Predicción del precio de Lamden - Pronóstico de TAU
Predicción de precio de Lamden hasta $0.002384 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.000798 | $0.002384 |
| 2027 | $0.000769 | $0.00202 |
| 2028 | $0.001387 | $0.003399 |
| 2029 | $0.003048 | $0.010029 |
| 2030 | $0.002592 | $0.007496 |
| 2031 | $0.003065 | $0.006843 |
| 2032 | $0.004679 | $0.012694 |
| 2033 | $0.010873 | $0.033814 |
| 2034 | $0.008742 | $0.019583 |
| 2035 | $0.010335 | $0.023074 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Lamden hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,958.14, equivalente a un ROI del 39.58% en los próximos 90 días.
Predicción del precio a largo plazo de Lamden para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Lamden'
'name_with_ticker' => 'Lamden <small>TAU</small>'
'name_lang' => 'Lamden'
'name_lang_with_ticker' => 'Lamden <small>TAU</small>'
'name_with_lang' => 'Lamden'
'name_with_lang_with_ticker' => 'Lamden <small>TAU</small>'
'image' => '/uploads/coins/lamden.png?ts=1630513777'
'price_for_sd' => 0.002312
'ticker' => 'TAU'
'marketcap' => '$348.58K'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$353.36'
'current_supply' => '150.76M'
'max_supply' => '248.09M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '0.025 USD 0.09x'
'price' => '$0.002312'
'change_24h_pct' => '0%'
'ath_price' => '$1.11'
'ath_days' => 1527
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '1 nov. 2021'
'ath_pct' => '0.67%'
'fdv' => '$666.12K'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.1140073'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.002331'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.0020435'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.000798'
'current_year_max_price_prediction' => '$0.002384'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.002592'
'grand_prediction_max_price' => '$0.007496'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0023560149737828
107 => 0.0023648114784615
108 => 0.0023846304526632
109 => 0.0022152794880497
110 => 0.0022913130992781
111 => 0.0023359757224888
112 => 0.0021341883659826
113 => 0.0023319870352465
114 => 0.0022123314645277
115 => 0.0021717185666594
116 => 0.0022263984832966
117 => 0.0022050896666051
118 => 0.0021867695973095
119 => 0.0021765466838638
120 => 0.00221669757984
121 => 0.002214824492552
122 => 0.0021491298337818
123 => 0.0020634338294729
124 => 0.0020921962213945
125 => 0.0020817465747605
126 => 0.0020438757073279
127 => 0.0020693960994315
128 => 0.0019570172081819
129 => 0.0017636751667336
130 => 0.0018914028415412
131 => 0.0018864854650021
201 => 0.0018840059007658
202 => 0.0019799897182502
203 => 0.0019707630889225
204 => 0.0019540166663453
205 => 0.0020435681461445
206 => 0.0020108806513804
207 => 0.002111615808101
208 => 0.0021779664974586
209 => 0.0021611378164175
210 => 0.002223540960459
211 => 0.0020928588488125
212 => 0.0021362662042452
213 => 0.0021452124000398
214 => 0.0020424630947845
215 => 0.0019722726795881
216 => 0.0019675917791239
217 => 0.0018458912720084
218 => 0.0019109027005773
219 => 0.0019681100673622
220 => 0.0019407121781433
221 => 0.0019320388249052
222 => 0.0019763491055777
223 => 0.0019797923938778
224 => 0.0019012850557312
225 => 0.001917609217336
226 => 0.0019856836848938
227 => 0.0019158939154146
228 => 0.0017803037934106
301 => 0.0017466755684735
302 => 0.0017421889433757
303 => 0.0016509865302582
304 => 0.0017489227672634
305 => 0.0017061709752827
306 => 0.0018412233739048
307 => 0.0017640821681124
308 => 0.0017607567649108
309 => 0.0017557299302411
310 => 0.0016772282457466
311 => 0.0016944151256086
312 => 0.0017515469319055
313 => 0.0017719322040282
314 => 0.0017698058531342
315 => 0.0017512669548865
316 => 0.0017597539675698
317 => 0.0017324143426458
318 => 0.0017227601520601
319 => 0.0016922888709772
320 => 0.0016475045056916
321 => 0.001653732046363
322 => 0.0015650025002656
323 => 0.0015166579343182
324 => 0.0015032767956352
325 => 0.0014853829777519
326 => 0.0015052979499787
327 => 0.0015647511406097
328 => 0.0014930379790107
329 => 0.0013700907935425
330 => 0.001377480128881
331 => 0.0013940817714731
401 => 0.0013631447203335
402 => 0.0013338653977798
403 => 0.0013593213932337
404 => 0.0013072270499668
405 => 0.0014003771239733
406 => 0.0013978576755215
407 => 0.0014325782627491
408 => 0.0014542897584808
409 => 0.0014042517899996
410 => 0.0013916673762436
411 => 0.0013988360302487
412 => 0.0012803541479182
413 => 0.0014228957652278
414 => 0.0014241284710535
415 => 0.0014135732953768
416 => 0.0014894723061155
417 => 0.0016496428922692
418 => 0.0015893802749113
419 => 0.001566044768023
420 => 0.0015216839523703
421 => 0.0015807921053429
422 => 0.0015762535214255
423 => 0.0015557283237438
424 => 0.0015433146201435
425 => 0.0015661872496521
426 => 0.0015404804482272
427 => 0.0015358628003156
428 => 0.0015078848780219
429 => 0.0014978980326774
430 => 0.0014905041699721
501 => 0.0014823642536395
502 => 0.0015003188807284
503 => 0.0014596313336171
504 => 0.0014105661404502
505 => 0.0014064869005311
506 => 0.0014177500405981
507 => 0.0014127669395606
508 => 0.0014064630433605
509 => 0.0013944271887504
510 => 0.001390856407793
511 => 0.0014024597136081
512 => 0.0013893602578576
513 => 0.0014086892183817
514 => 0.0014034328106393
515 => 0.0013740709442816
516 => 0.0013374751876447
517 => 0.0013371494086484
518 => 0.0013292649129101
519 => 0.0013192228221454
520 => 0.0013164293422266
521 => 0.0013571775602992
522 => 0.0014415251522178
523 => 0.0014249657016573
524 => 0.001436931601768
525 => 0.0014957919872259
526 => 0.0015145019337694
527 => 0.0015012220568822
528 => 0.0014830437423318
529 => 0.0014838434959155
530 => 0.0015459642996841
531 => 0.0015498386980162
601 => 0.0015596280526732
602 => 0.0015722101398787
603 => 0.0015033648407398
604 => 0.0014806008885172
605 => 0.0014698140650582
606 => 0.0014365948238305
607 => 0.0014724189274921
608 => 0.0014515457564295
609 => 0.0014543622603349
610 => 0.0014525280084717
611 => 0.0014535296340206
612 => 0.0014003510866292
613 => 0.0014197265543164
614 => 0.0013875110813526
615 => 0.0013443781794106
616 => 0.0013442335827989
617 => 0.0013547902994429
618 => 0.0013485107512987
619 => 0.0013316126487046
620 => 0.0013340129444213
621 => 0.0013129838282332
622 => 0.001336566259871
623 => 0.0013372425196283
624 => 0.0013281619989041
625 => 0.0013644939885905
626 => 0.0013793792344091
627 => 0.0013734022411448
628 => 0.0013789598726283
629 => 0.0014256538215896
630 => 0.0014332669726701
701 => 0.0014366482314835
702 => 0.0014321177926045
703 => 0.001379813352298
704 => 0.0013821332766412
705 => 0.0013651112111045
706 => 0.001350729359467
707 => 0.0013513045581096
708 => 0.0013586986993611
709 => 0.0013909893478671
710 => 0.0014589431140103
711 => 0.0014615219097619
712 => 0.0014646474854416
713 => 0.0014519341983638
714 => 0.0014480997493314
715 => 0.0014531583773604
716 => 0.0014786782390845
717 => 0.0015443222520137
718 => 0.0015211192736283
719 => 0.0015022548910251
720 => 0.0015188040403691
721 => 0.0015162564285442
722 => 0.0014947520209153
723 => 0.0014941484638158
724 => 0.001452874630201
725 => 0.0014376166336733
726 => 0.0014248659097335
727 => 0.0014109424520573
728 => 0.0014026881596284
729 => 0.0014153705043081
730 => 0.0014182711065894
731 => 0.0013905409382978
801 => 0.0013867614188262
802 => 0.0014094064728503
803 => 0.001399441228867
804 => 0.00140969072943
805 => 0.0014120687014792
806 => 0.00141168579321
807 => 0.0014012809339904
808 => 0.0014079126809796
809 => 0.0013922266223312
810 => 0.0013751703895209
811 => 0.0013642895756288
812 => 0.0013547946223775
813 => 0.0013600629742912
814 => 0.0013412822616816
815 => 0.0013352739337368
816 => 0.0014056659943187
817 => 0.0014576653663127
818 => 0.0014569092748499
819 => 0.001452306762521
820 => 0.0014454683627858
821 => 0.0014781779675501
822 => 0.0014667825952994
823 => 0.001475073680727
824 => 0.0014771841099441
825 => 0.0014835717435636
826 => 0.0014858547735469
827 => 0.001478953871271
828 => 0.0014557936003592
829 => 0.0013980804072592
830 => 0.0013712147600774
831 => 0.0013623486490247
901 => 0.0013626709153223
902 => 0.0013537813721737
903 => 0.0013563997410324
904 => 0.0013528708103396
905 => 0.0013461878693475
906 => 0.001359650321517
907 => 0.0013612017437181
908 => 0.0013580594465174
909 => 0.001358799571261
910 => 0.001332782692532
911 => 0.0013347606993161
912 => 0.0013237469061894
913 => 0.0013216819527514
914 => 0.0012938400428079
915 => 0.0012445140635935
916 => 0.0012718454442669
917 => 0.0012388329797871
918 => 0.0012263306592681
919 => 0.0012855147000952
920 => 0.0012795742639059
921 => 0.0012694068193954
922 => 0.0012543670498833
923 => 0.0012487886530738
924 => 0.0012148960799649
925 => 0.0012128935259358
926 => 0.001229691600345
927 => 0.0012219398669916
928 => 0.0012110534975525
929 => 0.0011716241709774
930 => 0.0011272925533057
1001 => 0.0011286306461846
1002 => 0.0011427317089469
1003 => 0.0011837324507157
1004 => 0.0011677127515866
1005 => 0.0011560902760635
1006 => 0.0011539137357684
1007 => 0.0011811576944578
1008 => 0.001219713603789
1009 => 0.0012378031738074
1010 => 0.0012198769593076
1011 => 0.0011992842893061
1012 => 0.0012005376697119
1013 => 0.001208875848027
1014 => 0.0012097520726724
1015 => 0.0011963483614621
1016 => 0.0012001214276551
1017 => 0.0011943897950916
1018 => 0.0011592147766287
1019 => 0.0011585785720859
1020 => 0.0011499460552814
1021 => 0.0011496846661033
1022 => 0.0011349986015365
1023 => 0.0011329439195836
1024 => 0.0011037838470058
1025 => 0.0011229770950813
1026 => 0.001110103271963
1027 => 0.0010906993838958
1028 => 0.0010873541462792
1029 => 0.001087253584397
1030 => 0.001107177038812
1031 => 0.0011227442779165
1101 => 0.0011103272176279
1102 => 0.0011075000936948
1103 => 0.0011376863809411
1104 => 0.0011338449007349
1105 => 0.0011305182036512
1106 => 0.0012162613449933
1107 => 0.0011483889580003
1108 => 0.0011187927232509
1109 => 0.001082161762576
1110 => 0.0010940889880811
1111 => 0.0010966022297424
1112 => 0.0010085113725462
1113 => 0.00097277292275271
1114 => 0.00096050883355865
1115 => 0.00095345067683871
1116 => 0.00095666716748674
1117 => 0.00092449837097055
1118 => 0.00094611633425222
1119 => 0.00091826087562987
1120 => 0.00091359081734233
1121 => 0.00096339982798824
1122 => 0.0009703304608396
1123 => 0.00094076222791685
1124 => 0.00095974982011535
1125 => 0.0009528646552369
1126 => 0.00091873837751794
1127 => 0.00091743500472498
1128 => 0.00090031163816227
1129 => 0.00087351688522876
1130 => 0.00086127096413894
1201 => 0.0008548931821114
1202 => 0.00085752477927646
1203 => 0.0008561941632216
1204 => 0.00084751099340029
1205 => 0.0008566918723516
1206 => 0.0008332385204321
1207 => 0.00082389920672126
1208 => 0.00081968085538851
1209 => 0.00079886465563538
1210 => 0.00083199248644865
1211 => 0.00083851908645228
1212 => 0.00084505854587409
1213 => 0.00090198007546234
1214 => 0.00089913643670268
1215 => 0.00092484154618173
1216 => 0.00092384269289604
1217 => 0.00091651117927745
1218 => 0.00088558072929607
1219 => 0.00089790905537639
1220 => 0.00085996438394842
1221 => 0.00088839511176911
1222 => 0.00087542051488733
1223 => 0.00088400838751211
1224 => 0.00086856661819549
1225 => 0.00087711273091034
1226 => 0.00084006678543404
1227 => 0.00080547380279879
1228 => 0.00081939502884333
1229 => 0.00083452899363905
1230 => 0.00086734328537869
1231 => 0.00084779936393059
]
'min_raw' => 0.00079886465563538
'max_raw' => 0.0023846304526632
'avg_raw' => 0.0015917475541493
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.000798'
'max' => '$0.002384'
'avg' => '$0.001591'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0015133353443646
'max_diff' => 7.2430452663176E-5
'year' => 2026
]
1 => [
'items' => [
101 => 0.00085482809712082
102 => 0.00083128301752928
103 => 0.00078270279301246
104 => 0.00078297775180743
105 => 0.00077550474264324
106 => 0.00076904697164817
107 => 0.00085004421841066
108 => 0.00083997093039875
109 => 0.00082392046431113
110 => 0.00084540465098958
111 => 0.00085108541094726
112 => 0.00085124713419705
113 => 0.00086692144221052
114 => 0.00087528682320709
115 => 0.00087676125786537
116 => 0.00090142512019042
117 => 0.00090969212151757
118 => 0.00094374272999426
119 => 0.0008745770790752
120 => 0.00087315265801024
121 => 0.00084570697755472
122 => 0.00082830049311078
123 => 0.00084689881443649
124 => 0.00086337438820703
125 => 0.00084621891955725
126 => 0.0008484590615912
127 => 0.00082542924658216
128 => 0.00083366132179438
129 => 0.00084075189394743
130 => 0.00083683689676908
131 => 0.00083097595650509
201 => 0.00086202357904281
202 => 0.00086027175050262
203 => 0.0008891840103915
204 => 0.00091172318451043
205 => 0.00095211741389085
206 => 0.00090996392973358
207 => 0.00090842768922596
208 => 0.00092344468660863
209 => 0.00090968982249351
210 => 0.0009183824218125
211 => 0.0009507169017535
212 => 0.00095140007836265
213 => 0.00093995598993609
214 => 0.00093925961611529
215 => 0.00094145757848222
216 => 0.00095433111271744
217 => 0.0009498327042919
218 => 0.0009550383764077
219 => 0.00096154814910058
220 => 0.00098847532904477
221 => 0.00099496738096778
222 => 0.00097919506053787
223 => 0.00098061912447751
224 => 0.00097471984367685
225 => 0.00096902121234118
226 => 0.00098183090336549
227 => 0.0010052408654875
228 => 0.0010050952333281
301 => 0.0010105258895158
302 => 0.0010139091433307
303 => 0.00099938574126388
304 => 0.00098993154055865
305 => 0.00099355688269546
306 => 0.00099935388372189
307 => 0.00099167699339261
308 => 0.00094429166999877
309 => 0.00095866535013029
310 => 0.00095627286691935
311 => 0.00095286567989108
312 => 0.0009673185264117
313 => 0.00096592451410684
314 => 0.00092416843346626
315 => 0.00092684152227159
316 => 0.00092433099285005
317 => 0.00093244302701704
318 => 0.00090925174602707
319 => 0.00091638522786392
320 => 0.00092085928079976
321 => 0.00092349453235026
322 => 0.00093301486795958
323 => 0.00093189776645913
324 => 0.00093294542736183
325 => 0.00094706157179503
326 => 0.0010184561862624
327 => 0.0010223420376045
328 => 0.0010032066844125
329 => 0.0010108508805846
330 => 0.00099617569553619
331 => 0.0010060272455744
401 => 0.0010127674259082
402 => 0.00098230984704161
403 => 0.00098050634688917
404 => 0.00096577059213186
405 => 0.00097368875206263
406 => 0.00096109039027692
407 => 0.00096418158758715
408 => 0.00095553833042203
409 => 0.00097109447246391
410 => 0.00098848865644683
411 => 0.00099288311423806
412 => 0.00098132318772237
413 => 0.00097295303908874
414 => 0.00095825781538644
415 => 0.00098269629990778
416 => 0.00098984285753114
417 => 0.00098265876208297
418 => 0.00098099405019204
419 => 0.0009778394241668
420 => 0.00098166331901617
421 => 0.00098980393584352
422 => 0.00098596497128133
423 => 0.00098850067500851
424 => 0.00097883718720684
425 => 0.00099939054911428
426 => 0.0010320342342592
427 => 0.0010321391890447
428 => 0.0010283002037891
429 => 0.0010267293737346
430 => 0.001030668405576
501 => 0.0010328051687624
502 => 0.0010455432754425
503 => 0.0010592117714189
504 => 0.0011229966781085
505 => 0.0011050861315495
506 => 0.0011616798953457
507 => 0.0012064382147279
508 => 0.0012198592776666
509 => 0.0012075125312728
510 => 0.001165274978818
511 => 0.0011632026029897
512 => 0.0012263233385919
513 => 0.0012084888396714
514 => 0.0012063674827737
515 => 0.0011837998294714
516 => 0.0011971401076313
517 => 0.0011942223931077
518 => 0.0011896166379926
519 => 0.0012150689594299
520 => 0.0012627134330161
521 => 0.0012552875950006
522 => 0.0012497445513968
523 => 0.0012254565478806
524 => 0.0012400833509193
525 => 0.0012348750265152
526 => 0.0012572532934397
527 => 0.0012439969038529
528 => 0.0012083537258014
529 => 0.0012140300193875
530 => 0.0012131720590311
531 => 0.0012308288223707
601 => 0.001225528700284
602 => 0.0012121371251297
603 => 0.001262550589385
604 => 0.0012592770194306
605 => 0.0012639181931836
606 => 0.0012659613814027
607 => 0.00129664716871
608 => 0.0013092181539341
609 => 0.001312071987666
610 => 0.001324013451354
611 => 0.001311774873171
612 => 0.0013607379118614
613 => 0.001393295475518
614 => 0.001431112761102
615 => 0.0014863739796683
616 => 0.0015071527090441
617 => 0.0015033992175656
618 => 0.001545297642795
619 => 0.0016205881815826
620 => 0.0015186175880934
621 => 0.0016259928706415
622 => 0.001591999095894
623 => 0.0015114004674897
624 => 0.0015062108660159
