Predicción del precio de ARCS - Pronóstico de ARX
Predicción de precio de ARCS hasta $0.020414 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.006838 | $0.020414 |
| 2027 | $0.006583 | $0.017295 |
| 2028 | $0.011881 | $0.0291016 |
| 2029 | $0.02610038 | $0.085858 |
| 2030 | $0.022197 | $0.064178 |
| 2031 | $0.026244 | $0.058587 |
| 2032 | $0.040059 | $0.108677 |
| 2033 | $0.093089 | $0.289477 |
| 2034 | $0.074839 | $0.167649 |
| 2035 | $0.088483 | $0.197533 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en ARCS hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.82, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Arcs para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'ARCS'
'name_with_ticker' => 'ARCS <small>ARX</small>'
'name_lang' => 'Arcs'
'name_lang_with_ticker' => 'Arcs <small>ARX</small>'
'name_with_lang' => 'Arcs/ARCS'
'name_with_lang_with_ticker' => 'Arcs/ARCS <small>ARX</small>'
'image' => '/uploads/coins/arcs.png?1717589921'
'price_for_sd' => 0.01979
'ticker' => 'ARX'
'marketcap' => '$3.48M'
'low24h' => '$0.01953'
'high24h' => '$0.02059'
'volume24h' => '$834.54K'
'current_supply' => '176.03M'
'max_supply' => '5B'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.01979'
'change_24h_pct' => '-1.4266%'
'ath_price' => '$18.77'
'ath_days' => 1728
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '14 abr. 2021'
'ath_pct' => '-99.89%'
'fdv' => '$98.97M'
'new_prediction' => true
'change_24h_pct_is_increased' => false
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.975994'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.019963'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.017494'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.006838'
'current_year_max_price_prediction' => '$0.020414'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.022197'
'grand_prediction_max_price' => '$0.064178'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.020169371194209
107 => 0.020244676304766
108 => 0.020414342564026
109 => 0.01896456295507
110 => 0.019615471436198
111 => 0.019997819186984
112 => 0.018270358139003
113 => 0.019963672836277
114 => 0.018939325517547
115 => 0.018591646652389
116 => 0.019059750441116
117 => 0.018877329939403
118 => 0.018720495504122
119 => 0.018632979194477
120 => 0.018976702954189
121 => 0.018960667829959
122 => 0.018398269045165
123 => 0.017664642756708
124 => 0.017910871819576
125 => 0.017821414492626
126 => 0.017497209599535
127 => 0.017715684552831
128 => 0.016753631426162
129 => 0.015098469024899
130 => 0.016191920006169
131 => 0.016149823332836
201 => 0.016128596281209
202 => 0.016950294472868
203 => 0.016871307151543
204 => 0.016727944389891
205 => 0.017494576629991
206 => 0.017214745549696
207 => 0.018077119002671
208 => 0.018645133933619
209 => 0.018501066973773
210 => 0.019035287761783
211 => 0.017916544439872
212 => 0.018288146095219
213 => 0.018364732681369
214 => 0.01748511650715
215 => 0.016884230454164
216 => 0.016844158205032
217 => 0.015802304596354
218 => 0.016358854384562
219 => 0.016848595166589
220 => 0.016614047337418
221 => 0.016539796501619
222 => 0.016919127918672
223 => 0.016948605218531
224 => 0.016276519657884
225 => 0.016416267528124
226 => 0.016999039378177
227 => 0.016401583172742
228 => 0.015240823359498
301 => 0.014952938877054
302 => 0.014914529780332
303 => 0.014133764231537
304 => 0.014972176694744
305 => 0.014606187186497
306 => 0.015762343657822
307 => 0.015101953281993
308 => 0.015073485172796
309 => 0.015030451450382
310 => 0.014358414289515
311 => 0.014505547717555
312 => 0.014994641641415
313 => 0.015169155863485
314 => 0.01515095260037
315 => 0.014992244814364
316 => 0.015064900426082
317 => 0.014830851385843
318 => 0.014748203798426
319 => 0.014487345278525
320 => 0.014103955318277
321 => 0.014157268043717
322 => 0.013397672213025
323 => 0.012983804089662
324 => 0.012869250847809
325 => 0.012716065465295
326 => 0.012886553544375
327 => 0.013395520373475
328 => 0.012781598394244
329 => 0.011729072222473
330 => 0.011792330838814
331 => 0.01193445416808
401 => 0.011669608284233
402 => 0.011418953882002
403 => 0.011636877548507
404 => 0.011190908334321
405 => 0.011988347416971
406 => 0.011966778924583
407 => 0.012264014901293
408 => 0.012449882657426
409 => 0.01202151765494
410 => 0.011913785015237
411 => 0.011975154422987
412 => 0.010960854814918
413 => 0.012181124983883
414 => 0.012191677930977
415 => 0.012101317191078
416 => 0.012751073384437
417 => 0.014122261616463
418 => 0.013606365447656
419 => 0.01340659485805
420 => 0.013026830821177
421 => 0.013532843852153
422 => 0.013493989946407
423 => 0.013318277849717
424 => 0.013212006625384
425 => 0.013407814614671
426 => 0.0131877438486
427 => 0.013148213091874
428 => 0.012908699715998
429 => 0.012823204337975
430 => 0.012759906963756
501 => 0.012690222774211
502 => 0.012843928732127
503 => 0.012495610809787
504 => 0.012075573541472
505 => 0.012040651987477
506 => 0.01213707346839
507 => 0.012094414140821
508 => 0.012040447751029
509 => 0.011937411216045
510 => 0.011906842477142
511 => 0.012006176048732
512 => 0.011894034237914
513 => 0.012059505588456
514 => 0.012014506537056
515 => 0.011763145493891
516 => 0.01144985656833
517 => 0.011447067639746
518 => 0.011379570054631
519 => 0.011293601731657
520 => 0.011269687310894
521 => 0.011618524625153
522 => 0.012340607425846
523 => 0.012198845294093
524 => 0.012301282962652
525 => 0.012805174905677
526 => 0.012965347001805
527 => 0.012851660641857
528 => 0.012696039740491
529 => 0.012702886270362
530 => 0.013234689999979
531 => 0.013267857946271
601 => 0.013351662646167
602 => 0.013459375368739
603 => 0.012870004584274
604 => 0.012675126959415
605 => 0.012582783129358
606 => 0.012298399874341
607 => 0.012605082833699
608 => 0.012426391806755
609 => 0.012450503331244
610 => 0.012434800669289
611 => 0.012443375384526
612 => 0.011988124516496
613 => 0.012153994005525
614 => 0.011878203809098
615 => 0.011508951694984
616 => 0.011507713832422
617 => 0.011598087764232
618 => 0.011544329813259
619 => 0.011399668549434
620 => 0.011420216999178
621 => 0.011240190957322
622 => 0.011442075420136
623 => 0.011447864744152
624 => 0.011370128229248
625 => 0.0116811590989
626 => 0.011808588699974
627 => 0.011757420860586
628 => 0.01180499862796
629 => 0.012204736150685
630 => 0.01226991080866
701 => 0.012298857086536
702 => 0.012260072908829
703 => 0.011812305096066
704 => 0.011832165502618
705 => 0.011686443016928
706 => 0.011563322872377
707 => 0.011568247032479
708 => 0.011631546791277
709 => 0.011907980550428
710 => 0.012489719099901
711 => 0.012511795652608
712 => 0.012538553078508
713 => 0.01242971718017
714 => 0.012396891231812
715 => 0.012440197130792
716 => 0.012658667543614
717 => 0.013220632759532
718 => 0.013021996719832
719 => 0.012860502527602
720 => 0.013002176472709
721 => 0.012980366879337
722 => 0.012796271962876
723 => 0.012791105031718
724 => 0.012437768028325
725 => 0.012307147383265
726 => 0.012197990995467
727 => 0.012078795069592
728 => 0.012008131729249
729 => 0.012116702735929
730 => 0.012141534209731
731 => 0.011904141806128
801 => 0.011871786098712
802 => 0.012065645859965
803 => 0.011980335406858
804 => 0.012068079323476
805 => 0.012088436664785
806 => 0.012085158663965
807 => 0.011996084753078
808 => 0.012052857807655
809 => 0.011918572608718
810 => 0.011772557623859
811 => 0.011679409160574
812 => 0.011598124772007
813 => 0.01164322607506
814 => 0.011482448164847
815 => 0.01143101207555
816 => 0.012033624374199
817 => 0.012478780558384
818 => 0.012472307811165
819 => 0.012432906627123
820 => 0.012374364459876
821 => 0.012654384819444
822 => 0.012556831325354
823 => 0.012627809643171
824 => 0.012645876604006
825 => 0.012700559853034
826 => 0.012720104414377
827 => 0.012661027175427
828 => 0.012462756745834
829 => 0.011968685686274
830 => 0.01173869427433
831 => 0.011662793277578
901 => 0.011665552134654
902 => 0.011589450540434
903 => 0.011611865870566
904 => 0.011581655403377
905 => 0.011524444087219
906 => 0.011639693437504
907 => 0.011652974851503
908 => 0.011626074276019
909 => 0.011632410335361
910 => 0.011409685059741
911 => 0.011426618378712
912 => 0.011332331506897
913 => 0.011314653855077
914 => 0.011076304853625
915 => 0.010654035048312
916 => 0.010888013511177
917 => 0.010605400430387
918 => 0.010498370574404
919 => 0.011005033266067
920 => 0.010954178384459
921 => 0.010867136933233
922 => 0.010738384485842
923 => 0.010690628950681
924 => 0.010400481436609
925 => 0.010383337973601
926 => 0.010527142916217
927 => 0.010460781883226
928 => 0.010367585860018
929 => 0.010030039311087
930 => 0.0096505252322668
1001 => 0.0096619803767659
1002 => 0.0097826967441281
1003 => 0.010133695863054
1004 => 0.009996554434943
1005 => 0.0098970567553322
1006 => 0.0098784238308304
1007 => 0.010111653891641
1008 => 0.010441723290895
1009 => 0.010596584468139
1010 => 0.010443121744695
1011 => 0.010266832031021
1012 => 0.010277561969044
1013 => 0.010348943439617
1014 => 0.010356444622895
1015 => 0.010241698142169
1016 => 0.010273998604362
1017 => 0.010224931248675
1018 => 0.0099238049773923
1019 => 0.0099183585580266
1020 => 0.0098444573147369
1021 => 0.0098422196144603
1022 => 0.0097164951640953
1023 => 0.0096989054443972
1024 => 0.009449271917269
1025 => 0.0096135814607847
1026 => 0.0095033712456326
1027 => 0.0093372584554368
1028 => 0.0093086205477953
1029 => 0.0093077596577103
1030 => 0.0094783203511012
1031 => 0.0096115883597772
1101 => 0.0095052883995103
1102 => 0.0094810859590957
1103 => 0.0097395047039763
1104 => 0.0097066185631511
1105 => 0.0096781393772893
1106 => 0.010412169196425
1107 => 0.009831127317518
1108 => 0.0095777598936036
1109 => 0.0092641695933407
1110 => 0.0093662761763658
1111 => 0.009387791533667
1112 => 0.0086336633904349
1113 => 0.0083277136966462
1114 => 0.008222723291209
1115 => 0.0081622998285334
1116 => 0.0081898355592247
1117 => 0.0079144449504952
1118 => 0.0080995119941017
1119 => 0.0078610470051306
1120 => 0.0078210675736973
1121 => 0.0082474725141212
1122 => 0.0083068042705597
1123 => 0.0080536765646614
1124 => 0.0082162255295012
1125 => 0.0081572830152507
1126 => 0.0078651348029304
1127 => 0.0078539768901166
1128 => 0.0077073871866805
1129 => 0.0074780026861629
1130 => 0.0073731678142185
1201 => 0.0073185689026918
1202 => 0.0073410974776993
1203 => 0.0073297063407898
1204 => 0.0072553714671929
1205 => 0.007333967128731
1206 => 0.0071331876914708
1207 => 0.0070532357017639
1208 => 0.0070171232428854
1209 => 0.0068389199358837
1210 => 0.0071225206446937
1211 => 0.0071783935570369
1212 => 0.0072343765562773
1213 => 0.007721670343449
1214 => 0.0076973265229198
1215 => 0.0079173828045819
1216 => 0.007908831822134
1217 => 0.0078460682059286
1218 => 0.0075812788332716
1219 => 0.0076868191577959
1220 => 0.0073619824435181
1221 => 0.0076053721966046
1222 => 0.007494299277495
1223 => 0.0075678183309243
1224 => 0.0074356244439126
1225 => 0.0075087859991367
1226 => 0.0071916430973018
1227 => 0.0068954995178895
1228 => 0.007014676339215
1229 => 0.0071442351735185
1230 => 0.0074251517372657
1231 => 0.0072578401494092
]
'min_raw' => 0.0068389199358837
'max_raw' => 0.020414342564026
'avg_raw' => 0.013626631249955
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.006838'
'max' => '$0.020414'
'avg' => '$0.013626'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.012955360064116
'max_diff' => 0.00062006256402632
'year' => 2026
]
1 => [
'items' => [
101 => 0.007318011723154
102 => 0.0071164470237088
103 => 0.0067005614746435
104 => 0.0067029153416862
105 => 0.0066389404105217
106 => 0.0065836567295026
107 => 0.0072770578979334
108 => 0.0071908225015887
109 => 0.0070534176837231
110 => 0.0072373394926867
111 => 0.0072859713382082
112 => 0.0072873558184819
113 => 0.0074215404225927
114 => 0.0074931547698606
115 => 0.0075057771089609
116 => 0.0077169194827795
117 => 0.0077876916214483
118 => 0.0080791920445769
119 => 0.0074870787928365
120 => 0.0074748846100679
121 => 0.0072399276497153
122 => 0.0070909142309371
123 => 0.0072501307259856
124 => 0.0073911748053796
125 => 0.0072443102824209
126 => 0.00726348768864
127 => 0.0070663340658404
128 => 0.0071368072090511
129 => 0.0071975081737418
130 => 0.0071639926688774
131 => 0.0071138183359266
201 => 0.0073796107993147
202 => 0.0073646137468813
203 => 0.0076121257993307
204 => 0.0078050791439716
205 => 0.0081508860321042
206 => 0.007790018517017
207 => 0.0077768670704488
208 => 0.0079054245702117
209 => 0.0077876719399649
210 => 0.0078620875375982
211 => 0.0081388965288648
212 => 0.0081447450666604
213 => 0.0080467745231693
214 => 0.0080408130066943
215 => 0.0080596293212521
216 => 0.0081698370633338
217 => 0.0081313270919086
218 => 0.0081758918057951
219 => 0.0082316206629092
220 => 0.008462138844479
221 => 0.0085177159976398
222 => 0.0083826923289091
223 => 0.0083948834543995
224 => 0.0083443808958117
225 => 0.008295596057011
226 => 0.0084052572501814
227 => 0.0086056652360964
228 => 0.0086044185084173
301 => 0.008650909265775
302 => 0.0086798726224586
303 => 0.0085555406930996
304 => 0.0084746051788986
305 => 0.0085056410051038
306 => 0.0085552679670783
307 => 0.0084895476501909
308 => 0.0080838914097497
309 => 0.0082069415996786
310 => 0.0081864600312276
311 => 0.0081572917871095
312 => 0.0082810197046019
313 => 0.0082690858451235
314 => 0.0079116204217596
315 => 0.0079345041983696
316 => 0.0079130120600086
317 => 0.0079824575559306
318 => 0.0077839216552844
319 => 0.0078449899611635
320 => 0.007883291430131
321 => 0.0079058512895987
322 => 0.0079873529714363
323 => 0.0079777896897615
324 => 0.0079867585044199
325 => 0.0081076039829387
326 => 0.0087187989441265
327 => 0.0087520649373383
328 => 0.0085882510202981
329 => 0.008653691449069
330 => 0.0085280601360774
331 => 0.0086123972781453
401 => 0.008670098608817
402 => 0.0084093573908393
403 => 0.0083939179881072
404 => 0.0082677681499973
405 => 0.0083355539275055
406 => 0.0082277018815201
407 => 0.0082541650011005
408 => 0.0081801718117404
409 => 0.0083133448206916
410 => 0.0084622529376924
411 => 0.0084998730086066
412 => 0.0084009107984903
413 => 0.0083292556364386
414 => 0.0082034527765537
415 => 0.0084126657362419
416 => 0.0084738459813042
417 => 0.0084123443824598
418 => 0.0083980931181711
419 => 0.0083710869980955
420 => 0.0084038225942113
421 => 0.0084735127805504
422 => 0.0084406481756486
423 => 0.0084623558261861
424 => 0.0083796286471692
425 => 0.0085555818521416
426 => 0.0088350378870826
427 => 0.0088359363839306
428 => 0.0088030716018763
429 => 0.0087896240411412
430 => 0.0088233453019307
501 => 0.0088416377025905
502 => 0.0089506860765619
503 => 0.0090676993265122
504 => 0.0096137491071492
505 => 0.0094604205137998
506 => 0.0099449083638279
507 => 0.010328075350326
508 => 0.010442970375716
509 => 0.010337272358586
510 => 0.0099756851516811
511 => 0.0099579439582675
512 => 0.010498307903565
513 => 0.010345630338782
514 => 0.010327469828267
515 => 0.010134272679054
516 => 0.010248476122171
517 => 0.010223498153898
518 => 0.010184069209015
519 => 0.010401961423001
520 => 0.010809836196212
521 => 0.010746265087782
522 => 0.010698812204317
523 => 0.010490887482303
524 => 0.010616104606624
525 => 0.010571517187029
526 => 0.010763093037483
527 => 0.010649607747599
528 => 0.010344473656066
529 => 0.010393067265878
530 => 0.010385722439511
531 => 0.010536878445669
601 => 0.010491505164543
602 => 0.010376862578156
603 => 0.010808442124579
604 => 0.010780417749406
605 => 0.010820149906137
606 => 0.010837641230288
607 => 0.01110033609491
608 => 0.011207953775648
609 => 0.011232384873288
610 => 0.011334613346539
611 => 0.011229841335746
612 => 0.011649004080097
613 => 0.011927722846266
614 => 0.012251469035908
615 => 0.012724549233747
616 => 0.012902431764371
617 => 0.012870298877378
618 => 0.01322898288419
619 => 0.013873530071334
620 => 0.013000580292209
621 => 0.013919798529315
622 => 0.013628784648332
623 => 0.012938795971638
624 => 0.012894368835291
625 => 0.013361637178082
626 => 0.014397993389479
627 => 0.014138397912779
628 => 0.014398417994682
629 => 0.014095090757362
630 => 0.014080028003387
701 => 0.014383686067804
702 => 0.015093199686855
703 => 0.014756136362164
704 => 0.014272873434902
705 => 0.014629707259988
706 => 0.014320584777287
707 => 0.013624045305826
708 => 0.01413819940501
709 => 0.013794399201152
710 => 0.013894738378062
711 => 0.014617355270152
712 => 0.014530408093889
