Predicción del precio de Elympics - Pronóstico de ELP
Predicción de precio de Elympics hasta $0.002951 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000988 | $0.002951 |
| 2027 | $0.000951 | $0.00250063 |
| 2028 | $0.001717 | $0.0042076 |
| 2029 | $0.003773 | $0.012413 |
| 2030 | $0.0032093 | $0.009279 |
| 2031 | $0.003794 | $0.00847 |
| 2032 | $0.005791 | $0.015713 |
| 2033 | $0.013459 | $0.041854 |
| 2034 | $0.01082 | $0.024239 |
| 2035 | $0.012793 | $0.02856 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Elympics hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,955.17, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Elympics para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Elympics'
'name_with_ticker' => 'Elympics <small>ELP</small>'
'name_lang' => 'Elympics'
'name_lang_with_ticker' => 'Elympics <small>ELP</small>'
'name_with_lang' => 'Elympics'
'name_with_lang_with_ticker' => 'Elympics <small>ELP</small>'
'image' => '/uploads/coins/elympics.png?1753327675'
'price_for_sd' => 0.002861
'ticker' => 'ELP'
'marketcap' => '$3.07M'
'low24h' => '$0.002858'
'high24h' => '$0.002938'
'volume24h' => '$41.88K'
'current_supply' => '1.07B'
'max_supply' => '3.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002861'
'change_24h_pct' => '-2.5019%'
'ath_price' => '$0.01138'
'ath_days' => 166
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 jul. 2025'
'ath_pct' => '-74.86%'
'fdv' => '$10.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.141113'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002886'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002529'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000988'
'current_year_max_price_prediction' => '$0.002951'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0032093'
'grand_prediction_max_price' => '$0.009279'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029161824471143
107 => 0.0029270704137976
108 => 0.0029516015586884
109 => 0.0027419856114626
110 => 0.0028360970177661
111 => 0.0028913786519232
112 => 0.0026416142176386
113 => 0.0028864416121113
114 => 0.0027383366641748
115 => 0.0026880676203835
116 => 0.0027557482654056
117 => 0.0027293730522189
118 => 0.0027066971927255
119 => 0.0026940436735074
120 => 0.0027437408695714
121 => 0.002741422435974
122 => 0.0026601081774033
123 => 0.0025540370418909
124 => 0.0025896379966352
125 => 0.0025767038360158
126 => 0.0025298287693915
127 => 0.0025614169045792
128 => 0.0024223187436019
129 => 0.0021830075873338
130 => 0.0023411038674634
131 => 0.0023350173326541
201 => 0.0023319482258009
202 => 0.0024507532108581
203 => 0.0024393328528422
204 => 0.0024186047912149
205 => 0.0025294480822845
206 => 0.0024889887899915
207 => 0.0026136747954306
208 => 0.002695801062798
209 => 0.0026749711848872
210 => 0.0027522113362969
211 => 0.0025904581707287
212 => 0.0026441860839198
213 => 0.0026552593323649
214 => 0.0025280802932785
215 => 0.0024412013646515
216 => 0.0024354075306044
217 => 0.0022847714410191
218 => 0.0023652400241836
219 => 0.002436049047352
220 => 0.0024021370202565
221 => 0.0023914014855711
222 => 0.0024462470040256
223 => 0.0024505089705297
224 => 0.002353335682575
225 => 0.0023735410862186
226 => 0.0024578009782812
227 => 0.0023714179531273
228 => 0.0022035898458401
301 => 0.0021619661548278
302 => 0.0021564127871699
303 => 0.0020435260359279
304 => 0.0021647476488926
305 => 0.0021118311662963
306 => 0.0022789937007814
307 => 0.0021835113575941
308 => 0.0021793953046175
309 => 0.0021731732868496
310 => 0.0020760069967626
311 => 0.0020972802390518
312 => 0.0021679957364272
313 => 0.0021932278225579
314 => 0.0021905959092541
315 => 0.0021676491919114
316 => 0.0021781540816047
317 => 0.0021443141717564
318 => 0.0021323645952722
319 => 0.002094648444898
320 => 0.0020392161232004
321 => 0.0020469243275186
322 => 0.0019370983935797
323 => 0.0018772593958663
324 => 0.0018606967499645
325 => 0.0018385484876641
326 => 0.0018631984551257
327 => 0.0019367872705078
328 => 0.0018480235464188
329 => 0.0016958443675197
330 => 0.0017049905954722
331 => 0.0017255394541422
401 => 0.0016872467919551
402 => 0.0016510060008545
403 => 0.0016825144284081
404 => 0.0016180341041659
405 => 0.0017333315932684
406 => 0.0017302131193057
407 => 0.0017731888932942
408 => 0.0018000625267209
409 => 0.0017381275021145
410 => 0.0017225510109161
411 => 0.0017314240882148
412 => 0.0015847718854919
413 => 0.0017612042796012
414 => 0.0017627300742719
415 => 0.001749665293964
416 => 0.0018436100970881
417 => 0.0020418629337989
418 => 0.0019672722419264
419 => 0.0019383884715178
420 => 0.0018834804028571
421 => 0.001956642144229
422 => 0.0019510244639926
423 => 0.0019256191835216
424 => 0.0019102539906235
425 => 0.0019385648296608
426 => 0.0019067459643645
427 => 0.0019010304218334
428 => 0.0018664004526662
429 => 0.0018540391292367
430 => 0.001844887297488
501 => 0.001834812029973
502 => 0.0018570355595107
503 => 0.0018066741178295
504 => 0.0017459431561549
505 => 0.0017408940338098
506 => 0.0017548351045281
507 => 0.0017486672185259
508 => 0.0017408645043446
509 => 0.0017259669980297
510 => 0.0017215472261409
511 => 0.0017359093406109
512 => 0.0017196953507376
513 => 0.0017436199760174
514 => 0.0017371138017512
515 => 0.0017007708411845
516 => 0.001655474056431
517 => 0.0016550708200335
518 => 0.00164531170206
519 => 0.0016328819980275
520 => 0.0016294243387187
521 => 0.0016798608765237
522 => 0.0017842630003415
523 => 0.001763766365305
524 => 0.0017785772846985
525 => 0.001851432349209
526 => 0.0018745907833887
527 => 0.0018581534753455
528 => 0.0018356530742871
529 => 0.0018366429777422
530 => 0.0019135336594935
531 => 0.0019183292369983
601 => 0.001930446114241
602 => 0.001946019725727
603 => 0.0018608057287238
604 => 0.0018326294061465
605 => 0.0018192779013465
606 => 0.0017781604342452
607 => 0.0018225020973687
608 => 0.001796666109166
609 => 0.0018001522666575
610 => 0.0017978819020178
611 => 0.0017991216746325
612 => 0.0017332993652705
613 => 0.0017572815552832
614 => 0.0017174065129647
615 => 0.0016640183074838
616 => 0.0016638393314987
617 => 0.0016769060191552
618 => 0.0016691334420376
619 => 0.0016482176368654
620 => 0.0016511886282703
621 => 0.0016251596173393
622 => 0.0016543490214677
623 => 0.0016551860691334
624 => 0.0016439465585864
625 => 0.0016889168630078
626 => 0.0017073412334215
627 => 0.0016999431468058
628 => 0.0017068221639428
629 => 0.0017646180930275
630 => 0.0017740413512815
701 => 0.0017782265401324
702 => 0.0017726189415035
703 => 0.0017078785674289
704 => 0.0017107500783165
705 => 0.0016896808367012
706 => 0.0016718795477582
707 => 0.0016725915059605
708 => 0.0016817436824827
709 => 0.0017217117741235
710 => 0.0018058222667337
711 => 0.0018090141984443
712 => 0.0018128829127928
713 => 0.0017971469072776
714 => 0.0017924007774409
715 => 0.0017986621477755
716 => 0.0018302496264803
717 => 0.0019115011976259
718 => 0.0018827814657731
719 => 0.0018594318767275
720 => 0.0018799157613245
721 => 0.0018767624278488
722 => 0.0018501451199111
723 => 0.001849398060729
724 => 0.0017983109367285
725 => 0.001779425190183
726 => 0.001763642846796
727 => 0.0017464089398259
728 => 0.0017361921020883
729 => 0.001751889808323
730 => 0.0017554800594687
731 => 0.0017211567504374
801 => 0.0017164786102455
802 => 0.0017445077653205
803 => 0.0017321731792042
804 => 0.0017448596069078
805 => 0.0017478029669572
806 => 0.0017473290181979
807 => 0.0017344502936743
808 => 0.0017426588086366
809 => 0.0017232432236748
810 => 0.0017021316911554
811 => 0.0016886638487029
812 => 0.0016769113699131
813 => 0.0016834323282038
814 => 0.0016601863025775
815 => 0.0016527494311296
816 => 0.0017398779484648
817 => 0.0018042407210097
818 => 0.0018033048608065
819 => 0.0017976080525028
820 => 0.001789143750919
821 => 0.0018296304100986
822 => 0.0018155256675967
823 => 0.0018257880462575
824 => 0.0018284002523374
825 => 0.0018363066133949
826 => 0.0018391324578983
827 => 0.0018305907931339
828 => 0.001801923922908
829 => 0.0017304888078694
830 => 0.0016972355689835
831 => 0.0016862614462746
901 => 0.0016866603347923
902 => 0.001675657208759
903 => 0.0016788981225013
904 => 0.0016745301512202
905 => 0.0016662582703396
906 => 0.001682921562869
907 => 0.0016848418521037
908 => 0.0016809524405158
909 => 0.0016818685377435
910 => 0.0016496658709852
911 => 0.0016521141697983
912 => 0.0016384817308922
913 => 0.0016359258129387
914 => 0.0016014641944961
915 => 0.0015404104421336
916 => 0.0015742401475736
917 => 0.0015333786205785
918 => 0.0015179037411523
919 => 0.0015911594135184
920 => 0.001583806575809
921 => 0.001571221713852
922 => 0.0015526060801027
923 => 0.0015457013604638
924 => 0.0015037504697066
925 => 0.0015012717872814
926 => 0.00152206378151
927 => 0.0015124689915823
928 => 0.0014989942726928
929 => 0.0014501902067852
930 => 0.0013953182782342
1001 => 0.0013969745168445
1002 => 0.0014144282563881
1003 => 0.0014651773580684
1004 => 0.0014453488060735
1005 => 0.0014309629640948
1006 => 0.001428268928329
1007 => 0.0014619904262838
1008 => 0.001509713410762
1009 => 0.0015321039673376
1010 => 0.0015099156057825
1011 => 0.0014844268107342
1012 => 0.0014859781955851
1013 => 0.0014962988639654
1014 => 0.0014973834202858
1015 => 0.0014807928349998
1016 => 0.0014854629875779
1017 => 0.0014783685987641
1018 => 0.0014348303477089
1019 => 0.0014340428788086
1020 => 0.0014233578898506
1021 => 0.0014230343526314
1022 => 0.0014048565209183
1023 => 0.0014023133166042
1024 => 0.0013662201284224
1025 => 0.0013899767741839
1026 => 0.0013740420634869
1027 => 0.0013500246958484
1028 => 0.0013458840926148
1029 => 0.0013457596210817
1030 => 0.0013704200874613
1031 => 0.0013896886022762
1101 => 0.0013743192546018
1102 => 0.0013708199520586
1103 => 0.0014081833482978
1104 => 0.0014034285155515
1105 => 0.0013993108610585
1106 => 0.0015054403409323
1107 => 0.0014214305762256
1108 => 0.0013847975237038
1109 => 0.00133945716478
1110 => 0.0013542202142715
1111 => 0.0013573310057137
1112 => 0.001248295615716
1113 => 0.0012040599715734
1114 => 0.0011888799654888
1115 => 0.0011801436573733
1116 => 0.0011841249026852
1117 => 0.0011443076346333
1118 => 0.001171065497281
1119 => 0.001136587108818
1120 => 0.0011308066947898
1121 => 0.0011924583244144
1122 => 0.0012010367885131
1123 => 0.0011644383955482
1124 => 0.0011879404885733
1125 => 0.0011794183029389
1126 => 0.0011371781418292
1127 => 0.0011355648783724
1128 => 0.001114370250341
1129 => 0.0010812047615606
1130 => 0.0010660472432391
1201 => 0.0010581530760936
1202 => 0.0010614103633121
1203 => 0.0010597633792198
1204 => 0.0010490156939547
1205 => 0.0010603794239584
1206 => 0.0010313497896162
1207 => 0.0010197899553135
1208 => 0.0010145686463451
1209 => 0.00098880317498299
1210 => 0.0010298074978772
1211 => 0.0010378858660462
1212 => 0.0010459801510961
1213 => 0.0011164353762518
1214 => 0.0011129156323074
1215 => 0.0011447324033798
1216 => 0.0011434960621632
1217 => 0.0011344214036559
1218 => 0.0010961369121222
1219 => 0.0011113964280921
1220 => 0.001064430009792
1221 => 0.0010996204437884
1222 => 0.0010835609993001
1223 => 0.0010941907294526
1224 => 0.0010750775161944
1225 => 0.0010856555575767
1226 => 0.0010398015468268
1227 => 0.0009969837167719
1228 => 0.0010142148615164
1229 => 0.001032947086474
1230 => 0.0010735633230644
1231 => 0.0010493726276279
]
'min_raw' => 0.00098880317498299
'max_raw' => 0.0029516015586884
'avg_raw' => 0.0019702023668357
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000988'
'max' => '$0.002951'
'avg' => '$0.00197'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.001873146825017
'max_diff' => 8.9651558688425E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010580725164583
102 => 0.0010289293452201
103 => 0.00096879865862037
104 => 0.00096913899177635
105 => 0.00095988919566119
106 => 0.00095189602132535
107 => 0.0010521512199984
108 => 0.0010396829012433
109 => 0.0010198162671202
110 => 0.0010464085463626
111 => 0.0010534399670705
112 => 0.0010536401417331
113 => 0.0010730411822223
114 => 0.0010833955210092
115 => 0.0010852205180987
116 => 0.0011157484744957
117 => 0.0011259810428065
118 => 0.0011681275435114
119 => 0.0010825170277049
120 => 0.0010807539354694
121 => 0.0010467827542655
122 => 0.0010252376940829
123 => 0.0010482579629688
124 => 0.0010686507786217
125 => 0.0010474164158926
126 => 0.0010501891753832
127 => 0.0010216837783305
128 => 0.0010318731164732
129 => 0.0010406495471338
130 => 0.0010358037179778
131 => 0.0010285492771904
201 => 0.0010669788002948
202 => 0.0010648104559947
203 => 0.0011005969114004
204 => 0.0011284950125031
205 => 0.0011784933970612
206 => 0.0011263174763001
207 => 0.001124415978367
208 => 0.0011430034256723
209 => 0.0011259781971652
210 => 0.0011367375538908
211 => 0.0011767598983537
212 => 0.0011776055074258
213 => 0.0011634404659621
214 => 0.0011625785219017
215 => 0.0011652990730634
216 => 0.0011812334261922
217 => 0.0011756654735958
218 => 0.0011821088493037
219 => 0.0011901663892909
220 => 0.0012234957910041
221 => 0.001231531396921
222 => 0.0012120090405269
223 => 0.0012137716907268
224 => 0.0012064697935347
225 => 0.0011994162523397
226 => 0.0012152715828591
227 => 0.0012442475110207
228 => 0.0012440672532754
301 => 0.0012507891053974
302 => 0.0012549767635825
303 => 0.0012370002690988
304 => 0.0012252982322039
305 => 0.0012297855377693
306 => 0.0012369608370893
307 => 0.0012274586849061
308 => 0.0011688069998067
309 => 0.0011865981743817
310 => 0.0011836368529884
311 => 0.0011794195712154
312 => 0.0011973087348257
313 => 0.0011955832813546
314 => 0.0011438992509985
315 => 0.0011472078949335
316 => 0.0011441004605948
317 => 0.0011541412166644
318 => 0.0011254359633865
319 => 0.0011342655059619
320 => 0.0011398033122934
321 => 0.0011430651227661
322 => 0.0011548490188379
323 => 0.0011534663146431
324 => 0.0011547630680037
325 => 0.0011722354750449
326 => 0.0012606049140531
327 => 0.0012654146676421
328 => 0.001241729681885
329 => 0.0012511913665293
330 => 0.0012330270010552
331 => 0.0012452208612886
401 => 0.0012535635907699
402 => 0.0012158644004588
403 => 0.0012136320990742
404 => 0.0011953927628024
405 => 0.0012051935489861
406 => 0.0011895997934664
407 => 0.0011934259556245
408 => 0.0011827276726716
409 => 0.00120198245198
410 => 0.0012235122871369
411 => 0.0012289515737365
412 => 0.0012146431524531
413 => 0.001204282912473
414 => 0.0011860937439431
415 => 0.0012163427365803
416 => 0.0012251884638488
417 => 0.0012162962737407
418 => 0.0012142357589945
419 => 0.0012103310872737
420 => 0.0012150641535587
421 => 0.0012251402881184
422 => 0.001220388569137
423 => 0.0012235271632387
424 => 0.0012115660790272
425 => 0.0012370062200664
426 => 0.0012774112865402
427 => 0.0012775411954358
428 => 0.0012727894508408
429 => 0.0012708451393304
430 => 0.0012757207176447
501 => 0.0012783655188736
502 => 0.0012941322451141
503 => 0.0013110505705442
504 => 0.0013900010132829
505 => 0.0013678320448872
506 => 0.0014378815744678
507 => 0.0014932816575731
508 => 0.0015098937201444
509 => 0.0014946114042368
510 => 0.0014423314270513
511 => 0.0014397663219558
512 => 0.0015178946799079
513 => 0.0014958198402809
514 => 0.0014931941083489
515 => 0.0014652607568358
516 => 0.0014817728271929
517 => 0.0014781613951883
518 => 0.0014724605730918
519 => 0.0015039644530924
520 => 0.0015629369040828
521 => 0.0015537454945558
522 => 0.0015468845337211
523 => 0.0015168218005392
524 => 0.0015349262806693
525 => 0.0015284796220635
526 => 0.0015561785585848
527 => 0.0015397703221961
528 => 0.0014956526016596
529 => 0.0015026784940689
530 => 0.0015016165445654
531 => 0.0015234713900977
601 => 0.0015169111079395
602 => 0.0015003355441852
603 => 0.0015627353426565
604 => 0.0015586834468297
605 => 0.0015644281087197
606 => 0.0015669570865433
607 => 0.001604938744265
608 => 0.001620498614156
609 => 0.0016240309770352
610 => 0.0016388116499882
611 => 0.0016236632204272
612 => 0.0016842677393183
613 => 0.0017245662080091
614 => 0.0017713749531337
615 => 0.0018397751107654
616 => 0.0018654942027717
617 => 0.0018608482790035
618 => 0.0019127084978796
619 => 0.0020059001584121
620 => 0.0018796849780486
621 => 0.0020125898694457
622 => 0.0019705137152902
623 => 0.001870751910705
624 => 0.0018643284266041
625 => 0.0019318882789276
626 => 0.0020817295289862
627 => 0.0020441959953319
628 => 0.0020817909204012
629 => 0.0020379344433358
630 => 0.0020357565995981
701 => 0.0020796609091996
702 => 0.0021822457216829
703 => 0.0021335115226063
704 => 0.0020636390981141
705 => 0.0021152318090238
706 => 0.0020705374281538
707 => 0.0019698284788843
708 => 0.0020441672941461
709 => 0.0019944590454281
710 => 0.0020089665550398
711 => 0.0021134459003011
