Predicción del precio de D2 - Pronóstico de D2X
Predicción de precio de D2 hasta $0.002865 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000959 | $0.002865 |
| 2027 | $0.000924 | $0.002427 |
| 2028 | $0.001667 | $0.004084 |
| 2029 | $0.003663 | $0.01205 |
| 2030 | $0.003115 | $0.0090076 |
| 2031 | $0.003683 | $0.008222 |
| 2032 | $0.005622 | $0.015253 |
| 2033 | $0.013065 | $0.040628 |
| 2034 | $0.0105039 | $0.02353 |
| 2035 | $0.012418 | $0.027724 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en D2 hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,956.45, equivalente a un ROI del 39.56% en los próximos 90 días.
Predicción del precio a largo plazo de D2 para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'D2'
'name_with_ticker' => 'D2 <small>D2X</small>'
'name_lang' => 'D2'
'name_lang_with_ticker' => 'D2 <small>D2X</small>'
'name_with_lang' => 'D2'
'name_with_lang_with_ticker' => 'D2 <small>D2X</small>'
'image' => '/uploads/coins/d2.png?1717126441'
'price_for_sd' => 0.002778
'ticker' => 'D2X'
'marketcap' => '$0'
'low24h' => '$0.002672'
'high24h' => '$0.002814'
'volume24h' => '$300.75'
'current_supply' => '0'
'max_supply' => '45M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.002778'
'change_24h_pct' => '-0.6887%'
'ath_price' => '$0.2557'
'ath_days' => 659
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '18 mar. 2024'
'ath_pct' => '-98.91%'
'fdv' => '$125.02K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.136982'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002801'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.002455'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000959'
'current_year_max_price_prediction' => '$0.002865'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.003115'
'grand_prediction_max_price' => '$0.0090076'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0028308148601826
107 => 0.0028413840952847
108 => 0.0028651971216483
109 => 0.0026617174186122
110 => 0.0027530738314252
111 => 0.0028067371650146
112 => 0.002564284271569
113 => 0.0028019446508566
114 => 0.0026581752896838
115 => 0.0026093778091584
116 => 0.0026750771881067
117 => 0.0026494740762358
118 => 0.0026274620241144
119 => 0.0026151789208156
120 => 0.0026634212937393
121 => 0.0026611707293803
122 => 0.002582236843836
123 => 0.0024792708079002
124 => 0.0025138295893052
125 => 0.0025012740600304
126 => 0.0024557712022433
127 => 0.0024864346343558
128 => 0.0023514083977402
129 => 0.002119102775696
130 => 0.002272570985332
131 => 0.0022666626262023
201 => 0.0022636833636064
202 => 0.0023790104815981
203 => 0.0023679244402525
204 => 0.0023478031666554
205 => 0.0024554016592744
206 => 0.0024161267620645
207 => 0.0025371627409358
208 => 0.0026168848647368
209 => 0.0025966647554003
210 => 0.0026716437981656
211 => 0.0025146257538298
212 => 0.0025667808496876
213 => 0.0025775299426601
214 => 0.0024540739105776
215 => 0.00236973825372
216 => 0.0023641140269045
217 => 0.0022178876200829
218 => 0.0022960005863087
219 => 0.0023647367640532
220 => 0.0023318174690564
221 => 0.0023213962036964
222 => 0.002374636188324
223 => 0.0023787733910992
224 => 0.0022844447293836
225 => 0.0023040586451545
226 => 0.0023858519344613
227 => 0.002301997664124
228 => 0.0021390825143757
301 => 0.00209867730476
302 => 0.0020932865049815
303 => 0.001983704371926
304 => 0.0021013773740715
305 => 0.0020500099551946
306 => 0.0022122790159506
307 => 0.0021195917987132
308 => 0.0021155962380297
309 => 0.0021095563620353
310 => 0.0020152344933335
311 => 0.0020358849881118
312 => 0.0021045303779137
313 => 0.0021290238263407
314 => 0.0021264689590008
315 => 0.0021041939780543
316 => 0.0021143913502653
317 => 0.0020815420613737
318 => 0.0020699422937673
319 => 0.002033330236434
320 => 0.001979520626493
321 => 0.0019870031827888
322 => 0.0018803922654454
323 => 0.001822304979407
324 => 0.0018062271842097
325 => 0.0017847272845346
326 => 0.0018086556550871
327 => 0.0018800902501115
328 => 0.0017939249728173
329 => 0.0016462006486879
330 => 0.001655079132278
331 => 0.0016750264488597
401 => 0.0016378547563744
402 => 0.0016026748690208
403 => 0.0016332609268403
404 => 0.0015706681832913
405 => 0.0016825904828773
406 => 0.0016795632983321
407 => 0.0017212810103891
408 => 0.0017473679518721
409 => 0.0016872459975015
410 => 0.0016721254885644
411 => 0.0016807388176438
412 => 0.0015383796743888
413 => 0.0017096472312443
414 => 0.001711128360188
415 => 0.0016984460349524
416 => 0.0017896407216853
417 => 0.0019820899550279
418 => 0.001909682812192
419 => 0.0018816445779684
420 => 0.0018283438742136
421 => 0.0018993638972842
422 => 0.0018939106675974
423 => 0.0018692490948773
424 => 0.0018543336987475
425 => 0.0018818157734478
426 => 0.0018509283655615
427 => 0.0018453801383759
428 => 0.001811763918162
429 => 0.0017997644569862
430 => 0.0017908805336439
501 => 0.0017811002069604
502 => 0.0018026731705187
503 => 0.0017537859969358
504 => 0.0016948328580635
505 => 0.0016899315424481
506 => 0.0017034645057904
507 => 0.0016974771769221
508 => 0.001689902877421
509 => 0.0016754414769357
510 => 0.0016711510883307
511 => 0.0016850927698964
512 => 0.0016693534242592
513 => 0.0016925776861134
514 => 0.0016862619719461
515 => 0.0016509829060094
516 => 0.0016070121278691
517 => 0.0016066206957118
518 => 0.001597147263688
519 => 0.0015850814236657
520 => 0.0015817249830005
521 => 0.0016306850543622
522 => 0.0017320309368294
523 => 0.0017121343150996
524 => 0.0017265116633872
525 => 0.0017972339871773
526 => 0.0018197144872157
527 => 0.0018037583607682
528 => 0.001781916630756
529 => 0.0017828775560279
530 => 0.0018575173594211
531 => 0.0018621725524037
601 => 0.0018739347232485
602 => 0.0018890524367732
603 => 0.0018063329727523
604 => 0.0017789814767113
605 => 0.0017660208204839
606 => 0.0017261070157085
607 => 0.0017691506322077
608 => 0.001744070960185
609 => 0.0017474550647845
610 => 0.0017452511622246
611 => 0.0017464546420495
612 => 0.0016825591983135
613 => 0.0017058393397653
614 => 0.0016671315893441
615 => 0.001615306256679
616 => 0.0016151325199916
617 => 0.0016278166967404
618 => 0.0016202716520783
619 => 0.0015999681308934
620 => 0.0016028521502478
621 => 0.0015775851059954
622 => 0.0016059200268946
623 => 0.0016067325710388
624 => 0.001595822083079
625 => 0.0016394759381898
626 => 0.0016573609582469
627 => 0.0016501794413465
628 => 0.0016568570838767
629 => 0.0017129611095604
630 => 0.0017221085137371
701 => 0.0017261711864287
702 => 0.0017207277432229
703 => 0.0016578825624746
704 => 0.0016606700134791
705 => 0.0016402175475107
706 => 0.0016229373689951
707 => 0.0016236284855131
708 => 0.0016325127435361
709 => 0.0016713108193772
710 => 0.0017529590827134
711 => 0.0017560575746229
712 => 0.0017598130372066
713 => 0.0017445376835344
714 => 0.0017399304907014
715 => 0.0017460085672655
716 => 0.0017766713621129
717 => 0.0018555443953278
718 => 0.0018276653976369
719 => 0.0018049993385517
720 => 0.001824883583095
721 => 0.0018218225595055
722 => 0.0017959844399041
723 => 0.0017952592499434
724 => 0.0017456676374818
725 => 0.0017273347475011
726 => 0.0017120144124402
727 => 0.0016952850065012
728 => 0.0016853672538858
729 => 0.001700605429441
730 => 0.0017040905804833
731 => 0.0016707720433141
801 => 0.0016662308498142
802 => 0.0016934394864971
803 => 0.0016814659799332
804 => 0.0016937810283629
805 => 0.0016966382252351
806 => 0.0016961781507318
807 => 0.0016836764347306
808 => 0.0016916446557032
809 => 0.0016727974376619
810 => 0.0016523039188026
811 => 0.0016392303305617
812 => 0.0016278218908617
813 => 0.0016341519562697
814 => 0.0016115864289145
815 => 0.0016043672625592
816 => 0.0016889452017284
817 => 0.0017514238347587
818 => 0.0017505153706901
819 => 0.0017449853293111
820 => 0.0017367688095496
821 => 0.0017760702725148
822 => 0.0017623784286753
823 => 0.0017723403890603
824 => 0.0017748761260805
825 => 0.0017825510383254
826 => 0.0017852941597719
827 => 0.0017770025415401
828 => 0.0017491748580183
829 => 0.0016798309164585
830 => 0.0016475511244721
831 => 0.0016368982554541
901 => 0.0016372854670102
902 => 0.0016266044437038
903 => 0.0016297504837574
904 => 0.0016255103793621
905 => 0.0016174806474289
906 => 0.00163365614295
907 => 0.0016355202181236
908 => 0.0016317446641862
909 => 0.0016326339438155
910 => 0.0016013739697741
911 => 0.0016037505977074
912 => 0.0015905172313677
913 => 0.0015880361347096
914 => 0.0015545833369637
915 => 0.0014953168566964
916 => 0.0015281562399009
917 => 0.0014884908829059
918 => 0.0014734690111837
919 => 0.0015445802155364
920 => 0.0015374426229372
921 => 0.0015252261670442
922 => 0.0015071554826461
923 => 0.0015004528900224
924 => 0.0014597300590244
925 => 0.0014573239369212
926 => 0.0014775072715727
927 => 0.0014681933570972
928 => 0.0014551130937182
929 => 0.0014077377056848
930 => 0.0013544720840832
1001 => 0.0013560798383836
1002 => 0.0013730226415729
1003 => 0.0014222861268942
1004 => 0.0014030380309122
1005 => 0.0013890733164309
1006 => 0.0013864581451863
1007 => 0.0014191924885441
1008 => 0.0014655184424524
1009 => 0.0014872535435414
1010 => 0.0014657147184671
1011 => 0.0014409720759544
1012 => 0.0014424780459577
1013 => 0.0014524965897038
1014 => 0.0014535493969969
1015 => 0.0014374444803059
1016 => 0.0014419779200193
1017 => 0.0014350912105482
1018 => 0.0013928274872358
1019 => 0.0013920630705008
1020 => 0.0013816908712053
1021 => 0.0013813768051328
1022 => 0.0013637311066649
1023 => 0.0013612623514703
1024 => 0.0013262257461448
1025 => 0.0013492869458706
1026 => 0.0013338187038619
1027 => 0.0013105044145653
1028 => 0.0013064850223028
1029 => 0.0013063641945179
1030 => 0.0013303027566458
1031 => 0.0013490072098345
1101 => 0.0013340877805542
1102 => 0.001330690915708
1103 => 0.0013669605453417
1104 => 0.0013623449043658
1105 => 0.0013583477890483
1106 => 0.0014613704613874
1107 => 0.0013798199772717
1108 => 0.0013442593114583
1109 => 0.001300246234727
1110 => 0.0013145771144439
1111 => 0.0013175968413647
1112 => 0.0012117533257792
1113 => 0.0011688126246881
1114 => 0.0011540769942599
1115 => 0.0011455964306172
1116 => 0.0011494611299614
1117 => 0.0011108094625375
1118 => 0.0011367840222859
1119 => 0.001103314945441
1120 => 0.0010977037457901
1121 => 0.0011575506012119
1122 => 0.0011658779415236
1123 => 0.0011303509206521
1124 => 0.0011531650193538
1125 => 0.0011448923100249
1126 => 0.0011038886767014
1127 => 0.0011023226395108
1128 => 0.0010817484576565
1129 => 0.0010495538470011
1130 => 0.0010348400460349
1201 => 0.0010271769707406
1202 => 0.0010303389049574
1203 => 0.0010287401342606
1204 => 0.0010183070740139
1205 => 0.0010293381450614
1206 => 0.0010011583168882
1207 => 0.00098993688224929
1208 => 0.00098486842055821
1209 => 0.00095985720108405
1210 => 0.00099966117380721
1211 => 0.0010075030578709
1212 => 0.0010153603928687
1213 => 0.001083753129594
1214 => 0.0010803364217431
1215 => 0.0011112217967112
1216 => 0.0011100216478345
1217 => 0.0011012126385837
1218 => 0.0010640488775662
1219 => 0.0010788616903274
1220 => 0.0010332701550705
1221 => 0.001067430433208
1222 => 0.0010518411088334
1223 => 0.0010621596669555
1224 => 0.001043605969065
1225 => 0.001053874351541
1226 => 0.0010093626594971
1227 => 0.00096779826776296
1228 => 0.00098452499233703
1229 => 0.001002708854882
1230 => 0.0010421361020416
1231 => 0.0010186535589011
]
'min_raw' => 0.00095985720108405
'max_raw' => 0.0028651971216483
'avg_raw' => 0.0019125271613662
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000959'
'max' => '$0.002865'
'avg' => '$0.001912'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0018183127989159
'max_diff' => 8.7027121648325E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.0010270987693877
102 => 0.00099880872796874
103 => 0.0009404382918707
104 => 0.0009407686622
105 => 0.00093178964227539
106 => 0.00092403045810215
107 => 0.0010213508114618
108 => 0.0010092474871144
109 => 0.00098996242381077
110 => 0.0010157762474006
111 => 0.0010226018320783
112 => 0.0010227961468784
113 => 0.0010416292462183
114 => 0.0010516804747121
115 => 0.0010534520472986
116 => 0.001083086336026
117 => 0.0010930193587218
118 => 0.0011339320734314
119 => 0.0010508276981984
120 => 0.0010491162182788
121 => 0.0010161395008361
122 => 0.00099522514529261
123 => 0.0010175715246532
124 => 0.0010373673661816
125 => 0.0010167546128131
126 => 0.001019446203244
127 => 0.00099177526597057
128 => 0.0010016663240072
129 => 0.0010101858356578
130 => 0.0010054818620781
131 => 0.00099843978595439
201 => 0.0010357443329251
202 => 0.0010336394641873
203 => 0.0010683783159542
204 => 0.0010954597351057
205 => 0.0011439944796078
206 => 0.0010933459435464
207 => 0.0010915001095826
208 => 0.0011095434326596
209 => 0.001093016596383
210 => 0.0011034609864228
211 => 0.0011423117269027
212 => 0.0011431325818289
213 => 0.0011293822042041
214 => 0.001128545492476
215 => 0.0011311864029115
216 => 0.0011466542978195
217 => 0.0011412493400582
218 => 0.0011475040940163
219 => 0.0011553257596171
220 => 0.0011876794848596
221 => 0.0011954798584825
222 => 0.0011765289946088
223 => 0.0011782400454328
224 => 0.0011711519021312
225 => 0.001164304844516
226 => 0.0011796960301025
227 => 0.0012078237242762
228 => 0.0012076487433506
301 => 0.0012141738216746
302 => 0.0012182388914139
303 => 0.0012007886362802
304 => 0.0011894291618518
305 => 0.0011937851071698
306 => 0.0012007503585934
307 => 0.0011915263700085
308 => 0.0011345916394951
309 => 0.0011518619997282
310 => 0.0011489873673079
311 => 0.0011448935411742
312 => 0.0011622590219363
313 => 0.0011605840789535
314 => 0.0011104130338219
315 => 0.0011136248213516
316 => 0.0011106083532593
317 => 0.0011203551787769
318 => 0.0010924902358187
319 => 0.0011010613045994
320 => 0.0011064369985899
321 => 0.0011096033236483
322 => 0.0011210422609287
323 => 0.0011197000336665
324 => 0.0011209588261975
325 => 0.0011379197504168
326 => 0.001223702284832
327 => 0.0012283712389117
328 => 0.0012053796014334
329 => 0.001214564307116
330 => 0.0011969316806798
331 => 0.0012087685809347
401 => 0.0012168670874645
402 => 0.0011802714937097
403 => 0.001178104540151
404 => 0.0011603991375932
405 => 0.0011699130180425
406 => 0.0011547757501754
407 => 0.0011584899062309
408 => 0.0011481048021056
409 => 0.0011667959218775
410 => 0.0011876954980888
411 => 0.001192975556389
412 => 0.0011790859962091
413 => 0.0011690290392722
414 => 0.0011513723358586
415 => 0.0011807358271407
416 => 0.0011893226068278
417 => 0.0011806907244425
418 => 0.0011786905286835
419 => 0.0011749001613344
420 => 0.0011794946730348
421 => 0.0011892758413815
422 => 0.0011846632230191
423 => 0.0011877099387114
424 => 0.0011760990002519
425 => 0.0012007944130408
426 => 0.0012400166718242
427 => 0.0012401427777997
428 => 0.0012355301345735
429 => 0.0012336427403461
430 => 0.0012383755922148
501 => 0.0012409429702018
502 => 0.0012562481452885
503 => 0.0012726712079417
504 => 0.0013493104754004
505 => 0.001327790475775
506 => 0.0013957893931548
507 => 0.0014495677082479
508 => 0.0014656934735036
509 => 0.0014508585282442
510 => 0.0014001089818799
511 => 0.0013976189670218
512 => 0.0014734602151958
513 => 0.0014520315888374
514 => 0.0014494827219174
515 => 0.0014223670842672
516 => 0.0014383957844555
517 => 0.0014348900725975
518 => 0.0014293561349243
519 => 0.0014599377783147
520 => 0.0015171838846995
521 => 0.0015082615421689
522 => 0.0015016014273653
523 => 0.0014724187430263
524 => 0.0014899932371869
525 => 0.0014837352964336
526 => 0.0015106233812972
527 => 0.001494695475468
528 => 0.0014518692459171
529 => 0.0014586894641302
530 => 0.0014576586018677
531 => 0.0014788736741829
601 => 0.0014725054360643
602 => 0.0014564151011685
603 => 0.0015169882237313
604 => 0.0015130549420775
605 => 0.0015186314361893
606 => 0.0015210863813561
607 => 0.001557956173642
608 => 0.0015730605478397
609 => 0.0015764895052219
610 => 0.0015908374924956
611 => 0.0015761325142278
612 => 0.0016349629117706
613 => 0.0016740816932877
614 => 0.0017195201710538
615 => 0.0017859179997817
616 => 0.0018108841975976
617 => 0.0018063742774259
618 => 0.0018567163533794
619 => 0.0019471799448263
620 => 0.0018246595557104
621 => 0.0019536738229522
622 => 0.0019128293954848
623 => 0.0018159879927194
624 => 0.0018097525480665
625 => 0.001875334670371
626 => 0.0020207895055971
627 => 0.001984354719108
628 => 0.0020208490998553
629 => 0.0019782764662004
630 => 0.0019761623761091
701 => 0.0020187814420626
702 => 0.0021183632127073
703 => 0.0020710556462409
704 => 0.00200322864942
705 => 0.0020533110483676
706 => 0.002009925039492
707 => 0.001912164218516
708 => 0.0019843268581134
709 => 0.0019360737560883
710 => 0.0019501565765352
711 => 0.0020515774198848
712 => 0.0020393741956867
713 => 0.0020551662977872
