390261986635
312 => 0.0075864813924076
313 => 0.0076747761933178
314 => 0.0076655663222049
315 => 0.0075852687269596
316 => 0.0076220285548726
317 => 0.0075036123411915
318 => 0.0074617971115204
319 => 0.0073298167444932
320 => 0.0071358420654701
321 => 0.0071628154343041
322 => 0.0067785008389237
323 => 0.0065691058502412
324 => 0.0065111480771554
325 => 0.0064336445207631
326 => 0.006519902310079
327 => 0.0067774121239616
328 => 0.0064668006546646
329 => 0.0059342790774161
330 => 0.0059662845315814
331 => 0.006038191284586
401 => 0.0059041935260726
402 => 0.005777375893219
403 => 0.0058876335359454
404 => 0.0056619971235573
405 => 0.0060654583670324
406 => 0.0060545458710835
407 => 0.0062049312727751
408 => 0.006298970350672
409 => 0.0060822407216327
410 => 0.0060277338060286
411 => 0.0060587834223579
412 => 0.0055456024283094
413 => 0.0061629934371743
414 => 0.0061683326602567
415 => 0.006122614990689
416 => 0.0064513566431007
417 => 0.007145104066782
418 => 0.0068840883800676
419 => 0.0067830152169309
420 => 0.006590875059924
421 => 0.0068468904109821
422 => 0.0068272324264824
423 => 0.0067383315655059
424 => 0.0066845640473996
425 => 0.0067836323481124
426 => 0.006672288388601
427 => 0.0066522879539453
428 => 0.0065311070806196
429 => 0.0064878510222208
430 => 0.0064558259586556
501 => 0.0064205695103881
502 => 0.0064983364499067
503 => 0.0063221063338645
504 => 0.006109590089969
505 => 0.0060919216637467
506 => 0.0061407057419704
507 => 0.0061191224189039
508 => 0.0060918183310995
509 => 0.0060396873916552
510 => 0.0060242212555234
511 => 0.0060744786948493
512 => 0.0060177409760411
513 => 0.0061014605708061
514 => 0.0060786934734465
515 => 0.0059515183183243
516 => 0.005793010988769
517 => 0.0057915999410556
518 => 0.0057574497969071
519 => 0.0057139544538253
520 => 0.0057018550444186
521 => 0.0058783479448086
522 => 0.0062436829666277
523 => 0.0061719589601185
524 => 0.0062237869053932
525 => 0.0064787291001423
526 => 0.0065597675574738
527 => 0.006502248379961
528 => 0.0064235125821531
529 => 0.0064269765576657
530 => 0.0066960406137222
531 => 0.0067128218088577
601 => 0.0067552224751465
602 => 0.0068097193137545
603 => 0.0065115294272269
604 => 0.006412931840826
605 => 0.0063662108344034
606 => 0.0062223282179269
607 => 0.0063774932842336
608 => 0.0062870852449273
609 => 0.0062992843782081
610 => 0.0062913396766553
611 => 0.0062956780209215
612 => 0.0060653455913923
613 => 0.0061492666227967
614 => 0.0060097316313352
615 => 0.0058229099413062
616 => 0.0058222836494931
617 => 0.0058680079934576
618 => 0.0058408093644738
619 => 0.0057676185532189
620 => 0.0057780149625068
621 => 0.0056869314775292
622 => 0.0057890741467028
623 => 0.0057920032329707
624 => 0.00575267274159
625 => 0.0059100376164241
626 => 0.0059745101340411
627 => 0.0059486219620736
628 => 0.0059726937508833
629 => 0.0061749394164034
630 => 0.0062079142844802
701 => 0.0062225595426824
702 => 0.0062029368368164
703 => 0.0059763904303814
704 => 0.0059864387268565
705 => 0.0059127109944718
706 => 0.0058504188298436
707 => 0.0058529101897494
708 => 0.0058849364597828
709 => 0.0060247970593347
710 => 0.0063191254458588
711 => 0.0063302949929762
712 => 0.0063438328099211
713 => 0.0062887677048445
714 => 0.0062721595422514
715 => 0.0062940699956422
716 => 0.0064046042625693
717 => 0.0066889284068666
718 => 0.0065884292649009
719 => 0.0065067218981204
720 => 0.0065784012869348
721 => 0.0065673668068684
722 => 0.0064742246904001
723 => 0.0064716105014103
724 => 0.0062928410005717
725 => 0.0062267539864962
726 => 0.0061715267310075
727 => 0.0061112200097578
728 => 0.0060754681639014
729 => 0.0061303992480602
730 => 0.0061429626369328
731 => 0.0060228548613885
801 => 0.0060064846153953
802 => 0.0061045672176112
803 => 0.0060614047212639
804 => 0.0061057984191355
805 => 0.0061160981378437
806 => 0.0061144396459091
807 => 0.0060693730425414
808 => 0.0060980971516225
809 => 0.0060301560705767
810 => 0.0059562803493599
811 => 0.0059091522418436
812 => 0.0058680267173993
813 => 0.0058908455485905
814 => 0.0058095005819478
815 => 0.0057834766899681
816 => 0.0060883660697788
817 => 0.0063135911327581
818 => 0.0063103162711434
819 => 0.0062903813932904
820 => 0.006260762208443
821 => 0.0064024374347113
822 => 0.006353080618765
823 => 0.0063889918262659
824 => 0.0063981327357635
825 => 0.0064257995157469
826 => 0.0064356880115509
827 => 0.0064057981092293
828 => 0.006305483946294
829 => 0.0060555105898435
830 => 0.0059391473176256
831 => 0.0059007454996101
901 => 0.0059021413327595
902 => 0.0058636380232247
903 => 0.00587497897348
904 => 0.005859694103547
905 => 0.005830748257701
906 => 0.0058890582241768
907 => 0.0058957779046182
908 => 0.0058821676616905
909 => 0.005885373366598
910 => 0.0057726863681678
911 => 0.0057812537159151
912 => 0.005733549634972
913 => 0.0057246056948764
914 => 0.0056040139323216
915 => 0.0053903681449002
916 => 0.00550874865023
917 => 0.0053657616466096
918 => 0.0053116103017319
919 => 0.005567954346121
920 => 0.0055422245139414
921 => 0.005498186225739
922 => 0.0054330444191043
923 => 0.0054088826893647
924 => 0.0052620836681412
925 => 0.005253409998825
926 => 0.0053261675576504
927 => 0.0052925924476872
928 => 0.0052454402774104
929 => 0.0050746598964066
930 => 0.0048826462047175
1001 => 0.0048884418911145
1002 => 0.0049495178738991
1003 => 0.0051271045310637
1004 => 0.0050577183518292
1005 => 0.0050073778826798
1006 => 0.0049979506260371
1007 => 0.0051159524802194
1008 => 0.0052829498260402
1009 => 0.0053613012443444
1010 => 0.0052836573683729
1011 => 0.0051944642643001
1012 => 0.005199893035264
1013 => 0.0052360082163543
1014 => 0.0052398034112458
1015 => 0.0051817478696936
1016 => 0.0051980901645783
1017 => 0.0051732647242777
1018 => 0.0050209110429775
1019 => 0.0050181554480015
1020 => 0.0049807653975754
1021 => 0.0049796332417083
1022 => 0.0049160234385484
1023 => 0.0049071239873725
1024 => 0.0047808228623594
1025 => 0.004863954645318
1026 => 0.0048081942099239
1027 => 0.0047241500812278
1028 => 0.0047096608417625
1029 => 0.0047092252777279
1030 => 0.0047955198059754
1031 => 0.0048629462435123
1101 => 0.0048091641865706
1102 => 0.0047969190547264
1103 => 0.0049276650269457
1104 => 0.0049110264102048
1105 => 0.0048966174754147
1106 => 0.0052679970453649
1107 => 0.0049740211366401
1108 => 0.0048458308608779
1109 => 0.0046871710519489
1110 => 0.0047388314857684
1111 => 0.0047497170982238
1112 => 0.0043681688583299
1113 => 0.0042133747849238
1114 => 0.0041602552922224
1115 => 0.0041296842731733
1116 => 0.0041436158704407
1117 => 0.0040042830488412
1118 => 0.0040979170093082
1119 => 0.0039772665633133
1120 => 0.0039570391234118
1121 => 0.0041727770665729
1122 => 0.004202795741041
1123 => 0.004074726749689
1124 => 0.0041569677746233
1125 => 0.0041271460357463
1126 => 0.0039793347689221
1127 => 0.0039736894657555
1128 => 0.0038995229678804
1129 => 0.0037834667601697
1130 => 0.0037304259590421
1201 => 0.0037028018492935
1202 => 0.003714200095359
1203 => 0.0037084367933562
1204 => 0.0036708273493405
1205 => 0.0037105925226632
1206 => 0.0036090089369277
1207 => 0.0035685575345733
1208 => 0.0035502865745952
1209 => 0.003460125295322
1210 => 0.0036036119855486
1211 => 0.0036318806711209
1212 => 0.0036602050547365
1213 => 0.0039067494762318
1214 => 0.0038944328136612
1215 => 0.0040057694448416
1216 => 0.0040014431080888
1217 => 0.0039696880973424
1218 => 0.0038357189304487
1219 => 0.0038891166526017
1220 => 0.0037247667636632
1221 => 0.0038479088751621
1222 => 0.0037917119580115
1223 => 0.0038289086409445
1224 => 0.0037620256511413
1225 => 0.0037990414592293
1226 => 0.0036385842251692
1227 => 0.003488751517698
1228 => 0.0035490485730738
1229 => 0.003614598368072
1230 => 0.0037567270254052
1231 => 0.0036720763696335
]
'min_raw' => 0.003460125295322
'max_raw' => 0.010328558274608
'avg_raw' => 0.0068943417849651
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.00346'
'max' => '$0.010328'
'avg' => '$0.006894'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.006554714704678
'max_diff' => 0.00031371827460829
'year' => 2026
]
1 => [
'items' => [
101 => 0.0037025199464447
102 => 0.0036005390603205
103 => 0.0033901233628462
104 => 0.0033913142928428
105 => 0.0033589464219415
106 => 0.0033309758556963
107 => 0.0036817995157459
108 => 0.0036381690479174
109 => 0.0035686496076471
110 => 0.0036617041410417
111 => 0.0036863092366452
112 => 0.0036870097091263
113 => 0.0037548998946058
114 => 0.0037911328987662
115 => 0.0037975191227923
116 => 0.0039043457965089
117 => 0.0039401526884608
118 => 0.0040876362088296
119 => 0.0037880587815092
120 => 0.0037818891815359
121 => 0.0036630136091575
122 => 0.0035876208418068
123 => 0.0036681758164394
124 => 0.0037395365271133
125 => 0.0036652309853554
126 => 0.0036749337204334
127 => 0.0035751846016092
128 => 0.0036108402179566
129 => 0.0036415516380851
130 => 0.003624594597024
131 => 0.0035992090858254
201 => 0.0037336857626248
202 => 0.0037260980615015
203 => 0.0038513258345425
204 => 0.003948949838752
205 => 0.0041239095066736
206 => 0.0039413299723437
207 => 0.0039346760484248
208 => 0.003999719222055
209 => 0.0039401427306898
210 => 0.003977793016722
211 => 0.0041178434635226
212 => 0.0041208025087749
213 => 0.0040712346882845
214 => 0.004068218481903
215 => 0.0040777385240407
216 => 0.0041334977081944
217 => 0.0041140137359444
218 => 0.0041365610819059
219 => 0.004164756883288
220 => 0.0042813866725762
221 => 0.0043095057199253
222 => 0.0042411910129215
223 => 0.0042473590660766
224 => 0.0042218074903765
225 => 0.0041971249884106
226 => 0.0042526076482401
227 => 0.004354003299593
228 => 0.0043533725225084
301 => 0.0043768943427725
302 => 0.0043915482419317
303 => 0.0043286429794305
304 => 0.0042876939666328
305 => 0.0043033964237928
306 => 0.0043285049947467
307 => 0.0042952540526373
308 => 0.0040900138346036
309 => 0.0041522706059592
310 => 0.004141908035005
311 => 0.0041271504738346
312 => 0.00418975013885
313 => 0.0041837122484464
314 => 0.0040028539893674
315 => 0.0040144319483204
316 => 0.0040035580833987
317 => 0.0040386937655442
318 => 0.0039382452885484
319 => 0.0039691425635415
320 => 0.0039885210447732
321 => 0.0039999351190912
322 => 0.0040411705822318
323 => 0.0040363320765702
324 => 0.0040408698139263
325 => 0.0041020111200051
326 => 0.0044112428649891
327 => 0.0044280736665872
328 => 0.0043451926439417
329 => 0.0043783019777327
330 => 0.0043147392970693
331 => 0.0043574093504316
401 => 0.0043866031172402
402 => 0.0042546820986706
403 => 0.0042468705921112
404 => 0.0041830455656543
405 => 0.004217341519638
406 => 0.0041627741908836
407 => 0.0041761631046758
408 => 0.0041387265344883
409 => 0.004206104907279
410 => 0.0042814443975997
411 => 0.0043004781281013
412 => 0.0042504085776877
413 => 0.0042141549234441
414 => 0.0041505054492885
415 => 0.0042563559433304
416 => 0.0042873098535236
417 => 0.0042561933556176
418 => 0.0042489829831439
419 => 0.004235319340335
420 => 0.004251881789558
421 => 0.004287141271881
422 => 0.0042705135511578
423 => 0.0042814964536382
424 => 0.0042396409549029
425 => 0.0043286638036899
426 => 0.0044700535120788
427 => 0.0044705081031108
428 => 0.004453880292758
429 => 0.0044470765510129
430 => 0.0044641376934947
501 => 0.0044733926634064
502 => 0.0045285652697141
503 => 0.0045877676744558
504 => 0.0048640394653528
505 => 0.0047864634519883
506 => 0.0050315882203545
507 => 0.0052254500866646
508 => 0.005283580783819
509 => 0.0052301032776976
510 => 0.0050471596180544
511 => 0.0050381835293335
512 => 0.0053115785936612
513 => 0.0052343319657014
514 => 0.0052251437251023
515 => 0.0051273963689055
516 => 0.0051851771626634
517 => 0.0051725396554755
518 => 0.0051525907321313
519 => 0.0052628324615763
520 => 0.0054691951377504
521 => 0.0054370315794118
522 => 0.0054130229751365
523 => 0.0053078242600019
524 => 0.0053711773834966
525 => 0.0053486185496693
526 => 0.0054455456159811
527 => 0.0053881281690954
528 => 0.0052337467465205
529 => 0.0052583324969134
530 => 0.0052546164102011
531 => 0.0053310932114139
601 => 0.0053081367739607
602 => 0.0052501337973507
603 => 0.0054684898125578
604 => 0.0054543109874902
605 => 0.0054744133197053
606 => 0.0054832629880317
607 => 0.0056161724466236
608 => 0.0056706211991805
609 => 0.0056829820192704
610 => 0.0057347041229817
611 => 0.0056816951262123
612 => 0.0058937689080641
613 => 0.0060347855981474
614 => 0.0061985837403315
615 => 0.0064379368508527
616 => 0.0065279358345487
617 => 0.0065116783236936
618 => 0.0066931531203915
619 => 0.0070192592960994
620 => 0.0065775937055366
621 => 0.0070426686448471
622 => 0.0068954312886098
623 => 0.006546334165658
624 => 0.0065238564265247
625 => 0.0067602690512885
626 => 0.0072846094991428
627 => 0.0071532681639755
628 => 0.0072848243265154
629 => 0.0071313570748955
630 => 0.0071237361323291
701 => 0.0072773707646496
702 => 0.0076363464572543
703 => 0.0074658105617004
704 => 0.0072213055383068
705 => 0.0074018442426611
706 => 0.0072454449088811
707 => 0.0068930334364575
708 => 0.0071531677297317
709 => 0.0069792233360174
710 => 0.0070299895574958
711 => 0.0073955948008076
712 => 0.0073516042106608
713 => 0.0074085321077297
714 => 0.0073080558594656
715 => 0.0072141951999368
716 => 0.0070389973087424
717 => 0.0069871298503113
718 => 0.007001464149826
719 => 0.0069871227469444
720 => 0.0068891011369728
721 => 0.0068679333796322
722 => 0.0068326528566837
723 => 0.006843587765989
724 => 0.0067772500611649
725 => 0.0069024430162372
726 => 0.0069256799318952
727 => 0.0070167849243708
728 => 0.0070262437469189
729 => 0.0072799698541651
730 => 0.0071402217779879
731 => 0.0072339768527559
801 => 0.0072255905164117
802 => 0.0065539001588674
803 => 0.0066464531637628
804 => 0.0067904365946472
805 => 0.0067255722541987
806 => 0.0066338692527227
807 => 0.006559814162227
808 => 0.0064476131276041
809 => 0.0066055339292058
810 => 0.0068131829903069
811 => 0.0070315100697815
812 => 0.0072938157504133
813 => 0.007235272176071
814 => 0.0070266064475381
815 => 0.0070359670396897
816 => 0.0070938305371135
817 => 0.0070188920504966
818 => 0.0069967912278202
819 => 0.007090794223459
820 => 0.0070914415704268
821 => 0.0070052157849554
822 => 0.0069093916035561
823 => 0.0069089900967372
824 => 0.006891939109209
825 => 0.0071343904076978
826 => 0.0072677141072756
827 => 0.0072829994545703
828 => 0.0072666852816154
829 => 0.0072729639592994
830 => 0.0071953858361023
831 => 0.007372706420653
901 => 0.0075354333242249
902 => 0.0074918190379144
903 => 0.0074264350225988
904 => 0.0073743535050791
905 => 0.0074795502875612
906 => 0.0074748660404323
907 => 0.007534012046682
908 => 0.0075313288421947
909 => 0.0075114402648867
910 => 0.0074918197481981
911 => 0.0075696128790657
912 => 0.0075472097066953
913 => 0.0075247717360103
914 => 0.00747976895072
915 => 0.0074858855766581
916 => 0.0074205128508146
917 => 0.007390268436587
918 => 0.0069354650131004
919 => 0.0068139266772143
920 => 0.006852165111825
921 => 0.0068647541973594
922 => 0.0068118605578261
923 => 0.0068876964496557
924 => 0.0068758775062441
925 => 0.0069218581012078
926 => 0.0068931314217199
927 => 0.0068943103746663
928 => 0.0069787894138666
929 => 0.007003314038346
930 => 0.0069908406163978
1001 => 0.0069995765735664
1002 => 0.0072008930193005
1003 => 0.0071722722584547
1004 => 0.0071570680496882
1005 => 0.0071612797194239
1006 => 0.0072127203875823
1007 => 0.0072271209661103
1008 => 0.0071661047029765
1009 => 0.0071948803254012
1010 => 0.0073174032735153
1011 => 0.007360279371157
1012 => 0.0074971192931347
1013 => 0.0074389872621429
1014 => 0.0075456911209238
1015 => 0.00787366240479
1016 => 0.0081356685602289
1017 => 0.007894716871825
1018 => 0.0083758578100059
1019 => 0.0087504950459482
1020 => 0.0087361158448417
1021 => 0.0086707891772398
1022 => 0.0082442746443658
1023 => 0.0078517896122417
1024 => 0.0081801200074083
1025 => 0.0081809569891073
1026 => 0.0081527531169807
1027 => 0.0079775812894701
1028 => 0.0081466575170903
1029 => 0.0081600781740441
1030 => 0.0081525661749907
