Previsão de Preço Blum - Projeção BLUM
Previsão de Preço Blum até $0.021384 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.007163 | $0.021384 |
| 2027 | $0.006896 | $0.018117 |
| 2028 | $0.012446 | $0.030484 |
| 2029 | $0.02734 | $0.089938 |
| 2030 | $0.023252 | $0.067228 |
| 2031 | $0.027491 | $0.061371 |
| 2032 | $0.041963 | $0.113841 |
| 2033 | $0.097513 | $0.303233 |
| 2034 | $0.078395 | $0.175616 |
| 2035 | $0.092688 | $0.206919 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Blum hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.63, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Blum para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Blum'
'name_with_ticker' => 'Blum <small>BLUM</small>'
'name_lang' => 'Blum'
'name_lang_with_ticker' => 'Blum <small>BLUM</small>'
'name_with_lang' => 'Blum'
'name_with_lang_with_ticker' => 'Blum <small>BLUM</small>'
'image' => '/uploads/coins/blum.jpg?1729313526'
'price_for_sd' => 0.02073
'ticker' => 'BLUM'
'marketcap' => '$3.62M'
'low24h' => '$0.01975'
'high24h' => '$0.02177'
'volume24h' => '$6.23M'
'current_supply' => '174.75M'
'max_supply' => '969.73M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02073'
'change_24h_pct' => '-0.5328%'
'ath_price' => '$0.1672'
'ath_days' => 193
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de jun. de 2025'
'ath_pct' => '-87.60%'
'fdv' => '$20.11M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.02'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.020912'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018325'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007163'
'current_year_max_price_prediction' => '$0.021384'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023252'
'grand_prediction_max_price' => '$0.067228'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021127784879958
107 => 0.021206668359314
108 => 0.021384396866193
109 => 0.019865726234053
110 => 0.020547564762057
111 => 0.020948081017629
112 => 0.019138534004049
113 => 0.020912312091307
114 => 0.019839289557085
115 => 0.019475089592712
116 => 0.019965436865043
117 => 0.019774348056137
118 => 0.019610061119351
119 => 0.019518386185817
120 => 0.019878443104964
121 => 0.019861646019324
122 => 0.019272523015564
123 => 0.018504036072885
124 => 0.018761965515572
125 => 0.018668257330942
126 => 0.018328646781248
127 => 0.018557503287008
128 => 0.017549735057268
129 => 0.015815922197236
130 => 0.016961332080697
131 => 0.01691723504615
201 => 0.01689499932169
202 => 0.017755743192308
203 => 0.017673002529888
204 => 0.017522827417396
205 => 0.018325888697538
206 => 0.018032760527588
207 => 0.018936112477692
208 => 0.019531118497171
209 => 0.019380205724203
210 => 0.019939811761436
211 => 0.018767907688987
212 => 0.019157167213224
213 => 0.019237393061679
214 => 0.018315979045997
215 => 0.017686539925531
216 => 0.017644563512327
217 => 0.016553202819492
218 => 0.017136198892449
219 => 0.017649211310634
220 => 0.017403518173695
221 => 0.017325739066414
222 => 0.017723095657283
223 => 0.017753973667523
224 => 0.017049951761755
225 => 0.017196340209438
226 => 0.017806804371332
227 => 0.017180958078848
228 => 0.015965040963963
301 => 0.015663476708102
302 => 0.015623242477439
303 => 0.014805376298181
304 => 0.015683628673665
305 => 0.015300247976066
306 => 0.016511343006174
307 => 0.015819572020209
308 => 0.015789751155629
309 => 0.015744672545047
310 => 0.015040701338934
311 => 0.015194826293369
312 => 0.015707161115803
313 => 0.015889967952313
314 => 0.015870899701572
315 => 0.01570465039567
316 => 0.015780758476578
317 => 0.01553558783016
318 => 0.015449012972124
319 => 0.015175758905873
320 => 0.014774150916845
321 => 0.014829996970924
322 => 0.014034306458213
323 => 0.013600772036397
324 => 0.01348077542233
325 => 0.013320310934996
326 => 0.013498900313154
327 => 0.014032052366964
328 => 0.013388957875551
329 => 0.012286417477857
330 => 0.012352682034396
331 => 0.012501558818815
401 => 0.012224127915968
402 => 0.011961562849434
403 => 0.012189841872208
404 => 0.011722680971172
405 => 0.012558012981818
406 => 0.012535419591921
407 => 0.012846779708905
408 => 0.013041479579807
409 => 0.012592759412208
410 => 0.012479907503525
411 => 0.012544193079545
412 => 0.011481695705841
413 => 0.012759951005774
414 => 0.012771005410688
415 => 0.012676350884486
416 => 0.013356982369996
417 => 0.014793327098705
418 => 0.014252916434932
419 => 0.01404365309192
420 => 0.013645843323884
421 => 0.014175901220185
422 => 0.014135201043941
423 => 0.013951139411879
424 => 0.013839818362501
425 => 0.01404493080927
426 => 0.013814402660467
427 => 0.013772993470452
428 => 0.013522098832605
429 => 0.013432540861873
430 => 0.013366235705748
501 => 0.013293240243864
502 => 0.013454250043443
503 => 0.013089380654994
504 => 0.012649383941111
505 => 0.012612802975182
506 => 0.012713806238343
507 => 0.012669119813203
508 => 0.01261258903377
509 => 0.012504656380592
510 => 0.012472635068011
511 => 0.012576688799369
512 => 0.012459218203375
513 => 0.012632552466718
514 => 0.012585415138111
515 => 0.012322109852286
516 => 0.011993933978046
517 => 0.011991012524393
518 => 0.011920307570605
519 => 0.011830254181394
520 => 0.011805203388658
521 => 0.012170616849632
522 => 0.012927011777946
523 => 0.012778513354521
524 => 0.012885818684176
525 => 0.013413654702089
526 => 0.013581437899601
527 => 0.01346234936017
528 => 0.013299333622335
529 => 0.013306505487481
530 => 0.013863579611881
531 => 0.013898323641699
601 => 0.013986110596199
602 => 0.014098941641323
603 => 0.013481564975049
604 => 0.013277427102019
605 => 0.01318069525264
606 => 0.012882798596487
607 => 0.013204054600419
608 => 0.013016872484482
609 => 0.013042129746973
610 => 0.013025680921641
611 => 0.013034663092537
612 => 0.012557779489497
613 => 0.01273153081018
614 => 0.012442635539921
615 => 0.01205583720306
616 => 0.012054540519406
617 => 0.012149208864376
618 => 0.012092896428415
619 => 0.011941361111169
620 => 0.011962885987757
621 => 0.011774305419305
622 => 0.011985783083129
623 => 0.011991847505824
624 => 0.011910417085986
625 => 0.0122362276054
626 => 0.01236971244104
627 => 0.012316113194294
628 => 0.012365951775004
629 => 0.012784684134445
630 => 0.012852955779607
701 => 0.012883277534617
702 => 0.012842650399767
703 => 0.012373605433856
704 => 0.012394409572628
705 => 0.012241762606087
706 => 0.012112792004901
707 => 0.012117950152586
708 => 0.012184257806601
709 => 0.012473827220573
710 => 0.013083208981229
711 => 0.013106334573594
712 => 0.013134363466161
713 => 0.013020355873898
714 => 0.012985970093166
715 => 0.013031333813675
716 => 0.013260185563206
717 => 0.013848854395645
718 => 0.013640779514392
719 => 0.013471611397055
720 => 0.013620017443357
721 => 0.013597171495773
722 => 0.013404328706823
723 => 0.01339891625202
724 => 0.013028789284454
725 => 0.012891961771928
726 => 0.0127776184611
727 => 0.012652758550683
728 => 0.012578737410446
729 => 0.012692467523857
730 => 0.012718478946409
731 => 0.012469806065774
801 => 0.012435912871022
802 => 0.012638984513325
803 => 0.012549620254821
804 => 0.012641533610819
805 => 0.012662858297829
806 => 0.012659424532071
807 => 0.012566117982774
808 => 0.012625588794855
809 => 0.012484922595181
810 => 0.012331969230415
811 => 0.012234394513026
812 => 0.012149247630696
813 => 0.012196492069779
814 => 0.012028074270943
815 => 0.011974194027515
816 => 0.012605441421857
817 => 0.013071750659111
818 => 0.013064970338123
819 => 0.013023696877863
820 => 0.012962372887932
821 => 0.013255699331379
822 => 0.01315351026373
823 => 0.013227861348627
824 => 0.013246786820239
825 => 0.01330406852282
826 => 0.013324541807964
827 => 0.013262657320648
828 => 0.013054965422662
829 => 0.012537416959635
830 => 0.012296496753
831 => 0.012216989071967
901 => 0.012219879025166
902 => 0.01214016121462
903 => 0.012163641682527
904 => 0.012131995666113
905 => 0.012072065767017
906 => 0.012192791567388
907 => 0.012206704091242
908 => 0.012178525246869
909 => 0.012185162384808
910 => 0.011951853588747
911 => 0.011969591549792
912 => 0.011870824328665
913 => 0.011852306665361
914 => 0.011602631730999
915 => 0.011160296393816
916 => 0.011405393109146
917 => 0.011109350742841
918 => 0.010997235012948
919 => 0.011527973440689
920 => 0.011474702022937
921 => 0.011383524512273
922 => 0.011248653970942
923 => 0.011198629175227
924 => 0.010894694352384
925 => 0.010876736261621
926 => 0.011027374566753
927 => 0.010957860172082
928 => 0.010860235634805
929 => 0.010506649456827
930 => 0.010109101524419
1001 => 0.010121100997601
1002 => 0.010247553598258
1003 => 0.010615231589124
1004 => 0.010471573437198
1005 => 0.010367347799689
1006 => 0.010347829470795
1007 => 0.010592142221296
1008 => 0.010937895948359
1009 => 0.011100115861294
1010 => 0.010939360854268
1011 => 0.010754694157861
1012 => 0.010765933964008
1013 => 0.010840707358783
1014 => 0.010848564985336
1015 => 0.010728365950018
1016 => 0.01076220127439
1017 => 0.010710802322702
1018 => 0.010395367051066
1019 => 0.010389661827259
1020 => 0.010312248924519
1021 => 0.010309904892589
1022 => 0.010178206233475
1023 => 0.010159780680675
1024 => 0.0098982849994657
1025 => 0.010070402248719
1026 => 0.0099549550344812
1027 => 0.0097809488513794
1028 => 0.0097509501198258
1029 => 0.0097500483217308
1030 => 0.0099287137647057
1031 => 0.010068314438994
1101 => 0.0099569632882001
1102 => 0.0099316107896157
1103 => 0.010202309146952
1104 => 0.010167860313511
1105 => 0.010138027845922
1106 => 0.010906937494361
1107 => 0.010298285508853
1108 => 0.010032878502531
1109 => 0.0097043869327842
1110 => 0.0098113454442921
1111 => 0.0098338831742143
1112 => 0.0090439201640285
1113 => 0.0087234322691798
1114 => 0.0086134529009992
1115 => 0.0085501582197313
1116 => 0.0085790024007896
1117 => 0.008290525705945
1118 => 0.0084843868158448
1119 => 0.0082345903824373
1120 => 0.0081927111974687
1121 => 0.0086393781642412
1122 => 0.0087015292632771
1123 => 0.0084363733659572
1124 => 0.008606646376877
1125 => 0.0085449030161456
1126 => 0.0082388724253289
1127 => 0.0082271843077683
1128 => 0.0080736289147919
1129 => 0.0078333444589669
1130 => 0.0077235280149622
1201 => 0.0076663346574544
1202 => 0.0076899337514385
1203 => 0.007678001327376
1204 => 0.0076001341889655
1205 => 0.0076824645806016
1206 => 0.0074721444512378
1207 => 0.0073883932810607
1208 => 0.0073505648205041
1209 => 0.0071638936001187
1210 => 0.0074609705248203
1211 => 0.007519498421463
1212 => 0.0075781416361423
1213 => 0.0080885907825023
1214 => 0.0080630901856645
1215 => 0.0082936031617841
1216 => 0.0082846458514183
1217 => 0.0082188998165663
1218 => 0.0079415281102237
1219 => 0.0080520835286966
1220 => 0.0077118111347637
1221 => 0.0079667663485719
1222 => 0.0078504154361741
1223 => 0.0079274279880517
1224 => 0.0077889524758339
1225 => 0.007865590541809
1226 => 0.0075333775569988
1227 => 0.0072231617461459
1228 => 0.0073480016441972
1229 => 0.007483716890553
1230 => 0.007777982124254
1231 => 0.0076027201786971
]
'min_raw' => 0.0071638936001187
'max_raw' => 0.021384396866193
'avg_raw' => 0.014274145233156
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007163'
'max' => '$0.021384'
'avg' => '$0.014274'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013570976399881
'max_diff' => 0.00064952686619328
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076657510017073
102 => 0.0074546082958556
103 => 0.0070189605837515
104 => 0.0070214263024908
105 => 0.0069544113930849
106 => 0.0068965007270213
107 => 0.0076228511214413
108 => 0.0075325179679946
109 => 0.0073885839104883
110 => 0.0075812453661726
111 => 0.007632188113004
112 => 0.0076336383813893
113 => 0.0077741992061447
114 => 0.0078492165435135
115 => 0.0078624386743686
116 => 0.0080836141691388
117 => 0.0081577492776105
118 => 0.008463101297412
119 => 0.0078428518465548
120 => 0.0078300782172808
121 => 0.0075839565079534
122 => 0.0074278622288677
123 => 0.0075946444167869
124 => 0.0077423906672443
125 => 0.0075885473957962
126 => 0.0076086360792386
127 => 0.0074021140567767
128 => 0.0074759359620425
129 => 0.0075395213317419
130 => 0.0075044132279692
131 => 0.0074518546973699
201 => 0.0077302771595828
202 => 0.0077145674731184
203 => 0.0079738408708358
204 => 0.0081759630251751
205 => 0.0085382020594079
206 => 0.008160186743238
207 => 0.008146410362642
208 => 0.0082810766927691
209 => 0.008157728660897
210 => 0.0082356803592108
211 => 0.008525642835681
212 => 0.0085317692858919
213 => 0.0084291433513736
214 => 0.0084228985539315
215 => 0.0084426089872605
216 => 0.0085580536109123
217 => 0.0085177137121534
218 => 0.0085643960642785
219 => 0.0086227730604364
220 => 0.0088642450678793
221 => 0.0089224631513742
222 => 0.0087810233910972
223 => 0.0087937938178163
224 => 0.0087408914648645
225 => 0.0086897884547776
226 => 0.0088046605584577
227 => 0.00901459158575
228 => 0.0090132856157246
301 => 0.0090619855335804
302 => 0.0090923251789526
303 => 0.0089620852110372
304 => 0.0088773037809806
305 => 0.0089098143760469
306 => 0.0089617995255465
307 => 0.0088929562927025
308 => 0.0084680239683018
309 => 0.008596921290743
310 => 0.0085754664735317
311 => 0.008544912204828
312 => 0.0086745194592761
313 => 0.0086620185234056
314 => 0.008287566960482
315 => 0.0083115381346352
316 => 0.0082890247269773
317 => 0.00836177015293
318 => 0.0081538001691654
319 => 0.0082177703354722
320 => 0.0082578918240967
321 => 0.0082815236891244
322 => 0.0083668981901259
323 => 0.0083568804778221
324 => 0.0083662754750636
325 => 0.0084928633220161
326 => 0.0091331012121987
327 => 0.0091679479479561
328 => 0.008996349876492
329 => 0.0090648999214196
330 => 0.0089332988254055
331 => 0.0090216435228105
401 => 0.009082086721063
402 => 0.0088089555307186
403 => 0.0087927824742332
404 => 0.0086606382136827
405 => 0.008731645054269
406 => 0.0086186680653236
407 => 0.0086463886666435
408 => 0.0085688794487145
409 => 0.0087083806090554
410 => 0.0088643645826052
411 => 0.0089037722943177
412 => 0.0088001075708888
413 => 0.0087250474792881
414 => 0.0085932666847686
415 => 0.0088124210829811
416 => 0.0088765085076277
417 => 0.0088120844590223
418 => 0.0087971559992671
419 => 0.0087688665950063
420 => 0.0088031577301137
421 => 0.0088761594737496
422 => 0.0088417331995814
423 => 0.0088644723601824
424 => 0.0087778141284921
425 => 0.0089621283258859
426 => 0.0092548636289742
427 => 0.0092558048208407
428 => 0.0092213783611021
429 => 0.0092072917955055
430 => 0.0092426154323696
501 => 0.0092617770563169
502 => 0.0093760072206881
503 => 0.0094985807381889
504 => 0.01007057786135
505 => 0.0099099633580496
506 => 0.010417473233979
507 => 0.010818847653929
508 => 0.010939202292496
509 => 0.010828481688138
510 => 0.010449712481638
511 => 0.010431128257353
512 => 0.010997169364099
513 => 0.010837236825118
514 => 0.010818213358507
515 => 0.010615835814424
516 => 0.010735466007924
517 => 0.010709301129736
518 => 0.010667998589488
519 => 0.010896244665173
520 => 0.011323500943189
521 => 0.011256909045476
522 => 0.011207201282943
523 => 0.010989396337234
524 => 0.011120563563047
525 => 0.011073857426278
526 => 0.011274536630284
527 => 0.011155658715419
528 => 0.010836025178837
529 => 0.010886927873064
530 => 0.010879234033233
531 => 0.011037572711751
601 => 0.010990043370667
602 => 0.010869953166568
603 => 0.011322040627679
604 => 0.011292684582597
605 => 0.011334304742798
606 => 0.011352627224464
607 => 0.011627804895368
608 => 0.011740536382434
609 => 0.01176612840364
610 => 0.011873214597387
611 => 0.011763464001586
612 => 0.012202544635636
613 => 0.012494507636214
614 => 0.012833637685663
615 => 0.013329197837473
616 => 0.013515533038741
617 => 0.013481873252454
618 => 0.013857601303806
619 => 0.014532776260121
620 => 0.013618345415116
621 => 0.014581243315318
622 => 0.014276400957305
623 => 0.013553625210336
624 => 0.013507086973197
625 => 0.013996559100644
626 => 0.015082161169374
627 => 0.014810230163954
628 => 0.015082605951082
629 => 0.014764865127305
630 => 0.014749086617275
701 => 0.015067173988482
702 => 0.015810402469348
703 => 0.015457322477592
704 => 0.014951095730643
705 => 0.015324885682829
706 => 0.015001074233618
707 => 0.014271436409428