713 => 0.014642925791065
714 => 0.014444335000649
715 => 0.014258819887508
716 => 0.013912542152295
717 => 0.013810026386185
718 => 0.013838358055807
719 => 0.013810012346417
720 => 0.013616273136022
721 => 0.013574435171983
722 => 0.013504703398956
723 => 0.013526316191228
724 => 0.013395200057187
725 => 0.013642643292099
726 => 0.013688570936961
727 => 0.013868639488277
728 => 0.013887334802629
729 => 0.014388823154928
730 => 0.014112611797651
731 => 0.014297918223054
801 => 0.014281342672194
802 => 0.012953750118491
803 => 0.013136680658943
804 => 0.01342126317312
805 => 0.013293059136226
806 => 0.013111808623182
807 => 0.012965439115861
808 => 0.012743674345219
809 => 0.013055804001282
810 => 0.013466221307717
811 => 0.013897743662812
812 => 0.014416189497994
813 => 0.014300478422956
814 => 0.013888051678547
815 => 0.013906552841023
816 => 0.014020919747512
817 => 0.013872804212279
818 => 0.01382912204938
819 => 0.014014918489115
820 => 0.014016197967084
821 => 0.013845773143438
822 => 0.013656377139369
823 => 0.013655583563197
824 => 0.013621882373621
825 => 0.01410108612412
826 => 0.014364599733931
827 => 0.014394811144623
828 => 0.01436256626528
829 => 0.014374976039585
830 => 0.014221643276163
831 => 0.014572116503928
901 => 0.014893745395936
902 => 0.014807541982279
903 => 0.01467831081067
904 => 0.014575371957866
905 => 0.014783292860002
906 => 0.014774034469528
907 => 0.014890936248147
908 => 0.014885632908212
909 => 0.01484632323696
910 => 0.014807543386151
911 => 0.014961301111134
912 => 0.014917021355613
913 => 0.0148726728214
914 => 0.014783725046617
915 => 0.014795814526476
916 => 0.01466660566845
917 => 0.014606827738532
918 => 0.013707911099879
919 => 0.013467691201082
920 => 0.013543269271371
921 => 0.013568151534493
922 => 0.013463607526687
923 => 0.013613496778729
924 => 0.013590136697571
925 => 0.013681017108169
926 => 0.013624238973196
927 => 0.01362656916766
928 => 0.013793541556242
929 => 0.013842014350998
930 => 0.013817360696362
1001 => 0.013834627270991
1002 => 0.014232528195566
1003 => 0.014175959408247
1004 => 0.014145908367441
1005 => 0.014154232711117
1006 => 0.014255904928437
1007 => 0.01428436759819
1008 => 0.014163769266412
1009 => 0.014220644136849
1010 => 0.014462810116675
1011 => 0.014547554504206
1012 => 0.014818017909593
1013 => 0.014703120247881
1014 => 0.014914019878608
1015 => 0.01556225344248
1016 => 0.016080107267652
1017 => 0.015603867488809
1018 => 0.01655484009045
1019 => 0.017295308669745
1020 => 0.017266888252357
1021 => 0.01713777042821
1022 => 0.016294766637058
1023 => 0.015519021979962
1024 => 0.016167965325481
1025 => 0.016169619615525
1026 => 0.016113874806626
1027 => 0.015767648586151
1028 => 0.016101826884642
1029 => 0.016128352744419
1030 => 0.016113505316739
1031 => 0.015848054485272
1101 => 0.015442760129135
1102 => 0.015521953676187
1103 => 0.015651674321762
1104 => 0.015406086077127
1105 => 0.01532760575225
1106 => 0.015473515607689
1107 => 0.015943667563442
1108 => 0.015854788059611
1109 => 0.015852467056576
1110 => 0.016232731264737
1111 => 0.015960544157846
1112 => 0.015522952560428
1113 => 0.015412454910956
1114 => 0.015020262695466
1115 => 0.015291151255646
1116 => 0.015300900052673
1117 => 0.015152537156676
1118 => 0.015534991391764
1119 => 0.015531467008658
1120 => 0.015894550384072
1121 => 0.016588629429977
1122 => 0.016383356102548
1123 => 0.016144645556422
1124 => 0.016170600011511
1125 => 0.016455256322788
1126 => 0.016283146618918
1127 => 0.016345038468421
1128 => 0.016455162642061
1129 => 0.016521603290247
1130 => 0.0161610402247
1201 => 0.016076975726396
1202 => 0.015905009265496
1203 => 0.015860146425753
1204 => 0.016000209519958
1205 => 0.015963307843137
1206 => 0.015300080704032
1207 => 0.015230769777834
1208 => 0.015232895444988
1209 => 0.015058609825509
1210 => 0.014792782422463
1211 => 0.015491360965939
1212 => 0.015435255332297
1213 => 0.015373319054988
1214 => 0.015380905895555
1215 => 0.015684135164254
1216 => 0.015508246874964
1217 => 0.015975874719567
1218 => 0.015879744492896
1219 => 0.015781148888644
1220 => 0.015767519972841
1221 => 0.015729569076985
1222 => 0.01559942133419
1223 => 0.015442260114099
1224 => 0.015338488663523
1225 => 0.014148945002657
1226 => 0.014369717386856
1227 => 0.014623695890842
1228 => 0.014711368252663
1229 => 0.014561398611026
1230 => 0.015605343049718
1231 => 0.015796081758366
]
'min_raw' => 0.0065836567295026
'max_raw' => 0.017295308669745
'avg_raw' => 0.011939482699624
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.006583'
'max' => '$0.017295'
'avg' => '$0.011939'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00025526320638108
'max_diff' => -0.0031190338942812
'year' => 2027
]
2 => [
'items' => [
101 => 0.015218321768293
102 => 0.015110246463935
103 => 0.015612428448679
104 => 0.015309551322628
105 => 0.015445936873943
106 => 0.015151145910907
107 => 0.015750138388934
108 => 0.015745575069838
109 => 0.015512553467027
110 => 0.01570950173006
111 => 0.015675277122699
112 => 0.015412196307033
113 => 0.015758478520039
114 => 0.015758650271697
115 => 0.015534372045318
116 => 0.015272464177724
117 => 0.015225641236985
118 => 0.015190366440916
119 => 0.015437261436495
120 => 0.015658626717509
121 => 0.016070532624371
122 => 0.016174095555999
123 => 0.016578308572717
124 => 0.016337619402036
125 => 0.016444313793952
126 => 0.016560145649221
127 => 0.016615679700212
128 => 0.016525189944244
129 => 0.017153099139923
130 => 0.017206113914679
131 => 0.017223889310078
201 => 0.017012161862187
202 => 0.017200225391341
203 => 0.017112236694059
204 => 0.017341158840422
205 => 0.017377056755996
206 => 0.01734665249861
207 => 0.017358047063624
208 => 0.016822237335884
209 => 0.016794452774879
210 => 0.016415608314076
211 => 0.01656999023213
212 => 0.016281380636046
213 => 0.016372901711973
214 => 0.016413243330196
215 => 0.016392171158203
216 => 0.016578718754144
217 => 0.016420115188438
218 => 0.016001534301699
219 => 0.015582839372878
220 => 0.015577582999108
221 => 0.015467348014929
222 => 0.015387668311912
223 => 0.015403017449502
224 => 0.01545710981239
225 => 0.015384524365446
226 => 0.015400014150727
227 => 0.015657247794293
228 => 0.015708834167004
229 => 0.015533523516436
301 => 0.014829625957198
302 => 0.014656887730568
303 => 0.014781048542322
304 => 0.014721707671284
305 => 0.0118815670729
306 => 0.01254881597809
307 => 0.012152359336258
308 => 0.012335064796907
309 => 0.011930385227547
310 => 0.012123519529119
311 => 0.012087854675754
312 => 0.013160771169968
313 => 0.013144019054659
314 => 0.013152037405755
315 => 0.012769300616236
316 => 0.013379010714376
317 => 0.013679375833186
318 => 0.013623786243653
319 => 0.013637776945708
320 => 0.013397370330994
321 => 0.013154365067288
322 => 0.012884834831597
323 => 0.013385588694567
324 => 0.013329913413159
325 => 0.013457612477376
326 => 0.013782387152138
327 => 0.013830211456696
328 => 0.013894487807008
329 => 0.013871449310923
330 => 0.014420319755494
331 => 0.014353847923092
401 => 0.014514025913928
402 => 0.014184527634045
403 => 0.013811669054095
404 => 0.013882537280478
405 => 0.013875712100391
406 => 0.013788819724306
407 => 0.013710377172398
408 => 0.013579792424522
409 => 0.013992981889707
410 => 0.013976207151993
411 => 0.014247770657082
412 => 0.014199769169731
413 => 0.01387920348924
414 => 0.013890652555232
415 => 0.013967653026261
416 => 0.014234152535668
417 => 0.01431326773473
418 => 0.014276618422329
419 => 0.014363364626355
420 => 0.014431925289089
421 => 0.014371974790016
422 => 0.015220747432482
423 => 0.014868277855108
424 => 0.015040069074652
425 => 0.015081040268261
426 => 0.014976093417363
427 => 0.014998852631458
428 => 0.015033326639297
429 => 0.015242646064191
430 => 0.015791960802177
501 => 0.01603524856032
502 => 0.016767191784297
503 => 0.016015046898735
504 => 0.015970417733911
505 => 0.016102262811117
506 => 0.016531990967651
507 => 0.016880245276208
508 => 0.016995781321629
509 => 0.017011051317324
510 => 0.017227804619226
511 => 0.017352043569666
512 => 0.017201485067197
513 => 0.017073902500487
514 => 0.016616917582662
515 => 0.016669814831229
516 => 0.017034224418177
517 => 0.017548974423359
518 => 0.017990683478415
519 => 0.017836012362449
520 => 0.019016043796477
521 => 0.019133039093165
522 => 0.019116874126073
523 => 0.019383406823163
524 => 0.01885439369788
525 => 0.018628230337676
526 => 0.017101487299533
527 => 0.017530439818212
528 => 0.01815394749561
529 => 0.018071423916472
530 => 0.017618615974738
531 => 0.017990339982987
601 => 0.017867436400975
602 => 0.017770497246568
603 => 0.018214594305485
604 => 0.017726291346705
605 => 0.018149076300064
606 => 0.01760685022423
607 => 0.017836718887078
608 => 0.01770623431655
609 => 0.017790673825269
610 => 0.017297042182677
611 => 0.017563393834789
612 => 0.017285961078267
613 => 0.017285829539017
614 => 0.01727970519554
615 => 0.017606103603264
616 => 0.017616747443622
617 => 0.017375538527153
618 => 0.017340776553899
619 => 0.017469309788508
620 => 0.017318831033688
621 => 0.017389239095966
622 => 0.017320963622169
623 => 0.017305593374915
624 => 0.017183120629768
625 => 0.0171303560037
626 => 0.017151046373158
627 => 0.017080419475582
628 => 0.017037864215105
629 => 0.017271239883131
630 => 0.017146556678052
701 => 0.017252130393744
702 => 0.017131815820248
703 => 0.016714753089948
704 => 0.016474895903394
705 => 0.015687103067591
706 => 0.015910520138571
707 => 0.016058645887772
708 => 0.016009690328545
709 => 0.016114865813052
710 => 0.0161213227336
711 => 0.01608712911145
712 => 0.016047537277474
713 => 0.016028266162261
714 => 0.016171897266535
715 => 0.016255279956966
716 => 0.016073512288371
717 => 0.016030926666819
718 => 0.016214703815437
719 => 0.016326807769929
720 => 0.01715452038413
721 => 0.017093200760193
722 => 0.017247100982905
723 => 0.017229774179619
724 => 0.01739108613125
725 => 0.017654762996648
726 => 0.017118634204082
727 => 0.017211687624533
728 => 0.017188873074755
729 => 0.017437956346927
730 => 0.017438733957714
731 => 0.017289396093415
801 => 0.017370354572382
802 => 0.017325165770402
803 => 0.017406828043212
804 => 0.017092381799231
805 => 0.017475343382026
806 => 0.017692457921971
807 => 0.017695472557569
808 => 0.017798383126375
809 => 0.017902946224461
810 => 0.01810364598571
811 => 0.01789734881705
812 => 0.017526240293255
813 => 0.017553033129999
814 => 0.017335452338282
815 => 0.0173391099107
816 => 0.017319585502483
817 => 0.017378179721269
818 => 0.017105239935215
819 => 0.017169298357458
820 => 0.017079616191193
821 => 0.017211492673018
822 => 0.017069615378537
823 => 0.017188862072889
824 => 0.01724032499308
825 => 0.017430224276504
826 => 0.017041567099973
827 => 0.016249068807248
828 => 0.016415661556492
829 => 0.016169257794782
830 => 0.016192063401054
831 => 0.016238134355208
901 => 0.016088803319317
902 => 0.016117290975003
903 => 0.016116273195478
904 => 0.016107502521375
905 => 0.016068655751501
906 => 0.016012320249586
907 => 0.016236743550064
908 => 0.016274877441991
909 => 0.016359644359953
910 => 0.01661185320986
911 => 0.01658665159826
912 => 0.016627756472384
913 => 0.016538024762965
914 => 0.016196225797697
915 => 0.016214787125956
916 => 0.015983327065148
917 => 0.016353725405805
918 => 0.016266010189718
919 => 0.016209459619286
920 => 0.016194029272206
921 => 0.016446863299069
922 => 0.016522515202594
923 => 0.016475374013127
924 => 0.016378686058203
925 => 0.016564355514885
926 => 0.016614032828728
927 => 0.016625153747268
928 => 0.016954124425922
929 => 0.016643539553797
930 => 0.016718300419465
1001 => 0.017301563351981
1002 => 0.016772624356972
1003 => 0.017052815139376
1004 => 0.01703910125862
1005 => 0.017182437381758
1006 => 0.017027343512854
1007 => 0.017029266087238
1008 => 0.017156538854155
1009 => 0.016977807206784
1010 => 0.016933550737386
1011 => 0.016872410741884
1012 => 0.017005907685301
1013 => 0.017085933065332
1014 => 0.017730878856217
1015 => 0.01814754325023
1016 => 0.018129454750012
1017 => 0.018294749781754
1018 => 0.018220282856025
1019 => 0.017979809509465
1020 => 0.018390268189442
1021 => 0.018260381888777
1022 => 0.018271089557592
1023 => 0.018270691017624
1024 => 0.018357054052709
1025 => 0.018295857927295
1026 => 0.018175234082452
1027 => 0.018255309819938
1028 => 0.018493106132672
1029 => 0.019231233183882
1030 => 0.019644298860621
1031 => 0.019206366111482
1101 => 0.019508446257685
1102 => 0.019327305812125
1103 => 0.019294387204705
1104 => 0.019484115860068
1105 => 0.019674176610327
1106 => 0.01966207056219
1107 => 0.01952409621723
1108 => 0.019446158010732
1109 => 0.020036332221554
1110 => 0.020471162526732
1111 => 0.020441510015058
1112 => 0.020572386558073
1113 => 0.020956644136224
1114 => 0.020991775833497
1115 => 0.020987350047133
1116 => 0.020900272469828
1117 => 0.021278623957669
1118 => 0.021594251425287
1119 => 0.020880116526595
1120 => 0.021152049747305
1121 => 0.021274129331222
1122 => 0.021453378379794
1123 => 0.021755801570363
1124 => 0.022084313369111
1125 => 0.022130768539403
1126 => 0.022097806372996
1127 => 0.021881144010851
1128 => 0.022240605541002
1129 => 0.022451169674954
1130 => 0.022576555798048
1201 => 0.022894514143953
1202 => 0.021274883253172
1203 => 0.020128428007799
1204 => 0.019949392466219
1205 => 0.020313468280246
1206 => 0.020409472168955
1207 => 0.020370773121795
1208 => 0.019080333511977
1209 => 0.019942598568736
1210 => 0.020870323268504
1211 => 0.0209059609525
1212 => 0.021370399335013
1213 => 0.021521639510331
1214 => 0.021895573283584
1215 => 0.021872183624256
1216 => 0.021963230547457
1217 => 0.021942300436526
1218 => 0.022634934010432
1219 => 0.02339901169953
1220 => 0.023372554118775
1221 => 0.02326270891081
1222 => 0.023425847776029
1223 => 0.02421445783472
1224 => 0.024141855257735
1225 => 0.024212382477003
1226 => 0.025142198180316
1227 => 0.026351090859363
1228 => 0.025789438839105
1229 => 0.02700806211205
1230 => 0.027775120865924
1231 => 0.029101669665395
]
'min_raw' => 0.0118815670729
'max_raw' => 0.029101669665395
'avg_raw' => 0.020491618369148
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.011881'
'max' => '$0.0291016'
'avg' => '$0.020491'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0052979103433978
'max_diff' => 0.01180636099565
'year' => 2028
]
3 => [
'items' => [
101 => 0.028935579222311
102 => 0.02945199493528
103 => 0.028638242665068
104 => 0.026769702966195
105 => 0.026473999406365
106 => 0.02706600542155
107 => 0.028521394442781
108 => 0.027020170041982
109 => 0.027323865783065
110 => 0.027236401389202
111 => 0.027231740783353
112 => 0.027409617152563
113 => 0.027151598201617
114 => 0.026100382578738
115 => 0.026582148503851
116 => 0.026396115543865
117 => 0.026602532982645
118 => 0.027716482766715
119 => 0.027223979013932
120 => 0.02670516631813
121 => 0.027355872572419
122 => 0.028184445241056
123 => 0.028132594652541
124 => 0.028031982838957
125 => 0.028599126364267
126 => 0.029535881310617
127 => 0.029789082408429
128 => 0.029975990282365
129 => 0.030001761720347
130 => 0.030267223548415
131 => 0.028839768393898
201 => 0.031105176383764
202 => 0.031496349762981
203 => 0.031422825380164
204 => 0.031857598128072
205 => 0.031729676956517
206 => 0.031544339249152
207 => 0.032233546533401
208 => 0.031443425998169
209 => 0.030321949371817
210 => 0.029706685114308
211 => 0.030516914720548
212 => 0.031011693667962
213 => 0.031338711078352
214 => 0.031437666349146
215 => 0.0289505776741
216 => 0.027610174818511
217 => 0.028469357681194
218 => 0.029517620071299
219 => 0.028833945243393
220 => 0.02886074400228
221 => 0.027886003364269
222 => 0.029603862989042
223 => 0.029353585291186
224 => 0.030652026430396
225 => 0.030342143031882
226 => 0.031400971375713
227 => 0.03112214638758
228 => 0.032279533324424
301 => 0.032741246308531
302 => 0.033516534268735
303 => 0.03408683924825
304 => 0.034421733240418
305 => 0.034401627461284
306 => 0.035728644301776
307 => 0.034946148833375
308 => 0.033963150105041
309 => 0.033945370759367
310 => 0.03445447972997
311 => 0.03552143246513
312 => 0.035798077785827
313 => 0.035952684779447
314 => 0.035715898786809
315 => 0.034866556037815
316 => 0.034499814145065
317 => 0.034812288863224
318 => 0.034430159134175
319 => 0.035089822253179
320 => 0.035995680612011
321 => 0.035808624443064
322 => 0.036433925170824
323 => 0.037081045640501
324 => 0.038006456976138
325 => 0.038248393767156
