Predicción del precio de Blum - Pronóstico de BLUM
Predicción de precio de Blum hasta $0.020762 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.006955 | $0.020762 |
| 2027 | $0.006696 | $0.01759 |
| 2028 | $0.012084 | $0.029598 |
| 2029 | $0.026545 | $0.087323 |
| 2030 | $0.022576 | $0.065274 |
| 2031 | $0.026691 | $0.059587 |
| 2032 | $0.040743 | $0.110532 |
| 2033 | $0.094678 | $0.294417 |
| 2034 | $0.076116 | $0.170511 |
| 2035 | $0.089993 | $0.2009045 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Blum hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.43, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Blum para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Blum'
'name_with_ticker' => 'Blum <small>BLUM</small>'
'name_lang' => 'Blum'
'name_lang_with_ticker' => 'Blum <small>BLUM</small>'
'name_with_lang' => 'Blum'
'name_with_lang_with_ticker' => 'Blum <small>BLUM</small>'
'image' => '/uploads/coins/blum.jpg?1729313526'
'price_for_sd' => 0.02013
'ticker' => 'BLUM'
'marketcap' => '$3.55M'
'low24h' => '$0.01975'
'high24h' => '$0.02177'
'volume24h' => '$6.55M'
'current_supply' => '174.75M'
'max_supply' => '969.73M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02013'
'change_24h_pct' => '-3.3943%'
'ath_price' => '$0.1672'
'ath_days' => 193
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 jun. 2025'
'ath_pct' => '-87.29%'
'fdv' => '$19.71M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.99265'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020304'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017793'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006955'
'current_year_max_price_prediction' => '$0.020762'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022576'
'grand_prediction_max_price' => '$0.065274'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020513582516021
107 => 0.020590172786705
108 => 0.020762734577353
109 => 0.019288212969713
110 => 0.019950229881864
111 => 0.020339102795156
112 => 0.018582160825584
113 => 0.020304373701417
114 => 0.019262544829039
115 => 0.018908932462009
116 => 0.019385024929328
117 => 0.019199491231799
118 => 0.019039980253567
119 => 0.018950970386968
120 => 0.019300560150558
121 => 0.019284251370237
122 => 0.018712254664553
123 => 0.017966108279558
124 => 0.018216539497783
125 => 0.018125555488396
126 => 0.01779581770121
127 => 0.018018021157081
128 => 0.01703954959202
129 => 0.015356140120857
130 => 0.016468251981733
131 => 0.016425436884835
201 => 0.016403847571468
202 => 0.017239568898403
203 => 0.01715923357619
204 => 0.017013424179727
205 => 0.017793139797299
206 => 0.01750853310823
207 => 0.018385623862171
208 => 0.018963332559389
209 => 0.018816806946856
210 => 0.019360144768899
211 => 0.018222308927251
212 => 0.018600252351796
213 => 0.018678145967787
214 => 0.01778351822761
215 => 0.017172377428427
216 => 0.017131621304637
217 => 0.016071987379244
218 => 0.016638035269123
219 => 0.017136133987563
220 => 0.016897583355452
221 => 0.016822065351823
222 => 0.017207870454506
223 => 0.017237850815182
224 => 0.016554295414599
225 => 0.016696428227765
226 => 0.017289145686279
227 => 0.016681493268566
228 => 0.01550092388041
301 => 0.015208126349498
302 => 0.015169061761545
303 => 0.014374971635648
304 => 0.01522769248058
305 => 0.014855456980269
306 => 0.016031344465684
307 => 0.015359683840426
308 => 0.015330729893302
309 => 0.015286961755604
310 => 0.014603455580794
311 => 0.014753099993994
312 => 0.015250540814958
313 => 0.01542803330395
314 => 0.015409519383195
315 => 0.015248103083558
316 => 0.015321998638946
317 => 0.015083955308121
318 => 0.014999897253563
319 => 0.014734586911388
320 => 0.014344654002244
321 => 0.014398876564858
322 => 0.013626317440347
323 => 0.013205386226498
324 => 0.013088878014289
325 => 0.012933078363709
326 => 0.013106475999389
327 => 0.013624128877415
328 => 0.012999729680331
329 => 0.011929241053442
330 => 0.011993579243942
331 => 0.012138128055815
401 => 0.011868762301176
402 => 0.011613830220564
403 => 0.011835472981363
404 => 0.011381892838148
405 => 0.012192941049118
406 => 0.012171004467948
407 => 0.012473313086113
408 => 0.012662352869048
409 => 0.012226677371738
410 => 0.012117106162356
411 => 0.012179522902954
412 => 0.011147913215882
413 => 0.012389008565948
414 => 0.012399741610073
415 => 0.012307838770055
416 => 0.012968683729446
417 => 0.014363272716471
418 => 0.01383857224234
419 => 0.013635392359601
420 => 0.01324914725399
421 => 0.013763795924251
422 => 0.013724278936145
423 => 0.013545568129556
424 => 0.01343748327612
425 => 0.013636632932639
426 => 0.013412806429785
427 => 0.013372601039532
428 => 0.013129000118491
429 => 0.013042045672816
430 => 0.012977668062994
501 => 0.012906794640193
502 => 0.013063123750335
503 => 0.012708861419946
504 => 0.012281655778261
505 => 0.012246138251584
506 => 0.012344205265472
507 => 0.012300817912058
508 => 0.012245930529629
509 => 0.012141135568883
510 => 0.012110045142619
511 => 0.012211073945044
512 => 0.012097018317452
513 => 0.012265313608896
514 => 0.012219546601827
515 => 0.011963895820717
516 => 0.011645260293413
517 => 0.01164242376886
518 => 0.011573774267169
519 => 0.011486338805244
520 => 0.011462016259989
521 => 0.01181680684626
522 => 0.012551212741853
523 => 0.012407031291704
524 => 0.012511217165746
525 => 0.013023708549481
526 => 0.013186614149217
527 => 0.013070987613155
528 => 0.012912710879059
529 => 0.012919674252091
530 => 0.013460553766122
531 => 0.013494287757956
601 => 0.013579522672322
602 => 0.013689073624665
603 => 0.013089644614051
604 => 0.012891441199597
605 => 0.012797521425922
606 => 0.012508284874531
607 => 0.012820201697939
608 => 0.012638461122549
609 => 0.012662984135311
610 => 0.012647013491079
611 => 0.01265573454276
612 => 0.012192714344614
613 => 0.012361414569193
614 => 0.012080917725884
615 => 0.01170536393994
616 => 0.011704104951964
617 => 0.011796021209027
618 => 0.011741345822642
619 => 0.011594215763714
620 => 0.01161511489415
621 => 0.011432016520429
622 => 0.011637346351823
623 => 0.011643234476682
624 => 0.011564171307204
625 => 0.011880510242524
626 => 0.012010114562432
627 => 0.011958073490584
628 => 0.0120064632221
629 => 0.012413022681898
630 => 0.012479309613278
701 => 0.012508749889528
702 => 0.012469303819442
703 => 0.012013894382694
704 => 0.012034093727764
705 => 0.011885884336115
706 => 0.011760663018092
707 => 0.011765671214113
708 => 0.011830051249209
709 => 0.012111202638311
710 => 0.012702869161896
711 => 0.012725322473963
712 => 0.012752536543198
713 => 0.012641843246924
714 => 0.012608457089575
715 => 0.012652502048816
716 => 0.012874700886727
717 => 0.013446256624229
718 => 0.013244230653672
719 => 0.013079980394887
720 => 0.013224072153393
721 => 0.0132018903566
722 => 0.013014653668691
723 => 0.013009398558473
724 => 0.012650031491187
725 => 0.012517181668803
726 => 0.012406162413583
727 => 0.012284932285113
728 => 0.012213063001286
729 => 0.01232348688525
730 => 0.01234874213401
731 => 0.012107298381842
801 => 0.012074390490587
802 => 0.012271558670533
803 => 0.012184792305709
804 => 0.012274033663632
805 => 0.012294738424169
806 => 0.012291404480851
807 => 0.012200810430922
808 => 0.012258552376794
809 => 0.012121975461105
810 => 0.011973468578484
811 => 0.011878730439677
812 => 0.011796058848378
813 => 0.011841929852132
814 => 0.011678408099463
815 => 0.011626094199742
816 => 0.012238990704767
817 => 0.012691743942778
818 => 0.012685160731387
819 => 0.012645087125111
820 => 0.012585545874819
821 => 0.012870345073409
822 => 0.01277112672736
823 => 0.012843316364081
824 => 0.012861691656416
825 => 0.012917308132029
826 => 0.012937186241664
827 => 0.012877100788114
828 => 0.01267544666718
829 => 0.012172943770513
830 => 0.011939027315633
831 => 0.011861830989336
901 => 0.011864636929181
902 => 0.01178723658201
903 => 0.011810034453092
904 => 0.011779308412823
905 => 0.011721120725981
906 => 0.011838336926438
907 => 0.011851845001596
908 => 0.01182448533978
909 => 0.011830929530572
910 => 0.0116044032162
911 => 0.011621625519892
912 => 0.011525729544428
913 => 0.011507750205072
914 => 0.011265333529717
915 => 0.010835857250467
916 => 0.011073828799443
917 => 0.010786392632143
918 => 0.010677536200218
919 => 0.011192845618302
920 => 0.011141122845185
921 => 0.011052595940957
922 => 0.010921646198981
923 => 0.010873075665885
924 => 0.010577976482355
925 => 0.010560540448299
926 => 0.010706799572005
927 => 0.010639306018884
928 => 0.010544519508494
929 => 0.010201212376219
930 => 0.0098152214944553
1001 => 0.0098268721329236
1002 => 0.0099496486507968
1003 => 0.010306637935182
1004 => 0.010167156045796
1005 => 0.010065960334675
1006 => 0.010047009419914
1007 => 0.010284219794575
1008 => 0.01061992217183
1009 => 0.01077742621632
1010 => 0.010621344491699
1011 => 0.010442046210491
1012 => 0.01045295926608
1013 => 0.010525558935778
1014 => 0.010533188134559
1015 => 0.010416483385654
1016 => 0.010449335088869
1017 => 0.010399430347662
1018 => 0.010093165042998
1019 => 0.010087625674814
1020 => 0.010012463229854
1021 => 0.010010187340892
1022 => 0.009882317271865
1023 => 0.009864427365284
1024 => 0.0096105335820718
1025 => 0.0097776472390433
1026 => 0.0096655561718076
1027 => 0.0094966084938737
1028 => 0.0094674818505177
1029 => 0.0094666062684469
1030 => 0.0096400777576755
1031 => 0.0097756201236916
1101 => 0.0096675060439125
1102 => 0.0096428905636502
1103 => 0.0099057194935039
1104 => 0.0098722721164411
1105 => 0.0098433069036172
1106 => 0.010589863705962
1107 => 0.0099989057423524
1108 => 0.0097412143395172
1109 => 0.0094222722942384
1110 => 0.0095261214324266
1111 => 0.0095480039717041
1112 => 0.0087810058464334
1113 => 0.0084698348025346
1114 => 0.008363052626502
1115 => 0.0083015979745168
1116 => 0.0083296036311254
1117 => 0.0080495131948934
1118 => 0.0082377386003095
1119 => 0.0079952039579878
1120 => 0.0079545422359266
1121 => 0.0083882242206746
1122 => 0.0084485685353189
1123 => 0.0081911209415373
1124 => 0.0083564439737246
1125 => 0.0082964955440914
1126 => 0.0079993615183138
1127 => 0.007988013184099
1128 => 0.0078389217747298
1129 => 0.0076056225888526
1130 => 0.0074989986006539
1201 => 0.007443467901848
1202 => 0.0074663809504471
1203 => 0.0074547954119246
1204 => 0.0073791919363049
1205 => 0.0074591289146488
1206 => 0.0072549229672199
1207 => 0.0071736065135546
1208 => 0.0071368777579614
1209 => 0.0069556332259625
1210 => 0.007244073876182
1211 => 0.0073009003179548
1212 => 0.0073578387253725
1213 => 0.0078534486884416
1214 => 0.0078286894152659
1215 => 0.0080525011865193
1216 => 0.0080438042726518
1217 => 0.00797996952998
1218 => 0.0077106612509533
1219 => 0.0078180027310148
1220 => 0.0074876223399551
1221 => 0.0077351657926199
1222 => 0.0076221972984854
1223 => 0.007696971031117
1224 => 0.0075625211177698
1225 => 0.007636931251117
1226 => 0.0073143759754211
1227 => 0.0070131783974515
1228 => 0.0071343890953319
1229 => 0.0072661589860526
1230 => 0.0075518696834787
1231 => 0.0073817027491538
]
'min_raw' => 0.0069556332259625
'max_raw' => 0.020762734577353
'avg_raw' => 0.013859183901658
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006955'
'max' => '$0.020762'
'avg' => '$0.013859'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013176456774037
'max_diff' => 0.00063064457735309
'year' => 2026
]
1 => [
'items' => [
101 => 0.0074429012134612
102 => 0.0072378966025305
103 => 0.0068149135335084
104 => 0.0068173075717433
105 => 0.0067522408417613
106 => 0.0066960136871587
107 => 0.007401248468568
108 => 0.0073135413753877
109 => 0.0071737916012254
110 => 0.0073608522273769
111 => 0.0074103140259827
112 => 0.0074117221338539
113 => 0.0075481967379604
114 => 0.0076210332586365
115 => 0.0076338710110972
116 => 0.0078486167493878
117 => 0.007920596688298
118 => 0.0082170718696869
119 => 0.0076148535887376
120 => 0.0076024512995422
121 => 0.0073634845540003
122 => 0.0072119280660629
123 => 0.0073738617563916
124 => 0.0075173128998698
125 => 0.0073679419808967
126 => 0.0073874466695224
127 => 0.0071869284148535
128 => 0.0072586042556368
129 => 0.0073203411454978
130 => 0.0072862536636432
131 => 0.0072352230534541
201 => 0.0075055515419998
202 => 0.0074902985492502
203 => 0.0077420346526091
204 => 0.0079382809469988
205 => 0.0082899893897664
206 => 0.0079229632947626
207 => 0.0079095874050641
208 => 0.0080403388724274
209 => 0.0079205766709296
210 => 0.0079962622482255
211 => 0.0082777952731695
212 => 0.0082837436223527
213 => 0.0081841011095201
214 => 0.0081780378535587
215 => 0.0081971752881179
216 => 0.0083092638400777
217 => 0.0082700966558896
218 => 0.0083154219130238
219 => 0.0083721018411151
220 => 0.0086065540554921
221 => 0.0086630796906442
222 => 0.0085257517024063
223 => 0.0085381508821479
224 => 0.0084867864448094
225 => 0.0084371690419348
226 => 0.008548701717557
227 => 0.0087525298744367
228 => 0.0087512618700515
301 => 0.0087985460405943
302 => 0.0088280036871194
303 => 0.0087015499039188
304 => 0.0086192331408898
305 => 0.0086507986257869
306 => 0.0087012725235441
307 => 0.0086344306210144
308 => 0.0082218514344199
309 => 0.0083470016039722
310 => 0.008326170496228
311 => 0.0082965044656511
312 => 0.0084223439288936
313 => 0.0084102064056764
314 => 0.0080466404626337
315 => 0.0080699147747205
316 => 0.0080480558506386
317 => 0.0081186865062622
318 => 0.0079167623837359
319 => 0.0079788728838452
320 => 0.0080178280072641
321 => 0.0080407728742251
322 => 0.008123665467131
323 => 0.0081139389780962
324 => 0.008123060854916
325 => 0.0082459686873622
326 => 0.0088675943270006
327 => 0.0089014280390264
328 => 0.0087348184669123
329 => 0.0088013757047434
330 => 0.0086736003625756
331 => 0.0087593768057932
401 => 0.0088180628697573
402 => 0.0085528718313848
403 => 0.0085371689391679
404 => 0.0084088662227108
405 => 0.0084778088350975
406 => 0.0083681161816409
407 => 0.0083950309219131
408 => 0.0083197749617273
409 => 0.0084552207067494
410 => 0.008606670095825
411 => 0.0086449321924232
412 => 0.0085442810891418
413 => 0.0084714030571352
414 => 0.0083434532404477
415 => 0.0085562366371466
416 => 0.0086184609867979
417 => 0.0085559097991276
418 => 0.008541415322174
419 => 0.0085139483145378
420 => 0.0085472425776889
421 => 0.0086181220996263
422 => 0.0085846966260199
423 => 0.008606774740218
424 => 0.0085226357357473
425 => 0.0087015917653828
426 => 0.0089858170085578
427 => 0.0089867308391902
428 => 0.008953305185408
429 => 0.008939628128046
430 => 0.0089739248772649
501 => 0.0089925294567898
502 => 0.0091034388548152
503 => 0.0092224490577218
504 => 0.0097778177464676
505 => 0.0096218724410115
506 => 0.010114628580698
507 => 0.010504334710813
508 => 0.010621190539451
509 => 0.010513688675596
510 => 0.010145930606484
511 => 0.010127886641131
512 => 0.010677472459836
513 => 0.010522189293426
514 => 0.010503718854889
515 => 0.010307224595149
516 => 0.010423377038943
517 => 0.010397972795631
518 => 0.010357870954746
519 => 0.010579481726256
520 => 0.010994317307191
521 => 0.010929661291599
522 => 0.010881398575266
523 => 0.010669925401359
524 => 0.010797279486294
525 => 0.010751931135955
526 => 0.010946776427785
527 => 0.010831354393257
528 => 0.010521012870716
529 => 0.010570435781079
530 => 0.010562965607603
531 => 0.010716701248405
601 => 0.010670553624989
602 => 0.010553954543488
603 => 0.010992899444274
604 => 0.010964396803957
605 => 0.011004807031316
606 => 0.011022596863127
607 => 0.011289774889159
608 => 0.011399229177681
609 => 0.011424077217443
610 => 0.01152805032604
611 => 0.011421490271783
612 => 0.011847806464841
613 => 0.012131281856985
614 => 0.01246055311247
615 => 0.012941706916504
616 => 0.013122625197742
617 => 0.013089943929573
618 => 0.01345474925246
619 => 0.014110296308519
620 => 0.013222448732411
621 => 0.014157354385915
622 => 0.013861374050021
623 => 0.013159609998073
624 => 0.013114424666382
625 => 0.013589667430009
626 => 0.014643710139313
627 => 0.014379684395486
628 => 0.014644141990845
629 => 0.014335638158366
630 => 0.014320318342809
701 => 0.014629158648295
702 => 0.015350780856072
703 => 0.015007965194761
704 => 0.014516454882424
705 => 0.014879378448306
706 => 0.014564980468548
707 => 0.0138565538257
708 => 0.014379482499976
