Previsão de Preço Blum - Projeção BLUM
Previsão de Preço Blum até $0.021362 até 2026
| Ano | Preço Mínimo | Preço Máximo |
|---|---|---|
| 2026 | $0.007156 | $0.021362 |
| 2027 | $0.006889 | $0.018098 |
| 2028 | $0.012433 | $0.030453 |
| 2029 | $0.027312 | $0.089846 |
| 2030 | $0.023228 | $0.067159 |
| 2031 | $0.027462 | $0.0613091 |
| 2032 | $0.04192 | $0.113725 |
| 2033 | $0.097413 | $0.302923 |
| 2034 | $0.078315 | $0.175436 |
| 2035 | $0.092593 | $0.2067081 |
Calculadora de lucro do investimento
Se você abrir um short de $10,000.00 em Blum hoje e fechar em Apr 06, 2026, nossa previsão mostra que pode lucrar cerca de $3,954.71, com um retorno de 39.55% nos próximos 90 dias.
Previsão de preço de longo prazo de Blum para os anos 2027, 2028, 2029, 2030, 2031, 2032 e 2037
[
'name' => 'Blum'
'name_with_ticker' => 'Blum <small>BLUM</small>'
'name_lang' => 'Blum'
'name_lang_with_ticker' => 'Blum <small>BLUM</small>'
'name_with_lang' => 'Blum'
'name_with_lang_with_ticker' => 'Blum <small>BLUM</small>'
'image' => '/uploads/coins/blum.jpg?1729313526'
'price_for_sd' => 0.02071
'ticker' => 'BLUM'
'marketcap' => '$3.61M'
'low24h' => '$0.01975'
'high24h' => '$0.02177'
'volume24h' => '$6.26M'
'current_supply' => '174.75M'
'max_supply' => '969.73M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.02071'
'change_24h_pct' => '-0.5065%'
'ath_price' => '$0.1672'
'ath_days' => 193
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '27 de jun. de 2025'
'ath_pct' => '-87.60%'
'fdv' => '$20.05M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.02'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.02089'
'next_week_prediction_price_date' => '13 de janeiro de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.018307'
'next_month_prediction_price_date' => '5 de fevereiro de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.007156'
'current_year_max_price_prediction' => '$0.021362'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.023228'
'grand_prediction_max_price' => '$0.067159'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.021106172961615
107 => 0.021184975749913
108 => 0.021362522455718
109 => 0.019845405293848
110 => 0.020526546359308
111 => 0.020926652920979
112 => 0.019118956919349
113 => 0.020890920583212
114 => 0.019818995659341
115 => 0.019455168240407
116 => 0.019945013929384
117 => 0.019754120587999
118 => 0.01959000170271
119 => 0.019498420544798
120 => 0.019858109156487
121 => 0.01984132925283
122 => 0.019252808871556
123 => 0.018485108025344
124 => 0.018742773628254
125 => 0.018649161299089
126 => 0.018309898141964
127 => 0.018538520547076
128 => 0.017531783178112
129 => 0.015799743860463
130 => 0.016943982087501
131 => 0.016899930160452
201 => 0.016877717181237
202 => 0.017737580584435
203 => 0.017654924558641
204 => 0.017504903062456
205 => 0.018307142879538
206 => 0.018014314554655
207 => 0.018916742452914
208 => 0.019511139832085
209 => 0.019360381429987
210 => 0.019919415038069
211 => 0.018748709723334
212 => 0.019137571068344
213 => 0.019217714852612
214 => 0.018297243364724
215 => 0.017668448106685
216 => 0.017626514631765
217 => 0.016536270307651
218 => 0.017118670025448
219 => 0.017631157675771
220 => 0.017385715861915
221 => 0.017308016316013
222 => 0.017704966445048
223 => 0.017735812869722
224 => 0.017032511118198
225 => 0.01717874982301
226 => 0.017788589532237
227 => 0.017163383427025
228 => 0.015948710091436
301 => 0.015647454310037
302 => 0.015607261235552
303 => 0.014790231663501
304 => 0.01566758566186
305 => 0.015284597129951
306 => 0.016494453313345
307 => 0.015803389949979
308 => 0.015773599589596
309 => 0.01572856709058
310 => 0.015025315986849
311 => 0.015179283284627
312 => 0.015691094032322
313 => 0.01587371387306
314 => 0.015854665127511
315 => 0.015688585880441
316 => 0.015764616109286
317 => 0.015519696251487
318 => 0.015433209952133
319 => 0.015160235401438
320 => 0.014759038223062
321 => 0.0148148271514
322 => 0.014019950562084
323 => 0.013586859608931
324 => 0.013466985741145
325 => 0.013306685395268
326 => 0.013485092091755
327 => 0.014017698776577
328 => 0.01337526211587
329 => 0.012273849522779
330 => 0.01234004629634
331 => 0.012488770792532
401 => 0.012211623677789
402 => 0.011949327192879
403 => 0.012177372705722
404 => 0.011710689670364
405 => 0.01254516720775
406 => 0.01252259692896
407 => 0.012833638551153
408 => 0.013028139260727
409 => 0.012579878095512
410 => 0.012467141624687
411 => 0.012531361442056
412 => 0.011469950912364
413 => 0.012746898666365
414 => 0.012757941763568
415 => 0.012663384060857
416 => 0.013343319318524
417 => 0.014778194789327
418 => 0.014238336919479
419 => 0.014029287634983
420 => 0.013631884792343
421 => 0.014161400484715
422 => 0.014120741941272
423 => 0.01393686858853
424 => 0.013825661411072
425 => 0.014030564045337
426 => 0.013800271707129
427 => 0.013758904875177
428 => 0.013508266881103
429 => 0.013418800520521
430 => 0.013352563188904
501 => 0.01327964239514
502 => 0.013440487495454
503 => 0.013075991337207
504 => 0.01263644470236
505 => 0.012599901155633
506 => 0.012700801101088
507 => 0.012656160386342
508 => 0.012599687433066
509 => 0.012491865185768
510 => 0.012459876628252
511 => 0.012563823921536
512 => 0.012446473487922
513 => 0.012619630445128
514 => 0.012572541333979
515 => 0.01230950538696
516 => 0.011981665208593
517 => 0.011978746743337
518 => 0.011908114114674
519 => 0.011818152842384
520 => 0.011793127674468
521 => 0.012158167348701
522 => 0.012913788549644
523 => 0.012765442027416
524 => 0.012872637592889
525 => 0.013399933679665
526 => 0.013567545249304
527 => 0.013448578527272
528 => 0.013285729540606
529 => 0.013292894069547
530 => 0.013849398354725
531 => 0.013884106844369
601 => 0.013971804000318
602 => 0.014084519628925
603 => 0.01346777448622
604 => 0.013263845428788
605 => 0.013167212527824
606 => 0.012869620594492
607 => 0.013190547980986
608 => 0.013003557336357
609 => 0.013028788762827
610 => 0.013012356763238
611 => 0.013021329746141
612 => 0.012544933954272
613 => 0.012718507542203
614 => 0.012429907787116
615 => 0.012043505111898
616 => 0.01204220975464
617 => 0.012136781261983
618 => 0.012080526428832
619 => 0.011929146119266
620 => 0.011950648977745
621 => 0.011762261311098
622 => 0.011973522651345
623 => 0.011979580870653
624 => 0.011898233747176
625 => 0.012223710990272
626 => 0.012357059282333
627 => 0.012303514863036
628 => 0.012353302463137
629 => 0.012771606495159
630 => 0.012839808304263
701 => 0.012870099042709
702 => 0.012829513465946
703 => 0.012360948292951
704 => 0.012381731150866
705 => 0.012229240329127
706 => 0.012100401653844
707 => 0.012105554525185
708 => 0.012171794352136
709 => 0.012461067561345
710 => 0.013069825976538
711 => 0.013092927913398
712 => 0.013120928134803
713 => 0.013007037162564
714 => 0.012972686555547
715 => 0.013018003872846
716 => 0.013246621526596
717 => 0.013834688201127
718 => 0.013626826162695
719 => 0.013457831089885
720 => 0.013606085329484
721 => 0.013583262751353
722 => 0.013390617224095
723 => 0.01338521030577
724 => 0.013015461946462
725 => 0.012878774396788
726 => 0.012764548049395
727 => 0.012639815859996
728 => 0.012565870437059
729 => 0.012679484214283
730 => 0.012705469029373
731 => 0.012457050519843
801 => 0.012423191994932
802 => 0.0126260559123
803 => 0.012536783065796
804 => 0.012628602402286
805 => 0.012649905275963
806 => 0.012646475022654
807 => 0.012553263917983
808 => 0.012612673896505
809 => 0.012472151586332
810 => 0.012319354679787
811 => 0.012221879772995
812 => 0.012136819988649
813 => 0.012184016100708
814 => 0.012015770578888
815 => 0.011961945450344
816 => 0.012592547132549
817 => 0.013058379375304
818 => 0.013051605990004
819 => 0.013010374748967
820 => 0.012949113488237
821 => 0.013242139883801
822 => 0.013140055346834
823 => 0.013214330376926
824 => 0.013233236489397
825 => 0.013290459597692
826 => 0.013310911940415
827 => 0.013249090755641
828 => 0.013041611308717
829 => 0.012524592253537
830 => 0.012283918487685
831 => 0.012204492136215
901 => 0.012207379133239
902 => 0.0121277428672
903 => 0.012151199316596
904 => 0.012119585671351
905 => 0.012059717075421
906 => 0.012180319383615
907 => 0.012194217676146
908 => 0.012166067656323
909 => 0.012172698005037
910 => 0.011939627863936
911 => 0.011957347680562
912 => 0.011858681489862
913 => 0.011840182768545
914 => 0.011590763230303
915 => 0.011148880364369
916 => 0.011393726366704
917 => 0.011097986826441
918 => 0.010985985781358
919 => 0.011516181309045
920 => 0.0114629643834
921 => 0.011371880139537
922 => 0.011237147559245
923 => 0.01118717393462
924 => 0.010883550011126
925 => 0.010865610289956
926 => 0.011016094504975
927 => 0.010946651217589
928 => 0.01084912654187
929 => 0.010495902052335
930 => 0.010098760777487
1001 => 0.010110747976234
1002 => 0.010237071226687
1003 => 0.01060437311439
1004 => 0.010460861912477
1005 => 0.010356742888888
1006 => 0.010337244525576
1007 => 0.010581307365013
1008 => 0.010926707415561
1009 => 0.011088761391388
1010 => 0.010928170822996
1011 => 0.010743693024837
1012 => 0.010754921333624
1013 => 0.010829618241606
1014 => 0.010837467830478
1015 => 0.010717391748501
1016 => 0.010751192462228
1017 => 0.010699846087275
1018 => 0.010384733478965
1019 => 0.010379034091114
1020 => 0.010301700375157
1021 => 0.010299358740973
1022 => 0.010167794798331
1023 => 0.010149388093297
1024 => 0.0098881598998225
1025 => 0.010060101087839
1026 => 0.0099447719662352
1027 => 0.0097709437765881
1028 => 0.0097409757311732
1029 => 0.0097400748555405
1030 => 0.0099185575390361
1031 => 0.010058015413765
1101 => 0.0099467781656822
1102 => 0.0099214516005372
1103 => 0.010191873056588
1104 => 0.01015745946136
1105 => 0.010127657509835
1106 => 0.010895780629415
1107 => 0.010287751242873
1108 => 0.010022615725237
1109 => 0.0096944601742926
1110 => 0.009801309276384
1111 => 0.0098238239521345
1112 => 0.0090346690065976
1113 => 0.0087145089434763
1114 => 0.0086046420747905
1115 => 0.0085414121385723
1116 => 0.0085702268144985
1117 => 0.0082820452066594
1118 => 0.0084757080132111
1119 => 0.0082261671002074
1120 => 0.0081843307540659
1121 => 0.0086305408187038
1122 => 0.0086926283424768
1123 => 0.0084277436769796
1124 => 0.0085978425131608
1125 => 0.0085361623106108
1126 => 0.008230444762935
1127 => 0.0082187686013198
1128 => 0.0080653702823875
1129 => 0.007825331617026
1130 => 0.0077156275058586
1201 => 0.0076584926522678
1202 => 0.0076820676063954
1203 => 0.007670147388183
1204 => 0.0075923599012005
1205 => 0.0076746060758821
1206 => 0.0074645010860365
1207 => 0.0073808355861491
1208 => 0.0073430458208748
1209 => 0.0071565655491949
1210 => 0.0074533385895908
1211 => 0.0075118066171971
1212 => 0.0075703898448794
1213 => 0.0080803168453859
1214 => 0.0080548423334793
1215 => 0.0082851195145241
1216 => 0.0082761713667213
1217 => 0.0082104925844443
1218 => 0.007933404605653
1219 => 0.0080438469353809
1220 => 0.0077039226110272
1221 => 0.0079586170274402
1222 => 0.0078423851320824
1223 => 0.007919318906701
1224 => 0.007780985043098
1225 => 0.0078575447148812
1226 => 0.0075256715555634
1227 => 0.0072157730689738
1228 => 0.0073404852664782
1229 => 0.0074760616877353
1230 => 0.0077700259132502
1231 => 0.0075949432456857
]
'min_raw' => 0.0071565655491949
'max_raw' => 0.021362522455718
'avg_raw' => 0.014259544002456
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.007156'
'max' => '$0.021362'
'avg' => '$0.014259'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.013557094450805
'max_diff' => 0.00064886245571798
'year' => 2026
]
1 => [
'items' => [
101 => 0.0076579095935506
102 => 0.0074469828686427
103 => 0.0070117807869174
104 => 0.0070142439834372
105 => 0.0069472976245565
106 => 0.0068894461961551
107 => 0.0076150535961958
108 => 0.0075248128458453
109 => 0.0073810260205791
110 => 0.0075734904000592
111 => 0.0076243810368142
112 => 0.0076258298216988
113 => 0.0077662468647429
114 => 0.0078411874657866
115 => 0.0078543960715317
116 => 0.0080753453226726
117 => 0.0081494045972639
118 => 0.0084544442680447
119 => 0.0078348292793689
120 => 0.0078220687164261
121 => 0.0075761987685737
122 => 0.0074202641605956
123 => 0.0075868757445898
124 => 0.0077344708632594
125 => 0.0075807849603305
126 => 0.0076008530947665
127 => 0.0073945423266841
128 => 0.0074682887184497
129 => 0.00753180904575
130 => 0.007496736854567
131 => 0.0074442320868529
201 => 0.0077223697466811
202 => 0.0077066761298833
203 => 0.0079656843130724
204 => 0.0081675997137213
205 => 0.0085294682083792
206 => 0.0081518395695724
207 => 0.0081380772810364
208 => 0.0082726058590164
209 => 0.0081493840016395
210 => 0.0082272559620278
211 => 0.0085169218316648
212 => 0.0085230420150407
213 => 0.008420521058083
214 => 0.008414282648535
215 => 0.0084339729197751
216 => 0.0085492994534429
217 => 0.0085090008189529
218 => 0.0085556354190213
219 => 0.0086139527005011
220 => 0.0088551777027167
221 => 0.0089133362340874
222 => 0.0087720411545977
223 => 0.0087847985182617
224 => 0.0087319502798959
225 => 0.008680899543821
226 => 0.0087956541431561
227 => 0.0090053704289482
228 => 0.0090040657948186
301 => 0.0090527158968203
302 => 0.0090830245073282
303 => 0.0089529177637696
304 => 0.0088682230578705
305 => 0.0089007003973763
306 => 0.0089526323705107
307 => 0.0088838595584105
308 => 0.0084593619034628
309 => 0.0085881273749588
310 => 0.008566694504192
311 => 0.0085361714898939
312 => 0.008665646167197
313 => 0.0086531580187156
314 => 0.0082790894877401
315 => 0.0083030361414308
316 => 0.0082805457630648
317 => 0.0083532167766637
318 => 0.0081454595284193
319 => 0.0082093642587128
320 => 0.0082494447064833
321 => 0.0082730523981326
322 => 0.0083583395683157
323 => 0.0083483321032755
324 => 0.0083577174902377
325 => 0.008484175848641
326 => 0.009123758830177
327 => 0.0091585699207017
328 => 0.0089871473793999
329 => 0.0090556273034899
330 => 0.0089241608241503
331 => 0.0090124151524798
401 => 0.009072796522506
402 => 0.0087999447220274
403 => 0.0087837882091966
404 => 0.0086517791209316
405 => 0.0087227133275883
406 => 0.0086098519044475
407 => 0.0086375441499613
408 => 0.0085601142173382
409 => 0.0086994726799139
410 => 0.0088552970951892
411 => 0.0088946644961804
412 => 0.0087911058129044
413 => 0.0087161225013627
414 => 0.0085844765073339
415 => 0.0088034067293261
416 => 0.0088674285980142
417 => 0.0088030704497048
418 => 0.0087881572604882
419 => 0.0087598967938703
420 => 0.008794152852077
421 => 0.008867079921168
422 => 0.0088326888621362
423 => 0.0088554047625191
424 => 0.0087688351747941
425 => 0.0089529608345154
426 => 0.009245396694406
427 => 0.0092463369235136
428 => 0.0092119456791013
429 => 0.0091978735228574
430 => 0.0092331610266597
501 => 0.0092523030499033
502 => 0.0093664163665785
503 => 0.0094888645018461
504 => 0.010060276520833
505 => 0.0098998263124436
506 => 0.010406817049142
507 => 0.010807780897362
508 => 0.01092801242342
509 => 0.010817405076777
510 => 0.010439023318806
511 => 0.010420458104594
512 => 0.010985920199661
513 => 0.010826151258
514 => 0.01080714725077
515 => 0.01060497672162
516 => 0.010724484543655
517 => 0.010698346429902
518 => 0.010657086138622
519 => 0.010885098738078
520 => 0.011311917969435
521 => 0.011245394189543
522 => 0.011195737273802
523 => 0.010978155123939
524 => 0.011109188176889
525 => 0.011062529816507
526 => 0.011263003742838
527 => 0.01114424742992
528 => 0.01082494085113
529 => 0.010875791476251
530 => 0.010868105506561
531 => 0.011026282218142
601 => 0.010978801495513
602 => 0.010858834133429
603 => 0.011310459147703
604 => 0.011281133131347
605 => 0.01132271071768
606 => 0.011341014457013
607 => 0.011615910644676
608 => 0.011728526817065
609 => 0.011754092659821
610 => 0.011861069313543
611 => 0.011751430983223
612 => 0.012190062475308
613 => 0.012481726822687
614 => 0.012820509971078
615 => 0.013315563207204
616 => 0.013501707803485
617 => 0.013468082448283
618 => 0.013843426161948
619 => 0.014517910471984
620 => 0.013604415011585
621 => 0.014566327949525
622 => 0.014261797419192
623 => 0.013539761010043
624 => 0.013493270377544
625 => 0.013982241816835
626 => 0.015066733407425
627 => 0.014795080564184
628 => 0.015067177734159
629 => 0.014749761932091
630 => 0.014733999562128
701 => 0.015051761557138
702 => 0.015794229778785
703 => 0.015441510957686
704 => 0.014935802037437
705 => 0.015309209634446
706 => 0.014985729416675
707 => 0.014256837949624
708 => 0.014794872836374
709 => 0.014435104229956
710 => 0.01454010383566
711 => 0.01529628393481
712 => 0.015205298344676
713 => 0.015323042123349
714 => 0.015115227435883
715 => 0.014921095748422
716 => 0.014558734537367
717 => 0.014451457246965
718 => 0.0144811048306
719 => 0.014451442555095
720 => 0.014248704787782
721 => 0.014204923586233
722 => 0.014131952998887
723 => 0.014154569635147
724 => 0.014017363582638
725 => 0.014276299751939
726 => 0.014324360586699
727 => 0.014512792737232
728 => 0.0145323563882
729 => 0.015057137245271
730 => 0.01476809676778
731 => 0.014962010074635