1031 => 0.0080182623455504
1101 => 0.0078132052214918
1102 => 0.0078532728926955
1103 => 0.0079189045554854
1104 => 0.0077946501256249
1105 => 0.0077549433064431
1106 => 0.0078287658378336
1107 => 0.0080666374155088
1108 => 0.0080216691716455
1109 => 0.0080204948690673
1110 => 0.0082128880858175
1111 => 0.0080751760636792
1112 => 0.0078537782743438
1113 => 0.0077978724126586
1114 => 0.0075994442663769
1115 => 0.0077364992937904
1116 => 0.0077414316602327
1117 => 0.0076663680223867
1118 => 0.0078598692748557
1119 => 0.007858086126749
1120 => 0.0080417867671077
1121 => 0.0083929533966638
1122 => 0.0082890961444437
1123 => 0.0081683214597486
1124 => 0.0081814530166937
1125 => 0.0083254737849374
1126 => 0.0082383955407829
1127 => 0.008269709484512
1128 => 0.0083254263875332
1129 => 0.0083590417784987
1130 => 0.0081766162792453
1201 => 0.008134084168949
1202 => 0.008047078398025
1203 => 0.0080243802164306
1204 => 0.0080952446014132
1205 => 0.0080765743396459
1206 => 0.0077410171139323
1207 => 0.0077059495168224
1208 => 0.0077070249899608
1209 => 0.0076188458496547
1210 => 0.0074843514952694
1211 => 0.0078377946283534
1212 => 0.0078094081983333
1213 => 0.0077780717765263
1214 => 0.0077819103093945
1215 => 0.0079353279941671
1216 => 0.0078463379892202
1217 => 0.0080829325025464
1218 => 0.0080342957832886
1219 => 0.007984411715705
1220 => 0.0079775162180591
1221 => 0.007958315107948
1222 => 0.0078924673569589
1223 => 0.0078129522408031
1224 => 0.0077604494736356
1225 => 0.0071586044236218
1226 => 0.0072703033641327
1227 => 0.0073988028135118
1228 => 0.0074431603085083
1229 => 0.0073672837438716
1230 => 0.0078954634262038
1231 => 0.007991966943832
]
'min_raw' => 0.0033309758556963
'max_raw' => 0.0087504950459482
'avg_raw' => 0.0060407354508222
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.00333'
'max' => '$0.00875'
'avg' => '$0.00604'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00012914943962566
'max_diff' => -0.0015780632286601
'year' => 2027
]
2 => [
'items' => [
101 => 0.0076996514941676
102 => 0.0076449712086966
103 => 0.0078990482566161
104 => 0.0077458087370647
105 => 0.0078148124833357
106 => 0.0076656641269291
107 => 0.0079687220723882
108 => 0.0079664132786047
109 => 0.007848516892947
110 => 0.0079481621107853
111 => 0.0079308463020375
112 => 0.0077977415729959
113 => 0.0079729417297135
114 => 0.0079730286268054
115 => 0.0078595559188982
116 => 0.0077270446384326
117 => 0.0077033547512621
118 => 0.0076855076035676
119 => 0.0078104231790529
120 => 0.0079224220934322
121 => 0.0081308243062064
122 => 0.0081832215740122
123 => 0.0083877315985423
124 => 0.008265955836347
125 => 0.008319937454468
126 => 0.0083785421371045
127 => 0.0084066393770763
128 => 0.0083608564323233
129 => 0.0086785446801028
130 => 0.0087053673019318
131 => 0.0087143606950163
201 => 0.0086072380053178
202 => 0.0087023880261477
203 => 0.0086578704824389
204 => 0.0087736927638395
205 => 0.0087918551764562
206 => 0.0087764722591164
207 => 0.0087822372955552
208 => 0.0085111464201226
209 => 0.0084970889281132
210 => 0.0083054140270899
211 => 0.0083835229660462
212 => 0.0082375020485263
213 => 0.008283806785654
214 => 0.0083042174725721
215 => 0.0082935560880224
216 => 0.0083879391282611
217 => 0.0083076942628769
218 => 0.0080959148696508
219 => 0.0078840777772707
220 => 0.0078814183351346
221 => 0.0078256453679462
222 => 0.0077853317279974
223 => 0.0077930975652547
224 => 0.0078204653886637
225 => 0.0077837410603489
226 => 0.0077915780577656
227 => 0.0079217244325229
228 => 0.0079478243598191
229 => 0.007859126608967
301 => 0.0075029923402714
302 => 0.0074155960974383
303 => 0.0074784147836439
304 => 0.0074483914976792
305 => 0.0060114332617487
306 => 0.0063490252845777
307 => 0.0061484395681546
308 => 0.0062408786947874
309 => 0.0060361326197388
310 => 0.0061338481784132
311 => 0.0061158036827269
312 => 0.0066586416653619
313 => 0.0066501659969123
314 => 0.0066542228508767
315 => 0.0064605786410774
316 => 0.006769059125301
317 => 0.006921027704429
318 => 0.0068929023649451
319 => 0.0068999809069566
320 => 0.0067783481028686
321 => 0.0066554005222964
322 => 0.0065190327339449
323 => 0.006772387229134
324 => 0.0067442185341744
325 => 0.0068088273856351
326 => 0.0069731458859185
327 => 0.0069973424092705
328 => 0.0070298627820326
329 => 0.0070182065433551
330 => 0.0072959054383442
331 => 0.0072622742698447
401 => 0.0073433157095809
402 => 0.0071766073194147
403 => 0.006987960951836
404 => 0.0070238164589983
405 => 0.0070203632853268
406 => 0.0069764004211202
407 => 0.006936712713027
408 => 0.0068706438609943
409 => 0.0070796954851762
410 => 0.0070712083710075
411 => 0.0072086048842077
412 => 0.007184318715901
413 => 0.0070221297401157
414 => 0.0070279223511154
415 => 0.007066880443922
416 => 0.0072017148479414
417 => 0.0072417428792806
418 => 0.007223200300323
419 => 0.0072670892093374
420 => 0.0073017772135274
421 => 0.0072714454885978
422 => 0.0077008787496546
423 => 0.0075225481196813
424 => 0.0076094652279138
425 => 0.0076301944460819
426 => 0.0075770969896328
427 => 0.0075886119266592
428 => 0.0076060539186218
429 => 0.0077119582783261
430 => 0.0079898819618637
501 => 0.008112972469412
502 => 0.0084832963345498
503 => 0.0081027515162627
504 => 0.0080801715615966
505 => 0.0081468780724172
506 => 0.0083642973840153
507 => 0.008540495314908
508 => 0.0085989503336876
509 => 0.0086066761294065
510 => 0.0087163416306533
511 => 0.0087791998508274
512 => 0.0087030253543129
513 => 0.0086384754443191
514 => 0.0084072656789511
515 => 0.0084340288388557
516 => 0.00861840047085
517 => 0.0088788362604768
518 => 0.0091023172617022
519 => 0.0090240620041723
520 => 0.0096210943795233
521 => 0.0096802877008808
522 => 0.0096721090978184
523 => 0.0098069602930181
524 => 0.0095393081325151
525 => 0.0094248816483836
526 => 0.0086524318675324
527 => 0.0088694587481345
528 => 0.0091849200646314
529 => 0.0091431675764738
530 => 0.0089140711361286
531 => 0.0091021434715086
601 => 0.0090399608758663
602 => 0.0089909148827249
603 => 0.0092156040853391
604 => 0.0089685490773411
605 => 0.0091824555019394
606 => 0.0089081182998134
607 => 0.009024419467597
608 => 0.0089584012999085
609 => 0.0090011231452853
610 => 0.0087513721101634
611 => 0.0088861317063515
612 => 0.0087457656679136
613 => 0.0087456991161351
614 => 0.0087426005280568
615 => 0.0089077405498008
616 => 0.0089131257599811
617 => 0.0087910870343996
618 => 0.0087734993474402
619 => 0.0088385302442092
620 => 0.0087623960957115
621 => 0.008798018784611
622 => 0.0087634750706688
623 => 0.0087556985530585
624 => 0.0086937339376742
625 => 0.0086670378776141
626 => 0.0086775060906364
627 => 0.0086417726828575
628 => 0.0086202420121369
629 => 0.0087383175357314
630 => 0.0086752345466279
701 => 0.0087286491629139
702 => 0.008667776466194
703 => 0.0084567651783916
704 => 0.0083354103553725
705 => 0.0079368295934703
706 => 0.0080498666031079
707 => 0.0081248102574428
708 => 0.0081000413801322
709 => 0.0081532545128785
710 => 0.00815652136705
711 => 0.0081392212351505
712 => 0.008119189898695
713 => 0.0081094397519109
714 => 0.0081821093578944
715 => 0.0082242965101144
716 => 0.0081323318557721
717 => 0.0081107858239819
718 => 0.0082037671670297
719 => 0.0082604857325753
720 => 0.0086792637531548
721 => 0.008648239324755
722 => 0.0087261045518017
723 => 0.0087173381221756
724 => 0.0087989532850239
725 => 0.0089323595831397
726 => 0.0086611072780828
727 => 0.0087081872990416
728 => 0.008696644365139
729 => 0.0088226670907684
730 => 0.008823060519962
731 => 0.0087475036006451
801 => 0.0087884642323778
802 => 0.0087656011314408
803 => 0.0088069178449675
804 => 0.0086478249745991
805 => 0.0088415829176936
806 => 0.0089514311859422
807 => 0.0089529564292534
808 => 0.0090050236365935
809 => 0.0090579269347803
810 => 0.0091594702087436
811 => 0.0090550949479821
812 => 0.0088673340145991
813 => 0.0088808897475252
814 => 0.0087708055809818
815 => 0.0087726561157097
816 => 0.0087627778163031
817 => 0.0087924233364262
818 => 0.0086543304991539
819 => 0.0086867406120456
820 => 0.0086413662642038
821 => 0.0087080886640709
822 => 0.0086363063914217
823 => 0.0086966387987868
824 => 0.0087226762657545
825 => 0.0088187550794122
826 => 0.0086221154725252
827 => 0.0082211540027514
828 => 0.0083054409648858
829 => 0.0081807739272911
830 => 0.0081923123362614
831 => 0.0082156217587055
901 => 0.0081400682941956
902 => 0.0081544815142608
903 => 0.0081539665726158
904 => 0.0081495290837132
905 => 0.008129874709581
906 => 0.0081013719785898
907 => 0.0082149180861807
908 => 0.0082342117824515
909 => 0.0082770992792783
910 => 0.0084047033789676
911 => 0.0083919527202968
912 => 0.0084127495736087
913 => 0.0083673501595981
914 => 0.0081944182848687
915 => 0.0082038093176668
916 => 0.0080867029881927
917 => 0.0082741046071427
918 => 0.0082297254301948
919 => 0.0082011138861129
920 => 0.0081933069612261
921 => 0.0083212273667971
922 => 0.0083595031570507
923 => 0.0083356522531574
924 => 0.0082867333534303
925 => 0.0083806721024808
926 => 0.0084058061487691
927 => 0.0084114327348251
928 => 0.0085778741871741
929 => 0.0084207349630775
930 => 0.0084585599361471
1001 => 0.0087536595784215
1002 => 0.0084860449238457
1003 => 0.0086278063748935
1004 => 0.0086208678895556
1005 => 0.0086933882509658
1006 => 0.0086149191032093
1007 => 0.0086158918223401
1008 => 0.0086802849903175
1009 => 0.0085898563992624
1010 => 0.0085674650084169
1011 => 0.0085365314623342
1012 => 0.0086040737285247
1013 => 0.008644562262432
1014 => 0.0089708701101732
1015 => 0.0091816798612598
1016 => 0.0091725280539939
1017 => 0.0092561584409383
1018 => 0.0092184821856533
1019 => 0.0090968156188441
1020 => 0.0093044856127302
1021 => 0.0092387701373831
1022 => 0.0092441876413264
1023 => 0.0092439860015591
1024 => 0.0092876810477184
1025 => 0.0092567191029223
1026 => 0.0091956899315509
1027 => 0.0092362039436194
1028 => 0.0093565160754386
1029 => 0.0097299686242322
1030 => 0.0099389576181253
1031 => 0.0097173872243855
1101 => 0.0098702235150415
1102 => 0.0097785762017865
1103 => 0.0097619211586967
1104 => 0.0098579136437418
1105 => 0.0099540741509246
1106 => 0.0099479491423303
1107 => 0.0098781415520123
1108 => 0.0098387090155437
1109 => 0.010137305392553
1110 => 0.010357306116677
1111 => 0.010342303542195
1112 => 0.010408520026859
1113 => 0.01060293367383
1114 => 0.010620708421238
1115 => 0.010618469211612
1116 => 0.010574412645559
1117 => 0.010765838128804
1118 => 0.010925528634738
1119 => 0.010564214823434
1120 => 0.010701798392834
1121 => 0.010763564089803
1122 => 0.01085425445801
1123 => 0.011007264310646
1124 => 0.011173473594468
1125 => 0.011196977409593
1126 => 0.011180300328001
1127 => 0.011070680837375
1128 => 0.011252549019022
1129 => 0.011359083134497
1130 => 0.011422521762273
1201 => 0.011583391567131
1202 => 0.01076394553372
1203 => 0.010183900902161
1204 => 0.010093318556997
1205 => 0.010277521317863
1206 => 0.010326094116913
1207 => 0.010306514482521
1208 => 0.009653621514351
1209 => 0.010089881210639
1210 => 0.010559259962087
1211 => 0.010577290711536
1212 => 0.010812271528758
1213 => 0.010888790915034
1214 => 0.011077981272538
1215 => 0.011066147364165
1216 => 0.011112212205541
1217 => 0.011101622696241
1218 => 0.011452057994786
1219 => 0.011838640169227
1220 => 0.011825254057782
1221 => 0.011769678296373
1222 => 0.011852217779141
1223 => 0.012251212011827
1224 => 0.012214479016634
1225 => 0.012250161992555
1226 => 0.012720598679222
1227 => 0.013332233290728
1228 => 0.013048067606572
1229 => 0.013664625374716
1230 => 0.01405271580744
1231 => 0.014723878081536
]
'min_raw' => 0.0060114332617487
'max_raw' => 0.014723878081536
'avg_raw' => 0.010367655671642
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.006011'
'max' => '$0.014723'
'avg' => '$0.010367'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0026804574060524
'max_diff' => 0.0059733830355879
'year' => 2028
]
3 => [
'items' => [
101 => 0.014639845259275
102 => 0.014901123807365
103 => 0.014489408969249
104 => 0.01354402847964
105 => 0.013394418398388
106 => 0.013693941569785
107 => 0.01443029005962
108 => 0.013670751335398
109 => 0.013824405030083
110 => 0.013780152755677
111 => 0.013777794740034
112 => 0.013867790606386
113 => 0.013737246908373
114 => 0.013205388398308
115 => 0.013449136019209
116 => 0.013355013357057
117 => 0.013459449468024
118 => 0.014023048086185
119 => 0.013773867702583
120 => 0.013511376410229
121 => 0.013840598742322
122 => 0.014259811904143
123 => 0.014233578297875
124 => 0.014182674136918
125 => 0.014469618226978
126 => 0.014943565797029
127 => 0.015071671920738
128 => 0.015166237242246
129 => 0.015179276202388
130 => 0.015313585595516
131 => 0.01459137013834
201 => 0.015737544616686
202 => 0.015935457286665
203 => 0.015898257907349
204 => 0.016118229510593
205 => 0.016053508284778
206 => 0.01595973738302
207 => 0.016308439163464
208 => 0.015908680710968
209 => 0.015341273915841
210 => 0.015029983326
211 => 0.015439915885798
212 => 0.015690247395392
213 => 0.015855700599159
214 => 0.015905766638649
215 => 0.014647433668397
216 => 0.013969261987777
217 => 0.014403962259801
218 => 0.014934326593079
219 => 0.01458842393769
220 => 0.014601982666901
221 => 0.014108816381936
222 => 0.01497796086633
223 => 0.01485133382561
224 => 0.015508275136867
225 => 0.015351490820652
226 => 0.015887200957668
227 => 0.01574613052499
228 => 0.016331706003895
301 => 0.016565307916253
302 => 0.016957561884337
303 => 0.017246105500021
304 => 0.01741554383011
305 => 0.017405371388318
306 => 0.018076770465973
307 => 0.017680869886777
308 => 0.017183525452705
309 => 0.017174530060994
310 => 0.017432111790825
311 => 0.017971932432455
312 => 0.018111900070758
313 => 0.018190122885833
314 => 0.01807032192159
315 => 0.017640600217323
316 => 0.017455048564159
317 => 0.017613143948604
318 => 0.017419806878719
319 => 0.017753560902141
320 => 0.018211876462311
321 => 0.018117236111512
322 => 0.018433604614958
323 => 0.018761012733089
324 => 0.019229221046833
325 => 0.01935162803775
326 => 0.019553962139014
327 => 0.019762230392504
328 => 0.019829120542539
329 => 0.019956834593749
330 => 0.019956161477658
331 => 0.020341036367127
401 => 0.020765565288794
402 => 0.020925815128856
403 => 0.021294300799852
404 => 0.02066328200155
405 => 0.021141917008684
406 => 0.021573657766129
407 => 0.02105891863652
408 => 0.021768366607851
409 => 0.021795912864934
410 => 0.022211828642466
411 => 0.021790218322116
412 => 0.02153986745972
413 => 0.022262621018933
414 => 0.022612338699713
415 => 0.022507000888165
416 => 0.021705374941118
417 => 0.021238794256582
418 => 0.020017662608459
419 => 0.021464145794622
420 => 0.022168685560109
421 => 0.021703550353329
422 => 0.02193813749633
423 => 0.023217968883404
424 => 0.023705245812656
425 => 0.023603895617694
426 => 0.023621022132277
427 => 0.023883947918599
428 => 0.025049905651029
429 => 0.024351236751068
430 => 0.024885342946464
501 => 0.025168630946638
502 => 0.025431764629012
503 => 0.024785591469356
504 => 0.023944929682813
505 => 0.023678656806433
506 => 0.021657301823828
507 => 0.021552081518684
508 => 0.021493018172905
509 => 0.021120632132444
510 => 0.020828038709763
511 => 0.020595357556749
512 => 0.019984732726768
513 => 0.020190800681807
514 => 0.019217592150123
515 => 0.019840216480302
516 => 0.018286952164793
517 => 0.019580556842247
518 => 0.018876506629296
519 => 0.019349257411923
520 => 0.019347608028978
521 => 0.01847712395239
522 => 0.017975046903553
523 => 0.018294989940203
524 => 0.018637994272602
525 => 0.018693645571528
526 => 0.019138359641812
527 => 0.019262469779731
528 => 0.018886410267687
529 => 0.018254764214314
530 => 0.0184014811862
531 => 0.017972073688801
601 => 0.01721955356653
602 => 0.017760026656086
603 => 0.017944567931784
604 => 0.018026071872217
605 => 0.017286054759484
606 => 0.01705352531611
607 => 0.016929728591568
608 => 0.018159237297797
609 => 0.018226592560183
610 => 0.017881993514741
611 => 0.019439613876361
612 => 0.019087076416507
