Predicción del precio de BitDoge - Pronóstico de BDOGE
Predicción de precio de BitDoge hasta $0.014436 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.004836 | $0.014436 |
| 2027 | $0.004655 | $0.01223 |
| 2028 | $0.0084023 | $0.020579 |
| 2029 | $0.018457 | $0.060716 |
| 2030 | $0.015697 | $0.045385 |
| 2031 | $0.018559 | $0.041431 |
| 2032 | $0.028329 | $0.076853 |
| 2033 | $0.06583 | $0.20471 |
| 2034 | $0.052924 | $0.118557 |
| 2035 | $0.062573 | $0.13969 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en BitDoge hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.85, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de BitDoge para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'BitDoge'
'name_with_ticker' => 'BitDoge <small>BDOGE</small>'
'name_lang' => 'BitDoge'
'name_lang_with_ticker' => 'BitDoge <small>BDOGE</small>'
'name_with_lang' => 'BitDoge'
'name_with_lang_with_ticker' => 'BitDoge <small>BDOGE</small>'
'image' => '/uploads/coins/bitdoge.png?1666331533'
'price_for_sd' => 0.01399
'ticker' => 'BDOGE'
'marketcap' => '$0'
'low24h' => '$0'
'high24h' => '$0'
'volume24h' => '$279.96'
'current_supply' => '0'
'max_supply' => '21M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01399'
'change_24h_pct' => '0%'
'ath_price' => '$0'
'ath_days' => 0
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '<span class=\"not-set\">(no definido)</span>'
'ath_pct' => 0
'fdv' => '$0'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.690197'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.014117'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.012371'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.004836'
'current_year_max_price_prediction' => '$0.014436'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.015697'
'grand_prediction_max_price' => '$0.045385'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.014263244547557
107 => 0.01431649832514
108 => 0.014436481805239
109 => 0.013411236104543
110 => 0.013871541324524
111 => 0.014141927516495
112 => 0.012920312864433
113 => 0.014117780122615
114 => 0.01339338885786
115 => 0.013147519582611
116 => 0.01347855017092
117 => 0.013349547228718
118 => 0.01323863807432
119 => 0.013176748860504
120 => 0.013419821190046
121 => 0.013408481575339
122 => 0.013010768065902
123 => 0.012491967005719
124 => 0.012666093670581
125 => 0.012602831820791
126 => 0.012373562716209
127 => 0.01252806241064
128 => 0.011847723946873
129 => 0.010677236980877
130 => 0.011450496523599
131 => 0.011420726872349
201 => 0.011405715664242
202 => 0.011986798839274
203 => 0.011930941099864
204 => 0.011829558755875
205 => 0.012371700749957
206 => 0.012173811629278
207 => 0.012783659270668
208 => 0.01318534436976
209 => 0.013083464035479
210 => 0.013461250812688
211 => 0.012670105197253
212 => 0.012932892035448
213 => 0.012987052038593
214 => 0.012365010801904
215 => 0.011940080116836
216 => 0.011911742084706
217 => 0.011174970835854
218 => 0.011568548089981
219 => 0.01191487978628
220 => 0.011749013780178
221 => 0.011696505557752
222 => 0.011964758678482
223 => 0.011985604243395
224 => 0.011510323154258
225 => 0.011609149142884
226 => 0.012021269943909
227 => 0.011598764756091
228 => 0.010777906191992
301 => 0.010574321918838
302 => 0.010547160023996
303 => 0.0099950233287297
304 => 0.010587926393446
305 => 0.010329108316883
306 => 0.011146711519629
307 => 0.010679700955114
308 => 0.01065956906308
309 => 0.010629136755564
310 => 0.010153889893469
311 => 0.010257938752754
312 => 0.010603813008107
313 => 0.010727224838969
314 => 0.010714351973927
315 => 0.010602118035564
316 => 0.010653498157816
317 => 0.010487984882023
318 => 0.010429538699479
319 => 0.010245066470483
320 => 0.0099739432556117
321 => 0.010011644601535
322 => 0.0094744785696273
323 => 0.009181802005885
324 => 0.0091007929904562
325 => 0.0089924643494251
326 => 0.0091130289987122
327 => 0.0094729568457502
328 => 0.0090388074992699
329 => 0.0082944888967652
330 => 0.0083392237130329
331 => 0.0084397295633003
401 => 0.0082524375762397
402 => 0.0080751814287118
403 => 0.0082292912677415
404 => 0.0079139136636815
405 => 0.0084778414400166
406 => 0.0084625887740561
407 => 0.0086727861760141
408 => 0.0088042269251433
409 => 0.0085012985528483
410 => 0.0084251128864215
411 => 0.0084685117044637
412 => 0.0077512259142883
413 => 0.0086141686241249
414 => 0.0086216313885141
415 => 0.0085577306690386
416 => 0.0090172210216595
417 => 0.0099868889843246
418 => 0.0096220608919666
419 => 0.0094807884276181
420 => 0.009212229369622
421 => 0.0095700683689428
422 => 0.0095425919169529
423 => 0.0094183329809198
424 => 0.0093431807886955
425 => 0.0094816510071608
426 => 0.0093260227962456
427 => 0.009298067693188
428 => 0.0091286901841111
429 => 0.0090682301195562
430 => 0.0090234678947443
501 => 0.0089741890834718
502 => 0.0090828858616243
503 => 0.0088365646620787
504 => 0.0085395254425917
505 => 0.0085148298455002
506 => 0.0085830165603288
507 => 0.0085528490149211
508 => 0.0085146854148991
509 => 0.0084418207092191
510 => 0.008420203307552
511 => 0.0084904493756978
512 => 0.0084111456603614
513 => 0.0085281626122373
514 => 0.0084963404761703
515 => 0.0083185846109094
516 => 0.008097034989144
517 => 0.0080950627327942
518 => 0.0080473302301991
519 => 0.0079865357115143
520 => 0.0079696240672064
521 => 0.0082163125669457
522 => 0.0087269503786406
523 => 0.0086266999576777
524 => 0.0086991411608998
525 => 0.0090554801830585
526 => 0.0091687496427145
527 => 0.0090883536631848
528 => 0.0089783026877966
529 => 0.0089831443721955
530 => 0.0093592218697929
531 => 0.009382677362012
601 => 0.0094419418238211
602 => 0.0095181134053807
603 => 0.0091013260128997
604 => 0.0089635137234907
605 => 0.0088982106152341
606 => 0.008697102317287
607 => 0.0089139803749005
608 => 0.0087876148183735
609 => 0.0088046658492111
610 => 0.0087935613430094
611 => 0.0087996251542789
612 => 0.0084776838107103
613 => 0.0085949823155678
614 => 0.008399950800823
615 => 0.0081388254958946
616 => 0.0081379501123101
617 => 0.0082018601607554
618 => 0.0081638439631397
619 => 0.0080615433528417
620 => 0.0080760746716893
621 => 0.0079487650280123
622 => 0.0080915323674471
623 => 0.008095626423896
624 => 0.0080406532216241
625 => 0.0082606060061198
626 => 0.008350720841392
627 => 0.0083145363020165
628 => 0.0083481820376488
629 => 0.0086308658152722
630 => 0.0086769556053827
701 => 0.0086974256456292
702 => 0.0086699985034596
703 => 0.0083533489781739
704 => 0.0083673937311181
705 => 0.0082643426528537
706 => 0.0081772753509754
707 => 0.0081807575864427
708 => 0.0082255214975651
709 => 0.0084210081228053
710 => 0.0088323982010574
711 => 0.0088480101538048
712 => 0.0088669322959675
713 => 0.0087899664342852
714 => 0.0087667527939377
715 => 0.008797377577505
716 => 0.0089518740610337
717 => 0.0093492809620558
718 => 0.0092088108213201
719 => 0.009094606410354
720 => 0.0091947944680594
721 => 0.0091793713018756
722 => 0.0090491842579585
723 => 0.0090455303412372
724 => 0.0087956597806447
725 => 0.008703288323671
726 => 0.0086260958203401
727 => 0.0085418036218641
728 => 0.0084918323811074
729 => 0.0085686109184324
730 => 0.0085861710783356
731 => 0.0084182934646153
801 => 0.0083954123661943
802 => 0.0085325048494483
803 => 0.0084721755588911
804 => 0.0085342257303236
805 => 0.0085486219023524
806 => 0.0085463037870838
807 => 0.0084833130789673
808 => 0.0085234614779108
809 => 0.0084284985455956
810 => 0.008325240619674
811 => 0.0082593684961321
812 => 0.0082018863316726
813 => 0.0082337807773978
814 => 0.0081200829020833
815 => 0.0080837086634841
816 => 0.0085098601037163
817 => 0.0088246627545159
818 => 0.0088200853992977
819 => 0.0087922219266074
820 => 0.0087508224580885
821 => 0.0089488454320502
822 => 0.0088798581875163
823 => 0.0089300521719919
824 => 0.0089428286476758
825 => 0.0089814991915428
826 => 0.0089953205871297
827 => 0.0089535427300897
828 => 0.0088133311391279
829 => 0.0084639371853692
830 => 0.0083012933567236
831 => 0.0082476181842233
901 => 0.0082495691748
902 => 0.0081957521450886
903 => 0.0082116036722487
904 => 0.0081902396308388
905 => 0.0081497813049251
906 => 0.0082312825897812
907 => 0.0082406748536238
908 => 0.0082216514798706
909 => 0.0082261321730457
910 => 0.0080686267633581
911 => 0.0080806015575728
912 => 0.0080139243817017
913 => 0.0080014232150312
914 => 0.0078328691206747
915 => 0.0075342511102156
916 => 0.0076997144755616
917 => 0.0074998579978936
918 => 0.007424169321481
919 => 0.0077824677436143
920 => 0.0077465045196834
921 => 0.0076849511131514
922 => 0.0075939007960365
923 => 0.007560129347738
924 => 0.0073549447186179
925 => 0.0073428213161121
926 => 0.007444516358755
927 => 0.007397587595688
928 => 0.0073316818390296
929 => 0.0070929778691723
930 => 0.0068245955748842
1001 => 0.0068326963493578
1002 => 0.0069180637637407
1003 => 0.0071662810344234
1004 => 0.0070692982525653
1005 => 0.0069989361315781
1006 => 0.0069857594213947
1007 => 0.0071506935366503
1008 => 0.0073841098645024
1009 => 0.0074936235831346
1010 => 0.0073850988139512
1011 => 0.0072604314025018
1012 => 0.0072680193301835
1013 => 0.0073184984135988
1014 => 0.0073238030515299
1015 => 0.0072426573826934
1016 => 0.0072654994131574
1017 => 0.0072308002801635
1018 => 0.0070178517650295
1019 => 0.0070140002016578
1020 => 0.0069617392017852
1021 => 0.0069601567594789
1022 => 0.0068712477615784
1023 => 0.0068588087781732
1024 => 0.0066822745664512
1025 => 0.0067984699192014
1026 => 0.0067205321771064
1027 => 0.0066030616161143
1028 => 0.006582809647122
1029 => 0.0065822008484791
1030 => 0.0067028168486811
1031 => 0.006797060451013
1101 => 0.0067218879374981
1102 => 0.0067047726133288
1103 => 0.0068875194981183
1104 => 0.006864263291254
1105 => 0.006844123566096
1106 => 0.0073632099924759
1107 => 0.0069523125811772
1108 => 0.0067731378566467
1109 => 0.0065513751106828
1110 => 0.0066235821789935
1111 => 0.0066387972692291
1112 => 0.0061054978409254
1113 => 0.0058891383292808
1114 => 0.0058148918982206
1115 => 0.005772162027455
1116 => 0.0057916345661308
1117 => 0.0055968856292112
1118 => 0.0057277601356713
1119 => 0.0055591240180167
1120 => 0.0055308516241025
1121 => 0.0058323938924752
1122 => 0.0058743517375349
1123 => 0.0056953465352296
1124 => 0.0058102968534194
1125 => 0.0057686142701149
1126 => 0.0055620148002389
1127 => 0.0055541242201325
1128 => 0.0054504598684712
1129 => 0.0052882452314953
1130 => 0.0052141087895975
1201 => 0.005175497886975
1202 => 0.0051914294979085
1203 => 0.0051833739879052
1204 => 0.0051308063361765
1205 => 0.0051863871041688
1206 => 0.0050444012095076
1207 => 0.0049878612821954
1208 => 0.0049623235087448
1209 => 0.0048363028548298
1210 => 0.0050368577568477
1211 => 0.0050763695990694
1212 => 0.005115959291826
1213 => 0.0054605605382411
1214 => 0.0054433452338032
1215 => 0.0055989632017284
1216 => 0.0055929161736579
1217 => 0.0055485314083617
1218 => 0.0053612793845165
1219 => 0.0054359147037748
1220 => 0.0052061987920016
1221 => 0.0053783175722658
1222 => 0.0052997697488053
1223 => 0.0053517604741418
1224 => 0.0052582764621721
1225 => 0.0053100143742564
1226 => 0.0050857393226528
1227 => 0.0048763144351005
1228 => 0.0049605931233451
1229 => 0.0050522136959041
1230 => 0.0052508704416997
1231 => 0.0051325521227864
]
'min_raw' => 0.0048363028548298
'max_raw' => 0.014436481805239
'avg_raw' => 0.0096363923300346
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.004836'
'max' => '$0.014436'
'avg' => '$0.009636'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.0091616871451702
'max_diff' => 0.00043849180523943
'year' => 2026
]
1 => [
'items' => [
101 => 0.0051751038643786
102 => 0.0050325626531203
103 => 0.0047384594194103
104 => 0.0047401240117736
105 => 0.0046948826366545
106 => 0.0046557874832028
107 => 0.0051461424050126
108 => 0.0050851590191214
109 => 0.0049879899750119
110 => 0.0051180546018968
111 => 0.0051524457536483
112 => 0.0051534248213904
113 => 0.0052483166157117
114 => 0.0052989603833512
115 => 0.0053078865669003
116 => 0.0054572008555377
117 => 0.0055072490355859
118 => 0.0057133904061207
119 => 0.0052946636134953
120 => 0.005286040210752
121 => 0.0051198848779263
122 => 0.0050145065390363
123 => 0.0051271002229452
124 => 0.0052268428563179
125 => 0.0051229841595767
126 => 0.0051365459127943
127 => 0.0049971240979866
128 => 0.0050469608363742
129 => 0.0050898869492073
130 => 0.0050661856727812
131 => 0.0050307037148165
201 => 0.0052186650978313
202 => 0.005208059579975
203 => 0.0053830935410519
204 => 0.00551954503051
205 => 0.0057640904932402
206 => 0.0055088945544379
207 => 0.005499594200116
208 => 0.0055905066554367
209 => 0.0055072351173627
210 => 0.0055598598549897
211 => 0.0057556118344332
212 => 0.0057597477652969
213 => 0.0056904655944838
214 => 0.0056862497680935
215 => 0.005699556166862
216 => 0.0057774921600673
217 => 0.0057502589293102
218 => 0.0057817739134033
219 => 0.0058211838835864
220 => 0.0059842002297446
221 => 0.0060235029189141
222 => 0.0059280177603402
223 => 0.0059366390010574
224 => 0.0059009249306245
225 => 0.0058664255860824
226 => 0.0059439750743885
227 => 0.0060856982885069
228 => 0.0060848166357473
301 => 0.0061176936667171
302 => 0.0061381757846433
303 => 0.0060502515406774
304 => 0.0059930160909197
305 => 0.0060149638043431
306 => 0.0060500586760662
307 => 0.0060035830104402
308 => 0.0057167136725742
309 => 0.0058037315043985
310 => 0.0057892474822284
311 => 0.0057686204733408
312 => 0.0058561175761291
313 => 0.0058476782671146
314 => 0.0055948881973775
315 => 0.0056110709974667
316 => 0.0055958723270501
317 => 0.0056449823405217
318 => 0.0055045830154699
319 => 0.0055477689022519
320 => 0.0055748546855991
321 => 0.0055908084200734
322 => 0.0056484442485726
323 => 0.0056416813493284
324 => 0.00564802385726
325 => 0.0057334825756298
326 => 0.0061657034472531
327 => 0.006189228275654
328 => 0.0060733834168064
329 => 0.0061196611529772
330 => 0.0060308180193576
331 => 0.0060904590101537
401 => 0.0061312638613395
402 => 0.0059468745851526
403 => 0.0059359562488934
404 => 0.0058467464280581
405 => 0.0058946827326724
406 => 0.0058184126252887
407 => 0.0058371266418256
408 => 0.0057848006201298
409 => 0.0058789770411751
410 => 0.0059842809134401
411 => 0.0060108848301502
412 => 0.0059409013789923
413 => 0.0058902287482198
414 => 0.0058012643011856
415 => 0.0059492141593055
416 => 0.00599247920651
417 => 0.005948986906431
418 => 0.0059389087901772
419 => 0.005919810778087
420 => 0.0059429605237243
421 => 0.0059922435757713
422 => 0.005969002598541
423 => 0.0059843536734549
424 => 0.0059258512058427
425 => 0.0060502806472607
426 => 0.0062479045458083
427 => 0.0062485399389569
428 => 0.0062252988364491
429 => 0.0062157890780395
430 => 0.0062396358596005
501 => 0.0062525717603512
502 => 0.0063296878791678
503 => 0.0064124365470997
504 => 0.0067985884742655
505 => 0.0066901585583292
506 => 0.0070327755203917
507 => 0.0073037410541386
508 => 0.0073849917698226
509 => 0.0073102449345349
510 => 0.0070545400487606
511 => 0.0070419939471599
512 => 0.0074241250023249
513 => 0.0073161554765297
514 => 0.0073033128449926
515 => 0.0071666889434056
516 => 0.0072474505904429
517 => 0.0072297868335339
518 => 0.0072019037291126
519 => 0.0073559913257547
520 => 0.007644429551174
521 => 0.0075994737487858
522 => 0.0075659163277427
523 => 0.0074188774771503
524 => 0.0075074277075232
525 => 0.0074758966665554
526 => 0.0076113740286462
527 => 0.0075311202405346
528 => 0.0073153375011808
529 => 0.0073497016136522
530 => 0.0073445075471831
531 => 0.0074514010670604
601 => 0.0074193142856535
602 => 0.007338242088139
603 => 0.0076434437006767
604 => 0.0076236256055791
605 => 0.0076517231333803
606 => 0.0076640925340632
607 => 0.0078498633773593
608 => 0.0079259677478538
609 => 0.0079432447723506
610 => 0.008015538038197
611 => 0.0079414460500386
612 => 0.0082378668293645
613 => 0.0084349693509842
614 => 0.0086639140726485
615 => 0.0089984638455399
616 => 0.0091242576549055
617 => 0.0091015341291803
618 => 0.0093551859488228
619 => 0.0098109926303572
620 => 0.0091936656915302
621 => 0.0098437124571019
622 => 0.0096379151562727
623 => 0.009149973458142
624 => 0.0091185557652372
625 => 0.0094489955483309
626 => 0.010181879183582
627 => 0.0099983001452491
628 => 0.010182179453124
629 => 0.0099676744731635
630 => 0.0099570224929186
701 => 0.010171761425031
702 => 0.010673510644721
703 => 0.010435148398235
704 => 0.010093397669075
705 => 0.010345741089256