714 => 0.0020272936509312
715 => 0.0020012562036546
716 => 0.0019526553747468
717 => 0.001938267065299
718 => 0.0019422434763932
719 => 0.0019382650947872
720 => 0.0019110733776779
721 => 0.0019052013289571
722 => 0.0018954143238287
723 => 0.0018984477259584
724 => 0.0018800452930278
725 => 0.0019147744861046
726 => 0.0019212205303723
727 => 0.0019464935409192
728 => 0.0019491174687142
729 => 0.0020195024433486
730 => 0.0019807355820914
731 => 0.0020067437395925
801 => 0.0020044173251874
802 => 0.0018180868395662
803 => 0.001843761536477
804 => 0.0018837033077065
805 => 0.0018657095939074
806 => 0.001840270692476
807 => 0.0018197274156226
808 => 0.0017886022505318
809 => 0.0018324103226913
810 => 0.0018900132791119
811 => 0.0019505783747484
812 => 0.0020233433687733
813 => 0.0020071030691849
814 => 0.0019492180837993
815 => 0.0019518147619587
816 => 0.0019678664045849
817 => 0.0019470780689385
818 => 0.0019409471829199
819 => 0.0019670241149921
820 => 0.0019672036924916
821 => 0.0019432841999762
822 => 0.0019167020612662
823 => 0.0019165906811344
824 => 0.001911860646304
825 => 0.0019791179288889
826 => 0.0020161026338324
827 => 0.0020203428706503
828 => 0.0020158172321101
829 => 0.002017558970768
830 => 0.0019960383858638
831 => 0.0020452280612237
901 => 0.0020903693716886
902 => 0.0020782705361806
903 => 0.0020601326618032
904 => 0.0020456849712233
905 => 0.0020748671194341
906 => 0.0020735676843113
907 => 0.0020899751017221
908 => 0.0020892307664945
909 => 0.0020837135691334
910 => 0.0020782707332171
911 => 0.0020998509623952
912 => 0.0020936362029598
913 => 0.0020874117902864
914 => 0.00207492777776
915 => 0.0020766245623998
916 => 0.0020584898197822
917 => 0.0020500998580579
918 => 0.0019239349640579
919 => 0.0018902195818242
920 => 0.0019008271274148
921 => 0.001904319406848
922 => 0.0018896464292925
923 => 0.0019106837099285
924 => 0.0019074050720253
925 => 0.0019201603341673
926 => 0.0019121914001501
927 => 0.0019125184479819
928 => 0.0019359533837707
929 => 0.0019427566453295
930 => 0.0019392964515916
1001 => 0.0019417198526771
1002 => 0.001997566107839
1003 => 0.0019896265562177
1004 => 0.00198540882766
1005 => 0.0019865771672949
1006 => 0.002000847082846
1007 => 0.0020048418800918
1008 => 0.0019879156434519
1009 => 0.0019958981545007
1010 => 0.0020298866734149
1011 => 0.0020417807314512
1012 => 0.0020797408552316
1013 => 0.0020636147199623
1014 => 0.0020932149391719
1015 => 0.0021841959215639
1016 => 0.0022568778257038
1017 => 0.0021900365429501
1018 => 0.0023235076039182
1019 => 0.0024274339701684
1020 => 0.0024234451031333
1021 => 0.0024053231373174
1022 => 0.0022870057323669
1023 => 0.0021781282923183
1024 => 0.0022692088940993
1025 => 0.0022694410772841
1026 => 0.0022616171728158
1027 => 0.0022130235741127
1028 => 0.0022599262209136
1029 => 0.0022636491826913
1030 => 0.0022615653141112
1031 => 0.0022243087159194
1101 => 0.0021674247766506
1102 => 0.0021785397622228
1103 => 0.0021967463353297
1104 => 0.0021622774941494
1105 => 0.0021512626108516
1106 => 0.0021717413745695
1107 => 0.0022377282181886
1108 => 0.0022252537876382
1109 => 0.0022249280298434
1110 => 0.0022782989337199
1111 => 0.0022400968847063
1112 => 0.002178679957786
1113 => 0.0021631713737489
1114 => 0.0021081263482512
1115 => 0.0021461461434261
1116 => 0.0021475144081691
1117 => 0.0021266913549047
1118 => 0.002180369633796
1119 => 0.0021798749790062
1120 => 0.002230834515856
1121 => 0.0023282500107849
1122 => 0.0022994394554091
1123 => 0.0022659359140865
1124 => 0.0022695786779807
1125 => 0.0023095308067927
1126 => 0.0022853748376945
1127 => 0.0022940614926036
1128 => 0.0023095176585001
1129 => 0.0023188427471404
1130 => 0.0022682369412303
1201 => 0.0022564383071171
1202 => 0.0022323024424795
1203 => 0.0022260058459128
1204 => 0.0022456640040488
1205 => 0.0022404847739129
1206 => 0.0021473994108157
1207 => 0.0021376714724499
1208 => 0.0021379698144313
1209 => 0.0021135084508724
1210 => 0.0020761990000452
1211 => 0.0021742460091876
1212 => 0.0021663714621865
1213 => 0.0021576785717387
1214 => 0.0021587434012176
1215 => 0.0022013022847649
1216 => 0.0021766159830324
1217 => 0.0022422485621936
1218 => 0.002228756477014
1219 => 0.0022149183707598
1220 => 0.0022130055229565
1221 => 0.0022076790326603
1222 => 0.0021894125155352
1223 => 0.0021673545984591
1224 => 0.0021527900509814
1225 => 0.0019858350259788
1226 => 0.0020168209074866
1227 => 0.0020524673397093
1228 => 0.0020647723452685
1229 => 0.002043723781779
1230 => 0.0021902436411143
1231 => 0.0022170142313153
]
'min_raw' => 0.00092403045810215
'max_raw' => 0.0024274339701684
'avg_raw' => 0.0016757322141353
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000924'
'max' => '$0.002427'
'avg' => '$0.001675'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -3.5826742981898E-5
'max_diff' => -0.00043776315147988
'year' => 2027
]
2 => [
'items' => [
101 => 0.002135924367394
102 => 0.0021207557647316
103 => 0.0021912380921795
104 => 0.0021487286326143
105 => 0.0021678706396536
106 => 0.0021264960905527
107 => 0.0022105659800703
108 => 0.0022099255083677
109 => 0.0021772204225408
110 => 0.0022048625371269
111 => 0.0022000590394786
112 => 0.0021631350781291
113 => 0.0022117365355051
114 => 0.0022117606412216
115 => 0.0021802827071831
116 => 0.0021435233716319
117 => 0.0021369516706521
118 => 0.0021320007767477
119 => 0.0021666530232484
120 => 0.0021977221191063
121 => 0.0022555340038157
122 => 0.0022700692852081
123 => 0.0023268014561513
124 => 0.0022930202105939
125 => 0.0023079949992091
126 => 0.0023242522505641
127 => 0.0023320465747043
128 => 0.0023193461417844
129 => 0.0024074745551523
130 => 0.0024149152934253
131 => 0.0024174101086062
201 => 0.0023876937034674
202 => 0.0024140888264418
203 => 0.0024017394225167
204 => 0.0024338691407667
205 => 0.0024389074908411
206 => 0.0024346401875726
207 => 0.0024362394394112
208 => 0.0023610373855191
209 => 0.0023571377623024
210 => 0.0023039661230374
211 => 0.0023256339590628
212 => 0.0022851269781798
213 => 0.0022979721590859
214 => 0.002303634192436
215 => 0.0023006766675315
216 => 0.0023268590260015
217 => 0.0023045986725995
218 => 0.0022458499400308
219 => 0.0021870852014091
220 => 0.0021863474579844
221 => 0.0021708757395891
222 => 0.0021596925209759
223 => 0.0021618468056268
224 => 0.0021694387857244
225 => 0.0021592512612912
226 => 0.0021614252861496
227 => 0.0021975285842512
228 => 0.0022047688432085
229 => 0.0021801636143197
301 => 0.0020813700698136
302 => 0.0020571258861869
303 => 0.0020745521245947
304 => 0.0020662235050293
305 => 0.0016676036306913
306 => 0.0017612534573548
307 => 0.001705609910399
308 => 0.0017312530168727
309 => 0.0016744553642574
310 => 0.0017015621811055
311 => 0.0016965565418161
312 => 0.0018471426917912
313 => 0.0018447914961838
314 => 0.0018459168890986
315 => 0.0017921989530818
316 => 0.0018777730837574
317 => 0.0019199299776745
318 => 0.0019121278585798
319 => 0.0019140914838659
320 => 0.0018803498956495
321 => 0.001846243581428
322 => 0.0018084144300322
323 => 0.0018786963175011
324 => 0.0018708821713664
325 => 0.0018888050111584
326 => 0.0019343878390351
327 => 0.0019411000835923
328 => 0.001950121408346
329 => 0.0019468879056034
330 => 0.0020239230593444
331 => 0.002014593593932
401 => 0.0020370749213054
402 => 0.001990829125236
403 => 0.0019384976172922
404 => 0.0019484441261064
405 => 0.0019474861973228
406 => 0.0019352906644483
407 => 0.0019242810826684
408 => 0.0019059532309351
409 => 0.0019639452658307
410 => 0.0019615908951198
411 => 0.0019997054202722
412 => 0.0019929683077268
413 => 0.0019479762212973
414 => 0.0019495831224661
415 => 0.0019603903050763
416 => 0.0019977940874847
417 => 0.0020088980767472
418 => 0.0020037542665033
419 => 0.0020159292838133
420 => 0.0020255519210797
421 => 0.0020171377389012
422 => 0.0021362648146079
423 => 0.0020867949472638
424 => 0.0021109062163982
425 => 0.0021166566120149
426 => 0.0021019270945605
427 => 0.0021051213994719
428 => 0.0021099599010166
429 => 0.0021393383349207
430 => 0.0022164358462033
501 => 0.0022505818091299
502 => 0.0023533116233266
503 => 0.0022477464622436
504 => 0.002241482662457
505 => 0.002259987404137
506 => 0.0023203006801257
507 => 0.0023691789253765
508 => 0.0023853946591799
509 => 0.0023875378360946
510 => 0.0024179596307112
511 => 0.0024353968360526
512 => 0.0024142656246721
513 => 0.0023963591355572
514 => 0.0023322203141829
515 => 0.0023396445574012
516 => 0.0023907902309075
517 => 0.0024630365072002
518 => 0.0025250313282033
519 => 0.0025033229026256
520 => 0.0026689428660228
521 => 0.0026853634088968
522 => 0.0026830946208113
523 => 0.0027205030611826
524 => 0.002646254925142
525 => 0.0026145124084948
526 => 0.0024002307217512
527 => 0.0024604351352897
528 => 0.0025479457860492
529 => 0.0025363634232731
530 => 0.0024728108495251
531 => 0.0025249831178772
601 => 0.0025077333343823
602 => 0.0024941277144458
603 => 0.0025564576969544
604 => 0.0024879233208116
605 => 0.0025472621032211
606 => 0.0024711595009998
607 => 0.0025034220648851
608 => 0.0024851082732592
609 => 0.002496959540895
610 => 0.0024276772724569
611 => 0.0024650603027741
612 => 0.0024261220154918
613 => 0.0024261035536737
614 => 0.0024252439888238
615 => 0.0024710547111327
616 => 0.0024725485971425
617 => 0.0024386944041401
618 => 0.0024338154860265
619 => 0.0024518554034368
620 => 0.0024307353848112
621 => 0.0024406173085983
622 => 0.0024310346982159
623 => 0.0024288774507781
624 => 0.0024116881361688
625 => 0.002404282506805
626 => 0.0024071864448981
627 => 0.0023972738071037
628 => 0.0023913010842768
629 => 0.0024240558639222
630 => 0.0024065563064817
701 => 0.0024213738057655
702 => 0.0024044873952141
703 => 0.0023459517391843
704 => 0.0023122872643981
705 => 0.0022017188364159
706 => 0.002233075905432
707 => 0.0022538656746308
708 => 0.0022469946560346
709 => 0.0022617562627105
710 => 0.0022626625054716
711 => 0.0022578633566645
712 => 0.0022523065571549
713 => 0.002249601814464
714 => 0.0022697607505284
715 => 0.0022814636914324
716 => 0.0022559522061012
717 => 0.0022499752220317
718 => 0.0022757687422292
719 => 0.0022915027746493
720 => 0.0024076740298499
721 => 0.0023990676880364
722 => 0.002420667917079
723 => 0.0024182360627713
724 => 0.0024408765439942
725 => 0.0024778841622124
726 => 0.002402637326882
727 => 0.0024156975756556
728 => 0.0024124955042615
729 => 0.0024474548801139
730 => 0.0024475640194694
731 => 0.0024266041272955
801 => 0.0024379668248784
802 => 0.0024316244788069
803 => 0.0024430859553775
804 => 0.0023989527450945
805 => 0.0024527022313336
806 => 0.0024831747264908
807 => 0.0024835978371156
808 => 0.0024980415579755
809 => 0.0025127172148929
810 => 0.0025408858603657
811 => 0.0025119316066593
812 => 0.0024598457228811
813 => 0.0024636061554535
814 => 0.0024330682208519
815 => 0.0024335815690497
816 => 0.0024308412761381
817 => 0.0024390651014454
818 => 0.0024007574122836
819 => 0.0024097481503615
820 => 0.0023971610644027
821 => 0.0024156702137889
822 => 0.0023957574287214
823 => 0.0024124939601257
824 => 0.002419716892255
825 => 0.0024463696673108
826 => 0.0023918207921749
827 => 0.0022805919431388
828 => 0.0023039735957256
829 => 0.0022693902949605
830 => 0.0022725911111142
831 => 0.0022790572691509
901 => 0.0022580983353589
902 => 0.0022620966394345
903 => 0.0022619537918773
904 => 0.0022607228088017
905 => 0.00225527058065
906 => 0.0022473637711395
907 => 0.0022788620666416
908 => 0.0022842142408319
909 => 0.002296111461063
910 => 0.0023315095185092
911 => 0.0023279724178266
912 => 0.0023337415757928
913 => 0.0023211475363451
914 => 0.0022731753124836
915 => 0.0022757804350406
916 => 0.0022432945150104
917 => 0.0022952807230496
918 => 0.0022829697028015
919 => 0.0022750327079596
920 => 0.0022728670253813
921 => 0.0023083528277651
922 => 0.0023189707360101
923 => 0.0023123543681331
924 => 0.0022987840045871
925 => 0.0023248431143133
926 => 0.0023318154327304
927 => 0.0023333762776948
928 => 0.0023795480237908
929 => 0.0023359567653975
930 => 0.0023464496145526
1001 => 0.0024283118283451
1002 => 0.0023540740966486
1003 => 0.0023933994788272
1004 => 0.002391474706009
1005 => 0.0024115922408332
1006 => 0.0023898244809665
1007 => 0.0023900943184385
1008 => 0.0024079573264825
1009 => 0.0023828719532952
1010 => 0.0023766604621176
1011 => 0.0023680793315433
1012 => 0.0023868159162179
1013 => 0.0023980476513475
1014 => 0.0024885671876915
1015 => 0.002547046936362
1016 => 0.0025445081762429
1017 => 0.0025677076913722
1018 => 0.0025572560973232
1019 => 0.002523505143148
1020 => 0.0025811139064347
1021 => 0.0025628840832778
1022 => 0.0025643869277496
1023 => 0.0025643309918033
1024 => 0.0025764522305239
1025 => 0.0025678632219951
1026 => 0.0025509334045413
1027 => 0.0025621722074487
1028 => 0.0025955474341379
1029 => 0.0026991451618581
1030 => 0.0027571198227777
1031 => 0.0026956550144756
1101 => 0.0027380526161958
1102 => 0.0027126291629739
1103 => 0.0027080089652412
1104 => 0.0027346377922797
1105 => 0.0027613132295548
1106 => 0.0027596141195214
1107 => 0.0027402491218586
1108 => 0.0027293103260474
1109 => 0.0028121425526947
1110 => 0.0028731719262783
1111 => 0.002869010132146
1112 => 0.0028873789379579
1113 => 0.0029413103199476
1114 => 0.0029462411296267
1115 => 0.0029456199609405
1116 => 0.0029333984346742
1117 => 0.0029865008841179
1118 => 0.0030307998816926
1119 => 0.0029305695044573
1120 => 0.0029687359199966
1121 => 0.0029858700535772
1122 => 0.003011028045142
1123 => 0.0030534737938807
1124 => 0.0030995811351898
1125 => 0.0031061012187921
1126 => 0.0031014749074615
1127 => 0.0030710658764363
1128 => 0.0031215170794717
1129 => 0.0031510702109835
1130 => 0.0031686684244874
1201 => 0.0032132945658698
1202 => 0.0029859758681531
1203 => 0.0028250683954368
1204 => 0.0027999403700401
1205 => 0.0028510391977951
1206 => 0.0028645135511686
1207 => 0.0028590820562191
1208 => 0.0026779660666096
1209 => 0.0027989868318376
1210 => 0.002929194999508
1211 => 0.0029341968255177
1212 => 0.0029993817567778
1213 => 0.0030206086424168
1214 => 0.0030730910560655
1215 => 0.0030698082668023
1216 => 0.0030825868993482
1217 => 0.003079649313021
1218 => 0.0031768619328291
1219 => 0.0032841018886913
1220 => 0.003280388510022
1221 => 0.0032649714975612
1222 => 0.0032878683900567
1223 => 0.0033985515170385
1224 => 0.003388361588367
1225 => 0.0033982602360953
1226 => 0.0035287618806346
1227 => 0.0036984325821781
1228 => 0.0036196035066512
1229 => 0.0037906399180891
1230 => 0.0038982982728387
1231 => 0.0040844822652964
]
'min_raw' => 0.0016676036306913
'max_raw' => 0.0040844822652964
'avg_raw' => 0.0028760429479938
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001667'
'max' => '$0.004084'
'avg' => '$0.002876'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00074357317258912
'max_diff' => 0.001657048295128
'year' => 2028
]
3 => [
'items' => [
101 => 0.0040611711124652
102 => 0.0041336511744477
103 => 0.0040194392837129
104 => 0.0037571856965544
105 => 0.0037156830625202
106 => 0.0037987723868708
107 => 0.0040030393830491
108 => 0.0037923392922366
109 => 0.0038349636461916
110 => 0.0038226878293851
111 => 0.0038220337032763
112 => 0.0038469990363244
113 => 0.003810785518634
114 => 0.0036632451328755
115 => 0.0037308620222076
116 => 0.0037047518940067
117 => 0.0037337230278846
118 => 0.003890068288819
119 => 0.0038209443221544
120 => 0.0037481278384483
121 => 0.0038394558682871
122 => 0.0039557478339877
123 => 0.0039484704917709
124 => 0.0039343494061773
125 => 0.0040139492263126
126 => 0.0041454248086173
127 => 0.0041809621302025
128 => 0.0042071950544682
129 => 0.0042108121315156
130 => 0.0042480702731041
131 => 0.0040477238555217
201 => 0.0043656787654859
202 => 0.0044205807951096
203 => 0.0044102614889963
204 => 0.0044712827842925
205 => 0.0044533287712555
206 => 0.0044273162232633
207 => 0.0045240479559094
208 => 0.0044131528302789
209 => 0.0042557511607546
210 => 0.0041693974918015
211 => 0.0042831149690307
212 => 0.0043525582641815
213 => 0.0043984558648531
214 => 0.0044123444510842
215 => 0.0040632761776055
216 => 0.0038751477384145
217 => 0.003995735911039
218 => 0.004142861804192
219 => 0.0040469065637567
220 => 0.0040506678275145
221 => 0.0039138608712473
222 => 0.0041549661841839
223 => 0.0041198391681039
224 => 0.0043020781896656
225 => 0.0042585853846103
226 => 0.0044071942322158
227 => 0.0043680605422165
228 => 0.0045305023014686
301 => 0.0045953047171694
302 => 0.0047041180588216
303 => 0.0047841615958909
304 => 0.0048311646918469
305 => 0.0048283428022699
306 => 0.005014592485297
307 => 0.0049047675542842
308 => 0.0047668015571833
309 => 0.0047643061875729
310 => 0.0048357607324647
311 => 0.004985509855961
312 => 0.0050243376249224
313 => 0.0050460370507902
314 => 0.0050128036247113