326 => 0.038648306082677
327 => 0.0390599472197
328 => 0.039192155258872
329 => 0.039444581427397
330 => 0.039443251016888
331 => 0.040203954265978
401 => 0.041043033506743
402 => 0.041359766495403
403 => 0.042088076538067
404 => 0.040840871113033
405 => 0.041786890754785
406 => 0.042640224152052
407 => 0.041622844897023
408 => 0.043025065181117
409 => 0.043079510217249
410 => 0.043901565622715
411 => 0.043068254982515
412 => 0.042573437784386
413 => 0.044001956494826
414 => 0.044693171700891
415 => 0.044484972055528
416 => 0.042900562474235
417 => 0.041978368139398
418 => 0.039564807687129
419 => 0.042423774300894
420 => 0.04381629354126
421 => 0.04289695618581
422 => 0.043360616473239
423 => 0.045890196659096
424 => 0.046853297015683
425 => 0.046652978874092
426 => 0.046686829342504
427 => 0.04720650081341
428 => 0.049511010303714
429 => 0.048130094799012
430 => 0.049185752960439
501 => 0.049745670242802
502 => 0.05026575261919
503 => 0.048988594676505
504 => 0.047327030958248
505 => 0.046800743980977
506 => 0.04280554620397
507 => 0.042597578809412
508 => 0.04248084040879
509 => 0.041744821305841
510 => 0.041166511903523
511 => 0.040706618795548
512 => 0.039499721944515
513 => 0.03990701420291
514 => 0.037983472521312
515 => 0.039214086323067
516 => 0.036144067353699
517 => 0.038700870377495
518 => 0.037309318735211
519 => 0.038243708237343
520 => 0.038240448240395
521 => 0.036519940918508
522 => 0.035527588201316
523 => 0.036159953975656
524 => 0.036837900283007
525 => 0.03694789479049
526 => 0.037826869874179
527 => 0.038072172926531
528 => 0.037328893225801
529 => 0.036080448034328
530 => 0.036370433378304
531 => 0.035521711657576
601 => 0.034034359487609
602 => 0.035102601782757
603 => 0.035467346669618
604 => 0.035628438790714
605 => 0.034165798755103
606 => 0.033706205500454
607 => 0.03346152190804
608 => 0.035891639572777
609 => 0.036024766904132
610 => 0.035343668654613
611 => 0.038422297326825
612 => 0.037725508841851
613 => 0.03850399229689
614 => 0.036344120247821
615 => 0.036426630268748
616 => 0.035404112227234
617 => 0.035976654005802
618 => 0.035571999930593
619 => 0.035930398288062
620 => 0.036145220785797
621 => 0.037167571042162
622 => 0.038712543975199
623 => 0.037014866006238
624 => 0.036275163403965
625 => 0.03673407073817
626 => 0.037956201443258
627 => 0.039807792021186
628 => 0.038711613132319
629 => 0.039198078708874
630 => 0.039304349796004
701 => 0.038496068066102
702 => 0.039837594521489
703 => 0.040556529447472
704 => 0.04129400791891
705 => 0.041934339811981
706 => 0.040999442799918
707 => 0.041999916615048
708 => 0.041193711327456
709 => 0.040470461840515
710 => 0.040471558711442
711 => 0.040017853743295
712 => 0.039138743197005
713 => 0.038976621724294
714 => 0.039819998099024
715 => 0.040496306083517
716 => 0.040552010048417
717 => 0.040926448898591
718 => 0.041148037953098
719 => 0.043319911922973
720 => 0.04419345760034
721 => 0.045261612719251
722 => 0.045677719335991
723 => 0.0469300510699
724 => 0.045918691485358
725 => 0.045699877477493
726 => 0.042662130325618
727 => 0.04315956125156
728 => 0.043955996158938
729 => 0.042675263243896
730 => 0.043487593494409
731 => 0.043647964693368
801 => 0.042631744429521
802 => 0.043174551580727
803 => 0.041733016718228
804 => 0.038743965495941
805 => 0.039840922189965
806 => 0.040648651548397
807 => 0.039495922161602
808 => 0.041562144970643
809 => 0.040355100261098
810 => 0.039972525036536
811 => 0.038479962687605
812 => 0.039184394662307
813 => 0.040137148994586
814 => 0.039548457586817
815 => 0.040770080650397
816 => 0.042500224703397
817 => 0.043733228387424
818 => 0.043827883100016
819 => 0.043035144336017
820 => 0.044305513264516
821 => 0.044314766515267
822 => 0.042881785174311
823 => 0.042004092081849
824 => 0.041804678364559
825 => 0.042302852927711
826 => 0.042907728815474
827 => 0.043861449502064
828 => 0.044437762938682
829 => 0.045940482728352
830 => 0.046347075617084
831 => 0.046793797930539
901 => 0.047390756705375
902 => 0.048107558771653
903 => 0.046539236658201
904 => 0.046601549019486
905 => 0.045141149182337
906 => 0.043580502513822
907 => 0.044764838797871
908 => 0.046313200943613
909 => 0.045958004956592
910 => 0.045918038152056
911 => 0.045985251231418
912 => 0.04571744505682
913 => 0.044506167654475
914 => 0.043897871726015
915 => 0.044682728666571
916 => 0.045099845200512
917 => 0.045746756568271
918 => 0.045667011087553
919 => 0.047333385297691
920 => 0.04798088792721
921 => 0.047815229046379
922 => 0.047845714267256
923 => 0.049017986849244
924 => 0.050321795056658
925 => 0.051542983495548
926 => 0.052785228826851
927 => 0.051287653594305
928 => 0.050527277248818
929 => 0.051311791545385
930 => 0.050895517216788
1001 => 0.053287552983893
1002 => 0.053453172350481
1003 => 0.055845035146174
1004 => 0.05811519775701
1005 => 0.056689349295332
1006 => 0.058033860173069
1007 => 0.059488058306922
1008 => 0.06229344244227
1009 => 0.061348687760089
1010 => 0.060625020479731
1011 => 0.059941158396528
1012 => 0.061364166831625
1013 => 0.063194844450262
1014 => 0.063589154875304
1015 => 0.064228088402048
1016 => 0.063556327923751
1017 => 0.06436538942787
1018 => 0.067221732057049
1019 => 0.066449923065012
1020 => 0.065353830221831
1021 => 0.067608638401505
1022 => 0.068424644716385
1023 => 0.074151804380033
1024 => 0.081382580032555
1025 => 0.078388991432578
1026 => 0.076530774386072
1027 => 0.076967499469499
1028 => 0.079607933960597
1029 => 0.080455957715936
1030 => 0.078150736817606
1031 => 0.078964979810119
1101 => 0.083451538753469
1102 => 0.085858433680532
1103 => 0.082589547080465
1104 => 0.073570818596803
1105 => 0.065255139053914
1106 => 0.067460831728618
1107 => 0.067210774629919
1108 => 0.072031022504922
1109 => 0.066431515675806
1110 => 0.066525797010072
1111 => 0.071445722506399
1112 => 0.070133170732855
1113 => 0.068007004958645
1114 => 0.065270662417022
1115 => 0.060212280147781
1116 => 0.05573192990849
1117 => 0.064518928490778
1118 => 0.064140017133789
1119 => 0.063591297337353
1120 => 0.064812413866638
1121 => 0.070741809112873
1122 => 0.070605117360868
1123 => 0.069735554175356
1124 => 0.070395110187589
1125 => 0.067891381600794
1126 => 0.068536649466451
1127 => 0.065253821807788
1128 => 0.066737797012497
1129 => 0.068002443161803
1130 => 0.068256339599682
1201 => 0.068828381238498
1202 => 0.063940348066522
1203 => 0.066134931455625
1204 => 0.067424043592067
1205 => 0.061599788061318
1206 => 0.067308916786634
1207 => 0.06385525828389
1208 => 0.062683034715849
1209 => 0.064261279321504
1210 => 0.063646235863787
1211 => 0.063117457615406
1212 => 0.062822390267245
1213 => 0.063981278921138
1214 => 0.063927215380262
1215 => 0.062031048611899
1216 => 0.059557576360213
1217 => 0.060387754836838
1218 => 0.060086143213316
1219 => 0.058993063780997
1220 => 0.059729667339466
1221 => 0.056486038054498
1222 => 0.05090554245889
1223 => 0.054592188784552
1224 => 0.054450256911313
1225 => 0.054378688424728
1226 => 0.057149101247042
1227 => 0.056882789978475
1228 => 0.056399432418299
1229 => 0.05898418654035
1230 => 0.058040716515953
1231 => 0.060948268821652
]
'min_raw' => 0.026100382578738
'max_raw' => 0.085858433680532
'avg_raw' => 0.055979408129635
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.02610038'
'max' => '$0.085858'
'avg' => '$0.055979'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.014218815505838
'max_diff' => 0.056756764015137
'year' => 2029
]
4 => [
'items' => [
101 => 0.062863370818877
102 => 0.062377639005321
103 => 0.064178801690204
104 => 0.060406880472214
105 => 0.061659761397618
106 => 0.061917978419925
107 => 0.058952291075705
108 => 0.05692636179554
109 => 0.056791255409838
110 => 0.053278573228283
111 => 0.05515501969629
112 => 0.056806214935505
113 => 0.056015420553848
114 => 0.055765078676925
115 => 0.057044021033593
116 => 0.057143405808107
117 => 0.054877422416869
118 => 0.055348592118269
119 => 0.057313448098552
120 => 0.055299082788867
121 => 0.051385500036855
122 => 0.050414877404841
123 => 0.050285378453606
124 => 0.047652972894533
125 => 0.050479739050325
126 => 0.049245779870698
127 => 0.053143842134037
128 => 0.050917289874945
129 => 0.05082130765721
130 => 0.050676216457572
131 => 0.048410396249573
201 => 0.048906466874739
202 => 0.050555481186478
203 => 0.051143868070382
204 => 0.05108249449788
205 => 0.050547400116734
206 => 0.050792363584296
207 => 0.050003250904349
208 => 0.0497245987931
209 => 0.048845096080695
210 => 0.047552470062286
211 => 0.047732217638282
212 => 0.045171187261817
213 => 0.043775801988549
214 => 0.043389577735791
215 => 0.04287310252358
216 => 0.043447914985298
217 => 0.045163932184537
218 => 0.043094051368898
219 => 0.039545385895741
220 => 0.03975866673731
221 => 0.040237845464664
222 => 0.039344899076324
223 => 0.03849980025907
224 => 0.039234545115638
225 => 0.037730928773431
226 => 0.040419550316007
227 => 0.040346830638055
228 => 0.041348982485887
301 => 0.041975648602562
302 => 0.04053138608919
303 => 0.040168157972778
304 => 0.040375069215684
305 => 0.036955287270942
306 => 0.041069513342149
307 => 0.04110509334006
308 => 0.040800435796705
309 => 0.042991134167144
310 => 0.047614191024726
311 => 0.045874811072872
312 => 0.045201270582477
313 => 0.043920869617881
314 => 0.045626927880519
315 => 0.045495929224603
316 => 0.044903503622787
317 => 0.044545202770328
318 => 0.045205383077087
319 => 0.044463399124429
320 => 0.044330118418176
321 => 0.043522582349122
322 => 0.043234328713019
323 => 0.043020917196557
324 => 0.042785972086315
325 => 0.043304202454836
326 => 0.042129824260884
327 => 0.040713639284693
328 => 0.040595898827256
329 => 0.040920990582086
330 => 0.040777161680808
331 => 0.040595210229812
401 => 0.040247815358331
402 => 0.040144750720879
403 => 0.040479660792743
404 => 0.040101566848079
405 => 0.040659465059273
406 => 0.040507747615745
407 => 0.039660266309245
408 => 0.038603990823581
409 => 0.038594587756146
410 => 0.038367014935398
411 => 0.038077166732374
412 => 0.037996537593121
413 => 0.039172666953188
414 => 0.041607219529936
415 => 0.041129258605215
416 => 0.041474634356732
417 => 0.04317354122325
418 => 0.043713572628205
419 => 0.043330271128313
420 => 0.042805584394254
421 => 0.042828667947723
422 => 0.044621681351477
423 => 0.044733509398114
424 => 0.045016062794871
425 => 0.045379223759284
426 => 0.043392119010905
427 => 0.042735075492771
428 => 0.042423731822493
429 => 0.0414649138232
430 => 0.042498916832595
501 => 0.041896447559444
502 => 0.041977741247673
503 => 0.041924798626567
504 => 0.041953708877655
505 => 0.040418798791492
506 => 0.040978039354391
507 => 0.04004819345208
508 => 0.038803234168988
509 => 0.038799060628932
510 => 0.039103762649736
511 => 0.038922513964771
512 => 0.038434778413858
513 => 0.038504058946818
514 => 0.037897088577683
515 => 0.038577756139184
516 => 0.038597275249302
517 => 0.038335181161912
518 => 0.039383843454427
519 => 0.039813481251298
520 => 0.039640965308378
521 => 0.03980137707285
522 => 0.041149120039501
523 => 0.041368860949214
524 => 0.041466455346038
525 => 0.041335691783073
526 => 0.039826011340194
527 => 0.039892972087492
528 => 0.039401658552969
529 => 0.038986550389641
530 => 0.039003152539219
531 => 0.039216572095453
601 => 0.04014858781442
602 => 0.042109959949658
603 => 0.042184392588446
604 => 0.04227460711801
605 => 0.041907659288083
606 => 0.041796984311359
607 => 0.041942993173293
608 => 0.042679581423241
609 => 0.044574286383865
610 => 0.043904571107691
611 => 0.043360082163422
612 => 0.043837745760711
613 => 0.04376421319396
614 => 0.043143524330016
615 => 0.043126103660874
616 => 0.041934803284733
617 => 0.04149440666027
618 => 0.041126378277753
619 => 0.040724500891669
620 => 0.040486254506147
621 => 0.040852309235355
622 => 0.040936030282957
623 => 0.040135645220001
624 => 0.040026555693445
625 => 0.040680167413366
626 => 0.04039253726453
627 => 0.040688372005493
628 => 0.040757008203019
629 => 0.040745956194392
630 => 0.040445637284895
701 => 0.040637051602169
702 => 0.04018429967846
703 => 0.039691999962566
704 => 0.039377943415182
705 => 0.039103887424033
706 => 0.03925594961615
707 => 0.038713875666712
708 => 0.038540455300494
709 => 0.040572204738435
710 => 0.042073079893229
711 => 0.042051256574067
712 => 0.041918412731167
713 => 0.041721033727008
714 => 0.042665141919688
715 => 0.042336233503398
716 => 0.042575541857467
717 => 0.042636455877318
718 => 0.042820824269277
719 => 0.042886720122403
720 => 0.042687537086642
721 => 0.042019054490469
722 => 0.040353259418223
723 => 0.039577827315365
724 => 0.039321921805579
725 => 0.039331223484826
726 => 0.039074641646669
727 => 0.039150216497198
728 => 0.039048359797844
729 => 0.038855467851051
730 => 0.039244039081991
731 => 0.039288818296565
801 => 0.039198121128184
802 => 0.039219483594623
803 => 0.038468549777689
804 => 0.038525641644848
805 => 0.038207746873623
806 => 0.038148145436297
807 => 0.037344535136905
808 => 0.035920823006357
809 => 0.036709697729761
810 => 0.035756847996461
811 => 0.035395989364431
812 => 0.037104238003431
813 => 0.036932777219517
814 => 0.036639310889668
815 => 0.036205213024079
816 => 0.036044201903099
817 => 0.035065949301954
818 => 0.035008148919504
819 => 0.035492997323673
820 => 0.035269256467764
821 => 0.034955039568779
822 => 0.033816977812311
823 => 0.032537419598743
824 => 0.032576041418194
825 => 0.032983045078904
826 => 0.034166463114337
827 => 0.033704081214553
828 => 0.033368617841039
829 => 0.033305795635172
830 => 0.034092147068797
831 => 0.035204999093094
901 => 0.035727124364234
902 => 0.035209714077714
903 => 0.034615340999909
904 => 0.034651517735096
905 => 0.034892185346828
906 => 0.034917476109964
907 => 0.034530600338852
908 => 0.034639503602283
909 => 0.034474069586809
910 => 0.033458801339216
911 => 0.033440438356068
912 => 0.033191275154696
913 => 0.033183730591983
914 => 0.032759841829776
915 => 0.032700536861739
916 => 0.03185887999617
917 => 0.032412861093859
918 => 0.032041279658842
919 => 0.031481218789073
920 => 0.031384664084025
921 => 0.031381761532998
922 => 0.031956818818932
923 => 0.032406141214659
924 => 0.032047743476992
925 => 0.031966143259374
926 => 0.03283742009996
927 => 0.032726542180131
928 => 0.032630522616644
929 => 0.035105355400186
930 => 0.033146332138402
1001 => 0.032292086179126
1002 => 0.031234794587614
1003 => 0.031579054061137
1004 => 0.031651594590433
1005 => 0.02910899890398
1006 => 0.028077468150646
1007 => 0.027723485668518
1008 => 0.027519763745476
1009 => 0.027612602383985
1010 => 0.026684103719495
1011 => 0.027308070177983
1012 => 0.026504068818573
1013 => 0.026369275374221
1014 => 0.027806929401503
1015 => 0.028006970560746
1016 => 0.027153532827497
1017 => 0.027701578011261
1018 => 0.027502849209231
1019 => 0.026517851114256
1020 => 0.026480231432184
1021 => 0.025985994012483
1022 => 0.025212608153873
1023 => 0.024859150063776
1024 => 0.024675066021589
1025 => 0.024751022685122
1026 => 0.024712616671727
1027 => 0.024461991455501
1028 => 0.02472698221575
1029 => 0.024050040325055
1030 => 0.023780476609688
1031 => 0.023658720933288
1101 => 0.023057896041974
1102 => 0.024014075632096
1103 => 0.024202455056983
1104 => 0.024391205647531
1105 => 0.026034150672746
1106 => 0.0259520737822
1107 => 0.026694008899663
1108 => 0.026665178665329
1109 => 0.026453566751277
1110 => 0.025560810894361
1111 => 0.025916647467084
1112 => 0.024821437805522
1113 => 0.025642043350982
1114 => 0.025267553249341
1115 => 0.025515427870914
1116 => 0.025069726951372
1117 => 0.025316396242787
1118 => 0.02424712680704
1119 => 0.023248658052967
1120 => 0.023650471026726
1121 => 0.024087287682089
1122 => 0.025034417489731
1123 => 0.024470314789951
1124 => 0.024673187451876
1125 => 0.023993597994899
1126 => 0.022591410830023
1127 => 0.0225993470571
1128 => 0.022383651110091
1129 => 0.022197258319752
1130 => 0.02453510877084
1201 => 0.024244360111301
1202 => 0.023781090174569
1203 => 0.0244011953945
1204 => 0.024565161057043
1205 => 0.024569828928947
1206 => 0.025022241690177
1207 => 0.025263694461945
1208 => 0.025306251559485
1209 => 0.026018132814304
1210 => 0.026256746020979
1211 => 0.027239560049467
1212 => 0.025243208881197
1213 => 0.025202095342622
1214 => 0.024409921546622
1215 => 0.023907512401427
1216 => 0.024444321930623
1217 => 0.024919861891683
1218 => 0.024424697898775
1219 => 0.024489355862766
1220 => 0.023824638658671
1221 => 0.024062243781283
