Predicción del precio de Liquidus (Old) - Pronóstico de LIQ
Predicción de precio de Liquidus (Old) hasta $0.006783 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.002272 | $0.006783 |
| 2027 | $0.002187 | $0.005746 |
| 2028 | $0.003948 | $0.009669 |
| 2029 | $0.008672 | $0.028529 |
| 2030 | $0.007375 | $0.021325 |
| 2031 | $0.00872 | $0.019467 |
| 2032 | $0.01331 | $0.036111 |
| 2033 | $0.030931 | $0.096187 |
| 2034 | $0.024867 | $0.0557067 |
| 2035 | $0.0294013 | $0.065636 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Liquidus (Old) hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.92, equivalente a un ROI del 39.55% en los próximos 90 días.
Predicción del precio a largo plazo de Liquidus para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Liquidus (Old)'
'name_with_ticker' => 'Liquidus (Old) <small>LIQ</small>'
'name_lang' => 'Liquidus'
'name_lang_with_ticker' => 'Liquidus <small>LIQ</small>'
'name_with_lang' => 'Liquidus/Liquidus (Old)'
'name_with_lang_with_ticker' => 'Liquidus/Liquidus (Old) <small>LIQ</small>'
'image' => '/uploads/coins/liquidus.png?1717589825'
'price_for_sd' => 0.006577
'ticker' => 'LIQ'
'marketcap' => '$43.14K'
'low24h' => '$0.006504'
'high24h' => '$0.006592'
'volume24h' => '$17.84'
'current_supply' => '6.56M'
'max_supply' => '77M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.006577'
'change_24h_pct' => '1.1151%'
'ath_price' => '$4.82'
'ath_days' => 1518
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '10 nov. 2021'
'ath_pct' => '-99.86%'
'fdv' => '$506.45K'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$0.3243037'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.006633'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.005813'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.002272'
'current_year_max_price_prediction' => '$0.006783'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.007375'
'grand_prediction_max_price' => '$0.021325'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.0067018854278665
107 => 0.0067269078352697
108 => 0.006783284596825
109 => 0.0063015513419147
110 => 0.0065178354304241
111 => 0.0066448820693449
112 => 0.0060708807327044
113 => 0.0066335359084746
114 => 0.0062931654377064
115 => 0.0061776385877348
116 => 0.0063331802717165
117 => 0.0062725655261996
118 => 0.0062204525274214
119 => 0.0061913725786882
120 => 0.0063055852248951
121 => 0.006300257068436
122 => 0.0061133830115221
123 => 0.005869613422239
124 => 0.0059514304978664
125 => 0.0059217055872518
126 => 0.0058139786765946
127 => 0.0058865736073808
128 => 0.0055669022716524
129 => 0.0050169243536019
130 => 0.0053802566125453
131 => 0.0053662687158054
201 => 0.0053592153839685
202 => 0.0056322495347984
203 => 0.0056060036011657
204 => 0.0055583669746215
205 => 0.0058131037925911
206 => 0.0057201214273385
207 => 0.0060066711676464
208 => 0.0061954113594885
209 => 0.0061475407417317
210 => 0.0063250518044197
211 => 0.0059533153980416
212 => 0.0060767913207644
213 => 0.0061022395373074
214 => 0.0058099603797991
215 => 0.005610297760497
216 => 0.00559698254011
217 => 0.005250795073444
218 => 0.0054357256238094
219 => 0.0055984568551848
220 => 0.0055205212238097
221 => 0.0054958491311771
222 => 0.0056218935017131
223 => 0.0056316882288007
224 => 0.0054083674132031
225 => 0.0054548028824163
226 => 0.0056484465082899
227 => 0.0054499235598827
228 => 0.0050642258996669
301 => 0.0049685675472461
302 => 0.0049558049596999
303 => 0.0046963719211749
304 => 0.0049749598957631
305 => 0.0048533487791618
306 => 0.0052375168393803
307 => 0.0050180821037181
308 => 0.0050086227108424
309 => 0.0049943234511194
310 => 0.0047710187178171
311 => 0.0048199082626542
312 => 0.0049824245557805
313 => 0.0050404122000451
314 => 0.0050343636136695
315 => 0.0049816281372838
316 => 0.0050057701683238
317 => 0.0049280002747025
318 => 0.0049005381066245
319 => 0.0048138599501058
320 => 0.0046864670054752
321 => 0.0047041817757724
322 => 0.004451783018282
323 => 0.0043142627793853
324 => 0.0042761989897463
325 => 0.0042252984994457
326 => 0.0042819483355667
327 => 0.0044510680043143
328 => 0.0042470738030655
329 => 0.003897340053554
330 => 0.003918359647817
331 => 0.0039655844353523
401 => 0.0038775813562035
402 => 0.0037942938273277
403 => 0.0038667055763544
404 => 0.0037185187762278
405 => 0.0039834921021768
406 => 0.003976325316289
407 => 0.0040750909863622
408 => 0.0041368511867346
409 => 0.0039945139199786
410 => 0.0039587164823104
411 => 0.003979108329709
412 => 0.0036420765156106
413 => 0.004047548296793
414 => 0.0040510548335943
415 => 0.0040210297366218
416 => 0.0042369309425646
417 => 0.0046925498283789
418 => 0.0045211276763083
419 => 0.0044547478377646
420 => 0.0043285597161697
421 => 0.0044966978958857
422 => 0.0044837875070477
423 => 0.0044254018326028
424 => 0.0043900899945241
425 => 0.0044551531389041
426 => 0.0043820279509134
427 => 0.0043688926578045
428 => 0.0042893070729044
429 => 0.0042608986400084
430 => 0.0042398661672645
501 => 0.0042167114813816
502 => 0.0042677849486511
503 => 0.0041520457525443
504 => 0.0040124756280928
505 => 0.0040008718824143
506 => 0.0040329108444443
507 => 0.0040187359887662
508 => 0.0040008040186588
509 => 0.0039665670042421
510 => 0.0039564096134228
511 => 0.0039894162059202
512 => 0.0039521536873945
513 => 0.0040071365632736
514 => 0.0039921842633758
515 => 0.0039086619316133
516 => 0.0038045621823096
517 => 0.0038036354761841
518 => 0.0037812073559545
519 => 0.0037526417727515
520 => 0.0037446954809964
521 => 0.0038606072608242
522 => 0.0041005411761199
523 => 0.0040534364074153
524 => 0.0040874744302952
525 => 0.0042549078141949
526 => 0.004308129852039
527 => 0.0042703541102103
528 => 0.0042186443448888
529 => 0.0042209193121315
530 => 0.0043976272338454
531 => 0.0044086482901683
601 => 0.0044364949439689
602 => 0.0044722857635661
603 => 0.0042764494415516
604 => 0.0042116954389759
605 => 0.0041810114001402
606 => 0.0040865164367438
607 => 0.0041884211533809
608 => 0.0041290456389915
609 => 0.0041370574244391
610 => 0.0041318397386559
611 => 0.0041346889479119
612 => 0.003983418036732
613 => 0.0040385332062009
614 => 0.0039468935471959
615 => 0.0038241983308227
616 => 0.0038237870134349
617 => 0.0038538164938201
618 => 0.0038359537838333
619 => 0.0037878856905511
620 => 0.0037947135363269
621 => 0.0037348944227346
622 => 0.003801976659777
623 => 0.0038039003383036
624 => 0.0037780700230481
625 => 0.0038814194647768
626 => 0.0039237618153782
627 => 0.0039067597485381
628 => 0.0039225689050446
629 => 0.0040553938232203
630 => 0.0040770500804404
701 => 0.0040866683593655
702 => 0.0040737811397836
703 => 0.0039249967007188
704 => 0.0039315959232716
705 => 0.003883175206832
706 => 0.0038422648038899
707 => 0.0038439010054608
708 => 0.0038649342705532
709 => 0.0039567877727961
710 => 0.0041500880532065
711 => 0.0041574236575475
712 => 0.0041663146240033
713 => 0.0041301505951856
714 => 0.004119243178051
715 => 0.0041336328766948
716 => 0.004206226298771
717 => 0.0043929562892731
718 => 0.0043269534393529
719 => 0.0042732920949723
720 => 0.0043203675609887
721 => 0.0043131206619851
722 => 0.004251949541374
723 => 0.0042502326717552
724 => 0.0041328257337122
725 => 0.0040894230619443
726 => 0.0040531525407814
727 => 0.0040135460785374
728 => 0.0039900660400985
729 => 0.0040261420506272
730 => 0.004034393061074
731 => 0.0039555122335522
801 => 0.0039447610682356
802 => 0.0040091768547509
803 => 0.0039808298687681
804 => 0.0040099854468228
805 => 0.0040167497910234
806 => 0.004015660575811
807 => 0.0039860630668144
808 => 0.0040049276364384
809 => 0.0039603073054788
810 => 0.0039117893973171
811 => 0.0038808379946825
812 => 0.0038538287907759
813 => 0.0038688150668874
814 => 0.0038153917289359
815 => 0.0037983005279258
816 => 0.0039985367447161
817 => 0.0041464533909611
818 => 0.0041443026243433
819 => 0.0041312103856896
820 => 0.0041117579747137
821 => 0.0042048032337466
822 => 0.0041723881259982
823 => 0.004195972825258
824 => 0.0042019761210664
825 => 0.0042201462894012
826 => 0.0042266405628021
827 => 0.0042070103580216
828 => 0.0041411289931504
829 => 0.0039769588957036
830 => 0.0039005372721734
831 => 0.0038753168635056
901 => 0.0038762335774603
902 => 0.0038509465141984
903 => 0.0038583946876157
904 => 0.0038483563434418
905 => 0.0038293461481126
906 => 0.0038676412408952
907 => 0.0038720543935949
908 => 0.0038631158613472
909 => 0.0038652212092711
910 => 0.0037912139799569
911 => 0.0037968405888664
912 => 0.0037655109154634
913 => 0.0037596369793852
914 => 0.0036804382932091
915 => 0.003540126340615
916 => 0.0036178727827629
917 => 0.0035239660134524
918 => 0.0034884020969947
919 => 0.0036567561461815
920 => 0.0036398580690576
921 => 0.0036109359064391
922 => 0.0035681540000194
923 => 0.0035522857747727
924 => 0.0034558754614434
925 => 0.0034501790258029
926 => 0.0034979625803863
927 => 0.0034759121140778
928 => 0.0034449449082159
929 => 0.0033327848276798
930 => 0.0032066797622307
1001 => 0.0032104860814884
1002 => 0.0032505977565396
1003 => 0.0033672278615474
1004 => 0.0033216584617995
1005 => 0.0032885973394339
1006 => 0.0032824059850285
1007 => 0.0033599037478905
1008 => 0.0034695793186235
1009 => 0.0035210366425588
1010 => 0.0034700439973211
1011 => 0.0034114663921109
1012 => 0.0034150317395176
1013 => 0.0034387503985103
1014 => 0.0034412428942066
1015 => 0.0034031148950899
1016 => 0.0034138477035052
1017 => 0.0033975435860938
1018 => 0.0032974852476349
1019 => 0.0032956755095806
1020 => 0.0032711195796641
1021 => 0.0032703760358654
1022 => 0.0032286002733136
1023 => 0.0032227555553504
1024 => 0.0031398072431964
1025 => 0.0031944040734468
1026 => 0.0031577833861771
1027 => 0.0031025873725148
1028 => 0.0030930715589548
1029 => 0.0030927855021085
1030 => 0.0031494594665368
1031 => 0.0031937418051753
1101 => 0.0031584204187108
1102 => 0.0031503784236892
1103 => 0.0032362458909457
1104 => 0.0032253184730379
1105 => 0.0032158553996041
1106 => 0.0034597590741965
1107 => 0.0032666902837156
1108 => 0.0031825012710846
1109 => 0.0030783013808939
1110 => 0.0031122293905614
1111 => 0.0031193785207045
1112 => 0.0028687965682378
1113 => 0.00276713550133
1114 => 0.0027322492541837
1115 => 0.0027121717257319
1116 => 0.0027213213075652
1117 => 0.0026298144236943
1118 => 0.0026913085630397
1119 => 0.0026120713364919
1120 => 0.0025987869576009
1121 => 0.0027404729342772
1122 => 0.0027601877102142
1123 => 0.002676078351166
1124 => 0.0027300901757433
1125 => 0.0027105047373311
1126 => 0.0026134296313164
1127 => 0.0026097220763028
1128 => 0.0025610132004597
1129 => 0.002484793241662
1130 => 0.0024499586752369
1201 => 0.0024318165305952
1202 => 0.0024393023330577
1203 => 0.0024355172822633
1204 => 0.0024108172655229
1205 => 0.0024369330583101
1206 => 0.0023702179995295
1207 => 0.0023436515255633
1208 => 0.0023316520656103
1209 => 0.002272438610967
1210 => 0.0023666735496473
1211 => 0.0023852390197078
1212 => 0.0024038410694794
1213 => 0.0025657592125831
1214 => 0.0025576702397296
1215 => 0.002630790614836
1216 => 0.0026279492915191
1217 => 0.0026070941760672
1218 => 0.0025191098744756
1219 => 0.0025541788489207
1220 => 0.0024462419965075
1221 => 0.002527115625328
1222 => 0.0024902082784978
1223 => 0.0025146372142393
1224 => 0.0024707117851078
1225 => 0.0024950219312257
1226 => 0.0023896415813926
1227 => 0.0022912388934601
1228 => 0.0023308390076377
1229 => 0.0023738888605711
1230 => 0.0024672319106293
1231 => 0.0024116375600781
]
'min_raw' => 0.002272438610967
'max_raw' => 0.006783284596825
'avg_raw' => 0.004527861603896
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.002272'
'max' => '$0.006783'
'avg' => '$0.004527'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.004304811389033
'max_diff' => 0.00020603459682505
'year' => 2026
]
1 => [
'items' => [
101 => 0.0024316313907914
102 => 0.0023646554048285
103 => 0.0022264648150425
104 => 0.0022272469587732
105 => 0.0022059893471803
106 => 0.0021876196671019
107 => 0.0024180232400058
108 => 0.0023893689135737
109 => 0.0023437119945897
110 => 0.0024048255949837
111 => 0.0024209850009311
112 => 0.002421445036501
113 => 0.002466031941778
114 => 0.0024898279811171
115 => 0.0024940221361885
116 => 0.0025641805950058
117 => 0.0025876967849889
118 => 0.0026845566433936
119 => 0.0024878090534328
120 => 0.0024837571662909
121 => 0.0024056855886696
122 => 0.0023561713598793
123 => 0.0024090758702761
124 => 0.0024559420443018
125 => 0.0024071418513355
126 => 0.0024135141263086
127 => 0.0023480038543735
128 => 0.0023714206940455
129 => 0.00239159043096
130 => 0.0023804538877582
131 => 0.0023637819435702
201 => 0.0024520995524865
202 => 0.002447116326872
203 => 0.0025293597147079
204 => 0.002593474316807
205 => 0.0027083791456248
206 => 0.0025884699666293
207 => 0.0025840999995509
208 => 0.0026268171287071
209 => 0.002587690245219
210 => 0.0026124170849694
211 => 0.0027043952694655
212 => 0.0027063386235666
213 => 0.0026737849385032
214 => 0.0026718040438086
215 => 0.0026780563351233
216 => 0.0027146762006404
217 => 0.0027018800944139
218 => 0.002716688072497
219 => 0.0027352056758376
220 => 0.0028118023345557
221 => 0.0028302695296559
222 => 0.0027854038197054
223 => 0.0027894546909738
224 => 0.0027726736838611
225 => 0.0027564634412555
226 => 0.002792901699317
227 => 0.00285949333212
228 => 0.0028590790690284
301 => 0.0028745270334823
302 => 0.0028841509873593
303 => 0.0028428379321546
304 => 0.0028159446523395
305 => 0.0028262572470845
306 => 0.0028427473106608
307 => 0.0028209097417142
308 => 0.00268611815003
309 => 0.0027270053084268
310 => 0.0027201996859897
311 => 0.0027105076520472
312 => 0.0027516200059862
313 => 0.0027476546191546
314 => 0.0026288758883384
315 => 0.0026364797173086
316 => 0.0026293383023627
317 => 0.0026524136750488
318 => 0.0025864440993671
319 => 0.0026067358965349
320 => 0.0026194627214948
321 => 0.0026269589191682
322 => 0.0026540403253556
323 => 0.0026508626349119
324 => 0.0026538427956559
325 => 0.0026939973718056
326 => 0.0028970854385841
327 => 0.0029081390739703
328 => 0.0028537069306515
329 => 0.0028754514982808
330 => 0.0028337066834467
331 => 0.0028617302573108
401 => 0.002880903274827
402 => 0.0027942640954305
403 => 0.0027891338855103
404 => 0.0027472167749759
405 => 0.0027697406558706
406 => 0.0027339035418428
407 => 0.0027426967160962
408 => 0.0027181102343086
409 => 0.0027623610064066
410 => 0.002811840245487
411 => 0.002824340655273
412 => 0.0027914574588907
413 => 0.0027676478576016
414 => 0.0027258460411082
415 => 0.0027953633935509
416 => 0.0028156923859081
417 => 0.0027952566140084
418 => 0.0027905211991288
419 => 0.0027815475964887
420 => 0.0027924249913499
421 => 0.0028155816698498
422 => 0.002804661407906
423 => 0.0028118744333102
424 => 0.0027843858185089
425 => 0.0028428516084949
426 => 0.0029357093535513
427 => 0.0029360079063855
428 => 0.0029250875855773
429 => 0.0029206192255842
430 => 0.0029318241374338
501 => 0.0029379023424627
502 => 0.0029741369727551
503 => 0.0030130181747102
504 => 0.003194459779037
505 => 0.0031435117025924
506 => 0.0033044974879605
507 => 0.0034318163427987
508 => 0.003469993700386
509 => 0.0034348723277892
510 => 0.003314724009355
511 => 0.0033088289596548
512 => 0.0034883812727071
513 => 0.0034376495202529
514 => 0.0034316151397256
515 => 0.0033674195261616
516 => 0.0034053670845593
517 => 0.0033970673968806
518 => 0.0033839659338452
519 => 0.0034563672318183
520 => 0.0035918959983154
521 => 0.0035707725690761
522 => 0.0035550049090366
523 => 0.0034859156126406
524 => 0.003527522800724
525 => 0.0035127072779807
526 => 0.0035763641658491
527 => 0.0035386552356486
528 => 0.003437265177332
529 => 0.0034534118783049
530 => 0.0034509713369355
531 => 0.0035011975053792
601 => 0.0034861208563025
602 => 0.0034480273792317
603 => 0.0035914327757254
604 => 0.0035821208269398
605 => 0.0035953230413099
606 => 0.0036011350643676
607 => 0.0036884234021268
608 => 0.0037241826411914
609 => 0.0037323006145127
610 => 0.0037662691259053
611 => 0.0037314554470047
612 => 0.0038707349843397
613 => 0.0039633477494812
614 => 0.0040709222420024
615 => 0.0042281174888736
616 => 0.0042872243558345
617 => 0.004276547229363
618 => 0.0043957308714962
619 => 0.004609901227106
620 => 0.0043198371815966
621 => 0.0046252753258485
622 => 0.0045285771358313
623 => 0.0042993074668266
624 => 0.0042845452030546
625 => 0.0044398092847801
626 => 0.0047841700744333
627 => 0.0046979116023329
628 => 0.0047843111623924
629 => 0.0046835214862002
630 => 0.0046785164292551
701 => 0.0047794160327865
702 => 0.0050151734561886
703 => 0.0049031739415651
704 => 0.0047425951739447
705 => 0.0048611640370733
706 => 0.004758448714801
707 => 0.0045270023455132
708 => 0.0046978456421049
