Predicción del precio de Arcadia - Pronóstico de AAA
Predicción de precio de Arcadia hasta $0.041043 para el año 2026
| Año | Precio min. | Precio max. |
|---|---|---|
| 2026 | $0.013749 | $0.041043 |
| 2027 | $0.013236 | $0.034772 |
| 2028 | $0.023888 | $0.0585099 |
| 2029 | $0.052475 | $0.172621 |
| 2030 | $0.044628 | $0.129033 |
| 2031 | $0.052764 | $0.117793 |
| 2032 | $0.080541 | $0.2185002 |
| 2033 | $0.187159 | $0.582005 |
| 2034 | $0.150467 | $0.337066 |
| 2035 | $0.177899 | $0.397147 |
Calculadora de ganancias de inversión
Si abres una posición corta de $10,000.00 en Arcadia hoy y la cierras el Apr 06, 2026, nuestra previsión indica que podrías obtener una ganancia de alrededor de $3,954.43, equivalente a un ROI del 39.54% en los próximos 90 días.
Predicción del precio a largo plazo de Arcadia para 2027, 2028, 2029, 2030, 2031, 2032 y 2037
[
'name' => 'Arcadia'
'name_with_ticker' => 'Arcadia <small>AAA</small>'
'name_lang' => 'Arcadia'
'name_lang_with_ticker' => 'Arcadia <small>AAA</small>'
'name_with_lang' => 'Arcadia'
'name_with_lang_with_ticker' => 'Arcadia <small>AAA</small>'
'image' => '/uploads/coins/arcadia.png?1744550688'
'price_for_sd' => 0.03979
'ticker' => 'AAA'
'marketcap' => '$833.48K'
'low24h' => '$0.03141'
'high24h' => '$0.05545'
'volume24h' => '$73.66K'
'current_supply' => '22.41M'
'max_supply' => '100M'
'algo' => null
'proof' => null
'ico_price_and_roi' => '—'
'price' => '$0.03979'
'change_24h_pct' => '6.4996%'
'ath_price' => '$1.04'
'ath_days' => 212
'ath_exchange' => null
'ath_pair' => null
'ath_date' => '8 jun. 2025'
'ath_pct' => '-96.71%'
'fdv' => '$3.72M'
'new_prediction' => true
'change_24h_pct_is_increased' => true
'change_30d_pct' => null
'change_30d_pct_is_increased' => false
'max_price' => '$1.96'
'max_price_year' => 2037
'next_week_prediction_price' => '$0.040137'
'next_week_prediction_price_date' => '13 de enero de 2026'
'next_week_prediction_price_change_pct' => '0.86%'
'next_week_prediction_price_is_increased' => true
'next_month_prediction_price' => '$0.035173'
'next_month_prediction_price_date' => '5 de febrero de 2026'
'next_month_prediction_price_change_pct' => '-11.62%'
'next_month_prediction_price_is_increased' => false
'current_year' => '2026'
'current_year_min_price_prediction' => '$0.013749'
'current_year_max_price_prediction' => '$0.041043'
'current_year_max_price_prediction_is_increased' => true
'grand_prediction_year' => 2030
'grand_prediction_min_price' => '$0.044628'
'grand_prediction_max_price' => '$0.129033'
'grand_prediction_max_price_is_increased' => true
'prediction_table' => [
0 => [
'items' => [
106 => 0.040551223922231
107 => 0.040702627472262
108 => 0.041043747401339
109 => 0.038128914955916
110 => 0.039437589148927
111 => 0.040206312631131
112 => 0.036733191972132
113 => 0.040137660202637
114 => 0.038078174207958
115 => 0.037379153728922
116 => 0.038320292714999
117 => 0.037953529936837
118 => 0.037638208837207
119 => 0.037462254245709
120 => 0.038153322847364
121 => 0.038121083671091
122 => 0.036990361308148
123 => 0.035515380079829
124 => 0.036010432194661
125 => 0.035830575120204
126 => 0.035178749880348
127 => 0.035618001390331
128 => 0.033683760040466
129 => 0.030355998331139
130 => 0.032554419648418
131 => 0.032469782819125
201 => 0.032427105091821
202 => 0.034079157951854
203 => 0.033920351188706
204 => 0.033632115358552
205 => 0.03517345620329
206 => 0.034610846061001
207 => 0.036344677951915
208 => 0.037486691772486
209 => 0.037197040127312
210 => 0.038271109645392
211 => 0.036021837195522
212 => 0.036768955278221
213 => 0.036922935279605
214 => 0.035154436296522
215 => 0.033946333939153
216 => 0.033865767285292
217 => 0.031771084284375
218 => 0.032890047035775
219 => 0.033874687951181
220 => 0.033403121363923
221 => 0.033253837470048
222 => 0.034016496508129
223 => 0.03407576164712
224 => 0.03272451019747
225 => 0.033005478162421
226 => 0.034177161283302
227 => 0.032975954754004
228 => 0.030642206683549
301 => 0.030063404895485
302 => 0.029986182067524
303 => 0.028416425712946
304 => 0.030102083198612
305 => 0.029366248533307
306 => 0.031690741424354
307 => 0.030363003551493
308 => 0.03030576742551
309 => 0.030219246626373
310 => 0.028868092486169
311 => 0.029163909372548
312 => 0.030147249757058
313 => 0.030498116684373
314 => 0.030461518389286
315 => 0.030142430852714
316 => 0.030288507492964
317 => 0.029817943738243
318 => 0.029651777882514
319 => 0.029127312734312
320 => 0.028356493853651
321 => 0.028463680946714
322 => 0.026936487048393
323 => 0.026104390758272
324 => 0.02587407747202
325 => 0.025566092920188
326 => 0.025908865146665
327 => 0.02693216069996
328 => 0.025697849158423
329 => 0.023581708597346
330 => 0.023708892250795
331 => 0.023994636158929
401 => 0.023462154276506
402 => 0.022958204862611
403 => 0.023396347991285
404 => 0.022499711338968
405 => 0.024102990414629
406 => 0.02405962620877
407 => 0.024657229502063
408 => 0.025030923105414
409 => 0.024169680334432
410 => 0.023953080106578
411 => 0.024076465440295
412 => 0.022037180718179
413 => 0.024490576433436
414 => 0.024511793501461
415 => 0.024330120083776
416 => 0.025636477562055
417 => 0.028393299304341
418 => 0.027356072071996
419 => 0.026954426337272
420 => 0.026190897501962
421 => 0.027208254341157
422 => 0.027130137209146
423 => 0.026776861913149
424 => 0.026563199911844
425 => 0.026956878700483
426 => 0.026514418753281
427 => 0.026434940788777
428 => 0.025953390796763
429 => 0.025781499358743
430 => 0.025654237781228
501 => 0.025514135288848
502 => 0.025823166475672
503 => 0.025122861149891
504 => 0.024278361578777
505 => 0.024208150577051
506 => 0.024402009325832
507 => 0.024316241260583
508 => 0.024207739952552
509 => 0.024000581406949
510 => 0.02393912189171
511 => 0.024138835500318
512 => 0.023913370480227
513 => 0.024246056399086
514 => 0.024155584237508
515 => 0.023650214097379
516 => 0.023020335790789
517 => 0.023014728552646
518 => 0.022879022304699
519 => 0.022706179994367
520 => 0.022658099217729
521 => 0.023359448799068
522 => 0.024811221442814
523 => 0.024526203734872
524 => 0.024732158238649
525 => 0.025745250556572
526 => 0.026067282139691
527 => 0.02583871174973
528 => 0.025525830502342
529 => 0.025539595689328
530 => 0.026608805627245
531 => 0.026675490939553
601 => 0.026843983210259
602 => 0.027060543394026
603 => 0.025875592885458
604 => 0.025483784626935
605 => 0.025298124137353
606 => 0.024726361689091
607 => 0.025342958470334
608 => 0.02498369393121
609 => 0.025032170991762
610 => 0.025000600242482
611 => 0.025017840006394
612 => 0.024102542265452
613 => 0.024436028655618
614 => 0.023881542851218
615 => 0.023139148603079
616 => 0.023136659837242
617 => 0.023318359777725
618 => 0.023210277543206
619 => 0.022919431029165
620 => 0.022960744403728
621 => 0.022598795770583
622 => 0.023004691521083
623 => 0.023016331158843
624 => 0.022860039185609
625 => 0.023485377592075
626 => 0.023741579247432
627 => 0.023638704522551
628 => 0.023734361282491
629 => 0.024538047507414
630 => 0.024669083429365
701 => 0.024727280930149
702 => 0.02464930398879
703 => 0.023749051191335
704 => 0.023788981231073
705 => 0.023496001093475
706 => 0.023248463750692
707 => 0.023258363946241
708 => 0.023385630318034
709 => 0.023941410027726
710 => 0.025111015661771
711 => 0.025155401340613
712 => 0.02520919807819
713 => 0.024990379710389
714 => 0.02492438199685
715 => 0.025011450016463
716 => 0.025450692397667
717 => 0.026580543055269
718 => 0.026181178372684
719 => 0.025856488669261
720 => 0.026141329074879
721 => 0.026097480127087
722 => 0.025727350879702
723 => 0.025716962584482
724 => 0.025006566221272
725 => 0.024743948860735
726 => 0.024524486137703
727 => 0.02428483857337
728 => 0.024142767464175
729 => 0.024361053258063
730 => 0.024410977801807
731 => 0.023933692098487
801 => 0.023868639820756
802 => 0.024258401629015
803 => 0.024086881988985
804 => 0.024263294192238
805 => 0.024304223336628
806 => 0.024297632801703
807 => 0.024118546598607
808 => 0.024232690804033
809 => 0.023962705730175
810 => 0.023669137512802
811 => 0.023481859280063
812 => 0.023318434183147
813 => 0.023409111925238
814 => 0.023085862331783
815 => 0.022982448281107
816 => 0.024194021315561
817 => 0.025089023342717
818 => 0.025076009658782
819 => 0.024996792204678
820 => 0.024879091136554
821 => 0.025442081831419
822 => 0.025245947130683
823 => 0.025388651513071
824 => 0.025424975767673
825 => 0.025534918346188
826 => 0.025574213368123
827 => 0.025455436519688
828 => 0.025056806908969
829 => 0.024063459819623
830 => 0.023601054068043
831 => 0.023448452468045
901 => 0.023453999246373
902 => 0.023300994338172
903 => 0.023346061140836
904 => 0.023285321943369
905 => 0.023170296597756
906 => 0.02340200943428
907 => 0.023428712180135
908 => 0.023374627635328
909 => 0.023387366503519
910 => 0.022939569572329
911 => 0.022973614600444
912 => 0.022784047557669
913 => 0.022748506022414
914 => 0.02226929704577
915 => 0.021420308881193
916 => 0.021890730737644
917 => 0.021322527286374
918 => 0.021107340029691
919 => 0.022126003034344
920 => 0.022023757521991
921 => 0.021848757649897
922 => 0.021589896365902
923 => 0.021493882197628
924 => 0.020910530505584
925 => 0.020876062975558
926 => 0.021165187825955
927 => 0.021031766655676
928 => 0.020844392802054
929 => 0.020165743698021
930 => 0.01940271741209
1001 => 0.01942574837945
1002 => 0.019668452844396
1003 => 0.020374148809382
1004 => 0.020098421187198
1005 => 0.019898377633693
1006 => 0.019860915489409
1007 => 0.020329832657438
1008 => 0.020993448691383
1009 => 0.021304802486938
1010 => 0.020996260331498
1011 => 0.020641823716418
1012 => 0.020663396630877
1013 => 0.020806911565935
1014 => 0.020821992956418
1015 => 0.020591291156674
1016 => 0.020656232361958
1017 => 0.020557580732783
1018 => 0.019952155866631
1019 => 0.019941205650625
1020 => 0.019792624624676
1021 => 0.019788125650261
1022 => 0.019535352259848
1023 => 0.01949998751519
1024 => 0.018998090606278
1025 => 0.019328440671607
1026 => 0.019106859191941
1027 => 0.018772883636297
1028 => 0.018715306124621
1029 => 0.018713575275093
1030 => 0.019056493495172
1031 => 0.019324433472549
1101 => 0.019110713696647
1102 => 0.019062053846458
1103 => 0.019581613741928
1104 => 0.019515495009336
1105 => 0.019458236613331
1106 => 0.020934029154147
1107 => 0.019765824200563
1108 => 0.019256420161993
1109 => 0.018625935931059
1110 => 0.018831224775829
1111 => 0.018874482151742
1112 => 0.01735828122967
1113 => 0.016743158704417
1114 => 0.016532071834153
1115 => 0.016410588355986
1116 => 0.01646594990248
1117 => 0.015912267483076
1118 => 0.016284351225978
1119 => 0.015804909052383
1120 => 0.015724529011741
1121 => 0.016581831009615
1122 => 0.016701119574334
1123 => 0.016192197497192
1124 => 0.016519007857717
1125 => 0.016400501877987
1126 => 0.015813127712367
1127 => 0.015790694339672
1128 => 0.015495970630565
1129 => 0.015034785095566
1130 => 0.014824010930812
1201 => 0.014714237915783
1202 => 0.014759532401218
1203 => 0.014736630123348
1204 => 0.01458717726855
1205 => 0.014745196586042
1206 => 0.01434152252794
1207 => 0.014180776265381
1208 => 0.014108170907868
1209 => 0.013749886946692
1210 => 0.014320076058525
1211 => 0.014432410496609
1212 => 0.014544966268238
1213 => 0.015524687415181
1214 => 0.015475743315343
1215 => 0.015918174141136
1216 => 0.015900982092823
1217 => 0.015774793654403
1218 => 0.015242425389699
1219 => 0.015454617891458
1220 => 0.014801522353079
1221 => 0.015290865936612
1222 => 0.015067549960565
1223 => 0.015215362580475
1224 => 0.014949582162149
1225 => 0.015096676019455
1226 => 0.014459049159212
1227 => 0.013863642168768
1228 => 0.014103251322736
1229 => 0.01436373387573
1230 => 0.014928526420341
1231 => 0.014592140640208
]
'min_raw' => 0.013749886946692
'max_raw' => 0.041043747401339
'avg_raw' => 0.027396817174016
'max_pct' => '3.13%'
'is_grow' => true
'min' => '$0.013749'
'max' => '$0.041043'
'avg' => '$0.027396'
'bar_min_pct' => 50.898974802884
'bar_max_pct' => 51.045822849954
'min_diff' => -0.026047203053308
'max_diff' => 0.0012466574013395
'year' => 2026
]
1 => [
'items' => [
101 => 0.014713117686898
102 => 0.014307864831798
103 => 0.013471712436973
104 => 0.013476444968722
105 => 0.013347821139348
106 => 0.013236671371382
107 => 0.014630778593577
108 => 0.014457399322923
109 => 0.014181142146454
110 => 0.014550923355182
111 => 0.014648699375986
112 => 0.014651482921841
113 => 0.014921265746294
114 => 0.015065248888066
115 => 0.015090626540862
116 => 0.015515135644183
117 => 0.015657425496205
118 => 0.016243497259072
119 => 0.015053032924441
120 => 0.015028516094876
121 => 0.014556126935115
122 => 0.014256530261817
123 => 0.014576640575652
124 => 0.014860214614294
125 => 0.014564938370955
126 => 0.014603495214714
127 => 0.014207110982987
128 => 0.014348799694218
129 => 0.01447084109986
130 => 0.014403457008926
131 => 0.014302579763372
201 => 0.014836964776961
202 => 0.014806812680222
203 => 0.015304444290335
204 => 0.015692383716395
205 => 0.016387640520362
206 => 0.015662103800865
207 => 0.01563566235906
208 => 0.015894131694051
209 => 0.015657385925897
210 => 0.015807001079184
211 => 0.016363535206126
212 => 0.016375293895254
213 => 0.016178320702156
214 => 0.016166334865455
215 => 0.01620416572184
216 => 0.016425742229312
217 => 0.016348316589243
218 => 0.016437915500109
219 => 0.016549960310133
220 => 0.017013425150408
221 => 0.017125164954346
222 => 0.016853695161224
223 => 0.016878205844024
224 => 0.016776668689384
225 => 0.016678585070258
226 => 0.01689906272209
227 => 0.017301989964313
228 => 0.017299483374851
301 => 0.01739295466326
302 => 0.017451186501581
303 => 0.017201212823197
304 => 0.017038489150355
305 => 0.017100887760899
306 => 0.017200664498023
307 => 0.017068531509807
308 => 0.01625294549658
309 => 0.016500342193157
310 => 0.016459163285766
311 => 0.016400519514115
312 => 0.016649278805585
313 => 0.01662528536507
314 => 0.015906588669586
315 => 0.015952597300225
316 => 0.0159093866068
317 => 0.016049009197331
318 => 0.015649845847806
319 => 0.015772625805714
320 => 0.015849632244323
321 => 0.015894989628255
322 => 0.016058851600867
323 => 0.016039624289669
324 => 0.016057656404207
325 => 0.016300620451634
326 => 0.017529449228328
327 => 0.017596331667386
328 => 0.017266978076363
329 => 0.017398548339764
330 => 0.017145962205288
331 => 0.017315524969542
401 => 0.017431535506417
402 => 0.016907306197821
403 => 0.016876264740386
404 => 0.016622636093082
405 => 0.016758921761882
406 => 0.016542081463535
407 => 0.016595286487998
408 => 0.016446520601269
409 => 0.016714269578388
410 => 0.017013654538791
411 => 0.01708929100286
412 => 0.016890324029441
413 => 0.016746258828124
414 => 0.016493327792638
415 => 0.016913957741587
416 => 0.017036962757125
417 => 0.016913311648605
418 => 0.016884658984931
419 => 0.016830362239043
420 => 0.016896178296248
421 => 0.017036292845394
422 => 0.016970217411526
423 => 0.017013861399695
424 => 0.016847535522281
425 => 0.017201295574886
426 => 0.017763151675415
427 => 0.017764958134651
428 => 0.017698882344612
429 => 0.017671845554951
430 => 0.017739643325345
501 => 0.017776420834574
502 => 0.017995666392043
503 => 0.018230925610335
504 => 0.019328777730468
505 => 0.019020505248261
506 => 0.019994584960757
507 => 0.020764955544921
508 => 0.020995955998889
509 => 0.02078344645065
510 => 0.020056462765663
511 => 0.020020793477819
512 => 0.021107214027784
513 => 0.020800250461205
514 => 0.020763738121711
515 => 0.02037530851806
516 => 0.02060491852176
517 => 0.020554699445775
518 => 0.020475426177532
519 => 0.02091350606982
520 => 0.021733552520521
521 => 0.021605740590832
522 => 0.021510334914345
523 => 0.02109229501215
524 => 0.021344048405864
525 => 0.021254403844381
526 => 0.021639573770355
527 => 0.021411407638767
528 => 0.020797924910281
529 => 0.020895624056858
530 => 0.020880857027396
531 => 0.021184761447315
601 => 0.021093536883827
602 => 0.020863043967273
603 => 0.021730749690903
604 => 0.021674405707643
605 => 0.021754288593878
606 => 0.021789455510859
607 => 0.022317612694142
608 => 0.022533981792988
609 => 0.022583101366501
610 => 0.022788635275818
611 => 0.0225779874956
612 => 0.023420728805795
613 => 0.023981102601756
614 => 0.024632005602337
615 => 0.025583149832419
616 => 0.025940788861505
617 => 0.025876184572004
618 => 0.026597331271992
619 => 0.027893215861682
620 => 0.026138119898338
621 => 0.027986240209445
622 => 0.027401146656524
623 => 0.026013900367931
624 => 0.025924578061505
625 => 0.0268640373544
626 => 0.028947667646437
627 => 0.028425741890621
628 => 0.028948521329999
629 => 0.0283386713449
630 => 0.02830838715292
701 => 0.028918902277433
702 => 0.030345404143304
703 => 0.029667726578452
704 => 0.028696109615879
705 => 0.029413536461008
706 => 0.028792034933038
707 => 0.027391618043195
708 => 0.028425342783832
709 => 0.027734120488553
710 => 0.027935855901714
711 => 0.029388702354832
712 => 0.029213892025838
713 => 0.029440112778557
714 => 0.029040839071236
715 => 0.028667854468914
716 => 0.027971651010478
717 => 0.027765539488851