801 => 0.014944664643287
802 => 0.013555409728436
803 => 0.013746836798202
804 => 0.014044637245635
805 => 0.013910478547726
806 => 0.013720809537182
807 => 0.013567641641759
808 => 0.013335576617972
809 => 0.013662203682538
810 => 0.014091683539527
811 => 0.014543248706123
812 => 0.015085774666066
813 => 0.014964689187505
814 => 0.014533106560675
815 => 0.014552467042043
816 => 0.014672145919794
817 => 0.014517150899135
818 => 0.01447143984168
819 => 0.01466586592244
820 => 0.014667204828004
821 => 0.014488864324962
822 => 0.014290671491798
823 => 0.01428984105659
824 => 0.014254574556244
825 => 0.014756035764157
826 => 0.015031788725063
827 => 0.015063403357633
828 => 0.015029660808399
829 => 0.015042646976405
830 => 0.014882192404256
831 => 0.015248943974864
901 => 0.015585511484024
902 => 0.015495304201853
903 => 0.015360070662158
904 => 0.015252350634061
905 => 0.015469928786625
906 => 0.015460240373991
907 => 0.015582571860447
908 => 0.0155770221976
909 => 0.015535886719825
910 => 0.01549530567093
911 => 0.015656204942724
912 => 0.015609868536411
913 => 0.01556346015686
914 => 0.015470381046903
915 => 0.015483032043827
916 => 0.015347821854109
917 => 0.015285267433548
918 => 0.014344599037354
919 => 0.014093221704665
920 => 0.014172310130786
921 => 0.014198348094196
922 => 0.01408894835686
923 => 0.014245799477713
924 => 0.014221354396674
925 => 0.0143164559071
926 => 0.014257040612214
927 => 0.014259479036641
928 => 0.014434206750226
929 => 0.014484930948824
930 => 0.014459132212023
1001 => 0.01447720076295
1002 => 0.014893582892803
1003 => 0.014834386669089
1004 => 0.014802939855066
1005 => 0.014811650837461
1006 => 0.014918045398973
1007 => 0.014947830067268
1008 => 0.014821630334769
1009 => 0.014881146858167
1010 => 0.015134560661027
1011 => 0.015223241150049
1012 => 0.015506266701958
1013 => 0.015386032417129
1014 => 0.01560672765055
1015 => 0.016285069557537
1016 => 0.016826976010528
1017 => 0.016328616441126
1018 => 0.017323758630673
1019 => 0.018098619569904
1020 => 0.018068879116458
1021 => 0.017933764188846
1022 => 0.017051605610276
1023 => 0.016239830134032
1024 => 0.016918914789717
1025 => 0.01692064591616
1026 => 0.016862311941986
1027 => 0.016500004638361
1028 => 0.016849704433166
1029 => 0.016877462332955
1030 => 0.016861925290495
1031 => 0.01658414513028
1101 => 0.016160026167987
1102 => 0.016242897998022
1103 => 0.016378643746158
1104 => 0.016121648725407
1105 => 0.016039523244399
1106 => 0.016192210138604
1107 => 0.016684199125311
1108 => 0.016591191457272
1109 => 0.016588762651186
1110 => 0.016986688896445
1111 => 0.016701859582698
1112 => 0.016243943277191
1113 => 0.016128313370876
1114 => 0.015717905101098
1115 => 0.016001375554858
1116 => 0.016011577151836
1117 => 0.01585632328131
1118 => 0.016256541273131
1119 => 0.01625285319388
1120 => 0.016632800612528
1121 => 0.017359117375249
1122 => 0.017144309768635
1123 => 0.016894511893144
1124 => 0.016921671848354
1125 => 0.017219549520522
1126 => 0.017039445880043
1127 => 0.017104212404887
1128 => 0.01721945148863
1129 => 0.017288978089078
1130 => 0.016911668040503
1201 => 0.016823699019354
1202 => 0.016643745275015
1203 => 0.016596798702113
1204 => 0.016743367272019
1205 => 0.016704751632193
1206 => 0.016010719747113
1207 => 0.015938189553565
1208 => 0.015940413951052
1209 => 0.015758033330753
1210 => 0.015479859108433
1211 => 0.01621088435577
1212 => 0.016152172797717
1213 => 0.01608735978154
1214 => 0.016095299006204
1215 => 0.016412612289328
1216 => 0.016228554560411
1217 => 0.016717902199206
1218 => 0.016617307035806
1219 => 0.016514131986046
1220 => 0.01649987005138
1221 => 0.016460156459704
1222 => 0.016323963777069
1223 => 0.016159502928877
1224 => 0.016050911631545
1225 => 0.014806117532122
1226 => 0.015037144076341
1227 => 0.015302919056733
1228 => 0.015394663514937
1229 => 0.015237728270655
1230 => 0.016330160537045
1231 => 0.016529758439054
]
'min_raw' => 0.0068894461961551
'max_raw' => 0.018098619569904
'avg_raw' => 0.012494032883029
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006889'
'max' => '$0.018098'
'avg' => '$0.012494'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00026711935303974
'max_diff' => -0.0032639028858143
'year' => 2027
]
2 => [
'items' => [
101 => 0.01592516337442
102 => 0.015812068323281
103 => 0.01633757502977
104 => 0.016020630245175
105 => 0.016163350462271
106 => 0.015854867416694
107 => 0.016481681149369
108 => 0.016476905878926
109 => 0.016233061179685
110 => 0.016439157049707
111 => 0.016403342820521
112 => 0.016128042755641
113 => 0.016490408652469
114 => 0.016490588381433
115 => 0.016255893160055
116 => 0.015981820522876
117 => 0.015932822808655
118 => 0.015895909612906
119 => 0.016154272078937
120 => 0.016385919058102
121 => 0.016816956656172
122 => 0.016925329749527
123 => 0.017348317147699
124 => 0.01709644874697
125 => 0.017208098746771
126 => 0.017329310615412
127 => 0.017387424042658
128 => 0.0172927313315
129 => 0.01794980486942
130 => 0.018005282008233
131 => 0.018023883013002
201 => 0.017802321512998
202 => 0.017999119982116
203 => 0.017907044495696
204 => 0.018146599332054
205 => 0.018184164589185
206 => 0.018152348152818
207 => 0.018164271958359
208 => 0.017603575609459
209 => 0.01757450054586
210 => 0.017178059990611
211 => 0.017339612447216
212 => 0.017037597873004
213 => 0.017133369805581
214 => 0.017175585160913
215 => 0.017153534254988
216 => 0.017348746380721
217 => 0.017182776194645
218 => 0.016744753585568
219 => 0.016306611637524
220 => 0.016301111122269
221 => 0.016185756081197
222 => 0.016102375514831
223 => 0.016118437569998
224 => 0.016175042347411
225 => 0.016099085542266
226 => 0.016115294777751
227 => 0.016384476088382
228 => 0.016438458480516
229 => 0.016255005219763
301 => 0.015518413905663
302 => 0.015337652549583
303 => 0.015467580227679
304 => 0.015405483165963
305 => 0.012433427263596
306 => 0.013131667712729
307 => 0.012716796947859
308 => 0.012907988483597
309 => 0.012484512862929
310 => 0.012686617625371
311 => 0.012649296255432
312 => 0.013772046235201
313 => 0.013754516038559
314 => 0.013762906816014
315 => 0.013362393146025
316 => 0.014000422297449
317 => 0.014314738400226
318 => 0.014256566854854
319 => 0.014271207379568
320 => 0.014019634658613
321 => 0.013765342589864
322 => 0.013483293550352
323 => 0.01400730580345
324 => 0.013949044586093
325 => 0.014082674856986
326 => 0.014422534260289
327 => 0.014472579848426
328 => 0.014539841626394
329 => 0.014515733067012
330 => 0.015090096760608
331 => 0.01502053752754
401 => 0.015188155265677
402 => 0.014843352861141
403 => 0.014453176211463
404 => 0.014527336036731
405 => 0.014520193849202
406 => 0.014429265604537
407 => 0.01434717965093
408 => 0.014210529665748
409 => 0.014642910439256
410 => 0.014625356569471
411 => 0.014909533317139
412 => 0.014859302316643
413 => 0.01452384740172
414 => 0.014535828239633
415 => 0.014616405132388
416 => 0.014895282678226
417 => 0.014978072521262
418 => 0.014939720967363
419 => 0.015030496250752
420 => 0.015102241333536
421 => 0.015039506328543
422 => 0.01592770170283
423 => 0.015558861058661
424 => 0.015738631422252
425 => 0.0157815055947
426 => 0.015671684303521
427 => 0.015695500609172
428 => 0.015731575822679
429 => 0.01595061745484
430 => 0.016525446077838
501 => 0.016780033761973
502 => 0.017545973370829
503 => 0.016758893798838
504 => 0.016712191754295
505 => 0.01685016060701
506 => 0.01729984824035
507 => 0.01766427783016
508 => 0.017785180149547
509 => 0.017801159386934
510 => 0.018027980175539
511 => 0.01815798962161
512 => 0.018000438165824
513 => 0.017866929803369
514 => 0.017388719420726
515 => 0.01744407357464
516 => 0.017825408803039
517 => 0.018364067273685
518 => 0.018826292279361
519 => 0.018664437192541
520 => 0.019899277253092
521 => 0.020021706601226
522 => 0.020004790823929
523 => 0.020283703098909
524 => 0.019730119032571
525 => 0.019493451119025
526 => 0.017895795826716
527 => 0.018344671796342
528 => 0.018997139379756
529 => 0.018910782848463
530 => 0.01843694344888
531 => 0.018825932829686
601 => 0.018697320775569
602 => 0.018595879112368
603 => 0.019060603036926
604 => 0.018549619992067
605 => 0.018992041933002
606 => 0.018424631217485
607 => 0.018665176532944
608 => 0.018528631378021
609 => 0.018616992827601
610 => 0.01810043359888
611 => 0.018379156419931
612 => 0.018088837813169
613 => 0.018088700164348
614 => 0.018082291365013
615 => 0.0184238499184
616 => 0.018434988130563
617 => 0.018182575843544
618 => 0.018146199289564
619 => 0.018280702475353
620 => 0.018123234471234
621 => 0.01819691275927
622 => 0.018125466111522
623 => 0.018109381966217
624 => 0.017981220759937
625 => 0.017926005388406
626 => 0.017947656758308
627 => 0.017873749470785
628 => 0.017829217656709
629 => 0.018073432866344
630 => 0.01794295853145
701 => 0.018053435803256
702 => 0.01792753300869
703 => 0.017491099069485
704 => 0.017240101295843
705 => 0.016415718042134
706 => 0.016649512110242
707 => 0.016804517819275
708 => 0.016753288433364
709 => 0.016863348977441
710 => 0.016870105800972
711 => 0.016834323996158
712 => 0.016792893250117
713 => 0.016772727054208
714 => 0.016923029356659
715 => 0.017010284902175
716 => 0.016820074715885
717 => 0.01677551113056
718 => 0.016967824130692
719 => 0.017085134949676
720 => 0.017951292125802
721 => 0.017887124404544
722 => 0.018048172792623
723 => 0.018030041215614
724 => 0.018198845583341
725 => 0.018474769382526
726 => 0.017913739149276
727 => 0.018011114598802
728 => 0.017987240387306
729 => 0.018247892768269
730 => 0.018248706496551
731 => 0.018092432373611
801 => 0.018177151110915
802 => 0.018129863435889
803 => 0.018215318655973
804 => 0.017886267405506
805 => 0.018287016309688
806 => 0.01851421511467
807 => 0.018517369770298
808 => 0.018625060200698
809 => 0.018734479914994
810 => 0.018944501528137
811 => 0.018728622526193
812 => 0.018340277217094
813 => 0.018368314494063
814 => 0.018140627781428
815 => 0.018144455236203
816 => 0.018124023982654
817 => 0.018185339712546
818 => 0.017899722760134
819 => 0.017966756487982
820 => 0.017872908876446
821 => 0.018010910592423
822 => 0.017862443558533
823 => 0.017987228874438
824 => 0.018041082080084
825 => 0.018239801568294
826 => 0.01783309252855
827 => 0.01700378526473
828 => 0.017178115705964
829 => 0.016920267290019
830 => 0.016944132142613
831 => 0.016992342942915
901 => 0.016836075965542
902 => 0.016865886780286
903 => 0.016864821728208
904 => 0.016855643684786
905 => 0.016814992608655
906 => 0.016756040505693
907 => 0.016990887539391
908 => 0.017030792626711
909 => 0.01711949669263
910 => 0.017383419824259
911 => 0.017357047679674
912 => 0.017400061741663
913 => 0.017306162285854
914 => 0.016948487869058
915 => 0.016967911310713
916 => 0.016725700682029
917 => 0.01711330282229
918 => 0.017021513519378
919 => 0.016962336358666
920 => 0.016946189322093
921 => 0.017210766668118
922 => 0.01728993235679
923 => 0.017240601612221
924 => 0.017139422815903
925 => 0.01733371601566
926 => 0.017385700679343
927 => 0.017397338128421
928 => 0.017741588426365
929 => 0.017416577895932
930 => 0.017494811160934
1001 => 0.01810516476181
1002 => 0.017551658268855
1003 => 0.017844863002841
1004 => 0.017830512156876
1005 => 0.017980505777276
1006 => 0.017818208302018
1007 => 0.017820220173736
1008 => 0.017953404347203
1009 => 0.01776637119546
1010 => 0.017720059156836
1011 => 0.017656079407169
1012 => 0.017795776849914
1013 => 0.017879519148868
1014 => 0.018554420576494
1015 => 0.018990437677984
1016 => 0.018971509025695
1017 => 0.019144481474664
1018 => 0.019066555802158
1019 => 0.01881491324988
1020 => 0.019244436402078
1021 => 0.01910851730471
1022 => 0.019119722309956
1023 => 0.019119305259101
1024 => 0.019209679576596
1025 => 0.019145641089966
1026 => 0.019019414659402
1027 => 0.019103209654752
1028 => 0.01935205083368
1029 => 0.020124461488453
1030 => 0.020556712723943
1031 => 0.020098439421325
1101 => 0.020414550208947
1102 => 0.020224996378164
1103 => 0.020190548808373
1104 => 0.020389089743404
1105 => 0.020587978198058
1106 => 0.020575309863315
1107 => 0.020430927058271
1108 => 0.02034936887528
1109 => 0.020966954760886
1110 => 0.0214219815211
1111 => 0.021390951746591
1112 => 0.021527907079848
1113 => 0.02193001217416
1114 => 0.021966775624639
1115 => 0.021962144274877
1116 => 0.021871022226996
1117 => 0.02226694691229
1118 => 0.022597234250395
1119 => 0.02184993010568
1120 => 0.022134493741058
1121 => 0.022262243525047
1122 => 0.022449818109596
1123 => 0.02276628787488
1124 => 0.023110057979438
1125 => 0.02315867084147
1126 => 0.023124177689518
1127 => 0.022897452064526
1128 => 0.023273609414964
1129 => 0.023493953568875
1130 => 0.023625163470043
1201 => 0.023957889948158
1202 => 0.022263032464222
1203 => 0.021063328097209
1204 => 0.020875976936359
1205 => 0.021256962889168
1206 => 0.021357425846618
1207 => 0.02131692935444
1208 => 0.019966553017018
1209 => 0.020868867484409
1210 => 0.021839681982567
1211 => 0.021876974921208
1212 => 0.022362984957759
1213 => 0.022521249747885
1214 => 0.022912551530101
1215 => 0.022888075497083
1216 => 0.022983351254082
1217 => 0.022961449007494
1218 => 0.023686253160737
1219 => 0.024485819776223
1220 => 0.024458133326795
1221 => 0.024343186165776
1222 => 0.024513902301292
1223 => 0.025339140735239
1224 => 0.025263166004418
1225 => 0.025336968983899
1226 => 0.026309971605922
1227 => 0.027575013422562
1228 => 0.026987274490611
1229 => 0.028262498855623
1230 => 0.029065184996659
1231 => 0.030453347678284
]
'min_raw' => 0.012433427263596
'max_raw' => 0.030453347678284
'avg_raw' => 0.02144338747094
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.012433'
'max' => '$0.030453'
'avg' => '$0.021443'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0055439810674409
'max_diff' => 0.012354728108381
'year' => 2028
]
3 => [
'items' => [
101 => 0.0302795428737
102 => 0.030819944418848
103 => 0.029968395999335
104 => 0.028013068701804
105 => 0.027703630672278
106 => 0.028323133443609
107 => 0.02984612055673
108 => 0.028275169159565
109 => 0.0285929705812
110 => 0.02850144375039
111 => 0.02849656667454
112 => 0.02868270482323
113 => 0.028412701730242
114 => 0.027312660556783
115 => 0.027816802943996
116 => 0.027622129357387
117 => 0.027838134215607
118 => 0.029003823348239
119 => 0.028488444396144
120 => 0.027945534536099
121 => 0.028626463981939
122 => 0.029493521159237
123 => 0.029439262279333
124 => 0.029333977373867
125 => 0.029927462873439
126 => 0.030907727043796
127 => 0.031172688510023
128 => 0.031368277647493
129 => 0.031395246085045
130 => 0.031673037752616
131 => 0.030179281943569
201 => 0.032549910774897
202 => 0.032959252886767
203 => 0.032882313535228
204 => 0.033337280064822
205 => 0.033203417370429
206 => 0.033009471328666
207 => 0.033730690052229
208 => 0.032903870985013
209 => 0.031730305412727
210 => 0.031086464129275
211 => 0.031934326268519
212 => 0.032452086090644
213 => 0.03279429239736
214 => 0.032897843819005
215 => 0.030295237954848
216 => 0.028892577741206
217 => 0.029791666856619
218 => 0.030888617629238
219 => 0.030173188326641
220 => 0.030201231800816
221 => 0.029181217626826
222 => 0.030978866250331
223 => 0.030716963966491
224 => 0.03207571347835
225 => 0.031751437002699
226 => 0.032859444483267
227 => 0.032567668980259
228 => 0.033778812780297
301 => 0.034261970832542
302 => 0.035073268399806
303 => 0.035670062192861
304 => 0.036020510922989
305 => 0.035999471295733
306 => 0.037388123757364
307 => 0.036569283916562
308 => 0.035540628090781
309 => 0.03552202295226
310 => 0.036054778380598
311 => 0.037171287604079
312 => 0.03746078220118
313 => 0.037622570187379
314 => 0.037374786254634
315 => 0.036485994294223
316 => 0.036102218431995
317 => 0.03642920658567
318 => 0.036029328172138
319 => 0.036719630499962
320 => 0.037667563036684
321 => 0.037471818716383
322 => 0.038126162631523
323 => 0.038803339744706
324 => 0.039771733430484
325 => 0.040024907399461
326 => 0.040443394342836
327 => 0.040874154873368
328 => 0.041012503546453
329 => 0.041276654090445
330 => 0.04127526188669
331 => 0.042071297330391
401 => 0.04294934907596
402 => 0.043280793282967
403 => 0.04404293096104
404 => 0.042737796895829
405 => 0.043727756076591
406 => 0.044620724037924
407 => 0.043556090821675
408 => 0.045023439682549
409 => 0.045080413513733
410 => 0.045940650722159
411 => 0.045068635509911
412 => 0.044550835660449
413 => 0.046045704424138
414 => 0.046769024330962
415 => 0.046551154488454
416 => 0.044893154229407
417 => 0.043928126963665
418 => 0.04140246446936
419 => 0.044394220794364
420 => 0.045851418029545
421 => 0.044889380440601
422 => 0.04537457624208
423 => 0.048021647209681
424 => 0.049029480448992
425 => 0.048819858180501
426 => 0.0488552808932
427 => 0.049399089415664
428 => 0.051810635885095
429 => 0.050365581341403
430 => 0.051470271394895
501 => 0.052056195016011
502 => 0.052600433529181
503 => 0.051263955749183
504 => 0.049525217794162
505 => 0.048974486496553
506 => 0.044793724762069
507 => 0.044576097957661