712 => 0.0021008746690612
713 => 0.0021171430063503
714 => 0.0020884298168515
715 => 0.0020616071702053
716 => 0.0020115407083643
717 => 0.0019967184972599
718 => 0.0020008148231619
719 => 0.0019967164673242
720 => 0.0019687047420587
721 => 0.0019626556126546
722 => 0.0019525734652961
723 => 0.0019556983443442
724 => 0.0019367409576739
725 => 0.0019725174631167
726 => 0.0019791578977884
727 => 0.0020051930549368
728 => 0.0020078961113202
729 => 0.0020804036533911
730 => 0.0020404677176582
731 => 0.0020672601912507
801 => 0.002064863620232
802 => 0.0018729140515146
803 => 0.0018993630084985
804 => 0.0019405092854255
805 => 0.0019219729434423
806 => 0.0018957668927142
807 => 0.0018746041016717
808 => 0.0018425403092358
809 => 0.0018876694813587
810 => 0.001947009543748
811 => 0.0020094010732284
812 => 0.0020843604078443
813 => 0.0020676303569809
814 => 0.0020079997606084
815 => 0.0020106747456015
816 => 0.002027210450261
817 => 0.0020057952102998
818 => 0.0019994794379601
819 => 0.0020263427601268
820 => 0.0020265277530627
821 => 0.0020018869313692
822 => 0.0019745031672795
823 => 0.0019743884283081
824 => 0.0019695157519841
825 => 0.0020388012816291
826 => 0.0020769013173767
827 => 0.0020812694250739
828 => 0.0020766073089255
829 => 0.0020784015723982
830 => 0.0020562320010737
831 => 0.0021069050669394
901 => 0.0021534076832246
902 => 0.0021409439886767
903 => 0.0021222591387308
904 => 0.0021073757557645
905 => 0.0021374379366506
906 => 0.002136099315058
907 => 0.0021530015234394
908 => 0.0021522347416353
909 => 0.0021465511646809
910 => 0.0021409441916551
911 => 0.0021631752059186
912 => 0.0021567730308299
913 => 0.0021503609113949
914 => 0.0021375004242218
915 => 0.0021392483780187
916 => 0.0021205667542755
917 => 0.002111923780319
918 => 0.0019819541894072
919 => 0.0019472220678367
920 => 0.0019581495003203
921 => 0.0019617470948245
922 => 0.0019466316310066
923 => 0.0019683033232775
924 => 0.001964925812993
925 => 0.0019780657297322
926 => 0.0019698564802225
927 => 0.0019701933906858
928 => 0.0019943350430976
929 => 0.0020013434674987
930 => 0.0019977789262834
1001 => 0.0020002754087652
1002 => 0.0020578057938606
1003 => 0.0020496268128182
1004 => 0.0020452818921526
1005 => 0.0020464854648707
1006 => 0.0020611857117279
1007 => 0.0020653009782442
1008 => 0.00204786430484
1009 => 0.0020560875408176
1010 => 0.0020911010359264
1011 => 0.0021033537776223
1012 => 0.0021424586474658
1013 => 0.0021258462037227
1014 => 0.002156339063183
1015 => 0.0022500637173823
1016 => 0.0023249374564094
1017 => 0.0022560804717119
1018 => 0.0023935765583221
1019 => 0.0025006369843903
1020 => 0.0024965278269193
1021 => 0.0024778593652821
1022 => 0.0023559739165521
1023 => 0.0022438131094211
1024 => 0.0023376403871856
1025 => 0.0023378795722124
1026 => 0.0023298197258411
1027 => 0.0022797607122429
1028 => 0.0023280777806771
1029 => 0.0023319130141076
1030 => 0.0023297663032574
1031 => 0.0022913861749012
1101 => 0.0022327868127348
1102 => 0.002244236987835
1103 => 0.0022629926082265
1104 => 0.0022274843059931
1105 => 0.0022161372519056
1106 => 0.0022372335843196
1107 => 0.0023052103629529
1108 => 0.002292359746715
1109 => 0.0022920241651916
1110 => 0.0023470045509669
1111 => 0.0023076504602616
1112 => 0.0022443814112116
1113 => 0.0022284051419102
1114 => 0.0021717001487949
1115 => 0.0022108664895159
1116 => 0.002212276016392
1117 => 0.0021908250118494
1118 => 0.002246122042007
1119 => 0.0022456124701392
1120 => 0.0022981087703971
1121 => 0.0023984619797802
1122 => 0.0023687825976841
1123 => 0.0023342687054139
1124 => 0.0023380213224701
1125 => 0.0023791782693285
1126 => 0.0023542938397362
1127 => 0.002363242454118
1128 => 0.0023791647245288
1129 => 0.0023887710255954
1130 => 0.0023366391235792
1201 => 0.0023244846834621
1202 => 0.0022996209646113
1203 => 0.0022931344844664
1204 => 0.0023133854646719
1205 => 0.0023080500468654
1206 => 0.002212157551116
1207 => 0.0022021362517694
1208 => 0.0022024435907132
1209 => 0.0021772445570193
1210 => 0.0021388099821751
1211 => 0.0022398137500565
1212 => 0.0022317017339488
1213 => 0.0022227466959861
1214 => 0.0022238436370398
1215 => 0.0022676859493418
1216 => 0.0022422551941168
1217 => 0.0023098670249013
1218 => 0.0022959680650897
1219 => 0.0022817126494045
1220 => 0.0022797421167262
1221 => 0.0022742549979023
1222 => 0.0022554376257882
1223 => 0.0022327145182116
1224 => 0.0022177107543477
1225 => 0.0020457209431388
1226 => 0.0020776412516805
1227 => 0.00211436265703
1228 => 0.0021270387390048
1229 => 0.0021053554236287
1230 => 0.0022562938152406
1231 => 0.0022838717138666
]
'min_raw' => 0.00095189602132535
'max_raw' => 0.0025006369843903
'avg_raw' => 0.0017262665028578
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000951'
'max' => '$0.00250063'
'avg' => '$0.001726'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.6907153657639E-5
'max_diff' => -0.00045096457429813
'year' => 2027
]
2 => [
'items' => [
101 => 0.0022003364600666
102 => 0.0021847104248025
103 => 0.002257318255511
104 => 0.0022135268576475
105 => 0.0022332461214241
106 => 0.0021906238589997
107 => 0.0022772290056627
108 => 0.0022765692195485
109 => 0.0022428778614306
110 => 0.0022713535666034
111 => 0.0022664052120769
112 => 0.00222836775174
113 => 0.0022784348610016
114 => 0.0022784596936632
115 => 0.002246032493988
116 => 0.0022081646239942
117 => 0.0022013947432385
118 => 0.0021962945474946
119 => 0.0022319917859187
120 => 0.0022639978182675
121 => 0.0023235531095002
122 => 0.002338526724715
123 => 0.002396969741748
124 => 0.0023621697706437
125 => 0.0023775961470992
126 => 0.0023943436609358
127 => 0.0024023730349385
128 => 0.0023892896008811
129 => 0.002480075662439
130 => 0.0024877407876475
131 => 0.0024903108378268
201 => 0.0024596982886715
202 => 0.0024868893972778
203 => 0.0024741675780358
204 => 0.0025072662174803
205 => 0.0025124565067698
206 => 0.0025080605163915
207 => 0.0025097079961351
208 => 0.0024322381083542
209 => 0.0024282208859865
210 => 0.0023734457739544
211 => 0.0023957670369847
212 => 0.0023540385056356
213 => 0.0023672710527779
214 => 0.0023731038334739
215 => 0.0023700571198457
216 => 0.0023970290477059
217 => 0.0023740973990239
218 => 0.0023135770078401
219 => 0.0022530401279161
220 => 0.002252280136701
221 => 0.0022363418447817
222 => 0.0022248213789678
223 => 0.0022270406293941
224 => 0.0022348615573575
225 => 0.0022243668124169
226 => 0.0022266063983471
227 => 0.0022637984470704
228 => 0.0022712570472004
229 => 0.0022459098096957
301 => 0.0021441369935256
302 => 0.0021191616891596
303 => 0.0021371134426561
304 => 0.0021285336607258
305 => 0.0017178927894466
306 => 0.0018143667710315
307 => 0.0017570452071206
308 => 0.0017834616210091
309 => 0.0017249511476031
310 => 0.0017528754123091
311 => 0.0017477188202488
312 => 0.0019028461277646
313 => 0.0019004240282284
314 => 0.0019015833591017
315 => 0.0018462454758969
316 => 0.0019344002264295
317 => 0.0019778284264841
318 => 0.0019697910224581
319 => 0.0019718138638924
320 => 0.0019370547460573
321 => 0.0019019199033421
322 => 0.0018629499555573
323 => 0.0019353513017103
324 => 0.0019273015079502
325 => 0.0019457648386113
326 => 0.0019927222869466
327 => 0.001999636949588
328 => 0.0020089303262996
329 => 0.0020055993122961
330 => 0.0020849575798784
331 => 0.0020753467700514
401 => 0.0020985060565156
402 => 0.0020508656471595
403 => 0.0019969560019039
404 => 0.0020072024630279
405 => 0.0020062156464248
406 => 0.0019936523384522
407 => 0.0019823107457581
408 => 0.0019634301893962
409 => 0.0020231710635217
410 => 0.0020207456931319
411 => 0.0020600096205589
412 => 0.0020530693399967
413 => 0.0020067204478278
414 => 0.002008375807579
415 => 0.0020195088974444
416 => 0.0020580406485841
417 => 0.002069479495764
418 => 0.002064180565991
419 => 0.0020767227397206
420 => 0.0020866355624508
421 => 0.002077967637635
422 => 0.0022006871739912
423 => 0.0021497254665199
424 => 0.0021745638481521
425 => 0.0021804876558152
426 => 0.0021653139470505
427 => 0.0021686045811518
428 => 0.0021735889951711
429 => 0.0022038533810481
430 => 0.0022832758866598
501 => 0.0023184515737479
502 => 0.0024242793638905
503 => 0.0023155307226045
504 => 0.0023090780282772
505 => 0.0023281408089749
506 => 0.0023902729247979
507 => 0.0024406251688995
508 => 0.0024573299131586
509 => 0.0024595377208777
510 => 0.0024908769316183
511 => 0.0025088399827731
512 => 0.0024870715271313
513 => 0.0024686250402272
514 => 0.0024025520137989
515 => 0.0024102001465189
516 => 0.002462888196671
517 => 0.0025373131708217
518 => 0.0026011775412417
519 => 0.0025788144646186
520 => 0.0027494289533809
521 => 0.0027663446830439
522 => 0.0027640074761555
523 => 0.0028025440257261
524 => 0.0027260568226603
525 => 0.0026933570614799
526 => 0.0024726133800724
527 => 0.0025346333505301
528 => 0.0026247830198957
529 => 0.0026128513731112
530 => 0.0025473822735104
531 => 0.0026011278770589
601 => 0.0025833578997453
602 => 0.0025693419813611
603 => 0.0026335516205987
604 => 0.0025629504846704
605 => 0.0026240787195577
606 => 0.0025456811260241
607 => 0.0025789166172689
608 => 0.0025600505450185
609 => 0.0025722592059033
610 => 0.0025008876238344
611 => 0.0025393979970716
612 => 0.0024992854656974
613 => 0.0024992664471347
614 => 0.0024983809607814
615 => 0.002545573176057
616 => 0.0025471121125028
617 => 0.0025122369941107
618 => 0.0025072109446987
619 => 0.0025257948836341
620 => 0.0025040379582821
621 => 0.0025142178867178
622 => 0.0025043462979439
623 => 0.0025021239953834
624 => 0.0024844163104879
625 => 0.002476787352952
626 => 0.0024797788637758
627 => 0.0024695672951045
628 => 0.0024634144556114
629 => 0.0024971570061415
630 => 0.0024791297225639
701 => 0.0024943940663856
702 => 0.002476998420087
703 => 0.0024166975310936
704 => 0.0023820178521632
705 => 0.0022681150627501
706 => 0.0023004177525317
707 => 0.0023218344692764
708 => 0.0023147562445201
709 => 0.0023299630102061
710 => 0.002330896582115
711 => 0.0023259527075758
712 => 0.002320228334209
713 => 0.0023174420258318
714 => 0.0023382088856962
715 => 0.0023502647468279
716 => 0.0023239839233205
717 => 0.0023178266940805
718 => 0.0023443980576505
719 => 0.0023606065740784
720 => 0.0024802811526037
721 => 0.0024714152732827
722 => 0.0024936668905373
723 => 0.0024911616999134
724 => 0.0025144849397568
725 => 0.0025526085797643
726 => 0.0024750925600917
727 => 0.0024885466608046
728 => 0.0024852480260103
729 => 0.0025212616557453
730 => 0.0025213740863664
731 => 0.002499782116326
801 => 0.0025114874735746
802 => 0.0025049538642781
803 => 0.0025167609793471
804 => 0.0024712968640591
805 => 0.0025266672489319
806 => 0.002558058689166
807 => 0.0025584945593441
808 => 0.0025733738528772
809 => 0.0025884920768574
810 => 0.0026175101912675
811 => 0.0025876827773961
812 => 0.0025340261634816
813 => 0.0025378999976964
814 => 0.0025064411445905
815 => 0.0025069699735947
816 => 0.0025041470429251
817 => 0.0025126188703649
818 => 0.0024731559537699
819 => 0.0024824178214174
820 => 0.0024694511524735
821 => 0.0024885184737986
822 => 0.0024680051879939
823 => 0.0024852464353088
824 => 0.0024926871860934
825 => 0.0025201437166768
826 => 0.0024639498361026
827 => 0.0023493667096204
828 => 0.002373453471993
829 => 0.0023378272584695
830 => 0.0023411246001697
831 => 0.002347785755172
901 => 0.0023261947724151
902 => 0.002330313651515
903 => 0.0023301664961695
904 => 0.0023288983909012
905 => 0.0023232817424028
906 => 0.0023151364908601
907 => 0.0023475846660301
908 => 0.0023530982432857
909 => 0.0023653542425371
910 => 0.0024018197829857
911 => 0.0023981760155782
912 => 0.0024041191513983
913 => 0.0023911453192724
914 => 0.0023417264190321
915 => 0.0023444101030767
916 => 0.0023109445200381
917 => 0.0023644984523379
918 => 0.002351816174292
919 => 0.0023436398271326
920 => 0.0023414088350569
921 => 0.002377964766527
922 => 0.0023889028741669
923 => 0.0023820869795148
924 => 0.002368107380732
925 => 0.0023949523430923
926 => 0.0024021349225219
927 => 0.0024037428371729
928 => 0.0024513069634645
929 => 0.0024064011434611
930 => 0.0024172104206614
1001 => 0.0025015413157338
1002 => 0.0024250648307711
1003 => 0.002465576130485
1004 => 0.0024635933131746
1005 => 0.0024843175232806
1006 => 0.0024618933230516
1007 => 0.0024621712978886
1008 => 0.0024805729924831
1009 => 0.0024547311311882
1010 => 0.0024483323229167
1011 => 0.0024394924151187
1012 => 0.002458794030394
1013 => 0.0024703644758146
1014 => 0.0025636137683488
1015 => 0.0026238570640102
1016 => 0.0026212417436652
1017 => 0.0026451408759444
1018 => 0.0026343740979617
1019 => 0.0025996053317228
1020 => 0.0026589513760932
1021 => 0.0026401718045104
1022 => 0.0026417199695746
1023 => 0.0026416623467935
1024 => 0.0026541491201574
1025 => 0.0026453010968331
1026 => 0.00262786073463
1027 => 0.0026394384609681
1028 => 0.0026738201690792
1029 => 0.0027805420460158
1030 => 0.0028402650222264
1031 => 0.0027769466478576
1101 => 0.0028206228146304
1102 => 0.0027944326779762
1103 => 0.002789673151057
1104 => 0.0028171050114337
1105 => 0.0028445848876506
1106 => 0.0028428345383343
1107 => 0.0028228855593081
1108 => 0.0028116168872428
1109 => 0.0028969470474034
1110 => 0.0029598168558483
1111 => 0.0029555295563969
1112 => 0.0029744523018709
1113 => 0.0030300100678411
1114 => 0.0030350895736888
1115 => 0.0030344496727031
1116 => 0.0030218595874679
1117 => 0.0030765634231531
1118 => 0.0031221983253041
1119 => 0.0030189453464985
1120 => 0.0030582627291469
1121 => 0.0030759135689448
1122 => 0.0031018302385362
1123 => 0.0031455560042751
1124 => 0.003193053783554
1125 => 0.0031997704903307
1126 => 0.0031950046654487
1127 => 0.0031636786032053
1128 => 0.0032156512400587
1129 => 0.0032460955918192
1130 => 0.0032642245065859
1201 => 0.0033101964180705
1202 => 0.0030760225745223
1203 => 0.0029102626888636
1204 => 0.0028843768891163
1205 => 0.0029370166808113
1206 => 0.0029508973740869
1207 => 0.0029453020840324
1208 => 0.0027587242624941
1209 => 0.0028833945954991
1210 => 0.003017529391233
1211 => 0.0030226820550183
1212 => 0.003089832738389
1213 => 0.0031116997534941
1214 => 0.0031657648552488
1215 => 0.0031623830684137
1216 => 0.0031755470603273
1217 => 0.0031725208865549
1218 => 0.0032726651028052
1219 => 0.0033831390448893
1220 => 0.0033793136835605
1221 => 0.0033634317473176
1222 => 0.0033870191309109
1223 => 0.0035010400782488
1224 => 0.0034905428565663
1225 => 0.0035007400132796
1226 => 0.0036351771361299
1227 => 0.0038099645192931
1228 => 0.0037287582314475
1229 => 0.0039049525095927
1230 => 0.0040158574680277
1231 => 0.0042076561258544
]
'min_raw' => 0.0017178927894466
'max_raw' => 0.0042076561258544
'avg_raw' => 0.0029627744576505
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001717'
'max' => '$0.0042076'
'avg' => '$0.002962'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00076599676812126
'max_diff' => 0.0017070191414641
'year' => 2028
]
3 => [
'items' => [
101 => 0.0041836419892662
102 => 0.0042583077992746
103 => 0.0041406516728718
104 => 0.0038704894244247
105 => 0.0038277352144684
106 => 0.0039133302255099
107 => 0.0041237572079165
108 => 0.0039067031309879
109 => 0.0039506128880587
110 => 0.0039379668750683
111 => 0.0039372930227782
112 => 0.0039630112239383
113 => 0.0039257056317844
114 => 0.0037737159382014
115 => 0.0038433719190896
116 => 0.0038164743997137
117 => 0.0038463192028041
118 => 0.0040073792961502
119 => 0.0039361707896888
120 => 0.0038611584126411
121 => 0.003955240580038
122 => 0.0040750395092745
123 => 0.0040675427075822
124 => 0.0040529957788792
125 => 0.0041349960543255
126 => 0.0042704364855362
127 => 0.0043070454898487
128 => 0.0043340695083941
129 => 0.004337795663977
130 => 0.0043761773822733
131 => 0.0041697892095554
201 => 0.004497332540083
202 => 0.0045538902250632
203 => 0.0045432597243628
204 => 0.0046061212109071
205 => 0.0045876257669238
206 => 0.0045608287704382
207 => 0.0046604775976325
208 => 0.0045462382584999
209 => 0.004384089898934
210 => 0.0042951321019452
211 => 0.0044122789050408
212 => 0.0044838163698313
213 => 0.0045310980834205
214 => 0.0045454055013842
215 => 0.0041858105358917
216 => 0.0039920087935423
217 => 0.0041162334884468
218 => 0.0042677961897606
219 => 0.004168947271097
220 => 0.0041728219615628
221 => 0.0040318893805873
222 => 0.0042802655959949
223 => 0.0042440792705828
224 => 0.0044318139908333
225 => 0.0043870095931802
226 => 0.0045400999697247
227 => 0.0044997861429633
228 => 0.0046671265839341
301 => 0.0047338832163989
302 => 0.0048459779921475
303 => 0.004928435365496
304 => 0.0049768559122844
305 => 0.0049739489242761
306 => 0.0051658152536726
307 => 0.0050526783825265
308 => 0.0049105518080538
309 => 0.0049079811867252
310 => 0.0049815905535937