718 => 0.027822501298313
719 => 0.027765511261407
720 => 0.027375991824853
721 => 0.027291875139615
722 => 0.027151676978983
723 => 0.027195130251303
724 => 0.026931516692896
725 => 0.027429009942951
726 => 0.027521349074057
727 => 0.027883383173953
728 => 0.027920970755206
729 => 0.028929230570183
730 => 0.028373898007212
731 => 0.02874646303556
801 => 0.028713137312706
802 => 0.026043966201503
803 => 0.026411754430331
804 => 0.026983917496082
805 => 0.02672615881051
806 => 0.026361748335354
807 => 0.026067467338212
808 => 0.025621601535765
809 => 0.026249149090615
810 => 0.027074307393
811 => 0.027941898131473
812 => 0.028984251556951
813 => 0.028751610406716
814 => 0.02792241205923
815 => 0.027959609291368
816 => 0.028189547943877
817 => 0.027891756496748
818 => 0.027803931985411
819 => 0.028177482204656
820 => 0.028180054639716
821 => 0.027837409590497
822 => 0.027456622321671
823 => 0.027455026809111
824 => 0.027387269392592
825 => 0.028350725238774
826 => 0.028880528537802
827 => 0.028941269632214
828 => 0.028876440178188
829 => 0.028901390462054
830 => 0.028593109595769
831 => 0.029297748238245
901 => 0.02994439433812
902 => 0.029771079369774
903 => 0.02951125559405
904 => 0.029304293441877
905 => 0.029722325664074
906 => 0.029703711347264
907 => 0.029938746448559
908 => 0.029928083898736
909 => 0.029849050434287
910 => 0.029771082192308
911 => 0.030080217458625
912 => 0.029991191466486
913 => 0.029902027192392
914 => 0.029723194590329
915 => 0.029747500911044
916 => 0.029487721997558
917 => 0.029367536385505
918 => 0.027560233145833
919 => 0.027077262664855
920 => 0.027229215009941
921 => 0.027279241667385
922 => 0.02706905229512
923 => 0.027370409861728
924 => 0.027323443604189
925 => 0.027506161837932
926 => 0.027392007418193
927 => 0.027396692355398
928 => 0.027732396163563
929 => 0.027829852407259
930 => 0.027780285375147
1001 => 0.02781500042538
1002 => 0.028614994105695
1003 => 0.028501260586712
1004 => 0.028440841921545
1005 => 0.028457578304705
1006 => 0.028661993842083
1007 => 0.028719219031874
1008 => 0.028476751881586
1009 => 0.028591100791348
1010 => 0.029077983936077
1011 => 0.029248365481533
1012 => 0.029792141586847
1013 => 0.02956113583246
1014 => 0.029985156892332
1015 => 0.031288453070947
1016 => 0.032329616239661
1017 => 0.031372119561824
1018 => 0.033284083129836
1019 => 0.034772821022418
1020 => 0.034715680782478
1021 => 0.034456084895779
1022 => 0.032761196385219
1023 => 0.031201534708438
1024 => 0.032506257927798
1025 => 0.032509583935603
1026 => 0.032397507053958
1027 => 0.031701407167699
1028 => 0.0323732842868
1029 => 0.032426615452615
1030 => 0.03239676418166
1031 => 0.031863066030958
1101 => 0.031048207598742
1102 => 0.031207428985901
1103 => 0.031468236866097
1104 => 0.030974473138663
1105 => 0.030816685709548
1106 => 0.031110042560559
1107 => 0.032055299457842
1108 => 0.031876604116911
1109 => 0.031871937659394
1110 => 0.032636472106515
1111 => 0.032089230439237
1112 => 0.031209437277491
1113 => 0.030987277901104
1114 => 0.030198761779418
1115 => 0.030743392673264
1116 => 0.030762992969546
1117 => 0.030464704194979
1118 => 0.031233641767584
1119 => 0.031226555872483
1120 => 0.031956547656417
1121 => 0.033352017774906
1122 => 0.032939308593954
1123 => 0.03245937271914
1124 => 0.03251155505591
1125 => 0.033083866493303
1126 => 0.032737833933656
1127 => 0.03286226965473
1128 => 0.033083678144936
1129 => 0.033217259384341
1130 => 0.032492334771258
1201 => 0.032323320166796
1202 => 0.031977575602132
1203 => 0.031887377298839
1204 => 0.032168979032561
1205 => 0.032094786924862
1206 => 0.03076134564054
1207 => 0.030621993607131
1208 => 0.030626267335047
1209 => 0.030275860021212
1210 => 0.029741404760223
1211 => 0.031145921275437
1212 => 0.031033118943069
1213 => 0.030908593898342
1214 => 0.030923847505791
1215 => 0.031533500521565
1216 => 0.031179870984201
1217 => 0.032120053068024
1218 => 0.03192677989605
1219 => 0.031728549996502
1220 => 0.031701148586154
1221 => 0.031624846987008
1222 => 0.031363180412963
1223 => 0.031047202301079
1224 => 0.030838566182059
1225 => 0.028446947182509
1226 => 0.028890817757417
1227 => 0.029401450393774
1228 => 0.029577718733612
1229 => 0.029276199540921
1230 => 0.031375086228471
1231 => 0.031758573051662
]
'min_raw' => 0.013236671371382
'max_raw' => 0.034772821022418
'avg_raw' => 0.0240047461969
'max_pct' => '-12.62%'
'is_grow' => false
'min' => '$0.013236'
'max' => '$0.034772'
'avg' => '$0.0240047'
'bar_min_pct' => 50.865420500042
'bar_max_pct' => 50.886035342412
'min_diff' => -0.00051321557530945
'max_diff' => -0.0062709263789215
'year' => 2027
]
2 => [
'items' => [
101 => 0.030596966449991
102 => 0.030379677282903
103 => 0.031389331670091
104 => 0.030780386649387
105 => 0.031054594554924
106 => 0.030461907046859
107 => 0.03166620230576
108 => 0.031657027593634
109 => 0.031188529537679
110 => 0.031584500886436
111 => 0.031515691120213
112 => 0.0309867579689
113 => 0.031682970430098
114 => 0.031683315742793
115 => 0.031232396549962
116 => 0.030705821651641
117 => 0.030611682496965
118 => 0.030540761289733
119 => 0.031037152285494
120 => 0.031482214900119
121 => 0.032310366085557
122 => 0.032518582969963
123 => 0.033331267331583
124 => 0.032847353363122
125 => 0.033061866157606
126 => 0.033294750140705
127 => 0.033406403286228
128 => 0.033224470477237
129 => 0.034486903805061
130 => 0.034593491857887
131 => 0.034629229910016
201 => 0.034203544494875
202 => 0.034581652776432
203 => 0.034404748433122
204 => 0.034865004388974
205 => 0.034937178399694
206 => 0.034876049580279
207 => 0.034898958750471
208 => 0.033821694613673
209 => 0.033765832785159
210 => 0.033004152789596
211 => 0.033314543017842
212 => 0.032734283363527
213 => 0.032918289677247
214 => 0.032999397907058
215 => 0.032957031570657
216 => 0.033332092015642
217 => 0.033013214017618
218 => 0.032171642552435
219 => 0.03132984180167
220 => 0.031319273678961
221 => 0.031097642400302
222 => 0.030937443579625
223 => 0.030968303555846
224 => 0.031077058137178
225 => 0.030931122565653
226 => 0.030962265318959
227 => 0.031479442526922
228 => 0.031583158727639
229 => 0.031230690553065
301 => 0.029815479971232
302 => 0.029468183744663
303 => 0.029717813385137
304 => 0.029598506495199
305 => 0.023888304810342
306 => 0.02522983199558
307 => 0.02443274209607
308 => 0.024800077794107
309 => 0.023986455412137
310 => 0.024374758658416
311 => 0.024303053227392
312 => 0.02646018924258
313 => 0.026426508530746
314 => 0.026442629705157
315 => 0.025673124047018
316 => 0.02689896745479
317 => 0.027502861997361
318 => 0.027391097189664
319 => 0.027419225983883
320 => 0.026935880104045
321 => 0.026447309549816
322 => 0.025905409614707
323 => 0.026912192713283
324 => 0.026800255619082
325 => 0.027056999039484
326 => 0.027709969845253
327 => 0.027806122276797
328 => 0.027935352119874
329 => 0.027889032420338
330 => 0.028992555583641
331 => 0.028858911647285
401 => 0.029180955081919
402 => 0.028518487303382
403 => 0.027768842129949
404 => 0.027911325169672
405 => 0.02789760290717
406 => 0.027722902755846
407 => 0.027565191270603
408 => 0.027302646082607
409 => 0.028133377906802
410 => 0.028099651711834
411 => 0.02864563960595
412 => 0.028549130942222
413 => 0.027904622466167
414 => 0.027927641212476
415 => 0.028082453343838
416 => 0.028618259898097
417 => 0.028777323763893
418 => 0.028703639043657
419 => 0.028878045310962
420 => 0.029015888913522
421 => 0.028895356345166
422 => 0.030601843332404
423 => 0.029893190959445
424 => 0.030238583195254
425 => 0.030320957208325
426 => 0.030109957905982
427 => 0.030155716099342
428 => 0.03022502729392
429 => 0.030645871294877
430 => 0.031750287725582
501 => 0.032239426244724
502 => 0.033711023613233
503 => 0.032198810099846
504 => 0.032109081608123
505 => 0.032374160732175
506 => 0.033238144171891
507 => 0.033938321599943
508 => 0.034170610847033
509 => 0.034201311705713
510 => 0.034637101775551
511 => 0.034886888516578
512 => 0.034584185398656
513 => 0.034327676200554
514 => 0.033408892092048
515 => 0.033515243854374
516 => 0.034247902032829
517 => 0.035282824863249
518 => 0.036170896317117
519 => 0.035859924646387
520 => 0.038232418982269
521 => 0.038467642104901
522 => 0.038435141875027
523 => 0.038971015154278
524 => 0.037907415823661
525 => 0.037452706503556
526 => 0.034383136400687
527 => 0.035245560393456
528 => 0.03649914431533
529 => 0.036333227782572
530 => 0.035422841630112
531 => 0.036170205707584
601 => 0.035923103771336
602 => 0.035728204221949
603 => 0.036621076840829
604 => 0.035639326719185
605 => 0.036489350606867
606 => 0.035399186178543
607 => 0.035861345138785
608 => 0.035599001360838
609 => 0.035768769936814
610 => 0.034776306310602
611 => 0.035311815592613
612 => 0.034754027363879
613 => 0.034753762899632
614 => 0.034741449693567
615 => 0.035397685071062
616 => 0.035419084883162
617 => 0.034934125947677
618 => 0.034864235788591
619 => 0.035122656337647
620 => 0.034820113555152
621 => 0.0349616714189
622 => 0.034824401198638
623 => 0.034793498780704
624 => 0.034547263056991
625 => 0.034441177936823
626 => 0.034482776645918
627 => 0.034340778806174
628 => 0.034255219971442
629 => 0.034724429887855
630 => 0.034473749957389
701 => 0.034686009593254
702 => 0.034444112948884
703 => 0.033605593790147
704 => 0.033123352554778
705 => 0.03153946759469
706 => 0.031988655404568
707 => 0.032286467387235
708 => 0.03218804052874
709 => 0.032399499506925
710 => 0.032412481370787
711 => 0.03234373390141
712 => 0.032264133138967
713 => 0.032225387890009
714 => 0.03251416323236
715 => 0.032681807038326
716 => 0.032316356803906
717 => 0.032230736927173
718 => 0.032600227291232
719 => 0.032825616199861
720 => 0.034489761266085
721 => 0.034366476024461
722 => 0.03467589778743
723 => 0.034641061645384
724 => 0.034965384947727
725 => 0.035495516477804
726 => 0.03441761085005
727 => 0.034604697995856
728 => 0.034558828548177
729 => 0.035059619150316
730 => 0.035061182563913
731 => 0.034760933581585
801 => 0.034923703425888
802 => 0.034832849764155
803 => 0.034997034610516
804 => 0.034364829474896
805 => 0.035134787087753
806 => 0.035571303439271
807 => 0.035577364469235
808 => 0.035784269755447
809 => 0.035994497509384
810 => 0.036398011376087
811 => 0.035983243726649
812 => 0.035237117102127
813 => 0.035290985034443
814 => 0.034853531267483
815 => 0.034860884944338
816 => 0.034821630440967
817 => 0.034939436160523
818 => 0.034390681205548
819 => 0.034519472896645
820 => 0.034339163774906
821 => 0.034604306039039
822 => 0.034319056792419
823 => 0.034558806428541
824 => 0.034662274423665
825 => 0.03504407355318
826 => 0.034262664750558
827 => 0.032669319305287
828 => 0.033004259835329
829 => 0.032508856482386
830 => 0.032554707948834
831 => 0.032647335208267
901 => 0.032347099954692
902 => 0.032404375379574
903 => 0.032402329098356
904 => 0.032384695352312
905 => 0.032306592567222
906 => 0.032193328076676
907 => 0.03264453894604
908 => 0.032721208465166
909 => 0.032891635308839
910 => 0.033398709993977
911 => 0.033348041275287
912 => 0.033430684057695
913 => 0.033250275327718
914 => 0.032563076592393
915 => 0.032600394789934
916 => 0.032135036268615
917 => 0.03287973504518
918 => 0.032703380545346
919 => 0.032589683652049
920 => 0.032558660401318
921 => 0.033066992026522
922 => 0.033219092815904
923 => 0.033124313811065
924 => 0.032929919306995
925 => 0.033303214222386
926 => 0.033403092193696
927 => 0.033425451188115
928 => 0.034086858205987
929 => 0.033462416493099
930 => 0.033612725819808
1001 => 0.034785396279102
1002 => 0.033721945989984
1003 => 0.034285279325901
1004 => 0.034257707090553
1005 => 0.034545889363048
1006 => 0.034234067732799
1007 => 0.03423793313562
1008 => 0.034493819470437
1009 => 0.03413447326253
1010 => 0.034045494087955
1011 => 0.033922569995561
1012 => 0.034190970254216
1013 => 0.03435186407058
1014 => 0.035648550066988
1015 => 0.036486268356733
1016 => 0.03644990079645
1017 => 0.036782232220213
1018 => 0.036632513870001
1019 => 0.036149033823461
1020 => 0.036974275308795
1021 => 0.036713134373265
1022 => 0.036734662514704
1023 => 0.036733861236204
1024 => 0.036907497128995
1025 => 0.036784460185457
1026 => 0.03654194174026
1027 => 0.036702936802043
1028 => 0.037181034578753
1029 => 0.038665064747489
1030 => 0.039495547690699
1031 => 0.038615068631523
1101 => 0.039222411296458
1102 => 0.038858222115816
1103 => 0.038792038108003
1104 => 0.039173494183853
1105 => 0.039555617948067
1106 => 0.039531278316253
1107 => 0.039253876085706
1108 => 0.039097178604491
1109 => 0.040283744429758
1110 => 0.041157985917194
1111 => 0.04109836850874
1112 => 0.041361500361035
1113 => 0.042134063617735
1114 => 0.04220469711985
1115 => 0.042195798922076
1116 => 0.042020726417241
1117 => 0.042781415273479
1118 => 0.043415995300399
1119 => 0.041980202190703
1120 => 0.042526933410963
1121 => 0.042772378670318
1122 => 0.043132765131378
1123 => 0.043740797498969
1124 => 0.044401281922794
1125 => 0.044494681662166
1126 => 0.044428410077493
1127 => 0.043992802845206
1128 => 0.044715512782973
1129 => 0.045138859314884
1130 => 0.045390952486523
1201 => 0.046030218825497
1202 => 0.04277389445668
1203 => 0.040468906218609
1204 => 0.040108949020801
1205 => 0.040840936137162
1206 => 0.041033955302259
1207 => 0.040956149518834
1208 => 0.038361675696523
1209 => 0.040095289653065
1210 => 0.041960512503903
1211 => 0.042032163309963
1212 => 0.042965932869063
1213 => 0.043270006514014
1214 => 0.044021813401063
1215 => 0.043974787675584
1216 => 0.04415784068872
1217 => 0.044115759971036
1218 => 0.045508323917678
1219 => 0.047044528748571
1220 => 0.046991334860109
1221 => 0.046770487240118
1222 => 0.04709848361592
1223 => 0.048684011631116
1224 => 0.048538041619046
1225 => 0.048679839052076
1226 => 0.050549265938436
1227 => 0.052979786813577
1228 => 0.051850565846768
1229 => 0.054300650420164
1230 => 0.055842848785714
1231 => 0.058509921392645
]
'min_raw' => 0.023888304810342
'max_raw' => 0.058509921392645
'avg_raw' => 0.041199113101494
'max_pct' => '47.02%'
'is_grow' => true
'min' => '$0.023888'
'max' => '$0.0585099'
'avg' => '$0.041199'
'bar_min_pct' => 51.561829867501
'bar_max_pct' => 51.49087294937
'min_diff' => 0.01065163343896
'max_diff' => 0.023737100370227
'year' => 2028
]
3 => [
'items' => [
101 => 0.058175990766648
102 => 0.059214262560643
103 => 0.057578185252688
104 => 0.053821421047844
105 => 0.053226898732112
106 => 0.054417147463911
107 => 0.057343257828265
108 => 0.054324993835394
109 => 0.054935584710157
110 => 0.054759734497149
111 => 0.054750364186613
112 => 0.055107990827961
113 => 0.054589234732134
114 => 0.052475729075293
115 => 0.053444336262856
116 => 0.0530703105114
117 => 0.053485319968107
118 => 0.055724954843036
119 => 0.054734758878603
120 => 0.053691667867061
121 => 0.05499993547596
122 => 0.056665809711613
123 => 0.05656156229581
124 => 0.056359278737112
125 => 0.05749954056627
126 => 0.05938291904267
127 => 0.059891988676813
128 => 0.060267773473267
129 => 0.060319587847762
130 => 0.060853308107513
131 => 0.057983359756007
201 => 0.062538041495348
202 => 0.063324509211189
203 => 0.063176685876358
204 => 0.064050811642894
205 => 0.063793621667949
206 => 0.063420993746124
207 => 0.064806669017966
208 => 0.063218104137027
209 => 0.060963336283292
210 => 0.059726326044482
211 => 0.061355320913717
212 => 0.062350091236272
213 => 0.063007571140206
214 => 0.063206524161876
215 => 0.058206145676839
216 => 0.055511219007109
217 => 0.057238636105009
218 => 0.059346204184407
219 => 0.057971652108912
220 => 0.0580255319479
221 => 0.056065781914176
222 => 0.059519598577093
223 => 0.059016406540477
224 => 0.061626967716575
225 => 0.061003936340837
226 => 0.063132747638544
227 => 0.062572160279622
228 => 0.06489912706449
301 => 0.065827417115084
302 => 0.067386160586842
303 => 0.068532778629895
304 => 0.069206094676083
305 => 0.069165671306215
306 => 0.071833684925936
307 => 0.070260450507682
308 => 0.068284097295473
309 => 0.068248351301179
310 => 0.069271932634924
311 => 0.071417078304628
312 => 0.071973283366182
313 => 0.0722841261167
314 => 0.071808059623767
315 => 0.070100426417479
316 => 0.069363079056901
317 => 0.069991320371123
318 => 0.069223035229221
319 => 0.070549310926882
320 => 0.072370570736973
321 => 0.071994487788231
322 => 0.073251676700368
323 => 0.0745527349643
324 => 0.076413306715906
325 => 0.076899729068548
326 => 0.07770376672048
327 => 0.078531385576927
328 => 0.078797194448665
329 => 0.07930470606046
330 => 0.079302031223752
331 => 0.080831451625369
401 => 0.082518449690561
402 => 0.083155252406076
403 => 0.084619545136896
404 => 0.082111995150304
405 => 0.084014000619792
406 => 0.085729657163555
407 => 0.083684180703864
408 => 0.086503393468657
409 => 0.086612857111841
410 => 0.088265628162687
411 => 0.086590228070033
412 => 0.085595380843082
413 => 0.088467467510851
414 => 0.089857179779503
415 => 0.089438587134332
416 => 0.086253076436109
417 => 0.084398972576763
418 => 0.079546425146929
419 => 0.085294477192016
420 => 0.088094185670202
421 => 0.086245825867511