508 => 0.04445393743758
509 => 0.043683732638416
510 => 0.043078562643123
511 => 0.042597308994345
512 => 0.041334355705447
513 => 0.041760565366068
514 => 0.039747681422401
515 => 0.041035453237332
516 => 0.037822841860458
517 => 0.040498400078381
518 => 0.03904221538307
519 => 0.04002000424201
520 => 0.040016592828794
521 => 0.038216173531246
522 => 0.037177729254212
523 => 0.037839466364394
524 => 0.038548901075266
525 => 0.03866400447028
526 => 0.039583805091066
527 => 0.039840501673279
528 => 0.039062699045156
529 => 0.037756267630383
530 => 0.038059721851506
531 => 0.037171579764107
601 => 0.03561514491783
602 => 0.036733003597171
603 => 0.037114689699075
604 => 0.037283264025853
605 => 0.03575268911229
606 => 0.035271749244051
607 => 0.035015700893676
608 => 0.037558689629178
609 => 0.037698000292582
610 => 0.036985267242068
611 => 0.040206888214512
612 => 0.03947773616808
613 => 0.040292377650533
614 => 0.038032186561596
615 => 0.038118528904944
616 => 0.037048518222272
617 => 0.037647652706429
618 => 0.037224203764033
619 => 0.037599248560872
620 => 0.037824048865729
621 => 0.038893883970177
622 => 0.040510615876774
623 => 0.038734086281429
624 => 0.037960026896365
625 => 0.038440248985383
626 => 0.039719143691367
627 => 0.041656734636347
628 => 0.040509641799267
629 => 0.041018702121464
630 => 0.041129909155346
701 => 0.040284085364968
702 => 0.041687921365969
703 => 0.042440248483649
704 => 0.043211980434226
705 => 0.043882053663475
706 => 0.042903733722416
707 => 0.043950676296004
708 => 0.043107025391935
709 => 0.042350183315958
710 => 0.042351331132976
711 => 0.041876553043018
712 => 0.040956610667833
713 => 0.040786959179401
714 => 0.041669507646847
715 => 0.042377227940087
716 => 0.04243551917319
717 => 0.042827349491509
718 => 0.043059230637718
719 => 0.045331981097691
720 => 0.04624610013387
721 => 0.047363867587922
722 => 0.047799301005197
723 => 0.049109799479675
724 => 0.048051465528052
725 => 0.047822488320385
726 => 0.044643647682085
727 => 0.045164182658525
728 => 0.045997609379959
729 => 0.044657390581751
730 => 0.045507450933371
731 => 0.04567527085352
801 => 0.044611850459829
802 => 0.045179869239783
803 => 0.043671379766058
804 => 0.040543496825075
805 => 0.041691403593835
806 => 0.042536649356883
807 => 0.041330379434963
808 => 0.043492571580912
809 => 0.042229463565954
810 => 0.04182911896509
811 => 0.040267231943963
812 => 0.04100438249539
813 => 0.042001389171175
814 => 0.041385354960006
815 => 0.042663718446183
816 => 0.044474222069697
817 => 0.045764494769168
818 => 0.045863545885653
819 => 0.04503398698145
820 => 0.04636336041961
821 => 0.046373043453797
822 => 0.044873504784903
823 => 0.043955045699672
824 => 0.043746369863053
825 => 0.044267683016235
826 => 0.044900653423915
827 => 0.045898671338029
828 => 0.046501752661499
829 => 0.048074268903489
830 => 0.048499746710998
831 => 0.048967217824639
901 => 0.049591903395216
902 => 0.050341998588786
903 => 0.048700833008197
904 => 0.04876603957623
905 => 0.04723780891107
906 => 0.0456046752749
907 => 0.046844020131771
908 => 0.048464298668993
909 => 0.048092604982306
910 => 0.04805078184954
911 => 0.048121116758082
912 => 0.047840871856701
913 => 0.046573334554113
914 => 0.045936785255958
915 => 0.046758096251624
916 => 0.047194586493474
917 => 0.047871544792634
918 => 0.047788095393406
919 => 0.049531867272028
920 => 0.050209444295136
921 => 0.05003609109747
922 => 0.050067992257818
923 => 0.051294713092858
924 => 0.052659078955804
925 => 0.053936987630386
926 => 0.055236931221625
927 => 0.053669798484724
928 => 0.052874105128236
929 => 0.053695057565215
930 => 0.053259448646412
1001 => 0.055762586703853
1002 => 0.055935898551969
1003 => 0.058438855604038
1004 => 0.060814459893033
1005 => 0.059322385402487
1006 => 0.060729344442561
1007 => 0.062251085355455
1008 => 0.065186770469991
1009 => 0.064198135002063
1010 => 0.063440855727523
1011 => 0.062725230472229
1012 => 0.064214333026185
1013 => 0.066130039672856
1014 => 0.066542664536138
1015 => 0.067211274449486
1016 => 0.066508312879331
1017 => 0.067354952661905
1018 => 0.070343963126763
1019 => 0.069536306114433
1020 => 0.068389303319581
1021 => 0.07074884001397
1022 => 0.071602747171202
1023 => 0.077595914795311
1024 => 0.085162536486153
1025 => 0.082029905421028
1026 => 0.080085380229532
1027 => 0.080542389774287
1028 => 0.083305463869475
1029 => 0.08419287557326
1030 => 0.081780584653212
1031 => 0.082632646587482
1101 => 0.087327591618194
1102 => 0.0898462789953
1103 => 0.086425563232345
1104 => 0.076987944109907
1105 => 0.068286028267534
1106 => 0.070594168201309
1107 => 0.07033249676274
1108 => 0.075376629491919
1109 => 0.069517043761799
1110 => 0.069615704157749
1111 => 0.074764144209938
1112 => 0.073390628670622
1113 => 0.071165709403508
1114 => 0.068302272640427
1115 => 0.06300894494803
1116 => 0.05832049699551
1117 => 0.06751562311548
1118 => 0.067119112556935
1119 => 0.066544906508589
1120 => 0.067822739933599
1121 => 0.074027536326098
1122 => 0.073884495686285
1123 => 0.07297454411577
1124 => 0.073664734362061
1125 => 0.071044715716313
1126 => 0.071719954178038
1127 => 0.068284649839606
1128 => 0.069837550871559
1129 => 0.071160935726023
1130 => 0.071426624828604
1201 => 0.072025235943142
1202 => 0.066910169510161
1203 => 0.069206684168109
1204 => 0.07055567137533
1205 => 0.064460898096531
1206 => 0.070435197303798
1207 => 0.066821127583558
1208 => 0.065594458039003
1209 => 0.067246006979323
1210 => 0.066602396751096
1211 => 0.066049058470928
1212 => 0.065740286203035
1213 => 0.066953001470001
1214 => 0.066896426853289
1215 => 0.064912189298643
1216 => 0.062323832296476
1217 => 0.063192569866326
1218 => 0.062876949362741
1219 => 0.061733099941896
1220 => 0.06250391634264
1221 => 0.059109631015017
1222 => 0.053269939528441
1223 => 0.057127818599061
1224 => 0.056979294451407
1225 => 0.056904401841126
1226 => 0.059803491338751
1227 => 0.059524810776929
1228 => 0.059019002828374
1229 => 0.061723810382262
1230 => 0.060736519240297
1231 => 0.063779117904783
]
'min_raw' => 0.027312660556783
'max_raw' => 0.0898462789953
'avg_raw' => 0.058579469776041
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.027312'
'max' => '$0.089846'
'avg' => '$0.058579'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014879233293187
'max_diff' => 0.059392931317016
'year' => 2029
]
4 => [
'items' => [
101 => 0.065783170168157
102 => 0.065274877689866
103 => 0.067159698529995
104 => 0.063212583825332
105 => 0.064523656999465
106 => 0.064793867363585
107 => 0.061690433476903
108 => 0.059570406363344
109 => 0.059429024724948
110 => 0.055753189867768
111 => 0.057716791178171
112 => 0.059444679071983
113 => 0.058617154860364
114 => 0.058355185416548
115 => 0.059693530490763
116 => 0.05979753136518
117 => 0.057426300406956
118 => 0.05791935441029
119 => 0.059975471567597
120 => 0.057867545533379
121 => 0.053772189576655
122 => 0.052756484676662
123 => 0.052620970919847
124 => 0.049866298674494
125 => 0.052824358934862
126 => 0.051533086360125
127 => 0.055612200951897
128 => 0.053282232573807
129 => 0.053181792293876
130 => 0.053029962079376
131 => 0.050658901883723
201 => 0.051178013377834
202 => 0.052903619047174
203 => 0.053519334590334
204 => 0.053455110414774
205 => 0.052895162637994
206 => 0.053151503862807
207 => 0.05232573946248
208 => 0.052034144865925
209 => 0.051113792109784
210 => 0.049761127812195
211 => 0.049949224079147
212 => 0.047269242161756
213 => 0.045809045775756
214 => 0.04540488266119
215 => 0.044864418853254
216 => 0.045465929486416
217 => 0.047261650109706
218 => 0.045095630054636
219 => 0.041382140598859
220 => 0.041605327642629
221 => 0.042106762665153
222 => 0.041172341818004
223 => 0.040287990906175
224 => 0.041056862274353
225 => 0.039483407837874
226 => 0.042296907116534
227 => 0.042220809845787
228 => 0.043269508391243
301 => 0.043925281113177
302 => 0.042413937298059
303 => 0.042033838415665
304 => 0.042250360013607
305 => 0.038671740307434
306 => 0.042977058813695
307 => 0.043014291386919
308 => 0.042695483490421
309 => 0.044987932683209
310 => 0.049825715512826
311 => 0.048005547012961
312 => 0.047300722754929
313 => 0.045960851325187
314 => 0.047746150451625
315 => 0.047609067333719
316 => 0.046989125487321
317 => 0.046614182724284
318 => 0.047305026261553
319 => 0.046528579564789
320 => 0.046389108402722
321 => 0.045544064906716
322 => 0.045242422825671
323 => 0.045019099037582
324 => 0.044773241490239
325 => 0.045315541975795
326 => 0.044086617729956
327 => 0.042604655562403
328 => 0.042481446443224
329 => 0.042821637653934
330 => 0.042671128367452
331 => 0.042480725862666
401 => 0.042117195627992
402 => 0.042009343972958
403 => 0.042359809529632
404 => 0.041964154349559
405 => 0.04254796512021
406 => 0.042389200894316
407 => 0.041502356834356
408 => 0.040397020783922
409 => 0.040387180974553
410 => 0.040149038135601
411 => 0.039845727425181
412 => 0.039761353324351
413 => 0.040992110072282
414 => 0.04353973970705
415 => 0.043039579050134
416 => 0.043400996383282
417 => 0.045178811954483
418 => 0.045743926063789
419 => 0.045342821454465
420 => 0.044793764726168
421 => 0.044817920435703
422 => 0.04669421348707
423 => 0.046811235583176
424 => 0.047106912667276
425 => 0.047486941278679
426 => 0.045407541970277
427 => 0.044719980915274
428 => 0.044394176342979
429 => 0.043390824362546
430 => 0.044472853452545
501 => 0.043842401438908
502 => 0.043927470954855
503 => 0.043872069320995
504 => 0.043902322359325
505 => 0.042296120686146
506 => 0.042881336156378
507 => 0.041908301932711
508 => 0.040605518335438
509 => 0.040601150948005
510 => 0.040920005387785
511 => 0.040730338290229
512 => 0.04021994900749
513 => 0.040292447396134
514 => 0.039657285225227
515 => 0.040369567583664
516 => 0.040389993293035
517 => 0.040115725786755
518 => 0.041213095035951
519 => 0.041662688112715
520 => 0.041482159364702
521 => 0.041650021734502
522 => 0.043060362983519
523 => 0.043290310144612
524 => 0.043392437484112
525 => 0.043255600378461
526 => 0.041675800183534
527 => 0.041745871040008
528 => 0.041231737587944
529 => 0.040797348998999
530 => 0.040814722264488
531 => 0.04103805446577
601 => 0.042013359287028
602 => 0.044065830786006
603 => 0.044143720579055
604 => 0.044238125280437
605 => 0.043854133915918
606 => 0.043738318446077
607 => 0.043891108945307
608 => 0.044661909326498
609 => 0.046644617177185
610 => 0.045943795802148
611 => 0.045374017115308
612 => 0.045873866634897
613 => 0.045796918719306
614 => 0.045147400874075
615 => 0.045129171071446
616 => 0.043882538663029
617 => 0.043421687046085
618 => 0.04303656494082
619 => 0.042616021655738
620 => 0.042366709499603
621 => 0.042749766281775
622 => 0.042837375900052
623 => 0.041999815551146
624 => 0.041885659170482
625 => 0.042569629031394
626 => 0.042268639396573
627 => 0.042578214700171
628 => 0.042650038826093
629 => 0.04263847348757
630 => 0.042324205740377
701 => 0.042524510630838
702 => 0.042050729851135
703 => 0.04153556441278
704 => 0.041206920959051
705 => 0.040920135957443
706 => 0.041079260944377
707 => 0.040512009421032
708 => 0.040330534242197
709 => 0.042456651840953
710 => 0.04402723777077
711 => 0.04400440082933
712 => 0.043865386821499
713 => 0.043658840203825
714 => 0.044646799154916
715 => 0.044302614011219
716 => 0.04455303746089
717 => 0.04461678073907
718 => 0.044809712443875
719 => 0.044878668945302
720 => 0.044670234504619
721 => 0.043970703063564
722 => 0.042227537221908
723 => 0.041416088817031
724 => 0.04114829732768
725 => 0.041158031039709
726 => 0.040889531808732
727 => 0.040968616865546
728 => 0.040862029253411
729 => 0.040660178102341
730 => 0.0410667972046
731 => 0.041113656268216
801 => 0.041018746511013
802 => 0.041041101194618
803 => 0.040255288941458
804 => 0.040315032540371
805 => 0.039982372589773
806 => 0.039920002859311
807 => 0.039079067472215
808 => 0.037589228538439
809 => 0.038414743929915
810 => 0.037417637422042
811 => 0.037040018078881
812 => 0.038827609317547
813 => 0.038648184737248
814 => 0.038341087849766
815 => 0.037886827548582
816 => 0.037718337984112
817 => 0.036694648727709
818 => 0.036634163705271
819 => 0.037141531742679
820 => 0.036907398850883
821 => 0.036578587597742
822 => 0.035387666569926
823 => 0.034048677034259
824 => 0.034089092711753
825 => 0.034515000370263
826 => 0.035753384328852
827 => 0.035269526291971
828 => 0.034918481734583
829 => 0.034852741641345
830 => 0.035675616544428
831 => 0.036840156929914
901 => 0.037386533223661
902 => 0.036845090910252
903 => 0.036223111133933
904 => 0.036260968160941
905 => 0.036512814001377
906 => 0.036539279438298
907 => 0.036134434544468
908 => 0.036248396010689
909 => 0.036075278122645
910 => 0.03501285396327
911 => 0.03499363807921
912 => 0.034732902056595
913 => 0.034725007073454
914 => 0.034281430055337
915 => 0.0342193705642
916 => 0.03333862147153
917 => 0.033918333191479
918 => 0.033529493005968
919 => 0.032943419128276
920 => 0.032842379770858
921 => 0.032839342405765
922 => 0.033441109234434
923 => 0.03391130119572
924 => 0.033536257047472
925 => 0.033450866764841
926 => 0.034362611584141
927 => 0.034246583745147
928 => 0.034146104384877
929 => 0.036735885111184
930 => 0.034685871583202
1001 => 0.03379194867432
1002 => 0.032685549323223
1003 => 0.03304579853089
1004 => 0.033121708332107
1005 => 0.030461017336191
1006 => 0.029381575330515
1007 => 0.029011151512081
1008 => 0.028797967367548
1009 => 0.02889511805921
1010 => 0.027923493648183
1011 => 0.028576441321578
1012 => 0.027735096710995
1013 => 0.027594042549059
1014 => 0.029098470935378
1015 => 0.029307803356591
1016 => 0.02841472621321
1017 => 0.028988226315317
1018 => 0.028780267206045
1019 => 0.027749519149538
1020 => 0.027710152155449
1021 => 0.02719295901324
1022 => 0.02638365189401
1023 => 0.026013776823912
1024 => 0.025821142676003
1025 => 0.025900627279795
1026 => 0.025860437431849
1027 => 0.025598171488538
1028 => 0.025875470208722
1029 => 0.025167086566395
1030 => 0.024885002492186
1031 => 0.024757591660167
1101 => 0.024128860404561
1102 => 0.025129451430288
1103 => 0.02532658046747
1104 => 0.025524097909751
1105 => 0.027243352393925
1106 => 0.027157463298459
1107 => 0.027933858891791
1108 => 0.027903689586734
1109 => 0.027682248986741
1110 => 0.026748027520581
1111 => 0.027120391546096
1112 => 0.025974312953778
1113 => 0.026833032960911
1114 => 0.026441149010661
1115 => 0.026700536603132
1116 => 0.026234134323833
1117 => 0.026492260602475
1118 => 0.025373327075191
1119 => 0.024328482691233
1120 => 0.024748958572247
1121 => 0.025206063942158
1122 => 0.026197184852409
1123 => 0.025606881414833
1124 => 0.02581917685283
1125 => 0.025108022673369
1126 => 0.023640708469994
1127 => 0.023649013309035
1128 => 0.023423298986023
1129 => 0.02322824885611
1130 => 0.025674684865638
1201 => 0.025370431875423
1202 => 0.024885644555163
1203 => 0.025534551648014
1204 => 0.025706132982904
1205 => 0.025711017662293
1206 => 0.026184443526521
1207 => 0.026437110995126
1208 => 0.026481644731591
1209 => 0.027226590557997
1210 => 0.027476286572935
1211 => 0.028504749120162
1212 => 0.026415673925704
1213 => 0.026372650796829
1214 => 0.025543683101553
1215 => 0.025017938683748
1216 => 0.025579681271634
1217 => 0.02607730851899
1218 => 0.025559145767259
1219 => 0.025626806883622
1220 => 0.024931215724874
1221 => 0.02517985683352
1222 => 0.025394020051861
1223 => 0.025275771710625
1224 => 0.025098748220511
1225 => 0.026036508759573
1226 => 0.025983596634846
1227 => 0.026856860807843
1228 => 0.027537632678413
1229 => 0.028757697573004
1230 => 0.027484496252077
1231 => 0.027438095735426
]
'min_raw' => 0.02322824885611
'max_raw' => 0.067159698529995
'avg_raw' => 0.045193973693052
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.023228'
'max' => '$0.067159'
'avg' => '$0.045193'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0040844117006726
'max_diff' => -0.022686580465305
'year' => 2030
]
5 => [
'items' => [
101 => 0.027891668228571
102 => 0.027476217133349
103 => 0.027738767884645
104 => 0.028715396587951
105 => 0.028736031213501
106 => 0.028390374649333
107 => 0.02836934141599
108 => 0.028435728540207
109 => 0.028824560000309
110 => 0.028688690340566
111 => 0.02884592215062
112 => 0.029042542936712
113 => 0.029855849873473
114 => 0.030051935422489
115 => 0.029575549197082
116 => 0.029618561539366
117 => 0.029440380013969
118 => 0.029268258893044
119 => 0.029655162036613
120 => 0.030362235136084
121 => 0.03035783647103
122 => 0.03052186368657
123 => 0.030624051282977
124 => 0.030185387313306
125 => 0.029899833199172
126 => 0.030009332816811
127 => 0.030184425090008
128 => 0.029952552752448
129 => 0.028521329271313
130 => 0.028955471048579
131 => 0.028883208628394
201 => 0.028780298154639
202 => 0.0292168310688
203 => 0.0291747264043
204 => 0.027913528235485
205 => 0.027994266050305
206 => 0.027918438169416
207 => 0.028163453565493
208 => 0.027462985497889
209 => 0.02767844475776
210 => 0.027813578785745
211 => 0.027893173766377
