Predicción del precio de Elympics - Pronóstico de ELP
Predicción de precio de Elympics hasta $0.002938 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000984 | $0.002938 |
| 2027 | $0.000947 | $0.002489 |
| 2028 | $0.00171 | $0.004189 |
| 2029 | $0.003757 | $0.01236 |
| 2030 | $0.003195 | $0.009239 |
| 2031 | $0.003778 | $0.008434 |
| 2032 | $0.005766 | $0.015645 |
| 2033 | $0.0134011 | $0.041673 |
| 2034 | $0.010773 | $0.024134 |
| 2035 | $0.012738 | $0.028436 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Elympics hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,957.00, equivalente a un ROI del 39.57% en los próximos 90 días.
Predicción del precio a largo plazo de Elympics para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Elympics'
'name_with_ticker' => 'Elympics <small>ELP</small>'
'name_lang' => 'Elympics'
'name_lang_with_ticker' => 'Elympics <small>ELP</small>'
'name_with_lang' => 'Elympics'
'name_with_lang_with_ticker' => 'Elympics <small>ELP</small>'
'image' => '/uploads/coins/elympics.png?1753327675'
'price_for_sd' => 0.002849
'ticker' => 'ELP'
'marketcap' => '$3.06M'
'low24h' => '$0.002851'
'high24h' => '$0.002936'
'volume24h' => '$41.4K'
'current_supply' => '1.07B'
'max_supply' => '3.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002849'
'change_24h_pct' => '-2.9677%'
'ath_price' => '$0.01138'
'ath_days' => 166
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 jul. 2025'
'ath_pct' => '-74.93%'
'fdv' => '$9.98M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1405039'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002873'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002518'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000984'
'current_year_max_price_prediction' => '$0.002938'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003195'
'grand_prediction_max_price' => '$0.009239'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029035780421209
107 => 0.0029144189485314
108 => 0.0029388440642245
109 => 0.002730134124884
110 => 0.002823838760246
111 => 0.0028788814545842
112 => 0.0026301965590938
113 => 0.0028739657537833
114 => 0.0027265009491778
115 => 0.0026764491796476
116 => 0.0027438372935007
117 => 0.0027175760799951
118 => 0.0026949982307331
119 => 0.0026823994029083
120 => 0.0027318817963673
121 => 0.0027295733835682
122 => 0.0026486105837505
123 => 0.0025429979118543
124 => 0.0025784449911605
125 => 0.0025655667349304
126 => 0.0025188942730245
127 => 0.0025503458770945
128 => 0.0024118489300627
129 => 0.0021735721311394
130 => 0.0023309850831239
131 => 0.0023249248557049
201 => 0.0023218690142307
202 => 0.0024401604970726
203 => 0.0024287895004462
204 => 0.0024081510302242
205 => 0.002518515231334
206 => 0.0024782308133209
207 => 0.0026023778974346
208 => 0.0026841491963619
209 => 0.0026634093499295
210 => 0.0027403156518056
211 => 0.0025792616202746
212 => 0.002632757309183
213 => 0.0026437826965252
214 => 0.0025171533542237
215 => 0.0024306499361218
216 => 0.0024248811443456
217 => 0.0022748961382621
218 => 0.0023550169178752
219 => 0.0024255198883116
220 => 0.0023917544367241
221 => 0.0023810653034657
222 => 0.0024356737670929
223 => 0.0024399173124066
224 => 0.0023431640295436
225 => 0.0023632821008288
226 => 0.0024471778024391
227 => 0.0023611681444024
228 => 0.0021940654284348
301 => 0.0021526216444991
302 => 0.0021470922797616
303 => 0.0020346934507798
304 => 0.0021553911163128
305 => 0.0021027033508113
306 => 0.0022691433707342
307 => 0.00217407372399
308 => 0.0021699754615321
309 => 0.0021637803367427
310 => 0.002067034021501
311 => 0.0020882153159898
312 => 0.002158625164873
313 => 0.0021837481921783
314 => 0.0021811276546034
315 => 0.0021582801182015
316 => 0.002168739603368
317 => 0.0021350459573206
318 => 0.0021231480296287
319 => 0.0020855948970501
320 => 0.0020304021664772
321 => 0.00203807705418
322 => 0.0019287258129516
323 => 0.0018691454530207
324 => 0.0018526543946484
325 => 0.0018306018621841
326 => 0.0018551452868698
327 => 0.0019284160346245
328 => 0.001840035967576
329 => 0.0016885145417624
330 => 0.0016976212376337
331 => 0.0017180812794544
401 => 0.0016799541268783
402 => 0.0016438699767344
403 => 0.0016752422176849
404 => 0.001611040592096
405 => 0.0017258397391799
406 => 0.0017227347439722
407 => 0.0017655247668734
408 => 0.0017922822463332
409 => 0.0017306149190152
410 => 0.0017151057529609
411 => 0.0017239404787977
412 => 0.00157792214031
413 => 0.0017535919534115
414 => 0.00175511115325
415 => 0.0017421028418994
416 => 0.0018356415941789
417 => 0.0020330375369572
418 => 0.0019587692430506
419 => 0.0019300103148789
420 => 0.0018753395714019
421 => 0.0019481850910575
422 => 0.0019425916917151
423 => 0.0019172962186549
424 => 0.0019019974376215
425 => 0.0019301859107619
426 => 0.0018985045738514
427 => 0.0018928137351973
428 => 0.0018583334446474
429 => 0.0018460255496743
430 => 0.0018369132742276
501 => 0.0018268815543146
502 => 0.0018490090286939
503 => 0.0017988652606386
504 => 0.001738396792018
505 => 0.0017333694931301
506 => 0.0017472503073643
507 => 0.0017411090803707
508 => 0.001733340091298
509 => 0.0017185069753998
510 => 0.0017141063067722
511 => 0.001728406344911
512 => 0.0017122624355963
513 => 0.0017360836531944
514 => 0.0017296056000958
515 => 0.0016934197220855
516 => 0.0016483187203566
517 => 0.0016479172268387
518 => 0.0016382002899967
519 => 0.0016258243099772
520 => 0.0016223815954598
521 => 0.0016726001350563
522 => 0.0017765510091068
523 => 0.0017561429651971
524 => 0.0017708898684223
525 => 0.0018434300367438
526 => 0.0018664883748943
527 => 0.0018501221126418
528 => 0.0018277189634434
529 => 0.0018287045883102
530 => 0.0019052629310154
531 => 0.0019100377809416
601 => 0.00192210228628
602 => 0.0019376085850686
603 => 0.0018527629023766
604 => 0.0018247083642855
605 => 0.0018114145677314
606 => 0.0017704748196916
607 => 0.0018146248280438
608 => 0.0017889005088688
609 => 0.0017923715983934
610 => 0.0017901110467869
611 => 0.0017913454608219
612 => 0.0017258076504787
613 => 0.0017496861840018
614 => 0.0017099834907018
615 => 0.0016568260412096
616 => 0.0016566478387995
617 => 0.0016696580492546
618 => 0.0016619190669863
619 => 0.0016410936646898
620 => 0.0016440518147929
621 => 0.0016181353071779
622 => 0.0016471985480508
623 => 0.0016480319778058
624 => 0.0016368410469843
625 => 0.0016816169795034
626 => 0.0016999617155902
627 => 0.0016925956051905
628 => 0.001699444889648
629 => 0.0017569910115583
630 => 0.001766373540343
701 => 0.0017705406398542
702 => 0.0017649572785442
703 => 0.0017004967271176
704 => 0.0017033558266808
705 => 0.0016823776511284
706 => 0.0016646533034123
707 => 0.001665362184369
708 => 0.001674474803099
709 => 0.0017142701435409
710 => 0.0017980170914373
711 => 0.0018011952268918
712 => 0.0018050472197753
713 => 0.0017893792288615
714 => 0.0017846536128794
715 => 0.0017908879201447
716 => 0.0018223388705693
717 => 0.0019032392539111
718 => 0.0018746436552832
719 => 0.0018513949884817
720 => 0.0018717903370622
721 => 0.0018686506330122
722 => 0.0018421483711443
723 => 0.0018414045409221
724 => 0.0017905382271119
725 => 0.0017717341090661
726 => 0.0017560199805633
727 => 0.0017388605624659
728 => 0.0017286878842288
729 => 0.0017443177414005
730 => 0.0017478924746627
731 => 0.0017137175187937
801 => 0.0017090595985895
802 => 0.0017369676052698
803 => 0.0017246863320452
804 => 0.0017373179261176
805 => 0.0017402485642943
806 => 0.0017397766640495
807 => 0.0017269536043077
808 => 0.001735126640198
809 => 0.0017157949738183
810 => 0.0016947746901527
811 => 0.001681365058784
812 => 0.0016696633768854
813 => 0.0016761561501085
814 => 0.0016530105991016
815 => 0.0016456058715066
816 => 0.0017323577995375
817 => 0.0017964423815143
818 => 0.0017955105663121
819 => 0.001789838380912
820 => 0.0017814106639682
821 => 0.0018217223305819
822 => 0.0018076785519909
823 => 0.0018178965743128
824 => 0.0018204974898428
825 => 0.0018283696778063
826 => 0.0018311833083659
827 => 0.0018226785626228
828 => 0.0017941355971419
829 => 0.001723009240947
830 => 0.0016898997301364
831 => 0.0016789730400864
901 => 0.001679370204517
902 => 0.0016684146365015
903 => 0.0016716415422762
904 => 0.0016672924503622
905 => 0.0016590563224355
906 => 0.0016756475924178
907 => 0.0016775595817249
908 => 0.0016736869810601
909 => 0.0016745991187069
910 => 0.0016425356392118
911 => 0.0016449733559196
912 => 0.0016313998395205
913 => 0.0016288549688269
914 => 0.0015945423013513
915 => 0.0015337524372176
916 => 0.0015674359229626
917 => 0.0015267510087975
918 => 0.0015113430153262
919 => 0.0015842820599849
920 => 0.0015769610029154
921 => 0.0015644305355993
922 => 0.0015458953628606
923 => 0.0015390204869933
924 => 0.0014972509175445
925 => 0.0014947829485495
926 => 0.0015154850750416
927 => 0.0015059317559822
928 => 0.0014925152778979
929 => 0.0014439221542833
930 => 0.0013892873947101
1001 => 0.0013909364746798
1002 => 0.0014083147751842
1003 => 0.0014588445276838
1004 => 0.0014391016792086
1005 => 0.0014247780161168
1006 => 0.0014220956245874
1007 => 0.0014556713705445
1008 => 0.00150318808541
1009 => 0.0015254818648984
1010 => 0.0015033894064976
1011 => 0.0014780107798292
1012 => 0.0014795554592412
1013 => 0.0014898315193412
1014 => 0.001490911387962
1015 => 0.0014743925109659
1016 => 0.0014790424780804
1017 => 0.0014719787528315
1018 => 0.0014286286840177
1019 => 0.0014278446187374
1020 => 0.0014172058127362
1021 => 0.0014168836739186
1022 => 0.001398784410936
1023 => 0.0013962521989305
1024 => 0.0013603150137318
1025 => 0.0013839689778574
1026 => 0.0013681031406108
1027 => 0.0013441895815076
1028 => 0.0013400668749046
1029 => 0.0013399429413658
1030 => 0.0013644968195909
1031 => 0.0013836820514944
1101 => 0.0013683791336425
1102 => 0.0013648949558822
1103 => 0.0014020968590096
1104 => 0.0013973625777338
1105 => 0.0013932627206817
1106 => 0.0014989334847617
1107 => 0.0014152868293999
1108 => 0.0013788121132779
1109 => 0.0013336677257163
1110 => 0.0013483669659441
1111 => 0.0013514643118369
1112 => 0.0012429001976387
1113 => 0.0011988557500293
1114 => 0.0011837413553897
1115 => 0.0011750428075885
1116 => 0.001179006845051
1117 => 0.0011393616763041
1118 => 0.0011660038853726
1119 => 0.0011316745203604
1120 => 0.0011259190905987
1121 => 0.0011873042478327
1122 => 0.0011958456338549
1123 => 0.0011594054274835
1124 => 0.0011828059391075
1125 => 0.0011743205883012
1126 => 0.0011322629987923
1127 => 0.0011306567082278
1128 => 0.001109553688208
1129 => 0.0010765315482269
1130 => 0.0010614395441532
1201 => 0.0010535794973969
1202 => 0.0010568227058778
1203 => 0.001055182840426
1204 => 0.0010444816091054
1205 => 0.0010557962224789
1206 => 0.0010268920608308
1207 => 0.0010153821907658
1208 => 0.0010101834494845
1209 => 0.00098452934236029
1210 => 0.0010253564352281
1211 => 0.0010333998868492
1212 => 0.0010414591865547
1213 => 0.001111609888174
1214 => 0.0011081053573649
1215 => 0.0011397846091033
1216 => 0.0011385536116351
1217 => 0.0011295181758695
1218 => 0.0010913991586314
1219 => 0.0011065927194963
1220 => 0.0010598293007576
1221 => 0.0010948676336801
1222 => 0.00107887760177
1223 => 0.0010894613878067
1224 => 0.0010704307862112
1225 => 0.0010809631068885
1226 => 0.0010353072876209
1227 => 0.00099267452598364
1228 => 0.0010098311937944
1229 => 0.0010284824538076
1230 => 0.001068923137769
1231 => 0.00104483700003
]
'min_raw' => 0.00098452934236029
'max_raw' => 0.0029388440642245
'avg_raw' => 0.0019616867032924
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000984'
'max' => '$0.002938'
'avg' => '$0.001961'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0018650506576397
'max_diff' => 8.9264064224519E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010534992859586
102 => 0.0010244820781468
103 => 0.00096461129007545
104 => 0.00096495015223398
105 => 0.00095574033584522
106 => 0.00094778170983012
107 => 0.0010476035826912
108 => 0.0010351891548507
109 => 0.0010154083888469
110 => 0.0010418857301993
111 => 0.0010488867595048
112 => 0.0010490860689669
113 => 0.0010684032537385
114 => 0.001078712838714
115 => 0.0010805299477502
116 => 0.0011109259553638
117 => 0.0011211142961829
118 => 0.0011630786301086
119 => 0.0010778381424579
120 => 0.0010760826707088
121 => 0.0010422583206904
122 => 0.0010208063831669
123 => 0.0010437271532056
124 => 0.0010640318264627
125 => 0.0010428892434876
126 => 0.0010456500184798
127 => 0.0010172678282482
128 => 0.0010274131257499
129 => 0.0010361516226774
130 => 0.0010313267382991
131 => 0.0010241036528578
201 => 0.001062367074807
202 => 0.0010602081025851
203 => 0.0010958398807765
204 => 0.0011236173999296
205 => 0.0011733996800775
206 => 0.0011214492755342
207 => 0.0011195559963085
208 => 0.0011380631044314
209 => 0.001121111462841
210 => 0.0011318243151754
211 => 0.0011716736739463
212 => 0.0011725156281034
213 => 0.0011584118111764
214 => 0.0011575535926346
215 => 0.0011602623849543
216 => 0.0011761278661783
217 => 0.0011705839795416
218 => 0.0011769995055116
219 => 0.001185022218975
220 => 0.0012182075634199
221 => 0.0012262084376171
222 => 0.0012067704612955
223 => 0.0012085254929196
224 => 0.0012012551561909
225 => 0.0011942321020081
226 => 0.0012100189021764
227 => 0.0012388695897742
228 => 0.001238690111144
301 => 0.0012453829098895
302 => 0.0012495524680618
303 => 0.0012316536720832
304 => 0.0012200022140581
305 => 0.0012244701244664
306 => 0.0012316144105078
307 => 0.0012221533287915
308 => 0.0011637551496389
309 => 0.0011814694267037
310 => 0.0011785209048162
311 => 0.0011743218510959
312 => 0.001192133693665
313 => 0.001190415697997
314 => 0.0011389550577964
315 => 0.0011422494010184
316 => 0.0011391553977189
317 => 0.001149152755353
318 => 0.0011205715727203
319 => 0.0011293629520009
320 => 0.0011348768226716
321 => 0.0011381245348563
322 => 0.0011498574982442
323 => 0.001148480770412
324 => 0.0011497719189091
325 => 0.001167168806226
326 => 0.0012551562923837
327 => 0.0012599452571218
328 => 0.0012363626432697
329 => 0.0012457834323571
330 => 0.0012276975774094
331 => 0.0012398387330005
401 => 0.001248145403304
402 => 0.0012106091574833
403 => 0.001208386504614
404 => 0.0011902260029094
405 => 0.001199984427862
406 => 0.0011844580721068
407 => 0.0011882676967203
408 => 0.0011776156541839
409 => 0.0011967872099488
410 => 0.0012182239882526
411 => 0.0012236397650162
412 => 0.0012093931879898
413 => 0.0011990777273274
414 => 0.0011809671765284
415 => 0.0012110854261272
416 => 0.0012198929201469
417 => 0.0012110391641105
418 => 0.0012089875553785
419 => 0.0012050997605385
420 => 0.0012098123694326
421 => 0.0012198449526429
422 => 0.0012151137716737
423 => 0.0012182388000565
424 => 0.0012063294143763
425 => 0.0012316595973294
426 => 0.0012718900238995
427 => 0.0012720193712992
428 => 0.0012672881648271
429 => 0.001265352257074
430 => 0.001270206762028
501 => 0.0012728401318233
502 => 0.0012885387106805
503 => 0.0013053839112533
504 => 0.0013839931121895
505 => 0.0013619199631264
506 => 0.0014316667226793
507 => 0.0014868273540024
508 => 0.0015033676154542
509 => 0.001488151353198
510 => 0.001436097341986
511 => 0.0014335433238592
512 => 0.0015113339932465
513 => 0.0014893545661062
514 => 0.0014867401831859
515 => 0.0014589275659827
516 => 0.0014753682674094
517 => 0.0014717724448368
518 => 0.0014660962629924
519 => 0.0014974639760454
520 => 0.0015561815346656
521 => 0.0015470298525049
522 => 0.0015401985463062
523 => 0.001510265751107
524 => 0.0015282919795488
525 => 0.0015218731848703
526 => 0.0015494524002767
527 => 0.0015331150840244
528 => 0.0014891880503283
529 => 0.0014961835752298
530 => 0.001495126215714
531 => 0.0015168865996242
601 => 0.0015103546725003
602 => 0.0014938507521093
603 => 0.0015559808444337
604 => 0.0015519464618239
605 => 0.0015576662939763
606 => 0.0015601843409815
607 => 0.0015980018333243
608 => 0.0016134944499124
609 => 0.0016170115451143
610 => 0.001631728332631
611 => 0.0016166453780342
612 => 0.0016769879503858
613 => 0.0017171122399128
614 => 0.0017637186669756
615 => 0.0018318231835409
616 => 0.0018574311117714
617 => 0.0018528052687443
618 => 0.001904441335938
619 => 0.0019972302008798
620 => 0.0018715605512842
621 => 0.0020038909974581
622 => 0.0019619967060279
623 => 0.0018626660946931
624 => 0.0018562703743541
625 => 0.0019235382176021
626 => 0.0020727318196364
627 => 0.0020353605144666
628 => 0.0020727929457038
629 => 0.002029126026325
630 => 0.0020269575957242
701 => 0.0020706721408959
702 => 0.0021728135584455
703 => 0.0021242899996815
704 => 0.0020547195797285
705 => 0.0021060892951862
706 => 0.002061588093614
707 => 0.0019613144313699
708 => 0.0020353319373339
709 => 0.001985838538993
710 => 0.0020002833438426