1222 => 0.024266901321744
1223 => 0.024153901457116
1224 => 0.023984735190512
1225 => 0.024880873037862
1226 => 0.024830309428522
1227 => 0.025664813594095
1228 => 0.026315369267124
1229 => 0.027481281333929
1230 => 0.026264591311848
1231 => 0.026220250291538
]
'min_raw' => 0.022197258319752
'max_raw' => 0.064178801690204
'avg_raw' => 0.043188030004978
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.022197'
'max' => '$0.064178'
'avg' => '$0.043188'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.003903124258986
'max_diff' => -0.021679631990328
'year' => 2030
]
5 => [
'items' => [
101 => 0.026653690877587
102 => 0.026256679663483
103 => 0.026507577046435
104 => 0.027440857886677
105 => 0.027460576640187
106 => 0.027130262112722
107 => 0.027110162443707
108 => 0.027173602961951
109 => 0.027545176058839
110 => 0.027415337001498
111 => 0.027565590045775
112 => 0.0277534837784
113 => 0.028530691921828
114 => 0.028718074173983
115 => 0.028262832447806
116 => 0.028303935678554
117 => 0.028133662776299
118 => 0.027969181286234
119 => 0.028338911655308
120 => 0.029014601171859
121 => 0.029010397742445
122 => 0.029167144576758
123 => 0.029264796555973
124 => 0.028845602775561
125 => 0.028572723038696
126 => 0.028677362493599
127 => 0.02884468326074
128 => 0.028623102623908
129 => 0.027255404287246
130 => 0.027670276593681
131 => 0.027601221555671
201 => 0.027502878784165
202 => 0.027920036096398
203 => 0.027879800255971
204 => 0.026674580623661
205 => 0.026751734874196
206 => 0.026679272629179
207 => 0.026913412967209
208 => 0.026244035316847
209 => 0.026449931373771
210 => 0.026579067450518
211 => 0.026655129591793
212 => 0.026929918202374
213 => 0.02689767493052
214 => 0.026927913915324
215 => 0.027335352883312
216 => 0.029396039367226
217 => 0.029508197985897
218 => 0.028955887927473
219 => 0.029176524901979
220 => 0.02875295015893
221 => 0.029037298721643
222 => 0.029231842786581
223 => 0.028352735565799
224 => 0.028300680541543
225 => 0.027875357554855
226 => 0.028103902036376
227 => 0.027740271333346
228 => 0.027829493588608
301 => 0.02758002038464
302 => 0.028029022482162
303 => 0.028531076595063
304 => 0.0286579152907
305 => 0.028324257289972
306 => 0.028082666908311
307 => 0.027658513782934
308 => 0.028363889883305
309 => 0.028570163351001
310 => 0.028362806416592
311 => 0.028314757284052
312 => 0.028223704264709
313 => 0.02833407461254
314 => 0.028569039941396
315 => 0.028458234631436
316 => 0.028531423490803
317 => 0.02825250303092
318 => 0.028845741546145
319 => 0.029787947078946
320 => 0.0297909764238
321 => 0.029680170516558
322 => 0.029634831126661
323 => 0.029748524711756
324 => 0.029810198817715
325 => 0.030177863024074
326 => 0.030572381365886
327 => 0.032413426325282
328 => 0.031896468267744
329 => 0.033529952879975
330 => 0.034821827126819
331 => 0.035209203726634
401 => 0.034852835482282
402 => 0.033633718968989
403 => 0.033573903296744
404 => 0.03539577806532
405 => 0.034881014996047
406 => 0.034819785566919
407 => 0.034168407889755
408 => 0.034553452771654
409 => 0.034469237807715
410 => 0.0343363003672
411 => 0.035070939179404
412 => 0.03644611745419
413 => 0.036231783023725
414 => 0.03607179231407
415 => 0.03537075959696
416 => 0.035792937873986
417 => 0.035642608275829
418 => 0.036288519631032
419 => 0.035905896052898
420 => 0.034877115159513
421 => 0.035040951907691
422 => 0.035016188312798
423 => 0.035525821340934
424 => 0.035372842155757
425 => 0.034986316671664
426 => 0.036441417244348
427 => 0.036346931106853
428 => 0.036480890847283
429 => 0.036539864067863
430 => 0.037425558144708
501 => 0.037788398668942
502 => 0.037870769820361
503 => 0.03821544025529
504 => 0.037862194105952
505 => 0.039275430563539
506 => 0.040215150343201
507 => 0.041306683224815
508 => 0.042901706141234
509 => 0.043501449512595
510 => 0.043393111240653
511 => 0.044602439412137
512 => 0.046775575254439
513 => 0.043832364126714
514 => 0.046931572590883
515 => 0.04595039897321
516 => 0.043624053976265
517 => 0.043474264784268
518 => 0.045049692625619
519 => 0.048543839948427
520 => 0.047668595674354
521 => 0.048545271534511
522 => 0.047522582576258
523 => 0.047471797449582
524 => 0.048495601814494
525 => 0.050887776517781
526 => 0.049751343985577
527 => 0.048121989285974
528 => 0.049325079440594
529 => 0.048282851407924
530 => 0.045934419949061
531 => 0.047667926391553
601 => 0.04650878000088
602 => 0.04684708054129
603 => 0.049283433844472
604 => 0.048990285369242
605 => 0.049369646641008
606 => 0.048700083925954
607 => 0.048074606769745
608 => 0.046907107209138
609 => 0.046561468146275
610 => 0.046656990348459
611 => 0.046561420810215
612 => 0.04590821553593
613 => 0.04576715591914
614 => 0.045532050377861
615 => 0.045604919415965
616 => 0.045162852215807
617 => 0.045997124358249
618 => 0.046151972619467
619 => 0.046759086312214
620 => 0.046822118869817
621 => 0.048512921862393
622 => 0.047581655986872
623 => 0.048206429537799
624 => 0.048150543910807
625 => 0.043674472926444
626 => 0.044291236015381
627 => 0.045250725830846
628 => 0.044818476969537
629 => 0.044207378210301
630 => 0.043713883197176
701 => 0.042966187789836
702 => 0.044018554717449
703 => 0.045402305320514
704 => 0.046857213068647
705 => 0.048605189398696
706 => 0.048215061430517
707 => 0.046824535867024
708 => 0.046886913828022
709 => 0.047272509838094
710 => 0.046773127969959
711 => 0.046625850507955
712 => 0.047252276176413
713 => 0.047256590025715
714 => 0.046681990834112
715 => 0.046043428983187
716 => 0.046040753385715
717 => 0.045927127472119
718 => 0.047542796373866
719 => 0.048431250907276
720 => 0.048533110787715
721 => 0.048424394925745
722 => 0.048466235346239
723 => 0.047949263229007
724 => 0.049130908185679
725 => 0.050215302450496
726 => 0.049924661622821
727 => 0.049488949705107
728 => 0.049141884175919
729 => 0.049842904014045
730 => 0.049811688704161
731 => 0.050205831212598
801 => 0.050187950631738
802 => 0.0500554153306
803 => 0.049924666356074
804 => 0.050443071260876
805 => 0.050293778973621
806 => 0.050144254794208
807 => 0.049844361161389
808 => 0.049885121686795
809 => 0.049449485000888
810 => 0.049247939536608
811 => 0.046217179329033
812 => 0.045407261168622
813 => 0.045662077909292
814 => 0.045745970196634
815 => 0.045393492775285
816 => 0.045898854853479
817 => 0.045820094708903
818 => 0.046126504358304
819 => 0.045935072912119
820 => 0.045942929325444
821 => 0.046505888391187
822 => 0.046669317802971
823 => 0.0465861962851
824 => 0.046644411746978
825 => 0.047985962494736
826 => 0.047795236878783
827 => 0.04769391769661
828 => 0.0477219838025
829 => 0.048064778781724
830 => 0.048160742659995
831 => 0.047754136964499
901 => 0.047945894561055
902 => 0.048762374069525
903 => 0.049048095688752
904 => 0.049959981943166
905 => 0.049572596454806
906 => 0.050283659284343
907 => 0.05246922400316
908 => 0.054215204330125
909 => 0.052609528665759
910 => 0.055815799186978
911 => 0.058312340699936
912 => 0.058216519278461
913 => 0.057781189519632
914 => 0.054938943381119
915 => 0.052323466108956
916 => 0.054511423906151
917 => 0.054517001460534
918 => 0.054329053945351
919 => 0.053161728070279
920 => 0.054288433535224
921 => 0.054377867323438
922 => 0.054327808184402
923 => 0.053432822172925
924 => 0.052066343954462
925 => 0.052333350527463
926 => 0.052770712740825
927 => 0.051942694827615
928 => 0.05167809293297
929 => 0.052170038197685
930 => 0.053755188341465
1001 => 0.053455524888933
1002 => 0.053447699465153
1003 => 0.054729786792165
1004 => 0.053812088957786
1005 => 0.052336718335422
1006 => 0.051964167795527
1007 => 0.050641864359016
1008 => 0.051555184052497
1009 => 0.051588052802314
1010 => 0.051087836940095
1011 => 0.052377308095794
1012 => 0.052365425392087
1013 => 0.05358958634197
1014 => 0.05592972230429
1015 => 0.055237628949135
1016 => 0.054432799676633
1017 => 0.054520306934049
1018 => 0.055480045561588
1019 => 0.054899765678676
1020 => 0.055108438370426
1021 => 0.055479729710477
1022 => 0.055703738994575
1023 => 0.054488075445374
1024 => 0.054204646120146
1025 => 0.053624849190905
1026 => 0.053473590994488
1027 => 0.053945823495495
1028 => 0.0538214069157
1029 => 0.051585290311166
1030 => 0.051351603684357
1031 => 0.051358770519574
1101 => 0.050771154385268
1102 => 0.049874898736422
1103 => 0.052230205068947
1104 => 0.052041041007954
1105 => 0.051832218524753
1106 => 0.051857798087421
1107 => 0.052880156737632
1108 => 0.05228713709016
1109 => 0.053863777016973
1110 => 0.053539667246154
1111 => 0.053207245282693
1112 => 0.053161294441522
1113 => 0.053033340346498
1114 => 0.052594538145041
1115 => 0.052064658118857
1116 => 0.051714785428148
1117 => 0.047704155924252
1118 => 0.048448505431416
1119 => 0.049304811689817
1120 => 0.049600405178785
1121 => 0.049094772061458
1122 => 0.052614503622383
1123 => 0.053257592495541
1124 => 0.051309634351096
1125 => 0.050945250916877
1126 => 0.052638392539667
1127 => 0.051617221162979
1128 => 0.052077054571375
1129 => 0.051083146257851
1130 => 0.053102691217838
1201 => 0.053087305668906
1202 => 0.052301657065979
1203 => 0.052965681885283
1204 => 0.052850291232081
1205 => 0.051963295894344
1206 => 0.053130810552149
1207 => 0.053131389624853
1208 => 0.05237521992601
1209 => 0.051492179264593
1210 => 0.051334312450821
1211 => 0.051215381013067
1212 => 0.052047804728317
1213 => 0.052794153228489
1214 => 0.054182922751824
1215 => 0.054532092406341
1216 => 0.055894924813459
1217 => 0.055083424470126
1218 => 0.055443152061636
1219 => 0.055833687248796
1220 => 0.056020924178976
1221 => 0.055715831648935
1222 => 0.057832871341388
1223 => 0.058011614355851
1224 => 0.05807154534248
1225 => 0.057357691469574
1226 => 0.057991760788293
1227 => 0.057695100752233
1228 => 0.05846692775153
1229 => 0.058587960080202
1230 => 0.058485450003667
1231 => 0.058523867575153
]
'min_raw' => 0.026244035316847
'max_raw' => 0.058587960080202
'avg_raw' => 0.042415997698524
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.026244'
'max' => '$0.058587'
'avg' => '$0.042415'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0040467769970944
'max_diff' => -0.005590841610002
'year' => 2031
]
6 => [
'items' => [
101 => 0.056717347669038
102 => 0.056623670081754
103 => 0.055346369532082
104 => 0.055866878947402
105 => 0.054893811544126
106 => 0.05520238124141
107 => 0.055338395823812
108 => 0.055267349524725
109 => 0.055896307768778
110 => 0.055361564773653
111 => 0.053950290089628
112 => 0.05253863090476
113 => 0.052520908673607
114 => 0.052149243728085
115 => 0.051880598046303
116 => 0.051932348735332
117 => 0.052114724913418
118 => 0.051869998011291
119 => 0.051922222903829
120 => 0.052789504092592
121 => 0.052963431149832
122 => 0.052372359051642
123 => 0.049999119286115
124 => 0.049416720294833
125 => 0.049835337140292
126 => 0.04963526525054
127 => 0.040059532930806
128 => 0.042309209200483
129 => 0.040972527952828
130 => 0.041588532169495
131 => 0.040224126747571
201 => 0.040875292529528
202 => 0.040755045986367
203 => 0.044372458855247
204 => 0.044315977928888
205 => 0.044343012359432
206 => 0.043052588551739
207 => 0.045108268716218
208 => 0.046120970685108
209 => 0.045933546502857
210 => 0.045980717131634
211 => 0.045170169445472
212 => 0.044350860232803
213 => 0.04344212022517
214 => 0.045130446835693
215 => 0.044942733737299
216 => 0.045373280047973
217 => 0.046468280538976
218 => 0.046629523520779
219 => 0.046846235723486
220 => 0.04676855982544
221 => 0.048619114850221
222 => 0.048395000426365
223 => 0.048935051705738
224 => 0.047824125250278
225 => 0.046567006515819
226 => 0.046805943688932
227 => 0.04678293211775
228 => 0.046489968405149
229 => 0.046225493864705
301 => 0.045785218270107
302 => 0.047178315399945
303 => 0.047121758200568
304 => 0.048037353517934
305 => 0.047875513151971
306 => 0.046794703579015
307 => 0.046833304904355
308 => 0.04709291736843
309 => 0.047991439070799
310 => 0.048258181488084
311 => 0.04813461577255
312 => 0.04842708665585
313 => 0.048658243717011
314 => 0.048456116423775
315 => 0.051317812647262
316 => 0.050129436858505
317 => 0.05070864294928
318 => 0.050846780189049
319 => 0.050492944554093
320 => 0.050569678833411
321 => 0.050685910357738
322 => 0.051391645412984
323 => 0.053243698404036
324 => 0.054063960066421
325 => 0.056531757748705
326 => 0.053995848753954
327 => 0.05384537840884
328 => 0.054289903291769
329 => 0.055738761774184
330 => 0.056912925489825
331 => 0.057302463333432
401 => 0.057353947190034
402 => 0.058084746080628
403 => 0.058503626376124
404 => 0.057996007873391
405 => 0.057565854342197
406 => 0.056025097786083
407 => 0.056203444552794
408 => 0.057432076917454
409 => 0.059167592498622
410 => 0.060656845416885
411 => 0.060135360950613
412 => 0.064113919317603
413 => 0.064508377128736
414 => 0.064453875813586
415 => 0.065352509410541
416 => 0.063568904724135
417 => 0.062806379164983
418 => 0.057658858418091
419 => 0.059105101783325
420 => 0.061207301449587
421 => 0.060929067440913
422 => 0.059402393851315
423 => 0.060655687298067
424 => 0.060241309290461
425 => 0.059914472163303
426 => 0.061411776403308
427 => 0.059765428885555
428 => 0.061190877873707
429 => 0.05936272480202
430 => 0.060137743047729
501 => 0.05969780520805
502 => 0.059982498907076
503 => 0.058318185359818
504 => 0.05921620855099
505 => 0.058280824642639
506 => 0.058280381148875
507 => 0.058259732497255
508 => 0.059360207517304
509 => 0.059396093968199
510 => 0.058582841265658
511 => 0.058465638845826
512 => 0.058898997620217
513 => 0.058391647992249
514 => 0.058629033689954
515 => 0.058398838163203
516 => 0.058347016301472
517 => 0.057934090890435
518 => 0.057756191269739
519 => 0.057825950294922
520 => 0.057587826778729
521 => 0.057444348746919
522 => 0.058231191105438
523 => 0.057810812974412
524 => 0.058166762127787
525 => 0.057761113143151
526 => 0.056354957029553
527 => 0.055546261778792
528 => 0.052890163230946
529 => 0.053643429484235
530 => 0.054142845789476
531 => 0.053977788703573
601 => 0.054332395192705
602 => 0.054354165151144
603 => 0.054238878966741
604 => 0.054105392334278
605 => 0.054040418423869
606 => 0.054524680719933
607 => 0.054805811282317
608 => 0.054192968897035
609 => 0.05404938850074
610 => 0.054669005988215
611 => 0.055046972297634
612 => 0.057837663165459
613 => 0.057630919772158
614 => 0.058149805118002
615 => 0.058091386591005
616 => 0.058635261098367
617 => 0.059524266059389
618 => 0.057716670403935
619 => 0.058030406507767
620 => 0.057953485660332
621 => 0.058793287302897
622 => 0.058795909071957
623 => 0.058292406036037
624 => 0.058565363200213
625 => 0.058413005999358
626 => 0.058688336053614
627 => 0.057628158588095
628 => 0.058919340302012
629 => 0.059651357131891
630 => 0.059661521186284
701 => 0.060008491354002
702 => 0.06036103313956
703 => 0.061037706397021
704 => 0.060342161089675
705 => 0.05909094279173
706 => 0.059181276711431
707 => 0.058447687881148
708 => 0.058460019641919
709 => 0.058394191736468
710 => 0.058591746236021
711 => 0.057671510691293
712 => 0.0578874881343
713 => 0.057585118449328
714 => 0.058029749215124
715 => 0.057551400011227
716 => 0.057953448566771
717 => 0.058126959395223
718 => 0.058767218087632
719 => 0.057456833281779
720 => 0.054784869957394
721 => 0.055346549042603
722 => 0.054515781556638
723 => 0.054592672250419
724 => 0.05474800368892
725 => 0.054244523675455
726 => 0.054340571795545
727 => 0.054337140280815
728 => 0.054307569340728
729 => 0.054176594743905
730 => 0.053986655665977
731 => 0.054743314492275
801 => 0.054871885571328
802 => 0.055157683153476
803 => 0.056008022899596
804 => 0.055923053906567
805 => 0.056061641859527
806 => 0.055759105136352
807 => 0.054606706061311
808 => 0.054669286875445
809 => 0.053888903120405
810 => 0.055137726986318
811 => 0.0548419890112
812 => 0.054651324814752
813 => 0.05459930032226
814 => 0.055451747896136
815 => 0.055706813570719
816 => 0.05554787375914
817 => 0.055221883568576
818 => 0.055847881104807
819 => 0.056015371636786
820 => 0.056052866590083
821 => 0.057162014201162
822 => 0.05611485562045
823 => 0.056366917098688
824 => 0.058333428797784
825 => 0.056550074046769
826 => 0.057494756831938
827 => 0.057448519525496
828 => 0.057931787272066
829 => 0.057408877464749
830 => 0.057415359558512
831 => 0.057844468578074
901 => 0.057241862350319
902 => 0.057092648573857
903 => 0.056886510810363
904 => 0.057336605075552
905 => 0.05760641623152
906 => 0.059780895994167