613 => 0.019480947132939
614 => 0.018388168158816
615 => 0.018429913787249
616 => 0.01791257470834
617 => 0.018202250023919
618 => 0.017997516847539
619 => 0.018178847121048
620 => 0.018287535739336
621 => 0.018804789927994
622 => 0.019586463054204
623 => 0.018727529401115
624 => 0.018353279708308
625 => 0.018585462112866
626 => 0.019203794452842
627 => 0.020140599599756
628 => 0.019585992097822
629 => 0.019832117489334
630 => 0.019885884938023
701 => 0.019476937898783
702 => 0.020155678060409
703 => 0.020519420427099
704 => 0.020892544829446
705 => 0.021216518293296
706 => 0.020743510737967
707 => 0.021249696625139
708 => 0.020841800153916
709 => 0.020475874851667
710 => 0.020476429809304
711 => 0.020246879521887
712 => 0.019802096914821
713 => 0.019720072177888
714 => 0.020146775217994
715 => 0.02048895064723
716 => 0.020517133854492
717 => 0.020706579753725
718 => 0.020818691885444
719 => 0.021917543185338
720 => 0.02235951026833
721 => 0.022899939251403
722 => 0.023110466797219
723 => 0.023744079231822
724 => 0.023232385731394
725 => 0.023121677623874
726 => 0.021584741110574
727 => 0.021836414378526
728 => 0.022239367563376
729 => 0.021591385660175
730 => 0.022002381032882
731 => 0.022083520225526
801 => 0.021569367483058
802 => 0.021843998678039
803 => 0.021114659646644
804 => 0.019602360652035
805 => 0.020157361681503
806 => 0.020566029250518
807 => 0.019982810241186
808 => 0.021028207741721
809 => 0.020417508103293
810 => 0.020223945636664
811 => 0.019468789444341
812 => 0.01982519409849
813 => 0.02030723649645
814 => 0.020009390337954
815 => 0.020627465838658
816 => 0.021502825582368
817 => 0.022126659064311
818 => 0.022174549252883
819 => 0.021773466117592
820 => 0.022416204401575
821 => 0.02242088604828
822 => 0.021695874638284
823 => 0.021251809186542
824 => 0.021150916581584
825 => 0.021402966089929
826 => 0.021709000723965
827 => 0.022191532045179
828 => 0.022483115616675
829 => 0.023243410927157
830 => 0.023449125038799
831 => 0.023675142478872
901 => 0.023977171480006
902 => 0.024339834734514
903 => 0.023546348180081
904 => 0.023577874880133
905 => 0.022838991187214
906 => 0.022049387994689
907 => 0.022648598392388
908 => 0.02343198627776
909 => 0.023252276231289
910 => 0.023232055179918
911 => 0.023266061379472
912 => 0.023130565873214
913 => 0.022517724720108
914 => 0.022209959729607
915 => 0.022607055086577
916 => 0.022818093596125
917 => 0.023145395919942
918 => 0.023105049000018
919 => 0.023948144636467
920 => 0.024275746106903
921 => 0.024191931631908
922 => 0.024207355512415
923 => 0.024800462326353
924 => 0.025460119085171
925 => 0.026077974689181
926 => 0.026706483947095
927 => 0.025948791505546
928 => 0.0255640820117
929 => 0.025961004009259
930 => 0.025750391610272
1001 => 0.026960632926543
1002 => 0.027044427409459
1003 => 0.028254581211507
1004 => 0.029403161272085
1005 => 0.028681758714985
1006 => 0.029362008833646
1007 => 0.030097754798583
1008 => 0.031517128135428
1009 => 0.031039133129735
1010 => 0.03067299644651
1011 => 0.030326999050023
1012 => 0.031046964706573
1013 => 0.031973189021993
1014 => 0.032172688868269
1015 => 0.032495954834041
1016 => 0.032156080198113
1017 => 0.032565421761126
1018 => 0.034010577352357
1019 => 0.033620083554865
1020 => 0.033065519587416
1021 => 0.034206331132475
1022 => 0.03461918639584
1023 => 0.03751682084811
1024 => 0.041175204039411
1025 => 0.039660609375974
1026 => 0.038720451592713
1027 => 0.03894141097262
1028 => 0.040277328669997
1029 => 0.040706383034486
1030 => 0.039540065367896
1031 => 0.039952028485076
1101 => 0.042221985764059
1102 => 0.043439745015284
1103 => 0.041785864385233
1104 => 0.037222873320778
1105 => 0.033015587169763
1106 => 0.034131548913577
1107 => 0.034005033484153
1108 => 0.036443819397482
1109 => 0.03361077040694
1110 => 0.033658471686182
1111 => 0.036147689109479
1112 => 0.035483608576934
1113 => 0.034407883163219
1114 => 0.033023441155752
1115 => 0.030464172059565
1116 => 0.028197356050573
1117 => 0.032643104260755
1118 => 0.032451395513864
1119 => 0.03217377283872
1120 => 0.032791592060341
1121 => 0.035791546829487
1122 => 0.035722388162152
1123 => 0.03528243600563
1124 => 0.035616135838791
1125 => 0.03434938396905
1126 => 0.034675854769287
1127 => 0.033014920714141
1128 => 0.0337657322738
1129 => 0.034405575139614
1130 => 0.034534033067961
1201 => 0.034823455339753
1202 => 0.032350373715565
1203 => 0.033460714758963
1204 => 0.034112936097074
1205 => 0.031166176363475
1206 => 0.034054688131695
1207 => 0.032307322866597
1208 => 0.031714240851078
1209 => 0.032512747652361
1210 => 0.032201568775328
1211 => 0.031934035449891
1212 => 0.031784747257491
1213 => 0.032371082524374
1214 => 0.032343729283352
1215 => 0.03138437098396
1216 => 0.030132927190851
1217 => 0.030552952805061
1218 => 0.030400353561657
1219 => 0.029847314217869
1220 => 0.030219995961357
1221 => 0.028578894172948
1222 => 0.025755463843039
1223 => 0.027620708402987
1224 => 0.027548898516425
1225 => 0.027512688715301
1226 => 0.028914368450529
1227 => 0.02877962928624
1228 => 0.028535076383687
1229 => 0.029842822812033
1230 => 0.029365477774015
1231 => 0.03083654270455
]
'min_raw' => 0.013205388398308
'max_raw' => 0.043439745015284
'avg_raw' => 0.028322566706796
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.0132053'
'max' => '$0.043439'
'avg' => '$0.028322'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.007193955136559
'max_diff' => 0.028715866933748
'year' => 2029
]
4 => [
'items' => [
101 => 0.031805481210316
102 => 0.031559727063377
103 => 0.032471018411335
104 => 0.03056262934688
105 => 0.031196519642812
106 => 0.03132716355427
107 => 0.029826685424103
108 => 0.028801674279865
109 => 0.028733317722527
110 => 0.026956089653655
111 => 0.027905470542762
112 => 0.028740886437127
113 => 0.028340787054619
114 => 0.028214127542746
115 => 0.028861203519808
116 => 0.028911486865057
117 => 0.027765021264596
118 => 0.028003407766775
119 => 0.028997519109324
120 => 0.02797835871157
121 => 0.025998296537641
122 => 0.025507213742005
123 => 0.025441694244616
124 => 0.024109838754584
125 => 0.025540030242613
126 => 0.024915713331339
127 => 0.026887922973589
128 => 0.025761407403108
129 => 0.025712845568403
130 => 0.025639437232774
131 => 0.024493054194246
201 => 0.024744039223241
202 => 0.025578351685719
203 => 0.025876043771533
204 => 0.025844992048064
205 => 0.025574263099495
206 => 0.025698201425793
207 => 0.025298952893811
208 => 0.025157969927529
209 => 0.024712988905522
210 => 0.024058989732316
211 => 0.02414993232856
212 => 0.022854188838247
213 => 0.022148199014412
214 => 0.021952790335971
215 => 0.021691481684469
216 => 0.021982305843474
217 => 0.022850518159741
218 => 0.021803269904805
219 => 0.020007836227643
220 => 0.02011574485091
221 => 0.020358183489035
222 => 0.019906400690782
223 => 0.019478826187492
224 => 0.019850567527887
225 => 0.019089818610089
226 => 0.02045011636123
227 => 0.020413324119252
228 => 0.020920359000629
301 => 0.021237418317357
302 => 0.020506699241471
303 => 0.020322925369961
304 => 0.02042761131923
305 => 0.018697385768643
306 => 0.020778962659894
307 => 0.020796964223289
308 => 0.020642823908436
309 => 0.021751199341551
310 => 0.024090217216391
311 => 0.0232101846051
312 => 0.022869409378882
313 => 0.022221595424736
314 => 0.023084769055249
315 => 0.023018490788032
316 => 0.022718755328389
317 => 0.022537474387166
318 => 0.022871490079747
319 => 0.022496086146467
320 => 0.02242865328464
321 => 0.022020083509644
322 => 0.021874242688711
323 => 0.021766267950982
324 => 0.021647398374122
325 => 0.021909595040223
326 => 0.021315422899993
327 => 0.020598909546289
328 => 0.02053933921371
329 => 0.020703818139437
330 => 0.020631048458819
331 => 0.020538990820476
401 => 0.020363227718474
402 => 0.020311082560694
403 => 0.020480529026244
404 => 0.020289233845981
405 => 0.020571500304846
406 => 0.02049473944655
407 => 0.02006595953197
408 => 0.019531541003746
409 => 0.019526783557864
410 => 0.01941164396258
411 => 0.019264996376633
412 => 0.019224202373064
413 => 0.01981926050907
414 => 0.021051013042009
415 => 0.020809190546453
416 => 0.020983932082459
417 => 0.021843487491551
418 => 0.022116714308368
419 => 0.021922784385523
420 => 0.021657321146056
421 => 0.021669000181344
422 => 0.022576168431791
423 => 0.022632747402816
424 => 0.022775704209529
425 => 0.022959444105743
426 => 0.021954076084362
427 => 0.021621647437948
428 => 0.021464124302838
429 => 0.020979014015824
430 => 0.021502163870156
501 => 0.021197346853547
502 => 0.021238477083119
503 => 0.021211690967153
504 => 0.02122631799774
505 => 0.020449736130285
506 => 0.020732681746844
507 => 0.02026222978111
508 => 0.019632347409704
509 => 0.019630235823129
510 => 0.019784398641177
511 => 0.019692696564611
512 => 0.019445928634446
513 => 0.019480980854214
514 => 0.019173886525366
515 => 0.019518267665858
516 => 0.019528143284713
517 => 0.019395537787056
518 => 0.019926104449424
519 => 0.020143478043897
520 => 0.020056194264654
521 => 0.020137353981264
522 => 0.020819239362907
523 => 0.02093041643286
524 => 0.020979793943388
525 => 0.020913634620547
526 => 0.020149817594286
527 => 0.020183696127402
528 => 0.01993511793016
529 => 0.019725095548017
530 => 0.01973349534188
531 => 0.019841474147301
601 => 0.020313023923445
602 => 0.021305372627963
603 => 0.021343031535902
604 => 0.021388675230912
605 => 0.021203019384623
606 => 0.021147023804896
607 => 0.021220896428242
608 => 0.021593570426443
609 => 0.022552189129819
610 => 0.022213349256055
611 => 0.021937867164329
612 => 0.022179539228212
613 => 0.022142335708265
614 => 0.021828300559617
615 => 0.021819486638921
616 => 0.021216752785556
617 => 0.020993935803552
618 => 0.020807733255828
619 => 0.020604404934654
620 => 0.020483865090235
621 => 0.020669069075642
622 => 0.020711427418374
623 => 0.02030647566747
624 => 0.020251282240169
625 => 0.020581974581449
626 => 0.020436449211505
627 => 0.020586125663348
628 => 0.020620851884076
629 => 0.020615260162726
630 => 0.020463314963022
701 => 0.020560160302242
702 => 0.020331092204002
703 => 0.020082015052081
704 => 0.01992311934721
705 => 0.019784461770254
706 => 0.019861397052775
707 => 0.019587136818415
708 => 0.019499395449675
709 => 0.020527351280404
710 => 0.02128671330495
711 => 0.021275671880373
712 => 0.021208460047883
713 => 0.021108596898224
714 => 0.021586264815036
715 => 0.02141985486409
716 => 0.02154093200742
717 => 0.021571751221989
718 => 0.021665031702336
719 => 0.021698371456332
720 => 0.021597595563809
721 => 0.021259379359761
722 => 0.020416576735906
723 => 0.020024249839399
724 => 0.01989477542883
725 => 0.019899481577747
726 => 0.019769664981436
727 => 0.019807901787021
728 => 0.019756367780886
729 => 0.019658774840682
730 => 0.019855370963727
731 => 0.019878026835489
801 => 0.019832138951221
802 => 0.019842947209132
803 => 0.019463015126369
804 => 0.019491900537453
805 => 0.01933106289796
806 => 0.019300907779482
807 => 0.018894324232581
808 => 0.018174002544017
809 => 0.018573130682799
810 => 0.018091040017059
811 => 0.017908464977078
812 => 0.018772746820105
813 => 0.018685996894512
814 => 0.018537518731183
815 => 0.018317888582058
816 => 0.018236425623323
817 => 0.017741482474088
818 => 0.017712238592412
819 => 0.017957545781762
820 => 0.017844344954382
821 => 0.017685368120234
822 => 0.017109570142175
823 => 0.016462182574677
824 => 0.016481723136007
825 => 0.016687645076154
826 => 0.017286390889489
827 => 0.017052450541811
828 => 0.016882724135415
829 => 0.016850939481454
830 => 0.017248790971456
831 => 0.017811834182273
901 => 0.018076001459407
902 => 0.017814219710647
903 => 0.017513498933002
904 => 0.017531802413331
905 => 0.017653567267858
906 => 0.017666363032407
907 => 0.017470624720755
908 => 0.017525723908942
909 => 0.017442023203711
910 => 0.016928352130213
911 => 0.016919061449362
912 => 0.016792998283861
913 => 0.01678918114131
914 => 0.016574716248862
915 => 0.016544711127882
916 => 0.016118878066838
917 => 0.016399162677159
918 => 0.016211162476158
919 => 0.015927801828486
920 => 0.015878950346022
921 => 0.015877481811469
922 => 0.016168429838347
923 => 0.016395762780066
924 => 0.016214432820144
925 => 0.016173147503203
926 => 0.016613966676933
927 => 0.01655786841892
928 => 0.016509287689276
929 => 0.017761419838256
930 => 0.016770259537248
1001 => 0.016338057072556
1002 => 0.015803124449478
1003 => 0.015977301208917
1004 => 0.01601400281132
1005 => 0.01472758628167
1006 => 0.014205687255804
1007 => 0.014026591177477
1008 => 0.013923518852353
1009 => 0.013970490205212
1010 => 0.013500719869283
1011 => 0.013816413304312
1012 => 0.013409631902095
1013 => 0.013341433676232
1014 => 0.014068809213942
1015 => 0.014170019270748
1016 => 0.013738225724913
1017 => 0.014015507082364
1018 => 0.013914961007653
1019 => 0.013416605001702
1020 => 0.013397571467934
1021 => 0.013147513942208
1022 => 0.012756222335126
1023 => 0.012577391570934
1024 => 0.012484254956263
1025 => 0.012522684938672
1026 => 0.012503253563589
1027 => 0.012376450697283
1028 => 0.012510521755456
1029 => 0.012168025603809
1030 => 0.012031640876545
1031 => 0.011970039059341
1101 => 0.011666054011412
1102 => 0.012149829405431
1103 => 0.012245139252495
1104 => 0.0123406368894
1105 => 0.013171878619654
1106 => 0.013130352131875
1107 => 0.013505731357175
1108 => 0.013491144810758
1109 => 0.013384080574962
1110 => 0.012932394175352
1111 => 0.0131124283237
1112 => 0.012558311198601
1113 => 0.012973493425028
1114 => 0.012784021595311
1115 => 0.012909432808809
1116 => 0.012683932139066
1117 => 0.012808733520396
1118 => 0.012267740752996
1119 => 0.011762569318772
1120 => 0.011965865050777
1121 => 0.012186870761154
1122 => 0.012666067452459
1123 => 0.012380661856404
1124 => 0.012483304501126
1125 => 0.01213946882348
1126 => 0.011430037608691
1127 => 0.011434052912322
1128 => 0.011324922375726
1129 => 0.011230617658788
1130 => 0.012413444122371
1201 => 0.012266340953905
1202 => 0.012031951307341
1203 => 0.012345691163541
1204 => 0.012428648961241
1205 => 0.012431010653117
1206 => 0.012659907153403
1207 => 0.012782069256637
1208 => 0.012803600856813
1209 => 0.013163774445648
1210 => 0.013284499881821
1211 => 0.013781750867715
1212 => 0.012771704655677
1213 => 0.012750903418619
1214 => 0.012350106126718
1215 => 0.01209591414784
1216 => 0.012367510868983
1217 => 0.012608108487265
1218 => 0.012357582165381
1219 => 0.01239029561412
1220 => 0.012053984495743
1221 => 0.012174199895654
1222 => 0.01227774559282
1223 => 0.01222057374498
1224 => 0.012134984721614
1225 => 0.012588382226305
1226 => 0.012562799762211
1227 => 0.012985013942143
1228 => 0.013314160088226
1229 => 0.013904048823917
1230 => 0.013288469176628
1231 => 0.013266035007573
]
'min_raw' => 0.011230617658788
'max_raw' => 0.032471018411335
'avg_raw' => 0.021850818035061
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.01123'
'max' => '$0.032471'
'avg' => '$0.02185'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0019747707395199
'max_diff' => -0.010968726603949
'year' => 2030
]
5 => [
'items' => [
101 => 0.013485332608637
102 => 0.013284466308501
103 => 0.013411406876518
104 => 0.013883596735916
105 => 0.013893573363578
106 => 0.01372645199608
107 => 0.01371628264568
108 => 0.013748380132415
109 => 0.013936376114772
110 => 0.013870684542003
111 => 0.013946704493118
112 => 0.014041768606045
113 => 0.014434994083463
114 => 0.014529799414809
115 => 0.014299471610565
116 => 0.014320267632418
117 => 0.014234118710991
118 => 0.014150899932335
119 => 0.014337963593626
120 => 0.014679826111381
121 => 0.014677699402401
122 => 0.014757004861662
123 => 0.01480641150578
124 => 0.014594322021352
125 => 0.014456259565736
126 => 0.014509201496361
127 => 0.014593856796357
128 => 0.014481748923528
129 => 0.013789767199013
130 => 0.013999670250267
131 => 0.013964732118804
201 => 0.013914975970978
202 => 0.014126035112146
203 => 0.014105677943098
204 => 0.013495901695493
205 => 0.013534937592451
206 => 0.013498275597678
207 => 0.013616738003127
208 => 0.013278068949847