709 => 0.004583607595011
710 => 0.0046169483303816
711 => 0.0048570597137459
712 => 0.0048281688768436
713 => 0.0048655562950147
714 => 0.0047995684805419
715 => 0.004737925456501
716 => 0.0046228641744577
717 => 0.0045888002012973
718 => 0.0045982142579855
719 => 0.0045887955361583
720 => 0.0045244198063229
721 => 0.0045105178735942
722 => 0.0044873473766553
723 => 0.0044945288825235
724 => 0.0044509615695105
725 => 0.0045331820906321
726 => 0.0045484429438771
727 => 0.0046082761825269
728 => 0.0046144882678527
729 => 0.0047811229858198
730 => 0.0046893433833462
731 => 0.0047509170645551
801 => 0.0047454093349538
802 => 0.0043042764357604
803 => 0.0043650606571207
804 => 0.004459621830418
805 => 0.0044170221500222
806 => 0.0043567961687326
807 => 0.0043081604597285
808 => 0.0042344723873306
809 => 0.0043381869341765
810 => 0.0044745605344665
811 => 0.0046179469274068
812 => 0.0047902162834759
813 => 0.0047517677686377
814 => 0.0046147264716231
815 => 0.0046208740440985
816 => 0.0046588759181604
817 => 0.0046096600384158
818 => 0.0045951453146711
819 => 0.0046568818180066
820 => 0.0046573069633753
821 => 0.0046006781457914
822 => 0.0045377455780112
823 => 0.0045374818882543
824 => 0.0045262836456743
825 => 0.0046855136286781
826 => 0.0047730740193631
827 => 0.0047831126770445
828 => 0.0047723983377173
829 => 0.0047765218616874
830 => 0.0047255723996094
831 => 0.0048420277613262
901 => 0.0049488987174791
902 => 0.0049202550182651
903 => 0.0048773140412016
904 => 0.0048431094846529
905 => 0.0049121975117787
906 => 0.0049091211306854
907 => 0.0049479652929093
908 => 0.004946203097336
909 => 0.004933141266583
910 => 0.0049202554847442
911 => 0.0049713461531922
912 => 0.0049566328611702
913 => 0.0049418967153418
914 => 0.0049123411188919
915 => 0.0049163582153159
916 => 0.0048734246526175
917 => 0.0048535616220071
918 => 0.0045548692997007
919 => 0.0044750489511273
920 => 0.0045001620576815
921 => 0.0045084299444207
922 => 0.0044736920264289
923 => 0.0045234972773901
924 => 0.0045157351817846
925 => 0.0045459329551115
926 => 0.0045270666973718
927 => 0.0045278409751703
928 => 0.0045833226164726
929 => 0.0045994291729784
930 => 0.0045912372483437
1001 => 0.0045969745915551
1002 => 0.0047291892442809
1003 => 0.0047103925486499
1004 => 0.0047004071787279
1005 => 0.0047031731944376
1006 => 0.0047369568729231
1007 => 0.0047464144583786
1008 => 0.0047063420042309
1009 => 0.0047252404052631
1010 => 0.0048057073982938
1011 => 0.0048338662918172
1012 => 0.0049237359629081
1013 => 0.0048855577293226
1014 => 0.004955635529384
1015 => 0.00517103079549
1016 => 0.0053431034382742
1017 => 0.0051848583247671
1018 => 0.0055008478199214
1019 => 0.0057468909678999
1020 => 0.0057374474220742
1021 => 0.0056945441081436
1022 => 0.0054144305255656
1023 => 0.005156665830619
1024 => 0.0053722969432089
1025 => 0.0053728466312598
1026 => 0.0053543237274546
1027 => 0.0052392795627456
1028 => 0.0053503204398954
1029 => 0.0053591344614823
1030 => 0.0053542009532311
1031 => 0.0052659968618841
1101 => 0.0051313255172381
1102 => 0.0051576399756243
1103 => 0.0052007435952613
1104 => 0.0051191394509315
1105 => 0.0050930619822486
1106 => 0.0051415449579714
1107 => 0.0052977672075795
1108 => 0.0052682342962249
1109 => 0.0052674630725576
1110 => 0.0053938173912357
1111 => 0.0053033749680308
1112 => 0.0051579718852151
1113 => 0.0051212556891731
1114 => 0.0049909379282172
1115 => 0.0050809488698854
1116 => 0.0050841882034327
1117 => 0.0050348901305705
1118 => 0.0051619721521307
1119 => 0.0051608010689297
1120 => 0.0052814465347383
1121 => 0.0055120753529968
1122 => 0.0054438670628829
1123 => 0.0053645482425213
1124 => 0.0053731723975669
1125 => 0.0054677580921891
1126 => 0.0054105694220391
1127 => 0.0054311348665586
1128 => 0.0054677269639258
1129 => 0.005489803884798
1130 => 0.0053699958683979
1201 => 0.0053420628886952
1202 => 0.005284921815367
1203 => 0.0052700147759243
1204 => 0.0053165549878625
1205 => 0.0053042932863067
1206 => 0.0050839159499913
1207 => 0.0050608852921784
1208 => 0.0050615916095734
1209 => 0.0050036799254548
1210 => 0.0049153507067772
1211 => 0.0051474746195983
1212 => 0.0051288318208267
1213 => 0.0051082516138208
1214 => 0.00511077257175
1215 => 0.0052115296948963
1216 => 0.0051530854751148
1217 => 0.0053084690122232
1218 => 0.0052765268282504
1219 => 0.0052437654477876
1220 => 0.0052392368270715
1221 => 0.005226626490663
1222 => 0.0051833809550185
1223 => 0.005131159372074
1224 => 0.0050966781596581
1225 => 0.0047014161928964
1226 => 0.0047747745147943
1227 => 0.0048591665773163
1228 => 0.004888298379119
1229 => 0.0048384664162762
1230 => 0.0051853486246409
1231 => 0.0052487273467493
]
'min_raw' => 0.0021876196671019
'max_raw' => 0.0057468909678999
'avg_raw' => 0.0039672553175009
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.002187'
'max' => '$0.005746'
'avg' => '$0.003967'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -8.4818943865094E-5
'max_diff' => -0.0010363936289252
'year' => 2027
]
2 => [
'items' => [
101 => 0.0050567490633913
102 => 0.0050208377649967
103 => 0.0051877029633851
104 => 0.005087062850316
105 => 0.0051323810870688
106 => 0.0050344278469595
107 => 0.005233461268539
108 => 0.0052319449673388
109 => 0.0051545164709706
110 => 0.0052199585058935
111 => 0.0052085863418763
112 => 0.0051211697601746
113 => 0.0052362325301011
114 => 0.0052362895997995
115 => 0.0051617663554858
116 => 0.0050747395213634
117 => 0.0050591811789043
118 => 0.0050474600578307
119 => 0.0051294984098024
120 => 0.005203053739653
121 => 0.0053399219725923
122 => 0.0053743338982622
123 => 0.0055086459350835
124 => 0.0054286696566908
125 => 0.0054641221050361
126 => 0.0055026107527699
127 => 0.0055210636258667
128 => 0.0054909956593913
129 => 0.0056996375376148
130 => 0.0057172533047588
131 => 0.0057231597191064
201 => 0.0056528068516797
202 => 0.0057152966642483
203 => 0.0056860597503925
204 => 0.0057621260779966
205 => 0.0057740542494285
206 => 0.0057639515125827
207 => 0.0057677377024685
208 => 0.0055896986663543
209 => 0.005580466403101
210 => 0.0054545838385513
211 => 0.0055058819140822
212 => 0.0054099826206579
213 => 0.0054403932744749
214 => 0.0054537980009141
215 => 0.0054467961325338
216 => 0.0055087822303058
217 => 0.0054560813842765
218 => 0.0053169951867839
219 => 0.0051778710953499
220 => 0.0051761245057099
221 => 0.0051394955881795
222 => 0.0051130195897259
223 => 0.0051181198063146
224 => 0.0051360936348048
225 => 0.0051119749181394
226 => 0.00511712186919
227 => 0.0052025955505841
228 => 0.0052197366878173
229 => 0.0051614844060243
301 => 0.0049275930888611
302 => 0.0048701955729574
303 => 0.0049114517691468
304 => 0.0048917339646076
305 => 0.0039480110936207
306 => 0.0041697247837199
307 => 0.0040379900377484
308 => 0.0040986994695163
309 => 0.0039642324064266
310 => 0.0040284071369556
311 => 0.0040165564075128
312 => 0.0043730654602072
313 => 0.0043674990617116
314 => 0.0043701634021042
315 => 0.0042429874932626
316 => 0.0044455821692494
317 => 0.0045453875917094
318 => 0.0045269162642474
319 => 0.0045315650994205
320 => 0.0044516827088193
321 => 0.0043709368382594
322 => 0.0042813772411081
323 => 0.0044477679027145
324 => 0.0044292681015272
325 => 0.0044716999894325
326 => 0.0045796162273344
327 => 0.0045955073032994
328 => 0.0046168650705477
329 => 0.0046092098313386
330 => 0.0047915886868237
331 => 0.00476950140405
401 => 0.0048227254005896
402 => 0.0047132396015933
403 => 0.0045893460275415
404 => 0.0046128941455826
405 => 0.0046106262724532
406 => 0.0045817536445728
407 => 0.0045556887271047
408 => 0.0045122979832653
409 => 0.0046495927173949
410 => 0.0046440188019189
411 => 0.004734254014508
412 => 0.0047183040641848
413 => 0.0046117863923114
414 => 0.0046155906918007
415 => 0.0046411764341503
416 => 0.0047297289805551
417 => 0.0047560174054451
418 => 0.0047438395596235
419 => 0.0047726636174032
420 => 0.0047954449774208
421 => 0.0047755246054735
422 => 0.0050575550639018
423 => 0.0049404363544674
424 => 0.0049975191985389
425 => 0.0050111331204984
426 => 0.0049762613456692
427 => 0.004983823784965
428 => 0.0049952788198568
429 => 0.0050648315485939
430 => 0.0052473580340443
501 => 0.0053281977719504
502 => 0.0055714081120035
503 => 0.0053214851570608
504 => 0.0053066557631985
505 => 0.0053504652896907
506 => 0.005493255505731
507 => 0.0056089735642286
508 => 0.0056473639201672
509 => 0.0056524378394602
510 => 0.0057244606993436
511 => 0.005765742859482
512 => 0.0057157152297645
513 => 0.0056733220516901
514 => 0.0055214749498625
515 => 0.005539051665365
516 => 0.0056601378051869
517 => 0.0058311791096234
518 => 0.0059779503426446
519 => 0.0059265561723345
520 => 0.0063186574131708
521 => 0.0063575326496098
522 => 0.0063521613489208
523 => 0.0064407249229397
524 => 0.0062649442641704
525 => 0.0061897946269567
526 => 0.0056824879379728
527 => 0.0058250204248063
528 => 0.0060321997650583
529 => 0.0060047788024933
530 => 0.0058543196276827
531 => 0.0059778362058685
601 => 0.0059369977623998
602 => 0.0059047867876474
603 => 0.0060523515073927
604 => 0.0058900980364081
605 => 0.0060305811625678
606 => 0.0058504101001562
607 => 0.0059267909365753
608 => 0.0058834334796984
609 => 0.0059114910679879
610 => 0.0057474669801587
611 => 0.0058359703964917
612 => 0.005743784947067
613 => 0.0057437412391611
614 => 0.0057417062402557
615 => 0.0058501620126909
616 => 0.0058536987515363
617 => 0.0057735497718391
618 => 0.0057619990517023
619 => 0.0058047081180254
620 => 0.0057547069868833
621 => 0.0057781022014413
622 => 0.0057554156040992
623 => 0.0057503083731846
624 => 0.0057096130883337
625 => 0.0056920804406797
626 => 0.0056989554435855
627 => 0.0056754875143612
628 => 0.0056613472381314
629 => 0.005738893383408
630 => 0.0056974636061893
701 => 0.0057325436758625
702 => 0.0056925655090121
703 => 0.0055539837650502
704 => 0.0054742839386224
705 => 0.005212515870813
706 => 0.0052867529701215
707 => 0.0053359722437668
708 => 0.0053197052741207
709 => 0.0053546530194022
710 => 0.0053567985271287
711 => 0.0053454366588876
712 => 0.0053322810710098
713 => 0.0053258776583805
714 => 0.0053736034499015
715 => 0.0054013098782556
716 => 0.0053409120563461
717 => 0.005326761691728
718 => 0.0053878272243337
719 => 0.0054250771639468
720 => 0.0057001097891167
721 => 0.0056797344839004
722 => 0.0057308725015415
723 => 0.005725115145532
724 => 0.0057787159349449
725 => 0.0058663305722513
726 => 0.0056881855171695
727 => 0.0057191053389392
728 => 0.0057115245126842
729 => 0.0057942899859365
730 => 0.0057945483707099
731 => 0.0057449263350531
801 => 0.0057718272456082
802 => 0.0057568118953242
803 => 0.0057839466627337
804 => 0.005679462359277
805 => 0.0058067129625037
806 => 0.0058788558546855
807 => 0.0058798575588134
808 => 0.0059140527171462
809 => 0.0059487969784623
810 => 0.0060154855624712
811 => 0.0059469370700496
812 => 0.0058236250052444
813 => 0.0058325277380278
814 => 0.0057602299195506
815 => 0.0057614452589409
816 => 0.0057549576820278
817 => 0.0057744273887061
818 => 0.0056837348650163
819 => 0.0057050202190526
820 => 0.0056752205987549
821 => 0.0057190405603844
822 => 0.0056718975253702
823 => 0.0057115208569803
824 => 0.0057286209733689
825 => 0.0057917207709822
826 => 0.0056625776339578
827 => 0.0053992460353432
828 => 0.0054546015299591
829 => 0.005372726405342
830 => 0.0053803042598459
831 => 0.0053956127319504
901 => 0.0053459929652394
902 => 0.0053554588530293
903 => 0.005355120664907
904 => 0.0053522063423732
905 => 0.0053392983246454
906 => 0.0053205791451665
907 => 0.0053951505947506
908 => 0.005407821737155
909 => 0.0054359881170975
910 => 0.0055197921583685
911 => 0.0055114181584101
912 => 0.0055250764997761
913 => 0.0054952604172625
914 => 0.0053816873423991
915 => 0.0053878549067807
916 => 0.0053109452801133
917 => 0.0054340213650272
918 => 0.0054048753235947
919 => 0.0053860846810769
920 => 0.0053809574801718
921 => 0.0054649692554516
922 => 0.0054901068953385
923 => 0.0054744428050852
924 => 0.0054423152989812
925 => 0.0055040096083454
926 => 0.0055205164028573
927 => 0.0055242116654014
928 => 0.0056335221528842
929 => 0.0055303209073636
930 => 0.0055551624728926
1001 => 0.005748969275812
1002 => 0.0055732132490748
1003 => 0.0056663151362646
1004 => 0.0056617582833655
1005 => 0.0057093860584557
1006 => 0.0056578514156575
1007 => 0.0056584902493187
1008 => 0.0057007804870139
1009 => 0.0056413914752555
1010 => 0.0056266859207546
1011 => 0.0056063703025348
1012 => 0.0056507287116858
1013 => 0.0056773195718135
1014 => 0.0058916223756083
1015 => 0.0060300717602549
1016 => 0.0060240613073331
1017 => 0.0060789855959418
1018 => 0.0060542417008747
1019 => 0.0059743371365935
1020 => 0.006110724484498
1021 => 0.006067565820932
1022 => 0.0060711237687186
1023 => 0.0060709913417243
1024 => 0.0060996880799998
1025 => 0.0060793538109142
1026 => 0.0060392728792765
1027 => 0.0060658804721963
1028 => 0.0061448955107798
1029 => 0.0063901606150204
1030 => 0.0065274142166839
1031 => 0.0063818977758596
1101 => 0.0064822730681974
1102 => 0.0064220836601683
1103 => 0.0064111454542497
1104 => 0.0064741885555137
1105 => 0.0065373420053809
1106 => 0.0065333194036442
1107 => 0.0064874732420061
1108 => 0.0064615759086001
1109 => 0.006657679193394
1110 => 0.0068021647530978
1111 => 0.0067923118065695
1112 => 0.0068357995081956
1113 => 0.0069634807451939
1114 => 0.0069751543173517
1115 => 0.0069736837155738
1116 => 0.0069447495489695
1117 => 0.0070704683082981
1118 => 0.0071753451091412
1119 => 0.006938052125389
1120 => 0.0070284101872086
1121 => 0.0070689748323143
1122 => 0.0071285357663174
1123 => 0.0072290250455522
1124 => 0.0073381830562661
1125 => 0.0073536191958378
1126 => 0.0073426665161244
1127 => 0.0072706738737337
1128 => 0.0073901158715828
1129 => 0.0074600821926633
1130 => 0.0075017455357159
1201 => 0.0076073968415781
1202 => 0.0070692253457526
1203 => 0.0066882808121485
1204 => 0.0066287908223205
1205 => 0.0067497660559641
1206 => 0.0067816662603165
1207 => 0.0067688073279415
1208 => 0.0063400196214083
1209 => 0.0066265333437852
1210 => 0.0069347980183048
1211 => 0.0069466397199005
1212 => 0.0071009634614754
1213 => 0.007151217597676
1214 => 0.007275468437319
1215 => 0.0072676965134695
1216 => 0.0072979496156599
1217 => 0.007290994951377
1218 => 0.0075211434677145
1219 => 0.0077750314586201
1220 => 0.0077662401248095
1221 => 0.0077297407222504
1222 => 0.0077839485591236
1223 => 0.0080459881740288
1224 => 0.0080218637653876
1225 => 0.0080452985734703
1226 => 0.0083542580473491
1227 => 0.0087559493123642
1228 => 0.0085693233906211
1229 => 0.0089742479406414
1230 => 0.0092291264807511
1231 => 0.0096699125609379
]
'min_raw' => 0.0039480110936207
'max_raw' => 0.0096699125609379
'avg_raw' => 0.0068089618272793
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.003948'
'max' => '$0.009669'
'avg' => '$0.0068089'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.0017603914265188
'max_diff' => 0.003923021593038
'year' => 2028
]
3 => [
'items' => [
101 => 0.0096147239727813
102 => 0.0097863187591603
103 => 0.009515924881775
104 => 0.0088950458836797
105 => 0.0087967894056018
106 => 0.0089935013629641
107 => 0.0094770985152672
108 => 0.0089782711676619
109 => 0.0090791832904084
110 => 0.0090501205922687
111 => 0.0090485719645933
112 => 0.0091076767842374
113 => 0.0090219421606436
114 => 0.0086726438807578
115 => 0.0088327252240018
116 => 0.0087709101296378
117 => 0.0088394985854552
118 => 0.0092096421934708
119 => 0.0090459928812456
120 => 0.0088736016246069
121 => 0.0090898185171141
122 => 0.0093651369214611
123 => 0.0093479079905118
124 => 0.0093144766633357
125 => 0.0095029273042199
126 => 0.0098141925521036
127 => 0.0098983262978415
128 => 0.0099604321089066
129 => 0.0099689954509662
130 => 0.010057203196267
131 => 0.0095828879185688
201 => 0.010335638445557
202 => 0.010465617667254
203 => 0.010441186960662
204 => 0.010585653395216
205 => 0.01054314770541
206 => 0.01048156362982
207 => 0.010710573657481
208 => 0.010448032140924
209 => 0.01007538751123
210 => 0.0098709472973041
211 => 0.010140170662723
212 => 0.010304575977384
213 => 0.010413237432232
214 => 0.010446118322815
215 => 0.0096197076633741
216 => 0.0091743181527721
217 => 0.0094598077226669
218 => 0.0098081247013761
219 => 0.0095809530001651
220 => 0.0095898577007597
221 => 0.0092659705545057
222 => 0.0098367815270209
223 => 0.0097536191696013
224 => 0.010185065627005
225 => 0.010082097467372
226 => 0.01043392530473
227 => 0.010341277244119
228 => 0.010725854163832
301 => 0.010879272309111
302 => 0.011136885252661
303 => 0.011326386382609
304 => 0.011437665070694
305 => 0.011430984315657
306 => 0.011871925916672
307 => 0.01161191805988
308 => 0.011285286912602