625 => 0.0015607931929406
626 => 0.0016818515407054
627 => 0.0016515277976227
628 => 0.0016819011394859
629 => 0.0016464690228275
630 => 0.0016447095195901
701 => 0.0016801802806658
702 => 0.0017630596473297
703 => 0.0017236867669143
704 => 0.0016672360882124
705 => 0.001708918390896
706 => 0.0016728093227964
707 => 0.0015914454860764
708 => 0.0016515046096279
709 => 0.0016113447840943
710 => 0.0016230655561988
711 => 0.0017074755361471
712 => 0.0016973191040386
713 => 0.0017104624676473
714 => 0.0016872647748997
715 => 0.001665594471933
716 => 0.001625145242188
717 => 0.0016131702193834
718 => 0.0016164796848704
719 => 0.0016131685793767
720 => 0.0015905376070819
721 => 0.0015856504507696
722 => 0.0015775049761378
723 => 0.0015800295993266
724 => 0.0015647137239762
725 => 0.0015936179451837
726 => 0.001598982823343
727 => 0.0016200169051258
728 => 0.0016222007332744
729 => 0.0016807803516382
730 => 0.0016485156822339
731 => 0.0016701616080679
801 => 0.0016682253927219
802 => 0.0015131472841636
803 => 0.0015345156792572
804 => 0.0015677581962511
805 => 0.0015527824874045
806 => 0.0015316103388717
807 => 0.0015145126937526
808 => 0.0014886080130732
809 => 0.0015250683536741
810 => 0.0015730098244393
811 => 0.0016234166080885
812 => 0.0016839770558597
813 => 0.0016704606689185
814 => 0.0016222844726424
815 => 0.0016244456216146
816 => 0.00163780499418
817 => 0.0016205033928808
818 => 0.0016154008128903
819 => 0.0016371039780448
820 => 0.0016372534358153
821 => 0.0016173458525522
822 => 0.0015952222168045
823 => 0.0015951295179629
824 => 0.0015911928306706
825 => 0.0016471693507514
826 => 0.0016779507769313
827 => 0.0016814798178361
828 => 0.0016777132443605
829 => 0.0016791628490013
830 => 0.0016612518153296
831 => 0.001702191126951
901 => 0.001739761087773
902 => 0.0017296915357076
903 => 0.0017145958456903
904 => 0.0017025714014846
905 => 0.001726858958795
906 => 0.0017257774721002
907 => 0.0017394329469406
908 => 0.0017388134557239
909 => 0.0017342216331435
910 => 0.001729691699696
911 => 0.0017476523737749
912 => 0.0017424799880798
913 => 0.001737299568241
914 => 0.0017269094431718
915 => 0.0017283216337304
916 => 0.0017132285501969
917 => 0.0017062457991417
918 => 0.0016012419772349
919 => 0.0015731815249225
920 => 0.0015820099144431
921 => 0.0015849164495024
922 => 0.0015727045046956
923 => 0.0015902132965573
924 => 0.001587484569892
925 => 0.0015981004490948
926 => 0.0015914681086568
927 => 0.0015917403022218
928 => 0.0016112446012859
929 => 0.0016169067822814
930 => 0.0016140269513277
1001 => 0.0016160438862129
1002 => 0.0016625232993464
1003 => 0.0016559154131268
1004 => 0.0016524051052727
1005 => 0.0016533774845381
1006 => 0.0016652539711236
1007 => 0.0016685787389354
1008 => 0.0016544914640895
1009 => 0.0016611351043444
1010 => 0.0016894228813463
1011 => 0.0016993220023474
1012 => 0.0017309152447354
1013 => 0.0017174938738439
1014 => 0.0017421293809786
1015 => 0.0018178505310475
1016 => 0.0018783418252275
1017 => 0.0018227115311911
1018 => 0.0019337960894328
1019 => 0.0020202913521575
1020 => 0.0020169715199088
1021 => 0.0020018890701812
1022 => 0.0019034165131647
1023 => 0.001812800598055
1024 => 0.0018886046587993
1025 => 0.0018887978989394
1026 => 0.0018822862628941
1027 => 0.0018418430506641
1028 => 0.0018808789267743
1029 => 0.0018839774528624
1030 => 0.0018822431022176
1031 => 0.001851235386225
1101 => 0.0018038923350881
1102 => 0.001813143053957
1103 => 0.0018282959201738
1104 => 0.0017996083832063
1105 => 0.001790440976906
1106 => 0.0018074849293887
1107 => 0.0018624040955362
1108 => 0.001852021945301
1109 => 0.0018517508254008
1110 => 0.0018961700668236
1111 => 0.0018643754762372
1112 => 0.0018132597351468
1113 => 0.0018003523363877
1114 => 0.0017545397662585
1115 => 0.0017861826716255
1116 => 0.0017873214434569
1117 => 0.0017699909475701
1118 => 0.0018146660093742
1119 => 0.0018142543208148
1120 => 0.0018566666429924
1121 => 0.0019377430736553
1122 => 0.0019137647835794
1123 => 0.0018858806410518
1124 => 0.0018889124204879
1125 => 0.0019221635578334
1126 => 0.0019020591611447
1127 => 0.0019092888423668
1128 => 0.001922152614845
1129 => 0.0019299136481706
1130 => 0.0018877957272279
1201 => 0.0018779760251231
1202 => 0.0018578883608638
1203 => 0.0018526478642126
1204 => 0.0018690088476089
1205 => 0.001864698306526
1206 => 0.001787225734094
1207 => 0.0017791294192216
1208 => 0.0017793777216398
1209 => 0.0017590191529342
1210 => 0.0017279674490418
1211 => 0.0018095694728701
1212 => 0.0018030156883371
1213 => 0.0017957808174353
1214 => 0.0017966670478392
1215 => 0.0018320877206339
1216 => 0.0018115419416261
1217 => 0.0018661662625052
1218 => 0.0018549371442899
1219 => 0.0018434200415636
1220 => 0.0018418280271473
1221 => 0.0018373949251908
1222 => 0.0018221921690971
1223 => 0.00180383392757
1224 => 0.0017917122263501
1225 => 0.001652759819258
1226 => 0.0016785485777654
1227 => 0.0017082161937087
1228 => 0.0017184573358469
1229 => 0.0017009391535541
1230 => 0.0018228838937086
1231 => 0.0018451643728236
]
'min_raw' => 0.00076904697164817
'max_raw' => 0.0020202913521575
'avg_raw' => 0.0013946691619028
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.000769'
'max' => '$0.00202'
'avg' => '$0.001394'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -2.9817683987209E-5
'max_diff' => -0.00036433910050565
'year' => 2027
]
2 => [
'items' => [
101 => 0.0017776753482646
102 => 0.0017650509073283
103 => 0.0018237115499546
104 => 0.0017883320114791
105 => 0.0018042634154883
106 => 0.0017698284340324
107 => 0.0018397976578533
108 => 0.0018392646095983
109 => 0.0018120450012054
110 => 0.0018350508278273
111 => 0.0018310529993061
112 => 0.0018003221284695
113 => 0.0018407718812725
114 => 0.0018407919438453
115 => 0.0018145936625724
116 => 0.0017839998055869
117 => 0.0017785303465525
118 => 0.0017744098438886
119 => 0.0018032500244244
120 => 0.0018291080401119
121 => 0.0018772233965605
122 => 0.0018893207403644
123 => 0.0019365374785967
124 => 0.0019084222099206
125 => 0.001920885344371
126 => 0.001934415839835
127 => 0.0019409028569279
128 => 0.0019303326106875
129 => 0.0020036796403471
130 => 0.0020098723769453
131 => 0.0020119487479597
201 => 0.0019872165422409
202 => 0.002009184529564
203 => 0.0019989064357988
204 => 0.0020256471804392
205 => 0.0020298404706418
206 => 0.0020262889030208
207 => 0.0020276199195177
208 => 0.0019650311690059
209 => 0.0019617856121099
210 => 0.0019175322135388
211 => 0.0019355658005612
212 => 0.0019018528739952
213 => 0.0019125435902909
214 => 0.0019172559561692
215 => 0.0019147944836588
216 => 0.001936585392514
217 => 0.0019180586683985
218 => 0.0018691635973821
219 => 0.0018202552049364
220 => 0.0018196411999092
221 => 0.001806764483483
222 => 0.0017974569759952
223 => 0.0017992499321389
224 => 0.0018055685434483
225 => 0.0017970897268193
226 => 0.001798899112234
227 => 0.0018289469659904
228 => 0.0018349728487698
229 => 0.0018144945446211
301 => 0.001732271198459
302 => 0.0017120933830692
303 => 0.0017265967966279
304 => 0.0017196650990863
305 => 0.0013879039493207
306 => 0.0014658463103755
307 => 0.0014195356061092
308 => 0.0014408777092882
309 => 0.0013936064723311
310 => 0.0014161667843048
311 => 0.0014120007184539
312 => 0.0015373297285478
313 => 0.0015353728884396
314 => 0.0015363095242457
315 => 0.001491601456828
316 => 0.0015628226221808
317 => 0.0015979087292638
318 => 0.0015914152246293
319 => 0.0015930494998487
320 => 0.0015649672369656
321 => 0.0015365814219352
322 => 0.0015050971845209
323 => 0.0015635910060673
324 => 0.0015570874916342
325 => 0.0015720042138532
326 => 0.0016099416383508
327 => 0.0016155280682183
328 => 0.0016230362866122
329 => 0.0016203451247894
330 => 0.0016844595175299
331 => 0.0016766948415287
401 => 0.001695405476642
402 => 0.0016569162806346
403 => 0.0016133621019243
404 => 0.0016216403274037
405 => 0.0016208430677208
406 => 0.0016106930369047
407 => 0.0016015300429224
408 => 0.0015862762395995
409 => 0.0016345415304513
410 => 0.0016325820477854
411 => 0.0016643037944955
412 => 0.0016586966676359
413 => 0.0016212509021707
414 => 0.0016225882850099
415 => 0.0016315828273279
416 => 0.0016627130409882
417 => 0.0016719546079091
418 => 0.0016676735458986
419 => 0.0016778065021338
420 => 0.0016858151775883
421 => 0.0016788122684672
422 => 0.0017779586937935
423 => 0.0017367861855334
424 => 0.0017568533795829
425 => 0.001761639287121
426 => 0.0017493802855991
427 => 0.0017520388240672
428 => 0.0017560657854381
429 => 0.0017805167063224
430 => 0.0018446829976536
501 => 0.0018731018112895
502 => 0.0019586012142726
503 => 0.001870742024426
504 => 0.001865528823698
505 => 0.0018809298480099
506 => 0.0019311270485919
507 => 0.0019718071648803
508 => 0.0019853031063454
509 => 0.0019870868178038
510 => 0.0020124061011855
511 => 0.0020269186422432
512 => 0.0020093316742197
513 => 0.001994428560252
514 => 0.0019410474558626
515 => 0.0019472264640476
516 => 0.0019897937030147
517 => 0.0020499224352535
518 => 0.0021015191428428
519 => 0.0020834517741718
520 => 0.0022212930435567
521 => 0.0022349594423852
522 => 0.0022330711879546
523 => 0.0022642052783186
524 => 0.0022024104492934
525 => 0.0021759919626667
526 => 0.0019976507826494
527 => 0.002047757379792
528 => 0.0021205902613962
529 => 0.0021109505564066
530 => 0.0020580573709571
531 => 0.0021014790186186
601 => 0.0020871224639813
602 => 0.0020757988536848
603 => 0.0021276745076428
604 => 0.0020706350951816
605 => 0.002120021249624
606 => 0.0020566829957172
607 => 0.0020835343043901
608 => 0.0020682922029357
609 => 0.0020781557105784
610 => 0.0020204938464439
611 => 0.0020516067886682
612 => 0.0020191994457575
613 => 0.0020191840804574
614 => 0.0020184686865664
615 => 0.0020565957817848
616 => 0.002057839104991
617 => 0.0020296631240178
618 => 0.0020256025249681
619 => 0.0020406166879012
620 => 0.002023039035322
621 => 0.0020312635083314
622 => 0.002023288146231
623 => 0.0020214927242354
624 => 0.0020071864963085
625 => 0.0020010229799597
626 => 0.0020034398535343
627 => 0.0019951898180403
628 => 0.0019902188732384
629 => 0.0020174798405285
630 => 0.0020029154054097
701 => 0.0020152476319631
702 => 0.0020011935033544
703 => 0.0019524757705043
704 => 0.0019244576871615
705 => 0.0018324344059438
706 => 0.0018585320943426
707 => 0.001875834888751
708 => 0.0018701163153023
709 => 0.0018824020238644
710 => 0.0018831562665897
711 => 0.0018791620574982
712 => 0.0018745372750601
713 => 0.0018722861867357
714 => 0.0018890639548234
715 => 0.001898804013912
716 => 0.0018775714556514
717 => 0.001872596964326
718 => 0.0018940642530091
719 => 0.0019071592867046
720 => 0.0020038456580479
721 => 0.0019966828193659
722 => 0.0020146601388216
723 => 0.0020126361685353
724 => 0.0020314792633364
725 => 0.0020622797596502
726 => 0.0019996537386901
727 => 0.0020105234504839
728 => 0.0020078584481703
729 => 0.0020369542446284
730 => 0.0020370450785291
731 => 0.0020196006951096
801 => 0.0020290575783641
802 => 0.0020237790055675
803 => 0.0020333181000529
804 => 0.0019965871552883
805 => 0.0020413214811511
806 => 0.002066682961299
807 => 0.0020670351054754
808 => 0.0020790562457844
809 => 0.0020912704205558
810 => 0.002114714465399
811 => 0.0020906165788694
812 => 0.0020472668268845
813 => 0.002050396538959
814 => 0.0020249805952313
815 => 0.0020254078418371
816 => 0.0020231271659713
817 => 0.0020299716459259
818 => 0.0019980891337399
819 => 0.0020055718956241
820 => 0.0019950959851672
821 => 0.0020105006779005
822 => 0.0019939277750064
823 => 0.0020078571630255
824 => 0.0020138686251281
825 => 0.0020360510497039
826 => 0.0019906514128606
827 => 0.0018980784800518
828 => 0.0019175384328665
829 => 0.0018887556341072
830 => 0.0018914195917162
831 => 0.0018968012100522
901 => 0.0018793576242695
902 => 0.0018826853107263
903 => 0.0018825664223495
904 => 0.0018815419065469
905 => 0.0018770041561815
906 => 0.0018704235203853
907 => 0.0018966387479847
908 => 0.0019010932259911
909 => 0.0019109949788062
910 => 0.0019404558787608
911 => 0.0019375120401195
912 => 0.0019423135630822
913 => 0.001931831865414
914 => 0.0018919058076088
915 => 0.0018940739846377
916 => 0.0018670367823449
917 => 0.0019103035767556
918 => 0.0019000574287454
919 => 0.001893451670468
920 => 0.0018916492281202
921 => 0.0019211831559474
922 => 0.0019300201700409
923 => 0.0019245135358878
924 => 0.0019132192685856
925 => 0.0019349076006562
926 => 0.0019407104833611
927 => 0.0019420095347966
928 => 0.0019804371009007
929 => 0.0019441572088648
930 => 0.001952890139469
1001 => 0.0020210219711175
1002 => 0.0019592358013624
1003 => 0.0019919653134777
1004 => 0.0019903633741758
1005 => 0.0020071066850677
1006 => 0.001988989933982
1007 => 0.0019892145128245
1008 => 0.0020040814386063
1009 => 0.0019832035226099
1010 => 0.0019780338570024
1011 => 0.0019708920009914
1012 => 0.0019864859823117
1013 => 0.0019958338688581
1014 => 0.002071170969156
1015 => 0.0021198421717376
1016 => 0.0021177292264724
1017 => 0.0021370375909288
1018 => 0.0021283389958968
1019 => 0.0021002489379652
1020 => 0.0021481952416369
1021 => 0.0021330230249966
1022 => 0.0021342738041022
1023 => 0.0021342272500414
1024 => 0.002144315447729
1025 => 0.0021371670350976
1026 => 0.0021230767800316
1027 => 0.0021324305489091
1028 => 0.0021602078984416
1029 => 0.0022464296437037
1030 => 0.0022946804746386
1031 => 0.0022435248830959
1101 => 0.0022788113251414
1102 => 0.002257652033759
1103 => 0.0022538067610804
1104 => 0.0022759692543325
1105 => 0.0022981705400953
1106 => 0.002296756414171
1107 => 0.0022806394207559
1108 => 0.0022715353401292
1109 => 0.0023404744887248
1110 => 0.0023912676790623
1111 => 0.0023878039240032
1112 => 0.0024030918123608
1113 => 0.0024479775254152
1114 => 0.0024520813124909
1115 => 0.0024515643296438
1116 => 0.002441392665191
1117 => 0.0024855884788395
1118 => 0.0025224574041364
1119 => 0.0024390382187578
1120 => 0.0024708031525126
1121 => 0.0024850634546774
1122 => 0.0025060018090964
1123 => 0.0025413283226768
1124 => 0.00257970228632
1125 => 0.0025851287855283
1126 => 0.0025812784246581
1127 => 0.0025559697640879
1128 => 0.002597959013003
1129 => 0.0026225553302484
1130 => 0.0026372018742913
1201 => 0.0026743430730316
1202 => 0.0024851515214488
1203 => 0.0023512323378083
1204 => 0.0023303189234664
1205 => 0.0023728471739101
1206 => 0.0023840615343957
1207 => 0.0023795410397455
1208 => 0.0022288028231587
1209 => 0.0023295253179521
1210 => 0.0024378942533619
1211 => 0.0024420571455173
1212 => 0.0024963089004711
1213 => 0.0025139754957386
1214 => 0.0025576552694164
1215 => 0.0025549230876801
1216 => 0.0025655584174737
1217 => 0.0025631135393324
1218 => 0.002644021122209
1219 => 0.0027332742010143
1220 => 0.0027301836507027
1221 => 0.00271735246463
1222 => 0.0027364089639903
1223 => 0.0028285277062586
1224 => 0.0028200468886433
1225 => 0.0028282852805622
1226 => 0.0029368984692813
1227 => 0.0030781110646621
1228 => 0.0030125036365949
1229 => 0.0031548528774717
1230 => 0.0032444541789947
1231 => 0.0033994103650311
]
'min_raw' => 0.0013879039493207
'max_raw' => 0.0033994103650311
'avg_raw' => 0.0023936571571759
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.001387'
'max' => '$0.003399'
'avg' => '$0.002393'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.00061885697767256
'max_diff' => 0.0013791190128735
'year' => 2028
]
3 => [
'items' => [
101 => 0.003380009087364
102 => 0.0034403323934669
103 => 0.0033452767511711
104 => 0.003127009782545
105 => 0.0030924681992675
106 => 0.0031616213237212
107 => 0.0033316275323275
108 => 0.0031562672232115
109 => 0.0031917423853559
110 => 0.0031815255362718
111 => 0.0031809811238029
112 => 0.0032017591334545
113 => 0.0031716195467467
114 => 0.0030488254484911
115 => 0.0031051012600915
116 => 0.0030833704666462
117 => 0.0031074824021117
118 => 0.0032376045733009
119 => 0.003180074459693
120 => 0.0031194711583741
121 => 0.0031954811471772
122 => 0.0032922679827895
123 => 0.0032862112365596
124 => 0.0032744586173499
125 => 0.0033407075164875
126 => 0.0034501312887565
127 => 0.0034797080947006
128 => 0.0035015410881772
129 => 0.0035045514891062
130 => 0.0035355604896285
131 => 0.0033688172785457
201 => 0.0036334430368035
202 => 0.0036791365951156
203 => 0.0036705480999569
204 => 0.0037213345669419
205 => 0.0037063919000266
206 => 0.0036847423200989
207 => 0.0037652496728615
208 => 0.0036729544895276
209 => 0.0035419530964256
210 => 0.0034700831412561
211 => 0.0035647272958072
212 => 0.0036225231783658