315 => 0.0048935965333206
316 => 0.0048421235156518
317 => 0.0048859800180225
318 => 0.0048323472842554
319 => 0.0049249324294248
320 => 0.0050520716088623
321 => 0.0050258178710712
322 => 0.0051135801803263
323 => 0.0052044049375412
324 => 0.0053342884195535
325 => 0.0053682447713229
326 => 0.0054243733295534
327 => 0.0054821480532434
328 => 0.0055007037374202
329 => 0.0055361322960043
330 => 0.0055359455700125
331 => 0.0056427119159228
401 => 0.0057604785017404
402 => 0.0058049326615837
403 => 0.0059071525509269
404 => 0.0057321045726389
405 => 0.0058648804749766
406 => 0.0059846476624817
407 => 0.0058418562841166
408 => 0.0060386609330687
409 => 0.0060463024116186
410 => 0.0061616796653407
411 => 0.0060447227150861
412 => 0.0059752740513647
413 => 0.0061757697413208
414 => 0.0062727832901356
415 => 0.0062435620197101
416 => 0.0060211867089404
417 => 0.0058917547399467
418 => 0.0055530063115279
419 => 0.0059542684578331
420 => 0.0061497115443211
421 => 0.006020680558562
422 => 0.0060857562824947
423 => 0.0064407883313968
424 => 0.0065759615489959
425 => 0.0065478464646674
426 => 0.0065525974511053
427 => 0.0066255344657543
428 => 0.0069489773558557
429 => 0.0067551628787595
430 => 0.0069033267844097
501 => 0.0069819123857218
502 => 0.0070549070718437
503 => 0.0068756551929358
504 => 0.0066424511322098
505 => 0.0065685856169373
506 => 0.0060078509699511
507 => 0.0059786622964283
508 => 0.0059622778094726
509 => 0.0058589759368489
510 => 0.0057778089617309
511 => 0.0057132619695805
512 => 0.0055438713868144
513 => 0.0056010357359853
514 => 0.0053310625016183
515 => 0.0055037818097023
516 => 0.0050728980089211
517 => 0.005431750841993
518 => 0.0052364435599881
519 => 0.0053675871470819
520 => 0.005367129599461
521 => 0.0051256526765092
522 => 0.0049863738268454
523 => 0.0050751277306651
524 => 0.0051702789608535
525 => 0.0051857169278243
526 => 0.0053090829814648
527 => 0.0053435117952913
528 => 0.0052391908820692
529 => 0.0050639688998806
530 => 0.0051046689699551
531 => 0.0049855490412244
601 => 0.0047767959480058
602 => 0.0049267260640347
603 => 0.0049779187976089
604 => 0.0050005284251409
605 => 0.0047952437334151
606 => 0.0047307388263274
607 => 0.0046963969550425
608 => 0.0050374692240336
609 => 0.005056153932856
610 => 0.0049605603207688
611 => 0.0053926525119613
612 => 0.0052948567414004
613 => 0.0054041185776624
614 => 0.0051009758651938
615 => 0.0051125563250459
616 => 0.0049690437068858
617 => 0.0050494011835388
618 => 0.0049926071090828
619 => 0.0050429090935333
620 => 0.0050730598956101
621 => 0.0052165489647617
622 => 0.005433389256673
623 => 0.0051951164827692
624 => 0.0050912976230504
625 => 0.0051557062597205
626 => 0.005327234946844
627 => 0.005587109688228
628 => 0.0054332586108621
629 => 0.0055015351064364
630 => 0.0055164504833095
701 => 0.0054030063947364
702 => 0.0055912925335887
703 => 0.0056921966050335
704 => 0.0057957033031804
705 => 0.0058855752689895
706 => 0.0057543604517795
707 => 0.0058947791150994
708 => 0.0057816264596943
709 => 0.0056801168302895
710 => 0.005680270778496
711 => 0.0056165923051513
712 => 0.005493207239042
713 => 0.0054704531397849
714 => 0.0055888228376463
715 => 0.005683744125679
716 => 0.0056915622976037
717 => 0.0057441155998905
718 => 0.0057752161028417
719 => 0.0060800433108476
720 => 0.0062026473355705
721 => 0.0063525652162263
722 => 0.0064109666796505
723 => 0.0065867341464739
724 => 0.0064447876418783
725 => 0.0064140766227236
726 => 0.0059877222413103
727 => 0.0060575377473819
728 => 0.0061693191087969
729 => 0.0059895654747884
730 => 0.0061035777819836
731 => 0.0061260862265348
801 => 0.0059834575150883
802 => 0.0060596416724947
803 => 0.0058573191374518
804 => 0.0054377993350533
805 => 0.0055917595790549
806 => 0.0057051261410978
807 => 0.0055433380790662
808 => 0.0058333369181951
809 => 0.0056639255831672
810 => 0.0056102303231415
811 => 0.0054007459700391
812 => 0.0054996145209112
813 => 0.0056333356516271
814 => 0.0055507115395947
815 => 0.0057221689781348
816 => 0.0059649984371362
817 => 0.0061380531703648
818 => 0.006151338163953
819 => 0.0060400755642536
820 => 0.0062183745903402
821 => 0.0062196733040918
822 => 0.0060185512742931
823 => 0.0058953651508936
824 => 0.0058673770044714
825 => 0.0059372968816334
826 => 0.0060221925204294
827 => 0.0061560492810625
828 => 0.0062369361180785
829 => 0.0064478460899526
830 => 0.0065049122810789
831 => 0.0065676107237387
901 => 0.0066513951786158
902 => 0.0067519998985891
903 => 0.0065318824987175
904 => 0.0065406281733645
905 => 0.006335657898337
906 => 0.0061166177637592
907 => 0.0062828419221655
908 => 0.0065001578974086
909 => 0.006450305372575
910 => 0.0064446959451366
911 => 0.0064541294461626
912 => 0.0064165422704693
913 => 0.0062465368678544
914 => 0.0061611612189514
915 => 0.0062713175876873
916 => 0.0063298607951746
917 => 0.006420656204483
918 => 0.0064094637538272
919 => 0.0066433429774908
920 => 0.0067342213716658
921 => 0.0067109707895301
922 => 0.0067152494561996
923 => 0.0068797804479356
924 => 0.0070627727491253
925 => 0.0072341691871504
926 => 0.0074085210055578
927 => 0.0071983330834004
928 => 0.0070916126191177
929 => 0.007201720897029
930 => 0.007143295894883
1001 => 0.0074790232871953
1002 => 0.0075022683234216
1003 => 0.0078379714388221
1004 => 0.0081565936701205
1005 => 0.0079564727553522
1006 => 0.0081451777643347
1007 => 0.0083492776168945
1008 => 0.00874301934649
1009 => 0.0086104209839633
1010 => 0.0085088527163491
1011 => 0.008412871194228
1012 => 0.0086125935051245
1013 => 0.0088695330674511
1014 => 0.0089248753882397
1015 => 0.0090145510903109
1016 => 0.0089202680546061
1017 => 0.0090338215861768
1018 => 0.0094347154505713
1019 => 0.0093263903896238
1020 => 0.009172551388956
1021 => 0.0094890185926394
1022 => 0.0096035468434174
1023 => 0.010407366086287
1024 => 0.011422221084528
1025 => 0.011002064451359
1026 => 0.010741259670781
1027 => 0.010802554980589
1028 => 0.011173145670937
1029 => 0.011292167638716
1030 => 0.01096862490096
1031 => 0.011082905665631
1101 => 0.011712603914804
1102 => 0.012050416822347
1103 => 0.011591621519577
1104 => 0.010325823475321
1105 => 0.0091586998701348
1106 => 0.0094682736064911
1107 => 0.0094331775519798
1108 => 0.01010970976426
1109 => 0.0093238068727457
1110 => 0.0093370394618785
1111 => 0.010027561643849
1112 => 0.0098433421642463
1113 => 0.0095449302003386
1114 => 0.0091608786077138
1115 => 0.0084509237182742
1116 => 0.0078220968741409
1117 => 0.0090553711256598
1118 => 0.0090021900973706
1119 => 0.008925176087421
1120 => 0.0090965624327775
1121 => 0.0099287658769661
1122 => 0.0099095808939979
1123 => 0.0097875358206184
1124 => 0.0098801059331208
1125 => 0.009528702212047
1126 => 0.0096192669522817
1127 => 0.0091585149917927
1128 => 0.0093667941206353
1129 => 0.0095442899422877
1130 => 0.0095799248563549
1201 => 0.0096602121373123
1202 => 0.0089741661120268
1203 => 0.0092821806361269
1204 => 0.0094631103119777
1205 => 0.0086456634542056
1206 => 0.0094469520158916
1207 => 0.0089622235770412
1208 => 0.0087976994645185
1209 => 0.0090192095076267
1210 => 0.0089328868284018
1211 => 0.0088586716578421
1212 => 0.0088172583174913
1213 => 0.0089799108459786
1214 => 0.0089723229111129
1215 => 0.0087061918050123
1216 => 0.0083590346259957
1217 => 0.0084755519703196
1218 => 0.0084332201267708
1219 => 0.0082798040648335
1220 => 0.0083831879670533
1221 => 0.0079279375830727
1222 => 0.0071447029592901
1223 => 0.0076621317428862
1224 => 0.007642211297572
1225 => 0.0076321665057243
1226 => 0.0080209999359156
1227 => 0.0079836225735163
1228 => 0.0079157822947612
1229 => 0.0082785581249131
1230 => 0.0081461400668842
1231 => 0.0085542213201111
]
'min_raw' => 0.0036632451328755
'max_raw' => 0.012050416822347
'avg_raw' => 0.0078568309776112
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003663'
'max' => '$0.01205'
'avg' => '$0.007856'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0019956415021842
'max_diff' => 0.0079659345570505
'year' => 2029
]
4 => [
'items' => [
101 => 0.0088230100265269
102 => 0.0087548365161761
103 => 0.0090076335937288
104 => 0.0084782362946009
105 => 0.0086540808416381
106 => 0.0086903221590724
107 => 0.0082740815274813
108 => 0.0079897379722585
109 => 0.0079707754988789
110 => 0.0074777629590781
111 => 0.0077411262783815
112 => 0.0079728751006539
113 => 0.0078618853992205
114 => 0.0078267493754698
115 => 0.0080062517007387
116 => 0.0080202005687456
117 => 0.0077021648999546
118 => 0.0077682945863761
119 => 0.0080440663718991
120 => 0.0077613458449384
121 => 0.0072120660431897
122 => 0.0070758370579686
123 => 0.0070576616001418
124 => 0.0066881977877651
125 => 0.0070849405301653
126 => 0.0069117516910632
127 => 0.007458853158666
128 => 0.0071463517345353
129 => 0.0071328804227297
130 => 0.0071125165591238
131 => 0.0067945037934533
201 => 0.0068641283783695
202 => 0.0070955711027548
203 => 0.0071781524742044
204 => 0.007169538560593
205 => 0.0070944369071422
206 => 0.0071288180595093
207 => 0.0070180643885474
208 => 0.0069789549621924
209 => 0.0068555148547209
210 => 0.0066740919979378
211 => 0.0066993199589046
212 => 0.0063398738077446
213 => 0.0061440284673415
214 => 0.006089821058318
215 => 0.0060173326454882
216 => 0.0060980088174314
217 => 0.0063388555419604
218 => 0.0060483432936955
219 => 0.0055502804211101
220 => 0.0055802148484103
221 => 0.0056474686189427
222 => 0.0055221416624839
223 => 0.0054035302160897
224 => 0.0055066532454786
225 => 0.0052956174405173
226 => 0.0056729712877368
227 => 0.0056627649236914
228 => 0.0058034191025295
301 => 0.0058913730470712
302 => 0.0056886676803302
303 => 0.0056376878287684
304 => 0.0056667282691231
305 => 0.005186754478441
306 => 0.0057641950038981
307 => 0.005769188733541
308 => 0.0057264293885573
309 => 0.0060338986418871
310 => 0.0066827546684781
311 => 0.0064386289311014
312 => 0.0063440960668496
313 => 0.006164389022804
314 => 0.0064038379890464
315 => 0.0063854520444247
316 => 0.0063023038301832
317 => 0.0062520155307717
318 => 0.0063446732643608
319 => 0.0062405342121822
320 => 0.0062218279768612
321 => 0.0061084885434004
322 => 0.0060680315222705
323 => 0.0060380787544664
324 => 0.0060051037002122
325 => 0.0060778384530254
326 => 0.0059130119340972
327 => 0.0057142473104127
328 => 0.0056977221826163
329 => 0.0057433495133661
330 => 0.0057231628160646
331 => 0.005697625536476
401 => 0.0056488679150772
402 => 0.0056344025703499
403 => 0.005681407923126
404 => 0.0056283416204241
405 => 0.0057066438407319
406 => 0.0056853499694676
407 => 0.0055664041355562
408 => 0.0054181535871145
409 => 0.0054168338462673
410 => 0.0053848935087852
411 => 0.0053442126867398
412 => 0.0053328962126979
413 => 0.005497968511577
414 => 0.0058396632300585
415 => 0.005772580380759
416 => 0.0058210546143048
417 => 0.0060594998666381
418 => 0.006135294442056
419 => 0.0060814972477173
420 => 0.0060078563300401
421 => 0.0060110961566839
422 => 0.0062627494650088
423 => 0.0062784447731647
424 => 0.0063181017533766
425 => 0.0063690721800101
426 => 0.0060901777317754
427 => 0.0059979602532526
428 => 0.0059542624958976
429 => 0.0058196903164045
430 => 0.0059648148746411
501 => 0.0058802570094098
502 => 0.0058916667543375
503 => 0.0058842361429853
504 => 0.0058882937592393
505 => 0.005672865809646
506 => 0.0057513564319181
507 => 0.0056208505488841
508 => 0.0054461178214745
509 => 0.0054455320561031
510 => 0.0054882976435929
511 => 0.0054628589987363
512 => 0.0053944042595147
513 => 0.0054041279321239
514 => 0.0053189383283384
515 => 0.005414471492431
516 => 0.0054172110417431
517 => 0.0053804255698408
518 => 0.0055276075901617
519 => 0.0055879081839763
520 => 0.005563695198349
521 => 0.0055862093363578
522 => 0.0057753679760083
523 => 0.0058062090878414
524 => 0.0058199066724682
525 => 0.0058015537236505
526 => 0.0055896668090472
527 => 0.0055990648947226
528 => 0.0055301079777644
529 => 0.0054718466494356
530 => 0.0054741767970283
531 => 0.0055041306932319
601 => 0.0056349411147254
602 => 0.0059102239350631
603 => 0.0059206707168658
604 => 0.0059333325211648
605 => 0.0058818305997678
606 => 0.0058662971274675
607 => 0.005886789786961
608 => 0.0059901715405968
609 => 0.0062560974788203
610 => 0.0061621014916559
611 => 0.0060856812909565
612 => 0.006152722409708
613 => 0.0061424019549619
614 => 0.0060552869307659
615 => 0.0060528419021823
616 => 0.0058856403183923
617 => 0.0058238296998609
618 => 0.0057721761205715
619 => 0.0057157717604383
620 => 0.0056823333650601
621 => 0.00573370993784
622 => 0.0057454603679045
623 => 0.0056331245936125
624 => 0.0056178136426714
625 => 0.0057095494608944
626 => 0.0056691799475505
627 => 0.0057107009931404
628 => 0.0057203342318782
629 => 0.0057187830585691
630 => 0.005676632650229
701 => 0.0057034980635617
702 => 0.0056399533520647
703 => 0.0055708580224187
704 => 0.0055267795068957
705 => 0.0054883151559353
706 => 0.0055096574134093
707 => 0.0054335761624566
708 => 0.0054092362390637
709 => 0.0056943966660156
710 => 0.0059050477393961
711 => 0.0059019847893622
712 => 0.0058833398687574
713 => 0.0058556372987227
714 => 0.0059881449250501
715 => 0.0059419819176113
716 => 0.0059755693625714
717 => 0.0059841187769743
718 => 0.0060099952794533
719 => 0.0060192439049289
720 => 0.0059912881351581
721 => 0.0058974651572973
722 => 0.0056636672168892
723 => 0.0055548336445038
724 => 0.0055189167528501
725 => 0.0055202222636458
726 => 0.0054842104478429
727 => 0.0054948175415332
728 => 0.00548052173353
729 => 0.0054534489316992
730 => 0.0055079857441854
731 => 0.0055142706037789
801 => 0.0055015410600782
802 => 0.005504539328436
803 => 0.0053991441434537
804 => 0.0054071571104616
805 => 0.005362539891923
806 => 0.0053541747013156
807 => 0.0052413862581158
808 => 0.005041565182041
809 => 0.0051522854552876
810 => 0.0050185509348321
811 => 0.0049679036455269
812 => 0.0052076600358281
813 => 0.005183595144049
814 => 0.0051424065100801
815 => 0.0050814799359767
816 => 0.0050588816769861
817 => 0.0049215818090989
818 => 0.0049134694004378
819 => 0.004981518922371
820 => 0.0049501164094399
821 => 0.004906015388223
822 => 0.0047462859598242
823 => 0.0045666971977076
824 => 0.0045721178535812
825 => 0.0046292416974428
826 => 0.0047953369776702
827 => 0.0047304406782078
828 => 0.0046833576683486
829 => 0.0046745404359121
830 => 0.0047849065599819
831 => 0.0049410977479585
901 => 0.0050143791587763
902 => 0.0049417595062454
903 => 0.0048583379595377
904 => 0.0048634154425476
905 => 0.0048971936622598
906 => 0.0049007432755533
907 => 0.0048464444245201
908 => 0.0048617292330286
909 => 0.004838510211232
910 => 0.0046960151173253
911 => 0.0046934378329334
912 => 0.0046584672388449
913 => 0.0046574083431541
914 => 0.0045979146387861
915 => 0.0045895910582844
916 => 0.0044714626972519
917 => 0.0045492151422091
918 => 0.0044970628843184
919 => 0.0044184571302032
920 => 0.0044049054685654
921 => 0.0044044980892525
922 => 0.0044852086228038
923 => 0.0045482719926326
924 => 0.0044979700951728
925 => 0.0044865173281825
926 => 0.004608802916757
927 => 0.004593240960953
928 => 0.0045797644075906
929 => 0.0049271125401952
930 => 0.0046521593893259
1001 => 0.0045322641217697
1002 => 0.0043838709606751
1003 => 0.0044321885221908
1004 => 0.0044423697423348
1005 => 0.0040855109397801
1006 => 0.0039407333680276
1007 => 0.0038910511612298
1008 => 0.0038624583488144
1009 => 0.003875488452478
1010 => 0.0037451716571853
1011 => 0.0038327466988629
1012 => 0.0037199033695439
1013 => 0.0037009848181596
1014 => 0.003902762669588
1015 => 0.0039308388788452
1016 => 0.0038110570475596
1017 => 0.0038879763741619
1018 => 0.0038600843570773
1019 => 0.0037218377445451
1020 => 0.0037165577408196
1021 => 0.0036471904502543
1022 => 0.0035386440726738
1023 => 0.0034890354654314
1024 => 0.0034631988720579
1025 => 0.003473859554029
1026 => 0.0034684691870022
1027 => 0.0034332933959673
1028 => 0.003470485422169
1029 => 0.0033754751640301
1030 => 0.0033376413136895
1031 => 0.0033205526412293
1101 => 0.0032362255685446
1102 => 0.0033704274416054
1103 => 0.003396866901229
1104 => 0.0034233584547557
1105 => 0.0036539493416533
1106 => 0.003642429672587
1107 => 0.0037465618706402
1108 => 0.0037425154849107
1109 => 0.0037128152951962
1110 => 0.0035875150802346
1111 => 0.0036374575126567
1112 => 0.0034837424684386
1113 => 0.0035989162311738
1114 => 0.0035463557356328
1115 => 0.0035811454747603
1116 => 0.0035185903869448
1117 => 0.0035532109553781
1118 => 0.0034031366779451
1119 => 0.0032629994292801
1120 => 0.0033193947490042
1121 => 0.0033807029111314
1122 => 0.0035136346276523
1123 => 0.0034344615939553
1124 => 0.0034629352107366
1125 => 0.0033675533609451
1126 => 0.0031707533603468
1127 => 0.0031718672269778
1128 => 0.0031415938344068
1129 => 0.0031154332032378