212 => 0.02818072541521
213 => 0.028146984548128
214 => 0.028178628035538
215 => 0.028604991219935
216 => 0.030761389896441
217 => 0.030878757918578
218 => 0.030300794852239
219 => 0.030531679697424
220 => 0.030088431283635
221 => 0.030385986913318
222 => 0.030589566918054
223 => 0.029669628022836
224 => 0.029615155211815
225 => 0.029170077354149
226 => 0.029409236984361
227 => 0.029028716816509
228 => 0.029122083155669
301 => 0.028861022731845
302 => 0.029330879518116
303 => 0.02985625241353
304 => 0.029988982354516
305 => 0.029639827023615
306 => 0.029387015553584
307 => 0.028943161893487
308 => 0.029681300422153
309 => 0.029897154622299
310 => 0.029680166631932
311 => 0.029629885773282
312 => 0.029534603636997
313 => 0.029650100328923
314 => 0.029895979033968
315 => 0.029780027177336
316 => 0.02985661542145
317 => 0.02956474001234
318 => 0.030185532529333
319 => 0.031171500448174
320 => 0.031174670496255
321 => 0.031058718014599
322 => 0.031011272757336
323 => 0.0311302470401
324 => 0.031194785707919
325 => 0.031579526722227
326 => 0.031992369159338
327 => 0.033918924676065
328 => 0.033377955596204
329 => 0.035087310261946
330 => 0.036439187870623
331 => 0.036844556855022
401 => 0.036471636463459
402 => 0.035195895948688
403 => 0.035133302032791
404 => 0.037039796965613
405 => 0.036501124824091
406 => 0.036437051486898
407 => 0.035755419432771
408 => 0.036158348398532
409 => 0.036070221923109
410 => 0.035931109970358
411 => 0.036699870368756
412 => 0.038138921206842
413 => 0.037914631638393
414 => 0.037747209880039
415 => 0.037013616470675
416 => 0.037455403557132
417 => 0.037298091637519
418 => 0.037974003476788
419 => 0.037573608276486
420 => 0.03649704385282
421 => 0.036668490285692
422 => 0.036642576502266
423 => 0.037175880328906
424 => 0.037015795757563
425 => 0.036611317420445
426 => 0.038134002687522
427 => 0.038035127975899
428 => 0.038175309711075
429 => 0.038237022046164
430 => 0.039163853735509
501 => 0.039543547023328
502 => 0.039629744047129
503 => 0.039990423304024
504 => 0.039620770018647
505 => 0.041099646718484
506 => 0.042083013429028
507 => 0.043225244466913
508 => 0.044894351016023
509 => 0.045521950518587
510 => 0.045408580285874
511 => 0.046674077822159
512 => 0.048948148764434
513 => 0.045868235041484
514 => 0.049111391670365
515 => 0.048084645725705
516 => 0.045650249561288
517 => 0.045493503147945
518 => 0.047142104494409
519 => 0.050798543608867
520 => 0.049882647081685
521 => 0.050800041687475
522 => 0.049729852149537
523 => 0.049676708218713
524 => 0.050748064970325
525 => 0.053251348417083
526 => 0.052062132285705
527 => 0.050357099353616
528 => 0.05161606913742
529 => 0.050525432998536
530 => 0.048067924527796
531 => 0.049881946712872
601 => 0.048668961738089
602 => 0.049022975239558
603 => 0.051572489238653
604 => 0.051265724969105
605 => 0.051662706339507
606 => 0.050962044611559
607 => 0.050307516073442
608 => 0.049085789951119
609 => 0.048724097076669
610 => 0.04882405597482
611 => 0.048724047542003
612 => 0.048040503004806
613 => 0.047892891627079
614 => 0.047646866197198
615 => 0.047723119765392
616 => 0.047260519979937
617 => 0.048133541353082
618 => 0.048295581812976
619 => 0.04893089396441
620 => 0.048996854179539
621 => 0.050766189478181
622 => 0.049791669328161
623 => 0.050445461580816
624 => 0.050386980248008
625 => 0.045703010307905
626 => 0.046348420038635
627 => 0.047352475038919
628 => 0.046900149622255
629 => 0.04626066731094
630 => 0.04574425105768
701 => 0.044961827627719
702 => 0.046063073580278
703 => 0.047511094903443
704 => 0.049033578389894
705 => 0.050862742541795
706 => 0.050454494396909
707 => 0.048999383438414
708 => 0.049064658653053
709 => 0.0494681643451
710 => 0.048945587811541
711 => 0.048791469789889
712 => 0.049446990895568
713 => 0.049451505109155
714 => 0.048850217651812
715 => 0.048181996677418
716 => 0.048179196807136
717 => 0.048060293338992
718 => 0.049751004812374
719 => 0.050680725172524
720 => 0.050787316113496
721 => 0.050673550752925
722 => 0.050717334525023
723 => 0.050176350732442
724 => 0.051412879258522
725 => 0.05254764011405
726 => 0.052243499964139
727 => 0.051787550643352
728 => 0.051424365047851
729 => 0.052157944980043
730 => 0.052125279820425
731 => 0.052537728967921
801 => 0.052519017892169
802 => 0.052380326756863
803 => 0.052243504917236
804 => 0.052785988045716
805 => 0.052629761616726
806 => 0.052473292524942
807 => 0.052159469807148
808 => 0.052202123526539
809 => 0.051746252931831
810 => 0.0515353463355
811 => 0.048363817162363
812 => 0.047516280934595
813 => 0.047782933085042
814 => 0.047870721896589
815 => 0.047501873044117
816 => 0.048030707549066
817 => 0.047948289251644
818 => 0.048268930633821
819 => 0.048068607818867
820 => 0.048076829137068
821 => 0.04866593582252
822 => 0.048836955999546
823 => 0.048749973757208
824 => 0.048810893138165
825 => 0.050214754559838
826 => 0.050015170358638
827 => 0.04990914522961
828 => 0.049938514914939
829 => 0.050297231607305
830 => 0.050397652695963
831 => 0.049972161486857
901 => 0.050172825600807
902 => 0.051027227929936
903 => 0.051326220390147
904 => 0.052280460798619
905 => 0.051875082512829
906 => 0.052619171900758
907 => 0.054906249000483
908 => 0.056733324441442
909 => 0.05505307035885
910 => 0.058408261729517
911 => 0.061020759485197
912 => 0.060920487469991
913 => 0.060464938058126
914 => 0.057490678820131
915 => 0.05475372112562
916 => 0.057043302454441
917 => 0.057049139068105
918 => 0.05685246200143
919 => 0.055630917631771
920 => 0.056809954905216
921 => 0.056903542602348
922 => 0.056851158378932
923 => 0.055914603174777
924 => 0.054484656482367
925 => 0.054764064643255
926 => 0.055221740910562
927 => 0.054355264255278
928 => 0.054078372462244
929 => 0.054593166986315
930 => 0.05625194220457
1001 => 0.055938360358189
1002 => 0.055930171468897
1003 => 0.057271807587111
1004 => 0.056311485669665
1005 => 0.054767588874953
1006 => 0.054377734572791
1007 => 0.052994014437442
1008 => 0.053949754863569
1009 => 0.053984150260034
1010 => 0.053460700996074
1011 => 0.054810063897829
1012 => 0.054797629281139
1013 => 0.056078648530192
1014 => 0.058527476205524
1015 => 0.057803237362437
1016 => 0.056961026384889
1017 => 0.057052598070126
1018 => 0.058056913438996
1019 => 0.057449681440687
1020 => 0.057668046301051
1021 => 0.058056582917627
1022 => 0.058290996705228
1023 => 0.057018869533513
1024 => 0.05672227583691
1025 => 0.056115549223901
1026 => 0.055957265575656
1027 => 0.056451431742185
1028 => 0.056321236416453
1029 => 0.053981259460147
1030 => 0.053736718848704
1031 => 0.053744218560133
1101 => 0.053129309565388
1102 => 0.052191425753332
1103 => 0.054656128413281
1104 => 0.054458178296196
1105 => 0.054239656687055
1106 => 0.054266424337308
1107 => 0.055336268225468
1108 => 0.054715704741924
1109 => 0.056365574471281
1110 => 0.056026410854549
1111 => 0.055678548970829
1112 => 0.055630463862367
1113 => 0.055496566715316
1114 => 0.055037383577145
1115 => 0.054482892345174
1116 => 0.054116769204619
1117 => 0.049919858989665
1118 => 0.050698781113257
1119 => 0.051594860015464
1120 => 0.051904182861695
1121 => 0.051375064728727
1122 => 0.055058276386047
1123 => 0.05573123464815
1124 => 0.053692800176259
1125 => 0.053311492315299
1126 => 0.055083274865931
1127 => 0.054014673396292
1128 => 0.054495864572639
1129 => 0.053455792446878
1130 => 0.055569138709328
1201 => 0.055553038551631
1202 => 0.054730899123448
1203 => 0.055425765738381
1204 => 0.055305015564209
1205 => 0.05437682217463
1206 => 0.055598564095366
1207 => 0.055599170064116
1208 => 0.054807878739343
1209 => 0.053883823707952
1210 => 0.053718624493545
1211 => 0.053594169076881
1212 => 0.054465256169396
1213 => 0.055246270132726
1214 => 0.056699543488702
1215 => 0.057064930939318
1216 => 0.058491062484291
1217 => 0.057641870586344
1218 => 0.058018306355828
1219 => 0.058426980633693
1220 => 0.058622914111001
1221 => 0.058303651024098
1222 => 0.060519020332604
1223 => 0.060706065379404
1224 => 0.060768779965662
1225 => 0.060021769899469
1226 => 0.060685289678131
1227 => 0.060374850747161
1228 => 0.061182526603128
1229 => 0.061309180490266
1230 => 0.061201909153703
1231 => 0.061242111096576
]
'min_raw' => 0.027462985497889
'max_raw' => 0.061309180490266
'avg_raw' => 0.044386082994078
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.027462'
'max' => '$0.0613091'
'avg' => '$0.044386'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0042347366417791
'max_diff' => -0.0058505180397283
'year' => 2031
]
6 => [
'items' => [
101 => 0.059351684209693
102 => 0.059253655602812
103 => 0.057917028592194
104 => 0.058461713978869
105 => 0.057443450755931
106 => 0.057766352513198
107 => 0.05790868453108
108 => 0.057834338362209
109 => 0.058492509673392
110 => 0.057932929603371
111 => 0.056456105795105
112 => 0.05497887962718
113 => 0.054960334255964
114 => 0.054571406681157
115 => 0.05429028328021
116 => 0.054344437620621
117 => 0.05453528457969
118 => 0.054279190908008
119 => 0.05433384147714
120 => 0.055241405059571
121 => 0.05542341046358
122 => 0.054804884986655
123 => 0.052321415944001
124 => 0.051711966411624
125 => 0.052150026649587
126 => 0.051940662070533
127 => 0.041920168093385
128 => 0.044274334517228
129 => 0.042875568768118
130 => 0.043520184379425
131 => 0.042092406758219
201 => 0.042773817075295
202 => 0.042647985470852
203 => 0.046433415415543
204 => 0.046374311133645
205 => 0.04640260122566
206 => 0.045052241424321
207 => 0.047203401254119
208 => 0.048263139939482
209 => 0.048067010512853
210 => 0.048116372064093
211 => 0.047268177071148
212 => 0.046410813607254
213 => 0.045459865578505
214 => 0.047226609475193
215 => 0.047030177713205
216 => 0.047480721501288
217 => 0.048626581207751
218 => 0.048795313402226
219 => 0.049022091182713
220 => 0.04894080749155
221 => 0.050877314785303
222 => 0.050642790974543
223 => 0.051207925881369
224 => 0.050045400501139
225 => 0.048729892685486
226 => 0.048979927714051
227 => 0.048955847330145
228 => 0.04864927640485
229 => 0.048372517881206
301 => 0.047911792915568
302 => 0.04936959488131
303 => 0.04931041078376
304 => 0.050268532529109
305 => 0.050099175203921
306 => 0.048968165537544
307 => 0.049008559769041
308 => 0.049280230388666
309 => 0.050220485505067
310 => 0.050499617241065
311 => 0.050370312299474
312 => 0.050676367505148
313 => 0.050918261060837
314 => 0.050706745611484
315 => 0.053701358327713
316 => 0.052457786344264
317 => 0.053063894676279
318 => 0.053208447942067
319 => 0.052838177791379
320 => 0.052918476128683
321 => 0.053040106229712
322 => 0.053778620385542
323 => 0.055716695221232
324 => 0.056575055373038
325 => 0.05915747424049
326 => 0.056503780511381
327 => 0.056346321307572
328 => 0.056811492927179
329 => 0.058327646179172
330 => 0.059556345984878
331 => 0.059963976595824
401 => 0.060017851710308
402 => 0.060782593835212
403 => 0.06122092975961
404 => 0.060689734026534
405 => 0.060239601261263
406 => 0.058627281568598
407 => 0.058813911963225
408 => 0.060099610309746
409 => 0.061915734951461
410 => 0.063474158829617
411 => 0.062928453104042
412 => 0.067091802581971
413 => 0.06750458167695
414 => 0.06744754895277
415 => 0.068387921160898
416 => 0.066521473831234
417 => 0.065723531437089
418 => 0.060336925074338
419 => 0.061850341745453
420 => 0.064050181756763
421 => 0.063759024682289
422 => 0.062161442064184
423 => 0.063472946919942
424 => 0.06303932240008
425 => 0.062697304750166
426 => 0.064264153907803
427 => 0.062541338896366
428 => 0.064032995359139
429 => 0.062119930516422
430 => 0.06293094584183
501 => 0.062470574318731
502 => 0.062768491115188
503 => 0.061026875610542
504 => 0.061966609061522
505 => 0.060987779609424
506 => 0.060987315516817
507 => 0.06096570780241
508 => 0.062117296312009
509 => 0.062154849571964
510 => 0.061303823923416
511 => 0.061181177831941
512 => 0.061634664713543
513 => 0.06110375034359
514 => 0.061352161835756
515 => 0.061111274474627
516 => 0.061057045655773
517 => 0.06062494120087
518 => 0.060438778720738
519 => 0.060511777826014
520 => 0.06026259424609
521 => 0.060112452125822
522 => 0.060935840755666
523 => 0.060495937426143
524 => 0.060868419261315
525 => 0.060443929199181
526 => 0.058972461702309
527 => 0.058126205184371
528 => 0.055346739487888
529 => 0.056134992511494
530 => 0.056657605081651
531 => 0.056484881630332
601 => 0.056855958438869
602 => 0.056878739541152
603 => 0.056758098688016
604 => 0.056618412035136
605 => 0.05655042029767
606 => 0.057057175004155
607 => 0.057351363167848
608 => 0.056710056244721
609 => 0.05655980700547
610 => 0.057208203712277
611 => 0.057603725328863
612 => 0.060524034721336
613 => 0.060307688769066
614 => 0.060850674653514
615 => 0.060789542775722
616 => 0.061358678487058
617 => 0.062288974840394
618 => 0.060397422239111
619 => 0.060725730365726
620 => 0.060645236794821
621 => 0.061524044495406
622 => 0.061526788037122
623 => 0.060999898920921
624 => 0.061285534058613
625 => 0.061126100360744
626 => 0.061414218601551
627 => 0.060304799336974
628 => 0.061655952246819
629 => 0.062421968880331
630 => 0.062432605022031
701 => 0.062795690826832
702 => 0.063164607033021
703 => 0.063872709564971
704 => 0.063144858437728
705 => 0.061835525114697
706 => 0.061930054751499
707 => 0.061162393103272
708 => 0.061175297634268
709 => 0.061106412236464
710 => 0.061313142500723
711 => 0.060350165004527
712 => 0.060576173898113
713 => 0.060259760123587
714 => 0.060725042543974
715 => 0.060224475573577
716 => 0.060645197978384
717 => 0.06082676782113
718 => 0.061496764449783
719 => 0.060125516526767
720 => 0.057329449186415
721 => 0.057917216440397
722 => 0.057047862503636
723 => 0.057128324520347
724 => 0.057290870599538
725 => 0.056764005575112
726 => 0.056864514818347
727 => 0.056860923920906
728 => 0.056829979506719
729 => 0.056692921565373
730 => 0.056494160434334
731 => 0.057285963604944
801 => 0.057420506392928
802 => 0.057719578344291
803 => 0.058609413609106
804 => 0.05852049808239
805 => 0.058665522995533
806 => 0.058348934424422
807 => 0.057143010156163
808 => 0.057208497645806
809 => 0.05639186760059
810 => 0.057698695278
811 => 0.057389221234707
812 => 0.057189701305748
813 => 0.057135260444592
814 => 0.058027301438915
815 => 0.058294214085446
816 => 0.058127892035969
817 => 0.057786760660103
818 => 0.058441833748203
819 => 0.058617103671264
820 => 0.058656340143332
821 => 0.059817004057639
822 => 0.058721208362774
823 => 0.0589849772778
824 => 0.06104282705668
825 => 0.059176641271094
826 => 0.060165201502628
827 => 0.060116816623514
828 => 0.060622530586912
829 => 0.060075333317831
830 => 0.060082116483791
831 => 0.060531156223258
901 => 0.05990056089392
902 => 0.059744416622294
903 => 0.05952870442937
904 => 0.059999704110948
905 => 0.060282047118571
906 => 0.062557524401924
907 => 0.064027586501342
908 => 0.063963767228593
909 => 0.064546955916843
910 => 0.06428422407139
911 => 0.063435793637264
912 => 0.064883960933249
913 => 0.064425700206906
914 => 0.064463478664399
915 => 0.064462072548324
916 => 0.064766775869494
917 => 0.064550865640796
918 => 0.064125284417301
919 => 0.064407805094501
920 => 0.065246790502794
921 => 0.06785102695335
922 => 0.069308392172625
923 => 0.067763291737228
924 => 0.068829081327846
925 => 0.068189987353136
926 => 0.068073844966532
927 => 0.068743239590672
928 => 0.069413805901489
929 => 0.069371093726427
930 => 0.068884297018736
1001 => 0.06860931791057
1002 => 0.070691551842361
1003 => 0.072225706333375
1004 => 0.07212108728219
1005 => 0.072582841750182
1006 => 0.073938567149736
1007 => 0.074062517689767
1008 => 0.074046902770694
1009 => 0.073739678424325
1010 => 0.075074566143375
1011 => 0.076188152963721
1012 => 0.073668564864705
1013 => 0.074627991028981
1014 => 0.075058708344904
1015 => 0.075691129152749
1016 => 0.076758129061618
1017 => 0.077917173970397
1018 => 0.07808107562878
1019 => 0.077964779558741
1020 => 0.077200358284601
1021 => 0.07846859905407
1022 => 0.079211504752918
1023 => 0.079653888095488
1024 => 0.080775698646676
1025 => 0.075061368308414
1026 => 0.071016481274346
1027 => 0.0703848137551
1028 => 0.071669334494586
1029 => 0.072008052369727
1030 => 0.071871515618974
1031 => 0.067318627517091
1101 => 0.070360843741485
1102 => 0.073634012602128
1103 => 0.073759748348465
1104 => 0.075398365118836
1105 => 0.07593196590844
1106 => 0.077251267186999
1107 => 0.077168744532818
1108 => 0.077489973399478
1109 => 0.077416128445942
1110 => 0.079859856252811
1111 => 0.08255565092088
1112 => 0.082462304123626
1113 => 0.082074751744897
1114 => 0.082650333114811
1115 => 0.085432682111171
1116 => 0.08517652800182
1117 => 0.085425359899899
1118 => 0.088705906172925
1119 => 0.092971082980125
1120 => 0.090989480136431
1121 => 0.09528898811639
1122 => 0.097995300482649
1123 => 0.10267558788217
1124 => 0.10208959284885
1125 => 0.10391159438795
1126 => 0.10104053943835
1127 => 0.094448016938133
1128 => 0.093404725017311
1129 => 0.095493421863155
1130 => 0.10062827924661
1201 => 0.095331706930745
1202 => 0.096403196611973