213 => 0.0036607225802285
214 => 0.0036722816961514
215 => 0.003381761079365
216 => 0.0032251865799292
217 => 0.0033255490389373
218 => 0.003447998165574
219 => 0.0033681370674646
220 => 0.0033712674713135
221 => 0.0032574065325369
222 => 0.0034580723321719
223 => 0.0034288370130301
224 => 0.0035805099004541
225 => 0.0035443119486194
226 => 0.0036679953004062
227 => 0.0036354253288002
228 => 0.0037706214599739
301 => 0.0038245548569882
302 => 0.0039151174246382
303 => 0.0039817356180576
304 => 0.0040208550954363
305 => 0.004018506508748
306 => 0.004173517367369
307 => 0.0040821128797071
308 => 0.00396728730082
309 => 0.003965210468368
310 => 0.0040246802627647
311 => 0.0041493126370787
312 => 0.0041816279984111
313 => 0.0041996878768532
314 => 0.0041720285443502
315 => 0.0040728155240118
316 => 0.0040299758448511
317 => 0.004066476492681
318 => 0.0040218393369215
319 => 0.0040988955907363
320 => 0.0042047102855517
321 => 0.004182859969509
322 => 0.0042559023000574
323 => 0.0043314934278977
324 => 0.0044395921357194
325 => 0.0044678531408275
326 => 0.0045145675076015
327 => 0.004562651935882
328 => 0.004578095358334
329 => 0.0046075816436075
330 => 0.0046074262363293
331 => 0.0046962851416568
401 => 0.0047942992659643
402 => 0.0048312973288582
403 => 0.0049163723343976
404 => 0.0047706843687951
405 => 0.0048811903642473
406 => 0.0049808695382896
407 => 0.0048620279177064
408 => 0.0050258234051341
409 => 0.0050321832127424
410 => 0.0051282087569158
411 => 0.0050308684716277
412 => 0.0049730681209449
413 => 0.0051399355676154
414 => 0.0052206774687839
415 => 0.0051963573510526
416 => 0.0050112800542847
417 => 0.0049035571292271
418 => 0.0046216254561509
419 => 0.0049555857014515
420 => 0.0051182479951836
421 => 0.0050108587982402
422 => 0.0050650196627219
423 => 0.0053605037776147
424 => 0.0054730049973862
425 => 0.0054496055301166
426 => 0.0054535596548971
427 => 0.0055142632710443
428 => 0.0057834565351327
429 => 0.0056221496914399
430 => 0.0057454627293909
501 => 0.0058108675200819
502 => 0.0058716191347243
503 => 0.0057224323699076
504 => 0.0055283425808699
505 => 0.0054668661973466
506 => 0.005000181059014
507 => 0.0049758880708529
508 => 0.0049622516804453
509 => 0.0048762761678306
510 => 0.0048087229655903
511 => 0.0047550021510793
512 => 0.0046140226914092
513 => 0.0046615991205524
514 => 0.0044369072865382
515 => 0.0045806571593508
516 => 0.0042220435668902
517 => 0.0045207076229519
518 => 0.0043581583558258
519 => 0.0044673058169524
520 => 0.0044669250117428
521 => 0.0042659499305746
522 => 0.0041500316979997
523 => 0.0042238993074016
524 => 0.0043030912482985
525 => 0.0043159398742753
526 => 0.0044186142927693
527 => 0.0044472685159917
528 => 0.00436044488189
529 => 0.0042146120972813
530 => 0.0042484857270542
531 => 0.0041493452499736
601 => 0.0039756053772731
602 => 0.0041003883870537
603 => 0.0041429947929145
604 => 0.004161812208976
605 => 0.0039909589983343
606 => 0.003937273210147
607 => 0.0039086913469835
608 => 0.0041925570932702
609 => 0.0042081078996424
610 => 0.0041285477755794
611 => 0.0044881670805447
612 => 0.0044067741561769
613 => 0.0044977099944463
614 => 0.0042454120501989
615 => 0.0042550501714334
616 => 0.0041356082813727
617 => 0.0042024877586967
618 => 0.0041552194997503
619 => 0.0041970845578448
620 => 0.0042221783010505
621 => 0.0043416005918724
622 => 0.0045220712336824
623 => 0.004323762884006
624 => 0.0042373570962242
625 => 0.0042909627609994
626 => 0.0044337217103679
627 => 0.0046500088263572
628 => 0.0045219625005077
629 => 0.0045787872855521
630 => 0.0045912009731256
701 => 0.0044967843529767
702 => 0.0046534901018166
703 => 0.0047374699856951
704 => 0.004823615969366
705 => 0.0048984141132319
706 => 0.0047892073690971
707 => 0.0049060742394932
708 => 0.0048119001717336
709 => 0.0047274162974172
710 => 0.0047275444245811
711 => 0.0046745464561099
712 => 0.0045718562140232
713 => 0.0045529185578314
714 => 0.0046514346369033
715 => 0.0047304352028115
716 => 0.0047369420678069
717 => 0.0047806808402894
718 => 0.0048065649952993
719 => 0.0050602649021989
720 => 0.0051623051034696
721 => 0.0052870779300613
722 => 0.0053356839778299
723 => 0.005481970755381
724 => 0.0053638323016773
725 => 0.0053382723040928
726 => 0.0049834284317942
727 => 0.0050415340960043
728 => 0.0051345668707675
729 => 0.0049849625079839
730 => 0.0050798520419926
731 => 0.005098585246041
801 => 0.0049798790089833
802 => 0.0050432851391896
803 => 0.0048748972559692
804 => 0.0045257416293856
805 => 0.0046538788118404
806 => 0.0047482309086364
807 => 0.0046135788329789
808 => 0.00485493746684
809 => 0.0047139407355918
810 => 0.0046692515408229
811 => 0.0044949030591808
812 => 0.0045771888312274
813 => 0.0046884815161391
814 => 0.004619715576027
815 => 0.0047624152270175
816 => 0.0049645159894269
817 => 0.0051085450280283
818 => 0.0051196017891965
819 => 0.0050270007665719
820 => 0.0051753944962996
821 => 0.0051764753826156
822 => 0.0050090866492765
823 => 0.0049065619821307
824 => 0.0048832681620415
825 => 0.0049414606916469
826 => 0.0050121171655215
827 => 0.0051235227317525
828 => 0.0051908427821987
829 => 0.0053663777699667
830 => 0.0054138725046742
831 => 0.0054660548186139
901 => 0.005535786482467
902 => 0.0056195172237543
903 => 0.0054363191286115
904 => 0.0054435979304555
905 => 0.0052730064008087
906 => 0.0050907048860812
907 => 0.0052290490115548
908 => 0.0054099155524637
909 => 0.0053684245681394
910 => 0.0053637559848191
911 => 0.0053716072470069
912 => 0.0053403243997953
913 => 0.0051988332412534
914 => 0.0051277772672152
915 => 0.0052194576020368
916 => 0.0052681816197722
917 => 0.005343748322099
918 => 0.0053344331310176
919 => 0.0055290848409399
920 => 0.0056047206094536
921 => 0.0055853697432308
922 => 0.0055889307683204
923 => 0.0057258657143792
924 => 0.0058781655372161
925 => 0.0060208144190345
926 => 0.0061659229885323
927 => 0.0059909889443189
928 => 0.0059021682250992
929 => 0.0059938085351546
930 => 0.0059451828967085
1001 => 0.0062246002385213
1002 => 0.0062439464890253
1003 => 0.006523343625784
1004 => 0.0067885247785602
1005 => 0.0066219692477153
1006 => 0.0067790236114762
1007 => 0.0069488907107137
1008 => 0.0072765919050865
1009 => 0.0071662336714888
1010 => 0.0070817009940869
1011 => 0.0070018180224011
1012 => 0.0071680418054147
1013 => 0.0073818860467719
1014 => 0.0074279460481856
1015 => 0.0075025808467505
1016 => 0.0074241114819684
1017 => 0.0075186191887314
1018 => 0.0078522729223952
1019 => 0.0077621167383163
1020 => 0.0076340804635944
1021 => 0.0078974680418768
1022 => 0.0079927869825639
1023 => 0.0086617852272229
1024 => 0.0095064231460439
1025 => 0.0091567375014604
1026 => 0.0089396763375822
1027 => 0.0089906908598532
1028 => 0.0092991240350087
1029 => 0.009398182981689
1030 => 0.0091289066169454
1031 => 0.0092240195812607
1101 => 0.0097481013659386
1102 => 0.010029254428862
1103 => 0.0096474108055181
1104 => 0.0085939193928512
1105 => 0.0076225521979309
1106 => 0.0078802025192586
1107 => 0.0078509929686404
1108 => 0.0084140534657427
1109 => 0.0077599665431427
1110 => 0.0077709796894198
1111 => 0.0083456836813108
1112 => 0.008192362509195
1113 => 0.0079440018462595
1114 => 0.0076243655056227
1115 => 0.0070334881671725
1116 => 0.0065101316306736
1117 => 0.0075365543205601
1118 => 0.0074922931077436
1119 => 0.0074281963124412
1120 => 0.0075708367943892
1121 => 0.0082634584855214
1122 => 0.0082474913137431
1123 => 0.0081459163134127
1124 => 0.0082229600559224
1125 => 0.0079304957056966
1126 => 0.0080058704280392
1127 => 0.0076223983284044
1128 => 0.0077957437326488
1129 => 0.0079434689758213
1130 => 0.0079731270054978
1201 => 0.0080399480607354
1202 => 0.0074689694598344
1203 => 0.007725322088588
1204 => 0.0078759052409877
1205 => 0.0071955650801838
1206 => 0.007862457103469
1207 => 0.0074590299927055
1208 => 0.0073221007720405
1209 => 0.0075064579286128
1210 => 0.0074346137654034
1211 => 0.0073728463727067
1212 => 0.0073383791062834
1213 => 0.0074737506553133
1214 => 0.0074674354107471
1215 => 0.0072459412820487
1216 => 0.0069570112204175
1217 => 0.0070539856329069
1218 => 0.0070187539197095
1219 => 0.0068910696461008
1220 => 0.0069771134298551
1221 => 0.0065982201519636
1222 => 0.0059463539605101
1223 => 0.0063769967337857
1224 => 0.0063604174554638
1225 => 0.0063520574315235
1226 => 0.0066756735735481
1227 => 0.0066445653485871
1228 => 0.0065881036156703
1229 => 0.006890032682098
1230 => 0.0067798245113329
1231 => 0.0071194601253202
]
'min_raw' => 0.0030488254484911
'max_raw' => 0.010029254428862
'avg_raw' => 0.0065390399386764
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.003048'
'max' => '$0.010029'
'avg' => '$0.006539'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0016609214991704
'max_diff' => 0.0066298440638305
'year' => 2029
]
4 => [
'items' => [
101 => 0.0073431661069465
102 => 0.0072864270338757
103 => 0.00749682359086
104 => 0.0070562197275099
105 => 0.007202570656956
106 => 0.0072327333806813
107 => 0.0068863069242855
108 => 0.0066496550389126
109 => 0.0066338730561873
110 => 0.0062235512995894
111 => 0.0064427418699625
112 => 0.0066356205011687
113 => 0.0065432466048074
114 => 0.006514003788811
115 => 0.0066633989937434
116 => 0.00667500828065
117 => 0.0064103153088814
118 => 0.0064653533594484
119 => 0.0066948711796273
120 => 0.0064595700992619
121 => 0.0060024185363254
122 => 0.0058890386281023
123 => 0.0058739116583391
124 => 0.0055664163549641
125 => 0.0058966152157169
126 => 0.005752474564219
127 => 0.0062078131552308
128 => 0.0059477261940747
129 => 0.0059365143650085
130 => 0.0059195660409571
131 => 0.0056548921308713
201 => 0.0057128388962756
202 => 0.0059054627700212
203 => 0.0059741931382368
204 => 0.0059670239977406
205 => 0.0059045188079542
206 => 0.0059331333637601
207 => 0.0058409559095373
208 => 0.0058084061319434
209 => 0.0057056700803355
210 => 0.0055546764660305
211 => 0.0055756730541972
212 => 0.0052765151946306
213 => 0.0051135181152294
214 => 0.0050684026719182
215 => 0.0050080724156182
216 => 0.0050752171348999
217 => 0.0052756677180017
218 => 0.0050338817868174
219 => 0.0046193567671132
220 => 0.0046442704271137
221 => 0.0047002440242027
222 => 0.0045959375963296
223 => 0.0044972203161227
224 => 0.0045830469820765
225 => 0.0044074072666411
226 => 0.0047214692446844
227 => 0.0047129747483269
228 => 0.004830037632279
301 => 0.0049032394559865
302 => 0.0047345329517126
303 => 0.0046921037221186
304 => 0.0047162733395963
305 => 0.0043168034011782
306 => 0.0047973924158756
307 => 0.0048015485696316
308 => 0.0047659610578986
309 => 0.0050218598717038
310 => 0.0055618861856744
311 => 0.0053587065638505
312 => 0.0052800292731437
313 => 0.0051304636859974
314 => 0.0053297509505441
315 => 0.0053144487979925
316 => 0.0052452466609853
317 => 0.0052033929925995
318 => 0.0052805096599038
319 => 0.0051938373841081
320 => 0.0051782686617804
321 => 0.0050839391434111
322 => 0.0050502677970729
323 => 0.005025338872739
324 => 0.0049978945765128
325 => 0.0050584298552951
326 => 0.0049212489494953
327 => 0.0047558222251108
328 => 0.0047420687829202
329 => 0.0047800432460235
330 => 0.0047632423729666
331 => 0.0047419883468038
401 => 0.0047014086226694
402 => 0.0046893694853674
403 => 0.0047284908410399
404 => 0.0046843251114023
405 => 0.0047494940513144
406 => 0.0047317717056202
407 => 0.0046327761232153
408 => 0.0045093909746798
409 => 0.0045082925880487
410 => 0.0044817094601889
411 => 0.0044478518500595
412 => 0.0044384334374786
413 => 0.0045758188996599
414 => 0.0048602026947744
415 => 0.0048043713510659
416 => 0.0048447152187215
417 => 0.0050431671177936
418 => 0.0051062490088518
419 => 0.0050614749767552
420 => 0.0050001855200793
421 => 0.0050028819451238
422 => 0.0052123265721656
423 => 0.0052253893766442
424 => 0.0052583948693411
425 => 0.0053008162548078
426 => 0.0050686995221354
427 => 0.0049919492678888
428 => 0.0049555807394848
429 => 0.0048435797483921
430 => 0.0049643632150463
501 => 0.0048939878614906
502 => 0.0049034839010497
503 => 0.0048972995928293
504 => 0.0049006766432987
505 => 0.004721381457961
506 => 0.0047867072000205
507 => 0.0046780904837105
508 => 0.0045326648933699
509 => 0.0045321773757983
510 => 0.0045677700830098
511 => 0.0045465981480176
512 => 0.0044896250153338
513 => 0.0044977177799259
514 => 0.0044268166464918
515 => 0.0045063264612313
516 => 0.0045086065182182
517 => 0.0044779909086146
518 => 0.004600486748461
519 => 0.0046506733939931
520 => 0.0046305215439021
521 => 0.00464925948647
522 => 0.0048066913954604
523 => 0.0048323596658616
524 => 0.0048437598160231
525 => 0.0048284851250372
526 => 0.0046521370527645
527 => 0.0046599588396597
528 => 0.0046025677572599
529 => 0.0045540783403553
530 => 0.004556017662738
531 => 0.0045809475262099
601 => 0.004689817702109
602 => 0.0049189285690411
603 => 0.0049276231589633
604 => 0.0049381612555881
605 => 0.004895297520592
606 => 0.0048823694079665
607 => 0.0048994249255486
608 => 0.0049854669210912
609 => 0.0052067902938007
610 => 0.0051285598321941
611 => 0.0050649572491783
612 => 0.0051207538616164
613 => 0.0051121644104799
614 => 0.0050396607987693
615 => 0.0050376258638694
616 => 0.0048984682521899
617 => 0.0048470248516176
618 => 0.0048040348956275
619 => 0.0047570909859676
620 => 0.004729261062747
621 => 0.0047720204732876
622 => 0.0047818000563928
623 => 0.0046883058579391
624 => 0.0046755629441628
625 => 0.0047519123248325
626 => 0.0047183138089916
627 => 0.0047528707157371
628 => 0.0047608882145257
629 => 0.0047595972125621
630 => 0.0047245165032592
701 => 0.004746875901247
702 => 0.0046939892593484
703 => 0.0046364829796004
704 => 0.004599797555889
705 => 0.0045677846580855
706 => 0.0045855472743875
707 => 0.0045222267905967
708 => 0.0045019692934425
709 => 0.0047393010403111
710 => 0.0049146205534692
711 => 0.0049120713383138
712 => 0.0048965536466598
713 => 0.0048734975045107
714 => 0.0049837802206851
715 => 0.0049453599275425
716 => 0.0049733139009267
717 => 0.0049804293603775
718 => 0.005001965713096
719 => 0.0050096631080807
720 => 0.0049863962342522
721 => 0.0049083097638743
722 => 0.0047137257039314
723 => 0.0046231462987584
724 => 0.004593253586332
725 => 0.0045943401296543
726 => 0.0045643684142807
727 => 0.0045731964276963
728 => 0.0045612983914836
729 => 0.0045387663893408
730 => 0.0045841559867487
731 => 0.0045893867150166
801 => 0.0045787922406163
802 => 0.0045812876228631
803 => 0.0044935698997878
804 => 0.0045002388877604
805 => 0.0044631051152753
806 => 0.0044561429805887
807 => 0.0043622720373538
808 => 0.0041959660546026
809 => 0.0042881157127591
810 => 0.0041768118839087
811 => 0.0041346594373949
812 => 0.0043342025631411
813 => 0.0043141739677809
814 => 0.0042798937187455
815 => 0.0042291860857922
816 => 0.0042103781314777
817 => 0.0040961069549374
818 => 0.0040893552042144
819 => 0.0041459910848891
820 => 0.0041198555746794
821 => 0.0040831514200532
822 => 0.0039502126926378
823 => 0.0038007455485228
824 => 0.0038052570220866
825 => 0.0038527997396945
826 => 0.0039910366031485
827 => 0.003937025069075
828 => 0.0038978390813938
829 => 0.0038905007238275
830 => 0.0039823556326611
831 => 0.004112349572859
901 => 0.0041733398211494
902 => 0.004112900337395
903 => 0.0040434707127509
904 => 0.0040476965722971
905 => 0.0040758093226394
906 => 0.0040787635752075
907 => 0.0040335720270449
908 => 0.0040462931831417
909 => 0.0040269685837838
910 => 0.003908373553195
911 => 0.0039062285451605
912 => 0.0038771234120508
913 => 0.0038762421201873
914 => 0.003826727028152
915 => 0.0038197995244946
916 => 0.0037214843039072
917 => 0.0037861956798238
918 => 0.0037427906863587
919 => 0.0036773691230039
920 => 0.0036660904208227
921 => 0.0036657513694157
922 => 0.0037329246869871
923 => 0.0037854107204977
924 => 0.0037435457348033
925 => 0.0037340138890793
926 => 0.0038357890640694
927 => 0.0038228372453506
928 => 0.0038116210538704
929 => 0.0041007100413003
930 => 0.0038718735498545
1001 => 0.0037720877780539
1002 => 0.0036485839366464
1003 => 0.0036887974101691
1004 => 0.0036972709798992
1005 => 0.003400266504555
1006 => 0.0032797718258974
1007 => 0.0032384225929283
1008 => 0.0032146255247622
1009 => 0.0032254701475502
1010 => 0.0031170108041422
1011 => 0.0031898972766644
1012 => 0.0030959806531131
1013 => 0.0030802352255436
1014 => 0.0032481697824904
1015 => 0.0032715368950301
1016 => 0.003171845533343
1017 => 0.0032358635261115
1018 => 0.003212649712017
1019 => 0.0030975905840669
1020 => 0.0030931961716968