309 => 0.011279379185656
310 => 0.01144854608523
311 => 0.011803073498065
312 => 0.011894997298049
313 => 0.011946370161765
314 => 0.011867690832682
315 => 0.011585470939065
316 => 0.011463609819889
317 => 0.011567439024084
318 => 0.011440464829499
319 => 0.011659657912019
320 => 0.011960656831436
321 => 0.011898501744855
322 => 0.012106276880483
323 => 0.012321302287276
324 => 0.012628798276386
325 => 0.012709189114483
326 => 0.012842072112867
327 => 0.012978852367996
328 => 0.013022782499612
329 => 0.013106658751586
330 => 0.013106216682336
331 => 0.013358983413183
401 => 0.013637792944842
402 => 0.013743037088588
403 => 0.013985040193935
404 => 0.013570618356828
405 => 0.013884962080809
406 => 0.014168507988373
407 => 0.013830452868149
408 => 0.014296383094636
409 => 0.01431447410951
410 => 0.014587626955464
411 => 0.014310734216337
412 => 0.014146316191716
413 => 0.014620984868133
414 => 0.014850662088729
415 => 0.01478148144071
416 => 0.014255013293419
417 => 0.013948586250415
418 => 0.013146607573509
419 => 0.014096585959204
420 => 0.014559292719627
421 => 0.014253814994691
422 => 0.014407880190571
423 => 0.015248409943481
424 => 0.015568429253118
425 => 0.015501867473817
426 => 0.015513115318819
427 => 0.015685791929537
428 => 0.01645153511621
429 => 0.015992684048968
430 => 0.016343458497053
501 => 0.016529507999506
502 => 0.016702321146036
503 => 0.016277946676315
504 => 0.015725841726506
505 => 0.015550966913112
506 => 0.014223441255255
507 => 0.014154337779611
508 => 0.014115547904683
509 => 0.013870983230198
510 => 0.013678822387955
511 => 0.013526008951728
512 => 0.013124980861115
513 => 0.013260316069394
514 => 0.012621160994025
515 => 0.013030069760981
516 => 0.012009962827752
517 => 0.012859538194386
518 => 0.012397152947779
519 => 0.012707632205065
520 => 0.012706548972185
521 => 0.012134858221984
522 => 0.01180511892815
523 => 0.012015241639827
524 => 0.012240509866305
525 => 0.012277058878158
526 => 0.01256912501389
527 => 0.012650634394432
528 => 0.01240365716608
529 => 0.011988823378965
530 => 0.012085179806361
531 => 0.011803166268224
601 => 0.011308948390135
602 => 0.011663904298395
603 => 0.011785101851785
604 => 0.011838629595834
605 => 0.01135262307404
606 => 0.011199909273177
607 => 0.01111860572699
608 => 0.01192608604001
609 => 0.011970321634341
610 => 0.011744006079461
611 => 0.01276697384764
612 => 0.012535444736058
613 => 0.012794119479704
614 => 0.012076436470535
615 => 0.012103852927973
616 => 0.011764090290052
617 => 0.01195433466434
618 => 0.011819876072456
619 => 0.011938964798929
620 => 0.012010346090556
621 => 0.012350052976772
622 => 0.012863417101348
623 => 0.012299312096198
624 => 0.012053523467321
625 => 0.012206009350309
626 => 0.012612099351058
627 => 0.013227346489559
628 => 0.012863107800564
629 => 0.013024750745566
630 => 0.013060062538055
701 => 0.012791486413639
702 => 0.013237249274359
703 => 0.01347613721279
704 => 0.013721186806726
705 => 0.013933956503008
706 => 0.013623308610152
707 => 0.013955746385134
708 => 0.013687860221666
709 => 0.013447538639472
710 => 0.013447903108112
711 => 0.013297145869064
712 => 0.013005034721773
713 => 0.012951164944424
714 => 0.013231402329198
715 => 0.013456126173208
716 => 0.013474635505356
717 => 0.013599054172128
718 => 0.013672683857509
719 => 0.014394354868951
720 => 0.014684616919728
721 => 0.015039543861039
722 => 0.015177807907267
723 => 0.015593933116006
724 => 0.015257878213912
725 => 0.015185170621959
726 => 0.014175786979075
727 => 0.014341073494051
728 => 0.014605713152303
729 => 0.014180150789567
730 => 0.01445007215777
731 => 0.014503360353569
801 => 0.014165690343325
802 => 0.014346054485656
803 => 0.013867060797865
804 => 0.012873857854803
805 => 0.013238354993157
806 => 0.013506747575395
807 => 0.013123718267974
808 => 0.013810283476245
809 => 0.013409206255156
810 => 0.013282084031173
811 => 0.012786134913068
812 => 0.013020203805981
813 => 0.01333678533519
814 => 0.013141174756692
815 => 0.013547096078151
816 => 0.014121988924599
817 => 0.014531691802439
818 => 0.014563143702099
819 => 0.014299732199609
820 => 0.014721850813419
821 => 0.014724925486683
822 => 0.0142487739659
823 => 0.013957133810643
824 => 0.013890872553753
825 => 0.01405640616475
826 => 0.014257394527691
827 => 0.014574297157434
828 => 0.014765794779524
829 => 0.015265119015446
830 => 0.015400221836938
831 => 0.015548658877142
901 => 0.015747016539143
902 => 0.015985195770235
903 => 0.015464073172156
904 => 0.015484778344472
905 => 0.014999516196574
906 => 0.014480943997914
907 => 0.01487447565576
908 => 0.015388965949071
909 => 0.015270941307324
910 => 0.015257661124103
911 => 0.015279994708665
912 => 0.015191007983113
913 => 0.01478852432144
914 => 0.014586399546229
915 => 0.014847192073781
916 => 0.014985791695635
917 => 0.015200747621973
918 => 0.015174249766882
919 => 0.015727953148548
920 => 0.015943105539542
921 => 0.015888060351036
922 => 0.015898189990457
923 => 0.016287713117334
924 => 0.016720942945962
925 => 0.017126719850184
926 => 0.017539493545681
927 => 0.017041878744927
928 => 0.016789220637719
929 => 0.017049899311412
930 => 0.016911579537832
1001 => 0.017706405985129
1002 => 0.017761438043829
1003 => 0.018556207016127
1004 => 0.019310537410166
1005 => 0.018836756004902
1006 => 0.019283510530483
1007 => 0.019766711974328
1008 => 0.020698885956116
1009 => 0.020384962553326
1010 => 0.020144502146596
1011 => 0.019917268224132
1012 => 0.020390105944409
1013 => 0.02099840411778
1014 => 0.021129425718116
1015 => 0.021341730764765
1016 => 0.02111851796764
1017 => 0.021387353195694
1018 => 0.02233645968291
1019 => 0.022080002732069
1020 => 0.021715792634364
1021 => 0.022465021052865
1022 => 0.022736163904969
1023 => 0.024639186439647
1024 => 0.027041830999618
1025 => 0.026047120375175
1026 => 0.025429671391472
1027 => 0.025574786548728
1028 => 0.026452151007379
1029 => 0.026733932625341
1030 => 0.025967953051771
1031 => 0.026238509986527
1101 => 0.027729305297604
1102 => 0.028529069151557
1103 => 0.027442882415273
1104 => 0.024446136288656
1105 => 0.021682999499974
1106 => 0.022415907802004
1107 => 0.022332818745346
1108 => 0.023934492326596
1109 => 0.022073886318608
1110 => 0.022105214151992
1111 => 0.023740008646701
1112 => 0.023303873502985
1113 => 0.022597390426136
1114 => 0.021688157608276
1115 => 0.020007356650608
1116 => 0.018518624369798
1117 => 0.021438371207034
1118 => 0.021312466414197
1119 => 0.021130137616125
1120 => 0.021535890626198
1121 => 0.023506112068115
1122 => 0.023460692086894
1123 => 0.023171753339847
1124 => 0.023390910832893
1125 => 0.022558971057994
1126 => 0.022773380880902
1127 => 0.02168256180499
1128 => 0.022175657583931
1129 => 0.02259587463075
1130 => 0.022680239424319
1201 => 0.022870317612003
1202 => 0.02124612030953
1203 => 0.021975337214413
1204 => 0.022403683827647
1205 => 0.02046839824567
1206 => 0.022365429454109
1207 => 0.021217846648007
1208 => 0.020828339807501
1209 => 0.021352759454618
1210 => 0.021148392608122
1211 => 0.020972689994328
1212 => 0.020874644916877
1213 => 0.021259720827636
1214 => 0.021241756576134
1215 => 0.020611697646118
1216 => 0.019789811456401
1217 => 0.020065663439165
1218 => 0.019965443827701
1219 => 0.019602235027167
1220 => 0.019846993904729
1221 => 0.018769199677581
1222 => 0.016914910728642
1223 => 0.018139910806718
1224 => 0.018092749636255
1225 => 0.018068968835519
1226 => 0.018989522537678
1227 => 0.018901032540003
1228 => 0.018740422327726
1229 => 0.019599285294667
1230 => 0.019285788758396
1231 => 0.020251911214109
]
'min_raw' => 0.0086726438807578
'max_raw' => 0.028529069151557
'avg_raw' => 0.018600856516157
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.008672'
'max' => '$0.028529'
'avg' => '$0.01860085'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.0047246327871371
'max_diff' => 0.018859156590619
'year' => 2029
]
4 => [
'items' => [
101 => 0.020888261948324
102 => 0.020726862818337
103 => 0.021325353759616
104 => 0.020072018511705
105 => 0.020488326205979
106 => 0.020574126644791
107 => 0.019588687058973
108 => 0.018915510597997
109 => 0.018870617402823
110 => 0.017703422188922
111 => 0.018326928450917
112 => 0.018875588159031
113 => 0.018612822736558
114 => 0.018529639053697
115 => 0.018954606449096
116 => 0.018987630055318
117 => 0.018234688333769
118 => 0.018391248760242
119 => 0.019044131764641
120 => 0.018374797783657
121 => 0.017074391193688
122 => 0.016751872379849
123 => 0.016708842424881
124 => 0.015834145822458
125 => 0.016773424629173
126 => 0.016363404258935
127 => 0.017658653695719
128 => 0.01691881416399
129 => 0.016886921160476
130 => 0.016838710207977
131 => 0.01608582270901
201 => 0.016250657222787
202 => 0.016798592251588
203 => 0.016994101642794
204 => 0.01697370841153
205 => 0.016795907071022
206 => 0.016877303614216
207 => 0.016615096988152
208 => 0.016522506371129
209 => 0.016230264914751
210 => 0.015800750707637
211 => 0.0158604772925
212 => 0.015009497259703
213 => 0.014545838172906
214 => 0.014417503448609
215 => 0.014245888891802
216 => 0.014436887769449
217 => 0.01500708654019
218 => 0.014319305848259
219 => 0.013140154094151
220 => 0.013211023123749
221 => 0.013370244792054
222 => 0.013073536266525
223 => 0.012792726547971
224 => 0.013036867815441
225 => 0.012537245672742
226 => 0.013430621741026
227 => 0.013406458422037
228 => 0.013739453774287
301 => 0.013947682601802
302 => 0.013467782569264
303 => 0.013347089008868
304 => 0.013415841546086
305 => 0.012279515254043
306 => 0.013646591673436
307 => 0.01365841420708
308 => 0.013557182496351
309 => 0.014285108485929
310 => 0.015821259369746
311 => 0.015243297615728
312 => 0.015019493355585
313 => 0.014594041293455
314 => 0.0151609309054
315 => 0.015117402628058
316 => 0.014920551250309
317 => 0.014801494922833
318 => 0.015020859856674
319 => 0.014774313179926
320 => 0.014730026622133
321 => 0.014461698266154
322 => 0.014365917251231
323 => 0.014295004800935
324 => 0.014216937160872
325 => 0.014389134921607
326 => 0.01399891214128
327 => 0.013528341722217
328 => 0.013489218883514
329 => 0.013597240480888
330 => 0.013549448965312
331 => 0.013488990076125
401 => 0.013373557591667
402 => 0.013339311239353
403 => 0.013450595270405
404 => 0.01332496208761
405 => 0.013510340692418
406 => 0.013459927969376
407 => 0.013178326596496
408 => 0.012827347023706
409 => 0.012824222569303
410 => 0.012748604596068
411 => 0.012652293737914
412 => 0.012625502260469
413 => 0.01301630691886
414 => 0.013825260865931
415 => 0.013666443849493
416 => 0.013781205420092
417 => 0.014345718763735
418 => 0.014525160580171
419 => 0.014397797029177
420 => 0.014223453945135
421 => 0.014231124156027
422 => 0.014826907251438
423 => 0.014864065512297
424 => 0.014957952449777
425 => 0.015078623696884
426 => 0.014418347864357
427 => 0.014200025223692
428 => 0.014096571844467
429 => 0.013777975477948
430 => 0.01412155434485
501 => 0.013921365652621
502 => 0.013948377946622
503 => 0.013930786154717
504 => 0.013940392462649
505 => 0.013430372024208
506 => 0.013616196666091
507 => 0.013307227157679
508 => 0.01289355166937
509 => 0.01289216488408
510 => 0.01299341137379
511 => 0.012933185999935
512 => 0.012771121067427
513 => 0.012794141626165
514 => 0.012592457308251
515 => 0.012818629753972
516 => 0.012825115570431
517 => 0.012738026859132
518 => 0.013086476717548
519 => 0.013229236908849
520 => 0.013171913253451
521 => 0.013225214928373
522 => 0.013673043413542
523 => 0.013746058996751
524 => 0.013778487695674
525 => 0.013735037535097
526 => 0.013233400410992
527 => 0.013255650150572
528 => 0.013092396324469
529 => 0.012954464044677
530 => 0.012959980612509
531 => 0.013030895734264
601 => 0.013340586230082
602 => 0.013992311621281
603 => 0.014017044123472
604 => 0.014047020637625
605 => 0.013925091089574
606 => 0.013888315971174
607 => 0.013936831844808
608 => 0.014181585635649
609 => 0.014811158835698
610 => 0.01458862561902
611 => 0.014407702649926
612 => 0.014566420870304
613 => 0.014541987444351
614 => 0.014335744740379
615 => 0.014329956194592
616 => 0.013934110505889
617 => 0.013787775367746
618 => 0.013665486773318
619 => 0.013531950820628
620 => 0.013452786231707
621 => 0.013574419019951
622 => 0.01360223787774
623 => 0.013336285660466
624 => 0.013300037355979
625 => 0.013517219677582
626 => 0.013421645835218
627 => 0.013519945902206
628 => 0.01354275236095
629 => 0.013539079995815
630 => 0.013439289927801
701 => 0.013502893141371
702 => 0.013352452580248
703 => 0.013188871065469
704 => 0.013084516250528
705 => 0.012993452833835
706 => 0.013043980110053
707 => 0.012863859596251
708 => 0.012806235418776
709 => 0.013481345803731
710 => 0.013980057103756
711 => 0.013972805643943
712 => 0.013928664247251
713 => 0.013863079085522
714 => 0.014176787672564
715 => 0.014067497873639
716 => 0.014147015333825
717 => 0.014167255864779
718 => 0.014228517855921
719 => 0.014250413752108
720 => 0.014184229146153
721 => 0.0139621055248
722 => 0.013408594579268
723 => 0.013150933739948
724 => 0.013065901371292
725 => 0.013068992136393
726 => 0.01298373503712
727 => 0.013008847073811
728 => 0.012975002095574
729 => 0.012910907894772
730 => 0.013040022473766
731 => 0.01305490172621
801 => 0.013024764840668
802 => 0.013031863168185
803 => 0.012782342627532
804 => 0.012801313132308
805 => 0.012695682951062
806 => 0.012675878565469
807 => 0.01240885466555
808 => 0.011935783121112
809 => 0.012197910678897
810 => 0.011881297449805
811 => 0.011761391222474
812 => 0.012329008653412
813 => 0.012272035606603
814 => 0.012174522516053
815 => 0.012030280331622
816 => 0.011976779502319
817 => 0.011651725399776
818 => 0.011632519469302
819 => 0.011793625059721
820 => 0.011719280373047
821 => 0.011614872276423
822 => 0.011236716734128
823 => 0.010811544701592
824 => 0.010824377972718
825 => 0.010959617285661
826 => 0.011352843827549
827 => 0.011199203414745
828 => 0.011087735532435
829 => 0.011066860948791
830 => 0.011328150067001
831 => 0.011697928911031
901 => 0.011871420871315
902 => 0.011699495607703
903 => 0.011501997121979
904 => 0.011514017939686
905 => 0.011593987054463
906 => 0.011602390677724
907 => 0.01147383946669
908 => 0.011510025879603
909 => 0.011455055409433
910 => 0.011117701735469
911 => 0.011111600077267
912 => 0.011028808045113
913 => 0.011026301135283
914 => 0.01088545123515
915 => 0.010865745360471
916 => 0.010586079334778
917 => 0.010770156359796
918 => 0.010646687155892
919 => 0.010460589942167
920 => 0.010428506712376
921 => 0.010427542251747
922 => 0.010618622479667
923 => 0.010767923476081
924 => 0.010648834955555
925 => 0.010621720807866
926 => 0.010911228968796
927 => 0.010874386416392
928 => 0.010842481003619
929 => 0.011664819271318
930 => 0.011013874364579
1001 => 0.010730025230605
1002 => 0.010378708025823
1003 => 0.010493098679195
1004 => 0.010517202470609
1005 => 0.0096723479227939
1006 => 0.0093295905379653
1007 => 0.0092119691200317
1008 => 0.0091442763310882
1009 => 0.0091751247850423
1010 => 0.0088666029372652
1011 => 0.0090739347214518
1012 => 0.0088067808799794
1013 => 0.0087619916690628
1014 => 0.0092396958316257
1015 => 0.0093061655751391
1016 => 0.0090225849987803
1017 => 0.0092046896363277
1018 => 0.0091386559633092
1019 => 0.0088113604658134
1020 => 0.0087988601852318
1021 => 0.0086346348095815
1022 => 0.0083776538969876
1023 => 0.0082602067242137
1024 => 0.00819903921691
1025 => 0.0082242781225545
1026 => 0.0082115165595374
1027 => 0.0081282387285969
1028 => 0.0082162899473253
1029 => 0.0079913554687498
1030 => 0.0079017847469608
1031 => 0.0078613277299537
1101 => 0.0076616854334724
1102 => 0.0079794051085063
1103 => 0.008041999887015
1104 => 0.0081047179965739
1105 => 0.0086506363208117
1106 => 0.0086233637840819
1107 => 0.0088698942338548
1108 => 0.0088603145139171
1109 => 0.0087900000361133
1110 => 0.0084933548204296
1111 => 0.0086115923162086
1112 => 0.0082476756823874
1113 => 0.0085203467683719
1114 => 0.0083959110717454
1115 => 0.0084782749341715
1116 => 0.0083301772830793
1117 => 0.0084121406379958
1118 => 0.0080568434311126
1119 => 0.0077250718984917
1120 => 0.0078585864482331
1121 => 0.0080037320330429
1122 => 0.0083184446433178
1123 => 0.0081310044089607
1124 => 0.0081984150051355
1125 => 0.0079726007923476
1126 => 0.0075066815707251
1127 => 0.0075093186229208
1128 => 0.0074376471012761
1129 => 0.0073757124423617
1130 => 0.0081525341746712
1201 => 0.0080559241125242
1202 => 0.0079019886225053
1203 => 0.0081080373930488
1204 => 0.0081625199584142
1205 => 0.0081640710004567
1206 => 0.0083143988645567
1207 => 0.0083946288725746
1208 => 0.0084087697592245
1209 => 0.0086453139014343
1210 => 0.0087246003778103
1211 => 0.0090511701529611
1212 => 0.0083878219169301
1213 => 0.0083741606965375