706 => 0.010127137865415
707 => 0.0096345636189093
708 => 0.0099981597658183
709 => 0.0097550333770023
710 => 0.0098259905825685
711 => 0.010337006089539
712 => 0.010275519351761
713 => 0.010355088883964
714 => 0.010214650742322
715 => 0.010083459372967
716 => 0.0098385809396658
717 => 0.0097660845079262
718 => 0.0097861199135106
719 => 0.0097660745793742
720 => 0.0096290673464912
721 => 0.0095994806475947
722 => 0.0095501681865442
723 => 0.0095654521802082
724 => 0.0094727303265639
725 => 0.0096477156217032
726 => 0.0096801944344462
727 => 0.0098075341396861
728 => 0.0098207549703173
729 => 0.010175394236843
730 => 0.0099800648883114
731 => 0.010111108679231
801 => 0.010099386889139
802 => 0.0091605486343092
803 => 0.0092899122623847
804 => 0.0094911614711273
805 => 0.0094004989753756
806 => 0.0092723234181395
807 => 0.0091688147833327
808 => 0.0090119886172991
809 => 0.0092327184344116
810 => 0.0095229546719155
811 => 0.0098281158402631
812 => 0.010194746989081
813 => 0.010112919184722
814 => 0.0098212619259593
815 => 0.0098343454575316
816 => 0.0099152227015319
817 => 0.0098104793220791
818 => 0.0097795884546448
819 => 0.0099109787707079
820 => 0.0099118835836038
821 => 0.0097913636668831
822 => 0.00965742783436
823 => 0.0096568666383313
824 => 0.0096330340506005
825 => 0.0099719142375765
826 => 0.010158264075762
827 => 0.010179628784392
828 => 0.010156826060646
829 => 0.010165601924008
830 => 0.010057169059106
831 => 0.010305014433504
901 => 0.010532461858419
902 => 0.010471501089836
903 => 0.010380112231647
904 => 0.010307316604216
905 => 0.010454352753492
906 => 0.010447805465221
907 => 0.010530475303583
908 => 0.010526724922191
909 => 0.010498926164919
910 => 0.010471502082617
911 => 0.010580235469067
912 => 0.010548921999974
913 => 0.010517559892415
914 => 0.010454658384406
915 => 0.010463207744028
916 => 0.010371834665414
917 => 0.010329561298299
918 => 0.0096938712848862
919 => 0.0095239941415318
920 => 0.0095774409489992
921 => 0.0095950370257632
922 => 0.0095211062752719
923 => 0.0096271039802249
924 => 0.0096105843501873
925 => 0.0096748525670032
926 => 0.0096347005753382
927 => 0.0096363484270817
928 => 0.0097544268732611
929 => 0.0097887055485286
930 => 0.0097712711376248
1001 => 0.0097834816014052
1002 => 0.010064866585511
1003 => 0.010024862638956
1004 => 0.010003611339657
1005 => 0.010009498094797
1006 => 0.010081397991198
1007 => 0.010101526036602
1008 => 0.010016242093855
1009 => 0.010056462494275
1010 => 0.010227715854535
1011 => 0.010287644838526
1012 => 0.010478909387879
1013 => 0.010397656807858
1014 => 0.010546799435016
1015 => 0.011005213024434
1016 => 0.011371425519469
1017 => 0.011034641374664
1018 => 0.011707143984915
1019 => 0.012230783731765
1020 => 0.012210685566113
1021 => 0.012119376864245
1022 => 0.011523226934138
1023 => 0.01097464088036
1024 => 0.01143355640854
1025 => 0.011434726278598
1026 => 0.011395305027735
1027 => 0.011150463024291
1028 => 0.011386785056741
1029 => 0.011405543441482
1030 => 0.011395043734284
1031 => 0.011207323944306
1101 => 0.010920710521425
1102 => 0.010976714098201
1103 => 0.0110684490994
1104 => 0.010894775604203
1105 => 0.010839276399239
1106 => 0.010942459980423
1107 => 0.011274938978148
1108 => 0.011212085749548
1109 => 0.011210444397739
1110 => 0.011479357163609
1111 => 0.011286873658253
1112 => 0.010977420482652
1113 => 0.010899279474627
1114 => 0.010621931538227
1115 => 0.010813496745778
1116 => 0.010820390836561
1117 => 0.010715472530134
1118 => 0.010985934024981
1119 => 0.010983441674692
1120 => 0.011240204611168
1121 => 0.011731038909954
1122 => 0.011585875055314
1123 => 0.01141706528615
1124 => 0.011435419588645
1125 => 0.01163672098474
1126 => 0.011515009565397
1127 => 0.011558777840395
1128 => 0.011636654736214
1129 => 0.011683639801036
1130 => 0.011428659160877
1201 => 0.011369210976521
1202 => 0.011247600854808
1203 => 0.011215875044014
1204 => 0.011314923950671
1205 => 0.011288828063216
1206 => 0.010819811414926
1207 => 0.010770796565595
1208 => 0.010772299781047
1209 => 0.010649049611877
1210 => 0.010461063520462
1211 => 0.010955079744633
1212 => 0.01091540332808
1213 => 0.010871603634915
1214 => 0.010876968847411
1215 => 0.01109140454656
1216 => 0.010967021011791
1217 => 0.011297715025035
1218 => 0.011229734277484
1219 => 0.011160010080273
1220 => 0.011150372072367
1221 => 0.01112353420503
1222 => 0.011031497172
1223 => 0.010920356924049
1224 => 0.010846972505547
1225 => 0.01000575876757
1226 => 0.010161883144224
1227 => 0.010341490008379
1228 => 0.010403489578156
1229 => 0.010297435023812
1230 => 0.011035684852216
1231 => 0.011170570209818
]
'min_raw' => 0.0046557874832028
'max_raw' => 0.012230783731765
'avg_raw' => 0.008443285607484
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.004655'
'max' => '$0.01223'
'avg' => '$0.008443'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00018051537162707
'max_diff' => -0.0022056980734742
'year' => 2027
]
2 => [
'items' => [
101 => 0.010761993663288
102 => 0.010685565673503
103 => 0.011040695458502
104 => 0.010826508785297
105 => 0.010922957031127
106 => 0.010714488678013
107 => 0.011138080277076
108 => 0.011134853218801
109 => 0.010970066519515
110 => 0.011109343109341
111 => 0.01108514037443
112 => 0.010899096596788
113 => 0.011143978196667
114 => 0.011144099654886
115 => 0.010985496039595
116 => 0.010800281739732
117 => 0.010767169797482
118 => 0.010742224396961
119 => 0.010916821991779
120 => 0.011073365649341
121 => 0.011364654585598
122 => 0.011437891545028
123 => 0.011723740273342
124 => 0.011553531273353
125 => 0.011628982718473
126 => 0.011710895935409
127 => 0.011750168143866
128 => 0.011686176187647
129 => 0.01213021692275
130 => 0.012167707565849
131 => 0.012180277854187
201 => 0.012030549816678
202 => 0.01216354335827
203 => 0.012101320084442
204 => 0.012263207756819
205 => 0.012288593810933
206 => 0.012267092726233
207 => 0.012275150660501
208 => 0.011896240227244
209 => 0.011876591722368
210 => 0.011608682964188
211 => 0.011717857763428
212 => 0.011513760709133
213 => 0.011578481987482
214 => 0.011607010510292
215 => 0.011592108828955
216 => 0.011724030342772
217 => 0.011611870106243
218 => 0.011315860801193
219 => 0.011019770848606
220 => 0.011016053680441
221 => 0.010938098422347
222 => 0.010881751048962
223 => 0.010892605552107
224 => 0.010930858236962
225 => 0.010879527733379
226 => 0.010890481698841
227 => 0.011072390511402
228 => 0.011108871026447
229 => 0.010984895982467
301 => 0.010487118291375
302 => 0.0103649623974
303 => 0.010452765631533
304 => 0.01041080134087
305 => 0.0084023292118122
306 => 0.0088741899464461
307 => 0.0085938263208031
308 => 0.0087230307784096
309 => 0.008436852116437
310 => 0.0085734315738391
311 => 0.0085482103351401
312 => 0.0093069484330573
313 => 0.0092951017812684
314 => 0.0093007721465689
315 => 0.0090301108367198
316 => 0.0094612816525648
317 => 0.0096736919008511
318 => 0.009634380417009
319 => 0.0096442742705594
320 => 0.0094742650866587
321 => 0.0093024182070907
322 => 0.0091118135706046
323 => 0.0094659334257507
324 => 0.0094265613428859
325 => 0.0095168667353494
326 => 0.0097465387744216
327 => 0.0097803588546142
328 => 0.0098258133853625
329 => 0.0098095211717631
330 => 0.010197667797677
331 => 0.010150660680205
401 => 0.010263934308442
402 => 0.010030921861068
403 => 0.0097672461591189
404 => 0.0098173622898512
405 => 0.0098125357034532
406 => 0.0097510877189088
407 => 0.0096956152259872
408 => 0.0096032691545506
409 => 0.009895465789223
410 => 0.009883603139469
411 => 0.010075645650164
412 => 0.010041700270997
413 => 0.0098150047210782
414 => 0.0098231011969926
415 => 0.009877553888551
416 => 0.010066015275764
417 => 0.010121963446919
418 => 0.010096046024891
419 => 0.010157390640431
420 => 0.010205874923332
421 => 0.010163479519886
422 => 0.010763709028689
423 => 0.010514451888779
424 => 0.010635938084451
425 => 0.010664911826281
426 => 0.010590696195836
427 => 0.010606790908617
428 => 0.010631170012934
429 => 0.010779195160424
430 => 0.011167655978862
501 => 0.011339702631006
502 => 0.011857313472613
503 => 0.011325416551551
504 => 0.011293855989463
505 => 0.011387093332386
506 => 0.011690985691082
507 => 0.011937261904646
508 => 0.012018965932701
509 => 0.012029764468795
510 => 0.012183046657008
511 => 0.012270905148748
512 => 0.012164434167637
513 => 0.012074211159122
514 => 0.011751043541514
515 => 0.011788451073209
516 => 0.012046151871318
517 => 0.012410169427149
518 => 0.012722534359624
519 => 0.012613155047288
520 => 0.013447641990648
521 => 0.013530377962509
522 => 0.013518946526372
523 => 0.013707431383034
524 => 0.013333327326833
525 => 0.013173390594883
526 => 0.012093718397638
527 => 0.012397062245807
528 => 0.012837990343881
529 => 0.012779631856705
530 => 0.012459418085842
531 => 0.012722291448764
601 => 0.012635377294172
602 => 0.012566824494374
603 => 0.012880878159864
604 => 0.012535563254044
605 => 0.012834545563543
606 => 0.012451097659035
607 => 0.012613654682774
608 => 0.012521379454101
609 => 0.012581092835879
610 => 0.012232009626149
611 => 0.012420366452603
612 => 0.012224173362909
613 => 0.01222408034184
614 => 0.012219749368511
615 => 0.012450569668483
616 => 0.012458096710178
617 => 0.012287520159748
618 => 0.012262937413925
619 => 0.012353832709573
620 => 0.012247418123885
621 => 0.012297208838763
622 => 0.012248926233916
623 => 0.012238056802578
624 => 0.012151447324393
625 => 0.012114133579814
626 => 0.01212876526052
627 => 0.012078819791121
628 => 0.012048725839202
629 => 0.01221376292402
630 => 0.012125590267179
701 => 0.012200249199785
702 => 0.012115165923372
703 => 0.011820230218303
704 => 0.01165060957543
705 => 0.01109350336911
706 => 0.011251497998135
707 => 0.011356248600635
708 => 0.011321628527133
709 => 0.011396005841204
710 => 0.011400572004221
711 => 0.011376391181229
712 => 0.011348392885961
713 => 0.011334764864227
714 => 0.011436336973003
715 => 0.011495303000908
716 => 0.011366761724978
717 => 0.011336646302511
718 => 0.011466608629435
719 => 0.011545885573782
720 => 0.012131221988971
721 => 0.012087858376722
722 => 0.012196692533787
723 => 0.012184439477898
724 => 0.012298515013144
725 => 0.012484980301352
726 => 0.01210584423391
727 => 0.012171649145679
728 => 0.012155515300971
729 => 0.012331660386976
730 => 0.012332210292708
731 => 0.012226602514548
801 => 0.012283854204379
802 => 0.012251897881733
803 => 0.01230964727591
804 => 0.012087279229243
805 => 0.012358099506936
806 => 0.012511637153115
807 => 0.012513769023482
808 => 0.01258654464922
809 => 0.012660488899851
810 => 0.01280241844975
811 => 0.012656530561737
812 => 0.012394092453101
813 => 0.012413039636875
814 => 0.012259172269804
815 => 0.012261758808043
816 => 0.012247951664214
817 => 0.0122893879422
818 => 0.012096372162097
819 => 0.012141672579892
820 => 0.012078251729699
821 => 0.012171511281137
822 => 0.012071179420146
823 => 0.012155507520742
824 => 0.012191900733438
825 => 0.012326192471778
826 => 0.012051344421204
827 => 0.011490910640507
828 => 0.011608720615812
829 => 0.011434470408562
830 => 0.01145059792866
831 => 0.011483178085935
901 => 0.011377575136644
902 => 0.011397720851437
903 => 0.011397001104742
904 => 0.011390798716557
905 => 0.011363327310867
906 => 0.011323488337565
907 => 0.011482194545412
908 => 0.011509161822719
909 => 0.011569106739633
910 => 0.011747462151343
911 => 0.011729640239803
912 => 0.011758708516949
913 => 0.011695252631151
914 => 0.011453541465206
915 => 0.011466667544425
916 => 0.011302985126242
917 => 0.011564921012192
918 => 0.011502891137014
919 => 0.011462900072959
920 => 0.011451988140617
921 => 0.011630785660894
922 => 0.011684284681269
923 => 0.011650947681957
924 => 0.011582572523773
925 => 0.011713873040788
926 => 0.011749003520017
927 => 0.011756867938754
928 => 0.011989507280528
929 => 0.011769869893659
930 => 0.011822738795686
1001 => 0.012235206877209
1002 => 0.011861155243972
1003 => 0.012059298736445
1004 => 0.012049600643577
1005 => 0.012150964149516
1006 => 0.012041285877511
1007 => 0.012042645471141
1008 => 0.012132649397456
1009 => 0.01200625511524
1010 => 0.011974958113477
1011 => 0.011931721529694
1012 => 0.012026127028605
1013 => 0.012082718855608
1014 => 0.01253880741914
1015 => 0.012833461431347
1016 => 0.012820669723583
1017 => 0.012937561987478
1018 => 0.012884900951983
1019 => 0.01271484457709
1020 => 0.013005110072866
1021 => 0.012913257924778
1022 => 0.012920830104266
1023 => 0.012920548267368
1024 => 0.012981621915992
1025 => 0.012938345638624
1026 => 0.012853043653713
1027 => 0.012909671092174
1028 => 0.013077834339723
1029 => 0.013599818219993
1030 => 0.013891927314759
1031 => 0.013582232885705
1101 => 0.013795855955893
1102 => 0.013667758235463
1103 => 0.013644479069084
1104 => 0.013778650143783
1105 => 0.013913056067186
1106 => 0.013904494990918
1107 => 0.013806923192348
1108 => 0.013751807359128
1109 => 0.014169162913427
1110 => 0.014476663376368
1111 => 0.014455693906305
1112 => 0.014548246327527
1113 => 0.014819983098775
1114 => 0.014844827303622
1115 => 0.014841697504849
1116 => 0.014780118550911
1117 => 0.015047678691683
1118 => 0.015270882068388
1119 => 0.014765864802262
1120 => 0.014958168766041
1121 => 0.015044500211029
1122 => 0.015171260385656
1123 => 0.015385126047724
1124 => 0.015617440881794
1125 => 0.015650292746535
1126 => 0.015626982776395
1127 => 0.015473764898367
1128 => 0.0157279665619
1129 => 0.015876871934635
1130 => 0.01596554167646
1201 => 0.016190393388489
1202 => 0.015045033364642
1203 => 0.014234290611676
1204 => 0.014107681423533
1205 => 0.014365146186282
1206 => 0.014433037590976
1207 => 0.014405670650873
1208 => 0.013493105972903
1209 => 0.014102876959363
1210 => 0.014758939269794
1211 => 0.014784141295035
1212 => 0.015112579805253
1213 => 0.015219532847329
1214 => 0.015483968897473
1215 => 0.015467428350539
1216 => 0.015531814320652
1217 => 0.015517013101133
1218 => 0.016006825200446
1219 => 0.016547160683789
1220 => 0.016528450584162
1221 => 0.016450770965473
1222 => 0.01656613844557
1223 => 0.017123822570249
1224 => 0.017072479952755
1225 => 0.017122354932297
1226 => 0.017779895944994
1227 => 0.018634792795618
1228 => 0.018237607378263
1229 => 0.019099385446899
1230 => 0.019641829060213
1231 => 0.020579929199724
]
'min_raw' => 0.0084023292118122
'max_raw' => 0.020579929199724
'avg_raw' => 0.014491129205768
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.0084023'
'max' => '$0.020579'
'avg' => '$0.014491'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0037465417286094
'max_diff' => 0.0083491454679585
'year' => 2028
]
3 => [
'items' => [
101 => 0.020462474442016
102 => 0.020827669942231
103 => 0.020252205912173
104 => 0.01893082417869
105 => 0.01872171046132
106 => 0.019140361419097
107 => 0.020169573947429
108 => 0.019107947853924
109 => 0.019322713429975
110 => 0.019260860929624
111 => 0.019257565072737
112 => 0.019383354524914
113 => 0.019200890363794
114 => 0.018457498546719
115 => 0.018798190635649
116 => 0.018666633058736
117 => 0.018812605998588
118 => 0.019600361751155
119 => 0.019252076155194
120 => 0.018885185572273
121 => 0.019345347782793
122 => 0.019931292405678
123 => 0.019894625044221
124 => 0.019823475037228
125 => 0.020224543901357
126 => 0.020886992162746
127 => 0.021066049265867
128 => 0.021198225558729
129 => 0.021216450436378
130 => 0.021404178002861
131 => 0.020394719564445
201 => 0.021996756030943
202 => 0.022273383473343
203 => 0.022221388979204
204 => 0.022528848739169
205 => 0.022438386278286
206 => 0.022307320365592
207 => 0.022794709483703
208 => 0.022235957190062
209 => 0.021442878654197
210 => 0.021007780084106
211 => 0.021580752979602
212 => 0.021930647532883
213 => 0.022161905575129
214 => 0.022231884118982
215 => 0.02047308094946
216 => 0.019525183588783
217 => 0.020132774929311
218 => 0.020874078298471
219 => 0.0203906015868
220 => 0.020409552958555
221 => 0.019720242223158
222 => 0.020935067003295
223 => 0.020758077251114
224 => 0.02167630039852
225 => 0.02145715907519
226 => 0.022205934406683
227 => 0.022008756767707
228 => 0.022827230123043
301 => 0.023153741303768
302 => 0.023702004393613
303 => 0.024105308954335
304 => 0.024342137106378
305 => 0.024327918832449
306 => 0.02526634995816
307 => 0.024712989909615
308 => 0.024017839271692
309 => 0.024005266189824
310 => 0.024365294555565
311 => 0.0251198152412
312 => 0.025315451477155
313 => 0.025424785443868
314 => 0.025257336667904
