Previsão de Preço Elympics - Projeção ELP
Previsão de Preço Elympics até $0.002958 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.000991 | $0.002958 |
| 2027 | $0.000954 | $0.0025066 |
| 2028 | $0.001722 | $0.004217 |
| 2029 | $0.003782 | $0.012443 |
| 2030 | $0.003217 | $0.0093014 |
| 2031 | $0.0038035 | $0.008491 |
| 2032 | $0.0058058 | $0.01575 |
| 2033 | $0.013491 | $0.041954 |
| 2034 | $0.010846 | $0.024297 |
| 2035 | $0.012823 | $0.028628 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Elympics hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,955.66, com um retorno de 39.56% nos próximos 90 dias.
Previsão de preço de longo prazo de Elympics para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Elympics'
'name_with_ticker' => 'Elympics <small>ELP</small>'
'name_lang' => 'Elympics'
'name_lang_with_ticker' => 'Elympics <small>ELP</small>'
'name_with_lang' => 'Elympics'
'name_with_lang_with_ticker' => 'Elympics <small>ELP</small>'
'image' => '/uploads/coins/elympics.png?1753327675'
'price_for_sd' => 0.002868
'ticker' => 'ELP'
'marketcap' => '$3.08M'
'low24h' => '$0.002858'
'high24h' => '$0.002938'
'volume24h' => '$42.52K'
'current_supply' => '1.07B'
'max_supply' => '3.5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002868'
'change_24h_pct' => '-2.354%'
'ath_price' => '$0.01138'
'ath_days' => 166
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '24 de jul. de 2025'
'ath_pct' => '-74.75%'
'fdv' => '$10.05M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.141451'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002893'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002535'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000991'
'current_year_max_price_prediction' => '$0.002958'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003217'
'grand_prediction_max_price' => '$0.0093014'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0029231622510112
107 => 0.0029340762777486
108 => 0.0029586661372719
109 => 0.0027485484799399
110 => 0.0028428851393517
111 => 0.0028982990886065
112 => 0.0026479368498966
113 => 0.0028933502321231
114 => 0.0027448907989954
115 => 0.0026945014376059
116 => 0.0027623440744232
117 => 0.0027359057328764
118 => 0.0027131755993259
119 => 0.0027004917942515
120 => 0.0027503079392116
121 => 0.002747983956506
122 => 0.0026664750744543
123 => 0.0025601500605449
124 => 0.0025958362252125
125 => 0.0025828711070292
126 => 0.0025358838461994
127 => 0.0025675475867352
128 => 0.0024281164980678
129 => 0.0021882325570129
130 => 0.0023467072363176
131 => 0.0023406061335516
201 => 0.0023375296808741
202 => 0.0024566190224531
203 => 0.0024451713301189
204 => 0.0024243936564361
205 => 0.0025355022479281
206 => 0.0024949461174121
207 => 0.0026199305554364
208 => 0.0027022533898059
209 => 0.0026813736561451
210 => 0.0027587986797703
211 => 0.0025966583623705
212 => 0.0026505148718703
213 => 0.0026616146238363
214 => 0.002534131185156
215 => 0.0024470443141607
216 => 0.0024412366127284
217 => 0.0022902399797326
218 => 0.0023709011622767
219 => 0.002441879664929
220 => 0.0024078864703129
221 => 0.0023971252404152
222 => 0.0024521020301364
223 => 0.0024563741975421
224 => 0.0023589683279482
225 => 0.0023792220926795
226 => 0.0024636836585172
227 => 0.0023770938779264
228 => 0.0022088640785989
301 => 0.0021671407624067
302 => 0.0021615741029134
303 => 0.0020484171602823
304 => 0.0021699289139025
305 => 0.0021168857771347
306 => 0.0022844484106297
307 => 0.0021887375330338
308 => 0.0021846116283955
309 => 0.0021783747183962
310 => 0.0020809758634192
311 => 0.002102300022639
312 => 0.0021731847756468
313 => 0.0021984772540939
314 => 0.0021958390413767
315 => 0.0021728374016861
316 => 0.002183367434549
317 => 0.0021494465297908
318 => 0.0021374683523181
319 => 0.002099661929357
320 => 0.0020440969318951
321 => 0.0020518235855921
322 => 0.0019417347862477
323 => 0.00188175256551
324 => 0.0018651502773627
325 => 0.0018429490037949
326 => 0.0018676579702876
327 => 0.001941422918511
328 => 0.0018524467408468
329 => 0.0016999033251945
330 => 0.0017090714443966
331 => 0.0017296694862045
401 => 0.0016912851715651
402 => 0.0016549576391102
403 => 0.0016865414812339
404 => 0.0016219068250777
405 => 0.0017374802756053
406 => 0.0017343543376593
407 => 0.0017774329730018
408 => 0.001804370927744
409 => 0.0017422876633296
410 => 0.0017266738902204
411 => 0.0017355682049898
412 => 0.001588564994182
413 => 0.0017654196744597
414 => 0.0017669491210788
415 => 0.0017538530705721
416 => 0.0018480227280443
417 => 0.0020467500775633
418 => 0.0019719808548851
419 => 0.0019430279519524
420 => 0.0018879884623129
421 => 0.0019613253143361
422 => 0.0019556941883338
423 => 0.0019302281010104
424 => 0.0019148261319382
425 => 0.0019432047322039
426 => 0.0019113097093132
427 => 0.0019055804867854
428 => 0.0018708676317227
429 => 0.0018584767217996
430 => 0.0018493029853888
501 => 0.0018392036029933
502 => 0.0018614803239485
503 => 0.0018109983435173
504 => 0.0017501220239268
505 => 0.0017450608166437
506 => 0.0017590352549381
507 => 0.0017528526062674
508 => 0.0017450312165005
509 => 0.0017300980534068
510 => 0.0017256677029134
511 => 0.0017400641927164
512 => 0.0017238113950963
513 => 0.0017477932833204
514 => 0.0017412715367019
515 => 0.0017048415902409
516 => 0.001659436388857
517 => 0.001659032187324
518 => 0.0016492497111653
519 => 0.0016367902569721
520 => 0.0016333243218492
521 => 0.0016838815781447
522 => 0.0017885335856251
523 => 0.0017679878924464
524 => 0.0017828342613753
525 => 0.0018558637025143
526 => 0.0018790775657805
527 => 0.0018626009154846
528 => 0.0018400466603242
529 => 0.0018410389330864
530 => 0.0019181136506071
531 => 0.0019229207061971
601 => 0.0019350665848581
602 => 0.0019506774713624
603 => 0.0018652595169597
604 => 0.0018370157551156
605 => 0.0018236322938496
606 => 0.0017824164132017
607 => 0.0018268642068979
608 => 0.0018009663809554
609 => 0.0018044608824708
610 => 0.0018021850837746
611 => 0.0018034278237515
612 => 0.0017374479704704
613 => 0.0017614875612071
614 => 0.0017215170790521
615 => 0.0016680010903439
616 => 0.0016678216859846
617 => 0.0016809196484049
618 => 0.001673128467834
619 => 0.0016521626012472
620 => 0.0016551407036397
621 => 0.0016290493929744
622 => 0.0016583086611529
623 => 0.0016591477122696
624 => 0.0016478813002578
625 => 0.0016929592398878
626 => 0.0017114277085343
627 => 0.0017040119147981
628 => 0.0017109073966767
629 => 0.0017688416587562
630 => 0.0017782874713242
701 => 0.0017824826773116
702 => 0.0017768616570468
703 => 0.0017119663286361
704 => 0.0017148447124074
705 => 0.0016937250421315
706 => 0.0016758811462845
707 => 0.0016765948085394
708 => 0.0016857688905489
709 => 0.0017258326447371
710 => 0.0018101444535389
711 => 0.0018133440250518
712 => 0.0018172219990635
713 => 0.0018014483298443
714 => 0.0017966908402741
715 => 0.0018029671970295
716 => 0.0018346302795111
717 => 0.0019160763240969
718 => 0.0018872878523419
719 => 0.0018638823766858
720 => 0.0018844152889071
721 => 0.0018812544080129
722 => 0.0018545733922679
723 => 0.0018538245450198
724 => 0.0018026151453683
725 => 0.0017836841962987
726 => 0.0017678640782992
727 => 0.0017505889224384
728 => 0.0017403476309757
729 => 0.0017560829092462
730 => 0.001759681753561
731 => 0.0017252762926169
801 => 0.0017205869554228
802 => 0.0017486831975232
803 => 0.0017363190889083
804 => 0.0017490358812338
805 => 0.001751986286136
806 => 0.0017515112029931
807 => 0.0017386016535904
808 => 0.0017468298154114
809 => 0.0017273677597716
810 => 0.0017062056973695
811 => 0.00169270562
812 => 0.0016809250119697
813 => 0.0016874615779979
814 => 0.0016641599136374
815 => 0.0016567052422386
816 => 0.0017440422993259
817 => 0.0018085591224279
818 => 0.0018076210222686
819 => 0.0018019105788082
820 => 0.0017934260181472
821 => 0.0018340095810517
822 => 0.0018198710792297
823 => 0.0018301580206166
824 => 0.0018327764789411
825 => 0.0018407017636602
826 => 0.0018435343717461
827 => 0.0018349722627378
828 => 0.0018062367791326
829 => 0.0017346306860762
830 => 0.0017012978564614
831 => 0.0016902974674864
901 => 0.0016906973107329
902 => 0.0016796678490148
903 => 0.0016829165197966
904 => 0.0016785380938942
905 => 0.0016702464144902
906 => 0.00168694959016
907 => 0.0016888744755551
908 => 0.0016849757547657
909 => 0.0016858940446474
910 => 0.0016536143016763
911 => 0.0016560684604265
912 => 0.0016424033926461
913 => 0.0016398413571721
914 => 0.0016052972557768
915 => 0.0015440973729076
916 => 0.0015780080488335
917 => 0.0015370487208776
918 => 0.0015215368027456
919 => 0.0015949678105843
920 => 0.0015875973740564
921 => 0.0015749823905724
922 => 0.0015563222008067
923 => 0.0015494009549079
924 => 0.0015073496558271
925 => 0.0015048650407424
926 => 0.0015257068000475
927 => 0.0015160890452493
928 => 0.0015025820749842
929 => 0.0014536611978635
930 => 0.0013986579348341
1001 => 0.0014003181376067
1002 => 0.0014178136522043
1003 => 0.0014686842204884
1004 => 0.00144880820939
1005 => 0.0014343879352872
1006 => 0.0014316874514196
1007 => 0.0014654896608686
1008 => 0.0015133268690208
1009 => 0.0015357710167886
1010 => 0.0015135295479896
1011 => 0.0014879797461991
1012 => 0.0014895348442477
1013 => 0.0014998802148689
1014 => 0.0015009673670455
1015 => 0.0014843370726419
1016 => 0.001489018403104
1017 => 0.0014819070340622
1018 => 0.0014382645753795
1019 => 0.0014374752216937
1020 => 0.0014267646585032
1021 => 0.0014264403469065
1022 => 0.0014082190070443
1023 => 0.0014056697156394
1024 => 0.0013694901393868
1025 => 0.0013933036460381
1026 => 0.0013773307960416
1027 => 0.0013532559434825
1028 => 0.001349105429827
1029 => 0.0013489806603746
1030 => 0.0013737001509143
1031 => 0.0013930147843988
1101 => 0.0013776086506059
1102 => 0.0013741009725766
1103 => 0.0014115537970953
1104 => 0.0014067875837852
1105 => 0.0014026600737975
1106 => 0.0015090435717139
1107 => 0.0014248327319052
1108 => 0.0013881119991619
1109 => 0.0013426631193141
1110 => 0.0013574615037656
1111 => 0.0013605797408031
1112 => 0.0012512833775454
1113 => 0.0012069418565838
1114 => 0.0011917255175647
1115 => 0.0011829682993318
1116 => 0.0011869590736467
1117 => 0.0011470465040396
1118 => 0.0011738684109086
1119 => 0.0011393074993543
1120 => 0.0011335132500613
1121 => 0.0011953124411957
1122 => 0.0012039114376164
1123 => 0.0011672254473868
1124 => 0.0011907837920365
1125 => 0.0011822412087811
1126 => 0.0011398999469871
1127 => 0.0011382828222278
1128 => 0.0011170374654268
1129 => 0.0010837925959451
1130 => 0.001068598798513
1201 => 0.0010606857368918
1202 => 0.0010639508203392
1203 => 0.001062299894235
1204 => 0.0010515264846755
1205 => 0.00106291741346
1206 => 0.0010338182974724
1207 => 0.0010222307950186
1208 => 0.0010169969889882
1209 => 0.00099116984866654
1210 => 0.0010322723142998
1211 => 0.0010403700178247
1212 => 0.0010484836763271
1213 => 0.0011191075341607
1214 => 0.0011155793658043
1215 => 0.0011474722894586
1216 => 0.0011462329890927
1217 => 0.0011371366106354
1218 => 0.0010987604862056
1219 => 0.0011140565254147
1220 => 0.0010669776942614
1221 => 0.0011022523556108
1222 => 0.001086154473276
1223 => 0.0010968096454004
1224 => 0.0010776506851826
1225 => 0.0010882540448212
1226 => 0.0010422902837355
1227 => 0.0009993699703612
1228 => 0.0010166423573851
1229 => 0.0010354194174171
1230 => 0.0010761328678723
1231 => 0.0010518842726598
]
'min_raw' => 0.00099116984866654
'max_raw' => 0.0029586661372719
'avg_raw' => 0.0019749179929692
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000991'
'max' => '$0.002958'
'avg' => '$0.001974'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0018776301513335
'max_diff' => 8.9866137271914E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010606049844392
102 => 0.001031392059808
103 => 0.00097111745203449
104 => 0.00097145859976869
105 => 0.00096218666451644
106 => 0.00095417435873379
107 => 0.0010546695155162
108 => 0.001042171354177
109 => 0.0010222571698018
110 => 0.0010489130969462
111 => 0.0010559613471696
112 => 0.0010561620009448
113 => 0.0010756094773002
114 => 0.0010859885989173
115 => 0.001087817964088
116 => 0.0011184189883238
117 => 0.0011286760480104
118 => 0.001170923425226
119 => 0.0010851080029629
120 => 0.0010833406908138
121 => 0.0010492882005056
122 => 0.0010276915728035
123 => 0.001050766940081
124 => 0.0010712085653872
125 => 0.0010499233787846
126 => 0.0010527027748001
127 => 0.0010241291508498
128 => 0.0010343428768981
129 => 0.0010431403137083
130 => 0.0010382828861911
131 => 0.0010310110820958
201 => 0.0010695325852253
202 => 0.0010673590510518
203 => 0.0011032311603716
204 => 0.0011311960348255
205 => 0.0011813140891662
206 => 0.0011290132867484
207 => 0.0011271072376315
208 => 0.0011457391734897
209 => 0.0011286731955581
210 => 0.0011394583045133
211 => 0.0011795764413764
212 => 0.001180424074391
213 => 0.0011662251292832
214 => 0.001165361122183
215 => 0.0011680881849104
216 => 0.0011840606764829
217 => 0.0011784793971424
218 => 0.0011849381948959
219 => 0.0011930150203874
220 => 0.0012264241951231
221 => 0.0012344790340457
222 => 0.001214909951419
223 => 0.0012166768204745
224 => 0.0012093574463888
225 => 0.0012022870227335
226 => 0.0012181803025581
227 => 0.0012472255838209
228 => 0.0012470448946336
301 => 0.0012537828353269
302 => 0.0012579805165588
303 => 0.0012399609958212
304 => 0.0012282309504172
305 => 0.0012327289962273
306 => 0.0012399214694323
307 => 0.0012303965741046
308 => 0.0011716045077815
309 => 0.0011894382650522
310 => 0.0011864698558162
311 => 0.0011822424800932
312 => 0.0012001744609333
313 => 0.0011984448776359
314 => 0.0011466371429496
315 => 0.0011499537060344
316 => 0.0011468388341356
317 => 0.0011569036224836
318 => 0.0011281296639575
319 => 0.0011369803398045
320 => 0.0011425314007259
321 => 0.0011458010182538
322 => 0.0011576131187624
323 => 0.0011562271051025
324 => 0.0011575269622073
325 => 0.0011750411889826
326 => 0.0012636221378555
327 => 0.0012684434034598
328 => 0.0012447017283292
329 => 0.00125418605926
330 => 0.0012359782178679
331 => 0.0012482012637764
401 => 0.0012565639613552
402 => 0.0012187745390507
403 => 0.0012165368947131
404 => 0.0011982539030827
405 => 0.0012080781471833
406 => 0.0011924470684311
407 => 0.001196282388405
408 => 0.0011855584994009
409 => 0.0012048593645033
410 => 0.001226440730739
411 => 0.0012318930361241
412 => 0.0012175503680209
413 => 0.0012071653310863
414 => 0.001188932627273
415 => 0.0012192540200569
416 => 0.0012281209193345
417 => 0.0012192074460097
418 => 0.0012171419994771
419 => 0.00121322798203
420 => 0.0012179723767812
421 => 0.0012280726282968
422 => 0.0012233095362044
423 => 0.0012264556424463
424 => 0.0012144659297029
425 => 0.0012399669610324
426 => 0.001280468735941
427 => 0.0012805989557701
428 => 0.0012758358380028
429 => 0.0012738868728353
430 => 0.0012787741207146
501 => 0.0012814252522037
502 => 0.0012972297156775
503 => 0.0013141885346624
504 => 0.0013933279431528
505 => 0.0013711059139301
506 => 0.0014413231051672
507 => 0.0014968557868746
508 => 0.0015135076099688
509 => 0.001498188716251
510 => 0.0014457836083527
511 => 0.0014432123637474
512 => 0.0015215277198133
513 => 0.0014994000446542
514 => 0.0014967680281037
515 => 0.0014687678188684
516 => 0.0014853194104198
517 => 0.0014816993345503
518 => 0.0014759848676902
519 => 0.0015075641513764
520 => 0.0015666777513349
521 => 0.0015574643424175
522 => 0.0015505869600584
523 => 0.0015204522725369
524 => 0.001538600085251
525 => 0.001532137996742
526 => 0.0015599032299195
527 => 0.0015434557208603
528 => 0.0014992324057517
529 => 0.0015062751144447
530 => 0.0015052106231937
531 => 0.0015271177777083
601 => 0.001520541793692
602 => 0.0015039265567737
603 => 0.0015664757074767
604 => 0.0015624141135467
605 => 0.0015681725251298
606 => 0.0015707075559934
607 => 0.0016087801217867
608 => 0.0016243772338059
609 => 0.0016279180513002
610 => 0.0016427341013945
611 => 0.0016275494144767
612 => 0.0016882989886463
613 => 0.0017286939106331
614 => 0.0017756146912245
615 => 0.0018441785627854
616 => 0.0018699592127436
617 => 0.0018653021690823
618 => 0.0019172865139911
619 => 0.0020107012262453
620 => 0.0018841839532577
621 => 0.0020174069489215
622 => 0.0019752300866278
623 => 0.0018752295048588
624 => 0.0018687906463223
625 => 0.0019365122013269
626 => 0.002086712092369
627 => 0.002049088723216
628 => 0.0020867736307228
629 => 0.0020428121843644
630 => 0.0020406291280166
701 => 0.0020846385213969
702 => 0.0021874688678572
703 => 0.0021386180247918
704 => 0.0020685783625394
705 => 0.0021202945592088
706 => 0.0020754932035457
707 => 0.0019745432101271
708 => 0.0020490599533347
709 => 0.0019992327292664
710 => 0.0020137749622105
711 => 0.0021185043759617
712 => 0.0021059030558195
713 => 0.0021222103309344
