Predicción del precio de Elympics - Pronóstico de ELP
Predicción de precio de Elympics hasta $0.00295 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000988 | $0.00295 |
| 2027 | $0.000951 | $0.002499 |
| 2028 | $0.001717 | $0.004206 |
| 2029 | $0.003772 | $0.0124091 |
| 2030 | $0.0032081 | $0.009275 |
| 2031 | $0.003793 | $0.008467 |
| 2032 | $0.005789 | $0.0157071 |
| 2033 | $0.013454 | $0.041838 |
| 2034 | $0.010816 | $0.02423 |
| 2035 | $0.012788 | $0.028549 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Elympics hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.38, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de Elympics para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Elympics'
'name_with_ticker' => 'Elympics <small>ELP</small>'
'name_lang' => 'Elympics'
'name_lang_with_ticker' => 'Elympics <small>ELP</small>'
'name_with_lang' => 'Elympics'
'name_with_lang_with_ticker' => 'Elympics <small>ELP</small>'
'image' => '/uploads/coins/elympics.png?1753327675'
'price_for_sd' => 0.00286
'ticker' => 'ELP'
'marketcap' => '$3.07M'
'low24h' => '$0.002858'
'high24h' => '$0.002938'
'volume24h' => '$42.26K'
'current_supply' => '1.07B'
'max_supply' => '3.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.00286'
'change_24h_pct' => '-2.5404%'
'ath_price' => '$0.01138'
'ath_days' => 166
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 jul. 2025'
'ath_pct' => '-74.87%'
'fdv' => '$10.02M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.14106'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002885'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002528'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000988'
'current_year_max_price_prediction' => '$0.00295'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.0032081'
'grand_prediction_max_price' => '$0.009275'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029150819816824
107 => 0.0029259658396272
108 => 0.0029504877273205
109 => 0.0027409508818341
110 => 0.0028350267737789
111 => 0.0028902875465775
112 => 0.0026406173646694
113 => 0.002885352369832
114 => 0.0027373033115316
115 => 0.0026870532375222
116 => 0.002754708342232
117 => 0.0027283430821298
118 => 0.002705675779714
119 => 0.0026930270354923
120 => 0.0027427054775698
121 => 0.0027403879188683
122 => 0.0026591043454595
123 => 0.00255307323749
124 => 0.002588660757677
125 => 0.0025757314779583
126 => 0.0025288741003473
127 => 0.0025604503152757
128 => 0.0024214046450876
129 => 0.0021821837964938
130 => 0.0023402204166076
131 => 0.002334136178644
201 => 0.0023310682299645
202 => 0.0024498283821687
203 => 0.0024384123337971
204 => 0.0024176920942165
205 => 0.0025284935568984
206 => 0.0024880495325295
207 => 0.0026126884858238
208 => 0.0026947837616055
209 => 0.0026739617441633
210 => 0.0027511727478369
211 => 0.0025894806222654
212 => 0.0026431882604182
213 => 0.0026542573302059
214 => 0.0025271262840482
215 => 0.0024402801404954
216 => 0.0024344884928389
217 => 0.0022839092480541
218 => 0.0023643474651849
219 => 0.0024351297675005
220 => 0.0024012305376199
221 => 0.0023904990541504
222 => 0.0024453238758213
223 => 0.002449584234008
224 => 0.0023524476158593
225 => 0.002372645394689
226 => 0.0024568734900105
227 => 0.002370523062794
228 => 0.0022027582879745
301 => 0.0021611503042898
302 => 0.0021555990322789
303 => 0.0020427548805552
304 => 0.0021639307487159
305 => 0.0021110342349524
306 => 0.0022781336881338
307 => 0.0021826873766489
308 => 0.0021785728769269
309 => 0.0021723532071313
310 => 0.0020752235842094
311 => 0.0020964887987198
312 => 0.0021671776105357
313 => 0.0021924001749581
314 => 0.0021897692548464
315 => 0.0021668311967936
316 => 0.0021773321223083
317 => 0.0021435049824605
318 => 0.0021315599153292
319 => 0.0020938579977132
320 => 0.0020384465942383
321 => 0.0020461518897494
322 => 0.0019363674002832
323 => 0.0018765509837181
324 => 0.0018599945879806
325 => 0.001837854683661
326 => 0.0018624953490855
327 => 0.0019360563946182
328 => 0.0018473261668594
329 => 0.0016952044150688
330 => 0.0017043471915542
331 => 0.0017248882958024
401 => 0.001686610083929
402 => 0.0016503829688376
403 => 0.0016818795062108
404 => 0.0016174235145915
405 => 0.0017326774944474
406 => 0.0017295601972879
407 => 0.0017725197537199
408 => 0.0017993832459757
409 => 0.001737471593485
410 => 0.0017219009803105
411 => 0.0017307707092196
412 => 0.0015841738479174
413 => 0.0017605396626016
414 => 0.0017620648814907
415 => 0.0017490050313747
416 => 0.0018429143830103
417 => 0.0020410924060229
418 => 0.0019665298620731
419 => 0.0019376569913909
420 => 0.0018827696431181
421 => 0.0019559037758033
422 => 0.0019502882154833
423 => 0.0019248925220781
424 => 0.0019095331274673
425 => 0.0019378332829825
426 => 0.001906026425015
427 => 0.00190031303933
428 => 0.001865696138304
429 => 0.0018533394796063
430 => 0.0018441911014394
501 => 0.0018341196359786
502 => 0.0018563347791322
503 => 0.0018059923421006
504 => 0.0017452842981705
505 => 0.0017402370811878
506 => 0.0017541728910328
507 => 0.0017480073325754
508 => 0.001740207562866
509 => 0.0017253156783498
510 => 0.0017208975743286
511 => 0.0017352542690381
512 => 0.0017190463977584
513 => 0.00174296199472
514 => 0.0017364582756568
515 => 0.0017001290296544
516 => 0.0016548493383259
517 => 0.0016544462540957
518 => 0.0016446908188725
519 => 0.0016322658053763
520 => 0.0016288094508675
521 => 0.0016792269556842
522 => 0.0017835896817859
523 => 0.0017631007814637
524 => 0.0017779061117334
525 => 0.0018507336832864
526 => 0.0018738833782816
527 => 0.0018574522731046
528 => 0.0018349603629119
529 => 0.001835949892812
530 => 0.0019128115587048
531 => 0.0019176053265261
601 => 0.0019297176312824
602 => 0.0019452853658312
603 => 0.0018601035256151
604 => 0.0018319378357981
605 => 0.0018185913693898
606 => 0.0017774894185849
607 => 0.001821814348713
608 => 0.0017959881101101
609 => 0.0017994729520476
610 => 0.0017972034441641
611 => 0.001798442748932
612 => 0.0017326452786112
613 => 0.0017566184185828
614 => 0.001716758423713
615 => 0.0016633903650767
616 => 0.0016632114566309
617 => 0.0016762732133757
618 => 0.0016685035693573
619 => 0.0016475956570796
620 => 0.0016505655273361
621 => 0.0016245463388451
622 => 0.0016537247279115
623 => 0.0016545614597047
624 => 0.0016433261905565
625 => 0.0016882795247552
626 => 0.0017066969424548
627 => 0.0016993016476187
628 => 0.0017061780688548
629 => 0.0017639521877739
630 => 0.0017733718900193
701 => 0.0017775554995261
702 => 0.001771950017009
703 => 0.0017072340736912
704 => 0.0017101045009708
705 => 0.0016890432101516
706 => 0.0016712486387935
707 => 0.0016719603283276
708 => 0.001681109051138
709 => 0.0017210620602165
710 => 0.0018051408124637
711 => 0.0018083315396507
712 => 0.0018121987940815
713 => 0.0017964687267853
714 => 0.0017917243879723
715 => 0.0017979833954844
716 => 0.0018295589541777
717 => 0.0019107798638173
718 => 0.0018820709697885
719 => 0.0018587301920625
720 => 0.0018792063467567
721 => 0.001876054203239
722 => 0.0018494469397439
723 => 0.0018487001624759
724 => 0.0017976323169722
725 => 0.001778753697248
726 => 0.0017629773095663
727 => 0.001745749906071
728 => 0.0017355369238111
729 => 0.0017512287062797
730 => 0.0017548176025899
731 => 0.001720507245977
801 => 0.0017158308711518
802 => 0.0017438494490024
803 => 0.0017315195175282
804 => 0.001744201157817
805 => 0.0017471434071451
806 => 0.0017466696372375
807 => 0.0017337957726949
808 => 0.0017420011900502
809 => 0.0017225929318522
810 => 0.001701489366088
811 => 0.0016880266059291
812 => 0.0016762785621144
813 => 0.0016827970596231
814 => 0.0016595598062353
815 => 0.001652125741203
816 => 0.0017392213792779
817 => 0.0018035598635598
818 => 0.0018026243565175
819 => 0.0017969296979904
820 => 0.0017884685905385
821 => 0.0018289399714666
822 => 0.001814840551602
823 => 0.0018250990575994
824 => 0.0018277102779239
825 => 0.0018356136553969
826 => 0.0018384384335252
827 => 0.0018298999920868
828 => 0.0018012439397368
829 => 0.0017298357818163
830 => 0.0016965950915417
831 => 0.0016856251100836
901 => 0.0016860238480746
902 => 0.0016750248742369
903 => 0.0016782645649716
904 => 0.0016738982420103
905 => 0.0016656294826487
906 => 0.0016822864870333
907 => 0.0016842060516179
908 => 0.0016803181077581
909 => 0.0016812338592827
910 => 0.0016490433446865
911 => 0.0016514907195971
912 => 0.0016378634250974
913 => 0.0016353084716582
914 => 0.0016008598578271
915 => 0.0015398291450189
916 => 0.0015736460843092
917 => 0.0015327999770277
918 => 0.0015173309372807
919 => 0.0015905589655139
920 => 0.0015832089025086
921 => 0.0015706287896392
922 => 0.00155202018078
923 => 0.0015451180667412
924 => 0.0015031830067854
925 => 0.0015007052597284
926 => 0.0015214894077844
927 => 0.0015118982385954
928 => 0.0014984286045943
929 => 0.0014496429556371
930 => 0.001394791733836
1001 => 0.0013964473474397
1002 => 0.0014138945005514
1003 => 0.0014646244512927
1004 => 0.001444803381901
1005 => 0.0014304229686368
1006 => 0.001427729949506
1007 => 0.0014614387221449
1008 => 0.0015091436976351
1009 => 0.0015315258047964
1010 => 0.0015093458163542
1011 => 0.0014838666398872
1012 => 0.0014854174392997
1013 => 0.00149573421302
1014 => 0.0014968183600667
1015 => 0.0014802340354884
1016 => 0.0014849024257139
1017 => 0.0014778107140748
1018 => 0.0014342888928353
1019 => 0.0014335017210983
1020 => 0.001422820764282
1021 => 0.0014224973491545
1022 => 0.0014043263771203
1023 => 0.0014017841325228
1024 => 0.0013657045646499
1025 => 0.0013894522454828
1026 => 0.0013735235479893
1027 => 0.0013495152436666
1028 => 0.0013453762029521
1029 => 0.0013452517783902
1030 => 0.0013699029387709
1031 => 0.0013891641823211
1101 => 0.0013738006345018
1102 => 0.0013703026524732
1103 => 0.0014076519490714
1104 => 0.0014028989106329
1105 => 0.0013987828099989
1106 => 0.0015048722403127
1107 => 0.0014208941779579
1108 => 0.001384274949471
1109 => 0.0013389517004155
1110 => 0.0013537091788476
1111 => 0.0013568187963857
1112 => 0.0012478245525371
1113 => 0.001203605601382
1114 => 0.0011884313237016
1115 => 0.0011796983123638
1116 => 0.0011836780552927
1117 => 0.0011438758128875
1118 => 0.0011706235780521
1119 => 0.001136158200529
1120 => 0.0011303799678272
1121 => 0.0011920083322795
1122 => 0.0012005835591654
1123 => 0.0011639989771562
1124 => 0.0011874922013119
1125 => 0.0011789732316528
1126 => 0.001136749010505
1127 => 0.0011351363558375
1128 => 0.0011139497259187
1129 => 0.0010807967526358
1130 => 0.0010656449542324
1201 => 0.00105775376607
1202 => 0.001061009824102
1203 => 0.001059363461524
1204 => 0.00104861983206
1205 => 0.0010599792737888
1206 => 0.001030960594217
1207 => 0.0010194051221921
1208 => 0.0010141857835634
1209 => 0.00098843003519055
1210 => 0.0010294188844851
1211 => 0.00103749420416
1212 => 0.0010455854347093
1213 => 0.0011160140725231
1214 => 0.0011124956568072
1215 => 0.0011443004213411
1216 => 0.0011430645466765
1217 => 0.0011339933126284
1218 => 0.0010957232683251
1219 => 0.0011109770258865
1220 => 0.0010640283310728
1221 => 0.0010992054854281
1222 => 0.0010831521012134
1223 => 0.0010937778200769
1224 => 0.001074671819478
1225 => 0.0010852458690768
1226 => 0.0010394091620295
1227 => 0.00099660748992863
1228 => 0.0010138321322407
1229 => 0.0010325572883108
1230 => 0.0010731581977516
1231 => 0.0010489766310389
]
'min_raw' => 0.00098843003519055
'max_raw' => 0.0029504877273205
'avg_raw' => 0.0019694588812555
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000988'
'max' => '$0.00295'
'avg' => '$0.001969'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0018724399648094
'max_diff' => 8.9617727320518E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010576732368351
102 => 0.0010285410632121
103 => 0.00096843306783391
104 => 0.00096877327256004
105 => 0.00095952696699497
106 => 0.00095153680900403
107 => 0.0010517541748657
108 => 0.0010392905612187
109 => 0.0010194314240696
110 => 0.0010460136683144
111 => 0.0010530424356097
112 => 0.0010532425347333
113 => 0.0010726362539472
114 => 0.0010829866853683
115 => 0.0010848109937675
116 => 0.0011153274299797
117 => 0.0011255561368766
118 => 0.0011676867329637
119 => 0.0010821085235766
120 => 0.0010803460966706
121 => 0.0010463877350043
122 => 0.0010248508051751
123 => 0.0010478623870154
124 => 0.0010682475071317
125 => 0.0010470211575096
126 => 0.0010497928706576
127 => 0.0010212982305465
128 => 0.0010314837235887
129 => 0.0010402568423308
130 => 0.0010354128418215
131 => 0.0010281611386068
201 => 0.001066576159751
202 => 0.0010644086337083
203 => 0.0011001815845553
204 => 0.0011280691578887
205 => 0.0011780486748023
206 => 0.0011258924434119
207 => 0.0011239916630378
208 => 0.0011425720960895
209 => 0.0011255532923091
210 => 0.0011363085888291
211 => 0.0011763158302567
212 => 0.0011771611202255
213 => 0.0011630014241538
214 => 0.001162139805361
215 => 0.0011648593298817
216 => 0.001180787669942
217 => 0.0011752218184965
218 => 0.0011816627626994
219 => 0.0011897172620523
220 => 0.0012230340864131
221 => 0.0012310666599729
222 => 0.0012115516706345
223 => 0.0012133136556716
224 => 0.0012060145139606
225 => 0.0011989636345258
226 => 0.0012148129817971
227 => 0.0012437779754551
228 => 0.0012435977857328
301 => 0.0012503171012625
302 => 0.0012545031791716
303 => 0.0012365334683892
304 => 0.0012248358474345
305 => 0.0012293214596475
306 => 0.00123649405126
307 => 0.0012269954848573
308 => 0.0011683659328559
309 => 0.0011861503936628
310 => 0.0011831901897689
311 => 0.0011789744994507
312 => 0.0011968569123153
313 => 0.0011951321099701
314 => 0.0011434675833624
315 => 0.0011467749787307
316 => 0.0011436687170292
317 => 0.0011537056840681
318 => 0.0011250112631504
319 => 0.0011338374737648
320 => 0.0011393731903216
321 => 0.0011426337699009
322 => 0.0011544132191417
323 => 0.0011530310367312
324 => 0.0011543273007424
325 => 0.0011717931143073
326 => 0.0012601292057748
327 => 0.0012649371443307
328 => 0.0012412610964602
329 => 0.0012507192105951
330 => 0.0012325616997183
331 => 0.0012447509584146
401 => 0.0012530905396411
402 => 0.0012154055756881
403 => 0.0012131741166962
404 => 0.001194941663313
405 => 0.0012047387510222
406 => 0.0011891508800413
407 => 0.0011929755983394
408 => 0.001182281352545
409 => 0.0012015288657719
410 => 0.0012230505763208
411 => 0.0012284878103236
412 => 0.0012141847885388
413 => 0.0012038284581515
414 => 0.0011856461535787
415 => 0.0012158837313023
416 => 0.0012247261205022
417 => 0.0012158372859962
418 => 0.0012137775488162
419 => 0.0012098743505822
420 => 0.0012146056307732
421 => 0.0012246779629516
422 => 0.001219928037103
423 => 0.0012230654468089
424 => 0.0012111088762929
425 => 0.0012365394171112
426 => 0.0012769292361237
427 => 0.0012770590959962
428 => 0.0012723091445438
429 => 0.0012703655667486
430 => 0.0012752393051899
501 => 0.0012778831083631
502 => 0.0012936438847917
503 => 0.0013105558258365
504 => 0.0013894764754348
505 => 0.0013673158728337
506 => 0.0014373389681678
507 => 0.0014927181452161
508 => 0.001509323938975
509 => 0.0014940473900798
510 => 0.0014417871415323
511 => 0.0014392230044179
512 => 0.0015173218794556
513 => 0.0014952553701024
514 => 0.0014926306290299
515 => 0.0014647078185883
516 => 0.0014812136578666
517 => 0.0014776035886904
518 => 0.0014719049178851
519 => 0.0015033969094214
520 => 0.0015623471062679
521 => 0.0015531591652579
522 => 0.0015463007935103
523 => 0.0015162494049542
524 => 0.0015343470530856
525 => 0.0015279028272236
526 => 0.0015555913111335
527 => 0.0015391892666403
528 => 0.001495088194591
529 => 0.0015021114356739
530 => 0.001501049886913
531 => 0.0015228964851897
601 => 0.001516338678653
602 => 0.0014997693699377
603 => 0.0015621456209038
604 => 0.001558095254121
605 => 0.0015638377481762
606 => 0.0015663657716519
607 => 0.0016043330964221
608 => 0.0016198870945616
609 => 0.0016234181244503
610 => 0.0016381932196935
611 => 0.0016230505066209
612 => 0.0016836321554826
613 => 0.0017239154169384
614 => 0.0017707064980771
615 => 0.0018390808438776
616 => 0.0018647902303966
617 => 0.0018601460598377
618 => 0.0019119867084781
619 => 0.0020051432017318
620 => 0.0018789756505704
621 => 0.0020118303883021
622 => 0.001969770112218
623 => 0.0018700459542545
624 => 0.0018636248941522
625 => 0.0019311592517464
626 => 0.0020809439569492
627 => 0.0020434245871399
628 => 0.0020810053251972
629 => 0.002037165398035
630 => 0.0020349883761394
701 => 0.0020788761177875
702 => 0.0021814222183445
703 => 0.002132706409853
704 => 0.0020628603527741
705 => 0.0021144335943961
706 => 0.0020697560796249
707 => 0.0019690851343964
708 => 0.0020433958967849
709 => 0.0019937064062244
710 => 0.0020082084412085
711 => 0.002112648359613
712 => 0.0021000818723168