711 => 0.0021043111055679
712 => 0.0020917942100538
713 => 0.0021079922318823
714 => 0.0020794031473309
715 => 0.0020526964342751
716 => 0.0020028463710899
717 => 0.0019880882249592
718 => 0.0019921668456072
719 => 0.0019880862037973
720 => 0.0019601955515909
721 => 0.0019541725679025
722 => 0.001944133997882
723 => 0.0019472453704909
724 => 0.0019283699219652
725 => 0.0019639917931998
726 => 0.0019706035263998
727 => 0.0019965261536668
728 => 0.0019992175268247
729 => 0.0020714116747778
730 => 0.0020316483512586
731 => 0.0020583250216755
801 => 0.0020559388091828
802 => 0.0018648188902374
803 => 0.0018911535288028
804 => 0.0019321219621456
805 => 0.0019136657384561
806 => 0.0018875729562503
807 => 0.0018665016356126
808 => 0.0018345764301934
809 => 0.0018795105437517
810 => 0.0019385941248706
811 => 0.0020007159839446
812 => 0.0020753513272367
813 => 0.002058693587465
814 => 0.001999320728117
815 => 0.0020019841512155
816 => 0.0020184483847918
817 => 0.0019971257063771
818 => 0.0019908372322445
819 => 0.002017584445012
820 => 0.0020177686383663
821 => 0.0019932343199186
822 => 0.0019659689146967
823 => 0.0019658546716533
824 => 0.0019610030561466
825 => 0.0020299891179457
826 => 0.0020679244766577
827 => 0.0020722737043981
828 => 0.0020676317389779
829 => 0.0020694182472351
830 => 0.0020473444978492
831 => 0.0020977985431783
901 => 0.0021441001645603
902 => 0.00213169034094
903 => 0.002113086251173
904 => 0.0020982671975791
905 => 0.0021281994428696
906 => 0.0021268666071046
907 => 0.0021436957602901
908 => 0.0021429322926917
909 => 0.0021372732814519
910 => 0.0021316905430412
911 => 0.0021538254697956
912 => 0.0021474509663664
913 => 0.0021410665615726
914 => 0.0021282616603553
915 => 0.0021300020590976
916 => 0.0021114011815889
917 => 0.0021027955645352
918 => 0.0019733877318091
919 => 0.0019388057303817
920 => 0.0019496859320123
921 => 0.0019532679768934
922 => 0.0019382178455542
923 => 0.0019597958678331
924 => 0.0019564329559177
925 => 0.0019695160789428
926 => 0.0019613423116799
927 => 0.0019616777659395
928 => 0.0019857150726288
929 => 0.0019926932050227
930 => 0.0019891440705668
1001 => 0.0019916297626825
1002 => 0.0020489114883451
1003 => 0.0020407678587224
1004 => 0.0020364417177938
1005 => 0.0020376400883964
1006 => 0.0020522767974373
1007 => 0.002056374276834
1008 => 0.0020390129687052
1009 => 0.0020472006619833
1010 => 0.0020820628207883
1011 => 0.0020942626033428
1012 => 0.0021331984530288
1013 => 0.0021166578120526
1014 => 0.0021470188744265
1015 => 0.002240338429315
1016 => 0.002314888546982
1017 => 0.0022463291778615
1018 => 0.0023832309750567
1019 => 0.0024898286615695
1020 => 0.0024857372648134
1021 => 0.002467149492521
1022 => 0.0023457908604722
1023 => 0.0022341148379057
1024 => 0.002327536572797
1025 => 0.0023277747240116
1026 => 0.0023197497141328
1027 => 0.0022699070669974
1028 => 0.0023180152980527
1029 => 0.0023218339547304
1030 => 0.0023196965224537
1031 => 0.0022814822817572
1101 => 0.002223136199386
1102 => 0.0022345368842205
1103 => 0.0022532114385472
1104 => 0.0022178566112867
1105 => 0.0022065586017524
1106 => 0.0022275637510109
1107 => 0.0022952467185183
1108 => 0.0022824516455717
1109 => 0.0022821175145081
1110 => 0.0023368602625288
1111 => 0.0022976762691704
1112 => 0.0022346806833663
1113 => 0.0022187734671411
1114 => 0.0021623135659264
1115 => 0.0022013106207987
1116 => 0.0022027140553784
1117 => 0.0021813557669651
1118 => 0.0022364137907588
1119 => 0.0022359064213768
1120 => 0.0022881758206636
1121 => 0.0023880952806101
1122 => 0.0023585441795659
1123 => 0.0023241794642022
1124 => 0.0023279158615924
1125 => 0.0023688949187488
1126 => 0.0023441180453311
1127 => 0.0023530279817626
1128 => 0.0023688814324928
1129 => 0.0023784462129374
1130 => 0.00232653963688
1201 => 0.0023144377310225
1202 => 0.0022896814788298
1203 => 0.0022832230347301
1204 => 0.0023033864855849
1205 => 0.0022980741286699
1206 => 0.0022025961021363
1207 => 0.0021926181171289
1208 => 0.0021929241276838
1209 => 0.0021678340099551
1210 => 0.0021295655581007
1211 => 0.0022301327646835
1212 => 0.0022220558105578
1213 => 0.0022131394783096
1214 => 0.0022142316781341
1215 => 0.0022578844939728
1216 => 0.0022325636562663
1217 => 0.0022998832533127
1218 => 0.0022860443679723
1219 => 0.0022718505674418
1220 => 0.0022698885518547
1221 => 0.0022644251496086
1222 => 0.0022456891104644
1223 => 0.0022230642173362
1224 => 0.0022081253031584
1225 => 0.0020368788711017
1226 => 0.0020686612127967
1227 => 0.0021052238998653
1228 => 0.0021178451929256
1229 => 0.0020962555977791
1230 => 0.0022465415992709
1231 => 0.0022740002999354
]
'min_raw' => 0.00094778170983012
'max_raw' => 0.0024898286615695
'avg_raw' => 0.0017188051856998
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000947'
'max' => '$0.002489'
'avg' => '$0.001718'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.6747632530175E-5
'max_diff' => -0.000449015402655
'year' => 2027
]
2 => [
'items' => [
101 => 0.0021908261045359
102 => 0.0021752676085567
103 => 0.0022475616116771
104 => 0.002203959490213
105 => 0.0022235935228385
106 => 0.0021811554835439
107 => 0.0022673863030299
108 => 0.0022667293686616
109 => 0.0022331836322701
110 => 0.0022615362589569
111 => 0.0022566092923462
112 => 0.0022187362385797
113 => 0.0022685869463872
114 => 0.0022686116717164
115 => 0.0022363246297868
116 => 0.0021986204333554
117 => 0.0021918798135668
118 => 0.002186801662031
119 => 0.002222344608857
120 => 0.0022542123038413
121 => 0.0023135101835356
122 => 0.0023284190793736
123 => 0.0023866094923707
124 => 0.0023519599346707
125 => 0.0023673196348122
126 => 0.0023839947620781
127 => 0.0023919894312968
128 => 0.0023789625468225
129 => 0.0024693562103366
130 => 0.0024769882051275
131 => 0.0024795471469643
201 => 0.0024490669122216
202 => 0.0024761404946609
203 => 0.0024634736620204
204 => 0.0024964292416036
205 => 0.0025015970972802
206 => 0.0024972201073739
207 => 0.0024988604663348
208 => 0.0024217254210604
209 => 0.0024177255620432
210 => 0.0023631872005259
211 => 0.0023854119859714
212 => 0.0023438638148427
213 => 0.0023570391679012
214 => 0.00236284673799
215 => 0.0023598131929523
216 => 0.0023866685419947
217 => 0.0023638360091233
218 => 0.0023035772008599
219 => 0.0022433019751244
220 => 0.0022425452687644
221 => 0.0022266758657744
222 => 0.0022152051940387
223 => 0.002217414852359
224 => 0.0022252019764897
225 => 0.002214752592228
226 => 0.0022169824981575
227 => 0.002254013794372
228 => 0.0022614401567327
229 => 0.002236202475764
301 => 0.0021348695448944
302 => 0.0021100021894846
303 => 0.0021278763514121
304 => 0.0021193336532542
305 => 0.0017104676653859
306 => 0.0018065246644407
307 => 0.0017494508573898
308 => 0.0017757530935184
309 => 0.0017174955157102
310 => 0.0017452990853816
311 => 0.0017401647812871
312 => 0.0018946215932338
313 => 0.0018922099625637
314 => 0.0018933642825448
315 => 0.00183826558228
316 => 0.0019260393078946
317 => 0.0019692798013734
318 => 0.001961277136839
319 => 0.0019632912350916
320 => 0.0019286823540838
321 => 0.0018936993721642
322 => 0.0018548978613732
323 => 0.0019269862724113
324 => 0.0019189712716941
325 => 0.0019373547996331
326 => 0.0019841092871774
327 => 0.0019909940630713
328 => 0.0020002472716912
329 => 0.0019969306550892
330 => 0.0020759459181571
331 => 0.0020663766484401
401 => 0.0020894358351913
402 => 0.0020420013385394
403 => 0.0019883247030539
404 => 0.0019985268766383
405 => 0.0019975443252814
406 => 0.0019850353187885
407 => 0.0019737427470421
408 => 0.0019549437967468
409 => 0.0020144264572024
410 => 0.002012011569816
411 => 0.0020511057896023
412 => 0.0020441955065141
413 => 0.0019980469448178
414 => 0.0019996951497269
415 => 0.0020107801198413
416 => 0.002049145327973
417 => 0.002060534733849
418 => 0.0020552587072579
419 => 0.0020677466708548
420 => 0.0020776166481066
421 => 0.0020689861880368
422 => 0.002191175302595
423 => 0.0021404338632351
424 => 0.0021651648877225
425 => 0.002171063091339
426 => 0.002155954966801
427 => 0.002159231378032
428 => 0.0021641942482782
429 => 0.0021943278245836
430 => 0.0022734070480295
501 => 0.0023084306977832
502 => 0.0024138010761037
503 => 0.0023055224712239
504 => 0.0022990976669117
505 => 0.0023180780539278
506 => 0.0023799416205893
507 => 0.002430076230819
508 => 0.0024467087733673
509 => 0.0024489070384384
510 => 0.0024801107939694
511 => 0.0024979962047242
512 => 0.0024763218373077
513 => 0.0024579550803231
514 => 0.0023921676365699
515 => 0.0023997827123176
516 => 0.0024522430327119
517 => 0.0025263463251664
518 => 0.0025899346592258
519 => 0.0025676682409154
520 => 0.0027375452949824
521 => 0.0027543879110077
522 => 0.0027520608060599
523 => 0.0027904307918827
524 => 0.0027142741839363
525 => 0.0026817157585744
526 => 0.0024619261816547
527 => 0.0025236780876688
528 => 0.0026134381096226
529 => 0.0026015580341342
530 => 0.0025363719068991
531 => 0.002589885209703
601 => 0.0025721920382803
602 => 0.0025582366998889
603 => 0.0026221688104354
604 => 0.0025518728287032
605 => 0.0026127368534312
606 => 0.0025346781121598
607 => 0.0025677699520387
608 => 0.0025489854232512
609 => 0.002561141315522
610 => 0.0024900782176929
611 => 0.0025284221403223
612 => 0.0024884829844484
613 => 0.0024884640480883
614 => 0.0024875823890087
615 => 0.002534570628777
616 => 0.0025361029135889
617 => 0.0025013785334049
618 => 0.0024963742077236
619 => 0.0025148778226406
620 => 0.0024932149356772
621 => 0.0025033508641428
622 => 0.0024935219426248
623 => 0.0024913092453623
624 => 0.0024736780971156
625 => 0.0024660821136725
626 => 0.0024690606945049
627 => 0.0024588932625601
628 => 0.0024527670170412
629 => 0.0024863637245797
630 => 0.0024684143590292
701 => 0.0024836127268789
702 => 0.0024662922685272
703 => 0.0024062520137157
704 => 0.0023717222282595
705 => 0.0022583117526552
706 => 0.0022904748228513
707 => 0.0023117989716664
708 => 0.0023047513406102
709 => 0.0023198923791901
710 => 0.0023208219159885
711 => 0.0023158994100016
712 => 0.0023101997786808
713 => 0.0023074255133632
714 => 0.0023281026141275
715 => 0.0023401063670804
716 => 0.0023139391352803
717 => 0.0023078085189881
718 => 0.0023342650350704
719 => 0.0023504034945972
720 => 0.002469560812326
721 => 0.0024607332533556
722 => 0.0024828886940503
723 => 0.0024803943314311
724 => 0.0025036167629177
725 => 0.0025415756238665
726 => 0.0024643946460931
727 => 0.0024777905951172
728 => 0.0024745062177741
729 => 0.0025103641883956
730 => 0.0025104761330659
731 => 0.0024889774884398
801 => 0.0025006322524673
802 => 0.0024941268829189
803 => 0.0025058829649463
804 => 0.0024606153559236
805 => 0.0025157464173768
806 => 0.0025470021766536
807 => 0.0025474361629014
808 => 0.0025622511447376
809 => 0.002577304024309
810 => 0.0026061967158169
811 => 0.0025764982228244
812 => 0.002523073525021
813 => 0.0025269306156417
814 => 0.0024956077348669
815 => 0.0024961342781516
816 => 0.0024933235488316
817 => 0.0025017587591028
818 => 0.0024624664102251
819 => 0.0024716882459703
820 => 0.002458777621924
821 => 0.0024777625299419
822 => 0.0024573379072324
823 => 0.0024745046339479
824 => 0.0024819132241123
825 => 0.0025092510813145
826 => 0.0024533000834959
827 => 0.0023392122113943
828 => 0.0023631948652918
829 => 0.0023277226363806
830 => 0.0023310057262187
831 => 0.0023376380901914
901 => 0.0023161404285814
902 => 0.0023202415049474
903 => 0.0023200949856408
904 => 0.0023188323614124
905 => 0.0023132399893486
906 => 0.0023051299434389
907 => 0.0023374378702025
908 => 0.0023429276165209
909 => 0.002355130642551
910 => 0.002391438570625
911 => 0.0023878105524106
912 => 0.0023937280006434
913 => 0.0023808102443761
914 => 0.0023316049438829
915 => 0.0023342770284335
916 => 0.00230095609127
917 => 0.0023542785512721
918 => 0.0023416510889215
919 => 0.0023335100817976
920 => 0.0023312887325779
921 => 0.0023676866609829
922 => 0.0023785774916293
923 => 0.0023717910568269
924 => 0.0023578718810553
925 => 0.0023846008133717
926 => 0.0023917523480564
927 => 0.0023933533129339
928 => 0.0024407118562341
929 => 0.0023960001294166
930 => 0.0024067626864579
1001 => 0.0024907290841869
1002 => 0.0024145831480175
1003 => 0.0024549193486635
1004 => 0.0024529451015413
1005 => 0.0024735797368892
1006 => 0.0024512524591629
1007 => 0.0024515292325293
1008 => 0.0024698513908069
1009 => 0.0024441212239247
1010 => 0.0024377500727605
1011 => 0.0024289483730582
1012 => 0.0024481665623544
1013 => 0.0024596869976735
1014 => 0.0025525332455184
1015 => 0.0026125161559295
1016 => 0.0026099121395948
1017 => 0.0026337079743789
1018 => 0.0026229877328638
1019 => 0.0025883692451548
1020 => 0.0026474587823993
1021 => 0.0026287603804039
1022 => 0.0026303018539458
1023 => 0.0026302444802236
1024 => 0.0026426772829079
1025 => 0.0026338675027564
1026 => 0.0026165025217726
1027 => 0.0026280302065394
1028 => 0.0026622633090742
1029 => 0.0027685239097419
1030 => 0.0028279887496413
1031 => 0.0027649440517137
1101 => 0.002808431440142
1102 => 0.0027823545032259
1103 => 0.0027776155480666
1104 => 0.0028049288416923
1105 => 0.0028322899436228
1106 => 0.0028305471597151
1107 => 0.0028106844047217
1108 => 0.0027994644384247
1109 => 0.0028844257821904
1110 => 0.0029470238529982
1111 => 0.0029427550842319
1112 => 0.0029615960412884
1113 => 0.0030169136739351
1114 => 0.0030219712250012
1115 => 0.0030213340898133
1116 => 0.0030087984217952
1117 => 0.0030632658150382
1118 => 0.0031087034727442
1119 => 0.0030058967768393
1120 => 0.0030450442208014
1121 => 0.0030626187696478
1122 => 0.0030884234214881
1123 => 0.0031319601945045
1124 => 0.003179252677559
1125 => 0.0031859403531986
1126 => 0.0031811951272975
1127 => 0.0031500044634329
1128 => 0.0032017524627078
1129 => 0.0032320652270431
1130 => 0.0032501157845095
1201 => 0.003295888994918
1202 => 0.0030627273040784
1203 => 0.0028976838704143
1204 => 0.0028719099549915
1205 => 0.0029243222255128
1206 => 0.0029381429232693
1207 => 0.0029325718173333
1208 => 0.0027468004276518
1209 => 0.0028709319070711
1210 => 0.0030044869416551
1211 => 0.0030096173344535
1212 => 0.0030764777772703
1213 => 0.0030982502781536
1214 => 0.0031520816982197
1215 => 0.0031487145282378
1216 => 0.003161821622379
1217 => 0.0031588085284191
1218 => 0.0032585198985488
1219 => 0.0033685163470835
1220 => 0.003364707519838
1221 => 0.0033488942289422
1222 => 0.0033723796624892
1223 => 0.0034859077853129
1224 => 0.0034754559350143
1225 => 0.0034856090172929
1226 => 0.0036194650722665
1227 => 0.0037934969845341
1228 => 0.0037126416887675
1229 => 0.0038880744150964
1230 => 0.0039985000170312
1231 => 0.0041894696773571
]
'min_raw' => 0.0017104676653859
'max_raw' => 0.0041894696773571
'avg_raw' => 0.0029499686713715
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.00171'
'max' => '$0.004189'
'avg' => '$0.002949'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00076268595555582
'max_diff' => 0.0016996410157876
'year' => 2028
]
3 => [
'items' => [
101 => 0.0041655593353389
102 => 0.0042399024227037
103 => 0.0041227548328874
104 => 0.0038537602872349
105 => 0.0038111908707157
106 => 0.0038964159206166
107 => 0.0041059333896591
108 => 0.003889817469907
109 => 0.0039335374390029
110 => 0.0039209460849621
111 => 0.0039202751452151
112 => 0.0039458821864498
113 => 0.0039087378375653
114 => 0.0037574050780691
115 => 0.0038267599899367
116 => 0.0037999787277682
117 => 0.0038296945348195
118 => 0.0039900584897443
119 => 0.0039191577626728
120 => 0.0038444696062104
121 => 0.003938145129043
122 => 0.0040574262600109
123 => 0.0040499618612038
124 => 0.0040354778076412
125 => 0.004117123659213
126 => 0.0042519786860198
127 => 0.0042884294578742
128 => 0.004315336672454
129 => 0.0043190467227434
130 => 0.004357262546508
131 => 0.0041517664304983
201 => 0.0044778940441202
202 => 0.0045342072738991
203 => 0.0045236227206449
204 => 0.0045862125055213
205 => 0.0045677970030611
206 => 0.0045411158293
207 => 0.0046403339515581
208 => 0.0045265883808788
209 => 0.0043651408634687
210 => 0.0042765675623477
211 => 0.0043932080302683
212 => 0.004464436293836
213 => 0.0045115136450858
214 => 0.0045257592231291
215 => 0.0041677185090118
216 => 0.0039747544219509
217 => 0.0040984421894191
218 => 0.0042493498022041
219 => 0.0041509281310898
220 => 0.0041547860742606
221 => 0.0040144626360118
222 => 0.0042617653128235
223 => 0.0042257353929549
224 => 0.0044126586809688
225 => 0.0043680479381312
226 => 0.0045204766231863
227 => 0.0044803370419698
228 => 0.0046469541994259
301 => 0.0047134222945145
302 => 0.0048250325711014
303 => 0.0049071335448942
304 => 0.0049553448070468
305 => 0.004952450383703
306 => 0.0051434874231068
307 => 0.0050308395552962
308 => 0.0048893272842621
309 => 0.0048867677737446
310 => 0.0049600589841575