1203 => 0.096094607511696
1204 => 0.096078164109962
1205 => 0.09670574187402
1206 => 0.095795407594999
1207 => 0.092086541976257
1208 => 0.093786293232844
1209 => 0.093129937643917
1210 => 0.093858213104382
1211 => 0.09778841540087
1212 => 0.096050779281272
1213 => 0.094220320783371
1214 => 0.096516121950997
1215 => 0.099439465760257
1216 => 0.099256528158428
1217 => 0.098901552748893
1218 => 0.10090253054653
1219 => 0.10420755963675
1220 => 0.10510089571915
1221 => 0.10576033815173
1222 => 0.10585126412181
1223 => 0.10678785812382
1224 => 0.10175155612292
1225 => 0.10974429673976
1226 => 0.11112442224929
1227 => 0.11086501585384
1228 => 0.11239896727312
1229 => 0.11194763985297
1230 => 0.11129373723229
1231 => 0.11372537651267
]
'min_raw' => 0.041920168093385
'max_raw' => 0.11372537651267
'avg_raw' => 0.077822772303025
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.04192'
'max' => '$0.113725'
'avg' => '$0.077822'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.014457182595496
'max_diff' => 0.052416196022399
'year' => 2032
]
7 => [
'items' => [
101 => 0.11093769830088
102 => 0.10698094003819
103 => 0.10481018419947
104 => 0.10766881059777
105 => 0.1094144739869
106 => 0.11056824644208
107 => 0.11091737728988
108 => 0.10214250991074
109 => 0.097413343069837
110 => 0.10044468479485
111 => 0.10414313091139
112 => 0.10173101106801
113 => 0.10182556159912
114 => 0.098386512596398
115 => 0.10444741043836
116 => 0.10356438860296
117 => 0.10814550744706
118 => 0.10705218666914
119 => 0.11078791124849
120 => 0.10980416976898
121 => 0.11388762565017
122 => 0.11551662675633
123 => 0.11825197314735
124 => 0.12026410508745
125 => 0.12144566744862
126 => 0.12137473087639
127 => 0.12605666960339
128 => 0.12329589391056
129 => 0.11982770897548
130 => 0.11976498045199
131 => 0.12156120257443
201 => 0.12532559137358
202 => 0.12630164261957
203 => 0.12684712211072
204 => 0.12601170128175
205 => 0.12301507713375
206 => 0.12172115001987
207 => 0.12282361340957
208 => 0.12147539541973
209 => 0.12380279791335
210 => 0.12699881864345
211 => 0.12633885300112
212 => 0.12854501919585
213 => 0.13082816911194
214 => 0.13409317603463
215 => 0.13494676974708
216 => 0.13635772769449
217 => 0.13781006689792
218 => 0.13827651910843
219 => 0.1391671211099
220 => 0.13916242719773
221 => 0.14184631627359
222 => 0.14480672903739
223 => 0.14592421632201
224 => 0.14849381671439
225 => 0.14409346609198
226 => 0.14743118258666
227 => 0.15044188641333
228 => 0.14685240119443
301 => 0.15179967032589
302 => 0.15199176157551
303 => 0.15489211138357
304 => 0.15195205121331
305 => 0.15020625286922
306 => 0.1552463072744
307 => 0.15768503084084
308 => 0.15695046745564
309 => 0.15136040382438
310 => 0.14810674702188
311 => 0.13959129958621
312 => 0.14967821491372
313 => 0.15459125713039
314 => 0.15134768023194
315 => 0.15298355175192
316 => 0.16190833633178
317 => 0.16530631646279
318 => 0.16459956034921
319 => 0.16471899049821
320 => 0.1665524788992
321 => 0.17468317618968
322 => 0.16981107390514
323 => 0.17353561354748
324 => 0.17551109594395
325 => 0.17734603408863
326 => 0.17284000594346
327 => 0.16697772953331
328 => 0.16512090051259
329 => 0.15102517043331
330 => 0.15029142646803
331 => 0.1498795537456
401 => 0.14728275449124
402 => 0.14524238160049
403 => 0.14361980132358
404 => 0.13936166613347
405 => 0.14079866176126
406 => 0.13401208301012
407 => 0.13835389559352
408 => 0.12752235203902
409 => 0.13654318337226
410 => 0.13163355500445
411 => 0.1349302384094
412 => 0.13491873659157
413 => 0.12884849722863
414 => 0.12534730984674
415 => 0.12757840271473
416 => 0.12997031137359
417 => 0.13035839050614
418 => 0.13345956251755
419 => 0.13432503296646
420 => 0.1317026171013
421 => 0.12729789237426
422 => 0.12832100946728
423 => 0.12532657641151
424 => 0.12007894766048
425 => 0.12384788624428
426 => 0.12513476758532
427 => 0.12570312769753
428 => 0.12054268751513
429 => 0.11892116517121
430 => 0.1180578802812
501 => 0.12663174434875
502 => 0.12710143997677
503 => 0.12469841073553
504 => 0.13556033077052
505 => 0.1331019437382
506 => 0.13584856437275
507 => 0.12822817231489
508 => 0.12851928155372
509 => 0.12491166583133
510 => 0.1269316895749
511 => 0.12550400190135
512 => 0.12676849161868
513 => 0.12752642154157
514 => 0.13113344528971
515 => 0.13658436978942
516 => 0.13059467622538
517 => 0.12798488096554
518 => 0.1296039832667
519 => 0.1339158660575
520 => 0.14044858920678
521 => 0.1365810856191
522 => 0.13829741803684
523 => 0.13867236031581
524 => 0.13582060635302
525 => 0.14055373744309
526 => 0.14309026084615
527 => 0.14569220899812
528 => 0.14795140767355
529 => 0.14465293368816
530 => 0.1481827736702
531 => 0.14533834574531
601 => 0.14278659984513
602 => 0.14279046979034
603 => 0.1411897223121
604 => 0.13808807236584
605 => 0.1375160805279
606 => 0.14049165430346
607 => 0.14287778268358
608 => 0.14307431564575
609 => 0.14439539892068
610 => 0.14517720239455
611 => 0.15283993924871
612 => 0.15592195540095
613 => 0.15969058641231
614 => 0.16115868057965
615 => 0.16557711768243
616 => 0.16200887087402
617 => 0.16123685823169
618 => 0.1505191750801
619 => 0.15227419509575
620 => 0.15508415147507
621 => 0.15056551022582
622 => 0.15343154805062
623 => 0.15399736462822
624 => 0.15041196852525
625 => 0.15232708349967
626 => 0.14724110591963
627 => 0.1366952302023
628 => 0.14056547801746
629 => 0.14341528312075
630 => 0.13934825985992
701 => 0.14663824163942
702 => 0.14237958477961
703 => 0.14102979500663
704 => 0.13576378386743
705 => 0.13824913841777
706 => 0.14161061603396
707 => 0.13953361368087
708 => 0.14384370542701
709 => 0.14994794479901
710 => 0.15429818928924
711 => 0.154632147044
712 => 0.15183523128053
713 => 0.15631730664117
714 => 0.15634995366698
715 => 0.15129415435036
716 => 0.14819750541974
717 => 0.14749394026729
718 => 0.14925158396017
719 => 0.15138568788224
720 => 0.15475057495907
721 => 0.15678390574694
722 => 0.16208575404638
723 => 0.16352028218031
724 => 0.16509639367774
725 => 0.1672025646931
726 => 0.16973156300819
727 => 0.16419825867072
728 => 0.16441810716741
729 => 0.15926557078217
730 => 0.15375934670607
731 => 0.15793788441931
801 => 0.16340076663179
802 => 0.1621475754163
803 => 0.16200656580418
804 => 0.16224370485896
805 => 0.16129883960787
806 => 0.15702524909557
807 => 0.15487907869439
808 => 0.15764818605838
809 => 0.15911984338355
810 => 0.16140225555289
811 => 0.16112090007714
812 => 0.16700014871218
813 => 0.16928464695251
814 => 0.16870017454344
815 => 0.16880773153282
816 => 0.17294370647508
817 => 0.17754376123898
818 => 0.18185231955607
819 => 0.18623517013309
820 => 0.18095147269692
821 => 0.17826873699198
822 => 0.18103663545033
823 => 0.17956794956734
824 => 0.18800745429152
825 => 0.18859178728769
826 => 0.19703068173962
827 => 0.20504019745936
828 => 0.20000956414117
829 => 0.20475322477552
830 => 0.2098838805079
831 => 0.21978174783455
901 => 0.21644849433011
902 => 0.21389527438444
903 => 0.21148249387286
904 => 0.21650310709935
905 => 0.22296204580896
906 => 0.22435323934407
907 => 0.22660750434777
908 => 0.22423742033479
909 => 0.22709192547224
910 => 0.23716958294055
911 => 0.23444651093467
912 => 0.23057931093065
913 => 0.23853465363337
914 => 0.24141366123187
915 => 0.26162004430616
916 => 0.28713143762149
917 => 0.2765695532721
918 => 0.27001345082656
919 => 0.27155429041409
920 => 0.28087018763769
921 => 0.28386215815411
922 => 0.27572895089639
923 => 0.27860173719685
924 => 0.29443107215849
925 => 0.30292300249954
926 => 0.29138982047799
927 => 0.25957022869316
928 => 0.23023111188224
929 => 0.23801316681814
930 => 0.23713092329369
1001 => 0.25413756896022
1002 => 0.23438156656791
1003 => 0.2347142069811
1004 => 0.25207253206966
1005 => 0.24744162853307
1006 => 0.23994015788509
1007 => 0.23028588091959
1008 => 0.21243905703634
1009 => 0.19663162742743
1010 => 0.22763363712412
1011 => 0.2262967740925
1012 => 0.22436079831072
1013 => 0.22866910291862
1014 => 0.24958900716098
1015 => 0.24910673565707
1016 => 0.24603877040629
1017 => 0.2483657950092
1018 => 0.2395322192212
1019 => 0.24180883283855
1020 => 0.23022646441624
1021 => 0.23546217866556
1022 => 0.23992406309816
1023 => 0.24081985245734
1024 => 0.24283811162369
1025 => 0.22559230802236
1026 => 0.23333516752917
1027 => 0.23788337208159
1028 => 0.21733441844864
1029 => 0.23747718533819
1030 => 0.22529209695011
1031 => 0.22115629493731
1101 => 0.22672460749707
1102 => 0.22455463067717
1103 => 0.22268901203274
1104 => 0.22164796477374
1105 => 0.2257367189654
1106 => 0.22554597369524
1107 => 0.21885597824471
1108 => 0.21012915189859
1109 => 0.21305816126865
1110 => 0.2119940247049
1111 => 0.2081374565215
1112 => 0.21073631783329
1113 => 0.19929224786978
1114 => 0.17960332030855
1115 => 0.19261042894366
1116 => 0.19210966941022
1117 => 0.19185716374582
1118 => 0.20163164639503
1119 => 0.20069205542399
1120 => 0.19898668861105
1121 => 0.20810613612262
1122 => 0.20477741510702
1123 => 0.21503574893179
1124 => 0.22179255105622
1125 => 0.22007880747781
1126 => 0.22643361253429
1127 => 0.21312563972877
1128 => 0.21754601447157
1129 => 0.21845704757969
1130 => 0.2079936035559
1201 => 0.20084578412697
1202 => 0.20036910606217
1203 => 0.18797577220259
1204 => 0.19459619111488
1205 => 0.20042188578615
1206 => 0.19763183013078
1207 => 0.19674858186083
1208 => 0.20126090571882
1209 => 0.20161155192802
1210 => 0.19361678119831
1211 => 0.19527914719448
1212 => 0.20221148974386
1213 => 0.1951044699488
1214 => 0.18129669141208
1215 => 0.1778721714275
1216 => 0.17741527733513
1217 => 0.16812770753485
1218 => 0.17810101422785
1219 => 0.17374739858835
1220 => 0.1875004182292
1221 => 0.17964476716927
1222 => 0.17930612575297
1223 => 0.17879421958433
1224 => 0.17080002459255
1225 => 0.17255024523816
1226 => 0.17836824523028
1227 => 0.18044417317193
1228 => 0.18022763688004
1229 => 0.17833973385632
1230 => 0.17920400619295
1231 => 0.17641988386422
]
'min_raw' => 0.097413343069837
'max_raw' => 0.30292300249954
'avg_raw' => 0.20016817278469
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.097413'
'max' => '$0.302923'
'avg' => '$0.200168'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.055493174976453
'max_diff' => 0.18919762598687
'year' => 2033
]
8 => [
'items' => [
101 => 0.17543675232345
102 => 0.17233371874914
103 => 0.16777311662981
104 => 0.1684072963263
105 => 0.15937155018146
106 => 0.1544483961184
107 => 0.15308573195988
108 => 0.15126352049744
109 => 0.15329155559328
110 => 0.15934595304791
111 => 0.15204306520555
112 => 0.13952277623784
113 => 0.14027526693834
114 => 0.14196589012585
115 => 0.13881542500051
116 => 0.13583377415787
117 => 0.13842607765657
118 => 0.1331210661689
119 => 0.14260697541915
120 => 0.14235040815788
121 => 0.14588616852168
122 => 0.14809715203827
123 => 0.14300155084694
124 => 0.14172002092729
125 => 0.14245003861181
126 => 0.1303844724212
127 => 0.1449001543528
128 => 0.14502568657292
129 => 0.14395080349142
130 => 0.1516799559986
131 => 0.16799087857186
201 => 0.16185405339446
202 => 0.15947768919925
203 => 0.15496021912703
204 => 0.16097947977742
205 => 0.16051729447457
206 => 0.15842711725648
207 => 0.15716297155323
208 => 0.15949219877229
209 => 0.15687435452437
210 => 0.1564041177639
211 => 0.15355499461806
212 => 0.15253798728184
213 => 0.15178503553833
214 => 0.15095610965224
215 => 0.1527845136015
216 => 0.1486411097059
217 => 0.1436445707907
218 => 0.14322916264321
219 => 0.14437614106151
220 => 0.14386868849391
221 => 0.14322673315554
222 => 0.14200106558847
223 => 0.14163743620356
224 => 0.14281905529661
225 => 0.14148507623323
226 => 0.14345343500685
227 => 0.14291815033468
228 => 0.13992809366905
301 => 0.13620137600292
302 => 0.13616820039863
303 => 0.13536528519051
304 => 0.13434265195385
305 => 0.13405817878209
306 => 0.13820776108643
307 => 0.14679727226987
308 => 0.14511094569498
309 => 0.14632948946704
310 => 0.15232351878846
311 => 0.15422884046299
312 => 0.15287648826843
313 => 0.15102530517506
314 => 0.15110674783625
315 => 0.15743280085753
316 => 0.15782734902478
317 => 0.15882424495734
318 => 0.16010553795343
319 => 0.15309469800613
320 => 0.15077653790521
321 => 0.14967806504277
322 => 0.14629519378894
323 => 0.14994333041073
324 => 0.14781771743
325 => 0.14810453524238
326 => 0.1479177447658
327 => 0.14801974499673
328 => 0.14260432391419
329 => 0.14457741873051
330 => 0.14129676591034
331 => 0.13690434005469
401 => 0.13688961510304
402 => 0.13796465510846
403 => 0.13732517924691
404 => 0.13560436614592
405 => 0.13584879952491
406 => 0.13370730592009
407 => 0.13610881562153
408 => 0.13617768232675
409 => 0.13525297028058
410 => 0.13895282732012
411 => 0.14046866176801
412 => 0.13985999648997
413 => 0.14042595618953
414 => 0.14518102017747
415 => 0.14595630308549
416 => 0.14630063254092
417 => 0.14583927668556
418 => 0.14051287003023
419 => 0.14074911881503
420 => 0.13901568198574
421 => 0.13755111053007
422 => 0.13760968570763
423 => 0.13836266581681
424 => 0.14165097411529
425 => 0.14857102507308
426 => 0.14883363594844
427 => 0.14915192799027
428 => 0.14785727429537
429 => 0.14746679435283
430 => 0.14798193818847
501 => 0.15058074548922
502 => 0.15726558343605
503 => 0.15490271524033
504 => 0.15298166661697
505 => 0.15466694417065
506 => 0.1544075089009
507 => 0.15221761413781
508 => 0.15215615108548
509 => 0.14795304288341
510 => 0.14639924948125
511 => 0.14510078341499
512 => 0.14368289236794
513 => 0.14284231902711
514 => 0.14413382171237
515 => 0.1444292036571
516 => 0.14160531046417
517 => 0.14122042425662
518 => 0.14352647639593
519 => 0.14251166882771
520 => 0.14355542357764
521 => 0.14379758363279
522 => 0.14375859028649
523 => 0.14269901463536
524 => 0.14337435655839
525 => 0.14177697158131
526 => 0.14004005533819
527 => 0.13893201098879
528 => 0.13796509533318
529 => 0.13850159633638
530 => 0.13658906822118
531 => 0.13597721198555
601 => 0.14314556591054
602 => 0.14844090602773
603 => 0.14836390968524
604 => 0.14789521425219
605 => 0.14719882791008
606 => 0.15052980049077
607 => 0.14936935624856
608 => 0.15021367639313
609 => 0.15042859130593
610 => 0.15107907401874
611 => 0.15131156567769
612 => 0.1506088144085
613 => 0.14825029531526
614 => 0.14237308997616
615 => 0.1396372350256
616 => 0.13873435732265
617 => 0.13876717521234
618 => 0.13786191130909
619 => 0.13812855209968
620 => 0.13776918452365
621 => 0.13708862927502
622 => 0.13845957396753
623 => 0.13861756257211
624 => 0.13829756769931
625 => 0.13837293807583
626 => 0.13572351720065
627 => 0.13592494691555
628 => 0.13480336066653
629 => 0.13459307676576
630 => 0.13175780439593
701 => 0.12673470841348
702 => 0.12951799119148
703 => 0.12615617698443
704 => 0.12488300700443
705 => 0.13090999567122
706 => 0.13030505317172
707 => 0.12926965457476
708 => 0.12773808425387
709 => 0.1271700099237
710 => 0.12371857012403
711 => 0.12351464064795
712 => 0.12522526740938
713 => 0.12443587201805
714 => 0.12332726192122
715 => 0.11931198852849
716 => 0.11479749182372
717 => 0.11493375610212
718 => 0.11636973350871
719 => 0.12054503148631
720 => 0.11891367033307
721 => 0.11773009909869
722 => 0.11750845178451
723 => 0.12028283197155
724 => 0.12420916118682
725 => 0.12605130700797
726 => 0.12422579644601
727 => 0.12212874820491
728 => 0.12225638581456
729 => 0.12310550164891
730 => 0.12319473171725
731 => 0.12182976889233
801 => 0.12221399793223
802 => 0.12163031888598
803 => 0.11804828165656
804 => 0.11798349396185
805 => 0.11710440425759
806 => 0.11707778577072
807 => 0.11558223488458
808 => 0.11537299697736
809 => 0.11240348991948
810 => 0.11435802845747
811 => 0.11304702662407
812 => 0.11107103762706
813 => 0.11073037637918
814 => 0.11072013569071
815 => 0.11274903456758
816 => 0.11433431959281
817 => 0.11306983206225
818 => 0.1127819327626
819 => 0.11585594407686
820 => 0.11546474811688
821 => 0.11512597493849
822 => 0.12385760146995
823 => 0.11694583773298
824 => 0.11393191423399
825 => 0.11020161157542
826 => 0.11141621693087
827 => 0.11167215212553
828 => 0.10270144666928
829 => 0.099062032582913
830 => 0.097813122816898
831 => 0.097094357589564
901 => 0.097421907929346
902 => 0.094146008390919
903 => 0.096347467059119
904 => 0.093510814963736
905 => 0.093035241008681
906 => 0.098107526348989
907 => 0.098813305222232
908 => 0.09580223328067
909 => 0.09773582891542
910 => 0.09703468025927
911 => 0.093559441222226
912 => 0.093426712653139
913 => 0.09168295986491
914 => 0.088954324408405
915 => 0.087707264785718
916 => 0.087057785306755
917 => 0.087325773197878
918 => 0.087190270319562
919 => 0.086306022380868
920 => 0.087240954376344
921 => 0.084852589468475
922 => 0.083901523317797
923 => 0.083471948802104
924 => 0.081352137477215
925 => 0.084725699979488
926 => 0.085390334291456
927 => 0.086056278138335
928 => 0.091852864666242
929 => 0.091563283584291
930 => 0.094180955533419
1001 => 0.094079237615066
1002 => 0.093332635171701
1003 => 0.090182842273283
1004 => 0.091438293582932