708 => 0.014810022223439
709 => 0.014449885227651
710 => 0.014554992348957
711 => 0.015311946747768
712 => 0.01522086799185
713 => 0.015338732335674
714 => 0.015130704853873
715 => 0.014936374382947
716 => 0.014573642127795
717 => 0.014466254989528
718 => 0.01449593293116
719 => 0.014466240282614
720 => 0.014263294919538
721 => 0.014219468887704
722 => 0.014146423581252
723 => 0.014169063376087
724 => 0.014031716829799
725 => 0.014290918139889
726 => 0.014339028187116
727 => 0.014527653285004
728 => 0.014547236968406
729 => 0.015072555181114
730 => 0.014783218737169
731 => 0.014977330603874
801 => 0.014959967411464
802 => 0.01356928995242
803 => 0.013760913036225
804 => 0.01405901841999
805 => 0.013924722348676
806 => 0.01373485912428
807 => 0.013581534390758
808 => 0.013349231741213
809 => 0.01367619325947
810 => 0.014106112887497
811 => 0.014558140439649
812 => 0.01510122192554
813 => 0.014980012460054
814 => 0.014547987909029
815 => 0.014567368214794
816 => 0.014687169639163
817 => 0.014532015909498
818 => 0.014486258045659
819 => 0.014680883211332
820 => 0.014682223487884
821 => 0.014503700370949
822 => 0.014305304595862
823 => 0.014304473310321
824 => 0.01426917069842
825 => 0.014771145383537
826 => 0.015047180704986
827 => 0.015078827709737
828 => 0.015045050609416
829 => 0.015058050074765
830 => 0.014897431203237
831 => 0.015264558313503
901 => 0.015601470454992
902 => 0.015511170803995
903 => 0.015375798790299
904 => 0.01526796846099
905 => 0.015485769405307
906 => 0.015476071072107
907 => 0.015598527821352
908 => 0.015592972475861
909 => 0.015551794876922
910 => 0.015511172274577
911 => 0.015672236301104
912 => 0.015625852448074
913 => 0.015579396548107
914 => 0.015486222128683
915 => 0.015498886079746
916 => 0.015363537439936
917 => 0.015300918966028
918 => 0.014359287361175
919 => 0.014107652627658
920 => 0.014186822037319
921 => 0.014212886662613
922 => 0.014103374904107
923 => 0.014260386634542
924 => 0.01423591652267
925 => 0.014331115413426
926 => 0.014271639279537
927 => 0.014274080200818
928 => 0.014448986828936
929 => 0.014499762967185
930 => 0.014473937813458
1001 => 0.014492024865893
1002 => 0.014908833355211
1003 => 0.014849576516815
1004 => 0.01481809750245
1005 => 0.014826817404561
1006 => 0.014933320910056
1007 => 0.014963136076719
1008 => 0.014836807120494
1009 => 0.014896384586549
1010 => 0.015150057875504
1011 => 0.015238829169974
1012 => 0.015522144529283
1013 => 0.015401787129119
1014 => 0.015622708346065
1015 => 0.016301744849364
1016 => 0.016844206193952
1017 => 0.016345336323306
1018 => 0.017341497500605
1019 => 0.018117151867966
1020 => 0.018087380961427
1021 => 0.017952127681268
1022 => 0.017069065805866
1023 => 0.01625645910241
1024 => 0.016936239114954
1025 => 0.016937972014004
1026 => 0.01687957830806
1027 => 0.016516900015537
1028 => 0.016866957889631
1029 => 0.016894744212453
1030 => 0.016879191260652
1031 => 0.016601126664119
1101 => 0.01617657342014
1102 => 0.016259530107777
1103 => 0.016395414854396
1104 => 0.016138156680518
1105 => 0.016055947106141
1106 => 0.016208790345919
1107 => 0.016701283110635
1108 => 0.016608180206282
1109 => 0.016605748913191
1110 => 0.01700408261979
1111 => 0.016718961651659
1112 => 0.016260576457272
1113 => 0.016144828150331
1114 => 0.015733999638094
1115 => 0.016017760354817
1116 => 0.016027972397843
1117 => 0.015872559553258
1118 => 0.016273187353081
1119 => 0.016269495497376
1120 => 0.01664983196773
1121 => 0.017376892451191
1122 => 0.017161864889758
1123 => 0.016911811230743
1124 => 0.016938998996714
1125 => 0.017237181684289
1126 => 0.017056893624533
1127 => 0.017121726467834
1128 => 0.017237083552016
1129 => 0.017306681345058
1130 => 0.016928984945345
1201 => 0.016840925847264
1202 => 0.016660787837135
1203 => 0.016613793192728
1204 => 0.016760511843275
1205 => 0.016721856662502
1206 => 0.016027114115169
1207 => 0.015954509653462
1208 => 0.015956736328647
1209 => 0.01577416895753
1210 => 0.015495709895387
1211 => 0.016227483684772
1212 => 0.016168712008317
1213 => 0.016103832626077
1214 => 0.016111779980205
1215 => 0.016429418180062
1216 => 0.016245171983031
1217 => 0.016735020695196
1218 => 0.016634322526175
1219 => 0.016531041829088
1220 => 0.016516765290743
1221 => 0.01647701103386
1222 => 0.016340678895098
1223 => 0.016176049645252
1224 => 0.016067347154563
1225 => 0.014821278433327
1226 => 0.01505254153994
1227 => 0.015318588663803
1228 => 0.015410427064844
1229 => 0.01525333112484
1230 => 0.016346882000321
1231 => 0.016546684282989
]
'min_raw' => 0.0068965007270213
'max_raw' => 0.018117151867966
'avg_raw' => 0.012506826297494
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006896'
'max' => '$0.018117'
'avg' => '$0.0125068'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026739287309742
'max_diff' => -0.0032672449982275
'year' => 2027
]
2 => [
'items' => [
101 => 0.015941470136005
102 => 0.015828259279835
103 => 0.016354304085204
104 => 0.016037034761204
105 => 0.016179901118375
106 => 0.015871102197892
107 => 0.016498557763988
108 => 0.01649377760385
109 => 0.016249683216912
110 => 0.016455990121266
111 => 0.016420139219671
112 => 0.016144557257996
113 => 0.01650729420372
114 => 0.01650747411672
115 => 0.016272538576361
116 => 0.015998185299226
117 => 0.015949137413209
118 => 0.015912186419752
119 => 0.016170813439121
120 => 0.016402697615982
121 => 0.016834176580158
122 => 0.016942660643439
123 => 0.017366081164618
124 => 0.017113954860227
125 => 0.017225719185381
126 => 0.017347055170366
127 => 0.01740522810355
128 => 0.017310438430658
129 => 0.017968184786889
130 => 0.018023718732182
131 => 0.018042338783672
201 => 0.017820550413119
202 => 0.018017550396385
203 => 0.017925380628169
204 => 0.018165180759568
205 => 0.018202784482093
206 => 0.018170935466906
207 => 0.01818287148197
208 => 0.017621601001335
209 => 0.017592496165976
210 => 0.017195649670677
211 => 0.017357367550853
212 => 0.017055043725204
213 => 0.017150913724598
214 => 0.017193172306848
215 => 0.017171098821634
216 => 0.017366510837158
217 => 0.017200370703925
218 => 0.016761899576356
219 => 0.016323308987622
220 => 0.016317802840049
221 => 0.016202329679802
222 => 0.016118863734907
223 => 0.016134942237008
224 => 0.01619160497556
225 => 0.016115570393536
226 => 0.016131796226662
227 => 0.016401253168716
228 => 0.016455290836766
229 => 0.016271649726852
301 => 0.015534304171262
302 => 0.015353357722429
303 => 0.015483418441526
304 => 0.015421257794781
305 => 0.012446158620211
306 => 0.013145114041006
307 => 0.012729818464253
308 => 0.012921205772852
309 => 0.012497296529255
310 => 0.012699608239286
311 => 0.012662248653684
312 => 0.013786148286729
313 => 0.013768600139832
314 => 0.013776999509124
315 => 0.013376075728371
316 => 0.014014758197378
317 => 0.01432939614789
318 => 0.014271165037068
319 => 0.014285820553122
320 => 0.014033990231269
321 => 0.013779437777114
322 => 0.013497099930113
323 => 0.014021648751828
324 => 0.0139633278772
325 => 0.014097094980407
326 => 0.014437302386814
327 => 0.014487399219729
328 => 0.0145547298712
329 => 0.014530596625569
330 => 0.015105548445742
331 => 0.015035917986665
401 => 0.015203707358991
402 => 0.014858551889907
403 => 0.01446797571418
404 => 0.014542211476288
405 => 0.014535061975431
406 => 0.014444040623702
407 => 0.0143618706172
408 => 0.014225080707631
409 => 0.014657904222605
410 => 0.014640332378326
411 => 0.014924800112175
412 => 0.014874517677045
413 => 0.014538719269048
414 => 0.014550712374883
415 => 0.014631371775312
416 => 0.01491053488115
417 => 0.014993409497836
418 => 0.014955018673405
419 => 0.015045886907231
420 => 0.015117705454251
421 => 0.015054906210999
422 => 0.015944011063567
423 => 0.015574792740607
424 => 0.015754747182213
425 => 0.015797665256183
426 => 0.015687731512179
427 => 0.015711572204821
428 => 0.015747684357974
429 => 0.015966950280435
430 => 0.01654236750608
501 => 0.01679721587832
502 => 0.017563939780203
503 => 0.016776054268666
504 => 0.016729304403006
505 => 0.016867414530579
506 => 0.017317562626951
507 => 0.017682365378801
508 => 0.017803391497565
509 => 0.017819387097083
510 => 0.018046440141548
511 => 0.018176582712347
512 => 0.018018869929862
513 => 0.017885224859923
514 => 0.017406524808036
515 => 0.017461935642499
516 => 0.017843661343667
517 => 0.018382871380099
518 => 0.0188455696866
519 => 0.018683548866328
520 => 0.019919653356134
521 => 0.020042208067264
522 => 0.020025274968854
523 => 0.020304472839396
524 => 0.019750321924029
525 => 0.019513411671541
526 => 0.01791412044098
527 => 0.018363456042526
528 => 0.019016591727928
529 => 0.018930146770832
530 => 0.018455822177726
531 => 0.018845209868863
601 => 0.018716466120894
602 => 0.018614920585288
603 => 0.019080120369469
604 => 0.018568614097408
605 => 0.019011489061582
606 => 0.018443497339074
607 => 0.018684288963787
608 => 0.01854760399182
609 => 0.018636055920163
610 => 0.018118967754439
611 => 0.018397975977058
612 => 0.018107360095084
613 => 0.018107222305317
614 => 0.018100806943615
615 => 0.018442715239969
616 => 0.018453864857238
617 => 0.018201194109637
618 => 0.018164780307449
619 => 0.018299421219385
620 => 0.018141791974019
621 => 0.018215545705819
622 => 0.018144025899421
623 => 0.018127925284563
624 => 0.017999632846083
625 => 0.017944360936111
626 => 0.017966034476193
627 => 0.017892051510419
628 => 0.017847474097459
629 => 0.01809193937418
630 => 0.017961331438529
701 => 0.01807192183486
702 => 0.01794589012062
703 => 0.017509009289662
704 => 0.017257754503846
705 => 0.01643252711304
706 => 0.016666560577382
707 => 0.016821725006365
708 => 0.016770443163512
709 => 0.016880616405399
710 => 0.016887380147661
711 => 0.01685156170364
712 => 0.016810088534091
713 => 0.016789901688764
714 => 0.016940357895056
715 => 0.017027702786932
716 => 0.016837297832646
717 => 0.016792688615905
718 => 0.016985198537234
719 => 0.017102629478035
720 => 0.017969673566165
721 => 0.017905440139601
722 => 0.018066653435104
723 => 0.01804850329205
724 => 0.018217480509029
725 => 0.01849368684369
726 => 0.017932082136819
727 => 0.018029557295102
728 => 0.018005658637321
729 => 0.018266577916408
730 => 0.018267392477917
731 => 0.01811095833622
801 => 0.018195763822288
802 => 0.018148427726482
803 => 0.018233970449461
804 => 0.017904582263028
805 => 0.018305741518846
806 => 0.018533172966763
807 => 0.018536330852638
808 => 0.018644131553943
809 => 0.018753663309865
810 => 0.018963899977151
811 => 0.01874779992332
812 => 0.018359056963395
813 => 0.01838712294947
814 => 0.018159203094301
815 => 0.018163034468244
816 => 0.018142582293869
817 => 0.018203960808736
818 => 0.017918051395428
819 => 0.017985153763264
820 => 0.017891210055343
821 => 0.018029353079828
822 => 0.017880734021342
823 => 0.018005647112665
824 => 0.018059555461945
825 => 0.018258478431353
826 => 0.017851352937021
827 => 0.017021196494106
828 => 0.017195705443081
829 => 0.016937593000165
830 => 0.01696148228946
831 => 0.017009742455789
901 => 0.016853315466974
902 => 0.016883156806859
903 => 0.016882090664208
904 => 0.016872903222819
905 => 0.016832210521531
906 => 0.016773198053858
907 => 0.017008285561987
908 => 0.017048231510598
909 => 0.017137026406106
910 => 0.017401219784985
911 => 0.017374820636326
912 => 0.017417878743078
913 => 0.017323883137798
914 => 0.016965842476003
915 => 0.016985285806524
916 => 0.016742827163368
917 => 0.017130826193479
918 => 0.017038942901812
919 => 0.016979705145938
920 => 0.016963541575414
921 => 0.017228389838578
922 => 0.017307636589904
923 => 0.017258255332529
924 => 0.017156972932972
925 => 0.017351465081576
926 => 0.017403502975577
927 => 0.01741515234096
928 => 0.017759755138116
929 => 0.017434411809262
930 => 0.017512725182152
1001 => 0.0181237037619
1002 => 0.017569630499349
1003 => 0.01786313546383
1004 => 0.017848769923145
1005 => 0.017998917131307
1006 => 0.017836453469607
1007 => 0.017838467401405
1008 => 0.0179717879504
1009 => 0.017784563283824
1010 => 0.017738203823433
1011 => 0.017674158560937
1012 => 0.017813999048549
1013 => 0.017897827096432
1014 => 0.01857341959745
1015 => 0.019009883163869
1016 => 0.01899093512936
1017 => 0.019164084695538
1018 => 0.019086079230106
1019 => 0.018834179005426
1020 => 0.019264141972995
1021 => 0.019128083699642
1022 => 0.019139300178386
1023 => 0.019138882700487
1024 => 0.019229349557847
1025 => 0.019165245498242
1026 => 0.019038889816614
1027 => 0.019122770614851
1028 => 0.019371866597682
1029 => 0.020145068171587
1030 => 0.020577762015902
1031 => 0.020119019458853
1101 => 0.020435453931898
1102 => 0.020245706005202
1103 => 0.020211223162409
1104 => 0.020409967395806
1105 => 0.020609059504673
1106 => 0.020596378198037
1107 => 0.020451847550492
1108 => 0.020370205855024
1109 => 0.020988424125087
1110 => 0.021443916815396
1111 => 0.021412855267579
1112 => 0.021549950837888
1113 => 0.021952467672523
1114 => 0.021989268767376
1115 => 0.021984632675288
1116 => 0.021893417321896
1117 => 0.02228974741901
1118 => 0.022620372958786
1119 => 0.021872303603051
1120 => 0.022157158620768
1121 => 0.022285039215677
1122 => 0.022472805869466
1123 => 0.022789599687752
1124 => 0.023133721799822
1125 => 0.023182384439576
1126 => 0.023147855967949
1127 => 0.02292089818454
1128 => 0.023297440705797
1129 => 0.023518010483741
1130 => 0.023649354738857
1201 => 0.023982421916231
1202 => 0.022285828962695
1203 => 0.021084896144041
1204 => 0.020897353142728
1205 => 0.021278729210662
1206 => 0.021379295038359
1207 => 0.021338757079313
1208 => 0.019986998007883
1209 => 0.02089023641097
1210 => 0.021862044986249
1211 => 0.021899376111441
1212 => 0.022385883803785
1213 => 0.022544310651036
1214 => 0.022936013111393
1215 => 0.022911512015849
1216 => 0.023006885331599
1217 => 0.022984960657943
1218 => 0.023710506983072
1219 => 0.02451089232436
1220 => 0.024483177525061
1221 => 0.024368112662521
1222 => 0.024539003604867
1223 => 0.025365087051583
1224 => 0.025289034525527
1225 => 0.025362913076452
1226 => 0.026336912016152
1227 => 0.027603249187497
1228 => 0.027014908433234
1229 => 0.028291438579492
1230 => 0.029094946640607
1231 => 0.03048453074802
]
'min_raw' => 0.012446158620211
'max_raw' => 0.03048453074802
'avg_raw' => 0.021465344684115
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012446'
'max' => '$0.030484'
'avg' => '$0.021465'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055496578931898
'max_diff' => 0.012367378880054
'year' => 2028
]
3 => [
'items' => [
101 => 0.030310547973926
102 => 0.030851502869702
103 => 0.029999082496997
104 => 0.028041753018683
105 => 0.027731998136384
106 => 0.02835213525499
107 => 0.029876681848988
108 => 0.028304121857344
109 => 0.028622248695547
110 => 0.028530628144743
111 => 0.028525746074953
112 => 0.028712074822028
113 => 0.028441795256143
114 => 0.027340627682361
115 => 0.027845286292204
116 => 0.027650413367247
117 => 0.027866639406226
118 => 0.029033522160193
119 => 0.028517615479654
120 => 0.027974149700561
121 => 0.028655776392254
122 => 0.029523721403124
123 => 0.029469406964191
124 => 0.029364014250986
125 => 0.029958107457136
126 => 0.030939375380719
127 => 0.03120460815741
128 => 0.031400397570718
129 => 0.031427393622924
130 => 0.031705469738597
131 => 0.030210184380417
201 => 0.032583240645501
202 => 0.032993001908124
203 => 0.032915983773615
204 => 0.033371416171632
205 => 0.033237416406931
206 => 0.033043271771797
207 => 0.033765228995903
208 => 0.03293756329741
209 => 0.031762796038613
210 => 0.031118295486176
211 => 0.031967025804002
212 => 0.032485315792492
213 => 0.03282787250545
214 => 0.032931529959813
215 => 0.030326259126241
216 => 0.02892216264189
217 => 0.02982217239036
218 => 0.030920246398848
219 => 0.030204084523856
220 => 0.030232156713482
221 => 0.029211098083774
222 => 0.031010587431096
223 => 0.030748416969279
224 => 0.032108557788958
225 => 0.03178394926653
226 => 0.032893091304616
227 => 0.03260101703459
228 => 0.033813400999814
301 => 0.034297053787527
302 => 0.035109182092643
303 => 0.035706586979843
304 => 0.036057394556142
305 => 0.036036333385107
306 => 0.037426407774042
307 => 0.036606729472387
308 => 0.035577020342165
309 => 0.03555839615269
310 => 0.036091697102323
311 => 0.037209349588783