311 => 0.0051136572547214
312 => 0.0051534830515147
313 => 0.005175740238787
314 => 0.0051416525817012
315 => 0.0050193813947382
316 => 0.0049665853161365
317 => 0.0050115691047548
318 => 0.0049565577967757
319 => 0.0050515227477945
320 => 0.0051819299089623
321 => 0.0051550013458669
322 => 0.0052450194949388
323 => 0.0053381788090428
324 => 0.0054714008122581
325 => 0.0055062299770951
326 => 0.0055638012621361
327 => 0.0056230610256252
328 => 0.0056420936645625
329 => 0.0056784328777749
330 => 0.0056782413521837
331 => 0.0057877520171103
401 => 0.0059085456717873
402 => 0.0059541424800483
403 => 0.0060589898264218
404 => 0.0058794424200464
405 => 0.0060156311902741
406 => 0.0061384768700456
407 => 0.0059920151862891
408 => 0.0061938784961517
409 => 0.0062017163910416
410 => 0.0063200592983012
411 => 0.0062000960900359
412 => 0.006128862319904
413 => 0.0063345115451801
414 => 0.0064340187274013
415 => 0.0064040463543
416 => 0.0061759551150802
417 => 0.0060431962305609
418 => 0.0056957406224974
419 => 0.0061073167992139
420 => 0.0063077835490508
421 => 0.0061754359546274
422 => 0.0062421843830547
423 => 0.0066063421653037
424 => 0.0067449898713138
425 => 0.0067161521176843
426 => 0.0067210252233378
427 => 0.006795837008867
428 => 0.0071275936655062
429 => 0.0069287973867889
430 => 0.0070807696931138
501 => 0.0071613752564116
502 => 0.0072362461957995
503 => 0.0070523868318663
504 => 0.0068131885008197
505 => 0.0067374243485144
506 => 0.006162276594648
507 => 0.0061323376563191
508 => 0.0061155320229925
509 => 0.0060095748820719
510 => 0.0059263215934119
511 => 0.005860115487273
512 => 0.0056863708939477
513 => 0.0057450045938689
514 => 0.0054680919754232
515 => 0.0056452508555242
516 => 0.0052032916301959
517 => 0.0055713684059386
518 => 0.0053710409512992
519 => 0.0055055554492999
520 => 0.0055050861408884
521 => 0.0052574023022087
522 => 0.005114543433088
523 => 0.0052055786646421
524 => 0.0053031756592537
525 => 0.0053190104432737
526 => 0.0054455474943298
527 => 0.0054808612653748
528 => 0.0053738588904662
529 => 0.0051941330075991
530 => 0.0052358792310782
531 => 0.0051136974472016
601 => 0.0048995785706124
602 => 0.0050533624859357
603 => 0.0051058710760286
604 => 0.0051290618607619
605 => 0.0049185005373555
606 => 0.0048523375980325
607 => 0.0048171130042978
608 => 0.0051669521848632
609 => 0.0051861171648919
610 => 0.0050880664174101
611 => 0.0055312650935812
612 => 0.0054309555834091
613 => 0.005543025882698
614 => 0.0052320911988607
615 => 0.0052439693225124
616 => 0.0050967678602344
617 => 0.0051791908431048
618 => 0.0051209369354288
619 => 0.0051725318806087
620 => 0.0052034576780156
621 => 0.005350634985982
622 => 0.0055730489343814
623 => 0.0053286516041025
624 => 0.0052221641874658
625 => 0.0052882283818393
626 => 0.0054641660372935
627 => 0.0057307205913896
628 => 0.0055729149304544
629 => 0.0056429464030635
630 => 0.0056582451643453
701 => 0.0055418851122548
702 => 0.0057350109524844
703 => 0.005838508659215
704 => 0.0059446758904879
705 => 0.0060368579226638
706 => 0.00590227036365
707 => 0.0060462983441635
708 => 0.0059302372162307
709 => 0.0058261183862962
710 => 0.0058262762915828
711 => 0.0057609610286314
712 => 0.0056344044764104
713 => 0.005611065506455
714 => 0.0057324777755501
715 => 0.0058298389175797
716 => 0.0058378580475656
717 => 0.0058917621783893
718 => 0.0059236620877541
719 => 0.0062363245653524
720 => 0.0063620800003222
721 => 0.0065158513657746
722 => 0.0065757539786976
723 => 0.0067560393673206
724 => 0.0066104442739442
725 => 0.0065789438596561
726 => 0.006141630477758
727 => 0.006213240519545
728 => 0.0063278951057874
729 => 0.0061435210896552
730 => 0.0062604639658426
731 => 0.0062835509667907
801 => 0.0061372561311386
802 => 0.0062153985238871
803 => 0.0060078754963519
804 => 0.0055775723692866
805 => 0.0057354900028735
806 => 0.0058517705356942
807 => 0.0056858238780728
808 => 0.0059832768388365
809 => 0.0058095109598338
810 => 0.0057544355184231
811 => 0.0055395665856675
812 => 0.0056409764508645
813 => 0.0057781347455928
814 => 0.0056933868658139
815 => 0.0058692514413133
816 => 0.0061183225815895
817 => 0.0062958255085931
818 => 0.0063094519792658
819 => 0.006195329488975
820 => 0.0063782115079861
821 => 0.0063795436038377
822 => 0.0061732519392982
823 => 0.0060468994434046
824 => 0.0060181918904896
825 => 0.0060899089861185
826 => 0.0061769867799181
827 => 0.0063142841907911
828 => 0.0063972501406876
829 => 0.0066135813362778
830 => 0.0066721143551031
831 => 0.0067364243966897
901 => 0.0068223624447316
902 => 0.0069255531054692
903 => 0.0066997778144229
904 => 0.006708748287634
905 => 0.0064985094626834
906 => 0.0062738391269264
907 => 0.0064443359062132
908 => 0.0066672377648947
909 => 0.0066161038322285
910 => 0.0066103502202321
911 => 0.0066200261996912
912 => 0.006581472884339
913 => 0.0064070976678535
914 => 0.0063195275257811
915 => 0.0064325153505804
916 => 0.0064925633509517
917 => 0.0065856925627916
918 => 0.0065742124217132
919 => 0.0068141032700656
920 => 0.0069073175998126
921 => 0.0068834693853973
922 => 0.006887858030789
923 => 0.0070566181222993
924 => 0.0072443140522187
925 => 0.0074201160592476
926 => 0.0075989494116693
927 => 0.0073833588253404
928 => 0.0072738952213814
929 => 0.007386833719231
930 => 0.0073269069625476
1001 => 0.0076712638818812
1002 => 0.0076951064078352
1003 => 0.0080394384262441
1004 => 0.0083662505140081
1005 => 0.0081609856971303
1006 => 0.0083545411741157
1007 => 0.008563887203285
1008 => 0.0089677496587217
1009 => 0.0088317429917831
1010 => 0.0087275640164044
1011 => 0.0086291153880606
1012 => 0.0088339713553644
1013 => 0.0090975152846468
1014 => 0.0091542801228218
1015 => 0.0092462608465025
1016 => 0.00914955436242
1017 => 0.0092660266706276
1018 => 0.009677225099126
1019 => 0.0095661156539968
1020 => 0.0094083223801787
1021 => 0.0097329240475613
1022 => 0.00985039612913
1023 => 0.010674876718186
1024 => 0.011715817519464
1025 => 0.011284861192549
1026 => 0.011017352693559
1027 => 0.011080223536208
1028 => 0.011460339878765
1029 => 0.011582421183704
1030 => 0.011250562112929
1031 => 0.011367780347015
1101 => 0.012013664341472
1102 => 0.012360160382058
1103 => 0.011889572218315
1104 => 0.010591238138345
1105 => 0.009394114822325
1106 => 0.009711645832899
1107 => 0.0096756476704343
1108 => 0.010369569446809
1109 => 0.0095634657304768
1110 => 0.0095770384496916
1111 => 0.010285309793525
1112 => 0.010096355141835
1113 => 0.0097902728055809
1114 => 0.0093963495621107
1115 => 0.0086681460130661
1116 => 0.008023155822219
1117 => 0.0092881301188399
1118 => 0.0092335821269631
1119 => 0.009154588551166
1120 => 0.0093303802061048
1121 => 0.010183974583155
1122 => 0.010164296469949
1123 => 0.010039114353592
1124 => 0.010134063885544
1125 => 0.0097736276935554
1126 => 0.0098665203072104
1127 => 0.0093939251918755
1128 => 0.0096075579213223
1129 => 0.0097896160903559
1130 => 0.0098261669632066
1201 => 0.0099085179460732
1202 => 0.009204837813924
1203 => 0.0095207695342957
1204 => 0.0097063498212152
1205 => 0.0088678913334444
1206 => 0.0096897761927615
1207 => 0.0091925883083702
1208 => 0.0090238352728964
1209 => 0.0092510390036401
1210 => 0.0091624974888064
1211 => 0.0090863746936846
1212 => 0.009043896866051
1213 => 0.0092107302103484
1214 => 0.009202947235428
1215 => 0.0089299755032006
1216 => 0.0085738950062612
1217 => 0.008693407308978
1218 => 0.0086499873689672
1219 => 0.0084926279050843
1220 => 0.0085986691840872
1221 => 0.0081317170576215
1222 => 0.0073283501940967
1223 => 0.0078590789519337
1224 => 0.0078386464720788
1225 => 0.0078283434891968
1226 => 0.0082271714824458
1227 => 0.0081888333734222
1228 => 0.0081192493301366
1229 => 0.0084913499395609
1230 => 0.0083555282116616
1231 => 0.0087740987734235
]
'min_raw' => 0.0037574050780691
'max_raw' => 0.012360160382058
'avg_raw' => 0.0080587827300637
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003757'
'max' => '$0.01236'
'avg' => '$0.008058'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0020469374126832
'max_diff' => 0.0081706907047012
'year' => 2029
]
4 => [
'items' => [
101 => 0.0090497964168465
102 => 0.00897987057659
103 => 0.0092391655427917
104 => 0.0086961606310516
105 => 0.0088765250811559
106 => 0.0089136979443481
107 => 0.0084867582758003
108 => 0.0081951059621939
109 => 0.0081756560779561
110 => 0.0076699711583271
111 => 0.0079401039606469
112 => 0.0081778096478334
113 => 0.0080639670703775
114 => 0.0080279279113053
115 => 0.0082120441590655
116 => 0.0082263515683655
117 => 0.0079001411200944
118 => 0.0079679706020314
119 => 0.0082508308174216
120 => 0.0079608432503481
121 => 0.0073974447767244
122 => 0.0072577141656724
123 => 0.007239071526412
124 => 0.0068601110270645
125 => 0.0072670516332508
126 => 0.0070894111533203
127 => 0.0076505753009612
128 => 0.0073300413494124
129 => 0.0073162237714042
130 => 0.0072953364756469
131 => 0.0069691495191974
201 => 0.0070405637323973
202 => 0.0072779554537656
203 => 0.007362659494359
204 => 0.0073538241689654
205 => 0.0072767921048223
206 => 0.007312056989319
207 => 0.0071984565092549
208 => 0.0071583418153548
209 => 0.00703172880699
210 => 0.0068456426624302
211 => 0.0068715190821639
212 => 0.0065028337377024
213 => 0.0063019543944276
214 => 0.0062463536397563
215 => 0.0061720019868944
216 => 0.0062547518567893
217 => 0.0065017892984444
218 => 0.0062038097318914
219 => 0.0056929446658725
220 => 0.0057236485268119
221 => 0.0057926309862847
222 => 0.0056640826294218
223 => 0.0055424223978968
224 => 0.0056481960986012
225 => 0.0054317358355138
226 => 0.0058187891749277
227 => 0.005808320466801
228 => 0.0059525900165166
301 => 0.0060428047266629
302 => 0.0058348890271349
303 => 0.0057825987909674
304 => 0.0058123856859471
305 => 0.0053200746630608
306 => 0.0059123577028072
307 => 0.00591747979113
308 => 0.0058736213612
309 => 0.0061889937951777
310 => 0.0068545279979993
311 => 0.0066041272598465
312 => 0.0065071645256314
313 => 0.0063228382970091
314 => 0.0065684420524398
315 => 0.0065495835160382
316 => 0.0064642980625424
317 => 0.0064127171541613
318 => 0.0065077565594104
319 => 0.0064009407200964
320 => 0.0063817536602526
321 => 0.0062655009533264
322 => 0.0062240040261149
323 => 0.0061932813532478
324 => 0.0061594587091685
325 => 0.0062340630339295
326 => 0.0060649998190048
327 => 0.0058611261552769
328 => 0.0058441762660816
329 => 0.0058909764003995
330 => 0.005870270824824
331 => 0.0058440771357517
401 => 0.0057940662498859
402 => 0.0057792290883631
403 => 0.0058274426653449
404 => 0.0057730123479586
405 => 0.005853327246235
406 => 0.0058314860379298
407 => 0.0057094828238006
408 => 0.0055574216476204
409 => 0.0055560679841933
410 => 0.0055233066532156
411 => 0.0054815801725164
412 => 0.0054699728201585
413 => 0.0056392881325547
414 => 0.0059897657620341
415 => 0.0059209586171484
416 => 0.0059706788309681
417 => 0.006215253073057
418 => 0.006292995870013
419 => 0.0062378158741727
420 => 0.0061622820925125
421 => 0.0061656051955652
422 => 0.0064237269931284
423 => 0.0064398257330238
424 => 0.0064805020550891
425 => 0.0065327826240703
426 => 0.0062467194811377
427 => 0.0061521316472583
428 => 0.006107310684033
429 => 0.0059692794651947
430 => 0.0061181343008094
501 => 0.0060314029626963
502 => 0.0060431059833722
503 => 0.0060354843758042
504 => 0.0060396462889072
505 => 0.0058186809856312
506 => 0.0058991891285505
507 => 0.005765328726136
508 => 0.0055861046738383
509 => 0.005585503851971
510 => 0.0056293686848643
511 => 0.0056032761658282
512 => 0.0055330618680023
513 => 0.0055430354776063
514 => 0.0054556561627498
515 => 0.0055536449084835
516 => 0.0055564548750905
517 => 0.0055187238705
518 => 0.005669689053144
519 => 0.0057315396116491
520 => 0.0057067042561511
521 => 0.0057297970969013
522 => 0.005923817864664
523 => 0.0059554517155289
524 => 0.0059695013824682
525 => 0.0059506766899937
526 => 0.0057333434403671
527 => 0.0057429830941604
528 => 0.0056722537106361
529 => 0.0056124948348368
530 => 0.0056148848764748
531 => 0.0056456087067457
601 => 0.0057797814754674
602 => 0.0060621401573256
603 => 0.0060728554629006
604 => 0.006085842725845
605 => 0.0060330170005746
606 => 0.006017084256359
607 => 0.0060381036585696
608 => 0.0061441427337614
609 => 0.0064169040244826
610 => 0.0063204919672276
611 => 0.0062421074639363
612 => 0.0063108718056331
613 => 0.0063002860742216
614 => 0.006210931848005
615 => 0.0062084239724785
616 => 0.0060369246440946
617 => 0.0059735252472418
618 => 0.005920543965869
619 => 0.0058626897897212
620 => 0.0058283918948113
621 => 0.0058810890495074
622 => 0.0058931415122808
623 => 0.0057779182625492
624 => 0.0057622137593753
625 => 0.0058563075523727
626 => 0.0058149003822447
627 => 0.0058574886835698
628 => 0.0058673695347929
629 => 0.0058657784901707
630 => 0.0058225446489738
701 => 0.005850100610101
702 => 0.0057849225472079
703 => 0.0057140511932401
704 => 0.0056688396848501
705 => 0.0056293866473434
706 => 0.0056512774855761
707 => 0.0055732406443857
708 => 0.0055482750883175
709 => 0.0058407652704999
710 => 0.0060568309128773
711 => 0.0060536892328657
712 => 0.0060345650637699
713 => 0.0060061504276895
714 => 0.0061420640261483
715 => 0.0060947144461234
716 => 0.0061291652217813
717 => 0.0061379343900807
718 => 0.0061644760214186
719 => 0.0061739623732915
720 => 0.0061452880292364
721 => 0.0060490534283111
722 => 0.0058092459525166
723 => 0.0056976149251864
724 => 0.0056607748268056
725 => 0.0056621138944124
726 => 0.0056251764319549
727 => 0.0056360561700696
728 => 0.0056213929030377
729 => 0.0055936242227047
730 => 0.0056495628478156
731 => 0.0056560092532553
801 => 0.0056429525097376
802 => 0.005646027845497
803 => 0.0055379235857787
804 => 0.0055461425178549
805 => 0.0055003784596428
806 => 0.005491798250422
807 => 0.0053761106963942
808 => 0.0051711534252549
809 => 0.0052847196491498
810 => 0.0051475476205123
811 => 0.0050955984947719
812 => 0.0053415175762804
813 => 0.0053168341212305
814 => 0.0052745867758251
815 => 0.0052120941468522
816 => 0.005188915022877
817 => 0.0050480860032223
818 => 0.0050397650734475
819 => 0.0051095637382917
820 => 0.0050773540560915
821 => 0.0050321194635218
822 => 0.0048682843545916
823 => 0.0046840794482136
824 => 0.0046896394364664
825 => 0.0047482315899311
826 => 0.0049185961783582
827 => 0.0048520317863225
828 => 0.0048037385561621
829 => 0.0047946946858422
830 => 0.0049078976575203
831 => 0.0050681035792006
901 => 0.0051432686132475
902 => 0.005068782347303
903 => 0.0049832165356114
904 => 0.0049884245300953
905 => 0.0050230709841739
906 => 0.005026711836623
907 => 0.0049710172895194
908 => 0.0049866949782964
909 => 0.0049628791354462
910 => 0.0048167213518352
911 => 0.004814077821001
912 => 0.0047782083437902
913 => 0.0047771222302757
914 => 0.0047160993014797
915 => 0.0047075617719096
916 => 0.0045863970429582
917 => 0.0046661480344746
918 => 0.0046126552564804
919 => 0.0045320290223724
920 => 0.0045181290292223
921 => 0.0045177111786435
922 => 0.0046004962933763
923 => 0.0046651806422091
924 => 0.0046135857862558
925 => 0.0046018386376795
926 => 0.0047272674514276
927 => 0.0047113054915691
928 => 0.0046974825372753
929 => 0.0050537588960681
930 => 0.0047717383574926
1001 => 0.0046487613055041
1002 => 0.0044965538509596
1003 => 0.0045461133656559
1004 => 0.0045565562835832
1005 => 0.0041905247928595
1006 => 0.0040420258626592
1007 => 0.0039910666258786
1008 => 0.0039617388646535
1009 => 0.0039751038937186
1010 => 0.0038414374393511
1011 => 0.0039312635073252
1012 => 0.0038155196563871
1013 => 0.0037961148231142
1014 => 0.0040030791665033
1015 => 0.0040318770458178
1016 => 0.0039090163458626
1017 => 0.0039879128045744
1018 => 0.0039593038519027
1019 => 0.0038175037525064
1020 => 0.0038120880317204
1021 => 0.0037409377263578
1022 => 0.0036296012758794
1023 => 0.003578717530455
1024 => 0.003552216834045
1025 => 0.003563151537872
1026 => 0.0035576226170096
1027 => 0.0035215426684762
1028 => 0.0035596906774259
1029 => 0.0034622382784051
1030 => 0.0034234319478877
1031 => 0.0034059040286931
1101 => 0.0033194094154114
1102 => 0.0034570608094717
1103 => 0.0034841798681881
1104 => 0.0035113523598277
1105 => 0.0037478703481027
1106 => 0.0037360545778014
1107 => 0.0038428633868118
1108 => 0.0038387129929025
1109 => 0.0038082493903847
1110 => 0.0036797284623817
1111 => 0.0037309546136184
1112 => 0.0035732884824231
1113 => 0.0036914226681694
1114 => 0.0036375111591963
1115 => 0.0036731951327555
1116 => 0.0036090321308019
1117 => 0.0036445425853085
1118 => 0.0034906108030605
1119 => 0.003346871470676
1120 => 0.0034047163740402
1121 => 0.0034676003993642
1122 => 0.0036039489888183
1123 => 0.0035227408937909
1124 => 0.0035519463955808