1214 => 0.0081109369218036
1215 => 0.0079439962424641
1216 => 0.008122367492942
1217 => 0.0082803800707615
1218 => 0.0081158468130548
1219 => 0.0081373313830247
1220 => 0.0079164589274145
1221 => 0.0079954104372802
1222 => 0.0080634141134934
1223 => 0.0080258664805598
1224 => 0.0079696558567322
1225 => 0.008267424841332
1226 => 0.0082506235482548
1227 => 0.0085279128723935
1228 => 0.0087440797297094
1229 => 0.0091314893824674
1230 => 0.0087272072136925
1231 => 0.0087124735645863
]
'min_raw' => 0.0073757124423617
'max_raw' => 0.021325353759616
'avg_raw' => 0.014350533100989
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.007375'
'max' => '$0.021325'
'avg' => '$0.01435'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0012969314383961
'max_diff' => -0.0072037153919409
'year' => 2030
]
5 => [
'items' => [
101 => 0.0088564973479514
102 => 0.0087245783285195
103 => 0.0088079465951107
104 => 0.0091180574658511
105 => 0.0091246096198836
106 => 0.0090148525978666
107 => 0.0090081738731022
108 => 0.0090292539097908
109 => 0.0091527203430989
110 => 0.0091095773775608
111 => 0.0091595035095278
112 => 0.0092219369020486
113 => 0.0094801878847245
114 => 0.0095424513223431
115 => 0.0093911834488211
116 => 0.0094048412441256
117 => 0.0093482629070323
118 => 0.0092936089423248
119 => 0.0094164630734168
120 => 0.0096409814126915
121 => 0.0096395846957554
122 => 0.0096916685864542
123 => 0.0097241164188734
124 => 0.0095848265688654
125 => 0.0094941539983399
126 => 0.009528923631525
127 => 0.0095845210321719
128 => 0.0095108941438182
129 => 0.0090564348816066
130 => 0.0091942887907915
131 => 0.0091713431595914
201 => 0.0091386657904783
202 => 0.0092772789621565
203 => 0.0092639093835991
204 => 0.0088634385997861
205 => 0.0088890754400415
206 => 0.0088649976609538
207 => 0.0089427978910361
208 => 0.0087203768607765
209 => 0.0087887920716558
210 => 0.0088317014505666
211 => 0.0088569754043904
212 => 0.0089482822561145
213 => 0.0089375684509244
214 => 0.008947616270941
215 => 0.0090830002279326
216 => 0.0097677258242324
217 => 0.0098049939276771
218 => 0.0096214721561468
219 => 0.0096947854840663
220 => 0.0095540399263233
221 => 0.0096485233621494
222 => 0.0097131665293226
223 => 0.0094210564870331
224 => 0.0094037596261072
225 => 0.0092624331613814
226 => 0.0093383739983849
227 => 0.0092175466663729
228 => 0.009247193467288
301 => 0.0091642984273677
302 => 0.0093134929949864
303 => 0.009480315704076
304 => 0.0095224617084205
305 => 0.0094115937159859
306 => 0.0093313179829066
307 => 0.0091903802400896
308 => 0.0094247628473967
309 => 0.0094933034644538
310 => 0.0094244028327139
311 => 0.0094084370508312
312 => 0.0093781819230131
313 => 0.0094148558192231
314 => 0.0094929301775334
315 => 0.0094561117519613
316 => 0.0094804309707089
317 => 0.0093877511867126
318 => 0.0095848726796016
319 => 0.00989794905018
320 => 0.0098989556419046
321 => 0.0098621370178674
322 => 0.0098470716301797
323 => 0.0098848497727828
324 => 0.0099053428654044
325 => 0.010027510451256
326 => 0.010158601138247
327 => 0.010770344175083
328 => 0.010598569178269
329 => 0.011141343993306
330 => 0.011570608401512
331 => 0.011699326028075
401 => 0.011580911868269
402 => 0.01117582342418
403 => 0.011155947852537
404 => 0.011761321011935
405 => 0.011590275366558
406 => 0.011569930031303
407 => 0.011353490038177
408 => 0.011481432880729
409 => 0.011453449904255
410 => 0.011409277406916
411 => 0.011653383437929
412 => 0.012110328136491
413 => 0.01203910902002
414 => 0.011985947253334
415 => 0.011753007866874
416 => 0.011893289406418
417 => 0.011843337837102
418 => 0.012057961478932
419 => 0.011930823188008
420 => 0.011588979527566
421 => 0.011643419257223
422 => 0.011635190801603
423 => 0.01180453183519
424 => 0.01175369986021
425 => 0.011625265042664
426 => 0.012108766349187
427 => 0.012077370463717
428 => 0.012121882651215
429 => 0.012141478292737
430 => 0.012435777017769
501 => 0.012556341788906
502 => 0.012583712102737
503 => 0.012698239310503
504 => 0.012580862561476
505 => 0.013050453245788
506 => 0.013362703649479
507 => 0.013725398561626
508 => 0.014255393311473
509 => 0.014454676240142
510 => 0.01441867756279
511 => 0.014820513533378
512 => 0.015542603840213
513 => 0.014564632659154
514 => 0.015594438687509
515 => 0.015268413988614
516 => 0.014495415292468
517 => 0.014445643289492
518 => 0.014969126981222
519 => 0.01613016342604
520 => 0.015839336964979
521 => 0.016130639113944
522 => 0.015790819683752
523 => 0.01577394478482
524 => 0.016114134842711
525 => 0.016909007455769
526 => 0.016531393272659
527 => 0.015989990746376
528 => 0.016389753946627
529 => 0.016043442066232
530 => 0.015263104473108
531 => 0.015839114575465
601 => 0.015453953023843
602 => 0.01556636364092
603 => 0.016375915933975
604 => 0.016278508460265
605 => 0.016404562750935
606 => 0.016182080227317
607 => 0.015974246467985
608 => 0.015586309322254
609 => 0.015471460258473
610 => 0.015503200407866
611 => 0.015471444529631
612 => 0.015254397261921
613 => 0.015207525925124
614 => 0.015129404976982
615 => 0.015153617925414
616 => 0.015006727687818
617 => 0.015283939915233
618 => 0.015335392947427
619 => 0.015537124888958
620 => 0.015558069368348
621 => 0.016119889954038
622 => 0.015810448616452
623 => 0.016018048581585
624 => 0.015999478886696
625 => 0.01451216851815
626 => 0.014717106764286
627 => 0.015035926362107
628 => 0.014892298565438
629 => 0.014689242464677
630 => 0.014525263776133
701 => 0.014276819295306
702 => 0.014626500131116
703 => 0.015086293245794
704 => 0.01556973048051
705 => 0.01615054864196
706 => 0.016020916789793
707 => 0.015558872488991
708 => 0.015579599458801
709 => 0.015707725430407
710 => 0.015541790655705
711 => 0.015492853251214
712 => 0.015701002182515
713 => 0.015702435589808
714 => 0.015511507577626
715 => 0.015299326031544
716 => 0.015298436983118
717 => 0.015260681326423
718 => 0.015797536331203
719 => 0.016092752301669
720 => 0.016126598336918
721 => 0.016090474193825
722 => 0.016104376942786
723 => 0.015932597274212
724 => 0.016325234656894
725 => 0.016685557547055
726 => 0.016588983315316
727 => 0.016444204813103
728 => 0.016328881762614
729 => 0.01656181686964
730 => 0.016551444635998
731 => 0.016682410440949
801 => 0.016676469075541
802 => 0.016632430201209
803 => 0.016588984888083
804 => 0.016761240643792
805 => 0.016711633752491
806 => 0.016661949807985
807 => 0.016562301051049
808 => 0.016575844972107
809 => 0.016431091467944
810 => 0.016364121873448
811 => 0.01535705985476
812 => 0.015087939976666
813 => 0.015172610568755
814 => 0.015200486326141
815 => 0.015083365010308
816 => 0.015251286891215
817 => 0.015225116443949
818 => 0.015326930345062
819 => 0.015263321439892
820 => 0.015265931971548
821 => 0.015452992198804
822 => 0.015507296578587
823 => 0.015479676932739
824 => 0.015499020785945
825 => 0.015944791718542
826 => 0.015881417346879
827 => 0.015847750975031
828 => 0.015857076790113
829 => 0.015970980820828
830 => 0.016002867730499
831 => 0.01586776065357
901 => 0.015931477932094
902 => 0.016202778017123
903 => 0.016297717692629
904 => 0.016600719563212
905 => 0.016471998983159
906 => 0.016708271178742
907 => 0.017434491356835
908 => 0.018014646285711
909 => 0.017481111837201
910 => 0.018546492481795
911 => 0.019376044133389
912 => 0.01934420455931
913 => 0.019199553040979
914 => 0.018255130540412
915 => 0.017386058874843
916 => 0.018113074225823
917 => 0.018114927537465
918 => 0.018052476274058
919 => 0.017664596840615
920 => 0.018038978910552
921 => 0.018068695999707
922 => 0.018052062332192
923 => 0.017754676080002
924 => 0.017300622239075
925 => 0.017389343272741
926 => 0.017534670135746
927 => 0.017259536065718
928 => 0.017171614059384
929 => 0.017335077797006
930 => 0.017861792018649
1001 => 0.017762219746095
1002 => 0.017759619511656
1003 => 0.018185631918856
1004 => 0.017880698974532
1005 => 0.0173904623291
1006 => 0.017266671110701
1007 => 0.016827295681143
1008 => 0.01713077385534
1009 => 0.017141695494558
1010 => 0.016975483600022
1011 => 0.017403949508295
1012 => 0.017400001119521
1013 => 0.017806765730692
1014 => 0.018584346893441
1015 => 0.018354377881171
1016 => 0.018086948940458
1017 => 0.018116025881314
1018 => 0.018434928154495
1019 => 0.018242112560299
1020 => 0.01831145039233
1021 => 0.018434823203382
1022 => 0.018509257083464
1023 => 0.018105315991442
1024 => 0.018011138000156
1025 => 0.017818482881968
1026 => 0.017768222757711
1027 => 0.017925136331594
1028 => 0.017883795148714
1029 => 0.017140777573072
1030 => 0.017063128102307
1031 => 0.017065509500718
1101 => 0.016870256214447
1102 => 0.016572448086727
1103 => 0.017355070065177
1104 => 0.01729221456752
1105 => 0.017222826962735
1106 => 0.017231326548401
1107 => 0.017571036223727
1108 => 0.017373987456288
1109 => 0.017897873900181
1110 => 0.017790178596785
1111 => 0.017679721315228
1112 => 0.017664452754306
1113 => 0.017621936124679
1114 => 0.017476130781947
1115 => 0.017300062069055
1116 => 0.017183806253993
1117 => 0.015851152936747
1118 => 0.01609848564074
1119 => 0.016383019371599
1120 => 0.016481239275294
1121 => 0.016313227333413
1122 => 0.017482764917457
1123 => 0.017696450704006
1124 => 0.017049182518169
1125 => 0.016928105068385
1126 => 0.017490702734908
1127 => 0.017151387567227
1128 => 0.017304181166457
1129 => 0.016973924978552
1130 => 0.017644980055477
1201 => 0.017639867740115
1202 => 0.017378812158725
1203 => 0.017599454548485
1204 => 0.017561112503521
1205 => 0.017266381395083
1206 => 0.017654323557317
1207 => 0.017654515971789
1208 => 0.017403255650539
1209 => 0.017109838603276
1210 => 0.017057382565426
1211 => 0.017017863987384
1212 => 0.017294462018791
1213 => 0.017542458948852
1214 => 0.018003919752041
1215 => 0.018119941962001
1216 => 0.018572784371511
1217 => 0.018303138765145
1218 => 0.018422669169952
1219 => 0.018552436332978
1220 => 0.018614651482962
1221 => 0.018513275234712
1222 => 0.019216725894053
1223 => 0.019276118682873
1224 => 0.019296032571219
1225 => 0.019058832966809
1226 => 0.019269521732784
1227 => 0.019170947436463
1228 => 0.019427410370761
1229 => 0.019467627033542
1230 => 0.019433564950916
1231 => 0.01944633035446
]
'min_raw' => 0.0087203768607765
'max_raw' => 0.019467627033542
'avg_raw' => 0.014094001947159
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.00872'
'max' => '$0.019467'
'avg' => '$0.014094'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0013446644184148
'max_diff' => -0.0018577267260737
'year' => 2031
]
6 => [
'items' => [
101 => 0.018846059313912
102 => 0.018814932093777
103 => 0.018390510238558
104 => 0.018563465281728
105 => 0.018240134118473
106 => 0.018342665761021
107 => 0.018387860732099
108 => 0.018364253444
109 => 0.018573243900369
110 => 0.018395559318526
111 => 0.017926620492991
112 => 0.017457553905388
113 => 0.017451665156474
114 => 0.01732816820367
115 => 0.017238902526389
116 => 0.017256098262703
117 => 0.017316698280351
118 => 0.017235380343198
119 => 0.017252733648014
120 => 0.017540914132416
121 => 0.017598706673354
122 => 0.017402305038244
123 => 0.016613724132658
124 => 0.016420204400422
125 => 0.016559302546291
126 => 0.016492822591633
127 => 0.013310995043474
128 => 0.014058518229199
129 => 0.01361436533573
130 => 0.013819051423533
131 => 0.013365686332135
201 => 0.013582055916651
202 => 0.013542100354943
203 => 0.014744095516769
204 => 0.014725328015607
205 => 0.014734311025259
206 => 0.014305528569462
207 => 0.01498859066426
208 => 0.015325091614276
209 => 0.015262814244111
210 => 0.015278488116468
211 => 0.015009159059346
212 => 0.014736918719256
213 => 0.014434962284609
214 => 0.01499596001724
215 => 0.014933586645922
216 => 0.015076648718495
217 => 0.015440495849052
218 => 0.015494073721148
219 => 0.015566082924577
220 => 0.015540272751112
221 => 0.016155175795665
222 => 0.016080706979709
223 => 0.016260155400023
224 => 0.015891016384652
225 => 0.015473300549763
226 => 0.015552694673816
227 => 0.015545048381223
228 => 0.015447702300501
229 => 0.015359822611463
301 => 0.015213527689164
302 => 0.015676426470894
303 => 0.015657633625708
304 => 0.015961867944974
305 => 0.015908091573869
306 => 0.015548959806322
307 => 0.015561786267658
308 => 0.015648050384329
309 => 0.015946611477074
310 => 0.01603524473699
311 => 0.015994186279572
312 => 0.016091368602808
313 => 0.016168177548651
314 => 0.016101014623834
315 => 0.017051900005163
316 => 0.016657026099338
317 => 0.016849484893522
318 => 0.016895385181902
319 => 0.016777812558396
320 => 0.016803309850475
321 => 0.016841931300377
322 => 0.017076433181331
323 => 0.017691833970619
324 => 0.01796439079102
325 => 0.018784391432912
326 => 0.01794175874126
327 => 0.017891760404498
328 => 0.01803946728175
329 => 0.018520894464424
330 => 0.018911045977825
331 => 0.019040481743201
401 => 0.019057588816347
402 => 0.01930041891692
403 => 0.019439604602055
404 => 0.019270932955645
405 => 0.01912800139597
406 => 0.018616038290532
407 => 0.018675299414016
408 => 0.01908354978839
409 => 0.01966022748802
410 => 0.020155076947391
411 => 0.019981797913964
412 => 0.021303794623078
413 => 0.021434865196915
414 => 0.021416755481629
415 => 0.021715353754745
416 => 0.021122696991091
417 => 0.020869324742445
418 => 0.019158904821514
419 => 0.019639463052173
420 => 0.020337982662633
421 => 0.020245530972874
422 => 0.019738247360276
423 => 0.020154692127282
424 => 0.020017002463878
425 => 0.019908400913602
426 => 0.020405925668863
427 => 0.019858876763263
428 => 0.020332525431329
429 => 0.019725066115266
430 => 0.019982589437993
501 => 0.019836406745011
502 => 0.019931004862847
503 => 0.019377986198935
504 => 0.019676381646213
505 => 0.019365571967295
506 => 0.019365424603039
507 => 0.01935856346215
508 => 0.019724229671056
509 => 0.019736154033
510 => 0.019465926152128
511 => 0.019426982092742
512 => 0.019570978691701
513 => 0.019402396387088
514 => 0.019481274986372
515 => 0.019404785539506
516 => 0.019387566153902
517 => 0.019250359159773
518 => 0.019191246614117
519 => 0.019214426166412
520 => 0.019135302404553
521 => 0.019087627476002
522 => 0.019349079718901
523 => 0.019209396332473
524 => 0.019327671236589
525 => 0.019192882055866
526 => 0.01872564403063
527 => 0.018456930501365
528 => 0.017574361184682
529 => 0.01782465674807
530 => 0.017990602965545
531 => 0.017935757741659
601 => 0.01805358650485
602 => 0.018060820233944
603 => 0.018022512901909
604 => 0.017978157918885
605 => 0.017956568366134
606 => 0.018117479204355
607 => 0.018210893361952
608 => 0.018007257888543
609 => 0.017959548946286
610 => 0.018165435652925
611 => 0.018291026425039
612 => 0.019218318122964
613 => 0.019149621358869
614 => 0.019322036755688
615 => 0.019302625427936
616 => 0.019483344231729
617 => 0.019778743098467
618 => 0.019178114607568
619 => 0.019282362945417
620 => 0.019256803660422
621 => 0.019535853231993
622 => 0.019536724394296
623 => 0.01936942023658
624 => 0.019460118534678
625 => 0.019409493232857
626 => 0.019500979995667
627 => 0.019148703871702
628 => 0.019577738164834
629 => 0.019820972962681
630 => 0.019824350278085
701 => 0.019939641641833
702 => 0.020056784344628
703 => 0.020281629561662
704 => 0.020050513533559
705 => 0.019634758297695
706 => 0.019664774482843
707 => 0.019421017340175
708 => 0.019425114941782
709 => 0.019403241623271
710 => 0.019468885098668
711 => 0.019163108923098
712 => 0.019234873980328
713 => 0.019134402479951
714 => 0.019282144539997
715 => 0.019123198506025
716 => 0.019256791334961
717 => 0.019314445571257
718 => 0.019527190944398
719 => 0.019091775841434
720 => 0.01820393497148
721 => 0.018390569886374
722 => 0.018114522187389
723 => 0.018140071452918
724 => 0.018191685035422
725 => 0.018024388527614
726 => 0.018056303429185
727 => 0.018055163204319
728 => 0.018045337362425
729 => 0.018001817079447
730 => 0.017938704058902
731 => 0.018190126907587
801 => 0.018232848548875
802 => 0.018327813465365
803 => 0.018610364641521
804 => 0.018582131116008
805 => 0.018628181167518
806 => 0.018527654163631
807 => 0.01814473461231
808 => 0.018165528986228
809 => 0.017906222810261
810 => 0.018321182423446
811 => 0.018222914509844
812 => 0.018159560546675
813 => 0.018142273830853
814 => 0.018425525396724
815 => 0.018510278704657
816 => 0.018457466130736
817 => 0.018349146000835
818 => 0.018557152672216
819 => 0.01861280648238
820 => 0.018625265318043
821 => 0.018993813258406
822 => 0.018645863053852
823 => 0.018729618126416
824 => 0.019383051293617
825 => 0.018790477578579
826 => 0.019104377091405
827 => 0.019089013343707
828 => 0.019249593712689
829 => 0.019075841066461
830 => 0.019077994938751
831 => 0.019220579427751
901 => 0.019020345228199
902 => 0.01897076442449
903 => 0.018902268899271
904 => 0.019051826372729
905 => 0.019141479314164