312 => 0.03749914061734
313 => 0.037661094268284
314 => 0.037413056614216
315 => 0.036523354564643
316 => 0.036139185730529
317 => 0.036466508707636
318 => 0.036066220833818
319 => 0.03675723000497
320 => 0.037706133188556
321 => 0.037510188433515
322 => 0.038165202371936
323 => 0.038843072888727
324 => 0.039812458172807
325 => 0.040065891382298
326 => 0.040484806840386
327 => 0.040916008453318
328 => 0.041054498790182
329 => 0.041318919814284
330 => 0.041317526184965
331 => 0.042114376738684
401 => 0.042993327575843
402 => 0.043325111169112
403 => 0.04408802924718
404 => 0.042781558774327
405 => 0.043772531635637
406 => 0.044666413962199
407 => 0.043600690602029
408 => 0.045069541972326
409 => 0.045126574142546
410 => 0.045987692201155
411 => 0.045114784078496
412 => 0.044596454021683
413 => 0.046092853474129
414 => 0.046816914033026
415 => 0.046598821100086
416 => 0.044939123111835
417 => 0.043973107694878
418 => 0.041444859018242
419 => 0.044439678787932
420 => 0.045898368137658
421 => 0.044935345458813
422 => 0.045421038082338
423 => 0.04807081954993
424 => 0.049079684772145
425 => 0.048869847858424
426 => 0.048905306842633
427 => 0.049449672204341
428 => 0.051863688005634
429 => 0.050417153781051
430 => 0.051522974995141
501 => 0.05210949857976
502 => 0.052654294372468
503 => 0.051316448090055
504 => 0.049575929733502
505 => 0.049024634507991
506 => 0.044839591832504
507 => 0.044621742186526
508 => 0.044499456578719
509 => 0.043728463119136
510 => 0.043122673452785
511 => 0.042640927018575
512 => 0.041376680513545
513 => 0.041803326596648
514 => 0.039788381536382
515 => 0.041077471980672
516 => 0.037861571011938
517 => 0.040539868899713
518 => 0.039082193126659
519 => 0.0400609832042
520 => 0.040057568297827
521 => 0.038255305439397
522 => 0.037215797834921
523 => 0.037878212538734
524 => 0.038588373683767
525 => 0.03870359494028
526 => 0.039624337401917
527 => 0.039881296831667
528 => 0.039102697763236
529 => 0.037794928612384
530 => 0.038098693559088
531 => 0.037209642047971
601 => 0.035651613471611
602 => 0.036770616795722
603 => 0.037152693729677
604 => 0.037321440670154
605 => 0.035789298506095
606 => 0.035307866173723
607 => 0.035051555639576
608 => 0.037597148298821
609 => 0.037736601611045
610 => 0.037023138748996
611 => 0.040248058538783
612 => 0.039518159868388
613 => 0.040333635512735
614 => 0.038071130074088
615 => 0.038157560828712
616 => 0.037086454495799
617 => 0.037686202470879
618 => 0.037262319932872
619 => 0.037637748761318
620 => 0.037862779253137
621 => 0.038933709828041
622 => 0.040552097206619
623 => 0.038773748512538
624 => 0.037998896520104
625 => 0.038479610338277
626 => 0.039759814583797
627 => 0.041699389548209
628 => 0.040551122131693
629 => 0.041060703712298
630 => 0.041172024617953
701 => 0.040325334736185
702 => 0.041730608211856
703 => 0.042483705683889
704 => 0.043256227858632
705 => 0.043926987217381
706 => 0.042947665513913
707 => 0.043995680116875
708 => 0.043151165346369
709 => 0.042393548292893
710 => 0.042394697285232
711 => 0.041919433040567
712 => 0.04099854867938
713 => 0.040828723474277
714 => 0.041712175637785
715 => 0.042420620609688
716 => 0.042478971530797
717 => 0.042871203068459
718 => 0.043103321652141
719 => 0.045378399322142
720 => 0.046293454381446
721 => 0.047412366386856
722 => 0.047848245671389
723 => 0.049160086046461
724 => 0.048100668401125
725 => 0.047871456729507
726 => 0.044689361079299
727 => 0.045210429063756
728 => 0.046044709182454
729 => 0.044703118051172
730 => 0.04555404883226
731 => 0.045722040593624
801 => 0.044657531297897
802 => 0.045226131707477
803 => 0.043716097597906
804 => 0.04058501182376
805 => 0.041734094005391
806 => 0.042580205267951
807 => 0.041372700171511
808 => 0.043537106319979
809 => 0.042272704930456
810 => 0.041871950391948
811 => 0.040308464057917
812 => 0.041046369423472
813 => 0.042044396996171
814 => 0.041427731989402
815 => 0.042707404471165
816 => 0.044519761981528
817 => 0.045811355871168
818 => 0.045910508412229
819 => 0.045080100071261
820 => 0.046410834737258
821 => 0.046420527686504
822 => 0.044919453547048
823 => 0.044000053994647
824 => 0.043791164481909
825 => 0.044313011439931
826 => 0.044946629985233
827 => 0.045945669831733
828 => 0.046549368687539
829 => 0.048123495126351
830 => 0.048549408606952
831 => 0.049017358393233
901 => 0.049642683618074
902 => 0.050393546880593
903 => 0.048750700808871
904 => 0.048815974145949
905 => 0.047286178630714
906 => 0.045651372727817
907 => 0.046891986626683
908 => 0.0485139242675
909 => 0.048141849980615
910 => 0.048099984022552
911 => 0.048170390951365
912 => 0.047889859089864
913 => 0.046621023877289
914 => 0.045983822776863
915 => 0.046805974763751
916 => 0.047242911955007
917 => 0.047920563433717
918 => 0.047837028585478
919 => 0.04958258602018
920 => 0.050260856856388
921 => 0.050087326151641
922 => 0.050119259977564
923 => 0.051347236928081
924 => 0.052712999849777
925 => 0.053992217054237
926 => 0.05529349173827
927 => 0.053724754317053
928 => 0.052928246200831
929 => 0.053750039261881
930 => 0.053313984296113
1001 => 0.055819685471719
1002 => 0.055993174784576
1003 => 0.058498694769466
1004 => 0.060876731586898
1005 => 0.059383129268824
1006 => 0.060791528981441
1007 => 0.062314828099151
1008 => 0.065253519243587
1009 => 0.064263871450542
1010 => 0.063505816750827
1011 => 0.062789458722491
1012 => 0.064280086060824
1013 => 0.066197754318238
1014 => 0.066610801693686
1015 => 0.067280096238155
1016 => 0.066576414862089
1017 => 0.067423921571599
1018 => 0.070415992669486
1019 => 0.069607508647095
1020 => 0.068459331365007
1021 => 0.070821284135226
1022 => 0.071676065660909
1023 => 0.077675370060716
1024 => 0.085249739684375
1025 => 0.082113900924188
1026 => 0.080167384612855
1027 => 0.080624862118002
1028 => 0.08339076549597
1029 => 0.084279085875588
1030 => 0.081864324861388
1031 => 0.082717259274671
1101 => 0.087417011750523
1102 => 0.089938278167706
1103 => 0.086514059721916
1104 => 0.077066776836454
1105 => 0.068355950563235
1106 => 0.070666453944512
1107 => 0.070404514564342
1108 => 0.075453812293583
1109 => 0.069588226570544
1110 => 0.069686987990987
1111 => 0.07484069984997
1112 => 0.073465777882982
1113 => 0.071238580383164
1114 => 0.068372211569748
1115 => 0.063073463711124
1116 => 0.058380214966225
1117 => 0.067584756545607
1118 => 0.067187839975331
1119 => 0.066613045961832
1120 => 0.067892187839666
1121 => 0.074103337707673
1122 => 0.073960150599686
1123 => 0.073049267273372
1124 => 0.073740164248224
1125 => 0.071117462803034
1126 => 0.071793392683262
1127 => 0.068354570723848
1128 => 0.069909061867394
1129 => 0.071233801817614
1130 => 0.071499762975731
1201 => 0.072098987045282
1202 => 0.066978682978824
1203 => 0.069277549180434
1204 => 0.070627917699247
1205 => 0.064526903604425
1206 => 0.070507320266848
1207 => 0.066889549876675
1208 => 0.065661624269163
1209 => 0.067314864332781
1210 => 0.06667059507216
1211 => 0.066116690194639
1212 => 0.065807601755688
1213 => 0.067021558796962
1214 => 0.066964926249994
1215 => 0.064978656911562
1216 => 0.062387649530273
1217 => 0.063257276654352
1218 => 0.062941332967376
1219 => 0.06179631228823
1220 => 0.062567917975651
1221 => 0.059170157028953
1222 => 0.053324485920406
1223 => 0.057186315312461
1224 => 0.057037639081729
1225 => 0.056962669784263
1226 => 0.059864727839268
1227 => 0.05958576191915
1228 => 0.059079436042494
1229 => 0.06178701321644
1230 => 0.060798711125897
1231 => 0.063844425295691
]
'min_raw' => 0.027340627682361
'max_raw' => 0.089938278167706
'avg_raw' => 0.058639452925033
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02734'
'max' => '$0.089938'
'avg' => '$0.058639'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.01489446906215
'max_diff' => 0.059453747419686
'year' => 2029
]
4 => [
'items' => [
101 => 0.065850529632359
102 => 0.065341716681903
103 => 0.067228467506883
104 => 0.063277311106891
105 => 0.064589726770088
106 => 0.064860213819344
107 => 0.0617536021344
108 => 0.059631404193711
109 => 0.059489877785895
110 => 0.055810279013631
111 => 0.057775890977091
112 => 0.059505548162386
113 => 0.058677176597449
114 => 0.058414938906887
115 => 0.059754654395554
116 => 0.059858761762911
117 => 0.057485102754375
118 => 0.057978661626254
119 => 0.060036884169327
120 => 0.057926799699024
121 => 0.053827250253567
122 => 0.052810505310388
123 => 0.052674852792641
124 => 0.049917359867682
125 => 0.052878449069247
126 => 0.051585854280507
127 => 0.055669145730473
128 => 0.053336791553384
129 => 0.053236248426426
130 => 0.053084262743561
131 => 0.05071077467245
201 => 0.051230417716987
202 => 0.0529577903409
203 => 0.053574136353357
204 => 0.053509846414684
205 => 0.052949325272678
206 => 0.053205928981155
207 => 0.05237931902949
208 => 0.052087425851159
209 => 0.051166130688801
210 => 0.04981208131442
211 => 0.050000370184795
212 => 0.047317644067853
213 => 0.045855952496292
214 => 0.045451375534069
215 => 0.04491035831175
216 => 0.045512484868922
217 => 0.047310044241831
218 => 0.045141806264608
219 => 0.04142451433687
220 => 0.041647929915685
221 => 0.0421498783886
222 => 0.041214500730044
223 => 0.040329244276517
224 => 0.041098902939732
225 => 0.039523837345756
226 => 0.042340217540667
227 => 0.042264042349209
228 => 0.043313814722089
301 => 0.043970258930348
302 => 0.042457367556646
303 => 0.042076879467453
304 => 0.042293622775277
305 => 0.038711338698636
306 => 0.043021065687296
307 => 0.043058336385259
308 => 0.042739202041601
309 => 0.04503399861517
310 => 0.0498767351504
311 => 0.04805470286722
312 => 0.047349156895956
313 => 0.046007913488832
314 => 0.047795040693672
315 => 0.047657817207867
316 => 0.047037240564598
317 => 0.046661913874432
318 => 0.047353464809208
319 => 0.046576223060558
320 => 0.046436609085326
321 => 0.045590700296921
322 => 0.045288749345858
323 => 0.045065196882704
324 => 0.044819087586584
325 => 0.04536194336721
326 => 0.044131760749685
327 => 0.04264828110924
328 => 0.042524945828609
329 => 0.042865485382179
330 => 0.042714821979912
331 => 0.042524224510203
401 => 0.042160322034395
402 => 0.04205235994337
403 => 0.042403184363443
404 => 0.042007124047514
405 => 0.042591532618189
406 => 0.042432605823767
407 => 0.041544853669221
408 => 0.040438385796712
409 => 0.040428535911752
410 => 0.040190149223591
411 => 0.03988652793454
412 => 0.03980206743784
413 => 0.041034084433869
414 => 0.043584322744484
415 => 0.04308364994208
416 => 0.04344543735283
417 => 0.045225073339558
418 => 0.045790766104217
419 => 0.045389250779029
420 => 0.044839631837525
421 => 0.044863812281588
422 => 0.046742026585675
423 => 0.046859168507957
424 => 0.047155148354145
425 => 0.047535566100392
426 => 0.045454037566188
427 => 0.044765772474816
428 => 0.04443963429103
429 => 0.043435254916332
430 => 0.044518391962964
501 => 0.043887294390445
502 => 0.04397245101434
503 => 0.043916992651314
504 => 0.043947276667605
505 => 0.042339430305004
506 => 0.042925245013619
507 => 0.041951214439916
508 => 0.040647096841791
509 => 0.040642724982319
510 => 0.040961905916918
511 => 0.040772044607467
512 => 0.040261132705516
513 => 0.040333705329752
514 => 0.039697892776941
515 => 0.040410904485421
516 => 0.040431351109942
517 => 0.040156802764167
518 => 0.041255295677736
519 => 0.04170534912071
520 => 0.041524635518126
521 => 0.041692669772607
522 => 0.043104455157422
523 => 0.043334637775661
524 => 0.043436869689673
525 => 0.043299892468031
526 => 0.041718474617791
527 => 0.041788617224157
528 => 0.041273957318993
529 => 0.040839123932654
530 => 0.040856514987707
531 => 0.041080075872669
601 => 0.042056379368968
602 => 0.044110952520696
603 => 0.044188922069931
604 => 0.044283423438135
605 => 0.043899038881065
606 => 0.043783104820588
607 => 0.043936051771477
608 => 0.044707641422942
609 => 0.046692379491056
610 => 0.045990840501586
611 => 0.045420478383042
612 => 0.045920839729528
613 => 0.045843813022198
614 => 0.045193630095397
615 => 0.045175381626144
616 => 0.043927472713557
617 => 0.043466149202084
618 => 0.043080632746432
619 => 0.042659658841021
620 => 0.042410091398721
621 => 0.042793540416468
622 => 0.042881239743663
623 => 0.042042821764815
624 => 0.041928548492359
625 => 0.042613218712395
626 => 0.042311920875636
627 => 0.04262181317257
628 => 0.042693710843665
629 => 0.042682133662675
630 => 0.042367544117262
701 => 0.042568054112313
702 => 0.042093788199111
703 => 0.041578095250942
704 => 0.041249115278815
705 => 0.040962036620274
706 => 0.041121324545142
707 => 0.040553492177813
708 => 0.040371831175297
709 => 0.042500125837607
710 => 0.04407231998768
711 => 0.04404945966208
712 => 0.043910303309193
713 => 0.043703545195638
714 => 0.044692515779119
715 => 0.044347978202925
716 => 0.044598658076684
717 => 0.044662466625556
718 => 0.044855595885089
719 => 0.044924622995351
720 => 0.044715975125728
721 => 0.044015727391084
722 => 0.042270776613908
723 => 0.041458497316727
724 => 0.041190431619076
725 => 0.041200175298056
726 => 0.040931401134079
727 => 0.041010567170983
728 => 0.040903870417188
729 => 0.040701812578216
730 => 0.04110884804297
731 => 0.041155755088485
801 => 0.0410607481473
802 => 0.041083125721251
803 => 0.040296508826232
804 => 0.040356313600318
805 => 0.040023313018583
806 => 0.03996087942389
807 => 0.039119082950941
808 => 0.037627718478763
809 => 0.038454079166602
810 => 0.037455951659589
811 => 0.037077945648584
812 => 0.038867367312688
813 => 0.038687759008443
814 => 0.038380347665429
815 => 0.037925622218973
816 => 0.037756960127598
817 => 0.036732222652332
818 => 0.036671675695532
819 => 0.037179563258513
820 => 0.036945190623541
821 => 0.036616042680183
822 => 0.035423902194531
823 => 0.034083541584508
824 => 0.034123998646118
825 => 0.03455034241787
826 => 0.035789994434532
827 => 0.035305640945425
828 => 0.034954236931762
829 => 0.034888429523168
830 => 0.035712147018855
831 => 0.036877879849402
901 => 0.037424815611693
902 => 0.036882818881949
903 => 0.036260202221995
904 => 0.036298098013159
905 => 0.036550201734156
906 => 0.036576694270679
907 => 0.036171434831076
908 => 0.036285512989503
909 => 0.036112217835326
910 => 0.035048705794021
911 => 0.035029470233627
912 => 0.034768467227242
913 => 0.034760564159938
914 => 0.034316532935827
915 => 0.034254409898131
916 => 0.033372758951889
917 => 0.03395306427459
918 => 0.033563825931519
919 => 0.032977151936467
920 => 0.03287600911859
921 => 0.032872968643351
922 => 0.033475351658364
923 => 0.033946025078335
924 => 0.033570596899144
925 => 0.033485119180112
926 => 0.034397797591428
927 => 0.03428165094434
928 => 0.034181068697027
929 => 0.036773501260296
930 => 0.034721388596433
1001 => 0.033826550344492
1002 => 0.032719018082541
1003 => 0.033079636171695
1004 => 0.033155623701662
1005 => 0.030492208259364
1006 => 0.029411660946131
1007 => 0.029040857827796
1008 => 0.028827455390808
1009 => 0.028924705561083
1010 => 0.027952086243614
1011 => 0.028605702510592
1012 => 0.027763496395129
1013 => 0.027622297799095
1014 => 0.029128266662861
1015 => 0.029337813432511
1016 => 0.028443821812104
1017 => 0.029017909156502
1018 => 0.028809737105012
1019 => 0.0277779336017
1020 => 0.027738526297306
1021 => 0.027220803568991
1022 => 0.026410667750052
1023 => 0.026040413941951
1024 => 0.025847582544001
1025 => 0.025927148537004
1026 => 0.025886917536182
1027 => 0.025624383042521
1028 => 0.025901965706047
1029 => 0.025192856705814
1030 => 0.024910483788242
1031 => 0.024782942492377
1101 => 0.024153567439879
1102 => 0.025155183032759
1103 => 0.025352513922577
1104 => 0.025550233615207
1105 => 0.027271248550581
1106 => 0.027185271507947
1107 => 0.027962462100837
1108 => 0.027932261903559
1109 => 0.027710594556814
1110 => 0.026775416483406
1111 => 0.02714816179552
1112 => 0.026000909662315
1113 => 0.026860508966074
1114 => 0.026468223741564
1115 => 0.026727876937064
1116 => 0.02626099707957
1117 => 0.026519387669704
1118 => 0.025399308397047
1119 => 0.02435339413218
1120 => 0.024774300564503
1121 => 0.025231873992927
1122 => 0.026224009773293
1123 => 0.02563310188745
1124 => 0.0258456147079
1125 => 0.025133732333608
1126 => 0.023664915656297
1127 => 0.023673228999178
1128 => 0.023447283553284