1125 => 0.0034541128535266
1126 => 0.003252254311499
1127 => 0.0032533968089251
1128 => 0.0032223452699615
1129 => 0.0031955122066981
1130 => 0.0035320686203899
1201 => 0.0034902125101778
1202 => 0.003423520276547
1203 => 0.0035127904815058
1204 => 0.0035363949406056
1205 => 0.0035370669263722
1206 => 0.0036021961635126
1207 => 0.0036369556490495
1208 => 0.0036430821590317
1209 => 0.0037455644208825
1210 => 0.0037799151232811
1211 => 0.0039214008049679
1212 => 0.0036340065495527
1213 => 0.0036280878539875
1214 => 0.0035140466963599
1215 => 0.0034417199912731
1216 => 0.0035189989677354
1217 => 0.0035874575912487
1218 => 0.0035161738966201
1219 => 0.0035254820422577
1220 => 0.0034297895063107
1221 => 0.0034639950851594
1222 => 0.003493457537653
1223 => 0.003477190103109
1224 => 0.0034528369662438
1225 => 0.0035818447648125
1226 => 0.0035745656392316
1227 => 0.0036947006671352
1228 => 0.0037883545123244
1229 => 0.0039561989455306
1230 => 0.0037810445295517
1231 => 0.0037746612064577
]
'min_raw' => 0.0031955122066981
'max_raw' => 0.0092391655427917
'avg_raw' => 0.0062173388747449
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003195'
'max' => '$0.009239'
'avg' => '$0.006217'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00056189287137099
'max_diff' => -0.0031209948392667
'year' => 2030
]
5 => [
'items' => [
101 => 0.003837059213619
102 => 0.0037799055704713
103 => 0.0038160247000639
104 => 0.0039503795953537
105 => 0.0039532183025775
106 => 0.0039056662991112
107 => 0.0039027727553787
108 => 0.0039119056378063
109 => 0.0039653972154453
110 => 0.0039467056145881
111 => 0.0039683360083135
112 => 0.0039953851468835
113 => 0.0041072718526061
114 => 0.0041342473585651
115 => 0.0040687108642809
116 => 0.0040746280759338
117 => 0.0040501156280545
118 => 0.0040264369105431
119 => 0.0040796632095096
120 => 0.0041769353170364
121 => 0.0041763301923039
122 => 0.0041988954305505
123 => 0.0042129533870376
124 => 0.0041526063467418
125 => 0.0041133226425314
126 => 0.0041283865144127
127 => 0.0041524739735994
128 => 0.0041205752760411
129 => 0.0039236817377975
130 => 0.0039834066596927
131 => 0.0039734655122899
201 => 0.0039593081095034
202 => 0.0040193619803082
203 => 0.0040135696379667
204 => 0.0038400664966632
205 => 0.0038511736048399
206 => 0.0038407419566994
207 => 0.0038744487459559
208 => 0.0037780852932352
209 => 0.0038077260422744
210 => 0.0038263164422069
211 => 0.0038372663305854
212 => 0.0038768248358172
213 => 0.0038721831018108
214 => 0.0038765362991141
215 => 0.0039351911193146
216 => 0.0042318470719854
217 => 0.0042479934009548
218 => 0.0041684829718671
219 => 0.0042002458200138
220 => 0.0041392680973435
221 => 0.0041802028510873
222 => 0.0042082093699688
223 => 0.0040816532964871
224 => 0.0040741594671576
225 => 0.0040129300677349
226 => 0.0040458312787742
227 => 0.0039934830863298
228 => 0.0040063275016936
301 => 0.0039704133965804
302 => 0.0040350516353572
303 => 0.0041073272300766
304 => 0.0041255868995524
305 => 0.0040775535704435
306 => 0.004042774274618
307 => 0.0039817132881606
308 => 0.004083259069472
309 => 0.004112954150479
310 => 0.004083103093853
311 => 0.0040761859517743
312 => 0.0040630779800342
313 => 0.0040789668699444
314 => 0.0041127924246905
315 => 0.0040968409177322
316 => 0.0041073771691075
317 => 0.0040672238437998
318 => 0.0041526263241232
319 => 0.0042882660161028
320 => 0.0042887021198918
321 => 0.0042727505269489
322 => 0.0042662234787985
323 => 0.0042825907811816
324 => 0.0042914693713025
325 => 0.0043443982259593
326 => 0.0044011929957847
327 => 0.0046662294050603
328 => 0.004591808241896
329 => 0.0048269643112919
330 => 0.0050129422309901
331 => 0.0050687088772788
401 => 0.0050174061867166
402 => 0.0048419024536205
403 => 0.00483329140319
404 => 0.0050955680762005
405 => 0.0050214629030424
406 => 0.005012648328496
407 => 0.0049188761477805
408 => 0.0049743071204938
409 => 0.0049621835536381
410 => 0.0049430459102512
411 => 0.0050488043448333
412 => 0.0052467746932504
413 => 0.0052159191578954
414 => 0.0051928869321
415 => 0.0050919664232447
416 => 0.0051527431109873
417 => 0.0051311016965829
418 => 0.005224086946845
419 => 0.0051690045444653
420 => 0.0050209014834713
421 => 0.0050444873840886
422 => 0.0050409224226586
423 => 0.0051142890762735
424 => 0.0050922662279306
425 => 0.0050366221080655
426 => 0.0052460980521216
427 => 0.005232495849481
428 => 0.0052517806629289
429 => 0.0052602704342114
430 => 0.0053877747499781
501 => 0.0054400091884648
502 => 0.0054518673204938
503 => 0.0055014859970996
504 => 0.0054506327626182
505 => 0.0056540819582854
506 => 0.0057893638018143
507 => 0.0059465006246132
508 => 0.0061761197571187
509 => 0.0062624586750364
510 => 0.0062468623223043
511 => 0.0064209569279629
512 => 0.0067338010644259
513 => 0.0063100970668396
514 => 0.0067562584051317
515 => 0.0066150088766088
516 => 0.0062801087854514
517 => 0.0062585451677936
518 => 0.0064853433977954
519 => 0.0069883600434185
520 => 0.0068623600788575
521 => 0.0069885661342223
522 => 0.0068413400668099
523 => 0.0068340290516442
524 => 0.0069814156927428
525 => 0.0073257926132973
526 => 0.0071621920471177
527 => 0.0069276305189946
528 => 0.0071008271011791
529 => 0.0069507881931039
530 => 0.0066127085399643
531 => 0.0068622637290592
601 => 0.0066953932810341
602 => 0.0067440949490887
603 => 0.0070948318107317
604 => 0.0070526302236042
605 => 0.007107242985109
606 => 0.0070108528905179
607 => 0.0069208093428471
608 => 0.0067527363743978
609 => 0.0067029782543372
610 => 0.0067167296086123
611 => 0.0067029714398489
612 => 0.0066089361586719
613 => 0.0065886292486549
614 => 0.0065547835089604
615 => 0.0065652737189403
616 => 0.0065016338263943
617 => 0.0066217354523014
618 => 0.0066440273724016
619 => 0.0067314273200924
620 => 0.0067405014725998
621 => 0.0069839090828582
622 => 0.0068498442614266
623 => 0.0069397865182427
624 => 0.0069317412362237
625 => 0.0062873670859327
626 => 0.0063761561584816
627 => 0.0065142840918217
628 => 0.0064520576450799
629 => 0.0063640840081332
630 => 0.0062930405794507
701 => 0.0061854025204332
702 => 0.0063369010214945
703 => 0.0065361054403207
704 => 0.0067455536253986
705 => 0.006997191896181
706 => 0.0069410291635347
707 => 0.0067408494229622
708 => 0.0067498293398929
709 => 0.0068053396528914
710 => 0.0067334487539146
711 => 0.0067122467243293
712 => 0.0068024268196057
713 => 0.0068030478403597
714 => 0.0067203286727816
715 => 0.0066284014554664
716 => 0.0066280162770693
717 => 0.0066116587166596
718 => 0.0068442500404683
719 => 0.0069721517509278
720 => 0.006986815475908
721 => 0.0069711647654021
722 => 0.0069771881027214
723 => 0.0069027649155269
724 => 0.0070728742519429
725 => 0.007228983401108
726 => 0.0071871428143463
727 => 0.0071244178268005
728 => 0.0070744543529755
729 => 0.0071753730077751
730 => 0.0071708792589376
731 => 0.0072276199238767
801 => 0.0072250458395651
802 => 0.0072059660880704
803 => 0.0071871434957443
804 => 0.0072617729467082
805 => 0.0072402808633429
806 => 0.0072187553968359
807 => 0.0071755827783719
808 => 0.0071814506542425
809 => 0.0071187364970501
810 => 0.0070897220583284
811 => 0.0066534145153259
812 => 0.0065368188830754
813 => 0.0065735022425044
814 => 0.0065855793569114
815 => 0.0065348367883346
816 => 0.0066075885969774
817 => 0.0065962503046636
818 => 0.0066403609673772
819 => 0.0066128025403761
820 => 0.006613933547833
821 => 0.0066949770055672
822 => 0.0067185042661309
823 => 0.0067065381115199
824 => 0.0067149187960337
825 => 0.0069080481333876
826 => 0.0068805913175444
827 => 0.0068660054313623
828 => 0.0068700458215165
829 => 0.0069193945079501
830 => 0.0069332094458131
831 => 0.006874674583329
901 => 0.0069022799628625
902 => 0.0070198201652719
903 => 0.0070609525839159
904 => 0.0071922275195465
905 => 0.0071364595936647
906 => 0.0072388240352
907 => 0.0075534574298698
908 => 0.007804808356507
909 => 0.0075736556568551
910 => 0.0080352296242767
911 => 0.0083946311667676
912 => 0.0083808367369522
913 => 0.0083181667649115
914 => 0.00790899766397
915 => 0.007532474156916
916 => 0.0078474520585993
917 => 0.0078482550020464
918 => 0.0078211981209518
919 => 0.0076531501562323
920 => 0.0078153504160446
921 => 0.0078282252836437
922 => 0.0078210187814918
923 => 0.0076921768009507
924 => 0.0074954589106427
925 => 0.0075338971155328
926 => 0.0075968596792609
927 => 0.0074776584107568
928 => 0.0074395663828102
929 => 0.0075103867100678
930 => 0.0077385845604929
1001 => 0.0076954450787301
1002 => 0.007694318532521
1003 => 0.0078788875294892
1004 => 0.0077467759601425
1005 => 0.0075343819443926
1006 => 0.0074807496542829
1007 => 0.007290391155433
1008 => 0.0074218724486223
1009 => 0.0074266042262926
1010 => 0.007354593265719
1011 => 0.0075402252369681
1012 => 0.0075385146056732
1013 => 0.0077147445347015
1014 => 0.008051629970065
1015 => 0.0079519963697026
1016 => 0.0078361333325859
1017 => 0.0078487308572541
1018 => 0.0079868946095231
1019 => 0.0079033576509296
1020 => 0.0079333981236802
1021 => 0.0079868491396697
1022 => 0.0080190974647303
1023 => 0.0078440908195514
1024 => 0.0078032883990247
1025 => 0.0077198209663306
1026 => 0.0076980458711342
1027 => 0.0077660283534584
1028 => 0.0077481173712225
1029 => 0.0074262065387017
1030 => 0.0073925650656083
1031 => 0.0073935968015592
1101 => 0.007309003717901
1102 => 0.0071799789606559
1103 => 0.007519048319028
1104 => 0.0074918163042781
1105 => 0.0074617542675847
1106 => 0.0074654366955481
1107 => 0.0076126152118906
1108 => 0.0075272442397187
1109 => 0.0077542169612648
1110 => 0.0077075581931395
1111 => 0.0076597028036714
1112 => 0.0076530877311361
1113 => 0.0076346674890208
1114 => 0.0075714976249374
1115 => 0.0074952162181363
1116 => 0.007444848625984
1117 => 0.0068674793242608
1118 => 0.0069746357082579
1119 => 0.0070979093604348
1120 => 0.0071404629311782
1121 => 0.0070676721038043
1122 => 0.0075743718504674
1123 => 0.007666950776863
1124 => 0.0073865231700368
1125 => 0.0073340666145833
1126 => 0.0075778108935099
1127 => 0.0074308032967909
1128 => 0.0074970008085921
1129 => 0.007353917996181
1130 => 0.0076446512245217
1201 => 0.0076424363244332
1202 => 0.0075293345321008
1203 => 0.0076249273924925
1204 => 0.0076083157805747
1205 => 0.0074806241355889
1206 => 0.0076486992774273
1207 => 0.0076487826406007
1208 => 0.0075399246245258
1209 => 0.0074128022938343
1210 => 0.0073900758236021
1211 => 0.0073729544811539
1212 => 0.0074927900079072
1213 => 0.0076002341664782
1214 => 0.0078001611079131
1215 => 0.0078504274911368
1216 => 0.0080466205312816
1217 => 0.0079297971283411
1218 => 0.0079815834297483
1219 => 0.0080378047855453
1220 => 0.0080647593709864
1221 => 0.008020838320473
1222 => 0.0083256068680948
1223 => 0.0083513386713811
1224 => 0.0083599663224438
1225 => 0.0082572000829466
1226 => 0.008348480556358
1227 => 0.0083057734457403
1228 => 0.0084168854831904
1229 => 0.0084343092694122
1230 => 0.0084195519423515
1231 => 0.0084250825271141
]
'min_raw' => 0.0037780852932352
'max_raw' => 0.0084343092694122
'avg_raw' => 0.0061061972813237
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003778'
'max' => '$0.008434'
'avg' => '$0.0061061'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00058257308653713
'max_diff' => -0.00080485627337945
'year' => 2031
]
6 => [
'items' => [
101 => 0.0081650163365748
102 => 0.0081515305326369
103 => 0.0079676506390346
104 => 0.0080425830548491
105 => 0.007902500495088
106 => 0.0079469221177985
107 => 0.0079665027458245
108 => 0.0079562749369346
109 => 0.0080468196212115
110 => 0.0079698381425192
111 => 0.0077666713633233
112 => 0.0075634492314743
113 => 0.0075608979431501
114 => 0.0075073931430028
115 => 0.0074687189723893
116 => 0.0074761689896894
117 => 0.0075024238223759
118 => 0.0074671929937849
119 => 0.0074747112773131
120 => 0.0075995648779429
121 => 0.0076246033771341
122 => 0.0075395127737094
123 => 0.0071978617224434
124 => 0.007114019697496
125 => 0.0071742836823686
126 => 0.0071454813790972
127 => 0.0057669611548875
128 => 0.0060908240336861
129 => 0.0058983957084481
130 => 0.0059870755339193
131 => 0.0057906560429246
201 => 0.0058843977192549
202 => 0.0058670870545346
203 => 0.0063878489798433
204 => 0.0063797179986643
205 => 0.0063836098690727
206 => 0.0061978407542615
207 => 0.0064937759983369
208 => 0.0066395643410556
209 => 0.0066125827988495
210 => 0.0066193734717283
211 => 0.0065026872130953
212 => 0.0063847396471198
213 => 0.0062539176444528
214 => 0.0064969687553199
215 => 0.0064699456208123
216 => 0.0065319269687558
217 => 0.0066895629878054
218 => 0.0067127754904114
219 => 0.0067439733293119
220 => 0.0067327911248794
221 => 0.0069991966009823
222 => 0.0069669331400263
223 => 0.007044678798099
224 => 0.0068847500808662
225 => 0.0067037755567441
226 => 0.0067381728972767
227 => 0.0067348601567775
228 => 0.0066926851680356
229 => 0.0066546114739706
301 => 0.0065912295005492
302 => 0.0067917794432217
303 => 0.0067836374817964
304 => 0.0069154463732773
305 => 0.0068921478713848
306 => 0.0067365547736361
307 => 0.0067421118115613
308 => 0.0067794855622297
309 => 0.006908836540019
310 => 0.006947236717113
311 => 0.0069294482251005
312 => 0.0069715522662494
313 => 0.0070048295836535
314 => 0.0069757313849688
315 => 0.0073877005156734
316 => 0.0072166222102173
317 => 0.0073000045859414
318 => 0.0073198907912341
319 => 0.0072689526945387
320 => 0.0072799993437554
321 => 0.0072967320072871
322 => 0.0073983294636598
323 => 0.0076649505866428
324 => 0.0077830352670606
325 => 0.008138298854293
326 => 0.00777322997817
327 => 0.0077515683018661
328 => 0.0078155620018591
329 => 0.0080241393360345
330 => 0.0081931716747108
331 => 0.0082492494531593
401 => 0.0082566610573245
402 => 0.0083618666976741
403 => 0.0084221686087534
404 => 0.0083490919657526
405 => 0.0082871671622528
406 => 0.0080653602025063
407 => 0.0080910349620572
408 => 0.0082679085949294
409 => 0.0085177530191663
410 => 0.0087321455270435
411 => 0.0086570727431181
412 => 0.0092298250913423
413 => 0.0092866111471852
414 => 0.0092787651503807
415 => 0.009408132236489
416 => 0.009151364915713
417 => 0.0090415919114488
418 => 0.0083005560076459
419 => 0.0085087568701527
420 => 0.0088113890510145
421 => 0.008771334547065
422 => 0.0085515549679418
423 => 0.0087319788045246
424 => 0.0086723250417753
425 => 0.0086252736440581
426 => 0.008840825218363
427 => 0.0086038174080441
428 => 0.008809024716805
429 => 0.0085458442207213
430 => 0.0086574156692714
501 => 0.0085940823189706
502 => 0.0086350667584587
503 => 0.008395472562661
504 => 0.0085247517748931
505 => 0.0083900941224015
506 => 0.0083900302771413
507 => 0.0083870577019991
508 => 0.0085454818329921
509 => 0.0085506480382161
510 => 0.0084335723660468
511 => 0.0084166999326215
512 => 0.0084790861621952
513 => 0.0084060482263438
514 => 0.0084402222168334
515 => 0.0084070833217021
516 => 0.0083996230583961
517 => 0.008340178411115
518 => 0.0083145680226016
519 => 0.0083246105158361
520 => 0.0082903303091666
521 => 0.0082696752446791
522 => 0.0083829488897921
523 => 0.008322431350654
524 => 0.0083736737089755
525 => 0.008315276574367
526 => 0.0081128466633934
527 => 0.007996427080935
528 => 0.0076140557443685
529 => 0.0077224957810886
530 => 0.0077943916376233
531 => 0.0077706300574675
601 => 0.0078216791261531
602 => 0.007824813124367
603 => 0.0078082165517537
604 => 0.00778899984682
605 => 0.0077796462176088
606 => 0.0078493605064648
607 => 0.0078898319976208
608 => 0.0078016073486691
609 => 0.0077809375478137
610 => 0.0078701375389203
611 => 0.0079245494819661
612 => 0.0083262966979869
613 => 0.0082965339665977
614 => 0.0083712325817436
615 => 0.0083628226640219
616 => 0.0084411187131174
617 => 0.0085690996630094
618 => 0.0083088786078426
619 => 0.0083540439852525
620 => 0.0083429704777325
621 => 0.0084638681292065
622 => 0.0084642455584779
623 => 0.0083917613771337
624 => 0.008431056227762
625 => 0.0084091229201391
626 => 0.0084487593714779
627 => 0.0082961364671745
628 => 0.0084820146899916
629 => 0.0085873956646008
630 => 0.0085888588795355
701 => 0.0086388086251451
702 => 0.0086895604595787
703 => 0.0087869741862207
704 => 0.008686843643614
705 => 0.0085067185449765
706 => 0.0085197229952976
707 => 0.0084141157158716
708 => 0.0084158909933183
709 => 0.008406414423177
710 => 0.0084348543235339
711 => 0.0083023774259885
712 => 0.0083334694890514
713 => 0.0082899404186885
714 => 0.0083539493615546
715 => 0.008285086320088
716 => 0.0083429651377518
717 => 0.0083679437167424
718 => 0.0084601152109677
719 => 0.0082714725154486
720 => 0.0078868172892972
721 => 0.007967676481328
722 => 0.007848079384962
723 => 0.0078591485515689
724 => 0.0078815100297597
725 => 0.0078090291627229
726 => 0.0078228562280189
727 => 0.007822362227947