713 => 0.0021163440705034
714 => 0.0020876417163599
715 => 0.0020608291916439
716 => 0.0020107816231374
717 => 0.001995965005418
718 => 0.0020000597855096
719 => 0.0019959629762483
720 => 0.0019679618216298
721 => 0.001961914974956
722 => 0.0019518366322478
723 => 0.0019549603320757
724 => 0.0019360100992612
725 => 0.0019717731039001
726 => 0.0019784110327036
727 => 0.0020044363650927
728 => 0.002007138401437
729 => 0.0020796185816933
730 => 0.0020396977163881
731 => 0.0020664800794365
801 => 0.0020640844128001
802 => 0.0018722072791477
803 => 0.0018986462552187
804 => 0.0019397770049774
805 => 0.0019212476579625
806 => 0.0018950514964829
807 => 0.0018738966915388
808 => 0.0018418449988586
809 => 0.0018869571408077
810 => 0.0019462748103294
811 => 0.0020086427954252
812 => 0.0020835738430055
813 => 0.0020668501054791
814 => 0.0020072420116116
815 => 0.0020099159871588
816 => 0.0020264454518207
817 => 0.0020050382932233
818 => 0.0019987249042355
819 => 0.0020255780891225
820 => 0.0020257630122485
821 => 0.0020011314891407
822 => 0.0019737580587274
823 => 0.0019736433630545
824 => 0.0019687725255084
825 => 0.0020380319092138
826 => 0.0020761175673382
827 => 0.0020804840266641
828 => 0.0020758236698355
829 => 0.0020776172562159
830 => 0.0020554560509135
831 => 0.0021061099945335
901 => 0.002152595062355
902 => 0.0021401360711702
903 => 0.0021214582722342
904 => 0.002106580505737
905 => 0.0021366313422057
906 => 0.0021352932257621
907 => 0.0021521890558403
908 => 0.0021514225633929
909 => 0.0021457411312219
910 => 0.002140136274072
911 => 0.002162358899127
912 => 0.0021559591399956
913 => 0.0021495494402706
914 => 0.0021366938061962
915 => 0.0021384411003764
916 => 0.0021197665264258
917 => 0.0021111268140258
918 => 0.0019812062690995
919 => 0.0019464872542189
920 => 0.0019574105630711
921 => 0.0019610067999688
922 => 0.0019458970401991
923 => 0.00196756055433
924 => 0.0019641843186001
925 => 0.0019773192767935
926 => 0.0019691131251678
927 => 0.001969449908493
928 => 0.001993582450688
929 => 0.0020005882303544
930 => 0.0019970250342725
1001 => 0.0019995205746691
1002 => 0.0020570292498059
1003 => 0.0020488533552254
1004 => 0.0020445100741811
1005 => 0.0020457131927129
1006 => 0.0020604078922102
1007 => 0.0020645216057686
1008 => 0.0020470915123561
1009 => 0.0020553116451716
1010 => 0.0020903119274099
1011 => 0.0021025600453489
1012 => 0.00214165015838
1013 => 0.002125043983593
1014 => 0.0021555253361129
1015 => 0.0022492146219003
1016 => 0.0023240601061926
1017 => 0.0022552291057169
1018 => 0.0023926733061049
1019 => 0.0024996933313065
1020 => 0.0024955857244881
1021 => 0.0024769243076764
1022 => 0.002355084854259
1023 => 0.0022429663727003
1024 => 0.0023367582433263
1025 => 0.002336997338093
1026 => 0.0023289405332263
1027 => 0.002278900410152
1028 => 0.0023271992454116
1029 => 0.0023310330315589
1030 => 0.0023288871308024
1031 => 0.0022905214857666
1101 => 0.0022319442369533
1102 => 0.0022433900911573
1103 => 0.0022621386338326
1104 => 0.0022266437311926
1105 => 0.0022153009590871
1106 => 0.0022363893304819
1107 => 0.0023043404570524
1108 => 0.0022914946901883
1109 => 0.0022911592353017
1110 => 0.0023461188733992
1111 => 0.0023067796335536
1112 => 0.0022435344600335
1113 => 0.0022275642196183
1114 => 0.0021708806249875
1115 => 0.0022100321856991
1116 => 0.0022114411806689
1117 => 0.0021899982709864
1118 => 0.0022452744339756
1119 => 0.0022447650544025
1120 => 0.0022972415443897
1121 => 0.0023975568839755
1122 => 0.0023678887018419
1123 => 0.0023333878339096
1124 => 0.0023371390348591
1125 => 0.0023782804505228
1126 => 0.0023534054114454
1127 => 0.0023623506489326
1128 => 0.0023782669108345
1129 => 0.0023878695868185
1130 => 0.0023357573575618
1201 => 0.002323607504106
1202 => 0.0022987531679545
1203 => 0.0022922691355808
1204 => 0.0023125124737734
1205 => 0.0023071790693674
1206 => 0.0022113227600976
1207 => 0.0022013052424394
1208 => 0.0022016124654043
1209 => 0.0021764229409458
1210 => 0.0021380028699681
1211 => 0.0022389685225543
1212 => 0.0022308595676382
1213 => 0.0022219079089941
1214 => 0.0022230044361006
1215 => 0.0022668302038448
1216 => 0.0022414090452988
1217 => 0.0023089953617392
1218 => 0.0022951016469097
1219 => 0.0022808516107206
1220 => 0.0022788818216525
1221 => 0.0022733967734757
1222 => 0.0022545865023808
1223 => 0.0022318719697116
1224 => 0.0022168738677443
1225 => 0.0020449489594848
1226 => 0.0020768572224166
1227 => 0.0021135647703899
1228 => 0.002126236068854
1229 => 0.002104560936004
1230 => 0.0022554423687372
1231 => 0.0022830098604272
]
'min_raw' => 0.00095153680900403
'max_raw' => 0.0024996933313065
'avg_raw' => 0.0017256150701553
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000951'
'max' => '$0.002499'
'avg' => '$0.001725'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.6893226186527E-5
'max_diff' => -0.000450794396014
'year' => 2027
]
2 => [
'items' => [
101 => 0.0021995061299151
102 => 0.0021838859913712
103 => 0.0022564664224196
104 => 0.0022126915499006
105 => 0.0022324033723155
106 => 0.0021897971940448
107 => 0.0022763696589495
108 => 0.0022757101218154
109 => 0.0022420314776397
110 => 0.0022704964370756
111 => 0.0022655499498854
112 => 0.0022275268435578
113 => 0.0022775750592406
114 => 0.0022775998825312
115 => 0.0022451849197489
116 => 0.0022073313397671
117 => 0.0022005640137279
118 => 0.0021954657426198
119 => 0.0022311495101526
120 => 0.0022631434645423
121 => 0.0023226762816876
122 => 0.0023376442463828
123 => 0.0023960652090619
124 => 0.0023612783702516
125 => 0.0023766989253312
126 => 0.0023934401192409
127 => 0.0024014664632382
128 => 0.0023883879664119
129 => 0.0024791397684801
130 => 0.0024868020011381
131 => 0.0024893710814702
201 => 0.0024587700844221
202 => 0.0024859509320534
203 => 0.0024732339135817
204 => 0.0025063200627554
205 => 0.002511508393411
206 => 0.0025071140619259
207 => 0.0025087609199683
208 => 0.002431320266618
209 => 0.0024273045602098
210 => 0.0023725501183924
211 => 0.0023948629581574
212 => 0.002353150173699
213 => 0.00236637772734
214 => 0.0023722083069482
215 => 0.0023691627430434
216 => 0.0023961244926398
217 => 0.0023732014975613
218 => 0.0023127039446599
219 => 0.0022521899092407
220 => 0.0022514302048197
221 => 0.0022354979274553
222 => 0.0022239818090629
223 => 0.0022262002220216
224 => 0.0022340181986398
225 => 0.0022235274140496
226 => 0.0022257661548382
227 => 0.002262944168581
228 => 0.0022703999540957
229 => 0.0022450622817534
301 => 0.0021433278710905
302 => 0.0021183619915324
303 => 0.0021363069706639
304 => 0.0021277304264437
305 => 0.0017172445166911
306 => 0.0018136820923639
307 => 0.0017563821596098
308 => 0.001782788604866
309 => 0.0017243002112697
310 => 0.0017522139383332
311 => 0.0017470592921907
312 => 0.0019021280600772
313 => 0.0018997068745568
314 => 0.0019008657679391
315 => 0.0018455487673192
316 => 0.001933670251327
317 => 0.0019770820630953
318 => 0.001969047692105
319 => 0.0019710697701895
320 => 0.0019363237692318
321 => 0.0019012021851794
322 => 0.0018622469432923
323 => 0.0019346209677052
324 => 0.0019265742116563
325 => 0.001945030574901
326 => 0.0019919703031349
327 => 0.0019988823564241
328 => 0.0020081722261398
329 => 0.0020048424691446
330 => 0.0020841707896877
331 => 0.0020745636066448
401 => 0.0020977141536029
402 => 0.0020500917220738
403 => 0.001996202420436
404 => 0.0020064450149033
405 => 0.0020054585706904
406 => 0.0019929000036716
407 => 0.0019815626908985
408 => 0.0019626892593993
409 => 0.0020224075894049
410 => 0.0020199831342652
411 => 0.002059232244857
412 => 0.0020522945833143
413 => 0.002005963181599
414 => 0.0020076179166752
415 => 0.0020187468053013
416 => 0.0020572640159034
417 => 0.0020686985464618
418 => 0.0020634016163199
419 => 0.002075939057071
420 => 0.0020858481390481
421 => 0.0020771834852044
422 => 0.0021998567114926
423 => 0.0021489142351902
424 => 0.0021737432436845
425 => 0.0021796648159094
426 => 0.0021644968331726
427 => 0.0021677862255035
428 => 0.002172768758579
429 => 0.0022030217237335
430 => 0.0022824142580647
501 => 0.0023175766710768
502 => 0.0024233645255065
503 => 0.0023146569221606
504 => 0.0023082066628548
505 => 0.0023272622499247
506 => 0.0023893709192566
507 => 0.0024397041621794
508 => 0.0024564026026514
509 => 0.0024586095772209
510 => 0.0024899369616376
511 => 0.0025078932341642
512 => 0.0024861329931774
513 => 0.0024676934673334
514 => 0.0024016453745582
515 => 0.00240929062114
516 => 0.0024619587886617
517 => 0.0025363556774257
518 => 0.0026001959476623
519 => 0.0025778413100835
520 => 0.002748391414895
521 => 0.0027653007611523
522 => 0.0027629644362442
523 => 0.0028014864434666
524 => 0.0027250281040005
525 => 0.0026923406825682
526 => 0.0024716803021184
527 => 0.0025336768684048
528 => 0.0026237925184329
529 => 0.0026118653742353
530 => 0.0025464209803867
531 => 0.002600146302221
601 => 0.0025823830306764
602 => 0.0025683724014104
603 => 0.0026325578101721
604 => 0.0025619833166474
605 => 0.0026230884838733
606 => 0.002544720474854
607 => 0.0025779434241849
608 => 0.0025590844713315
609 => 0.002571288525094
610 => 0.0024999438761681
611 => 0.0025384397169351
612 => 0.0024983423226296
613 => 0.0024983233112439
614 => 0.0024974381590422
615 => 0.0025446125656235
616 => 0.0025461509213285
617 => 0.0025112889635883
618 => 0.0025062648108318
619 => 0.0025248417368376
620 => 0.0025030930217895
621 => 0.0025132691086757
622 => 0.0025034012450947
623 => 0.0025011797811536
624 => 0.0024834787785201
625 => 0.0024758526998863
626 => 0.0024788430818185
627 => 0.0024686353666366
628 => 0.0024624848490103
629 => 0.00249621466628
630 => 0.0024781941855698
701 => 0.0024934527691611
702 => 0.002476063687372
703 => 0.0024157855538286
704 => 0.0023811189617981
705 => 0.0022672591553207
706 => 0.002299549655195
707 => 0.0023209582900187
708 => 0.0023138827363372
709 => 0.0023290837635208
710 => 0.0023300169831323
711 => 0.0023250749742387
712 => 0.0023193527610506
713 => 0.0023165675041288
714 => 0.0023373265273054
715 => 0.0023493778389761
716 => 0.0023231069329338
717 => 0.0023169520272171
718 => 0.0023435133636823
719 => 0.0023597157635821
720 => 0.0024793451811
721 => 0.0024704826474524
722 => 0.0024927258677236
723 => 0.0024902216224711
724 => 0.0025135360609382
725 => 0.0025516453144151
726 => 0.0024741585465817
727 => 0.0024876075701868
728 => 0.0024843101801821
729 => 0.0025203102196307
730 => 0.0025204226078244
731 => 0.0024988387858396
801 => 0.0025105397258951
802 => 0.0025040085821546
803 => 0.0025158112416306
804 => 0.0024703642829123
805 => 0.0025257137729352
806 => 0.0025570933671358
807 => 0.0025575290728317
808 => 0.002572402751439
809 => 0.0025875152703293
810 => 0.0026165224343163
811 => 0.0025867062762694
812 => 0.0025330699104875
813 => 0.0025369422828525
814 => 0.0025054953012193
815 => 0.002506023930662
816 => 0.0025032020652678
817 => 0.0025116706957357
818 => 0.0024722226710676
819 => 0.0024814810436096
820 => 0.0024685192678338
821 => 0.0024875793938176
822 => 0.0024670738490107
823 => 0.0024843085900808
824 => 0.002491746532986
825 => 0.0025191927024334
826 => 0.0024630200274676
827 => 0.0023484801406564
828 => 0.002372557813526
829 => 0.0023369450440915
830 => 0.00234024114149
831 => 0.0023468997828051
901 => 0.0023253169477311
902 => 0.0023294342725099
903 => 0.0023292871726957
904 => 0.0023280195459661
905 => 0.0023224050169947
906 => 0.0023142628391855
907 => 0.0023466987695472
908 => 0.0023522102661712
909 => 0.0023644616404365
910 => 0.0024009134200633
911 => 0.0023972710276865
912 => 0.0024032119207746
913 => 0.0023902429845199
914 => 0.0023408427332471
915 => 0.002343525404563
916 => 0.0023100724502669
917 => 0.0023636061731826
918 => 0.0023509286809856
919 => 0.0023427554192942
920 => 0.0023405252691169
921 => 0.0023770674056549
922 => 0.0023880013856349
923 => 0.0023811880630635
924 => 0.0023672137396931
925 => 0.002394048571702
926 => 0.0024012284406769
927 => 0.0024028357485571
928 => 0.0024503819258082
929 => 0.0024054930516932
930 => 0.0024162982498498
1001 => 0.0025005973213869
1002 => 0.0024241496959794
1003 => 0.0024646457081433
1004 => 0.0024626636390789
1005 => 0.0024833800285916
1006 => 0.0024609642904728
1007 => 0.0024612421604118
1008 => 0.0024796369108493
1009 => 0.0024538048013705
1010 => 0.0024474084077858
1011 => 0.0024385718358604
1012 => 0.0024578661673801
1013 => 0.0024694322465186
1014 => 0.0025626463500257
1015 => 0.0026228669119709
1016 => 0.0026202525785564
1017 => 0.0026441426921376
1018 => 0.0026333799771609
1019 => 0.0025986243314404
1020 => 0.0026579479806858
1021 => 0.0026391754958577
1022 => 0.0026407230766983
1023 => 0.0026406654756621
1024 => 0.0026531475369538
1025 => 0.0026443028525645
1026 => 0.0026268690717451
1027 => 0.0026384424290535
1028 => 0.0026728111627085
1029 => 0.0027794927665352
1030 => 0.0028391932053798
1031 => 0.0027758987251547
1101 => 0.0028195584100671
1102 => 0.002793378156656
1103 => 0.0027886204258162
1104 => 0.0028160419343666
1105 => 0.0028435114406377
1106 => 0.0028417617518421
1107 => 0.0028218203008641
1108 => 0.0028105558812021
1109 => 0.0028958538407397
1110 => 0.0029586999243141
1111 => 0.0029544142427398
1112 => 0.0029733298474304
1113 => 0.0030288666478396
1114 => 0.0030339442368592
1115 => 0.0030333045773498
1116 => 0.0030207192431731
1117 => 0.0030754024355408
1118 => 0.0031210201166732
1119 => 0.0030178061019365
1120 => 0.0030571086475776
1121 => 0.0030747528265648
1122 => 0.00310065971611
1123 => 0.0031443689812717
1124 => 0.0031918488365472
1125 => 0.0031985630086733
1126 => 0.0031937989822471
1127 => 0.0031624847413659
1128 => 0.0032144377655609
1129 => 0.003244870628686
1130 => 0.0032629927022333
1201 => 0.0033089472655237
1202 => 0.0030748617910074
1203 => 0.0029091644573418
1204 => 0.0028832884259914
1205 => 0.0029359083532671
1206 => 0.0029497838084536
1207 => 0.0029441906298663
1208 => 0.0027576832162832
1209 => 0.0028823065030575
1210 => 0.0030163906810031
1211 => 0.003021541400353
1212 => 0.0030886667434005
1213 => 0.0031105255066576
1214 => 0.0031645702061307
1215 => 0.0031611896954638
1216 => 0.0031743487197465
1217 => 0.0031713236879465
1218 => 0.0032714301132662
1219 => 0.003381862366342
1220 => 0.003378038448571
1221 => 0.0033621625056163
1222 => 0.0033857409881546
1223 => 0.0034997189079682
1224 => 0.0034892256475707
1225 => 0.0034994189562331
1226 => 0.0036338053472074
1227 => 0.0038085267717152
1228 => 0.0037273511282871
1229 => 0.0039034789168639
1230 => 0.00401434202364
1231 => 0.0042060683033502
]
'min_raw' => 0.0017172445166911
'max_raw' => 0.0042060683033502
'avg_raw' => 0.0029616564100207
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001717'
'max' => '$0.004206'
'avg' => '$0.002961'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00076570770768709
'max_diff' => 0.0017063749720437
'year' => 2028
]
3 => [
'items' => [
101 => 0.0041820632288587
102 => 0.0042567008625974
103 => 0.0041390891355086
104 => 0.0038690288368608
105 => 0.0038262907608505
106 => 0.0039118534713236
107 => 0.0041222010459345
108 => 0.0039052288776356
109 => 0.0039491220646973
110 => 0.0039364808238707
111 => 0.0039358072258689
112 => 0.0039615157218779
113 => 0.0039242242075518
114 => 0.0037722918695722
115 => 0.0038419215647254
116 => 0.0038150341955341
117 => 0.003844867736238
118 => 0.0040058670511285
119 => 0.0039346854162711
120 => 0.0038597013462753
121 => 0.0039537480103472
122 => 0.0040735017316508
123 => 0.0040660077589898
124 => 0.0040514663197898
125 => 0.0041334356511952
126 => 0.0042688249719164
127 => 0.0043054201612689
128 => 0.0043324339818933
129 => 0.0043361587313551
130 => 0.0043745259657312
131 => 0.0041682156767032
201 => 0.0044956354038146
202 => 0.0045521717458994
203 => 0.0045415452567787
204 => 0.0046043830215929
205 => 0.0045858945571444
206 => 0.0045591076729096
207 => 0.004658718896116
208 => 0.004544522666921
209 => 0.0043824354964843
210 => 0.004293511269062
211 => 0.0044106138650445
212 => 0.0044821243340936
213 => 0.004529388205215
214 => 0.0045436902240588
215 => 0.0041842309571504
216 => 0.0039905023488116
217 => 0.0041146801656537
218 => 0.0042661856724962
219 => 0.004167374055963
220 => 0.0041712472842559
221 => 0.0040303678863155
222 => 0.0042786503732119
223 => 0.0042424777032555
224 => 0.0044301415789777
225 => 0.0043853540889399
226 => 0.0045383866945217
227 => 0.0044980880807909
228 => 0.0046653653733222
301 => 0.0047320968141648
302 => 0.0048441492892591
303 => 0.004926575546074
304 => 0.0049749778206388
305 => 0.0049720719296263
306 => 0.0051638658553694
307 => 0.0050507716781281
308 => 0.004908698737262
309 => 0.0049061290859961
310 => 0.0049797106752598
311 => 0.0051339175002333
312 => 0.0051739010863309