311 => 0.0051358555928066
312 => 0.0051758542730095
313 => 0.0051982080785226
314 => 0.0051639724472377
315 => 0.0050411704822012
316 => 0.0049881452163185
317 => 0.0050333242791404
318 => 0.0049780741675904
319 => 0.0050734513605691
320 => 0.0052044246179979
321 => 0.0051773791582633
322 => 0.0052677880752743
323 => 0.0053613517930853
324 => 0.0054951521117646
325 => 0.0055301324696788
326 => 0.0055879536711271
327 => 0.0056474706806926
328 => 0.0056665859401367
329 => 0.0057030829015321
330 => 0.0057028905445301
331 => 0.005812876594224
401 => 0.0059341946130207
402 => 0.0059799893565979
403 => 0.0060852918443167
404 => 0.0059049650243375
405 => 0.0060417449887369
406 => 0.0061651239404498
407 => 0.0060180264679006
408 => 0.0062207660644942
409 => 0.0062286379836122
410 => 0.00634749461632
411 => 0.006227010648895
412 => 0.0061554676536364
413 => 0.0063620096002668
414 => 0.0064619487422308
415 => 0.0064318462593395
416 => 0.0062027648781939
417 => 0.0060694296886045
418 => 0.0057204657790118
419 => 0.0061338286040434
420 => 0.0063351655781574
421 => 0.0062022434640704
422 => 0.0062692816467983
423 => 0.0066350202345577
424 => 0.0067742698089566
425 => 0.0067453068709096
426 => 0.006750201130669
427 => 0.0068253376734561
428 => 0.0071585344826239
429 => 0.006958875231129
430 => 0.0071115072478074
501 => 0.007192462719098
502 => 0.0072676586725301
503 => 0.007083001176826
504 => 0.0068427644880723
505 => 0.0067666714442938
506 => 0.006189026979433
507 => 0.0061589580764542
508 => 0.0061420794900313
509 => 0.0060356623901577
510 => 0.005952047699754
511 => 0.0058855541935306
512 => 0.0057110553765585
513 => 0.0057699436048201
514 => 0.0054918289113001
515 => 0.0056697568364346
516 => 0.0052258790702626
517 => 0.0055955536638297
518 => 0.0053943565895924
519 => 0.0055294550137648
520 => 0.0055289836680899
521 => 0.0052802246361941
522 => 0.0051367456180652
523 => 0.0052281760327039
524 => 0.0053261966949519
525 => 0.0053421002176205
526 => 0.0054691865648261
527 => 0.0055046536326193
528 => 0.0053971867614069
529 => 0.0052166806901713
530 => 0.0052586081336142
531 => 0.005135895959762
601 => 0.0049208475951418
602 => 0.0050752990849963
603 => 0.0051280356143852
604 => 0.0051513270700972
605 => 0.0049398517019647
606 => 0.0048734015499439
607 => 0.0048380240465788
608 => 0.0051893818757393
609 => 0.0052086300507662
610 => 0.0051101536659111
611 => 0.0055552762633703
612 => 0.0054545313105572
613 => 0.0055670881059621
614 => 0.0052548036575844
615 => 0.0052667333440592
616 => 0.0051188928816169
617 => 0.0052016736618813
618 => 0.0051431668745395
619 => 0.0051949857928916
620 => 0.0052260458388944
621 => 0.0053738620421716
622 => 0.0055972414874307
623 => 0.0053517832306379
624 => 0.0052448335531263
625 => 0.0053111845315467
626 => 0.0054878859307099
627 => 0.0057555975956202
628 => 0.0055971069017939
629 => 0.0056674423803675
630 => 0.0056828075534282
701 => 0.0055659423834451
702 => 0.0057599065811322
703 => 0.0058638535704351
704 => 0.0059704816726611
705 => 0.0060630638661724
706 => 0.0059278920638298
707 => 0.0060725452684532
708 => 0.0059559803202548
709 => 0.0058514095114579
710 => 0.0058515681022099
711 => 0.0057859693063159
712 => 0.0056588633732911
713 => 0.0056354230890864
714 => 0.0057573624077006
715 => 0.0058551461935328
716 => 0.0058632001344867
717 => 0.0059173382626356
718 => 0.0059493766492071
719 => 0.0062633963916824
720 => 0.0063896977298135
721 => 0.0065441366153182
722 => 0.006604299264921
723 => 0.0067853672707217
724 => 0.0066391401504132
725 => 0.0066075029931228
726 => 0.0061682912379436
727 => 0.0062402121382491
728 => 0.0063553644389729
729 => 0.0061701900569693
730 => 0.0062876405810832
731 => 0.0063108278024855
801 => 0.0061638979023267
802 => 0.0062423795104678
803 => 0.0060339556274203
804 => 0.0056017845585244
805 => 0.0057603877110746
806 => 0.0058771730165954
807 => 0.0057105059860928
808 => 0.0060092501873638
809 => 0.0058347299923134
810 => 0.0057794154689291
811 => 0.0055636137921557
812 => 0.0056654638766245
813 => 0.0058032175742212
814 => 0.0057181018046927
815 => 0.0058947298066615
816 => 0.0061448821624169
817 => 0.0063231556279585
818 => 0.0063368412510124
819 => 0.0062222233560637
820 => 0.0064058992642006
821 => 0.0064072371426678
822 => 0.0062000499679513
823 => 0.0060731489770604
824 => 0.006044316804928
825 => 0.006116345223795
826 => 0.0062038010214792
827 => 0.0063416944391224
828 => 0.0064250205434277
829 => 0.006642290830705
830 => 0.0067010779408149
831 => 0.0067656671516876
901 => 0.0068519782559884
902 => 0.0069556168664145
903 => 0.0067288614869516
904 => 0.0067378709009026
905 => 0.0065267194311887
906 => 0.0063010738036156
907 => 0.006472310707819
908 => 0.0066961801813742
909 => 0.0066448242767869
910 => 0.0066390456884149
911 => 0.0066487636712098
912 => 0.006610042996278
913 => 0.0064349108186166
914 => 0.0063469605353804
915 => 0.0064604388392653
916 => 0.0065207475074419
917 => 0.0066142809923151
918 => 0.0066027510160522
919 => 0.0068436832283228
920 => 0.0069373022005993
921 => 0.0069133504613093
922 => 0.0069177581577694
923 => 0.007087250835251
924 => 0.0072757615514382
925 => 0.0074523267133275
926 => 0.0076319363796514
927 => 0.0074154099166133
928 => 0.0073054711321783
929 => 0.0074188998949856
930 => 0.0073587129968146
1001 => 0.0077045647662988
1002 => 0.007728510792434
1003 => 0.0080743375528988
1004 => 0.0084025683288644
1005 => 0.0081964124593455
1006 => 0.0083908081588376
1007 => 0.0086010629571521
1008 => 0.0090066785757124
1009 => 0.0088700815051108
1010 => 0.008765450289779
1011 => 0.0086665742968648
1012 => 0.0088723195419974
1013 => 0.0091370075130001
1014 => 0.0091940187668042
1015 => 0.009286398777942
1016 => 0.0091892724919209
1017 => 0.0093062504053238
1018 => 0.0097192338423359
1019 => 0.0096076420721496
1020 => 0.0094491638192128
1021 => 0.0097751745793829
1022 => 0.0098931566061538
1023 => 0.010721216257699
1024 => 0.011766675773212
1025 => 0.011333848668932
1026 => 0.011065178918062
1027 => 0.011128322682448
1028 => 0.011510089106476
1029 => 0.011632700365213
1030 => 0.01129940069733
1031 => 0.011417127774669
1101 => 0.012065815545475
1102 => 0.012413815722118
1103 => 0.011941184739578
1104 => 0.010637214603568
1105 => 0.009434894586484
1106 => 0.0097538039961907
1107 => 0.0097176495660411
1108 => 0.010414583650325
1109 => 0.0096049806453365
1110 => 0.0096186122835979
1111 => 0.010329958226679
1112 => 0.010140183324622
1113 => 0.0098327722878222
1114 => 0.0094371390272541
1115 => 0.0087057743534466
1116 => 0.0080579842662427
1117 => 0.0093284498043971
1118 => 0.0092736650202002
1119 => 0.0091943285340329
1120 => 0.0093708832988937
1121 => 0.010228183121113
1122 => 0.010208419585402
1123 => 0.010082694054654
1124 => 0.010178055761633
1125 => 0.0098160549195218
1126 => 0.0099093507791397
1127 => 0.0094347041328504
1128 => 0.0096492642399681
1129 => 0.0098321127218025
1130 => 0.0098688222616488
1201 => 0.0099515307293581
1202 => 0.0092447959283683
1203 => 0.0095620991053691
1204 => 0.00974848499457
1205 => 0.0089063867663835
1206 => 0.009731839420151
1207 => 0.009232493247826
1208 => 0.0090630076570111
1209 => 0.0092911976770147
1210 => 0.0092022718042973
1211 => 0.0091258185608372
1212 => 0.0090831563373531
1213 => 0.0092507139036302
1214 => 0.0092428971428888
1215 => 0.0089687404429372
1216 => 0.008611114203907
1217 => 0.0087311453084067
1218 => 0.0086875368828443
1219 => 0.0085294943230076
1220 => 0.0086359959262061
1221 => 0.0081670167649478
1222 => 0.0073601624934184
1223 => 0.0078931951398054
1224 => 0.0078726739627475
1225 => 0.0078623262547135
1226 => 0.0082628855565331
1227 => 0.0082243810221386
1228 => 0.008154494915175
1229 => 0.0085282108098479
1230 => 0.0083917994811042
1231 => 0.008812187053741
]
'min_raw' => 0.0037737159382014
'max_raw' => 0.012413815722118
'avg_raw' => 0.0080937658301595
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003773'
'max' => '$0.012413'
'avg' => '$0.008093'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0020558231487547
'max_diff' => 0.0082061595962632
'year' => 2029
]
4 => [
'items' => [
101 => 0.0090890814980432
102 => 0.0090188521103712
103 => 0.0092792726735844
104 => 0.0087339105826256
105 => 0.0089150579931127
106 => 0.0089523922233547
107 => 0.008523599213718
108 => 0.0082306808401592
109 => 0.0082111465241567
110 => 0.007703266431044
111 => 0.0079745718773199
112 => 0.0082133094426606
113 => 0.0080989726756459
114 => 0.0080627770709228
115 => 0.0082476925655842
116 => 0.0082620620832135
117 => 0.0079344355584522
118 => 0.0080025594875328
119 => 0.0082866475964597
120 => 0.0079954011960828
121 => 0.0074295570149799
122 => 0.0072892198346585
123 => 0.0072704962678762
124 => 0.0068898907045625
125 => 0.0072985978360959
126 => 0.0071201862205114
127 => 0.0076837863764435
128 => 0.0073618609900234
129 => 0.0073479834300389
130 => 0.007327005462727
131 => 0.006999402531765
201 => 0.0070711267533933
202 => 0.0073095489899931
203 => 0.0073946207300306
204 => 0.0073857470505725
205 => 0.0073083805909629
206 => 0.0073437985599918
207 => 0.0072297049413114
208 => 0.007189416109902
209 => 0.0070622534756579
210 => 0.0068753595328933
211 => 0.0069013482819219
212 => 0.006531062477845
213 => 0.0063293111192288
214 => 0.006273469002204
215 => 0.0061987945895158
216 => 0.0062819036758182
217 => 0.006530013504686
218 => 0.0062307404116349
219 => 0.0057176576851654
220 => 0.0057484948312767
221 => 0.0058177767429578
222 => 0.0056886703588857
223 => 0.0055664820014391
224 => 0.0056727148647842
225 => 0.005455314949729
226 => 0.0058440484840518
227 => 0.0058335343313615
228 => 0.0059784301538366
301 => 0.0060690364851918
302 => 0.0058602182255661
303 => 0.0058077009979748
304 => 0.0058376171975857
305 => 0.0053431690571758
306 => 0.0059380231920314
307 => 0.0059431675152915
308 => 0.0058991186963294
309 => 0.0062158601590791
310 => 0.0068842834396206
311 => 0.0066327957142167
312 => 0.0065354120656836
313 => 0.0063502856786351
314 => 0.00659695559766
315 => 0.0065780151965291
316 => 0.0064923595196812
317 => 0.0064405546990616
318 => 0.0065360066694757
319 => 0.0064287271436071
320 => 0.0064094567929169
321 => 0.0062926994340824
322 => 0.0062510223690998
323 => 0.0062201663293985
324 => 0.0061861968615392
325 => 0.0062611250429729
326 => 0.006091327926221
327 => 0.0058865692488348
328 => 0.0058695457803298
329 => 0.0059165490735909
330 => 0.0058957536153065
331 => 0.0058694462196761
401 => 0.0058192182370248
402 => 0.0058043166675232
403 => 0.0058527395391896
404 => 0.005798072940307
405 => 0.005878736484802
406 => 0.0058568004640169
407 => 0.0057342676350817
408 => 0.0055815463627648
409 => 0.0055801868230975
410 => 0.0055472832754899
411 => 0.0055053756605301
412 => 0.0054937179207646
413 => 0.0056637682293408
414 => 0.006015767278916
415 => 0.005946661442861
416 => 0.0059965974916617
417 => 0.0062422334282369
418 => 0.0063203137059439
419 => 0.0062648941742602
420 => 0.0061890325011638
421 => 0.0061923700297755
422 => 0.0064516123316362
423 => 0.0064677809560102
424 => 0.0065086338536073
425 => 0.0065611413720471
426 => 0.0062738364316994
427 => 0.006178837992922
428 => 0.0061338224623166
429 => 0.0059951920512546
430 => 0.0061446930643118
501 => 0.006057585226275
502 => 0.0060693390496536
503 => 0.0060616843567588
504 => 0.0060658643366875
505 => 0.0058439398251066
506 => 0.0059247974531177
507 => 0.0057903559639543
508 => 0.0056103539017299
509 => 0.0056097504717005
510 => 0.0056538057214211
511 => 0.0056275999350052
512 => 0.0055570808375722
513 => 0.0055670977425219
514 => 0.0054793391148807
515 => 0.0055777532288387
516 => 0.0055805753934844
517 => 0.0055426805989576
518 => 0.0056943011200406
519 => 0.0057564201712389
520 => 0.0057314770056962
521 => 0.005754670092251
522 => 0.0059495331023432
523 => 0.0059813042754574
524 => 0.0059954149318689
525 => 0.0059765085215813
526 => 0.0057582318303605
527 => 0.0057679133298003
528 => 0.0056968769106868
529 => 0.0056368586221693
530 => 0.0056392590389556
531 => 0.0056701162410849
601 => 0.0058048714525347
602 => 0.0060884558507773
603 => 0.0060992176713931
604 => 0.0061122613119239
605 => 0.0060592062706766
606 => 0.006043204362568
607 => 0.0060643150098061
608 => 0.0061708143996267
609 => 0.0064447597445476
610 => 0.0063479291634581
611 => 0.0062692043937747
612 => 0.0063382672408326
613 => 0.0063276355568605
614 => 0.0062378934447876
615 => 0.0062353746825971
616 => 0.0060631308772403
617 => 0.0059994562642016
618 => 0.0059462449915842
619 => 0.0058881396710016
620 => 0.0058536928892522
621 => 0.0059066188018016
622 => 0.0059187235842026
623 => 0.0058030001514267
624 => 0.0057872274751521
625 => 0.0058817297284207
626 => 0.0058401428101563
627 => 0.0058829159868972
628 => 0.0058928397308026
629 => 0.0058912417794706
630 => 0.0058478202605755
701 => 0.0058754958418709
702 => 0.0058100348416193
703 => 0.00573885583577
704 => 0.0056934480646469
705 => 0.0056538237618752
706 => 0.005675809628031
707 => 0.0055974340296463
708 => 0.0055723600983339
709 => 0.0058661199776483
710 => 0.0060831235589487
711 => 0.0060799682409338
712 => 0.0060607610539996
713 => 0.0060322230702511
714 => 0.0061687266683634
715 => 0.0061211715442567
716 => 0.0061557718704079
717 => 0.0061645791055845
718 => 0.0061912359538945
719 => 0.0062007634859319
720 => 0.0061719646668186
721 => 0.0060753123123952
722 => 0.0058344638346019
723 => 0.0057223482180311
724 => 0.0056853481971295
725 => 0.0056866930776162
726 => 0.0056495952699813
727 => 0.0056605222369369
728 => 0.0056457953168006
729 => 0.0056179060928872
730 => 0.0056740875470441
731 => 0.0056805619362692
801 => 0.0056674485135506
802 => 0.0056705371993137
803 => 0.0055619636600198
804 => 0.005570218270403
805 => 0.0055242555508443
806 => 0.0055156380950159
807 => 0.0053994483424032
808 => 0.005193601353676
809 => 0.0053076605674816
810 => 0.005169893076357
811 => 0.0051177184399499
812 => 0.0053647050538801
813 => 0.0053399144481838
814 => 0.005297483707449
815 => 0.0052347197985611
816 => 0.0052114400542265
817 => 0.005069999697121
818 => 0.0050616426462682
819 => 0.0051317443064606
820 => 0.0050993948023326
821 => 0.0050539638468217
822 => 0.0048894175312233
823 => 0.0047044129930779
824 => 0.0047099971171875
825 => 0.0047688436186397
826 => 0.0049399477581441
827 => 0.0048730944107081
828 => 0.0048245915400895
829 => 0.0048155084104135
830 => 0.0049292027951278
831 => 0.0050901041692085
901 => 0.0051655954939618
902 => 0.0050907858838369
903 => 0.0050048486317608
904 => 0.0050100792340998
905 => 0.00504487608811
906 => 0.0050485327454654
907 => 0.0049925964288561
908 => 0.0050083421743328
909 => 0.0049844229471326
910 => 0.0048376306939565
911 => 0.0048349756875798
912 => 0.0047989505013056
913 => 0.0047978596729825
914 => 0.0047365718442261
915 => 0.0047279972533204
916 => 0.0046063065494193
917 => 0.0046864037392404
918 => 0.0046326787495996
919 => 0.0045517025177671
920 => 0.0045377421848773
921 => 0.0045373225204131
922 => 0.004620467004551
923 => 0.0046854321475341
924 => 0.004633613318796
925 => 0.0046218151759582
926 => 0.0047477884750079
927 => 0.0047317572244317
928 => 0.0047178742648232
929 => 0.0050756972159413
930 => 0.0047924524288583
1001 => 0.0046689415346428
1002 => 0.0045160733489686
1003 => 0.0045658480010524
1004 => 0.0045763362515883
1005 => 0.0042087158216033
1006 => 0.0040595722589425
1007 => 0.004008391808594
1008 => 0.003978936735833
1009 => 0.0039923597823637
1010 => 0.003858113083174
1011 => 0.003948329085265
1012 => 0.0038320827913576
1013 => 0.0038125937218859
1014 => 0.0040204564955447
1015 => 0.0040493793861826
1016 => 0.0039259853490835
1017 => 0.0040052242965811
1018 => 0.0039764911527147
1019 => 0.0038340755004196
1020 => 0.0038286362700405
1021 => 0.0037571771018711
1022 => 0.0036453573409074
1023 => 0.0035942527096223
1024 => 0.0035676369739383
1025 => 0.0035786191452119
1026 => 0.0035730662233559
1027 => 0.003536829652105
1028 => 0.003575143261203
1029 => 0.003477267822234
1030 => 0.0034382930338005
1031 => 0.0034206890260733
1101 => 0.0033338189404882
1102 => 0.0034720678779565
1103 => 0.003499304660252
1104 => 0.0035265951074225
1105 => 0.0037641398180618
1106 => 0.0037522727556126
1107 => 0.0038595452206592
1108 => 0.0038553768099289
1109 => 0.0038247809651989
1110 => 0.0036957021290552
1111 => 0.0037471506525331
1112 => 0.003588800094144
1113 => 0.0037074470992804
1114 => 0.0036533015609535
1115 => 0.0036891404383066
1116 => 0.0036246989053645
1117 => 0.0036603635104203
1118 => 0.0035057635117523
1119 => 0.0033614002082767
1120 => 0.0034194962158228
1121 => 0.0034826532201098
1122 => 0.0036195936975093
1123 => 0.0035380330789046
1124 => 0.0035673653615033