714 => 0.0020934284171924
715 => 0.0020665415712661
716 => 0.0020163552767014
717 => 0.0020014975890352
718 => 0.0020056037193825
719 => 0.0020014955542409
720 => 0.0019734167836678
721 => 0.0019673531758359
722 => 0.0019572468971301
723 => 0.0019603792554918
724 => 0.0019413764948287
725 => 0.0019772386303707
726 => 0.0019838949587433
727 => 0.0020099924303369
728 => 0.0020127019564128
729 => 0.0020853830433266
730 => 0.0020453515220105
731 => 0.0020722081226646
801 => 0.002069805815518
802 => 0.001877396820694
803 => 0.0019039090825418
804 => 0.0019451538419709
805 => 0.001926573133754
806 => 0.0019003043595515
807 => 0.0018790909159404
808 => 0.0018469503796836
809 => 0.0018921875672607
810 => 0.0019516696584861
811 => 0.0020142105204066
812 => 0.0020893492681646
813 => 0.0020725791743765
814 => 0.0020128058537827
815 => 0.0020154872412801
816 => 0.0020320625237019
817 => 0.0020105960269425
818 => 0.0020042651379723
819 => 0.0020311927567749
820 => 0.0020313781924864
821 => 0.0020066783936518
822 => 0.0019792290872627
823 => 0.0019791140736666
824 => 0.0019742297347235
825 => 0.0020436810974118
826 => 0.0020818723245656
827 => 0.0020862508872105
828 => 0.002081577612413
829 => 0.0020833761704069
830 => 0.0020611535368124
831 => 0.0021119478872922
901 => 0.002158561806333
902 => 0.002146068280269
903 => 0.0021273387086395
904 => 0.0021124197026983
905 => 0.002142553836602
906 => 0.0021412120110548
907 => 0.0021581546744153
908 => 0.0021573860573397
909 => 0.0021516888768974
910 => 0.0021460684837332
911 => 0.0021683527073287
912 => 0.0021619352088069
913 => 0.0021555077421373
914 => 0.0021426164737355
915 => 0.0021443686112126
916 => 0.0021256422735078
917 => 0.0021169786128266
918 => 0.0019866979432105
919 => 0.0019518826912454
920 => 0.0019628362782434
921 => 0.001966442483493
922 => 0.0019512908412208
923 => 0.0019730144041015
924 => 0.0019696288098375
925 => 0.0019828001766124
926 => 0.0019745712784857
927 => 0.0019749089953352
928 => 0.0019991084301397
929 => 0.0020061336290152
930 => 0.0020025605561668
1001 => 0.0020050630139121
1002 => 0.0020627310964298
1003 => 0.0020545325392173
1004 => 0.0020501772191014
1005 => 0.0020513836725383
1006 => 0.0020661191040392
1007 => 0.0020702442203347
1008 => 0.0020527658127238
1009 => 0.0020610087307946
1010 => 0.0020961060297579
1011 => 0.00210838809806
1012 => 0.002147586564353
1013 => 0.0021309343591745
1014 => 0.0021615002024701
1015 => 0.002255449184097
1016 => 0.0023305021313955
1017 => 0.0022614803393655
1018 => 0.0023993055191441
1019 => 0.0025066221914495
1020 => 0.0025025031988211
1021 => 0.0024837900547253
1022 => 0.002361612876467
1023 => 0.0022491836154745
1024 => 0.0023432354662933
1025 => 0.002343475223803
1026 => 0.0023353960864072
1027 => 0.0022852172579125
1028 => 0.0023336499719445
1029 => 0.0023374943849026
1030 => 0.002335342535958
1031 => 0.0022968705458015
1101 => 0.002238130927645
1102 => 0.00224960850843
1103 => 0.0022684090198921
1104 => 0.0022328157294967
1105 => 0.0022214415165418
1106 => 0.0022425883424575
1107 => 0.0023107278216738
1108 => 0.0022978464478331
1109 => 0.0022975100631044
1110 => 0.0023526220429476
1111 => 0.0023131737592895
1112 => 0.00224975327748
1113 => 0.0022337387694097
1114 => 0.0021768980544254
1115 => 0.0022161581387247
1116 => 0.0022175710392653
1117 => 0.0021960686923229
1118 => 0.0022514980744282
1119 => 0.0022509872829139
1120 => 0.0023036092316481
1121 => 0.0024042026337265
1122 => 0.0023744522148312
1123 => 0.0023398557144924
1124 => 0.0023436173133361
1125 => 0.0023848727682348
1126 => 0.0023599287784326
1127 => 0.0023688988110811
1128 => 0.002384859191016
1129 => 0.0023944884845047
1130 => 0.0023422318061895
1201 => 0.0023300482747484
1202 => 0.0023051250452583
1203 => 0.0022986230398984
1204 => 0.0023189224902778
1205 => 0.002313574302293
1206 => 0.0022174522904459
1207 => 0.00220740700539
1208 => 0.0022077150799413
1209 => 0.0021824557330411
1210 => 0.0021439291660804
1211 => 0.0022451746837513
1212 => 0.0022370432517523
1213 => 0.0022280667801481
1214 => 0.0022291663467006
1215 => 0.0022731135943926
1216 => 0.002247621971342
1217 => 0.0023153956292168
1218 => 0.0023014634026204
1219 => 0.0022871738669829
1220 => 0.0022851986178878
1221 => 0.0022796983657933
1222 => 0.0022608359548074
1223 => 0.0022380584600868
1224 => 0.0022230187851195
1225 => 0.0020506173209443
1226 => 0.0020826140298821
1227 => 0.0021194233269231
1228 => 0.0021321297487577
1229 => 0.002110394534952
1230 => 0.0022616941935262
1231 => 0.0022893380991074
]
'min_raw' => 0.00095417435873379
'max_raw' => 0.0025066221914495
'avg_raw' => 0.0017303982750916
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000954'
'max' => '$0.0025066'
'avg' => '$0.00173'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.699548993275E-5
'max_diff' => -0.00045204394582242
'year' => 2027
]
2 => [
'items' => [
101 => 0.0022056029059344
102 => 0.0021899394701771
103 => 0.0022627210857667
104 => 0.0022188248743756
105 => 0.0022385913356772
106 => 0.0021958670580193
107 => 0.002282679491761
108 => 0.0022820181264665
109 => 0.0022482461289932
110 => 0.0022767899899969
111 => 0.0022718297917176
112 => 0.0022337012897471
113 => 0.002283888233282
114 => 0.0022839131253799
115 => 0.0022514083120784
116 => 0.0022134498063609
117 => 0.0022066637220785
118 => 0.0022015513191539
119 => 0.0022373339979537
120 => 0.0022694166358762
121 => 0.0023291144710894
122 => 0.0023441239252476
123 => 0.0024027068240629
124 => 0.0023678235601679
125 => 0.0023832868592387
126 => 0.0024000744577972
127 => 0.0024081230498896
128 => 0.0023950083009862
129 => 0.0024860116565296
130 => 0.0024936951280082
131 => 0.0024962713295332
201 => 0.0024655855100686
202 => 0.0024928416998587
203 => 0.002480089431286
204 => 0.0025132672914298
205 => 0.0025184700035365
206 => 0.002514063491474
207 => 0.0025157149144159
208 => 0.0024380596045516
209 => 0.0024340327670708
210 => 0.002379126552288
211 => 0.0024015012406582
212 => 0.0023596728331968
213 => 0.0023729370520831
214 => 0.0023787837933821
215 => 0.0023757297875272
216 => 0.0024027662719679
217 => 0.0023797797370044
218 => 0.0023191144918995
219 => 0.002258432718589
220 => 0.0022576709083554
221 => 0.002241694468565
222 => 0.0022301464288275
223 => 0.0022323709909697
224 => 0.0022402106381129
225 => 0.0022296907742838
226 => 0.0022319357206024
227 => 0.0022692167874895
228 => 0.0022766932395774
229 => 0.0022512853341446
301 => 0.0021492689274887
302 => 0.0021242338454065
303 => 0.0021422285659399
304 => 0.0021336282485334
305 => 0.0017220045194236
306 => 0.0018187094088769
307 => 0.0017612506473515
308 => 0.0017877302882129
309 => 0.0017290797715697
310 => 0.0017570708722488
311 => 0.0017519019380247
312 => 0.0019074005385598
313 => 0.0019049726417938
314 => 0.0019061347474942
315 => 0.0018506644145611
316 => 0.0019390301611073
317 => 0.0019825623053854
318 => 0.00197450566405
319 => 0.0019765333471006
320 => 0.0019416910342561
321 => 0.0019064720972441
322 => 0.0018674088759422
323 => 0.001939983512761
324 => 0.0019319144520371
325 => 0.0019504219741813
326 => 0.0019974918139005
327 => 0.0020044230266001
328 => 0.0020137386467577
329 => 0.0020103996600622
330 => 0.0020899478695138
331 => 0.0020803140564732
401 => 0.0021035287740639
402 => 0.0020557743386751
403 => 0.0020017356621401
404 => 0.002012006647892
405 => 0.00201101746937
406 => 0.0019984240914593
407 => 0.0019870553529694
408 => 0.001968129606506
409 => 0.0020280134687997
410 => 0.0020255822933513
411 => 0.0020649401979278
412 => 0.0020579833059916
413 => 0.0020115234790016
414 => 0.0020131828008116
415 => 0.0020243425374268
416 => 0.0020629665132717
417 => 0.0020744327390233
418 => 0.0020691211264051
419 => 0.0020816933194886
420 => 0.0020916298682922
421 => 0.0020829411970325
422 => 0.0022059544592833
423 => 0.0021548707763421
424 => 0.0021797686079697
425 => 0.0021857065941063
426 => 0.0021704965674797
427 => 0.0021737950776248
428 => 0.0021787914217044
429 => 0.0022091282445712
430 => 0.0022887408458043
501 => 0.0023240007249491
502 => 0.002430081811048
503 => 0.0023210728828273
504 => 0.0023146047441505
505 => 0.0023337131510988
506 => 0.0023959939784623
507 => 0.0024464667392997
508 => 0.0024632114659129
509 => 0.0024654245579601
510 => 0.0024968387782549
511 => 0.0025148448234873
512 => 0.0024930242656351
513 => 0.002474533627563
514 => 0.0024083024571311
515 => 0.0024159688954501
516 => 0.0024687830530268
517 => 0.0025433861613422
518 => 0.0026074033894073
519 => 0.0025849867873645
520 => 0.0027560096372959
521 => 0.0027729658543009
522 => 0.0027706230533709
523 => 0.0028092518391318
524 => 0.002732581566012
525 => 0.0026998035388367
526 => 0.0024785315133918
527 => 0.0025406999269732
528 => 0.0026310653671366
529 => 0.002619105162278
530 => 0.0025534793641562
531 => 0.0026073536063546
601 => 0.0025895410970805
602 => 0.0025754916319743
603 => 0.0026398549552485
604 => 0.0025690848374089
605 => 0.0026303593810749
606 => 0.0025517741450193
607 => 0.0025850891845144
608 => 0.0025661779568298
609 => 0.0025784158388146
610 => 0.0025068734307924
611 => 0.0025454759775674
612 => 0.0025052674379332
613 => 0.0025052483738501
614 => 0.0025043607681091
615 => 0.0025516659366768
616 => 0.0025532085565255
617 => 0.0025182499654798
618 => 0.0025132118863543
619 => 0.0025318403054455
620 => 0.0025100313054804
621 => 0.0025202355992998
622 => 0.0025103403831449
623 => 0.0025081127615633
624 => 0.0024903626938024
625 => 0.0024827154765627
626 => 0.0024857141474869
627 => 0.0024754781377018
628 => 0.0024693105715537
629 => 0.0025031338839668
630 => 0.002485063452573
701 => 0.0025003643311892
702 => 0.0024829270488812
703 => 0.0024224818313393
704 => 0.0023877191475343
705 => 0.0022735437348722
706 => 0.002305923740269
707 => 0.0023273917173467
708 => 0.0023202965510506
709 => 0.0023355397137194
710 => 0.0023364755201075
711 => 0.0023315198125382
712 => 0.0023257817380384
713 => 0.0023229887607073
714 => 0.0023438053254897
715 => 0.0023558900419993
716 => 0.0023295463160509
717 => 0.0023233743496491
718 => 0.0023500093110599
719 => 0.002366256622134
720 => 0.0024862176385295
721 => 0.0024773305389659
722 => 0.0024996354148652
723 => 0.0024971242281352
724 => 0.0025205032915231
725 => 0.0025587181794328
726 => 0.0024810166272615
727 => 0.002494502930001
728 => 0.0024911964000135
729 => 0.0025272962273982
730 => 0.0025274089271189
731 => 0.0025057652772816
801 => 0.0025174986509865
802 => 0.0025109494036727
803 => 0.0025227847787526
804 => 0.002477211846333
805 => 0.002532714758726
806 => 0.0025641813335242
807 => 0.0025646182469458
808 => 0.0025795331536659
809 => 0.0025946875627067
810 => 0.0026237751311897
811 => 0.002593876326209
812 => 0.0025400912866388
813 => 0.0025439743927712
814 => 0.0025124402437503
815 => 0.0025129703384925
816 => 0.0025101406512146
817 => 0.0025186327557444
818 => 0.0024790753857248
819 => 0.0024883594214023
820 => 0.0024753617170866
821 => 0.0024944746755302
822 => 0.0024739122917301
823 => 0.0024911948055046
824 => 0.0024986533655252
825 => 0.0025261756125727
826 => 0.0024698472334636
827 => 0.002354989855364
828 => 0.0023791342687516
829 => 0.0023434227848486
830 => 0.002346728018647
831 => 0.0023534051169439
901 => 0.002331762456753
902 => 0.0023358911942788
903 => 0.0023357436867209
904 => 0.002334472546277
905 => 0.0023288424544821
906 => 0.0023206777074999
907 => 0.0023532035465005
908 => 0.0023587303203543
909 => 0.0023710156540088
910 => 0.0024075684737432
911 => 0.0024039159850769
912 => 0.0024098733456319
913 => 0.0023968684609894
914 => 0.0023473312779467
915 => 0.0023500213853165
916 => 0.002316475703309
917 => 0.0023701578154989
918 => 0.0023574451827631
919 => 0.0023492492657377
920 => 0.0023470129338427
921 => 0.0023836563609471
922 => 0.0023946206486521
923 => 0.0023877884403403
924 => 0.0023737753817655
925 => 0.002400684596818
926 => 0.0024078843675574
927 => 0.0024094961307087
928 => 0.0024571741004514
929 => 0.0024121607995811
930 => 0.0024229959484943
1001 => 0.0025075286872856
1002 => 0.0024308691579225
1003 => 0.0024714774203377
1004 => 0.0024694898572076
1005 => 0.0024902636701506
1006 => 0.0024677857982041
1007 => 0.0024680644383664
1008 => 0.0024865101769197
1009 => 0.0024606064638281
1010 => 0.0024541923401818
1011 => 0.0024453312743034
1012 => 0.0024646790874734
1013 => 0.0024762772264425
1014 => 0.0025697497086389
1015 => 0.0026301371950008
1016 => 0.0026275156149572
1017 => 0.0026514719491638
1018 => 0.0026406794011889
1019 => 0.0026058274168474
1020 => 0.0026653155043716
1021 => 0.0026464909843916
1022 => 0.002648042854947
1023 => 0.0026479850942474
1024 => 0.002660501754366
1025 => 0.0026516325535369
1026 => 0.0026341504482981
1027 => 0.0026457558856113
1028 => 0.0026802198854119
1029 => 0.0027871971982775
1030 => 0.002847063119818
1031 => 0.0027835931946309
1101 => 0.0028273738991288
1102 => 0.0028011210770901
1103 => 0.0027963501583719
1104 => 0.0028238476761652
1105 => 0.0028513933247234
1106 => 0.0028496387859933
1107 => 0.0028296420596248
1108 => 0.0028183464162974
1109 => 0.0029038808118908
1110 => 0.0029669010975236
1111 => 0.0029626035365368
1112 => 0.0029815715730908
1113 => 0.0030372623150728
1114 => 0.0030423539785805
1115 => 0.0030417125460091
1116 => 0.003029092326745
1117 => 0.0030839270945829
1118 => 0.0031296712226393
1119 => 0.0030261711106186
1120 => 0.0030655825983601
1121 => 0.0030832756849661
1122 => 0.003109254385406
1123 => 0.0031530848075838
1124 => 0.0032006962715141
1125 => 0.003207429054547
1126 => 0.0032026518227919
1127 => 0.0031712507824649
1128 => 0.0032233478144204
1129 => 0.0032538650339142
1130 => 0.0032720373397487
1201 => 0.0033181192837614
1202 => 0.0030833849514455
1203 => 0.0029172283239791
1204 => 0.0028912805672695
1205 => 0.0029440463508837
1206 => 0.0029579602672235
1207 => 0.0029523515849935
1208 => 0.0027653271944804
1209 => 0.002890295922559
1210 => 0.0030247517663025
1211 => 0.0030299167628493
1212 => 0.0030972281695664
1213 => 0.0031191475227813
1214 => 0.0031733420278963
1215 => 0.0031699521468458
1216 => 0.0031831476464183
1217 => 0.0031801142295808
1218 => 0.0032804981383069
1219 => 0.0033912364967866
1220 => 0.0033874019795588
1221 => 0.0033714820303306
1222 => 0.0033951258696893
1223 => 0.0035094197230839
1224 => 0.003498897376585
1225 => 0.0035091189399174
1226 => 0.003643877834389
1227 => 0.0038190835664313
1228 => 0.0037376829135298
1229 => 0.0039142989079193
1230 => 0.0040254693143759
1231 => 0.004217727037108
]
'min_raw' => 0.0017220045194236
'max_raw' => 0.004217727037108
'avg_raw' => 0.0029698657782658
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001722'
'max' => '$0.004217'
'avg' => '$0.002969'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00076783016068984
'max_diff' => 0.0017111048456585
'year' => 2028
]
3 => [
'items' => [
101 => 0.0041936554233327
102 => 0.00426849994394
103 => 0.0041505622107775
104 => 0.003879753336288
105 => 0.0038368967952853
106 => 0.0039226966756732
107 => 0.0041336273093768
108 => 0.0039160537193795
109 => 0.0039600685732675
110 => 0.0039473922923867
111 => 0.0039467168272493
112 => 0.003972496584229
113 => 0.0039351017021482
114 => 0.0037827482253401
115 => 0.0038525709259366
116 => 0.0038256090280748
117 => 0.0038555252638951
118 => 0.004016970850223
119 => 0.0039455919081253
120 => 0.0038703999909798
121 => 0.0039647073415025
122 => 0.0040847930062393
123 => 0.0040772782611548
124 => 0.004062696514771
125 => 0.004144893055661
126 => 0.0042806576598844
127 => 0.0043173542868597
128 => 0.0043444429866633
129 => 0.0043481780606989
130 => 0.004386651644601
131 => 0.0041797694873679
201 => 0.0045080967840075
202 => 0.0045647898382786
203 => 0.004554133893762
204 => 0.0046171458375759
205 => 0.0045986061252471
206 => 0.0045717449908744
207 => 0.0046716323248444
208 => 0.00455711955694
209 => 0.0043945830996565
210 => 0.0043054123845841
211 => 0.0044228395753878
212 => 0.0044945482631674
213 => 0.0045419431442606
214 => 0.0045562848066427
215 => 0.0041958291603159
216 => 0.0040015635587324
217 => 0.0041260855820878
218 => 0.0042780110446323
219 => 0.0041789255337525
220 => 0.0041828094981853
221 => 0.004041539598885
222 => 0.0042905102960534
223 => 0.0042542373596492
224 => 0.0044424214178803
225 => 0.004397509782112
226 => 0.0045509665763365
227 => 0.00451055625952
228 => 0.0046782972253149
301 => 0.0047452136379759
302 => 0.0048575767095416
303 => 0.0049402314423854
304 => 0.0049887678824444
305 => 0.0049858539366388
306 => 0.0051781794929108
307 => 0.0050647718317203
308 => 0.0049223050811316
309 => 0.0049197283070903
310 => 0.0049935138559897
311 => 0.005148148124406
312 => 0.0051882425403692
313 => 0.0052106498491118
314 => 0.0051763322757685
315 => 0.0050532363875466
316 => 0.0050000842071226