709 => 0.014029814987638
710 => 0.014131866557086
711 => 0.014866815658901
712 => 0.014778384638537
713 => 0.01489282256738
714 => 0.014690842618333
715 => 0.014502161496609
716 => 0.014149974171266
717 => 0.014045708866857
718 => 0.014074524045923
719 => 0.014045694587485
720 => 0.013848649015725
721 => 0.013806097043264
722 => 0.013735175224918
723 => 0.013757156861996
724 => 0.013623803094595
725 => 0.013875469205974
726 => 0.01392218065392
727 => 0.01410532226257
728 => 0.014124336631929
729 => 0.014634383405161
730 => 0.014353458213452
731 => 0.014541927085964
801 => 0.014525068656069
802 => 0.013174819353013
803 => 0.013360871793624
804 => 0.013650311004742
805 => 0.013519919032459
806 => 0.013335575290673
807 => 0.013186707835295
808 => 0.012961158417919
809 => 0.013278614891583
810 => 0.01369603639672
811 => 0.01413492313015
812 => 0.014662216783367
813 => 0.014544530978344
814 => 0.01412506574208
815 => 0.01414388264616
816 => 0.014260201342999
817 => 0.014109558061924
818 => 0.014065130417429
819 => 0.014254097666878
820 => 0.01425539898047
821 => 0.014082065679745
822 => 0.013889437435649
823 => 0.013888630316273
824 => 0.013854353980804
825 => 0.014341735842301
826 => 0.01460974658626
827 => 0.014640473586134
828 => 0.014607678414349
829 => 0.014620299974375
830 => 0.014464350427679
831 => 0.014820804846025
901 => 0.015147922669987
902 => 0.015060248105312
903 => 0.014928811469191
904 => 0.014824115857674
905 => 0.015035585146513
906 => 0.015026168751965
907 => 0.015145065581166
908 => 0.015139671734212
909 => 0.015099691202488
910 => 0.015060249533143
911 => 0.015216631293811
912 => 0.015171595858153
913 => 0.015126490470024
914 => 0.015036024708842
915 => 0.015048320508264
916 => 0.014916906566531
917 => 0.014856108463992
918 => 0.013941850876858
919 => 0.013697531375347
920 => 0.013774399264104
921 => 0.013799706168957
922 => 0.013693378008795
923 => 0.013845825277004
924 => 0.013822066531735
925 => 0.013914497911174
926 => 0.013856750798205
927 => 0.013859120759864
928 => 0.014028942706125
929 => 0.014078242739599
930 => 0.014053168344674
1001 => 0.014070729591379
1002 => 0.014475421109566
1003 => 0.014417886916986
1004 => 0.014387323023877
1005 => 0.014395789431146
1006 => 0.014499196790727
1007 => 0.014528145205577
1008 => 0.014405488737688
1009 => 0.014463334237013
1010 => 0.014709633031452
1011 => 0.014795823670201
1012 => 0.015070902815235
1013 => 0.014954044305282
1014 => 0.015168543157818
1015 => 0.015827839502463
1016 => 0.016354531042403
1017 => 0.015870163735826
1018 => 0.016837365675162
1019 => 0.017590471121813
1020 => 0.017561565680408
1021 => 0.017430244326142
1022 => 0.016572853797474
1023 => 0.01578387025002
1024 => 0.016443888489476
1025 => 0.016445571011702
1026 => 0.016388874859592
1027 => 0.016036739928139
1028 => 0.016376621327274
1029 => 0.016403599878469
1030 => 0.016388499063976
1031 => 0.016118518037655
1101 => 0.015706306911298
1102 => 0.015786851978694
1103 => 0.015918786442164
1104 => 0.015669006978403
1105 => 0.01558918730506
1106 => 0.015737587264119
1107 => 0.016215762852566
1108 => 0.016125366527453
1109 => 0.016123005914084
1110 => 0.016509759726926
1111 => 0.016232927463627
1112 => 0.015787867909935
1113 => 0.015675484503013
1114 => 0.015276599118976
1115 => 0.015552110674512
1116 => 0.015562025844912
1117 => 0.015411130981604
1118 => 0.015800112196463
1119 => 0.01579652766609
1120 => 0.016165807437385
1121 => 0.016871731664953
1122 => 0.01666295513444
1123 => 0.016420170744275
1124 => 0.016446568139166
1125 => 0.016736082406808
1126 => 0.016561035471624
1127 => 0.016623983569987
1128 => 0.016735987127322
1129 => 0.016803561654354
1130 => 0.016436845204639
1201 => 0.016351346058135
1202 => 0.016176444810511
1203 => 0.016130816339692
1204 => 0.016273269756448
1205 => 0.016235738314086
1206 => 0.015561192513233
1207 => 0.015490698723906
1208 => 0.015492860667783
1209 => 0.015315600682724
1210 => 0.015045236658239
1211 => 0.01575573717199
1212 => 0.015698674037287
1213 => 0.015635680752911
1214 => 0.015643397070813
1215 => 0.015951801262735
1216 => 0.015772911256635
1217 => 0.016248519657347
1218 => 0.016150748868258
1219 => 0.016050470627352
1220 => 0.016036609119909
1221 => 0.015998010552497
1222 => 0.015865641702949
1223 => 0.015705798362984
1224 => 0.015600255944547
1225 => 0.014390411482435
1226 => 0.014614951577262
1227 => 0.014873264488886
1228 => 0.014962433070854
1229 => 0.014809904041119
1230 => 0.015871664478718
1231 => 0.016065658342045
]
'min_raw' => 0.0066960136871587
'max_raw' => 0.017590471121813
'avg_raw' => 0.012143242404486
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006696'
'max' => '$0.01759'
'avg' => '$0.012143'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025961953880376
'max_diff' => -0.0031722634555397
'year' => 2027
]
2 => [
'items' => [
101 => 0.01547803827612
102 => 0.015368118554154
103 => 0.01587887079739
104 => 0.015570824757797
105 => 0.015709537870564
106 => 0.015409715992777
107 => 0.016018930901173
108 => 0.016014289704285
109 => 0.015777291345177
110 => 0.015977600735401
111 => 0.015942792049477
112 => 0.015675221485745
113 => 0.016027413365301
114 => 0.016027588048079
115 => 0.015799482280225
116 => 0.015533104682146
117 => 0.015485482659167
118 => 0.015449605861972
119 => 0.015700714377741
120 => 0.015925857487785
121 => 0.016344792997865
122 => 0.016450123338761
123 => 0.016861234671517
124 => 0.016616437889508
125 => 0.016724953132324
126 => 0.016842761778818
127 => 0.016899243576217
128 => 0.016807209518336
129 => 0.017445834638282
130 => 0.017499754165373
131 => 0.017517832916405
201 => 0.017302492119143
202 => 0.017493765148253
203 => 0.017404274832229
204 => 0.017637103773397
205 => 0.017673614324281
206 => 0.017642691186583
207 => 0.017654280211713
208 => 0.01710932633303
209 => 0.01708106759956
210 => 0.016695757763543
211 => 0.016852774369786
212 => 0.016559239350415
213 => 0.016652322328804
214 => 0.01669335241875
215 => 0.016671920628199
216 => 0.016861651853117
217 => 0.016700341552408
218 => 0.016274617146969
219 => 0.0158487767532
220 => 0.015843430673938
221 => 0.015731314414966
222 => 0.015650274894846
223 => 0.015665885981452
224 => 0.01572090148684
225 => 0.01564707729366
226 => 0.015662831428257
227 => 0.015924455031808
228 => 0.015976921779686
229 => 0.015798619270315
301 => 0.015082708966259
302 => 0.014907022781919
303 => 0.015033302527215
304 => 0.014972948942421
305 => 0.012084338387285
306 => 0.012762974589848
307 => 0.012359752002593
308 => 0.012545575522179
309 => 0.012133989674575
310 => 0.012330420014114
311 => 0.012294146502889
312 => 0.013385373434305
313 => 0.013368335426705
314 => 0.013376490619312
315 => 0.012987222027935
316 => 0.013607337463792
317 => 0.013912828626125
318 => 0.013856290342361
319 => 0.013870519810315
320 => 0.013626010406385
321 => 0.013378858004813
322 => 0.013104727954987
323 => 0.013614027704065
324 => 0.013557402266004
325 => 0.013687280647726
326 => 0.0140175979405
327 => 0.014066238416615
328 => 0.014131611709776
329 => 0.014108180037765
330 => 0.014666417528012
331 => 0.014598811284573
401 => 0.014761722879616
402 => 0.014426601368481
403 => 0.014047379568605
404 => 0.014119457235067
405 => 0.014112515576174
406 => 0.014024140291211
407 => 0.013944359035472
408 => 0.013811545722896
409 => 0.014231786696558
410 => 0.014214725680478
411 => 0.014490923699561
412 => 0.014442103016843
413 => 0.01411606654921
414 => 0.014127711005435
415 => 0.014206025569682
416 => 0.014477073170724
417 => 0.014557538553041
418 => 0.014520263781961
419 => 0.014608490400287
420 => 0.014678221122123
421 => 0.014617247505356
422 => 0.015480505336794
423 => 0.015122020499055
424 => 0.015296743514647
425 => 0.015338413924338
426 => 0.015231676046149
427 => 0.015254823669931
428 => 0.015289886012612
429 => 0.015502777691456
430 => 0.016061467057448
501 => 0.016308906774519
502 => 0.017053341371787
503 => 0.016288360350544
504 => 0.016242969542549
505 => 0.016377064693288
506 => 0.016814126608289
507 => 0.01716832423926
508 => 0.017285832027604
509 => 0.017301362621676
510 => 0.01752181504438
511 => 0.01764817426188
512 => 0.017495046321789
513 => 0.017365286425726
514 => 0.01690050258442
515 => 0.016954302579616
516 => 0.017324931195625
517 => 0.017848465945655
518 => 0.018297713225687
519 => 0.018140402486068
520 => 0.019340572385286
521 => 0.019459564328539
522 => 0.019443123489452
523 => 0.019714204844557
524 => 0.01917616355943
525 => 0.01894614048598
526 => 0.017393341988093
527 => 0.017829615028171
528 => 0.018463763513343
529 => 0.018379831583395
530 => 0.017919296002626
531 => 0.018297363868152
601 => 0.018172362808534
602 => 0.018073769286515
603 => 0.01852544532418
604 => 0.018028808966938
605 => 0.018458809185772
606 => 0.017907329457334
607 => 0.018141121068276
608 => 0.018008409642678
609 => 0.01809429019954
610 => 0.017592234218949
611 => 0.017863131439356
612 => 0.017580964003953
613 => 0.017580830219849
614 => 0.017574601358073
615 => 0.017906570094504
616 => 0.017917395583081
617 => 0.017672070185282
618 => 0.017636714962756
619 => 0.017767441750856
620 => 0.017614394919391
621 => 0.017686004568568
622 => 0.017616563902715
623 => 0.017600931346187
624 => 0.017476368476113
625 => 0.017422703366757
626 => 0.017443746838915
627 => 0.017371914619787
628 => 0.017328633109478
629 => 0.017565991576293
630 => 0.017439180522487
701 => 0.017546555963571
702 => 0.017424188096595
703 => 0.017000007756514
704 => 0.016756057157308
705 => 0.015954819816433
706 => 0.016182049732373
707 => 0.016332703401728
708 => 0.016282912364905
709 => 0.016389882778574
710 => 0.016396449893196
711 => 0.016361672721278
712 => 0.016321405211428
713 => 0.016301805214566
714 => 0.016447887533198
715 => 0.016532693236068
716 => 0.016347823512934
717 => 0.016304511123406
718 => 0.016491424620432
719 => 0.016605441745642
720 => 0.017447280137501
721 => 0.01738491403033
722 => 0.017541440720599
723 => 0.017523818217372
724 => 0.017687883125432
725 => 0.017956059911105
726 => 0.017410781522422
727 => 0.01750542299639
728 => 0.017482219092564
729 => 0.017735553230145
730 => 0.01773634411167
731 => 0.017584457641212
801 => 0.017666797760924
802 => 0.017620837764984
803 => 0.017703893689514
804 => 0.017384081092946
805 => 0.017773578313929
806 => 0.01799439813958
807 => 0.017997464223074
808 => 0.018102131067898
809 => 0.018208478644134
810 => 0.018412603555798
811 => 0.018202785711137
812 => 0.017825343833947
813 => 0.017852593918351
814 => 0.017631299883855
815 => 0.017635019876555
816 => 0.017615162263982
817 => 0.017674756454125
818 => 0.01739715866641
819 => 0.017462310312332
820 => 0.017371097626514
821 => 0.017505224717824
822 => 0.017360926139577
823 => 0.017482207902939
824 => 0.017534549091452
825 => 0.01772768920389
826 => 0.017332399187932
827 => 0.016526376086613
828 => 0.016695811914595
829 => 0.016445203016112
830 => 0.016468397823802
831 => 0.016515255026762
901 => 0.016363375501245
902 => 0.01639234932844
903 => 0.016391314179447
904 => 0.016382393824657
905 => 0.016342884094205
906 => 0.016285587168287
907 => 0.01651384048608
908 => 0.016552625172581
909 => 0.016638838726267
910 => 0.016895351782822
911 => 0.016869720079478
912 => 0.016911526451082
913 => 0.016820263376604
914 => 0.016472631256078
915 => 0.016491509352731
916 => 0.016256099184966
917 => 0.016632818759003
918 => 0.016543606591415
919 => 0.016486090926612
920 => 0.016470397244592
921 => 0.0167275461474
922 => 0.016804489129435
923 => 0.016756543426482
924 => 0.016658205390926
925 => 0.016847043490224
926 => 0.016897568599156
927 => 0.016908879307752
928 => 0.017243464213594
929 => 0.016927578887214
930 => 0.017003615624903
1001 => 0.017596832546715
1002 => 0.017058866656971
1003 => 0.01734383918684
1004 => 0.017329891264428
1005 => 0.017475673567764
1006 => 0.017317932860488
1007 => 0.017319888245605
1008 => 0.017449333054819
1009 => 0.017267551165773
1010 => 0.01722253941364
1011 => 0.01716035600045
1012 => 0.017296131208217
1013 => 0.017377522304688
1014 => 0.018033474767077
1015 => 0.018457249972847
1016 => 0.018438852773537
1017 => 0.018606968737117
1018 => 0.018531230955759
1019 => 0.018286653681135
1020 => 0.018704117265896
1021 => 0.01857201432026
1022 => 0.018582904726593
1023 => 0.018582499385125
1024 => 0.018670336295334
1025 => 0.018608095794316
1026 => 0.018485413377955
1027 => 0.018566855691284
1028 => 0.018808710245713
1029 => 0.019559434203664
1030 => 0.019979549276302
1031 => 0.019534142748779
1101 => 0.019841378207234
1102 => 0.019657146411348
1103 => 0.019623666013614
1104 => 0.019816632586046
1105 => 0.020009936920918
1106 => 0.019997624270464
1107 => 0.019857295249635
1108 => 0.019778026946485
1109 => 0.020378273094764
1110 => 0.020820524231889
1111 => 0.020790365669226
1112 => 0.02092347575673
1113 => 0.021314291090579
1114 => 0.021350022346849
1115 => 0.021345521029833
1116 => 0.021256957382996
1117 => 0.021641765832955
1118 => 0.021962779811972
1119 => 0.021236457457604
1120 => 0.021513031501889
1121 => 0.021637194501028
1122 => 0.021819502621266
1123 => 0.022127086978496
1124 => 0.022461205173169
1125 => 0.022508453149315
1126 => 0.022474928449215
1127 => 0.022254568518249
1128 => 0.02262016463372
1129 => 0.022834322263878
1130 => 0.022961848231728
1201 => 0.023285232867896
1202 => 0.021637961289441
1203 => 0.020471940591501
1204 => 0.020289849621974
1205 => 0.02066013876888
1206 => 0.020757781063918
1207 => 0.020718421577221
1208 => 0.019405959271726
1209 => 0.020282939779556
1210 => 0.021226497067366
1211 => 0.021262742945549
1212 => 0.021735107452679
1213 => 0.021888928699076
1214 => 0.022269244041547
1215 => 0.022245455213327
1216 => 0.02233805594708
1217 => 0.022316768642011
1218 => 0.023021222729095
1219 => 0.023798340199593
1220 => 0.023771431092672
1221 => 0.023659711261851
1222 => 0.023825634261682
1223 => 0.024627702772205
1224 => 0.024553861156642
1225 => 0.024625591996347
1226 => 0.025571275972854
1227 => 0.026800799664291
1228 => 0.026229562467458
1229 => 0.027468982815509
1230 => 0.028249132225758
1231 => 0.029598319961828
]
'min_raw' => 0.012084338387285
'max_raw' => 0.029598319961828
'avg_raw' => 0.020841329174556
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012084'
'max' => '$0.029598'
'avg' => '$0.020841'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0053883247001262
'max_diff' => 0.012007848840014
'year' => 2028
]
3 => [
'items' => [
101 => 0.029429395012382
102 => 0.029954623897237
103 => 0.029126984097173
104 => 0.027226555822626
105 => 0.026925805773632
106 => 0.027527914987923
107 => 0.029008141738299
108 => 0.027481297379874
109 => 0.027790176005017
110 => 0.027701218940196
111 => 0.027696478796255
112 => 0.027877390810928
113 => 0.027614968497909
114 => 0.026545812785794
115 => 0.027035800548082
116 => 0.026846592741918
117 => 0.027056532909234
118 => 0.028189493406325
119 => 0.027688584564156
120 => 0.027160917789461
121 => 0.02782272902356
122 => 0.028665442147581
123 => 0.028612706674781
124 => 0.028510377815831
125 => 0.029087200235967
126 => 0.03003994188092
127 => 0.030297464119125
128 => 0.030487561770557
129 => 0.030513773024963
130 => 0.030783765235553
131 => 0.029331949072415
201 => 0.031636018608599
202 => 0.032033867768861
203 => 0.03195908861589
204 => 0.03240128121347
205 => 0.032271176933919
206 => 0.032082676245585
207 => 0.032783645569812
208 => 0.031980040804893
209 => 0.030839425012118
210 => 0.030213660629379
211 => 0.031037717647542
212 => 0.031540940512908
213 => 0.031873538815929
214 => 0.031974182861462
215 => 0.029444649428369
216 => 0.028081371202287
217 => 0.028955216915189
218 => 0.030021368994538
219 => 0.029326026543783
220 => 0.029353282651395
221 => 0.028361907049399
222 => 0.030109083737477
223 => 0.029854534790093
224 => 0.031175135179411
225 => 0.03085996329802
226 => 0.031936861650097
227 => 0.031653278223201
228 => 0.032830417173309
301 => 0.033300009770273
302 => 0.034088528826825
303 => 0.034668566654675
304 => 0.035009175961545
305 => 0.034988727056353
306 => 0.036338390821052
307 => 0.03554254125267
308 => 0.03454276662744
309 => 0.034524683858718
310 => 0.03504248130404
311 => 0.036127642698645
312 => 0.036409009259809