1129 => 0.023252033699457
1130 => 0.025700974766409
1201 => 0.025396410232704
1202 => 0.024911126508667
1203 => 0.0255606980577
1204 => 0.025732455085351
1205 => 0.025737344766466
1206 => 0.026211255400772
1207 => 0.026464181591255
1208 => 0.026508760928572
1209 => 0.02725446955117
1210 => 0.02750442124533
1211 => 0.028533936899088
1212 => 0.026442722571089
1213 => 0.026399655388166
1214 => 0.0255698388615
1215 => 0.025043556101408
1216 => 0.025605873892338
1217 => 0.026104010691069
1218 => 0.025585317360387
1219 => 0.02565304775916
1220 => 0.024956744341523
1221 => 0.025205640049207
1222 => 0.025420022562538
1223 => 0.025301653139498
1224 => 0.025124448384063
1225 => 0.02606316915425
1226 => 0.026010202849519
1227 => 0.026884361211814
1228 => 0.027565830166887
1229 => 0.028787144361525
1230 => 0.027512639330872
1231 => 0.027466191301856
]
'min_raw' => 0.023252033699457
'max_raw' => 0.067228467506883
'avg_raw' => 0.04524025060317
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023252'
'max' => '$0.067228'
'avg' => '$0.04524'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040885939829043
'max_diff' => -0.022709810660822
'year' => 2030
]
5 => [
'items' => [
101 => 0.027920228235983
102 => 0.027504351734641
103 => 0.02776717132792
104 => 0.028744800061873
105 => 0.028765455816494
106 => 0.028419445313152
107 => 0.028398390542578
108 => 0.028464845644685
109 => 0.028854075253413
110 => 0.028718066468306
111 => 0.028875459277753
112 => 0.029072281396052
113 => 0.029886421128182
114 => 0.030082707461342
115 => 0.02960583343456
116 => 0.029648889819846
117 => 0.029470525843345
118 => 0.029298228476938
119 => 0.02968552779461
120 => 0.030393324910042
121 => 0.030388921740922
122 => 0.030553116914092
123 => 0.030655409146711
124 => 0.03021629600182
125 => 0.029930449491134
126 => 0.030040061232217
127 => 0.030215332793242
128 => 0.029983223027227
129 => 0.028550534027683
130 => 0.028985120349617
131 => 0.028912783935462
201 => 0.028809768085296
202 => 0.029246747992558
203 => 0.029204600214483
204 => 0.027942110626713
205 => 0.028022931113984
206 => 0.027947025588229
207 => 0.028192291870753
208 => 0.02749110655049
209 => 0.027706786432447
210 => 0.027842058832538
211 => 0.027921735315403
212 => 0.028209581406187
213 => 0.02817580598974
214 => 0.028207481878877
215 => 0.028634281642959
216 => 0.030792888389692
217 => 0.030910376592219
218 => 0.030331821713683
219 => 0.030562942976168
220 => 0.030119240692861
221 => 0.030417101008192
222 => 0.03062088947111
223 => 0.029700008593453
224 => 0.029645480004346
225 => 0.029199946403882
226 => 0.029439350924458
227 => 0.029058441118427
228 => 0.029151903061168
301 => 0.028890575321399
302 => 0.029360913223149
303 => 0.029886824080425
304 => 0.030019689931822
305 => 0.029670177079142
306 => 0.029417106739782
307 => 0.028972798590418
308 => 0.029711692944863
309 => 0.0299277681715
310 => 0.029710557993684
311 => 0.029660225649347
312 => 0.029564845947779
313 => 0.029680460903924
314 => 0.029926591379411
315 => 0.029810520792488
316 => 0.029887187460051
317 => 0.029595013181623
318 => 0.030216441366542
319 => 0.031203418879031
320 => 0.031206592173121
321 => 0.031090520960533
322 => 0.031043027121132
323 => 0.031162123229037
324 => 0.031226727981997
325 => 0.03161186295647
326 => 0.032025128128533
327 => 0.033953656364834
328 => 0.033412133353211
329 => 0.035123238333115
330 => 0.036476500213045
331 => 0.036882284279866
401 => 0.036508982032006
402 => 0.03523193520747
403 => 0.035169277197785
404 => 0.037077724308904
405 => 0.036538500587598
406 => 0.036474361641744
407 => 0.035792031622319
408 => 0.036195373172016
409 => 0.036107156458434
410 => 0.035967902060335
411 => 0.036737449640141
412 => 0.038177974011551
413 => 0.037953454779115
414 => 0.037785861587249
415 => 0.037051517006136
416 => 0.037493756465766
417 => 0.03733628346473
418 => 0.038012887412015
419 => 0.037612082222256
420 => 0.036534415437568
421 => 0.036706037425066
422 => 0.036680097106911
423 => 0.037213947016385
424 => 0.03705369852453
425 => 0.03664880601698
426 => 0.038173050455855
427 => 0.038074074500287
428 => 0.038214399776229
429 => 0.038276175302401
430 => 0.039203956032145
501 => 0.039584038111449
502 => 0.039670323397724
503 => 0.04003137197646
504 => 0.039661340180177
505 => 0.041141731193507
506 => 0.04212610483416
507 => 0.043269505473184
508 => 0.044940321123915
509 => 0.0455685632645
510 => 0.04545507694498
511 => 0.04672187030261
512 => 0.048998269807036
513 => 0.045915202369578
514 => 0.049161679867494
515 => 0.048133882574038
516 => 0.04569699368054
517 => 0.045540086764832
518 => 0.047190376216371
519 => 0.05085055938541
520 => 0.04993372501502
521 => 0.050852058997993
522 => 0.049780773626673
523 => 0.049727575278485
524 => 0.050800029058662
525 => 0.053305875772458
526 => 0.052115441928993
527 => 0.050408663108032
528 => 0.05166892202901
529 => 0.050577169120202
530 => 0.048117144254259
531 => 0.049933023929055
601 => 0.048718796903795
602 => 0.049073172901625
603 => 0.051625297506084
604 => 0.051318219121591
605 => 0.051715606985818
606 => 0.051014227806909
607 => 0.050359029056464
608 => 0.04913605193306
609 => 0.048773988698864
610 => 0.048874049951125
611 => 0.048773939113477
612 => 0.048089694652672
613 => 0.047941932126509
614 => 0.047695654775945
615 => 0.047771986424892
616 => 0.047308912954852
617 => 0.048182828268678
618 => 0.04834503465184
619 => 0.048980997338753
620 => 0.049047025094634
621 => 0.050818172125325
622 => 0.049842654103737
623 => 0.050497115814792
624 => 0.050438574599323
625 => 0.045749808452156
626 => 0.046395879057901
627 => 0.047400962172317
628 => 0.046948173591631
629 => 0.046308036474751
630 => 0.04579109143089
701 => 0.045007866829096
702 => 0.046110240415625
703 => 0.047559744457549
704 => 0.049083786909183
705 => 0.050914824055603
706 => 0.050506157880144
707 => 0.049049556943373
708 => 0.049114898997349
709 => 0.049518817863878
710 => 0.048995706231824
711 => 0.04884143039918
712 => 0.049497622733539
713 => 0.049502141569509
714 => 0.048900238416679
715 => 0.048231333209423
716 => 0.04822853047218
717 => 0.048109505251407
718 => 0.049801947949033
719 => 0.05073262030747
720 => 0.050839320393511
721 => 0.050725438541537
722 => 0.050769267146553
723 => 0.050227729407144
724 => 0.051465524091404
725 => 0.052601446898888
726 => 0.052296995321031
727 => 0.051840579125482
728 => 0.051477021641744
729 => 0.052211352731886
730 => 0.052178654124386
731 => 0.052591525604122
801 => 0.05257279536894
802 => 0.052433962219186
803 => 0.0522970002792
804 => 0.05284003888977
805 => 0.052683652490859
806 => 0.052527023180676
807 => 0.052212879120355
808 => 0.052255576515533
809 => 0.051799239126675
810 => 0.051588116570011
811 => 0.048413339871629
812 => 0.047564935799
813 => 0.047831860991106
814 => 0.047919739695057
815 => 0.04755051315539
816 => 0.048079889166757
817 => 0.047997386476134
818 => 0.048318356182891
819 => 0.048117828244994
820 => 0.048126057981512
821 => 0.048715767889803
822 => 0.048886963184985
823 => 0.04879989187614
824 => 0.048860873636225
825 => 0.050266172558599
826 => 0.050066383990768
827 => 0.049960250296041
828 => 0.049989650054811
829 => 0.050348734059426
830 => 0.050449257975459
831 => 0.050023331079539
901 => 0.050224200665909
902 => 0.051079477870525
903 => 0.051378776487644
904 => 0.052333994002
905 => 0.051928200624264
906 => 0.052673051931424
907 => 0.054962470911112
908 => 0.056791417207829
909 => 0.055109442608965
910 => 0.058468069567981
911 => 0.061083242421997
912 => 0.060982867732062
913 => 0.060526851854926
914 => 0.057549547088596
915 => 0.054809786853506
916 => 0.057101712626523
917 => 0.057107555216657
918 => 0.056910676760147
919 => 0.055687881575515
920 => 0.056868126138284
921 => 0.056961809665658
922 => 0.056909371802789
923 => 0.055971857601727
924 => 0.054540446698291
925 => 0.054820140962509
926 => 0.055278285872906
927 => 0.054410921978484
928 => 0.054133746658785
929 => 0.054649068312868
930 => 0.056309542053856
1001 => 0.055995639111592
1002 => 0.055987441837188
1003 => 0.057330451739758
1004 => 0.056369146489195
1005 => 0.054823668802886
1006 => 0.054433415304747
1007 => 0.053048278292609
1008 => 0.054004997360581
1009 => 0.054039427976624
1010 => 0.053515442720527
1011 => 0.054866187318571
1012 => 0.054853739969306
1013 => 0.056136070933347
1014 => 0.058587406115078
1015 => 0.057862425678961
1016 => 0.057019352309406
1017 => 0.057111017760565
1018 => 0.058116361510174
1019 => 0.057508507729395
1020 => 0.05772709618707
1021 => 0.058116030650364
1022 => 0.058350684468768
1023 => 0.057077254687214
1024 => 0.056780357289946
1025 => 0.056173009411963
1026 => 0.056014563687282
1027 => 0.05650923586117
1028 => 0.056378907220376
1029 => 0.054036534216667
1030 => 0.053791743204939
1031 => 0.053799250595788
1101 => 0.05318371195762
1102 => 0.052244867788213
1103 => 0.054712094209941
1104 => 0.054513941399465
1105 => 0.054295196032508
1106 => 0.054321991091817
1107 => 0.055392930459427
1108 => 0.054771731542479
1109 => 0.056423290675686
1110 => 0.05608377976831
1111 => 0.055735561687253
1112 => 0.055687427341468
1113 => 0.055553393088832
1114 => 0.055093739764592
1115 => 0.05453868075469
1116 => 0.054172182717964
1117 => 0.049970975026578
1118 => 0.050750694736798
1119 => 0.051647691189719
1120 => 0.05195733077078
1121 => 0.051427670840969
1122 => 0.055114653966936
1123 => 0.055788301312704
1124 => 0.053747779561444
1125 => 0.053366081255738
1126 => 0.055139678044312
1127 => 0.054069982367412
1128 => 0.054551666265222
1129 => 0.053510529145163
1130 => 0.055626039393805
1201 => 0.055609922750159
1202 => 0.054786941482472
1203 => 0.055482519614389
1204 => 0.055361645796631
1205 => 0.054432501972325
1206 => 0.055655494910319
1207 => 0.055656101499558
1208 => 0.054863999922565
1209 => 0.053938998693968
1210 => 0.053773630321849
1211 => 0.053649047467572
1212 => 0.054521026520138
1213 => 0.055302840212061
1214 => 0.056757601664679
1215 => 0.057123363258146
1216 => 0.058550955107579
1217 => 0.057700893669427
1218 => 0.058077714894821
1219 => 0.058486807639603
1220 => 0.058682941745339
1221 => 0.058363351745179
1222 => 0.060580989507595
1223 => 0.060768226081409
1224 => 0.060831004885018
1225 => 0.06008322990893
1226 => 0.060747429106609
1227 => 0.06043667229798
1228 => 0.061245175183304
1229 => 0.061371958759206
1230 => 0.061264577580874
1231 => 0.061304820689007
]
'min_raw' => 0.02749110655049
'max_raw' => 0.061371958759206
'avg_raw' => 0.044431532654848
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027491'
'max' => '$0.061371'
'avg' => '$0.044431'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042390728510328
'max_diff' => -0.0058565087476776
'year' => 2031
]
6 => [
'items' => [
101 => 0.059412458076894
102 => 0.059314329092448
103 => 0.05797633342661
104 => 0.058521576550403
105 => 0.057502270664654
106 => 0.057825503061039
107 => 0.057967980821495
108 => 0.057893558524975
109 => 0.058552403778547
110 => 0.057992250719817
111 => 0.056513914700142
112 => 0.055035175908807
113 => 0.055016611547837
114 => 0.054627285725986
115 => 0.054345874465369
116 => 0.054400084257764
117 => 0.054591126636861
118 => 0.054334770735
119 => 0.054389477264236
120 => 0.055297970157256
121 => 0.055480161927876
122 => 0.054861003104388
123 => 0.052374991083893
124 => 0.051764917498375
125 => 0.05220342629336
126 => 0.05199384733294
127 => 0.041963092751087
128 => 0.044319669751808
129 => 0.042919471719773
130 => 0.043564747392948
131 => 0.042135507781763
201 => 0.042817615837087
202 => 0.042691655385866
203 => 0.046480961466842
204 => 0.046421796664408
205 => 0.046450115724402
206 => 0.045098373205986
207 => 0.047251735741631
208 => 0.048312559559101
209 => 0.048116229303399
210 => 0.04816564139899
211 => 0.047316577886633
212 => 0.046458336515162
213 => 0.0455064147518
214 => 0.047274967727041
215 => 0.0470783348264
216 => 0.047529339954185
217 => 0.048676372977406
218 => 0.04884527794723
219 => 0.049072287939538
220 => 0.048990921016967
221 => 0.050929411220534
222 => 0.050694647266312
223 => 0.051260360849788
224 => 0.050096645087785
225 => 0.048779790242164
226 => 0.049030081297088
227 => 0.049005976255785
228 => 0.048699091413523
229 => 0.048422049499677
301 => 0.047960852769198
302 => 0.049420147468706
303 => 0.049360902768891
304 => 0.050320005594465
305 => 0.050150474853817
306 => 0.04901830707656
307 => 0.049058742670214
308 => 0.04933069147022
309 => 0.050271909372098
310 => 0.050551326928377
311 => 0.050421889583444
312 => 0.050728258178008
313 => 0.050970399423497
314 => 0.050758667390369
315 => 0.05375634647612
316 => 0.052511501122259
317 => 0.053118230086153
318 => 0.053262931368987
319 => 0.052892282075748
320 => 0.052972662635495
321 => 0.053094417281121
322 => 0.053833687647357
323 => 0.055773746997965
324 => 0.056632986077919
325 => 0.059218049244069
326 => 0.056561638233514
327 => 0.05640401779747
328 => 0.056869665735122
329 => 0.058387371470379
330 => 0.059617329417953
331 => 0.06002537742714
401 => 0.060079307707692
402 => 0.060844832899445
403 => 0.061283617663158
404 => 0.060751878005855
405 => 0.060301284321753
406 => 0.058687313675047
407 => 0.0588741351721
408 => 0.060161150024826
409 => 0.061979134309099
410 => 0.063539153954031
411 => 0.062992889446549
412 => 0.067160502035992
413 => 0.067573703801064
414 => 0.067516612677544
415 => 0.068457947791046
416 => 0.066589589290306
417 => 0.065790829833499
418 => 0.060398707790712
419 => 0.061913674142935
420 => 0.064115766706746
421 => 0.063824311498502
422 => 0.06222509301656
423 => 0.063537940803407
424 => 0.063103872268529
425 => 0.062761504405551
426 => 0.06432995795713
427 => 0.062605378848648
428 => 0.064098562710904
429 => 0.062183538962552
430 => 0.062995384736806
501 => 0.062534541810777
502 => 0.062832763662702
503 => 0.061089364810022
504 => 0.062030060512313
505 => 0.061050228776086
506 => 0.061049764208265
507 => 0.061028134368381
508 => 0.062180902060813
509 => 0.062218493773878
510 => 0.061366596707435
511 => 0.061243825031027
512 => 0.061697776265947
513 => 0.061166318259873
514 => 0.061414984115958
515 => 0.061173850095334
516 => 0.061119565748232
517 => 0.060687018834802
518 => 0.060500665731371
519 => 0.060573739584954
520 => 0.060324300850522
521 => 0.060174004990433
522 => 0.060998236738917
523 => 0.060557882965116
524 => 0.06093074620752
525 => 0.060505821483708
526 => 0.059032847260086
527 => 0.058185724207661
528 => 0.055403412444021
529 => 0.056192472608742
530 => 0.056715620314294
531 => 0.05654272000073
601 => 0.056914176777805
602 => 0.056936981207071
603 => 0.05681621682229
604 => 0.05667638713559
605 => 0.056608325777171
606 => 0.057115599381201
607 => 0.057410088782385
608 => 0.05676812518536
609 => 0.056617722096602
610 => 0.057266782736976
611 => 0.057662709352654
612 => 0.060586009030871
613 => 0.060369441548575
614 => 0.060912983429915
615 => 0.060851788955407
616 => 0.061421507440064
617 => 0.062352756381482
618 => 0.060459266902279
619 => 0.060787911203929
620 => 0.06070733521067
621 => 0.061587042776914
622 => 0.061589789127913
623 => 0.061062360497297
624 => 0.061348288114506
625 => 0.061188691162594
626 => 0.061477104425521
627 => 0.060366549157814
628 => 0.061719085596848
629 => 0.062485886602258
630 => 0.062496533634962
701 => 0.062859991225817
702 => 0.063229285188169
703 => 0.06393811279018
704 => 0.063209516371066
705 => 0.061898842340512
706 => 0.061993468772067
707 => 0.06122502106751
708 => 0.061237938812255
709 => 0.061168982878424
710 => 0.061375924826611
711 => 0.060411961278085
712 => 0.060638201596181
713 => 0.060321463825986
714 => 0.060787222677874
715 => 0.060286143145938
716 => 0.060707296354486
717 => 0.060889052117845
718 => 0.061559734797563
719 => 0.060187082768829
720 => 0.057388152361867
721 => 0.057976521467162
722 => 0.057106277345036
723 => 0.057186821751791
724 => 0.057349534271985
725 => 0.056822129757813
726 => 0.056922741918691
727 => 0.056919147344307
728 => 0.056888171244217
729 => 0.056750972960752
730 => 0.056552008305875
731 => 0.057344622252815
801 => 0.057479302807496
802 => 0.057778680997163
803 => 0.058669427419444
804 => 0.058580420846611
805 => 0.058725594259749