313 => 0.0051962464562983
314 => 0.0051620237443453
315 => 0.0050392681204825
316 => 0.0049862628644837
317 => 0.0050314248783048
318 => 0.0049761956162177
319 => 0.0050715368171741
320 => 0.0052024606498687
321 => 0.0051754253961462
322 => 0.0052658001959888
323 => 0.0053593286061196
324 => 0.0054930784332305
325 => 0.005528045590779
326 => 0.0055858449725248
327 => 0.0056453395224491
328 => 0.0056644475684617
329 => 0.0057009307571782
330 => 0.0057007384727651
331 => 0.0058106830175641
401 => 0.0059319552551766
402 => 0.0059777327174165
403 => 0.0060829954676533
404 => 0.0059027366967196
405 => 0.0060394650451363
406 => 0.0061627974379408
407 => 0.0060157554748416
408 => 0.0062184185645905
409 => 0.006226287513121
410 => 0.0063450992934857
411 => 0.0062246607925031
412 => 0.0061531447950729
413 => 0.0063596087999844
414 => 0.0064595102284058
415 => 0.0064294191051405
416 => 0.0062004241713093
417 => 0.0060671392977649
418 => 0.0057183070749669
419 => 0.0061315139113017
420 => 0.0063327749078717
421 => 0.0061999029539493
422 => 0.0062669158388078
423 => 0.0066325164095945
424 => 0.0067717134360662
425 => 0.0067427614276208
426 => 0.0067476538404574
427 => 0.0068227620293368
428 => 0.007155833101663
429 => 0.0069562491945981
430 => 0.0071088236132829
501 => 0.0071897485348053
502 => 0.0072649161119102
503 => 0.0070803282994973
504 => 0.0068401822676816
505 => 0.006764117938761
506 => 0.0061866914567517
507 => 0.006156633900727
508 => 0.0061397616836932
509 => 0.0060333847419175
510 => 0.0059498016047784
511 => 0.0058833331908824
512 => 0.0057089002236709
513 => 0.0057677662295713
514 => 0.0054897564868258
515 => 0.0056676172681741
516 => 0.0052239070059723
517 => 0.0055934420972556
518 => 0.0053923209477689
519 => 0.0055273683905132
520 => 0.0055268972227077
521 => 0.0052782320637847
522 => 0.0051348071896274
523 => 0.0052262031016201
524 => 0.0053241867742927
525 => 0.0053400842955272
526 => 0.0054671226847828
527 => 0.005502576368543
528 => 0.0053951500515754
529 => 0.0052147120970284
530 => 0.0052566237185181
531 => 0.0051339578519557
601 => 0.0049189906390794
602 => 0.0050733838443346
603 => 0.0051261004727987
604 => 0.0051493831391286
605 => 0.004937987574416
606 => 0.0048715624983623
607 => 0.0048361983452317
608 => 0.0051874235842158
609 => 0.0052066644956535
610 => 0.0051082252723475
611 => 0.0055531798960807
612 => 0.0054524729608951
613 => 0.0055649872812956
614 => 0.0052528206781647
615 => 0.0052647458627924
616 => 0.0051169611901785
617 => 0.0051997107318669
618 => 0.0051412260229438
619 => 0.0051930253866454
620 => 0.0052240737116714
621 => 0.0053718341342747
622 => 0.0055951292839308
623 => 0.0053497636545136
624 => 0.005242854336076
625 => 0.0053091802759538
626 => 0.0054858149941788
627 => 0.0057534256340544
628 => 0.005594994749082
629 => 0.0056653036855019
630 => 0.0056806630602827
701 => 0.0055638419911342
702 => 0.0057577329935058
703 => 0.0058616407568443
704 => 0.0059682286213477
705 => 0.0060607758775719
706 => 0.0059256550843477
707 => 0.0060702537019024
708 => 0.0059537327412454
709 => 0.0058492013938206
710 => 0.0058493599247259
711 => 0.005783785883527
712 => 0.0056567279158432
713 => 0.0056332964771833
714 => 0.0057551897801564
715 => 0.005852936665802
716 => 0.0058609875674798
717 => 0.0059151052657896
718 => 0.0059471315621927
719 => 0.0062610328045817
720 => 0.0063872864809978
721 => 0.0065416670866596
722 => 0.0066018070329791
723 => 0.0067828067100367
724 => 0.0066366347707377
725 => 0.0066050095522057
726 => 0.0061659635402072
727 => 0.0062378573000761
728 => 0.0063529661463423
729 => 0.0061678616426849
730 => 0.0062852678450719
731 => 0.0063084463164265
801 => 0.0061615718624817
802 => 0.0062400238544042
803 => 0.0060316786232526
804 => 0.0055996706406281
805 => 0.0057582139418864
806 => 0.0058749551767107
807 => 0.005708351040526
808 => 0.0060069825061666
809 => 0.0058325281689441
810 => 0.0057772345193296
811 => 0.0055615142785739
812 => 0.0056633259283771
813 => 0.0058010276425382
814 => 0.0057159439927291
815 => 0.0058925053414573
816 => 0.0061425632984482
817 => 0.0063207694898086
818 => 0.0063344499483862
819 => 0.006219875306229
820 => 0.0064034819014915
821 => 0.0064048192750901
822 => 0.006197710285579
823 => 0.0060708571826911
824 => 0.0060420358908138
825 => 0.0061140371286705
826 => 0.0062014599235903
827 => 0.0063393013050725
828 => 0.0064225959650155
829 => 0.0066397842620727
830 => 0.00669854918798
831 => 0.0067631140251397
901 => 0.0068493925586435
902 => 0.0069529920594767
903 => 0.0067263222495765
904 => 0.0067353282636892
905 => 0.0065242564751672
906 => 0.0062986959983751
907 => 0.00646986828375
908 => 0.0066936532767827
909 => 0.0066423167521205
910 => 0.006636540344386
911 => 0.0066462546599536
912 => 0.0066075485968525
913 => 0.0064324825079598
914 => 0.0063445654140896
915 => 0.0064580008952249
916 => 0.0065182868050159
917 => 0.0066117849936179
918 => 0.0066002593683654
919 => 0.0068411006612317
920 => 0.0069346843049769
921 => 0.006910741604237
922 => 0.0069151476373864
923 => 0.0070845763542496
924 => 0.0072730159330747
925 => 0.007449514465437
926 => 0.0076290563533442
927 => 0.0074126115998329
928 => 0.0073027143024564
929 => 0.0074161002612092
930 => 0.007355936075472
1001 => 0.0077016573325744
1002 => 0.0077255943223154
1003 => 0.008071290579836
1004 => 0.0083993974929676
1005 => 0.0081933194194755
1006 => 0.0083876417608182
1007 => 0.0085978172163133
1008 => 0.009003279769702
1009 => 0.0088667342460653
1010 => 0.0087621425149007
1011 => 0.0086633038343338
1012 => 0.0088689714383949
1013 => 0.0091335595253993
1014 => 0.0091905492651469
1015 => 0.0092828944152941
1016 => 0.0091858047813421
1017 => 0.0093027385513649
1018 => 0.0097155661428479
1019 => 0.0096040164834993
1020 => 0.0094455980347216
1021 => 0.0097714857698141
1022 => 0.0098894232742875
1023 => 0.010717170445033
1024 => 0.011762235440629
1025 => 0.011329571670186
1026 => 0.011061003305899
1027 => 0.011124123242033
1028 => 0.011505745600742
1029 => 0.011628310590271
1030 => 0.011295136698045
1031 => 0.011412819349296
1101 => 0.012061262327988
1102 => 0.012409131181514
1103 => 0.011936678553405
1104 => 0.010633200490194
1105 => 0.009431334186703
1106 => 0.0097501232511338
1107 => 0.0097139824644037
1108 => 0.010410653550099
1109 => 0.0096013560610157
1110 => 0.0096149825551728
1111 => 0.010326060061133
1112 => 0.010136356773497
1113 => 0.0098290617428893
1114 => 0.0094335777804995
1115 => 0.008702489098183
1116 => 0.0080549434643392
1117 => 0.0093249295731601
1118 => 0.0092701654628279
1119 => 0.0091908589154803
1120 => 0.0093673470547375
1121 => 0.010224323361938
1122 => 0.010204567284296
1123 => 0.010078889197973
1124 => 0.010174214918773
1125 => 0.0098123506831399
1126 => 0.009905611336158
1127 => 0.00943114380494
1128 => 0.009645622944565
1129 => 0.0098284024257668
1130 => 0.0098650981127145
1201 => 0.009947775369136
1202 => 0.0092413072651832
1203 => 0.0095584907030442
1204 => 0.0097448062567185
1205 => 0.008903025807
1206 => 0.0097281669637581
1207 => 0.009229009227243
1208 => 0.0090595875943722
1209 => 0.0092876915034299
1210 => 0.0091987991882318
1211 => 0.0091223747955564
1212 => 0.0090797286713057
1213 => 0.0092472230072079
1214 => 0.0092394091962391
1215 => 0.0089653559534534
1216 => 0.0086078646700786
1217 => 0.0087278504790305
1218 => 0.0086842585097654
1219 => 0.0085262755896724
1220 => 0.0086327370028845
1221 => 0.0081639348179864
1222 => 0.0073573850250864
1223 => 0.0078902165235644
1224 => 0.0078697030904822
1225 => 0.0078593592873119
1226 => 0.0082597674320373
1227 => 0.0082212774279096
1228 => 0.0081514176935225
1229 => 0.0085249925608657
1230 => 0.0083886327089944
1231 => 0.00880886164204
]
'min_raw' => 0.0037722918695722
'max_raw' => 0.012409131181514
'avg_raw' => 0.0080907115255432
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003772'
'max' => '$0.0124091'
'avg' => '$0.00809'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.0020550473528811
'max_diff' => 0.008203062878164
'year' => 2029
]
4 => [
'items' => [
101 => 0.0090856515960471
102 => 0.0090154487104938
103 => 0.0092757710000795
104 => 0.0087306147097315
105 => 0.008911693761511
106 => 0.0089490139031181
107 => 0.0085203827049912
108 => 0.0082275748685988
109 => 0.0082080479241651
110 => 0.007700359487266
111 => 0.0079715625523396
112 => 0.008210210026459
113 => 0.008095916406148
114 => 0.0080597344603823
115 => 0.0082445801743926
116 => 0.0082589442694677
117 => 0.0079314413795172
118 => 0.0079995396010056
119 => 0.0082835205049997
120 => 0.0079923840108449
121 => 0.0074267533595785
122 => 0.0072864691376088
123 => 0.0072677526364469
124 => 0.0068872907003832
125 => 0.007295843600116
126 => 0.0071174993108456
127 => 0.0076808867837579
128 => 0.007359082880738
129 => 0.0073452105576602
130 => 0.0073242405067006
131 => 0.006996761201646
201 => 0.0070684583570574
202 => 0.00730679062143
203 => 0.0073918302583633
204 => 0.0073829599275219
205 => 0.0073056226633129
206 => 0.0073410272668369
207 => 0.0072269767031044
208 => 0.0071867030752932
209 => 0.0070595884277871
210 => 0.0068727650122708
211 => 0.006898743954053
212 => 0.0065285978829093
213 => 0.0063269226582114
214 => 0.0062711016140518
215 => 0.0061964553808795
216 => 0.0062795331047146
217 => 0.0065275493055962
218 => 0.0062283891477608
219 => 0.0057155000407971
220 => 0.0057463255500461
221 => 0.0058155813171529
222 => 0.0056865236533222
223 => 0.0055643814054952
224 => 0.005670574180267
225 => 0.0054532563043489
226 => 0.0058418431442092
227 => 0.005831332959193
228 => 0.0059761741030439
301 => 0.0060667462427334
302 => 0.0058580067838276
303 => 0.0058055093744043
304 => 0.005835414284686
305 => 0.0053411527317397
306 => 0.0059357823894153
307 => 0.0059409247713874
308 => 0.0058968925749115
309 => 0.0062135145104928
310 => 0.0068816855514274
311 => 0.0066302927287099
312 => 0.0065329458293654
313 => 0.0063478893025514
314 => 0.0065944661369618
315 => 0.0065755328832769
316 => 0.0064899095298906
317 => 0.0064381242586014
318 => 0.0065335402087748
319 => 0.0064263011664534
320 => 0.0064070380877207
321 => 0.0062903247890366
322 => 0.0062486634515232
323 => 0.0062178190558138
324 => 0.0061838624068456
325 => 0.0062587623129998
326 => 0.0060890292717511
327 => 0.0058843478631402
328 => 0.0058673308186978
329 => 0.0059143163745573
330 => 0.0058935287637527
331 => 0.0058672312956148
401 => 0.0058170222672504
402 => 0.0058021263210808
403 => 0.0058505309196462
404 => 0.0057958849500292
405 => 0.0058765180549191
406 => 0.0058545903120222
407 => 0.0057321037226982
408 => 0.005579440082057
409 => 0.0055780810554324
410 => 0.0055451899244748
411 => 0.0055032981239857
412 => 0.0054916447834442
413 => 0.0056616309209715
414 => 0.006013497138396
415 => 0.0059444173804706
416 => 0.00599433458515
417 => 0.0062398778272997
418 => 0.0063179286402361
419 => 0.0062625300219486
420 => 0.0061866969763988
421 => 0.0061900332455438
422 => 0.0064491777184116
423 => 0.0064653402413113
424 => 0.0065061777224513
425 => 0.006558665426387
426 => 0.0062714689048921
427 => 0.0061765063152085
428 => 0.0061315077718925
429 => 0.0059929296751071
430 => 0.006142374271702
501 => 0.0060552993051218
502 => 0.0060670486930179
503 => 0.006059396888737
504 => 0.0060635752912871
505 => 0.005841734526268
506 => 0.0059225616414336
507 => 0.005788170885794
508 => 0.0056082367500628
509 => 0.0056076335477468
510 => 0.0056516721725544
511 => 0.0056254762752873
512 => 0.0055549837892994
513 => 0.0055649969142188
514 => 0.0054772714036195
515 => 0.0055756483795272
516 => 0.0055784694791865
517 => 0.0055405889848319
518 => 0.0056921522896244
519 => 0.0057542478992618
520 => 0.0057293141463988
521 => 0.0057524984806926
522 => 0.0059472879562888
523 => 0.0059790471400716
524 => 0.005993152471614
525 => 0.0059742531959455
526 => 0.0057560588747265
527 => 0.0057657367207064
528 => 0.0056947271082572
529 => 0.0056347314685461
530 => 0.0056371309794989
531 => 0.0056679765371976
601 => 0.0058026808967358
602 => 0.0060861582801283
603 => 0.0060969160396088
604 => 0.0061099547579251
605 => 0.0060569197377979
606 => 0.0060409238682507
607 => 0.0060620265490676
608 => 0.0061684857497371
609 => 0.0064423277172501
610 => 0.006345533676641
611 => 0.0062668386149367
612 => 0.0063358754000876
613 => 0.0063252477281419
614 => 0.0062355394816085
615 => 0.0062330216699109
616 => 0.0060608428633521
617 => 0.005997192278889
618 => 0.005944001086348
619 => 0.0058859176926845
620 => 0.0058514839099478
621 => 0.0059043898501057
622 => 0.0059164900645846
623 => 0.0058008103017915
624 => 0.0057850435775742
625 => 0.0058795101689921
626 => 0.0058379389441786
627 => 0.0058806959798161
628 => 0.0058906159788471
629 => 0.0058890186305261
630 => 0.005845613497396
701 => 0.0058732786348934
702 => 0.0058078423373377
703 => 0.0057366901919598
704 => 0.0056912995561441
705 => 0.0056516902062007
706 => 0.0056736677756582
707 => 0.0055953217534878
708 => 0.0055702572842016
709 => 0.0058639063087946
710 => 0.0060808280005205
711 => 0.0060776738732124
712 => 0.0060584739344
713 => 0.00602994671989
714 => 0.0061663988063107
715 => 0.0061188616278473
716 => 0.0061534488970436
717 => 0.0061622528086772
718 => 0.0061888995976234
719 => 0.0061984235343028
720 => 0.0061696355828584
721 => 0.0060730197016587
722 => 0.0058322621116713
723 => 0.0057201888036195
724 => 0.0056832027452338
725 => 0.0056845471182096
726 => 0.005647463309992
727 => 0.0056583861534918
728 => 0.0056436647907809
729 => 0.0056157860912868
730 => 0.0056719463445246
731 => 0.0056784182905413
801 => 0.0056653098163705
802 => 0.0056683973365714
803 => 0.0055598647691402
804 => 0.0055681162645217
805 => 0.0055221708896885
806 => 0.005513556685787
807 => 0.00539741077913
808 => 0.0051916414698689
809 => 0.0053056576417097
810 => 0.0051679421392258
811 => 0.0051157871917048
812 => 0.0053626806015109
813 => 0.0053378993509236
814 => 0.0052954846220688
815 => 0.0052327443980886
816 => 0.0052094734387166
817 => 0.0050680864562632
818 => 0.0050597325590696
819 => 0.0051298077653432
820 => 0.0050974704687886
821 => 0.005052056657334
822 => 0.0048875724357697
823 => 0.0047026377118772
824 => 0.0047082197287333
825 => 0.0047670440235706
826 => 0.0049380835943471
827 => 0.0048712554750301
828 => 0.0048227709077013
829 => 0.0048136912056814
830 => 0.0049273426861047
831 => 0.005088183341625
901 => 0.0051636461785882
902 => 0.0050888647989981
903 => 0.0050029599766403
904 => 0.0050081886051326
905 => 0.005042972328025
906 => 0.0050466276054856
907 => 0.0049907123972892
908 => 0.0050064522008713
909 => 0.0049825419999522
910 => 0.004835805141047
911 => 0.004833151136577
912 => 0.0047971395449502
913 => 0.0047960491282676
914 => 0.0047347844273978
915 => 0.0047262130722433
916 => 0.0046045682901648
917 => 0.0046846352541032
918 => 0.0046309305383976
919 => 0.0045499848641675
920 => 0.00453602979942
921 => 0.0045356102933225
922 => 0.0046187234016352
923 => 0.0046836640290417
924 => 0.0046318647549203
925 => 0.0046200710642896
926 => 0.0047459968254148
927 => 0.0047299716244728
928 => 0.0047160939038085
929 => 0.0050737818250389
930 => 0.0047906439246485
1001 => 0.004667179639132
1002 => 0.0045143691405733
1003 => 0.0045641250094414
1004 => 0.0045746093020777
1005 => 0.0042071275992069
1006 => 0.0040580403181191
1007 => 0.0040068791814855
1008 => 0.0039774352240405
1009 => 0.0039908532051821
1010 => 0.0038566571660092
1011 => 0.003946839123731
1012 => 0.0038306366971161
1013 => 0.0038111549821387
1014 => 0.0040189393156446
1015 => 0.0040478512917934
1016 => 0.0039245038192954
1017 => 0.004003712864781
1018 => 0.0039749905637998
1019 => 0.0038326286541992
1020 => 0.0038271914763958
1021 => 0.0037557592744213
1022 => 0.003643981710331
1023 => 0.0035928963641494
1024 => 0.0035662906723146
1025 => 0.0035772686993002
1026 => 0.0035717178729231
1027 => 0.003535494976089
1028 => 0.0035737941269687
1029 => 0.0034759556227728
1030 => 0.0034369955420636
1031 => 0.0034193981774743
1101 => 0.0033325608736263
1102 => 0.0034707576407727
1103 => 0.0034979841448576
1104 => 0.0035252642935662
1105 => 0.003762719363126
1106 => 0.0037508567788919
1107 => 0.0038580887630557
1108 => 0.0038539219253381
1109 => 0.0038233376264116
1110 => 0.0036943075001136
1111 => 0.0037457366087151
1112 => 0.0035874458062977
1113 => 0.0037060480381972
1114 => 0.0036519229325059
1115 => 0.003687748285518
1116 => 0.0036233310705604
1117 => 0.0036589822170395
1118 => 0.0035044405590128
1119 => 0.0033601317332073
1120 => 0.0034182058173487
1121 => 0.0034813389883875
1122 => 0.0036182277892324
1123 => 0.0035366979487572
1124 => 0.0035660191623767
1125 => 0.0034677980050634
1126 => 0.0032651397020396
1127 => 0.0032662867260261