1125 => 0.0034691071249624
1126 => 0.0032663723169009
1127 => 0.0032675197738976
1128 => 0.0032363334404952
1129 => 0.0032093838951563
1130 => 0.0035474012970771
1201 => 0.0035053634898839
1202 => 0.0034383817458937
1203 => 0.0035280394719732
1204 => 0.0035517463978081
1205 => 0.0035524213006586
1206 => 0.0036178332632054
1207 => 0.0036527436393424
1208 => 0.0036588967444468
1209 => 0.0037618238808331
1210 => 0.0037963236993081
1211 => 0.0039384235690094
1212 => 0.0036497817378324
1213 => 0.0036438373492653
1214 => 0.0035293011400442
1215 => 0.0034566604654103
1216 => 0.0035342749091832
1217 => 0.0036030307109378
1218 => 0.0035314375744608
1219 => 0.0035407861266711
1220 => 0.0034446781903248
1221 => 0.0034790322552699
1222 => 0.0035086226039929
1223 => 0.0034922845526684
1224 => 0.0034678256990649
1225 => 0.0035973935192748
1226 => 0.0035900827950781
1227 => 0.0037107393280089
1228 => 0.0038047997236599
1229 => 0.0039733727679733
1230 => 0.0037974580083207
1231 => 0.0037910469752811
]
'min_raw' => 0.0032093838951563
'max_raw' => 0.0092792726735844
'avg_raw' => 0.0062443282843704
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0032093'
'max' => '$0.009279'
'avg' => '$0.006244'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00056433204304502
'max_diff' => -0.0031345430485332
'year' => 2030
]
5 => [
'items' => [
101 => 0.0038537158516051
102 => 0.0037963141050296
103 => 0.0038325900274244
104 => 0.0039675281560519
105 => 0.0039703791860771
106 => 0.0039226207598106
107 => 0.003919714655232
108 => 0.0039288871834164
109 => 0.0039826109674913
110 => 0.0039638382265704
111 => 0.0039855625176317
112 => 0.004012729076258
113 => 0.0041251014811186
114 => 0.0041521940874955
115 => 0.0040863730999055
116 => 0.0040923159981185
117 => 0.0040676971419334
118 => 0.0040439156353318
119 => 0.0040973729891619
120 => 0.0041950673539933
121 => 0.00419445960242
122 => 0.0042171227961538
123 => 0.0042312417780979
124 => 0.0041706327718673
125 => 0.0041311785374661
126 => 0.0041463078014737
127 => 0.0041704998240943
128 => 0.0041384626545897
129 => 0.003940714403347
130 => 0.0040006985905668
131 => 0.0039907142887366
201 => 0.0039764954287977
202 => 0.0040368099928912
203 => 0.004030992506046
204 => 0.0038567361892368
205 => 0.0038678915132657
206 => 0.0038574145814386
207 => 0.0038912676915505
208 => 0.0037944859259872
209 => 0.0038242553452393
210 => 0.0038429264459233
211 => 0.0038539238676643
212 => 0.0038936540959956
213 => 0.0038889922122655
214 => 0.0038933643067573
215 => 0.0039522737469811
216 => 0.0042502174803545
217 => 0.0042664339003862
218 => 0.0041865783172731
219 => 0.0042184790476451
220 => 0.0041572366212537
221 => 0.0041983490723788
222 => 0.0042264771672956
223 => 0.0040993717150883
224 => 0.0040918453551161
225 => 0.0040303501594459
226 => 0.0040633941943331
227 => 0.0040108187588773
228 => 0.0040237189317275
301 => 0.0039876489238215
302 => 0.0040525677565854
303 => 0.0041251570989821
304 => 0.0041434960335116
305 => 0.0040952541921724
306 => 0.0040603239197506
307 => 0.0039989978681249
308 => 0.0041009844587186
309 => 0.0041308084457932
310 => 0.0041008278060109
311 => 0.0040938806366835
312 => 0.0040807157633612
313 => 0.0040966736267932
314 => 0.0041306460179546
315 => 0.0041146252656544
316 => 0.004125207254798
317 => 0.0040848796242825
318 => 0.0041706528359703
319 => 0.0043068813385781
320 => 0.0043073193354896
321 => 0.0042912984968316
322 => 0.0042847431148265
323 => 0.0043011814675154
324 => 0.0043100985995126
325 => 0.0043632572178301
326 => 0.0044202985332175
327 => 0.004686485463055
328 => 0.0046117412383208
329 => 0.004847918118004
330 => 0.0050347033661038
331 => 0.0050907120948799
401 => 0.0050391866998202
402 => 0.0048629211066681
403 => 0.0048542726757486
404 => 0.0051176878893318
405 => 0.0050432610263134
406 => 0.0050344081877817
407 => 0.004940228942911
408 => 0.004995900540956
409 => 0.0049837243458105
410 => 0.0049645036260934
411 => 0.0050707211570461
412 => 0.0052695508928852
413 => 0.0052385614139412
414 => 0.0052154292054701
415 => 0.0051140706016343
416 => 0.0051751111204072
417 => 0.0051533757608263
418 => 0.0052467646591859
419 => 0.0051914431446151
420 => 0.0050426971696252
421 => 0.0050663854564155
422 => 0.0050628050195214
423 => 0.0051364901570901
424 => 0.0051143717077695
425 => 0.0050584860373031
426 => 0.0052688713144637
427 => 0.0052552100647893
428 => 0.0052745785934311
429 => 0.0052831052187309
430 => 0.0054111630295341
501 => 0.0054636242172273
502 => 0.005475533825296
503 => 0.0055253678961107
504 => 0.0054742939082164
505 => 0.0056786262749299
506 => 0.0058144953756703
507 => 0.0059723143279402
508 => 0.0062029302349419
509 => 0.0062896439492909
510 => 0.0062739798929381
511 => 0.0064488302416438
512 => 0.0067630324315631
513 => 0.0063374891389052
514 => 0.0067855872593738
515 => 0.0066437245679751
516 => 0.0063073706786694
517 => 0.00628571345355
518 => 0.0065134962125367
519 => 0.0070186964486912
520 => 0.0068921495194682
521 => 0.0070189034341332
522 => 0.0068710382597459
523 => 0.006863695507532
524 => 0.0070117219526545
525 => 0.0073575938101847
526 => 0.0071932830554848
527 => 0.0069577032979725
528 => 0.0071316517248926
529 => 0.0069809614993275
530 => 0.0066414142455909
531 => 0.0068920527514163
601 => 0.0067244579203445
602 => 0.0067733710018825
603 => 0.0071256304089458
604 => 0.0070832456251251
605 => 0.0071380954601143
606 => 0.0070412869370285
607 => 0.0069508525111634
608 => 0.0067820499395377
609 => 0.0067320758199455
610 => 0.0067458868687203
611 => 0.0067320689758756
612 => 0.0066376254884267
613 => 0.0066172304263042
614 => 0.0065832377625717
615 => 0.0065937735104546
616 => 0.0065298573577331
617 => 0.0066504803436695
618 => 0.0066728690327855
619 => 0.0067606483828278
620 => 0.006769761926146
621 => 0.0070142261665529
622 => 0.0068795793709914
623 => 0.0069699120662991
624 => 0.0069618318597865
625 => 0.0063146604873648
626 => 0.0064038349924432
627 => 0.0065425625378438
628 => 0.0064800659666816
629 => 0.0063917104370036
630 => 0.0063203586094649
701 => 0.0062122532946447
702 => 0.0063644094492754
703 => 0.0065644786126116
704 => 0.0067748360102926
705 => 0.0070275666404435
706 => 0.0069711601059027
707 => 0.0067701113869576
708 => 0.0067791302856233
709 => 0.0068348815683688
710 => 0.0067626785916752
711 => 0.0067413845242788
712 => 0.0068319560905012
713 => 0.0068325798071005
714 => 0.0067495015563933
715 => 0.0066571752838917
716 => 0.0066567884334388
717 => 0.0066403598650131
718 => 0.0068739608655725
719 => 0.0070024177961551
720 => 0.0070171451762277
721 => 0.0070014265261346
722 => 0.0070074760107045
723 => 0.0069327297531538
724 => 0.0071035775326006
725 => 0.0072603643501151
726 => 0.0072183421337594
727 => 0.0071553448576322
728 => 0.0071051644928369
729 => 0.0072065212345686
730 => 0.0072020079784096
731 => 0.007258994954042
801 => 0.0072564096956546
802 => 0.007237247119138
803 => 0.0072183428181154
804 => 0.0072932962348246
805 => 0.0072717108545274
806 => 0.0072500919461725
807 => 0.0072067319157776
808 => 0.0072126252640421
809 => 0.0071496388652828
810 => 0.0071204984751552
811 => 0.006682296925209
812 => 0.0065651951524146
813 => 0.0066020377539621
814 => 0.0066141672950093
815 => 0.0065632044534192
816 => 0.0066362720769795
817 => 0.0066248845652454
818 => 0.0066691867119313
819 => 0.0066415086540576
820 => 0.0066426445712072
821 => 0.0067240398378298
822 => 0.0067476692300105
823 => 0.0067356511304348
824 => 0.0067440681954213
825 => 0.0069380359054136
826 => 0.0069104598997909
827 => 0.006895810696414
828 => 0.0068998686258638
829 => 0.0069494315344815
830 => 0.0069633064428599
831 => 0.0069045174810879
901 => 0.0069322426953145
902 => 0.0070502931386379
903 => 0.0070916041127247
904 => 0.0072234489116171
905 => 0.0071674388976932
906 => 0.0072702477023072
907 => 0.0075862469175864
908 => 0.0078386889562339
909 => 0.0076065328248852
910 => 0.0080701104805616
911 => 0.0084310721817708
912 => 0.0084172178704652
913 => 0.0083542758486648
914 => 0.0079433305485015
915 => 0.0075651725564419
916 => 0.0078815177742362
917 => 0.0078823242032534
918 => 0.0078551498684922
919 => 0.0076863724091371
920 => 0.007849276778753
921 => 0.0078622075360313
922 => 0.0078549697505213
923 => 0.0077255684681535
924 => 0.0075279966273324
925 => 0.0075666016921086
926 => 0.0076298375757342
927 => 0.0075101188556438
928 => 0.0074718614705618
929 => 0.0075429892281945
930 => 0.0077721776833437
1001 => 0.0077288509334961
1002 => 0.0077277194969604
1003 => 0.0079130897062099
1004 => 0.0077804046417822
1005 => 0.007567088625606
1006 => 0.0075132235182289
1007 => 0.0073220386749245
1008 => 0.0074540907271719
1009 => 0.0074588430454446
1010 => 0.0073865194859679
1011 => 0.0075729572838597
1012 => 0.0075712392267304
1013 => 0.0077482341682244
1014 => 0.0080865820200969
1015 => 0.0079865159112116
1016 => 0.0078701499137397
1017 => 0.007882802124144
1018 => 0.0080215656439632
1019 => 0.0079376660522174
1020 => 0.0079678369303779
1021 => 0.0080215199767256
1022 => 0.0080539082914622
1023 => 0.0078781419440812
1024 => 0.0078371624006305
1025 => 0.0077533326365955
1026 => 0.0077314630159155
1027 => 0.0077997406095565
1028 => 0.0077817518759151
1029 => 0.0074584436314957
1030 => 0.0074246561210837
1031 => 0.0074256923357906
1101 => 0.0073407320343513
1102 => 0.0072111471818476
1103 => 0.0075516884371178
1104 => 0.0075243382084478
1105 => 0.0074941456727357
1106 => 0.0074978440860842
1107 => 0.007645661502983
1108 => 0.0075599199362232
1109 => 0.0077878779442205
1110 => 0.0077410166308212
1111 => 0.0076929535015571
1112 => 0.0076863097130541
1113 => 0.007667809508841
1114 => 0.0076043654249712
1115 => 0.0075277528813001
1116 => 0.0074771666439036
1117 => 0.0068972909874677
1118 => 0.0070049125363207
1119 => 0.0071287213182632
1120 => 0.0071714596136572
1121 => 0.0070983528019857
1122 => 0.0076072521274873
1123 => 0.0077002329381323
1124 => 0.0074185879977003
1125 => 0.0073659037288326
1126 => 0.0076107060993833
1127 => 0.0074630603440685
1128 => 0.0075295452186463
1129 => 0.0073858412850912
1130 => 0.0076778365836439
1201 => 0.0076756120686948
1202 => 0.0075620193025449
1203 => 0.0076580271306451
1204 => 0.0076413434078761
1205 => 0.0075130974546595
1206 => 0.007681902209109
1207 => 0.0076819859341612
1208 => 0.0075726553664616
1209 => 0.0074449811989273
1210 => 0.0074221560733014
1211 => 0.0074049604072664
1212 => 0.0075253161389152
1213 => 0.0076332267115688
1214 => 0.0078340215339776
1215 => 0.0078845061230985
1216 => 0.0080815508353867
1217 => 0.007964220303152
1218 => 0.0080162314084069
1219 => 0.0080726968205811
1220 => 0.0080997684156242
1221 => 0.0080556567042433
1222 => 0.0083617482492662
1223 => 0.0083875917540688
1224 => 0.0083962568576836
1225 => 0.0082930445109065
1226 => 0.0083847212319951
1227 => 0.0083418287302117
1228 => 0.008453423103972
1229 => 0.0084709225266861
1230 => 0.0084561011382073
1231 => 0.0084616557311864
]
'min_raw' => 0.0037944859259872
'max_raw' => 0.0084709225266861
'avg_raw' => 0.0061327042263367
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003794'
'max' => '$0.00847'
'avg' => '$0.006132'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00058510203083084
'max_diff' => -0.00080835014689825
'year' => 2031
]
6 => [
'items' => [
101 => 0.0082004605957581
102 => 0.008186916250072
103 => 0.0080022381355796
104 => 0.008077495832307
105 => 0.0079368051754705
106 => 0.0079814196320277
107 => 0.0080010852593759
108 => 0.0079908130516637
109 => 0.0080817507895642
110 => 0.0080044351349963
111 => 0.0078003864107213
112 => 0.0075962820935077
113 => 0.0075937197300649
114 => 0.007539982666083
115 => 0.0075011406112583
116 => 0.0075086229690135
117 => 0.0075349917736819
118 => 0.0074996080083951
119 => 0.0075071589287215
120 => 0.0076325545176583
121 => 0.0076577017087392
122 => 0.0075722417278046
123 => 0.0072291075725359
124 => 0.0071449015901461
125 => 0.0072054271804107
126 => 0.0071764998466115
127 => 0.0057919954790637
128 => 0.0061172642435755
129 => 0.0059240005887861
130 => 0.0060130653725463
131 => 0.0058157932263871
201 => 0.0059099418344533
202 => 0.0058925560243001
203 => 0.0064155785722326
204 => 0.0064074122945407
205 => 0.006411321059522
206 => 0.0062247455227292
207 => 0.006521965418918
208 => 0.0066683866274623
209 => 0.006641287958635
210 => 0.006648108109761
211 => 0.0065309153171758
212 => 0.006412455741925
213 => 0.0062810658421738
214 => 0.006525172035629
215 => 0.0064980315939485
216 => 0.006560282002341
217 => 0.0067186023178677
218 => 0.0067419155857294
219 => 0.0067732488541554
220 => 0.0067620181078786
221 => 0.0070295800476496
222 => 0.0069971765313128
223 => 0.0070752596825566
224 => 0.0069146367162652
225 => 0.0067328765834346
226 => 0.0067674232424993
227 => 0.0067640961214247
228 => 0.006721738051453
229 => 0.0066834990798399
301 => 0.0066198419658675
302 => 0.0068212624939564
303 => 0.0068130851883531
304 => 0.0069454662609932
305 => 0.0069220666205229
306 => 0.0067657980945992
307 => 0.0067713792555738
308 => 0.0068089152453426
309 => 0.0069388277345108
310 => 0.0069773946064127
311 => 0.0069595288947236
312 => 0.0070018157091194
313 => 0.0070352374830456
314 => 0.0070060129693539
315 => 0.0074197704541833
316 => 0.0072479494994109
317 => 0.0073316938372444
318 => 0.0073516663683674
319 => 0.0073005071498729
320 => 0.0073116017524901
321 => 0.0073284070523569
322 => 0.007430445542333
323 => 0.0076982240651051
324 => 0.0078168213500109
325 => 0.0081736271331368
326 => 0.0078069734964534
327 => 0.0077852177870162
328 => 0.0078494892830595
329 => 0.0080589720494823
330 => 0.0082287381559523
331 => 0.00828505936751
401 => 0.0082925031453792
402 => 0.0083981654824249
403 => 0.0084587291635335
404 => 0.0083853352955122
405 => 0.0083231416770224
406 => 0.0081003718553481
407 => 0.008126158068789
408 => 0.0083037995084392
409 => 0.0085547285049737
410 => 0.0087700516887127
411 => 0.0086946530145379
412 => 0.0092698916753231
413 => 0.0093269242389007
414 => 0.0093190441826978
415 => 0.0094489728501111
416 => 0.0091910909048087
417 => 0.0090808413769646
418 => 0.0083365886432674
419 => 0.0085456933037618
420 => 0.0088496392080766
421 => 0.0088094108279019
422 => 0.0085886771876912
423 => 0.0087698842424529
424 => 0.0087099715232802
425 => 0.0086627158758876
426 => 0.0088792031575509
427 => 0.0086411664985548
428 => 0.0088472646103145
429 => 0.0085829416501707
430 => 0.0086949974293304
501 => 0.0086313891495512
502 => 0.0086725515021059
503 => 0.0084319172301559
504 => 0.0085617576422334
505 => 0.0084265154421378
506 => 0.0084264513197259
507 => 0.008423465840663
508 => 0.0085825776893197
509 => 0.0085877663209921
510 => 0.0084701824244301
511 => 0.0084532367479299
512 => 0.0085158937955399
513 => 0.0084425388026953
514 => 0.0084768611421565
515 => 0.0084435783913929
516 => 0.008436085743154
517 => 0.0083763830472176
518 => 0.0083506614842484
519 => 0.0083607475718517
520 => 0.0083263185551272
521 => 0.0083055738271988
522 => 0.0084193391921408
523 => 0.008358558946934
524 => 0.0084100237478514
525 => 0.0083513731118304
526 => 0.0081480644545156
527 => 0.0080311394957439
528 => 0.0076471082887988
529 => 0.0077560190626992
530 => 0.0078282270184715
531 => 0.0078043622895195
601 => 0.0078556329617325
602 => 0.0078587805646033
603 => 0.0078421119464242
604 => 0.007822811821955
605 => 0.0078134175887273
606 => 0.007883434506656
607 => 0.0079240816841748
608 => 0.0078354740528511
609 => 0.0078147145245844
610 => 0.0079043017320141
611 => 0.0079589498767934
612 => 0.0083624410737034
613 => 0.0083325491425769
614 => 0.0084075720237092
615 => 0.0083991255986136
616 => 0.0084777615301224
617 => 0.0086062980441152
618 => 0.0083449473717934
619 => 0.0083903088116822
620 => 0.0083791872341701
621 => 0.0085006097012129
622 => 0.0085009887689013
623 => 0.0084281899344071
624 => 0.0084676553636126
625 => 0.0084456268437075
626 => 0.0084854353565091
627 => 0.0083321499176125
628 => 0.0085188350360479
629 => 0.0086246734684775
630 => 0.0086261430352145
701 => 0.0086763096122004
702 => 0.0087272817598703
703 => 0.0088251183585841
704 => 0.008724553150233
705 => 0.0085436461302351
706 => 0.0085567070327529
707 => 0.0084506413131194
708 => 0.0084524242970288
709 => 0.0084429065891855
710 => 0.0084714699468826
711 => 0.00833841796837
712 => 0.0083696450017864
713 => 0.0083259269721382
714 => 0.0083902137772237
715 => 0.0083210518019413
716 => 0.0083791818710087
717 => 0.0084042688817758
718 => 0.0084968404915914
719 => 0.0083073788999038
720 => 0.0079210538890307
721 => 0.0080022640900542
722 => 0.0078821478238168
723 => 0.007893265041572
724 => 0.0079157235907294
725 => 0.00784292808493
726 => 0.0078568151733865