422 => 0.087178031039319
423 => 0.092263840188163
424 => 0.094200187030286
425 => 0.093797440423211
426 => 0.093865497970033
427 => 0.094910315578862
428 => 0.099543612247974
429 => 0.096767233484866
430 => 0.098889671020334
501 => 0.10001540423613
502 => 0.10106104798475
503 => 0.098493277417233
504 => 0.095152645636932
505 => 0.094094527321928
506 => 0.086062042912323
507 => 0.085643917215492
508 => 0.085409210591355
509 => 0.083929418526083
510 => 0.082766707311939
511 => 0.081842076185753
512 => 0.079415567992412
513 => 0.080234443276769
514 => 0.076367095668202
515 => 0.07884128761778
516 => 0.072668907454134
517 => 0.077809449067685
518 => 0.075011685979176
519 => 0.076890308647513
520 => 0.07688375431
521 => 0.073424614359732
522 => 0.071429454626827
523 => 0.072700848061413
524 => 0.074063882746625
525 => 0.074285030538501
526 => 0.076052240586725
527 => 0.076545430925131
528 => 0.075051041174905
529 => 0.072540998594668
530 => 0.073124024238081
531 => 0.071417639630772
601 => 0.068427266241598
602 => 0.070575004616613
603 => 0.071308336927233
604 => 0.071632218252623
605 => 0.068691529471075
606 => 0.067767501210454
607 => 0.067275556317847
608 => 0.072161392600558
609 => 0.072429049741277
610 => 0.071059677966454
611 => 0.077249368237814
612 => 0.075848450697624
613 => 0.077413618823147
614 => 0.073071120771927
615 => 0.073237010045433
616 => 0.071181201876367
617 => 0.072332317081892
618 => 0.071518745956802
619 => 0.072239318348828
620 => 0.072671226469577
621 => 0.074726697300752
622 => 0.077832919242829
623 => 0.074419678502486
624 => 0.072932480633411
625 => 0.073855129827066
626 => 0.076312266215061
627 => 0.080034953621371
628 => 0.077831047750769
629 => 0.078809103751393
630 => 0.079022765476847
701 => 0.077397686880896
702 => 0.080094872587191
703 => 0.081540316319093
704 => 0.083023042495588
705 => 0.084310452089594
706 => 0.082430809054848
707 => 0.084442296538271
708 => 0.082821392701972
709 => 0.081367274394852
710 => 0.08136947969209
711 => 0.080457290036756
712 => 0.078689807636252
713 => 0.078363856763553
714 => 0.080059494366386
715 => 0.08141923514638
716 => 0.081531229909739
717 => 0.082284052271547
718 => 0.082729564790578
719 => 0.087096193121983
720 => 0.088852487159519
721 => 0.091000050263672
722 => 0.091836647122764
723 => 0.094354503732059
724 => 0.092321130029738
725 => 0.091881196838721
726 => 0.085773700289193
727 => 0.08677380250703
728 => 0.088375062653297
729 => 0.085800104479224
730 => 0.087433322767002
731 => 0.087755754653303
801 => 0.085712608385789
802 => 0.086803941086407
803 => 0.08390568499116
804 => 0.077896093305685
805 => 0.08010156298067
806 => 0.081725531014525
807 => 0.0794079283964
808 => 0.083562141385781
809 => 0.081135335917747
810 => 0.080366155091586
811 => 0.07736530645597
812 => 0.078781591498724
813 => 0.080697137298298
814 => 0.079513552700263
815 => 0.081969668457307
816 => 0.085448183391429
817 => 0.08792718028263
818 => 0.088117486882109
819 => 0.08652365796096
820 => 0.089077778978782
821 => 0.089096382962
822 => 0.086215324020005
823 => 0.084450691459837
824 => 0.084049763229348
825 => 0.085051360555719
826 => 0.086267484615
827 => 0.088184973303606
828 => 0.089343671559127
829 => 0.092364942083454
830 => 0.093182411260723
831 => 0.094080562045373
901 => 0.09528076847311
902 => 0.096721924016219
903 => 0.093568757732926
904 => 0.093694038907599
905 => 0.090757854123156
906 => 0.087620119589487
907 => 0.09000126897641
908 => 0.093114305048784
909 => 0.092400171134182
910 => 0.092319816480358
911 => 0.092454950719569
912 => 0.091916517069392
913 => 0.089481201624926
914 => 0.088258201454597
915 => 0.089836183694941
916 => 0.090674811027775
917 => 0.091975448885011
918 => 0.091815117815972
919 => 0.095165421257903
920 => 0.09646724786752
921 => 0.096134184912478
922 => 0.096195476511814
923 => 0.098552371405182
924 => 0.10117372325901
925 => 0.10362896518797
926 => 0.10612654273319
927 => 0.10311561552031
928 => 0.10158685236978
929 => 0.10316414571245
930 => 0.10232721166282
1001 => 0.10713648296274
1002 => 0.10746946647302
1003 => 0.11227839000789
1004 => 0.11684263107845
1005 => 0.11397591303891
1006 => 0.11667909903038
1007 => 0.11960281507414
1008 => 0.1252431376784
1009 => 0.12334367545423
1010 => 0.12188871715888
1011 => 0.12051378860009
1012 => 0.12337479666718
1013 => 0.12705543783977
1014 => 0.12784821269561
1015 => 0.12913281082536
1016 => 0.12778221296511
1017 => 0.12940885932431
1018 => 0.13515163575691
1019 => 0.13359988687193
1020 => 0.13139615399918
1021 => 0.13592952445061
1022 => 0.13757013359395
1023 => 0.14908478775558
1024 => 0.16362251428129
1025 => 0.15760380003979
1026 => 0.15386778988739
1027 => 0.15474584089255
1028 => 0.16005452648664
1029 => 0.1617595078102
1030 => 0.15712478083045
1031 => 0.1587618447527
1101 => 0.16778222791687
1102 => 0.1726213740759
1103 => 0.1660491636079
1104 => 0.14791669558431
1105 => 0.13119773196555
1106 => 0.13563235398199
1107 => 0.13512960546767
1108 => 0.14482088186185
1109 => 0.13356287817422
1110 => 0.13375243408356
1111 => 0.14364411581033
1112 => 0.14100518471199
1113 => 0.13673045430143
1114 => 0.13122894222825
1115 => 0.12105888833271
1116 => 0.1120509879845
1117 => 0.1297175549629
1118 => 0.12895574047022
1119 => 0.12785252019025
1120 => 0.13030761754243
1121 => 0.14222887339311
1122 => 0.14195404986042
1123 => 0.14020576276159
1124 => 0.14153182311735
1125 => 0.13649798950965
1126 => 0.13779532304862
1127 => 0.1311950835963
1128 => 0.13417866747909
1129 => 0.13672128264984
1130 => 0.13723175028943
1201 => 0.13838185994655
1202 => 0.1285542988497
1203 => 0.13296658526015
1204 => 0.13555839015096
1205 => 0.12384852136361
1206 => 0.13532692369514
1207 => 0.12838322287536
1208 => 0.12602642652624
1209 => 0.12919954232602
1210 => 0.12796297601289
1211 => 0.12689984891047
1212 => 0.12630660572047
1213 => 0.12863659175982
1214 => 0.12852789512615
1215 => 0.12471558573498
1216 => 0.1197425835438
1217 => 0.12141168631239
1218 => 0.12080528562864
1219 => 0.11860761132348
1220 => 0.12008857845695
1221 => 0.11356714870146
1222 => 0.10234736776156
1223 => 0.10975949872164
1224 => 0.10947413974252
1225 => 0.10933024880525
1226 => 0.1149002603655
1227 => 0.11436483227602
1228 => 0.11339302505067
1229 => 0.11858976332168
1230 => 0.11669288394677
1231 => 0.12253861921926
]
'min_raw' => 0.052475729075293
'max_raw' => 0.1726213740759
'avg_raw' => 0.1125485515756
'max_pct' => '333.75%'
'is_grow' => true
'min' => '$0.052475'
'max' => '$0.172621'
'avg' => '$0.112548'
'bar_min_pct' => 53.43089062365
'bar_max_pct' => 54.398511072435
'min_diff' => 0.028587424264951
'max_diff' => 0.11411145268326
'year' => 2029
]
4 => [
'items' => [
101 => 0.12638899854818
102 => 0.12541241780364
103 => 0.12903371817299
104 => 0.12145013906906
105 => 0.123969099847
106 => 0.12448825417221
107 => 0.11852563637809
108 => 0.11445243493321
109 => 0.11418079883473
110 => 0.10711842885104
111 => 0.11089108989087
112 => 0.1142108754826
113 => 0.11262095580993
114 => 0.11211763473906
115 => 0.1146889929331
116 => 0.11488880948697
117 => 0.11033297088311
118 => 0.1112802739935
119 => 0.11523068543985
120 => 0.11118073376076
121 => 0.10331233920414
122 => 0.10136086856503
123 => 0.10110050640903
124 => 0.095807963262684
125 => 0.10149127516446
126 => 0.099010357216043
127 => 0.10684754728912
128 => 0.10237098635107
129 => 0.10217801075622
130 => 0.10188629984124
131 => 0.097330789322972
201 => 0.098328156608676
202 => 0.10164355736968
203 => 0.10282652971187
204 => 0.10270313600478
205 => 0.10162731009724
206 => 0.10211981768859
207 => 0.10053327913584
208 => 0.099973039351918
209 => 0.098204768487769
210 => 0.095605898814763
211 => 0.095967287582589
212 => 0.090818246729125
213 => 0.088012775991876
214 => 0.087236258667316
215 => 0.086197867248021
216 => 0.087353547741179
217 => 0.09080366014333
218 => 0.086642092604158
219 => 0.07950737695827
220 => 0.079936185525552
221 => 0.080899591061828
222 => 0.079104291218543
223 => 0.077405190584969
224 => 0.07888242073347
225 => 0.075859347659012
226 => 0.081264914999973
227 => 0.081118709552328
228 => 0.083133570778996
301 => 0.084393504853147
302 => 0.08148976472073
303 => 0.080759481929976
304 => 0.081175484197092
305 => 0.074299893378165
306 => 0.082571688322774
307 => 0.082643223148949
308 => 0.082030698537188
309 => 0.086435173982175
310 => 0.09572999096144
311 => 0.092232906930694
312 => 0.090878730294064
313 => 0.088304439517935
314 => 0.091734529130866
315 => 0.091471151766326
316 => 0.090280059440979
317 => 0.089559683086174
318 => 0.090886998607846
319 => 0.089395214004289
320 => 0.08912724849799
321 => 0.087503669079169
322 => 0.086924125094806
323 => 0.086495053801095
324 => 0.086022688466393
325 => 0.087064608688637
326 => 0.084703480389011
327 => 0.081856191123924
328 => 0.081619469829628
329 => 0.082273078135927
330 => 0.081983905115805
331 => 0.081618085380461
401 => 0.080919635880612
402 => 0.080712420834019
403 => 0.081385769208997
404 => 0.080625598152296
405 => 0.081747271955118
406 => 0.081442238745793
407 => 0.079738348034534
408 => 0.077614669347167
409 => 0.077595764152282
410 => 0.07713822106262
411 => 0.076555471145871
412 => 0.076393363450544
413 => 0.078758012530693
414 => 0.08365276535861
415 => 0.082691808256982
416 => 0.083386198245753
417 => 0.086801909727477
418 => 0.08788766169349
419 => 0.087117020665459
420 => 0.086062119695222
421 => 0.086108529984199
422 => 0.089713445939739
423 => 0.089938280126006
424 => 0.090506363580446
425 => 0.091236511359765
426 => 0.087241367989525
427 => 0.085920359090738
428 => 0.085294391787709
429 => 0.083366654774215
430 => 0.085445553871588
501 => 0.084234268394883
502 => 0.084397712189095
503 => 0.084291269203698
504 => 0.084349394271368
505 => 0.081263404033736
506 => 0.082387776681457
507 => 0.080518289078959
508 => 0.078015255039046
509 => 0.078006863991267
510 => 0.07861947802649
511 => 0.07825507122675
512 => 0.077274461898404
513 => 0.07741375282515
514 => 0.076193417738055
515 => 0.077561923599604
516 => 0.077601167450964
517 => 0.077074218151249
518 => 0.079182590248382
519 => 0.080046392016845
520 => 0.079699542699426
521 => 0.080022056144106
522 => 0.082731740363016
523 => 0.083173537122509
524 => 0.08336975405962
525 => 0.083106849357654
526 => 0.08007158419739
527 => 0.080206211114192
528 => 0.079218408125063
529 => 0.078383818691364
530 => 0.078417197891867
531 => 0.07884628534982
601 => 0.080720135444349
602 => 0.084663542498789
603 => 0.084813191913912
604 => 0.084994571370623
605 => 0.08425680996617
606 => 0.084034294067161
607 => 0.08432784997418
608 => 0.085808786329335
609 => 0.089618156705092
610 => 0.088271670795007
611 => 0.087176956790805
612 => 0.088137316105266
613 => 0.08798947631635
614 => 0.086741559717193
615 => 0.08670653485457
616 => 0.084311383917717
617 => 0.083425951151311
618 => 0.082686017258208
619 => 0.081878028763403
620 => 0.081399026099663
621 => 0.082134991893985
622 => 0.082303315978837
623 => 0.080694113907071
624 => 0.080474785610896
625 => 0.081788894759739
626 => 0.08121060431826
627 => 0.081805390378234
628 => 0.081943385846128
629 => 0.081921165397492
630 => 0.081317363760354
701 => 0.081702208918242
702 => 0.080791935391974
703 => 0.07980214965082
704 => 0.079170728013795
705 => 0.078619728889564
706 => 0.078925455227944
707 => 0.077835596655042
708 => 0.077486928963051
709 => 0.08157183203804
710 => 0.084589393859642
711 => 0.084545517315671
712 => 0.084278430138374
713 => 0.083881592769566
714 => 0.08577975520406
715 => 0.085118473366838
716 => 0.085599611155363
717 => 0.085722080915832
718 => 0.08609275999524
719 => 0.086225245905185
720 => 0.085824781467951
721 => 0.084480773903981
722 => 0.081131634838973
723 => 0.079572601563383
724 => 0.079058094614686
725 => 0.079076795965083
726 => 0.07856092923462
727 => 0.078712875106267
728 => 0.07850808866133
729 => 0.078120272677783
730 => 0.078901508683797
731 => 0.078991538855773
801 => 0.078809189036895
802 => 0.0788521390204
803 => 0.077342360402711
804 => 0.077457145591947
805 => 0.076818007072083
806 => 0.076698176304539
807 => 0.075082489782482
808 => 0.072220066911151
809 => 0.073806127043979
810 => 0.071890389437326
811 => 0.071164870577525
812 => 0.074599364018492
813 => 0.074254636135038
814 => 0.073664611848175
815 => 0.072791842956068
816 => 0.072468124484235
817 => 0.070501313526196
818 => 0.070385103842266
819 => 0.071359908461434
820 => 0.070910069670667
821 => 0.070278325641158
822 => 0.067990212805141
823 => 0.065417616409333
824 => 0.065495266923758
825 => 0.066313561972407
826 => 0.068692865188476
827 => 0.067763230259595
828 => 0.067088769452359
829 => 0.066962463217381
830 => 0.068543450188142
831 => 0.070780877978779
901 => 0.07183062903852
902 => 0.07079035761973
903 => 0.069595349826015
904 => 0.069668084413285
905 => 0.070151955036727
906 => 0.070202802997688
907 => 0.069424975772766
908 => 0.069643929580432
909 => 0.069311318725031
910 => 0.067270086519384
911 => 0.067233167101601
912 => 0.066732215799019
913 => 0.066717047192668
914 => 0.065864804058818
915 => 0.065745569353114
916 => 0.064053388883394
917 => 0.065167187192958
918 => 0.064420109763938
919 => 0.063294087860655
920 => 0.063099961260106
921 => 0.063094125580079
922 => 0.06425029830086
923 => 0.065153676641559
924 => 0.064433105495667
925 => 0.064269045413433
926 => 0.066020777875523
927 => 0.065797853952326
928 => 0.065604803272543
929 => 0.07058054086045
930 => 0.066641856297976
1001 => 0.064924365016482
1002 => 0.062798643412885
1003 => 0.063490789085834
1004 => 0.063636634348861
1005 => 0.058524657082328
1006 => 0.056450728541952
1007 => 0.055739034421244
1008 => 0.055329444392898
1009 => 0.055516099712123
1010 => 0.053649320778229
1011 => 0.054903827095479
1012 => 0.053287354333623
1013 => 0.05301634741464
1014 => 0.055906800955389
1015 => 0.0563089906798
1016 => 0.054593124364911
1017 => 0.055694988312593
1018 => 0.055295437128109
1019 => 0.053315064119567
1020 => 0.053239428437278
1021 => 0.052245746875069
1022 => 0.050690827644877
1023 => 0.049980187832626
1024 => 0.049610080448348
1025 => 0.04976279396835
1026 => 0.049685577339526
1027 => 0.04918168660511
1028 => 0.04971445976659
1029 => 0.048353444496078
1030 => 0.047811477248915
1031 => 0.047566683216916
1101 => 0.046358703827221
1102 => 0.048281136227099
1103 => 0.04865987962804
1104 => 0.049039369270481
1105 => 0.052342567519345
1106 => 0.052177549069573
1107 => 0.053669235488267
1108 => 0.053611271297072
1109 => 0.053185818166742
1110 => 0.051390901393526
1111 => 0.052106323228015
1112 => 0.049904366022697
1113 => 0.051554222079457
1114 => 0.050801296674788
1115 => 0.051299657242763
1116 => 0.050403560006182
1117 => 0.050899497215854
1118 => 0.048749693738857
1119 => 0.046742237500588
1120 => 0.047550096492168
1121 => 0.048428331605898
1122 => 0.050332569102609
1123 => 0.049198420959186
1124 => 0.04960630351845
1125 => 0.048239965223631
1126 => 0.04542081904618
1127 => 0.045436775107386
1128 => 0.045003110886423
1129 => 0.044628361683498
1130 => 0.049328691516586
1201 => 0.048744131200623
1202 => 0.047812710842498
1203 => 0.049059454005022
1204 => 0.049389112685667
1205 => 0.04939849760486
1206 => 0.050308089233138
1207 => 0.050793538448204
1208 => 0.050879100976416
1209 => 0.052310363056541
1210 => 0.052790103226995
1211 => 0.054766085093726
1212 => 0.050752351473951
1213 => 0.050669691271362
1214 => 0.049076998238069
1215 => 0.048066887136874
1216 => 0.049146161409356
1217 => 0.050102251079144
1218 => 0.049106706609199
1219 => 0.049236703699883
1220 => 0.047900266587954
1221 => 0.048377979970258
1222 => 0.04878945109004
1223 => 0.048562260922851
1224 => 0.04822214624644
1225 => 0.050023862629325
1226 => 0.049922202730019
1227 => 0.051600002447041
1228 => 0.052907967307069
1229 => 0.055252074162925
1230 => 0.052805876457786
1231 => 0.052716727290655
]
'min_raw' => 0.044628361683498
'max_raw' => 0.12903371817299
'avg_raw' => 0.086831039928242
'max_pct' => '224.23%'
'is_grow' => true
'min' => '$0.044628'
'max' => '$0.129033'
'avg' => '$0.086831'
'bar_min_pct' => 52.917825637622
'bar_max_pct' => 53.28786768811
'min_diff' => -0.0078473673917947
'max_diff' => -0.043587655902917
'year' => 2030
]
5 => [
'items' => [
101 => 0.053588174699332
102 => 0.052789969812937
103 => 0.053294407748043
104 => 0.055170801412999
105 => 0.055210446654358
106 => 0.054546337781601
107 => 0.054505926696339
108 => 0.054633476069907
109 => 0.055380536734827
110 => 0.055119490783648
111 => 0.055421579767227
112 => 0.055799346666943
113 => 0.057361950734014
114 => 0.057738689284413
115 => 0.056823409923485
116 => 0.056906049401829
117 => 0.056563709795861
118 => 0.056233014025999
119 => 0.05697636982241
120 => 0.058334867151045
121 => 0.05832641600967
122 => 0.058641560984498
123 => 0.058837893693015
124 => 0.057995089983736
125 => 0.057446455759747
126 => 0.057656837031727
127 => 0.057993241267131
128 => 0.057547745672128
129 => 0.054797940486136
130 => 0.055632055721331
131 => 0.055493218160043
201 => 0.055295496589545