1128 => 0.0032351121612571
1129 => 0.0032081727857356
1130 => 0.0035460626316913
1201 => 0.0035040406880987
1202 => 0.0034370842206799
1203 => 0.0035267081130642
1204 => 0.0035504060927331
1205 => 0.0035510807408988
1206 => 0.0036164680192549
1207 => 0.0036513652214349
1208 => 0.0036575160045722
1209 => 0.0037604042998512
1210 => 0.0037948910992993
1211 => 0.0039369373454714
1212 => 0.0036484044376431
1213 => 0.0036424622922807
1214 => 0.0035279693050257
1215 => 0.0034553560424461
1216 => 0.0035329411972379
1217 => 0.0036016710529537
1218 => 0.0035301049332265
1219 => 0.0035394499576196
1220 => 0.0034433782890528
1221 => 0.0034777193899733
1222 => 0.0035072985723319
1223 => 0.0034909666864174
1224 => 0.0034665170627313
1225 => 0.0035960359885699
1226 => 0.0035887280231853
1227 => 0.0037093390245535
1228 => 0.0038033639250954
1229 => 0.003971873355828
1230 => 0.0037960249802633
1231 => 0.0037896163665237
]
'min_raw' => 0.0032081727857356
'max_raw' => 0.0092757710000795
'avg_raw' => 0.0062419718929075
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.0032081'
'max' => '$0.009275'
'avg' => '$0.006241'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00056411908383662
'max_diff' => -0.0031333601814348
'year' => 2030
]
5 => [
'items' => [
101 => 0.0038522615938019
102 => 0.0037948815086414
103 => 0.0038311437417696
104 => 0.0039660309494591
105 => 0.0039688809036051
106 => 0.0039211404997011
107 => 0.0039182354917848
108 => 0.0039274045585774
109 => 0.003981108069172
110 => 0.0039623424124281
111 => 0.0039840585055005
112 => 0.0040112148124161
113 => 0.0041235448118548
114 => 0.004150627194428
115 => 0.0040848310453805
116 => 0.0040907717009512
117 => 0.0040661621350628
118 => 0.0040423896027715
119 => 0.0040958267836628
120 => 0.004193484282052
121 => 0.004192876759823
122 => 0.0042155314012588
123 => 0.0042296450551921
124 => 0.0041690589206842
125 => 0.0041296195749334
126 => 0.004144743129685
127 => 0.004168926023081
128 => 0.0041369009432856
129 => 0.0039392273153281
130 => 0.0039991888666102
131 => 0.0039892083325068
201 => 0.0039749948382692
202 => 0.0040352866417522
203 => 0.0040294713502234
204 => 0.0038552807916637
205 => 0.0038664319060628
206 => 0.0038559589278639
207 => 0.0038897992629942
208 => 0.0037930540194899
209 => 0.0038228122048026
210 => 0.0038414762596651
211 => 0.0038524695313632
212 => 0.0038921847668935
213 => 0.0038875246423955
214 => 0.0038918950870116
215 => 0.0039507822968696
216 => 0.0042486135966813
217 => 0.0042648238972023
218 => 0.0041849984487979
219 => 0.0042168871409481
220 => 0.00415566782531
221 => 0.0041967647620316
222 => 0.0042248822423875
223 => 0.0040978247553398
224 => 0.0040903012355531
225 => 0.0040288292460225
226 => 0.0040618608112448
227 => 0.0040093052159225
228 => 0.0040222005206979
301 => 0.0039861441243534
302 => 0.0040510384590166
303 => 0.0041236004087301
304 => 0.004141932422786
305 => 0.0040937087862333
306 => 0.0040587916952766
307 => 0.0039974887859615
308 => 0.004099436890377
309 => 0.0041292496229202
310 => 0.0040992802967846
311 => 0.0040923357490762
312 => 0.0040791758437175
313 => 0.004095127685209
314 => 0.0041290872563762
315 => 0.0041130725497485
316 => 0.0041236505456189
317 => 0.004083338133343
318 => 0.0041690789772157
319 => 0.0043052560719432
320 => 0.00430569390357
321 => 0.0042896791106171
322 => 0.0042831262023843
323 => 0.0042995583518129
324 => 0.0043084721187958
325 => 0.0043616106769069
326 => 0.0044186304668936
327 => 0.0046847169470781
328 => 0.0046100009282046
329 => 0.0048460886829799
330 => 0.0050328034448489
331 => 0.0050887910378865
401 => 0.0050372850867117
402 => 0.0048610860100398
403 => 0.0048524408427362
404 => 0.0051157566526154
405 => 0.0050413578756964
406 => 0.0050325083779168
407 => 0.0049383646730047
408 => 0.0049940152625325
409 => 0.0049818436622578
410 => 0.0049626301957693
411 => 0.0050688076439346
412 => 0.0052675623483739
413 => 0.0052365845637772
414 => 0.0052134610845939
415 => 0.005112140729956
416 => 0.0051731582141685
417 => 0.0051514310567534
418 => 0.0052447847134036
419 => 0.0051894840752407
420 => 0.005040794231788
421 => 0.005064473579446
422 => 0.0050608944936837
423 => 0.0051345518250544
424 => 0.0051124417224643
425 => 0.0050565771412985
426 => 0.0052668830264015
427 => 0.0052532269320057
428 => 0.0052725881516411
429 => 0.0052811115592903
430 => 0.0054091210455471
501 => 0.0054615624362198
502 => 0.0054734675500183
503 => 0.0055232828151946
504 => 0.00547222810084
505 => 0.005676483359653
506 => 0.0058123011881388
507 => 0.0059700605850467
508 => 0.0062005894656574
509 => 0.0062872704572784
510 => 0.0062716123119936
511 => 0.0064463966782829
512 => 0.0067604802992666
513 => 0.0063350975917888
514 => 0.0067830266156728
515 => 0.0066412174583004
516 => 0.0063049904972082
517 => 0.0062833414447693
518 => 0.0065110382464963
519 => 0.0070160478377216
520 => 0.006889548662891
521 => 0.0070162547450545
522 => 0.006868445369821
523 => 0.0068611053885054
524 => 0.0070090759736162
525 => 0.0073548173111841
526 => 0.0071905685616258
527 => 0.0069550777036883
528 => 0.0071289604885458
529 => 0.0069783271282102
530 => 0.0066389080077513
531 => 0.0068894519313561
601 => 0.0067219203447217
602 => 0.0067708149681706
603 => 0.0071229414448333
604 => 0.0070805726555502
605 => 0.0071354017921268
606 => 0.0070386298011974
607 => 0.006948229502127
608 => 0.0067794906306977
609 => 0.0067295353695933
610 => 0.0067433412065605
611 => 0.0067295285281061
612 => 0.0066351206803317
613 => 0.0066147333145935
614 => 0.0065807534785055
615 => 0.0065912852505649
616 => 0.0065273932175677
617 => 0.0066479706846011
618 => 0.0066703509250074
619 => 0.006758097150188
620 => 0.0067672072543732
621 => 0.0070115792425117
622 => 0.0068769832579494
623 => 0.006967281864852
624 => 0.0069592047075272
625 => 0.0063122775549844
626 => 0.0064014184087182
627 => 0.0065400936031871
628 => 0.0064776206160486
629 => 0.0063892984286625
630 => 0.0063179735268121
701 => 0.006209909007163
702 => 0.0063620077433738
703 => 0.0065620014075935
704 => 0.0067722794237376
705 => 0.0070249146821733
706 => 0.006968529433489
707 => 0.0067675565833106
708 => 0.0067765720785588
709 => 0.0068323023227168
710 => 0.0067601265929056
711 => 0.0067388405611466
712 => 0.0068293779488224
713 => 0.0068300014300529
714 => 0.0067469545301767
715 => 0.0066546630983865
716 => 0.0066542763939175
717 => 0.0066378540250599
718 => 0.0068713668727583
719 => 0.0069997753281806
720 => 0.0070144971506542
721 => 0.0069987844322308
722 => 0.0070048316339364
723 => 0.0069301135830134
724 => 0.0071008968904737
725 => 0.0072576245421178
726 => 0.0072156181834793
727 => 0.0071526446803244
728 => 0.0071024832518467
729 => 0.007203801745083
730 => 0.0071992901920693
731 => 0.0072562556628069
801 => 0.0072536713800057
802 => 0.0072345160347764
803 => 0.007215618867577
804 => 0.0072905439994838
805 => 0.0072689667647555
806 => 0.0072473560146218
807 => 0.0072040123467883
808 => 0.007209903471109
809 => 0.0071469408412173
810 => 0.0071178114476554
811 => 0.0066797752596736
812 => 0.0065627176769994
813 => 0.0065995463754355
814 => 0.0066116713392174
815 => 0.0065607277292243
816 => 0.0066337677796148
817 => 0.00662238456513
818 => 0.0066666699937326
819 => 0.0066390023805915
820 => 0.0066401378690856
821 => 0.0067215024199766
822 => 0.0067451228952498
823 => 0.0067331093308853
824 => 0.0067415232195653
825 => 0.0069354177329166
826 => 0.0069078521335156
827 => 0.0068932084582365
828 => 0.0068972648563655
829 => 0.006946809061672
830 => 0.0069606787341445
831 => 0.0069019119572739
901 => 0.0069296267089728
902 => 0.0070476326041808
903 => 0.0070889279889484
904 => 0.0072207230342173
905 => 0.007164734156517
906 => 0.0072675041646779
907 => 0.0075833841328869
908 => 0.0078357309087235
909 => 0.0076036623849926
910 => 0.0080670651026483
911 => 0.0084278905895151
912 => 0.0084140415063429
913 => 0.0083511232366638
914 => 0.0079403330129078
915 => 0.0075623177244704
916 => 0.0078785435646253
917 => 0.0078793496893243
918 => 0.0078521856092082
919 => 0.0076834718405731
920 => 0.007846314735768
921 => 0.00785924061343
922 => 0.0078520055592076
923 => 0.0077226531083654
924 => 0.0075251558242584
925 => 0.0075637463208313
926 => 0.0076269583414423
927 => 0.0075072847990166
928 => 0.007469041850936
929 => 0.0075401427674365
930 => 0.0077692447348653
1001 => 0.0077259343350202
1002 => 0.0077248033254492
1003 => 0.0079101035824542
1004 => 0.0077774685887369
1005 => 0.0075642330705769
1006 => 0.0075103882900106
1007 => 0.0073192755931904
1008 => 0.0074512778136042
1009 => 0.0074560283385179
1010 => 0.0073837320714272
1011 => 0.0075700995142038
1012 => 0.0075683821054093
1013 => 0.0077453102551926
1014 => 0.0080835304263997
1015 => 0.0079835020789699
1016 => 0.0078671799939623
1017 => 0.0078798274298642
1018 => 0.0080185385851762
1019 => 0.0079346706542069
1020 => 0.0079648301469315
1021 => 0.0080184929351718
1022 => 0.0080508690276893
1023 => 0.0078751690083907
1024 => 0.0078342049291888
1025 => 0.0077504067995797
1026 => 0.0077285454317309
1027 => 0.0077967972597922
1028 => 0.0077788153144707
1029 => 0.0074556290752938
1030 => 0.0074218543151086
1031 => 0.0074228901387842
1101 => 0.0073379618983961
1102 => 0.007208425946691
1103 => 0.0075488386935821
1104 => 0.0075214987859334
1105 => 0.0074913176438301
1106 => 0.0074950146615265
1107 => 0.0076427762972935
1108 => 0.0075570670864072
1109 => 0.0077849390710118
1110 => 0.0077380954414359
1111 => 0.0076900504495187
1112 => 0.0076834091681495
1113 => 0.0076649159452674
1114 => 0.0076014958029796
1115 => 0.0075249121702075
1116 => 0.0074743450222906
1117 => 0.0068946881906801
1118 => 0.0070022691269183
1119 => 0.0071260311877495
1120 => 0.0071687533552031
1121 => 0.0070956741314898
1122 => 0.007604381416155
1123 => 0.0076973271390886
1124 => 0.007415788481623
1125 => 0.0073631240939588
1126 => 0.0076078340846426
1127 => 0.0074602440456805
1128 => 0.0075267038311881
1129 => 0.0073830541264799
1130 => 0.0076749392362024
1201 => 0.0076727155607076
1202 => 0.0075591656605014
1203 => 0.0076551372585995
1204 => 0.0076384598316849
1205 => 0.0075102622740131
1206 => 0.0076790033274424
1207 => 0.0076790870208997
1208 => 0.0075697977107389
1209 => 0.0074421717229774
1210 => 0.0074193552107569
1211 => 0.0074021660337659
1212 => 0.007522476347364
1213 => 0.0076303461983354
1214 => 0.0078310652477894
1215 => 0.007881530785789
1216 => 0.008078501140283
1217 => 0.0079612148844944
1218 => 0.0080132063625742
1219 => 0.0080696504666734
1220 => 0.0080967118458418
1221 => 0.0080526167806806
1222 => 0.0083585928174421
1223 => 0.0083844265698083
1224 => 0.0083930884035156
1225 => 0.0082899150054744
1226 => 0.0083815571309695
1227 => 0.0083386808153185
1228 => 0.0084502330772587
1229 => 0.0084677258963017
1230 => 0.0084529101008974
1231 => 0.008458462597767
]
'min_raw' => 0.0037930540194899
'max_raw' => 0.0084677258963017
'avg_raw' => 0.0061303899578958
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003793'
'max' => '$0.008467'
'avg' => '$0.00613'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00058488123375427
'max_diff' => -0.00080804510377775
'year' => 2031
]
6 => [
'items' => [
101 => 0.0081973660282627
102 => 0.0081838267937398
103 => 0.0079992183703195
104 => 0.0080744476674198
105 => 0.0079338101023247
106 => 0.0079784077229438
107 => 0.007998065929171
108 => 0.0079877975978313
109 => 0.0080787010190048
110 => 0.0080014145406653
111 => 0.0077974428172541
112 => 0.0075934155218832
113 => 0.0075908541253869
114 => 0.0075371373398966
115 => 0.0074983099427071
116 => 0.0075057894768818
117 => 0.007532148330884
118 => 0.0074967779181948
119 => 0.0075043259890675
120 => 0.0076296742580874
121 => 0.0076548119594964
122 => 0.0075693842281747
123 => 0.007226379559755
124 => 0.0071422053537628
125 => 0.007202708103783
126 => 0.0071737916861495
127 => 0.0057898097822076
128 => 0.006114955801645
129 => 0.0059217650778108
130 => 0.0060107962516314
131 => 0.0058135985490921
201 => 0.005907711628761
202 => 0.0058903323794055
203 => 0.0064131575568907
204 => 0.0064049943608668
205 => 0.0064089016508167
206 => 0.0062223965211169
207 => 0.0065195042568948
208 => 0.0066658702111876
209 => 0.0066387817684517
210 => 0.0066455993458907
211 => 0.0065284507777735
212 => 0.0064100359050301
213 => 0.0062786955872395
214 => 0.0065227096635406
215 => 0.0064955794637151
216 => 0.0065578063809771
217 => 0.0067160669519448
218 => 0.0067393714221932
219 => 0.0067706928665377
220 => 0.0067594663583524
221 => 0.0070269273295898
222 => 0.0069945360412086
223 => 0.0070725897265975
224 => 0.0069120273738052
225 => 0.0067303358309023
226 => 0.0067648694532641
227 => 0.0067615435877288
228 => 0.0067192015022137
229 => 0.0066809769606533
301 => 0.006617343868653
302 => 0.0068186883876676
303 => 0.0068105141678939
304 => 0.0069428452845394
305 => 0.0069194544742764
306 => 0.006763244918638
307 => 0.0067688239734773
308 => 0.0068063457984742
309 => 0.0069362092632052
310 => 0.0069747615813162
311 => 0.0069569026115229
312 => 0.0069991734683515
313 => 0.0070325826300672
314 => 0.0070033691446865
315 => 0.0074169704918882
316 => 0.0072452143763447
317 => 0.0073289271119892
318 => 0.0073488921061764
319 => 0.0072977521933846
320 => 0.0073088426092862
321 => 0.0073256415674196
322 => 0.0074276415516324
323 => 0.00769531902414
324 => 0.0078138715545715
325 => 0.0081705426916533
326 => 0.00780402741725
327 => 0.0077822799176579
328 => 0.0078465271598828
329 => 0.008055930874824
330 => 0.0082256329174931
331 => 0.0082819328753921
401 => 0.0082893738442395
402 => 0.0083949963080085
403 => 0.0084555371344986
404 => 0.0083821709627604
405 => 0.0083200008139706
406 => 0.0080973150578486
407 => 0.0081230915404729
408 => 0.0083006659444465
409 => 0.0085515002491393
410 => 0.0087667421774272
411 => 0.0086913719560793
412 => 0.0092663935418794
413 => 0.0093234045833589
414 => 0.0093155275008141
415 => 0.009445407137685
416 => 0.0091876225080244
417 => 0.0090774145845025
418 => 0.0083334427058001
419 => 0.0085424684574969
420 => 0.0088462996632401
421 => 0.0088060864638515
422 => 0.0085854361208093
423 => 0.0087665747943558
424 => 0.0087066846841513
425 => 0.00865944686939
426 => 0.0088758524563122
427 => 0.0086379056240397
428 => 0.0088439259615684
429 => 0.0085797027476804
430 => 0.0086917162409017
501 => 0.0086281319646663
502 => 0.0086692787839864
503 => 0.0084287353190084
504 => 0.008558526733848
505 => 0.0084233355694365
506 => 0.0084232714712222
507 => 0.0084202871187748
508 => 0.0085793389241755
509 => 0.0085845255978395
510 => 0.0084669860733344
511 => 0.0084500467915408
512 => 0.0085126801945689
513 => 0.0084393528833373
514 => 0.0084736622707459
515 => 0.0084403920797303
516 => 0.0084329022589553
517 => 0.0083732220927318
518 => 0.0083475102361823
519 => 0.0083575925176483
520 => 0.0083231764932326
521 => 0.0083024395936401
522 => 0.0084161620275057
523 => 0.0083554047186412
524 => 0.0084068500985398
525 => 0.0083482215952208
526 => 0.0081449896594945
527 => 0.0080281088241195
528 => 0.0076442225371429
529 => 0.00775309221192
530 => 0.0078252729189311
531 => 0.0078014171956945
601 => 0.007852668520146
602 => 0.0078558149352213
603 => 0.0078391526071967
604 => 0.0078198597659207
605 => 0.0078104690777485
606 => 0.0078804595737372
607 => 0.0079210914124304
608 => 0.0078325172185329
609 => 0.0078117655241874
610 => 0.0079013189245331
611 => 0.0079559464470106
612 => 0.0083592853804315
613 => 0.0083294047294761
614 => 0.0084043992995926
615 => 0.0083959560618829
616 => 0.0084745623189369
617 => 0.0086030503277374
618 => 0.0083417982800338
619 => 0.008387142602099
620 => 0.008376025221482
621 => 0.0084974018679254
622 => 0.0084977807925669
623 => 0.0084250094298109
624 => 0.0084644599661415
625 => 0.0084424397590306
626 => 0.0084822332494894
627 => 0.0083290056551652
628 => 0.0085156203251554
629 => 0.0086214188178562
630 => 0.00862288783003
701 => 0.0086730354759014
702 => 0.0087239883884625
703 => 0.0088217880670601
704 => 0.0087212608085073
705 => 0.008540422056502
706 => 0.0085534780302912
707 => 0.0084474523361568
708 => 0.0084492346472303
709 => 0.0084397205310377
710 => 0.008468273109921
711 => 0.0083352713405793
712 => 0.0083664865900036
713 => 0.0083227850580133
714 => 0.0083870476035032
715 => 0.0083179117275354
716 => 0.0083760198603444
717 => 0.0084010974041497
718 => 0.008493634080672
719 => 0.0083042439851738
720 => 0.0079180647598705
721 => 0.0079992443149998
722 => 0.0078791733764472
723 => 0.0078902863989525
724 => 0.0079127364730377
725 => 0.0078399684377204
726 => 0.0078538502856746
727 => 0.0078533543283806
728 => 0.0078490804363588
729 => 0.0078301506599379
730 => 0.0078026987389855