907 => 0.06118570908916
908 => 0.061124722447776
909 => 0.061682026187823
910 => 0.061430955748614
911 => 0.060620183071375
912 => 0.062004073168227
913 => 0.061566152437162
914 => 0.061602254090158
915 => 0.06160091038483
916 => 0.061892089387294
917 => 0.061685762377885
918 => 0.061279070663306
919 => 0.061549051602951
920 => 0.062350798473744
921 => 0.064839445361282
922 => 0.066232125129734
923 => 0.06475560429052
924 => 0.065774088594008
925 => 0.065163360934979
926 => 0.065052373551759
927 => 0.065692056959748
928 => 0.066332860048863
929 => 0.066292043662354
930 => 0.065826853525259
1001 => 0.065564079420578
1002 => 0.067553892977012
1003 => 0.069019953709803
1004 => 0.068919978196423
1005 => 0.069361237598706
1006 => 0.070656788851448
1007 => 0.070775237821622
1008 => 0.070760315973898
1009 => 0.07046672784245
1010 => 0.071742366299364
1011 => 0.072806526342845
1012 => 0.070398770672597
1013 => 0.071315612511991
1014 => 0.071727212352495
1015 => 0.072331563034523
1016 => 0.07335120393604
1017 => 0.07445880440148
1018 => 0.074615431251514
1019 => 0.07450429700613
1020 => 0.073773804725274
1021 => 0.07498575437098
1022 => 0.075695686049718
1023 => 0.076118434117909
1024 => 0.07719045288027
1025 => 0.071729754252984
1026 => 0.06786440035026
1027 => 0.067260769521962
1028 => 0.068488276547915
1029 => 0.068811960361474
1030 => 0.068681483822093
1031 => 0.064330676581975
1101 => 0.067237863422264
1102 => 0.070365752019201
1103 => 0.070485906958937
1104 => 0.07205179339163
1105 => 0.072561710201969
1106 => 0.073822454025714
1107 => 0.073743594156275
1108 => 0.074050565214541
1109 => 0.073979997884243
1110 => 0.076315260336797
1111 => 0.078891401611794
1112 => 0.078802198031068
1113 => 0.078431847243267
1114 => 0.078981881317345
1115 => 0.081640735189218
1116 => 0.081395950531961
1117 => 0.081633737975779
1118 => 0.084768676537155
1119 => 0.088844542606755
1120 => 0.086950893607163
1121 => 0.091059567053456
1122 => 0.093645759196477
1123 => 0.098118311090572
1124 => 0.097558325565649
1125 => 0.099299457196919
1126 => 0.096555834603531
1127 => 0.090255922551502
1128 => 0.089258937354174
1129 => 0.091254926966911
1130 => 0.096161872664007
1201 => 0.091100389784572
1202 => 0.092124321178993
1203 => 0.091829428868516
1204 => 0.091813715310502
1205 => 0.092413437908225
1206 => 0.091543509000801
1207 => 0.087999262134736
1208 => 0.089623569587076
1209 => 0.088996346474077
1210 => 0.08969229728053
1211 => 0.09344805675101
1212 => 0.091787545962988
1213 => 0.090038332736748
1214 => 0.092232234303942
1215 => 0.09502582490535
1216 => 0.094851007026079
1217 => 0.094511787272088
1218 => 0.096423951264365
1219 => 0.099582285968126
1220 => 0.10043597114734
1221 => 0.1010661440938
1222 => 0.10115303429626
1223 => 0.10204805738355
1224 => 0.097235292668358
1225 => 0.10487327387193
1226 => 0.10619214223081
1227 => 0.10594424964083
1228 => 0.10741011631527
1229 => 0.1069788211542
1230 => 0.10635394213395
1231 => 0.10867765261171
]
'min_raw' => 0.040059532930806
'max_raw' => 0.10867765261171
'avg_raw' => 0.074368592771259
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.040059'
'max' => '$0.108677'
'avg' => '$0.074368'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.013815497613959
'max_diff' => 0.050089692531511
'year' => 2032
]
7 => [
'items' => [
101 => 0.10601370606272
102 => 0.10223256931798
103 => 0.10015816291741
104 => 0.10288990860327
105 => 0.10455809036884
106 => 0.1056606523996
107 => 0.10599428700392
108 => 0.097608893893014
109 => 0.093089632081458
110 => 0.095986427089223
111 => 0.099520716924808
112 => 0.09721565950987
113 => 0.097306013396485
114 => 0.094019607281216
115 => 0.099811490943267
116 => 0.098967662211115
117 => 0.10334544716622
118 => 0.10230065365277
119 => 0.10587056733903
120 => 0.1049304894246
121 => 0.10883270028834
122 => 0.11038939785003
123 => 0.11300333533673
124 => 0.11492615839259
125 => 0.11605527686874
126 => 0.11598748883065
127 => 0.12046161875772
128 => 0.11782338065392
129 => 0.11450913181056
130 => 0.11444918750531
131 => 0.11616568394455
201 => 0.11976298958341
202 => 0.12069571859689
203 => 0.1212169868702
204 => 0.12041864636415
205 => 0.1175550279867
206 => 0.11631853209019
207 => 0.11737206241875
208 => 0.11608368535782
209 => 0.11830778561975
210 => 0.12136195032156
211 => 0.12073127738811
212 => 0.12283952244886
213 => 0.12502133429288
214 => 0.12814142322114
215 => 0.12895713000354
216 => 0.13030546229631
217 => 0.13169333912965
218 => 0.13213908776419
219 => 0.1329901602152
220 => 0.13298567464328
221 => 0.1355504387582
222 => 0.13837945300108
223 => 0.13944734038593
224 => 0.14190288854376
225 => 0.13769784837615
226 => 0.1408874196473
227 => 0.14376449277403
228 => 0.14033432758454
301 => 0.14506201117226
302 => 0.14524557641281
303 => 0.14801719360642
304 => 0.14520762860309
305 => 0.14353931787256
306 => 0.1483556684408
307 => 0.15068614876716
308 => 0.14998418912678
309 => 0.14464224160351
310 => 0.14153299901805
311 => 0.13339551144382
312 => 0.1430347169888
313 => 0.14772969283028
314 => 0.1446300827503
315 => 0.14619334578109
316 => 0.15472200198736
317 => 0.15796916208111
318 => 0.15729377548097
319 => 0.15740790469859
320 => 0.15916001334505
321 => 0.16692982798732
322 => 0.16227397495078
323 => 0.16583320014573
324 => 0.16772100035539
325 => 0.16947449439838
326 => 0.16516846722629
327 => 0.15956638914352
328 => 0.15779197585546
329 => 0.14432188761448
330 => 0.14362071102391
331 => 0.1432271193558
401 => 0.14074557956299
402 => 0.13879576903681
403 => 0.13724520731456
404 => 0.13317607031845
405 => 0.13454928460387
406 => 0.12806392952697
407 => 0.1322130298783
408 => 0.12186224658119
409 => 0.13048268648621
410 => 0.12579097296921
411 => 0.12894133241264
412 => 0.12893034110533
413 => 0.1231295305476
414 => 0.11978374407773
415 => 0.12191580943629
416 => 0.12420155274422
417 => 0.12457240690577
418 => 0.12753593276851
419 => 0.12836298913603
420 => 0.12585696973089
421 => 0.12164774960417
422 => 0.12262545543752
423 => 0.11976393090023
424 => 0.11474921921557
425 => 0.11835087269596
426 => 0.11958063554769
427 => 0.12012376888105
428 => 0.11519237588272
429 => 0.1136428251369
430 => 0.11281785732181
501 => 0.12101116869387
502 => 0.12146001678619
503 => 0.11916364648517
504 => 0.12954345799652
505 => 0.12719418697122
506 => 0.12981889829186
507 => 0.12253673888097
508 => 0.1228149271772
509 => 0.1193674362103
510 => 0.12129780079033
511 => 0.11993348132372
512 => 0.1211418464085
513 => 0.12186613545804
514 => 0.12531306072559
515 => 0.13052204483589
516 => 0.12479820503545
517 => 0.1223042460675
518 => 0.12385148418466
519 => 0.1279719831833
520 => 0.13421475009071
521 => 0.13051890643413
522 => 0.13215905908943
523 => 0.1325173594793
524 => 0.12979218119451
525 => 0.13431523130123
526 => 0.13673917059861
527 => 0.13922563075417
528 => 0.14138455443821
529 => 0.13823248388961
530 => 0.14160565120817
531 => 0.1388874737936
601 => 0.13644898765271
602 => 0.13645268582962
603 => 0.13492298785285
604 => 0.13195900526849
605 => 0.13141240140428
606 => 0.13425590373434
607 => 0.13653612332238
608 => 0.13672393312917
609 => 0.13798637985502
610 => 0.13873348282314
611 => 0.14605610754797
612 => 0.14900132778822
613 => 0.15260268734784
614 => 0.15400561985782
615 => 0.1582279437337
616 => 0.15481807428355
617 => 0.15408032757892
618 => 0.14383835096764
619 => 0.14551547406397
620 => 0.14820070995951
621 => 0.14388262951853
622 => 0.14662145767322
623 => 0.14716216036727
624 => 0.14373590279748
625 => 0.14556601500535
626 => 0.14070577957169
627 => 0.13062798468685
628 => 0.13432645076783
629 => 0.13704976669364
630 => 0.13316325908507
701 => 0.14012967354482
702 => 0.13606003803342
703 => 0.13477015895326
704 => 0.12973788078646
705 => 0.13211292237104
706 => 0.1353252001215
707 => 0.13334038593909
708 => 0.13745917338895
709 => 0.14329247485843
710 => 0.1474496328647
711 => 0.14776876783678
712 => 0.14509599374671
713 => 0.14937913128347
714 => 0.14941032926442
715 => 0.14457893262582
716 => 0.14161972908601
717 => 0.14094739181555
718 => 0.14262702213665
719 => 0.14466640342333
720 => 0.14788193930482
721 => 0.1498250202933
722 => 0.15489154498072
723 => 0.15626240129249
724 => 0.15776855676146
725 => 0.15978124494914
726 => 0.16219799316112
727 => 0.15691028565886
728 => 0.15712037613545
729 => 0.15219653612264
730 => 0.14693470691887
731 => 0.15092777938826
801 => 0.15614819046582
802 => 0.15495062239659
803 => 0.1548158715247
804 => 0.15504248511444
805 => 0.15413955789915
806 => 0.15005565156846
807 => 0.14800473937579
808 => 0.15065093934784
809 => 0.15205727686417
810 => 0.15423838370648
811 => 0.15396951625058
812 => 0.15958781324259
813 => 0.16177091356521
814 => 0.16121238308255
815 => 0.16131516613315
816 => 0.16526756498878
817 => 0.16966344538906
818 => 0.17378076747143
819 => 0.17796908433672
820 => 0.17291990488282
821 => 0.17035624294623
822 => 0.17300128767015
823 => 0.17159778970794
824 => 0.17966270530334
825 => 0.18022110256096
826 => 0.18828543497117
827 => 0.1959394467113
828 => 0.19113209907319
829 => 0.19566521136823
830 => 0.20056814190539
831 => 0.21002669038338
901 => 0.20684138401174
902 => 0.20440148925118
903 => 0.20209580049193
904 => 0.20689357278214
905 => 0.2130658301872
906 => 0.21439527531511
907 => 0.21654948430944
908 => 0.21428459695604
909 => 0.21701240430405
910 => 0.2266427629018
911 => 0.22404055499916
912 => 0.22034500145162
913 => 0.22794724465507
914 => 0.23069846691743
915 => 0.25000798558094
916 => 0.27438705053005
917 => 0.26429395755955
918 => 0.25802884905068
919 => 0.25950129816063
920 => 0.26840370739661
921 => 0.27126287869487
922 => 0.26349066549076
923 => 0.26623594258865
924 => 0.2813626893077
925 => 0.28947770359833
926 => 0.27845642419983
927 => 0.24804915144964
928 => 0.22001225728859
929 => 0.2274489041379
930 => 0.22660581917121
1001 => 0.24285762142074
1002 => 0.22397849320129
1003 => 0.22429636930228
1004 => 0.24088424161138
1005 => 0.23645888166744
1006 => 0.22929036531553
1007 => 0.22006459539111
1008 => 0.2030099064054
1009 => 0.18790409276556
1010 => 0.2175300719744
1011 => 0.21625254587956
1012 => 0.21440249877549
1013 => 0.2185195784096
1014 => 0.23851094845944
1015 => 0.23805008267404
1016 => 0.23511828968313
1017 => 0.2373420288271
1018 => 0.22890053309197
1019 => 0.2310760987522
1020 => 0.22000781610131
1021 => 0.22501114211183
1022 => 0.22927498489898
1023 => 0.23013101446578
1024 => 0.23205969278972
1025 => 0.21557934767882
1026 => 0.2229785387961
1027 => 0.22732487036705
1028 => 0.2076879862086
1029 => 0.22693671230464
1030 => 0.2152924615359
1031 => 0.21134022793421
1101 => 0.2166613898117
1102 => 0.21458772785304
1103 => 0.21280491507051
1104 => 0.21181007490524
1105 => 0.21571734891286
1106 => 0.2155350699102
1107 => 0.20914201126453
1108 => 0.20080252687565
1109 => 0.2036015315708
1110 => 0.20258462692425
1111 => 0.19889923330181
1112 => 0.20138274362721
1113 => 0.19044662102998
1114 => 0.17163159051163
1115 => 0.18406137599202
1116 => 0.18358284277203
1117 => 0.18334154462276
1118 => 0.19268218487724
1119 => 0.191784297842
1120 => 0.19015462408092
1121 => 0.19886930306519
1122 => 0.19568832800696
1123 => 0.20549134360444
1124 => 0.21194824369624
1125 => 0.21031056497412
1126 => 0.21638331071937
1127 => 0.20366601498578
1128 => 0.20789019049913
1129 => 0.20876078721798
1130 => 0.19876176527927
1201 => 0.19193120326532
1202 => 0.1914756826531
1203 => 0.17963242943035
1204 => 0.18595899970655
1205 => 0.19152611973833
1206 => 0.18885990126907
1207 => 0.18801585615271
1208 => 0.19232789960113
1209 => 0.19266298230722
1210 => 0.18502306109776
1211 => 0.18661164264204
1212 => 0.19323629176143
1213 => 0.18644471848133
1214 => 0.1732498009953
1215 => 0.16997727902476
1216 => 0.16954066426934
1217 => 0.16066532513824
1218 => 0.170195964591
1219 => 0.16603558506461
1220 => 0.17917817413948
1221 => 0.17167119774503
1222 => 0.17134758699667
1223 => 0.17085840188715
1224 => 0.16321903086137
1225 => 0.16489156760866
1226 => 0.17045133449119
1227 => 0.17243512195013
1228 => 0.17222819666548
1229 => 0.17042408860035
1230 => 0.17125000003403
1231 => 0.16858945153951
]
'min_raw' => 0.093089632081458
'max_raw' => 0.28947770359833
'avg_raw' => 0.19128366783989
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.093089'
'max' => '$0.289477'
'avg' => '$0.191283'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.053030099150652
'max_diff' => 0.18080005098661
'year' => 2033
]
8 => [
'items' => [
101 => 0.16764995649156
102 => 0.16468465169177
103 => 0.16032647282244
104 => 0.16093250432448
105 => 0.1522978116048
106 => 0.14759317273329
107 => 0.1462909906998
108 => 0.14454965846268
109 => 0.14648767880949
110 => 0.15227335060522
111 => 0.14529460292082
112 => 0.13333002951817
113 => 0.13404912076631
114 => 0.13566470530077
115 => 0.13265407420896
116 => 0.12980476454367
117 => 0.13228200812584
118 => 0.12721246064895
119 => 0.1362773358933
120 => 0.13603215642196
121 => 0.13941098134494
122 => 0.14152382990974
123 => 0.13665439801071
124 => 0.13542974905645
125 => 0.13612736475799
126 => 0.12459733116975
127 => 0.13846873161491
128 => 0.13858869206198
129 => 0.13756151788405
130 => 0.14494761038966
131 => 0.16053456935652
201 => 0.15467012840922
202 => 0.15239923962075
203 => 0.14808227837388
204 => 0.15383437291955
205 => 0.15339270180509
206 => 0.15139529752673
207 => 0.1501872611869
208 => 0.15241310518346
209 => 0.1499114544834
210 => 0.14946208927691
211 => 0.14673942503973
212 => 0.14576755778038
213 => 0.14504802595271
214 => 0.14425589211019
215 => 0.14600314197934
216 => 0.14204364390597
217 => 0.13726887738386
218 => 0.13687190721124
219 => 0.13796797675983
220 => 0.13748304757736
221 => 0.13686958555688
222 => 0.13569831949335
223 => 0.13535082987244
224 => 0.1364800025624
225 => 0.13520523243029
226 => 0.13708622520054
227 => 0.13657469924711
228 => 0.13371735685299
301 => 0.13015605030627
302 => 0.13012434720791
303 => 0.12935706955414
304 => 0.12837982610108
305 => 0.12810797932875
306 => 0.13207338158094
307 => 0.14028164556848
308 => 0.13867016694062
309 => 0.13983462540022
310 => 0.14556260851458
311 => 0.14738336210017
312 => 0.14609103433203
313 => 0.14432201637569
314 => 0.14439984418785
315 => 0.15044511406281
316 => 0.15082215012963
317 => 0.15177479863405
318 => 0.15299922118065
319 => 0.14629955878627
320 => 0.14408429069157
321 => 0.14303457376991
322 => 0.13980185194275
323 => 0.14328806528071
324 => 0.14125679806322
325 => 0.14153088540883
326 => 0.14135238566544
327 => 0.14144985859543
328 => 0.13627480207593
329 => 0.13816032067867
330 => 0.13502528029927
331 => 0.13082781315604
401 => 0.13081374177435
402 => 0.13184106591111
403 => 0.13122997331537
404 => 0.12958553885286
405 => 0.12981912300675
406 => 0.12777268002989
407 => 0.13006759823618
408 => 0.13013340827873
409 => 0.12924973976426
410 => 0.13278537789874
411 => 0.13423393172724
412 => 0.13365228218101
413 => 0.13419312164452
414 => 0.13873713115299
415 => 0.13947800297191
416 => 0.13980704929463
417 => 0.13936617081247
418 => 0.13427617779678
419 => 0.13450194063135
420 => 0.13284544274729
421 => 0.1314458765927
422 => 0.13150185189913
423 => 0.13222141083345
424 => 0.1353637669012
425 => 0.14197666999379
426 => 0.14222762483218
427 => 0.14253178941719
428 => 0.14129459918911
429 => 0.140921450778
430 => 0.14141372985003
501 => 0.14389718856167
502 => 0.1502853186205
503 => 0.14802732680885
504 => 0.14619154431824
505 => 0.14780202048591
506 => 0.14755410030323
507 => 0.14546140446333
508 => 0.14540266946104
509 => 0.14138611706894
510 => 0.13990128910206
511 => 0.13866045571548
512 => 0.13730549805012
513 => 0.1365022337275
514 => 0.13773641280415
515 => 0.13801868416136
516 => 0.1353201300405
517 => 0.13495232708533
518 => 0.13715602463275
519 => 0.13618625950426
520 => 0.13718368698793
521 => 0.13741509871992
522 => 0.13737783610121
523 => 0.13636528993024
524 => 0.13701065666505
525 => 0.13548417194414
526 => 0.13382434908073
527 => 0.1327654855045
528 => 0.13184148659636
529 => 0.13235417489373
530 => 0.13052653472681
531 => 0.12994183585428
601 => 0.13679202093651
602 => 0.14185232630866
603 => 0.14177874746444
604 => 0.14133085517325
605 => 0.14066537808016
606 => 0.14384850476731
607 => 0.14273956707814
608 => 0.14354641190186
609 => 0.14375178777267
610 => 0.14437339867834
611 => 0.14459557114786
612 => 0.14392401163628