317 => 0.0050453714048107
318 => 0.0049899890536115
319 => 0.0050855945293246
320 => 0.0052168812677065
321 => 0.0051897710753946
322 => 0.0052803963837059
323 => 0.0053741840437475
324 => 0.0055083046098745
325 => 0.0055433686923303
326 => 0.005601328287262
327 => 0.0056609877491819
328 => 0.005680148760483
329 => 0.0057167330763694
330 => 0.0057165402589661
331 => 0.0058267895572983
401 => 0.0059483979474952
402 => 0.0059943022995538
403 => 0.0060998568259319
404 => 0.0059190983985812
405 => 0.0060562057421299
406 => 0.0061798799980302
407 => 0.0060324304516547
408 => 0.0062356552999951
409 => 0.0062435460603388
410 => 0.0063626871731857
411 => 0.0062419148306399
412 => 0.0061702005991552
413 => 0.0063772368983544
414 => 0.0064774152419546
415 => 0.0064472407095838
416 => 0.0062176110283418
417 => 0.0060839567045786
418 => 0.0057341575592967
419 => 0.0061485097570817
420 => 0.0063503286258034
421 => 0.0062170883662277
422 => 0.0062842870030346
423 => 0.0066509009762222
424 => 0.0067904838407151
425 => 0.0067614515806585
426 => 0.0067663575546964
427 => 0.0068416739347686
428 => 0.0071756682414967
429 => 0.0069755311109778
430 => 0.0071285284482643
501 => 0.0072096776842881
502 => 0.0072850536172031
503 => 0.0070999541487721
504 => 0.0068591424599947
505 => 0.0067828672895718
506 => 0.0062038402482914
507 => 0.0061736993762057
508 => 0.0061567803913422
509 => 0.0060501085850153
510 => 0.0059662937651093
511 => 0.0058996411084752
512 => 0.0057247246332993
513 => 0.0057837538089442
514 => 0.0055049734554195
515 => 0.0056833272462355
516 => 0.005238387070623
517 => 0.0056089464703418
518 => 0.0054072678363433
519 => 0.0055426896149438
520 => 0.0055422171411158
521 => 0.0052928627111982
522 => 0.005149040279916
523 => 0.0052406895307818
524 => 0.0053389448028365
525 => 0.005354886390157
526 => 0.005482276915101
527 => 0.0055178288723627
528 => 0.0054101047820976
529 => 0.0052291666744574
530 => 0.0052711944701034
531 => 0.0051481885879786
601 => 0.0049326255109079
602 => 0.0050874466762303
603 => 0.0051403094290775
604 => 0.0051636566322595
605 => 0.0049516751035471
606 => 0.0048850659048827
607 => 0.0048496037264191
608 => 0.0052018025210507
609 => 0.0052210967660645
610 => 0.0051223846806428
611 => 0.0055685726670126
612 => 0.0054675865838769
613 => 0.0055804127809306
614 => 0.005267380888163
615 => 0.0052793391280201
616 => 0.0051311448134253
617 => 0.0052141237272507
618 => 0.0051554769054942
619 => 0.0052074198510272
620 => 0.005238554238411
621 => 0.0053867242357769
622 => 0.005610638333703
623 => 0.0053645925792044
624 => 0.0052573869205293
625 => 0.0053238967082239
626 => 0.0055010210374117
627 => 0.0057693734629589
628 => 0.0056105034259391
629 => 0.0056810072505803
630 => 0.0056964091997676
701 => 0.0055792643161576
702 => 0.0057736927619113
703 => 0.0058778885455246
704 => 0.0059847718592325
705 => 0.0060775756457225
706 => 0.0059420803133231
707 => 0.0060870797414834
708 => 0.0059702357982309
709 => 0.0058654147020285
710 => 0.0058655736723632
711 => 0.0057998178675236
712 => 0.0056724077098823
713 => 0.0056489113219907
714 => 0.0057711424990694
715 => 0.005869160327751
716 => 0.0058772335455949
717 => 0.0059315012518909
718 => 0.0059636163214751
719 => 0.0062783876617196
720 => 0.0064049912986911
721 => 0.0065597998294956
722 => 0.0066201064767747
723 => 0.0068016078639551
724 => 0.006655030752985
725 => 0.0066233178730134
726 => 0.006183054876365
727 => 0.0062551479174022
728 => 0.0063705758320465
729 => 0.0061849582401627
730 => 0.0063026898789327
731 => 0.006325932598323
801 => 0.006178651025418
802 => 0.0062573204771677
803 => 0.0060483977371873
804 => 0.0056151922785146
805 => 0.0057741750434252
806 => 0.0058912398714194
807 => 0.0057241739278825
808 => 0.0060236331653276
809 => 0.0058486952609056
810 => 0.0057932483437041
811 => 0.0055769301514479
812 => 0.005679024011342
813 => 0.0058171074186921
814 => 0.0057317879268689
815 => 0.0059088386831882
816 => 0.0061595897718484
817 => 0.0063382899301132
818 => 0.0063520083093361
819 => 0.0062371160795526
820 => 0.006421231611013
821 => 0.0064225726916562
822 => 0.0062148896200348
823 => 0.0060876848950509
824 => 0.0060587837138935
825 => 0.006130984530835
826 => 0.006218649651608
827 => 0.0063568731134208
828 => 0.0064403986565053
829 => 0.006658188974345
830 => 0.0067171167898146
831 => 0.0067818605932184
901 => 0.0068683782808154
902 => 0.0069722649474554
903 => 0.0067449668351183
904 => 0.0067539978128582
905 => 0.0065423409578065
906 => 0.0063161552535203
907 => 0.0064878020086274
908 => 0.006712207307719
909 => 0.0066607284841616
910 => 0.0066549360648944
911 => 0.0066646773074187
912 => 0.0066258639555976
913 => 0.0064503126038006
914 => 0.0063621518139378
915 => 0.0064759017250771
916 => 0.0065363547404215
917 => 0.0066301120951637
918 => 0.0066185545222141
919 => 0.0068600633992252
920 => 0.0069539064459824
921 => 0.0069298973788515
922 => 0.0069343156250141
923 => 0.0071042139786398
924 => 0.007293175890133
925 => 0.0074701636559667
926 => 0.0076502032131742
927 => 0.0074331584998971
928 => 0.0073229565799518
929 => 0.0074366568314383
930 => 0.0073763258775526
1001 => 0.0077230054339028
1002 => 0.0077470087742045
1003 => 0.0080936632616768
1004 => 0.0084226796491366
1005 => 0.008216030351114
1006 => 0.0084108913314605
1007 => 0.008621649368954
1008 => 0.0090282358175384
1009 => 0.0088913118055389
1010 => 0.0087864301582201
1011 => 0.0086873175082883
1012 => 0.0088935551991063
1013 => 0.0091588766936161
1014 => 0.0092160244023159
1015 => 0.0093086255225144
1016 => 0.0092112667673519
1017 => 0.00932852466423
1018 => 0.0097424965659405
1019 => 0.0096306377038672
1020 => 0.0094717801375139
1021 => 0.0097985711956302
1022 => 0.0099168356091944
1023 => 0.010746877199142
1024 => 0.01179483899376
1025 => 0.0113609759295
1026 => 0.01109166312484
1027 => 0.01115495802212
1028 => 0.011537638193769
1029 => 0.011660542919241
1030 => 0.011326445507609
1031 => 0.011444454361526
1101 => 0.012094694748986
1102 => 0.012443527854648
1103 => 0.011969765642622
1104 => 0.010662674489323
1105 => 0.009457476751762
1106 => 0.0097771494625245
1107 => 0.0097409084977232
1108 => 0.010439510674908
1109 => 0.009627969907001
1110 => 0.0096416341722202
1111 => 0.010354682702597
1112 => 0.010164453579439
1113 => 0.0098563067626284
1114 => 0.0094597265645404
1115 => 0.0087266113891465
1116 => 0.008077270833871
1117 => 0.0093507771969651
1118 => 0.0092958612868675
1119 => 0.0092163349109641
1120 => 0.0093933122548844
1121 => 0.010252664001066
1122 => 0.010232853161866
1123 => 0.010106826710457
1124 => 0.010202416663104
1125 => 0.0098395493817586
1126 => 0.0099330685424959
1127 => 0.0094572858422829
1128 => 0.0096723594932199
1129 => 0.0098556456179553
1130 => 0.0098924430210934
1201 => 0.0099753494492855
1202 => 0.0092669230976443
1203 => 0.0095849857312262
1204 => 0.0097718177300171
1205 => 0.0089277039624735
1206 => 0.0097551323148655
1207 => 0.0092545909709686
1208 => 0.0090846997209713
1209 => 0.0093134359076224
1210 => 0.0092242971932312
1211 => 0.0091476609609986
1212 => 0.0091048966266352
1213 => 0.0092728552374201
1214 => 0.0092650197674731
1215 => 0.0089902068808673
1216 => 0.0086317246730965
1217 => 0.0087520430688017
1218 => 0.008708330267651
1219 => 0.0085499094372174
1220 => 0.0086566659491257
1221 => 0.0081865642989158
1222 => 0.0073777788434874
1223 => 0.0079120872891119
1224 => 0.0078915169951711
1225 => 0.0078811445201776
1226 => 0.0082826625498637
1227 => 0.0082440658559064
1228 => 0.008174012478434
1229 => 0.0085486228520036
1230 => 0.0084118850264301
1231 => 0.008833278785364
]
'min_raw' => 0.0037827482253401
'max_raw' => 0.012443527854648
'avg_raw' => 0.0081131380399943
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003782'
'max' => '$0.012443'
'avg' => '$0.008113'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0020607437059165
'max_diff' => 0.0082258008175405
'year' => 2029
]
4 => [
'items' => [
101 => 0.0091108359690373
102 => 0.0090404384892235
103 => 0.0093014823620185
104 => 0.0087548149616298
105 => 0.0089363959435496
106 => 0.008973819532263
107 => 0.008544000218143
108 => 0.0082503807523712
109 => 0.0082307996815112
110 => 0.0077217039911176
111 => 0.007993658799649
112 => 0.008232967776902
113 => 0.0081183573479247
114 => 0.0080820751099996
115 => 0.0082674331949014
116 => 0.0082818371055829
117 => 0.0079534264155865
118 => 0.0080217133974507
119 => 0.0083064814635908
120 => 0.0080145379728236
121 => 0.0074473394589613
122 => 0.0073066663853905
123 => 0.007287898004257
124 => 0.0069063814718108
125 => 0.007316066832821
126 => 0.007137228193855
127 => 0.0077021773115328
128 => 0.0073794814053981
129 => 0.0073655706298488
130 => 0.0073445424523388
131 => 0.0070161554126129
201 => 0.0070880513042278
202 => 0.0073270441980091
203 => 0.007412319554958
204 => 0.0074034246365878
205 => 0.0073258730024475
206 => 0.0073613757434283
207 => 0.0072470090447542
208 => 0.0072066237831153
209 => 0.0070791567885418
210 => 0.0068918155201748
211 => 0.006917866472572
212 => 0.0065466943994275
213 => 0.0063444601543855
214 => 0.0062884843807624
215 => 0.0062136312368849
216 => 0.00629693924254
217 => 0.0065456429155796
218 => 0.0062456535204662
219 => 0.0057313427443535
220 => 0.0057622536983408
221 => 0.0058317014344057
222 => 0.0057022860376916
223 => 0.0055798052257127
224 => 0.005686292354546
225 => 0.0054683720986679
226 => 0.0058580360562022
227 => 0.0058474967381715
228 => 0.0059927393648828
301 => 0.0060835625600441
302 => 0.0058742444995559
303 => 0.0058216015733993
304 => 0.0058515893766257
305 => 0.0053559577879509
306 => 0.0059522356901063
307 => 0.0059573923261652
308 => 0.005913238077545
309 => 0.006230737652428
310 => 0.0069007607860318
311 => 0.0066486711315519
312 => 0.0065510543978872
313 => 0.0063654849158331
314 => 0.0066127452326446
315 => 0.0065937594981753
316 => 0.0065078988067791
317 => 0.006455969992721
318 => 0.0065516504248474
319 => 0.0064441141283321
320 => 0.0064247976545781
321 => 0.0063077608401599
322 => 0.0062659840222483
323 => 0.0062350541294497
324 => 0.0062010033565868
325 => 0.0062761108765983
326 => 0.0061059073550351
327 => 0.0059006585932869
328 => 0.0058835943795699
329 => 0.0059307101739435
330 => 0.0059098649422916
331 => 0.0058834945806205
401 => 0.0058331463786498
402 => 0.0058182091426442
403 => 0.0058667479131457
404 => 0.0058119504712356
405 => 0.005892807081745
406 => 0.0058708185576868
407 => 0.0057479924497362
408 => 0.0055949056431802
409 => 0.0055935428494914
410 => 0.0055605605481316
411 => 0.0055185526284277
412 => 0.0055068669861771
413 => 0.0056773243055724
414 => 0.0060301658553623
415 => 0.0059608946163559
416 => 0.0060109501857401
417 => 0.0062571740452929
418 => 0.006335441206035
419 => 0.0062798890291996
420 => 0.0062038457832382
421 => 0.0062071913001345
422 => 0.0064670540914404
423 => 0.00648326141498
424 => 0.0065242120928837
425 => 0.0065768452866502
426 => 0.0062888526896904
427 => 0.0061936268747165
428 => 0.0061485036006548
429 => 0.0060095413814494
430 => 0.0061594002211421
501 => 0.0060720838928485
502 => 0.0060838658486858
503 => 0.0060761928344904
504 => 0.006080382819088
505 => 0.0058579271371847
506 => 0.0059389782957438
507 => 0.0058042150245085
508 => 0.0056237821322115
509 => 0.0056231772578886
510 => 0.0056673379526592
511 => 0.0056410694434015
512 => 0.0055703815604142
513 => 0.0055804224405551
514 => 0.0054924537650098
515 => 0.0055911034304906
516 => 0.0055939323499111
517 => 0.0055559468552174
518 => 0.0057079302759211
519 => 0.0057701980073901
520 => 0.0057451951410546
521 => 0.0057684437396355
522 => 0.0059637731490775
523 => 0.0059956203656361
524 => 0.0060097647955225
525 => 0.0059908131332526
526 => 0.0057720140026689
527 => 0.005781718674516
528 => 0.0057105122316527
529 => 0.0056503502909832
530 => 0.0056527564531022
531 => 0.0056836875111111
601 => 0.0058187652555187
602 => 0.0061030284053564
603 => 0.0061138159840991
604 => 0.0061268908442311
605 => 0.0060737088171761
606 => 0.0060576686089328
607 => 0.0060788297839347
608 => 0.0061855840771674
609 => 0.0064601851028698
610 => 0.0063631227604007
611 => 0.006284209565108
612 => 0.0063534377122244
613 => 0.006342780581604
614 => 0.0062528236742105
615 => 0.0062502988834307
616 => 0.0060776428171795
617 => 0.0060138158006749
618 => 0.0059604771683142
619 => 0.0059022327742167
620 => 0.0058677035450258
621 => 0.0059207561343169
622 => 0.0059328898891876
623 => 0.005816889475502
624 => 0.0058010790477529
625 => 0.0058958074896114
626 => 0.0058541210341818
627 => 0.0058969965873655
628 => 0.0059069440834838
629 => 0.0059053423074985
630 => 0.005861816860371
701 => 0.0058895586824226
702 => 0.0058239410030355
703 => 0.0057525916321589
704 => 0.0057070751787624
705 => 0.0056673560362926
706 => 0.005689394525025
707 => 0.0056108313367632
708 => 0.0055856973916736
709 => 0.0058801603773223
710 => 0.0060976833508315
711 => 0.0060945204806481
712 => 0.006075267321831
713 => 0.0060466610331894
714 => 0.0061834913489757
715 => 0.0061358224029643
716 => 0.0061705055440613
717 => 0.0061793338591173
718 => 0.0062060545098736
719 => 0.0062156048458014
720 => 0.0061867370974927
721 => 0.0060898534082703
722 => 0.0058484284661528
723 => 0.0057360445038829
724 => 0.0056989559244309
725 => 0.0057003040238528
726 => 0.0056631174236176
727 => 0.0056740705439734
728 => 0.0056593083753517
729 => 0.0056313523993343
730 => 0.0056876683222838
731 => 0.0056941582077846
801 => 0.005681013398443
802 => 0.005684109476892
803 => 0.0055752760697653
804 => 0.0055835504373354
805 => 0.0055374777072493
806 => 0.0055288396257732
807 => 0.0054123717761269
808 => 0.0052060320981938
809 => 0.0053203643096459
810 => 0.0051822670757536
811 => 0.005129967560764
812 => 0.0053775453304814
813 => 0.0053526953891402
814 => 0.0053101630915739
815 => 0.0052472489589658
816 => 0.0052239134951921
817 => 0.0050821346044133
818 => 0.0050737575511851
819 => 0.0051440269978072
820 => 0.0051116000660151
821 => 0.0050660603727397
822 => 0.0049011202199806
823 => 0.0047156728784717
824 => 0.0047212703680314
825 => 0.0047802577169949
826 => 0.0049517713896343
827 => 0.0048847580305174
828 => 0.0048361390695885
829 => 0.0048270341996871
830 => 0.0049410007088393
831 => 0.0051022871960116
901 => 0.0051779592072111
902 => 0.0051029705423055
903 => 0.0050168276017385
904 => 0.0050220707233829
905 => 0.0050569508627229
906 => 0.005060616272189
907 => 0.0050045460735172
908 => 0.0050203295060102
909 => 0.004996353028786
910 => 0.004849209432318
911 => 0.0048465480712553
912 => 0.004810436659671
913 => 0.0048093432204798
914 => 0.0047479087009612
915 => 0.0047393135870038
916 => 0.0046173316196908
917 => 0.0046976205199716
918 => 0.0046437669410197
919 => 0.0045625968947641
920 => 0.0045486031481948
921 => 0.004548182479275
922 => 0.0046315259674893
923 => 0.0046966466027869
924 => 0.0046447037470823
925 => 0.0046328773657083
926 => 0.0047591521784457
927 => 0.0047430825575044
928 => 0.0047291663694072
929 => 0.005087845760091
930 => 0.0048039230342629
1001 => 0.0046801165200592
1002 => 0.0045268824485128
1003 => 0.0045767762348815
1004 => 0.0045872895887617
1005 => 0.00421878926921
1006 => 0.0040692887354616
1007 => 0.004017985786088
1008 => 0.0039884602134062
1009 => 0.0040019153876361
1010 => 0.0038673473725989
1011 => 0.0039577793042534
1012 => 0.0038412547779824
1013 => 0.0038217190619495
1014 => 0.0040300793495409
1015 => 0.0040590714663361
1016 => 0.0039353820889431
1017 => 0.0040148106927207
1018 => 0.0039860087768507
1019 => 0.0038432522565397
1020 => 0.0038378000075097
1021 => 0.0037661698037519
1022 => 0.0036540824052116
1023 => 0.0036028554563722
1024 => 0.0035761760166439
1025 => 0.0035871844734478
1026 => 0.0035816182608234
1027 => 0.0035452949583183
1028 => 0.0035837002700045
1029 => 0.0034855905688167
1030 => 0.0034465224952801
1031 => 0.0034288763528361
1101 => 0.0033417983460482
1102 => 0.0034803781786131
1103 => 0.0035076801514111
1104 => 0.0035350359175295
1105 => 0.0037731491850157
1106 => 0.0037612537190732
1107 => 0.0038687829378666
1108 => 0.0038646045501578
1109 => 0.0038339354751001
1110 => 0.0037045476922496
1111 => 0.0037561193563783
1112 => 0.0035973897902061
1113 => 0.0037163207737437
1114 => 0.0036620456395337
1115 => 0.0036979702962714
1116 => 0.0036333745242613
1117 => 0.0036691244915858
1118 => 0.0035141544619979
1119 => 0.003369445628856
1120 => 0.0034276806876265
1121 => 0.0034909888564968
1122 => 0.0036282570972291
1123 => 0.0035465012654873
1124 => 0.0035759037541119
1125 => 0.0034774103391367
1126 => 0.0032741902907896
1127 => 0.0032753404941936
1128 => 0.0032440795171449
1129 => 0.0032170654687973
1130 => 0.0035558919062369
1201 => 0.003513753482688
1202 => 0.0034466114197033
1203 => 0.0035364837391278