731 => 0.0079120587428043
801 => 0.0079306411384727
802 => 0.0079719475021716
803 => 0.0080948472221656
804 => 0.0080825666419632
805 => 0.0081025967777897
806 => 0.008058871103745
807 => 0.0078923147075632
808 => 0.0079013595212029
809 => 0.0077885705501829
810 => 0.0079690632345985
811 => 0.0079263201845418
812 => 0.0078987634621103
813 => 0.0078912443550837
814 => 0.008014448719712
815 => 0.0080513133966006
816 => 0.0080283418038601
817 => 0.0079812263969608
818 => 0.008071701906627
819 => 0.0080959093361584
820 => 0.0081013284868948
821 => 0.0082616337430651
822 => 0.0081102877699455
823 => 0.008146718249925
824 => 0.0084309384551859
825 => 0.0081731899487216
826 => 0.0083097250810733
827 => 0.0083030423968392
828 => 0.0083728891504534
829 => 0.0082973129243689
830 => 0.0082982497822685
831 => 0.008360268967649
901 => 0.0082731742070011
902 => 0.0082516083194483
903 => 0.008221815200252
904 => 0.0082868673860578
905 => 0.0083258632293911
906 => 0.0086401410873663
907 => 0.0088431789164298
908 => 0.008834364508796
909 => 0.0089149116946894
910 => 0.0088786244497168
911 => 0.0087614433636084
912 => 0.0089614571888843
913 => 0.0088981644456331
914 => 0.008903382222486
915 => 0.008903188016571
916 => 0.0089452721576853
917 => 0.0089154516867509
918 => 0.0088566724775306
919 => 0.0088956928597219
920 => 0.0090115694447881
921 => 0.0093712539203614
922 => 0.0095725381180777
923 => 0.009359136358919
924 => 0.0095063380348232
925 => 0.0094180694826007
926 => 0.0094020284608999
927 => 0.0094944819914862
928 => 0.0095870973497389
929 => 0.0095811981518054
930 => 0.0095139641575652
1001 => 0.0094759853802184
1002 => 0.0097635734061125
1003 => 0.0099754633646572
1004 => 0.0099610138900127
1005 => 0.010024789171872
1006 => 0.010212035371908
1007 => 0.010229154817793
1008 => 0.010226998161097
1009 => 0.010184565828241
1010 => 0.010368934029167
1011 => 0.01052273722603
1012 => 0.010174743969173
1013 => 0.010307255245818
1014 => 0.01036674382715
1015 => 0.010454090714013
1016 => 0.010601459553189
1017 => 0.010761541200188
1018 => 0.01078417850028
1019 => 0.01076811625257
1020 => 0.010662538103149
1021 => 0.010837701351467
1022 => 0.010940307874247
1023 => 0.011001407710455
1024 => 0.011156346729034
1025 => 0.010367111208376
1026 => 0.0098084510793042
1027 => 0.0097212082329995
1028 => 0.0098986199916155
1029 => 0.0099454020575303
1030 => 0.0099265442654198
1031 => 0.0092977214989925
1101 => 0.0097178976112722
1102 => 0.010169971778674
1103 => 0.010187337788574
1104 => 0.010413655569201
1105 => 0.010487353915652
1106 => 0.010669569393206
1107 => 0.010658171765473
1108 => 0.010702538334576
1109 => 0.010692339228661
1110 => 0.011029855030834
1111 => 0.011402185082212
1112 => 0.01138929247647
1113 => 0.011335765626375
1114 => 0.01141526212645
1115 => 0.011799546640786
1116 => 0.01176416788074
1117 => 0.011798535332569
1118 => 0.012251628432297
1119 => 0.012840713913686
1120 => 0.012567024564365
1121 => 0.013160851700402
1122 => 0.013534634405112
1123 => 0.014181052943057
1124 => 0.014100118158428
1125 => 0.014351764151611
1126 => 0.013955228002342
1127 => 0.013044700850444
1128 => 0.012900606443298
1129 => 0.013189087095455
1130 => 0.013898288629254
1201 => 0.013166751815322
1202 => 0.013314740760025
1203 => 0.013272119933995
1204 => 0.013269848851302
1205 => 0.013356526840507
1206 => 0.013230795896346
1207 => 0.012718545411271
1208 => 0.01295330678987
1209 => 0.012862654147425
1210 => 0.012963240012819
1211 => 0.013506060443586
1212 => 0.013266066591921
1213 => 0.01301325256471
1214 => 0.013330337458757
1215 => 0.01373409549107
1216 => 0.01370882903903
1217 => 0.013659801561517
1218 => 0.013936166885266
1219 => 0.014392641432658
1220 => 0.014516024668555
1221 => 0.014607103650834
1222 => 0.014619661903699
1223 => 0.014749019713112
1224 => 0.01405343016953
1225 => 0.015157348639202
1226 => 0.015347964863782
1227 => 0.015312136913794
1228 => 0.015523998825057
1229 => 0.015461663676346
1230 => 0.015371349825948
1231 => 0.015707196019621
]
'min_raw' => 0.0057898097822076
'max_raw' => 0.015707196019621
'avg_raw' => 0.010748502900915
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005789'
'max' => '$0.0157071'
'avg' => '$0.010748'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019967557627177
'max_diff' => 0.0072394701233197
'year' => 2032
]
7 => [
'items' => [
101 => 0.015322175459965
102 => 0.014775687248272
103 => 0.014475873007027
104 => 0.014870692585224
105 => 0.015111795124325
106 => 0.015271148565669
107 => 0.015319368820735
108 => 0.014107426805709
109 => 0.013454257276995
110 => 0.013872931456297
111 => 0.014383742850393
112 => 0.014050592586444
113 => 0.014063651446054
114 => 0.013588666720013
115 => 0.014425768459114
116 => 0.01430380977686
117 => 0.014936531636131
118 => 0.014785527486506
119 => 0.01530148760062
120 => 0.015165618010868
121 => 0.015729605081565
122 => 0.015954594793406
123 => 0.01633238753644
124 => 0.016610293416109
125 => 0.016773485064143
126 => 0.016763687649712
127 => 0.017410334260979
128 => 0.017029029346426
129 => 0.01655002050708
130 => 0.01654135674843
131 => 0.016789442213935
201 => 0.01730936129071
202 => 0.017444168742803
203 => 0.017519507717752
204 => 0.017404123455049
205 => 0.016990244298672
206 => 0.016811533377363
207 => 0.016963800260072
208 => 0.016777590946961
209 => 0.017099040462496
210 => 0.017540459305236
211 => 0.017449308059769
212 => 0.017754013007206
213 => 0.018069350571907
214 => 0.018520297452126
215 => 0.01863819166513
216 => 0.01883306631611
217 => 0.019033656344956
218 => 0.019098080456169
219 => 0.019221086074101
220 => 0.019220437773778
221 => 0.019591123482651
222 => 0.020000001298718
223 => 0.020154343208741
224 => 0.020509243920374
225 => 0.019901488888906
226 => 0.020362478061661
227 => 0.020778301834794
228 => 0.020282539590063
301 => 0.020965832346637
302 => 0.020992363056
303 => 0.021392945268673
304 => 0.020986878453863
305 => 0.020745757275439
306 => 0.021441865082855
307 => 0.021778689723673
308 => 0.021677235400688
309 => 0.020905162993361
310 => 0.020455783736553
311 => 0.019279671542702
312 => 0.020672827240584
313 => 0.021351392742114
314 => 0.020903405672641
315 => 0.021129344292632
316 => 0.022361992142456
317 => 0.022831304635631
318 => 0.022733690917793
319 => 0.022750186029249
320 => 0.023003418531942
321 => 0.02412639090657
322 => 0.023453479829397
323 => 0.023967895134398
324 => 0.024240739157309
325 => 0.024494171891551
326 => 0.023871821194491
327 => 0.023062152081764
328 => 0.022805695886166
329 => 0.020858862187442
330 => 0.020757521038754
331 => 0.020700635181044
401 => 0.020341977894846
402 => 0.020060171512393
403 => 0.019836068614266
404 => 0.019247955686792
405 => 0.019446426535578
406 => 0.018509097277892
407 => 0.01910876732005
408 => 0.017612767192176
409 => 0.018858680552554
410 => 0.018180586555229
411 => 0.018635908437153
412 => 0.018634319862001
413 => 0.017795927917445
414 => 0.017312360940619
415 => 0.017620508638961
416 => 0.017950867432378
417 => 0.01800446703515
418 => 0.018432785834062
419 => 0.018552320404157
420 => 0.018190125076234
421 => 0.017581765914703
422 => 0.017723073872732
423 => 0.017309497339359
424 => 0.016584720372616
425 => 0.017105267843523
426 => 0.017283005636947
427 => 0.017361504772022
428 => 0.016648769866427
429 => 0.016424813084861
430 => 0.016305580373535
501 => 0.017489760788533
502 => 0.017554632864802
503 => 0.017222738150619
504 => 0.018722933730276
505 => 0.018383393267164
506 => 0.018762743153893
507 => 0.017710251656661
508 => 0.017750458249223
509 => 0.017252191907509
510 => 0.0175311877647
511 => 0.017334002485293
512 => 0.017508647656529
513 => 0.017613329252079
514 => 0.01811151383319
515 => 0.018864369020225
516 => 0.018037101669763
517 => 0.017676649438481
518 => 0.017900271975508
519 => 0.018495808260246
520 => 0.019398076216565
521 => 0.018863915426589
522 => 0.019100966914542
523 => 0.019152752118973
524 => 0.018758881728152
525 => 0.019412598779685
526 => 0.01976293105839
527 => 0.02012229948529
528 => 0.020434329021093
529 => 0.019978759832905
530 => 0.020466284167544
531 => 0.020073425613455
601 => 0.019720990877466
602 => 0.019721525375482
603 => 0.019500437917346
604 => 0.019072053108396
605 => 0.018993052377024
606 => 0.019404024158316
607 => 0.01973358460774
608 => 0.019760728784843
609 => 0.019943190383071
610 => 0.020051169277399
611 => 0.021109509231998
612 => 0.021535182316785
613 => 0.022055687307284
614 => 0.022258453335137
615 => 0.022868706383331
616 => 0.022375877484585
617 => 0.022269250852302
618 => 0.020788976569636
619 => 0.021031371400496
620 => 0.021419468912325
621 => 0.02079537615466
622 => 0.021191219363048
623 => 0.021269367197489
624 => 0.020774169721567
625 => 0.021038676089677
626 => 0.02033622559665
627 => 0.018879680521397
628 => 0.019414220330729
629 => 0.019807821554552
630 => 0.019246104077476
701 => 0.020252960913667
702 => 0.019664775935708
703 => 0.019478349535553
704 => 0.018751033682739
705 => 0.019094298768313
706 => 0.019558569711634
707 => 0.019271704245952
708 => 0.019866993160309
709 => 0.020710081020792
710 => 0.021310915636923
711 => 0.021357040258157
712 => 0.020970743852777
713 => 0.021589786307708
714 => 0.021594295356168
715 => 0.020896012938144
716 => 0.020468318845156
717 => 0.020371145847354
718 => 0.020613903047753
719 => 0.02090865510449
720 => 0.021373396945935
721 => 0.021654230707381
722 => 0.022386496214512
723 => 0.022584626265044
724 => 0.022802311121301
725 => 0.023093205220784
726 => 0.023442498170929
727 => 0.02267826508127
728 => 0.022708629486631
729 => 0.021996986215067
730 => 0.021236493319433
731 => 0.021813612630442
801 => 0.022568119358621
802 => 0.022395034681521
803 => 0.022375559119548
804 => 0.022408311612716
805 => 0.022277811418599
806 => 0.021687563877174
807 => 0.021391145257015
808 => 0.021773600901475
809 => 0.021976859055363
810 => 0.02229209472607
811 => 0.022253235275837
812 => 0.023065248509738
813 => 0.023380772298427
814 => 0.023300047811256
815 => 0.023314903059639
816 => 0.023886143807678
817 => 0.024521481004118
818 => 0.025116558128712
819 => 0.025721896139005
820 => 0.024992137540852
821 => 0.024621611129962
822 => 0.025003899806252
823 => 0.02480105205351
824 => 0.025966675409318
825 => 0.026047380641458
826 => 0.02721291970943
827 => 0.028319155074746
828 => 0.027624348462056
829 => 0.028279519803046
830 => 0.028988141025229
831 => 0.030355186332471
901 => 0.029894813566225
902 => 0.029542175242243
903 => 0.029208933730015
904 => 0.029902356416361
905 => 0.030794433624646
906 => 0.030986578511102
907 => 0.031297926632156
908 => 0.030970582152704
909 => 0.031364832522392
910 => 0.032756709569779
911 => 0.032380612105136
912 => 0.031846493244659
913 => 0.032945246496279
914 => 0.033342881026745
915 => 0.036133688404375
916 => 0.039657198001135
917 => 0.038198441891465
918 => 0.037292944900427
919 => 0.037505758171997
920 => 0.038792424598407
921 => 0.039205661017819
922 => 0.038082341978721
923 => 0.038479117253752
924 => 0.040665388029255
925 => 0.041838252156348
926 => 0.040245345135088
927 => 0.03585057783904
928 => 0.031798401685194
929 => 0.032873221273065
930 => 0.032751370087335
1001 => 0.035100245292779
1002 => 0.032371642304988
1003 => 0.03241758498141
1004 => 0.034815032438601
1005 => 0.034175434559677
1006 => 0.033139367909328
1007 => 0.031805966118322
1008 => 0.02934104958291
1009 => 0.027157804268214
1010 => 0.031439651101702
1011 => 0.031255010080209
1012 => 0.03098762251882
1013 => 0.031582664602334
1014 => 0.034472020054236
1015 => 0.034405411059139
1016 => 0.033981678616538
1017 => 0.034303075939645
1018 => 0.033083025404654
1019 => 0.033397460207555
1020 => 0.031797759799788
1021 => 0.032520891193489
1022 => 0.033137144975617
1023 => 0.033260867046173
1024 => 0.033539619188539
1025 => 0.031157712652034
1026 => 0.032227118757823
1027 => 0.032855294655173
1028 => 0.030017173097713
1029 => 0.032799194117238
1030 => 0.031116248958498
1031 => 0.030545032094633
1101 => 0.031314100349727
1102 => 0.031014393702774
1103 => 0.030756723527088
1104 => 0.030612939141719
1105 => 0.031177657989295
1106 => 0.03115131318007
1107 => 0.030227323538232
1108 => 0.02902201671709
1109 => 0.029426557249113
1110 => 0.029279583881241
1111 => 0.028746933436132
1112 => 0.029105875523676
1113 => 0.027525276226568
1114 => 0.024805937288297
1115 => 0.026602415886524
1116 => 0.026533253414685
1117 => 0.026498378560115
1118 => 0.02784838257566
1119 => 0.027718610839457
1120 => 0.027483073867521
1121 => 0.028742607614932
1122 => 0.028282860854008
1123 => 0.029699692041218
1124 => 0.03063290869601
1125 => 0.030396214765959
1126 => 0.031273909540418
1127 => 0.029435877045914
1128 => 0.030046397711524
1129 => 0.030172225174561
1130 => 0.028727065164002
1201 => 0.027739843100414
1202 => 0.027674006643929
1203 => 0.025962299633248
1204 => 0.026876679701938
1205 => 0.027681296322766
1206 => 0.027295947402161
1207 => 0.027173957445869
1208 => 0.027797177676171
1209 => 0.027845607225586
1210 => 0.026741408366596
1211 => 0.02697100627481
1212 => 0.02792846771954
1213 => 0.026946880702996
1214 => 0.02503981747118
1215 => 0.024566839422478
1216 => 0.024503735432066
1217 => 0.023220981451623
1218 => 0.024598446077325
1219 => 0.023997145854449
1220 => 0.02589664605383
1221 => 0.024811661727168
1222 => 0.024764890221376
1223 => 0.024694188230484
1224 => 0.023590068889617
1225 => 0.023831800854822
1226 => 0.024635354723982
1227 => 0.02492207179718
1228 => 0.024892164857442
1229 => 0.024631416871645
1230 => 0.024750785964297
1231 => 0.024366256525917
]
'min_raw' => 0.013454257276995
'max_raw' => 0.041838252156348
'avg_raw' => 0.027646254716672
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.013454'
'max' => '$0.041838'
'avg' => '$0.027646'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0076644474947878
'max_diff' => 0.026131056136726
'year' => 2033
]
8 => [
'items' => [
101 => 0.024230471177937
102 => 0.023801895269009
103 => 0.023172007080001
104 => 0.023259596896011
105 => 0.022011623574377
106 => 0.021331661473794
107 => 0.021143456926109
108 => 0.020891781939335
109 => 0.021171884285546
110 => 0.022008088222757
111 => 0.020999448863919
112 => 0.019270207431017
113 => 0.019374137787619
114 => 0.019607638441702
115 => 0.019172511517579
116 => 0.018760700401331
117 => 0.019118736755617
118 => 0.018386034364309
119 => 0.019696182025165
120 => 0.019660746202585
121 => 0.020149088231564
122 => 0.020454458524072
123 => 0.019750678864648
124 => 0.019573680183525
125 => 0.019674506676434
126 => 0.018008069342436
127 => 0.020012904749006
128 => 0.020030242648855
129 => 0.019881785024206
130 => 0.020949297985856
131 => 0.02320208330058
201 => 0.022354494847101
202 => 0.022026282979418
203 => 0.02140235197903
204 => 0.02223370299169
205 => 0.022169868205014
206 => 0.02188118309104
207 => 0.021706585433356
208 => 0.022028286971095
209 => 0.021666723052717
210 => 0.021601776237865
211 => 0.021208269202689
212 => 0.021067805094561
213 => 0.02096381106094
214 => 0.020849323848166
215 => 0.021101854111109
216 => 0.020529587312157
217 => 0.019839489652626
218 => 0.019782115499196
219 => 0.019940530581203
220 => 0.019870443700031
221 => 0.019781779950173
222 => 0.01961249670556
223 => 0.019562273983047
224 => 0.019725473466612
225 => 0.019541230764789
226 => 0.019813090907548
227 => 0.019739159991426
228 => 0.019326187903779
301 => 0.018811471780722
302 => 0.018806889727573
303 => 0.018695994983164
304 => 0.018554753853023
305 => 0.018515463801777
306 => 0.019088583932503
307 => 0.020274925451065
308 => 0.020042018224225
309 => 0.020210317564909
310 => 0.021038183749099
311 => 0.021301337514248
312 => 0.021114557204883
313 => 0.020858880797318
314 => 0.020870129261671
315 => 0.021743852944834
316 => 0.021798346019222
317 => 0.021936032438067
318 => 0.022112998396461
319 => 0.02114469527282
320 => 0.020824522271626
321 => 0.020672806541138
322 => 0.020205580812612
323 => 0.02070944370392
324 => 0.020415864374715
325 => 0.020455478256323
326 => 0.020429679663958
327 => 0.020443767439882
328 => 0.019695815812193
329 => 0.019968330074143
330 => 0.019515222258641
331 => 0.018908561757423
401 => 0.0189065280187
402 => 0.019055007316918
403 => 0.018966686020342
404 => 0.018729015682206
405 => 0.018762775631966
406 => 0.018467002948181
407 => 0.018798687790915
408 => 0.018808199325379
409 => 0.018680482593931
410 => 0.019191488857851
411 => 0.01940084854112
412 => 0.019316782652524
413 => 0.019394950254274
414 => 0.020051696571013
415 => 0.020158774876492
416 => 0.02020633198659
417 => 0.020142611759169
418 => 0.019406954371338
419 => 0.019439583904745
420 => 0.019200170038639
421 => 0.018997890550592
422 => 0.019005980669297