202 => 0.056134205908556
203 => 0.056053310348692
204 => 0.053630174262064
205 => 0.053785295572484
206 => 0.053639607702728
207 => 0.054110355014843
208 => 0.052764547913222
209 => 0.053178509113531
210 => 0.05343814169772
211 => 0.053591067284399
212 => 0.054143539365539
213 => 0.054078713143426
214 => 0.054139509676552
215 => 0.054958679925661
216 => 0.05910176194037
217 => 0.059327260753236
218 => 0.05821682212637
219 => 0.05866042045537
220 => 0.057808808667981
221 => 0.058380501366158
222 => 0.058771638990831
223 => 0.057004163276375
224 => 0.056899504835388
225 => 0.056044378143218
226 => 0.056503874790739
227 => 0.055772782585555
228 => 0.055952167040187
301 => 0.05545059246658
302 => 0.056353326836572
303 => 0.057362724132962
304 => 0.057617737752338
305 => 0.056946906710027
306 => 0.056461180825474
307 => 0.055608406180253
308 => 0.057026589420579
309 => 0.057441309418401
310 => 0.057024411072982
311 => 0.05692780661694
312 => 0.0567447413473
313 => 0.056966644779299
314 => 0.057439050764227
315 => 0.057216272825704
316 => 0.057363421578941
317 => 0.056802642270737
318 => 0.057995368986833
319 => 0.059889706057308
320 => 0.059895796660745
321 => 0.059673017521365
322 => 0.059581861097375
323 => 0.059810446013747
324 => 0.059934443953835
325 => 0.060673645658077
326 => 0.061466838537824
327 => 0.065168323610438
328 => 0.06412896141378
329 => 0.067413139172535
330 => 0.070010497382601
331 => 0.070789331541091
401 => 0.070072840762259
402 => 0.067621764511948
403 => 0.067501503017631
404 => 0.071164445753296
405 => 0.070129496657065
406 => 0.070006392755249
407 => 0.068696775227252
408 => 0.069470921385585
409 => 0.069301604264718
410 => 0.069034328906154
411 => 0.070511345848764
412 => 0.073276189711118
413 => 0.072845262866628
414 => 0.072523595967338
415 => 0.071114145250475
416 => 0.071962949394241
417 => 0.071660706496418
418 => 0.072959333793547
419 => 0.072190055750845
420 => 0.070121655899761
421 => 0.070451055393581
422 => 0.07040126732275
423 => 0.071425902292434
424 => 0.071118332307538
425 => 0.070341209346877
426 => 0.073266739775373
427 => 0.073076772102002
428 => 0.073346102830186
429 => 0.073464670546063
430 => 0.07524538936426
501 => 0.075974892887428
502 => 0.076140502958945
503 => 0.076833474884128
504 => 0.076123261186163
505 => 0.078964622351806
506 => 0.080853961728938
507 => 0.083048526639992
508 => 0.086255375818482
509 => 0.087461180774607
510 => 0.087243362902025
511 => 0.089674759349892
512 => 0.094043924719802
513 => 0.088126496142502
514 => 0.094357562803038
515 => 0.092384879039436
516 => 0.087707681323003
517 => 0.087406524930603
518 => 0.090573977527554
519 => 0.097599082531577
520 => 0.09583937340615
521 => 0.097601960785307
522 => 0.09554580898218
523 => 0.095443703714546
524 => 0.097502098081646
525 => 0.10231164871761
526 => 0.10002681149377
527 => 0.096750937068331
528 => 0.099169791765827
529 => 0.097074355972422
530 => 0.092352752654331
531 => 0.095838027789746
601 => 0.093507523561615
602 => 0.094187688591803
603 => 0.099086061842992
604 => 0.098496676613921
605 => 0.099259395675942
606 => 0.097913216495308
607 => 0.096655672867625
608 => 0.094308374300136
609 => 0.093613454914724
610 => 0.093805505632272
611 => 0.093613359743926
612 => 0.092300067768204
613 => 0.092016462491087
614 => 0.091543774604192
615 => 0.091690280345631
616 => 0.090801488828549
617 => 0.092478822054979
618 => 0.092790149882414
619 => 0.094010773126627
620 => 0.094137502281104
621 => 0.097536920641752
622 => 0.095664578133612
623 => 0.096920707138347
624 => 0.096808347137019
625 => 0.087809050380022
626 => 0.089049074071668
627 => 0.090978161794999
628 => 0.090109110390455
629 => 0.08888047503114
630 => 0.087888286103233
701 => 0.086385018420927
702 => 0.088500838816074
703 => 0.091282917643278
704 => 0.094208060391291
705 => 0.097722427740082
706 => 0.096938061859578
707 => 0.094142361738248
708 => 0.094267774803431
709 => 0.095043029024168
710 => 0.09403900436904
711 => 0.093742897897353
712 => 0.095002348541982
713 => 0.09501102168639
714 => 0.093855769980232
715 => 0.092571919117669
716 => 0.092566539735677
717 => 0.092338090875212
718 => 0.095586449526955
719 => 0.09737271833931
720 => 0.09757751117993
721 => 0.097358934149432
722 => 0.097443055773459
723 => 0.096403665309296
724 => 0.098779403688703
725 => 0.10095961616182
726 => 0.10037527264558
727 => 0.099499258645408
728 => 0.098801471299721
729 => 0.10021089612294
730 => 0.1001481366542
731 => 0.10094057390784
801 => 0.10090462437668
802 => 0.10063815753335
803 => 0.10037528216195
804 => 0.10141755329547
805 => 0.10111739594738
806 => 0.10081677237202
807 => 0.10021382576847
808 => 0.10029577622578
809 => 0.099419913481772
810 => 0.099014699299644
811 => 0.092921250245205
812 => 0.091292881548668
813 => 0.0918051994891
814 => 0.09197386785742
815 => 0.091265199713875
816 => 0.092281247789808
817 => 0.092122897773435
818 => 0.092738945055481
819 => 0.092354065459323
820 => 0.092369861052201
821 => 0.093501709879522
822 => 0.093830290409322
823 => 0.093663171699895
824 => 0.093780215915484
825 => 0.096477450462439
826 => 0.096093989962567
827 => 0.095890284214662
828 => 0.095946712098981
829 => 0.096635913355089
830 => 0.096828852077806
831 => 0.096011357152092
901 => 0.096396892484941
902 => 0.098038453000492
903 => 0.098612906276656
904 => 0.10044628538096
905 => 0.099667433351735
906 => 0.1010970499593
907 => 0.10549120401873
908 => 0.10900155833374
909 => 0.10577329143413
910 => 0.11221961009272
911 => 0.11723899383792
912 => 0.11704634152956
913 => 0.11617109587314
914 => 0.11045666092645
915 => 0.10519815269108
916 => 0.10959711811802
917 => 0.10960833198555
918 => 0.10923045695413
919 => 0.10688350758747
920 => 0.10914878820348
921 => 0.10932859795249
922 => 0.10922795230831
923 => 0.10742855173161
924 => 0.10468119963579
925 => 0.10521802565908
926 => 0.10609735763618
927 => 0.10443259875566
928 => 0.10390060742203
929 => 0.10488968052673
930 => 0.10807668015165
1001 => 0.10747419633359
1002 => 0.10745846304628
1003 => 0.11003614431283
1004 => 0.10819108082441
1005 => 0.10522479675439
1006 => 0.10447577090623
1007 => 0.10181723374952
1008 => 0.10365349483304
1009 => 0.10371957860041
1010 => 0.1027138771711
1011 => 0.10530640388264
1012 => 0.10528251329259
1013 => 0.10774373155852
1014 => 0.11244865649161
1015 => 0.1110571786736
1016 => 0.10943904136361
1017 => 0.10961497775529
1018 => 0.11154456572397
1019 => 0.1103778927899
1020 => 0.11079743651132
1021 => 0.1115439306943
1022 => 0.1119943091693
1023 => 0.10955017522367
1024 => 0.1089803306845
1025 => 0.10781462874562
1026 => 0.10751051886862
1027 => 0.10845995877467
1028 => 0.10820981490364
1029 => 0.10371402451565
1030 => 0.10324418940576
1031 => 0.10325859857781
1101 => 0.10207717585456
1102 => 0.10027522262766
1103 => 0.10501064811892
1104 => 0.10463032717973
1105 => 0.10421048229738
1106 => 0.10426191089986
1107 => 0.10631739860716
1108 => 0.10512511193231
1109 => 0.10829500146933
1110 => 0.10764336747612
1111 => 0.10697502152983
1112 => 0.10688263576173
1113 => 0.106625379593
1114 => 0.10574315246963
1115 => 0.10467781020453
1116 => 0.10397437896275
1117 => 0.095910868528256
1118 => 0.097407409161615
1119 => 0.099129042746323
1120 => 0.099723343760751
1121 => 0.098706750751194
1122 => 0.10578329375786
1123 => 0.10707624635644
1124 => 0.10315980859812
1125 => 0.10242720300064
1126 => 0.10583132325886
1127 => 0.10377822260638
1128 => 0.10470273370448
1129 => 0.10270444639092
1130 => 0.10676481193751
1201 => 0.10673387875502
1202 => 0.10515430484988
1203 => 0.10648934989805
1204 => 0.10625735296709
1205 => 0.1044740179185
1206 => 0.10682134683943
1207 => 0.10682251108529
1208 => 0.10530220554449
1209 => 0.10352682151051
1210 => 0.10320942477794
1211 => 0.10297030897619
1212 => 0.10464392587532
1213 => 0.1061444855538
1214 => 0.10893665509518
1215 => 0.10963867285819
1216 => 0.1123786949232
1217 => 0.11074714519274
1218 => 0.11147039005615
1219 => 0.11225557466461
1220 => 0.11263202104011
1221 => 0.11201862187246
1222 => 0.11627500397749
1223 => 0.11663437303934
1224 => 0.11675486637724
1225 => 0.11531963827969
1226 => 0.11659445674964
1227 => 0.1159980114051
1228 => 0.1175497964943
1229 => 0.11779313621047
1230 => 0.11758703612793
1231 => 0.1176642759947
]
'min_raw' => 0.052764547913222
'max_raw' => 0.11779313621047
'avg_raw' => 0.085278842061846
'max_pct' => '195.98%'
'is_grow' => true
'min' => '$0.052764'
'max' => '$0.117793'
'avg' => '$0.085278'
'bar_min_pct' => 53.449773750392
'bar_max_pct' => 53.001449945884
'min_diff' => 0.0081361862297237
'max_diff' => -0.011240581962516
'year' => 2031
]
6 => [
'items' => [
101 => 0.11403220474531
102 => 0.11384386269033
103 => 0.11127580540649
104 => 0.11232230773177
105 => 0.11036592179481
106 => 0.11098631192843
107 => 0.11125977398804
108 => 0.11111693292693
109 => 0.11238147540308
110 => 0.1113063559694
111 => 0.10846893901789
112 => 0.10563074901403
113 => 0.10559511785048
114 => 0.10484787252068
115 => 0.10430775101204
116 => 0.10441179757644
117 => 0.10477847124041
118 => 0.10428643927211
119 => 0.1043914392392
120 => 0.10613513830401
121 => 0.10648482471596
122 => 0.10529645365684
123 => 0.10052497237334
124 => 0.09935403889802
125 => 0.10019568265946
126 => 0.099793431150294
127 => 0.080541087496249
128 => 0.085064140063717
129 => 0.08237669581648
130 => 0.083615193768971
131 => 0.080872009102856
201 => 0.082181200608153
202 => 0.081939440741143
203 => 0.089212375422776
204 => 0.089098818551317
205 => 0.089153172216388
206 => 0.086558730164801
207 => 0.090691746799758
208 => 0.092727819412609
209 => 0.092350996560288
210 => 0.092445834753887
211 => 0.09081620037388
212 => 0.089168950639391
213 => 0.087341897173926
214 => 0.090736336682127
215 => 0.090358932953829
216 => 0.091224561320968
217 => 0.093426097981583
218 => 0.093750282617683
219 => 0.094185990056157
220 => 0.094029819955232
221 => 0.097750425345836
222 => 0.097299835483689
223 => 0.098385627407913
224 => 0.096152071040553
225 => 0.09362458999977
226 => 0.094104981516042
227 => 0.09405871594996
228 => 0.093469702192597
229 => 0.092937966909033
301 => 0.092052777477386
302 => 0.094853647822502
303 => 0.09473993760148
304 => 0.096580773906151
305 => 0.096255388208371
306 => 0.094082382883206
307 => 0.094159992193505
308 => 0.094681952103031
309 => 0.096488461309535
310 => 0.097024756238551
311 => 0.096776323059773
312 => 0.097364345966645
313 => 0.097829095296612
314 => 0.097422711327083
315 => 0.10317625134767
316 => 0.10078698039571
317 => 0.10195149443326
318 => 0.1022292241695
319 => 0.10151782529015
320 => 0.10167210223379
321 => 0.10190578976547
322 => 0.10332469469709
323 => 0.1070483118011
324 => 0.10869747646895
325 => 0.11365906974052
326 => 0.10856053630076
327 => 0.10825801042628
328 => 0.10915174320025
329 => 0.11206472368865
330 => 0.11442542077215
331 => 0.11520860018663
401 => 0.11531211027514
402 => 0.11678140692149
403 => 0.11762358035842
404 => 0.11660299566228
405 => 0.11573815699198
406 => 0.1126404122227
407 => 0.11299898461462
408 => 0.11546919281585
409 => 0.11895850739461
410 => 0.1219527023045
411 => 0.12090423960528
412 => 0.12890326990097
413 => 0.12969634108168
414 => 0.12958676428757
415 => 0.13139349846204
416 => 0.12780749906073
417 => 0.1262744148412
418 => 0.11592514492884
419 => 0.11883286763298
420 => 0.12305941334802
421 => 0.1225000141739
422 => 0.11943058369975
423 => 0.12195037386624
424 => 0.12111725243607
425 => 0.12046013499786
426 => 0.12347051737079
427 => 0.12016047829206
428 => 0.12302639317616
429 => 0.11935082769321
430 => 0.12090902889458
501 => 0.12002451853097
502 => 0.12059690513774
503 => 0.11725074473036
504 => 0.11905625166273
505 => 0.11717562970602
506 => 0.11717473804635
507 => 0.11713322321242
508 => 0.11934576660453
509 => 0.11941791756512
510 => 0.11778284465538
511 => 0.11754720510445
512 => 0.11841848802793
513 => 0.11739844391389
514 => 0.11787571613477
515 => 0.11741290000326
516 => 0.11730871034365
517 => 0.11647850940953
518 => 0.11612083602026
519 => 0.1162610889723
520 => 0.11578233334163
521 => 0.1154938657568
522 => 0.11707583974918
523 => 0.1162306548617
524 => 0.11694630304351
525 => 0.11613073161833
526 => 0.11330360573111
527 => 0.11167769573706
528 => 0.1063375170108
529 => 0.1078519850731
530 => 0.10885607896523
531 => 0.10852422593987
601 => 0.10923717464842
602 => 0.10928094390879
603 => 0.10904915701599
604 => 0.10878077748787
605 => 0.1086501451759
606 => 0.10962377140429
607 => 0.11018899420062
608 => 0.10895685322035
609 => 0.10866817982816
610 => 0.10991394238758
611 => 0.11067385682917
612 => 0.11628463810684
613 => 0.11586897330721
614 => 0.11691221038419
615 => 0.1167947578991
616 => 0.11788823655648
617 => 0.11967561202274
618 => 0.1160413779418
619 => 0.11667215531589
620 => 0.11651750327054
621 => 0.11820595374973
622 => 0.11821122490783
623 => 0.11719891450119
624 => 0.11774770439549
625 => 0.11744138493176
626 => 0.11799494560428
627 => 0.11586342185039
628 => 0.11845938769886
629 => 0.1199311330546
630 => 0.11995156824029
701 => 0.12064916385842
702 => 0.12135796140845
703 => 0.12271843658248
704 => 0.12132001849425
705 => 0.11880440048677
706 => 0.11898601998152
707 => 0.11751111406416
708 => 0.1175359074991
709 => 0.11740355820032
710 => 0.11780074840874
711 => 0.11595058276519
712 => 0.11638481294367
713 => 0.11577688815095
714 => 0.11667083380612
715 => 0.11570909605567
716 => 0.11651742869264
717 => 0.11686627826211
718 => 0.11815354068363
719 => 0.11551896634937
720 => 0.11014689093681
721 => 0.11127616631865
722 => 0.10960587932624
723 => 0.10976047074662
724 => 0.11007277001883
725 => 0.10906050589964
726 => 0.10925361399348
727 => 0.10924671481348
728 => 0.10918726140755
729 => 0.10892393241465
730 => 0.1085420532769
731 => 0.1100633422255
801 => 0.11032183886213
802 => 0.11089644486439
803 => 0.11260608256816
804 => 0.11243524944552
805 => 0.11271388535634
806 => 0.11210562472749
807 => 0.10978868621266
808 => 0.10991450712114
809 => 0.10834551837622
810 => 0.11085632229462
811 => 0.11026173078575
812 => 0.10987839377193
813 => 0.10977379671612
814 => 0.11148767228108
815 => 0.11200049071182
816 => 0.11168093667974
817 => 0.11102552203708
818 => 0.11228411190694
819 => 0.11262085746047
820 => 0.11269624237121
821 => 0.11492622230993
822 => 0.11282087347779
823 => 0.11332765186706
824 => 0.11728139219381
825 => 0.11369589529631
826 => 0.11559521296904
827 => 0.11550225125253
828 => 0.11647387790449
829 => 0.11542254950741
830 => 0.1154355819829
831 => 0.11629832062615
901 => 0.11508675979744
902 => 0.11478676029803
903 => 0.11437231313824
904 => 0.1152772433494
905 => 0.11581970808452
906 => 0.12019157545314
907 => 0.12301600115463
908 => 0.12289338538604
909 => 0.1240138639839
910 => 0.12350907811315
911 => 0.12187899138074
912 => 0.12466135066507
913 => 0.12378089576865
914 => 0.12385347940056
915 => 0.12385077783415
916 => 0.12443620336957
917 => 0.12402137572426
918 => 0.12320370785419
919 => 0.12374651394531
920 => 0.1253584539792
921 => 0.13036196530478
922 => 0.13316199653027
923 => 0.13019339990918
924 => 0.13224109810732
925 => 0.1310132088579
926 => 0.13079006485474
927 => 0.13207617064688
928 => 0.13336452759696
929 => 0.13328246482896
930 => 0.13234718384107
1001 => 0.13181886734288
1002 => 0.13581945686615
1003 => 0.13876702307863
1004 => 0.13856601882367
1005 => 0.13945318623497
1006 => 0.14205793719358
1007 => 0.14229608297743
1008 => 0.14226608208238
1009 => 0.14167581290916
1010 => 0.14424052849756
1011 => 0.14638005936329
1012 => 0.14153918265007
1013 => 0.14338252513074
1014 => 0.14421006095909
1015 => 0.14542512907393
1016 => 0.14747515265273
1017 => 0.14970202200121
1018 => 0.15001692574346
1019 => 0.1497934864688
1020 => 0.14832480627202
1021 => 0.1507614732852
1022 => 0.15218881567465
1023 => 0.15303876540341
1024 => 0.15519409649742
1025 => 0.14421517153864
1026 => 0.13644374276485
1027 => 0.13523012194103
1028 => 0.13769806760955
1029 => 0.13834884520084
1030 => 0.13808651756979
1031 => 0.12933906793749
1101 => 0.13518406842904
1102 => 0.14147279749634
1103 => 0.14171437319147
1104 => 0.14486264245368
1105 => 0.14588784797738
1106 => 0.14842261738655
1107 => 0.14826406686986
1108 => 0.148881242884
1109 => 0.14873936480635
1110 => 0.15343449137816
1111 => 0.15861391321992
1112 => 0.15843456631109
1113 => 0.1576899631412
1114 => 0.15879582582219
1115 => 0.16414154422346
1116 => 0.16364939613646
1117 => 0.1641274760819
1118 => 0.17043037934848
1119 => 0.17862505017257
1120 => 0.17481780284328
1121 => 0.18307843404193
1122 => 0.18827806350423
1123 => 0.19727028500756
1124 => 0.19614441458772
1125 => 0.199645020431
1126 => 0.19412887155996
1127 => 0.18146267875443
1128 => 0.17945820525871
1129 => 0.18347121195848
1130 => 0.19333679734641
1201 => 0.18316050956598
1202 => 0.18521915933034
1203 => 0.18462626805971
1204 => 0.18459467540352
1205 => 0.18580043859352
1206 => 0.18405141619805
1207 => 0.17692558431576
1208 => 0.18019131107462
1209 => 0.17893025713994