728 => 0.0078181052022075
729 => 0.0077992501293473
730 => 0.0077719065433376
731 => 0.0078808349740884
801 => 0.0078993440370827
802 => 0.0079404873913314
803 => 0.0080629021057715
804 => 0.0080506699890612
805 => 0.0080706210789214
806 => 0.0080270679617772
807 => 0.0078611688557599
808 => 0.0078701779753813
809 => 0.0077578341093409
810 => 0.0079376145060933
811 => 0.007895040135157
812 => 0.0078675921612517
813 => 0.007860102727268
814 => 0.0079828208841076
815 => 0.0080195400800054
816 => 0.0079966591412554
817 => 0.0079497296683357
818 => 0.0080398481297948
819 => 0.0080639600282886
820 => 0.0080693577931488
821 => 0.0082290304283534
822 => 0.008078281719715
823 => 0.0081145684321976
824 => 0.0083976670044876
825 => 0.0081409356643531
826 => 0.0082769319810144
827 => 0.0082702756690045
828 => 0.008339846782744
829 => 0.0082645688070493
830 => 0.0082655019677778
831 => 0.008327276403623
901 => 0.0082405253495567
902 => 0.008219044568587
903 => 0.0081893690235257
904 => 0.008254164490509
905 => 0.0082930064425185
906 => 0.0086060440494455
907 => 0.0088082806197694
908 => 0.0087995009968907
909 => 0.0088797303152373
910 => 0.0088435862725058
911 => 0.0087268676242091
912 => 0.0089260921245288
913 => 0.0088630491567205
914 => 0.0088682463423894
915 => 0.0088680529028792
916 => 0.0089099709651599
917 => 0.0088802681763001
918 => 0.0088217209305287
919 => 0.0088605873245573
920 => 0.0089760066198321
921 => 0.0093342716538617
922 => 0.009534761513285
923 => 0.0093222019125819
924 => 0.0094688226788604
925 => 0.0093809024654141
926 => 0.0093649247472311
927 => 0.0094570134236435
928 => 0.0095492632890935
929 => 0.0095433873714715
930 => 0.0094764187062378
1001 => 0.0094385898065143
1002 => 0.0097250429088319
1003 => 0.0099360966750183
1004 => 0.0099217042230868
1005 => 0.0099852278252364
1006 => 0.010171735085859
1007 => 0.010188786972385
1008 => 0.010186638826616
1009 => 0.01014437394668
1010 => 0.010328014565791
1011 => 0.010481210801102
1012 => 0.010134590848125
1013 => 0.01026657918863
1014 => 0.010325833007082
1015 => 0.010412835192385
1016 => 0.01055962246225
1017 => 0.010719072370724
1018 => 0.010741620336061
1019 => 0.010725621475635
1020 => 0.010620459974753
1021 => 0.010794931967238
1022 => 0.010897133568564
1023 => 0.010957992283312
1024 => 0.011112319857987
1025 => 0.010326198938492
1026 => 0.009769743478929
1027 => 0.0096828449236039
1028 => 0.0098595565529743
1029 => 0.0099061540003905
1030 => 0.0098873706277652
1031 => 0.0092610294173097
1101 => 0.0096795473667551
1102 => 0.01012983749037
1103 => 0.010147134967882
1104 => 0.010372559618886
1105 => 0.010445967125722
1106 => 0.010627463516864
1107 => 0.010616110868182
1108 => 0.010660302351187
1109 => 0.010650143494534
1110 => 0.010986327340551
1111 => 0.011357188046493
1112 => 0.011344346319511
1113 => 0.011291030705207
1114 => 0.011370213484112
1115 => 0.011752981476492
1116 => 0.011717742333486
1117 => 0.011751974159253
1118 => 0.012203279194128
1119 => 0.012790039936858
1120 => 0.012517430662045
1121 => 0.013108914347185
1122 => 0.013481221973777
1123 => 0.014125089516642
1124 => 0.014044474129161
1125 => 0.01429512703868
1126 => 0.01390015576063
1127 => 0.012993221869364
1128 => 0.012849696109467
1129 => 0.013137038315431
1130 => 0.01384344109035
1201 => 0.013114791178175
1202 => 0.013262196106412
1203 => 0.013219743477163
1204 => 0.013217481356963
1205 => 0.013303817284312
1206 => 0.013178582518713
1207 => 0.012668353554355
1208 => 0.012902188481922
1209 => 0.012811893586713
1210 => 0.012912082504878
1211 => 0.013452760775161
1212 => 0.013213714023708
1213 => 0.012961897689635
1214 => 0.013277731255081
1215 => 0.013679895916082
1216 => 0.013654729174356
1217 => 0.013605895176526
1218 => 0.013881169865431
1219 => 0.014335843003587
1220 => 0.014458739325806
1221 => 0.014549458878364
1222 => 0.014561967571942
1223 => 0.014690814889908
1224 => 0.013997970387501
1225 => 0.01509753240633
1226 => 0.015287396392194
1227 => 0.015251709831907
1228 => 0.015462735661497
1229 => 0.015400646509223
1230 => 0.015310689069068
1231 => 0.015645209895449
]
'min_raw' => 0.0057669611548875
'max_raw' => 0.015645209895449
'avg_raw' => 0.010706085525168
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005766'
'max' => '$0.015645'
'avg' => '$0.010706'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019888758616523
'max_diff' => 0.0072109006260366
'year' => 2032
]
7 => [
'items' => [
101 => 0.015261708762441
102 => 0.014717377185588
103 => 0.014418746116868
104 => 0.014812007598039
105 => 0.015052158661656
106 => 0.015210883238231
107 => 0.015258913199198
108 => 0.014051753933947
109 => 0.013401162042099
110 => 0.013818183985723
111 => 0.01432697953826
112 => 0.013995144002517
113 => 0.01400815132727
114 => 0.013535041058144
115 => 0.014368839299137
116 => 0.014247361908771
117 => 0.014877586824877
118 => 0.014727178590778
119 => 0.015241102544672
120 => 0.015105769144144
121 => 0.015667530523346
122 => 0.015891632346592
123 => 0.016267934186485
124 => 0.016544743351734
125 => 0.016707290988084
126 => 0.016697532237699
127 => 0.017341626953829
128 => 0.016961826802682
129 => 0.01648470830082
130 => 0.01647607873241
131 => 0.016723185165347
201 => 0.017241052458442
202 => 0.017375327912878
203 => 0.017450369573714
204 => 0.017335440657925
205 => 0.016923194814378
206 => 0.016745189149268
207 => 0.016896855133262
208 => 0.016711380667644
209 => 0.017031561630245
210 => 0.017471238478859
211 => 0.017380446948291
212 => 0.017683949422753
213 => 0.017998042554431
214 => 0.018447209839534
215 => 0.018564638800477
216 => 0.018758744407491
217 => 0.018958542837479
218 => 0.019022712708473
219 => 0.019145232902941
220 => 0.019144587161039
221 => 0.019513810013629
222 => 0.019921074253916
223 => 0.020074807076436
224 => 0.020428307224942
225 => 0.019822950608748
226 => 0.020282120555967
227 => 0.020696303342128
228 => 0.020202497549715
301 => 0.020883093792563
302 => 0.020909519802408
303 => 0.021308521176672
304 => 0.020904056844441
305 => 0.020663887215059
306 => 0.021357247936048
307 => 0.021692743348276
308 => 0.021591689399761
309 => 0.02082266386191
310 => 0.020375058013823
311 => 0.019203587172661
312 => 0.020591244987792
313 => 0.021267132631008
314 => 0.020820913476196
315 => 0.021045960462865
316 => 0.022273743850402
317 => 0.022741204271289
318 => 0.022643975771539
319 => 0.02266040578748
320 => 0.022912638945583
321 => 0.024031179675953
322 => 0.023360924142744
323 => 0.023873309383886
324 => 0.024145076668246
325 => 0.024397509267714
326 => 0.023777614585562
327 => 0.022971140712144
328 => 0.022715696582963
329 => 0.020776545775268
330 => 0.020675604554423
331 => 0.02061894318833
401 => 0.020261701290025
402 => 0.019981007014749
403 => 0.019757788505539
404 => 0.019171996478682
405 => 0.019369684091641
406 => 0.01843605386513
407 => 0.019033357398228
408 => 0.017543261013426
409 => 0.018784257561142
410 => 0.018108839561409
411 => 0.018562364582921
412 => 0.018560782276846
413 => 0.017725698922004
414 => 0.017244040270676
415 => 0.017550971909737
416 => 0.017880026991075
417 => 0.017933415070947
418 => 0.018360043573118
419 => 0.018479106417725
420 => 0.018118340440053
421 => 0.017512382077907
422 => 0.017653132384994
423 => 0.017241187970195
424 => 0.016519271228472
425 => 0.017037764435834
426 => 0.017214800813365
427 => 0.017292990163222
428 => 0.016583067960436
429 => 0.016359994991159
430 => 0.01624123281408
501 => 0.017420740036348
502 => 0.017485356104571
503 => 0.017154771163751
504 => 0.018649046443606
505 => 0.018310845926674
506 => 0.018688698765225
507 => 0.017640360769901
508 => 0.017680408693097
509 => 0.017184108685749
510 => 0.017462003527085
511 => 0.017265596410198
512 => 0.017439552370116
513 => 0.017543820855243
514 => 0.018040039424644
515 => 0.018789923580118
516 => 0.017965920917806
517 => 0.017606891157901
518 => 0.017829631201686
519 => 0.018422817290625
520 => 0.019321524580005
521 => 0.018789471776522
522 => 0.019025587775865
523 => 0.019077168617652
524 => 0.01868485257803
525 => 0.019335989831979
526 => 0.019684939576201
527 => 0.020042889808797
528 => 0.020353687966222
529 => 0.019899916614403
530 => 0.020385517006417
531 => 0.019994208810463
601 => 0.019643164905994
602 => 0.019643697294692
603 => 0.019423482325486
604 => 0.018996788073776
605 => 0.018918099107097
606 => 0.019327449049085
607 => 0.019655708936975
608 => 0.019682745993601
609 => 0.019864487534139
610 => 0.019972040305743
611 => 0.021026203678363
612 => 0.021450196907327
613 => 0.021968647801924
614 => 0.022170613643661
615 => 0.022778458418527
616 => 0.022287574396084
617 => 0.022181368550023
618 => 0.020706935950708
619 => 0.020948374206246
620 => 0.02133494014869
621 => 0.020713310280718
622 => 0.021107591352474
623 => 0.021185430788054
624 => 0.020692187535674
625 => 0.020955650068553
626 => 0.020255971692423
627 => 0.018805174656717
628 => 0.019337604983812
629 => 0.019729652918665
630 => 0.019170152176469
701 => 0.020173035601186
702 => 0.019587171808182
703 => 0.019401481112222
704 => 0.018677035503766
705 => 0.019018945944489
706 => 0.019481384711251
707 => 0.019195651317669
708 => 0.019788591012437
709 => 0.02062835175147
710 => 0.021226815262722
711 => 0.021272757859965
712 => 0.020887985916171
713 => 0.021504585411682
714 => 0.02150907666585
715 => 0.020813549916031
716 => 0.020387543654476
717 => 0.020290754135526
718 => 0.020532553330566
719 => 0.020826142191939
720 => 0.021289049998496
721 => 0.02156877549107
722 => 0.022298151220764
723 => 0.022495499380379
724 => 0.022712325175571
725 => 0.023002071304548
726 => 0.023349985821766
727 => 0.022588768664876
728 => 0.022619013241606
729 => 0.021910178364879
730 => 0.021152686641892
731 => 0.021727528436963
801 => 0.022479057616018
802 => 0.022306655991977
803 => 0.022287257287427
804 => 0.022319880527728
805 => 0.022189895333312
806 => 0.021601977116442
807 => 0.021306728268493
808 => 0.021687674608362
809 => 0.021890130634031
810 => 0.022204122273823
811 => 0.02216541617666
812 => 0.022974224920524
813 => 0.023288503541283
814 => 0.023208097621352
815 => 0.023222894245696
816 => 0.023791880676676
817 => 0.024424710608911
818 => 0.025017439349713
819 => 0.025620388483149
820 => 0.024893509769287
821 => 0.024524445586034
822 => 0.024905225616648
823 => 0.024703178372537
824 => 0.025864201768303
825 => 0.025944588509189
826 => 0.027105527949748
827 => 0.028207397720936
828 => 0.027515333059701
829 => 0.028167918863969
830 => 0.028873743617386
831 => 0.030235394082667
901 => 0.029776838109402
902 => 0.029425591420368
903 => 0.029093664996443
904 => 0.029784351192795
905 => 0.03067290795042
906 => 0.030864294565522
907 => 0.031174413997301
908 => 0.030848361334385
909 => 0.031241055853344
910 => 0.032627440063984
911 => 0.032252826812317
912 => 0.031720815772865
913 => 0.03281523295741
914 => 0.033211298282058
915 => 0.035991092151456
916 => 0.03950069673913
917 => 0.038047697394527
918 => 0.037145773813336
919 => 0.037357747248829
920 => 0.038639336036635
921 => 0.039050941679683
922 => 0.037932055652904
923 => 0.038327265113041
924 => 0.040504908094532
925 => 0.04167314368695
926 => 0.040086522837473
927 => 0.035709098840063
928 => 0.031672913999621
929 => 0.032743491971078
930 => 0.032622121653017
1001 => 0.034961727370135
1002 => 0.032243892410158
1003 => 0.032289653780607
1004 => 0.034677640066269
1005 => 0.034040566265704
1006 => 0.033008588299035
1007 => 0.031680448580833
1008 => 0.029225259473681
1009 => 0.027050630013463
1010 => 0.031315579172205
1011 => 0.031131666809173
1012 => 0.030865334453218
1013 => 0.031458028291226
1014 => 0.034335981329508
1015 => 0.034269635196951
1016 => 0.033847574951715
1017 => 0.034167703927858
1018 => 0.032952468141717
1019 => 0.03326566207421
1020 => 0.031672274647321
1021 => 0.032392552310012
1022 => 0.033006374137804
1023 => 0.033129607957521
1024 => 0.033407260045817
1025 => 0.031034753350898
1026 => 0.03209993920378
1027 => 0.032725636097931
1028 => 0.029898714767109
1029 => 0.032669756952465
1030 => 0.030993453287691
1031 => 0.03042449064663
1101 => 0.03119052388769
1102 => 0.030891999988657
1103 => 0.03063534667018
1104 => 0.030492129708606
1105 => 0.031054619976837
1106 => 0.031028379133503
1107 => 0.030108035880021
1108 => 0.028907485623843
1109 => 0.029310429696535
1110 => 0.029164036337305
1111 => 0.028633487918337
1112 => 0.028991013494061
1113 => 0.027416651798126
1114 => 0.024708044328469
1115 => 0.026497433389815
1116 => 0.026428543857434
1117 => 0.026393806631316
1118 => 0.027738483055836
1119 => 0.027609223444582
1120 => 0.027374615984441
1121 => 0.02862917916835
1122 => 0.028171246729968
1123 => 0.029582486602611
1124 => 0.030512020456007
1125 => 0.030276260603516
1126 => 0.031150491685461
1127 => 0.029319712714137
1128 => 0.029927824050308
1129 => 0.030053154953886
1130 => 0.028613698053402
1201 => 0.027630371915563
1202 => 0.027564795272908
1203 => 0.025859843260586
1204 => 0.026770614863677
1205 => 0.027572056184107
1206 => 0.02718822798598
1207 => 0.027066719444994
1208 => 0.027687480228903
1209 => 0.02773571865827
1210 => 0.026635877356637
1211 => 0.026864569190691
1212 => 0.027818252155549
1213 => 0.026840538826875
1214 => 0.024941001537828
1215 => 0.024469890026986
1216 => 0.024407035067132
1217 => 0.023129343285405
1218 => 0.024501371950848
1219 => 0.0239024446703
1220 => 0.025794448773301
1221 => 0.024713746176688
1222 => 0.024667159247721
1223 => 0.024596736271771
1224 => 0.023496974174455
1225 => 0.02373775218024
1226 => 0.024538134942994
1227 => 0.024823720529702
1228 => 0.024793931613274
1229 => 0.024534212630809
1230 => 0.024653110651005
1231 => 0.024270098701137
]
'min_raw' => 0.013401162042099
'max_raw' => 0.04167314368695
'avg_raw' => 0.027537152864525
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.0134011'
'max' => '$0.041673'
'avg' => '$0.027537'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0076342008872117
'max_diff' => 0.026027933791501
'year' => 2033
]
8 => [
'items' => [
101 => 0.024134849209934
102 => 0.023707964612395
103 => 0.023080562183891
104 => 0.023167806339657
105 => 0.021924757960017
106 => 0.021247479229218
107 => 0.021060017402923
108 => 0.020809335614232
109 => 0.021088332577994
110 => 0.021921236560138
111 => 0.020916577647236
112 => 0.019194160409693
113 => 0.019297680620525
114 => 0.019530259798839
115 => 0.019096850038716
116 => 0.018686664074084
117 => 0.019043287490893
118 => 0.01831347660112
119 => 0.019618453958156
120 => 0.019583157977805
121 => 0.020069572837249
122 => 0.020373738031097
123 => 0.019672735733928
124 => 0.019496435551901
125 => 0.01959686414798
126 => 0.017937003162261
127 => 0.019933926782647
128 => 0.01995119626104
129 => 0.019803324502434
130 => 0.020866624682189
131 => 0.023110519713117
201 => 0.022266276142014
202 => 0.021939359513885
203 => 0.021317890764839
204 => 0.02214596097378
205 => 0.022082378101641
206 => 0.02179483224074
207 => 0.021620923606869
208 => 0.021941355597106
209 => 0.021581218537215
210 => 0.021516528025354
211 => 0.021124573907447
212 => 0.020984664120131
213 => 0.020881080483571
214 => 0.020767045077636
215 => 0.021018578767275
216 => 0.02044857033454
217 => 0.019761196043277
218 => 0.019704048308451
219 => 0.019861838228785
220 => 0.019792027935115
221 => 0.019703714083623
222 => 0.019535098890278
223 => 0.019485074364306
224 => 0.019647629805265
225 => 0.019464114189993
226 => 0.019734901476939
227 => 0.019661262318234
228 => 0.019249919963805
301 => 0.018737235091741
302 => 0.018732671120987
303 => 0.018622214006272
304 => 0.018481530263345
305 => 0.018442395264471
306 => 0.019013253661432
307 => 0.020194913458789
308 => 0.019962925365845
309 => 0.020130560538093
310 => 0.020955159670924
311 => 0.02121727493869
312 => 0.02103123173017
313 => 0.020776564311703
314 => 0.020787768385656
315 => 0.021658044047629
316 => 0.021712322073164
317 => 0.021849465132938
318 => 0.02202573272137
319 => 0.021061250862683
320 => 0.020742341376846
321 => 0.020591224370032
322 => 0.020125842478687
323 => 0.020627716949675
324 => 0.020335296187838
325 => 0.020374753739126
326 => 0.020349056957087
327 => 0.020363089137689
328 => 0.019618089190389
329 => 0.01988952801514
330 => 0.019438208322565
331 => 0.01883394191722
401 => 0.018831916204346
402 => 0.01897980955099
403 => 0.018891836801339
404 => 0.018655104394013
405 => 0.018688731115128
406 => 0.01839412565446
407 => 0.018724501552057
408 => 0.018733975550659
409 => 0.018606762834387
410 => 0.019115752487724
411 => 0.019324285963992
412 => 0.019240551828981
413 => 0.019318410953861
414 => 0.019972565518471
415 => 0.020079221255267
416 => 0.020126590688269
417 => 0.020063121923293
418 => 0.019330367698454