423 => 0.019109978620647
424 => 0.019564143773588
425 => 0.020519907563454
426 => 0.020556178100626
427 => 0.020600139049763
428 => 0.020421327776617
429 => 0.020367396585643
430 => 0.02043854574736
501 => 0.020797480375161
502 => 0.021720757687666
503 => 0.021394409821809
504 => 0.021129083926959
505 => 0.02136184626809
506 => 0.021326014330124
507 => 0.021023556713707
508 => 0.021015067735781
509 => 0.020434554868327
510 => 0.020219952478868
511 => 0.020040614659526
512 => 0.019844782442536
513 => 0.019728686539949
514 => 0.019907062610967
515 => 0.019947859328892
516 => 0.019557836932132
517 => 0.019504678320636
518 => 0.019823179029048
519 => 0.019683018742179
520 => 0.019827177073032
521 => 0.019860623042357
522 => 0.01985523747097
523 => 0.019708894034172
524 => 0.019802168976763
525 => 0.019581545930937
526 => 0.019341651505112
527 => 0.019188613807386
528 => 0.019055068118615
529 => 0.019129167028466
530 => 0.018865017944774
531 => 0.01878051133663
601 => 0.019770569524966
602 => 0.020501936153608
603 => 0.020491301793175
604 => 0.020426567858972
605 => 0.020330386363545
606 => 0.020790444099693
607 => 0.020630169183564
608 => 0.020746782576465
609 => 0.020776465579207
610 => 0.020866307088559
611 => 0.020898417706013
612 => 0.020801357117808
613 => 0.020475609928838
614 => 0.019663878905037
615 => 0.019286015922232
616 => 0.019161314844101
617 => 0.01916584749145
618 => 0.019040816842935
619 => 0.019077643972403
620 => 0.019028009870211
621 => 0.018934014888438
622 => 0.019123363103212
623 => 0.019145183721065
624 => 0.019100987585194
625 => 0.019111397375115
626 => 0.018745472246519
627 => 0.018773292739298
628 => 0.018618384700244
629 => 0.018589341310366
630 => 0.018197747277024
701 => 0.017503981684495
702 => 0.017888395168212
703 => 0.017424077736598
704 => 0.017248233689689
705 => 0.018080652058397
706 => 0.01799710034187
707 => 0.017854096122235
708 => 0.017642563076703
709 => 0.017564103412454
710 => 0.017087407329788
711 => 0.01705924158215
712 => 0.017295505032596
713 => 0.017186477579544
714 => 0.017033361743534
715 => 0.016478791706608
716 => 0.015855271373274
717 => 0.015874091532828
718 => 0.016072421749854
719 => 0.016649093604328
720 => 0.016423777934261
721 => 0.016260308830427
722 => 0.016229695981142
723 => 0.016612879882283
724 => 0.017155165381905
725 => 0.017409593605374
726 => 0.017157462963016
727 => 0.016867828856754
728 => 0.016885457542767
729 => 0.017002733293021
730 => 0.017015057316183
731 => 0.016826535287873
801 => 0.016879603134568
802 => 0.016798988222813
803 => 0.016304254658173
804 => 0.016295306496806
805 => 0.016173890901387
806 => 0.016170214485411
807 => 0.015963656269064
808 => 0.015934757346728
809 => 0.015524623470983
810 => 0.015794574829998
811 => 0.015613505631453
812 => 0.01534059163934
813 => 0.015293541164232
814 => 0.015292126770135
815 => 0.015572348417583
816 => 0.015791300276894
817 => 0.015616655407684
818 => 0.015576892156313
819 => 0.016001459651803
820 => 0.015947429567983
821 => 0.015900639863852
822 => 0.017106609663253
823 => 0.01615199046403
824 => 0.01573572200541
825 => 0.015220510740631
826 => 0.015388266126364
827 => 0.015423614650977
828 => 0.014184624432995
829 => 0.013681966255866
830 => 0.013509472911749
831 => 0.013410200553512
901 => 0.013455440213744
902 => 0.013002988898405
903 => 0.013307043665167
904 => 0.01291525907084
905 => 0.012849575108624
906 => 0.013550134496078
907 => 0.013647613242234
908 => 0.013231738626861
909 => 0.013498797453915
910 => 0.01340195821083
911 => 0.01292197509322
912 => 0.012903643268644
913 => 0.01266280461245
914 => 0.01228593875106
915 => 0.012113700939743
916 => 0.012023997992172
917 => 0.012061011176616
918 => 0.012042296177939
919 => 0.011920168152261
920 => 0.012049296413413
921 => 0.01171942706565
922 => 0.011588070433433
923 => 0.011528739690112
924 => 0.011235961657401
925 => 0.011701901706426
926 => 0.011793697765841
927 => 0.011885674691852
928 => 0.012686271037456
929 => 0.012646275506492
930 => 0.013007815627798
1001 => 0.012993766843514
1002 => 0.012890649744355
1003 => 0.012455615664946
1004 => 0.012629012495262
1005 => 0.012095324003401
1006 => 0.012495199708793
1007 => 0.012312713136061
1008 => 0.012433500814987
1009 => 0.012216313677291
1010 => 0.012336514006729
1011 => 0.011815466016938
1012 => 0.011328918735415
1013 => 0.0115247195647
1014 => 0.011737577458675
1015 => 0.012199107607994
1016 => 0.011924224058601
1017 => 0.01202308257746
1018 => 0.011691923087996
1019 => 0.011008646470201
1020 => 0.011012513741654
1021 => 0.010907406519996
1022 => 0.010816578534579
1023 => 0.011955797740934
1024 => 0.011814117824233
1025 => 0.011588369419579
1026 => 0.011890542630093
1027 => 0.011970442023087
1028 => 0.01197271664648
1029 => 0.012193174420652
1030 => 0.012310832774247
1031 => 0.012331570569028
1101 => 0.012678465639993
1102 => 0.012794740292123
1103 => 0.013273659128445
1104 => 0.012300850284977
1105 => 0.012280815927021
1106 => 0.011894794826845
1107 => 0.011649974142362
1108 => 0.011911557908565
1109 => 0.012143285415676
1110 => 0.011901995246429
1111 => 0.011933502648619
1112 => 0.011609590310536
1113 => 0.011725373729909
1114 => 0.011825102008384
1115 => 0.011770037914767
1116 => 0.011687604301491
1117 => 0.012124286402679
1118 => 0.012099647087159
1119 => 0.012506295499063
1120 => 0.012823307015849
1121 => 0.013391448326516
1122 => 0.012798563250958
1123 => 0.0127769561623
1124 => 0.012988168919819
1125 => 0.012794707956551
1126 => 0.012916968607291
1127 => 0.01337175024554
1128 => 0.01338135906492
1129 => 0.013220398960029
1130 => 0.013210604523019
1201 => 0.013241518671874
1202 => 0.013422583807303
1203 => 0.013359314085414
1204 => 0.013432531409377
1205 => 0.013524090794136
1206 => 0.013902819229874
1207 => 0.013994129373551
1208 => 0.013772293063297
1209 => 0.013792322398317
1210 => 0.013709349528739
1211 => 0.013629198776373
1212 => 0.013809365962613
1213 => 0.014138625036661
1214 => 0.01413657673305
1215 => 0.014212958438348
1216 => 0.014260543607968
1217 => 0.014056273225485
1218 => 0.01392330071772
1219 => 0.013974290838458
1220 => 0.014055825151938
1221 => 0.013947850359488
1222 => 0.013281379921697
1223 => 0.013483544478227
1224 => 0.013449894410678
1225 => 0.013401972622502
1226 => 0.013605250647384
1227 => 0.013585643985984
1228 => 0.012998348356203
1229 => 0.013035945116946
1230 => 0.013000634739749
1231 => 0.013114729792297
]
'min_raw' => 0.010816578534579
'max_raw' => 0.024230471177937
'avg_raw' => 0.017523524856258
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010816'
'max' => '$0.02423'
'avg' => '$0.017523'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0026376787424167
'max_diff' => -0.017607780978411
'year' => 2034
]
9 => [
'items' => [
101 => 0.012788546449285
102 => 0.012888878248717
103 => 0.012951805412769
104 => 0.012988869995824
105 => 0.013122772685244
106 => 0.01310706075014
107 => 0.013121796009297
108 => 0.013320338348707
109 => 0.01432449736994
110 => 0.014379151529913
111 => 0.014110014457383
112 => 0.014217529409365
113 => 0.014011124212495
114 => 0.014149685403948
115 => 0.014244485452068
116 => 0.013816102263616
117 => 0.01379073619138
118 => 0.01358347908684
119 => 0.013694847315177
120 => 0.013517652456234
121 => 0.013561129876606
122 => 0.013439563218953
123 => 0.013658358999048
124 => 0.01390300667862
125 => 0.01396481434391
126 => 0.013802224986406
127 => 0.013684499576412
128 => 0.013477812537624
129 => 0.01382153768945
130 => 0.013922053398678
131 => 0.01382100972322
201 => 0.013797595695768
202 => 0.013753226156056
203 => 0.013807008903367
204 => 0.013921505968539
205 => 0.013867511267032
206 => 0.013903175718641
207 => 0.01376725960613
208 => 0.014056340847482
209 => 0.014515471429937
210 => 0.014516947609835
211 => 0.014462952617277
212 => 0.014440859029661
213 => 0.014496261168715
214 => 0.014526314556437
215 => 0.014705474915125
216 => 0.014897721118059
217 => 0.015794850263566
218 => 0.015542939989428
219 => 0.016338926337774
220 => 0.016968448193424
221 => 0.017157214272279
222 => 0.016983558361863
223 => 0.016389490873037
224 => 0.016360343087886
225 => 0.017248130725016
226 => 0.016997290054277
227 => 0.016967453354661
228 => 0.016650041280646
301 => 0.016837671128639
302 => 0.01679663372852
303 => 0.016731854184812
304 => 0.017089838864374
305 => 0.017759954227001
306 => 0.017655510463434
307 => 0.017577548038937
308 => 0.017235939389315
309 => 0.017441664097442
310 => 0.017368409469275
311 => 0.017683157840415
312 => 0.017496707877882
313 => 0.016995389689488
314 => 0.017075226263356
315 => 0.017063159125825
316 => 0.017311499961132
317 => 0.017236954206571
318 => 0.01704860287083
319 => 0.017757663845543
320 => 0.017711621369849
321 => 0.017776899073607
322 => 0.017805636337582
323 => 0.018237229257833
324 => 0.018414039067828
325 => 0.018454177990188
326 => 0.01862213363472
327 => 0.018449999100747
328 => 0.019138659966482
329 => 0.01959657925772
330 => 0.020128476078804
331 => 0.020905720294796
401 => 0.02119797130992
402 => 0.021145178779875
403 => 0.021734476473874
404 => 0.022793431330639
405 => 0.021359223833105
406 => 0.022869447810536
407 => 0.022391328335656
408 => 0.021257715661717
409 => 0.02118472436993
410 => 0.021952420034236
411 => 0.023655095129696
412 => 0.023228594329864
413 => 0.023655792732215
414 => 0.023157443103894
415 => 0.023132695844427
416 => 0.023631589003104
417 => 0.024797280061604
418 => 0.024243503934987
419 => 0.023449530066004
420 => 0.024035788015259
421 => 0.023527917124002
422 => 0.022383541861889
423 => 0.02322826819274
424 => 0.022663423751721
425 => 0.022828275388392
426 => 0.024015494389146
427 => 0.023872645057984
428 => 0.02405750532
429 => 0.023731231796177
430 => 0.023426440876313
501 => 0.022857525990318
502 => 0.022689098339739
503 => 0.022735645682967
504 => 0.022689075273188
505 => 0.022370772623071
506 => 0.022302035196084
507 => 0.022187469806317
508 => 0.02222297841112
509 => 0.022007561961071
510 => 0.022414097309624
511 => 0.022489553852692
512 => 0.022785396377134
513 => 0.022816111729442
514 => 0.023640028948958
515 => 0.023186229189815
516 => 0.023490677247434
517 => 0.023463444547585
518 => 0.021282284485775
519 => 0.021582829097754
520 => 0.022050382197899
521 => 0.021839750160037
522 => 0.021541965738807
523 => 0.021301488852472
524 => 0.020937141779652
525 => 0.021449953287981
526 => 0.02212424589001
527 => 0.022833212902581
528 => 0.023684990314828
529 => 0.023494883512197
530 => 0.022817289516344
531 => 0.022847685888015
601 => 0.023035584297155
602 => 0.022792238784948
603 => 0.022720471442729
604 => 0.023025724566397
605 => 0.023027826676895
606 => 0.022747828255813
607 => 0.022436661249951
608 => 0.022435357448834
609 => 0.022379988285658
610 => 0.023167293155019
611 => 0.023600231227668
612 => 0.023649866879982
613 => 0.023596890352791
614 => 0.023617278915544
615 => 0.023365361790209
616 => 0.023941169635021
617 => 0.024469587854914
618 => 0.024327960483974
619 => 0.024115640921418
620 => 0.023946518163146
621 => 0.024288120536924
622 => 0.024272909520952
623 => 0.024464972582746
624 => 0.024456259492853
625 => 0.024391675909028
626 => 0.024327962790457
627 => 0.024580578103787
628 => 0.024507828950426
629 => 0.024434966797536
630 => 0.024288830595277
701 => 0.024308692932229
702 => 0.024096410029639
703 => 0.023998198245496
704 => 0.022521328655005
705 => 0.02212666084232
706 => 0.022250831370395
707 => 0.022291711532323
708 => 0.022119951594462
709 => 0.022366211223847
710 => 0.022327831921461
711 => 0.022477143335905
712 => 0.022383860046508
713 => 0.022387688425244
714 => 0.022662014689264
715 => 0.022741652770777
716 => 0.022701148199761
717 => 0.022729516212885
718 => 0.023383245101932
719 => 0.023290305758982
720 => 0.02324093358539
721 => 0.023254610014891
722 => 0.023421651762147
723 => 0.023468414331238
724 => 0.023270278040054
725 => 0.023363720260389
726 => 0.023761585374991
727 => 0.023900815647887
728 => 0.024345171844647
729 => 0.024156401434462
730 => 0.024502897692149
731 => 0.025567909059001
801 => 0.026418713832023
802 => 0.025636278601757
803 => 0.027198673218078
804 => 0.028415221539081
805 => 0.028368528388253
806 => 0.028156395049217
807 => 0.026771387129366
808 => 0.025496882192215
809 => 0.02656305969048
810 => 0.026565777596185
811 => 0.026474192003538
812 => 0.025905361753365
813 => 0.026454397943843
814 => 0.026497978442836
815 => 0.02647358495239
816 => 0.026037464133276
817 => 0.025371588251089
818 => 0.025501698804587
819 => 0.025714822545399
820 => 0.025311334841771
821 => 0.02518239607228
822 => 0.025422117776369
823 => 0.026194551054944
824 => 0.02604852701803
825 => 0.026044713740297
826 => 0.026669466494041
827 => 0.026222278352443
828 => 0.025503339915338
829 => 0.025321798478336
830 => 0.024677448677945
831 => 0.02512250338017
901 => 0.025138520106588
902 => 0.024894768194528
903 => 0.025523119039608
904 => 0.025517328675952
905 => 0.026113854285675
906 => 0.027254187206678
907 => 0.026916934649563
908 => 0.026524746618611
909 => 0.02656738833177
910 => 0.027035062676408
911 => 0.026752296091673
912 => 0.026853980927062
913 => 0.027034908764231
914 => 0.02714406702058
915 => 0.026551682138531
916 => 0.026413568885481
917 => 0.026131037640906
918 => 0.026057330512892
919 => 0.026287446316391
920 => 0.02622681893228
921 => 0.025137173962752
922 => 0.025023300000709
923 => 0.025026792352551
924 => 0.024740450860582
925 => 0.024303711355497
926 => 0.025451436698499
927 => 0.02535925829105
928 => 0.025257500463269
929 => 0.02526996521655
930 => 0.025768153887926
1001 => 0.025479179299397
1002 => 0.026247465605005
1003 => 0.026089529037373
1004 => 0.025927541992729
1005 => 0.025905150448913
1006 => 0.025842799256811
1007 => 0.025628973819235
1008 => 0.025370766754445
1009 => 0.025200276084758
1010 => 0.023245922606635
1011 => 0.023608639244224
1012 => 0.024025911673107
1013 => 0.024169952443444
1014 => 0.023923560738465
1015 => 0.025638702865523
1016 => 0.025952075859657
1017 => 0.02500284861961
1018 => 0.02482528695969
1019 => 0.025650343778386
1020 => 0.025152733657618
1021 => 0.025376807464531
1022 => 0.024892482455805
1023 => 0.025876593482002
1024 => 0.025869096204819
1025 => 0.025486254788473
1026 => 0.025809829731984
1027 => 0.025753600622761
1028 => 0.025321373606603
1029 => 0.025890295849364
1030 => 0.025890578027698
1031 => 0.025522101488155
1101 => 0.025091801559855
1102 => 0.025014874095906
1103 => 0.024956919585571
1104 => 0.025362554207665
1105 => 0.025726244941447
1106 => 0.026402983230438
1107 => 0.026573131315195
1108 => 0.027237230617402
1109 => 0.026841791817346
1110 => 0.027017084715621
1111 => 0.027207389953393
1112 => 0.027298629282625
1113 => 0.027149959691814
1114 => 0.028181579262321
1115 => 0.028268679562078
1116 => 0.028297883539172
1117 => 0.02795002722434
1118 => 0.028259005048695
1119 => 0.028114444556949
1120 => 0.028490550796411
1121 => 0.028549529057124
1122 => 0.028499576568513
1123 => 0.028518297199371
1124 => 0.027637991886107
1125 => 0.027592343411634
1126 => 0.026969923223124
1127 => 0.02722356405064
1128 => 0.02674939468092
1129 => 0.026899758672544
1130 => 0.026966037687331
1201 => 0.026931417291307
1202 => 0.027237904522468
1203 => 0.026977327764777
1204 => 0.026289622858445
1205 => 0.025601730587371
1206 => 0.025593094660253
1207 => 0.025411984767586
1208 => 0.025281075487119
1209 => 0.025306293258794
1210 => 0.025395163975379
1211 => 0.025275910159513
1212 => 0.02530135900745
1213 => 0.025723979447988
1214 => 0.025808732963346
1215 => 0.025520707402821
1216 => 0.024364243215423
1217 => 0.024080444003065
1218 => 0.024284433248925
1219 => 0.024186939527994
1220 => 0.019520747912323
1221 => 0.020617000417826
1222 => 0.019965644404274
1223 => 0.020265819222768
1224 => 0.019600953400753
1225 => 0.019918262219622
1226 => 0.01985966686704
1227 => 0.021622408455419
1228 => 0.021594885670088
1229 => 0.021608059370953
1230 => 0.020979244304798
1231 => 0.021980963779372
]
'min_raw' => 0.012788546449285
'max_raw' => 0.028549529057124
'avg_raw' => 0.020669037753204
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012788'
'max' => '$0.028549'
'avg' => '$0.020669'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019719679147062
'max_diff' => 0.0043190578791874
'year' => 2035
]
10 => [
'items' => [
101 => 0.022474446813215
102 => 0.022383116237276
103 => 0.0224061021756
104 => 0.022011127599141
105 => 0.021611883588224
106 => 0.021169060536905
107 => 0.021991771031673
108 => 0.021900299668791
109 => 0.022110102064885
110 => 0.022643688629303
111 => 0.022722261277811
112 => 0.022827863714212
113 => 0.022790012758056
114 => 0.023691776096111
115 => 0.023582566605847
116 => 0.023845730055669