727 => 0.0078563190288649
728 => 0.0078520435234167
729 => 0.0078331066008624
730 => 0.0078056443166028
731 => 0.0079150456046478
801 => 0.0079336350153106
802 => 0.0079749569724734
803 => 0.0080979030880385
804 => 0.0080856178718245
805 => 0.0081056555691783
806 => 0.0080619133883619
807 => 0.0078952941158844
808 => 0.0079043423440095
809 => 0.0077915107943023
810 => 0.0079720716160675
811 => 0.0079293124301871
812 => 0.0079017453048851
813 => 0.0078942233593388
814 => 0.0080174742345439
815 => 0.008054352828126
816 => 0.008031372563436
817 => 0.0079842393701153
818 => 0.0080747490349688
819 => 0.0080989656029873
820 => 0.008104386799494
821 => 0.0082647525721075
822 => 0.0081133494647416
823 => 0.0081497936975021
824 => 0.0084341211980338
825 => 0.0081762753895646
826 => 0.0083128620649584
827 => 0.0083061768579607
828 => 0.0083760499792511
829 => 0.0083004452225713
830 => 0.0083013824341418
831 => 0.0083634250322325
901 => 0.0082762973926556
902 => 0.0082547233638177
903 => 0.0082249189974941
904 => 0.0082899957409907
905 => 0.0083290063055489
906 => 0.0086434028057856
907 => 0.0088465172831607
908 => 0.0088376995480215
909 => 0.0089182771410851
910 => 0.0088819761974038
911 => 0.0087647508745518
912 => 0.0089648402065551
913 => 0.008901523569816
914 => 0.008906743316419
915 => 0.0089065490371898
916 => 0.0089486490653848
917 => 0.0089188173369977
918 => 0.0088600159381826
919 => 0.0088990510508625
920 => 0.0090149713802134
921 => 0.0093747916393887
922 => 0.0095761518234076
923 => 0.0093626695034755
924 => 0.0095099267491225
925 => 0.0094216248748559
926 => 0.0094055777975484
927 => 0.0094980662300397
928 => 0.0095907165512887
929 => 0.0095848151263634
930 => 0.0095175557507834
1001 => 0.0094795626361617
1002 => 0.0097672592287044
1003 => 0.0099792291773064
1004 => 0.0099647742478763
1005 => 0.010028573605386
1006 => 0.010215890492274
1007 => 0.010233016400879
1008 => 0.010230858930029
1009 => 0.010188410578647
1010 => 0.01037284837996
1011 => 0.010526709638689
1012 => 0.010178585011753
1013 => 0.010311146312404
1014 => 0.010370657351125
1015 => 0.010458037212096
1016 => 0.01060546168412
1017 => 0.010765603763149
1018 => 0.010788249608992
1019 => 0.010772181297662
1020 => 0.010666563291693
1021 => 0.010841792665458
1022 => 0.010944437922975
1023 => 0.011005560824832
1024 => 0.011160558334059
1025 => 0.01037102487104
1026 => 0.0098121538435561
1027 => 0.0097248780624191
1028 => 0.0099023567953119
1029 => 0.0099491565218093
1030 => 0.0099302916107401
1031 => 0.0093012314589762
1101 => 0.009721566190907
1102 => 0.010173811019716
1103 => 0.010191183585416
1104 => 0.010417586802712
1105 => 0.010491312970844
1106 => 0.010673597236115
1107 => 0.010662195305692
1108 => 0.010706578623509
1109 => 0.010696375667355
1110 => 0.011034018884289
1111 => 0.011406489493069
1112 => 0.011393592020271
1113 => 0.011340044963387
1114 => 0.01141957147399
1115 => 0.011804001058628
1116 => 0.011768608942833
1117 => 0.011802989368635
1118 => 0.012256253514425
1119 => 0.012845561380025
1120 => 0.012571768710911
1121 => 0.01316582002117
1122 => 0.01353974383167
1123 => 0.014186406397488
1124 => 0.014105441059367
1125 => 0.014357182050811
1126 => 0.013960496206155
1127 => 0.01304962532339
1128 => 0.012905476519519
1129 => 0.013194066075298
1130 => 0.013903535338025
1201 => 0.013171722363428
1202 => 0.013319767175074
1203 => 0.01327713025936
1204 => 0.013274858319317
1205 => 0.013361569030116
1206 => 0.013235790621576
1207 => 0.012723346758079
1208 => 0.012958196760869
1209 => 0.012867509896368
1210 => 0.012968133733685
1211 => 0.013511159083258
1212 => 0.013271074632104
1213 => 0.013018165165691
1214 => 0.013335369761677
1215 => 0.013739280215692
1216 => 0.013714004225377
1217 => 0.01366495823962
1218 => 0.013941427893364
1219 => 0.01439807476334
1220 => 0.014521504577338
1221 => 0.014612617942621
1222 => 0.01462518093632
1223 => 0.014754587579282
1224 => 0.014058735445402
1225 => 0.015163070652621
1226 => 0.015353758836263
1227 => 0.015317917360954
1228 => 0.015529859251687
1229 => 0.015467500570986
1230 => 0.015377152626429
1231 => 0.015713125604573
]
'min_raw' => 0.0057919954790637
'max_raw' => 0.015713125604573
'avg_raw' => 0.010752560541818
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005791'
'max' => '$0.015713'
'avg' => '$0.010752'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019975095530765
'max_diff' => 0.0072422030778871
'year' => 2032
]
7 => [
'items' => [
101 => 0.015327959696752
102 => 0.014781265181638
103 => 0.014481337758256
104 => 0.014876306383821
105 => 0.015117499940948
106 => 0.015276913539418
107 => 0.015325151997995
108 => 0.014112752465718
109 => 0.013459336360581
110 => 0.013878168592543
111 => 0.014389172821793
112 => 0.014055896791107
113 => 0.014068960580535
114 => 0.013593796544177
115 => 0.014431214295498
116 => 0.014309209572922
117 => 0.014942170289466
118 => 0.014791109134636
119 => 0.015307264027584
120 => 0.015171343146037
121 => 0.015735543126106
122 => 0.015960617773261
123 => 0.016338553135904
124 => 0.016616563927139
125 => 0.016779817181251
126 => 0.016770016068221
127 => 0.017416906793461
128 => 0.017035457933428
129 => 0.016556268264632
130 => 0.016547601235348
131 => 0.016795780354987
201 => 0.017315895705134
202 => 0.017450754048057
203 => 0.017526121464037
204 => 0.017410693642905
205 => 0.016996658244025
206 => 0.016817879857996
207 => 0.016970204222601
208 => 0.01678392461407
209 => 0.017105495479221
210 => 0.017547080960903
211 => 0.017455895305154
212 => 0.017760715281006
213 => 0.018076171888016
214 => 0.018527289004083
215 => 0.018645227723041
216 => 0.018840175940672
217 => 0.019040841693767
218 => 0.019105290125567
219 => 0.019228342179048
220 => 0.019227693633986
221 => 0.01959851927951
222 => 0.020007551450037
223 => 0.020161951625294
224 => 0.020516986314623
225 => 0.019909001851046
226 => 0.020370165050691
227 => 0.020786145800435
228 => 0.020290196401717
301 => 0.020973747106459
302 => 0.021000287831365
303 => 0.021401021266845
304 => 0.020994801158749
305 => 0.020753588955263
306 => 0.021449959548625
307 => 0.021786911343285
308 => 0.021685418720529
309 => 0.020913054850045
310 => 0.020463505949179
311 => 0.019286949764105
312 => 0.02068063138877
313 => 0.021359453053894
314 => 0.020911296865924
315 => 0.021137320779447
316 => 0.022370433963131
317 => 0.022839923625312
318 => 0.022742273057558
319 => 0.022758774396044
320 => 0.023012102495916
321 => 0.024135498801084
322 => 0.023462333694905
323 => 0.023976943195563
324 => 0.02424989021915
325 => 0.02450341862616
326 => 0.023880832987019
327 => 0.023070858218096
328 => 0.02281430520835
329 => 0.020866736565223
330 => 0.020765357159487
331 => 0.020708449826936
401 => 0.020349657144908
402 => 0.020067744378421
403 => 0.01984355687976
404 => 0.01925522193522
405 => 0.019453767708249
406 => 0.018516084601699
407 => 0.019115981023821
408 => 0.017619416144616
409 => 0.018865799846683
410 => 0.018187449863761
411 => 0.018642943633129
412 => 0.018641354458278
413 => 0.01780264601444
414 => 0.017318896487433
415 => 0.017627160513855
416 => 0.017957644020209
417 => 0.018011263857234
418 => 0.018439744349723
419 => 0.01855932404502
420 => 0.01819699198563
421 => 0.017588403163927
422 => 0.017729764466776
423 => 0.017316031805143
424 => 0.016590981229628
425 => 0.017111725211131
426 => 0.017289530101913
427 => 0.017368058871004
428 => 0.016655054902606
429 => 0.016431013575667
430 => 0.016311735853093
501 => 0.017496363305128
502 => 0.017561259871096
503 => 0.017229239864155
504 => 0.018730001778956
505 => 0.018390333136759
506 => 0.018769826230931
507 => 0.017716937410221
508 => 0.017757159181075
509 => 0.01725870474006
510 => 0.017537805920291
511 => 0.017340546201954
512 => 0.01751525730306
513 => 0.017619978416701
514 => 0.018118351066248
515 => 0.018871490461794
516 => 0.018043910811669
517 => 0.017683322506951
518 => 0.017907029463172
519 => 0.018502790567348
520 => 0.019405399136625
521 => 0.018871036696923
522 => 0.0191081776736
523 => 0.019159982427336
524 => 0.018765963347473
525 => 0.019419927182123
526 => 0.019770391713904
527 => 0.020129895805096
528 => 0.020442043134402
529 => 0.01998630196541
530 => 0.020474010344161
531 => 0.020081003483006
601 => 0.019728435700247
602 => 0.019728970400039
603 => 0.019507799479721
604 => 0.019079252952275
605 => 0.019000222397531
606 => 0.01941134932377
607 => 0.019741034184749
608 => 0.019768188608983
609 => 0.019950719087841
610 => 0.020058738745015
611 => 0.021117478230929
612 => 0.021543312010516
613 => 0.022064013495573
614 => 0.022266856069131
615 => 0.022877339492453
616 => 0.022384324547081
617 => 0.022277657662441
618 => 0.020796824565069
619 => 0.021039310901806
620 => 0.021427554923373
621 => 0.020803226565985
622 => 0.021199219208169
623 => 0.021277396544007
624 => 0.020782012127303
625 => 0.021046618348562
626 => 0.020343902675176
627 => 0.018886807743173
628 => 0.019421549345315
629 => 0.019815299156568
630 => 0.019253369626908
701 => 0.020260606559147
702 => 0.019672199536924
703 => 0.019485702759397
704 => 0.018758112339364
705 => 0.019101507010096
706 => 0.019565953219199
707 => 0.019278979459641
708 => 0.019874493100052
709 => 0.020717899232561
710 => 0.02131896066829
711 => 0.021365102701916
712 => 0.020978660466731
713 => 0.021597936614857
714 => 0.021602447365517
715 => 0.020903901340613
716 => 0.02047604578988
717 => 0.020378836108538
718 => 0.020621684951612
719 => 0.020916548279473
720 => 0.021381465564468
721 => 0.021662405342776
722 => 0.022394947285658
723 => 0.022593152131779
724 => 0.022810919165711
725 => 0.02310192307991
726 => 0.023451347890778
727 => 0.022686826297364
728 => 0.022717202165517
729 => 0.022005290243252
730 => 0.021244510255814
731 => 0.021821847433715
801 => 0.022576638993874
802 => 0.022403488976003
803 => 0.022384006061859
804 => 0.02241677091934
805 => 0.022286221460416
806 => 0.021695751096092
807 => 0.021399220575669
808 => 0.021781820600019
809 => 0.021985155485393
810 => 0.022300510159943
811 => 0.022261636039975
812 => 0.023073955814995
813 => 0.023389598716293
814 => 0.02330884375502
815 => 0.023323704611371
816 => 0.023895161007101
817 => 0.024530738048124
818 => 0.025126039818819
819 => 0.025731606348777
820 => 0.025001572261249
821 => 0.024630905973846
822 => 0.025013338966994
823 => 0.024810414637695
824 => 0.025976478025111
825 => 0.026057213724084
826 => 0.027223192791844
827 => 0.028329845769353
828 => 0.027634776861927
829 => 0.028290195535039
830 => 0.028999084267077
831 => 0.030366645644232
901 => 0.029906099083796
902 => 0.029553327636186
903 => 0.029219960322774
904 => 0.029913644781414
905 => 0.030806058755573
906 => 0.030998276178172
907 => 0.03130974183549
908 => 0.030982273781029
909 => 0.031376672983204
910 => 0.032769075474673
911 => 0.032392836030401
912 => 0.031858515536027
913 => 0.032957683575284
914 => 0.033355468215784
915 => 0.036147329144246
916 => 0.039672168892452
917 => 0.038212862091349
918 => 0.037307023268368
919 => 0.037519916878553
920 => 0.038807069031242
921 => 0.039220461450519
922 => 0.038096718350013
923 => 0.038493643410702
924 => 0.04068073951991
925 => 0.041854046412056
926 => 0.040260538056383
927 => 0.035864111702538
928 => 0.031810405821635
929 => 0.032885631162005
930 => 0.032763733976534
1001 => 0.035113495900082
1002 => 0.032383862844086
1003 => 0.032429822864215
1004 => 0.034828175375901
1005 => 0.034188336043954
1006 => 0.033151878270631
1007 => 0.031817973110393
1008 => 0.029352126050401
1009 => 0.027168056544133
1010 => 0.031451519807092
1011 => 0.031266809082221
1012 => 0.030999320580011
1013 => 0.031594587296399
1014 => 0.034485033501774
1015 => 0.034418399361279
1016 => 0.033994506956486
1017 => 0.034316025609505
1018 => 0.033095514496237
1019 => 0.033410068000647
1020 => 0.031809763693913
1021 => 0.032533168075168
1022 => 0.033149654497746
1023 => 0.033273423274316
1024 => 0.033552280647719
1025 => 0.031169474923534
1026 => 0.032239284738192
1027 => 0.03286769777668
1028 => 0.030028504806929
1029 => 0.03281157606037
1030 => 0.03112799557714
1031 => 0.030556563074601
1101 => 0.031325921658762
1102 => 0.031026101870289
1103 => 0.030768334422168
1104 => 0.03062449575711
1105 => 0.031189427790309
1106 => 0.031163073035721
1107 => 0.030238734580824
1108 => 0.029032972747267
1109 => 0.029437665996392
1110 => 0.029290637144966
1111 => 0.028757785620297
1112 => 0.029116863211185
1113 => 0.027535667225923
1114 => 0.024815301716695
1115 => 0.02661245849914
1116 => 0.026543269917947
1117 => 0.026508381897856
1118 => 0.027858895550099
1119 => 0.027729074824087
1120 => 0.027493448935167
1121 => 0.028753458166067
1122 => 0.028293537847273
1123 => 0.029710903898941
1124 => 0.030644472850058
1125 => 0.030407689566263
1126 => 0.031285715677119
1127 => 0.029446989311486
1128 => 0.030057740453252
1129 => 0.030183615417106
1130 => 0.028737909847744
1201 => 0.027750315100382
1202 => 0.027684453790138
1203 => 0.025972100597152
1204 => 0.026886825851213
1205 => 0.027691746220883
1206 => 0.027306251828155
1207 => 0.027184215819735
1208 => 0.027807671320374
1209 => 0.027856119152308
1210 => 0.026751503449922
1211 => 0.026981188033078
1212 => 0.027939010926724
1213 => 0.026957053353679
1214 => 0.025049270191111
1215 => 0.024576113589628
1216 => 0.024512985776984
1217 => 0.02322974754724
1218 => 0.024607732176226
1219 => 0.024006204957981
1220 => 0.025906422233013
1221 => 0.024821028316584
1222 => 0.024774239154197
1223 => 0.024703510472769
1224 => 0.023598974318525
1225 => 0.02384079753937
1226 => 0.024644654756175
1227 => 0.024931480067231
1228 => 0.024901561837397
1229 => 0.02464071541727
1230 => 0.024760129572655
1231 => 0.024375454971511
]
'min_raw' => 0.013459336360581
'max_raw' => 0.041854046412056
'avg_raw' => 0.027656691386319
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.013459'
'max' => '$0.041854'
'avg' => '$0.027656'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0076673408815178
'max_diff' => 0.026140920807483
'year' => 2033
]
8 => [
'items' => [
101 => 0.024239618363538
102 => 0.023810880663972
103 => 0.023180754687423
104 => 0.02326837756925
105 => 0.022019933128275
106 => 0.021339714336871
107 => 0.02115143874055
108 => 0.02089966874457
109 => 0.02117987683153
110 => 0.022016396442033
111 => 0.021007376314231
112 => 0.019277482079647
113 => 0.019381451670742
114 => 0.019615040473083
115 => 0.019179749285265
116 => 0.018767782707214
117 => 0.019125954222924
118 => 0.018392975230938
119 => 0.019703617482416
120 => 0.019668168282546
121 => 0.020156694664324
122 => 0.02046218023642
123 => 0.019758134894867
124 => 0.019581069395407
125 => 0.019681933951078
126 => 0.018014867524419
127 => 0.020020459771474
128 => 0.020037804216511
129 => 0.01988929054799
130 => 0.020957206503833
131 => 0.023210842262002
201 => 0.02236293383749
202 => 0.022034598067352
203 => 0.021410431528306
204 => 0.022242096382242
205 => 0.022178237497453
206 => 0.021889443402672
207 => 0.021714779833056
208 => 0.022036602815551
209 => 0.021674902404067
210 => 0.021609931071302
211 => 0.021216275484253
212 => 0.021075758349865
213 => 0.020971725057712
214 => 0.020857194625152
215 => 0.021109820220174
216 => 0.020537337386189
217 => 0.019846979209587
218 => 0.019789583396982
219 => 0.019948058281877
220 => 0.019877944942378
221 => 0.019789247721287
222 => 0.019619900570972
223 => 0.019569658889003
224 => 0.019732919981603
225 => 0.019548607726771
226 => 0.019820570498785
227 => 0.019746611673183
228 => 0.019333483685459
301 => 0.018818573253184
302 => 0.018813989470276
303 => 0.018703052862264
304 => 0.018561758412531
305 => 0.018522453528995
306 => 0.019095790016893
307 => 0.020282579388324
308 => 0.020049584237249
309 => 0.020217947112204
310 => 0.021046125822121
311 => 0.021309378929801
312 => 0.021122528109462
313 => 0.020866755182124
314 => 0.020878007892857
315 => 0.0217520614133
316 => 0.021806575059234
317 => 0.021944313455741
318 => 0.022121346220119
319 => 0.021152677554746
320 => 0.020832383685829
321 => 0.020680610681509
322 => 0.020213208571747
323 => 0.020717261675097
324 => 0.020423571517481
325 => 0.020463200353628
326 => 0.020437392022099
327 => 0.020451485116266
328 => 0.019703251131196
329 => 0.019975868269335
330 => 0.019522589402215
331 => 0.018915699882083
401 => 0.018913665375609
402 => 0.019062200725881
403 => 0.01897384608735
404 => 0.018736086026869
405 => 0.018769858721265
406 => 0.018473974381061
407 => 0.018805784437324
408 => 0.018815299562465
409 => 0.018687534616987
410 => 0.019198733789625
411 => 0.019408172507754
412 => 0.019324074883651
413 => 0.01940227199426
414 => 0.020059266237687
415 => 0.020166384966034
416 => 0.020213960029299
417 => 0.020150215747011