1130 => 0.0034435555692799
1201 => 0.0034027483662156
1202 => 0.0033377274288473
1203 => 0.0034247605373441
1204 => 0.0034477734726318
1205 => 0.0034484286185471
1206 => 0.0035119257278567
1207 => 0.0035458141464777
1208 => 0.0035517871271405
1209 => 0.003651701200585
1210 => 0.0036851910801051
1211 => 0.0038231311541833
1212 => 0.0035429389509229
1213 => 0.0035371685768824
1214 => 0.0034259852716633
1215 => 0.0033554710617548
1216 => 0.0034308134399432
1217 => 0.003497556501758
1218 => 0.0034280591646394
1219 => 0.0034371340496982
1220 => 0.0033438395527576
1221 => 0.0033771879454998
1222 => 0.003405912073843
1223 => 0.0033900522984981
1224 => 0.003366309447185
1225 => 0.003492084331817
1226 => 0.0034849876199103
1227 => 0.0036021120840317
1228 => 0.0036934189794651
1229 => 0.0038570572591417
1230 => 0.0036862921836427
1231 => 0.0036800688255618
]
'min_raw' => 0.0031154332032378
'max_raw' => 0.0090076335937288
'avg_raw' => 0.0060615333984833
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.003115'
'max' => '$0.0090076'
'avg' => '$0.006061'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00054781192963762
'max_diff' => -0.0030427832286181
'year' => 2030
]
5 => [
'items' => [
101 => 0.0037409031490605
102 => 0.0036851817666871
103 => 0.0037203957569104
104 => 0.0038513837409105
105 => 0.0038541513106043
106 => 0.0038077909524216
107 => 0.003804969920413
108 => 0.0038138739343287
109 => 0.0038660250219449
110 => 0.0038478018294908
111 => 0.0038688901691535
112 => 0.0038952614608179
113 => 0.0040043443043377
114 => 0.0040306438086121
115 => 0.0039667496479549
116 => 0.0039725185752697
117 => 0.0039486204052499
118 => 0.0039255350724541
119 => 0.0039774275292371
120 => 0.0040722620139568
121 => 0.0040716720535492
122 => 0.0040936718106852
123 => 0.0041073774771252
124 => 0.0040485427236041
125 => 0.0040102434624757
126 => 0.0040249298362376
127 => 0.0040484136677105
128 => 0.0040173143461981
129 => 0.0038253549272163
130 => 0.0038835831525202
131 => 0.0038738911286149
201 => 0.0038600885079833
202 => 0.003918637438792
203 => 0.0039129902515844
204 => 0.0037438350700928
205 => 0.0037546638359892
206 => 0.0037444936032129
207 => 0.003777355705947
208 => 0.0036834071052953
209 => 0.0037123050621023
210 => 0.0037304295897101
211 => 0.0037411050757103
212 => 0.0037796722513922
213 => 0.0037751468384666
214 => 0.0037793909453708
215 => 0.0038365758855503
216 => 0.0041257976894763
217 => 0.004141539394132
218 => 0.0040640214831491
219 => 0.0040949883596136
220 => 0.0040355387285132
221 => 0.0040754476641488
222 => 0.0041027523443336
223 => 0.0039793677449665
224 => 0.0039720617097514
225 => 0.003912366708876
226 => 0.0039444434210488
227 => 0.0038934070655847
228 => 0.0039059296020397
301 => 0.0038709154984165
302 => 0.0039339339136997
303 => 0.004004398294058
304 => 0.0040222003792592
305 => 0.0039753707573744
306 => 0.0039414630249073
307 => 0.0038819322165966
308 => 0.0039809332775479
309 => 0.0040098842047728
310 => 0.003980781210652
311 => 0.0039740374110012
312 => 0.0039612579228488
313 => 0.0039767486398253
314 => 0.0040097265318056
315 => 0.0039941747669537
316 => 0.0040044469816252
317 => 0.0039652998919593
318 => 0.0040485622003556
319 => 0.0041808027842546
320 => 0.0041812279593554
321 => 0.0041656761106737
322 => 0.0041593126292624
323 => 0.0041752697697749
324 => 0.0041839258639067
325 => 0.0042355283302849
326 => 0.0042908998326417
327 => 0.0045492944736615
328 => 0.004476738292446
329 => 0.0047060013899248
330 => 0.0048873187339431
331 => 0.0049416878773677
401 => 0.004891670823683
402 => 0.0047205651848956
403 => 0.0047121699259542
404 => 0.0049678739892398
405 => 0.0048956258793736
406 => 0.0048870321965966
407 => 0.0047956099311054
408 => 0.0048496518128785
409 => 0.0048378320605882
410 => 0.0048191740033558
411 => 0.0049222821491888
412 => 0.0051152913936606
413 => 0.0050852090928804
414 => 0.0050627540508258
415 => 0.004964362593107
416 => 0.0050236162271814
417 => 0.0050025171430161
418 => 0.0050931721983999
419 => 0.0050394701518459
420 => 0.0048950785288833
421 => 0.0049180733707612
422 => 0.0049145977466705
423 => 0.0049861258441703
424 => 0.0049646548847374
425 => 0.0049104051972447
426 => 0.0051146317090458
427 => 0.005101370375337
428 => 0.0051201719145731
429 => 0.0051284489336018
430 => 0.0052527580124603
501 => 0.0053036834646218
502 => 0.005315244433838
503 => 0.0053636196746756
504 => 0.0053140408137772
505 => 0.0055123916064998
506 => 0.0056442833095707
507 => 0.0057974823097726
508 => 0.0060213472250768
509 => 0.0061055225040974
510 => 0.0060903169933661
511 => 0.0062600488172147
512 => 0.0065650531317444
513 => 0.0061519670857396
514 => 0.0065869476952339
515 => 0.0064492378563606
516 => 0.0061227303056863
517 => 0.0061017070686941
518 => 0.0063228217728413
519 => 0.0068132329051383
520 => 0.0066903904786949
521 => 0.0068134338313409
522 => 0.0066698972246469
523 => 0.006662769422303
524 => 0.0068064625787335
525 => 0.0071422094710393
526 => 0.0069827087077889
527 => 0.0067540252524777
528 => 0.0069228815571708
529 => 0.0067766025991323
530 => 0.0064469951657692
531 => 0.0066902965434065
601 => 0.0065276078410048
602 => 0.0065750890533727
603 => 0.0069170365077031
604 => 0.0068758924853173
605 => 0.0069291366601184
606 => 0.0068351620852372
607 => 0.0067473750138678
608 => 0.0065835139260034
609 => 0.0065350027361407
610 => 0.006548409483769
611 => 0.0065349960924224
612 => 0.0064433173197234
613 => 0.0064235192974879
614 => 0.0063905217263907
615 => 0.0064007490534564
616 => 0.0063387039660139
617 => 0.0064557958651872
618 => 0.006477529153484
619 => 0.0065627388730483
620 => 0.0065715856288059
621 => 0.006808893484908
622 => 0.0066781883055635
623 => 0.00676587662441
624 => 0.0067580329558179
625 => 0.0061298067143669
626 => 0.0062163707475518
627 => 0.0063510372178974
628 => 0.0062903701555428
629 => 0.0062046011232797
630 => 0.0061353380310827
701 => 0.0060303973638893
702 => 0.0061780993377569
703 => 0.006372311727039
704 => 0.0065765111754973
705 => 0.0068218434331421
706 => 0.0067670881292181
707 => 0.0065719248595902
708 => 0.0065806797412989
709 => 0.0066347989751027
710 => 0.0065647096500758
711 => 0.0065440389398192
712 => 0.0066319591369338
713 => 0.0066325645950113
714 => 0.0065519183559899
715 => 0.0064622948194236
716 => 0.006461919293533
717 => 0.0064459716508616
718 => 0.0066727342748502
719 => 0.0067974307897567
720 => 0.0068117270442323
721 => 0.0067964685379239
722 => 0.0068023409314136
723 => 0.0067297827768897
724 => 0.0068956292016789
725 => 0.007047826281577
726 => 0.007007034212948
727 => 0.0069458811031388
728 => 0.006897169705643
729 => 0.0069955593557685
730 => 0.006991178219528
731 => 0.007046496972858
801 => 0.0070439873946703
802 => 0.007025385778569
803 => 0.0070070348772703
804 => 0.0070797941266279
805 => 0.0070588406312907
806 => 0.0070378545893877
807 => 0.0069957638695491
808 => 0.007001484697428
809 => 0.0069403421465654
810 => 0.0069120548048436
811 => 0.0064866810561708
812 => 0.0063730072910372
813 => 0.0064087713715911
814 => 0.0064205458355233
815 => 0.0063710748672603
816 => 0.0064420035277004
817 => 0.0064309493711029
818 => 0.0064739546279587
819 => 0.0064470868105464
820 => 0.0064481894751448
821 => 0.0065272019973317
822 => 0.0065501396686659
823 => 0.0065384733838956
824 => 0.0065466440498519
825 => 0.0067349335981911
826 => 0.0067081648455781
827 => 0.0066939444792734
828 => 0.0066978836179235
829 => 0.0067459956344976
830 => 0.0067594643723197
831 => 0.0067023963837363
901 => 0.0067293099770583
902 => 0.00684390464158
903 => 0.0068840062886663
904 => 0.0070119914962831
905 => 0.0069576211053318
906 => 0.0070574203110183
907 => 0.0073641690452423
908 => 0.0076092211595383
909 => 0.0073838611080247
910 => 0.0078338681087307
911 => 0.0081842631084506
912 => 0.008170814364748
913 => 0.0081097148917644
914 => 0.0077107995003164
915 => 0.0073437116096124
916 => 0.0076507962175614
917 => 0.0076515790393796
918 => 0.0076252001992169
919 => 0.007461363488493
920 => 0.0076194990368204
921 => 0.0076320512623827
922 => 0.007625025353974
923 => 0.0074994121319974
924 => 0.0073076239592432
925 => 0.0073450989091233
926 => 0.0074064836414953
927 => 0.0072902695369185
928 => 0.0072531320888453
929 => 0.007322177670502
930 => 0.007544656920818
1001 => 0.0075025985072803
1002 => 0.0075015001921314
1003 => 0.0076814439207887
1004 => 0.0075526430453572
1005 => 0.0073455715882527
1006 => 0.0072932833143969
1007 => 0.0071076951678104
1008 => 0.0072358815617
1009 => 0.0072404947618103
1010 => 0.0071702883839101
1011 => 0.0073512684488899
1012 => 0.0073496006857302
1013 => 0.0075214143221007
1014 => 0.0078498574645862
1015 => 0.0077527206656478
1016 => 0.0076397611369361
1017 => 0.007652042969735
1018 => 0.0077867443613932
1019 => 0.007705300825063
1020 => 0.0077345884885718
1021 => 0.0077867000310068
1022 => 0.0078181402184145
1023 => 0.0076475192106041
1024 => 0.0076077392919372
1025 => 0.007526363539199
1026 => 0.00750513412426
1027 => 0.0075714129769045
1028 => 0.0075539508408991
1029 => 0.0072401070402042
1030 => 0.0072073086168211
1031 => 0.0072083144976409
1101 => 0.0071258413025643
1102 => 0.0070000498842375
1103 => 0.0073306222209849
1104 => 0.0073040726359872
1105 => 0.0072747639489244
1106 => 0.0072783540958565
1107 => 0.0074218443431025
1108 => 0.0073386127532687
1109 => 0.0075598975762313
1110 => 0.0075144080690608
1111 => 0.0074677519276791
1112 => 0.0074613026277593
1113 => 0.0074433439938422
1114 => 0.0073817571560273
1115 => 0.0073073873485706
1116 => 0.0072582819598853
1117 => 0.0066953814366614
1118 => 0.0067998524995301
1119 => 0.0069200369345234
1120 => 0.0069615241198743
1121 => 0.0068905574185059
1122 => 0.0073845593539445
1123 => 0.0074748182678702
1124 => 0.0072014181301459
1125 => 0.0071502761272317
1126 => 0.0073879122151413
1127 => 0.0072445886043016
1128 => 0.0073091272174869
1129 => 0.0071696300365142
1130 => 0.007453077538595
1201 => 0.0074509181435336
1202 => 0.007340650663272
1203 => 0.00743384798251
1204 => 0.007417652654819
1205 => 0.0072931609411805
1206 => 0.0074570241479692
1207 => 0.0074571054220754
1208 => 0.0073509753697454
1209 => 0.0072270387034797
1210 => 0.0072048817548048
1211 => 0.0071881894703456
1212 => 0.0073050219387655
1213 => 0.0074097735646253
1214 => 0.0076046903702199
1215 => 0.0076536970862554
1216 => 0.007844973561504
1217 => 0.007731077733576
1218 => 0.0077815662788986
1219 => 0.007836378736887
1220 => 0.0078626578449081
1221 => 0.0078198374486025
1222 => 0.0081169685472017
1223 => 0.0081420555157851
1224 => 0.0081504669593497
1225 => 0.0080502760246913
1226 => 0.0081392690246482
1227 => 0.0080976321471068
1228 => 0.0082059597354119
1229 => 0.0082229468844542
1230 => 0.0082085593735507
1231 => 0.0082139513627807
]
'min_raw' => 0.0036834071052953
'max_raw' => 0.0082229468844542
'avg_raw' => 0.0059531769948747
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003683'
'max' => '$0.008222'
'avg' => '$0.005953'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.00056797390205745
'max_diff' => -0.00078468670927456
'year' => 2031
]
6 => [
'items' => [
101 => 0.0079604023876438
102 => 0.0079472545357056
103 => 0.0077679826415987
104 => 0.0078410372635582
105 => 0.007704465149404
106 => 0.007747773573651
107 => 0.0077668635144012
108 => 0.0077568920126979
109 => 0.0078451676622735
110 => 0.0077701153266105
111 => 0.0075720398730494
112 => 0.0073739104539634
113 => 0.0073714231004995
114 => 0.0073192591217289
115 => 0.007281554119387
116 => 0.0072888174404949
117 => 0.0073144143314488
118 => 0.0072800663815521
119 => 0.0072873962581479
120 => 0.0074091210483492
121 => 0.0074335320869225
122 => 0.0073505738398417
123 => 0.0070174845069942
124 => 0.0069357435492221
125 => 0.0069944973286751
126 => 0.0069664168063246
127 => 0.0056224420692431
128 => 0.0059381889982614
129 => 0.0057505828947913
130 => 0.0058370404186121
131 => 0.0056455431673341
201 => 0.0057369356928748
202 => 0.0057200588305281
203 => 0.0062277705487586
204 => 0.006219843328613
205 => 0.0062236376693975
206 => 0.0060425238976505
207 => 0.0063310430538183
208 => 0.0064731779649599
209 => 0.0064468725757058
210 => 0.0064534930754537
211 => 0.0063397309550196
212 => 0.006224739135395
213 => 0.0060971955103171
214 => 0.0063341558008433
215 => 0.0063078098615839
216 => 0.0063682379672753
217 => 0.0065219236539529
218 => 0.0065445544551114
219 => 0.0065749704813672
220 => 0.0065640685011147
221 => 0.0068237979003752
222 => 0.006792342956375
223 => 0.0068681403212104
224 => 0.006712219390984
225 => 0.0065357800582822
226 => 0.0065693154071924
227 => 0.0065660856834181
228 => 0.0065249675928669
229 => 0.0064878480192313
301 => 0.006426054387503
302 => 0.006621578582028
303 => 0.0066136406567994
304 => 0.0067421464394219
305 => 0.0067194317941048
306 => 0.0065677378334606
307 => 0.0065731556129413
308 => 0.0066095927836452
309 => 0.0067357022474837
310 => 0.006773140122538
311 => 0.0067557974071715
312 => 0.0067968463280646
313 => 0.0068292897214392
314 => 0.0068009207187652
315 => 0.0072025659716971
316 => 0.0070357748600704
317 => 0.0071170676873521
318 => 0.0071364555476537
319 => 0.007086793951174
320 => 0.007097563773202
321 => 0.0071138771189736
322 => 0.0072129285600179
323 => 0.0074728682020836
324 => 0.0075879937000855
325 => 0.0079343544410163
326 => 0.0075784341301008
327 => 0.0075573152917957
328 => 0.0076197053203297
329 => 0.007823055741264
330 => 0.0079878521576974
331 => 0.0080425246363617
401 => 0.0080497505069614
402 => 0.0081523197114933
403 => 0.0082111104667286
404 => 0.0081398651122253
405 => 0.0080794921339832
406 => 0.0078632436196902
407 => 0.0078882749740448
408 => 0.008060716183148
409 => 0.0083042995477429
410 => 0.008513319415095
411 => 0.0084401279426261
412 => 0.0089985272124364
413 => 0.0090538902191816
414 => 0.0090462408417497
415 => 0.0091723660102354
416 => 0.0089220332357353
417 => 0.0088150111246674
418 => 0.0080925454571416
419 => 0.0082955288407247
420 => 0.0085905771095589
421 => 0.0085515263648045
422 => 0.0083372544253142
423 => 0.0085131568706146
424 => 0.0084549980212203
425 => 0.0084091257236901
426 => 0.0086192756114584
427 => 0.0083882071773756
428 => 0.0085882720251708
429 => 0.0083316867884676
430 => 0.0084404622751072
501 => 0.0083787160480122
502 => 0.0084186734242756
503 => 0.0081850834191031
504 => 0.0083111229158174
505 => 0.0081798397616604
506 => 0.0081797775163518
507 => 0.0081768794334474
508 => 0.0083313334821144
509 => 0.0083363702230964
510 => 0.0082222284477643
511 => 0.0082057788347093
512 => 0.0082666016757648
513 => 0.0081953940584161
514 => 0.0082287116543982
515 => 0.0081964032144573
516 => 0.0081891299041067
517 => 0.0081311749297817
518 => 0.0081062063333372
519 => 0.0081159971633646
520 => 0.0080825760129625
521 => 0.0080624385609493
522 => 0.0081728735873897
523 => 0.0081138726076989
524 => 0.0081638308410589
525 => 0.0081068971289134
526 => 0.0079095400777797
527 => 0.0077960379506598
528 => 0.0074232487760766
529 => 0.0075289713235448
530 => 0.0075990654818942
531 => 0.0075758993629779
601 => 0.007625669150508
602 => 0.0076287246112489
603 => 0.00761254394598
604 => 0.00759380880847
605 => 0.0075846895796483
606 => 0.0076526568400415
607 => 0.0076921141223725
608 => 0.0076061003684234
609 => 0.0075859485493334
610 => 0.0076729132035255
611 => 0.0077259615923448
612 => 0.0081176410900717
613 => 0.0080886242077719
614 => 0.0081614508880687
615 => 0.0081532517214838
616 => 0.0082295856846347
617 => 0.0083543594532467
618 => 0.0081006594943641
619 => 0.0081446930349416
620 => 0.008133897027675
621 => 0.0082517650041471
622 => 0.0082521329751039
623 => 0.0081814652352668
624 => 0.0082197753634856
625 => 0.0081983917008973
626 => 0.0082370348693698
627 => 0.0080882366696181
628 => 0.0082694568151426
629 => 0.0083721969600868
630 => 0.008373623507099
701 => 0.0084223215204063
702 => 0.0084718015223253
703 => 0.0085667740772088
704 => 0.008469152789316
705 => 0.0082935415956377
706 => 0.0083062201566006
707 => 0.0082032593780006
708 => 0.0082049901672903
709 => 0.0081957510784177
710 => 0.0082234782796104
711 => 0.0080943212310441
712 => 0.0081246341321872
713 => 0.0080821958930747
714 => 0.0081446007824978
715 => 0.0080774634373763
716 => 0.0081338918215134
717 => 0.0081582444414763
718 => 0.0082481061334141
719 => 0.0080641907924128
720 => 0.0076891749621372
721 => 0.0077680078362886
722 => 0.00765140782323
723 => 0.0076621995983662
724 => 0.0076840007016394
725 => 0.0076133361930537
726 => 0.0076268167543973
727 => 0.0076263351338848
728 => 0.007622184788501
729 => 0.0076038022206251
730 => 0.0075771438603247
731 => 0.0076833425627507
801 => 0.0077013877917104
802 => 0.0077415001003569