419 => 0.019362868464237
420 => 0.019124399409517
421 => 0.018922918187528
422 => 0.018930976379778
423 => 0.019034563918606
424 => 0.019486936775995
425 => 0.020438928785533
426 => 0.020475056186398
427 => 0.020518843650157
428 => 0.020340738029233
429 => 0.020287019669722
430 => 0.020357888051803
501 => 0.020715406197223
502 => 0.021635039932475
503 => 0.021309979950165
504 => 0.021045701124687
505 => 0.021277544903691
506 => 0.021241854371165
507 => 0.020940590358963
508 => 0.020932134881531
509 => 0.020353912922184
510 => 0.02014015742929
511 => 0.019961527340107
512 => 0.019766467945975
513 => 0.019650830198684
514 => 0.019828502334939
515 => 0.019869138054656
516 => 0.019480654823555
517 => 0.019427705994651
518 => 0.019744949787161
519 => 0.019605342622118
520 => 0.019748932053456
521 => 0.019782246033213
522 => 0.019776881715186
523 => 0.019631115801101
524 => 0.019724022647937
525 => 0.019504270258306
526 => 0.019265322540324
527 => 0.01911288878322
528 => 0.018979870112743
529 => 0.019053676602214
530 => 0.018790569943782
531 => 0.018706396828459
601 => 0.019692547898699
602 => 0.020421028297196
603 => 0.020410435903692
604 => 0.020345957432379
605 => 0.020250155502987
606 => 0.020708397689375
607 => 0.020548755274479
608 => 0.020664908469886
609 => 0.020694474333051
610 => 0.020783961296184
611 => 0.02081594519384
612 => 0.020719267640879
613 => 0.020394805964975
614 => 0.01958627831751
615 => 0.019209906515037
616 => 0.019085697551252
617 => 0.01909021231118
618 => 0.018965675077613
619 => 0.019002356874265
620 => 0.018952918645711
621 => 0.018859294601221
622 => 0.019047895581292
623 => 0.019069630087306
624 => 0.019025608364943
625 => 0.019035977074169
626 => 0.01867149601493
627 => 0.018699206718253
628 => 0.018544910000846
629 => 0.018515981226407
630 => 0.018125932560956
701 => 0.01743490481165
702 => 0.017817801264452
703 => 0.017355316192855
704 => 0.01718016608845
705 => 0.018009299441277
706 => 0.017926077449233
707 => 0.017783637574583
708 => 0.017572939312905
709 => 0.017494789278108
710 => 0.017019974405974
711 => 0.016991919810289
712 => 0.017227250881999
713 => 0.017118653689652
714 => 0.016966142102625
715 => 0.016413760594265
716 => 0.015792700891636
717 => 0.015811446780216
718 => 0.016008994316396
719 => 0.016583390420754
720 => 0.016358963925628
721 => 0.016196139928416
722 => 0.01616564788821
723 => 0.016547319610802
724 => 0.017087465060967
725 => 0.017340889221111
726 => 0.017089753575015
727 => 0.016801262466882
728 => 0.016818821583895
729 => 0.016935634522759
730 => 0.016947909910988
731 => 0.016760131856958
801 => 0.016812990279251
802 => 0.016732693502313
803 => 0.016239912330458
804 => 0.016230999481685
805 => 0.016110063034942
806 => 0.016106401127398
807 => 0.015900658062477
808 => 0.01587187318546
809 => 0.015463357842349
810 => 0.015732243878283
811 => 0.015551889242529
812 => 0.01528005226509
813 => 0.015233187467718
814 => 0.015231778655319
815 => 0.015510894449512
816 => 0.015728982247719
817 => 0.015555026588635
818 => 0.01551542025705
819 => 0.015938312259762
820 => 0.015884495397671
821 => 0.015837890342181
822 => 0.017039100960272
823 => 0.01608824902442
824 => 0.015673623307657
825 => 0.015160445247875
826 => 0.015327538611808
827 => 0.015362747638701
828 => 0.014128646912224
829 => 0.013627972401189
830 => 0.013456159776523
831 => 0.013357279181954
901 => 0.013402340310563
902 => 0.01295167452737
903 => 0.013254529387
904 => 0.012864290912584
905 => 0.012798866162403
906 => 0.013496660895928
907 => 0.013593754956641
908 => 0.013179521528881
909 => 0.013445526447803
910 => 0.013349069366457
911 => 0.012870980431176
912 => 0.012852720950432
913 => 0.012612832728347
914 => 0.012237454112296
915 => 0.012065896012008
916 => 0.011976547063842
917 => 0.012013414181232
918 => 0.011994773038527
919 => 0.011873126973025
920 => 0.012001745648608
921 => 0.0116731780814
922 => 0.011542339828689
923 => 0.011483243225364
924 => 0.011191620597824
925 => 0.011655721883412
926 => 0.011747155683266
927 => 0.011838769635952
928 => 0.01263620654658
929 => 0.012596368852058
930 => 0.01295648220879
1001 => 0.012942488865953
1002 => 0.012839778703164
1003 => 0.012406461421357
1004 => 0.012579173966747
1005 => 0.012047591597524
1006 => 0.012445889252634
1007 => 0.01226412283615
1008 => 0.01238443384438
1009 => 0.012168103803576
1010 => 0.012287829780205
1011 => 0.011768838029182
1012 => 0.011284210834488
1013 => 0.011479238964783
1014 => 0.011691256846585
1015 => 0.012150965635484
1016 => 0.011877166873331
1017 => 0.011975635261679
1018 => 0.011645782644123
1019 => 0.010965202476364
1020 => 0.010969054486203
1021 => 0.010864362054638
1022 => 0.01077389250842
1023 => 0.011908615954801
1024 => 0.01176749515692
1025 => 0.011542637634931
1026 => 0.011843618363596
1027 => 0.011923202445462
1028 => 0.01192546809239
1029 => 0.012145055862588
1030 => 0.012262249894905
1031 => 0.012282905851049
1101 => 0.012628431951962
1102 => 0.012744247743389
1103 => 0.01322127659741
1104 => 0.012252306800052
1105 => 0.012232351504724
1106 => 0.011847853779683
1107 => 0.011603999243794
1108 => 0.011864550708382
1109 => 0.012095363737186
1110 => 0.011855025783877
1111 => 0.011886408846768
1112 => 0.011563774780783
1113 => 0.011679101278029
1114 => 0.011778435993614
1115 => 0.011723589202292
1116 => 0.01164148090107
1117 => 0.012076439700981
1118 => 0.012051897620872
1119 => 0.012456941255009
1120 => 0.012772701732767
1121 => 0.013338600957846
1122 => 0.012748055615483
1123 => 0.012726533796002
1124 => 0.012936913033636
1125 => 0.012744215535423
1126 => 0.012865993702602
1127 => 0.013318980612431
1128 => 0.013328551512028
1129 => 0.013168226612366
1130 => 0.013158470827652
1201 => 0.013189262978394
1202 => 0.013369613567066
1203 => 0.01330659352977
1204 => 0.013379521912402
1205 => 0.013470719971601
1206 => 0.013847953811625
1207 => 0.013938903613335
1208 => 0.013717942747244
1209 => 0.013737893039458
1210 => 0.013655247610029
1211 => 0.013575413160744
1212 => 0.013754869343851
1213 => 0.014082829045699
1214 => 0.014080788825415
1215 => 0.014156869101618
1216 => 0.01420426648341
1217 => 0.014000802223757
1218 => 0.013868354472311
1219 => 0.013919143368084
1220 => 0.014000355918465
1221 => 0.013892807232551
1222 => 0.013228966921695
1223 => 0.013430333665726
1224 => 0.013396816393188
1225 => 0.013349083721255
1226 => 0.013551559539501
1227 => 0.013532030252888
1228 => 0.012947052298381
1229 => 0.012984500689072
1230 => 0.012949329659052
1231 => 0.013062974452364
]
'min_raw' => 0.01077389250842
'max_raw' => 0.024134849209934
'avg_raw' => 0.017454370859177
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010773'
'max' => '$0.024134'
'avg' => '$0.017454'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0026272695336789
'max_diff' => -0.017538294477016
'year' => 2034
]
9 => [
'items' => [
101 => 0.012738078343634
102 => 0.012838014198471
103 => 0.012900693029784
104 => 0.012937611342948
105 => 0.013070985605224
106 => 0.013055335674946
107 => 0.013070012783585
108 => 0.013267771605039
109 => 0.014267967861326
110 => 0.014322406336747
111 => 0.014054331373837
112 => 0.014161422033975
113 => 0.013955831384663
114 => 0.014093845764884
115 => 0.014188271698646
116 => 0.013761579061039
117 => 0.013736313092252
118 => 0.013529873897198
119 => 0.013640802627307
120 => 0.013464307041646
121 => 0.013507612884814
122 => 0.013386525971982
123 => 0.013604458306916
124 => 0.013848140520633
125 => 0.01390970427112
126 => 0.013747756548449
127 => 0.013630495724361
128 => 0.013424624345378
129 => 0.013766993036769
130 => 0.013867112075629
131 => 0.01376646715408
201 => 0.013743145526622
202 => 0.013698951084731
203 => 0.01375252158639
204 => 0.013866566805841
205 => 0.013812785186433
206 => 0.013848308893562
207 => 0.013712929153872
208 => 0.014000869578893
209 => 0.014458188270463
210 => 0.014459658624835
211 => 0.014405876715524
212 => 0.014383870316981
213 => 0.014439053819694
214 => 0.01446898860617
215 => 0.01464744193502
216 => 0.01483892946677
217 => 0.015732518224894
218 => 0.015481602077366
219 => 0.016274447183407
220 => 0.016901484724233
221 => 0.017089505865698
222 => 0.016916535262628
223 => 0.016324812173216
224 => 0.016295779415485
225 => 0.017180063530112
226 => 0.016930212764952
227 => 0.016900493811454
228 => 0.016584334357208
301 => 0.016771223751778
302 => 0.016730348299683
303 => 0.016665824398856
304 => 0.017022396344868
305 => 0.017689867196405
306 => 0.017585835604691
307 => 0.017508180847363
308 => 0.017167920305712
309 => 0.017372833151729
310 => 0.01729986761211
311 => 0.017613373875391
312 => 0.017427659710037
313 => 0.016928319899671
314 => 0.017007841410317
315 => 0.016995821893958
316 => 0.017243182688917
317 => 0.017168931118142
318 => 0.016981323083069
319 => 0.017687585853598
320 => 0.017641725077719
321 => 0.017706745172682
322 => 0.017735369029297
323 => 0.018165258731972
324 => 0.018341370788222
325 => 0.018381351308266
326 => 0.018548644140708
327 => 0.018377188910194
328 => 0.019063132077755
329 => 0.01951924425829
330 => 0.020049042027299
331 => 0.020823218964037
401 => 0.021114316653787
402 => 0.021061732461648
403 => 0.021648704579524
404 => 0.022703480427689
405 => 0.021274932817758
406 => 0.0227791969198
407 => 0.022302964272658
408 => 0.021173825233343
409 => 0.021101121990886
410 => 0.021865788057884
411 => 0.023561743798103
412 => 0.023136926120549
413 => 0.023562438647636
414 => 0.02306605568236
415 => 0.02304140608429
416 => 0.023538330434961
417 => 0.024699421266239
418 => 0.024147830535138
419 => 0.023356989966508
420 => 0.023940934335542
421 => 0.023435067681584
422 => 0.022295208527057
423 => 0.023136601270477
424 => 0.022573985904437
425 => 0.022738186978526
426 => 0.023920720795221
427 => 0.0237784351978
428 => 0.023962565936154
429 => 0.023637580002499
430 => 0.023333991894887
501 => 0.02276732214728
502 => 0.022599559171495
503 => 0.022645922822522
504 => 0.022599536195972
505 => 0.02228248968015
506 => 0.022214023515244
507 => 0.02209991024083
508 => 0.022135278716181
509 => 0.021920712375266
510 => 0.02232564339224
511 => 0.02240080215723
512 => 0.022695477182939
513 => 0.022726071321655
514 => 0.023546737073817
515 => 0.023094728168254
516 => 0.023397974766677
517 => 0.023370849536647
518 => 0.021198297100174
519 => 0.021497655657328
520 => 0.021963363628368
521 => 0.021753562818667
522 => 0.021456953559577
523 => 0.021217425679681
524 => 0.020854516448654
525 => 0.02136530422227
526 => 0.02203693582835
527 => 0.022743105007546
528 => 0.023591521006312
529 => 0.023402164432038
530 => 0.022727244460595
531 => 0.022757520877484
601 => 0.022944677773365
602 => 0.022702292588203
603 => 0.022630808465177
604 => 0.022934856952575
605 => 0.022936950767405
606 => 0.022658057318648
607 => 0.022348118287316
608 => 0.022346819631458
609 => 0.022291668974488
610 => 0.023075866861717
611 => 0.023507096408343
612 => 0.023556536180903
613 => 0.023503768717735
614 => 0.023524076820042
615 => 0.023273153848355
616 => 0.023846689352736
617 => 0.024373022248339
618 => 0.024231953788856
619 => 0.024020472114026
620 => 0.023852016773687
621 => 0.024192271064259
622 => 0.02417712007631
623 => 0.024368425189659
624 => 0.024359746484686
625 => 0.024295417770416
626 => 0.024231956086236
627 => 0.024483574490623
628 => 0.024411112431028
629 => 0.024338537817839
630 => 0.024192978320472
701 => 0.024212762273652
702 => 0.024001317114115
703 => 0.023903492908241
704 => 0.022432451564989
705 => 0.022039341250409
706 => 0.022163021757874
707 => 0.022203740592295
708 => 0.022032658479605
709 => 0.022277946281813
710 => 0.022239718437663
711 => 0.02238844061671
712 => 0.022295525456008
713 => 0.022299338726613
714 => 0.022572582402637
715 => 0.022651906204249
716 => 0.022611561478528
717 => 0.022639817541487
718 => 0.023290966586235
719 => 0.023198394014646
720 => 0.023149216681029
721 => 0.023162839138525
722 => 0.023329221680251
723 => 0.023375799707784
724 => 0.023178445332146
725 => 0.023271518796589
726 => 0.023667813795407
727 => 0.023806494616639
728 => 0.024249097227441
729 => 0.024061071771738
730 => 0.024406200633232
731 => 0.025467009090363
801 => 0.026314456288281
802 => 0.025535108822839
803 => 0.027091337680066
804 => 0.028303085073189
805 => 0.02825657618997
806 => 0.028045280003757
807 => 0.026665737812658
808 => 0.025396262520594
809 => 0.026458232507174
810 => 0.026460939687066
811 => 0.026369715523404
812 => 0.025803130077618
813 => 0.026349999578036
814 => 0.026393408093041
815 => 0.026369110867894
816 => 0.025934711135039
817 => 0.025271463033461
818 => 0.025401060124918
819 => 0.025613342804433
820 => 0.025211447405305
821 => 0.025083017473582
822 => 0.025321793151449
823 => 0.026091178136422
824 => 0.025945730361757
825 => 0.02594193213256
826 => 0.026564219392034
827 => 0.026118796012246
828 => 0.025402694759269
829 => 0.025221869748677
830 => 0.024580062779398
831 => 0.025023361139117
901 => 0.025039314657894
902 => 0.024796524676676
903 => 0.025422395828153
904 => 0.025416628315309
905 => 0.026010799825009
906 => 0.027146632590927
907 => 0.026810710951109
908 => 0.026420070632172
909 => 0.026462544066121
910 => 0.026928372803182
911 => 0.026646722114919
912 => 0.026748005666157
913 => 0.026928219498396
914 => 0.027036946977844
915 => 0.02644689985505
916 => 0.02630933164551
917 => 0.026027915368672
918 => 0.025954499114928
919 => 0.02618370680047
920 => 0.026123318673357
921 => 0.025037973826416
922 => 0.024924549251109
923 => 0.024928027820901
924 => 0.024642816333247
925 => 0.024207800355974
926 => 0.025350996370792
927 => 0.025259181731785
928 => 0.025157825476208
929 => 0.025170241039186
930 => 0.02566646368271
1001 => 0.025378629489622
1002 => 0.026143883867044
1003 => 0.025986570572698
1004 => 0.02582522278595
1005 => 0.025802919607048
1006 => 0.025740814474696
1007 => 0.025527832867559
1008 => 0.025270644778732
1009 => 0.025100826925237
1010 => 0.02315418601384
1011 => 0.023515471243906
1012 => 0.023931096968912
1013 => 0.024074569303669
1014 => 0.023829149947085
1015 => 0.025537523519606
1016 => 0.025849659833603
1017 => 0.024904178578358
1018 => 0.024727317639247
1019 => 0.02554911849333
1020 => 0.025053472117249
1021 => 0.02527666165005
1022 => 0.024794247958283
1023 => 0.025774475335979
1024 => 0.025767007645691
1025 => 0.025385677056328
1026 => 0.025707975059219
1027 => 0.025651967849852
1028 => 0.025221446553637
1029 => 0.025788123628976
1030 => 0.025788404693736
1031 => 0.025421382292315
1101 => 0.024992780478991
1102 => 0.024916156597892
1103 => 0.024858430796454
1104 => 0.025262464641552
1105 => 0.025624720123686
1106 => 0.026298787765187
1107 => 0.026468264385712
1108 => 0.027129742918321
1109 => 0.026735864658958
1110 => 0.026910465789756
1111 => 0.027100020016076
1112 => 0.027190899282799
1113 => 0.027042816394523
1114 => 0.028070364831091
1115 => 0.028157121402408
1116 => 0.028186210130329
1117 => 0.027839726578954
1118 => 0.02814748506806
1119 => 0.028003495062897
1120 => 0.028378117054755
1121 => 0.028436862566492
1122 => 0.028387107207983
1123 => 0.028405753960643
1124 => 0.027528922641998
1125 => 0.027483454312473
1126 => 0.026863490413108
1127 => 0.027116130284641
1128 => 0.026643832154155
1129 => 0.026793602756542
1130 => 0.026859620211007
1201 => 0.026825136439252
1202 => 0.02713041416392
1203 => 0.026870865733833
1204 => 0.026185874753123
1205 => 0.025500697147078
1206 => 0.025492095300367
1207 => 0.025311700131085
1208 => 0.025181307464717
1209 => 0.025206425718188
1210 => 0.025294945719644
1211 => 0.025176162521312
1212 => 0.025201510939137
1213 => 0.025622463570661
1214 => 0.025706882618816
1215 => 0.025419993708533
1216 => 0.024268093335875
1217 => 0.023985414095102
1218 => 0.024188598327597
1219 => 0.024091489351205
1220 => 0.019443712170073
1221 => 0.020535638477327
1222 => 0.01988685294387
1223 => 0.020185843166874
1224 => 0.019523601139415
1225 => 0.019839657745997
1226 => 0.0197812936313
1227 => 0.021537078820916
1228 => 0.021509664650183
1229 => 0.021522786362987
1230 => 0.020896452822416
1231 => 0.021894219159355
]
'min_raw' => 0.012738078343634
'max_raw' => 0.028436862566492
'avg_raw' => 0.020587470455063
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012738'
'max' => '$0.028436'
'avg' => '$0.020587'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.001964185835214
'max_diff' => 0.0043020133565576
'year' => 2035
]
10 => [
'items' => [
101 => 0.022385754735448
102 => 0.022294784582109
103 => 0.022317679809829
104 => 0.021924263942074
105 => 0.021526595488552
106 => 0.021085519972859
107 => 0.021904983762434
108 => 0.021813873377747
109 => 0.022022847819738
110 => 0.022554328663759
111 => 0.02263259123694