1204 => 0.0035602474068492
1205 => 0.0035609239250614
1206 => 0.0036264924493732
1207 => 0.0036614863825523
1208 => 0.0036676542149475
1209 => 0.0037708277046539
1210 => 0.0038054100975122
1211 => 0.0039478500794123
1212 => 0.003658517391811
1213 => 0.0036525587755106
1214 => 0.0035377484269672
1215 => 0.0034649338888413
1216 => 0.0035427341006883
1217 => 0.0036116544675967
1218 => 0.0035398899748819
1219 => 0.0035492609025993
1220 => 0.0034529229345041
1221 => 0.0034873592249754
1222 => 0.0035170203973986
1223 => 0.0035006432413896
1224 => 0.0034761258461809
1225 => 0.0036060037834677
1226 => 0.0035986755612503
1227 => 0.0037196208823327
1228 => 0.0038139064089993
1229 => 0.0039828829283397
1230 => 0.0038065471214628
1231 => 0.0038001207437888
]
'min_raw' => 0.0032170654687973
'max_raw' => 0.0093014823620185
'avg_raw' => 0.0062592739154079
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003217'
'max' => '$0.0093014'
'avg' => '$0.006259'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00056568275654276
'max_diff' => -0.0031420454926299
'year' => 2030
]
5 => [
'items' => [
101 => 0.0038629396163751
102 => 0.0038054004802701
103 => 0.003841763228105
104 => 0.0039770243274976
105 => 0.0039798821813862
106 => 0.0039320094466167
107 => 0.0039290963863553
108 => 0.0039382908687381
109 => 0.0039921432392386
110 => 0.0039733255662696
111 => 0.0039951018538346
112 => 0.004022333434885
113 => 0.0041349748000605
114 => 0.0041621322518587
115 => 0.0040961537235133
116 => 0.0041021108458926
117 => 0.0040774330651404
118 => 0.0040535946381453
119 => 0.0041071799407075
120 => 0.0042051081343615
121 => 0.0042044989281513
122 => 0.004227216365627
123 => 0.0042413691409729
124 => 0.0041806150687234
125 => 0.0041410664016782
126 => 0.0041562318771704
127 => 0.0041804818027435
128 => 0.0041483679531393
129 => 0.0039501463968001
130 => 0.0040102741545513
131 => 0.0040002659555644
201 => 0.0039860130631684
202 => 0.0040464719885415
203 => 0.0040406405776987
204 => 0.0038659671831033
205 => 0.0038771492070989
206 => 0.0038666471990185
207 => 0.0039005813356349
208 => 0.0038035679255305
209 => 0.0038334085970833
210 => 0.0038521243865423
211 => 0.0038631481303151
212 => 0.0039029734518745
213 => 0.0038983004100516
214 => 0.0039026829690335
215 => 0.0039617334074109
216 => 0.0042603902610601
217 => 0.0042766454946551
218 => 0.0041965987793613
219 => 0.0042285758632695
220 => 0.0041671868547852
221 => 0.0042083977074513
222 => 0.0042365931262033
223 => 0.0041091834505303
224 => 0.0041016390764189
225 => 0.0040399966936594
226 => 0.0040731198185513
227 => 0.0040204185452112
228 => 0.0040333495942766
301 => 0.0039971932537812
302 => 0.0040622674680173
303 => 0.0041350305510439
304 => 0.0041534133793176
305 => 0.0041050560724346
306 => 0.0040700421953495
307 => 0.0040085693614762
308 => 0.004110800054219
309 => 0.0041406954242009
310 => 0.0041106430265673
311 => 0.0041036792293777
312 => 0.0040904828462868
313 => 0.0041064789044338
314 => 0.0041405326075956
315 => 0.0041244735100576
316 => 0.0041350808269063
317 => 0.0040946566732967
318 => 0.0041806351808493
319 => 0.0043171897426974
320 => 0.0043176287879427
321 => 0.0043015696038402
322 => 0.0042949985317054
323 => 0.0043114762291473
324 => 0.004320414704059
325 => 0.0043737005560932
326 => 0.0044308783983279
327 => 0.00469770243939
328 => 0.0046227793163734
329 => 0.004859521479037
330 => 0.0050467537925815
331 => 0.0051028965767367
401 => 0.005051247857036
402 => 0.0048745603769491
403 => 0.0048658912462439
404 => 0.0051299369370237
405 => 0.0050553319353196
406 => 0.0050464579077581
407 => 0.0049520532474093
408 => 0.0050078580939201
409 => 0.0049956527553805
410 => 0.0049763860313901
411 => 0.0050828577911333
412 => 0.0052821634205731
413 => 0.0052510997691486
414 => 0.0052279121943614
415 => 0.0051263109914459
416 => 0.0051874976090513
417 => 0.0051657102264745
418 => 0.0052593226486391
419 => 0.0052038687235178
420 => 0.0050547667290557
421 => 0.0050785117131204
422 => 0.0050749227065473
423 => 0.005148784207502
424 => 0.0051266128182705
425 => 0.0050705933869617
426 => 0.005281482215599
427 => 0.0052677882680926
428 => 0.0052872031547844
429 => 0.0052957501883315
430 => 0.005424114502045
501 => 0.0054767012541735
502 => 0.0054886393675673
503 => 0.0055385927148841
504 => 0.0054873964827796
505 => 0.0056922179134922
506 => 0.0058284122132542
507 => 0.0059866089009224
508 => 0.0062177767808667
509 => 0.0063046980421481
510 => 0.0062889964942997
511 => 0.0064642653425909
512 => 0.0067792195669625
513 => 0.0063526577479311
514 => 0.0068018283791442
515 => 0.0066596261432264
516 => 0.0063224671999744
517 => 0.0063007581388718
518 => 0.0065290860897379
519 => 0.007035495509008
520 => 0.0069086456931289
521 => 0.0070357029898641
522 => 0.0068874839041769
523 => 0.0068801235772839
524 => 0.0070285043197035
525 => 0.0073752040121798
526 => 0.0072104999841279
527 => 0.006974356372831
528 => 0.0071487211406111
529 => 0.0069976702420625
530 => 0.0066573102911481
531 => 0.0069085486934654
601 => 0.0067405527286935
602 => 0.0067895828823706
603 => 0.0071426854128072
604 => 0.0071001991821517
605 => 0.007155180298739
606 => 0.0070581400670687
607 => 0.0069674891888488
608 => 0.0067982825928286
609 => 0.0067481888615314
610 => 0.0067620329666783
611 => 0.0067481820010804
612 => 0.006653512465696
613 => 0.0066330685885433
614 => 0.0065989945642886
615 => 0.0066095555291994
616 => 0.0065454863948933
617 => 0.0066663980886875
618 => 0.0066888403645259
619 => 0.0067768298120709
620 => 0.0067859651684088
621 => 0.0070310145273702
622 => 0.0068960454583414
623 => 0.0069865943625147
624 => 0.0069784948162461
625 => 0.00632977445663
626 => 0.0064191623984769
627 => 0.0065582219845093
628 => 0.0064955758294925
629 => 0.0064070088232415
630 => 0.0063354862170313
701 => 0.006227122155061
702 => 0.0063796424913368
703 => 0.0065801905148099
704 => 0.0067910513972387
705 => 0.0070443869313246
706 => 0.0069878453892673
707 => 0.0067863154656455
708 => 0.0067953559508015
709 => 0.0068512406727359
710 => 0.0067788648801684
711 => 0.0067575198459969
712 => 0.0068483081928161
713 => 0.0068489334022642
714 => 0.0067656563060086
715 => 0.0066731090530682
716 => 0.0066727212766992
717 => 0.0066562533869388
718 => 0.0068904135051816
719 => 0.0070191778939569
720 => 0.0070339405236158
721 => 0.0070181842513583
722 => 0.0070242482152061
723 => 0.0069493230545075
724 => 0.0071205797534984
725 => 0.0072777418360245
726 => 0.0072356190406293
727 => 0.0071724709822238
728 => 0.0071221705120812
729 => 0.0072237698484357
730 => 0.00721924578992
731 => 0.0072763691623388
801 => 0.0072737777162053
802 => 0.0072545692745796
803 => 0.0072356197266233
804 => 0.0073107525423103
805 => 0.0072891154979885
806 => 0.0072674448453606
807 => 0.0072239810339045
808 => 0.0072298884877388
809 => 0.0071667513327359
810 => 0.0071375411958718
811 => 0.0066982908223552
812 => 0.0065809087696316
813 => 0.0066178395529505
814 => 0.0066299981257264
815 => 0.0065789133059519
816 => 0.0066521558148951
817 => 0.0066407410474593
818 => 0.0066851492301363
819 => 0.0066574049255789
820 => 0.0066585435615155
821 => 0.0067401336455096
822 => 0.0067638195940021
823 => 0.0067517727294297
824 => 0.0067602099404338
825 => 0.0069546419068994
826 => 0.0069269998988522
827 => 0.0069123156330029
828 => 0.0069163832749972
829 => 0.0069660648110975
830 => 0.0069799729286943
831 => 0.0069210432571306
901 => 0.0069488348309084
902 => 0.0070671678247784
903 => 0.0071085776755655
904 => 0.0072407380414219
905 => 0.0071845939690429
906 => 0.007287648843753
907 => 0.0076044043946163
908 => 0.0078574506464627
909 => 0.0076247388556861
910 => 0.0080894260719563
911 => 0.0084512517252447
912 => 0.0084373642540194
913 => 0.0083742715821904
914 => 0.0079623426955541
915 => 0.0075832795925578
916 => 0.0079003819740838
917 => 0.007901190333267
918 => 0.0078739509574697
919 => 0.0077047695338258
920 => 0.0078680638106489
921 => 0.0078810255173454
922 => 0.0078737704083914
923 => 0.0077440594075504
924 => 0.0075460146838663
925 => 0.0075847121488221
926 => 0.0076480993858266
927 => 0.0075280941222142
928 => 0.0074897451691147
929 => 0.0075610431691135
930 => 0.0077907801806378
1001 => 0.0077473497293851
1002 => 0.0077462155847866
1003 => 0.0079320294726236
1004 => 0.0077990268300791
1005 => 0.0075852002477816
1006 => 0.0075312062157254
1007 => 0.007339563776664
1008 => 0.0074719318919306
1009 => 0.0074766955847487
1010 => 0.0074041989207865
1011 => 0.0075910829525102
1012 => 0.0075893607832576
1013 => 0.007766779357362
1014 => 0.0081059370356764
1015 => 0.008005631421263
1016 => 0.0078889869049202
1017 => 0.0079016693980483
1018 => 0.008040765044603
1019 => 0.0079566646414513
1020 => 0.0079869077327935
1021 => 0.0080407192680621
1022 => 0.008073185103355
1023 => 0.0078969980639705
1024 => 0.0078559204370897
1025 => 0.0077718900287795
1026 => 0.0077499680637532
1027 => 0.0078184090779699
1028 => 0.0078003772887805
1029 => 0.0074762952148133
1030 => 0.007442426834908
1031 => 0.0074434655297668
1101 => 0.0073583018781415
1102 => 0.0072284068677945
1103 => 0.0075697631993583
1104 => 0.007542347508655
1105 => 0.0075120827079244
1106 => 0.0075157899733253
1107 => 0.0076639611872177
1108 => 0.0075780144003344
1109 => 0.0078065180196649
1110 => 0.0077595445449781
1111 => 0.0077113663779127
1112 => 0.0077047066876814
1113 => 0.0076861622037293
1114 => 0.0076225662681589
1115 => 0.0075457703544345
1116 => 0.0074950630402455
1117 => 0.0069137994670932
1118 => 0.0070216786052156
1119 => 0.0071457837201326
1120 => 0.0071886243084819
1121 => 0.007115342517632
1122 => 0.0076254598799195
1123 => 0.0077186632376226
1124 => 0.0074363441876352
1125 => 0.0073835338203934
1126 => 0.0076289221188039
1127 => 0.0074809229773629
1128 => 0.0075475669816917
1129 => 0.0074035190966543
1130 => 0.0076962132780648
1201 => 0.0076939834387994
1202 => 0.0075801187914328
1203 => 0.0076763564116756
1204 => 0.0076596327568668
1205 => 0.0075310798504262
1206 => 0.0077002886344947
1207 => 0.0077003725599405
1208 => 0.0075907803124811
1209 => 0.0074628005602763
1210 => 0.0074399208033289
1211 => 0.0074226839799319
1212 => 0.0075433277797725
1213 => 0.0076514966334663
1214 => 0.0078527720528574
1215 => 0.0079033774754783
1216 => 0.0081008938089615
1217 => 0.007983282449268
1218 => 0.0080354180416981
1219 => 0.0080920186023107
1220 => 0.0081191549924851
1221 => 0.0080749377009149
1222 => 0.0083817618677807
1223 => 0.0084076672283137
1224 => 0.00841635307162
1225 => 0.0083128936888795
1226 => 0.0084047898357231
1227 => 0.0083617946718955
1228 => 0.0084736561437744
1229 => 0.0084911974508839
1230 => 0.0084763405878122
1231 => 0.0084819084755595
]
'min_raw' => 0.0038035679255305
'max_raw' => 0.0084911974508839
'avg_raw' => 0.0061473826882072
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.0038035'
'max' => '$0.008491'
'avg' => '$0.006147'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00058650245673317
'max_diff' => -0.00081028491113461
'year' => 2031
]
6 => [
'items' => [
101 => 0.0082200881766316
102 => 0.0082065114129201
103 => 0.0080213912763503
104 => 0.0080968291003415
105 => 0.0079558017042191
106 => 0.0080005229442726
107 => 0.0080202356407686
108 => 0.0080099388468048
109 => 0.0081010942417239
110 => 0.0080235935342258
111 => 0.0078190564248422
112 => 0.00761446358946
113 => 0.0076118950930695
114 => 0.0075580294108769
115 => 0.0075190943886434
116 => 0.0075265946552197
117 => 0.0075530265729097
118 => 0.0075175581175366
119 => 0.0075251271107868
120 => 0.0076508228306778
121 => 0.007676030210881
122 => 0.0075903656837911
123 => 0.0072464102461927
124 => 0.0071620027190591
125 => 0.0072226731756887
126 => 0.0071936766050976
127 => 0.005805858463753
128 => 0.0061319057502645
129 => 0.005938179524139
130 => 0.0060274574820527
131 => 0.0058297131703417
201 => 0.0059240871205575
202 => 0.0059066596979375
203 => 0.0064309340862073
204 => 0.0064227482627503
205 => 0.006426666383255
206 => 0.0062396442829559
207 => 0.0065375755669358
208 => 0.0066843472306868
209 => 0.0066571837019278
210 => 0.0066640201769012
211 => 0.0065465468865334
212 => 0.0064278037814897
213 => 0.0062960994035634
214 => 0.0065407898585973
215 => 0.0065135844570029
216 => 0.006575983860066
217 => 0.0067346831109904
218 => 0.0067580521785289
219 => 0.0067894604422862
220 => 0.0067782028155217
221 => 0.0070464051575664
222 => 0.0070139240842888
223 => 0.0070921941254454
224 => 0.0069311867124239
225 => 0.0067489915416263
226 => 0.006783620887186
227 => 0.006780285802737
228 => 0.0067378263498693
229 => 0.0066994958543108
301 => 0.006635686378756
302 => 0.0068375890014369
303 => 0.0068293921236735
304 => 0.0069620900468342
305 => 0.0069386343999567
306 => 0.0067819918495383
307 => 0.0067875863688709
308 => 0.0068252122000171
309 => 0.0069554356312181
310 => 0.0069940948118859
311 => 0.0069761863390986
312 => 0.0070185743658421
313 => 0.0070520761338812
314 => 0.0070227816721055
315 => 0.0074375294742958
316 => 0.0072652972707105
317 => 0.0073492420483541
318 => 0.0073692623831907
319 => 0.0073179807164889
320 => 0.0073291018737377
321 => 0.0073459473966357
322 => 0.0074482301129806
323 => 0.0077166495564121
324 => 0.007835530700715
325 => 0.0081931904888425
326 => 0.0078256592765861
327 => 0.0078038514954461
328 => 0.0078682768235788
329 => 0.0080782609813431
330 => 0.0082484334184021
331 => 0.008304889433258
401 => 0.0083123510276084
402 => 0.008418266264603
403 => 0.008478974903246
404 => 0.0084054053689846
405 => 0.0083430628917493
406 => 0.0081197598765257
407 => 0.0081456078085717
408 => 0.0083236744282082
409 => 0.0085752040165162
410 => 0.0087910425704779
411 => 0.0087154634316136
412 => 0.0092920789105913
413 => 0.009349247980069
414 => 0.0093413490631645
415 => 0.0094715887113328
416 => 0.0092130895325618
417 => 0.0091025761254516
418 => 0.0083565420429447
419 => 0.0085661471897944
420 => 0.008870820580419
421 => 0.0088304959147032
422 => 0.0086092339544886
423 => 0.00879087472344
424 => 0.0087308186047926
425 => 0.0086834498522848
426 => 0.0089004552904076
427 => 0.0086618488970995
428 => 0.0088684402991214
429 => 0.008603484689114
430 => 0.0087158086707536
501 => 0.0086520481462753
502 => 0.0086933090198087
503 => 0.0084520987962303
504 => 0.008582249977826
505 => 0.0084466840791785
506 => 0.0084466198032914
507 => 0.008443627178565
508 => 0.0086031198571325
509 => 0.0086083209076546
510 => 0.0084904555772132
511 => 0.008473469341694
512 => 0.0085362763572547
513 => 0.0084627457912166
514 => 0.0084971502802699
515 => 0.0084637878681416
516 => 0.0084562772864516
517 => 0.0083964316937256
518 => 0.0083706485668904
519 => 0.0083807587952718
520 => 0.0083462473736261
521 => 0.0083254529937518
522 => 0.0084394906530211
523 => 0.0083785649319395
524 => 0.0084301529124675
525 => 0.0083713618977337
526 => 0.0081675666266407
527 => 0.0080503618111393
528 => 0.0076654114358763
529 => 0.0077745828847714
530 => 0.0078469636683349
531 => 0.007823041819799
601 => 0.0078744352069807
602 => 0.0078775903435538
603 => 0.0078608818294875
604 => 0.0078415355106919
605 => 0.0078321187926207
606 => 0.0079023032941508
607 => 0.0079430477595907
608 => 0.0078542280482955
609 => 0.0078334188326588
610 => 0.007923220464649
611 => 0.0079779994082863
612 => 0.0083824563504744
613 => 0.0083524928738184
614 => 0.0084276953201897
615 => 0.0084192286788039
616 => 0.0084980528232902
617 => 0.0086268969859563
618 => 0.0083649207778616
619 => 0.0084103907891312
620 => 0.0083992425924238
621 => 0.0085209556808609
622 => 0.0085213356558375
623 => 0.0084483625792998
624 => 0.0084879224679439
625 => 0.0084658412233715
626 => 0.0085057450167729
627 => 0.0083520926933198
628 => 0.0085392246375424
629 => 0.0086453163914004
630 => 0.0086467894755057
701 => 0.0086970761248382
702 => 0.0087481702729663
703 => 0.0088462410409358
704 => 0.0087454351324756
705 => 0.0085640951164132
706 => 0.0085771872798482
707 => 0.0084708676947805
708 => 0.0084726549462137
709 => 0.0084631144579939
710 => 0.0084917461813159
711 => 0.0083583757464875
712 => 0.0083896775209647
713 => 0.0083458548533937
714 => 0.0084102955272103
715 => 0.0083409680146086
716 => 0.0083992372164258
717 => 0.0084243842722754
718 => 0.0085171774497379
719 => 0.0083272623868496
720 => 0.0079400127175008
721 => 0.0080214172929463
722 => 0.007901013531671
723 => 0.0079121573581864
724 => 0.0079346696612745
725 => 0.0078616999213988
726 => 0.0078756202482263
727 => 0.0078751229161962
728 => 0.0078708371774412
729 => 0.0078518549298744
730 => 0.0078243269153794
731 => 0.0079339900524515
801 => 0.0079526239563665
802 => 0.0079940448165173
803 => 0.0081172852002882
804 => 0.0081049705797412
805 => 0.0081250562367822
806 => 0.0080812093602378
807 => 0.0079141912890335