803 => 0.0078608471224501
804 => 0.0078489215405464
805 => 0.007868372659419
806 => 0.0078259109761335
807 => 0.0076641692740707
808 => 0.0076729526266555
809 => 0.0075634240791792
810 => 0.0077386992091442
811 => 0.0076971917448498
812 => 0.0076704316125972
813 => 0.0076631298625812
814 => 0.0077827727228578
815 => 0.0078185717418246
816 => 0.0077962641955873
817 => 0.0077505107674395
818 => 0.0078383708752701
819 => 0.0078618785336052
820 => 0.0078671410313774
821 => 0.0080228122969485
822 => 0.0078758413258307
823 => 0.0079112186993446
824 => 0.0081872228685832
825 => 0.0079369251730557
826 => 0.0080695134446813
827 => 0.0080630239387413
828 => 0.0081308516119625
829 => 0.0080574600897957
830 => 0.0080583698656719
831 => 0.0081185962444478
901 => 0.0080340191573417
902 => 0.008013076681164
903 => 0.0079841448003174
904 => 0.0080473165036944
905 => 0.0080851850828584
906 => 0.0083903780195144
907 => 0.008587546575083
908 => 0.0085789869680907
909 => 0.0086572057530874
910 => 0.0086219674740444
911 => 0.0085081737756263
912 => 0.0087024057431629
913 => 0.0086409426216236
914 => 0.0086460095666856
915 => 0.0086458209747373
916 => 0.0086866885773616
917 => 0.0086577301354416
918 => 0.008600650073894
919 => 0.0086385424825642
920 => 0.0087510693895307
921 => 0.009100356361502
922 => 0.009295821978454
923 => 0.0090885890859276
924 => 0.0092315355602333
925 => 0.0091458186126866
926 => 0.0091302412934591
927 => 0.0092200222429845
928 => 0.0093099603421771
929 => 0.0093042316740716
930 => 0.0092389412324303
1001 => 0.0092020603186308
1002 => 0.0094813349539334
1003 => 0.0096870997479052
1004 => 0.009673067968421
1005 => 0.0097349996796851
1006 => 0.0099168330994321
1007 => 0.0099334576685232
1008 => 0.009931363354929
1009 => 0.0098901576258425
1010 => 0.010069196241637
1011 => 0.010218553404817
1012 => 0.0098806196901069
1013 => 0.010009300424791
1014 => 0.010067069352426
1015 => 0.010151891277461
1016 => 0.010295000082801
1017 => 0.010450454203136
1018 => 0.01047243712022
1019 => 0.01045683918857
1020 => 0.010354313017377
1021 => 0.010524412770802
1022 => 0.010624053217028
1023 => 0.010683386822524
1024 => 0.010833846973892
1025 => 0.010067426113656
1026 => 0.0095249153351919
1027 => 0.0094401944431841
1028 => 0.0096124777085664
1029 => 0.0096579074317144
1030 => 0.0096395947672775
1031 => 0.0090289495631943
1101 => 0.0094369795225606
1102 => 0.0098759854507052
1103 => 0.0098928494563132
1104 => 0.010112625003123
1105 => 0.010184192930069
1106 => 0.010361141051891
1107 => 0.010350072898693
1108 => 0.010393156950497
1109 => 0.010383252673099
1110 => 0.010711011807951
1111 => 0.011072578806394
1112 => 0.011060058890951
1113 => 0.011008079357058
1114 => 0.011085277828717
1115 => 0.011458453718985
1116 => 0.011424097663031
1117 => 0.011457471644948
1118 => 0.011897467050846
1119 => 0.012469523667131
1120 => 0.012203745935321
1121 => 0.012780407137865
1122 => 0.01314338479737
1123 => 0.013771117126892
1124 => 0.013692521947589
1125 => 0.013936893536959
1126 => 0.013551820173327
1127 => 0.012667613894262
1128 => 0.012527684865994
1129 => 0.012807826324153
1130 => 0.013496526763235
1201 => 0.01278613669645
1202 => 0.012929847681747
1203 => 0.012888458908313
1204 => 0.012886253476468
1205 => 0.012970425839863
1206 => 0.012848329436623
1207 => 0.012350886725097
1208 => 0.012578861788341
1209 => 0.012490829668161
1210 => 0.01258850786873
1211 => 0.013115636831648
1212 => 0.012882580551957
1213 => 0.012637074693257
1214 => 0.012944993522178
1215 => 0.013337080003784
1216 => 0.013312543936412
1217 => 0.01326493371043
1218 => 0.013533310061499
1219 => 0.013976589166571
1220 => 0.014096405727432
1221 => 0.014184851863118
1222 => 0.014197047090919
1223 => 0.014322665516566
1224 => 0.013647183581946
1225 => 0.014719190759794
1226 => 0.014904296785807
1227 => 0.014869504524775
1228 => 0.015075242082237
1229 => 0.015014708873774
1230 => 0.01492700575208
1231 => 0.01525314354229
]
'min_raw' => 0.0056224420692431
'max_raw' => 0.01525314354229
'avg_raw' => 0.010437792805767
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.005622'
'max' => '$0.015253'
'avg' => '$0.010437'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0019390349639479
'max_diff' => 0.0070301966578359
'year' => 2032
]
7 => [
'items' => [
101 => 0.014879252883777
102 => 0.014348562165542
103 => 0.014057414741646
104 => 0.014440821155625
105 => 0.014674954073602
106 => 0.014829701038734
107 => 0.014876527376882
108 => 0.013699619321681
109 => 0.01306533115424
110 => 0.013471902597441
111 => 0.013967947818208
112 => 0.013644428025699
113 => 0.013657109389062
114 => 0.01319585518445
115 => 0.014008758580451
116 => 0.013890325393248
117 => 0.014504756977965
118 => 0.014358117949151
119 => 0.014859163054391
120 => 0.014727221086331
121 => 0.015274904818971
122 => 0.015493390687866
123 => 0.015860262466352
124 => 0.016130134840042
125 => 0.016288609059709
126 => 0.016279094861982
127 => 0.016907048671846
128 => 0.016536766249204
129 => 0.0160716042575
130 => 0.016063190944638
131 => 0.016304104931538
201 => 0.016808994556555
202 => 0.016939905090477
203 => 0.017013066219796
204 => 0.016901017403487
205 => 0.01649910237209
206 => 0.016325557499288
207 => 0.016473422758994
208 => 0.01629259625258
209 => 0.016604753533607
210 => 0.017033412153655
211 => 0.016944895843715
212 => 0.017240792596737
213 => 0.017547014606869
214 => 0.017984925834649
215 => 0.018099412045396
216 => 0.018288653398241
217 => 0.018483444912864
218 => 0.018546006697583
219 => 0.018665456556392
220 => 0.018664826996674
221 => 0.019024797186099
222 => 0.019421855452383
223 => 0.019571735755986
224 => 0.019916377249671
225 => 0.019326190769413
226 => 0.019773853994262
227 => 0.020177657428814
228 => 0.01969622632728
301 => 0.020359766941684
302 => 0.020385530720126
303 => 0.020774533186433
304 => 0.020380204662976
305 => 0.020146053644488
306 => 0.020822038861337
307 => 0.021149126814436
308 => 0.021050605261033
309 => 0.020300851375024
310 => 0.01986446245491
311 => 0.018722348477836
312 => 0.020075231819333
313 => 0.020734181830827
314 => 0.020299144853685
315 => 0.020518552200366
316 => 0.021715567540786
317 => 0.022171313481414
318 => 0.022076521511668
319 => 0.022092539794146
320 => 0.022338452031335
321 => 0.023428962317373
322 => 0.022775503276149
323 => 0.023275048228522
324 => 0.023540005070017
325 => 0.023786111750603
326 => 0.023181751525899
327 => 0.022395487753374
328 => 0.022146445011507
329 => 0.02025588899995
330 => 0.02015747734928
331 => 0.02010223590758
401 => 0.019753946431723
402 => 0.019480286308215
403 => 0.019262661617653
404 => 0.018691549441385
405 => 0.018884283035702
406 => 0.017974049427104
407 => 0.018556384633186
408 => 0.017103629815506
409 => 0.018313527196513
410 => 0.017655035059314
411 => 0.018097194819354
412 => 0.018095652165605
413 => 0.017281495860493
414 => 0.016811907494712
415 => 0.01711114747804
416 => 0.017431956493867
417 => 0.017484006677354
418 => 0.017899943940345
419 => 0.018016023089905
420 => 0.017664297847522
421 => 0.017073524700966
422 => 0.01721074782881
423 => 0.016809126672407
424 => 0.016105301043944
425 => 0.016610800897922
426 => 0.01678340077333
427 => 0.016859630711108
428 => 0.016167499040435
429 => 0.0159500162426
430 => 0.01583423022589
501 => 0.016984179193699
502 => 0.017047175994019
503 => 0.016724875456734
504 => 0.018181704447053
505 => 0.017851979178724
506 => 0.018220363088099
507 => 0.017198296268263
508 => 0.017237340597176
509 => 0.016753477785318
510 => 0.017024408628234
511 => 0.01683292344097
512 => 0.017002520093517
513 => 0.017104175627781
514 => 0.017587959042512
515 => 0.018319051225997
516 => 0.017515697933107
517 => 0.017165665399163
518 => 0.017382823614564
519 => 0.017961144558951
520 => 0.018837330393402
521 => 0.018318610744524
522 => 0.018548809716265
523 => 0.018599097950752
524 => 0.018216613285714
525 => 0.018851433148573
526 => 0.019191638270346
527 => 0.019540618329755
528 => 0.019843627937141
529 => 0.019401228019791
530 => 0.019874659346893
531 => 0.019493157269128
601 => 0.019150910466414
602 => 0.01915142951354
603 => 0.01893673309477
604 => 0.018520731729912
605 => 0.018444014695626
606 => 0.018843106396274
607 => 0.019163140146069
608 => 0.019189499658561
609 => 0.019366686786375
610 => 0.019471544303443
611 => 0.020499290517591
612 => 0.020912658546884
613 => 0.021418117148447
614 => 0.021615021759841
615 => 0.022207634045929
616 => 0.021729051495297
617 => 0.021625507150042
618 => 0.020188023585994
619 => 0.020423411439078
620 => 0.020800290103414
621 => 0.020194238176356
622 => 0.02057863863015
623 => 0.020654527422444
624 => 0.020173644763784
625 => 0.020430504969487
626 => 0.019748360416882
627 => 0.018333920113158
628 => 0.01885300782497
629 => 0.019235231103898
630 => 0.018689751357077
701 => 0.019667502690273
702 => 0.019096320546304
703 => 0.018915283228244
704 => 0.018208992106029
705 => 0.018542334328076
706 => 0.018993184456396
707 => 0.018714611494048
708 => 0.019292692218862
709 => 0.020111408693696
710 => 0.020694874809072
711 => 0.020739666092483
712 => 0.02036453646949
713 => 0.020965684084382
714 => 0.020970062788468
715 => 0.020291965823111
716 => 0.019876635207489
717 => 0.019782271217756
718 => 0.020018010965258
719 => 0.020304242538683
720 => 0.020755549952738
721 => 0.021028265571076
722 => 0.021739363266513
723 => 0.02193176591413
724 => 0.022143158091023
725 => 0.022425643230285
726 => 0.022764839067672
727 => 0.022022697885899
728 => 0.022052184538575
729 => 0.021361112945752
730 => 0.020622603839129
731 => 0.021183040194596
801 => 0.021915736177645
802 => 0.021747654909576
803 => 0.02172874233333
804 => 0.021760548040665
805 => 0.021633820253563
806 => 0.021060635169248
807 => 0.020772785208234
808 => 0.021144185096299
809 => 0.021341567607699
810 => 0.021647690669316
811 => 0.021609954540497
812 => 0.022398494672005
813 => 0.022704897522893
814 => 0.022626506561919
815 => 0.022640932385322
816 => 0.023195660111147
817 => 0.023812631430723
818 => 0.024390506488041
819 => 0.024978345816657
820 => 0.024269682562251
821 => 0.023909867065937
822 => 0.02428110481243
823 => 0.024084120838591
824 => 0.02521604918151
825 => 0.025294421444063
826 => 0.026426267935679
827 => 0.027500525033996
828 => 0.026825803397858
829 => 0.027462035510606
830 => 0.028150172413308
831 => 0.029477700144809
901 => 0.029030635507828
902 => 0.028688191002297
903 => 0.02836458259925
904 => 0.029037960314604
905 => 0.029904249987935
906 => 0.030090840486351
907 => 0.030393188376842
908 => 0.030075306539332
909 => 0.030458160199077
910 => 0.031809801852398
911 => 0.0314445763464
912 => 0.030925897414952
913 => 0.031992888687206
914 => 0.032379028680811
915 => 0.035089161379014
916 => 0.038510815860495
917 => 0.037094228437367
918 => 0.036214906910841
919 => 0.036421568327361
920 => 0.037671040713683
921 => 0.038072331587899
922 => 0.036981484658521
923 => 0.037366790235437
924 => 0.039489861846653
925 => 0.040628821649778
926 => 0.039081961254425
927 => 0.034814234773018
928 => 0.030879196052165
929 => 0.031922945518038
930 => 0.031804616719925
1001 => 0.034085592307599
1002 => 0.03143586583887
1003 => 0.031480480437001
1004 => 0.033808624184233
1005 => 0.03318751534696
1006 => 0.032181398576187
1007 => 0.030886541818027
1008 => 0.028492879340814
1009 => 0.02637274573253
1010 => 0.030530815975984
1011 => 0.030351512426126
1012 => 0.030091854314635
1013 => 0.030669695343817
1014 => 0.033475527358488
1015 => 0.033410843848958
1016 => 0.032999360363144
1017 => 0.033311466960485
1018 => 0.03212668478066
1019 => 0.03243203012539
1020 => 0.030878572721927
1021 => 0.031580800346404
1022 => 0.032179239901467
1023 => 0.032299385502195
1024 => 0.032570079675422
1025 => 0.030257027602968
1026 => 0.031295520075859
1027 => 0.031905537110096
1028 => 0.029149457956801
1029 => 0.031851058286706
1030 => 0.030216762512463
1031 => 0.029662057980386
1101 => 0.030408894556062
1102 => 0.030117851616199
1103 => 0.029867629987119
1104 => 0.029728002018739
1105 => 0.030276396374571
1106 => 0.030250813122398
1107 => 0.0293535335175
1108 => 0.028183068850705
1109 => 0.028575915212074
1110 => 0.028433190446035
1111 => 0.027915937482046
1112 => 0.028264503526413
1113 => 0.026729595072256
1114 => 0.024088864854478
1115 => 0.025833412124096
1116 => 0.025766248951918
1117 => 0.025732382234898
1118 => 0.027043361292272
1119 => 0.026917340905338
1120 => 0.026688612669059
1121 => 0.027911736708615
1122 => 0.027465279980837
1123 => 0.028841154417415
1124 => 0.029747394307324
1125 => 0.029517542557454
1126 => 0.030369865554151
1127 => 0.028584965598802
1128 => 0.029177837766212
1129 => 0.02930002789823
1130 => 0.027896643547828
1201 => 0.026937959399161
1202 => 0.026874026096244
1203 => 0.02521179989727
1204 => 0.026099747715741
1205 => 0.026881105050218
1206 => 0.026506895522782
1207 => 0.026388431965587
1208 => 0.026993636587684
1209 => 0.027040666170048
1210 => 0.025968386708178
1211 => 0.026191347562975
1212 => 0.027121131391637
1213 => 0.026167919396072
1214 => 0.024315984194986
1215 => 0.023856678660109
1216 => 0.023795398835075
1217 => 0.022549725796508
1218 => 0.023887371652204
1219 => 0.023303453389512
1220 => 0.02514804418494
1221 => 0.024094423815331
1222 => 0.024049004347041
1223 => 0.023980346159134
1224 => 0.022908143916734
1225 => 0.023142888065812
1226 => 0.023923213369892
1227 => 0.024201642229382
1228 => 0.024172599818237
1229 => 0.023919389350197
1230 => 0.024035307805818
1231 => 0.023661894071596
]
'min_raw' => 0.01306533115424
'max_raw' => 0.040628821649778
'avg_raw' => 0.026847076402009
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.013065'
'max' => '$0.040628'
'avg' => '$0.026847'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0074428890849967
'max_diff' => 0.025375678107488
'year' => 2033
]
8 => [
'items' => [
101 => 0.023530033910107
102 => 0.023113846969454
103 => 0.02250216714127
104 => 0.02258722497303
105 => 0.021375327178665
106 => 0.020715020940011
107 => 0.020532256875848
108 => 0.020287857131013
109 => 0.02055986247735
110 => 0.02137189402448
111 => 0.020392411696538
112 => 0.018713157947977
113 => 0.018814083959575
114 => 0.019040834742433
115 => 0.018618286158683
116 => 0.018218379385979
117 => 0.018566065879383
118 => 0.017854543928907
119 => 0.019126818770812
120 => 0.019092407301847
121 => 0.019566632685961
122 => 0.019863175550732
123 => 0.019179740254327
124 => 0.019007858125487
125 => 0.019105769997682
126 => 0.017487504851697
127 => 0.019434385898886
128 => 0.019451222607028
129 => 0.019307056490053
130 => 0.020343710544473
131 => 0.022531373939805
201 => 0.021708286971925
202 => 0.021389562820026
203 => 0.020783667974281
204 => 0.021590986881761
205 => 0.021528997385803
206 => 0.021248657376265
207 => 0.021079106863782
208 => 0.021391508881734
209 => 0.021040396796557
210 => 0.020977327418145
211 => 0.020595195605125
212 => 0.020458791933767
213 => 0.02035780408588
214 => 0.020246626388217
215 => 0.020491856685505
216 => 0.019936132569118
217 => 0.019265983763063
218 => 0.01921026814095
219 => 0.019364103872172
220 => 0.01929604301283
221 => 0.019209942291741
222 => 0.019045552567046
223 => 0.01899678164736
224 => 0.019155263476053
225 => 0.018976346731523
226 => 0.019240348134177
227 => 0.019168554360519
228 => 0.018767520176954
301 => 0.01826768310236
302 => 0.018263233503952
303 => 0.018155544426128
304 => 0.018018386194358
305 => 0.017980231912035
306 => 0.018536784692685
307 => 0.019688832292409
308 => 0.019462657782421
309 => 0.019626092045184
310 => 0.020430026861141
311 => 0.020685573563971
312 => 0.020504192567258
313 => 0.020255907071864
314 => 0.020266830373591
315 => 0.021115297072482
316 => 0.021168214899741
317 => 0.021301921177287
318 => 0.021473771529324
319 => 0.020533459425311
320 => 0.020222541758053
321 => 0.020075211718251
322 => 0.01962149221956
323 => 0.020110789799928
324 => 0.019825697053659
325 => 0.019864165805286
326 => 0.019839112980323
327 => 0.019852793516817
328 => 0.019126463144064
329 => 0.019391099757095
330 => 0.018951090060816
331 => 0.018361966470905
401 => 0.018359991522059
402 => 0.018504178686078
403 => 0.018418410518875
404 => 0.018187610586232
405 => 0.018220394627319
406 => 0.017933171930408
407 => 0.018255268663059
408 => 0.018264505244834
409 => 0.018140480458036
410 => 0.018636714915468
411 => 0.018840022577567
412 => 0.018758386806028
413 => 0.018834294794211
414 => 0.019472056354427
415 => 0.01957603931623
416 => 0.019622221679134
417 => 0.019560343430834
418 => 0.018845951904777
419 => 0.018877638206785
420 => 0.018645145146842
421 => 0.018448713010705
422 => 0.018456569266
423 => 0.018557560918364
424 => 0.018998597387322
425 => 0.019926732635723
426 => 0.019961954689942