315 => 0.02465670399488
316 => 0.024397353851945
317 => 0.024618327687823
318 => 0.024348095675043
319 => 0.024814591942813
320 => 0.025455190956686
321 => 0.025322909793525
322 => 0.025765105889275
323 => 0.02622273232799
324 => 0.026877158688642
325 => 0.027048249972655
326 => 0.027331057359109
327 => 0.027622159057156
328 => 0.027715653077159
329 => 0.027894162170834
330 => 0.027893221339795
331 => 0.028431170508633
401 => 0.029024545100759
402 => 0.029248530272634
403 => 0.029763571824744
404 => 0.028881581215963
405 => 0.029550581224302
406 => 0.030154035977979
407 => 0.029434572343125
408 => 0.030426185350244
409 => 0.030464687436267
410 => 0.031046023223432
411 => 0.030456728032679
412 => 0.030106806429507
413 => 0.031117016986474
414 => 0.031605826053656
415 => 0.03145859278456
416 => 0.030338140336942
417 => 0.029685988953961
418 => 0.027979182994095
419 => 0.030000968382087
420 => 0.03098572106829
421 => 0.030335590065383
422 => 0.030663478327387
423 => 0.032452330366756
424 => 0.033133409403755
425 => 0.032991749725161
426 => 0.033015687878926
427 => 0.033383185764832
428 => 0.035012873775721
429 => 0.034036326943724
430 => 0.034782860406274
501 => 0.035178819062984
502 => 0.035546607530352
503 => 0.034643435295235
504 => 0.033468421487584
505 => 0.033096245290977
506 => 0.030270947349826
507 => 0.030123878322342
508 => 0.030041324020567
509 => 0.029520830825418
510 => 0.029111865749115
511 => 0.02878664153654
512 => 0.02793315608257
513 => 0.028221182368957
514 => 0.026860904691588
515 => 0.027731162144287
516 => 0.025560126126154
517 => 0.027368229434739
518 => 0.026384161008246
519 => 0.027044936490201
520 => 0.027042631106793
521 => 0.025825933945456
522 => 0.02512416841462
523 => 0.025571360723992
524 => 0.026050786377809
525 => 0.026128571577159
526 => 0.026750159451622
527 => 0.026923631266398
528 => 0.026398003569002
529 => 0.025515136230266
530 => 0.025720206176995
531 => 0.025120012678694
601 => 0.024068196659033
602 => 0.0248236292873
603 => 0.025081567200618
604 => 0.025195487277538
605 => 0.024161147024087
606 => 0.023836134859833
607 => 0.023663101110701
608 => 0.025381615892235
609 => 0.025475760011295
610 => 0.024994105387546
611 => 0.027171229959257
612 => 0.026678479616998
613 => 0.027229002476066
614 => 0.025701598228771
615 => 0.02575994712794
616 => 0.025036849479531
617 => 0.025441735845238
618 => 0.025155575212053
619 => 0.025409025028054
620 => 0.025560941802752
621 => 0.026283920797951
622 => 0.027376484693527
623 => 0.026175931845293
624 => 0.025652833777085
625 => 0.025977360876586
626 => 0.02684161930824
627 => 0.028151015072771
628 => 0.027375826426123
629 => 0.027719841983948
630 => 0.027794994079146
701 => 0.027223398670152
702 => 0.028172090610815
703 => 0.028680502328977
704 => 0.029202027550829
705 => 0.029654853288158
706 => 0.028993718908636
707 => 0.029701227464615
708 => 0.029131100460568
709 => 0.028619637599292
710 => 0.02862041327733
711 => 0.028299565153171
712 => 0.027677881483148
713 => 0.027563233476057
714 => 0.028159646887391
715 => 0.028637913962721
716 => 0.02867730632979
717 => 0.028942099556942
718 => 0.029098801461184
719 => 0.03063469314866
720 => 0.031252441490925
721 => 0.032007812470469
722 => 0.032302072037377
723 => 0.033187687835877
724 => 0.03247248115239
725 => 0.032317741687557
726 => 0.030169527443115
727 => 0.030521297405297
728 => 0.031084515055503
729 => 0.030178814694721
730 => 0.030753273110151
731 => 0.03086668337005
801 => 0.030148039343032
802 => 0.030531898168638
803 => 0.029512482934039
804 => 0.027398705159901
805 => 0.028174443849733
806 => 0.02874564863627
807 => 0.02793046897684
808 => 0.029391646964558
809 => 0.028538056948969
810 => 0.028267509893574
811 => 0.027212009373489
812 => 0.027710164989029
813 => 0.028383927591947
814 => 0.027967620636653
815 => 0.028831520077692
816 => 0.030055032079767
817 => 0.030926979593846
818 => 0.030993916896962
819 => 0.030433313061355
820 => 0.03133168428564
821 => 0.031338227939235
822 => 0.030324861528287
823 => 0.02970418024403
824 => 0.029563160150322
825 => 0.029915455993022
826 => 0.030343208183461
827 => 0.031017654166527
828 => 0.031425207748806
829 => 0.032487891341673
830 => 0.032775423052376
831 => 0.033091333228272
901 => 0.033513486646358
902 => 0.034020390062685
903 => 0.032911314245788
904 => 0.03295537989557
905 => 0.031922623851075
906 => 0.030818975905335
907 => 0.031656507124493
908 => 0.032751467781434
909 => 0.032500282596908
910 => 0.032472019132401
911 => 0.03251955044007
912 => 0.032330165013879
913 => 0.031473581750166
914 => 0.031043410997624
915 => 0.031598441016666
916 => 0.031893414770243
917 => 0.032350893337626
918 => 0.032294499447995
919 => 0.033472915107962
920 => 0.033930811799985
921 => 0.033813662231661
922 => 0.033835220571595
923 => 0.034664220660506
924 => 0.035586239256247
925 => 0.036449831342229
926 => 0.037328314304232
927 => 0.036269268805763
928 => 0.035731550814487
929 => 0.036286338524785
930 => 0.035991960356499
1001 => 0.037683544629712
1002 => 0.037800666254611
1003 => 0.039492128207027
1004 => 0.041097527015413
1005 => 0.040089204787573
1006 => 0.041040007232596
1007 => 0.042068377596948
1008 => 0.044052270876863
1009 => 0.043384165414395
1010 => 0.042872407100691
1011 => 0.04238879796704
1012 => 0.043395111803381
1013 => 0.044689718477577
1014 => 0.04496856435561
1015 => 0.045420401205348
1016 => 0.04494535000583
1017 => 0.045517496850476
1018 => 0.047537426626139
1019 => 0.046991623770342
1020 => 0.046216495972922
1021 => 0.04781103653469
1022 => 0.048388094565375
1023 => 0.052438190032356
1024 => 0.057551602860519
1025 => 0.05543461637318
1026 => 0.054120534545763
1027 => 0.054429374945643
1028 => 0.056296620210541
1029 => 0.056896320126223
1030 => 0.05526612902644
1031 => 0.055841940082299
1101 => 0.059014715612575
1102 => 0.060716807889741
1103 => 0.058405137955858
1104 => 0.052027332290432
1105 => 0.046146704195621
1106 => 0.047706511574499
1107 => 0.047529677824193
1108 => 0.050938429319666
1109 => 0.04697860655274
1110 => 0.047045279812603
1111 => 0.050524520679072
1112 => 0.049596318865187
1113 => 0.0480927508018
1114 => 0.046157681906432
1115 => 0.042580528081134
1116 => 0.039412143181754
1117 => 0.045626075604903
1118 => 0.045358119539514
1119 => 0.044970079447967
1120 => 0.045833620681382
1121 => 0.050026731790392
1122 => 0.049930067007553
1123 => 0.049315134977938
1124 => 0.049781555502638
1125 => 0.04801098502871
1126 => 0.048467301354982
1127 => 0.046145772674086
1128 => 0.047195200593453
1129 => 0.048089524820023
1130 => 0.048269073649203
1201 => 0.048673606329337
1202 => 0.045216918869072
1203 => 0.046768870055719
1204 => 0.047680495979714
1205 => 0.043561736889872
1206 => 0.047599081355327
1207 => 0.045156745630824
1208 => 0.044327780203276
1209 => 0.045443872943579
1210 => 0.045008930517247
1211 => 0.044634992559763
1212 => 0.044426328754418
1213 => 0.045245864084235
1214 => 0.045207631781543
1215 => 0.043866712917008
1216 => 0.042117538921067
1217 => 0.042704619128784
1218 => 0.042491327385414
1219 => 0.04171833059226
1220 => 0.042239237098857
1221 => 0.039945428468552
1222 => 0.035999049941909
1223 => 0.038606148477452
1224 => 0.038505778019811
1225 => 0.038455166683631
1226 => 0.040414329178181
1227 => 0.040226000909899
1228 => 0.039884183258852
1229 => 0.041712052843041
1230 => 0.041044855856497
1231 => 0.043100999757647
]
'min_raw' => 0.018457498546719
'max_raw' => 0.060716807889741
'avg_raw' => 0.03958715321823
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.018457'
'max' => '$0.060716'
'avg' => '$0.039587'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072434
'min_diff' => 0.010055169334907
'max_diff' => 0.040136878690018
'year' => 2029
]
4 => [
'items' => [
101 => 0.044455309113993
102 => 0.044111812453906
103 => 0.045385546949495
104 => 0.042718144271035
105 => 0.043604148443199
106 => 0.043786752675133
107 => 0.041689497216105
108 => 0.040256813743685
109 => 0.040161270089862
110 => 0.037677194384629
111 => 0.039004167575606
112 => 0.040171849069784
113 => 0.039612620249817
114 => 0.039435585111902
115 => 0.040340019237276
116 => 0.040410301514772
117 => 0.03880785813968
118 => 0.039141056860144
119 => 0.040530550914156
120 => 0.039106045175057
121 => 0.036338463215681
122 => 0.035652064624942
123 => 0.035560486400101
124 => 0.033698918983057
125 => 0.035697933060917
126 => 0.034825309845685
127 => 0.037581916126974
128 => 0.036007357403077
129 => 0.035939481323521
130 => 0.035836876674015
131 => 0.034234548697783
201 => 0.034585356691323
202 => 0.035751495891414
203 => 0.036167587495505
204 => 0.036124185732261
205 => 0.035745781173149
206 => 0.035919012842565
207 => 0.03536097327746
208 => 0.035163917892433
209 => 0.034541956892931
210 => 0.033627846044775
211 => 0.033754958764779
212 => 0.031943865984468
213 => 0.030957086515786
214 => 0.030683958964399
215 => 0.030318721387898
216 => 0.030725213520525
217 => 0.031938735386173
218 => 0.030474970553176
219 => 0.027965448418166
220 => 0.028116274974497
221 => 0.028455137465768
222 => 0.027823669455085
223 => 0.027226037978065
224 => 0.027745630059959
225 => 0.02668231244891
226 => 0.028583634319004
227 => 0.028532208890811
228 => 0.029240904107026
301 => 0.029684065769615
302 => 0.028662721612639
303 => 0.028405856319168
304 => 0.028552178464206
305 => 0.026133799343334
306 => 0.029043270938285
307 => 0.029068432169456
308 => 0.028852986432339
309 => 0.030402190236792
310 => 0.033671493472973
311 => 0.032441450088104
312 => 0.031965140111224
313 => 0.031059674496996
314 => 0.032266153666727
315 => 0.032173514890499
316 => 0.031754567212181
317 => 0.031501186349139
318 => 0.031968048358376
319 => 0.031443336979661
320 => 0.031349084397939
321 => 0.030778016300526
322 => 0.030574170971693
323 => 0.030423252005541
324 => 0.030257105052799
325 => 0.030623583829307
326 => 0.029793094707442
327 => 0.028791606240325
328 => 0.028708343310539
329 => 0.028938239580229
330 => 0.028836527594656
331 => 0.028707856352684
401 => 0.028462187910233
402 => 0.028389303331233
403 => 0.028626142854411
404 => 0.028358764841345
405 => 0.028753295664458
406 => 0.028646005110957
407 => 0.028046688800712
408 => 0.027299718782829
409 => 0.027293069182847
410 => 0.027132135717771
411 => 0.026927162753488
412 => 0.02687014396397
413 => 0.027701871464082
414 => 0.029423522497805
415 => 0.029085521204268
416 => 0.029329761778614
417 => 0.030531183670618
418 => 0.03091307956207
419 => 0.030642018904017
420 => 0.030270974356982
421 => 0.030287298433969
422 => 0.031555269974011
423 => 0.031634351803638
424 => 0.03183416607434
425 => 0.032090983879698
426 => 0.030685756086782
427 => 0.030221112331293
428 => 0.030000938342488
429 => 0.029322887675026
430 => 0.030054107188213
501 => 0.02962805689182
502 => 0.029685545632754
503 => 0.029648106014803
504 => 0.02966855057786
505 => 0.028583102860792
506 => 0.028978582959439
507 => 0.028321020590811
508 => 0.027440618394059
509 => 0.027437666977186
510 => 0.027653144167577
511 => 0.027524969903109
512 => 0.027180056253089
513 => 0.027229049609128
514 => 0.026799816256996
515 => 0.027281166309597
516 => 0.027294969706753
517 => 0.027109623717186
518 => 0.027851209886727
519 => 0.028155038345464
520 => 0.028033039644636
521 => 0.02814647859139
522 => 0.029099566683998
523 => 0.029254961629242
524 => 0.029323977799106
525 => 0.029231505274379
526 => 0.028163899292115
527 => 0.028211252157239
528 => 0.027863808252075
529 => 0.027570254764947
530 => 0.027581995364947
531 => 0.027732920016613
601 => 0.02839201682205
602 => 0.029779047193215
603 => 0.029831683981895
604 => 0.029895481305298
605 => 0.029635985529051
606 => 0.029557719119895
607 => 0.029660972715846
608 => 0.030181868396663
609 => 0.031521753509523
610 => 0.031048148622721
611 => 0.030663100477651
612 => 0.031000891509112
613 => 0.030948891227512
614 => 0.030509956519576
615 => 0.030497637084242
616 => 0.029655181043799
617 => 0.029343744227443
618 => 0.029083484313055
619 => 0.028799287280799
620 => 0.028630805753708
621 => 0.028889669952805
622 => 0.02894887525793
623 => 0.028382864162431
624 => 0.028305718941598
625 => 0.02876793582038
626 => 0.02856453140521
627 => 0.028773737890399
628 => 0.028822275589503
629 => 0.028814459902029
630 => 0.028602082331743
701 => 0.028737445461853
702 => 0.028417271305452
703 => 0.028069129998969
704 => 0.027847037535403
705 => 0.027653232404651
706 => 0.027760766755213
707 => 0.027377426430458
708 => 0.027254788145452
709 => 0.028691587479139
710 => 0.029752966595129
711 => 0.02973753372243
712 => 0.029643590078889
713 => 0.029504008880359
714 => 0.030171657162593
715 => 0.029939061851112
716 => 0.030108294374203
717 => 0.030151371153997
718 => 0.030281751592535
719 => 0.030328351392736
720 => 0.030187494430888
721 => 0.0297147612627
722 => 0.028536755153696
723 => 0.027988390129988
724 => 0.027807420538422
725 => 0.027813998439365
726 => 0.027632550566308
727 => 0.027685995096847
728 => 0.027613964739643
729 => 0.027477556669115
730 => 0.027752343941246
731 => 0.027784010614538
801 => 0.027719871981759
802 => 0.027734978951631
803 => 0.027203938466193
804 => 0.027244312320941
805 => 0.02701950556724
806 => 0.026977357011007
807 => 0.026409065113813
808 => 0.025402253642706
809 => 0.025960124931254
810 => 0.025286294863263
811 => 0.025031105206323
812 => 0.026239133352142
813 => 0.026117880831787
814 => 0.025910349224143
815 => 0.02560336672306
816 => 0.025489503927274
817 => 0.024797709624662
818 => 0.024756834726685
819 => 0.025099706663077
820 => 0.024941483061935
821 => 0.024719277201968
822 => 0.023914470101815
823 => 0.023009600458769
824 => 0.023036912785485
825 => 0.02332473498324
826 => 0.024161616841323
827 => 0.023834632621167
828 => 0.023597401817732
829 => 0.02355297561938
830 => 0.024109062504296
831 => 0.024896041950257
901 => 0.025265275098629
902 => 0.02489937626237
903 => 0.024479051380668
904 => 0.024504634608619
905 => 0.024674828362691
906 => 0.024692713319833
907 => 0.024419125031941
908 => 0.02449613853243
909 => 0.024379147982925
910 => 0.023661177196561
911 => 0.023648191381745
912 => 0.023471989771928
913 => 0.02346665445721
914 => 0.02316689156336
915 => 0.023124952662348
916 => 0.022529755242302
917 => 0.0229215159866
918 => 0.022658743447687
919 => 0.02226268324977
920 => 0.022194402322365
921 => 0.022192349715235
922 => 0.022599014981056
923 => 0.022916763866197
924 => 0.022663314488504
925 => 0.022605608978113
926 => 0.023221752859161
927 => 0.023143342934022
928 => 0.023075440444541
929 => 0.024825576572538
930 => 0.023440207262403
1001 => 0.022836107169068
1002 => 0.022088418588071
1003 => 0.022331869760217
1004 => 0.02238316849923
1005 => 0.020585112242927
1006 => 0.019855641043678
1007 => 0.019605314017639
1008 => 0.019461247275048
1009 => 0.019526900298723
1010 => 0.018870290660961
1011 => 0.019311543196858
1012 => 0.018742974752388
1013 => 0.018647652402391
1014 => 0.019664323213218
1015 => 0.01980578701724
1016 => 0.019202258479924
1017 => 0.019589821503276
1018 => 0.019449285763479
1019 => 0.018752721226478
1020 => 0.018726117584746
1021 => 0.018376605985507
1022 => 0.017829688011478
1023 => 0.017579731821578
1024 => 0.01744955246766
1025 => 0.017503267006231
1026 => 0.017476107291837
1027 => 0.017298871783878
1028 => 0.017486266223689
1029 => 0.0170075508667
1030 => 0.016816922554276
1031 => 0.016730820168097
1101 => 0.016305932734941
1102 => 0.016982117589391
1103 => 0.01711533452407
1104 => 0.017248813937263
1105 => 0.018410661098842
1106 => 0.018352618497996
1107 => 0.018877295341755
1108 => 0.018856907364425
1109 => 0.018707261029384
1110 => 0.018075927757471
1111 => 0.018327565947222
1112 => 0.017553062712426
1113 => 0.018133373197036
1114 => 0.017868543726205
1115 => 0.018043834086553
1116 => 0.017728646213352
1117 => 0.01790308419617
1118 => 0.017146925201304
1119 => 0.016440834571343
1120 => 0.01672498605291
1121 => 0.017033891210037
1122 => 0.017703676298258
1123 => 0.01730475782532
1124 => 0.017448223992966
1125 => 0.016967636347299
1126 => 0.015976046761214
1127 => 0.015981659050585
1128 => 0.015829124595719
1129 => 0.01569731255632
1130 => 0.017350578410689
1201 => 0.017144968667433
1202 => 0.016817356451092
1203 => 0.017255878421456
1204 => 0.0173718305907
1205 => 0.017375131585949
1206 => 0.017695065895637
1207 => 0.017865814894068
1208 => 0.01789591014511
1209 => 0.018399333694042
1210 => 0.018568074627327
1211 => 0.019263094650416