1021 => 0.0030354635458154
1022 => 0.0029451231655501
1023 => 0.0029038351876129
1024 => 0.0028823320502245
1025 => 0.0028912046637988
1026 => 0.0028867183988692
1027 => 0.0028574424855771
1028 => 0.0028883964599499
1029 => 0.0028093218464926
1030 => 0.0027778336982664
1031 => 0.0027636112322322
1101 => 0.0026934279614238
1102 => 0.0028051207559221
1103 => 0.002827125643507
1104 => 0.0028491738875181
1105 => 0.0030410887986591
1106 => 0.0030315012720444
1107 => 0.0031181678433265
1108 => 0.0031148001397361
1109 => 0.0030900814297011
1110 => 0.0029857972580938
1111 => 0.0030273630702098
1112 => 0.0028994299612781
1113 => 0.0029952861450955
1114 => 0.0029515413858512
1115 => 0.0029804959979918
1116 => 0.0029284329946309
1117 => 0.0029572468103195
1118 => 0.0028323438186808
1119 => 0.0027157111625212
1120 => 0.0027626475480793
1121 => 0.0028136727670078
1122 => 0.0029243084426287
1123 => 0.0028584147469534
1124 => 0.0028821126116347
1125 => 0.0028027287319269
1126 => 0.0026389371132054
1127 => 0.0026398641559797
1128 => 0.0026146683838338
1129 => 0.0025928955580567
1130 => 0.0028659834305636
1201 => 0.002832020636737
1202 => 0.0027779053697148
1203 => 0.0028503408050792
1204 => 0.0028694938838945
1205 => 0.0028700391451223
1206 => 0.002922886168935
1207 => 0.0029510906350172
1208 => 0.0029560617944093
1209 => 0.0030392177282141
1210 => 0.0030670905003722
1211 => 0.0031818945041889
1212 => 0.0029486976831238
1213 => 0.0029438951480534
1214 => 0.0028513601202013
1215 => 0.0027926729426167
1216 => 0.0028553784814596
1217 => 0.0029109270287149
1218 => 0.0028530861684055
1219 => 0.0028606389636747
1220 => 0.0027829923344814
1221 => 0.0028107473508045
1222 => 0.0028346537098665
1223 => 0.0028214540235433
1224 => 0.0028016934542455
1225 => 0.0029063726813072
1226 => 0.0029004662690752
1227 => 0.0029979459718801
1228 => 0.0030739383710569
1229 => 0.003210130335648
1230 => 0.0030680069207495
1231 => 0.0030628273786212
]
'min_raw' => 0.0025928955580567
'max_raw' => 0.00749682359086
'avg_raw' => 0.0050448595744584
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.002592'
'max' => '$0.007496'
'avg' => '$0.005044'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.00045592989043438
'max_diff' => -0.0025324308380016
'year' => 2030
]
5 => [
'items' => [
101 => 0.0031134582337502
102 => 0.0030670827490521
103 => 0.0030963904545539
104 => 0.0032054084111963
105 => 0.0032077117888319
106 => 0.0031691272457011
107 => 0.003166779372745
108 => 0.0031741899563219
109 => 0.0032175939757974
110 => 0.0032024272777219
111 => 0.0032199785647087
112 => 0.0032419267178406
113 => 0.0033327135850181
114 => 0.0033546019913371
115 => 0.0033014245118194
116 => 0.0033062258428169
117 => 0.0032863360057228
118 => 0.0032671226723089
119 => 0.0033103114399414
120 => 0.0033892397616672
121 => 0.0033887487526741
122 => 0.0034070585891671
123 => 0.0034184654656154
124 => 0.0033694988015554
125 => 0.0033376233038065
126 => 0.0033498463979341
127 => 0.0033693913916284
128 => 0.0033435082198999
129 => 0.0031837452937399
130 => 0.0032322071598416
131 => 0.0032241407356581
201 => 0.0032126531667101
202 => 0.0032613819478199
203 => 0.0032566819380072
204 => 0.003115898396811
205 => 0.0031249109023473
206 => 0.003116446477123
207 => 0.0031437967666812
208 => 0.0030656057436599
209 => 0.0030896567757167
210 => 0.0031047413575583
211 => 0.0031136262921482
212 => 0.0031457247683436
213 => 0.0031419583826413
214 => 0.0031454906445201
215 => 0.0031930842110344
216 => 0.0034337961383238
217 => 0.0034468975574252
218 => 0.0033823813781509
219 => 0.0034081543192456
220 => 0.0033586759082663
221 => 0.0033918910970333
222 => 0.0034146160856133
223 => 0.0033119262319842
224 => 0.0033058456053039
225 => 0.0032561629793221
226 => 0.0032828596083569
227 => 0.0032403833520069
228 => 0.0032508055395588
301 => 0.0032216641945737
302 => 0.0032741128135631
303 => 0.0033327585192846
304 => 0.003347574740539
305 => 0.003308599641203
306 => 0.0032803791006996
307 => 0.0032308331279996
308 => 0.0033132291848038
309 => 0.0033373243027877
310 => 0.0033131026234066
311 => 0.0033074899310399
312 => 0.0032968538891468
313 => 0.0033097464176073
314 => 0.0033371930756004
315 => 0.0033242497385511
316 => 0.0033327990407044
317 => 0.0033002179168979
318 => 0.0033695150115588
319 => 0.0034795754751342
320 => 0.0034799293375213
321 => 0.0034669859307025
322 => 0.0034616897675018
323 => 0.0034749704883695
324 => 0.0034821747346365
325 => 0.0035251221506549
326 => 0.0035712064391431
327 => 0.0037862617053673
328 => 0.0037258750471691
329 => 0.0039166848730582
330 => 0.0040675906717815
331 => 0.0041128407225079
401 => 0.0040712128050191
402 => 0.0039288059479858
403 => 0.003921818788192
404 => 0.0041346347552239
405 => 0.0040745044969486
406 => 0.0040673521940596
407 => 0.0039912637753276
408 => 0.0040362414545322
409 => 0.0040264041763074
410 => 0.0040108755513734
411 => 0.0040966898301236
412 => 0.0042573264992502
413 => 0.0042322897679257
414 => 0.0042136010094125
415 => 0.0041317123098233
416 => 0.0041810275974792
417 => 0.0041634673681171
418 => 0.0042389172574538
419 => 0.0041942224144304
420 => 0.0040740489511024
421 => 0.0040931869712343
422 => 0.0040902942979917
423 => 0.004149825308347
424 => 0.0041319555766889
425 => 0.0040868049460865
426 => 0.0042567774605786
427 => 0.0042457403909243
428 => 0.0042613884322687
429 => 0.0042682771840003
430 => 0.00437173645832
501 => 0.0044141204126812
502 => 0.0044237423123568
503 => 0.0044640037909073
504 => 0.0044227405700931
505 => 0.0045878228735278
506 => 0.0046975929724925
507 => 0.0048250965911576
508 => 0.0050114136477691
509 => 0.0050814705845841
510 => 0.0050688154260038
511 => 0.0052100788919195
512 => 0.0054639262000595
513 => 0.0051201252247512
514 => 0.0054821484865648
515 => 0.0053675361016342
516 => 0.0050957921987524
517 => 0.005078295095057
518 => 0.0052623232211001
519 => 0.005670479892613
520 => 0.0055682412756737
521 => 0.0056706471183644
522 => 0.0055511852632591
523 => 0.0055452529752496
524 => 0.0056648451227058
525 => 0.0059442786938658
526 => 0.0058115302786185
527 => 0.0056212028741146
528 => 0.0057617376677778
529 => 0.0056399934236255
530 => 0.0053656695674821
531 => 0.0055681630957301
601 => 0.0054327614400743
602 => 0.0054722788415426
603 => 0.0057568729822549
604 => 0.0057226298623017
605 => 0.0057669436303487
606 => 0.005688730989639
607 => 0.0056156680502148
608 => 0.0054792906480543
609 => 0.0054389160225993
610 => 0.0054500741165482
611 => 0.0054389104932021
612 => 0.0053626085900663
613 => 0.0053461312013489
614 => 0.005318668164929
615 => 0.0053271801082734
616 => 0.0052755415652092
617 => 0.0053729941650388
618 => 0.0053910822263165
619 => 0.0054620001016001
620 => 0.005469363030673
621 => 0.005666868303885
622 => 0.0055580857183411
623 => 0.0056310664685605
624 => 0.0056245383833395
625 => 0.0051016817131274
626 => 0.0051737267490792
627 => 0.0052858062160424
628 => 0.0052353145680956
629 => 0.0051639311911248
630 => 0.0051062852868865
701 => 0.0050189458473689
702 => 0.0051418744312845
703 => 0.0053035124471359
704 => 0.0054734624374984
705 => 0.0056776462153544
706 => 0.0056320747730981
707 => 0.0054696453637986
708 => 0.0054769318284451
709 => 0.0055219738857711
710 => 0.0054636403290314
711 => 0.0054464366243426
712 => 0.0055196103609277
713 => 0.005520114268236
714 => 0.0054529944613612
715 => 0.0053784030788149
716 => 0.0053780905381985
717 => 0.0053648177221417
718 => 0.0055535464677499
719 => 0.005657328195206
720 => 0.0056692266030063
721 => 0.0056565273375595
722 => 0.0056614147808142
723 => 0.0056010264802817
724 => 0.0057390562277046
725 => 0.005865725973667
726 => 0.0058317757758447
727 => 0.005780879603004
728 => 0.0057403383498446
729 => 0.0058222255450199
730 => 0.0058185792371211
731 => 0.0058646196239403
801 => 0.005862530966052
802 => 0.0058470493156312
803 => 0.0058317763287432
804 => 0.0058923319953743
805 => 0.0058748929358788
806 => 0.0058574267887071
807 => 0.0058223957566208
808 => 0.0058271570556852
809 => 0.0057762696707863
810 => 0.0057527268380838
811 => 0.0053986991213921
812 => 0.0053040913473028
813 => 0.0053338568789501
814 => 0.0053436564648301
815 => 0.0053024830403032
816 => 0.0053615151544898
817 => 0.0053523150620243
818 => 0.0053881072399335
819 => 0.0053657458410916
820 => 0.0053666635607
821 => 0.0054324236667412
822 => 0.0054515141052885
823 => 0.0054418045541646
824 => 0.0054486047909478
825 => 0.0056053133774166
826 => 0.0055830344276792
827 => 0.0055711991796672
828 => 0.00557447762425
829 => 0.0056145200279628
830 => 0.0056257297147682
831 => 0.0055782334840831
901 => 0.0056006329810466
902 => 0.0056960071961979
903 => 0.0057293827737878
904 => 0.0058359015962687
905 => 0.0057906505072577
906 => 0.0058737108395586
907 => 0.0061290099836976
908 => 0.0063329606053929
909 => 0.006145399185066
910 => 0.0065199285288543
911 => 0.006811553346037
912 => 0.006800360299827
913 => 0.0067495087675476
914 => 0.006417501666432
915 => 0.0061119837820385
916 => 0.0063675624653083
917 => 0.0063682139879322
918 => 0.0063462595523778
919 => 0.0062099024386893
920 => 0.0063415146203926
921 => 0.006351961517431
922 => 0.0063461140331436
923 => 0.0062415693537849
924 => 0.0060819489514904
925 => 0.0061131383960215
926 => 0.0061642273424108
927 => 0.0060675053086251
928 => 0.0060365967582359
929 => 0.0060940616340018
930 => 0.0062792254370018
1001 => 0.0062442212926255
1002 => 0.006243307192953
1003 => 0.0063930697666621
1004 => 0.0062858720846726
1005 => 0.0061135317947994
1006 => 0.0060700135987173
1007 => 0.0059155533199953
1008 => 0.0060222395846772
1009 => 0.0060260790334132
1010 => 0.0059676480565541
1011 => 0.0061182731465401
1012 => 0.0061168851098188
1013 => 0.0062598812151745
1014 => 0.0065332360617299
1015 => 0.0064523915826284
1016 => 0.0063583782492877
1017 => 0.0063686001053288
1018 => 0.0064807086364093
1019 => 0.0064129252593292
1020 => 0.0064373006343297
1021 => 0.0064806717413599
1022 => 0.0065068386070752
1023 => 0.0063648350960376
1024 => 0.0063317272848016
1025 => 0.0062640003222755
1026 => 0.006246331621936
1027 => 0.0063014938197441
1028 => 0.0062869605295309
1029 => 0.0060257563426141
1030 => 0.0059984590517549
1031 => 0.005999296220694
1101 => 0.0059306558849131
1102 => 0.0058259628972791
1103 => 0.0061010898178877
1104 => 0.0060789932757641
1105 => 0.0060546004033961
1106 => 0.0060575883910774
1107 => 0.0061770116623971
1108 => 0.0061077401340119
1109 => 0.0062919098456041
1110 => 0.006254050089549
1111 => 0.0062152193736091
1112 => 0.0062098517858536
1113 => 0.0061949052730978
1114 => 0.0061436481195054
1115 => 0.0060817520264652
1116 => 0.0060408828644924
1117 => 0.0055723951226342
1118 => 0.0056593437224552
1119 => 0.0057593701609351
1120 => 0.0057938988866676
1121 => 0.0057348351119871
1122 => 0.0061459803173277
1123 => 0.0062211005082372
1124 => 0.0059935565500035
1125 => 0.0059509923659766
1126 => 0.0061487708181464
1127 => 0.0060294862340555
1128 => 0.0060832000749678
1129 => 0.0059671001308157
1130 => 0.0062030062540231
1201 => 0.0062012090446151
1202 => 0.006109436234506
1203 => 0.0061870019851771
1204 => 0.0061735230271987
1205 => 0.0060699117506119
1206 => 0.006206290916299
1207 => 0.0062063585586637
1208 => 0.0061180292242466
1209 => 0.0060148798994251
1210 => 0.0059964392364253
1211 => 0.0059825466740095
1212 => 0.006079783356243
1213 => 0.0061669654614824
1214 => 0.006329189745056
1215 => 0.0063699767843004
1216 => 0.0065291713138179
1217 => 0.0064343787225312
1218 => 0.006476399050479
1219 => 0.0065220180606047
1220 => 0.0065438894916425
1221 => 0.0065082511684521
1222 => 0.0067555457998754
1223 => 0.0067764250436792
1224 => 0.0067834256735219
1225 => 0.0067000393151935
1226 => 0.0067741059182093
1227 => 0.0067394526074863
1228 => 0.0068296108950206
1229 => 0.0068437488657048
1230 => 0.0068317745075082
1231 => 0.006836262122556
]
'min_raw' => 0.0030656057436599
'max_raw' => 0.0068437488657048
'avg_raw' => 0.0049546773046824
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.003065'
'max' => '$0.006843'
'avg' => '$0.004954'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0004727101856032
'max_diff' => -0.00065307472515527
'year' => 2031
]
6 => [
'items' => [
101 => 0.0066252397803986
102 => 0.0066142971587262
103 => 0.0064650937357701
104 => 0.0065258952334807
105 => 0.0064122297478023
106 => 0.0064482742441952
107 => 0.0064641623147606
108 => 0.0064558632883373
109 => 0.0065293328589355
110 => 0.0064668687150854
111 => 0.0063020155694089
112 => 0.0061371175096031
113 => 0.0061350473487853
114 => 0.006091632600331
115 => 0.0060602516890063
116 => 0.0060662967658251
117 => 0.0060876004050062
118 => 0.0060590134827692
119 => 0.0060651139520222
120 => 0.0061664223888361
121 => 0.0061867390733405
122 => 0.0061176950411537
123 => 0.0058404732889175
124 => 0.0057724423755607
125 => 0.0058213416469699
126 => 0.0057979709447527
127 => 0.0046794150654942
128 => 0.0049422031775521
129 => 0.0047860634048084
130 => 0.0048580197957342
131 => 0.004698641519961
201 => 0.0047747051868911
202 => 0.0047606590050095
203 => 0.005183214512733
204 => 0.005176616889686
205 => 0.0051797748227002
206 => 0.0050290384519836
207 => 0.0052691655834736
208 => 0.0053874608431379
209 => 0.0053655675389004
210 => 0.0053710776119043
211 => 0.0052763963019529
212 => 0.0051806915447436
213 => 0.005074540240142
214 => 0.005271756243394
215 => 0.0052498291904218
216 => 0.0053001219608354
217 => 0.0054280306362354
218 => 0.0054468656745658
219 => 0.0054721801570881
220 => 0.0054631067171114
221 => 0.00567927286856
222 => 0.0056530937213094
223 => 0.0057161779339287
224 => 0.0055864089223601
225 => 0.0054395629679825
226 => 0.0054674735831538
227 => 0.0054647855664698
228 => 0.0054305640289208
229 => 0.0053996703549698
301 => 0.0053482410920802
302 => 0.0055109708899618
303 => 0.0055043643573473
304 => 0.0056113164411218
305 => 0.0055924116214375
306 => 0.005466160608792
307 => 0.0054706696884075
308 => 0.0055009954158113
309 => 0.0056059531046091
310 => 0.0056371116927086
311 => 0.0056226777932458
312 => 0.0056568417626534
313 => 0.0056838435710959
314 => 0.0056602327740667
315 => 0.0059945118692369
316 => 0.005855695883065
317 => 0.0059233538288498
318 => 0.0059394898502557
319 => 0.0058981577707284
320 => 0.0059071212187871
321 => 0.0059206984002026
322 => 0.0060031363870726
323 => 0.0062194775182432
324 => 0.0063152935325548
325 => 0.0066035607390901
326 => 0.0063073373463895
327 => 0.0062897606761609
328 => 0.0063416863048936
329 => 0.0065109296713126
330 => 0.0066480855235741
331 => 0.0066935880324802
401 => 0.0066996019401967
402 => 0.0067849676718541
403 => 0.0068338977172635
404 => 0.0067746020266892
405 => 0.0067243551374452
406 => 0.0065443770170464
407 => 0.0065652099745467
408 => 0.0067087283926739
409 => 0.0069114566114713
410 => 0.0070854185134756
411 => 0.0070245031185781
412 => 0.0074892445820794
413 => 0.0075353217998869
414 => 0.0075289554182407
415 => 0.0076339261776156
416 => 0.0074255805971798
417 => 0.007336508825038
418 => 0.0067352190852262
419 => 0.0069041569758235
420 => 0.0071497181211812
421 => 0.0071172171827861
422 => 0.0069388841151591
423 => 0.0070852832318523
424 => 0.0070368791055499
425 => 0.0069987007628461
426 => 0.007173603152008
427 => 0.0069812907905304
428 => 0.0071477996582642
429 => 0.0069342503130819
430 => 0.0070247813749709
501 => 0.0069733915657479
502 => 0.0070066470704133
503 => 0.0068122360696611
504 => 0.0069171355266067
505 => 0.0068078719073747
506 => 0.0068078201021926
507 => 0.0068054081017422
508 => 0.0069339562652195
509 => 0.0069381482162155
510 => 0.0068431509291802
511 => 0.0068294603359819
512 => 0.0068800816345664
513 => 0.0068208173516631
514 => 0.0068485467366286
515 => 0.0068216572464853
516 => 0.0068156038558747
517 => 0.0067673694095902
518 => 0.0067465886838971
519 => 0.0067547373418947
520 => 0.0067269217712277
521 => 0.0067101618837678
522 => 0.0068020741382861
523 => 0.0067529691284267
524 => 0.0067945480912602
525 => 0.006747163615428
526 => 0.0065829083777603
527 => 0.0064884434536099
528 => 0.0061781805361242
529 => 0.0062661707146432
530 => 0.0063245082940337
531 => 0.0063052277243932
601 => 0.0063466498485711
602 => 0.006349192830579
603 => 0.0063357260757602
604 => 0.0063201332988782
605 => 0.0063125435974267
606 => 0.0063691110139206
607 => 0.0064019503031671
608 => 0.0063303632505817
609 => 0.0063135914057703
610 => 0.0063859698683636