427 => 0.020004644847155
428 => 0.019831002523416
429 => 0.019778630337043
430 => 0.019847722769277
501 => 0.020196281569544
502 => 0.02109286943662
503 => 0.020775955403305
504 => 0.020518299361159
505 => 0.020744333173691
506 => 0.020709537039964
507 => 0.02041582265371
508 => 0.020407579069134
509 => 0.019843847255744
510 => 0.019635448439886
511 => 0.019461294790974
512 => 0.019271123552758
513 => 0.019158383668147
514 => 0.019331603370272
515 => 0.019371220765623
516 => 0.018992472859564
517 => 0.01894085091949
518 => 0.019250144635419
519 => 0.019114036002671
520 => 0.019254027106784
521 => 0.01928650624376
522 => 0.019281276354649
523 => 0.019139163310082
524 => 0.019229741926817
525 => 0.019015496495455
526 => 0.018782536767471
527 => 0.018633922974922
528 => 0.018504237730163
529 => 0.018576194641306
530 => 0.018319681391895
531 => 0.018237617640817
601 => 0.019199055929551
602 => 0.019909280730641
603 => 0.019898953780754
604 => 0.019836091129188
605 => 0.019742689980184
606 => 0.020189448693734
607 => 0.020033806891156
608 => 0.020147049306839
609 => 0.0201758742544
610 => 0.020263118689147
611 => 0.020294301075657
612 => 0.020200046246065
613 => 0.019883715525696
614 => 0.01909544944636
615 => 0.018728509458545
616 => 0.018607413150697
617 => 0.018611814771493
618 => 0.018490398420248
619 => 0.018526160977189
620 => 0.018477961662405
621 => 0.018386683820869
622 => 0.018570558491805
623 => 0.01859174833472
624 => 0.018548829789385
625 => 0.018558938660485
626 => 0.01820359143586
627 => 0.018230607713575
628 => 0.018080177646198
629 => 0.018051973822026
630 => 0.01767169971114
701 => 0.016997989002092
702 => 0.017371290133585
703 => 0.016920394860823
704 => 0.01674963398885
705 => 0.017557989398007
706 => 0.017476852935217
707 => 0.017337982580092
708 => 0.017132564381745
709 => 0.017056372773798
710 => 0.016593456683246
711 => 0.016566105131055
712 => 0.016795538845318
713 => 0.016689663080518
714 => 0.01654097340845
715 => 0.016002434488651
716 => 0.015396938438688
717 => 0.015415214558424
718 => 0.015607811586262
719 => 0.016167813419951
720 => 0.015949011015399
721 => 0.015790267360428
722 => 0.015760539445669
723 => 0.016132646538487
724 => 0.016659256033671
725 => 0.016906329426587
726 => 0.016661487197937
727 => 0.016380225628906
728 => 0.016397344717372
729 => 0.016511230343452
730 => 0.016523198112497
731 => 0.016340125745214
801 => 0.016391659544251
802 => 0.016313374991164
803 => 0.015832942833368
804 => 0.0158242533391
805 => 0.015706347539562
806 => 0.015702777398811
807 => 0.015502190220816
808 => 0.015474126688021
809 => 0.015075848671341
810 => 0.015337996468017
811 => 0.015162161489384
812 => 0.014897136701306
813 => 0.014851446327947
814 => 0.014850072820151
815 => 0.015122194019049
816 => 0.015334816573371
817 => 0.015165220214118
818 => 0.015126606410604
819 => 0.01553890081019
820 => 0.015486432589696
821 => 0.015440995449132
822 => 0.01661210392928
823 => 0.015685080184509
824 => 0.015280844919123
825 => 0.014780527016013
826 => 0.014943433048087
827 => 0.014977759742633
828 => 0.013774585374733
829 => 0.013286457683523
830 => 0.013118950654603
831 => 0.013022547991258
901 => 0.013066479895493
902 => 0.012627107721735
903 => 0.012922373089045
904 => 0.012541913925777
905 => 0.012478128708934
906 => 0.013158436822704
907 => 0.013253097722433
908 => 0.012849244915353
909 => 0.013108583795329
910 => 0.01301454391237
911 => 0.012548435806147
912 => 0.012530633904948
913 => 0.012296757241738
914 => 0.011930785551259
915 => 0.011763526668379
916 => 0.011676416789967
917 => 0.011712360023538
918 => 0.011694186024763
919 => 0.011575588389394
920 => 0.011700983902397
921 => 0.011380650183678
922 => 0.011253090715779
923 => 0.011195475063487
924 => 0.010911160450402
925 => 0.011363631435102
926 => 0.011452773919167
927 => 0.011542092041463
928 => 0.012319545315981
929 => 0.012280705947446
930 => 0.01263179492346
1001 => 0.012618152251463
1002 => 0.01251801598824
1003 => 0.012095557565315
1004 => 0.012263941963096
1005 => 0.011745680959473
1006 => 0.01213399734171
1007 => 0.011956785961337
1008 => 0.012074081995747
1009 => 0.01186317314972
1010 => 0.011979898813324
1011 => 0.011473912909107
1012 => 0.011001430391163
1013 => 0.011191571149008
1014 => 0.011398275898019
1015 => 0.011846464461266
1016 => 0.011579527050471
1017 => 0.011675527837414
1018 => 0.011353941271494
1019 => 0.01069041632934
1020 => 0.010694171808454
1021 => 0.01059210295178
1022 => 0.010503900557317
1023 => 0.011610188023199
1024 => 0.011472603689
1025 => 0.011253381059046
1026 => 0.011546819260801
1027 => 0.011624408978835
1028 => 0.011626617849029
1029 => 0.011840702786293
1030 => 0.011954959955688
1031 => 0.011975098277012
1101 => 0.012311965551408
1102 => 0.012424879018399
1103 => 0.012889953608822
1104 => 0.011945266033135
1105 => 0.011925810814183
1106 => 0.011550948538066
1107 => 0.011313204956215
1108 => 0.011567227044514
1109 => 0.011792255937274
1110 => 0.01155794081303
1111 => 0.011588537421594
1112 => 0.011273988511545
1113 => 0.011386424945985
1114 => 0.011483270350149
1115 => 0.01142979801028
1116 => 0.011349747329405
1117 => 0.011773806134263
1118 => 0.011749879074593
1119 => 0.012144772382747
1120 => 0.012452619955545
1121 => 0.013004337840334
1122 => 0.012428591465853
1123 => 0.012407608979582
1124 => 0.012612716148575
1125 => 0.01242484761756
1126 => 0.01254357404416
1127 => 0.012985209177506
1128 => 0.012994540231954
1129 => 0.012838233047564
1130 => 0.012828721741189
1201 => 0.012858742245764
1202 => 0.013034573278735
1203 => 0.012973132513073
1204 => 0.013044233322587
1205 => 0.013133145973618
1206 => 0.013500926396466
1207 => 0.0135895970113
1208 => 0.013374173387696
1209 => 0.013393623728912
1210 => 0.013313049380173
1211 => 0.013235215568885
1212 => 0.013410174609945
1213 => 0.01372991569631
1214 => 0.013727926603606
1215 => 0.013802100320764
1216 => 0.013848309932065
1217 => 0.013649944452858
1218 => 0.013520815819994
1219 => 0.013570331954502
1220 => 0.013649509331902
1221 => 0.013544655798138
1222 => 0.012897451214862
1223 => 0.013093771741839
1224 => 0.013061094406567
1225 => 0.013014557907439
1226 => 0.013211959715416
1227 => 0.013192919829472
1228 => 0.012622601325035
1229 => 0.012659111265295
1230 => 0.012624821615427
1231 => 0.012735618489154
]
'min_raw' => 0.010503900557317
'max_raw' => 0.023530033910107
'avg_raw' => 0.017016967233712
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.0105039'
'max' => '$0.02353'
'avg' => '$0.017016'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0025614305969232
'max_diff' => -0.017098787739671
'year' => 2034
]
9 => [
'items' => [
101 => 0.012418864222775
102 => 0.01251629570174
103 => 0.012577403811984
104 => 0.012613396958373
105 => 0.012743428883859
106 => 0.012728171138226
107 => 0.012742480440967
108 => 0.012935283459307
109 => 0.013910414964065
110 => 0.013963489220363
111 => 0.013702132171356
112 => 0.013806539157394
113 => 0.013606100575499
114 => 0.013740656338347
115 => 0.013832715973942
116 => 0.013416716182738
117 => 0.013392083374919
118 => 0.013190817511696
119 => 0.013298966386311
120 => 0.01312689375062
121 => 0.013169114356573
122 => 0.013051061861601
123 => 0.013263532848534
124 => 0.013501108426577
125 => 0.013561129399735
126 => 0.013403240060011
127 => 0.013288917772636
128 => 0.013088205496108
129 => 0.013421994485139
130 => 0.013519604557566
131 => 0.013421481780982
201 => 0.013398744589622
202 => 0.013355657653081
203 => 0.013407885686895
204 => 0.013519072952149
205 => 0.013466639091161
206 => 0.013501272580109
207 => 0.013369285434138
208 => 0.013650010120085
209 => 0.014095868481444
210 => 0.01409730198898
211 => 0.014044867845355
212 => 0.014023412923493
213 => 0.014077213536822
214 => 0.014106398162537
215 => 0.0142803794807
216 => 0.014467068366811
217 => 0.015338263939547
218 => 0.015093635708868
219 => 0.015866612248656
220 => 0.016477936333187
221 => 0.016661245696175
222 => 0.016492609707598
223 => 0.015915715100212
224 => 0.015887409898553
225 => 0.016749534000608
226 => 0.016505944453992
227 => 0.016476970252517
228 => 0.016168733701515
301 => 0.016350939678997
302 => 0.016311088558921
303 => 0.016248181616298
304 => 0.016595817928755
305 => 0.017246562071967
306 => 0.017145137494608
307 => 0.017069428752559
308 => 0.016737695083388
309 => 0.016937472847627
310 => 0.016866335812272
311 => 0.017171985660833
312 => 0.016990925461519
313 => 0.016504099023599
314 => 0.016581627738439
315 => 0.016569909429157
316 => 0.01681107140381
317 => 0.016738680565027
318 => 0.016555773956053
319 => 0.01724433789923
320 => 0.017199626386754
321 => 0.017263017088971
322 => 0.017290923636509
323 => 0.017710040374863
324 => 0.017881739092327
325 => 0.017920717707201
326 => 0.018083818209136
327 => 0.017916659618131
328 => 0.018585413164206
329 => 0.019030095249494
330 => 0.019546616374687
331 => 0.020301392566385
401 => 0.020585195396533
402 => 0.020533928955487
403 => 0.021106191649891
404 => 0.022134534991049
405 => 0.020741786546197
406 => 0.022208354040483
407 => 0.021744055704128
408 => 0.020643212701
409 => 0.020572331389685
410 => 0.021317835052454
411 => 0.022971290424405
412 => 0.022557118607067
413 => 0.022971967861125
414 => 0.02248802417025
415 => 0.022463992287001
416 => 0.022948463796242
417 => 0.02408045788475
418 => 0.023542689925464
419 => 0.022771667689713
420 => 0.023340978510157
421 => 0.022847788790259
422 => 0.02173649431622
423 => 0.022556801897683
424 => 0.022008285578973
425 => 0.022168371801504
426 => 0.023321271517788
427 => 0.02318255157373
428 => 0.023362068026462
429 => 0.023045226186155
430 => 0.022749245945935
501 => 0.022196776847784
502 => 0.022033217984219
503 => 0.022078419769877
504 => 0.022033195584459
505 => 0.021724094201497
506 => 0.021657343787276
507 => 0.021546090172505
508 => 0.021580572319756
509 => 0.021371382975594
510 => 0.021766166488752
511 => 0.021839441787615
512 => 0.022126732306279
513 => 0.022156559760976
514 => 0.02295665976613
515 => 0.022515978128425
516 => 0.022811625417619
517 => 0.022785179941334
518 => 0.020667071306926
519 => 0.020958927988517
520 => 0.0214129653954
521 => 0.021208422159032
522 => 0.020919245878554
523 => 0.020685720527417
524 => 0.020331905741252
525 => 0.020829893258369
526 => 0.021484693888309
527 => 0.022173166585537
528 => 0.023000321420737
529 => 0.022815710090664
530 => 0.02215770350125
531 => 0.022187221196177
601 => 0.022369687971431
602 => 0.022133376918622
603 => 0.022063684175809
604 => 0.022360113258773
605 => 0.022362154602953
606 => 0.022090250177552
607 => 0.021788078166703
608 => 0.021786812054944
609 => 0.021733043464249
610 => 0.022497589483087
611 => 0.022918012489127
612 => 0.022966213309224
613 => 0.022914768189891
614 => 0.022934567374538
615 => 0.022689932490713
616 => 0.023249095290917
617 => 0.023762238371854
618 => 0.02362470506446
619 => 0.023418523085165
620 => 0.023254289207586
621 => 0.023586016782331
622 => 0.023571245475615
623 => 0.023757756514699
624 => 0.023749295296626
625 => 0.023686578649217
626 => 0.023624707304269
627 => 0.023870020193367
628 => 0.023799374020911
629 => 0.023728618115437
630 => 0.023586706314821
701 => 0.02360599448543
702 => 0.02339984810636
703 => 0.023304475358786
704 => 0.021870298066489
705 => 0.021487039030892
706 => 0.021607620125448
707 => 0.021647318552662
708 => 0.021480523729211
709 => 0.021719664659966
710 => 0.02168239479922
711 => 0.021827390025241
712 => 0.021736803302984
713 => 0.021740521013663
714 => 0.022006917248695
715 => 0.022084253209055
716 => 0.022044919515438
717 => 0.022072467486167
718 => 0.022707298844349
719 => 0.02261704612598
720 => 0.022569101168149
721 => 0.02258238224913
722 => 0.022744595272083
723 => 0.022790006062008
724 => 0.022597597354139
725 => 0.022688338413071
726 => 0.02307470232525
727 => 0.023209907828209
728 => 0.023641418891331
729 => 0.023458105322219
730 => 0.02379458531195
731 => 0.024828810085898
801 => 0.025655020398239
802 => 0.024895203250425
803 => 0.026412433271791
804 => 0.027593814477144
805 => 0.027548471098789
806 => 0.027342469959796
807 => 0.025997498866146
808 => 0.02475983641338
809 => 0.025795193609042
810 => 0.025797832947457
811 => 0.025708894846137
812 => 0.025156507937217
813 => 0.025689672979075
814 => 0.025731993683926
815 => 0.025708305343193
816 => 0.025284791595264
817 => 0.0246381643806
818 => 0.024764513790539
819 => 0.024971476701476
820 => 0.024579652734086
821 => 0.024454441235053
822 => 0.024687233234217
823 => 0.025437337559663
824 => 0.025295534681996
825 => 0.025291831635789
826 => 0.025898524480227
827 => 0.02546426333612
828 => 0.024766107461225
829 => 0.024589813895269
830 => 0.023964090501702
831 => 0.024396279878389
901 => 0.024411833604644
902 => 0.024175127899901
903 => 0.024785314824605
904 => 0.024779691844673
905 => 0.025358973515341
906 => 0.026466342501399
907 => 0.026138839001903
908 => 0.025757988064269
909 => 0.025799397121041
910 => 0.026253552267567
911 => 0.025978959698624
912 => 0.026077705100943
913 => 0.026253402804575
914 => 0.026359405591504
915 => 0.025784144951292
916 => 0.025650024178162
917 => 0.025375660146331
918 => 0.025304083691674
919 => 0.025527547470807
920 => 0.025468672660097
921 => 0.02441052637418
922 => 0.024299944199831
923 => 0.024303335597243
924 => 0.024025271461948
925 => 0.023601156912583
926 => 0.02471570462575
927 => 0.024626190846297
928 => 0.024527374561598
929 => 0.024539478992636
930 => 0.025023266379395
1001 => 0.024742645263226
1002 => 0.025488722493457
1003 => 0.025335351444056
1004 => 0.02517804700596
1005 => 0.025156302741004
1006 => 0.025095753952921
1007 => 0.024888109629373
1008 => 0.024637366631198
1009 => 0.024471804384817
1010 => 0.022573945970308
1011 => 0.022926177452707
1012 => 0.023331387666296
1013 => 0.023471264608249
1014 => 0.023231995419849
1015 => 0.024897557435294
1016 => 0.02520187166527
1017 => 0.024280084012745
1018 => 0.024107655179299
1019 => 0.024908861840908
1020 => 0.024425636280427
1021 => 0.024643232720723
1022 => 0.024172908235692
1023 => 0.02512857127863
1024 => 0.025121290727416
1025 => 0.024749516219084
1026 => 0.025063737487724
1027 => 0.025009133809693
1028 => 0.024589401305426
1029 => 0.025141877547678
1030 => 0.025142151569002
1031 => 0.024784326687807
1101 => 0.024366465564511
1102 => 0.024291761865105
1103 => 0.024235482662632
1104 => 0.024629391486893
1105 => 0.024982568907004
1106 => 0.025639744525723
1107 => 0.025804974090376
1108 => 0.026449876081174
1109 => 0.026065868345362
1110 => 0.026236094000915
1111 => 0.026420898029906
1112 => 0.026509499877348
1113 => 0.026365127921579
1114 => 0.027366926165537
1115 => 0.027451508631633
1116 => 0.027479868400879
1117 => 0.02714206766957
1118 => 0.027442113782218
1119 => 0.027301732142593
1120 => 0.027666966169754
1121 => 0.027724239528755
1122 => 0.02767573103124
1123 => 0.027693910499386
1124 => 0.026839052427488
1125 => 0.026794723526724
1126 => 0.026190295819379
1127 => 0.026436604577826
1128 => 0.025976142159795
1129 => 0.026122159535841
1130 => 0.026186522603898
1201 => 0.026152902989717
1202 => 0.02645053050547
1203 => 0.026197486315795
1204 => 0.025529661094928
1205 => 0.024861653925525
1206 => 0.02485326763966
1207 => 0.024677393143262
1208 => 0.024550268095387
1209 => 0.024574756889611
1210 => 0.02466105859458
1211 => 0.024545252083406
1212 => 0.024569965274105
1213 => 0.024980368902822
1214 => 0.025062672423696
1215 => 0.024782972901703
1216 => 0.023659938960453
1217 => 0.023384343614353
1218 => 0.023582436083837
1219 => 0.023487760642213
1220 => 0.018956455982823
1221 => 0.020021018798755
1222 => 0.019388491722665
1223 => 0.019679989300499
1224 => 0.019034342947904
1225 => 0.019342479228587
1226 => 0.01928557770888
1227 => 0.020997363214194
1228 => 0.020970636038013
1229 => 0.02098342892288
1230 => 0.020372791196475
1231 => 0.021345553675259
]
'min_raw' => 0.012418864222775
'max_raw' => 0.027724239528755
'avg_raw' => 0.020071551875765
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.012418'
'max' => '$0.027724'
'avg' => '$0.020071'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0019149636654582
'max_diff' => 0.0041942056186482
'year' => 2035
]
10 => [
'items' => [
101 => 0.021824771451716
102 => 0.021736080995262
103 => 0.02175840247239
104 => 0.021374845540729
105 => 0.020987142592392
106 => 0.020557120355631
107 => 0.021356048519179
108 => 0.021267221345551
109 => 0.021470958922845
110 => 0.021989120945471
111 => 0.022065422271609
112 => 0.022167972027709
113 => 0.022131215240136
114 => 0.02300691104347
115 => 0.02290085850366
116 => 0.023156414611205
117 => 0.022630716308895
118 => 0.02203583878009
119 => 0.022148905550304
120 => 0.022138016311107
121 => 0.02199938379804
122 => 0.021874232563922