806 => 0.058408681513983
807 => 0.05720152242514
808 => 0.057267076971482
809 => 0.056449610728159
810 => 0.057757776547406
811 => 0.057447985614464
812 => 0.057248261384686
813 => 0.057193764778159
814 => 0.058086719188531
815 => 0.05835390514346
816 => 0.058187412786531
817 => 0.057845932105111
818 => 0.058501675963138
819 => 0.058677125355934
820 => 0.058716402004656
821 => 0.059878254394666
822 => 0.058781336646687
823 => 0.059045375651051
824 => 0.061105332589834
825 => 0.059237235900984
826 => 0.060226808380595
827 => 0.060178373957205
828 => 0.060684605752467
829 => 0.060136848174195
830 => 0.060143638285859
831 => 0.06059313782494
901 => 0.05996189678997
902 => 0.059805592632548
903 => 0.059589659558543
904 => 0.060061141525881
905 => 0.060343773642005
906 => 0.062621580927549
907 => 0.064093148314642
908 => 0.064029263693386
909 => 0.064613049544671
910 => 0.064350048671802
911 => 0.063500749477181
912 => 0.064950399641396
913 => 0.064491669673499
914 => 0.064529486814695
915 => 0.064528079258811
916 => 0.064833094584593
917 => 0.064616963272033
918 => 0.064190946269552
919 => 0.06447375623718
920 => 0.06531360073462
921 => 0.06792050382425
922 => 0.069379361330079
923 => 0.067832678770604
924 => 0.068899559689225
925 => 0.068259811306593
926 => 0.068143549994603
927 => 0.068813630053378
928 => 0.069484882998591
929 => 0.069442127087888
930 => 0.068954831918882
1001 => 0.068679571242569
1002 => 0.070763937302709
1003 => 0.07229966270957
1004 => 0.072194936532456
1005 => 0.072657163819461
1006 => 0.074014277430259
1007 => 0.074138354890929
1008 => 0.074122723982772
1009 => 0.073815185050358
1010 => 0.07515143964366
1011 => 0.076266166734555
1012 => 0.073743998673158
1013 => 0.074704407253333
1014 => 0.075135565607406
1015 => 0.075768633990104
1016 => 0.076836726466297
1017 => 0.077996958192979
1018 => 0.078161027680425
1019 => 0.078044612527634
1020 => 0.077279408515184
1021 => 0.078548947914963
1022 => 0.079292614320991
1023 => 0.079735450647278
1024 => 0.080858409889802
1025 => 0.075138228294617
1026 => 0.071089199450073
1027 => 0.070456885127312
1028 => 0.071742721167179
1029 => 0.072081785876542
1030 => 0.071945109317349
1031 => 0.067387559231217
1101 => 0.070432890569316
1102 => 0.073709411030377
1103 => 0.073835275525337
1104 => 0.075475570176956
1105 => 0.076009717353473
1106 => 0.077330369546361
1107 => 0.077247762392121
1108 => 0.077569320184924
1109 => 0.077495399616963
1110 => 0.07994162970816
1111 => 0.082640184767435
1112 => 0.082546742386612
1113 => 0.082158793168987
1114 => 0.082734963912331
1115 => 0.085520161928237
1116 => 0.085263745526821
1117 => 0.0855128322193
1118 => 0.088796737646935
1119 => 0.09306628183296
1120 => 0.091082649903324
1121 => 0.095386560415923
1122 => 0.098095643943112
1123 => 0.10278072377892
1124 => 0.10219412870897
1125 => 0.10401799590835
1126 => 0.10114400110768
1127 => 0.094544728115166
1128 => 0.093500367903098
1129 => 0.09559120349507
1130 => 0.10073131877718
1201 => 0.095429322972719
1202 => 0.096501909818627
1203 => 0.096193004734849
1204 => 0.096176544495696
1205 => 0.096804764875515
1206 => 0.095893498448817
1207 => 0.092180835092748
1208 => 0.093882326829972
1209 => 0.093225299157885
1210 => 0.093954320344723
1211 => 0.097888547018877
1212 => 0.096149131625984
1213 => 0.094316798808202
1214 => 0.096614950788903
1215 => 0.099541287991035
1216 => 0.099358163068059
1217 => 0.099002824177206
1218 => 0.1010058509
1219 => 0.1043142642143
1220 => 0.10520851503888
1221 => 0.10586863271542
1222 => 0.10595965179024
1223 => 0.10689720482889
1224 => 0.10185574584629
1225 => 0.10985667072552
1226 => 0.11123820943107
1227 => 0.11097853741334
1228 => 0.11251405954053
1229 => 0.11206226997828
1230 => 0.11140769778618
1231 => 0.11384182697269
]
'min_raw' => 0.041963092751087
'max_raw' => 0.11384182697269
'avg_raw' => 0.07790245986189
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.041963'
'max' => '$0.113841'
'avg' => '$0.0779024'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014471986200597
'max_diff' => 0.052469868213487
'year' => 2032
]
7 => [
'items' => [
101 => 0.11105129428445
102 => 0.10709048445179
103 => 0.10491750584165
104 => 0.10777905936466
105 => 0.10952651024671
106 => 0.11068146412099
107 => 0.11103095246551
108 => 0.10224709995592
109 => 0.097513090628044
110 => 0.10054753633168
111 => 0.10424976951638
112 => 0.10183517975402
113 => 0.10192982710128
114 => 0.098487256643185
115 => 0.10455436061402
116 => 0.10367043459784
117 => 0.10825624433339
118 => 0.10716180403658
119 => 0.11090135385581
120 => 0.10991660506244
121 => 0.11400424224714
122 => 0.11563491138848
123 => 0.11837305867016
124 => 0.12038725095683
125 => 0.12157002319293
126 => 0.12149901398434
127 => 0.12618574683853
128 => 0.12342214421639
129 => 0.11995040799185
130 => 0.11988761523674
131 => 0.12168567662231
201 => 0.12545392001241
202 => 0.12643097069775
203 => 0.12697700873915
204 => 0.12614073247103
205 => 0.12314103989388
206 => 0.12184578784785
207 => 0.12294938011813
208 => 0.12159978160434
209 => 0.1239295672696
210 => 0.12712886060337
211 => 0.12646821918132
212 => 0.12867664440632
213 => 0.13096213218109
214 => 0.13423048234668
215 => 0.13508495010663
216 => 0.13649735282131
217 => 0.13795117916485
218 => 0.13841810900467
219 => 0.13930962294872
220 => 0.13930492423017
221 => 0.14199156150636
222 => 0.14495500562023
223 => 0.14607363716933
224 => 0.14864586873477
225 => 0.14424101232069
226 => 0.14758214651012
227 => 0.15059593318299
228 => 0.14700277246775
301 => 0.15195510741463
302 => 0.15214739535839
303 => 0.15505071501433
304 => 0.15210764433429
305 => 0.15036005835909
306 => 0.15540527358829
307 => 0.15784649431491
308 => 0.15711117876474
309 => 0.15151539112093
310 => 0.14825840269762
311 => 0.13973423576766
312 => 0.14983147971281
313 => 0.15474955269784
314 => 0.15150265450002
315 => 0.15314020109021
316 => 0.16207412431003
317 => 0.16547558384345
318 => 0.1647681040385
319 => 0.16488765647943
320 => 0.1667230223028
321 => 0.17486204511806
322 => 0.16998495398608
323 => 0.17371330741536
324 => 0.17569081263067
325 => 0.17752762968221
326 => 0.17301698753561
327 => 0.16714870837738
328 => 0.16528997803437
329 => 0.15117981446362
330 => 0.15044531917243
331 => 0.150033024708
401 => 0.14743356642997
402 => 0.14539110427498
403 => 0.14376686253758
404 => 0.139504367179
405 => 0.14094283423566
406 => 0.134149306286
407 => 0.13849556472034
408 => 0.12765293007722
409 => 0.13668299839864
410 => 0.13176834275812
411 => 0.13506840184149
412 => 0.13505688824623
413 => 0.12898043318906
414 => 0.12547566072447
415 => 0.12770903814669
416 => 0.13010339602904
417 => 0.13049187253986
418 => 0.13359622003346
419 => 0.13446257669119
420 => 0.13183747557193
421 => 0.1274282405743
422 => 0.12845240530031
423 => 0.12545490605898
424 => 0.1202019039357
425 => 0.12397470176926
426 => 0.12526290082785
427 => 0.1258318429192
428 => 0.12066611864233
429 => 0.1190429359212
430 => 0.1181787670603
501 => 0.12676141043855
502 => 0.12723158701703
503 => 0.12482609716524
504 => 0.13569913939322
505 => 0.13323823506608
506 => 0.13598766813569
507 => 0.12835947308621
508 => 0.12865088040983
509 => 0.12503957062615
510 => 0.1270616627972
511 => 0.12563251322578
512 => 0.12689829773249
513 => 0.12765700374678
514 => 0.13126772095006
515 => 0.13672422698913
516 => 0.13072840020669
517 => 0.12811593261577
518 => 0.1297366928161
519 => 0.13405299081088
520 => 0.14059240322019
521 => 0.13672093945594
522 => 0.1384390293328
523 => 0.13881435553839
524 => 0.13595968148801
525 => 0.1406976591243
526 => 0.14323677983084
527 => 0.14584139227876
528 => 0.14810290428771
529 => 0.14480105279041
530 => 0.14833450719434
531 => 0.14548716668344
601 => 0.14293280789251
602 => 0.1429366818004
603 => 0.14133429521763
604 => 0.13822946929979
605 => 0.13765689176397
606 => 0.1406355124139
607 => 0.14302408409872
608 => 0.14322081830316
609 => 0.14454325431712
610 => 0.14532585832801
611 => 0.15299644153327
612 => 0.15608161355282
613 => 0.159854103499
614 => 0.16132370093892
615 => 0.16574666235325
616 => 0.16217476179582
617 => 0.16140195864191
618 => 0.15067330099041
619 => 0.15243011807981
620 => 0.15524295174758
621 => 0.15071968358156
622 => 0.15358865612009
623 => 0.15415505207234
624 => 0.15056598466013
625 => 0.15248306063944
626 => 0.14739187521181
627 => 0.13683520091885
628 => 0.14070941172057
629 => 0.14356213491589
630 => 0.13949094717793
701 => 0.1467883936215
702 => 0.14252537605904
703 => 0.14117420415267
704 => 0.13590280081836
705 => 0.13839070027723
706 => 0.14175561991865
707 => 0.13967649079415
708 => 0.1439909959103
709 => 0.15010148579124
710 => 0.15445618476637
711 => 0.15479048448117
712 => 0.15199070478233
713 => 0.15647736961767
714 => 0.15651005007279
715 => 0.15144907380997
716 => 0.14834925402862
717 => 0.14764496845222
718 => 0.14940441190539
719 => 0.15154070106871
720 => 0.15490903366192
721 => 0.15694444650318
722 => 0.16225172369363
723 => 0.1636877207298
724 => 0.16526544610546
725 => 0.16737377375983
726 => 0.16990536167301
727 => 0.16436639144235
728 => 0.16458646505554
729 => 0.15942865266902
730 => 0.1539167904289
731 => 0.15809960680582
801 => 0.1635680828019
802 => 0.16231360836627
803 => 0.16217245436568
804 => 0.16240983624182
805 => 0.16146400348466
806 => 0.15718603697822
807 => 0.15503766898018
808 => 0.15780961180479
809 => 0.15928277605109
810 => 0.16156752532367
811 => 0.16128588175062
812 => 0.16717115051265
813 => 0.16945798799228
814 => 0.1688729171057
815 => 0.16898058422934
816 => 0.17312079425263
817 => 0.17772555929765
818 => 0.18203852941458
819 => 0.18642586786389
820 => 0.18113676012251
821 => 0.17845127739825
822 => 0.18122201007933
823 => 0.17975182031786
824 => 0.18819996677389
825 => 0.18878489810482
826 => 0.1972324336637
827 => 0.2052501508229
828 => 0.20021436632753
829 => 0.20496288428995
830 => 0.21009879361865
831 => 0.22000679598498
901 => 0.21667012935573
902 => 0.21411429500995
903 => 0.21169904390289
904 => 0.21672479804636
905 => 0.22319035046355
906 => 0.22458296852793
907 => 0.22683954181325
908 => 0.22446703092438
909 => 0.22732445896652
910 => 0.23741243557278
911 => 0.23468657524474
912 => 0.230815415375
913 => 0.23877890404607
914 => 0.24166085963885
915 => 0.26188793328086
916 => 0.28742544929263
917 => 0.27685274997538
918 => 0.2702899343303
919 => 0.27183235167896
920 => 0.28115778802699
921 => 0.28415282220742
922 => 0.27601128685481
923 => 0.27888701477917
924 => 0.29473255837775
925 => 0.30323318413248
926 => 0.2916881925712
927 => 0.25983601873464
928 => 0.23046685978401
929 => 0.23825688324818
930 => 0.23737373633992
1001 => 0.25439779616476
1002 => 0.23462156437742
1003 => 0.23495454540174
1004 => 0.25233064475497
1005 => 0.24769499934929
1006 => 0.24018584748069
1007 => 0.23052168490278
1008 => 0.21265658655066
1009 => 0.19683297073507
1010 => 0.22786672531053
1011 => 0.22652849338202
1012 => 0.22459053523467
1013 => 0.22890325138262
1014 => 0.24984457681124
1015 => 0.24936181147966
1016 => 0.24629070474915
1017 => 0.24862011213675
1018 => 0.23977749110312
1019 => 0.24205643588623
1020 => 0.23046220755918
1021 => 0.23570328298075
1022 => 0.24016973621331
1023 => 0.24106644282672
1024 => 0.2430867686137
1025 => 0.22582330596542
1026 => 0.23357409386586
1027 => 0.23812695560676
1028 => 0.21755696062686
1029 => 0.23772035294358
1030 => 0.22552278748845
1031 => 0.22138275057169
1101 => 0.22695676487172
1102 => 0.22478456607809
1103 => 0.22291703711112
1104 => 0.22187492385934
1105 => 0.22596786477976
1106 => 0.2257769241937
1107 => 0.21908007844228
1108 => 0.21034431615791
1109 => 0.21327632472217
1110 => 0.21221109852305
1111 => 0.20835058136051
1112 => 0.21095210380744
1113 => 0.19949631555156
1114 => 0.17978722727737
1115 => 0.192807654697
1116 => 0.19230638240484
1117 => 0.19205361818425
1118 => 0.20183810953192
1119 => 0.20089755645546
1120 => 0.19919044341177
1121 => 0.20831922889073
1122 => 0.20498709939142
1123 => 0.21525593735985
1124 => 0.22201965819266
1125 => 0.22030415980601
1126 => 0.22666547194117
1127 => 0.21334387227766
1128 => 0.21776877331607
1129 => 0.21868073928744
1130 => 0.20820658109495
1201 => 0.20105144257079
1202 => 0.20057427640578
1203 => 0.18816825224371
1204 => 0.19479545021316
1205 => 0.20062711017418
1206 => 0.19783419760795
1207 => 0.19695004492536
1208 => 0.20146698923135
1209 => 0.20181799448894
1210 => 0.19381503741808
1211 => 0.1954791056138
1212 => 0.20241854661828
1213 => 0.19530424950526
1214 => 0.1814823323285
1215 => 0.17805430576571
1216 => 0.17759694383117
1217 => 0.16829986391266
1218 => 0.17828338289238
1219 => 0.17392530931606
1220 => 0.18769241152593
1221 => 0.1798287165781
1222 => 0.17948972840587
1223 => 0.17897729806479
1224 => 0.17097491732139
1225 => 0.17272693012637
1226 => 0.17855088752919
1227 => 0.1806289411421
1228 => 0.18041218312528
1229 => 0.17852234696067
1230 => 0.1793875042793
1231 => 0.1766005311152
]
'min_raw' => 0.097513090628044
'max_raw' => 0.30323318413248
'avg_raw' => 0.20037313738026
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.097513'
'max' => '$0.303233'
'avg' => '$0.200373'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055549997876957
'max_diff' => 0.18939135715979
'year' => 2033
]
8 => [
'items' => [
101 => 0.17561639288512
102 => 0.17251018192246
103 => 0.16794490992002
104 => 0.1685797389924
105 => 0.15953474058718
106 => 0.15460654540161
107 => 0.15324248592682
108 => 0.15141840858915
109 => 0.15344852031579
110 => 0.15950911724314
111 => 0.15219875152139
112 => 0.13966564225399
113 => 0.14041890347634
114 => 0.1421112577977
115 => 0.13895756671589
116 => 0.1359728627762
117 => 0.13856782069508
118 => 0.13325737707742
119 => 0.14275299953795
120 => 0.14249616956156
121 => 0.14603555040949
122 => 0.14824879788911
123 => 0.14314797899597
124 => 0.14186513683843
125 => 0.14259590203329
126 => 0.13051798116181
127 => 0.14504852659961
128 => 0.14517418735995
129 => 0.14409820363906
130 => 0.15183527050442
131 => 0.16816289484202
201 => 0.16201978578905
202 => 0.15964098828728
203 => 0.15511889249754
204 => 0.16114431664189
205 => 0.16068165807887
206 => 0.15858934059881
207 => 0.15732390045844
208 => 0.15965551271758
209 => 0.15703498789672
210 => 0.15656426963169
211 => 0.15371222909212
212 => 0.15269418037906
213 => 0.15194045764161
214 => 0.15111068296694
215 => 0.1529409591323
216 => 0.14879331254871
217 => 0.1437916573677
218 => 0.14337582385806
219 => 0.14452397673864
220 => 0.14401600455891
221 => 0.14337339188269
222 => 0.14214646927865
223 => 0.14178246755108
224 => 0.14296529657714
225 => 0.14162995156994
226 => 0.14360032586807
227 => 0.14306449308476
228 => 0.14007137471483
301 => 0.13634084103155
302 => 0.13630763145671
303 => 0.13550389409395
304 => 0.13448021371975
305 => 0.13419544925828
306 => 0.13834928057708
307 => 0.14694758709327
308 => 0.1452595337841
309 => 0.14647932529864
310 => 0.15247949227811
311 => 0.15438676492956
312 => 0.15303302797779
313 => 0.15117994934334
314 => 0.15126147539872
315 => 0.15759400605769
316 => 0.15798895822725
317 => 0.15898687494332
318 => 0.16026947993471
319 => 0.15325146115396
320 => 0.15093092734527
321 => 0.14983132968839
322 => 0.14644499450307
323 => 0.15009686667801
324 => 0.14796907715043
325 => 0.14825618865334
326 => 0.14806920691042
327 => 0.1481713115857
328 => 0.14275034531795
329 => 0.14472546050832
330 => 0.14144144842444
331 => 0.13704452489177
401 => 0.13702978486233
402 => 0.13810592566783
403 => 0.13746579500733
404 => 0.13574321985917
405 => 0.13598790352864
406 => 0.13384421711582
407 => 0.13624818587185
408 => 0.13631712309396
409 => 0.13539146417783
410 => 0.13909510973025
411 => 0.14061249633497
412 => 0.14000320780683
413 => 0.14056974702759
414 => 0.1453296800202
415 => 0.14610575678844
416 => 0.14645043882413
417 => 0.14598861055792
418 => 0.14065674986477
419 => 0.14089324055933
420 => 0.13915802875666
421 => 0.13769195763552
422 => 0.13775059279184
423 => 0.13850434392401
424 => 0.14179601932512
425 => 0.14872315615188
426 => 0.14898603593079
427 => 0.14930465389157
428 => 0.14800867452053
429 => 0.14761779474137