313 => 0.036566254782768
314 => 0.036325427790601
315 => 0.035461590123174
316 => 0.035088589398136
317 => 0.03540639682274
318 => 0.035017745651952
319 => 0.03568866660899
320 => 0.036609984383986
321 => 0.036419735906735
322 => 0.037055708042541
323 => 0.03771387229688
324 => 0.038655076740591
325 => 0.038901142434877
326 => 0.039307879670491
327 => 0.039726545892159
328 => 0.039861010199188
329 => 0.040117744283131
330 => 0.040116391167781
331 => 0.040890076609938
401 => 0.04174347561168
402 => 0.042065613978606
403 => 0.042806353390538
404 => 0.041537863106209
405 => 0.042500027558239
406 => 0.043367923978508
407 => 0.042333182087093
408 => 0.043759332720468
409 => 0.043814706917835
410 => 0.044650791554803
411 => 0.043803259600801
412 => 0.043299997831932
413 => 0.044752895701684
414 => 0.045455907215003
415 => 0.045244154425894
416 => 0.043632705245249
417 => 0.042694772703806
418 => 0.040240022329176
419 => 0.04314778018525
420 => 0.044564064216484
421 => 0.043629037411757
422 => 0.0441006105448
423 => 0.046673360650583
424 => 0.047652897317632
425 => 0.047449160538364
426 => 0.047483588700267
427 => 0.048012128905959
428 => 0.050355967250402
429 => 0.048951484984664
430 => 0.050025159051874
501 => 0.050594631905703
502 => 0.051123590029406
503 => 0.049824636056523
504 => 0.048134716023227
505 => 0.047599447410665
506 => 0.043536067423391
507 => 0.043324550848688
508 => 0.0432058201857
509 => 0.042457240150342
510 => 0.041869061295879
511 => 0.04140131963313
512 => 0.040173825830591
513 => 0.040588068955489
514 => 0.038631700032109
515 => 0.03988331553983
516 => 0.036760903499937
517 => 0.039361341029735
518 => 0.037946041109652
519 => 0.038896376941618
520 => 0.038893061309427
521 => 0.037143191738527
522 => 0.036133903488878
523 => 0.036777061243641
524 => 0.037466577410673
525 => 0.037578449088963
526 => 0.038472424797733
527 => 0.038721914202107
528 => 0.037965949659306
529 => 0.036696198450634
530 => 0.036991132696467
531 => 0.0361279266558
601 => 0.034615191272272
602 => 0.035701664234547
603 => 0.036072633872712
604 => 0.0362364751986
605 => 0.034748873687733
606 => 0.034281436995618
607 => 0.03403257762291
608 => 0.03650416777608
609 => 0.03663956706397
610 => 0.035946845163595
611 => 0.039078013839877
612 => 0.038369333933841
613 => 0.039161103019675
614 => 0.036964370505012
615 => 0.037048288645365
616 => 0.036008320268723
617 => 0.03659063306893
618 => 0.036179073150561
619 => 0.036543587949201
620 => 0.036762076616554
621 => 0.037801874344619
622 => 0.039373213849539
623 => 0.037646563238244
624 => 0.036894236840811
625 => 0.037360975906535
626 => 0.038603963544711
627 => 0.040487153443914
628 => 0.039372267120857
629 => 0.039867034739032
630 => 0.039975119452924
701 => 0.039153043553637
702 => 0.040517464554918
703 => 0.04124866885404
704 => 0.04199873316353
705 => 0.042649992987135
706 => 0.041699140984052
707 => 0.042716688926632
708 => 0.041896724906304
709 => 0.041161132413748
710 => 0.04116224800392
711 => 0.040700800088048
712 => 0.039806686604867
713 => 0.039641798360407
714 => 0.04049956783118
715 => 0.041187417715669
716 => 0.041244072326734
717 => 0.041624901365791
718 => 0.041850272068253
719 => 0.044059211328998
720 => 0.044947664972973
721 => 0.04603404927126
722 => 0.046457257180707
723 => 0.047730961259709
724 => 0.046702341770727
725 => 0.046479793473966
726 => 0.043390204003736
727 => 0.043896124106404
728 => 0.044706151004805
729 => 0.043403561048939
730 => 0.044229754561058
731 => 0.044392862661521
801 => 0.043359299540681
802 => 0.043911370261148
803 => 0.042445234105149
804 => 0.039405171611252
805 => 0.040520849013521
806 => 0.041342363114544
807 => 0.040169961200426
808 => 0.042271446253263
809 => 0.041043802068853
810 => 0.040654697799708
811 => 0.039136663320086
812 => 0.039853117159962
813 => 0.040822131237025
814 => 0.040223393197378
815 => 0.041465864530614
816 => 0.043225535293479
817 => 0.044479581469302
818 => 0.044575851563128
819 => 0.043769583886642
820 => 0.045061632983742
821 => 0.045071044150852
822 => 0.043613607491148
823 => 0.042720935652121
824 => 0.042518118732096
825 => 0.043024795162917
826 => 0.043639993887563
827 => 0.04460999081078
828 => 0.045196139636309
829 => 0.046724504903974
830 => 0.047138036723738
831 => 0.047592382818644
901 => 0.048199529316586
902 => 0.048928564356532
903 => 0.047333477193118
904 => 0.047396852979735
905 => 0.045911529898649
906 => 0.044324249169633
907 => 0.04552879738562
908 => 0.04710358394369
909 => 0.046742326167284
910 => 0.046701677287612
911 => 0.046770037428162
912 => 0.046497660862328
913 => 0.045265711749808
914 => 0.04464703461791
915 => 0.045445285959428
916 => 0.045869521021365
917 => 0.046527472605244
918 => 0.046446366184858
919 => 0.048141178806089
920 => 0.048799731742226
921 => 0.048631245720093
922 => 0.048662251203008
923 => 0.049854529837296
924 => 0.051180588889427
925 => 0.052422618180651
926 => 0.053686063722083
927 => 0.052162930808768
928 => 0.051389577849164
929 => 0.052187480699118
930 => 0.051764102215637
1001 => 0.054196960563936
1002 => 0.054365406397475
1003 => 0.056798088822424
1004 => 0.059106994122137
1005 => 0.057656812071722
1006 => 0.059024268427629
1007 => 0.060503283966894
1008 => 0.06335654490376
1009 => 0.062395666999153
1010 => 0.061659649583101
1011 => 0.060964116681343
1012 => 0.062411410237164
1013 => 0.064273330275649
1014 => 0.06467437001869
1015 => 0.06532420761139
1016 => 0.064640982841027
1017 => 0.06546385182219
1018 => 0.068368940912648
1019 => 0.067583960196475
1020 => 0.066469161387563
1021 => 0.068762450216758
1022 => 0.069592382529109
1023 => 0.075417282136113
1024 => 0.082771458504558
1025 => 0.079726781197896
1026 => 0.077836851742529
1027 => 0.078281029994266
1028 => 0.080966526249442
1029 => 0.081829022413213
1030 => 0.079484460519825
1031 => 0.080312599416877
1101 => 0.084875726160453
1102 => 0.087323697255748
1103 => 0.083999023701956
1104 => 0.074826381225511
1105 => 0.066368785952099
1106 => 0.068612121069086
1107 => 0.068357796485614
1108 => 0.073260306909931
1109 => 0.067565238666005
1110 => 0.067661129009416
1111 => 0.07266501815746
1112 => 0.07133006632114
1113 => 0.069167615314014
1114 => 0.066384574237562
1115 => 0.0612398654076
1116 => 0.056683053326082
1117 => 0.065620011189086
1118 => 0.06523463331523
1119 => 0.064676549044085
1120 => 0.065918505198492
1121 => 0.071949091748888
1122 => 0.071810067209798
1123 => 0.070925664023048
1124 => 0.071596476045426
1125 => 0.069050018723163
1126 => 0.069706298756865
1127 => 0.066367446225796
1128 => 0.067876747012638
1129 => 0.069162975665359
1130 => 0.069421205110333
1201 => 0.070003009235382
1202 => 0.065031556687414
1203 => 0.067263592927273
1204 => 0.068574705104678
1205 => 0.062651052588495
1206 => 0.068457613540428
1207 => 0.064945014759037
1208 => 0.06375278597517
1209 => 0.065357964968449
1210 => 0.06473242515368
1211 => 0.064194622753873
1212 => 0.063894519774162
1213 => 0.065073186069685
1214 => 0.065018199878188
1215 => 0.063089673049442
1216 => 0.060573988418154
1217 => 0.061418334754947
1218 => 0.061111575815001
1219 => 0.059999841843945
1220 => 0.060749016309165
1221 => 0.057450031112856
1222 => 0.051774298548935
1223 => 0.055523861333051
1224 => 0.055379507244602
1225 => 0.055306717367269
1226 => 0.058124410169229
1227 => 0.057853554021554
1228 => 0.057361947461292
1229 => 0.059990813103943
1230 => 0.059031241781143
1231 => 0.061988414494575
]
'min_raw' => 0.026545812785794
'max_raw' => 0.087323697255748
'avg_raw' => 0.056934755020771
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.026545'
'max' => '$0.087323'
'avg' => '$0.056934'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014461474398509
'max_diff' => 0.05772537729392
'year' => 2029
]
4 => [
'items' => [
101 => 0.063936199701581
102 => 0.063442178368834
103 => 0.065274079770486
104 => 0.061437786789207
105 => 0.062712049432228
106 => 0.062974673196903
107 => 0.059958373309981
108 => 0.057897869437048
109 => 0.057760457320187
110 => 0.054187827559446
111 => 0.056096297540374
112 => 0.057775672145737
113 => 0.056971382034502
114 => 0.056716767812769
115 => 0.058017536652518
116 => 0.058118617531698
117 => 0.055813962774318
118 => 0.056293173477302
119 => 0.058291561770894
120 => 0.056242819219639
121 => 0.052262447102747
122 => 0.051275259784808
123 => 0.051143550799122
124 => 0.048466220498057
125 => 0.051341228361812
126 => 0.050086210383863
127 => 0.054050797138781
128 => 0.051786246446877
129 => 0.051688626192649
130 => 0.051541058860606
131 => 0.049236570071357
201 => 0.0497411066583
202 => 0.051418263116389
203 => 0.052016691435155
204 => 0.051954270458729
205 => 0.051410044134775
206 => 0.051659188158992
207 => 0.050856608449458
208 => 0.050573200849769
209 => 0.049678688507751
210 => 0.048364002480325
211 => 0.048546817635876
212 => 0.045942080609234
213 => 0.044522881633262
214 => 0.044130066061455
215 => 0.043604776661942
216 => 0.044189398896872
217 => 0.045934701716506
218 => 0.043829496229379
219 => 0.040220269084695
220 => 0.040437189785914
221 => 0.04092454619722
222 => 0.040016360748937
223 => 0.039156839440365
224 => 0.039904123483
225 => 0.038374846362197
226 => 0.041109352031061
227 => 0.041035391316082
228 => 0.042054645928738
301 => 0.042692006755242
302 => 0.041223096398168
303 => 0.04085366941572
304 => 0.041064111814442
305 => 0.037585967729792
306 => 0.041770407353051
307 => 0.041806594560676
308 => 0.041496737719103
309 => 0.043724822638409
310 => 0.048426776775259
311 => 0.046657712493309
312 => 0.045972677333087
313 => 0.044670424992748
314 => 0.046405598916157
315 => 0.046272364631769
316 => 0.045669828670165
317 => 0.04530541304056
318 => 0.0459768600117
319 => 0.045222213330261
320 => 0.045086658049971
321 => 0.04426534053701
322 => 0.043972167552449
323 => 0.043755113946233
324 => 0.043516159253035
325 => 0.044043233762429
326 => 0.042848813581717
327 => 0.041408459934232
328 => 0.041288710113286
329 => 0.04161934989743
330 => 0.041473066406183
331 => 0.041288009764209
401 => 0.040934686237504
402 => 0.040829862694693
403 => 0.041170488355675
404 => 0.040785941844136
405 => 0.041353361169244
406 => 0.041199054509558
407 => 0.040337110052081
408 => 0.039262808125353
409 => 0.03925324458478
410 => 0.039021787996875
411 => 0.038726993232447
412 => 0.038644988072974
413 => 0.039841189305274
414 => 0.042317290056846
415 => 0.041831172231244
416 => 0.0421824421796
417 => 0.043910342660869
418 => 0.044459590264084
419 => 0.044069747324965
420 => 0.043536106265432
421 => 0.043559583763778
422 => 0.045383196808333
423 => 0.045496933317033
424 => 0.045784308781729
425 => 0.046153667466159
426 => 0.044132650706075
427 => 0.043464394056125
428 => 0.043147736981911
429 => 0.042172555755042
430 => 0.0432242051025
501 => 0.042611454063851
502 => 0.042694135113521
503 => 0.042640288971457
504 => 0.042669692606084
505 => 0.041108587680997
506 => 0.041677372266439
507 => 0.040731657575557
508 => 0.039465451765921
509 => 0.039461207000058
510 => 0.039771109078134
511 => 0.039586767195625
512 => 0.039090707929656
513 => 0.039161170807054
514 => 0.038543841856531
515 => 0.039236125718748
516 => 0.039255977942806
517 => 0.038989410946895
518 => 0.040055969753405
519 => 0.040492939766662
520 => 0.040317479659535
521 => 0.040480629017805
522 => 0.041851372621588
523 => 0.042074863638741
524 => 0.042174123585572
525 => 0.042041128406241
526 => 0.040505683694572
527 => 0.04057378719675
528 => 0.040074088885155
529 => 0.039651896468767
530 => 0.039668781951315
531 => 0.039885843734511
601 => 0.04083376527223
602 => 0.042828610265335
603 => 0.04290431317461
604 => 0.042996067309062
605 => 0.042622857132314
606 => 0.042510293371866
607 => 0.042658794027068
608 => 0.043407952922511
609 => 0.045334992996247
610 => 0.04465384833151
611 => 0.04410006711643
612 => 0.044585882540398
613 => 0.044511095063826
614 => 0.043879813498095
615 => 0.043862095527094
616 => 0.042650464369531
617 => 0.042202551918087
618 => 0.041828242747995
619 => 0.041419506905842
620 => 0.041177194597664
621 => 0.041549496432
622 => 0.041634646266458
623 => 0.040820601798961
624 => 0.040709650546039
625 => 0.041374416830567
626 => 0.041081877973731
627 => 0.041382761442602
628 => 0.04145256898831
629 => 0.041441328365647
630 => 0.041135884201236
701 => 0.041330565203156
702 => 0.040870086596417
703 => 0.040369385273239
704 => 0.040049969023847
705 => 0.039771235981834
706 => 0.039925893273602
707 => 0.039374568267755
708 => 0.039198188302405
709 => 0.041264611660167
710 => 0.04279110081234
711 => 0.042768905055511
712 => 0.042633794094102
713 => 0.042433046611706
714 => 0.043393266993795
715 => 0.043058745412888
716 => 0.043302137813211
717 => 0.043364091394241
718 => 0.043551606224791
719 => 0.043618626659269
720 => 0.043416044357593
721 => 0.042736153409825
722 => 0.041041929810077
723 => 0.040253264150926
724 => 0.03999299134714
725 => 0.04000245176923
726 => 0.039741491094826
727 => 0.039818355708875
728 => 0.039714760718884
729 => 0.03951857687016
730 => 0.039913779473775
731 => 0.039959322892275
801 => 0.039867077882272
802 => 0.039888804921445
803 => 0.039125055636978
804 => 0.0391831218363
805 => 0.03885980185978
806 => 0.038799183261863
807 => 0.037981858515912
808 => 0.036533849255343
809 => 0.037336186947358
810 => 0.036367075841156
811 => 0.036000058780807
812 => 0.037737460461633
813 => 0.037563073520899
814 => 0.037264598882544
815 => 0.036823092684853
816 => 0.036659333741433
817 => 0.035664386240994
818 => 0.035605599434829
819 => 0.036098722281889
820 => 0.035871163055292
821 => 0.035551583717731
822 => 0.034394099752325
823 => 0.033092704545437
824 => 0.033131985486455
825 => 0.033545935088447
826 => 0.034749549384949
827 => 0.034279276456567
828 => 0.033938088051266
829 => 0.033874193719038
830 => 0.034673965058706
831 => 0.035805809061612
901 => 0.036336844944193
902 => 0.035810604512355
903 => 0.035206087839056
904 => 0.035242881967899
905 => 0.035487656823032
906 => 0.035513379199377
907 => 0.035119900990377
908 => 0.035230662801399
909 => 0.035062405482185
910 => 0.034029810624747
911 => 0.03401113425817
912 => 0.033757718827313
913 => 0.033750045508781
914 => 0.033318922643452
915 => 0.033258605574381
916 => 0.032402584957983
917 => 0.032966020319965
918 => 0.032588097460831
919 => 0.032018478569127
920 => 0.031920276057495
921 => 0.031917323971412
922 => 0.032502195208739
923 => 0.032959185759028
924 => 0.032594671590769
925 => 0.032511678780466
926 => 0.033397824867598
927 => 0.03328505470061
928 => 0.033187396463287
929 => 0.035704464845325
930 => 0.033712008811647
1001 => 0.032843184255549
1002 => 0.031767848882069
1003 => 0.032117983501986
1004 => 0.03219176201095
1005 => 0.029605774281501
1006 => 0.028556639381727
1007 => 0.02819661581994
1008 => 0.027989417170145
1009 => 0.028083840196693
1010 => 0.027139495735647
1011 => 0.027774110831486
1012 => 0.02695638835167
1013 => 0.02681929451683
1014 => 0.028281483607117
1015 => 0.028484938677046
1016 => 0.027616936140195
1017 => 0.028174334285699
1018 => 0.027972213969726
1019 => 0.026970405856581
1020 => 0.026932144155461
1021 => 0.026429472059543
1022 => 0.025642887565929
1023 => 0.025283397345467
1024 => 0.025096171717414
1025 => 0.025173424660504
1026 => 0.025134363208498
1027 => 0.02487946081198
1028 => 0.025148973915489
1029 => 0.024460479306528
1030 => 0.024186315205662
1031 => 0.02406248164186
1101 => 0.023451403048136
1102 => 0.024423900838635
1103 => 0.024615495154567
1104 => 0.024807466970488
1105 => 0.026478450563359
1106 => 0.026394972945209
1107 => 0.027149569958029
1108 => 0.027120247705726
1109 => 0.026905024414008
1110 => 0.025997032748766
1111 => 0.026358942043136
1112 => 0.025245041488256
1113 => 0.026079651521848
1114 => 0.025698770356665
1115 => 0.025950875216767
1116 => 0.025497567946924
1117 => 0.025748446906654
1118 => 0.024660929274555
1119 => 0.023645420611487
1120 => 0.024054090942052
1121 => 0.024498362328496
1122 => 0.025461655892552
1123 => 0.0248879261928
1124 => 0.025094261087953
1125 => 0.024403073729235
1126 => 0.022976956780292
1127 => 0.022985028447348
1128 => 0.022765651424399
1129 => 0.022576077647002
1130 => 0.024953825950444