117 => 0.023304382873125
118 => 0.022691797150929
119 => 0.022808229669782
120 => 0.022797016281926
121 => 0.022654256984382
122 => 0.022525380273758
123 => 0.022310836861359
124 => 0.022989683964642
125 => 0.022962124011969
126 => 0.023408287610803
127 => 0.023329423860907
128 => 0.022802752437869
129 => 0.022821562610777
130 => 0.022948070063444
131 => 0.023385913801562
201 => 0.023515895633711
202 => 0.023455682870179
203 => 0.023598202015234
204 => 0.023710843336511
205 => 0.02361234803093
206 => 0.025006833849744
207 => 0.02442774611456
208 => 0.024709989447422
209 => 0.024777302819236
210 => 0.024604881032784
211 => 0.024642273144304
212 => 0.024698912004516
213 => 0.025042812072701
214 => 0.025945305359905
215 => 0.026345013493328
216 => 0.027547555133983
217 => 0.026311823297053
218 => 0.026238500083816
219 => 0.026455114146577
220 => 0.027161133391602
221 => 0.027733295676679
222 => 0.027923114915473
223 => 0.027948202661454
224 => 0.028304316172376
225 => 0.028508433795713
226 => 0.028261074625435
227 => 0.028051463628209
228 => 0.02730066305402
229 => 0.027387570264845
301 => 0.027986274765691
302 => 0.028831980136655
303 => 0.029557683325589
304 => 0.029303567362133
305 => 0.031242292785383
306 => 0.031434509492115
307 => 0.031407951358355
308 => 0.031845849621972
309 => 0.030976710745123
310 => 0.030605137036498
311 => 0.028096783904995
312 => 0.028801528820553
313 => 0.029825916943533
314 => 0.029690335334198
315 => 0.028946397297317
316 => 0.029557118981877
317 => 0.029355195293929
318 => 0.029195929703422
319 => 0.029925556248686
320 => 0.029123301890762
321 => 0.02981791384262
322 => 0.028927066829521
323 => 0.029304728142449
324 => 0.029090349315809
325 => 0.029229078689926
326 => 0.028418069603545
327 => 0.028855670420423
328 => 0.028399863970864
329 => 0.02839964785926
330 => 0.028389585906622
331 => 0.028925840173173
401 => 0.028943327405553
402 => 0.028547034692337
403 => 0.028489922721107
404 => 0.028701095612341
405 => 0.028453867462974
406 => 0.028569543958027
407 => 0.028457371186167
408 => 0.028432118732502
409 => 0.028230902885343
410 => 0.028144213565842
411 => 0.028178206681727
412 => 0.028062170652559
413 => 0.027992254747779
414 => 0.028375677873404
415 => 0.028170830364627
416 => 0.028344282054757
417 => 0.028146611962506
418 => 0.027461401302004
419 => 0.027067329405178
420 => 0.025773029986551
421 => 0.026140091696101
422 => 0.026383453989284
423 => 0.026303022752839
424 => 0.02647582017148
425 => 0.026486428529582
426 => 0.026430250327321
427 => 0.026365203165975
428 => 0.026333541805166
429 => 0.026569519648972
430 => 0.026706512729951
501 => 0.026407878651173
502 => 0.02633791286485
503 => 0.026639848406534
504 => 0.026824028912539
505 => 0.028183914286793
506 => 0.028083169585896
507 => 0.028336019014997
508 => 0.028307552049571
509 => 0.028572578533342
510 => 0.029005784825759
511 => 0.028124955306891
512 => 0.028277836854574
513 => 0.028240353829633
514 => 0.028649583667364
515 => 0.028650861238248
516 => 0.028405507507982
517 => 0.028538517745569
518 => 0.028464275079893
519 => 0.028598441611267
520 => 0.028081824078994
521 => 0.028711008467887
522 => 0.029067715472642
523 => 0.029072668349749
524 => 0.029241744639001
525 => 0.02941353594112
526 => 0.029743274385667
527 => 0.029404339714867
528 => 0.028794629236723
529 => 0.028838648363892
530 => 0.028481175333641
531 => 0.028487184519862
601 => 0.028455107012864
602 => 0.028551374026047
603 => 0.028102949274824
604 => 0.028208193667637
605 => 0.028060850901388
606 => 0.028277516560175
607 => 0.028044420127437
608 => 0.028240335754183
609 => 0.028324886443981
610 => 0.02863688030958
611 => 0.027998338379814
612 => 0.026696308159531
613 => 0.026970010697425
614 => 0.02656518314501
615 => 0.026602651476273
616 => 0.026678343468465
617 => 0.026433000956891
618 => 0.026479804576468
619 => 0.026478132421825
620 => 0.02646372269648
621 => 0.026399899633642
622 => 0.026307343565519
623 => 0.026676058453666
624 => 0.026738710298043
625 => 0.026877977587172
626 => 0.027292342573716
627 => 0.027250937740161
628 => 0.02731847074156
629 => 0.027171046578689
630 => 0.026609490060366
701 => 0.026639985281041
702 => 0.026259709390572
703 => 0.026868253077676
704 => 0.026724141900186
705 => 0.026631232486559
706 => 0.026605881292251
707 => 0.02702127340945
708 => 0.027145565241389
709 => 0.027068114912639
710 => 0.026909262028786
711 => 0.027214306526424
712 => 0.027295923565198
713 => 0.027314194610258
714 => 0.027854674973592
715 => 0.027344401458581
716 => 0.027467229365327
717 => 0.028425497630985
718 => 0.027556480546014
719 => 0.028016818277317
720 => 0.027994287140851
721 => 0.028229780347206
722 => 0.027974969824399
723 => 0.027978128506217
724 => 0.028187230519768
725 => 0.027893584453482
726 => 0.027820873557915
727 => 0.027720423976456
728 => 0.027939751962699
729 => 0.0280712291711
730 => 0.029130838911442
731 => 0.029815395127779
801 => 0.029785676737039
802 => 0.030057247197904
803 => 0.029934902217984
804 => 0.029539818004847
805 => 0.030214178581284
806 => 0.030000782678455
807 => 0.030018374777408
808 => 0.030017719998606
809 => 0.030159609618594
810 => 0.03005906781884
811 => 0.02986088961112
812 => 0.029992449553994
813 => 0.03038313555079
814 => 0.031595836872553
815 => 0.032274480598368
816 => 0.031554981668129
817 => 0.032051282395733
818 => 0.031753678809201
819 => 0.031699595384589
820 => 0.03201130891786
821 => 0.032323568064407
822 => 0.032303678506705
823 => 0.032076994400997
824 => 0.031948946301578
825 => 0.032918569409635
826 => 0.033632971198553
827 => 0.033584253785959
828 => 0.033799276601397
829 => 0.034430590237928
830 => 0.034488309644972
831 => 0.03448103832635
901 => 0.034337974753593
902 => 0.034959585015193
903 => 0.035478143231611
904 => 0.034304859670004
905 => 0.034751630690855
906 => 0.034952200596178
907 => 0.035246696723601
908 => 0.035743561053847
909 => 0.036283287503248
910 => 0.036359610740993
911 => 0.03630545575141
912 => 0.035949491649404
913 => 0.036540066770614
914 => 0.036886011825929
915 => 0.037092014189557
916 => 0.037614401908192
917 => 0.034953439247631
918 => 0.03306987761806
919 => 0.032775732270643
920 => 0.03337388840131
921 => 0.033531617402761
922 => 0.033468037040052
923 => 0.031347917180038
924 => 0.032764570278349
925 => 0.034288769896555
926 => 0.034347320611389
927 => 0.035110366809774
928 => 0.035358845930288
929 => 0.03597319813474
930 => 0.035934770237081
1001 => 0.036084355222387
1002 => 0.036049968224716
1003 => 0.037187926316343
1004 => 0.038443263079819
1005 => 0.038399794759427
1006 => 0.038219325247207
1007 => 0.038487353247478
1008 => 0.039782995317449
1009 => 0.039663713357887
1010 => 0.039779585621189
1011 => 0.041307220640872
1012 => 0.043293363470007
1013 => 0.042370600720394
1014 => 0.044372730369226
1015 => 0.045632964854834
1016 => 0.047812410087015
1017 => 0.047539532809951
1018 => 0.048387974845331
1019 => 0.047051025532802
1020 => 0.0439811196692
1021 => 0.043495295315157
1022 => 0.044467927974983
1023 => 0.046859050461057
1024 => 0.044392623018614
1025 => 0.044891578077938
1026 => 0.044747878987286
1027 => 0.044740221873427
1028 => 0.045032462765693
1029 => 0.044608552109201
1030 => 0.042881463834582
1031 => 0.043672978213045
1101 => 0.043367336499878
1102 => 0.043706468767736
1103 => 0.045536625748578
1104 => 0.044727469721854
1105 => 0.043875089578199
1106 => 0.044944163436639
1107 => 0.046305461832067
1108 => 0.04622027422497
1109 => 0.046054974661543
1110 => 0.046986759645775
1111 => 0.048525795452342
1112 => 0.04894179064651
1113 => 0.049248869794198
1114 => 0.049291210820519
1115 => 0.049727349706431
1116 => 0.047382120995732
1117 => 0.051104059189356
1118 => 0.051746735098928
1119 => 0.051625938664116
1120 => 0.052340245889667
1121 => 0.052130078583685
1122 => 0.051825579131556
1123 => 0.05295790802156
1124 => 0.0516597843234
1125 => 0.049817261163091
1126 => 0.04880641651637
1127 => 0.050137578289684
1128 => 0.050950472333503
1129 => 0.051487743586696
1130 => 0.051650321543284
1201 => 0.047564174424534
1202 => 0.045361967755636
1203 => 0.046773556982049
1204 => 0.048495793260957
1205 => 0.047372553886245
1206 => 0.04741658274316
1207 => 0.045815138576937
1208 => 0.048637485534893
1209 => 0.048226293322793
1210 => 0.050359559246553
1211 => 0.049850438213319
1212 => 0.05159003376124
1213 => 0.051131939953277
1214 => 0.053033461738452
1215 => 0.053792030260205
1216 => 0.055065784869992
1217 => 0.056002763946065
1218 => 0.056552975981089
1219 => 0.056519943314299
1220 => 0.058700157511611
1221 => 0.057414561370338
1222 => 0.055799549625154
1223 => 0.05577033915798
1224 => 0.056606776625705
1225 => 0.058359720092642
1226 => 0.058814232829329
1227 => 0.059068243443369
1228 => 0.058679217345794
1229 => 0.057283794873948
1230 => 0.056681258525558
1231 => 0.057194636951545
]
'min_raw' => 0.021169060536905
'max_raw' => 0.059068243443369
'avg_raw' => 0.040118651990137
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.021169'
'max' => '$0.059068'
'avg' => '$0.040118'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0083805140876202
'max_diff' => 0.030518714386245
'year' => 2036
]
11 => [
'items' => [
101 => 0.056566819251674
102 => 0.057650608736186
103 => 0.059138883183364
104 => 0.058831560395297
105 => 0.059858894399398
106 => 0.060922077014954
107 => 0.062442475905718
108 => 0.062839964475972
109 => 0.063496997967464
110 => 0.064173301254469
111 => 0.06439051164337
112 => 0.064805233672208
113 => 0.064803047882403
114 => 0.066052840630318
115 => 0.067431400734128
116 => 0.067951775259576
117 => 0.069148347787226
118 => 0.067099259266528
119 => 0.06865351644771
120 => 0.070055495330717
121 => 0.068383998309591
122 => 0.070687767544356
123 => 0.070777217683288
124 => 0.072127808581073
125 => 0.07075872596426
126 => 0.069945769076662
127 => 0.072292745150059
128 => 0.073428372942922
129 => 0.073086312609666
130 => 0.070483216583987
131 => 0.068968103045002
201 => 0.065002758669901
202 => 0.069699880372337
203 => 0.071987711336675
204 => 0.070477291654489
205 => 0.071239059486318
206 => 0.075395017772725
207 => 0.076977337609817
208 => 0.076648226144953
209 => 0.076703840564879
210 => 0.077557631627837
211 => 0.081343811392322
212 => 0.079075044714483
213 => 0.080809431830625
214 => 0.081729344503229
215 => 0.082583810660833
216 => 0.080485511834559
217 => 0.077755655891707
218 => 0.076890995923049
219 => 0.070327110184214
220 => 0.069985431425997
221 => 0.069793636785083
222 => 0.068584398704015
223 => 0.067634268810482
224 => 0.066878690243084
225 => 0.06489582644737
226 => 0.065564984770846
227 => 0.062404713736316
228 => 0.06442654315108
301 => 0.059382674272557
302 => 0.063583358153964
303 => 0.061297116898973
304 => 0.062832266413438
305 => 0.062826910421402
306 => 0.060000213445676
307 => 0.058369833621738
308 => 0.059408775100883
309 => 0.060522602837804
310 => 0.060703317640753
311 => 0.06214742437555
312 => 0.062550443524261
313 => 0.061329276688501
314 => 0.059278151301119
315 => 0.059754580947419
316 => 0.058360178790162
317 => 0.055916542644473
318 => 0.057671604786101
319 => 0.058270860165887
320 => 0.058535525480427
321 => 0.05613248998465
322 => 0.055377404059438
323 => 0.05497540264864
324 => 0.058967949594642
325 => 0.059186670329009
326 => 0.058067664127991
327 => 0.063125678265113
328 => 0.061980893887773
329 => 0.063259898516244
330 => 0.059711349950716
331 => 0.059846909284674
401 => 0.05816696952574
402 => 0.059107623537128
403 => 0.058442799600573
404 => 0.059031627988732
405 => 0.059384569296764
406 => 0.061064233394114
407 => 0.063602537219874
408 => 0.060813347589831
409 => 0.05959805772609
410 => 0.060352016722506
411 => 0.062359908885514
412 => 0.06540196829458
413 => 0.063601007897262
414 => 0.064400243539301
415 => 0.064574840971568
416 => 0.063246879449763
417 => 0.065450932130074
418 => 0.066632101867144
419 => 0.067843737608741
420 => 0.068895766973906
421 => 0.067359783649106
422 => 0.069003505981203
423 => 0.067678955937584
424 => 0.066490697618992
425 => 0.066492499716369
426 => 0.065747087915432
427 => 0.064302758623184
428 => 0.064036402141707
429 => 0.065422022195468
430 => 0.066533158259876
501 => 0.066624676748124
502 => 0.067239858765613
503 => 0.067603917146684
504 => 0.071172184194552
505 => 0.072607370719458
506 => 0.074362289635422
507 => 0.075045929455
508 => 0.077103440213492
509 => 0.075441833173156
510 => 0.075082334037981
511 => 0.07009148594452
512 => 0.070908737040232
513 => 0.072217234897468
514 => 0.070113062592236
515 => 0.071447675606204
516 => 0.07171115648613
517 => 0.070041563622476
518 => 0.070933365309803
519 => 0.068565004429035
520 => 0.063654161015091
521 => 0.065456399302633
522 => 0.066783453309111
523 => 0.064889583617287
524 => 0.068284271737003
525 => 0.066301165018052
526 => 0.065672615394054
527 => 0.06322041921672
528 => 0.064377761418735
529 => 0.065943083318504
530 => 0.06497589637265
531 => 0.066982954509149
601 => 0.069825484093284
602 => 0.071851239950502
603 => 0.072006752331309
604 => 0.070704327030219
605 => 0.072791471887182
606 => 0.072806674458878
607 => 0.070452366533986
608 => 0.069010366038831
609 => 0.068682740492337
610 => 0.069501213342251
611 => 0.070494990480471
612 => 0.072061900046143
613 => 0.073008750680042
614 => 0.07547763496248
615 => 0.076145644260848
616 => 0.07687958395199
617 => 0.077860353717974
618 => 0.079038019286244
619 => 0.076461354067407
620 => 0.076563729780056
621 => 0.074164374804634
622 => 0.071600319911085
623 => 0.073546117961334
624 => 0.076089990073367
625 => 0.075506423000138
626 => 0.075440759783206
627 => 0.075551187100627
628 => 0.075111196584931
629 => 0.073121135789248
630 => 0.072121739716095
701 => 0.073411215623592
702 => 0.074096514680457
703 => 0.075159353753296
704 => 0.075028336403758
705 => 0.077766095714808
706 => 0.078829906197538
707 => 0.078557737953039
708 => 0.078607823460121
709 => 0.080533801524892
710 => 0.082675885240517
711 => 0.084682229313041
712 => 0.086723168678096
713 => 0.084262736614303
714 => 0.083013480950662
715 => 0.084302393913317
716 => 0.083618478552569
717 => 0.0875484590779
718 => 0.087820562402717
719 => 0.091750258745725
720 => 0.095480008514775
721 => 0.093137419510242
722 => 0.095346375428991
723 => 0.097735541353936
724 => 0.10234463005136
725 => 0.10079245112776
726 => 0.099603506398031
727 => 0.098479959373375
728 => 0.10081788237362
729 => 0.10382558296419
730 => 0.104473412864
731 => 0.10552314479177
801 => 0.10441948002484
802 => 0.10574872267192
803 => 0.11044153331494
804 => 0.10917349445461
805 => 0.10737267542552
806 => 0.11107719872586
807 => 0.11241785130728
808 => 0.12182725322891
809 => 0.13370701183797
810 => 0.12878871376712
811 => 0.12573576744206
812 => 0.1264532822453
813 => 0.13079136793412
814 => 0.13218462337342
815 => 0.12839727480547
816 => 0.1297350303472
817 => 0.13710619490736
818 => 0.14106058819861
819 => 0.13568999096322
820 => 0.12087272619174
821 => 0.10721053137514
822 => 0.11083436065715
823 => 0.11042353087709
824 => 0.11834292762547
825 => 0.10914325214716
826 => 0.10929815108833
827 => 0.11738131257469
828 => 0.1152248636706
829 => 0.11173169262308
830 => 0.10723603538956
831 => 0.098925397195447
901 => 0.091564433187626
902 => 0.10600097873573
903 => 0.10537844864054
904 => 0.10447693280892
905 => 0.106483158738
906 => 0.11622482237244
907 => 0.11600024549498
908 => 0.1145716019807
909 => 0.11565521549479
910 => 0.11154172993486
911 => 0.11260186882598
912 => 0.10720836721368
913 => 0.10964645519497
914 => 0.11172419784687
915 => 0.11214133544575
916 => 0.11308116775559
917 => 0.10505040356836
918 => 0.10865598091758
919 => 0.11077391981334
920 => 0.10120499483104
921 => 0.11058477293288
922 => 0.1049106058307
923 => 0.10298470829309
924 => 0.10557767560978
925 => 0.10456719372472
926 => 0.10369844073744
927 => 0.10321366164346
928 => 0.10511765066548
929 => 0.10502882730184
930 => 0.10191353171349
1001 => 0.097849755614169
1002 => 0.099213692262003
1003 => 0.098718161290871
1004 => 0.09692229312672
1005 => 0.098132491435409
1006 => 0.092803390551292
1007 => 0.08363494946273
1008 => 0.08969190248278
1009 => 0.089458716380205
1010 => 0.089341133373139
1011 => 0.09389276616582
1012 => 0.093455231696839
1013 => 0.092661102351288
1014 => 0.096907708318525
1015 => 0.095357640015573
1016 => 0.10013458528325
1017 => 0.10328099038999
1018 => 0.10248296027937
1019 => 0.10544216949016
1020 => 0.099245114607604
1021 => 0.1013035276569
1022 => 0.10172776373352
1023 => 0.096855305860073
1024 => 0.093526817747045
1025 => 0.093304845537448
1026 => 0.087533705843373
1027 => 0.090616602084936
1028 => 0.093329423198597
1029 => 0.092030192408576