430 => 0.14813346606471
501 => 0.15073493444529
502 => 0.15742661741193
503 => 0.15506132972904
504 => 0.15313831402496
505 => 0.15482531723875
506 => 0.15456561631716
507 => 0.15237347918512
508 => 0.15231195319697
509 => 0.14810454117196
510 => 0.14654915674445
511 => 0.14524936109832
512 => 0.14383001818477
513 => 0.14298858412881
514 => 0.1442814092637
515 => 0.14457709366831
516 => 0.14175030891615
517 => 0.14136502859976
518 => 0.14367344204876
519 => 0.14265759535619
520 => 0.14370241887129
521 => 0.14394482688912
522 => 0.14390579361512
523 => 0.14284513299882
524 => 0.14352116644629
525 => 0.14192214580775
526 => 0.14018345102846
527 => 0.13907427208379
528 => 0.13810636634332
529 => 0.13864341670315
530 => 0.13672893023191
531 => 0.13611644747876
601 => 0.14329214152552
602 => 0.14859290386958
603 => 0.14851582868577
604 => 0.14804665332642
605 => 0.14734955391118
606 => 0.15068393728111
607 => 0.14952230478812
608 => 0.15036748948441
609 => 0.15058262446191
610 => 0.15123377324427
611 => 0.15146650296584
612 => 0.15076303210608
613 => 0.14840209797899
614 => 0.14251887460517
615 => 0.13978021824319
616 => 0.13887641602781
617 => 0.13890926752178
618 => 0.13800307666272
619 => 0.13826999048334
620 => 0.13791025492858
621 => 0.13722900281726
622 => 0.13860135130499
623 => 0.13875950168389
624 => 0.13843917914851
625 => 0.13851462670144
626 => 0.13586249292004
627 => 0.13606412889131
628 => 0.13494139418063
629 => 0.13473089495715
630 => 0.13189271937625
701 => 0.12686447993456
702 => 0.12965061268827
703 => 0.12628535611134
704 => 0.1250108824537
705 => 0.13104404252766
706 => 0.13043848059004
707 => 0.1294020217843
708 => 0.12786888319365
709 => 0.12730022717697
710 => 0.12384525323423
711 => 0.12364111494212
712 => 0.12535349332029
713 => 0.12456328961811
714 => 0.1234535443467
715 => 0.11943415946673
716 => 0.11491504008905
717 => 0.11505144389689
718 => 0.11648889168973
719 => 0.12066846501364
720 => 0.11903543340863
721 => 0.11785065024232
722 => 0.11762877596973
723 => 0.12040599701655
724 => 0.12433634664361
725 => 0.12618037875201
726 => 0.12435299893667
727 => 0.12225380339793
728 => 0.12238157170364
729 => 0.1232315570003
730 => 0.12332087843684
731 => 0.1219545179419
801 => 0.12233914041773
802 => 0.12175486370634
803 => 0.11816915860704
804 => 0.11810430457218
805 => 0.11722431471351
806 => 0.11719766897032
807 => 0.11570058669696
808 => 0.11549113453807
809 => 0.11251858681792
810 => 0.11447512672903
811 => 0.11316278247961
812 => 0.11118477014502
813 => 0.11084376007298
814 => 0.11083350889844
815 => 0.11286448529059
816 => 0.11445139358739
817 => 0.11318561126969
818 => 0.11289741717211
819 => 0.11597457615704
820 => 0.11558297962728
821 => 0.11524385955803
822 => 0.12398442694296
823 => 0.11706558582281
824 => 0.11404857618078
825 => 0.11031445383418
826 => 0.11153030289931
827 => 0.11178650016188
828 => 0.10280660904444
829 => 0.099163468336474
830 => 0.09791327973436
831 => 0.097193778518772
901 => 0.097521664257643
902 => 0.094242410322686
903 => 0.096446123200831
904 => 0.093606566481594
905 => 0.093130505556897
906 => 0.098207984724471
907 => 0.098914486288435
908 => 0.09590033112373
909 => 0.097835906686867
910 => 0.097134040081161
911 => 0.093655242531523
912 => 0.09352237805343
913 => 0.091776839728668
914 => 0.089045410253239
915 => 0.087797073688931
916 => 0.087146929167684
917 => 0.087415191468214
918 => 0.087279549840104
919 => 0.086394396465153
920 => 0.087330285795433
921 => 0.084939475292739
922 => 0.083987435286497
923 => 0.083557420902838
924 => 0.081435438971779
925 => 0.084812455873742
926 => 0.085477770745966
927 => 0.086144396494015
928 => 0.091946918506055
929 => 0.09165704090409
930 => 0.094277393249732
1001 => 0.094175571176099
1002 => 0.093428204240228
1003 => 0.090275186073684
1004 => 0.091531922917724
1005 => 0.087663882252038
1006 => 0.090562081319969
1007 => 0.089239464297052
1008 => 0.090114903174087
1009 => 0.088540785138036
1010 => 0.089411967052928
1011 => 0.085635541583725
1012 => 0.082109168616324
1013 => 0.083528284039651
1014 => 0.085071024800341
1015 => 0.088416079852551
1016 => 0.08642379265956
1017 => 0.087140294470879
1018 => 0.084740133343914
1019 => 0.079787915366855
1020 => 0.079815944382795
1021 => 0.079054153536958
1022 => 0.07839585502287
1023 => 0.086652630809705
1024 => 0.085625770220302
1025 => 0.083989602263281
1026 => 0.086179678092484
1027 => 0.086758768902902
1028 => 0.086775254804169
1029 => 0.088373077595117
1030 => 0.089225835905071
1031 => 0.089376138253266
1101 => 0.091890346938068
1102 => 0.092733076525999
1103 => 0.096204160431133
1104 => 0.089153485320362
1105 => 0.089008281306281
1106 => 0.086210496950686
1107 => 0.084436097881146
1108 => 0.086331991573042
1109 => 0.088011494568764
1110 => 0.086262683790359
1111 => 0.086491041558608
1112 => 0.084143405971691
1113 => 0.084982575227493
1114 => 0.085705380838895
1115 => 0.085306290064829
1116 => 0.084708831859839
1117 => 0.087873794475914
1118 => 0.087695214881527
1119 => 0.090642500831792
1120 => 0.092940120992464
1121 => 0.097057867069119
1122 => 0.092760784375171
1123 => 0.092604181602447
1124 => 0.094134998825701
1125 => 0.092732842165858
1126 => 0.093618956774076
1127 => 0.096915100306457
1128 => 0.096984742625301
1129 => 0.0958181440556
1130 => 0.095747156426613
1201 => 0.095971214443114
1202 => 0.097283529244085
1203 => 0.096824966129265
1204 => 0.097355626975133
1205 => 0.098019226488657
1206 => 0.10076415543696
1207 => 0.10142594851348
1208 => 0.0998181344379
1209 => 0.099963302046994
1210 => 0.099361935447244
1211 => 0.098781022846988
1212 => 0.10008682953689
1213 => 0.10247321692839
1214 => 0.10245837133628
1215 => 0.10301196682636
1216 => 0.10335685223045
1217 => 0.10187635160455
1218 => 0.10091260013661
1219 => 0.10128216377452
1220 => 0.10187310407958
1221 => 0.10109052979808
1222 => 0.096260118808965
1223 => 0.097725356935214
1224 => 0.097481469664522
1225 => 0.097134144533351
1226 => 0.098607452799646
1227 => 0.098465348623203
1228 => 0.094208776833827
1229 => 0.09448126874937
1230 => 0.094225347969733
1231 => 0.095052280365205
]
'min_raw' => 0.07839585502287
'max_raw' => 0.17561639288512
'avg_raw' => 0.127006123954
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.078395'
'max' => '$0.175616'
'avg' => '$0.1270061'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019117235605174
'max_diff' => -0.12761679124736
'year' => 2034
]
9 => [
'items' => [
101 => 0.092688185102742
102 => 0.093415364883051
103 => 0.093871445224374
104 => 0.094140080049187
105 => 0.095110573241037
106 => 0.094996697066364
107 => 0.09510349453813
108 => 0.096542479740939
109 => 0.10382037309666
110 => 0.10421649277424
111 => 0.10226585460785
112 => 0.10304509608069
113 => 0.10154912285421
114 => 0.1025533797033
115 => 0.10324046673408
116 => 0.10013565256121
117 => 0.099951805615969
118 => 0.098449657975843
119 => 0.099256827031655
120 => 0.097972563026349
121 => 0.098287676491603
122 => 0.097406591771654
123 => 0.098992368845345
124 => 0.10076551401858
125 => 0.10121348051296
126 => 0.10003507352794
127 => 0.09918182920998
128 => 0.097683813263795
129 => 0.10017504716776
130 => 0.10090355988026
131 => 0.10017122060062
201 => 0.1000015215876
202 => 0.099679942264563
203 => 0.10006974616119
204 => 0.10089959224357
205 => 0.10050825215597
206 => 0.10076673917836
207 => 0.099781653199679
208 => 0.10187684171186
209 => 0.10520450530379
210 => 0.10521520428637
211 => 0.10482386208929
212 => 0.10466373329384
213 => 0.10506527413666
214 => 0.10528309357183
215 => 0.10658160302753
216 => 0.10797495540839
217 => 0.11447712300262
218 => 0.11265134036101
219 => 0.11842045026629
220 => 0.1229830671762
221 => 0.12435119648843
222 => 0.12309258189664
223 => 0.11878692936715
224 => 0.11857567351285
225 => 0.12501013619152
226 => 0.12319210576773
227 => 0.12297585683375
228 => 0.1206753335345
301 => 0.12203522772971
302 => 0.12173779892077
303 => 0.12126829299515
304 => 0.12386287638856
305 => 0.12871970488097
306 => 0.12796272261338
307 => 0.12739767046602
308 => 0.1249217764405
309 => 0.12641281765481
310 => 0.12588188643741
311 => 0.12816310388465
312 => 0.12681176120406
313 => 0.12317833239919
314 => 0.1237569679123
315 => 0.12366950831855
316 => 0.12546942056055
317 => 0.12492913158207
318 => 0.12356400822417
319 => 0.12870310476919
320 => 0.12836940042471
321 => 0.12884251688975
322 => 0.12905079738927
323 => 0.13217887489518
324 => 0.13346034816204
325 => 0.13375126502896
326 => 0.13496856551977
327 => 0.13372097748381
328 => 0.13871221914285
329 => 0.14203110359909
330 => 0.14588615868324
331 => 0.1515194303023
401 => 0.15363759254175
402 => 0.15325496549213
403 => 0.15752604774206
404 => 0.16520108760437
405 => 0.15480631048609
406 => 0.16575203603213
407 => 0.16228674569873
408 => 0.15407060465616
409 => 0.15354158203495
410 => 0.15910564814035
411 => 0.17144621124059
412 => 0.16835504014949
413 => 0.17145126728912
414 => 0.16783935386495
415 => 0.16765999191985
416 => 0.17127584471605
417 => 0.17972448186424
418 => 0.17571085104756
419 => 0.1699563270892
420 => 0.17420537802974
421 => 0.17052445687394
422 => 0.16223031128497
423 => 0.16835267638921
424 => 0.16425882519892
425 => 0.16545362861735
426 => 0.17405829490493
427 => 0.17302295869209
428 => 0.17436277962106
429 => 0.17199803075064
430 => 0.169788982419
501 => 0.16566562966191
502 => 0.16444490818937
503 => 0.16478227168742
504 => 0.16444474100877
505 => 0.16213776303675
506 => 0.16163957136334
507 => 0.16080923008138
508 => 0.16106658756511
509 => 0.15950530303011
510 => 0.16245176952549
511 => 0.16299865967121
512 => 0.16514285227163
513 => 0.1653654694605
514 => 0.17133701533201
515 => 0.16804798821373
516 => 0.17025455156561
517 => 0.17005717577044
518 => 0.15424867334607
519 => 0.15642694550055
520 => 0.15981565339346
521 => 0.15828904508099
522 => 0.15613077809848
523 => 0.15438786179115
524 => 0.15174716536321
525 => 0.15546389487546
526 => 0.16035099895395
527 => 0.16548941448488
528 => 0.17166288406296
529 => 0.17028503752024
530 => 0.16537400576529
531 => 0.16559431106231
601 => 0.16695615172152
602 => 0.16519244433157
603 => 0.16467229259061
604 => 0.16688469085979
605 => 0.16689992643075
606 => 0.16487056792745
607 => 0.16261530731972
608 => 0.16260585769543
609 => 0.16220455585351
610 => 0.16791074457113
611 => 0.17104857140507
612 => 0.17140831819472
613 => 0.17102435757982
614 => 0.17117212878164
615 => 0.16934629648427
616 => 0.17351960768232
617 => 0.17734945073535
618 => 0.17632297098447
619 => 0.17478413191521
620 => 0.17355837247602
621 => 0.17603422101579
622 => 0.17592397537766
623 => 0.17731600039736
624 => 0.17725285010174
625 => 0.17678476444432
626 => 0.17632298770128
627 => 0.17815388029057
628 => 0.17762661262809
629 => 0.1770985259733
630 => 0.17603936734109
701 => 0.17618332458997
702 => 0.17464475122297
703 => 0.17393293678307
704 => 0.16322895548865
705 => 0.1603685019241
706 => 0.16126845884541
707 => 0.16156474803127
708 => 0.16031987497421
709 => 0.16210470315639
710 => 0.1618265395748
711 => 0.16290871135052
712 => 0.16223261740748
713 => 0.16226036453874
714 => 0.16424861266677
715 => 0.16482580955695
716 => 0.16453224256005
717 => 0.16473784682179
718 => 0.16947591025342
719 => 0.16880230914818
720 => 0.16844447198639
721 => 0.16854359532571
722 => 0.16975427211771
723 => 0.17009319551897
724 => 0.16865715325211
725 => 0.16933439908682
726 => 0.17221802589574
727 => 0.17322713207971
728 => 0.17644771462052
729 => 0.1750795539159
730 => 0.17759087210185
731 => 0.18530980803399
801 => 0.19147622816633
802 => 0.18580533337454
803 => 0.19712917865871
804 => 0.20594641652156
805 => 0.20560799624651
806 => 0.20407050687873
807 => 0.19403231599027
808 => 0.18479502307371
809 => 0.19252241083459
810 => 0.19254210953514
811 => 0.1918783200734
812 => 0.18775558073558
813 => 0.191734857681
814 => 0.19205071823432
815 => 0.19187392031856
816 => 0.18871302573453
817 => 0.18388692393568
818 => 0.18482993267512
819 => 0.18637460022718
820 => 0.18345022229972
821 => 0.18251570635759
822 => 0.18425314929294
823 => 0.18985155244126
824 => 0.18879320675541
825 => 0.18876556907244
826 => 0.19329362072491
827 => 0.19005251295645
828 => 0.18484182703525
829 => 0.18352606011965
830 => 0.17885597397605
831 => 0.18208161910971
901 => 0.18219770433556
902 => 0.18043105146115
903 => 0.18498518117943
904 => 0.18494321407234
905 => 0.18926668244709
906 => 0.19753153015906
907 => 0.19508720800217
908 => 0.19224472727521
909 => 0.19255378374367
910 => 0.19594337038634
911 => 0.19389394892545
912 => 0.19463093517186
913 => 0.19594225486939
914 => 0.19673340660114
915 => 0.19243994918461
916 => 0.191438938881
917 => 0.18939122310671
918 => 0.18885701228362
919 => 0.19052483405479
920 => 0.1900854219431
921 => 0.18218794782184
922 => 0.18136261783503
923 => 0.18138792952743
924 => 0.17931259803331
925 => 0.17614721936815
926 => 0.18446564550525
927 => 0.18379755947014
928 => 0.18306004419313
929 => 0.18315038560636
930 => 0.18676113245486
1001 => 0.18466671693565
1002 => 0.19023506386143
1003 => 0.18909037913332
1004 => 0.18791633756122
1005 => 0.18775404925378
1006 => 0.18730214341304
1007 => 0.1857523901384
1008 => 0.18388096993353
1009 => 0.18264529621463
1010 => 0.16848063116417
1011 => 0.17110951060547
1012 => 0.17413379677279
1013 => 0.17517776823868
1014 => 0.17339198280564
1015 => 0.18582290383178
1016 => 0.18809415289059
1017 => 0.18121439134155
1018 => 0.17992746885453
1019 => 0.18590727425578
1020 => 0.18230072059735
1021 => 0.18392475148891
1022 => 0.18041448499876
1023 => 0.18754707550226
1024 => 0.18749273711298
1025 => 0.18471799831026
1026 => 0.18706318854573
1027 => 0.18665565403002
1028 => 0.18352298075562
1029 => 0.18764638683271
1030 => 0.18764843199068
1031 => 0.18497780622108
1101 => 0.18185909999734
1102 => 0.18130154898509
1103 => 0.1808815091938
1104 => 0.18382144744916
1105 => 0.18645738689597
1106 => 0.19136221670167
1107 => 0.1925954074507
1108 => 0.19740863304235
1109 => 0.19454259155422
1110 => 0.19581307062446
1111 => 0.19719235537543
1112 => 0.19785363520657
1113 => 0.19677611520797
1114 => 0.20425303575448
1115 => 0.20488431693553
1116 => 0.20509598005497
1117 => 0.20257480451511
1118 => 0.20481419848299
1119 => 0.20376646020635
1120 => 0.20649238413209
1121 => 0.20691984380999
1122 => 0.20655780067013
1123 => 0.20669348311889
1124 => 0.20031325045161
1125 => 0.1999824017294
1126 => 0.19547125592615
1127 => 0.19730958118568
1128 => 0.19387292022622
1129 => 0.19496272081799
1130 => 0.19544309453485
1201 => 0.19519217456613
1202 => 0.19741351733766
1203 => 0.19552492219151
1204 => 0.19054060908705
1205 => 0.18555493800982
1206 => 0.18549234697069
1207 => 0.18417970778046
1208 => 0.18323091006778
1209 => 0.18341368216765
1210 => 0.18405779488693
1211 => 0.1831934730656
1212 => 0.18337791994841
1213 => 0.18644096716617
1214 => 0.18705523944104
1215 => 0.18496770223937
1216 => 0.17658593914445
1217 => 0.1745290334569
1218 => 0.1760074964749
1219 => 0.17530088637751
1220 => 0.14148149697987
1221 => 0.14942686086875
1222 => 0.14470599544504
1223 => 0.14688158742886
1224 => 0.14206280629343
1225 => 0.14436258122521
1226 => 0.14393789676964
1227 => 0.15671380678256
1228 => 0.1565143285204
1229 => 0.15660980820834
1230 => 0.15205231393185
1231 => 0.15931252606375
]
'min_raw' => 0.092688185102742
'max_raw' => 0.20691984380999
'avg_raw' => 0.14980401445637
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.092688'
'max' => '$0.206919'
'avg' => '$0.149804'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014292330079873
'max_diff' => 0.031303450924868
'year' => 2035
]
10 => [
'items' => [
101 => 0.1628891676287
102 => 0.16222722646426
103 => 0.16239382279439
104 => 0.15953114588276
105 => 0.15663752517834
106 => 0.15342805449211
107 => 0.15939085432456
108 => 0.15872789277158
109 => 0.16024848804808
110 => 0.16411578996916
111 => 0.16468526486749
112 => 0.16545064490589
113 => 0.16517631064558
114 => 0.17171206570797
115 => 0.17092054264562
116 => 0.17282788548917
117 => 0.16890433654953
118 => 0.16446446849765
119 => 0.16530834226409
120 => 0.16522707043438
121 => 0.16419238676268