808 => 0.007923261173848
809 => 0.0078101595648752
810 => 0.0079911525540888
811 => 0.0079482910252523
812 => 0.0079206579187807
813 => 0.0079131179696609
814 => 0.0080366638425058
815 => 0.0080736307040053
816 => 0.0080505954366726
817 => 0.0080033494313272
818 => 0.0080940757286181
819 => 0.0081183502583379
820 => 0.008123784430332
821 => 0.0082845340340893
822 => 0.0081327685474767
823 => 0.0081693000085235
824 => 0.0084543080392458
825 => 0.0081958450838005
826 => 0.0083327586757116
827 => 0.0083260574678515
828 => 0.0083960978285699
829 => 0.0083203121139476
830 => 0.0083212515687087
831 => 0.0083834426640817
901 => 0.0082961064868536
902 => 0.0082744808211605
903 => 0.0082446051188914
904 => 0.0083098376218152
905 => 0.0083489415571057
906 => 0.0086640905568712
907 => 0.0088676911832602
908 => 0.0088588523431102
909 => 0.0089396227964657
910 => 0.0089032349674565
911 => 0.0087857290689614
912 => 0.0089862973093748
913 => 0.0089228291259764
914 => 0.0089280613659019
915 => 0.0089278666216706
916 => 0.0089700674151456
917 => 0.0089401642853226
918 => 0.0088812221469482
919 => 0.0089203506891156
920 => 0.0090365484706428
921 => 0.0093972299498868
922 => 0.0095990720840657
923 => 0.0093850787999687
924 => 0.0095326885018546
925 => 0.0094441752794377
926 => 0.0094280897938842
927 => 0.0095207995949398
928 => 0.0096136716722294
929 => 0.0096077561224031
930 => 0.0095403357633248
1001 => 0.0095022517132097
1002 => 0.0097906368997737
1003 => 0.010003114192721
1004 => 0.0099886246658074
1005 => 0.010052576725355
1006 => 0.010240341950151
1007 => 0.010257508849156
1008 => 0.010255346214458
1009 => 0.010212796264094
1010 => 0.0103976755123
1011 => 0.010551905033795
1012 => 0.010202947179971
1013 => 0.010335825762513
1014 => 0.010395479239297
1015 => 0.010483068241605
1016 => 0.01063084557012
1017 => 0.010791370944887
1018 => 0.010814070992951
1019 => 0.010797964222553
1020 => 0.01069209342274
1021 => 0.010867742203276
1022 => 0.010970633139444
1023 => 0.011031902337314
1024 => 0.011187270828892
1025 => 0.010395847638861
1026 => 0.0098356389686731
1027 => 0.0097481542953119
1028 => 0.0099260578187567
1029 => 0.0099729695591351
1030 => 0.0099540594954109
1031 => 0.0093234937051699
1101 => 0.0097448344969249
1102 => 0.010198161761513
1103 => 0.010215575907979
1104 => 0.010442521015258
1105 => 0.010516423644983
1106 => 0.010699144202718
1107 => 0.010687714982082
1108 => 0.010732204530171
1109 => 0.010721977153517
1110 => 0.011060428510368
1111 => 0.011433790617487
1112 => 0.011420862274936
1113 => 0.011367187054618
1114 => 0.011446903909776
1115 => 0.011832253616238
1116 => 0.01179677679037
1117 => 0.011831239504792
1118 => 0.012285588526069
1119 => 0.012876306884123
1120 => 0.012601858899653
1121 => 0.013197332055672
1122 => 0.013572150842711
1123 => 0.014220361177908
1124 => 0.014139202051438
1125 => 0.014391545578143
1126 => 0.013993910276636
1127 => 0.013080859249023
1128 => 0.012936365428884
1129 => 0.013225645715968
1130 => 0.013936813074206
1201 => 0.013203248525027
1202 => 0.01335164767793
1203 => 0.013308908711911
1204 => 0.01330663133404
1205 => 0.013393549584583
1206 => 0.01326747012882
1207 => 0.012753799744781
1208 => 0.012989211854708
1209 => 0.012898307933647
1210 => 0.0129991726114
1211 => 0.013543497677475
1212 => 0.013302838590675
1213 => 0.013049323792287
1214 => 0.013367287608903
1215 => 0.013772164811676
1216 => 0.013746828323961
1217 => 0.013697664947963
1218 => 0.013974796324353
1219 => 0.014432536166274
1220 => 0.014556261406198
1221 => 0.014647592848858
1222 => 0.014660185911744
1223 => 0.01478990228601
1224 => 0.014092384648847
1225 => 0.015199363052548
1226 => 0.015390507643205
1227 => 0.015354580382293
1228 => 0.015567029550215
1229 => 0.015504521615697
1230 => 0.015413957425775
1231 => 0.015750734546166
]
'min_raw' => 0.005805858463753
'max_raw' => 0.015750734546166
'avg_raw' => 0.010778296504959
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.0058058'
'max' => '$0.01575'
'avg' => '$0.010778'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0020022905382225
'max_diff' => 0.007259537095282
'year' => 2032
]
7 => [
'items' => [
101 => 0.01536464675415
102 => 0.014816643740486
103 => 0.014515998448919
104 => 0.014911912421218
105 => 0.015153683268608
106 => 0.015313478419219
107 => 0.015361832335242
108 => 0.014146530957442
109 => 0.013491550918512
110 => 0.013911385614105
111 => 0.014423612918171
112 => 0.01408953920031
113 => 0.014102634257565
114 => 0.013626332928925
115 => 0.014465755017007
116 => 0.014343458279425
117 => 0.014977933970342
118 => 0.014826511254719
119 => 0.015343901550458
120 => 0.015207655345953
121 => 0.015773205723431
122 => 0.015998819080672
123 => 0.016377659021395
124 => 0.016656335223947
125 => 0.016819979220312
126 => 0.016810154648583
127 => 0.017458593689296
128 => 0.017076231841722
129 => 0.016595895245402
130 => 0.016587207471817
131 => 0.016835980601473
201 => 0.017357340833659
202 => 0.017492521956381
203 => 0.017568069762236
204 => 0.017452365667732
205 => 0.017037339286311
206 => 0.016858132999045
207 => 0.017010821947902
208 => 0.016824096484161
209 => 0.017146437020489
210 => 0.017589079425091
211 => 0.017497675518939
212 => 0.017803225073167
213 => 0.018119436717043
214 => 0.018571633569739
215 => 0.018689854571834
216 => 0.018885269392756
217 => 0.01908641543391
218 => 0.019151018121291
219 => 0.019274364696537
220 => 0.0192737145992
221 => 0.019645427805887
222 => 0.020055438983862
223 => 0.020210208711768
224 => 0.020566093167033
225 => 0.01995665350907
226 => 0.020418920490373
227 => 0.020835896878802
228 => 0.020338760438598
301 => 0.021023947203484
302 => 0.021050551452898
303 => 0.021452244033028
304 => 0.021045051648079
305 => 0.020803262109701
306 => 0.021501299447264
307 => 0.02183905772694
308 => 0.021737322184334
309 => 0.020963109681794
310 => 0.020512484797779
311 => 0.019333112557265
312 => 0.020730129921244
313 => 0.021410576327682
314 => 0.020961347489985
315 => 0.021187912385639
316 => 0.022423976992411
317 => 0.022894590365413
318 => 0.022796706073664
319 => 0.022813246907657
320 => 0.023067181341492
321 => 0.024193266465364
322 => 0.023518490156691
323 => 0.024034331361286
324 => 0.024307931676199
325 => 0.024562066896601
326 => 0.023937991115554
327 => 0.023126077693906
328 => 0.022868910631463
329 => 0.020916680535409
330 => 0.020815058480803
331 => 0.02075801494209
401 => 0.020398363499471
402 => 0.020115775982394
403 => 0.019891051897013
404 => 0.019301308788679
405 => 0.019500329775651
406 => 0.01856040234992
407 => 0.01916173460792
408 => 0.017661587741111
409 => 0.018910954628894
410 => 0.018230981033616
411 => 0.018687565015014
412 => 0.018685972036516
413 => 0.017845256166679
414 => 0.017360348798249
415 => 0.017669350646289
416 => 0.018000625155986
417 => 0.018054373330643
418 => 0.018483879379614
419 => 0.01860374528568
420 => 0.018240545994296
421 => 0.017630500531692
422 => 0.017772200178999
423 => 0.017357477259419
424 => 0.016630691294942
425 => 0.017152681663095
426 => 0.017330912125079
427 => 0.017409628850656
428 => 0.016694918326525
429 => 0.016470340762722
430 => 0.016350777552142
501 => 0.017538240377977
502 => 0.017603292272122
503 => 0.017270477584265
504 => 0.018774831532161
505 => 0.018434349902246
506 => 0.018814751302886
507 => 0.017759342421231
508 => 0.017799660461807
509 => 0.017300012983554
510 => 0.017579782184919
511 => 0.017382050330777
512 => 0.017557179598182
513 => 0.01766215135898
514 => 0.018161716849998
515 => 0.018916658864339
516 => 0.018087098424681
517 => 0.017725647061598
518 => 0.017949889454375
519 => 0.018547076496658
520 => 0.019451845435158
521 => 0.018916204013394
522 => 0.019153912580592
523 => 0.019205841327606
524 => 0.018810879173721
525 => 0.01946640825314
526 => 0.019817711612309
527 => 0.02017807616683
528 => 0.020490970612335
529 => 0.020034138639168
530 => 0.020523014334747
531 => 0.020129066822288
601 => 0.019775655178066
602 => 0.019776191157649
603 => 0.019554490870708
604 => 0.019124918628727
605 => 0.019045698916486
606 => 0.019457809863915
607 => 0.019788283816701
608 => 0.019815503234316
609 => 0.019998470594943
610 => 0.020106748794248
611 => 0.021168022344516
612 => 0.021594875345749
613 => 0.022116823115743
614 => 0.02232015118752
615 => 0.022932095786421
616 => 0.022437900823098
617 => 0.022330978634151
618 => 0.020846601202771
619 => 0.021089667924003
620 => 0.021478841197146
621 => 0.020853018526703
622 => 0.021249958966577
623 => 0.021328323417756
624 => 0.020831753311836
625 => 0.021096992860935
626 => 0.020392595256572
627 => 0.018932012807217
628 => 0.019468034298936
629 => 0.019862726539724
630 => 0.019299452046917
701 => 0.02030909977354
702 => 0.019719284415006
703 => 0.019532341262481
704 => 0.018803009374436
705 => 0.019147225951034
706 => 0.019612783799591
707 => 0.019325123176092
708 => 0.019922062162312
709 => 0.020767486964612
710 => 0.021369987024648
711 => 0.021416239497985
712 => 0.02102887232375
713 => 0.021649630692605
714 => 0.021654152239625
715 => 0.020953934263684
716 => 0.020525054652251
717 => 0.020427612302163
718 => 0.020671042397381
719 => 0.02096661147265
720 => 0.021432641524606
721 => 0.021714253724683
722 => 0.022448548986913
723 => 0.022647228230978
724 => 0.022865516484422
725 => 0.023157216908627
726 => 0.02350747805834
727 => 0.022741126603148
728 => 0.02277157517512
729 => 0.022057959310904
730 => 0.021295358417121
731 => 0.021874077435959
801 => 0.022630675569324
802 => 0.022457111121563
803 => 0.02243758157559
804 => 0.022470424854872
805 => 0.022339562929346
806 => 0.021747679290159
807 => 0.021450439031946
808 => 0.021833954799117
809 => 0.022037776361046
810 => 0.022353885828489
811 => 0.022314918664365
812 => 0.023129182704819
813 => 0.023445581088874
814 => 0.023364632842782
815 => 0.023379529268191
816 => 0.023952353429365
817 => 0.024589451706863
818 => 0.025186178316263
819 => 0.025793194253349
820 => 0.025061412848957
821 => 0.024689859381809
822 => 0.025073207717994
823 => 0.024869797694796
824 => 0.026038652023424
825 => 0.026119580961111
826 => 0.027288350768267
827 => 0.028397652489778
828 => 0.027700919953702
829 => 0.028357907353699
830 => 0.029068492791765
831 => 0.030439327390126
901 => 0.029977678523941
902 => 0.029624062727403
903 => 0.029289897508334
904 => 0.029985242281982
905 => 0.030879792224877
906 => 0.031072469714684
907 => 0.031384680856637
908 => 0.031056429016236
909 => 0.031451772202245
910 => 0.032847507371457
911 => 0.032470367408241
912 => 0.031934768032199
913 => 0.033036566900462
914 => 0.033435303627751
915 => 0.036233846799914
916 => 0.039767123156822
917 => 0.038304323544318
918 => 0.037396316620589
919 => 0.037609719785878
920 => 0.038899952702468
921 => 0.039314334565331
922 => 0.038187901816075
923 => 0.038585776906173
924 => 0.040778107770827
925 => 0.041954222941319
926 => 0.04035690056645
927 => 0.035949951484911
928 => 0.031886543168507
929 => 0.032964342031678
930 => 0.032842153088587
1001 => 0.035197539103813
1002 => 0.032461372744847
1003 => 0.032507442769042
1004 => 0.034911535672665
1005 => 0.034270164902565
1006 => 0.033231226395565
1007 => 0.031894128569366
1008 => 0.029422379571058
1009 => 0.027233082553437
1010 => 0.031526798169984
1011 => 0.031341645344983
1012 => 0.031073516616271
1013 => 0.031670208087461
1014 => 0.034567572497734
1015 => 0.034500778870224
1016 => 0.034075871890412
1017 => 0.034398160089641
1018 => 0.033174727715999
1019 => 0.033490034095724
1020 => 0.031885899503869
1021 => 0.032611035333966
1022 => 0.03322899730014
1023 => 0.033353062313932
1024 => 0.033632587124924
1025 => 0.031244078219617
1026 => 0.032316448595163
1027 => 0.03294636572328
1028 => 0.030100377221865
1029 => 0.032890109681158
1030 => 0.031202499593528
1031 => 0.030629699382734
1101 => 0.031400899405879
1102 => 0.031100362006843
1103 => 0.0308419775993
1104 => 0.030697794660283
1105 => 0.03126407884304
1106 => 0.031237661009059
1107 => 0.030311110175045
1108 => 0.029102462383117
1109 => 0.029508124254599
1110 => 0.029360743493589
1111 => 0.028826616603193
1112 => 0.029186553636593
1113 => 0.027601573101462
1114 => 0.024874696470887
1115 => 0.026676154699535
1116 => 0.026606800517341
1117 => 0.026571828993718
1118 => 0.027925575063898
1119 => 0.027795443615486
1120 => 0.027559253762367
1121 => 0.028822278791318
1122 => 0.028361257665667
1123 => 0.029782016144685
1124 => 0.030717819567864
1125 => 0.030480469549676
1126 => 0.031360597192306
1127 => 0.029517469884796
1128 => 0.030129682842918
1129 => 0.030255859085097
1130 => 0.028806693258515
1201 => 0.027816734729809
1202 => 0.027750715782298
1203 => 0.02603426411821
1204 => 0.026951178742452
1205 => 0.027758025667279
1206 => 0.027371608604138
1207 => 0.027249280505828
1208 => 0.027874228230363
1209 => 0.027922792020875
1210 => 0.02681553245065
1211 => 0.02704576677765
1212 => 0.028005882194512
1213 => 0.027021574332547
1214 => 0.025109224942525
1215 => 0.024634935853501
1216 => 0.024571656946142
1217 => 0.023285347320366
1218 => 0.024666630118331
1219 => 0.024063663160942
1220 => 0.02596842855468
1221 => 0.024880436777238
1222 => 0.024833535626255
1223 => 0.024762637657639
1224 => 0.023655457825952
1225 => 0.023897859844143
1226 => 0.024703641071478
1227 => 0.024991152891166
1228 => 0.024961163052858
1229 => 0.024699692303871
1230 => 0.02481939227381
1231 => 0.024433796964403
]
'min_raw' => 0.013491550918512
'max_raw' => 0.041954222941319
'avg_raw' => 0.027722886929915
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.013491'
'max' => '$0.041954'
'avg' => '$0.027722'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0076856924547592
'max_diff' => 0.026203488395153
'year' => 2033
]
8 => [
'items' => [
101 => 0.024297635235178
102 => 0.023867871363512
103 => 0.023236237197463
104 => 0.02332406980229
105 => 0.022072637243277
106 => 0.021390790366573
107 => 0.021202064137699
108 => 0.020949691537037
109 => 0.021230570294482
110 => 0.022069092092071
111 => 0.021057656901856
112 => 0.01932362221216
113 => 0.019427840651662
114 => 0.019661988542491
115 => 0.019225655496975
116 => 0.018812702888051
117 => 0.019171731677606
118 => 0.018436998320207
119 => 0.019750777558502
120 => 0.01971524351193
121 => 0.020204939168404
122 => 0.020511155911963
123 => 0.019805425456907
124 => 0.019627936155958
125 => 0.019729042128217
126 => 0.018057985623108
127 => 0.020068378201019
128 => 0.020085764159516
129 => 0.019936895027542
130 => 0.021007367011372
131 => 0.023266396785839
201 => 0.022416458915422
202 => 0.022087337282489
203 => 0.021461676817696
204 => 0.02229533223899
205 => 0.022231320509685
206 => 0.021941835194041
207 => 0.02176675357189
208 => 0.022089346828998
209 => 0.021726780697353
210 => 0.021661653857458
211 => 0.021267056066397
212 => 0.021126202608044
213 => 0.021021920315017
214 => 0.020907115756961
215 => 0.02116034600452
216 => 0.020586492948339
217 => 0.019894482418094
218 => 0.019836949230162
219 => 0.019995803420412
220 => 0.01992552226653
221 => 0.019836612751036
222 => 0.019666860272893
223 => 0.019616498338815
224 => 0.01978015019243
225 => 0.019595396791195
226 => 0.019868010498755
227 => 0.019793874654703
228 => 0.019379757856303
301 => 0.01886361499982
302 => 0.018859020245751
303 => 0.018747818113966
304 => 0.018606185479785
305 => 0.018566786521071
306 => 0.019141495274362
307 => 0.020331125194089
308 => 0.020097572375416
309 => 0.020266338222363
310 => 0.021096499155646
311 => 0.021360382352527
312 => 0.021173084309797
313 => 0.020916699196868
314 => 0.020927978840661
315 => 0.021804124384589
316 => 0.021858768507462
317 => 0.0219968365771
318 => 0.022174293064616
319 => 0.021203305916965
320 => 0.020882245433326
321 => 0.02073010916442
322 => 0.020261588340337
323 => 0.020766847881171
324 => 0.020472454784098
325 => 0.020512178470793
326 => 0.020486308367721
327 => 0.020500435193327
328 => 0.01975041033043
329 => 0.020023679970324
330 => 0.019569316192483
331 => 0.018960974098681
401 => 0.01895893472267
402 => 0.019107825588291
403 => 0.01901925947532
404 => 0.018780930342557
405 => 0.018814783870985
406 => 0.018518191339607
407 => 0.018850795574275
408 => 0.01886033347361
409 => 0.018732262726188
410 => 0.019244685440234
411 => 0.019454625444276
412 => 0.019370326534781
413 => 0.019448710808062
414 => 0.020107277549459
415 => 0.020214652663589
416 => 0.020262341596483
417 => 0.020198444743977
418 => 0.019460748199147
419 => 0.019493468177838
420 => 0.019253390684249
421 => 0.019050550500909
422 => 0.019058663044486
423 => 0.019162949266101
424 => 0.019618373312198
425 => 0.020576786368495
426 => 0.020613157443391
427 => 0.020657240247184
428 => 0.020477933329917
429 => 0.020423852647933
430 => 0.020495199026878
501 => 0.020855128579859
502 => 0.021780965110046
503 => 0.021453712645735