1212 => 0.017851328034508
1213 => 0.017822253630092
1214 => 0.017262049324876
1215 => 0.016906758898027
1216 => 0.017286376364366
1217 => 0.01762266561659
1218 => 0.017272498769345
1219 => 0.017318223167169
1220 => 0.016848152784425
1221 => 0.017016180827389
1222 => 0.017160909213811
1223 => 0.01708099870557
1224 => 0.016961368807021
1225 => 0.0175950937329
1226 => 0.017559336488994
1227 => 0.018149475709246
1228 => 0.018609531432692
1229 => 0.019434033533906
1230 => 0.018573622609023
1231 => 0.018542265815096
]
'min_raw' => 0.01569731255632
'max_raw' => 0.045385546949495
'avg_raw' => 0.030541429752907
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.015697'
'max' => '$0.045385'
'avg' => '$0.030541'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0027601859903995
'max_diff' => -0.015331260940246
'year' => 2030
]
5 => [
'items' => [
101 => 0.018848783505515
102 => 0.018568027701065
103 => 0.018745455678117
104 => 0.019405447143777
105 => 0.019419391723446
106 => 0.019185802047423
107 => 0.019171588094408
108 => 0.019216451546879
109 => 0.019479218189288
110 => 0.019387399450427
111 => 0.019493654419603
112 => 0.019626527885592
113 => 0.020176148878102
114 => 0.020308660638663
115 => 0.01998672575997
116 => 0.020015792874964
117 => 0.019895380393023
118 => 0.019779063444232
119 => 0.020040526958388
120 => 0.020518356669587
121 => 0.020515384115753
122 => 0.020626231321069
123 => 0.020695288211673
124 => 0.020398845484467
125 => 0.020205872169558
126 => 0.020279870417705
127 => 0.020398195227965
128 => 0.02024149927648
129 => 0.019274299275287
130 => 0.019567685970673
131 => 0.019518852078685
201 => 0.019449306678089
202 => 0.019744309268992
203 => 0.019715855549436
204 => 0.018863556180078
205 => 0.018918117620426
206 => 0.018866874241979
207 => 0.01903245208115
208 => 0.01855908595437
209 => 0.018704690186798
210 => 0.018796011796422
211 => 0.018849800926056
212 => 0.019044124145846
213 => 0.019021322558874
214 => 0.019042706767185
215 => 0.019330836802706
216 => 0.020788099648082
217 => 0.020867415249486
218 => 0.020476836219852
219 => 0.02063286483836
220 => 0.020333324010532
221 => 0.020534407775002
222 => 0.020671984179679
223 => 0.020050302861367
224 => 0.020013490928375
225 => 0.019712713788998
226 => 0.019874334386811
227 => 0.019617184394758
228 => 0.019680280008083
301 => 0.01950385917265
302 => 0.019821381551392
303 => 0.020176420908814
304 => 0.020266117871428
305 => 0.020030163779761
306 => 0.019859317467262
307 => 0.019559367622786
308 => 0.020058190898967
309 => 0.020204062026286
310 => 0.020057424700034
311 => 0.020023445627453
312 => 0.01995905534631
313 => 0.02003710632999
314 => 0.020203267580799
315 => 0.020124909003434
316 => 0.020176666224284
317 => 0.019979421070218
318 => 0.020398943619345
319 => 0.021065246390958
320 => 0.02106738866332
321 => 0.020989029663573
322 => 0.020956966849145
323 => 0.021037367938107
324 => 0.021080982230644
325 => 0.021340984609309
326 => 0.021619977520569
327 => 0.022921915703276
328 => 0.022556336671361
329 => 0.023711493679708
330 => 0.024625072894945
331 => 0.024899015355617
401 => 0.024647001181787
402 => 0.023784874306654
403 => 0.023742574249167
404 => 0.025030955781194
405 => 0.024666928986784
406 => 0.024623629157912
407 => 0.024162992134935
408 => 0.02443528566652
409 => 0.024375731076857
410 => 0.024281721243565
411 => 0.024801238333696
412 => 0.025773727948811
413 => 0.025622156322345
414 => 0.025509015134394
415 => 0.025013263383697
416 => 0.025311816667779
417 => 0.025205507561729
418 => 0.025662278946746
419 => 0.025391697696987
420 => 0.024664171125786
421 => 0.024780032130208
422 => 0.02476251997247
423 => 0.025122918937803
424 => 0.025014736114062
425 => 0.024741395539862
426 => 0.025770404085029
427 => 0.025703585993752
428 => 0.025798318770441
429 => 0.025840023068447
430 => 0.026466362436726
501 => 0.026722953635286
502 => 0.02678120432962
503 => 0.027024946122776
504 => 0.026775139811763
505 => 0.027774543164698
506 => 0.028439088077597
507 => 0.029210991191098
508 => 0.030338949107921
509 => 0.03076307171884
510 => 0.030686457765352
511 => 0.031541662584681
512 => 0.033078446634881
513 => 0.030997085760235
514 => 0.033188763815176
515 => 0.032494903847121
516 => 0.030849774344872
517 => 0.03074384739973
518 => 0.031857948199
519 => 0.034328916543551
520 => 0.033709966998732
521 => 0.034329928923274
522 => 0.033606710407079
523 => 0.033570796511986
524 => 0.034294803814196
525 => 0.035986486339394
526 => 0.035182831383444
527 => 0.034030594939809
528 => 0.034881388399004
529 => 0.034144352367432
530 => 0.032483603904904
531 => 0.03370949369968
601 => 0.032889776105244
602 => 0.033129013277885
603 => 0.034851937737598
604 => 0.034644630908313
605 => 0.034912905141504
606 => 0.034439408141881
607 => 0.03399708728061
608 => 0.033171462545869
609 => 0.032927035764719
610 => 0.032994586533475
611 => 0.032927002289913
612 => 0.032465072838709
613 => 0.032365319217702
614 => 0.032199058812384
615 => 0.032250589864117
616 => 0.031937971660922
617 => 0.032527946800567
618 => 0.032637451385328
619 => 0.033066786092119
620 => 0.033111361045641
621 => 0.034307052092855
622 => 0.033648485556821
623 => 0.034090308847092
624 => 0.034050788013408
625 => 0.030885429289655
626 => 0.031321587793592
627 => 0.032000113551639
628 => 0.031694438617358
629 => 0.031262285777205
630 => 0.030913299188212
701 => 0.030384548820176
702 => 0.031128754809435
703 => 0.032107306547826
704 => 0.033136178732583
705 => 0.034372301248192
706 => 0.03409641309276
707 => 0.033113070281982
708 => 0.033157182322141
709 => 0.033429865596957
710 => 0.033076715980183
711 => 0.032972565263897
712 => 0.033415556887882
713 => 0.033418607527733
714 => 0.033012266214077
715 => 0.032560692203624
716 => 0.032558800092032
717 => 0.03247844685856
718 => 0.033621005068808
719 => 0.03424929655878
720 => 0.034321329165563
721 => 0.034244448190418
722 => 0.034274036626455
723 => 0.033908447651898
724 => 0.034744075635692
725 => 0.035510930508663
726 => 0.035305397021242
727 => 0.034997273105291
728 => 0.034751837564977
729 => 0.035247580207998
730 => 0.035225505568475
731 => 0.035504232700337
801 => 0.03549158802763
802 => 0.035397862576643
803 => 0.035305400368473
804 => 0.035672002572411
805 => 0.035566427025128
806 => 0.03546068748986
807 => 0.035248610663965
808 => 0.035277435426828
809 => 0.034969364712815
810 => 0.034826837104156
811 => 0.032683563841474
812 => 0.032110811192211
813 => 0.032291010835124
814 => 0.032350337236453
815 => 0.032101074549492
816 => 0.032458453212264
817 => 0.032402756126229
818 => 0.032619440906287
819 => 0.032484065663066
820 => 0.032489621510269
821 => 0.032887731235536
822 => 0.033003304182461
823 => 0.032944522848867
824 => 0.03298569128001
825 => 0.033934400399595
826 => 0.0337995243008
827 => 0.033727874061495
828 => 0.033747721667449
829 => 0.033990137188056
830 => 0.034058000298429
831 => 0.033770459531122
901 => 0.033906065419237
902 => 0.034483458079884
903 => 0.034685512833515
904 => 0.035330374615324
905 => 0.035056425868908
906 => 0.03555927064918
907 => 0.037104844071317
908 => 0.038339555066466
909 => 0.037204063808737
910 => 0.039471453311832
911 => 0.041236941277697
912 => 0.041169178908993
913 => 0.040861325245672
914 => 0.03885136413446
915 => 0.037001767953091
916 => 0.038549033696809
917 => 0.038552977995387
918 => 0.0384200664958
919 => 0.037594564586865
920 => 0.038391340818748
921 => 0.038454586022569
922 => 0.038419185526686
923 => 0.037786275148597
924 => 0.036819937982645
925 => 0.037008757951788
926 => 0.037318048913067
927 => 0.036732496598513
928 => 0.036545377154147
929 => 0.036893267802154
930 => 0.038014243955928
1001 => 0.03780232990743
1002 => 0.037796795975212
1003 => 0.038703454140229
1004 => 0.038054482563155
1005 => 0.037011139576284
1006 => 0.036747681712096
1007 => 0.035812583780711
1008 => 0.036458459252623
1009 => 0.036481703161028
1010 => 0.036127963765749
1011 => 0.037039843578642
1012 => 0.037031440445633
1013 => 0.037897134612577
1014 => 0.039552016719892
1015 => 0.039062586648956
1016 => 0.038493432726298
1017 => 0.038555315538618
1018 => 0.039234017249966
1019 => 0.038823658702032
1020 => 0.03897122649699
1021 => 0.039233793888434
1022 => 0.039392207314874
1023 => 0.038532522284397
1024 => 0.038332088580304
1025 => 0.037922071564401
1026 => 0.037815105778282
1027 => 0.03814905608245
1028 => 0.03806107197594
1029 => 0.036479749600531
1030 => 0.036314492613906
1031 => 0.036319560809753
1101 => 0.035904014259344
1102 => 0.03527020602737
1103 => 0.036935816218275
1104 => 0.036802044409745
1105 => 0.036654370686244
1106 => 0.036672459874759
1107 => 0.037395444805863
1108 => 0.036976077034208
1109 => 0.038091034988179
1110 => 0.037861833151547
1111 => 0.037626753152662
1112 => 0.037594257936105
1113 => 0.037503772192617
1114 => 0.037193462909937
1115 => 0.036818745804403
1116 => 0.03657132511389
1117 => 0.033735114264632
1118 => 0.034261498500775
1119 => 0.034867055583024
1120 => 0.035076091461199
1121 => 0.034718521126738
1122 => 0.037207581966158
1123 => 0.037662357366707
1124 => 0.036284813014179
1125 => 0.036027130710586
1126 => 0.037224475575082
1127 => 0.036502330252334
1128 => 0.03682751224695
1129 => 0.036124646639632
1130 => 0.037552815290093
1201 => 0.037541935037813
1202 => 0.036986345176132
1203 => 0.03745592592271
1204 => 0.037374324712177
1205 => 0.036747065126697
1206 => 0.037572700537775
1207 => 0.037573110042639
1208 => 0.037038366880335
1209 => 0.036413903937096
1210 => 0.036302264712001
1211 => 0.036218159552512
1212 => 0.036806827533456
1213 => 0.037334625404453
1214 => 0.03831672639019
1215 => 0.038563649912148
1216 => 0.03952740885698
1217 => 0.038953537329904
1218 => 0.039207927144977
1219 => 0.039484103274874
1220 => 0.039616512267588
1221 => 0.039400758919419
1222 => 0.040897873259752
1223 => 0.041024275580474
1224 => 0.041066657185236
1225 => 0.040561838653095
1226 => 0.041010235663885
1227 => 0.040800445551884
1228 => 0.041346261141938
1229 => 0.041431851995782
1230 => 0.041359359587559
1231 => 0.041386527475529
]
'min_raw' => 0.01855908595437
'max_raw' => 0.041431851995782
'avg_raw' => 0.029995468975076
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.018559'
'max' => '$0.041431'
'avg' => '$0.029995'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0028617733980502
'max_diff' => -0.0039536949537135
'year' => 2031
]
6 => [
'items' => [
101 => 0.040109004495122
102 => 0.040042758189118
103 => 0.039139485106121
104 => 0.0395075755641
105 => 0.038819448095943
106 => 0.039037660404594
107 => 0.039133846311044
108 => 0.039083604252016
109 => 0.039528386846315
110 => 0.03915023077808
111 => 0.038152214739395
112 => 0.037153926791908
113 => 0.037141394099915
114 => 0.036878562504587
115 => 0.036688583401173
116 => 0.036725180116362
117 => 0.03685415171407
118 => 0.036681087337457
119 => 0.036718019396794
120 => 0.037331337658812
121 => 0.037454334262274
122 => 0.037036343745835
123 => 0.035358051506589
124 => 0.034946194381401
125 => 0.035242229115504
126 => 0.035100743579681
127 => 0.028329039569517
128 => 0.0299199509806
129 => 0.028974685442381
130 => 0.029410307291968
131 => 0.028445435952772
201 => 0.028905923129076
202 => 0.028820887961912
203 => 0.031379026432442
204 => 0.031339084618829
205 => 0.031358202651332
206 => 0.030445649148206
207 => 0.031899371657213
208 => 0.03261552763932
209 => 0.032482986226906
210 => 0.032516344044918
211 => 0.031943146211735
212 => 0.031363752459305
213 => 0.030721115619802
214 => 0.031915055435285
215 => 0.031782309709036
216 => 0.032086780644647
217 => 0.032861135959569
218 => 0.032975162721181
219 => 0.033128415845133
220 => 0.033073485509497
221 => 0.034382148958297
222 => 0.034223661179808
223 => 0.034605571125921
224 => 0.033819953391189
225 => 0.03293095235282
226 => 0.03309992238658
227 => 0.033083649213558
228 => 0.032876473043505
229 => 0.032689443660654
301 => 0.032378092433409
302 => 0.033363253787724
303 => 0.033323258035855
304 => 0.033970742768644
305 => 0.033856293552792
306 => 0.033091973678862
307 => 0.033119271512685
308 => 0.03330286256404
309 => 0.033938273288983
310 => 0.034126906454207
311 => 0.034039524056343
312 => 0.034246351710581
313 => 0.034409819855447
314 => 0.034266880792776
315 => 0.036290596488392
316 => 0.035450208638606
317 => 0.035859807829211
318 => 0.035957494822671
319 => 0.035707271643058
320 => 0.035761536090896
321 => 0.035843731943193
322 => 0.036342809062745
323 => 0.037652531833575
324 => 0.038232599133192
325 => 0.039977760224105
326 => 0.038184432618886
327 => 0.038078023980319
328 => 0.038392380191609
329 => 0.039416974496037
330 => 0.040247311944527
331 => 0.040522782779508
401 => 0.040559190797878
402 => 0.041075992397257
403 => 0.041372213436241
404 => 0.041013239089861
405 => 0.040709045917484
406 => 0.039619463731876
407 => 0.039745585836694
408 => 0.040614442069616
409 => 0.041841752673994
410 => 0.042894912852455
411 => 0.042526132864296
412 => 0.045339663855852
413 => 0.045618613961421
414 => 0.045580072076368
415 => 0.046215561930197
416 => 0.044954243985605
417 => 0.044415006127408
418 => 0.040774815934091
419 => 0.041797560896985
420 => 0.043284180764256
421 => 0.043087421050285
422 => 0.042007797965209
423 => 0.042894093861533
424 => 0.042601056721173
425 => 0.042369926170449
426 => 0.043428780030177
427 => 0.042264526716087
428 => 0.043272566446841
429 => 0.041979745065313
430 => 0.042527817420218
501 => 0.042216705044297
502 => 0.042418032880017
503 => 0.041241074466203
504 => 0.041876132657246
505 => 0.041214653957578
506 => 0.041214340330547
507 => 0.04119973815159
508 => 0.041977964908304
509 => 0.042003342854901
510 => 0.041428232105854
511 => 0.041345349661998
512 => 0.041651809497381
513 => 0.041293025292105
514 => 0.041460898163593
515 => 0.041298109990368
516 => 0.041261462943731
517 => 0.040969453041151
518 => 0.04084364714614
519 => 0.040892978879192
520 => 0.040724584242033
521 => 0.040623120382044
522 => 0.04117955443603
523 => 0.040882274167471
524 => 0.041133991971274
525 => 0.040847127764521
526 => 0.03985273144313
527 => 0.039280843603147
528 => 0.037402521132627
529 => 0.037935211055215
530 => 0.038288385024998
531 => 0.038171661030092
601 => 0.038422429337341
602 => 0.03843782447475
603 => 0.038356297141783
604 => 0.038261898934506
605 => 0.038215951107751
606 => 0.03855840856403
607 => 0.038757216643988
608 => 0.038323830757724
609 => 0.038222294508286
610 => 0.038660471567189
611 => 0.038927759319993
612 => 0.040901261910687
613 => 0.040755058464439
614 => 0.041122000423544
615 => 0.041080688390132
616 => 0.041465302021712
617 => 0.042093982759497
618 => 0.040815699037681
619 => 0.041037564892063
620 => 0.040983168508199
621 => 0.041577053963725
622 => 0.041578908009292
623 => 0.041222844011926
624 => 0.041415872081377
625 => 0.041308129108457
626 => 0.041502835222859
627 => 0.040753105828278
628 => 0.04166619530259
629 => 0.04218385819634
630 => 0.042191045946121
701 => 0.042436414049332
702 => 0.042685722252956
703 => 0.043164247639643
704 => 0.042672376439641
705 => 0.041787548033533
706 => 0.041851429786476
707 => 0.041332655215721
708 => 0.041341375909979
709 => 0.041294824160574
710 => 0.041434529464793
711 => 0.040783763286243
712 => 0.040936496807616
713 => 0.040722668983288
714 => 0.041037100072132
715 => 0.040698824197857
716 => 0.040983142276616
717 => 0.041105844534115
718 => 0.041558618505876
719 => 0.040631949114088
720 => 0.03874240749423
721 => 0.039139612051202
722 => 0.038552115311696
723 => 0.038606490371695
724 => 0.03871633664662
725 => 0.038360288930124
726 => 0.038428211614079
727 => 0.038425784937843
728 => 0.038404873153043
729 => 0.038312251390767
730 => 0.03817793151081
731 => 0.038713020571081
801 => 0.038803942629315
802 => 0.039006051101911
803 => 0.039607388824868
804 => 0.039547301005825
805 => 0.039645306731705
806 => 0.039431360782388
807 => 0.038616414710672
808 => 0.038660670203191
809 => 0.038108803502345
810 => 0.038991938629605
811 => 0.038782800574655
812 => 0.038647967910106
813 => 0.038611177568368
814 => 0.039214005891229
815 => 0.039394381573605
816 => 0.03928198355291
817 => 0.03905145193329
818 => 0.039494140793516
819 => 0.039612585656968
820 => 0.039639101093817
821 => 0.040423460876967
822 => 0.039682938092545
823 => 0.039861189286919
824 => 0.041251854221376
825 => 0.039990713024466
826 => 0.040658767643274
827 => 0.040626069846072