1201 => 0.024658115362273
1202 => 0.024186939241667
1203 => 0.024817627202892
1204 => 0.024984391110204
1205 => 0.024989138644203
1206 => 0.025449272300301
1207 => 0.025694845715043
1208 => 0.025738129093768
1209 => 0.026462159343483
1210 => 0.026704844732998
1211 => 0.027704431506287
1212 => 0.025674010526529
1213 => 0.025632195342606
1214 => 0.024826502275886
1215 => 0.024315518995469
1216 => 0.024861489738262
1217 => 0.025345145283937
1218 => 0.024841530801875
1219 => 0.02490729222135
1220 => 0.024231230925997
1221 => 0.024472891027445
1222 => 0.024681041261944
1223 => 0.024566112936959
1224 => 0.024394059671863
1225 => 0.025305491044727
1226 => 0.025254064514742
1227 => 0.02610281036287
1228 => 0.026764468445883
1229 => 0.027950278016174
1230 => 0.026712823911925
1231 => 0.026667726165931
]
'min_raw' => 0.022576077647002
'max_raw' => 0.065274079770486
'avg_raw' => 0.043925078708744
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022576'
'max' => '$0.065274'
'avg' => '$0.043925'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0039697351387922
'max_diff' => -0.022049617485262
'year' => 2030
]
5 => [
'items' => [
101 => 0.027108563866923
102 => 0.026704777243043
103 => 0.026959956451094
104 => 0.027909164700701
105 => 0.027929219975273
106 => 0.02759326828644
107 => 0.027572825595643
108 => 0.027637348792392
109 => 0.028015263171097
110 => 0.027883208275042
111 => 0.028036025543978
112 => 0.028227125878804
113 => 0.029017597888507
114 => 0.029208178013916
115 => 0.028745167113638
116 => 0.02878697181382
117 => 0.028613793027183
118 => 0.028446504489215
119 => 0.028822544692038
120 => 0.029509765553785
121 => 0.029505490388471
122 => 0.029664912270732
123 => 0.029764230782658
124 => 0.029337883023876
125 => 0.029060346310151
126 => 0.029166771546313
127 => 0.029336947816576
128 => 0.029111585675445
129 => 0.027720546142483
130 => 0.028142498676834
131 => 0.028072265142693
201 => 0.027972244049387
202 => 0.02839652058554
203 => 0.028355598078598
204 => 0.027129810118266
205 => 0.027208281086427
206 => 0.027134582197744
207 => 0.027372718384454
208 => 0.026691917107464
209 => 0.026901326995
210 => 0.027032666913366
211 => 0.027110027134285
212 => 0.027389505298643
213 => 0.02735671176178
214 => 0.027387466806347
215 => 0.027801859144591
216 => 0.029897713389147
217 => 0.030011786111437
218 => 0.029450050306745
219 => 0.029674452680971
220 => 0.029243649193863
221 => 0.029532850460891
222 => 0.029730714622876
223 => 0.028836604521956
224 => 0.028783661124506
225 => 0.028351079558161
226 => 0.028583524389242
227 => 0.028213687949617
228 => 0.028304432875572
301 => 0.028050702151602
302 => 0.028507366937464
303 => 0.029017989126591
304 => 0.029146992456646
305 => 0.028807640234697
306 => 0.028561926861605
307 => 0.028130535121473
308 => 0.028847949199505
309 => 0.02905774293872
310 => 0.028846847242305
311 => 0.028797978101284
312 => 0.028705371167353
313 => 0.028817625100098
314 => 0.029056600356961
315 => 0.028943904039004
316 => 0.029018341942468
317 => 0.028734661414498
318 => 0.029338024162725
319 => 0.030296309414062
320 => 0.03029939045784
321 => 0.030186693532409
322 => 0.030140580378612
323 => 0.030256214263126
324 => 0.030318940901924
325 => 0.030692879680814
326 => 0.03109413088894
327 => 0.03296659519765
328 => 0.032440814712552
329 => 0.034102176440639
330 => 0.035416097866736
331 => 0.035810085451602
401 => 0.035447635412073
402 => 0.034207713406014
403 => 0.034146876917036
404 => 0.035999843875657
405 => 0.035476295838584
406 => 0.03541402146549
407 => 0.034751527349985
408 => 0.035143143423741
409 => 0.035057491243749
410 => 0.034922285087384
411 => 0.035669461275898
412 => 0.037068108399918
413 => 0.03685011612921
414 => 0.036687395011497
415 => 0.035974398441083
416 => 0.036403781630021
417 => 0.036250886500734
418 => 0.036907821005801
419 => 0.03651866755788
420 => 0.035472329447279
421 => 0.035638962240168
422 => 0.035613776028741
423 => 0.036132106475184
424 => 0.035976516540914
425 => 0.035583394596946
426 => 0.037063327976101
427 => 0.03696722933428
428 => 0.037103475237174
429 => 0.037163454897172
430 => 0.038064264265712
501 => 0.038433297041318
502 => 0.038517073942209
503 => 0.038867626537016
504 => 0.038508351874304
505 => 0.039945706683644
506 => 0.040901463759876
507 => 0.04201162478673
508 => 0.043633868430116
509 => 0.044243847046622
510 => 0.044133659869257
511 => 0.045363626485262
512 => 0.047573849153601
513 => 0.044580409063213
514 => 0.047732508747032
515 => 0.046734590379876
516 => 0.044368543883133
517 => 0.044216198382599
518 => 0.045818512540557
519 => 0.049372291125887
520 => 0.048482109896885
521 => 0.049373747143479
522 => 0.048333604933226
523 => 0.04828195310548
524 => 0.049323229757968
525 => 0.051756229413541
526 => 0.050600402476806
527 => 0.048943241142606
528 => 0.050166863283493
529 => 0.049106848544173
530 => 0.046718338657041
531 => 0.048481429192076
601 => 0.047302500761225
602 => 0.04764657475263
603 => 0.050124506961908
604 => 0.049826355602692
605 => 0.05021219106959
606 => 0.049531201569588
607 => 0.048895049994398
608 => 0.047707625838071
609 => 0.047356088084686
610 => 0.047453240472718
611 => 0.047356039940787
612 => 0.046691687038313
613 => 0.046548220092278
614 => 0.04630910223012
615 => 0.046383214854238
616 => 0.045933603316985
617 => 0.046782113182266
618 => 0.046939604090306
619 => 0.047557078810407
620 => 0.047621187084241
621 => 0.04934084539052
622 => 0.048393686493105
623 => 0.049029122455256
624 => 0.048972283081846
625 => 0.044419823285198
626 => 0.045047112078483
627 => 0.046022976586768
628 => 0.045583350948539
629 => 0.044961823152639
630 => 0.044459906133238
701 => 0.043699450525196
702 => 0.044769777190259
703 => 0.046177142938267
704 => 0.047656880202118
705 => 0.049434687568409
706 => 0.049037901660212
707 => 0.047623645330022
708 => 0.047687087835879
709 => 0.048079264443384
710 => 0.047571360103663
711 => 0.047421569198409
712 => 0.048058685473198
713 => 0.048063072942829
714 => 0.047478667617691
715 => 0.046829208043845
716 => 0.046826486784517
717 => 0.046710921726386
718 => 0.048354163700339
719 => 0.04925778063551
720 => 0.049361378860875
721 => 0.049250807649515
722 => 0.049293362120353
723 => 0.048767567335618
724 => 0.049969378293923
725 => 0.051072278876049
726 => 0.050776677960005
727 => 0.050333530164709
728 => 0.049980541600866
729 => 0.050693525072502
730 => 0.05066177704085
731 => 0.051062646001614
801 => 0.051044460270022
802 => 0.050909663115962
803 => 0.050776682774036
804 => 0.051303934798354
805 => 0.051152094682759
806 => 0.051000018717525
807 => 0.050695007087583
808 => 0.050736463233799
809 => 0.050293391954217
810 => 0.05008840690672
811 => 0.04700592362027
812 => 0.046182183363083
813 => 0.046441348816773
814 => 0.046526672813356
815 => 0.046168179997776
816 => 0.046682166606069
817 => 0.046602062337613
818 => 0.046913701186745
819 => 0.046719002763593
820 => 0.046726993254793
821 => 0.047299559803202
822 => 0.047465778308077
823 => 0.04738123823495
824 => 0.047440447204304
825 => 0.048804892912531
826 => 0.048610912365339
827 => 0.048507864065819
828 => 0.04853640914903
829 => 0.048885054281528
830 => 0.048982655883309
831 => 0.048569111038221
901 => 0.048764141177839
902 => 0.049594554759322
903 => 0.049885152515503
904 => 0.050812601058397
905 => 0.050418604433292
906 => 0.051141802290446
907 => 0.05336466594702
908 => 0.055140443246356
909 => 0.053507365054786
910 => 0.056768353921141
911 => 0.059307501514669
912 => 0.059210044800858
913 => 0.058767285686384
914 => 0.055876533657884
915 => 0.053216420542574
916 => 0.0554417181179
917 => 0.055447390859056
918 => 0.055256235823817
919 => 0.054068988317149
920 => 0.055214922184093
921 => 0.05530588225303
922 => 0.05525496880266
923 => 0.054344708922947
924 => 0.052954910330772
925 => 0.053226473648975
926 => 0.053671299903934
927 => 0.052829151002819
928 => 0.052560033401311
929 => 0.053060374224232
930 => 0.054672576605834
1001 => 0.054367799084445
1002 => 0.054359840111659
1003 => 0.055663807593945
1004 => 0.054730448290423
1005 => 0.053229898932084
1006 => 0.052850990429288
1007 => 0.051506120507717
1008 => 0.052435026952809
1009 => 0.052468456642067
1010 => 0.051959704075284
1011 => 0.053271181398983
1012 => 0.053259095904564
1013 => 0.054504148435776
1014 => 0.056884221255079
1015 => 0.05618031660614
1016 => 0.055361752084033
1017 => 0.055450752743919
1018 => 0.056426870310514
1019 => 0.055836687347154
1020 => 0.05604892125568
1021 => 0.056426549069074
1022 => 0.056654381304867
1023 => 0.055417971191327
1024 => 0.055129704849529
1025 => 0.054540013081947
1026 => 0.054386173506903
1027 => 0.054866465147276
1028 => 0.054739925268992
1029 => 0.052465647006131
1030 => 0.052227972273698
1031 => 0.05223526141842
1101 => 0.051637617002898
1102 => 0.050726065818132
1103 => 0.053121567905804
1104 => 0.052929175563133
1105 => 0.05271678930681
1106 => 0.052742805411351
1107 => 0.05378261167651
1108 => 0.053179471531243
1109 => 0.054783018460163
1110 => 0.05445337741861
1111 => 0.05411528232819
1112 => 0.054068547288066
1113 => 0.053938409523172
1114 => 0.053492118705222
1115 => 0.052953195724626
1116 => 0.052597352092128
1117 => 0.048518277019476
1118 => 0.049275329626072
1119 => 0.050146249642444
1120 => 0.050446887742103
1121 => 0.049932625469114
1122 => 0.053512424914225
1123 => 0.054166488768652
1124 => 0.052185286690062
1125 => 0.051814684673105
1126 => 0.053536721520758
1127 => 0.05249812279118
1128 => 0.052965803735515
1129 => 0.051954933341663
1130 => 0.054008943939346
1201 => 0.053993295820001
1202 => 0.053194239305569
1203 => 0.053869596399864
1204 => 0.053752236485008
1205 => 0.052850103648204
1206 => 0.054037543159378
1207 => 0.054038132114561
1208 => 0.053269057592407
1209 => 0.052370946922592
1210 => 0.052210385947256
1211 => 0.052089424820673
1212 => 0.052936054713427
1213 => 0.053695140427928
1214 => 0.055107610749306
1215 => 0.055462739347567
1216 => 0.056848829908832
1217 => 0.056023480467123
1218 => 0.056389347184568
1219 => 0.056786547261361
1220 => 0.056976979584725
1221 => 0.056666680332966
1222 => 0.058819849512245
1223 => 0.059001642962375
1224 => 0.059062596733697
1225 => 0.058336560201113
1226 => 0.058981450573014
1227 => 0.058679727724526
1228 => 0.05946472675527
1229 => 0.059587824626661
1230 => 0.059483565108926
1231 => 0.059522638316274
]
'min_raw' => 0.026691917107464
'max_raw' => 0.059587824626661
'avg_raw' => 0.043139870867063
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.026691'
'max' => '$0.059587'
'avg' => '$0.043139'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.004115839460462
'max_diff' => -0.0056862551438246
'year' => 2031
]
6 => [
'items' => [
101 => 0.05768528826683
102 => 0.057590011973973
103 => 0.056290912960367
104 => 0.056820305410866
105 => 0.055830631599098
106 => 0.056144467359579
107 => 0.056282803172463
108 => 0.056210544394301
109 => 0.056850236465724
110 => 0.056306367524558
111 => 0.054871007968489
112 => 0.053435257349669
113 => 0.053417232670187
114 => 0.053039224875355
115 => 0.052765994475273
116 => 0.052818628343698
117 => 0.053004116961171
118 => 0.052755213539626
119 => 0.052808329704336
120 => 0.053690411949686
121 => 0.053867307253268
122 => 0.053266147894239
123 => 0.050852406320856
124 => 0.050260068084336
125 => 0.050685829062169
126 => 0.050482342737283
127 => 0.040743190574295
128 => 0.043031259912103
129 => 0.04167176680707
130 => 0.04229828377714
131 => 0.040910593355934
201 => 0.04157287196002
202 => 0.041450573284387
203 => 0.045129721070689
204 => 0.045072276238508
205 => 0.04509977203976
206 => 0.04378732580607
207 => 0.045878088293137
208 => 0.046908073075654
209 => 0.046717450304568
210 => 0.046765425949244
211 => 0.045941045422793
212 => 0.045107753845263
213 => 0.044183505243128
214 => 0.045900644905315
215 => 0.045709728287432
216 => 0.046147622319226
217 => 0.047261310133832
218 => 0.047425304895022
219 => 0.047645715517131
220 => 0.047566713999001
221 => 0.049448850672264
222 => 0.049220911502394
223 => 0.049770179319206
224 => 0.048640293746975
225 => 0.047361720972274
226 => 0.047604735857051
227 => 0.047581331569445
228 => 0.047283368126025
229 => 0.047014380052151
301 => 0.046566590696071
302 => 0.047983462479063
303 => 0.047925940072186
304 => 0.048857160977053
305 => 0.048692558636721
306 => 0.047593303922954
307 => 0.047632564020107
308 => 0.047896607041216
309 => 0.048810462952067
310 => 0.049081757606462
311 => 0.048956083113324
312 => 0.049253545316797
313 => 0.049488647313911
314 => 0.04928307050794
315 => 0.052193604557368
316 => 0.050984947898319
317 => 0.051574038744161
318 => 0.051714533439769
319 => 0.051354659231253
320 => 0.051432703060951
321 => 0.051550918197273
322 => 0.05226869735612
323 => 0.054152357560007
324 => 0.0549866178418
325 => 0.057496531061253
326 => 0.054917344138861
327 => 0.054764305860623
328 => 0.055216417023564
329 => 0.056690001784679
330 => 0.057884203826784
331 => 0.058280389539319
401 => 0.058332752021544
402 => 0.059076022756187
403 => 0.059502051680107
404 => 0.058985770139041
405 => 0.058548275589918
406 => 0.056981224418782
407 => 0.05716261485878
408 => 0.058412215114119
409 => 0.060177349075874
410 => 0.061692017645947
411 => 0.061161633504236
412 => 0.065208090112635
413 => 0.065609279757064
414 => 0.065553848320218
415 => 0.066467818035253
416 => 0.064653774277605
417 => 0.063878235425767
418 => 0.058642866877212
419 => 0.060113791891448
420 => 0.062251867784037
421 => 0.06196888542228
422 => 0.06041615755815
423 => 0.061690839762625
424 => 0.061269389962827
425 => 0.060936975019759
426 => 0.062459832315763
427 => 0.060785388163277
428 => 0.062235163922733
429 => 0.06037581151522
430 => 0.061164056254319
501 => 0.060716610417299
502 => 0.06100616271075
503 => 0.059313445919757
504 => 0.0602267948118
505 => 0.059275447603036
506 => 0.05927499654059
507 => 0.059253995498228
508 => 0.060373251270419
509 => 0.060409750160968
510 => 0.059582618454217
511 => 0.059463415853048
512 => 0.05990417034618
513 => 0.059388162268507
514 => 0.059629599200334
515 => 0.059395475147217
516 => 0.059342768891453
517 => 0.058922796478296
518 => 0.058741860815326
519 => 0.058812810350914
520 => 0.058570623008959
521 => 0.058424696375133
522 => 0.05922496701784
523 => 0.058797414696267
524 => 0.059159438492595
525 => 0.058746866685634
526 => 0.057316713053725
527 => 0.056494216576415
528 => 0.053792788941052
529 => 0.05455891046733
530 => 0.055066849831863
531 => 0.054898975874915
601 => 0.055259634093037
602 => 0.055281775578485
603 => 0.055164521915298
604 => 0.055028757194452
605 => 0.054962674436605
606 => 0.055455201173013
607 => 0.055741129521186
608 => 0.055117828342446
609 => 0.054971797597177
610 => 0.055601989502285
611 => 0.055986406200351
612 => 0.058824723113784
613 => 0.058614451429194
614 => 0.05914219209378
615 => 0.059082776593789
616 => 0.059635932885956
617 => 0.060540109642359
618 => 0.058701665484795
619 => 0.059020755821932
620 => 0.058942522240138
621 => 0.059796655972219
622 => 0.059799322484499
623 => 0.059287226644972
624 => 0.059564842107386
625 => 0.059409884772248
626 => 0.059689913620581
627 => 0.058611643122649
628 => 0.059924860197023
629 => 0.060669369656354
630 => 0.060679707170919
701 => 0.061032598745849
702 => 0.06139115702408
703 => 0.0620793784153
704 => 0.061371962903012
705 => 0.060099391261918
706 => 0.060191266824023
707 => 0.059445158536466
708 => 0.059457700751575
709 => 0.05939074942437
710 => 0.059591675397172
711 => 0.058655735074632
712 => 0.058875398397601
713 => 0.058567868459097
714 => 0.059020087311905
715 => 0.058533574580738
716 => 0.058942484513536
717 => 0.059118956484953
718 => 0.05977014185865
719 => 0.058437393971581
720 => 0.055719830810747
721 => 0.056291095534422
722 => 0.05544615013623
723 => 0.055524353049767
724 => 0.055682335381012
725 => 0.055170262956844
726 => 0.055267950238118
727 => 0.055264460161016
728 => 0.055234384562044
729 => 0.055101174747342
730 => 0.054907994161266
731 => 0.055677566158344
801 => 0.055808331436743
802 => 0.056099006452231
803 => 0.056963858131578
804 => 0.056877439054204
805 => 0.057018392154894
806 => 0.056710692327506
807 => 0.055538626362255