1005 => 0.087574209592283
1006 => 0.090469444050248
1007 => 0.089148179951515
1008 => 0.090022723329394
1009 => 0.088450215481569
1010 => 0.089320506251813
1011 => 0.085547943743131
1012 => 0.082025177953911
1013 => 0.083442841743437
1014 => 0.084984004412172
1015 => 0.088325637758934
1016 => 0.086335388505479
1017 => 0.087051157396678
1018 => 0.084653451429428
1019 => 0.07970629914814
1020 => 0.079734299492793
1021 => 0.078973287893888
1022 => 0.078315662762921
1023 => 0.086563992573753
1024 => 0.085538182374978
1025 => 0.08390368807795
1026 => 0.086091523646744
1027 => 0.086670022096752
1028 => 0.086686491134351
1029 => 0.088282679489134
1030 => 0.089134565500214
1031 => 0.089284714101952
1101 => 0.091796350966135
1102 => 0.092638218513717
1103 => 0.096105751796656
1104 => 0.08906228892397
1105 => 0.088917233441187
1106 => 0.086122310979887
1107 => 0.084349726968955
1108 => 0.086243681323628
1109 => 0.087921466331316
1110 => 0.086174444436884
1111 => 0.086402568614651
1112 => 0.084057334458309
1113 => 0.084895645315678
1114 => 0.085617711558712
1115 => 0.085219029020401
1116 => 0.084622181964096
1117 => 0.087783907093893
1118 => 0.087605510171169
1119 => 0.090549781299784
1120 => 0.092845051191387
1121 => 0.09695858516571
1122 => 0.092665898020128
1123 => 0.092509455438657
1124 => 0.094038706766715
1125 => 0.092637984393307
1126 => 0.093523192582008
1127 => 0.096815964441245
1128 => 0.096885535521948
1129 => 0.095720130282886
1130 => 0.095649215268177
1201 => 0.095873044092476
1202 => 0.097184016507556
1203 => 0.096725922463614
1204 => 0.097256040488786
1205 => 0.09791896119672
1206 => 0.10066108231729
1207 => 0.10132219843605
1208 => 0.099716029016866
1209 => 0.099861048131902
1210 => 0.099260296678791
1211 => 0.098679978302479
1212 => 0.099984449263735
1213 => 0.10236839558487
1214 => 0.10235356517853
1215 => 0.10290659438774
1216 => 0.10325112700354
1217 => 0.10177214080325
1218 => 0.1008093751707
1219 => 0.10117856077659
1220 => 0.10176889660023
1221 => 0.10098712282533
1222 => 0.09616165293385
1223 => 0.097625392246715
1224 => 0.097381754451859
1225 => 0.097034784604615
1226 => 0.098506585802463
1227 => 0.098364626986447
1228 => 0.094112409306244
1229 => 0.094384622485844
1230 => 0.094128963491294
1231 => 0.094955050005595
]
'min_raw' => 0.078315662762921
'max_raw' => 0.17543675232345
'avg_raw' => 0.12687620754318
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.078315'
'max' => '$0.175436'
'avg' => '$0.126876'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.019097680306916
'max_diff' => -0.12748625017609
'year' => 2034
]
9 => [
'items' => [
101 => 0.09259337301055
102 => 0.093319808948089
103 => 0.093775422758199
104 => 0.094043782792544
105 => 0.095013283252797
106 => 0.094899523563719
107 => 0.095006211790798
108 => 0.096443725034721
109 => 0.10371417372751
110 => 0.10410988820852
111 => 0.10216124537826
112 => 0.10293968975367
113 => 0.10144524677996
114 => 0.10244847636011
115 => 0.10313486055958
116 => 0.10003322234627
117 => 0.099849563460743
118 => 0.098348952389279
119 => 0.099155295780128
120 => 0.097872345467146
121 => 0.098187136598255
122 => 0.097306953152676
123 => 0.098891108111942
124 => 0.10066243950919
125 => 0.10110994777214
126 => 0.099932746196756
127 => 0.099080374674815
128 => 0.097583891070923
129 => 0.10007257665551
130 => 0.10080034416176
131 => 0.10006875400262
201 => 0.099899228577184
202 => 0.099577978202313
203 => 0.099967383362862
204 => 0.10079638058363
205 => 0.10040544080349
206 => 0.10066366341574
207 => 0.099679585095834
208 => 0.10177263040923
209 => 0.10509689008568
210 => 0.10510757812411
211 => 0.10471663623666
212 => 0.10455667123928
213 => 0.10495780134014
214 => 0.10517539796464
215 => 0.10647257915614
216 => 0.10786450625659
217 => 0.11436002268905
218 => 0.11253610766704
219 => 0.11829931626592
220 => 0.12285726600866
221 => 0.12422399584152
222 => 0.1229666687049
223 => 0.11866542048998
224 => 0.11845438073237
225 => 0.12488226150561
226 => 0.12306609077158
227 => 0.12285006304177
228 => 0.12055189298125
301 => 0.12191039612092
302 => 0.12161327155623
303 => 0.12114424589505
304 => 0.12373617525138
305 => 0.12858803562331
306 => 0.12783182768389
307 => 0.12726735353659
308 => 0.12479399213906
309 => 0.12628350814564
310 => 0.1257531200255
311 => 0.12803200398225
312 => 0.12668204360973
313 => 0.12305233149201
314 => 0.12363037511045
315 => 0.12354300498038
316 => 0.12534107606598
317 => 0.12480133975695
318 => 0.12343761280359
319 => 0.12857145249203
320 => 0.12823808949858
321 => 0.1287107220059
322 => 0.12891878945227
323 => 0.13204366720222
324 => 0.13332382963144
325 => 0.13361444891527
326 => 0.13483050421171
327 => 0.13358419235169
328 => 0.13857032839707
329 => 0.14188581791814
330 => 0.14573692961039
331 => 0.15136443887401
401 => 0.15348043441451
402 => 0.15309819875966
403 => 0.15736491205746
404 => 0.1650321010099
405 => 0.15464795686027
406 => 0.16558248586451
407 => 0.16212074022697
408 => 0.15391300359453
409 => 0.15338452211825
410 => 0.15894289665953
411 => 0.17127083641835
412 => 0.1681828273311
413 => 0.17127588729497
414 => 0.16766766854957
415 => 0.1674884900764
416 => 0.1711006441642
417 => 0.17954063907862
418 => 0.17553111386326
419 => 0.16978247629112
420 => 0.17402718081568
421 => 0.17035002492765
422 => 0.16206436354078
423 => 0.16818046598875
424 => 0.16409080245837
425 => 0.165284383695
426 => 0.17388024814433
427 => 0.17284597099195
428 => 0.17418442139862
429 => 0.1718220914642
430 => 0.16961530280022
501 => 0.16549616788061
502 => 0.16427669510181
503 => 0.16461371350584
504 => 0.16427652809223
505 => 0.16197190996151
506 => 0.16147422789561
507 => 0.16064473598182
508 => 0.16090183021084
509 => 0.15934214273649
510 => 0.16228559524846
511 => 0.16283192597229
512 => 0.16497392524693
513 => 0.16519631471743
514 => 0.17116175220785
515 => 0.16787608948323
516 => 0.17008039570938
517 => 0.16988322181278
518 => 0.15409089013538
519 => 0.15626693410361
520 => 0.15965217563795
521 => 0.15812712891531
522 => 0.15597106965548
523 => 0.15422993620259
524 => 0.15159194098141
525 => 0.15530486859701
526 => 0.16018697358568
527 => 0.16532013295665
528 => 0.17148728760294
529 => 0.17011085047948
530 => 0.16520484229032
531 => 0.16542492223384
601 => 0.16678536984645
602 => 0.16502346657842
603 => 0.16450384690825
604 => 0.16671398208307
605 => 0.16672920206935
606 => 0.16470191942636
607 => 0.1624489657575
608 => 0.16243952579936
609 => 0.16203863445494
610 => 0.16773898622915
611 => 0.1708736033344
612 => 0.17123298213383
613 => 0.17084941427782
614 => 0.17099703432233
615 => 0.16917306969536
616 => 0.17334211195271
617 => 0.17716803740359
618 => 0.17614260765378
619 => 0.17460534268538
620 => 0.17338083709334
621 => 0.17585415305164
622 => 0.17574402018538
623 => 0.17713462128245
624 => 0.17707153558418
625 => 0.17660392873839
626 => 0.1761426243535
627 => 0.17797164409613
628 => 0.17744491578341
629 => 0.17691736931613
630 => 0.17585929411269
701 => 0.1760031041056
702 => 0.17446610456768
703 => 0.17375501825312
704 => 0.16306198621679
705 => 0.16020445865178
706 => 0.16110349499407
707 => 0.16139948110142
708 => 0.16015588144311
709 => 0.16193888389859
710 => 0.16166100485457
711 => 0.16274206966104
712 => 0.16206666730434
713 => 0.16209438605265
714 => 0.16408060037276
715 => 0.16465720683985
716 => 0.1643639401369
717 => 0.16456933408305
718 => 0.1693025508807
719 => 0.16862963881183
720 => 0.16827216768687
721 => 0.16837118963149
722 => 0.1695806280046
723 => 0.16991920471618
724 => 0.16848463139784
725 => 0.16916118446794
726 => 0.17204186157306
727 => 0.17304993552765
728 => 0.17626722368775
729 => 0.17490046249461
730 => 0.17740921181667
731 => 0.18512025193702
801 => 0.19128036434854
802 => 0.18561527039749
803 => 0.19692753235567
804 => 0.20573575093772
805 => 0.20539767683768
806 => 0.20386176019014
807 => 0.19383383751309
808 => 0.18460599355776
809 => 0.19232547686134
810 => 0.19234515541181
811 => 0.19168204494996
812 => 0.18756352282215
813 => 0.19153872930733
814 => 0.19185426676229
815 => 0.19167764969569
816 => 0.18851998843669
817 => 0.18369882332754
818 => 0.18464086744963
819 => 0.18618395493879
820 => 0.18326256840003
821 => 0.18232900838785
822 => 0.18406467406756
823 => 0.1896573505279
824 => 0.18860008743924
825 => 0.18857247802726
826 => 0.19309589786986
827 => 0.18985810547766
828 => 0.18465274964285
829 => 0.18333832864435
830 => 0.17867301959977
831 => 0.18189536517412
901 => 0.18201133165471
902 => 0.18024648591521
903 => 0.18479595714799
904 => 0.18475403296966
905 => 0.18907307880575
906 => 0.19732947228482
907 => 0.19488765046061
908 => 0.19204807734852
909 => 0.19235681767862
910 => 0.19574293706383
911 => 0.19369561198595
912 => 0.19443184435841
913 => 0.19574182268796
914 => 0.1965321651391
915 => 0.19224309956258
916 => 0.19124311320697
917 => 0.18919749207092
918 => 0.18866382769985
919 => 0.19032994343188
920 => 0.18989098080123
921 => 0.18200158512106
922 => 0.1811770993763
923 => 0.181202385177
924 => 0.17912917656964
925 => 0.17596703581634
926 => 0.1842769529144
927 => 0.18360955027421
928 => 0.18287278941231
929 => 0.18296303841399
930 => 0.18657009177704
1001 => 0.18447781866591
1002 => 0.19004046964866
1003 => 0.1888969558352
1004 => 0.1877241152073
1005 => 0.18756199290693
1006 => 0.18711054932724
1007 => 0.18556238131776
1008 => 0.18369287541583
1009 => 0.18245846568554
1010 => 0.16830828987691
1011 => 0.17093448019921
1012 => 0.17395567278023
1013 => 0.17499857635253
1014 => 0.17321461762538
1015 => 0.18563282288166
1016 => 0.18790174864679
1017 => 0.18102902450585
1018 => 0.17974341843056
1019 => 0.18571710700193
1020 => 0.18211424253967
1021 => 0.18373661218642
1022 => 0.18022993639889
1023 => 0.18735523087187
1024 => 0.18730094806612
1025 => 0.18452904758406
1026 => 0.18687183889034
1027 => 0.18646472124761
1028 => 0.18333525243025
1029 => 0.18745444061531
1030 => 0.18745648368126
1031 => 0.18478858973359
1101 => 0.18167307367979
1102 => 0.18111609299458
1103 => 0.1806964828681
1104 => 0.18363341381787
1105 => 0.18626665692389
1106 => 0.19116646950787
1107 => 0.19239839880816
1108 => 0.19720670088136
1109 => 0.19434359110875
1110 => 0.19561277058747
1111 => 0.19699064444802
1112 => 0.1976512478464
1113 => 0.19657483005867
1114 => 0.20404410235444
1115 => 0.2046747377888
1116 => 0.20488618439496
1117 => 0.20236758780221
1118 => 0.20460469106144
1119 => 0.20355802453152
1120 => 0.20628116007004
1121 => 0.20670818249322
1122 => 0.20634650969255
1123 => 0.20648205334976
1124 => 0.20010834711524
1125 => 0.199777836823
1126 => 0.19527130553639
1127 => 0.19710775034628
1128 => 0.19367460479728
1129 => 0.19476329061618
1130 => 0.19524317295178
1201 => 0.19499250965275
1202 => 0.19721158018045
1203 => 0.19532491690575
1204 => 0.19034570232763
1205 => 0.18536513116583
1206 => 0.18530260415198
1207 => 0.18399130767946
1208 => 0.18304348050576
1209 => 0.18322606564539
1210 => 0.18386951949241
1211 => 0.18300608179844
1212 => 0.18319034000785
1213 => 0.18625025399008
1214 => 0.18686389791691
1215 => 0.18477849608739
1216 => 0.17640530681981
1217 => 0.17435050517099
1218 => 0.17582745584767
1219 => 0.17512156855202
1220 => 0.14133677349952
1221 => 0.14927400996016
1222 => 0.14455797357833
1223 => 0.14673134011747
1224 => 0.14191748818333
1225 => 0.1442149106419
1226 => 0.14379066060224
1227 => 0.15655350195104
1228 => 0.15635422773809
1229 => 0.15644960975847
1230 => 0.15189677740915
1231 => 0.15914956296449
]
'min_raw' => 0.09259337301055
'max_raw' => 0.20670818249322
'avg_raw' => 0.14965077775189
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.092593'
'max' => '$0.2067081'
'avg' => '$0.14965'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.014277710247629
'max_diff' => 0.031271430169776
'year' => 2035
]
10 => [
'items' => [
101 => 0.16272254593079
102 => 0.16206128187559
103 => 0.16222770779191
104 => 0.15936795915411
105 => 0.15647729837639
106 => 0.15327111070439
107 => 0.15922781110219
108 => 0.15856552770222
109 => 0.1600845675397
110 => 0.16394791354142
111 => 0.16451680591559
112 => 0.16528140303562
113 => 0.16500734939582
114 => 0.17153641893933
115 => 0.17074570553743
116 => 0.17265109733225
117 => 0.16873156184787
118 => 0.16429623540158
119 => 0.16513924595727
120 => 0.1650580572617
121 => 0.16402443198296
122 => 0.16309132129783
123 => 0.1615379549094
124 => 0.16645303601738
125 => 0.16625349270039
126 => 0.16948386705876
127 => 0.16891286701273
128 => 0.16509958895797
129 => 0.1652357809297
130 => 0.1661517373912
131 => 0.16932187316266
201 => 0.17026298529893
202 => 0.16982702466058
203 => 0.1708589111546
204 => 0.17167447216607
205 => 0.17096133306104
206 => 0.18105787891099
207 => 0.17686508914537
208 => 0.17890862570389
209 => 0.17939599713188
210 => 0.1781476054674
211 => 0.17841833691787
212 => 0.17882842129543
213 => 0.18131837333323
214 => 0.18785272795382
215 => 0.19074674913443
216 => 0.19945355464477
217 => 0.1905064409621
218 => 0.189975556263
219 => 0.19154391485575
220 => 0.19665573139929
221 => 0.20079837857931
222 => 0.20217273364397
223 => 0.2023543773539
224 => 0.2049327588206
225 => 0.20641063899335
226 => 0.20461967549238
227 => 0.203102021447
228 => 0.19766597303461
229 => 0.19829521044022
301 => 0.2026300321801
302 => 0.20875322320742
303 => 0.2140075581183
304 => 0.21216767316457
305 => 0.22620469660519
306 => 0.22759641014322
307 => 0.22740412033175
308 => 0.23057465088615
309 => 0.22428179340299
310 => 0.22159147491057
311 => 0.20343015547772
312 => 0.20853274544776
313 => 0.21594965963381
314 => 0.21496800322929
315 => 0.20958164189269
316 => 0.21400347208022
317 => 0.21254147673681
318 => 0.21138834035122
319 => 0.2166710816801
320 => 0.21086249058594
321 => 0.21589171449431
322 => 0.20944168281117
323 => 0.21217607760406
324 => 0.21062390287182
325 => 0.21162835015096
326 => 0.20575637188133
327 => 0.20892474882141
328 => 0.20562455698397
329 => 0.20562299226334
330 => 0.20555014034562
331 => 0.20943280140707
401 => 0.20955941484489
402 => 0.2066901224541
403 => 0.20627661259382
404 => 0.20780557527658
405 => 0.20601556041103
406 => 0.2068530971004
407 => 0.20604092854414
408 => 0.20585809229523
409 => 0.20440122195696
410 => 0.20377356215775
411 => 0.20401968373782
412 => 0.20317954390066
413 => 0.20267332925959
414 => 0.20544944151227
415 => 0.20396627672371
416 => 0.20522212523685
417 => 0.20379092735541
418 => 0.19882977195513
419 => 0.19597655902116
420 => 0.18660539636937
421 => 0.18926304647252
422 => 0.19102507124045
423 => 0.19044272206516
424 => 0.1916938334329
425 => 0.19177064150977
426 => 0.19136389245055
427 => 0.19089292914775
428 => 0.19066369025786
429 => 0.19237224913125
430 => 0.19336412506471
501 => 0.19120191399876
502 => 0.19069533819856
503 => 0.19288145296518
504 => 0.19421498170993
505 => 0.20406100871615
506 => 0.20333158323328
507 => 0.20516229805275
508 => 0.20495618765869
509 => 0.20687506844525
510 => 0.21001162755174
511 => 0.20363412589252
512 => 0.20474103966315
513 => 0.20446964996896
514 => 0.20743261148788
515 => 0.20744186153032
516 => 0.20566541808883
517 => 0.20662845689796
518 => 0.20609091505429
519 => 0.20706232581894
520 => 0.20332184131124
521 => 0.20787734768127
522 => 0.21046002624273
523 => 0.21049588673706
524 => 0.21172005587779
525 => 0.21296388262386
526 => 0.21535129974847
527 => 0.21289729885603
528 => 0.2084827901427
529 => 0.20880150341302
530 => 0.2062132785696
531 => 0.20625678709682
601 => 0.2060245351687
602 => 0.2067215406881
603 => 0.20347479482673
604 => 0.20423679959089
605 => 0.20316998845877
606 => 0.20473872062409
607 => 0.20305102413493
608 => 0.20446951909663
609 => 0.20508169449825
610 => 0.20734063490943
611 => 0.20271737679951
612 => 0.19329024054632
613 => 0.19527193887972
614 => 0.19234085138558
615 => 0.1926121346926
616 => 0.19316017014719
617 => 0.1913838079328
618 => 0.1917226818637
619 => 0.19171057490227
620 => 0.19160624364937
621 => 0.19114414323104
622 => 0.19047400620068
623 => 0.19314362587232
624 => 0.19359724627549
625 => 0.19460558824005
626 => 0.19760572996168
627 => 0.19730594505548
628 => 0.19779490667546
629 => 0.19672750620445
630 => 0.19266164833907
701 => 0.19288244398259
702 => 0.19012911876986
703 => 0.19453517952404
704 => 0.19349176618029
705 => 0.19281907080977
706 => 0.19263551964544
707 => 0.19564309813811
708 => 0.19654301276114
709 => 0.19598224635909
710 => 0.19483209810833
711 => 0.1970407227606
712 => 0.19763165754316
713 => 0.19776394604813
714 => 0.20167720547019
715 => 0.19798265377894
716 => 0.19887196909171
717 => 0.20581015329568
718 => 0.19951817762665
719 => 0.20285117746634
720 => 0.20268804446828
721 => 0.2043930944037
722 => 0.2025481806069
723 => 0.20257105052452
724 => 0.20408501935708
725 => 0.20195892317746
726 => 0.20143247186403
727 => 0.20070518314504
728 => 0.20229319145563
729 => 0.20324513061839
730 => 0.21091706114797
731 => 0.21587347815261
801 => 0.21565830701882
802 => 0.21762456839819