1030 => 0.091618894753871
1031 => 0.09372012527218
1101 => 0.093883408879275
1102 => 0.090160525333488
1103 => 0.090934630711047
1104 => 0.094162778819776
1105 => 0.090853289661282
1106 => 0.084423492828312
1107 => 0.082828814314839
1108 => 0.082616054805386
1109 => 0.0782911602013
1110 => 0.082935378358362
1111 => 0.080908052675496
1112 => 0.087312350216578
1113 => 0.083654249808048
1114 => 0.083496556410789
1115 => 0.08325817971224
1116 => 0.079535564267358
1117 => 0.080350580465234
1118 => 0.083059818437445
1119 => 0.08402650506768
1120 => 0.083925671732317
1121 => 0.083046541693362
1122 => 0.083449002923321
1123 => 0.082152535074834
1124 => 0.081694725293888
1125 => 0.080249751694723
1126 => 0.078126039688095
1127 => 0.078421354868099
1128 => 0.074213725683495
1129 => 0.071921185987939
1130 => 0.071286641215397
1201 => 0.070438101426102
1202 => 0.071382486042476
1203 => 0.074201805998675
1204 => 0.070801107979404
1205 => 0.064970849756594
1206 => 0.065321258210061
1207 => 0.066108521967799
1208 => 0.064641461163525
1209 => 0.063253011233361
1210 => 0.064460155799136
1211 => 0.061989798531195
1212 => 0.066407052841358
1213 => 0.066287578491481
1214 => 0.067934057737136
1215 => 0.068963634998599
1216 => 0.066590792740522
1217 => 0.065994029329464
1218 => 0.066333972889788
1219 => 0.060715463071274
1220 => 0.067474905617663
1221 => 0.067533361557496
1222 => 0.067032826311015
1223 => 0.070632020792592
1224 => 0.07822744376563
1225 => 0.075369740117991
1226 => 0.074263150891076
1227 => 0.072159523961798
1228 => 0.074962481944053
1229 => 0.074747258503972
1230 => 0.073773936486859
1231 => 0.07318526829396
]
'min_raw' => 0.05497540264864
'max_raw' => 0.14106058819861
'avg_raw' => 0.098017995423626
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.054975'
'max' => '$0.14106'
'avg' => '$0.098017'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.033806342111735
'max_diff' => 0.081992344755242
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017256150701553
]
1 => [
'year' => 2028
'avg' => 0.0029616564100207
]
2 => [
'year' => 2029
'avg' => 0.0080907115255432
]
3 => [
'year' => 2030
'avg' => 0.0062419718929075
]
4 => [
'year' => 2031
'avg' => 0.0061303899578958
]
5 => [
'year' => 2032
'avg' => 0.010748502900915
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017256150701553
'min' => '$0.001725'
'max_raw' => 0.010748502900915
'max' => '$0.010748'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010748502900915
]
1 => [
'year' => 2033
'avg' => 0.027646254716672
]
2 => [
'year' => 2034
'avg' => 0.017523524856258
]
3 => [
'year' => 2035
'avg' => 0.020669037753204
]
4 => [
'year' => 2036
'avg' => 0.040118651990137
]
5 => [
'year' => 2037
'avg' => 0.098017995423626
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010748502900915
'min' => '$0.010748'
'max_raw' => 0.098017995423626
'max' => '$0.098017'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.098017995423626
]
]
]
]
'prediction_2025_max_price' => '$0.00295'
'last_price' => 0.00286087
'sma_50day_nextmonth' => '$0.002789'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002928'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.002938'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002946'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003057'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.00341'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003163'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.0029092'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002927'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002972'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0031094'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00326'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003422'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0032015'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002943'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003028'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003157'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003345'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.00180096'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00090048'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00045'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '36.60'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 24.89
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002942'
'vwma_10_action' => 'SELL'
'hma_9' => '0.002932'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -118.94
'cci_20_action' => 'BUY'
'adx_14' => 20.06
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000439'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 25.5
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.000360'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 27
'buy_signals' => 3
'sell_pct' => 90
'buy_pct' => 10
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767713286
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Elympics para 2026
La previsión del precio de Elympics para 2026 sugiere que el precio medio podría oscilar entre $0.000988 en el extremo inferior y $0.00295 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Elympics podría potencialmente ganar 3.13% para 2026 si ELP alcanza el objetivo de precio previsto.
Predicción de precio de Elympics 2027-2032
La predicción del precio de ELP para 2027-2032 está actualmente dentro de un rango de precios de $0.001725 en el extremo inferior y $0.010748 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Elympics alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Elympics | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000951 | $0.001725 | $0.002499 |
| 2028 | $0.001717 | $0.002961 | $0.004206 |
| 2029 | $0.003772 | $0.00809 | $0.0124091 |
| 2030 | $0.0032081 | $0.006241 | $0.009275 |
| 2031 | $0.003793 | $0.00613 | $0.008467 |
| 2032 | $0.005789 | $0.010748 | $0.0157071 |
Predicción de precio de Elympics 2032-2037
La predicción de precio de Elympics para 2032-2037 se estima actualmente entre $0.010748 en el extremo inferior y $0.098017 en el extremo superior. Comparado con el precio actual, Elympics podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Elympics | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005789 | $0.010748 | $0.0157071 |
| 2033 | $0.013454 | $0.027646 | $0.041838 |
| 2034 | $0.010816 | $0.017523 | $0.02423 |
| 2035 | $0.012788 | $0.020669 | $0.028549 |
| 2036 | $0.021169 | $0.040118 | $0.059068 |
| 2037 | $0.054975 | $0.098017 | $0.14106 |
Elympics Histograma de precios potenciales
Pronóstico de precio de Elympics basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Elympics es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 27 indicando señales bajistas. La predicción de precio de ELP se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Elympics
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Elympics disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Elympics alcance $0.002789 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 36.60, lo que sugiere que el mercado de ELP está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ELP para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002928 | SELL |
| SMA 5 | $0.002938 | SELL |
| SMA 10 | $0.002946 | SELL |
| SMA 21 | $0.003057 | SELL |
| SMA 50 | $0.00341 | SELL |
| SMA 100 | $0.003163 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.0029092 | SELL |
| EMA 5 | $0.002927 | SELL |
| EMA 10 | $0.002972 | SELL |
| EMA 21 | $0.0031094 | SELL |
| EMA 50 | $0.00326 | SELL |
| EMA 100 | $0.003422 | SELL |
| EMA 200 | $0.002946 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0032015 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.003345 | SELL |
| EMA 50 | $0.00180096 | BUY |
| EMA 100 | $0.00090048 | BUY |
| EMA 200 | $0.00045 | BUY |
Osciladores de Elympics
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 36.60 | NEUTRAL |
| Stoch RSI (14) | 24.89 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Materias Primas (20) | -118.94 | BUY |
| Índice Direccional Medio (14) | 20.06 | NEUTRAL |
| Oscilador Asombroso (5, 34) | -0.000439 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Rango Percentil de Williams (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 25.5 | BUY |
| VWMA (10) | 0.002942 | SELL |
| Promedio Móvil de Hull (9) | 0.002932 | SELL |
| Nube Ichimoku B/L (9, 26, 52, 26) | 0.000360 | NEUTRAL |
Predicción de precios de Elympics basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Elympics
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Elympics por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.00402 | $0.005648 | $0.007937 | $0.011153 | $0.015672 | $0.022022 |
| Amazon.com acción | $0.005969 | $0.012455 | $0.025989 | $0.054227 | $0.113149 | $0.236092 |
| Apple acción | $0.004057 | $0.005755 | $0.008164 | $0.01158 | $0.016425 | $0.023298 |
| Netflix acción | $0.004514 | $0.007122 | $0.011238 | $0.017731 | $0.027978 | $0.044144 |
| Google acción | $0.0037048 | $0.004797 | $0.006213 | $0.008045 | $0.010419 | $0.013492 |
| Tesla acción | $0.006485 | $0.0147018 | $0.033327 | $0.075552 | $0.17127 | $0.388257 |
| Kodak acción | $0.002145 | $0.0016087 | $0.0012064 | $0.0009046 | $0.000678 | $0.0005087 |
| Nokia acción | $0.001895 | $0.001255 | $0.000831 | $0.00055 | $0.000364 | $0.000241 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Elympics
Podría preguntarse cosas como: "¿Debo invertir en Elympics ahora?", "¿Debería comprar ELP hoy?", "¿Será Elympics una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Elympics regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Elympics, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Elympics a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Elympics es de $0.00286 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Elympics
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Elympics
basado en el historial de precios del último mes
Predicción de precios de Elympics basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Elympics ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002935 | $0.003011 | $0.003089 | $0.00317 |
| Si Elympics ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.0030095 | $0.003166 | $0.00333 | $0.0035037 |
| Si Elympics ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003232 | $0.003652 | $0.004127 | $0.004664 |
| Si Elympics ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0036045 | $0.004541 | $0.005721 | $0.0072091 |
| Si Elympics ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004348 | $0.0066085 | $0.010044 | $0.015265 |
| Si Elympics ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006579 | $0.015129 | $0.034792 | $0.080011 |
| Si Elympics ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.010297 | $0.037062 | $0.1334012 | $0.480154 |
Cuadro de preguntas
¿Es ELP una buena inversión?
La decisión de adquirir Elympics depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Elympics ha experimentado una caída de -2.5404% durante las últimas 24 horas, y Elympics ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Elympics dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Elympics subir?
Parece que el valor medio de Elympics podría potencialmente aumentar hasta $0.00295 para el final de este año. Mirando las perspectivas de Elympics en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.009275. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Elympics la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Elympics, el precio de Elympics aumentará en un 0.86% durante la próxima semana y alcanzará $0.002885 para el 13 de enero de 2026.
¿Cuál será el precio de Elympics el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Elympics, el precio de Elympics disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002528 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Elympics este año en 2026?
Según nuestra predicción más reciente sobre el valor de Elympics en 2026, se anticipa que ELP fluctúe dentro del rango de $0.000988 y $0.00295. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Elympics no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Elympics en 5 años?
El futuro de Elympics parece estar en una tendencia alcista, con un precio máximo de $0.009275 proyectada después de un período de cinco años. Basado en el pronóstico de Elympics para 2030, el valor de Elympics podría potencialmente alcanzar su punto más alto de aproximadamente $0.009275, mientras que su punto más bajo se anticipa que esté alrededor de $0.0032081.
¿Cuánto será Elympics en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Elympics, se espera que el valor de ELP en 2026 crezca en un 3.13% hasta $0.00295 si ocurre lo mejor. El precio estará entre $0.00295 y $0.000988 durante 2026.
¿Cuánto será Elympics en 2027?
Según nuestra última simulación experimental para la predicción de precios de Elympics, el valor de ELP podría disminuir en un -12.62% hasta $0.002499 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002499 y $0.000951 a lo largo del año.
¿Cuánto será Elympics en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Elympics sugiere que el valor de ELP en 2028 podría aumentar en un 47.02% , alcanzando $0.004206 en el mejor escenario. Se espera que el precio oscile entre $0.004206 y $0.001717 durante el año.
¿Cuánto será Elympics en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Elympics podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.0124091 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.0124091 y $0.003772.
¿Cuánto será Elympics en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Elympics, se espera que el valor de ELP en 2030 aumente en un 224.23% , alcanzando $0.009275 en el mejor escenario. Se pronostica que el precio oscile entre $0.009275 y $0.0032081 durante el transcurso de 2030.
¿Cuánto será Elympics en 2031?
Nuestra simulación experimental indica que el precio de Elympics podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.008467 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.008467 y $0.003793 durante el año.
¿Cuánto será Elympics en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Elympics, ELP podría experimentar un 449.04% aumento en valor, alcanzando $0.0157071 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.0157071 y $0.005789 a lo largo del año.
¿Cuánto será Elympics en 2033?
Según nuestra predicción experimental de precios de Elympics, se anticipa que el valor de ELP aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.041838. A lo largo del año, el precio de ELP podría oscilar entre $0.041838 y $0.013454.
¿Cuánto será Elympics en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Elympics sugieren que ELP podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.02423 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.02423 y $0.010816.
¿Cuánto será Elympics en 2035?
Basado en nuestra predicción experimental para el precio de Elympics, ELP podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.028549 en 2035. El rango de precios esperado para el año está entre $0.028549 y $0.012788.
¿Cuánto será Elympics en 2036?
Nuestra reciente simulación de predicción de precios de Elympics sugiere que el valor de ELP podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.059068 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.059068 y $0.021169.
¿Cuánto será Elympics en 2037?
Según la simulación experimental, el valor de Elympics podría aumentar en un 4830.69% en 2037, con un máximo de $0.14106 bajo condiciones favorables. Se espera que el precio caiga entre $0.14106 y $0.054975 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Elympics?
Los traders de Elympics utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Elympics
Las medias móviles son herramientas populares para la predicción de precios de Elympics. Una media móvil simple (SMA) calcula el precio de cierre promedio de ELP durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ELP por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ELP.
¿Cómo leer gráficos de Elympics y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Elympics en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ELP dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Elympics?
La acción del precio de Elympics está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ELP. La capitalización de mercado de Elympics puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ELP, grandes poseedores de Elympics, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Elympics.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