808 => 0.055602275183148
809 => 0.054808573366714
810 => 0.0560787097123
811 => 0.055777924660684
812 => 0.055584006581185
813 => 0.055531094236556
814 => 0.056398089715935
815 => 0.056657508351854
816 => 0.056495856066886
817 => 0.056164302514267
818 => 0.056800983350305
819 => 0.05697133228262
820 => 0.057009467126339
821 => 0.058137543496357
822 => 0.057072514064058
823 => 0.057328877233894
824 => 0.059328949502865
825 => 0.057515159946015
826 => 0.058475964726613
827 => 0.058428938332389
828 => 0.058920453546282
829 => 0.058388619738596
830 => 0.058395212456039
831 => 0.058831644667851
901 => 0.058218754337326
902 => 0.058066994072391
903 => 0.057857338353312
904 => 0.05831511394582
905 => 0.05858952971012
906 => 0.060801119234203
907 => 0.062229906927496
908 => 0.062167879485571
909 => 0.062734694194262
910 => 0.062479338976569
911 => 0.061654729619335
912 => 0.063062237241736
913 => 0.062616842937388
914 => 0.062653560702684
915 => 0.062652194065626
916 => 0.062948342340971
917 => 0.062738494146298
918 => 0.062324861814122
919 => 0.062599450259633
920 => 0.063414879775636
921 => 0.065945998013739
922 => 0.067362445312639
923 => 0.065860726107802
924 => 0.066896591906477
925 => 0.066275441543995
926 => 0.06616256004551
927 => 0.066813160316959
928 => 0.067464899378058
929 => 0.067423386417411
930 => 0.066950257326225
1001 => 0.066682998707819
1002 => 0.068706770504589
1003 => 0.070197851090396
1004 => 0.070096169390775
1005 => 0.070544959344241
1006 => 0.07186262052817
1007 => 0.071983090953361
1008 => 0.071967914448768
1009 => 0.071669315930143
1010 => 0.072966724485648
1011 => 0.074049045528381
1012 => 0.071600199000422
1013 => 0.072532687700514
1014 => 0.072951311920895
1015 => 0.073565976476623
1016 => 0.074603018611878
1017 => 0.075729521432605
1018 => 0.075888821282931
1019 => 0.075775790415925
1020 => 0.075032831523634
1021 => 0.076265464352048
1022 => 0.076987511754136
1023 => 0.077417474458319
1024 => 0.078507788337153
1025 => 0.072953897201563
1026 => 0.069022577009493
1027 => 0.068408644592549
1028 => 0.069657100304104
1029 => 0.069986308118993
1030 => 0.069853604861603
1031 => 0.065428546565433
1101 => 0.068385347576407
1102 => 0.071566616849324
1103 => 0.071688822358224
1104 => 0.07328143227345
1105 => 0.073800051345134
1106 => 0.075082311075045
1107 => 0.075002105379817
1108 => 0.075314315218841
1109 => 0.07524254358357
1110 => 0.077617659721588
1111 => 0.08023776552998
1112 => 0.080147039597262
1113 => 0.079770368387621
1114 => 0.080329789365923
1115 => 0.083034019347787
1116 => 0.082785057185459
1117 => 0.083026902719614
1118 => 0.086215342271954
1119 => 0.090360767240234
1120 => 0.088434801148606
1121 => 0.092613593385625
1122 => 0.095243921590571
1123 => 0.099792802240011
1124 => 0.099223259978991
1125 => 0.10099410583459
1126 => 0.09820366046471
1127 => 0.09179623385341
1128 => 0.090782234065527
1129 => 0.092812287319432
1130 => 0.097802975154455
1201 => 0.092655112799157
1202 => 0.093696518649043
1203 => 0.093396593694217
1204 => 0.093380611967973
1205 => 0.093990569456317
1206 => 0.093105794306231
1207 => 0.089501061176769
1208 => 0.091153089127176
1209 => 0.090515161798626
1210 => 0.091222989730285
1211 => 0.095042845147005
1212 => 0.093353996013293
1213 => 0.091574930641891
1214 => 0.09380627342384
1215 => 0.096647539557829
1216 => 0.09646973822941
1217 => 0.096124729337088
1218 => 0.098069526399031
1219 => 0.10128176137329
1220 => 0.10215001557902
1221 => 0.10279094308302
1222 => 0.10287931615726
1223 => 0.10378961374552
1224 => 0.098894714188933
1225 => 0.10666304549518
1226 => 0.10800442171594
1227 => 0.10775229858079
1228 => 0.10924318179643
1229 => 0.10880452613433
1230 => 0.10816898290291
1231 => 0.11053234991966
]
'min_raw' => 0.040743190574295
'max_raw' => 0.11053234991966
'avg_raw' => 0.075637770246978
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.040743'
'max' => '$0.110532'
'avg' => '$0.075637'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014051273466831
'max_diff' => 0.050944525292999
'year' => 2032
]
7 => [
'items' => [
101 => 0.10782294034884
102 => 0.10397727456825
103 => 0.10186746626237
104 => 0.10464583203293
105 => 0.10634248305741
106 => 0.10746386145732
107 => 0.10780318988358
108 => 0.099274691307519
109 => 0.094678303587239
110 => 0.097624535418246
111 => 0.10121914159013
112 => 0.098874745970152
113 => 0.098966641839928
114 => 0.095624149782164
115 => 0.10151487797
116 => 0.10065664842186
117 => 0.10510914483582
118 => 0.10404652083311
119 => 0.10767735881378
120 => 0.10672123749084
121 => 0.11069004364634
122 => 0.11227330787291
123 => 0.11493185492472
124 => 0.11688749295827
125 => 0.11803588101696
126 => 0.11796693610541
127 => 0.12251742171861
128 => 0.11983415933436
129 => 0.11646334938336
130 => 0.11640238206612
131 => 0.11814817230449
201 => 0.12180686970995
202 => 0.1227555167153
203 => 0.12328568097449
204 => 0.12247371595639
205 => 0.11956122694944
206 => 0.11830362896289
207 => 0.11937513888355
208 => 0.11806477432648
209 => 0.12032683117534
210 => 0.1234331183781
211 => 0.12279168235432
212 => 0.12493590681234
213 => 0.12715495354741
214 => 0.13032829004218
215 => 0.13115791771022
216 => 0.13252926069758
217 => 0.13394082309428
218 => 0.13439417889342
219 => 0.13525977578204
220 => 0.13525521365916
221 => 0.13786374814439
222 => 0.14074104246118
223 => 0.14182715445625
224 => 0.14432460910035
225 => 0.14004780554357
226 => 0.14329181016977
227 => 0.1462179835453
228 => 0.14272927901502
301 => 0.1475376454461
302 => 0.14772434341863
303 => 0.15054326114573
304 => 0.14768574799002
305 => 0.14598896579967
306 => 0.15088751240563
307 => 0.15325776480548
308 => 0.15254382549289
309 => 0.14711071207255
310 => 0.14394840702472
311 => 0.13567204475146
312 => 0.14547575337638
313 => 0.15025085386948
314 => 0.14709834571586
315 => 0.1486882874581
316 => 0.15736249406342
317 => 0.16066507032544
318 => 0.15997815754969
319 => 0.16009423450125
320 => 0.16187624470623
321 => 0.16977865932609
322 => 0.16504334930934
323 => 0.16866331638847
324 => 0.17058333387447
325 => 0.17236675311921
326 => 0.16798723910957
327 => 0.16228955573086
328 => 0.16048486023235
329 => 0.14678489090912
330 => 0.1460717480099
331 => 0.14567143929012
401 => 0.14314754943672
402 => 0.14116446336357
403 => 0.13958743969093
404 => 0.13544885863479
405 => 0.13684550825191
406 => 0.13024947383742
407 => 0.13446938290671
408 => 0.12394195271436
409 => 0.13270950940282
410 => 0.12793772690918
411 => 0.13114185051698
412 => 0.13113067163156
413 => 0.12523086420128
414 => 0.12182797840133
415 => 0.12399642967535
416 => 0.12632118157298
417 => 0.12669836474697
418 => 0.12971246626448
419 => 0.13055363721012
420 => 0.12800484997431
421 => 0.12372379512307
422 => 0.12471818652455
423 => 0.12180782709132
424 => 0.11670753412994
425 => 0.12037065357737
426 => 0.12162140361272
427 => 0.12217380608199
428 => 0.11715825372708
429 => 0.11558225828423
430 => 0.11474321153433
501 => 0.12307635029666
502 => 0.12353285844906
503 => 0.12119729819765
504 => 0.13175425200094
505 => 0.12936488821929
506 => 0.13203439297174
507 => 0.12462795592758
508 => 0.12491089179676
509 => 0.12140456580664
510 => 0.12336787406832
511 => 0.12198027106934
512 => 0.12320925816256
513 => 0.12394590795894
514 => 0.12745165859547
515 => 0.13274953944373
516 => 0.12692801635685
517 => 0.12439149538215
518 => 0.12596513872892
519 => 0.13015595833366
520 => 0.13650526455894
521 => 0.13274634748188
522 => 0.13441449105013
523 => 0.13477890620925
524 => 0.13200721991929
525 => 0.13660746058594
526 => 0.13907276693149
527 => 0.14160166111875
528 => 0.14379742908355
529 => 0.14059156516878
530 => 0.14402229910012
531 => 0.14125773315753
601 => 0.13877763171145
602 => 0.1387813930016
603 => 0.13722558913597
604 => 0.13421102310242
605 => 0.13365509087409
606 => 0.13654712053235
607 => 0.13886625444205
608 => 0.13905726941876
609 => 0.14034126111257
610 => 0.1411011141708
611 => 0.14854870711162
612 => 0.15154419060214
613 => 0.15520701111274
614 => 0.15663388612687
615 => 0.1609282683564
616 => 0.15746020593338
617 => 0.15670986881303
618 => 0.1462931022059
619 => 0.14799884715426
620 => 0.15072990939649
621 => 0.14633813641636
622 => 0.14912370552546
623 => 0.14967363587401
624 => 0.14618890565103
625 => 0.14805025062943
626 => 0.14310707021712
627 => 0.13285728726856
628 => 0.13661887152442
629 => 0.1393886636723
630 => 0.13543582876437
701 => 0.14252113234101
702 => 0.13838204426189
703 => 0.13707015205207
704 => 0.13195199281825
705 => 0.1343675669606
706 => 0.13763466557582
707 => 0.13561597847259
708 => 0.13980505731918
709 => 0.14573791015246
710 => 0.14996601438896
711 => 0.15029059573166
712 => 0.14757220796858
713 => 0.15192844170743
714 => 0.15196017211441
715 => 0.14704632266124
716 => 0.1440366172316
717 => 0.14335280582552
718 => 0.14506110078705
719 => 0.14713528623899
720 => 0.15040569858864
721 => 0.15238194027752
722 => 0.15753493048451
723 => 0.15892918188671
724 => 0.16046104146712
725 => 0.16250807827454
726 => 0.16496607081132
727 => 0.15958812307444
728 => 0.15980179896378
729 => 0.15479392849395
730 => 0.14944230069567
731 => 0.15350351910474
801 => 0.15881302193336
802 => 0.157595016118
803 => 0.15745796558217
804 => 0.15768844656878
805 => 0.15677010996035
806 => 0.15261650751555
807 => 0.1505305943707
808 => 0.15322195450075
809 => 0.15465229263122
810 => 0.15687062233298
811 => 0.15659716637398
812 => 0.1623113454545
813 => 0.16453170265738
814 => 0.16396364027044
815 => 0.16406817742083
816 => 0.16808802807856
817 => 0.17255892875531
818 => 0.17674651722639
819 => 0.18100631208028
820 => 0.17587096312129
821 => 0.17326354962421
822 => 0.17595373479062
823 => 0.17452628467422
824 => 0.18272883645226
825 => 0.18329676334055
826 => 0.19149872198073
827 => 0.19928335740133
828 => 0.19439396736988
829 => 0.19900444194657
830 => 0.20399104609877
831 => 0.21361101455573
901 => 0.210371347614
902 => 0.20788981350869
903 => 0.20554477576985
904 => 0.21042442704011
905 => 0.21670202044497
906 => 0.21805415393833
907 => 0.22024512675233
908 => 0.21794158673782
909 => 0.22071594695869
910 => 0.23051065765401
911 => 0.22786404036384
912 => 0.22410541834682
913 => 0.23183740174676
914 => 0.23463557648188
915 => 0.2542746321884
916 => 0.27906975126681
917 => 0.26880440915482
918 => 0.26243238004538
919 => 0.26392995803265
920 => 0.27298429615234
921 => 0.27589226218605
922 => 0.26798740807041
923 => 0.27077953618063
924 => 0.28616443658393
925 => 0.2944179420436
926 => 0.2832085730357
927 => 0.25228236851292
928 => 0.22376699555816
929 => 0.23133055652974
930 => 0.23047308344019
1001 => 0.24700223961812
1002 => 0.22780091941676
1003 => 0.22812422040442
1004 => 0.24499518202743
1005 => 0.24049429870792
1006 => 0.23320344415989
1007 => 0.22382022686491
1008 => 0.20647448185259
1009 => 0.19111087177329
1010 => 0.22124244916688
1011 => 0.21994312075895
1012 => 0.21806150067459
1013 => 0.22224884255978
1014 => 0.24258138615655
1015 => 0.24211265521662
1016 => 0.23913082812544
1017 => 0.24139251769348
1018 => 0.2328069590435
1019 => 0.23501965299714
1020 => 0.2237624785774
1021 => 0.22885119155625
1022 => 0.23318780126052
1023 => 0.23405843986325
1024 => 0.23602003309112
1025 => 0.21925843372991
1026 => 0.22678389974839
1027 => 0.23120440599344
1028 => 0.21123239795892
1029 => 0.2308096236095
1030 => 0.21896665157623
1031 => 0.21494696899266
1101 => 0.22035894203852
1102 => 0.21824989087923
1103 => 0.21643665254012
1104 => 0.2154248343915
1105 => 0.21939879009871
1106 => 0.21921340031507
1107 => 0.21271123746651
1108 => 0.20422943109262
1109 => 0.2070762037175
1110 => 0.20604194453425
1111 => 0.20229365583204
1112 => 0.20481954984723
1113 => 0.19369679093008
1114 => 0.17456066232382
1115 => 0.18720257503659
1116 => 0.1867158751489
1117 => 0.18647045899545
1118 => 0.19597050700228
1119 => 0.19505729658982
1120 => 0.19339981074903
1121 => 0.20226321480476
1122 => 0.19902795309481
1123 => 0.20899826736135
1124 => 0.21556536117679
1125 => 0.21389973376197
1126 => 0.22007611723691
1127 => 0.20714178760911
1128 => 0.21143805307623
1129 => 0.21232350743464
1130 => 0.20215384177455
1201 => 0.19520670910717
1202 => 0.19474341456136
1203 => 0.18269804388998
1204 => 0.1891325836758
1205 => 0.19479471240797
1206 => 0.1920829921442
1207 => 0.19122454251903
1208 => 0.19561017547902
1209 => 0.19595097672042
1210 => 0.18818067230005
1211 => 0.18979636464259
1212 => 0.19653407029745
1213 => 0.18962659174726
1214 => 0.17620648925445
1215 => 0.1728781182888
1216 => 0.17243405224793
1217 => 0.16340724621266
1218 => 0.17310053595195
1219 => 0.16886915521673
1220 => 0.18223603625955
1221 => 0.17460094549591
1222 => 0.17427181199315
1223 => 0.17377427843035
1224 => 0.16600453358313
1225 => 0.16770561391162
1226 => 0.1733602640054
1227 => 0.17537790686305
1228 => 0.17516745018293
1229 => 0.17333255313505
1230 => 0.17417255960738
1231 => 0.17146660608236
]
'min_raw' => 0.094678303587239
'max_raw' => 0.2944179420436
'avg_raw' => 0.19454812281542
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.094678'
'max' => '$0.294417'
'avg' => '$0.194548'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.053935113012944
'max_diff' => 0.18388559212394
'year' => 2033
]
8 => [
'items' => [
101 => 0.17051107757312
102 => 0.16749516675915
103 => 0.16306261102924
104 => 0.16367898508993
105 => 0.15489693234767
106 => 0.15011200391487
107 => 0.14878759878902
108 => 0.14701654890402
109 => 0.14898764358611
110 => 0.15487205389566
111 => 0.14777420661506
112 => 0.13560544530856
113 => 0.13633680859764
114 => 0.1379799647645
115 => 0.13491795411813
116 => 0.13202001801642
117 => 0.13453953833987
118 => 0.12938347375636
119 => 0.13860305053603
120 => 0.1383536868217
121 => 0.14179017491036
122 => 0.14393908143603
123 => 0.1389865476111
124 => 0.13774099874721
125 => 0.13845051998712
126 => 0.12672371436946
127 => 0.14083184470752
128 => 0.14095385240454
129 => 0.13990914842966
130 => 0.14742129229503
131 => 0.16327425894737
201 => 0.15730973520865
202 => 0.15500009133834
203 => 0.15060945665253
204 => 0.15645971668128
205 => 0.15601050798934
206 => 0.15397901592708
207 => 0.15275036318918
208 => 0.15501419353131
209 => 0.15246984955708
210 => 0.15201281546542
211 => 0.14924368612791
212 => 0.14825523294178
213 => 0.14752342155422
214 => 0.14671776912283
215 => 0.14849483763041
216 => 0.14446776659939
217 => 0.13961151371461
218 => 0.13920776883263
219 => 0.1403225439494
220 => 0.13982933894548
221 => 0.13920540755682
222 => 0.13801415261827
223 => 0.13766073272514
224 => 0.13880917592286
225 => 0.13751265051103
226 => 0.13942574438158
227 => 0.13890548870511
228 => 0.13599938278768
301 => 0.13237729883635
302 => 0.13234505469161
303 => 0.1315646826457
304 => 0.13057076151552
305 => 0.13029427539494
306 => 0.13432735136574
307 => 0.1426756979255
308 => 0.14103671773682
309 => 0.14222104889259
310 => 0.14804678600334
311 => 0.14989861264483
312 => 0.14858422995762
313 => 0.14678502186778
314 => 0.1468641778926
315 => 0.15301261659291
316 => 0.15339608717282
317 => 0.15436499361596
318 => 0.15561031220832
319 => 0.14879631309881
320 => 0.14654323914731
321 => 0.14547560771331
322 => 0.14218771612194
323 => 0.14573342532071
324 => 0.14366749241299
325 => 0.14394625734456
326 => 0.14376471131717
327 => 0.14386384772422
328 => 0.13860047347642
329 => 0.14051817041751
330 => 0.13732962730951
331 => 0.13306052601865
401 => 0.13304621449419
402 => 0.13409107098709
403 => 0.13346954945987
404 => 0.13179705101091
405 => 0.13203462152161
406 => 0.1299532538644
407 => 0.13228733723958
408 => 0.13235427039903
409 => 0.1314555211612
410 => 0.13505149864211
411 => 0.13652477355007
412 => 0.13593319754866
413 => 0.13648326700079
414 => 0.14110482476321
415 => 0.14185834033119
416 => 0.14219300217204
417 => 0.14174459963949
418 => 0.13656774059278
419 => 0.1367973563052
420 => 0.13511258855984
421 => 0.13368913735145
422 => 0.13374606793477
423 => 0.13447790689159
424 => 0.13767389053778
425 => 0.14439964970766
426 => 0.14465488735169
427 => 0.14496424282206
428 => 0.14370593865445
429 => 0.14332642207715
430 => 0.14382710240415
501 => 0.14635294392474
502 => 0.15285009407498