209 => 0.013382241269665
210 => 0.0134475771721
211 => 0.013486060520568
212 => 0.013625088763515
213 => 0.013608775403863
214 => 0.013624074702174
215 => 0.013830216884368
216 => 0.014872813302452
217 => 0.01492955952513
218 => 0.014650120370712
219 => 0.014761750801208
220 => 0.014547444785547
221 => 0.014691309849586
222 => 0.014789738672625
223 => 0.014344957748086
224 => 0.014318620708339
225 => 0.014103430175519
226 => 0.014219061378842
227 => 0.014035083820177
228 => 0.014080225477811
301 => 0.013954005467686
302 => 0.014181176355758
303 => 0.014435188707409
304 => 0.014499362258688
305 => 0.014330549273725
306 => 0.014208317547293
307 => 0.013993718901313
308 => 0.014350601232221
309 => 0.01445496450157
310 => 0.014350053056395
311 => 0.014325742782188
312 => 0.014279674856493
313 => 0.014335516310401
314 => 0.014454396116792
315 => 0.014398334595463
316 => 0.014435364217978
317 => 0.014294245481734
318 => 0.014594392231796
319 => 0.015071097505144
320 => 0.015072630190547
321 => 0.015016568367026
322 => 0.01499362907671
323 => 0.015051151909758
324 => 0.015082355686977
325 => 0.015268373981171
326 => 0.015467979022138
327 => 0.016399448653828
328 => 0.016137895708585
329 => 0.016964350979196
330 => 0.017617969796464
331 => 0.017813961500476
401 => 0.017633658354907
402 => 0.017016851033702
403 => 0.016986587523889
404 => 0.017908358071104
405 => 0.01764791567175
406 => 0.017616936877068
407 => 0.017287374841148
408 => 0.017482186821429
409 => 0.017439578583622
410 => 0.017372319395778
411 => 0.017744007083433
412 => 0.018439773253936
413 => 0.01833133157141
414 => 0.018250384885868
415 => 0.017895700073052
416 => 0.018109299552088
417 => 0.018033240868832
418 => 0.018360037240134
419 => 0.018166450309201
420 => 0.017645942564423
421 => 0.017728835138395
422 => 0.017716306092595
423 => 0.017974152967324
424 => 0.017896753735683
425 => 0.017701192650404
426 => 0.018437395200805
427 => 0.018389590302156
428 => 0.018457366718719
429 => 0.018487203993346
430 => 0.01893531751243
501 => 0.019118895283166
502 => 0.019160570651104
503 => 0.019334955334889
504 => 0.019156231801311
505 => 0.019871253363343
506 => 0.020346700979429
507 => 0.020898957851824
508 => 0.021705953575047
509 => 0.022009391432106
510 => 0.021954578099196
511 => 0.022566433046428
512 => 0.023665922785833
513 => 0.022176816411144
514 => 0.023744849039525
515 => 0.023248428013187
516 => 0.022071422689972
517 => 0.021995637423138
518 => 0.022792719093332
519 => 0.024560569521554
520 => 0.024117743040078
521 => 0.024561293827039
522 => 0.024043868273462
523 => 0.024018173733521
524 => 0.024536163622818
525 => 0.025746475233317
526 => 0.025171501555021
527 => 0.024347135797854
528 => 0.024955834644394
529 => 0.024428523371102
530 => 0.023240343487243
531 => 0.024117404419013
601 => 0.023530938751195
602 => 0.023702100611294
603 => 0.024934764214863
604 => 0.024786446868858
605 => 0.024978383248405
606 => 0.024639620562355
607 => 0.024323162795612
608 => 0.023732470873523
609 => 0.023557596116153
610 => 0.023605925207755
611 => 0.023557572166655
612 => 0.023227085464986
613 => 0.023155716893226
614 => 0.023036766146898
615 => 0.023073633957072
616 => 0.022849971753706
617 => 0.023272068542426
618 => 0.023350413425916
619 => 0.023657580268795
620 => 0.02368947134941
621 => 0.024544926634582
622 => 0.024073756238851
623 => 0.024389858019202
624 => 0.024361582900702
625 => 0.022096931964318
626 => 0.022408980882168
627 => 0.022894431071996
628 => 0.022675736419491
629 => 0.022366553347515
630 => 0.022116871439548
701 => 0.021738577817691
702 => 0.022271018825969
703 => 0.022971122133066
704 => 0.023707227124624
705 => 0.024591609040472
706 => 0.024394225292195
707 => 0.023690694219871
708 => 0.023722254109846
709 => 0.02391734493131
710 => 0.023664684591643
711 => 0.02359017012496
712 => 0.023907107787835
713 => 0.023909290363334
714 => 0.023618574107525
715 => 0.023295496189706
716 => 0.023294142481434
717 => 0.023236653886521
718 => 0.024054095366785
719 => 0.024503605528275
720 => 0.024555141143868
721 => 0.024500136770731
722 => 0.024521305770906
723 => 0.024259745712216
724 => 0.024857594443156
725 => 0.025406239559778
726 => 0.02525919094843
727 => 0.025038744175828
728 => 0.024863147703294
729 => 0.025217826000038
730 => 0.025202032733799
731 => 0.025401447623312
801 => 0.025392401012048
802 => 0.025325345285078
803 => 0.025259193343201
804 => 0.025521478315264
805 => 0.025445944455478
806 => 0.025370293270744
807 => 0.025218563238144
808 => 0.025239185869543
809 => 0.025018777160184
810 => 0.024916806006018
811 => 0.023383404510372
812 => 0.022973629525396
813 => 0.023102553077409
814 => 0.02314499805823
815 => 0.022966663459627
816 => 0.023222349463624
817 => 0.023182501070739
818 => 0.023337527856922
819 => 0.023240673851396
820 => 0.023244648773567
821 => 0.023529475752369
822 => 0.023612162236055
823 => 0.023570107223091
824 => 0.02359956111261
825 => 0.024278313564868
826 => 0.024181816671438
827 => 0.024130554620058
828 => 0.024144754558621
829 => 0.02431819036279
830 => 0.024366742918713
831 => 0.024161022327538
901 => 0.024258041347593
902 => 0.024671136021439
903 => 0.024815695778151
904 => 0.025277061128958
905 => 0.02508106492782
906 => 0.025440824437525
907 => 0.026546602519304
908 => 0.027429974565052
909 => 0.026617589124888
910 => 0.028239789390153
911 => 0.029502904987469
912 => 0.029454424507015
913 => 0.029234171086232
914 => 0.027796147560354
915 => 0.026472856872118
916 => 0.027579845722718
917 => 0.027582667664952
918 => 0.027487576340946
919 => 0.026896972294388
920 => 0.027467024600334
921 => 0.027512273282254
922 => 0.027486946052975
923 => 0.027034131315223
924 => 0.026342766904828
925 => 0.026477857855727
926 => 0.02669913958908
927 => 0.026280207103638
928 => 0.026146332790525
929 => 0.026395230609232
930 => 0.027197231241027
1001 => 0.02704561766726
1002 => 0.02704165842413
1003 => 0.027690325586869
1004 => 0.027226019889483
1005 => 0.026479561785239
1006 => 0.026291071269344
1007 => 0.025622056920345
1008 => 0.026084147514146
1009 => 0.026100777331973
1010 => 0.0258476950362
1011 => 0.026500098018725
1012 => 0.026494086010388
1013 => 0.027113445544926
1014 => 0.028297428354146
1015 => 0.027947266377204
1016 => 0.027540066095535
1017 => 0.027584340056592
1018 => 0.028069916131934
1019 => 0.027776325752158
1020 => 0.027881902899711
1021 => 0.028069756328276
1022 => 0.028183092965868
1023 => 0.027568032658594
1024 => 0.027424632679233
1025 => 0.027131286648014
1026 => 0.027054758144032
1027 => 0.027293682365594
1028 => 0.02723073427453
1029 => 0.026099379660179
1030 => 0.025981146808181
1031 => 0.025984772840954
1101 => 0.025687470712941
1102 => 0.025234013607035
1103 => 0.02642567180684
1104 => 0.02632996497615
1105 => 0.026224312042188
1106 => 0.026237253923751
1107 => 0.026754512359243
1108 => 0.02645447634448
1109 => 0.027252171264661
1110 => 0.027088189169976
1111 => 0.026920001553324
1112 => 0.026896752901582
1113 => 0.026832015018264
1114 => 0.026610004728461
1115 => 0.026341913962774
1116 => 0.026164897217642
1117 => 0.024135734612041
1118 => 0.024512335388545
1119 => 0.024945580253672
1120 => 0.025095134644993
1121 => 0.024839311509789
1122 => 0.026620106185099
1123 => 0.026945474532443
1124 => 0.025959912585087
1125 => 0.025775554184965
1126 => 0.026632192691119
1127 => 0.02611553495211
1128 => 0.02634818590035
1129 => 0.02584532180352
1130 => 0.026867102825465
1201 => 0.02685931856603
1202 => 0.026461822670522
1203 => 0.02679778347947
1204 => 0.026739402021326
1205 => 0.026290630134287
1206 => 0.026881329694744
1207 => 0.026881622674357
1208 => 0.026499041517236
1209 => 0.026052270483504
1210 => 0.025972398374934
1211 => 0.025912225470434
1212 => 0.02633338705451
1213 => 0.026710999213854
1214 => 0.0274136418244
1215 => 0.027590302871068
1216 => 0.028279822697205
1217 => 0.027869247212851
1218 => 0.028051250007222
1219 => 0.028248839786379
1220 => 0.028343571592631
1221 => 0.028189211197933
1222 => 0.029260319305607
1223 => 0.029350753647799
1224 => 0.029381075500482
1225 => 0.029019903873096
1226 => 0.029340708811487
1227 => 0.029190614804757
1228 => 0.029581117712952
1229 => 0.029642353555149
1230 => 0.029590488975337
1231 => 0.029609926198192
]
'min_raw' => 0.013278068949847
'max_raw' => 0.029642353555149
'avg_raw' => 0.021460211252498
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.013278'
'max' => '$0.029642'
'avg' => '$0.02146'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0020474512910589
'max_diff' => -0.0028286648561863
'year' => 2031
]
6 => [
'items' => [
101 => 0.02869592438471
102 => 0.028648528568938
103 => 0.028002283257824
104 => 0.028265632998907
105 => 0.027773313280633
106 => 0.027929432934753
107 => 0.027998248990726
108 => 0.027962303388363
109 => 0.028280522398141
110 => 0.028009971231981
111 => 0.027295942221754
112 => 0.026581718674801
113 => 0.026572752179962
114 => 0.026384709727142
115 => 0.026248789475447
116 => 0.026274972537953
117 => 0.026367245065337
118 => 0.026243426428413
119 => 0.026269849412365
120 => 0.026708647001389
121 => 0.026796644728507
122 => 0.02649759406883
123 => 0.025296862517422
124 => 0.025002199982899
125 => 0.025213997569302
126 => 0.025112771964513
127 => 0.020267966946853
128 => 0.021406182021744
129 => 0.020729893274375
130 => 0.021041558243712
131 => 0.020351242556771
201 => 0.020680697385124
202 => 0.020619859108091
203 => 0.022450075266283
204 => 0.022421498958353
205 => 0.022435176924734
206 => 0.021782291951589
207 => 0.022822355441568
208 => 0.023334728116206
209 => 0.023239901570488
210 => 0.023263767369087
211 => 0.022853673877973
212 => 0.022439147526148
213 => 0.021979374006826
214 => 0.022833576376002
215 => 0.02273860365427
216 => 0.022956436907816
217 => 0.023510448203873
218 => 0.023592028471702
219 => 0.023701673178969
220 => 0.023662373356455
221 => 0.024598654569228
222 => 0.024485264736579
223 => 0.024758501608782
224 => 0.024196432632129
225 => 0.023560398232969
226 => 0.023681287578718
227 => 0.023669644962592
228 => 0.02352142109653
229 => 0.023387611217787
301 => 0.023164855470378
302 => 0.023869687616826
303 => 0.023841072718855
304 => 0.024304314655827
305 => 0.024222432143775
306 => 0.023675600688242
307 => 0.023695130880655
308 => 0.02382648081052
309 => 0.024281084417508
310 => 0.024416041719837
311 => 0.02435352412028
312 => 0.024501498641247
313 => 0.024618451669213
314 => 0.024516186140919
315 => 0.025964050362645
316 => 0.025362796193043
317 => 0.025655843291808
318 => 0.025725733298129
319 => 0.025546711516565
320 => 0.025585534930697
321 => 0.02564434182436
322 => 0.026001405767109
323 => 0.026938444870168
324 => 0.027353453110272
325 => 0.028602025876771
326 => 0.027318992453125
327 => 0.027242862559486
328 => 0.027467768218018
329 => 0.028200812606802
330 => 0.028794876232554
331 => 0.028991961409568
401 => 0.029018009469232
402 => 0.029387754363287
403 => 0.029599685241224
404 => 0.029342857607892
405 => 0.029125223079617
406 => 0.028345683213129
407 => 0.028435917075292
408 => 0.029057538904976
409 => 0.029935616352749
410 => 0.030689098151326
411 => 0.030425255086956
412 => 0.032438191423922
413 => 0.032637765839624
414 => 0.032610191108388
415 => 0.033064851328013
416 => 0.032162443382
417 => 0.031776646501749
418 => 0.029172278134887
419 => 0.02990399941517
420 => 0.030967599268545
421 => 0.030826827839656
422 => 0.03005441319603
423 => 0.030688512205555
424 => 0.030478859242897
425 => 0.030313497252738
426 => 0.031071052586652
427 => 0.030238089378356
428 => 0.030959289823359
429 => 0.03003434279278
430 => 0.03042646029985
501 => 0.030203875438247
502 => 0.030347915122679
503 => 0.029505862070705
504 => 0.029960213457868
505 => 0.02948695955923
506 => 0.029486735175263
507 => 0.02947628806922
508 => 0.030033069182238
509 => 0.030051225794345
510 => 0.029639763710575
511 => 0.029580465596058
512 => 0.029799721804827
513 => 0.02954303020765
514 => 0.029663134590372
515 => 0.029546668047051
516 => 0.029520448974989
517 => 0.029311530947989
518 => 0.029221523317637
519 => 0.029256817628709
520 => 0.029136339949556
521 => 0.029063747789998
522 => 0.029461847661566
523 => 0.02924915895949
524 => 0.029429250067588
525 => 0.029224013520601
526 => 0.028512574231437
527 => 0.028103417972905
528 => 0.026759575106132
529 => 0.027140687276117
530 => 0.027393365039106
531 => 0.027309855039945
601 => 0.027489266832222
602 => 0.027500281259146
603 => 0.02744195265659
604 => 0.027374415607187
605 => 0.027341542306571
606 => 0.027586552956774
607 => 0.027728789885896
608 => 0.027418724633014
609 => 0.027346080682538
610 => 0.027659573772374
611 => 0.027850804376074
612 => 0.029262743710606
613 => 0.0291581426842
614 => 0.029420670733564
615 => 0.029391114104027
616 => 0.029666285323759
617 => 0.030116073971986
618 => 0.029201527887256
619 => 0.029360261464941
620 => 0.029321343657386
621 => 0.029746238075472
622 => 0.029747564549466
623 => 0.029492819120773
624 => 0.02963092075044
625 => 0.02955383620938
626 => 0.029693138393676
627 => 0.02915674567372
628 => 0.029810014106611
629 => 0.030180375212372
630 => 0.030185517676685
701 => 0.030361065901448
702 => 0.030539433064875
703 => 0.030881793302567
704 => 0.030529884823662
705 => 0.029896835727712
706 => 0.029942539827703
707 => 0.029571383374371
708 => 0.029577622581406
709 => 0.029544317205276
710 => 0.029644269146155
711 => 0.029178679503957
712 => 0.029287952462374
713 => 0.029134969680689
714 => 0.02935992891025
715 => 0.029117909966335
716 => 0.029321324890041
717 => 0.029409112027801
718 => 0.029733048456056
719 => 0.029070064292497
720 => 0.02771819470292
721 => 0.028002374080483
722 => 0.027582050459258
723 => 0.027620953010687
724 => 0.02769954235587
725 => 0.0274448085753
726 => 0.027493403753049
727 => 0.027491667591341
728 => 0.02747670628769
729 => 0.027410440193079
730 => 0.027314341245545
731 => 0.027697169874824
801 => 0.027762219918843
802 => 0.027906818108704
803 => 0.028337044239841
804 => 0.028294054503909
805 => 0.02836417254684
806 => 0.028211105252818
807 => 0.027628053363449
808 => 0.027659715886189
809 => 0.027264883720265
810 => 0.027896721362518
811 => 0.027747093868983
812 => 0.027650628050516
813 => 0.027624306458198
814 => 0.028055599036699
815 => 0.028184648535869
816 => 0.028104233548176
817 => 0.027939300062337
818 => 0.028256021113355
819 => 0.028340762305219
820 => 0.028359732732943
821 => 0.028920901710109
822 => 0.028391095844957
823 => 0.028518625382516
824 => 0.029513574429643
825 => 0.028611292937482
826 => 0.029089251567158
827 => 0.029065857979412
828 => 0.029310365441116
829 => 0.029045801230915
830 => 0.029049080821377
831 => 0.029266186883
901 => 0.028961300574735
902 => 0.028885806437183
903 => 0.028781511826854
904 => 0.029009235292966
905 => 0.029145745211853
906 => 0.030245914902599
907 => 0.030956674696654
908 => 0.030925818739499
909 => 0.031207784427969
910 => 0.031080756302803
911 => 0.030670548978318
912 => 0.031370722861761
913 => 0.03114915854852
914 => 0.031167424041303
915 => 0.031166744198749
916 => 0.031314065097566
917 => 0.031209674738992
918 => 0.031003910626793
919 => 0.03114050644708
920 => 0.031546147199433
921 => 0.032805268541315
922 => 0.033509889525371
923 => 0.032762849473326
924 => 0.033278147697962
925 => 0.032969152382712
926 => 0.032912998742116
927 => 0.033236644107427
928 => 0.033560855971106
929 => 0.033540205076996
930 => 0.033304843912429
1001 => 0.033171894362633
1002 => 0.034178632895054
1003 => 0.034920380696398
1004 => 0.034869798469086
1005 => 0.035093051970217
1006 => 0.035748531154507
1007 => 0.035808459956386
1008 => 0.035800910304797
1009 => 0.035652370516416
1010 => 0.036297774898078
1011 => 0.03683618258807
1012 => 0.035617987847133
1013 => 0.036081860457142
1014 => 0.036290107816817
1015 => 0.036595876725027
1016 => 0.037111760125997
1017 => 0.037672146330764
1018 => 0.03775139108444
1019 => 0.037695163139497
1020 => 0.037325573373463
1021 => 0.037938754645517
1022 => 0.038297941853816
1023 => 0.038511829616505