112 => 0.022737776928957
113 => 0.022700075345996
114 => 0.023598280008513
115 => 0.023489501497337
116 => 0.023751626411558
117 => 0.023212415575541
118 => 0.022602247332226
119 => 0.022718220367377
120 => 0.022707051231496
121 => 0.022564855312389
122 => 0.022436487194628
123 => 0.02222279044605
124 => 0.02289895857972
125 => 0.022871507388321
126 => 0.023315910268552
127 => 0.023237357742772
128 => 0.022712764750549
129 => 0.022731500691894
130 => 0.022857508901624
131 => 0.023293624754238
201 => 0.023423093632325
202 => 0.023363118489552
203 => 0.023505075203896
204 => 0.023617272002872
205 => 0.023519165394435
206 => 0.024908148081372
207 => 0.02433134563022
208 => 0.024612475131546
209 => 0.024679522861101
210 => 0.024507781511708
211 => 0.024545026060794
212 => 0.024601441404129
213 => 0.024943984321597
214 => 0.025842916052627
215 => 0.026241046797064
216 => 0.02743884278513
217 => 0.026207987580986
218 => 0.026134953726958
219 => 0.026350712954382
220 => 0.027053945998958
221 => 0.027623850330267
222 => 0.027812920475531
223 => 0.027837909216436
224 => 0.028192617378098
225 => 0.028395929481447
226 => 0.028149546477521
227 => 0.02794076267907
228 => 0.027192925028217
229 => 0.027279489272598
301 => 0.027875831074749
302 => 0.028718198994644
303 => 0.029441038303359
304 => 0.02918792517094
305 => 0.03111899970127
306 => 0.03131045785322
307 => 0.031284004527204
308 => 0.031720174690139
309 => 0.030854465741221
310 => 0.030484358393238
311 => 0.027985904106092
312 => 0.028687867850154
313 => 0.029708213377033
314 => 0.029573166820451
315 => 0.028832164624918
316 => 0.029440476186746
317 => 0.029239349360744
318 => 0.029080712288317
319 => 0.029807459470416
320 => 0.029008371090569
321 => 0.029700241859174
322 => 0.028812910441952
323 => 0.029189081370409
324 => 0.028975548558076
325 => 0.029113730457252
326 => 0.028305921898188
327 => 0.028741795788215
328 => 0.028287788111342
329 => 0.02828757285259
330 => 0.028277550607959
331 => 0.028811688626422
401 => 0.028829106848028
402 => 0.028434378045346
403 => 0.028377491458057
404 => 0.028587830986732
405 => 0.028341578486663
406 => 0.028456798481551
407 => 0.028345068382932
408 => 0.028319915584337
409 => 0.028119493805736
410 => 0.028033146592803
411 => 0.028067005559887
412 => 0.027951427449734
413 => 0.027881787457723
414 => 0.028263697460735
415 => 0.028059658352332
416 => 0.02823242554104
417 => 0.028035535524549
418 => 0.027353028946497
419 => 0.026960512196083
420 => 0.025671320538534
421 => 0.026036933693378
422 => 0.026279335593293
423 => 0.026199221766817
424 => 0.026371337266023
425 => 0.02638190375981
426 => 0.026325947256508
427 => 0.026261156794157
428 => 0.026229620380222
429 => 0.026464666972396
430 => 0.026601119430458
501 => 0.026303663866869
502 => 0.026233974190165
503 => 0.026534718187926
504 => 0.026718171852825
505 => 0.028072690640734
506 => 0.027972343513888
507 => 0.028224195110143
508 => 0.028195840485383
509 => 0.028459821081364
510 => 0.028891317789269
511 => 0.028013964333721
512 => 0.028166242557004
513 => 0.028128907453273
514 => 0.028536522326022
515 => 0.028537794855162
516 => 0.028293409377076
517 => 0.028425894709448
518 => 0.028351945031463
519 => 0.02848558209448
520 => 0.02797100331683
521 => 0.028597704722661
522 => 0.028953004036021
523 => 0.028957937367331
524 => 0.029126346422034
525 => 0.029297459775207
526 => 0.02962589695579
527 => 0.0292882998405
528 => 0.028680995494511
529 => 0.02872484090671
530 => 0.028368778590861
531 => 0.028374764062718
601 => 0.028342813144854
602 => 0.028438700254517
603 => 0.027992045145202
604 => 0.028096874206596
605 => 0.027950112906765
606 => 0.0281659235266
607 => 0.027933746974431
608 => 0.028128889449155
609 => 0.02821310647217
610 => 0.028523869100159
611 => 0.027887847081604
612 => 0.026590955130865
613 => 0.026863577542205
614 => 0.026460347581804
615 => 0.026497668049844
616 => 0.026573061334793
617 => 0.026328687031126
618 => 0.026375305947146
619 => 0.026373640391414
620 => 0.026359287531917
621 => 0.02629571633735
622 => 0.02620352552805
623 => 0.026570785337466
624 => 0.026633189935613
625 => 0.026771907627
626 => 0.027184637383457
627 => 0.027143395947949
628 => 0.027210662440353
629 => 0.02706382006512
630 => 0.026504479646477
701 => 0.026534854522277
702 => 0.026156079334324
703 => 0.026762221493841
704 => 0.026618679029782
705 => 0.026526136269404
706 => 0.026500885119832
707 => 0.026914637953525
708 => 0.027038439286147
709 => 0.026961294603655
710 => 0.026803068609195
711 => 0.027106909293874
712 => 0.027188204243085
713 => 0.027206403184171
714 => 0.027744750621751
715 => 0.027236490825638
716 => 0.02735883401023
717 => 0.028313320612017
718 => 0.027447732974344
719 => 0.027906254050927
720 => 0.027883811830257
721 => 0.02811837569753
722 => 0.027864570746734
723 => 0.027867716963282
724 => 0.028075993786687
725 => 0.027783506551137
726 => 0.027711082598358
727 => 0.027611029426303
728 => 0.027829491867113
729 => 0.027960450220171
730 => 0.029015878367513
731 => 0.029697733084067
801 => 0.029668131972558
802 => 0.029938630720795
803 => 0.02981676855723
804 => 0.029423243485461
805 => 0.0300949427977
806 => 0.029882389030215
807 => 0.029899911704553
808 => 0.029899259509739
809 => 0.030040589183344
810 => 0.029940444156921
811 => 0.029743048030164
812 => 0.029874088791197
813 => 0.030263233003534
814 => 0.03147114857903
815 => 0.032147114137831
816 => 0.031430454603623
817 => 0.031924796753866
818 => 0.031628367615838
819 => 0.031574497623456
820 => 0.031884981025406
821 => 0.032196007887451
822 => 0.032176196820945
823 => 0.031950407290507
824 => 0.031822864513959
825 => 0.03278866114794
826 => 0.033500243655941
827 => 0.033451718499405
828 => 0.033665892759129
829 => 0.034294715009837
830 => 0.034352206635785
831 => 0.034344964012346
901 => 0.034202465018803
902 => 0.034821622187514
903 => 0.035338133990686
904 => 0.03416948061899
905 => 0.034614488524136
906 => 0.034814266910015
907 => 0.035107600852062
908 => 0.035602504380772
909 => 0.036140100879629
910 => 0.036216122919013
911 => 0.036162181644081
912 => 0.035807622301715
913 => 0.036395866805625
914 => 0.036740446639984
915 => 0.036945636045775
916 => 0.037465962238601
917 => 0.034815500673314
918 => 0.032939372240916
919 => 0.032646387694575
920 => 0.033242183290609
921 => 0.033399289837902
922 => 0.033335960385683
923 => 0.031224207264886
924 => 0.032635269751431
925 => 0.03415345434145
926 => 0.034211773994554
927 => 0.03497180894406
928 => 0.035219307478505
929 => 0.035831235232916
930 => 0.035792958985267
1001 => 0.035941953655569
1002 => 0.035907702361095
1003 => 0.037041169669549
1004 => 0.038291552432299
1005 => 0.038248255653199
1006 => 0.038068498337196
1007 => 0.038335468604637
1008 => 0.039625997614955
1009 => 0.039507186383991
1010 => 0.039622601374556
1011 => 0.041144207808749
1012 => 0.04312251261919
1013 => 0.042203391416185
1014 => 0.044197619956705
1015 => 0.045452881113451
1016 => 0.047623725487615
1017 => 0.047351925080336
1018 => 0.048197018864806
1019 => 0.046865345624849
1020 => 0.043807554690342
1021 => 0.043323647570202
1022 => 0.044292441879201
1023 => 0.046674128154309
1024 => 0.044217434102696
1025 => 0.044714420109732
1026 => 0.044571288106272
1027 => 0.044563661210079
1028 => 0.04485474881692
1029 => 0.044432511061089
1030 => 0.042712238484709
1031 => 0.043500629268834
1101 => 0.043196193725448
1102 => 0.043533987658008
1103 => 0.045356922195217
1104 => 0.044550959382985
1105 => 0.043701943031401
1106 => 0.044766797948099
1107 => 0.046122724180904
1108 => 0.046037872754089
1109 => 0.045873225520922
1110 => 0.046801333353633
1111 => 0.048334295583191
1112 => 0.0487486491139
1113 => 0.049054516419184
1114 => 0.049096690352912
1115 => 0.049531108081266
1116 => 0.047195134468542
1117 => 0.050902384583992
1118 => 0.051542524268213
1119 => 0.051422204538651
1120 => 0.052133692856466
1121 => 0.051924354944648
1122 => 0.051621057154536
1123 => 0.052748917476179
1124 => 0.05145591663105
1125 => 0.049620664715671
1126 => 0.048613809217726
1127 => 0.049939717758136
1128 => 0.050749403835932
1129 => 0.05128455482765
1130 => 0.051446491194396
1201 => 0.047376469450434
1202 => 0.045182953464192
1203 => 0.046588972062661
1204 => 0.048304411791013
1205 => 0.047185605114236
1206 => 0.047229460217785
1207 => 0.045634335913924
1208 => 0.048445544897363
1209 => 0.048035975394465
1210 => 0.050160822700015
1211 => 0.049653710837581
1212 => 0.05138644132916
1213 => 0.050930155320605
1214 => 0.05282417303151
1215 => 0.053579747974873
1216 => 0.054848475900628
1217 => 0.055781757327466
1218 => 0.056329798032133
1219 => 0.056296895723874
1220 => 0.058468506028563
1221 => 0.057187983302173
1222 => 0.055579344961793
1223 => 0.055550249769405
1224 => 0.056383386360469
1225 => 0.058129412095478
1226 => 0.058582131164925
1227 => 0.058835139363674
1228 => 0.058447648500011
1229 => 0.057057732856405
1230 => 0.056457574328529
1231 => 0.056968926782546
]
'min_raw' => 0.021085519972859
'max_raw' => 0.058835139363674
'avg_raw' => 0.039960329668267
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.021085'
'max' => '$0.058835'
'avg' => '$0.03996'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0083474416292249
'max_diff' => 0.030398276797183
'year' => 2036
]
11 => [
'items' => [
101 => 0.0563435866723
102 => 0.05742309914203
103 => 0.058905500334391
104 => 0.058599390350218
105 => 0.059622670132734
106 => 0.060681657055466
107 => 0.062196055917051
108 => 0.062591975857497
109 => 0.063246416463567
110 => 0.063920050819754
111 => 0.064136404020006
112 => 0.064549489409742
113 => 0.064547312245834
114 => 0.065792172871658
115 => 0.067165292692068
116 => 0.067683613636475
117 => 0.068875464067757
118 => 0.066834461971608
119 => 0.068382585506879
120 => 0.069779031687739
121 => 0.068114130982199
122 => 0.070408808732673
123 => 0.070497905869873
124 => 0.071843166860589
125 => 0.070479487125677
126 => 0.069669738452105
127 => 0.072007452531818
128 => 0.073138598737688
129 => 0.072797888294907
130 => 0.070205065002393
131 => 0.068695930634728
201 => 0.064746234904269
202 => 0.069424820111156
203 => 0.071703622489229
204 => 0.070199163454753
205 => 0.070957925082587
206 => 0.075097482494766
207 => 0.07667355794083
208 => 0.076345745265648
209 => 0.076401140211498
210 => 0.077251561914401
211 => 0.08102280008086
212 => 0.078762986754901
213 => 0.080490529369007
214 => 0.08140681174241
215 => 0.082257905875799
216 => 0.08016788767526
217 => 0.077448804704824
218 => 0.076587556988749
219 => 0.070049574653421
220 => 0.069709244279849
221 => 0.069518206528097
222 => 0.068313740526129
223 => 0.067367360179586
224 => 0.066614763391166
225 => 0.064639724673927
226 => 0.065306242263125
227 => 0.062158442770462
228 => 0.064172293334703
301 => 0.059148329338136
302 => 0.063332435842374
303 => 0.061055216900095
304 => 0.062584308174228
305 => 0.062578973318822
306 => 0.059763431484313
307 => 0.058139485713028
308 => 0.059174327163406
309 => 0.060283759344028
310 => 0.060463760982756
311 => 0.061902168764075
312 => 0.062303597457369
313 => 0.061087249775774
314 => 0.059044218851134
315 => 0.059518768338353
316 => 0.058129868982816
317 => 0.055695876285479
318 => 0.057444012334142
319 => 0.058040902841272
320 => 0.058304523693322
321 => 0.055910971421441
322 => 0.055158865331068
323 => 0.054758450359335
324 => 0.058735241309776
325 => 0.058953098895139
326 => 0.057838508686463
327 => 0.06287656211946
328 => 0.061736295464219
329 => 0.063010252690237
330 => 0.059475707946381
331 => 0.059610732315492
401 => 0.057937422190158
402 => 0.058874364049722
403 => 0.058212163742428
404 => 0.058798668406509
405 => 0.05915021688391
406 => 0.060823252435517
407 => 0.063351539220939
408 => 0.060573356714926
409 => 0.05936286281275
410 => 0.060113846421584
411 => 0.062113814735371
412 => 0.065143869107254
413 => 0.063350015933572
414 => 0.06414609751045
415 => 0.064320005919793
416 => 0.062997285001575
417 => 0.065192639714218
418 => 0.066369148139753
419 => 0.067576002340237
420 => 0.068623880027231
421 => 0.067093958233271
422 => 0.068731193858482
423 => 0.067411870955556
424 => 0.066228301922536
425 => 0.066230096908203
426 => 0.065487626764605
427 => 0.064048997304125
428 => 0.063783691959077
429 => 0.06516384386839
430 => 0.066270594998786
501 => 0.066361752322866
502 => 0.06697450661558
503 => 0.067337128294137
504 => 0.070891313704261
505 => 0.072320836477977
506 => 0.074068829866196
507 => 0.074749771802416
508 => 0.076799162899245
509 => 0.075144113145149
510 => 0.074786032720099
511 => 0.069814880269912
512 => 0.070628906205141
513 => 0.071932240269263
514 => 0.069836371768582
515 => 0.071165717929835
516 => 0.071428159021467
517 => 0.069765154958923
518 => 0.070653437282892
519 => 0.068294422787785
520 => 0.06340295929049
521 => 0.065198085311389
522 => 0.066519902295657
523 => 0.064633506480248
524 => 0.068014797965768
525 => 0.066039517283952
526 => 0.06541344813801
527 => 0.062970929189925
528 => 0.064123704112245
529 => 0.06568284870083
530 => 0.064719478615098
531 => 0.066718616193738
601 => 0.06954992815561
602 => 0.071567689667182
603 => 0.071722588341396
604 => 0.070425302868977
605 => 0.072504211117694
606 => 0.07251935369469
607 => 0.070174336697548
608 => 0.068738026843908
609 => 0.068411694223139
610 => 0.069226937091099
611 => 0.070216792434937
612 => 0.071777518423936
613 => 0.072720632451958
614 => 0.07517977364801
615 => 0.075845146746558
616 => 0.076576190053344
617 => 0.077553089356616
618 => 0.078726107442035
619 => 0.076159610651096
620 => 0.076261582353148
621 => 0.073871696076993
622 => 0.07131775984656
623 => 0.073255879092813
624 => 0.07578971219009
625 => 0.075208448077938
626 => 0.075143043991173
627 => 0.075253035523531
628 => 0.07481478136528
629 => 0.072832574049965
630 => 0.071837121945488
701 => 0.07312150912718
702 => 0.073804103752752
703 => 0.074862748488508
704 => 0.074732248179546
705 => 0.077459203328708
706 => 0.078518815640829
707 => 0.078247721468022
708 => 0.078297609320064
709 => 0.080215986797478
710 => 0.082349617096782
711 => 0.084348043429395
712 => 0.086380928529338
713 => 0.083930206196501
714 => 0.082685880535427
715 => 0.083969706993854
716 => 0.083288490603847
717 => 0.087202962042736
718 => 0.087473991552056
719 => 0.091388179930105
720 => 0.095103210793755
721 => 0.092769866469988
722 => 0.094970105071164
723 => 0.097349842506421
724 => 0.10194074211752
725 => 0.1003946886383
726 => 0.099210435902959
727 => 0.098091322790333
728 => 0.1004200195235
729 => 0.10341585066889
730 => 0.10406112400389
731 => 0.10510671331998
801 => 0.10400740400269
802 => 0.10533140099042
803 => 0.11000569215084
804 => 0.10874265741819
805 => 0.10694894505485
806 => 0.11063884900231
807 => 0.11197421089676
808 => 0.12134648000645
809 => 0.13317935690655
810 => 0.12828046817105
811 => 0.12523956984677
812 => 0.12595425308405
813 => 0.13027521915981
814 => 0.13166297632273
815 => 0.12789057396532
816 => 0.12922305025282
817 => 0.13656512560309
818 => 0.14050391346653
819 => 0.13515451049819
820 => 0.12039571986894
821 => 0.10678744088196
822 => 0.1103969692581
823 => 0.10998776075695
824 => 0.11787590477826
825 => 0.10871253445752
826 => 0.10886682211295
827 => 0.11691808459894
828 => 0.11477014580126
829 => 0.11129076003624
830 => 0.10681284424856
831 => 0.098535002757972
901 => 0.091203087705067
902 => 0.10558266156301
903 => 0.1049625881907
904 => 0.10406463005786
905 => 0.10606293871327
906 => 0.1157661583141
907 => 0.11554246769604
908 => 0.11411946211193
909 => 0.11519879930568
910 => 0.11110154700765
911 => 0.11215750221756
912 => 0.10678528526104
913 => 0.10921375168899
914 => 0.11128329483706
915 => 0.11169878626414
916 => 0.11263490966489
917 => 0.10463583769984
918 => 0.10822718617173
919 => 0.11033676693512
920 => 0.10080560429891
921 => 0.11014836649483
922 => 0.10449659165326
923 => 0.10257829438522
924 => 0.10516102894018
925 => 0.10415453477232
926 => 0.10328921019011
927 => 0.10280634420508
928 => 0.10470281941624
929 => 0.10461434658086
930 => 0.10151134504543
1001 => 0.097463606036983
1002 => 0.09882216011072
1003 => 0.098328584679219
1004 => 0.096539803642961
1005 => 0.097745226083153
1006 => 0.092437155706882
1007 => 0.083304896513999
1008 => 0.089337946665482
1009 => 0.089105680797346
1010 => 0.088988561814213
1011 => 0.093522232261793
1012 => 0.093086424457832
1013 => 0.092295429026199
1014 => 0.096525276391553
1015 => 0.094981325203723
1016 => 0.099739418963963
1017 => 0.10287340724867
1018 => 0.10207852644577
1019 => 0.10502605757541
1020 => 0.098853458452686
1021 => 0.10090374827956
1022 => 0.1013263101713
1023 => 0.096473080731646
1024 => 0.093157728004286
1025 => 0.092936631775159