906 => 0.019864016179302
907 => 0.020330807945865
908 => 0.020310543284203
909 => 0.020495724357939
910 => 0.020412298588156
911 => 0.020142894770924
912 => 0.020602734236644
913 => 0.02045722178919
914 => 0.02046921765856
915 => 0.020468771171703
916 => 0.020565524228342
917 => 0.020496965820426
918 => 0.020361830161048
919 => 0.02045153951826
920 => 0.020717944237498
921 => 0.021544872660308
922 => 0.022007632761057
923 => 0.021517013921185
924 => 0.021855436227281
925 => 0.02165250343582
926 => 0.021615624510884
927 => 0.021828178728325
928 => 0.022041104993785
929 => 0.022027542511181
930 => 0.021872968976341
1001 => 0.021785654308669
1002 => 0.022446830224845
1003 => 0.022933973377046
1004 => 0.022900753479915
1005 => 0.023047375302162
1006 => 0.023477861507121
1007 => 0.023517219770674
1008 => 0.023512261534106
1009 => 0.02341470797128
1010 => 0.02383857754576
1011 => 0.024192177002067
1012 => 0.02339212714008
1013 => 0.023696775654103
1014 => 0.02383354218721
1015 => 0.024034356034613
1016 => 0.02437316265549
1017 => 0.024741196509781
1018 => 0.024793240532064
1019 => 0.024756312807719
1020 => 0.024513584587533
1021 => 0.024916291622455
1022 => 0.02515218795887
1023 => 0.025292658828814
1024 => 0.025648869582867
1025 => 0.023834386810757
1026 => 0.022550005719013
1027 => 0.022349431064849
1028 => 0.0227573075113
1029 => 0.022864861277475
1030 => 0.022821506489191
1031 => 0.021375818799613
1101 => 0.022341819818356
1102 => 0.023381155690851
1103 => 0.023421080814542
1104 => 0.023941394083801
1105 => 0.024110829412633
1106 => 0.024529749793406
1107 => 0.024503546209529
1108 => 0.024605546655768
1109 => 0.024582098519579
1110 => 0.025358060310867
1111 => 0.026214061398099
1112 => 0.026184420802365
1113 => 0.026061360518331
1114 => 0.026244126025019
1115 => 0.027127610881693
1116 => 0.027046273753647
1117 => 0.027125285845264
1118 => 0.028166964282308
1119 => 0.029521294427495
1120 => 0.028892072102532
1121 => 0.030257303493855
1122 => 0.031116644286886
1123 => 0.032602785330937
1124 => 0.032416713152823
1125 => 0.032995256955466
1126 => 0.032083605119563
1127 => 0.029990268229098
1128 => 0.02965898965321
1129 => 0.030322217751447
1130 => 0.031952699314112
1201 => 0.030270868084648
1202 => 0.030611100351947
1203 => 0.030513113436076
1204 => 0.030507892129747
1205 => 0.030707168155743
1206 => 0.030418107886496
1207 => 0.029240424348635
1208 => 0.029780149773904
1209 => 0.029571735867464
1210 => 0.029802986634945
1211 => 0.031050951651971
1212 => 0.030499196570174
1213 => 0.029917967412443
1214 => 0.030646957761313
1215 => 0.031575212983686
1216 => 0.031517124440105
1217 => 0.03140440838643
1218 => 0.032039782879375
1219 => 0.03308923539446
1220 => 0.033372898192246
1221 => 0.033582292270341
1222 => 0.033611164175968
1223 => 0.033908562747719
1224 => 0.032309375673324
1225 => 0.034847326630427
1226 => 0.035285560651238
1227 => 0.035203190818265
1228 => 0.03569026948869
1229 => 0.035546958587858
1230 => 0.035339323577343
1231 => 0.036111446874571
]
'min_raw' => 0.013310995043474
'max_raw' => 0.036111446874571
'avg_raw' => 0.024711220959023
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.01331'
'max' => '$0.036111'
'avg' => '$0.024711'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.004590618182698
'max_diff' => 0.016643819841029
'year' => 2032
]
7 => [
'items' => [
101 => 0.035226269821436
102 => 0.033969872435203
103 => 0.033280587980393
104 => 0.034188293353478
105 => 0.034742597350269
106 => 0.035108957031792
107 => 0.03521981725006
108 => 0.032433516013607
109 => 0.03093185418251
110 => 0.031894402199655
111 => 0.033068777212088
112 => 0.032302851960834
113 => 0.032332874780595
114 => 0.031240866653921
115 => 0.033165395700505
116 => 0.032885008006255
117 => 0.034339659860023
118 => 0.033992495520811
119 => 0.035178707638298
120 => 0.034866338233467
121 => 0.036162966168585
122 => 0.036680226156703
123 => 0.037548786181843
124 => 0.038187702472011
125 => 0.038562886338119
126 => 0.038540361706077
127 => 0.040027027099457
128 => 0.039150392457114
129 => 0.038049132739409
130 => 0.038029214425546
131 => 0.038599572438316
201 => 0.039794886363002
202 => 0.040104813872563
203 => 0.040278021069319
204 => 0.040012748218102
205 => 0.039061224142809
206 => 0.038650360871434
207 => 0.0390004282825
208 => 0.038572325920402
209 => 0.039311350701692
210 => 0.040326189573578
211 => 0.040116629359641
212 => 0.040817157735808
213 => 0.041542130907407
214 => 0.042578875103375
215 => 0.042849918426728
216 => 0.043297942733375
217 => 0.043759106913233
218 => 0.04390722041908
219 => 0.044190015058665
220 => 0.044188524591323
221 => 0.045040745271984
222 => 0.045980771073832
223 => 0.046335609052382
224 => 0.047151539418177
225 => 0.045754287260363
226 => 0.046814119072541
227 => 0.047770113896437
228 => 0.046630337456348
301 => 0.04820125374516
302 => 0.048262248864881
303 => 0.049183202755938
304 => 0.048249639553935
305 => 0.047695292704625
306 => 0.049295671287477
307 => 0.050070044072266
308 => 0.049836796687433
309 => 0.048061772572009
310 => 0.047028632402466
311 => 0.044324705300917
312 => 0.04752762375366
313 => 0.049087671901579
314 => 0.048057732424185
315 => 0.048577173988581
316 => 0.05141107873443
317 => 0.052490046179905
318 => 0.052265628493798
319 => 0.052303551388521
320 => 0.052885742637455
321 => 0.055467499253805
322 => 0.053920450844638
323 => 0.055103111386648
324 => 0.055730390273731
325 => 0.056313041862685
326 => 0.054882233709139
327 => 0.053020773324122
328 => 0.052431170681396
329 => 0.047955325241047
330 => 0.047722338048265
331 => 0.047591555276723
401 => 0.046766988401735
402 => 0.046119104705871
403 => 0.04560388353654
404 => 0.044251789330151
405 => 0.044708081433666
406 => 0.042553125472675
407 => 0.043931789929567
408 => 0.040492428182594
409 => 0.043356830846659
410 => 0.041797866705016
411 => 0.042844669197923
412 => 0.04284101700264
413 => 0.040913521724166
414 => 0.039801782673342
415 => 0.040510226066058
416 => 0.041269733619356
417 => 0.041392961164589
418 => 0.042377682532615
419 => 0.042652497099916
420 => 0.041819796131128
421 => 0.040421155055099
422 => 0.040746027477454
423 => 0.039795199144072
424 => 0.038128909062902
425 => 0.039325667689832
426 => 0.039734293702828
427 => 0.039914766229078
428 => 0.038276161308956
429 => 0.03776127606721
430 => 0.037487155484811
501 => 0.040209631736631
502 => 0.040358775131349
503 => 0.039595736437223
504 => 0.043044743688967
505 => 0.042264127124424
506 => 0.04313626708272
507 => 0.040716548710277
508 => 0.040808985210688
509 => 0.039663451755466
510 => 0.040304873945817
511 => 0.039851537415679
512 => 0.040253053371494
513 => 0.040493720379897
514 => 0.041639065864351
515 => 0.043369908852298
516 => 0.041467989442879
517 => 0.040639295920208
518 => 0.041153412720924
519 => 0.04252257351075
520 => 0.044596922193388
521 => 0.043368866023109
522 => 0.043913856497733
523 => 0.0440329126715
524 => 0.043127389516646
525 => 0.044630310123733
526 => 0.045435737486776
527 => 0.046261939301549
528 => 0.046979307187667
529 => 0.045931936128161
530 => 0.047052773296576
531 => 0.046149576393228
601 => 0.045339315400145
602 => 0.045340544231611
603 => 0.044832255674626
604 => 0.043847382546987
605 => 0.043665756831586
606 => 0.044610596739902
607 => 0.0453682688697
608 => 0.045430674375315
609 => 0.04585016059697
610 => 0.046098408221894
611 => 0.048531572422431
612 => 0.049510211192077
613 => 0.050706872154915
614 => 0.051173039040058
615 => 0.052576034234258
616 => 0.051443001669243
617 => 0.051197862946693
618 => 0.047794655521794
619 => 0.04835193054697
620 => 0.049244181631318
621 => 0.047809368413538
622 => 0.048719427151742
623 => 0.048899092024343
624 => 0.047760614009436
625 => 0.048368724307929
626 => 0.04675376364727
627 => 0.043405110581522
628 => 0.044634038131858
629 => 0.045538942461446
630 => 0.044247532409225
701 => 0.046562334943361
702 => 0.045210075090142
703 => 0.044781473636592
704 => 0.043109346558842
705 => 0.043898526173467
706 => 0.044965902902209
707 => 0.04430638817971
708 => 0.04567498025553
709 => 0.047613271625067
710 => 0.048994613482245
711 => 0.049100655757849
712 => 0.048212545486401
713 => 0.049635747864241
714 => 0.049646114339819
715 => 0.048040736243662
716 => 0.047057451098548
717 => 0.046834046644729
718 => 0.047392154771393
719 => 0.048069801069607
720 => 0.049138260411222
721 => 0.049783908014037
722 => 0.05146741453715
723 => 0.05192292313239
724 => 0.052423388976981
725 => 0.053092165683306
726 => 0.053895203590077
727 => 0.052138202367036
728 => 0.052208011301087
729 => 0.050571916089529
730 => 0.048823513716192
731 => 0.050150333176122
801 => 0.051884973120585
802 => 0.051487044800718
803 => 0.051442269735795
804 => 0.051517568975428
805 => 0.051217544017373
806 => 0.049860542251532
807 => 0.049179064460007
808 => 0.050058344674601
809 => 0.050525642976397
810 => 0.051250381889789
811 => 0.051161042521331
812 => 0.053027892130951
813 => 0.053753293438648
814 => 0.053567704742467
815 => 0.053601857529006
816 => 0.054915161946908
817 => 0.056375826561269
818 => 0.057743931724289
819 => 0.059135627057598
820 => 0.057457884014501
821 => 0.056606029566022
822 => 0.05748492591438
823 => 0.057018571140579
824 => 0.05969838400065
825 => 0.059883928428774
826 => 0.062563547507872
827 => 0.065106825097042
828 => 0.063509438010835
829 => 0.065015702085233
830 => 0.066644849489207
831 => 0.069787739151111
901 => 0.068729324481173
902 => 0.067918595431473
903 => 0.067152460396921
904 => 0.068746665783313
905 => 0.070797585544853
906 => 0.071239334018023
907 => 0.071955135305464
908 => 0.071202557775737
909 => 0.072108954516598
910 => 0.075308933302745
911 => 0.074444270787734
912 => 0.073216311014983
913 => 0.075742386937417
914 => 0.076656563993874
915 => 0.083072737334332
916 => 0.091173421215562
917 => 0.087819684896775
918 => 0.085737912539309
919 => 0.086227178423614
920 => 0.089185273951584
921 => 0.090135320349909
922 => 0.087552766738629
923 => 0.088464968333842
924 => 0.093491288809143
925 => 0.096187748480475
926 => 0.092525594063957
927 => 0.082421855271936
928 => 0.073105746672845
929 => 0.075576798183162
930 => 0.075296657627548
1001 => 0.08069681193201
1002 => 0.074423648872714
1003 => 0.074529272850209
1004 => 0.080041096626825
1005 => 0.078570636539806
1006 => 0.076188679521133
1007 => 0.073123137595113
1008 => 0.067456199816558
1009 => 0.06243683499184
1010 => 0.072280965303794
1011 => 0.071856468504353
1012 => 0.071241734231862
1013 => 0.072609758834096
1014 => 0.079252497981986
1015 => 0.079099361344179
1016 => 0.078125184185448
1017 => 0.078864088974342
1018 => 0.076059145939088
1019 => 0.076782043626638
1020 => 0.073104270953646
1021 => 0.074766777799193
1022 => 0.076183568911162
1023 => 0.076468010702841
1024 => 0.077108872583451
1025 => 0.071632777980332
1026 => 0.074091383687442
1027 => 0.075535584200168
1028 => 0.069010633743207
1029 => 0.075406606908949
1030 => 0.071537451356502
1031 => 0.070224201849236
1101 => 0.071992319303304
1102 => 0.071303282211903
1103 => 0.070710888582332
1104 => 0.070380322758417
1105 => 0.071678633076682
1106 => 0.071618065348519
1107 => 0.069493777676663
1108 => 0.06672273100577
1109 => 0.067652785225028
1110 => 0.067314887807867
1111 => 0.06609030397844
1112 => 0.066915525622658
1113 => 0.063281667136638
1114 => 0.05702980248297
1115 => 0.061159975772976
1116 => 0.061000968594075
1117 => 0.060920789964072
1118 => 0.064024501041907
1119 => 0.06372615083657
1120 => 0.063184642292432
1121 => 0.066080358749371
1122 => 0.065023383289705
1123 => 0.068280732601655
1124 => 0.07042623353065
1125 => 0.069882065095373
1126 => 0.071899919089199
1127 => 0.067674211795794
1128 => 0.069077822252713
1129 => 0.069367104422564
1130 => 0.066044626057783
1201 => 0.063774964619923
1202 => 0.063623604078052
1203 => 0.059688323923415
1204 => 0.061790518817551
1205 => 0.063640363329655
1206 => 0.06275443136209
1207 => 0.062473971767624
1208 => 0.063906779011487
1209 => 0.0640181204055
1210 => 0.061479524822586
1211 => 0.06200737923114
1212 => 0.064208619863307
1213 => 0.061951913615011
1214 => 0.057567502005445
1215 => 0.05648010730704
1216 => 0.056335028809612
1217 => 0.053385928145175
1218 => 0.056552772220367
1219 => 0.055170359915401
1220 => 0.059537383822947
1221 => 0.057042963187776
1222 => 0.056935433699729
1223 => 0.0567728871074
1224 => 0.054234474339705
1225 => 0.054790225411283
1226 => 0.056637626616486
1227 => 0.057296800178967
1228 => 0.05722804297595
1229 => 0.056628573342734
1230 => 0.056903007471039
1231 => 0.05601895952458
]
'min_raw' => 0.03093185418251
'max_raw' => 0.096187748480475
'avg_raw' => 0.063559801331492
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.030931'
'max' => '$0.096187'
'avg' => '$0.063559'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.017620859139035
'max_diff' => 0.060076301605904
'year' => 2033
]
8 => [
'items' => [
101 => 0.055706783794819
102 => 0.054721471320992
103 => 0.053273334183985
104 => 0.053474706534827
105 => 0.050605567940721
106 => 0.049042308957942
107 => 0.048609619474931
108 => 0.048031009014911
109 => 0.048674975066014
110 => 0.050597440031572
111 => 0.048278539409415
112 => 0.044302946944691
113 => 0.044541886825901
114 => 0.045078713797092
115 => 0.044078340287743
116 => 0.043131570716129
117 => 0.043954710044804
118 => 0.042270199108191
119 => 0.045282278895935
120 => 0.045200810578933
121 => 0.046323527658039
122 => 0.047025585688078
123 => 0.045407569222825
124 => 0.045000642457395
125 => 0.045232446436774
126 => 0.041401243007384
127 => 0.046010436601593
128 => 0.046050297099196
129 => 0.045708987318704
130 => 0.048163240614733
131 => 0.053342480570154
201 => 0.05139384216448
202 => 0.050639270475895
203 => 0.049204829144308
204 => 0.05111613704995
205 => 0.050969378423844
206 => 0.05030568026004
207 => 0.049904273539707
208 => 0.050643877729723
209 => 0.049812628395727
210 => 0.049663313174137
211 => 0.048758625387867
212 => 0.04843569300884
213 => 0.048196606731716
214 => 0.047933396232736
215 => 0.048513973005517
216 => 0.047198309657161
217 => 0.045611748635111
218 => 0.045479843252956
219 => 0.045844045610327
220 => 0.045682913178867
221 => 0.045479071812866
222 => 0.045089883132279
223 => 0.044974419164449
224 => 0.045349621044743
225 => 0.04492603999752
226 => 0.045551056906351
227 => 0.045381086890912
228 => 0.044431648201467
301 => 0.043248296067194
302 => 0.043237761751034
303 => 0.042982810474791
304 => 0.042658091692315
305 => 0.04256776235559
306 => 0.043885387546465
307 => 0.046612832258374
308 => 0.046077369599206
309 => 0.046464296246876
310 => 0.048367592398032
311 => 0.048972593010372
312 => 0.048543177905958
313 => 0.047955368025865
314 => 0.047981228677404
315 => 0.049989952979832
316 => 0.050115234650623
317 => 0.050431781015313
318 => 0.050838632549931
319 => 0.048612466481579
320 => 0.04787637645578
321 => 0.047527576164837
322 => 0.046453406271432
323 => 0.047611806409103
324 => 0.046936856256521
325 => 0.047027930091685
326 => 0.046968618137058
327 => 0.047001006474941
328 => 0.045281436958248
329 => 0.045907957712218
330 => 0.044866245443045
331 => 0.043471509652311
401 => 0.043466834008883
402 => 0.043808193617744
403 => 0.043605139564991
404 => 0.043058726330028
405 => 0.043136341751057
406 => 0.042456348992062
407 => 0.043218905183665
408 => 0.043240772566683
409 => 0.0429471468962
410 => 0.044121969921841
411 => 0.044603295874011
412 => 0.044410025167627
413 => 0.044589735486031
414 => 0.046099620490164
415 => 0.046345797626739
416 => 0.046455133249256
417 => 0.046308637999277
418 => 0.044617333412171
419 => 0.044692349962592
420 => 0.044141928289869
421 => 0.043676879978425
422 => 0.043695479472026
423 => 0.043934574756157
424 => 0.044978717884709
425 => 0.047176055543149
426 => 0.047259442901054
427 => 0.047360510811416
428 => 0.046949416827313
429 => 0.046825426948068
430 => 0.046989001603296
501 => 0.04781420609728
502 => 0.049936856096643
503 => 0.049186569819841
504 => 0.0485765753979
505 => 0.049111704959258
506 => 0.049029325957771
507 => 0.048333964281925
508 => 0.048314447795658
509 => 0.046979826419133
510 => 0.04648644728409
511 => 0.04607414275006
512 => 0.045623916962382
513 => 0.045357008023741
514 => 0.045767101461436
515 => 0.04586089468272
516 => 0.044964218213993
517 => 0.044842004524639
518 => 0.045574249885107
519 => 0.045252016002824
520 => 0.045583441541768
521 => 0.045660335109719
522 => 0.04564795347427
523 => 0.04531150429284
524 => 0.045525946968024
525 => 0.045018726112775
526 => 0.0444671996148
527 => 0.044115360070408
528 => 0.043808333403182
529 => 0.043978689642653
530 => 0.043371400754757
531 => 0.043177116817209
601 => 0.045453298614785