1210 => 0.18032949049827
1211 => 0.1878805758454
1212 => 0.18454206101804
1213 => 0.18102520684634
1214 => 0.18543612243007
1215 => 0.1910527337232
1216 => 0.1907012562825
1217 => 0.19001924314136
1218 => 0.1938637155089
1219 => 0.20021365753537
1220 => 0.20193002134899
1221 => 0.20319700602669
1222 => 0.20337170180787
1223 => 0.20517117692678
1224 => 0.19549494568628
1225 => 0.21085137316819
1226 => 0.21350300398157
1227 => 0.21300460728749
1228 => 0.21595178333888
1229 => 0.21508464938192
1230 => 0.21382830832744
1231 => 0.21850020925121
]
'min_raw' => 0.080541087496249
'max_raw' => 0.21850020925121
'avg_raw' => 0.14952064837373
'max_pct' => '449.04%'
'is_grow' => true
'min' => '$0.080541'
'max' => '$0.2185002'
'avg' => '$0.14952'
'bar_min_pct' => 55.26581844176
'bar_max_pct' => 55.567535276936
'min_diff' => 0.027776539583027
'max_diff' => 0.10070707304074
'year' => 2032
]
7 => [
'items' => [
101 => 0.21314425184507
102 => 0.20554214460334
103 => 0.20137147821789
104 => 0.20686374815231
105 => 0.21021768574745
106 => 0.21243442514734
107 => 0.21310520915036
108 => 0.19624608397278
109 => 0.18715995055201
110 => 0.19298405790199
111 => 0.20008987082739
112 => 0.1954554725367
113 => 0.19563713217561
114 => 0.18902969811154
115 => 0.20067448212834
116 => 0.19897793504514
117 => 0.20777962431392
118 => 0.20567903053195
119 => 0.21285646645103
120 => 0.21096640703147
121 => 0.21881193801028
122 => 0.221941732727
123 => 0.22719714517003
124 => 0.2310630479565
125 => 0.23333318001565
126 => 0.23319688980187
127 => 0.24219228399552
128 => 0.23688801431466
129 => 0.23022460147512
130 => 0.23010408135965
131 => 0.23355515729054
201 => 0.24078766568523
202 => 0.24266294988326
203 => 0.24371097791898
204 => 0.24210588650015
205 => 0.23634848192201
206 => 0.23386246381587
207 => 0.23598062326918
208 => 0.2333902962733
209 => 0.23786192738558
210 => 0.2440024319916
211 => 0.24273444207264
212 => 0.24697314226404
213 => 0.25135975103787
214 => 0.25763279859938
215 => 0.25927280552224
216 => 0.26198367460184
217 => 0.26477404935886
218 => 0.26567024252811
219 => 0.26738135336061
220 => 0.26737233496189
221 => 0.27252888262667
222 => 0.2782167143859
223 => 0.28036373920141
224 => 0.28530070437702
225 => 0.27684632452568
226 => 0.28325906875984
227 => 0.28904352458045
228 => 0.28214705788599
301 => 0.29165223055365
302 => 0.29202129486915
303 => 0.29759372785987
304 => 0.29194499947478
305 => 0.2885908025911
306 => 0.29827424331417
307 => 0.30295975525454
308 => 0.30154844092614
309 => 0.29080826920183
310 => 0.28455702859065
311 => 0.26819632613692
312 => 0.28757628492311
313 => 0.29701569752672
314 => 0.29078382340359
315 => 0.29392681822482
316 => 0.31107397885001
317 => 0.31760250741964
318 => 0.31624461911502
319 => 0.31647407988576
320 => 0.31999675540076
321 => 0.33561823860711
322 => 0.32625748376672
323 => 0.33341343010141
324 => 0.33720891823464
325 => 0.34073437913764
326 => 0.33207696139323
327 => 0.32081378811049
328 => 0.31724626833599
329 => 0.29016418633885
330 => 0.28875444635938
331 => 0.28796311658941
401 => 0.28297389432557
402 => 0.27905373228918
403 => 0.27593627389155
404 => 0.26775513210431
405 => 0.27051602729757
406 => 0.2574769948257
407 => 0.26581890572626
408 => 0.24500829506271
409 => 0.26233999001395
410 => 0.25290713642746
411 => 0.25924104391501
412 => 0.25921894550847
413 => 0.24755621365671
414 => 0.24082939331961
415 => 0.24511598505017
416 => 0.24971155165541
417 => 0.25045716687577
418 => 0.25641543893602
419 => 0.2580782645954
420 => 0.25303982521756
421 => 0.24457704141271
422 => 0.24654275307503
423 => 0.24078955823552
424 => 0.23070730557271
425 => 0.23794855545438
426 => 0.24042103653927
427 => 0.24151302504049
428 => 0.23159828750117
429 => 0.22848286170689
430 => 0.22682423515497
501 => 0.24329717330033
502 => 0.24419959803748
503 => 0.23958266549218
504 => 0.26045163839245
505 => 0.25572834709676
506 => 0.26100542070851
507 => 0.24636438534529
508 => 0.24692369261293
509 => 0.23999239183898
510 => 0.24387345712271
511 => 0.24113044527274
512 => 0.24355990540122
513 => 0.24501611378519
514 => 0.25194627720088
515 => 0.26241912134809
516 => 0.25091114188716
517 => 0.24589695043873
518 => 0.24900772661246
519 => 0.25729213349636
520 => 0.26984343399647
521 => 0.26241281148194
522 => 0.26571039557374
523 => 0.26643077099849
524 => 0.26095170505288
525 => 0.27004545497314
526 => 0.27491886943291
527 => 0.2799179842576
528 => 0.28425857558786
529 => 0.27792122786372
530 => 0.28470309835166
531 => 0.27923810789968
601 => 0.27433544650393
602 => 0.27434288181754
603 => 0.27126737070753
604 => 0.26530818039255
605 => 0.26420921426808
606 => 0.26992617483167
607 => 0.27451063580549
608 => 0.27488823396938
609 => 0.2774264271226
610 => 0.2789285036852
611 => 0.29365089597279
612 => 0.29957236394087
613 => 0.30681302288459
614 => 0.30963366760435
615 => 0.31812279695372
616 => 0.31126713555073
617 => 0.30978387008206
618 => 0.28919201905353
619 => 0.29256393350587
620 => 0.29796269388543
621 => 0.2892810426237
622 => 0.29478755210861
623 => 0.29587465372474
624 => 0.2889860434359
625 => 0.29266554783045
626 => 0.28289387505555
627 => 0.26263211711168
628 => 0.27006801210187
629 => 0.27554333370983
630 => 0.26772937467298
701 => 0.28173559380457
702 => 0.27355344973494
703 => 0.27096010287705
704 => 0.26084253218951
705 => 0.26561763609302
706 => 0.27207603249542
707 => 0.26808549438791
708 => 0.27636646014331
709 => 0.28809451610586
710 => 0.29645262720258
711 => 0.2970942591895
712 => 0.29172055370427
713 => 0.30033195103889
714 => 0.3003946756672
715 => 0.29068098429515
716 => 0.28473140241583
717 => 0.28337964489482
718 => 0.28675660020998
719 => 0.29085684738291
720 => 0.29732179437133
721 => 0.30122842643755
722 => 0.31141485094869
723 => 0.31417100535373
724 => 0.31719918343106
725 => 0.32124576319791
726 => 0.32610471972977
727 => 0.31547359945861
728 => 0.31589599368587
729 => 0.30599644168725
730 => 0.29541735063735
731 => 0.3034455620419
801 => 0.31394138050515
802 => 0.31153362815283
803 => 0.31126270682728
804 => 0.31171832134955
805 => 0.30990295470574
806 => 0.30169211865643
807 => 0.29756868819502
808 => 0.30288896548954
809 => 0.30571645609328
810 => 0.31010164743659
811 => 0.30956108004337
812 => 0.32085686200856
813 => 0.32524606131351
814 => 0.32412311630688
815 => 0.32432976521328
816 => 0.33227620089941
817 => 0.34111427169154
818 => 0.34939229127453
819 => 0.35781304834356
820 => 0.3476614970291
821 => 0.34250716533226
822 => 0.34782511996015
823 => 0.34500333837896
824 => 0.36121813233926
825 => 0.36234080949234
826 => 0.37855443093847
827 => 0.39394308837299
828 => 0.3842777483548
829 => 0.39339172865548
830 => 0.40324924142437
831 => 0.42226598287937
901 => 0.41586181337435
902 => 0.41095631989964
903 => 0.40632065226922
904 => 0.41596674071663
905 => 0.42837627940419
906 => 0.43104917518041
907 => 0.43538028746266
908 => 0.43082665248109
909 => 0.43631100424995
910 => 0.4556731759403
911 => 0.45044134623495
912 => 0.44301130699476
913 => 0.45829588198156
914 => 0.463827310252
915 => 0.50264977068544
916 => 0.5516647306585
917 => 0.53137221538007
918 => 0.51877599631138
919 => 0.52173640657883
920 => 0.53963501069989
921 => 0.54538347427028
922 => 0.52975716867175
923 => 0.53527664398176
924 => 0.56568949560279
925 => 0.58200501473638
926 => 0.55984634828641
927 => 0.49871146637641
928 => 0.442342313255
929 => 0.45729395099884
930 => 0.45559889928203
1001 => 0.48827371426832
1002 => 0.45031656882676
1003 => 0.45095566980947
1004 => 0.48430616536645
1005 => 0.47540882492409
1006 => 0.46099627289273
1007 => 0.44244754083471
1008 => 0.40815849407542
1009 => 0.3777877291399
1010 => 0.43735179314789
1011 => 0.43478328239765
1012 => 0.43106369819932
1013 => 0.43934123033165
1014 => 0.47953457674772
1015 => 0.47860799001966
1016 => 0.47271351800447
1017 => 0.4771844230765
1018 => 0.46021250161709
1019 => 0.46458655222065
1020 => 0.44233338409315
1021 => 0.45239274546117
1022 => 0.46096535002908
1023 => 0.46268642731566
1024 => 0.46656410232273
1025 => 0.4334297939463
1026 => 0.44830612563513
1027 => 0.45704457677854
1028 => 0.41756393660504
1029 => 0.45626417146225
1030 => 0.43285299935465
1031 => 0.42490689591732
1101 => 0.43560527737616
1102 => 0.43143610771713
1103 => 0.42785170046616
1104 => 0.42585153963218
1105 => 0.43370725023828
1106 => 0.4333407719489
1107 => 0.4204873046696
1108 => 0.40372048057812
1109 => 0.40934797709546
1110 => 0.40730345485265
1111 => 0.39989384249608
1112 => 0.4048870265844
1113 => 0.38289957085208
1114 => 0.34507129607313
1115 => 0.3700618131035
1116 => 0.36909970538228
1117 => 0.36861456704113
1118 => 0.38739424990229
1119 => 0.38558901671619
1120 => 0.38231250080653
1121 => 0.39983366671193
1122 => 0.39343820546352
1123 => 0.41314751007093
1124 => 0.42612933280327
1125 => 0.42283672264038
1126 => 0.43504618966674
1127 => 0.40947762324927
1128 => 0.41797047538032
1129 => 0.41972084043395
1130 => 0.39961745824439
1201 => 0.38588437519114
1202 => 0.38496853512009
1203 => 0.36115726164116
1204 => 0.37387705173572
1205 => 0.38506994063826
1206 => 0.37970941545721
1207 => 0.37801243332602
1208 => 0.38668194700373
1209 => 0.38735564246585
1210 => 0.37199531453445
1211 => 0.37518921310971
1212 => 0.38850830111001
1213 => 0.37485360626536
1214 => 0.34832476466394
1215 => 0.34174524515686
1216 => 0.34086741597001
1217 => 0.32302323723852
1218 => 0.34218492011152
1219 => 0.33382033203628
1220 => 0.3602439655428
1221 => 0.34515092779666
1222 => 0.3445002971055
1223 => 0.34351677338903
1224 => 0.32815755162111
1225 => 0.33152024505882
1226 => 0.34269835019844
1227 => 0.34668682404263
1228 => 0.34627079354408
1229 => 0.34264357138506
1230 => 0.34430409511508
1231 => 0.33895496961589
]
'min_raw' => 0.18715995055201
'max_raw' => 0.58200501473638
'avg_raw' => 0.3845824826442
'max_pct' => '1362.43%'
'is_grow' => true
'min' => '$0.187159'
'max' => '$0.582005'
'avg' => '$0.384582'
'bar_min_pct' => 62.236615494192
'bar_max_pct' => 64.829887174949
'min_diff' => 0.10661886305576
'max_diff' => 0.36350480548517
'year' => 2033
]
8 => [
'items' => [
101 => 0.3370660820697
102 => 0.33110423339449
103 => 0.32234196284467
104 => 0.32356041030675
105 => 0.30620005957475
106 => 0.2967412191124
107 => 0.29412313673794
108 => 0.29062212756961
109 => 0.29451858503933
110 => 0.30615087988234
111 => 0.29211986437265
112 => 0.2680646724426
113 => 0.26951043046565
114 => 0.27275861949403
115 => 0.26670564072856
116 => 0.26097700431505
117 => 0.26595758889764
118 => 0.25576508696288
119 => 0.27399033465759
120 => 0.27349739278312
121 => 0.28029063808195
122 => 0.28453859377873
123 => 0.27474843118963
124 => 0.27228623177388
125 => 0.27368881246182
126 => 0.25050727797738
127 => 0.27839621215141
128 => 0.27863739681226
129 => 0.27657222731861
130 => 0.29142222379204
131 => 0.32276034818103
201 => 0.31096968521276
202 => 0.30640398413677
203 => 0.29772458305381
204 => 0.30928936966501
205 => 0.30840137449205
206 => 0.30438552355773
207 => 0.30195672438243
208 => 0.30643186133396
209 => 0.30140220538999
210 => 0.30049874097675
211 => 0.2950247296115
212 => 0.29307075660575
213 => 0.2916241127822
214 => 0.29003150007676
215 => 0.2935444068506
216 => 0.2855836979397
217 => 0.27598386339107
218 => 0.27518574102
219 => 0.27738942705816
220 => 0.27641446003141
221 => 0.27518107325297
222 => 0.27282620200004
223 => 0.27212756200316
224 => 0.27439780306108
225 => 0.27183483326997
226 => 0.27561663480895
227 => 0.27458819404697
228 => 0.26884340755211
301 => 0.26168327658714
302 => 0.26161953640267
303 => 0.26007689793123
304 => 0.25811211590062
305 => 0.25756555848782
306 => 0.26553813795607
307 => 0.28204113885612
308 => 0.2788012048961
309 => 0.281142389224
310 => 0.292658698962
311 => 0.29631938752019
312 => 0.29372111748975
313 => 0.29016444521776
314 => 0.29032092074731
315 => 0.3024751465786
316 => 0.30323319073503
317 => 0.30514852376399
318 => 0.30761026797926
319 => 0.29414036317449
320 => 0.28968648944233
321 => 0.28757599697653
322 => 0.28107649704523
323 => 0.28808565049612
324 => 0.28400171694216
325 => 0.28455277910563
326 => 0.28419389914875
327 => 0.28438987187256
328 => 0.27398524032943
329 => 0.27777614121241
330 => 0.27147303323713
331 => 0.26303387921531
401 => 0.26300558821188
402 => 0.26507105920298
403 => 0.26384243623559
404 => 0.26053624342111
405 => 0.26100587250562
406 => 0.2568914275584
407 => 0.26150544061664
408 => 0.26163775400142
409 => 0.25986110764701
410 => 0.26696963137433
411 => 0.26988199934542
412 => 0.26871257265549
413 => 0.2697999492514
414 => 0.27893583877956
415 => 0.28042538739946
416 => 0.28108694650236
417 => 0.28020054494426
418 => 0.26996693654099
419 => 0.27042084059033
420 => 0.26709039384628
421 => 0.26427651730139
422 => 0.26438905760635
423 => 0.26583575592877
424 => 0.27215357235051
425 => 0.28544904455444
426 => 0.28595359800572
427 => 0.28656513150753
428 => 0.28407771742356
429 => 0.28332748953449
430 => 0.28431723377042
501 => 0.2893103140875
502 => 0.30215387227111
503 => 0.29761410101661
504 => 0.29392319632096
505 => 0.29716111479981
506 => 0.29666266262963
507 => 0.29245522468882
508 => 0.29233713591913
509 => 0.28426171731143
510 => 0.28127641892055
511 => 0.27878168013942
512 => 0.27605749051723
513 => 0.27444249959353
514 => 0.27692385965258
515 => 0.27749137605667
516 => 0.27206583892081
517 => 0.27132635825724
518 => 0.27575696900074
519 => 0.27380722240234
520 => 0.27581258513018
521 => 0.27627784648472
522 => 0.27620292869077
523 => 0.27416716931507
524 => 0.27546470163392
525 => 0.27239565088684
526 => 0.26905851915591
527 => 0.26692963702222
528 => 0.26507190500535
529 => 0.26610268270033
530 => 0.26242814843029
531 => 0.26125259096355
601 => 0.2750251268797
602 => 0.28519904724067
603 => 0.2850511144093
604 => 0.28415061134362
605 => 0.28281264644838
606 => 0.28921243362174
607 => 0.28698287573833
608 => 0.28860506538431
609 => 0.2890179807323
610 => 0.29026775112851
611 => 0.29071443662376
612 => 0.28936424281409
613 => 0.28483282747655
614 => 0.27354097128945
615 => 0.26828458175258
616 => 0.26654988565332
617 => 0.26661293856187
618 => 0.26487365786344
619 => 0.26538595397822
620 => 0.26469550218139
621 => 0.26338795351641
622 => 0.26602194525484
623 => 0.26632548826537
624 => 0.26571068311976
625 => 0.26585549198782
626 => 0.2607651679689
627 => 0.26115217424846
628 => 0.25899727410551
629 => 0.25859325630642
630 => 0.25314585639367
701 => 0.243494997835
702 => 0.24884251030801
703 => 0.24238346721465
704 => 0.23993732972472
705 => 0.25151696414962
706 => 0.25035469002242
707 => 0.24836538194508
708 => 0.24542278069056
709 => 0.24433134126148
710 => 0.23770010079809
711 => 0.23730829173522
712 => 0.24059491356743
713 => 0.23907825067762
714 => 0.23694828157517
715 => 0.2292337493976
716 => 0.22056006103619
717 => 0.22082186516696
718 => 0.22358080405502
719 => 0.23160279096564
720 => 0.22846846189788
721 => 0.22619447019693
722 => 0.22576861990729
723 => 0.23109902786019
724 => 0.23864267186854
725 => 0.24218198085774
726 => 0.23867463313986
727 => 0.23464558093057
728 => 0.23489081066972
729 => 0.23652221425942
730 => 0.23669365170989
731 => 0.2340711529149
801 => 0.23480937096432
802 => 0.23368795024318
803 => 0.22680579334756
804 => 0.22668131695287
805 => 0.22499232466092
806 => 0.22494118264557
807 => 0.22206778541807
808 => 0.22166577728309
809 => 0.21596047268516
810 => 0.21971572144877
811 => 0.21719689773755
812 => 0.2134004362743
813 => 0.21274592488706
814 => 0.21272624948441
815 => 0.21662436653393
816 => 0.21967016968145
817 => 0.21724071375441
818 => 0.21668757373285
819 => 0.22259366203084
820 => 0.22184205845973
821 => 0.22119117461447
822 => 0.23796722128701
823 => 0.22468767129445
824 => 0.21889702952748
825 => 0.21173001072781
826 => 0.21406362818823
827 => 0.21455535567511
828 => 0.19731996741414
829 => 0.1903275725432
830 => 0.18792804612633
831 => 0.1865470847491
901 => 0.18717640618973
902 => 0.18088243067976
903 => 0.18511208631521
904 => 0.17966203554008
905 => 0.17874831679163
906 => 0.18849368270929
907 => 0.18984969344513
908 => 0.18406453036652
909 => 0.18777954159582
910 => 0.18643242688156
911 => 0.17975546101803
912 => 0.17950045003448
913 => 0.17615018327086
914 => 0.17090766452527
915 => 0.16851169278298
916 => 0.16726384989681
917 => 0.16777873419162
918 => 0.16751839293645
919 => 0.16581949014483
920 => 0.1676157720558
921 => 0.16302701404822
922 => 0.16119973363546
923 => 0.1603743934656
924 => 0.15630160661482
925 => 0.16278322167095
926 => 0.16406018149024
927 => 0.16533965731485
928 => 0.17647662083284
929 => 0.17592024960821
930 => 0.18094957451505
1001 => 0.18075414419751
1002 => 0.17931969926442
1003 => 0.17326801204643
1004 => 0.17568010671057
1005 => 0.16825605425709
1006 => 0.17381865914173
1007 => 0.17128011857232
1008 => 0.17296037602167
1009 => 0.16993912162503
1010 => 0.17161120855267
1011 => 0.16436299603548
1012 => 0.15759471717204
1013 => 0.16031847016507
1014 => 0.16327950116742