613 => 0.14167017589132
614 => 0.13605383150314
615 => 0.13343940802942
616 => 0.13257660473642
617 => 0.13260796599742
618 => 0.13174288241611
619 => 0.13199768830113
620 => 0.13165427132785
621 => 0.13100392266195
622 => 0.13231401769624
623 => 0.13246499394457
624 => 0.13215920210909
625 => 0.13223122715617
626 => 0.12969940136386
627 => 0.12989189058001
628 => 0.12882008616412
629 => 0.12861913575694
630 => 0.12590970752626
701 => 0.12110956267771
702 => 0.12376930888514
703 => 0.12055670948347
704 => 0.11934004941124
705 => 0.12509952896374
706 => 0.12452143695976
707 => 0.12353199473951
708 => 0.12206840347793
709 => 0.12152554324211
710 => 0.11822729629794
711 => 0.11803241827301
712 => 0.1196671185187
713 => 0.11891276060192
714 => 0.11785335638907
715 => 0.1140163017202
716 => 0.10970218186725
717 => 0.10983239802802
718 => 0.11120463928619
719 => 0.11519461581627
720 => 0.11363566295867
721 => 0.11250462477356
722 => 0.11229281532038
723 => 0.11494405408015
724 => 0.11869611237691
725 => 0.12045649418218
726 => 0.11871200927675
727 => 0.11670803894713
728 => 0.11683001133559
729 => 0.11764143899142
730 => 0.11772670856507
731 => 0.11642232989197
801 => 0.11678950484801
802 => 0.1162317325146
803 => 0.11280868473408
804 => 0.11274677265433
805 => 0.11190670152489
806 => 0.11188126450495
807 => 0.11045209394821
808 => 0.11025214310793
809 => 0.10741443822306
810 => 0.10928222417164
811 => 0.1080294114205
812 => 0.10614112709586
813 => 0.10581558616656
814 => 0.10580580001312
815 => 0.10774464580187
816 => 0.10925956762975
817 => 0.10805120463468
818 => 0.10777608380383
819 => 0.11071365450247
820 => 0.11033982185452
821 => 0.11001608519235
822 => 0.11836015670937
823 => 0.11175517300763
824 => 0.10887502311438
825 => 0.10531029069586
826 => 0.10647098554627
827 => 0.10671556100541
828 => 0.098143022130171
829 => 0.094665144176129
830 => 0.093471667523367
831 => 0.09278480483642
901 => 0.093097816787941
902 => 0.089967318714906
903 => 0.092071065193645
904 => 0.089360318476811
905 => 0.088905852968201
906 => 0.093753003894979
907 => 0.094427456629795
908 => 0.091550031727029
909 => 0.093397804327382
910 => 0.092727776296534
911 => 0.089406786448956
912 => 0.089279949064327
913 => 0.08761359309725
914 => 0.085006068678872
915 => 0.083814360050452
916 => 0.083193707849883
917 => 0.083449801044108
918 => 0.083320312488527
919 => 0.082475312073924
920 => 0.08336874692317
921 => 0.081086390076116
922 => 0.080177537189421
923 => 0.079767029425727
924 => 0.077741306356408
925 => 0.080965132602832
926 => 0.08160026698607
927 => 0.082236652780247
928 => 0.087775956639517
929 => 0.087499228672618
930 => 0.090000714721399
1001 => 0.089903511573481
1002 => 0.089190047230982
1003 => 0.086180058529164
1004 => 0.087379786377819
1005 => 0.083687210538762
1006 => 0.086453939428134
1007 => 0.085191319904385
1008 => 0.086027046497073
1009 => 0.084524334728991
1010 => 0.085355997466896
1011 => 0.081750880910269
1012 => 0.078384473795048
1013 => 0.079739214289763
1014 => 0.081211972140885
1015 => 0.084405286413841
1016 => 0.082503374777139
1017 => 0.083187374120938
1018 => 0.080896090819319
1019 => 0.076168518895359
1020 => 0.076195276439036
1021 => 0.075468042494288
1022 => 0.074839606188131
1023 => 0.08272183220748
1024 => 0.08174155280242
1025 => 0.080179605866254
1026 => 0.082270333909617
1027 => 0.082823155588597
1028 => 0.082838893644622
1029 => 0.084364234855558
1030 => 0.085178309733267
1031 => 0.085321793958865
1101 => 0.087721951311451
1102 => 0.088526452397196
1103 => 0.091840078512127
1104 => 0.085109241167518
1105 => 0.084970624001756
1106 => 0.082299754740735
1107 => 0.080605847230622
1108 => 0.082415738037153
1109 => 0.084019054217007
1110 => 0.082349574243669
1111 => 0.082567573083541
1112 => 0.080326432620861
1113 => 0.081127534880809
1114 => 0.081817552067205
1115 => 0.081436565134213
1116 => 0.080866209255548
1117 => 0.083887600574235
1118 => 0.083717121835107
1119 => 0.086530710892555
1120 => 0.08872410476452
1121 => 0.092655058699134
1122 => 0.088552903343101
1123 => 0.088403404497336
1124 => 0.089864779695054
1125 => 0.088526228668268
1126 => 0.089372146711986
1127 => 0.092518768224449
1128 => 0.092585251378626
1129 => 0.091471572887454
1130 => 0.091403805450055
1201 => 0.091617699586592
1202 => 0.092870484225153
1203 => 0.092432722778256
1204 => 0.092939311407369
1205 => 0.093572808245235
1206 => 0.096193219763743
1207 => 0.096824992109494
1208 => 0.095290112845725
1209 => 0.095428695257929
1210 => 0.094854608279901
1211 => 0.094300047452415
1212 => 0.095546619205499
1213 => 0.097824753585687
1214 => 0.097810581429943
1215 => 0.098339064325543
1216 => 0.098668304791312
1217 => 0.097254963693478
1218 => 0.09633493060878
1219 => 0.096687729836679
1220 => 0.097251863485058
1221 => 0.096504788897713
1222 => 0.09189349846601
1223 => 0.093292269412615
1224 => 0.093059445530695
1225 => 0.09272787601049
1226 => 0.094134351013677
1227 => 0.093998693068502
1228 => 0.089935210932419
1229 => 0.090195341874835
1230 => 0.089951030356608
1231 => 0.090740450853435
]
'min_raw' => 0.074839606188131
'max_raw' => 0.16764995649156
'avg_raw' => 0.12124478133984
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.074839'
'max' => '$0.167649'
'avg' => '$0.121244'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.018250025893328
'max_diff' => -0.12182774710677
'year' => 2034
]
9 => [
'items' => [
101 => 0.088483597370782
102 => 0.089177790301906
103 => 0.089613181600652
104 => 0.089869630420447
105 => 0.090796099406149
106 => 0.090687388963942
107 => 0.090789341812425
108 => 0.092163050739478
109 => 0.09911079909253
110 => 0.099488949706044
111 => 0.097626797783012
112 => 0.098370690746941
113 => 0.096942578927706
114 => 0.097901279959476
115 => 0.098557198857047
116 => 0.095593227484873
117 => 0.095417720336228
118 => 0.093983714191507
119 => 0.094754267867421
120 => 0.093528261564273
121 => 0.093829080627185
122 => 0.092987964302347
123 => 0.094501806222466
124 => 0.096194516716411
125 => 0.096622162234344
126 => 0.095497210989633
127 => 0.094682672150562
128 => 0.093252610274927
129 => 0.095630835045115
130 => 0.096326300443005
131 => 0.095627182061449
201 => 0.095465181056404
202 => 0.095158189444573
203 => 0.095530310778096
204 => 0.096322512789089
205 => 0.095948924950379
206 => 0.096195686299617
207 => 0.095255286495519
208 => 0.09725543156819
209 => 0.10043214330472
210 => 0.1004423569524
211 => 0.10006876709991
212 => 0.099915902181375
213 => 0.10029922804136
214 => 0.10050716659554
215 => 0.10174677213678
216 => 0.10307691827059
217 => 0.10928412988885
218 => 0.107541169705
219 => 0.11304857712139
220 => 0.1174042213404
221 => 0.11871028859245
222 => 0.11750876817578
223 => 0.11339843173522
224 => 0.11319675902005
225 => 0.11933933700153
226 => 0.11760377737387
227 => 0.11739733807866
228 => 0.11520117276237
301 => 0.11649937846466
302 => 0.11621544183404
303 => 0.11576723397195
304 => 0.11824412001814
305 => 0.12288062958346
306 => 0.1221579860868
307 => 0.121618566239
308 => 0.11925498548872
309 => 0.12067838902526
310 => 0.1201715422894
311 => 0.12234927751956
312 => 0.12105923541195
313 => 0.11759062880272
314 => 0.11814301583792
315 => 0.11805952364879
316 => 0.1197777869846
317 => 0.11926200698111
318 => 0.11795880932514
319 => 0.12286478249782
320 => 0.12254621588845
321 => 0.12299787050608
322 => 0.12319670283664
323 => 0.12618288225391
324 => 0.12740622441408
325 => 0.12768394450206
326 => 0.12884602493754
327 => 0.12765503088219
328 => 0.13241985626797
329 => 0.13558818711424
330 => 0.13926836643299
331 => 0.14464609755664
401 => 0.14666817420593
402 => 0.14630290415814
403 => 0.1503802385209
404 => 0.15770711773672
405 => 0.14778387593115
406 => 0.15823307364792
407 => 0.15492497829258
408 => 0.14708154371516
409 => 0.1465765189964
410 => 0.15188818395637
411 => 0.16366894560879
412 => 0.16071799843116
413 => 0.16367377230123
414 => 0.16022570507662
415 => 0.16005447947632
416 => 0.16350630737236
417 => 0.1715716914008
418 => 0.16774012977529
419 => 0.16224664664766
420 => 0.16630294910104
421 => 0.16278900452285
422 => 0.15487110389705
423 => 0.16071574189746
424 => 0.15680759891229
425 => 0.15794820280367
426 => 0.16616253806611
427 => 0.1651741675149
428 => 0.16645321052881
429 => 0.16419573308763
430 => 0.16208689318606
501 => 0.15815058690525
502 => 0.15698524067306
503 => 0.15730730044687
504 => 0.15698508107623
505 => 0.15478275388864
506 => 0.15430716154217
507 => 0.1535144867952
508 => 0.15376016984472
509 => 0.15226970941524
510 => 0.15508251619051
511 => 0.15560459791436
512 => 0.15765152411678
513 => 0.15786404278553
514 => 0.1635647031231
515 => 0.16042487520487
516 => 0.16253134285212
517 => 0.16234292055891
518 => 0.14725153472583
519 => 0.1493309945412
520 => 0.15256598144349
521 => 0.15110862422893
522 => 0.14904826209661
523 => 0.14738440920514
524 => 0.14486350193687
525 => 0.14841163050723
526 => 0.15307704227584
527 => 0.15798236532709
528 => 0.16387578956366
529 => 0.16256044588108
530 => 0.15787219186037
531 => 0.15808250351096
601 => 0.15938256738037
602 => 0.15769886654623
603 => 0.1572023103005
604 => 0.15931434817735
605 => 0.15932889262145
606 => 0.15739159132973
607 => 0.15523863546637
608 => 0.15522961450269
609 => 0.15484651680189
610 => 0.16029385730653
611 => 0.16328934379584
612 => 0.16363277149437
613 => 0.16326622837544
614 => 0.16340729627434
615 => 0.16166428868725
616 => 0.16564828715849
617 => 0.16930439813231
618 => 0.1683244822899
619 => 0.1668554491389
620 => 0.1656852934759
621 => 0.16804883080378
622 => 0.16794358620713
623 => 0.16927246519247
624 => 0.16921217956572
625 => 0.16876532754461
626 => 0.1683244982484
627 => 0.17007233657881
628 => 0.16956898720908
629 => 0.16906485599874
630 => 0.16805374367779
701 => 0.168191170635
702 => 0.16672239113328
703 => 0.16604286652901
704 => 0.15582444688825
705 => 0.15309375126375
706 => 0.15395288369565
707 => 0.1542357323996
708 => 0.15304733016433
709 => 0.15475119369422
710 => 0.15448564836792
711 => 0.15551872989371
712 => 0.15487330540758
713 => 0.15489979385363
714 => 0.15679784964833
715 => 0.15734886332043
716 => 0.15706861331957
717 => 0.15726489081377
718 => 0.16178802282392
719 => 0.16114497809369
720 => 0.16080337339712
721 => 0.16089800023264
722 => 0.16205375743827
723 => 0.16237730635385
724 => 0.16100640686318
725 => 0.16165293098806
726 => 0.16440574865564
727 => 0.16536907904331
728 => 0.16844356721594
729 => 0.16713746999554
730 => 0.16953486797014
731 => 0.17690365201089
801 => 0.18279034658371
802 => 0.1773766989766
803 => 0.18818686389355
804 => 0.19660412790745
805 => 0.19628105929491
806 => 0.19481331461926
807 => 0.18523048332398
808 => 0.17641221909409
809 => 0.18378907156567
810 => 0.18380787667968
811 => 0.18317419851017
812 => 0.17923847782227
813 => 0.1830372439614
814 => 0.18333877622243
815 => 0.18316999834015
816 => 0.18015249051653
817 => 0.17554531379852
818 => 0.17644554510119
819 => 0.1779201423392
820 => 0.17512842213445
821 => 0.17423629837274
822 => 0.17589492617925
823 => 0.18123937056065
824 => 0.1802290343086
825 => 0.18020265034597
826 => 0.18452529728148
827 => 0.18143121496125
828 => 0.17645689990086
829 => 0.17520081974496
830 => 0.17074258138848
831 => 0.173821902501
901 => 0.17393272178583
902 => 0.1722462090824
903 => 0.17659375111184
904 => 0.17655368774667
905 => 0.18068103185739
906 => 0.18857096363743
907 => 0.18623752257011
908 => 0.18352398448648
909 => 0.18381902131442
910 => 0.18705484710398
911 => 0.18509839296489
912 => 0.18580194751419
913 => 0.18705378218991
914 => 0.18780904513107
915 => 0.18371035060002
916 => 0.18275474884161
917 => 0.18079992301455
918 => 0.18028994544482
919 => 0.18188211029218
920 => 0.18146263110692
921 => 0.17392340785405
922 => 0.17313551707629
923 => 0.17315968056159
924 => 0.17117849173873
925 => 0.16815670324408
926 => 0.17609778298642
927 => 0.17546000314777
928 => 0.17475594356614
929 => 0.17484218684758
930 => 0.17828914041557
1001 => 0.17628973327081
1002 => 0.18160548486154
1003 => 0.18051272614061
1004 => 0.17939194228184
1005 => 0.17923701581264
1006 => 0.1788056096478
1007 => 0.1773261573894
1008 => 0.17553962988607
1009 => 0.17436000968202
1010 => 0.16083789229642
1011 => 0.16334751862865
1012 => 0.16623461496424
1013 => 0.16723122904997
1014 => 0.16552645169273
1015 => 0.1773934723902
1016 => 0.17956169142508
1017 => 0.17299401453899
1018 => 0.17176547035008
1019 => 0.17747401554269
1020 => 0.17403106495028
1021 => 0.17558142539123
1022 => 0.17223039411972
1023 => 0.17903943095245
1024 => 0.17898755750004
1025 => 0.17633868838304
1026 => 0.17857749442205
1027 => 0.17818844677846
1028 => 0.17519788006924
1029 => 0.1791342372513
1030 => 0.17913618963536
1031 => 0.17658671070162
1101 => 0.17360947745973
1102 => 0.17307721847519
1103 => 0.17267623282927
1104 => 0.1754828075032
1105 => 0.17799917357992
1106 => 0.18268150698864
1107 => 0.18385875685709
1108 => 0.18845364146761
1109 => 0.18571761140291
1110 => 0.18693045809307
1111 => 0.18824717474288
1112 => 0.18887845712544
1113 => 0.18784981635953
1114 => 0.19498756348962
1115 => 0.19559020804233
1116 => 0.19579226954799
1117 => 0.1933854613758
1118 => 0.19552327035317
1119 => 0.19452306032945
1120 => 0.19712532894482
1121 => 0.19753339789115
1122 => 0.19718777801109
1123 => 0.19731730553558
1124 => 0.19122649754492
1125 => 0.19091065701903
1126 => 0.18660414903754
1127 => 0.1883590828721
1128 => 0.18507831818455
1129 => 0.18611868246259
1130 => 0.1865772651234
1201 => 0.18633772756573
1202 => 0.18845830419802
1203 => 0.18665538085539
1204 => 0.18189716972615
1205 => 0.17713766222547
1206 => 0.17707791048581
1207 => 0.17582481617317
1208 => 0.1749190585008
1209 => 0.17509353956198
1210 => 0.17570843357949
1211 => 0.17488331974268
1212 => 0.1750593996141
1213 => 0.17798349869365
1214 => 0.17856990591034
1215 => 0.17657706506395
1216 => 0.16857552150017
1217 => 0.16661192263926
1218 => 0.16802331856062
1219 => 0.16734876221575
1220 => 0.13506351214349
1221 => 0.14264845275408
1222 => 0.13814173860351
1223 => 0.14021863982804
1224 => 0.13561845168828
1225 => 0.13781390258509
1226 => 0.13740848296948
1227 => 0.14960484301661
1228 => 0.14941441363002
1229 => 0.14950556210008
1230 => 0.14515480813793
1231 => 0.15208567733548
]
'min_raw' => 0.088483597370782
'max_raw' => 0.19753339789115
'avg_raw' => 0.14300849763096
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.088483'
'max' => '$0.197533'
'avg' => '$0.1430084'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.013643991182651
'max_diff' => 0.029883441399588
'year' => 2035
]
10 => [
'items' => [
101 => 0.15550007272819
102 => 0.15486815901219
103 => 0.15502719808046
104 => 0.15229437996593
105 => 0.14953202175307
106 => 0.14646814137114
107 => 0.15216045241372
108 => 0.15152756459677
109 => 0.15297918154299
110 => 0.1566710521489
111 => 0.15721469411967
112 => 0.15794535444147
113 => 0.15768346472805
114 => 0.16392274019572
115 => 0.16316712276852
116 => 0.1649879433621
117 => 0.16124237725511
118 => 0.15700391367265
119 => 0.15780950703387
120 => 0.15773192191501
121 => 0.1567441743039
122 => 0.15585247992577
123 => 0.15436806001952
124 => 0.15906498425571
125 => 0.15887429770931
126 => 0.16196129124664
127 => 0.16141563515346
128 => 0.15777161021852
129 => 0.15790175728196
130 => 0.15877705883016
131 => 0.16180648748247
201 => 0.16270582816571
202 => 0.16228921772871
203 => 0.16327530373142
204 => 0.16405466590199
205 => 0.16337317962077
206 => 0.17302158823551
207 => 0.16901489629397
208 => 0.17096773006789
209 => 0.17143346941621
210 => 0.17024048786894
211 => 0.17049920284907
212 => 0.17089108554837
213 => 0.17327052055998
214 => 0.17951484652552
215 => 0.18228041598909
216 => 0.19060076817104
217 => 0.18205077394373
218 => 0.18154345266967
219 => 0.18304219934821
220 => 0.18792712687774
221 => 0.19188590182251
222 => 0.1931992558589
223 => 0.19337283727592
224 => 0.1958367767583
225 => 0.19724906091986
226 => 0.1955375896971
227 => 0.19408729703432
228 => 0.18889252873319
229 => 0.18949383730893
301 => 0.19363625710676
302 => 0.19948766905849
303 => 0.20450878924874
304 => 0.20275056796182
305 => 0.2161645552702
306 => 0.2174944973206
307 => 0.21731074233141
308 => 0.22034054824414
309 => 0.21432700051662
310 => 0.2117560923561
311 => 0.19440086676953
312 => 0.19927697724891
313 => 0.2063646901946
314 => 0.20542660480868