123 => 0.021665891020256
124 => 0.022325114493161
125 => 0.022298351224044
126 => 0.022731617442143
127 => 0.022655033429571
128 => 0.022143586650325
129 => 0.022161853072101
130 => 0.022284703537092
131 => 0.022709890399105
201 => 0.022836114808679
202 => 0.022777642632991
203 => 0.022916041935726
204 => 0.023025427101614
205 => 0.022929779028438
206 => 0.024283954040674
207 => 0.023721606162841
208 => 0.023995690605706
209 => 0.02406105813033
210 => 0.023893620590537
211 => 0.023929931797429
212 => 0.023984933381659
213 => 0.024318892230691
214 => 0.025195296882322
215 => 0.025583450536641
216 => 0.026751229956824
217 => 0.025551219779009
218 => 0.025480016141194
219 => 0.025690368478328
220 => 0.026375978619981
221 => 0.026931601243705
222 => 0.027115933322632
223 => 0.027140295849853
224 => 0.027486115084086
225 => 0.027684332220001
226 => 0.027444123533101
227 => 0.027240571821852
228 => 0.026511474857924
229 => 0.026595869816763
301 => 0.027177267392716
302 => 0.027998525712895
303 => 0.028703250788973
304 => 0.028456480629479
305 => 0.030339162753837
306 => 0.0305258229964
307 => 0.030500032586326
308 => 0.030925272397653
309 => 0.03008125797075
310 => 0.029720425451239
311 => 0.027284582012234
312 => 0.027968954661832
313 => 0.028963730499818
314 => 0.028832068187443
315 => 0.028109635383463
316 => 0.028702702758909
317 => 0.028506616137655
318 => 0.028351954483831
319 => 0.029060489502638
320 => 0.028281426144445
321 => 0.028955958746868
322 => 0.028090863707114
323 => 0.028457607854781
324 => 0.028249426139147
325 => 0.028384145222954
326 => 0.027596580211781
327 => 0.02802153117475
328 => 0.027578900854613
329 => 0.027578690990209
330 => 0.027568919901359
331 => 0.028089672510077
401 => 0.028106654233952
402 => 0.027721817269296
403 => 0.027666356250405
404 => 0.027871424705539
405 => 0.027631343252091
406 => 0.027743675853105
407 => 0.027634745692141
408 => 0.027610223218488
409 => 0.027414823976264
410 => 0.027330640610099
411 => 0.027363651077111
412 => 0.02725096933514
413 => 0.027183074509725
414 => 0.027555413911696
415 => 0.027356487989352
416 => 0.027524925661098
417 => 0.027332969675614
418 => 0.026667566598688
419 => 0.026284886252638
420 => 0.025028001523221
421 => 0.025384452473323
422 => 0.025620779822016
423 => 0.025542673634682
424 => 0.025710475948156
425 => 0.02572077764737
426 => 0.025666223404717
427 => 0.025603056580557
428 => 0.0255723104639
429 => 0.025801466827638
430 => 0.025934499809837
501 => 0.025644498433109
502 => 0.025576555168092
503 => 0.025869762571379
504 => 0.026048618918003
505 => 0.027369193690779
506 => 0.027271361246211
507 => 0.027516901483428
508 => 0.02748925742084
509 => 0.02774662270707
510 => 0.028167306179372
511 => 0.027311939055234
512 => 0.027460401211614
513 => 0.027424001719362
514 => 0.027821401831317
515 => 0.027822642471089
516 => 0.027584381252364
517 => 0.027713546524381
518 => 0.027641450013005
519 => 0.02777173815349
520 => 0.027270054634268
521 => 0.027881051007291
522 => 0.028227446579058
523 => 0.028232256281908
524 => 0.02839644503376
525 => 0.028563270314814
526 => 0.028883476914375
527 => 0.028554339926544
528 => 0.027962254526276
529 => 0.028005001179751
530 => 0.027657861726209
531 => 0.027663697203139
601 => 0.027632546969953
602 => 0.027726031164625
603 => 0.027290569157927
604 => 0.02739277122051
605 => 0.027249687734399
606 => 0.027460090176059
607 => 0.027233731929602
608 => 0.027423984166424
609 => 0.027506090724875
610 => 0.027809065693186
611 => 0.027188982280441
612 => 0.025924590225898
613 => 0.026190380765035
614 => 0.025797255680255
615 => 0.025833640903584
616 => 0.025907144845374
617 => 0.025668894521039
618 => 0.025714345174792
619 => 0.025712721357608
620 => 0.025698728178379
621 => 0.025636750067355
622 => 0.025546869544376
623 => 0.025904925884161
624 => 0.025965766633477
625 => 0.02610100808263
626 => 0.02650339490016
627 => 0.026463186968155
628 => 0.026528767773467
629 => 0.02638560524369
630 => 0.02584028180274
701 => 0.025869895489214
702 => 0.025500612344359
703 => 0.026091564682355
704 => 0.025951619368528
705 => 0.025861395714305
706 => 0.025836777354334
707 => 0.026240161610954
708 => 0.026360860502809
709 => 0.026285649053207
710 => 0.026131388175804
711 => 0.026427614663552
712 => 0.026506872374881
713 => 0.026524615253535
714 => 0.027049471794029
715 => 0.02655394890372
716 => 0.026673226188491
717 => 0.027603793515075
718 => 0.026759897359377
719 => 0.02720692797418
720 => 0.027185048151821
721 => 0.027413733887663
722 => 0.027166289246645
723 => 0.02716935661953
724 => 0.027372414060445
725 => 0.027087256506283
726 => 0.027016647485693
727 => 0.026919101629459
728 => 0.027132089437902
729 => 0.027259765996453
730 => 0.028288745290279
731 => 0.028953512841248
801 => 0.02892465352866
802 => 0.029188373623338
803 => 0.029069565305287
804 => 0.028685901906247
805 => 0.02934076854564
806 => 0.029133541340152
807 => 0.029150624899192
808 => 0.029149989048271
809 => 0.029287777023804
810 => 0.029190141615056
811 => 0.028997692202346
812 => 0.029125449103741
813 => 0.029504841426957
814 => 0.030682486839395
815 => 0.031341512813923
816 => 0.030642812648231
817 => 0.031124766666557
818 => 0.030835765993337
819 => 0.030783245973988
820 => 0.031085948713619
821 => 0.031389181294324
822 => 0.031369866689844
823 => 0.031149735407417
824 => 0.031025388831599
825 => 0.031966982762854
826 => 0.032660733131769
827 => 0.03261342400757
828 => 0.032822231096031
829 => 0.033435295165912
830 => 0.033491346061293
831 => 0.03348428493679
901 => 0.033345356944283
902 => 0.03394899813751
903 => 0.034452566240957
904 => 0.033313199128033
905 => 0.033747055209223
906 => 0.03394182718204
907 => 0.034227810224375
908 => 0.034710311553117
909 => 0.035234435973287
910 => 0.035308552913031
911 => 0.035255963397461
912 => 0.034910289253138
913 => 0.035483792447793
914 => 0.035819737168917
915 => 0.036019784562389
916 => 0.036527071467519
917 => 0.033943030027436
918 => 0.032113917060952
919 => 0.031828274658524
920 => 0.032409139716194
921 => 0.032562309199589
922 => 0.032500566772891
923 => 0.030441733833438
924 => 0.031817435329183
925 => 0.033297574466338
926 => 0.033354432638652
927 => 0.034095421238962
928 => 0.034336717501372
929 => 0.034933310448217
930 => 0.034895993396957
1001 => 0.035041254285646
1002 => 0.035007861322905
1003 => 0.036112924129469
1004 => 0.037331972508524
1005 => 0.037289760739494
1006 => 0.037114508111879
1007 => 0.037374788148901
1008 => 0.038632976717249
1009 => 0.038517142875937
1010 => 0.038629665586069
1011 => 0.040113140816552
1012 => 0.042041869638072
1013 => 0.041145781459268
1014 => 0.043090034964844
1015 => 0.044313839486154
1016 => 0.046430282862011
1017 => 0.04616529372765
1018 => 0.046989209602692
1019 => 0.045690907872243
1020 => 0.042709744669062
1021 => 0.042237964180725
1022 => 0.043182480665761
1023 => 0.045504482279654
1024 => 0.043109352571638
1025 => 0.043593884192146
1026 => 0.043454339052843
1027 => 0.043446903285399
1028 => 0.043730696285314
1029 => 0.043319039737289
1030 => 0.04164187690504
1031 => 0.042410510747477
1101 => 0.042113704308083
1102 => 0.042443033180977
1103 => 0.044220285282423
1104 => 0.043434519763975
1105 => 0.042606779620698
1106 => 0.04364494945061
1107 => 0.044966896397947
1108 => 0.04488417133375
1109 => 0.044723650132813
1110 => 0.045628499737878
1111 => 0.047123046189387
1112 => 0.047527016089656
1113 => 0.047825218411234
1114 => 0.04786633547321
1115 => 0.048289866765675
1116 => 0.046012432262463
1117 => 0.049626779307726
1118 => 0.050250877198121
1119 => 0.050133572660934
1120 => 0.050827231200053
1121 => 0.050623139261426
1122 => 0.050327442063398
1123 => 0.051427038393306
1124 => 0.050166439933915
1125 => 0.048377179125743
1126 => 0.047395555258814
1127 => 0.048688236752125
1128 => 0.049477632231723
1129 => 0.049999372428755
1130 => 0.050157250697133
1201 => 0.046189223019923
1202 => 0.044050676178811
1203 => 0.045421460185474
1204 => 0.047093911280062
1205 => 0.046003141712189
1206 => 0.046045897814149
1207 => 0.044490747059561
1208 => 0.047231507614282
1209 => 0.046832201854884
1210 => 0.048903800841002
1211 => 0.048409397117344
1212 => 0.050098705671514
1213 => 0.049653854114306
1214 => 0.051500408056959
1215 => 0.052237048418136
1216 => 0.053473982233469
1217 => 0.054383875783254
1218 => 0.054918182679178
1219 => 0.054886104897282
1220 => 0.057003295009571
1221 => 0.055754861969342
1222 => 0.054186535837739
1223 => 0.054158169766024
1224 => 0.054970428092935
1225 => 0.056672698713949
1226 => 0.057114072718948
1227 => 0.057360740574393
1228 => 0.056982960167209
1229 => 0.055627875578043
1230 => 0.055042756922876
1231 => 0.055541294969598
]
'min_raw' => 0.020557120355631
'max_raw' => 0.057360740574393
'avg_raw' => 0.038958930465012
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.020557'
'max' => '$0.05736'
'avg' => '$0.038958'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.008138256132856
'max_diff' => 0.029636501045638
'year' => 2036
]
11 => [
'items' => [
101 => 0.05493162577832
102 => 0.055984085845428
103 => 0.057429338310907
104 => 0.057130899391933
105 => 0.0581285359536
106 => 0.059160984840498
107 => 0.060637433118942
108 => 0.061023431371649
109 => 0.061661471805175
110 => 0.062318224996636
111 => 0.062529156421739
112 => 0.062931889960438
113 => 0.062929767355894
114 => 0.064143431981855
115 => 0.065482141648356
116 => 0.06598747355626
117 => 0.067149456414321
118 => 0.065159601490627
119 => 0.066668929308055
120 => 0.0680303807803
121 => 0.066407202209033
122 => 0.068644375717422
123 => 0.068731240095209
124 => 0.070042789069646
125 => 0.068713282921673
126 => 0.06792382641494
127 => 0.070202957769328
128 => 0.071305757639752
129 => 0.070973585343897
130 => 0.068445737771075
131 => 0.06697442205921
201 => 0.063123705045653
202 => 0.067685045686807
203 => 0.069906741656982
204 => 0.068439984115235
205 => 0.069179731303101
206 => 0.073215552096268
207 => 0.074752131354261
208 => 0.074432533610099
209 => 0.074486540367835
210 => 0.075315650644562
211 => 0.078992382210938
212 => 0.076789199430395
213 => 0.078473450114436
214 => 0.079366770604234
215 => 0.08019653646045
216 => 0.078158893767775
217 => 0.075507950563522
218 => 0.07466828557171
219 => 0.068294143984339
220 => 0.067962342233223
221 => 0.067776091855699
222 => 0.066601809571051
223 => 0.065679145358306
224 => 0.064945408520005
225 => 0.063019863943937
226 => 0.063669678713406
227 => 0.060600762551539
228 => 0.062564146356191
301 => 0.057666082060279
302 => 0.061745335552681
303 => 0.059525183337663
304 => 0.061015955839245
305 => 0.061010754674426
306 => 0.058265769849162
307 => 0.056682519888321
308 => 0.057691428384379
309 => 0.05877305837941
310 => 0.058948549207063
311 => 0.060350910729051
312 => 0.060742279686178
313 => 0.059556413474814
314 => 0.057564580564734
315 => 0.058027237920874
316 => 0.056673144151766
317 => 0.05430014690587
318 => 0.05600447495643
319 => 0.056586407486905
320 => 0.056843422044328
321 => 0.054509851793564
322 => 0.053776593356499
323 => 0.05338621271724
324 => 0.05726334594908
325 => 0.057475744059654
326 => 0.056389085295893
327 => 0.061300885949305
328 => 0.060189194186452
329 => 0.061431226256654
330 => 0.057985256615149
331 => 0.058116897296068
401 => 0.056485520043666
402 => 0.057398982296344
403 => 0.056753376618414
404 => 0.057325183573337
405 => 0.05766792230447
406 => 0.059299031863917
407 => 0.061763960203762
408 => 0.059055398488446
409 => 0.057875239361765
410 => 0.058607403446491
411 => 0.060557252887572
412 => 0.063511374601766
413 => 0.061762475089723
414 => 0.062538606994928
415 => 0.06270815728851
416 => 0.061418583536109
417 => 0.063558923025446
418 => 0.064705948345868
419 => 0.065882558981175
420 => 0.066904177027931
421 => 0.065412594819211
422 => 0.067008801592452
423 => 0.065722540701646
424 => 0.064568631711386
425 => 0.064570381715011
426 => 0.063846517749501
427 => 0.062443940103595
428 => 0.062185283266288
429 => 0.063530848798716
430 => 0.064609864930193
501 => 0.06469873786692
502 => 0.065296136639156
503 => 0.065649671078869
504 => 0.069114789194818
505 => 0.070508488366013
506 => 0.072212677331175
507 => 0.072876554975933
508 => 0.074874588673346
509 => 0.073261014190322
510 => 0.072911907201061
511 => 0.068065331002977
512 => 0.068858957583903
513 => 0.07012963031354
514 => 0.068086283928271
515 => 0.06938231689622
516 => 0.069638181257824
517 => 0.068016851799996
518 => 0.068882873916932
519 => 0.066582975932011
520 => 0.061814091694937
521 => 0.063564232156859
522 => 0.064852924627744
523 => 0.063013801577156
524 => 0.066310358461443
525 => 0.064384577984389
526 => 0.063774198026929
527 => 0.061392888196708
528 => 0.062516774771551
529 => 0.064036847456532
530 => 0.063097619264631
531 => 0.065046658788648
601 => 0.067807018544512
602 => 0.069774215288806
603 => 0.069925232228054
604 => 0.068660456513418
605 => 0.070687267667812
606 => 0.070702030774352
607 => 0.068415779512429
608 => 0.067015463344402
609 => 0.066697308564736
610 => 0.067492121582261
611 => 0.068457171316113
612 => 0.069978785771878
613 => 0.0708982655195
614 => 0.073295781046924
615 => 0.073944480006488
616 => 0.074657203489812
617 => 0.075609621859317
618 => 0.076753244306964
619 => 0.074251063497974
620 => 0.074350479806163
621 => 0.072020483681883
622 => 0.069530548667845
623 => 0.071420098968718
624 => 0.073890434630768
625 => 0.073323736900415
626 => 0.073259971829167
627 => 0.073367206992051
628 => 0.072939935409983
629 => 0.071007401879713
630 => 0.070036895639111
701 => 0.071289096292035
702 => 0.071954585210025
703 => 0.072986700485095
704 => 0.072859470492133
705 => 0.075518088599625
706 => 0.076551147203758
707 => 0.07628684660575
708 => 0.076335484276533
709 => 0.078205787534005
710 => 0.080285949413516
711 => 0.082234295515214
712 => 0.084216236853274
713 => 0.081826929213756
714 => 0.080613786146417
715 => 0.081865440127709
716 => 0.08120129490693
717 => 0.085017670343794
718 => 0.08528190789877
719 => 0.089098007368251
720 => 0.092719940177461
721 => 0.090445069073663
722 => 0.092590170062099
723 => 0.094910271673743
724 => 0.099386124105525
725 => 0.097878814468888
726 => 0.096724238909778
727 => 0.095633170585287
728 => 0.097903510566333
729 => 0.10082426668238
730 => 0.10145336957513
731 => 0.10247275659717
801 => 0.10140099578821
802 => 0.10269181363202
803 => 0.10724896783481
804 => 0.1060175845421
805 => 0.10426882231172
806 => 0.10786625788107
807 => 0.10916815582894
808 => 0.11830555743636
809 => 0.12984190441296
810 => 0.12506578101291
811 => 0.12210108709396
812 => 0.12279786048839
813 => 0.12701054387426
814 => 0.12836352407391
815 => 0.12468565749101
816 => 0.12598474214476
817 => 0.1331428263101
818 => 0.13698290880597
819 => 0.13176756098469
820 => 0.11737862318948
821 => 0.10411136540649
822 => 0.10763043960295
823 => 0.10723148579866
824 => 0.11492195424513
825 => 0.10598821645782
826 => 0.10613863769031
827 => 0.1139881368799
828 => 0.1118940250706
829 => 0.10850183213311
830 => 0.10413613216896
831 => 0.096065732006863
901 => 0.088917553523532
902 => 0.10293677765653
903 => 0.10233224321961
904 => 0.10145678776797
905 => 0.10340501914143
906 => 0.11286507767583
907 => 0.11264699270739
908 => 0.11125964740611
909 => 0.11231193658963
910 => 0.1083173607515
911 => 0.10934685389979
912 => 0.10410926380508
913 => 0.10647687326897
914 => 0.10849455401058
915 => 0.10889963329173
916 => 0.10981229759603
917 => 0.10201368104161
918 => 0.10551503091919
919 => 0.10757174594016
920 => 0.098279432651518
921 => 0.1073880667835
922 => 0.10187792447776
923 => 0.10000769941963
924 => 0.10252571107698
925 => 0.10154443948526
926 => 0.10070079979291
927 => 0.100230034349
928 => 0.10207898420736
929 => 0.10199272848649
930 => 0.098967487652516
1001 => 0.095021184309184
1002 => 0.096345693244198
1003 => 0.09586448673077
1004 => 0.094120532249231
1005 => 0.095295747003921
1006 => 0.090120695986844
1007 => 0.081217289687708
1008 => 0.087099152607628
1009 => 0.086872707283446
1010 => 0.086758523282516
1011 => 0.091178580704085
1012 => 0.090753694171076
1013 => 0.089982520953164
1014 => 0.094106369048323
1015 => 0.092601109020006
1016 => 0.097239965743413
1017 => 0.10029541680389
1018 => 0.099520455581466
1019 => 0.10239412207212
1020 => 0.096376207254928
1021 => 0.098375117160364
1022 => 0.098787089721505
1023 => 0.094055481402957
1024 => 0.090823210862537
1025 => 0.090607655268073
1026 => 0.085003343585302
1027 => 0.087997121649815
1028 => 0.090631522455632
1029 => 0.089369848907407
1030 => 0.088970440753464
1031 => 0.091010930390899
1101 => 0.09116949391134
1102 => 0.087554228841484
1103 => 0.088305956930062
1104 => 0.091440788023831
1105 => 0.088226967229648