1015 => 0.1696997708372
1016 => 0.16587591118796
1017 => 0.16725111571397
1018 => 0.16264441075829
1019 => 0.15313946259451
1020 => 0.15319325956889
1021 => 0.15173113037044
1022 => 0.15046763726863
1023 => 0.16631512746743
1024 => 0.16434424154946
1025 => 0.16120389278235
1026 => 0.16540737439963
1027 => 0.16651884165746
1028 => 0.16655048356775
1029 => 0.16961723524815
1030 => 0.17125396116973
1031 => 0.17154244120738
1101 => 0.17636804123805
1102 => 0.17798551871712
1103 => 0.18464767953945
1104 => 0.17111509641045
1105 => 0.17083640176627
1106 => 0.16546652600625
1107 => 0.16206086590486
1108 => 0.16569971446706
1109 => 0.1689232375408
1110 => 0.16556668985368
1111 => 0.16600498412103
1112 => 0.1614990930911
1113 => 0.16310973711242
1114 => 0.16449704072077
1115 => 0.16373105321018
1116 => 0.16258433283261
1117 => 0.16865894540933
1118 => 0.16831619196115
1119 => 0.17397301084733
1120 => 0.1783829056921
1121 => 0.18628622561693
1122 => 0.17803869926598
1123 => 0.17773812662481
1124 => 0.18067627240568
1125 => 0.17798506890231
1126 => 0.17968581661925
1127 => 0.18601220886628
1128 => 0.18614587556546
1129 => 0.18390678613436
1130 => 0.18377053733899
1201 => 0.18420057895718
1202 => 0.18671934614707
1203 => 0.18583921149703
1204 => 0.18685772559634
1205 => 0.18813139307357
1206 => 0.19339982178324
1207 => 0.19467002210895
1208 => 0.19158409384082
1209 => 0.19186271861176
1210 => 0.19070849672885
1211 => 0.18959353285232
1212 => 0.19209980881936
1213 => 0.19668007741011
1214 => 0.19665158379693
1215 => 0.19771411708228
1216 => 0.19837606651655
1217 => 0.19553449496805
1218 => 0.19368473637745
1219 => 0.19439405152428
1220 => 0.19552826189094
1221 => 0.19402624238888
1222 => 0.18475508221904
1223 => 0.18756735997056
1224 => 0.18709925943935
1225 => 0.18643262735994
1226 => 0.1892603943858
1227 => 0.18898764935777
1228 => 0.18081787686374
1229 => 0.18134087919205
1230 => 0.18084968236757
1231 => 0.18243683979689
]
'min_raw' => 0.15046763726863
'max_raw' => 0.3370660820697
'avg_raw' => 0.24376685966916
'max_pct' => '746.96%'
'is_grow' => true
'min' => '$0.150467'
'max' => '$0.337066'
'avg' => '$0.243766'
'bar_min_pct' => 59.837652853322
'bar_max_pct' => 58.588675081881
'min_diff' => -0.036692313283387
'max_diff' => -0.24493893266668
'year' => 2034
]
9 => [
'items' => [
101 => 0.17789935719252
102 => 0.17929505628121
103 => 0.18017042566577
104 => 0.18068602495818
105 => 0.18254872315212
106 => 0.18233015701824
107 => 0.18253513677435
108 => 0.18529702646187
109 => 0.19926571673521
110 => 0.20002600172661
111 => 0.19628208036778
112 => 0.19777770310505
113 => 0.19490643450623
114 => 0.19683393635245
115 => 0.19815268416239
116 => 0.19219351638989
117 => 0.19184065314908
118 => 0.18895753380339
119 => 0.19050675883153
120 => 0.18804183041853
121 => 0.18864663763155
122 => 0.18695554393781
123 => 0.18999917589314
124 => 0.19340242935179
125 => 0.194262225574
126 => 0.19200047187892
127 => 0.19036281314685
128 => 0.18748762389166
129 => 0.19226912770081
130 => 0.1936673851283
131 => 0.1922617832498
201 => 0.19193607458155
202 => 0.19131885724375
203 => 0.19206702015753
204 => 0.19365976991805
205 => 0.19290865854446
206 => 0.1934047808396
207 => 0.19151407424963
208 => 0.19553543564647
209 => 0.20192232533796
210 => 0.20194286023268
211 => 0.20119174481032
212 => 0.2008844045625
213 => 0.20165509456734
214 => 0.2020731622796
215 => 0.20456543243487
216 => 0.2072397376079
217 => 0.21971955295965
218 => 0.21621527074767
219 => 0.22728810535528
220 => 0.23604527990227
221 => 0.23867117364409
222 => 0.23625547495947
223 => 0.22799150025286
224 => 0.22758603022838
225 => 0.23993589740018
226 => 0.23644649426439
227 => 0.23603144086458
228 => 0.23161597393436
301 => 0.23422606175634
302 => 0.233655197262
303 => 0.23275405973003
304 => 0.23773392547407
305 => 0.24705578959123
306 => 0.24560288964868
307 => 0.24451836723966
308 => 0.23976630574304
309 => 0.24262810817537
310 => 0.24160907514343
311 => 0.24598748774296
312 => 0.24339381311271
313 => 0.23642005860372
314 => 0.23753065199507
315 => 0.23736278803817
316 => 0.24081741637619
317 => 0.23978042269826
318 => 0.2371602983794
319 => 0.24702392847309
320 => 0.2463834391992
321 => 0.24729150655334
322 => 0.24769126588555
323 => 0.25369508370692
324 => 0.2561546557676
325 => 0.25671302168624
326 => 0.25904942491375
327 => 0.25665488984552
328 => 0.26623473739299
329 => 0.27260477701245
330 => 0.2800039058297
331 => 0.29081602173004
401 => 0.29488147732623
402 => 0.29414708916126
403 => 0.30234471203992
404 => 0.31707565812996
405 => 0.29712463453992
406 => 0.3181331108251
407 => 0.31148206978774
408 => 0.29571257113526
409 => 0.29469720133222
410 => 0.30537648890732
411 => 0.32906212090555
412 => 0.32312913873021
413 => 0.32907182513896
414 => 0.32213936577878
415 => 0.32179511074019
416 => 0.32873513106137
417 => 0.34495086682263
418 => 0.33724737860022
419 => 0.32620253926059
420 => 0.33435787675224
421 => 0.32729296867612
422 => 0.31137375343736
423 => 0.32312460189055
424 => 0.3152671441748
425 => 0.31756036806168
426 => 0.33407557547157
427 => 0.33208842202219
428 => 0.33465998259114
429 => 0.33012124549641
430 => 0.32588134935678
501 => 0.31796726835334
502 => 0.3156242991277
503 => 0.31627181153046
504 => 0.31562397825271
505 => 0.31119612266544
506 => 0.31023992767295
507 => 0.30864622746027
508 => 0.30914018179624
509 => 0.30614355914296
510 => 0.31179880522353
511 => 0.31284846872994
512 => 0.316963885219
513 => 0.31739116141127
514 => 0.328852537754
515 => 0.32253980426503
516 => 0.32677493090462
517 => 0.32639610131542
518 => 0.29605434398837
519 => 0.30023517044044
520 => 0.30673922438426
521 => 0.30380915689861
522 => 0.29966672700409
523 => 0.29632149276123
524 => 0.29125312081554
525 => 0.29838675699964
526 => 0.3077667300041
527 => 0.31762905300597
528 => 0.32947798788772
529 => 0.32683344355892
530 => 0.3174075454103
531 => 0.31783038431563
601 => 0.32044420804736
602 => 0.31705906882384
603 => 0.31606072518105
604 => 0.32030705096145
605 => 0.32033629307337
606 => 0.31644128128896
607 => 0.31211268847022
608 => 0.31209455150826
609 => 0.31132432022541
610 => 0.32227638821292
611 => 0.32829891822708
612 => 0.32898939158741
613 => 0.32825244386853
614 => 0.32853606579712
615 => 0.32503168827927
616 => 0.33304165609419
617 => 0.34039239466489
618 => 0.33842223970232
619 => 0.33546869733939
620 => 0.33311605858545
621 => 0.33786803277982
622 => 0.33765643484925
623 => 0.34032819237611
624 => 0.34020698602188
625 => 0.33930857445548
626 => 0.33842227178742
627 => 0.34193636168314
628 => 0.34092436022773
629 => 0.33991078685454
630 => 0.33787791028428
701 => 0.33815421197268
702 => 0.33520117958049
703 => 0.3338349716743
704 => 0.31329048275623
705 => 0.30780032400678
706 => 0.30952763971184
707 => 0.31009631689168
708 => 0.30770699276809
709 => 0.31113266979431
710 => 0.31059878165847
711 => 0.31267582808093
712 => 0.31137817965105
713 => 0.31143143559525
714 => 0.31524754293972
715 => 0.31635537513671
716 => 0.31579192274002
717 => 0.31618654548464
718 => 0.3252804600746
719 => 0.32398759622693
720 => 0.32330078807558
721 => 0.32349103862724
722 => 0.3258147287807
723 => 0.32646523515489
724 => 0.32370899393717
725 => 0.32500885322909
726 => 0.33054348911736
727 => 0.332480298445
728 => 0.33866166409759
729 => 0.33603571010336
730 => 0.3408557623084
731 => 0.35567095950982
801 => 0.36750636416798
802 => 0.35662203692555
803 => 0.37835625035058
804 => 0.3952794530897
805 => 0.3946299123815
806 => 0.39167896054321
807 => 0.37241234415134
808 => 0.35468291649847
809 => 0.36951433556135
810 => 0.36955214389865
811 => 0.36827811184782
812 => 0.36036520819934
813 => 0.36800275995306
814 => 0.36860900107576
815 => 0.36826966725958
816 => 0.36220286258507
817 => 0.35293997318003
818 => 0.35474991959755
819 => 0.35771464875135
820 => 0.3521017979559
821 => 0.35030815203214
822 => 0.35364288105952
823 => 0.36438807280414
824 => 0.36235675654748
825 => 0.36230371067082
826 => 0.37099454302898
827 => 0.36477378265955
828 => 0.35477274881812
829 => 0.35224735587573
830 => 0.34328391223878
831 => 0.34947499468551
901 => 0.349697800721
902 => 0.34630700813625
903 => 0.35504789294865
904 => 0.3549673441563
905 => 0.36326551337666
906 => 0.37912849627597
907 => 0.37443703166266
908 => 0.36898136874729
909 => 0.36957455057531
910 => 0.37608029113124
911 => 0.37214677187952
912 => 0.37356129282791
913 => 0.37607815008437
914 => 0.37759663255725
915 => 0.36935606431558
916 => 0.36743479366651
917 => 0.36350454819286
918 => 0.3624792205103
919 => 0.36568032344132
920 => 0.36483694591563
921 => 0.34967907473646
922 => 0.34809499286064
923 => 0.34814357439023
924 => 0.34416032519448
925 => 0.33808491408164
926 => 0.35405073174226
927 => 0.35276845314263
928 => 0.35135291680913
929 => 0.35152631193305
930 => 0.35845653224776
1001 => 0.35443665448071
1002 => 0.36512415836941
1003 => 0.36292712886567
1004 => 0.36067375384531
1005 => 0.36036226877801
1006 => 0.35949491164409
1007 => 0.35652042130252
1008 => 0.3529285454759
1009 => 0.35055687793222
1010 => 0.32337018952602
1011 => 0.32841588075652
1012 => 0.33422048858798
1013 => 0.3362242159509
1014 => 0.33279670164292
1015 => 0.35665576045834
1016 => 0.36101504041553
1017 => 0.34781049707641
1018 => 0.34534046615561
1019 => 0.35681769527429
1020 => 0.34989552308153
1021 => 0.35301257679608
1022 => 0.34627521160245
1023 => 0.35996501752846
1024 => 0.359860724144
1025 => 0.35453508044049
1026 => 0.35903627803027
1027 => 0.35825408418001
1028 => 0.35224144555523
1029 => 0.36015562889742
1030 => 0.36015955423362
1031 => 0.35503373795847
1101 => 0.34904790673456
1102 => 0.34797778149075
1103 => 0.34717158587063
1104 => 0.35281430209422
1105 => 0.35787354381598
1106 => 0.36728753836777
1107 => 0.36965444026909
1108 => 0.3788926159635
1109 => 0.37339173213609
1110 => 0.37583020268841
1111 => 0.37847750741568
1112 => 0.37974672265333
1113 => 0.37767860453341
1114 => 0.39202929397166
1115 => 0.39324093185401
1116 => 0.39364718355534
1117 => 0.38880821182
1118 => 0.39310635129642
1119 => 0.39109539417482
1120 => 0.39632734594523
1121 => 0.39714778278775
1122 => 0.39645290197002
1123 => 0.39671332157355
1124 => 0.38446753977311
1125 => 0.38383253138511
1126 => 0.37517414695661
1127 => 0.37870250261077
1128 => 0.3721064108338
1129 => 0.37419809948355
1130 => 0.37512009591002
1201 => 0.37463849729967
1202 => 0.37890199054555
1203 => 0.37527715031243
1204 => 0.3657106009583
1205 => 0.35614144520421
1206 => 0.35602131224858
1207 => 0.35350192244815
1208 => 0.3516808650717
1209 => 0.35203166532789
1210 => 0.35326793118628
1211 => 0.3516090110526
1212 => 0.35196302577251
1213 => 0.35784202891068
1214 => 0.35902102106291
1215 => 0.35501434506767
1216 => 0.33892696278618
1217 => 0.33497907882216
1218 => 0.33781673952555
1219 => 0.33646052047808
1220 => 0.27154989969276
1221 => 0.28679968721343
1222 => 0.2777387813025
1223 => 0.28191446361849
1224 => 0.27266562499365
1225 => 0.27707965555859
1226 => 0.27626454528783
1227 => 0.30078575234704
1228 => 0.30040288742663
1229 => 0.30058614460327
1230 => 0.29183880208818
1231 => 0.30577355623094
]
'min_raw' => 0.17789935719252
'max_raw' => 0.39714778278775
'avg_raw' => 0.28752356999013
'max_pct' => '897.93%'
'is_grow' => true
'min' => '$0.177899'
'max' => '$0.397147'
'avg' => '$0.287523'
'bar_min_pct' => 61.631153054958
'bar_max_pct' => 60.119598047091
'min_diff' => 0.027431719923896
'max_diff' => 0.060081700718044
'year' => 2035
]
10 => [
'items' => [
101 => 0.31263831719922
102 => 0.31136783264369
103 => 0.3116875862348
104 => 0.30619316014517
105 => 0.30063934265803
106 => 0.29447930433842
107 => 0.30592389413252
108 => 0.30465145111307
109 => 0.30756997758912
110 => 0.31499261214677
111 => 0.31608562328123
112 => 0.31755464133017
113 => 0.31702810293145
114 => 0.32957238377024
115 => 0.32805318859084
116 => 0.33171401187093
117 => 0.32418342063645
118 => 0.31566184184436
119 => 0.31728151538133
120 => 0.31712552779513
121 => 0.31513962678855
122 => 0.31334684415544
123 => 0.3103623661847
124 => 0.31980569610378
125 => 0.31942231415461
126 => 0.32562882227889
127 => 0.32453176168112
128 => 0.31720532251294
129 => 0.31746698772112
130 => 0.31922681199817
131 => 0.32531758391434
201 => 0.32712573971043
202 => 0.32628812990313
203 => 0.3282706901881
204 => 0.32983762500185
205 => 0.32846747307575
206 => 0.34786593495451
207 => 0.33981034112641
208 => 0.34373658150776
209 => 0.34467296670397
210 => 0.34227443571395
211 => 0.34279459120073
212 => 0.34358248502932
213 => 0.34836642207104
214 => 0.36092085711187
215 => 0.36648113093052
216 => 0.38320948905301
217 => 0.36601942759263
218 => 0.36499944048511
219 => 0.36801272293099
220 => 0.37783404002544
221 => 0.38579329506108
222 => 0.38843383913684
223 => 0.38878283062708
224 => 0.39373666685326
225 => 0.39657611339453
226 => 0.39313514083658
227 => 0.39021927687855
228 => 0.37977501411127
229 => 0.38098396596537
301 => 0.38931244538022
302 => 0.40107691309869
303 => 0.41117205028538
304 => 0.40763708509365
305 => 0.43460637421003
306 => 0.43728026906625
307 => 0.43691082325449
308 => 0.44300235366587
309 => 0.43091190631788
310 => 0.42574300583523
311 => 0.39084971976274
312 => 0.40065330987047
313 => 0.41490340383671
314 => 0.41301735046516
315 => 0.40266855132078
316 => 0.41116419979323
317 => 0.40835527272475
318 => 0.40613975540334
319 => 0.41628946975186
320 => 0.40512944189838
321 => 0.41479207402189
322 => 0.40239964837636
323 => 0.40765323251689
324 => 0.40467104407145
325 => 0.40660088547892
326 => 0.395319072044
327 => 0.40140646472294
328 => 0.39506581649507
329 => 0.39506281020223
330 => 0.39492284004117
331 => 0.40238258456253
401 => 0.40262584656355
402 => 0.39711308409122
403 => 0.39631860889343
404 => 0.39925620010099
405 => 0.39581705015329
406 => 0.39742620676807
407 => 0.39586578986788
408 => 0.39551450715623
409 => 0.39271542674405
410 => 0.39150950594016
411 => 0.39198237856012
412 => 0.39036822052567
413 => 0.38939563192326
414 => 0.39472936768845
415 => 0.3918797678314
416 => 0.39429262564134
417 => 0.39154286963998
418 => 0.38201101732758
419 => 0.37652914826522
420 => 0.35852436285028
421 => 0.36363049765909
422 => 0.36701587032001
423 => 0.36589700467577
424 => 0.36830076102312
425 => 0.36844833214035
426 => 0.36766684644843
427 => 0.3667619861317
428 => 0.36632155017144
429 => 0.36960419897686
430 => 0.37150988709728
501 => 0.36735563775698
502 => 0.36638235526067
503 => 0.37058253070611
504 => 0.37314463530147
505 => 0.39206177611138
506 => 0.39066033321862
507 => 0.39417767986017
508 => 0.39378168060641
509 => 0.39746842024401
510 => 0.40349468141907
511 => 0.39124160748106
512 => 0.39336831743728
513 => 0.39284689726892
514 => 0.39853962594337
515 => 0.3985573980209
516 => 0.39514432280769
517 => 0.39699460625159
518 => 0.39596182879308
519 => 0.39782819724886
520 => 0.39064161609437
521 => 0.39939409619704
522 => 0.4043561884179
523 => 0.4044250870732
524 => 0.40677707940429
525 => 0.40916683983088
526 => 0.41375377686546
527 => 0.40903891264655
528 => 0.40055733089952
529 => 0.40116967370631
530 => 0.39619692543131
531 => 0.39628051822821
601 => 0.39583429332706
602 => 0.39717344784567
603 => 0.39093548520401
604 => 0.39239952256775
605 => 0.39034986168513
606 => 0.39336386187481
607 => 0.39012129590279
608 => 0.39284664582432
609 => 0.39402281650368
610 => 0.39836291163163
611 => 0.38948026032357
612 => 0.3713679330038
613 => 0.37517536379716
614 => 0.36954387458655
615 => 0.37006509035358
616 => 0.37111802915387
617 => 0.36770511000202
618 => 0.36835618742275
619 => 0.36833292635572
620 => 0.3681324750467
621 => 0.36724464296211
622 => 0.36595711078723
623 => 0.37108624269044
624 => 0.37195778214849
625 => 0.37389510640283
626 => 0.37965926928418
627 => 0.37908329348401
628 => 0.38002273391109
629 => 0.37797194073351
630 => 0.37016022076728
701 => 0.37058443474476
702 => 0.36529447964796
703 => 0.37375983035757
704 => 0.37175512357236
705 => 0.37046267606655
706 => 0.37011001979015
707 => 0.37588847091636
708 => 0.37761747405944
709 => 0.37654007532976
710 => 0.37433029910243
711 => 0.3785737227206
712 => 0.37970908386515
713 => 0.37996324935491
714 => 0.38748178241052
715 => 0.38038345183223
716 => 0.38209209055376
717 => 0.39542240210673
718 => 0.38333364898544
719 => 0.38973733112515
720 => 0.38942390420757
721 => 0.39269981130146
722 => 0.38915518420931
723 => 0.38919912411031
724 => 0.39210790768052
725 => 0.38802304575804
726 => 0.3870115765005
727 => 0.38561423896548
728 => 0.38866527435262
729 => 0.39049423208076
730 => 0.40523428814807
731 => 0.41475703659578
801 => 0.4143436289712
802 => 0.41812140079319
803 => 0.41641947998696
804 => 0.41092352875962
805 => 0.42030444734484
806 => 0.41733593219017
807 => 0.41758065297278
808 => 0.41757154445302
809 => 0.41954534751878
810 => 0.4181467271503
811 => 0.41538990283858
812 => 0.4172200114723
813 => 0.42265477983864
814 => 0.43952446760682
815 => 0.44896496837552
816 => 0.4389561376067
817 => 0.44586009504745