122 => 0.1632583206077
123 => 0.16170336363116
124 => 0.16662347759525
125 => 0.16642372995349
126 => 0.16965741209234
127 => 0.16908582736399
128 => 0.16526864465753
129 => 0.16540497608466
130 => 0.16632187045074
131 => 0.16949525232066
201 => 0.17043732811996
202 => 0.17000092107449
203 => 0.17103386418104
204 => 0.17185026029597
205 => 0.17113639096362
206 => 0.1812432752925
207 => 0.17704619226963
208 => 0.17909182133186
209 => 0.17957969180965
210 => 0.17833002183959
211 => 0.17860103050877
212 => 0.17901153479714
213 => 0.18150403645111
214 => 0.18804508200231
215 => 0.19094206655053
216 => 0.19965778749855
217 => 0.19070151231177
218 => 0.19017008400694
219 => 0.19174004853923
220 => 0.19685709938848
221 => 0.20100398848165
222 => 0.20237975083362
223 => 0.2025615805398
224 => 0.20514260217106
225 => 0.20662199563689
226 => 0.20482919825741
227 => 0.20330999019202
228 => 0.19786837547282
229 => 0.19849825719359
301 => 0.20283751762606
302 => 0.2089669785681
303 => 0.21422669371808
304 => 0.21238492479214
305 => 0.22643632161086
306 => 0.22782946021063
307 => 0.2276369735017
308 => 0.2308107505588
309 => 0.22451144942893
310 => 0.2218183761527
311 => 0.2036384602195
312 => 0.20874627504759
313 => 0.21617078387168
314 => 0.21518812228833
315 => 0.20979624552259
316 => 0.21422260349605
317 => 0.21275911112501
318 => 0.21160479397162
319 => 0.2168929446267
320 => 0.21107840575619
321 => 0.21611277939855
322 => 0.20965614312829
323 => 0.21239333783745
324 => 0.21083957373732
325 => 0.21184504953227
326 => 0.20596705858024
327 => 0.20913867981779
328 => 0.20583510870943
329 => 0.20583354238659
330 => 0.20576061587127
331 => 0.20964725262998
401 => 0.20977399571515
402 => 0.20690176527808
403 => 0.20648783199943
404 => 0.20801836028182
405 => 0.20622651250913
406 => 0.20706490680422
407 => 0.20625190661824
408 => 0.20606888315197
409 => 0.20461052103389
410 => 0.20398221853491
411 => 0.20422859213412
412 => 0.20338759202572
413 => 0.20288085904011
414 => 0.20565981392615
415 => 0.20417513043326
416 => 0.20543226488751
417 => 0.20399960151388
418 => 0.19903336607916
419 => 0.19617723156366
420 => 0.18679647319775
421 => 0.18945684463353
422 => 0.1912206736478
423 => 0.19063772816911
424 => 0.1918901206273
425 => 0.19196700735272
426 => 0.19155984179793
427 => 0.19108839624663
428 => 0.19085892262483
429 => 0.19256923099753
430 => 0.19356212257421
501 => 0.19139769748637
502 => 0.19089060297182
503 => 0.19307895623681
504 => 0.19441385046428
505 => 0.20426995942765
506 => 0.20353978704083
507 => 0.20537237644265
508 => 0.20516605499939
509 => 0.20708690064688
510 => 0.2102266714706
511 => 0.20384263949225
512 => 0.20495068670048
513 => 0.20467901911357
514 => 0.20764501459238
515 => 0.20765427410652
516 => 0.20587601165451
517 => 0.20684003657875
518 => 0.20630194431268
519 => 0.20727434976501
520 => 0.20353003514344
521 => 0.20809020617872
522 => 0.2106755293048
523 => 0.21071142651891
524 => 0.21193684916228
525 => 0.21318194953963
526 => 0.21557181128857
527 => 0.21311529759255
528 => 0.2086962685902
529 => 0.2090153082108
530 => 0.20642443312358
531 => 0.20646798620187
601 => 0.20623549645661
602 => 0.20693321568315
603 => 0.20368314527751
604 => 0.20444593030557
605 => 0.20337802679942
606 => 0.20494836528681
607 => 0.20325894066063
608 => 0.20467888810723
609 => 0.20529169035318
610 => 0.20755294383342
611 => 0.20292495168303
612 => 0.19348816240088
613 => 0.195471889918
614 => 0.19253780110175
615 => 0.19280936219256
616 => 0.19335795881462
617 => 0.19157977767288
618 => 0.19191899859779
619 => 0.1919068792393
620 => 0.19180244115516
621 => 0.19133986756358
622 => 0.19066904433839
623 => 0.19334139759904
624 => 0.19379548249224
625 => 0.19480485696062
626 => 0.19780807071327
627 => 0.19750797883872
628 => 0.1979974411368
629 => 0.19692894768831
630 => 0.19285892653912
701 => 0.19307994826898
702 => 0.19032380375595
703 => 0.19473437614877
704 => 0.19368989438944
705 => 0.19301651020444
706 => 0.1928327710907
707 => 0.19584342922936
708 => 0.19674426533073
709 => 0.19618292472522
710 => 0.19503159876639
711 => 0.1972424849663
712 => 0.1978340248436
713 => 0.19796644880697
714 => 0.20188371525784
715 => 0.19818538048618
716 => 0.199075606424
717 => 0.20602089506471
718 => 0.19972247665191
719 => 0.20305888935666
720 => 0.20289558931662
721 => 0.20460238515832
722 => 0.20275558223996
723 => 0.20277847557551
724 => 0.20429399465457
725 => 0.20216572143333
726 => 0.20163873105378
727 => 0.2009106976188
728 => 0.2025003319895
729 => 0.20345324590176
730 => 0.21113303219639
731 => 0.21609452438353
801 => 0.21587913292269
802 => 0.21784740767892
803 => 0.21696068187391
804 => 0.21409721034307
805 => 0.21898480708306
806 => 0.21743816696879
807 => 0.21756567010064
808 => 0.21756092442771
809 => 0.21858930489407
810 => 0.21786060308397
811 => 0.21642425701655
812 => 0.21737777056756
813 => 0.22020936492675
814 => 0.2289987207016
815 => 0.23391736063669
816 => 0.22870261240149
817 => 0.23229967590587
818 => 0.23014271956801
819 => 0.22975073643753
820 => 0.23200995813919
821 => 0.23427313430936
822 => 0.2341289797713
823 => 0.23248603008714
824 => 0.23155796949886
825 => 0.23858555519641
826 => 0.24376336062657
827 => 0.24341026900868
828 => 0.2449687005785
829 => 0.24954430386795
830 => 0.24996263968941
831 => 0.24990993899124
901 => 0.24887305000893
902 => 0.25337832566456
903 => 0.25713670587927
904 => 0.24863304016812
905 => 0.25187112474977
906 => 0.25332480524304
907 => 0.25545923949473
908 => 0.25906038785005
909 => 0.26297219012135
910 => 0.26352536185324
911 => 0.26313286003776
912 => 0.26055292128495
913 => 0.26483326200771
914 => 0.26734058521677
915 => 0.26883363880869
916 => 0.27261977429737
917 => 0.25333378267888
918 => 0.23968219923533
919 => 0.23755030734937
920 => 0.24188559333198
921 => 0.24302877367234
922 => 0.24256795911057
923 => 0.22720186079719
924 => 0.23746940802183
925 => 0.24851642551566
926 => 0.24894078644799
927 => 0.25447115438764
928 => 0.25627206888623
929 => 0.26072473995955
930 => 0.26044622417158
1001 => 0.26153037872046
1002 => 0.26128115036461
1003 => 0.26952878590742
1004 => 0.27862715269686
1005 => 0.27831210518597
1006 => 0.277004107313
1007 => 0.27894670720114
1008 => 0.28833719676809
1009 => 0.28747267096829
1010 => 0.28831248414266
1011 => 0.29938440056689
1012 => 0.31377946688013
1013 => 0.3070915133366
1014 => 0.32160244811926
1015 => 0.33073631237335
1016 => 0.3465323861416
1017 => 0.34455463990852
1018 => 0.35070393550955
1019 => 0.34101406138319
1020 => 0.31876415174241
1021 => 0.31524301837252
1022 => 0.32229241654833
1023 => 0.33962267409335
1024 => 0.32174662506509
1025 => 0.32536292650169
1026 => 0.32432143144467
1027 => 0.32426593459915
1028 => 0.32638402347065
1029 => 0.32331162509045
1030 => 0.31079412137558
1031 => 0.31653081956199
1101 => 0.31431560489335
1102 => 0.3167735507234
1103 => 0.33003807063425
1104 => 0.32417351019501
1105 => 0.31799567217046
1106 => 0.32574405202524
1107 => 0.33561040221257
1108 => 0.33499298374938
1109 => 0.3337949338699
1110 => 0.34054827831268
1111 => 0.35170282478788
1112 => 0.35471785387753
1113 => 0.35694348671195
1114 => 0.35725036387744
1115 => 0.36041138940511
1116 => 0.34341375846186
1117 => 0.37038943529892
1118 => 0.37504738950064
1119 => 0.37417188716314
1120 => 0.37934900722168
1121 => 0.3778257671696
1122 => 0.37561883132317
1123 => 0.38382566782098
1124 => 0.3744171920338
1125 => 0.36106304514806
1126 => 0.35373669605147
1127 => 0.36338462354159
1128 => 0.36927627619353
1129 => 0.37317028381698
1130 => 0.37434860817101
1201 => 0.34473323616593
1202 => 0.32877219319903
1203 => 0.33900303874708
1204 => 0.35148537641095
1205 => 0.34334441844589
1206 => 0.34366352858525
1207 => 0.33205666193318
1208 => 0.35251232656251
1209 => 0.34953210828523
1210 => 0.36499348597964
1211 => 0.36130350410756
1212 => 0.37391165741013
1213 => 0.37059150810033
1214 => 0.38437326225825
1215 => 0.38987117711794
1216 => 0.39910303184949
1217 => 0.40589402177042
1218 => 0.40988182094293
1219 => 0.40964240843847
1220 => 0.42544405547361
1221 => 0.41612637628448
1222 => 0.40442117521457
1223 => 0.40420946505665
1224 => 0.41027175455474
1225 => 0.42297665023483
1226 => 0.42627084483597
1227 => 0.42811185021571
1228 => 0.42529228639078
1229 => 0.41517861343507
1230 => 0.41081158073028
1231 => 0.41453241911987
]
'min_raw' => 0.15342805449211
'max_raw' => 0.42811185021571
'avg_raw' => 0.29076995235391
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.153428'
'max' => '$0.428111'
'avg' => '$0.290769'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060739869389372
'max_diff' => 0.22119200640572
'year' => 2036
]
11 => [
'items' => [
101 => 0.40998215350468
102 => 0.41783718853554
103 => 0.42862382937786
104 => 0.42639643069892
105 => 0.43384229053234
106 => 0.44154797213262
107 => 0.45256744290485
108 => 0.45544834061453
109 => 0.4602103549779
110 => 0.46511203199804
111 => 0.46668631855301
112 => 0.46969212005888
113 => 0.46967627800124
114 => 0.47873446315294
115 => 0.48872592188392
116 => 0.49249746625206
117 => 0.50116992456243
118 => 0.48631864362511
119 => 0.49758351081529
120 => 0.50774470299874
121 => 0.49563011078084
122 => 0.51232725381525
123 => 0.51297556604273
124 => 0.52276431096605
125 => 0.51284154268965
126 => 0.50694943456173
127 => 0.52395972995263
128 => 0.53219047607301
129 => 0.52971130835752
130 => 0.51084471963103
131 => 0.49986355576615
201 => 0.47112373182345
202 => 0.50516729475158
203 => 0.52174892118953
204 => 0.51080177722438
205 => 0.51632287988306
206 => 0.54644422576529
207 => 0.55791248406452
208 => 0.55552716650746
209 => 0.55593024590893
210 => 0.56211830992359
211 => 0.58955959359366
212 => 0.57311614033458
213 => 0.58568654422671
214 => 0.59235384112513
215 => 0.59854679805688
216 => 0.58333885313664
217 => 0.5635535402445
218 => 0.55728670112062
219 => 0.50971329950167
220 => 0.50723689734659
221 => 0.50584681777428
222 => 0.49708256270153
223 => 0.49019625894585
224 => 0.48472001452726
225 => 0.47034871382788
226 => 0.47519860593997
227 => 0.45229375214873
228 => 0.46694746590618
301 => 0.43039076619833
302 => 0.46083627200323
303 => 0.44426616738091
304 => 0.45539254698326
305 => 0.455353728093
306 => 0.4348665356232
307 => 0.42304995056341
308 => 0.43057993847188
309 => 0.43865268324094
310 => 0.43996245891974
311 => 0.45042898323302
312 => 0.45334996519167
313 => 0.44449925348935
314 => 0.42963320985191
315 => 0.43308625273053
316 => 0.42297997475969
317 => 0.40526911134816
318 => 0.41798936265233
319 => 0.42233261571754
320 => 0.42425084370081
321 => 0.40683424364197
322 => 0.4013615697707
323 => 0.39844796412182
324 => 0.42738494549261
325 => 0.42897017865365
326 => 0.42085990167241
327 => 0.4575191226756
328 => 0.44922201192182
329 => 0.45849191747528
330 => 0.43277292528238
331 => 0.43375542541937
401 => 0.42157964235011
402 => 0.42839726728278
403 => 0.42357878972268
404 => 0.4278464705613
405 => 0.43040450085966
406 => 0.44257828600272
407 => 0.46097527707454
408 => 0.44075992846231
409 => 0.43195181158283
410 => 0.43741631775613
411 => 0.45196901779982
412 => 0.47401710330502
413 => 0.46096419292687
414 => 0.4667568528999
415 => 0.4680222914065
416 => 0.45839755853866
417 => 0.47437198093444
418 => 0.48293280367231
419 => 0.4917144363887
420 => 0.49933928202059
421 => 0.48820685916953
422 => 0.50012014739029
423 => 0.49052014006282
424 => 0.48190794105957
425 => 0.4819210022105
426 => 0.4765184439716
427 => 0.4660503066176
428 => 0.46411982147948
429 => 0.47416244896138
430 => 0.48221568516149
501 => 0.48287898826733
502 => 0.48733767361793
503 => 0.48997627768031
504 => 0.51583818449985
505 => 0.52624005736358
506 => 0.53895927060398
507 => 0.54391412097669
508 => 0.55882644418639
509 => 0.54678353207489
510 => 0.54417797228609
511 => 0.50800555396311
512 => 0.51392878543708
513 => 0.52341245053374
514 => 0.5081619361075
515 => 0.51783487732641
516 => 0.51974452082393
517 => 0.50764372946298
518 => 0.5141072849732
519 => 0.49694199784872
520 => 0.46134943342654
521 => 0.47441160563331
522 => 0.48402976105712
523 => 0.47030346735733
524 => 0.49490731753327
525 => 0.48053425618705
526 => 0.47597868576891
527 => 0.45820578138964
528 => 0.46659390811483
529 => 0.47793896961706
530 => 0.47092904061365
531 => 0.48547569584186
601 => 0.50607763909626
602 => 0.52075981072627
603 => 0.52188692555477
604 => 0.51244727282578
605 => 0.52757437656705
606 => 0.52768456100317
607 => 0.51062112618698
608 => 0.50016986737166
609 => 0.49779531937919
610 => 0.50372740582195
611 => 0.51093005388703
612 => 0.5222866223945
613 => 0.5291491588968
614 => 0.54704301448667
615 => 0.55188457875224
616 => 0.55720399000954
617 => 0.56431236389497
618 => 0.57284778929408
619 => 0.55417276444286
620 => 0.5549147579948
621 => 0.53752483342667
622 => 0.51894120505816
623 => 0.53304386250788
624 => 0.55148121112548
625 => 0.54725166298114
626 => 0.54677575241307
627 => 0.54757610198198
628 => 0.54438716080528
629 => 0.52996369805073
630 => 0.52272032535105
701 => 0.53206612411509
702 => 0.53703300022453
703 => 0.54473619191316
704 => 0.54378661094289
705 => 0.5636292054704
706 => 0.57133943769488
707 => 0.56936683035242
708 => 0.56972983757688
709 => 0.5836888447306
710 => 0.59921413157432
711 => 0.6137556114455
712 => 0.62854782934156
713 => 0.61071523331777
714 => 0.60166094081851
715 => 0.61100265949918
716 => 0.606045812073
717 => 0.63452932768024
718 => 0.63650146450108
719 => 0.66498292042594
720 => 0.69201521360731
721 => 0.67503671459393
722 => 0.69104667443516
723 => 0.70836275131462
724 => 0.74176827304734
725 => 0.73051846854819
726 => 0.72190129460875
727 => 0.71375810687386
728 => 0.73070278785551
729 => 0.75250184924053
730 => 0.75719715827404
731 => 0.76480535265444
801 => 0.7568062665492
802 => 0.76644028469253
803 => 0.80045260214057
804 => 0.79126217373108
805 => 0.77821028795451
806 => 0.80505974600205
807 => 0.81477646049482
808 => 0.88297345148803
809 => 0.96907496969413
810 => 0.93342837578375
811 => 0.91130138463518
812 => 0.91650175241434
813 => 0.94794311214289
814 => 0.95804107898882
815 => 0.93059132412366
816 => 0.94028704159757
817 => 0.99371139814068
818 => 1.0223718513675
819 => 0.98344710627308
820 => 0.87605527833535
821 => 0.77703510844411
822 => 0.80329971643563
823 => 0.80032212497506
824 => 0.85771993125643
825 => 0.79104298505299
826 => 0.79216565382449
827 => 0.85075038595443
828 => 0.83512098381874
829 => 0.80980335402151
830 => 0.77721995515979
831 => 0.71698652876431
901 => 0.66363610327247
902 => 0.76826857353118
903 => 0.76375663115182
904 => 0.75722266995411
905 => 0.77176329355116
906 => 0.84236843431041
907 => 0.84074075728938
908 => 0.83038630652964
909 => 0.83824006617096
910 => 0.80842655198401
911 => 0.81611017343109
912 => 0.77701942314329
913 => 0.79469007484731
914 => 0.80974903375869
915 => 0.81277234271184
916 => 0.81958401215729
917 => 0.76137904254215
918 => 0.78751136509122
919 => 0.8028616563213
920 => 0.7335084820954
921 => 0.80149076705431
922 => 0.76036582351552
923 => 0.74640740000253
924 => 0.76520057838031
925 => 0.75787685848952
926 => 0.75158035419068
927 => 0.74806679660426
928 => 0.76186643267749
929 => 0.76122266316054
930 => 0.73864378015079
1001 => 0.70919054769757
1002 => 0.71907601927827
1003 => 0.71548453477621
1004 => 0.70246853163004
1005 => 0.71123974619235
1006 => 0.67261575627004
1007 => 0.606165189109
1008 => 0.6500644692115
1009 => 0.64837439468078
1010 => 0.64752218246362
1011 => 0.68051127817366
1012 => 0.67734013780907
1013 => 0.67158448699544
1014 => 0.70236282458921
1015 => 0.69112831734042
1016 => 0.72575042149837
1017 => 0.74855477851409
1018 => 0.74277085593123
1019 => 0.76421846392754
1020 => 0.71930376057764
1021 => 0.73422262336535
1022 => 0.73729738030925
1023 => 0.7019830246809
1024 => 0.67785897559087
1025 => 0.67625017655086
1026 => 0.6344223999275
1027 => 0.65676646057768
1028 => 0.67642830928979
1029 => 0.66701180957779
1030 => 0.66403082707889
1031 => 0.67926002016952
1101 => 0.68044345890188
1102 => 0.65346093038886
1103 => 0.65907145249227
1104 => 0.68246826233516
1105 => 0.65848191291426
1106 => 0.61188035413737