602 => 0.047134738581732
603 => 0.047110289778689
604 => 0.046961463977889
605 => 0.04674033902611
606 => 0.047798029429755
607 => 0.047429551242312
608 => 0.04769764991106
609 => 0.047765892274322
610 => 0.047972441354631
611 => 0.048046264897348
612 => 0.04782311887751
613 => 0.047074213579941
614 => 0.04520801278218
615 => 0.044339291273109
616 => 0.044052598705414
617 => 0.044063019435743
618 => 0.043775569173081
619 => 0.043860236158052
620 => 0.043746125450944
621 => 0.043530027378027
622 => 0.043965346195599
623 => 0.044015512634049
624 => 0.043913904020355
625 => 0.043937836527165
626 => 0.043096560603387
627 => 0.043160520984717
628 => 0.042804381453782
629 => 0.042737609585057
630 => 0.041837319863469
701 => 0.040242326122594
702 => 0.041126107484828
703 => 0.040058623877715
704 => 0.039654351660685
705 => 0.041568113458875
706 => 0.041376024853826
707 => 0.041047252660893
708 => 0.040560930065415
709 => 0.04038054828411
710 => 0.039284605682834
711 => 0.039219851547324
712 => 0.039763030293456
713 => 0.039512371991755
714 => 0.039160352804446
715 => 0.037885374991623
716 => 0.036451877799364
717 => 0.036495146068956
718 => 0.036951114854651
719 => 0.038276905594825
720 => 0.037758896216226
721 => 0.03738307446858
722 => 0.037312694352406
723 => 0.038193648857076
724 => 0.039440384046858
725 => 0.040025324303776
726 => 0.03944566627407
727 => 0.038779786340548
728 => 0.038820315366711
729 => 0.03908993682045
730 => 0.039118270222995
731 => 0.038684850839836
801 => 0.038806855857427
802 => 0.038621519079334
803 => 0.037484107614281
804 => 0.037463535447649
805 => 0.037184396330888
806 => 0.037175944109369
807 => 0.036701058837242
808 => 0.036634619104945
809 => 0.035691705573661
810 => 0.036312334115357
811 => 0.035896049074048
812 => 0.035268609325082
813 => 0.035160438475863
814 => 0.035157186729516
815 => 0.035801427058744
816 => 0.036304805792015
817 => 0.035903290530569
818 => 0.035811873288584
819 => 0.036787970265975
820 => 0.036663753028281
821 => 0.036556181701553
822 => 0.039328752584924
823 => 0.037134046384332
824 => 0.036177029211423
825 => 0.034992538727316
826 => 0.035378214801661
827 => 0.035459482417286
828 => 0.032610996323467
829 => 0.031455365869961
830 => 0.031058797047332
831 => 0.03083056608325
901 => 0.030934573799526
902 => 0.029894370849438
903 => 0.030593404435266
904 => 0.029692676606656
905 => 0.029541666654968
906 => 0.031152279591289
907 => 0.031376386972313
908 => 0.030420275260156
909 => 0.031034253759787
910 => 0.030811616620881
911 => 0.029708117000032
912 => 0.02966597143131
913 => 0.029112274111455
914 => 0.02824584502281
915 => 0.027849863679903
916 => 0.02764363315845
917 => 0.027728727890954
918 => 0.027685701390258
919 => 0.02740492436897
920 => 0.027701795200453
921 => 0.026943412901512
922 => 0.026641418959372
923 => 0.026505015301914
924 => 0.025831907360747
925 => 0.026903121427603
926 => 0.027114164093573
927 => 0.027325622578789
928 => 0.029166224323757
929 => 0.029074273062065
930 => 0.029905467685681
1001 => 0.029873168991076
1002 => 0.029636098819961
1003 => 0.028635938764175
1004 => 0.029034584736273
1005 => 0.027807614397496
1006 => 0.028726944001181
1007 => 0.028307400362181
1008 => 0.028585095874812
1009 => 0.028085774304307
1010 => 0.028362119477907
1011 => 0.027164210138841
1012 => 0.026045619253061
1013 => 0.026495772879203
1014 => 0.02698514135213
1015 => 0.028046216890204
1016 => 0.02741424905341
1017 => 0.027641528584871
1018 => 0.026880180200612
1019 => 0.02530930101547
1020 => 0.025318192021061
1021 => 0.02507654648189
1022 => 0.024867729455221
1023 => 0.027486838161663
1024 => 0.027161110592036
1025 => 0.026642106340004
1026 => 0.027336814155757
1027 => 0.027520505928738
1028 => 0.027525735375275
1029 => 0.028032576264644
1030 => 0.028303077338157
1031 => 0.028350754324782
1101 => 0.029148279415227
1102 => 0.029415599305934
1103 => 0.030516652103228
1104 => 0.028280127211955
1105 => 0.028234067453605
1106 => 0.027346590119393
1107 => 0.026783737963574
1108 => 0.027385129088043
1109 => 0.027917879526247
1110 => 0.027363144160544
1111 => 0.027435580888202
1112 => 0.02669089398329
1113 => 0.026957084511021
1114 => 0.027186363653238
1115 => 0.027059769187311
1116 => 0.026870251144576
1117 => 0.02787420006572
1118 => 0.027817553333082
1119 => 0.028752453649138
1120 => 0.029481275300867
1121 => 0.030787453993218
1122 => 0.029424388435114
1123 => 0.029374712908482
1124 => 0.029860299149517
1125 => 0.02941552496521
1126 => 0.029696606896609
1127 => 0.03074216734856
1128 => 0.030764258393337
1129 => 0.030394204930617
1130 => 0.03037168714378
1201 => 0.030442759959236
1202 => 0.030859035659286
1203 => 0.030713576138828
1204 => 0.030881905578486
1205 => 0.03109240412033
1206 => 0.03196311533893
1207 => 0.032173040865956
1208 => 0.03166303066919
1209 => 0.031709078879616
1210 => 0.031518321065933
1211 => 0.031334051408104
1212 => 0.031748262688482
1213 => 0.032505241944716
1214 => 0.032500532816051
1215 => 0.032676137289923
1216 => 0.032785537422359
1217 => 0.032315911968151
1218 => 0.032010203066067
1219 => 0.032127431311889
1220 => 0.032314881829857
1221 => 0.032066643635307
1222 => 0.030534402503428
1223 => 0.030999186582898
1224 => 0.030921823785294
1225 => 0.030811649753868
1226 => 0.031278993739844
1227 => 0.031233917272303
1228 => 0.0298837020647
1229 => 0.029970138461528
1230 => 0.029888958548278
1231 => 0.030151267455838
]
'min_raw' => 0.024867729455221
'max_raw' => 0.055706783794819
'avg_raw' => 0.04028725662502
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.024867'
'max' => '$0.0557067'
'avg' => '$0.040287'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.0060641247272893
'max_diff' => -0.040480964685656
'year' => 2034
]
9 => [
'items' => [
101 => 0.029401359423378
102 => 0.029632026083455
103 => 0.02977669805029
104 => 0.029861910950178
105 => 0.030169758375606
106 => 0.030133636033394
107 => 0.030167512960096
108 => 0.0306239694233
109 => 0.032932569577239
110 => 0.033058221589979
111 => 0.032439465124183
112 => 0.032686646127837
113 => 0.032212112653365
114 => 0.032530670153876
115 => 0.032748619105242
116 => 0.031763749703191
117 => 0.031705432128951
118 => 0.03122894008603
119 => 0.031484979920007
120 => 0.031077602134233
121 => 0.031177558393392
122 => 0.030898071978754
123 => 0.031401091879913
124 => 0.031963546290798
125 => 0.032105644486985
126 => 0.031731845309936
127 => 0.031461190071186
128 => 0.03098600863132
129 => 0.031776245955927
130 => 0.032007335431688
131 => 0.031775032141288
201 => 0.031721202392976
202 => 0.031619195117191
203 => 0.031742843718753
204 => 0.032006076868774
205 => 0.031881940976377
206 => 0.031963934920298
207 => 0.031651458557859
208 => 0.032316067433717
209 => 0.033371626275417
210 => 0.033375020069694
211 => 0.033250883508158
212 => 0.033200089501737
213 => 0.033327461147109
214 => 0.033396555039665
215 => 0.033808451584833
216 => 0.034250432988481
217 => 0.036312967347709
218 => 0.035733815953002
219 => 0.037563819137228
220 => 0.039011114059778
221 => 0.039445094524513
222 => 0.039045852917315
223 => 0.037680068945698
224 => 0.037613057068234
225 => 0.039654114940949
226 => 0.039077422605534
227 => 0.039008826887257
228 => 0.038279084339076
301 => 0.038710452565423
302 => 0.038616106006531
303 => 0.038467175347728
304 => 0.039290195874228
305 => 0.040830816828288
306 => 0.040590696604746
307 => 0.040411457996728
308 => 0.03962608659197
309 => 0.040099055596688
310 => 0.039930640393233
311 => 0.040654258986207
312 => 0.040225603361844
313 => 0.039073053593901
314 => 0.0392566009433
315 => 0.039228858130684
316 => 0.039799803248436
317 => 0.039628419695816
318 => 0.039195392741427
319 => 0.040825551153354
320 => 0.040719697733501
321 => 0.040869773681392
322 => 0.040935841754906
323 => 0.041928090453633
324 => 0.042334582997084
325 => 0.042426863921101
326 => 0.042813000398118
327 => 0.042417256493791
328 => 0.044000514271723
329 => 0.045053288308395
330 => 0.046276139527247
331 => 0.048063053829411
401 => 0.048734950136906
402 => 0.048613578082867
403 => 0.049968396112997
404 => 0.052402973997226
405 => 0.049105675880516
406 => 0.052577738803877
407 => 0.051478523769235
408 => 0.048872304696133
409 => 0.048704494913129
410 => 0.05046945672826
411 => 0.05438397216294
412 => 0.053403430444619
413 => 0.054385575977922
414 => 0.053239851043593
415 => 0.053182956143676
416 => 0.054329930675168
417 => 0.057009899186326
418 => 0.055736746603792
419 => 0.053911370186909
420 => 0.055259199727133
421 => 0.054091585043656
422 => 0.051460622367009
423 => 0.053402680642847
424 => 0.05210408158043
425 => 0.052483081824166
426 => 0.055212543901335
427 => 0.054884127802949
428 => 0.055309128644772
429 => 0.054559013283163
430 => 0.053858287253084
501 => 0.052550330081345
502 => 0.052163108444302
503 => 0.052270122574006
504 => 0.052163055413414
505 => 0.051431265396573
506 => 0.05127323541211
507 => 0.05100984518122
508 => 0.05109148082735
509 => 0.050596230135746
510 => 0.051530870514816
511 => 0.051704348005194
512 => 0.052384501330541
513 => 0.052455117105101
514 => 0.054349334434817
515 => 0.053306031360638
516 => 0.054005969137251
517 => 0.053943360114441
518 => 0.048928789366194
519 => 0.04961975297137
520 => 0.0506946755047
521 => 0.050210424360458
522 => 0.049525806539816
523 => 0.048972940942763
524 => 0.048135293029817
525 => 0.049314266381685
526 => 0.050864490969553
527 => 0.052494433358909
528 => 0.054452702341666
529 => 0.054015639501478
530 => 0.05245782488242
531 => 0.052527707308247
601 => 0.052959692966986
602 => 0.052400232288883
603 => 0.052235236412941
604 => 0.052937025067316
605 => 0.052941857900082
606 => 0.052298130776843
607 => 0.051582745880182
608 => 0.051579748391344
609 => 0.051452452558782
610 => 0.053262496689417
611 => 0.054257837945163
612 => 0.054371952216061
613 => 0.054250157145516
614 => 0.054297031234296
615 => 0.053717864088425
616 => 0.055041668437203
617 => 0.056256522218323
618 => 0.055930915453418
619 => 0.055442784625095
620 => 0.05505396490877
621 => 0.05583932188512
622 => 0.055804351175229
623 => 0.056245911530361
624 => 0.056225879802076
625 => 0.05607739966257
626 => 0.055930920756111
627 => 0.056511693062996
628 => 0.056344439965531
629 => 0.056176927077809
630 => 0.055840954336543
701 => 0.055886618611997
702 => 0.055398572066344
703 => 0.055172779402835
704 => 0.051777399496003
705 => 0.050870043037659
706 => 0.051155515850398
707 => 0.05124950091265
708 => 0.05085461821917
709 => 0.05142077856458
710 => 0.05133254307446
711 => 0.051675815750481
712 => 0.05146135388567
713 => 0.051470155475409
714 => 0.052100842091728
715 => 0.052283933099578
716 => 0.05219081153526
717 => 0.052256030686888
718 => 0.053758978508873
719 => 0.053545307390152
720 => 0.053431798866955
721 => 0.053463241503612
722 => 0.053847276895694
723 => 0.053954785837922
724 => 0.053499262895183
725 => 0.053714090148325
726 => 0.054628797326568
727 => 0.05494889307101
728 => 0.055970485032596
729 => 0.055536494609965
730 => 0.05633310281337
731 => 0.058781604846886
801 => 0.060737637694713
802 => 0.058938789051375
803 => 0.062530794277127
804 => 0.065327685587922
805 => 0.065220336240947
806 => 0.064732633547649
807 => 0.061548447149512
808 => 0.058618311352402
809 => 0.061069494366822
810 => 0.061075742936416
811 => 0.060865184141631
812 => 0.0595574215509
813 => 0.060819676838213
814 => 0.060919870079082
815 => 0.060863788507729
816 => 0.059861129995627
817 => 0.058330255769915
818 => 0.058629384929224
819 => 0.059119364594241
820 => 0.058191730867897
821 => 0.05789529568502
822 => 0.058446425089089
823 => 0.06022227886137
824 => 0.059886563992541
825 => 0.059877797120585
826 => 0.061314127694697
827 => 0.060286024983171
828 => 0.058633157905867
829 => 0.058215787170209
830 => 0.056734402233241
831 => 0.057757600085717
901 => 0.057794423154864
902 => 0.057234028147891
903 => 0.058678630872169
904 => 0.058665318603748
905 => 0.06003675388971
906 => 0.0626584230689
907 => 0.061883066488108
908 => 0.060981411143204
909 => 0.061079446079386
910 => 0.062154647358462
911 => 0.061504556120675
912 => 0.06173833346238
913 => 0.062154293508456
914 => 0.062405252531961
915 => 0.061043336937944
916 => 0.060725809265025
917 => 0.060076259083302
918 => 0.059906803565319
919 => 0.060435848635023
920 => 0.060296463950594
921 => 0.057791328318488
922 => 0.05752952770649
923 => 0.057537556757494
924 => 0.056879246670684
925 => 0.055875165775775
926 => 0.058513830417042
927 => 0.05830190871826
928 => 0.058067963564242
929 => 0.058096620510737
930 => 0.059241975398868
1001 => 0.058577611721944
1002 => 0.060343931444113
1003 => 0.059980829209666
1004 => 0.059608414773016
1005 => 0.059556935753849
1006 => 0.059413587968645
1007 => 0.05892199507582
1008 => 0.05832836711758
1009 => 0.057936402520377
1010 => 0.053443268818398
1011 => 0.054277168298129
1012 => 0.05523649363723
1013 => 0.055567648900033
1014 => 0.055001184907762
1015 => 0.058944362526874
1016 => 0.05966481907529
1017 => 0.057482509195919
1018 => 0.057074288120613
1019 => 0.058971125432609
1020 => 0.057827100654545
1021 => 0.058342254942058
1022 => 0.057228773146785
1023 => 0.059491282190207
1024 => 0.059474045662036
1025 => 0.05859387854306
1026 => 0.059337789764894
1027 => 0.059208516883344
1028 => 0.058214810373777
1029 => 0.059522784459003
1030 => 0.05952343319783
1031 => 0.0586762914823
1101 => 0.057687015421727
1102 => 0.057510156227755
1103 => 0.057376916582786
1104 => 0.058309486157134
1105 => 0.059145625121425
1106 => 0.060701472437543
1107 => 0.061092649418836
1108 => 0.062619439218947
1109 => 0.061710310231027
1110 => 0.06211331533618
1111 => 0.062550834386377
1112 => 0.062760597108272
1113 => 0.062418800009433
1114 => 0.064790533020758
1115 => 0.064990779954936
1116 => 0.065057921019837
1117 => 0.064258185992823
1118 => 0.064968537877125
1119 => 0.064636187754842
1120 => 0.065500870443499
1121 => 0.065636463729903
1122 => 0.06552162104019
1123 => 0.065564660489489
1124 => 0.063540804766697
1125 => 0.06343585717078
1126 => 0.06200488925372
1127 => 0.062588019257103
1128 => 0.061497885665928
1129 => 0.06184357825731
1130 => 0.061995956257711
1201 => 0.061916362637677
1202 => 0.062620988552573
1203 => 0.062021912579347
1204 => 0.060440852588795
1205 => 0.058859361839505
1206 => 0.058839507511402
1207 => 0.058423128912745
1208 => 0.05812216344946
1209 => 0.058180140075012
1210 => 0.058384457265468
1211 => 0.058110288162922
1212 => 0.058168796041676
1213 => 0.059140416664957
1214 => 0.059335268251675
1215 => 0.058673086426579
1216 => 0.056014330846436
1217 => 0.055361865558085
1218 => 0.055830844668402
1219 => 0.055606702859794
1220 => 0.04487894913307
1221 => 0.047399275744144
1222 => 0.045901783254049
1223 => 0.046591896689801
1224 => 0.045063344631214
1225 => 0.045792849791849
1226 => 0.045658136825943
1227 => 0.049710747434663
1228 => 0.049647471494191
1229 => 0.049677758338407
1230 => 0.04823208835205
1231 => 0.050535079894534
]
'min_raw' => 0.029401359423378
'max_raw' => 0.065636463729903
'avg_raw' => 0.04751891157664
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.0294013'
'max' => '$0.065636'
'avg' => '$0.047518'
'bar_min_pct' => 61.631153054957
'bar_max_pct' => 60.119598047091
'min_diff' => 0.0045336299681571
'max_diff' => 0.0099296799350846
'year' => 2035
]
10 => [
'items' => [
101 => 0.051669616341259
102 => 0.05145964383968
103 => 0.051512489394648
104 => 0.050604427674606
105 => 0.049686550360781
106 => 0.048668483159444
107 => 0.05055992618262
108 => 0.050349630006452
109 => 0.050831973772406
110 => 0.052058709776075
111 => 0.052239351312532
112 => 0.052482135369416
113 => 0.052395114567569
114 => 0.05446830311344
115 => 0.054217226301196
116 => 0.054822249178974
117 => 0.053577671216189
118 => 0.052169313114873
119 => 0.052436995947238
120 => 0.052411215937912
121 => 0.052083006830273
122 => 0.051786714323117
123 => 0.051293470778599
124 => 0.052854166339764
125 => 0.052790804950145
126 => 0.053816552198511
127 => 0.053635241408785
128 => 0.05242440358072
129 => 0.052467648890629
130 => 0.052758494382754
131 => 0.053765113951814
201 => 0.054063947175797
202 => 0.053925515720003
203 => 0.054253172707846
204 => 0.054512139431385
205 => 0.054285694941201
206 => 0.057491671393048
207 => 0.056160326450343
208 => 0.056809214711979
209 => 0.056963970738907
210 => 0.056567566430098
211 => 0.056653532330505
212 => 0.056783747245315
213 => 0.057574386709349
214 => 0.059649253436345
215 => 0.060568197785636
216 => 0.063332887200394
217 => 0.06049189224975
218 => 0.060323319366585
219 => 0.060821323415804
220 => 0.062444488774363
221 => 0.063759911841305
222 => 0.064196313561187
223 => 0.064253991252677
224 => 0.065072709890613