818 => 0.44172018071457
819 => 0.4409678351285
820 => 0.44530403059974
821 => 0.44964781600713
822 => 0.44937113565538
823 => 0.44621777050546
824 => 0.44443651454595
825 => 0.45792478143589
826 => 0.46786270671377
827 => 0.46718500683451
828 => 0.47017615370173
829 => 0.47895825341659
830 => 0.47976117855366
831 => 0.47966002844141
901 => 0.47766989471261
902 => 0.48631701238165
903 => 0.49353059007271
904 => 0.47720923625489
905 => 0.48342419412651
906 => 0.48621428894851
907 => 0.49031097593105
908 => 0.49722277355505
909 => 0.50473081903848
910 => 0.50579253899137
911 => 0.50503919787682
912 => 0.5000874400534
913 => 0.50830283301099
914 => 0.51311521753087
915 => 0.515980882383
916 => 0.52324773164684
917 => 0.48623151962427
918 => 0.46002960492959
919 => 0.45593779758978
920 => 0.46425864871766
921 => 0.46645279080254
922 => 0.46556833487934
923 => 0.43607569771661
924 => 0.45578252495876
925 => 0.47698541407421
926 => 0.47779990339662
927 => 0.48841451301932
928 => 0.49187106502002
929 => 0.50041721705498
930 => 0.49988265291832
1001 => 0.50196350493985
1002 => 0.50148515309544
1003 => 0.51731510013557
1004 => 0.53477788249073
1005 => 0.53417320186602
1006 => 0.5316627202922
1007 => 0.53539121353004
1008 => 0.55341467634604
1009 => 0.55175536471005
1010 => 0.55336724462459
1011 => 0.57461792304251
1012 => 0.60224682785956
1013 => 0.58941042767535
1014 => 0.61726172250044
1015 => 0.63479263625913
1016 => 0.66511053887447
1017 => 0.66131458814822
1018 => 0.67311712515332
1019 => 0.65451904410939
1020 => 0.6118140907402
1021 => 0.60505586840153
1022 => 0.61858600066899
1023 => 0.65184851059755
1024 => 0.61753844586012
1025 => 0.62447932727097
1026 => 0.62248035295771
1027 => 0.62237383611165
1028 => 0.62643915089044
1029 => 0.62054219977125
1030 => 0.5965169600704
1031 => 0.60752758584367
1101 => 0.60327585445894
1102 => 0.60799346741787
1103 => 0.63345247886568
1104 => 0.62219644303757
1105 => 0.61033912365876
1106 => 0.6252108335096
1107 => 0.64414763062367
1108 => 0.64296259989297
1109 => 0.64066314497099
1110 => 0.65362505197065
1111 => 0.67503432485168
1112 => 0.680821165282
1113 => 0.68509289258092
1114 => 0.68568189160401
1115 => 0.69174894760276
1116 => 0.65912485840253
1117 => 0.71090012580933
1118 => 0.71984028422759
1119 => 0.71815990497655
1120 => 0.72809651479907
1121 => 0.72517291212183
1122 => 0.7209370705417
1123 => 0.73668871068791
1124 => 0.7186307263521
1125 => 0.69299969102442
1126 => 0.67893799811926
1127 => 0.69745556966119
1128 => 0.70876360442765
1129 => 0.7162374960822
1130 => 0.71849909118101
1201 => 0.66165737357827
1202 => 0.63102284037658
1203 => 0.65065922493322
1204 => 0.6746169693232
1205 => 0.65899177192278
1206 => 0.65960425007847
1207 => 0.63732682481511
1208 => 0.67658802714063
1209 => 0.67086800020049
1210 => 0.70054351008449
1211 => 0.69346121148982
1212 => 0.71766043780357
1213 => 0.71128797051077
1214 => 0.73773972596333
1215 => 0.74829204736604
1216 => 0.76601103733888
1217 => 0.77904519849217
1218 => 0.78669910722515
1219 => 0.78623959525391
1220 => 0.81656819481617
1221 => 0.79868447925487
1222 => 0.77621831764174
1223 => 0.77581197565799
1224 => 0.7874475191054
1225 => 0.81183242611572
1226 => 0.81815507771753
1227 => 0.82168857741095
1228 => 0.81627689962847
1229 => 0.79686540812412
1230 => 0.78848362451103
1231 => 0.79562514699303
]
'min_raw' => 0.29447930433842
'max_raw' => 0.82168857741095
'avg_raw' => 0.55808394087468
'max_pct' => '1964.7%'
'is_grow' => true
'min' => '$0.294479'
'max' => '$0.821688'
'avg' => '$0.558083'
'bar_min_pct' => 69.253210997108
'bar_max_pct' => 70.937188834135
'min_diff' => 0.1165799471459
'max_diff' => 0.4245407946232
'year' => 2036
]
11 => [
'items' => [
101 => 0.78689167867557
102 => 0.80196809516992
103 => 0.82267123516546
104 => 0.81839611862547
105 => 0.83268719225737
106 => 0.84747695000159
107 => 0.86862696782541
108 => 0.87415636566745
109 => 0.88329625003617
110 => 0.8927041933472
111 => 0.89572577118752
112 => 0.90149490082523
113 => 0.90146449466432
114 => 0.91885015513477
115 => 0.93802707702278
116 => 0.94526592108873
117 => 0.96191124386621
118 => 0.93340671193146
119 => 0.95502772684043
120 => 0.97453042349743
121 => 0.95127850454115
122 => 0.9833258578201
123 => 0.98457018392706
124 => 1.0033580308101
125 => 0.98431294867819
126 => 0.97300403970231
127 => 1.0056524361764
128 => 1.0214499668153
129 => 1.0166916220223
130 => 0.98048038319896
131 => 0.95940388903068
201 => 0.90424263844016
202 => 0.96958352255332
203 => 1.0014091611851
204 => 0.98039796248342
205 => 0.99099478896011
206 => 1.0488076381844
207 => 1.0708190280643
208 => 1.0662408128405
209 => 1.0670144558495
210 => 1.0788914022937
211 => 1.131560323581
212 => 1.0999998850896
213 => 1.1241266577692
214 => 1.1369234110029
215 => 1.1488097485772
216 => 1.1196206602103
217 => 1.0816460851179
218 => 1.0696179431219
219 => 0.978308812858
220 => 0.97355577609231
221 => 0.97088775252397
222 => 0.95406624132504
223 => 0.94084914132238
224 => 0.9303384126808
225 => 0.90275512195603
226 => 0.91206367285965
227 => 0.86810166452457
228 => 0.89622699953944
301 => 0.82606257273684
302 => 0.88449759232524
303 => 0.85269406787759
304 => 0.87404927919114
305 => 0.87397477287065
306 => 0.83465305816649
307 => 0.81197311374837
308 => 0.82642565704824
309 => 0.84191993071001
310 => 0.84443382448263
311 => 0.86452255472704
312 => 0.87012888753244
313 => 0.85314143739742
314 => 0.82460857094669
315 => 0.8312361050578
316 => 0.81183880698114
317 => 0.77784578820811
318 => 0.80226016775207
319 => 0.81059631035287
320 => 0.81427802582495
321 => 0.78084979598626
322 => 0.77034592040876
323 => 0.76475374518735
324 => 0.82029340624825
325 => 0.82333599425486
326 => 0.80776968383444
327 => 0.87813088299284
328 => 0.86220597661975
329 => 0.87999799873528
330 => 0.83063472580374
331 => 0.83252046930619
401 => 0.80915110481885
402 => 0.82223638739026
403 => 0.81298813142713
404 => 0.82117922586977
405 => 0.82608893410554
406 => 0.84945446391012
407 => 0.88476438914305
408 => 0.84596443292907
409 => 0.82905873638103
410 => 0.83954693543819
411 => 0.8674783916461
412 => 0.90979597758603
413 => 0.88474311498881
414 => 0.89586114998426
415 => 0.89828994602382
416 => 0.87981689265201
417 => 0.91047710541354
418 => 0.92690816251556
419 => 0.94376302717405
420 => 0.95839763389443
421 => 0.93703082358304
422 => 0.95989637342818
423 => 0.94147077656589
424 => 0.92494111137723
425 => 0.92496618005617
426 => 0.91459687962345
427 => 0.89450505341911
428 => 0.89079981240311
429 => 0.91007494408869
430 => 0.92553177433876
501 => 0.92680487291138
502 => 0.93536256833843
503 => 0.94042692434089
504 => 0.99006449782309
505 => 1.0100291405012
506 => 1.0344415276566
507 => 1.0439515282604
508 => 1.0725732205539
509 => 1.0494588794867
510 => 1.0444579464008
511 => 0.97503108298098
512 => 0.9863997279766
513 => 1.0046020255257
514 => 0.97533123216324
515 => 0.99389681334381
516 => 0.99756205234163
517 => 0.97433662180539
518 => 0.98674232776641
519 => 0.95379645076942
520 => 0.88548251923089
521 => 0.91055315834791
522 => 0.92901358742392
523 => 0.90266827897797
524 => 0.94989122466311
525 => 0.92230455467331
526 => 0.91356090468024
527 => 0.87944880872096
528 => 0.89554840491876
529 => 0.91732333930028
530 => 0.90386896146033
531 => 0.93178881566323
601 => 0.97133077516769
602 => 0.99951073027496
603 => 1.0016740373162
604 => 0.98355621409258
605 => 1.0125901414348
606 => 1.0128016218985
607 => 0.98005123324933
608 => 0.95999180255667
609 => 0.95543425769789
610 => 0.96681989831442
611 => 0.98064416792808
612 => 1.0024411880677
613 => 1.0156126708313
614 => 1.0499569122641
615 => 1.0592494792692
616 => 1.0694591930776
617 => 1.0831025192847
618 => 1.0994848304734
619 => 1.0636412662381
620 => 1.0650653978659
621 => 1.0316883671379
622 => 0.9960202230546
623 => 1.0230878983169
624 => 1.0584752830604
625 => 1.0503573779006
626 => 1.0494439477364
627 => 1.0509800839082
628 => 1.0448594485238
629 => 1.0171760415212
630 => 1.0032736078319
701 => 1.0212112941803
702 => 1.0307443761599
703 => 1.0455293549381
704 => 1.0437067942306
705 => 1.0817913117726
706 => 1.0965898036733
707 => 1.092803716182
708 => 1.0935004473977
709 => 1.1202924101159
710 => 1.150090582846
711 => 1.1780005038229
712 => 1.2063916741996
713 => 1.1721650101842
714 => 1.1547868210044
715 => 1.17271667632
716 => 1.1632028427086
717 => 1.2178721526265
718 => 1.2216573370309
719 => 1.2763226937354
720 => 1.3282066266776
721 => 1.2956192579938
722 => 1.3263476788953
723 => 1.3595829714252
724 => 1.4236992429472
725 => 1.4021071383363
726 => 1.3855679245957
727 => 1.3699384475277
728 => 1.4024609081965
729 => 1.444300534288
730 => 1.4533123890131
731 => 1.4679150364613
801 => 1.4525621381963
802 => 1.4710530130902
803 => 1.5363339267679
804 => 1.5186944476416
805 => 1.4936435515946
806 => 1.5451765632975
807 => 1.5638261599033
808 => 1.6947187957523
809 => 1.8599761554167
810 => 1.7915585233773
811 => 1.7490894913472
812 => 1.7590707212532
813 => 1.819417114688
814 => 1.8387984609604
815 => 1.7861132806412
816 => 1.8047225770064
817 => 1.9072616296042
818 => 1.9622705414762
819 => 1.8875610504715
820 => 1.6814405278107
821 => 1.4913879924933
822 => 1.5417984830367
823 => 1.5360834978287
824 => 1.6462489178377
825 => 1.5182737518982
826 => 1.5204285254821
827 => 1.6328720497097
828 => 1.6028740452158
829 => 1.5542811197898
830 => 1.4917427746251
831 => 1.3761348594913
901 => 1.2737377050921
902 => 1.4745621055252
903 => 1.4659021922031
904 => 1.4533613543853
905 => 1.4812696318883
906 => 1.6167843055399
907 => 1.6136602536941
908 => 1.5937866297559
909 => 1.6088605983549
910 => 1.5516385802128
911 => 1.5663859972092
912 => 1.4913578872007
913 => 1.5252737263752
914 => 1.554176861196
915 => 1.5599795934295
916 => 1.5730534454465
917 => 1.4613388113918
918 => 1.511495402313
919 => 1.5409577004422
920 => 1.4078459656469
921 => 1.5383265094322
922 => 1.4593941081555
923 => 1.4326032656374
924 => 1.468673605663
925 => 1.4546169590754
926 => 1.4425318797735
927 => 1.4357881978749
928 => 1.4622742746516
929 => 1.4610386675122
930 => 1.4177023051797
1001 => 1.361171787133
1002 => 1.3801452845404
1003 => 1.3732520350548
1004 => 1.348270009672
1005 => 1.3651048784388
1006 => 1.2909726363221
1007 => 1.1634319668191
1008 => 1.2476892397692
1009 => 1.2444454264149
1010 => 1.2428097486264
1011 => 1.3061267605484
1012 => 1.3000402908241
1013 => 1.2889932886756
1014 => 1.3480671228144
1015 => 1.3265043786986
1016 => 1.3929556752422
1017 => 1.4367247969462
1018 => 1.4256235318993
1019 => 1.4667886024164
1020 => 1.3805823955996
1021 => 1.4092166395115
1022 => 1.4151181174963
1023 => 1.3473381608709
1024 => 1.3010361125436
1025 => 1.2979482938022
1026 => 1.217666922818
1027 => 1.2605525831892
1028 => 1.2982901895866
1029 => 1.2802168046788
1030 => 1.274495310944
1031 => 1.3037251815945
1101 => 1.3059965928809
1102 => 1.2542081748364
1103 => 1.2649766268737
1104 => 1.3098828619758
1105 => 1.2638451049667
1106 => 1.1744012633229
1107 => 1.1522179539374
1108 => 1.1492582915459
1109 => 1.0890953971119
1110 => 1.1537003487442
1111 => 1.1254985560516
1112 => 1.214587681258
1113 => 1.1637004507347
1114 => 1.1615068039339
1115 => 1.1581907850564
1116 => 1.1064060965192
1117 => 1.1177436522202
1118 => 1.1554314141288
1119 => 1.1688788321608
1120 => 1.1674761562886
1121 => 1.155246723535
1122 => 1.1608452952248
1123 => 1.1428103451402
1124 => 1.1364418289003
1125 => 1.1163410398489
1126 => 1.086798432928
1127 => 1.0909065136157
1128 => 1.0323748790617
1129 => 1.0004837380478
1130 => 0.9916566905336
1201 => 0.97985279368993
1202 => 0.99298997209106
1203 => 1.0322090662951
1204 => 0.98490251789003
1205 => 0.90379875881799
1206 => 0.9086732329323
1207 => 0.9196247290228
1208 => 0.89921668850955
1209 => 0.87990219088077
1210 => 0.89669457953427
1211 => 0.86232984764348
1212 => 0.92377754269236
1213 => 0.92211555474646
1214 => 0.94501945556071
1215 => 0.95934173477522
1216 => 0.92633351807873
1217 => 0.91803204084328
1218 => 0.9227609395577
1219 => 0.84460277756038
1220 => 0.93863226627132
1221 => 0.93944543719435
1222 => 0.93248257406097
1223 => 0.98255037396478
1224 => 1.0882090483002
1225 => 1.0484560049049
1226 => 1.0330624249601
1227 => 1.0037992182325
1228 => 1.0427907037198
1229 => 1.0397967659963
1230 => 1.0262570441935
1231 => 1.0180681782006
]
'min_raw' => 0.76475374518735
'max_raw' => 1.9622705414762
'avg_raw' => 1.3635121433318
'max_pct' => '4830.69%'
'is_grow' => true
'min' => '$0.764753'
'max' => '$1.96'
'avg' => '$1.36'
'bar_min_pct' => 100
'bar_max_pct' => 100
'min_diff' => 0.47027444084893
'max_diff' => 1.1405819640653
'year' => 2037
]
]
'prediction_periods' => [
0 => [
'items' => [
0 => [
'year' => 2027
'avg' => 0.0240047461969
]
1 => [
'year' => 2028
'avg' => 0.041199113101494
]
2 => [
'year' => 2029
'avg' => 0.1125485515756
]
3 => [
'year' => 2030
'avg' => 0.086831039928242
]
4 => [
'year' => 2031
'avg' => 0.085278842061846
]
5 => [
'year' => 2032
'avg' => 0.14952064837373
]
]
'min_year' => 2027
'max_year' => 2032
'min_raw' => 0.0240047461969
'min' => '$0.0240047'
'max_raw' => 0.14952064837373
'max' => '$0.14952'
'max_pct' => '275.71%'
'is_grow' => true
]
1 => [
'items' => [
0 => [
'year' => 2032
'avg' => 0.14952064837373
]
1 => [
'year' => 2033
'avg' => 0.3845824826442
]
2 => [
'year' => 2034
'avg' => 0.24376685966916
]
3 => [
'year' => 2035
'avg' => 0.28752356999013
]
4 => [
'year' => 2036
'avg' => 0.55808394087468
]
5 => [
'year' => 2037
'avg' => 1.3635121433318
]
]
'min_year' => 2032
'max_year' => 2037
'min_raw' => 0.14952064837373
'min' => '$0.14952'
'max_raw' => 1.3635121433318
'max' => '$1.36'
'max_pct' => '3326.16%'
'is_grow' => true
]
2 => [
'items' => [
0 => [
'year' => 2037
'avg' => 1.3635121433318
]
]
]
]
'prediction_2025_max_price' => '$0.041043'
'last_price' => 0.03979709
'sma_50day_nextmonth' => '$0.034813'
'sma_200day_nextmonth' => '$0.138888'
'sma_50day_ts_nextmonth' => 1770163200
'sma_200day_ts_nextmonth' => 1770163200
'sma_200day_direction' => 'increase'
'sma_200day_direction_label' => 'aumentar'
'sma_200day_date_nextmonth' => '4 feb. 2026'
'sma_50day_date_nextmonth' => '4 feb. 2026'
'daily_sma3' => '$0.035096'
'daily_sma3_action' => 'BUY'
'daily_sma5' => '$0.034684'
'daily_sma5_action' => 'BUY'
'daily_sma10' => '$0.033861'
'daily_sma10_action' => 'BUY'
'daily_sma21' => '$0.032365'
'daily_sma21_action' => 'BUY'
'daily_sma50' => '$0.049226'
'daily_sma50_action' => 'SELL'
'daily_sma100' => '$0.08434'
'daily_sma100_action' => 'SELL'
'daily_sma200' => '$0.163361'
'daily_sma200_action' => 'SELL'
'daily_ema3' => '$0.036467'
'daily_ema3_action' => 'BUY'
'daily_ema5' => '$0.035353'
'daily_ema5_action' => 'BUY'
'daily_ema10' => '$0.034323'
'daily_ema10_action' => 'BUY'
'daily_ema21' => '$0.036189'
'daily_ema21_action' => 'BUY'
'daily_ema50' => '$0.052246'
'daily_ema50_action' => 'SELL'
'daily_ema100' => '$0.086351'
'daily_ema100_action' => 'SELL'
'daily_ema200' => '$0.132874'
'daily_ema200_action' => 'SELL'
'weekly_sma21' => '$0.1117068'
'weekly_sma21_action' => 'SELL'
'weekly_sma50' => '—'
'weekly_sma50_action' => '—'
'weekly_sma100' => '—'
'weekly_sma100_action' => '—'
'weekly_sma200' => '—'
'weekly_sma200_action' => '—'
'weekly_ema3' => '$0.037317'
'weekly_ema3_action' => 'BUY'
'weekly_ema5' => '$0.03990056'
'weekly_ema5_action' => 'SELL'
'weekly_ema10' => '$0.056968'
'weekly_ema10_action' => 'SELL'
'weekly_ema21' => '$0.097594'
'weekly_ema21_action' => 'SELL'
'weekly_ema50' => '$0.140457'
'weekly_ema50_action' => 'SELL'
'weekly_ema100' => '$0.070228'
'weekly_ema100_action' => 'SELL'
'weekly_ema200' => '$0.035114'
'weekly_ema200_action' => 'BUY'
'rsi_14' => '51.67'
'rsi_14_action' => 'NEUTRAL'
'stoch_rsi_14' => 105.3
'stoch_rsi_14_action' => 'SELL'
'momentum_10' => 0.01
'momentum_10_action' => 'BUY'
'vwma_10' => '0.037825'
'vwma_10_action' => 'BUY'
'hma_9' => '0.034730'
'hma_9_action' => 'BUY'
'stochastic_fast_14' => 100
'stochastic_fast_14_action' => 'SELL'
'cci_20' => 202.72
'cci_20_action' => 'SELL'
'adx_14' => 36.16
'adx_14_action' => 'SELL'
'ao_5_34' => '-0.003944'
'ao_5_34_action' => 'NEUTRAL'
'macd_12_26' => 0
'macd_12_26_action' => 'BUY'
'williams_percent_r_14' => -0
'williams_percent_r_14_action' => 'SELL'
'ultimate_oscillator' => 56.53
'ultimate_oscillator_action' => 'NEUTRAL'
'ichimoku_cloud' => '-0.035083'
'ichimoku_cloud_action' => 'SELL'
'sell_signals' => 13
'buy_signals' => 18
'sell_pct' => 41.94
'buy_pct' => 58.06
'overall_action' => 'bullish'
'overall_action_label' => 'Alcista'
'overall_action_dir' => 1
'last_updated' => 1767710220
'last_updated_date' => '6 de enero de 2026'
]
Predicción de precio de Arcadia para 2026
La previsión del precio de Arcadia para 2026 sugiere que el precio medio podría oscilar entre $0.013749 en el extremo inferior y $0.041043 en el extremo superior. En el mercado de criptomonedas, en comparación con el precio medio de hoy, Arcadia podría potencialmente ganar 3.13% para 2026 si AAA alcanza el objetivo de precio previsto.