503 => 0.15055356728182
504 => 0.14868645525141
505 => 0.15032441587187
506 => 0.15007226467311
507 => 0.14794385479957
508 => 0.14788411742331
509 => 0.14379901838221
510 => 0.14228885027991
511 => 0.14102684077951
512 => 0.13964875935067
513 => 0.13883178648594
514 => 0.14008702811369
515 => 0.14037411672554
516 => 0.1376295089686
517 => 0.13725542907301
518 => 0.13949673501379
519 => 0.13851041983356
520 => 0.13952486945587
521 => 0.13976023047003
522 => 0.13972233192593
523 => 0.13869250560019
524 => 0.13934888619035
525 => 0.13779635041814
526 => 0.1361082009492
527 => 0.13503126676344
528 => 0.13409149885178
529 => 0.1346129367088
530 => 0.13275410595931
531 => 0.13215942859167
601 => 0.13912651921544
602 => 0.14427318396806
603 => 0.14419834942425
604 => 0.14374281338471
605 => 0.14306597923207
606 => 0.14630342929073
607 => 0.14517556642515
608 => 0.14599618089596
609 => 0.14620506171986
610 => 0.14683728106293
611 => 0.14706324513699
612 => 0.14638022476304
613 => 0.14408792496417
614 => 0.13837573181071
615 => 0.135716690478
616 => 0.13483916254837
617 => 0.13487105902195
618 => 0.13399121188851
619 => 0.13425036630129
620 => 0.13390108855976
621 => 0.13323964101667
622 => 0.13457209418693
623 => 0.13472564700214
624 => 0.13441463651057
625 => 0.13448789074008
626 => 0.13191285670422
627 => 0.13210863094929
628 => 0.13101853507497
629 => 0.13081415523984
630 => 0.12805848779507
701 => 0.12317642347629
702 => 0.12588156102235
703 => 0.12261413526661
704 => 0.12137671162333
705 => 0.12723448269175
706 => 0.12664652494576
707 => 0.12564019686371
708 => 0.12415162789321
709 => 0.12359950318219
710 => 0.12024496821944
711 => 0.12004676439809
712 => 0.12170936250569
713 => 0.12094213068555
714 => 0.11986464663664
715 => 0.11596210863432
716 => 0.11157436383379
717 => 0.11170680226894
718 => 0.11310246225309
719 => 0.11716053188742
720 => 0.11557497387597
721 => 0.11442463334648
722 => 0.11420920914442
723 => 0.11690569405436
724 => 0.12072178513298
725 => 0.12251220968685
726 => 0.12073795332997
727 => 0.11869978315994
728 => 0.11882383713421
729 => 0.11964911264793
730 => 0.11973583743566
731 => 0.11840919818224
801 => 0.11878263936124
802 => 0.11821534806216
803 => 0.11473388240684
804 => 0.11467091373298
805 => 0.11381650591495
806 => 0.11379063478578
807 => 0.11233707394529
808 => 0.11213371073571
809 => 0.10924757746208
810 => 0.1111472391228
811 => 0.1098730458175
812 => 0.1079525359546
813 => 0.10762143933035
814 => 0.10761148616601
815 => 0.10958342037707
816 => 0.11112419592343
817 => 0.10989521095558
818 => 0.10961539490127
819 => 0.11260309830278
820 => 0.11222288581141
821 => 0.111893624246
822 => 0.12038009603215
823 => 0.11366239140576
824 => 0.11073308875548
825 => 0.10710752046628
826 => 0.10828802378294
827 => 0.10853677317697
828 => 0.099817934999232
829 => 0.096280703436387
830 => 0.095066858861778
831 => 0.094368274147847
901 => 0.09468662797426
902 => 0.091502704691819
903 => 0.09364235379485
904 => 0.090885345362591
905 => 0.090423123926841
906 => 0.095352996531527
907 => 0.096038959504571
908 => 0.093112428349574
909 => 0.094991735113439
910 => 0.094310272356544
911 => 0.090932606359068
912 => 0.090803604362394
913 => 0.089108810295561
914 => 0.086456785757766
915 => 0.085244739380675
916 => 0.084613495104017
917 => 0.084873958795272
918 => 0.084742260382653
919 => 0.083882839156076
920 => 0.084791521401358
921 => 0.08247021375809
922 => 0.081545850350493
923 => 0.08112833684435
924 => 0.079068042701467
925 => 0.082346886899758
926 => 0.082992860512613
927 => 0.083640106893036
928 => 0.089273944740747
929 => 0.088992494122935
930 => 0.091536670635938
1001 => 0.091437808615083
1002 => 0.090712168260648
1003 => 0.08765081096733
1004 => 0.088871013420999
1005 => 0.085115419930167
1006 => 0.087929365929033
1007 => 0.086645198488345
1008 => 0.08749518762558
1009 => 0.085966830516401
1010 => 0.086812686444939
1011 => 0.083146044820262
1012 => 0.079722186462178
1013 => 0.081100047014127
1014 => 0.082597939011563
1015 => 0.085845750517787
1016 => 0.083911380778543
1017 => 0.084607053283393
1018 => 0.082276666846316
1019 => 0.07746841398465
1020 => 0.077495628173672
1021 => 0.076755983224387
1022 => 0.076116821998275
1023 => 0.084133566412413
1024 => 0.08313655751854
1025 => 0.081547954331451
1026 => 0.08367436282595
1027 => 0.084236618982537
1028 => 0.084252625624876
1029 => 0.085803998371915
1030 => 0.086631966285109
1031 => 0.086777899218428
1101 => 0.089219017755521
1102 => 0.090037248490022
1103 => 0.093407425085086
1104 => 0.086561718992364
1105 => 0.086420736180327
1106 => 0.083704285754187
1107 => 0.081981469948548
1108 => 0.083822248426333
1109 => 0.08545292686633
1110 => 0.083754955478817
1111 => 0.083976674695894
1112 => 0.081697286837516
1113 => 0.082512060741719
1114 => 0.083213853789916
1115 => 0.08282636491819
1116 => 0.082246275322544
1117 => 0.085319229830262
1118 => 0.085145841693931
1119 => 0.088007447578437
1120 => 0.090238274000809
1121 => 0.094236313757623
1122 => 0.090064150848862
1123 => 0.089912100649621
1124 => 0.091398415736819
1125 => 0.090037020942926
1126 => 0.090897375458916
1127 => 0.094097697344068
1128 => 0.094165315102501
1129 => 0.093032630528202
1130 => 0.092963706568917
1201 => 0.093181251031623
1202 => 0.094455415744567
1203 => 0.094010183442738
1204 => 0.094525417534317
1205 => 0.095169725655382
1206 => 0.09783485722509
1207 => 0.098477411423786
1208 => 0.09691633784711
1209 => 0.097057285312484
1210 => 0.096473400942379
1211 => 0.095909375956908
1212 => 0.097177221755013
1213 => 0.099494234870623
1214 => 0.099479820852284
1215 => 0.10001732285881
1216 => 0.10035218215596
1217 => 0.09891472092058
1218 => 0.097978986513261
1219 => 0.098337806627355
1220 => 0.098911567803876
1221 => 0.098151743610769
1222 => 0.093461756706107
1223 => 0.094884399135458
1224 => 0.094647601871554
1225 => 0.094310373772222
1226 => 0.095740851735903
1227 => 0.095602878646632
1228 => 0.09147004895659
1229 => 0.091734619304413
1230 => 0.091486138355725
1231 => 0.092289031135355
]
'min_raw' => 0.076116821998275
'max_raw' => 0.17051107757312
'avg_raw' => 0.1233139497857
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.076116'
'max' => '$0.170511'
'avg' => '$0.123313'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018561481588964
'max_diff' => -0.12390686447048
'year' => 2034
]
9 => [
'items' => [
101 => 0.089993662097957
102 => 0.090699702154314
103 => 0.091142523858947
104 => 0.091403349244892
105 => 0.092345629388568
106 => 0.092235063689464
107 => 0.092338756469471
108 => 0.093735909169807
109 => 0.1008022280832
110 => 0.1011868322307
111 => 0.099292900746044
112 => 0.10004948901802
113 => 0.098597004983494
114 => 0.099572067246668
115 => 0.10023918008323
116 => 0.097224625453209
117 => 0.097046123092317
118 => 0.095587644139504
119 => 0.096371348116275
120 => 0.095124418738922
121 => 0.095430371592387
122 => 0.09457490074161
123 => 0.096114577950461
124 => 0.097836176311606
125 => 0.09827112004561
126 => 0.097126970336495
127 => 0.096298530543955
128 => 0.094844063173288
129 => 0.097262874825627
130 => 0.09797020906472
131 => 0.09725915949999
201 => 0.097094393779103
202 => 0.096782163035745
203 => 0.097160635007316
204 => 0.097966356770546
205 => 0.097586393266352
206 => 0.097837365854968
207 => 0.096880917148973
208 => 0.098915196780062
209 => 0.10214612241029
210 => 0.1021565103645
211 => 0.10177654481216
212 => 0.10162107109461
213 => 0.10201093880955
214 => 0.10222242605169
215 => 0.10348318675229
216 => 0.10483603321496
217 => 0.11114917736305
218 => 0.10937647174872
219 => 0.11497786880754
220 => 0.11940784663069
221 => 0.1207362032804
222 => 0.11951417766668
223 => 0.11533369405466
224 => 0.1151285795846
225 => 0.12137598705561
226 => 0.11961080829566
227 => 0.11940084589892
228 => 0.11716720073463
301 => 0.11848756166906
302 => 0.11819877936418
303 => 0.1177429223682
304 => 0.12026207905395
305 => 0.12497771548301
306 => 0.12424273932258
307 => 0.12369411371338
308 => 0.1212901959964
309 => 0.12273789139649
310 => 0.1222223947933
311 => 0.12443729534283
312 => 0.12312523732334
313 => 0.11959743533046
314 => 0.12015924942561
315 => 0.12007433235534
316 => 0.1218219196442
317 => 0.12129733731787
318 => 0.11997189923688
319 => 0.12496159795035
320 => 0.12463759467006
321 => 0.12509695724405
322 => 0.12529918285538
323 => 0.12833632453391
324 => 0.12958054430191
325 => 0.12986300397238
326 => 0.13104491652057
327 => 0.12983359691149
328 => 0.13467973900408
329 => 0.13790214071543
330 => 0.14164512612644
331 => 0.14711463383155
401 => 0.14917121932444
402 => 0.14879971556293
403 => 0.15294663388232
404 => 0.16039855392144
405 => 0.15030596166139
406 => 0.16093348581796
407 => 0.15756893437065
408 => 0.1495916434148
409 => 0.14907799992332
410 => 0.15448031397688
411 => 0.16646212659422
412 => 0.16346081843017
413 => 0.16646703565918
414 => 0.16296012357691
415 => 0.16278597583345
416 => 0.16629671276692
417 => 0.1744997409723
418 => 0.17060278975784
419 => 0.16501555462027
420 => 0.16914108209884
421 => 0.16556716839736
422 => 0.15751414055246
423 => 0.16345852338638
424 => 0.15948368387161
425 => 0.16064375335611
426 => 0.16899827480339
427 => 0.16799303667953
428 => 0.16929390789435
429 => 0.16699790424993
430 => 0.16485307479949
501 => 0.16084959135313
502 => 0.159664357274
503 => 0.15999191333322
504 => 0.15966419495349
505 => 0.15742428275916
506 => 0.15694057393406
507 => 0.15613437136712
508 => 0.15638424725371
509 => 0.15486835056499
510 => 0.15772916081685
511 => 0.15826015240897
512 => 0.1603420115385
513 => 0.16055815705963
514 => 0.16635610510196
515 => 0.1631626927508
516 => 0.16530510946191
517 => 0.16511347154606
518 => 0.14976453549907
519 => 0.15187948346154
520 => 0.1551696787839
521 => 0.15368745025093
522 => 0.15159192589337
523 => 0.14989967761973
524 => 0.1473357484439
525 => 0.15094442952299
526 => 0.15568946140153
527 => 0.16067849889856
528 => 0.16667250055656
529 => 0.16533470916436
530 => 0.16056644520691
531 => 0.16078034604482
601 => 0.16210259685792
602 => 0.1603901619158
603 => 0.15988513142067
604 => 0.16203321342316
605 => 0.16204800608334
606 => 0.16007764272776
607 => 0.15788794443072
608 => 0.1578787695149
609 => 0.15748913385292
610 => 0.16302943889559
611 => 0.16607604648104
612 => 0.16642533513086
613 => 0.16605253657192
614 => 0.16619601194141
615 => 0.16442325811486
616 => 0.16847524766854
617 => 0.17219375398324
618 => 0.1711971148566
619 => 0.16970301112517
620 => 0.1685128855373
621 => 0.17091675909084
622 => 0.17080971838555
623 => 0.17216127607454
624 => 0.17209996161079
625 => 0.17164548359464
626 => 0.17119713108744
627 => 0.17297479809899
628 => 0.17246285854813
629 => 0.17195012381374
630 => 0.17092175580815
701 => 0.1710615280995
702 => 0.16956768234614
703 => 0.1688765609469
704 => 0.15848375333452
705 => 0.15570645554571
706 => 0.15658024996718
707 => 0.15686792577879
708 => 0.1556592422219
709 => 0.15739218395715
710 => 0.15712210682335
711 => 0.15817281896113
712 => 0.15751637963407
713 => 0.15754332013302
714 => 0.1594737682263
715 => 0.1600341855205
716 => 0.15974915276155
717 => 0.15994877993556
718 => 0.16454910390341
719 => 0.16389508494526
720 => 0.16354765040883
721 => 0.16364389214983
722 => 0.16481937355567
723 => 0.1651484441704
724 => 0.16375414885241
725 => 0.1644117065847
726 => 0.16721150395229
727 => 0.16819127457615
728 => 0.1713182320909
729 => 0.1699898449614
730 => 0.17242815702885
731 => 0.17992269704237
801 => 0.1859098541879
802 => 0.18040381704714
803 => 0.19139846868503
804 => 0.19995938207423
805 => 0.19963079995941
806 => 0.19813800669251
807 => 0.18839163440256
808 => 0.17942287731112
809 => 0.18692562345165
810 => 0.18694474949451
811 => 0.18630025694719
812 => 0.18229736908748
813 => 0.18616096512643
814 => 0.18646764334948
815 => 0.1862959850969
816 => 0.18322698036013
817 => 0.17854117737397
818 => 0.17945677206124
819 => 0.18095653483661
820 => 0.17811717101954
821 => 0.17720982223687
822 => 0.17889675625403
823 => 0.18433240914397
824 => 0.18330483045172
825 => 0.1832779962193
826 => 0.18767441362593
827 => 0.18452752756904
828 => 0.17946832064238
829 => 0.17819080417066
830 => 0.17365648133427
831 => 0.17678835426807
901 => 0.17690106479939
902 => 0.17518577000051
903 => 0.17960750736178
904 => 0.17956676027357
905 => 0.18376454180934
906 => 0.191789123491
907 => 0.18941585982205
908 => 0.18665601238542
909 => 0.18695608432405
910 => 0.19024713285018
911 => 0.18825728978395
912 => 0.18897285122424
913 => 0.19024604976223
914 => 0.19101420205195
915 => 0.18684555903075
916 => 0.18587364893326
917 => 0.1838854619679
918 => 0.1833667810999
919 => 0.18498611789831
920 => 0.18455947986394
921 => 0.17689159191567
922 => 0.17609025496135
923 => 0.17611483082169
924 => 0.17409983094856
925 => 0.17102647248665
926 => 0.17910307502385
927 => 0.17845441080813
928 => 0.1777383357166
929 => 0.17782605082945
930 => 0.18133183024939
1001 => 0.17929830113972
1002 => 0.18470477156665
1003 => 0.18359336378025
1004 => 0.18245345257785
1005 => 0.18229588212714
1006 => 0.18185711356687
1007 => 0.18035241291512
1008 => 0.17853539645964
1009 => 0.17733564480846
1010 => 0.16358275840909
1011 => 0.16613521412795
1012 => 0.16907158176885
1013 => 0.17008520411173
1014 => 0.1683513329537
1015 => 0.18042087671651
1016 => 0.18262609866699
1017 => 0.17594633753591
1018 => 0.17469682696113
1019 => 0.18050279442177
1020 => 0.17700108629235
1021 => 0.17857790524861
1022 => 0.17516968513903
1023 => 0.18209492527556
1024 => 0.18204216654867
1025 => 0.17934809172191
1026 => 0.18162510531726
1027 => 0.18122941817051
1028 => 0.17818781432632
1029 => 0.18219134954263
1030 => 0.18219333524615
1031 => 0.17960034679963
1101 => 0.17657230397227
1102 => 0.17603096143392
1103 => 0.1756231325504
1104 => 0.17847760434364
1105 => 0.18103691482775
1106 => 0.1857991571318
1107 => 0.18699649799513
1108 => 0.19166979909618
1109 => 0.1888870758294
1110 => 0.19012062101127
1111 => 0.1914598088018
1112 => 0.19210186467558
1113 => 0.19105566908387
1114 => 0.19831522930129
1115 => 0.19892815861081
1116 => 0.19913366850648
1117 => 0.19668578564662
1118 => 0.19886007856029
1119 => 0.197842798911
1120 => 0.20048947795003
1121 => 0.20090451101785
1122 => 0.20055299277464
1123 => 0.20068473082122
1124 => 0.19448997684983
1125 => 0.19416874617649
1126 => 0.18978874315192
1127 => 0.19157362675978
1128 => 0.18823687240658
1129 => 0.18929499158436
1130 => 0.18976140043579
1201 => 0.18951777492027
1202 => 0.19167454140095
1203 => 0.18984084929409
1204 => 0.1850014343372
1205 => 0.18016070088494
1206 => 0.18009992941962
1207 => 0.17882544974769
1208 => 0.17790423437747
1209 => 0.17808169313965
1210 => 0.17870708096386
1211 => 0.17786788570024
1212 => 0.17804697055801
1213 => 0.18102097243322
1214 => 0.18161738729969
1215 => 0.17959053654911
1216 => 0.1714524383124
1217 => 0.16945532859223
1218 => 0.17089081145468
1219 => 0.17020474310337
1220 => 0.13736851161996
1221 => 0.14508289714028
1222 => 0.14049927121989
1223 => 0.14261161692649
1224 => 0.13793292178595
1225 => 0.14016584033844
1226 => 0.13975350181492
1227 => 0.15215800544633
1228 => 0.15196432618397
1229 => 0.15205703019758
1230 => 0.14763202608863
1231 => 0.15468117778615
]
'min_raw' => 0.089993662097957
'max_raw' => 0.20090451101785
'avg_raw' => 0.1454490865579
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.089993'
'max' => '$0.2009045'
'avg' => '$0.145449'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013876840099682
'max_diff' => 0.030393433444725
'year' => 2035
]
10 => [
'items' => [
101 => 0.15815384339165
102 => 0.15751114541007
103 => 0.15767289864565
104 => 0.15489344214431
105 => 0.15208394141211
106 => 0.14896777272103
107 => 0.15475722897896
108 => 0.15411354027239
109 => 0.15558993057337
110 => 0.15934480679552
111 => 0.15989772658262
112 => 0.16064085638364
113 => 0.16037449724955
114 => 0.16672025245004
115 => 0.16595173962462
116 => 0.16780363441766
117 => 0.16399414632479
118 => 0.15968334894778
119 => 0.16050269059857
120 => 0.16042378140887
121 => 0.15941917685624
122 => 0.15851226478502
123 => 0.15700251170734
124 => 0.16177959384653
125 => 0.16158565303566