504 => 0.021187651298262
505 => 0.02142105882962
506 => 0.021385127569676
507 => 0.021081831575808
508 => 0.021073319067419
509 => 0.020491197085592
510 => 0.020275999843186
511 => 0.020096164920198
512 => 0.019899789879004
513 => 0.019783372172034
514 => 0.019962242680842
515 => 0.02000315248254
516 => 0.019612048988909
517 => 0.019558743027904
518 => 0.019878126583359
519 => 0.019737577788422
520 => 0.019882135709457
521 => 0.019915674387132
522 => 0.019910273887565
523 => 0.019763524803725
524 => 0.019857058293644
525 => 0.01963582370631
526 => 0.019395264320946
527 => 0.019241802420462
528 => 0.019107886558523
529 => 0.019182190861963
530 => 0.018917309587631
531 => 0.018832568736966
601 => 0.019825371251829
602 => 0.020558765143985
603 => 0.020548101306337
604 => 0.020483187937172
605 => 0.02038673983779
606 => 0.020848072800651
607 => 0.020687353621034
608 => 0.020804290252742
609 => 0.020834055533327
610 => 0.020924146072928
611 => 0.020956345697292
612 => 0.020859016068387
613 => 0.020532365945971
614 => 0.01971838489787
615 => 0.01933947452268
616 => 0.019214427787615
617 => 0.019218972998937
618 => 0.019093595779959
619 => 0.019130524989961
620 => 0.019080753307791
621 => 0.018986497782825
622 => 0.019176370848901
623 => 0.019198251950976
624 => 0.01915393330854
625 => 0.019164371953192
626 => 0.018797432522559
627 => 0.018825330130519
628 => 0.018669992704338
629 => 0.01864086880955
630 => 0.018248189322942
701 => 0.017552500692615
702 => 0.017937979725945
703 => 0.017472375260236
704 => 0.017296043794013
705 => 0.018130769529944
706 => 0.018046986217744
707 => 0.017903585606989
708 => 0.017691466216376
709 => 0.017612789071033
710 => 0.017134771642087
711 => 0.017106527822261
712 => 0.017343446167603
713 => 0.01723411650309
714 => 0.017080576247732
715 => 0.016524469006951
716 => 0.015899220347534
717 => 0.015918092674389
718 => 0.016116972639784
719 => 0.01669524296179
720 => 0.016469302742804
721 => 0.016305380521565
722 => 0.016274682817011
723 => 0.016658928859505
724 => 0.017202717511669
725 => 0.017457850980679
726 => 0.017205021461409
727 => 0.016914584522979
728 => 0.016932262073666
729 => 0.017049862898705
730 => 0.01706222108263
731 => 0.016873176493112
801 => 0.016926391437726
802 => 0.016845553070781
803 => 0.016349448162051
804 => 0.016340475197418
805 => 0.016218723052043
806 => 0.016215036445469
807 => 0.016007905673691
808 => 0.015978926646891
809 => 0.015567655927587
810 => 0.015838355560475
811 => 0.015656784459102
812 => 0.01538311398104
813 => 0.015335933087469
814 => 0.015334514772836
815 => 0.015615513162207
816 => 0.01583507193069
817 => 0.015659942966148
818 => 0.015620069495654
819 => 0.016045813843024
820 => 0.015991633994075
821 => 0.015944714594308
822 => 0.017154027202194
823 => 0.016196761909213
824 => 0.01577933960268
825 => 0.015262700232
826 => 0.015430920616216
827 => 0.015466367122841
828 => 0.014223942567602
829 => 0.013719891080276
830 => 0.013546919604605
831 => 0.013447372074899
901 => 0.013492737134225
902 => 0.013039031676288
903 => 0.013343929247617
904 => 0.012951058671812
905 => 0.012885192641267
906 => 0.013587693898132
907 => 0.013685442844072
908 => 0.013268415472475
909 => 0.013536214555639
910 => 0.013439106885398
911 => 0.012957793310227
912 => 0.012939410671959
913 => 0.012697904438928
914 => 0.012319993949057
915 => 0.012147278714494
916 => 0.012057327120751
917 => 0.012094442901451
918 => 0.012075676026968
919 => 0.01195320947656
920 => 0.012082695666283
921 => 0.011751911958928
922 => 0.011620191221353
923 => 0.011560696020089
924 => 0.011267106440611
925 => 0.011734338021439
926 => 0.01182638852889
927 => 0.011918620404277
928 => 0.012721435910144
929 => 0.012681329516204
930 => 0.013043871784816
1001 => 0.01302978405893
1002 => 0.012926381131127
1003 => 0.01249014118768
1004 => 0.012664018653908
1005 => 0.012128850839414
1006 => 0.012529834953907
1007 => 0.01234684254955
1008 => 0.01246796503792
1009 => 0.012250175882656
1010 => 0.012370709393473
1011 => 0.011848217119056
1012 => 0.011360321184869
1013 => 0.011556664751356
1014 => 0.011770112662738
1015 => 0.012232922120129
1016 => 0.011957276625402
1017 => 0.012056409168616
1018 => 0.011724331743436
1019 => 0.011039161162063
1020 => 0.011043039153145
1021 => 0.010937640586453
1022 => 0.010846560836389
1023 => 0.011988937826323
1024 => 0.011846865189317
1025 => 0.011620491036254
1026 => 0.011923501835879
1027 => 0.012003622700728
1028 => 0.012005903629114
1029 => 0.012226972486679
1030 => 0.012344956975591
1031 => 0.012365752253135
1101 => 0.012713608877024
1102 => 0.012830205829011
1103 => 0.013310452172829
1104 => 0.012334946816018
1105 => 0.012314856925144
1106 => 0.011927765819228
1107 => 0.011682266520187
1108 => 0.011944575366267
1109 => 0.012176945195165
1110 => 0.01193498619754
1111 => 0.011966580934596
1112 => 0.011641770749061
1113 => 0.01175787510665
1114 => 0.011857879820352
1115 => 0.011802663095451
1116 => 0.011720000985755
1117 => 0.012157893519106
1118 => 0.01213318590626
1119 => 0.012540961500421
1120 => 0.012858851736383
1121 => 0.013428567868903
1122 => 0.012834039384645
1123 => 0.012812372403642
1124 => 0.01302417061844
1125 => 0.012830173403808
1126 => 0.012952772946899
1127 => 0.01340881518713
1128 => 0.013418450641044
1129 => 0.013257044373401
1130 => 0.013247222787347
1201 => 0.013278222626638
1202 => 0.013459789653633
1203 => 0.01339634455541
1204 => 0.013469764829307
1205 => 0.013561578006067
1206 => 0.013941356233125
1207 => 0.014032919477936
1208 => 0.013810468263146
1209 => 0.01383055311716
1210 => 0.013747350256406
1211 => 0.013666977335447
1212 => 0.013847643924242
1213 => 0.014177815666274
1214 => 0.014175761685003
1215 => 0.014252355111533
1216 => 0.014300072181727
1217 => 0.014095235585424
1218 => 0.013961894493281
1219 => 0.014013025952723
1220 => 0.014094786269869
1221 => 0.013986512183811
1222 => 0.013318194367226
1223 => 0.01352091930047
1224 => 0.013487175958836
1225 => 0.013439121337017
1226 => 0.01364296282502
1227 => 0.013623301816228
1228 => 0.013034378271042
1229 => 0.013072079245647
1230 => 0.013036670992177
1231 => 0.013151082302985
]
'min_raw' => 0.010846560836389
'max_raw' => 0.024297635235178
'avg_raw' => 0.017572098035783
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.010846'
'max' => '$0.024297'
'avg' => '$0.017572'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0026449900821236
'max_diff' => -0.01765658770614
'year' => 2034
]
9 => [
'items' => [
101 => 0.012823994817558
102 => 0.012924604725108
103 => 0.012987706315964
104 => 0.013024873637747
105 => 0.013159147489899
106 => 0.013143392003132
107 => 0.01315816810672
108 => 0.013357260782479
109 => 0.014364203216114
110 => 0.014419008871083
111 => 0.014149125781787
112 => 0.014256938752752
113 => 0.014049961424604
114 => 0.014188906691617
115 => 0.014283969514481
116 => 0.01385439889749
117 => 0.013828962513442
118 => 0.013621130916234
119 => 0.01373280784439
120 => 0.013555121821839
121 => 0.01359871975658
122 => 0.013476816130244
123 => 0.013696218386878
124 => 0.013941544201458
125 => 0.014003523190431
126 => 0.013840483154076
127 => 0.013722431422892
128 => 0.013515171471592
129 => 0.013859849389694
130 => 0.013960643716816
131 => 0.013859319960003
201 => 0.013835841031581
202 => 0.013791348504648
203 => 0.0138452803315
204 => 0.013960094769264
205 => 0.013905950400704
206 => 0.013941713710039
207 => 0.01380542085382
208 => 0.014095303394861
209 => 0.014555706634067
210 => 0.014557186905764
211 => 0.014503042245346
212 => 0.014480887416866
213 => 0.014536443124228
214 => 0.014566579816457
215 => 0.01474623678689
216 => 0.014939015874013
217 => 0.015838631757514
218 => 0.015586023217298
219 => 0.016384215947528
220 => 0.017015482764786
221 => 0.017204772081329
222 => 0.01703063481686
223 => 0.016434920641821
224 => 0.016405692062389
225 => 0.017295940543935
226 => 0.017044404571935
227 => 0.017014485168446
228 => 0.016696193264957
301 => 0.016884343201138
302 => 0.016843192050102
303 => 0.016778232945009
304 => 0.017137209916604
305 => 0.017809182761335
306 => 0.017704449491763
307 => 0.017626270964463
308 => 0.017283715415264
309 => 0.017490010368434
310 => 0.017416552686929
311 => 0.017732173504068
312 => 0.017545206723852
313 => 0.017042498939554
314 => 0.01712255681115
315 => 0.017110456224913
316 => 0.017359485432227
317 => 0.017284733045476
318 => 0.017095859621667
319 => 0.017806886031205
320 => 0.017760715931106
321 => 0.017826174577092
322 => 0.017854991497431
323 => 0.018287780743226
324 => 0.018465080649517
325 => 0.018505330832317
326 => 0.018673752030426
327 => 0.01850114035948
328 => 0.019191710113303
329 => 0.019650898703733
330 => 0.020184269881146
331 => 0.020963668528004
401 => 0.021256729629063
402 => 0.021203790764245
403 => 0.021794721923139
404 => 0.02285661208001
405 => 0.02141842912555
406 => 0.022932839268777
407 => 0.022453394502137
408 => 0.021316639585277
409 => 0.021243445970092
410 => 0.022013269597785
411 => 0.023720664311231
412 => 0.023292981300623
413 => 0.023721363847423
414 => 0.023221632851702
415 => 0.023196816995701
416 => 0.023697093028381
417 => 0.024866015247365
418 => 0.02431070411752
419 => 0.023514529445012
420 => 0.024102412433342
421 => 0.023593133782848
422 => 0.022445586445167
423 => 0.023292654259485
424 => 0.022726244135153
425 => 0.022891552721452
426 => 0.02408206255565
427 => 0.023938817262701
428 => 0.024124189935934
429 => 0.023797012019725
430 => 0.023491376254764
501 => 0.022920884402655
502 => 0.022751989890154
503 => 0.022798666257221
504 => 0.022751966759664
505 => 0.0224327818115
506 => 0.022363853852334
507 => 0.022248970900587
508 => 0.022284577931126
509 => 0.022068564371649
510 => 0.022476226589061
511 => 0.02255189228892
512 => 0.022848554854545
513 => 0.022879355346249
514 => 0.023705556368787
515 => 0.023250498729317
516 => 0.02355579068166
517 => 0.023528482495923
518 => 0.021341276511268
519 => 0.021642654198072
520 => 0.02211150330121
521 => 0.021900287415756
522 => 0.02160167757063
523 => 0.021360534110243
524 => 0.020995177109573
525 => 0.021509410071957
526 => 0.022185571734913
527 => 0.022896503921858
528 => 0.023750642362351
529 => 0.0235600086057
530 => 0.022880536397839
531 => 0.022911017024729
601 => 0.023099436266478
602 => 0.02285541622872
603 => 0.022783449955748
604 => 0.023089549205689
605 => 0.023091657142994
606 => 0.022810882598747
607 => 0.022498853074015
608 => 0.022497545658914
609 => 0.022442023018835
610 => 0.023231510206028
611 => 0.023665648332826
612 => 0.023715421569415
613 => 0.023662298197432
614 => 0.023682743274917
615 => 0.023430127864514
616 => 0.024007531781922
617 => 0.024537414715866
618 => 0.024395394770271
619 => 0.0241824866825
620 => 0.024012895135547
621 => 0.024355444391506
622 => 0.024340191212361
623 => 0.024532786650697
624 => 0.024524049409129
625 => 0.024459286807097
626 => 0.024395397083147
627 => 0.024648712616842
628 => 0.024575761811261
629 => 0.024502697692929
630 => 0.024356156418058
701 => 0.024376073811106
702 => 0.024163202484918
703 => 0.024064718469095
704 => 0.022583755167302
705 => 0.022187993381191
706 => 0.022312508095575
707 => 0.022353501572574
708 => 0.022181265536076
709 => 0.022428207768606
710 => 0.022389722083243
711 => 0.022539447371619
712 => 0.022445905511758
713 => 0.022449744502315
714 => 0.022724831166939
715 => 0.022804689995982
716 => 0.022764073150991
717 => 0.022792519796958
718 => 0.023448060746703
719 => 0.023354863786669
720 => 0.023305354759135
721 => 0.023319069098113
722 => 0.023486573865729
723 => 0.02353346605524
724 => 0.023334780553225
725 => 0.023428481784563
726 => 0.023827449735141
727 => 0.023967065938213
728 => 0.02441265383884
729 => 0.024223360178961
730 => 0.024570816884107
731 => 0.025638780339009
801 => 0.026491943444235
802 => 0.025707339394213
803 => 0.027274064787293
804 => 0.028493985239216
805 => 0.028447162660387
806 => 0.028234441312326
807 => 0.026845594311075
808 => 0.025567556593982
809 => 0.026636689412678
810 => 0.026639414852102
811 => 0.026547575394809
812 => 0.025977168413124
813 => 0.026527726468276
814 => 0.02657142776736
815 => 0.026546966660986
816 => 0.026109636965518
817 => 0.025441915352576
818 => 0.025572386557445
819 => 0.025786101052561
820 => 0.025381494927792
821 => 0.025252198754979
822 => 0.025492584939842
823 => 0.026267159313923
824 => 0.026120730515307
825 => 0.02611690666761
826 => 0.026743391163563
827 => 0.026294963468276
828 => 0.025574032217165
829 => 0.025391987568345
830 => 0.024745851705001
831 => 0.02519214004727
901 => 0.025208201170196
902 => 0.024963773606092
903 => 0.025593866166875
904 => 0.025588059753002
905 => 0.026186238862564
906 => 0.027329732654234
907 => 0.026991545272125
908 => 0.026598270141415
909 => 0.02664103005246
910 => 0.027110000736167
911 => 0.026826450355238
912 => 0.026928417049204
913 => 0.027109846397363
914 => 0.027219307227746
915 => 0.026625280323474
916 => 0.026486784236498
917 => 0.026203469848064
918 => 0.026129558412435
919 => 0.026360312070266
920 => 0.026299516634074
921 => 0.025206851295006
922 => 0.025092661687541
923 => 0.025096163719776
924 => 0.024809028522385
925 => 0.02437107842602
926 => 0.025521985130626
927 => 0.025429551215317
928 => 0.025327511326633
929 => 0.025340010630765
930 => 0.025839580223387
1001 => 0.025549804630797
1002 => 0.026320220536983
1003 => 0.026161846187493
1004 => 0.02599941013354
1005 => 0.025976956522961
1006 => 0.025914432500582
1007 => 0.02570001436368
1008 => 0.025441091578838
1009 => 0.025270128328779
1010 => 0.023310357609369
1011 => 0.023674079655429
1012 => 0.024092508715114
1013 => 0.024236948749769
1014 => 0.023989874075547
1015 => 0.025709770377756
1016 => 0.026024012005503
1017 => 0.025072153617584
1018 => 0.024894099777326
1019 => 0.025721443557881
1020 => 0.025222454119542
1021 => 0.025447149033072
1022 => 0.024961481531567
1023 => 0.025948320399447
1024 => 0.025940802340682
1025 => 0.025556899732309
1026 => 0.025881371588054
1027 => 0.025824986618258
1028 => 0.025391561518916
1029 => 0.025962060748183
1030 => 0.025962343708683
1031 => 0.025592845794887
1101 => 0.025161353125068
1102 => 0.025084212427106
1103 => 0.025026097273586
1104 => 0.02543285626783
1105 => 0.025797555110167
1106 => 0.026476169239245
1107 => 0.026646788954769
1108 => 0.027312729063258
1109 => 0.026916194152688
1110 => 0.027091972942557
1111 => 0.027282805684388
1112 => 0.027374297918463
1113 => 0.027225216232781
1114 => 0.028259695333149
1115 => 0.02834703706484
1116 => 0.028376321991973
1117 => 0.028027501459761
1118 => 0.028337335734828
1119 => 0.028192374538156
1120 => 0.028569523300515
1121 => 0.02862866504213
1122 => 0.02857857409101
1123 => 0.028597346613288
1124 => 0.027714601195743
1125 => 0.02766882618899
1126 => 0.02704468072387
1127 => 0.027299024614357
1128 => 0.026823540902112
1129 => 0.026974321685289
1130 => 0.027040784417822
1201 => 0.027006068058074
1202 => 0.02731340483631
1203 => 0.027052105790054
1204 => 0.026362494645442
1205 => 0.025672695616735
1206 => 0.025664035751828
1207 => 0.025482423843534
1208 => 0.025351151697717
1209 => 0.025376439370131
1210 => 0.02546555642604
1211 => 0.025345972052422
1212 => 0.025371491441615
1213 => 0.025795283337022
1214 => 0.025880271779301
1215 => 0.025591447845311
1216 => 0.024431778073246
1217 => 0.024147192202369
1218 => 0.024351746882772
1219 => 0.024253982920548
1220 => 0.019574857162637
1221 => 0.020674148353005
1222 => 0.02002098685609
1223 => 0.020321993724384
1224 => 0.019655284971383
1225 => 0.019973473333514
1226 => 0.019914715561407
1227 => 0.021682343265128
1228 => 0.021654744189827
1229 => 0.021667954406663
1230 => 0.021037396338038
1231 => 0.022041892462874
]
'min_raw' => 0.012823994817558
'max_raw' => 0.02862866504213
'avg_raw' => 0.020726329929844
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012823'
'max' => '$0.028628'
'avg' => '$0.020726'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019774339811698
'max_diff' => 0.0043310298069513
'year' => 2035
]
10 => [
'items' => [
101 => 0.022536743374481
102 => 0.022445159640773
103 => 0.022468209293453
104 => 0.022072139893255
105 => 0.021671789224221
106 => 0.021227738718737
107 => 0.022052729671626
108 => 0.02196100476073
109 => 0.022171388704744
110 => 0.022706454309264
111 => 0.022785244752046
112 => 0.022891139906159
113 => 0.022853184031539
114 => 0.023757446953033
115 => 0.023647934746721
116 => 0.02391182765512
117 => 0.02336897992094
118 => 0.022754696182135
119 => 0.022871451438434
120 => 0.022860206968366
121 => 0.022717051958598
122 => 0.022587818016672
123 => 0.022372679914804
124 => 0.023053408703564
125 => 0.023025772357897
126 => 0.023473172670506
127 => 0.023394090319438
128 => 0.022865959024268
129 => 0.022884821336795