315 => 0.20027931821241
316 => 0.20450488457028
317 => 0.20310778018669
318 => 0.20200582599344
319 => 0.20705409177706
320 => 0.20150331617664
321 => 0.20630931696187
322 => 0.2001455712431
323 => 0.20275859936856
324 => 0.2012753182266
325 => 0.20223518290954
326 => 0.1966238335863
327 => 0.19965158147332
328 => 0.19649786931989
329 => 0.19649637404971
330 => 0.19642675567912
331 => 0.20013708404193
401 => 0.20025807771664
402 => 0.19751613945053
403 => 0.19712098330926
404 => 0.19858208267326
405 => 0.19687151798054
406 => 0.1976718804341
407 => 0.19689576014392
408 => 0.196721039119
409 => 0.19532883226616
410 => 0.19472903127443
411 => 0.19496422869825
412 => 0.19416137863816
413 => 0.19367763243659
414 => 0.19633052638392
415 => 0.1949131921653
416 => 0.19611329958748
417 => 0.19474562571427
418 => 0.19000467220259
419 => 0.18727809970335
420 => 0.17832287800641
421 => 0.18086256777074
422 => 0.182546384712
423 => 0.18198988322296
424 => 0.1831854637589
425 => 0.18325886269371
426 => 0.18287016727397
427 => 0.18242010777288
428 => 0.1822010436976
429 => 0.1838337678389
430 => 0.18478161915788
501 => 0.18271537826862
502 => 0.18223128693804
503 => 0.18432037055738
504 => 0.18559471035835
505 => 0.19500371945903
506 => 0.19430666967416
507 => 0.19605612784509
508 => 0.19585916570267
509 => 0.19769287657634
510 => 0.20069021887077
511 => 0.19459578391611
512 => 0.19565356709454
513 => 0.19539422308697
514 => 0.19822567295795
515 => 0.19823451243539
516 => 0.19653691679632
517 => 0.1974572109326
518 => 0.19694352799268
519 => 0.19787182249353
520 => 0.19429736014931
521 => 0.19865066944521
522 => 0.20111871529493
523 => 0.20115298411395
524 => 0.20232281825909
525 => 0.20351143750278
526 => 0.20579288863413
527 => 0.20344780906899
528 => 0.1992292392202
529 => 0.19953380633738
530 => 0.19706046037855
531 => 0.19710203777096
601 => 0.19688009439177
602 => 0.19754616317983
603 => 0.19444352479199
604 => 0.19517170782015
605 => 0.19415224731649
606 => 0.1956513509865
607 => 0.19403856324828
608 => 0.19539409802344
609 => 0.1959791018957
610 => 0.19813777877859
611 => 0.19371972491752
612 => 0.18471101401883
613 => 0.18660475426979
614 => 0.18380376368853
615 => 0.18406300603095
616 => 0.18458671682075
617 => 0.1828891988035
618 => 0.18321303174625
619 => 0.18320146215476
620 => 0.18310176166567
621 => 0.18266017166813
622 => 0.18201977880577
623 => 0.18457090686687
624 => 0.18500439323644
625 => 0.1859679797384
626 => 0.18883495956127
627 => 0.18854848066893
628 => 0.18901573962824
629 => 0.18799571594361
630 => 0.18411032200418
701 => 0.18432131758828
702 => 0.18169019927351
703 => 0.18590069612754
704 => 0.18490359489666
705 => 0.18426075724659
706 => 0.18408535303792
707 => 0.18695943954923
708 => 0.1878194112792
709 => 0.18728353460764
710 => 0.18618443592024
711 => 0.1882950303194
712 => 0.18885973634178
713 => 0.18898615319464
714 => 0.1927257218036
715 => 0.18919515353845
716 => 0.19004499641071
717 => 0.19667522790167
718 => 0.19066252284877
719 => 0.19384758681461
720 => 0.19369169450776
721 => 0.195321065456
722 => 0.19355803853223
723 => 0.19357989336392
724 => 0.1950266643828
725 => 0.19299493541331
726 => 0.19249185074819
727 => 0.19179684288649
728 => 0.19331436712615
729 => 0.19422405427611
730 => 0.20155546461321
731 => 0.2062918900439
801 => 0.20608626932452
802 => 0.20796525779379
803 => 0.20711875627882
804 => 0.20438517959117
805 => 0.20905106167283
806 => 0.20757458135339
807 => 0.207696300597
808 => 0.20769177020067
809 => 0.20867350053695
810 => 0.20797785461943
811 => 0.20660666510943
812 => 0.2075169246969
813 => 0.21022007024796
814 => 0.21861071698107
815 => 0.2233062340542
816 => 0.2183280409574
817 => 0.22176193189492
818 => 0.21970282095286
819 => 0.21932861924144
820 => 0.22148535651274
821 => 0.22364586886714
822 => 0.22350825357031
823 => 0.22193983254456
824 => 0.22105387130432
825 => 0.22776266663419
826 => 0.23270559275189
827 => 0.23236851832846
828 => 0.233856255211
829 => 0.23822429671212
830 => 0.2386236556849
831 => 0.23857334563349
901 => 0.23758349275065
902 => 0.24188439687037
903 => 0.24547228675424
904 => 0.23735437040787
905 => 0.24044556668124
906 => 0.24183330428048
907 => 0.24387091479936
908 => 0.24730870528788
909 => 0.2510430575873
910 => 0.25157113594753
911 => 0.25119643908007
912 => 0.24873353335382
913 => 0.25281970619994
914 => 0.25521329042066
915 => 0.25663861504789
916 => 0.26025300115115
917 => 0.24184187447545
918 => 0.22880956392203
919 => 0.22677438044026
920 => 0.23091300608007
921 => 0.23200432865636
922 => 0.23156441789426
923 => 0.21689536752054
924 => 0.22669715092587
925 => 0.23724304571266
926 => 0.23764815648093
927 => 0.24292765191545
928 => 0.24464687204276
929 => 0.24889755786684
930 => 0.24863167631121
1001 => 0.24966665066619
1002 => 0.24942872798524
1003 => 0.25730222838684
1004 => 0.26598786855593
1005 => 0.26568711245552
1006 => 0.26443844891738
1007 => 0.26629292720029
1008 => 0.27525743866456
1009 => 0.2744321301023
1010 => 0.27523384707092
1011 => 0.28580351130502
1012 => 0.29954557832655
1013 => 0.29316100851408
1014 => 0.30701368789668
1015 => 0.31573321526904
1016 => 0.33081273624358
1017 => 0.32892470594936
1018 => 0.33479505280612
1019 => 0.3255447376789
1020 => 0.30430414434967
1021 => 0.30094273914959
1022 => 0.30767235748448
1023 => 0.32421646749425
1024 => 0.30715132458479
1025 => 0.31060358076968
1026 => 0.30960933075619
1027 => 0.30955635139826
1028 => 0.31157835800777
1029 => 0.3086453319599
1030 => 0.29669565619954
1031 => 0.30217212218063
1101 => 0.30005739566384
1102 => 0.30240384239753
1103 => 0.31506664767101
1104 => 0.30946811961603
1105 => 0.30357052509759
1106 => 0.3109674174047
1107 => 0.32038620315962
1108 => 0.31979679247426
1109 => 0.31865308939011
1110 => 0.3251000837931
1111 => 0.33574862975472
1112 => 0.33862688893882
1113 => 0.3407515610251
1114 => 0.34104451740917
1115 => 0.34406215023647
1116 => 0.32783557798271
1117 => 0.35358756487736
1118 => 0.35803422162978
1119 => 0.35719843445537
1120 => 0.36214070629176
1121 => 0.36068656454416
1122 => 0.35857974129973
1123 => 0.36641429341179
1124 => 0.35743261163107
1125 => 0.34468424510563
1126 => 0.33769023909567
1127 => 0.34690051039996
1128 => 0.35252490169131
1129 => 0.35624226655642
1130 => 0.35736713891851
1201 => 0.32909520059564
1202 => 0.3138581938732
1203 => 0.32362494048965
1204 => 0.33554104542656
1205 => 0.32776938341813
1206 => 0.32807401785515
1207 => 0.31699367018798
1208 => 0.33652141033099
1209 => 0.33367638284629
1210 => 0.34843639046963
1211 => 0.34491379619386
1212 => 0.3569500094305
1213 => 0.35378047110786
1214 => 0.36693704747863
1215 => 0.37218556199302
1216 => 0.38099863472873
1217 => 0.38748156690877
1218 => 0.39128846868363
1219 => 0.3910599165804
1220 => 0.40614475800331
1221 => 0.39724975404043
1222 => 0.38607553267159
1223 => 0.38587342626125
1224 => 0.39166071384811
1225 => 0.40378928096536
1226 => 0.40693404195539
1227 => 0.40869153433263
1228 => 0.40599987357814
1229 => 0.39634498428712
1230 => 0.39217605204265
1231 => 0.39572810310053
]
'min_raw' => 0.14646814137114
'max_raw' => 0.40869153433263
'avg_raw' => 0.27757983785189
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.146468'
'max' => '$0.408691'
'avg' => '$0.277579'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.057984544000355
'max_diff' => 0.21115813644149
'year' => 2036
]
11 => [
'items' => [
101 => 0.39138424988797
102 => 0.3988829592028
103 => 0.40918028872993
104 => 0.40705393090263
105 => 0.41416202631791
106 => 0.42151815727927
107 => 0.43203775493854
108 => 0.43478796730625
109 => 0.43933396376886
110 => 0.44401328741093
111 => 0.44551616005345
112 => 0.44838561024202
113 => 0.44837048682313
114 => 0.45701776810267
115 => 0.46655598713801
116 => 0.47015644401358
117 => 0.47843549606858
118 => 0.46425790955697
119 => 0.4750117717864
120 => 0.48471202470398
121 => 0.47314698328116
122 => 0.48908669857347
123 => 0.4897056015981
124 => 0.49905030247448
125 => 0.48957765790819
126 => 0.48395283180249
127 => 0.50019149401018
128 => 0.50804887113941
129 => 0.50568216520263
130 => 0.48767141616504
131 => 0.4771883877078
201 => 0.44975228021002
202 => 0.48225153469278
203 => 0.49808097353508
204 => 0.48763042174255
205 => 0.49290107219441
206 => 0.5216560320456
207 => 0.53260405901116
208 => 0.5303269459348
209 => 0.53071174056024
210 => 0.53661909719011
211 => 0.56281556972767
212 => 0.54711803615368
213 => 0.55911821239563
214 => 0.56548306260451
215 => 0.57139509019547
216 => 0.55687701894758
217 => 0.5379892215669
218 => 0.53200666328064
219 => 0.48659132032465
220 => 0.48422725449495
221 => 0.48290023270622
222 => 0.4745335480392
223 => 0.46795962571873
224 => 0.46273179861541
225 => 0.44901241913496
226 => 0.453642306973
227 => 0.43177647953821
228 => 0.44576546105365
301 => 0.41086707249885
302 => 0.4399314874985
303 => 0.42411304781098
304 => 0.43473470462558
305 => 0.43469764666557
306 => 0.41513980887054
307 => 0.40385925619203
308 => 0.41104766340445
309 => 0.41875420655265
310 => 0.42000456725052
311 => 0.42999630160352
312 => 0.43278477988982
313 => 0.4243355605007
314 => 0.41014388096513
315 => 0.4134402844435
316 => 0.40379245468075
317 => 0.38688500411995
318 => 0.39902823028848
319 => 0.40317446160238
320 => 0.40500567355619
321 => 0.38837913776346
322 => 0.38315471923773
323 => 0.38037328265175
324 => 0.40799760398138
325 => 0.4095109266622
326 => 0.40176855386488
327 => 0.43676481307069
328 => 0.42884408178801
329 => 0.43769347925705
330 => 0.4131411703791
331 => 0.41407910164231
401 => 0.40245564515128
402 => 0.40896400410661
403 => 0.40436410577119
404 => 0.40843819301988
405 => 0.41088018411865
406 => 0.42250173331484
407 => 0.44006418692237
408 => 0.42076586140944
409 => 0.41235730462635
410 => 0.41757392596306
411 => 0.43146647602105
412 => 0.45251440050545
413 => 0.44005360558173
414 => 0.44558349477086
415 => 0.44679152955104
416 => 0.43760340069799
417 => 0.45285317992208
418 => 0.46102566049725
419 => 0.46940893451081
420 => 0.47668789644278
421 => 0.46606047051765
422 => 0.4774333396392
423 => 0.46826881470888
424 => 0.46004728843521
425 => 0.46005975709687
426 => 0.45490227356806
427 => 0.44490899934625
428 => 0.44306608625542
429 => 0.45265315288821
430 => 0.46034107242912
501 => 0.46097428630516
502 => 0.46523071358258
503 => 0.46774962340066
504 => 0.49243836390976
505 => 0.5023683795785
506 => 0.51451061477265
507 => 0.51924069967965
508 => 0.53347655942043
509 => 0.52197994649975
510 => 0.51949258197727
511 => 0.48496104276038
512 => 0.49061558037265
513 => 0.49966904067163
514 => 0.48511033098611
515 => 0.49434448132853
516 => 0.49616749821218
517 => 0.48461563160196
518 => 0.49078598268517
519 => 0.47439935958976
520 => 0.44042137052638
521 => 0.45289100713703
522 => 0.46207285691676
523 => 0.44896922516716
524 => 0.47245697789774
525 => 0.45873591763817
526 => 0.45438700026293
527 => 0.43742032308114
528 => 0.44542794160365
529 => 0.4562583603134
530 => 0.44956642072209
531 => 0.46345320017384
601 => 0.48312058334632
602 => 0.49713673180795
603 => 0.49821271764763
604 => 0.48920127319582
605 => 0.50364217044011
606 => 0.50374735661105
607 => 0.48745796552669
608 => 0.47748080418722
609 => 0.47521397213877
610 => 0.48087696303441
611 => 0.4877528794275
612 => 0.4985942831535
613 => 0.50514551636773
614 => 0.52222765808482
615 => 0.52684959585008
616 => 0.53192770417013
617 => 0.53871362291632
618 => 0.54686185824498
619 => 0.52903398322517
620 => 0.52974231793502
621 => 0.5131412475603
622 => 0.49540062303061
623 => 0.50886354564858
624 => 0.52646452607404
625 => 0.52242684171708
626 => 0.52197251974452
627 => 0.52273656328396
628 => 0.51969228113726
629 => 0.5059231058141
630 => 0.4990083121664
701 => 0.50793016012393
702 => 0.51267172524759
703 => 0.52002547924645
704 => 0.51911897384717
705 => 0.53806145441271
706 => 0.5454219295696
707 => 0.54353880505198
708 => 0.54388534528315
709 => 0.55721113397258
710 => 0.57203215165269
711 => 0.58591399051566
712 => 0.60003519324592
713 => 0.58301153219467
714 => 0.57436796698629
715 => 0.5832859199441
716 => 0.57855392857541
717 => 0.60574535457972
718 => 0.60762802991986
719 => 0.63481748967458
720 => 0.66062352464244
721 => 0.64441521644226
722 => 0.6596989210368
723 => 0.6762294936545
724 => 0.70811965022281
725 => 0.69738016739984
726 => 0.6891538918666
727 => 0.68138010123676
728 => 0.69755612548294
729 => 0.71836632225737
730 => 0.72284863932499
731 => 0.73011170535145
801 => 0.72247547951009
802 => 0.73167247243333
803 => 0.76414189881581
804 => 0.75536837319171
805 => 0.74290855639086
806 => 0.76854005012297
807 => 0.77781598806471
808 => 0.84291937838628
809 => 0.92511509795417
810 => 0.89108553032687
811 => 0.86996227957332
812 => 0.87492674455061
813 => 0.90494183883611
814 => 0.91458173448913
815 => 0.8883771750329
816 => 0.89763306843756
817 => 0.94863395111655
818 => 0.97599428836962
819 => 0.93883527539642
820 => 0.83631503235119
821 => 0.74178668621375
822 => 0.7668598602763
823 => 0.76401734044879
824 => 0.81881142639768
825 => 0.75515912750717
826 => 0.75623086897507
827 => 0.81215803859344
828 => 0.79723762857368
829 => 0.7730684752034
830 => 0.74196314778054
831 => 0.68446207314484
901 => 0.6335317678039
902 => 0.7334178251263
903 => 0.72911055670355
904 => 0.72287299372599
905 => 0.73675401515774
906 => 0.80415631503366
907 => 0.80260247386156
908 => 0.79271772910143
909 => 0.80021522088185
910 => 0.77175412864445
911 => 0.77908920016106
912 => 0.74177171244076
913 => 0.75864077540629
914 => 0.77301661905519
915 => 0.77590278250571
916 => 0.78240545613089
917 => 0.72684082196855
918 => 0.75178771141549
919 => 0.76644167175813
920 => 0.70023454581443
921 => 0.76513296975037
922 => 0.72587356530794
923 => 0.71254833378371
924 => 0.73048900256532
925 => 0.72349750649326
926 => 0.71748662872492
927 => 0.7141324556502
928 => 0.72730610276405
929 => 0.72669153638028
930 => 0.70513689280729
1001 => 0.67701973894599
1002 => 0.68645677869596
1003 => 0.68302821368208
1004 => 0.67060265177808
1005 => 0.67897598023331
1006 => 0.64210407936104
1007 => 0.57866789034494
1008 => 0.62057577991199
1009 => 0.61896237175067
1010 => 0.6181488181935
1011 => 0.64964143895415
1012 => 0.64661415012639
1013 => 0.64111959126072
1014 => 0.67050173989563
1015 => 0.65977686039822
1016 => 0.69282841190982
1017 => 0.71459830137569
1018 => 0.709076753225
1019 => 0.72955143949065
1020 => 0.68667418903165
1021 => 0.70091629169743
1022 => 0.70385156931814
1023 => 0.67013916874234
1024 => 0.64710945201773
1025 => 0.64557363247019
1026 => 0.60564327736016
1027 => 0.62697375075337
1028 => 0.64574368462443
1029 => 0.6367543429059
1030 => 0.63390858586676
1031 => 0.64844694141034
1101 => 0.64957669614867
1102 => 0.62381816838869
1103 => 0.62917418197648
1104 => 0.65150964900072
1105 => 0.62861138551437
1106 => 0.58412379997049
1107 => 0.57309026366662
1108 => 0.57161818653526
1109 => 0.54169436099836
1110 => 0.57382757732135
1111 => 0.55980056727971
1112 => 0.60411172393188
1113 => 0.57880142889766
1114 => 0.57771035266578
1115 => 0.57606103091521
1116 => 0.55030435813793
1117 => 0.55594343255421
1118 => 0.57468857476919
1119 => 0.58137705269064
1120 => 0.58067938964635
1121 => 0.57459671334596
1122 => 0.57738133140794
1123 => 0.56841110640507
1124 => 0.56524353325747
1125 => 0.555245801094
1126 => 0.54055189675772
1127 => 0.54259517427863
1128 => 0.51348270491923
1129 => 0.49762068649653
1130 => 0.49323028885517
1201 => 0.4873592656418
1202 => 0.49389343654932
1203 => 0.51340023295132
1204 => 0.48987089789279
1205 => 0.44953150332589
1206 => 0.45195596967434
1207 => 0.4574030257288
1208 => 0.4472524728072
1209 => 0.43764582633824
1210 => 0.44599802603114
1211 => 0.4289056927683
1212 => 0.45946855254403
1213 => 0.45864191283852
1214 => 0.47003385696834
1215 => 0.47715747341894
1216 => 0.46073984379851
1217 => 0.45661085434697
1218 => 0.45896291439068
1219 => 0.42008860114666
1220 => 0.46685699621779
1221 => 0.46726145124046
1222 => 0.46379826178456
1223 => 0.48870098834773
1224 => 0.54125350875122
1225 => 0.52148113665519
1226 => 0.5138246765565
1227 => 0.49926974031205
1228 => 0.51866332867118
1229 => 0.51717420367231
1230 => 0.51043981569351
1231 => 0.50636683683137
]
'min_raw' => 0.38037328265175
'max_raw' => 0.97599428836962
'avg_raw' => 0.67818378551068
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.380373'