Predicción de precio de Arcadia 2027-2032
La predicción del precio de AAA para 2027-2032 está actualmente dentro de un rango de precios de $0.0240047 en el extremo inferior y $0.14952 en el extremo superior. Considerando la volatilidad de precios en el mercado, si Arcadia alcanza el objetivo de precio superior, podría ganar 275.71% para 2032 en comparación con el precio de hoy.
| Predicción de Precio de Arcadia | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2027 | $0.013236 | $0.0240047 | $0.034772 |
| 2028 | $0.023888 | $0.041199 | $0.0585099 |
| 2029 | $0.052475 | $0.112548 | $0.172621 |
| 2030 | $0.044628 | $0.086831 | $0.129033 |
| 2031 | $0.052764 | $0.085278 | $0.117793 |
| 2032 | $0.080541 | $0.14952 | $0.2185002 |
Predicción de precio de Arcadia 2032-2037
La predicción de precio de Arcadia para 2032-2037 se estima actualmente entre $0.14952 en el extremo inferior y $1.36 en el extremo superior. Comparado con el precio actual, Arcadia podría potencialmente ganar 3326.16% para 2037 si alcanza el objetivo de precio superior. Tenga en cuenta que esta información es solo para fines generales y no debe considerarse como consejo de inversión a largo plazo.
| Predicción de Precio de Arcadia | Potencial Mínimo ($) | Precio Medio ($) | Potencial Máximo ($) |
|---|---|---|---|
| 2032 | $0.080541 | $0.14952 | $0.2185002 |
| 2033 | $0.187159 | $0.384582 | $0.582005 |
| 2034 | $0.150467 | $0.243766 | $0.337066 |
| 2035 | $0.177899 | $0.287523 | $0.397147 |
| 2036 | $0.294479 | $0.558083 | $0.821688 |
| 2037 | $0.764753 | $1.36 | $1.96 |
Arcadia Histograma de precios potenciales
Pronóstico de precio de Arcadia basado en análisis técnico
A fecha de 6 de enero de 2026, el sentimiento general de predicción de precio para Arcadia es Alcista, con 18 indicadores técnicos mostrando señales alcistas y 13 indicando señales bajistas. La predicción de precio de AAA se actualizó por última vez el 6 de enero de 2026.
Promedios Móviles Simples de 50 y 200 días y el Índice de Fuerza Relativa de 14 días - RSI (14) de Arcadia
Según nuestros indicadores técnicos, se proyecta que el SMA de 200 días de Arcadia aumentar durante el próximo mes, alcanzando $0.138888 para el 4 feb. 2026. Se espera que el SMA de 50 días a corto plazo para Arcadia alcance $0.034813 para el 4 feb. 2026.
El oscilador de momento del Índice de Fuerza Relativa (RSI) es una herramienta comúnmente utilizada para identificar si una criptomoneda está sobrevendida (por debajo de 30) o sobrecomprada (por encima de 70). Actualmente, el RSI se encuentra en 51.67, lo que sugiere que el mercado de AAA está en un estado NEUTRAL.
Promedios Móviles y Osciladores Populares de AAA para Sáb, 19 de Oct de 2024
Los promedios móviles (MA) son indicadores ampliamente utilizados en los mercados financieros, diseñados para suavizar los movimientos de precios durante un período establecido. Como indicadores rezagados, se basan en datos históricos de precios. La tabla a continuación resalta dos tipos: el promedio móvil simple (SMA) y el promedio móvil exponencial (EMA).
Promedio Móvil Simple Diario (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 3 | $0.035096 | BUY |
| SMA 5 | $0.034684 | BUY |
| SMA 10 | $0.033861 | BUY |
| SMA 21 | $0.032365 | BUY |
| SMA 50 | $0.049226 | SELL |
| SMA 100 | $0.08434 | SELL |
| SMA 200 | $0.163361 | SELL |
Promedio Móvil Exponencial Diario (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 3 | $0.036467 | BUY |
| EMA 5 | $0.035353 | BUY |
| EMA 10 | $0.034323 | BUY |
| EMA 21 | $0.036189 | BUY |
| EMA 50 | $0.052246 | SELL |
| EMA 100 | $0.086351 | SELL |
| EMA 200 | $0.132874 | SELL |
Promedio Móvil Simple Semanal (SMA)
| Período | Valor | Acción |
|---|---|---|
| SMA 21 | $0.1117068 | SELL |
| SMA 50 | — | — |
| SMA 100 | — | — |
| SMA 200 | — | — |
Promedio Móvil Exponencial Semanal (EMA)
| Período | Valor | Acción |
|---|---|---|
| EMA 21 | $0.097594 | SELL |
| EMA 50 | $0.140457 | SELL |
| EMA 100 | $0.070228 | SELL |
| EMA 200 | $0.035114 | BUY |
Osciladores de Arcadia
Un oscilador es una herramienta de análisis técnico que establece límites altos y bajos entre dos extremos, creando un indicador de tendencia que fluctúa dentro de estos límites. Los traders utilizan este indicador para identificar condiciones de sobrecompra o sobreventa a corto plazo.
| Período | Valor | Acción |
|---|---|---|
| RSI (14) | 51.67 | NEUTRAL |
| Stoch RSI (14) | 105.3 | SELL |
| Estocástico Rápido (14) | 100 | SELL |
| Índice de Canal de Materias Primas (20) | 202.72 | SELL |
| Índice Direccional Medio (14) | 36.16 | SELL |
| Oscilador Asombroso (5, 34) | -0.003944 | NEUTRAL |
| Momentum (10) | 0.01 | BUY |
| MACD (12, 26) | 0 | BUY |
| Rango Percentil de Williams (14) | -0 | SELL |
| Oscilador Ultimate (7, 14, 28) | 56.53 | NEUTRAL |
| VWMA (10) | 0.037825 | BUY |
| Promedio Móvil de Hull (9) | 0.034730 | BUY |
| Nube Ichimoku B/L (9, 26, 52, 26) | -0.035083 | SELL |
Predicción de precios de Arcadia basada en flujos de dinero globales
Definiciones de flujos de dinero globales utilizadas para la predicción de precios de Arcadia
M0: El total de toda la moneda física, además de cuentas en el banco central que pueden cambiarse por moneda física.
M1: Medir M0 más la cantidad en cuentas a la vista, incluyendo cuentas "de cheques" o "corrientes".
M2: Medir M1 más la mayoría de cuentas de ahorro, cuentas del mercado monetario, y cuentas de certificados de depósito (CD) inferiores a 100 000 $.
Predicciones de precios de Arcadia por parte de empresas de Internet o nichos tecnológicos
| Comparación | 2027 | 2028 | 2029 | 2030 | 2031 | 2032 |
|---|---|---|---|---|---|---|
| Facebook acción | $0.055921 | $0.078579 | $0.110416 | $0.155154 | $0.218017 | $0.30635 |
| Amazon.com acción | $0.083038 | $0.173265 | $0.361529 | $0.754352 | $1.57 | $3.28 |
| Apple acción | $0.056449 | $0.080068 | $0.113571 | $0.161092 | $0.228497 | $0.324106 |
| Netflix acción | $0.062793 | $0.099078 | $0.15633 | $0.246664 | $0.389198 | $0.614093 |
| Google acción | $0.051537 | $0.06674 | $0.086428 | $0.111924 | $0.144941 | $0.187698 |
| Tesla acción | $0.090216 | $0.204515 | $0.46362 | $1.05 | $2.38 | $5.40 |
| Kodak acción | $0.029843 | $0.022379 | $0.016782 | $0.012584 | $0.009437 | $0.007077 |
| Nokia acción | $0.026363 | $0.017464 | $0.011569 | $0.007664 | $0.005077 | $0.003363 |
Este cálculo muestra cuánto puede costar la criptomoneda si asumimos que su capitalización se comportará como la capitalización de algunas empresas de Internet o nichos tecnológicos. Si extrapola los datos, puede obtener una imagen potencial del precio futuro en 2024, 2025, 2026, 2027, 2028, 2029 y 2030.
Resumen de pronósticos y predicciones de Arcadia
Podría preguntarse cosas como: "¿Debo invertir en Arcadia ahora?", "¿Debería comprar AAA hoy?", "¿Será Arcadia una buena o mala inversión a corto plazo?, ¿Lo será a largo plazo?".
Actualizamos el pronóstico de Arcadia regularmente con valores actualizados. Aquí hay algunas predicciones similares. Hacemos un pronóstico de precios futuros para una gran cantidad de monedas digitales, como Arcadia, con métodos de análisis técnico.
Si está tratando de encontrar criptomonedas que ofrezcan un buen rendimiento, debería explorar el máximo de fuentes de información disponibles acerca de Arcadia a fin de tomar una decisión responsable sobre la inversión por sus propios medios.
El precio de Arcadia es de $0.03979 USD hoy, pero dicho precio puede subir y bajar, y su inversión puede perderse porque estos son activos de criptomonedas conllevan un alto riesgo
Predicción de precios de Arcadia basada en el patrón de crecimiento del Bitcoin
| 2027 | 2028 | 2029 | 2030 | |
|---|---|---|---|---|
| Si Arcadia ofrece un 1 % del crecimiento medio anterior anual del Bitcoin | $0.040831 | $0.041892 | $0.042981 | $0.044099 |
| Si Arcadia ofrece un 2 % del crecimiento medio anterior anual del Bitcoin | $0.041865 | $0.044042 | $0.046332 | $0.04874 |
| Si Arcadia ofrece un 5 % del crecimiento medio anterior anual del Bitcoin | $0.044969 | $0.050813 | $0.057417 | $0.06488 |
| Si Arcadia ofrece un 10 % del crecimiento medio anterior anual del Bitcoin | $0.050141 | $0.063175 | $0.079596 | $0.100285 |
| Si Arcadia ofrece un 20 % del crecimiento medio anterior anual del Bitcoin | $0.060486 | $0.09193 | $0.139722 | $0.212358 |
| Si Arcadia ofrece un 50 % del crecimiento medio anterior anual del Bitcoin | $0.091519 | $0.210464 | $0.483996 | $1.11 |
| Si Arcadia ofrece un 100 % del crecimiento medio anterior anual del Bitcoin | $0.143242 | $0.515575 | $1.85 | $6.67 |
Cuadro de preguntas
¿Es AAA una buena inversión?
La decisión de adquirir Arcadia depende completamente de su tolerancia individual al riesgo. Como puede discernir, el valor de Arcadia ha experimentado un aumento de 6.4996% durante las últimas 24 horas, y Arcadia ha sufrido un declive de durante el período previo de 30 días. Por lo tanto, la determinación de si invertir o no en Arcadia dependerá de si dicha inversión se alinea con sus aspiraciones comerciales.
¿Puede Arcadia subir?
Parece que el valor medio de Arcadia podría potencialmente aumentar hasta $0.041043 para el final de este año. Mirando las perspectivas de Arcadia en un horizonte de cinco años más extendido, la moneda digital podría potencialmente crecer hasta $0.129033. Sin embargo, dada la imprevisibilidad del mercado, es vital realizar una investigación exhaustiva antes de invertir cualquier fondo en un proyecto, red o activo en particular.
¿Cuál será el precio de Arcadia la próxima semana?
Basado en nuestro nuevo pronóstico experimental de Arcadia, el precio de Arcadia aumentará en un 0.86% durante la próxima semana y alcanzará $0.040137 para el 13 de enero de 2026.
¿Cuál será el precio de Arcadia el próximo mes?
Basado en nuestro nuevo pronóstico experimental de Arcadia, el precio de Arcadia disminuirá en un -11.62% durante el próximo mes y alcanzará $0.035173 para el 5 de febrero de 2026.
¿Hasta qué punto puede subir el precio de Arcadia este año en 2026?
Según nuestra predicción más reciente sobre el valor de Arcadia en 2026, se anticipa que AAA fluctúe dentro del rango de $0.013749 y $0.041043. Sin embargo, es crucial tener en cuenta que el mercado de criptomonedas es excepcionalmente inestable, y esta predicción de precios proyectada de Arcadia no considera fluctuaciones de precios repentinas y extremas.
¿Dónde estará Arcadia en 5 años?
El futuro de Arcadia parece estar en una tendencia alcista, con un precio máximo de $0.129033 proyectada después de un período de cinco años. Basado en el pronóstico de Arcadia para 2030, el valor de Arcadia podría potencialmente alcanzar su punto más alto de aproximadamente $0.129033, mientras que su punto más bajo se anticipa que esté alrededor de $0.044628.
¿Cuánto será Arcadia en 2026?
Basado en nuestra nueva simulación experimental de predicción de precios de Arcadia, se espera que el valor de AAA en 2026 crezca en un 3.13% hasta $0.041043 si ocurre lo mejor. El precio estará entre $0.041043 y $0.013749 durante 2026.
¿Cuánto será Arcadia en 2027?
Según nuestra última simulación experimental para la predicción de precios de Arcadia, el valor de AAA podría disminuir en un -12.62% hasta $0.034772 en 2027, asumiendo las condiciones más favorables. Se proyecta que el precio fluctúe entre $0.034772 y $0.013236 a lo largo del año.
¿Cuánto será Arcadia en 2028?
Nuestro nuevo modelo experimental de predicción de precios de Arcadia sugiere que el valor de AAA en 2028 podría aumentar en un 47.02% , alcanzando $0.0585099 en el mejor escenario. Se espera que el precio oscile entre $0.0585099 y $0.023888 durante el año.
¿Cuánto será Arcadia en 2029?
Basado en nuestro modelo de pronóstico experimental, el valor de Arcadia podría experimentar un 333.75% crecimiento en 2029, potencialmente alcanzando $0.172621 bajo condiciones óptimas. El rango de precios previsto para 2029 se encuentra entre $0.172621 y $0.052475.
¿Cuánto será Arcadia en 2030?
Usando nuestra nueva simulación experimental para las predicciones de precios de Arcadia, se espera que el valor de AAA en 2030 aumente en un 224.23% , alcanzando $0.129033 en el mejor escenario. Se pronostica que el precio oscile entre $0.129033 y $0.044628 durante el transcurso de 2030.
¿Cuánto será Arcadia en 2031?
Nuestra simulación experimental indica que el precio de Arcadia podría crecer en un 195.98% en 2031, potencialmente alcanzando $0.117793 bajo condiciones ideales. Es probable que el precio fluctúe entre $0.117793 y $0.052764 durante el año.
¿Cuánto será Arcadia en 2032?
Basado en los hallazgos de nuestra última predicción experimental de precios de Arcadia, AAA podría experimentar un 449.04% aumento en valor, alcanzando $0.2185002 si se desarrolla el escenario más positivo en 2032. Se espera que el precio se mantenga dentro de un rango de $0.2185002 y $0.080541 a lo largo del año.
¿Cuánto será Arcadia en 2033?
Según nuestra predicción experimental de precios de Arcadia, se anticipa que el valor de AAA aumente en un 1362.43% en 2033, con el precio potencial más alto siendo $0.582005. A lo largo del año, el precio de AAA podría oscilar entre $0.582005 y $0.187159.
¿Cuánto será Arcadia en 2034?
Los resultados de nuestra nueva simulación de predicción de precios de Arcadia sugieren que AAA podría aumentar en un 746.96% en 2034, alcanzando potencialmente $0.337066 bajo las mejores circunstancias. El rango de precios previsto para el año está entre $0.337066 y $0.150467.
¿Cuánto será Arcadia en 2035?
Basado en nuestra predicción experimental para el precio de Arcadia, AAA podría crecer en un 897.93% , con el valor potencialmente alcanzando $0.397147 en 2035. El rango de precios esperado para el año está entre $0.397147 y $0.177899.
¿Cuánto será Arcadia en 2036?
Nuestra reciente simulación de predicción de precios de Arcadia sugiere que el valor de AAA podría aumentar en un 1964.7% en 2036, posiblemente alcanzando $0.821688 si las condiciones son óptimas. El rango de precios esperado para 2036 está entre $0.821688 y $0.294479.
¿Cuánto será Arcadia en 2037?
Según la simulación experimental, el valor de Arcadia podría aumentar en un 4830.69% en 2037, con un máximo de $1.96 bajo condiciones favorables. Se espera que el precio caiga entre $1.96 y $0.764753 durante el transcurso del año.
Predicciones relacionadas
¿Cómo leer y predecir los movimientos de precio de Arcadia?
Los traders de Arcadia utilizan indicadores y patrones de gráficos para predecir la dirección del mercado. También identifican niveles clave de soporte y resistencia para estimar cuándo una tendencia bajista podría desacelerar o una tendencia alcista podría estancarse.
Indicadores de predicción de precio de Arcadia
Las medias móviles son herramientas populares para la predicción de precios de Arcadia. Una media móvil simple (SMA) calcula el precio de cierre promedio de AAA durante un período específico, como una SMA de 12 días. Una media móvil exponencial (EMA) da más peso a los precios recientes, reaccionando más rápido a los cambios de precio.
Las medias móviles comúnmente utilizadas en el mercado de criptomonedas incluyen las de 50 días, 100 días y 200 días, que ayudan a identificar niveles clave de resistencia y soporte. Un movimiento de precio de AAA por encima de estas medias se considera alcista, mientras que una caída por debajo indica debilidad.
Los traders también utilizan RSI y niveles de retroceso de Fibonacci para evaluar la dirección futura de AAA.
¿Cómo leer gráficos de Arcadia y predecir movimientos de precio?
La mayoría de los traders prefieren gráficos de velas sobre gráficos lineales simples porque proporcionan información más detallada. Las velas pueden representar la acción del precio de Arcadia en diferentes marcos de tiempo, como 5 minutos para tendencias a corto plazo y semanal para tendencias a largo plazo. Las opciones populares incluyen gráficos de 1 hora, 4 horas y 1 día.
Por ejemplo, un gráfico de velas de 1 hora muestra los precios de apertura, cierre, máximo y mínimo de AAA dentro de cada hora. El color de la vela es crucial: el verde indica que el precio cerró más alto de lo que abrió, mientras que el rojo significa lo contrario. Algunos gráficos usan velas huecas y llenas para transmitir la misma información.
¿Qué afecta el precio de Arcadia?
La acción del precio de Arcadia está impulsada por la oferta y la demanda, influenciada por factores como reducciones a la mitad de recompensas de bloque, hard forks y actualizaciones de protocolo. Los eventos del mundo real, como regulaciones, adopción por empresas y gobiernos y hacks de exchanges de criptomonedas, también impactan el precio de AAA. La capitalización de mercado de Arcadia puede cambiar rápidamente.
Los traders a menudo monitorean la actividad de las "ballenas" de AAA, grandes poseedores de Arcadia, ya que sus acciones pueden influir significativamente en los movimientos de precios en el relativamente pequeño mercado de Arcadia.
Patrones de predicción de precios alcistas y bajistas
Los traders a menudo identifican patrones de velas para obtener una ventaja en las predicciones de precios de criptomonedas. Ciertas formaciones indican tendencias alcistas, mientras que otras sugieren movimientos bajistas.
Patrones de velas alcistas comúnmente seguidos:
- Martillo
- Envolvente Alcista
- Línea Penetrante
- Estrella de la Mañana
- Tres Soldados Blancos
Patrones de velas bajistas comunes:
- Harami Bajista
- Cubierta de Nube Oscura
- Estrella de la Tarde
- Estrella Fugaz
- Hombre Colgado