130 => 0.023011679453456
131 => 0.02345073684366
201 => 0.023581078970379
202 => 0.023520699304047
203 => 0.023663613495651
204 => 0.023776567045613
205 => 0.023677798722462
206 => 0.025076149894314
207 => 0.024495456995058
208 => 0.02477848267372
209 => 0.024845982630397
210 => 0.02467308291074
211 => 0.024710578668859
212 => 0.024767374525426
213 => 0.025112227844734
214 => 0.026017222738711
215 => 0.026418038816744
216 => 0.027623913763425
217 => 0.026384756621093
218 => 0.026311230164409
219 => 0.026528444656241
220 => 0.027236420904769
221 => 0.027810169157374
222 => 0.028000514553093
223 => 0.028025671839398
224 => 0.02838277245569
225 => 0.028587455869417
226 => 0.028339411048194
227 => 0.028129219033582
228 => 0.027376337327237
229 => 0.027463485434776
301 => 0.028063849475094
302 => 0.02891189904331
303 => 0.029639613797358
304 => 0.02938479345391
305 => 0.031328892799291
306 => 0.031521642308452
307 => 0.031495010558623
308 => 0.031934122625465
309 => 0.031062574596402
310 => 0.03068997092853
311 => 0.028174664932922
312 => 0.02888136331969
313 => 0.029908590927797
314 => 0.029772633501959
315 => 0.029026633355078
316 => 0.029639047889351
317 => 0.029436564492347
318 => 0.029276857436087
319 => 0.030008506421554
320 => 0.029204028307549
321 => 0.029900565643217
322 => 0.029007249305467
323 => 0.029385957451775
324 => 0.029170984391878
325 => 0.029310098307738
326 => 0.028496841198184
327 => 0.028935654993799
328 => 0.0284785851016
329 => 0.028478368390959
330 => 0.028468278547756
331 => 0.02900601924897
401 => 0.029023554953931
402 => 0.028626163763253
403 => 0.028568893484259
404 => 0.028780651722267
405 => 0.02853273828513
406 => 0.028648735422018
407 => 0.028536251720238
408 => 0.028510929269698
409 => 0.028309155675536
410 => 0.028222226063291
411 => 0.028256313404153
412 => 0.028139955736563
413 => 0.028069846033
414 => 0.028454331963081
415 => 0.028248916640757
416 => 0.028422849118865
417 => 0.028224631108032
418 => 0.027537521123011
419 => 0.027142356904569
420 => 0.025844469837993
421 => 0.02621254900005
422 => 0.026456585865299
423 => 0.02637593168279
424 => 0.026549208075845
425 => 0.026559845839086
426 => 0.02650351191736
427 => 0.026438284452824
428 => 0.026406535330393
429 => 0.026643167277427
430 => 0.026780540087345
501 => 0.026481078229519
502 => 0.026410918506147
503 => 0.026713690978152
504 => 0.026898382011168
505 => 0.028262036830038
506 => 0.028161012876509
507 => 0.028414563174917
508 => 0.028386017302362
509 => 0.028651778408824
510 => 0.029086185498865
511 => 0.028202914422679
512 => 0.028356219740289
513 => 0.028318632816748
514 => 0.02872899699215
515 => 0.028730278104313
516 => 0.028484244281948
517 => 0.028617623208495
518 => 0.028543174750756
519 => 0.028677713176203
520 => 0.028159663640018
521 => 0.028790592055099
522 => 0.029148287810322
523 => 0.02915325441623
524 => 0.029322799365356
525 => 0.02949506685305
526 => 0.029825719294341
527 => 0.029485845135924
528 => 0.028874444611014
529 => 0.028918585754101
530 => 0.028560121850048
531 => 0.028566147693037
601 => 0.028533981270909
602 => 0.028630515125092
603 => 0.028180847392442
604 => 0.028286383510512
605 => 0.028138632327195
606 => 0.028355898558072
607 => 0.028122156009043
608 => 0.028318614691195
609 => 0.028403399745704
610 => 0.028716258422131
611 => 0.028075946528157
612 => 0.026770307231039
613 => 0.02704476844064
614 => 0.026638818753178
615 => 0.026676390942312
616 => 0.026752292743932
617 => 0.026506270171356
618 => 0.026553203525142
619 => 0.026551526735479
620 => 0.026537077068046
621 => 0.026473077095077
622 => 0.026380264472262
623 => 0.026750001395336
624 => 0.026812826903364
625 => 0.026952480225274
626 => 0.027367993783526
627 => 0.027326474180573
628 => 0.027394194375622
629 => 0.027246361570062
630 => 0.026683248482167
701 => 0.026713828232058
702 => 0.026332498260904
703 => 0.026942728760565
704 => 0.026798218123596
705 => 0.026705051175845
706 => 0.026679629710966
707 => 0.02709617324696
708 => 0.027220809601449
709 => 0.027143144589366
710 => 0.026983851383733
711 => 0.027289741429357
712 => 0.027371584701101
713 => 0.027389906391381
714 => 0.027931884903628
715 => 0.027420196969585
716 => 0.02754336534105
717 => 0.028504289815255
718 => 0.027632863915664
719 => 0.028094477649794
720 => 0.02807188405963
721 => 0.028308030025854
722 => 0.028052513197816
723 => 0.028055680635133
724 => 0.028265362255227
725 => 0.027970902236085
726 => 0.027897989794345
727 => 0.02779726177829
728 => 0.028017197716285
729 => 0.028149039364267
730 => 0.029211586219977
731 => 0.029898039946789
801 => 0.029868239180115
802 => 0.030140562402816
803 => 0.030017878296795
804 => 0.029621698956019
805 => 0.0302979287818
806 => 0.030083941370265
807 => 0.030101582232477
808 => 0.030100925638705
809 => 0.030243208560271
810 => 0.030142388070303
811 => 0.029943660535565
812 => 0.03007558514735
813 => 0.030467354080439
814 => 0.031683416869687
815 => 0.032363941717239
816 => 0.031642448419372
817 => 0.03214012483506
818 => 0.031841696325886
819 => 0.03178746298829
820 => 0.03210004055534
821 => 0.032413165248043
822 => 0.032393220558793
823 => 0.032165908111022
824 => 0.032037505077115
825 => 0.033009815868026
826 => 0.033726197895888
827 => 0.033677345444274
828 => 0.03389296427803
829 => 0.034526027842777
830 => 0.034583907241327
831 => 0.034576615767453
901 => 0.034433155639057
902 => 0.035056488932243
903 => 0.035576484531924
904 => 0.034399948764295
905 => 0.034847958182624
906 => 0.035049084044474
907 => 0.035344396481024
908 => 0.035842638061595
909 => 0.036383860570147
910 => 0.036460395367059
911 => 0.036406090266123
912 => 0.036049139472891
913 => 0.036641351599876
914 => 0.036988255574781
915 => 0.037194828953081
916 => 0.037718664669916
917 => 0.035050326129325
918 => 0.033161543485265
919 => 0.032866582801043
920 => 0.033466396951164
921 => 0.033624563159123
922 => 0.033560806559019
923 => 0.031434809972524
924 => 0.032855389869
925 => 0.034383814391859
926 => 0.034442527402486
927 => 0.035207688676479
928 => 0.035456856552311
929 => 0.036072911669856
930 => 0.03603437725452
1001 => 0.036184376872064
1002 => 0.036149894557622
1003 => 0.037291006937164
1004 => 0.038549823348627
1005 => 0.038506234539089
1006 => 0.038325264786301
1007 => 0.038594035729119
1008 => 0.039893269168714
1009 => 0.039773656573387
1010 => 0.03988985002117
1011 => 0.04142171946804
1012 => 0.043413367654859
1013 => 0.042488047113873
1014 => 0.044495726434
1015 => 0.045759454143511
1016 => 0.047944940545228
1017 => 0.047671306883986
1018 => 0.048522100702334
1019 => 0.047181445521293
1020 => 0.044103030234509
1021 => 0.043615859231675
1022 => 0.044591187916483
1023 => 0.046988938316903
1024 => 0.044515674223505
1025 => 0.045016012328413
1026 => 0.04487191492054
1027 => 0.044864236582049
1028 => 0.045157287532191
1029 => 0.0447322018445
1030 => 0.043000326281393
1031 => 0.043794034645958
1101 => 0.043487545729394
1102 => 0.043827618032585
1103 => 0.04566284799642
1104 => 0.044851449082991
1105 => 0.043996706240387
1106 => 0.045068743447633
1107 => 0.046433815204408
1108 => 0.046348391467139
1109 => 0.046182633712484
1110 => 0.047117001496677
1111 => 0.048660303332091
1112 => 0.049077451616714
1113 => 0.049385381952201
1114 => 0.049427840342939
1115 => 0.049865188155285
1116 => 0.047513458742465
1117 => 0.051245713717304
1118 => 0.051890171049996
1119 => 0.05176903978147
1120 => 0.052485326983847
1121 => 0.052274577118455
1122 => 0.051969233629143
1123 => 0.053104701203567
1124 => 0.051802979256998
1125 => 0.04995534883608
1126 => 0.048941702245177
1127 => 0.050276553844615
1128 => 0.051091701136491
1129 => 0.051630461643316
1130 => 0.051793490247153
1201 => 0.047696016802267
1202 => 0.045487705871769
1203 => 0.046903207859882
1204 => 0.048630217978109
1205 => 0.047503865114059
1206 => 0.047548016013862
1207 => 0.045942132830054
1208 => 0.048772303006603
1209 => 0.048359971017357
1210 => 0.050499150106964
1211 => 0.049988617849245
1212 => 0.051733035354366
1213 => 0.051273671763471
1214 => 0.053180464346604
1215 => 0.053941135532364
1216 => 0.055218420842272
1217 => 0.056157997115727
1218 => 0.05670973427473
1219 => 0.056676610045217
1220 => 0.058862867543547
1221 => 0.057573707878801
1222 => 0.055954219508276
1223 => 0.055924928073073
1224 => 0.056763684048496
1225 => 0.058521486471518
1226 => 0.058977259064823
1227 => 0.059231973766839
1228 => 0.058841869334018
1229 => 0.057442578912842
1230 => 0.056838372403541
1231 => 0.057353173855013
]
'min_raw' => 0.021227738718737
'max_raw' => 0.059231973766839
'avg_raw' => 0.040229856242788
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.021227'
'max' => '$0.059231'
'avg' => '$0.040229'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0084037439011785
'max_diff' => 0.030603308724709
'year' => 2036
]
11 => [
'items' => [
101 => 0.056723615917256
102 => 0.057810409540584
103 => 0.059302809312004
104 => 0.058994634660794
105 => 0.060024816315663
106 => 0.061090945950183
107 => 0.062615559210423
108 => 0.063014149572915
109 => 0.063673004285081
110 => 0.064351182206399
111 => 0.064568994677318
112 => 0.064984866267544
113 => 0.064982674418984
114 => 0.066235931447516
115 => 0.067618312760127
116 => 0.068140129703437
117 => 0.069340018991423
118 => 0.067285250634882
119 => 0.068843816036796
120 => 0.070249681042745
121 => 0.068573550825642
122 => 0.070883705841666
123 => 0.070973403926014
124 => 0.072327738505204
125 => 0.070954860950084
126 => 0.070139650640235
127 => 0.072493132259238
128 => 0.073631907880698
129 => 0.073288899395851
130 => 0.070678587889747
131 => 0.069159274631668
201 => 0.065182938781633
202 => 0.069893080360925
203 => 0.072187252927484
204 => 0.070672646537031
205 => 0.071436525900984
206 => 0.075604004021991
207 => 0.077190709866245
208 => 0.076860686142551
209 => 0.076916454719202
210 => 0.077772612392013
211 => 0.0815692870079
212 => 0.079294231571832
213 => 0.081033426208005
214 => 0.081955888771898
215 => 0.08281272341064
216 => 0.080708608343259
217 => 0.077971185556187
218 => 0.07710412885033
219 => 0.07052204878113
220 => 0.070179422929003
221 => 0.069987096655579
222 => 0.068774506706728
223 => 0.067821743163272
224 => 0.067064070219674
225 => 0.065075710155377
226 => 0.065746723308155
227 => 0.062577692368665
228 => 0.06460512606019
301 => 0.059547276161836
302 => 0.063759603852007
303 => 0.061467025401285
304 => 0.063006430172245
305 => 0.06300105933402
306 => 0.060166527081955
307 => 0.058531628034143
308 => 0.059573449338632
309 => 0.060690364476922
310 => 0.060871580200356
311 => 0.062319689831616
312 => 0.062723826102689
313 => 0.061499274334021
314 => 0.059442463464838
315 => 0.059920213718888
316 => 0.058521946440494
317 => 0.056071536818682
318 => 0.057831463789115
319 => 0.058432380235347
320 => 0.058697779171458
321 => 0.056288082739853
322 => 0.055530903803988
323 => 0.05512778809188
324 => 0.059131401915189
325 => 0.059350728918077
326 => 0.058228620961589
327 => 0.06330065532756
328 => 0.062152697740632
329 => 0.063435247621667
330 => 0.059876862890874
331 => 0.060012797979591
401 => 0.058328201622388
402 => 0.059271463017652
403 => 0.058604796266213
404 => 0.059195256818406
405 => 0.05954917643883
406 => 0.061233496370346
407 => 0.063778836080064
408 => 0.060981915139698
409 => 0.059763256633334
410 => 0.060519305516687
411 => 0.06253276332401
412 => 0.065583254969115
413 => 0.063777302518347
414 => 0.064578753548936
415 => 0.064753834945045
416 => 0.063422192467843
417 => 0.065632354526684
418 => 0.066816798329341
419 => 0.068031792584757
420 => 0.069086738053369
421 => 0.067546497160848
422 => 0.069194775700705
423 => 0.06786655415791
424 => 0.066675002125004
425 => 0.066676809217587
426 => 0.065929331221548
427 => 0.064480998415933
428 => 0.064213903625166
429 => 0.06560336445709
430 => 0.066717580461864
501 => 0.066809352628752
502 => 0.067426239859479
503 => 0.06779130736818
504 => 0.071369465238661
505 => 0.072808629934243
506 => 0.074568413282007
507 => 0.075253948071916
508 => 0.077317162011718
509 => 0.075650949189285
510 => 0.075290453564181
511 => 0.070285771418358
512 => 0.071105287839369
513 => 0.072417412700981
514 => 0.07030740787404
515 => 0.071645720280571
516 => 0.071909931498953
517 => 0.070235710717424
518 => 0.071129984375648
519 => 0.068755058673066
520 => 0.063830602970458
521 => 0.065637836853611
522 => 0.06696856929996
523 => 0.065069450020893
524 => 0.068473547822555
525 => 0.066484944161666
526 => 0.065854652270974
527 => 0.063395658890102
528 => 0.064556209110539
529 => 0.066125869901157
530 => 0.065156002025208
531 => 0.067168623494197
601 => 0.070019032240826
602 => 0.072050403258449
603 => 0.072206346701548
604 => 0.070900311228504
605 => 0.072993241409064
606 => 0.073008486120525
607 => 0.070647652326984
608 => 0.069201654773617
609 => 0.068873121087087
610 => 0.069693862648862
611 => 0.070690394422107
612 => 0.072261647279454
613 => 0.07321112247355
614 => 0.075686850217018
615 => 0.076356711159724
616 => 0.077092685246609
617 => 0.078076173592691
618 => 0.079257103513398
619 => 0.076673296077269
620 => 0.076775955563526
621 => 0.074369949854251
622 => 0.07179878769777
623 => 0.073749979274652
624 => 0.076300902705287
625 => 0.075715718051779
626 => 0.075649872824022
627 => 0.075760606233166
628 => 0.075319396114766
629 => 0.07332381910125
630 => 0.072321652818035
701 => 0.073614703003268
702 => 0.074301901629677
703 => 0.075367686769219
704 => 0.075236306254775
705 => 0.077981654317267
706 => 0.079048413559335
707 => 0.078775490896013
708 => 0.078825715234315
709 => 0.080757031887017
710 => 0.082905053210385
711 => 0.084916958636097
712 => 0.08696355524848
713 => 0.084496303152227
714 => 0.083243584696704
715 => 0.084536070376676
716 => 0.08385025928183
717 => 0.087791133257603
718 => 0.088063990821293
719 => 0.092004579827022
720 => 0.095744668030069
721 => 0.093395585640375
722 => 0.095610664528862
723 => 0.098006452944792
724 => 0.10262831750178
725 => 0.10107183611814
726 => 0.09987959577145
727 => 0.098752934404687
728 => 0.10109733785647
729 => 0.10411337544442
730 => 0.10476300105361
731 => 0.1058156427166
801 => 0.10470891871887
802 => 0.10604184587248
803 => 0.1107476644426
804 => 0.10947611072554
805 => 0.10767030003486
806 => 0.11138509184435
807 => 0.11272946055932
808 => 0.12216494425231
809 => 0.1340776321751
810 => 0.12914570115214
811 => 0.12608429241377
812 => 0.12680379608487
813 => 0.13115390644434
814 => 0.1325510238262
815 => 0.12875317716706
816 => 0.13009464081208
817 => 0.13748623738591
818 => 0.14145159179696
819 => 0.1360661078886
820 => 0.12120777137684
821 => 0.10750770653997
822 => 0.11114158065667
823 => 0.11072961210408
824 => 0.11867096050221
825 => 0.10944578458992
826 => 0.109601112893
827 => 0.11770667996597
828 => 0.1155442536355
829 => 0.11204139992278
830 => 0.10753328124856
831 => 0.099199606928765
901 => 0.091818239182018
902 => 0.10629480116086
903 => 0.10567054548441
904 => 0.10476653075541
905 => 0.10677831771019
906 => 0.11654698410695
907 => 0.11632178472842
908 => 0.11488918117993
909 => 0.11597579834507
910 => 0.11185091068002
911 => 0.11291398815325
912 => 0.1075055363797
913 => 0.10995038245824
914 => 0.11203388437193
915 => 0.11245217822787
916 => 0.11339461564393
917 => 0.10534159110932
918 => 0.10895716270098
919 => 0.11108097227784
920 => 0.10148552334475
921 => 0.11089130110415
922 => 0.10520140586853
923 => 0.10327016996621
924 => 0.10587032468771
925 => 0.10485704186401
926 => 0.10398588079415
927 => 0.10349975794873
928 => 0.10540902460759
929 => 0.10531995503589
930 => 0.10219602420929
1001 => 0.098120983793715
1002 => 0.099488701115825
1003 => 0.098991796590285
1004 => 0.097190950487765
1005 => 0.098404503325876
1006 => 0.093060630791873
1007 => 0.083866775847444
1008 => 0.089940518039127
1009 => 0.089706685571707
1010 => 0.089588776638176
1011 => 0.094153026029321
1012 => 0.093714278765512
1013 => 0.092917948185473
1014 => 0.097176325252172
1015 => 0.095621960339573
1016 => 0.10041214674577
1017 => 0.10356727332273
1018 => 0.10276703116516
1019 => 0.10573444296083
1020 => 0.099520210560526
1021 => 0.10158432929218
1022 => 0.10200974130203
1023 => 0.09712377754018
1024 => 0.09378606324395
1025 => 0.09356347575312
1026 => 0.08777633912882
1027 => 0.090867780801386
1028 => 0.093588121540696
1029 => 0.092285289433536
1030 => 0.091872851709411
1031 => 0.093979906595137
1101 => 0.094143642805462
1102 => 0.090410439858054
1103 => 0.091186690965982
1104 => 0.094423787127053
1105 => 0.091105124448256
1106 => 0.084657504963826
1107 => 0.083058406186373
1108 => 0.082845056932223
1109 => 0.078508174221649
1110 => 0.083165265613071
1111 => 0.081132320418425
1112 => 0.087554369929887
1113 => 0.083886129691083
1114 => 0.083727999186007