828 => 0.040967823983318
829 => 0.040598036031762
830 => 0.040602619996608
831 => 0.040906074518052
901 => 0.040479927370995
902 => 0.040374407344463
903 => 0.040228632183558
904 => 0.040546926914317
905 => 0.040737730210175
906 => 0.04227546464521
907 => 0.043268911219452
908 => 0.043225783083635
909 => 0.043619893512514
910 => 0.043442343154666
911 => 0.042868986213759
912 => 0.043847636598458
913 => 0.043537950668268
914 => 0.043563480800084
915 => 0.043562530567303
916 => 0.043768444637665
917 => 0.043622535647066
918 => 0.043334934049344
919 => 0.043525857411717
920 => 0.044092831541611
921 => 0.045852736637694
922 => 0.046837602845103
923 => 0.045793446455373
924 => 0.046513691551197
925 => 0.046081801143271
926 => 0.046003313808524
927 => 0.046455680954396
928 => 0.046908839909074
929 => 0.046879975642721
930 => 0.046551005511595
1001 => 0.04636517863183
1002 => 0.047772322021982
1003 => 0.048809081301785
1004 => 0.048738381269425
1005 => 0.04905042821938
1006 => 0.049966607715698
1007 => 0.050050371686906
1008 => 0.050039819351826
1009 => 0.049832201609321
1010 => 0.050734299304387
1011 => 0.05148684507251
1012 => 0.049784144100584
1013 => 0.050432510340701
1014 => 0.050723582834945
1015 => 0.051150963613813
1016 => 0.051872026625098
1017 => 0.052655292307872
1018 => 0.052766054663488
1019 => 0.052687463471712
1020 => 0.052170878698611
1021 => 0.053027937355005
1022 => 0.053529982215422
1023 => 0.053828938440708
1024 => 0.054587041686461
1025 => 0.050725380399577
1026 => 0.0479919046037
1027 => 0.047565032886305
1028 => 0.048433093309529
1029 => 0.048661993920481
1030 => 0.048569724371224
1031 => 0.045492948846218
1101 => 0.04754883429992
1102 => 0.049760794184343
1103 => 0.049845764571994
1104 => 0.050953117940037
1105 => 0.05131371758862
1106 => 0.052205282194018
1107 => 0.052149514585203
1108 => 0.052366596378726
1109 => 0.052316693033728
1110 => 0.053968128724151
1111 => 0.05578990753126
1112 => 0.055726825124072
1113 => 0.055464922866241
1114 => 0.055853892380091
1115 => 0.057734163342709
1116 => 0.0575610581232
1117 => 0.057729215098886
1118 => 0.059946160531241
1119 => 0.062828504950113
1120 => 0.061489366584899
1121 => 0.06439491151073
1122 => 0.066223798025222
1123 => 0.069386668141641
1124 => 0.068990661225602
1125 => 0.070221943351711
1126 => 0.068281726196754
1127 => 0.063826595426391
1128 => 0.063121553928425
1129 => 0.064533064861846
1130 => 0.06800312675844
1201 => 0.064423780263821
1202 => 0.065147877397931
1203 => 0.064939337374595
1204 => 0.064928225162989
1205 => 0.065352333083343
1206 => 0.064737142424889
1207 => 0.062230745011661
1208 => 0.06337941217585
1209 => 0.062935856620229
1210 => 0.063428014578448
1211 => 0.066083988097575
1212 => 0.064909718894269
1213 => 0.063672721678469
1214 => 0.065224190698739
1215 => 0.06719974390414
1216 => 0.067076117334956
1217 => 0.066836230118843
1218 => 0.068188461795987
1219 => 0.070421952359922
1220 => 0.071025655884462
1221 => 0.071471297484102
1222 => 0.071532743931516
1223 => 0.072165680528633
1224 => 0.068762220925376
1225 => 0.074163598722786
1226 => 0.075096267458349
1227 => 0.074920964391222
1228 => 0.075957586438099
1229 => 0.075652585935345
1230 => 0.075210688059966
1231 => 0.0768539545001
]
'min_raw' => 0.028329039569517
'max_raw' => 0.0768539545001
'avg_raw' => 0.052591497034808
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.028329'
'max' => '$0.076853'
'avg' => '$0.052591'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.0097699536151468
'max_diff' => 0.035422102504318
'year' => 2032
]
7 => [
'items' => [
101 => 0.07497008213125
102 => 0.072296162476605
103 => 0.070829197269932
104 => 0.072761015390787
105 => 0.07394070930603
106 => 0.074720411941382
107 => 0.07495634948773
108 => 0.06902642180597
109 => 0.065830519674367
110 => 0.067879056299632
111 => 0.0703784123649
112 => 0.068748336876238
113 => 0.068812232749252
114 => 0.066488173478722
115 => 0.070584040041312
116 => 0.069987306734802
117 => 0.073083160184576
118 => 0.072344309913011
119 => 0.074868858220963
120 => 0.074204060044652
121 => 0.076963600106152
122 => 0.07806445534825
123 => 0.079912962634168
124 => 0.081272732118468
125 => 0.082071214767894
126 => 0.082023276864656
127 => 0.085187262924159
128 => 0.083321570886123
129 => 0.080977821976498
130 => 0.080935430953156
131 => 0.08214929172463
201 => 0.084693210895199
202 => 0.085352812123609
203 => 0.085721439225835
204 => 0.085156873986773
205 => 0.083131798994838
206 => 0.082257381880684
207 => 0.083002410596246
208 => 0.082091304498161
209 => 0.083664129234676
210 => 0.085823953535147
211 => 0.085377958357971
212 => 0.086868853367938
213 => 0.088411772856524
214 => 0.090618217022053
215 => 0.091195063231313
216 => 0.092148568079723
217 => 0.093130037778763
218 => 0.093445259394745
219 => 0.094047115267177
220 => 0.094043943189645
221 => 0.095857676370791
222 => 0.097858280236237
223 => 0.098613461881357
224 => 0.10034996043335
225 => 0.097376267517228
226 => 0.099631847753429
227 => 0.10166643758732
228 => 0.099240715711063
301 => 0.10258400819677
302 => 0.10271382066793
303 => 0.10467383486192
304 => 0.10268698498302
305 => 0.10150719986718
306 => 0.10491319529065
307 => 0.10656124918821
308 => 0.10606484194196
309 => 0.10228715828732
310 => 0.10008838436784
311 => 0.094333768908766
312 => 0.10115035950093
313 => 0.1044705219357
314 => 0.1022785598687
315 => 0.10338405803648
316 => 0.10941529758087
317 => 0.11171160310553
318 => 0.11123398760879
319 => 0.11131469676552
320 => 0.11255374154573
321 => 0.11804834845563
322 => 0.11475585263123
323 => 0.11727284232152
324 => 0.11860784457756
325 => 0.11984786907347
326 => 0.1168027608253
327 => 0.11284111973596
328 => 0.11158630170458
329 => 0.10206061243999
330 => 0.1015647589458
331 => 0.10128642135361
401 => 0.099531542206486
402 => 0.098152687898702
403 => 0.097056171759574
404 => 0.094178585963065
405 => 0.09514968669697
406 => 0.090563415536166
407 => 0.093497549297378
408 => 0.086177749785346
409 => 0.092273896327983
410 => 0.088956040922597
411 => 0.091183891593879
412 => 0.091176118832763
413 => 0.087073939406234
414 => 0.084707887923313
415 => 0.086215628016332
416 => 0.087832045080606
417 => 0.088094303311004
418 => 0.090190030227637
419 => 0.09077490256257
420 => 0.089002712082645
421 => 0.086026063210268
422 => 0.086717470853189
423 => 0.084693876569497
424 => 0.081147605423759
425 => 0.083694599272582
426 => 0.084564254955985
427 => 0.084948344448967
428 => 0.081460994069126
429 => 0.080365192865719
430 => 0.079781797499689
501 => 0.085575890068501
502 => 0.085893303538845
503 => 0.084269371346823
504 => 0.091609698842331
505 => 0.089948356660674
506 => 0.091804482916301
507 => 0.086654732856585
508 => 0.086851460243925
509 => 0.08441348603725
510 => 0.085778588687492
511 => 0.084813778133613
512 => 0.08566830188356
513 => 0.086180499895945
514 => 0.088618074055042
515 => 0.092301729509351
516 => 0.088253981761608
517 => 0.086490320103101
518 => 0.087584485876829
519 => 0.090498393519746
520 => 0.094913112758954
521 => 0.092299510114839
522 => 0.093459382586446
523 => 0.093712763122358
524 => 0.091785589293416
525 => 0.09498417040692
526 => 0.096698316010873
527 => 0.098456674708075
528 => 0.099983408296764
529 => 0.097754347577276
530 => 0.10013976207043
531 => 0.09821753907129
601 => 0.096493106325301
602 => 0.096495721577961
603 => 0.095413959726459
604 => 0.093317909828409
605 => 0.092931366068034
606 => 0.094942215524602
607 => 0.096554726360618
608 => 0.096687540476478
609 => 0.097580309329094
610 => 0.098108640739822
611 => 0.10328700679668
612 => 0.10536978846244
613 => 0.10791657445829
614 => 0.10890869113267
615 => 0.11189460662903
616 => 0.10948323736152
617 => 0.10896152245227
618 => 0.1017186681436
619 => 0.1029046851309
620 => 0.10480361276117
621 => 0.10174998076081
622 => 0.10368680741584
623 => 0.10406917802514
624 => 0.10164621951392
625 => 0.10294042634462
626 => 0.099503396707871
627 => 0.092376647363114
628 => 0.09499210451623
629 => 0.096917961334281
630 => 0.094169526198488
701 => 0.099095989800268
702 => 0.09621805146696
703 => 0.095305883180703
704 => 0.091747189484543
705 => 0.093426755922449
706 => 0.095698393578791
707 => 0.094294785613394
708 => 0.097207482894388
709 => 0.10133263903227
710 => 0.10427247095341
711 => 0.10449815474428
712 => 0.10260803977243
713 => 0.10563696107738
714 => 0.10565902346233
715 => 0.10224238785684
716 => 0.10014971757238
717 => 0.09967425848074
718 => 0.10086204851091
719 => 0.10230424488568
720 => 0.1045781866059
721 => 0.10595228196304
722 => 0.10953519389059
723 => 0.11050462712805
724 => 0.11156974034222
725 => 0.11299306006511
726 => 0.11470212032413
727 => 0.11096279377426
728 => 0.11111136418906
729 => 0.10762935508032
730 => 0.10390832897702
731 => 0.10673212395698
801 => 0.11042386025956
802 => 0.10957697187274
803 => 0.10948167962887
804 => 0.1096419347512
805 => 0.10900340856433
806 => 0.10611537828599
807 => 0.10466502756023
808 => 0.10653635002039
809 => 0.10753087462498
810 => 0.10907329555505
811 => 0.10888315961886
812 => 0.1128562702908
813 => 0.11440010095728
814 => 0.11400512300855
815 => 0.11407780845679
816 => 0.1168728401355
817 => 0.11998149020432
818 => 0.12289315121628
819 => 0.1258550178564
820 => 0.12228437201812
821 => 0.12047141826825
822 => 0.12234192376757
823 => 0.12134940722036
824 => 0.12705270170014
825 => 0.12744758543566
826 => 0.13315046750233
827 => 0.13856318167017
828 => 0.1351635528802
829 => 0.1383692497065
830 => 0.14183647218844
831 => 0.14852530689268
901 => 0.14627274268033
902 => 0.14454731379586
903 => 0.14291679183724
904 => 0.14630964919505
905 => 0.15067450598366
906 => 0.15161465432984
907 => 0.15313805381497
908 => 0.15153638552878
909 => 0.15346541856153
910 => 0.16027575282717
911 => 0.15843554039211
912 => 0.15582214290541
913 => 0.16119824773668
914 => 0.16314383917604
915 => 0.1767990188116
916 => 0.19403924716884
917 => 0.1869016794235
918 => 0.1824711607961
919 => 0.18351243776684
920 => 0.18980798554434
921 => 0.19182991567978
922 => 0.18633361257055
923 => 0.18827499974723
924 => 0.19897223396366
925 => 0.20471095691242
926 => 0.19691700033469
927 => 0.17541378324954
928 => 0.15558683505554
929 => 0.1608458345357
930 => 0.1602496272004
1001 => 0.17174247085882
1002 => 0.15839165193413
1003 => 0.15861644548474
1004 => 0.17034694897888
1005 => 0.16721745175838
1006 => 0.16214806705691
1007 => 0.15562384717397
1008 => 0.14356322330308
1009 => 0.13288079240525
1010 => 0.1538314994128
1011 => 0.15292806683025
1012 => 0.1516197625695
1013 => 0.15453125212849
1014 => 0.16866861898618
1015 => 0.16834270692192
1016 => 0.16626942065089
1017 => 0.16784199001436
1018 => 0.16187238804423
1019 => 0.16341089039724
1020 => 0.15558369436564
1021 => 0.15912191386451
1022 => 0.16213719043411
1023 => 0.16274255184739
1024 => 0.16410646202203
1025 => 0.15245199891154
1026 => 0.15768451069109
1027 => 0.16075812114153
1028 => 0.14687143730755
1029 => 0.16048362605122
1030 => 0.15224912063762
1031 => 0.14945420582213
1101 => 0.15321719041917
1102 => 0.15175075166208
1103 => 0.15048999373091
1104 => 0.14978646914274
1105 => 0.15254958972535
1106 => 0.15242068684753
1107 => 0.14789968527578
1108 => 0.14200222302504
1109 => 0.14398160493399
1110 => 0.14326247692967
1111 => 0.14065626427263
1112 => 0.14241253692816
1113 => 0.13467880098248
1114 => 0.12137331025255
1115 => 0.13016332498694
1116 => 0.12982491898136
1117 => 0.12965427932786
1118 => 0.13625973246259
1119 => 0.13562477055742
1120 => 0.13447230848197
1121 => 0.14063509840284
1122 => 0.1383855971805
1123 => 0.14531802989861
1124 => 0.1498841784484
1125 => 0.14872605547674
1126 => 0.15302054025792
1127 => 0.14402720589538
1128 => 0.14701443082067
1129 => 0.14763009373766
1130 => 0.14055905053185
1201 => 0.13572865817782
1202 => 0.13540652607831
1203 => 0.12703129140549
1204 => 0.13150527416517
1205 => 0.13544219384771
1206 => 0.13355671483709
1207 => 0.1329598285094
1208 => 0.13600919130868
1209 => 0.13624615291421
1210 => 0.13084340319606
1211 => 0.1319668059453
1212 => 0.13665158215978
1213 => 0.13184876160459
1214 => 0.12251766580215
1215 => 0.12020342503065
1216 => 0.11989466265182
1217 => 0.11361825813477
1218 => 0.12035807366498
1219 => 0.11741596357021
1220 => 0.12671005410769
1221 => 0.12140131943789
1222 => 0.12117247049671
1223 => 0.12082653175727
1224 => 0.11542417111444
1225 => 0.11660694475729
1226 => 0.12053866448764
1227 => 0.12194154638142
1228 => 0.12179521430642
1229 => 0.12051939691602
1230 => 0.1211034595841
1231 => 0.11922199022927
]
'min_raw' => 0.065830519674367
'max_raw' => 0.20471095691242
'avg_raw' => 0.13527073829339
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.06583'
'max' => '$0.20471'
'avg' => '$0.13527'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.037501480104851
'max_diff' => 0.12785700241232
'year' => 2033
]
8 => [
'items' => [
101 => 0.11855760424068
102 => 0.11646061930693
103 => 0.1133786307612
104 => 0.11380720017142
105 => 0.10770097441614
106 => 0.10437397854273
107 => 0.10345310993407
108 => 0.10222168594483
109 => 0.10359220255035
110 => 0.10768367624578
111 => 0.10274849091453
112 => 0.094287461827103
113 => 0.09479598409215
114 => 0.095938482640093
115 => 0.093809444154384
116 => 0.091794487904317
117 => 0.093546328885183
118 => 0.089961279321064
119 => 0.09637171875214
120 => 0.096198334330579
121 => 0.098587749731569
122 => 0.10008190021755
123 => 0.09663836708433
124 => 0.095772327813629
125 => 0.096265663141511
126 => 0.088111929089656
127 => 0.097921415704851
128 => 0.098006248552447
129 => 0.097279858207814
130 => 0.10250310699648
131 => 0.11352579111273
201 => 0.10937861396176
202 => 0.10777270161981
203 => 0.10471986108385
204 => 0.10878758983828
205 => 0.10847525173639
206 => 0.10706274038895
207 => 0.10620844911872
208 => 0.10778250697813
209 => 0.10601340593061
210 => 0.10569562677083
211 => 0.1037702308097
212 => 0.10308295205151
213 => 0.10257411822031
214 => 0.10201394216913
215 => 0.10324955095085
216 => 0.10044949889359
217 => 0.097072910605011
218 => 0.096792183824007
219 => 0.097567295148109
220 => 0.097224366087445
221 => 0.096790542011599
222 => 0.095962253705852
223 => 0.095716518259116
224 => 0.096515039247117
225 => 0.09561355560833
226 => 0.096943743823715
227 => 0.096582006231801
228 => 0.094561369448881
301 => 0.092042907881808
302 => 0.092020488291209
303 => 0.091477889877688
304 => 0.090786809217851
305 => 0.090594566388068
306 => 0.093398793724056
307 => 0.099203460386089
308 => 0.098063865426431
309 => 0.098887339575173
310 => 0.10293801736466
311 => 0.10422560602581
312 => 0.10331170609234
313 => 0.1020607034965
314 => 0.10211574126178
315 => 0.10639079583597
316 => 0.10665742574588
317 => 0.10733111351014
318 => 0.10819699267135
319 => 0.10345916905766
320 => 0.10189259019564
321 => 0.10115025822032
322 => 0.098864163054991
323 => 0.10132952069582
324 => 0.099893062375647
325 => 0.10008688967944
326 => 0.09996065939357
327 => 0.10002958966531
328 => 0.096369926903674
329 => 0.097703315667802
330 => 0.095486298232435
331 => 0.092517960758365
401 => 0.092508009850319
402 => 0.093234506241856
403 => 0.092802357760363
404 => 0.091639457308218
405 => 0.09180464182871
406 => 0.09035745161388
407 => 0.091980356923015
408 => 0.092026896040246
409 => 0.09140198909598
410 => 0.093902298642477
411 => 0.094926677503736
412 => 0.094515350366216
413 => 0.094897817695253
414 => 0.098111220741968
415 => 0.098635145649187
416 => 0.098867838484436
417 => 0.098556060911095
418 => 0.09495655280402
419 => 0.095116206294859
420 => 0.093944774910838
421 => 0.092955038833737
422 => 0.092994623086339
423 => 0.093503476086653
424 => 0.095725666982855
425 => 0.10040213671861
426 => 0.10057960532662
427 => 0.10079470245666
428 => 0.099919794329631
429 => 0.099655913666775
430 => 0.10000404037446
501 => 0.10176027653011
502 => 0.10627779273591
503 => 0.10468100079402
504 => 0.10338278408971
505 => 0.1045216701361
506 => 0.10434634755614
507 => 0.10286644854289
508 => 0.10282491270655
509 => 0.099984513347792
510 => 0.098934482377623
511 => 0.098056997905495
512 => 0.097098807769243
513 => 0.096530760537649
514 => 0.097403539258227
515 => 0.097603154078038
516 => 0.095694808151931
517 => 0.095434707653784
518 => 0.09699310413155
519 => 0.096307311944562
520 => 0.097012666215707
521 => 0.09717631445703
522 => 0.097149963321038
523 => 0.096433917515091
524 => 0.096890303759008