803 => 0.21673874963789
804 => 0.21387820719371
805 => 0.21876080433994
806 => 0.21721574630633
807 => 0.21734311901338
808 => 0.21733837819486
809 => 0.21836570671589
810 => 0.21763775030546
811 => 0.21620287349732
812 => 0.21715541168546
813 => 0.21998410956561
814 => 0.22876447458064
815 => 0.23367808316742
816 => 0.22846866917401
817 => 0.23206205318983
818 => 0.22990730323398
819 => 0.22951572106874
820 => 0.23177263177967
821 => 0.23403349291403
822 => 0.23388948583375
823 => 0.2322482167467
824 => 0.23132110548509
825 => 0.23834150256306
826 => 0.24351401154076
827 => 0.24316128110542
828 => 0.24471811853292
829 => 0.24928904137124
830 => 0.24970694927091
831 => 0.24965430248105
901 => 0.24861847414755
902 => 0.25311914129121
903 => 0.25687367700416
904 => 0.2483787098163
905 => 0.25161348211415
906 => 0.25306567561651
907 => 0.25519792652437
908 => 0.25879539121268
909 => 0.26270319204456
910 => 0.26325579792904
911 => 0.26286369760938
912 => 0.26028639791343
913 => 0.26456236021343
914 => 0.26706711864512
915 => 0.26855864497081
916 => 0.27234090756645
917 => 0.2530746438692
918 => 0.23943702482884
919 => 0.23730731368609
920 => 0.24163816504164
921 => 0.24278017600621
922 => 0.24231983281835
923 => 0.22696945271035
924 => 0.23722649711165
925 => 0.24826221445066
926 => 0.24868614129803
927 => 0.2542108521439
928 => 0.25600992446087
929 => 0.2604580408322
930 => 0.26017980994209
1001 => 0.26126285549352
1002 => 0.26101388207698
1003 => 0.26925308099346
1004 => 0.27834214093123
1005 => 0.27802741568703
1006 => 0.2767207557841
1007 => 0.27866136855857
1008 => 0.2880422524572
1009 => 0.28717861099341
1010 => 0.28801756511068
1011 => 0.29907815591061
1012 => 0.31345849730122
1013 => 0.30677738496261
1014 => 0.32127347629911
1015 => 0.33039799739064
1016 => 0.34617791312537
1017 => 0.34420218995766
1018 => 0.35034519535482
1019 => 0.34066523314159
1020 => 0.31843808325688
1021 => 0.31492055170551
1022 => 0.32196273894943
1023 => 0.33927526912204
1024 => 0.32141750576424
1025 => 0.32503010803352
1026 => 0.32398967833693
1027 => 0.32393423825994
1028 => 0.32605016050754
1029 => 0.32298090492831
1030 => 0.31047620555
1031 => 0.31620703558443
1101 => 0.31399408689107
1102 => 0.3164495184526
1103 => 0.32970046989317
1104 => 0.32384190839807
1105 => 0.31767038977386
1106 => 0.32541084369823
1107 => 0.3352671014525
1108 => 0.33465031455564
1109 => 0.3334534901788
1110 => 0.34019992652735
1111 => 0.35134306285478
1112 => 0.35435500782733
1113 => 0.35657836402957
1114 => 0.35688492728595
1115 => 0.36004271935464
1116 => 0.34306247553522
1117 => 0.37001055856023
1118 => 0.37466374807287
1119 => 0.37378914129944
1120 => 0.3789609656066
1121 => 0.37743928369892
1122 => 0.37523460535926
1123 => 0.38343304696468
1124 => 0.37403419524418
1125 => 0.36069370850946
1126 => 0.35337485364188
1127 => 0.36301291212669
1128 => 0.36889853812148
1129 => 0.37278856250791
1130 => 0.37396568153683
1201 => 0.34438060352637
1202 => 0.32843588734238
1203 => 0.33865626760977
1204 => 0.35112583690896
1205 => 0.34299320644816
1206 => 0.34331199016512
1207 => 0.33171699634571
1208 => 0.35215173657827
1209 => 0.3491745668096
1210 => 0.36462012883597
1211 => 0.3609339215
1212 => 0.37352917773923
1213 => 0.37021242465844
1214 => 0.38398008125965
1215 => 0.38947237222229
1216 => 0.3986947835554
1217 => 0.405478826874
1218 => 0.40946254686876
1219 => 0.40922337926283
1220 => 0.42500886256347
1221 => 0.41570071456386
1222 => 0.40400748691432
1223 => 0.4037959933178
1224 => 0.40985208161181
1225 => 0.42254398126939
1226 => 0.42583480619097
1227 => 0.42767392837954
1228 => 0.42485724872744
1229 => 0.41475392119484
1230 => 0.4103913555913
1231 => 0.41410838788121
]
'min_raw' => 0.15327111070439
'max_raw' => 0.42767392837954
'avg_raw' => 0.29047251954196
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.153271'
'max' => '$0.427673'
'avg' => '$0.290472'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.060677737693839
'max_diff' => 0.22096574588632
'year' => 2036
]
11 => [
'items' => [
101 => 0.40956277679888
102 => 0.4174097768002
103 => 0.42818538383076
104 => 0.42596026359032
105 => 0.43339850694545
106 => 0.44109630629199
107 => 0.45210450508734
108 => 0.45498245588487
109 => 0.45973959911451
110 => 0.46463626213796
111 => 0.46620893833232
112 => 0.46921166516013
113 => 0.46919583930756
114 => 0.47824475870997
115 => 0.48822599703253
116 => 0.4919936834331
117 => 0.50065727055977
118 => 0.48582118121365
119 => 0.4970745254074
120 => 0.50722532355963
121 => 0.49512312353425
122 => 0.51180318681828
123 => 0.51245083587776
124 => 0.52222956775156
125 => 0.51231694961911
126 => 0.50643086861426
127 => 0.52342376392669
128 => 0.53164609069719
129 => 0.5291694589584
130 => 0.51032216913983
131 => 0.49935223806713
201 => 0.47064181250821
202 => 0.50465055178084
203 => 0.52121521663201
204 => 0.51027927065959
205 => 0.51579472570209
206 => 0.54588526002166
207 => 0.55734178727274
208 => 0.55495890969168
209 => 0.55536157677738
210 => 0.56154331093138
211 => 0.5889565245134
212 => 0.57252989150174
213 => 0.58508743694496
214 => 0.59174791376845
215 => 0.59793453583451
216 => 0.58274214734225
217 => 0.56297707313433
218 => 0.55671664445131
219 => 0.50919190635657
220 => 0.50671803734927
221 => 0.50532937970956
222 => 0.49657408972075
223 => 0.4896948300653
224 => 0.48422418737676
225 => 0.46986758728982
226 => 0.47471251837674
227 => 0.45183109429347
228 => 0.46646981855407
301 => 0.42995051322587
302 => 0.46036487588021
303 => 0.44381172105883
304 => 0.45492671932572
305 => 0.45488794014386
306 => 0.43442170432111
307 => 0.422617206618
308 => 0.43013949199235
309 => 0.4382039790334
310 => 0.43951241492362
311 => 0.44996823287701
312 => 0.45288622692074
313 => 0.44404456874011
314 => 0.42919373179485
315 => 0.43264324250571
316 => 0.42254730239354
317 => 0.4048545556817
318 => 0.41756179525587
319 => 0.42190060554437
320 => 0.42381687134434
321 => 0.40641808697894
322 => 0.40095101118534
323 => 0.39804038590604
324 => 0.42694776721785
325 => 0.42853137882084
326 => 0.42042939795985
327 => 0.45705111971286
328 => 0.4487624961943
329 => 0.4580229194266
330 => 0.43233023556476
331 => 0.43331173068807
401 => 0.42114840240435
402 => 0.42795905348934
403 => 0.42314550482
404 => 0.42740882018584
405 => 0.42996423383781
406 => 0.44212556623905
407 => 0.46050373876122
408 => 0.440309068723
409 => 0.43150996179435
410 => 0.43696887824483
411 => 0.45150669212006
412 => 0.47353222431802
413 => 0.46049266595168
414 => 0.4662794005286
415 => 0.46754354459976
416 => 0.45792865701111
417 => 0.47388673893795
418 => 0.48243880468577
419 => 0.49121145454238
420 => 0.4988285006088
421 => 0.48770746527495
422 => 0.49960856721997
423 => 0.49001837987958
424 => 0.4814149904199
425 => 0.48142803821039
426 => 0.47603100632687
427 => 0.46557357698277
428 => 0.46364506656597
429 => 0.47367742129819
430 => 0.48172241972591
501 => 0.48238504432936
502 => 0.48683916882588
503 => 0.4894750738218
504 => 0.51531052612083
505 => 0.52570175875758
506 => 0.53840796132982
507 => 0.54335774331404
508 => 0.55825481249151
509 => 0.5462242192499
510 => 0.5436213247261
511 => 0.50748590769575
512 => 0.51340308021013
513 => 0.52287704432787
514 => 0.50764212987458
515 => 0.51730517650127
516 => 0.51921286659669
517 => 0.50712445331117
518 => 0.51358139715647
519 => 0.49643366865377
520 => 0.46087751238324
521 => 0.47392632310414
522 => 0.48353463997693
523 => 0.46982238710254
524 => 0.49440106964241
525 => 0.48004271070961
526 => 0.47549180025069
527 => 0.45773707603372
528 => 0.46611662242213
529 => 0.47745007889599
530 => 0.47044732045087
531 => 0.48497909569395
601 => 0.50555996492105
602 => 0.52022711794423
603 => 0.52135307983058
604 => 0.51192308305961
605 => 0.52703471306653
606 => 0.52714478479339
607 => 0.51009880441277
608 => 0.49965823634205
609 => 0.49728611730924
610 => 0.50321213573453
611 => 0.51040741610618
612 => 0.52175236781461
613 => 0.52860788452853
614 => 0.54648343623335
615 => 0.55132004799244
616 => 0.55663401794663
617 => 0.56373512057305
618 => 0.57226181496143
619 => 0.55360589306465
620 => 0.5543471276206
621 => 0.53697499145915
622 => 0.5184103725543
623 => 0.53249860419066
624 => 0.55091709297629
625 => 0.54669187129825
626 => 0.54621644754602
627 => 0.54701597842571
628 => 0.54383029926331
629 => 0.52942159047852
630 => 0.52218562713009
701 => 0.5315218659407
702 => 0.53648366136035
703 => 0.5441789733422
704 => 0.5432303637121
705 => 0.56305266096117
706 => 0.570755006277
707 => 0.56878441674327
708 => 0.56914705264236
709 => 0.58309178092471
710 => 0.59860118672679
711 => 0.61312779190678
712 => 0.62790487862808
713 => 0.61009052382604
714 => 0.60104549309423
715 => 0.61037765599503
716 => 0.60542587900016
717 => 0.63388025840514
718 => 0.63585037789855
719 => 0.66430269972804
720 => 0.69130734118367
721 => 0.67434620972379
722 => 0.69033979274432
723 => 0.70763815675698
724 => 0.74100950749581
725 => 0.72977121058525
726 => 0.72116285127832
727 => 0.71302799332856
728 => 0.72995534134967
729 => 0.75173210415785
730 => 0.75642261029149
731 => 0.76402302213923
801 => 0.75603211841547
802 => 0.76565628178157
803 => 0.79963380753556
804 => 0.79045278014892
805 => 0.77741424533608
806 => 0.8042362386826
807 => 0.81394301380684
808 => 0.8820702451064
809 => 0.96808368881765
810 => 0.93247355832647
811 => 0.91036920119887
812 => 0.91556424944621
813 => 0.94697344735074
814 => 0.95706108483957
815 => 0.92963940872777
816 => 0.9393252083113
817 => 0.99269491630334
818 => 1.0213260523358
819 => 0.98244112392912
820 => 0.87515914865363
821 => 0.77624026793388
822 => 0.80247800947601
823 => 0.79950346383705
824 => 0.85684255706783
825 => 0.79023381568212
826 => 0.79135533605941
827 => 0.84988014101505
828 => 0.83426672642205
829 => 0.80897499439645
830 => 0.77642492556718
831 => 0.71625311281932
901 => 0.66295726025342
902 => 0.76748270043698
903 => 0.76297537338908
904 => 0.75644809587529
905 => 0.77097384565704
906 => 0.84150676339124
907 => 0.83988075134469
908 => 0.82953689230319
909 => 0.83738261821958
910 => 0.80759960070977
911 => 0.81527536246875
912 => 0.77622459867779
913 => 0.79387717481526
914 => 0.80892072969861
915 => 0.81194094606508
916 => 0.81874564775481
917 => 0.76060021684937
918 => 0.78670580826575
919 => 0.80204039745975
920 => 0.73275816560413
921 => 0.80067091049532
922 => 0.75958803425921
923 => 0.74564388902058
924 => 0.76441784358296
925 => 0.75710161523173
926 => 0.75081155171869
927 => 0.7473015882014
928 => 0.76108710842626
929 => 0.76044399743051
930 => 0.73788821068847
1001 => 0.70846510637497
1002 => 0.71834046596306
1003 => 0.71475265524272
1004 => 0.70174996635541
1005 => 0.71051220871481
1006 => 0.67192772783337
1007 => 0.60554513392365
1008 => 0.64939950881425
1009 => 0.64771116308535
1010 => 0.64685982260845
1011 => 0.67981517329284
1012 => 0.67664727673384
1013 => 0.67089751345911
1014 => 0.70164436744385
1015 => 0.69042135213587
1016 => 0.72500804084008
1017 => 0.74778907094744
1018 => 0.74201106482309
1019 => 0.76343673374934
1020 => 0.71856797430255
1021 => 0.73347157636859
1022 => 0.73654318809891
1023 => 0.70126495603839
1024 => 0.67716558378893
1025 => 0.67555843041285
1026 => 0.63377344003035
1027 => 0.65609464461602
1028 => 0.67573638093721
1029 => 0.66632951349967
1030 => 0.66335158029112
1031 => 0.6785651952187
1101 => 0.67974742339438
1102 => 0.65279249570209
1103 => 0.65839727872086
1104 => 0.68177015562679
1105 => 0.65780834219146
1106 => 0.61125445282661
1107 => 0.59970844460626
1108 => 0.59816799427451
1109 => 0.56685430425543
1110 => 0.60048000408493
1111 => 0.58580148499662
1112 => 0.63217075092091
1113 => 0.60568487490832
1114 => 0.60454312173007
1115 => 0.60281719434236
1116 => 0.5758642077907
1117 => 0.58176519889386
1118 => 0.60138099206708
1119 => 0.60838012805901
1120 => 0.60765006083282
1121 => 0.60128486397917
1122 => 0.60419881850369
1123 => 0.59481195569116
1124 => 0.5914972590614
1125 => 0.58103516471874
1126 => 0.56565877626235
1127 => 0.56779695738609
1128 => 0.53733230840309
1129 => 0.52073355075586
1130 => 0.51613923340722
1201 => 0.50999552023887
1202 => 0.51683318215738
1203 => 0.53724600588021
1204 => 0.51262380964834
1205 => 0.47041078125506
1206 => 0.47294785618899
1207 => 0.47864791030124
1208 => 0.4680258971727
1209 => 0.45797305318452
1210 => 0.46671318541923
1211 => 0.44882696880447
1212 => 0.48080937412672
1213 => 0.47994433969241
1214 => 0.49186540261787
1215 => 0.49931988790999
1216 => 0.48213971272992
1217 => 0.47781894513226
1218 => 0.48028025072382
1219 => 0.43960035192124
1220 => 0.48854098700617
1221 => 0.48896422765069
1222 => 0.48534018429548
1223 => 0.51139956160562
1224 => 0.56639297585362
1225 => 0.54570224130856
1226 => 0.53769016351195
1227 => 0.5224591977638
1228 => 0.54275355529795
1229 => 0.54119526528062
1230 => 0.53414808685833
1231 => 0.52988593135999
]
'min_raw' => 0.39804038590604
'max_raw' => 1.0213260523358
'avg_raw' => 0.70968321912094
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.39804'
'max' => '$1.02'
'avg' => '$0.709683'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.24476927520165
'max_diff' => 0.5936521239563
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.012494032883029
]
1 => [
'year' => 2028
'avg' => 0.02144338747094
]
2 => [
'year' => 2029
'avg' => 0.058579469776041
]
3 => [
'year' => 2030
'avg' => 0.045193973693052
]
4 => [
'year' => 2031
'avg' => 0.044386082994078
]
5 => [
'year' => 2032
'avg' => 0.077822772303025
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.012494032883029
'min' => '$0.012494'
'max_raw' => 0.077822772303025
'max' => '$0.077822'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.077822772303025
]
1 => [
'year' => 2033
'avg' => 0.20016817278469
]
2 => [
'year' => 2034
'avg' => 0.12687620754318
]
3 => [
'year' => 2035
'avg' => 0.14965077775189
]
4 => [
'year' => 2036
'avg' => 0.29047251954196
]
5 => [
'year' => 2037
'avg' => 0.70968321912094
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.077822772303025
'min' => '$0.077822'
'max_raw' => 0.70968321912094
'max' => '$0.709683'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.70968321912094
]
]
]
]
'prediction_2025_max_price' => '$0.021362'
'last_price' => 0.02071366
'sma_50day_nextmonth' => '$0.017474'
'sma_200day_nextmonth' => '$0.032627'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 de fev. de 2026'
'sma_50day_date_nextmonth' => '4 de fev. de 2026'
'daily_sma3' => '$0.02131'
'daily_sma3_action' => 'SELL'
'daily_sma5' => '$0.019629'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.016832'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.015068'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.017487'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.028488'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '$0.020511'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019595'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.017872'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.01681'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.019321'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.0265015'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.038367'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.028464'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.019441'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.018899'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.021197'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.030383'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.023126'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.011563'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.005781'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '67.04'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 106.05
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'SELL'
'vwma_10' => '0.0170015'
'vwma_10_action' => 'BUY'
'hma_9' => '0.022576'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 87.77
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 165.29
'cci_20_action' => 'SELL'
'adx_14' => 34.51
'adx_14_action' => 'SELL'
'ao_5_34' => '0.003227'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -12.23
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.97
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.012978'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 11
'buy_signals' => 19
'sell_pct' => 36.67
'buy_pct' => 63.33
'overall_action' => 'bullish'
'overall_action_label' => 'Altista'
'overall_action_dir' => 1
'last_updated' => 1767708802
'last_updated_date' => '6 de janeiro de 2026'
]
Previsão de preço de Blum para 2026
A previsão de preço para Blum em 2026 sugere que o preço médio poderia variar entre $0.007156 na extremidade inferior e $0.021362 na extremidade superior. No mercado de criptomoedas, comparado ao preço médio de hoje, Blum poderia potencialmente ganhar 3.13% até 2026 se BLUM atingir a meta de preço prevista.