1024 => 0.039054213395155
1025 => 0.036291393881614
1026 => 0.034335732908891
1027 => 0.034030328207913
1028 => 0.034651380676798
1029 => 0.034815147260042
1030 => 0.034749133155682
1031 => 0.032547858929965
1101 => 0.034018738954679
1102 => 0.035601282186166
1103 => 0.035662074116798
1104 => 0.036454328347898
1105 => 0.036712318801143
1106 => 0.037350187300315
1107 => 0.037310288452019
1108 => 0.037465599280863
1109 => 0.03742989601092
1110 => 0.038611413086577
1111 => 0.03991480187801
1112 => 0.039869669668685
1113 => 0.039682292108921
1114 => 0.039960579737793
1115 => 0.041305816650183
1116 => 0.041181968792273
1117 => 0.041302276436898
1118 => 0.042888386570836
1119 => 0.044950555366492
1120 => 0.043992470922547
1121 => 0.046071238484534
1122 => 0.047379712474071
1123 => 0.049642582940239
1124 => 0.049359260413003
1125 => 0.050240179279771
1126 => 0.048852053958054
1127 => 0.045664637632977
1128 => 0.045160216798594
1129 => 0.046170080082999
1130 => 0.048652730426689
1201 => 0.046091892588673
1202 => 0.046609946748062
1203 => 0.046460747115307
1204 => 0.046452796900935
1205 => 0.046756224247652
1206 => 0.046316087055533
1207 => 0.04452288895567
1208 => 0.045344701077454
1209 => 0.045027359950574
1210 => 0.045379473590196
1211 => 0.047279685680524
1212 => 0.046439556619992
1213 => 0.045554548901263
1214 => 0.046664544979483
1215 => 0.048077951423093
1216 => 0.047989502987987
1217 => 0.047817876055305
1218 => 0.048785328088742
1219 => 0.05038327541113
1220 => 0.050815194151299
1221 => 0.051134027735102
1222 => 0.051177989499571
1223 => 0.051630822995685
1224 => 0.049195823158346
1225 => 0.053060230435435
1226 => 0.053727506820091
1227 => 0.053602086515548
1228 => 0.054343736133812
1229 => 0.054125524002284
1230 => 0.053809368860134
1231 => 0.054985041258479
]
'min_raw' => 0.020267966946853
'max_raw' => 0.054985041258479
'avg_raw' => 0.037626504102666
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.020267'
'max' => '$0.054985'
'avg' => '$0.037626'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0069898979970065
'max_diff' => 0.02534268770333
'year' => 2032
]
7 => [
'items' => [
101 => 0.053637227725647
102 => 0.051724176100798
103 => 0.050674638143534
104 => 0.052056754389471
105 => 0.052900764551654
106 => 0.053458601579729
107 => 0.05362740272737
108 => 0.049384845264163
109 => 0.047098342094518
110 => 0.048563964411448
111 => 0.050352124789952
112 => 0.049185889837157
113 => 0.049231604039331
114 => 0.047568859477799
115 => 0.050499240788666
116 => 0.050072308880058
117 => 0.052287232377141
118 => 0.051758623108691
119 => 0.053564807237727
120 => 0.05308917842473
121 => 0.055063487035432
122 => 0.055851092192512
123 => 0.057173603832205
124 => 0.058146448777954
125 => 0.058717721937657
126 => 0.05868342483994
127 => 0.060947093705838
128 => 0.059612287262184
129 => 0.057935455779231
130 => 0.05790512718804
131 => 0.058773581973947
201 => 0.060593624956274
202 => 0.061065535621043
203 => 0.061329269303412
204 => 0.060925351988228
205 => 0.059476515260082
206 => 0.058850914906637
207 => 0.059383944533159
208 => 0.05873209510368
209 => 0.059857370095607
210 => 0.061402613005291
211 => 0.061083526454994
212 => 0.062150184952508
213 => 0.063254064281689
214 => 0.064832661300739
215 => 0.065245365016798
216 => 0.065927548565725
217 => 0.066629739523194
218 => 0.066855264334156
219 => 0.067285861174521
220 => 0.067283591716624
221 => 0.068581224277575
222 => 0.07001255317664
223 => 0.070552846700697
224 => 0.071795221867306
225 => 0.069667697932506
226 => 0.071281449276286
227 => 0.072737093383191
228 => 0.071001614469776
301 => 0.073393567837193
302 => 0.073486441966167
303 => 0.074888731048428
304 => 0.073467242417474
305 => 0.072623167005966
306 => 0.075059981091897
307 => 0.076239078669155
308 => 0.07588392488307
309 => 0.073181187034863
310 => 0.071608077681328
311 => 0.067490947072992
312 => 0.072367866125372
313 => 0.074743271134107
314 => 0.073175035309747
315 => 0.073965962240724
316 => 0.078281003117218
317 => 0.07992389130478
318 => 0.079582182046422
319 => 0.079639925286072
320 => 0.08052639793155
321 => 0.084457505831006
322 => 0.082101894855284
323 => 0.083902671183164
324 => 0.084857796454289
325 => 0.08574497003582
326 => 0.08356635211367
327 => 0.080732002207207
328 => 0.079834244613915
329 => 0.073019105163564
330 => 0.072664347558523
331 => 0.072465211364557
401 => 0.07120968582998
402 => 0.07022318667719
403 => 0.069438685924526
404 => 0.067379921677779
405 => 0.068074694175398
406 => 0.064793453663577
407 => 0.066892675063016
408 => 0.061655735977828
409 => 0.066017214464458
410 => 0.063643460016278
411 => 0.06523737228631
412 => 0.065231811276555
413 => 0.062296913437081
414 => 0.060604125613028
415 => 0.061682835898803
416 => 0.062839298953282
417 => 0.063026931193062
418 => 0.064526315729969
419 => 0.064944761725057
420 => 0.063676850824565
421 => 0.061547212055496
422 => 0.062041878569662
423 => 0.060594101211907
424 => 0.058056927080393
425 => 0.059879169836457
426 => 0.060501363631735
427 => 0.060776159857329
428 => 0.058281140495403
429 => 0.05749715124238
430 => 0.057079761942377
501 => 0.061225136386983
502 => 0.061452229356712
503 => 0.060290389615868
504 => 0.065542015414651
505 => 0.064353410755372
506 => 0.065681373374998
507 => 0.061996992768351
508 => 0.062137741069201
509 => 0.060393496245196
510 => 0.061370156796158
511 => 0.060679884597977
512 => 0.061291252275187
513 => 0.061657703540144
514 => 0.063401662150737
515 => 0.066037127670432
516 => 0.063141172890209
517 => 0.06187936392163
518 => 0.062662183109053
519 => 0.064746933763869
520 => 0.067905437722336
521 => 0.066035539808107
522 => 0.066865368749516
523 => 0.067046649456694
524 => 0.065667855962125
525 => 0.067956275805172
526 => 0.06918265859015
527 => 0.070440673563377
528 => 0.071532972715851
529 => 0.069938194718728
530 => 0.071644835778096
531 => 0.070269584346947
601 => 0.069035841642327
602 => 0.069037712720743
603 => 0.06826376790003
604 => 0.066764152286574
605 => 0.066487600159222
606 => 0.067926259250393
607 => 0.069079927599989
608 => 0.06917494925096
609 => 0.069813679326917
610 => 0.070191673206425
611 => 0.073896527083364
612 => 0.075386649960828
613 => 0.077208744008808
614 => 0.07791855232809
615 => 0.080054820888763
616 => 0.07832961052677
617 => 0.077956350412871
618 => 0.072774461652801
619 => 0.073622995646967
620 => 0.074981580442981
621 => 0.072796864215689
622 => 0.074182563809549
623 => 0.074456130262507
624 => 0.072722628394278
625 => 0.073648566642293
626 => 0.071189549177122
627 => 0.066090727531453
628 => 0.067961952251239
629 => 0.069339803492431
630 => 0.067373439883417
701 => 0.070898070543794
702 => 0.068839054075147
703 => 0.068186444704806
704 => 0.065640382879069
705 => 0.06684202605391
706 => 0.068467265653756
707 => 0.067463056535434
708 => 0.069546941238709
709 => 0.072498277730296
710 => 0.074601575869327
711 => 0.074763040983685
712 => 0.073410761190319
713 => 0.075577798189323
714 => 0.075593582688052
715 => 0.07314915610057
716 => 0.071651958426362
717 => 0.07131179196465
718 => 0.072161594479568
719 => 0.073193411614876
720 => 0.074820299653613
721 => 0.075803394022623
722 => 0.078366782744039
723 => 0.07906036223394
724 => 0.079822395813179
725 => 0.080840707677495
726 => 0.082063452160409
727 => 0.079388156842675
728 => 0.079494451313023
729 => 0.077003253355135
730 => 0.074341051063205
731 => 0.076361330754579
801 => 0.079002577704506
802 => 0.078396672735874
803 => 0.078328496049388
804 => 0.078443150325422
805 => 0.07798631776608
806 => 0.075920081031181
807 => 0.074882429878241
808 => 0.076221264598575
809 => 0.076932795667755
810 => 0.078036318304023
811 => 0.077900285846566
812 => 0.080742841647913
813 => 0.081847372877891
814 => 0.081564786523707
815 => 0.081616789213697
816 => 0.083616490246284
817 => 0.085840569064405
818 => 0.087923712370624
819 => 0.090042775214796
820 => 0.087488162247716
821 => 0.086191087329656
822 => 0.087529337556634
823 => 0.086819243148964
824 => 0.090899656243121
825 => 0.091182175192614
826 => 0.095262293226461
827 => 0.099134811092
828 => 0.096702552004019
829 => 0.09899606277263
830 => 0.10147668166156
831 => 0.10626219796421
901 => 0.10465060442997
902 => 0.10341614903963
903 => 0.10224959466061
904 => 0.10467700913807
905 => 0.10779983908442
906 => 0.10847246674477
907 => 0.10956238051809
908 => 0.10841646945376
909 => 0.10979659311278
910 => 0.11466903608616
911 => 0.1133524589845
912 => 0.11148270784983
913 => 0.11532903362292
914 => 0.11672100396798
915 => 0.12649058083019
916 => 0.13882507517982
917 => 0.13371851352642
918 => 0.13054870592043
919 => 0.13129368589668
920 => 0.13579782568418
921 => 0.13724441242968
922 => 0.13331209098707
923 => 0.13470105339899
924 => 0.14235437284843
925 => 0.14646013318518
926 => 0.1408839591707
927 => 0.12549951621903
928 => 0.11131435721754
929 => 0.11507690015077
930 => 0.11465034454744
1001 => 0.12287288152483
1002 => 0.11332105905605
1003 => 0.11348188724941
1004 => 0.12187445758367
1005 => 0.11963546370357
1006 => 0.11600858036648
1007 => 0.11134083747965
1008 => 0.10271208303939
1009 => 0.095069354601039
1010 => 0.1100585050839
1011 => 0.10941214565907
1012 => 0.10847612142683
1013 => 0.11055914206729
1014 => 0.12067369902161
1015 => 0.12044052574619
1016 => 0.118957196334
1017 => 0.12008228861968
1018 => 0.11581134624906
1019 => 0.11691206534552
1020 => 0.11131211021588
1021 => 0.11384352380926
1022 => 0.11600079870375
1023 => 0.11643390357782
1024 => 0.11740971097399
1025 => 0.10907154361299
1026 => 0.11281513596235
1027 => 0.11501414574043
1028 => 0.1050789395624
1029 => 0.11481775865841
1030 => 0.10892639466998
1031 => 0.106926777247
1101 => 0.10961899867749
1102 => 0.10856983736775
1103 => 0.10766783008246
1104 => 0.10716449451882
1105 => 0.10914136480774
1106 => 0.10904914144589
1107 => 0.10581459795923
1108 => 0.10159526783775
1109 => 0.10301141352131
1110 => 0.10249691451803
1111 => 0.10063230375848
1112 => 0.10188882627646
1113 => 0.096355737018768
1114 => 0.086836344535869
1115 => 0.09312514679695
1116 => 0.092883034750799
1117 => 0.092760950878222
1118 => 0.097486811967697
1119 => 0.097032529468109
1120 => 0.096208002283012
1121 => 0.10061716067012
1122 => 0.099007758547277
1123 => 0.10396755666705
1124 => 0.10723440048837
1125 => 0.10640582322395
1126 => 0.10947830562793
1127 => 0.10304403865764
1128 => 0.10518124404719
1129 => 0.10562171911593
1130 => 0.10056275234004
1201 => 0.097106855703248
1202 => 0.09687638679768
1203 => 0.090884338281376
1204 => 0.09408524223266
1205 => 0.096901905247385
1206 => 0.095552942245211
1207 => 0.095125900857847
1208 => 0.097307562691916
1209 => 0.097477096501094
1210 => 0.093611707685465
1211 => 0.094415444421179
1212 => 0.097767160219217
1213 => 0.094330989782685
1214 => 0.087655071919756
1215 => 0.085999351987964
1216 => 0.08577844842809
1217 => 0.081288004656267
1218 => 0.086109995110939
1219 => 0.084005067056165
1220 => 0.090654509560288
1221 => 0.086856383663608
1222 => 0.08669265404742
1223 => 0.08644515271864
1224 => 0.082580042266335
1225 => 0.083426255814806
1226 => 0.086239198531887
1227 => 0.087242888183409
1228 => 0.087138195129768
1229 => 0.086225413577978
1230 => 0.08664328029819
1231 => 0.08529718599797
]
'min_raw' => 0.047098342094518
'max_raw' => 0.14646013318518
'avg_raw' => 0.096779237639847
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.047098'
'max' => '$0.14646'
'avg' => '$0.096779'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.026830375147665
'max_diff' => 0.091475091926698
'year' => 2033
]
8 => [
'items' => [
101 => 0.084821852084033
102 => 0.083321567500753
103 => 0.081116563627525
104 => 0.081423182940172
105 => 0.07705449329666
106 => 0.074674199314966
107 => 0.074015365312604
108 => 0.073134344950076
109 => 0.074114878906857
110 => 0.077042117347797
111 => 0.073511246739744
112 => 0.067457816744015
113 => 0.067821638201301
114 => 0.068639036996263
115 => 0.067115819749485
116 => 0.065674222459344
117 => 0.066927574342637
118 => 0.064362656252488
119 => 0.068948995093416
120 => 0.068824947480835
121 => 0.070534450983441
122 => 0.071603438606165
123 => 0.06913976822464
124 => 0.06852016178616
125 => 0.068873117773061
126 => 0.063039541528766
127 => 0.070057723348679
128 => 0.070118416876494
129 => 0.069598722043233
130 => 0.073335687200282
131 => 0.081221849270318
201 => 0.078254757879436
202 => 0.077105810412075
203 => 0.074921660436745
204 => 0.077831910596879
205 => 0.077608448791555
206 => 0.076597869762509
207 => 0.075986668412544
208 => 0.077112825640312
209 => 0.075847125069393
210 => 0.07561977046773
211 => 0.074242248945901
212 => 0.073750536435843
213 => 0.073386492069036
214 => 0.072985714991441
215 => 0.073869729357189
216 => 0.07186643650263
217 => 0.069450661705251
218 => 0.069249816169894
219 => 0.069804368351534
220 => 0.069559020292713
221 => 0.069248641537781
222 => 0.068656043967992
223 => 0.068480232927879
224 => 0.069051533516854
225 => 0.068406568460795
226 => 0.069358249534075
227 => 0.069099444941059
228 => 0.067653783522593
301 => 0.065851954142777
302 => 0.065835914081831
303 => 0.065447712897542
304 => 0.064953280322911
305 => 0.064815740491734
306 => 0.066822020542908
307 => 0.070974960205931
308 => 0.070159638778656
309 => 0.070748792067363
310 => 0.07364684314136
311 => 0.074568046430347
312 => 0.073914198155719
313 => 0.073019170309804
314 => 0.073058546992681
315 => 0.076117128085528
316 => 0.076307888036557
317 => 0.076789876891314
318 => 0.077409368779712
319 => 0.074019700303072
320 => 0.072898893912259
321 => 0.072367793664321
322 => 0.070732210462334
323 => 0.072496046721371
324 => 0.071468334868229
325 => 0.071607008308854
326 => 0.071516697048726
327 => 0.071566013103577
328 => 0.06894771311824
329 => 0.069901684019101
330 => 0.068315522370721
331 => 0.06619182997854
401 => 0.066184710616979
402 => 0.066704481321332
403 => 0.066395301367753
404 => 0.065563306062416
405 => 0.065681487068632
406 => 0.06464609709828
407 => 0.065807202157373
408 => 0.065840498495834
409 => 0.065393409802263
410 => 0.067182252347418
411 => 0.067915142597724
412 => 0.067620859242048
413 => 0.067894494892991
414 => 0.070193519064915
415 => 0.070568360318396
416 => 0.070734840042569
417 => 0.070511779266514
418 => 0.067936516834475
419 => 0.068050740674198
420 => 0.067212641927023
421 => 0.066504536802331
422 => 0.066532857293797
423 => 0.066896915375111
424 => 0.068486778367936
425 => 0.071832551308792
426 => 0.071959520946169
427 => 0.072113411850636
428 => 0.071487460202798
429 => 0.071298667196259
430 => 0.071547733903493
501 => 0.072804230307695
502 => 0.076036280194748
503 => 0.07489385790331
504 => 0.073965050797508
505 => 0.074779865033894
506 => 0.074654430768927
507 => 0.073595639340027
508 => 0.073565922591032
509 => 0.071533763322877
510 => 0.070782520311467
511 => 0.070154725421569
512 => 0.0694691897908
513 => 0.069062781289518
514 => 0.069687209456848
515 => 0.069830023566733
516 => 0.06846470046573
517 => 0.068278611972106
518 => 0.069393564288931
519 => 0.068902915343908
520 => 0.069407559951372
521 => 0.069524641829065
522 => 0.069505788950133
523 => 0.068993495100856
524 => 0.069320015923562
525 => 0.06854769683732
526 => 0.067707915829608
527 => 0.067172187866893
528 => 0.066704694165422
529 => 0.066964086841891
530 => 0.066039399313509
531 => 0.065743573162896
601 => 0.069209398015781
602 => 0.071769640098503
603 => 0.071732413164653
604 => 0.071505803778831
605 => 0.071169108197536
606 => 0.072779598928776
607 => 0.072218536160791
608 => 0.072626756202863
609 => 0.072730665336511
610 => 0.073045166988637
611 => 0.073157574296941
612 => 0.07281780133935
613 => 0.071677481793902
614 => 0.068835913904973
615 => 0.067513156382011
616 => 0.067076624367165
617 => 0.067092491476812
618 => 0.066654805758842
619 => 0.066783723818482
620 => 0.066609973318809
621 => 0.06628093190719
622 => 0.066943769461938
623 => 0.067020155315364
624 => 0.066865441109767
625 => 0.066901881905921