525 => 0.095810814236857
526 => 0.0946370315156
527 => 0.093888231268686
528 => 0.093234803739314
529 => 0.093597363310041
530 => 0.092304904641163
531 => 0.091891421100935
601 => 0.096735690368585
602 => 0.10031420416127
603 => 0.10026217115348
604 => 0.099945433600342
605 => 0.09947482584425
606 => 0.10172584864152
607 => 0.10094163730957
608 => 0.10151221657661
609 => 0.10165745294721
610 => 0.10209703969861
611 => 0.10225415417848
612 => 0.1017792450973
613 => 0.10018539221557
614 => 0.096213662373306
615 => 0.09436481141025
616 => 0.093754659797394
617 => 0.093776837649678
618 => 0.09316507347738
619 => 0.093345265443469
620 => 0.093102410065159
621 => 0.092642500731666
622 => 0.093568965204688
623 => 0.09367573160459
624 => 0.093459483726161
625 => 0.093510417929818
626 => 0.0917199778571
627 => 0.091856101127198
628 => 0.091098149461587
629 => 0.090956042661529
630 => 0.089040006853267
701 => 0.085645471685099
702 => 0.087526373683765
703 => 0.08525450856422
704 => 0.084394118819074
705 => 0.088467070054537
706 => 0.088058258716578
707 => 0.087358551412011
708 => 0.086323538476776
709 => 0.085939642111139
710 => 0.083607209320347
711 => 0.083469396748022
712 => 0.084625413420121
713 => 0.084091951502052
714 => 0.083342768931257
715 => 0.080629305603253
716 => 0.077578474425744
717 => 0.077670559842152
718 => 0.078640972476985
719 => 0.081462578090738
720 => 0.080360127963172
721 => 0.079560287746465
722 => 0.079410501716985
723 => 0.081285387474227
724 => 0.083938743621434
725 => 0.085183638960206
726 => 0.083949985487517
727 => 0.082532830802711
728 => 0.082619086441913
729 => 0.083192906566314
730 => 0.083253206948009
731 => 0.082330784934056
801 => 0.082590441327866
802 => 0.08219599952219
803 => 0.079775310888842
804 => 0.079731528307551
805 => 0.079137452278051
806 => 0.079119463891978
807 => 0.078108792366586
808 => 0.077967392433742
809 => 0.0759606427767
810 => 0.077281491477963
811 => 0.076395535516825
812 => 0.075060190907507
813 => 0.074829976993539
814 => 0.074823056485293
815 => 0.076194156821472
816 => 0.077265469372241
817 => 0.07641094710008
818 => 0.076216388942927
819 => 0.078293761055672
820 => 0.078029396518658
821 => 0.077800458534573
822 => 0.083701164680717
823 => 0.079030295328201
824 => 0.076993529686602
825 => 0.074472645433819
826 => 0.075293458057927
827 => 0.075466415338073
828 => 0.069404143133669
829 => 0.06694468005535
830 => 0.066100685009782
831 => 0.065614953928719
901 => 0.065836307681787
902 => 0.063622502445053
903 => 0.065110216177097
904 => 0.063193247970384
905 => 0.062871862012175
906 => 0.066299638632569
907 => 0.066776593724516
908 => 0.064741755123937
909 => 0.066048450915954
910 => 0.065574624857339
911 => 0.063226108888256
912 => 0.063136412852751
913 => 0.061958010093794
914 => 0.060114037959762
915 => 0.059271293214132
916 => 0.058832384433563
917 => 0.059013486750587
918 => 0.058921915877277
919 => 0.058324353988004
920 => 0.05895616742529
921 => 0.057342145176363
922 => 0.056699428511779
923 => 0.0564091283053
924 => 0.054976590659723
925 => 0.057256395106219
926 => 0.057705545302398
927 => 0.058155580463213
928 => 0.062072829286056
929 => 0.061877134604897
930 => 0.0636461192154
1001 => 0.063577379726389
1002 => 0.063072836659824
1003 => 0.060944252455288
1004 => 0.061792668180851
1005 => 0.059181376450646
1006 => 0.061137933765493
1007 => 0.060245042714784
1008 => 0.060836046403081
1009 => 0.059773368482869
1010 => 0.06036149832081
1011 => 0.057812055476286
1012 => 0.055431421619698
1013 => 0.056389458178623
1014 => 0.057430953482945
1015 => 0.059689180670784
1016 => 0.058344199187677
1017 => 0.058827905388383
1018 => 0.057207570587459
1019 => 0.053864357067398
1020 => 0.05388327929285
1021 => 0.053368998728654
1022 => 0.052924585234997
1023 => 0.058498686490339
1024 => 0.057805458885737
1025 => 0.056700891425188
1026 => 0.058179398864898
1027 => 0.058570339699026
1028 => 0.058581469234975
1029 => 0.059660150097187
1030 => 0.060235842266714
1031 => 0.060337310506786
1101 => 0.062034638149919
1102 => 0.062603559987604
1103 => 0.064946868520198
1104 => 0.060186998808267
1105 => 0.060088972423869
1106 => 0.058200204496615
1107 => 0.057002318016911
1108 => 0.058282224808717
1109 => 0.059416047501557
1110 => 0.0582354355282
1111 => 0.058389598527842
1112 => 0.056804723413152
1113 => 0.057371241691348
1114 => 0.057859203550784
1115 => 0.057589779693076
1116 => 0.057186439137825
1117 => 0.059323086970688
1118 => 0.059202528926367
1119 => 0.06119222450965
1120 => 0.062743334501316
1121 => 0.065523200900457
1122 => 0.06262226539524
1123 => 0.062516543775256
1124 => 0.063549989568885
1125 => 0.062603401772438
1126 => 0.063201612584692
1127 => 0.0654268198903
1128 => 0.065473835014231
1129 => 0.064686271112809
1130 => 0.064638347777834
1201 => 0.064789608040107
1202 => 0.065675544120769
1203 => 0.06536597083212
1204 => 0.065724216879182
1205 => 0.066172209046691
1206 => 0.068025294596251
1207 => 0.068472067248659
1208 => 0.06738664132837
1209 => 0.067484643135974
1210 => 0.067078664046178
1211 => 0.066686493332338
1212 => 0.067568035825116
1213 => 0.069179072057429
1214 => 0.06916904988464
1215 => 0.069542778976467
1216 => 0.069775609104537
1217 => 0.068776131752793
1218 => 0.068125508748608
1219 => 0.06837499900863
1220 => 0.068773939367596
1221 => 0.068245628027001
1222 => 0.064984645695232
1223 => 0.065973819422333
1224 => 0.065809172546019
1225 => 0.065574695372404
1226 => 0.066569317204059
1227 => 0.066473383501999
1228 => 0.063599796672569
1229 => 0.063783754378059
1230 => 0.063610983749927
1231 => 0.064169240994968
]
'min_raw' => 0.052924585234997
'max_raw' => 0.11855760424068
'avg_raw' => 0.08574109473784
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.052924'
'max' => '$0.118557'
'avg' => '$0.085741'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.01290593443937
'max_diff' => -0.086153352671735
'year' => 2034
]
9 => [
'items' => [
101 => 0.062573254049161
102 => 0.063064168884555
103 => 0.063372066067274
104 => 0.063553419873273
105 => 0.064208594176009
106 => 0.064131717033576
107 => 0.064203815384895
108 => 0.06517526591625
109 => 0.070088529342277
110 => 0.070355947430051
111 => 0.069039082962282
112 => 0.069565144343153
113 => 0.068555221528858
114 => 0.069233189479989
115 => 0.069697037933634
116 => 0.067600995964541
117 => 0.067476881962331
118 => 0.066462790837332
119 => 0.067007705966849
120 => 0.066140706815003
121 => 0.066353438080523
122 => 0.065758622916551
123 => 0.066829171785184
124 => 0.068026211766791
125 => 0.068328631338687
126 => 0.067533095644842
127 => 0.066957075374141
128 => 0.065945773531663
129 => 0.067627591034035
130 => 0.068119405724188
131 => 0.067625007740839
201 => 0.067510444925288
202 => 0.067293348596829
203 => 0.067556502937651
204 => 0.068116727195763
205 => 0.067852535781355
206 => 0.068027038865025
207 => 0.067362013056874
208 => 0.068776462621384
209 => 0.071022948935652
210 => 0.07103017175649
211 => 0.070765978917992
212 => 0.070657876900593
213 => 0.070928954785454
214 => 0.071076003417794
215 => 0.071952619590252
216 => 0.072893263669227
217 => 0.077282839150643
218 => 0.076050263920631
219 => 0.079944956424757
220 => 0.083025152532993
221 => 0.083948768665201
222 => 0.083099085283067
223 => 0.080192364331779
224 => 0.080049746734664
225 => 0.084393615021819
226 => 0.083166273268926
227 => 0.083020284872789
228 => 0.081467214989173
301 => 0.082385271641837
302 => 0.082184479184821
303 => 0.081867518468318
304 => 0.08361910660922
305 => 0.086897923243636
306 => 0.086386888922615
307 => 0.086005425508172
308 => 0.084333963868415
309 => 0.085340557110022
310 => 0.084982128536709
311 => 0.086522165152053
312 => 0.085609881577111
313 => 0.083156974948024
314 => 0.083547608413592
315 => 0.083488564951117
316 => 0.084703675224991
317 => 0.084338929281665
318 => 0.083417342451719
319 => 0.086886716604833
320 => 0.086661434745003
321 => 0.086980832915639
322 => 0.08712144186807
323 => 0.08923318877784
324 => 0.090098303918409
325 => 0.09029470020129
326 => 0.091116492674424
327 => 0.090274253255923
328 => 0.093643811436457
329 => 0.095884371007342
330 => 0.098486896247065
331 => 0.10228988511514
401 => 0.10371984410915
402 => 0.10346153481595
403 => 0.10634491757281
404 => 0.11152629229289
405 => 0.10450883878805
406 => 0.11189823436836
407 => 0.10955883704231
408 => 0.1040121680662
409 => 0.10365502797507
410 => 0.10741129660384
411 => 0.115742338895
412 => 0.11365550729096
413 => 0.11574575220391
414 => 0.11330737048306
415 => 0.11318628427832
416 => 0.1156273254463
417 => 0.12133095118951
418 => 0.11862137239613
419 => 0.11473652677983
420 => 0.11760503632801
421 => 0.11512006788935
422 => 0.10952073849818
423 => 0.11365391153016
424 => 0.11089017642967
425 => 0.11169678126023
426 => 0.1175057413669
427 => 0.11680679191826
428 => 0.11771129722578
429 => 0.11611486903304
430 => 0.11462355336741
501 => 0.11183990193095
502 => 0.11101579997298
503 => 0.11124355210608
504 => 0.11101568711033
505 => 0.10945825971471
506 => 0.10912193341691
507 => 0.10856137485245
508 => 0.10873511539115
509 => 0.10768110129277
510 => 0.10967024366683
511 => 0.11003944601972
512 => 0.11148697795886
513 => 0.11163726552678
514 => 0.11566862137295
515 => 0.11344821831706
516 => 0.11493785638733
517 => 0.11480460913731
518 => 0.10413238120188
519 => 0.10560292004952
520 => 0.10789061701593
521 => 0.10686001263346
522 => 0.10540297916094
523 => 0.10422634651068
524 => 0.10244362772868
525 => 0.10495277018027
526 => 0.10825202568655
527 => 0.11172094009102
528 => 0.11588861345572
529 => 0.11495843727778
530 => 0.11164302833644
531 => 0.11179175515964
601 => 0.11271112585882
602 => 0.11152045726975
603 => 0.11116930585822
604 => 0.11266288304718
605 => 0.11267316849242
606 => 0.11130316038359
607 => 0.10978064707945
608 => 0.10977426769312
609 => 0.10950335115638
610 => 0.1133555659331
611 => 0.11547389455745
612 => 0.11571675752038
613 => 0.11545754794502
614 => 0.11555730742291
615 => 0.11432469867059
616 => 0.11714207675963
617 => 0.11972758150395
618 => 0.11903461100122
619 => 0.11799574970607
620 => 0.11716824664614
621 => 0.11883967757873
622 => 0.11876525139038
623 => 0.11970499937556
624 => 0.1196623669787
625 => 0.11934636507699
626 => 0.11903462228665
627 => 0.12027064721257
628 => 0.11991469188386
629 => 0.1195581836582
630 => 0.11884315183297
701 => 0.11894033653344
702 => 0.11790165461233
703 => 0.11742111282878
704 => 0.11019491738509
705 => 0.10826384183978
706 => 0.108871397517
707 => 0.10907142062112
708 => 0.10823101406906
709 => 0.10943594118198
710 => 0.10924815456777
711 => 0.10997872243218
712 => 0.10952229534807
713 => 0.10954102727481
714 => 0.11088328200868
715 => 0.11127294426828
716 => 0.11107475889809
717 => 0.11121356113798
718 => 0.11441220017141
719 => 0.11395745598758
720 => 0.1137158822033
721 => 0.11378279979249
722 => 0.11460012064513
723 => 0.1148289258598
724 => 0.11385946208737
725 => 0.11431666680685
726 => 0.11626338647449
727 => 0.11694462818337
728 => 0.11911882470355
729 => 0.11819518737852
730 => 0.1198905636627
731 => 0.12510157236393
801 => 0.12926448668885
802 => 0.12543609863594
803 => 0.13308076064971
804 => 0.13903322658906
805 => 0.13880476103195
806 => 0.13776681091241
807 => 0.13099008669496
808 => 0.12475404403479
809 => 0.12997075851638
810 => 0.12998405699442
811 => 0.12953593659397
812 => 0.1267526992733
813 => 0.12943908596823
814 => 0.12965232158855
815 => 0.1295329663451
816 => 0.12739906481698
817 => 0.12414099159447
818 => 0.12477761130342
819 => 0.12582040737338
820 => 0.1238461768629
821 => 0.12321529059196
822 => 0.12438822820066
823 => 0.12816767756717
824 => 0.12745319455729
825 => 0.12743453651845
826 => 0.13049139782266
827 => 0.1283033448408
828 => 0.12478564111669
829 => 0.12389737453354
830 => 0.12074462657142
831 => 0.12292224081856
901 => 0.12300060927858
902 => 0.1218079522101
903 => 0.12488241866469
904 => 0.12485408691506
905 => 0.12777283523975
906 => 0.13335238580474
907 => 0.13170223814966
908 => 0.12978329596236
909 => 0.12999193818462
910 => 0.13228022838987
911 => 0.13089667589519
912 => 0.13139421101875
913 => 0.13227947531087
914 => 0.13281357723819
915 => 0.12991508913664
916 => 0.12923931290946
917 => 0.12785691191387
918 => 0.12749626929785
919 => 0.12862220606402
920 => 0.12832556150607
921 => 0.12299402271297
922 => 0.12243684724469
923 => 0.12245393502084
924 => 0.1210528908136
925 => 0.11891596210843
926 => 0.12453168315625
927 => 0.12408066216414
928 => 0.12358276989511
929 => 0.12364375885713
930 => 0.12608135302955
1001 => 0.12466742530809
1002 => 0.12842658389378
1003 => 0.12765381389922
1004 => 0.12686122527022
1005 => 0.12675166537885
1006 => 0.12644658637717
1007 => 0.12540035696551
1008 => 0.12413697208229
1009 => 0.12330277594986
1010 => 0.11374029305367
1011 => 0.1155150342568
1012 => 0.11755671223825
1013 => 0.11826149129593
1014 => 0.11705591794854
1015 => 0.12544796034932
1016 => 0.12698126736367
1017 => 0.12233678040205
1018 => 0.12146798652468
1019 => 0.12550491833128
1020 => 0.12307015495706
1021 => 0.12416652875539
1022 => 0.12179676828781
1023 => 0.12661193860439
1024 => 0.12657525507419
1025 => 0.12470204506549
1026 => 0.12628526933765
1027 => 0.12601014515913
1028 => 0.12389529567282
1029 => 0.12667898310529
1030 => 0.12668036377953
1031 => 0.12487743987325
1101 => 0.12277201946151
1102 => 0.1223956200197
1103 => 0.12211205360244
1104 => 0.12409678879968
1105 => 0.12587629617142
1106 => 0.12918751821293
1107 => 0.13002003810686
1108 => 0.13326941867687
1109 => 0.1313345707569
1110 => 0.13219226377935
1111 => 0.1331234108833
1112 => 0.13356983704673
1113 => 0.13284240956996
1114 => 0.13789003509358
1115 => 0.13831620934302
1116 => 0.13845910188247
1117 => 0.13675707095605
1118 => 0.13826887278401
1119 => 0.13756155077432
1120 => 0.13940180614381
1121 => 0.13969038168331
1122 => 0.13944596846773
1123 => 0.13953756689882
1124 => 0.13523030897657
1125 => 0.13500695493071
1126 => 0.13196150666687
1127 => 0.1332025493452
1128 => 0.13088247954279
1129 => 0.1316181975765
1130 => 0.13194249507558
1201 => 0.13177310046578
1202 => 0.13327271603619
1203 => 0.13199773645012
1204 => 0.12863285569644
1205 => 0.12526705818325
1206 => 0.12522480333719
1207 => 0.12433864826323
1208 => 0.12369812045215
1209 => 0.12382150883251
1210 => 0.12425634557869
1211 => 0.12367284694997
1212 => 0.12379736596654
1213 => 0.12586521130745
1214 => 0.12627990294337
1215 => 0.12487061873403
1216 => 0.11921213927479
1217 => 0.11782353422227
1218 => 0.11882163599678
1219 => 0.11834460763455
1220 => 0.095513334779008
1221 => 0.10087720367536
1222 => 0.097690174916924
1223 => 0.099158904396955
1224 => 0.095905773311687
1225 => 0.097458337976785
1226 => 0.097171635973725
1227 => 0.10579657843064
1228 => 0.1056619118174
1229 => 0.10572636959876
1230 => 0.10264963175052
1231 => 0.1075509586853
]
'min_raw' => 0.062573254049161
'max_raw' => 0.13969038168331
'avg_raw' => 0.10113181786624
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.062573'
'max' => '$0.13969'
'avg' => '$0.101131'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0096486688141645
'max_diff' => 0.021132777442626
'year' => 2035
]
10 => [
'items' => [
101 => 0.10996552857939
102 => 0.10951865595369
103 => 0.10963112416609
104 => 0.10769854765211
105 => 0.10574508116382
106 => 0.10357838619196
107 => 0.10760383763808
108 => 0.10715627615402
109 => 0.10818282117091
110 => 0.11079361417894
111 => 0.1111780633668
112 => 0.111694766974
113 => 0.11150956551229
114 => 0.11592181569788
115 => 0.11538746308744
116 => 0.11667509913486
117 => 0.11402633409214
118 => 0.1110290050232
119 => 0.11159869928914
120 => 0.11154383315014
121 => 0.11084532422823
122 => 0.11021474160597
123 => 0.10916499920546
124 => 0.11248653949331
125 => 0.11235169102347
126 => 0.114534731006
127 => 0.11414885748417
128 => 0.1115718996661
129 => 0.11166393621871
130 => 0.11228292626627
131 => 0.11442525788838
201 => 0.11506124777488
202 => 0.11476663191964
203 => 0.11546396579615
204 => 0.11601511005954
205 => 0.11553318103006
206 => 0.12235627978915
207 => 0.11952285347959
208 => 0.12090384574802
209 => 0.12123320426676
210 => 0.12038955934667
211 => 0.12057251572117
212 => 0.12084964477592
213 => 0.12253231812894
214 => 0.12694813989272
215 => 0.12890387729239
216 => 0.13478780975366
217 => 0.12874148052652
218 => 0.12838271637238
219 => 0.1294425902864