'max' => '$0.975994'
'avg' => '$0.678183'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.23390514128061
'max_diff' => 0.56730275403698
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.011939482699624
]
1 => [
'year' => 2028
'avg' => 0.020491618369148
]
2 => [
'year' => 2029
'avg' => 0.055979408129635
]
3 => [
'year' => 2030
'avg' => 0.043188030004978
]
4 => [
'year' => 2031
'avg' => 0.042415997698524
]
5 => [
'year' => 2032
'avg' => 0.074368592771259
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.011939482699624
'min' => '$0.011939'
'max_raw' => 0.074368592771259
'max' => '$0.074368'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.074368592771259
]
1 => [
'year' => 2033
'avg' => 0.19128366783989
]
2 => [
'year' => 2034
'avg' => 0.12124478133984
]
3 => [
'year' => 2035
'avg' => 0.14300849763096
]
4 => [
'year' => 2036
'avg' => 0.27757983785189
]
5 => [
'year' => 2037
'avg' => 0.67818378551068
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.074368592771259
'min' => '$0.074368'
'max_raw' => 0.67818378551068
'max' => '$0.678183'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.67818378551068
]
]
]
]
'prediction_2025_max_price' => '$0.020414'
'last_price' => 0.01979428
'sma_50day_nextmonth' => '$0.01814'
'sma_200day_nextmonth' => '$0.016293'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.019652'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.019365'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.019458'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.01788'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.015798'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.01890017'
'daily_sma100_action' => 'BUY'
'daily_sma200' => '$0.013695'
'daily_sma200_action' => 'BUY'
'daily_ema3' => '$0.019688'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.019541'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.019176'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.018172'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.017337'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.016763'
'daily_ema100_action' => 'BUY'
'daily_ema200' => '$0.013988'
'daily_ema200_action' => 'BUY'
'weekly_sma21' => '$0.0178096'
'weekly_sma21_action' => 'BUY'
'weekly_sma50' => '$0.008345'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.004989'
'weekly_sma100_action' => 'BUY'
'weekly_sma200' => '$0.003978'
'weekly_sma200_action' => 'BUY'
'weekly_ema3' => '$0.018964'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.01828'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.01766'
'weekly_ema10_action' => 'BUY'
'weekly_ema21' => '$0.01586'
'weekly_ema21_action' => 'BUY'
'weekly_ema50' => '$0.011055'
'weekly_ema50_action' => 'BUY'
'weekly_ema100' => '$0.011232'
'weekly_ema100_action' => 'BUY'
'weekly_ema200' => '$0.052156'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '57.99'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 64
'stoch_rsi_14_action' => 'NEUTRAL'
'momentum_10' => 0
'momentum_10_action' => 'SELL'
'vwma_10' => '0.019453'
'vwma_10_action' => 'BUY'
'hma_9' => '0.0195014'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 88.95
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 66.46
'cci_20_action' => 'NEUTRAL'
'adx_14' => 15.06
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.002846'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'NEUTRAL'
'williams_percent_r_14' => -11.05
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 56.79
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.003780'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 2
'buy_signals' => 31
'sell_pct' => 6.06
'buy_pct' => 93.94
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767693014
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Arcs para 2026
La previsión del precio de Arcs para 2026 sugiere que el precio medio podría oscilar entre $0.006838 en el extremo inferior y $0.020414 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Arcs podría potencialmente ganar 3.13% para 2026 si ARX alcanza el objetivo de precio previsto.
Predicción de precio de Arcs 2027-2032
La predicción del precio de ARX para 2027-2032 está actualmente dentro de un rango de precios de $0.011939 en el extremo inferior y $0.074368 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Arcs alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Arcs | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.006583 | $0.011939 | $0.017295 |
| 2028 | $0.011881 | $0.020491 | $0.0291016 |
| 2029 | $0.02610038 | $0.055979 | $0.085858 |
| 2030 | $0.022197 | $0.043188 | $0.064178 |
| 2031 | $0.026244 | $0.042415 | $0.058587 |
| 2032 | $0.040059 | $0.074368 | $0.108677 |
Predicción de precio de Arcs 2032-2037
La predicción de precio de Arcs para 2032-2037 se estima actualmente entre $0.074368 en el extremo inferior y $0.678183 en el extremo superior. Comparado con el precio actual, Arcs podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Arcs | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.040059 | $0.074368 | $0.108677 |
| 2033 | $0.093089 | $0.191283 | $0.289477 |
| 2034 | $0.074839 | $0.121244 | $0.167649 |
| 2035 | $0.088483 | $0.1430084 | $0.197533 |
| 2036 | $0.146468 | $0.277579 | $0.408691 |
| 2037 | $0.380373 | $0.678183 | $0.975994 |
Arcs Histograma de precios potenciales
Pronóstico de precio de Arcs basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Arcs es Alcista, con 31 indicadores técnicos mostrando señales alcistas y 2 indicando señales bajistas. La predicción de precio de ARX se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Arcs
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Arcs aumentar durante el próximo mes, alcanzando $0.016293 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Arcs alcance $0.01814 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 57.99, lo que sugiere que el mercado de ARX está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de ARX para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.019652 | BUY |
| SMA 5 | $0.019365 | BUY |
| SMA 10 | $0.019458 | BUY |
| SMA 21 | $0.01788 | BUY |
| SMA 50 | $0.015798 | BUY |
| SMA 100 | $0.01890017 | BUY |
| SMA 200 | $0.013695 | BUY |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.019688 | BUY |
| EMA 5 | $0.019541 | BUY |
| EMA 10 | $0.019176 | BUY |
| EMA 21 | $0.018172 | BUY |
| EMA 50 | $0.017337 | BUY |
| EMA 100 | $0.016763 | BUY |
| EMA 200 | $0.013988 | BUY |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.0178096 | BUY |
| SMA 50 | $0.008345 | BUY |
| SMA 100 | $0.004989 | BUY |
| SMA 200 | $0.003978 | BUY |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.01586 | BUY |
| EMA 50 | $0.011055 | BUY |
| EMA 100 | $0.011232 | BUY |
| EMA 200 | $0.052156 | SELL |
Osciladores de Arcs
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 57.99 | NEUTRAL |
| Stoch RSI (14) | 64 | NEUTRAL |
| Estocástico Rápido (14) | 88.95 | SELL |
| Índice de Canal de Materias Primas (20) | 66.46 | NEUTRAL |
| Índice Direccional Medio (14) | 15.06 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.002846 | BUY |
| Momentum (10) | 0 | SELL |
| MACD (12, 26) | 0 | NEUTRAL |
| Rango Percentil de Williams (14) | -11.05 | SELL |
| Oscilador Ultimate (7, 14, 28) | 56.79 | NEUTRAL |
| VWMA (10) | 0.019453 | BUY |
| Promedio Móvil de Hull (9) | 0.0195014 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.003780 | NEUTRAL |
Predicción de precios de Arcs basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Arcs
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Arcs por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.027814 | $0.039083 | $0.054919 | $0.07717 | $0.108437 | $0.152372 |
| Amazon.com acción | $0.0413019 | $0.086178 | $0.179817 | $0.375199 | $0.782876 | $1.63 |
| Apple acción | $0.028076 | $0.039824 | $0.056488 | $0.080124 | $0.11365 | $0.1612038 |
| Netflix acción | $0.031232 | $0.049279 | $0.077755 | $0.122686 | $0.193579 | $0.305437 |
| Google acción | $0.025633 | $0.033195 | $0.042987 | $0.055668 | $0.072091 | $0.093357 |
| Tesla acción | $0.044872 | $0.101721 | $0.230595 | $0.522742 | $1.18 | $2.68 |
| Kodak acción | $0.014843 | $0.011131 | $0.008347 | $0.006259 | $0.004693 | $0.003519 |
| Nokia acción | $0.013112 | $0.008686 | $0.005754 | $0.003812 | $0.002525 | $0.001672 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Arcs
Podría preguntarse cosas como: "¿Debo invertir en Arcs ahora?", "¿Debería comprar ARX hoy?", "¿Será Arcs una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Arcs/ARCS regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Arcs, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Arcs a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Arcs es de $0.01979 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Pronóstico a corto plazo de Arcs
basado en el historial de precios de las últimas 4 horas
Pronóstico a largo plazo de Arcs
basado en el historial de precios del último mes
Predicción de precios de Arcs basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Arcs ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.0203087 | $0.020836 | $0.021378 | $0.021933 |
| Si Arcs ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.020823 | $0.0219058 | $0.023044 | $0.024242 |
| Si Arcs ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.022366 | $0.025273 | $0.028558 | $0.03227 |
| Si Arcs ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.024939 | $0.031422 | $0.039589 | $0.04988 |
| Si Arcs ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.030084 | $0.045724 | $0.069495 | $0.105623 |
| Si Arcs ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.04552 | $0.10468 | $0.24073 | $0.553598 |
| Si Arcs ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.071245 | $0.256437 | $0.922999 | $3.32 |
Cuadro de preguntas
¿Es ARX una buena inversión?
La decisión de adquirir Arcs depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Arcs ha experimentado una caída de -1.4266% durante las últimas 24 horas, y Arcs ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Arcs dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Arcs subir?
Parece que el valor medio de Arcs podría potencialmente aumentar hasta $0.020414 para el final de este año. Mirando las perspectivas de Arcs en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.064178. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Arcs la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Arcs, el precio de Arcs aumentará en un 0.86% durante la próxima semana y alcanzará $0.019963 para el 13 de enero de 2026.
¿Cuál será el precio de Arcs el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Arcs, el precio de Arcs disminuirá en un -11.62% durante el próximo mes y alcanzará $0.017494 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Arcs este año en 2026?
Según nuestra predicción más reciente sobre el valor de Arcs en 2026, se anticipa que ARX fluctúe dentro del rango de $0.006838 y $0.020414. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Arcs no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Arcs en 5 años?
El futuro de Arcs parece estar en una tendencia alcista, con un precio máximo de $0.064178 proyectada después de un período de cinco años. Basado en el pronóstico de Arcs para 2030, el valor de Arcs podría potencialmente alcanzar su punto más alto de aproximadamente $0.064178, mientras que su punto más bajo se anticipa que esté alrededor de $0.022197.
¿Cuánto será Arcs en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Arcs, se espera que el valor de ARX en 2026 crezca en un 3.13% hasta $0.020414 si ocurre lo mejor. El precio estará entre $0.020414 y $0.006838 durante 2026.
¿Cuánto será Arcs en 2027?
Según nuestra última simulación experimental para la predicción de precios de Arcs, el valor de ARX podría disminuir en un -12.62% hasta $0.017295 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.017295 y $0.006583 a lo largo del año.
¿Cuánto será Arcs en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Arcs sugiere que el valor de ARX en 2028 podría aumentar en un 47.02% , alcanzando $0.0291016 en el mejor escenario. Se espera que el precio oscile entre $0.0291016 y $0.011881 durante el año.
¿Cuánto será Arcs en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Arcs podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.085858 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.085858 y $0.02610038.
¿Cuánto será Arcs en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Arcs, se espera que el valor de ARX en 2030 aumente en un 224.23% , alcanzando $0.064178 en el mejor escenario. Se pronostica que el precio oscile entre $0.064178 y $0.022197 durante el transcurso de 2030.
¿Cuánto será Arcs en 2031?
Nuestra simulación experimental indica que el precio de Arcs podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.058587 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.058587 y $0.026244 durante el año.
¿Cuánto será Arcs en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Arcs, ARX podría experimentar un 449.04% aumento en valor, alcanzando $0.108677 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.108677 y $0.040059 a lo largo del año.
¿Cuánto será Arcs en 2033?
Según nuestra predicción experimental de precios de Arcs, se anticipa que el valor de ARX aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.289477. A lo largo del año, el precio de ARX podría oscilar entre $0.289477 y $0.093089.
¿Cuánto será Arcs en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Arcs sugieren que ARX podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.167649 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.167649 y $0.074839.
¿Cuánto será Arcs en 2035?
Basado en nuestra predicción experimental para el precio de Arcs, ARX podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.197533 en 2035. El rango de precios esperado para el año está entre $0.197533 y $0.088483.
¿Cuánto será Arcs en 2036?
Nuestra reciente simulación de predicción de precios de Arcs sugiere que el valor de ARX podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.408691 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.408691 y $0.146468.
¿Cuánto será Arcs en 2037?
Según la simulación experimental, el valor de Arcs podría aumentar en un 4830.69% en 2037, con un máximo de $0.975994 bajo condiciones favorables. Se espera que el precio caiga entre $0.975994 y $0.380373 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de ETNA Network
Predicción de precios de Liquidus
Predicción de precios de World Token
Predicción de precios de Lead Token
Predicción de precios de BADcoin
Predicción de precios de OmegaNetwork
Predicción de precios de Herity Network
Predicción de precios de Neutra Finance
Predicción de precios de MoneyByte
Predicción de precios de Espresso Bot
Predicción de precios de Lokr
Predicción de precios de Cryptiq browser
Predicción de precios de Coinary Token
Predicción de precios de Peanut
Predicción de precios de Statera
Predicción de precios de SAIL
Predicción de precios de Kingdom Game 4.0
Predicción de precios de MAGA Coin BSC
Predicción de precios de Sheesha Finance
Predicción de precios de Phoenix Blockchain
Predicción de precios de Waltonchain
Predicción de precios de OpenBlox
Predicción de precios de CyberFi
Predicción de precios de Dracarys Token
Predicción de precios de Life Crypto
¿Cómo leer y predecir los movimientos de precio de Arcs?
Los traders de Arcs utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Arcs
Las medias móviles son herramientas populares para la predicción de precios de Arcs. Una media móvil simple (SMA) calcula el precio de cierre promedio de ARX durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de ARX por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de ARX.
¿Cómo leer gráficos de Arcs y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Arcs en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de ARX dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Arcs?
La acción del precio de Arcs está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de ARX. La capitalización de mercado de Arcs puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de ARX, grandes poseedores de Arcs, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Arcs.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