1115 => 0.083488961734882
1116 => 0.079756027631523
1117 => 0.08057330295982
1118 => 0.083290050625628
1119 => 0.084259416799141
1120 => 0.084158303965461
1121 => 0.083276737079949
1122 => 0.083680313885783
1123 => 0.08238025237871
1124 => 0.081921173602123
1125 => 0.080472194703646
1126 => 0.078342596013522
1127 => 0.078638729772971
1128 => 0.074419437528027
1129 => 0.072120543178194
1130 => 0.0714842395211
1201 => 0.070633347677874
1202 => 0.071580350018929
1203 => 0.074407484803224
1204 => 0.070997360443261
1205 => 0.065150941420517
1206 => 0.065502321165597
1207 => 0.06629176712721
1208 => 0.064820639800452
1209 => 0.063428341248034
1210 => 0.06463883187861
1211 => 0.062161627066693
1212 => 0.066591125493744
1213 => 0.066471319974818
1214 => 0.068122363070078
1215 => 0.069154794200358
1216 => 0.066775374698609
1217 => 0.066176957128553
1218 => 0.066517842973019
1219 => 0.060883759296602
1220 => 0.067661938234156
1221 => 0.067720556207078
1222 => 0.067218633534917
1223 => 0.070827804566368
1224 => 0.078444281171405
1225 => 0.075578656300528
1226 => 0.074468999736555
1227 => 0.072359541797287
1228 => 0.075170269254142
1229 => 0.074954449239635
1230 => 0.073978429286721
1231 => 0.07338812937383
]
'min_raw' => 0.05512778809188
'max_raw' => 0.14145159179696
'avg_raw' => 0.098289689944421
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.055127'
'max' => '$0.141451'
'avg' => '$0.098289'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.033900049373143
'max_diff' => 0.082219618030123
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0017303982750916
]
1 => [
'year' => 2028
'avg' => 0.0029698657782658
]
2 => [
'year' => 2029
'avg' => 0.0081131380399943
]
3 => [
'year' => 2030
'avg' => 0.0062592739154079
]
4 => [
'year' => 2031
'avg' => 0.0061473826882072
]
5 => [
'year' => 2032
'avg' => 0.010778296504959
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0017303982750916
'min' => '$0.00173'
'max_raw' => 0.010778296504959
'max' => '$0.010778'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010778296504959
]
1 => [
'year' => 2033
'avg' => 0.027722886929915
]
2 => [
'year' => 2034
'avg' => 0.017572098035783
]
3 => [
'year' => 2035
'avg' => 0.020726329929844
]
4 => [
'year' => 2036
'avg' => 0.040229856242788
]
5 => [
'year' => 2037
'avg' => 0.098289689944421
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010778296504959
'min' => '$0.010778'
'max_raw' => 0.098289689944421
'max' => '$0.098289'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.098289689944421
]
]
]
]
'prediction_2025_max_price' => '$0.002958'
'last_price' => 0.0028688
'sma_50day_nextmonth' => '$0.002793'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'diminuir'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.002931'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.00294'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002946'
'daily_sma10_action' => 'SELL'
'daily_sma21' => '$0.003058'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.00341'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.003163'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.002913'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002929'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002973'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.00311'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00326'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.003422'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.002946'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.0032019'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.002947'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003031'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.003159'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.003346'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.0018011'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.00090056'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.00045'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '36.84'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 26.44
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => -0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002943'
'vwma_10_action' => 'SELL'
'hma_9' => '0.002934'
'hma_9_action' => 'SELL'
'stochastic_fast_14' => 0
'stochastic_fast_14_action' => 'BUY'
'cci_20' => -113.92
'cci_20_action' => 'BUY'
'adx_14' => 20.03
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '-0.000438'
'ao_5_34_action' => 'SELL'
'macd_12_26' => -0
'macd_12_26_action' => 'SELL'
'williams_percent_r_14' => -100
'williams_percent_r_14_action' => 'BUY'
'ultimate_oscillator' => 26.32
'ultimate_oscillator_action' => 'BUY'
'ichimoku_cloud' => '0.000360'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 27
'buy_signals' => 3
'sell_pct' => 90
'buy_pct' => 10
'overall_action' => 'bearish'
'overall_action_label' => 'Baixista'
'overall_action_dir' => -1
'last_updated' => 1767710612
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Elympics para 2026
A previsão de preço para Elympics em 2026 sugere que o preço médio poderia variar entre $0.000991 na extremidade inferior e $0.002958 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Elympics poderia potencialmente ganhar 3.13% até 2026 se ELP atingir a meta de preço prevista.
Previsão de preço de Elympics 2027-2032
A previsão de preço de ELP para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.00173 na extremidade inferior e $0.010778 na extremidade superior. Considerando a volatilidade de preços no mercado, se Elympics atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Elympics | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000954 | $0.00173 | $0.0025066 |
| 2028 | $0.001722 | $0.002969 | $0.004217 |
| 2029 | $0.003782 | $0.008113 | $0.012443 |
| 2030 | $0.003217 | $0.006259 | $0.0093014 |
| 2031 | $0.0038035 | $0.006147 | $0.008491 |
| 2032 | $0.0058058 | $0.010778 | $0.01575 |
Previsão de preço de Elympics 2032-2037
A previsão de preço de Elympics para 2032-2037 é atualmente estimada entre $0.010778 na extremidade inferior e $0.098289 na extremidade superior. Comparado ao preço atual, Elympics poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Elympics | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.0058058 | $0.010778 | $0.01575 |
| 2033 | $0.013491 | $0.027722 | $0.041954 |
| 2034 | $0.010846 | $0.017572 | $0.024297 |
| 2035 | $0.012823 | $0.020726 | $0.028628 |
| 2036 | $0.021227 | $0.040229 | $0.059231 |
| 2037 | $0.055127 | $0.098289 | $0.141451 |
Elympics Histograma de preços potenciais
Previsão de preço de Elympics baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Elympics é Baixista, com 3 indicadores técnicos mostrando sinais de alta e 27 indicando sinais de baixa. A previsão de preço de ELP foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Elympics
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Elympics está projetado para diminuir no próximo mês, alcançando — até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Elympics é esperado para alcançar $0.002793 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 36.84, sugerindo que o mercado de ELP está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de ELP para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.002931 | SELL |
| SMA 5 | $0.00294 | SELL |
| SMA 10 | $0.002946 | SELL |
| SMA 21 | $0.003058 | SELL |
| SMA 50 | $0.00341 | SELL |
| SMA 100 | $0.003163 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.002913 | SELL |
| EMA 5 | $0.002929 | SELL |
| EMA 10 | $0.002973 | SELL |
| EMA 21 | $0.00311 | SELL |
| EMA 50 | $0.00326 | SELL |
| EMA 100 | $0.003422 | SELL |
| EMA 200 | $0.002946 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.0032019 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.003346 | SELL |
| EMA 50 | $0.0018011 | BUY |
| EMA 100 | $0.00090056 | BUY |
| EMA 200 | $0.00045 | BUY |
Osciladores de Elympics
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 36.84 | NEUTRAL |
| Stoch RSI (14) | 26.44 | NEUTRAL |
| Estocástico Rápido (14) | 0 | BUY |
| Índice de Canal de Commodities (20) | -113.92 | BUY |
| Índice Direcional Médio (14) | 20.03 | NEUTRAL |
| Oscilador Impressionante (5, 34) | -0.000438 | SELL |
| Momentum (10) | -0 | SELL |
| MACD (12, 26) | -0 | SELL |
| Williams Percent Range (14) | -100 | BUY |
| Oscilador Ultimate (7, 14, 28) | 26.32 | BUY |
| VWMA (10) | 0.002943 | SELL |
| Média Móvel de Hull (9) | 0.002934 | SELL |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | 0.000360 | NEUTRAL |
Previsão do preço de Elympics com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Elympics
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Elympics por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.004031 | $0.005664 | $0.007959 | $0.011184 | $0.015715 | $0.022083 |
| Amazon.com stock | $0.005985 | $0.012489 | $0.026061 | $0.054378 | $0.113462 | $0.236747 |
| Apple stock | $0.004069 | $0.005771 | $0.008186 | $0.011612 | $0.016471 | $0.023363 |
| Netflix stock | $0.004526 | $0.007142 | $0.011269 | $0.01778 | $0.028055 | $0.044267 |
| Google stock | $0.003715 | $0.004811 | $0.00623 | $0.008068 | $0.010448 | $0.01353 |
| Tesla stock | $0.0065033 | $0.014742 | $0.03342 | $0.075761 | $0.171745 | $0.389334 |
| Kodak stock | $0.002151 | $0.001613 | $0.0012097 | $0.0009071 | $0.00068 | $0.00051 |
| Nokia stock | $0.00190046 | $0.001258 | $0.000834 | $0.000552 | $0.000366 | $0.000242 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Elympics
Você pode fazer perguntas como: 'Devo investir em Elympics agora?', 'Devo comprar ELP hoje?', 'Elympics será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Elympics regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Elympics, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Elympics para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Elympics é de $0.002868 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Elympics
com base no histórico de preços de 4 horas
Previsão de longo prazo para Elympics
com base no histórico de preços de 1 mês
Previsão do preço de Elympics com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Elympics tiver 1% da média anterior do crescimento anual do Bitcoin | $0.002943 | $0.003019 | $0.003098 | $0.003178 |
| Se Elympics tiver 2% da média anterior do crescimento anual do Bitcoin | $0.003017 | $0.003174 | $0.003339 | $0.003513 |
| Se Elympics tiver 5% da média anterior do crescimento anual do Bitcoin | $0.003241 | $0.003662 | $0.004139 | $0.004676 |
| Se Elympics tiver 10% da média anterior do crescimento anual do Bitcoin | $0.003614 | $0.004554 | $0.005737 | $0.007229 |
| Se Elympics tiver 20% da média anterior do crescimento anual do Bitcoin | $0.00436 | $0.006626 | $0.010071 | $0.015308 |
| Se Elympics tiver 50% da média anterior do crescimento anual do Bitcoin | $0.006597 | $0.015171 | $0.034889 | $0.080233 |
| Se Elympics tiver 100% da média anterior do crescimento anual do Bitcoin | $0.010325 | $0.037165 | $0.133771 | $0.481484 |
Perguntas Frequentes sobre Elympics
ELP é um bom investimento?
A decisão de adquirir Elympics depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Elympics experimentou uma queda de -2.354% nas últimas 24 horas, e Elympics registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Elympics dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Elympics pode subir?
Parece que o valor médio de Elympics pode potencialmente subir para $0.002958 até o final deste ano. Observando as perspectivas de Elympics em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.0093014. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Elympics na próxima semana?
Com base na nossa nova previsão experimental de Elympics, o preço de Elympics aumentará 0.86% na próxima semana e atingirá $0.002893 até 13 de janeiro de 2026.
Qual será o preço de Elympics no próximo mês?
Com base na nossa nova previsão experimental de Elympics, o preço de Elympics diminuirá -11.62% no próximo mês e atingirá $0.002535 até 5 de fevereiro de 2026.
Até onde o preço de Elympics pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Elympics em 2026, espera-se que ELP fluctue dentro do intervalo de $0.000991 e $0.002958. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Elympics não considera flutuações repentinas e extremas de preço.
Onde estará Elympics em 5 anos?
O futuro de Elympics parece seguir uma tendência de alta, com um preço máximo de $0.0093014 projetada após um período de cinco anos. Com base na previsão de Elympics para 2030, o valor de Elympics pode potencialmente atingir seu pico mais alto de aproximadamente $0.0093014, enquanto seu pico mais baixo está previsto para cerca de $0.003217.
Quanto será Elympics em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Elympics, espera-se que o valor de ELP em 2026 aumente 3.13% para $0.002958 se o melhor cenário ocorrer. O preço ficará entre $0.002958 e $0.000991 durante 2026.
Quanto será Elympics em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Elympics, o valor de ELP pode diminuir -12.62% para $0.0025066 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.0025066 e $0.000954 ao longo do ano.
Quanto será Elympics em 2028?
Nosso novo modelo experimental de previsão de preços de Elympics sugere que o valor de ELP em 2028 pode aumentar 47.02%, alcançando $0.004217 no melhor cenário. O preço é esperado para variar entre $0.004217 e $0.001722 durante o ano.
Quanto será Elympics em 2029?
Com base no nosso modelo de previsão experimental, o valor de Elympics pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.012443 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.012443 e $0.003782.
Quanto será Elympics em 2030?
Usando nossa nova simulação experimental para previsões de preços de Elympics, espera-se que o valor de ELP em 2030 aumente 224.23%, alcançando $0.0093014 no melhor cenário. O preço está previsto para variar entre $0.0093014 e $0.003217 ao longo de 2030.
Quanto será Elympics em 2031?
Nossa simulação experimental indica que o preço de Elympics poderia aumentar 195.98% em 2031, potencialmente atingindo $0.008491 sob condições ideais. O preço provavelmente oscilará entre $0.008491 e $0.0038035 durante o ano.
Quanto será Elympics em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Elympics, ELP poderia ver um 449.04% aumento em valor, atingindo $0.01575 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.01575 e $0.0058058 ao longo do ano.
Quanto será Elympics em 2033?
De acordo com nossa previsão experimental de preços de Elympics, espera-se que o valor de ELP seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.041954. Ao longo do ano, o preço de ELP poderia variar entre $0.041954 e $0.013491.
Quanto será Elympics em 2034?
Os resultados da nossa nova simulação de previsão de preços de Elympics sugerem que ELP pode aumentar 746.96% em 2034, atingindo potencialmente $0.024297 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.024297 e $0.010846.
Quanto será Elympics em 2035?
Com base em nossa previsão experimental para o preço de Elympics, ELP poderia aumentar 897.93%, com o valor potencialmente atingindo $0.028628 em 2035. A faixa de preço esperada para o ano está entre $0.028628 e $0.012823.
Quanto será Elympics em 2036?
Nossa recente simulação de previsão de preços de Elympics sugere que o valor de ELP pode aumentar 1964.7% em 2036, possivelmente atingindo $0.059231 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.059231 e $0.021227.
Quanto será Elympics em 2037?
De acordo com a simulação experimental, o valor de Elympics poderia aumentar 4830.69% em 2037, com um pico de $0.141451 sob condições favoráveis. O preço é esperado para cair entre $0.141451 e $0.055127 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Elympics?
Traders de Elympics utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Elympics
Médias móveis são ferramentas populares para a previsão de preço de Elympics. Uma média móvel simples (SMA) calcula o preço médio de fechamento de ELP em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de ELP acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de ELP.
Como ler gráficos de Elympics e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Elympics em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de ELP dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Elympics?
A ação de preço de Elympics é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de ELP. A capitalização de mercado de Elympics pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de ELP, grandes detentores de Elympics, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Elympics.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