220 => 0.13289708151867
221 => 0.13569662219856
222 => 0.13662539135146
223 => 0.13674814352732
224 => 0.13849057620156
225 => 0.13948930611599
226 => 0.13827899904438
227 => 0.13725339052562
228 => 0.13357978811465
229 => 0.1340050175966
301 => 0.1369344270475
302 => 0.14107239043825
303 => 0.14462319350923
304 => 0.14337982603176
305 => 0.15286584220425
306 => 0.15380634196085
307 => 0.15367639530449
308 => 0.15581899371515
309 => 0.15156637220256
310 => 0.14974829411526
311 => 0.13747513872853
312 => 0.1409233947767
313 => 0.14593563745169
314 => 0.14527224833871
315 => 0.1416322237305
316 => 0.14462043222416
317 => 0.14363243704623
318 => 0.14285316425745
319 => 0.14642316397234
320 => 0.14249780263831
321 => 0.14589647896964
322 => 0.14153764141991
323 => 0.14338550562966
324 => 0.14233656853307
325 => 0.14301535938746
326 => 0.13904716192267
327 => 0.14118830495212
328 => 0.13895808333322
329 => 0.13895702591779
330 => 0.13890779365195
331 => 0.14153163949626
401 => 0.14161720301505
402 => 0.13967817697169
403 => 0.13939873302556
404 => 0.14043198375689
405 => 0.13922231775929
406 => 0.13978831286602
407 => 0.13923946117449
408 => 0.13911590309814
409 => 0.13813137132411
410 => 0.13770720796559
411 => 0.13787353334781
412 => 0.13730577907169
413 => 0.13696368658376
414 => 0.13883974284575
415 => 0.13783744166486
416 => 0.13868612581476
417 => 0.13771894311347
418 => 0.13436626648937
419 => 0.13243810670893
420 => 0.12610521135929
421 => 0.12790121262452
422 => 0.12909196332146
423 => 0.12869842022322
424 => 0.1295439030792
425 => 0.12959580885983
426 => 0.12932093376467
427 => 0.12900266361816
428 => 0.12884774731229
429 => 0.13000236653575
430 => 0.13067266185766
501 => 0.12921147108409
502 => 0.12886913453007
503 => 0.13034647907671
504 => 0.13124765839672
505 => 0.13790146016679
506 => 0.13740852504017
507 => 0.13864569547436
508 => 0.1385064090694
509 => 0.13980316078114
510 => 0.14192280178167
511 => 0.13761297896665
512 => 0.13836101518488
513 => 0.13817761397884
514 => 0.14017994025591
515 => 0.14018619129998
516 => 0.13898569667327
517 => 0.13963650428621
518 => 0.13927324133064
519 => 0.13992970658929
520 => 0.13740194159103
521 => 0.14048048650354
522 => 0.14222582309189
523 => 0.14225005709211
524 => 0.14307733278314
525 => 0.1439178927978
526 => 0.14553127454859
527 => 0.14387289645643
528 => 0.14088963570849
529 => 0.14110501749862
530 => 0.13935593281364
531 => 0.13938533524319
601 => 0.13922838276993
602 => 0.13969940895702
603 => 0.13750530535099
604 => 0.13802025708181
605 => 0.13729932164311
606 => 0.13835944801203
607 => 0.13721892728424
608 => 0.13817752553723
609 => 0.13859122476519
610 => 0.14011778382265
611 => 0.13699345327024
612 => 0.13062273177531
613 => 0.13196193467108
614 => 0.12998114839612
615 => 0.13016447770725
616 => 0.13053483209238
617 => 0.12933439235776
618 => 0.12956339842892
619 => 0.12955521672057
620 => 0.1294847111781
621 => 0.12917243043994
622 => 0.12871956158675
623 => 0.13052365171218
624 => 0.13083020177949
625 => 0.13151162460561
626 => 0.13353907672263
627 => 0.13333648644552
628 => 0.13366691959287
629 => 0.13294558588752
630 => 0.13019793830901
701 => 0.13034714879185
702 => 0.12848649167985
703 => 0.13146404341993
704 => 0.13075891986612
705 => 0.13030432212387
706 => 0.13018028091808
707 => 0.13221275869674
708 => 0.1328209079033
709 => 0.13244195012915
710 => 0.1316646966784
711 => 0.13315725307819
712 => 0.13355659820488
713 => 0.13364599685147
714 => 0.13629052062261
715 => 0.13379379635328
716 => 0.13439478270021
717 => 0.13908350661986
718 => 0.13483148102441
719 => 0.1370838738138
720 => 0.13697363090765
721 => 0.13812587884189
722 => 0.13687911294544
723 => 0.13689456810297
724 => 0.13791768620853
725 => 0.13648090134959
726 => 0.13612513321296
727 => 0.13563364208027
728 => 0.13670679498766
729 => 0.1373501016211
730 => 0.14253468063001
731 => 0.14588415511529
801 => 0.14573874559428
802 => 0.14706751642115
803 => 0.1464688929935
804 => 0.14453578003673
805 => 0.14783536813593
806 => 0.14679124040071
807 => 0.14687731702259
808 => 0.14687411324642
809 => 0.14756836691111
810 => 0.14707642456226
811 => 0.14610675569584
812 => 0.14675046714192
813 => 0.14866206000573
814 => 0.15459570290982
815 => 0.15791624808927
816 => 0.15439580192062
817 => 0.1568241585471
818 => 0.15536800988315
819 => 0.15510338435424
820 => 0.15662857176982
821 => 0.15815642882406
822 => 0.15805911093481
823 => 0.15694996516976
824 => 0.15632343687061
825 => 0.16106771905413
826 => 0.1645632253502
827 => 0.16432485525498
828 => 0.16537694333318
829 => 0.16846590647062
830 => 0.16874832254776
831 => 0.1687127446133
901 => 0.16801274689904
902 => 0.1710542322604
903 => 0.1735914928587
904 => 0.16785071765306
905 => 0.1700367296991
906 => 0.17101810093548
907 => 0.17245904507021
908 => 0.17489015935577
909 => 0.1775309942911
910 => 0.17790443730624
911 => 0.17763946161611
912 => 0.1758977599868
913 => 0.17878739308476
914 => 0.18048007238331
915 => 0.18148802416932
916 => 0.18404402219145
917 => 0.17102416155014
918 => 0.16180805705915
919 => 0.16036882926073
920 => 0.16329555558367
921 => 0.16406730997482
922 => 0.16375621674745
923 => 0.15338265325128
924 => 0.16031421459578
925 => 0.16777199178022
926 => 0.16805847537463
927 => 0.17179199456793
928 => 0.17300778145939
929 => 0.17601375377354
930 => 0.17582572938685
1001 => 0.17655763580988
1002 => 0.17638938319808
1003 => 0.1819573139279
1004 => 0.1880995683686
1005 => 0.18788688162849
1006 => 0.18700385988079
1007 => 0.18831529775371
1008 => 0.19465476258051
1009 => 0.19407112624711
1010 => 0.19463807923098
1011 => 0.20211266553835
1012 => 0.21183069098544
1013 => 0.20731569249147
1014 => 0.21711194006758
1015 => 0.22327815863996
1016 => 0.23394199606201
1017 => 0.23260683109626
1018 => 0.23675818474981
1019 => 0.23021660715024
1020 => 0.21519582271066
1021 => 0.21281872607585
1022 => 0.21757773373642
1023 => 0.22927728969277
1024 => 0.21720927308417
1025 => 0.21965061712668
1026 => 0.2189475098782
1027 => 0.21891004428094
1028 => 0.22033995374468
1029 => 0.21826579548846
1030 => 0.20981530161868
1031 => 0.21368811316013
1101 => 0.21219263463629
1102 => 0.2138519795538
1103 => 0.22280677970769
1104 => 0.21884764910388
1105 => 0.21467702662642
1106 => 0.21990791274837
1107 => 0.2265686283091
1108 => 0.22615181269977
1109 => 0.22534301620225
1110 => 0.22990215971154
1111 => 0.23743252908518
1112 => 0.2394679576674
1113 => 0.24097046943429
1114 => 0.2411776404218
1115 => 0.2433116303492
1116 => 0.23183662867486
1117 => 0.25004775103099
1118 => 0.25319230878979
1119 => 0.2526012622597
1120 => 0.25609630586538
1121 => 0.25506797537589
1122 => 0.25357808583673
1123 => 0.25911847336884
1124 => 0.25276686614949
1125 => 0.24375155934675
1126 => 0.23880558373221
1127 => 0.24531884340191
1128 => 0.24929626380075
1129 => 0.25192508567294
1130 => 0.25272056558308
1201 => 0.2327274003897
1202 => 0.22195219322224
1203 => 0.22885897747858
1204 => 0.2372857309521
1205 => 0.23178981763384
1206 => 0.23200524703077
1207 => 0.22416951893954
1208 => 0.23797901901959
1209 => 0.2359670910141
1210 => 0.2464049770656
1211 => 0.24391389179014
1212 => 0.25242558266873
1213 => 0.25018416920257
1214 => 0.25948815118486
1215 => 0.26319976149285
1216 => 0.26943213286598
1217 => 0.27401669061837
1218 => 0.27670883061919
1219 => 0.2765472046315
1220 => 0.28721480453357
1221 => 0.28092449356887
1222 => 0.27302238048475
1223 => 0.27287945618991
1224 => 0.27697207252998
1225 => 0.28554907362432
1226 => 0.28777296521779
1227 => 0.28901581722967
1228 => 0.28711234610949
1229 => 0.28028466438796
1230 => 0.27733650603773
1231 => 0.27984842236849
]
'min_raw' => 0.10357838619196
'max_raw' => 0.28901581722967
'avg_raw' => 0.19629710171081
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.103578'
'max' => '$0.289015'
'avg' => '$0.196297'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.041005132142798
'max_diff' => 0.14932543554636
'year' => 2036
]
11 => [
'items' => [
101 => 0.2767765645474
102 => 0.28207945295768
103 => 0.28936145138084
104 => 0.2878577475026
105 => 0.29288440411967
106 => 0.29808646489863
107 => 0.30552564545173
108 => 0.30747052272036
109 => 0.31068533088836
110 => 0.3139944245027
111 => 0.31505721618905
112 => 0.31708641528319
113 => 0.31707572040233
114 => 0.32319084845337
115 => 0.32993602406342
116 => 0.33248217170504
117 => 0.33833689781154
118 => 0.32831088452823
119 => 0.33591573077416
120 => 0.34277549244964
121 => 0.33459700178536
122 => 0.34586914582215
123 => 0.34630681763187
124 => 0.35291514233075
125 => 0.34621633924661
126 => 0.34223861135858
127 => 0.35372216272779
128 => 0.35927869150688
129 => 0.35760501981809
130 => 0.34486829562702
131 => 0.33745497584403
201 => 0.31805288804933
202 => 0.34103549914997
203 => 0.35222965860513
204 => 0.34483930545835
205 => 0.34856656971441
206 => 0.36890131492603
207 => 0.37664346932536
208 => 0.37503315533204
209 => 0.37530527188889
210 => 0.37948279787273
211 => 0.39800824869064
212 => 0.38690736914396
213 => 0.39539357561538
214 => 0.39989462892852
215 => 0.4040754580922
216 => 0.39380866303084
217 => 0.38045171350518
218 => 0.3762210069038
219 => 0.34410448048584
220 => 0.34243267581078
221 => 0.3414942411858
222 => 0.33557754361953
223 => 0.33092864005231
224 => 0.32723165933292
225 => 0.31752967791337
226 => 0.32080381183782
227 => 0.30534087841594
228 => 0.31523351524654
301 => 0.29055430013965
302 => 0.31110788382751
303 => 0.29992150268298
304 => 0.30743285676477
305 => 0.30740665035799
306 => 0.29357586601643
307 => 0.28559855824932
308 => 0.29068200923999
309 => 0.29613187222682
310 => 0.2970160941609
311 => 0.3040819837793
312 => 0.30605392169101
313 => 0.30007885775756
314 => 0.29004287826135
315 => 0.292374007402
316 => 0.28555131799169
317 => 0.27359481723109
318 => 0.28218218481783
319 => 0.28511428967184
320 => 0.2864092742137
321 => 0.27465142892904
322 => 0.27095685866536
323 => 0.26898990045742
324 => 0.2885250880838
325 => 0.28959526976016
326 => 0.28412006899544
327 => 0.30886849563184
328 => 0.30326716447518
329 => 0.30952522373662
330 => 0.29216248186622
331 => 0.29282576198771
401 => 0.28460596173598
402 => 0.28920850062969
403 => 0.28595557448637
404 => 0.28883666097026
405 => 0.29056357232954
406 => 0.29878202379293
407 => 0.31120172534174
408 => 0.2975544612055
409 => 0.29160815278892
410 => 0.29529720908726
411 => 0.30512165214789
412 => 0.32000618628873
413 => 0.31119424249819
414 => 0.31510483351592
415 => 0.31595912368321
416 => 0.30946152256795
417 => 0.32024576210993
418 => 0.32602512369149
419 => 0.33195355280379
420 => 0.33710104169119
421 => 0.32958560784739
422 => 0.33762819935538
423 => 0.33114729030845
424 => 0.3253332449093
425 => 0.32534206241623
426 => 0.32169482680769
427 => 0.31462784823489
428 => 0.31332458895916
429 => 0.320104308295
430 => 0.32554100116054
501 => 0.32598879322495
502 => 0.32899882574268
503 => 0.33078013198087
504 => 0.34823935468354
505 => 0.35526159848482
506 => 0.36384826528075
507 => 0.36719325591579
508 => 0.37726047848174
509 => 0.36913037863989
510 => 0.36737138039838
511 => 0.34295159141678
512 => 0.3469503304945
513 => 0.35335269757885
514 => 0.34305716409186
515 => 0.34958731038421
516 => 0.35087649958973
517 => 0.34270732580361
518 => 0.34707083449194
519 => 0.3354826491059
520 => 0.3114543161163
521 => 0.32027251251342
522 => 0.32676567323451
523 => 0.31749913228457
524 => 0.33410904827267
525 => 0.32440587825068
526 => 0.32133043918801
527 => 0.30933205493135
528 => 0.31499483044033
529 => 0.32265381539937
530 => 0.31792145314725
531 => 0.32774181538816
601 => 0.34165006731622
602 => 0.35156191589087
603 => 0.35232282454852
604 => 0.3459501699573
605 => 0.35616238960947
606 => 0.35623677448071
607 => 0.34471734899491
608 => 0.33766176502529
609 => 0.33605872150231
610 => 0.3400634385179
611 => 0.34492590428636
612 => 0.35259265755763
613 => 0.35722551599049
614 => 0.36930555370515
615 => 0.37257406554891
616 => 0.37616516911433
617 => 0.38096399093306
618 => 0.3867262069191
619 => 0.37411880638478
620 => 0.37461972191114
621 => 0.36287988509492
622 => 0.35033418579389
623 => 0.35985480771988
624 => 0.37230175441285
625 => 0.36944641108883
626 => 0.3691251266355
627 => 0.36966543796912
628 => 0.3675126023496
629 => 0.35777540663033
630 => 0.35288544789819
701 => 0.35919474222418
702 => 0.36254785136406
703 => 0.36774823121816
704 => 0.36710717463444
705 => 0.38050279465859
706 => 0.38570792753745
707 => 0.38437623180685
708 => 0.38462129587033
709 => 0.39404494031795
710 => 0.40452597106401
711 => 0.41434283945151
712 => 0.42432897961959
713 => 0.41229029788129
714 => 0.40617779773725
715 => 0.4124843376227
716 => 0.4091379987885
717 => 0.42836705431839
718 => 0.42969843240259
719 => 0.44892609745289
720 => 0.4671754411734
721 => 0.4557133553535
722 => 0.46652158601798
723 => 0.47821156868958
724 => 0.50076344189445
725 => 0.49316876438352
726 => 0.48735136043391
727 => 0.48185394181102
728 => 0.49329319727462
729 => 0.50800961668197
730 => 0.5111793924702
731 => 0.51631564019467
801 => 0.51091550374288
802 => 0.51741937329355
803 => 0.54038089075252
804 => 0.53417648604818
805 => 0.5253652339602
806 => 0.54349114674648
807 => 0.55005084412113
808 => 0.59609023563663
809 => 0.65421686921735
810 => 0.63015206123488
811 => 0.61521425835366
812 => 0.61872499636016
813 => 0.63995087523312
814 => 0.6467679538514
815 => 0.62823678417901
816 => 0.63478230658848
817 => 0.67084877860625
818 => 0.69019728369282
819 => 0.66391941493433
820 => 0.59141981722506
821 => 0.52457187711568
822 => 0.54230296103466
823 => 0.54029280637784
824 => 0.57904173117691
825 => 0.53402851304792
826 => 0.53478642019838
827 => 0.57433663172647
828 => 0.56378531335306
829 => 0.54669352889888
830 => 0.52469666605709
831 => 0.4840334306305
901 => 0.44801686903496
902 => 0.51865364044258
903 => 0.51560765441485
904 => 0.51119661525686
905 => 0.52101290557868
906 => 0.56867802497883
907 => 0.56757918969972
908 => 0.56058896028472
909 => 0.56589098768695
910 => 0.54576405786034
911 => 0.55095122595833
912 => 0.52456128806043
913 => 0.53649064213144
914 => 0.54665685760575
915 => 0.54869787587561
916 => 0.55329639425458
917 => 0.51400255818891
918 => 0.53164433697598
919 => 0.54200722920226
920 => 0.4951873051187
921 => 0.54108174984066
922 => 0.5133185399239
923 => 0.50389528948874
924 => 0.51658245478085
925 => 0.51163825412784
926 => 0.50738752073959
927 => 0.50501553847207
928 => 0.51433159243126
929 => 0.51389698737897
930 => 0.49865411493358
1001 => 0.47877040920754
1002 => 0.48544403350959
1003 => 0.4830194432351
1004 => 0.47423241530195
1005 => 0.48015381117909
1006 => 0.45407898048603
1007 => 0.40921858953039
1008 => 0.43885473790662
1009 => 0.43771377843206
1010 => 0.4371384549266
1011 => 0.45940920134836
1012 => 0.45726838295345
1013 => 0.45338277660373
1014 => 0.47416105309421
1015 => 0.46657670266792
1016 => 0.48994988358403
1017 => 0.50534497221793
1018 => 0.50144027976143
1019 => 0.51591943503254
1020 => 0.48559778033468
1021 => 0.49566941773167
1022 => 0.49774516824051
1023 => 0.47390465238764
1024 => 0.4576186473188
1025 => 0.45653255645476
1026 => 0.42829486801514
1027 => 0.44337921325293
1028 => 0.45665281282957
1029 => 0.45029578870529
1030 => 0.44828334477824
1031 => 0.45856448435571
1101 => 0.45936341695289
1102 => 0.44114766907022
1103 => 0.44493529987274
1104 => 0.46073034996048
1105 => 0.44453730513645
1106 => 0.41307686416222
1107 => 0.40527423982599
1108 => 0.40423322590864
1109 => 0.38307188987483
1110 => 0.40579564849384
1111 => 0.39587611889777
1112 => 0.42721179403753
1113 => 0.4093130244543
1114 => 0.40854144427138
1115 => 0.4073750876587
1116 => 0.38916065157061
1117 => 0.3931484554861
1118 => 0.40640452306087
1119 => 0.41113443731184
1120 => 0.41064106850442
1121 => 0.40633956109794
1122 => 0.40830876916134
1123 => 0.40196526387154
1124 => 0.39972524012506
1125 => 0.39265510901411
1126 => 0.38226396945459
1127 => 0.3837089211429
1128 => 0.36312135468592
1129 => 0.3519041558153
1130 => 0.34879938300821
1201 => 0.3446475510532
1202 => 0.34926834347514
1203 => 0.36306303269683
1204 => 0.34642371078889
1205 => 0.31789676049044
1206 => 0.31961127881094
1207 => 0.32346329243203
1208 => 0.31628509053275
1209 => 0.30949152485589
1210 => 0.31539797903251
1211 => 0.30331073412692
1212 => 0.32492397823138
1213 => 0.32433940054877
1214 => 0.33239548139686