1106 => 0.081983038401196
1107 => 0.080434457722671
1108 => 0.080227848514151
1109 => 0.076027974894506
1110 => 0.080537941288436
1111 => 0.078569220097901
1112 => 0.084788386749901
1113 => 0.081236032112338
1114 => 0.081082897203914
1115 => 0.080851411329824
1116 => 0.077236406610802
1117 => 0.078027862898733
1118 => 0.080658784142011
1119 => 0.081597526481062
1120 => 0.08149960796421
1121 => 0.080645891192625
1122 => 0.081036718358919
1123 => 0.079777727883074
1124 => 0.079333152142432
1125 => 0.077929948814776
1126 => 0.075867627567933
1127 => 0.076154405986258
1128 => 0.072068407960555
1129 => 0.069842139375824
1130 => 0.069225937573318
1201 => 0.068401926770162
1202 => 0.069319011786144
1203 => 0.072056832841527
1204 => 0.068754439787596
1205 => 0.063092718532571
1206 => 0.063432997627101
1207 => 0.064197503722742
1208 => 0.06277285167123
1209 => 0.061424538066457
1210 => 0.062596787353667
1211 => 0.06019784142076
1212 => 0.064487404877634
1213 => 0.064371384207488
1214 => 0.065970268199386
1215 => 0.066970083171922
1216 => 0.064665833354167
1217 => 0.064086320756356
1218 => 0.064416437469449
1219 => 0.058960343546097
1220 => 0.065524388923587
1221 => 0.06558115506059
1222 => 0.065095088931853
1223 => 0.068590240453203
1224 => 0.075966100328347
1225 => 0.073191005150042
1226 => 0.072116404419306
1227 => 0.070073587644649
1228 => 0.072795519706422
1229 => 0.072586517792832
1230 => 0.071641331877959
1231 => 0.071069680487485
]
'min_raw' => 0.05338621271724
'max_raw' => 0.13698290880597
'avg_raw' => 0.095184560761605
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.053386'
'max' => '$0.136982'
'avg' => '$0.095184'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.032829092361609
'max_diff' => 0.079622168231577
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0016757322141353
]
1 => [
'year' => 2028
'avg' => 0.0028760429479938
]
2 => [
'year' => 2029
'avg' => 0.0078568309776112
]
3 => [
'year' => 2030
'avg' => 0.0060615333984833
]
4 => [
'year' => 2031
'avg' => 0.0059531769948747
]
5 => [
'year' => 2032
'avg' => 0.010437792805767
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0016757322141353
'min' => '$0.001675'
'max_raw' => 0.010437792805767
'max' => '$0.010437'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.010437792805767
]
1 => [
'year' => 2033
'avg' => 0.026847076402009
]
2 => [
'year' => 2034
'avg' => 0.017016967233712
]
3 => [
'year' => 2035
'avg' => 0.020071551875765
]
4 => [
'year' => 2036
'avg' => 0.038958930465012
]
5 => [
'year' => 2037
'avg' => 0.095184560761605
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.010437792805767
'min' => '$0.010437'
'max_raw' => 0.095184560761605
'max' => '$0.095184'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.095184560761605
]
]
]
]
'prediction_2025_max_price' => '$0.002865'
'last_price' => 0.00277817
'sma_50day_nextmonth' => '$0.002637'
'sma_200day_nextmonth' => '$0.012478'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.002834'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.0028043'
'daily_sma5_action' => 'SELL'
'daily_sma10' => '$0.002724'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.002779'
'daily_sma21_action' => 'SELL'
'daily_sma50' => '$0.004027'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.008779'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.014171'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.002798'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.002786'
'daily_ema5_action' => 'SELL'
'daily_ema10' => '$0.002778'
'daily_ema10_action' => 'SELL'
'daily_ema21' => '$0.0030081'
'daily_ema21_action' => 'SELL'
'daily_ema50' => '$0.00465'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.007954'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.011892'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.011922'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.014453'
'weekly_sma50_action' => 'SELL'
'weekly_sma100' => '$0.030222'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.0029085'
'weekly_ema3_action' => 'SELL'
'weekly_ema5' => '$0.003373'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.005454'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.009391'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.017158'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.030222'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.015111'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '30.35'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 112.46
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.002723'
'vwma_10_action' => 'BUY'
'hma_9' => '0.002877'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 56.34
'stochastic_fast_14_action' => 'NEUTRAL'
'cci_20' => 13.31
'cci_20_action' => 'NEUTRAL'
'adx_14' => 54.16
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.000466'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -43.66
'williams_percent_r_14_action' => 'NEUTRAL'
'ultimate_oscillator' => 53.92
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.0044020'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 29
'buy_signals' => 3
'sell_pct' => 90.63
'buy_pct' => 9.38
'overall_action' => 'bearish'
'overall_action_label' => 'Bajista'
'overall_action_dir' => -1
'last_updated' => 1767676566
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de D2 para 2026
La previsión del precio de D2 para 2026 sugiere que el precio medio podría oscilar entre $0.000959 en el extremo inferior y $0.002865 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, D2 podría potencialmente ganar 3.13% para 2026 si D2X alcanza el objetivo de precio previsto.
Predicción de precio de D2 2027-2032
La predicción del precio de D2X para 2027-2032 está actualmente dentro de un rango de precios de $0.001675 en el extremo inferior y $0.010437 en el extremo superior. Considerando la volatilidad de precios en el mercado, si D2 alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de D2 | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000924 | $0.001675 | $0.002427 |
| 2028 | $0.001667 | $0.002876 | $0.004084 |
| 2029 | $0.003663 | $0.007856 | $0.01205 |
| 2030 | $0.003115 | $0.006061 | $0.0090076 |
| 2031 | $0.003683 | $0.005953 | $0.008222 |
| 2032 | $0.005622 | $0.010437 | $0.015253 |
Predicción de precio de D2 2032-2037
La predicción de precio de D2 para 2032-2037 se estima actualmente entre $0.010437 en el extremo inferior y $0.095184 en el extremo superior. Comparado con el precio actual, D2 podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de D2 | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.005622 | $0.010437 | $0.015253 |
| 2033 | $0.013065 | $0.026847 | $0.040628 |
| 2034 | $0.0105039 | $0.017016 | $0.02353 |
| 2035 | $0.012418 | $0.020071 | $0.027724 |
| 2036 | $0.020557 | $0.038958 | $0.05736 |
| 2037 | $0.053386 | $0.095184 | $0.136982 |
D2 Histograma de precios potenciales
Pronóstico de precio de D2 basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para D2 es Bajista, con 3 indicadores técnicos mostrando señales alcistas y 29 indicando señales bajistas. La predicción de precio de D2X se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de D2
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de D2 aumentar durante el próximo mes, alcanzando $0.012478 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para D2 alcance $0.002637 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 30.35, lo que sugiere que el mercado de D2X está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de D2X para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.002834 | SELL |
| SMA 5 | $0.0028043 | SELL |
| SMA 10 | $0.002724 | BUY |
| SMA 21 | $0.002779 | SELL |
| SMA 50 | $0.004027 | SELL |
| SMA 100 | $0.008779 | SELL |
| SMA 200 | $0.014171 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.002798 | SELL |
| EMA 5 | $0.002786 | SELL |
| EMA 10 | $0.002778 | SELL |
| EMA 21 | $0.0030081 | SELL |
| EMA 50 | $0.00465 | SELL |
| EMA 100 | $0.007954 | SELL |
| EMA 200 | $0.011892 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.011922 | SELL |
| SMA 50 | $0.014453 | SELL |
| SMA 100 | $0.030222 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.009391 | SELL |
| EMA 50 | $0.017158 | SELL |
| EMA 100 | $0.030222 | SELL |
| EMA 200 | $0.015111 | SELL |
Osciladores de D2
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 30.35 | NEUTRAL |
| Stoch RSI (14) | 112.46 | SELL |
| Estocástico Rápido (14) | 56.34 | NEUTRAL |
| Índice de Canal de Materias Primas (20) | 13.31 | NEUTRAL |
| Índice Direccional Medio (14) | 54.16 | SELL |
| Oscilador Asombroso (5, 34) | -0.000466 | NEUTRAL |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -43.66 | NEUTRAL |
| Oscilador Ultimate (7, 14, 28) | 53.92 | NEUTRAL |
| VWMA (10) | 0.002723 | BUY |
| Promedio Móvil de Hull (9) | 0.002877 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.0044020 | SELL |
Predicción de precios de D2 basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de D2
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de D2 por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.0039037 | $0.005485 | $0.007708 | $0.010831 | $0.015219 | $0.021385 |
| Amazon.com acción | $0.005796 | $0.012095 | $0.025237 | $0.05266 | $0.109878 | $0.229267 |
| Apple acción | $0.00394 | $0.005589 | $0.007928 | $0.011245 | $0.015951 | $0.022625 |
| Netflix acción | $0.004383 | $0.006916 | $0.010913 | $0.017219 | $0.027169 | $0.042868 |
| Google acción | $0.003597 | $0.004659 | $0.006033 | $0.007813 | $0.010118 | $0.0131029 |
| Tesla acción | $0.006297 | $0.014276 | $0.032364 | $0.073368 | $0.166319 | $0.377034 |
| Kodak acción | $0.002083 | $0.001562 | $0.001171 | $0.000878 | $0.000658 | $0.000494 |
| Nokia acción | $0.00184 | $0.001219 | $0.0008076 | $0.000535 | $0.000354 | $0.000234 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de D2
Podría preguntarse cosas como: "¿Debo invertir en D2 ahora?", "¿Debería comprar D2X hoy?", "¿Será D2 una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de D2 regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como D2, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de D2 a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de D2 es de $0.002778 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de D2 basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si D2 ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.00285 | $0.002924 | $0.00300049 | $0.003078 |
| Si D2 ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002922 | $0.003074 | $0.003234 | $0.0034025 |
| Si D2 ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.003139 | $0.003547 | $0.0040082 | $0.004529 |
| Si D2 ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.0035003 | $0.00441 | $0.005556 | $0.00700079 |
| Si D2 ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.004222 | $0.006417 | $0.009753 | $0.014824 |
| Si D2 ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.006388 | $0.014692 | $0.033787 | $0.077698 |
| Si D2 ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.009999 | $0.035991 | $0.129544 | $0.466274 |
Cuadro de preguntas
¿Es D2X una buena inversión?
La decisión de adquirir D2 depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de D2 ha experimentado una caída de -0.6887% durante las últimas 24 horas, y D2 ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en D2 dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede D2 subir?
Parece que el valor medio de D2 podría potencialmente aumentar hasta $0.002865 para el final de este año. Mirando las perspectivas de D2 en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.0090076. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de D2 la próxima semana?
Basado en nuestro nuevo pronóstico experimental de D2, el precio de D2 aumentará en un 0.86% durante la próxima semana y alcanzará $0.002801 para el 13 de enero de 2026.
¿Cuál será el precio de D2 el próximo mes?
Basado en nuestro nuevo pronóstico experimental de D2, el precio de D2 disminuirá en un -11.62% durante el próximo mes y alcanzará $0.002455 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de D2 este año en 2026?
Según nuestra predicción más reciente sobre el valor de D2 en 2026, se anticipa que D2X fluctúe dentro del rango de $0.000959 y $0.002865. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de D2 no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará D2 en 5 años?
El futuro de D2 parece estar en una tendencia alcista, con un precio máximo de $0.0090076 proyectada después de un período de cinco años. Basado en el pronóstico de D2 para 2030, el valor de D2 podría potencialmente alcanzar su punto más alto de aproximadamente $0.0090076, mientras que su punto más bajo se anticipa que esté alrededor de $0.003115.
¿Cuánto será D2 en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de D2, se espera que el valor de D2X en 2026 crezca en un 3.13% hasta $0.002865 si ocurre lo mejor. El precio estará entre $0.002865 y $0.000959 durante 2026.
¿Cuánto será D2 en 2027?
Según nuestra última simulación experimental para la predicción de precios de D2, el valor de D2X podría disminuir en un -12.62% hasta $0.002427 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.002427 y $0.000924 a lo largo del año.
¿Cuánto será D2 en 2028?
Nuestro nuevo modelo experimental de predicción de precios de D2 sugiere que el valor de D2X en 2028 podría aumentar en un 47.02% , alcanzando $0.004084 en el mejor escenario. Se espera que el precio oscile entre $0.004084 y $0.001667 durante el año.
¿Cuánto será D2 en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de D2 podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.01205 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.01205 y $0.003663.
¿Cuánto será D2 en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de D2, se espera que el valor de D2X en 2030 aumente en un 224.23% , alcanzando $0.0090076 en el mejor escenario. Se pronostica que el precio oscile entre $0.0090076 y $0.003115 durante el transcurso de 2030.
¿Cuánto será D2 en 2031?
Nuestra simulación experimental indica que el precio de D2 podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.008222 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.008222 y $0.003683 durante el año.
¿Cuánto será D2 en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de D2, D2X podría experimentar un 449.04% aumento en valor, alcanzando $0.015253 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.015253 y $0.005622 a lo largo del año.
¿Cuánto será D2 en 2033?
Según nuestra predicción experimental de precios de D2, se anticipa que el valor de D2X aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.040628. A lo largo del año, el precio de D2X podría oscilar entre $0.040628 y $0.013065.
¿Cuánto será D2 en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de D2 sugieren que D2X podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.02353 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.02353 y $0.0105039.
¿Cuánto será D2 en 2035?
Basado en nuestra predicción experimental para el precio de D2, D2X podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.027724 en 2035. El rango de precios esperado para el año está entre $0.027724 y $0.012418.
¿Cuánto será D2 en 2036?
Nuestra reciente simulación de predicción de precios de D2 sugiere que el valor de D2X podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.05736 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.05736 y $0.020557.
¿Cuánto será D2 en 2037?
Según la simulación experimental, el valor de D2 podría aumentar en un 4830.69% en 2037, con un máximo de $0.136982 bajo condiciones favorables. Se espera que el precio caiga entre $0.136982 y $0.053386 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de D2?
Los traders de D2 utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de D2
Las medias móviles son herramientas populares para la predicción de precios de D2. Una media móvil simple (SMA) calcula el precio de cierre promedio de D2X durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de D2X por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de D2X.
¿Cómo leer gráficos de D2 y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de D2 en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de D2X dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de D2?
La acción del precio de D2 está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de D2X. La capitalización de mercado de D2 puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de D2X, grandes poseedores de D2, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de D2.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