225 => 0.065541984145679
226 => 0.06497329591353
227 => 0.064491392180922
228 => 0.062765272826817
229 => 0.062965075842121
301 => 0.064341520482454
302 => 0.066285829609109
303 => 0.067954249110665
304 => 0.06737002675151
305 => 0.071827230955151
306 => 0.072269144545895
307 => 0.072208086376431
308 => 0.073214831301707
309 => 0.071216647645073
310 => 0.070362385418877
311 => 0.064595585237752
312 => 0.066215820863925
313 => 0.068570928499671
314 => 0.06825922117288
315 => 0.066548879055594
316 => 0.067952951662798
317 => 0.067488721349447
318 => 0.067122563640373
319 => 0.068800003088805
320 => 0.066955589509839
321 => 0.068552529063318
322 => 0.066504437567757
323 => 0.067372695430035
324 => 0.066879830274499
325 => 0.067198774433412
326 => 0.065334233397502
327 => 0.066340294481304
328 => 0.065292377948794
329 => 0.065291881099915
330 => 0.065268748284379
331 => 0.066501617437704
401 => 0.066541821256532
402 => 0.065630729089463
403 => 0.065499426474254
404 => 0.065984921061169
405 => 0.065416534051126
406 => 0.06568247875574
407 => 0.065424589245306
408 => 0.065366532884523
409 => 0.064903929924331
410 => 0.064704627849547
411 => 0.064782779328452
412 => 0.064516008041101
413 => 0.064355268690934
414 => 0.06523677318188
415 => 0.064765820892157
416 => 0.065164592989073
417 => 0.064710141855586
418 => 0.063134816231987
419 => 0.062228829807089
420 => 0.059253185736872
421 => 0.06009707470391
422 => 0.060656573962123
423 => 0.060471659460622
424 => 0.06086892736226
425 => 0.060893316384944
426 => 0.060764160540455
427 => 0.060614614618424
428 => 0.060541823933988
429 => 0.061084346059487
430 => 0.061399298413794
501 => 0.060712727197819
502 => 0.060551873168069
503 => 0.061246034574054
504 => 0.061669472630702
505 => 0.064795901331695
506 => 0.064564285395293
507 => 0.065145595943329
508 => 0.065080149296557
509 => 0.065689455360931
510 => 0.066685413264225
511 => 0.064660352372618
512 => 0.065011832922064
513 => 0.064925658008211
514 => 0.065866493121381
515 => 0.065869430305909
516 => 0.065305352657364
517 => 0.065611148301755
518 => 0.06544046156212
519 => 0.065748915570336
520 => 0.064561192023253
521 => 0.066007711096766
522 => 0.066827794199818
523 => 0.0668391810545
524 => 0.067227893936764
525 => 0.067622848737877
526 => 0.068380930085299
527 => 0.067601706260547
528 => 0.066199958455727
529 => 0.066301160119617
530 => 0.065479315894531
531 => 0.065493131244433
601 => 0.065419383823928
602 => 0.065640705384311
603 => 0.064609759659766
604 => 0.064851720560692
605 => 0.064512973882475
606 => 0.065011096552941
607 => 0.064475198902147
608 => 0.064925616452058
609 => 0.065120001735021
610 => 0.065837287613972
611 => 0.064369255194618
612 => 0.061375837714498
613 => 0.062005090360498
614 => 0.061074376270335
615 => 0.061160517402858
616 => 0.061334536199814
617 => 0.060770484343472
618 => 0.060878087662346
619 => 0.060874243314602
620 => 0.060841114802637
621 => 0.060694383130087
622 => 0.060481593174911
623 => 0.061329282863036
624 => 0.061473321859366
625 => 0.061793502705551
626 => 0.062746143723055
627 => 0.062650952420584
628 => 0.062806213384363
629 => 0.062467279572186
630 => 0.061176239570319
701 => 0.061246349253802
702 => 0.060372080377347
703 => 0.061771145684755
704 => 0.061439828553201
705 => 0.061226226243143
706 => 0.061167942873832
707 => 0.062122945304157
708 => 0.062408696999139
709 => 0.062230635718909
710 => 0.06186542683828
711 => 0.062566735853401
712 => 0.062754376559996
713 => 0.062796382394279
714 => 0.064038967506408
715 => 0.062865829098649
716 => 0.063148215173389
717 => 0.065351310717856
718 => 0.063353407065428
719 => 0.064411741188688
720 => 0.064359941240659
721 => 0.064901349166045
722 => 0.064315529988264
723 => 0.064322791919071
724 => 0.064803525478663
725 => 0.06412842189497
726 => 0.063961256753644
727 => 0.063730319308163
728 => 0.064234562771695
729 => 0.064536833923112
730 => 0.066972917409838
731 => 0.068546738441167
801 => 0.068478414719539
802 => 0.069102765638568
803 => 0.068821489831146
804 => 0.067913176052173
805 => 0.069463556915816
806 => 0.068972951539869
807 => 0.069013396450976
808 => 0.069011891089365
809 => 0.069338100774903
810 => 0.069106951316021
811 => 0.068651332005558
812 => 0.068953793366706
813 => 0.069851995477401
814 => 0.072640042389203
815 => 0.074200270377757
816 => 0.072546114705212
817 => 0.073687129138106
818 => 0.073002927063382
819 => 0.072878587193157
820 => 0.073595228577318
821 => 0.074313124347355
822 => 0.074267397490353
823 => 0.073746242025661
824 => 0.073451854527488
825 => 0.075681055290706
826 => 0.077323492439601
827 => 0.077211489237084
828 => 0.077705834947599
829 => 0.079157249243205
830 => 0.079289948376679
831 => 0.079273231335916
901 => 0.078944322687878
902 => 0.080373428551866
903 => 0.08156561380633
904 => 0.078868189838942
905 => 0.079895333573851
906 => 0.080356451488955
907 => 0.08103350939585
908 => 0.082175819572861
909 => 0.083416671407906
910 => 0.08359214146263
911 => 0.083467637061788
912 => 0.082649261920688
913 => 0.084007016805036
914 => 0.084802357773016
915 => 0.085275965118394
916 => 0.086476954545525
917 => 0.080359299196216
918 => 0.076028918672775
919 => 0.075352667222587
920 => 0.07672785113882
921 => 0.077090476170644
922 => 0.076944302475009
923 => 0.072070065494904
924 => 0.075327005373634
925 => 0.078831198831864
926 => 0.078965809173872
927 => 0.080720081688291
928 => 0.081291344729047
929 => 0.082703764040909
930 => 0.082615416828392
1001 => 0.08295931845433
1002 => 0.082880261426073
1003 => 0.085496470781323
1004 => 0.088382538211013
1005 => 0.088282602873055
1006 => 0.087867696533638
1007 => 0.088483903199717
1008 => 0.091462634076938
1009 => 0.091188400270954
1010 => 0.091454795054288
1011 => 0.094966886632448
1012 => 0.099533105273257
1013 => 0.097411638273745
1014 => 0.102014611227
1015 => 0.10491193870796
1016 => 0.10992256699704
1017 => 0.10929521165738
1018 => 0.11124581248063
1019 => 0.10817211466639
1020 => 0.10111428318807
1021 => 0.099997354340328
1022 => 0.10223347417864
1023 => 0.10773075660375
1024 => 0.10206034519191
1025 => 0.10320746203537
1026 => 0.10287709230728
1027 => 0.10285948830845
1028 => 0.10353136134311
1029 => 0.1025567744638
1030 => 0.098586132192657
1031 => 0.10040585414638
1101 => 0.099703172109821
1102 => 0.1004828502178
1103 => 0.10469045140284
1104 => 0.10283017062225
1105 => 0.10087051593683
1106 => 0.10332835779453
1107 => 0.10645803508547
1108 => 0.10626218550517
1109 => 0.10588215546062
1110 => 0.10802436492402
1111 => 0.11156266734906
1112 => 0.1125190562765
1113 => 0.11322504303023
1114 => 0.11332238667582
1115 => 0.11432508672419
1116 => 0.10893331585118
1117 => 0.11749019469713
1118 => 0.11896773129482
1119 => 0.11869001565207
1120 => 0.12033223539616
1121 => 0.11984905268836
1122 => 0.11914899675379
1123 => 0.12175226435833
1124 => 0.11876782812259
1125 => 0.11453179661604
1126 => 0.11220782595235
1127 => 0.11526821799167
1128 => 0.11713709261712
1129 => 0.11837229986179
1130 => 0.11874607282769
1201 => 0.10935186367565
1202 => 0.10428890596943
1203 => 0.10753420381219
1204 => 0.11149369115885
1205 => 0.10891132069905
1206 => 0.109012544732
1207 => 0.10533076309135
1208 => 0.11181944713824
1209 => 0.11087410045103
1210 => 0.11577856073656
1211 => 0.11460807192866
1212 => 0.11860746890146
1213 => 0.11755429364413
1214 => 0.12192596525505
1215 => 0.12366994341894
1216 => 0.12659835418462
1217 => 0.12875250506463
1218 => 0.13001746366372
1219 => 0.12994152029417
1220 => 0.13495391646361
1221 => 0.13199828156227
1222 => 0.12828530753653
1223 => 0.12821815155069
1224 => 0.13014115341187
1225 => 0.1341712377631
1226 => 0.13521618000004
1227 => 0.13580016015684
1228 => 0.1349057742182
1229 => 0.13169764436506
1230 => 0.13031239016006
1231 => 0.1314926668774
]
'min_raw' => 0.048668483159444
'max_raw' => 0.13580016015684
'avg_raw' => 0.092234321658142
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.048668'
'max' => '$0.13580016'
'avg' => '$0.092234'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.019267123736066
'max_diff' => 0.070163696426936
'year' => 2036
]
11 => [
'items' => [
101 => 0.13004928987443
102 => 0.13254096352161
103 => 0.13596256363196
104 => 0.13525601673965
105 => 0.13761789706923
106 => 0.14006219473328
107 => 0.14355765017316
108 => 0.14447149166148
109 => 0.1459820368914
110 => 0.14753688412125
111 => 0.14803625914717
112 => 0.14898972101862
113 => 0.14898469580391
114 => 0.15185801732891
115 => 0.15502737995034
116 => 0.15622374096902
117 => 0.15897470716374
118 => 0.15426377396064
119 => 0.15783707091049
120 => 0.16106027420468
121 => 0.15721743836027
122 => 0.16251389230588
123 => 0.16271954161056
124 => 0.1658246019532
125 => 0.16267702843835
126 => 0.16080800933264
127 => 0.16620379745959
128 => 0.16881464936849
129 => 0.16802823952571
130 => 0.16204362179233
131 => 0.15856031757917
201 => 0.14944383857414
202 => 0.16024270175819
203 => 0.16550251300798
204 => 0.16203000015187
205 => 0.16378133365248
206 => 0.17333604136002
207 => 0.17697385543355
208 => 0.17621721553649
209 => 0.17634507522374
210 => 0.17830797366682
211 => 0.18701254635133
212 => 0.18179656462836
213 => 0.18578398721647
214 => 0.18789890177948
215 => 0.18986335229107
216 => 0.18503928270556
217 => 0.17876323905446
218 => 0.17677535257977
219 => 0.16168472718408
220 => 0.16089919459697
221 => 0.16045825135175
222 => 0.15767816656331
223 => 0.15549378144891
224 => 0.15375667730492
225 => 0.14919799728787
226 => 0.15073641797217
227 => 0.14347083349547
228 => 0.14811909696716
301 => 0.13652304870867
302 => 0.14618058227677
303 => 0.14092442582982
304 => 0.14445379352008
305 => 0.14444147988869
306 => 0.13794279498389
307 => 0.1341944891549
308 => 0.13658305551538
309 => 0.13914378825845
310 => 0.13955925853067
311 => 0.14287931537402
312 => 0.14380587187462
313 => 0.14099836242103
314 => 0.13628274638319
315 => 0.13737807643703
316 => 0.13417229232632
317 => 0.128554278981
318 => 0.13258923424671
319 => 0.13396694537888
320 => 0.13457542110132
321 => 0.12905075020939
322 => 0.1273147786687
323 => 0.12639056198666
324 => 0.13556958074689
325 => 0.13607242811504
326 => 0.13349978988414
327 => 0.14512835863538
328 => 0.14249645538712
329 => 0.14543693614738
330 => 0.13727868671535
331 => 0.13759034283019
401 => 0.13372809680732
402 => 0.13589069650476
403 => 0.13436224074245
404 => 0.13571597982043
405 => 0.1365274054421
406 => 0.1403890177084
407 => 0.14622467568586
408 => 0.13981222160924
409 => 0.13701822354002
410 => 0.13875160422812
411 => 0.14336782542277
412 => 0.15036163683269
413 => 0.14622115971444
414 => 0.14805863314966
415 => 0.14846003935175
416 => 0.14540700481355
417 => 0.15047420657091
418 => 0.15318976115855
419 => 0.15597535826063
420 => 0.1583940141737
421 => 0.15486272952147
422 => 0.15864171028913
423 => 0.1555965188703
424 => 0.15286466736151
425 => 0.15286881045258
426 => 0.15115508009514
427 => 0.14783451158366
428 => 0.14722214780348
429 => 0.15040774152098
430 => 0.15296228600557
501 => 0.15317269052477
502 => 0.15458701760867
503 => 0.1554240018082
504 => 0.16362758478841
505 => 0.16692713372665
506 => 0.17096175971106
507 => 0.17253347391105
508 => 0.17726377016229
509 => 0.17344367176353
510 => 0.17261716944542
511 => 0.16114301800802
512 => 0.1630219096631
513 => 0.16603019648896
514 => 0.16119262354975
515 => 0.16426095012388
516 => 0.16486670278566
517 => 0.1610282446724
518 => 0.16307853100067
519 => 0.15763357838031
520 => 0.14634336077365
521 => 0.15048677581059
522 => 0.1535377239362
523 => 0.14918364478176
524 => 0.15698816313995
525 => 0.15242892463306
526 => 0.15098386490842
527 => 0.1453461717216
528 => 0.14800694589107
529 => 0.15160568105389
530 => 0.14938208112113
531 => 0.15399638485681
601 => 0.16053146953638
602 => 0.16518876005007
603 => 0.1655462889859
604 => 0.16255196319983
605 => 0.16735038938154
606 => 0.16738534067771
607 => 0.1619726963426
608 => 0.15865748182507
609 => 0.15790425811142
610 => 0.15978595862633
611 => 0.16207069043252
612 => 0.16567307570022
613 => 0.16784992167079
614 => 0.17352598145213
615 => 0.17506176048358
616 => 0.17674911602003
617 => 0.1790039433779
618 => 0.1817114417469
619 => 0.17578758945351
620 => 0.17602295514856
621 => 0.17050674591428
622 => 0.16461188524301
623 => 0.16908534968774
624 => 0.1749338093692
625 => 0.1735921662563
626 => 0.17344120399881
627 => 0.17369508064246
628 => 0.1726835255493
629 => 0.16810829935293
630 => 0.16581064939955
701 => 0.16877520403243
702 => 0.17035073288267
703 => 0.17279424072882
704 => 0.17249302681059
705 => 0.1787872406087
706 => 0.1812329817635
707 => 0.18060725651694
708 => 0.18072240502123
709 => 0.18515030255817
710 => 0.19007503528583
711 => 0.19468769736101
712 => 0.19937989534233
713 => 0.19372326753625
714 => 0.19085118078862
715 => 0.19381444118969
716 => 0.19224209350997
717 => 0.20127726966626
718 => 0.20190284565998
719 => 0.21093736847019
720 => 0.21951220642804
721 => 0.2141265043409
722 => 0.21920497883173
723 => 0.22469776304766
724 => 0.23529423497232
725 => 0.23172571601648
726 => 0.22899228642212
727 => 0.22640920866328
728 => 0.23178418342737
729 => 0.23869900259405
730 => 0.24018838841324
731 => 0.24260176242949
801 => 0.24006439474473
802 => 0.24312037463914
803 => 0.25390932653202
804 => 0.25099405649385
805 => 0.24685390438661
806 => 0.25537074572408
807 => 0.25845295749573
808 => 0.28008553387601
809 => 0.30739755515326
810 => 0.29609019900408
811 => 0.28907135815618
812 => 0.29072095224456
813 => 0.30069437784475
814 => 0.30389752560682
815 => 0.29519026579826
816 => 0.2982658171644
817 => 0.31521240757337
818 => 0.32430370961606
819 => 0.31195650031732
820 => 0.2778910395595
821 => 0.24648112898774
822 => 0.25481245167808
823 => 0.25386793823604
824 => 0.27207493550026
825 => 0.25092452826759
826 => 0.25128064688214
827 => 0.26986414556825
828 => 0.26490638672062
829 => 0.25687545232924
830 => 0.24653976369636
831 => 0.227433287323
901 => 0.2105101483756
902 => 0.24370032101759
903 => 0.24226910042085
904 => 0.24019648090177
905 => 0.24480887136063
906 => 0.26720533017898
907 => 0.26668901931295
908 => 0.26340451300742
909 => 0.26589578209185
910 => 0.25643872081363
911 => 0.25887602083831
912 => 0.24647615349743
913 => 0.25208141139971
914 => 0.25685822155091
915 => 0.25781723691065
916 => 0.25997794748467
917 => 0.24151491220154
918 => 0.24980427299743
919 => 0.25467349585694
920 => 0.23267416983381
921 => 0.25423863991469
922 => 0.24119351183381
923 => 0.2367657994319
924 => 0.24272713087431
925 => 0.24040399421362
926 => 0.23840669773192
927 => 0.23729217197722
928 => 0.24166951586038
929 => 0.24146530753618
930 => 0.23430312333749
1001 => 0.22496034601827
1002 => 0.22809608875281
1003 => 0.22695684401961
1004 => 0.22282807414098
1005 => 0.2256103665296
1006 => 0.21335855893609
1007 => 0.19227996076499
1008 => 0.20620512837174
1009 => 0.20566902456655
1010 => 0.2053986967176
1011 => 0.21586307531071
1012 => 0.21485716676327
1013 => 0.21303143289978
1014 => 0.22279454310682
1015 => 0.21923087654889
1016 => 0.230213257175
1017 => 0.23744696335119
1018 => 0.23561226147903
1019 => 0.24241559710128
1020 => 0.2281683299321
1021 => 0.23290070058456
1022 => 0.23387603561725
1023 => 0.22267406784236
1024 => 0.21502174584191
1025 => 0.21451142320734
1026 => 0.20124335141349
1027 => 0.20833104826963
1028 => 0.21456792819421
1029 => 0.21158094671177
1030 => 0.21063535760796
1031 => 0.21546616726606
1101 => 0.21584156254958
1102 => 0.2072825103027
1103 => 0.20906220829476
1104 => 0.21648384477182
1105 => 0.20887520209749
1106 => 0.194092852246
1107 => 0.19042662510085
1108 => 0.18993748281772
1109 => 0.17999438402793
1110 => 0.19067161992944
1111 => 0.1860107203263
1112 => 0.20073444632646
1113 => 0.1923243330001
1114 => 0.19196178982368
1115 => 0.191413752639
1116 => 0.18285531676639
1117 => 0.18472907030552
1118 => 0.1909577124503
1119 => 0.19318016213823
1120 => 0.19294834242778
1121 => 0.19092718870576
1122 => 0.19185246252972
1123 => 0.18887183315598
1124 => 0.18781931088767
1125 => 0.18449726108985
1126 => 0.17961476562672
1127 => 0.18029370656695
1128 => 0.17062020548007
1129 => 0.16534956867637
1130 => 0.16389072587498
1201 => 0.16193990031173
1202 => 0.1641110768133
1203 => 0.1705928016669
1204 => 0.16277446631882
1205 => 0.14937047875701
1206 => 0.15017608124875
1207 => 0.15198603086219
1208 => 0.14861320173157
1209 => 0.14542110201953
1210 => 0.14819637373591
1211 => 0.14251692750432
1212 => 0.1526723648054
1213 => 0.15239768868669
1214 => 0.1561830077045
1215 => 0.1585500453689
1216 => 0.15309478989
1217 => 0.15172280788963
1218 => 0.15250435119015
1219 => 0.13958718134188
1220 => 0.15512739934837
1221 => 0.15526179179901