611 => 0.0064301206887338
612 => 0.0067561055401447
613 => 0.0067319555294349
614 => 0.0067925673171161
615 => 0.0067857433599869
616 => 0.0068492741696917
617 => 0.0069531201934356
618 => 0.0067419721913593
619 => 0.0067786201835712
620 => 0.0067696349422066
621 => 0.0068677334513687
622 => 0.0068680397042065
623 => 0.0068092247475798
624 => 0.0068411092897308
625 => 0.0068233122130088
626 => 0.0068554739360647
627 => 0.0067316329913183
628 => 0.0068824578942155
629 => 0.0069679658952161
630 => 0.006969153173893
701 => 0.0070096832877338
702 => 0.007050864230742
703 => 0.007129907464742
704 => 0.0070486597578465
705 => 0.0069025030424465
706 => 0.006913055085215
707 => 0.0068273634564527
708 => 0.0068288039482136
709 => 0.0068211144903003
710 => 0.0068441911323336
711 => 0.0067366970165325
712 => 0.0067619256706548
713 => 0.0067266054071448
714 => 0.0067785434042162
715 => 0.0067226667050258
716 => 0.0067696306092511
717 => 0.0067898986734367
718 => 0.0068646882666216
719 => 0.0067116202213028
720 => 0.0063995041151022
721 => 0.0064651147046676
722 => 0.0063680714890998
723 => 0.0063770532081702
724 => 0.0063951977101223
725 => 0.0063363854427838
726 => 0.0063476049700045
727 => 0.0063472041295415
728 => 0.0063437499029836
729 => 0.0063284505608114
730 => 0.006306263487779
731 => 0.0063946499579191
801 => 0.0064096685415193
802 => 0.0064430529924538
803 => 0.0065423824735452
804 => 0.0065324571160337
805 => 0.0065486457859341
806 => 0.006513306010437
807 => 0.0063786925189986
808 => 0.0063860026792287
809 => 0.0062948448640213
810 => 0.0064407218821682
811 => 0.0064061762787885
812 => 0.0063839045035571
813 => 0.0063778274433387
814 => 0.0064774031430013
815 => 0.0065071977529982
816 => 0.00648863175149
817 => 0.0064505523407399
818 => 0.0065236760665472
819 => 0.0065432408907309
820 => 0.0065476207333427
821 => 0.0066771819553895
822 => 0.0065548617664095
823 => 0.0065843054516551
824 => 0.0068140166788707
825 => 0.0066057002937687
826 => 0.0067160501289669
827 => 0.0067106490787668
828 => 0.0067671003204194
829 => 0.006706018429263
830 => 0.0067067756125099
831 => 0.0067569004907591
901 => 0.0066865091393275
902 => 0.0066690792507973
903 => 0.006644999984628
904 => 0.0066975761813863
905 => 0.0067290932335261
906 => 0.0069830975270488
907 => 0.0071471958846675
908 => 0.0071400719421847
909 => 0.0072051714410165
910 => 0.0071758435205497
911 => 0.0070811359290479
912 => 0.0072427902393811
913 => 0.007191636051688
914 => 0.0071958531407691
915 => 0.0071956961805029
916 => 0.007229709243342
917 => 0.0072056078710691
918 => 0.0071581015923639
919 => 0.0071896384771936
920 => 0.0072832917504951
921 => 0.0075739943844563
922 => 0.0077366754297186
923 => 0.0075642007812631
924 => 0.0076831714842401
925 => 0.0076118314560498
926 => 0.0075988668507456
927 => 0.0076735892440811
928 => 0.0077484424290745
929 => 0.0077436746047896
930 => 0.007689335036238
1001 => 0.0076586399927787
1002 => 0.0078910731454464
1003 => 0.0080623259329366
1004 => 0.008050647640923
1005 => 0.0081021918238869
1006 => 0.0082535271392704
1007 => 0.0082673633439132
1008 => 0.0082656203001497
1009 => 0.008231325823284
1010 => 0.0083803350946531
1011 => 0.0085046412503979
1012 => 0.0082233876427523
1013 => 0.0083304853346637
1014 => 0.0083785649390348
1015 => 0.0084491600628275
1016 => 0.0085682658697822
1017 => 0.0086976463673901
1018 => 0.0087159421883368
1019 => 0.0087029604278395
1020 => 0.0086176305117326
1021 => 0.0087592001960455
1022 => 0.0088421283968984
1023 => 0.0088915102427281
1024 => 0.0090167343873967
1025 => 0.0083788618623032
1026 => 0.0079273439847204
1027 => 0.0078568329481386
1028 => 0.0080002199137372
1029 => 0.0080380299130759
1030 => 0.0080227887497522
1031 => 0.0075145643283233
1101 => 0.0078541572517393
1102 => 0.0082195306835509
1103 => 0.0082335661650969
1104 => 0.00841647974466
1105 => 0.0084760439040467
1106 => 0.0086233133106259
1107 => 0.0086141015691472
1108 => 0.0086499593260812
1109 => 0.0086417162487318
1110 => 0.0089145018131876
1111 => 0.0092154247998306
1112 => 0.0092050047936796
1113 => 0.0091617435539905
1114 => 0.0092259938720663
1115 => 0.009536578643149
1116 => 0.0095079849744472
1117 => 0.0095357612879881
1118 => 0.0099019582368851
1119 => 0.01037806636136
1120 => 0.010156866337067
1121 => 0.01063680674119
1122 => 0.010938903785038
1123 => 0.011461349384955
1124 => 0.011395936622746
1125 => 0.011599320860911
1126 => 0.011278834126338
1127 => 0.010542931802702
1128 => 0.010426472443065
1129 => 0.010659627030278
1130 => 0.011232814832048
1201 => 0.010641575306598
1202 => 0.010761182292565
1203 => 0.01072673547256
1204 => 0.010724899947911
1205 => 0.010794954458126
1206 => 0.010693336737262
1207 => 0.010279327861783
1208 => 0.010469065689646
1209 => 0.010395798802349
1210 => 0.010477093876213
1211 => 0.010915809861217
1212 => 0.010721843066564
1213 => 0.01051751480498
1214 => 0.010773787789077
1215 => 0.011100111362785
1216 => 0.011079690620002
1217 => 0.011040065843795
1218 => 0.011263428632588
1219 => 0.011632358520517
1220 => 0.011732078786744
1221 => 0.011805690248581
1222 => 0.011815840025493
1223 => 0.011920389035733
1224 => 0.011358202657928
1225 => 0.012250406877475
1226 => 0.012404465899547
1227 => 0.012375509188489
1228 => 0.012546739307727
1229 => 0.012496359062959
1230 => 0.012423365992707
1231 => 0.01269480215339
]
'min_raw' => 0.0046794150654942
'max_raw' => 0.01269480215339
'avg_raw' => 0.008687108609442
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.004679'
'max' => '$0.012694'
'avg' => '$0.008687'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0016138093218342
'max_diff' => 0.0058510532876851
'year' => 2032
]
7 => [
'items' => [
101 => 0.012383622498936
102 => 0.011941942155867
103 => 0.011699627584213
104 => 0.012018726959126
105 => 0.012213589812352
106 => 0.012342381762729
107 => 0.012381354129095
108 => 0.011401843586098
109 => 0.010873941729568
110 => 0.011212320767197
111 => 0.011625166546777
112 => 0.011355909278778
113 => 0.011366463653912
114 => 0.01098257354931
115 => 0.011659132302818
116 => 0.011560563383186
117 => 0.012071939112599
118 => 0.011949895190728
119 => 0.012366902246573
120 => 0.012257090313341
121 => 0.012712913508686
122 => 0.012894753722229
123 => 0.013200091741937
124 => 0.013424699632184
125 => 0.013556593681402
126 => 0.013548675257409
127 => 0.014071305189762
128 => 0.013763128577953
129 => 0.013375986121869
130 => 0.013368983936257
131 => 0.013569490500114
201 => 0.013989697251668
202 => 0.014098650748587
203 => 0.014159540889655
204 => 0.014066285519008
205 => 0.013731781894105
206 => 0.013587344924844
207 => 0.013710409407396
208 => 0.013559912120286
209 => 0.013819712659919
210 => 0.014176474291235
211 => 0.014102804425157
212 => 0.014349071742253
213 => 0.014603932507371
214 => 0.014968394848003
215 => 0.015063678799845
216 => 0.015221179548916
217 => 0.015383299556012
218 => 0.015435368133034
219 => 0.0155347832025
220 => 0.015534259236012
221 => 0.015833853239254
222 => 0.016164314702484
223 => 0.016289056254653
224 => 0.016575892575576
225 => 0.016084695427939
226 => 0.016457274106888
227 => 0.01679334940155
228 => 0.016392666580496
301 => 0.016944914502194
302 => 0.016966357037573
303 => 0.017290113864043
304 => 0.016961924296113
305 => 0.016767046378294
306 => 0.017329651625057
307 => 0.017601878582066
308 => 0.017519881607158
309 => 0.016895880579421
310 => 0.016532685216615
311 => 0.015582132896998
312 => 0.016708103180389
313 => 0.017256530460425
314 => 0.016894460285256
315 => 0.017077067421247
316 => 0.01807331274465
317 => 0.018452618461694
318 => 0.018373725524096
319 => 0.018387057131862
320 => 0.018591723611893
321 => 0.019499327496241
322 => 0.018955470210646
323 => 0.019371228727539
324 => 0.019591745545771
325 => 0.01979657385608
326 => 0.019293580262613
327 => 0.018639192987956
328 => 0.018431921068763
329 => 0.016858459541959
330 => 0.016776554036292
331 => 0.01673057799397
401 => 0.016440705550571
402 => 0.016212945212804
403 => 0.016031821736013
404 => 0.015556499644863
405 => 0.0157169068974
406 => 0.014959342691538
407 => 0.015444005424021
408 => 0.014234914659439
409 => 0.015241881376509
410 => 0.014693835173566
411 => 0.015061833459187
412 => 0.015060549547836
413 => 0.014382948030045
414 => 0.013992121615767
415 => 0.014241171418137
416 => 0.014508172575875
417 => 0.014551492615419
418 => 0.01489766658587
419 => 0.014994276300038
420 => 0.014701544355832
421 => 0.014209858940804
422 => 0.014324066248564
423 => 0.01398980720832
424 => 0.01340403109738
425 => 0.013824745726927
426 => 0.013968396198971
427 => 0.014031840431012
428 => 0.013455796902743
429 => 0.013274791519648
430 => 0.01317842577247
501 => 0.014135498954949
502 => 0.014187929584356
503 => 0.013919687071367
504 => 0.015132168665875
505 => 0.014857746738697
506 => 0.01516434326636
507 => 0.01431370313245
508 => 0.014346198731104
509 => 0.013943492059598
510 => 0.014168980886772
511 => 0.014009612651569
512 => 0.01415076361786
513 => 0.014235368925067
514 => 0.014638009516371
515 => 0.015246478885291
516 => 0.014577868438911
517 => 0.014286545292745
518 => 0.014467280534163
519 => 0.01494860229907
520 => 0.015677829411312
521 => 0.015246112283801
522 => 0.015437701013958
523 => 0.015479554628308
524 => 0.015161222401519
525 => 0.015689566774578
526 => 0.015972710816363
527 => 0.01626315801483
528 => 0.016515345179113
529 => 0.016147147016692
530 => 0.016541171829616
531 => 0.016223657385142
601 => 0.015938814104408
602 => 0.015939246094087
603 => 0.015760559743186
604 => 0.015414332422387
605 => 0.015350482792351
606 => 0.015682636631115
607 => 0.015948992554718
608 => 0.015970930904345
609 => 0.016118399229513
610 => 0.016205669465303
611 => 0.017061036414177
612 => 0.01740507207698
613 => 0.017825752373195
614 => 0.017989631056813
615 => 0.018482847140743
616 => 0.018084535095917
617 => 0.017998357779519
618 => 0.016801976889656
619 => 0.016997884193349
620 => 0.017311550688804
621 => 0.016807149134636
622 => 0.017127075823522
623 => 0.017190236128882
624 => 0.016790009762837
625 => 0.017003787957702
626 => 0.016436056452958
627 => 0.015258853880664
628 => 0.015690877337562
629 => 0.016008992019363
630 => 0.015555003145176
701 => 0.016368760630361
702 => 0.01589338030688
703 => 0.015742707566616
704 => 0.015154879488138
705 => 0.015432311713602
706 => 0.015807542770989
707 => 0.015575693602817
708 => 0.016056815439103
709 => 0.016738212269791
710 => 0.017223816229222
711 => 0.017261094871458
712 => 0.016948884058483
713 => 0.017449203878779
714 => 0.017452848162458
715 => 0.016888485361298
716 => 0.016542816287972
717 => 0.016464279547218
718 => 0.016660479723656
719 => 0.016898702958401
720 => 0.017274314603037
721 => 0.017501288853253
722 => 0.018093117319974
723 => 0.018253249134017
724 => 0.018429185448717
725 => 0.018664290621907
726 => 0.018946594662051
727 => 0.018328929493795
728 => 0.018353470482401
729 => 0.017778309229877
730 => 0.017163666945088
731 => 0.017630103823
801 => 0.018239907993374
802 => 0.018100018242916
803 => 0.018084277788302
804 => 0.018110748866925
805 => 0.018005276563453
806 => 0.017528229243832
807 => 0.017288659066392
808 => 0.01759776571616
809 => 0.017762042143757
810 => 0.01801682055655
811 => 0.017985413739454
812 => 0.018641695569605
813 => 0.01889670684387
814 => 0.018831464047365
815 => 0.018843470292078
816 => 0.019305156023207
817 => 0.019818645509136
818 => 0.020299596173614
819 => 0.020788839846832
820 => 0.020199037503262
821 => 0.019899572247148
822 => 0.020208543950622
823 => 0.020044599215667
824 => 0.020986674291885
825 => 0.021051901526171
826 => 0.021993908479639
827 => 0.02288798525058
828 => 0.022326431649801
829 => 0.022855951402406
830 => 0.023428670187228
831 => 0.024533537643422
901 => 0.024161457153882
902 => 0.023876449330138
903 => 0.023607118313849
904 => 0.024167553403653
905 => 0.024888544193517
906 => 0.02504383870409
907 => 0.025295475138287
908 => 0.025030910196368
909 => 0.025349549528036
910 => 0.026474486386044
911 => 0.026170518516918
912 => 0.025738835277486
913 => 0.026626864886798
914 => 0.026948239350281
915 => 0.029203813640115
916 => 0.032051569354156
917 => 0.030872579789171
918 => 0.030140742920429
919 => 0.030312741943986
920 => 0.031352645928139
921 => 0.031686630082947
922 => 0.030778746018938
923 => 0.031099426018702
924 => 0.032866404345966
925 => 0.03381433152709
926 => 0.032526919091517
927 => 0.028974999241289
928 => 0.025699966924924
929 => 0.026568652971851
930 => 0.026470170932596
1001 => 0.028368568710205
1002 => 0.026163268983768
1003 => 0.026200400575355
1004 => 0.028138055208567
1005 => 0.027621122172236
1006 => 0.026783756857161
1007 => 0.025706080618408
1008 => 0.023713896418084
1009 => 0.021949363315692
1010 => 0.025410019077188
1011 => 0.025260789307958
1012 => 0.0250446824875
1013 => 0.025525604831228
1014 => 0.027860827220183
1015 => 0.02780699278574
1016 => 0.027464525580386
1017 => 0.02772428393728
1018 => 0.026738219961285
1019 => 0.026992351100158
1020 => 0.025699448143072
1021 => 0.026283894276072
1022 => 0.026781960247275
1023 => 0.026881954364987
1024 => 0.027107246218018
1025 => 0.025182152000627
1026 => 0.026046462786439
1027 => 0.026554164398134
1028 => 0.024260350046151
1029 => 0.026508823063571
1030 => 0.02514864039325
1031 => 0.024686973965685
1101 => 0.025308546990475
1102 => 0.025066319378215
1103 => 0.024858066301276
1104 => 0.024741857506102
1105 => 0.025198272134996
1106 => 0.025176979847025
1107 => 0.024430196927892
1108 => 0.02345604905265
1109 => 0.023783005054895
1110 => 0.023664218874051
1111 => 0.023233722430948
1112 => 0.02352382505526
1113 => 0.022246359915365
1114 => 0.020048547539036
1115 => 0.021500489715653
1116 => 0.021444591521262
1117 => 0.021416405116869
1118 => 0.022507499533862
1119 => 0.0224026159815
1120 => 0.022212251306938
1121 => 0.023230226234413
1122 => 0.02285865169219
1123 => 0.02400375687735
1124 => 0.024757997213056
1125 => 0.024566697466802
1126 => 0.025276064148093
1127 => 0.023790537460829
1128 => 0.024283969837352
1129 => 0.024385665566286
1130 => 0.023217664581825
1201 => 0.022419776227783
1202 => 0.022366566171162
1203 => 0.020983137721042
1204 => 0.021722154032451
1205 => 0.022372457803919
1206 => 0.022061012762997
1207 => 0.021962418567198
1208 => 0.022466114931067
1209 => 0.022505256452407
1210 => 0.021612825617816
1211 => 0.021798390247937
1212 => 0.022572225603092
1213 => 0.021778891582444
1214 => 0.020237573170701
1215 => 0.019855304894194
1216 => 0.019804303259506
1217 => 0.018767561375541
1218 => 0.019880849888317
1219 => 0.019394869618213
1220 => 0.020930075468534
1221 => 0.020053174120305
1222 => 0.020015372655823
1223 => 0.01995823019799
1224 => 0.019065863631193
1225 => 0.019261235196468
1226 => 0.01991068003537
1227 => 0.020142409270411
1228 => 0.020118238012694
1229 => 0.019907497401356
1230 => 0.02000397337406
1231 => 0.019693190651524
]
'min_raw' => 0.010873941729568
'max_raw' => 0.03381433152709
'avg_raw' => 0.022344136628329
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.010873'
'max' => '$0.033814'
'avg' => '$0.022344'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.0061945266640736
'max_diff' => 0.0211195293737
'year' => 2033
]
8 => [
'items' => [
101 => 0.019583446803813
102 => 0.019237065033015
103 => 0.018727979520348
104 => 0.018798770983287
105 => 0.017790139373224
106 => 0.01724058333993
107 => 0.017088473472946
108 => 0.016885065801707
109 => 0.01711144891066
110 => 0.0177872820466
111 => 0.016972083898658
112 => 0.015574483853512
113 => 0.01565848199762
114 => 0.015847200888158
115 => 0.015495524484141
116 => 0.015162692281703
117 => 0.015452062878193
118 => 0.014859881314829
119 => 0.015918763200909
120 => 0.015890123413373
121 => 0.016284809099687
122 => 0.016531614159105
123 => 0.015962808401234
124 => 0.015819755291344
125 => 0.015901244844138
126 => 0.014554404056661
127 => 0.016174743473367
128 => 0.016188756235929
129 => 0.01606877045548
130 => 0.016931551172509
131 => 0.018752287593494
201 => 0.018067253312967
202 => 0.017801987334276
203 => 0.017297716514876
204 => 0.017969627441088
205 => 0.017918035165398
206 => 0.017684715328939
207 => 0.017543602763847
208 => 0.017803606991777
209 => 0.017511385362667
210 => 0.017458894328365
211 => 0.017140855771306
212 => 0.017027330476269
213 => 0.016943280867395
214 => 0.016850750506569
215 => 0.017054849425422
216 => 0.016592334423853
217 => 0.016034586672866