126 => 0.16472532933219
127 => 0.16417036104959
128 => 0.16046414703461
129 => 0.16059651519321
130 => 0.16148675467378
131 => 0.16456788368059
201 => 0.16548257254907
202 => 0.16505885222114
203 => 0.1660617668083
204 => 0.16685442960587
205 => 0.16616131305162
206 => 0.17597438180627
207 => 0.17189931149457
208 => 0.17388547241034
209 => 0.17435916008561
210 => 0.17314581906598
211 => 0.17340894928665
212 => 0.17380751987228
213 => 0.17622756242007
214 => 0.18257845431043
215 => 0.18539122109669
216 => 0.19385356875262
217 => 0.1851576599707
218 => 0.18464168073083
219 => 0.18616600508208
220 => 0.19113429898658
221 => 0.19516063454806
222 => 0.19649640233867
223 => 0.19667294610333
224 => 0.19917893527868
225 => 0.20061532154006
226 => 0.19887464227873
227 => 0.19739959886147
228 => 0.19211617642997
229 => 0.1927277469627
301 => 0.19694086146788
302 => 0.20289213385765
303 => 0.20799894469243
304 => 0.20621071752842
305 => 0.21985362849821
306 => 0.22120626739458
307 => 0.22101937643515
308 => 0.22410088914072
309 => 0.21798471395931
310 => 0.21536993057395
311 => 0.19771851999074
312 => 0.20267784637294
313 => 0.2098865185205
314 => 0.20893242373063
315 => 0.20369729332872
316 => 0.20799497337658
317 => 0.20657402595188
318 => 0.20545326576285
319 => 0.21058768545883
320 => 0.20494218009276
321 => 0.20983020028588
322 => 0.20356126382811
323 => 0.20621888599948
324 => 0.20471029112029
325 => 0.20568653689356
326 => 0.19997942405101
327 => 0.20305884360852
328 => 0.19985131007323
329 => 0.1998497892847
330 => 0.19977898280413
331 => 0.20355263178402
401 => 0.20367569034177
402 => 0.20088695804397
403 => 0.20048505815167
404 => 0.20197109269776
405 => 0.20023133543735
406 => 0.2010453569096
407 => 0.20025599131849
408 => 0.20007828849735
409 => 0.19866232218485
410 => 0.19805228496463
411 => 0.1982914962774
412 => 0.19747494474502
413 => 0.1969829429108
414 => 0.1996811112558
415 => 0.19823958875287
416 => 0.19946017725788
417 => 0.19806916260587
418 => 0.19324729978575
419 => 0.19047419548763
420 => 0.18136614360735
421 => 0.18394917582209
422 => 0.18566172885281
423 => 0.18509573008637
424 => 0.18631171444912
425 => 0.18638636601318
426 => 0.18599103710135
427 => 0.18553329686623
428 => 0.1853104942344
429 => 0.18697108251332
430 => 0.18793510990206
501 => 0.18583360646044
502 => 0.18534125360723
503 => 0.18746598961389
504 => 0.18876207735054
505 => 0.19833166098914
506 => 0.19762271532384
507 => 0.19940202982017
508 => 0.19920170631369
509 => 0.20106671137287
510 => 0.20411520643469
511 => 0.19791676360139
512 => 0.19899259895123
513 => 0.19872882896811
514 => 0.20160860047954
515 => 0.20161759081186
516 => 0.1998910239355
517 => 0.20082702384952
518 => 0.20030457437533
519 => 0.20124871118848
520 => 0.19761324692226
521 => 0.2020408499744
522 => 0.20455101559652
523 => 0.20458586924862
524 => 0.2057756678316
525 => 0.2069845721004
526 => 0.20930495857098
527 => 0.20691985778112
528 => 0.20262929364506
529 => 0.20293905851724
530 => 0.20042350233413
531 => 0.20046578928804
601 => 0.20024005821397
602 => 0.20091749415948
603 => 0.19776190601677
604 => 0.19850251624656
605 => 0.19746565758784
606 => 0.198990345023
607 => 0.19735003338263
608 => 0.19872870177024
609 => 0.19932368934275
610 => 0.20151920629448
611 => 0.19702575374374
612 => 0.18786329981279
613 => 0.18978935871309
614 => 0.18694056631088
615 => 0.18720423289382
616 => 0.18773688135359
617 => 0.18601039342375
618 => 0.18633975291288
619 => 0.18632798587426
620 => 0.18622658389251
621 => 0.18577745770183
622 => 0.18512613586844
623 => 0.18772080158639
624 => 0.18816168585225
625 => 0.18914171696125
626 => 0.19205762478019
627 => 0.19176625682723
628 => 0.19224149004724
629 => 0.19120405859629
630 => 0.18725235636341
701 => 0.18746695280687
702 => 0.18479093171827
703 => 0.1890732850855
704 => 0.18805916728384
705 => 0.18740535893988
706 => 0.18722696127574
707 => 0.19015009706615
708 => 0.19102474510919
709 => 0.19047972314422
710 => 0.18936186719323
711 => 0.19150848108357
712 => 0.19208282440225
713 => 0.19221139869034
714 => 0.19601478693163
715 => 0.19242396584266
716 => 0.19328831216847
717 => 0.20003169546389
718 => 0.19391637733823
719 => 0.19715579773726
720 => 0.19699724496585
721 => 0.19865442282599
722 => 0.19686130801193
723 => 0.19688353581907
724 => 0.19835499749192
725 => 0.19628859495192
726 => 0.19577692462313
727 => 0.19507005572856
728 => 0.19661347809957
729 => 0.197538690008
730 => 0.2049952184967
731 => 0.20981247595941
801 => 0.20960334610834
802 => 0.21151440147243
803 => 0.21065345352765
804 => 0.20787322550735
805 => 0.21261873572531
806 => 0.21111705773177
807 => 0.21124085424102
808 => 0.21123624652876
809 => 0.2122347311155
810 => 0.21152721327603
811 => 0.21013262298921
812 => 0.2110584171044
813 => 0.21380769464907
814 => 0.22234153650587
815 => 0.2271171874673
816 => 0.22205403632151
817 => 0.22554653018358
818 => 0.22345227836914
819 => 0.22307169051587
820 => 0.22526523475452
821 => 0.22746261850198
822 => 0.22732265465682
823 => 0.22572746689306
824 => 0.22482638580171
825 => 0.23164967370975
826 => 0.23667695600872
827 => 0.23633412905926
828 => 0.23784725572089
829 => 0.24228984239867
830 => 0.24269601684818
831 => 0.24264484820335
901 => 0.24163810245033
902 => 0.24601240597738
903 => 0.2496615269382
904 => 0.24140506989618
905 => 0.24454902065282
906 => 0.24596044143925
907 => 0.24803282590339
908 => 0.25152928586637
909 => 0.25532736877637
910 => 0.25586445934371
911 => 0.25548336788403
912 => 0.25297843010694
913 => 0.25713433774761
914 => 0.25956877097549
915 => 0.26101842025168
916 => 0.26469448961746
917 => 0.24596915789352
918 => 0.23271443738994
919 => 0.23064452138282
920 => 0.23485377697873
921 => 0.23596372411118
922 => 0.23551630581384
923 => 0.2205969128206
924 => 0.23056597386635
925 => 0.24129184532912
926 => 0.2417038697345
927 => 0.24707346525615
928 => 0.24882202566516
929 => 0.25314525386907
930 => 0.25287483476783
1001 => 0.25392747203789
1002 => 0.25368548895864
1003 => 0.26169335884328
1004 => 0.27052722850622
1005 => 0.27022133968978
1006 => 0.26895136640813
1007 => 0.270837493294
1008 => 0.27995499348117
1009 => 0.27911560016889
1010 => 0.27993099927241
1011 => 0.29068104583287
1012 => 0.30465763553775
1013 => 0.29816410639317
1014 => 0.31225319617424
1015 => 0.32112153136086
1016 => 0.33645840006316
1017 => 0.33453814856596
1018 => 0.34050867900462
1019 => 0.33110049761739
1020 => 0.30949741144515
1021 => 0.3060786403651
1022 => 0.31292310664443
1023 => 0.32974955911891
1024 => 0.31239318177575
1025 => 0.31590435430728
1026 => 0.31489313638199
1027 => 0.31483925287615
1028 => 0.31689576713398
1029 => 0.31391268594243
1030 => 0.30175907652202
1031 => 0.30732900409772
1101 => 0.30517818757085
1102 => 0.30756467886141
1103 => 0.32044358809267
1104 => 0.31474951532668
1105 => 0.30875127221662
1106 => 0.31627440019334
1107 => 0.32585392733495
1108 => 0.32525445774249
1109 => 0.32409123617428
1110 => 0.33064825525002
1111 => 0.34147852973681
1112 => 0.34440590941102
1113 => 0.34656684123888
1114 => 0.3468647972287
1115 => 0.34993392910245
1116 => 0.33343043349644
1117 => 0.35962190486301
1118 => 0.36414444844322
1119 => 0.36329439769037
1120 => 0.36832101454205
1121 => 0.36684205635132
1122 => 0.36469927797439
1123 => 0.37266753487637
1124 => 0.36353257134343
1125 => 0.35056664066835
1126 => 0.34345327466297
1127 => 0.35282072883772
1128 => 0.35854110622314
1129 => 0.36232191179057
1130 => 0.36346598127085
1201 => 0.33471155288091
1202 => 0.31921451077244
1203 => 0.32914793709002
1204 => 0.34126740276593
1205 => 0.33336310925269
1206 => 0.3336729425936
1207 => 0.3224034972555
1208 => 0.3422644986183
1209 => 0.33937091777706
1210 => 0.3543828203001
1211 => 0.35080010928493
1212 => 0.36304173303377
1213 => 0.35981810323921
1214 => 0.3731992102857
1215 => 0.37853729616556
1216 => 0.38750077316456
1217 => 0.39409434333295
1218 => 0.39796621385072
1219 => 0.39773376126785
1220 => 0.4130760412175
1221 => 0.40402923474963
1222 => 0.3926643136574
1223 => 0.39245875809071
1224 => 0.39834481176655
1225 => 0.41068036551115
1226 => 0.41387879512211
1227 => 0.41566628093685
1228 => 0.41292868418875
1229 => 0.40310902415833
1230 => 0.39886894474401
1231 => 0.40248161525194
]
'min_raw' => 0.14896777272103
'max_raw' => 0.41566628093685
'avg_raw' => 0.28231702682894
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.148967'
'max' => '$0.415666'
'avg' => '$0.282317'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.058974110623075
'max_diff' => 0.214761769919
'year' => 2036
]
11 => [
'items' => [
101 => 0.39806362966105
102 => 0.40569031225874
103 => 0.41616337643687
104 => 0.41400073009907
105 => 0.42123013256428
106 => 0.42871180356045
107 => 0.43941092910784
108 => 0.4422080767134
109 => 0.44683165533939
110 => 0.451590836512
111 => 0.45311935724111
112 => 0.45603777758511
113 => 0.45602239606932
114 => 0.46481725220832
115 => 0.47451825088366
116 => 0.47818015330496
117 => 0.48660049600427
118 => 0.4721809542157
119 => 0.48311834230209
120 => 0.49298414013659
121 => 0.48122172923919
122 => 0.497433472371
123 => 0.49806293762021
124 => 0.50756711554769
125 => 0.49793281043802
126 => 0.49221199081768
127 => 0.50872778270527
128 => 0.51671925415711
129 => 0.51431215791907
130 => 0.49599403669454
131 => 0.48533210444069
201 => 0.45742777119922
202 => 0.49048165930123
203 => 0.50658124400058
204 => 0.49595234265955
205 => 0.5013129422497
206 => 0.53055863543331
207 => 0.54169350187923
208 => 0.53937752749707
209 => 0.53976888904347
210 => 0.54577706086556
211 => 0.57242060348538
212 => 0.5564551751551
213 => 0.56866014690042
214 => 0.57513361990583
215 => 0.58114654240383
216 => 0.56638070515242
217 => 0.54717056784155
218 => 0.5410859109685
219 => 0.49489550789393
220 => 0.49249109681914
221 => 0.49114142802176
222 => 0.48263195716866
223 => 0.47594584401836
224 => 0.47062879860178
225 => 0.4566752836245
226 => 0.46138418531961
227 => 0.43914519477073
228 => 0.45337291282247
301 => 0.41787894692726
302 => 0.44743937643368
303 => 0.43135097860114
304 => 0.44215390504962
305 => 0.44211621465694
306 => 0.42222460199434
307 => 0.41075153493792
308 => 0.41806261980472
309 => 0.42590068313657
310 => 0.42717238254175
311 => 0.43733463624588
312 => 0.44017070281779
313 => 0.43157728870162
314 => 0.41714341337696
315 => 0.42049607341323
316 => 0.41068359338929
317 => 0.39348759957893
318 => 0.40583806254678
319 => 0.41005505361553
320 => 0.41191751710817
321 => 0.39500723216891
322 => 0.38969365350085
323 => 0.38686474880321
324 => 0.41496050794157
325 => 0.41649965704976
326 => 0.40862515259851
327 => 0.4442186594093
328 => 0.43616275259942
329 => 0.44516317425115
330 => 0.42019185465586
331 => 0.42114579269274
401 => 0.40932396981318
402 => 0.41594340069125
403 => 0.41126500030085
404 => 0.41540861609079
405 => 0.41789228231051
406 => 0.42971216534526
407 => 0.4475743405114
408 => 0.42794666897823
409 => 0.4193946114178
410 => 0.4247002598297
411 => 0.43882990072075
412 => 0.4602370299537
413 => 0.44756357858916
414 => 0.45318784109558
415 => 0.45441649224721
416 => 0.44507155840768
417 => 0.46058159099383
418 => 0.46889354346004
419 => 0.47741988677414
420 => 0.48482307177107
421 => 0.47401427775618
422 => 0.48558123673187
423 => 0.47626030964059
424 => 0.46789847445998
425 => 0.46791115591233
426 => 0.46266565455661
427 => 0.4525018347042
428 => 0.45062747038245
429 => 0.46037815029035
430 => 0.46819727218366
501 => 0.46884129251386
502 => 0.47317036015499
503 => 0.47573225779206
504 => 0.50084233736636
505 => 0.51094181909261
506 => 0.52329127417407
507 => 0.52810208290545
508 => 0.54258089241651
509 => 0.53088807782491
510 => 0.52835826383677
511 => 0.49323740794542
512 => 0.49898844613012
513 => 0.50819641315647
514 => 0.49338924393018
515 => 0.50278098466372
516 => 0.50463511322879
517 => 0.4928861019859
518 => 0.49916175653554
519 => 0.4824954786536
520 => 0.44793761982554
521 => 0.4606200637696
522 => 0.46995861137689
523 => 0.45663135250667
524 => 0.4805199481954
525 => 0.46656472375475
526 => 0.46214158757598
527 => 0.44488535638066
528 => 0.4530296332516
529 => 0.46404488433435
530 => 0.4572387398256
531 => 0.47136251162901
601 => 0.49136553917499
602 => 0.50562088780514
603 => 0.5067152364636
604 => 0.49755000232859
605 => 0.51223734852168
606 => 0.51234432980416
607 => 0.49577694329878
608 => 0.48562951131183
609 => 0.48332399341402
610 => 0.48908362914617
611 => 0.49607689021241
612 => 0.50710331378215
613 => 0.51376635061298
614 => 0.53114001686612
615 => 0.53584083281218
616 => 0.54100560433854
617 => 0.54790733185432
618 => 0.55619462530363
619 => 0.53806249903243
620 => 0.53878292221169
621 => 0.52189853728432
622 => 0.5038551505237
623 => 0.5175478319351
624 => 0.53544919141943
625 => 0.53134259977448
626 => 0.53088052432437
627 => 0.53165760706242
628 => 0.52856137107087
629 => 0.51455721043296
630 => 0.50752440863129
701 => 0.51659851721454
702 => 0.52142100208443
703 => 0.52890025555275
704 => 0.52797827969489
705 => 0.5472440334161
706 => 0.55473012274601
707 => 0.5528148607476
708 => 0.55316731504866
709 => 0.56672052219823
710 => 0.5817944759782
711 => 0.59591322287653
712 => 0.6102754186358
713 => 0.59296123108196
714 => 0.58417015443275
715 => 0.59324030154405
716 => 0.58842755381523
717 => 0.61608302981876
718 => 0.61799783497401
719 => 0.64565131117185
720 => 0.67189775299829
721 => 0.65541283314095
722 => 0.67095737006932
723 => 0.68777005412205
724 => 0.72020444941944
725 => 0.70928168613906
726 => 0.70091502064781
727 => 0.69300856218602
728 => 0.70946064713008
729 => 0.73062599158213
730 => 0.73518480405796
731 => 0.74257182186919
801 => 0.73480527588224
802 => 0.74415922506655
803 => 0.77718277602069
804 => 0.76825952104593
805 => 0.75558706449696
806 => 0.78165598635971
807 => 0.79109022784147
808 => 0.85730467531108
809 => 0.94090315042387
810 => 0.90629283278999
811 => 0.88480909176668
812 => 0.88985828050831
813 => 0.92038561363252
814 => 0.9301900241429
815 => 0.90353825659272
816 => 0.9129521114565
817 => 0.96482337730567
818 => 0.9926506472043
819 => 0.954857476981
820 => 0.85058761923379
821 => 0.75444604843708
822 => 0.77994712232372
823 => 0.77705609193543
824 => 0.83278529601817
825 => 0.7680467043659
826 => 0.76913673621795
827 => 0.82601836122287
828 => 0.81084331886949
829 => 0.78626169372959
830 => 0.75462552150425
831 => 0.69614313115397
901 => 0.64434364711863
902 => 0.74593436402067
903 => 0.74155358757712
904 => 0.73520957409217
905 => 0.74932748960897
906 => 0.81788007991834
907 => 0.81629972082863
908 => 0.80624628260617
909 => 0.81387172689097
910 => 0.78492491647798
911 => 0.79238516862803
912 => 0.75443081912106
913 => 0.77158777021186
914 => 0.78620895260221
915 => 0.78914437143737
916 => 0.79575801995921
917 => 0.73924511745539
918 => 0.76461775154796
919 => 0.77952179698303
920 => 0.71218477749356
921 => 0.77819076061275
922 => 0.73826135355266
923 => 0.7247087130769
924 => 0.7429555580529
925 => 0.73584474482011
926 => 0.72973128516353
927 => 0.72631986963258
928 => 0.73971833875217
929 => 0.7390932841531
930 => 0.71717078814267
1001 => 0.68857378577232
1002 => 0.69817187843241
1003 => 0.6946848013864
1004 => 0.68204718432977
1005 => 0.69056341235424
1006 => 0.65306225409884
1007 => 0.58854346046102
1008 => 0.63116655180226
1009 => 0.62952560915063
1010 => 0.62869817145485
1011 => 0.66072824658207
1012 => 0.65764929391815
1013 => 0.65206096468394
1014 => 0.68194455028096
1015 => 0.6710366395471
1016 => 0.70465225020186
1017 => 0.72679366550047
1018 => 0.72117788638099
1019 => 0.74200199448808
1020 => 0.69839299910188
1021 => 0.71287815807996
1022 => 0.71586352926978
1023 => 0.6815757914734
1024 => 0.65815304865202
1025 => 0.65659101874465
1026 => 0.61597921054515
1027 => 0.63767371067826
1028 => 0.65676397301598
1029 => 0.64762121882041
1030 => 0.64472689597411
1031 => 0.65951336369384
1101 => 0.6606623988732
1102 => 0.63446427501461
1103 => 0.6399116945515
1104 => 0.66262833957845
1105 => 0.63933929338173
1106 => 0.59409248086558
1107 => 0.58287064577545
1108 => 0.58137344611498
1109 => 0.55093893933558
1110 => 0.58362054245547
1111 => 0.56935414688113