626 => 0.065620914362877
627 => 0.065718303543059
628 => 0.065176028212185
629 => 0.065074358124873
630 => 0.063703533309737
701 => 0.061274918445491
702 => 0.062620606831632
703 => 0.060995204493595
704 => 0.060379639999315
705 => 0.063293626575314
706 => 0.06300114314449
707 => 0.062500538650411
708 => 0.06176004026855
709 => 0.061485382215612
710 => 0.059816646832137
711 => 0.059718049043324
712 => 0.06054511935902
713 => 0.060163454866078
714 => 0.059627453370341
715 => 0.057686110286383
716 => 0.055503397903407
717 => 0.055569280270208
718 => 0.056263560468425
719 => 0.058282273781182
720 => 0.057493527565793
721 => 0.056921283136708
722 => 0.056814118956745
723 => 0.058155503032392
724 => 0.060053842528083
725 => 0.06094450094651
726 => 0.060061885503548
727 => 0.059047984406063
728 => 0.059109695867902
729 => 0.059520234576292
730 => 0.059563376389839
731 => 0.058903431006093
801 => 0.059089201765965
802 => 0.058806998994485
803 => 0.057075121106817
804 => 0.057043796927673
805 => 0.056618766163736
806 => 0.056605896401122
807 => 0.055882813042772
808 => 0.055781648682499
809 => 0.054345922786472
810 => 0.055290921919016
811 => 0.054657066115587
812 => 0.053701695908351
813 => 0.053536989724523
814 => 0.053532038457748
815 => 0.05451299004371
816 => 0.055279458928596
817 => 0.054668092308665
818 => 0.05452889598015
819 => 0.056015148601391
820 => 0.055826009407845
821 => 0.055662216086051
822 => 0.059883867047414
823 => 0.056542100891963
824 => 0.055084900106842
825 => 0.053281337420332
826 => 0.053868586525412
827 => 0.053992328540337
828 => 0.049655085395889
829 => 0.047895466392355
830 => 0.047291631460186
831 => 0.04694411591975
901 => 0.047102483115352
902 => 0.045518619629448
903 => 0.04658300208666
904 => 0.045211510188515
905 => 0.04498157510857
906 => 0.047433972517697
907 => 0.047775209290479
908 => 0.046319387203835
909 => 0.047254260659647
910 => 0.046915262548857
911 => 0.045235020480688
912 => 0.045170847592708
913 => 0.044327761186265
914 => 0.04300849421388
915 => 0.042405553806841
916 => 0.042091537207886
917 => 0.042221106576677
918 => 0.042155592338928
919 => 0.041728067622082
920 => 0.042180097555255
921 => 0.041025347867661
922 => 0.040565517237611
923 => 0.040357822410007
924 => 0.039332915597355
925 => 0.040963998114412
926 => 0.041285341918109
927 => 0.041607318868367
928 => 0.044409908397361
929 => 0.044269898944528
930 => 0.045535516210767
1001 => 0.045486336651122
1002 => 0.04512536210515
1003 => 0.043602469873126
1004 => 0.044209467573867
1005 => 0.042341222999373
1006 => 0.043741038862866
1007 => 0.043102221360476
1008 => 0.043525054022715
1009 => 0.042764762770724
1010 => 0.043185539341233
1011 => 0.041361544455034
1012 => 0.039658323694603
1013 => 0.040343749448714
1014 => 0.041088885631376
1015 => 0.042704530732555
1016 => 0.041742265839075
1017 => 0.042088332682034
1018 => 0.040929066689011
1019 => 0.038537169817442
1020 => 0.038550707693976
1021 => 0.038182766470591
1022 => 0.037864811533289
1023 => 0.041852793537566
1024 => 0.041356824934668
1025 => 0.040566563876716
1026 => 0.041624359706511
1027 => 0.041904057713385
1028 => 0.041912020322432
1029 => 0.042683760854188
1030 => 0.043095638914328
1031 => 0.04316823420761
1101 => 0.044382584608886
1102 => 0.044789618845724
1103 => 0.046466135261621
1104 => 0.043060693938557
1105 => 0.042990561115522
1106 => 0.041639245063104
1107 => 0.040782219059199
1108 => 0.041697926366809
1109 => 0.042509118034839
1110 => 0.041664451049418
1111 => 0.041774746725821
1112 => 0.040640850309721
1113 => 0.041046164923691
1114 => 0.041395276471017
1115 => 0.041202517594412
1116 => 0.040913948226499
1117 => 0.042442609568768
1118 => 0.042356356504965
1119 => 0.043779881090658
1120 => 0.044889620302426
1121 => 0.046878471359526
1122 => 0.044803001600292
1123 => 0.04472736323302
1124 => 0.045466740405876
1125 => 0.044789505650931
1126 => 0.045217494638707
1127 => 0.046809515716911
1128 => 0.04684315261362
1129 => 0.046279691255059
1130 => 0.046245404580183
1201 => 0.046353623497687
1202 => 0.046987465077661
1203 => 0.046765981353633
1204 => 0.04702228792636
1205 => 0.047342803220259
1206 => 0.048668590371498
1207 => 0.04898823316523
1208 => 0.048211666892248
1209 => 0.048281782131854
1210 => 0.047991325028538
1211 => 0.047710747106151
1212 => 0.048341445300562
1213 => 0.04949405864725
1214 => 0.049486888299441
1215 => 0.049754272192271
1216 => 0.049920850142376
1217 => 0.049205775638012
1218 => 0.04874028842969
1219 => 0.048918785845081
1220 => 0.04920420709946
1221 => 0.048826227579098
1222 => 0.046493162882274
1223 => 0.04720086567454
1224 => 0.047083069325009
1225 => 0.04691531299875
1226 => 0.047626913628878
1227 => 0.047558278012141
1228 => 0.045502374820121
1229 => 0.045633987072113
1230 => 0.045510378597078
1231 => 0.045909782867829
]
'min_raw' => 0.037864811533289
'max_raw' => 0.084821852084033
'avg_raw' => 0.061343331808661
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.037864'
'max' => '$0.084821'
'avg' => '$0.061343'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0092335305612295
'max_diff' => -0.061638281101144
'year' => 2034
]
9 => [
'items' => [
101 => 0.044767936509578
102 => 0.045119160758923
103 => 0.04533944531559
104 => 0.045469194611773
105 => 0.045937938039509
106 => 0.04588293640848
107 => 0.045934519060898
108 => 0.046629541820554
109 => 0.050144728435884
110 => 0.050336052287534
111 => 0.049393903668597
112 => 0.049770273458802
113 => 0.049047725764633
114 => 0.049532776872378
115 => 0.049864636521334
116 => 0.048365026580639
117 => 0.048276229412339
118 => 0.047550699506811
119 => 0.047940558181928
120 => 0.047320264997987
121 => 0.047472463248391
122 => 0.047046903671855
123 => 0.047812826181554
124 => 0.048669246559723
125 => 0.048885612168314
126 => 0.048316447403362
127 => 0.047904334603751
128 => 0.04718080028603
129 => 0.048384053981414
130 => 0.048735922030436
131 => 0.048382205768347
201 => 0.048300241981568
202 => 0.048144920753727
203 => 0.048333194114306
204 => 0.048734005681474
205 => 0.048544990348225
206 => 0.048669838305857
207 => 0.048194046634017
208 => 0.049206012357427
209 => 0.050813257469017
210 => 0.050818425024862
211 => 0.05062940867275
212 => 0.05055206725388
213 => 0.050746009501618
214 => 0.050851215215089
215 => 0.051478388881349
216 => 0.052151371212947
217 => 0.055291886109322
218 => 0.054410042093393
219 => 0.057196493739523
220 => 0.05940021521615
221 => 0.06006101492993
222 => 0.059453110286282
223 => 0.057373501338726
224 => 0.05727146580246
225 => 0.060379279558359
226 => 0.05950117982543
227 => 0.059396732656289
228 => 0.058285591242898
301 => 0.058942413435753
302 => 0.058798756787175
303 => 0.058571987739472
304 => 0.059825158728809
305 => 0.062170982949502
306 => 0.061805364245707
307 => 0.061532446843887
308 => 0.060336602234175
309 => 0.061056767790785
310 => 0.060800330629939
311 => 0.061902147411978
312 => 0.061249455558528
313 => 0.059494527356318
314 => 0.059774005456839
315 => 0.059731762904177
316 => 0.060601111644618
317 => 0.0603401547313
318 => 0.059680806878643
319 => 0.062162965177339
320 => 0.062001787623912
321 => 0.062230300544354
322 => 0.062330898998929
323 => 0.06384174501481
324 => 0.064460690285836
325 => 0.064601201698522
326 => 0.065189151835051
327 => 0.064586572963514
328 => 0.066997318081117
329 => 0.068600322913445
330 => 0.070462295516068
331 => 0.073183137939555
401 => 0.074206199859985
402 => 0.074021392881132
403 => 0.076084304554074
404 => 0.079791310974402
405 => 0.07477068486605
406 => 0.080057416349177
407 => 0.078383698199869
408 => 0.074415342576764
409 => 0.074159827258475
410 => 0.076847243759998
411 => 0.082807674906124
412 => 0.08131465450667
413 => 0.082810116952637
414 => 0.081065580573251
415 => 0.080978949637908
416 => 0.082725388714569
417 => 0.086806038810625
418 => 0.08486747491087
419 => 0.082088068205202
420 => 0.084140338864309
421 => 0.082362472090707
422 => 0.078356440656205
423 => 0.081313512822108
424 => 0.079336202877335
425 => 0.079913287038798
426 => 0.084069298440054
427 => 0.083569236152813
428 => 0.084216363057024
429 => 0.083074201009351
430 => 0.082007241554401
501 => 0.080015682498287
502 => 0.079426080044447
503 => 0.079589024951014
504 => 0.079425999297043
505 => 0.07831174030852
506 => 0.078071116186038
507 => 0.077670065439917
508 => 0.077794367835946
509 => 0.077040275101704
510 => 0.078463403894728
511 => 0.078727549139281
512 => 0.079763183595752
513 => 0.079870706600608
514 => 0.082754933820546
515 => 0.081166349935274
516 => 0.082232109157248
517 => 0.08213677762112
518 => 0.074501348876223
519 => 0.075553443589312
520 => 0.077190172797369
521 => 0.076452828507673
522 => 0.075410396194035
523 => 0.074568576209088
524 => 0.07329313285138
525 => 0.075088294884634
526 => 0.077448742064163
527 => 0.079930571436412
528 => 0.082912326811267
529 => 0.082246833723059
530 => 0.079874829593745
531 => 0.079981235966236
601 => 0.08063899829161
602 => 0.079787136316241
603 => 0.079535905589384
604 => 0.08060448304765
605 => 0.080611841753326
606 => 0.079631671599705
607 => 0.0785423918432
608 => 0.078537827721247
609 => 0.078344000909772
610 => 0.081100061932424
611 => 0.082615616825685
612 => 0.082789372751758
613 => 0.082603921667445
614 => 0.082675294429507
615 => 0.081793426430092
616 => 0.083809115166923
617 => 0.085658910482794
618 => 0.085163125823028
619 => 0.084419874138096
620 => 0.083827838371196
621 => 0.085023661011513
622 => 0.084970412911739
623 => 0.085642754134436
624 => 0.085612252852943
625 => 0.085386169787783
626 => 0.085163133897166
627 => 0.086047445992629
628 => 0.085792778310753
629 => 0.085537715059626
630 => 0.085026146661262
701 => 0.085095677302851
702 => 0.084352553950802
703 => 0.084008751085133
704 => 0.078838780883889
705 => 0.077457195912467
706 => 0.077891870669232
707 => 0.078034976885484
708 => 0.077433709335371
709 => 0.078295772549272
710 => 0.078161420910536
711 => 0.078684104543776
712 => 0.078357554502013
713 => 0.078370956229632
714 => 0.079331270274647
715 => 0.079610053527383
716 => 0.079468262114985
717 => 0.079567567959904
718 => 0.081856029241674
719 => 0.081530683228279
720 => 0.081357849643049
721 => 0.081405725727323
722 => 0.081990476649979
723 => 0.082154174982106
724 => 0.081460573646007
725 => 0.081787680045773
726 => 0.083180457579993
727 => 0.083667850892589
728 => 0.085223376384332
729 => 0.084562561508179
730 => 0.085775515812756
731 => 0.089503723818434
801 => 0.09248207434574
802 => 0.089743060115288
803 => 0.095212421568034
804 => 0.099471103992298
805 => 0.099307648667648
806 => 0.098565048881879
807 => 0.093716652164783
808 => 0.089255085220189
809 => 0.092987375417481
810 => 0.092996889792746
811 => 0.092676282754794
812 => 0.090685019977166
813 => 0.092606991126445
814 => 0.092759550216701
815 => 0.092674157694894
816 => 0.091147461192049
817 => 0.088816477812882
818 => 0.089271946385585
819 => 0.090018013198981
820 => 0.088605553075381
821 => 0.088154186481914
822 => 0.088993362855177
823 => 0.091697363979171
824 => 0.091186188229892
825 => 0.091172839365255
826 => 0.093359865992924
827 => 0.091794426917399
828 => 0.089277691302899
829 => 0.088642182368573
830 => 0.086386553781831
831 => 0.087944524480967
901 => 0.088000593072828
902 => 0.087147308442985
903 => 0.089346930647891
904 => 0.089326660742037
905 => 0.091414874655035
906 => 0.095406755359359
907 => 0.094226159806571
908 => 0.092853255627109
909 => 0.093002528377921
910 => 0.094639682017776
911 => 0.093649821554537
912 => 0.09400578227867
913 => 0.094639143228588
914 => 0.095021265615141
915 => 0.092947546847025
916 => 0.092464063804743
917 => 0.091475027179721
918 => 0.091217005985496
919 => 0.09202255567965
920 => 0.091810321795731
921 => 0.08799588072479
922 => 0.087597250409527
923 => 0.087609475832183
924 => 0.086607100950616
925 => 0.085078238658689
926 => 0.089095997478249
927 => 0.088773315216539
928 => 0.088417098973236
929 => 0.088460733430499
930 => 0.090204706359589
1001 => 0.089193113987972
1002 => 0.091882598104643
1003 => 0.091329721023549
1004 => 0.09076266473152
1005 => 0.090684280279004
1006 => 0.090466011985543
1007 => 0.089717488793208
1008 => 0.088813602059194
1009 => 0.088216777744069
1010 => 0.081375314347676
1011 => 0.082645050159085
1012 => 0.08410576547005
1013 => 0.084609998541945
1014 => 0.083747472980601
1015 => 0.089751546559525
1016 => 0.090848548659087
1017 => 0.087525657743837
1018 => 0.086904080526336
1019 => 0.089792297058423
1020 => 0.088050349419463
1021 => 0.088834748334626
1022 => 0.087139306923311
1023 => 0.090584312977274
1024 => 0.090558067803106
1025 => 0.089217882639124
1026 => 0.09035059796253
1027 => 0.090153760800333
1028 => 0.088640695050928
1029 => 0.090632279860337
1030 => 0.090633267661555
1031 => 0.08934336857936
1101 => 0.087837048846575
1102 => 0.087567754456037
1103 => 0.087364877307378
1104 => 0.088784852992651
1105 => 0.090057998751919
1106 => 0.092427007370316
1107 => 0.093022632423237
1108 => 0.095347396657794
1109 => 0.093963112746832
1110 => 0.094576747875084
1111 => 0.09524293561079
1112 => 0.09556233050953
1113 => 0.095041893661708
1114 => 0.09865320942911
1115 => 0.098958115127735
1116 => 0.09906034737106
1117 => 0.097842632013131
1118 => 0.0989242482608
1119 => 0.098418195837881
1120 => 0.099734803656904
1121 => 0.09994126457422
1122 => 0.099766399522314
1123 => 0.099831933476234
1124 => 0.096750312548513
1125 => 0.096590514246565
1126 => 0.094411653060737
1127 => 0.095299555099291
1128 => 0.093639664796467
1129 => 0.094166033110257
1130 => 0.094398051247554
1201 => 0.094276858139544
1202 => 0.095349755748353
1203 => 0.094437573602364
1204 => 0.092030174942471
1205 => 0.089622120388423
1206 => 0.089591889225055
1207 => 0.088957890966668
1208 => 0.088499626348426
1209 => 0.088587904371711
1210 => 0.088899007640047
1211 => 0.088481544460916
1212 => 0.088570631396104
1213 => 0.090050068103369
1214 => 0.090346758584151
1215 => 0.089338488405999
1216 => 0.085290138148028
1217 => 0.084296662840205
1218 => 0.085010753189997
1219 => 0.084669463996105
1220 => 0.068334865625579
1221 => 0.072172437218212
1222 => 0.069892282489487
1223 => 0.070943082693358
1224 => 0.068615635158535
1225 => 0.069726415114129
1226 => 0.06952129461552
1227 => 0.075691996174474
1228 => 0.075595649157154
1229 => 0.075641765375774
1230 => 0.073440518105841
1231 => 0.076947164777221
]
'min_raw' => 0.044767936509578
'max_raw' => 0.09994126457422
'avg_raw' => 0.072354600541899
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.044767'
'max' => '$0.099941'
'avg' => '$0.072354'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0069031249762892
'max_diff' => 0.015119412490187
'year' => 2035
]
10 => [
'items' => [
101 => 0.078674665022479
102 => 0.078354950703012
103 => 0.078435415909247
104 => 0.077052757072144
105 => 0.07565515253566
106 => 0.074104994014904
107 => 0.076984996941085
108 => 0.076664789778983
109 => 0.077399229801945
110 => 0.079267117566434
111 => 0.079542171135171
112 => 0.079911845920871
113 => 0.07977934382544
114 => 0.082936081303372
115 => 0.08255377956597
116 => 0.083475016757392
117 => 0.081579961960202
118 => 0.079435527576929
119 => 0.079843114446348
120 => 0.079803860553216
121 => 0.07930411344013
122 => 0.078852964091639
123 => 0.078101927536941
124 => 0.080478318328499
125 => 0.080381841202161
126 => 0.081943693735183
127 => 0.081667621128946
128 => 0.079823940698064
129 => 0.079889788105337
130 => 0.080332643564435
131 => 0.081865371364808
201 => 0.082320389332025
202 => 0.082109606880279
203 => 0.082608513308973
204 => 0.083002828608159
205 => 0.082658033239566
206 => 0.087539608549767
207 => 0.085512438138728
208 => 0.086500466892108
209 => 0.086736105927985
210 => 0.08613252149254
211 => 0.08626341734385
212 => 0.0864616888916
213 => 0.087665554903988
214 => 0.090824847661932
215 => 0.092224076918393
216 => 0.096433727173209
217 => 0.092107890406855
218 => 0.091851213155232
219 => 0.092609498285383
220 => 0.095081008621695
221 => 0.097083935612114