1107 => 0.60032252324374
1108 => 0.59878049554945
1109 => 0.5674347415028
1110 => 0.60109487276997
1111 => 0.58640132343642
1112 => 0.63281806972537
1113 => 0.60630507318312
1114 => 0.60516215089304
1115 => 0.60343445622134
1116 => 0.5764538708366
1117 => 0.5823609043302
1118 => 0.60199678332955
1119 => 0.60900308617053
1120 => 0.60827227138327
1121 => 0.60190055681014
1122 => 0.60481749511326
1123 => 0.59542102051023
1124 => 0.5921029297572
1125 => 0.58163012262785
1126 => 0.56623798933453
1127 => 0.56837835987441
1128 => 0.53788251624957
1129 => 0.52126676210584
1130 => 0.51666774035097
1201 => 0.51051773625402
1202 => 0.51736239967826
1203 => 0.53779612535618
1204 => 0.51314871693188
1205 => 0.47089246400308
1206 => 0.47343213680525
1207 => 0.47913802755611
1208 => 0.46850513789013
1209 => 0.45844200017207
1210 => 0.46719108196976
1211 => 0.44928655054949
1212 => 0.48130170463834
1213 => 0.48043578444167
1214 => 0.49236905408215
1215 => 0.49983117248368
1216 => 0.48263340545767
1217 => 0.47830821355833
1218 => 0.4807720394332
1219 => 0.4400504859615
1220 => 0.48904123439531
1221 => 0.48946490842215
1222 => 0.48583715418438
1223 => 0.51192321530572
1224 => 0.56697294071825
1225 => 0.54626101964799
1226 => 0.53824073778845
1227 => 0.52299417611068
1228 => 0.54330931429505
1229 => 0.54174942864802
1230 => 0.53469503418306
1231 => 0.5304285143996
]
'min_raw' => 0.39844796412182
'max_raw' => 1.0223718513675
'avg_raw' => 0.71040990774466
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.398447'
'max' => '$1.02'
'avg' => '$0.7104099'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24501990962971
'max_diff' => 0.59426000115179
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012506826297494
]
1 => [
'year' => 2028
'avg' => 0.021465344684115
]
2 => [
'year' => 2029
'avg' => 0.058639452925033
]
3 => [
'year' => 2030
'avg' => 0.04524025060317
]
4 => [
'year' => 2031
'avg' => 0.044431532654848
]
5 => [
'year' => 2032
'avg' => 0.07790245986189
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012506826297494
'min' => '$0.0125068'
'max_raw' => 0.07790245986189
'max' => '$0.0779024'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.07790245986189
]
1 => [
'year' => 2033
'avg' => 0.20037313738026
]
2 => [
'year' => 2034
'avg' => 0.127006123954
]
3 => [
'year' => 2035
'avg' => 0.14980401445637
]
4 => [
'year' => 2036
'avg' => 0.29076995235391
]
5 => [
'year' => 2037
'avg' => 0.71040990774466
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.07790245986189
'min' => '$0.0779024'
'max_raw' => 0.71040990774466
'max' => '$0.7104099'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.71040990774466
]
]
]
]
'prediction_2025_max_price' => '$0.021384'
'last_price' => 0.02073487
'sma_50day_nextmonth' => '$0.017486'
'sma_200day_nextmonth' => '$0.03263'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.021318'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.019633'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.016834'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015069'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.017487'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.028488'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.020521'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.0196023'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017875'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.016812'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.019322'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0265019'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.038367'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028465'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.019452'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.0189065'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.0212012'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.030385'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023126'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011563'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.005781'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.16'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.13
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0170022'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022582'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 88.02
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 165.77
'cci_20_action' => 'SELL'
'adx_14' => 34.53
'adx_14_action' => 'SELL'
'ao_5_34' => '0.003231'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -11.98
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 82.14
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.012978'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 19
'sell_pct' => 36.67
'buy_pct' => 63.33
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767707875
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Blum para 2026
A previsão de preço para Blum em 2026 sugere que o preço médio poderia variar entre $0.007163 na extremidade inferior e $0.021384 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Blum poderia potencialmente ganhar 3.13% até 2026 se BLUM atingir a meta de preço prevista.
Previsão de preço de Blum 2027-2032
A previsão de preço de BLUM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.0125068 na extremidade inferior e $0.0779024 na extremidade superior. Considerando a volatilidade de preços no mercado, se Blum atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Blum | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006896 | $0.0125068 | $0.018117 |
| 2028 | $0.012446 | $0.021465 | $0.030484 |
| 2029 | $0.02734 | $0.058639 | $0.089938 |
| 2030 | $0.023252 | $0.04524 | $0.067228 |
| 2031 | $0.027491 | $0.044431 | $0.061371 |
| 2032 | $0.041963 | $0.0779024 | $0.113841 |
Previsão de preço de Blum 2032-2037
A previsão de preço de Blum para 2032-2037 é atualmente estimada entre $0.0779024 na extremidade inferior e $0.7104099 na extremidade superior. Comparado ao preço atual, Blum poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Blum | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.041963 | $0.0779024 | $0.113841 |
| 2033 | $0.097513 | $0.200373 | $0.303233 |
| 2034 | $0.078395 | $0.1270061 | $0.175616 |
| 2035 | $0.092688 | $0.149804 | $0.206919 |
| 2036 | $0.153428 | $0.290769 | $0.428111 |
| 2037 | $0.398447 | $0.7104099 | $1.02 |
Blum Histograma de preços potenciais
Previsão de preço de Blum baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Blum é Altista, com 19 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de BLUM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Blum
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Blum está projetado para aumentar no próximo mês, alcançando $0.03263 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Blum é esperado para alcançar $0.017486 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 67.16, sugerindo que o mercado de BLUM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BLUM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.021318 | SELL |
| SMA 5 | $0.019633 | BUY |
| SMA 10 | $0.016834 | BUY |
| SMA 21 | $0.015069 | BUY |
| SMA 50 | $0.017487 | BUY |
| SMA 100 | $0.028488 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.020521 | BUY |
| EMA 5 | $0.0196023 | BUY |
| EMA 10 | $0.017875 | BUY |
| EMA 21 | $0.016812 | BUY |
| EMA 50 | $0.019322 | BUY |
| EMA 100 | $0.0265019 | SELL |
| EMA 200 | $0.038367 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.028465 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.030385 | SELL |
| EMA 50 | $0.023126 | SELL |
| EMA 100 | $0.011563 | BUY |
| EMA 200 | $0.005781 | BUY |
Osciladores de Blum
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 67.16 | NEUTRAL |
| Stoch RSI (14) | 106.13 | SELL |
| Estocástico Rápido (14) | 88.02 | SELL |
| Índice de Canal de Commodities (20) | 165.77 | SELL |
| Índice Direcional Médio (14) | 34.53 | SELL |
| Oscilador Impressionante (5, 34) | 0.003231 | BUY |
| Momentum (10) | 0.01 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -11.98 | SELL |
| Oscilador Ultimate (7, 14, 28) | 82.14 | SELL |
| VWMA (10) | 0.0170022 | BUY |
| Média Móvel de Hull (9) | 0.022582 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.012978 | NEUTRAL |
Previsão do preço de Blum com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Blum
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Blum por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.029135 | $0.04094 | $0.057528 | $0.080837 | $0.11359 | $0.159613 |
| Amazon.com stock | $0.043264 | $0.090274 | $0.188362 | $0.393028 | $0.820077 | $1.71 |
| Apple stock | $0.02941 | $0.041717 | $0.059172 | $0.083931 | $0.11905 | $0.168864 |
| Netflix stock | $0.032716 | $0.051621 | $0.08145 | $0.128515 | $0.202777 | $0.319951 |
| Google stock | $0.026851 | $0.034772 | $0.04503 | $0.058314 | $0.075516 | $0.097793 |
| Tesla stock | $0.0470043 | $0.106555 | $0.241552 | $0.547582 | $1.24 | $2.81 |
| Kodak stock | $0.015548 | $0.01166 | $0.008743 | $0.006556 | $0.004916 | $0.003687 |
| Nokia stock | $0.013735 | $0.009099 | $0.006028 | $0.003993 | $0.002645 | $0.001752 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Blum
Você pode fazer perguntas como: 'Devo investir em Blum agora?', 'Devo comprar BLUM hoje?', 'Blum será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Blum regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Blum, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Blum para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Blum é de $0.02073 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Blum
com base no histórico de preços de 4 horas
Previsão de longo prazo para Blum
com base no histórico de preços de 1 mês
Previsão do preço de Blum com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Blum tiver 1% da média anterior do crescimento anual do Bitcoin | $0.021273 | $0.021826 | $0.022394 | $0.022976 |
| Se Blum tiver 2% da média anterior do crescimento anual do Bitcoin | $0.021812 | $0.022946 | $0.024139 | $0.025394 |
| Se Blum tiver 5% da média anterior do crescimento anual do Bitcoin | $0.023429 | $0.026474 | $0.029915 | $0.0338035 |
| Se Blum tiver 10% da média anterior do crescimento anual do Bitcoin | $0.026124 | $0.032915 | $0.04147 | $0.05225 |
| Se Blum tiver 20% da média anterior do crescimento anual do Bitcoin | $0.031514 | $0.047897 | $0.072797 | $0.110642 |
| Se Blum tiver 50% da média anterior do crescimento anual do Bitcoin | $0.047683 | $0.109655 | $0.252169 | $0.5799042 |
| Se Blum tiver 100% da média anterior do crescimento anual do Bitcoin | $0.074631 | $0.268622 | $0.966859 | $3.48 |
Perguntas Frequentes sobre Blum
BLUM é um bom investimento?
A decisão de adquirir Blum depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Blum experimentou uma queda de -0.5328% nas últimas 24 horas, e Blum registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Blum dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Blum pode subir?
Parece que o valor médio de Blum pode potencialmente subir para $0.021384 até o final deste ano. Observando as perspectivas de Blum em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.067228. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Blum na próxima semana?
Com base na nossa nova previsão experimental de Blum, o preço de Blum aumentará 0.86% na próxima semana e atingirá $0.020912 até 13 de janeiro de 2026.
Qual será o preço de Blum no próximo mês?
Com base na nossa nova previsão experimental de Blum, o preço de Blum diminuirá -11.62% no próximo mês e atingirá $0.018325 até 5 de fevereiro de 2026.
Até onde o preço de Blum pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Blum em 2026, espera-se que BLUM fluctue dentro do intervalo de $0.007163 e $0.021384. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Blum não considera flutuações repentinas e extremas de preço.
Onde estará Blum em 5 anos?
O futuro de Blum parece seguir uma tendência de alta, com um preço máximo de $0.067228 projetada após um período de cinco anos. Com base na previsão de Blum para 2030, o valor de Blum pode potencialmente atingir seu pico mais alto de aproximadamente $0.067228, enquanto seu pico mais baixo está previsto para cerca de $0.023252.
Quanto será Blum em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Blum, espera-se que o valor de BLUM em 2026 aumente 3.13% para $0.021384 se o melhor cenário ocorrer. O preço ficará entre $0.021384 e $0.007163 durante 2026.
Quanto será Blum em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Blum, o valor de BLUM pode diminuir -12.62% para $0.018117 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.018117 e $0.006896 ao longo do ano.
Quanto será Blum em 2028?
Nosso novo modelo experimental de previsão de preços de Blum sugere que o valor de BLUM em 2028 pode aumentar 47.02%, alcançando $0.030484 no melhor cenário. O preço é esperado para variar entre $0.030484 e $0.012446 durante o ano.
Quanto será Blum em 2029?
Com base no nosso modelo de previsão experimental, o valor de Blum pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.089938 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.089938 e $0.02734.
Quanto será Blum em 2030?
Usando nossa nova simulação experimental para previsões de preços de Blum, espera-se que o valor de BLUM em 2030 aumente 224.23%, alcançando $0.067228 no melhor cenário. O preço está previsto para variar entre $0.067228 e $0.023252 ao longo de 2030.
Quanto será Blum em 2031?
Nossa simulação experimental indica que o preço de Blum poderia aumentar 195.98% em 2031, potencialmente atingindo $0.061371 sob condições ideais. O preço provavelmente oscilará entre $0.061371 e $0.027491 durante o ano.
Quanto será Blum em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Blum, BLUM poderia ver um 449.04% aumento em valor, atingindo $0.113841 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.113841 e $0.041963 ao longo do ano.
Quanto será Blum em 2033?
De acordo com nossa previsão experimental de preços de Blum, espera-se que o valor de BLUM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.303233. Ao longo do ano, o preço de BLUM poderia variar entre $0.303233 e $0.097513.
Quanto será Blum em 2034?
Os resultados da nossa nova simulação de previsão de preços de Blum sugerem que BLUM pode aumentar 746.96% em 2034, atingindo potencialmente $0.175616 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.175616 e $0.078395.
Quanto será Blum em 2035?
Com base em nossa previsão experimental para o preço de Blum, BLUM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.206919 em 2035. A faixa de preço esperada para o ano está entre $0.206919 e $0.092688.
Quanto será Blum em 2036?
Nossa recente simulação de previsão de preços de Blum sugere que o valor de BLUM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.428111 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.428111 e $0.153428.
Quanto será Blum em 2037?
De acordo com a simulação experimental, o valor de Blum poderia aumentar 4830.69% em 2037, com um pico de $1.02 sob condições favoráveis. O preço é esperado para cair entre $1.02 e $0.398447 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Blum?
Traders de Blum utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Blum
Médias móveis são ferramentas populares para a previsão de preço de Blum. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BLUM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BLUM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BLUM.
Como ler gráficos de Blum e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Blum em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BLUM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Blum?
A ação de preço de Blum é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BLUM. A capitalização de mercado de Blum pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BLUM, grandes detentores de Blum, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Blum.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