1112 => 0.61442151956281
1113 => 0.5886792779882
1114 => 0.58756958140429
1115 => 0.5858921122606
1116 => 0.55969587504193
1117 => 0.5654311861351
1118 => 0.58449623372131
1119 => 0.59129885748321
1120 => 0.59058928809259
1121 => 0.58440280458724
1122 => 0.58723494505607
1123 => 0.57811163382282
1124 => 0.57489000274106
1125 => 0.56472164886758
1126 => 0.54977697775302
1127 => 0.5518551259325
1128 => 0.52224582196864
1129 => 0.50611310168443
1130 => 0.50164777733559
1201 => 0.49567655899758
1202 => 0.50232224233568
1203 => 0.52216194253072
1204 => 0.4982310548683
1205 => 0.45720322652767
1206 => 0.45966906891896
1207 => 0.46520908465701
1208 => 0.45488530198002
1209 => 0.44511470808566
1210 => 0.45360944676347
1211 => 0.43622541503524
1212 => 0.46730986183817
1213 => 0.46646911466531
1214 => 0.47805547418415
1215 => 0.48530066256731
1216 => 0.46860284900172
1217 => 0.46440339404566
1218 => 0.46679559444321
1219 => 0.42725785056384
1220 => 0.47482439699682
1221 => 0.47523575446562
1222 => 0.47171346207542
1223 => 0.49704117959863
1224 => 0.55049056348579
1225 => 0.53038075527095
1226 => 0.522593629708
1227 => 0.50779029832046
1228 => 0.52751485845951
1229 => 0.5260003199919
1230 => 0.51915100266972
1231 => 0.5150085141821
]
'min_raw' => 0.38686474880321
'max_raw' => 0.9926506472043
'avg_raw' => 0.68975769800376
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.386864'
'max' => '$0.99265'
'avg' => '$0.689757'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23789697608218
'max_diff' => 0.57698436626745
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012143242404486
]
1 => [
'year' => 2028
'avg' => 0.020841329174556
]
2 => [
'year' => 2029
'avg' => 0.056934755020771
]
3 => [
'year' => 2030
'avg' => 0.043925078708744
]
4 => [
'year' => 2031
'avg' => 0.043139870867063
]
5 => [
'year' => 2032
'avg' => 0.075637770246978
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012143242404486
'min' => '$0.012143'
'max_raw' => 0.075637770246978
'max' => '$0.075637'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.075637770246978
]
1 => [
'year' => 2033
'avg' => 0.19454812281542
]
2 => [
'year' => 2034
'avg' => 0.1233139497857
]
3 => [
'year' => 2035
'avg' => 0.1454490865579
]
4 => [
'year' => 2036
'avg' => 0.28231702682894
]
5 => [
'year' => 2037
'avg' => 0.68975769800376
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.075637770246978
'min' => '$0.075637'
'max_raw' => 0.68975769800376
'max' => '$0.689757'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.68975769800376
]
]
]
]
'prediction_2025_max_price' => '$0.020762'
'last_price' => 0.02013209
'sma_50day_nextmonth' => '$0.017141'
'sma_200day_nextmonth' => '$0.032544'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.021117'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.019512'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.016774'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01504'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.017475'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.028482'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.02022'
'daily_ema3_action' => 'SELL'
'daily_ema5' => '$0.0194014'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017766'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.016757'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.019298'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.02649'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.038364'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028436'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.01915'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0187056'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.021091'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.03033'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023114'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011557'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.005778'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '63.89'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 103.86
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.016946'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0224017'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 81.13
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 151.94
'cci_20_action' => 'SELL'
'adx_14' => 34.07
'adx_14_action' => 'SELL'
'ao_5_34' => '0.003128'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -18.87
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 77.61
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.012978'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 17
'sell_pct' => 43.33
'buy_pct' => 56.67
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767713260
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Blum para 2026
La previsión del precio de Blum para 2026 sugiere que el precio medio podría oscilar entre $0.006955 en el extremo inferior y $0.020762 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Blum podría potencialmente ganar 3.13% para 2026 si BLUM alcanza el objetivo de precio previsto.
Predicción de precio de Blum 2027-2032
La predicción del precio de BLUM para 2027-2032 está actualmente dentro de un rango de precios de $0.012143 en el extremo inferior y $0.075637 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Blum alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Blum | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006696 | $0.012143 | $0.01759 |
| 2028 | $0.012084 | $0.020841 | $0.029598 |
| 2029 | $0.026545 | $0.056934 | $0.087323 |
| 2030 | $0.022576 | $0.043925 | $0.065274 |
| 2031 | $0.026691 | $0.043139 | $0.059587 |
| 2032 | $0.040743 | $0.075637 | $0.110532 |
Predicción de precio de Blum 2032-2037
La predicción de precio de Blum para 2032-2037 se estima actualmente entre $0.075637 en el extremo inferior y $0.689757 en el extremo superior. Comparado con el precio actual, Blum podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Blum | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.040743 | $0.075637 | $0.110532 |
| 2033 | $0.094678 | $0.194548 | $0.294417 |
| 2034 | $0.076116 | $0.123313 | $0.170511 |
| 2035 | $0.089993 | $0.145449 | $0.2009045 |
| 2036 | $0.148967 | $0.282317 | $0.415666 |
| 2037 | $0.386864 | $0.689757 | $0.99265 |
Blum Histograma de precios potenciales
Pronóstico de precio de Blum basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Blum es Alcista, con 17 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de BLUM se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Blum
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Blum aumentar durante el próximo mes, alcanzando $0.032544 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Blum alcance $0.017141 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 63.89, lo que sugiere que el mercado de BLUM está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de BLUM para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.021117 | SELL |
| SMA 5 | $0.019512 | BUY |
| SMA 10 | $0.016774 | BUY |
| SMA 21 | $0.01504 | BUY |
| SMA 50 | $0.017475 | BUY |
| SMA 100 | $0.028482 | SELL |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.02022 | SELL |
| EMA 5 | $0.0194014 | BUY |
| EMA 10 | $0.017766 | BUY |
| EMA 21 | $0.016757 | BUY |
| EMA 50 | $0.019298 | BUY |
| EMA 100 | $0.02649 | SELL |
| EMA 200 | $0.038364 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.028436 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.03033 | SELL |
| EMA 50 | $0.023114 | SELL |
| EMA 100 | $0.011557 | BUY |
| EMA 200 | $0.005778 | BUY |
Osciladores de Blum
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 63.89 | NEUTRAL |
| Stoch RSI (14) | 103.86 | SELL |
| Estocástico Rápido (14) | 81.13 | SELL |
| Índice de Canal de Materias Primas (20) | 151.94 | SELL |
| Índice Direccional Medio (14) | 34.07 | SELL |
| Oscilador Asombroso (5, 34) | 0.003128 | BUY |
| Momentum (10) | 0.01 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -18.87 | SELL |
| Oscilador Ultimate (7, 14, 28) | 77.61 | SELL |
| VWMA (10) | 0.016946 | BUY |
| Promedio Móvil de Hull (9) | 0.0224017 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.012978 | NEUTRAL |
Predicción de precios de Blum basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Blum
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Blum por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.028288 | $0.03975 | $0.055856 | $0.078487 | $0.110288 | $0.154973 |
| Amazon.com acción | $0.0420068 | $0.087649 | $0.182886 | $0.3816031 | $0.796237 | $1.66 |
| Apple acción | $0.028555 | $0.0405042 | $0.057452 | $0.081491 | $0.115589 | $0.163955 |
| Netflix acción | $0.031765 | $0.05012 | $0.079082 | $0.124779 | $0.196882 | $0.31065 |
| Google acción | $0.02607 | $0.033761 | $0.043721 | $0.056618 | $0.073321 | $0.09495 |
| Tesla acción | $0.045637 | $0.103457 | $0.23453 | $0.531663 | $1.20 | $2.73 |
| Kodak acción | $0.015096 | $0.011321 | $0.008489 | $0.006366 | $0.004774 | $0.00358 |
| Nokia acción | $0.013336 | $0.008834 | $0.005852 | $0.003877 | $0.002568 | $0.0017015 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Blum
Podría preguntarse cosas como: "¿Debo invertir en Blum ahora?", "¿Debería comprar BLUM hoy?", "¿Será Blum una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Blum regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Blum, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Blum a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Blum es de $0.02013 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Blum
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Blum
basado en el historial de precios del último mes
Predicción de precios de Blum basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Blum ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.020655 | $0.021192 | $0.021743 | $0.0223083 |
| Si Blum ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.021178 | $0.022279 | $0.023437 | $0.024656 |
| Si Blum ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.022748 | $0.0257051 | $0.029045 | $0.03282 |
| Si Blum ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.025365 | $0.031958 | $0.040265 | $0.050731 |
| Si Blum ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.030598 | $0.0465048 | $0.070681 | $0.107425 |
| Si Blum ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.046296 | $0.106467 | $0.244838 | $0.563045 |
| Si Blum ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.072461 | $0.260813 | $0.938751 | $3.37 |
Cuadro de preguntas
¿Es BLUM una buena inversión?
La decisión de adquirir Blum depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Blum ha experimentado una caída de -3.3943% durante las últimas 24 horas, y Blum ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Blum dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Blum subir?
Parece que el valor medio de Blum podría potencialmente aumentar hasta $0.020762 para el final de este año. Mirando las perspectivas de Blum en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.065274. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Blum la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Blum, el precio de Blum aumentará en un 0.86% durante la próxima semana y alcanzará $0.020304 para el 13 de enero de 2026.
¿Cuál será el precio de Blum el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Blum, el precio de Blum disminuirá en un -11.62% durante el próximo mes y alcanzará $0.017793 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Blum este año en 2026?
Según nuestra predicción más reciente sobre el valor de Blum en 2026, se anticipa que BLUM fluctúe dentro del rango de $0.006955 y $0.020762. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Blum no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Blum en 5 años?
El futuro de Blum parece estar en una tendencia alcista, con un precio máximo de $0.065274 proyectada después de un período de cinco años. Basado en el pronóstico de Blum para 2030, el valor de Blum podría potencialmente alcanzar su punto más alto de aproximadamente $0.065274, mientras que su punto más bajo se anticipa que esté alrededor de $0.022576.
¿Cuánto será Blum en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Blum, se espera que el valor de BLUM en 2026 crezca en un 3.13% hasta $0.020762 si ocurre lo mejor. El precio estará entre $0.020762 y $0.006955 durante 2026.
¿Cuánto será Blum en 2027?
Según nuestra última simulación experimental para la predicción de precios de Blum, el valor de BLUM podría disminuir en un -12.62% hasta $0.01759 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.01759 y $0.006696 a lo largo del año.
¿Cuánto será Blum en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Blum sugiere que el valor de BLUM en 2028 podría aumentar en un 47.02% , alcanzando $0.029598 en el mejor escenario. Se espera que el precio oscile entre $0.029598 y $0.012084 durante el año.
¿Cuánto será Blum en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Blum podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.087323 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.087323 y $0.026545.
¿Cuánto será Blum en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Blum, se espera que el valor de BLUM en 2030 aumente en un 224.23% , alcanzando $0.065274 en el mejor escenario. Se pronostica que el precio oscile entre $0.065274 y $0.022576 durante el transcurso de 2030.
¿Cuánto será Blum en 2031?
Nuestra simulación experimental indica que el precio de Blum podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.059587 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.059587 y $0.026691 durante el año.
¿Cuánto será Blum en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Blum, BLUM podría experimentar un 449.04% aumento en valor, alcanzando $0.110532 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.110532 y $0.040743 a lo largo del año.
¿Cuánto será Blum en 2033?
Según nuestra predicción experimental de precios de Blum, se anticipa que el valor de BLUM aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.294417. A lo largo del año, el precio de BLUM podría oscilar entre $0.294417 y $0.094678.
¿Cuánto será Blum en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Blum sugieren que BLUM podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.170511 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.170511 y $0.076116.
¿Cuánto será Blum en 2035?
Basado en nuestra predicción experimental para el precio de Blum, BLUM podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.2009045 en 2035. El rango de precios esperado para el año está entre $0.2009045 y $0.089993.
¿Cuánto será Blum en 2036?
Nuestra reciente simulación de predicción de precios de Blum sugiere que el valor de BLUM podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.415666 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.415666 y $0.148967.
¿Cuánto será Blum en 2037?
Según la simulación experimental, el valor de Blum podría aumentar en un 4830.69% en 2037, con un máximo de $0.99265 bajo condiciones favorables. Se espera que el precio caiga entre $0.99265 y $0.386864 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Blum?
Los traders de Blum utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Blum
Las medias móviles son herramientas populares para la predicción de precios de Blum. Una media móvil simple (SMA) calcula el precio de cierre promedio de BLUM durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BLUM por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BLUM.
¿Cómo leer gráficos de Blum y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Blum en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BLUM dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Blum?
La acción del precio de Blum está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BLUM. La capitalización de mercado de Blum puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BLUM, grandes poseedores de Blum, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Blum.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