222 => 0.097748422046466
223 => 0.097836244898241
224 => 0.099082865623309
225 => 0.099797405374817
226 => 0.098931493077906
227 => 0.098197723071069
228 => 0.095569449985468
229 => 0.095873679751676
301 => 0.097969521150709
302 => 0.10093002057129
303 => 0.10347043706161
304 => 0.10258087174915
305 => 0.10936762714795
306 => 0.11004050622434
307 => 0.10994753609277
308 => 0.1114804547666
309 => 0.1084379233725
310 => 0.10713718225526
311 => 0.098356372475191
312 => 0.10082342185881
313 => 0.10440942302264
314 => 0.10393480232179
315 => 0.10133055242254
316 => 0.10346846150453
317 => 0.10276160190342
318 => 0.1022040724084
319 => 0.10475822310751
320 => 0.10194982949511
321 => 0.10438140714805
322 => 0.10126288365671
323 => 0.10258493520857
324 => 0.10183447480729
325 => 0.10232011465988
326 => 0.099481074004887
327 => 0.10101295142851
328 => 0.099417342867719
329 => 0.099416586341507
330 => 0.099381363194091
331 => 0.10125858958985
401 => 0.10131980587522
402 => 0.099932532732422
403 => 0.099732604999266
404 => 0.10047184261511
405 => 0.099606388973595
406 => 0.10001132928536
407 => 0.099618654203119
408 => 0.099530254771104
409 => 0.098825873056884
410 => 0.09852240604702
411 => 0.098641403280969
412 => 0.098235204374221
413 => 0.097990454840049
414 => 0.099332676351488
415 => 0.098615581542987
416 => 0.099222771287498
417 => 0.098530801940173
418 => 0.096132134705653
419 => 0.094752635813634
420 => 0.090221775764196
421 => 0.091506722053702
422 => 0.092358642773018
423 => 0.092077082980366
424 => 0.092681982364158
425 => 0.092719118273533
426 => 0.092522459317643
427 => 0.092294753440295
428 => 0.092183918812127
429 => 0.093009989325385
430 => 0.093489551062587
501 => 0.09244414441443
502 => 0.09219922026356
503 => 0.09325618410333
504 => 0.093900931435001
505 => 0.09866138347983
506 => 0.098308713816292
507 => 0.099193845463847
508 => 0.099094193223784
509 => 0.10002195220295
510 => 0.10153844603369
511 => 0.098454990057454
512 => 0.098990171397043
513 => 0.098858957291718
514 => 0.10029151848747
515 => 0.10029599078716
516 => 0.099437098788563
517 => 0.099902718074933
518 => 0.099642822162878
519 => 0.100112489203
520 => 0.098304003697922
521 => 0.10050654382916
522 => 0.10175524215502
523 => 0.10177258033249
524 => 0.10236445342866
525 => 0.10296583077335
526 => 0.10412012221756
527 => 0.10293363821147
528 => 0.10079926898639
529 => 0.10095336355047
530 => 0.099701983654748
531 => 0.099723019576875
601 => 0.099610728175944
602 => 0.09994772312304
603 => 0.09837795513794
604 => 0.098746376546436
605 => 0.098230584417069
606 => 0.098989050165686
607 => 0.098173066399054
608 => 0.098858894016303
609 => 0.099154874480362
610 => 0.10024704876474
611 => 0.098011751369231
612 => 0.093453828663448
613 => 0.094411959275675
614 => 0.092994808840656
615 => 0.093125971508889
616 => 0.093390940973104
617 => 0.09253208824697
618 => 0.092695930281556
619 => 0.092690076691142
620 => 0.092639633611319
621 => 0.092416212846786
622 => 0.092092208535761
623 => 0.093382941987616
624 => 0.093602262752678
625 => 0.094089785645317
626 => 0.095540323083873
627 => 0.095395380187732
628 => 0.09563178806496
629 => 0.095115710996346
630 => 0.093149910843958
701 => 0.093256663249982
702 => 0.091925459036265
703 => 0.094055743760617
704 => 0.093551264219506
705 => 0.093226022977518
706 => 0.093137277891303
707 => 0.094591410931603
708 => 0.095026510328004
709 => 0.094755385582601
710 => 0.094199300819808
711 => 0.095267147956073
712 => 0.095552858800883
713 => 0.095616818922426
714 => 0.097508839308508
715 => 0.095722561844283
716 => 0.096152536583993
717 => 0.099507076761507
718 => 0.096464971715404
719 => 0.098076442605363
720 => 0.097997569490989
721 => 0.09882194346909
722 => 0.097929946763111
723 => 0.09794100413133
724 => 0.098672992375954
725 => 0.097645046901155
726 => 0.097390513145566
727 => 0.097038876585224
728 => 0.097806662150364
729 => 0.098266914872712
730 => 0.10197621379646
731 => 0.10437259006578
801 => 0.10426855705193
802 => 0.10521922405683
803 => 0.10479093986401
804 => 0.10340789722975
805 => 0.10576858236235
806 => 0.10502156281114
807 => 0.10508314619531
808 => 0.10508085405867
809 => 0.10557755675465
810 => 0.10522559737242
811 => 0.10453184930215
812 => 0.10499239164706
813 => 0.10636003776455
814 => 0.11060525327775
815 => 0.11298093212056
816 => 0.11046223442842
817 => 0.11219959836976
818 => 0.11115779909103
819 => 0.11096847317124
820 => 0.11205966611658
821 => 0.11315276905072
822 => 0.11308314311943
823 => 0.1122896065207
824 => 0.11184135783132
825 => 0.11523564708162
826 => 0.11773650158103
827 => 0.11756596007011
828 => 0.11831867483623
829 => 0.12052866867016
830 => 0.12073072280979
831 => 0.12070526863236
901 => 0.12020445636512
902 => 0.12238048229859
903 => 0.12419576141582
904 => 0.12008853279511
905 => 0.1216525116863
906 => 0.12235463219881
907 => 0.12338555342095
908 => 0.12512489032515
909 => 0.12701427153944
910 => 0.12728145075915
911 => 0.12709187431706
912 => 0.12584577661694
913 => 0.12791316008662
914 => 0.12912418483705
915 => 0.12984532236213
916 => 0.13167400713987
917 => 0.12235896825607
918 => 0.11576532074664
919 => 0.11473562747462
920 => 0.11682954923397
921 => 0.11738169970319
922 => 0.11715912854138
923 => 0.10973737880132
924 => 0.11469655349821
925 => 0.12003220849281
926 => 0.12023717273129
927 => 0.12290831318487
928 => 0.1237781460103
929 => 0.12592876418982
930 => 0.12579424243714
1001 => 0.12631788374004
1002 => 0.12619750767271
1003 => 0.13018107498417
1004 => 0.13457554129419
1005 => 0.13442337489942
1006 => 0.13379161837439
1007 => 0.13472988454455
1008 => 0.13926544471612
1009 => 0.13884788301639
1010 => 0.13925350863986
1011 => 0.1446011896951
1012 => 0.15155393576568
1013 => 0.14832368717161
1014 => 0.15533239714176
1015 => 0.15974400855222
1016 => 0.16737343431748
1017 => 0.16641819263595
1018 => 0.16938827209905
1019 => 0.16470811066107
1020 => 0.15396151398277
1021 => 0.15226082392211
1022 => 0.15566564849188
1023 => 0.16403607745875
1024 => 0.15540203389589
1025 => 0.15714868966365
1026 => 0.15664565268503
1027 => 0.15661884798221
1028 => 0.15764187446629
1029 => 0.15615792119366
1030 => 0.15011202860288
1031 => 0.15288282554857
1101 => 0.15181288778324
1102 => 0.15300006350302
1103 => 0.15940676123413
1104 => 0.15657420745061
1105 => 0.15359034213765
1106 => 0.15733277141282
1107 => 0.16209816991833
1108 => 0.1617999598441
1109 => 0.16122130765795
1110 => 0.16448313973403
1111 => 0.16987073069658
1112 => 0.17132697488467
1113 => 0.17240194457271
1114 => 0.17255016473093
1115 => 0.1740769244789
1116 => 0.16586715252105
1117 => 0.17889627146006
1118 => 0.18114604037868
1119 => 0.18072317706534
1120 => 0.18322370053364
1121 => 0.18248798309711
1122 => 0.18142204396211
1123 => 0.18538590553595
1124 => 0.18084165810867
1125 => 0.17439167099049
1126 => 0.17085308049118
1127 => 0.17551298191063
1128 => 0.17835862109934
1129 => 0.18023940758643
1130 => 0.18080853244102
1201 => 0.16650445374792
1202 => 0.1587953486729
1203 => 0.16373679664092
1204 => 0.16976570420241
1205 => 0.16583366163514
1206 => 0.16598779025944
1207 => 0.16038173088111
1208 => 0.17026171606339
1209 => 0.16882228532608
1210 => 0.17629005453752
1211 => 0.17450781148262
1212 => 0.18059748737741
1213 => 0.17899387162705
1214 => 0.18565039094986
1215 => 0.18830585672579
1216 => 0.19276479705383
1217 => 0.19604481171029
1218 => 0.19797089905324
1219 => 0.19785526399374
1220 => 0.20548738161943
1221 => 0.20098698850144
1222 => 0.19533343408403
1223 => 0.19523117912135
1224 => 0.19815923506562
1225 => 0.20429563705188
1226 => 0.20588671680589
1227 => 0.2067759133293
1228 => 0.20541407790055
1229 => 0.20052922371705
1230 => 0.19841996844739
1231 => 0.20021711504815
]
'min_raw' => 0.074104994014904
'max_raw' => 0.2067759133293
'avg_raw' => 0.1404404536721
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0741049'
'max' => '$0.206775'
'avg' => '$0.14044'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.029337057505326
'max_diff' => 0.10683464875508
'year' => 2036
]
11 => [
'items' => [
101 => 0.19801935918599
102 => 0.20181330238546
103 => 0.20702319674088
104 => 0.20594737415864
105 => 0.20954368775473
106 => 0.21326549398345
107 => 0.21858784404731
108 => 0.21997930344005
109 => 0.22227933290379
110 => 0.22464681874231
111 => 0.2254071913881
112 => 0.22685897869871
113 => 0.22685132706296
114 => 0.23122638584002
115 => 0.23605221115541
116 => 0.23787384849385
117 => 0.24206260310794
118 => 0.23488950762279
119 => 0.24033038294686
120 => 0.24523818868312
121 => 0.23938690035927
122 => 0.24745153813837
123 => 0.24776466974847
124 => 0.25249258529401
125 => 0.24769993712958
126 => 0.24485407794822
127 => 0.25306996677186
128 => 0.25704537657555
129 => 0.25584795078972
130 => 0.24673548143536
131 => 0.24143163341893
201 => 0.22755044012404
202 => 0.24399331320476
203 => 0.25200215703719
204 => 0.24671474046463
205 => 0.24938140583317
206 => 0.26392986741481
207 => 0.26946897964196
208 => 0.26831688302003
209 => 0.26851156838401
210 => 0.27150037279979
211 => 0.28475437754399
212 => 0.27681227067584
213 => 0.28288371379147
214 => 0.28610398532779
215 => 0.2890951529984
216 => 0.28174979056763
217 => 0.27219358197
218 => 0.26916672956478
219 => 0.24618901109008
220 => 0.2449929210563
221 => 0.2443215194751
222 => 0.24008842747728
223 => 0.23676237670847
224 => 0.23411737764877
225 => 0.22717611025254
226 => 0.22951858423573
227 => 0.21845565276123
228 => 0.22553332427239
301 => 0.20787661851527
302 => 0.22258164774165
303 => 0.21457836888936
304 => 0.21995235539118
305 => 0.21993360605853
306 => 0.21003839308472
307 => 0.20433104074926
308 => 0.20796798779089
309 => 0.21186708372074
310 => 0.21249969891722
311 => 0.21755497856709
312 => 0.21896579845449
313 => 0.21469094833077
314 => 0.20751072253423
315 => 0.20917852522325
316 => 0.20429724278099
317 => 0.19574298305675
318 => 0.20188680173375
319 => 0.20398457155471
320 => 0.20491106621496
321 => 0.19649893423954
322 => 0.19385565973659
323 => 0.19244840257044
324 => 0.20642482193123
325 => 0.2071904817338
326 => 0.20327325793048
327 => 0.22097948096788
328 => 0.2169720173734
329 => 0.22144933606086
330 => 0.2090271896103
331 => 0.20950173233335
401 => 0.20362088912994
402 => 0.20691376836577
403 => 0.20458646745633
404 => 0.20664773626438
405 => 0.20788325228899
406 => 0.2137631305039
407 => 0.22264878650588
408 => 0.21288487277526
409 => 0.208630595741
410 => 0.21126992528609
411 => 0.21829880767144
412 => 0.22894792428712
413 => 0.22264343291719
414 => 0.22544125912996
415 => 0.22605245969083
416 => 0.2214037611596
417 => 0.2291193284328
418 => 0.23325416361567
419 => 0.2374956489297
420 => 0.24117841178416
421 => 0.23580150642302
422 => 0.24155556590855
423 => 0.23691880969144
424 => 0.23275916002565
425 => 0.23276546849716
426 => 0.23015605949903
427 => 0.22510000075844
428 => 0.22416758595282
429 => 0.22901812552268
430 => 0.23290779890989
501 => 0.23322817104034
502 => 0.23538169408614
503 => 0.23665612684159
504 => 0.24914730035233
505 => 0.25417135367075
506 => 0.26031467096806
507 => 0.26270783927376
508 => 0.26991041787557
509 => 0.26409375068977
510 => 0.26283527815557
511 => 0.24536417841308
512 => 0.24822507001716
513 => 0.25280563351028
514 => 0.24543971021795
515 => 0.2501116931451
516 => 0.25103404154105
517 => 0.24518941896308
518 => 0.24831128441321
519 => 0.24002053534627
520 => 0.22282950217954
521 => 0.22913846696703
522 => 0.23378398862521
523 => 0.2271542564303
524 => 0.23903779478362
525 => 0.23209567700363
526 => 0.2298953589478
527 => 0.22131113374197
528 => 0.22536255760199
529 => 0.23084216638347
530 => 0.22745640522941
531 => 0.23448236799869
601 => 0.2444330050358
602 => 0.25152442155914
603 => 0.25206881246533
604 => 0.24750950672883
605 => 0.25481582326867
606 => 0.25486904180817
607 => 0.24662748690406
608 => 0.24157958041446
609 => 0.24043268543914
610 => 0.2432978539495
611 => 0.24677669746037
612 => 0.25226186406866
613 => 0.25557643537124
614 => 0.26421907941558
615 => 0.26655753108995
616 => 0.26912678050584
617 => 0.27256009005265
618 => 0.27668265844608
619 => 0.26766271349919
620 => 0.26802109272721
621 => 0.2596218448823
622 => 0.25064604398603
623 => 0.25745755801693
624 => 0.26636270651458
625 => 0.2643198556099
626 => 0.26408999315147
627 => 0.26447655804802
628 => 0.26293631517917
629 => 0.25596985376742
630 => 0.25247134045879
701 => 0.25698531519285
702 => 0.2593842918701
703 => 0.26310489548377
704 => 0.26264625255597
705 => 0.27223012790112
706 => 0.2759541320589
707 => 0.27500137243622
708 => 0.27517670313623
709 => 0.28191883478227
710 => 0.28941747179779
711 => 0.29644093489513
712 => 0.3035855032225
713 => 0.2949724472466
714 => 0.29059926860148
715 => 0.29511127267539
716 => 0.29271713980272
717 => 0.30647453743502
718 => 0.30742706979808
719 => 0.32118347261394
720 => 0.33423993696816
721 => 0.32603940563813
722 => 0.33377213732231
723 => 0.34213571709761
724 => 0.35827041942609
725 => 0.35283681930753
726 => 0.34867476677208
727 => 0.34474164723698
728 => 0.35292584462439
729 => 0.36345468381755
730 => 0.36572249493579
731 => 0.36939721531786
801 => 0.36553369615954
802 => 0.37018687943306
803 => 0.38661466110091
804 => 0.38217572948222
805 => 0.37587173298981
806 => 0.38883988887565
807 => 0.39353301407831
808 => 0.42647182455932
809 => 0.46805843342599
810 => 0.45084130428279
811 => 0.44015407663033
812 => 0.44266582863309
813 => 0.45785185039564
814 => 0.46272911860554
815 => 0.44947102231587
816 => 0.45415400606191
817 => 0.47995770692342
818 => 0.49380056455378
819 => 0.47500010454794
820 => 0.42313038102886
821 => 0.37530412707919
822 => 0.38798980327092
823 => 0.38655164127314
824 => 0.4142744987716
825 => 0.38206986243117
826 => 0.38261210591374
827 => 0.41090824274625
828 => 0.40335931855793
829 => 0.39113102816602
830 => 0.37539340713168
831 => 0.34630095909596
901 => 0.32053296656778
902 => 0.3710699339298
903 => 0.36889068800164
904 => 0.36573481695151
905 => 0.37275786647266
906 => 0.40685980141999
907 => 0.40607364144226
908 => 0.40107249276631
909 => 0.40486581995892
910 => 0.39046603956869
911 => 0.39417719085215
912 => 0.37529655115621
913 => 0.38383138882394
914 => 0.39110479174684
915 => 0.39256503506819
916 => 0.39585503783305
917 => 0.3677423244232
918 => 0.38036410739832
919 => 0.38777822239507
920 => 0.35428098111193
921 => 0.38711608963674
922 => 0.36725294462787
923 => 0.36051109487744
924 => 0.36958810739524
925 => 0.36605078678936
926 => 0.36300960625087
927 => 0.36131257525628
928 => 0.36797773145604
929 => 0.36766679395273
930 => 0.35676130475886
1001 => 0.34253553867006
1002 => 0.34731017271431
1003 => 0.3455755034036
1004 => 0.33928883804479
1005 => 0.34352529144176
1006 => 0.32487009470151
1007 => 0.29277479832265
1008 => 0.31397793421604
1009 => 0.31316163654872
1010 => 0.3127500222487
1011 => 0.32868359286095
1012 => 0.3271519476966
1013 => 0.32437199672539
1014 => 0.33923778206514
1015 => 0.3338115704431
1016 => 0.35053387608597
1017 => 0.36154826811328
1018 => 0.3587546620169
1019 => 0.36911375095576
1020 => 0.34742017063929
1021 => 0.35462590782504
1022 => 0.35611100027231
1023 => 0.3390543405816
1024 => 0.32740254378766
1025 => 0.32662550178172
1026 => 0.30642289185753
1027 => 0.31721496300926
1028 => 0.32671153901653
1029 => 0.32216341607312
1030 => 0.32072361622054
1031 => 0.32807924141287
1101 => 0.32865083648698
1102 => 0.31561840822227
1103 => 0.31832826274183
1104 => 0.32962880656424
1105 => 0.31804351803171
1106 => 0.29553519485915
1107 => 0.28995281951044
1108 => 0.28920802773533
1109 => 0.27406818304585
1110 => 0.2903258605244
1111 => 0.28322894862635
1112 => 0.30564800827825
1113 => 0.29284236164091
1114 => 0.2922903358087
1115 => 0.29145586779872
1116 => 0.27842437805538
1117 => 0.2812774461148
1118 => 0.29076147887882
1119 => 0.2941454886143
1120 => 0.29379250867452
1121 => 0.29071500194428
1122 => 0.292123868766
1123 => 0.28758541785151
1124 => 0.28598279637391