418 => 0.019414280642968
419 => 0.01944692249427
420 => 0.019207418247625
421 => 0.019005062397545
422 => 0.019013155570332
423 => 0.019117192781692
424 => 0.019571529385403
425 => 0.020527653983309
426 => 0.020563938212881
427 => 0.020607915757609
428 => 0.020429036981859
429 => 0.020375085431453
430 => 0.020446261452515
501 => 0.020805331580845
502 => 0.021728957437499
503 => 0.02140248637286
504 => 0.021137060315485
505 => 0.021369910526154
506 => 0.021334065061362
507 => 0.021031493264914
508 => 0.021023001082334
509 => 0.020442269066895
510 => 0.020227585663416
511 => 0.020048180142694
512 => 0.019852273997566
513 => 0.0197361342679
514 => 0.01991457767723
515 => 0.019955389796224
516 => 0.019565220163068
517 => 0.019512041483795
518 => 0.019830662428626
519 => 0.019690449230192
520 => 0.019834661981902
521 => 0.019868120577333
522 => 0.019862732972851
523 => 0.019716334290303
524 => 0.019809644444888
525 => 0.019588938112198
526 => 0.019348953124418
527 => 0.019195857653807
528 => 0.019062261550532
529 => 0.01913638843328
530 => 0.018872139631317
531 => 0.018787601121291
601 => 0.019778033064059
602 => 0.02050967578912
603 => 0.020499037414135
604 => 0.020434279042384
605 => 0.020338061237717
606 => 0.02079829264913
607 => 0.020637957228011
608 => 0.020754614643348
609 => 0.020784308851647
610 => 0.020874184276846
611 => 0.020906307016301
612 => 0.020809209786991
613 => 0.020483339626001
614 => 0.019671302167617
615 => 0.019293296538686
616 => 0.019168548384957
617 => 0.019173082743415
618 => 0.019048004894888
619 => 0.019084845926875
620 => 0.019035193087435
621 => 0.018941162621847
622 => 0.019130582317001
623 => 0.019152411172301
624 => 0.019108198352055
625 => 0.019118612071751
626 => 0.018752548803659
627 => 0.018780379798884
628 => 0.018625413280877
629 => 0.0185963589269
630 => 0.018204617063857
701 => 0.017510589569586
702 => 0.017895148172291
703 => 0.017430655457346
704 => 0.017254745027982
705 => 0.018087477640903
706 => 0.018003894382973
707 => 0.017860836178166
708 => 0.017649223277314
709 => 0.01757073399395
710 => 0.017093857954918
711 => 0.017065681574498
712 => 0.017302034216178
713 => 0.01719296560444
714 => 0.017039791966047
715 => 0.01648501257475
716 => 0.015861256857789
717 => 0.015880084122095
718 => 0.016078489210273
719 => 0.016655378762721
720 => 0.016429978034289
721 => 0.016266447219636
722 => 0.01623582281377
723 => 0.016619151369723
724 => 0.017161641586211
725 => 0.017416165858253
726 => 0.017163940034676
727 => 0.016874196589355
728 => 0.016891831930329
729 => 0.017009151953063
730 => 0.017021480628637
731 => 0.01683288743184
801 => 0.016885975312047
802 => 0.016805329967555
803 => 0.016310409637264
804 => 0.016301458097898
805 => 0.016179996667176
806 => 0.016176318863326
807 => 0.015969682669694
808 => 0.015940772837796
809 => 0.01553048413342
810 => 0.015800537401109
811 => 0.015619399847576
812 => 0.015346382828373
813 => 0.015299314591356
814 => 0.015297899663315
815 => 0.015578227096548
816 => 0.015797261611837
817 => 0.015622550812872
818 => 0.015582772550574
819 => 0.016007500323495
820 => 0.015953449842911
821 => 0.015906642475314
822 => 0.017113067537409
823 => 0.016158087962239
824 => 0.015741662359137
825 => 0.01522625659822
826 => 0.015394075312876
827 => 0.015429437181824
828 => 0.014189979235691
829 => 0.013687131301309
830 => 0.013514572839654
831 => 0.013415263005353
901 => 0.013460519743898
902 => 0.013007897624775
903 => 0.013312067174505
904 => 0.012920134678539
905 => 0.012854425920132
906 => 0.013555249774038
907 => 0.013652765319155
908 => 0.013236733707979
909 => 0.013503893351754
910 => 0.013407017551124
911 => 0.012926853236268
912 => 0.01290851449129
913 => 0.012667584916687
914 => 0.012290576785591
915 => 0.012118273953202
916 => 0.012028537142092
917 => 0.012065564299292
918 => 0.012046842235562
919 => 0.011924668105633
920 => 0.012053845113678
921 => 0.011723851237749
922 => 0.011592445017412
923 => 0.011533091876287
924 => 0.011240203317662
925 => 0.011706319262569
926 => 0.011798149975689
927 => 0.011890161623683
928 => 0.012691060200445
929 => 0.012651049570866
930 => 0.013012726176295
1001 => 0.012998672088488
1002 => 0.012895516061848
1003 => 0.012460317753793
1004 => 0.012633780042719
1005 => 0.012099890079428
1006 => 0.012499916740914
1007 => 0.012317361278125
1008 => 0.012438194555311
1009 => 0.012220925427833
1010 => 0.012341171133801
1011 => 0.011819926444465
1012 => 0.011333195487673
1013 => 0.011529070233249
1014 => 0.011742008482683
1015 => 0.012203712863115
1016 => 0.011928725543108
1017 => 0.012027621381804
1018 => 0.011696336877136
1019 => 0.011012802317264
1020 => 0.011016671048641
1021 => 0.010911524148215
1022 => 0.010820661874548
1023 => 0.011960311144745
1024 => 0.011818577742807
1025 => 0.011592744116428
1026 => 0.011895031399608
1027 => 0.011974960955225
1028 => 0.011977236437305
1029 => 0.012197777435949
1030 => 0.01231548020646
1031 => 0.012336225829915
1101 => 0.012683251856385
1102 => 0.012799570403074
1103 => 0.013278670034868
1104 => 0.012305493948725
1105 => 0.012285452027648
1106 => 0.011899285201596
1107 => 0.011654372095458
1108 => 0.011916054611505
1109 => 0.012147869597498
1110 => 0.011906488339392
1111 => 0.011938007635865
1112 => 0.011613973018431
1113 => 0.011729800146918
1114 => 0.01182956607357
1115 => 0.011774481192843
1116 => 0.011692016460256
1117 => 0.01212886341223
1118 => 0.012104214795182
1119 => 0.012511016719929
1120 => 0.012828147910953
1121 => 0.01339650369925
1122 => 0.012803394805105
1123 => 0.012781779559608
1124 => 0.012993072051535
1125 => 0.012799538055294
1126 => 0.012921844860352
1127 => 0.013376798182099
1128 => 0.013386410628882
1129 => 0.013225389760337
1130 => 0.013215591625853
1201 => 0.013246517445032
1202 => 0.013427650933915
1203 => 0.013364357327229
1204 => 0.013437602291284
1205 => 0.013529196240401
1206 => 0.01390806764898
1207 => 0.013999412262925
1208 => 0.01377749220779
1209 => 0.013797529104036
1210 => 0.013714524911574
1211 => 0.013634343901695
1212 => 0.013814579102406
1213 => 0.014143962474238
1214 => 0.014141913397377
1215 => 0.014218323937344
1216 => 0.014265927070724
1217 => 0.014061579574632
1218 => 0.013928556868742
1219 => 0.013979566238635
1220 => 0.014061131331933
1221 => 0.013953115778185
1222 => 0.013286393742778
1223 => 0.013488634617952
1224 => 0.013454971847249
1225 => 0.013407031968236
1226 => 0.013610386732106
1227 => 0.013590772669044
1228 => 0.013003255330734
1229 => 0.013040866284537
1230 => 0.013005542577406
1231 => 0.013119680701697
]
'min_raw' => 0.010820661874548
'max_raw' => 0.024239618363538
'avg_raw' => 0.017530140119043
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.01082'
'max' => '$0.024239'
'avg' => '$0.01753'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0026386744860338
'max_diff' => -0.017614428048518
'year' => 2034
]
9 => [
'items' => [
101 => 0.012793374222013
102 => 0.012893743897456
103 => 0.012956694816987
104 => 0.012993773392202
105 => 0.013127726630897
106 => 0.013112008764419
107 => 0.013126749586248
108 => 0.013325366876888
109 => 0.014329904975724
110 => 0.014384579768055
111 => 0.01411534109425
112 => 0.014222896633937
113 => 0.014016413517549
114 => 0.014155027016897
115 => 0.01424986285275
116 => 0.013821317946414
117 => 0.013795942298294
118 => 0.013588606952634
119 => 0.013700017223317
120 => 0.013522755471978
121 => 0.013566249305404
122 => 0.013444636755421
123 => 0.013663515132573
124 => 0.01390825516849
125 => 0.013970086166639
126 => 0.013807435430426
127 => 0.013689665578202
128 => 0.013482900513498
129 => 0.013826755424161
130 => 0.013927309078828
131 => 0.01382622725862
201 => 0.013802804392197
202 => 0.013758418102649
203 => 0.013812221153352
204 => 0.013926761442029
205 => 0.013872746357116
206 => 0.013908424272325
207 => 0.013772456850456
208 => 0.014061647222156
209 => 0.014520951129869
210 => 0.014522427867036
211 => 0.014468412490961
212 => 0.014446310562849
213 => 0.014501733616629
214 => 0.014531798349731
215 => 0.014711026342805
216 => 0.014903345120131
217 => 0.015800812938656
218 => 0.01554880756649
219 => 0.016345094405685
220 => 0.016974853910583
221 => 0.017163691250056
222 => 0.016989969783224
223 => 0.016395678029441
224 => 0.016366519240782
225 => 0.01725464202444
226 => 0.017003706659456
227 => 0.016973858696261
228 => 0.016656326796795
301 => 0.01684402747647
302 => 0.016802974584422
303 => 0.016738170585949
304 => 0.017096290407427
305 => 0.017766658743657
306 => 0.017662175551781
307 => 0.017584183695882
308 => 0.017242446086417
309 => 0.017448248457173
310 => 0.017374966174832
311 => 0.017689833365856
312 => 0.017503313017056
313 => 0.017001805577265
314 => 0.017081672290042
315 => 0.017069600597075
316 => 0.01731803518292
317 => 0.017243461286775
318 => 0.017055038846984
319 => 0.017764367497562
320 => 0.017718307640487
321 => 0.01778360998707
322 => 0.017812358099579
323 => 0.018244113949413
324 => 0.018420990506443
325 => 0.018461144581549
326 => 0.018629163630605
327 => 0.018456964114547
328 => 0.019145884954952
329 => 0.019603977114176
330 => 0.020136074730321
331 => 0.020913612361866
401 => 0.021205973703952
402 => 0.021153161244329
403 => 0.021742681402652
404 => 0.022802036022861
405 => 0.021367287101181
406 => 0.022878081199552
407 => 0.022399781230965
408 => 0.021265740609692
409 => 0.021192721763143
410 => 0.021960707238351
411 => 0.0236640251065
412 => 0.0232373632994
413 => 0.023664722972369
414 => 0.023166185213305
415 => 0.023141428611561
416 => 0.023640510106168
417 => 0.024806641221834
418 => 0.024252656040552
419 => 0.023458382440446
420 => 0.024044861706498
421 => 0.02353679909015
422 => 0.022391991817745
423 => 0.023237037039157
424 => 0.022671979365101
425 => 0.022836893234509
426 => 0.024024560419389
427 => 0.023881657161526
428 => 0.024066587209686
429 => 0.023740190515147
430 => 0.023435284534413
501 => 0.022866154878757
502 => 0.02269766364547
503 => 0.022744228560671
504 => 0.022697640570211
505 => 0.022379217758443
506 => 0.022310454382559
507 => 0.022195845743494
508 => 0.022231367753063
509 => 0.022015869981679
510 => 0.022422558800392
511 => 0.022498043828875
512 => 0.022793998036101
513 => 0.022824724983685
514 => 0.023648953238166
515 => 0.023194982166191
516 => 0.023499545155248
517 => 0.023472302174849
518 => 0.021290318708667
519 => 0.021590976778504
520 => 0.02205870638347
521 => 0.021847994830425
522 => 0.02155009799333
523 => 0.021309530325157
524 => 0.020945045708569
525 => 0.02145805080711
526 => 0.022132597959681
527 => 0.022841832612647
528 => 0.02369393157729
529 => 0.023503753007907
530 => 0.02282590321521
531 => 0.022856311061741
601 => 0.023044280403948
602 => 0.022800843026975
603 => 0.022729048592043
604 => 0.023034416951067
605 => 0.023036519855128
606 => 0.02275641573253
607 => 0.022445131258777
608 => 0.022443826965466
609 => 0.022388436900012
610 => 0.023176038982899
611 => 0.023609140492935
612 => 0.023658794883083
613 => 0.023605798356853
614 => 0.023626194616442
615 => 0.023374182390493
616 => 0.023950207607108
617 => 0.024478825308865
618 => 0.024337144472524
619 => 0.024124744757732
620 => 0.023955558154343
621 => 0.024297289485593
622 => 0.024282072727348
623 => 0.024474208294396
624 => 0.024465491915246
625 => 0.024400883950632
626 => 0.024337146779878
627 => 0.024589857457393
628 => 0.024517080840678
629 => 0.024444191181776
630 => 0.024297999811999
701 => 0.024317869647133
702 => 0.024105506606146
703 => 0.024007257746314
704 => 0.022529830626415
705 => 0.022135013823654
706 => 0.02225923122704
707 => 0.022300126821538
708 => 0.022128302043005
709 => 0.022374654637257
710 => 0.022336260846395
711 => 0.022485628627023
712 => 0.022392310122482
713 => 0.022396139946459
714 => 0.022670569770713
715 => 0.022750237916202
716 => 0.022709718054405
717 => 0.022738096776668
718 => 0.0233920724533
719 => 0.023299098025048
720 => 0.023249707213088
721 => 0.023263388805544
722 => 0.02343049361232
723 => 0.023477273834633
724 => 0.023279062745504
725 => 0.023372540240982
726 => 0.023770555552666
727 => 0.023909838386039
728 => 0.024354362330615
729 => 0.024165520658176
730 => 0.024512147720814
731 => 0.025577561137488
801 => 0.026428687095729
802 => 0.025645956490263
803 => 0.027208940922335
804 => 0.028425948499503
805 => 0.028379237721659
806 => 0.028167024300687
807 => 0.026781493529902
808 => 0.025506507457525
809 => 0.026573087445836
810 => 0.026575806377571
811 => 0.026484186210672
812 => 0.02591514122279
813 => 0.02646438467857
814 => 0.02650798162953
815 => 0.026483578930358
816 => 0.026047293472345
817 => 0.025381166216992
818 => 0.025511325888204
819 => 0.025724530084836
820 => 0.025320890061557
821 => 0.025191902616708
822 => 0.025431714817548
823 => 0.026204439695511
824 => 0.026058360533422
825 => 0.026054545816148
826 => 0.026679534418767
827 => 0.026232177460274
828 => 0.025512967618487
829 => 0.025331357648224
830 => 0.024686764600923
831 => 0.025131987314655
901 => 0.025148010087508
902 => 0.024904166157263
903 => 0.025532754209526
904 => 0.025526961659964
905 => 0.026123712462603
906 => 0.027264475867884
907 => 0.026927095995384
908 => 0.026534759910493
909 => 0.026577417721221
910 => 0.027045268616451
911 => 0.026762395285197
912 => 0.026864118507379
913 => 0.027045114646171
914 => 0.027154314110585
915 => 0.026561705598776
916 => 0.026423540206931
917 => 0.02614090230468
918 => 0.026067167351669
919 => 0.026297370025619
920 => 0.026236719754214
921 => 0.025146663435493
922 => 0.02503274648517
923 => 0.025036240155401
924 => 0.024749790567359
925 => 0.024312886189818
926 => 0.025461044807792
927 => 0.0253688316023
928 => 0.025267035360171
929 => 0.02527950481899
930 => 0.025777881560347
1001 => 0.025488797881731
1002 => 0.026257374221214
1003 => 0.026099378031336
1004 => 0.025937329835362
1005 => 0.025914929838569
1006 => 0.025852555108421
1007 => 0.02563864895013
1008 => 0.025380344410226
1009 => 0.025209789379025
1010 => 0.023254698117726
1011 => 0.023617551683581
1012 => 0.024034981635953
1013 => 0.024179076782766
1014 => 0.023932592063061
1015 => 0.025648381669206
1016 => 0.025961872964009
1017 => 0.02501228738352
1018 => 0.024834658692735
1019 => 0.025660026976602
1020 => 0.025162229004261
1021 => 0.025386387400726
1022 => 0.024901879555656
1023 => 0.025886362091188
1024 => 0.025878861983726
1025 => 0.025495876041858
1026 => 0.02581957313735
1027 => 0.025763322801214
1028 => 0.025330932616098
1029 => 0.025900069631296
1030 => 0.025900351916155
1031 => 0.025531736273939
1101 => 0.025101273904172
1102 => 0.025024317399525
1103 => 0.024966341010925
1104 => 0.025372128763147
1105 => 0.025735956792925
1106 => 0.026412950555723
1107 => 0.026583162872665
1108 => 0.027247512877367
1109 => 0.026851924796182
1110 => 0.027027283868848
1111 => 0.027217660948283
1112 => 0.027308934721049
1113 => 0.027160209006347
1114 => 0.028192218021021
1115 => 0.028279351201798
1116 => 0.028308566203614
1117 => 0.027960578570399
1118 => 0.028269673036214
1119 => 0.028125057971792
1120 => 0.028501306194195
1121 => 0.028560306719647
1122 => 0.028510335373594
1123 => 0.028529063071632
1124 => 0.027648425436474
1125 => 0.027602759729357
1126 => 0.026980104572532
1127 => 0.027233841151373
1128 => 0.02675949277914
1129 => 0.026909913534305
1130 => 0.02697621756992
1201 => 0.026941584104436
1202 => 0.027248187036837
1203 => 0.026987511909455
1204 => 0.026299547389335
1205 => 0.025611395433741
1206 => 0.025602756246495
1207 => 0.025421577983478
1208 => 0.025290619283771
1209 => 0.025315846575344
1210 => 0.025404750841295
1211 => 0.025285452006214
1212 => 0.025310910461283
1213 => 0.025733690444224
1214 => 0.025818475954674
1215 => 0.025530341662328
1216 => 0.024373440900978
1217 => 0.024089534552277
1218 => 0.024293600805615
1219 => 0.024196070280069
1220 => 0.019528117141874
1221 => 0.020624783490965
1222 => 0.019973181585606
1223 => 0.020273469722358
1224 => 0.019608352908481
1225 => 0.019925781513822
1226 => 0.019867164041052
1227 => 0.021630571077674
1228 => 0.021603037902285
1229 => 0.02161621657632
1230 => 0.020987164127736
1231 => 0.021989261758966
]
'min_raw' => 0.012793374222013
'max_raw' => 0.028560306719647
'avg_raw' => 0.02067684047083
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012793'
'max' => '$0.02856'
'avg' => '$0.020676'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019727123474654
'max_diff' => 0.0043206883561085
'year' => 2035
]
10 => [
'items' => [
101 => 0.022482931086376
102 => 0.022391566032456
103 => 0.022414560648145
104 => 0.022019436965805
105 => 0.021620042237263
106 => 0.021177052016902
107 => 0.022000073091087
108 => 0.021908567197076
109 => 0.022118448795155
110 => 0.022652236792525