1026 => 0.087188267029665
1027 => 0.090258997077529
1028 => 0.092961112444206
1029 => 0.091667008876191
1030 => 0.091257334346802
1031 => 0.093350272669886
1101 => 0.093512911902395
1102 => 0.089804720165474
1103 => 0.09057577065074
1104 => 0.093791179350776
1105 => 0.090494750601388
1106 => 0.084090328009906
1107 => 0.082501942659149
1108 => 0.082290022773607
1109 => 0.077982195725922
1110 => 0.082608086163446
1111 => 0.080588761021311
1112 => 0.086967784950087
1113 => 0.083324120693362
1114 => 0.083167049609754
1115 => 0.082929613629562
1116 => 0.079221688935525
1117 => 0.080033488792612
1118 => 0.082732035158177
1119 => 0.083694906902711
1120 => 0.08359447149118
1121 => 0.082718810808799
1122 => 0.083119683785085
1123 => 0.081828332255063
1124 => 0.081372329152655
1125 => 0.079933057927919
1126 => 0.077817726836382
1127 => 0.07811187659874
1128 => 0.073920852199915
1129 => 0.071637359672935
1130 => 0.071005319037415
1201 => 0.070160127884801
1202 => 0.071100785627071
1203 => 0.073908979554368
1204 => 0.070521701886471
1205 => 0.064714451914765
1206 => 0.065063477533137
1207 => 0.065847634470983
1208 => 0.064386363205024
1209 => 0.063003392586996
1210 => 0.064205773335419
1211 => 0.061745164966783
1212 => 0.066144987236637
1213 => 0.066025984374597
1214 => 0.067665966033614
1215 => 0.068691480220809
1216 => 0.066328002033485
1217 => 0.065733593660898
1218 => 0.066072195684278
1219 => 0.060475858483133
1220 => 0.067208625890019
1221 => 0.067266851142138
1222 => 0.06676829118392
1223 => 0.070353281977214
1224 => 0.077918730737734
1225 => 0.075072304594555
1226 => 0.073970082358231
1227 => 0.071874757081258
1228 => 0.07466665360472
1229 => 0.074452279512088
1230 => 0.073482798566249
1231 => 0.07289645346524
]
'min_raw' => 0.054758450359335
'max_raw' => 0.14050391346653
'avg_raw' => 0.097631181912933
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.054758'
'max' => '$0.1405039'
'avg' => '$0.097631'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.033672930386476
'max_diff' => 0.081668774102857
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017188051856998
]
1 => [
'year' => 2028
'avg' => 0.0029499686713715
]
2 => [
'year' => 2029
'avg' => 0.0080587827300637
]
3 => [
'year' => 2030
'avg' => 0.0062173388747449
]
4 => [
'year' => 2031
'avg' => 0.0061061972813237
]
5 => [
'year' => 2032
'avg' => 0.010706085525168
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017188051856998
'min' => '$0.001718'
'max_raw' => 0.010706085525168
'max' => '$0.010706'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010706085525168
]
1 => [
'year' => 2033
'avg' => 0.027537152864525
]
2 => [
'year' => 2034
'avg' => 0.017454370859177
]
3 => [
'year' => 2035
'avg' => 0.020587470455063
]
4 => [
'year' => 2036
'avg' => 0.039960329668267
]
5 => [
'year' => 2037
'avg' => 0.097631181912933
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010706085525168
'min' => '$0.010706'
'max_raw' => 0.097631181912933
'max' => '$0.097631'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.097631181912933
]
]
]
]
'prediction_2025_max_price' => '$0.002938'
'last_price' => 0.00284958
'sma_50day_nextmonth' => '$0.002782'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002924'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002936'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002945'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003057'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.0034099'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003163'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.0029035'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002923'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002969'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0031084'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00326'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003421'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.00320099'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002937'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003025'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003155'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003344'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00180073'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00090036'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00045'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '36.27'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 22.72
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002941'
'vwma_10_action' => 'SELL'
'hma_9' => '0.002929'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -126.04
'cci_20_action' => 'BUY'
'adx_14' => 20.11
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000441'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 24.46
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.000360'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 27
'buy_signals' => 3
'sell_pct' => 90
'buy_pct' => 10
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767714840
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Elympics para 2026
La previsión del precio de Elympics para 2026 sugiere que el precio medio podría oscilar entre $0.000984 en el extremo inferior y $0.002938 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Elympics podría potencialmente ganar 3.13% para 2026 si ELP alcanza el objetivo de precio previsto.
Predicción de precio de Elympics 2027-2032
La predicción del precio de ELP para 2027-2032 está actualmente dentro de un rango de precios de $0.001718 en el extremo inferior y $0.010706 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Elympics alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Elympics | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000947 | $0.001718 | $0.002489 |
| 2028 | $0.00171 | $0.002949 | $0.004189 |
| 2029 | $0.003757 | $0.008058 | $0.01236 |
| 2030 | $0.003195 | $0.006217 | $0.009239 |
| 2031 | $0.003778 | $0.0061061 | $0.008434 |
| 2032 | $0.005766 | $0.010706 | $0.015645 |
Predicción de precio de Elympics 2032-2037
La predicción de precio de Elympics para 2032-2037 se estima actualmente entre $0.010706 en el extremo inferior y $0.097631 en el extremo superior. Comparado con el precio actual, Elympics podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Elympics | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005766 | $0.010706 | $0.015645 |
| 2033 | $0.0134011 | $0.027537 | $0.041673 |
| 2034 | $0.010773 | $0.017454 | $0.024134 |
| 2035 | $0.012738 | $0.020587 | $0.028436 |
| 2036 | $0.021085 | $0.03996 | $0.058835 |
| 2037 | $0.054758 | $0.097631 | $0.1405039 |
Elympics Histograma de precios potenciales
Pronóstico de precio de Elympics basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Elympics es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 27 indicando señales bajistas. La predicción de precio de ELP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Elympics
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Elympics disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Elympics alcance $0.002782 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 36.27, lo que sugiere que el mercado de ELP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ELP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002924 | SELL |
| SMA 5 | $0.002936 | SELL |
| SMA 10 | $0.002945 | SELL |
| SMA 21 | $0.003057 | SELL |
| SMA 50 | $0.0034099 | SELL |
| SMA 100 | $0.003163 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0029035 | SELL |
| EMA 5 | $0.002923 | SELL |
| EMA 10 | $0.002969 | SELL |
| EMA 21 | $0.0031084 | SELL |
| EMA 50 | $0.00326 | SELL |
| EMA 100 | $0.003421 | SELL |
| EMA 200 | $0.002946 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.00320099 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003344 | SELL |
| EMA 50 | $0.00180073 | BUY |
| EMA 100 | $0.00090036 | BUY |
| EMA 200 | $0.00045 | BUY |
Osciladores de Elympics
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 36.27 | NEUTRAL |
| Stoch RSI (14) | 22.72 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -126.04 | BUY |
| Índice Direccional Medio (14) | 20.11 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000441 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 24.46 | BUY |
| VWMA (10) | 0.002941 | SELL |
| Promedio Móvil de Hull (9) | 0.002929 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000360 | NEUTRAL |
Predicción de precios de Elympics basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Elympics
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Elympics por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0040041 | $0.005626 | $0.0079061 | $0.0111094 | $0.01561 | $0.021935 |
| Amazon.com acción | $0.005945 | $0.0124063 | $0.025886 | $0.054013 | $0.1127027 | $0.235161 |
| Apple acción | $0.004041 | $0.005733 | $0.008132 | $0.011534 | $0.016361 | $0.0232068 |
| Netflix acción | $0.004496 | $0.007094 | $0.011193 | $0.017661 | $0.027867 | $0.04397 |
| Google acción | $0.00369 | $0.004778 | $0.006188 | $0.008014 | $0.010378 | $0.013439 |
| Tesla acción | $0.006459 | $0.014643 | $0.033196 | $0.075253 | $0.170594 | $0.386725 |
| Kodak acción | $0.002136 | $0.0016024 | $0.0012016 | $0.0009011 | $0.000675 | $0.0005067 |
| Nokia acción | $0.001887 | $0.00125 | $0.000828 | $0.000548 | $0.000363 | $0.00024 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Elympics
Podría preguntarse cosas como: "¿Debo invertir en Elympics ahora?", "¿Debería comprar ELP hoy?", "¿Será Elympics una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Elympics regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Elympics, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Elympics a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Elympics es de $0.002849 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Elympics
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Elympics
basado en el historial de precios del último mes
Predicción de precios de Elympics basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Elympics ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002923 | $0.002999 | $0.003077 | $0.003157 |
| Si Elympics ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002997 | $0.003153 | $0.003317 | $0.003489 |
| Si Elympics ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003219 | $0.003638 | $0.004111 | $0.004645 |
| Si Elympics ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.00359 | $0.004523 | $0.005699 | $0.00718 |
| Si Elympics ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.00433 | $0.006582 | $0.0100044 | $0.0152054 |
| Si Elympics ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006553 | $0.015069 | $0.034655 | $0.079695 |
| Si Elympics ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.010256 | $0.036916 | $0.132874 | $0.478259 |
Cuadro de preguntas
¿Es ELP una buena inversión?
La decisión de adquirir Elympics depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Elympics ha experimentado una caída de -2.9677% durante las últimas 24 horas, y Elympics ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Elympics dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Elympics subir?
Parece que el valor medio de Elympics podría potencialmente aumentar hasta $0.002938 para el final de este año. Mirando las perspectivas de Elympics en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.009239. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Elympics la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Elympics, el precio de Elympics aumentará en un 0.86% durante la próxima semana y alcanzará $0.002873 para el 13 de enero de 2026.
¿Cuál será el precio de Elympics el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Elympics, el precio de Elympics disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002518 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Elympics este año en 2026?
Según nuestra predicción más reciente sobre el valor de Elympics en 2026, se anticipa que ELP fluctúe dentro del rango de $0.000984 y $0.002938. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Elympics no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Elympics en 5 años?
El futuro de Elympics parece estar en una tendencia alcista, con un precio máximo de $0.009239 proyectada después de un período de cinco años. Basado en el pronóstico de Elympics para 2030, el valor de Elympics podría potencialmente alcanzar su punto más alto de aproximadamente $0.009239, mientras que su punto más bajo se anticipa que esté alrededor de $0.003195.
¿Cuánto será Elympics en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Elympics, se espera que el valor de ELP en 2026 crezca en un 3.13% hasta $0.002938 si ocurre lo mejor. El precio estará entre $0.002938 y $0.000984 durante 2026.
¿Cuánto será Elympics en 2027?
Según nuestra última simulación experimental para la predicción de precios de Elympics, el valor de ELP podría disminuir en un -12.62% hasta $0.002489 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002489 y $0.000947 a lo largo del año.
¿Cuánto será Elympics en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Elympics sugiere que el valor de ELP en 2028 podría aumentar en un 47.02% , alcanzando $0.004189 en el mejor escenario. Se espera que el precio oscile entre $0.004189 y $0.00171 durante el año.
¿Cuánto será Elympics en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Elympics podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.01236 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.01236 y $0.003757.
¿Cuánto será Elympics en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Elympics, se espera que el valor de ELP en 2030 aumente en un 224.23% , alcanzando $0.009239 en el mejor escenario. Se pronostica que el precio oscile entre $0.009239 y $0.003195 durante el transcurso de 2030.
¿Cuánto será Elympics en 2031?
Nuestra simulación experimental indica que el precio de Elympics podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.008434 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.008434 y $0.003778 durante el año.
¿Cuánto será Elympics en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Elympics, ELP podría experimentar un 449.04% aumento en valor, alcanzando $0.015645 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.015645 y $0.005766 a lo largo del año.
¿Cuánto será Elympics en 2033?
Según nuestra predicción experimental de precios de Elympics, se anticipa que el valor de ELP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.041673. A lo largo del año, el precio de ELP podría oscilar entre $0.041673 y $0.0134011.
¿Cuánto será Elympics en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Elympics sugieren que ELP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.024134 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.024134 y $0.010773.
¿Cuánto será Elympics en 2035?
Basado en nuestra predicción experimental para el precio de Elympics, ELP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.028436 en 2035. El rango de precios esperado para el año está entre $0.028436 y $0.012738.
¿Cuánto será Elympics en 2036?
Nuestra reciente simulación de predicción de precios de Elympics sugiere que el valor de ELP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.058835 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.058835 y $0.021085.
¿Cuánto será Elympics en 2037?
Según la simulación experimental, el valor de Elympics podría aumentar en un 4830.69% en 2037, con un máximo de $0.1405039 bajo condiciones favorables. Se espera que el precio caiga entre $0.1405039 y $0.054758 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Elympics?
Los traders de Elympics utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Elympics
Las medias móviles son herramientas populares para la predicción de precios de Elympics. Una media móvil simple (SMA) calcula el precio de cierre promedio de ELP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ELP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ELP.
¿Cómo leer gráficos de Elympics y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Elympics en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ELP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Elympics?
La acción del precio de Elympics está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ELP. La capitalización de mercado de Elympics puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ELP, grandes poseedores de Elympics, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Elympics.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