Previsão de preço de Blum 2027-2032
A previsão de preço de BLUM para 2027-2032 está atualmente dentro de uma faixa de preço entre $0.012494 na extremidade inferior e $0.077822 na extremidade superior. Considerando a volatilidade de preços no mercado, se Blum atingir a meta de preço superior, poderia ganhar 275.71% até 2032 em comparação com o preço de hoje.
| Previsão de Preço de Blum | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006889 | $0.012494 | $0.018098 |
| 2028 | $0.012433 | $0.021443 | $0.030453 |
| 2029 | $0.027312 | $0.058579 | $0.089846 |
| 2030 | $0.023228 | $0.045193 | $0.067159 |
| 2031 | $0.027462 | $0.044386 | $0.0613091 |
| 2032 | $0.04192 | $0.077822 | $0.113725 |
Previsão de preço de Blum 2032-2037
A previsão de preço de Blum para 2032-2037 é atualmente estimada entre $0.077822 na extremidade inferior e $0.709683 na extremidade superior. Comparado ao preço atual, Blum poderia potencialmente ganhar 3326.16% até 2037 se atingir a meta de preço superior. Por favor, note que esta informação é apenas para fins gerais e não deve ser considerada como aconselhamento de investimento a longo prazo.
| Previsão de Preço de Blum | Potencial Mínimo ($) | Preço Médio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.04192 | $0.077822 | $0.113725 |
| 2033 | $0.097413 | $0.200168 | $0.302923 |
| 2034 | $0.078315 | $0.126876 | $0.175436 |
| 2035 | $0.092593 | $0.14965 | $0.2067081 |
| 2036 | $0.153271 | $0.290472 | $0.427673 |
| 2037 | $0.39804 | $0.709683 | $1.02 |
Blum Histograma de preços potenciais
Previsão de preço de Blum baseada na análise técnica
Em 6 de janeiro de 2026, o sentimento geral de previsão de preço para Blum é Altista, com 19 indicadores técnicos mostrando sinais de alta e 11 indicando sinais de baixa. A previsão de preço de BLUM foi atualizada pela última vez em 6 de janeiro de 2026.
Médias Móveis Simples de 50 e 200 dias e Índice de Força Relativa de 14 dias - RSI (14) de Blum
De acordo com nossos indicadores técnicos, o SMA de 200 dias de Blum está projetado para aumentar no próximo mês, alcançando $0.032627 até 4 de fev. de 2026. O SMA de 50 dias de curto prazo para Blum é esperado para alcançar $0.017474 até 4 de fev. de 2026.
O oscilador de momentum Índice de Força Relativa (RSI) é uma ferramenta comumente usada para identificar se uma criptomoeda está sobrevendida (abaixo de 30) ou sobrecomprada (acima de 70). No momento, o RSI está em 67.04, sugerindo que o mercado de BLUM está em um estado NEUTRAL.
Médias Móveis e Osciladores Populares de BLUM para Sábado, 19 de Outubro de 2024
Médias móveis (MA) são indicadores amplamente utilizados nos mercados financeiros, projetados para suavizar movimentos de preços ao longo de um período definido. Como indicadores atrasados, eles se baseiam em dados históricos de preços. A tabela abaixo destaca dois tipos: a média móvel simples (SMA) e a média móvel exponencial (EMA).
Média Móvel Simples Diária (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 3 | $0.02131 | SELL |
| SMA 5 | $0.019629 | BUY |
| SMA 10 | $0.016832 | BUY |
| SMA 21 | $0.015068 | BUY |
| SMA 50 | $0.017487 | BUY |
| SMA 100 | $0.028488 | SELL |
| SMA 200 | — | — |
Média Móvel Exponencial Diária (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 3 | $0.020511 | BUY |
| EMA 5 | $0.019595 | BUY |
| EMA 10 | $0.017872 | BUY |
| EMA 21 | $0.01681 | BUY |
| EMA 50 | $0.019321 | BUY |
| EMA 100 | $0.0265015 | SELL |
| EMA 200 | $0.038367 | SELL |
Média Móvel Simples Semanal (SMA)
| Período | Valor | Ação |
|---|---|---|
| SMA 21 | $0.028464 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Média Móvel Exponencial Semanal (EMA)
| Período | Valor | Ação |
|---|---|---|
| EMA 21 | $0.030383 | SELL |
| EMA 50 | $0.023126 | SELL |
| EMA 100 | $0.011563 | BUY |
| EMA 200 | $0.005781 | BUY |
Osciladores de Blum
Um oscilador é uma ferramenta de análise técnica que define limites altos e baixos entre dois extremos, criando um indicador de tendência que flutua dentro desses limites. Os traders usam esse indicador para identificar condições de sobrecompra ou sobrevenda de curto prazo.
| Período | Valor | Ação |
|---|---|---|
| RSI (14) | 67.04 | NEUTRAL |
| Stoch RSI (14) | 106.05 | SELL |
| Estocástico Rápido (14) | 87.77 | SELL |
| Índice de Canal de Commodities (20) | 165.29 | SELL |
| Índice Direcional Médio (14) | 34.51 | SELL |
| Oscilador Impressionante (5, 34) | 0.003227 | BUY |
| Momentum (10) | 0.01 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Williams Percent Range (14) | -12.23 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.97 | SELL |
| VWMA (10) | 0.0170015 | BUY |
| Média Móvel de Hull (9) | 0.022576 | BUY |
| Nuvem Ichimoku B/L (9, 26, 52, 26) | -0.012978 | NEUTRAL |
Previsão do preço de Blum com base nos fluxos financeiros mundiais
Definições dos fluxos financeiros mundiais, usadas na previsão do preço do Blum
M0: o total de todas as moedas físicas, mais as contas no Banco Central que podem ser trocadas por moedas físicas.
M1: o valor de M0, mais o valor em contas de demanda, incluindo contas 'correntes'.
M2: o valor de M1, mais a maioria das contas de poupança, do mercado de moedas e de certificados de depósito (CD) de menos de US$ 100.000.
Previsões de preço de Blum por empresas de Internet ou nichos tecnológicos
| Comparação | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook stock | $0.0291061 | $0.040899 | $0.057469 | $0.080754 | $0.113474 | $0.159449 |
| Amazon.com stock | $0.04322 | $0.090181 | $0.188169 | $0.392626 | $0.819239 | $1.70 |
| Apple stock | $0.02938 | $0.041674 | $0.059111 | $0.083845 | $0.118928 | $0.168691 |
| Netflix stock | $0.032682 | $0.051568 | $0.081367 | $0.128384 | $0.20257 | $0.319624 |
| Google stock | $0.026824 | $0.034737 | $0.044984 | $0.058254 | $0.075439 | $0.097693 |
| Tesla stock | $0.046956 | $0.106446 | $0.2413059 | $0.547022 | $1.24 | $2.81 |
| Kodak stock | $0.015533 | $0.011648 | $0.008734 | $0.00655 | $0.004911 | $0.003683 |
| Nokia stock | $0.013721 | $0.00909 | $0.006021 | $0.003989 | $0.002642 | $0.00175 |
Este cálculo mostra quanto a criptomoeda pode custar, se assumirmos que sua capitalização se comportará da mesma forma que a de algumas empresas de Internet ou nichos tecnológicos. Se você extrapolar os dados, poderá obter uma imagem em potencial do preço futuro para 2024, 2025, 2026, 2027, 2028, 2029 e 2030.
Visão geral da previsão para Blum
Você pode fazer perguntas como: 'Devo investir em Blum agora?', 'Devo comprar BLUM hoje?', 'Blum será um bom ou mau investimento no curto ou no longo prazo?'.
Atualizamos a previsão para Blum regularmente com novos valores. Veja nossas previsões semelhantes. Fazemos previsões de preços futuros para uma enorme quantidade de moedas digitais, como Blum, com métodos de análise técnica.
Se você estiver tentando encontrar criptomoedas com bom retorno, você deve explorar o máximo de fontes de informações disponíveis sobre Blum para poder tomar sozinho uma decisão de tão grande responsabilidade sobre o seu investimento.
O preço de Blum é de $0.02071 USD hoje, mas o preço pode tanto subir quanto descer e seu investimento pode ser perdido, porque criptomoedas são ativos de alto risco
Previsão de curto prazo para Blum
com base no histórico de preços de 4 horas
Previsão de longo prazo para Blum
com base no histórico de preços de 1 mês
Previsão do preço de Blum com base no padrão de crescimento do Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Se Blum tiver 1% da média anterior do crescimento anual do Bitcoin | $0.021252 | $0.0218044 | $0.022371 | $0.022952 |
| Se Blum tiver 2% da média anterior do crescimento anual do Bitcoin | $0.02179 | $0.022923 | $0.024114 | $0.025368 |
| Se Blum tiver 5% da média anterior do crescimento anual do Bitcoin | $0.0234057 | $0.026447 | $0.029884 | $0.033769 |
| Se Blum tiver 10% da média anterior do crescimento anual do Bitcoin | $0.026097 | $0.032881 | $0.041428 | $0.052196 |
| Se Blum tiver 20% da média anterior do crescimento anual do Bitcoin | $0.031481 | $0.047848 | $0.072722 | $0.110528 |
| Se Blum tiver 50% da média anterior do crescimento anual do Bitcoin | $0.047634 | $0.109542 | $0.251911 | $0.579311 |
| Se Blum tiver 100% da média anterior do crescimento anual do Bitcoin | $0.074555 | $0.268347 | $0.96587 | $3.47 |
Perguntas Frequentes sobre Blum
BLUM é um bom investimento?
A decisão de adquirir Blum depende inteiramente da sua tolerância individual ao risco. Como você pode perceber, o valor de Blum experimentou uma queda de -0.5065% nas últimas 24 horas, e Blum registrou um declínio de durante os últimos 30 dias. Consequentemente, a decisão de investir ou não em Blum dependerá de quão alinhado esse investimento está com suas aspirações de negociação.
Blum pode subir?
Parece que o valor médio de Blum pode potencialmente subir para $0.021362 até o final deste ano. Observando as perspectivas de Blum em um horizonte de cinco anos mais longo, a moeda digital poderia potencialmente crescer até $0.067159. No entanto, dada a imprevisibilidade do mercado, é vital conduzir uma pesquisa aprofundada antes de investir quaisquer fundos em um projeto, rede ou ativo específico.
Qual será o preço de Blum na próxima semana?
Com base na nossa nova previsão experimental de Blum, o preço de Blum aumentará 0.86% na próxima semana e atingirá $0.02089 até 13 de janeiro de 2026.
Qual será o preço de Blum no próximo mês?
Com base na nossa nova previsão experimental de Blum, o preço de Blum diminuirá -11.62% no próximo mês e atingirá $0.018307 até 5 de fevereiro de 2026.
Até onde o preço de Blum pode subir este ano em 2026?
De acordo com nossa previsão mais recente sobre o valor de Blum em 2026, espera-se que BLUM fluctue dentro do intervalo de $0.007156 e $0.021362. No entanto, é crucial lembrar que o mercado de criptomoedas é excepcionalmente instável, e essa previsão de preço de Blum não considera flutuações repentinas e extremas de preço.
Onde estará Blum em 5 anos?
O futuro de Blum parece seguir uma tendência de alta, com um preço máximo de $0.067159 projetada após um período de cinco anos. Com base na previsão de Blum para 2030, o valor de Blum pode potencialmente atingir seu pico mais alto de aproximadamente $0.067159, enquanto seu pico mais baixo está previsto para cerca de $0.023228.
Quanto será Blum em 2026?
Com base na nossa nova simulação experimental de previsão de preços de Blum, espera-se que o valor de BLUM em 2026 aumente 3.13% para $0.021362 se o melhor cenário ocorrer. O preço ficará entre $0.021362 e $0.007156 durante 2026.
Quanto será Blum em 2027?
De acordo com nossa última simulação experimental para previsão de preços de Blum, o valor de BLUM pode diminuir -12.62% para $0.018098 em 2027, assumindo as condições mais favoráveis. O preço está projetado para flutuar entre $0.018098 e $0.006889 ao longo do ano.
Quanto será Blum em 2028?
Nosso novo modelo experimental de previsão de preços de Blum sugere que o valor de BLUM em 2028 pode aumentar 47.02%, alcançando $0.030453 no melhor cenário. O preço é esperado para variar entre $0.030453 e $0.012433 durante o ano.
Quanto será Blum em 2029?
Com base no nosso modelo de previsão experimental, o valor de Blum pode experimentar um 333.75% crescimento em 2029, potencialmente alcançando $0.089846 sob condições ótimas. A faixa de preço prevista para 2029 está entre $0.089846 e $0.027312.
Quanto será Blum em 2030?
Usando nossa nova simulação experimental para previsões de preços de Blum, espera-se que o valor de BLUM em 2030 aumente 224.23%, alcançando $0.067159 no melhor cenário. O preço está previsto para variar entre $0.067159 e $0.023228 ao longo de 2030.
Quanto será Blum em 2031?
Nossa simulação experimental indica que o preço de Blum poderia aumentar 195.98% em 2031, potencialmente atingindo $0.0613091 sob condições ideais. O preço provavelmente oscilará entre $0.0613091 e $0.027462 durante o ano.
Quanto será Blum em 2032?
Com base nos achados da nossa mais recente previsão experimental de preços de Blum, BLUM poderia ver um 449.04% aumento em valor, atingindo $0.113725 se o cenário mais positivo se desenrolar em 2032. O preço é esperado para permanecer dentro de uma faixa de $0.113725 e $0.04192 ao longo do ano.
Quanto será Blum em 2033?
De acordo com nossa previsão experimental de preços de Blum, espera-se que o valor de BLUM seja aumentar 1362.43% em 2033, com o preço potencial mais alto sendo $0.302923. Ao longo do ano, o preço de BLUM poderia variar entre $0.302923 e $0.097413.
Quanto será Blum em 2034?
Os resultados da nossa nova simulação de previsão de preços de Blum sugerem que BLUM pode aumentar 746.96% em 2034, atingindo potencialmente $0.175436 nas melhores circunstâncias. A faixa de preço prevista para o ano é entre $0.175436 e $0.078315.
Quanto será Blum em 2035?
Com base em nossa previsão experimental para o preço de Blum, BLUM poderia aumentar 897.93%, com o valor potencialmente atingindo $0.2067081 em 2035. A faixa de preço esperada para o ano está entre $0.2067081 e $0.092593.
Quanto será Blum em 2036?
Nossa recente simulação de previsão de preços de Blum sugere que o valor de BLUM pode aumentar 1964.7% em 2036, possivelmente atingindo $0.427673 se as condições forem ideais. A faixa de preço esperada para 2036 está entre $0.427673 e $0.153271.
Quanto será Blum em 2037?
De acordo com a simulação experimental, o valor de Blum poderia aumentar 4830.69% em 2037, com um pico de $1.02 sob condições favoráveis. O preço é esperado para cair entre $1.02 e $0.39804 ao longo do ano.
Previsões relacionadas
Como ler e prever os movimentos de preço de Blum?
Traders de Blum utilizam indicadores e padrões de gráfico para prever a direção do mercado. Eles também identificam níveis-chave de suporte e resistência para avaliar quando uma tendência de baixa pode desacelerar ou uma tendência de alta pode estagnar.
Indicadores de Previsão de Preço de Blum
Médias móveis são ferramentas populares para a previsão de preço de Blum. Uma média móvel simples (SMA) calcula o preço médio de fechamento de BLUM em um período específico, como uma SMA de 12 dias. Uma média móvel exponencial (EMA) dá mais peso aos preços recentes, reagindo mais rapidamente às mudanças de preço.
Médias móveis comumente usadas no mercado de criptomoedas incluem as de 50 dias, 100 dias e 200 dias, que ajudam a identificar níveis-chave de resistência e suporte. Um movimento de preço de BLUM acima dessas médias é visto como altista, enquanto uma queda abaixo indica fraqueza.
Traders também usam RSI e níveis de retração de Fibonacci para avaliar a direção futura de BLUM.
Como ler gráficos de Blum e prever movimentos de preço?
A maioria dos traders prefere gráficos de velas em vez de gráficos de linha simples porque eles fornecem informações mais detalhadas. Velas podem representar a ação de preço de Blum em diferentes períodos de tempo, como 5 minutos para tendências de curto prazo e semanal para tendências de longo prazo. Opções populares incluem gráficos de 1 hora, 4 horas e 1 dia.
Por exemplo, um gráfico de velas de 1 hora mostra os preços de abertura, fechamento, máximo e mínimo de BLUM dentro de cada hora. A cor da vela é crucial: verde indica que o preço fechou mais alto do que abriu, enquanto vermelho significa o oposto. Alguns gráficos usam velas vazias e preenchidas para transmitir a mesma informação.
O que afeta o preço de Blum?
A ação de preço de Blum é impulsionada pela oferta e demanda, influenciada por fatores como reduções pela metade das recompensas de bloco, hard forks e atualizações de protocolo. Eventos do mundo real, como regulamentações, adoção por empresas e governos e hacks de exchanges de criptomoedas, também impactam o preço de BLUM. A capitalização de mercado de Blum pode mudar rapidamente.
Traders frequentemente monitoram a atividade de "baleias" de BLUM, grandes detentores de Blum, pois suas ações podem influenciar significativamente os movimentos de preço no relativamente pequeno mercado de Blum.
Padrões de previsão de preço altistas e baixistas
Traders frequentemente identificam padrões de velas para ganhar vantagem em previsões de preço de criptomoedas. Certas formações indicam tendências altistas, enquanto outras sugerem movimentos baixistas.
Padrões de velas altistas comumente seguidos:
- Martelo
- Engolfo de Alta
- Linha de Perfuração
- Estrela da Manhã
- Três Soldados Brancos
Padrões de velas baixistas comuns:
- Harami de Baixa
- Nuvem Negra
- Estrela da Noite
- Estrela Cadente
- Homem Enforcado