111 => 0.022730839102801
112 => 0.022836481404919
113 => 0.022798616159741
114 => 0.023700719920257
115 => 0.023591469202586
116 => 0.023854731998596
117 => 0.023313180453407
118 => 0.022700363475482
119 => 0.022816839948489
120 => 0.022805622327494
121 => 0.022662809137238
122 => 0.022533883774685
123 => 0.022319259370529
124 => 0.022998362743713
125 => 0.02297079238695
126 => 0.023417124415907
127 => 0.023338230894351
128 => 0.022811360648879
129 => 0.022830177922769
130 => 0.022956733132954
131 => 0.023394742160385
201 => 0.023524773061655
202 => 0.023464537567351
203 => 0.023607110514458
204 => 0.023719794358684
205 => 0.023621261870382
206 => 0.025016274118109
207 => 0.024436967772938
208 => 0.024719317654787
209 => 0.024786656437906
210 => 0.024614169560929
211 => 0.024651575788253
212 => 0.024708236030063
213 => 0.025052265923117
214 => 0.025955099908343
215 => 0.0263549589346
216 => 0.027557954543794
217 => 0.026321756208776
218 => 0.026248405315473
219 => 0.026465101151676
220 => 0.02717138692429
221 => 0.027743765204945
222 => 0.027933656101933
223 => 0.027958753318727
224 => 0.028315001265185
225 => 0.028519195944464
226 => 0.028271743394234
227 => 0.028062053267276
228 => 0.027310969260209
229 => 0.027397909279161
301 => 0.027996839795471
302 => 0.02884286442659
303 => 0.029568841573951
304 => 0.029314629679803
305 => 0.031254086986521
306 => 0.031446376256509
307 => 0.031419808096853
308 => 0.031857871670367
309 => 0.030988404687038
310 => 0.030616690706535
311 => 0.028107390652808
312 => 0.028812401614886
313 => 0.029837176452109
314 => 0.029701543659694
315 => 0.028957324780593
316 => 0.029568277017195
317 => 0.029366277101532
318 => 0.029206951387064
319 => 0.029936853371851
320 => 0.029134296156856
321 => 0.029829170329965
322 => 0.0289379870154
323 => 0.029315790898322
324 => 0.029101331142058
325 => 0.02924011288756
326 => 0.028428797639132
327 => 0.028866563653619
328 => 0.028410585133688
329 => 0.0284103689405
330 => 0.0284003031894
331 => 0.02893675989598
401 => 0.028954253729922
402 => 0.028557811413218
403 => 0.028500677881788
404 => 0.028711930492381
405 => 0.028464609012523
406 => 0.028580329176326
407 => 0.028468114058399
408 => 0.028442852071742
409 => 0.028241560264083
410 => 0.02815483821871
411 => 0.028188844167253
412 => 0.028072764333609
413 => 0.028002822035048
414 => 0.028386389905794
415 => 0.028181465065538
416 => 0.028354982234989
417 => 0.028157237520787
418 => 0.027471768188093
419 => 0.027077547526154
420 => 0.025782759499736
421 => 0.026149959777849
422 => 0.026393413942134
423 => 0.02631295234229
424 => 0.02648581499326
425 => 0.026496427356097
426 => 0.026440227946141
427 => 0.026375156229001
428 => 0.02634348291579
429 => 0.026579549843012
430 => 0.026716594639911
501 => 0.026417847824516
502 => 0.026347855625581
503 => 0.026649905150209
504 => 0.026834155185744
505 => 0.028194553926982
506 => 0.028093771194201
507 => 0.028346716075869
508 => 0.028318238363949
509 => 0.028583364897216
510 => 0.029016734728276
511 => 0.028135572689622
512 => 0.028288511951241
513 => 0.028251014776175
514 => 0.028660399101256
515 => 0.028661677154433
516 => 0.028416230801284
517 => 0.028549291251238
518 => 0.028475020558396
519 => 0.028609237738648
520 => 0.028092425179361
521 => 0.028721847090105
522 => 0.029078688754444
523 => 0.0290836435013
524 => 0.029252783618126
525 => 0.029424639772757
526 => 0.029754502696054
527 => 0.02941544007486
528 => 0.028805499426412
529 => 0.028849535171134
530 => 0.028491927192117
531 => 0.028497938646852
601 => 0.028465849030353
602 => 0.028562152385059
603 => 0.028113558350111
604 => 0.028218842473476
605 => 0.028071444084222
606 => 0.028288191535929
607 => 0.02805500710753
608 => 0.028250996693902
609 => 0.028335579302223
610 => 0.028647690947859
611 => 0.028008907963699
612 => 0.026706386217189
613 => 0.026980192079855
614 => 0.026575211701986
615 => 0.026612694177827
616 => 0.026688414744317
617 => 0.026442979614094
618 => 0.026489800902391
619 => 0.026488128116496
620 => 0.026473712951372
621 => 0.026409865794846
622 => 0.026317274786109
623 => 0.026686128866907
624 => 0.026748804362828
625 => 0.026888124226409
626 => 0.027302645638861
627 => 0.027261225174669
628 => 0.027328783670284
629 => 0.02718130385368
630 => 0.026619535343537
701 => 0.026650042076387
702 => 0.026269622628902
703 => 0.026878396045838
704 => 0.026734230465291
705 => 0.02664128597766
706 => 0.026615925213085
707 => 0.02703147414394
708 => 0.027155812896984
709 => 0.02707833333015
710 => 0.026919420478135
711 => 0.027224580132372
712 => 0.027306227982193
713 => 0.027324505924711
714 => 0.027865190323458
715 => 0.027354724176347
716 => 0.027477598451554
717 => 0.028436228470709
718 => 0.027566883325235
719 => 0.028027394837503
720 => 0.028004855195364
721 => 0.02824043730218
722 => 0.027985530586478
723 => 0.027988690460722
724 => 0.028197871411861
725 => 0.02790411449197
726 => 0.027831376147492
727 => 0.027730888645558
728 => 0.02795029942977
729 => 0.028081826271808
730 => 0.029141836022819
731 => 0.029826650664289
801 => 0.029796921054633
802 => 0.030068594035395
803 => 0.029946202869322
804 => 0.029550969508916
805 => 0.030225584661556
806 => 0.030012108200164
807 => 0.030029706940267
808 => 0.030029051914281
809 => 0.030170995098671
810 => 0.030070415343629
811 => 0.029872162322142
812 => 0.030003771929886
813 => 0.030394605413592
814 => 0.03160776453925
815 => 0.032286664458189
816 => 0.031566893911678
817 => 0.032063381996549
818 => 0.031765666062419
819 => 0.031711562220906
820 => 0.032023393428387
821 => 0.032335770455116
822 => 0.032315873388957
823 => 0.032089103708289
824 => 0.031961007269747
825 => 0.03293099641784
826 => 0.03364566789882
827 => 0.033596932095036
828 => 0.033812036083208
829 => 0.034443588045398
830 => 0.034501329241953
831 => 0.034494055178354
901 => 0.034350937598019
902 => 0.034972782522181
903 => 0.035491536498236
904 => 0.034317810013236
905 => 0.034764749693517
906 => 0.034965395315491
907 => 0.035260002617424
908 => 0.035757054517701
909 => 0.036296984717908
910 => 0.03637333676825
911 => 0.03631916133475
912 => 0.035963062853611
913 => 0.036553860921384
914 => 0.036899936573566
915 => 0.037106016704639
916 => 0.037628601628578
917 => 0.034966634434545
918 => 0.033082361746254
919 => 0.03278810535675
920 => 0.033386487295868
921 => 0.033544275841206
922 => 0.03348067147643
923 => 0.031359751255181
924 => 0.03277693915072
925 => 0.034301714165776
926 => 0.034360286983947
927 => 0.035123621238026
928 => 0.035372194161283
929 => 0.035986778288324
930 => 0.035948335883845
1001 => 0.03609797733861
1002 => 0.036063577359588
1003 => 0.037201965038977
1004 => 0.038457775701548
1005 => 0.038414290971537
1006 => 0.038233753330715
1007 => 0.038501882513578
1008 => 0.039798013698201
1009 => 0.0396786867088
1010 => 0.039794602714755
1011 => 0.041322814428178
1012 => 0.04330970704121
1013 => 0.0423865959417
1014 => 0.044389481409574
1015 => 0.045650191643204
1016 => 0.047830459632395
1017 => 0.047557479342102
1018 => 0.048406241670749
1019 => 0.047068787649772
1020 => 0.043997722873554
1021 => 0.043511715117154
1022 => 0.044484714953144
1023 => 0.046876740105989
1024 => 0.044409381568586
1025 => 0.044908524987208
1026 => 0.044764771649066
1027 => 0.044757111644588
1028 => 0.045049462859995
1029 => 0.044625392174034
1030 => 0.042897651910567
1031 => 0.043689465091676
1101 => 0.043383707996458
1102 => 0.043722968289304
1103 => 0.045553816168208
1104 => 0.044744354678982
1105 => 0.043891652755395
1106 => 0.044961130197279
1107 => 0.046322942493117
1108 => 0.046237722727056
1109 => 0.046072360761797
1110 => 0.047004497501888
1111 => 0.048544114306078
1112 => 0.048960266541569
1113 => 0.049267461613951
1114 => 0.049309818624329
1115 => 0.04974612215596
1116 => 0.047400008103736
1117 => 0.051123351357097
1118 => 0.051766269881671
1119 => 0.051645427845293
1120 => 0.05236000472721
1121 => 0.052149758081484
1122 => 0.051845143678516
1123 => 0.052977900031215
1124 => 0.051679286281569
1125 => 0.049836067554872
1126 => 0.048824841306674
1127 => 0.050156505603596
1128 => 0.050969706521048
1129 => 0.05150718059819
1130 => 0.051669819929183
1201 => 0.04758213025908
1202 => 0.045379092240557
1203 => 0.046791214352548
1204 => 0.048514100788639
1205 => 0.047390437382593
1206 => 0.047434482860734
1207 => 0.04583243413726
1208 => 0.048655846552477
1209 => 0.048244499112216
1210 => 0.050378570359951
1211 => 0.049869257129687
1212 => 0.051609509388046
1213 => 0.051151242646216
1214 => 0.053053482270205
1215 => 0.053812337157296
1216 => 0.055086572619054
1217 => 0.056023905411794
1218 => 0.05657432515601
1219 => 0.05654128001914
1220 => 0.058722317263753
1221 => 0.057436235800242
1222 => 0.055820614375945
1223 => 0.055791392881599
1224 => 0.056628146110776
1225 => 0.058381751327092
1226 => 0.058836435645764
1227 => 0.059090542150727
1228 => 0.058701369192866
1229 => 0.057305419938513
1230 => 0.056702656128108
1231 => 0.057216228358322
]
'min_raw' => 0.021177052016902
'max_raw' => 0.059090542150727
'avg_raw' => 0.040133797083814
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.021177'
'max' => '$0.05909'
'avg' => '$0.040133'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0083836777948891
'max_diff' => 0.03053023543108
'year' => 2036
]
11 => [
'items' => [
101 => 0.056588173652534
102 => 0.057672372275751
103 => 0.059161208557756
104 => 0.058853769753019
105 => 0.059881491583454
106 => 0.060945075558465
107 => 0.062466048411277
108 => 0.062863687036463
109 => 0.063520968563054
110 => 0.064197527159649
111 => 0.06441481954711
112 => 0.064829698136642
113 => 0.064827511521685
114 => 0.066077776075788
115 => 0.067456856596433
116 => 0.067977427567189
117 => 0.069174451809992
118 => 0.067124589742924
119 => 0.068679433667913
120 => 0.070081941808521
121 => 0.068409813784665
122 => 0.070714452709689
123 => 0.070803936616723
124 => 0.072155037372758
125 => 0.070785437916932
126 => 0.069972174131978
127 => 0.072320036206542
128 => 0.073456092707461
129 => 0.07311390324385
130 => 0.07050982452979
131 => 0.068994139024018
201 => 0.065027297701511
202 => 0.069726192602813
203 => 0.072014887240593
204 => 0.070503897363587
205 => 0.071265952768516
206 => 0.075423479960519
207 => 0.077006397135283
208 => 0.076677161428358
209 => 0.076732796843147
210 => 0.077586910218671
211 => 0.081374519294569
212 => 0.0791048961402
213 => 0.080839938000558
214 => 0.081760197947133
215 => 0.082614986672156
216 => 0.08051589572225
217 => 0.077785009238193
218 => 0.076920022853877
219 => 0.070353659198674
220 => 0.070011851454149
221 => 0.069819984409312
222 => 0.068610289831749
223 => 0.067659801257016
224 => 0.06690393745301
225 => 0.06492032511126
226 => 0.06558973604705
227 => 0.062428271986371
228 => 0.064450864656986
301 => 0.059405091679924
302 => 0.063607361351175
303 => 0.061320257022869
304 => 0.062855986067853
305 => 0.062850628053889
306 => 0.060022863978737
307 => 0.05839186867412
308 => 0.059431202361509
309 => 0.060545450576801
310 => 0.060726233600951
311 => 0.062170885496931
312 => 0.06257405678841
313 => 0.06135242895296
314 => 0.059300529250276
315 => 0.05977713875236
316 => 0.058382210197773
317 => 0.055937651561011
318 => 0.057693376251832
319 => 0.058292857855044
320 => 0.058557623082736
321 => 0.056153680422937
322 => 0.055398309447094
323 => 0.054996156277731
324 => 0.058990210440315
325 => 0.059209013743409
326 => 0.058089585109112
327 => 0.063149508684715
328 => 0.062004292142639
329 => 0.063283779605002
330 => 0.05973389143563
331 => 0.059869501944259
401 => 0.058188927995396
402 => 0.059129937110768
403 => 0.058464862198163
404 => 0.059053912873479
405 => 0.059406987419516
406 => 0.06108728560273
407 => 0.063626547657327
408 => 0.060836305087165
409 => 0.059620556442335
410 => 0.060374800063957
411 => 0.0623834502214
412 => 0.065426658030834
413 => 0.063625017757384
414 => 0.064424555116905
415 => 0.06459921846102
416 => 0.063270755623726
417 => 0.065475640350545
418 => 0.066657255988099
419 => 0.067869349131325
420 => 0.06892177564551
421 => 0.067385212475421
422 => 0.069029555325095
423 => 0.067704505253845
424 => 0.066515798358776
425 => 0.066517601136459
426 => 0.065771907936945
427 => 0.064327033399498
428 => 0.06406057636644
429 => 0.06544671950222
430 => 0.066558275028873
501 => 0.06664982806604
502 => 0.06726524231938
503 => 0.067629438135236
504 => 0.071199052230824
505 => 0.072634780549466
506 => 0.074390361960555
507 => 0.075074259859321
508 => 0.077132547343641
509 => 0.075470313034117
510 => 0.075110678185307
511 => 0.070117946009053
512 => 0.070935505623216
513 => 0.072244497448261
514 => 0.070139530802116
515 => 0.071474647642561
516 => 0.071738227988507
517 => 0.070068004840955
518 => 0.070960143190145
519 => 0.068590888235284
520 => 0.063678190940916
521 => 0.065481109587003
522 => 0.066808664566376
523 => 0.064914079924461
524 => 0.068310049564543
525 => 0.06632619420785
526 => 0.06569740730163
527 => 0.063244285401745
528 => 0.06440206450917
529 => 0.065967977329761
530 => 0.06500042526354
531 => 0.067008241079621
601 => 0.069851843740112
602 => 0.071878364335443
603 => 0.072033935423346
604 => 0.070731018446883
605 => 0.07281895121677
606 => 0.07283415952755
607 => 0.070478962833662
608 => 0.069036417972446
609 => 0.068708668744837
610 => 0.069527450574425
611 => 0.070521602871008
612 => 0.072089103956858
613 => 0.073036312034013
614 => 0.075506128338886
615 => 0.076174389815802
616 => 0.076908606574712
617 => 0.077889746588679
618 => 0.079067856734583
619 => 0.076490218805194
620 => 0.076592633165447
621 => 0.074192372415426
622 => 0.071627349571818
623 => 0.073573882175505
624 => 0.076118714618445
625 => 0.075534927244245
626 => 0.075469239238953
627 => 0.07557970824352
628 => 0.075139551628086
629 => 0.073148739569444
630 => 0.072148966216737
701 => 0.073438928911114
702 => 0.074124486673541
703 => 0.075187726976145
704 => 0.075056660166569
705 => 0.077795453002406
706 => 0.078859665081616
707 => 0.078587394091552
708 => 0.078637498506291
709 => 0.080564203642306
710 => 0.082707096010688
711 => 0.08471419749323
712 => 0.086755907328287
713 => 0.084294546432835
714 => 0.083044819165759
715 => 0.084334218702778
716 => 0.083650045158823
717 => 0.08758150928144
718 => 0.087853715327314
719 => 0.091784895160327
720 => 0.095516052938043
721 => 0.093172579588494
722 => 0.095382369404761
723 => 0.09777243725786
724 => 0.10238326592102
725 => 0.10083050103818
726 => 0.099641107472846
727 => 0.098517136300716
728 => 0.10085594188452
729 => 0.10386477790475
730 => 0.10451285236524
731 => 0.10556298057472
801 => 0.10445889916602
802 => 0.10578864361222
803 => 0.11048322582665
804 => 0.10921470827209
805 => 0.10741320942024
806 => 0.11111913120606
807 => 0.11246028989394
808 => 0.12187324393575
809 => 0.13375748724328
810 => 0.12883733247782
811 => 0.12578323364249
812 => 0.12650101931298
813 => 0.13084074266187
814 => 0.1322345240656
815 => 0.128445745745
816 => 0.12978400629954
817 => 0.13715795352991
818 => 0.14111383963445
819 => 0.1357412149581
820 => 0.12091835655742
821 => 0.10725100415925
822 => 0.11087620146415
823 => 0.11046521659274
824 => 0.11838760297312
825 => 0.10918445454794
826 => 0.10933941196463
827 => 0.1174256249054
828 => 0.11526836192559
829 => 0.11177387217966
830 => 0.10727651780163
831 => 0.098962742278925
901 => 0.091598999451679
902 => 0.1060409949046
903 => 0.10541822979961
904 => 0.10451637363896
905 => 0.10652335693345
906 => 0.11626869811938
907 => 0.11604403646246
908 => 0.11461485362447
909 => 0.11569887621085
910 => 0.1115838377791
911 => 0.11264437688064
912 => 0.10724883918081
913 => 0.10968784755869
914 => 0.11176637457412
915 => 0.11218366964559
916 => 0.11312385674921
917 => 0.10509006088794
918 => 0.1086969993698
919 => 0.11081573780346
920 => 0.10124320047982
921 => 0.11062651951862
922 => 0.10495021037558
923 => 0.10302358579712
924 => 0.10561753197852
925 => 0.10460666862894
926 => 0.10373758768085
927 => 0.10325262557911
928 => 0.10515733337134
929 => 0.10506847647621
930 => 0.10195200484028
1001 => 0.097886694634838
1002 => 0.099251146179042
1003 => 0.098755428141232
1004 => 0.096958882023306
1005 => 0.098169537190982
1006 => 0.092838424531093
1007 => 0.083666522286877
1008 => 0.08972576185237
1009 => 0.089492487720283
1010 => 0.089374860324745
1011 => 0.093928211393131
1012 => 0.093490511751589
1013 => 0.092696082616221
1014 => 0.096944291709236
1015 => 0.09539363824381
1016 => 0.10017238684435
1017 => 0.10331997974274
1018 => 0.10252164836975
1019 => 0.10548197470432
1020 => 0.099282580386816
1021 => 0.10134177050256
1022 => 0.1017661667315
1023 => 0.09689186946846
1024 => 0.093562124826068