1222 => 0.15411104204459
1223 => 0.16238572838265
1224 => 0.17984789749534
1225 => 0.17327792706102
1226 => 0.17073383593044
1227 => 0.1658975168315
1228 => 0.17234162487863
1229 => 0.17184681792435
1230 => 0.16960911322716
1231 => 0.16825574244424
]
'min_raw' => 0.12639056198666
'max_raw' => 0.32430370961606
'avg_raw' => 0.22534713580136
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.12639'
'max' => '$0.3243037'
'avg' => '$0.225347'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.077722078827212
'max_diff' => 0.18850354945923
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0039672553175009
]
1 => [
'year' => 2028
'avg' => 0.0068089618272793
]
2 => [
'year' => 2029
'avg' => 0.018600856516157
]
3 => [
'year' => 2030
'avg' => 0.014350533100989
]
4 => [
'year' => 2031
'avg' => 0.014094001947159
]
5 => [
'year' => 2032
'avg' => 0.024711220959023
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0039672553175009
'min' => '$0.003967'
'max_raw' => 0.024711220959023
'max' => '$0.024711'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.024711220959023
]
1 => [
'year' => 2033
'avg' => 0.063559801331492
]
2 => [
'year' => 2034
'avg' => 0.04028725662502
]
3 => [
'year' => 2035
'avg' => 0.04751891157664
]
4 => [
'year' => 2036
'avg' => 0.092234321658142
]
5 => [
'year' => 2037
'avg' => 0.22534713580136
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.024711220959023
'min' => '$0.024711'
'max_raw' => 0.22534713580136
'max' => '$0.225347'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 0.22534713580136
]
]
]
]
'prediction_2025_max_price' => '$0.006783'
'last_price' => 0.00657725
'sma_50day_nextmonth' => '$0.00613'
'sma_200day_nextmonth' => '$0.007985'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.006482'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.006424'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.00633'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.006256'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.006349'
'daily_sma50_action' => 'BUY'
'daily_sma100' => '$0.007215'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.007986'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.006498'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.006446'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.006368'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.00633'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.006529'
'daily_ema50_action' => 'BUY'
'daily_ema100' => '$0.007031'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.0077033'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.007313'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '$0.006553'
'weekly_sma50_action' => 'BUY'
'weekly_sma100' => '$0.019425'
'weekly_sma100_action' => 'SELL'
'weekly_sma200' => '$0.110265'
'weekly_sma200_action' => 'SELL'
'weekly_ema3' => '$0.006452'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.006452'
'weekly_ema5_action' => 'BUY'
'weekly_ema10' => '$0.006637'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.0069088'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.010824'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.058399'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.222621'
'weekly_ema200_action' => 'SELL'
'rsi_14' => '62.15'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 114.41
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0
'momentum_10_action' => 'BUY'
'vwma_10' => '0.006346'
'vwma_10_action' => 'BUY'
'hma_9' => '0.006520'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 235.02
'cci_20_action' => 'SELL'
'adx_14' => 12.75
'adx_14_action' => 'NEUTRAL'
'ao_5_34' => '0.000088'
'ao_5_34_action' => 'BUY'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 81.08
'ultimate_oscillator_action' => 'SELL'
'ichimoku_cloud' => '-0.000638'
'ichimoku_cloud_action' => 'NEUTRAL'
'sell_signals' => 13
'buy_signals' => 22
'sell_pct' => 37.14
'buy_pct' => 62.86
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767696668
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Liquidus para 2026
La previsión del precio de Liquidus para 2026 sugiere que el precio medio podría oscilar entre $0.002272 en el extremo inferior y $0.006783 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Liquidus podría potencialmente ganar 3.13% para 2026 si LIQ alcanza el objetivo de precio previsto.
Predicción de precio de Liquidus 2027-2032
La predicción del precio de LIQ para 2027-2032 está actualmente dentro de un rango de precios de $0.003967 en el extremo inferior y $0.024711 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Liquidus alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Liquidus | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.002187 | $0.003967 | $0.005746 |
| 2028 | $0.003948 | $0.0068089 | $0.009669 |
| 2029 | $0.008672 | $0.01860085 | $0.028529 |
| 2030 | $0.007375 | $0.01435 | $0.021325 |
| 2031 | $0.00872 | $0.014094 | $0.019467 |
| 2032 | $0.01331 | $0.024711 | $0.036111 |
Predicción de precio de Liquidus 2032-2037
La predicción de precio de Liquidus para 2032-2037 se estima actualmente entre $0.024711 en el extremo inferior y $0.225347 en el extremo superior. Comparado con el precio actual, Liquidus podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Liquidus | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.01331 | $0.024711 | $0.036111 |
| 2033 | $0.030931 | $0.063559 | $0.096187 |
| 2034 | $0.024867 | $0.040287 | $0.0557067 |
| 2035 | $0.0294013 | $0.047518 | $0.065636 |
| 2036 | $0.048668 | $0.092234 | $0.13580016 |
| 2037 | $0.12639 | $0.225347 | $0.3243037 |
Liquidus Histograma de precios potenciales
Pronóstico de precio de Liquidus basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Liquidus es Alcista, con 22 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de LIQ se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Liquidus
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Liquidus aumentar durante el próximo mes, alcanzando $0.007985 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Liquidus alcance $0.00613 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 62.15, lo que sugiere que el mercado de LIQ está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de LIQ para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.006482 | BUY |
| SMA 5 | $0.006424 | BUY |
| SMA 10 | $0.00633 | BUY |
| SMA 21 | $0.006256 | BUY |
| SMA 50 | $0.006349 | BUY |
| SMA 100 | $0.007215 | SELL |
| SMA 200 | $0.007986 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.006498 | BUY |
| EMA 5 | $0.006446 | BUY |
| EMA 10 | $0.006368 | BUY |
| EMA 21 | $0.00633 | BUY |
| EMA 50 | $0.006529 | BUY |
| EMA 100 | $0.007031 | SELL |
| EMA 200 | $0.0077033 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.007313 | SELL |
| SMA 50 | $0.006553 | BUY |
| SMA 100 | $0.019425 | SELL |
| SMA 200 | $0.110265 | SELL |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.0069088 | SELL |
| EMA 50 | $0.010824 | SELL |
| EMA 100 | $0.058399 | SELL |
| EMA 200 | $0.222621 | SELL |
Osciladores de Liquidus
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 62.15 | NEUTRAL |
| Stoch RSI (14) | 114.41 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 235.02 | SELL |
| Índice Direccional Medio (14) | 12.75 | NEUTRAL |
| Oscilador Asombroso (5, 34) | 0.000088 | BUY |
| Momentum (10) | 0 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 81.08 | SELL |
| VWMA (10) | 0.006346 | BUY |
| Promedio Móvil de Hull (9) | 0.006520 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.000638 | NEUTRAL |
Predicción de precios de Liquidus basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Liquidus
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Liquidus por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.009242 | $0.012986 | $0.018248 | $0.025642 | $0.036031 | $0.05063 |
| Amazon.com acción | $0.013723 | $0.028635 | $0.059749 | $0.124671 | $0.260134 | $0.542786 |
| Apple acción | $0.009329 | $0.013232 | $0.018769 | $0.026623 | $0.037763 | $0.053564 |
| Netflix acción | $0.010377 | $0.016374 | $0.025836 | $0.040766 | $0.064322 | $0.10149 |
| Google acción | $0.008517 | $0.01103 | $0.014283 | $0.018497 | $0.023954 | $0.03102 |
| Tesla acción | $0.01491 | $0.03380013 | $0.076622 | $0.173697 | $0.393758 | $0.892619 |
| Kodak acción | $0.004932 | $0.003698 | $0.002773 | $0.002079 | $0.001559 | $0.001169 |
| Nokia acción | $0.004357 | $0.002886 | $0.001912 | $0.001266 | $0.000839 | $0.000555 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Liquidus
Podría preguntarse cosas como: "¿Debo invertir en Liquidus ahora?", "¿Debería comprar LIQ hoy?", "¿Será Liquidus una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Liquidus/Liquidus (Old) regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Liquidus, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Liquidus a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Liquidus es de $0.006577 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Liquidus basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Liquidus ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.006748 | $0.006923 | $0.0071035 | $0.007288 |
| Si Liquidus ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.006919 | $0.007278 | $0.007657 | $0.008055 |
| Si Liquidus ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.007432 | $0.008397 | $0.009489 | $0.010722 |
| Si Liquidus ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.008286 | $0.01044 | $0.013154 | $0.016574 |
| Si Liquidus ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.009996 | $0.015193 | $0.023091 | $0.035096 |
| Si Liquidus ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.015125 | $0.034783 | $0.079989 | $0.183949 |
| Si Liquidus ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.023673 | $0.085209 | $0.306694 | $1.10 |
Cuadro de preguntas
¿Es LIQ una buena inversión?
La decisión de adquirir Liquidus depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Liquidus ha experimentado un aumento de 1.1151% durante las últimas 24 horas, y Liquidus ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Liquidus dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Liquidus subir?
Parece que el valor medio de Liquidus podría potencialmente aumentar hasta $0.006783 para el final de este año. Mirando las perspectivas de Liquidus en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.021325. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Liquidus la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Liquidus, el precio de Liquidus aumentará en un 0.86% durante la próxima semana y alcanzará $0.006633 para el 13 de enero de 2026.
¿Cuál será el precio de Liquidus el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Liquidus, el precio de Liquidus disminuirá en un -11.62% durante el próximo mes y alcanzará $0.005813 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Liquidus este año en 2026?
Según nuestra predicción más reciente sobre el valor de Liquidus en 2026, se anticipa que LIQ fluctúe dentro del rango de $0.002272 y $0.006783. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Liquidus no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Liquidus en 5 años?
El futuro de Liquidus parece estar en una tendencia alcista, con un precio máximo de $0.021325 proyectada después de un período de cinco años. Basado en el pronóstico de Liquidus para 2030, el valor de Liquidus podría potencialmente alcanzar su punto más alto de aproximadamente $0.021325, mientras que su punto más bajo se anticipa que esté alrededor de $0.007375.
¿Cuánto será Liquidus en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Liquidus, se espera que el valor de LIQ en 2026 crezca en un 3.13% hasta $0.006783 si ocurre lo mejor. El precio estará entre $0.006783 y $0.002272 durante 2026.
¿Cuánto será Liquidus en 2027?
Según nuestra última simulación experimental para la predicción de precios de Liquidus, el valor de LIQ podría disminuir en un -12.62% hasta $0.005746 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.005746 y $0.002187 a lo largo del año.
¿Cuánto será Liquidus en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Liquidus sugiere que el valor de LIQ en 2028 podría aumentar en un 47.02% , alcanzando $0.009669 en el mejor escenario. Se espera que el precio oscile entre $0.009669 y $0.003948 durante el año.
¿Cuánto será Liquidus en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Liquidus podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.028529 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.028529 y $0.008672.
¿Cuánto será Liquidus en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Liquidus, se espera que el valor de LIQ en 2030 aumente en un 224.23% , alcanzando $0.021325 en el mejor escenario. Se pronostica que el precio oscile entre $0.021325 y $0.007375 durante el transcurso de 2030.
¿Cuánto será Liquidus en 2031?
Nuestra simulación experimental indica que el precio de Liquidus podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.019467 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.019467 y $0.00872 durante el año.
¿Cuánto será Liquidus en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Liquidus, LIQ podría experimentar un 449.04% aumento en valor, alcanzando $0.036111 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.036111 y $0.01331 a lo largo del año.
¿Cuánto será Liquidus en 2033?
Según nuestra predicción experimental de precios de Liquidus, se anticipa que el valor de LIQ aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.096187. A lo largo del año, el precio de LIQ podría oscilar entre $0.096187 y $0.030931.
¿Cuánto será Liquidus en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Liquidus sugieren que LIQ podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.0557067 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.0557067 y $0.024867.
¿Cuánto será Liquidus en 2035?
Basado en nuestra predicción experimental para el precio de Liquidus, LIQ podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.065636 en 2035. El rango de precios esperado para el año está entre $0.065636 y $0.0294013.
¿Cuánto será Liquidus en 2036?
Nuestra reciente simulación de predicción de precios de Liquidus sugiere que el valor de LIQ podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.13580016 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.13580016 y $0.048668.
¿Cuánto será Liquidus en 2037?
Según la simulación experimental, el valor de Liquidus podría aumentar en un 4830.69% en 2037, con un máximo de $0.3243037 bajo condiciones favorables. Se espera que el precio caiga entre $0.3243037 y $0.12639 durante el transcurso del año.
Predicciones relacionadas
Predicción de precios de World Token
Predicción de precios de Lead Token
Predicción de precios de BADcoin
Predicción de precios de OmegaNetwork
Predicción de precios de Herity Network
Predicción de precios de Neutra Finance
Predicción de precios de MoneyByte
Predicción de precios de Espresso Bot
Predicción de precios de Lokr
Predicción de precios de Cryptiq browser
Predicción de precios de Coinary Token
Predicción de precios de Peanut
Predicción de precios de Statera
Predicción de precios de SAIL
Predicción de precios de Kingdom Game 4.0
Predicción de precios de MAGA Coin BSC
Predicción de precios de Sheesha Finance
Predicción de precios de Phoenix Blockchain
Predicción de precios de Waltonchain
Predicción de precios de OpenBlox
Predicción de precios de CyberFi
Predicción de precios de Dracarys Token
Predicción de precios de Life Crypto
Predicción de precios de Meter Stable
Predicción de precios de Vodi X
¿Cómo leer y predecir los movimientos de precio de Liquidus?
Los traders de Liquidus utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Liquidus
Las medias móviles son herramientas populares para la predicción de precios de Liquidus. Una media móvil simple (SMA) calcula el precio de cierre promedio de LIQ durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de LIQ por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de LIQ.
¿Cómo leer gráficos de Liquidus y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Liquidus en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de LIQ dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Liquidus?
La acción del precio de Liquidus está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de LIQ. La capitalización de mercado de Liquidus puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de LIQ, grandes poseedores de Liquidus, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Liquidus.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