1125 => 0.28092448215486
1126 => 0.27349015764782
1127 => 0.27452394606789
1128 => 0.25979460392261
1129 => 0.25176927657651
1130 => 0.24954797173923
1201 => 0.24657755007609
1202 => 0.24988348877007
1203 => 0.25975287754696
1204 => 0.2478483007744
1205 => 0.22743873890681
1206 => 0.22866538835125
1207 => 0.23142130545743
1208 => 0.22628567216229
1209 => 0.22142522624947
1210 => 0.22565098963022
1211 => 0.21700318921242
1212 => 0.23246635082256
1213 => 0.23204811563602
1214 => 0.23781182604878
1215 => 0.24141599245312
1216 => 0.23310955575384
1217 => 0.23102050938697
1218 => 0.2322105251394
1219 => 0.21254221554447
1220 => 0.23620450554412
1221 => 0.23640913801063
1222 => 0.23465695059636
1223 => 0.24725638952993
1224 => 0.27384513554331
1225 => 0.26384137976324
1226 => 0.25996762316008
1227 => 0.25260360902578
1228 => 0.26241572062784
1229 => 0.26166230354959
1230 => 0.25825506579679
1231 => 0.25619435777266
]
'min_raw' => 0.19244840257044
'max_raw' => 0.49380056455378
'avg_raw' => 0.34312448356211
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.192448'
'max' => '$0.49380056'
'avg' => '$0.343124'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.11834340855554
'max_diff' => 0.28702465122448
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0060407354508222
]
1 => [
'year' => 2028
'avg' => 0.010367655671642
]
2 => [
'year' => 2029
'avg' => 0.028322566706796
]
3 => [
'year' => 2030
'avg' => 0.021850818035061
]
4 => [
'year' => 2031
'avg' => 0.021460211252498
]
5 => [
'year' => 2032
'avg' => 0.037626504102666
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0060407354508222
'min' => '$0.00604'
'max_raw' => 0.037626504102666
'max' => '$0.037626'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.037626504102666
]
1 => [
'year' => 2033
'avg' => 0.096779237639847
]
2 => [
'year' => 2034
'avg' => 0.061343331808661
]
3 => [
'year' => 2035
'avg' => 0.072354600541899
]
4 => [
'year' => 2036
'avg' => 0.1404404536721
]
5 => [
'year' => 2037
'avg' => 0.34312448356211
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.037626504102666
'min' => '$0.037626'
'max_raw' => 0.34312448356211
'max' => '$0.343124'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.34312448356211
]
]
]
]
'prediction_2025_max_price' => '$0.010328'
'last_price' => 0.01001484
'sma_50day_nextmonth' => '$0.009533'
'sma_200day_nextmonth' => '$0.009894'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.010014'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.010014'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.010014'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.010014'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.010014'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.010014'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.010014'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.010014'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.010014'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.010014'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.010014'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.010016'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.010538'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.021972'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.010014'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.012829'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.116739'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.469125'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.010014'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.010014'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.010026'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.011799'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.04529'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.1704019'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.353617'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '0.132894'
'rsi_14_action' => 'BUY'
'stoch_rsi_14' => 100
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.010014'
'vwma_10_action' => 'SELL'
'hma_9' => '0.010014'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -666.67
'cci_20_action' => 'BUY'
'adx_14' => 99.37
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.00000000016'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 0
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 33
'buy_signals' => 1
'sell_pct' => 97.06
'buy_pct' => 2.94
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767704708
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Aave para 2026
La previsión del precio de Aave para 2026 sugiere que el precio medio podría oscilar entre $0.00346 en el extremo inferior y $0.010328 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Aave podría potencialmente ganar 3.13% para 2026 si LEND alcanza el objetivo de precio previsto.
Predicción de precio de Aave 2027-2032
La predicción del precio de LEND para 2027-2032 está actualmente dentro de un rango de precios de $0.00604 en el extremo inferior y $0.037626 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Aave alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Aave | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.00333 | $0.00604 | $0.00875 |
| 2028 | $0.006011 | $0.010367 | $0.014723 |
| 2029 | $0.0132053 | $0.028322 | $0.043439 |
| 2030 | $0.01123 | $0.02185 | $0.032471 |
| 2031 | $0.013278 | $0.02146 | $0.029642 |
| 2032 | $0.020267 | $0.037626 | $0.054985 |
Predicción de precio de Aave 2032-2037
La predicción de precio de Aave para 2032-2037 se estima actualmente entre $0.037626 en el extremo inferior y $0.343124 en el extremo superior. Comparado con el precio actual, Aave podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Aave | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.020267 | $0.037626 | $0.054985 |
| 2033 | $0.047098 | $0.096779 | $0.14646 |
| 2034 | $0.037864 | $0.061343 | $0.084821 |
| 2035 | $0.044767 | $0.072354 | $0.099941 |
| 2036 | $0.0741049 | $0.14044 | $0.206775 |
| 2037 | $0.192448 | $0.343124 | $0.49380056 |
Aave Histograma de precios potenciales
Pronóstico de precio de Aave basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Aave es Bajista, con 1 indicadores técnicos mostrando señales alcistas y 33 indicando señales bajistas. La predicción de precio de LEND se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Aave
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Aave aumentar durante el próximo mes, alcanzando $0.009894 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Aave alcance $0.009533 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 0.132894, lo que sugiere que el mercado de LEND está en un estado BUY.
Promedios Móviles y Osciladores Populares de LEND para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.010014 | SELL |
| SMA 5 | $0.010014 | SELL |
| SMA 10 | $0.010014 | SELL |
| SMA 21 | $0.010014 | SELL |
| SMA 50 | $0.010014 | SELL |
| SMA 100 | $0.010014 | SELL |
| SMA 200 | $0.010014 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.010014 | SELL |
| EMA 5 | $0.010014 | SELL |
| EMA 10 | $0.010014 | SELL |
| EMA 21 | $0.010014 | SELL |
| EMA 50 | $0.010016 | SELL |
| EMA 100 | $0.010538 | SELL |
| EMA 200 | $0.021972 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.010014 | SELL |
| SMA 50 | $0.012829 | SELL |
| SMA 100 | $0.116739 | SELL |
| SMA 200 | $0.469125 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.011799 | SELL |
| EMA 50 | $0.04529 | SELL |
| EMA 100 | $0.1704019 | SELL |
| EMA 200 | $0.353617 | SELL |
Osciladores de Aave
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 0.132894 | BUY |
| Stoch RSI (14) | 100 | SELL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -666.67 | BUY |
| Índice Direccional Medio (14) | 99.37 | SELL |
| Oscilador Asombroso (5, 34) | -0.00000000016 | NEUTRAL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 0 | BUY |
| VWMA (10) | 0.010014 | SELL |
| Promedio Móvil de Hull (9) | 0.010014 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Aave basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Aave
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Aave por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.014072 | $0.019774 | $0.027786 | $0.039044 | $0.054863 | $0.077092 |
| Amazon.com acción | $0.020896 | $0.0436019 | $0.090977 | $0.18983 | $0.396093 | $0.826472 |
| Apple acción | $0.0142052 | $0.020149 | $0.028579 | $0.040538 | $0.05750079 | $0.08156 |
| Netflix acción | $0.0158018 | $0.024932 | $0.03934 | $0.062072 | $0.09794 | $0.154535 |
| Google acción | $0.012969 | $0.016795 | $0.021749 | $0.028165 | $0.036474 | $0.047233 |
| Tesla acción | $0.0227028 | $0.051465 | $0.116668 | $0.264479 | $0.599555 | $1.35 |
| Kodak acción | $0.00751 | $0.005631 | $0.004223 | $0.003166 | $0.002374 | $0.00178 |
| Nokia acción | $0.006634 | $0.004395 | $0.002911 | $0.001928 | $0.001277 | $0.000846 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Aave
Podría preguntarse cosas como: "¿Debo invertir en Aave ahora?", "¿Debería comprar LEND hoy?", "¿Será Aave una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Aave/Aave [OLD] regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Aave, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Aave a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Aave es de $0.01001 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Aave
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Aave
basado en el historial de precios del último mes
Predicción de precios de Aave basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Aave ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.010275 | $0.010542 | $0.010816 | $0.011097 |
| Si Aave ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.010535 | $0.011083 | $0.011659 | $0.012265 |
| Si Aave ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.011316 | $0.012787 | $0.014449 | $0.016326 |
| Si Aave ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.012618 | $0.015897 | $0.02003 | $0.025236 |
| Si Aave ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.015221 | $0.023134 | $0.03516 | $0.053439 |
| Si Aave ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.02303 | $0.052962 | $0.121796 | $0.28009 |
| Si Aave ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.036046 | $0.129743 | $0.466988 | $1.68 |
Cuadro de preguntas
¿Es LEND una buena inversión?
La decisión de adquirir Aave depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Aave ha experimentado una caída de 0% durante las últimas 24 horas, y Aave ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Aave dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Aave subir?
Parece que el valor medio de Aave podría potencialmente aumentar hasta $0.010328 para el final de este año. Mirando las perspectivas de Aave en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.032471. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Aave la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Aave, el precio de Aave aumentará en un 0.86% durante la próxima semana y alcanzará $0.0101 para el 13 de enero de 2026.
¿Cuál será el precio de Aave el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Aave, el precio de Aave disminuirá en un -11.62% durante el próximo mes y alcanzará $0.008851 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Aave este año en 2026?
Según nuestra predicción más reciente sobre el valor de Aave en 2026, se anticipa que LEND fluctúe dentro del rango de $0.00346 y $0.010328. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Aave no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Aave en 5 años?
El futuro de Aave parece estar en una tendencia alcista, con un precio máximo de $0.032471 proyectada después de un período de cinco años. Basado en el pronóstico de Aave para 2030, el valor de Aave podría potencialmente alcanzar su punto más alto de aproximadamente $0.032471, mientras que su punto más bajo se anticipa que esté alrededor de $0.01123.
¿Cuánto será Aave en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Aave, se espera que el valor de LEND en 2026 crezca en un 3.13% hasta $0.010328 si ocurre lo mejor. El precio estará entre $0.010328 y $0.00346 durante 2026.
¿Cuánto será Aave en 2027?
Según nuestra última simulación experimental para la predicción de precios de Aave, el valor de LEND podría disminuir en un -12.62% hasta $0.00875 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00875 y $0.00333 a lo largo del año.
¿Cuánto será Aave en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Aave sugiere que el valor de LEND en 2028 podría aumentar en un 47.02% , alcanzando $0.014723 en el mejor escenario. Se espera que el precio oscile entre $0.014723 y $0.006011 durante el año.
¿Cuánto será Aave en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Aave podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.043439 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.043439 y $0.0132053.
¿Cuánto será Aave en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Aave, se espera que el valor de LEND en 2030 aumente en un 224.23% , alcanzando $0.032471 en el mejor escenario. Se pronostica que el precio oscile entre $0.032471 y $0.01123 durante el transcurso de 2030.
¿Cuánto será Aave en 2031?
Nuestra simulación experimental indica que el precio de Aave podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.029642 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.029642 y $0.013278 durante el año.
¿Cuánto será Aave en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Aave, LEND podría experimentar un 449.04% aumento en valor, alcanzando $0.054985 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.054985 y $0.020267 a lo largo del año.
¿Cuánto será Aave en 2033?
Según nuestra predicción experimental de precios de Aave, se anticipa que el valor de LEND aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.14646. A lo largo del año, el precio de LEND podría oscilar entre $0.14646 y $0.047098.
¿Cuánto será Aave en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Aave sugieren que LEND podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.084821 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.084821 y $0.037864.
¿Cuánto será Aave en 2035?
Basado en nuestra predicción experimental para el precio de Aave, LEND podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.099941 en 2035. El rango de precios esperado para el año está entre $0.099941 y $0.044767.
¿Cuánto será Aave en 2036?
Nuestra reciente simulación de predicción de precios de Aave sugiere que el valor de LEND podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.206775 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.206775 y $0.0741049.
¿Cuánto será Aave en 2037?
Según la simulación experimental, el valor de Aave podría aumentar en un 4830.69% en 2037, con un máximo de $0.49380056 bajo condiciones favorables. Se espera que el precio caiga entre $0.49380056 y $0.192448 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de Aave?
Los traders de Aave utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Aave
Las medias móviles son herramientas populares para la predicción de precios de Aave. Una media móvil simple (SMA) calcula el precio de cierre promedio de LEND durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de LEND por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de LEND.
¿Cómo leer gráficos de Aave y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Aave en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de LEND dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Aave?
La acción del precio de Aave está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de LEND. La capitalización de mercado de Aave puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de LEND, grandes poseedores de Aave, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Aave.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