1025 => 0.093340068820288
1026 => 0.087566750477456
1027 => 0.0906508105356
1028 => 0.093364655759689
1029 => 0.092064934500247
1030 => 0.091653481577576
1031 => 0.093755505326252
1101 => 0.09391885057414
1102 => 0.090194561611739
1103 => 0.090968959219915
1104 => 0.0941983259789
1105 => 0.09088758746329
1106 => 0.084455363333526
1107 => 0.082860082816889
1108 => 0.082647242989116
1109 => 0.078320715704701
1110 => 0.082966687089141
1111 => 0.080938596075541
1112 => 0.087345311287243
1113 => 0.083685829918222
1114 => 0.083528076990516
1115 => 0.083289610302965
1116 => 0.079565589542679
1117 => 0.080380913415316
1118 => 0.083091174145293
1119 => 0.084058225707021
1120 => 0.083957354306313
1121 => 0.083077892389138
1122 => 0.083480505551247
1123 => 0.08218354827637
1124 => 0.08172556566878
1125 => 0.080280046581183
1126 => 0.078155532857257
1127 => 0.078450959520969
1128 => 0.074241741924616
1129 => 0.071948336778037
1130 => 0.071313552460057
1201 => 0.070464692340593
1202 => 0.071409433469281
1203 => 0.074229817740026
1204 => 0.070827835931606
1205 => 0.064995376742348
1206 => 0.06534591747765
1207 => 0.066133478433393
1208 => 0.064665863802602
1209 => 0.063276889722118
1210 => 0.06448448999407
1211 => 0.06201320014763
1212 => 0.066432122004609
1213 => 0.066312602552263
1214 => 0.06795970335625
1215 => 0.068989669290894
1216 => 0.06661593126697
1217 => 0.066018942573224
1218 => 0.066359014464805
1219 => 0.060738383616464
1220 => 0.06750037790339
1221 => 0.067558855910781
1222 => 0.067058131708469
1223 => 0.070658684913106
1224 => 0.078256975215596
1225 => 0.07539819276328
1226 => 0.074291185790586
1227 => 0.072186764726278
1228 => 0.07499078084631
1229 => 0.074775476157757
1230 => 0.073801786704242
1231 => 0.073212896284661
]
'min_raw' => 0.054996156277731
'max_raw' => 0.14111383963445
'avg_raw' => 0.098054997956091
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.054996'
'max' => '$0.141113'
'avg' => '$0.098054'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.033819104260829
'max_diff' => 0.082023297483725
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017262665028578
]
1 => [
'year' => 2028
'avg' => 0.0029627744576505
]
2 => [
'year' => 2029
'avg' => 0.0080937658301595
]
3 => [
'year' => 2030
'avg' => 0.0062443282843704
]
4 => [
'year' => 2031
'avg' => 0.0061327042263367
]
5 => [
'year' => 2032
'avg' => 0.010752560541818
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017262665028578
'min' => '$0.001726'
'max_raw' => 0.010752560541818
'max' => '$0.010752'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010752560541818
]
1 => [
'year' => 2033
'avg' => 0.027656691386319
]
2 => [
'year' => 2034
'avg' => 0.017530140119043
]
3 => [
'year' => 2035
'avg' => 0.02067684047083
]
4 => [
'year' => 2036
'avg' => 0.040133797083814
]
5 => [
'year' => 2037
'avg' => 0.098054997956091
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010752560541818
'min' => '$0.010752'
'max_raw' => 0.098054997956091
'max' => '$0.098054'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.098054997956091
]
]
]
]
'prediction_2025_max_price' => '$0.002951'
'last_price' => 0.00286195
'sma_50day_nextmonth' => '$0.002789'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002928'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002939'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002946'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003057'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.00341'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003163'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.0029097'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002927'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002972'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0031095'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00326'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003422'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0032015'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002943'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003029'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003158'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003345'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00180098'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00090049'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00045'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '36.63'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 25.1
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002943'
'vwma_10_action' => 'SELL'
'hma_9' => '0.002932'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -118.26
'cci_20_action' => 'BUY'
'adx_14' => 20.06
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000439'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 25.61
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.000360'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 27
'buy_signals' => 3
'sell_pct' => 90
'buy_pct' => 10
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767712381
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Elympics para 2026
La previsión del precio de Elympics para 2026 sugiere que el precio medio podría oscilar entre $0.000988 en el extremo inferior y $0.002951 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Elympics podría potencialmente ganar 3.13% para 2026 si ELP alcanza el objetivo de precio previsto.
Predicción de precio de Elympics 2027-2032
La predicción del precio de ELP para 2027-2032 está actualmente dentro de un rango de precios de $0.001726 en el extremo inferior y $0.010752 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Elympics alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Elympics | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000951 | $0.001726 | $0.00250063 |
| 2028 | $0.001717 | $0.002962 | $0.0042076 |
| 2029 | $0.003773 | $0.008093 | $0.012413 |
| 2030 | $0.0032093 | $0.006244 | $0.009279 |
| 2031 | $0.003794 | $0.006132 | $0.00847 |
| 2032 | $0.005791 | $0.010752 | $0.015713 |
Predicción de precio de Elympics 2032-2037
La predicción de precio de Elympics para 2032-2037 se estima actualmente entre $0.010752 en el extremo inferior y $0.098054 en el extremo superior. Comparado con el precio actual, Elympics podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Elympics | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005791 | $0.010752 | $0.015713 |
| 2033 | $0.013459 | $0.027656 | $0.041854 |
| 2034 | $0.01082 | $0.01753 | $0.024239 |
| 2035 | $0.012793 | $0.020676 | $0.02856 |
| 2036 | $0.021177 | $0.040133 | $0.05909 |
| 2037 | $0.054996 | $0.098054 | $0.141113 |
Elympics Histograma de precios potenciales
Pronóstico de precio de Elympics basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Elympics es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 27 indicando señales bajistas. La predicción de precio de ELP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Elympics
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Elympics disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Elympics alcance $0.002789 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 36.63, lo que sugiere que el mercado de ELP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ELP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002928 | SELL |
| SMA 5 | $0.002939 | SELL |
| SMA 10 | $0.002946 | SELL |
| SMA 21 | $0.003057 | SELL |
| SMA 50 | $0.00341 | SELL |
| SMA 100 | $0.003163 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0029097 | SELL |
| EMA 5 | $0.002927 | SELL |
| EMA 10 | $0.002972 | SELL |
| EMA 21 | $0.0031095 | SELL |
| EMA 50 | $0.00326 | SELL |
| EMA 100 | $0.003422 | SELL |
| EMA 200 | $0.002946 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0032015 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003345 | SELL |
| EMA 50 | $0.00180098 | BUY |
| EMA 100 | $0.00090049 | BUY |
| EMA 200 | $0.00045 | BUY |
Osciladores de Elympics
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 36.63 | NEUTRAL |
| Stoch RSI (14) | 25.1 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -118.26 | BUY |
| Índice Direccional Medio (14) | 20.06 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000439 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 25.61 | BUY |
| VWMA (10) | 0.002943 | SELL |
| Promedio Móvil de Hull (9) | 0.002932 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000360 | NEUTRAL |
Predicción de precios de Elympics basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Elympics
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Elympics por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.004021 | $0.00565 | $0.00794 | $0.011157 | $0.015678 | $0.02203 |
| Amazon.com acción | $0.005971 | $0.01246 | $0.025998 | $0.054248 | $0.113192 | $0.236181 |
| Apple acción | $0.004059 | $0.005758 | $0.008167 | $0.011584 | $0.016432 | $0.0233076 |
| Netflix acción | $0.004515 | $0.007125 | $0.011242 | $0.017738 | $0.027988 | $0.044161 |
| Google acción | $0.0037062 | $0.004799 | $0.006215 | $0.008048 | $0.010423 | $0.013498 |
| Tesla acción | $0.006487 | $0.0147074 | $0.03334 | $0.07558 | $0.171335 | $0.3884045 |
| Kodak acción | $0.002146 | $0.0016093 | $0.0012068 | $0.000905 | $0.000678 | $0.0005089 |
| Nokia acción | $0.001895 | $0.001255 | $0.000832 | $0.000551 | $0.000365 | $0.000241 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Elympics
Podría preguntarse cosas como: "¿Debo invertir en Elympics ahora?", "¿Debería comprar ELP hoy?", "¿Será Elympics una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Elympics regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Elympics, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Elympics a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Elympics es de $0.002861 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Elympics
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Elympics
basado en el historial de precios del último mes
Predicción de precios de Elympics basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Elympics ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002936 | $0.003012 | $0.00309 | $0.003171 |
| Si Elympics ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.00301 | $0.003167 | $0.003331 | $0.0035051 |
| Si Elympics ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003233 | $0.003654 | $0.004129 | $0.004665 |
| Si Elympics ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0036058 | $0.004543 | $0.005724 | $0.007211 |
| Si Elympics ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004349 | $0.006611 | $0.010047 | $0.015271 |
| Si Elympics ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006581 | $0.015135 | $0.0348059 | $0.080041 |
| Si Elympics ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.010301 | $0.037076 | $0.133451 | $0.480335 |
Cuadro de preguntas
¿Es ELP una buena inversión?
La decisión de adquirir Elympics depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Elympics ha experimentado una caída de -2.5019% durante las últimas 24 horas, y Elympics ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Elympics dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Elympics subir?
Parece que el valor medio de Elympics podría potencialmente aumentar hasta $0.002951 para el final de este año. Mirando las perspectivas de Elympics en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.009279. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Elympics la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Elympics, el precio de Elympics aumentará en un 0.86% durante la próxima semana y alcanzará $0.002886 para el 13 de enero de 2026.
¿Cuál será el precio de Elympics el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Elympics, el precio de Elympics disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002529 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Elympics este año en 2026?
Según nuestra predicción más reciente sobre el valor de Elympics en 2026, se anticipa que ELP fluctúe dentro del rango de $0.000988 y $0.002951. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Elympics no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Elympics en 5 años?
El futuro de Elympics parece estar en una tendencia alcista, con un precio máximo de $0.009279 proyectada después de un período de cinco años. Basado en el pronóstico de Elympics para 2030, el valor de Elympics podría potencialmente alcanzar su punto más alto de aproximadamente $0.009279, mientras que su punto más bajo se anticipa que esté alrededor de $0.0032093.
¿Cuánto será Elympics en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Elympics, se espera que el valor de ELP en 2026 crezca en un 3.13% hasta $0.002951 si ocurre lo mejor. El precio estará entre $0.002951 y $0.000988 durante 2026.
¿Cuánto será Elympics en 2027?
Según nuestra última simulación experimental para la predicción de precios de Elympics, el valor de ELP podría disminuir en un -12.62% hasta $0.00250063 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00250063 y $0.000951 a lo largo del año.
¿Cuánto será Elympics en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Elympics sugiere que el valor de ELP en 2028 podría aumentar en un 47.02% , alcanzando $0.0042076 en el mejor escenario. Se espera que el precio oscile entre $0.0042076 y $0.001717 durante el año.
¿Cuánto será Elympics en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Elympics podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.012413 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.012413 y $0.003773.
¿Cuánto será Elympics en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Elympics, se espera que el valor de ELP en 2030 aumente en un 224.23% , alcanzando $0.009279 en el mejor escenario. Se pronostica que el precio oscile entre $0.009279 y $0.0032093 durante el transcurso de 2030.
¿Cuánto será Elympics en 2031?
Nuestra simulación experimental indica que el precio de Elympics podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.00847 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.00847 y $0.003794 durante el año.
¿Cuánto será Elympics en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Elympics, ELP podría experimentar un 449.04% aumento en valor, alcanzando $0.015713 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.015713 y $0.005791 a lo largo del año.
¿Cuánto será Elympics en 2033?
Según nuestra predicción experimental de precios de Elympics, se anticipa que el valor de ELP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.041854. A lo largo del año, el precio de ELP podría oscilar entre $0.041854 y $0.013459.
¿Cuánto será Elympics en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Elympics sugieren que ELP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.024239 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.024239 y $0.01082.
¿Cuánto será Elympics en 2035?
Basado en nuestra predicción experimental para el precio de Elympics, ELP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.02856 en 2035. El rango de precios esperado para el año está entre $0.02856 y $0.012793.
¿Cuánto será Elympics en 2036?
Nuestra reciente simulación de predicción de precios de Elympics sugiere que el valor de ELP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.05909 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.05909 y $0.021177.
¿Cuánto será Elympics en 2037?
Según la simulación experimental, el valor de Elympics podría aumentar en un 4830.69% en 2037, con un máximo de $0.141113 bajo condiciones favorables. Se espera que el precio caiga entre $0.141113 y $0.054996 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Elympics?
Los traders de Elympics utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Elympics
Las medias móviles son herramientas populares para la predicción de precios de Elympics. Una media móvil simple (SMA) calcula el precio de cierre promedio de ELP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ELP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ELP.
¿Cómo leer gráficos de Elympics y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Elympics en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ELP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Elympics?
La acción del precio de Elympics está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ELP. La capitalización de mercado de Elympics puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ELP, grandes poseedores de Elympics, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Elympics.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