218 => 0.015988215982285
219 => 0.01611624953593
220 => 0.016059604219419
221 => 0.015987944786303
222 => 0.015851127413198
223 => 0.015810536621238
224 => 0.015942437003254
225 => 0.015793529162228
226 => 0.016013250793092
227 => 0.015953498667249
228 => 0.01561972814952
301 => 0.015203726506757
302 => 0.015200023219543
303 => 0.015110396347989
304 => 0.014996243051575
305 => 0.014964488215986
306 => 0.015427692893677
307 => 0.016386512713948
308 => 0.016198273440615
309 => 0.016334295607135
310 => 0.017003390040325
311 => 0.017216075040265
312 => 0.017065116265028
313 => 0.016858474582752
314 => 0.016867565768048
315 => 0.017573722951076
316 => 0.017617765108392
317 => 0.017729045431389
318 => 0.017872072094257
319 => 0.017089474324179
320 => 0.016830705483455
321 => 0.016708086450771
322 => 0.016330467289643
323 => 0.0167376971803
324 => 0.016500421762337
325 => 0.016532438322702
326 => 0.016511587495763
327 => 0.016522973457199
328 => 0.015918467221842
329 => 0.016138717522094
330 => 0.015772508679677
331 => 0.015282196148554
401 => 0.015280552449024
402 => 0.015400555746391
403 => 0.015329173089387
404 => 0.015137084194807
405 => 0.015164369515648
406 => 0.014925321394115
407 => 0.015193394285708
408 => 0.015201081657028
409 => 0.015097858991736
410 => 0.015510862268164
411 => 0.015680070047495
412 => 0.015612126677956
413 => 0.015675302959565
414 => 0.016206095632271
415 => 0.01629263799803
416 => 0.016331074400233
417 => 0.016279574713129
418 => 0.015685004875232
419 => 0.015711376575849
420 => 0.015517878534621
421 => 0.015354393080104
422 => 0.015360931640917
423 => 0.01544498441616
424 => 0.015812047815276
425 => 0.016584511099148
426 => 0.016613825516107
427 => 0.016649355444624
428 => 0.016504837369435
429 => 0.016461249335106
430 => 0.016518753203412
501 => 0.016808849798644
502 => 0.017555057002039
503 => 0.017291297538856
504 => 0.017076856989627
505 => 0.017264979164057
506 => 0.017236019229854
507 => 0.016991568240931
508 => 0.016984707315842
509 => 0.01651552771239
510 => 0.016342082695697
511 => 0.016197139057614
512 => 0.016038864388676
513 => 0.015945033859515
514 => 0.016089200197519
515 => 0.016122172744747
516 => 0.015806950527104
517 => 0.015763986903625
518 => 0.016021404171097
519 => 0.015908124429166
520 => 0.016024635452944
521 => 0.016051667009874
522 => 0.016047314306619
523 => 0.015929037245947
524 => 0.016004423517346
525 => 0.015826112511758
526 => 0.015632226074627
527 => 0.01550853860729
528 => 0.015400604887276
529 => 0.015460492788284
530 => 0.015247003356289
531 => 0.0151787037903
601 => 0.015978884344841
602 => 0.016569986323871
603 => 0.016561391466994
604 => 0.016509072486172
605 => 0.016431337093188
606 => 0.016803162970463
607 => 0.016673626269714
608 => 0.016767875042663
609 => 0.016791865310987
610 => 0.016864476627797
611 => 0.016890428932403
612 => 0.016811983042849
613 => 0.016548709056147
614 => 0.015892655312624
615 => 0.015587260524031
616 => 0.015486475157043
617 => 0.015490138513714
618 => 0.015389086782774
619 => 0.015418851046357
620 => 0.015378735986571
621 => 0.015302767768212
622 => 0.015455801964874
623 => 0.015473437730427
624 => 0.015437717720303
625 => 0.015446131075771
626 => 0.015150384648166
627 => 0.01517286960673
628 => 0.015047670500199
629 => 0.015024197177022
630 => 0.014707704738046
701 => 0.014146992506087
702 => 0.014457681512246
703 => 0.014082412882292
704 => 0.01394029296588
705 => 0.01461306654599
706 => 0.014545538738381
707 => 0.014429960485388
708 => 0.014258996160592
709 => 0.014195583829491
710 => 0.013810310579627
711 => 0.013787546580672
712 => 0.013978498406557
713 => 0.013890380709162
714 => 0.013766630089238
715 => 0.013318417888271
716 => 0.012814478976425
717 => 0.012829689724526
718 => 0.012989983316268
719 => 0.013456058552793
720 => 0.013273954894699
721 => 0.013141836601353
722 => 0.013117094816471
723 => 0.013426790054708
724 => 0.013865073699973
725 => 0.014070706580287
726 => 0.013866930641059
727 => 0.01363284381415
728 => 0.01364709159465
729 => 0.013741875695198
730 => 0.013751836163991
731 => 0.013599469704188
801 => 0.013642359970131
802 => 0.013577205734195
803 => 0.013177354308524
804 => 0.013170122264177
805 => 0.013071992275842
806 => 0.013069020938794
807 => 0.012902077348964
808 => 0.01287872078672
809 => 0.01254724415636
810 => 0.012765423078267
811 => 0.012619080112359
812 => 0.012398506743921
813 => 0.012360479812063
814 => 0.012359336676573
815 => 0.012585816206656
816 => 0.012762776533095
817 => 0.012621625810906
818 => 0.012589488527555
819 => 0.01293263063575
820 => 0.012888962674673
821 => 0.012851146502008
822 => 0.013825830206676
823 => 0.013054291998913
824 => 0.012717857302467
825 => 0.012301455478399
826 => 0.012437038011996
827 => 0.012465607243947
828 => 0.011464235919133
829 => 0.011057979697369
830 => 0.010918567871503
831 => 0.010838334394723
901 => 0.0108748977976
902 => 0.01050921954891
903 => 0.01075496137979
904 => 0.010438314926437
905 => 0.010385228118076
906 => 0.010951431201639
907 => 0.011030215053006
908 => 0.010694098666849
909 => 0.010909939799062
910 => 0.010831672804105
911 => 0.01044374292105
912 => 0.010428926852936
913 => 0.010234277274014
914 => 0.0099296883745854
915 => 0.0097904830743354
916 => 0.0097179837453294
917 => 0.0097478983814611
918 => 0.0097327726260299
919 => 0.0096340668403866
920 => 0.0097384303261222
921 => 0.0094718247460375
922 => 0.0093656602558607
923 => 0.0093177082186453
924 => 0.0090810804210756
925 => 0.0094576604758682
926 => 0.0095318514906929
927 => 0.0096061886847355
928 => 0.010253243206719
929 => 0.010220918191358
930 => 0.010513120587302
1001 => 0.010501766139521
1002 => 0.010418425282833
1003 => 0.010066823917371
1004 => 0.010206965954952
1005 => 0.0097756305461844
1006 => 0.01009881636239
1007 => 0.0099513278524362
1008 => 0.010048950348815
1009 => 0.0098734162980606
1010 => 0.0099705640893712
1011 => 0.009549444932613
1012 => 0.0091562097893387
1013 => 0.0093144590902417
1014 => 0.009486494178326
1015 => 0.0098595100830181
1016 => 0.0096373448874979
1017 => 0.0097172438928031
1018 => 0.0094495955999627
1019 => 0.0088973607218777
1020 => 0.0089004863113152
1021 => 0.0088155370064126
1022 => 0.0087421284041752
1023 => 0.0096628632327185
1024 => 0.0095483553021255
1025 => 0.0093659019011529
1026 => 0.0096101230287647
1027 => 0.0096746989712157
1028 => 0.0096765373575142
1029 => 0.00985471478796
1030 => 0.009949808114529
1031 => 0.0099665687254949
1101 => 0.01024693476208
1102 => 0.010340909759425
1103 => 0.010727979473653
1104 => 0.0099417401101498
1105 => 0.0099255480278576
1106 => 0.0096135597208652
1107 => 0.0094156918042306
1108 => 0.0096271079064005
1109 => 0.0098143937117472
1110 => 0.0096193792128944
1111 => 0.0096448439894639
1112 => 0.009383052958024
1113 => 0.0094766309333508
1114 => 0.0095572328920169
1115 => 0.0095127292280056
1116 => 0.0094461050889791
1117 => 0.0097990384114879
1118 => 0.0097791245302751
1119 => 0.010107784154097
1120 => 0.010363997833542
1121 => 0.01082317855078
1122 => 0.01034399953471
1123 => 0.0103265363468
1124 => 0.010497241809801
1125 => 0.010340883625308
1126 => 0.010439696600607
1127 => 0.010807258252817
1128 => 0.010815024251332
1129 => 0.01068493377028
1130 => 0.010677017752685
1201 => 0.010702003052605
1202 => 0.010848342734638
1203 => 0.010797207153172
1204 => 0.01085638254264
1205 => 0.010930382273295
1206 => 0.01123647653452
1207 => 0.011310274824625
1208 => 0.011130983239698
1209 => 0.011147171262374
1210 => 0.011080111287947
1211 => 0.01101533219291
1212 => 0.011160946138327
1213 => 0.011427058485624
1214 => 0.011425403014523
1215 => 0.011487135906611
1216 => 0.01152559498696
1217 => 0.011360500460338
1218 => 0.011253029994201
1219 => 0.011294241009442
1220 => 0.01136013832027
1221 => 0.011272871399682
1222 => 0.010734219539842
1223 => 0.010897612104904
1224 => 0.010870415592589
1225 => 0.010831684451844
1226 => 0.010995976939491
1227 => 0.010980130528263
1228 => 0.010505468989927
1229 => 0.010535855281576
1230 => 0.010507316880965
1231 => 0.010599530291747
]
'min_raw' => 0.0087421284041752
'max_raw' => 0.019583446803813
'avg_raw' => 0.014162787603994
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.008742'
'max' => '$0.019583'
'avg' => '$0.014162'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0021318133253926
'max_diff' => -0.014230884723277
'year' => 2034
]
9 => [
'items' => [
101 => 0.010335903798508
102 => 0.010416993532276
103 => 0.010467852253127
104 => 0.010497808430423
105 => 0.01060603068396
106 => 0.010593332051604
107 => 0.010605241319143
108 => 0.010765706351523
109 => 0.011577283420349
110 => 0.011621455769562
111 => 0.011403934966762
112 => 0.011490830237072
113 => 0.011324010319983
114 => 0.011435997647922
115 => 0.011512616533527
116 => 0.01116639052244
117 => 0.011145889265052
118 => 0.010978380822824
119 => 0.011068390371514
120 => 0.010925178707632
121 => 0.010960317840618
122 => 0.010862065761416
123 => 0.011038899942185
124 => 0.011236628033537
125 => 0.011286581957932
126 => 0.011155174689366
127 => 0.011060027166764
128 => 0.010892979460616
129 => 0.011170783518841
130 => 0.011252021891391
131 => 0.011170356808254
201 => 0.011151433224074
202 => 0.011115573066247
203 => 0.011159041126079
204 => 0.011251579449767
205 => 0.01120794008523
206 => 0.011236764654333
207 => 0.011126915120678
208 => 0.011360555113496
209 => 0.011731631650617
210 => 0.011732824722361
211 => 0.011689185122591
212 => 0.011671328738594
213 => 0.01171610561623
214 => 0.011740395235503
215 => 0.011885195447102
216 => 0.012040571843242
217 => 0.012765645687996
218 => 0.012562047853819
219 => 0.013205376503721
220 => 0.013714165940023
221 => 0.013866729645305
222 => 0.013726378215123
223 => 0.013246243554106
224 => 0.013222685857033
225 => 0.013940209748217
226 => 0.013737476384282
227 => 0.013713361895734
228 => 0.013456824479655
301 => 0.013608469865335
302 => 0.013575302794983
303 => 0.013522946951844
304 => 0.013812275784012
305 => 0.014353873529266
306 => 0.014269460441597
307 => 0.014206449987462
308 => 0.013930356519511
309 => 0.014096626454926
310 => 0.014037420915616
311 => 0.014291805485257
312 => 0.01414111370151
313 => 0.013735940479656
314 => 0.013800465650705
315 => 0.013790712800907
316 => 0.013991425758643
317 => 0.013931176710732
318 => 0.01377894820734
319 => 0.014352022407052
320 => 0.014314810156129
321 => 0.014367568620033
322 => 0.014390794527454
323 => 0.014739614694118
324 => 0.0148825151554
325 => 0.014914956061936
326 => 0.015050700447836
327 => 0.014911578617955
328 => 0.015468165129663
329 => 0.015838262682226
330 => 0.016268150034574
331 => 0.016896330999181
401 => 0.017132532852872
402 => 0.017089865102164
403 => 0.017566144740199
404 => 0.018422008662646
405 => 0.017262859670976
406 => 0.018483446373838
407 => 0.018097022716063
408 => 0.017180819174944
409 => 0.017121826468226
410 => 0.017742290143614
411 => 0.019118418858208
412 => 0.018773714223125
413 => 0.019118982671504
414 => 0.018716208686456
415 => 0.018696207563253
416 => 0.019099420838059
417 => 0.020041550632654
418 => 0.019593980082449
419 => 0.018952277949929
420 => 0.019426100818591
421 => 0.01901563159952
422 => 0.018090729565852
423 => 0.018773450633987
424 => 0.018316934498502
425 => 0.018450170176569
426 => 0.019409699191709
427 => 0.019294246122008
428 => 0.019443653084867
429 => 0.019179953706082
430 => 0.018933616904722
501 => 0.018473810971772
502 => 0.018337685103184
503 => 0.018375305395966
504 => 0.018337666460435
505 => 0.018080409266784
506 => 0.018024854600309
507 => 0.017932261055611
508 => 0.017960959666882
509 => 0.017786856713653
510 => 0.018115424957901
511 => 0.018176410119367
512 => 0.018415514687214
513 => 0.018440339316647
514 => 0.019106242134659
515 => 0.01873947405254
516 => 0.018985533747258
517 => 0.018963523852159
518 => 0.017200676083852
519 => 0.017443580952587
520 => 0.017821464700592
521 => 0.017651228584325
522 => 0.01741055454504
523 => 0.017216197354192
524 => 0.016921726336013
525 => 0.017336188639284
526 => 0.017881162494933
527 => 0.01845416075297
528 => 0.019142580615668
529 => 0.018988933316404
530 => 0.018441291222492
531 => 0.018465858046772
601 => 0.018617720487782
602 => 0.018421044828516
603 => 0.018363041337033
604 => 0.018609751698757
605 => 0.018611450657428
606 => 0.018385151542395
607 => 0.018133661488336
608 => 0.018132607735827
609 => 0.018087857509813
610 => 0.018724169652251
611 => 0.019074076992178
612 => 0.019114193304797
613 => 0.019071376844709
614 => 0.019087855200872
615 => 0.018884251829451
616 => 0.019349628759816
617 => 0.019776704652128
618 => 0.019662239189843
619 => 0.019490639189653
620 => 0.019353951524126
621 => 0.019630039919841
622 => 0.019617746138183
623 => 0.019772974516781
624 => 0.019765932460886
625 => 0.019713734995598
626 => 0.019662241053979
627 => 0.019866408711887
628 => 0.019807611705242
629 => 0.019748723370605
630 => 0.019630613800138
701 => 0.019646666852356
702 => 0.019475096481326
703 => 0.019395720177161
704 => 0.01820209101291
705 => 0.017883114297263
706 => 0.017983470865375
707 => 0.018016510853355
708 => 0.017877691777926
709 => 0.018076722672397
710 => 0.018045703918319
711 => 0.01816637974507
712 => 0.018090986727652
713 => 0.018094080883385
714 => 0.018315795672126
715 => 0.01838016041854
716 => 0.018347423989027
717 => 0.018370351462119
718 => 0.018898705402443
719 => 0.018823590367937
720 => 0.018783687002953
721 => 0.018794740507758
722 => 0.018929746267547
723 => 0.018967540509247
724 => 0.018807403651411
725 => 0.018882925119306
726 => 0.019204485944504
727 => 0.019317014034557
728 => 0.019676149681458
729 => 0.019523582475527
730 => 0.019803626184967
731 => 0.020664385073849
801 => 0.021352018834272
802 => 0.02071964241052
803 => 0.021982394241906
804 => 0.022965627673632
805 => 0.022927889536861
806 => 0.02275644004544
807 => 0.021637054924034
808 => 0.020606980046223
809 => 0.021468681420801
810 => 0.021470878074816
811 => 0.021396857162534
812 => 0.020937119633584
813 => 0.021380859293066
814 => 0.02141608173581
815 => 0.021396366534277
816 => 0.021043886848742
817 => 0.020505715518066
818 => 0.02061087290788
819 => 0.020783122857548
820 => 0.020457017767722
821 => 0.020352807432119
822 => 0.020546554272833
823 => 0.021170846962372
824 => 0.021052828045696
825 => 0.021049746094829
826 => 0.021554681068179
827 => 0.021193256599048
828 => 0.020612199279326
829 => 0.020465474642891
830 => 0.019944701029108
831 => 0.02030440121908
901 => 0.020317346188555
902 => 0.020120342070554
903 => 0.02062818507775
904 => 0.020623505215035
905 => 0.02110562656791
906 => 0.022027261518098
907 => 0.021754688712426
908 => 0.021437716195266
909 => 0.021472179896576
910 => 0.021850161636282
911 => 0.021621625247972
912 => 0.021703808526621
913 => 0.021850037242047
914 => 0.021938260656718
915 => 0.021459485904886
916 => 0.021347860607791
917 => 0.021119514425088
918 => 0.021059943168305
919 => 0.021245926369516
920 => 0.02119692636688
921 => 0.020316258213996
922 => 0.020224223492029
923 => 0.020227046065556
924 => 0.019995620381156
925 => 0.019642640663917
926 => 0.020570250285497
927 => 0.020495750250996
928 => 0.020413507978751
929 => 0.020423582187833
930 => 0.020826226084954
1001 => 0.02059267229062
1002 => 0.021213613331571
1003 => 0.021085966520748
1004 => 0.020955046050882
1005 => 0.020936948854012
1006 => 0.020886555642723
1007 => 0.020713738570727
1008 => 0.020505051571594
1009 => 0.020367258338609
1010 => 0.018787719208165
1011 => 0.019080872483019
1012 => 0.019418118603976
1013 => 0.019534534613502
1014 => 0.019335396973466
1015 => 0.020721601738513
1016 => 0.020974874706889
1017 => 0.020207694365092
1018 => 0.020064186246909
1019 => 0.02073101010685
1020 => 0.020328833803404
1021 => 0.02050993376822
1022 => 0.020118494700672
1023 => 0.020913868665506
1024 => 0.020907809248509
1025 => 0.020598390811854
1026 => 0.020859909155709
1027 => 0.020814463907814
1028 => 0.020465131254893
1029 => 0.020924943133697
1030 => 0.020925171194652
1031 => 0.020627362676707
1101 => 0.020279587526416
1102 => 0.020217413543626
1103 => 0.020170573799493
1104 => 0.020498414062492
1105 => 0.020792354617167
1106 => 0.021339305115373
1107 => 0.021476821465846
1108 => 0.022013556936721
1109 => 0.02169395709699
1110 => 0.021835631566432
1111 => 0.021989439244089
1112 => 0.022063180300847
1113 => 0.021943023206022
1114 => 0.022776794321426
1115 => 0.022847190149653