1215 => 0.3374331140786
1216 => 0.32582300170015
1217 => 0.32290308983405
1218 => 0.32456640433557
1219 => 0.29707552070421
1220 => 0.33014888970383
1221 => 0.33043490957234
1222 => 0.32798583381046
1223 => 0.34559638177704
1224 => 0.38276013085419
1225 => 0.36877763354303
1226 => 0.36336318796092
1227 => 0.35307032295141
1228 => 0.36678495444674
1229 => 0.36573188472947
1230 => 0.36096950410319
1231 => 0.35808920144088
]
'min_raw' => 0.26898990045742
'max_raw' => 0.69019728369282
'avg_raw' => 0.47959359207512
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.268989'
'max' => '$0.690197'
'avg' => '$0.479593'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.16541151426546
'max_diff' => 0.40118146646315
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.008443285607484
]
1 => [
'year' => 2028
'avg' => 0.014491129205768
]
2 => [
'year' => 2029
'avg' => 0.03958715321823
]
3 => [
'year' => 2030
'avg' => 0.030541429752907
]
4 => [
'year' => 2031
'avg' => 0.029995468975076
]
5 => [
'year' => 2032
'avg' => 0.052591497034808
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.008443285607484
'min' => '$0.008443'
'max_raw' => 0.052591497034808
'max' => '$0.052591'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.052591497034808
]
1 => [
'year' => 2033
'avg' => 0.13527073829339
]
2 => [
'year' => 2034
'avg' => 0.08574109473784
]
3 => [
'year' => 2035
'avg' => 0.10113181786624
]
4 => [
'year' => 2036
'avg' => 0.19629710171081
]
5 => [
'year' => 2037
'avg' => 0.47959359207512
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.052591497034808
'min' => '$0.052591'
'max_raw' => 0.47959359207512
'max' => '$0.479593'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.47959359207512
]
]
]
]
'prediction_2025_max_price' => '$0.014436'
'last_price' => false
'sma_50day_nextmonth' => '—'
'sma_200day_nextmonth' => '—'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'decrease'
'sma_200day_direction_label' => 'disminuir'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '—'
'daily_sma3_action' => '—'
'daily_sma5' => '—'
'daily_sma5_action' => '—'
'daily_sma10' => '—'
'daily_sma10_action' => '—'
'daily_sma21' => '—'
'daily_sma21_action' => '—'
'daily_sma50' => '—'
'daily_sma50_action' => '—'
'daily_sma100' => '—'
'daily_sma100_action' => '—'
'daily_sma200' => '—'
'daily_sma200_action' => '—'
'daily_ema3' => '—'
'daily_ema3_action' => '—'
'daily_ema5' => '—'
'daily_ema5_action' => '—'
'daily_ema10' => '—'
'daily_ema10_action' => '—'
'daily_ema21' => '—'
'daily_ema21_action' => '—'
'daily_ema50' => '—'
'daily_ema50_action' => '—'
'daily_ema100' => '—'
'daily_ema100_action' => '—'
'daily_ema200' => '—'
'daily_ema200_action' => '—'
'weekly_sma21' => '—'
'weekly_sma21_action' => '—'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '—'
'weekly_ema3_action' => '—'
'weekly_ema5' => '—'
'weekly_ema5_action' => '—'
'weekly_ema10' => '—'
'weekly_ema10_action' => '—'
'weekly_ema21' => '—'
'weekly_ema21_action' => '—'
'weekly_ema50' => '—'
'weekly_ema50_action' => '—'
'weekly_ema100' => '—'
'weekly_ema100_action' => '—'
'weekly_ema200' => '—'
'weekly_ema200_action' => '—'
'rsi_14' => '—'
'rsi_14_action' => '—'
'stoch_rsi_14' => '—'
'stoch_rsi_14_action' => '—'
'momentum_10' => '—'
'momentum_10_action' => '—'
'vwma_10' => '—'
'vwma_10_action' => '—'
'hma_9' => '—'
'hma_9_action' => '—'
'stochastic_fast_14' => '—'
'stochastic_fast_14_action' => '—'
'cci_20' => '—'
'cci_20_action' => '—'
'adx_14' => '—'
'adx_14_action' => '—'
'ao_5_34' => '—'
'ao_5_34_action' => '—'
'macd_12_26' => '—'
'macd_12_26_action' => '—'
'williams_percent_r_14' => '—'
'williams_percent_r_14_action' => '—'
'ultimate_oscillator' => '—'
'ultimate_oscillator_action' => '—'
'ichimoku_cloud' => '—'
'ichimoku_cloud_action' => '—'
'sell_signals' => 0
'buy_signals' => 0
'sell_pct' => 0
'buy_pct' => 0
'overall_action' => 'neutral'
'overall_action_label' => 'Neutral'
'overall_action_dir' => 0
'last_updated' => 1767708036
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de BitDoge para 2026
La previsión del precio de BitDoge para 2026 sugiere que el precio medio podría oscilar entre $0.004836 en el extremo inferior y $0.014436 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, BitDoge podría potencialmente ganar 3.13% para 2026 si BDOGE alcanza el objetivo de precio previsto.
Predicción de precio de BitDoge 2027-2032
La predicción del precio de BDOGE para 2027-2032 está actualmente dentro de un rango de precios de $0.008443 en el extremo inferior y $0.052591 en el extremo superior. Considerando la volatilidad de precios en el mercado, si BitDoge alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de BitDoge | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.004655 | $0.008443 | $0.01223 |
| 2028 | $0.0084023 | $0.014491 | $0.020579 |
| 2029 | $0.018457 | $0.039587 | $0.060716 |
| 2030 | $0.015697 | $0.030541 | $0.045385 |
| 2031 | $0.018559 | $0.029995 | $0.041431 |
| 2032 | $0.028329 | $0.052591 | $0.076853 |
Predicción de precio de BitDoge 2032-2037
La predicción de precio de BitDoge para 2032-2037 se estima actualmente entre $0.052591 en el extremo inferior y $0.479593 en el extremo superior. Comparado con el precio actual, BitDoge podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de BitDoge | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.028329 | $0.052591 | $0.076853 |
| 2033 | $0.06583 | $0.13527 | $0.20471 |
| 2034 | $0.052924 | $0.085741 | $0.118557 |
| 2035 | $0.062573 | $0.101131 | $0.13969 |
| 2036 | $0.103578 | $0.196297 | $0.289015 |
| 2037 | $0.268989 | $0.479593 | $0.690197 |
BitDoge Histograma de precios potenciales
Pronóstico de precio de BitDoge basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para BitDoge es Neutral, con 0 indicadores técnicos mostrando señales alcistas y 0 indicando señales bajistas. La predicción de precio de BDOGE se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de BitDoge
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de BitDoge disminuir durante el próximo mes, alcanzando — para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para BitDoge alcance — para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en —, lo que sugiere que el mercado de BDOGE está en un estado —.
Promedios Móviles y Osciladores Populares de BDOGE para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | — | — |
| SMA 5 | — | — |
| SMA 10 | — | — |
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | — | — |
| EMA 5 | — | — |
| EMA 10 | — | — |
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | — | — |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | — | — |
| EMA 50 | — | — |
| EMA 100 | — | — |
| EMA 200 | — | — |
Osciladores de BitDoge
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | — | — |
| Stoch RSI (14) | — | — |
| Estocástico Rápido (14) | — | — |
| Índice de Canal de Materias Primas (20) | — | — |
| Índice Direccional Medio (14) | — | — |
| Oscilador Asombroso (5, 34) | — | — |
| Momentum (10) | — | — |
| MACD (12, 26) | — | — |
| Rango Percentil de Williams (14) | — | — |
| Oscilador Ultimate (7, 14, 28) | — | — |
| VWMA (10) | — | — |
| Promedio Móvil de Hull (9) | — | — |
| Nube Ichimoku B/L (9, 26, 52, 26) | — | — |
Predicción de precios de BitDoge basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de BitDoge
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de BitDoge por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.019669 | $0.027638 | $0.038837 | $0.054572 | $0.076684 | $0.107753 |
| Amazon.com acción | $0.0292076 | $0.060943 | $0.127162 | $0.265331 | $0.553629 | $1.15 |
| Apple acción | $0.019855 | $0.028162 | $0.039946 | $0.056661 | $0.08037 | $0.113999 |
| Netflix acción | $0.022086 | $0.034849 | $0.054986 | $0.08676 | $0.136894 | $0.215997 |
| Google acción | $0.018127 | $0.023474 | $0.030399 | $0.039367 | $0.05098 | $0.066019 |
| Tesla acción | $0.031732 | $0.071934 | $0.163071 | $0.369669 | $0.838013 | $1.89 |
| Kodak acción | $0.010497 | $0.007871 | $0.0059028 | $0.004426 | $0.003319 | $0.002489 |
| Nokia acción | $0.009273 | $0.006143 | $0.004069 | $0.002695 | $0.001785 | $0.001183 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de BitDoge
Podría preguntarse cosas como: "¿Debo invertir en BitDoge ahora?", "¿Debería comprar BDOGE hoy?", "¿Será BitDoge una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de BitDoge regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como BitDoge, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de BitDoge a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de BitDoge es de $0.01399 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de BitDoge basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si BitDoge ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.014361 | $0.014735 | $0.015118 | $0.015511 |
| Si BitDoge ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.014725 | $0.015491 | $0.016296 | $0.017143 |
| Si BitDoge ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.015817 | $0.017872 | $0.020195 | $0.02282 |
| Si BitDoge ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.017636 | $0.02222 | $0.027996 | $0.035273 |
| Si BitDoge ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.021275 | $0.032335 | $0.049145 | $0.074693 |
| Si BitDoge ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.03219 | $0.074027 | $0.170238 | $0.39149 |
| Si BitDoge ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.050383 | $0.181345 | $0.65272 | $2.34 |
Cuadro de preguntas
¿Es BDOGE una buena inversión?
La decisión de adquirir BitDoge depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de BitDoge ha experimentado una caída de 0% durante las últimas 24 horas, y BitDoge ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en BitDoge dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede BitDoge subir?
Parece que el valor medio de BitDoge podría potencialmente aumentar hasta $0.014436 para el final de este año. Mirando las perspectivas de BitDoge en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.045385. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de BitDoge la próxima semana?
Basado en nuestro nuevo pronóstico experimental de BitDoge, el precio de BitDoge aumentará en un 0.86% durante la próxima semana y alcanzará $0.014117 para el 13 de enero de 2026.
¿Cuál será el precio de BitDoge el próximo mes?
Basado en nuestro nuevo pronóstico experimental de BitDoge, el precio de BitDoge disminuirá en un -11.62% durante el próximo mes y alcanzará $0.012371 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de BitDoge este año en 2026?
Según nuestra predicción más reciente sobre el valor de BitDoge en 2026, se anticipa que BDOGE fluctúe dentro del rango de $0.004836 y $0.014436. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de BitDoge no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará BitDoge en 5 años?
El futuro de BitDoge parece estar en una tendencia alcista, con un precio máximo de $0.045385 proyectada después de un período de cinco años. Basado en el pronóstico de BitDoge para 2030, el valor de BitDoge podría potencialmente alcanzar su punto más alto de aproximadamente $0.045385, mientras que su punto más bajo se anticipa que esté alrededor de $0.015697.
¿Cuánto será BitDoge en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de BitDoge, se espera que el valor de BDOGE en 2026 crezca en un 3.13% hasta $0.014436 si ocurre lo mejor. El precio estará entre $0.014436 y $0.004836 durante 2026.
¿Cuánto será BitDoge en 2027?
Según nuestra última simulación experimental para la predicción de precios de BitDoge, el valor de BDOGE podría disminuir en un -12.62% hasta $0.01223 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.01223 y $0.004655 a lo largo del año.
¿Cuánto será BitDoge en 2028?
Nuestro nuevo modelo experimental de predicción de precios de BitDoge sugiere que el valor de BDOGE en 2028 podría aumentar en un 47.02% , alcanzando $0.020579 en el mejor escenario. Se espera que el precio oscile entre $0.020579 y $0.0084023 durante el año.
¿Cuánto será BitDoge en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de BitDoge podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.060716 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.060716 y $0.018457.
¿Cuánto será BitDoge en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de BitDoge, se espera que el valor de BDOGE en 2030 aumente en un 224.23% , alcanzando $0.045385 en el mejor escenario. Se pronostica que el precio oscile entre $0.045385 y $0.015697 durante el transcurso de 2030.
¿Cuánto será BitDoge en 2031?
Nuestra simulación experimental indica que el precio de BitDoge podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.041431 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.041431 y $0.018559 durante el año.
¿Cuánto será BitDoge en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de BitDoge, BDOGE podría experimentar un 449.04% aumento en valor, alcanzando $0.076853 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.076853 y $0.028329 a lo largo del año.
¿Cuánto será BitDoge en 2033?
Según nuestra predicción experimental de precios de BitDoge, se anticipa que el valor de BDOGE aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.20471. A lo largo del año, el precio de BDOGE podría oscilar entre $0.20471 y $0.06583.
¿Cuánto será BitDoge en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de BitDoge sugieren que BDOGE podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.118557 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.118557 y $0.052924.
¿Cuánto será BitDoge en 2035?
Basado en nuestra predicción experimental para el precio de BitDoge, BDOGE podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.13969 en 2035. El rango de precios esperado para el año está entre $0.13969 y $0.062573.
¿Cuánto será BitDoge en 2036?
Nuestra reciente simulación de predicción de precios de BitDoge sugiere que el valor de BDOGE podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.289015 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.289015 y $0.103578.
¿Cuánto será BitDoge en 2037?
Según la simulación experimental, el valor de BitDoge podría aumentar en un 4830.69% en 2037, con un máximo de $0.690197 bajo condiciones favorables. Se espera que el precio caiga entre $0.690197 y $0.268989 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de SolPod
Predicción de precios de zuzalu
Predicción de precios de SOFT COQ INU
Predicción de precios de All Street Bets
Predicción de precios de MagicRing
Predicción de precios de AI INU
Predicción de precios de Wall Street Baby On Solana
Predicción de precios de Meta Masters Guild Games
Predicción de precios de Morfey
Predicción de precios de PANTIESPredicción de precios de Celer Bridged BUSD (zkSync)
Predicción de precios de Bridged BUSD
Predicción de precios de Multichain Bridged BUSD (Moonriver)
Predicción de precios de tooker kurlson
Predicción de precios de dogwifsaudihatPredicción de precios de Harmony Horizen Bridged BUSD (Harmony)
Predicción de precios de IoTeX Bridged BUSD (IoTeX)
Predicción de precios de MIMANY
Predicción de precios de The Open League MEME
Predicción de precios de Sandwich Cat
Predicción de precios de Hege
Predicción de precios de DexNet
Predicción de precios de SolDocs
Predicción de precios de Secret Society
Predicción de precios de duk
¿Cómo leer y predecir los movimientos de precio de BitDoge?
Los traders de BitDoge utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de BitDoge
Las medias móviles son herramientas populares para la predicción de precios de BitDoge. Una media móvil simple (SMA) calcula el precio de cierre promedio de BDOGE durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de BDOGE por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de BDOGE.
¿Cómo leer gráficos de BitDoge y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de BitDoge en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de BDOGE dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de BitDoge?
La acción del precio de BitDoge está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de BDOGE. La capitalización de mercado de BitDoge puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de BDOGE, grandes poseedores de BitDoge, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de BitDoge.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