1116 => 0.022870793261936
1117 => 0.022589650332982
1118 => 0.022839371056215
1119 => 0.022722534999695
1120 => 0.023026509960768
1121 => 0.023074177116011
1122 => 0.023033804731328
1123 => 0.023048935038777
1124 => 0.022337458479084
1125 => 0.022300564666126
1126 => 0.021797514908579
1127 => 0.022002511403136
1128 => 0.0216192802823
1129 => 0.021740806818435
1130 => 0.021794374557616
1201 => 0.02176639381061
1202 => 0.022014101597364
1203 => 0.021803499375266
1204 => 0.021247685484938
1205 => 0.020691720163488
1206 => 0.020684740471757
1207 => 0.020538364616222
1208 => 0.020432561682746
1209 => 0.020452943081294
1210 => 0.020524769788166
1211 => 0.020428386983969
1212 => 0.020448955141976
1213 => 0.020790523609824
1214 => 0.020859022730096
1215 => 0.020626235955078
1216 => 0.019691563462409
1217 => 0.019462192488259
1218 => 0.019627059795854
1219 => 0.019548263841638
1220 => 0.01577697459964
1221 => 0.016662983066724
1222 => 0.016136546921587
1223 => 0.016379152917429
1224 => 0.015841797933223
1225 => 0.016098251896874
1226 => 0.016050894213987
1227 => 0.01747556961016
1228 => 0.017453325263426
1229 => 0.017463972455063
1230 => 0.016955754257115
1231 => 0.017765359646074
]
'min_raw' => 0.010335903798508
'max_raw' => 0.023074177116011
'avg_raw' => 0.016705040457259
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.010335'
'max' => '$0.023074'
'avg' => '$0.016705'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0015937753943324
'max_diff' => 0.0034907303121977
'year' => 2035
]
10 => [
'items' => [
101 => 0.018164200373144
102 => 0.018090385569365
103 => 0.018108963165199
104 => 0.01778973851826
105 => 0.017467063247436
106 => 0.017109166712724
107 => 0.01777409423687
108 => 0.017700165646876
109 => 0.017869731233655
110 => 0.018300984263064
111 => 0.018364487909816
112 => 0.01844983745504
113 => 0.018419245718672
114 => 0.01914806499052
115 => 0.019059800167794
116 => 0.01927249299504
117 => 0.018834967712353
118 => 0.018339866324712
119 => 0.018433968912418
120 => 0.018424906076497
121 => 0.018309525773379
122 => 0.018205365594726
123 => 0.018031968244217
124 => 0.018580623119207
125 => 0.018558348733244
126 => 0.018918945150845
127 => 0.018855206231387
128 => 0.018429542127689
129 => 0.018444744804426
130 => 0.018546990111643
131 => 0.018900862287336
201 => 0.019005915642537
202 => 0.018957250742756
203 => 0.019072436950866
204 => 0.019163475433236
205 => 0.019083869982598
206 => 0.020210915290586
207 => 0.019742887501385
208 => 0.019971000989325
209 => 0.020025404712076
210 => 0.019886050720236
211 => 0.019916271611174
212 => 0.019962048026245
213 => 0.020239993454613
214 => 0.020969402682811
215 => 0.021292453064723
216 => 0.02226436607773
217 => 0.021265628227583
218 => 0.021206367256744
219 => 0.021381438139347
220 => 0.021952053965424
221 => 0.022414484497239
222 => 0.0225678993829
223 => 0.022588175692643
224 => 0.022875992216971
225 => 0.023040963281256
226 => 0.022841043720592
227 => 0.02267163282538
228 => 0.022064824026784
229 => 0.022135063797507
301 => 0.022618946164359
302 => 0.023302458508067
303 => 0.023888983206306
304 => 0.023683602699432
305 => 0.02525051099084
306 => 0.025405863547686
307 => 0.02538439884748
308 => 0.025738315091536
309 => 0.025035863420873
310 => 0.024735551722305
311 => 0.02270826138382
312 => 0.023277847276836
313 => 0.024105773822941
314 => 0.023996194639999
315 => 0.023394932251677
316 => 0.023888527094868
317 => 0.023725329203571
318 => 0.023596608255619
319 => 0.024186303871973
320 => 0.023537909318431
321 => 0.024099305591273
322 => 0.023379309064452
323 => 0.023684540860288
324 => 0.023511276530571
325 => 0.023623399786375
326 => 0.022967929523996
327 => 0.023321605366935
328 => 0.022953215446152
329 => 0.022953040781364
330 => 0.022944908553444
331 => 0.023378317661554
401 => 0.02339245111701
402 => 0.023072161131272
403 => 0.023026002340457
404 => 0.023196675582901
405 => 0.022996861915392
406 => 0.023090353472807
407 => 0.022999693679425
408 => 0.022979284250347
409 => 0.022816658447077
410 => 0.022746594779539
411 => 0.022774068548899
412 => 0.022680286410374
413 => 0.022623779279665
414 => 0.022933667862882
415 => 0.022768106893739
416 => 0.022908293269883
417 => 0.022748533201336
418 => 0.022194735199605
419 => 0.021876240112502
420 => 0.020830167024333
421 => 0.021126832054488
422 => 0.021323521276403
423 => 0.021258515489733
424 => 0.0213981730734
425 => 0.021406746914785
426 => 0.021361342810694
427 => 0.021308770674784
428 => 0.021283181466444
429 => 0.021473902460564
430 => 0.021584622417024
501 => 0.021343261671184
502 => 0.02128671422543
503 => 0.021530743265366
504 => 0.021679600838756
505 => 0.022778681524823
506 => 0.022697258077616
507 => 0.022901614951563
508 => 0.022878607503668
509 => 0.023092806064167
510 => 0.023442930183518
511 => 0.022731029952635
512 => 0.022854591217058
513 => 0.022824296848468
514 => 0.023155042821127
515 => 0.023156075373952
516 => 0.022957776641356
517 => 0.023065277601325
518 => 0.023005273514605
519 => 0.023113709009348
520 => 0.022696170617837
521 => 0.023204687308213
522 => 0.023492983503564
523 => 0.023496986496517
524 => 0.023633636605053
525 => 0.023772481029567
526 => 0.02403898081162
527 => 0.023765048495288
528 => 0.023272270924981
529 => 0.023307847873896
530 => 0.023018932564725
531 => 0.023023789283269
601 => 0.022997863739053
602 => 0.023075668248828
603 => 0.022713244332405
604 => 0.022798304501187
605 => 0.022679219766781
606 => 0.022854332350102
607 => 0.022665940157595
608 => 0.022824282239606
609 => 0.022892617433079
610 => 0.023144775768144
611 => 0.022628696166482
612 => 0.021576374923176
613 => 0.021797585606681
614 => 0.021470397630053
615 => 0.021500680122983
616 => 0.021561855578123
617 => 0.02136356591265
618 => 0.021401393331997
619 => 0.02140004187039
620 => 0.021388395704384
621 => 0.021336812904084
622 => 0.021262007638303
623 => 0.021560008793327
624 => 0.021610644996499
625 => 0.021723203003653
626 => 0.022058099284115
627 => 0.022024635248299
628 => 0.022079216479125
629 => 0.021960065958692
630 => 0.021506207173894
701 => 0.021530853889489
702 => 0.021223508951082
703 => 0.021715343502572
704 => 0.02159887058888
705 => 0.021523779743722
706 => 0.021503290510909
707 => 0.021839016934474
708 => 0.021939471542272
709 => 0.021876874971951
710 => 0.021748487579987
711 => 0.021995029326882
712 => 0.02206099349759
713 => 0.022075760442746
714 => 0.022512585148553
715 => 0.022100174091284
716 => 0.022199445531782
717 => 0.022973932972265
718 => 0.022271579735708
719 => 0.022643631909458
720 => 0.022625421891619
721 => 0.022815751194151
722 => 0.022609809333516
723 => 0.022612362229697
724 => 0.022781361756322
725 => 0.022544032400403
726 => 0.022485266314307
727 => 0.022404081387257
728 => 0.02258134570538
729 => 0.02268760764712
730 => 0.023544000856745
731 => 0.024097269926438
801 => 0.024073251056979
802 => 0.024292738562393
803 => 0.024193857430929
804 => 0.023874544173908
805 => 0.02441957296754
806 => 0.024247103052261
807 => 0.024261321262526
808 => 0.02426079206003
809 => 0.024375469476108
810 => 0.024294210016786
811 => 0.024134039281349
812 => 0.024240368090387
813 => 0.024556126639986
814 => 0.025536250866596
815 => 0.026084741368725
816 => 0.025503231049662
817 => 0.025904349081019
818 => 0.025663821195173
819 => 0.02562011012323
820 => 0.025872041889312
821 => 0.026124414628599
822 => 0.026108339576144
823 => 0.025925129926905
824 => 0.025821639444822
825 => 0.026605304047006
826 => 0.027182694776517
827 => 0.027143320599641
828 => 0.027317105411203
829 => 0.027827342992913
830 => 0.027873992722879
831 => 0.027868115929135
901 => 0.027752489706019
902 => 0.028254884867935
903 => 0.028673991750807
904 => 0.02772572557613
905 => 0.028086812921731
906 => 0.028248916664679
907 => 0.028486933053341
908 => 0.02888850659719
909 => 0.029324721977933
910 => 0.029386407615628
911 => 0.029342638703754
912 => 0.029054942934055
913 => 0.029532255008796
914 => 0.029811853227834
915 => 0.029978347568779
916 => 0.0304005495154
917 => 0.028249917762209
918 => 0.026727593713967
919 => 0.026489860831209
920 => 0.026973299996682
921 => 0.027100779049263
922 => 0.027049392403013
923 => 0.025335878283069
924 => 0.026480839533987
925 => 0.027712721568898
926 => 0.027760043174857
927 => 0.028376749078972
928 => 0.028577573800981
929 => 0.029074102887284
930 => 0.029043044857746
1001 => 0.029163941788757
1002 => 0.029136149677961
1003 => 0.030055865253803
1004 => 0.031070448113042
1005 => 0.031035316334802
1006 => 0.030889458044787
1007 => 0.031106082477994
1008 => 0.032153240718035
1009 => 0.032056835167661
1010 => 0.032150484948044
1011 => 0.033385143528305
1012 => 0.03499037531078
1013 => 0.034244583985184
1014 => 0.035862736566053
1015 => 0.036881277841128
1016 => 0.038642739657235
1017 => 0.038422195962476
1018 => 0.039107920121283
1019 => 0.03802737672
1020 => 0.035546230656801
1021 => 0.035153579794855
1022 => 0.035939676763975
1023 => 0.037872219456338
1024 => 0.035878814117257
1025 => 0.036282077421137
1026 => 0.036165937562491
1027 => 0.036159748962986
1028 => 0.036395942635225
1029 => 0.036053331394609
1030 => 0.034657471565755
1031 => 0.035297185899465
1101 => 0.035050161473614
1102 => 0.035324253490987
1103 => 0.0368034150646
1104 => 0.036149442474097
1105 => 0.035460535474423
1106 => 0.036324577732716
1107 => 0.037424800444657
1108 => 0.037355950484634
1109 => 0.037222352785139
1110 => 0.037975436022245
1111 => 0.03921930889726
1112 => 0.039555522737091
1113 => 0.039803708920064
1114 => 0.039837929601556
1115 => 0.04019042388896
1116 => 0.038294973265591
1117 => 0.041303102083502
1118 => 0.041822522832474
1119 => 0.041724893259452
1120 => 0.042302207561367
1121 => 0.042132347048693
1122 => 0.041886245816127
1123 => 0.042801411782937
1124 => 0.041752247852075
1125 => 0.040263091738282
1126 => 0.039446111242087
1127 => 0.040521977063413
1128 => 0.041178970777954
1129 => 0.041613201830618
1130 => 0.041744599884784
1201 => 0.038442111701827
1202 => 0.036662253735605
1203 => 0.037803122285841
1204 => 0.039195060655669
1205 => 0.038287240977666
1206 => 0.038322825790314
1207 => 0.037028513500296
1208 => 0.039309578573573
1209 => 0.038977246579174
1210 => 0.040701385554003
1211 => 0.04028990595058
1212 => 0.041695874353864
1213 => 0.041325635754147
1214 => 0.04286247548181
1215 => 0.04347556245745
1216 => 0.044505030908917
1217 => 0.045262312092507
1218 => 0.045707002087992
1219 => 0.045680304568653
1220 => 0.047442387874439
1221 => 0.046403348911519
1222 => 0.045098071091409
1223 => 0.045074462733742
1224 => 0.045750484612707
1225 => 0.04716724101347
1226 => 0.047534585335221
1227 => 0.047739880697046
1228 => 0.047425463704028
1229 => 0.046297661378372
1230 => 0.045810682052241
1231 => 0.046225602547254
]
'min_raw' => 0.017109166712724
'max_raw' => 0.047739880697046
'avg_raw' => 0.032424523704885
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.0171091'
'max' => '$0.047739'
'avg' => '$0.032424'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.0067732629142168
'max_diff' => 0.024665703581035
'year' => 2036
]
11 => [
'items' => [
101 => 0.045718190436377
102 => 0.046594126094443
103 => 0.047796972842727
104 => 0.047548589745778
105 => 0.048378897199204
106 => 0.049238178062609
107 => 0.050466988289996
108 => 0.050788244786146
109 => 0.051319269557991
110 => 0.051865868480771
111 => 0.052041421323513
112 => 0.052376606171157
113 => 0.052374839581558
114 => 0.053384941680475
115 => 0.054499115575839
116 => 0.054919690428154
117 => 0.055886779110419
118 => 0.054230673632869
119 => 0.055486848661559
120 => 0.056619949981538
121 => 0.055269019875575
122 => 0.0571309623003
123 => 0.057203257305399
124 => 0.058294826049823
125 => 0.057188312008082
126 => 0.056531267502214
127 => 0.058428130371518
128 => 0.059345962563354
129 => 0.059069504037607
130 => 0.05696564100623
131 => 0.055741102483039
201 => 0.052536248972006
202 => 0.056332536395193
203 => 0.058181597259805
204 => 0.056960852385291
205 => 0.057576525093507
206 => 0.060935435756988
207 => 0.062214291464281
208 => 0.061948298417041
209 => 0.061993246863406
210 => 0.062683294190189
211 => 0.065743344053146
212 => 0.063909691243862
213 => 0.0653114501109
214 => 0.066054937959559
215 => 0.066745530908422
216 => 0.065049652890158
217 => 0.062843340505792
218 => 0.06214450875897
219 => 0.056839473365773
220 => 0.056563323234956
221 => 0.056408311798323
222 => 0.055430986617156
223 => 0.054663076736656
224 => 0.054052406289016
225 => 0.052449824672777
226 => 0.052990648923981
227 => 0.050436468312475
228 => 0.052070542553114
301 => 0.047994008624302
302 => 0.051389067215076
303 => 0.04954129117849
304 => 0.05078202309128
305 => 0.05077769429452
306 => 0.048493113468662
307 => 0.047175414926292
308 => 0.048015103723085
309 => 0.048915316767826
310 => 0.049061373305655
311 => 0.050228523016126
312 => 0.05055424941252
313 => 0.049567283224736
314 => 0.047909531519589
315 => 0.048294589431404
316 => 0.047167611739999
317 => 0.045192626684383
318 => 0.046611095431257
319 => 0.047095423027109
320 => 0.047309329684971
321 => 0.045367158711338
322 => 0.04475688642484
323 => 0.044431982580189
324 => 0.047658821635632
325 => 0.047835595163266
326 => 0.04693119680263
327 => 0.051019163151277
328 => 0.050093930464267
329 => 0.051127642063169
330 => 0.048259649461893
331 => 0.048369210641526
401 => 0.047011456982462
402 => 0.047771708306405
403 => 0.047234387174686
404 => 0.047710287512381
405 => 0.047995540212584
406 => 0.049353071077633
407 => 0.051404568036923
408 => 0.04915030123606
409 => 0.048168084909229
410 => 0.048777446394201
411 => 0.050400256329398
412 => 0.052858896451334
413 => 0.051403332014404
414 => 0.052049286794427
415 => 0.052190399177333
416 => 0.051117119849466
417 => 0.052898469791062
418 => 0.053853109696425
419 => 0.054832372704432
420 => 0.055682639335959
421 => 0.054441233524579
422 => 0.055769715691289
423 => 0.054699193573592
424 => 0.053738824565475
425 => 0.053740281048837
426 => 0.053137827541294
427 => 0.0519704979564
428 => 0.051755224470897
429 => 0.052875104328529
430 => 0.053773141921333
501 => 0.053847108598787
502 => 0.054344308353001
503 => 0.05463854604598
504 => 0.057522475433921
505 => 0.058682415690866
506 => 0.060100768680514
507 => 0.060653297103976
508 => 0.062316209566193
509 => 0.060973272697806
510 => 0.060682719858861
511 => 0.056649038160042
512 => 0.057309553312252
513 => 0.058367101801174
514 => 0.056666476745105
515 => 0.057745131913252
516 => 0.057958081292484
517 => 0.056608690156452
518 => 0.057329458265956
519 => 0.055415311859964
520 => 0.051446291197815
521 => 0.052902888445664
522 => 0.053975434305413
523 => 0.0524447791196
524 => 0.055188419295633
525 => 0.053585641345024
526 => 0.05307763768159
527 => 0.051095734274154
528 => 0.052031116392006
529 => 0.053296234099783
530 => 0.052514538442096
531 => 0.054136674303989
601 => 0.056434051292261
602 => 0.058071298945268
603 => 0.058196986490281
604 => 0.057144345936471
605 => 0.058831209141814
606 => 0.058843496098675
607 => 0.056940707512009
608 => 0.055775260097447
609 => 0.055510467992737
610 => 0.056171970585854
611 => 0.056975156854014
612 => 0.058241557738272
613 => 0.059006817269709
614 => 0.061002208265404
615 => 0.061542103856495
616 => 0.06213528542499
617 => 0.062927958930919
618 => 0.063879766712103
619 => 0.06179726547332
620 => 0.061880007129805
621 => 0.059940810810443
622 => 0.057868501434322
623 => 0.059441125933787
624 => 0.061497123269368
625 => 0.061025475208911
626 => 0.060972405167214
627 => 0.061061654256946
628 => 0.060706047021947
629 => 0.059097648677464
630 => 0.058289921097971
701 => 0.0593320957488
702 => 0.059885965193858
703 => 0.060744968400651
704 => 0.060639078124056
705 => 0.062851778134546
706 => 0.063711566450047
707 => 0.063491595806526
708 => 0.063532075698823
709 => 0.065088681375195
710 => 0.066819947027695
711 => 0.068441505771885
712 => 0.070091024974044
713 => 0.068102465194011
714 => 0.067092797175027
715 => 0.068134516845005
716 => 0.067581765724849
717 => 0.070758037617899
718 => 0.070977955792315
719 => 0.074153998004755
720 => 0.077168440260432
721 => 0.075275123088984
722 => 0.077060435904781
723 => 0.078991397273755
724 => 0.082716535041698
725 => 0.081462039693382
726 => 0.08050111591702
727 => 0.079593047591508
728 => 0.081482593625111
729 => 0.083913464411108
730 => 0.08443705069582
731 => 0.08528546050241
801 => 0.084393461329396
802 => 0.085467776082805
803 => 0.08926057924016
804 => 0.088235730347043
805 => 0.086780280166136
806 => 0.089774333994181
807 => 0.090857870435461
808 => 0.098462696632803
809 => 0.10806410384665
810 => 0.10408905821388
811 => 0.1016216191157
812 => 0.10220152583221
813 => 0.10570763471856
814 => 0.10683368561452
815 => 0.10377269110627
816 => 0.10485388611464
817 => 0.1108113769115
818 => 0.11400737958482
819 => 0.10966677867402
820 => 0.097691232911853
821 => 0.086649232801771
822 => 0.08957806845871
823 => 0.089246029387565
824 => 0.095646610036674
825 => 0.088211288039883
826 => 0.088336479793362
827 => 0.094869417671962
828 => 0.093126541848861
829 => 0.090303306226107
830 => 0.086669845546197
831 => 0.079953057424948
901 => 0.074003810874464
902 => 0.085671653389618
903 => 0.085168514803769
904 => 0.0844398955705
905 => 0.086061358829305
906 => 0.093934724153686
907 => 0.093753217599363
908 => 0.092598565506214
909 => 0.093474358942231
910 => 0.090149775402375
911 => 0.091006596279956
912 => 0.086647483692538
913 => 0.088617984634673
914 => 0.090297248830441
915 => 0.090634385979672
916 => 0.09139397319154
917 => 0.084903383631822
918 => 0.087817467790438
919 => 0.089529219220864
920 => 0.081795463984147
921 => 0.089376347745753
922 => 0.084790396907845
923 => 0.083233856314789
924 => 0.08532953316471
925 => 0.084512845858183
926 => 0.083810706069519
927 => 0.083418900003152
928 => 0.08495773379032
929 => 0.084885945354844
930 => 0.08236811460427
1001 => 0.079083707030058
1002 => 0.080186062018967
1003 => 0.079785566116863
1004 => 0.078334117302639
1005 => 0.079312218554828
1006 => 0.075005155645904
1007 => 0.067595077772749
1008 => 0.072490402192579
1009 => 0.072301937527503
1010 => 0.07220690509718
1011 => 0.075885606101853
1012 => 0.075531983882326
1013 => 0.074890156091206
1014 => 0.078322329631928
1015 => 0.077069540120315
1016 => 0.080930342200772
1017 => 0.083473316151983
1018 => 0.082828335701367
1019 => 0.08522001499374
1020 => 0.080211458051467
1021 => 0.081875099759264
1022 => 0.082217974009533
1023 => 0.078279977143198
1024 => 0.075589840850761
1025 => 0.075410439429854
1026 => 0.070746113822385
1027 => 0.073237758912774
1028 => 0.075430303481037
1029 => 0.074380244781171
1030 => 0.074047827566405
1031 => 0.075746075024148
1101 => 0.075878043396121
1102 => 0.072869150529766
1103 => 0.073494794635926
1104 => 0.076103834563292
1105 => 0.073429053523863
1106 => 0.068232390887255
1107 => 0.066943546703894
1108 => 0.066771591131723
1109 => 0.063276143486927
1110 => 0.067029673435075
1111 => 0.06539115702436
1112 => 0.070567210733368
1113 => 0.067610676614515
1114 => 0.067483226337802
1115 => 0.067290566551658
1116 => 0.064281890368658
1117 => 0.064940599241389
1118 => 0.067130247858539
1119 => 0.067911539153296
1120 => 0.067830044070322
1121 => 0.067119517385757
1122 => 0.067444792863465
1123 => 0.066396967216277
1124 => 0.06602695817165
1125 => 0.064859107847801
1126 => 0.063142690498629
1127 => 0.06338136885843
1128 => 0.059980696964691
1129 => 0.058127830429664
1130 => 0.057614981393157
1201 => 0.056929178228103
1202 => 0.057692444685502
1203 => 0.059971063288488
1204 => 0.057222565817383
1205 => 0.052510459687856
1206 => 0.052793665295278
1207 => 0.053429944210658
1208 => 0.052244242661254
1209 => 0.051122075653132
1210 => 0.052097708822407
1211 => 0.050101127336729
1212 => 0.053671221544421
1213 => 0.053574660501177
1214 => 0.054905370848659
1215 => 0.055737491337866
1216 => 0.053819723012453
1217 => 0.053337409464808
1218 => 0.053612157181475
1219 => 0.049071189433074
1220 => 0.054534276904984
1221 => 0.0545815219123
1222 => 0.054176981476379
1223 => 0.057085906901268
1224 => 0.063224646864376
1225 => 0.060915005960012
1226 => 0.060020643192576
1227 => 0.058320458917906
1228 => 0.060585853516951
1229 => 0.060411906557405
1230 => 0.059625252438914
1231 => 0.05914948157354
]
'min_raw' => 0.044431982580189
'max_raw' => 0.11400737958482
'avg_raw' => 0.079219681082505
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.044431'
'max' => '$0.1140073'
'avg' => '$0.079219'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.027322815867464
'max_diff' => 0.066267498887775
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0013946691619028
]
1 => [
'year' => 2028
'avg' => 0.0023936571571759
]
2 => [
'year' => 2029
'avg' => 0.0065390399386764
]
3 => [
'year' => 2030
'avg' => 0.0050448595744584
]
4 => [
'year' => 2031
'avg' => 0.0049546773046824
]
5 => [
'year' => 2032
'avg' => 0.008687108609442
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0013946691619028
'min' => '$0.001394'
'max_raw' => 0.008687108609442
'max' => '$0.008687'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.008687108609442
]
1 => [
'year' => 2033
'avg' => 0.022344136628329
]
2 => [
'year' => 2034
'avg' => 0.014162787603994
]
3 => [
'year' => 2035
'avg' => 0.016705040457259
]
4 => [
'year' => 2036
'avg' => 0.032424523704885
]
5 => [
'year' => 2037
'avg' => 0.079219681082505
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.008687108609442
'min' => '$0.008687'
'max_raw' => 0.079219681082505
'max' => '$0.079219'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.079219681082505
]
]
]
]
'prediction_2025_max_price' => '$0.002384'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767704854
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Lamden para 2026
La previsión del precio de Lamden para 2026 sugiere que el precio medio podría oscilar entre $0.000798 en el extremo inferior y $0.002384 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Lamden podría potencialmente ganar 3.13% para 2026 si TAU alcanza el objetivo de precio previsto.
Predicción de precio de Lamden 2027-2032
La predicción del precio de TAU para 2027-2032 está actualmente dentro de un rango de precios de $0.001394 en el extremo inferior y $0.008687 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Lamden alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Lamden | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.000769 | $0.001394 | $0.00202 |
| 2028 | $0.001387 | $0.002393 | $0.003399 |
| 2029 | $0.003048 | $0.006539 | $0.010029 |
| 2030 | $0.002592 | $0.005044 | $0.007496 |
| 2031 | $0.003065 | $0.004954 | $0.006843 |
| 2032 | $0.004679 | $0.008687 | $0.012694 |
Predicción de precio de Lamden 2032-2037
La predicción de precio de Lamden para 2032-2037 se estima actualmente entre $0.008687 en el extremo inferior y $0.079219 en el extremo superior. Comparado con el precio actual, Lamden podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Lamden | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.004679 | $0.008687 | $0.012694 |
| 2033 | $0.010873 | $0.022344 | $0.033814 |
| 2034 | $0.008742 | $0.014162 | $0.019583 |
| 2035 | $0.010335 | $0.016705 | $0.023074 |
| 2036 | $0.0171091 | $0.032424 | $0.047739 |
| 2037 | $0.044431 | $0.079219 | $0.1140073 |
Lamden Histograma de precios potenciales
Pronóstico de precio de Lamden basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Lamden es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de TAU se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Lamden
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Lamden disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Lamden alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de TAU está en un estado —.
Promedios Móviles y Osciladores Populares de TAU para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de Lamden
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de Lamden basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Lamden
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Lamden por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.003249 | $0.004565 | $0.006415 | $0.009014 | $0.012666 | $0.017798 |
| Amazon.com acción | $0.004824 | $0.010066 | $0.0210047 | $0.043827 | $0.091449 | $0.190813 |
| Apple acción | $0.003279 | $0.004651 | $0.006598 | $0.009359 | $0.013275 | $0.01883 |
| Netflix acción | $0.003648 | $0.005756 | $0.009082 | $0.014331 | $0.022612 | $0.035678 |
| Google acción | $0.002994 | $0.003877 | $0.005021 | $0.0065027 | $0.008421 | $0.0109052 |
| Tesla acción | $0.005241 | $0.011882 | $0.026936 | $0.061062 | $0.138423 | $0.313796 |
| Kodak acción | $0.001733 | $0.00130024 | $0.000975 | $0.000731 | $0.000548 | $0.000411 |
| Nokia acción | $0.001531 | $0.001014 | $0.000672 | $0.000445 | $0.000294 | $0.000195 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Lamden
Podría preguntarse cosas como: "¿Debo invertir en Lamden ahora?", "¿Debería comprar TAU hoy?", "¿Será Lamden una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Lamden regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Lamden, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Lamden a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Lamden es de $0.002312 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Lamden basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Lamden ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.002372 | $0.002433 | $0.002497 | $0.002562 |
| Si Lamden ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.002432 | $0.002558 | $0.002691 | $0.002831 |
| Si Lamden ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.002612 | $0.002952 | $0.003335 | $0.003769 |
| Si Lamden ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.002913 | $0.00367 | $0.004624 | $0.005826 |
| Si Lamden ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.003514 | $0.005341 | $0.008117 | $0.012337 |
| Si Lamden ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.005317 | $0.012227 | $0.02812 | $0.064666 |
| Si Lamden ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.008322 | $0.029954 | $0.107816 | $0.388068 |
Cuadro de preguntas
¿Es TAU una buena inversión?
La decisión de adquirir Lamden depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Lamden ha experimentado una caída de 0% durante las últimas 24 horas, y Lamden ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Lamden dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Lamden subir?
Parece que el valor medio de Lamden podría potencialmente aumentar hasta $0.002384 para el final de este año. Mirando las perspectivas de Lamden en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.007496. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Lamden la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Lamden, el precio de Lamden aumentará en un 0.86% durante la próxima semana y alcanzará $0.002331 para el 13 de enero de 2026.
¿Cuál será el precio de Lamden el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Lamden, el precio de Lamden disminuirá en un -11.62% durante el próximo mes y alcanzará $0.0020435 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Lamden este año en 2026?
Según nuestra predicción más reciente sobre el valor de Lamden en 2026, se anticipa que TAU fluctúe dentro del rango de $0.000798 y $0.002384. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Lamden no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Lamden en 5 años?
El futuro de Lamden parece estar en una tendencia alcista, con un precio máximo de $0.007496 proyectada después de un período de cinco años. Basado en el pronóstico de Lamden para 2030, el valor de Lamden podría potencialmente alcanzar su punto más alto de aproximadamente $0.007496, mientras que su punto más bajo se anticipa que esté alrededor de $0.002592.
¿Cuánto será Lamden en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Lamden, se espera que el valor de TAU en 2026 crezca en un 3.13% hasta $0.002384 si ocurre lo mejor. El precio estará entre $0.002384 y $0.000798 durante 2026.
¿Cuánto será Lamden en 2027?
Según nuestra última simulación experimental para la predicción de precios de Lamden, el valor de TAU podría disminuir en un -12.62% hasta $0.00202 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.00202 y $0.000769 a lo largo del año.
¿Cuánto será Lamden en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Lamden sugiere que el valor de TAU en 2028 podría aumentar en un 47.02% , alcanzando $0.003399 en el mejor escenario. Se espera que el precio oscile entre $0.003399 y $0.001387 durante el año.
¿Cuánto será Lamden en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Lamden podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.010029 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.010029 y $0.003048.
¿Cuánto será Lamden en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Lamden, se espera que el valor de TAU en 2030 aumente en un 224.23% , alcanzando $0.007496 en el mejor escenario. Se pronostica que el precio oscile entre $0.007496 y $0.002592 durante el transcurso de 2030.
¿Cuánto será Lamden en 2031?
Nuestra simulación experimental indica que el precio de Lamden podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.006843 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.006843 y $0.003065 durante el año.
¿Cuánto será Lamden en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Lamden, TAU podría experimentar un 449.04% aumento en valor, alcanzando $0.012694 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.012694 y $0.004679 a lo largo del año.
¿Cuánto será Lamden en 2033?
Según nuestra predicción experimental de precios de Lamden, se anticipa que el valor de TAU aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.033814. A lo largo del año, el precio de TAU podría oscilar entre $0.033814 y $0.010873.
¿Cuánto será Lamden en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Lamden sugieren que TAU podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.019583 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.019583 y $0.008742.
¿Cuánto será Lamden en 2035?
Basado en nuestra predicción experimental para el precio de Lamden, TAU podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.023074 en 2035. El rango de precios esperado para el año está entre $0.023074 y $0.010335.
¿Cuánto será Lamden en 2036?
Nuestra reciente simulación de predicción de precios de Lamden sugiere que el valor de TAU podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.047739 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.047739 y $0.0171091.
¿Cuánto será Lamden en 2037?
Según la simulación experimental, el valor de Lamden podría aumentar en un 4830.69% en 2037, con un máximo de $0.1140073 bajo condiciones favorables. Se espera que el precio caiga entre $0.1140073 y $0.044431 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de BUILD
Predicción de precios de Football World Community
Predicción de precios de Onigiri Kitty
Predicción de precios de FreeRossDAO
Predicción de precios de Decentral Games (Old)
Predicción de precios de TOSHE
Predicción de precios de EurocoinToken
Predicción de precios de Patientory
Predicción de precios de Mirrored Ether
Predicción de precios de Croatian Football Federation TokenPredicción de precios de Shih Tzu
Predicción de precios de Wanaka Farm
Predicción de precios de Brokoli
Predicción de precios de 0xBitcoin
Predicción de precios de unshETHing_Token
Predicción de precios de IxiCash
Predicción de precios de DackieSwap [OLD]
Predicción de precios de delta.theta
Predicción de precios de BnkToTheFuture
Predicción de precios de SuperCoin
Predicción de precios de Honest
Predicción de precios de Poodl Token
Predicción de precios de Flourishing AI
Predicción de precios de ETHPad
Predicción de precios de Leverj Gluon
¿Cómo leer y predecir los movimientos de precio de Lamden?
Los traders de Lamden utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Lamden
Las medias móviles son herramientas populares para la predicción de precios de Lamden. Una media móvil simple (SMA) calcula el precio de cierre promedio de TAU durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de TAU por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de TAU.
¿Cómo leer gráficos de Lamden y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Lamden en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de TAU dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Lamden?
La acción del precio de Lamden está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de TAU. La capitalización de mercado de Lamden puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de TAU, grandes poseedores de Lamden, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Lamden.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


